|
19 | 19 | import numpy as np
|
20 | 20 | import pytest
|
21 | 21 |
|
| 22 | +from aesara.tensor.subtensor import AdvancedIncSubtensor, AdvancedIncSubtensor1 |
22 | 23 | from aesara.tensor.type import TensorType
|
23 | 24 |
|
24 |
| -from pymc3.aesaraf import _conversion_map, take_along_axis |
| 25 | +from pymc3.aesaraf import _conversion_map, extract_obs_data, take_along_axis |
25 | 26 | from pymc3.vartypes import int_types
|
26 | 27 |
|
27 | 28 | FLOATX = str(aesara.config.floatX)
|
@@ -225,3 +226,49 @@ def test_dtype_failure(self):
|
225 | 226 | indices.tag.test_value = np.zeros((1,) * indices.ndim, dtype=FLOATX)
|
226 | 227 | with pytest.raises(IndexError):
|
227 | 228 | take_along_axis(arr, indices)
|
| 229 | + |
| 230 | + |
| 231 | +def test_extract_obs_data(): |
| 232 | + |
| 233 | + with pytest.raises(TypeError): |
| 234 | + extract_obs_data(aet.matrix()) |
| 235 | + |
| 236 | + data = np.random.normal(size=(2, 3)) |
| 237 | + data_at = aet.as_tensor(data) |
| 238 | + mask = np.random.binomial(1, 0.5, size=(2, 3)).astype(bool) |
| 239 | + |
| 240 | + for val_at in (data_at, aesara.shared(data)): |
| 241 | + res = extract_obs_data(val_at) |
| 242 | + |
| 243 | + assert isinstance(res, np.ndarray) |
| 244 | + assert np.array_equal(res, data) |
| 245 | + |
| 246 | + # AdvancedIncSubtensor check |
| 247 | + data_m = np.ma.MaskedArray(data, mask) |
| 248 | + missing_values = data_at.type()[mask] |
| 249 | + constant = aet.as_tensor(data_m.filled()) |
| 250 | + z_at = aet.set_subtensor(constant[mask.nonzero()], missing_values) |
| 251 | + |
| 252 | + assert isinstance(z_at.owner.op, AdvancedIncSubtensor) |
| 253 | + |
| 254 | + res = extract_obs_data(z_at) |
| 255 | + |
| 256 | + assert isinstance(res, np.ndarray) |
| 257 | + assert np.ma.allequal(res, data_m) |
| 258 | + |
| 259 | + # AdvancedIncSubtensor1 check |
| 260 | + data = np.random.normal(size=(3,)) |
| 261 | + data_at = aet.as_tensor(data) |
| 262 | + mask = np.random.binomial(1, 0.5, size=(3,)).astype(bool) |
| 263 | + |
| 264 | + data_m = np.ma.MaskedArray(data, mask) |
| 265 | + missing_values = data_at.type()[mask] |
| 266 | + constant = aet.as_tensor(data_m.filled()) |
| 267 | + z_at = aet.set_subtensor(constant[mask.nonzero()], missing_values) |
| 268 | + |
| 269 | + assert isinstance(z_at.owner.op, AdvancedIncSubtensor1) |
| 270 | + |
| 271 | + res = extract_obs_data(z_at) |
| 272 | + |
| 273 | + assert isinstance(res, np.ndarray) |
| 274 | + assert np.ma.allequal(res, data_m) |
0 commit comments