@@ -185,19 +185,19 @@ class GaussianRandomWalk(distribution.Continuous):
185
185
186
186
Parameters
187
187
----------
188
- mu : TensorVariable, optional
188
+ mu : tensor_like of float, default 0
189
189
innovation drift, defaults to 0.0
190
190
For vector valued `mu`, first dimension must match shape of the random walk, and
191
191
the first element will be discarded (since there is no innovation in the first timestep)
192
- sigma : TensorVariable , optional
192
+ sigma : tensor_like of float , optional
193
193
`sigma` > 0, innovation standard deviation (only required if `tau` is not specified)
194
194
For vector valued `sigma`, first dimension must match shape of the random walk, and
195
195
the first element will be discarded (since there is no innovation in the first timestep)
196
- tau : TensorVariable , optional
196
+ tau : tensor_like of float , optional
197
197
`tau` > 0, innovation precision (only required if `sigma` is not specified)
198
198
For vector valued `tau`, first dimension must match shape of the random walk, and
199
199
the first element will be discarded (since there is no innovation in the first timestep)
200
- init : distribution , optional
200
+ init : pymc.Distribution , optional
201
201
distribution for initial value (Defaults to Flat())
202
202
"""
203
203
@@ -250,7 +250,7 @@ def random(self, point=None, size=None):
250
250
251
251
Parameters
252
252
----------
253
- Point : dict, optional
253
+ point : dict or Point , optional
254
254
Dict of variable values on which random values are to be
255
255
conditioned (uses default point if not specified).
256
256
size : int, optional
0 commit comments