@@ -1712,15 +1712,15 @@ def logp(value, b, kappa, mu):
1712
1712
1713
1713
class LogNormal (PositiveContinuous ):
1714
1714
r"""
1715
- Note: Class name Lognormal is deprecated, use LogNormal now!
1716
-
1717
1715
Log-normal log-likelihood.
1718
1716
1719
1717
Distribution of any random variable whose logarithm is normally
1720
1718
distributed. A variable might be modeled as log-normal if it can
1721
1719
be thought of as the multiplicative product of many small
1722
1720
independent factors.
1723
1721
1722
+ Note: Class name Lognormal is deprecated, use LogNormal now!
1723
+
1724
1724
The pdf of this distribution is
1725
1725
1726
1726
.. math::
@@ -1730,6 +1730,7 @@ class LogNormal(PositiveContinuous):
1730
1730
\exp\left\{ -\frac{\tau}{2} (\ln(x)-\mu)^2 \right\}
1731
1731
1732
1732
.. plot::
1733
+ :context: close-figs
1733
1734
1734
1735
import matplotlib.pyplot as plt
1735
1736
import numpy as np
@@ -1755,12 +1756,14 @@ class LogNormal(PositiveContinuous):
1755
1756
1756
1757
Parameters
1757
1758
----------
1758
- mu: float
1759
+ mu : tensor_like of float, default 0
1759
1760
Location parameter.
1760
- sigma: float
1761
+ sigma : tensor_like of float, optional
1761
1762
Standard deviation. (sigma > 0). (only required if tau is not specified).
1762
- tau: float
1763
+ Defaults to 1.
1764
+ tau : tensor_like of float, optional
1763
1765
Scale parameter (tau > 0). (only required if sigma is not specified).
1766
+ Defaults to 1.
1764
1767
1765
1768
Examples
1766
1769
--------
@@ -1805,7 +1808,7 @@ def logcdf(value, mu, sigma):
1805
1808
1806
1809
Parameters
1807
1810
----------
1808
- value: numeric or np.ndarray or aesara.tensor
1811
+ value : tensor_like of float
1809
1812
Value(s) for which log CDF is calculated. If the log CDF for multiple
1810
1813
values are desired the values must be provided in a numpy array or Aesara tensor.
1811
1814
0 commit comments