|
23 | 23 | from aesara.tensor.random.utils import normalize_size_param
|
24 | 24 |
|
25 | 25 | from pymc.aesaraf import change_rv_size, floatX, intX
|
26 |
| -from pymc.distributions import distribution, logprob, multivariate |
| 26 | +from pymc.distributions import distribution, multivariate |
27 | 27 | from pymc.distributions.continuous import Flat, Normal, get_tau_sigma
|
28 | 28 | from pymc.distributions.dist_math import check_parameters
|
29 |
| -from pymc.distributions.logprob import ignore_logprob |
| 29 | +from pymc.distributions.logprob import ignore_logprob, logp |
30 | 30 | from pymc.distributions.shape_utils import rv_size_is_none, to_tuple
|
31 | 31 | from pymc.util import check_dist_not_registered
|
32 | 32 |
|
@@ -218,27 +218,14 @@ def logp(
|
218 | 218 | init: at.Variable,
|
219 | 219 | steps: at.Variable,
|
220 | 220 | ) -> at.TensorVariable:
|
221 |
| - """Calculate log-probability of Gaussian Random Walk distribution at specified value. |
222 |
| -
|
223 |
| - Parameters |
224 |
| - ---------- |
225 |
| - value: at.Variable, |
226 |
| - mu: at.Variable, |
227 |
| - sigma: at.Variable, |
228 |
| - init: at.Variable, Not used |
229 |
| - steps: at.Variable, Not used |
230 |
| -
|
231 |
| - Returns |
232 |
| - ------- |
233 |
| - TensorVariable |
234 |
| - """ |
| 221 | + """Calculate log-probability of Gaussian Random Walk distribution at specified value.""" |
235 | 222 |
|
236 | 223 | # Calculate initialization logp
|
237 |
| - init_logp = logprob.logp(init, value[..., 0]) |
| 224 | + init_logp = logp(init, value[..., 0]) |
238 | 225 |
|
239 | 226 | # Make time series stationary around the mean value
|
240 | 227 | stationary_series = value[..., 1:] - value[..., :-1]
|
241 |
| - series_logp = logprob.logp(Normal.dist(mu, sigma), stationary_series) |
| 228 | + series_logp = logp(Normal.dist(mu, sigma), stationary_series) |
242 | 229 |
|
243 | 230 | return check_parameters(
|
244 | 231 | init_logp + series_logp.sum(axis=-1),
|
|
0 commit comments