Skip to content

Commit 1a5b3d6

Browse files
committed
Remove redundant/wrong docstrings from GaussianRandomWalk logp
1 parent a3bd083 commit 1a5b3d6

File tree

1 file changed

+5
-18
lines changed

1 file changed

+5
-18
lines changed

pymc/distributions/timeseries.py

Lines changed: 5 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -23,10 +23,10 @@
2323
from aesara.tensor.random.utils import normalize_size_param
2424

2525
from pymc.aesaraf import change_rv_size, floatX, intX
26-
from pymc.distributions import distribution, logprob, multivariate
26+
from pymc.distributions import distribution, multivariate
2727
from pymc.distributions.continuous import Flat, Normal, get_tau_sigma
2828
from pymc.distributions.dist_math import check_parameters
29-
from pymc.distributions.logprob import ignore_logprob
29+
from pymc.distributions.logprob import ignore_logprob, logp
3030
from pymc.distributions.shape_utils import rv_size_is_none, to_tuple
3131
from pymc.util import check_dist_not_registered
3232

@@ -218,27 +218,14 @@ def logp(
218218
init: at.Variable,
219219
steps: at.Variable,
220220
) -> at.TensorVariable:
221-
"""Calculate log-probability of Gaussian Random Walk distribution at specified value.
222-
223-
Parameters
224-
----------
225-
value: at.Variable,
226-
mu: at.Variable,
227-
sigma: at.Variable,
228-
init: at.Variable, Not used
229-
steps: at.Variable, Not used
230-
231-
Returns
232-
-------
233-
TensorVariable
234-
"""
221+
"""Calculate log-probability of Gaussian Random Walk distribution at specified value."""
235222

236223
# Calculate initialization logp
237-
init_logp = logprob.logp(init, value[..., 0])
224+
init_logp = logp(init, value[..., 0])
238225

239226
# Make time series stationary around the mean value
240227
stationary_series = value[..., 1:] - value[..., :-1]
241-
series_logp = logprob.logp(Normal.dist(mu, sigma), stationary_series)
228+
series_logp = logp(Normal.dist(mu, sigma), stationary_series)
242229

243230
return check_parameters(
244231
init_logp + series_logp.sum(axis=-1),

0 commit comments

Comments
 (0)