You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/source/contributing/developer_guide_implementing_distribution.md
+2-3Lines changed: 2 additions & 3 deletions
Original file line number
Diff line number
Diff line change
@@ -193,9 +193,8 @@ class Blah(PositiveContinuous):
193
193
194
194
Some notes:
195
195
196
-
1. A distribution should at the very least inherit from {class}`~pymc.distributions.Discrete` or {class}`~pymc.distributions.Continuous`. For the latter, more specific subclasses exist: `PositiveContinuous`, `UnitContinuous`, `BoundedContinuous`, `CircularContinuous`, which specify default transformations for the variables. If you need to specify a one-time custom transform you can also override the `__new__` method, as is done for the {class}`~pymc.distributions.multivariate.Dirichlet`.
197
-
1. If a distribution does not have a corresponding `random` implementation, a `RandomVariable` should still be created that raises a `NotImplementedError`. This is the case for the {class}`~pymc.distributions.continuous.Flat`. In this case it will be necessary to provide a standard `initval` by
198
-
overriding `__new__`.
196
+
1. A distribution should at the very least inherit from {class}`~pymc.distributions.Discrete` or {class}`~pymc.distributions.Continuous`. For the latter, more specific subclasses exist: `PositiveContinuous`, `UnitContinuous`, `BoundedContinuous`, `CircularContinuous`, `SimplexContinuous`, which specify default transformations for the variables. If you need to specify a one-time custom transform you can also create a `_default_transform` dispatch function as is done for the {class}`~pymc.distributions.multivariate.LKJCholeskyCov`.
197
+
1. If a distribution does not have a corresponding `random` implementation, a `RandomVariable` should still be created that raises a `NotImplementedError`. This is the case for the {class}`~pymc.distributions.continuous.Flat`. In this case it will be necessary to provide a `moment` method.
199
198
1. As mentioned above, `PyMC` v4.x works in a very {term}`functional <Functional Programming>` way, and all the information that is needed in the `logp` and `logcdf` methods is expected to be "carried" via the `RandomVariable` inputs. You may pass numerical arguments that are not strictly needed for the `rng_fn` method but are used in the `logp` and `logcdf` methods. Just keep in mind whether this affects the correct shape inference behavior of the `RandomVariable`. If specialized non-numeric information is needed you might need to define your custom`_logp` and `_logcdf` {term}`Dispatching` functions, but this should be done as a last resort.
200
199
1. The `logcdf` method is not a requirement, but it's a nice plus!
201
200
1. Currently only one moment is supported in the `moment` method, and probably the "higher-order" one is the most useful (that is `mean` > `median` > `mode`)... You might need to truncate the moment if you are dealing with a discrete distribution.
0 commit comments