Skip to content

Commit 08f576c

Browse files
ArmavicaricardoV94
authored andcommitted
Fix broken links
1 parent fc37dba commit 08f576c

File tree

3 files changed

+7
-8
lines changed

3 files changed

+7
-8
lines changed

docs/source/404.md

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -10,4 +10,3 @@ Click on the navigation bar on top of the page to go to the right section
1010
of the default docs, or alternatively:
1111

1212
* Go to the current [PyMC website homepage](https://www.pymc.io/)
13-
* Go to the homepage of [PyMC 3.x documentation](https://www.pymc.io/projects/docs/en/v3/)

docs/source/contributing/developer_guide.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -546,7 +546,7 @@ And the transition kernel (i.e., ``.astep()``) takes an array as input and outpu
546546
For example, see the [MH sampler](https://github.com/pymc-devs/pymc/blob/89f6fcf751774fb50016561dc448a87fba7ed3aa/pymc/step_methods/metropolis.py#L235-L289).
547547

548548
This is of course very different compared to the transition kernel in e.g. TFP, which is a tenor in tensor out function.
549-
Moreover, transition kernels in TFP do not flatten the tensors, see eg docstring of [tensorflow\_probability/python/mcmc/random\_walk\_metropolis.py](https://github.com/tensorflow/probability/blob/master/tensorflow_probability/python/mcmc/random_walk_metropolis.py):
549+
Moreover, transition kernels in TFP do not flatten the tensors, see eg docstring of [tensorflow\_probability/python/mcmc/random\_walk\_metropolis.py](https://github.com/tensorflow/probability/blob/main/tensorflow_probability/python/mcmc/random_walk_metropolis.py):
550550

551551
```python
552552
new_state_fn: Python callable which takes a list of state parts and a
@@ -648,7 +648,7 @@ As in the batch random generation, we want to generate (n\_sample, ) + RV.shape
648648
In some cases, where we broadcast RV1 and RV2 to create a RV3 that has one more batch shape, we get error (even worse, wrong answer with silent error).
649649

650650
The good news is, we are fixing these errors with the amazing works from [lucianopaz](https://github.com/lucianopaz) and others.
651-
The challenge and some summary of the solution could be found in Luciano's [blog post](https://lucianopaz.github.io/2019/08/19/pymc-shape-handling/)
651+
The challenge and some summary of the solution could be found in Luciano's [blog post](https://lucianopaz.github.io/2019/08/19/pymc3-shape-handling/)
652652

653653
```python
654654
with pm.Model() as m:
@@ -666,8 +666,8 @@ There are also other error related random sample generation (e.g., [Mixture is c
666666

667667
### Extending PyMC
668668
- Custom Inference method
669-
- [Inferencing Linear Mixed Model with EM.ipynb](https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Inferencing%20Linear%20Mixed%20Model%20with%20EM.ipynb)
670-
- [Laplace approximation in pymc.ipynb](https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/master/Ports/Laplace%20approximation%20in%20pymc.ipynb)
669+
- [Inferencing Linear Mixed Model with EM.ipynb](https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/main/Ports/Inferencing%20Linear%20Mixed%20Model%20with%20EM.ipynb)
670+
- [Laplace approximation in pymc.ipynb](https://github.com/junpenglao/Planet_Sakaar_Data_Science/blob/main/Ports/Laplace%20approximation%20in%20pymc3.ipynb)
671671
- Connecting it to other library within a model
672672
- Using "black box" likelihood function by creating a custom PyTensor Op.
673673
- Using emcee

docs/source/learn/books.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,7 @@ Hands on approach with PyMC and ArviZ focusing on the practice of applied statis
1616
:::
1717

1818
:::{grid-item-card} Bayesian Methods for Hackers
19-
:img-top: https://camo.githubusercontent.com/4a0aca82ca82efab71747d00db30f3a68de98e82/687474703a2f2f692e696d6775722e636f6d2f36444b596250622e706e673f31
19+
:img-top: https://www.pearson.com/hipassets/assets/hip/images/bigcovers/0133902838.jpg
2020
By Cameron Davidson-Pilon
2121

2222
The "hacker" in the title means learn-as-you-code. This hands-on introduction teaches intuitive definitions of the Bayesian approach to statistics, worklflow and decision-making by applying them using PyMC.
@@ -28,7 +28,7 @@ The "hacker" in the title means learn-as-you-code. This hands-on introduction t
2828
:::
2929

3030
:::{grid-item-card} Bayesian Analysis with Python
31-
:img-top: https://aloctavodia.github.io/img/BAP.jpg
31+
:img-top: https://aloctavodia.github.io/img/BAP.png
3232

3333
By Osvaldo Martin
3434

@@ -55,7 +55,7 @@ Principled introduction to Bayesian data analysis, with practical exercises. The
5555
:::
5656

5757
:::{grid-item-card} Statistical Rethinking
58-
:img-top: http://xcelab.net/rm/wp-content/uploads/2012/01/9781482253443-191x300.jpg
58+
:img-top: https://xcelab.net/rm/sr2edcover-1-187x300.png
5959

6060
By Richard McElreath
6161

0 commit comments

Comments
 (0)