From 4e9cf57ef2c8e2b36f1624ba3b572beffe0b423c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= Date: Fri, 29 Mar 2019 01:11:48 -0500 Subject: [PATCH 1/9] First draft of chapter 08 of BDA3 MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Hay varios problemas con respecto al modelo jerárquico --- BDA3/chap_08.ipynb | 2490 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2490 insertions(+) create mode 100644 BDA3/chap_08.ipynb diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb new file mode 100644 index 0000000..4034a59 --- /dev/null +++ b/BDA3/chap_08.ipynb @@ -0,0 +1,2490 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## **Example. Stratified sampling in pre-election polling**" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [], + "source": [ + "%matplotlib inline\n", + "\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pymc3 as pm\n", + "import pandas as pd\n", + "import scipy.stats as stats\n", + "import theano.tensor as tt\n", + "\n", + "plt.style.use('seaborn-darkgrid')\n", + "plt.rc('font', size=12)\n", + "\n", + "%config Inline.figure_formats = ['retina']" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
regiondensitybushdukakisotherproportion
0NortheastI0.2980.6170.0850.032
1NortheastII0.5000.4780.0220.032
2NortheastIII0.4670.4130.1200.115
3NortheastIV0.4640.5220.0140.048
4MidwestI0.4040.4890.1060.032
5MidwestII0.4470.4470.1060.065
6MidwestIII0.5090.3880.1030.080
7MidwestIV0.5520.3380.1100.100
8SouthI0.5710.2860.1430.015
9SouthII0.4690.4060.1250.066
10SouthIII0.5150.4040.0810.068
11SouthIV0.5550.3520.0930.126
12WestI0.5000.4710.0290.023
13WestII0.5320.3510.1170.053
14WestIII0.5400.3710.0890.086
15WestIV0.5540.3610.0840.057
\n", + "
" + ], + "text/plain": [ + " region density bush dukakis other proportion\n", + "0 Northeast I 0.298 0.617 0.085 0.032\n", + "1 Northeast II 0.500 0.478 0.022 0.032\n", + "2 Northeast III 0.467 0.413 0.120 0.115\n", + "3 Northeast IV 0.464 0.522 0.014 0.048\n", + "4 Midwest I 0.404 0.489 0.106 0.032\n", + "5 Midwest II 0.447 0.447 0.106 0.065\n", + "6 Midwest III 0.509 0.388 0.103 0.080\n", + "7 Midwest IV 0.552 0.338 0.110 0.100\n", + "8 South I 0.571 0.286 0.143 0.015\n", + "9 South II 0.469 0.406 0.125 0.066\n", + "10 South III 0.515 0.404 0.081 0.068\n", + "11 South IV 0.555 0.352 0.093 0.126\n", + "12 West I 0.500 0.471 0.029 0.023\n", + "13 West II 0.532 0.351 0.117 0.053\n", + "14 West III 0.540 0.371 0.089 0.086\n", + "15 West IV 0.554 0.361 0.084 0.057" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "data = pd.read_csv('data/cbs_survey.txt', sep=' ', skiprows=2, skipinitialspace=True, index_col=False)\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "data_obs = data[['bush', 'dukakis', 'other']].values\n", + "proportion = data['proportion'].values * 1447" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(16, 3)\n", + "(16,)\n" + ] + }, + { + "data": { + "text/plain": [ + "array([ 46.304, 46.304, 166.405, 69.456, 46.304, 94.055, 115.76 ,\n", + " 144.7 , 21.705, 95.502, 98.396, 182.322, 33.281, 76.691,\n", + " 124.442, 82.479])" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "print(data_obs.shape)\n", + "print(proportion.shape)\n", + "proportion\n", + "# np.ones_like(data_obs" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1447.0" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sparsity = 1 #not zero\n", + "beta = np.ones(data_obs.shape)/3 #input for dirichlet\n", + "# print(beta)\n", + "n = 16\n", + "testval = np.asarray([stats.multinomial.rvs(p=a, n=n) for a in beta])\n", + "testval\n", + "valores = data_obs[:, :] * proportion.reshape(16, -1)\n", + "valores = np.round(valores)\n", + "np.sum(np.sum(valores, axis=1))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/subtensor.py:2190: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", + " rval = inputs[0].__getitem__(inputs[1:])\n" + ] + } + ], + "source": [ + "with pm.Model() as model_non_hiera:\n", + " \n", + "# thetas = [pm.Dirichlet(f'thetas{i}', a=np.ones_like([3, 3, 3]), shape=(1, 3)) for i in range(0, 16)]\n", + "# post = [pm.Multinomial(f'post{i}', n=proportion[i], p=thetas[i], observed=data_obs[i, :]) for i in range(16)]\n", + "\n", + " thetas = pm.Dirichlet('thetas', a=np.ones_like(data_obs), shape=(16, 3))\n", + " post = pm.Multinomial('post', n=np.sum(valores, axis=1), p=thetas, observed=valores)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "thetas_stickbreaking__ -41.64\n", + "post -322.85\n", + "Name: Log-probability of test_point, dtype: float64" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_non_hiera.check_test_point()" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "%3\n", + "\n", + "\n", + "cluster16 x 3\n", + "\n", + "16 x 3\n", + "\n", + "\n", + "\n", + "thetas\n", + "\n", + "thetas ~ Dirichlet\n", + "\n", + "\n", + "\n", + "post\n", + "\n", + "post ~ Multinomial\n", + "\n", + "\n", + "\n", + "thetas->post\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.model_to_graphviz(model_non_hiera)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [thetas]\n", + "Sampling 4 chains: 100%|██████████| 16000/16000 [00:15<00:00, 1039.68draws/s]\n" + ] + } + ], + "source": [ + "with model_non_hiera:\n", + " trace_1 = pm.sample(draws=2000, tune=2000)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAACECAYAAACXt2rvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XmwJWdd+P93L2e9526zTyaTPQEjSwQSvmDEkC9LGcGvFgLyQymltMrSUkvAClSxCJFSqLIQRaX8WREU8CcJ6hcJBkL2fZtkJrPfO3ffzn5O78uz/P44d+5kMpNknIXJkOdVlcqcPn26P92n7+nn82xtaa01hmEYhmEYhmEYxv+YfbYDMAzDMAzDMAzDOFeZhMowDMMwDMMwDOMkmYTKMAzDMAzDMAzjJJmEyjAMwzAMwzAM4ySZhMowDMMwDMMwDOMkmYTKMAzDMAzDMAzjJJmEyjBOo+uvv55vfOMbZzsMwzAMwzgh5r5lGKfOJFSGcYoeffRRduzYcVq2tW/fPu69997Tsi3DMAzDOB5z3zKM08skVIZxiv7pn/6Jp5566rRs69ZbbzU3JsMwDOOMMvctwzi9LK21PttBGMa56sMf/jAPPvggruty0UUXEccxH/jAB5iYmOCOO+6gXC7zsY99jPe85z0ARFHEl770JX74wx/S7/e58soruemmm7j00kv55Cc/ya233opt25RKJZ566il83+fzn/88DzzwAGEYcvHFF3PjjTfyxje+EYCZmRluuukmdu3ahZSSK6+8kk9+8pO88pWvPJunxTAMw3iJMvctwzj9TAuVYZyCm2++mW3btvGRj3yE2267DYBvf/vbvPe97+Wxxx7jgx/8IJ/73OcIwxCAT3ziExw8eJBbbrmFRx99lDe/+c38+q//OkmS8Gd/9mdcffXV/Nqv/dpazeEXv/hFJiYm+N73vsfjjz/Oddddxx/8wR+QpikAn/vc59i0aRMPPPAADz/8MK9//ev59Kc/fXZOhmEYhvGSZ+5bhnH6mYTKME6za6+9lquvvppCocAv/MIvkCQJi4uLdLtdfvCDH/DRj36UTZs2USqV+P3f/32UUtxzzz3H3danPvUpvv71rzM2Nobrurz73e+m3+8zOzsLgOd5FAoFCoUCpVKJP/7jP+bb3/72j/FoDcMwjHOduW8Zxqlxz3YAhvGTZtu2bWv/LpVKAKRpyuzsLFprPvjBDx61vlKKpaWl425rcXGRL3zhCzz11FNrtYWHtwfwh3/4h/zJn/wJd999N9deey3veMc7uO6667As63QflmEYhvETyty3DOPUmITKME6z57spHL5Jff/732f79u0vuh2lFL/zO7/D5Zdfzne/+102b97M3Nwcb3/729fWectb3sI999zDgw8+yL333stHP/pRfu7nfo4vf/nLp+dgDMMwjJ945r5lGKfGdPkzjB+T7du34zgO+/fvP2r5/Pz8cddvt9vMz8/zoQ99iM2bNwOwc+fOo9bpdDpUKhXe9ra3cdNNN/G3f/u33H777fR6vTNzEIZhGMbLhrlvGcaJMQmVYZyicrnM9PT0i94MarUav/RLv8Rf/dVfMTMzgxCCW2+9lXe/+93U6/W1bc3NzdHtdhkdHWVoaIgdO3aQ5zmPPPIIt99+OwD1ep0kSXjnO9/Jv/zLv5BlGXmes3v3btavX8/IyMgZP27DMAzj3GTuW4ZxepmEyjBO0fvf/37+67/+i3e9610vuu4nP/lJXvOa1/D+97+fq6++mltuuYV/+Id/WKvJe8973sNTTz3FO97xDjzP4/Of/zy33HIL11xzDTfffDOf/exneec738lHP/pRnnjiCb7yla/w3e9+lze+8Y286U1v4t577+Xv//7vsW3zp20YhmEcn7lvGcbpZZ5DZRiGYRiGYRiGcZJMdYBhGIZhGIZhGMZJMgmVYRiGYRiGYRjGSTIJlWEYhmEYhmEYxkkyCZVhGIZhGIZhGMZJMgmVYRiGYRiGYRjGSXLPdgAvptn0z3YIhmEYxmm2cePw2Q7hjDod965arUQQpKchmjPrXIkTTKxnwrkSJ5w7sZ4rccK5E+vpiPOF7lumhcowDMMwXoJc1znbIZyQcyVOMLGeCedKnHDuxHquxAnnTqxnOk6TUBmGYRiGYRjGGSC1PNshGD8GL8uEKmpN8kf3/H989j++Sthtn+1wDMMwDMMwjJ8w3bTDPct30k07ZzsU4wx7WSZU337yNu7acDW3Xv52/vuu757tcAzDMAzDeInTWqPUS3+siPHS0U27APSy7lmOxDjTXnYJlY4DHq5u44JgiYpMeNTJkXl2tsMyDMMwjJcVrTS9lQgl9dkO5YTEyT763l0olZ/tUAwDGPwNGS8NL7uEKrvv33hy9Ep+dt8Ormnv4sDmy1mZ2Hu2wzIMwzCMl5Wwl+I1Yvr16GyHckLyvL76L3FW4zAMgF49YvLJneSZmQ37peBll1DNzO0itUucv/UCrjm0k+nhC9g/dfBsh2UYhmEYLytaH/3/nxR5Ipnb1SYNz35LltKKWMRnO4yXDa3P7HeexYJ+Y/B9+u0euWjjezvP6D6fTyziE7q2dJCjk5/8SoiXXUI1uzrbyhWXv5rXLS0DsDdsns2QDMMwjFOUZRlf+MIXeNvb3sZb3/pWAP7xH/+R6enpsxzZS5dUGvlj6jKktDrq9T3LdzIZrlZmniMZldYnViiM/cEwgqh/9ocT7O3u5qHG/cec/3PJXQebTDbDtdf9rMfB/oEfawxRtJswfPqY5TqVaDk4t2m2QK//I6QMj1kPQIf52rona2WyT3/lxFp0k1xy36E2cS5RKj/t4/8eatzPQ437X3Q9NR+gpn/yW9FeVgmV1prZ0fVYWvHTW8/j4g2vYET4TJUrKHXu/tgYhmG83H3iE58gjmP+5m/+hmKxCMBFF13Epz/96bMc2dnXWQyZ23XsjLb3Tra48+DxKxRVJ0FHp6dWeX9vL3cv/2jtdRA8QZo3WYrnATjT6ZTWmn4jRopTu8+fi2OnHmo8wFwwgz6NCZXWmiSZPKXWGDnZRy0EJ7RuLjWHWkeSlCdajzEfzp70vo9Ha/2C45HSbJ4sXz5muZryUDODZEHkLQCk7B3ZLho0qFSi5gL04vGTrcMWejGt8AUS8bVWXX3swmdZjpaYbHeJM8l8N6bv/Yi+d9cL7vts0olAR//z60nm6iUzBvNllVCpVpOl0c1sjDsMV6sUfuYtvKGzh8mNl9Bfnj/b4RmGYRgn6emnn+ZP//RP+amf+ikcZ/AAx7e97W10OufudMUzu1o8tmsnD6zce0rbCdrJcZfnUj9v41D/YJ/owOmZmWwxWjjq9Up4iJlGm93L7ilv+9ldoJ5La02cTBB2Q/orEUv7esesk8qU/HkSJa01OhZr6z3Q2sNKcuLXU+znp5zEnahMZty59EPmg7nnLE/xc588U6dlrJrWmiB4iDiZII6PDJdoBE2kEqvrCKT08YNHnz/pyhXaz8liQWcxfE6CcOJylbOvt3dt3ydLzQXEO4//GB2ljv/3syYbfMeWPajIUc85Zu3lqNkALRU6f+HrYc+yz5NzR1+nUT97wfNjtW10evSzrvb2drO79xQA8sfUAry7+wx3Lv2QTP7PW2bVtI+affEEO+gkRP0jLW2L+7qsTPRfeNtLIWruzLeQvawSKjk9QX1oPRtSDwD3p1/F6xb3MDOynZnFhRf5tGEYhvFSVSwWabVaRy3rdrtYlnWWIjp1IlPMRIdIV7vq5Kkki49fcGzNBSRhjtKaJH/+B4m2k9ZRhe5UHV3IXvYSWkFKv5vSXDmSqGitT7rQ+1y+iGn7FbSGTCToFxhrtLPzFI82Hn7e91cm+iwtNTjkTR7zXp4vkSSTLE9NAc+t1R94oH4vD9cfWHv/2evoVoKa8dGJoJ/10GgayZHCm5AennffMUnDbDRNomJEKmmutl48t1AedBMem+7QfqHWiFVqzkfuO5Lc6n6K3NdFPytZy9RgO4vR0ZXDisE6eycn6ddjRPbiD5lNZMKB3r7jnq8sm0dIb23rAPVGm3t238+ulWcA6PXvwPMfQIgOed46ZhsAsUqQenB+gnaCfJ5EQ73INTfjT7EULRyTtMNgBrwTnQWvMx/QWInIk2PPjz7hB/Me+1uTJxJx+DtWGuzj/x4lYU5zxsdvHV050G712TW5l6BzJIk4/L1YWCAtrJ593Na+w7t6brdeoQQP1u+nnx1bwfBcQe5zsH+AHYvLBOkLJ631eNCC18le/Pmug0TfO2Z5+iIVEJ2FkNZzEq8Xuqa11vQaEZMLx+7rdHtZJVTW0gTLpY2sE4ML0x4d4zUrgx+fJ80Dfg3DMM5Zv/Vbv8Uv//Iv85nPfIZut8sXv/hF3ve+9/Gbv/mbZzu002b5QO+4tbFKKqJeSnPaZ8+yz72T7WMKUZGQzDx9gDsmbuOgtx8AL2szGT3BympB6J7lO7l7aoon54/eh9Y5Dy1/l7uW70Du66JOsqXjQG8fWurD5XBQ8MTKvUT1528Jm68v0fEGBT+dCLTWx9SAP5PsYMafOiYBUFIOWuCep7tbFE0QR4vkqwnRU+0nuWv5DkSuBs+cmvcHY2QyxcOL97MYt9i/skBrz6C7WRIfRKoQIY7EH4uI2Xia/ckepNbkiUTKkL53N3F8CLmvi+gk1Gd9pmc8di4e+31qrZFTHtIblFV0eHRBVvcyklgQtQZJms4lzmqZUj7PsTazFZSfvWALidQSqSX7entYiObpZh2UVke1/mg9OPdB26G3NNhWGAzi6AceobdIGloc6PTxk4zjJRkqznk4eoS96T6s1VK/VoPuW4cn8jj8Xb7QGL+jkt9nHYOSq9/fgR7q0Au3XgAoqQm8wXFJodCJQDVj0jBHK02ucqRW9LMX7q53PAenpzjQmmEmnaaTd9das3QmUe2EvSs+K15C45BH7GWk0dHJwZ7uLubyKfxkkJgnKubR+D7q0cpzTsbgf0kueWi6Q5zB4bqk555CL/dIZMy++mAyC+1la5NGxCJmMVxAS4Xc1+XR2fuZ8We5++AzPDp1+srJDzce5LHmI6Qy5c6lH+JJj8Uo456JFv342AoWHeaopSPnPxOK7DjJl5SSPD/yeSUVX5l4iB/Mzpy22J/Pyyqh0o0JlosbWe8cOexXKpeSSjmgzv7gUcMwDOPkvO997+Pv/u7vqNVqvP3tb6darfLlL3+ZX/3VXz3boZ00rQV53kIr+Zzlz6lxlj5xfBCtJY1gUAgPgwy5GCDzhCjey+P1DrcuTrLSWwQGBcfGcossEvjZoPZWaslytAQMWgZ2BTHdKCOK9tIODyLEYD3def7B7VksjorvSW+F/mrBZyGaRx3sYS8NukZpP0OHYq0F7niiforXjNBehpr2aS7Nc3/9Hjrps7ve6bUCZSrT1QfwJizuTejMFtbWykWHmYnb1sYTLR2cpbN4pJa+6Tfx2ylL+7rEvRRiie4m6KUQ3U4IREIQpjzYe3h1r0cSjSSKODSzB6UVlgVzPjy04mFZoFSMyFv0WrejUeh2gtKDgvxxW1ClhlSSz/jPO66kWY9pzQ9q6tWkh3VokOQmMiZP2qgsPXxCUL0ML+2Cl6OXjk6GdXe1tUtr7l2+i3uW7zzq/cebj3L7xA9ozQ32dXhiDr/hEHY1sZ/Tmg8G53wlZvGeQzRmHO4+kPB/n+wyHy4cc73q1ZaOlmhjryZUSmmWJ/rUD3ns7+3lruU7Bsv/B42iohtx1xPf5cEnn2BlcrVFQhzZgFIZYXhsS+bCng6d1eQ0yRVqxiddClmZ7NNY6nF//X4eau1lV3+aMA9JZHLcST5iETPXa7Ic1Gkng5a5xXyOvuqjlOax+acJlgbXrZoL0I2YuXbEzsUjrScagXrW5CditXXs8P4iNUgq5vqPPWtMlx50odSahTkPL8rpBtbgOnqOsJcS9VO6Sx3a89N028tMT+9bmzRiR/tx9vf3IpPVxDYUKKGRQYZsPn/Xx3aYMd9+4d4AUkv0aiWDWD3GRjx4FMET8Q5WvJTWXEDbiwnyQTz9ekR3KRycr2dN8nL3RIu7J45t/ZyZOcT09JHvWGmFFJoubcQpTgjyYk69A/M5JOgtEbpVNpWra8vsrVfxM94+JobGz2JkhmEYxqmo1+ts3ryZD33oQ8ddfi5K0hWkCsnF0RNHdBZC1q0vE1sJiZ3iplNIFZGKLvujJltL5/HPP5piYyXl+ivHWI4ysnwJZQ8KZ37q8/0dd6B0mV6nj+/76JHVFgGtSGTMomzSFC57Vnyu2jQoXKXpNGG2TKGwAScW9Osx67cPkR7qoUsW7U6C1w0Z3zjM+HlDHJzbzQP+BKLocJVbBgZJRHPFQVaOFEB0JNCJwCq7zAWzjBXHGbZrNJMmWkMeSNTqYP5e2IEadKMuyY4M0Ulh/aBA3un1eNx/jIvKY1izAVqMorAorO4oz5ZREmY7fQ61BM1DLvWKYmM2SCL79Zg0ErABel7G0y2fq6slxp/VzTISKakzSFaE6KK0Jg5ibtlzC624zdvLNwy2lVqMH8nlyPM6FhUWgpiFLKNopUAZ+zkJVT/r0Q0buC2Bm2yk6IXU7BqRiNFLRYY3lI9bE96e9wlVSnXcJd6zC8cZYeiq16MOt26t7uaoVp1cIQ920YHA2lZFo5FKEIsjSVcgfNrNjHA4oTD2+FrXxcPbqT/ZoEkTbQ9eK22BAstzWLACJr0phsrb2OBuJuqljGysHJWMKKVpzQVUx0t4zZhyzT2q+97h/WitkUJhO6stWr0MmXpY6wevu0sR0/3BjHONbJkL40uhYPNYy6exI+a67eOIdB957jE05lIb24jIFIWSs7avmSjFn25zXaGILTU4FmEUk/YW0EMSq+ggdM4j9QcB+N/nveNInErzWOtp5KKHWz1AYUuf67Zcj1KaLBK004Q8z7krfIQ3RRU2qsraZ6UKENLGdYZJ0wXiWAGXkaeSPBmcKynV4NoUESpcJstdhBgikTaxrRkGskN9OvUGPZWjVILyE9TFR77vNLTw2wGejIh6CZUqPNPeSZpGrLPHGGOcnr+TiAo6jiAWaFfTXQwIAwdVe05irMBavRjvmVqg7VtsXz9YJxIhjzUf5fUjV1NWGsuCe+d/xDqxmfXBdrLIxy25MHJkeweDQxwiYry1kWnZ4+c2X0f7niWQmpGf2XD4gjjS9LZK5IqJuT7nb60x309RueJyqbEci2y1skYD/717hZ+7cIwz5WWVULVWT+yWkXVry6wrruaaxg/5ykX/D93AY7w28nwfNwzDMF6ifv7nf/6Y2n7btqnVajz66KNnKapTk2eNwT8ChTzYQ2mB0vDIyg5+tv8KHs92YG+p8obV+1Zn4SBxrcBkcIBQZ3R8gWzME/vnASBFn1za3LWnz2UFG6EHhUnP6zEzFOG2HZajORzLZgMt5ihzhTwfPxgUsLPY4sHwARK9ifO8a9haLZHHZVSYo1o58+EKE9leXtt7A+PnDTFbn2AozelvHuwn72fMTvbRFqSBjWtDrqxBF6sZH+eV40x4g+mwr+tfTZK3WPBcvI4N56+elNUyXdTL2Lco8GOBNSTprUQcWFlgLz4L+X4u1htZF5UoDUMucxbrs5TxWS+q3LtjltGhMeLIppdDnjRQvRT1rMRp3hskDsupYFxDslp+EJlLnCui2CcQMXfOTLCxFzPXldhlWGgtkwQ5UECpBJ0rnmnvZqa7wJuGL2dvP2FvcpCN2qNYvIZndZhBx4LHdt9NVmvQnvsp+u4Kr7ykT5pXmW6G/KL4WfxWwtZhhUavdabLYoHfSQhrGdXxwQaVOv5EHV43ZePqv9Wcjw4FWgv++95HmNwQUhxboGgVOa98Pt96ZD/l4ZT5jsNFVsrIajJVT7o8mdd5nfNmiBJmxH5sB8LhAKnK2J6LFJBIiD3JnsIzbFgKGGaUynCRJ1oHmfNcLhgRa5N2eI2IxM+JeylqvQI3JZ7ZR55tJk8lUT9jUXQpXZ6j2+mg++fhFsJUErVjVvwu68dL5GmKJ/rsXvZ5KJzEXbiQraFgrKfwKzFhdT+XjDuoHDZdMrx2bnpCYgOJ1FSURguFdBLSxjyUbAoXja4lg9Wugx4TeNKnFNk889QODrlzXMQYKhm05s0E04PGU6mZCEuEaN5YAS/rs5EKqYhQMqOZPMNYWuP88auwQ4dw3sbvROzcs59Wr4PlQnPWx+oXcToT2LpPJ3Vp+BP0Vq5kpqb5P+PwzM4mt+V7qa0rsSFJSaUi7WUwPkjetHz276MFaOIkhW5G3AoY2Z7QyVrUwz7L0evYKjYhxjUqEpACzxqbuXfhUerTs6w/f/CHKQ5PSJIPuvQuR0tIKdj18B4u0NvYuK2EqkfMentZN7YNmWt6GexciKisfgW75E4iPUIvK5K0I1r9f2dbfjnn2SNorUmVppXkbKgUUUqvVRL0VkL2tXwOdSKWewK6KXqTj3XxCPv7+wbXOme2dQpOMKH6i7/4C2644QZe85rXnOl4zqh2aXC429aft7bMuexyXrfjr1CXODy8uMQNrzAJlWEYxrlm//79R73u9/t85zvfYWho6CxFdOoyCbPtUYZ0QDJ2iCjuEdoOsR1wIJlCKclEZy8Xq1cAxUGy0c/Q9qC7j3RWiPM+cPieJ1lqlUllxlIOSi5iVRQaaB/q4a+O9VZysClbW8jdHZ5ZP0EiiqRKUyzAoaBA5CZsrZbQq2NPlJIs54OWhW7cYfrJCiutPt5QQj9xYOhClvb3aSx0GNsgoATEgj1+ie1lwQVKUQGEhMWORcuLiWoxE/0l1jHoQRKqcK0l5K6ZOn1m2aR/mpGGB3aM2DiOKCXsjyfRdkpRbGM2n0b6F7AcDXNxqrig4pD1u7T7Cba0sFwgFXhPzNLuLTGybnCuZnshk9FeRGkdP6WGWc5W0C50g1FSPc13n/w6V5xfYf/SCPN+jpNuJozGWCnECFVHyovoyxn6SyFNlojTIpEs0U2aRH4LVSuCHnT5ayZNWvunGc9H8GVAKZVIDZHq0oltJr0IkThkUUpUWkTqWR6SDV6jrmfXJLhzHpNZTpaptSRD65w4mUAphVIgVzPR0M/JD/TYesXoYDyPHky6kEuIsxDCmDwUTMtF2l2bqFWnYLn4+WC7cz24a3mRagYHnYNkTB11zS74Ak8WYbV1TmSD6+NA6yCX5D9NsLHIzqWQILS4YIS1Z5Adnvchb6+QzM/Dlj65N8JSvcuUtOjoNleNXoWjBmPpkIr20hJ6SxHVStDdFA43NqWS7yzupeLlBIU2/cBnYvpCrhx22dNeJG9X6Uc5F6gLcRo+vdYCE0xSiS5Aq2Huaze4PCphpeDrPqoMB3qbWd91aOKR2ZIN/RLxVJ87uk+xOdf0q3DIr3G+BY7OiLPVLm5i8MckZIq0Yvb66xhrw6XAD+cn6Cqf5aE23b7F+eOAtBCBxeTOh5jKVlAoMk/AsMaTPUJfMVtuMhwVGQ7KyNCCGuydWuLJekI47BPHfapphTRIEXGbnrufDZekWEl1beIVJTUTmctIM0N1c1bafc6L58hfAXljM7usaUaKNVQioZ8BLsKLkDLEcYbYt3wHSRrTWxkfJDcMxisF813azS7ZuCBMUsqZQloaoQVS9lnxJY8056icB1NtaHQfZWjjHn7e+V9obSG1oBtlxE6Hg22YTxtcbLVpH7QIR1wWw4w3bR+ns+hTKNiwaRSlQOSSTiMmzQQlYE9zBl/GuMMKTQ5aoU5xJsgXc0IJlWVZfOxjH0MIwQ033MANN9zAlVdeecI7ufPOO/nrv/5rsixjbGyMz372s1xxxRV87Wtf49/+7d9QSvGGN7yBz3zmM2vPDzkT2tUaAOcPH0ma7PUbuHJhGltLHut73HDG9m4YhmH8uIyOjvLhD3+YX/mVX+H973//2Q7npKzEkAQF2hUXOexBbBPmbfrFhL3tjKpuYw/32bnQZqO4mFaQIeyQ2FWgSyiliXzBUGKjSwo79SHrAeOQSzKdQpLwg/37uVaFtIsdqEDYTahmFk5q4aUpm9wagR2TSo0eASk1OINCVG+lTnXdOu7ft5fGSJPKUBGhU2bn59gvJ5HSRqoKIt1IKylAskx9to5aN0JUSGnqjNuiBtbcGFs2LlPvWdQbkgf7h4haPjIWRIT40uPxeAep1Cw02yymkooqMMU+XqsSRNJEdeY4mPWR1jom0wq9gkfZTUn8NnGWUnG66MY4C2qBUEhc6WArSJTgP4K7qdOlprewP9rNQt3F82Nm5AqaKwjDnDgu4+c1onQwbKDblRSSAo5yEFriapuZroZai1gMk1mwy11kXVYhaVS5MxtlPtpJn5ChzGWzK9Fa8fjKM2wOHCaXJtg7NMVFG0YBqNOk50mG1SDJS1TG0/37mdFNxkSNlmhw374DbOwOU5BVktRGNWdxO6/mVaMws3KI2VaClZc4f9vgmrKFx/D83egt72RfcghPtni9NSjP5RHYIiX1A3A8lqRm1HaOmldi74qmvTdiTgxhX9xgmCMV1EIollNJQUFSyIlJWIoWGRVbAGjkAtWJUP0UnUhyNXhOU8/RjB7eSK7J/QR3C0zmCxTyC2lHHVqFFg9Gd/EOrh+slyqelLt5RfwahFL0tUemU/YkU2RhmQXV5yK1nlD6YJUpyoB+VkB5VRy3xEShzYPdFS4vSq6QY4xkisRO6aQNdoePU48u41XZVlrFOaIlF73OphOWaTtdulGdSrPAj3qjzAaQFHPmVAWvOMqBZIV2VKIS+viVvavTma9ORAGgBSuegNV6HrH6nkBy31QbpaHZt0jFoPCvtKIT1WnbXeblIv3sMToyJu5qrKyNoEszd/CYYcEawst7lLwC/bxACfCFR9pIWcoizmeERrvFvI6JpSKNoFOUdHyLSp4z0s1IWjV6YZW92qE4vgOkS5APWj2zvM0zs/MUKtfSiXJaYYkLyopePaLrJcwvNIgFdJ0+l15iEXVD1vsjqPEm9XiEJd+mlRRZiidZN6eYkU0KrkMkNOHibqLNG6EAg/ZXjQgcZCrYZSd0G202MIoIfXSvSMHPCaTHbKFOOdwIQ6u5+eq4sf+YmeYyIbHDTWvdVP1gN3DdSf0Wn4gTSqhuvPHIVITPAAAgAElEQVRGbrzxRvbv38+dd97Jxz/+cdI05YYbbuBd73oXl1566fN+tl6v8/GPf5x//dd/5bLLLuOb3/wmn/70p/n4xz/OP//zP/Of//mf1Go1fu/3fo9vfOMbfPjDHz5tB/dsKgxojQxquTYXjxy2ZVmUnI28KphkL2YclWEYxrmoXq8f9Vopxf79+2m3z80ZXLUWJDIhTRRBV7Icu6RNl64N8yNtloVkmCHW54InqmNcrEtkkUPf9gilS60MlgtZr0Att5FZQJpkpAqUm6+2VyhCy6MT2fRVmSzLoVJG54pG4OIITexootRlLF+PV23R6MfEcZdla5ZUVdgT7WBfYjGnIxpRi7ZXYp8P1UKHRJRpRWM4icvenhrUIpcajLdjhtoSb30Zz21TzYocOLBE055EV7aglMWkP0uCSyYlrs7wk0NU4iXCZJh2qUE31GRiCKWqzKoOvXSMjiiRVXwKStNVGSruUc0TorBF6PaQTpemHsfPYtr0qeabiMo+Vb9LParhZSOcPyKZm5lhUoSkVkAl3TT4PlQKNmhr8F/UzzgwvR7HTnCVTa4TwELminZso5VizC5iaZ+s2aGX5DhasqxDUg011ceL99GfLhFafea99YyqHC8d4pFlzauSHFGVDPVGsDNol5s8PttjWo7jDQs6ueI1QOzlBKkPtk8k+nidGuO5xeNtxWRvP0E6RJJU6a1EdEgYypaRhYDa0ixTjVlCL6OqEjqRRToiQAmSVCLcjEgHjOTj5IGLtGLiwOLgikUiHBIR05sbY2GoQq08SZgFXBhdxIwKOE9swApsipbLrrkS5SRgPC4OJhZpWISrXeL2too0maNedCllkrKw0ZlF6NnoBQe70GY4uZDhrMiKI0hWJ2eJQkHXS2gJyeZewg+W2yRxg/PHGtS0S0+0UaqMCkNquU/Z2UjZLdCJXKzMQloJsSyRkRPloO1BAb6V5XSDFUgV0+kSKltH2W1DZiETcHybpztPUap2gS0koUeWKSb7sFJcQmARqZBQlGl0p6n2tlCpxWsTeSg0QR4TZB79gofvWSgXLOGQhTbaFsRCkyqLZQ8Ygl7eYiassOzvo1cIKTo2Y8UeSXcbyvGwin06UYnNtsQnoEeIk9u42RBBIWSTWsbpFdinmywXWzzUb3I+26GiybKQyCshpQVakUhFcXYEmUNSGYybVBqW0jJawzPZApP7Fa/e0mWloVjob6UX2ly6scPiko+INIm28LWgO5fS1CmbRELqzvJ0ezONuICUCik1be0iHUGuYsTyELrnkVWHsEerTHR9to5ntETKiBqnqGwUCVIUieKAoK8QSZlu3mCu0eKiuAZD5bXfTk/2aOs2F8hxej2FyMG1LHT7zM7D9z8aQ/XKV76S4eFhSqUS3/rWt/jWt77FHXfcwaZNm/jsZz/L9u3bj92B6/KXf/mXXHbZZQC8/vWv50tf+hK33347N9xwAyMjg9aiD3zgA3zlK185cwlVo0Gjtp6RLKBsH31SxcZX8cb+Lr629ZfJlabwPM8JMAzDMF6aDo+hOjyI3bZtNm3axEc+8pGzHNnJ8fwHEfogqajRiS32RhbL7k7monG6dpGCG+C7PrmvaDiH8K0ul+pRlIaa6GInLiofpm8PM1YWaDcllw5S20hlETsRHasFSpLaGXWZ08srg5HmXoLyetiFURQ++8MiIrXo6zJJZuEoSd9dZKqTMxUtcEF5I1meEVoBjRhG6ROHBTbI7bSqHlppWoEg0PHhnmAo9ayHClspntOj1awwNN5jMW5QUhVU0QcUSpTw8gXKjScoR8McGnkdGdNIu0dVFVgmIHA0m6TGlhm2VqAgyEPS0EfbQ0hVJJMui7lPlx527mBrC63A9wvEYYYtFbN9m0syF6wGUaWHSEaY9QbjkeKsAmhQksZiiEzHqVhj+MUA29IoKdCWg5+MULY1Q3GNMWCl1McpZcyqOjJ3sWxFOxlno53TCSL0SJ9aajMZVfClS4ZgIWyRFDJqAWTFBJEnaJGCpckjm6LqsnPpAbJsO7ESYGuW/Jy8E9HWi1xRTgitJv20SlHAYrfDEzzF5WWLaWeZDbuWmREaW9n8yBuMgQpSjVWM0dpF5YpCppHSJtUJDzZ38dBdGVm6hTBzuTDPsfU6qoUCddejSEQXhyiHGd1lyHYYy0Zol5dwFjLGqJJqjfJScpXh2gUsYPe8R4rPE3bGq73zcJMMlQuQsKJ79AJFOU5QOmOhkTM10SIKczrRYJKKlQM9sAYTbHh+iaGSQGkbhMZOYrQNjpJMpja1OMXJBLLgoFNJ3+7hyQorzgqZG7Gz0MLxx9FKoYQiiXvsL+RcQ4LWFlbgcMiuM5w2uDjcQkqXQiYopkWmEgvH0Sg5mLpcZwWSDOJqE7BIc0gtjcThibn9+OP/TS+4glcsteleWEUqi57usEwMymFne4pN6TArLBLoMUr5RhQpKVW8eAvDBYfH42FehyYROXPlWSQXUUjl2lhSYQmWrSZj4TCZ26crYg4Ux1gUi2zoDpFbir7T5TxVwNUhh+QIXjqET5coa9FNxnk6ifC0zagsoTX4TZu0MUmuHWw7RhOy0O2jOjnSlWTKoaHrTIcBPiHrWCboNtmfJXRUTiIk48k4BTuDIbCERkuLRTWMlAIRJVAICUSIUi6CDHvQbEXiSabFInRj9llNpCMQvSFG8w5xR1EaHkLZKfWwTt31ebrfZ7NVQ+USbbmQntmy/QklVJ1Oh+9///t873vf4+DBg7z1rW/lU5/6FNdeey2FQoHbbruNP/qjP+Lf//3fj/ns+vXrectb3rL2+r777uO1r30tMzMzXH/99WvLt2/fztTU1DGfP11Uo059aD0bs+M88+Hia7im9+/8v+e/lz1RzFW16nG2YBiGYbxUPXcM1bnu4ZllJus1MhQNadNGMCmGiN0uFWWjswKxjshUhgg1XinA0zZYKSPKRcqMlWKZsFCinc5ynrawkBRJyKwSge2RK41jSZSElbiC7WqETEn7ClsJXCtHF4BUoDLNSphTs8oIK8ONyji9CaZHL+DJ8gqb1CHa0QUgNSpPKeU1QjR5GmKLCl16pKSsi/WRh7UqyO0S9aERtvckMszoujEyyRCWi73a1yyxYh5O9nOZajMlNE2WsJwSY8lg5j9fK5wMRCjRRYWyLCw5GFJjB1VkMkxS6dAXwxwqzSHzAlvjdZTUEP6QhUgzxjtdxvyQpaELWI6G0NXBzGQazUOLPnoMgmAUTU5BlKinRcaSiHVaka+LyO0htExRtkWuoWhLlLB4WhYZlgWUPU+eb2FrtgllayaHiri5zQahaCiXaqqRUqGVQucZwpJINRjPlmSCLckouTOFKAnSLGJzfwXPqzNsDyqyQyTIDbj5IlalRTvwcEoVcl2kBPTtFFutsGDVUd4wKR4Nt0QuHKykQbPSwqNKzfIY1UVeO1VnJZdMXjhEr5KxJSlixw4Fq886mXCJKKJUwGJtFDSkusDTtYSsVqIWh2hqFNHYkaSnIwpWlcDJ6AQz+O4SVWcdqlVGFcv4yuGgyMntp1DDMV5YY2OvS6fiUVWLiDyCTp9D+SaeFLuxLZeFuEKPRcblAtgaIRWtoErBatBINiOtFGGVGMyUrclUgt9dYMROicpbSSwNDixJyQUoUjsCUSTvKTIrQ7NMY0hQkUtstSdoixHC4gh+VsP3FXvzNnEhItEOBUaxtcW6vISIHIQYJOoNd4UNUgMWOklQhRSla4S+T1dbaG+SJA7ZMOmyuH0zB4cFy1aXzZFA94doxmCN2JRkAc3q89s0xGKEGgnlLGHJ6hJZZapaoJyYYS9BWjatCvQq67HRVOKQTgpjWqNsh05RgYRKrrBWJ9lInIBCLrHtOrYNGodDQZEpXWcoiRgtXEZMgiNt9jBJp9iFbBStcx7Z+ySRJWgXY1rF9VzoZyRWjGf56PAZ5guSlryCBAulHCQ5Wg5acQ/LrLVpKImjPnEpgHyUZm0/I/kwG8OxtfF4vfoU7lhOWq7S1/CIbuDZLTa11hFUJFGmkTonUjFhtoSdZ9gFsfassjPlhBKq66+/nje/+c38xm/8Btdffz2VSuWo93/xF3+R73znOy+6nYcffpivf/3rfP3rX+emm246arxUuVwmjo8/K83pIBanWNm6gQ3y2Hn07cuv5Gdu+zy8Ch5utU1CZRiGcY746le/+qLr/O7v/u6PIZLT60Dboqsi/ELCUAIzci9RWRM6ISXt4CIQuYVIhsmoEqkCQ0ox5EVUCqNYssyB6qBFxS/YzFltNuseJSclIMHOi7h2yIa8yYoaB62wck3id7GRJEXFmHZZ1ksM5zk12cW3YtBQVJK6XePuynb6kY3vFhlPAnKdYNsuSmWgJQUrpuR2yZUmRmEpTVCo4DguVa1RSoE7jHYEmRPhxH3O15M0rM0IN6OkwdYSO+rzyGSNkbJNy42xsghLWAghyFWf2OmztTBKTVWwtMbGGkwtrqESbgal6ZYlISHT8Tpg8IwbS1mgJCrVXNzqYAnNZDhPrsdwSCkwSEKF30O6IUptAA2WAqmgKCMcCyw/peJK0rKN1BmqIEi0h2cNY1spobBY512Kq0bBhoIOSaSgK8oUYkVSg76wQEgyciyZYOVlClkZlGIokowwRHO4TyhzYPXZRKnCcXOk69Iu19BKsT4rYVltwlyhxTBJyaFsgdYKpTJ6ymZYaRJywlShbUnm+ChlY2no+tuwwhxbB9i2Td9xyDQkeAxRo5a5qNX9WzonSRrESlCxBKEqY9kOua2QApQqobOtTJcX6Fg9WskkJVFCFjQi7VERJdJ1FbAG07PPO8tsKAl0rqi3Q+aHqlxORq+yhBM6ZHZOy2qwMbwIrWJSt8tBSyCzCkoLcttnyVuPpQS+ldCSBcbtYXBjfN1FVFNc7dDKCnjlYDBZhyWYlyXW2zG2KhO7gwkywsoIkW1zcV5ABRrd8ahXcjIpQCjqooRyBUppbJVQ6a6nMJoQ+tuxCemWbBJbMJLYxIBf7KJ0me5QGSWh4xe5sjNL4mhcOYqftVi2E1KdI+yMVFZJI826cDvjskj0rITAAvx4BNvyWbLbVPVmgmyYsuWziXFWLEFvaBRBjGtZJHbMoXic80UJaofHcoHvKnIK2ColcppcmG4lt4dpryszLFOCKOaiXoMxPyLdsJXlch9sm2I+Su6CJTU66pIqyCwbYZeAnMS2CQkpypQyglrfY29NgXYYU4OxXWWl8LMeiVPD0hrF4JENoVOlrH2iNMTJKuhKhF8MCNML8GUB5SiU02fUzwnLVeJ8lF5xiZLOcGmju6OkuCgUThpS6M0jVA2VFvH7Rz/P73Q7oYTqvvvuY3Z2lle/+tUAhGHIxMQEV1111do6N9988wtu40c/+hE33XQTX/3qV7nsssuoVCpk2ZGHdMVxTLV65hIZubCPlQt/iWuy3jHvuRdfQqkecFG4wA696YzFYBiGYZxes7OzZzuEMyJvx6TKQ2sHJwcpE4KhjCJQJqMxtIk8CykSMqojFtQGVoolLg1jdLGCZVlkGlAayxFkssKQVSe3K/TKF7LO9xktxBRsRcnRpNhU05xINWBIoPJRAtdmndZcrJ5B2hlVZwPlZIhSIomKAedPLdK6+HK2LVoUwk2U3ICsWsKWNrYsU3bKjMgy/YKHnVvoNMGrridzCmzrtchkiqurODokVZrtzOPKNuusMsuOzYZWzKhOWbIdZCoRjoNyNVYucS2NZfVIGMKyBdrKQUmsbPCsIjeKSKwilXwct9pji/CIPRtvHLRwcVGgNHYiCdIh0MngobvkuFpRtCTrXEHRWmIxKdBNyrSVxNI2SWU942lrMHOehrG2x4hM2OhIXGXRu2w9rh3i2iPo3MUVIzjYjIhRRDlCMZgJ7tVTu/CrFVrrqkgV4pVreO4443YEVhcnd0AptFZYKBIRkYgAVntmWii2dRStdTar0/XRro5RlQsUchfPdQfHpDW5Ukil8fICcSEglItsSLaT2SELdoIrtlALSnSrM7iJwk9HKdigCiWcNODVC3O45W007TFcN6FYdIlUTlvFlPKc0fwCxpwSnkgoJglZaQtQolkVVHWO7waE7jIj6SUISxE6OeuyEYTKwS6glcRzFAVlUcLhvOYyUVykNVTGcnIqxRLojLY/jK1hLK2yWCoxZ0m0zHALDaSd4Kgybu5ScG3GEJS0g9IZiSXQBQeZu0BKFtehorGsAkvleXwrIJPj5EgsbITlDlpoLc2yUyXO+4ReB1kES1s0a9MUheIVK0VWRrdTlBG9qE0p38gGuQ6ciKCQk2CjCy3SSolADzOa2wQ25JnCVeMUig0C18VJMlCDJigbyahq080LxKqI5VrMVmKGM0UBjcJCOTGWUmBLtB0gpSTIEjbYm9HD51PKUrSb48oUW2ikJcmFwtISVxUAQbdiU8zKKLmEX5VkegPKLWFpm9CpkFkZVSHI3JwwmcC2KvTHtxIoh1SVcMjQbpthkdC2aig1jMwFUakNUpK6VbruMMhhhjKLTCaUrSJheZHx3iWs1xuYrUS4aCKrRGgX8QsVUtemFqyAkFhKIWxNpkMcXaZdbDFMPrje0bhoUjulLBU9e4yqgp6tUdrCSjNyZVHJ2lywnLNsbXy+n9vT4oQSqltuuYVvfvObfP/736dcLpMkCTfeeCPvfe97+e3f/u0X/fxDDz3E5z//eW6++ea1CSwuueSSo7r4TU5Oro2zOhNEZ45mcZxN1rGtYFapTMYm/pe3i9vKb0fr53l6uWEYhvGS8ud//ucv+P7Xvva1H08gp5mfNtA6Z51zKf8/e28ebFtW13l+1rCHc/YZ7vzm93LChExAcWDURhuUBFHKsqQdQsSgDa3WMFqlbROrOgytrlI7urWDsgOjNaIJLQwDyg6ngraLVqBbJhkkIUlyfPOd77ln2uNa69d/7PPueykYpJAZONzvixeR75yzz/6tYZ/8fdf3NwylQtePYXB4MvLoOQxqxygyfH2dE0VbbEpbNa8wino2Q7oxM11iUcTGY1RC6TrM0mVAcMqyFLrsZz3ykIEaot01Zj5D9JQOS+TxMvs+wdQlQXm6nCJhncYUnNp7GMUqz710CS8z1HzCxbMniVWOqSoyl+IzgxaLkTE2KIqoi5UKMSByyPmrF+nPL/DI7ZbN/oTVsdCvV4l8j/WDMUvlPt08ZevcabSfMpOMRgtIQCthvVlGmiGHdYoo8FIQF47YC5VAZSumnWVO+oKuKVkbFRzomq1un5ghiaoQCe13+ra8ddcrmgg0rlV10JR6m0vqHuYxLDcOUQlV0mHSjOioEyQRPLL8KMuzLmtl4Hwz4Hqs8MFjvSVuEow2KOcIAZK0xLgM4y0bo10uLvXR2uJNRieq6KZzZnlDMm9IgkckwivQTc3afJtraR8QRCwqrujaCLwBBK8NE+UZ+IZYn6ArDVocxsPYz9BWI0Yo9YRGf5q4d8CgPMO1aI2eSdkothBtCD5Hk3Ch7JBXfYbzhOEkpzrbp5GAAWadhN10mTtm2xTJFK973HP9Mmnt2TvvuJGOXsQWMRGIp7Ce2KV0fcIonmMVhEUpb1lUvCtjS60UvXxKnoCzBq0MHRG8wJUIzjIjC5pdP2EgA7zUgBCoWelPSJwhEsFKimoSKtWQSsxBdhYUzPUQ7bZRWgEBLznOA8phgiNqBlg7Q+kKJQGfDJh21hC1R883KNOQjcfMrGHcKwlqgzNhl1hK9uUs3VqDTzgzfhHF4GN4USAR/WabtfpzaH2KTC6gg2JMoA4BX9YsM+Z0mNNDEauaA87iVEKerqLDIUNfMIk26LqLqOp5nJwptgeX0HUMYqmNBQWRWJwbYxC+MTyBUPNZTpBUDbVN0C6Q6TmiYDON6TYFKRrRHbreEFzOiB365EwHY+okRdddvDZcT2vSooOLR+QCMQKqpAoZRnk6NufcZAt3GCMnFRbImopSFdQqRQehiCZocXSlRxdFpUpqQEuN8VDISYZmig+Bme2yNTDclm8RuQ4NgYi2VYNvKnyqmNIhRH3KjlA3U9Zyzdz26CrLV1/L8QhSPLMFip5SyYt3vvOd/NEf/RFp2lbRWF1d5Q/+4A9417ve9UWvLYqC+++/n7e+9a1Pqgb46le/mne/+93s7+/jnOMd73gH3/7t3/4lDuOLYxwKRGlO9r5wl2S38mxeOHmAqYl4om6eMTuCCH82nvGvru7wlqvbfLaonrF7HeMYxzjGPxXMZjPe9ra38fM///Pcf//93H///fzkT/4kv/Ebv/GVNu1LwljPOYwzHIrl+ZTbd6bEVYNtLC40eGpi58m0JW6WOVPtoYLHIRAUW8yIyFn1DcZbjGiMxBD6xM4w9BkRFustUVBU0WXmdo/YQRGlTLNVEEXjFFIHgsAkSlABtEqJJOLKyiU2l7YQhG7s0EZxEC9zbv8QFx5kJ72KQmFDRKljZukKdaLpxFAqT1bVbMz30Avi0hVHojzP2hswRNgdTsGmuP6zWbYXiCuzqEAtJBKjg0A0pT9dJy07bEWG4AM+TUELIV5ChYCgGR40rI8r+pOaZQ9FOqDsWTqmplYxmBRnLHfs77MT99mJl9iJVyjUOdbcnXTKBE3bPkvQRMoTIsdBOmRzaUwZF+SpsNOvibqH9GeG09evUy0XaFHsR+cpk4w6g3G6RL+o0Xji2vM1c8Fr1da74JDtjjCLFx2lJCAEHJoLe2Myt4uVLZQIYgKzKCWI4LQmoJCg2E1u58zYc/vuJolRbMQT8q6Q5h4JCePsNME0NMkYmmVO10t08BgJFMlZ7trcA2VIOMlw3qGMlxilKY6cE1sPc3Zvjm48RjmUDgTp8cSgoc4eZUUmdFRJN5SklBjTqglCAD1ARKGJWS826PseQQRtG7p2iTLqUgZhZJaYRxlKNLM4oqEdW+p7BNVD1ISxqZFoTNcWrEVzOrYkmdWkeYFRnuVoTq2E1K3SaZYozCHRLc2OreoRfIYPkJse89Ancw3dck5agm0UceTph4ZYaWobE5QwT4eENKZWhsgJ86QmakosbUU8Uqi1JdcDTo+WEdfQ+DP0Ck+vaUjdCCWCEUdpY7xKaTAk5ZyXPHaJl04/x/N4Ah2GbEY7ZMxolEGCweku0/hZWEm594kJJyZCwPK8iwd0yzYgsFaC6IKBVQxDB43m3NVtTl2dcLFzgtOTJc5OU1I3JjWObtzglKFTxHyyq9hLO21OnO1S+Rzj53R8RKkVWnfRdcPADTDxPSyHuzh3uEo/X6E/d6xWGiOaSBIGhzm9ukCCYLxnpAUTcqLa0c0LbN2QlpblOqWrB2wOagZNRlYobG1xOmW/ewod1wzrEUFXNElO36xRWIMTYRJlHGYxSWiIizneV8x1ReId9yKcnK2QlKeJQwdCgv9bml0/XXhKClXTNJ8XjhdFEVX1xcnAe9/7Xg4ODnjzm9/8pNd/93d/lze96U18//d/PyLCS1/6Ur7v+77v72D63w37cdvx7fTKyS/4vjv/Dbxo/H8A8Il5yR3J098PqwyBn7i0xYfnBUtG4wX+82TOf7zzHOeS6It/wTGOcYxjHOML4s1vfjN1XfOCF7yA3/u93+N7vud7eN/73vcPllCN9Dq94pBCHdKt5tTac+dsg4urJ5jFjwFCHJYJWmGC8NWXLrOjc8ZdS0lEt5zwwzsfpUpO8ecbF5gkDaP0FB3XIwESNUVjSRvDqYllP75ESDdYbbrsJCNeqj7LVnQbeXWamU1QdsbSdEypR8xTx6n9PoXaB1EYArG9nbXkAkV3jO5s4MwmjRI2xufpR2P2wjbTZUgDFHaEXt4i2c9wDgiBaZywl20QhSnDoNFGkYWGxqREoeb55lFM4Ugzh5HQKi5xh6Uwp1c3UA9YHW2y7HI+c/cpfCclKxOcGnEpu8hqfQbVLViabZHFXSZLEbaZ0UtL5rKBV3MaG2FcRRMmONoTZ1OfoNs0vOri/8sTWZ8r528jSIM3EfvDk5zKBS2gBIJp2B8eMulmnL9UIFY4jHv4vsE6zfnDLbbsI3QmQy5MShQxBsezo+vM9AFXd0+ybffZTXpMOj2WDneJ6hiLhliYxV2KjsUE6MucCE8SKg70EhIUTmmMBDq1Aa9Bw1nx5PEYXSacOazxKqZOPGRLMJ0hAaImQaFoFR7L0GtCEsCBeIUKhkCg0W25/TxJEDunFzLu3vkUaxPPYxsDluYdMt/hbHiInXqNR6LTJHFF4Vpnv+dS1qYeiU9SRpsUnS0knCK2OVW8Czj2JGPgPco0IJpZDDZExKKJVUVuFU10hbHOEQMmKIx3dHSHkwf7ZOJ56OS99MsJd+zucO1MiiYi8duAwrgLzNKSLHTJ45PMBzlCgQ39dm+qhJ65jX4uTKMDIokJQG1af1cRaFQXxZiMgr14QFLW+Lh9V4KiiBK8ijl1sElHW64sZyg7IK48VTIlRlEv5IyARmE462ZcXtnDNjt0ojX2on0OB0ss1TWnD+eMYsVBp09QwrBs0MFwrjwgDoHuyGNo+PiJjKvLu9ikYK24F2sDZR0R+RqfpNzudzm3E9ha0VzofYrp5oBHuuuEuOCEathOHybyG4isYnxOYi7TY4XcaPI0Qcd9Oq7BCMTBsj4dko2vc6q8xmT1FIWNWa8ilomJMJwOI7ZZIxJHCAptFKZxCILyM7p8Fd7PabSn67p0mpS5ROx1KrSFjYNDltinMpZ0vk3Tg2lkWcZQG9XmSmaBc/Mx+bRDKkOW3QgvW9wlORJuY6S7iEqYmpxJ+vegyt8rX/lKfvAHf5BXvepVDAYDRqMRf/Inf8J3fud3ftFrX/va1/La1772C773hje8gTe84Q1/N4u/BIgIo6wlhCe6wy/4GX3313H+z/8tS+WYj826fPfK4At+7svB23ZGfHhe8D+sJnz3xkm2vfDPHr3Cv9854FfOnXja73eMYxzjGP9U8Pjjj/Nnf/ZnAPzpnzYGI7EAACAASURBVP4pP/VTP8XrX/96fvVXf5UXvvCFX2Hr/u6459ohY/sYh0uew84aKyV0PcQ6YaYUgmFgY1I1gzqG4LHqAN97IVsm46ueuEZsBFsGVmYR564/yqNnTlHZAyK6kB6QTnaY9zfolyUVM6bdVTBCNwSGFPSqK3xcnSbvarK5cPf4cS4tKWbxOippy38rQAeobEoS4I5xn647wahbMo67lINl5ukBZj4lbYTb8y4XV7YwSYRbLSjTPlltmHdKolRQZUCU0KOi1hvYuGYl+jiZmTC4nLMnjrvsPkE62ABDZoQwwKUFceNoVEJXVlCuQNcBn45wyrCSxyRqibmuOLu1w0P9Z3Fib8a6DTx+ZgmXHBDhEGda5SsoEE2kdjihSxI8o6LLpgJPQ21TEpcT+5JMCkYCRZojGGY6wkoOaBTCPElZbwRlckBR2ClDE3BB0+2USOLpjODkrMPS1ibmzDKPu7vZWV7DRh3uOLjOlaUnaNIKRcJKUtPL51SkJOJQEsjiKZO6R4JDmpjY99AIy+VZcj3HugOC7hA7h9HgZYNpf490DFFQGF+hJUJjqNIELQETLEFiUj/lnOxS2YyKhOvLnmEy45Q7R57M2etNEfpkecEpH6EwGG8IFqxyxKrGEzg93eauUhF3LB+Nc7JqTo5HSaBWYzQQlCIyNUVaEs0jghKUCJMkI5M1Yi9I4zmzu89kNaFIU/KwQWKuYLBI6KBqxcp+Sb+uyW2FpWG5qFAqZRZvMo3naHcaHSIy0cyjBtUolpPAgbcYDycmE85OrtPtnOGJ/pjp0oQeJYWCFzyxhek9RqobDqRPadvMJtN4iATVr3j26BIbOGZmiedcf4RAwSzsc+2EbbOkVBvxpQT63iG6LTahUIiCYGq8jjC+y3oR+NrLW/zVnc+jsCXG1RxkDc9u5pg6brOJxCDpOWz8iXYetWCahn7ZoERAC3df26KUFUQ/wqNZzouvVmgr5N2GqFEkQeNon2mvJ2SlZnsoaG+IrCNVFnGBuVzinl3D0nQJJxptPenQEusarWJssOB6ZHpKJJ6goNIpZXovIdlmMPXMuyPWRxMqShobuGMSM+31UCRUyvGCxy/jmxy/VtGIYTfbZKk8RKUFHSlpdEpWOUwnEItCwkkGc8dantNxl3ngbsu0VCxNtthLDS5EjCPzjP5mPyVCdf/99/OHf/iHvP/97+fw8JClpSXe9KY38ZrXvOYZNe7pghwesre0AsBG/IWVIPusr6L6g4gXHD7Ip/4W0vXlYOo9/2H/kH8++iD/zft+jiAxHfN8/tl9v847JzPe4tcYmmd2sY9xjGMc4x8rtNbkeX4UTVGWJWfOnOEzn/nMV9iyLw26PkTZDsuzCVYPiLuO6XLdltWWwLnRZXzaR1RGhGcyTGjMlEgsSIUWQ2AVgPVJyXI14Pxowv9z4YCKCDs6jZcevTxH6HPj7HYpn7DS7KKWMk5c2eZ281E6/VmbWyxtCWhFYK+3zY2yY2rxxyqPCgaDJmhDpD2GGphQ9Az/xfgqQ+fY8gpnMzaHE5zSxAESGbF8oImyBhcJXmmMwH6Wk87G1Nouqog5NAqra0RDcGt01AylpnSTQC4ZJ6t97upcI589l89GnqjxiAJrDdbHPHDmAKfbFipZ7fnq/es8X13k0+k6O3HDHVvXeeCOjEEzJuKzjO0Z1tQpMjWkbiKyZIqvU55z/ZA1SspshkRjpuo8BEGUJ5IOOhgQMN5zbvsqZXKzcLMJfTwV42QJFdf0mwQl0KiISBxxU2PFEOuMyh5ivCePSk6FGY2FxlqUB0JAS+DCdk1n/7M8cscdrOZLdDgBfsIYixKFNQ6DENt1ombA2YNNylWHDZZUSpJOQnAdOrVrwyoVOFNTmxl3NQcsqSlpNOLT+i4UmkonOOVIfQzBEpua0/k+cJqGu9hN9ykYcc9jBR+7sIJaFBHoxnPW0yfYaKDTNETpR3hYzmGDJqgbtxYkRFSpZVhaMl9giFieGWZsM+lMCWhuKzYpog5b4XbmoUeRWO6e7nMQKqImI48VvbJg6KZtKKwoRDl01GBsztlrhyzvjPnEVymMbRgkFafKGtXcSa8JjDuOWl8kLRtO74yYpwOWfMBIu7cDglKBRJVk1SFJVeL6hpOjmq+9voXXfWaLJ0uAEBl00EReE3tHsCVXBzsMZhlx0Bhbo1zABcVh16G94azfoSMrODXkuZOaaPcBrp6ImWcFxWzCUpUxN4aD7pAkKulMDmmsJVjHc5+4SFEJc9vDiCNSEQ6L0YEoOJRkpHKWmUwR9rEI2oFSAeMVqVtB4VGA9QGjNauzFSZ2k1k0Zj10CcDMLLMyPkm+MmWWFly0JauSAX2sidGqYB6t0NcNEtSiBmdgWO9zrbNLWnu6ao2ZccRRRUyCce1hREJJLDWNROhGs1rtsCITajqo2ZyrXdi2ZzmZ9VjfmRGMxSU9vK45t/0I570G47jIufZ5eQbxlBv7vu51r+N1r3vdM2nLM4aws8Xm0jqpr1g2XzhtTLIeRT3gG/LP8Bf+xUy9p/80Epx3jw4pBX7k2n9k9+odRM0mw/N/xevf/5O84+t+jQ/NCl417D1t9zvGMY5xjH9K+I7v+A6+7du+jb/4i7/ghS98IT/2Yz/G7bffTpIkX2nTviQU2S42rDMsFcv5FrZ2PDIYUyUPktYNWnlu21F0h55gPVo0ERHfPPoUMWMu2hUeWt3h9sMNBE1HKURrzjS77IYBXjWLs2hodJvQP5zNsN4RtJBOFVd6PUbxLvF+QSqKHTNAKU/m5sSNo77hQWhHQ4OWRblyFJhA6hTPuf4Qm90r7PRTluvTTG3ORpiyjyZgQMFSmNKrdrh9R1H1O0xNThNVRB40gb7LicdnEfZA2tC0SBy1sti4BN++nAZYMhsksy50rtHTM0AznM9BOoiATz0h0hR2ryU1eonn7O1gbEyZTQjaokNGFuDugydw/iSdyYT9bkW3ibGhx72PXiJBg7sNscVixKGVGGibS+exZ7lZo1NaTDnDLwoutLwioJuAtoHt3phRMuf5nEGJotGCRritvMLp3YqttZOERBHphiSENptIFk66ikhqR1M/TmlndLp9tH4Cm9yJVgElKVpaIqMUJNZwIRdSYxlMxghbNHKCg+gixn8NOgTuuXQZYuiHgt2VB5mnOXdO1zAItUqxqgvkJEVNo0uUgtAxROIW89DaNjM53dyi0GSlEKwhk5LtfsUJ5zGmtWsWbXEqn+Ht7Uw7JUoHvDMYGSJAz83pViVG52wceAZyjbBW0rFtCf/ssOD5W0+wvVTRkIGsce9BQRUq7pDr5KGHtu3enN9QU8qa8ztXiCtAwx3jCSE2rJgpcTZnOttCB8dhL6cXImIAGVCrHURtkSrHgk6htGcYSrJmTq2FWXLI+esVgVWUEkS1BEJJjDUeayAyEStzzTSd4JWQRzVx1f5Oae355PoUpzKMN4AhIydXS5w42GfmNeuzA+q4Q2gKHlmdoJcU9zYl1VxhmpJhmPNs+QibskpEjMa2jYnlNhrTsorBfo5wL+Pho5S2QzpJGFQR3VnBxs5nmfcixn2h6xsMgfVRyWqZs9KdsiO7zEiYpxOmyT57xnLuIOfFfsKDFx7ic+Y2In2C0htMPcfpDl976SKxdjx0YdA+AwoqHVNHEWXngJV6hdhfYyw73MYqqzJiX1u8boutrIYJB3oJpO1boBb9C07uXebCXiARgygFYtnPNCpALDUmd5hYoXTAuL8HIX/vfve7+fVf/3U2NzfbvhFwVAnv05/+9DNq4NOB+tJFtvrrnKpGn1e9T0T48If/Pz7xiY8yOPvd3DV7CFGKB4uKFz2N/ajes3mReye7PD59ER+y+9z5whdyz+aDPO/62+l/9ZwPH2wfE6pjHOMYx/gS8eM//uN88zd/M9Za3vKWt/D2t7+d/f193vrWt36lTfuSsCQzCumDViw3GXuRoVtULE/GjJaWQWAgV0FOEDsBK2j6dPOEyBesdC6zQ4dpXKIaQAe0DwwPC9aaffZTQ0qDCY7ECHMMpgmgNJbAYLvH/vKMSFm8yiDkbPgxV0OPbplTG7gRp7S3dEhjChRnYBGy1ELoNAkay6lZYMIOe52KzrxCOimK1okczg8Jw4BgSGcVn1u92oY/SaCrCprQpXEdUvrAnGWZ0hGPoAhLCREes9XBqAso0QynFZmdU2hQoVWFirhgr7eLUyNsWKI3vor4c+QmoRcfLkL8wCiDUmDl5rV5VLGfTRjWNecn+yzZ65wsO1yKLiCi8Dog3CTuARDTcKV/ibkdkmQNk7Ud4mYJhcKEGct1YKI8lW3ozWsIQkADCu1g7TCADgS1g4p36ClPYRziNdm0JjAg6C7jdEpl2wbHe/0J2mcYN8UYh3iw3nNqtkfhZ1xZn3N+tMyJeYFnmbkTvCrAxmzMLae29iiSFBss/eDYBdaLPQaHmkDKp1ctJjeLlVVk4wIGUOse3UWBLSWg1E1iBbCaV9huoB/m+ODx1KAjlA5khzmOHkvRBEVFZz7njp2KzTaoCL3oeTVJdtHRkGf7x9m3rQ0KsLXjRDhgj9N4UwIJNH3WG6i0Orq+VjHeaJya0pvn7PZzbmeAjQryokYVCh87DtMpcf4QWpaxAjFucacucXWNxAk6dBe6DSAKK55SOzQQqQaTXkTNlgBFFAKo0xgcc64czclBNmJYLgMdxt0x42yGWgiY0dywHu0jhwalzrQxtVpY9RN6kjMx7kgdBvBGkU7GqBNPsFZ6ggzoHcxRZgUb1xjncfRQgIsqkFZRjvBYPKl3VGnKRrUP7KPtCRRtsZouDeCoJaOOLrIZl21xEw17vT0CimhxVpDmDXbaZ2O4T5UYHulsQwN1P8ZGXVJvOL23T5EYQFGZCG0cOqyiAszSMV5VrOWPsewb9s3q0RhFhCVvmJIevaaO/i6OcRRY70hdTdE4rKtosJQK5llF4m9e+0zgKRGqX/7lX+b+++/n3nvvReunVBjw7xXyz3yS6y96Hifk85v6/v5HPsT+xz7M7topzN51HpzeDcADTyOhmjrPJ0PGmz73fj5dWforK/zl9ctM7n4RX/3r7+FlL/4kH5LnAHd+0e86xjGOcYxjfD5+5md+hle/+tU861nPIk1TfvRHf/QrbdKXBVk4PABWHGICg6rABcXq4QiAcTrntp1Je8G6EASmcclhd0y/7rIInsKaGhx0pwUmbk93h+WsvS4AaAx9AOLQsKwO8eoUlWnoBY1X68AT9CWnS8yMLiAY2lLjzrZFDdbqEaP4BEp0S06cxysWYVGeGbuks4CxEf18Tq0TEnHEOKpqnQfXrvLcvezmJKiAaHDO4VyJGEVjhFTCYoZuOu2iA0pBB4/HkB0Ivl8RujkA82S+cCTbsH/rHdv9K1wIh6TuFIXZ44bUpcUReUNYkCRRgkIIKlBEB+ybAisXyFVBR6bkUY1wM1Wgn8/QKgMasqKkX8xROtDEBwgDrDicaUiTTSwZnVlFJ68ZL4aTjeBw4Fk/zDDqM23J9BvjVArtBbcYx242QoiP1LF+PieqH0dkiWAVPf8oTgpQAwpyJumMtVlKES1O9IEIx517n+KJYcLEeL5ulBBzCs11dAhcXdqmLpcRmXDY3UQphRK41j9AvKB0xOp4ITsAjfKtkiAKE3okYYZtPD6ABCEohyJC6AATBMVKM2ZjNGNHx8xTj1kQ5rhp+5V2XUWZTAh5RCwVteqjqi6wS1AXgEV1ZiUMD0aEyPLoSga6fb1DRSURp2a7WDyVlCydmGOawG4RY3REPM2Jy5KgHSv+gFmw7VjaDYYNoLRm3kmxRGiaxR7Ui5BG2v5mNx9i1hmxyTqNaSgTTVI3tIXEBQGcNHTdlMpm7QEBMXbeZUPnFNqTFA2KhNKWNGbMihujiReE6ijris3emGEDzitEKho5hZUhjZriyUBFgMZSowUgJrc1AmgREn0ITTuK7dUJJ+cN81t+j/qSt7fLF9OMkEhDRYxXikbXfHpwETULnAkz6q5vLRMhndWUsUaV7W+MlkCEa2XlRZdhQwK0Pnq6N6YWS6S6zFhr5yqYlrCoGC+DdqdJ+1RoH0CDdQesjv+aqhTK2IIWatXh8eXAxDiW3d8DQjUYDLjvvvueUUOeUTzxKa69/BV805O2B/zl/gFbH/8w42zAB87cQX/1FN/6uY+zMdvngX4HWH5abv/Rq5/m3mvXoQi8+C8/yHP/9S/ykf1d/vqvP8bqN38H9z78MO952cs43HqApZNt8+Qggf/72nv4o8v/J0E8P/SsN/HijZc9LfYc4xjHOMY/Njzvec/j7W9/O295y1t4+ctfzqtf/Wq+6Zu+iSj6h1lBVYWbB3peBVAZEFB41uo5D6+dJ50Zus2E/c6MjggZJdcGYPEMc0+naJjFFf1J+/8+WTgvtyIQ0AGsDnjaa7WCw87NEsMSAo2HNqf7BolRDKT93oKERGqm9nPAMsvhkLHMYKZpdES8cP9FbjqbAmiEnsxpXIHNI0THbC1y4JzL8doS3UzUAhKElMAKinKR39E63PHaHn56khXnqVTCxJ7gsewSG8FSi8Epu/ia1pk1OJytuYpCvLDTj/F6ypqbkvmY2w49YeEDKONRCvK4JpJlPIrr/REj5RnKGL1wahGIQ0Fn0uB8gmomDHF0KRmrhN7CVoDLK2OMauh6AWW40iu5kl5kVQldHFPdcHV1hKGP1v5o0oKs4HAI5sipzSiZ06FWEaCo4prd7BLBFmRyq5tnmaUzZukMkUC/ueFgCpeHE2oylilBr7PgynQlp1SWva7Hu4qYijpauWUDeXQAFfWAOSLC9e4+nbkjKE0qCUPZghI8GrXwoUuxXDd9zniFZUFYyVBY8k7DQFrPfRIyTCjI6gZrMiouYGQHTQoUBFI2B4cgfZQEDpOc1blmrmpq65601wcyRy/2U2Qago+ISEAcENGIRwTMYi3b/aIW1OfGTClmyT7d0CfWUywOxRKBgHMl0aS6+Yipds873bTtBVTgFvkWgNTPSagYhht9tFIUECSlq4QqqlipO0x7T1DTsFoHspBTm+SWZ7FVUXXQR8+Yp8spX3PFdJnodToSkUjNmhwyxeFZo7YeUCTUiECQBqNjepLTUUJPCkIIaP356S/d4NvraNU/l+4gNw6Aak8VWiJrdLu6sZkDfbzy9KVCIyi5kdTUhvGqGyRRtUU1Ut9l5DzWJNi6HWtPcoSbv43KO6JGI5HD6V3yqMLIDdI1Yr9rF+SeJ63jM4GnJDe9/vWv5x3veAdl+fkKz993SFHA3mV241XOZP2br4vwro98mCh4fnryW/zpQz/O/uoSJ9QOK/Mpn9o/fNps+ODOVb728sOc2t7irmc9m/g59/KSl3wT6+sn+Migx9mPXQbgkUf+MwCFK/hXH/vv+ZVP/RtqX5O7nH/9sZ/jM6MHnjabjnGMYxzjHxPe+MY38ju/8zu85z3v4cUvfjHvfOc7+ZZv+RZ+7ud+7il/xwc/+EG+67u+i1e96lX88A//MFtbW5/3mW/91m/lla98Jffddx/33XcfP/RDP/R0DuMIPvSRlgFxfTgBAia06o1iQCKWvUyx352BanONbpxYBzqk4zkn9qZUtsFG18ltQdsMVqjlZlVZ70qaUNKXnL7kCyepcxTCphDqZk7lIw6TjGmaoFV4kq2dhYNk8HT4AFvD60fv3VB3ju6H5opZZarW0LeGyYUGRNjq3KI6BXc0B6V1iFoFElCCJ6WwwyNFoNSeK0ub7HanWAlcGu5hG09c1KRSoyWglKClQ0ZBrCrswgHMbevbmGBwQTiMp0c2qEUc1g2r2nnWTGMF3b0bLBVCwcDvE/sxQYStbk1EQyYlFYaJSTjQHZZlQkRbJONytEEuHRpZZ5yA0QEhI5CgVY3HgoS2ZLkv6QVHew5uFmvZEmARIfFj4lCzCDiksY74FgKXSI3CoiRgxS3Gc2t7GENnoRAoUVS6aR374BBfEIKnDUoM2IUj/IUc1KqZ0ISSIIFMCnQ0urnGDI/mcy4GHxrKW9xQ50pS59EIIQSC+HZv+QLnKmZxyZXBARah46eE4GmbGQdKMwM3ZRzPeWRjj+tLN9cwBI8PDWpBNqwOXFen2XdrlEdktWHTJm2KzpH6c2PNW9IBiuUwpRemSHA0DoZeFnu1/R5Vdhinc7a7Yy72d6nqKePuxaN9cxPtU2HbbmMI0WJd1WLftbzsMM252h8R0yAI1zoFMQ2GluQf2aiEqLzZQzUo4TCdMU9GVM0YJ4ErKxe50t9HhwJEcCocjdKHhhCadr1Dw346Q4UaHypCcIv1qQiLtU9u7C03Az8nT2+usxAvvqs5Go+2AcRQxO1vhSAcxo9AqOhJziBoUl+z7g/Y61R8bm1OkxQEhP1ehr9FTb0VShRFHPHI6QH4Nuw0iMf5gkarxe9PoCvlUUjlM4WnpFD95m/+JoeHh/zSL/0SZlGo4R9KDpXf2mRvoy2Bfqp7sxT6B6ZzTlx9nCyacT4NzF/xq/y3e48w2uiyMp3w0Inb2Lx0iVMXLnzZNlzdq3iud9z12Ye5/gv/C5PDgjPDlJe//JW8613/AfoDtAQenI75+jrnVz79b/jIzgf5iXt+iu+68C+Yuxn/9QfewL9/8Nf4317625+XB3aMYxzjGMdosbKywste9jLKsqRpGt73vvc9pevyPOenf/qn+a3f+i3uvfdefvu3f5tf+IVf4G1ve9uTPjeZTPjjP/5jNjY2ngnzjxB8STAKoyI204gonbIUQNsZdtkjeoWDpsO6iuiGGhHhRkR+YAkfXJsUL8ITnW2244aXbQ4xc4fr1FiVHB2WOxUwgBa/CENaOrLjxom+Z4XPrJ5mnB1wxk2Yu89X/qw4TOXZ78YoidHOt6fygCyKFkx1uvisR3uHl5tOYOW7wE1lrKP7aDwNOduDKUuzFVTHodIt9qrbmKRd7tD7xMGhUKyaIaPumHF67aZREjDSMNCOieohKKw4/C1j0wpqY7g2PM+ZvYfQT+aLOH0zd3xIGyo57gQcEV3fkNgYCY6KNiyp1h2ECpGKVlVr4UWO8tA9gPLMTJelZoy1KVaHG28w1i3Z3GjGON8SnTjEiBEsgaIpAU1kU3xoEHEkMqG7IEmH6qbKAgvlUTL6fp8QPNYmT3JNm4WzHy0I6tWVbawC524Q9RZlFNOT1nH1viHFUZBAMyGYW32T9uaTdMqTXpVFeGJogBi5JUROeUckOaItPrRjtkbfmC2sCpRRu198aB16o6BWBXEweG5VQW8h8aG1d5ZE9I1CLfpiXeqUfE7FnJICxKHQBDqAUFmHv4VwWNoql7fqVYLgvMbaW+6rNHMdM8o8Q1dxfVgipqEfOoxDQGnLpL9C4hwHpsC6Jc64MZ5VRFqiYZ50CCFM4/aZcL5iKy7xpkPqm1apXPjiwK3Bhmz1xkyTklGoOTHNUBIIqlysp6C0PipQsViYm/8Z6rYPm7YIME0T+pVD8Hjv0baLVYEm3Mgja8P7nDbo4PGscBQbeIQYSx9FG1orCC49RIWMyAg9mbGWHzINDmUziiRwKVtjEk/xcQeFpj8v2DZdTvlZ24vOjUAlPHh+TJnkDJYr+gXIgvSNOhUq1DRBKE0XrR7mmcRTIlS///u//4wa8UxiEmk+fM9XAXD7cP3o9Xc/9DnO1iWv4C+ZfPfv4FefzXeeF/7Hvf+du3cv8pc8n4//p//Et//Lf/ll3f9g/zGWd8Z8qDnHO178U9TvuQZc42vODPh333EPd9zxLB4X4c7ty3wyu5OX/vX/yvt3/4IfffZP8M9v+x4AelGfH3rWm/ifHvi3fGL/Y3zt2td/WTYd4xjHOMY/Nnz2s5/lve99L+9973vZ2dnhFa94BW984xt5yUte8pSu/9CHPsS5c+e49957Afje7/1efu3Xfo3ZbEavd7Ng0Gw2YzB4+vsU/k10mrM4F3CdPZwzNNqypCskah25sMgZmqqYJMxBGowWhIgggZxAYVMCUOoIkcDEPcapPc8TZwNJXuG1pkkCjQ4MdYYOwsSPsPrJje2LuGGqSzwdQmiw9QgVMpxqMDpCKUWsUpKgGYUpu/12fs7u7bPXE2IBR2gb1NL60y40pH6K3Oh7g0YUmFtIQGIWIWk+x+jASA6QKEcBpW0dJ49CKyFRGSCkpsuc6ZNO3kUcBsWQKVOVsWsyPBHrvlUxnPZM0y4iNUWckpU3VI0aa1JmcXl0eo8yWNOSHSuBa9GAO6SkQbMdDZHEMOknLDW7yIFiHifouqUuIdT4UHJgMsYmQzPDKmjbuwqxPPn0XUTwi1N3aFWQ1Nz8d2UNmysrnNzbRsuCtEoESpEtcsZFBB8aIhMBslANWjLUOu3tTG2ado+f9xPmnRmjbpdRt8upzU0AGhryJOFgsMy+jjk93kf79nrRIFpBcNQYchVhxC0iuQKiblIyoVWBzN9QOTWec5tT6siwdTo9Int/U4X5m6KYD+ClJFrkH92qmmnx1Nqy1x+ic8dhf8DIBO4atRFIjWoobUqrk4WFQxxTdQ651FFtvzZYKGHQC7s4ZdCqFRZ0gJXDOaMVg+DRTgjGM4pTAoohc2ZJRduCNtCVit1+F0mEeWKJDiuc0kz0BiuA91WrApqIxjVENsbqgAtmkTMUEPoEeojK2e3NwINSFsQ9aWoK2xJOt+i9lBhHCHVbwCFuDyAO1fwWFtZePZiWLI8mPH5mgISGedphv5tRa8fSrEAFwYhHaQBFjKPRmqtmmXIJemXB6VuUMhY7TNOqq1oyYHIz/1ECQYTt3gTx0LMbGGXYN9M2lNbEC+uEqY5QcUNZGbrO06HCiUZiAZFFERmFXvzOWC1UeLbtEHRCrJ78fD3deEohf2fOnKHX6/FXf/VX/Pmf/zlnzpzBWsuZM2eeUeOeDogIo3N3oiVwV69NGp37wOTaJUQJt5+/G7/6bAAirXhudJ77Zu9HB9vqPgAAIABJREFUh8DHbY27dPHLuv8HHn6Ajx6c4mG3wYXhIetn/4TeyT/jgc0R/90fPsDXvOAbaJTinic+x4UPXGL+P/9f/Jfbp/kXt/9XhNDgfcvyX3H6W+lHff70yh9+WfYc4xjHOMY/RvzIj/wI+/v7/OzP/iwf+MAH+MVf/EW+8Ru/8Siq4ovh4sWLnDt37ujfWZaxtLTE5cuXj17L8xzvPffffz+vec1r+IEf+AE+/vGPP+1jAVqFRxJ8aOjWjl7Z9qAK4vF4qmCR4PGhPFJ/9MJHCUDd0ei4xilPs3AVw438ighcL8dKuMWfak+6RTwigVHa5kdZ7dnplZTRGbwI9SIRPKPASaAOJbmuSXRKHlmurt08uAwyQ5kJgQavw6JvT1suW8uTQwGvr65xbe1vU/3age32p9yqlgSEgKdUUGjNzECjHA2exhUEEa5EQ8amg17U0BuGObmyzG2CTmvi5SllfAtpWcyVk4ZCt+WxHVAgODQi/sjBBtBoYpUyshmiFDOboE1AlOagv8T+sAe2DZ2rF3lccxW3zYNZOOZa2LFdRkQLpUNAB3xo8Nx0lLVqScoN0jDpZgSlqeKEq9EyY905unaiU65FyzhfkCvFZZOhVL0YI5SqRHT72bBQJ6yK2esYZmcvM+p2ABjMK7K8wuGojOaG4311kFEu2tDsrS1zsDIAqfnQRuBaZInnbQin8wXOlRBuhh8+lM0Xq3oz2WgePFOTkjjPYWLJ4+SoitsRbBviV4ricrTMWKdUUYpXbVEI9TekRSuBR5c3mCQZ+0mfXGKCCOVCyp3ZDnOTkqet0x6UoEwgWZ+gk/oWG0tarUYQcUeK1+oh9POabFZinBCXAdsIsqgBGELJJMsY9xOitT1MVFNFEVq1z8ENsiiL4g0THVGoiBBqhIDzjhAChoYgnlGvT20tcxOxGfWfpP4WcUxtbmokjfbMkoSD4ZDDrMdOt1VW9wZD5hsWPWyVTx9KCuUICsbdHoNpiaBojEW0pzGGQiyXoh41hiQPJPPmScS11JagIKk6rByeJNSCAowWvKuQsmK7k3Bl6bF2nv9/9t48yLKrvvP8nOWu77187+ValbWoSjtIQsgSqLGtwBjEYhxuR7MYY+yxHdFjY+Me97Rx4G4DY0zQxhvB0DBtt0e2h3FM20MzNMY2IGSMWI2FkLUgoRKlUqlUVZmVy1vvfs6ZP+7Ll5lVAstCMuDOb0RFZb5779nuvS9/3/P7/b4/axAYSgwRI4wp6EVjMq/EyjoUERRJc5NAxRNbOMeJFOHnuLA39WBmYUCdE1nX1gpkRKgaSFeHTQ9URCUUlS3Anu81e2rxhDxUt99+O2984xu54YYbuO+++3jd617Hu9/9bg4fPszP/uzPPq0D/GYxd+go95y+nMvKNUJ5GQCfHoy4aO0MS+oc7qZf3HX+S45cxujEJnPjPvdc/kyyP/8AzTf80pPu//++W9F3IVc1v8gjyx9iuX8ps94Cd+37b9x7+tV8/kxJmCVcnCT8wK1/gXSO//mWk3xl9edwL7sHREq383IOHPhVbj7wMj78yAfpFz3afucf7nwPe9jDHv4Hwac//elvKhw6TdMLalYFQUCSbP8Rttbyyle+kh/5kR/hmmuu4aMf/Sivf/3r+fjHP067vbsgfLMZoPWTr2WY+T6p1qSeJnExjWyMESVaOHp+i6JUOCzKbodkGVsx9mNWZ1p01zcROBLtOKdniPIMKSxOWM7s69JZT/ByiZVuKqhQiDqgqbBpLeDtJALQLqzbMgFj52OQ9PyYHhGzVY9oy+zUejKOAiUV4dyglg5YiyknghhCOKwrsFLsMpatlIytxwNzB7li/dSOYw4hHV57jDNy6sKSUYErFIaKM9E+AhlhTMxFvQzhLAKBmRDN9ajFfLIGOE6JFhtxhBUCT9WhVJ4zKFnnuFgRMQgdfetjcByRA4639jGqAmaHAw5WG1hnEJOAwUg1sBgea2ikg24WE458Uq9Ppb1aVENKRFXnk6TCJyoqgqKg3wwoleBsexabe2AtVZGBU+iFERZFZSzSOpTzcDjKIqXOCtkqGGs5K5t4NmegI/x2TkeuM+otgYOVmS4md0gBfXwWVZfCZRSMJoTUIdyQQHTQUmN8TWZzjMppjAzdzZRIKEZNn1g1yEUtE6JcXWNpHISICS23QpLpnGc+us5slbMaT94nJzC2wu2mR5PIvxKvcKxEAfMiwyJZjxts2nkuHpxlzkpk5UBbVDtBpyHrow7DMKAsFb2WwjnBvsE67SKlkg1GCCJbMraOkVFIfFwIarKhYF0tye+EYGk9oTUuqXyBcILZUQLGksiKUjg8KYl1vUlQFj36oY9VivZ4SDOZeGJciRI+IFAlGGvQUiAl9BsN8A3NSjFqR7XTzhkcik1f00wnniQEPdVAO5gxtRy5zgsKT2KExEnBSriIFk0aRYF1hlJYvMk7utruAoLD51bIpaIQkMg6LPfOQyWtxGc5hXEQUviWvj+DzhXdYZ+zs/NEWUoZ+gyjgDh1nO3OUylbhwCbWhHydKtDJ1mhMiVBL6WY6hLUT8B8NgfW0Dca2Qho2QydlhTSI9UBZUMQJXUI5jAM6csW7XJE7EC4kkQ7Ts3N0k4ynNmt2eAQJEIhXVnXPkNSCIUnDAJHZSEXNVndGpFDUk3ItkMQ2YRO56krh3Q+nhChesc73sEHPvABDh06xMte9jIA3vzmN/OKV7zi255QDQYr3Bkd5Y3l/dPP/u6hY8wWGdfps5jOxbvObx45wqmkzWXDR7hj8Zl4X/33uOLfIHz//Kb/Qdx3esCJUZtn+I/xyOEP8UNrN/MvT/8QX0oslz7jXv4kPMV7PzPibX9/N3fd+C948y+8kWh9jdd/7P9h31/cyVc7HU7ufw5XHfkLjM156YF/zQdP/BmfPH0bP3zkFd/02uxhD3vYwz8XfLO5pXEck+f5rs+yLKPR2JbxbjabvP3tb5/+/tKXvpT3vve93HXXXTz/+c/fde1otLutfyzGcYxxlnEQQQ6VlFib42GonERXBi83qB2ZE7FokvotlFUYqTBCstk5TF4pvCJBBgVZS2BwGKfqXByh6CYlRPBw1MTZIZf31hjMONbaS8xYQ+mFzCQBhTcgzgrOijbrM11KK2j1Rjza3U+eOFrOIJxAWokV5dSQCVIILJSNEguMfZ9xEOCPHcuFwdo+QjhypwGBkRLP2roo7UyPrm/ZtDP4ehMpXK1mF0Y0aXK2mqVXtNgXVuQOUgQt2UYKx6oZUGmPcRByPJrn0LlVCg1WCMLKIoxA+pJIRAhb1vkvYUilFWViwRjKuYoSW5M5BKXwyKVCOIcRgko6No2dSg40qzZCVWw0u7TSAlk4bJIjZASyFrkIbK0LqEvL7ChjEEckwhHYEpU7Mg2irJByK3hpRz6QlDw4u0xZWuZNQpgI/OwQj7Y3ETZDNyU9uYQZWArhkXhNYnIaWY5xFin8miDZ0bTNDdUAW6FlHZp51rZxCo6c3CB1Hon2ONY9xFLlEwiPxA7Yqka13mpPCdVGcwZS8I0GtY9mVpCUI0YzGiktFYqV2WX22zNgNY1qDmHGCEpiVWClobB2W7hC+Ei/oj1SBHnFit+mFzVJKo/MDyn8OuwOB367w/yqYU0vEAx6SF3QizXOVXUo6bTwMgTDgpYd05uNETiM0Gz6i3Srik7/GG5kybrgAkckmhybmyHMCuJ8wKi9SGUz2uMRlVQU2ifxAx5tz3IoXScRPl5pcIFiww+RmcV6sBIv4HKNKSqck1TOUXgB8ahDaEJWQgc2J1JNWi7ngVbAFSfXmVce98wtsxFrVJpx5WPrjCLFerdDLxKkfoy0298BFse93YMoJwiLHJ+S1AZUfshisolAMKhCCuPRDixxYqkwjH2FnkRU2okHT1gHcuJBw7Hht0j0BgvDlHaWY1EM45pGFNIgky2PmWFIQK4UcyIj84PacUqFVw7ItMfJeB5TWgqnOVANGMgWpbIIB8f9GRppSQOQssJrpsiqAq8uj50SMQjmyGzG3ES5MXE+myqmVv2spfml2/ZyCmeRxtHrfXNeqoWF1tc99oRC/pxz01CIrT9aURRN1Xe+nbF46jbu/cIr+PGjz5x+dnqlViA6dPWFMuRCKeY2Gzx/+HcU2ueuay6j/OzHn1Tff3j7F/CoaLU/wzU65vrvjtj3/HmuDiX7vnI1F8+fYVA0yYcKZyydMuWe/Vcw+KWcfEly9L8O+eu/vZL//uAPMhjcykz2IBe3LuXW0x99couxhz3sYQ97eFxcfPHFPPzww9PfNzY26Pf7XLRDmChJEo4fP37BtVo/ob3JfxSMBoRjK9Uk9UO+2jyMdI7HWOTKR1a48tQ5cqnIKofnPPz2iOFCgRYK4aBQAQOraeaG/YMSLT3W6OKlbWZGMRaLVzhKFdHzFOtxSHts8fMmh06PWF4dcC6IGHoxaTiHEgHtJKObWhARSmishH1nB+SpwUnF3GCO+dG+2oOBwYkSYSGwB4iLS8kljIMIiSbz2mz4M6xFs1RW1fMVdWgeBvpC4rycoQs4JRc5nS1gM8kj6gDreRMbJmTECGAtixlZzarzAUPm+/QXj5JpD5xlzYasujpPSOJYHBbo3jyhjBEixJgCnMFORB9Kqek3WpwNuki5HeB0Zm6ejAA19IgHAussQ6GJswJcTSAFAis0sYho9IZ4Wa3ElwQBUvr4IiKQEd1xztwopdvP6jVx4MmYXjxDP5jBOUFfRxQoclFhcZzpzjN2mlz7LJ/rc+mpnMzz0Man1JqNImZY1p4hCxgs3UHC0uaYSnmMPUU5cZxaLG09IhceuiyZP1erFiYuoHISWVmsACs1Qrbxs4toJdue2I6aJ1AxYV5RWUE/iClbEqVmQApGoU+/0eRkd5G72kc40Vqmk8xzLpwj8y7GNw0UPlZN8r2UwIhaDl4IhzCw0WzRGBk6g4KB8ykHPkbtLu7qCUkgIySq3izQGl05hn6ABTQSJSNKwDrNZiMiU5ArHwGkXoDTIYmOySdU0U/grO+xXicLsfzIObyBT9+EBLL2cvTimGEYsOq36YuIgR9RCU03gzESXYaEI83AtOpQza16YkGBDusNl1bVInAH0CKYPJkCKXy8qs5H68m4zoNUAWFRe6M7pc8omkH6XRquJivKgnGCvtLMZY5OoXDOkjkPg2QpWaRRHgUgt3U+Xe4kVgqMFvRlg00b4UQtLoETzG2mzAwKjJNIFALLKIjQZR16KapaFEM6V8vnmwkjcwIjI1baBxiGCxil8aSPxaJUxUIvw5Z1AfDKE3RUB0zEUEYTeXPoBXUhYqsNKI1rVfTDJpWUONlC46GRSOlPVs2BgAJFJTwKrSmlIBEe0tZiH+d7SJ9qPCFCdfToUd7znvewtrYG1Lt2t9xyy64/NN+uyK54FdXr/gYzWwtTnC5KGqO6inh4/ase95rW/ufywsHnALi1exPxHe/7R/f7yNlP8JnTHpeqdX4wuZ6f672Quc2Pc3fjlcy89DMs+iXf+0BAXKZ88IrvJbcHObyxwmu7HyRqprzzp38ebeHf3PtBVldv4nj/MA+d+g2uDW/m/t59nBw98uQXZQ972MMe9rALN954I2fPnuWOO+4A4P3vfz8veMELiOPtEJH19XVe85rXTEnVZz/7WdbW1rj22muf8vFIZ6ic4IyemeYrpF7EOTUDhSZKLYFuQ8tSVgEyrRC6JLAZs+4sFXV6thBw5emzzBSCQmgEgoOnW8z1JMK6eoddBcycHbC02UcJn4HfYNyaZy69lG62xMj4ZE4SFdDNushJbSMlPVIi5ocjDq5usO4U0ahPo1rHCskJsY/SKQbNBpU/C87DKwMO9TO0ChAo1sOI02GbcalwDqSD0ZzH6mzAWuzIUKx5MUMvQmYBwYkWVzwQMzMSjCuf0muh8Dm4mtNIC6TQlFLSD+o6PUb7VEgWeymXnt1EmVqRLK4CqmKRjewgx0SDk8ECIxeQiZANfHLfZ7GfcOgrCSq3BOVEOlorFvsjDq0MKKWHsob2cMR3PXyGhV7t9ZGmYml1gDYVwsJG0GSj3aWMOgyal9Ao5vCqEG3rAshDE7C0McI5ATKoU/1VbQj2dZMVf46wMOjMUkw2tQUOWSoEGmVq1q0MzG6OuPzYBgfWhlRS4ZRgqZfilY5ho8FXGm1OdNqcEx0KqSh8D79hOHQuIU5zZgYlSni1iTohAVooLloZ08hjsqKBJyJEPk+KIlOK5TN9Dp/dpG9D0jjEeRIr6/BSIzwKJxHS0LFdIhugTe05SKKYSkmUUOhKYJzPIG7g5QYtQ4x0tO0mIPGUR7gqaA5LnJ6QT1ErKCoRkOGRCUE/CEj8kMrvMpdchOcEUvp1MWIknh+gfShCfypNjhNsRhFjJRkSUhAxthFnvTbH4ya5FVizRLNoMb/RgxwKb2ZyH2B5c1CHxglF6QVU2sdTAVrUIXcBBmMluRUYJxFIZvtHaOVtKt9ReYZMg5W1J2gz8CkQZFbRF6qW/wasqsc78n2MlLT6A/zNhFIECAebLuBMNMczHl3h2Y9K9mUH2LeScP3XVnA4fFmymK6zuJkjhcY4Qe4rZhnyDM6hbS3invgeqVMUTuGXdT6YJ318ETDTL1GloaCNLBvoxJABoYqRopYpj22TrjqAkAJdlCyvplijSQmxY4WXCa55ZAUEZF5ImTviLGOmqgsZ1AIcULna45ZWmqHXoFSa0muBhTBN6IwrwvxqWvk82li0sWzqZXrxFZyZ3ceZi5p0/RkiLmUc+Jxe3M7vfDrwhAjVr/3ar3Hvvfdy0003cfz4cW644QbuuOMO3va2tz2tg3tKoDxcPD/99XOr59jfX+Og2MSFj1+4V1333cyf28Q3Bfe1LsHqR2C4/oS7HCd38xef/iLGKa6Ua1xeHOGix17G4c+/neHKUda8P2Tppb/Ns47fwU2P3c0dC5cz39uPBBYHPYLTs1w/dwUf+L4Xs7zR57WrH8Ozb6Dpj1g/+SA2uZhbH9vzUu1hD3vYwxaKouCd73wnL3rRi3jBC14AwB/8wR/s8jp9I4RhyLve9S7e9ra3cfPNN3P33Xfzlre8hZWVFX7wB38QgEOHDvHWt76VN7zhDbzkJS/h3e9+N+9973t3qQA+VaiAzHns3xxyZH2MFj5KSNb8FpetzBC5eXwTMzs8AFqw0lzgIbnIYrpKszfCyEUiewlXPJYjZF0U1cguuDp8ygI4R6MUtAYlBji8Dog6zyM1HrYcE5Ux0tViBDOjPiDI9PZ8r9o0KFWiTYlMc6wFPy+YHTcoVZtHvQPMMiCWGf2oydxmyvLGEBwYqSmUYqk3Yn4wrnekgUEzZBQEIA2lk6y5Vl2bUwQoGgSloTtqEuTbZPfARoerTitWmg3u97usGybqc7WZExUlhedjdIQDfOvhrGD/yZBKCIKigS47lIGPCDRGag6vDWkkJTO9goVRho+HV1iiYqt2EBghaKYFSmhalUQJD10ZtNEUVUkhYoyUIBVWCHTWpdIC38U0nYcWHo1KIIXEK+HRuIlx0B4Zes15+o054pmKVh7jshBV1vNSUYnR4GiyfzBASoNXGoJSE+eWzrgk9yMQAiU9pJCUcuJxco7uuCBOYwrZppnNI7zLSD2f1qCkUbY42DuCdZLSCwHB/mFMMwecwiRLBPks54jJywJVGryyzm1pSIVRHqVUzK5p5kdt5ns5S+MKicIJSzaWdV0h4XBBl8fCfTgZAg5VOFoZ+KXB13X9p4YoGPgextUeJazFE36t5qY0i70BwXrKw2Fn6kns62VCGbF/vG/iqavRqxSjykdLjaiLBSCsI8wKLjl9DqtmqdwyQioWRmMKrXCjCG3MNHysyAwr/gxS+PgEGOkjpCb1QnLPY9ywyDCBrE03a7N/Zci4aDMyDXo2JsvbFM5jpmzSyiqCrKQXhaThLNDlbKPFXHoxiAgjJeuNmKDI8HWOkpBPlPsKVVHoioyYSDcIZMT8yKKMQdkBIpB0Rxm+6OIbi67GHHl0wGWPbhAVDq1qQY+ZLKPZ67A/PUTpWii3SOoUpauLYC9tDuqNCKGICkEuQwo5RyVmGbkG+9cSpFMTNUNQKJxURNZjXy/HOGBs6KkGSkRUYgZJAysjrPBZd5PSzjvyQT3hsW4VlRMklc/ciYzuqKBQMQhHrjyc6pD7BTLzWeqNaGTFtKrXEc7SIsGJJSpPkcQhPf30Fnl/QnEKS0tL/N7v/R5pmjIcDpmbm3vCyknfbrjrwXvZX5VcsW/+657jXf0s+CPDtcOvcmLmIHf7z+S6W3+L8l/9xj/Y/qMbG6zf+T4eOPk6ZshwwRqXPzeg/eU3otIVlh64iv+ULHH9RY9wdKi52mk+xo38n3OneG0j5dzZixkMXkNjMGBz+UoGjU+z+LkvcvCHf4S17HpecuSvuf0Lb+RjnT/hpy7/10jxhDjxHvawhz38s8av/Mqv0Gq1eM973sMv/mItNnTkyBHe8pa38P73v/8JtXHjjTfy4Q9/+ILPP/KRj0x/fvnLX87LX/7yp2bQ3wAjE+ALxYGBT+i6KEDLgGHQRk6S64UpiYoAWGLgDREb0B6WqMywKbogBHNZSCW6aDeLwtAEZLaJkdAeG1a6DWaLHgKL9mdZTBy5e5S4mqGipNHboNNo4yZiEEJolkZrPONBywNzh9DVHJ4SOJFSCOgOEjxVEaWKtVCzGXYobIpCsbCe0XcOaQzSCjJf1MVprcJqja8jEI7DX81RZY4Ufh3KdBloBJ20g3C63m0vMvava4ZLTNXOBLV63kVrdQHRU75DSo994xb7hmtI6aPx8ImxosArLJWQ2GDAQnExzjnOtk6AkMzl82hxDsiIciikojfTIe6tAtB1FjeM2VB6KnYwiXbCOWjlLfKqJBMVnaxDv/IxExW6TGusVewbpGS+z9ygoOp2scJQulpuwisrZCw4Opxjn9V0SMk5R9/4OCFpjwV+KbDG4GlHQwTM9QI8GSDoY4N9xCbCxAVCl6iiLgY8Oxix2YiIVYNR4OgOe3iFwSkNRqIMHH3IYfVaHU4pKrSxGOpwTHD4pr5vVkra4xHKKHw7jxGOIyd6QIxBYh1Yq0EowsLgtMRLx+xPYvqtAuVLhlWEVyZQyIlXQrF4esyiUpzYH6PEmFrufSubzDHfH7DebqNkjkayvL6GLgx3XnIE5SzdrE3hB+SBj3aSbtphYeA42cgoWvVzHGUl+zY0cdFgafMcB9ZOYgOLlE2cAUQXXzniLOaqRzYQkxptdb0mR+gilKwQuUOrFo2iztHyqxLjQT9qsN8qpLUsr5dYb8ipbgftJIGVKAtBWTKbpch8yFKoUd6VCAG90tAgoskcqRiwfzBHmD2KNAlS1HW0POuTWw/pBIubA5qiQHX20ylm8KnDXr0yRWqDLKGV9DBOoiqHVA0OrQw5va+BySPCpCTIHGIGQo7iTML+fkFcxoy1AGGZ6w9YneuCgCSYwRce2jnmU4sWPr28rPMnnYcSAaXUzI9mUMxSinMoUSJciEHiyWUcoCVcc+IsgclZazXxy4qxqfOdrF8hVcXMY0Mu6W0iHcwPCh7e78FYMpO3QFVUzqCLFM8FzCZ9EHWNK298Od3wftalh/Ycy8WYKnt6Q/6eEKF685vf/HWP/fqv//pTNpinG845Vscp+4Hlm159wfFROaKyJZ2wS+pdzvf27+SOw1fzKfkcnnfqDynNr4P6+gx3ZZDxsdt/h1c88mN8CcPFaoOXyLuY/dzvsRldRjZ/I4vnbuffPZrzuWPXEZ47wfJhAzLD+gOOHriLhx58HgszX0D0v5/lU5dw7LLncv1dn+Qrf/z7XPdrv8DDj/wk373vy3zy9OXcs/H3XDt33dO4YnvYwx728J2Bu+66i9tuuw1guuH3ohe9iHe9613fymE9aWhjmBmtoV0b6NEqGqyXFXEVTGtwSmfIVVgX5BXguRJVTmqxiK1NT4FwCmyFwTFjB1gKEkIUmsVxDykF0sY4W6CqERFNtoQQWsM+y3lWezaUJPM8uoUEUtrZCsLmRDaidCnKGCSS0ilE7rjqaz3ue2aX2dGV6FIwVpawsEghuPakYG2xSyWgXTo2/R7zuSasQhqjHCscxrPI0jG3OebIuahWe9ualbPocUaUVaS+hzA5ssiYSWdBOHynmR9u0BnO0U7HCBEBY+JcMGj6QAECcqUJyjmMcEjriNMCZWcIyghNB8GQ5Y2SzVYbfy1jeSPCSh+cx+wwJbCKfihpoJkdJfSjOjfGAV6lsKIOYpqpfC45s8IobJAq8E1JGnQxJIR2jnahUFZwVpa08oy0EfKsgWLxzGM4pbDC4pclrSqjVS5y/ck+fhmQuYQqd8z2JFtlmny7DydaLBWznJYnkZVBVYYbj51BakWzPEpkZinsJkKAsrVsty5ypDK1R61KCOhiyEDUnspR5JBUXHb6FC0sd+/zyLXAd/MYE3JguJ+5NEa4EYLtWkRz/QQl5zBZH11UeM5ShA0KD3ItiTLLbL/AI8aKAcItIyu48lzAphcDCRaYSaJahdJlzOQxF7mCXD6Mriq0bHF0IyD3I4wYEJiUoW2BskSFx8Lmo8z0LafmRywPIsJ0jEwFa1GIMppK5khTk9lC+SxkOa3VAFutAExERwQzpYeNHbFpY8ouOIiqiDgr8Uufpc1NnF9wZqkFOKSx4GBuMOTw+gaJa6KUzyiyYCVRlWJdCU5PM3wstTdTiYhGFaOHdThemBQoBwsmIE+6tJKJsIhRdLM1TDVA4k3bCbIx2hjm2cQNKgZNBQRo16RRaMgqWrlXKxQKh9Pl5Lsno5P6SCXQlcdIJWgU+0b76NoVCjSV2JKcoVacDCrmh4ayitB5zriosFJilMSjQzsZI/QzQNcCb9IaoiJCuQAhUpZ6Q5RtMw5SGrZifcmj1c9YXBvSJgdR0c9bdPopldoulu1lGUGSIfwYTywntQABAAAgAElEQVShZQmyQDnJ2HgIHLHLuPbUmDX99NahesIeqp3o9Xp8+tOfnir+fafgWJrRGQ3xZEVj8fD087RKeNe9v8Vtpz+KQ3Bl6yp+9prr+BdrX8Jd9D/xSGeZr2wc5pIH/5ziGf/q67b/1r/6MP9xcD1ftooCx6vU7bys+Fu+srrIX60vAZtcN/+j3DT3IW7Ud3K8PcMdL34EfeoYRXKUv/VOM6MkZ0XMGzr/mb90b2LT/kuS4PMs3f8gqw8mBM0beNnhT/LXn/8l/urkR/cI1R72sIc9AL7vs7a2xvz8dvTB5ubmN63+962CX2aERYlwdbBSZ5TxrHGOzwL9Rm0YCAS+q9iq8LM/38AVAiFBlhlO2anJo8q6iK0lZyusxqcgrGIEbcAh7JiQlIxa1MCjQrkKz0j8yqIpOd3pTAW79/X7JDJAIlA0iIq6yKtEgrOEpsXlgyZBXgENfNVBiFWsq5jLN2iOEpKmh8eAIY6ZjQRI0G6WUmzUghxOcmhQMlNKMqfRGCoUYOkOU+LjKV+5KK7JloSLehORBVenoc8kKb7J65Ayt8jBTUXebAMjlHU4CYfPCdaCFRaGFenmGkoKVKlrrwwCiQ84Dq8XWCBwbZgSBod0Ek2bTrlJa/U0g1CQe5qFfoKxCb12A28i0z2TZtjIIITFdxppJ+R0XK/qZWONImadmIgEW2VIYpzNUFKxvywQyTl0noDzkBg01KqIFmaHY1A+OMdC7zTG9olLjQ+UTiCURze3zIxHjO0IzysokShXIPCxIq9JAjUxTAmoJlJ6nWyEl2zgVWMccLTfYjX0gQFemXA4fZSG02Q7lCfBMZMafDJIt6UByqDAqZRWlQAW30VECBBdkq0NgzJh30mJowUULPXqd6GwCcLz0MUqnWGMYR5Hyf5khXHUYCA1LTPGE5qBiYlHG2BLms5wZHUdjyW0UHjlAB35SDmDFAm4CoSoRRaA0OSkEzNZSIuzglYuKdIS7UqEC0BU4AQzecLBoUIT0bcZ+9ZyEAHSgaLJXFbiiZzSNZGENfMVFlvV0v3NsoGXrTCO2xw5lyJtgZ8PUHaGLBZ0xwmwRMRDFHJEI00RwEJvzCCMaOeOls0ZU0zfb+kEzWIRoWvJ+pnh9rHGaMTl2SbjwCOQHZCOOddDlmOENFw02qAMFavBHN2iA0IwnNRf8ynwceR4VEJQaMGhc+vE2QFKCgoJfmEQLsEXGaUDbX2irGBurKnI0WbEkXMeEQcwdhOPWYTUNCqIijbR2T5LGym+XQRRfy8oIpY3PCSK1Va9hGFa0UoLmmmOJx2eLVE2h4FmftXycGsTLwJnZ2lUJ/7hL95vAk+IUL3hDW+44LONjQ3e9KY3PeUDejrxha/ewf7+Ood2KKAbZ/jNO3+Rq8WX+IGDhrSI+NzwGG9a+Cp/8vdr+NcVfG3hALevPZcrv/j7X5dQ3fa1h/jRvEc8eC636RMcNBU/Jv6S0bkA90nN+hWX8OgVVxKdfoAj8b/nSPRLxDcN+IgLCBsPMRpew21rR3hO4wwXDZcIvHt5Xmn568UmJw7/AM889kG+8Ef/Bze94+fIH3k9z1u8j1sfXOUXn5UR7lC82cMe9rCH/xHxUz/1U/zwD/8wL3zhC9nc3OQ3f/M3ufXWW/mZn/mZb/XQnhQEgkaeseUp8kuLlLOEIqQo+1gJISVzeY8iN3imRWc0ETYAPJtT2goBaDIUtTjDdgeOhhMI45PhCMlrgxLwKZFsF69tV6N6B9sJIrdbDn6LrioZctFGXFc2kglCOgIKsl4fqJXhZDVGEqBcgMPQ7I3xEiiAS84KNmcERljAQ2DpVH0y9uNnCuEqNAKPsjak8nqsQRly+FyIR00YlwYDxg2Nn1Uo1yIoS5AQ2TESQ2EdrcEKDmrvgekhpIfwY4QZ41ctVFXR0uuUVUHBZEPZWSJSsi0PwGTiEsuctUiZovAwZoQ3VqTt+gQrHBYIywDlasnl+V6fJKjNr4AKKKgmJDYgQ1HSGUFstgxgC1g0bRbGligdARIk+OQ4BE0zojQxPhWVsVglmRmlhElJaGsbwTcZXhJR+bWq3nw6gLRkHOU0ipRchmQumTxxtU8mIsfVfsf6n8uA2sMnnWNxc4wEIkoYGzQRkR2RUueq1XezM/mpfq4dDq8siJIBlS6w0iGxIDWg0K7EoAlMClJgadJ2fUoqKjSSkPZ4FY8Kz1gaJPSlJsgrsjSlWXl4xlCJjANnh2ibUQeEVvg2wcjJFoTVKDuRvHfx5L46IrJthQGxJZPgEFLgiZJWGUDVA0ALCa5kaRiiyQBJ2wYcWAsYB9BM67YsTVzZIHIBVl6okN00FbosKEtNnGf4RU1iZTUkwENTYlDgAoLcsLRxjjQoUBgaeT0faVKa1PXdSjSBKfGosJUAV07mUc8FAb5N8EYBslUT8NAU+C6hFAolQOWGhXSERTJqaxZPPVTfx8n4PSyIDh1T4coQZL0JYzA0hmt0sxFSGDwgqWborj1GKCGv6s2I2eEY47Xw3Owknw0WhpbUc8RFTGAdbip3H6OIdq3Z3GiEtoqQ+nku8ervKVMQZmDLBQ6vnaXXirBVii+eXg/Vk07A6Xa7jysf++2Mu1dX8E3FpVc+d/rZXzx8C9/vf5GLlOLLJ27m+OBibp7v8frZFv9u3+u4ov8wp2fn6MkOD49yZP/E47b9//3N3Tx37TrGcw9zT8/wFu/9KGG49ZKfZ/isZ/PjD9zK933xk5xofD8PrD1M3/wkh5sZ/3vS4zdad6NlSbd/HSfi+5EO7meZ2J3gpktmWNn/PZTK4+DJ03z59sfwvWfyA0c/QbJxDZ9duf2faPX2sIc97OHbF69+9at53/veR7PZ5OabbyaOY9797nfzyle+8ls9tCcHIfFdSYO0zs2RDoFGYIltiajLvuKPxrVIwzBDuAiYA7uAnnhQNIbIOXx3YV0sYesC8VNRcFcb7lKWTNxDF1wTZVuemdo0VphpCwKBh0HvIGPSWhBim3kBkUxwLseaHC8tCIr6/NlBgmcrNIamlSjn0XAWr6yPe5M5+ZS0bL2zH5FzsL+JppzM2dEYF3ilYb6/VXNGTAmiR4VnSyLy2ogHnCtwW16YQqMIcGYRhT9ZAcdisQlASDG9bqs9aYPJOoDC4E98hg1b0HAey8kGl589hs6HCFMgsLS2ap7JrQ3R2sit5Z8F8fR+OZyrpuPXVV3od+d6CueYSXK6yQjP1Ua0NAng0La5tQR4ooPG0Co2J/IB80CXxrgEV6GpCNzsjvte5wuJLYpVFQhbTNdElBnCbR13RLnBltn0SkVIIy/wKIlEUv9PWisUWouuDIc3NFecuwTJttBJw7pdhL4uodyk1qBzSBkSyIxmmk/HuuVRUxbmxyMaSUnYGyBNTmAKAsrJqfsn4uo15tKEkAI9uad1PpyYTj+i3tRo25KAnHaa0nAJ0lkiMgKXE7C9JjVxDGhkBYu9ETEpCotnLM5ty++LOstsOse54Yg4L5gdb9DIczxbEznhHPuGG3hUE+LQxQnwSZjPhgQUtMx4UpBr6/lxeK5kaTTEp4Tp+AQwS0RO4Eq0i+kIR2uU0xoUzJ7emEiQb49LSIsnSpaGfXzyKZmq74slIMe5rfMnmz80aeSOac0Ham9fYBNUNSCWCZGswzgdIJ1GUAtgNApbe1mBlq2m93Xn8wj1e9aqMiI73h6rq98LWxV1WSdnETi6w0kBbzvD04kn5KH61V/91V1hE8YYjh07xvLy8tM2sKcaRT6mV9QVvg9+140AjIoR1cbvE2rF73zxl3g0X+YHnrnITHkvy83f4qee/Ze8c/UaRp2YjajFZ5Ln8GP3/Anp9/6HXW3f8dhxfi6dwamcBz7/l+y/4kZerL/Exxvfx/f++P+Ke50j/eP3c+Mt7+OhZ74D8bUxmzNvJW5/jO9bOYEQX+W/cQ93DS7hcOckQ2/Ix+2zebW9jejYxRz8nkOsHruB/We/wN23f4LLv+tHKMq38uzWgA89+De8cPnF34IV3cMe9rCHbz1WVlamPy8tLfETP/ETFxw/P2z9OwHSVXiuAlEb8QYxMdQ9wsyQTQwL6QSeC/DkmOnuM7URGlBskxsBbivJZiKcsHVA7u548nEwcY4U21uvDprnFT8OKEjZzmlo2YxUlmyFxLWGJYh6nFLYCemZ2BOTAq66spSyDq9bHgywwgHf2PiRWPQ02HF7LvX43fQcJyCe7GBvocWYMC+JJppgpdMc2txAYvBQhBNvEQTEbNbtZlurKqbkCUBTYR5nb3qSSlX7s8qqnqszhNUG3uT6dNqPw6fCTtQUp4Rmci+cK6bnTW/grrA68EpDKeSUlAUTL2OOP71/kcsJncai8SkopARidhqp07lJmEgr7upHYfFlTWT8fEQh9ZRwAThbr2lMSmwNGaZuUYCePM8Ree1BxGBYnHQRAXW7QrhJH1tzriFwSGqy1RiX2+PcWgoJcbZ9fnNUE+ytc3ZWItIYPKvwckcp63kXO/KPAHynKURF1xokitBaFJpxaWgn2YToMZ3vTggUnguRpPhT6iBqTzCWtqlwQoBQgMGjQjsDBQSuRGEp8CckUkxbDZxPLg2eS5m+7+d7vKZfAxduiGytqUaD82BHrpuzdQ5ZtOOz0OZ1XSrY9dxvtfN4bQvh73hmayzktvYh7xqrA1ERkuPbklIaDIpKOhYGJQpJuYOURWwT6AODYtemArDjuy6GagnciV3HPTf3eIvxlOEJEap9+/bt+l1KyXXXXfcdlUN1/30fZl8vJ5QQRbXU6qcefieXBiX/9b5X0rOH+OMfexaXzDeAy8myZ3PsgZ/gLfvfztt4O1+IL2E2HXLm3o/Sed4v7xKn+JtPfoVfyA+y3vgQ92cN3uL9X/Rdk69d/mNcBwghKA8c5bd+8nI2OMZP3GYJk4/Qi/8ti/7/wtkFn+vO/T2fzL6L3z99H787fzWtjYs4I/6cw8Zxlaz41NHnc+DM5zl88iRf+vyYI1ce5uVHb+U3jl/DRr7ObPD0Pih72MMe9vDtiOc///kIIb5uoXkhBPfff/8/8ai+eRzKe1PjQ2J3GW9CtIiswYlzBE4jKEkmxma9J1sbIdOqLhPi0nDbxEIKNzW0gwkxEWI/9W72OTQHMMLi5Am2QoW26dpO1Ea+2jL2HydnrfZkCTQVim0P184WALSz+E6RXRCaU1vE2qppPk+Qm2k7Ymr3b5GNeqR6y0jdMaTQalqjos49shIr6h34LVNbIhAinLa9NcLYBFgElbRUOw1LuXtHf+u6VmLJdxr7og7RlNuVdtDOB5GBdHgTw9lSk6LQepRYjNzuKyKHXEyIxYWr7ImarKodnQY7SGfoNHUVJIGlLshqRU1Cnd19fwNbt7K13lvwJ15AACUsEXktSjCBZxWl3OldAjvxnmydpq2CyTk1YTDYiadTTs4Tj2usC4IdHgspHNbVhXuLyfo1ckcqucDYdhd+dAH8855N7STa+JNn2qEnb2FnZCnlhR7f3SOdrJLcUU5WOrB18auZYUnpLyBEA+dOwuTNjXe8o/6uPuoWLeBbRSFrpczt8MHz3s4dk5XUsvyVsJPnUaAsILeJ0/RceR5pkjuIyq6+zh/a1kbMRBQHS9N6JJPwSgE0rSST29e36OGK/q6RKwxq+s7WIXzSickmy44unfs6N1Qg5CzO2cnTtE1mn2486Ryq7yTos1/iE6tnWRo6Lu7UCcvWWvzxx1gpu9x++iZued01EzJVIwwv5tJDv8fxB1/Lf2j8b/z2/L8lWfP4RHUdrz35SYqjtVcoKTJevrpAHp2l+ugnMNc/h2fL43yQF3Pd1c8DwJQ5/+Xch7hz30P89ocMQjrS+76IvvE1bATPYXHt7zi6fBKOW/6qupZf7t/Kh/hJPuFfylUrtxJ9eRl942H69yxxaKPHX9/7Ja59zqs4bH+Hy+X38NGH/4rXXvm6f/qF/WcA5xynT5/i+PFjjMdjms0Wl112BUtL+7/VQ9vDHvbwBPDAAw98q4fwtCDOix1m+vnGZViHhZn+xE6oTQclHNbVhEJR4YQEq/CtITuv0kmdC1UbGUpchJHrIDzAA3cOjZiYUVvmzja52P3z1s6xIGa4wwew28DTwnGh+bbdXkSOP6llc377QhwGN8ajB3bbyN8ikNopygkJ862mkCXCgXAXUh0lXU2yAB8NzlFgKKXd4fTZytXYve4SgXKwm+5tixhcaLRtB4IJ4ok5nqGEwzlou4zkvEuk2Fp1QYCa6Nvtxra+2laf5+36fx3jUez4SeKQzmInapA7W/OtRk+eo0nFsolRe36D297QnQitvmAMW1xiZ1/aTepR4ZCig3ODmuifD3nhGtT9WjivdIxgu5N6fvL8i544plPYPSaFpDyPVO+GR8MlWCd3OM9qErszDM4va+LuWY0VFUbYbbI7ebYfDxpFQQOFwNLfHoaonwqzw6sonSCcFOKuhEGj8KxC4MhchRUOLQwWMfGQPu4CfANMnjcJPhLjXF2bzaaAOu9MDTsI+c4edvX0dbvd8Z7tWPPQ1qIxGdUF10aWmmDv9Pw+TXhChOrKK6/8hkpJzrlvuAtYliW/+7u/yy233MKnPvWpqcfrj/7oj/jTP/1TrLXccMMNvPWtb8X3/cdt40mjyog/9KP83WX/iZvcPVz2Xc8B4KurH2DJK7jlq6/iZ553lMsXLyzMGM1dxcKf72fj1Rm/vPjbfPj0q1gZLvHlL9zGVRNC9TefupMXupg19WFkz/KKzud51C3ymfg5vKlVJ+J+6o738pedz/Ois4c4+rWHGMz5fHH+Iq4/dweHgp/HhT/Nc8uHib013i9fzH+//Ic4190HvJyFtdNccfw+rvrsJxlf0uXaB3uEpePTny+44opZXnrwTv7f+0/tEaongUFvjTMfeTuH+p/jZnoULuB4Ms+nPn4x3sGrufk1P01zpv2tHua3JfI858EHv0K/36c702RhsUk3ivBaB0F+Z9ao28N3NvI858/+7M/48pe/TL/fp9PpcMMNN/CKV7ziqf+78k+AIKsmhsBuTI3E83dsJ3+ifRwFAinqEKfACrQTFA6YCCTsvlbWeTBid6H7nYZtnbPjJqFtFlBTI3enEwZqe2bLwLbUHgunmNhcDuMgsh4VblKXyUx22cXkekFoNZncoi1bO98x2m0ghMa6AiHddFPcQ00MXIdGoK1P4HIqpRiy7WHxreJCo0rgO0UlzCSp3k4CBM8z9cQWURXE1iORZW2smoBSVpTyfJo1XbzaZybqsFPnTlCH5NWkw7cehaw9S9palKzqML1d2PImBWgxj3XrQD710Gyv0za50lZOiOdu282K/ZN+H6HYeWjqDa3nuD18i5USITxqQW92EG2IrSGR2w+qD2hrsEiM3DYxlTNT8rZzXjU5rHt2aHbSbmkdVl7A4nbMF4Jt9QjOh5gIa+yY/QXnAGhhEc5RotBOUInd7W357nY4G7ePi90bDEL6SLEfXI9QpGxl8WmrEDLFCE113hw0CuccRkyelWn7Am3rt2nLU7mVCxWyCBIajOhNRuZPCfAOb+NWmC/QQk/e4clRsUN7gy0FRrE9tF1zOx9u4inbzp/aGvtOHrr9RFpQ+xGTDQPnTkzGWd9/PSGpUlisk2irtj3zTpw3jAs3OiZuzQuO+Vbw/7P3puGSVeXZ/28Ne6q5ztzz3DRDQ9PMIBIQISAaETUial41GiUmr+ZV1BiHmPxjojHGgZBofDWSaBxAgiAoAiKTzEPTA9D03Ke7z1hz1Z7W+n/Y1d3giAQufQ33dZ0Pp07tvddetXad517P/dxPjMTyk8/9s4+nRaje//73s2PHDn7v936PwcFBpqen+da3vsWSJUs499xzf+nxF198MUccccRTXnvwwQf5yle+wlVXXUWhUODiiy/m3//933nTm970zO7k50H7/MM532XsrnuR1jJ3xUoAdk98jVwSsGPmOD75+wt+/vFHvpadOx9kYPEmXr7m6zzy0OlcPrmUd+7ZydicBczdaGk5DeztD7BnTZlz5SN83l6AKPoIIejFLT4/fT0DvUHev+kRpqM86wvDmAsv4Su7b+C9k0XqjZMZ5TZWjXa4f9cIJow5Zffd7HPmsrvictMpL+Getady5i3foWNj3Ok91J/w2e0vYdXS+wgm5rBp8lFWDR/y7M7dbyOsRbb3UH/kesr3f5pldpqZtMre2TxFuhwz8Dhrvc3s+vHd7Lni27RecBpDb3gzetHiZ+XyqU1JTYKrvF/+5t9QjI/v4vrrr6bb7WbfcxZars+PVh3FsckNvFPsZOjIi0gHVv66h/o8/gfhPe95D7Ozs7zoRS+iXC5Tr9e59tprufvuu/+f7EW1X/KkhSGxLkLMB5J+iZB9ys67RWa1VEhcBEbtRZhBUkCJFGEhn0JXpljp9IOLn9yxfTLZEByUXGUObAdInBUom2WvJBZpUozMjnXkfjmbIRaZfbovM4olaBOK/UGXQCPBJFgMUooDgSJkx+WMS0yCJSZVoJ5cy9OPnexTkjP7z5CFhco+NXyWuCDKYGsH3qtMlPWU4iAxDEyPtj6Y6YN+xkXYTNbUv3bOZDXZUs5FigjY9ZTPTwLSRkibvQ+1P+Mg+qRTImyCFfopsy2fFJhKLK6RJDLr72XFvP4oB4Hx/vqwJAfmxiKFxUtdBILkJ2rMBAIrHLAWYTPSrEVKYhWO0cQyQZn98rz+ZyE6YHKIPrERAjSWrCWY6Ge0MgkagCtTjBVImxEvLQ30zymNBSnQ8mDljhAmm8c+YbHsD/L3G4nI/rw/2cJhFzAPyGqKUllAMpvd1/4FQiZJTPtEU2D7pFEc+KwdesT4QGamkhqRuWGKhGyE+0s7cqRyEMwuJAl5IkIOPg/SpCRSZZRQSBAG+aTwWiJwJFmGijTrM/UziEr2PIFS80lR+FYj7ASu7JKiaJHiGXOABUlh+nsjFaBFYA3N/kaIsAIrDNocJFCSTNIXG4VAZBltbOaqKBSCAqJvgrOfoCshSa0HdHGNk/UlUwIrLAExCoiNJn0Sk5L7Wb6AQiIIpcJRtSeRfw6MSRlDIrMK0YPPgMAnAqmRwiKlIYEDc+YYH+gi0CTCAZlijSRnNFYYQpWNXpvsKXAyQ37KZvtPzfmziadFqK644oqndI+fN28eRx55JC972ct44xvf+EuP/+M//mPWrFnDP/3TPx147frrr+fcc8+lVMoKTy+88EI+97nPPeuEamM35LKZmP81Oc7KygBKaeK4xoDdzg/HX8AfnrAC9VM7IAcx8NILOPyyK7l48V/xd+ojrD7yJuRD8JZv3cVl5yoOjfPsGfoGha0Jhx47zhNmDjvFAhaMDAPwX5v/kQnZ4t375hJu307kSMTRx7A5LrBq/n3s1Zp1yZ/xss56Lml/ldfw5xR238U9a8/jojuvY0dhN0fltvGd+Rfz7d+9iLPu+SEn3n4dwfhWJmdzVJ0yrxnZxhUPXMUHznrvszp3v1WIu3Qf/gozW25G13azqredJJY89sAwybbsH9qMcOmsXMXYYbtZdMweVNVQu+F7zN7wfYLzX0n+4j9FeL8aEbKdhO2PrON7U9/jPvswW8QODIYRf5Qz5r6Y3196EWX3mWfBenGKkgJHPWPDzl8Je/eOc/XV30KolGtXH8++QpVTNtzDstlJznnox9x2yBrOGTmBT9z4Mc5edASd4971U5KM5/E8ngs88sgj3HTTTU957fWvfz1nnnnmr2lE/z0UCYn7QaQhQAmBRKEw/cxMf1/fpiRqIXnbQ4jd+GICRb8AHNDSIoxAIMjZMXqUEGYnsQr7gW+W1bFk9TSZLYJEkQXc1rpAB2wmKUxVAT9JaLO/F9ZByD6ZKRpLQ1piIZHYLBQUDlJ0sSL9qePEwQ3zp/zFRROJPUiWoA8Qvmw/GzEXzDjSHCQNWlhcY7BYHMyBoF1bi2akT24aQJYxkSh8QkLpHdhtF/1d8aeSMYFillRWcUiJ+0TCtwmRAGU1QjyVnkr2B7zZmCMhEcZF2axeyjMQWYkQffMMK8gMIpooY1HWoK3FkyndFIzKAmRlLWJ/7dOB3E4WbMo+JTngumdHSGyL+IBhSZTJDQ/Me1af4hjVr61KETQQjB44T97OIKnQ7V/DR/6ExcdB+aEWFm0zm+vYumi5n1jvJ00GjWZ/rktaSXwgI5Jd70C24cDpDdJCTu5CJYsJMYTKkpKt6VSMIqzEETlSm+DavVgDHbk/Q7X/A3lyFhTyxsE1HWLpH8ioagzCCgKjCegQ274s0skjMKQopIkRMsEHQpz+eC3aGKQ0KGMx0iLIY2SZItuQ/cyJSAWxFKSCbK4NICRWjGJsHWlmcPvVZGl/HqRwyNkaWNBGI6wkNUF2DiEwchhhnWzt2L1om5Kgca1BGgdP7cIYl5jRrMm0lQgEromI+wlDgwA7iBJVrJ1EmBCjBsDWccRcJILYbuuPyOsT+x14JsTDYaY/qXb/apAakWZ8s9/FC2H77pT9ayqxCEM364tmdxPi9bO4e/prIUaKkEzenD1rHRwgwVFljPVBFHFRCLv7wCp0jcUKTSoEvgFNg5AcilmeazwtQtVsNtmyZQtLly498NqOHTtoNpu/4KiDWLNmzU+9tm3bNs4444wDvy9YsOA5sWFfuGsH7/ruf1IvFznyrCybtnH8S2hpeHjf0bzrJb/YqVDn8wzvaREbn7udS1gT/xWrV9/EEw8Mccc1Q5xDCbHlNvILeyxUs3w4fRNKCtauOorJ7iTf2vYD5tXHeGXnTnbsKbNzqMT840/k/27awbnHPc5/sYgvDwzQefQV/MnEFznduY3beotReHRKBRY05nG1fz9fu+OdfObwN/HF4y4gtZpT7/gO9YLD1uvmMvf4fQi9jTiJcbTzC+/nfxqMtXxn0z18vVZjXfFM3hHu4c/D2whnHbbcOcKD8w8jPt3h8NGYxRe8D8YOoTX3t64AACAASURBVG0SuO0vmc+XmCgXmVhXYdGV3yTZuIHSJz+DLBZ/+XVTw4/v/B7/sfdrbMxtRlrJsu5yzm2fScW6PFEd5xtbvsr3dn2XDx79UdYMrn3a99SLU/7z/t1c/chedtZ6OEpwwqIqf3TyIlaN/vKxPVN0ux2+e/W3MLVJxp2A8665nELn4HeARXD2to3MDo7yqcNezhPjd/En172F5lmXgn6+V9rzeG4xf/58Go3GgU06gG63y8KFC3/BUb+5UBgK1qUpelkYqFyErWFSjUUhrcG3MQaLNSlSSsrsJsXgGuhY0c9iaRApWDCigGPBk3voiQbWzkMIhY+hgyW2GWlRYpD9Eh7kANgEqR10mhCqYTxTIxQW03fykqS4RtJxAvw0JMsLKLId/hTftOiIAoE1tOQ4pMuBvjxIeNluOj0sDtqkOCJFqSYRFWLVQxrTD1yz8yrjYSVYUcZlK/DU75eDMjKy+7AGT9jMDsIYNClWgpYpjpUkrkL2LIGRfUFUJmuUZDIqQRcpekibkBMh9X6NlRKZzNARbXp9Gpo+yXTCIyHqy/cmVAUtYaTP8nrSRfQd8RwkqRVYOYIhQDCNthYwDLKdrtBMMR9poWCnSKygJpoIDtZ90x/3/u0rzSypnQdOGZk+gWEngiIOER5NPLmXWJRIcHH67oLGNghlGTcxWCnQKmXIRnRMSipMvwNUnUT4WATSpmgB1sqnmAZoDInKmjAba3DlDnpmIRUMkTGkMuso5NFgRhT7Y1YENia1HlZU0GY6y9L1M2GOjfFskwSJtoZUaKyYi7Wa/bkfKTWujYmtgzbJU9R+0slh4hbSarQFxxyUt1ksjsnyM6HM5K0FY4hF5qXZIcbi4JoEbeqoagTN4pOOF/312QGbx7dZ5i0Wti+fzNZjnghpO+wRWS2/ayBVAis0rs3jmA3kMDTlIuI+p1RSgckybAH76DEHIweR1iJFDyF6YDP5qBFZNs8xKUGqiUWKI2JSqREmQaQCVIdUFshJjzZdssbVBSxexoDEIJ6RmLROKkZQSFKREUuJwhMFMqPyAFfUCK2D72q6SYwQfQmnEAcyyNZCWbToipiAJpHtAlWszLYz8jRxbQ6LZov20PkyI7M1vLSDT5eOGmN/1lubFCMSfNGmJ0Rf3Gj7hD3L7boyxRGWGIO2UyhCNJMokZCTBy3Wnws8LUJ18cUX84pXvIIlS5ZQLBZptVps2bKF97znPc/4wt1u9ym6dt/36Xa7v+CIZ3gdmxKWi5xw2JEMj2S1W5OT19EO53PW/BN+YW3YfjSXn85x9Ue4w1/Aofq9dPkov7fmW8y55xAejEJW3tshf3qXx8081uuVLHbrPNK+g68/9FlmrOFN0/Po7VgPFnYMFLl8/MusyB/FtBjhG+XXMa/Z5YxdZxElX+Yj6uucZj/D6p2buX3x0Zz18J3kWMAnwpiPPnA5w71p/vb4t+KqkNLsNBNpjLgLDl25j6tu+javOuvVz/oc/r+KeqfDu++7kx9XF3NkNMHXv/wOXrhoHa2az817T2H9MfPZsGQFd645hpaX4+Ubf8j7omnyC0+mfepHAVi77kvcebjk0YVrOeT+h2m8988of+qzCO/nE4RHJh/kU3d+nK16GwVV4YTtL+WQyePJxVmgp7Xg/L2SVxfG+dSKr/Deu9/Fh9b+NaeMnvpL7+mRPXX+4Qe3s6/VYdnwHF60apRmN+Gmx+r8wX88wNtPWcwfHL/gaa3rXwVx2OOaSz+G2rGVgklZ4vqMzF9MaWwexeoAruPSmp7g8QfvYXDPdl6+eyux0nxiToXXz76N/Gu+8BRnzOfxPJ5tHHbYYZx//vkHJH+zs7PceuutnHTSSfzzP//zgfe97W1v+zWO8unDSkHO9BCyTc0Oo+kQuhFBVMemgwgrcEiwEpApHjV800FhiYTCl7uIOZFEeOR5mC5lIqnIEeOQ0hMGSQcokggJNs2ESMLi45CTgtCkCJFgnABDimMBWkiR4DCPHg2s2MdAUscRLtbUMKaKBSKxEC1SiundJGIeLiEN6TBgHGL2ETlzyUfQlaN41Altm8g6IF2GWEeMxnVjdttlhMYSo8lJ8EyPrpDEWEI8pI3RokmeHJoWWvokJsalRodRZD9bJbEImeKaGIyimc+j2jVAoVWI6e+cF5Ld1G0JIwZI8BiQg0w6PQhb+LaNlA4yhUCMI0QVTRMtOmg7gaFIIsoHMjKpyCRLKs0Mp116YCGRDo6VNGRA0cQ4QpK1aNUgPATQtR45EQOGqtOjJhcQJ2DzCtnoIqj3M0xFHCGJ7T4SMZdUzMXnMfKiQSiahKLQl41aFAvJ2WkANG0EDhYXhESaFKjgiAE6okTALNA+kCvSNsVhGisjpFiKR0DC42ChmCvSjmI8Gz1F7qWMJWctsTZomVKQmkacrbuinaahDiV0DCSaXOZrjhYBRhRwkzqetbRkjO4TowJTGLmfrPjo/gaAJQveHaY44D8gBGFBo3qWaKiMX0+IknHKDJOygkRKfLMBSYJhMbFuMqSyjGI36WJMdl4jArSIia3FkQKZLyODbcStQYTSiDRBYenh4YkpEFl+MJRZltdahWd6WXcqsY+uKiHEJNIME+IcCMK1beObrFkzwkFZB6EdRNoCICfGCb0iubBFnf0VZ/t7OaXEFFGyRjUW9NJcX7Bn8W2XgoiZYQBjcsRK09EugyTIpIogxkGS4JOSIsiki8oKfBoILC3lExiDkqMETGUNdG0Fjw0gG7TlagLdQtjZ/udRQiuDTRVapARS4qhROmmnvzSyTQ5HCIwUdG1A2l82M7JArrSZwZkIlx59+5T+d4qmUxHMqUMsGmRbEfm+q+U+hFoJFLOSijTGWEtL+vgqRYonSRGfIzwtQvWqV72Ks846i4cffph6vU6xWGT16tUMDAw84wsHQUAUHUzVd7tdcrncMz7fz8PQylW8eeWqA7/XmusZ9ia4efvv8uHznl6NR/7Uczh2/ZX8w+HHctyKBfz1jW/mD0b+hdrRn+bB713E8aWQwaDHR6LzmasbJL7gsk2fZqHnErcVr03uZ3ZHnkbRgyWwUqxm7dj9fCF9O7FVvPqGb1Iuns8u+wKWerdwVngv908V2bX0EALZ5dipxVyxZjuHXxPwR863mZqu8K8nvJoL1l9DNOcYauyBx2qY9o10Tz3vgC38/2RMPvEEF+/exnhukPfffTmLJnfwgsXr2S3GuHzgFYi5FeaMjHKcULz7hv/iPz2H/zjjZazbu4/LutcRlE/j3tk3MdM4jdSG2Nw0T5xzMkuu+Scm/vHjRG/93wwVCgTOwSLb2MRctu7TXLX7SvJphTN3v4oTxyYprbkRHVyBTTzC2qE0d76QrVsPQfdG+LPOn3DZEV/gow98kI8f/ymOGjj6p+7F2piZ2RtYv/3b5MSDvGs1OL0hZJxjT2z4kW0gFwhKUxdx6W2wcWoPf3POcSj57Ejt9m3exM2f/3uiTpvJ0YW0RoYYjgU7hIDZOszWcRyH+fMXsfZ1b2fn45vY9tgGTLuOu2+GK3ZFLN/1No5++ycJSpVnZUzP43n8JOr1OscffzzNZvOAemLt2rWEYcj27c+tdv65QCQctDCUTZ19UtFSRUbSNu3RIfQ4WCGJVRfPZjJkIw3GJgzoLil5ZkwVoRxECgUxS9dW+vUEHXKmR127WJ1SYoCeFZBmQZpvBZ5JkSIlZ2vEpChpmZEek4MF5sz0pWEiqzyRhJTlLBKXWRbSk8tI2YEQCmUbeFaQCEl30EXOZjKtwPSQOYOfCjzTJZKA46HSQbScoE2RyFYZUy2cJI/BkggIrCKxllDGSGtxrSGxHkr0pWIyx5h9lBnKaNsmFYvwqJETs3SUQ8AMc51xNsVLaes8oWqRpjk83SCyAVmWRqGsxCXEd4soA5tLw3h1ydHxRowukLczCBmCmEKIQaRnUN0W2ih6ci5pKklEDys6aFEk7zbBZpmMMBjFDSdxjUKbENdGOKmg4wyjRRsrJFZVsLFDlUcZ8nuEaQVH7iW2JbSrcFRMy0sRSZucGSB2BDLqgqhjZIlIVkDWGVMNemmKoYtrYxwsnaILMiCcLVE1LUIV05PzMLaMZzVSxLTVANpAxTxGV/kYDIlwEGgaajmBlOhU0jEaRwr8JEZ6BejVkKKHMS5ROSAJE7yOJBGaVNRpzDuUcOc0VbOTMa9LaDTKxlnesS+NtCJrwBvZAq4skHfHwU5jUwiFQywdIpESqBlEOgAoFE0QXbAGr9il08hErLlKlcCps7W6gWI7ohQo/EgQxR1CfBQNtAjoiVlCOYdJmTAneRAvETjUiUWBRMzBoQ5K02Ue6IjQdlBeEWwNlUisFBTUZEZIbJaCVI4iMV3SdCGe3UTe9XFMSkeA5+fwksXUbYGUEGVNPwcD02IQ6ac4oSI1bVJZIUkn+i6dBpeQIpNZRs4YelLj2wREm0VmgrZJaYlDMX2JrjYOZS9hr5kL0kOLaZR1aOgSpBJBSoEOCJ9ZIlxCDD4KS7sQ4KURQRJh5BguTaRNcUU3M7SwKaCo53KUWxbf9AhzltApo/Ao1mISBC01hCJHJLpYEqTqIW0ObZtIkWKtx8EqypSpXJnQybHc7sY0JhH2OKydoedEVGghrTzgfiGRaJv1gtMyRZmYothNLAJSWuzLD1EIa/h6hJJuPKff2U+LUAFMTk6ybt06Wq0Wl1xyCRs3bqRarT7jnfClS5c+ReK3efNmli9f/ozO9avg1o1fZK6r8cyhON7Tu/3R5Yey8NotcDg88OgD/F4rwE68lXTN5zjxuH+lQpvtDHAXR3Gu2cCEV+dPy0fwudp6zm8eTjW8hpmZUYYPP4/TgxMoTc2yceUsG+RqzrrlKkIdUne7KPMOeuFtfED8B2fVP0ix12F8aJjqRMBRdhWfOWcT5WsrvH/+F9h9+zBXnHIer9xwA9tPu5iF6v00NsP1//eTnP/HH3yOZ/E3G4277uT/NKYYaYacvucBPLqcm7+JmaTE/Ud9mKMKQzSbDXbv3sW2Rg13sMKpK1Zx7A1X8qHfOZvP3hVw9OZHkFoxunQh7sSdzDQG2N4cY+J3/obDtjyEd+UHuGd+xMZoFc7QSzj1kCqf3vABNjTWs3rPaZzdPYQFL/wmlepaXO/3UbKAMR3iuZOEy+6gtup6dt/1UjZNL+eih/6Qz6/+FH9x73v5p5P/lQWFgxKlev1Gduz+BLLTZnT7WeT2vYLB7giqL0ReBJwIxG6dLZVdfLG0gZs3HcZ501/m7847liMHjvyZczTVjrhr2yzr9jSY6cS4SrCgEnDswgpHzy8j+8/11vvu5PavXEqsNHtXHcP06BCvrORZXjF4rkcYBjQ27SLcuAF78w/Jzc6ySkrc1UewccF82sNzeQKJfew+xv+/d3H6Oz7E4IIlz/USeB7/A/Gxj33s1z2EZxXaKZJGbZoyT4RBA4Ffoe2QSXmsQghDLtelF4WYfiWUEAlK9XB6CakWKNGiowtUvd3otISTGLruUoJ0D918gWRgCCZiVHea1A5hLUiaBCakh4tUhpmqYlbnkdLSHsghQkOuM00at3DlbqzRRE6VTm4BNEGwCCEtJnUZ8Q2bZY5m2aE0m9IVq+jIOmUEulwgmrVoK5AqR1W0scMThPvmAgENXSYdHkDvqqNsQM+WULZOxdZoWw/puMykHj1pUSKgErcQwkUNRHTaOWKKGKsxeR86kAqZ1Z7okKJTR9JFG0NULhC2A3zTxgqNQw6pXHzj44hpynYYpIujNmARGJnwhL+AXuqy2AoSBa4wuLLJRK4IkcHRmpFYoWyOWmCI8MnHEQVjCcQgDnvxREgkfXw5DMIjCeokoki3kmdw1z4kIUIatI0ZMSnTGjwPciqh6bVIojxZTYlm67whgsihWotoOyUKNmC6vIK0OUGSDFCSO6jaHuOUCa1DQUq8xFLWPTq2wYRYiKKJwpBXme28tiFd6WNFE2kbma2BKqFsRIBFqAoYQRvJABFmYBZvOqEuVpIiMb7GSoeG49HOJ3japeetJIkiZiiihWTAEbRt34oiBa0MTjxNXQ+TtzN0mcHYvbjCpS0cLCNoBumOJXiNCK/RIybNLNmtQOcibFNkPbLiMtYME9tp8mmDxF+CNGPk0i6dvCXfMTSpYLAoNYM2BZQsoKijLYRqMUbAgGPo0aGXFIjzOaJiCae9sf9feD6hcKiIgI6djxAJgamhpGZbaQibKlbUmwjadEyFmWqeqcohVCdGyNtJ2nYIbAtpYY87Rtc4lIo9cmGTQDq0RUAsHRQ5HLPfKAQ8mdBFEdBD+OB3JGiX2mged2KKSC5GiRYNUWSEaXzRIvV7yNRQsJPktaYdLcDgEgmDKwRS+BgRYdMWPRzauoTjzeI2DI7KMkqRUcRoHJsQCU3DKzM+WCEVKfNqMUZYUiloOjlc6uh+DykJxNIhlAJ0yiI6xAYSqQhtvwm5SEEYyjqmlIfIriVqjeOlYEQRO3A3c8IKxoKvU5oSjMkTmhyurtFVLko4aBOB6FHRCd18jXwk0MKlyXPLMZ4Wo7jyyiv57Gc/y4tf/GJ+8IMfcMkll3DVVVdhjOEDH/jAM7rwOeecwzve8Q7e8pa3UC6X+epXv8pLXvKSZ3Sup4tap8GwvoMHppfyxhOfflNixw/QjOCnIQ/t3sQ7T3oRrW9OsG3DBYwsvJzCQMTH4/OY58wAcEE4j0ceK2JGH+GlrQlqOzNL9sfzMcvmjrFQreND4nUs3rOdYzZvYvqQJXym+B98cO8fsm3sWFbV7uLsaBOPbNjNdYe/kNdOfJ/zHl1MY3WHvzlnB8E9Y/z59Zexb3SYqw85jQ/EM2xbsYz5je00Nm3kvh9dyzEvfG7n8jcV4Y9v55Pb17G6npCLQ9bILud0/pMEydbTP8NJaw/W7Vlr2bt3nAceuIe71z9EYXCEd95YI2qVeWJBxGtW3EJ+YoC8Ws5I9e/ZEzvc1nwn9428gKXjL+TYWckJQhA/McO9D93HwsIASybezAllxeEXzaFS+S+E+NmPmF1sOfSoHdx79UbG1w/yuvUXc+kRH+ND913Cpad8EV867Nz1lzRmvo+z6bXM3f1CPBS7i9N0j85TmTMCvobE0JvYRLhjB8snlvDxpMCE3+XvJg/hbd++lotOvJm3HnoxjszkduvHG3z+R1u5Y3cNEGiZkNcpWgTcEBn+9cc7mFv2ectJC1nS3c59X/4MU/4Q3x99MS+M1/HevV/gsImn7vYnPUkrCejMWUR98WpmZposf/AhFq7fwJ0nnYiuVNi05jRWbbiNGz79Uc5+10eozlv0nK2B5/E/E7fccgtf+MIXmJiYIE2f2pzyxhtv/DWN6plDK42VihSPUuqTuB5xSQJdXDoooVFS0VqhsFssJnaoU2BQ9LA2AGclpaQHOITWJ6cTXAFGePRyZWwtxkkVidFYL0ea1sB0ccOkXz1l8bWlqxURC9GqhhtbSqZHohW60EPXMgNoYRWelAe6zCihEVJQHwrYVDqCMBxGhREyjfoeNQuoBzUcmUO1Y0TiMpBqhOjSdgPyvsYmiqSYSQVdpYiTOqFbxuLjaIMX+wTSMiMUOTpU9AxGLWMqHSLVG5iaM4Sc6aF1SK/i4o5ntSg1WYVyjF9sssEdQadzWFmcJi99MJqWLGLQ5K2PxMGzBjcVGGuI0wqeoyh7EAiPVAagLT3lZ81ltaZaHWCm0USKNmlcRckhZuQgMknR1hC4QL5E2M1T6q7PlNDWgKjTDQQqEqAkM4UBFjd3Y+YrOjsz4wU38bLMoAUbu+S8JrlUMa0CKu4UxpTJSUFF1nASn7bvE+YDcnsSBsQQIhbE2sMYSXugSLXboxR2ibWDdH1UZxZHa0wqQWhC62OtpOBDq6uJTUIpaZNKn1Y+j7QaOjGp6pJTk/SkpGuWYylirY8qrkOGJeLAo1ASeD1NRwhCfxgd+9jAxZQFYjITH5a8SZrxIkrK4guHfJKQWGiIgCRX5bFwAUMmYBhLWTuZeYJJcTwAjc05tEtjpA2JyY3QTZag6aJrx9ARPyKwCbtHRlm5ZwvFUoTT85FKgkwyYZlNkFaQWouxFo864KNRuLJGoC2Jm8dzFZuX5Vm8pcUcHVNPFZYxXGFJSdFCEFPES0CKmJrrEZklhI6mVqrTHCgQdBuUZ9rkbYGuI2n6VcLcHKQ7TreTxxsxeNMhym3C8jzOxiqualLUCQ0L7UoVcAk6E7SUg/AUHWeUts2TszUclWUUZV8QF8iElnQys5TUomVKqgKMTWkNFinNxCSORuPjpDGxkRR8gVf2CAsCPSGwIiEULl08IusS4BLqAIulo3P0RIiPgzUFaHk0VYu5dgapCqTGErgukxZ8kWQunBKSRKGMoSclSV4hlGLIBgjPxfZAqzKPj4xS6LXRyqMlKjTkIF3tM2ASXBEivPlM6QXgWnL1ViZTLfjUckdQz7cQzTZWlknT59Zd+WkRqssuu4wrr7ySarXKrbfeCmQWtS996Ut/6bFTU1O87nUHeyS9/vWvRynFv/3bv/HmN7+Z1772tVhrOfnkk7nwwguf4W08PVx177+zttpjc7PK/AUjv9Kx5SNOYfXsJh4sDmFbDoGV7JweYFVL0pUO30x/h5fqaXzrsGxiLZ9Y/jfMa4yyxtzD+t3zaOcUk3Mt6358E+sugi45Trv1S6ytnM7C9iHc4d/GFncvI9MX0/Dv593mG1y85c30jnKJcopdPcvfHvMJ3nXL2/nI2mku6yk++C+f4R0f/iiXapfzK69mydl/yvpvHsJDV32L6SVHctaCX2AH/1uI+KH7+dIjP2Q49JG+5hVHrGXFzW9E5C3fL7+JU55EpgCEEMyZM485c+axfdt2fvy1rYSdHPHwY6zVyxi8/3SEjNmu20TR+1jofYjXeG/mO7MfZkt0CHuTkKMKgseKG1nRXcRJ7QuJrOXGVsy1Dw5x5jEJY6Wf/YgJIQhyi3jB7y/kweu28/id8NrNf8jnV3yOjz3wPl5TaqGnphm675MMxCV+VHyY0gsXcsKqFwGQJDH1ep1er4tdNBdv5UKayQ/orXuQgc2/yycZ4e766Xz87pt4ovku/uyQv+Yfr93GLfsaCNHDHbwTXVyH9vZhZEpsJWv3vYDlXMCP0i6fu/pOXjn+bWbdIWqr5vDPlb9iwK/TSgK+0TyOW5vHMhVWOUqNc8HwFpaVHqQSbWCOfJz4xBOoj5zPhtt2cMZ1P+DRQ1ZhjziCqcVHMbr1QW7+l0/wkvf+LV7+p3u/PY/n8UzxF3/xF7ztbW9j5cqVyGdJ7vprheogREKsFlHGwbg9sIIgdWiPVSlOtMkLj244SOKUSIWgXBU4s/BYupauKJEUQbdCctpFhAXCco7ILbAo2kBd92jYYr/PaEgkHJAJsVSkVtIUDggH19XEQQsj2yxqdEj0ELYoyMUwFaRUpxMqVtE0EiE9oqJhoGdwbI0IH5SLFD5BWgQmkUJRcVLiag6dCMJWlVwnJHE1UZDHdVNEmMtszpXEYIikxEhBOJCH1OKWB/B2+RnZHBO4swZXQZxCNygyLeegk1KWbZP7ragdfAfq8xehZYu0E9HSBQI/j7B1qAziTs3QkwFGSRxStOgRiQpKjWLFDF1nKZBSFDNohilIDWNZUD9l8+jCKvJRgUExya7BAR6fewTHT9coObPMNCUmkRit6OQL5OgR95aRFzN08AlsF4smKXukns+uwSoP6RxHV+7GhmXUvhQEzKhRIr+FNC7aCJQqYdMiqutTiKt0CxE0eygVk0hJJa3g2YRUBewbmps1Qg5jQjePi6XbS+gUy7giohQpUk+T9KaJrKaHj03BiQr40iMt5eiW8kSRQSUBg6KIThRTditprOk6BVxAiSaum6CVJRaWIwbnU1ddklChgwGMSjC1kDRwSROFlh2ksbjxCMOpxjiLoDxIR/ao7E1os4TYrUHiYGWFwM4SiQItqdC6hysF1jNQCGjnXMQCiWjMwdEtHNllyFYppWVKaZ1Uddm7YA7FZIpQjGGRNIOAkU6EtmCsRnt5sJrQz+O6AbRTIpMijEEYgbUQtJehzDghi/GdLpEB3ypSPUA750PeQyeSjkmz1gXCYqplBuM9TDuG6dEKQzM1NDMI10U6DnNyIVN+ntQ6GBK6o0W6UuI2BnB1DldtYFoVEalHLR/g4GLFEHg+bqKoqTymZ5EqExB2y1W8eo/QZjGHdRQ2BCOGqTnDyF6TjgdFWcaUHQIl8We6fZe8lFQaonaJUEJetFCxRjpt8mkHUpdyWTMeHEEiHIyISYUmL+fgyYBpbxInSXDaFikKhKrfgkBafBWCTfsbCTmkkJk9u1LkhENgVtLrpiQYjJZEnsdEoJkXryaSKfV2kR4eVfaR68tkBxOo5T0cJUmMh3arzGKITYe4NE7aLNAp5H/u1+2zgadFqKSUVKtZ07/9Ej+tNdb+8gKvoaEhrr/++p/5tze84Q284Q1veLpj/W/h6nW7GdbXsLtbZPXQi37l4+ccsprFd1/LlavPY/Lm+/AYY3TqB8wbqXGFOgXXDVlWeZBaayW7Lsix+4F9vLa5DNM1OFMx+8aKbBovcf2qPLu8k1m2eRNOs8fr582jKNvMnT6GM6TlIlNk1+CZHBZfx5GVCYLb/oXbDzmP0zsPEt5xHx+f/3e8c8f/5p0n9Pj8uhp/+eVP8idv/ytuNxHVzkrGzhhnz3fnsv6Ln+L2P7yEv5g7ivMLbOF/W5Ds3sm3bruClAF6A2X+5Lzfp/CJF+CNJPzX1Ekcd/HPt5RP45T1109DJ0en/CgdNUG9u5fHPViTLuTYaAXT3iR3HxawZkfEy/X7uGvLC3lEvZnbbMDdA4/zap2jWHiAOwqjPFxcy71BzD9u3Y4BxpTLsZU8Ly7nOamQQz9JJiuEYM05izApPHE3vDT3Mq7mahZMz+HCDR+mLnv8/Yqv8soT3wizlptuYw4diAAAIABJREFU+h7j47uo12s/dR9CCObNW83SU75HZYfm2M0XcHn9DP7ugcd4ze0PECJwB29h4ejjvPGw13Py3P9DXufZ2d7ONzZ9ne9yNY/MRkT7zuSi2esYO2aS1Yc9ThB0aQB1m0MIGGQrL2cr+0KfO/ecxCu3XUgQXMh7j93B6fEEhR23Mnz/JzgtB73XDDH/sTs5/MFH+cbaC5iduwqzbQO3/dulnPG29yB+GwLf5/EbgZGRES666KJf9zCeNTTHLJVkmnhihJwN6cg8cd/XymgfxwnRRhH1hrMCdCloLi4QDjbZs3mQ2YFBBp0aAybFjSQ522VKuBilyKkenjPDrDsXJTwEHYrGIxQxWrs4SQ8rFBqHcKAMooljysSqjYkLJDambQJaviApjVJtFBCJJbQG8j46auEmPjYpIOMQmfhIbXCUQgoJQhD3SjSMT97tIXoRRkCaD/DRxHmfFIfAZjVd3aESHZMnVYIJk6ekXcRQATcxtHMl0rRCioPnB9hUoOQ8lBSoQOIWE2a7Y3hyCoSB1ig6Z0lMA2Wyup1URsSBix0oEabLkUGeWProyVkMRVIFSSFPkhbp5iJszWBNQqqbSFxynmLP2CpGe8OYJEEwj1nPQwqIfQdXVin5ikg7bHHnoROXhTZEC0nIIFJkfbZcFMOjO9grq+Qn87hOjlDl0VLTlUUSo9mZVCh4S5nb2YXO50kji7KzgI+yhp4j8ZEYFvXL+QXaKhyjMDogJw1K+xi3RIc6cSWkPayRMxqEwTgSY0B2exghUQbo28KbQh4HAY4gVTVsOoLxBU63DiKk65YZ0JqekRgVE4ULEGGZWivCqgrS6eLmWmADuqM5EqVIez2ETRDEtIeGkJMBDg5ISUOX6Qx6iCjGcxNyKkC0MmkgEqzrI2SEFBo1BFpJJALjthA6JqcyEwTPBOTIIWiS5FtYI5nsVhjVhq7VjLslkkKH6niEJcuShOSJ/BxGWboViW0qEiuJrUKnHjlj0aaCwgIByZBBxA421aicRypgiiJGQ686Rs/mwVU4uSGWxLPEqUQKEPRw8gFK+whC9pvgGyFItcIQIVNNe6REtzxMYWuH2PRd/SR0C8XMTCYFYzSIBCMUWoBCkIghJsUwtbllgnoDlbq4Ip+1FBgtI5XBi13wMo9KCSAUbrVIu9sgMYZ8aQwhVKbKTD2MEXjSpZcsxyofQ+aO6RsHt993zXMMOu8hosxoRdmY1nCRfA3KRFgBoc31bdz77RACC0KRtzliOiRYagM+7XwBJdvYuodwNCLn0fYEE36OXBLgT7fxUCgv824PhU/O5nBsDh3PUsv7hPlyvzXBcwf1kY985CO/7E3r1q3jpptuYnh4mO9///ucdNJJXHrppVSrVV784hc/pwPsdKJf/qZfgHaU8I5vPsyOfVdz+oLbuXrW4a0nfBTP+clO5L8YQanCvTd9j3VLjuaPHoXHnL2cMHMlQbnLW7vv5siRx3jBYddwy8Th7Crey5bGVj4+tZOZbUOkewx/u/YN3DhyOK1VC7B5h1dd9xVmigs49QUnMX+oQMfG/KAVswjFvNbx7FV3cYa6nx/sPIPNhy7g0MndbKw9wtEvOptTfryM71R+hG8kx99bY1lpB19bcTatZAFnD1/DnuYI+Z1NttWbXDO8kLNLBdSz7Pr2mwQb9rjh8r9iXI6xb3SUd1/wevyvv5cB9z4eHp9D6Y2XMjD0szOS96/fyI1fehAz49EpbmbIS8kFVWbTLkpYFqbDtJwm3xMb2Vabz3jpaBbX17O4vI2bnYfYFyzkiL2nMSl8/nH1Wr66eDEbCynVmRorthpye5rMTO5j42SPqxtdvjYxTW1HnUOrBXw3U2ALIZizokxrukfy2BBpdQO3ignmxCNcP+duVnEU6+56gC1bHqdZr5Evl4lH5rB13lLumbeMdaML2TE4St3Pk8422PuEyx6p8Y54lK/uGebacJiK6uAt/jzvOOFUPnDsn7OiuhJXuQghkEh+tOt2Nj1xHMnsqfyvoX/jpNPWMbCwwWizA1vLhMP/wILq++i0z2VPbTGTPQ9f11g7tIEzF/2QnKrxlUdX8i/JY0wceTLLT/xL5OChaBuRV9sYG53mlN49xIWAXcyls+1xcpUBBhcu/Zmfy/P47Uc+/+zKL0ZGRrj88suBrOZ3fHz8wM+8efOe1Ws9Hfx3/3dt3PgAsVPEqXvo1BLncxgJRgpSC8Woi0kqxBVFolyE0tjiXnImZEbPIz80AShMkMNrWpQISXJDJMpnQO6BXMq0czwaRURMN8xRyJXRaYhRAilcYuVArsCs7CGNS0nUSewAXeVhZIm6atMuxSyY0YTVgNCdj3Ic3G4bx7i0aWfyH+VkAXkuh3UdUt9BoDBSoZA43R5R3iX1XHB6RJSZcnLsTiVF1UUiSbWDFIKWlXQVlFGEWuHZOrgeoesiNMQojLY4OsJVLtINmTA+nQhKdIiCCtbkSUVAbEcJYo+53j7iZADXbSJzCVKWiCWIVouankPHdUBaCqKFryXFzj72mRGMTnGsjxQVSlEFP06RIsF1cuwpO0hXMafTA2EYiocpKI+ajFFIRvzsvhGK3lABrRxkOY/KzdBRDk1VRScQeE26ZoC6O5fE92ng4qYdlvUmidwxQBJi6ZUcvNBF+JrYhIhShcTJbN39Zg9P1qnlxnBkihCKRFiQAT23gOt2iGQZ7aakvks3FyDCFJIEnc7//9l70zDL0qrO9/e+ezz7zCfmyMjIOWvKGrJGyBooCpBBQNBCBG1wQhobr2Pr7aa79AIO7aM09m3UVlRAlNFCRKDAsqCgBiiypqysnMeIjDnizOfs6R3uh0iwvbYtjSCo/L/tOM+z9zp77+fEu9611u9P4PbIRJm8VMAIgYeDkIJQb3o4mfwIgeMQjk0gugGZ0VCygENgMzxZRIkArINVm15KVnpYYbFKQ5pvIrG9BlIZXBmhwpC2VHiBpFmsUHACrCMZBhWCikSYkDyE1C9jwgqBDyYv4QYDyEJsHiGE2vRqEh5qHJZ3hJz3dlBRCpFFlJIiMQXWAkFBwGgvR4o2QhiUFcTBKEgHv6RRAzgvxhn4ZWpBF61htLeJ/kaCKJQxVlEIJa6jyYVPRwdYAaVIo5RCOiEqDwlsgk59mmlARWboMMCRIdKLSRyLykICoQnwyYXFNZv+cNqLCTsxxpbRpQiEwLEu2jFoadGuQDo+Tq+JKzzC2nai1CUXhmElQPplfC1wjEEXPLQbUTVFBJumUVZK3H6CtKCCAGVjesYnLBRpZh6eNRib89TsLIEjKTs5Ha9M25W4QlMxgkCWsJ7Ayh5Sd/HyISbYSm+siJAexvUppQOywMNJA1wseRiggoCB2wDHpyoMRigs0HdzhsUySmbU4z4V69O1ZfqupuCl1B0Pb5CRFSIy16E4UFjrkhWn0VKQuX1yoXAIcYXgyhv+ro3T/4n+d/+3vqoK1V133cXb3vY23vCGN9Dtdnn961/PHXfcwV133fWPCuyfQp6UXD25yk21jzGfuIj8FsqF//NWI8d1uSyqcX1TERAwMXiQkdkuj9lrWWSEfeYCxjg8f9/dvH0JLu9Ms0U+xOfmpxiUPc7VxpievYezUz/Erefuoxz3uPHlt3HjM/5mSC7u9Tn2nocpJKOcM69mn/NWrp6a5+AXL2ex2qBuNK/67Ct59Y7v4o3z3887bng3z/ui5cBnD/KGre/jd3a+ir/MXsLu6z7PcOUyrn3qIe7espM3uzfw5i1jX3eU9reErOXwH/0Up509XBid4Gdf+kqClVPU23fT6hQ4duXruWPn39AcdZ6zfPIIZ48e5tC5eUrJlYTJOONRj0vsOA80P8+FtS6jmUCqPod5ijQscFmxRXvbczi32ubd7g/wGt7F68tn+e3We7n3in/P7UcbPP/+HrNFw0HZY9H6LJIjsRQIgITgTIIONe/eO8oHj53kuWdbvLKhSdtzrJ08xPrSIlYbrvmcwzVs4WzhXkqlKU6VT6GLFSp5RhYP2Di1jjPscVmnyaWui5yaJdi+h8ElV3H46ut56MIcVxx/kj96tEovL3CDv8GvZduJey/g9Mofcab1OJ4Fk2mOD3v8j8EyS3M/wGXlDX70wC9RKXbQKx43HN3gr7M7+NXWa2jNG17Re4rJdBnPLDAbrDIVKspVQ7JDc8v0oxyYegy1XuSpQ+d4ffkT/MKBt3H5vteAzsn/+vcp3f+bvDD4HNc2GvxJ7zq+9GfvYeaK/US1r50W+m19W1/WJz/5Se655x7uv/9+HOdv6JtCCD71qU99EyP72lSwBbJhFeMOIVNYH4QjsFoyqjtEpZx+1EC6GYEVgOLkylW0nAuUvBiNRUoFApQtMRRbML7ENaCkwBQFcugirCXxyyxXQ7qOYOewh8Rho17kxNZptrW7X3GsdYLdpL5DW/tsZCWm7AheNsLKlE/gNnG6F81iSXGdKoFSZElMTUzT89tc0EXKpkVBF/HDDEcYhO+QjtUxwiClQmclrIBE+0hylNYE1m6argoHV4KxYnPOy2RE8QaO9FgrTpAKA9IS6z7+RS8gi0WKTWrh08Esi9Eebuo+ScdJ6fsFRoYpwribwAXsZvL2FXNZgfoyf0wIvGKANClZpYzu++R2syqgcfCEBlVjhQJRaQXljVOw/v/kVWRwLt5HCyjh4AoJQmOlgypFYDY9lRypsI5k1atiWrvxqg4rpVF2r61gMkMeuqSDIlkxwItzhkEZbAGvFKHzRYItF7BJCDYCBNZ1UITkEjwXUBatYnAqFGwXGwebC3bfxdMV+k4Pd1RRXtnCwS2X4EwM2bPcw5eb1QQjLD0dUkViPUu33sCplChJB1ULkLKECNfAkQhfYbHoPMARLkZlpMMueWkrobRYDIMgwtMCEUS0oyqjQ5cH6jUyE3BlvML5Ro0lW2DL2gpWbFYzFDnSwqqsI4wkcouM5wOywQgbSYl+ZvEsjASWwIV8MMOgdvF3Qbj4WJ6YHEMOFK7pYzFoV4K26GqBdKSO7PhIz6drPfoVgUpcBC6hKTER1zF2iRw4WdtGQyka+MAAw6bxspUSkQrSpInAxRElpGMRvRLtrIYuKMgVmSySe4KC16czmKRoDEIGFLMqnWAZhIvBksdjGJsjpEFKsDgX7wcX3bFBSIe4VqQb1VgabXDpUODHAywRuWPIhCASGukYqk6CVzlHrzOOhyU3BaRxQCissKxpH2kdmsZjEPqkymVs0hAEsFAapahWMMMcpI8VoFwJDhjHEqLQ5PSmRvBF4SLAwyX3IfPqzLlbSCuGuu5QjBSu6+KmIdIqMqvQMkUgmNBV2rhkIkUKjYsAsenfljsuj9VnGC0NmW73sYMiiCFaiIvJjWXDuNSRSCdH2a+aw/c16as6+6lTp7jrrrv+WSRQ/3/p/CS3jvwCqfJ5b8vlP+7/2ltCdl92JS863yGVHrt9gxQJ/0UcoCQSwtzn0NE7uPrKT/JvxgSlC5K1QY3GWovHd1zD9Oj/izf1BiIGXH3/F8gb41x3wzP/1vkL5RL7fvg2+r9/kMvzm1gszPIG+xfc27uG836FrW4T/9RP8nu1p5ipPsq2fBcfu+4UL38Ynv/AfRyp7eJD9e/nLu8oyT6f4GDEy+99P++sj/HnxZCX1yt/zzf756u1D/08nzV7WK3Uec2Lv5tR38N//w8jPMunBzdw+yt/GIDWwhxHP3sPZx7/AplwSLbsophcTpiMs91tsZo8yUcHJygkfUaA0CkTOkXWRIcgTTnfFYjFv6Zaq7Natbx6xw7et3qB7633+NNVmC8mvGDoc11HstctI3c8wu7r69x94QF+6MyzmR7s5b9VHuZTaQP/kINbzPmL/Vu4l5gDx9eYiRWru69lo1Ij8wMKwzmmlr7AWGed+toKWjqcm9lFe2yKbU3Dzl6TyVZClMR4pxfQf30fqedyzegoZ7bO8vuFq+m5Y1w+82G+21R45HyJ/umryE5dxYWL9044KQM34bZim0uuvJutE0dI+z7zfzXJd3mn+LUtP8wnZvextddh8GSJj1QS3sYfsrXRo+uVWXfGadpZwpbD1Moa8cgKnZk++0cHPKuT07n3Tv7Sewkvesmv4X3HjzM3GKP03rcyeXOXV099gT85s5/73/MOXvh//eumUn5bXx899NBDfO5zn6NW+5eB5vdNkUynJNUithwS0mNIFYlLYGCISx5IXCcHHSCkxe1GxP4EpUoXiSFQAmUsRmz6ImEta67ARlV8TyC7Kb4I8U3AXnkGyBmMbcXrD2jXKmChHxhspgg9Hyk0RmuGaYEQTTOvMuVtIupV3sCEAmTO2kRIoefjDi0OLg4ajCKzhv5guLkeCor4nkYJS65K+H4XIxQyD+irCC0sng5AOhhh8HtDjONDuYDUHmDRSZ+8H9NzNaoUYxyDayV0u2QSSlZiSEAo0rDE3MgYqXVJ0yEnJnaSuqNs6fW5kNUQmUG6DsFFN57cChIEfeGiVQG8PgFDBNBvNOjaBk7cZphmVMsaKQ2xLWARLDkD+jKloANwLNYKXHIcwDEChOSMKbBHSDyRkQvBooowecREVsf6GUIImqWIqQ2HjnSwWmE2O5rYGCvwxNiVXLZaxa8cY6FSo5dFlNstHC/ZfIG8PgveKFu6PWQlodmVqLyHCIqIYUqUKWS5TdG26HglkBqHFKlchNbkMqEX1XAcSdZ2OVON2BkPwOas2hDrxcznZWadHN/fi24uM1SSsADBIGXoT6IzeGyqzJYsZk97Ed9qFlSB1XKZE/VRLmt1GSt3WRajNKNRasUSq1FILd8gdizDQKJjiyeGtFSJMSmxyiPMBEbk5L6L1z3LRmOaM4VRxnXA1WqVrvHw4wUkOYk/TnDRrSkZTGGLGqwl8SRJJIhFQNbNiMSAwUiEcsfwRrubyPvYY9hZZt2tIb0iXqjIAavqOIBPiNEx2kJoW5veaWw6MSmRY4VhZH0RXYSViVHCoYfjSibsECk2LVHSuMXRyXG8QLKtWUbpi1YEqsoF5bFhx4mCDgKByA25LeFKjRt2yPIy2joI4xNrQ+DnSCvwGlXaQREhDN1GkUiN4CFIe0vERlMApJ9RkE9DrPBlRKIKzGcROzJFEHaxF33BrJUsyyGe72NqZRpewnrQQFjBE8XLmR5ukBlwOh2wHrgCIy1GS7RxcSQYd0AgNWnSoBkW8EoObhJQEh1WvSplsY7Ic4S1RGmZppFUiz1yR9IOI+TFpNEVBufLbXtW0g1CHGC9EDHR7UNcwdj5zdZeAV3r0E2rON6QktD4FxOxb5S+qoTqTW96Ex//+Me/oYF8o5QNJjl15FX8afGTbImu4MqJ/zVG+qvR7FXXU378DF9oCL63+ymWsjpfMjdwub9INR6wLGc42Q54VSNhats89x3ez1WcQZUXua27m3fUrua75j9AmCRc9YqX4zh/9/Z7hYDiD1yD+aNjiN7PUwx+gldW7mftrMtgz16uocWnN27jbPM25suPs3zdPC/+0pCJC01+9jN/yOnv/EXeHvx7Xjz1X5i85Fo6h4/x6nv+mN8o/TuujwpsDf7lmKsOH3gHH9oYoxsWueLW53FZMYKH/5hqeJ7jp8e44iffyqC5xsMf+VOWn3wE5bi0ZvcQeCWKG2O4/ZMYdQ/HdAuAoFzHHR/j2eY7cKuKP0sPopqWgsoZzuzG6Tahs8RoW3P94iW8qX47v1X/A96T/SoP6P/IjaWIc5lBxBJx8hlY/SBvUndQHuzFiJw3dQ/wCh7mPesneVjfRPjAMnp7gb+65aVIAVe1NFctXqA//0XqHODETML9++/lwNw+9p6AvWePo+dO4GpNtT3ASzRGuBgrcd2AymBItHGGbcfPcJt8kFN7XsrqxitpSp+ihClPUJCbOzcKWJZ9qpf8Bft3fQGjfBafvI3F4wpb2MvvmpDoTMadZ87SKfqEs+M8Mb6XH6r+1ld2wv5nOcYw022zo9nFc+a4uvoAey89xv7mx7nwx/fgzPwHpl/2Kk6fPk5+z0eYfEGXm0bn+eIJy7EvfI5Ln3HbP+3L8239i9O+ffu+2SF8XVUeDDGmR2sASg7BSghSZFBjqBy0hFRm5KrI8foUezoXcFULL4FqtU9qIMkaBLlCkjPhXaBpt7JaHmMsc4ltg05eoBgM8EgpE2PIebRUpVSK8PWAUCl2ZU/TtTMUpU9VLePnA5ZNTigqOI4ioE+uSxjhMnS79EsBba+BLFXZdqFNQaf47oCAIVBg6HZBQZKNstdktP0ha27IsCzR5T4TG0OSXgHpe5hMgizg6nXEwMESQznEyX1I+sjmMn3hcHJyiok8paA1uZcR4qKkj8oVQcvi1TVKgCtK6GxtMyvRPtIVm4tfnTFu1siVwHcVuYRcS1bdKgWhMWZzRkTIDLRP3J9GCZDC0DMeRQOBNaT9ORwvwpPZ5qwRFimzTetZexHPJ9gcxs+HDLGUUVwwBRy3j0kmNysE1kf4CegKZB56EGOcNnPVCtHqlxeFBYyEx6t7MXkHrMEhx6BxUTQdw5onSQojeCxxbPtWRloDFB6uzXERBDambRzWeylBZUjkDrBWY/pNMl8jpUWZPpaAdiq4kBWY8gYgXBylya3mcKOEn2U0WgkpUFmRhDqlXOjxuNpJnFfZCA2z2oLNkSJkrVzBzVqQ9ggKCQtTVYLcYTULKKaC1PgYuOh3ltPMo836obAX630Cg6CnfKzQoPoYRlHCkDkpJ6emKQd1tq8vo8nBKIxwyU2RhM2Fu7YCUYgxfoBpO/hWUHa6DEyDPFymY8aoWYNwY8IsxYgZhHQ2Ee2YzY0CKRAqRZgET+akg+bmDFZYoCdcrAV0n+OT28iigIqFRpax1MtwzCKyMEOGIDeblRc7aBGqhKBUxOYDetoipYNFMnASvPV5ksRSLpdJ+uscGm+wfejQbg4Jsi7joxG+hSl1lqa/F2PBZit00gbD6gDrC+YnZpBpnyk5ZCRbRwiFdsZoqgAjYM0NGBOSRVvBMTFSWaSVrJYDRnJYzT2s2Nx0SPICvq1gU0WgwVNdRLGOT4kzeRWRajbkFKOlNrvjLrmtsIxlPTBcOzi5OTklp+mrEn56ZnPeP9iCsBor4Hy5Th46uFoTmE2T7C+TG0pJA4cew4vHiSMxYY7TV1hrNqEeuFjr0DchS17AdrnxDf3N/qoSquc+97m87nWv41nPehbVavVvffbVkP6+mRqYlN8ufYyiU+Lnb/q//1HnCuOAUeXSLz2E19/gHc5LwDh8R/8c7UpI4sAjfYdrVRmmIZpdo/+0R22Y8eEDr2ZKL3DJ/U+RVCpcfeOtf+91/EaR9nVdCo9up63u4N849/LG6N/hhRHjNHn/TXfwh5+Z57ODK1gJWnxq/z1850GPwSVF3v7QL/PqZ/8mjzR+kLGZdfJWQnH+NHd89iP8h+IP8O5dM/9s5qmssdi1GLsSY3sZ5GbTgCFyUclRPnioSexUae+7gVdum8FmQyoP/iJJ7nJi/48xOHaY+U9+GIxhYfYSSsqwZW6O3CisTdEW6kYwJX2C2OJ1TzA6txtVuJflfSG3bb2Oz4xnrDdXaecZj5aeQzsqsFOd46bWl9i9epTf6xzgReOHua3zViov/yO2RzUWVoecfGiZ5TM3sxE1uerSlBNn7mOqM8Jl1Wfy2qmTPHJVCXXBxTmXUF+ex98zxhPTBXa0j/KM+cOcHZX8xJ+f5m0vtjw5/hSvuEcSN7bTmh5lzbGc9Vu4WpF6Pue27mFuyy7a2qc3X+COTo+r7SSpGzG6fohtc59GqnUWZ7dypLKb55mIpPAEhcYRxJxh49Q4C8leusEIyXiEFRpHp5xvbOHJ2W3MjzTAWsZ7LfbMnaDe75I4Hiv1UapJwhWtdYSxnKnWOVkbYbF+C38lNxOkyfoiuxonuLn1BZ71G3/A6HN+ibkzp+BTh7jyhcsc64zyxQ/+AdOX7qPy7da/b+sfocnJSV72spdx7bXXUiz+bZrTW97ylm9SVF+7RFxAyQwlNkiES+oJRujho0llEawljA19USGjQ9sROHlC7tewucYNLR0bMmIzmoFgUK8za1oIKwGBMiGpKqPyIa6Oqfk+xs3B69NyA3YkG0QqweYegZPgJBGuk7HWNhRpI6KAcp7jTS2QJ5P4ukDBSdhwfDbSSUzaoRoGFOMhDgopBww8gYcmdnu4xkW5fSSG09UigQkoZy16qkeYGnQwBYUEWegStwXtUsBCQSJ1RsEoHNNHGs38yBSpH+B1l3GGUBgRDI3l2NgUVe2wf26RiaSLJuaYmdnERtvNChdopEgppA0cdwUpLEnisuIIZtWATtUntX38uESOYSBSRvJpcqeDtRrQWOHTzTRn3QatrS7V9bOonsItp2hcEOuEzQ2kKkEwgpu0WKv6DN0CbU9yyYZlhnMURZunzQ7AkBsfz5awIseaTWsKx7PkISgxoOcI6ipAkIOVWAzKyWknQw6NXQ55n8vVEpoh3bzIsg0xCByRMJH2WXTGWS1VuGp4khgXmXk4G0N01SLJyIVhkEFvpMQQHwdQUmIHC5tL2FpEdaOHVB7NmRID3zC5nNNSI1jPY4oljLG4KISRrGUNMn2GETtLbts4coi0ESl93NYqoR4jrYzj2wEtIrRxNz2lREzLcTFpiA0SUuOQaAdnrURSbBKFLkYVcLW3CSNwBY+HIzg2ZVjYXN66xqdsI3puzFpWI1Yxwm7gGDBKIaVHOa8y6q5gchfPak6k1xOjmRTnKY6fJl/cSjJsYktjBEApi/DtMqZk6XVjSr0Lm3OBeojWmm5saYZjbB/OkYkUbQxDK4h8xfSgRaLXEY7LlFzmaTuOzjXCyYi1YLlSoaI1SadLjRXWG7vILHTziFrfwWQKhUsuHKRWLJSqjPefRk1JzgxGuDqL8cME3+RghuR5k2PVCk6gKA9cBpnHRqlAxykx1broN5lNELshiXFYG01YNykHHcBKAAAgAElEQVRFKfBNQIMNArrMRfsopoKJYZ8TdmITKy9SPJHh4JJYn0n/LK2BT+7N4uJjnIQ1zye2AbutYuAOwRQA6Gc9jkxvIxrGjG70iF2J0n0K5AihccJ1hFfAyBLFrItnPbboMsb2qKnN59n2IwpohLGcqlXY1lFoqWmahLC3QL+0HaRDkPRYC12OBd/YNcZXlVA99thjAH+nD10I8S2fUE2NjfH2A7/N1uJWqv4/rhWk+dAcJSw3dz/MsmzwYftMIq+NmBiBzoC+OYkVlltOrbNiKkTP2+B4fxtndx7gbGGaf7v8Nmwf6s+/6h+cZyrf8kz6xz4Dw++j7DzA90w+yCfOX4MzUcaZf4S3vPHlrL7zCL/b3sfHrn2QFzzWZeeZs3z8ltfyH8/8d35p188Sle/jp265lYP3xuw5eYi5L93Pe2sv5rWj37otMdZY7FwPfayFOdmBzGx+IOBi8zxKKz7un6LrlHhkz438dn8cO9cn+9TrCAsZ9y1czZPpScoPfobx1BIHATvPHCF3HTJ8HHcbO5rL7PYSgkqF9qCPyc9Q6Y2hk/NY3WfqeArcx/ddjGvoBlwof5Gju/awsWWUms5oVA3rSchH5vexpdDh8YPv5cBLf5yR8TqzMxHbP3qOpwdlHn1MotJJjkfHeGTmGl57YQ+/Ptdj+dLfYrX3A9w9rLH+VJP68T4f3fdsjj53N2/5vf+KkILvPLyN33nOAr/ymhq3Lu//Sj8+YzO4gy6y32XnhVNccuZpAAb+BFXnCjqVaR7f3mW23KS+3GZiMGDvsae5hCObBB5gs2teUqPJLr6wef8FZFWfY9M7UVs6BJ1lnqFjBu4Gk92tjKhZlC9JwxXMyjkMgtNj06iRiNdOOtx0ydV0jcvhpSU+cm6d+0yZXv06Hmzczm+8QHOg8yivmnEI5qq49xmec/Mp7p7fx0d+59d59c+9Bc/7l1NB/bb+aTU6Osqdd975zQ7j66aBs85AS/Kkytx0FRO4jK09TdZ2UMMB7eoWisZnQbQZqIhux2N1dAt+JNmaDjkS7mS9PMme1TnWCg12GoVyNrDWgN2slBT8NY4VKly6cAykT0RC1bTpUiPFIdI51kpypfFlhqtjrHHAscikR0nnHC1PkFciLp9LUZllSVZxbE4ihpxq+JTWQsp6FRu0UUOXUBhwUg5tB9lzWBNFUgy56eOamJLM8A2E8TlUVAbg5PgorWEFbfukZZ8Rm1F6+gQ9HeHKkIqJ2cIyvrGYXh8los2vqDQaTeZIzldGMSZFyISTxSpSpQRkCGPJZUTiSkDTkh6ivwTDDWSxxulwGyMCpNunlaRY0yd0fCbGn0L3PT4tbiYoOexIOmTAILI0ZYNCJ0GGmjH/PHEWYYAulpV6hDUZoBkUNBtVn12qT6ZDYrmBH88TyT2s6oCiN0fLZ7N1ylgyo4n9NrktsZEl5CZB2Cmk0Gjr8dTENnJliWWRtirheAqRd0iVJDEeSksybThfqpNKeKwww47+AgO3AsJyxJmhPhLgz+cgJK2yJOlLhAXtOiyNbydaOEvLL7IyEXDN2TUGeYFwmBJsGIKSZmnUY8nZwq60SeR0KBPSkgGO0GghmKtuIbYJnlWs1SpEzQGeykitoeeDkxsWcbBG4hrL0HQo9i8wDEZZiQTF/kkueH0yVceoDUbCNi1RAJPRdzVRvEFoXTIZAAbXFDBOxoIaoYlimGuOF+rkWiHjBBEGjPVWQebU5Sg2STnSi8lUkSzuUzY5jmqiTYnUGEqZR9Md0hA9AmFw/ZgoE+SxRAqNRx8nl4w7Q6rOBRa2lcFCkKQg4II3pOYopt11VotVlqsVmrnPYu7RHZ9F24DlQYiZbjLS1DQrDvVhTJBFSAyP7riEaesxqo7hZJo87+F6Oeej7RhV4tHU53DjenLlYlXKiVqdvmyTxwXqGZR1htdzGFQ8hp7ANwYd5xwf3UpeDqisb/qq1ZMyQq4w5a4QGg+hDa4CbyAvVlsNbi4RSR/puZTdHgXToiomWE4cml6OEjmGIUOtOKQdfONhpcFg2ChtjqAMQ5cyHRbdAcrmFDLB+bEKYXkKpQWZcskHKY40DHNNrX+aVK/gRlMM8624aUYhdPBEjidCrO9zdHSciTREZAP8/iprUyUihmTxt4AP1ZfJSf8cJYRgX/3Kf/R5bG6Izsf44kn2DU/wpq0/TnJyO7eNLnHBWEIhOF45SmNY5yo1x9sfqnLtNQLvu3p8UDyfa5InmXxknlZQ5aXPffU/eD3HDencsEj42etYU3fyfO9PuKd8gMxKPr6wyI8XXMZedzm/8Hvw653n8Zkr7+a5h3walx3knvi5vGD6E9xTfxEP9OYY3zZLGne546FPcvfoFHfcdtu3XOufNRZzvI16eAFaCuUqumMr9KqL9P11cpmD4yBlwNKRPmu6zIO79vPTcZXSqSbmsYPMBA+ytFhnsRlw4OTj9AOfM+M1tFSEVBDFZ1P0tnPdlpTJ1xxAFkOemDtJa+EnuPrwT+P3ttJ6SZmtey7FpglPPHGKd3/kM9R7PaZlh22DeZ731OeJDm62XLRKEWG1yvHZ7TTTnPGjx/j8uV/lgdozWA4nuT1f4fr2p9H+ftzwBkT5ah4cX6M4aHLn2mWknTcgV1rcfvLtfC6c5UN7nk382AZnozKvfd1b+JHVe9izusJNC1fwwOwnycY/xyvO70YqgcoND1aG/NX2Hmr5exgOBC/szFNKz6Ky++jJg1x2tMTzDx6kGMcMI4/htRZzRUa7VGN+6QqqxwxXugvMVA/zsTNXIMoR7dokXluxY3GOVxz7BI4xX3lGw0Cy0LB0ClP0g5txqltpjmj2miXsmuFjiyP82fkP8kZ9gptv+3EOPOtaHp1v87MffZrtk0fYumuBh6vP5oGX3sh1zzzM69/zXm44eoRLp1c5vmj5y49+gJd9z/f/y4SnfFvfcL3xjW/8X/79Xe961z9tIF8nne+3OTO6hcnhOh05hc0lTeUSJkP8jmZpzKHnRwReD6Og6ZVZzzzqqs+F4iS54+A4OaWVRc5u24WVsO5XUGkHTIz1Qkb9UzjqcnqlAGszKjbBteCEHQZph2rWARFwsrCTklMjWO3giWWs9FlulFlquix1PLZUuyz2DYu6xIpn2CqamDwnLJUIdZ1s7QnSWs7ytstIB5M01jdQts/xosf4yhLBSMjAHZIZyxY9xWi2Tqd/gV5tKx0kKoZcp7hIhDHs1UcYLSwjkhsp+XU0ayQixzoCJ3ZYcapspBEFm7DiGc6OTSCExAw3KGQxiefg6BSjhiTrC5zfdynbs7NMmlUWvMuYoEnazdDGYPMhSocENkP1+2T6PMKZ4MTWWRpuC9vJ6SlL083BWrSVtG2dPNVUq0NaZgcLW2dprAnmykDeQ1iJ9hUHzGOU8pwR1cOVhqeKdTJXsBRETLZPMZ3NcbSyF78HGINKLKFSWAUq1hzKFWUngeIQ3+aoZoOQIdrxWQvHQFmipM8ZUadgLCu+j4gzOri4qs9GGDA5dFkaraEpkGqNwmOrNXSKoyRutJl8exkRhpooU9ERR6MCxXiF+bLGJgMSpRA2Z493kpoocEzv5lCpSByNUjQGrCJJ+hwrSVbCElmWEzDEV5a54gQleoz2z7FgQxIvoEJORXtcHh+moGJScZp73VtInCLFfJ7T5RFso8AIQ1w1pMEaq0kJnAH5RQCJEZKOOyTPBOfKJYZuSk8LBkOfpq/wTY5VPoVeh4WJMgWnztZMsFoJaQuLby0DnbNLtOjaIueCAmvlArtW1/BNm27aJfJ8dD+jVmqz6k5iUw8nA3fLGuU4JhMGR1h8m2O0olhu4qg+qZPTD0Ok3aQwGgQOII1gRDdZDffSMG3Oj47Rz4ecVQWuGszh6BhXGDZGfUZPa0xkcF2P89XtBEqRWEOvEJJnPbTJiepddN+n1W8ghWWlVqOgFZlwsXkC1iCswRmuI/IpfDVAOjk1ExFFC6T5EGxOsTeg5LegMIDeBiYrUTCGooZikKBHFaHs0o1DHOnR1D6yd4GKk1Cyksy6LIQNirZBP01wMYzTR7D5nDy3h1SWKMkwwQoDb5SqyhjYAnEmyKyD1Brd6cPAYCOoxYts5EVkPkLPDKgUJMU051CxTMeJMI7kkv4ZMt+Q2gDpWKz5JkIpfvRHf5R3vvOdXzm+6667ePOb3/wNDehbVdl9Z3GspGjeRaI83m/vADLu7J7ns1GJQaiJ/S4/0oIlXeO6gyWCRwXvfvPriJ2Al/f+mP5ikfWrQmqF+ld1zemr76R55EMU119CU3+Gnwnfx39KfpqZyjp3f+GLvPymG/FeMMsrPnwHv3nNp7njyR7POvkE777ihaw8PMP2207xnuIM/+3W5/N4N6F27hAv/PT7+eXpGX7n8r3fEgtXnaesPfQ47UcN3UFAV8T0bE6elWB9HPgb3LnFMiifJi4uUuzu4HseKDMvWyxFG7xYv42V01WWT9S4jGWe2DZFO/IRfkRWv5kwu5JRR3DN3h6NO5+F9B0emzvDxsJPcPWJV1Ho7iB5QYOte7aRa8NvPXSeDzy2gdm2H72vQsl+msnm01znv5ia2mDvfRtsObfCNQtLXL20RLLXkIz4PJbmTC0tEdRT0rZPs1zmAy/Yz66h4ju+oPiOhxwem15nf36GnXY7hhalfsqOsQ4vmjzMSl7k82on8akqv+fezgsbD/JvN77ESvFKPlF/muufM86ekZdw98G3MtO1vHDpEjzzCFc4BlMP2CgVUfMha60OQ7/Ll3ZupXKlYvzmY2R5kbOnbqJzZA9XnH+KfUuPk7cEf3blAf7kpS/jyN5rGO81ed36Klfc/Ey8ahWzskx+7iznDj1J5+jThEtnmVhepjL8EADdQp3m6H7mZmcRMx1sV/E/qnuo3P8h3rBykGtv+yne+X3X8LMfcTn4+QY/cu1/YqN6DR9t3Mnrf+ZXuOHkfTz/1Od4XO5j5Xif//6OD2BMiETiSah6MBkVuGy0wa27Z7l0ewPHc/6et+nb+tesfr/Pe9/7Xubn5zEXNwIGgwEPP/wwP/iDP/jNDe5r0NlGncxzwEuwQlORZU5MXcu29YfJxRgYyUS+wYw8xzFnJ4u6gsAQ47FSHMElw8m69ApFtNZkQqNUH8/1MFYTqpSBlxEbhSlYEj/hnCzQ9TvklJCegY6i6RsWEp8ZX5MFHfxSRlPNkrkuC7UKLkOsSgiyPh2niOd3kVEP1kuUcWkVJYO4RiSbTJgm51Wd+foU4+kA44cERmHUkJA+vqywUCwyLTepa8ejKspaduqzTJuMx+yVXGnm8TJNEoTIfNOzR2IYzTyaIsWVhvVihUxJVvCIGxUYDvE8Hw+BY83F2rxhQefYMCJWq0zqNSywS5yjGiQc3rYHr5/RLoXsscfoliMuyRY4yaUMWxvsiTssOQ2CPMOROQV3SGYLfBmJaPCw0uWoU0fEPoOGh8lzXOkwMBnKMbhGU5YDXCvoOoawMuRwbS9VYwlsiraGUb3OujNKkHnUdZ/plWWatSraCtZLFXr9jLKj0R6E+QAtDKpgkI5DMctYCCsoLQiTnMQpca5cQnl9bKLQSC6UJnGQWDEgkuAZy+GpvWjhUBnm2HSA8AsEVjJql1ke9yiurZFLS17PuVEf4rwZp+0kNOQQ40ZcxnEO6W1kKmZbvEpROSRV8JmjESvWpSCVAg/AulwmziGARX0F0pE0ZRdti5h0QNOG+CLHH/QxTsDR6qVkrseMXMYaQ+qkYBNKekCsUlZNjdBNsS7MizEgo2t9pnSb69UCuePQcvbhOgpHb5DIKtZPkSrl8fHRTQCLXqOm12iNVkhzj9GgQ69YpKB6PF2tE/lFvOWEbf4GfmTQEUSFLk+zj1kUAo8kEEhClMhJBbSMT2YKXFs6RdxpYKXB0RpJjjQGKTWz5gJV22UuqyI8Qe6mdOMa3SBgOvYYdTw8GaNTwYJfIjESqyUF9Oa8mbEYR2G1QToalUMgEoyRCKmxwqXmVdAmpm9jYteQGgfUED9OKXoxvQD65ToTnCTzW2RdRdBJqXpNGkGLzkQPmEFJjSwoynqZhBppyaMty+ROxFk3YizLaRaq1B2Xy/PjfNGpkwlFbiWeVDillCmzwrIc59CW3TjNDaZ6GwwKQ3zVJU0kmRdjsgGZ2CR70m2S4HOJnOOsU+Q4MHAzCiZntL9AQ67SLOyjoDv0oxLnxos0iyFhrNC5JhHfWN/L/21CtbCw8LeODx48+A0N5ltVZi3GHN7cmSsWTnNiYxt6OYOypXLmi1S2HuCp4hpS+7w2Ps0Hgpdwffsgf37H7Tzm3sj36T9mmz/HkcJuZq57xj94PWssST9n2HE4Ptbj+rWQ8+IH2S9/hWe6D3M8vYLa4Uc4dPQ0Y7LBlmqBF6vv5cHL/5Bbjhd596W/y/Ps/8PGgw7OzTlv3Wjzk7sv5XSeUTx/lPFPvJ8PTf4U3ztS/Qdj+XrLWktnNWbu8FEWD7UZtkoo6wDOJnUuGNBxXdSIoVApUSp5lMs+ri9JFh8lXl9kvrqVeGyKKwZrhO1Vbn3sL+jOJxgdcW5mG2cbYKUDlevx3SsJsiJbPcHuK08SPmc3uIqHzpyjs/wTXHPupVTXr0bfPkb9ii2c2xjyxrsfZaVrUTNFdu8+R9j9ddaSNX5sNmHS+yDKSrqvrfHQoQN4S4Jrlh9i/HCPwjHFi7ac5OHZWZZbm2j+TlTnlc17eHZlju6BnLmHf4xbL+yg9Oh/JQ52Elz/o0TPuYvGrg9x+44PEpS+m7umn8UvfuxzfDqp88m1m7k3vJHXb3yMVlny7jP38Mt//STPya6mqbbSVlvIbJEnvnyDh0AAdlzjJo8wTL5IfLxOa+GtuG4Z10koyQxva49495B3RbfwwWfeipUOL//8p3h+wWXb9ddDIUQ4Ds70FpzpLVx64BYA8jznqeNH+MuHP8jw9CLXnFTsv/AZts9bWtVdnN1xCfZSCR3Df554Cdc9/We86uRTvO32n+E/n1vgD89fwkumHuNlacxfrjyXJ1uXcci5DOpQVH1k3iUPOhhh6FuXZlLjTN/jodUBf3DkKFLGVL0NdoiEG92IA+Es28em8SYi5FgBMVVEeN82C/7XqJ/7uZ8jyzL279/P+973Pl7xildw//338453vOObHdrXJOW65ELQKZUQdsBKOkLgStyZMZxmDRKoig5SW65WS1hZZs4UETbHMxmO0bhoilsGVNxNiEOuQ7yCT+Tn5ComyS0WRSY0Ou+TBIaZ7DzzTDHab9HzJIGb4SiFUT65n4C1BN4oEQ5CL1DJu1wSLzIpOxw3VSKr2JYvc9K/AptD23NZHZnGl3X29c+wRS9zQmzFpj4H0kNMREssOwc4PxynJBVYSDzLmi+5cvAlnuISigxIhINb6jHqz4ORdCsBGwXDShASqpBuZQykgVaHpBjgDDKGUlMSQG4RWYYbSjw/Q2U+A9Og4XTplwPG9TqZNbjKUHQ3KXmJdTlen+RW9TiuNexLeiTRNKlXYiMqsl9fINJDTrIDUsgDgyXGuBKpIZIhY2KRp+JJbBbgKIcZN6fkVOnbZbAwFIJz1Ro7N1oEssR2b5EjZhu+kbhoBIqtYpHH2MmILLPLS3GzjGpWxsgCOWuYTJFi8ARom2McB89IXFwi7SBtjnJ8UlKKMiKzCdZktO00aEktTAmtZEWsUhQevVihvU08uh12UNLDS3yIUrbqU2TEzNV34g811bxHph2KpkOnFrHc0OTGonDINazrIrfbRZSGvghwhGUyPElT7qTfs5CDYxSykhD4Pl5aQMQxJkvAFpAGXBEiREAt80jNgDWvjjQGKyDHIgx4KsY1PQIrcAxYFeF7EVeJoxwRLlp6jHoNJrPzDPOYnkqZkm1G9ClOsIfO/8fee8dJelT33t+qelKHme6ePDthd2dzkFarjCSEAAmJJLDBgIEL2Lyki80Fh/e9Fxtf29jYxvZ7nbg2mGhehMEYECZJQkigrNVqV5vz7szsTg6du59QVfePnp3dlUQywvjzfnT+me7peiqcOlXP+Z1TdY5sx5eWqBEipWTALjIg6pSTMpOpXiZsN5GSeJHFsWU2Jscod3fxWH8XCTA8cQAJXOrtxvoxs2E7CoEWYF1FOm4wYdtJbBsHcptp2gKFyh4UBqsilI1xbYpOXKrWENCgaAPaBDRlK2DF/u4uXtlW4SJ5hm83N1HpWkEQhQQ6YZMuMudkmPdSzNo62ho8J8GxMZeGxwjimP3OWnBiGsZgbECzuUgpm8Mg2dezgRmTYq1pII1ge30H9ZTHWNRJh18i6utjqz6BE8ccKqwiW4vZ5BylQzU45m8mURrjQkwrbUJiEg71DRElMGyqWKDTltjVGKQtCVknj9MmmzgOTIsOPBvTnq7TNhITySpG5Kk1QVZDelRA7MVMRe0k7Su5wtYp5dNoN8SxEWldQUtJp54nCKcQdgu9Zp5cc5yjDKF0K6qjsAKPny434I+iHwqo/jN4MH7eZI2l8c1DKGFJ8zmsgW+lfw2qEG/I883MNaSLMNN2kBeUPITxkMcNY30DfOKVb+LSyiGu1d9DZQ19t0yzd4eksrJJW1fQqt9aKrNNZk5WWJioMTtWorYQgTnL++s44gs2pq7hCC/kbf7XeXu8mSOlDB3FdRymFWkoUBdxevhdnKqdoj5+is+uuoPfjm/k4M4mp6/o5vb0Ilf6bYiuYdaOHuLw7V9n6nW/RF/6J0tw/O8how3Tx8uc2jvDxOFZdKPVZla20xWETOarzK0cYsv6Xm4ayJFPP/U44uFD+/jOnhPM5Nu5f8MmPj/cz+j//mvW3XMXymqSIctXV1xKqlHGBp2ItufhJ8MI01KuZ2KLPbCK7Nx+Rnv+Bdt5gMsmnk/H5DWI5/QQbO/jEw89wkcfbmCUg3+Jw9s6P87o5CgP2RI3Vy7nc+Jx2pO1rLcbaS4kfOHiV/NGcw/3F26lMhJxzf13s3FmnkvPTHN0WPDAJdvomzyF/E7CkcJKVMc6UqU7aQS38MS6/0bn1X9H+8AHGNz7DjYdewPFyespbfw046dezO/Ob+bXVcyvXPFWiifTfGT2Fxk6egtXVtv4vvEwIkIS41iFjEYpzO2id3EeKyyTnTnKa7tZtekkyXyWU8crRJXPs6IwgK9WUta9jCfP41R4EyNleO+/VeipTTB8dBfp6lF23/tNFtuz9G3YyupLr2bo4svxMy2A6Loul27dxqVbtzE5OcHv3PE9Pjz5el489VVec+AIl+4+zqaDeQ5u3opKEub8Lt61eh0nZ3+PxBlAl6/hX3bfCtalK5hnQ89exjvWMda7mrWTe7nxgTtJ+rfw5s2vRjiSoixzUk+xY3GK/eUGY03BQqOLx/UgjwMfjSYJ4gfpmS6xKfHYHA6zNb2R4bVDtF3SiWz/2Z6Zfpb+89CJEye48847AfjGN77B+973Pl7zmtfw4Q9/mCuvvPLn3LufnJquh5tqMCm6SDcSYmvAS3CER+wWqCYJK/NV3ChE2DSrOcUptYEr9D66GiUC4dKMS6SCBjIxxJ7GOBFOc4HIUygZI41EKkOUKGatTy6q4aY0iRKtCGWydRzJSTQmU8ERDXRFIF3JUHyMdupIG1ONMxwqZIikZIuepF3XmadAMfQYdCsM2wmyuoRnIqRIscGe4VC8Cikiim1p2uMyWb+TUAhsapK9mzT5RclilCGQNYTVCN9gPYOWAsePqKUc2swpmqVeChSxLkgk091DNIXEcQMMlgUr6BBFjPLxohibj1lZnSUIp0GC5yfUJQRBgi45iECDjCktBhR0GSE1WloSIXGlzwa9gFZlNJasdLleHSW0CSfCHoSGBB+PiAExx6rmCY7pNhZUmiCB04miz4mxuZjOVJ3aZAajfObzDkFbSCAsftRkuDmFZwMaBGjdxEsMUka4tsZEzwDzJkNiFSmxgk7VILQlVtWmOe0M4+sGTcelbDJIG+PahKxIKNssGQLSSmNteSmQADS0aHnEEsN84tIUPoGp0aabOEJRtC3D603REyQYKkIQx4r2tipuLaLacEAa8rka1cSljocEmvgENgQEC/hII7AKXBPRHkQEKZd57ePKCCUNRljyKmGBhLlCDusYrBBYKwmBtGcoRILpMEQAMoGOeJHYKFImYSvHaJJhjZpll91KLinTq2vU0tMs6nas42NwEMR023lSpklgfVbHY9yhr6TgWAygjWG1qVLRiiY+zVC1klAbF3zLNo6BsbiyQo1WmHwpWhEdVUqBcEGqJT+loEsYetw5ZBhywnYTyBSBliwaH4Rg0DlN4FQpN9bixFWshS3mMMe4mLKboT0OIIbBxhyhI2nisM6cQSYwJbvIKpecqZBNiqAzzJIljhWZbJH1i6dxnCyDMuKgkGQpE8URIT4i1Y4xaRJt2SDHmZbdNLB4uToybpDTDcaya9gQzqJsBq00xTDFtGnHWkXer4FseczyWpIxTYx0SAxMWYHI1lB1nw45SeKBb11EZFilKji41JOYNhmyliOEkcRYSdVmyNsiM95GZKyYMRolHSpxQmQt0+05zgS95O0ibTrFc/RxGkbRUIqEhOP9QyzKLJebfWDBJYbmkj4pBArzlH32maSf7YHC/x+Q3j2LMyeQ1Ghz72eiWOBbWResoT1X5/RcL6uYohQs8GtzUxS5nvz0Ar/7rt8ibRu8c/Z2amXB2Fw/q144wSm+zRc+08ONL7yKxYk6E4eL1BZCAJSKyXsRfb5HBp+UFHgCKl17aMRdeI23UNSP8T+dT/I7+t28JROR+GV2WEOX6aatspZTKzdxSkhYhFtVnSsbJb63x+f7l2xizfAJsuRor3Yxsuvb2NleGkMFnJFe1OoORE/qGQPR1lrmxqqc2jXH6L55TGhRKqbLgf6UwmtrsLClhzVXr+T6HwHqxsdH+e7d3yZJSb669Xo+dOBxzPt/nQ2NOmKFxqw33P9db0UAACAASURBVFHcRNCs0Owdwu/ZgJzqRyHYnDYc70mYn/GJGgo7tgXGNnF54Ra6bAdzvY8ymT/Dhz97MSfnujGdAdvW7eCNJ7/NvQdu5KE1e7hq8Uq2X/Rifm3Tn5BxW8Ci+a2v07X/c/zDxa/j9Y/fS0YpHtuwgbneMV4SHWXd4UlGzsxwYMMG9q8YxM6OohZG2TI+Q6ojYu/KV3L06AdZu3KKStc/sUUOUCi/kvzOD5CSDxCoL1IKN/JfH5jgfz3vEqo9EZP74Z/aQnq6v8wl8+vZOL+FjtHPsO7MPrxEM5lv48S69cyuz3LxJV8jcGq4nyhwaPha7MIEJxfGya+cID8s2RSXWTNfohStYjy8mDH/UvZtfTtKh3TPPM5AZYITh4/x4MEnsLd9DDWyifVXXscll12NF7Si9PT3r+CTb/llPvLdI3x61xv42qbdvP70/dy4S3PprvvZvC9g1+YBZlfdwKhzE3WdxSfmiqTMXq+DNYWjvHXr5ymXsxwZu56Prn4DR161gVv3fZN/2/vPvPrdv0GvO0QvWzjfr2utZf/UHF/fd5QdYxlOly5j1CpGRcJd6ZM47pdpn5hh+GSGLfEmru27mouedxFu28/eePAs/fxISkm9XiedTgPQbDYZGBhg//79P+ee/ftIYbkuOcpuM0QGwRZ28pCzDqRL0SZcJA9SaTqklUDGAiS0BYsIE9HUDmUbYJ0Y100g9hHKJbTQYacoxgHtbozAJTAR87TRJRZoOg6ujdgUjbMoWpESY+MQiJDV+giuL4hcn6pnSHQMxkUQ09QuxtOsZQKLoJqksAICUWVFchgjNcY4NFUeB5fYhFStTwOXUujhKY+r7X4WVY6V4QSl2Md4oGwaqyF2PFCtZKdS+ggb0dSKUtzGKnEKI6EpITGCtK4yJOocbvMwUYBJ2jBuhCsypE3C8abLBjuJFq2AF5HjkA0qOCiEamNRJ9hE46s0sIj0WndmZ6M0fUSUjSLlxKBSrZxEboTSgi22yaxKo+IF1qtJlHAIjeRifYTdOqDk5HG1ZUIaVkZNRsQMJVK4FiLl4dOkFAYIEVA2DqlE0iRFm3Ixrs8l7CFNwl3ZTUuBQSBIQsqFMh3EFEyVjD5F1XoMm2kOsJluFlnjVsBoHlJXsahhBhchXK5Qu5gzBbCS9UzxiOyl7LT29hG7yHp1GplkqYspjtphFAnCgCNdrkgOk44MqVTCggiQxlC3Hjp2UEtqZUoGbBHHcWUGZTR2KUFyzSjWRUcoGZ8u0cZUsAYpWkrvpuQwszLgoBrkWvdRkqxLYyku9rr4MI60dCqPKZGiGGfp00UWTBqTEjS0T6w9hIDLzAFKIs9iIUusHTDQtBILOCrFgJmgJAtI7aFtTAdFZAom6y7CShxr0EIilYtQAt8KrrZHOSNX4UgHbWICG7O1doi93lqqdOEzTyxACosSrWPp2kmoJGkSBD1ikf5khpnmMH1mHOE6hNqgkPRTpVseIZIaV7W8KFvNAR6ymxkSo0gHCkmVhlU0hSRHFanhiNxEPrVAIgwCGNSnOaq3Uw4F/bEhFgsUE0gkdNsGI3qMVkgquM9uoxylsYBSFo+IxLqsaITM6jSdXgMXn1B5YBNcoZCyxcsBs0gi0yhjKJTniK0EHPDqiLDClTzAUZNnjbsAOkAYWGlCfHUAL0gQsUvdWIxNUU+WwKhwkFLRMAGbor2cFAP4coARvQ+HJofopeQM0RCtu5ZNBdpmyDgGPyojpEONHNUkIMFB2QQhLLFSLOgsrjDkqP3sNmxAWGvtD/rx5ptv5rOf/Sxni7zpTW+64DtAb2/vz7SDs7OVn2n9P4xsOaLxyb1ob47O6G5y7m18tfk+/m+1HukV6e9pcsVUnfnMOFGwh8/MH2T36ZfxRxfdwMNbt/PuQ19gXfdDTH47w7hqp+vFPlcUHmR69CoWH/0VhJV0eJYB5dDjSAKVUGurYLvayQ0N4vZkEN0BJiW58743cMPO32RG7WK7/CBfNdexN3khb5ZbUFZyR/sxMrUt3G0+xDvuSKhv7KdRWM1RfTXSeHzrsgw71wa85eEDdM3OwPT3sEEnL1p1M521PgDiVBOx2sXftBo1VEConxxcJZFmbM8Chx+aojLTxMqY7twMq3QPvdKj1jeH2uYQd1RI4gWSZJ5EL2B0GWObWBtiCWk5jxXGQKlcIdEOo9EQl35hjL5DC1QKLgsbHXAl+0t9mCBFc8Vq1qx9LguP+3hGcXkhouc1K/EHhgh1yAe++2murxzh8jM3U4h6OC5meGTtHfzj2EuJYgdnjeENyV9ww1iD+5Nf5fb1n6Q37uAfnvcJUl1PTYpc+/Pf40trEu6QV3Lt+FFEs04XE2w8fYjrB05x4IkhvLGIRhBQymQ5WfBYzKToT+UZ7ujkifrLSAVHcQf/gjOuZVz0UpLdxErSFBFNCxEJRobMZ/LEIoOzINDGI8cpbjnQYMV8BY9eyiuuYaZT4auQSy++lyBVIt7xeqbG1+LGFcg1OaUPkpo8zfGVGzi87RbedNe/MuBN09XbYJATNJIejjav51jjWmJSBPEiPTIkkeOMV3cSJ3WMlCRdK2hfv4Vt269iYGCQQCs++O37+ObpFE52P+m+L/LG+65h4/Fx1s0dou743DlyFcfWr6U00k1X+xy/eN83+PP2t5LuO827tn2CcsPFfaiHv734HRzo3cS6xZO8/s67eeXb3okzvPKHylyYGHafLnHfyRnuOz7LRKllhZJOGZU5jMoepVOWuDhZx0vWvpirrrj6We/7fwLq7m57Ruv7yEc+wuc//3nuvfde/vAP/5CxsTFWr17No48++nPJo/jTvrv+52c/xrXOLubqGZLQx/FiJt1ObE6iSgnd8RxIjbAONm4pwq5XJ8GgNbhOyzsvhcUagT1f5JcSdpq4dVLilGln2JlCOAmeVGSciMXI4ex9oChuI+3V6fQb6CjguFnPanOKxcRD+nVYzg5k0VYDAqEDYhSOBmMsUrbuOyENLF0OFybB+jVcXIwEJQzGSsxSjTpMt7ogQPktzTrnNREiZr6ZRgnVKgMEMqFpHCSGNifilNvOBD0shn1slqNkdIX5zhwnGxluiPcRR+lldhivSbdfY7FSQPitI3829qiaLG3+AgA68sEqwKK8Ziun1Fl2WgtxgLHn3+80ZNNVGtrBaocwSfOYvZhhNcGwcwIExA0fKRVgcN0m5rzTymfH5WB4yK7lCnECgLvtZkZkmdW2laL9LF8Sm+BHgkimUG6E1QqTnPPQPyE3sM0cBCTIpFUmcTC6ZWgKrWIvawHLNWIfKZlQMud4lHIiGlrhWEvs1XGEgxIGbSXaJi3FHAfOk6sLqTWRyq/T4TdYCFNYIymnexixJ9FWkDTSxMbhiOhhW2Y/xnosVjoB8ITGEZa6cTBGk5IGZSVVofG9BP2kdh2vjhGW2WYXu1lNWqR5Dq1rK64wJFZgrUDbiGNuH+m2OkONEg9FV3ON3omVEqkihNM67uqaVnAEAGkMRkqymRLzup2UbZyNv0veb1AMU0uTKNFJq09G1RBKI4WHxCAshE0PLxVdKF9uCSldSByEk2ATB5wEqyXWOCg3wlhDEkkUAdl0FVdpXKmJG2nKS8mf00LTsAprBSZKcUIMMWLHka2ct+zKDrNdH1qeGYAkMbhOK6qjxDKnchRM+YJZnNcZukKLTdd5OtJhCqlihAgRUpFEASDJypiKcXH8emvsDYVSLfnUJkFJB4TGiriV30tpRCNAWEmsAAz3yyvpdeqsiw4st9fhRCwmLkiNNYqdYiuX2f1gNIvWpZwaYTqEyAoi6fPJd772afv949IPe2/9UEC1ceNGhBD8oCJCCA4ePPhTde5H0c8LUFlrif71CHp8kUQtsor3sliCv0n9I/8kYFXPE1Tmh3m5e4wdXTv4H+X9bCgP80fcwBdu/kVevecOhqMzrAwe4PT9/RwbXssl4a3k1v4b3Vu/xujkNroPvIU1nccpdcQU1mylsOYqpPv0VvRDCzswD36ONYffQln9BZvde/nD+E3oYICXeVn6F7cxHcxwX7VJ3/4/Zu2kZftLJhkzI/yvnhvplh63Dd5KJefyX+6t0D95iLj2NUpdlxMM5diSnWV92ENmfivS+CROk8XuRfRIgb5LtuEveSV+EBltOL5jlj13n0aIeYKuI/T2HCftJYTpOeL0NG6wuJzx+ixF2qESZajFaULtExmPSLtoo3CFpt8po3RC7qEmg3fXwLGUX6FZWOlx5rv9VGOfjq1lchtcbOWlTO28iBSKS3vL9LzhMpxcgSOlQ/zePZ/hPVZx8ZkXouJ2Tm74Nz5FinsPPQcbKLa2p3jJsUVW+Uc4qkf46oZ/pOkX+ftNH2Fw3YanjDc5dpR7PvFxvrZuJZftup9i3yrcfCcjbsTEQsxzszu5Vuzk+ye3UNhdxAktxU7Lfduz2IUeLDA6mGFT6e1M5I9y17pPEegMXpIiSFw6hUdK+mjVJPbKlOIMo1lDTBOnWcWoBkI+Neu3ANqkpbfZR19zgK64wHyqiwd7e5hNd3Lr4ydY88T3yTp5ruv9BXJe9/KzihkC9Siu2MFElOFQ8wbGo22ApFvV6VCaor6X8eJxTGIwSjHbJdk7PMPprjJm9gZq8zejRIi2LqC4fu40rz36fVZP70IrycnVq9mzdSv3br2Ma+qPsbhTcnxNJ7+2/WNUI4n35SzfHLyR71z9Mhp+ipt33cc72/OMvOIXfmwQNF0JefjUAg+dWuThU/PUopbMSX8ClTlK3p3lBblV/PJ1v8RAYejHqvNZeubpmQZUAPv372fLli00m00+85nPMD8/z+te9zpGRkae8bZ+FP20766//dKHWROOUgxT6DDACRrAOeXHWoMUcklh8kEalNtSzqxWCKV/YN0WWopvFCC9JmDAqNY5quWL2xZjDRIBQiCWUq22uSHFehvCKFAxwklgWZ205z5ZgRAWm7gYI8EqpNdECIMOU0vPGKTXWKr/3NjOUgtUtcpKv75cd2dQZ67ROlFxFnhIr4FN3KVIXgblN7FWMBP100URaIGPo2ol6/ToBWDibN06DFBLgApYVmYBTOwtAUFzYZnWYJf6cnZcIGSCdM/d2TCJh9UOjoqwS3Xq2AMrUF74lPkxYXrpkwXOIS1jNFKe5YRA+ktyYQ02yp4DS1ZiIg/pN2FpLqAlG6gW6CVRyzx4erLL4zkL3HTiIVV43n5sWm2hl3JcSnQYXNBnoSKkkyzzN1AJTd0C1aHw8O0SqAgDpBeCsEu6giBpBkvtNy+sVyZIlWASF+WFWCMxS3Wq8/iuw4BTqp81zskL5gdAOhFgOSZWsk6eWCp/DkSeBVQtcOqi/CYm9pajxSm/viyzT/d2slphjEK60bJ8n19Oh+llvoJtgZFl2RKte2xPqvNsPUYDyYXyqiO/xb/z1mPrjwQsJjqnx0mvcU4mlv5nrEYJdcGYntzns7yQ57X75DFJFYGTtJ5f4sH5PBNA1PBaIGqZLlxXrbrOzrcBDKdFLwEJXba0XMYTmkTqZfB5gTxrTZtnqOiWB/R+eTn/8PZX8NPQvxtQ/Wegnxeg0gcWSL41xsLgdxiabFBwP8rXS6/kL9PXc1J3I9wFttFkm5rk3uH7uXfsMT4dv4P3v+B1vGjX/fz39Q47i7cz950Ao3vwsq+j15WMZBuc2PR58oMPcabaz4O73shbn/siRi7u+pF9+tzBD3HDEwFdZ55HXb2Xlc44H6q8Hrt+JaudJ3j+6C8j4zS3RZ/j5d+8n9NrBDdfcYZdznV8ZWUazxd8JPNbCFfxOw/eTjhawdaP4mZfiXJHkG0SnSvS5k6zxhoGK6twdBYjQ2byp5jsitCrV7N55DIK6RSl2gR7T9zD3JkDtMULZLPTuLkJHPfcoqhEGWbqXcw2uphrdDLb6GAhzFJJUtSNj0bhSotSGiEThEwwGNCaq+pNRqZn2LxzH4PFGcYKeQ73tzNX6CFXXSDnNsluFkyuylIo91B74tX4uQkGn/vXFI1iod5LNexkoZjm9dWr6CivpZI9zdHNn+MPTr+e+YkcptNyaf7jfPBkhaPNdzBR7+SeNZ/jSPdjvHnilziR387zL9nCc9d0omTLuFD9ypf486kpqM2zdvQwjc5OMpvSnKqvIdtcZMEvgpzHSe/iYEoyoxTXHLC88R5DZwUeX9fOqc5BgkaIcXsIUi9FSp8OO8Fgm6A3lSdIupG0rGHWWhq1eWZPfYM/fPkLeGJkIyvuP8JC7JLp+C5XmQid7mKo434awSx7Sh0s1HtQwTwNp0bL23eOlJa01RXtNZe4fTNpdzPPHctTwCNjNSnjsMo49OlHQRxmNBnkUPP5lHUfrogYdA0FN2EmOchEeZy9wuFEdphTwWqa0gMsDprhtvt5ve0gN7GBSiVkePwb9E0/jgDGhoe578qrefjii3jBvge5Pxjg3Zd9nDCB5IsdHNd9HLvmCr6z/gU4WvOaPY/wzle+mmzuqZ7CH0aJsRyervDIaJEHjs+wb6qKQYJIUKlRBvw6r9m8jVddcQ2OejaYxX8kPZOAKgxDfP+cNf7EiRMcP36crVu30t/f/4y185PQT/vu+vyn3odFIqzAb0AzbS8AHS0lZsmXY+UFHpNzJZ7+9d4CAQKaPqSWlHktEcqc98SFatVZQAUtICCERTjxeWXAMQlaPjUKZwsgBCg/xGJbANC2PDN9doqZIH9Bbz2dEKmWsmXCgBZwaC4dGruQdJgmX6vjZCokUlHV7RhfLyuLLQX5qcqahaV+iOXfngKotINQuqXWJk5LYRf2AgB0QY/MOS/J+YDqrFJ6fv3nP/dkxfUsoJJuEyENOkwvl1dOuAyWdRgg/XD5KROmQOolQHFOHX+ysr8Me3VLbkzscQ4AnS2dtEBM7INxLgRUTnSe/HHes+fJSOjRulVikF6EEC3gJYThqSCkxYFzhoBW38/yxSYO0kmw2sEYiXQShEgAiY78pwDSC8d6YVs6DEAapBOfWzNPMkC0QJNEqmTJYHBefWcNGBiUHz0toDo7l1YrkBaEeVKZFp/s0po7C5xt4iAcvTw/P3gFt/oMAqHO9e8coHr6p815gPR8QFUIKyz4befN6ZLugaWnWVxenxfw4bzP58uvjr0WoH8SX6yR6NhH+Y2lteAv/brUnyVZP/+5FqBqrSVrQHoxCLFkbDhHZ2XTageTeEi3uWSvEejER6kIYyWTup/fftd7fhBHfyx6FlD9hGRrMc1P7aMZHKOsIy6J/px6pcpXV3yOPyjOYRBYneIV7bswYo6rg+/Qx0revvED9M/O8pd3/iW71/wy0ZlpospOVP7FDAznGFz/z8zlQ4b738iR6gRe+bMo4OuHXsEVhdfw8pvX/FArfKQj/uzhX+bdh15LUOzG9d6LEpo7Dj4H901vYkfj73jz+AvIzVzOd0bfz7W7Fpm6RvP84Wk+Ja5EXNJk2vTyV8H/A0LwgUf/hvqxOjbWdF/yGtrd9cyeqpAsJdN1UhIv06TN1OnUknRmATqOU+raT9h2mnRq8Vzfmm1M1vo4XeujXuujGnfSzHbT2dHLmo4OVhU6GGzP05H2UfIHjxHAGMOXP/2PDH3vHtacOEEpneZwb47JlcPQqOM261ycn6RgJF992TtxDrXRfbKTDtdSHt7NwfwJVuXGGMmNknFbC00kPjJJ8ZBZy8eeeAu2YhADE/x28ie8uegx9YJP8N2vJjza+XUeHvo2V52+he3jLyYrob29yENZxaqNfWz43hf532uGuGTXg/hRE3o7qBTaOZibYCY1Q9FfXD5aMxzFbG7GbI1ipiduJFV+EWvGdjA8fhcWy5E1lzCeqWGsQaWuYSBzGRs7Emr5kJ3RPgozl5NfmGRTRy9KCmo7P8Loyln+31vfxhP57bTtniCehUzuMX536E66+6f47LFtVErPp7qumz35jayoneblk58irB3lW12b6J2boLComctH1ANN3U8w5+s/FgQSaQWucUglKa45VOed43WS/iFOqas43ryGBB+rKuxyJHs8RV1q1rBIN3spBUc4mFmFETBiDH1S0xMV6J68kmwtom3202w+dRI3sYwND3PP5f08smqMdKrEO/tKJFbw2P29dB7OM3qRYefWl3I8dy3tjQVem8zxXy59DgX/35ecuhFrdo0V+ebDx3hwdo6Kbm2OUoasbTO8/JJNPGeki+HCM3ef8Fl6enqmANXOnTt597vfze23305vby933XUXv/Ebv8G6deuYmprir/7qr34uQSmeCUAFilxYxbMJM0Gepwc5YFFLisuSN9ZqjHAuUErFeSqRbWl75OIqifSoqRQC8ExCqJxWaXvOep3SrYhaVad1h/R8xbhlR2+10hUWmfdz5/UEuhtFIselYnJYXy8r+SZMU2hW8f0yM8G5VCICTXezSNlto6mWLpRrtaR4sly3ZxJcExHUQUiLdJqAxArB7NL+IJas/hldpZl2loAkCKGxyGWutPhhMaGL9BPOQg5roS1pUHFT5/XvrMfoPOu+EK3CCEysUDGQjpbKCTrCIvN+fhninO97SOsGrml9K7uZ5XpNmEYGDYRdUre1wmp1AXjQoY/0z/OChQEIjfIiWJYIy5P9f+f8iGa5HImDE0qSIMYkCukmLQVXuy0GOUuAQ8sl8GEvfN5CJmm0ZESAiVwCp0Ekzx0dvdBvsiSRF7hAnuIPOQ9Qne9x1a3cslZijLN0WuN8tf5cPReCGLEM2i4EBK1Sno4Ilbu8uoBWaPu4jpaKREgS4VBPMq08VimzPKOeSYjl+d4dgTWiBaguGPFZvsnldSM4V6Y16qdLDWIvGFGr7vP4D9hEtQCZWJpz29oj7Hnewpa38kIOd4Yl5v3cUk2as+EVCmEZx7ZyRWkEiXSouqkn7Sd6uXc9zRJ116fmpJ/mZJvAJD7SCfF0QiwFCIWJXZQTA5pCVGFhae0qq4mSAOWGpHSDwIQUnXascNBhilyjTsUPMFIueWlbY74QVIIJ/SUjhkA3Urzxv37waXj749OzgOonIGst8b+dRB9b4PDWf+Dy/YMUvI/zjbnr+FLuF7hHt6yd18gS670jnGg/wN/W7uPSq/8VmRj+6B++QHngZYRJSFj+JDrVS2X1ChqOz+aRIi97/n9HLFnwdkx9i/HRP2FtuszhhTXsHX0L7/vFmylkf7AL/kztNH//8Nt5z9HfYqE5xUXOH1AzAYcfWkXfH3+MU5l9hA8+ysDxyyk/8Hvkqhr53CbbCwv8mX4um547xonkIv7C+W8Y6fCqx77CyJ7daD9NsHUbVz/vpYwthhw8eBBnISZTzaEaObDnXLNCJii3gRUJwio865ETAW1uhFnpMvicDXSuaEP9O8JXVxPNtz70Bzzn+/fgRRFH+7o4unIFcTaHNzuBcuAVfXvpqFiav/l99t0zweHdDXpdS2XjKW545Uv51NGPc2TPEX5n9tWk3Qbzq79Ose8xPjb/FnbsvwhhLa/e+nVe3HUH9XqWE/WVRIsrWbB1duUfYR0X8/4b/p7RB49x9KFZyjUfBYwP15grf4/CwhOM9Qvmug3TmVmMNEgLm5uaK5oh483r6am0cdnhPJXuddzS9QEMijvn30+Hs4IhE2IPfpnkzA7qmTyPbxihrEsI1YeXv5ZHOqZ40X7DhvHv0VYdJ872EDz3PQRBgZ0d9/FEzfLEwAg7Vm9EnaggTjTxs0d40Ya7eSD1GiYyF+Mmi6SLX8Gtfx+xtOH1LqS4cUc3oSfYtbkN40UMTYR0zsbM5S1PrA+oB01cU6Gp6tglqxpWQFTA1IZJR128sDHPjTWHcnM7k/EmQOKrBv0qRY+r8Lwau9sOsCO7j8fSR2nIJr4VdEfdbB99Gf3FTVTEPgozt3H14QpuYhgfGuLey9cyPljkVWsfRwjDge/24Z1s45FLZti7ephq/vUk/hqc6BT9xdu5KCVZW1jP2vb1rGlfx2BmCPkT5pk4cnCKjz14DzuTBWrhIDZuKXZdaYfr1nRxy6Yetg/mlqI4PUvPJD1TgOp1r3sdb33rW7npppsAePnLX86tt97K2972Nvbs2cOf/umfcttttz0jbf0k9NO+u/7u03/AYDxNRjeQKKb9AkYIehsLzAb5JSVsCVAJh9a1dI3EMsI0J0Qf0kBHWGHBawchaIurlN00jtV4JiSwTSJ8Kk6WjG4SmHAZjGR1SF16uEbTGVYo+R4NkSaTNKm5LctxZ7PEfJDHCIG0ls64yIJzDlAJLN3NBUDSUD5V95ynxdGWXFLBwTB9tg4AkdBdK7cSs3pZ2pMartFUnYC6CrBCkE4i2qMalgQrHKwQYHXLKK0cNLDo5hBYZE3SwQJzmUIr0IDVZOI6NTcNCLrDItOpQot3dgks2RbkaY/LuAbm/TxpXSOdNDBWMh90gNBgBekkpOm6S7usoKe5SMnLEosWgOsNK1hrqbkBNSe1BJAEWhmEsXRHRZRRWCzzXo6UDvF0zKzsQfoh0sYtVdG2wNk5BXwJw0nT8vYJ8CuS0FcIN6Y9blDxWoptPqqy6GXoDMsoayj7bTSFS3tcIq1b/AfIJjWqboCvI0LptZyfZ9sVEmUTjJXL7waxpKo7OiYX19BCMu+39lCbSPp0kemgHYOgJyoS4VB1MhgBRgocA66OiaTbAkhYrLRLDh1xFqNirAsqRBhBV1xk1s8hrEWgCExEJmoy77e3pE7IVpBkC11hEcdGWAQSwYzfuSSXLYMDwiCtXGIkdIZFEDDv5VremXCxFSlYiFY/lmTXKJCxg5QxVZUCDJkkZC4oXACo2qIKJS/LWbDkGUMsFa5pjXmZRAv46CWYkkoMzSUPbaAj6q6PNC1sZpeP6Z0DaRa97KXWovXXMWJJTs56vM4CuNZwskmdmkpjaPFpzs8tyb2mKymCcVu+KqtbxkWrkUaw6GdpKm/JASSQNkGj6A4XkQjqTkDNTWEsSGuxwmKRFjZHWgAAIABJREFUdEYVFr02sJZCWCF0JQ2ZBiHJR1VcE2OBBa8dIyQ9YZFpvw1hwSckqxtIbRC4oB20Z5hX7a21v2T9CHTLIGSFaJ1EWeKRsi3jj4lSvPEdzwKq/zA6e9Rvdu2XWJhZzw3hn1ItGr6x9aN84PQEOhxgnS2zYegEnXMRF3lf4Qtrf5P7ui7mV+8cY6DYhnFLOPKT1KYt392ynY3+DoLwWoyQXLNW8JwX/BpnTQSTtQm+dvC3uVgdwZOGu0efz6ahd/KyS36wt2rH7CP866Mf5tdP/g7f0ffyLvUR6k2fsfu7af/jj5Pfso7HvvYojScOMfT9j1BJS4aeW2XEKfJ35oVseuEeptUN/E79zURBhq27H+OWR2/H6ZEMXL9AW24Od+koR7HZxpniIPWZjbQ3L0YU+9FFgUAQCHCEILQQP50U+TFBzqerN0d7Z4p8X4pcX5pswUc8yUtlreXunbto/8sPMXJ6jNlCnoP9HcyPrEPNTeE0qqh2j7f3fA9T9Ci/+RvsurvIqVFYkQrZuWaGTZd38JnDf867itdx+eTNxKk5JjZ/gn+pr+Jr5VdizsSIdMQtvX/Da6NFnuhci+PU6E4t0JGev+B+10IzT7HZgzYDzE+F7HWalOrjzLQ3iNzWttoRZtnesLy8Mc7VYQ2mHY6PbWN37oWcWBvjRnmGSpvZnBpne/Z3MbaNJyrvYrw6z3RzHG2bXHJ8lMJikcND/ZzozIHVeO52Lj3yGDKew27p4K4Vaznato33NHpYYQo8UriPu3ruZyZawemRF3BmaiXOgUWEVyHZHNPh7efiuXvYXp+mrT7EqfIrcZMx2k6P4qmAjTf+Bh2DvWQ7fcrNGe77+m0kp0/iNOuc6h3h/uHrKFY8MCVUMIkKJvCD04jgNMZpndf3Yhgqt7FBu6xtpAlKV1KtXY3BR2DJKUGXIykomHINB5IiGXMXffkSXc1XcKjYgTYaSt9iaHoXq2aLeEnM+OAg+y5bz+rnPYirIqbvHaJ8QnLFwCR72q7hzIqIf131SxS9HvKV3Tjlf0boVr68tEyzvn0DGzu2sDG/mY25TXQHPT+WpylsRHz9nm/ypeJdjFsXW92Irq1HW4eerMctm3p48aZe1nZnfmRdz9KPR88UoLr55pu54447gFbuxBtvvJEHHniAjo6Op/z+H0k/7bvrg5/9My4Pj9LnVZiKsiRkkcTkTJUpVSCSEmVhYzLFRHsvUd1BJnVcItYECzzGCF6s6W6WOZ3pQmDpiBcoptrINBooa8iokIoFYwt4tk6nU2O2rdDyORUtTSVxTAIYaiogwYdYkZE1LJaUTih5WZSN2SPXcXW8j3mnjWNqiDppbqo/gqsjjHApeHUajkspcpAGEuXiqyYm8Zj287QOMBnavTqykiCtw5C/wEzUiTYhBktTurTRJCLAS0KkTTA4HPYGGWAKB8OQKiOMZizpIZEejqnhy4R6W4Fy4pIJmmTLDaZkHhB0RSXm/BztqSopq2lULFmjyMky84mPEK2egeGgXMk6M0nNS1F1XLJRg5SpUfNSnHZ6WBHPk42r1J0UsXARjqCzXmn5HwTM+gVcY4mExEhL2tTpikOMNWBaIdeHnQW8RPBgahWShM6wwumgk7SNGWkscF9uA0Ec0pMsIkgouhmwDmldJ78QU+kQaOHTFdWgXRJWBdmkwbTIIbH02jKxDLBoHFNHWIESlqZUSKGJAoNsSBCSkpcHIzAIMjIh3WwQ4VHyXAqiTCEpU0110axAQA0rFBXVRlM5KJGQS2rMuAUQhuFwHrRiMZ2lZlyQlkwoGLGnKZsM804W1WaoxA6h9knJJpFx8EwrZL0Rho6ohFry5ji+IbAp6qHEkFD202gjMcpirUJY6GkWsU6MFxlGvFkedLeiLbSLMr3Mc8YbQMegIsOwXKAUpzEWnsisoc/Oko9KuInAM5aS7SAnqiRSIKUh55ZoNyFl7TMrfVRCK3CFp5h1c2STmHRcRVhIhEPNTZFJNEU/wDERDZUiSBLycYn5oB2PGC9pokWKfBgy76VbRg8ipoNcyyt8FmFiKcRlFr0W4EjrGl2qQiWVoYlHNUyRFpBrlIkyglLcOl6X0gmhdOnUIY5pMuXmMUjycZlFL4e0ho5wAelYlJHMkidvqq0gGsRICTJxmfdbcyyxGAuPuRt4SfXBVu4t5bPotiNkRGIAYdBCMVAvYZVH3Vp80/J+znl5QNITlYjx0aLl1dU4tMcN5oIUddUKv1/XPlXRwUXRKJHwQDaZdXNoHITQSCvob84jpGXObafTaXI0s5L5esDKeJK68ElkwDvf9P6fal/+Ye8t9fu///u//1PV/jOmev1nm4jrfLKLIdFXjtFoP8I96VFeOnsSX+7lzvnL+Ot0TLG6BU/W+cdbtnPwyMPU3CLj/TfxzYGreMnOOpcem2b/6hK5wheJjmp2dm/nyOrH+R9XvpfhT3+BY6tXMTmvcSt7WLH6cgDavDYuX/EqpsVqDs/u5trevdjoDv6/nfOs7rmEXOqpOZkGMoNkcoN8qbKbW4tX8GHdz0v8h+nrX2Txk9+mmRtk9Yuv5+ghyVTaZ+2xfRwvp3CGfW6W+9lzfD3dI7vZZvZxIF7HieEtHOlaz6b9u2mWFTpd4MzEJorHXku/+162jLyKemMljcNAzaPPhaszLuvXaja+bD0bXzjI+v4UK9yQ3iihRypyShDIBBNXWJyrMH28yfi+RY49PMPhB6aYOFRkcbJO3NSM18vc91cf5oqP/i3ZZp3dmzewf90QtVwn/uQo1hpWdDd5a9d96JLDws2f5bE7aoxPK/rbF/lS7yLNjn+ms/Ig7zn1dlYuXEZx4Ht8ufcB/v70r7CjuhlmElTHBL8p/4T/q/AaBn7hI7SXr2PyW5s5Od/D3zv7OFrPMVO+ggPlNEdCw0Fd5P5olJ3eNLPuHG5byOaU5Xrl8FateWd4hpua86jRIfaffjWPyHdzrHAT2h+kS/ospM7guwvYWoXTC5KR7D7azUMsXP8GTMpj/vQJxvMZipkutoydYfXMHNVUloozzZmuHia3XcnDK32U6qDTlLm3fQeOslxTvoqqjcmv3U3NG2S0fS2m4KJmBPJMwEizzGfm72BdPmZ0dT9qfAFvdJaOrOKW//5hhretIt+XJt3uoWSK8cUVfDcZ5owM2DB/mG1nduPLmMW+OZx+j99rdPGSmcvoqPYwVB2mf85l5USFmltjZ3eThzrKPNB7kON9dyEK38ELjmCSgMVGFxOxoBxaekyKQXERhXAbNKbItO3CyByRcxmLHUOMZcuEnmRgZo5NB44RH+jE9Gg6r5rApFIcPtDBdnEIXb6JXzx2nLXqcR7rvoZq+4u4uLSZTWOraWummGlOsaPyIPdMfYcvnfoCtx//Mo9P7WSieYbYRrS57fjqqbmpHFexed1GXn3RS9lqCyw0vstCzxdR3jSiUmDHuOZLT0xyz9E5wsQwkAtIe093LONZ+nEpk3lmcoR9/vOf5w1veAMAd955J2fOnOFXf/VXl3+/7bbbeOMb3/iMtPWT0E/77npw9wNMe91UC1lG/g97bx5l6VGeef4ivv3uS643t8rKytqrtK+IRSAQiw1e2sJu3Hbb2B7PjNvtHvfpnt0+xxxsM+AeugcfxoDUNG6M6TZgyyxiEQgJCUmlpaTaK7MyK/fMm3n3+937bRHzR5ZKiM3Y4NNwhvefzJsZX9z4Yn8j3ud5kg3i2MF3RkgbCiPskhiSJDCZcgMKSmPFEV00WiQkbkROS3wrRU738GUKoaGcRIwafcLYRAnJlF0jbzbw4yKBGZKVfVztYUkDgoSUgpYZU7Z7RJaN6ymqZoHZoE6MIMIkoxWu1qzIMhndx0x6POHswzBS3KwvEhk2fiLIWCFnjHFSKiAyTUacFo50qCoLoQQ2MRl67JebLNsDSC9NUfcwnS46kURaYggbI23iiQgvThDaYIciO2aZKWcNzzTIGoqeDCkLCFMVkCazYoW0ipnL7qdllRkL1tiRWbQQzBhNAiPHVLLMWOKzQwlDK8bsPomOkcLEkyGDbsQlvYc8bTJmRCIt3DDAkYqc0SdlWPimwVn2MJFsYGRMqpkJtvxJerhsyyEcNIOiybZI05UuJdMk9HLMyk1KIsQzQkxhI0xBJ2vhWn10z+JR9zgVtcOs0aTjDbLpjlIUdfbJFS6U99N2Bgn6EXYiKIgG6Ugx6MaMqJAogATBspzCkB5Z2WdTlsjqPkorck6PrCOwlWSDISrmOhmzR9OdInSyPGPuQ6KYlZuMqICiFaGNHrO9BoZpYkmTDVWiYPRQ0sBWCTnVx9Y9zlnTHLWq6FCSSXyEIch4EukYCEOzpkc4YGyQBdIqpiR6eFabE+UyF7IVjrU3SEUShCIWkllrnUAaLLgTTNlVJqM+jjToxg4Fo8Nw0ibQiq6yUUmGlO6ipMumTjMl+iyaAygUWeFjOQbC8UhsxUR/hUgnaLLUjQK+znOURcpei3PxLFWrzGDaRTkuxBGJhLyzzaK7h9gqUJJVfK/JNJK00jSSPAXVJ5ExJadL7O1lXqWRKIa9EJNdunk3CSioGloluAKG3D6WiImVhyk0iYSOTLMhhtjrVnFFD8OVpFSPcd2glxhckPu40TqDR8iqO8xoXCUnEkJzgllVZ1IssxFnWWSUKbGBKyCnfAbMDnXlYAlwlcLSmnwcEpoaKWDM7PKEOsp54RJnE3rpFOcoMawUntYMOwETSZvHisdoRSlEBIM0kM4AA1TJJG2el5MUZQdhahxnlQUxyxoDDKgdJJDJJ9hAJ9TYwqJl9uh6CZP0eVIcZSrcIDINlsQoS6KIL1K4Vo5AmdhGEzutEK6L48YYwDViiSU5Q8pqMKQDnstfy4Dosr+/Ris3jOk5XHvwtu9rXv5u69aPHaorpmNF8IlzJL0uJ/Z/hNsv3URFfIDqapE/2vcznG3cAEj+5Ja9fLL2CXJVg+3cTXzywA3ccXGHX/3Uh8h2vsh9d93J/oefpV9O8dnhPfzsdWXedOjnKY5PkPqL/8yF2VnWt/qE9WeY2nvj1ZuqSmaGo+Nv4+Q29PqnuXnoCU4tfYlHVwyOjx/+lpCjicwkhYE87zJCXrHl8M7oJt7kfp2xqTrB5x5me77O3l98Exeey7Ax2OfouXnOdG3knhQvMxZpZSzcbJ2X8VU2OwXmhq/hudkbGJlboXre5VxyLT4der0m6yfqhJcEeUyuT8PMcUHmJw/h3DKNLLoI18QYSZM6MkTu1grFwyUGhjzKRsRk3+KATDPrSAayNbzCMrG7Tb0XUFtMWD3dZPvZFlYwzMboUc4cvIZGOYdsbmI3tugNFrgrf5E3FJ6nt+2wcd27eerrOda7JtnRs5w//J951Z7PcnfjFq499+sIoXlk6tO8Y/06zkbXs9KUECSMDj3Ie+pf4c5f/RT2odu48OVVnvrMMmvDT3L/zIcp2x4HCtfxXPsCp8UGK6pPIzQYXnc5UC1xWzLOLxgRrzJq7En7RCXN9pDNesWleSgg2r+NN7rIWGmd6cwOfuMk3ahDPeVwajhD5SfeRvTYeSYKlxm89CU2K2/BCoYYP7fAsdU5QNLOlNiztYYbw1bWRjWXyXbGWRxqcq7cpKAqPNdNoS2bN7SP0Ozdxf2lCd60/mn+yVOfZe9wyHOpCtvVYf7U/Cn+unAD2bM+3nyD7N42rdsT1psQdyv87VeW+JMHLvJ/P7XEww2fqgzZHqzSGbApaoc92/Mc3awxHhl86PjLuClzhtdv3YinPNpmipQ1w/WXUvzqp7e4/UxEJS4ROFOcy/Q4UdzgqeFnmKt8lrDwCDh1EpWh4WeoxgZVVSKJZiiLHBNWzLhdJpO5kVZ+jPl0j44jGN1qMPhon+RChuzxbdwbFWe3DzDYfIr+iMXx/Xfxis+8Dy8T8MDkLaxURrm9m/Cqy7dx3fLdjO8cp9wdR0QGy9FlHu88zBfXHuBjl/6cvz33KU4sPspyfRGNoJQuY34D29DYyDivP/wGXj30arq1C1zOfxxZ+hoDkUevWeTBxRZ/8dQKpzfamFIwVvAw/w5c4I/tW+0H5VB94QtfoFQqUSgU+P3f/31e97rXXcVMnTlzhkcffZR77rnne8rrscce47d/+7e57777ePDBB7n11lvJZDIvSXPu3Dl+67d+iw984AN8+tOf5ujRowwMfCup0Pe7dn3p7FdoyDJGPsAljyPKWNJgUWxRSpoIq81mDvIywFQWlhHxeXsWmTWwZcCCkcW0Imw3QNoRE2GHxIOV9AQ1Y4QZc4O+LdhxLByrj5YKoR02jGESK2AobmOZKfJuh4y0MKXFFwePI9wtlGOR1QN8XUxiGj4bRomGG7CVjLAsRoEeUzpiMAM52SMtA7Rh0nArzOtpVhmjlhFkLB/PCpGij2VqRq0mUllE7gihm+a5nEndKqBFwHCyylypxEp+gMNhDWHFIE0ylqDqlZjWTdIW7FiKyzJNPzVDy/FYslrIJMSwXFbcDK7uYsk0dZmjbPuUkj4dJ0MhWWbLzdM2Enwzg29N0si7pOnQsSRSWHjpDMrLErommXiNnFA0U2M4dhrP3qZvxzQydVJ2FswUpjDJGG0GPMWcHqJBCbPUo55tIFNditYghukx76TQcZ7EyLOQH6ftFhlMdnCjiA2zzJrw6Ohh7LSDQ5+DYRvHsrmQKXEkWkKKKlL10WlNRifE2sL3BsmqNlIkLEoH04vJ5DyeYxxdiHBUEZ2KMUUdG5dTQ1Mk2ZBWqsiaO8KGkaZlJgzrFfBcWmRxpWQ7N8qCdDiVGWXbdCnoDuezJa6R5xFuQsqImXMqbCcl0m6aMbnMtpasmEMcNKv07DIbSYZaKkcqC13TQqo2jmGwnJph3c0Sum08mkz1unhCoaWDabu4IiSxFFvZEik9TEpvoyVkrRCBwbI7ylxqkLrt0DBSODQxLI1TVDTcEv3IJJIwqHp0UsNUgh2UDNjOlKhmHI4lVYTrsGVFTMrNXfHj9DiRYZF1ItrSpW6W8VI1Nr1BlGmghUTKJbSpSIRNScE5Yxqp2oTCwLISVpwiHU+SsX0ywqeFwHc0o0aTrOzTyrsMSR8sBSJhTpVZ9UZwU2meV5NEhkNQ6jMabBEKi21RpuVk2XSLFKRCptI0ZRlLprCiTSItCOQAFhBbETWZ4qzlcqNRp2BqhOvyVG6YvXITzw3p2R7TqoXpBEizy4ijmXcP0U33sNI1utkeDTvGMQqkIk1oCUw5iG+mWS5UyKcVA+156l6BMJ1ly0uxY9vUgxwVs8mo0eHZcpFWVhOqNN10Dj+TMBN1KImIS/kSqBZz6XH6VoZls4Aq9hg1ffaKJiJXRNg+MruN6bZYj4tMpPvkRMCmmyeRO5Ro4CYBO06WTWcUIYZYyWQh6TEsAzqWpO70uWX2Vd/XvPzd1q0fh/yxG24W3n8eLvaZP/wB/KU7uSt8F0Q1/ufWPfxV9k7AZMaL+beFLF+rPsXS4AAPHL2B63fm+T/v+wOyCyEPvvblBK1Vumaa//gz/4Jbz36O3/v536Do7Iae9D/3Gc7e+//y2de/nmy/R7bi8rbX/zMs96VXiF3f568e+T+YLj9K3u5xvj7L5Pgvc/P0GxHfhBH5j08/wieCQaYfP8VCIvmw+0fsZ5X6vMdpNctTrznEHncdc+4iez4qmBuXjNwON4s1FtNjXLrBp+/fQ6vym7yjvsaO9Lj29ONcd+IxHs/dxIa7hzElOCJj3nA4//cWSNVao6s91FIbf34dYyPGCDTR8mP0L3yajkixXrmGpfHjaDGAobwrzwUYTpUZ4yTHvEdwa1usDv4eJ1tDNAKXwtFPMHL4s4h2hcqp3yDT3kN14Bn+uC9o9Ic5Z6QgEIhCh1+K/pQ3H3k7ky//aVSiePijT/Po9tOcGXuQ1czS1bJaiUO5O03Kdzg0t02hYyMrRe72LjCp66xHh1kKbmMtPEoPCyu9RTG/RDZ7Eae0iVGsEaW2rjIHRYnFTncA5afo+kUuB6McXjnNL1hPEPYsVr9UxI8KnJ++lk/cWid2FdesD3Hr03MMbWzw+IHjtK0WUuYZG7mOp/fv5yuViMvZaX5+qc+/PB+hzR61yqfYd+EL5PPbrLfT3DP9yyzVbkb4NsozMCqaPYVLjLU2ubQ2wVq3AoBtVyF7GjNzliNDWe4cv5PXjL2ONGke+KsP8ezqFlOXL+5qTw0W0NcM8NbNa7BaUzzhXORZYwMnCjh49iwHz57DTBLi/S4Lt17HKVVgNX2G+cwqa1e6SyqRVDoThO1jzDT3s681hsFu2MCQKanYkhFLoHRM018mXHoI7/Kz2EEP/wD4d8bMZQ+zOTfJeLTJoVf+cxZOnaC39Dj3v/Kn+OrwTYz0q7y9/hyvv+YwYTumt+jTW4PtuuCS2mbBW2Y5tcRmZomus0ulLLRkMBhiXI+wN1XhyOAhjk7eTLE8hjQkjaDOf33uo/z15l/TlR3y9Wuwqq9kO6nQBjK2wd2HhnjT4WGOjmZ/TGbxPdoPKuTv9OnT/OZv/ibb29scO3aMe++9l0wmc5Ws4h3veAd33XXX35mP7/u85jWv4YMf/CBHjhzhQx/6EE8++STvf//7X5LuDW94A7/7u7/LXXfdxec+9zne9773cf/9939Lft/v2vWeB/5XYm0gMZgOLFIBrFhNQqkphG3qqTSJkBz1G9TsPCuWBUJQDgVaK1qmiSkttNBM9jYp9Hc4mxmlZ3lYONzcXKQnEzpGD085dCODdGRwzjmMzHQp+y3y2sFlhZRyWXfG2LAVO14XS5uYscVibQgtBRPWKsIGM7Ko9gqIVIdxF0qBianBCVpUjTyB0EhbsZ4IhDAo2REH/IskWtE0XfJRj6Z1CEuYbNgRbdnD0QYJEGr1AvkYtzUvo5HMp2bIxZJTMuHm7iVsQ9CyCsylsmRjg1BLdmLBoWiVjlMkMrMEIsRSAiHKONEyU9EOF9OTdHWfgvJxVUA3HMdC08z0GA36tAODxMgzYppsm4qW7GFHPfIqJkuFNSuiafqklY2lFMP9EGSKBdun3zUoyQQZD1EL09jDC4TmLmh+sF/CUhpfSuzAxxWSmmsyHjqgOpjxZebSe4mVQxhYzBoRm7qBIU2yhkfbgED3iQV4vYDYNijHmn7oUDQdlBQsOD79wCZj+WjTQApNkhjYykQQ4/c1tu3gWRpLx6AlsZbEIqSPRGqFF8X0rBSuNslrwSZten0Lz7JwHAiIONKew5Bw3pugZwjcOMVE7LBk9WihsLRiX5xGYLJqRcQiIpS7hw7FqHcFm5VGGCZt0wctGelsY8QJO7kx3MRAhXVCUxALh54Jlg65prPO2dQ4fuzQx8G2AyJl4MoAP3KZ1TvU3RyhiLEiQb+VopzZwjYH8I1dXFSgQkKp2ec72DomNi8y3BFYeGyaB6lpCW6PlhETCkFKOCRC4SQRvujjG9s4yiLTy5DSATW7yMBOn2FzkyVvgJ7MEdo+dhBTTuqsOyVCw6SEZJ+/zJydR4lBSrpFKajy1dQ40lK42qAZulhC4lg+eWVgxTEID50IAiPGvbIlrNOlSAbRbWHgUxMFco5BipCWmdA0bNJxTFp7NIwAOw457m+ipMFFdwqZSEILxoLLSDlFINKsWn0MQ9NMYlTkYUtNKhQYqF1KnMjh0mCJyLSY6C/i9hVeYhHbIKwawz2PAAlYLKR6oBXZSGJpQd1W2LEir016lk1H9Il6Gaw4IlYxKiWxjYS8MgikxsKka/RQSpDRu/vEctRixzIIrAgrilEig6ldvK6FowS1tA9SkE1M1q+MuX9z9zu+r3n5xxiq72Jaa/zPP4N5StLJz+F38xwW/w5HPs9/WriD36v8OtLwUUmOt/s2GVqc3rvBZ4/dyvHOBf7gb/4I57GIxT3jXCi7GESsHJtkbfpavly+hf/l0x/lLW/7ZVITewAIH3+MhXf/IZ98w91ke30amQxjhw7whmtuZ9h5qaNy7tQ5vnD5/+K6kXPk7C6NMIeRvpVjYz9DJn0DUlporfmXD32KS2IS+fQ6O8rjo5k/44b4awS25Py+NIvmEOHmTfROdrn24adopmD5Npd/UrxE6OY5ewgu92eh8iv8l40SXx0YxQkCbjr5MPsvnOFcah/PpI+hhIFjwrVjea4fL/Ky6RL7h9Lf8wbSr27z3H94DxNfewQnDIhyw1y49hZOD5kMbLeJGsskOBRHpyA7hFkbpB2PA7usTC/AMAsHH2B7cJ79tWMcWXslSsb8eeYsf9PNs6UGIDFQecm16Qf55eolsj/937GYLPPs4uOcrs1Tc7eulikV5ji08TIsUYFejX0Lz2GqmErOYl/aoqkPsBoeo6N2T6BtnVAKquQbF+l3n6NdLnB08qcpyCzLA1/nXNdCxQ5B6SJG6RJeboNCqknGepHaNF+LuOZMC4XB54qHOGvOIDoF+n6OvpJkN5YYWV3m8EaDWmaU86MFlKrT84Z44qabmB5fZ+b81zi5fg//m2Vhy1mkqNKMH+WzkSDenuepPTs8OzJOVH8jqltAC1BDLqIEB93n+bn037A3dZmVXpr5+hh25xhHMm9k3959lCczWI5BGIX86ac/xspqlUMXTmIlEeRc9o8OcCR+M4b2eNiZ5xljk1K7ycGLc8xevIAZJ/RGs3h3HaQ/cw1b5zbZsJ/mUnaRpz2Ty9ZuGKuRWJjdvRxszDBbn6HkT2MgyUrBqCWYtMFTMeHCVwgvfRH6LeKypnWbwZnKMdaa+8nHfSojk2yffIw4A5+//Q2cGDzKYFDj1zYf4WeP3IYzeQtc0dPTnYBwfY3OYo3l9W3O9VeYM1dYTF1mLb1EcAUjZiY2A36F4WiQMbPMdG6MvUP7OWct8vmNz3A5uQxKkt1+GUnjJnaSQWIEEzmHNx0b4dWzg0yXX0rt+mN7qf2gdahqtdpV3BTA5uYm6+vrXHvttd/T8w8++CDvf/+I6aLVAAAgAElEQVT7+fjHPw5At9vllltu4etf//rVW6rz58/z9re/nUceeeTqc7fffjsf+chHmJmZeUl+3+/a9YHP/wvaareOHGVgI1BOkyQx6WsHtUsvR0qbRCIhuQKZt7QgEZqUiNA6S0CE1jGlqMmWld8dC0Jg6BipIaNbTHbrgGDFLFO3BzCNhJgEE5NU7NOXLkUt2DSSXWS82uUXTGKTQBukrYBvXgU0BiYaR0mEMFlsTjKYv4gyFAKBmZiEcQHLaiB1QCjFLkEAgpQy8GWMAnaCIQacLa5yFUqNoRJMpUgMk1hLmlGRMWeNvnZY7Y0ymNpAaIHQXAGnKyRyV5KDXRSKgWChO80+dwfbCOhwhS5dgB2ZmIlkjhGmvBX6PW8XP2J1v01LiSvbS5BJAdvoYqgEhaQvY7xegBSSQV0glpoVZ5fwJxEaN9kl0JDCRugEJRSettE6IkETfAOLm+ZFTaJv5LEzrrzXC58dLEBg9LMIu0n3il7hFZ4HcmaXXpgmkrtEIleakxeYB1f8KYSyiRLFoeIZbK1YjQfJGwECA0e06GobkSgcmUIKTaBDLBUjiOkZDv2wgGc3sTEJvkG2w1PGFbY4dbUtXjB5RdR598PumwZX6tVWEr3LyHCFpXGXW25XgPaF/rZrloyJlXml1cUV7jf1zeSBAKRxaQVlCu4ltKHoxR5JYmPKiIN+nUzS42xqkpPdvTh2h+n0Aj21S8hwldgRMLRASY1UAoRJQoSlJA6KjnyRoMWOYkLLutpWAompJYkO0VJiYRMRE4mEnOgTJCmiKxpwGsjgEhIh2MWuSxnjaIuEhAiFH+fwZGeX3EIqzBcoIr/BunGWtN3CDULSQuNogx3TI0FhCpNQhCihEUpiYxKyO7dEiUlWSGIjxBIhhp/FSgxaXoxvF8nFNWIVkwlcAicitEK03mU6NK70rQQDg4Ss0eNs+zBjqQUysodC0tMOUkukCvEjG8tOuOgfZH/6/G6TvaAMoXfbTQM+fQwgudK27TCLFpKS7JBOHFpWDy12R6e+0m9+9+53fpsx/L3bjx2qb2NhtMn2wp/jPDFFZnMf1YHHGagbDFgfwtXL3LvxOv597lc4oLs8Y3jsiQzeGHU5sX+dhw7dxr7eZf7g8+/F/FqLlutwamoIw4lIvTLkjy79M/71sSf5jH07z2X28+73v4PD+44y9D/+K4Trkmys03rXO/l82WVtYAw7TuibFp1imcHKJDfu2cuNlVGklMRhwpcefpyv1u7n8MACh0oXMKUiVAbrYZFNP0cQmwwUJV5V8O9P/3O62uHd1llebr2XsurQWXeYr9/M45lfI1fYYfixf8dIPWF5SGDPhNw8vIM/arDBG1ma/xWezyu+dMzjucEUVhyyb+EsB5bPMNHa4Ky9lyfcPYTRroMxUXR4w6ER7j44xGTxW8V/tVIsf+5vqf/FRxi5vIShNVv5DI9ffyPdXBa3sYXVrCG0YiA/w3XZOxj15iha/w8SnxPDRzi9/lb8zSMg4l2w6ZWpP2cINuwuT5gBqzpN1fIJx3YYTj3DofazbOVd1qiTiF3+JS/MkIryNJ0qSia8fOnljIezZOonCXY2EUDeLaHdVxGIPQDYhOSDHYpbz1PcOEGotlkfKLE5dZADA7diORbz1hqPG2usuuvUUuu0nJ3dka81B1ZMXv9MihuW2nT2OKxeWyEY0wyZm9yxcolMP2Jp3GNhKkUoDDZ7ZbZ7JTpBkUVzL7k5wWu+fIJGdpqtVAut6hjCYTZrc2PhMYZSdS74dxF4P0Ep3IfSmpPa528lfC11HsY+io6KFKp3stHfT5LYaEuihmyGC3VelX2Q12a/gCkUYWKy0B5htT4Gvf0cyN3OtfsOkYw6/MmJh2ktr3DtqcfJdVtow2AqN8FB71V4Xo6n7GUelRsM7qxzZGGZvQsL2FHEzmCRZLZE5eZbcQ69it7XP0vgP8li+hxPewZPui5L9m64nZXYjLTHKXcmKPtTlLtjlPpDZOiSS+YZrl0is30Ka3MTbWr84zbz4wc45x7EEBYZowD9CNVb56GbjvP46HFycZuf2XiIe1yYuuHnUNnKt/bRKEFX+6hqj/nVs5xsnOZ8cpkFZ5l1d43AfFGXJtsvU/ZHyekUYapLzdhhy9pAKwfduAHVuJleOALAsCN57cER7jo6zOHhzI9vrr7J/jGEfb8fu/feezl9+jTvec97rv7tjjvu4M/+7M84fPgwAA888AD33XcfH/vYx66meetb38qv/dqvXWUZfMG+37Xr/Z/7n/CFu7vBDQTlbJUBexs0hJgEykJrSDplqjJHKGzG3QXq/SEG0yukRY8gyrHRH2EgvUwiJJYKdhnWcEiEwCIhS5dGmMWydrflhp8mSfkgBHHsMCrqNIWHDj0uJeNUMhdJqYTzrSMczJ6hqHy6lsVCb4wxbx2TGKUNNoMRNsMhytYGtlCEcZautsnZOzTCIWJMUqLLTOYCHZVCiwSLhEutQxzIn8avDbAqxtEIxvLnMYnJiD4YknPdvYy7SyRhilpURiIYsqoM6Brn+weQRoLn1an2B+klGSyjR6JN9qTnAVjo7sNQgrRWZI0ettthtTfA4dxZYhQJknaUZbNbQduaQdmiGWWw7S4Zs4MhA1yh8HRILc7TitNE2gEliKI0o8U50LsOg9SSTBhh2JoWFo2wxJS9ia9dEiQOEb7YZSSzdURaKNo4bPtFNDa9OIcvLQwRMp2Zo+qPMuJtXnGgNaaWaAEuAaYO2BFZpFB0OkWMSKJzIf3Eg0iSs3wKdfC1R2p4BWEotuoHaEqHvd55+obkQvsIUgqKokHabDNhb3CmPw3AqFMlJ/poNDVcHCSRiMnrhC1/lLxRpxqM0NAZXOlj4aNsSJstMlaLQDukdUKIgdYJjtGno9NkZUCjnweZECQZcnYDqROkEbHRq9BXHj3lUTaaFK4ciK73ZsglIZX0KRIhaYscGZ0Qhil6UY4IC2G16QmLvFVnuz/MqLPOcn+CireKqxMsnaLeGSOvt8nnztA08ix09jPtLZFXATXShAYstWbR2mSPuUrXUdTiApPuMlkCrCDkXHIQpU32enMIqVFS4ysTqTQRDrYRIITCQONEirrhEmubZneErFMnZdRJix4bzVkmrIt0bYudYC87SR5DJkznzxJoE6HAFpqdJMdObxiJYjq1iJIahaYbFbB1QNHcpi9sDEMQaYkfZvFMn1ZUoBEMMpG9SF74xAIMESNjhdA2bemx0ZpiMr2AbxqgNRKJrxxqwQCT7goZ0SARJr0ki6kM+laCrSVKJ8RC01cpMkYbW4S0VQZX+QSGTa0/SL+XZii3gZAQtwdwrQaF1A4ikWwHQ0Q6y6Q1z2IyQJikKQcBSaGOpTUpuiy0ryM2Q8bTKzi0MYjxdRbPiLC7fb4e34RAkbebhLFLgmBf5iIKQaJtOkGZ//0t/+r7mpd/aB2qxx57jHe96134vk+lUuEP//APGRkZeUmafwyH6vJja7hPrpKPDJRIOJW7n9cF92Gh6SqP+9q/yVZwByUl+FgmoG4ofjK5nyePH+bC+CvY317gd77wAZxnatSyKTbzaZxyxPhr1njnqd9h78FLvPfOf0Nv4cv8022TmpXjzz/5r8mf97Hf9m/xfnJXqTl64ut0/+I+zg34nBo/SCvK4oa7p0mhYaIMm4oUTOQl572ER+sdlI64bmCJw6WLDHi1q8x0SkNNlzlXP86nT97JVlzgLhLe6n2El8dfwjUSmiseZ9uv5lT+zVjt/8rY5XOM1RISAdtjiuKEz/SUQRz9Ai3zCI9WIj47PMyjboGus3vanm03GKuvMuyvsUSfjeYwqlFBINhXdHndwWFevTdH9LXP03zg0wzNz+OFEaEhWRod4fzhA/SEwGlUMfo+Skhq48PU9vU5ZK5yT3OeSrvBkrmHx8Wbqa6+HK0M9rqaQ45NgubxpM8p7aNjKEcennrxZq9jN2g523ScOkrGWIlJLk7je3VODj3CWnqNA80S91wYo1bv0Y0jhLCQ9nFM9zpcwyAbbeBunGZ0/Vky3U26jsG5MY+nZ4usjA0Spnya7jY7VuPq90otKEdZCr7D7HzMkbk+B9cTsr1d/YrVsWnOHJyhWb6ij5I4WPR5vfF5rucMHeHx0PBhzk8VGHE2GGbzat5KCYxnTXhigiVupW41UPEioEHbLDujnCgeQ3tjvFE4vFEYDGqbkJizmWUeKz/DZ9yvUA6yzFT384w4zKa/D5SBtiXmgOBAap0jmac4mnqG8cwGAImSrHRGudwaZdMfpWHOsprfS9JtcfjCs+xfOIOhEiwry7R3kNH0JK1smy+LJtTXOLK0zL7lNdJ+j3Ymw9z+vTRnBpjNGRzcewQdSZJzD+FzksX0Nk+6DqcclznLIr5y7Ggok3xvkEJ/mHyvRK6tGagucl1tmZlLfYwAkgzUp0c4O3iAjfIghrSpqBL1bJkTIzkergwRGSa3NE7xxu2nuLNQYOCaN5MUZuC7ODm6F6O2e2xsLnF+6yTnWwss6DWW7HWq7uZV+lojsUhHOYSWREZAB0HcOUTcPkLizwASW/aZyPa5aU+O1x6b4vDgxEtwW/9/tB82h+p973sfq6urvPOdL55gvuY1r+GP//iPufHGXRKhT33qU3zyk5/kwx/+8NU0v/RLv8TP/uzP8pa3vOUl+fV6Iab5DycuOT13lg9//TleO5DgtDoE7WUWJo9R3rzAuLrI8/YehrcqXO8ENA4kLFbrnIgOcqw0winR4/aNj5C09vNYksNO+sy0GjRyCXFG06lXYGCHIFfhGq/H4TBi092HszXHKWOQ5lgXVe1zhxCkZIfaIrRf+SZG42XM0ydZ2wiZHxthX7KJ79apm0fwrQyB59DodBlo94lVgakj43STdQ7M7fBsaHNoooTRWOXpIEW6VWO/eYrnrWOctAocdtvs2dakvCFUKsHb6nN2p0a/XODYAY+tkZt4+dZZYktxbvQ2Np87TWnpAVKOw+qr387hsye4VF0iN3mc6b0zPPvcZ8hUF1gdeT2JuMSSytCPikw3NxnsX8YYHSZeb5JOB2xk91DpNbClZHB6HXO1xLPJCLVggb2pAWq5ETZ6mzRDzZQNQ84O3uAAC+0hZtdOsxVnMaKIA5mI09Y0zV6f2fQODaeG24nJZW7ECVY552VY6xa5KdOgaaTZrK0wsJNmbHSKzZLPUrXNHfZZ/G7M13q3cvPAABMzJR6tNmiGIQQLHDIHWUqVGdu6n1p9H1x/FLt2gbbfwNE2JduhwQZ2+mYygcOXtaTjC/aKy0z1LnKDdZA1w+aS7rKc38ue0w/SszLccf0Yf3OxRUn2GTRi7FqLY8Eq9YmDnHSKnPYTCuYQ1wcGc8Ei7SDkcsNkuFBibGyAXLXO9dElmt0mOor54tFXsT+uYphFzGaHsWnFit8iu+lw3lxmp+OxWRxg9tCN3LG8w5nNs2xqRbmYIrBCYm8SFeQYaW5T7/eo2CZdz8bK5rm0VOUVR27F7m9R6z7NSLODO1Jmbv4kQStDKzPISNyiawVcKu1hrpOjJBR7ox38sMy1hT74Kzxc3su1UZ6DmS7KNFlMlnmiOUg6TPDSAbe7A8y7WS40XW4rpREDQzx46Wv0MdgfbGIXW8xutXnUuobKzibDfo/8G9+M6zV49uIT1PVhpqqrrG/6jOUFnnmZXGGIQIf8aWc/09KnIwxu9B9nKy4wI1NEmy6IHll3nTPZvZhRl1LU5YRb4fZsmuMHC8QdQcHf4vlTz+IHk1yYnSDfPoGtXaZwaISrlMpNNuxpkt46gbiNC2aZA6mAxnLCraUeqzsNaqVtzIyJahQIUzG6VcCbfSXe2mXSjUe5kC1xxpmlsqmo2G3i4WlmG49RFfO041HKSYOVgdvoOA7XJyfZ7gUsuVMQSnb6NlOby6Sql6jnhsilxjlTHmdipMCZSHDtxgoq7RKJCq9feZS5EYcbnUG2VutciM6zbRe5ceha1NYzrFUGSJ0LqWVGGZ81CTY2sbxVdC+LW6rg9U/TqM2wLXwuTU3R7A+wVe/wuvQSA0MlDP8MJ5r7mDn+Kn7y0IF/8JwMYFnfeU7/b+ZQfa/x6v8YDtWTj3wVnu+QDlKcbTgo3eGo+xB9VWQxuIlAu6ykNvi8l1CPSxwaeYDFmddRz05wfOscP/dXH0L4mmbaRQCFa7pUblzmT5/7deKC4gM/8evYV5jE1nYW+acrbZyozbsvvJvbl5+m0Rykfed/T+YVb8N0HNTONsFTX8Ja+E/UVIv703eyZgzj9WO8fowWmlRpmz2jz1EuriEE1HsF5moHuNCcINYG49k1DpTOMZ6pEimT++fu5oHLryHWJiOizf9g3M/PyAfJSJ+dZIi54EbWetewHKxiNJ7g8FKLkQb0bFg9HDG5r8N+MUGsj+KrGZ4oV3g463HRVFwqDLCVH0Bf0dPygi7p1jZhQ9JreshGyL6dZW7ZOM1EWEUWTbbLGcxOE6Pb2iWgTVswoxmf2uGIWGa06hNvTXE5vIH56HYawThKJNTz8+wMnGbNDli2t+mYWwirebUttZYMBbMcrx9gurWHbH8AM8wQJIJQvxRvpggRqoNKGmjVBg2GmcU2I2RrjrGVZ5jaWkcAGwV4/IDgif2SuTF2tQ6AYpxjNBwkn6QQiaK4GTO52GO02qPgR5SbDaw4RgPVwUEW9+xheXyCHbeA4/XZ26lRzB9gLVfhabPEsu3ziu2H+PX6f2GMTWoix2PFI2yNahxfEvoWptvFy7RwMz6u7JM8vYfq3CvYSdLE0UV0vAZopNZ4GJhOGrdQZiA7RiXeR0EM0TdCHs88zxfyj3HBWWayPcpOPMDl+CaidgWhBFqCkYMxs8Yea4uR3CWmcheYzi7jXqHRV1ow15vhi+pu5vUsQysb7Fs8y56VeQyVgLTIeBVKdhbl9FlXTfKrVWZXNim3OighWB8dZXWswuWJcXrlFGUjYJ8dUoh32KltMK7WSTlrzDuSC5bNObPEgumy43Rf1MYCzMQkF3gM+ILhqmZ4J2K40SMjXQJ3FN8bws+WCXJDLI7M8szoCOtXAKWHWzVubCxzfdjgSGWU4X3XQ/F7o1jXfky/2uDS+ikubp/igr/MIhusOBt0rG+YrzQYYZG4c4Cgt5fY34tOdkPHhFXDc6oMpLpMDxgcniwzUxxlND3KgDtIwS7+vTW1ftTsh82huu+++zh16tRLbqhe9rKX8cEPfpBDhw4BuyyC995770tuqO655x5+4zd+41twWj+ItSuXc2i1gr874XcxrRRCfu996YX0WuvvOB50kiCMFzcWhUKKRsN/8f/f5dl/iP0g8/vmsl61JATDvvp9Wmvk91hv31i+v6u+X9hyfbv3+eb3/I5l/XuaShKk8a0bwe+3Xl94l2Ix/Q8q53eri29J+/fsx98pj2IpQ73W/RbplisFejGs8r9xRMG3a/tvHndaa7RSSMMgSRKMb9PGV2PdvoN9P31A6xghzO/aT/+uNtZKf1sZnR90/Wut/8H99Bvth/KG6nuJV4cfvEOlOxFnLt4DSY3Bp36HZ3ZKXOj4qCTADaqcHGlxchSM+mF6SQp3WtLYX8GJQl5+8hGuOfEgEnCimMxozODdq+BpPvj8L2HmR/gPP/HTGNJEKU0cJIT9mGdbLX6v3WQLSSbqsre/TCXapBDV0XFALEIc2aEkG1ScdUbSVRxjF6zZ6RRZXT9AtTqNjk1CW1JLZzEiSSpSOLHAJ0cvzBAHHq6OqBTmGR08i11c5EJvlPnmHja6w9Q7JV6pnueNxuO8TJ7CFbub5I24yJafZ1M59AKTdNWg2GqyMtglGouYTAfs1QElINKDRNEo62GFh80JTmTKXCwNsDFYoVoaQUuJUIpUq0vUSNCNBLPeZ6S1TlnVqLg1KukmORljhTZmlCUJ9qD7U0jtoFBsZZa4VH6GC4NP0r8Ss64TFxUOkoghPGuEQyrPKxoGt+0ENGWbddmliqKWGPiRidk3SPcs3BCEVgjhIWQOYZSRRhaBB9L9ps6h0LpDYnYQJDjJri6EG/axoy5u0MEIajj+NqnONuluE0PvhhMqIWhls2wOjXK5so/T4we5VCjTyibk6NC18tTMLG0jDQmIWGGGIYVwh2zUJN3v8treaX4q+Rr7xDIaWNHDnNIznFMTLKohOomLrVuMuusMpqrkUwaydpDO1hH8foyKlxDhMomqv8TxQGscqXENiWtZmI5NL5XQzsbUUwF1S7OUTLMWH6HZHyIIHBTG1UlYSI1tBaStHgWzSc5uUXQbDLrbxJbDspxkSwxjdDUjG2uMr19maGf9ash6YhjEmTSGhFyrw+BWg6wfYCpFZFv00mn8dJZeJk8v5dLyUly2swgZUaTLPrHBfrHCjFhmx/B4RuxhwcizalpULUXLadB2alf7yjeaFRtkAodM3yIdWtixgxYesZEmtNKEVobASoNwKMUuA6FJORSkzAxZM0tK2aSkhXQthGdiuBbSsTAcE8OyMG0b07IwbYu0lBT6TS5vnGSxtsjl3hbLaocNa4ctZ4tAhqhgmKS7j6Q3QdKfQEcvYn6QPaS9jbR3kEYHy+jhyYisAQXTZNDOMOTmqbglKtlhhrJDlLNFcl4e44oIJIZApL5VauGH0X7YHKqHHnqI9773vXziE58AdjFZr3jFK3jiiSdIpXZv6Ofm5vjFX/xFHn300d2Q7Djm9ttv5y//8i+Znp5+SX4/iLXrB7Wh/se2H5Vywo/L+o9hPyrlhB+dsv6olBN+dMr6gyjnD6VD9b3Eq8MP3qFKztQIP3+B+dwFPuh9nANPeXRdH0PAV64ZZnXlVxCJJik7xLM5itLnwPI8N5x8guHtFUwkpQNV0q+sEkqbE1vX8Jn5u7F6QxQzl3j9kY/jGRFSaCQaQygMoTFMxRnzOBfEQTYYZYdBapQJxEs39aaOGI6rZOMOKsyi+1nM0MRMNJEZ0bdjjq7NMd5c+/YvqCVa2ygsImGhzT4V7zzF0hbpwg7KjGnEaWrdMum6ptANqQQNplSVcbGNI6Jvny+72MZEGCgkCgMlJIkwiAxJaBlEwqRhFNi0Sqzbg6zZAyQYmDohlfikVBdXBVg6QiaKuG/SFR73Zn+SQDq7QFuhr4BVBTU7R2i4SASGVjhhyNjzC7hhcEXg7gpGVWs06qoi9y5ucRd4LTC4tXaRw81VMp02OtYYOsGOIywtwEihjQyJlSGyi/TdIn2nSOAUiewMkbmr5P2dTGlFJDWBFARCEAu9C9YGlNa7P4Hkhb9fUVv/xkFnigiTGCOJMVVCgQ4T5jZlo01WdK/om3/3YdpTOVbUPvykCImNVglaB6BDtA4Rug8qQF8BqL/ARKiVTxI8zYsa8C/aiB/ghBZ9HEJtkiCJMa7EI+/G7e/a7i97Bi5RtmooYZL8f+3de1BU5f8H8PeevXIV5WfhV1hNMJy0vDHCeAG1bBdUTEtER/OC4Q2Dbl5CNEWUatSMNGrEBFRm0immVCS0SFNETUZKA0UlMVpNbrvoctvzfP8gNlbB77K/ds8Kn9eMM+7hLLz3w3OefZ7lnOdAAsY373MrwBlNTiJImhohbWyEpKnR+JzWHOsb4V6rh0gPuGSJwdU179MgkaBBLEW9WApeJoLUxQCpiwgSN0coHHmI5ApALEWtSIYysRNuSRxwlxOjimOokRigldXjvvQ+9DId6iT30CCuQ5PYvCWtxbwEUl4CEVOAY3KImQxiXgYxk0LMZOCYBCLGQQQxFMyAbnwdOIjAseYL7Dnj62TGm3sycM1tlTHUA6hlYughRiMkuM846EQ8mngJmmr8wDc80U4yA8A1NC/WIvq7xYl4iEQ8WlqY1OU3OP7fcXjo/wM35gIxODQnEkHU8j/R31k5EVw9KiFXNEEi6QEnx38WcmAPtD0pJ8Vk5VR0k3Uzq4btsbcJVV1dHcaPH4+PP/4Yfn5+2L59O0pKSpCUlGSy3+TJk/Haa68hNDQUBw8exP79+42TsNZoQmWfKOu/73HJCTw+WR+XnMDjk7XTTqjMOV+dEEIIsZX8/HwkJCRAr9dDqVQiMTERPM8jIiIChw4dAtC80l9cXByqq6vh7u6OjRs3PrTCHyGEkK5FsKuiHR0dUV9vem54XV0dnJycBEpECCGkK/P398c333zz0PaWyRQA+Pr6Gk9VJ4QQQoB/lvC3uX79+uHGjRvGx5WVlaipqUGfPn2EikQIIYQQQgghHSLYhMrf3x8ajQbnz58HAKSnp2PcuHHGi38JIYQQQgghxN4JNqFSKBTYtm0bNmzYgAkTJqCwsBBr1661+Pvl5eVh6tSpUKlUmD9/PjQazUP7FBUVITw8HCqVCuHh4SgqKvr/vIROw5za/fzzz5g+fTqCg4Mxbdo0nDt3ToCk9sec2rUoKirCM888g/z8fBsmtE/m1K22thbR0dEICgrChAkTkJ2dLUBS+2NO7XJzczFlyhSo1WqEh4ejsLBQgKTEUh3pV2zh+PHjmDJlCoKDgzFz5kxcuXIF58+fx+DBg6FWq43/9u7dCwBoaGhAbGwsVCoVQkJCkJaWZpOcAwcONMmzYsUKAMCePXsQHBwMlUqF2NhYNDQ0CJrz6NGjJjnVajV8fX2RmZmJ4cOHm2zPyckBAGi1WkRFRUGlUmHSpEk4cuSIVTM2Njbi/fffh6+vr0n7s6SW5eXlmD9/PlQqFaZOnYozZ85YPeeOHTuMOWNiYqDTNS8Ss3PnTvj7+5vUuKV/tGbO9rJaehzZuqYffPCBScaxY8di2rRpAIDY2FiMHj3a5Ou3bzffS9Pa4+62+iZAoHbKOoF79+6xgIAA9uuvvzLGGNu1axdbtGjRQ/up1WqWk5PDGGMsKyuLTZo0yaY57ZE5tauvr2cjRoxgeXl5jDHGcnNz2ejRo22e1d6Y2+4YY8xgMLAZM2awwMBAdubMGVvGtDvm1i02NpbFx8cznqPjgpQAAAukSURBVOdZSUkJmz17NmtsbLR1XLtiTu1qamrYsGHD2G+//cYYY+zHH39kgYGBNs9KLNORfsUWNBoN8/PzY1evXmWMMbZ37142Y8YM9v3337MFCxa0+ZzPPvuMLVu2jBkMBlZZWcnGjRvHCgsLrZqztraWDRw48KHtBQUFbNy4caympoYZDAa2aNEilpKSIljOthw+fJhFRUWx9PR0FhcX1+Y+cXFxbOPGjYwxxm7evMkCAgKYRqOxWqaFCxeyjz76iD399NPszz//ZIxZXssFCxawL774gjHG2MWLF9nIkSOZXq+3Ws6W8Z1Op2MGg4HFxMSwrVu3MsYYS0xMZMnJyW1+L2vmbC+rpceRrWv6oHXr1rG0tDTGGGPLly9n3377bZv7WXPc3V7fJFQ77RR3jjxz5gy8vLwwcOBAAEB4eDh++ukn1NbWGvcpLi6GTqcz3nxRrVajoqIC165dEySzvTCndo2NjYiPj0dAQAAAYPjw4bhz5w60Wq0gme2FObVrkZGRgQEDBkCpVNo6pt0xp24NDQ04fPgwlixZApFIBG9vb6Snp0MiEWwdHbtgTu3Kysrg4OCAAQMGAAACAgKg0Wi6/PH6uOhIv2ILEokEW7ZsgY+PD4Dm/r+kpAQ6nQ4uLm0vIXz06FGEhYWB4zh0794darUaR48etWrO2tpauLq6tpklJCQErq6u4DgOM2fORFZWlmA5H1RfX4/t27fjnXfeeWRNs7OzER4eDgDw8vLCiBEjcPz4cavlWrZsGaKjo022WVJLnU6H/Px8hIWFAQCee+459OrV6187U6OtnN7e3ti8eTOcnZ3BcRyGDh2Kq1evAkC7NbZ2zvayWnIcCVHT1q5cuYJz585h5syZj3wN1h53t9c3CdVOO8WEqrS0FF5eXsbHTk5OcHNzw82bN0328fT0NHmel5cXrl+/brOc9sic2jk5OeHFF180Pj5x4gT69u3b5ptXV2JO7QDgr7/+Qnp6Ot58801bR7RL5h6vcrkcX331FUJCQvDKK6/g9OnTQsS1K+bUztvbGxzHIS8vD0DzQGzQoEFd/nh9XJjbr9iKu7s7AgMDjY9PnDiBwYMHQ6fTobS0FLNmzYJKpcK7775rPK3qxo0bJh8eKZVKq7/XarVaGAwGLF68GGq1GhEREbh27RpKS0tNsrR+3xci54MOHjyIYcOGQalUQqvV4sKFCwgLC4NarUZiYiIaGhpQVVWF6upqm2YdMmTIQ9ssqeXvv/+O7t27m1wfr1QqTRYl+7dz9u/fH4MGDTI+bmmzQHM7OXbsGKZNm4aQkBAkJyeDMWb1nO1lteQ4EqKmrX3yySdYuHCh8QNOrVaLjIwMhIaGIjQ0FAcOHABg/XF3e32TUO20U3zcq9frIZfLTbbJ5XLcv3+/Q/t0RR2tS1FRETZt2mRyQ+auytzabdq0CUuXLqUB7d/MqZtWq4VOp4NcLseRI0dw8uRJvP766zh27Bjc3NxsHdlumFM7hUKB+Ph4LFq0CAqFAjzPY9euXbaOSixkz+9VeXl5SE1NRWpqKsrLyxEUFISIiAjIZDKsXLkSmzZtwubNm1FXV2fyGhQKBfR6vVWzKRQKqNVqzJ8/H0qlEmlpaVi6dCk8PDwgk8nazCJEztZ4nsfu3buRnJwMABgwYAC6d++OV199FfX19ViyZAk+//xzvPzyy+A4DlKp1PhcuVyOyspKm2UFmttmR2v54HbAtu35008/RUVFBebMmQOg+a8YUqkUYWFhqKiowNy5c+Hh4QFPT09Bcnp5eXX4OBKypjdv3kRhYaHJGHDMmDHw8fHBxIkTcf36dcyePRt9+vSxaV/Wum+Kj48XpJ12ir9QmXNPK7rvVds6UpcLFy4gMjISCQkJ8Pf3t1VEu2VO7U6ePInq6mqEhobaOp7dMqduLi4uMBgMxlMKxowZg169euHixYs2zWpvzKnd7du3ERsbiwMHDuDs2bPYsWMHoqKicO/ePVvHJRaw1/eqY8eOYdWqVUhOToaPjw8CAwPxxhtvwNXVFQqFApGRkcjNzQUAODg4mLwGvV5v9RV8vby8sH79evTt2xccx2Hu3Lm4e/cuxGKx8YL0B7MIkbO1goICODo6on///gCAKVOmIDIyEgqFAt26dcO8efOQm5sLBwcH8Dxv8jrq6upsviqyg4NDh2v54HbAdtm3bNmCnJwcpKSkGH/e3LlzMWvWLEgkEjz55JOYMWMGfvjhB8FyWnIcCVnTw4cP44UXXjCZ3MfExGDSpEnG0/MnTpyI3Nxcm/VlD/ZNQrXTTjGhMueeVv369UNpaSl4ngcANDU1obS0tMvf4d7c+4EVFRUhOjoaW7duRVBQkK1j2iVzapeTk4PLly9j1KhRGDVqFAoKCrB8+XJkZmYKEdkumFO3Xr16geM4k0mAWCwGx3WKLsti5tSuoKAAnp6e8PX1BdB8iwqO47r89aKPC3u8R+Pp06eRkJCA3bt349lnnwUAaDQaVFRUGPdhjBlPAerXr5/JaT0lJSXG6xysRavVoqyszPhYJBKB53k4ODi0m0WInK3l5uaavJ+WlZUZT/cC/qmpm5sbevToYdIubJ0VeHS92vtanz59UFVVZXINpy2yJyUl4cKFC0hLS0OPHj1MfnbrgXNLjYXKaclxJFRWoLnNtj7Njuf5h1buY4xBKpXaZNzdVt8kVDvtFKMTc+5p5ePjg549exrveJ+ZmQlPT0889dRTgmS2F+bUjjGGVatWYd26dfDz8xMqqt0xp3YbNmxAfn4+Tp06hVOnTmHo0KFISkrCSy+9JFRswZlTN1dXV4wfPx67d+8GAFy8eBF//PGHscPsqsypXd++fVFSUoJbt24BAC5dugSdTkcLojwm7O0ejXq9HqtXr0ZSUpLJQOjgwYPG5YgNBgPS09MxduxYAEBwcDD2798Pg8GAO3fuIDs7GyEhIVbNWVxcjDlz5uDu3bsAgC+//BIeHh6IjIxEVlYWKioq0NTUhP3792PixImC5WytqKjIpKY7d+7Ehx9+CMYY6uvrkZGRYVLTluW0S0pKUFBQgOeff95mWVsydLSWzs7OGDVqFPbt2weg+dSsqqoqjBgxwmo5L126hMzMTCQnJ8PZ2dnkaxs2bMCePXsAADU1Nfj6668xduxYQXIClh1HQmUFmo+z1m1WJBIhKirKOLbWaDTIzs5GYGCg1cfd7fVNQrVTEWOM/SuvTGD5+flISEiAXq+HUqlEYmIieJ5HRESE8ZdZXFyMuLg4VFdXw93dHRs3buzyf6EC/nftCgoKMGvWrIc+Id2yZYtxJaquypx219qcOXMQFRXV5U+ZNKdu1dXVeOutt3Djxg04OztjxYoVGD16tMDJhWdO7TIyMpCWlgae5yGTyRAdHW1caYnYv7Z+xz179hQky6FDh7B69Wr07t3bZPvevXuxbds2nD17FhzHYciQIVizZg1cXFzQ2NiI9957D2fPnoVYLMa8efOMK9RZ0549e5CRkQGRSIQnnngC69atg7e3N9LS0rBv3z4wxjBy5EisWbMGEolEsJwtJk+ejBUrVmDMmDEAmvu8uLg4FBcXQyQSISgoCG+//TZkMhlqa2uxatUqFBcXQy6XIyYmxmrH9N27dzF79mwA/1zELxaLkZqaiuzs7A7XUqPRYOXKlSgvL4ezszPi4uIwbNgwq+X08/PDd999Z/KXqd69eyMlJQVlZWVYu3YtysvLwXEcQkNDsXjxYohEIqvlfFTWlJQU7Ny5s8PHka1rmpqaCrlcDn9/f/zyyy8m1yhdvnwZ69evR3V1NSQSCebNm4fp06cDsO64+1F905EjR2zeTjvNhIoQQgghhBBCbK1TnPJHCCGEEEIIIUKgCRUhhBBCCCGEWIgmVIQQQgghhBBiIZpQEUIIIYQQQoiFaEJFCCGEEEIIIRaiCRUhhBBCCCGEWIgmVIQQQgghhBBiIZpQEUIIIYQQQoiFaEJFCCGEEEIIIRb6L+9ipcz8GRcFAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pm.traceplot(trace_1);" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdmc_errorhpd_2.5hpd_97.5n_effRhat
thetas__0_00.2995420.0634000.0004540.1800920.42488920003.9998500.999805
thetas__0_10.6008380.0686220.0005410.4720580.73820719574.8080760.999795
thetas__0_20.0996210.0420640.0003440.0268690.18156918288.5029470.999783
thetas__1_00.4895480.0709770.0005020.3502170.62842920746.7312570.999894
thetas__1_10.4701140.0707910.0004890.3316580.60729820348.0175080.999843
thetas__1_20.0403390.0277680.0002090.0012380.09406614794.8105350.999792
thetas__2_00.4649760.0395880.0002900.3924150.54705919608.4267560.999818
thetas__2_10.4114800.0387780.0002810.3345160.48597218898.4592160.999768
thetas__2_20.1235430.0253750.0001830.0747360.17204218301.1593570.999839
thetas__3_00.4582660.0577010.0004770.3459770.56968818225.2178430.999807
thetas__3_10.5140340.0580930.0004750.4044470.63051618565.1185560.999820
thetas__3_20.0277000.0193530.0001750.0006000.06572914321.8963380.999856
thetas__4_00.3994270.0670300.0005540.2587010.52295916948.5977890.999917
thetas__4_10.4806800.0692710.0005660.3382050.60657816740.1323620.999915
thetas__4_20.1198930.0457410.0003860.0376060.20892916741.3020540.999967
thetas__5_00.4428960.0514090.0003550.3405100.54167716794.9921030.999927
thetas__5_10.4437660.0512020.0003530.3428520.54423417767.4474600.999845
thetas__5_20.1133380.0320960.0002450.0549360.17664117639.1284720.999845
thetas__6_00.5043380.0454770.0003140.4160450.59192117878.9183810.999851
thetas__6_10.3860660.0440390.0002610.2977010.46782619335.3573141.000018
thetas__6_20.1095960.0285890.0002070.0563380.16496416620.5021720.999871
thetas__7_00.5471440.0406030.0002910.4634090.62317021752.9227230.999914
thetas__7_10.3379820.0384730.0002780.2665990.41898522648.0269520.999949
thetas__7_20.1148740.0265020.0002160.0636480.16576519394.1591430.999853
thetas__8_00.5416700.0986250.0007020.3533110.72864519817.1416040.999922
thetas__8_10.2902400.0892770.0007410.1283120.46694816702.7762010.999845
thetas__8_20.1680900.0767630.0005550.0364070.31533516327.3245420.999965
thetas__9_00.4645140.0490930.0003430.3727420.56541819773.4180661.000055
thetas__9_10.4041980.0482110.0003640.3085980.49726619121.9722341.000018
thetas__9_20.1312870.0339760.0002520.0712560.20154717608.7753310.999766
thetas__10_00.5094670.0499200.0003660.4151250.60691220384.7678450.999815
thetas__10_10.4022750.0493780.0003410.3048230.49650719864.9802780.999888
thetas__10_20.0882580.0281370.0002130.0364670.14340319072.8053190.999927
thetas__11_00.5514840.0360770.0003040.4803870.62099917971.9796290.999792
thetas__11_10.3511470.0348320.0002750.2864760.42070218751.0595910.999881
thetas__11_20.0973690.0214510.0001670.0564570.13762516655.4387901.000040
thetas__12_00.4870540.0818560.0005720.3316270.64683722317.8872670.999806
thetas__12_10.4592730.0817350.0005850.2967600.61488121613.9406810.999836
thetas__12_20.0536730.0359550.0002970.0010500.12378114369.6788310.999780
thetas__13_00.5251850.0566980.0004530.4147820.63770318713.5520460.999923
thetas__13_10.3498900.0530090.0003690.2466890.45298818417.3295621.000012
thetas__13_20.1249240.0371070.0003100.0555960.19704315360.9167670.999979
thetas__14_00.5355230.0445780.0003150.4472260.61973522608.2285390.999809
thetas__14_10.3701300.0430780.0002890.2841010.45328722849.6049540.999792
thetas__14_20.0943470.0262090.0001700.0461320.14673218450.8546020.999785
thetas__15_00.5466020.0519710.0003730.4467910.64723618513.3231810.999907
thetas__15_10.3605660.0500000.0003420.2635800.45582317212.5577550.999999
thetas__15_20.0928320.0304670.0001950.0389940.15431719788.4077140.999775
\n", + "
" + ], + "text/plain": [ + " mean sd mc_error hpd_2.5 hpd_97.5 n_eff \\\n", + "thetas__0_0 0.299542 0.063400 0.000454 0.180092 0.424889 20003.999850 \n", + "thetas__0_1 0.600838 0.068622 0.000541 0.472058 0.738207 19574.808076 \n", + "thetas__0_2 0.099621 0.042064 0.000344 0.026869 0.181569 18288.502947 \n", + "thetas__1_0 0.489548 0.070977 0.000502 0.350217 0.628429 20746.731257 \n", + "thetas__1_1 0.470114 0.070791 0.000489 0.331658 0.607298 20348.017508 \n", + "thetas__1_2 0.040339 0.027768 0.000209 0.001238 0.094066 14794.810535 \n", + "thetas__2_0 0.464976 0.039588 0.000290 0.392415 0.547059 19608.426756 \n", + "thetas__2_1 0.411480 0.038778 0.000281 0.334516 0.485972 18898.459216 \n", + "thetas__2_2 0.123543 0.025375 0.000183 0.074736 0.172042 18301.159357 \n", + "thetas__3_0 0.458266 0.057701 0.000477 0.345977 0.569688 18225.217843 \n", + "thetas__3_1 0.514034 0.058093 0.000475 0.404447 0.630516 18565.118556 \n", + "thetas__3_2 0.027700 0.019353 0.000175 0.000600 0.065729 14321.896338 \n", + "thetas__4_0 0.399427 0.067030 0.000554 0.258701 0.522959 16948.597789 \n", + "thetas__4_1 0.480680 0.069271 0.000566 0.338205 0.606578 16740.132362 \n", + "thetas__4_2 0.119893 0.045741 0.000386 0.037606 0.208929 16741.302054 \n", + "thetas__5_0 0.442896 0.051409 0.000355 0.340510 0.541677 16794.992103 \n", + "thetas__5_1 0.443766 0.051202 0.000353 0.342852 0.544234 17767.447460 \n", + "thetas__5_2 0.113338 0.032096 0.000245 0.054936 0.176641 17639.128472 \n", + "thetas__6_0 0.504338 0.045477 0.000314 0.416045 0.591921 17878.918381 \n", + "thetas__6_1 0.386066 0.044039 0.000261 0.297701 0.467826 19335.357314 \n", + "thetas__6_2 0.109596 0.028589 0.000207 0.056338 0.164964 16620.502172 \n", + "thetas__7_0 0.547144 0.040603 0.000291 0.463409 0.623170 21752.922723 \n", + "thetas__7_1 0.337982 0.038473 0.000278 0.266599 0.418985 22648.026952 \n", + "thetas__7_2 0.114874 0.026502 0.000216 0.063648 0.165765 19394.159143 \n", + "thetas__8_0 0.541670 0.098625 0.000702 0.353311 0.728645 19817.141604 \n", + "thetas__8_1 0.290240 0.089277 0.000741 0.128312 0.466948 16702.776201 \n", + "thetas__8_2 0.168090 0.076763 0.000555 0.036407 0.315335 16327.324542 \n", + "thetas__9_0 0.464514 0.049093 0.000343 0.372742 0.565418 19773.418066 \n", + "thetas__9_1 0.404198 0.048211 0.000364 0.308598 0.497266 19121.972234 \n", + "thetas__9_2 0.131287 0.033976 0.000252 0.071256 0.201547 17608.775331 \n", + "thetas__10_0 0.509467 0.049920 0.000366 0.415125 0.606912 20384.767845 \n", + "thetas__10_1 0.402275 0.049378 0.000341 0.304823 0.496507 19864.980278 \n", + "thetas__10_2 0.088258 0.028137 0.000213 0.036467 0.143403 19072.805319 \n", + "thetas__11_0 0.551484 0.036077 0.000304 0.480387 0.620999 17971.979629 \n", + "thetas__11_1 0.351147 0.034832 0.000275 0.286476 0.420702 18751.059591 \n", + "thetas__11_2 0.097369 0.021451 0.000167 0.056457 0.137625 16655.438790 \n", + "thetas__12_0 0.487054 0.081856 0.000572 0.331627 0.646837 22317.887267 \n", + "thetas__12_1 0.459273 0.081735 0.000585 0.296760 0.614881 21613.940681 \n", + "thetas__12_2 0.053673 0.035955 0.000297 0.001050 0.123781 14369.678831 \n", + "thetas__13_0 0.525185 0.056698 0.000453 0.414782 0.637703 18713.552046 \n", + "thetas__13_1 0.349890 0.053009 0.000369 0.246689 0.452988 18417.329562 \n", + "thetas__13_2 0.124924 0.037107 0.000310 0.055596 0.197043 15360.916767 \n", + "thetas__14_0 0.535523 0.044578 0.000315 0.447226 0.619735 22608.228539 \n", + "thetas__14_1 0.370130 0.043078 0.000289 0.284101 0.453287 22849.604954 \n", + "thetas__14_2 0.094347 0.026209 0.000170 0.046132 0.146732 18450.854602 \n", + "thetas__15_0 0.546602 0.051971 0.000373 0.446791 0.647236 18513.323181 \n", + "thetas__15_1 0.360566 0.050000 0.000342 0.263580 0.455823 17212.557755 \n", + "thetas__15_2 0.092832 0.030467 0.000195 0.038994 0.154317 19788.407714 \n", + "\n", + " Rhat \n", + "thetas__0_0 0.999805 \n", + "thetas__0_1 0.999795 \n", + "thetas__0_2 0.999783 \n", + "thetas__1_0 0.999894 \n", + "thetas__1_1 0.999843 \n", + "thetas__1_2 0.999792 \n", + "thetas__2_0 0.999818 \n", + "thetas__2_1 0.999768 \n", + "thetas__2_2 0.999839 \n", + "thetas__3_0 0.999807 \n", + "thetas__3_1 0.999820 \n", + "thetas__3_2 0.999856 \n", + "thetas__4_0 0.999917 \n", + "thetas__4_1 0.999915 \n", + "thetas__4_2 0.999967 \n", + "thetas__5_0 0.999927 \n", + "thetas__5_1 0.999845 \n", + "thetas__5_2 0.999845 \n", + "thetas__6_0 0.999851 \n", + "thetas__6_1 1.000018 \n", + "thetas__6_2 0.999871 \n", + "thetas__7_0 0.999914 \n", + "thetas__7_1 0.999949 \n", + "thetas__7_2 0.999853 \n", + "thetas__8_0 0.999922 \n", + "thetas__8_1 0.999845 \n", + "thetas__8_2 0.999965 \n", + "thetas__9_0 1.000055 \n", + "thetas__9_1 1.000018 \n", + "thetas__9_2 0.999766 \n", + "thetas__10_0 0.999815 \n", + "thetas__10_1 0.999888 \n", + "thetas__10_2 0.999927 \n", + "thetas__11_0 0.999792 \n", + "thetas__11_1 0.999881 \n", + "thetas__11_2 1.000040 \n", + "thetas__12_0 0.999806 \n", + "thetas__12_1 0.999836 \n", + "thetas__12_2 0.999780 \n", + "thetas__13_0 0.999923 \n", + "thetas__13_1 1.000012 \n", + "thetas__13_2 0.999979 \n", + "thetas__14_0 0.999809 \n", + "thetas__14_1 0.999792 \n", + "thetas__14_2 0.999785 \n", + "thetas__15_0 0.999907 \n", + "thetas__15_1 0.999999 \n", + "thetas__15_2 0.999775 " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.summary(trace_1)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 1000/1000 [00:01<00:00, 960.74it/s]\n" + ] + } + ], + "source": [ + "with model_non_hiera:\n", + " ppc_non_hiera = pm.sample_posterior_predictive(trace_1, samples=1000, vars=[thetas, post])" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1000, 16, 3)" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ppc_non_hiera['thetas'].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.03206413, 0.03206413, 0.11523046, 0.04809619, 0.03206413,\n", + " 0.06513026, 0.08016032, 0.1002004 , 0.01503006, 0.06613226,\n", + " 0.06813627, 0.12625251, 0.02304609, 0.05310621, 0.08617234,\n", + " 0.05711423])" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "proportion / np.sum(proportion)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 17., 23., 95., 27., 15., 32., 56., 73., 14., 45., 51.,\n", + " 112., 15., 40., 64., 52.])" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ppc_non_hiera['post'][0, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "diff = []\n", + "\n", + "for i in range(16):\n", + " result = ppc_non_hiera['thetas'][:, i, 0] - ppc_non_hiera['thetas'][:, i, 1]\n", + " diff.append(list(result))" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[-0.26980898, -0.23141623, -0.24449352, ..., -0.12200188,\n", + " -0.50776797, -0.13584611],\n", + " [-0.01775869, -0.04502462, -0.06671272, ..., 0.16036084,\n", + " -0.12880336, 0.16525048],\n", + " [ 0.10781733, 0.17692549, 0.09324814, ..., 0.16421782,\n", + " -0.04678985, 0.18552823],\n", + " ...,\n", + " [ 0.23109658, 0.2585616 , -0.12535769, ..., 0.26713797,\n", + " 0.07612264, 0.262102 ],\n", + " [ 0.21515438, 0.32335733, 0.23051151, ..., 0.03288159,\n", + " 0.27377512, 0.04011775],\n", + " [ 0.18442349, 0.25988253, 0.00884456, ..., 0.34105401,\n", + " 0.14567319, 0.23388622]])" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diff = np.asarray(diff)\n", + "diff" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(16, 1000)" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diff.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(16,)" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "proportion.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "res = np.sum(diff.T * proportion / np.sum(proportion), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [], + "source": [ + "# res" + ] + }, + { + "cell_type": "code", + "execution_count": 288, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAG5dJREFUeJzt3XuQVnX9B/AP+6zuxV1ak42GVkJFGaMJLFMRfzqZhcDaZcpJG2FybHQCzVs5lFrmFSy0qchLaqHYpE1lMxKUIKEiJU5Uow0o6eZlgvGGsLEgl/P7w3E35OK3Pc9td1+vvzjnuXw/z4d9vue955w9Z1CWZVkAALBXNZUuAACgLxCaAAASCE0AAAmEJgCABEITAEACoQkAIEFtqQd46aWNpR4iWVNTXXR2bql0GVVBL3roRQ+9eJM+9NCLHnrRoz/3orW1eY+PDag9TbW1hUqXUDX0oode9NCLN+lDD73ooRc9BmovBlRoAgDoLaEJACCB0AQAkEBoAgBIIDQBACRICk1bt26NWbNmxahRo2Lt2rXd6x9//PFob2+PE044IaZOnRrr1q0rWaEAAJWUFJqmTZsW9fX1O63r7OyMCy64IK6++upYunRpHHfccTF//vySFAkAUGlJF7ecPn16jB07Nn784x93r1u0aFGMHj06xo4dGxERZ599dmkqBACoAkl7mt4KRv9t9erVsf/++8f06dNjwoQJceGFF8arr75a9AIBAKpBr2+jsmHDhnjkkUfi7rvvjmHDhsVll10W1157bXzve9/b6XlNTXVVc+XQQqEmWloaK11GVdCLHnrRQy/epA899KKHXvQYqL3odWhqbm6OcePGxfvf//6IiJg6dWp8+ctf3uV51XRvmpaWxli/flOly6gKetFDL3roxZv0oYde9NCLHv25FyW591xbW1ts3NhzM95CoRCFQnXsUQIAKLZeh6aJEyfG448/HqtXr46IiHvvvTfGjRtXtMIAAKrJOx6ee/nll+OMM87oXp4yZUoUCoWYO3du3HjjjXHuuefGoEGD4tBDD42rrrqqpMUCAFTKO4amIUOGxMKFC3f72NChQ+OBBx4oelEA76RpcEM01PX6tMx39PbzGrq2bIvODV0lGw+ofqWbcQBKqKGuNkbMKN8FdTtmTo7Oso0GVCP3ngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCgttIFAPQFm7duj9bW5rKO2bVlW3Ru6CrrmMCeCU0ACer3KcSIGfPLOmbHzMnRWdYRgb1xeA4AIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQICk0bd26NWbNmhWjRo2KtWvX7vL4rFmz4sQTTyx6cQAA1SIpNE2bNi3q6+t3+9iqVati0aJFRS0KAKDaJIWm6dOnx/nnn7/L+h07dsQVV1wRF1xwQdELAwCoJkmhaezYsbtd/4tf/CIOO+ywGDNmTFGLAgCoNrW9feFLL70Uc+fOjXvvvTc2btxYzJoAAKpOr0PTddddF9OnT493vetdew1NTU11UVtb6O0wRVUo1ERLS2Oly6gKetFDL3roRfWp9P+Hn4keetFjoPai16FpyZIl8ec//zlmzZoV27dvj9dffz3Gjx8fS5YsiX333bf7eZ2dW4pSaDG0tDTG+vWbKl1GVdCLHnrRoy/1orW1udIllEWl/z/60s9EqelFj/7ci73NLb0OTStXruz+9wsvvBBTp06NBx98sLdvBwBQ1d4xNL388stxxhlndC9PmTIlCoVCzJ07N4YOHVrS4gAAqsU7hqYhQ4bEwoUL9/qctrY2e5kAgH7NbVQAABIITQAACXp9IjjAf2sa3BANdaaUYtq8dXtZ/0qwa8u26NzQVbbxoK8xwwFF0VBXGyNmzC/beB0zJ5dtrEqp36dQ9p52lm006HscngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkqE150tatW+OGG26IO+64I5YuXRrvfe97IyJizpw5cf/998eOHTvi8MMPj6uuuiqam5tLWjCQpmlwQzTUJX3Fd9La6jsMsDtJM+q0adPigx/84E7rFi5cGAsXLoxf/vKX0djYGBdffHHcdtttceGFF5akUOB/01BXGyNmzC/beB0zJ5dtLIBKSDo8N3369Dj//PN3WnfIIYfEddddF01NTVFTUxNHHHFEPP300yUpEgCg0pL2NI0dO3aXdYceeuhOyw899FB89KMfLU5VAABV5n8/4WE3brrppnjllVdiypQpuzzW1FQXtbWFYgyTW6FQEy0tjZUuoyroRQ+9gB5v/y74fvTQix4DtRe5Q9Ps2bNj2bJlcfvtt0dj464N7OzckneIomlpaYz16zdVuoyqoBc9+msvnNBNb7z9u9Bfvx+9oRc9+nMv9jZ35gpNP/zhD+Mvf/lL3HnnndHU1JTnrQAAqlqvQ9OTTz4Z9913X9x3330CEwDQ771jaHr55ZfjjDPO6F6eMmVKFAqFOPLII2Pjxo1x6qmndj/2vve9L26//fbSVAoAUEHvGJqGDBkSCxcu3O1jV199ddELAgCoRm6jAgCQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAAS1Fa6AACqw+at26O1tXmX9btbVwxdW7ZF54aukrw3lILQBEBERNTvU4gRM+aXbbyOmZOjs2yjQX4OzwEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQICk0bd26NWbNmhWjRo2KtWvXdq//2c9+FhMnTowJEybEpZdeGm+88UbJCgUAqKSk0DRt2rSor6/fad1f//rXuPPOO+Oee+6JBQsWxCuvvBLz5s0rSZEAAJWWFJqmT58e559//k7rFi5cGJMmTYrBgwdHTU1NnH766bFgwYKSFAkAUGlJoWns2LG7rOvo6Ijhw4d3Lx944IHxzDPPFK8yAIAq0ut7z3V1dcW+++7bvVxfXx9dXbveeLGpqS5qawu9HaaoCoWaaGlprHQZVUEveugFVE5f+u6ZK3oM1F70OjQ1NDTsdOJ3V1dXNDbu2sDOzi29HaLoWloaY/36TZUuoyroRY/+2otS3Zkeiqkvfff661zRG/25F3ubO3t9yYGDDz54p8Nxa9asiZEjR/b27QAAqlqvQ9PEiRO7/2pu27Zt8fOf/zwmT55czNoAAKrGOx6ee/nll+OMM87oXp4yZUoUCoWYO3dunHXWWfHFL34xsiyLY489Nk4//fSSFgsAUCnvGJqGDBkSCxcu3O1jU6dOjalTpxa9KACAauM2KgAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCgttIFwEDRNLghGup85QD6KjM4lElDXW2MmDG/bON1zJxctrEABgKH5wAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkCB3aPrVr34VkyZNiokTJ8aZZ54Zzz77bDHqAgCoKrlC0z//+c+4/vrr46c//WksWLAgPvnJT8Y3v/nNYtUGAFA1coemESNGxNChQyMi4phjjomnn366KIUBAFSTXKFpzJgx8dxzz8VTTz0VWZbFH/7whzj22GOLVRsAQNXIdRuVoUOHxkUXXRSf+cxnoqmpKerr62PevHnFqg0AoGrkCk3/+Mc/4qabbopFixbFsGHD4re//W185Stfifvvvz8GDRoUERFNTXVRW1soSrF5FQo10dLSWOkyqoJe9NALqJy+9N0zV/QYqL3IFZqWL18eRxxxRAwbNiwiIiZNmhSXXHJJvPbaa/Hud787IiI6O7fkr7JIWloaY/36TZUuoyroRY9y9aK1tbnkY0Bf05fmIfNmj/7ci73N1bnOaTrooINi5cqV8dprr0VExNKlS6O1tTX233//PG8LAFB1cu1pOvHEE+PJJ5+ML3zhCzFo0KBoamqK73//+92H5gAA+otcoSki4rzzzovzzjuvGLUAAFQtt1EBAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAly37AX+qKmwQ3RUNfz49/a2lzBagDoC4QmBqSGutoYMWN+WcfsmDm5rOMBUFwOzwEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEiQOzStW7cuzjzzzDjhhBNi8uTJsWLFimLUBQBQVXKHphkzZsTxxx8fS5cujcsuuyzmzZtXjLoAAKpKbZ4X//vf/44nn3wybr311oiIGDduXIwbN64ohQEAVJNcoWnVqlXR1tYWs2fPjiVLlkRra2t885vfjA984APFqg+Afmrz1u3R2tpctvG6tmyLzg1dZRuP/idXaNqwYUM89dRTMW3atJgxY0bce++9ce6558Yf/vCHqK19862bmuqitrZQlGLzKhRqoqWlsdJlVAW9ACqtfp9CjJgxv2zjdcycHLU55j3zZo+B2otcoam5uTkOOOCAOOmkkyIi4tRTT41Zs2ZFR0dHjBw5MiIiOju35K+ySFpaGmP9+k2VLqMqDPRelPO3W6B65Jn3Bvq8+d/6cy/2tn3IdSJ4W1tb/Oc//4kdO3ZERMSgQYOipqYmampcyQAA6F9ypZvDDjsshg8fHr/85S8jImLBggXR3Nwcw4cPL0pxAADVItfhuYiIH/zgB3HhhRfGrbfeGgcccED84Ac/6D6fCQCgv8idbtra2rr3NAEA9FdOPgIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASFBb6QIAoBw2b90era3Nud7jf3l915Zt0bmhK9d4VBehCYABoX6fQoyYMb9s43XMnBydZRuNcnB4DgAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCgKKHpj3/8Y4waNSpeeOGFYrwdAEDVyR2aurq6Yvbs2dHS0lKMegAAqlLu0PTDH/4wPvWpT8V+++1XjHoAAKpSrtC0evXqePTRR+NLX/pSkcoBAKhOvQ5NWZbFt7/97bjssstin332KWZNAABVp7a3L7znnnti5MiRceSRR+71eU1NdVFbW+jtMEVVKNRES0tjpcuoCnoBUHr9dZ4dqNuQXoemxYsXxxNPPBFLliyJiIhXX301Pv/5z8f3v//9OOaYY7qf19m5JX+VRdLS0hjr12+qdBlVYaD3orW1udIlAANAf51n+/M2ZG/bh16Hpp/85Cc7LZ944olx5513RltbW2/fEgCgarm4JQBAgl7vaXq7Bx98sFhvBQBQdexpAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAgqJdcgDyaBrcEA11fhwBqF62UlSFhrraGDFjftnG65g5uWxjAdA/ODwHAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkqK10AVSnpsEN0VDnxwOgtzZv3R6trc1lG69ry7bo3NBVtvEGIltFdquhrjZGzJhftvE6Zk4u21gA5VC/T6Hs82hn2UYbmHIfnlu8eHF8+tOfjokTJ8bpp58eTz31VDHqAgCoKrlC07p162LGjBkxe/bsWLBgQbS3t8e3vvWtYtUGAFA1coWm2tramD17dowcOTIiIj7ykY/EmjVrilIYAEA1yRWaDjjggDj++OO7lx966KEYM2ZM7qIAAKpN0U4EX758ecydOzfmzp1brLcEAKgaRQlNixYtiquuuipuvvnm7kN1b2lqqova2kIxhsmtUKiJlpbGSpdRFfQCoP8p17w+ULchuUPTo48+Gtdcc03ccccdccghh+zyeGfnlrxDFE1LS2OsX7+p0mVUhXfqRTmvLQJAcZRrG9eft6d72/7lCk1dXV3xjW98I+bMmbPbwAQA0F/kCk2LFy+OV199Nb72ta/ttH7evHkxZMiQXIUBAFSTXKGpvb092tvbi1ULAEDVcsNeAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACWorXQBpmgY3RENdcf+7Wlubi/p+ANCfCU19RENdbYyYMb9s43XMnFy2sQCgLxCaAIBeKcVRkL3p2rItOjd0lW28txOaAIBeqcRRkM6yjbYrJ4IDACQQmgAAEghNAAAJnNMEAP3A5q3by3opmYF42RqhCQD6gfp9CmU9KTti4F2exuE5AIAEQhMAQAKH53qp3Bf0AgAqy1a/l9zWBAAGFofnAAAS5NrTtHz58rj++utj06ZNMWzYsLjuuuvive99b7Fq+5+kHi4biH8iCQDk1+vQtGnTprjooovitttui9GjR8ftt98eV1xxRdx8883FrC+Zw2UAQCn1+vDcn/70pzjwwANj9OjRERFx2mmnxSOPPBKdnZW8lR4AQGn0OjR1dHTEgQce2L283377RUtLSzz33HNFKQwAoJoMyrIs680L58yZEy+++GJce+213es+/vGPx6xZs+LII48sWoEAANWg13uaGhsbY8uWLTut27x5c+y33365iwIAqDa9Dk0HH3xwPPvss93Lr776arz++uvx/ve/vyiFAQBUk16HpqOPPjrWrl0bjz/+eERE3HXXXfGxj30sGhsbi1YcAEC16HVoqq+vjxtvvDGuvPLK+MQnPhF///vf41vf+lYxa0u2fPny+OxnPxsTJkyIM888M9auXbvLc1atWhWnnXZaTJgwIU477bRYtWpV92P33ntvTJ48OU4++eQ466yzdvv6viJvL94yb968GDVqVDlKLom8fVizZk2ceuqpccIJJ8TnPve5WLNmTTnLL6q8vbjlllvi5JNPjokTJ8a5554bL730UjnLL6qUXmRZFrfffnuMHj26+5fCt8yfPz/a29tjwoQJcd5558XGjRvLVXrR5e3FQJs399aLt/T1eTMify/609y5W1kf95///Cc75phjsieeeCLLsiy77bbbsnPOOWeX55188snZAw88kGVZli1YsCBrb2/PsizL/va3v2Xjx4/P1q1bl2VZls2cOTO76KKLylR9ceXtxVvWrVuXnXLKKdlhhx1W+qJLIG8ftm3blk2YMCH7/e9/n2VZlv3mN7/Jrr322jJVX1x5e/HII49kn/jEJ7INGzZkWZZl3/3ud7OLL764TNUXV2ovLr/88uzSSy/NjjvuuGzFihXd61988cXs6KOPzl588cUsy7LsO9/5TnbllVeWp/giy9uLgThv7qkXb+nr82aW5e9Ff5o796TPh6bFixdnp556avdyZ2dnNnr06Gzjxo3d61atWpWNHz9+p9eNGzcuW7NmTfb8889njz32WPf6RYsWZZ/61KdKX3gJ5O3FW7761a9m8+fP77Nf/rx9WLFiRTZ58uSy1VtKeXtxxx13ZBdeeGH3+ocffrhffz+yLMtWrlyZZVmWfexjH9tpg3DnnXdmF1xwQffy008/nY0bN67EVZdG3l4MtHkzy/bci7f09Xkzy/L3oj/NnXvS5+89l3K9qI6Ojmhra9vpdQceeGA888wz0dbWFh/96Ee71z/00EMxZsyY0hdeAnl7EfHm5+/s7IxJkyaVp+gSyNuHVatWxbBhw2LGjBkxYcKEOPvss+P5558vW/3FlLcXRx11VKxcuTLWrl0b27dvjwceeCCOPfbYstVfTKnXlhs7duweXz98+PDu5eHDh8crr7wSr7/+emkKLqG8vRho82bEnnsR0T/mzYj8vehPc+ee9PnQ1NXVFXV1dTutq6uri02bNv1Pz4mIuO++++Lhhx+O8847r3QFl1DeXmzevDlmzZoV3/72t8tSb6nk7cOGDRtixYoVcfrpp8eCBQvi8MMPj0suuaQstRdb3l6MHj06PvOZz8SJJ54YRx11VKxYsSLOOeecstRebKnzwN5ev++++3Yv77vvvjFo0KDo6uoqap3lkLcX/20gzJt701/mzYj8vehPc+ee9PnQlHK9qJTn3H333TFnzpyYO3dutLa2lrboEsnbizlz5kR7e/tOv033RXn70NzcHIcffniMGTMmampq4swzz4yVK1f2aoNSaXl7sXjx4li6dGksW7YsVqxYEaecckp8/etfL0vtxZb32nKNjY3xxhtvdC9v2bIlsizrk38xXKzr7A2UeXNv+su8GZG/F/1p7tyTPh+aUq4XdfDBB0dHR0fs2LEjIiK2bdsWHR0dccghh0RExK9//eu4++67Y968eTvtmuxr8vbiwQcfjLvuuivGjx8f48ePj4iI8ePHx7/+9a/yfpCc8vahra1tp7+KKhQKERFRU9P3vi55e7Fs2bL4v//7v9h///2jpqYmJk2aFCtWrCj75yiGvNeWO+igg7oPY0dEPP3009Ha2hqDBw8ueq2lVozr7A2keXNv+su8GZG/F/1p7tyTPv9JUq4XNXLkyGhtbY37778/It7cndzW1hYHHXRQrFu3Lm644Ya47bbbYujQoRX5DMWStxfz58+PRx99NJYtWxbLli2LiIhly5b1uQuW5u3D+PHj47XXXouHH344IiLuueee+PCHPxz19fXl/zA55e3FQQcdFMuXL+8+BLVkyZI49NBDy/9BiiDvteVOOumkeOyxx7o3KnfddVe0t7eXrN5SytuLgTZv7k1/mTcj8veiP82de9Lre89Vkz//+c9xzTXXRFdXVwwfPjxmzpwZO3bsiLPOOqt7Q7B69eq4/PLLY/369XHAAQfE1VdfHYccckjccsstcfPNN+/0xa+tre1+XV+TpxdvN2rUqFi9enW5P0JR5O3Dk08+GZdcckm88cYbMWzYsLjqqqv67O73PL3YunVrXHfddfHwww9HTU1NtLa2xhVXXBEjR46s8KfqnZRetLe3x7Zt2+L555+P97znPVFXVxfXX399fOhDH4rf/e538aMf/Si2bdsWH/jAB+Kaa67ps7eOytOL5cuXD7h5c28/F/+tL8+bEfl70Z/mzt3pF6EJAKDU+vzhOQCAchCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJPh/AhPfbjGZtUAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 6))\n", + "_, _, _ = plt.hist(res, bins=18, edgecolor='w', density=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Modelo jerárquico**" + ] + }, + { + "cell_type": "code", + "execution_count": 282, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
regiondensitybushdukakisotherproportion
0NortheastI0.2980.6170.0850.032
1NortheastII0.5000.4780.0220.032
2NortheastIII0.4670.4130.1200.115
3NortheastIV0.4640.5220.0140.048
4MidwestI0.4040.4890.1060.032
5MidwestII0.4470.4470.1060.065
6MidwestIII0.5090.3880.1030.080
7MidwestIV0.5520.3380.1100.100
8SouthI0.5710.2860.1430.015
9SouthII0.4690.4060.1250.066
10SouthIII0.5150.4040.0810.068
11SouthIV0.5550.3520.0930.126
12WestI0.5000.4710.0290.023
13WestII0.5320.3510.1170.053
14WestIII0.5400.3710.0890.086
15WestIV0.5540.3610.0840.057
\n", + "
" + ], + "text/plain": [ + " region density bush dukakis other proportion\n", + "0 Northeast I 0.298 0.617 0.085 0.032\n", + "1 Northeast II 0.500 0.478 0.022 0.032\n", + "2 Northeast III 0.467 0.413 0.120 0.115\n", + "3 Northeast IV 0.464 0.522 0.014 0.048\n", + "4 Midwest I 0.404 0.489 0.106 0.032\n", + "5 Midwest II 0.447 0.447 0.106 0.065\n", + "6 Midwest III 0.509 0.388 0.103 0.080\n", + "7 Midwest IV 0.552 0.338 0.110 0.100\n", + "8 South I 0.571 0.286 0.143 0.015\n", + "9 South II 0.469 0.406 0.125 0.066\n", + "10 South III 0.515 0.404 0.081 0.068\n", + "11 South IV 0.555 0.352 0.093 0.126\n", + "12 West I 0.500 0.471 0.029 0.023\n", + "13 West II 0.532 0.351 0.117 0.053\n", + "14 West III 0.540 0.371 0.089 0.086\n", + "15 West IV 0.554 0.361 0.084 0.057" + ] + }, + "execution_count": 282, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "valores\n", + "data" + ] + }, + { + "cell_type": "code", + "execution_count": 280, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 42., 45., 146., 68., 41., 84., 104., 129., 19., 84., 90.,\n", + " 165., 32., 68., 113., 76.])" + ] + }, + "execution_count": 280, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "menos_uno = np.round((1 - data['other'].values) * data.proportion.values * 1447)\n", + "menos_uno" + ] + }, + { + "cell_type": "code", + "execution_count": 204, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 15., 42.],\n", + " [ 24., 45.],\n", + " [ 88., 146.],\n", + " [ 33., 68.],\n", + " [ 21., 41.],\n", + " [ 47., 84.],\n", + " [ 66., 104.],\n", + " [ 90., 129.],\n", + " [ 14., 19.],\n", + " [ 51., 84.],\n", + " [ 55., 90.],\n", + " [112., 165.],\n", + " [ 17., 32.],\n", + " [ 46., 68.],\n", + " [ 74., 113.],\n", + " [ 50., 76.]])" + ] + }, + "execution_count": 204, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "nuevos_valores = np.round(np.stack([valores[:, 0] / (valores[:, 0] + valores[:, 1]) * data.proportion.values * 1447, menos_uno], axis=1))\n", + "nuevos_valores" + ] + }, + { + "cell_type": "code", + "execution_count": 476, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/subtensor.py:2190: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", + " rval = inputs[0].__getitem__(inputs[1:])\n" + ] + } + ], + "source": [ + "with pm.Model() as model_hier:\n", + " \n", + "# rho = pm.Uniform('rho', lower=-1, upper=2)\n", + " rho = pm.Normal('rho', mu=0, sd=0.6)\n", + "# mu = pm.Uniform('mu', lower=0, upper=20, shape=(2,))\n", + " mu = pm.HalfCauchy('mu', beta=1, shape=(2,))\n", + "# tau = pm.Uniform('tau', lower=0, upper=5, shape=(2,))\n", + " tau = pm.Beta('tau', alpha=4, beta=4, shape=(2,))\n", + " \n", + " covariance = tt.stack([[tau[0]**2, rho * tau[0] * tau[1]], [rho * tau[0] * tau[1], tau[1]**2]])\n", + " \n", + " beta = pm.MvNormal('beta', mu=mu, cov=covariance, shape=2)\n", + " \n", + " alpha1 = pm.invlogit(beta[0])\n", + " alpha2 = pm.invlogit(beta[1])\n", + " \n", + "# diffe = pm.Deterministic('diffe', 2 * alpha1 * alpha2 - alpha2)\n", + " \n", + " alphas = pm.Dirichlet('alphas', a=tt.stack([alpha1, alpha2]), shape=(16, 2))\n", + " post = pm.Multinomial('post', n=np.sum(nuevos_valores, axis=1), p=alphas, observed=nuevos_valores)" + ] + }, + { + "cell_type": "code", + "execution_count": 477, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "rho -0.41\n", + "mu_log__ -2.29\n", + "tau_logodds__ -1.21\n", + "beta -0.45\n", + "alphas_stickbreaking__ -25.34\n", + "post -105.64\n", + "Name: Log-probability of test_point, dtype: float64" + ] + }, + "execution_count": 477, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model_hier.check_test_point()" + ] + }, + { + "cell_type": "code", + "execution_count": 478, + "metadata": {}, + "outputs": [ + { + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "%3\n", + "\n", + "\n", + "cluster2\n", + "\n", + "2\n", + "\n", + "\n", + "cluster16 x 2\n", + "\n", + "16 x 2\n", + "\n", + "\n", + "\n", + "rho\n", + "\n", + "rho ~ Normal\n", + "\n", + "\n", + "\n", + "beta\n", + "\n", + "beta ~ MvNormal\n", + "\n", + "\n", + "\n", + "rho->beta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "tau\n", + "\n", + "tau ~ Beta\n", + "\n", + "\n", + "\n", + "tau->beta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "mu\n", + "\n", + "mu ~ HalfCauchy\n", + "\n", + "\n", + "\n", + "mu->beta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "alphas\n", + "\n", + "alphas ~ Dirichlet\n", + "\n", + "\n", + "\n", + "beta->alphas\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "post\n", + "\n", + "post ~ Multinomial\n", + "\n", + "\n", + "\n", + "alphas->post\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 478, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.model_to_graphviz(model_hier)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/basic.py:6592: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", + " result[diagonal_slice] = x\n", + "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/basic.py:6592: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", + " result[diagonal_slice] = x\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [alphas, beta, tau, mu, rho]\n", + "Sampling 4 chains: 16%|█▌ | 2568/16000 [00:46<06:16, 35.72draws/s]" + ] + } + ], + "source": [ + "with model_hier:\n", + " trace_2 = pm.sample(draws=2000, tune=2000)" + ] + }, + { + "cell_type": "code", + "execution_count": 448, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAANUCAYAAABv2sZ/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzsvXewJNd52PvrnnTjZuwC2EUiQAE0g2hJpoIZQAAURFoSVbKEp6ciXFBwWY949UjalGmyipLDHyZpusp6svTssksmnkQ+SSzRIg1SIIglFgsQOW5ON+fJufM574/u6eme6Zk7d9NFOL+q3TvTffr016d7Zr7vfOFoUkqJQqFQKBQKhUKhUCgS0bdbAIVCoVAoFAqFQqF4PaOMJoVCoVAoFAqFQqEYgjKaFAqFQqFQKBQKhWIIymhSKBQKhUKhUCgUiiEoo0mhUCgUCoVCoVAohqCMJoVCoVAoFAqFQqEYgjKaFIptYnl5mdtvv51z585ttygKhUKhUPShfqcUii7KaFIoFAqFQqFQKBSKISijSaFQKBQKhUKhUCiGoIwmheIqcfvtt/O1r32Nu+66iy9+8Yvh9sXFRX7zN3+T97znPdx7770cO3Ys3Dc/P88//af/lJ/+6Z/m/e9/P5/+9KcpFovbIb5CoVAo3uSo3ymFYjDKaFIoriLf+c53+PM//3P+7b/9t+G2r3/963zlK1/h2Wef5dChQ3z5y18GwLZtfvu3f5vrr7+ew4cP8/DDD2MYBp/+9Ke3S3yFQqFQvMlRv1MKRTLKaFIoriL33HMPBw8eRNO0cNt9993HoUOHmJiY4O677+bChQsAHD16lGKxyL/8l/+Sqakpdu3axWc+8xleeOEFFhYWtusSFAqFQvEmRv1OKRTJKKNJobiK3HDDDX3bDh48GL4eGxvDtm3Ar1p03XXXMTk5Ge6/9dZbw30KhUKhUFxu1O+UQpGMMpoUiqtIJpPp2xadzdsMKSUAjuNcNpkUCoVCoeigfqcUimSU0aRQvE654YYbWF1dpdlshtvOnz8PwE033bRdYikUCoVCAajfKcVbC2U0KRSvUz7wgQ+wf/9+vvKVr2AYBqVSif/4H/8jP/mTP8ktt9yy3eIpFAqF4i2O+p1SvJVQRpNC8Tolm83yJ3/yJywuLnLnnXfy8Y9/nP379/Onf/qn2y2aQqFQKBTqd0rxlkKTneBThUKhUCgUCoVCoVD0oTxNCoVCoVAoFAqFQjEEZTQpFAqFQqFQKBQKxRCU0aRQKBQKhUKhUCgUQ1BGk0KhUCgUCoVCoVAMQRlNCoVCoVCMiOM4fPnLX+b2229nfX19u8VRKBQKxVUivd0CbJVCobHdIigUCoXiIrnmmuntFuGS+OQnP8m73vWuoW0u9XdqaipHs2ldUh9XAyXn5UXJeXlRcl5e3kpyDvqdUp4mhUKhUChG5MEHH+RTn/rUFT1HOp26ov1fLpSclxcl5+VFyXl5UXIqo0mhUCgUipF573vfu90iKBQKhWIbeMOF5ykUCoXi6uLOz9H4wy8w+cn/i+xP/+x2i/O6Z2oqd0mznamUzq5dE5dRoivD5ZJzvtTCdAQ/tn8KXdcug2Rx3mrjeaVRcl5e3shyWmfOIEyjr23m0A3oU1OIVmtgf/rEBPr4+FWR83KhjCaFQqFQDMSdn6P2qf8DgNQNN26zNG8MLjWefteuCarVduI+zayQLp8FKXt2aLi7344c3wuA7Vk03RZ7cnsuSZaLlTMJb3EBb2mR1M23kDp4KNz+3LkCAONSsHM8k3hsy2mR0lOMpcYui5yekKSugIF2KWx1PLeLKy3nsdU6huPx0zftvqR+LklOu0W6cg5339+DVC62S0rJKys1ik2bA9M5fvzgzu2T8wojbRsZGD6TTotGtWsESeEhlpcgm6Xhwmyxzbuvm0a3LfS6gWy3kc3B+Z1au0TuujHc/T8OqWy43ctvgOEbYtquXWTe+e4tyXw5xnNQTpMymhQKhUKRiLRtGl/4fUBj5//9/5C6/uB2i/SWR2+uoTfXEWO74tutGqnMJG5gNB0rv0bNqfKha+8irV/6T71oNKjOL3Jm6joO7Rrnxt1bnyH2SkWk0UaUyzGjqYMjZMJRPi8Un8WTHh84cCfZiIJ1MSxWDE6vN/jArXuZyCZ7BD3pAZDS3hh5HG8ECk2Ll5dqfOi2vYxlBo/rWs28ilIlk67NkqotIMZ2I3beHNs3W2pTaNgArNct3nO9RNMurwEumk2k0SZ1zf7L2u9WcY69iqxWALAncnhtC/RIZk8mS+Yn/wEXCja161ysm3YzceoVRKUCrou+/1pSh/o/697qCtrJM7hnmnjrNnK8x0DOZtHSGcTGOgRGk2g1Eaur4YSRNjV11X+TlNGkUCgUikSMrz+Et7TIjq/+Eembbt5ucRSAJgVST+PceGdse3bmeyBF+L7mVAEQUuAJiSskufTFpzE7L79Is9ygedsu1jTtoowmPN8Q6fOSBbieSNwOXSMmb25waPKGrZ87wkrNn8W2PcEEycr7j9aPIhDced3dl3SubcMJQqYylz/8KYpemweIGRZ6ax3NbuLtvg2A5arB6Y0m2ZT//FUNh2s1h9zsIzgHfwYxee0VlbEXzSiFHtmBCP9502T/M2k43pUQK4bz7I8ASN1z7xU/1yCklMhqBW3PXlIHrkUvrZH5e+9F37Wrr63IlwHfnkoduBZveQlyOVKHDqHv6R9rfc9e0uMFdKOMs//HETujUQwaWi6HOzuDN3sBKX2j1Ftawl6cJZ3JgSdA02jtm2a1vczbd95+VSY4lNGkUCgUij68xQXaf/41cvf8vMpjCigWi3ziE58I399///2kUikeeughDhw4cHWEkB5oCcaPpoeKHsCxlToAP3ON4KWVCnXD5d53bD5rbToexZbNoV09yrboKo/uAI+QlJJT1RPYwua2HW9nOrMj3sAbrmwOcTSR0lJ40sMV7tA+BqFZNaSWhuwkXuREXiGPpuvoe/fF2jvSuajzXFGES2btedw9dyDHh4dd5ua+D4D1Y78ycvdau+iHpF3zHmR2aqRjMhuv+ueJGE2ZlWcBQqNpvW4hhMSMPJ+a5T+fqcrMQKOpoyxvlVT5HGLyANCf15KqzqKdeYp2MUv6gx9F35EcWle3XKyGxb6Ej0y6J6xTAklSyo5HJOEa2rbHXKnF9FiGyenBIadSCDT94ic77OeeQTbqZH/uA2gTW8vz6XiYtPEJUgcPMfnOH8NJCHtrWi4N0/9cLlYM3nXDjZuGcjueIJPNoHkZtFwWLZcwBmnfRLGPHkFLp1kvzVGwNnj3r34KfWEJb/YCq2efY2WvZO/YNVwzds2Wru9iUNXzFAqFQtFH+//9M0inmfw/P73dorxu2LdvH4888giPPPIIZ8+e5Qc/+AGPPPLI1TOYwDeMkmZUtVTM09Sh2raoG6MbGqc2Gpxca9Cy+4/pOIgcTyBdF+nG27i1OdZbS5StEtXicTSj1CP7YE/SZuiBuiISrnEUsguPk5v/AUDMaHJfewXnlZcuWq6LwZ2bRZRLm7aTjoOo18L3mmugt/Jk1n15NbOK3lztO05IiekmG6hnNhqhgutJj7yxEe5Ll89i/vBxxNmXt3Q9myFJsIb14BmWHggXzfQV9FPr3RyYYUY0gHPiGNZjj/acTJIuniK7eDTxGM1u4lWb4Np+CNkATq41ydctcE00q0569flwUmIq5yvzO8bTnVPG8WzS+WP8cOVRTlZPBJfpYT32fdzFBQCKLZvlqsnp9QaPnByySLYQiFYT6WzdiJeOg2z4xqlsB8aOF+/Hy28greRwSBlMcqSuvW7oec7mm+HrlapJpW0jpeTw6qPM1C/0tV+rm/zwXJGWFcgywPOs796Ntms3+p69aBOT1I0NEBLDa0NgiMoLF5g8OYtw7aEyXi6U0aRQKBSKGN76GtZjjzL2S7/SNwOv2Gak6CqcUTQ9NJqcYpGJZoGcU2W2vLWE6JblK0pJeoxEgvRzj+wjh2k+9oPuTruFvv4i6cosAHrxNNmlJ2PGlewxmqpth++fzsf734S55gym11Xymk6Dul0feky+YYb5UppVjxlNSTiuid5Y2Vxrv0i8mfM4L7+4aTvnpRdwnn82YY8vV3bxCJnV5/v2nt5ocm6j5V+z261sZrmC/LFTnHjyBQAu1M5xvPIaVSswHoLcN+dCv6J7KUQLbujCJmWUut5S4ZFZe4Hs4hPgOSxVuvKKAcp0uH99DQY9M7LzHMu4d1LTIDWC6hso5enyOfRTj+GdeAnNiVeC2zWgaEm6fBa9fIF0+Rwb7cCoDT4D3rkzvuybXFsHb+Y8zjM/Cp8Dr5D3vUeR45tOk1Ygm+l43X0Rz65EopkVcjPf9Z/tAPfYq9gv9D9D/kFBP73jJSV4XSPF7gmrFRIWqy2khKXWQl+3pZZ/rGEP9zzr0zvI/tT7yL1tP5nrJsg1VvAa69jCCfOqhBRkqg2keXXy4JTRpFAoFIoYxl9+HTSN8f/tN7dblLcsliu4UGjFlCMApEBKmG/M4YjurLGTr+Bs5GlaLu3nn+dtx15mR2uBStvG9Jq0vCqOcMLcoK0jsTwLKQVCSISQMaNCQ/iKYCBTxwCynzyCfeSw38iLe6YWq/2ligefvXuu4+VXw9fPFZ7hhWK/YWF6ZuhFeW6uzIWCr1RmF37Izsb5oecS5TOkmmvo7Y2+fYbjYbsX7zGL4gk3ZgBGkUL0Vx4boGhnlp4Cz0ZIwUprmXyzFfQvyM1+P2ynAWOri+TWlxGNBvLll8HzYs8RQKq5tqnslit4bqGSWLxDSol1YdmvgtbDgcoLTK0/HXpLNSnQzHKw93KMayBPYPScr5/lifUfbtlDKYOAO4nEOjOHu1EOJyU6t0EP28Rx5hcxXjjN1IkZdj19LLn/Ee1xb2nRb2/4kx/uyRO+9yji5X2u8DTPFn6E5QqeuFAKPT+rjSVOVI6FRqNm+nmOetufqHA9h5JZAtOg3Lb5/um8n6/VEU7Gx7JDqnyG3Mz3wPWf3d5JiI2Gxcm1Omt10/+eGHDtC+UWixUDZ0guI/jhntnSCWxXUmu2WKm2wop+snNfr8z8Rh/KaFIoFApFiKjXMB/+Nrmf/yip/Vcx7EwR48Ranfn5Vao/+C7SdfGWFpGeh4ak6DWZaZznQv1c2N6ZW2H1pdP8aLYMbhs9UFYcYTJvHmO5+TxHVx7l5eILeELy/dN55kpt5upL/M/zj/cbZz2Yrslye4aS7c8cJ7UWEaVXBC1cx+XUWoOnZku8uljB9WR4dG/F75EVyYjhVzMcyq240i/qNc5+7884UeiG3TkRQycXFMkYqGiVTvt/e5RF1xMcvVDiydnNQ+uSyKw+R+7c34bvXyq9yI82EsLIpKD28rOs1QfMnvcMlG4USdWXKJlFztROUbSWY/tFuYQoFtE0qDhrNNwK7vmzpOot0vV2aJDKqGHRY2SIRgPR6oZhLVbaVNtO6DWIN5Z4pRrusVf7xM26nT46ivlghbncdljYoqe0d2zWDT/0zRUJ4W1S0nJafUZjFCFBC4yD0HsV7nMp2At9HlQvXwQg1YyOTVwub9SHPcLJ9QYNyzeACg2TJ2dKMY9Vx/goBvdkvek/B3W7ztNLhykW48/Fhfo51owVGnad5ap/je2VY+TOf3vgfVmuGrx66jSekGiev7TCmfpztKpPoAXj48shKTZtXlutJobodai2HZ6bLzNTHLyeEwDpFPaeKWrX7aRhtmNGI4DgyhfnAGU0KRQKhSKC9egjYFmM/9r/tt2ivKURUrL//JNkl1/GO/ky7tnTeDO+8uFKDyTYscIKOmZQ1aszuau7HrXlp0k36uytniZdPEndqYeFHM7lm/zt2eeYr5aoGh0PUQS7q8g4wkYiMd3+dVcajQJSSrxA0dJNC+bzSClZqRo4QtKyPDTPi1Ue2yzJXzOr6I3+nJ0oC2WD5R6PlTc7g2u2SNVHU7i1dimW6+GFo9CVr2Y4vPDKi6TdNiutGf7i2F+N5HGKGqN6jwenYta4UGgxX2zw4unzHD7jewBSxdOUjj9BuVpjdGRoTDbs+HU7L7+I86pvQLa9KhVnI7g6DbSIFy+myMfvjfPc0zjP/GioBO7cDNbRI0h7hPybBKOhN2Tt1eUas8ur6PXFzfvrdgyAPbNC6/v/k/G1F9GNUszQtlxBI8inebbwI54vPLNZd4GA3ZA/gCXjAgV7gbwZCTF1XaRhIpHYnkAKaDh1XOH5nye7FfahaXDN9Ojl85crBjOBx/TUeoO27fHcQiWUse32PO+BMdd2W0xcWKL+UicMz7+3HWMxOtmRq88Fx7qRa+8+C/OBEetEDEWtNUe7eYydrRkAJusXuHG96+Gcb87GxOp0m3O63yXV0mo4vun8MdL5uIdO0zTsG6/B3JNj19pRsNs0TJdzhkAadTIDctguN8poUigUCgXg/5Cb/+vbpG+/g/Tbf2y7xXnLk3EDo8X2Z4H9ZHCJh2SlZvLyYr2rlGtad3ZY+krO7sUqN595httffZJdy1W0IEwnaU1XrUdJ1swaufkfkKr4hprE13NTniTV6io769V5zj3yNYqnXgyNjYkzi1CoIZpGt9JeWEmse44kOaSUVNr+THl28QiZtQH5FiMipWRfcUgfjkGqNkdm4+XoQf7fyHpQz8/m2dM4w4HqCxjNF2HjBHMrww06d+YC9uFHkZ7HbH2GpmfFjKhSy6ZteVTOPcX0+jPYLT+3SLeqgBber4hgQy5UbNqq304JwsvCHZGqgmsrvgG0BY+IN3MBbAvrXNfICQsQhGfwz9m2nb6wLE/QVyzk+tLT6BeeQtSqNC13sPcNAkXfV7zdQpXFlRMYwkZzjJjRtFgxWI2sBdUJkbSf+RHWj54EQAvG4sRqneONDZqeGXpSXq08S83Jh94NicR78n+hHX8Ub+YMSIHhCBqmS8Nyeb7wLGerp0mX/H8El6lpGtNpSdbrN+4TK1RG7kWnSEPdcHG8wKsrbK4rPcOh1b/zi7AkGqaC5ar/udQ6H81og06u2YAw3s73hCck7aBYzLgZGOHB+abqZ/uewd7nKOt08xCzbpO9hedIF3xDKVWdJVWNG1r+uX1c6ZG+8Vo20hPUr9mLaBX8e38VUEaTQqFQKABwz5zGm71A7hc/vt2iXDS2bfPlL3+Ze+65hw9/+MMA/Pf//t+Zm5vbZsm2TrhGTI9HRkhJuW2jaVo3rUjT0IIZ42zNz9nRXYGGrwCONayh5+qtaqy5ftiWHlTA64Ru7ZlfYMfJroHRavuKvllYD0PyYrkpgbKUrlejb/1zJhRqXqwYPL9QJd+wcEVQBa5H4Wq5LVbnXsEyGuxZWme64OfESNdFf+6vySx3PSJSSsasYvzaogphx5iLJPnLdM7/GyvtHoQUCpdMoOTqMiE0TUo0w5fHWVrEE5KaUWauOcMz7Rnm7K4snpRMWBtMWIWw766QWl8d6yTjprtziNerMoMdqbKnCduXM3gfehoi4+yeOgm2NTRmcmdzBpmk3HcqL0qJRMa6yMsaM3ae5+bKnF5vAhIh4HyhSe2559n94pNMzJ+Plc+3Ts7hvPAcP5otc2yljiiXsB4/3Hfa3IWHyS78MHxfsmuhHF0vloYlHZbtBWxhxa5btppgtGMKvoegbLdZdCrMlVosV9sYbpsV62z3YymB+WO4r75AduVpdLMc5vJ0jJ9ixBvlHyLRNdiZf5YD60di+5arBifXGqHneK4xy4nKsViu0WR9oc+ozjdmyTk1pOzmLUHUoyuptWxOl4s8vzIb+16JvmoJC9Np05sfFumQmUKbZ+aq8WvqtJP9RV1632uyK7subD8M0u73YkfpfF/UDJcnV9s073gvItU1/B1PcHqjgieuXKieMpoUCoVCAYD13W9DLkduGxdUvFQ+//nPYxgGf/zHf0w263sKbr75Zv7gD/5gmyXbGv6Mbk+YmKb5CqAmgxbdn3AZMUE04Svzsl/v9rcPn8QO+pMcX2kw15NTkjGtYL9PR1XXNMLwPNBwQ4+B33L6rD+LPFvy+9PsZoJRAO1AUWw7Hmc3GpzbaPmzyK5Lpugraelak7UXH+P4se+xo1Bm71KQt3L2NM6584haN/cmqSJf1q6Qdeo4QnSNzugACN9QyxS7nryTrac47/nhddPrVcaqBhr+OjjWDx/DevibAKSqM2SXjlIrrnBspc6JtQYiYqTlI5X+hJDk3BpORIH0pMdjlZepyhahJ8iyMF2L7yw+zrJd6ebYxAZPJN9sYK52lpn8C6QaK0wZy0wZa+itDbTAKJQRZbzbX/+4OZ6fCzdf8g3MnYvHka+cQTouTcvltZU6LduLj3lPP4uiwJJbppvT5HssDFuwtujfx1x+lVx+zT/W6fcguDMX+oqKdNDczuSAjBiScYOyIpsIJCWjiGY1yKy/hGaUMB2PatuJFTboeE88KThdyHPhxRPoVpOUsIjaTCEDKvP1hqJ2jknb/SGY+aZ/DaerZ6lYFVpuMzggMPDNKvtfeoQd7fnYcV7kOUqXzpJqdMJBu0UthOuxYBzjfOWVmDBa038u1xs23y+f5en8U3GhpPQLP2gMNqRl4svw3N2uEvZuwaO5Ikp40g1DigFkqcHZfJPHlp7klbWZkfvaKspoUigUCgXScbAOP0bugx9GnxptYcvXI6+++ir/+l//a97xjneQSvkVuu655x7K5fImR76+cIXDortKU1iARqp4Cv2lb/NY5WVmzW5OSjftoBueF01FSBMvT+56ksWqgSYcpoxuYnivzvLyoq/M5QMPlRQdP1Kv8hdslf6sPIDtCvINi7rhRCXsYtXJzj/GeH0WXTgcKhwh6/jnCyuSySBcKzjLxNkFJs8uoJsWWqBIu80ehTNYy6bhdHOcBpUxz7p1XptfZ25pHgDDcUmVzpAqnYVKndxancnzy2H1MoCq9I2xHRs1di8HnrNGHa22SLpyDvvx70IQYndiYS0cVDvikcoUugZd50KPi25Z5ppdxfUEFa3r+XLPn+Vsvsp8ucXpdp5y2+alF47Erq1oVzmy9BJt26PzBFwotDhXaGIGuSvedx5CD54RzeiMnTa81HvnwRACx/GfhaWKgYZGquL3IR03VPRrhoMlHOasYph7l9R/0nORdiJjIyXjy3NkT8/2Hz+qgm12PU0d6qYTe4S1wIjV2wXO5lssVIzAPgk8pCtdj42zdJLx5Tn2nXqePfXTCNtg/4VFtFqk5H1n/aCIGONzq2hSo2G5WK5AGgZapTzIxvUnTKTEETYr7aWwv4I5hyXaIBza0qLtBgVJOhMUQdlt2xU4QiJrS7F+W5bHStkg7ZlMV0+SanWrG+Zee5F0o4blSiotB8txaXbKeGtQnX+J2iv/E004LHhrnPbiRSX8ZjKUtbM8QYd+o6jfiNSNMpq1eR6fRFJwlsMDpQTWKziexJU2jrhyazYpo0mhUCgUOM8/i2w2yH3kjetlAshmsxSL8XCsSqWyadGB1xuWaGNjU3AbSCnQnHYYIufJIOxOi/+Edy6xbXmk0ZGaxpQ2Fu6XwHKlyUy+yd7GKfbVTpAOQs0GKSvZtXXc5SUkEk24/sy7lDSDJO7QaEILFSPH89WndlC+2JUWJXsx9Lhojq+Mpa0qY3aJtGey/9UfkHrisfAaeosCaJ2FMIUMFVqZEDYE4IxQSUuic235BcatEm3b48xandbKcdKl09SOz2HPB2sXDVn/Rdd07PoSc/UZ38vWqONVouPoy3kqWOAUQHO9WP6Fhl9AQ2sbpDyTk/l1Gq8ts6vq+Hulr3warl850fYEyxWTqeZibBmpM81Z1mpmWFodgGoTdza5fLhZbaAH4xWW404yRgIDNFU6Ra7QTc6PGjKelJzP++fVNFi1qzSFxZnqqVifu5rn0DqhU9H8nODvVHMuDJ1Mt5uMrS0lixUNIxxlLS3phYU+irU2YwXfyBEDSpyvG2vURdCm1W0ztVHoXDAAubk5JupN9Fde7esjSm61QMq0qbQcNuoW3uG/JnvyVT9EctSvJQlFZ4miNUfDtlgTFZabLyFtgz0/eoldT73G2Esn0Ou+4Xl6rcFKkLfVOUWhp5rfRrNTCdMP1dQtMwzxvVBs8Z3zfi5gqjbPxvwpHl2/wEr7LEVRpSkN9tdejX1OO8d6UlKXkfA+Bk9eQNebB6C3+svUR4agr78gfRNburjBPb6SX/XKaFIoFAoF1uFH0XbsIPNT79tuUS6J3/qt3+JXfuVX+MM//EMqlQpf+cpXuO+++3jggQe2W7Qt0fnh9xCIQqG7Q8pwp9Z5330HQNPy6J3J7TBdPsbu5jlSwWys7jncePwkuWPfIVWd7VNQM+t5nFMnkUjGWstMG6u0RIXF5jxVq9KvDHmCbNNAIsKQoqZbwRQtDNGzCG2xTLrmewD1VhsJZK0yU+2lWK+llkU0nEsLywN2VZiZ+gVKTiUue7mOCBLmNdPCePU8MvBSSU1DCzwwtifIzC1irPmyVA2nWxkvMVfIP3/G3KBQOY1hVWgE+THOuVms80ux0U9Xm6TqXWMmVZn117oK+srVTVIXFth34XHK9Qrj1Tb6APWs3B4wix6T05cvtVpAL3eNuA23O/7LNYOM7i/OaoRV1+JhdVq7RG7+UTSjnBwSGMrUDZPS0MICA537L6Xf365IFbWupyluPE23F9GkIFuK5ABJKJtl3B4PQsv2OLnWYH1YcQhAb5fJzPnV3PSVNYIYs1ipcOnZTLcX0KXH6eoJZp05gDB/rStKRMEPy15rm5cQj+YPVZb9j7EbqTLoGKQ3XiWz8nTfoVJAw/bQJBhTE1Tb/rOWEg6ZdgXqy+hGiUxtFs2IjIWUOJ6M5TR1SLdtNKv32ZaxfCDD8ydG0oWTAJREg7KzHu7PuC1eWqqG12an/AiFRa/IoijEvIlJ4XemdDACL2xbWjjSwxqwblkv3Svy+y25LWZbpwDCyYArwVUxmhzH4ctf/jK333476+vriW3OnDnDb/zGb3DvvffyG7/xG5w5c+ZqiKZQKBRveaRpYj11lNydd6Nlkle5f6Nw33338ad/+qdMTU3xkY98hImJCf7oj/6IX/u1X9tu0bZEN2coSRnTAj1luHIgtZ4gKOlzKlrpAAAgAElEQVQfkTIWMKSvsOnCI9du4s2v+XlGA2RZrjWwXcGYsHGFiwTsYEFV6IbV6a4XDxuMKUuSplsOq5Vpcwvkzh4jL6ph1a7U+uNM1l6JKVkvL9Xi08cdT1Ok/N58c5a5Rkcp94sL5DZKtM/7Cl+qUEFaNl61c416OMNdN1xS9QZiod8r00kw74x1SjikOwZnJOwueie8cp299VPhTZw8u8D08chaNdLl5HqDatsBKUnbLvMij2ba6J5JGOCk9eeG9HrghqH1lP4u9JSL14PQzeX2EsfK/d4SLQiX6/NCdsY//jY4qCd/R/r5KpboXYcn6qHoknPqZNz4c2hJl1VjmSXrVGy7YfsKfqk9uMS5bjrseGUF7/hcn7CdV44neXHlccbsKuNWnsVKvIR9r6SuCPLHAqNrvV3mmeoChrCxOzGlPbepYZqsijJNaVAVBtnmEkjJnFOgLS1yc98nVZtHb8ULRgDUTJdq2wYkIp1ixd4Iz6ELm4bpIh3TfzZ6zrtWM8k3+g3tydN5po/HS7k33RKveP5zGvX+JBWC6FBuObhp31hacVcAaIuEojOeRWbpKJrdQEr/u+mMWOaEt4AlTU64CxxpnuXJ8kv9xyagJ3wMSqYfYfCGN5o++clPMjY2NrTNZz7zGX73d3+X73//+zzwwAP8/u///tUQTaFQKN7y2M88BYZB9u6PbLcol8zGxgYHDhzgn/yTf8KDDz7Ir//6r7N37142NgaHfbw+6Simkn7VuUNixlB0dxzXw3EEJ9xZTrl+svS0sexntUiJ1HwlOmlWuFMGvLc0OaZFsJZlKHEwj0+5ZceUDCmh5m5wttH1OGy4qyzaG37UHfCKtcAJb4GW1V/hDvzcqTAubYAyV2o51FfPIht5Tq++EPYhkdRNByGC0L7NDBDPJp0/xun1euJu3UlakDNah6y/fz+k0K96mLZsdqzWurdXCyO/wqBH2xUgZViefWj+Ecltko7QhYvtCZovXUAIKJj55JYy+Tr6noPuJUDED2A7JiutE+RLf0tLdpVpTQqElJjCSZTP9JphOGpnvxcY+qJeG3hdveimiwBcI14pDwhL+a/VTE6WOgsWazTMSJGJ3lkHCAtFdAyLpVoZ15Ms1JrMFduYjhdWvus8ouvzBUxs8rLGiWYBt7aOJ2yW3TKnnWWclQLCsHrOJdHsFqKzhpiEtGeCsR5pJSOt+8m4LWphwYR4CyvwpnY+7y03Xg1PS/h8aFp3myltXNk1WItu73dsxEA99z2qpXXSxY7hq4UFUGzZb2SJcLIiGS3BfOlcz5UMxb4qRtODDz7Ipz71qYH7z549S6PR4J577gHgF37hFyiVSszMXLkKGAqFQqHwsY48jrZ7D5kf//vbLcol86EPfYg777wz9u+uu+7il3/5l7dbtJF5rfAqBWslVJxjRMKw+hRXCXW3QFkGHoUe5WHHsTX2XCgEqf+Beis8NDw/30HXWTXPc7r1JFLzSzMH3cYUqGhojPPiCVaqBq1g1h/XCuXSaw1aCQudCjy8ii+jkC7Xntnoy09aq7dpB8rUknmmm38iBBNzq3FBOvIEloXp+G2NVo1MpUH6lTPojRZ1w2W11lHQotUJk9GNMmJhhkyr64E6662ErzNmMemw/n4a6+itPGPLVX9xquBar5lbYarUJBMqtf3K3tl8K1Lcwc9/8vNFkkl7BroXH/OORyZK1q6x0bCw2yatTolwMVhJ9ekdL1/eY9YSF9rPh206iqXmtnm28DRW+WnG7Ao2Ubkkc2KdJ+qnfQ+JJ8LuJ1rnqVoztIxzYWu9vsze2nE02wqliK61BFB2W6w7cQNXpnUqLZu1nvweAG0lOfIpvFYhYmMSLfGQa1mkjPj5OxGdhuOv0xRl50b3WemGfvq9StfDWc5jnujXefVWnrF29/mbNHrXBouH5zZFm/kLL5A5dhbNk4zbJVIiXvFy8CUntzgbKV4SnVA57i0w234pfJ6zCQtfAxSbNjOlFssVExHK0b0Ti8bJ8HXne2a22ObJU/Ok118mibR0GbNLZJyuF3S83tx8IuQSSY/S6Etf+hIf+9jHeM973nNRJ3nve987dP/8/DyHDh2KbbvhhhuYnZ3l1ltvvahzKhQKhWJzpG3jPPs02bs/gpZKbX7A65ze0O5arcbf/M3fMDk5uU0SbZ211hpW7QQTno2GRtNyydoeLdsl9fQMY7sn4LbrgbiOoEsHa+3/oypbpEmRadtANtZ3JphFj3oPck4DMtOATsn2jYKSu8GiN897RC44R7TkWPDarKGVzoC+F8vxmASy5TYSf6w1VyCloOXFc40AnOU8Vber/HekGSs0aad1Vq1zlLxF/n7qbdS9UthubLXACOpfSKoyi2QfeIKa0VVkhZYKq/CF20Q87KzD3uqrdOaY67JN50nqbbdcMxhrLHFgOhc0kJhei6zrh3tlN0DetiNs31EQx4OcHIlEBEU+ghYYXp3ZmWfQp38+3HrWW+EnU7f5MktJqeWQ0jaAW9jdOMd0ugDs615XxxsxQKFcmy9g37AP0tHPfzeHrMNG3Sbr1LDrBuOLy+imBVloShNb+Ncw1lyic1f1Vh5NSlKu0Veaw/RaVGULs51DZiWaYcZCUifNdTKkQQ+uw3NICZub1h8Fbx9kI9FLgYwvGQt4QnLn5B3dXX0rKA/3QkyYG+wIQuHS86vhUNhet6S7lLBnrox2zQFSnoWmx0OavWFrZnVEkNH7EfwV/v2vmy7jgOZ1PqtBcQzHDb24kYsP/0okG16FdNPA0SdIOXG/3yZ+6a755QpufOUcjb37YC84rox9jaTdbviiK21Snn/vxuzO5zw+xqtVkzs8SSri3JWD7oOUzFgF2naOg8WnSOV20Aj6j0q/qzXHtUaVkrGEKwQ5dPYtrZGyHXjXPxh6nZfCSJ4mTdP47Gc/y1133cVXv/pVTp06tflBW8AwDHK5XGxbLpej3R48m6JQKBSKS8d56QVku0Xug3dutyhXhJ07d/Lbv/3b/OVf/uV2izI6wiFndos/zJVqnG4UaNkuLcsl1eqGypWtModXH8VKWGhVFzIxnEtDMl5pxYoE4Amajz1GquzPFreCJHAHp0/ZDtWd6iIS/BwUCdKyya3W0TSwcFiWJaT0SHsGaTceyiaEIG/2lt8WTK3U2LNQwbZ9L4BABspepzLGEIW0T0Em7KMqW7Gx0GyL7Ln5WLum5fklqXvQNI2s25/vFVX8WrZHw3SxIh4GR1qU7fmEGm0aMpVC1+Lz1l3F0Je06VYoOyvk2zXMp5/pOzsS8k3fi9K0XNJeUOnO6z4LeVH1l9gRgqrRNRLrsqv4ap5gpWpAXyU63ycZvf/Xl55hz/xhyourxJTjoInuGrHwKOElK+q29BVhTwhEoUJmtr+EdfTIuumgWw66YZEuHI9o35K8sYwXVN1bqZr+2l5JnSRs0BIWQs3ZVbJOA73Z1UEbptvJNCO88xpMWhtM9Xh/2kGBBVeP67W9eF4n/FDiCYnpeKw/cQzT8fzPVTM+Jtefme2/Htl9YsotBy1huHXpodktck4ltj/qMdYAreTnOGVMh5xTYaLaXWC3Q8qN53ulvTa6GJRTJsk6ddKiW0kv+pnJ9Dz/QvqLHB9vxj2Az7Znea49m2j0SySmI2jbLumOV3vYd8QlMpKn6XOf+xyf+9znOHPmDIcPH+Zf/at/hWVZfOxjH+MXf/EXL9kbNDExgWXFYxpN03xDzQwqFArFGxHr6BG0iUkyP/FT2y3KZaE3d0kIwZkzZyiVSgOOeB3SoxxU3AK6NBgnG9F0JLrjkjd9BaM1pLpZ2G2k/z2LRdLShtu7+91miRtaZ1i8473I1J7wVHlznaZbYkfk+Fh/4Fe06+R6BNvqGGSkwYQVGIBjbwvbG66gLUzQfTVEQBB66BsDexpnSFTFBkyWj8+ukK40sFwv1tbxBCVRpypbZLQUaRnkCNl2YihP2+pXojVgR2u+/6R2V2+xXQERh4MnPYSQjFsFKsJmz2Q2Uu1QQ/O8cB2xkGo9vLyWNKh5BVJSYhsGk+PJ1y2ERGsZiBxMWSt9+5uYZNFxeoyXomiA3fFkQM6uoFtdhdYRknLDwlhtkHKK3BJsTxXKpItlmHx3WO45hpRheKYnJGc2GkyLTu6M38RyBdl0Vx4RLE7caZDUretJdqxUSRsSdo2h1+ZB7sEQDRbb55hr9Bigg8K0ooahcNDbheR29D/jbbcIbRPZcy+i8upt/3NYk61wR6HR8yRrfoWPyfYSru0bY2t1y39esv2+jPaBaQiWmdMi8qdNl7a2xjh+aOCg/McpYwVdczB6qg/qVgVtfBrNqgMT5Op17H3+8WlhM2Ws0LT+PqtjZYRIB26WeP+7mhf6JivC0EQJO1tz/svUTQB4wsPoKwri99rJYaqb/QsXS+JVGrvbZfecaemP7XYbTR3uuOMOpqenyeVyfOMb3+Ab3/gGP/jBD9i/fz//5t/8G2644YaLEuJtb3sb8/PzCCHQdR3XdZmfn1eheQqFQnEFkZ6H/dRRMj/zc2jZ7OYHvAH40Ic+hKZ11wzSdZ39+/fzz//5P99mybaGlvCqQ9N22bu4yoFqGXHDzwCwahcZE4JsuxOS08nASFIe/W0CwVShX4EZtwowsSd8X6rNxqpV6TF/CKBpiTP2A9OGpL8r67WIxW11lOYh3gGtG99DLeI5ya35OSPRXBLbE9ieYDrtWzOO9DgrFhkX1zCtvzMWrqQHaydpCVP1AwO6Ts5DQkTrmlPjZc9k2hlnMvAAdnxlmtTCDtNmO1yXCECzHL8NEi+QbdLyJwGcsVuA/oJaMl8hM7NCJpWCsQGWFZukekjJjvYi7O7e8/WaiW26pIBypdE1mtaKkOlX7HXPpXcwwsy5SJl8gKblsiNrR56fTvtkSsH6QtmWDbrfTjQLZLwxWpo/fo6IK9qnrXW0dH+5ipwRMSy9fuV8GGNOHUEdxoNxThhUvep7aEuyAZrvaTJ6wkDRwMGluPy/OFBqI66dRoh4uGHKM8OPhshGVXUZDtS+uRJ2+mh0z1YiV315G8vomQZMXdu/T3q40mVNVBAi1bdQNnQ+j4OKgkQM4+D18dYcp50N9ns3JVYGzTo1epafQ+IvqLw3ZrJEM8x62m+am3fxjGQ0lctlvve97/Hwww9z7tw5PvzhD/PFL36R97///WQyGb773e/yqU99im9961sXJcRtt93GNddcw8MPP8wv//Iv87d/+7ccOnSIW265ZfODFQqFQnFRuCePI6uVN1Vo3ptxuYpOOW8RzCS3bY+xcgP0MZZLLcS4h6xU0KRg79yQjnqUvGVRJNcMKuZ1LBkkGbcVSS+XpIwCU5HZX104NEwXoUmQEqGlSVrPSGqx4uNx+ipcyZgBETX2bnrlDKm9074hGFxD0/Iol5pM9PTiVzaLn7OzFoxfIGMXZdlkWtPQApkFAg9JWssgZ+OhVg3PxJEJBmEgZZLaVnSbQA7dbfSNud6y6Ch8O1oLMZtRIBhf75Scjh9XddaBm2NnBiCI0tFth0xaJBzpi2C4vdfQL3e0nHkYhCaH6eEaq2aDdCvNHSefhF139vWbMSyuO79O5YZdaJMO151Zo3TzHury6fCcTWExK9a5MbWXNBl6lfCul8z/WzUcv7riVLJU66LKTimwLEG+YbGjcz1SYnm27wViF5rZzbVLqhTn4A5YL0v2/B3MoCqDS6JI2vSNLz/3sGs07TjxErub5yh2PJfD0rDkkLeJ4kkmSvGJEk+K+DpTvdX9Y++HTyqcbT3DzZHAv/AcwZNechtIJpi3TrBbeqS0VBhaCX5J/+j6axDkGkoo0S00UZdtdva6/PCANHibL259sYxkNN1111383M/9HPfffz933XUX4+NxQf/RP/pH/M3f/E3iscVikU984hPh+/vvv59UKsVDDz3E7/zO7/Dwww8D8NWvfpUvfvGL/Of//J/Zu3cv/+E//IeLvSaFQqFQjIB19AhkMmR+5me3W5RL5r/8l/+yaZvf+73fuwqSXDq5mRWmlyokB6kErwLFwrI9GtJmckDyeVTF6eg7HQXRL8bsG01rosIB+mebM24LO6IpeAjG23Osir2U6Yb7ZGqzgF/QKaZoDnBx9KYfdbKvOj4sN7ievjT+IDxJSJioNaIdYBVnaTl7+86VNKNtC4uqbLFLm2RZFHERvE2/FmrxCmDzdonC+nH2rtYo3bqvr59BaK7ohiUGuEIgVyoYO68ZmAcytbxGZCnfkIzb6lHsA69csRp5F9/XfTdcud8/t0zrbdDy7IhSGFWi/WIkUToGriM8plZbmMLFEWbgVfLbmK4ga/pG3XjVIKX5oWsTlTb2lO+FsVxJNVhA1pAO0/SvE9eRxEPSlAYp1zeVJ81VHGyQ+1kvvRb6QVrSYCfQtkW3Uh2wWjcpiO791awKsHvguAwbt2FVrZvSGLwz2keC7aUBmVa8cErvuWJS9bplYv0neMJqDXaudSsMSmCjYeHoyc9j7xgk5UxFN3nSCT+ze+unw+2u9AtpdPrrPD850rT7yoR0sdzklepqskXNaxHNGps2Vmnn9qFtt9F09OhRFhYWePe73w1Aq9Xi/Pnzsap4f/Znf5Z47L59+3jkkUcS93UMJoDbb7+dv/7rvx5ZcIVCoVBcPFJK7KNHyPzk+9AnB0zZvoFYWFjYbhEuG5mVAmNlg2YuHTMairIBWhaJhtA1EKB7HnLIL3lU6WkllJ7uqDwmdiy8R9JVuqJKiz9LD7CHumcwFqgRbdNmImgr6763preMeIhw6ckvp+DmMZrpSDpCkqo0ZG0lKXFdDw9BRSYv0hvtdcE+B7LBtDYWGI8+SWM0uVjuKyHd6atTKc1wPMh0Zdt/LmGRUsMlh8ZKzWSvc4pmzzUuuyUs0QxDBaPXmvLiOWu9o+CXWR+9+mVSUNXjtfN8JCEESoNYEQmAfbUT3VbBTcvbc9ye7ho9liNIBeXRdU+SXSv3Ca/RLVYS5kINUKIlkrysMS4zpEiTcdvkZJu0XSNld8PudDue19Z5IQQRr6FECMl6PWEhVvxn3zf+BxlOWv8ABoQl/wcc2/u50HreZIKiKU3LJZfOxtr3GS3a4LeTG/U+A1xvxAuslVs2uzX/nmXcFrqIG63+erndXkdZJyzJoizKOgtenr3yAAC7mn55dX2oGw3mK23kFtZbn7CK6NUZuPZdox+0BUYymr75zW/y9a9/ne9973uMjY1hmiaf+9zn+PVf/3V+93d/94oIplAoFIorhzdzHrG2ysT9D2y3KJeFf//v//3Q/V/72teujiCXgc5kfa5to42PoUNfBbaOIqXJeFhVX1+R14mLRUYaFNsmJKTF1Ix+n9eUuYqb1iBSAcv1JE3LJROpsFV0V/tC6FKtPMXmrtg2G4e8UWTKE31uqJRngZz2r3PAteYbJllPUNfaeAn16nqRA0LuHHeAsQZoQoQePvCHriX6qxaCX7mw54ThS0OapMKspS4egrTXHkH6oB9hU3FbpMjFCj2MltYimTRWqab960nZLoz15M5EEH2V9ZKxpUPZ64Z/TRr+GkOaJ9Bd/zkar5uMnVxn/Z2+Z1P2hA6uC9/T4oS+1h7PWW81R+l288QMh90zFUioI2Z5gnYkzLRmujFP1Kj0VgrvZ7ghEOmpr5+2JWBSY0kkF6jQtR7vcefZdK0eg2ZAnlF7cMGYcbtElWsZWA58YK8+Ttr/8tASvN6dyZaFsoGMOPeSFqmNscUcLfDH4koxstH0ne98h7ExP+Zy7969fOtb3+If/+N/rIwmhUKheANiHT0Cmkb2/R/cblEuK81mk7/4i79gaWkJESQEt1otnnnmGR544IHtFW4EhJQslNuMd8oRy3hxgrSwcfWxcDZXI/ByDGS41pGJhF3NeQUIA16GH+crRima0gRtGvAXpHRcwSipGG2SjY0kJuwSVWMXDdNjVzrFdEIbx7bIMuJM+IiE3pjAiNM8idR7W0CpZXNAn6DorlMSG+xKCDGLsuEVKYt2kPMVZ5hxorse151Yo3pwJ3IfvGIs0bAq7NQmsGSa3jW5OmgDKnLknDqkfeN1/7kCzk8dom176Dr+7H53gZ+RMYTvseyUbg+7EL2GTtTI819b0mVK21xPbmOTQfrVJDvbHI9iw2bM7gkjjPTWNN3YxVgXYTAFAsfuU6+R7g4JN4OII6YnXLZDxq6GffaORarnXuRii/mONnmStE8fYKrLSLil37a/Jy+cjNG7x/TQyV3qNchGWvdo2HUlPJuX7xugn5HkdRyHiYn4XFEmk+krE65QKBSKNwb20SOk3/0e9EjFrDcDn/3sZ3n++ee59tpreeKJJ9i/fz+Li4v8yZ/8yXaLNhJuwro2k2a8jHpamGQNf8bYsLy+ctJRkhSYycLg8DXwvQIT+dLI2kdvfk5Uj4nm9dTc7nWsiP4S8IkVrIO/bccDDfKNuN6hSUFK2Iw7o5eUT5sOKTFYf9kIPB1Vw4kJtnOlFitZ3Ztt0RZtJJKaMWjdmjiJJbsHoUEqqMI2lffvnxMo5zXZv6alJR0WRH+IYHjuyP8dKm2XYtMmX7dHVjz7jD4kluN1n+NOFcuBxqAMx7EmW7To94T0Hln0GqyJcqSBpBktFa9plFpxo7zTx1aGXCJZGODx2XJnsX6HHzjmVMPX5ZZNw0oKN4wj5LDpAknLHl4pcHfDL6AzVWiSjTy/+tpLPV1t/mQ4CdmYP5EKlhsIis106HiapIBSpKS4Kz1qshVb92xUtC19sLbGSJ6me+65h/vvv597772XHTt2UKlUwkp3CoVCoXhj4a2u4M1cYPLBT223KJed2dlZHn30UQC++93v8pnPfIb77ruPr3zlK7zvfe/bZuk2pzfUzi9BfXHhMpCsY43VTQb9/GsSdi9WyHg5vOs3Uf4DB8a4U6aATor9/uZgHZpBCpZA9BkcY04dM5KTM15pk2k7cGP8hL3XO2mtd3OA2Hw8si2b3ctVnJ2Dk/U7knW8CR0vyVjTYjofKSQw4Pgkb1F3KC5Woesel3Y8ehedjZ0LqDbyI4UpRhkvNumUpBNWyw+LZBptk346+V5pt4WpmfEgsU4ZeZGc0A/E1tbaENUBrYbIXW4iMoI982VyTYvYlEBw0ppoMy5ln8drGIMk1gPPihhQfCXWxwhGxqDPiZNLU79+B5onSXsGbmpwSfm27ZGK+EFcPKxgpTNJp6pkHDsSrtsOFrOe7plQmXXzwIFuv0MmaDqD3ZbJExLX6XuY7dkWzWlyI56/dVllTZS5WT+APfScV5eRjKbPf/7zfPvb3+bo0aNUq1V27drF7/zO7/Cxj33sSsunUCgUisuMdfQIANk3UanxDrqu0263w+gI0zQ5ePAgJ0+e3GbJRsMPCZM97zc5IIHObO/W1A2/da5lo2f8HIS8rI10pEBETJ6LMwyyrn8uTcKuleC8N/a3a1kebhB6qfeszzNYNfeZrPheGb/Mc29+iBxqoIIfotdhxa6iRyLihh3pjaI8Dz9z7F35tefI3rwzsWXKcpiaK1FJ3DuY6XwTdN9oGqteAMCWe0fyLoAfRtnI6L7R3CEMQWOgK7Fu25uMevL5PTxMHLKNNmmzTro52HtoYDE1f4Fs0xoaGGrjwibhlbmWTS6jDy+hhx9K2zCdTdsNor1nAnsyR65hMmEVqE/ciDZkDaLoKHXywobR8eJY0tk0pHA0Aq8iWuLnsGMgxQpTdCZYemWTvsFnJ3itNhfjdbC47cc//nE+/vGPXzFBFAqFQnF1sJ88Quq2t5O6/uB2i3LZ+aVf+iV+/ud/niNHjvC+972P3/u93+OWW24hl8ttfvDrgP6Z6U2U+E302aSgHU3GDbOwrYSMEVEpR9GVE9p0JJ4s94eNDSPxSiOlxzUgbdm4Woam5ZJKKMJQH7Hcc4fFSPhVTbbZpSVUEIiQi4R91RyLYDLf92TYg9XxRqQAQSYosT04ZC2Z6ALCLh65tYhBGxk8PbFKYj/OyIryMDk3ez67xyaFbfm5cRdnUK6Isq/sSzlSmenM+kpC8F+XNibrogpct2lffpRZ0qIAvdcSVDWMbE5F8gg1bfPPcHSMM2Z/AZHNqMs22hA7wsAmM8QcSKqCqetan0d1M9Owf/WmYdXzIjljW/2cXLQ3d3NGMpr+7u/+jv/0n/4Ta2trYWKtlBJN0zhx4sQmRysUCoXi9YIol3CPH2Pit96cRXwefPBB7rzzTtLpNF/4whd46KGHKJVK/PEf//F2izYSvRPJvoETVwK8wL1RddbJnFpn8uZk41fXtVgOThc5UE9NBSEytrTRvc1VhFg3l+xNSTg+tik+Djm7TC+XVghCJir2UdIDckPMLRS2uCg0GK/HFyVtWcmGQtS4GkZSLlSSt+1SVNBcJAetKuPyT5RaZEwncT2hUeh6RwYfHzNIPEHnalLC6TvKkt1S79omIWEaoLn9JlgnJG5LjHr9ErSEqosdBAJLOn3VKkc5hTvsuY8a5EMM7U7VvF3aJOXEsv9+R2NGMbIl+emK+tqr7a2N6SV/DQ1hJKPpS1/6Ep///Od55zvfia6PVutCoVAoFK8/7KeeBCnJfuDO7RblivAv/sW/4KMf/Shvf/vbGRsb45/9s3+23SJtCduLKwhtadPuKY/tafHwoclycghdWtcwBpTETothc+5+vsaexa0FeKUMe3SVMSlkKbGWc7/nrWZehGI6AhJYEsVN210Kg9Yg2gxNuOhDQrMuF33eNinJFjcGH9CDDP/zGeZNiy6yekk08v1l5RKQUoQquu/tG4vt7+xL2R5S1zbJCdMSvbW96MLFS42+fhZEhk+Lb8m69d4W/VJtIpIYeE3JFRb9Xd2x7ZSQH9RWF/ZAD2Y49k41lGKQ0dQJy1sV/RMj28lIRtOOHTv4hV/4hSsti0KhSEBKSd2pUTJLlKwCRbNIySpSMouUrBKG28YWNrawAI3J9Ao0vg0AACAASURBVCQT6Ul2ZHZwaPIGbpy6mZumbub6iYPxWHPFWxLryGH0g4dI3XrbdotyRXj3u9/NQw89xBe+8AU+9KEP8dGPfpQPfOADZDJbWCFxGymaQ6p1DWDLn+orNBM7vlrCZIg8kk2LCiQcEjLKdU5r4zS2GKLXIcnz0ra9TUq6b42t5Y50rz7jGexoLG/xqK3Ta9Sl82WyA4zyq4E7xLPSQfM8HE0bsLTvFvIDA/afL1A/MM26aAxvOELuzKS1QX0iITEvQr+h06lt2FOeOyEccKvkRfK9HGIybQHJ7uZ5GgPl1Bi3CuhpPWI0JQvTksMndaJtE8S4YoxkNN1333184xvf4Fd/9VfDtZoUCsWlI6SgalcpmnnyxgYFs0DBzFM08+HrglnASZgtTslJMuxkTJ8gl8oxnp5gIqtjehYVq8xJu0LF7s4U78ru4sf3/ATv3fsT/INrfprrJ958+SyK4YhqFeflFxn/3+9/0xrQDzzwAA888ADlcpnHH3+cb37zm/zBH/wB73//+/nSl7603eJtSm942aWEmmz1FkfPlfVagxsGOJ5EJCyYO0jkcbvoz/DvTFppqW9iHYBUvtLTRhsagjdqPoMXK1zhkzQLfzkNpq2S6vEGTlRHzBHTRvGB+OjCCarkBe97V6JxroxXb1Qa0mBC2yQfUUrkyGWmu+16xyj6PjNi2fhRGXZH0pFzCWQ3tK3vki79O7vN5VkqKPFqpOwrzBKlI320St6VyT+6clbTSEbTf/2v/5Vqtcq/+3f/jlTgZlQ5TQrFaDSdJqvtZVZay6wEf1fbK4FxVMDtmZVJa2l2Z/ehebswjOswG7fh2NNIdwfS3cF0eg97cnvJ6jksT1Bq2dQjScZjaZ13XDvNPYd28lN3ZBmfKDHfnOV45TVeLb3ME+s/BODW6bfzwWvv5IPXfZibpm6+mkOi2Cbso0fA88h9+O7tFuWKs2fPHv7hP/yHmKaJ4zg88cQT2y3SSPQaBJdede3qM0jiTgGEtj16MnumMDhEsFfdMnaOsfMyRXy9HhhzLvZiRn9mpsy12PveMdUbWyvmsS1IGGhQRIait0S7GBLSl9rEWHaEIGrKXa5P6bwYHAqpS8efNLgi3wmXx9e02RlG2brFug99XMmrGMlo+qu/+qsrKIJC8eZASMFqe4XZ+gVmGheYqZ9npnGBDWM91m5vbh/XTxzkXbvfwzVj+/1/49cwnd7HsQV4/KzJsVV/pumO/VN84OAOfvzgTt557TT7p7KkU/15habjsdGwOLPR5PhanRNrDb723CJ/9izsm8zygVvfwd0/9kE++66d5M1Vnt54kqMbR/gf5/8b/+P8f+Nt07fy4evu4c7r7ubg5KGrMl6Kq4915DD6oRtIvf3HtluUK8bp06c5fPgwhw8fJp/Pc/fdd/PAAw/wsz/7s9st2ojElZc3oM20KU3rYsOMehWs+ODYE1moe5t6o96MTOWbjFcMSrfuu8Se3nge6Fzbpr1r8BpGHdq2hx55LmrZwc9hdjNPU08FSk8f8z1eww4YwKgjnvZMSPj93w6SIhM3928mVOFLaBX1RG0qR0Kf21497+DBg9RqNY4cOUKj0eATn/gEGxsbHDhwYPODFYo3IYbbZqYxw0z9fGAknWe2MYvp+bH0Ojo3TN3I39v1Ln7phl/hxqmbuH7iENdNXM94Ov7lXmha/PUrq3zr2Bp10+Vteyf45Ptv5t479nP9ztHCYccyKW7aM8FNeya49x3+ApNVw+HpuTJH/3/23jtOjupK//7eih2nuydHSTMajcIoIQSDSAKEAAO2sQEbMGaNbWzsZR0XfmZtWIzjer3W8mLW2AYcsDHYGDDJJBEkhABJBAWU8+QcO1fV+0dP6p7umZ6kxDyfT890V9+6derWrepz7jnnOXtbeG57I49vrsdrVzlvVjYrKi5iVdVVtIebWVP/Kq/Wreb+Xb/m/l2/ZrZnTr8BlWufusdPFPSH5l1z4obmAdxwww2sXLmSW265haqqquOOvMiyrDhLaTKU/5EpjseGRHa0sSJ+dlqD/o4wb0WsRYmUHUcl/mGAHDVjr1AUUmT3HGnISKMusDsU6d0BcgqadVvXQIjjSL6UtqSMb6PDhN6vSZ7Tx/NiQLqepnFjElea0jKa1qxZw80338zSpUvZtm0b1157LXfddRfTpk3jxhtvnDThpjCFowXLsuiKdNEcbKI+UEdNz2Gq/dWx/z2HaQo29j+8nIqLmRnlfKT4EmZmzGKmu5wZ7jJ0efg47F2N3Ty0qZrndzTiNTu4ZIbGZXM8VPhMBLWY4S6sTjeWloGle2Jx6qEQZkc7hMNY4XAs3lzXkVxuhMsFut6vEHvtKhfPy+PieXkEIwZvHGhj9c4m/rm9gcc21+Gzq5xXkc35FStZVXUFzaEGXq17mVfrXuLeHb/k3h2/ZLZnLlU5y6jKPZ3ZnjlI4vhSQKcwgIHQvPOPtiiTirVr1x7XRqFcX40jUN+vao43VCUZlHAUU0hIE1wEMm2FbgznZFnJ15QTEbYM5A/xcyp3dxPR3Kwx7z/akRvuTpu4Ff90WOqSt0llTE0MEusUJT9fxQigRVKTSoxYqegI2EkTcaWENdJYp+8VsoQYMxX95IQvxpCW0fTjH/+YRx99lJKSEj7ykY8AcNttt3H55ZdPGU1TOKqIGiY1HUEOtwc41BagqTtMxDCJGBZR08Stq2Q5VbKcGsVeO7NynNhVGcuyaAk1x+UYNQYaaO4nYmgiZMYnTLpVN0WOEhZmLqLEOZ2yjHJmZpSTZ8tPT0kzIkhte9i/YyM1uzfi6drDt6UmVuktqGYIY79E5AOZqF8mEpCI+mWigdgrElSJBmXM0Ai1I1wu5NKZKGVlyOUVaEtPRS4uwabKnDcrm/NmZfcbUC/tbOKZbQ38/f06Mh0qy0ozOXXaCn6w+ApCNPJK3Uu82biOB/f8jj/ueQC36maedz7zfQup9C1gumsGXs13XCuoHyaEXnkpFppXPutoizKpON7no9QV7yFJLCAJ6YTB9LU7hpGmcH1napgWypB9ho7DsPVmBmGknJXjGc7GThDaGPeeuFkzEUZT2upvCkV5sFfVSgjmmliPa2zJIGwNDetzhNLzeu4z60duNAKkJMQsRwqpjJxM4QKSG+ST8YyS6iePpjwto8myLEpKSoCBHyS73T6p1twUppAMpmWxpbaTTYc7eKe6nc21nQQiAw8JXZHQZAlVFsiSoDMYJRQ1kLRGJPthFPthbK4aLLUJcxCLjCzk/vyiCs9sTs87i2xbDjm2XHJtuRQ5S/BonmFlsywLq6sTs7UVq70ZqW4Hon4nomk/Vks1VnsLRtiiICLIiciEDTumaeNAuAijKzy0qqUsIXtcyBk2lEwLmxZAk9pR5G4k2QK7AyN7DuHM+URsMzDDJmZ9PdH9ewmtfgnrH4/TA0hFxWhVy9DPWYGyaPFQA2p/K6t3NfP63hae2RZLQp3uszMnr4rT8s7nijkGrdY29va8zwftW3iraX2/iC7FTYlrGiXO2KvQUUS+o5BCRyEZque4V2BPFJhtbbHQvM9cN3VNxon169fzs5/9DL/fT2FhIT/5yU/Iz88/ojKE1OGfRScuEor8Cg05oTJUruSZ1JyGYxntRR6czT3oCQRpkVEp0uMfu6PxiBHpuGQtc+KcNmLoSJmYKYq6pu5jHF8nhd49Mex4E4ksqY8tMx1f8eiQdAEpMn5q9lRIy2gqLS3l7rvv5uqrrwYgGAzy0EMPMX369EkTbApT6INlWWyu7eSlXc2s3tVEU3eMfrs828lHK/OZm++ixGtnms+O164ihCBqRnm/9V3WNazj9fq1NIcaAVBxYDOn09NZRtDvwwxnkaUWsrRwBqfmZnFyiYf8jOR5RJZlYTY2Yuzbg1FTHXvV1mA1NWC2NGF2dPZWHE9xHsJBRNPA6cKWmYXszkA4nSguN1p2DlJuLlJ2DnJuLlJOLsLrQyTmY1gWZuch5Nq30GrfRD38GnLnOqwumUjBKYRWXky47DoMZz5mTTXht98k/OYbBJ95kuBjf0MqKES/6GJsF12CXFgUM6AqcjivIgfTstjV2M1bB9vZUtvJu9UdPL+jb4XMha6cRZFnJQu9JnZ3DbLeRERqoMusY1PzBl6o+WecqHbZQYGjMPayF1DgKKIsYyazMipwKE6mcOQQXvsqmCb6eSd2aN5kw+/3861vfYv77ruPyspK7r//fu644w7uvffeiTtIGouRppRezakTwXRItnLfj4QwPAsxlDL7BIKhSMgjJMlHdQVCY/einbijB/ZQIykreE2AE2DsOVGpmP+OnGPiSDwrkh0j9QJHmmx+yZpMotWeltH0/e9/n9tvv52zzjoLy7JYunQpZ599NnfeeeekCTaFKQQjBs9+0MDD79ayv8WPJgtOL81kRUUOp0334XUMVRxqeqp55vCTPF/9LG3hVnRJZ2nOqXwu9wvM9y2g2DkNSUhYlsXB1gAbDrez6XA76/a18+wHsUrwxV4bJxd7qfKaLGw7hOvgbqLbt2Ds3o3ZORCXLFSB5jJQbGEUj4mSZyC57YQyizikF/JWOI/XQ7H3p8wt4ROnzGBh0Ti9L0JgeqYT8kwnNPdTYJkojZvRDryIvu853Gtvh7W3E8lfSqj8UkIrL8b+ySuxgkFCa14l9M+nCfz+fgK/vx+1ahm2yy5HO+10hCwjCcGcPDdz8gZqqLT6w+xu6qG6PcDhtmDsf3uAmoM5hKJZwJz+tj6nSa63hwx3JzZbO7LeRkRqprrnMBub3uoPdxQIip0lzPPOZ0n2UpZkLSXLNl7GpykMh9DLvaF5M0/s0DyAcDjMqlWrePHFFzEMg1deeYX77ruPFStWUFpaOq6+33zzTUpKSqisrATgqquuYtWqVXR3d+NyuSZCfE4MU2d4ZUcJRzHU0ZMVpONBOqG9TCP9dgjRW6Np9Mq2hITJ6D0xkz3aFqlnU1pq9SDDQzIj6ewxZox23CVjhPYprvdk2FLRcRN2DAeR8D/ZdxOHLnNsxa3TQVpGU15eHr/+9a8JBAJ0dXWRlZXVX69pClOYaDR0hfjbe7U8sbmOjmCU2bkubruwgvNmZePSk0/ZLa3v88c9D7CpeQOSkFmWezoXFl3M0pwqbPJQz5EQghlZDmZkObhyUQFWoIW6XVtoX/MK8tvbcD7WgK0z5tEKCAvdE8WRFcE2K4zNG8X0uejJmkaHYwYH5WJ2Gfm8HZzGW60a3SETScCScg8rKnI4ryKbTMdY48tHgJCI5i0mmrcYf9XNyG170Pc+g77nGVyv34Hr9TuI5J1EaOYlyKddjO2CizAa6gk+/SShp56g6zvfRsrLx/axy7Bd+nGkzPgE4kyHRtV0jarpvrjtlmXR0hOmtjNEbUew/1XTGaSmLkhDZ5C+3wNVFszMdjC7wCTL14Sl1VAX2sP6xtd5vuZZAMrcM1mefx7nFKygxDV89fQpjA5GY0MsNO+6z38oQvNuvfVW3G43d999N9/4xjcAmDFjBrfffjsPPvjguPo+cOBAf6g6gNPpxOv1cujQIebNmzeuvvswsfqQ6P+bLDPqaKGP6W30GJ5yfHALBZkoJ27e0kRjIjOZjhTGf68c3RQTvTsEmpyaDKH3f8Q+sEAcHcnQOgbRd3a6GLrQncqzKcZBUmOak3ffp2U03XbbbSm/+8EPfjBhwkzhBIURQWl8H7XubZTWncidhxDBdjCjoOhYsg1Lz6BJzmN9u4eXm1zst/I5tWw+V55cyuKijJTK3vb2D/jdrt+wsfltfFomn6/4EhcVX0K2LSdBhhByZzVyxwGkzoPInYeROw9hVh/Av6ORnsMCvVEn1xQI2cSeD8o8Fz1FOVT7CtllZLG5O4P90SyqrRy6og4YVIMuy6lR5LGxcraDRYUelpX6Js9QGgaGrxz/0q/jX/p15PZ9aHufRd/7DK43fojrjR8SzZxNuGQ5tpVnE77mEcJvvk3wib/j/+29+H93H9rZ52K/7HKUxScNq2ALIch26WS7dBYWZgz5PmqYHGgLsKeph91N3XxQ38XzW7sIRl3AbHJdC1hcfB0zCzqw7LvZ3P5mf82o8owKLin5GBcUXYRdcUziaH04EHruWbAsbB+55GiLckTw3nvvsXr1aoD+xb3zzz+fVatWjbvvQCCArsezYuq6jt8fXwDU5dJRlLEtLOq22HNDGqYei5LgpVFVOWl7RZGQTAsJMcSHIIRAWOMPxkp2XFmSkMyJCfSSJQlhKiiqjCpJYEr96fyKKSENOgdFk5FVGRlBKXlUG82EeouHDzeekwVZio/YViVBZITcm2HllMWw4yqrMtFMB3JPF7IY3TWQeisYyZKEMgJNvxACRY21kU057jiyIiEhkGQLRUgY45xjsiRi52IM34/cO9eHbFclpHBsX0WTkM2BcZEVGUXrvZdMa1RzRJYFqqr07yNL0pjYZWVZImJasXs1Gr+/rPXKpyW/v48U+scIMeh9+lAVBU1S0FCoNKexM1oz8J2soBhjd8IoqjRkbGRZweudHN0hbU/TYLS3t7N27dp+Jr0pTGEILAu15g1sO/6Gtv8FpHCssrnhKsDImI6ZWYElKViRIK2dnXS31JETfYcrRDdX9C5GWNUCs6MYw1tG1FuG4ZuJ6S7BtHnZGW3ngep/sL51Ix41gxtLP8snMk/DEe5GOvQ6Unc9cseB2KvzIFJXTazcoQXBNpWuWhddtU7CrSZgR8n14LhgPtoZZyGdch7C6QVAA3zAAuByYiGDXaEoncEohmmhKxK5bh37GEJNJhuGt4zAyTcROPkmpI6D6Pv+iXboNexb/4Dj/d9gCZlo9jyinzwJ/2XX0/3WQQKvrSf88ovIM0qxXXY5+oUXI40h7EiRJcqznZRnO7mot25U1LTY09TN5tpO3q/pZOOhdl7YEQVKqciZz2UzBbpnK5vaX+aubT/nvp2/4sLiS/jE9CumCu6OEZZlEfzn0yiLTkIu+nCMoaZpNDc3k509EPLZ1tY2IV42h8NBKBSfaB0MBnE643P0useRjB0MxPY1h8mPjCYwv0UiRtL20ajo3T7UaDKFGDfluCRLSY9rmCbmBNGZG6ZJSNKJRgyEMIlaJlZvKFE0asaxhUUjBkbE7DeqTNPCxEwp52TDJss4NEFHIGa4RSyRlA2xDyPJaQiGzZuNRgxMVSIQDfeH26ULiRiRQdQ0iYrh91NUiWgvAZNhxV/rqCGQic1fA3NUMiSDYZoYwsBMJEpKbBcViISxkWQJI2Ii926Phg2i0QF5jahBtI+S3LJGNUcMBJFItH8fYQTGdKaRKAgrNp6J52hEBuQ7GvO3D30yKJo8MF6jQMSIEhZ990CUqDHQR1QyiI7DMySHkzz7TGhv9yffIU3k5LiTbk/LaLrpppuGbGttbeU73/nOuISawgkII4K+63Ec7/4fStseTN1DuOwiQjNWEClchmXPBKDdH+HxLXX87b1amrrDTPPZ+XRVER+dZccdqEZu34fcthe5fS9y+z5sOzYiRXrYpar8n8/DaqeDDMPgax1dXNN5GOeurUNEMW2ZGJ4ZhPOW4leX07Ork8D7+zGbWkGSUBYuxnn1WWinn4k8LT1SE5sqY1NlclzD12A61mB6phM46UYCJ90IkQBq7ZuodW+jNryLvvMx7JFustxgXiToqMuibddBev735/jv+QWuBTk4q8rQpmcjJBmQsIQ0EG9tmb1Uo2asTHh/cU6rt2y4BbKGJesskXVOknWs6TpmuZvqoMbmFlhf28rLb5p0kEt25ldZUdZBt20NTx58jCcOPMrygvO4ZuZ1zMwoP3qDeBwiumUzZvVhHJ+9/miLcsRw/fXXc9lll7FixQra2tr42c9+xosvvsiXv/zlcfddVlbGU0891f+5tbWVjo6OCSVFmsh8hQE7Mc2k6mMQASKDgpcSz2H4oEOXsBEajkjiCGM4g2miEO6NcOghOELLRIxtUUGa5HC8DstPJA0DXEmXQj7FDeat7hiNWBMGi9R5eGPJ+zs2IVK8H12JCFUoRKwEZrwkl3MIgdYEIi2jKRl8Ph/79u2bSFmmcJxDO7Aa57rvo7TvI5JdSef5/0to5qWgDOQU7Wnq4eF3a3hueyOhqMlp0318d2UFy0p9SL03T9TlI5qzIK7vQ10H+OOO/+OVpnU4JI3Pe5ZwlWM2LtmGKWS6hIypu7HsWZj2bAzZQ3jrTkJrXiX8+hqsjnbQNNSlp+L4wjlop5+F5IvP0/nQQLUTmX4ukennxj6bBnLnwX5D1daxn6LlLYQONtL1Tgtd7zfQ9U4DisPAXRLGVRzCkRVCkoyY8YSIsVj1hSb0brMGbRNmGKKhIfSgHqASuBqgd5pE/TKNWzw0Wl7qbT7W5Eq8VPcqr9S9xOmuCq4v/iTlBWdi2XxHh9v2OELw6X+A3Y5+znlHW5Qjhk996lPMmTOH559/npUrV+JwOLjrrrsmJOeoqqqK+vp6Nm7cyNKlS3nwwQc599xzcTiOchjpCVz+o8vyA6nH145GgHDS75zCRouVuqjoZEMwelOkSMqixmwZxwFFWix7k4m+6ThRpBz+URuAyTGEVGLQB3vH5JEHDAfLSj1HIgkh/ookiB4Bw3ss8NtycARHrkeVeK6jmSEKMpEkddg8wkmH1dP/eTJHKC2j6Xvf+16cNWgYBrt376awsHDSBJvC8QO5fR/O17+PfnA1UW8ZHRc/QHjGyn6FNmKYvLK7mUffq+Xdmk50ReKSeXl8ekkhZVnDU0/X9FTzxz0PsLrmBTRZ5+qZn+VTpdeQocXyaPoepZZlYezfR3jNm0Te/jOR99+FcBjhdKItOwPt7HNQq5YhOaaorodAkjG8ZRjeMpgRT0mtAb6uLsLr1hJ+7WXa3n6Ltp0hsNlQFy9BPfkU1IWLUWZVINQRaJAtC8wowghBNIgIdyGFOxGhTkSoAynchQh1IgVbcXTW42uqwd1Vz8mHW7lF6uZhj4sHje3c0P1Tztnk58buMLPtRRgZ03pfJbHzyJqL6cj90BtUZkc7odUvYPvIpYijrdQfATQ0DCQZ5uXlcd111w35PjHUfLSw2WysWrWKO++8k0AgwLRp0/jpT386rj4TYY1h3tq7eob9PhZ6dSJAIISE1ed5sEARcpyWdDTY86KqnL6nYwTopH6OTmwx1oS++8ft2FTKx4rEMRu9B+4IQIgxs2sfK9AjnWPabyLuVzmhj7GwR6aLtIymxMJ9kiRx0kknTeU0fcghwt04Nt6F/f37sGSd7tNvI7DwepBjqyN1nUGe2FzHE1vqafVHKPba+PryMi6tzMNrH17BPth9gIf3/okXa59HFQpXlF7FVWWfwavHvENWOEx09y6iH2wlsnUL0c3vYTbHVjn68nG0U09DPelkhHbkCRlOJEhuN7aLLsZ20cVYfj/hjW8T2bSByKYN+O+5K9ZI01Aq5qBUzketXIAybz5Sbm68610IkFUsWQXNheXIHlaR61PzdzZ08/SWajbu3IO3qZaC/Hd4y72dV50RzrEEN3btY97h1xDRgR9D05YZy9fKmks0ay5G9jyimbNBTq++zYmA4NNPQjiM7ZNXHm1RjgiWL1+OECJl0XUhBNu3bx/3caqqqnjyySfH3U9qDKJIlobPgRkJfbefSGo2jdyvEMeaE8s6okZRxKagBkculGlJx84CjVMkrzM4BZAjzRPa30Rd9WNn9owHqR8UYphP4z17cYQfUGPOaZrChxiWib7z7zjX/wTZ30hgzqfpOe3/YTlz6QpGWb2tjn9ub+Sd6g4EcGZZJlcsLuS0GQMheEm7tSy2tW/lkX1/Zl3DGmyyjcumX85VpZ/B12kQXbeR7m1biW7bQnTXTojEYtWl3DyUhYvQTqlCPeU05HGuJk8hNYTDgX72OehnnwOA0dRIdOuWmPG6bSvBxx8l+MhDAEjZOSjzKlHmVaLOW4AyZy7Cbh/1MWfnuZidN4fQORW8vLuJv717Ko27GrFnr+P1rNd51R3irPIr+VzxJ6iIRlGatyO3bEdp2Y596x9jni3AUuxE8k8mUnAqkcIqInlLQB29PMcDLMMg+MTfUU86GaVs5tEW54hgx44dR1uEicEgHUAWQwkcUsEUUkpiBylJSlNiqGwyODWF7tDIRsORhISMQYo8pQn2LpsJrFyaIhEeTdib6P8zQRj5milHuzztMWVkx6PObB1V+1i+0Ugtxo90Z0jf0SbSszlRMIVMOhlY47sb0hvvox6eN2fOnGGTtSzLmrBVvCkc21Aa3sO19jbUhneJ5J1E58X3U++cx5o9Lby2dwsbDrUTMSym+ex8+fTpXDwvj0LP8CtfneFOXqp9jqcP/YMD3fvxyC7+Tfkoy5tyUNbuJrr1X2hr6V0h0nSUOXOwX/5plMr5KJXzkXNyj8CZTyEZ5Jxc5HNXoJ+7AgArEun3AEY/2EZk+zbCa16NNZYk5LKZsbC+JUtRFy9BcidnqEkGXZH4yNw8PjI3j50N3fzt/Rk8t/NMrIw1vG6tY23Da5yZdw7XV3yB0kVfiO1kGsgdB1Cat6LUbUSrfQvHhlUxJkVJIVK4jFDZhYRLL8B0nTjhxuG1r2HW1+H8168fbVGOOEKhEH/9619599136ejowOv1snTpUi6//HK048DrPPgHf6LU7aRKRBortKOxQaKSjtJbwHoylZYsrZj60J602k70Cr5DHaXRxMTacRnCQTepQzEtkY4pPDqYQkayRqugH0uWk5Xk3fghEGktPIwIi1FPkrBTQ2mPz8HKk7w0mO2j6ieqKSjhiVoUGWqs24VGwAoz+E6cWD9TCkxiaH5aRtOtt97KoUOH+PjHP05WVhYtLS08+uijlJaWcvHFF4+4//r16/nZz36G3++nsLCQn/zkJ0NC/lauXIllWShKTKS8vDz+8Ic/jOGU0sNrdS9zqOcgmqQz013OPF8lDmUq3yUVlICBrgAAIABJREFURE8jzjf/C/uOR4jac9iw4Ic8Hj2DDc93srvpLQCKvTauXFzIBXNymZfnGtbQbgo08kbj67zRsJb3mjcyrTbKBXXZLK2bhndPHQQexwSiBYWoS05GqVwQM5LKKxDKmPlLpjDJEKqKOq8SdV5l/zazvZ3o9m1Etm0lunUzwaeeIPjoIyAESsXsmAFVtQx14eKR86J6MTvPxfcuqOBrZ5fy9La5/PX982hSXuJ18w1eb3iN07LP4cvzbmC6awaGbyaGbyahWR+nBxChDtS6jag1b6AdeBH3mu/Bmu8RyV1EuPRCgrM+jumZODa0Iw3LsvD/8XdIxSVoZy0/2uIccdx88820tbWxYsUKPB4PHR0dPPPMM7z99tsTUqtpsmENDseboN/+ZLTPx2tIkJykQGYquGwKjI95eNyY0ILSaYRqHkvmyrGAdMIrU+FI3SOjZSCM2FVIMJrUtPw88Qhm6PRkZZK3szHp9xoK4STEC8lgJalRJU2C1zNmqg6a5Ukm/GRG7KWlff7973+Pi+EuKipi4cKFfOxjH+P664ensvX7/XzrW9/ivvvuo7Kykvvvv5877riDe++9N65dZ2cnTz31FLm5R8Zr8OCe37Ova2C1yibbWVl4IVfNvJYCx4mz4jxehLtaiKz//yja+2eEGeUh5RP8qO1SejbY0ZUGFhZm8NUzZ3D2zCzKshxDfiAsy6Ij3M7hnkPs6dzN9vatbG//gNruwyw4YHHePgc37ZKwdxhAA3JZOepFl6AuOgll0WLk7Jzkgk3huIHk9cbIOJadAfTmo32wlci7mwhv2kjg0UcI/OVPCIcT9ZSqWNvTliFlZY/QM2TYVK45uZirlhTx9sFF/OW9j7Gp8x+sN9fxZtOrLPCczdcXfpmyjBn9+1i6h/CMFYRnrKDnjNuQ2/ag7XsOff/zON/6Gc63fka46HSCcz9FqOyS4y6EL/LmGxi7d+L6zm0I+UShrE0fW7du5eWXX47b9tnPfpbzzz8/xR7HFuRh8mMsAR2FHqS25N87sSVNdDeONA3EIK1lcF7QaHKk0mWA67FC/YpUYtfjTTWSjPFrX4NFiGoKetgc/nooMinIANPM3xibzH1yBopzyKgZ5M0aRFLQ7JlPdsfQ8h5TGDtGDgEcQF9+Y3JCkNFNdoeu0OSxY6agNXdhQwhBOJHie9wYu6/JAirlErYah/q3GboMgww7RRYoI+TMjwdpGU1dXV3s27ePsrKy/m2HDh2iq2tkKs8333yTkpISKitjK89XXXUVq1atoru7G9egopnd3d1kZGSMVv4x4zdn/h7LMumJ+tnZsZ2Xa1/k+Zpneb7mWa4qu5Zryz+HIn24PBqmZbG/xc+2ui4OVe+nvPpRLgs9iZMgT5rL+IN2NRl5FVy3yE1lgYNp2SZ+o5OOcCOHwrt4/2AbbaFW2sKttIXaaA21UOuvpisyME/KQj4+td3N4g0O7M1dYDfRqpahnbk8pih7vEdxBKZwJCA0LRait3gJjutviJFLbNpAeP06IuvXEX4tpvAqc+aiLjsD/YyzkStmD7tiKwnBaTMyOW1GFXWdi/jLu7t4pvYRNluv88W1a8iRF3PFjCu5vOJspIQaDoavfKAIcFcttp2PYtv+CBkvfQNTv4Ng5bUEFn4O05mf4ujHDmJepgeQ8vLRL/xwEvUUFxfT2dkZ93vSx3R3PMBtU6kb474eyUEOGRwwYyvHfaQJY1X9ZQFB1YctksJKSwEzRZDhcEQdiTA0BTnaZz2k3sfEREEiOgk+FnkS8kYmm8jCgjGFJ/XJZdg0iAsBTF1jp/94cRssrOPVjTlaJJlyCjKZwkWjNYl1nybAldK6qJCoP3UNs5GMuSzhTpvOf/gZNDwyhYtWq7v/s5pgtkTsGt0zM2HPbgAceW6ccyevkHtaVsFXv/pVPvnJT1JaWorb7aa7u5t9+/Zx8803j7jvgQMHKCkp6f/sdDrxer0cOnSov26G3+/HMAxuvfVWdu7cic/n49vf/jZLliwZ42mNDKm3hkyGlsEpOVWcklPF5yu+xL07fskf9zzA201vcttJd57QXqeuYJR3qjvYWtfJ1voudtZ3MD+6lWvlF/mstIlWBR7LWcy2glMIuQSuyGoaAn9hZ2c7f2rtTtqnJGS8mheflolP93FOwfmU2IuZvauH/FfeR7y1Acwm1FOqsH3t42inn4XQj69CsVOYWAiHA/2s5ehnLY9Rx+/ZTXj964TXryPw+/sJ/O4+pNxctDPORjvjrBEZEQsybHxr+UJuis7nxd37eXjvI1SHX+FX+/6DX+8sYLHrYj5XeRmVeZlDDDHTXYh/6dfwn3wTau2b2Dc/gP2de7C/92tC5R8lsPiGITXEjiWE17xKdOsWXDff+qENY503bx6f+MQn+sPz2traWLt2LcuWLYuLcLjxxhuPopSpIQmQJTCNZLrv8CqHSFEZqL3Ei/dQevkOg5UlIQSGNPo8MFlIcQqlKSlIZnTM5oJLCpGqio6MRK7kpdZsRROJq+bj1d4TldPk/YUdGuowhBlOXabO58DRGhjZaBpGIU78xpA0ZDOFWyoFdDRCqVxZgDUkoip1aeGk+zP+UT9+kKy4skAWMgElE3skfeKJ0dBkD+dxjEoaykhzIu0CYsMtVEpjXI0ZNJ9E7G5QhEw0Rd6cQ9jijKZkMLWB37pwthNrEiMs0vpVvfLKK7ngggvYvHkzHR0duN1uFixYQGZm5oj7BgIB9ASlWNd1/P6BQGPTNLniiiv49Kc/zYIFC3juuef4yle+wgsvvIDH4xnlKY0dOfZcbjvpTs7KP4f/2fJTvvrGF/nhyf9Fpe/YVZJGA8O02Fbfxbr9rWw42Ma2+i6yrHaWKTu40b6FMtu7bNSjPOd089+OMlqsENAE3c/iC/socBRR4ZmNV/Ph1XxkaB68mheP5sWjefBpmWRontjNBBgNDYSefZLg0w9hNjYgMjOxXXMdtks/hlw0eSsBUzh+IYRAmVWBMqsCx3Wfx2xrJbz+DcLr1hD859MEH38UYXegVp0WM6KWnZ7SO6kpEpfMncklc/+DVv/X+e2WJ3mt6XHeCd3Ppg0PYQsu5ey8C/nUvFOZme1KEEQiUnQ6kaLTkToOYN/8ALbtj2Db9Rjh4jPxn/INIoWnHYERSR9WOEzPr+5GLi1Dv/ijR1uco4aOjg5OPfVUurq6+qMhlixZQigU4uDBg0dZujRgJafVzpe8HNZ6RvQiJPt2NJTYEbuKFki9Ap0OskQGOirNVieWgKjQ0Yg3mhzo+AkN24+OSojIsPqdjISSJJ/D9LohNHz9qnQQlW1EJXu/ty1ZMV1TTZ67MdlepYhs7zeaSqU8iuUitjM6MoAhSAyxj/uYhqfpGEDfuEgjSDfuulfDGbij8PYZsm1UhdREkty2ZEfLk7zszjHIaBhbgefhzqDFTKjLNGgsHLqMP2Qk3T/ZNgc6nWkmHx5tgzztpcimpia2bNlCd3c3t9xyC9u3b8fn842Y5OhwOAiF4h+MwWAQp3OAdMHlcvHDH/6w//NFF13EPffcw3vvvcfy5Uc+kfmcgvMoz5jFdzZ8i2+/9W98d/H3OSv/OEuotixEpIdwVyM79u9nz6FD1NfXYAu3Ml108FFbA7OcB/FbnTzpcnKv281ONRbOkm/LZ0nWYmZ75jLbM4dSd1naJBlWNErozdcJPvk4kbfWg2WhnlKF82vfQjvjrA/t6vcUxgbJl4nt4kuxXXwpVihE5J2NhNetIfz6WsKvvgyShDJnXoxM4uSlqAsWIvShbI2ZDif/r+pqbrGuYl3dBh7c+Tf2SOt5sXstz63JxxM9jQuLL+Kjc2cxzRefw2R6ZtBz1p34T/02tm0P4XjvN3gfv4Jw4Wn4T/kmkaLTj4lCuoG//xWzppqMn9/1ob7PfvKTnxxtEcYFS0qugKtl5bSoh7F1pTY0hmQLjGFaCgtsaAQJj3leSwgcQh/WUeOVnPjNYYwmy6KnwINSl7q2TiJ7WZyimkJ2VZaIGEM11M48N/5MB/nbB4okJ7pNhACb0OgRJpKZ2rOkyhK6EnvF5BxcOHaEMTWt1PW5hijpg1nJBCIt4ziVoi/i/k0GDFUeVcijrkqEIqPMx+ujeRdJePYHIVO4aUzpvxzFoZJsE4yuflBEccBI4zLodJIZTcngxEYwY6jRZFOkuMzHkFNDDUaRktwXqaALjYCV6v5NdxIJGnynYJecdDb+Ka09ZCEzQ8rjgNmQss08d+mk8b+k9cv62GOPcffdd7Ny5UpeeuklbrnlFp544glM0+S73/3usPuWlZXx1FNP9X9ubW2lo6OD6dMH2Kn8fj/19fVxOVNAP5Pe0UCxs4RfLvsN39t0C3e88x98de7XuLz000dNnqQwDeT2fShNW1BadyF11yB31SC6asHf1E//Wgic17ePChHVxStZxdzrLOFNswMTi0rvfL6Uv5xluWcwzTl91Iw/Rn0dwaefJPTMk5jNTUhZ2div/Rdsl3wMubBoQk97Ch9OCF3vJ5SwvvX/iO7aQXjd60Q2bSDwlwcJ/On3oKqo8xfGjKglJ6PMnhNnRAkhOLPwVM4sPJWuSCdPHXieJw88RWPkCR5te5JHXiojyzqZC6et4OPzyinIGNjX0j0ElnyFwMLPYd/2Z+zv/ArvPz5NuKAq5nkqPvOoGU/Rgwfw3/drtDPOQqtadlRkOFbw2muv8dvf/pbGxkYMI14RWb169VGSahTIHojgMAfpMJbLgRUdce18AgQYuYBsX7jdeFEoZVFrtqT8PuLUURh9HZvh4LIpdAYiGEkUz1TegcSWZiIvWF+DQYqtrkhEfHbUtgCWNIpwIcvCY1cxTZOOwNjGeLhxMLGGpZq2hhvtNJ9vfccPJdTTMiWRNsebIglsyuiNpnTnijoklHN0SLa2EVAz0SK9HphR/BaYkkaTZxa0vZiyjSZJhHuNmu4cF87WsZsFWn48f0BraRa29gC+6ngv5XBnkCe8HLBSGy6pekh0XIZVN4qcOqLMnoQt0yviF/HNQWOdK7vQZe3oGk2/+tWveOyxx/D5fKxduxaI0bp+9KMjh4BUVVVRX1/Pxo0bWbp0KQ8++CDnnnsuDoejv01LSwtXXXUVDz/8MGVlZaxbt47m5mYWLVo0xtOaGHh1H/9T9Ut+9N4d3LP9LppDzdww+yv94WdHHJaF3LoD7eAraIdeRW14DxGNTQ1LyARseRy2stkeKKXOWERA9VGQX0xpyTRKS6YRsXn4Z9sGHj34d6r9h8nWnFxd9FkuLL6EYmfJCAdPIo7fT2jNq4Sef5bIpg0AqFWn4/zmzWinn/mhXu2ewuRCSBLqnHmoc+bBF76E6e8huvl9Ips2En5nI/4HfgP3WyDLyGUzY96oOfNQ5s5DLi1DKApuNYNrZl3JNbOuZH/XPp468Byv1K6mw3iER1r+ykPPlzJNO42rZ1/EhRUzUfpWcRU7gUVfJFB5LbYP/oLjnXvwPnk1kfyl9Cz9OpFp5xxR48mKRun+0fcRNh3Xv996xI57rOJ73/seN954IxUVFUNIP44LDJK5uTQT9752yshMi/h3QsLBRmA8V2WJLsmNzUwkh0ihqg+6FwTxq/82RsFylcJJM5yBkMoT4NZl2tMwSMQoE3QkEWMF76uJG8pzo7YFCDuLgKYh7R3Y0IRMuxUfRigAZQxz1zJHFtfATEoPLYa8iUE2Rs6ZSvSMOYWNUBK1NarYUEOx/BQVBY9w0Gx1Dml3JDDeO8WhKRMfmpjCOWZJMro6YDSZqkyenkNDKDanMkV8vUNTKEjDsd6lffKCkCN5TuNoZmf8KcXTQhgjsPN5hYuZUgF7zQF6nOHEn63njUKy0SMtrVaSJHw+HzBQc0BRlLRYcGw2G6tWreLOO+/sZzD66U9/SkNDA1/4whd4+umnKSkp4T//8z+56aabMAwDj8fDPffcE8eud7Sgyzr/ueSH/HLbKh7Z92daQy3cvOA/jiiznty6C9vOR9F3PYHcXQtANGsugbmfpsZewbMteTy030FDm4lTkzl3VjYXzcnl5GleFEkQNkL87dDjPLz1QdrCbcz2zOH2k37AWXnLkUd5HpZhEHl3E6HnnyX02isQCCAVFGL/ly9gu+SjyPkFkzEEU5jCsJAcTrTTTkc77XScgNnRTmTz+0S3byO6YzvhV18m9NQTscaajlI+K2ZMzSxHLi1jelk5X1vwVf5t/lfY17WXZw68wOral6k1H+Lne//Cqu0zWOQ9g+vnf4T5OaWxfhQbwYXXE6y8Btv2R3Bs+iXepz9LJHcR/pO/Rrh0JRyBBZaee+4iun0b7u//CCl7ZJr2Ex25ubl85jOfOdpijB29c8aUJcIunR69ABEapLgO5whIsX00+RWxflK3FwLy3DodI+S4J+tBkoBe51+f9lAoZVJrjpwwP1whUcPjgramUYVEJVKau2wKPSKWD6MaA2FbFoKo4oR+BsHUx1CEhG6TUHutJtOmEM51Qc/Ac8DCQpUlArKEL+rE3xvi5NdzcEXjvW5Bt46tK4RDk/GHjQlR0rOFmzoxNCzN0FWaSjIYPfXVUKmKZB8ZkqufxdGpyyiSwD9oVqjI6EJNOZzmGJ+dw41RfGjm8OF7iU3s6AQJJTgVjbimiNhcsUbhHLN6VwMSiSA689yD2gg0OX48HGIgCsIrnHH1lPx6Dq7g6Dg41WD6eYwlUg6D7/BIivSNkZ46FgKzlwAisTivKhRmSTF90iG03vbJr1eRV+dw3zFF2iwXY0JaGvOiRYu49dZbueqqqzAMgz179vCXv/yFhQsXpnWQqqqquDpPfXj66af7319yySVccsklaYp9ZCELma9VfpssWzYP7PoN7aE27ljyI+yKY+Sdx4poENuux7Bt/RNq02YsIROefi7+U75JS96ZPHtY5qmt9Wxv6EaVBWeU+vjm3FzOKM3E1su7HzWjPHXoaR7c8zuag00syVrKbeWfY1HmSaMKv7NCQSIbNxBa+xrhdWux2tsQTif6+Rdiu+hilAWLJraA3xSmME5IHm8/Ix/EqLjNmmqiOz4gsv0DjN27CK99ldDT/+jfR/gyUcpmkjd9BjeUTOPLRd+k2mPx57aNrG97g3cDf+LdDX/CbhVzRu7ZXFmxkvKMCoSsE5x/HcG5V2Hb+SiOTffg+ecXiGbNwX/y1wnNvBhGE54zCgT+/leCjz6C7VNXo5+3clKOcbzhpptu4s4772T58uVxEQ0Ap5xyylGSaozoy2FIUwnoaxV2aGj+0bGqJe8piUhWzLMwEmRk3MJBM1HsqkyGphBOUvdouHOzhvk0GBkOjZq2obkew0mZaEjae383TUlhQBe2ettKhFU3EBzxWiQqt4MRctuwtQRx2xT8hhnXk5Wwdm+68skSbShRg5FSTfpomP16HjDgAfTalSEeNZewM82ZTU1wb/zxNJmoTU1kfkgLuizhtnpptq2Y4jo4gFESAsmZ20/MYUoKmMObLJakQoJ/VVMkwklqd7mw0Z1Yn6zXS6hIgmjvvHDbFFp7xnZf6CLmKAgOIgERxmD5hjPrY8gQDjqtAQ+cS1cIRg36ZmqfjRZyaPTkjN9pIEsibfthNPlMdqFi9C5QRGUbHc5SMnoODLPHwMgkiiOJ2NzNFV4aBpGYOLHhFEPzk5PKow42ZcSoF4lGg7SMpttvv51f/OIXfOUrX6Gzs5Mvf/nLnHfeedx+++2TJtixBiEE15Z/jiw9m//Z+l98662b+PHSn+PTR2YQHNVx/M3Yt/4B+9Y/IgVaiGbNpfvMO/CXf5y3mxWe2lrPKy8cIGxYzMpx8u/nzuTCubl4BxXzMiyD1bUv8Ifd91Pnr2Wedz63Lrqdk7JOTksGyzCI7t5JZOMGIps2ENn8PoRDCKczllNy9jmx8LskCfdTmMKxCCEEcnEJcnEJ+vkXAjFDymptIbp/H8bePUT378XYt5fQc89i+WM/7h7gq7LMTQWF9OTMZ7MaZKuzhfqcP3P7zj8TzMphefG5nFt4DvN9CwjOu4bgnE+h7/4Hjk13k/HCV4h6Z+I/+SZCsz4G8sTR6wce+xs9d/0P2hln4fzq1yas3+Md//znP3nuued47bXXkAdRzwoheP7554+iZOnBpFd5EgOqhmVPb970KfQRu4rmD8dFicpIwxZV7ctzEVZi3kHskypLGJaFQ5NiXlbVh8OMr0WjanZyogNEKl7hoJlOhABZkiAuxyy5ipno6RmMVEpprsfOBzUwdIl/4EwCWhb2cOr8qb6mccbLBBQRHYzOfDeelmB/DzJSau+gakex2lEkCcNMft3M3rycPvbADmcZDU4n04mxRMqDQvx8To22XoMhkpcFLfFGU39NrzGcnl2TsRnaoAkbP3A2ZzG5meVU18fC+IOqF1eom1RXVEUhksQ8dekKrdF4o8dQZTDlQYZuH2J9S5IgIuyoRsxYUWRBdAxFi73CSYOVmpkwMQg1GZQEw1hXJILR5B5EQ1Ix7NPRevaMWlYAj3Dg1GUMxaIr140wTFwtA2GgiTKO1tDoWzfpckzDSsgPkwR4HSpGYGT+PLcS06G1YbPdRjspj7LRtGfPHm6//fYPlZGUCh8puRSv5uPOd7/HTeu/xPeX/JjyjIpx9yu37sL+/m+x7XwMYYQIzTifwKIbOORewtPbGnnqoX3UdYbIsClctqCAj83PZ3Ze/EqEaZmsrX+V3+++n4Pd+ynPmMWPl/43VTmnD+sJskJBojt3ENm6hejWzUTefQerO8a2IpeVY/v4J9CqlqEuWYpQJ6/S8hSmcCQhhEBkZaNlZcPSU/u3W5aF1d6GcfgwRvVhjOpDGNWHcVUfpqr6MFWBAYUuKtXT5HmYet/D/C1LxzW9nOKK05g991yCVzyPfuhFnBvvImP1NzHW/4Tg/OsIVF6L5Rh7GJ0VjeL/zf8R+Muf0M48G/cdP0RMYl2K4w1vvPEGa9aswes9/gtlW5bFwcWzmdszwFKVjnLTme+OEQoEBhTMaVIOEYdGdffh/m2DU3YMTe4lB7CSRi65bUp/21lZi2n3V+M3a7D1howDFNkLkLoG57LEVroVMbCSPhyc2PrXmhUh9/sZbKqMKktoUh8bnYQ1yAAUkqDbXoxspq7nMkQx7RXGlAVSghIdVtxo0a44o7OvaGxqM2cAGbKNTiPB89HP6DYAeRhFseOUeWS8nTrEKqh6sUSfCmfRkjEvprwKGVUVqAkFlyToz8tMpg9YQtDpnAE9w9fESQbLXYgpTOiOjVPiWMtCwa26B5FMDD+GrRX5uPcPDdksUDJoJZ5NsXF2LpbkQdm8I1Gq/neGpKD2GlUZNjVtb1NnQQYZtZ29EieTOT3vTEdhBp7a5LlbTk2mU8TL2+EsozVjBrPw0c4e8jOSL5rEhxtavXL2Sdsrr4DuXBd6VwhaUlPwt7tm4mzdgoYSF+o3GF67SkvU6D/CYCT62TJsCnbdxs42f4pS1/GkIx0Zc1jUafK+sT/psXtseeih5GG85og+volDWkbTd7/7XZ555pnJluW4wbK8M/ifqru5493v8q9vfIl/m/dNLin52OhD1CwLtXotjvd+g3boVSxZJzjnStorP8/qZi9Prq9nw6HYykzVdB83nVXK8vLsfhrTPvQZS3/c/QD7u/cx3TWD/zzph5yVf05S0gqjsYHoti1Etmwmum0r0V07IBq7SaSiYrTl56AtPRV1yVKkzKyxDdIUpnCcQgiB8GUi+TJRF8aT0ViWhdXSglFbjXH4MPU799K1YxcZDfuYfbgdx4atwFZ6uI8uSRAtyMVZvgQ961ScoW24X/kF9o13E5p9GYGFX8DInjcq2SIfbKPnf/+b6PYPsH38kzi/8e9ThCsJmD9//tEWYXwQ8WqFKSkYioVsxnIOuh1FeEmugA0oSgJDU6DXaLJ6v1OFgk+4aOstFqkpMpFowhK9lVxBHLxFkRSEEENWmJPtk5Gh4wgqEGZEq8kuNDp6w59KRR7biRJW3UgiRL5bQ5Z0wn7I1csImV2EQjEFWpVU3GouecIBKcZmaH5hv2sp9k/QP/Z9RlOy9gm8efTY8oHuhJa9fUtDjcWAlomHjrjWgxEpn0ZIGFha/AJlWHbiHOSpM5ONfa+HJ0NXUcRwFNZDL4RPOAipHhCjM5ocukxLlgebZiQOQ8IRhxqNFlZ/+Fzd/AIKtsaMRENXkpLp2KXki7Zdjmn4SDSa4o+e+C7BThkWmpy8kGui2dBcWoBrb82QdmFHX07OUCiSRJZLJzDYudrbsSrFvLa6OvRah1U3LkWjrTvROE+OkDs9b3VGAjlHd56LHLcOWHgcGroAugaEHJZtUYlFI/n1bDxhPz22PNRA9aAGgopcF7sau+lwltFlL4Hae4d0o6sSfls+hq0YupPc34kFt5w5o6p7NRqk9Wt7/vnnc8MNN7B8+fIhxWbTYdA7ETHPN5/fnPF7fvT+Hfxi63+xufU9vlb5LVyqe+SdIwFsux/HvvkBlJYdmPYcuk/9dzbnfZLHdoV4/pEmukL1FGbo3HD6dC6tzIujPu5DorE0zTmd7y6+g3MKViD3PlBNfw/G7l0xT9K2rUS3bsZs7KWJ1HSUuXOxf/oalPkLUSvnI/kmNtxwClM4kSCEQGRnI2Vnoy5czIxLYAbQHojw9NZ6Vm/YDs0bKIl+QEnwEMXNjUzb0kxum0G3BQ3kIzlV7J7V2LzPopbPxFx+DcZJn0SoycNdza5OIm+tJ/jMU0Q2vo3weHD/4Kfo55yXtP2HHfn5+Vx22WUsWbIkrh4gwA9+8IOjJNUoYCWsywo4nLuCGfXPARDUfSQaBl3ZPlyHq3v3iCkxra4KCsK1EKglFSIeHVqGspylt/yXTAVMMACK8yC3HbF36DGspHsMoM80MVAhoQiuIlSQnANp+QLcSg6qMAg6daRwaAhVuTmIuthi9GFoffImUiAbkkZYzcDdazF0LcincEc7QQjvAAAgAElEQVSADiMQp/jnSl72EyGsZgAd/R1mCDtBK0xPb1vLYaMwu5TdCcePKC4wOhgWwxBhaJJCuZxF2IipuX49B0cv+1qplEe3LUYB4bfnkIzprw8hNQNlkHXktam0jLRgLARCSEmMpgGUywX0MOBZC9sdZKITDHQP5BGlOI4kxUfdJFPkxZD0nvQngN9VQrtZTCi4CyKDxiYhHDTgdSftVtdkPDlOBjvJ4q6UkDFlmfYSL55DMV+rJBQckhNVDKOm6x5I02gaCQMkKvEnEHbqaLKIhXqKocbn8J3KNGdUYrdXElKzcAZq8QwymsyEXF9TUumx5eIMNsb1r8mpj2ZIKiYWEgJvX8qIOx86JmZcEpGW0fTOO+8ADIkHF0J8aI0miFGS//SUX/DQnj/yh933s6l5A1+a81XOL7qw32gZDKmrBvvWP2Db9hBSqJ1o1jwazvwZj0aW8cQHrexecwBdkTh3VjYfm5/HySVepCQPiZ5ID8/XPMsTBx6l2n+431g627kUa/ceQq8+RHTXToxdOzCqD/c/SKXcvJhxtGAhSuUClPJZU+F2U5jCBMBrV7n2lBI+s7SYvS1nsHpnEy/srqc6/A6KZxNOfQfTG00WNeVwWkcu0+s66dlxED5ohCf/FyGtQvY6kYpmgDcXLBOzqRGjtharK6YgS7m5OG78V2yfuALJkV6x6THBjKK07EBu24MIdxKcfQWok0h6M8HIzs7miiuuONpijA+94XGZTpXBlVAkSaCpCorQiFoDIUZBl6N3t9jvhSHrSRXMRJU6Q9jpHEQN3WUvxhGtY3BieiqYyRT0hB1MXwZIIyj6SZD0uKni66D/XBsyT8UotFO45bkhbUxJISI7mKfnsCVQ02ePgogV8022MD1YjmKlhLl6D4cVCbrizymg52FRi0uycbKrgoiyl9pIfBu3sCOIYmFiOvOgI2YgSEjkS744M6Vcy6HDltdvKvoLMqB+FFZeCuNC9BZ8FYAhDapfNwoDotsxDaf/g/7PfYxm/T0k6UogkIQgoGWhy0GC9gwIdfU31Yh5QE00Ar0GUuO8acwVJtYbW0nsuq4yn4Jt9UCMZe2Tcxaw+o3H+tsZukJ3jpfsQXWH+ijcizUfemAoU5wqS1iW1U8aAeBujyneNlUlaroww8npt0eC16bgn51LlhWA5qHuOEvW6Jw1D6N+Y/+2WY5TIdSEA43EQfWI2P1u2b2YUuo8vWT6YyoM0NAPvtESbrp+vVb0y+S2ybQPQ7xnSYlew4H3EcU17MzrK27cZwQnPgIMScOUVExMzs6ekfQYE420jKYHH3xw0gQ43iELmc/Oup6q3NO5a9vP+a/NP+ThfX/i6rLPck7BeWgItIMvY9vxN7QDLwEWodKL2Jh7Bb+vKeK1V1qJGIeZl+/mO+eXc8HsXNy2oZfFtEy2tW1hde0LvFjzPFpnD8u7pnOL/1xK6iIY99xDR93AKo2UX4BSMRv9wo+gVMxBmTV7io54ClOYZAghKM92Up7t5MtnzKCh6yQ2HPokaw8e5H33q+zMfZ1HtQ8wIxl4uj7C6R3lrGjdwszm97E31xKtbceo0bH0DKT8EpQVK5GKilFnz0VZtBgxSXWHhL8Z/cALaPueQ6t5AxGNKQuWrBMpPA0jc/x5m0cKN910U9Ltv//974+sIGOFLJNhVwnZ1VhYziBtfpEyg0bXYpyaQk1oZ/92cxBjW2TWdCC+6GSB7MUSMc/HYHVCZjAVdq/iZFl4bQo9oYGWPXoeWSSryzTSynOSEKtBinEylDnykIMDXppstw69tX26F89FeyNeDitG1xb7kECYINwO6BncVsQpkhmyg6jqxodEI8k1v4hNRSChoKBOy8ds6ukNT4oTAgCHJmNOPw/e2zukn76Rbs3PpNDqgSG25CADz13EPN983u39HMifDfX7yZLc9Jixe9OUNESCp0P0B2IOj9i1FoRlJ5rR07st9V4ZdoXOYetaxTOWJVJDm71EJqZQCOjZtEwroLi9BhsaWbILG/Z+Hoc4ZkbLwhjE8NCfTzboWD7hRErwWFhAMMMOtNPnpFB737iFThcijgUvdlywKXJ/QeHWaT7y2vy4HCqmJmOO4LgYMEeHQpIESAJLlojIdqKSHVsklp9juguRAFORB8LyhA2538MU36cdjWK5CCsht0tOUjnJbZNBDL1uiXmRliTTVphD0aH4dl3Tc4HQQOqJKw969hNvAg0321KH+ba7ZhKRh2cI9NgVGiNDnxXxM03EOSkMb2nKRYOJwLBG0xe/+EXuu+++/s+33347d95556QJczyjwjObu5f9mrX1r/KH3ffz080/4N7NP+WCnh5WdLazSLhpn/sFHuYC/rwLGj8I47V3cuXiQj5amU95ztCV45ZgM9vbt7F7/3pq332VzMNtzKsXfKJJxdlhAPuAfRjFJShz56N8/HKU2XNQZlUgeY7/JOgpTOF4R55b59LKfC6t/P/Ze/Mwuao64f9z7lZ7dVX1vibdWcmeEJIAQohsAZGZd9xwQRl0EGFedUYdQWUQEGXwQRwRZHxEBVR+Or4qKsgiGFBklbAIJGRPSOju9L5UdW33/P64tXd1p7N0dwLn8zx50nXrLt977jm3zvd8tzpgNZ1Dn+G32x7j0Y5f024+xIPhR7k/spSR8MWEWzycoz/DP5jPsILX0HmNHvcm9ofOIloxn5Cc4CrXBNEG9uDa8SDWtj9gtj+LkDbpQDOx4z5Iqn4lqch80sEWMD0HPtlRxNDQED/5yU/Ys2cPdmYSPTw8zJNPPslFF100vcJNBEMntrwJM10ckxJzVWK7Q7h1/6j4nLjPS19TmERoNugaUgqElLkMV6FIA13dXirTxZm4jILz2JVe2A9xfxivlHgbItDuaAfpMlkfsxPj3uYQRjyNtys+ap+JqvjZOkRJ0swIhOiMJ0jgpJi29PwEXArJwHHLCL72Qm6by9TzqbxksSKnVYWhPX8dWy9wgZVQowUZMmvQ030whtJkzV1CxU4XMt6FXheBrtHB9FnXJlMXyBKrrMzKlmnrvvpqBqvrCb/ZXrRfNOhDWI57f6p2WW4y6tIMbN2xNmSz5A16mpBCQ0+XtLmUzKvx5+aM6WAzDI9W4IzMJDNuVWDFiu+ndDXfDvrRUvnrjFTVknYNke4aQO/sydmZxs2+t2wuZtVqav4YIxXNB/oLBDVGkOG0oxppaARcOt1IhNCwgFRm1UCOUX9nVlXJ3ElC0vST1hyrkKYJan0ujHj5jIxuS2ckMTr+Kx50Q28UTQjs8cxoByAgvBReOeaqdq6bUZrycYGjLTxxM4QAbE8VznxvbAqTimStRoUKjVkSCy91C0jSEDyFv8tOJw18AQJIBT3UBfLDC6Hl1PKoqxqib5Aep9Znqe2q8BkmdV/Z5iyMk8zJX2LV1oWOT7gZJIUmNFqtalI47ZkOtowpz5Fg3N/gvXuLA9qee+65MfZ8myMlet823G8+w3lvPMH/2bWRZ7U4vwxWcK/Pwy98NSB10r0bkck91Nc3cUpdM8fVhPEYfexKbmPHXpu+RB/7ht9gZMcWPK/toHFHP/PfkLw7Y2GWQqC1NGOtXuAoR3Pnoc+Zi+ab/iLACoXiwNT43Xxi6dl8grPZPbSTX+/8JQ/uvR+94m80e5cRNc/hrsEPc0v3m8zp+zPrhp/gxK13oG/7ATtlHRvME3kjdAJ2/Upm1lUzq8pHU8jj1OM4EHYao/MFrF2PYu18BLPLcXtx6kl9mnjbOU5iimO85trnP/95EokEy5cv55577uF973sfjz32GLfeeut0izYh3JoLaeqjrCYd4RMwDQ3v8OhAaCkgFvYS8rvoi+Yn/wKo9FmEvG5iQhC3QoBTcFRHwyPyylDFjDCx45fj37EPsf31gplSeTR0pBBUVPno647ixB0VH9MROQGdOIUTvuH6EDI6gBXVcmmiPaZOFyFciQHwViMyMjo3kT2nM11LB/Jx1QKJx9ByyVCkYZCIVJOsroSQhihZZU+aQVLVS2CXE1dR5L40xu26DV+mKUTZZE+GcFE04c3s02yFeQWI1weJBmuoSNkg+3P7hISPwjzZnbOaqImPZCyLAk1ozHfVoZsxth1gsl44pfRYOralo42kQDcY9tTji5XPwicxcgklYu5aHBWldFqYt5+k/EGiM+ciB98kbVg5panIvlXSRpU+C9NloVWE8Oh+UlowNwluCrnpG8k/o0otgG7GaQm1MVzTQEt3O29mak1Fw56iVqgRFXTKfnx6sctc0vCRNHz0+VpyqdfLu6k529yGxkgiXbaFE64qZKIvd0s+zc/Y+eeKz5u9x4pCpSlzot6GGgJbdxftX2ylcsZ+WvfQXrmaNtfoVOc1AYsdFCuCDVqEPQwhhYbwHQfkXffqg66iZQHb9LE/NJtq/zLSQ48XKCbFrnCldcdkJrnmgK+NLjOFXxhAioDHRAxZxArchmWZvwrx6eFR4y5mVePP9Nfsc7OEScRsIKxXwdBTAFQIH4P0U6NVYghtjHx/R55xlaa3dcFSmXkVSNv5206hjfSgxbrRovvRBnZj9G1D79uOsf9ltBHHZcD2VBFvW48vdAp612xiW7oYMbYSjuymOtyHbXTSOfIID3WleChjXfWMSJbslBy/VXLedqgYdjpYIujFXjgf14qTcS9c6sQgeY6tVV+FQlGeFv9MPrPo8/zz3Ev4/Z7f8Oudv+Th6DeY4W/lvQs/wJkNXySW0HiifS/a1j9Qt+8h3jf0W4yuX5Pcr/P3F1t51Z7BQ6KBkUArnsoWaquqmBHx0RoyCIsh9P6dGF2vYnS/htHxAlq8Dyl0UnXHM3TSV4i3rceumDndTXFE2b59Ow899BAA9913H//2b//G+9//fm688UZWrVp1gKOnnxpXmDErs0hJuiJEsroO9rwGQJXfykwNoSXscZSmzG93yAwwPJJ34+n1zyURt2HwBfzCg14SYG2YjpOPoLzFoEL30GA4SotfDzNs7yc76/FSbI2yhU7cqsLlbqRQaRqpCpB2udBeKk4O0d3YguiMIj1hBioW4optLYqsKhQn2tyGtdtxT9Q1gV4ZZDjZRqKqFjSNZGMDZnw/pIunUgIBuknH6eeSeOxpRBwQmrPqzehkFQBpwwMUJ3Vo0KqIWZ0k0jaGUUWvjOLNZjjLtr2esThpgmhzLV2DrQwN5xXhdMAHI44CHPQYVPlc+XwXGUtBqKGB4f7tJP2+cavYgLNCL3UdSBNtrcSzpw9NOm58LtM5n6EL4mlBzFUJ7AEBQ55G9ruPI2kEgR4GfK0Mebrxx5xF86irhsqUo2QOLliOkGnm1QR4eXcvad1CZoq1ZhOYSSFyc+SB2gDeKi/ezP0sqg/Sh4/XMpP90iLJBjotViXeoI+Uvwkt2perNWWi5+ocJcwAfiHRhU6LGSFVzmKhGUSrvHj7SvzqRNF/mIaBrUnMEuWgJzCP1lgPdjy/KO3V/NRqdfTJYUqTk+Td85y/+hoq8ezqca5T4laddY+rM4P06O5MQpMCFWOchB5ZXGVctTUEttAxhAvbCALduCwNt67j19y8MmMBkX17CWT2Lmb0OBtFrnSAcx1ZYKn2mRp+UcEumY/OG10eocD2JQQzPIvHvEbhn1JK6lyz0TIZRGUmNi9uBEdn+CiTMfpI8rbNVRt48DJcOx/GUYwyylFGSSr1Ex4L2/STDs8iPvMsUvUn0BVexm/3+vjtKx1seyGKy+jn9Ln1nL9oOcubKnJacyqdZGjnJpJPPol86inE319DpG0IBLBOPNFJ971kGVpT89tbcVUo3gYErSAfmvVR3tf6QTa8+Qj/u+Mebnr5Bu7YfDv/MOM9nN/yfwi3fgr4FL2JYcz259D2/JW2N55iQd+zuFIDznwvCuwZff6UMOnzthKvXYdoXYc5ax14wlN8l1OHpmlEo1G8XmfSOjIyQmNjI6+88so0SzZB7PFSRYOpCXpb59EReJPaVzfhtXTKxg5IiZF1nSn4OuV2ow06cw1T10mbOiFp0OyqxQnvz6x552csAPh8DbRk/JRSue+dz2G81JS46byx6p8KLjy6UkupUiaFyIcm5awHxS5LAauCaBLi9c2Y+/cSSWhEDA9CCBI19SUNAFpJUeDsJRfWrKHT2AtxJ7PgoKeJlJUAWaw4CQG9vtn4eblIErdwEReQDLgxbL0kvEsg3SGID5K1GCwMrWBnQieWrAJspDBoXtjMvo4Y1mvbCXlMLKNgtTwz8dMr/HhWL3SC6TOT8bGQQiNRWYuPPWBoJMMeXD3QGgkge5xnE6qoINhSSb8tqLFa6UwU1MQR+fPEXFU5pWnEWwXD+YxnQoAvE3fd65+LFRoCknlXLC2vNI0E3SQr8+5zXssgbhVPalOmD0bKJwsRBUrVHFEPjDBihun3tjHo2U8gtjczRxLUmgE6koPoIj9ZT7lNpF4a95U/54gVwd90PDVpG2vb70hlrLu2ZjCztpLIQJpovJNSvMIiqqWJ13lhS1fuzAhBxGvCYILB6grqdxU0bBn8mpv+gnislOElYSZJy7yyH/E6rpnR2VV4XuyiUgsWy2LqOc/SAU8LI/b+IgW71u+MgRN9bfzNsx/Lcpwex+LAM06ns2drhBXqdxG/xa4Bx03Vp7kwcRKNaUUudxQpWwCLG4K8XFLHSjDa2C0RzKj08Eo0RLvVylDqTYgPlcRVTe6ceVylKZ1O09nZmdN6Sz8D1NbWTqqAk0V81rnY/vqMluqsrUmh5bXUzDYy26SmI91hbHcltqcSO9iM7a0hlrJ5fGs3D2zq5Mmd+0nbnSysC3DlmXM4a141flemYyUSJF7cSOLJJ0j89S/Ye99AAEbbLKwLPox10jswFixSNVcUircppmZyZuN6zmg4mxd7NvKLHfdw55Y7+Nm2uzmz8WzeO/MCZgZaSbashZa1ACSkRIz0ovdtQxvuIDrYy/7BEdqjNtujbl4aCvJ4b5ihbs3x1HgdfNartIQ9tIQ9NIc8NIc9VPksqvwWlV6LoNs4phdr3v3ud3PWWWexYcMGVq1axaWXXkpraysu18TqlEw79tgTGgk5V8yZlWsJudLM8Bn8uaROSfaTBsTrA7nfNSFtuhYtovqNrdR22kgh6JxTjcsTZKZV6ShNMuNlUtIHbG81DDkTRH3ufNj7TO47j7AQGRkSx7WBlKR8wbL9KDv1NzUto1I4+/jdJhFrtOKTJWSFqfTPoWMojjfejg4sMKtxjZGO2NAEms+FQODVTPoAgQYCQmaY/pxroqQm6GZLsIVYrJMK0w12zuRTsHI9OuQ97TbwjfioMiuAvxPRfSAE6fBstL6dZN2jQlaEbOaHmREvGIYzNzANpGkgTS8tvllYRk+mnlXBajvZz6MVJtvQig0ehYk+BESsSqqrZ7E7sZfGhBvcYfxuE+IaqaZ5sL18IVFwFI90Uy2x5pnQ5cSQuU2dE5rD0OXEyFimCZqJpqdys2dbAzm69NeYG2K+FgbsIfoiq5nB60X3UogQAuzMoQI6V5xNOvoakEQKnRZ3mERK0q8LmiIe6quWMZKsIRH9K5ZdmrmjuM1MQ882GQBho5EYoJfWhcoqY9hgFL9PdJ9F2Gvmk/UIQazCA4Mg9bHSJRTG60G/bxZus/iZGBkL2IzqFhKaM2ISQNr0QXIYd4HSlDCDyEQ3vc311GdD5oTIPZv5tX58PS5S5ZQmAWZBov5yRYqz32kApbFYQqPaZ1EvXJi6ho7GTLOWJtGMTw8VHV9KQ4WbwZEUO3vyixZp8ta/XPlezcAz5xy6tw5iJ/dAuky7TqeladeuXaxdu7ZISTr11FNzfwsheO211yZPukkkMfs8ErPPO6Rjk2mbp3b28uCmTTy2tZuRlE2N3+KC5Y2ct6iW2VU+pG2T3r6V2HPPkvjbsyRf3AixGFguzBUr8XzgQ1gnnoxeV3/gCyoUircNQgiWVa5gWeUKdg/t4v/t/AUPvnEf9+/5Hauq1/C+1g+yonJlbmIrPRFSHqe+mgHUZ/4tB96Dkxp6X/8Iu3pi7O6LsafX+ffym4M8vHk/dskvo6kLwh4Tn2XgNjU8po7H1KkLuvjM2jY8ZQotHk1cfvnlnHbaaRiGwZe+9CXuvPNOuru7ueWWW6ZbtIkhNE4LzmXQ9vFnLQYdJW5AudARgSYMAlYQWaaga1vES6BD0A4ErQCd2hAp20ag5WuyZJZzZYlrkkAUWILKTJ10HdvlpjrdwiDb8Ao3UXcQv+gGM5/1qzpg0Z8YPVGKBmYRcG+iPw56ZtpTH/awWITz91gyaXZpJpoQuJM91PS9SGIkhibKxxmBkyBgOJFiplZD0GOyLyWoMEYv8s6t8pH2udlujjAkmhFiO6WuV4PHLSOV6kQIx+qQMjwkQx6SbhNGIGhUMt/VSEDXR7lijWq7rEXH8gMxknNmoB3/LurTBintVRJlJrQBt4k0dfRUGr9pMDjG5LPkSkRclVi6xXHueux0jDQCYRkEhEG3Pn6yqH5vK4nmuUjdxF8TYjiWYkVTRcayCcfV+hmIe3gzOgianpuYS00UhmrlZCllJOLLWSsTZpC4FSZh+skebHsqc/tGrUqGPHUwnFco0j4/XZ5lpGriyMy+WQXT1DWCrhq6RWnGx1KJ8n3bo5kM2XGG3PXoVm3O0a4cFgbxkufkWtkyqp5mX2MFI+kGpOHEJKVNLxAvqIlUQME2txYo3i4EXs0iEnTRPhBnb+XJVNu7oKfYCpYdC0mvh1GJTYROKuhY/VKh8mEezVoVw4xkmqVcSQGnb2tokLU0Zb5KBmci0/G8m6MAS9cJUp073BZ6Zulh9LlLh82MSk8u4+GwJ5/cQVp+pIgWnKH0HTCNlqZNm8arsPz2YjiR4tldffxlew8btnbRP5Kiwm1w7oJazj6umiUBsLe8TuqhJxjY9CrJjc8j+5wBq7fMwL3+XVirT8Q8/gSEu3wRS4VCoSikxT+Df1v0BS6e+y/8dvev+c3O/8cXnvkMbYFZvLf1At5ZfwZWmcxmhWhC0BTy0BTycHLJd4mUzb6BEbqHE3QPJ+gaTtA9nKQnmiCWTGf+2bnPqbSEo7i0Wzwex+VysXDhQgD27dtHW1sb559/PvX1x8YClR1owu3TGdHqkG/+kcIJvJQFaZeBijLlKXII8OteTvC1YrjDCIYRto1HC4KEgOamL3OqwnMiJdL0gYhlTiNHKTBZPLqfpb7ZvNHbT68ZIlrRQiST7lwKwXG1AZ7aA9lJUqLCQ4MWYcBVhV9z0U8cPas2FVhJhBDYQjDirqcw/Z3b0DBTTvpx30gnWKBH8okhCrEMQbd3DkL/OzoaTe75xU6Ctu0ohylnkm7ogkXVQdIvCdJp6GuoQA+6EAJSgQoGZRC7upr+Ch8MdyPNfXnFUsr8PPBgrbSGjhapga6x6lkJNE0Q9ls0uiQ9MS239J6ttRTSfKMSFJSLSbMWzEMTHcwN+al3hXkwn4SQlM+JacpmRUyaAfr8c3HHu/DNn0EbEHcbozKZgURoOna4guiQB7vKm3MTnq3XE2OINm9L9lZyRBsjuKtmwOb8xn7fLFJ1AeJz1xddIVt3zChwZQu4Dap8XtIhf4FLqyBphfEYXqSUB2V0qDGCDKW6sDUz9ww1BBGrkqSdpDAVg4GOKNEMs4tYRc2uCTBd1BlBDCEYSieBOFoqL29ho0ggYjZhWg0FWe3z31uZDHhJMzBuNyt8Qo1mmKSdwvZWYosh+tfMQ+/bwWA8VVYDyBaBLusIKgSL3U30DheXKgBAt0hXNMNQPiIz4DKKQgWzGfoKlcbsbbRl3DhfzZSxWuxpyPXznoqFUCbDoXO8cwY9EiTdM3rx6EjztvIFS+3YxtDXr0WmUo4bnK6Drjt/Wy6n0KvlQlgWKd2kOynpjEveiNrsGU6TQCNEms/7BbO8UN01jHy+A7ujnb7+/JDSauuwVq/BPP4EzONPQK85Nl0YFQrF0UGFFeLC2f/MB1o/zKNvPswvd/x/3PjS9dz66rdZW/9Ozmxcz+LwUrSDdE2wDI2ZEa/jMnSM87e//Y3LL7+ce++9l9raWh5++GH+/d//nTlz5tDe3s63v/3tYyIRBEJA5WzoG52YQOJYUDoGHUWq0peJ/SmT6S67xUBDeNygCWKNM3AbYVa52/DqXWQTRusF/UYgsUNtSNduAnoUUuXcq2QujkcXGjLj3pT2+snWiMpOjKRw9rctnaHWCLVxN0tCJ+E/foi6Z1/DtiVDaW1USunO0EpGPCPklCYpMVJDrAvsZcjlZffuILrHxGwIj6mopF1hErNbEFoab7fOcGbi5VR3yfydmYiLZApNA5elM5KEWMSL4QuxfnY1T293kmukI3NJeKIYmZpVqYzVJeUPkm0lIfIr7aXPonBFvNSxyNZM9leuoj/pYR6jjy1q/pKtXlyjs7rlL5rfZBmQBE03cBekoO5ftJK0xwPDO0dfq/SdUuq2KW003QQd+ptC+JKOBUbXBSfU1+LytpDUzZyLlZlxefOI8gWYMYpXZfSikIn8bZ3UGimUMreP1HR8ZoDRJWRLEbnkFac3nEWiqod07yaIZvqHo8nT4GsEoCstIdFTdPzocZf/7LU0J38IsMjdiKEJXgkP0xirxx9uI7JrC56sgibzLmhj60LFo1AAFWaYlNZRfvcMx/lmkKxfTdIVhPZHQUrmueoY1ON0ZIxRNX4XnUNx+n0zGRI2DOwn5DHw+C0GC62uQqPODNJb2LoFYhkF7oxuYToLLgXYYnSh3iy6JphT7ce1V8MwNNyaidQkXktnYX2AZ3eVZBAsUd7FwpOwX34FI1LJZPK2UpqEx4ve3IKMxbBTKboHYiSjSUjF0VJ9yEQCmYgjEkm0dBIrnaLVTjK3NDDXciE8HmQkglZbh3nccWj1jRhz5zlFZEOqRpJCoTjyWLrF+qZ3cXbjuWzs/hsP7f0Dj+77I/fv+R21njrOaDibtfXrmBUHw+EAACAASURBVBWYc0zHJR0K3/zmN7nuuutycbbf+c53+PSnP82//Mu/8NJLL3HDDTfws5/9bJqlPDzmVvuKip8XPuKYVTiJzJlAnNVv3WBg1VqSqczULJvcQXMDMer0YmuNQBT7y5T2pZKV4nQgwGDtMqTbhG6nLpCQ6fxuklETqMTss9C3RLEG9yDTErSMGqFl7F4C0lY+nbQEyNQLctcvonl+I3JwgPisNWiBAGwqLvYpEM6c1mVB2EMrXkZSdi4hk7DTmYX+bLxXYXyJwYCvEbd/jN/yzDEJj0X/khOw3V7YUn7XgyHursJOFxfzzNeqcf6b46phRwwGK8PUj8SwYhqVHotczrJSDVcIrFmNpN7sQvO5oA+kZhY9Q9vryyTDGo3mqyoqsFxKWqbR9ACQKYgtBDZOTJmZ64b5OZTX8NLiaqQh+Vpu/6zQg3MXYy2bUXT+uVYNg6lGZK4/lncbswxB0gjiNXVkLgxt9Duw0KqqJe1can/pDoPpg4I03oVHS8MovrKgyK01n3Jdx0AvqTfk0NpWy47qOUhdJyz8GRENpEwV3FexzG7NcWN0ZRQSI+OyJoBmfzMM9rCPAZKzW5jlipDu2Et3ibua9ESKztlkhnmZTsyUG00T1AVc7B+OM1zdRtplIaJbmOHx0ekxGSz08hMapi6ZWRsi2BLG6PbzRl/WIg01rhqkq464TNFohkYpNinDiwCqAwX9tYR5NX4MvZpUzRKMzpeYXe0j7rXG2LtAtOpGzHcff8D9Dpe3ldKk19UT+M/rAOgeTvDPdzxDLJkPRY34LBor3DRUuJkR9rC4IcjCugA+U4NkAplMIdxulaxBoVBMK0IIVlStZEXVSj6z8PM80fE4D+99gHu23c1Pt91JraeOk2reweqak1gcXoLHOPYtSQeit7eXM888E3BqDG7dupX3vOc9ACxZsoTu7u7xDj/qOfu4mjG/m18bQBAgUXU87L2fTFRS7nuJKJo/WtUh9HgCd20lJ0SrCGr5SUmiKoTYY5PyuUFCtTvIsFk8kSuMcxbzzqN3f5xUXKKn8+mdk4YPuzB2quh4wBVE+mtJmR7MAQ2paRkXp/y0VroN+lfNw/fKMEEjgJYNDPfVAgXxKmNYWCMei6ilUVdTS2zxyeh/+mOmPZzCocTbnckykAw5cSShOWt4JbqFuOnDJUb/1hemUbaldBSmQg60WCGy0TTFE8rGkIfdQ4lyR2Qu7JR/Bdi9ZA62YdCmJfA/vxOfS6ct7GWzy8glDshlN5QSzePCamsk4auD/p2kQ20wVBo7VSx3wG2wcn41ArDfqEKLdVGOtExjGBazFq+g49UukHESGsTD87FdfjSGR2Ukdut+RC5PeF5pSoUio8qquBtrsfZ4sPVx/IKFhmhYQUuin72xvdjITDtoRY/Dr7kQQtBVsRhjZB9JBvGmy2mEGathQZuEli+lcnuSob0DpPvTQK9TT60EM1CDJnXWtJ3G8xt3YRRMs01dw3Z7EMmEUxyWITShYUsbiSxbwLfOPYOZFVWER54hSoHKmHUhdDntsrfhHdRG2x0LV8E9FPKO2rXI/h1oXZtY7G9jRMwvGstDcxcBEO5YhVt7HSvT/2dZNWxLdGbGWZqApZFyWbhNjeawh/2DcbyWjhCCloLFGylt6jJxWAAnt0VwpbzsKjCLllvcS1XOJR1qw+h8adR3uXNn7i9ndZ1AmvYjwdt29l/ps3joUyc6WXx0DeNAxSFdbsQxknxJoVC8ffAYHs5oPJszGs+mJ97DU51P8ETHn7lvz2/59a5fogmdeRXzWRJZxryK+cwJzqPB2/iWs0Tpen4C8+STTzJ37lwikfwPuHaAAP1jkeykzjJy2SGKd8imwi5ImLCwPoDLdTYscRPZ+gAD6Si1fguEYFF4CXvM3fS1+LH3Ps6gHWdOZTWvNXtgT6FLTn6CousGJ7UFefC1ztwExmVlss5K59q2txrs4VzNnWwyAVFZheyGlsolVLctxwxE0WrrEPc/TLymAY12MHSWzl2Oq/E0hJaxWIjxk5FEXTXAHnRPkBnL1+OuqWVkqNhjpPe4VRh9LVQKZwZne534IM+sJSR37QeZzDSp4B2zIgxmirCm0jYmYGlGURKVwimbPqMVS3ppHPk7xgRdZseag+S2Gm6k7sI2vUhNQ9MMPDNnYtbVoKXriQQbODkc4cXuXY48QjhWtcLJpOkhPud85/tBJ4lALOBj/exKUmmb117O34lGvrhosqk0GjKPLW3s5kZcumCWWUe7XUGvL0pQE8jKJujd7Fi2YHT/LJOlsRSzqYaaSBuD2jD0baKcMgCA5SEAWPEu6jz1eKt9+Id9dO3UwS6+RnV9DXv6XND3UlERaVO30EUSDSdhgamZOSvbwhnVaOGFvMZ+hluriPE6aXepC61ACI2mphm4KtuoDS+geyiOVqjHZhjxNZCqD6IN7yXpNkm7LBiWmbJDBfcoBEFrdNyepuuQBquphkRVhLTpw627iViV1LvnAy/mZMri0l0Iby2wibrQHMyYC5ehkwIaKzwYUjhxqxlmWpW4NYNqI+AoTYYLiCIKMny6DI2msGf0DQLINIvqg7QPOHYlv8vA5TKZQIXgUSysD4xKWlR8d1PD21ZpAid9pkKhULxViLginNv8bs5tfjcj6RFe6X2ZF7qf56WeF/jVzl+QzBQH9BsBmv0tNHobafA2Ue2pIWSFibgiBMwgXsNLxDW5vuFHmpqaGh5//HGWLl3KXXfdxVlnnZX77tVXX8Xv949z9LHJePNNV30LdO5CDwexCwLUQx4TXM4kR3P5mFWVsXwInVpPHbWeOl7ofp50RQvStQstUEe8wULMWQm//aVzEilJBYIw1ANlPC+y8TI5+TQd21WJx4zS6vNiVjrWGWv58cQ3PIqRgkpPNWKWM7mOnfxOEgNxEO2AQBMawrLQOzMTwQMoIkPeZuKzl4JmgOXPTfayGJog7Q+iN9XAK08Wt5uhYwiTtMz7JfksA5/l3KfXcty0lnhnMOKtKTv/M+bMRdsfZ0Gvk3zkjdxzKg76L2XljAhb9hbHbmSV3ZCrkrSvETs1QqYqL8dXnZDfr+SPiOHD0q0ipUkWFjSVkoBRRVSP4zF1ZEGMU6CxjuaGgvE/RkeT69bS1+UjaLlJ++qc+DTfDLz2awifD7tyDkmXH9vfUHJgxpKjZ0spj43QBC1L56P3bSfxMkTD5cex9Y5TMTramfuagWb5MHSNGZVeuhyfz6J9Z569joHnX6L3by+jD2eso6bFcbNPIfmS417aEl5MtXs7RAsVo4ysmsHK1pOw+nbxaKZws+PSWjynrAu4qA1YucUNUfCQFtZlSswKjeiyWdDn1HgS5Xwhy/R3YRiQoKg8gAAafI1s0725Y2xvVdFx0h0m3nY2GB4WiRgRr8X2oXraAl5aA9U8+FonsYYZWO5BNCFoMB0X1bSvjoi3Drqd+3WXTUBUqjTZo8K+EjPPYEQI6CvJ7ncAmgoy/i1tDLJ1wEv3mwd1iiPC21ppUigUircqbt3N8VUn5CZWSTvJjsHtvN7/GlsGtrB3eA8v977EI/seHuUqBPDvi/6D81r+carFPmS+8IUvcOmll9LV1cXixYu56KKLgHyCiK997WvTK+AkYwoT6Y4w4G2hzrOGpc0z8VTUo3Vvxi5xz8uSaD4VkRjEeuMJ7EBjbrtEgmYwuGwZoTnvZLkeI2SFi3pJ1YqlDMdiCGt0vEFzyIPeWJGrU+gz/FT5Gwl6owR0g3ihMDkXvoKEBbm/Zc610NrzeP4QoR0wtTfa2NOboNtkWVMFVT6L1BYLEnm3uOaQmxVVK3iy8y+ZcVHccIvqA8R6fIiWhSSMGsjEiSXdVZCpBgWQisxH79026toF0WajqK9w45HFxUul4eG0+tNJeh/Ob0Mw1t0LBNIdphGzKHOZ813BSJcQNKpxe6pKT8GcdSfn3fzKkLTTdKYGea7DeSaVohIsH/G5/0jijS48gCGcPmQHm8ueo9c/B+kaZJSQZXFc7byrF9LTUaaCNxklwsinu3f+y/yvj+4LszySZMiNfH03cqGEZAK9ILNxtbsWYyakXv07uItdBqUQ+HRvUR0ngdMvR6eGKJ/8I9vH7VUr8bm7afUH2d3pYWG9i00DecVJypLsldkHmLlX218LI3sxzGIF2RYGqepF6LXLR907hnM/jRXO/wvDi3Nf6ZpgxopFGN37ctvSgSZOqjmHSNhPas/2zH4Gpzecxc7BHURclQStIESLXTilMTq1ubT8SN3EOAxPh7qgG2lU8eybrxe5P04FSmlSKBSKtwGmZjK3Yh5zK+YVbU+kE/QmeuiL99Kb6GUwOUDCTnBSzTumSdJDY+HChfz5z3+mp6enyC2vqamJ22+/nWXLlk2jdIeGLgyq/Ba1gfK+4VpdPQwPcFrdyTlXp57gAjTAZVqQWQ2WuguPqTMcTxcrT4YbabiJzzoHCuKasnEOyeowwuslgmMZEvVVpN7sAiGY3xAiFGqgr0yWP00Iqv3OtdfWvZOk/zGE6SKgl1lFz8a7FAjmzXiBSCTS9CN1C0YKUnILDXPxUtJ7diMCjpKxtDHIi3snnnI426bampORqSRt6Q66RvY7ddIaqtnYFSDkSY3KcmdqAs2lIzRBusBfKLrkdKitKJiomyQbViGFgRgn3KLfN3PM7+KzzgWhowudVK59slnbyk86W3wziNfEcYWXom/fhdbUBG9kFK7CqrMl7Z6dxMtxUsxn+evgNvpiwxCqZW5wPtUeJ95O10Qu5qvcpFj4A7C/E9u06PfPIjGrGjbeO+61AEf5ysSeRUJhUqnyCl1WgReBEmtUOctkYYr4eDyzW7HMekMj6DpaKFxy0OgMhprQDmgBLU2GAuTSqHtdkrTbAuLoFSXueJm2dM1pZiDq9HeRqYeWDs+lduYqZri90LM9J5smAMN9QJlKOWNepq5SYQioELh0F6ZmEqs/AWnl60jNDLSOkhMg2bAK2x1BCEHAbdBWmY/9W1m9AiOWcX8tuX6Dt4k3o3ude/M3oA/toxz13gZa3IsJpvcB/XkX0ElGKU0KhULxNsbSrZxb1luBQoUJoLa2NpdR71jjlNpTkbVgjGE1cS9ZissonhS5TZ2RpDM5Tle0IjUDO9DMkoCkeziRczMrosTVxm/66S1Kr+yQbFhDOrWTco7tJ7dF6B8aosUIFG3XhJYvull3PNIsTpygVVVjd3YUWY5mV/vwuXQ2DVrYIkE6shDe+CuQWb023AjDcYPLUhd0U+mzePT18gkLALT6hoIJsIOwLIRl0UobrYE2wGnDVTMq6Uv0jNYfcqv5gqDboC/qTP7sxmb0Kl/Rrjm3tKHiYrmFDLkbx/wOfeysYaXKXJaQK8wJ1audD3OdBRLpCiLiA8jChDBlLHy6MOlPdiClDWWfssOInaTaCFBfeQIhV749dS3voqZ7Ryef0dtmoVVWkX4zkbm0c+1E5dhJTrIySl8N8bb1RDofJzLGblo4gnn8KkQug3HOPzS3T6rueHTAVVVH2KrEW9eCTDkxOqKgb+R039qC92JG0ZRCz+9gWfhqmpxqYwV9HSBVvQhj/9/HvTU9M7ZTdgoMHf2kE1lshdk7lGTb/mEq3GZOfj0SZMjr9FGtIDV7KOCMuYTpbFvVGkbbfwTckUtj4qDIIj0ehS6ZxenhoSlQh9E8wot7B4qygQIcF1rAcaEFAKTqTyhT6jlP2BWhTw+SrJdI72iL6WSglCaFQqFQKI5C9HFczAAsffTE+aTWMMl0fkJsB53CoqYuqAtOrLD6TH8be4Z3o5cmXNCtzOr16Ov6XQZ+w4PRXSbYP0M5Vy1j4WKYM29UYpL6oBuPaynbB7fhMvOKmO0ZO9bOHMelDMBcuHjc7wtZFF7Mm9F9BMxid7lc4gBNY0VTBdu7o+zsjhJ0TWw6lb3LVO0yRt58jqThG3f/sRjPfa6UxIx3jt4oJUG3QVdBuxvCJG5H6Y7vp85bfhFFSomNxOeuKlKYACJek1CFF3PZCoJzRk+uhRCOQvNmZ27byElrGe5P4LF0ljQERx1ThHHg/quFCxWfjPVMMxieU0PoDXL9Ua+uodHXiF7dihxwrJiiwI2vnFKazQIo0dD7HKvOSe9YB8A2KwpCkDzxBKzwwvGFLDh1doxn4001jw+PaTHbbVEXcDkurgVlb1yWCRL0xiZIjBQpeubiJaQ7OqiIhIgbB2dhKiU+9x/R+ndidrzAaHvQBG7sAGQXOcYdsweweJ7YGqE/lsQOTOy9diRQSpNCoVAoFMcg5TIgmrrG4eY4yhZJlmOk8R1zKpMtaFuYHjpjQRLu8hMboevgGR37AI7VZIVrZckBU5Mvy6W7il2PshRYaExdY261j8YKdy5+qxzZ51QoudtXjznrNOiNlT1m1Dk8XmQsiqZpLKoPUOed2Ir/mOerqGBGxMPMJfNz25rdC9kafZaUPXaQvi3TUL8MaY5uG7/LYNWMMMwIlzkyz/EtIcyMK5zQDRBJ2iq9TpKSAhIzz4BksfunLgzScjz7QwEim13STcvqj+JPbURraMp8lXFxtG1kJqat0K2vbDeTNg0VbuojQdKBWozuzTmZ9bgjp+H2lI3zA0hXzIRovtYSjFaaCpW1XJ8qEGZRQ4QeUYEVcEEknwgEQLjcGC3Fda4OizLWyHE5yLF5oEWOA+ExdTxTnNBNKU0KhUKhUEyAZDLJt771LX74wx/y2GOPUVc3PS6NzWHPmArNkaAovqUAeaBJVDZjly/fLsIwMJYsQ6s4vKLvtjuENtLHgdKNTzolbSCEGFdhgnw6cVN4AJsGrzNxX1AXYEFdYJwjC86xfAXJv/4FSzNZVbMan3F47leaz4/nzPVF2xqCAbZGoXOkgxG7vDJnSxt0C007cMHRsajy5Y+dU+1DE9BQMVqplpbfyX5YwCl1ayd8nawCYlhuqr11cOY5xTtoAhmLYfd0O3u73KTdXpLhyjEWBgRVfou01yAVmY8W70caXvS+7ei6I78hysfWxNvWg+FmjSuJJSRkQnV0w4IU7BnelRGpzJUL4pIs06TWc+D6N9Yppx1wnwMhTccKarsObuxK461bn0cpTQqFQqFQTIDLLruMRYsWTbcYE55oHypaJoaiVGnSqqqx39iDKA1Uz6JbJGa805nsFm6uOfyYMjvYAkLH9o+vqEZ8JiPJcgVLjxDZZAFy4tfIrqi3epaxsiZIla+8ZW3cy3p9GPMXIONxKqzDU0DH4vjmCClXIwPJfgaS/WPu5/e58ZlHJoW/qWvMr514fx7lMjoOHpefKlc1IdcYUVCGgd3h5K3OJhRJn7CGWDxdVnmR2ZTiMu244jWscT5afrRkLyS7cRe4EMqsrELPuRZWZCxT8pS1IEGYAgad3dy6+4CFyMtlpCuHcB2+4iJ9NSRmnpFTng64vytEsnYZtv/wrKBHM0ppUigUCoViAlx++eUsW7aM2267bbpFmVSEEFS6qmj0Fccg6VXVaO88EzFOum/pOkBcyiGSDrWRDrUdcL8TWsZ3DTtchDczgSyTxnosPKbGzIiXtJSEPIcef6E3lU/ffSRZXXPiAfcJhbxlsyYebZg1NdQ3LUIfw2XNXL4SGY0iPO6c0rSyOcRI0sYqExNk+xuxh/aRihRnIE2H2mhJJ/CMdFLrzi8Q2MEWkoa7rKVGuJx+YAFrm07jjf0dRMZS7oBEy1pHUTcPXuE+HEoXQMZFCOyKmZMmy9HAlChNTz75JDfeeCPRaJSGhga+8Y1vjHJr2LRpE1/96lfp7e0lHA7z1a9+lfnz549xRoVCoVAoppZjMW35obKsckXZ7eMpTG8H9No6kBLtIKxnQgjm1b71iisfC1grVo75nRYIQKDYyuU2ddxjxcnoJsnGk8pfR7do9DWVXEDH9tcfUEaP4cmlbR8L6Z7cxQDFxBByMh2jgWg0yumnn84PfvADFi5cyB133MGzzz7L7bffXrTfOeecw+c+9znOOOMMHnjgAW699VZ+97vfjTrf/v2DkymuQqFQKCaR6urJdS2bCubNmzduTFMslsAwDj32Rtc10ulJdDE7Qig5jyxKziOLkvPI8naS0xxDcZ50S9NTTz1Fc3MzCxc6KRgvuOACbr75ZoaGhvD7nZWXzZs3Mzg4yBlnnAHA+vXrufbaa9m2bRuzZs2abBEVCoVCoQDgoYce4pvf/Oao7Zdccgnve9/7JnSOoXHq8kyEY8X9Scl5ZFFyHlmUnEeWt5OcYy3uTbrStHPnTpqb8364Pp+PUCjE7t27WbBgQW6fpqZis2ZzczPbt29XSpNCoVAopoyzzjqLs846a7rFUCgUCsVRxqQrTbFYDFdJFg+Xy0U0Gj2ofbK8FVw7FAqFQvHW5Uj8Th0rv3VKziOLkvPIouQ8srzd5Zx0pcnr9RKPF7sqjIyM4PP5DmofhUKhUCimi66uLj7ykY/kPl944YXous6dd95Jbe3hp9RWKBQKxdHNpCtNbW1tRQkdenp66O/vZ8aMGUX77Ny5E9u20TSNVCrFzp07lWueQqFQKI4KqqqqeOCBB6ZbDIVCoVBME5OeO3T16tW0t7fz3HPPAXD33Xezbt06vN58Aa/Zs2dTXV3N73//ewB+85vf0NTURGtr62SLp1AoFAqFQqFQKBTjMukpxwGefvpprr/+emKxGC0tLdxwww3Yts3HP/7xnKK0efNmrrrqKvr6+qisrORrX/vauJamZDLJt771LX74wx+Om/p1vPpP9913H9/73vdIJpPMnTuXr3/96wQCk+MHOZFaVRs3buTKK68s2rZnzx5+9atfMTg4yMc//nHq6/M5/z/ykY8UuYtMpawAZ555JlJKDMMxWNbW1nLnnXcCU9e2E5X1b3/7GzfccANDQ0N4PB6uvPJKTjjhBNrb2zn99NOLkpWceeaZfO5zn5sy+Y6lPjpd7Xgosh4N/XMish4t4z7LRN6tR0uffasx0ffZVPHII4/wne98h0QiQSgU4pprrmFgYGDMPplIJLjmmmt47rnn0HWdCy64gI9+9KOTLufChQuL3j1Llizhxhtv5Mc//jE///nPsW2blStXcvXVV2NZ1rTI+cADD/Dtb3+7aNuOHTv4r//6L6677jqqq6tz2z/3uc9x5plnMjAwwJe+9CW2bNmCaZpcdtllnHvuuZMi31jj/lDacN++fXz5y19m3759eL1evvjFL7JmzZpJk/HWW2/l97//PbZtc9xxx3HdddcRCAS47bbbuPPOOwmH8zWObrzxRpYsWTJpMo4l53PPPXdI42aq5bzxxht59NFHc/uMjIwQiUT41a9+xZe//GUee+yxXOZrIOeePJm1Vsu9h+bOnTs9fVMeo3ziE5+Q3/72t+XcuXPlm2++OeZ+69evlw8//LCUUso//OEP8rzzzpNSSrl37165evVquXfvXimllNdcc4289tprJ0XW4eFhuWbNGvn3v/9dSinlD37wA/nJT37ygMe98MIL8j3veY+0bVs++uij8uKLL54U+Qo5GFlXrVolOzo6Rm2fqradqKzxeFyuWrVKPvnkk1JKKTds2CDf8Y53SCml3Lx5szzrrLOOuGwHI9+x0kenqx0PRVYpp79/HoyshUzHuC9kIu/Wo6HPvtU41N+JyaK9vV2uXLlSbtmyRUop5U9+8hP5gQ98YNw++T//8z/y8ssvl+l0Wvb09Mh169bJl156aVLlHBoakgsXLhy1fePGjXLdunWyv79fptNp+clPflLecccd0yZnKffdd5/813/9V3n33XfLq666quw+V111lfza174mpZRy9+7dcs2aNbK9vX1S5Ck37g+1DS+++GL5ox/9SEop5YsvvihPOukkGYvFJkXG7PtncHBQptNp+dnPflZ+61vfklJKecMNN8jbb7+97LkmS8ax5DzUcTPVcpZy9dVXy7vuuktKKeX//b//V/7ud78ru99YvwmHy1jvoenqm8dsae/LL7+cz3zmM+PuU67+U3d3N9u2beORRx7hxBNPpKGhAYAPfehD/OEPf5gUWcvVqvrLX/7C0NDQuMddf/31XHHFFQghGBwcnJLV2oORdWhoiGAwOGr7VLXtRGVNJpNcd911udWE448/ns7OTgYGBhgcHCx7D1Ml37HUR6erHQ9FVpj+/nkwshYyHeO+kAO9W4+WPvtW41B/JyYLwzC46aabmD17NuCM961bt47bJx944AHe//73o2ka4XCY9evXT3oc2Fjj/IEHHuDcc88lGAyiaRof/OAHc31xOuQsJB6P89///d984QtfGLc9H3zwQS644ALAKcOyatUqHnnkkUmRqdy4P5Q2HBwc5Omnn+b9738/4Fj96uvrefrppydFxlmzZvGNb3wDv9+PpmksX76cLVu2AIzZtpMp41hyHsq4mQ45C3n99dd59tln+eAHPzjuPYz3m3C4jPUemq6+ecwqTcuWLTvgPuPVf9q5cyctLS257S0tLXR3d9Pf33/EZR2vVtVYbNiwAZfLxcqVKwGns+7cuZMPfehDnH322XzpS19icHBw2mSNRqOk02muvPJKzj33XD784Q/z/PPP584xFW07UVl9Pl9R3ZXHH3+cmTNnEgwGGRwcpK+vj4suuoizzz6bT3/603R0dEyZfMdSH52udjwUWY+G/jlRWQuZrnFfyIHerUdLn32rcSi/E5NJZWUlp556au7z448/ztKlS8ftkzt27Bj1/Ldv3z6pcg4MDJBOp7n00ktZv349H//4x9m2bduovpjto9MlZyG//OUvWbFiBS0tLQwMDPD888/z/ve/n/Xr13PDDTeQSCTo7e2lr69vyuQsN+4PpQ137dpFOBwuiltvaWlhx44dkyLjnDlzWLRoUe5ztp+C0zf++Mc/8k//9E+ce+653H777UgpJ1XGseQ8lHEzHXIW8t3vfpdPfOITORf3gYEB7rnnHs4//3zOP/98/vd//xcY/zfhcBnrbOSFywAAIABJREFUPTRdffOYVZomwnj1n2KxGJZl5bZbloUQglgsNqVyjMUPfvADPv7xj+c+Nzc3s3btWm6//XbuvfdehoeH+frXvz5tstq2zXvf+14uvvhi7r//fi688EI+9alP0d/fP2VteyjtumnTJr7+9a9z7bXXAhCJRFi3bh033ngj9913H3V1dXzhC1+YMvmO1T46le14KLIeDf1zorIWMl3j/mA4WvrsW41DeZ9NFU8++SR33nknV1555bh9cmRkpOge3G73pD97t9vN+vXrueKKK7j//vs55ZRTuOyyy0b1xUJZpkPOLLZt88Mf/pCLL74YgPnz57Nu3Truuusufv7zn/PSSy/x/e9/n5GRETRNwzTN3LEul2tKx9KhtGHpdpi6fvy9732P7u5uLrzwQsCxSpxxxhn84he/4Ec/+hG/+c1vuPfee6dFxkMZN9PZlrt37+all17ivPPOy2075ZRTOO+887j33nu5+eab+da3vsUzzzwzZe+uwvfQdPXNSU85fjg89NBDfPOb3xy1/ZJLLuF973vfAY8fr/6T1+slkUjktsfjcaSURRrokZL3gx/84EHVoWpvb+f111/nlFNOyW079dRTi7TtSy65hE984hPTJqvf7+drX/ta7vP69eu59dZbeeGFF4542x6pdn3++ef57Gc/y/XXX8/q1asBxzy7ZMmS3D6XXXYZa9asIRqNHlZfgMOvUTYZffRwZM0y1e14KLJOZf88XFmzTMW4PxIcLX32rcbRWq/wj3/8I9dddx233347s2fPZvbs2WP2SY/HU3QPsVhs0p99c3Mz11xzTe7zxz72MW655RYaGxuL+mKhLNMhZ5aNGzfi9XqZM2cOAP/wD/+Q+87tdnPRRRfx/e9/n4985CPYtk0ikchNDkdGRqZ0LHk8noNuw9LtMDVy33TTTTzxxBPccccduWt97GMfy31fW1vLBz7wAf70pz9xySWXTLmM473Lj7a2BCehzxlnnFGktH/2s5/N/T1r1ize9a53sWHDBpYtWzbp767S99B09c2jWmk666yzityBDpbx6j91dHTw1FNP5fbdsmUL1dXVhxWXMZa8jz32WC5LIJSvVVXIhg0bOPnkk9F1Pbetvb0d0zSprKwEKMoKNh2yRqNR2tvbaWtrK9puGAatra1HtG2PRLtu2rSJz3zmM9x888051yeA7u5ukslkLguPlBIhxGG1bZbDrVE2GX30cGSF6WnHQ5F1Kvvn4cqaZSrG/ZHgaOmzbzUOpq9MFX/961+5/vrr+eEPf5jLZjten2xra2P79u3MnDkTgK1bt+ZiESaLgYEB+vv7c66NQghs28bj8RS5BxXKMh1yZtmwYQNr167Nfd6zZw+hUCgXK5Jtz1AoRCQSYceOHcybNy8n57p166ZETsi3U5aJtOGMGTPo7e1lYGAgN+63bt3Ke97znkmT85ZbbuH555/nrrvuKsrstnXrVpqbm3PWhWzbToeMhzJupkPOLBs2bODyyy/PfbZtm9dff70oI56UEtM0J73Warn30HT1zbe0e9549Z/OOOMMnnnmmZwv4913311khjySTKRWVSGbNm0a1dl++ctf8uUvf5lEIkE6nebuu+/mtNNOmzZZu7u7ueCCC3Kd9oknnqCrq4ulS5dOWdtOVFYpJVdccQVXX3110UQf4M9//jOXXXZZLtj6xz/+MSeeeGKR2Xcy5TuW+uh0teOhyHo09M+JypplOsf9wXC09Nm3Ggf7OzHZxGIxrrzySm655ZaifjlenzznnHP42c9+RjqdprOzkwcffHDSUmRn2bx5MxdeeCFdXV0A/OIXv6Curo5LLrmEP/zhD3R3d5NKpfjZz37Gu971rmmTM0vpOL/tttv45je/iZSSeDzOPffcU9SeP/nJTwBncrdx40ZOP/30KZEze/2DbUO/38/JJ5/MT3/6U8Bxqert7WXVqlWTIuMrr7zCb37zG26//fYihQng2muv5cc//jEA/f39/PrXv+a0006bchnh0MbNdMiZZfPmzUX9VAjBv/7rv+be++3t7Tz44IOceuqpk1prdaz30HT1zSmp03Sk6erqytUpyQZ86bqeq8Ey0fpP999/P9/97ndJpVIsWLCA66+/ftJcIcrVqqqurqajo6NIXoBLL72U0047LZc1B8jlnX/mmWfQNI1ly5bxla98ZVIya01U1vvuu49bb72VdDpNRUUFV1xxBStWrACmrm0nIuvGjRv50Ic+NGrF9qabbmLBggXcdNNNPPjgg2iaRltbG1/96lepra2dNPkOpkbZdPfRQlmnsx0PVlY4OvrnRGWF6R/3MP679Wjss281xnqfTQe///3vufLKK2lsbCza/pOf/ISbb765bJ9MJpN89atf5ZlnnkHXdS666KKi/jxZ/PjHP+aee+5BCEFNTQ1XX301s2bN4q677uKnP/0pUkpOOukkvvKVr2AYxrTJCfDud7+b//iP/8i54fb19XHVVVexefNmhBCsXbuWz3/+81iWxdDQEFdccQWbN2/G5XLx2c9+Npeh7Egy3rh/8MEHD7oN29vb+eIXv8i+ffvw+/1cddVVuXfvkZZx5cqVPPTQQ0Qikdy+jY2N3HHHHezZs4f//M//ZN++fWiaxvnnn8+ll16KEGJSZBxPzjvuuIPbbrvtoMfNVMt555134nK5WL16NS+//HLRwuerr77KNddcQ19fH4ZhcNFFF+VCZQ621upEGe89dP/990953zwmlSaFQqFQKBQKhUKhmCre0u55CoVCoVAoFAqFQnG4KKVJoVAoFAqFQqFQKMZBKU0KhUKhUCgUCoVCMQ5KaVIoFAqFQqFQKBSKcVBKk0KhUCgUCoVCoVCMg1KaFAqFQqFQKBQKhWIclNKkUCgUCoVCoVAoFOOglCaFQqFQKBQKhUKhGAelNCkUCoVCoVAoFArFOCilSaFQKBQKhUKhUCjGQSlNCoVCoVAoFAqFQjEOSmlSKBQKhUKhUCgUinFQSpNCoVAoFAqFQqFQjINSmhQKhUKhUCgUCoViHJTSpFAoFAqFQqFQKBTjoJQmhWKSmDdvHg888MB0i6FQKBQKRVnU75RCMXGU0qRQHKU8/fTTPP/889MthkKhUCgUZVG/U4q3E0ppUiiOUn70ox+xcePG6RZDoVAoFIqyqN8pxdsJpTQpFJNIR0cHH/3oR1m2bBnnnXceTz75ZO67np4evvjFL3LyySezfPlyLrnkEjo6OgC4+OKL+dOf/sT/z957h9l1lYfev11Om6bRqFrd3XJDMm5gG2NjBwc7/kiBkC+B2EA+iEm+gIFrnFyI8eWDxJdQYiB5boAnN06A0C5xb4CNiyzbsrpmJM2Mps/p/ey+1vr+2GdGM9Koz1gu+/c8ejRn77XWeXc5e693ve1rX/saN954IwDj4+P8xV/8BW9729t461vfyp/8yZ/Q09NzUo4rIiIiIuKNQfSeiog4OiKlKSJiDrnvvvv4zGc+w4svvsi73vUubrvtNiqVCgAf+9jHCIKARx55hGeeeYbFixfz0Y9+FIDvf//7LF++nNtvv52HHnoIgL/5m78hCAKefPJJnn/+eVauXMntt99+0o4tIiIiIuL1T/Seiog4OiKlKSJiDrnxxhu58MILicfjfOxjH8PzPF588UV27tzJtm3buPPOO+no6KCtrY077riD3t5etm/fPuNY3/72t/na175Ga2sriUSCG2+8kb6+Pur1+qt8VBERERERbxSi91RExNFhnmwBIiLeyJxxxhmTf7e0tNDZ2cn4+Die5wFwzTXXTGuv6zqjo6NccMEFB421Z88evva1r9Hd3Y1lWZPbJ8aKiIiIiIg4VqL3VETE0REpTRERc4gQ4qDPiUSCRCKBruts2bIFwzCOOE6tVuMjH/kI73nPe/j6179OV1cXGzZs4JZbbpkjySMiIiIi3gxE76mIiKMjcs+LiJhDhoaGJv+u1+tUq1WWLl3K6tWrkVKye/fuyf1KKUZGRmYcp6+vj1qtxp/92Z/R1dUFwNatW+dW+IiIiIiINzzReyoi4uiIlKaIiDnkoYceoqenB8/z+Kd/+ifa2tq4/PLLOfPMM7n00kv5yle+QiaTwXVdvv3tb/OBD3wA13UBSCaT7Nu3j3K5zLJlyzAMg02bNuF5Hk888QQvvPACANls9mQeYkRERETE65joPRURcXRESlNExBxy66238qUvfYlLLrmEp59+mm9961skEgkAvvrVr9LZ2clv//Zvc8UVV/Dyyy/z3e9+d3L/H/7hH/LAAw9w0003sXjxYu68807uuece3va2t/H444/zj//4j6xfv54/+qM/Yu/evSfzMCMiIiIiXqdE76mIiKNDU0qpky1ERERERERERERERETEa5UoEURERERExJuaRx99lG984xvTtu3bt49NmzbR1tY2ue28885j5cqVk58vvPBC7rnnnldNzoiIiIiIk0dkaYqIiIiIiJjCww8/zCOPPMK99947ua3RaHDZZZexY8eOkyhZRERERMTJIrI0RURERERENHFdl29+85v8y7/8y7Tt9Xqdjo6OkyRVRERERMTJJkoEERERERER0eSnP/0pF110EatWrZq2vVqtIoTg4x//ODfccAMf+chH6OvrO0lSRkRERES82kRKU0REREREBCCl5Pvf/z4f/vCHD9qXTCa54YYb+NznPsfDDz/MVVddxW233UYQBCdB0oiIiIiIV5vXXUxTLlc72SJERERERBwnixa1n2wRDsmmTZu46667eOCBB47YVinFxRdfzH/+539yxhlnTNt3ou+ptrYE9bp7QmO8GkRyzi6RnLNLJOfs8maS81DvqcjSFBERERERATz11FNcffXVM+6rVqsMDw9PftY0DSklpjn7ocGmacz6mHNBJOfsEsk5u0Ryzi6RnJHSFBERERERAUBPTw+nn376jPt2797NBz/4QfL5PAA//vGPWbp06bQU5BERERERb1yi7HkREREnTCYzztDQAK7r0NW1kNNPP2uyYnxExOuFdDrNwoULJz9v27aNb37zm3zve9/jkksu4ZZbbuGP//iP0TSNxYsX861vfQvDeH2svkYcTCYzTmtrG21tr12X0YiIiNcOUUxTRETEceO6Dk8//Uv27u0BwDRNgiAglWrhqquu4cwzzznJEka81ngtxzTNFif6nursbKFctmZJmrnj9S7nnj3dAJx11tpXW6QZeb2fz9cakZyzy5tJzkO9pyJLU0RExHHhODY///l/Ui4XueSSt3HhhetJJJJkMuM888yvefzxh3Bdh/PPX3eyRY2IiIiIiIg4DHKgCgkD/ZTWky3Ka5YopikiIuKY8X2fBx74OdVqmZtv/gMuvfTtJJMpNE1j6dJl/N7vfYA1a07j6ad/ObmaGxERERER8VqkVCpQKhVOthgnFWULVNk72WK8pomUpoiIiGPm2Wd/TTab5rd+6yZWrFh10H7DMLjhht/hlFOW89RTT1Aul06ClBEREREREUcml8uSy2Xn9DuG60OMNkbm9DuOBaUUMmOhAnmyRXndEClNERERx0R//1527drORRddwmmnnXHIdoZhcv3170HXdZ544mGkjB7MERERERFvTvZUe+ip7DrZYuyn5qOKLipjn2xJXjdESlNERMRR43kuTz31JAsXLuLSS684Yvv29g7e8Y53kc2m2bVr+6sgYURExATpqsOv9uQQ8nWV7yniKJGN+skW4U2P53nY9ms/OcLhmdvnw3B9iJw9t1a8V4tIaYqIiDhqXnxxA7Zt8c53/tZRp1o+88xzWL58JS+88CyOE61oRUS8WuxK1/CFIphJaRIumlN+9YWKmETmbMTe47sGYmQYf8NzyFJxlqWKOBYGBvoYHh482WK8ptlT7WFbacvJFmNWiJSmiIiIo6JYLLB9+2bOPfcClixZetT9NE3jqquuwfNcXnppwxxKGBERMRVfHHoFOT70G+JDT716wkQchMo7EBzfKr+sVsMxrNe7lSMi4vXDq6I0bdiwgd/93d/l3e9+N7feeivpdPqQbXt6ejj33HPZuHHjqyFaRETEUbJx43MYhslll115zH0XLFjEOeecx44d26jVqnMgXURExKGYqRyj5jcO2yex936MUt+syZCuOoyUT66lWeSyBIMDJ1WGNzqy6CD6D/+M15wyRv41FNsTMeMzIuJg5lxpsiyL22+/nS996Us89thjXHnlldx1110ztpVSctddd7Fo0aK5Fisi4k2LU6+S6e1hrHsb5fERpBBH7JPJpOnv38u6dW+lpaXluL734ovfBig2bYoWRCJmF8/z+Pu//3uuu+46rrnmGgC++93vsm/fvpMs2dxiFPdgjr806+M69RpKCszc7MUhbh2tsnP85BanD7ZuRuzdDUSTxGNBllzk2OGV7AlUxgb38O+U+PDTmMU9oKLkQEfL0LYCpfHaUb2vI+aOOS9u+8ILL7By5UrOO+88AD7wgQ/w9a9/nXq9Tltb27S2P/zhDznnnHOIxWJzLVZExJsKKQJ6NzzF3ud/TWGof9q+eEsrq9ddxnnvuomOJafM2H/jxmdJJlOsW3fxccvQ0dHBuedewK5d27n44stpa5u54nZExLFy55130t7ezr333ssnP/lJANasWcMXvvAF7rvvvpMs3dxhNlfrg1MumXG/Lj0M6QELjnpMp1ZlvGc7IqjStWDebIj5usbyBDFDI2Yc/xqzbVukUse32PRaQKWbLoDLZqno6aTCqs3OeK8DZkNJ793wPItP7WT1+stmQaKI42HOLU0DAwOsXLly8nNrayudnZ0MDQ1Na5fL5bjvvvu4/fbb51qkiIg3FZnebv7rS5/lhR99DyUl62/+AO+67XO8+5N/yxUfuo0V562n/6Vn+a8vfZpNv/gPhD+9uF06Pcbw8CDr119CPB4/IVnWr78EpRTbtr1yQuNERExly5Yt3HXXXaxdu3YyQcl1111HsfjmDpJfXniW5flnjyk3VuC7APiePzdCvQ4oukU2ZJ5DKMEzfQWe6w/vIynlMU9+y+USw8OD1Osn18o2I0pNUWDmYnhFreAgD5m9Mdwuctk3fEIL6dq0b9mDNuV3NVknSey3uJVKBXK5zAwD+CADpAheDXEjDsGcW5ps2yaRSEzblkgksA4IXvzyl7/MbbfdRkdHx1yLFBHxpkApxfbH/g9bHvopbQsWce3HP8vy89ajaftX95ZwDqdfehVv/d0/ZsuDP2Hnkw8ysv0VrvjQbSxcfToAmzZtJJFIcv75bzlhmTo65nH66Wexc+c2Lr74cuLxxJE7RUQcgXg8Tj6fZ+HChZPbSqXStHv9zYghwgWQ2ZgXi0AyuqvEwjXttHQc++JJLKijKQksPmQbKSVjYyMsWrTkoHnDTDjC4aXcRi5acDGtsdZwEtpTRl/agjb/8P2nKj/Zmkt3psZVpy9A1zT2VnZjiQZ2EM5T3Gbxz97e3SSTKVatWnPkA27ieeE18P1ZVkJn4aIm9v4XMtWFv/IdsyBQmCzIdB1aE6FVzap4lEYbCE/SecqhLW3B1s2hPNe9e9p276WN6AsXYZ562nHJUys42JZPqv3key+JkWGMhk0iXYQ14TZV9lBFlyBjQUtow5gosLto0ZJp/c3sdozqEJ493UPrSGheDWXEwYjetbPBnFuaWlpacF132jbHcWht3W/mfeaZZyiXy9x8881zLU5ExJuCwPN45l+/xZYHf8JpF1/B79z596w4/6JDTiJTHZ287f/+M677xJ34rsOjX7+LvhefIZfLMjDQz1vectEJW5kmWL/+YjzPY9euHbMyXkTErbfeynvf+17+9m//llKpxD333MP73/9+brnllpMt2msCNcXWpGoecvxI8SkHT8g9O4ylqOWdw/b0AsmLgyUcf3rsxZKxX7No7KnD9nUcm/reLJm9Q4dtN0HWTuNJl1FrJNzQXLCX2ekJJ5RSyLw9uf9AujN1HF/i+GEDdRjb3ETZBKFOPLakXnIpp09u9jvdnj0LTz6fZaw0PvlZNrM3CnF8sUuqUkb07T1ueTL7quT2TU9K4Tg21ersJiPSAhflH+E6znRLTSi+R9B/lVKT8V/V3OF/fwcSH/gl8X1PHFOf48F3BJ4dWsHyTg5PeEfo8fpkzpWm0047bVowbrFYpFKpsHr16sltTzzxBLt27eKKK67giiuuYPPmzfzlX/4lv/jFL+ZavIiINxye1eCJe7/EwCsbWH/zB7jiQ7cRSySPqu+ytRfyO3f+PYtOPYvn/u07/PLBnxKPx7nwwvWzJt/ixUtZtmwFW7duQkRBrRGzwPvf/36+853v0NbWxvXXX09LSwvf/OY3+YM/+IOTLdqcoJRCysNPRJUviNkHry7LkQaqPHcTmtGKw3PZX/Lk0PSEL+VMjko2f4Te4aKOqrhHaHdAL6mm9zlgbUjWfVTOAftQFodw1nrgmtKhlKe6X+Op8V+SsQ+dCXhSlMMYO92ah/Bm/xmolEIFR3bjUkrhuYe3gBUKOUaKY8clh+N5VOrFk5J0IzjEeR0aGiCdHj1s33oxx8ArG4466YKZ206i/7HDtjmhM3CCp0+Th78X/E0v4b28P6GMVOqYr9n4njLpvRWEDNha3MzW4rG54MtKGTE2it+9i2B39zH1fTWZc6XpsssuI51O8/LLLwNw3333cc0110zLwHX33XezceNGnnvuOZ577jnWr1/Pvffey3vf+965Fi8i4g2F26jzxL3/H4Whfq7+yCe54Lf+r2N2UUq0tnHdJ+5kxaXvoNCw6BA+hja7j4p16y6mXq/R17dnVseNeHOSyWRYsmQJH/rQh/jEJz7B+973PhYsWEAmM0NswBuAbDZDb+/uw05s5EiDuJ1CE/rhPblm3DlzBy2QEOxX1nY//xty/TP/hktunvL48DTlzlIuO4rbDinKxKPqaKdrClBCEssEyDELnENMDmdY0Z8xDfsBn6UKY5ga+ZFpMUlVP7RU7Cgd+lhOFKtcxG3Uj6uv6O/De+qXqCO4BFbKNYYGxg77PYVCHts79lTxA0WLZ3b1UaqXcNyj6++6zqzFfo31HH/h5sJgP0pKZH32nh9SieYNq1C+jyyVCPbsPqxVs+DkkXOQYVBzShiFnsnPtisImvGfmUqWR7YOsjN9fNdh4mis4GDLm8znUYdY7PFf2kiwawdydBgxfLClWUjFY91ZBoon2TI711+QTCb5+te/zt13383111/Ptm3b+MIXvkAmk+Gmm26a66+PiHjT4NSrPP6PX6I0PsI7/59Ps3rdpcc9lmGayGVr0HUdu2cLj3/zbuxaZdZkXbPmNDo757Nly8tR6t+IE+bqq6/mne9857R/11577RvC5du16gTedMtLtTrzhHDahOSQwfdHRkmFqDYo5Eqk9+yc3B4byKE/v33a99SLuWl9JxWPap3S6BCV8WFyuQyBgrQskXEOts54djD9OXAMots9A9R7m5OsQxyzKM7s0iQKI+gjL6IFDmvSj2JUp0/WhJIoKZCBTza7X+7ZeGYdqShtprebse6tB213HHvSQl/zajyfeYa6P32Cm+tOM14U7MpsDq1OUuHtyKLK++8jvZGZTPbhzkGSilzdRUpBIOVBirlSCjk1CYUUaOlt9O3YythY6Go57R6r12ZMjmDXPBrlg62SSkqCkRGUf7BFVUxVJH1rxkUDpSSaXcLYtBV6eydlFodJwnDkO0KhN9KYhV14T/8Kf9OLqEIOnJnvzcHBnby44zH21fqPOHaj7OLNsGAgD3GfxoeexhnbQbUeKv8jFZv+QuiyW7WreIVBRsvH5gZ4SAIbozKIUanjb9mE6Os9rmH8povnQOHkKk1znggCQmvT/ffff9D2Bx98cMb2b+QUsRERc4FdLfPEvV+mlk9z7cc+w7K1F57QeNVqhT17urnwwvWsuuIqnvnXb/HIV7/Au/78vzFv6fITllfTNNatu5innnqC8fFRli1bccJjRrx56enpmfa5Uqnws5/9bFrs7OuR7tEKanArqbjBmre+HeCQlmPlOnjPPI159lqMlauQgYBqjfjwXuTlARWpqLkBU4sKKKGFE0TNmD7W8F78bJZy3UFPNBW0wIb0PojHIQjC/2diwlqkJFIpMtv3IZYtpBFoMy7TenZAem+FeUtSxCfzQE2f7Dm+wPElnS2he93O8SpCQUf7lFgtFMHwIJqaj8b04xHVKZPnwEGzCxDvpLF7BM0UJBaFC0KxSj8sOBVtUvWbedIZBAGB42MmY0gpEb6HGU9g2zZSCnzfZ/78ruYBNqYVEhZK8NK2/+KMUYkM3oJ+YMILJWGKO1Xh0QdpM2PEr7oaLZFkaGiARCLJMqDmV4EUG3MbuOaU69CbHgENC8YqJYQrWBNY6BWXylA/7WI5rZ3NbMbCRWu2VwdYM3KlMnHp05GaP+Pxe4ODSC2O3nH4lPTS90DXDzqPmapL2fJZc4YKz7TXoNBopTaSofPsZimKptLkBIKhoSESpn5QcoTcvhpS+JTi4yw5/RxiyRQAL27pg5E0SR20xcv2y21bFIf30TJ/Ifg2iX2Ph4kwlk5P2a8U6MJGiXYoOWjA+Pgo9XqNs85ae9hjBrBrFSrjoyw5c+3k71UBmm8DB7iI6uE1EFLRk62jSYWpaxRHBgisGo6wj6iRFYbqjJQd5p/dwdol4fkrWz4bB0tcEwS0J0xKYw2kUCxYGSaSGCna+DJNa3wZ7fYoGTeHE7wdvZGhKxjDVWftPx+eBzOUAlJKsbO8g5WxU6CaxfBLIC9Gr41B23KEVLgDG9GtHIZrYY7XkV0nVsZAuhb+pv8gccYVyHlrTmis4+GoLE1/93d/x7Ztc2eGjoiIOH6sSonHv/k/qBeyXPvx/3bCChPAK6+8iKbprFt3Mavecgnv/qvPE3gOj3ztb8n0zo6/8VlnrSWRSLJt2+ZZGS8iYoJ58+bx4Q9/mB/96EcnW5TjxvUETk/19DmpAAAgAElEQVSJ/Ei4Mr53bw9DQwOT+3WnNK29spoJCtLjBH29jPVsJp1vxhB5Li8MlKYVl1USgnRLWIz0APTSIFVfkC3bWM3YkNjAryFw0ZzSQUHe47t3UM2OHzCKhiyVaQyMU+k7dOyPY7tYTq2ZaGL/BBPCxZtqtcJzezNsHCyhyi5yJJwgjlfClXDp+SirgCqXkYMDyANcMoUvqeZslFLUAw+R3UF8+JlJS4bytYNcpCYmuodyjRobHKGRbhC3dMq/6Sb9wivkMxlGRgYZGxuZZhXRtj6O2vqbyc92YEM+T9oeBylRwPYdWTIjBQDM8ZdJ9D082b4wNgguiJH98WCu6yCVIlAKNA3ddrF/8yuUG56TvFehIm3QQNd0XCtU2nzXpuYECKkIp38TbovTj7O45X7Kzz5DuWd0xgm7u3Mn/osvoIREVT2kkgQzxs0o4o0A7ICiW2gqeVC2/WnDZl2XWmA0e0x0Df/anWmwOxO6D+bzuYNi+Zx6Gd+2KIwOI0vh8dd9ScMTxCqSRM5Gz/cQ3/lfBE5opQgcm2opzFKn20XY/H8QY1PinJRqKq4KtNC2MOk2GDhoVmhdDTyx31A15YBy/XuwygWczZuQtdrkblcZ+ELDCabESjUV1/Gqw0jJJl0Nj0Gzc2jCayrCiqrXYMgr4suZXS4LDY+h4v7fctkJ21WdgEq5xuiu3TSyByT9aApvCIuaO0RfrRdNhN/v2zUc10U5Dt5vfo0YCHMT1IsOQ9sKSCFxpUvGHqf7p/+L9LP3g13FKO3FqI9h1EbYMV6lf7yALySpvrA+pOZU0avD6PUDnxdHhzuwg/RYHiMXWsAbXsBj3VnGckWc2uwm+JiJo1KaNE3jM5/5DNdeey1f/epX2bVr11zLFRERcRTUizke+8bdNMpF3nXb5zjl7PNPfMx6je7unaxde/5kAdqFa87gtz/9P0i1z+OJb32Z/peePeHvicVinHvu+fT376X2KjzsIt64ZDKZaf/Gx8f59a9/TaFQONminTAtvkHdtpGZNI2XXyA29DRa4IBS7M1OyYKnaSB8GO9H7OujMLKLhq4Ip34zzHwnNpX2K1Ke1UAKgac0RmQCp2rjNt1inLE8aSwKos5zuf1KgJCKTLYwWTR70g6WK4IQzbij8H8pDXTHw33yMWQhTxD4jGdGKVVzBySFCYVLp8fofnkDtb2hm5oYb6BqU+rcoHDKZcbzFk6lGZfTTIDQnanxWHeW0ngDu+bj2QEZr85oEE57gueeQDT7aAcUW53RziQ8EB6BFIyMpglyBomajlcvEatJrH0H3GsidBsLskWkE/4tpUQIgXA0lIKMk2NfeYSe3f1s3ryber2OUW8mXZiY0FYG0MazqJxHprebwmAvRm4n2cIYWTsIx9zeS61UIEiHE1Ffhe6Oe7INnu0voE14wSl4fl+R7WNV0DSCQMNxdMzcdkbKNvn6FPc9YZAppQl2bEPZVlMkxejIEGPpPgg81FgDOdpgW/oVnk7/atrhFxs+ZuBgOg20ksPmwiZezL0AQKMGw0WbuhuQHsvR38iwL6hNO+nS97AdC0Pqk9enWMxTmlLPqdYoUbOrSAW9W7OMbE8jh2rQtJyWvRqucKluGyHItiCt8Pg0XSeTCxUfEQj6nttMo38XcmQn2X3V0H3Qc0CCMqZbWOIjzxIfeQ4I46ZqefvgewVQVgOZy+Dv6QndOQsCP1hDZlywO9OYPJ99uQH60zmcYKoyqJC1EYJSBt8LEGNjNPaNoPkST+y/RkMlm8e6s5OJGwKnwZaBIntf2IfRzFyolCKXKWIXhjDz3ThDm6lO/FaaUpdkAw0NofYrvk4lx/NbdqKaCrex4xH88a1h9j7hQbYXvalC2A0rtPSO5aYknZCUrPC3KhXodvPvQpFYehOxsemJYo4WpRS1mkF/X6jMVpoZ+/ZsfoXx3duPa8xj4ajc8+644w7uuOMOenp6+OUvf8nnPvc5XNflPe95DzfddBOnn376XMsZERFxAOX0KE9+68sErsv1n7iTRaeddeROR8Err7yEUpKLLprustC+cDE3fPqLPPUvX+fZ//1tark0F97we2j68YdGnn/+OrZs2cTOndu4/PIrT1T0iDcpV199NZqmTcaa6LrO4sWLj6lY+nnnnTetEPuFF17IPffcM61NT08Pd911F6VSifnz53PXXXdxzjnnzM5BHMiUWZjr+xjlAngWulNCr9eRsQ7qdRuvs+nepWtoxT3gNyC+DiFATVhuFDjVPL5Vo4rBvHnzoZmLycxup74wQW5c4Ns9GKaOUGD5LWi+RodQDG0r4NUUviYRMpyQ1/u7CbJZhtwYVSfg3KX768cYwiNmFxDGsma65PBwhEygilVgAbm9e6h0zcdvWrJk4IMdTnYb5SL5TRuhvYPAc4kHScxdOxDnvAXLtSAVugYKqSa8uLAtRTzFpNVksGAhlI+U0zOHTqhm+tBmIPQHVFJMnvLiSJ36gAanTbithRfCzGxGE4pS12koLzyv5UKFFQUP0xQwbx6VTJrW+QuJizrx3t140+ofKYaHBynXyvgDcTS9jVosj6fptJttmC0x+l7ZxOrRUfREjKBqYa5oZhmWPkiFVS4i3TrK9LCroUuhcDzKJZceP83a9BhLVp86+Y1eIHF8gTCb90FTGyxaHszTGB43qTd0VtiFSSvklad3getBIKBZY0o16oyWxrFe7EaTDma9yAK/jvLfAUpSqY9A69Q6TJJ59V4MewDN7UC5+y2Tqubh1Q1MYnQPjcHGTWTKJTTHoL1SovD8ZtTZ55Dt201+tB/spbRVfGh6cE+NJ6s2SrhOjfkkaRkdws3X2Gmv4dTGNgZUiqoI5V5jQMcSUE3FZOo7K2gq636jQKO0kNQCj3S6TLB9E13zL6B98fT3quaFCodMNzAaPn6tAalpTRCei1Ydg/hixkYk8VSZzkaoNOhuMNleKIWQkm0DQ8hlq6eNMe5X8YIkpfE8klCR15qLD4HnYVdL9JfC30sgFUHQwC81cPbtokv6GJ2XIHyJFApvYBxau6AzRX57H5pXg642QIXPBryJWzQ8RiDIe5TKEnlqM9V5UGVj3y/o4gO0lgYwYkWC+YvCc9H8DSrXn1wsUGiTGf4VYXxVoeHRMU8yMphm3vx2pjr4+kJRdXwWtB65tInjGNhjA6ycYd/RZjw8Xo4ppumcc86hvb2dRCLBD37wA37wgx/wxBNPsHjxYr74xS9Oe+FERETMHfnBPn75nb9D0w3e/cnPM3/56iN3OgpqtSo7d25j7drz6ZjBXz3R0sZ1t32ODT/8F7Y+/DMKwwNc+aHbiKcOXbjwcHR0zGPNmtMmi92a5qsSZhnxBuPAmKZjpdFooGkajz766GHbfepTn+LTn/401113HY8++iif/exneeCBB07ou4+IBqHWodDtLPvySSzVTqs1QLVSZ1jYLF8rkWmHHcUqGAXaMy9Q95cjhAkGBIHEt8JJsVsZx6Q0qTShIDuaw3JjGL7EMMNse0IE6MpA+hIlJbabABRCCtL7hhnp3wak8JauRUqB5YQTL03TaLcHMfwaiZKJkjGKSqGUBn4Mq2zTP64RLLBIdM0HrRmP9PJWglQcOpM08hmK+SJybVhQe4EdTqTG+/sYLKTxLjgPrWSww6nQcAMWqCkKogxX3euZAUa0XhbJ8ziLJQclb1Bh4+aHcLVaWg61wVE05ZPsG8Nde+5+TWOCKckAhKNwHAPTVAjfw/PqSLfB4liFQC5F2XkqloNnhPK7roOSCsf3KPkNVNJCxueBoYhnc5SNgI5SkY64jvIcWLEaXSWaIgZIPEAnlykyv+FASxdt9VZqno4nFXZjwlqjUCg06aNQbOzPsrCeZ00znkSq8L4q+h6elJSKFYRWwm0x+OGOnbxjdy+GXI06e6JYtIblWsjSMARuOHFUklrVpVHagdmyhyBxLm6jjpNLo9pamV/vpY6GrFlkB7ahzu1EVBqoVPPL0aiWCrQrhRASQxnISgNN1/BfeRlnx/OUnBJ+YKCxav/5lwLheehTY2ya11YBKTeLIQUt9gi0rcEJAiqBC8RDq2fzt6QaAtkyfcEvEBqqUMDr20stqDPqV1lpNXAH+/CES/fwJqRdYO2ZZzDY20uqPg/kwZP07HgfZiXP0jYDxSJEIKmPjIexUsqkFuSAjslskWa5SCo7TmXd5QeNJZUkOMCOld67E9+2oP10JhzGAumgCZ+iN45pxNCz/VQDjQ2ymzVeAxlU8BXEnAA91YJs9QlGRwi0/ffzcNFilSdQZngypYLs9kHMGrjKBUwsYdEaNK1dmo5oOARWKxNLJkZt5KBjUErR8AQNKdDdAEdzccbdaUrPvmID25O0xU3i5v7r4rkO4yOjLFm1ZlrsnaYkYnwYgjiJzBhyOE3QtppaLk3XgvaDZJgtjmqGUiwWefjhh3nwwQfZs2cP11xzDZ///Oe58soricViPPTQQ/zVX/0VP//5z+dM0IiIiJD0np38+n/9Q5ga/C/+mo5FS499EOFhlHoxi3vQ66Po9TS6U+S5TBea7ODqxgO0/eY3yNRCgq4zCRavR7adApqGEYtxxQf/nAWrTuPln/87D//P/847/+x2Ok85vmQOF154Efv29bF3bw9r1564e2HEm4d//ud/PmKbj3/840dsU6/X6ejoOGyb3bt3U6vVuO666wC44YYbuPvuu+nr65sbbwvhYgb2pGUEL3ST2Ztt4MRjnNUaTmq6hzTa+8rESj51dwF+TEeLFQiURMPACQLK235BXK3Ai83DCyRVJyBWaWB4ceLxGPlyHt/WWWBXYHnbQTVgReBOTvAsx8UarKBkHKlclBA4Tp1sxUI0amC5gEJV5lHGJakSoZXJM9H9JMLWqEsHv2pij4+QmrcYValQDVxM28bU0+hWAQyb3FA/Wns7RrWC0bAoNFKgXJxsmiTLqI/vn/DVxrLMO02haRMTaIXmBBS9ArCEmXB8Aa6gnu7FiRdZvc9B1FIk7CzSdChpFVRLeF8UC1WSqQRmsRsIV9hDE4CGUhq6bkBgoddzsKiZQEEoGp5PQ1OsqqeZGhHhIfanBGhOBscKZZxMnnUrmspKtkKCpeFEP5MmqPYgF3dOjqKjEXdipJwkNekxVrZYLUQ4kZcBXfUBWuNrCHbvxWtpZ7g4DvMWhFnVppSRCPwAd6yX/FKTzi0vYkmfdjSOlIFga3qYoD7Awt2jiGwHRU2nBRgqpKk3FdEAgSkF7sA4ql5Hxo6cPc3ofgKtUqUY+CSki5A2tUIDTddp6+tjt91g8TuuQaEmJ9KBbyJjOobnoQ9lkHL/9LYReOzIltHa5iGzWYJcDnXKuYhGChY6SBVaQnSASpZYPXQ1zQPOWD/zzXnUrDEq6SyjMYvMnjwdLcuoNCxkUEW2KrrHa6w61SXuauArXBleobijgR3g+aGy2MpCPLeO7VWJN1zwwSgXaVdt6DmHYkwSTHHVU0oxUMhSDzziWgJP+Di2jdawoEViCKikR6hWeomlOmhFI0AwXu8ng2JlHGrCJa6DcjyUgGoWal6VxLwWnHotXNBo/r5tT6IXCyS9Vrxlq9jdN8Qq5RBfvH/xQJvyhJCWNXmXTF2YEEqiNa/N1KSW09r4PkZT+Q2CcPt4Po6hwWkiQDdMNr28mcrOneTeuppuWWGpX2dixuNvegHPcVk6sosRZwm1rsUsWHXk+mQnwlEpTddeey1vf/vb+eAHP8i1115LKjXdFnnjjTfys5/9bE4EjIiI2M/e53/FCz/6Ph2Ll3L9X/w1LZ1dh+8Q2BiVIYzqYKgkFboxC90Ypd5pBe9kvJ1CYiXbatdzUWKYBeUt6Okiurs/zbhoWYK3+p14p74bb8VVrH3nDXStWM3T3/sGD//P/84VH/xzVq+/7JiPafnylXR1LWD79s2cc855x1xXKuLNy+Dg4KyMU61WEULw8Y9/nIGBAZYvX85f//VfT1OGBgYGWLFi+sLAypUr6e/vnxOlSd/xGIVMGr2+nMSCKdngppQccj1FVQR078tyfkcLtq6RkAuRXoOJWVDdcYkHkkRjELfrPKq+Cw2FcgukGhodHW0EuouZtfCUTb/2Mp3CA+KAYk+lhyVqAYmaYsLRbWLB15YKZ3wI2dZOtpFl8Mkfk2uYyC4NlEZJWbRKiVJx2mU7GimU1AiEwCvUGTaLzKuXaPXasIVHWXnE0VFSYnl5YBF4DlRBYIR+QEoSz43T3hpQMkNB3EDiSoHtKVoSGiCbioMEqcjm9tDptVK3DFowyGbj5GuLgRoSKOZ7SeYH0JafTcLRMaSOZ5tojTya2YJSgtF8jQVxCy2mILVo8iJIKZCWhz84SkbfTXvVoEVpsHDptLTZgWeR6x8j5YWr4AJF7ADrV9BMke3LMNW5NbSPBDAgPWJOmaJdYcyyWJapoNpSaI1xClN8w1xfUNuxDdepM+F6ZVTHCCBMbd18tEp/wuErpFxPkHAcpOHiKZ0Up1Cb8KkEak4OPJMD1++LtTFigaSkklSGJa2LQhW/2qhR1wJQBiiNwLER9QCzNoxRatb1Uhq6G7bXpc+BWeWmxuHVgxLjvQVMXWdhwkOvpanufgpntIpnthPs8xCyBd+NkaoUybkOFc9ncfP8ep5FoeARm1dAeS4kkri2hUhJNCBtWVQSOosUVPK7Kan6hIgAGJmtEDPR3RploVidTGA5PpRK5Br96JqOF0+ye8cIF/gpTDuGEgm2ZjKgtxEb9oj5NoHUkUKhOQpVz+CWLFA1TN0kpnVieoKGWydTm/JcU6GyFVdJ4nSQt2pk0mMsyudIuikSxgqSgzna7DJ62ziGTKIZKUy3yJKxMh2xZgKRZmzixFnNeoJkvYpWjuHLZUizAE1lSHc9lKbwanmKTo2uwGdipjH17VzL1jFzu5BCBz2BVCp0/WzSXXs5XF5ofqmYomwJobH7mWc58+2XY8Ri+NLDES7z9C7yhX70l+OcdtlV1AoF9FqJxo4MnHs2DVGBKY59e4s7QVRIBAtoq8Yp7x2ivnwxaAf4TM4SR6U0/eY3v2FwcJALLrgACF0Z9u7dy7p16ybbfP/7358TASMi3oxoTonY6AbM0l706jAqP8yzu3y25xMsj7u8w9tM7B/ejxQaSugopaGkFgau+h74PnhWOOFQGkqCkhpSTyKNFpS+FqUnoX0+zF+M3tnFc0ECDcFZZ76X3Mq/Ql+6FD1uYBZ6MLNbiI29SKLvEVLd/4mMteKe+V7M8/6Ym+74Ck999xs8/b1vcN71N7P+d/4Q/RjinDRN44IL1vP000+STo9xyiknntI84s3BV77ylcPu/9d//dejGieZTHLDDTdw6623smrVKv7t3/6N2267jYceemjSZdS2bRIHpIdOJBJYM9TbaWtLYJrGQduPFpnPQe9u4vkW/HgNgk7icQPNNzFjOrGYSSIhMAwdXQfPL1ISDnEtgVIuOvPRlERDxzB0YnENP1dHTxRxHRvbcvHMFMqPo/Ij1GWZhLkEs02n0LBoCIjpGlJTWIEgb5c4x2wj8BsoTUPXTVw/oOS2IJVEb1Uo18RTcRqNCmarQNc1PCWQsoFOAk3X0AQozDAttxaQ1OLYboW4J2gzWzA1HaoNNCnBNIg7OYQLuh468ijpkwyqJGQLbVQwZIKE5aIBMTxaRJ2EJyFfRGYypGoNtPo4tRxYXjuabhDIFoIggWmaaLqO0bBYJOZh6gmk41N2swgdTL9Ca7nCKj/DvpiLpmvISo2CE8c8W0N6Npqn0FWcwA3IFqsE8zXyFYHmWKw/Rae2aye66iCmtdCz/Sk8cxmJYhFdBOiahiYVuq4wDB1Dg5STwTB0lAmZUjdJ5pPSV1ALWkkqgaHpxGSoTui6Dr6EWhFd19E0RU1WGRvpx/MbWFKgee0Iv0CLX8VoWYn0HOJ1C7+m46/SMQ2dwNARQRLT1DFjBoahkzNMkppkflxHeQLfLyMcWBBvA0OiXEWROroJIlBoeiuG0mnIKl2x+UjfIp7PILQuAplEColejKNrSRLJGKbhEvdjxCyXeaoNTfpouobSBKYeJ5GIoZsGuhRoEgxDw3FqLDY6sRtDxJJxYsIhqFYwF8/DqmXwWYpuLMA0DaqxGC5h6nY9phEQYOo6uDYx00AHAsfCUgoTKCuXWrCYOA4Vp0JgJjGFjaZpxAwNVzOJxww0Q6OqNFxL0hofIVOv4HtlRoqCZSvXkGyJUc9LbOWSEEl8U6ICDzNmUJA2np9ECR/fcOitDtDldSBi7cSDOmbKwCiMEvN2EO9KQTyB40BLqU4+X8I1NRQCQwgSfpFEPEar9NBbTGK6iaFr6LrClIqW0RxtCQdfudSK7fjCpLNFYsYMTKXQdA2hhRbneSQIdEXNmE/M0NBNHQwdTQp8axjNrqHFFxKLm+iaRiqVwFMwmm5BUwG4beiqimGkqDgN3KxALdGJx2PgeSRMja49OaShM6zyLE5cgG85VIP5CFOS792Brmtk/D7QdVYlTsc0DYy+3STOP49EwiDljdKoJFi2L4OezeO7bSQXzEPFJIEC0zAwzRg1GtDQ8Bp1ulYsOO7n7+E4KqXpJz/5Cf/xH//Bww8/TDKZxHEc7rjjDt73vvfx0Y9+dE4Ei4h4s6FZeZLdPyLR9xAM76I2lKSej1GotfPygiWUWlOsyZU5Z6zAQWVmtaa3hU44OTF1MJJgdqDF4pBIQrIFYgkwTTTTBF1HWRZy714qUtB35ZWcuWcP4kc/YqJ0ptbWjr54CfrixRiLV6Iv/CSxZJV4aRuJX91P/Fc/Yf6C03n3Oe9lY0srO5+4n3z3dq684fdJpFpB19Ha2tAXLkKboc7DBGedtZYNG55h27bNkdIUcczU63X+/d//neHh4cmUxI1Ggw0bNnDLLbccsf/KlSv54he/OPn5T//0T7n33nsZGBjgjDPOAKClpQXXnV5I03GcGWtB1esHF9w8Flr9gN5GDvwVaLqD3fDpzZVZYrh4bQGO5uE4PkEgkVKjmhthn9eO6wXoBHhKTFqDhJC0GCB8gRofwxcgjQQBgsCTCBHWU5KeT8EPcEQc3bIwlSJQEj9QzK8ZyGB/QVLT02k0NATNjHBugG57WHmJp5uILhlmbBYCiYGyA/TQB4ogayM8kE4DWXORGniugW8kqPtZLOESkyaBkAS+hy0V8aZ/jxQBbpCAQgWhEsSdIn5DomsummEzMuIRm5eh4OgYpQwxR+BIE2jFL9WQKkDEAhzHw7LtSUuQbjlITWNzeRxHLYFYEjOQFK0GNW8bZk0i3TpCDwvF2rk0mlNBGC0ElQ58IfGVheMqOvV2CFIM7csiai6+l8TWA7ycjTOvSouIhQVzUbiuj6KCMDrxZOjWKISkuzqOCMJ05KMxRVwoLMtFyPC81h0fL6hRCxxSWgt6LE5dVggaLsnAx/UlUlPo2Th2a4y4aEEEAuV76NueJD7/bPb0J/BFQMm3aNfiBEj8ILwflJQoTeEWyyD98BoHAZ7wIfBxApuaX8YTVeblqxhmK4HysBo1RFsHBBIZhPeOqSRSgu7peEqnUq4TBBLhB8QqIyhvPkKCjkK4OslYiqHcIFlfQ0rVjK+TtDsSpdep+z6tpk65dxThgLAcClYRRCeBkAzYtXChUAG+jeZpSBReIAhG96GZMZSpYeiCrGMTVOoIkQBDUvFskjJAqv2xcZZtU/KqmEYHqpmRrlitIDtBiSAsBC0FgS+wahalhkPDaxDUXPSUjiYljmVhCRc9CGPSbAVVWxILBCoeRymbIBAwMoia59IotRAIgVFwyFZ7IRUjLuMoTSGqNp5p4RrtOJYLuoUZSISUqEBi1lykCF38NOlhyTZMGVBwqiTjKRZ5Pq5MIqWaPE5XlwgRR9kuyg8IRBCmkFd1kH5oGXZ9pIpj2x4jg4PEYilOCTqJ9RSouQpLeEjl4m4aZOj8JAl3GaRMPJEhqDpIQApJtl7AH89S6WgllgoYyddoS8RwChXMzg5c1ycIBK4XUB4ax7dtEkLSKGm01ou4ukPVNpCGxk4zH553lUJpEr+ch7qHH1xEuXxiRXAXLZo5Luqolab777+fZDI0zi9YsICf//zn/P7v/36kNEVEnCBGoYeWTfcS732YxqjO2PByrMGloVvJqmVsXd2K0jQuX/92Tl13Odr8+WipFFo8gZZIQDweKkEnwMZH7scYGuBtd3yeRKWMTKcR6XFkNoPMZhDZLMHuHlRpap2H9ua/CvC/OQtIdbWzUyoe/s5XeOu+NB3N4HAMA2P1qcTWrSd+5TuIvfWSaRmM4vE4a9eez/btm2k06rS2thERcbR85jOfwfM81q9fzw9/+EPe97738fTTT/Ptb3/7qPpXq1UqlcpkMiNN05BSTktMctpppzEwMICUEl3XCYKAgYGBOXHN02IxLCOBpkDqCQIRKieWEIyIAsoqcnbLCqamyLaD/el9J/yKprrSmMUKMmGANLFTZtPtZ2qwAQRKoUlFCwto1edRIYceBMwvFtF1AXrYY76XwMRAQzCPVoyahee7k0PqSiNRbEC7xFMasbqHDphegFWp4GltIECvuKAJVLydiiyTmpJO2aAjPIJmCvGgpQ0/YSG80M0sqJRAuCiVxNDNMKFFpUh7axsF3yeoVFliLEa5NsRaQSmkVNRdh32D++hy4vgaGFqAwCdotCFbaghTYsbAAQLhomQMzwU9UKi4Ni3KR2vGwigUgaZAaRjNwrq1tAf6/oWiwD84pTqA5nroMgANXJGiXdUmY1o0Qi8CAM+1MJRHvFgDTLxptX7CNomGhdHIA53h55qPiJkEspUYYTY936nRWs/S6PdwPBdfBtSli64LNKvBFK88cN2DarHK6ghFx6MzKWlpFNCVwAsMAs/B8Bxk67LQkiMlCoUQLrqacKdSFAtlfCuOV9Yw2hW+7jfPpY6OiVQC2/Nx9eTkPZyqVydlqgRdtNJASMlEjHE84LAAACAASURBVJhSOhpQCwp4aNNq6WiBjzI1AhlOeA1T4TdacKwqg6bFaG2UluY1a3gBCcJrCqF3Z6WYplIfJrX8fBI5HT9lQhJsOTX1PeAHkN1HvSpCSylgBh0IHTyrggqaiVL2p6OYkBAhDTxXRwKxcgmpxRANiZ+SSF9iBA3ixNGAJClko0DFGyCHQ0LGSSoflMIoNfCdFPVA4SqJbBq7A6kQhoGFxFNQMANAI6FiYVyYbqJUEso+vi5IezVcrUZKJRD4zeQZ+89p4FphzatkDq8ZixRIha6B5yfQ0hbG2B7iZ19M3StTrwW0tDdThAcVAifA0h3mLYSxmkBVDrPIpEApDV9IYjFIeXnqSqPuS4yKoMUv4tGFp0MC8AMdOTWIapY5qpmW7/u0tEzPjhWLxQ5adYuIiDh69OoIrS/9A4men2LXOhjYdTbuviL6wnZif/j7dCdgz+YX6Fqxmnd8+P89voQPR8HIyBD9/Xu57LIraVuxElashPMumLGtcl1kIY9ynNA33PNQth0WZOx9gBWlPk41BU/WVrHh3FO57NJ3sqJzEWJ0hGB3D85D9+P8/Cfop5xC6o8+SPLGm9Hi4Qv1ggvWsXXrJnbs2Mpll10xJ8ca8cakv7+fxx9/HICHHnqIT33qU7z//e/nnnvu4dJLLz1i/927d/PZz36Wn/70pyxcuJAf//jHLF26dFpG2DPOOINFixbx4IMPcvPNN/OLX/yCFStWcOqppx5m5ONDVKbbksM5XDgRaHXaMJRBvW4wtc6nE9jNCR9oaCgt7OfH4kjHn+zvoLBVQFwp2pTCQ2FMxAg0E5vFtHlA6LoVcwM86ZCQAkcX05SGmDQIAFMaaOxP7T3fmo9KJpoDKhA6E8m+QwXPJa4lEEEMqekQV9Oy1CkFQqYwLQPVaMZimCbSjKEMDVPGyNtlAiT6ZEFciS0d/n/2zjvekqLM+9+q6u6Tbr6TmDzDMAxJck6SBVRcWVndVRfTgmnXxbDii6zKrrKYF19XdtVdzIi+JhARR2BGyUHCSBgYhhkmz80ndndVvX90n3jPPfdMYoC9v88H7pxzuqurqqvPeX71PM/vUSUXEpKkiGwWNx5baAzFoIQWAWE2oCRi2XLrYEmCTaADKOsHFCU4xTw2EARWIcIU+fJ4ABFoEJpSaMgpTVhWOQQCNFprBE7F2Az8ELYPMuinkVYhRCzDjsErbEXqAG0ctHWQMhqTNmlKRuBagwkLjBKA0jQ13Swk82NIMUDopikTihEKdJGgWPIpZguktEZu3EzOG0YnkhEBNZZEOIzIBzQWuq0sCgQvDD7OtDABCIKih3QiQhuEHSStJrBFCrpABkHWD7AiwMNDiwAbSnDie+EbQBH6FqlKgMAlVScSEBGhyOpX+SyQwmJxhAfkKkIWhaERbKjpAko6izWletJkLcJGJMUv6liwA6Sfh47y9cbn0TqkCbRA+CEm7EMXQ0DiFgxCQQJFbVloZ9M2+tlGyVmM1mFk6IcSHF3XelnlMeK50b8Dk8AtDeIbQOrK7dXa4pFHEIDTE68lgWvTZLVPobCBjrCLzcUQ44+hXY0xMCYkRicJTZKI/oMRUPDzSGIVTB3iWU2uZrKUKTGWK+H7HaQSCVJ+QJ5EtO5DDcayKb+RMZOnW6Qp5rbhaw1UQ5EDkyQ5UEIan66hbfiqGN/PaK5zOk8CkCPZSBE03YU/uDmSJQ8iIhpow5bREnPiXZiC7gJKsWc43kTQhs4wW5nPSIbTgDCEheK4+7m70BZpOvPMM3nb297GOeecQ1dXF0NDQ5UfjilMYQo7CKNJPfJfZO79PCaEF9YeR/be5xHdhsxlH2NgyWLuvfG/yQ1u54DTzuWI17+lojCzu6G1ZuXK2+nq6uaww46c9HiRSKBmNwufO57AfgCx9jYW3fNvvH3rSn6x5Sjuuvt3HHLOGzjs3ZcipMSWSvh/XEHhxhvIfekaijf+iI5/+j+4hx5Od3dPjfz4sSg1JT8+hfYgpSSfz1c294rFInPmzGHVqlVtnX/00Udz8cUX8zd/8zcIIZgxYwZf+9rX2L59O+9617u46aabAPjCF77AJz/5Sb72ta/R39/P5z//+d0+ltLIGBtuup3scBGPaNd7rOiTKBc7DVwwgrE8FEqChPFQ+QJFkiRij0OIoGyVF6RiczaomhZBAEqRkwZDHk8aXJ2irDk3vTStrj8ilIyoAnkTkGxwOzgk0VYDlqR1EdoHGdc1wsWGAUiB0X653ijYKOxKS4swGlSUhymcKunSVlC0DqIoUcJighGwnRER9BxckSaDJB8OVAovBVYTEFDQAWrU4Mn6+kwFGxCYEC0NWvs4KgEawjg5Pe854Ao6ABWb3UaHIBx8UyBpLfnAIuLxqUIQET4gFBaBRRkXISQWS0EY0kQCFracAO+HCD/AWBUT4UhMupQfRTWkwOVUmgIplLWMBEUcExHckjEkUGBDkjLK2zDG4oVjeMEYJUfg6yLIJMJEktUQGcTOWIgcGSGZ6GEk6EEIScpT6EKAdRKIvMAUqbWB4zWgEaUAGWik6UPazRT19Mpx5TpXMnZFFnKGrE7gUsBTHlpYvKESHSHQJdBhSBhqXM8jGQxiTCcIS6ANUAIFHn10kCHARiIGKhqnaHCQBtpgi2n8pMZaH1cInJr6ZNIGaECG0Z3WBlwbYjCUcqW46GrMHGzkXRIoesUBDBsJMVUe8f3KtKhiAEGIiIm+N1aEVAJNRMyVdonKSlPpRxUuYBFhvdPBWosKC7heKi5IHV/LFLESwjDAcSRgK2p0xkTFebEWGeSxxQLIjngoChsrGGopUUhGSnm0GxPXwMeIkNBaiKM+hLUElc2NqrfaxyJyRVKriwzOCAj9AiTSaLf+N7rcL6cUYnFRQRErBX7Qj6tDrC3g5rez1ZQwNkmHtXjFUbZvXUNH4GJj72nO1zgYCr6mODaCdj2K1iLQdNSQpLxIoaSioi8RlhAipPTMGjrn7P7NLGiTNF1++eX84he/YMWKFQwPD9PT08O73vUuzjvvvD3SqSlM4ZUKNfg0ncsvw936J8Y6TmHTbT76+edJvunNFF9zIbf/8ka2L/8pTmIa05f8LUGwhCdXbmXWft30zckg5O5Vlnv44fsZHNzOuedesOs1koTAX3Q2/oIzSKz+ORfe/QXuWJ3ksVt/zvC6pznxnR/GS6VJnH4W3mlnEtx7N9kvXcPIBy8l/Y53k3r7OznkkMNZu/anPPPM0+y//4G7Z5BTeMXjda97HWeffTZ33HEHxxxzDJdeeimLFi0aJ9zQChdffHHT/KcyYQLYf//9+fGPf7w7ujwhilsHcMIkaAdrXYo2IB2kwSpCXBiLDKf1wQuExtBFAq3zyLEQbSI1sEKNAqUxlqFCSKdJI/wk2voo3wfXwVqLtjUhZwbcQoipJUdRGlMUgmYNCJChISQiB9IEoATChpEYDXWnRoIUQRYbsyZRu+9ugii30lpC38dIG3tZRF2Q1airkWYESQoII0EbRyFlGlPZVY7OI9SgLROZNyUbVD6JTOeogK0VEqMDbFy3xgJBaHFVeWoMRQJcK5FGYm09sxA2wAmril02lj4v2gDfhghroUY9rNaOtlhyYQHfFgmth2shFA4pkYjvYUisooFEkRSddc4RGyqsra51x0beqVpIo0HGnhvhEpJHI0iGCSiG4IaQBIyskqb8NsiA0BZnpAA2SdH4KBKR2nrFeI/IpTUa35RIWJcQjSuqxNUVHsmy/l4pIo4mCDEOeLg4okE9z9bPkDYQWIu0sC2bR6YSgMKYECsF0bZB1Acho4Ktw6VRJBlyFEliohDU4igOAoPCWMg8PkJoY4n4OIcvrWbU3ioAvFypIv9vrUIO50DUR2BpDCYUEXkk8uAJY6PprBmONAF+2MNwkKYrDaXQR8fhfo7qQYQOQc0NFgiM0dQ9qI1t2gChoc7NVt4KEYJO2wESxvyQQKnKZ8aElNXohDbjRObLgYQWGB0CP7sO41vGPE1QyJNzEiihm9wzECak4BexVhEEfZGAnxaE4baoZWvpGVvNtnAMJyiibZIt+Q0Y42OsZuSRu3G2rickiQC0FGicqEdaY3AgLBL4Id1OtEWB0RXytSfQtpV0wQUXcMEFF+yxjkxhCq9oWEvyiR/SseKTWDfD5p73M/Tfv0ak0hT/6avc+9Q6Bq79FFifZNcJ9C98NVK5jGwusOHPQ6y6fSMdfQn2PXYG+x41HcfbeWWuMgYGtnP//XezZMn+LF68ZNfHWIZUlPa/kNK+53PiQ19nxm03cvsTlt/86wc47YOfoXPmXIQQeMedQO/1PyT7pX8j/+3/Ilz9NHOv/Ay9vX08+uhDLF16wJT8+BTawvvf/35e/epX4zgOn/jEJ7j++usZGBjg2muv3dtd22EYA6M5ge/3RE6bUhaSKZJ0gAmQwmIEZIRLKCxe/DNeBKyNQoGimP5q7kTg+6RFEs+AsQ4KHz2WxTeSvAApQhKinOdUj65Svmodx3BLmoIyGOOgUCSNJLQwSn2oDoCwGhAYE+9mN7QvjEbrEGEjIQIvIccdgxD4hNhCCRWCDiNJ6A7SZGNZnEDoSvBcbU6DMQZrI2nw6HXF5dV4CSQyEmmwhlBHdXsskMRDiSRFG6CxdBYsUvZUvDiVIC9btVjHpCYTk02LBOMjrUGITLNpjnPKDGNa0YfFod5TZipWfJPvRAvGVnOAomo9LlmGcfM+UWhbmVbKhjbKIhsKYf3KZyGGAV0iyA3i0YcwITpIksXHVRJLlKNWhrQGa31MWKScCOXFpK+SEiMsKkiCjbws2mg2+g4Z1V0ZY9FoAiEbjP+4mTh/rBR6JEMV3Ws9DBI8o5EiGqG1EoUTESrrY8MwCiMFsmEeR3XE8+CidU88rYJMQdApu7F2NJ6TmLoIgdZBTU8i9UgkdeReawO6FHvFHDAlrAlQqYZIEe0RIsgrQcaYSPREBwSEFGyp8kxHU2fR9dsYjbcObfzal+MQCIG2FiUEg+jKuo1CMQXWGIwJEIUiONH9LxM/ayOhmM2lPMMmSTiyAVdrEqNZvOldZEVEymoRSkWoXExhiIIrSBmDCCIRDKscYhqJsZHnsNxvC+jcFkql7eSUZWTbIMZAItQY7VNMpSk5KYLYi+xi0GETmld3r3Yv2iJNt9xyC1/5ylfYtGlTRZnIWosQgscff3yPdW4KU3glQPhZOu74J5Krf0FpzklsGT2N3De+RXjYCfz5oDey8Xc/w4TryfQv5Pi3vJvZy+oTy0v5kE1PD7PmgW08cst6nlyxiUPPmceCw/p3mlQEQcBtt92M5yU45ZTTd8cwx8NJUjjmMuYv+0su+MWV/OaBUW69+jLOfuff0XVIVCBUpFJ0fOKfcZYuI3ftlxn9yD9w8Dvezcp7Vk7Jj0+hbXz4wx/m3HPPZb/99iOZTHLJJZfs7S7tNEaLAWPFgMAYAi82boIQayFBVGhVAimRpCSjQB6Figw7q5EiMtiisJqQEmFsvNej7PExFoQoCw/U7itHx0zTM8grg9EBoQ0qlMjE+Qa+DTCmhEBScAwy9sBIUUtOBEElXKn6nRUaiyQkERqEqtZeaWb+SeMTymYmS9TekPIpuJJklcIAUCoVKQofHQtlWKtA1BfcLCMju7FYglKeUIckZFSYN2kFQqZAjyEAqW3lCrahr7EeRM0oJdY6aJ1EycZ8oSoSMkVe5/Hx8QOLEPWsQVsT3bMmNWcbelB519c+jBXA7Yk/EfQ7s3FFMxM8Cn9yTAlNAt8WSaDGeQ8BlE2hiQz1KkGN1oP0o7yotMgga8ZQEoYiChHWiGPokKKt1vWJctRguNSBTZVbrSElQQmEQ9FPEhpDoKsjd0Qt0RB0xETMYuNwS1MRFWhEuQhrp59Aao2u9eIReffSoosxO063lk7ZW3lf4iFtlPtky9l2FmxQqDvHoigJS8Ia/MDgCA+BJURXcvvKIyvZoCIuYgMdeWZr3WAxA9dKIUySMEwhRcP1auyEkoxWSFTgOHrPmACjfayKcs0A3Mq8W/K6QDY/F5xt2FIBN9QEZOmJKUTgOORrSFagElgrI8+QdCCZpCRGMLaDQHkUYlG5odIowhi0FuQTHRgpGbWQTySwImC4ZmELwAs0jipBGGCUIij6KFv+vObg0Y3j7tPuQluk6eqrr+byyy/noIMO2qH6K1OYwv92yJG1dN/8TtTwM2SP/ijb7goo/vRbbDn17TwaaILH/xPlehzzpney/8ln1CnKlZFIOyw8bBoLD5vG9ufHeOTW9dz3/55j7Z8GOPL1C+jsTza58sSw1rJixXIGBrbzutddSCqVnvykXYDpmk/X2/6H8w+4kVu/fwO3/Nd1vObMlXSf/39AeQghSL3pzcjePsauupLZP/geiQOW8vDD90+Rpim0hUMOOYTrr7+eT3ziE5x66qmce+65nHzyybh7KBdwT8KPldPKal8RbOSJMQpJgHUkCZ2iJMewGAxRnlDl28N6FYMoKXojbxORQRM3Vwfb8Feg0Si6VB9F42OwSBuplVV2iQ1IUQ7Bq4b4NIMhkkMWRMp61QvHlMNGIzVW4gddJPCbNYMTVmWEy16gMrQJMFI0Dg2AINQYa6PaSM08NZWZKyeZW8KgSCKRAVs1qstHSD/KjykTG9uYaAO4Nu5hPN6MmIYSJcImRnsjtLYTWmfGVUwwPfXHmRBrI++axscB3DgUy8RhllBJFyI0IdpqompA1fAm2cTHoW3V71UddvQPWfCx0ichxxcXHRKGLbkCeRtp3Mm4LdVAEC1Q1AlCo6JcH7+A9iJBB0QUXogtYSaZy0hhL0QGJlI6xGIbxiNqtgrq+1B9r1N0YaWLox3C2lwlypsPltCYOjEUiNc94wQIKxsToTXkw4heCRkga7y0Op4TiUuXmIEmIvCRcr8l0BmcUCNLBUBipJzUoNc2kk0wmHizpNqbeDIqUCao+jZ1QOi6OESRr+Xr6GIOZQyGiCBBlZS6YYhjBL4UeEGAUlm09kh6KcJY8CEtXZCK9Fj0XMuixYok0kQeu8Cpek8BHKPxKGG1piRlFHIKpGRn5NEuk8NxYia7D22Rpq6uLl7zmtfssU5MYQqvRLjr/0DXrZcAguHzv8fQ924n/9vf8thp72bT8ENYM8K8Vx3HcW/+W1JdPW21OW1BJ6e/+wCefWAbj/32BX77tcc57PwFLD5yWttepwcfvJcnn1zFUUcdx/z5C3d+gDuIzFFv4pw5R7L8q1dy821PcO76NzD9omsIpx8MQOLMs7GlItmr/4Wl06fxWKnE4OAAfX17pkjdFF45KOcjDQ4Ocvvtt3PjjTdy5ZVXctJJJ3H11Vfv7e7tGITAlL0KMUo6hxuGhEYh0WgnMqh8bShnsjh+EH8HWLSt7HNjbYp8TpOMPRQGS2DC5t4JW/4ThQSVP5K2PtxlojCglsNq+FtG1YC3BFoihcGr8S6EaJRwcBMZglKursHatnwTyShLIWIvWJTg4cbeIktkNE7WQ4FFmnKS/vjjG82x7V4QCwIIVE2PLLbOm9WcrDVHqDtIOJ011KXB9dEC2phxQg7E6tzSBIBHIchXOK6xEQ02GFTYuC5A2vFmYshEOSNxEGCLnJLNeizqJwZlm5Pc0Nr4fpYh6iJEXeERMrl6c3S7DcqYhvfdqj+uiYFtrcuYU31fIuIRTzz5W0qjZDyBoFq3LcTUe4VqoHWIEg7aRt61hOtRiL16AZrAiaiWFE6UC1SDQHeQNi6jZlMdP3DF5DmctmFzI2jcp7WWRE07Fov0fTJKEpoijlZU1mM2S0r6KN/QKdzKdxeigDVJtFCk8kWkMTjCR9ksrunC1THZKWYRGVl57QYlEBmSvg84ODKJloy7fwDSmChsUZeQjiJER94tbPPw192EttxGF110ET/4wQ8oFvecjN8UpvCKgbUkH/1vun/1N5j0TAbf+EuGvrOcLX+4nzuOOp2Ng7fjpVzOeN8nOO3v/qFtwlSGkIIlx8zgNX9/MNMWdvLgL9Zyz4/X4BfDSc995JGHuPfeP7J06QEcc8wJOzvCnUZmn8WcfcXX6Z05k5ue6GLDN99J8tFvV0IMkue/nswH/5HFv7sNZS0PP3z/i97HKbx80dfXx4knnshJJ53EsmXLuPPOO/d2l3YYQgpKplBnn6kgxI/zZWprpji6agDZCjWIX9dYDkZHhAIig9e3XsWjVUbJBJEqWBuw1sHaGk+CbTAlwlb7sc0N5VpLp/yv0GpCa9DYCaNcUnEyvhSQkpmKPVd/lcmtqFaUxjQx2mpRFn1wbK1vELabIgVV9itYbJvEKQiTk5Isi8Q2GaU24MbddXBxcAgxFGyVZAx6jSQ4/v7N58dNlaL9SIYEqTg3q/63qHb2rFDRzSIiFUqMz8+tDdkrQzYhYgmZIilSlfC1pqhhFVIoetU0yoNs7KeNiZoWKcKa5RaUVQIZv0bL0DWszjQ8W5OtPotlwA0ZdAPKQbJdsg+ApB7/u66ES0JkSNFDMV5zCZEgKdN112vmQSsjLSauhZiW1cKulihfMChlkaVC3ao0Vle8RiUCCuX7Vq4TZ23kNQIcT2AxlAqj1fO3b6OWEVocTE39KwkktCVfs3a1ifrmaE0qyOKGkby7tobQaoomQPXtmE21I2jL03TdddcxPDzMVVddhYp1MadymqYwhSYwmo6VnyT1+HcoLTyL0dO/zNg1X+DRpzby7JIZUHqOxce+luPf/CaUO3E4SztIdXmc8ralPPmHzTy+/AUGN+Q4/qLF9M0d/2VojOGee1by8MMPsGjREk4//Zy9JrKQ7OjizI9+njuu+zdufVpwys+v41Uv/JGx07+ITfaQuugt9A4OsuiJx3haCI499kQ6OppX557CFACeeOIJli9fzvLly9m6dStnnHEGF198Mccff/ze7tpOo/bplMbWvSFDAx4kYsU0i0FaHYXQifZC6FOqxjAq7/hbhyj2a+Lvhmo2T60xWG9KOHkXK/xG/Yim0DbyAEUtlPMiyl6ySRoQFicuIFv2GEglcITAr7M1q+20/t6baO4iV42Li2byzakyitJULq2NwNrkhJ4HoGL8l0JDEmKaVd9fqctKZdG9Fw35KxEit2Kn6qZgsnEAZ5OjjBmXxO+JepIUaIOSIhZZaA0lXECjG7w3tWeK0GDjXKTxWm1R+JmNC6XWfixjt522Fp+wIrqRkhlSNd6dOlhTF3zniQzFOq9p/fWjNdSMgMUhlrKLUTPcZGQWRySRqEqLusbNmPULsXpic/g2pEO4RMWMvbo+O8agrdNw/wTWWlySlTywWkGKaEOjgIkFERJNPFCeSIzzNtc/rzVBuyaM1kmNkwkgCEuV8mplopsQTmVtyhpCJIQYt10SaENi21DldegrynWloitbRm2u7hxtUkA51NegdT/CJuv7tatKwC3QVss33HDDHuvAFKYwEay1MOJjh0vYfIjNhVAIqxm8FvAkJBUi6SC6PER/AlLO3iEEYZGu2z5IYs0t5A+/lOzRH2PgXz7Dii1DZPsKuMl9ePV7Psg+S6v1A6y15HJZstkxfL+6u+Y4DplMB5lMR0spcCEFB5yyD9MXdnDPj9fw+28+ySFnz2Xp8TMrczA8PMTvf38rmzZt4OCDD+Xkk0/f67mJbiLJ6e/9BH/4ztdZ8TDk713NCYMXMPra/8H0LCL9nks5+IqP8awxPPS733DKG960V/s7hZc23vOe93DWWWfxsY99jGOPPXavr+9dQj5PiCGXUNRvFcShT4wTs4sMplilrpztU3tIJ91Avu4ciRxnskb1gyQTmQYGi5FteG1s2asy/tjab+aETOHXKX/V3DcL44Sx6vpan2tURinUJFzZcOzuidfpUN2EBBO6DmqNRCsa71OZCFblnhvRpXooiBx+Iom2UXifjPOlol34FFI2I0nV2lKNSJXr9li3zhsCoEJD6NV4xwQ4VhEGUX6cb3RFbMFV1ag7IWxUd8vCeCfcRL+98bXzfp0YwwR+R+oVL6rHR/lWFkv75QR2BEYohFIQjve6qhqxifpQT4eM7EVZKpS69lNZx+B1cwJbtx1RA+vgGRe/6XM3uZ0jEXWeo4mQFGmkNpXQ33auUbB+vce5BRxXUBq3dA208G6P85RN+BzXvi/w92B4Xlukac6cOYyMjHDHHXcwNjbGW9/6VrZs2cLMmTP3XM+m8L8K1lrsUAm7MYfZmMNuKWAHi+N/NaUAVRPM7jfZtUsqxIwUck4GOacDMTuDcPesESVKI3T9+p14G+8le9KnyB90Mc986l+4b3gb2hlj5tKzOP2St+ImPMbGRnn22dWsX7+WLVs2Uyq1DntNpdL09vbR19dPb28fvb3R30ymo0KMps3v5Kz3HcT9P3uOR25Zz9Y1o8w/McEza57gqaf+jOu6nHHGa9h//wNfMjLeynU5+R0fJNHRwQMrf0fBDnHmja8je/43CWYfxz6f+BTzv/CvPGEMR254gcycuXu7y1N4iWLlypUvmXW9y/B9fGkQppxj0zxRvRlkk1AniEKbmuXMN2vVtgh1auYZGHe+1Vg7sQCHMCHEO/KOcGtU/OK2jakmdLeJ2qMtlmKgsVSNucYwLIjCFGvnVbYK8YpbBnCbiz8DEQkpo6jb9/rVQktJWnRWRByqkICKavU1SRnqUn2E4doWLTv4tjnhqkLEc29BCoSoDiG08b9tbLvq9vPtBQZ0M/WKie7zrj3LpmaDoVnLtu5VhGa5Tc2QEuOFkzrl9Bb+w0bIyv5HTUDfhEcb001aiwpp0tYSGB1XLqpF/bMpUfTIPrJmlHbQLEyyae/DqjfONFmIE1JgEUlQ1L1nG9+Z+L5Vj6hVDmz0eEffl9lwsnW+82iLNK1YsYKPfvSjHHXUUaxatYq3vvWtfPWrX2X+/Plceumle6xzU3hlwwYGs24Ms2YUs2YUsvGOQ1IhZqZRh05D9CURfQnIuIi0nE9ovwAAIABJREFUA56sM46stVDSUNDYkRJmsIQdKGI35dF3b0GzJSq8OK8DtbgLubgL0b17d6hkdhPdN70NNfQso2f/X7Jzz2XlFV/ihewahHA48g3/wIGnH8MLL6zjoYfu44UX1gHQ29vHvvsuZfr06XR0dNUV4gyCgFwuSy6XZWRkmKGhQZ5++kl8vxrb63kePT19dHZG54ZhSNgXEC4Z5bGhQR79dYhSDocccjhHHHE0mczEMcx7C1JKjr3onSQ7unn0lp9SsEle+7O/pnDGNZSW/SVHv/Einv/D7Tzwrf/glCuuaqouOIUpvGIIE6CFQOoSslJkNc6JidXrJkKt5PI4w6NGXrgZyh81k+HeUVhrsKXCxB4Ea/BkuvJph4xk1HWs/hc6Mi5OO76Hrpcm8PO0QjOSaerIURTMpG09BWxMondxcUOB9saHkjX2zm8ashfJsTd7vxUC1yUtnKjOzw6juXevFoPKrw/Wi2+6kA7CRDWlpDQ4SmKFQTU+W9YShtVN/3aXTNVJUKt7WCucISNyBQhv4t+qqihDcxgsfo2aY+1aCE07tL++X42vy3lDxsa+vUm+e0RZ7rzmHdFk+yHyzY5XEWxStSwO/au+b+z4+6CIFDTLz9dkKBcXnmw0bd/w2rPKha1F450zbGrhTh4/R5MfKRATPI+7B209lZ/97Gf5yU9+wrx58zj33HMB+OQnP8mFF144RZqmsMMwW/LoxwYwTwxFniJXIhd2Ihd2IeZkEH2Jto0gIQQkHUg6iN4EcmH1M1vSkddq7RjmuVHC32+A329A9CWQZQI1uwOhdt7gUkPP0P3Lv0GUhhk67zs8u30/7r3ii5RKj5JIzOSsf/w4Y7rAT3/6Q7Zs2UQ6neGYY05g6dID6O7esWRFay35fI6hoUGGhgbiv4MMDGzD930cx8FxHBIdCRb378fIagUj3cw4ZCHp9AQx3y8BCCE47Py/JNnRxX03/jc3u8fw+t99CDW6jplH/yOLHrqfJ4OAQ77/HfredvHe7u4UprBHIVS8q9zEQigbAzv1jdXU4hhvvO4OyBbsKyM7CWqzoco1g6wENMYRGB0JqUup6kUYJvhdKLcmYxW7Vp65lOwgMOPJjGzwCpXr/Dh+KxN9IsJU7i87ZWRCRCIm/mwn27SKnIxUBctw4pg7QRRWiRREGWameTSUqB9UOX+l+rp1H4z1sIyf/1oaUFKN4t1V6B3w6TRiYtW/Vpjo2Yjz76SL0Q7sgKEuhVOTGxdRoxDd5I7XS+SX5c0NYlzIaWPum7UGIeS4el+VzyfqW8N6r5eDn3zT0rS4P0KESJEFXfbWtV4s48Nq2yVYe25ztS3SZK1l3rx5QHVHL5VKTZ6kOYUpxLDWYtaMou/dgt2UB0cg9+tBHdiLmNuBGBdHu+sQCYVa1AWLuuC0OZihEmbNCPrZUcKHtiEe2EboCAb6E2zv98jOSiG7PbqSLrO7k/Sn3Zbkzdn8IN03X8xIOItV877B6hs1wxu+jglWM6d/X46+7MP84Y8reO65Z+js7OLUU89k2bKDWuYotRyPEJU8p7lz5096vF8Io3C936xn23NjHP3GRSTSey5Bclex7NSzsUZz/0+/w29SZ3PufV9ChAWOe/0lrP3h//Dg/Xdz2jHH4ux/wN7u6hSmsOegFFbYWMZ69yCIjcVwAoOmWX5TO9i9NkCVwPkmJPJ57GSdrRbhgRARpF3xqrVzanWm2wt7asREfMuaxIR5JGXiMXFWkUerULDoGFuRrm95nCUOw2zvt7vRxG+FQEiStnkuWnTfds+zUQ6A7ZTdGFEO9Wq8ZkQgW8IqGkmTtuGE4bIpmSFr68Pybc36n4wcCCBsyE9Lyd1Tb1Hasmc7+puWnZQYaftZz9vx6QblM/O9KWRe4cScORLHmPhe5iYNJ22Orhl7WT1v0aJFXHvttbzlLW8BoFgs8oMf/IAFCxbssY5N4ZWBClm6azN2awG6PZzT5iAP7EUkXxwDfvNokbvWDnHf80Os3pZj41CBbgPHWJfjjOKwzZqDthThz6NssoZVJuT31rBWWmzGZW5figX9aRZ0J5mR8iAwFNY8Re6pR9kefp6xsB+7bgyT/Qkm3MYhC/ZHveb1/OiG72Kt5fjjT+bQQ4+sKE++WPBSDie8ZQmr79nKo7eu57avr+K4i/Zl2vyXXpheGQecdi7F3BiP/eZnpJa9ltMe/g/m6RJL9z2K1cZw4OeuYvZ/fAuRai/5dAr/O+D7Pl/+8pe57bbb0Fpz++23881vfpMzzjiDRYsWTd7ASwiFNiqXCmMo+bqFIle9MWKxsWT57i36uEvEQ4i6/su4b+3mloxrj1rzvbVRrXDQO+mvafeskDDOudhFA78xF76hzk4tgbIItMnstCeqIt0tJKaF50SqNEYrhBB1EtHa2khZuebYxrvZKt+ogkbesLMDEmJC15clEnZIyW46VDe+jAsBW02rQs3NIbE6BU7VyDexr7BdZ2N5Ruq7LOo8RWViZTCMuo0GfBzCagRBG2Itk2F8Tt0utRb935Foz8HJld/dwX42HG7M+Aia/kCS7Ng9BLIZ2rJaP/3pT3PllVdy8sknY63lqKOO4pRTTuEzn/nMHuvYFF7+sCMlwuUbMM+NQo+Hc8485AF9uxQO1w780PDwhhHuenaAJ54eQg8VmKlhH6E40DgkgmRlFzcL/AFNh9TMcCTTXcGrHZcz412nUs4yPFpi+NkiOW151kDeWALrkPbmk140hzkzLKtvvpaC9jli2eE8t2gJ61bezvz5CznllDN2OAxvd0IIwdLjZzJtfgd33/Ast3/rSQ45aw77nzArSih+CeKw899EcXSEh+76Pb3HXcRhj36bVx/gstrJ8FhvN93X/V86PvSRvd3NKbyEcPnll9PZ2cm1117Lhz70IQAWLlzIlVdeyXe/+9293LsdQ06XDa9Jns+SH3kVhGxCNCZ/tuvsj10II2uGxj41M5ONI5FBE8Mszr+S5YT5HUD9bv2LiQn9QjvVUi39C62u81i0qt9krQcmjZQONAmBmwydqnecwl5zJJAyBGHGqecZE2k1VV43JeotxtDSV9YeKqGNLdZ1ea10qiYkU4ARDgozKYmXIqL7E9bgmuD65Ry6KkFq4lUznTgtbocel/tXM3MvpTzPeJCqP4kZScDQzuYc1Y+3MTS0DLUHc5/bIk0zZ87kuuuuo1AoMDY2Rn9//4u+az6Flw+ssegHtqLv3gxCoF49G3X49N1ipFtrGfGH2VrcyrbiFrYWtjJY2s6m7BBrh7cTbFf0DvYzJzuX2dkFzDEJIEVJFRhKbWBdcoBsYpCcN0JJFfCdAqH0sVissFhhENYyO5zGktJsFvtz2Nffh/3C/gZ1JZec7Cc7sBlnfYnOaeezLj3EH5w8et1auqelCTvHuP2pm1FpFyeTIpXMkHEydLgdJFWKlEqRUAmSKkVSJfdoMnvfnAxnvfdAHvj5Wh699QW2PTfGMW9cRCKzk+EvexBCCI656B2Mbt3IHQ8+S++pb2HBE9fxqpkf4RGzhGU330Ti1NNxDz9ib3d1Ci8R/OlPf2L58uUAld+mM888ky9/+ct7s1s7BaPb87SYRBJhNUiFNZqGwkQxQtr5ma/fjHd2mUO1CuUxNgShJjHqRMuXLdueFLs5f0u6CCnRYWnyg9tAj5pW99pg6zxostX9rCM8AaAQwmkw/OvHb5Cxl08gpYNwHNAhZjI1NRkgRQkpXYxpOHanFo9o8q+J32mNeI7acIXmzSgWF4iLJCsPIxxQBmE1tqnqXxVSKayWkydz1UAIibIOGo22rbLXWpPkltfYifPa8AGyM+GmUsUiE1Ig0x5uMkVQHMMYu0fSj5qVIthdaIs0ffKTn5zws6uuumq3dWYKL3/YUZ/g5uexG3PIJd04p81BdO1cEddckOPJkT/z1MgTrB1bw9rsc6zPrqNkqj9O0ijmDh/AwoHDOGn4ONJhFHpWyIzhLx5A71PCma5J9zhMc9IkVV9EUpwkKZUiqVK40kVJhUIhhUQKibaawAQExicwAWv9IokHb0StXUWp82iKPUdhnh8hs6UIMslzXQFPuDm6dZrTg4Ppf6ETXqgfT0EUGXWyjKjNbFBjjDhZRlSWkfjfebdE0QsoJTRBQoOrSLrJmGAlK+Sq3P8y8ZqWnM6s1D7MTM0i5UwctualHI5/8748c99WHrllPb+59nGOeO0C5h3ct1P3Z09COQ6nvOtD/PqaK/j1A3n+6tjXcfq6/+Bx9Xc8ctxxdF19Fb3/84OpML0pAJGS5Pbt25k2rWpwDg0NvTxV9WwkuS0nsSYCN4MXZiPShMVIiRxfNCcyAscZfrG2nYjUsKo1ZyKFPiEdrIkIiLRgxk3jZKZDC9I0yZlNW9vNm7TthAUJS1OZ9nHYwc1AISShqpUnb62KWAslHDyRaqK9FtFcaV261fQauYNY9rwFaar9XEhVGbO0amKJeakRcfieVLZJraaGS4zzho6fMyuiWmNWqKaft4uCyZGS7QsfKeEyGA7h0IlEU1FdVx7oyXNq6obeUmylybVxoE5dr97z2uXLHdtcmOg6FnQbh04s0h5hHDluCxLHq4bL1RZTLmkDdV6hNscjJbrJousMZSSdkdrLOU2N9ZiGh4dZuXJlRUlvClMA0E8NEd62HiyI18xjy5w0uYJPYbRAIdQ4UpB0FAlHknQVSUeS9hRJV+FIQSEs8MjgQ9y37V4eGXiItdnnKj9u3c40OuUcpplTGR3rRG2dxrKx2SwrdpG0EusIpu3bxZKD+5ixuIvUThK15gML6LzvoySf+QmFQy4me/LHeOKnP+CBx28iHRoSJ5/D8yPDzJq/BDP7ML69Ice6jVnCXEA3ll5hmJ+SzPYk01SaLpthWrgPSV+S8CVKN//BDIQm5xYYc/KMOjlG1BiDcoRhOciAzDGm8mRlnqzKk1N5RlQWkXKZmZ7FvMx85nXMZ35mAYs692VOZi5KRDHo+x07k+kLOrn/Z89x9w3Psv7xQQ4/b/7unbPdgFRnN6dd8mFu+eKV3Pr8Mt4470hOfuEubp92Aht1iPefX6fjHz68t7s5hZcA3vGOd/CGN7yBM844g6GhIa655hpuu+02Lrnkkr3dtR1GIt6VTcjJNwS6bYLRlqpdYgI7ZCLjJCZNgHZkXd2hRthY3LuMiQ2zRlLQ3o58edfbSIF0Wxtrloi7mDaMLhsXjW3d3oTBVnWQ0q3b0VfIluphjuPhW4NxRMu5LcMgI69H+XyVoBXtnO4sQJo0uTb6PhGsW0LaAtONZdsEhFAIMbE30SoQNrpvlYluzxjWYtcjH0q2SIrmpCl0FU5DSOiYp8grj/aEucejdhqakceJvLaO8FAofARGOlQJU3Wu+pxpKCvq1CZfbhBC1G9eiVp/lt3BMMJGOREZF4RORF8AGjKp3l3tcku0RZo+8IEPjHtvcHCQj3/847u9Q1N4+cEYw+Bv19G5aph1CfhiMuBPv/1zXEugNYQ7iNO5Cq/jaWTqOZAhGA+KCwkLZ+Ln5qEL8xgzKZIGjifBGSVFumQRjmDuwb0sPKyfGYu7UHtAgY+gQNetl5J4fjm5Yz5C7ogPct9XPstTz66iB5fsCSezeWSY448/mcMPPzr6cjgyOnXzaJEntmR5ZluOP2/P8avtOdYPFOoee1cJ5nUlmOu5zHQVM5SkXyq6rSAdWlJhilTYy6zQsqBgSAQGt0V+Zig0QyrHgDvMdmeALc4j/Nm5k03eENmkxHR2Mad7EQf2LeHIty5j6KGAVbdvZPPqEZadsg/7nzALtYOFgI01DPvDjPjDKCFxpIsrPfq8XpTcNbGPvrkLOeqNb+PeG77N3fv9Jcf1XcefBkf506knM+PGH5M49TTcw6bC9P6346KLLmLZsmXceuutnHXWWaTTab761a9y4IEH7u2u7TCUUPQEihEnrHxXJHWU3F1PSmoMjx3EZOJogvod4WZoJE3NkA4FBSfAsgu18eoMron7VN+bFnLd8UFSOhhTTzh3NSyxHfMvTDig20+yr+2PaCJsEJGTVmdNjnQoKMZ7ZsYRTKZFkrGWbM3rpBYUVT1BslK0FR7XLCQsQwcIzU76JSmaIgmZHD9fTdbPmB2OvVs1HWoTJumhguoJOg5trW1INBsgNaIb8bHa+iibqMtE2xk9h0gufsfz2aphmhND617A4OIStHkNIes3PLpEijA+N9rsGK+21y46ZCdp2UlR6Mr3lYBJ1++uYKctmt7eXtasWbM7+zKFlxk2jhT5+cMbOfCRIY4PFT/F5xcpwaIZGd7eO425PSm6Eg4pV5F0JdpaioFhoDjEY6MrWTW2gk3+kwB0yrn0i7PosQfT7y7FSyXwpkv6Mx69GuSzeXKrRzGhZfqiDhYeNo25B/XiJvZcbp0oDtF98ztwNj/I2KmfY2zhG7jz8vezMT/CtHQvm/Y7EBv4vPa1b2TBgvEKXbO6kszqSnLaftWQoWKg2ThaZNNIiU2jRTaNFtk8WmK0GLKqFHJ3tshYMSTr6wlJpwI6EXSL8n+SLiHoRTINQT8Z+v0OFpbmcLiFjK2fo0E1wvrEJu5MPMBab4Ds/inmbj2U8HeGVfc8T+8Jlq79JY50kEKSD/PkwxzZIMuQP8hAaTuDxQEGSgMMlgYY8ocwTZR2lFDMzcznkN5Xccz04zhm+nF4aseNp6Unncmmpx7noZt/xqxL/pmz7/osN/in88yRR7Ls6n+JwvSSE1X1mMIrGVu2bKn8e+bMmbz97W8f93ljpMRLHRNJjTczvpRyEdKCmchKmNiMN7GZBBB6DsIYpJEIAwgRlU2ifRtSWlEREZDSweqQpJE0Bji1E/KmjUFJiYkL0JZDu5QCEh0EpWzd8QaDqvH5GOsxkeU08XgEVjrQpIbTZLA1CmcJU0sgmh3b8FqCMOAaCJpwPVe40LRIbvn8mJwoCWFZNrtZ+FtDylMMp6ZDAg1yx1XTErr1mFuyUQFKJTBIrK6SWCsUVsoWa3s8jHAwJAkJSIgkYcJBlsKKjHYjttsx0n4R1zj4yRJJ2ahHJ6Lw1rDesA89BwQ4SkKgI3l8azF1pCk+1oYY123hWbQgQwSWhJUUha3MVXlFGynRDpN4J6MviJ2tVGCFagjjLGN8g431rkKZwDHjc/qUk0S5Db/Njc21JTzSDIIONT4ML9CWbD5kxk62OhnaIk1XXHFFnXtNa83q1auZPXt2Wxe5++67ueaaa8jn88yePZvPfe5zzJo1q+6YBx98kKuvvppsNksqleLyyy/n6KOP3oGhTOHFwiMbRrj+vvU8vmaIz5HiQBz+vLSD00+Zw193Nw8p0VZzz9a7uGnTz7l/+30Yq1nUsZh3L7qU0/Y5k33S9WvJWsv257M89cfNbHxqGCkFCw7rZ+kJs+iesefzWNTQM3Tf9LfI7CZGz/kPthTnseJjlzAsDNMXHMDajk56Mh2cd94F9PS07w5OuorF/RkW97cXc22sJdSW0FikACkESgqkoO18DVvS2OESerBIflsBvdVj9lCaA0b2xYtjlDWGF6ZvI1tMkr89w5Mrt/DQjD/y1PT7KLn5SlsSSU+il75EP32JfpZ07Udfop/+xDR6Ej0YawhMQEmX2FrcwrOjq7l903JuWv8LMk6Gc+aez4ULLxp3v1tBCMHxf/0eBtatYcWNN/KGiy9nyc03sGrJAuY/9lgUpvf3l7Xd3hReOTj11FNbhgoJIXjiiSfaamv58uX8+7//O77v09PTw6c//WmWLl1ad8xZZ52FtbZSa23mzJlcf/31uzaIBoTJqslbm1tUC+tEz62byCCCiciBiHXImn9P1JImAOMoRKhRLbLBm4U3lVHeFZfSBSyJciJUg8FcL2zQGjYWKLBx3JPyNNY0N1tEbHwZoRDteCgai36KKJnFCAfZlqAElXmqDaFLa0lRNZ+jKI+svm/alThNNCQsYKWsk2VvZV5aUfO5lGDKCnBxH5XEKIlbmnhsQhYAh1AlwUycz9Mso6oRXaFDrkxcLUgngTV63HquWe3j2tDWIlBxwOjksAjc0CCdmnZbEDYv0UVGGIq5scr6HXd4k0vbmt9fQe0Jsu7sYT2AYyHJ9An6Wz225Qhl9HxaJXFq75+t9fhGD66040NyGzdcHAPhLgTm2DY9gEKqcXbKpHaLkJEXeAIBDhvXlHNFNZ1AShdNWTLekm+xxncVbZGmRoIjpeTwww9vK6cpn89z2WWX8c1vfpODDjqIb33rW3zqU5/iG9/4RuUY3/d53/vex1e/+lWOO+447rzzTi677DJWrly5g8OZwp7EC8MFvrbyOZY/vZ2DEx7fT3TTGVrc8xdw+H7NE+9G/GF+vf5X/HLdz9hS2My05HT+atFfc8bss1ncte+44422vLBqkKfu2szQhjxe2uHAU2ez5NgZJDteHKU3d92ddN36XlAeQ2/4Matue5AH7/keAkHXYSfxnF9i0cLFnHnmeXjens0DkkLgOWKHq0bUQiQUYmYaOTNN9wHQzRwgVrga9jHbCpQ2jNG9LsFs7eMqwdHM4bWDb2L7tgtZ6/hsn+2w3xHTOWzJbFx3x3oTmpA/DTzErRt+zS+f/3/84vmfct681/POpe+h22svYTOR7uDEt76X3/77VTzw4HOcfOzRXH/vZh49+xSO+ckNJE4/E/fgV+3w3Ezh5Y0nn3xyt7SzZcsWPv7xj/PDH/6QJUuW8P3vf58rr7ySH/3oR3XHjY6O8qtf/YoZM/bUPiboYmQGZbQk8BxKsSqedlUlrMuoaj2dCho9GMjIcxDDSIHSFs8IAk9F4g8TGJM64UAYeTe6QsmIG9dQinfWG2FQ2EQn0mQRUlZITqVrNWIDbXuupFNXAwhASYtMBuT9JEoXK6FdFghTHnasgLWJSWmZdLyKFwEBJqwaaBYR0UnRnmGohRvPdQQjJY0J/c1QIWeT5PkbKZFh7VsOdoI8NougaHJoMs0jGeM3c3qMjOqc8LKB56G1od04p2b3VI2z3AVSKnSTTYDavrVq0+AgW4wdoukUNiKJNY03bTHwXKzfcN0dyLFxpAfUeKFs/XVsmcg0adMS59bFH5WN8ZZOOSHHbVwY4aBsQDkk1TMSz0iUgRGv+RpWVhC2+SQ2dt1PegjALfoIEQA1nqRJ4lvDhAOF6pIvWB+vzS0UX0UiX44pEH27RedZJFp5WJ0nTLjgemR2Y2HwRux0TlO7uOeee5g3bx4HHXQQAG9+85v58pe/TDabpaMjmoQgCLjqqqs47rjjADjyyCPZunUro6OjdHXtbHreFHYX/NDwrXue57sPvIASgisOms05zxQQUuD+1SLkPuO9Juuyz/OjNd9j+cbbCIzPYf1H8N5lH+TEmSc3zXMJipo1D25j9d1byI/4dPYnOfL1C1hwaD+O9yLJ21tL8rH/oeMPn0L3LWX9oVdx1xe+weZSji43Se6I49mYzXLssSdy5JHHvjyVuWoghIDeBKo3QdfSHroAqy12W4HC86MUnhxixkCJBTaF3WQZ+uUgj4bb2eBImJ5k9swM6YyLl3JwPIlyo/+c+K+bVKR7Ejiuw1HTj+Go6cdwybL38/1nruem9b9g5ebb+fuDPsKr9zm9rf7OWnogS08+kyfuuIUFH/pnTpz2fVbSx5wDlqKu/hd6vvVdRGIXciem8LJFqVTixz/+MQ8//DAjIyP09PRw1FFHceGFF7a1seE4Dl/84hdZsmQJEP0GNZMrz2aze/43KQ7LTag0Fk2J2OtQl9tT9wdggt34Gk+Sq5hWtFgsAykPHdjxkU8m3imvaUq1YYBYIZFC1eUvOHWSexbpeFhjMKGPamEnGekCQSXkTVAuiAq+m0HLJGZshMYttLLJrEkhY2PfIDEOOHFYU1kRr+x981OdJIpZ0qEkX9NgY6hS4868QUVKa9ULV5FOgV9P9soCB7V9biU1Uc4v8YVBeElkGIVvCeIckQbioaUbqShaCOwwVmSi7te7QQDImzF8SmRoRprqj+02lpEmYhBJmFRsooE/YIVAihTQ4FYrr2XpYGtIWmDLuXU7Xq8LK7AqusuuFVjHwdbkkUnHw0pJvifDtOz2+JRYdEPU072Wwh5SlSMi6wZjK/+Lojg6tUMuLqdcXqe10feuFaQt5GvaaAYXhV9D5ifKFfRMvcerGXY6f0+Cdh3cog/CB1KAwHX6MdZH67GJT02loFCdBdtUOXKC8dd8/wmokKYxM4YlSoEoSQkpl4LZ+TypydAWaVq2bFlLA9FaO2EYxNq1a5k3b17ldSaToaenh3Xr1lWSdDOZDGeffXblmBUrVrBw4cIpwvQSwNNbs3zqN0+xeluO8w6cwYdm9ZG+cxOi28P9i8WInvqH9rmxZ/neM9dzx6bleNLj3Lnnc8GCC1nUubhp+7nhEqvv3sKaB7cRlgzTF3ZyxGsXsM/S7he3+Kqfo3PlFSSfvJGxuWdx99ZXseprX0EYy5xFB7Cmtx8RhLzudRcyf/7CF69fLzKEEohZaTKz0mSOnYW1Fru1wPaHtiKeHeXgkuFgYHh7kec35lntW0qTfPMmMg5dM1JMX9jJjEWdfGDZZbxu/l9wzaP/ymcevoI7Nr2afzjoI/QmJpc+P/KCv2bDqj9x1w/+k3M/9H9Y/f2v8NDB+zPt57/Bu/5bZP7ufbtnIqbwssJHP/pRhoaGOOOMM+ju7mZkZISbb76Z++67r61aTf39/ZxyyimV1ytWrODQQw+tOyafz6O15vLLL+epp56it7eXD3/4wxxxxO4VIikH2wjhkLRV49TKKLzKquaVelwUGtNUJlo6Xn1ITRyKZmPDX3geNqw1xFsJLhCrfjUqWdXDqyFbke9MxKSqRXJLlB0SnWMtjonypHTcdyscAicDjNJhPUqiIddHuNjaBHtRlXOW0sUNQkrKktGKnNKVayWNxBgI3AS6icHVGUqGJti1nwxZPULKmTb5gQ2IPFgatewOAAAgAElEQVQ2Jg4qqsnVBFZEMsvlGzBOTr0hdLUxkrUc2AVUpTTitjxoGq7oAJ3GMiYFYcKDbNWLWDHGRTVeUHsKZUHa8WxZu6qpuJF2o1XulGqYvQCtJlN1tDHxjpA0gqISdZsO9SGrtZ6h8cGsreTpp6lu8iZkeyyLYSse1Vq2WPVDCqArkIw17OOoyucCISXGVEm5lgmEbcfjFwDupIGMQpQJVXSnmqlklu9hk0g/gLqwXhHfZ6NSlLRuSSoSeEwkHlNeZ636X0olcbIRtZTxpoquWZvljLKuFl7UXUVbpOnyyy9n3bp1XHDBBfT39zMwMMBPfvITFi1axHnnndfy3EKhQKJh9zeRSJDP55se/+STT/LZz36WL37xi20OYQp7AsZavnv/C3zjj2vpSjp86YIDOX57iP79RsTcDO4FixDJ6vLZWtjCt5/+T27b8BuSKsWbF7+Vv1z0VxMawoMbcjz1x828sGoQgHkH9bH0xFn0zWm/vsLugtr+Z7pufS/+9nXc6V7Io8sH8M19zAwgcc5fsGrzBqZ39/Ka17yOrq7uF71/exNCCMTMNDPOXQj/n733DtesKs+4f6vs9vZTpvdCHQakzTAKggUlEY34WbAk0ahRDFGSIMGomKBGoihRw6dfrMSGsUZR0AgCIsiI1KFOYRrT5/Tzll3W+v7Y+23nnIHRMEw0576uueac9+y99lprr73f51nPc98PYMcjwseGcO7dxwkDDVYElrU25r9NxK6iwynzyjxrdpFF5YC4FjM+HFIdChncMc7DN+/goZ+DGygWrOzjitWf4sej3+Wa9V/gkaGHufzkj3Bk+egn7Y/jB6x57Vv52dUfYd2NN/D8F/0J115/I/c/fxWnfv0reGc+H33Uk7cxjT88rFu3jptuuqnrsz/90z/lhS984W/d1h133ME111wziatkjOGVr3wlr3nNa1i5ciU33HADF1xwAT/96U8pl7vfC4WCh9a/W4Q8FziMizQNvmXoCYGQYLSPMBFCCoQSKEciYpGWOhES6eQwUQ0wmTGTyv0KRMr5EeC4eZCpMW6ERVgQSiFdB6LMaOmSCc52hbOSBc12ZSdhXYi0Fo+USGNTcQLabYgODohrVWZUt8cslZPyXaxNN8uEQAlBPhaEOu1rSecYVwqtJcYLkEmIyIxwB0lOKerWEEmDsm1WU2scMuN7YFFSIoTJauym/SxYhasrbJEDCGMwsUCaECGbptgEp9N2zFM2fmx6n6wUiCyUYDvm0ljSAp/N8VtaG+22Y++/3aZF6KyPtPsqERgsRkuElBlnJZ1zmx1L1m9BWiOp2UbmhbWHkh2FTPsupUiTn2QavbTaRcQTvJrsPgkhQAkMhnLoYD2FSgTS0zQErew+4yp0CELKlrBb4qQcHQHkraYmNI1snmJjyUi8xMpPuVijUWs1SuVgkm6HWQA+ipqUabSo9ezIrrELqVMepBBIRzO8rA+5KcI17fltr1uBsGJSyp4QArSP52hipRFxeuusozBGAhFEokl+AiXSYmfCIrNnMnEcRCzQUiBsgpQCYURWI8rJUnFFyk8TMo00SoGRHiai5cgGOkcYDdMUChTNlN2OTedcomgIQUSSPZt0r7Xm/x3Ps00bSzceRLeTJKQAqZFSoL0CcaOGUjJVBDSadt2vdH0CSCVxXYVyBLG0rTbT511m/ZDZOhRgJIlK03Cbbc2TM/C1jxUhWA0IrLRIKTEmfWcIJfCUS6XSrg31dOKgnKbvfOc7/OAHP2j9Pm/ePI4//nhe9rKX8aY3velJz83lcjQa3eHYer1OPj/ZOL777ru56KKL+PCHP8zq1asPpmvTOAQYa8R84PpHuXXjfl5wZD+XnrWc/O27SNYNII/pQb9oASKT9x6LxvjGxq/wnc3fxAKvWfo6zl/6p5TcyVFCYyw7Hh7ksTt2s2/LGNqTHLFmFkecNot85TCkVSURzl2fYf+tX+a24TlsHF6DsXuYOTLOopWnsm7RYvbseoJjj13JGWc8v0X+/r8MkXfwTpyBd+IMzP46at0Apz24n2fXHHaH8KUN+/m79bsoBA6nL+3lucv6OO3ZswgcRViL2bt5lG3rBnj87r1sXLuHJcc9mytXn8qHN/0D77zj7fztyr/nRfOenCs595jjWf7s5/HQjdex6FmrOG1pH7dvUsxduhB1xQepfO6atKr9NP7PYP78+ZPSuWu1GgsXLvyt2vnZz37GBz/4QT772c+2UvWaKBQKfOhDH2r9fs4553D11Vdz7733cuaZZ3YdOzY2BbP/IFGvZ6llmfgLgLQWaztEFIzFJJYkthiTFheV1pJIB0stNaqtRWBbIhlpypAFa7Em3T+3zRQoY7GZA2Vt82/NHeHsfGuRJpO4Tmzr3ObfhJXt80wav2g2YW27HyQNULo74GTb+/nWZOeZ1KDPR5JYawLjMpKExLHBKh9jRto74dbiSUtd1LASlBkjwk/FEdqdwDegI4mDwAqLTdp9U0aSJBYjwGiNG6VGqZASgyARAmWjzGFJkU8UDjn2yzpSNMB6WNNJzgesad8DK7DGUrMj5EwJIXVHql17QqSFOJs/Y2yrtpQmNWxFoUjcqGIlSMfDRo1sDi2xaWBUHmHGIUlakZL2fe2OhFhMlreYXcek6yMyEcJYGp6LiiZvcltjsRKSzNlTQMNxsL6DowS20cn1af6zJMJB2DRVzQiNsDFRMcBLivhjNYacthx1M0MydvJIRtM5VS4imRytMEJhSFI+nbI4aCJipJatsTcbtdYi8WlUXHIDBpGN2Urb6mdzzlJp8O5Im2mqTsYGm6TpmooYg8B4CtVoOnQWNwzZ6e2iQLmdtycV1vXwE4hNiJvdZ4wlUaKlFmlkul6QBovInttmombzCiLjNWUeqtBACCaLyiUGbSEXKfY66cZEoANCW22Nsfl/021vP9eQSE0sNNqEICSRq9DGEuFghI/O+m6S9P9EBrjxaLZGTIvfaBJDHCaoSFBXZYQdTD83aXTOohDWgMmeHGtIUDg2jWwJo5HCQaJJpMXGCTU7irEG12ji7B1Jkt7LoaGpAzMHixkzpo5WHZRlMTo6yqZNm1i6tJ1itXXrVkZHD5y72MTSpUv54Q9/2Pp9YGCA4eFhFi1a1HXcI488wrve9S6uuuoqTjnllIPp1jQOATbuG+eSHzzEE8N1Ln7eMl517CziH27GbB1DnTYL9ezZ6S6JTfjhlu/z5fWfZzQa4YXzXsxfHPmXzApmT2ozrMc8/pt9bPjVbsaHQvIVlxPOWcDSk2fg+M8QXymDNYahndvZe++N7Fl7HdsGFJE9CgfBwr2DLCr3M/qmC7n1sUdQI8O8+MXnsnz5Uc9oH39fIPt85JlzUafPwawfYvba3Vy6Fy7yC/x3RfDZ9fu57sHduEqwalEPZyzr4/nL+zntmB7qYxHrf7Wb9XfsxjxiufTMj/Mf5au44r4P8vjoJt561AWt8PtUOOW8N7Djofu4/ev/zjl/90E27biKu048np7rfor3tWvI/fmbn8GZmMbhxrHHHst5553XSs8bHBzkF7/4BWvWrOkSHXr7299+wDZuv/12PvzhD/PFL36RZcsmi9RUq1V27drV9T0IPO2bKaIj9cVDUYgljhEtvoMRmkj6aRJaB4fIZDvGstNgpx31aCcITXXN1FhKHIkyAqtFulM+Aa6VxK7GJBLCcFIbT1ZHqZhoHCvZ+1syKVwrsROLnrZS0SaMSKaenG45fKLrCIHA6bx80ymV2Q73FNcXNIuPhkgrUUISW+gNNcpVJMisnYNR7Ev/UygcKzBS4lsohJIxnZ5fiCVC+QyJMHV6p/iKdLRH1SRpJExFWGEARaQstqkqJhUimUJ5cVL6XnfnrBJgYFDsYBaTv88nInEdIi/BNgWCploDB7jlVqS3TCkHIzWuXwGzb3IOYcedkVJ21blq1tuyKoYkXSctFWvXTY8PJ6e3+doj6klgYEIHD7CEEy0RscyEKNoL0BEaKxTJhHHrTFHRCI9IxDRMA0962SXSiBEioRKDUV1KH632EyeN3BkgkB7GJGm0rCMqRMuJsrjo1jvBdi99jO8RugrdqCOtoBBLRnWWApg9X0JM4EY2I6TSI5QeWjYyGfj0z7H0iFQOI+MsgCkyn3ByJLCJSOcxUraTaC1oN0c9TtoKhs0gIYKZznwEglj6RMD+ZA+RCltCNZ4uUbQ+NtZEzVfxgQovPw04qLf9O97xDl7xilewZMkSisUiY2NjbNq0iXe/+91Pee7q1avZtWsXd911F6eccgpf+cpXeN7znkcu1w6dWWu59NJL+cAHPjDtMB1G3LllkEv+6yF8R/KZVx3Ps0oB0bUbsIN19IsXoI7rA2D98KN8Yt2/8OjwI5zYdzJvP/pCjihPdixG99dZ/6vdbL57H3GY8pVO+KOFzD26gnyG+ErGGAaf2MLuxx5i14aH2bPhIcJaKqVadAQLc0V6Ht5Mf2hw3vI27szn2PjQA8ybt4AXvOAcisVpXt1TQSiBOroHeVQFs3mU4I5dvHRnlZf29fL4MSV+PF7llk0D3LZpgI/euIHnLOnlj4+dyRlnpaqId/9wC4/duJ8/XnABS1bexDc3fY2Bxn7evfIf0AcojusGOVa/+k38/N8/ziM//zEvePkb+da11/Drs07jjGu+iPvcs9BLJhu+0/jDxPDwMKtWrWJ0dLS1mXfSSSfRaDTYsmXLU55fq9V4z3vew9VXXz2lwwSwf/9+zj//fK699lqWLl3KL3/5S/bt2zeJ+/Q/hXY797UFrhFpXZjMSjJCo1oiCelnsc4hTARYvEQSqrYBHwapQVSuGaCRpWMdwKgQAutIfOESTSDs2yzNxmCzFK6J9qWY9KMQIn3XSxcZp2llrvBbdP9EOKljIB0wMcKaAwgkdHhJgBAK7efTFKV6vaPUS3qcBsqhZF9BIaWakkvTCak9HJ0jkVMfZ6WkEjkIK6k5qeEaS49qeSZxEMBgFZk5GxM5ZZOcFJmapYlIR5rITkNVkEchEk1iDIMiSlOZOhAYheiQOEeFNFsIaSCVJiGNSiUiydKY0mytjphjR//akRNIVedkJEjEk6sdtt3SdH2qVp5htjKExLeaajOJpDM0CVM4V50poRP/kvXNmq6Cr4mW6XWz5d5cB04CsQpANNBSdrXRbrP7XifCPKlB3Ep7zKC1P3kcIiuZlfVDGoPN7lWTU2g7DlbSIX3aOzY5RHtsTa0R6QU4bo5GfSTdFJCCpkCl9AoQj7V2PsSBCspncvpCKkhAH0Th4cSRdKrnh0HTMU7/aSWIdQ4YASExSkMYtnmJU9zjsBjQrS5pIchjxutEQuHaEEf6+NLFqB6EScVLxqhRI0DbOkqqrljppKEebvW8V73qVbzoRS/i/vvvZ3h4mGKxyMqVK+ntfWritu/7XHXVVVx++eWtdIkrrriC3bt38+Y3v5nrrruOe++9l0cffZQrr7ySK6+8snXuxz/+8Zbq3jQOLW58bC/v+9EjLO7N8clXHEf/SET41cfAGJxXLEMuKlKLq3zpsc/x3c3fouxWeP+zLuesOS/oetFNVV9pwXG9HLFm1jPGVxob2Mf2B37DrsceZNf6hwirKZW6XPQ40t/GvJ5RAud4olu3Yoe24p7zEna8+Bx+ed9vCPfuZM2aM3jWs05Jd6imcdAQQqCWlJCLi5j1w8S/2MGS2/bw10tLXPTKE9gQRlz/8B5ueHgPt27cT2/O4eXHz+G8cxcwf0Uvd1+3hXk3ruHNp8/iC09cxXA4zAdO/BCBnrou14LjT2HRiau5/4bvsfjE0zjrtFP56a/u4eEVR3HCRz5I+TNfQKhnNpI5jcODj3zkI/+j82+88UYGBga4+OKLuz7/whe+wNve9jauu+46FixYwAc+8AEuvPBCkiShXC5z9dVXt1Rgny64OZEWuMw4LQCJq2mRQQBHSUwCdacMtT1paouIu7gqkEo0W6lbIgLNPyuRGh1GSWScYGTbaPetJCddRoHId7CxJdaSxHGoGIXMEpGMVsgJBPJJDo8FqSakE00UJqDJm9CYSbZOKxQ0yaCWbgERjnSZTKL1zs44W1qhZFqv1RhDzYwTyMnfQwKBVg4JbUPPOBoRx60dcYFIIwpS0Sw2a2XbmYydPHOSAqNFHzHamDK6AbTeSbGwuEjCKaoWCwS66ehNmJMSmtGOz1wpW+6tpUmlMTgWIt/HDZO0Xq1MBegnmpgSMMKhM1JWl3UOdlULJwcMd3xiWymHyvMoYBnGTJIKF44L1tK8ZZHv4Y22NfmMTlLOmhWthWuxJI5EJobY1Vgp0IkmIcQ1gpzOM9jYl/KehCbUDkkugnqzCUM+UeStR81V3WO2dRILefy0HqHJMcKBVdhc2aYUSOVhO+paWSUhMWlEJaMmNe+jEZpEaKwQeLbbBG86z2HOx4kTSFJfc1iOUZB5hLStZ8kg8Y1FOh6lyGmpP1ohsF4ZmVRBRO0xCjCuB3EICUgU2pgu96UnUtSURVvBkDYZ7yi93mhfBd+OtLlWQClnGEnAlTkQbccy1AWcZHKKsgB85bF1YZme9Vtx6ulzFAaaqi6QGx4DCxVnBo5ShMqHxhANU6MmNDWhKCLQSjLUm0fFCd4UWXjicEeaAPbu3csDDzzA2NgYl1xyCQ8//DA9PT0HJbu8evXqLk5UE9dddx0AJ5544kEXIJzG04/v3reDK362gePnlvjEeSvIbxwl+u9tiKKDfvlyZJ/PL3ffyqcfvIo99d28dOF5vPWot1Nw2jmfJjFsWzfIY7fvYnBHWl/pmOfOYfnqmQTFQ1vLCCCsjrPxzlt5/K5fsm/LRgDyvf0sXHE8C73dLBv6McV4L4PyLPav7SfceD/6uOOJ/+nD3Lx9C9vuvI1Zs+Zw1lln098/dSG6aRwchBCoIyvIZSWSe/aR3L4Lc80jLF0zm3eevoQLz1jC2q2DfOueHXzpV1u55s6tvPCoGbzh9UvZ+uMnSG5azF+vvpyr9/wj7177Lq449RMUnKm/wle96o3sfGQdd3zjc7zone9j2+ZHedAew4ybbsb91rXkzn/9Mzz6aRwO3HLLLXzuc59jz549JEk3af3GG298yvPPPfdczj333Cn/1vyeAnjJS17CS17ykv9ZZ58CQbmHMUchlQ+2RjMlr9NpSnetFbEq0HDKEDXJ0u1NgjEzRl6XM75D02lK/+4KjUAT6phIpw6JFqorI09bgWsVYU5iZQiOS7+eye76LuJmzaUuaW6BkS4YgWKcTinhWLpEysOJmwLq3TBKIyfonzu6o95RMNnRqXt9RPFeUjp4lpo4hZZ5rHKkLiCEtk7AgTbvmnVf0rZirRGoyVl3UkGWehTnddffPavoJC2YqRTvzOSNHDsFbwaAXIm0DtAEO0sIjJdDGUFOhjSyThgBDSVxWiE5EMpHmkYrAhYJF52pDgoLQaxo6G7FuUh2xjqnRqQLRMISy4BOp0lgum5xrHwQVRLh0DXyZmSkFZaccAEBRlvkhDpKdSfBKhdbT+c2bzRBKDGuRCpNVtk25Q0pCcEYUeBk3JlxfONMVrnOEBKTP9jSy6IdRfScEvUodZqs40OcOgyJ9HEIs5S6piCClwqmILuiXTW3H5VIoLt2V2hDPKGRQiCkASuwnsZLFL50CYVE6w5OuFCgHWI3h2E/asK6ij0FEWjXgQl10CSKYsYXa0jNuOdik/YCN9JFJmmhJeUOIET6vexIH4SgXiwQNNqOb1lUUPke3GqIj6U2PJOKmoetGQpyHrEapcZQFq3rjMEJQhmzT9Uo2zqhbZC6K51plILE0cSBy6RNh8Mdafrud7/Lpz/9ac4++2x+9rOfcckll/D9738fYwzvfe97D1nnpnFoYa3ly2u38f/etpnnLOnlipccjf7VHuK79iAWFnDOXcw+BvjUb/6RX+6+laXFZbz/xMtZ0bOy1UbUSNj46z2sv2M3tZGIYv8zW19pbGAvD/7sOjb+6hbisEHvgiWc+LLzWbx8IbO3f5fg4U8jxmoMqWez8f5jiR5+DDl7Ds77/pH7Ap8H77wNpTTPfe7zWbHihOno0tMIoST6lJmoIyvEP3+C5Bc7MY8Oof9oIWsW97JmcS9PDNf4z3t28L37d/LTR/Zy9rJ+zswXGfoVvGvFR/mUuJRL1l7ER1dd1eWkNxGUKpx83uu44+ufY/0dP+f0c/+CXdd8gl+dcRrF//gi3nPOQC347cQApvH7h/e97328/e1v58gjj/y9f4a1UFnx1VTGN9JTcwMOeL4V1F2NrbcTxRJhEPk81kqIqhOYPs3rSiIhMq0IS8G2jWjXShraQ3ak/gjlYkmwpt2WFWClIpGCRLpoE+MADSRWKCKitjCBgKqtkhc5NJrE1piMLAoj5aQ0N4sgEipzmlJI1eRzCKSQWMdPHZ8pYMSEXX7HQzIKTpC1IdNiQbUI6RWxtdQx0LpInCl6Ga2RIZRNDqlCQFAQPqPZZvKwGURZRey53dLZdKQuWbqKnxqrWr+XPZ+tchh/qjFImYa6Og3sKZZ+yVdUkziluhgFAhKRGtn5uKMorzjw97WDIiKh31gS6RI5AcZKbBqySP0fp4GIXLCGRpejKYhUDi3DVCRDSkSStAzlgi7TcHoOeO20Bdn6KZYJnnEQnkcRDxmlHKO0LFWq3CYA4eaAOgibFoO2BiskYeASpJmsk6fUCbqy7RLpIm2EnOJYi2A8CEnGqggbIJSmKhM87XQFfHNOH0PsB0BpjzhXwfEKuFEdR8UpQ6qZkqfy5JVLjRG87F5ZLJHyuioyWa2xOcCWsQikk0MLiWuD1v10pd8RZGoqD7YdVCmrCCNIlIdK0jncLYaZY4uAYFAN4YpZ3Q6wzuNEU0ffokIZZJVEa3R2jit8ajkHqqOUgpARNySWlqqTkMPgi2CS0xRJL43qEhFJiet7mLHOBdWeXBHkEG6hWeCqlTIsDl2g6eCcps985jN897vfpaenh1/84hdAWhfjpS996aHr2TQOKYy1/OvNm/jG3U/wR8fM5P3PWwY/3kqyaQR5Qh/irDn81/b/4vOPfYbEJPzlUe/glUvOb3FM4jBhw9o9PPqLXTSqMTOXljjlTxYze/kzU1+pUR3jgZ/8F4/ccgMAS05+NkefdQ4zgxq5ez6Dd8MPQAhGCi9i312G8O77Eb19uBddzPqFC7jnvt8QhiHHHLOS1aufTS73zEud/1+BKLk4f7KEZP0Q8X9vJ/rqY6jnzEGdPIN55YC/OWsZb1q1kK/fvZ3/vGcHN4YJb1lYgQfhnUd9lH/jUi6+8118dNW/TqnKuHzN89i09jZ+8/2vM/+4kzjnZa/n29/5Breftoqzr/gnej79uY60nWn8IWLmzJm8/vV/GFFFLQQ9ssCQgaRYpEGMMt2pLsJtBqFEurMOKCePietoKyhYh2HaRtK4atBniyS+B1G1K11OWMhJD+OPIyINcYKYELHJWY2ri6kR1pQoVqmaVVudjozLkKb12Jaha0m0YigZR9t9OGgSJUEIQtvAFx5apDWcbCZcMFUtl06uUC0ZJemIvAWJQJfyOHvT87UF5QRYrSGG3sQlSRIGm3wbyMQdOuZdSRoJSO2TNCNcSTbWLg7FZAjpkFdFHCFR+Cg/IEoiSNKIlTPh/dP1Dem7oPpxwiFkViurSbbPOz6oLE3TgpR1jKhAfiaM70zb6kyP72i42V9fe4zKQSQ9LaV0qzQ2aXN0msd6jsrqgnWuj/acCSDSJZSSLSK+cQzWq6WRnSjNKomVjzJhqobWOcdZyqG2ggiBazVKOhipntTQzckCMYPdHwqZrf3U4JeOC8gWd0oKF0THcyPSCbIHsk+mcoxEKvvfEyn2TEqYEWjtMi4isAFCuRTKBZQNiMX+tDlhcJw8iAFCE5IDYt8l780gjHciJkSBLCCEoiSKjDoxnpFYW6Pu9lIgytL30v7X+nqxcQFdnzoNVAmXnHFRSQ0hGx3cK4tUw2A1rhGMd9zrRKYpgUnRpaZKCJ3HFSNdY06LTrcjqMIdplFZnn4UV6lWipQGm6tI0JARdTtMruJSLY5ArsS+xh7ytoYn8hRFBW0K6DjGy54ThcLqXcCiSUW7Y+XjqWy2HBfp5KCWOrhpVBkmPGFPKw7KaZJS0tOT7gQ0H1Ct9aTc5Gn8fiBODJf/5DGuf3gP5580j4tOnEfynxux++voF8xny9JhPrH2Ah4aepCT+0/lb467hLm5eQAkkWHjXXt55Nad1MciZi8vseIF8+ib//Tm9R8I1loev+t2fv3tL9OojrNs1XN51kteSaW2ntzd78fdejPGyTM869UM/Dqk8cs7EKUS6m1/xYZly7jvwfto7NrGokVLWLPmufT1/fZFB6fxu0EdUUHOyxP/93aSW3dgNg7jnLMQUfGo5BzecfoSXnfyfP799i187r4dnFFwWfWo4q+W/guf4T1cvPav+diqT1F2u2viCCFY89q38oOP/D2//vY1nPnmizh7zUn8+I77WTswxJnf/w7BK151mEY9jWcCF154IZdffjlnnnlml8gQwKmnnnqYevU7wpos0iBIfA857oCpZ1GephGfHioQSMfHKg2NEOJ0F7hZLBMpka4hzg9CrUDDqSDKdRgPAEHOaFwkQmjqKgHlIf1c6wKxCtBJdwSoL9/P7sYIcdTevbbZHm8UeKixthHXDIQYR1G3lnIIjqHFwYkdjY1tKkGeuIiOaEeaYeUwmOzBF3PbRq2FhBgt3JRL0ZwHLQl7SrhW4u8bpTM+J5u8KWjVrZo07cUCoY3J2wIj0T4ASiLASUyL2a8OsPmSOIpAliArcjpfz2CTSBP1jGqS5yWJ9FtXbkfHJNYtQjyMEZJY+2nEBEBYkjkzYNdeAGpln5pTpuC77G5nQXWOot2n7GdBFhECjPIBi1AeJBNlIQQIQaAVsUqaQ2n1MxYJnXltbe0NgVAJuC7ULLFTwiSWPWiOTlAAACAASURBVHqQuVHQctAb+RxukqcyWCcyCQcdPxUgDxAFq3t9FMROHDdHpAVp6SJL7Dj4rfpa7YZ8mSPSAXGUOlbHzy0RDj5BdYtIJd6nuEaSZcx0OlsCCFQRS5yupUyVoWIVdeW3XSEZ0XLSiRk3w5SZ35rUA5r2InXYwlI/xh2l3lOB4b0gDcUkQEuD1c6UGZ3NVpVwCEQOnYymty2rnYYwCBGB1XhGUiAgtgnSCmrZuVZKrJC4qoBjx7uelzS223aGha4iKy7J/vS57xR/qPVrrIDIV9QXzKR32THsH1wE7KEqNQXpEFBAESCLBfz6nva8i/S9M9FpArDKg4xvZrOUZCOczKHryBg+BDgop+mEE07gPe95D+effz5JkrBhwwa+8Y1vcPzxxx+6nk3jkKAeJbznuoe5bdMAFzxnMX8+r4f46+vTZ+C8hXw5/BbX/vKrFJwi7znhMl4498WpxHhs2HzPPh66eQe1kYgZi4usOX8ZMxYdusrLE1EdHuRX3/g829fdTf/i5Zz9mjczi23kb/5LnJ1rMUE/w8vfwf47x2h87SbwA8b//E1sWLCADZs3Et99J4sXL+WUU9Ywa9ZTS6lO4+mHyDnoly3GPDRIfNN2wv94FP28ecjjehFCUAkcLnnBcs47fjYfu2kjN20Y4/mbXN4S/TOfn/9e/u7Ov+bKVZ+k4nWnc5RmzeGEP3oF9/zwm2y9/y6WnHQ2p259hF+znN4ffY+Tn306avacwzTqaRxqXH/99dxwww3ccsstqA7xDyEEP/nJTw5jz357JCpV5Woam4EsUWeUXFCiZhPiIEaSCRK0nKisNksGK1Klq1g6BD0BOqhR1TkS0cBtiFZ9I7fDCN40K8avR8zIhBIs7ZStzrpnRR2wJxprq3y5HjKsE3suVkYIHeKKADBdhqaRioZTIteoZr+7yMwEEaQb4YnjgQ1bm+Jjcgzj52iGSApunvGM+6SEiyNj4k5eSLlAIj1G9DAMN+cxNYUdZw/KC1DSbxl2saOIGx6hLmBLBUIToUbbY7U6h2/r1GWbTD9lrtYEOB2pfxZSIQvtZw5AKsjQNES1EHhKEllJRNKVTlhTMcZ1aJvXYqLWx1MLuEtD7DaNXYHwClnkvR0tcI3MnBiJqwRjfb34g1sBaOQC3EQTigGGxrfgMWGjUQiSfhcncRgZHqNEBbCMKUFIEePlsLJOoiFy/FaamYMmmUKmPSFBIVtRMYns5qh0RtN0Gn80LRW61DFolAoUhOxWTZQChcDoAOHEVEqG3QJyveNEuRHqI20us5QhWBeBJFGWRsEHEbZm25M+Wvo0PctQGkjAMwk1lfbBCI0TRwgNViUEYYIn/NY18qoHy84D3LS0qC5KU++f0RIbSSfOks/3UpWtnRM676UjJUmmjNcVhZzwUxQ4NKQDUuHpAhGGiZ6sq3zyxqVGmqorrcBBUaZIJMZQViOt6tzPyPokiVSBWqEf2xhkfGaRwpK5FNzs7gtBVcbsMDupuLsYCo5lsFIhGB/EryYUrcUTaTpsrPKtqLXRCldLjOdCo04iHRKnyMSOH3YhiMsuu4xPfOITXHDBBYyMjPC2t72N5z//+Vx22WWHrGPTePoxWo/52++v474nRrj0Bcv4k8Qh/vYmRNllw1k1rthyAdur23jRvD/igmP+mrJbwSSWzfelztL4YIO+BXlWvWIpM5cWD0oE5OnC7g2PcOsXP0lYq3LKeW9g5bIcxbUX4ey6iyQ/m6GVlzJ45zD1r1xHw/PZ/erzWd9bYd/AfvTmTRx55LEcd9wJzJgx8xnr8zSmhhACtaIXuaBAdMNW4p9uQ24aSYsmB+kr6YgZBf6/Vx/P9x7YxY3Xb+bMbZrz43/i2iWXcfHad/Hx1Z+eFHFa8cJzefw3t7P2P7/E7COO5ZSXvoO9n7+cu551IpVPfIgj/uXfntE1O41nDrfffju33norlUrlcHflf4w4mMGOnn68/YNdlHTRTGFzJTIoMdMvYOPJ61kKkRZj1RIsRCrHQPEoymEeaZrRoY52s0LzvXMX4YzX8Ec0jQ5VPFEoEmdOQ9Mfrcg8VTkGiYuVgnohoKdYhPEBLOAInxbRoGlKWYuRbmZASwySA2VKSSFSBa+Cw0hRIrEIaym4eXbUBgBwhEMMaOkBEQjR2mk2WoJWrWsbNAoQyiHSxWwGxrBKpQ6ZmMzyGtcJZVMhdNoEmPQoi2u6I05Bz1LsyJaO6NEEZ0CI1AnIOCqig6WTUw4IyKPxYonjGJKoGelLBT+ajI/ck9QEE0KgLLgmJu44zMoEp1gmrEuIwPh5lAVbryJtKn3uWInRirjoI4VgLEgo6TL7iIkdn2pfL9GYYdTEeB3aFiZbEA2vwD5vM2KHS2cCtfXyWC9AxPWWQS39IiqySKGpdjj6SmWppKZKSRQI+mZjq6M4oUjvU/MGNCETEj8hdEqoOEYwBrKB9MvIUg/CiG7Ol5CYcgk57qPjAVxXNG8NcSBhJONbqRCkQYgqwjYd4KR9H00qgJIkMFCNaDL/HKuxrgs2LQHghFWktdTnLoChjZnoRetuoYXLXjlMj9QYp7sOmQmK2DjBajcTfelwfqRFBXmQaahRZX22VmHRSClIjCUJ8ni1/cRA7GocwBc+WigcYMwpEZv0HbFfjGGRqLxPkqSR0cDV6OwBzcmA/cCcpEKPKeNgkaoIJiSIXfYn6UZAXlcYjnanHECpQfvQaG9cTIRwh4krIlMHhXhxAfW4gnA/sfTAQM3tI9LpOyrRGubNwEhBmFhCbyblKbRWmmvpUOCgnKYNGzZw2WWXTTtJv8fYNx7yzu88wOP7q/zLi47k9A1Vkk17SZYGfH7hf/H9R77PnNxcPrbqk5zcfyrWWLbev58Hb9rB6P46PXNznHTuEcw+ovyMGp7WWh6++Xp+872vUeibyYtf/xoWbPgs7o9uIynMZejk9zN01zgDV3yfJ2bPYsd557FLK6xN6BOCM898AUceeQyu6z31xabxjEKUXJxXLSO5ay/JbTsJr3kE55xFyMVp9FIIwSuOn8OaxT186asPsXynxznh+/nxUZfz7rXv4uOrP0XRaX9FS6VZ87q/5PqPX8bdP/gGp73mzZz92nfwnS9czc1z5lP61leY/eo/O1zDncYhxHHHHXe4u/C0wkzwJoxMlcfyTi+NjFQuRDfzp0f0YozBOimHyIrxlr/SjF4VfTflQiFRjpea7ll6i9ISP8jDSLfC3cZSQt6U6KuT7vLaVH0PHUHGYYmKlpb1ODEpKtv1daUPRES+Th2cXBGGB1vnTDSrytZhT8Fg/TrbtWXxiGVMeYwnw2h0K1IjkKjsO8nRKS+pCS0drIiJdQAyTw2ffCudcGo0240zko3CwWTGvUDQT5mBZAK/RupUmEGlJpWXbxAMKKJGg1E/3dyxvUXqkUHbkFjl8UIFJOjM0VPSQRClzpRKuSXNqSwkmiQBKRXkQtyyJGcE4Wg9K5JaQwK5BBJpu7K25JLFhPWIeiQYe2KMRs9c/HpMeX8dBSRS0sgFyFIfqhBjowZWWIQUjDgdkznBrxya1UcjDtFA1Z8FdnPrbzYokJR9bD1HV6FRAUiFFg7hhHUiSaX0O4MGEokwWU0w5QIJDbdMf2yoUZ1kiwhdQ1ofUyjDCJMhZAe3p43E1Yz1lPESBRYahTxhDHLWLIJdQ9js/mslKYo8oSjhKo99jQSv1qDizcIT0DfvSIa3b8H6OUbH9qR6bx1F2qPMeREA1qa1ofwSiRuTxJ3RTEm9WKDQEIw4MQ5tQpV1DKrfYEYtCEvR00SjKddH2hwCGJnRS69TwIsy7byscLOUkpxNnfBYejRExD45RC7bfImKecyYxC2XqcyqUBnT1AAHh4LRBDogVmPUzCiuqqNyCYQuyja5SJqcKlMQhpzbw5iAmluh6heyoaXX6Vk0n/qOtTAGjaLXDpQ5qZJnze1DehHUaOcitxaFoM+fwb5mGnCxDrs7inwrF7/n0NFFDsppeu9738uPfvSjQ9aJaRxabB+qceG3H2CgGvK5M5ZzxO37MbWYB07YzT8lH6e+p8b5S9/Anx3xF3jCY/uDA6y7aQcje2qUZwY857XLmXtM5RnfpY8ade742r+z+e47WLBiJS9atp/yLX+GdUuMnPQPbL4/YdM1d7J91kz2/fE5IATlcg8nLjuCZcuOYMaMWdORhf/lEEKgT52JXFgg/vEWou9sRJ00A3XGHIROX5ZzSj7vueBErv3GI8x5GE5fdym3rvhnLln7N3xs1Se75MhnLF7OMWedw8M/v56FJ6xi7tEredlLns+1P7qNGzY/zivXP0bhiCMP13CncYgwe/ZsXv7yl3PSSSeRz3eLunzwgx88TL363dCXc9k0ay75kRGMo4AIpIsqzcI2urdVO99vWmgSJI1yhThfwQ6nvJyG7oh6SE3d7SNxivjWQEfajxRgnSDdLY+HWp/n8keTjO+FTKY67yrGY8CkEsWt6yuBloJ6MUdhPN21T1yHooUxlScyaSqTdXy0tURZ34NE4uExzEBLDtz4DsbP0XA1oeOQCJeR3CJsdjlH+HgqTzVK+5nXLjEwoxAwVDdQTefGl3mESEDUiVVAIhR742GsVFjfb+2kA3jKA23RwkUgUiO9Y7r3JHuZq2YhkQz6gtkdMRUjBONLjya/ZX12X8AVDo1igJOfjRWaghtQj8eJpY+RNZSQSEA4DerE9OZ7CBsjGOokQQ7CGsqJU26JlVgjCbFYP0IFAqeqGYmKhNZD6ATl+oiaBCwF4+Nb2CaGwRckfhEVghjPgXYp+YJ8UMBEMbH2iUt9ONKltxCwf7CBwDK76DEeJuw7wDo1WmPNRCGDjCfl5UDXWmtUIFMOlQZfSax0CcXkEME+OdwS/FBoSr1HMTa6MU1vVLoVn9NISipg/ADf70mHqsRURwzpYZKiAXq6jpPZtRMlGe7vRU/BpRIIfOFnZ1hMFCE9iSMcnKZsuxDtYrlZlHGsP4cu5wnMBNVGHTLc30Owa3/X57GwPF6oIQRok15LoVJfOpOnM15CVab7FV72LHbyj5yeWciBXUQq80QtJE56/Sjw2BHtAWvI4WQR6nZaX+wIRvIJ1ka4wqXfZs+mUjRsg+jZqylvvh32QaXuUMzqFURG4mWe77iTMIpDrLrHXAlmsytwUDYHTEHOE2n+cE51Zw4k/fMh2Y3quC+t0WbOVd0pkRRmTW7zacJBOU0vfOELeetb38qZZ55JudydEjOtoPe/G+v3jvHX31mHiQ3fOGYB/bfuplGwXHnUf3BbeCen9q/mHce+i4W5RWx/cJCHbt7A8J4axX6f0169lAUrep8RNbyJGN69g5s/9wlGdu9g1eojeXb1GsSGBhsXvpEHtvWw+ebdDJdKcNwK+oplTj36WJYtO4Le3v5pR+n3EHJWDucNRxHfuoPk7r2YraPoP16EnJHK/woheO3rjuGm722Eu6H6wCX8+rgr+Ptf/w0fW/Wv5HTbUD7xpa9hx0P3cftXP8tL/+FfyB95Fi9/9E6+9bjDj77zVc5756W4E8QCpvH7jf7+fl75ylce7m48LSj6mlUrFvLo8O7WZz25Xsr+fHbGwwyyZ+pISZNc7jqMOV0fdSF0Cl2CBlaINBqUHWy1TyQTdnuDVEVEvywzxt5WewJBOXCwWYXVQAQ0VAO3B0RJsnM8YVZUoNFTQOmIkVLM7HgxG6J1AETlubhWpRGRJK0F5QidEr6dBoQS6wTEfbNpmDFqXoxM1bxb4lNaOC1xAKV9fGOZ7c5kgxTkXEFTusJXPrFICeNh3qfY6GUo2U5tzjwqNUvckUIYqIDFpeVsr49QMD2MOQ0I2/M81JNjfthITWWZck7iXEwuCgi1SA3XQgOTKe7ldQlVWAGVOexrbGeecukyELNCoEIZqmEqsuC4eRpxnSSfx44OEvaVyXtR83AAqmG7jo8VaU2inKMxulmdyaKQqdT5BMdE+wEiSy0U2kPZcaQqk/NmUDWp3uJAbhDBDBwtqGhNEjgIoxjKuj7eWybqK0F1Kon4blhtELHsEAsB6YaYRhpZsm6MqEBYaOAO+yTC0IxyKqnxgx5GSn0dU6bwyQPjSNN2UADGe4rks8hlqC3jriK79Vi3jrAKqwybc+MsNFWsTKM3R3uz2SsGAZFGUC2tmkpPzhhrR0ctkHNlaxNCCY30img/wUifWPego1TBLpGT61Y2ivkupymQRZpyKVJIbMaF044m1N2O3HiQMCcAGpqc7SUWHTWzgoDheUtxzAbUaNq3RlBmx4wCxuQIquXWxkM6ohS6NAZUqPmGUQZRSZVQ9jOfAN3vEozXQTlYDCNqGO0kGBmjSnOoJ8PEe56gSsiugsYZ6U49bEKWK8hof2sOXZ26rK4MSEycSctMiDJpB+ladNzcPXFpCkKIoITNOewMGsSHsDboQTlNd999N8AkQq0QYtpp+l+Me7cP8zffX8cSpflkqRf3/kHWzdzCByqfpBL08aFjPsrqvjVsf3CIn9yyjpG9dYr9PqtfuZQFK3uRh8FZAthy71pu/+pnkUryJydZeka+zU35l3Df+DzGtoAwMTM9n2OPWsHyVWsolcpP3eg0/tdDOBLnBfNJlpaIb9hK9LXHUGfMQZ00o+UIP+/lS/m1VrAWogffzd3HfpR33/m3XLn6KgKdOkLa9Tj9z/+KH195GXd+84s8903vpO/cd/PiT76d6/NHcP3nP8m5f3VJl2DANH6/ceGFF075+Ze//OVntiNPE5oGsgB6Cw7FXp+6bau+TTTlPK2I3RLIGl5JtcQRXNwpBbZUzsUhwoYeDbc3u2aD43qP59HoAcaiEfLeTGThWRPSmTJHKRfTG3uMVUGj8QMHoQX5ZQFyd0I+eBbjOx5HhUOTrj3kJMywBTyg2uynzNFDL1UxhJcnldieME7b8bsWbUNMSk3eaRLMJZ4DXeb8FF9jWkkUsmtuBCCF7hpvUzDCKEkiFdViBeXNhl2bEXocZAHZik9AozADIzRu7QmCwkyCmfOoVXel/RSSnKNQec1wlS44WrYlBUkVweqFHMZ3md+jybmaai1BiFRA4UCw2FQZLe189wxKmBMsYn1tRyoPL33GesvE7mx8mRbxrZZCxkfGsbS5v0oK8o7GzecYbdXZ7Wg7myNfuDR0OqN5VcaVEJcb6GEnTbkTqRks/AhGVepI9eVRM3shS7Wyi2ZjH04ddDtB9j4q5HB1D57UTBWdiLMISlH3kffmM14dQjQLxaoYS4x1EsJKDR3WIUt5m6GLlGYXqIsSpVDBWBVP5ugteAyOQ8Mpo2QdI4EJTmhQKCOGU5XEnFatTMRAFbHSJ59TjJuI2M3jmqgjCtReY3v0PqDDMUThqyJzvB42JY9SCTQ92sMbVkTagxm9HTc8jch0RkwTv9thsFKASSPBYIlUjp6yZO9Ygit82kuxvVakjnGkS5ilJSYkBAXLE/EwyxfMpTw+kwGZXntcjiG8iESFuJUK44nF2bsesFg/gRGHKZ3PbN0kWUR3RsHDjSVCS+qRZAqqUrt/SJLZSwBoFAuEfkIjH2CloKHqjEQJh4q9flBO01e+8pVDdPlpHCrctmk/l/7gYV7r+fxF6BBFY1w5/+v8snIff7r8TZzb/wq23TPMj9c+QG00ojQz4LRXL2X+isPnLJkk4Z4ffpMHf/ZD+mf1clzvFm4dP5It4hQYs8zetZOVrs8R572a4spp5cY/VKglJeSfH0X8k20kN+/APD6aSpMXHIQQnHruIqQB7gL7yMXcc8zHuOj2v+WTz/lX/Iy70bdwKSf88f/Dvdf9J/NWnMiyVWew9B0f5/T3v41fLDyZG7/5Jc5+7Zuno5J/IBgbG+OrX/0q27Ztw2Tyv+Pj49xxxx288Y1vPLyd+x0xUIrpHdEopZAScpmT77p+N0+kCSHQPUUMVbRVaL+MpoeJBsssdylD4W6kMIyoekvSt/kkRK6lMV8TOoso0keyv80+scJi/RLezAqlksarDjM4o02UT8UqppLltijhILx9hLKvlfYWBQEibhDniyjfo+ZFlKPGFOdD023K5YsUk9TIrDgzcUw95QBNAQHErkscxEQz+hDbUmM752qEsDgi5fOMO+WOczpJ95J6uUTNj0m0RXg5TOJipJp0HUi5PTrODPpMuAOg7MxiXn4BFosqSYZ37qHTcHad9pz5+Z4up08I8P081VpIUQb4uq38aipFGGibvVKCFW1SkCuzdLLeHLX9VXJBkchrYHelcRIjFa7KtfqS5GczGo0ROiVgP2FfpbmRj+wvYwYk9VyAAsKJYheA1Q2iyOCLyRzixEvYOnuE/moR9tdBWoSUrXfwPj8iXwqolvLkYo95ZY+FpRx7dqTnz6nMoBzMxFkcsOf2QaLM5bWkinEow8D8WQj/CAo6xziTHXYAVJK6fB2vfrfk0eMuQG/aBUh6gvksL8/lXmcj9bEERlwMMSan2acjZoTpWp+/5Gj27q8hDYhSEZtFgYQQSCRlP080q4w3kCfvJtSfzBPIkHf6SQCTUyx1K8S2ga80QqapsU4udYpmFj0KToVtph2RFgJir9NpygbpZGIi2ms5vb4r01sr2sfpGXNwRB0Y48jyUawbfqCrb0ZYkBqpFAKDkikPbaqNGeENcsycJWzcE025cTE0dybWJgzOOxJ/Z4Ei0NOoQ1Bhd3zgiXJm9pNvzKOnsZvBakioLfViM9OkGaU8dN/rT1rx8S1veUvX79NCEL8f+MEDu/jn7z3EJ1Set1Q1D/kbeMuiyxBHlfm3I65h6b3P4SdXPcy6G5+gNCvg9DccwYv/agULV/YdNoepOjTATz/1IdbdeB29S+cwWOnjhzyPvbUeVt5/P+dtfYKXve5NnHTZh6Ydpv8DEDkH/fIl6BfOxz4xRnjNIyTr0y9BIQQnv3QRi0/qZ/XwPFatv5jHRh/gL2++iHrcrlZ+3NkvY9byo7nz2i8wtHMb1i1ywkXv44RH72f94DC/vPFH07Xm/kBw8cUXs3btWmbPns0tt9zCzJkz2bp1K1dfffXh7trvjMhJ12apfz7FmXNS/osAx/WeUmZaCoVzzBIas9rvc9WSwRYt4YQR3TbPO/cPGpVeEq+EKjo48wNQFuskRE6MFQIT9GJdh7Gls+grLn3qwdg0+oDsNq+M1ozOKOP6DmHfTJTXbWxP/jayCCGRWfqUFho/ixg4TntWYtWWdvadlFRvlWr5j0oKju6bS1/Qg9EqVeU6ABLPJR844AaQGaQDC2bxm+OK7Ck2sLrJA2mekSn4yXY0TAiJEDLlvHTUiZIydXC6ODjZd3CzBhWA67lov4QvNEq6bceuJeGcjVVL/I6h9OUcFs1fgJt3Kc4rMeuY2SS5BJELifyByYOVgrqXSooPr15BdPQyIi91jozvsX3lERitJmkpzC559DmzW+sySzyk5iREuWIrNa/hx5hijrhUAgQV1Y6aVDtEJ6y0FFz9/7N35mFylVX+/9z3rrUv3dX73tl3QjYICUQCBIhxR/CHwoCiI4qiMoM4DKsjgyOojJpxAAUEBwdZZAtLIDCQhZ2wJYHsJOkkvS/Vtd17f3/cququTnfSCZ1UwPo8D0/oqlu3zn3vUue87znfg1uTSaaVGxWhEDT8VNVVobgbiKtBkED3liPLJilNxVQVpPIAstE/qE2ndAoJt555vV9grOjY6V5aFqBg0xPxIMYWEQirpDwphOJKj49MImNnv+bIJjYiGMJWc13qEqMKrSjMpBmLmB5uwJQsOtVMywBnm0Slc56ba8uJuw1Mr5+4IrCDGqP8zr0VNpxJAkMVqGlluPGhUdSFKikxypCEhSfooaiuKmelKbuuJQu8waJ0OptDZ3ES4eknoCAEwnAjDcjASGmZnmHpVdf0c0TYJt0TGugaV4ta3ogcqsl+JuZxE3e7B88PTuM3KmmpKUdWHElxIUEqmKlPFmyZPgEGkaRXQgG84YrsNWgKm1QVBJVSYsLClu1B55RGiv0GTTt27Mj5+5VXXjl8lhT4yNi2ze9e2MxzT27iTuFmfNLkd6V/4fbxy/h+yb8x+6Uv8cofdrHj3TYaZkRYdMkkTjxvLBVjg3mpW8qw8721PHzDFezsaCc5ZiJb9UqU1iTHv7iSz3X2cPwPLqfixptRJ0zMm40FjjySJCFPLUb96likgEbqb1tIPrENO2EiCYkZn6mjdloR01uqOGnbP7E99hb/78lL6Ig5M69Clpn3D5eg6AYr/vtmEr1R7PIJHP+5Uxi9YQNvrl/P66+uzvNRFhgJNm3axO233853v/td/H4/l156Kb/5zW+4++67823aR0bWVAyvIzpQ7PaiSjpuuU/8xKuFCOlF+3xOKHKO09LmdgKW0RVeyv06Pa4Kuo2+VQsJ0FwKSFDmN2gIVjivK4JEURzTExtMeCxbW9Reltj3zRyvSaLcr2dXFqy0drVHUyj2ZgIfnf465P1bIsVz4pp+aU4ShF1dGIbFhOC+vxFCSBhpURmpX0qZW3VnC/3bNSd4SQTVnBTIlC9Bqp+mcXMwQbRYByFIqRKWZGP6LURRnzOaUlzsLKunzeOcEzmo5Uakso2/4jgMLYyE7RT6px1hWe4LKtV+qzUeQ0LS43QVlyF5+hKPMpM+hqTgE24nOJEyjqaUbZIMThPdbNqnP0avsZftnmacEGeQ8FRROK5sHnWlo3JGHKC+2JdzbmaVzCJVfAZRI5Le1tl6ZyhG3Oul3Btx0vFkCZcqZ4MoQ+xbW+rWFAwt7Zo2+NllJOhRTJDAdDnpk5ZQsRQZt6pREimmZtIcLEWmyR9D0gSe6r4aV8sCn6bgUWVIn+/+7k6i/lRSkUmZIaNddGKqzliZ6VNgYqPJAtnjRa2oQw6UISnOOVeUFHGRIlFkYOl9AUf/7wj5PI7whxC06Ela/S5adefcS5pJuzeBLQTRgAckCVGsIbllFKEyKTQFr+Yl5c7t1SFNCAAAIABJREFUReRRvOhehUC1gqykUBWBkp506HA596IQZHsc2f16h0lAVDeR3ArJQILuoiDt5elz5CrC9FZkt+0JBugJ+bMH1OWuprKslEBZA6mQj1jQj+wNIrv7RDW6IiH2NFaR84UDKNUaGOeZS42rbxK8t648Z2M1EiblH9BGQhoQEQkbSUCrV6PJlSAeieUvaCqkrnx8SKQsrnv4PUpf2sm/4aZJ28E19bdT5z2F01Z9mw8fSxKPpph2Rg2fvmwa0xfX4k8X2ecLM5XitYf+h8fv+i/aymvpjVThb+5kwYrnOEN3M/mGmwhedwPK2PF5tbNAfhFhA/Wc0cizSrDebiVx53qsLV0IITHzc/XUTAkzfmcFS5ovp423+fLj32Njs1MM6w6EOPHC79HVvJuVd/8XtmUhFpzLSY0BarZuZdWalbz37lsHsKDA0Y4Qgmi0L00pFotRWVnJO++8k0erRgrnd9g7uQhtSjGlej1yv1UMd3GIYLnjsGRqfQyXjpl2xI0iibC7b3tdFshCoGp+LKFknTtJgrLRAfRRSRRZYlJZXyBWotYRUUr7xCYG8Q1Sxr7OjJm2U/JppCZWY1UWY3v6fncCbhVDEXjLNZQKF0LIKEEfStBHrDJJVLayq0PrlM30mLkpV7YQJEmhBFwcwJ1JfyC3DidDbzrVLNVvmUa2JSzFziliiBomY6uDVIf6VrKQbMSAFYa2UAkd6TGX0gFAxtdLRlIkDB2f8BE2ZWRJQtVtEnoSURchWt2Ysy/JBr/qI6CHaa8YTdmx5fRPufTIIYKSTtxlYnmKSHicQFgRIh00wcTQZGZF5uQqqynCkRZPv+bT03LpiqBYrWZG8SxUoaIIFVVo2cATnPosWdUQQqAoGuAEMrZQ8OhyOgyTqA4ZlPo0QoYXjzsAkkSdrz6bEioGykkD7sYAasjINlROeJPsMRLsiSQxvaoTaIRVEoEE7moFUeXrq4/x5AZhAoGhCmQh4S+pxucPMCpUiUcfUM8qpQUXrL5aOgkJ02WzLRwlLqfIlFhJkoSl9jVplRWT4mAKW8sNyIqrUunMt74xr5KKKNZqMIWEz2fgUmUsVaHLcIJl4ZEyu83eY2p61UzyVRAuy50UkJDQywIkIkHipX33655ALLsFQEwvwnTnVvmU6NVIksCrK8QDfkxVQZUlRFjCVvqub1ty+iPJRSYV1QaTakrxjj+N8VUl/b9iUDyym7BHo9S3b7rmgjERFo4tRRcuvErYGSYh0Cs1opXOamf9yY2kRteg6wOk7zO2yTa2z3kvKTuNn21lfw0FPjrDeMoUONrp6E1y0z2v87WN7SyyXTwQfJ433TJz3ryAxKteQhUe5n1tDKdfMpkxx5Vmb8J80vrhVh644Se8tGEdscoG/J3dfGrNSs6sb2Tc7/+I7/IrUWpq821mgaMESRYo8ypQvzwKSUgk/7qR5LKtSHGTWZ93hEsqPyjjK53/QkJ/h68/cxlPrXe6rZeOGs/0z5zDtjde4vVH/gKA+t1/56TenZQ2NfHss0+wefMH+Ty8Ah+RT3/605x66qmkUilmzZrFt771La655hp0/ePZn63/TKlIBz/uCg9KSN/nfUn0pXS5ZQ8Ro5TJpaX4fSqbiruJBiyKPTqSlFb4sm1GlTbgc++7OjUUfjmMW3jSDouNSLsOqpReYSmpYlIoN206XCUhlep0uyvBY4DfTe+oKhBgyxaaIlFfNxXNH8Sn+qiJeCj16aiqCkIi6jOZVzOZCSW1lPsNKst0YpZTLxRTHRnnmCrTVVuHUhQgFazLfrcsKRiSilv4sq/5lOLswGUc0sy/McUiVu7B1OWscpqcXsUCO1torysCBgQZQzGm3Isc0rJOXjKok/RZ9AbT9V9IKJJCzHDjrY4xZkIC0xNwJN/7ISGla2ScVRZFU3LSijNplwnZxKcFIB0AykoiG1uVucrxqf4c/1ZXJapDrux3uILOxmNKvJwzZRYBLT3DLwQexYPWL9iVgG63hcvtQwhH5jyDSDcLDqplVHqqmD6mGgkJK50daQiD0qJ63GoYydVv1Sz9r782SLC0CLCRgEQ4QW9VNMdZlmTn3CRdFggJM6CjV0+lzpjqnBtDcRTt5ABCkij2aii6D0lITC+vS/cyTq8o2jbTi2Yw2j+WBl8txWpdX6AjSSQUK8cJr/c30uJRaHP3W7npZ1sgItDLTSZ9agmpcZOx0ylxtuZDQUYXzipYSVUp8fIiesqLSao27Q0JdF+fSz69OkBJg5+SBmeVuax8AsFAOYPRPMGLp8pZ5XPLXvxaCXa4L/BZV2LREzDY7HHScY8tmUqZUYtaMw6jIpIdfKXMRHL1HW1I63tGFHnCNJZXUebvN2GwX2xMLPyGSsS9r1iXrginLxdgltmoFU7gKM+qZ/xJVYwv9aG6BXJQQ5FlJNUJiPvH2abhrEAKl03Eq5MocuohbXs/kdxHZL93vWma7NmzJ3uDDvwboLT08OmhFzgwm/d089JfX+R70Qh75ThPaG2ILcehKhJ1x0YYc3wpvqLhXuSHn9Tu3bxy5+9YG+slGYqgJhPM2fAyE078FOqPr8nOLhUoMBiiyov6tbGYa3ZjvrSbxKYulAWVzPp8PRKw7S24cMJV3Oa/hmtfv5q3dv6IS+Y3MuFTZ9K1p4m3n3wIbzjCmBNOxnvDHZz0D0t4Sp/NE48/yOlnfoHa2vp8H2KBQ+Diiy/mpJNOQlEUrrjiCu644w5aWlq45ZZb8m3aIZFK9s2suoN9jreQJJKqgF7QvSqJ+L4TYIasI8kShiqwBJQaVRxb1sCG+FvILUnwq9AJLlXGZ6jstZPEsSgZYsrYUAWRoIErpiKbEiAwZJ0aby0llUWs3NqG5i2h1FXC221rs5+ThDPrayVznUsrEidpQ1C4CAUrCfkrUITMqIiHtR8KdJ/jJO4hiU9zY7ghWbILWQK9R6M1mqDNLVNeGmLXnh58KUGydDqk+x5VeqpwyQlsHHU+C5uk28IjDNoipaSaWxCl4Bdu6N73eIUkE1LKSeq7sNOSdpomKNcN3G4zu3rTh0S53+ADn0nR3r6ayrHTIowFHnqpkyRRbLdKd42T4ijcMp1KCq9dRFJXERV1uG2V5LtuiKdQiipJKUkmBksoLfYg17fh73Z69rhUgeRRSEQthJJZQXTWRgJ6EEEZLTVuRFN3NrjtZyohtRwbp5+Upoq+1cN+Ct791dgUQ8GKuJg0Zhot7zQT7o0R1JMoYnfujgEtXIu0Jy0qIGmM8dfjcWu4KiR8HTJeQ4FqL1q3Db3VzjmTBFGPDN3ONS9rMrq2r2R01u2UyHrOLtlxpE2vip2ykIDZdSEChsKr/ezK3VHun4pQ8KsBukU7kiyjqjaJdG+lGm8l7xg7KXbrtHc7F4tPD2CJLuLpMUqEI1j9pDtURSLkUlF1N1axKyvUYYbH4HXXEVYVNNlZBawon0Cb9G6fMenTZVuOmlwGb1inuzU+5KqOpdqkAgJll4IvFqRY07BkCRLplS/JEZbQOl10VPYgV3mxOnqRNReyy4e/Q6HSXU2M7Tn7rfRUspY3AajwVDq9zIbApQl6E1Y2rdRZ8bGYEJxEl91JE22Dfm5uQ5h3W3fTZXdlXzNUBVXpk6l3hSLEO9PPun5jkPIlASeluCJg8KWKebzYvIVxZT7MWG4640ixXw9169atnHjiiTlB0vz587P/L0kS77333mExrMCBWfbiG9S92sxnk6W8QxubW7wII8D4E0sYPacUwzu4Pv6RxurpJvH8CrY/8TBrdJmOilpweZnY9i4nTSmC79wOaqFvToHhISkCZW45YkyQ1JPbST22FVHvZ+apVaiGzMaX4ZtjruX34at4oOlm3v3fr/PTMycy66x/oKe9hTV/uR2XP0D1lBmEfn4rJ33rPFbMm8fjj97P6Wd+vhA4fcyIx+Pous7EiU7qys6dO2loaGDJkiWUlw8+M3u0k4o7qwUiaKGofYGR31CIuRQatEo8GmzoEWgJk7BbY7ckYagyliYjuZWsc98bF3hVH3YmP0xxXh9V7GGbpbDDTJEyrawjOto/FkM2MNOpSqosGNUYglIXH74nEFFn1tivBpyUpiGOodYzijei67J/Z1PD3Da2bPc5ryK7QS6Zv20JoQEmeHWZ1qizrxyFrH7TzyEtjD+0m6Z4M9GkU8vlCdkQA9Ptoa2ihKAXVFPe9zvTNgVdGlFdYLh0XLIOUgwjYCFcNsT7+kSZOEps1WEX6zujaaNzR0T3hpE8GkLqqymSgxoxQ8dnmsQMGWQN0z+ajrIW4l0JAk0WQpHQZB1NqFgeD2GPh1PHOWmYiSoFvdiP3lYMu532s37Nj1I3kcqamWxb9TRhJUlMzu2lFHSpuIQPl55OHZQFUQW8KWflZrAJ+srKGnp6ulEUhXSLJyo8FXyxqJQX3lxDNGlmVzpLi4+lVjVJpCDmkgmlld4kIQi5VBqK3QiviuVyXM+QWyPomkBrbzO93VthwBzAYNeWhIQsyRSr1YwL1dHSFctZeg26nGOTNTfEEtkx92sB2s12JJ8PWwjU+kbmlZ6IKlSSthOwaXXVWFu7MV2e9HFWcuHkSt5c9wzt3c5lNjBojlU3EA/pZLS7LTlzSfddCzbgCuioLoVkzERWBWbSoqw4wjv9SwGlwY87VOkhWO5GStlUbqimKxCHHpAMmaTlBAeqUPGMDtD0RgLJJSN1W9lVyszOT6ieQOVkD5KqMVoTxFJJZMnpxVUXLGYd2zFVm6nuyexMDHVn96EKDUFuLaMm3FSMmkCntYdppeNpb08Q0APgKqfRP5qduztztvfqCkG3RldGRd62+8t09A2N3kqsNIwqnBXPkDfMDqU9Z9wCup8vjp+Bz1Bpz0fQtG7duv29XSBPtPd08Nxfn+SUvQ1E8bGqJ0mr8DPhlApGzS5BHZivmwfsZJLES6uJP7mM9jUv8lp9FbtGjcUy3JQkmvic71VcS/6VZM1J+Ta1wMcUEXGhnjMa841mzBd2Yd2xnqmzStBPKOPdF+Ab1ddxe/m1fNDzB86588tcsXAsJ17wPZ789fU8d/uvOOnCS6maPJ2ia29k/hU/4v8+NZ/HH72fRWd8jrq6YSiCFcg7r776KhdffDEPPfQQpaWlPPXUU/zgBz9g9OjRNDU18ctf/pJZs2bl28yDpqjKg+i0ELHciMKrK5wwoxwpboIkMdayUD/owFBkyhuDSL0p7DIP4SoP5b0Gb+2FYNpBTfghbqYgrEFrEkUoTJzaSOqlODt63886lzVeJy26ucdxhlQ57XiFPdj+ChIuC6nYBa3OKkyPL3dyzi07KXGG4iLkVmiN5tYR+XSFbaEo7lQ6bSmoIykC+v1u9fpNJ7BKgib0dMDV50D1r1oYbPJdU2SEDCShxKjA7bWxY331JrYiZWXPZa9EZdCVPdYel4yqKfRaFiFV4FEUelKghK3MlzMuOB4hmtkcey/HhrghGO8xaKjrJ2EuSf2apaZf0wTWzAa2tEr0FLegCWd23tRkkukaqOTA4gll8GWGZl8CtbcZCCPJMkVBD5Nr/DS1vY0tVFRXX1pd0KVyfEOYDR3FxLCIVRbT2i4RtWUiHpOYd1+pZ1VVCQbTNXOZmi/JcdKLPBqelIWhydADsldDjaXQ3RIT6vzZfZSOG8X2bSvTH3WOozrkojho0B03kSRBsjqGVtx30H4tkJOGWuOpzX43gCF7UGWnuelghf+qHsDt99Bd+hahZi8V7krK5QpiqkrHcZMJqEG0ASsnwuOhe5yTZto/NgqWj6YjEUcK2lRNCrN2Txd2MnNdg9SvJ1ZHZRxXSjhCLP3U3yJ1PpIxk10b2pGERM2UdOrbBucfXbhQilNIrXK2Di6DJElOSqIMxZMbKAbshAmywJtwVjeDWgi9woOugdjbA91W/+FyxkxR8KiOiIxXV5hdG+aZHRJmv/upoySBHPbDRie4sb1BbGtwCfATSufjNzvZ3ZnAqHTTu9lZjdMVNxHq8Os+RFUMw6tSpWWUEjsH3VeGlJ3CkJzsKKvfiZXkOD5XETMis2ntilJmVBHVgrTzFsJrISWkI+L7FnKhPkZYtsVjax5jzMsqixKj2ZJI8W5MUDerhONOqkD35HdlybYsUmvfIP70E8SfXU6yu4t1jTVsmD+XZCCMYcU4w3qU0RMn0jP/fpJG8MA7LVBgP0hCQpkeQR4VILViB+bKJkb7VYKzI6x6CS7ovpa763+GXXkvP370c5w5oZLvfeMyVv7+RlbcdrMTOM2cQ9H3f8S8m/6DF06dx7LHHigETh8Tfv7zn3Pddddl08R//etfc8kll/CNb3yDtWvXcsMNN3DPPffk2cqDJ1TmQW01YUufk5pBSBIZXekgMlbIAFVgJy1SmkxVgx8hSzSoNcys3su0SH12H70Bk/7zuNXBat6WtqTfznXKMzU79UV9SmSqLpO0QSo2sNNBU6Jfjez8sgWsibWT0B1HTpUFpT6dUtWgJS3NXezVCBgqGU0H21AQJY5jPyYwlpSVYm+wi1TCkcQ2ZIMF5Qt5v+U9enEanyphneI6HzR1E/cM7cYkFPD5goQMg710UOzWaIurhN0axEG4ZJIJOxuvVQcNknUBjKjJhx1D7taxO+1oRnx96e8dIQ3/qDCSluu8qVUuShsDvN9fx0LIuIpHUe4ro8pT3bdfIdEW0rAyygNuBYSTmpyln0efVGySeg/hyljWEbeqKrDbK5DLwnjDkRxbRLqeJ1ZTmt6VhCkkuoMpxAF8zhMawqQq/BgRH7HdXdl0QSQ4vj5MRyxJUHbOvVzdZ6/udhHz9/XyAmc1RsJRNjRkH9NLJ9BubQFgUmgKIiXR289pDukhzNQACeoDlK5EfQaibAwdXifwl8UQ18pgbc/67VzyGLh1H17DQAgJ4VUw25L4DIXKkEKNz6Bzew+6R8V22UTTK5AZwQlXRiikr1Rqn0MY559OnWqxcVfPsETYMtdYxFXC8eo8XGlZdFd6ZVob0BxYDSgMWBRyVqJEzgvYMkj9fUkhYwUHbxUr+sn/y4aMEtHRZUH/NR5v+ODKQ4Qk+ilYpqXq/QHi8W5UyUBLp6TagCF7wQLZb1FVdmR6jBaCpo8Jb+1+gw1PrOH0vTOJ2TarelKoowMsPK067zVLqc0biS97jPjTT2Lt2Y1tGDTNnM4rHoOoP4wkScyxXmWB611iJ11P96jFebW3wCcPya+hLqnH2t5F6tkdRNa3c3q9l9U7Bee+96882HgLvkn/w+Pvfok3Puzgys9fDPf/hhW33sRxX7mIxjM/S2h3E/P+dBcvLHICp1MXLaGhYXS+D63Afmhra+OUU04BnBYZH3zwAV/4whcAmDJlCi0tLfk0b8QQNd6h38s407udVKyMv+VS3JxQNi+73aB+mASWLBHWqpgcDue8pSuC08bnOkuRej/x7iRCFgw29+yorcm0hzWsGh+kS5xKR4UoDsg815TeTpFIOWU4OXZpQkcTOvVFZZSnLPZ2d2HbNpIkMTo0DjNURiraRnPAjeFV0eo86Kog46VJHgW7JwVIiLIeEgmZcne/mjABwXTqomjw48ZHbbwCxQqkx0ii1KfT2duLHDahs0/kYGr4GNyKGxHTiHUnkfRM7U66aARnEmdgwDS3wVEG0zWFTL/VuQ1hNrVE2dURI6yX7OMkKz6NWpfzuy4pAnlsiMEZIoVKUegdVTUspS+BMqjk+GCoskD1aEiajOTTGF93DLQ7nrjPUBwBBiE7XXWHQEKiYnwISxMgSagITmgMI8IVLN+5xbFJyl2lAfZpi2L0k9TPqN4N+n1CkPCQTZ8bDJFexfMVGbDXOZ6cUzIgAJEDGsKnUjfRUXmLR1N0Qo7IliQJqoI6Xk0hmFZSVHUZf8SFJ7xvbZAqNHyqBvTs896ByARM4NT26IqgJ9lFosWZ/Ai6FCrqPISN8KCfV0VaPt095BVFuKoOYfbu83rKyvTRkhAehfKwi22t+243HAzZYFxgPE29TWm7nHFrGzOGPQmVIvoFs7bzACkxqoHmI9ZjtBA0HeV82LOdh164l9PWT2ZxcjZb4xbvqzLHnF1Hxdj8rdTY8Tjx554l9rf7Sb35Bsgy6sw59J51Fi/u2EyzULFVjXp28RkexRi7kK4TlmO7hq/YVKDAwSKqfajnjsV6qwVe3MUJhsxOXLje+z4rqh5GnfIn2jZ/lW//7QPOmXYO4/QHePGu39HdupfJ51+Ev6ubEx56gBcXncCyxx/ixBMXMnHStHwfVoEhkPs1Yly1ahVjxowh3M/5d5S9hseqVau48cYbiUajVFRU8LOf/YyysrKcbdatW8fVV19NW1sboVCIq6++mnHjxn30AzkAkjH8n+oD9dwbKMg7YUoxm5oMqrxlQ3yiD0UVWQW/oZhSEWBbWxS/RyPpBbUbpJAOlqOOJZEu8M4ETYPYK7kUpG4nEuoTAHBkrMeUBGisDeQeRTo7Sqr0YG9wlojqIy4qyopI6kF2b+vMHDwZUTxJl5FkQcgdxGOWYSatnDQvRxmw7wVFUnArHvBCzZQiNmxqztoFNqNLPEQ8+46NdxCVPa+u4NH2XdYJuFRImkwt9tK+dRCVin6H28e+bq5bGV6N8OTQVNaIKJadynqDGQd6OCiaii2ZORGG5N//5yUkFFWCcSGspih2W3yIiL6vmWtV0IVsS6QSjtrdxFKvs+IqD2NFRhqQ2jlILp+siL50ub2daTtzCWgBvG4nkD2mKkC836qX7laI1PswPCo09R0nkA2YMgTLB8iip49dHsbq0nAp8mjZ0EsWUBk2Bh1iSZKYEpqGe4YPQ9EpE/Mxbec+LR0VwEyasNHZNlBWSTDopr09N/rMyMcPXNk6GIJakO09W5kQnIQm61R7apAlmQp3Je+kV5cnlfsoMwLZE+Mo79mMCYylsXj6IX/3wVIImo5SOhId3Pv2XZS9JvP1joV0WxYre1OEZpVw2qcqUQZ54B4JzL17iP31L8QeeQi7owNRWYX7H7+LNXcuLzz7OJu3b8ZyeQhKMT5n3UuVX6brpN/RVahdKnCEkITTFFeMDWKu3k3l63sp92k07P4sKzre46WJf2By9T9w91utVPkWcv4kP28+eh8du3Yw56Jv4zct5v3tAV4+bRYrnltOT3cnM2fPK/StOwopKSnh+eefZ+rUqdx5552ceuqp2ffeffddvN6hV2j6E41G+cEPfsCtt97KxIkTue2227j66qtZunRpznaXXnopP/zhD1m4cCHLli3jsssu4+GHHx7RYzp8DBKcSBINJV4aSoY3TsPBrcmMK3XqmiZOmEl3oiv7XY4VTtBkW4DYT5CXFYJIy4RnZNVVGdmtZoUqGos9CJ8B2Ehpx83WA8BOJMOHqskkgzrWdomU2lfL1B+hOIX5/W/xaUXT8UkxtnRvGdS80cUe2tpUPLbzW9zQL41xf6jS0Gn080dHaG+PEu1MNyc9QFBQETDYvSuT6tZHubuCd9vfPqAtJa5SYLPzXboznjOLh18DKLlVbGJI3oMI6vfzHI0YJeyN7cn+LQuJ8WXOtVQU8dHTFkczFMz0ZIidOd/pYHgwiowi2rqbsz2TMulkyhCpeiU+nT1d8RwFQQBvsIjStC0lg/QdcvmcYHFq+Bh2RD9Elobno4XdKqqm0Fjsga7BGkR/NOQiC0nbN/02Q6Sf7LuMBjjHobsVhhMiTCjzEXSraLKgqTOOKgvqitwHlOTvT4mrlHnaidkaM0mSqPRU5WwjhKMImiFgqEyvclHsGX6QPxIUgqajjM5EJ/dv/gt7X9vI+U2L8Zhu3o+b7AhqzDq3kVB5flTmUhs/oPd//kT8qSfAttHmnYjxmc8jTZnG6mUP8s59d2MabnSXzkKe5VjeJTb9QlpnXlpQxiuQFyRDQTmpEnlaMalVTYx6t416eyJzXx/FXZV/5R9PnccjL5Vxfec0vjrey5bXl9P64RbmX/g9vJbF7L89gPGpOC+/Cp3tLZy0cDGKcnQoUhZwuOyyy/jWt75Fc3MzkydP5vzzzwf6BCKuv/76Ye1n9erVVFdXZxX4zj77bG6++Wa6u7uzgdf69evp6upi4cKFACxatIhrr72WjRs30tjYOOS+jz5GrvWj8KjU6W52dsYGfd+luHGlVz0yTltYL6I5vtdRokuC1j+lKahBekJQM5z0K3/J4E3YZSENSB9M18pUeUBpJK7WQrpJp63LNJe7KHcJxB57nw6VkVov0Y5EzmSkLIl0mli6H9AAil0hyv06gd4AQ3rsA5hRPAtDPnBT+Uyq0VB1ypmxrA27qZpQxe4X12IF9+2FMxgDVxprQi52d/elU7mGuUoFOCqN44LDmlDyKB56UoOnnmU+PSXsrOrbvSns1hj0a6irqIJA+loQNV7s7n6VM7Y9pBLixOBkkkYv0raUcz1pfkb7x1DmqhjUlmmVfkybfYKmZFBH1PoG/Ux/io0IxUbkgNtlmFJ0DB6fipyUsHEC4V7XyEyK20JC0nJ7kx0shvDQ7R66wE9TBHVhN7ZtY9k+KgLGILL8B2agKMdQZHZt23aOLPuRohA0HSV0JNq5b/P/sPadNZy369NMjM2gJWXxfMKk8ZRqTplVcsRyNjPYtk3y1Zfp/fOfSL60GgwD43NfxPWls5HKynllxZO88btfkFR1VE1lvrWSueJlUqM/Tduc32H5qw/8JQUKHGakoI56ei3yrFJiz+5gwtYurt3zFV5/solPz3mLjtRc7n5VYkytn1P3PM3j/3ElU8/4InXBENPuuA33nChvAG0tf+C0T5+N3+8/4HcWODJMnDiR//u//6O1tTUnLa+qqoqlS5cybdrwUiu3bNlCdXXf88rj8RAMBtm2bRsTJkzIblNVlTv7WV1dzaZNmw5L0DQ7cjx0dQ87xpGEtP/ajmE69sNFjA6ghT2M7exlbOmBV6qEJJgdOR6X4mLFruXIAYvKSAi53+yxKO8+82b8AAAgAElEQVRbrRGyoGbygHRuVSAdQCFL8mVmnvvcm4w8ueaVUbVU1oGsrW1AkiQUzak12QdNYET8bNNb0eXc2mGP6mFu6XysHcOvQck2jKUvHWswB9PwqpQ2+tHc+3fRbGwI+OmYOQFvYN/U90zj2/6UGCWs73iPY4tmAtA4NkRNwstr5vvDPo7+DNcZP7Z4FtGBQVMmVW7ALiSXglTpXFNjA+PxqbnBiuRRkTxq9noPlrthd6fTBypNXaUXFzKykJFlFxZdWfnEGm/dfo9nCKHCw0LEiBD09KW9FXt0pMDIrJ6oFcWI6gSVsoZfHV5QPZDyMeOJeA9sjyQ5aZSHg0GfXSM393NQFIKmPLOj50P+tu1+Vr//HOfsXsS5nd+j17J5PZbCGh3gxDNqcR0gR3iksVMpEiuWE73nT5jvr0cKh3F/4x8xPvt5krrB6hef5e2/3k1KyMgSzImvZqH+MqnRi+mcvgyzeMIRtbdAgeEgigzcX2zE3BWl6/EtzGwt49hVZbzl2si0BSXc+d5o/tvysaRrJeZDf2ZbbSPTL/4OY5f+jlBLByunz+Z//+dWFp76WWoLynpHFeEBIgalpaUH1Xi9t7cXXc+dtdR1nWg0elDbZPB6dRTl0GeLZVlQFSmBSElWCOFA+GYbmKaFNkT902ipng1t6ykJhzA9zsyxK/jRsgBkWRA8iH0Ecbb1dDjjWBQ5uLRAe7orLR5xcF6tP+jGpcqEfDHa9+j4XK603fvabkUtUt0WPp9BeGwxYbuMUebYnGL7DCaCRHsS2aejHeRYTvG7cHt1GiPebFCXM577KVme5B5H9642Gkqq2RPdjTvpxedz5ZyLTxkn4lJcGMpAoSg3Xyj6bPavYNCNZVus36pn/z4QB3ve+8h13JNdJqkkqH4XSnBwQatgcOx+9xia7wTaX6wLIdG3Sjf3hBqwHJEHqydJ3BNHuFX0Q7C72d2NkKVDPOYDkxnPlCVIelLIPuOgr6eB+Oca2DbISt1H2s8XZtUgi7T64CGf9z7c6XS64e7H7dHoUVQ8bt25xr1u2t29KOrQtoyEnUNRCJrygGVbvLR3NQ9t/Ss7PtzEF1tO4bcdP8G2JdbHTXa6Fab/v0ZKGo7sjLYdjRJ77GF6770Hq2kXck0t3n+6AmXhqXy4u4m3lz/Gth07sCUJNd7DLHMtJxdtxhz/BTom/QdWoPaI2lugwKEgl7spvmAC3Vs62f3I+0zurUAshypfFztn1HPDugBBpZZTdr7Ik9s2MeqLn6H+qWdZ+MRy1iyYzSOPPsCEsWOYO/9UNO3IpwcUGHncbjfxeDzntVgshsfjOahtMnR3x/d57WAYrOB6uERjg9dFhCljZiBCtCuFXWpALEX8EL8jw6HaGaKEnlTPIR/jwRIMuinRZdq7EvRE4/hte8jv7uyMEY3GUToFwt23ChYfRH7NTphYPQlESCV6CMdSost0dfalxg1/PBVmBeYR67bo7InRE43TRYx2ue+zErrTi2l/snH96InGqXBXDuv7P8r12R9btbFiSYSVQjoM10LGzsx5ktyC3kP4nmCNC0lIh+16zdrZGXfsVEC057/f5kBG4rxH0/3fhrufaE+CWCLpXONSL+1mL9FoHKGIIfcxEnZGIoOnYhaCpiNIU3QXy3c+yWPbH6a42cOStpM5rutcLBu2JSw2WTaNJ1VwypxSZOXQlUgOFnN3E7G/PUDsgb9id3WiTJmK65JLaS318+6GN1h3x2+ImQIplUTramGa/D4nTK3EGvt1OutOAfnIroQVKDASeOv8eL9zLFvf2EHb09to6PRS/Xovd2kqb4+dw007ahnbugZ7/VtsGVXJuITN/L89wwfHjeMtLLZv3cyJCz9NTU1dQSTiY05DQ0OOoENraysdHR3U1tbmbLNlyxYsy0IIQSqVYsuWLR+reqZMcbqkyznNZI80Y4Pj8/K9QT3E+OBESo2hVyGVtFy2sh/Z7AySJiOPH0oO/Mhg2ekmptJH8xlOKvtUtobrSCEZCvKYw68CLGkyotEP6qGN0RET3krXsEnBT+5kXHnAoC166IIX2V/awToaHwEKQdNhpivZyXO7nuWpHcvYvWc78zqnc13bt6lMhonZNhvjFptTNjWzSjh5frkjWXkEsFMpEqteJPa3B0mucTp1W7OPoX1qFR+mkmxau4o4GpJtInd14OlsYXK5zNSzvoAy6mfEhmoSV6DAx4zaaZXUTKnglZfeovv5NsZEfczZkeTPUhEbas7kwfaZuFqeIWVv5YNjxtG4YScLNu7hteOO5ZFH7qe6vJTj5p1KJDJ4A8ACRz+zZ8+mqamJV155hRkzZnDXXXexYMEC3O6+FI9Ro0YRiUR45JFHWLJkCQ8++CBVVVXU19fn0fICB0uFu3K/73vDBrIijnha/KFi2o4c4HDV2oZiyMavnxAG9s86GpFUkfcg/HAzpeLgM6hU4QSRLsWNlFaUdOcpsJTswUTrj2L27u3KtwkHpCXWzMo9L7B614t07djDpO5G5nXNpCFWDsBOy6Kp16LJhtpjI4w9oQzPEbgAbNMk9dabxJ9fQeKZp+np6aa5tpL2xhL2eL00C6cuwLBjGPEeYnvbMBK9jJ27gImnfAaXP399oQoUOBJYpsWzL62mZWUHk+MlVKgCQ0j0SharEu20dr6E1bkWzYa6Xc2Y5RHeGzuBmKwzqr6eqdOPp6ysPN+HcVQzVNpDvlmzZg0//elP6e3tpaamhhtuuAHLsrjwwgt55JFHAEdB78orr6S9vZ2ioiKuv/76QVeaPurv1EilPx1uCnaOLIdi58bO99nSvZlG32jqfEcmgP8kj2c+KNg5NE+850jQz2xQCOuOj2qmLIQsDZnhcTjT8wpB0wiQiifYvGcDG3e8R/POD9HaoSFWxdhYHZrtrBxtM03akrA3YWF6VBpnRhg1q2RISdGRwurqIvnm68RfeJa9b75Os27QUlxES1kxnS4n4tekFBHdQjYlunc2kWjejdsfZMwJJzN23qkYvoJaWIG/P159by2vrVxP3c5K6hWDclVCkSR67BTberfR1v02e6MbCbe1YZaWsq22gYSsUVYcYtK0OdTXj0LTPh6z1UeSozVoGkkKQdPRxSfZzr29e1jb9gbHFs0kqB+ZVYpP8njmg4KdQ5MJmnLbC+yfQk3TUURq5S7Md1tJmUmSqSQiCbqpUgPUMBoYTVwyabJNXk9CMpGkKwVJIVE5Lsj06cWUNgYO2LTuUDGb95Jc9x7tr61iz6b32W0JWsNh2kIhzBPmAWBISco8gmrDwOy1af1gE53trUhCpnLCVBqWfJmaqTMRcuHyKPD3y7Hjp3Ds+Cm0dLfw3MsvsfzdLsa2VVMp6zQY9ejuBizboqVsF82xD3Fv2kwn7TTHyni6uQ1ZgvqaahrGTqGqqgaXq9CvrECBAiNLxFXCfH0Bqij0kCvwycOrK3THU/k2I8sR8YpXrVrFjTfeSDQapaKigp/97GeUlZXlbLNu3Tquvvpq2traCIVCXH311YwbN+5ImDckppViT2wPu6I72da9lfc71xPYI1FDMSmRAlVGV71Y+Ij3euntdiElBFgSICFcMlXjA4ydGKZslH9EiwntVApr105imzfSvP49mrdvpjUapd3toT0YJKHrMHo8smUSsnuodSVRZBkzZtLdtIOW1mZaANVwUT52MpVnTKV6ygwMb2FVqUCB/hR5i/j8gtNhAezt3stLb73JM+/vJdzkZ2yylGK5jLGBckRwNgAdiWa29u5gh9zGto1b+WDrdgCKPQqVlVUUVzQQKasiGAwjy0d/nn2BAgWObgoBU4FPKrNrgyTMoych7rCn50WjUU4++WRuvfVWJk6cyG233cbLL7/M0qVLc7Y7/fTT+eEPf8jChQtZtmwZv/nNb3LUjDKMdHrebeuXsiO6A9MyMe0U0VSUzmQnnckO7DaVadsXItsKwhbothuX6UdLetDiBordp8RiASmvTLDczegxIcob/fiKjUNW1bJtm+TePbSse4vY3r10t7fR09ZKd08XPakUPbJCr8dDzOXOtkgWZgo90YOaikMiidnVidQbRUp3AROyjL+knGB5NcV1oyhpGEOoqg5ZKawoFShwsNi2zfaOD3lv8wZ2btuDukNQ0+WhytQJyi48ihcLm2apk+1SMztEC81yN5aU7tBug9vUMCwVQ2gYqo5L82DILirLoWG0CbKGLWuQKfKWnAkZJAnTW4Hlr8nfABwihfS8A1NI1xlZCnaOLAU7R5aCnSPLxzo9b/Xq1VRXVzNx4kQAzj77bG6++Wa6u7vxep3GduvXr6erq4uFCxcCsGjRIq699lo2btw4onKutm2zdmcnsaSFadtYts3qXW/RltyDZAtsBDIGsh1ANssIRKsp7h6HacnOfwhaJUgI0IIywYhBRbmXyaND1FT6hpQJt22bTe+spfPF/8NKJLBtC8s0Id6JZVkkLZukaZGwbJJIJCSJpJDp9LhJajqI9H5dLuc/00QkYohEHK2nAxGPopsJdEVFc3txBUK4K0K4g2HcgTDuYAh/STn+krJCyl2BAiOEJEnUBKupOaYajnFeM60Uu3p38XrrB7y3/lX0DzqobFMpT/qYLoVxyzUkVZUuJUmL6KJF6qJDjdJCj9PhPN3e59UPJFwbBIYlMCwJ3bJRbAvVspFtGxUb2YIeyYuNjQ00+12YiowuC4o9GpJtY9tgWzbYFrZtE1CDFOsRbNvGti1si/R7pPdjI40PIvl1wE5v5+xHlgU1NfUohUmWAgUKFCjwd8hh//XbsmUL1dXV2b89Hg/BYJBt27YxYcKE7DZVVVU5n6uurmbTpk0jGjSt2tLG9+5/e8CrX95nO10RhFwqLq/O5qkaEa9OiVejNuymPuymImBkO3gPh+7uLp58fjmWbYMAkEBWQEt3sbdt1FQSzUyiWkk0K4HLjhFKtCOSFh7VxuNW8QT9+PwhjHAVFI1CLqpDc3tRdAMhjlxfpwIFCgyOLBSqPNVUeao5uXoBLOx7L27G2d61kw073mf35i1ITa14OuKU9Eq4kiqKpGErMqaskBKChJCIyza9wqZDsUlKkJQs7JxHT3e//++BFJCCpiF7q+488EG8OPRbp5xyBmPG5KfHToECBQoUKJBPDnvQ1Nvbi67nymnruk40Gj2obTJ8lNSOz0R8fGZW7YE3HGEiER//etVVR/x7CxQocDTho6qsmONGT4GT8m1LgcPJSKQgflzSGAt2jiwFO0eWgp0jy9+7nYd9ecLtdhOP5057xmIxPB7PQW1ToECBAgUKFChQoECBAvngsAdNDQ0NbN68Oft3a2srHR0d1NbW5myzZcsWLMsCIJVKsWXLlhFNzStQoECBAgUKFChQoECBQ+GwB02zZ8+mqamJV155BYC77rqLBQsW4Hb39SwZNWoUkUgk23X9wQcfpKqqivr6I9PdukCBAgUKFChQoECBAgWG4rBLjgOsWbOGn/70p/T29lJTU8MNN9yAZVlceOGF2UBp/fr1XHnllbS3t1NUVMT111//sVtpGk4/qqOJZDLJTTfdxO23385zzz13VNsKsHz5cn7961+TSCQIBoNcc801jBkzJt9mDckTTzzBb3/7W+LxOKFQ6Ki3F2DFihV885vfZPny5fuIsxxNTJw4MUdgZsqUKdx44415tGj/7N69m8svv5xNmzbh9Xq5+uqrmTlzZr7NGpRly5bxy1/+Mue1zZs38+qrr2YVTwscHo6235DBnrmdnZ1ceOGFlJeXZ7c799xzOffcc0kkElxzzTW88soryLLM2Wefzde+9rXDbudQz4M//vGP3HvvvViWxYwZM7jqqqvQNC0vdg51X/37v/871113HZFIJPv6D3/4Q0455RQ6Ozu54ooreP/991FVlW9/+9ucccYZh8W+ofyBQxnDnTt38pOf/ISdO3fidrv553/+Z+bMmXPYbPzNb37DI488gmVZjB8/nuuuuw6fz8dvf/tb7rjjDkKhUHYfN954I1OmTDlsNg5l5yuvvHJI982RtvPGG2/kmWeeyW4Ti8UIh8Pcf//9/OQnP+G5557L+R244447KC0tPay9Vofy/fJybdoFRoSenh57zpw59ttvv23btm3feuut9je/+c08W7V/vv71r9u//OUv7TFjxti7du3Ktzn7pampyZ4xY4b9/vvv27Zt23/605/sL3/5y3m2amh27Nhhz5492/7www9t27btP/7xj/YXvvCFPFu1f6LRqL148WJ71qxZ9vbt2/NtzpB0d3fbEydOzLcZB8X5559v33777bZt2/bKlSvtSy65JM8WDZ9HH33U/s53vpNvMz7xHG2/IUM9c5955hn7ggsuGPQz//Vf/2VffPHFtmmadmtrq71gwQJ77dq1h9XOoZ4Hr7/+ur1gwQK7o6PDNk3T/uY3v2nfdtttebNzIJn76q677rKvvPLKQbe58sor7euvv962bdvetm2bPWfOHLupqemw2DOYP3CoY3jBBRfYf/jDH2zbtu0333zTPv744+3e3t7DYuPjjz9uL1682O7q6rJN07S///3v2zfddJNt27Z9ww032EuXLh10X4fLxqHsPNT75kjbOZCrrrrKvvPOO23btu3vfve79sMPPzzodosWLbKfeuop27b7zslIMNRzKF/XZkGneoQYrB/VCy+8QHd39wE+mT8uvvhivve97+XbjGGhKAq/+MUvGDVqFADHHnssH3zwQZ6tGpqMvZWVlQAcd9xxObV9RyO33HILS5YsOeoFWLq7u/H7/fk2Y9js2rWLd955h3PPPRdwroVf/epXebZqeMTjcX71q19x2WWX5duUTzxH22/IUM/crq4ufL7BlamWLVvGWWedhRCCUCjEokWLWLZs2WG1c6jnwbJlyzjjjDPw+/0IITjnnHN4/PHH82Znf/rfV/sbzyeeeIKzzz4bcNqwzJo1i+XLlx8WmwbzBw5lDLu6ulizZg1nnXUW4Kz6lZeXs2bNmsNiY2NjIz/72c/wer0IITjmmGN4//33AYYc28Np41B2Hsp9kw87+7NhwwZefvllzjnnnP0ew2C9VltaWti4ceNHtnGo51C+rs1C0DRC7K8f1dHKtGnT8m3CsCkqKmL+/PnZv59//nmmTp2aR4v2T0lJCXPnzgUcYZMHHniAk08+Oc9WDc369etZuXIl559/fr5NOSCdnZ2Ypsm3vvUtFi1axIUXXjgiD+fDxbp166iqquIXv/gFp512Gueeey7vvvtuvs0aFvfddx/Tp0+npqYm36Z84jnafkOGeuZ2dXWxZcsWvvKVr3DaaadxxRVX0NXVBTjpZv2vlZqaGjZt2nRY7RzqebBly5YcWzK9H/NlZ3/631ednZ289tprnHXWWSxatIgbbriBRCJBW1sb7e3tR8zOwfyBQxnDrVu3EgqFcurWa2pqRmTScDAbR48ezaRJk7J/9/cNOjs7efrpp/n85z/PGWecwdKlS7Ft+7DaOJSdh3Lf5MPO/vznf/4nX//617MNzTs7O/nzn//MkiVLWLJkCf/7v/8L7L/X6kdlqOdQvq7NQtA0QhxMr6kCH41Vq1Zxxx138OMf/zjfphyQO+64g7lz5/LKK6/wox/9KN/mDIpt21x11VX8y7/8C6qq5tucA2IYBosWLeLyyy/nscceY968eXz7298mlUrl27RB6ezsZMOGDcyYMYMnnniCJUuW8J3vfOeotTeDZVncfvvtXHDBBfk25e+Co/k3pP8zt7q6mhNPPJGlS5fy0EMP0dPTw7/9278BTv1D/2MwDIPe3t7DattQz4Pe3l40TRvUlnzYmWHgfTVu3DgWLFjAnXfeyb333svatWv5/e9/TywWQwiR80zWdf2I2Qkc0hgOfB2O3HX8u9/9jpaWFr761a8CzqrEwoUL+ctf/sIf/vAHHnzwQR566KG82Hgo900+x3Lbtm2sXbuWxYsXZ1+bN28eixcv5qGHHuLmm2/mpptu4qWXXjpiz67+z6F8XZuFoGmEKPSaOjI8/fTTXH755SxdujS7XHs0c95557F69WrOO+88zj77bGKxWL5N2od7772XUaNGMWPGjHybMiyqq6u55pprqKurQwjBeeedR3NzM1u2bMm3aYPi8/koKirKpi586UtfoqOj46i1N8Prr7+O2+1m9OjR+Tbl74Kj9Tdk4DN3/vz5XHrppfj9fgzD4KKLLmLFihUAuFyunGPo7e3NmdU9HAz1PJBlmUQiMagt+bAzw8D76jOf+QwXXXQRhmEQCAQ4//zzWbFiBS6XC8uyco4hFosdMTvBGaeDHcOBr8ORsfsXv/gFTz31FLfddlv2u8477zy+8pWvoCgKpaWlfPnLX+bZZ5/Ni42Hct/kaywBHn30URYuXJgTtH//+99n8eLFSJJEY2MjZ555JitWrDgiz66Bz6F8XZuFoGmEGE4/qgIfjZUrV/LTn/6U22+/ncmTJ+fbnP2yceNGVq5cCYAkSSxevJienp6jsq5p+fLlLF++nLlz5zJ37lx27drFF7/4RVavXp1v0wals7OT7du3Z/+WJAnLsrIpBEcbVVVV9PT0ZPvQSZKEEAIhju7H74oVKzjxxBPzbcbfDUfjb8hgz9ympiZaWlqy29i2nb33GhoaclJyPvjgg8M+uTXU88Dlcg1pSz7szDDwvtq+fXs2TQv6xjMYDBIOh3OuiSNpJ+x/nIZ6r7a2lra2Njo7O4+Y3bfccguvvfYad955J+FwOOd7+zvJmbHNh42Hct/kw84MK1asyEmLsyyLdevW5Wxj2zaqqh72XquDPYfydW0e3b/aHyOG04+qwKHT29vLj3/8Y2655ZaPhRR9a2sr//RP/8Tu3bsBePXVV0kmkzk1C0cL//3f/82qVat48cUXefHFFykvL+e+++4bMVnTkWb9+vV89atfpbm5GYC//OUvlJWVHZVjCzBmzBhqamqy+d+PP/44Pp/vqK8TWrdu3cfiXvukcLT9hgz1zL3vvvv4yU9+QiKRwDRN7rrrLk466SQATj/9dO655x5M02TPnj088cQTh00iO8NQz4OLLrqIxx9/nJaWFlKpFPfccw9nnnlm3uzMMPC++u1vf8vPf/5zbNsmHo/z5z//OWc8//SnPwGOc/f6668f0drY008//aDH0Ov1MnfuXO6++27ASalqa2tj1qxZh8XGd955hwcffJClS5fu0xLh2muv5Y9//CMAHR0dPPD/2XvTYEuu6kD32zszz3inqnurSqXSVEKoJGwQDcLCNCCjh0wbDG3c2I3D8TpwOMLRPxxtG3e07Q4MdId/uLujg3A4wuF4YRw2xuNrwwuDwZKxEWCEJYTQgIaSSjXeeTpzjnvv9X7kOeeee6vqImyVhMz+fkh1z8ncufaQedbaa8hPf5of+qEfetFlhH/affNSyDni5MmTu9apUoqf//mfH78maHV1lXvuuYe3vvWtV/Rdq5d7Dr1Ua/NFeU/T9wqXeh/V5LsXvpvY3NwcV/MaJc0FQTCuuf/dxmc/+1l+7dd+bVyNbsQnP/lJFhYWXiKp9ueTn/wkf/Inf4Jzjkqlwi//8i+/LHbu77rrLj7xiU98V7+n6Q/+4A/40z/9U5RSHD58mI985CPf1Qr+4uIiv/RLv8T29jbz8/N8+MMf3pW8/N3Iu9/9bv7Lf/kvvOUtb3mpRfme4bvpN2S/Z+7HPvYxHnzwQbTWvPa1r+VDH/oQ09PTFEXBRz/6UR588EGCIOADH/jAuPrbleRyz4NPfOIT/PEf/zEiwpve9CY+9KEPEYbhSyYnXHxftdttfv3Xf52TJ0+ilOLOO+/kP//n/0ylUqHf7/Orv/qrnDx5kmq1yi/+4i+Ow3xfSPbTB+65557veAxXV1f5lV/5FZaXl5mamuLXf/3Xed3rXndFZLz99tu59957d3mYjh07xsc//nEuXLjAhz/8YZaXl9Fa8573vIf/+B//I0qpKyLjfnJ+/OMf53d+53e+4/vmxZbzD//wD6lWq9xxxx08/vjju/KGnnzySf7bf/tvtNttwjDkAx/4AD/xEz8BXLl3re73HPrc5z73oq9NbzR5PB6Px+PxeDwezz748DyPx+PxeDwej8fj2QdvNHk8Ho/H4/F4PB7PPnijyePxeDwej8fj8Xj2wRtNHo/H4/F4PB6Px7MP3mjyeDwej8fj8Xg8nn3wRpPH4/F4PB6Px+Px7IM3mjwej8fj8Xg8Ho9nH7zR5PF4PB6Px+PxeDz74I0mj8fj8Xg8Ho/H49kHbzR5PB6Px+PxeDwezz54o8nj8Xg8Ho/H4/F49sEbTR6Px+PxeDwej8ezD95o8ng8Ho/H4/F4PJ598EaTx+PxeDwej8fj8eyDN5o8Ho/H4/F4PB6PZx+80eTxeDwej8fj8Xg8++CNJo/H4/F4PB6Px+PZB280eTwej8fj8Xg8Hs8+eKPJ43mROHHiBJ/5zGd4//vfz2233cZP//RPs76+zoc//GFe//rXc+edd/L5z39+1/F/8zd/M/778ccf58SJEywuLr4U4ns8Ho/nXzj+d8rjuTzeaPJ4XkQ+8YlP8L/+1//ii1/8IouLi7z//e/nrW99Kw888AD//t//ez760Y8iIi+1mB6Px+P5HsX/Tnk8l8YbTR7Pi8g73/lOrr32Wg4ePMhrX/tarr76at7+9rcThiE//MM/TLvdZmtr66UW0+PxeDzfo/jfKY/n0nijyeN5ETly5Mj43/V6nauvvnr8d61WAyBN0xddLo/H4/F4wP9OeTyXwxtNHs+LiNZ637/3wzn3Qovj8Xg8Hs8u/O+Ux3NpvNHk8XyXUq1Wd+3mnT9//iWUxuPxeDye3fjfKc/3Et5o8ni+Szl+/Dhf+MIXyPOcCxcu8Bd/8RcvtUgej8fj8Yzxv1Oe7yW80eTxfJfyX//rf+XUqVO84Q1v4IMf/CA/93M/91KL5PF4PB7PGP875fleQomvG+5Jk70AACAASURBVOnxeDwej8fj8Xg8l8V7mjwej8fj8Xg8Ho9nH7zR5PF4PB6Px+PxeDz78KIYTV/72td473vfyzve8Q5+5md+htXV1YuO6ff7/MIv/AJ33nknd999N/fcc8+LIZrH4/F4PB6Px+Px7MsVN5riOOaDH/wgv/Ebv8E999zDm9/8Zj760Y9edNxv/uZvcujQIe677z5+93d/l09+8pMYY660eB6Px+PxeDwej8ezL1e8EMTf//3f87u/+7vjMpSDwYA77riDf/zHf2RqagqAPM+54447+MIXvsD8/Py+7W1s9K6kuB6Px+O5ghw6NP1Si3DF+ef+Tk1NVen3sxdImiuHl/OFxcv5wuLlfGH5XpLzcr9TV9zTdPbsWa699trx381mk7m5uV0vQDt79izVapVPfepTvPOd7+R973sf999//5UWzePxeDye7zrCMHipRXheeDlfWLycLyxezhcWL+eLYDQlSUK1Wt31WbVaJY7j8d/dbpder0e1WuVzn/scv/ALv8B/+k//iXa7faXF83g8Ho/H4/F4PJ59ueJGU6PRIMt2u8nSNKXZbI7/np6exlrLT/3UTwHwlre8haNHj/Loo49eafE8Ho/H4/F4PB6PZ1/CK32BG2+8kc985jPjv7e3t+l0Olx//fXjz44ePYrWmsFgwNzcHABBEKC1r4ju8Xg8/1REhHPnTnP27Gm2t7cIgoD5+QVuvPGVHD16DKXUSy2iZx9UvIHUDoDe+alO05Tl5QscOjDLwfgU5tBrkEqZH5wO1lBbF4gPHadRmSJUEXGvxfTUFKkLeXixw/ddNc1sPYIiIWyfwix8PwzXgYjgrCV+4m85sHCA+PCrORtf4Fj1GiqEdL/yDaZueyXR/Dxb62uExSxEzV0y9/pdHlj+KjcdvYXra9cjWYZbXSQ9cJD+dsrhG4+iAz2+Xm99lebBeZRxEIObDQiCcNfa7K0ts72xwXU3nWAwEHpbGUdumkXr3etXspTK5sOgArYOvo71fs5NC6V84oS1pQ1mF6aoVeuY7Zgz2xc4duwachXw5MY6b5yypI0jtOMe54vT/MCh15N3NlHTV9E59yzB1DQzBw9RqVTKNhODO9tDX9MkrwhLS+cxxjA/f4j5+QUA4vYWlXqDsFoHYHOQU9EZU6qOroUkheXChQ43HJsZzzlhDalMI0VB8cg36E9N065WuPHGV2JXVzDfegz5V7fTXltkYz5lKqlw7PDNVBplX22SYk4/R3T8BrqqwsnFNq/oJcy/6mpU7fJqX7fbIQgCmo0mIKD218HWVleYTs8zq2KKa9+KMZb+qSVmpg+xPhviRDjUCImiaHyOjQvaXz8JJxao9wL04Wmi6SqBVqh4E4mahK1n0L1F8mt/CCrN8Vohs6jIotIOpnaQCxfOc/XV14znA0C6ORvimGnsXFMGBW6pjT5+EBUFLC1dwBjD9dcfv6hP4hzF1x8gfOXNyOwcxhSErRb21NNEr7sDqdUwpiDLMqampsfrNM0LHl3pc+tcnel6hKpcHCKWZzFy/jzRgQUyVSPZ7DFTTeG13wdAJykgHxCGEc1mk9xmVIJhpJZJwBa4aOoi3diur0GziWo00TajcuErFIdvQ5qHWY1XaEZNIl2hFtR299U43IU+aq6CmquilCLutDBpyjJT6CymFgtHZjWVwzv1BnTnLGH7NPl1bxs/O3bJI5buRsLAwpaz3HZsFtfrQp6jh/fFXowzFCajGjTKawTDZ1KWkn3j66wfqnD1K15P3u0SVqrjtf5ic8WNpjvuuIPV1VUeeughbr/9dv7oj/6It73tbTQajfExMzMz3HXXXfz+7/8+H/zgB3n00UdZWlri1a9+9ZUWz+PxeP5FsrW1wX33fYHV1WWiKGJh4TBFUfD444/y6KMPc/ToMf71v76TI0eOvtSiei5BsPU04dbTGDuHueVOnHMsLp6n2ZzCFIZ45Snmg22oryEHmiSnL/DEF3+L1qEFihtuZGbQJHuu4NDBTV7/igUWp97I8tnzVDnOq480aW5+HZ226co0wdQC7V6fTqfFgUpEevZposWQ9evOcLZa53TvWa5zV1HdyDn1l5/n4BtvpTj9HGsm49ib7mLu6jJvOf/819la+gdWb2xhXcJCV+E2VwjCNmeWnyTXB6k33ot9+ItMvfFNLJ07hQisP/oQR+Ma4TW3cCbd4MDxI8w7SzI3Ry3p8+if/Rm5iTj4+AYbqkZwywmcFZ579mnUM9/i2I2vJrz6Kjr338vBmQ71I4f44hP3w+xV3DBzE0kvp7uRcubkOWZadW696hUUa31c1mctf4z7zQC3dT+z6lry6DCb247G9iqDE1t0V4TnbrqF48tfYqmXMf/au6lLn6PXvQq1XFb4Lc73eNwuU3EZZtDBnH2Yxu3vpnZgmmf+9hM0qxGvfM/Pc/Kxr/PY6SWmbMb3XXcryezV/OP617ixcxXdzz/Kq289RjU5RfWV15Ld+A7s6jr68W+wWo3g6HHkhldgvvUYOMvp++6l0zlNEK2z0W6QHL+dW975XrTWLH/mfvICDrdW+erUzcjKOlFgaK42qd8wUWxLHKDGiu/q6jKSplz13CPUr2sSvebfoaIAaWe4lRh98xzooQED9FafIe6c58DRaVTeZfP8CpztshqtsarXSZvX8op6wnW3vI5qtVTYlx/9FqvnnyRaFTh4M+GjIcae57V3vYqVf3icZuscszfNQq3KmbW/pHv4+7ntptchawnSyoj4Jmr7HP1b3smgvc23Vpd4zcIRNjsRjcOHkK02pwdCZJeYfe3NfOlcwdWDmBPJKWheS7JwA73TG6hQwXDv3hY50ea3MGEFcYeQXpf8G19nKQpJjhwmf+LTnOhMEbtTfDOYI9RNjswf58CBg8w8+giDapXnZg6ypQ6wvjhgakYRzCySLuUEN92KnjvA6uYDLH35/6UWXo9TiqhzPSbt0DwWMFh5ks3wKA9Kg3R7keuvPsKhG6d5qnWSmfZB3nD9zVQe+zStrmP78AlueN0PoiYMJ/PYIzy21GX7jh/kYP0Rbs8S2DrFl8/36dgnURc2qN28wN2veDcAG8tnyE7fz7Eb34ZqpxQPPYs+7Kjc/nrWnn2WXpKxNHcrgzOnObq9TnV2mvnXHof5UieP1h9DnKOz0qFm+pzf7HJ4axF9yy3YhaM80f0anactNr6B6nUVksNTBPd9DtEh1Xe9D91fQYIKUp8n++LfoapVztR69J/7Fgdv+r8JgojrXjMPNoOlJ7mw/hStVs7SjOHwU33s2TPUb38j13zfbSilyL/5DaTbhTe8gUr9yhpTV9xoqtVqfOxjH+O///f/TpIkXHfddfzmb/4ma2tr/OzP/iyf/exnAfiN3/gNfvmXf5m77rqLqakpPvaxj429Th6Px+N5/jz33LN84QufIwwj7rrrHdx8860EQbnzmec5zzzzFA8+eD9/+Zd/yg/8wL/m9a//Ae91+i4j6J5nY9PRjDPUoZRBJSfLUtK1DjIwFAcynj5/gdYZw/Q1KdnDTxHYBdRqCz3dZnC+T5iHbK1v07p6lsHmQ8Bhigf/mMUDhzjxigWKpSbbpx+jODhPEc2QpSss2hqNtRa5Vmxsr5FddQ1m5iCCBcqd+LS1StQ5S2qmSB9bRlrQ236CeKlCJS53/fPzKyxufAlREVkgJPEsLszYeuZbmLXzJN/QdGyTIrNkySYJTW5MBmAcW998mqX1k8RzBziULVK0+ui519DKE0yeIU9+i2wtp9tZYaWzxNZiylW3fD9bnZNs9gfc1GySr25SrC2zXFugajPyU0/hGlWKNKS/0Wf7uXXa8cOI6zMzk9KLcqTiCKSgstojUxFyegPqCxAnSJGgBDbbWwy+9ShP3Xsft7zyTRy7/lVcaK2z3O+hk2WKzjKRzDDVXOJIcp5kcY31uQPMrq/y6NLX2UhSmusR2+0+ywuvQ+URbXcBI5Ynl07zGroARM/9Dd3WtdRtA/oFLPUwT/wDF858nW5haek+DsWBrMCIZfHkaS6oezlh1rH5MVrpBs+cfIT+AQhSTW7amKuOIHIQpRTPdE5y4cm/5E0H3wBH34DJM3KTIc8+zfnFM8wOXsmxRht10wy0hykWccLS1gqLpzOORk22njuJrgc8na7yzOl7uVVOYE2OKfqIXeZAukHSL1hMYo7fcRdZr8tWaw1lUtAhhXFUWysoe561v94kHShSZmmcW8WJ8Gxk6FgImjfwyo2CQdpn+umH0SqDa/t0HnkIMzPLE489Squ3QPXErczWU2Z624RnvsETZ1foLNzGVJiQFClha4mHnzzFbD6NHnnlipz7v/pZTPEYeq7C7fP/jt72Kt3uNmfUAdaSPq9a11wQxZm1DfrZBZrZHIdffTVZI6NwltXVJZg5iC0yMlNBd5fQ8SnSRSG7kNOdP8wTg5NcnQu57SCVBv2NJwmtUFQLNrcCVs1BiiM3kPXbtIsVzkhEP6zDA/ezdWaNynqbs33NrNnGnugRTs+Wc2IS+ounyXsF7cGzVKI+i0UXc/IC2dmYrm4wVSTYmRQjzyLxgM75f0SFAf3nHqeWCln7aWpJD3UgY20toGtiupsRYgQnFskGSJzsPJzEkWWajeVVGif/jlQrToYzJCtLFDe8ErkxASrU8i2uW38Sd927qbSfG58eLT/AhXMryI1vY84aNrfW2Oyfp6o1YiyCRpwjuvAA5qlHyTeegUNHeXxtnTcud9G58PQjzxAfuokTR6aQrU3ieED7yUc5dOPNHDhw5QynK240Qelt+qu/+quLPh8ZTABzc3N8/OMffzHE8Xg8nn+xPPnk43zxi/dy5MhR3vnOf0tjTxhDpVLh+7//Nm6++Rbuu+9veeCBf2B9fYW7737XrjAaz0uHSxLSk6fpdg4zqOYcsTtvBrH9HInbZE3DUscR25javEEQcgkIXI3aM8+RFUcIomkGVvHwuTbT0xb0YTb7OTZb5MS1TXpdRbixDbkmbzgGa08zCGrEA0sULCB6AxFBnKN/9ilsdi2DOKdp81KWuMHmqVW6wBSaIOswklTFHQZ9g+oKK82DzCHkVtPttTHtZ6jmXbLazei5OXLjEC1jj4dNM3JxSJ6xsT1ACKBSxc3OkXR7VKoR+thhTPs8RZ5j05jq4jpF29CfCzn5nGU6a9APNCJCceYM1V4AvXXsyirJ/E2YfI6i3SHMImbjaWb6S4TzGyzNVYglQ0RY781Rq0EeD+gXoJRisJnT2+5TtY6l1jkWZhYYbKzSSAsWWWPaFdBLKE6dgWMBeVKQT0O73SLtGSgAJ+SDFtXwaXTQYHpzHUWMSmK2XEHcz3n6/Ekkb3GDKchdRJb0+NpDT+CSnEBAKuV4WQERUEC8+CDPhJr5rXX6gaWoxVSSLVxWo4hbrD34NTbyVa565eu4MDhHsd7ksfVzTG8pNrfh8cFTHE9Sakqo24AiHnD6r77A/MIrqc0epnv/PaSxQvU3KA4cIV1aYvvaWVrdlGypz7mKo1ZMQTGgu71CWD/CIDFsp0+yXpnn5mOHkaGDxBpLfXCWwDrAstIuGETQQHMtmtVWSmYyZPNxTs29CXnuHGkRc4sIDQX0e3T7jlanS2+wzZw12M0F5GDB4OwzdLvC1HSHPG9jOpYN0yF3GxQtQ25moNkk6XbYSi2PrZ3jWBCjXY1n177E1MppAmexzRka60+SpY4kEqyx5VjbANoduhvn6PW20PEatS2NmvsBnANQZEmF7fU+Lb1GrisE/Sp241a25et0gwMcDQ6DzTFBlV6c0CxWaMQ1jC3QyzGV55YoXvP9GBE6Wcp2P0NRQ5bOU3zzYcK3vg2cpXr6Hha7lk48oNl6AGauQw2qrD/7TQZFnaJaJxGN7qWkg2cJVcDaOaEWDNie7dOMDS7v0nHbzJ/rEXSr5P3nqFQrZM15krjPhTglPdcjufYI09NleF0nNmw++zBHjKUh2/QGISpbpak2WL36+wgKqKabuGkhOPu39E3GmWIT9dhf8wM1yNIc09piDji/9hhZaqA5jVtbQbo9CpmGzVPYrQ5ZEZF3MoLtU6x2p6gNNC7N6D/5BMycIF5/mvOuSTOE/Kprruiz+UUxmjwej8dz5Tl37gz33fe3XHfdDfzIj7yHMLy8EVSpVLn77ndx5MjVfPWr9/HpT/8Z73rXe2k2p15EiT2XYvDFL2LWttDdEDl2eCdvQBzJ2hkk7dOYruCcAoQitWigEIhklmq+wKDQBBGU6jTI0jrRcHc6c3D+zDK6NYPrxpj0PN0DN5FYwyDZRkyN8zrADZqYgUIalu2sxeGtaZpFfdxmKjlkKRVgEMdUjKMyFDV/dp22vppG3kSFGYkSAjEsLj7DtGtyVTaLzmOYm2Nkaa0PWpgIFArjNK7fQxuLQgMKh2a7DrXZKu0DB8gXDjE4v0qNJtZBlF+HDHo4MWhCGiYgNjF29RkKAV2ZxZmUrY1VVEWRDDIiFMpBRBXaPZgIcFmTlGtsjTju0C0E2j1UbxWV9TFKI4MW3YfvI6NGkSWYqwqqRUSdKsYU9JccoZ5Fb7VprZ8l6gy4yh4EMrLCovuGeiXH4IjEUljHILcMvvIYRnVgapanYk2j0iBOY4JQsAgBCocCJ7SkwbQ7QpWDDLiAyTKsUcTGQBVwlrDTQkXlrLVXeoRRF12PqWRVBmJgpUU1WQAxtJKcaUnYkB799cepAFtbq2jnkLObICE2ynh6/X62RWHiWTaWAqLlbWwzgrkpxAnxoE2QTFOrVYjTGoNuiwflLFdRpxCHsZbI1qgUPZJIaBtLFAXEOMChzAINEuJ4iejs/VhzGIZrHEArNTRQYEspokCY7XXpu4y4yHEKAlNhqtOh6jLOZTmStBEdYUQwW5ss3/9lBkf/FdV+Spj2KfQxBqllSiw9l2HdABRkBsJISNs5tgGFFdLWMlGkoRgAoNzugmf9lYAiFximEU3HiogqcRKQNxROKySIsGEDKL04zhUYZ8j6EUUvJDi/QuxqLHe3h80olKsgeRkW6tafopsU5DL0AucFnGvTW3GIHBy2KxgnFAUsmj7Tw/pvnSIgLjoc70RsVQNyVyFLBkw7jW73qIeLJGGNPC9QFVDxNr3tdYKgTrjeon82RssMPWdwShMXGUWhqG51iVe6RIMKkguDzPKptSc41F7hYKOCffpJ1q69im5myft9oiQmTmLSXCiqM1Q2Vwi04tBGQpimtOKCzd5BtGpSTTrMJNv0elNE0Sy11SW2P/UQy3HCRlYlHGywfugkR05cN35GvdB4o8nj8Xj+BdBqbXPPPZ9hfv4Q73jHu/c1mEYopbjtttcxOzvHvfd+lv/zf/6Yd73rvSwsHH4RJPbsx8BmrLptZmSW+0/dwwIVwmyTtGOpVKDT7pe2lIAzOWG8wSDN0K5CoZuAASnTVpxV1OIu852H6ASaOArppobpYW5KFgtGt2jTo1cpEBNSDxztAirtEDmoMMkAlWxRJyBes8zkBygwJGFCLR6Qbq8xW0zjgtKzqVwd0Yrt0BK4HIIIbTVFkeFUg4HLUcqMPVPGGc70zoATDvY1oalT6AFKFCZQhAqscVjnuNBOqK+tM9iwNN0s62FKPc0RE6Ct0O+0MfUFVOY4s/wlIttnQTdJ0g42HzA1fQg12ASkDDuUEJEANxRGKVV62IB2kWK2HBIE2CxnkG6SBxrjhMhYXC4YG2JEUJlGWQcidLqrNBsHCPU0uXRZe/R+KiaiahJQIKJQhaOWD0i1IxTop4YoS7DOkQYJ9coAmMY6Q4EhoEyyh5A8E7BVwlqGooI4S2gTpLvBmruGpBpRFYVzhmCoQC4WA1w8S77YpVgZgNbY2GGnhJkA0BoljioRWy6jEfe5CrBicLLTTi5mbMdXi4iKqdC3LVrFNqG9hghAIgylIWhFkCyhNgMma9N1pZEwI4KoMuQTAFGokZE/XBkKYOscm1QxNuC4UrRRmNMPQN5DBVMoIAmEhcIR27KtQaiZF40e9NjUXSQ2KAp0M6Sb54R5j/pylY1Kl+mVjEHUIEgr5HnEsii2CXHJaWgcximFMUKmHFkhNESw1pLmfaacRQult9RZTK/PKbVB3O0QZAVUQZxFWYsAJoywOiRRDhByVxpAuTFsFsv0XcQss2gnhMWA6biPTDcRIDMVFtHodsr1zz7AuYceprAxjgALJD1NvejR64YMiIAEnEBu0f2UTbfJRutZCnc9OW7X80ZLGVabmdIAc2Jxg00KM+BgZYpKUcVtnWK9ViN+9jlcPIvT03SVIKIYkCOhpsgCCuOoaY1SwiAzpHFAX08jEiKx4R+eXAbgwFTKwBhyIgrlcKLJJMcZON+1HA+ERasZBBFKBLt2CKsW0WKo5VuofspTgzWcnsfYFFUcY31theXBMoc49h0+cZ8f3mjyeDyelznWGu6996/ROuBd7/qxXdWkng833HAjP/7j7+ezn/00n/rUn/HDP/yj3HDDjVdIWs/zYTN3FGmV9uYWthVzpugQ1Oap2WmKQmPiFNBUcotdWmZrEKKkiXMFucshCBCBIo1IejXi3JYenF4XFwZsTdXIXME8gkGRxy1U1WKcRRGQFgU2UCzksyRtRZ6OdtIFs96BRo3Rbq6zpfEjOFoS4IxC3AzW1hAU1hWEqkImBu0qWKeJTZOeXaV6JoMmtG0CBURWMzB1jNEkSqNNjSwUQlKSTp24YmnIMr3HnoN+SKBClDM4AYMhxJE7R5EPqNuQtJcSiMK4EJzBujK3z/USUDJ88YpQFNewbDtlFb+R4m4t61lcKrxFnV5qsJFjaGvihlaWSKn4zpgGtd4mSqpEgZA6S6qEUOoUxgLlfamlACBROaF1FBpSm1ENIDOGniQEAURSIRFNbgxmqOQOyKkTomyNGjPgEpQ4ckmoFS0KsXS1I3CQDxSODaZNFXGWQVghiXMOFS3yLEVsGW5WKQxmkBPWqyiETErPpYjDKc1mfxWnU64eLU5ThwoEUkU5GXs+oDSwlAEnDQqtCBwkhVAZjpXpryCiKawgUhpH+SCicDlVO004rIg4GG4IAHSMpZHFiAR0XJNiqiDtDlDiqNg+djie1hXjc8p5AW2KctgFwOFEwGkKG2HaA6qtk+A01jYJhxO77QwVd4x+NoC0QFA4J1T6GdaBCgTbHTCgwLmEQAxJakjXztPaSjGqjRPHjKqSiyFvXcCmA7oqwA0rYQqwQkY86PIqAkKZYz4p6E+81jTKY7I8pOpyjLhxn7Y6m8hXHqaQiFgMfWlSBKpcznGOEOJciHMNat0ExKLWBsSViCSN0C5GqhUqvZQekBQOow1B4ZDC7gweoGyGo0lR1DB5l28+9Qi1zizTNMnoU1WWor9F3ShCcShVoddaxhWzzKkD1LQQ2JSaS7AJNCt16ms9zNFDLMzNcQ0DnmtVaFa7VAPD4WiWM702513MQIcYF44N6MpWj2QQjH1I53unSIIG2B51E7KhW8StnbV4JfA1vT0ej+dlzgMPfJXNzXXuuusdTE1N/5PaWFg4zE/8xE8zN3eAz33u/+Oxx775Akvpeb5kecZWehRrKmwqaFtLL3OQFxjnKAwMBgEIREYjWY/CGKwd7YMOc4OK0kAwRTpuO5GMxCUgYEToKmEzKBUllRkaSWmIWJujnOBEkKWUyB5GKUVKQd9mdNOdcKQ87o//3dcFZhBO6q4Yk5dGlQjKRTgXImicCL2iixNH4XJcP4EiwRkzrOxWemQAnBuwmG2SFBaXD8j6pXIUSoE4AwiWkfEGQZaRUNBv96jIhCY6EbZTuGp58DDRJnURdqVDbhyD3JDkCabVIzCGbFB6R6zs7NBra7EyUVp6YvNeSZVN2wOgwgJaKjsKl3XEIrvHCE2fFIMlkwL0YeK+A1EU1uKcpW1DXKDHBiqAJkTbci6KXHYZDbmbwYkFEaxzhC4FpQjynCDOESvghJnNJYJ4mTAt14kg1Loplc0N0rRN0N+isrZBKgWFdaS5kOUhNaapd1Oifg6iUUUNjMHko3nPaDLFTBGhllcxayGJsWSFwzlhsWghorB2hk7eIckz7NC4aqudwcyzuOyWOLaSkF7eRERoqANUqI5ndaATVL47TA4ROlkLgy3X1GiBAMYI/VNPEtphkQMZrlE0gVRo6mmiVg+ZKJJTiQsqgwIQ8ixgkGqKoafM2YI0iUnTssR9OzDkJgdn6QeGTFsCPYUSQ9/lgKOQgKeSdVxRp+GmiNKCxI7moaTXiWnlIakrKJwlzTLirIIT4Vy3TSsfUFDOJXGNNCnztqydHvYJxNZReY2mOkxEWVJeGehihkvSkVuHdsVwXQUcMFWUc+CEvkk5p1eRvkGJEACBcQQ2p2879F08nof66Q3y/oBAB2TbbfSaIhJLhYJwsErVWYIihAKSjQvDudipqB0VwrQx1IoqyaBGmMYEmxtIllBINB6bRDdw1mGxZK4AcbieGXsrrwTeaPJ4PJ6XMZubGzzyyDd41atezY033vTPaqvZnOK9730/119/I1/5yt/z5S//PdZe2Z07z27iToul5Qv04xYAiTgqponYiKKrMMaRGYuxYJJqqVhNKHVjnVlKbUk5h83TMrzH1hEJUUBhwDjHqmTl7julwjOXTVHXZe6TNoa4sJi8wFhNufk/9BiIxYxyKRBsP6YYGhQLrWPU9I4SNKnJu6Gy75wtdbwAzNBT4wgozAyYAkyGlmEuk4B2BSIQuIwi6WKcoIYeBthtzDgru65Z2DKvA8AiDIaFLARN7mpYWxo+Sll6mSEtXBnVZEpjYBy3B7sVMqtpm8p4TPTQSBXA4ujmGbFYDIq6PUyDmZ0RkVLpFBEkh9xGpK5g2/VxCLmuk6Cww/EKXEFSWJLcYqzFiUMQ4tSN5yDPLNaMYgyHfc9jjN0ZJ4Bw0MOKEOYGRNjQVXIpCEyMs47aKLHLFrR7Z8rGXGksmzKbijw/Oh5h7cDZBpGdRXUHkOejicBa3oEnxAAAIABJREFUg7MFM6bB4XVNkttdslinMCaDsIJzlkIsp7J1ckbHKaq9DJxDIWjKsbLtMpeoospsn1BF41LoADkFA5uOvYAGS+Eisu4WKh8Ml4eCwqKG6ziyEXkv5iJk9D+FdbM4qWPQVE2IyIQarRRiLT2bEg8MCQXZcK2NaOhZIld68RChYRdw7vi4v5V+Sm5KIzHMhqFyE9a4xZIVmkFHyK1QlRkCCTBFQtFOyAuHsTJ855opq98hmLxCUZQePoXGWUuWJbihhTvanBivEVV6RQMVIeLY7G5SrViCfocw6TMnITMuIEpjdOmLG86nQfcTpN8rnwt5gCqqGHMQEY0bbjJkSUR3I4Vkq+yjE7YGBQLk8QbRxhP02lv04jVsnmBsud67gSMLNP1KgLGKIpcybHe0yeI0YneHHr6QeKPJ4/F4XqaICF/+8t9RrVb5wR98ywvSZhRF/MiPvIfbbns9jz/+Tf70Tz/B6dPPYq399id7/tnYIgeB1AhGlZ6DPIcpNUuFGiZPyEzKth3Qtzl9l9F2Cflwx1ikLNSgHagsR8UZ2ikQTe7qOClzjpI4YGsgFFZTyGhudysbojVaLAwN55FKKkDqDJnd2dVvm5x1HZNQgAt2GReRqqCGuRIiDlGQO0cqgp0sdS/hUIrys7rUqMoMWgVETlAI1byzI4TZUUjbJAyThYZhXyU1qZVhitaBs0RMs20NdsKTkRrBFik2z2lKk8YwjE4Aq0oDTEQjsvuFpSrTbAcFuRL0UDnPFYgq507cZAaEoATCiTFzzuJsTjDczUeCstwyUDiHdYIRi0PKOTUOpRSBXSBwUxhbejQ6GjpBecwIOxybYI+RUh4yMebD8c9V6dUCIWAnHzJw9V2n91wylMcQTGR4aHbGRorRRosaGy0ALunRsDuecLGQFgcwYqioWpkj5wyrvWvIrBq2sLOSdF56eJQLdgykscGvyExCUZT9NjgSY8aheyNyWy0NFiATQ+HsuP1aUaEi9bHncTwGRlAonNspktOxKblNUarsd+JyuskiOo3RhcHiyoIXuLGM47Ga+NMU5VpzLhz3NhyOvxQjyfa8xFlkbMhHNGio4YuRR2MxrKZobcboTlA4cDtzkefD4hPicFLF2gVUvvPyWwVYClIylrodrClguJasczvPAgHrpsee4XRivAet1Z3rZVXy/Dhpdu2uvpjh70puLcY6ulsr6Lz00KbZhAErglIaqyEL9dD7N46T3WX0FdmV2+jzRpPH4/G8THnmmadZWVniB3/wLdRq9W9/wvNEa82b3/xD/OiP/jggfP7zf8Uf/uH/w9raygt2jZeCPM/5H//jf/D2t7+dt73tbQD83u/9HmfOnHmJJZsgttTSA+AU3dCCDVAuRIka7/4qJzR1lZqKqKmQ0NQu21yoKjRdg8jN01BT1FWdWY7gRFCAcdF4T1/2nqwAG6NcQbnfLRd9rcWg2y36Li89T3JRKwQqgqFnBBSFgnbFkUYByuaEyaD0Khk3bHcUP5UCiqaeHV5tx4OktZp0AGGdRdyOgaCsI0oLAgnG56ihx8UVllgNVX+x6NwyUIZUKcTmZR7MHkqvVB0le0dhNBblbruooT2HsCsAzxn0nrArmVBiFYK1gjULOLfjkSq/KxXCSmLGozNp2IxygyaJCHdU7QnDNDJ99ES45kQHAagWnd3tyNREG2p86MjUGBXMqKrJPMqysXBv2ry4secMQNnSSOhUHKEqc1dkaPQ6FyESMqOvoqbKMDM1nHBXKPKCMnR0YjPH4UiG5fX0qPdyaQXaYukboUeOG46PM0OvlCuLV4yWmxCMc+FGhEPF3LkabTOgaDsOb2wRuBQutcEkjGUtja+RfIJzVYpojl4RMScHaAYzhHrnnrZ2d8ihSNlXO76nSiq9dPdBo8+pjg3cSc/Y6P4RV3qFdTIcXwStIsT0EIHtfIsk7o3XU1pY0mLnqSEThnVOPu6bm9jUGK91EVIp2JIeYi3teNIwAsm6aJtc8h4LnCMyhnqW0cjyCZtp52idG8Rd6uwXBm80eTwez8uQPM+4//4vcfjwVdx666uvyDWuv/44P/VTH+Cd7/y3HD9+E2H48q4d9Gu/9mskScJv//Zvj4tl3HDDDXz4wx9+iSWbwJaGxehlw2qYL6GdwQ5DfQICqoREhEQqQMzeGH4Z78TXdKnQmKESWNNNFBpJMnS+/46sQpMoM1Z4tiKDcPE5g2G5ZbPXU0XpHRopypfSZZwI2i2g9nhxJr+fRF9CbVGA7XUwebwTMjbc+VaFvuhcVdjSG0SZDwFgAoXo4bHOEOYdlDgC68Y7+MMvJ/pHqVwPCWwGIhSYUqZLdLjM7aojsru6ZVXvlHKvs4B2B7iUiqbVyFgJhsFqao98ZT+nglmaano8PgDGFcwk23Td+kXt7kh3KXl3e7F2fe/K/kQj78jE+DSDHa+SNTlFPBi3qvIQsioDtdtAtSYjz0vl37oIpaCqmmhnUVIQa4t1lm2bkLiCYujZGHmPRh6P2WAeJWWOTpQWY4MrJcdQVrJrh5Y0qpBWy7woN/JSTcxbIhrnGji5fDXSXp4RthLqe2xRK7JLoRexO2GBqvTADrceiLVFrKAoDZhqbQHFjqEIUlYhFNAuZ9vEnE/bpbdxct6GXqa8KO9JjaIZTA/X145cwJ51owiS8pyeJGSSD83zifXdz4Ze56FxJY6Wu0Q44xCHwxQhQWbQemf82lYI+wlmaXGX3PWifC9cT2LaMtjVlgKqhSEylkRSYklomJhoj0EZuBD7bZ5r/xy80eTxeDwvQx588GvE8YC3vvX/GivYV4IgCDh+/Cbe9ra7mZ8/dMWu82LwyCOP8NGPfpRbb72VICiV9Le//e1sb29/x23dd999nDhxgsXFxW9/8HeADMPYRoZGWZl49861ArJckxa2NIb2Krt7lHVByI0hN8nOZ8Wkl6OkqeaHpwvTwQFm1AGC4jK75pN5SjKZtzFU6svXCO14jSa+nfTVCILD4mzAXsV8r8EEUHXVPZ8Md7UV9KKdro/yVLQpPT7GFuXO/K4m5aJ2RthiZ6zCbHdeSsBOBS/nZPdwS6n0XspgKq8yOvPyGxB11RxKVx5r2JkDHQTkYhAqiFTLiMSJY2En/EurHUPUisW4nGZWR4kdhxN+OwrjKMyonYnwvz39C1WIwlG4i710AC7NiOK8zOUqLGEmKCfEepRfNnHNfNJjUnqjlBi0OCxlqKW5aKNgJKHb8aZIaRgEotFOKOyOJwXKNbN3fe5qSweEVMf+tYqqXuw9Gx07tNkMFmNlorLiZdqmLOIxNvKVIZi41YbRiWQyIBfHKE2nTFUcecTKcXNSGkfFcJ1kWu3K77oUMvlf53DOlqGzDpwrcxqDPcaHfXqNorMGwLprkxaDXbmEe2nJAIVQ66eItMYyOTdd5tMxOU4Rylri4bMkc5c2UidnXePK8GEm1roT4rOP7dv3fw7eaPJ4PJ6XGVtbmzz22MO86lWv5siRq15qcV42VCoVNjc3d33WarW+Y6MzSRL+9//+38zNzX37g79TOq3hPyaUYHexgluXcue4MHJZxWzEMDVqF7sTv3cXkhgn4YtD71GOR46boW1XKluXCVibZFK12hs+Y4dFKybPLHMl9hhcw3nSotk7YxqFVZDuOUc7QazBOTORuwWZcrvOniQgICQaK2KTBkZdNZjWc0TshKPJnh37cZ8uxT5LTWSvQj4qT727rb0BgtbVwVZQQzlHc6Zl97xqceg4w11iPZU5VxfL7HbNix5e/2JFWYkhsALiykpme9oe9UMAPTRegqwMN7yorV3GWW3oUdtNXc3uanuSeMKIF0CpkdyyE6ZGOUeBsQSjcLq4ACe78rOm9IGxjDXdYDoo73kn4WSE3UVSTPoj5RJja62ZCHaEQOUofbFBpkSGc/A8Qs4kxEn1+RxJKDvhf84UOFMaqqYIaKgyJLP0cpWtFU6Ic4fejkEczhYYm1/kMS3lUFR7KVGcE2xsAhYkwe0pSIJJaSdm591QboZYys0Kcc3LSH6pG0ioqYnw9Cy7xDEvDN5o8ng8npcRIsJXvvL3VCpV3vjGN7/U4rys+Jmf+Rl+7Md+jI985CO0Wi3+5//8n/zkT/4kH/jAB76jdn77t3+b97znPTSbl/th/6cjqgw1KvOFpHxZKrCftn2REjw81GAvCpkbsdcgGSnipRJ0OS+I0A8n1TdVvodGdpRfZ3PCQXqRkmguEdYHpTJWnjj5/eXUvvIaTZkqQwwv/gpjLj73UrvuZYG9i71gI6aD2bHyPnl+ODSW6nr/uR/VFbxcHy6FG3rR9hrx+xnFI3nUZYyeXVeU/VW+KM4v/+XE/BRyCe/j+BoXK/gjb0A7cmVR+Mm8molclx159/R/nzG7ZO7L5bxBwFQwu+szAbSbuEesZUrP49ROG3KJyxsDqHBYe2S39/MiAynOx4asEKBRNNQMimDcbasuvk9LQ9eWhULGbRfDoFfB7um8SIPnq9bXdRPFZEjssCAIBVVdu2hgR/eAGn5eZH1QisLujFMqo0p8VcLcUEl21pNSOVrvzpdTZncInpXdr8tQ49ywCev0eXAFAy+80eTxeDwvJ06dOsnS0gXe+MY3U683vv0JnjE/+ZM/ye/8zu8wNTXF3XffTaPR4Ld+67d43/ve97zbOHnyJPfff/93bGg9b5Rmq2cZKQrhpcLjnicOGXoFLu0LGqEJycdKcalI5cNSBpOUIYPqIo+IiEZPKirF5ZXvSc9FRdXQ6D05GZfPnym/36cjQ5Tee/7FJ+VSXNag1HsqrslQ6Tc4zHCcJkPfLimmuvia7tsYLTvslX9HzvAy+Rr7hds5oJAKSH2/kQUg0peT8dIDf5EeOwoNnLzS8CBRUIjZ6Y7IOE9vl6ardsymy03381Ofvz3i3LDEyChPZ9T+hLfrEq5aBYjSoMuCFZPdvWj2Jo0yQqqqTqQqVNTI2HLDKo0Xo4vDHObgrpykiBqz6sjwOjvzFanLF4S5FOHQMNQqGHvQ9obb7Yo8FdnXgM3k0vf9aGpttHujY29bCrNrg6Inu5PEBHAToapFJgS7vJpDD+tW97Iy/nN5eWf1ejwez/cQeZ7z1a9+iUOHDvOqV12Z4g//kllbW+PIkSP8h//wHy75+bdDRPjIRz7Chz70IaLo8onhU1NVwnB/pfpyZPUqIkIwoURqkdL7oIYJLAq0LhXTkcqkhrvP478mKvKqvACtUE6NE8WVmtzRVyglOJmsgHYpU2vUaDBUeASNQ6jQ1LVL5iBdikhXh/+vMMOBMiejTPJA6VIqBSAKJw6tFFpTHuRc2XelJocDpcriGZVamW+U7wlbVMPjJ/sS6crEbvtQANg1kpPnG1wpp9oxFnLMToGJiQsoNSqWvdO+SG2nYMHlUBqldNk3GbYpAqos+qC1ZmgHj8UehTMqrUuP02heS82eAkuERquwXAejgRsdAzg1UmErO2GQqhxnocwjqoYBSmtwDpRC3N4xHlY1dIqGnhlfQOHQLi9N7rLRseE0MWI7azgIxv0ardedparIKWAUXjZR1W9nQNQw787tjBe7Dd3J65aenPKTQhwi9XK4pWzKakWoJiZ92IDWCq2D0vhQwwGbaL8MDVRDT+zFIjL83g1P3Vk/w3tLHFVVHVbN3PE4OyU0dJWKaoy9XIGKaOhh4Q+lh8fvrOnxpZUad2Mko1Y7x4x7MJwjUYzXY5ZQhhAOvWLl0E+cu2eIYHQ/a5RWiHZlyOjwnCAIkUCBHd13dujBmpR5sv3Rm7pKrJsnitao6+nxQ00NF8vc3JXZUPRGk8fj8bxMeOihf2Qw6PNv/s27S2XA8x1x5513XhT6pLVmamqKBx544Nue/+d//ufcdNNN3H777fse1+//02Pq4zjHimAdu4JnZFJTl1JvdUxs2u/x1kzu4sqwipdMnL+7TLUMc4gUO8rWxew+PqSiVBluxaWLNlyyjYtC4oZhfVK+JFWclBXZXFm8wOIIpNTTnBPGGfF6UpphuzLqm+DcbgMwk2KifEPZl52d/vKTUcjdpfxymRSlSn+JBJZRjs9k38pd+Z2/jQOtZFikYJ8wOimr9Y1yzkZtioQ418QF8Z7t/4llMcxBCUbPBpk4YNj10ijQu86HiXfv2GkkGM6pk/G8ynBcxY1eTuzYm7okAoWJQIRIReMLTEZCSlYFN8xbwY1D9Sa9PYnWTO0d5tH54zHeCdlSlxkQZ/Jd90FNNSlG7zMbH+6GVRINBIyN2l2vgdozl6PPnROcK5jWBxGyXQVYxmtTLuGbmZyzkawT1xivJxOWoX67bbVyrkRRlxl2/MOTIY9VIGbkm/n/2XvzKEmO6t7/cyMiM6uqu3qZ0WyaGe0CwSDEIrRYC0JisQQGgQ02/sF7sjE/8wzv2cbYIH5Gx4jfs3U45x2wOfiBjTE8QBizvAeW8A/EILQLIYOQRtKgEZJGGmmmZ+m9u5bMiPj9kVlrV3VX9/RokFTfc2a6qzIz4kZkZPa9ce/93la5F8rYjBqVepPLjbRcQGoMOxrMlOW41NJ+p1dAbA1eKng8VefIOUuN4TCxCZLlwQHYJIG2PLwW2aF+bv0759NNCw9lG6e084ljcrI7q18vWLeu2PH7noyma665hssuu4wXv/jFhyVEH3300UcfK8PExCF+/vP/4LTTtrFx47FHW5xnJHbu3NnyeWpqim9+85s95yZt376dHTt2cOONNwIwPj7Ob/3Wb/HJT36Sc845Z1VkjJ2nkrgFeR3OqS7BZAvRHuAWY1HiFihfK0cnD1Rv6Grqe8G1qabt6p2ic6hiu69hJVDoerhSNwi6LfeqF/Qu2YheS4WnMiKCRQyrJnQ6q6hHqeJx4smRJ1ANA3LGLG7cajeIywyexEoLZXa5munSArh56HQ/fJOLsxsyQyk1wDqRSixsoRaW6Jby1KUt9HBO7czVCvQ7HHSR1+XrJBbpWbLI2b2OeaVPirT8ACjTmSmxGRWfgARoI3iBcmm2cbCt5tmSd6LDCb7ta+stpaXFWjF6MppEhA984AMkScJll13GZZddxgtf+MIjJ1UfffTRRx91eO+5+eYfEgQB55574dEW51mD4eFhfv/3f583v/nN/PZv//aS5//jP/5jy+eLL76Y//W//hdbtmxZNZmmK5Y5X0rDVlrgF5ApLOSQ6wyPp+IsnWosQaoI9+opar9uuVA2BrUwtNFBGkrmHGHbMRFFEBVwSdxQ05t05wVidJkW3xy61oZILZ0PUtTDiyp24n2q8EsnU6A3bAg2Z0GXveayLe5xbiescNKJiy71+tRNVi/1EKzm2U3vt4A3Wb8rz7dbDIHzrW7WJrQzB2oxXe9pb3j6jSbTvP6zcLJuxluvI+tGftGh9x7PS9H6jvFNdaPSz0uhShXBIJKuPduc3+UdZZ/Agic+wwL7e2F/NlkPQb7+GDjnKScrffqWRk+z98EPfpAPfvCD7Ny5k+3bt/OhD32ISqXCZZddxhve8AZOPvnkIyZgH3300cdzHY88sos9ex7nggsuplDokz+sFGNjYy2fnXPs3LmTQ4cOHSWJFsIDczqh6h35Jc5VXTTLdPe1LZyI9vpGDbQaTL0rkSsxtJZs02iqcapo1SEKpTSWRqJ5u1q0IG+kU9sedPfouMOGqTaMiNTATfOQWrCEI0aQrPRqioVTnIUzKsErwSxit3QqBLwUrItBJyhlCbRaWIfHC843GOhEB3SxxVeMboZCmsNXy9dpICeNd6KjO1VB52lv9cs6FL6F5MNAyx1ZHqSDvMuRLq8GF4apdSBLCVUbgx9CXgrEXcgZesWAHqLCNLWixTo5DGIao4gjQ5CFAFZdktbpsjWjqe3O9Tzp7SG/Rw7LMjlPO+00isUiURRx7bXXcu2113LDDTewfv16PvrRj7J169YjJWcfffTRx3MS1WqVW2/9EWvXruNFLzrjaIvzjEYtp6kW16+UYv369bz//e9fUXs//OEPV1M8AKquzGpo9YvZM87nSHMejgKW0GiSQGGqDudrRkcDzq6Cdv60OxaWr8JNha5uW3US12mwxqASu4DuuqVn6WQ0tcrTzMYngM9ZsKmyv5iCWDNNvMvRajX1MsHNgZedqbY7QzqG5/XiJeyExMd05BN/GuC8Ry3Fje09tLHqeZ/OtluCZVKLwUhA4Lt4cZaEX/TjiiAOaxpGk8NjgoCkFk63kvi8JqT7Ib6NSGJ10ZPRND4+zne/+12uu+46HnroIV71qlfxkY98hPPPP58gCLj++uv54z/+Y771rW8dMUH76KOPPp6LuOuu25idneG1r33900r+4L3H7n6M+Kd3kzz0C/zkBAN/+ufoZ3Ax3facpl9FzPuaMdNdIRJ3uOEnq60o9pDHkiEvA3XyiI6wK9vJrjGsVWJHFPQuz5HHkZjrFO0+lcXV6N4QEgDxIu14vHdNBYqF0AlVtYz5bjJUbCcvTLsx4Tv+2nxBT93apnBClxGeSLZ2jXRnwzyasN62bB0sFmIKoDw4aXgZFy820B2dCyAfBgTQMahGuxXXXtz48FZv4NL7uaQxehjoyWi6+OKL+bVf+zXe+c53cvHFF5PPtwYNvP71r+eb3/zmERGwjz766OO5irGxvdx778940YvOYNOmzU9Ln278EOVvf4vKDd/DPvE4ADK6BnPKqSnP9TMQn/nMZ5Y85z3vec/TIMnS6CnPfTX6eXq6WTZ8E/1zO7QJsUnncKPGeITE+izIbWW076uFTnkqq2rOdZgm64YWftmEBEfYZV5G9DFp3tuiiVtgkxjwLCiHtQhqynuaE+NYLBcrUUJnE2aZZqG0s8V1H9iwXktcOy4aFivgu0h/NVifoER3JLVYQXN11GZgKrAdjxsvVKVpnlbDkl5UouVd7U0V6gadQ46Ip+8oG00333wzu3fv5vTT07ogc3Nz7Nq1i5e85CX1cz7/+c8fGQn76KOPPp6DsNZy443fp1AY4JxzLjji/SWPPkLpa9dS+f6/Q5IQvPRl5N72dsKzzkEf+/QYbEcKu3fvPtoi9AznUsrpxXFkQ4qOrp+mE0VWakkqHfRgNC0uu8c36kKtKjppp50kWXx2p4KVW80pO/TSoWrdivo2w3XTtlMObkQiUL2xTtYvoxYOuLjqaYP8KnFMrGwli5IV2UwrwiLiDau15MjXjbnm0VgBvci1tdpLvXqanJhFCyRnrfbU1kJ09445V4AeWPh6Qa0HHR05r2FPRtPXv/51vvKVr/Dd736XXC5HuVzmgx/8IG9961v5gz/4gyWvv+OOO/j4xz/O/Pw8xx57LH/zN3/Dxo2dQzx27tzJW97yFv75n/+Zs88+e3mj6aOPPvp4luCee+7m0KGDXHrpm4ii7nkLhwu79ynm//F/UrnhexBG5F7/RvJvezt663FHrM+nG3/zN3+z6PEvfOELT48gvUAppAdSg2c6EqMwXViu2msZee+y3I7uqfwpUrXSOUc3+rWW+jttODxjcXWsMHdYRHDLL73pUDST2XuyGmDOE1tLp1skYrOCp0J73a2VwEtr6k4aatmhUmqv7fV4L9K6WIchvwjiU0IWl9Ux6iTNYqiRqcQd2DRCFbVwSNSYA2uGkLW9/F3obXy9zdlhPB1d7K2UoGZ1jKbACQULhY1rVqW9TujZaPrOd75DLpfuYKxdu5Zvfetb/OZv/uaSRtP8/Dzvf//7+dznPse2bdv4p3/6J/7qr/6qY7iEc46/+qu/Yt26dSsYSh999NHHswOTk+P85Cd3cPLJp3LSSacckT7czAylL3+B0je+BiLk33kF+be+HTU6ekT6+1XA7OwsX/7yl3niiScyxTqNnLjjjju44oorjq5wGWo60uIqjEcyFquVKq5LqUiJ0ZjDYMrqhjoPmeqVVWx5WNVopF8BJC5upahetCpVVihWGVauiPp6SpH1C9OLAJSqIqqKiJDYzt4mpxXKthOE9yzBCq5KUXHlBjFED89FOpttfhBlwFmUBLj2Cr5NcLkQU84K6Ca5elHarPMlek2POxRKeSxuwai7swD2PquBWs0Nt5XfFxMo9Lo8yd6l5mV5iCRP0lRfLXQgcuTCcnvytcVxvIDmNggCKpWlq57feeedbN26lW3btgHwO7/zO9x6663Mzs4uOPerX/0qp512Gscd9+zZ4eyjjz76WA6stXz/+9/FmIALLrh41dv3cUzpG19j4u1vofTVLxNd/BpGr/0GA//3Hz2rDSaAD3zgA9x1111s3LiRm266ifXr1/P444/z6U9/+miLVoe4zBha4s+zJAm5qkMSiyTdPFOCUsv3PgDLjl/rtR/bMz917wnirkXh7LV2Ve+I7OqaYZ367rWPkALedZ7rOjXDIk3Frtqm3INp+iha0Cb9lwsav7f+S71MAEoa4ZIe3/DkLYM92q9i4n7v66uBTs+aCvLIUjmcqr3Y7MLzO41M2sbrViVX9PA9fm6J4s7WDq6s4Wy8opby5S5vHRgMa8z6FhKPUOUOy3m4dJ894NWvfjXvfOc7ed3rXsfQ0BATExNcd911vPGNb1zy2scee6yFinxgYICRkREef/zxlgK5Bw4c4Etf+hL/+q//ynvf+94VDKWPPvro45mPH//4Vg4cGOPSS9/IwMAK/0h1gPee6o9+yNw//D1uzxMELzuTgff+MeZ5z1+1Pn7V8cgjj/D9738fgOuvv54//dM/5W1vexsf//jHOeuss46ydCmsyejQlzCaXC4idCEVY3HOQrlVWfSAVQHoAFbChJXpL7VirauFnvSZjqFZS/neGmd4FL5bwcwmOBFUDxpWwQqVxRJIlgnbITSx291uZgILJCBEiLuendGAe0g9TUJaOLR3j17zdETWM9uD8Rw4qKpa8VuHRi1L//VKlqiUvATb3gqhvWTVtBblCly0Dec7+8UcnqqbQ1BEqq3imkj9QVjcM7qcBy9tSTqIaxwkPdhlS3n4vA8QrHYYAAAgAElEQVRYiXdYB03eruWwLC6BsAvVfKR7z7VbLnoymq688kq+/e1vc/PNNzM5OcnIyAjvete7uOyyy5a8tlQqLYjHj6KI+fnWGhF//dd/zR/90R8xNLQ480sfffTRx7MVjzyyi5/97G62bTuDk046ddXaje+9h7m//zuS+3egTzqZoY9/guCcX1uw4/lsh1KK+fn5euREuVxm8+bN3H///UdZsgYaKkkP90bq/y0/B6THW5+3wrxpb/dwwl96k/FwgvdS5a4H9JjE1J7E3p4HlPWKRi/w4jRD6QDnErzWtCcLdRNDtez+q8VP7tCaKFmSkbFldJ207kUQeTCuMZFLlA9agG5UGb2e244wcfRgLwM1IgWhqEe7+6cOw21R8iWM72A0kTJBehu3DEqhWvgvVvJ2jtzyDHznLeoIhrOZaBCtG2s4T9hiiPY6RicGj0I3FevVHUwYExbQwVJlwVeOnv32b3rTm3jTm9607A4KhcKCML5yuczAQMMSvOWWW5icnOzJc9VHH3308WzE+PghfvCD/4/16zdy/vkXrUqbya6HmP/nf6R6y02oY9Yx+KG/JPr11yN6kT+Stoo5sAOz/+eYyV+iJx9FTT+OJCWmf/0fSDa+bFVkOxr4jd/4DV772tfyox/9iLPOOov3vOc9nHjiiUeUaGO5qO326mUqMk4JyvZOca2X0CwbVXg6YeG32ktHc0H7lOmrLqcHvYSm5H0r21bD09WbipUW712amlxMANXO5y0fi/krGn2Cgw5hUO0cAp60+Gpr/aCMRa2LTjwga6iKYrHQxk6eE+OlQbfd9cojh1rPA4lQalL4tRdipG6i95LLE1qHdhArcEahupCNpBAiicipArMtq7dp7XW99PBC6kQU7RlfkVetmWjN9alkKXu2sTZW1zu8uqsgt3aYZMYSl2davvcoZBHKRCcap0LEWpS3aAyDerhxvVYNxsWjXafp3//93/nkJz/J3r1768mz3ntEhB07dix67UknncS//du/1T+Pj48zNTXF8ccfX//uhhtu4IEHHuC8884DYGpqiv/6X/8rH/7wh7n88suXPag++uijj2cS5ubmuP76/40xhksvfSPGrDAPJUN878+Z/9IXiO+8DSkMUHj3e8i/9e1IvsMOnPfogw8Q7d5O+PiPMPt/jth0o8sFg9iRk0iO2YYb3IQdembnm773ve/loosuwhjDhz/8Yb74xS9y6NAhPvWpTx1t0erQWmOckKhejaaV7YQbFZJ0VFJa+03rqLSYGisumAmkO/dL6DQ281YoUkNM69TAU0phghxJXF5wzXLVJKUMThu6GVeLY2VK2fKvWt4VRbWGaTe/6Dnt906hEG/T+XAJGCERzcZK7yGdi0l5OOF0JvFgVq4AO6MXNZqUaAb0UnmcC9e6R0BMfdwdJfSLHCMN63OeFkuo27nWaJJIE5QXI/c4ekUCFoNqe49pY7DS5JUEEIXDoH1WcFgUfgHne+v4ch28d41Oj6DnrJeTrrnmGq688kq2bdu27Ir0Z599Nvv27ePuu+/mzDPP5Etf+hKvetWrWoglrr76aq6++ur653e+8528733v61OO99FHH896VKsVrrvuW8zPz3H55b/N4GBxRe24mRkqP/geleu/Q/KLncjwCIV3/xdyb/4tVLGtzXiecM+thI9tJ9y9HT23L/16/RmUTr+CeOPLSDa8FDew6Yju2j3d+LM/+zMuvfRSTj31VHK5HH/4h394tEVaAGMMQ4lmPOyutLrA4EyRCgPEqoSuTi27H5epz0KaY6O7KJdBmy5WM6F8Zj7V0IufJUVvyp0IuNp2eVNejTZBR6NJZXki3i9dp+iZjLSuTXdDYCkCka6quSi0iUA5sPaw6NeXb1RLh3ya3iTo7FXpXXqtIsp2jik7T16NopRuI6ZY2JZHcKFpUaC7eXc8DSbBdgROsE36fe3yWvhn6pc0pC6U3t/Dh3PvVhMmHEAkLR8wnDdMQEtIcWwdgYEoP8xsJcZ7MK7akvPVDYe1cXMY6MloGhoa4td//ddX1EEul+MTn/gEV199NaVSieOOO45rrrmGsbEx3vWud3HdddetqN0++uijDwBnLXGlRFwu4ZKEIJfHRDlMGP1q5ex4j5QOoef2oub2I6VDVMuzXHfvFONzjstfkOf4/d/DTxTwuVFcbhSXPwY3sB5M5101NzlJ9c7bqd5xK9Vbb4FqBX3yKQz8yQfIvf6NSFYmAhtj9t9DuOdWgiduJRj7KeJiXDBIfNyFzB3/aqrHvwpfeHaXezj99NP54he/yIc//GFe+cpXcumll3LBBRcQBEeuGOJy4cqeWoBVN7XA1zcv1bLomYMsbKlze50V8W5FKVuNJo8SjVIhznb23CgTZgWAluPZyWiZuxSrbE6fcaFGyjHeG341VMYO6DiVjvQ+djiiDdYHaN/sYeh8r7xRuDhHJHTMz3E+yfKjWnvqKNIyXpulkTxmvtHjSt64ohROFM2Se2VwCjqPZiHajfjmUSoT4q3t4L2AcmAZt4eA7F3Z5qXwuI7PgDMahdSLyHaVSy00pgTVFmqXhdZ18F05lRlNy/hbFjqh3JbXpFGdvX7aLEHCsRgszZ7pBQVym2SuO1y6xBh6wKtwGe+HboHDckT3+Xoymt72trdx7bXX8pa3vKVeq2k5OPvss/nOd76z4PtuBtOXvvSlZffRRx99PPvhvWd8z2M89cDPGfvlTib27KY0PdnxXFGa3GCR3NAw+eIwueIw+aHsZ9vnaHBo2V707kI61MxT6IldmIld2c+H0eMPoSoNj8Aceb7F5YyxjrdyPS944Jddm3TRMLawgWqyltJ4RHnMUX5imvjxA+A9amSY/MW/RuHi8wm2jKJLB1APfiHt+9BOzPgvkKSMR0jWnU7pjD+guvWVxMeeBbrHrOlnAa644gquuOIKxsfHufHGG/n617/OVVddxfnnn88111xztMUDqCftGy/ETQpG8251y0bsMhLVC4nCKWHGrLz+Ujd9pOv3mWUjCCiNslVQS6856zLzQKSFQa7W14JRZ94oLwo6KMe9Ct2Z5GFxpNes3C+znCNL7bAfdvhkS1tLw3Vj1+sggpV2AzBDGxW1kBnyGVHDYhsD7QZJ2ZUYoDnkLjN6RBY8Kk404IhzAUGXyDfn3YL8QhumqvOw5Am9cGiJEM/uZBetR1yv63YJ5K2Qs8Jk2Ewr0zpRoROqyndlLmzckUW4/VQF79KoMY/CStBqNLW1t5pobk+pANcUanwkt0p7Mpo++9nPMjk5ycc+9jF0lkDca05TH3300cfhojI3y67bf8iu229k5kAaSjayaSvHvuDFDB6znjBXwORyKG1IKmXicolqaZ7yzDTlmSlKM1NM7XuK0swULunw11EEE0YEUY4gX0h/5nKYKE+QyxG0/MyTHx5lYHiYYlBmsLqXYOoRzPhD6ImHMRMPI0kjr8Dl1pCsOZXKKb+BHT0FW9zCuBvg/9z+ALPzJS591cWsGfld9o0fxE0cxB/ajz+0Dz9+AD9xCHvwIHb/BMmhObxN69uJ9uRGqwxvqzB4bIXc6FOIPAg//Qr8tDEsl19LsvYFlLa9g3jTWcSbz8Xnnt21mHrBmjVrOO+88yiXy8RxzE033XS0Raqj2T5QJsQlqULmTOcQnxo0Ct9V2W+oQJEpMMNMl/OWQBAgiUX5hb6OrkaTVFBmuN6/arrQZfvf3f1qvsV7sCh8ZymSjN5blMFn1OuBE2zbHonxkuVa9EbnAGS5Fw5rQlRSaTraWWZrW9sXUVjlUd10ZdWU3A5pu/WmF8opKsQotagK387ut1LzqnmUia/SSZ2MVkzVLrgooCoaKsst0uuYshPk1Uj9czdUSJjzkyBgpffNI1+rzyTSNRzSqCC7d9KDl0ia/m//Nvtd6ZTspc3AqeeitVy30DfmjYamYtW9kyQutoHQg9eyCWFhCErtxCTLaaHzuV5p8BabM1RNsFwCyGWhJ6Ppa1/72pGToI8++uijC+JKmQe2X8f9268nqZTZcMoLeNFr3siW019Gvji8dANt8N4Tl0uUp1NDqjwzRWl6ivLsFHG5RFwuE1dKJPOzJPNTzE/sS0P/KjFxnNBJZxU8g6bCYM4zMDBMYfgScqMbyW84nmjT88kNbyScmoY9e+DRvewev4dbQo2yjot+8hOif/kXHjeaqtFUsn9Vo6kEhmouopKLqBy7meqxPs1DybZLw3yewuAAhVzISFDgmE3rWLdpA8ObtuAHNuAK6/DR8ufo2YwHH3yQ7du3s337dvbv388ll1zCFVdcwbnnnnu0RWugidnQKIWyqdnQVXU0IcQQoEmwCxi5mlFXM5QhMaCr7bvCi2dDBKLx2KyGVPt53XJlfPdmO+QuWBVhSFDa4GyctSwYFM4kuCUKzvgm4mYvKc23woNr+F+MZwEFhpCGifXmZMr24JXGt70UFp1BgWohqN9M0QanfQfWQ40TaSnZ2+g1hVMB2tp6WJqQ5nWJClGStBAR+MVkWiEi7ynLQn9JM+tie0meyCmSrnpxo62QlM3SdWH5rBmrvaH7eplyM4QqTvORmqRoFlubEOwirG52oYy9md69Qwc5MJJ6uCq+zZtT62nxO+yV6oGBr+2aHs/3CCZch02mFz8vNPhSW4M9esoFCIsbiKbGqPiZulk472aANelJUUgchUc0OLcno2nz5s1MTU3xox/9iJmZGd7xjncwNjbGhg0bjqBoffTRx3MVzjkevv2H3HP9NyjPTHHcGWdxxmVvYXTz8UtfvAhEhDBfIMwXGB4toidK6NwkJngopdZO9qBLe1AyBQOk/0hDflx+HXF+A+VoPTMyyowrMu0GmIlzzFZgbmqa/VMTzD96iOShncBO4Hv1vr0oquuOpbp2I7o0R+7JX3LXaACjJ3aUMxocIj80Qr44zJosjFAbA5LuI1bmZylNTTI/Nc6uXU/ywH0PAxANFtl6+pkcd8aZbHr+6ehfoXydo413v/vdvOY1r+Ev/uIvOPvss1cvJHM1IQI6VQmE1CsSeKHSEoeU/q4GRqB6oOkrIazRLTedrXTQkmvkBnL4uLUUSAqPkjRfo7NstfCvhgwtEq2ipticjyjAGlVkXB/KjKbOpokTjVKanJtgjjBjOVMo8ThsoyZNF61KKQOuVUHultPVkGx58B1kbzcujBgqTXewliuiO+QkKZPDJw1iDIXCBnmUnW8ZilcKJ7Ly4ldd0dmwG7CKnHOEVWEqdCAKcdJyukNTo5mu2c+pop7K2ng629ZaB2M17VtlIXeNS5xWy6oq1moACkaFuAV5NmnjxWCYEodIsxC7GFZ1tsjGfV/srSMqzTFySvCSrT6lu1svaul7WmOhTEJDkLEidiKtmPfzFGn8vei0VuNcgCnHLeGFVkWEKkcgZTylxYVZIRSKYQbJa8s+P1NfEWVXQkjZCJcOKDx89GQ03Xzzzfz5n/85Z555Jvfffz/veMc7+Nu//VuOO+443vOe9xxB8froo4/nGqbH9nLbVz7LgUd+wfqTn8+r3v1+1p30vJU36D1q5knMgXsxB+4jOHAfevwh9OxTjVNUiB05EVvcQrLxTGxxC664BVvcjBvchCusA9V4Xeayf+sA7xzJjvuo3nITlQd+hntyD4kSKiMjJKecTHXjRg4Vi/zCQ9U51ucijttwDOaUk1HaEA0WyQ1m+VWDQ+SKQ8vOsXLOMT32FAcfe5indt7H7p/dycN33EiQy3P8S8/hpLPOZ8PJp6U76c9h3HLLLb9a5CAdUBevTc6815Q6+pvaFEpPVvGkOQxM8Lk8xqf3vyXCq4Mu5rvMUesOeqfAmiMztz7TtbX2i9IC6Kz/oItVpKrzEBUxXuhkMnbCckcUOUVJd/NMLGwthzAUK2bMwjpBqa5t8V7j66pvW4sCVgX1nK7UC9h4zo0Sqi41HtAaEt9S0HS16vm051KFTmUesGYfzlJtpEhEsM7VjR2lFM41ndVlfTrRxDqPzubJK8MiPtq0tSiHr5To9CBYFaLdQqZGp0x9hoXU6+edo5vhNMc8wxnRhGszmbSSFu9w83NkA4NZIjoxkQBFdVEPZyERrNdUJH16TBcjq1NhZtdWU8xqRdglFNhi09GJonNFZVn2AzWq16HF4CUgybxSm4LNuPbCZkDsPAaO6Du+J6Ppr//6r/nGN77B1q1bufTSSwH4yEc+wm/+5m/2jaY++uhjVeCc48Ebv8s91/0r2oSc987/wklnXbDsF6CUxgn2/hiz/16C/fdiDtyLKk8A4EVj1zyP+NizKY8+j2TNqdg1z0vrD6neayP5OCb+6d1Ub/4RlVtvwo+PgzEEL38F+d/+XYKXvAx9/AlUqhXuuut2duz4OYODRV538evYsmX1ax0ppRjZtIWRTVs45dyLsHHMvofu57Gf3sFjP72Dh++4kYE1x3DSK87npLMuYHjDsasuwzMBv+oGE2T6hqQKoF5Sw1g8nK4ZNjJIeeFOes85QyzelfhGrke7hK2flx8849vMtXYoAbTFOGHYDeA50FGAwHkGqjWltVWOvFVEKmCsY+DeQrTTRdeQCyJKbbWSFqN0b6A2xlYGuCQKMWXbeQbq4Y2qQc/eBZJRVTjvmfGTDOu1WR91po5Gv5KGBypf7dQrAOXhPHNGYc0aCvUcuZp3yLcY3nEuIKi0BxvWL6kjdMJcjTHRNR1vakubzrlHoa9SbmK+0xiqotu8TDE0eVKUElQUYSvN3pEmgXp8X3gyr1CHpR1ayxRlIufqtYW8CEkuIGjz9jYMJt/8BZaEARlglhJOFOKbn9vW8Lzap6BOVZ5uogQ+nQlRhkLsWooIdxx77Zu2EMkFz3PHItzd5205b2CFJqcKJL5KTEIiloovY8SSeE/sqqQruG0z6GjnNHnv2bp1K9D4o5PP5+ux9X300Ucfh4OpfU9y25c/y8HHdrHl9Jdzzu+8i8Jwj4QFSYnwyTsI9txGsOdWgoP3AzUD6flUTnwtyboXk6w7neSYF3Sl714Kbn6O+M7bqdx8E/Gdt+Hn5pB8geCcc4kuvIjgnPNQg4MAWGu59757+MlP7qBarbBt24s599wLCcOnh6lOBwGbt72Ezdtewllv+z2euPduHrnrFnZ8/9vc973/wzHHn8xJZ13ACS8/l9zg0NMiUx+9IRxQVGBJKuMGOoTJrYbS0qYwLkVtrrJANlEB3tss50TQRte9Q2VfoluwaMWViLoUrGzXNKyOULbhARAk85i0ytjsEai1o1jILremqgnF0Cmp35gIqgupFYqJwirDFFUawZTgjaE4p5gJuhtJvs0wWgxpqGSm/OqaRyO7VgmJ1lBKurTT5MGQVH9LdNjCLhhZlRVSdmg1g8UQ6wJe5hYVzga6cz6KgHiPDVWLl0QpjVuC2nrxUMjOqLEd5hzkfUDNXFWy0KshbRl/YirUqMYb63t5MtTWfXO7gSiSuqdFZZPfOJ7kU7ICK+nT0Lw5Iipjf0xvGCVfZjaEEQZBx0CIE1NnIbRRgOqBK0MQRJssf85RsMJUW1yo9QksIMRY6MluPlLV+XruXfMMekCrKeCY1pbaPFBKlYHWPjWGQCJMNj8zdopZscyKZ8juJw9YPIlzRJJbEJIpq+U+7YCejKYTTzyRT33qU7z97W8HoFwuc+2113L88YeXX9BHH308t+Gs5YEfXs89138DE0ac/5/fx4ln/trSHgEbEz5xE9GubxM++n1UPIdXIfGmlzN39p9T3XweybptKzaQ6t2M7SP+8Z1Ubr2J+D9+AtUqMjJKeNElqaH08lcgUVQ/33vP7t2PctttP2JycoKtW4/nvPMuYu3aYxbp5cgiiHKph+kV5zM/NcGjd9/GI3fdyl1f/wI/+eaX2LztJZx81gVsedHL+vlPPWD79u383d/9HdVqlZGRET760Y/yvOcdRvhoG1L9yhMQYMU25bt0eyZaFZ/ICdVAFqcRruV7hBoS11OI1lJGU03hrZEp1BL1s9qWRE4xQzkNn+nQeqfQoNbe6xpRagy1O4SUSj1OqtLI8Wh+jywxxijMU8XSPJ9DsSZHxMyGY2DiiQXXBFncYMEGVJsC/oJsQhMXpyxqbShRIqC3DZQZVWJtzV8igtYBSZPXqp73wlKhdo0slNoVxVgBmkrdWeBaHB0eT6LzGLtYnkpjvhw+Xa9t0y5BAImrsxa2y+lVa+ihR/DGIS5rv+mCJNSYauPmaxXhXU2+tI3mQssFq4gzTbc6GKLLGpXYbKxNdaFEp6FosrR/txnNfh4FVHMBErt6pJ6TiGwgQBq2WMZh0PX1WXCKEfHM4vFKYY0GX8USUhqOSAYqLMFqTgubRRcUMFhiVBbCq9oIUXTDOdUVcc4QzTesNKdCcDXCllYERBhSSvLIDVOoFIhiMAKBssS+Sqc6XMN6DWFLbpXHqbClfRsZmK9m4YPpwBOJCGiphb3q6Mlo+uhHP8pVV13FBRdcgPeeM888kwsvvJCrr776yEnWRx99PKsxuXcPt3/5Mxzc/UuOO+MVnP3bv09+aGTRa9TMU+Qe+Aq5B76Knt+Pi0aonPomKidfRrzpbAgOz0jypRLxz39G9a47ie+6E7v7sbTfjZvIvektRBdehDn9jAUhCwBPPbWHu+66nSeffIKRkVFe//o3c/zxJ/5KhYQVhkfZdskb2HbJG5h4cje/vOtWHv3Jrey57z8IcnnWn/x81p98GutPfj4jm7YQFQaPtsirimq1yic+8QluuOEGrLXceOONfO5zn+OSSy7hxBNPXPL6sbExPvShD/HVr36VU045ha985StcddVV/Mu//MuqyVhbLXlvyDnDfKYtqSgPcaocShaG1L4zn+5AWwomxwQxKummRWUKtEjqMQCSnKArAH5JA6MZnoV1dJSew7lWoyDymoLzKNfIhmhc14mNr1XWGsJcwrxtrRcpKlWs8lEFMQF+GfVzJfPoKR1Cm3GgvSJAkQSDDGdhfVOhq8urENbYPJXCAHF1GnzrOGb9FCNNO+21oXjSe2U6Bit2oARXCdjsYqWQcIDFNOT6vDbXP8q8Qt4vYv5Ko9UZ2c8wQ5ilLGpRaITQCSXtEd8pkLDxeSBRzDZ54STzwsT5CMrzVFwJHw6SUwE2cjDXfZxDsWK+EJBkRpOKXD2FSZkAdIjkHcQNSyAt5FxjV2z1Q3p6L4zqTchEfp5BqXlZsmuVYH1T5pIojKtSCwssWMWchIgKkLol1OjUKo0zgkqymyGqJTTT5gIkcehqXG+/GUZJU/5XK0I0hURIMkNlKFaUtaZMcyxkd9jItGxE1DZgBnQaFRLqAap2lkRFaDvPkKzFyDCIJ2cThueHMRVwArE2WJ8wyb4F/SgvVH2ZCSoU0VR9hWZzxeUM8UBIVBWCoEBMSkahVA7wRzQKriejacOGDXz2s5+lVCoxMzPD2rVr6/Wa+uijjz6Wg6Ra5b7v/x/u/8G/EUQ5Lvi9/8YJLzunxbjw5TLx/feR7HoIt/cp/P7dyJ4HYXqcaTw+P4wvngJrtyBjA8iOn6GGfokUh1BDQ0hxqOn3IjJYRLTGWwtxjJ+fw+4fw42NYfc+hX34IZJf7MQ+vjsNpg8jgjNeQu4NbyI4+xz0CSd1NX727XuKH//4NvbseZxCYYALLngV27ad8Sv/jhzdfDxnvvl4Xvamt7PvFzt4/J67GPvlTp68/576OdHAIMV1myiMjLLuhFPZ9uo3HEWJDx9XXnklxWKRT33qU/zJn/wJACeccAJXXXVVT0XVjTH8j//xPzjllFMAePnLX84nPvGJVZVR6gaEIM1eiswL6MSQmAH0oikykuUXdVce0gpJaQhdqjAavNiWkKskNFBtfDaoNOzVu5a2vWgSnYd6bkv37WpFahZ4UXWTQRkD1cUUtqbwJSE1GiqTdYKIyAlaNAXfmvavrIPMKFRqHpHWHJJERUTaEoQRKogQV8YGBpIY5TxWhVSDIZA0hKoW3OVEsCpAjOBlDRKESByDj5YMtxOvsc3FfXtR0pvqRw34HFPK4aIA7aTrVCe6gFUJuUBgJrt6GcZwSebwTDPINmYXFw4nimICKE0V25o3J6oejqh0DnynPJ503ScqR0XmCZoCHrvNpzIhJvUr1NtRxjTix4yBKI8LBSZqI2hW+FuNjQX9iMuM4G7DztoyIYU4gtgzH4GTkKCJbS8vBcq0kkkoU8A5hzYRia9QHh5gjoB4Lkd5II+qzLRJ24BDoUNV9zx5UagmZ5xXBlyCiEKbLAqiqbRA80aLQgi9YiHVBQwnmvEuIabxQISZa9pgqFHPqxxi1mKVQ9t5BKFMiWk/hTF7GBtOiIDEQ+Q8eRno2L6IYL2l6stMdSDiqM2M0gFBWCAWDTolu8HOs6yFvkz0ZDR95CMf6XrsYx/72KoJ00cffSyE9x4/UcGPlfDjZfx0FcoWH2fhL4GCvEFGQmRtDrVlEMn3TmrwdGLP/T/jrn/9ArOH9nPSK87n5W95R73ekh0bo3rzjVTvvJ34np9BNf3jqiKFCauoHLBuM3ZwM14CfBzjx8bwu3bhZqahtATVqTGQdObeUsesQz/v+YQXXULwotMJXvJSJMp1PLeGsbG93HXX7Tz++GPk83nOO++VbNt2BsEzLMRNKcWxL3gxx77gxQCUZqY4+OgupvfvY/rAPmYO7GNq35PE5fIz3mi655572L59O0DdqH31q1/ds+Gzdu1aLrzwwvrnm2++mTPOOGOVpWwyRjqEl3oUJgjxlRjRBtGN9WaCPK6aKhlWAUGAzph4G1kHrZ6kZjIIF2p8khE6NCliShkSlXoUMEG6Exw3kR2IBoQk0CmlcVP7tfDCRphhp7DBhd6qxdBQtBvXRKIWqNrWaHQtqk8S2smefRMzmFZZSVBRxLkcQam2ky+AwqoQcZV6/x6FVVF7xgcAlY3rYHxfV4XfdSCdqZ0bOPBt+y1NJiN5DOJDSipe4NnyQFUsVhTGC3EDU3kAACAASURBVLHRuCiCmYVJL0oFUA9H7Dz3VhbnGIyDIkqE6kBAIEE6u7XQOVEkoaESDeClilMaMRG6g3E8TERMDpjtzNzY8SuhmQ6hmTxBEHxmLBNkxaHr7ILpz8CHhLaCW4RRVC2iIgdi6sZgXvLEylJiBi+tfzdqBZWbp1nQeBxaKRILLlCMr9uCP2jxrkKCw1KiSL5+kVaq/rvRDZm9CIOJYiazw8Xk8ckMgckBrYQkzRCp4v3CmkZKwGvFfHkSgtZ815pnzgXdNwRTxsKGB82nwXV4cXjlEBMjqopVBqHIGtmISIHBQgFbncEwiMFQySSLCqNU5icac9jeH9lGignrxaCPZGxHz56mZkxOTnLLLbfUmfT66KOP1YUvJ7jdM7hHZ3CPTcNck7I/GCAFA0HGGDMb4/eX4P7aH3mQjQXUCUXUKcPIuvxRDxE79MSj/PTbX2XvzvsY3nAsr/1vf8nG523De0/17rsof+vrVG+7BZxDH3c8A5ecRTG3k6K/DzUyQumMd1F60X/G57qH7/k4xs9M42Zm8NPT+Omp9PeZ6dSoqsZp/lEYIvk8av0G1LoNzOfWMF8JmDlYZn66SjLmkO/tw4SawkjI4JqIwTU5BtdEiBL27XuKu+/+Mbt3P0Iul+Pccy/g9NNf+owzlrohXxxm64vPPNpiHBGEYcjBgwc55phGyNTExMSKno877riDL37xi3zxi19ccGxwMMJ0q3W0BAYLISUEJaC14HQOcEim9LnIkMuHSDSMifJo8qR6n6CUShUILSRiUUGU2khVm45RGYQEkTRR3nlwJkTV6vwowUcpeYKzHi2pX0hpg480SuehnJ6rlEqf1yBCdA7l0mu99ehsh15EGAJEBpHAIMmBejiRZMfx2c9ayKESRCQL2xIQjyhBGcHmijgJEBegFGndH9IQO6UUWgtKS8OLoASlNcTpzrsjpKG5CqLSvkUJRiuCYD41AJUBsYhSaKVQWmW5Ws3XKpJiAVNJjyOgRSEiqPq9b5yf3SEQSRV3nd6rdCJSIgaAvBNKJjMKlE/vadaGNwrlFUoEpQTxQl4FlFWMKJjWFarKYWWAAV9bQ417gQiBA6tBaY0xhsR5JOtDRBCtUF7QRlCkc9opsV5pwQd5tJc0XFlrxKY5USq7da6QGqE2GIBqBSWCRigkinnj0nnUBm/yKJfOqYigFJjEoPKeqghpaFuqDdfWR32t1BJYlEZphVJpnyLpPRkchANzIc5ZhLjuiSpgKBlhfjiHmlHpvVEqI5AQUJmhbxcaVaKESOUIQoXWFu2ERCl8FNTLOsy5meyZFAZNHqdqSyH9znuF1iZbw4IJDDYEVRWs8iTKIl7QKl3TxguDOmTeaZSACTShj8ibEYwfT4kUPYS5Ag6PRje919LnQJTLHj9BxON9OpcejQpCBmKPEsFrhRNbJw+xpoBXGvHV9FlMJwGlsueuKYnIkq6b9Hg6NiWCCTRBaFDDhii3hyk2IomQF4sSjw8ULvZYHBWpUvLzmDCXzqcoREn6fEs6H1or5jYPEjCITDXeAUqna2xkpLDgvq0GejKa3ve+9y34bnx8nA996EOrLlAffTwX4b3Hj5Vwj03jHp3B782YiyKNOr6IOr6IbCogayJEd94Z81WLP1DCPTaD2z2DvXMMe8dY6n06bQT9glFkOOp47ZHC1L4n+fm/f4vH/uN2wsIgZ775HTz/la9DaU3lRz9k/vP/gH30EWR4hPzb30HxJWsZeuIrBPu/hh3YSOmlV1F64e9CsPQLUIIAWbMWtWbtoufNTlTYt2uKsYen2H/TDHG5UcVcBwoTpvObVCw2ywnxeNzgNJXhPczZQ4RBxFlnnccZZ7zsaWPE6+Pw8Xu/93tcfvnlXHLJJUxMTPDxj3+cG264gT/8wz9cVjs/+MEP+NjHPsZnPvOZeqheM2Zne60CtBCl2TlSYgSw1qd8DqLxzhPnAhKlsc5TDA02sTiX5tgoEpzzeA/eeryk5AqVMMSpNBAvVjmUm6eqIyJfTXNrHGgTpEp5HINOaakHnMmY5hISCXBhjjAIKZfKOA+iApTSaU6T93iX/iNJd5Qhfa/hPYYQi6TMb752jHrugfeeBIOVAJeRSNSuBRj0ES7xJFZRCQextgyuVtBS4b3DOYezqbFXzwtqNJESU2RhhQJYycaXyW58gHiFz+WxOsTMVRAVYp3Deo9zoPApV5v3eOeo5CJKuRz56dmsL58d82gP2iagBCdp9pLOBPLZmH3zPNT0zkxmj8c7sM6lHo3se+ccTnx6r50ncoayS42YOV/CekfgB3Cka8c633IvVOIAhzcelMEnMYhLvQE+bdd5j008c2sKOFXE76+FXaYQEZz1WOuxmRxOXCqTBDgfp2MIyvjqAN5l47WpLEJavBWX1VZSOSQp4126dpyDJExQVuF9SqxRJssic03rJlvvVgJiNMa6VK4woqoKeO+wiUvZ1bI5BY0oi4uzY4nDhoYyAaGDyGe1pVzNsdGhdpED6x1JnK639LlLx6RcGsRpfYIJciibx7oy4jUI9TlO14FkOWaeOLHpPLr0vvlamy6dY2vT9eAciPdEPmbQCZN4EhXhfRqCaK0H57FGmnJ70vdJ/RnFZ89F1geZ0eg8XqXHYhvX17QnSK8zgnKSvnN8er9d9nw05iZ996TCCp50vSaxJalaEE0yGFGZq1BJDjGg51BUKDlH4ibJSxmtw5QVMRjE2znwDp/NgavNiXUkHkrhEIGfyt4BHmfTMU1Odvey9YJ164odv19xDM/o6CiPPPLIigXqo4/nOvxcjHt8FvfoNO6xGSil3iTZkEefvQF1wlBqKPVIBSOhRjYPojYPwnmb8PMJbtck9sEJ7G37sLftQ44bRL9oLerUYcQcuUKnB3f/kh3f/w6P3/sTtAk4/bWXs+01v0GYL1C9605m/uHvSX6xE338CQxe+RGGTogZuPd/Yv7jQezQccxcdA3l094KenWMvPmpCk/smOCJ+8YZf3IOgMJwyJZto6zdOsjQuhzFtTnCgqnvznnvKc3EPPTATnbs/ClTc4fQScTAzEnkS5t4YiygvPMx1p80xIaThhjekO/5XvVxdPC2t72N0047je9973u85jWvoVAo8Ld/+7e88IUv7LmN22+/nf/+3/87n//85zn55JNXXUYRnan1TSE4QNUUcSpVjFR7aJIKEWkkt9gWXmCF02kuUnloEFUxONUofVskTxLExOEsTDXWb42s+xBziDTCBOtnSHt4VOsJeStU0s1+Qomo+ipxPkSXk7aGanDtTaRyeCGUhaqK1TmsT9DSYLwzoaFzxsxCeFH10D1Ic7xG1QCRypNoUGEecRkddXOdIFTHArtpuFYmmwQMx5r5OMZFJjWXpHl82W58NubKQI5Yykh1sdK9UPDdVbbmV48HEjw5NM0xTU7nUUx25Cl0auG71oYa5xpcdKPOUxKoSHfChJb1IL71u+bEqqYGXDSAcg5RDW7FWjrRaGwIlKKsksxrpdCJIIvRl4sguoCSJsVZa0CB02gb1D2eiE/Pj0Km5udYT0gz211cCPFlh+lwb3I6AkqNMbUHayrQRPXhShaWWQ8gFUh80pWGvzn8tLllXRhC5iZopYgASD0yVTOAUiG4abpBJPV2dYPDEvsyETk26Y3E+RzoMvv83q7XNEsOUB7K4acXztvk1hGsK5J7qvVpNQPHYCoH0zGasMM6bR2vE9UxnFMdbcrxv/zLv2wJX7DWsmvXLo499rlZILGPPlYCP5/g9szinpjFPzGLP5SFxOQ06oQh1IlF1AlFpLA6YV5SMOgzjkGfcQx+uop9YBx73zjJd3dDTqNfMIo6fS1q3eExztXgvWfvL3aw44bvsO8XOwjzA5z+uss57ZWvI18cxu55gqm/+3+I77gNtXETxQ+8n5FNY+QfvBr96F6S0VOYfvUnqZx6+bIKzXZDabrKngcmeGLHOAd3p8rm6LEFXvy6LWx+wWgabtflL3/6jtvJT396FxMT4wwNjXDRRa/htNNeSFKBA49OM/bINPt/OcPeh1Iq4qhgWH9SkfUnDbF2yyDFdTn0ETRM++gdY2Nj9d83bNjAf/pP/2nB8fYw9E4olUpceeWVfPrTnz4iBhNAVNzIxGDEukrr2rQ6osHJJYRa6ukjOlfEOI+tU1F7YhxBc+K7BFRzET4KMMkcCklDq2rn1JOOBKWDOhPwnJ9HUcW0UWQrhFEbMKl8lhlTU3bTIp95qxmUEKgQmEGq8Xi2z6+JRbL8CJuOyRjE6bp27cl0WQ95p3AdnlMnAWREFiIJKhQiFTLXrIctQ3fS64/Bz8xlLHWdE+BrzSU+ob22zIDRzGb3Iw6KREbVWSnai/5qNEo0UEWrNKwPl4aF+Vpdn8btyP4TCqmbpVWowgSUs9C/NkToRYncM+lSD1sTC9ucmW8aXeZdw2GAoodh79lbtxMUaIUayMN02+6+UWRFx+rtJzqH82U8qeE+5CLmlEIVR1DzFuKDWa81r1TTGvWpgVMthEQ9eHNb2CVFIAqQjIXQBobxEzeTyxgTB0LF/LxHVIxoi7c5Bt0AFaOYVV36klY1voBGSQGXEaJoNUtpwxZk8ilysWJEmYx8pTaznhlmWcNwS7MahfEewiilY5dSvZMES9ThefCi0TpIN13EpZsKRGi3UHYTDqCUp1purKXmIrWpLeVJtCOU9N5PBTEjXmO8wS3Jf57Jmg9Q0418ujBQ1FK8yAmYMiY4hLPDjG/dyJo9B4j1AIGdq8/QksjHBF638KH4pRf9itGTZrJx48aWz0opXvrSl/ZzmvroYxH4coLbM4d/YiY1lA5kRlKgkM0D6BeOoo4rIuuPvIdChkLMORvRZ2/APz6Lve8Q9t5D2J8dRDYW0KevQT1/FImWn4fhnePxe+9mx/e/zaHHHyE/NMLLL/+/eN75lxDk8vhymbnPfYbStV9CTEDxHW9m7fF7yT36YWRPleqWC5i94P+lesKr63kNK8X8dJU994+zZ8cEB59IQ2aGN+R50SWb2Xr6GoprFyd3KJdLPPjgDu677x5mZqZZu3Ydr33t6zn55OelORyALsCWbWvYsm1N2udUlf2PZEbUI9M8sSNNWlVaGFqXp3hMjoHRkMJIxMBoxMBwSH44JFhirr337C+P8cvphzlUOchMPI33HqMCRsNRNhQ2csLgiQyHi9O09wGvfOUrs53Vzn+ERYQHH3xwyXa2b9/O+Pg4H/jAB1q+//KXv9ySJ3U4WD+QZ/LE43GHKshMzSsjdN3aB7zJAdN4SfMdPJBIKyFD0RTrHpIwKyJb9AFVoBIMg5QbPpTAQKWhhtT09loKDsCQzeF1kJEFuLqMcc7gCQmqjZBaHxjIeAtCiShLSoagsSnznslBUqozwXmV5v2oyhyBGU6Z+TyM5kfYZz2ITgkwlIL5WQompkZG0TIvzb+3ukCy85tgNFIchMlUYat29CelqPgqUEjptWvKrM5D5ufySFprh9Sj5WpGYabAahSDNqSq03tUo4h2KBIVpAQVPmFOSimbXweDKB2Gb3JbpAhdW8UrIaNV704rHXihRqNjQ42zzfWLVKvxUT9Qa05Qg0Mo0+RtEZ0eLoY4XwRVpTKQh+lWbTZyQkYfgRIhF+iGodkp6X/Jgs8Ze0nNjdNhuCEGJwkiqVfLD04iWYHbwAT1sQqKAE3cNPdOTMtc54rrsPJ4fdwKjRaVmvICFTNEoATRlsAZtJJsVUn9fxMWsCNDLaIqFAYPJsAPDGPczILnX6RGY54ZgSrA69yC8TZvDFbCYQLmsIFmYDZjFFSCtHsZRSiNFNKixzbdJJgVS1GNssaOMOdnCMQRaE1RrSGf1WLSQYFKdRIrFquSdH6bJmzrSJ7dBzM9qJAnGJnFVFLuEKcVM5tCinupG01LkcOUw7UMil+wPqUHW2ulWHFOUx999NEK7z1+33ydvMHvm09fsEaQYwfQ521EbS0iGwuIXvxlcKQgIkiWI+VLCfbBCdx9h0hu2AM3PpnmT500lIYGDi2eq+Oc47H/uIP7vve/mdr3JMV1Gzn3d9/NSa+4AB0EeO+p3HQjc5/6BG5sH4WXn8iGFzxJLvk07vEBytveTulFV2DXnLri8cQVy6EnZhl7eJqxX04zuS/d6RzekOdFF29my7ZRhpbwpHnv2bv3SR58cAe7du3EWsumTZu58MJLeqqzVBgOOeGlx3DCS4/Be8/seIWJp+aY3DvP5N55Jp6a48kHJ7JciwZMqMgXQ/JDAbliQH4oxBdiHk4e4OfJXexwdzNlJ5ecg2MLm3nJmpdxwcaLeNkxZxJ0KKb5XMfOnTtXpZ03vOENvOENR55BsBBqZpvWXTW/uLGvTEglGME3heNI0/+ddmxNVIBSE51vi6bRZnxkGwYDOodlliSzblIWuMZOtkch4knyAclsDmPT9pPiEA/nx8hVDD7TilsVIkF0WKdYj3N5dDgMs2M0B3hFOgRbSe2z/DDE0/WjjZE2edea8j+VADrEhIXUd9H+XIdFfLIfq0Pw5azQ7UKkfqgsL6s5AkcPtMxFPV5OBBFFLhBspZIp3qnEtZKuaV6L1McReEUVUgp4pVvsomoxT1kPgjuEz82BMy2Kac2/Uht5JazggjGsDJLScoAzTQZtetcWKJ61ebRRAIMRanYeq0J0RqddzZjVasumFhFlQ4PXIYnLo3QVHw5AUq172+pM+Jlt002/VcNDUGrPSxEGVY7ZjIY6NoMI1dQA9q5DWwvf3XkMORsyOzCI3ayR6YMEKg2tNPkBKDmUGIyK6rV+IaXfl1ia41MprttKKTeBw/L/s/fmMbZdd73nZ6215zPWqbnurbqzfT2PsTOPjpMGkhDSRGlo3muEaEKEGpSnpEmHDnQQJEIJEaIlkAB1v8frRmLIowkJSQgBO3Nw7Dh2bF/7zmPNdeZz9rRW/7HPWFX3+saJsRPuV6qqU+fsvdbaa++z9++7fr/f90faGqwuaCuTBDc9YoaAUHd65DU7p+gYQ/bdxR4+a3OyTEf1ZLN7Nayc7QF8DnSLLsr4Y4e43dtoSQEpxCbEQoCQxL4zxkhDp0CatkiIx3uRAscY8trBENEV2Xhd4eEaG8ctU853WG1bSCSp0VhOMVtI6W6iVLmXh5b11bh5Dpfx87293qHOdYDhe6nyCXTCbn6+1J0gldtbhKrdwvgvcHje0aNHr2g4GGOueqXuGq7hRw2mFWdem+9uQi17oIi5IMtL2tcjSS/CMC3hW1h3TmPumMIst0mf2EKfrKFPZIaIKDvZ2OcC5IyPKDhQsDFoTn7zyzz2+f+Pxtoy5fm9vPI//gqLt92L0RB1Dcnxk4R//An0I9/CnRTsff0GuZmLRDP3Uj/6vxAe+nFwdq/RcDmE7YT6aof6Woeti202zzeprXQwJvPqTC7lueW+Pey58dmJUpqmrK4uc+LEMxw/foxWq4lt29xww83cfPNtTE5OP7c5FYLCZJYftXTLUJBCa0O3GdPeCmlVIzqNiE49plOPaNW7rJ3aIm0JpFbALLfwFm6WP44sJRRmPKYWiuw9PEllIU9sYraiTS62L3CycYLvbj3GA8tf5DPnP0XBLvCK2Vfz44tv5cbyzS+4auKLDWEY8pd/+Zc88sgj1Go1yuUyd999N+94xztevIIeMstJ+n5gvM5InkY/HG+8Td9R6H7xJ2nRj8+zJg/SyikKiaEkfeo9o/fZrq2hV8AghKRVDDC1KaS1sWNbrRQmHnpEbMumFExSG1CmnX3lrBJhjzR5JisTKnQMuHTzLrouQVlgUsqpjVDQtL0BOfB6XjYjFKm0Qdm0S0eh+cQVooKyfZMe8UscGzmIVMp2Snp5mGl+GhVvIS0P4wTQ7ZAoj1RakIbb7HlBYBQmBatHmABs1X89pISpZ5MKi12L6wiQ2uBrl8DAJVVF2RY6cGhHkiJg/DyWbyOizDhVbgEpHIpakNq7n1PtOqhWh1jlEUmDyC0RWzlI4pFsnowCaUsR60wC/tR0GZlG5HtODW3bvQLKuyMTwOi9thy0nxLmNKkjoJH5wiZUnraJCHMOufb40gAATgMIRsIax3roeUt7pNn3uKm1xFkamaetxwB9VSDVmXlsRHZfMHKcVioypT/HLRB2a+PzZaltBZYNMTHrYp2Ss4CwXExPsTLxd3qHjOMinTIwzJPb7nqLfZtE2xCBtH2kFeKIYKwpPZHH1BOagWA3KaWssLWgTgeEYhCzIHrd5QLsqqJJDAjOWVvk4yyXqmyfx3NtVsKAgpghihwCWWHlwALxuYsUW3USt4Mo26R2jrzb2mUEV0bOmiCfJGwNp5FU2IAZ3l/aNkMPLzStLrU4Yc/33NvV4apI0wc+8AHOnj3L2972NiYnJ9nY2OCv//qvOXDgAD/2Yz/2PA3tGq7hxQ293CZ9eA19rAraZCILL5tDHihmkuA/JBBCIOZzyPkc0WtnWL94gfDEOvJSi8LpBrmn3LE1145uUUgi7nTuI1xyiUWOxhcsHv3so0TGEJmsHmZY/g90X/MfslVZkWCqGtPRmPMJ+sGvgJNi3CQrTKIlSissHGxto7BRWiG6FqatiFqauDMche0pKntz3HB0gsnFHNP7C1jO7uFuWmvq9RpbW5tsbKxz8eI5Ll26SJLESKlYWtrHy172ag4cOPS8Gc5SCoKiQ1B0mNoHYRrytdWv8MWL/8g31r5KvDdm3l/gDVP/Hff6rybfqlBb7VBf6VBb7XDyWJWT/1zFDSxmDxWZO1Li1iN3cc/0SwGI0oiH1r/JA8tf5MHlf+az5z/N9aUbeMf+d/Ka+ddf8z718L73vY+trS3e8IY3UCqVqNVqfPrTn+ab3/zmD7xI7fcFMRRY8ESOzmWt+N3fd43a5n3YpYv+SjZgCXvM2DICLomVTHLavR7luvh6PI9BWjU03nh7u6A+V6C/PBJ5OZTVQMuMkPU9aK6lCIHUssBESAGeI+mbolkeyPj3W4nhNV2RHiuWgFAjMMR5F61dsHzcsEsmxcDYnATGJTQxWtqkvWR9A3gqT1e3EBiE1ULJFMgTBT5+e2ic7YbE8gbestQKiN0JLMsdU2kwvdX/UThYxCQ4Ogvtwg4gamfyz/2snp6NWCxJ2tvz+3vN5+NMIXssDwjI+x7aV2x0mhRFT7Z5EAsmEUJlsztCpEc5cYBLnLdJu4bQKuFIOcJu6BX9FcQiZjTXq+7H+LZNCUUqU1qlAqWotoPwJYUIp+2Nz6wAnQtISgEqrpFLJKFtIQoR/pZN1eqF1GERAUkugDQeEUTZ5XqUKdgdRk1fNeqdMYYqdfIUCPCwkERunkpjk80hO8aWLjm7PPCW9b1Jolc2S7geVuqTijT7zBopLrvLYkNfLrw/ai1slLRItY0BOs4M5bCReYsAIc34VFluJs1tIPU8iNqDhlPHQiRqcHz9Ts7vNRSXh/MwyMtKJcYoEAFbgWKlukmia0AZIwyJSPGFjRYhWoAWOwsjhZ5FM44xSqMK+TERlJ0HP3yxU9Rh/P/EtUlth3hycvDZv/Wy4FVZdn/zN3/D3/3d3w3+37NnD7feeitvfetb+fmf//nnbXDXcA0vRuitkPSBC5lHxpGo2yaRd0wjJ/5t5by/XxhjONc6wyMbD/N07SmeqR/jVOMkqek9dEogS5KD0SFeduE2DqwoCloRWFN4zh4cNYkvDY4A11FIZ+ftS6OpiZiqCNkUIRs6pNo1tJsSOwlwkwK2dtGkpDKlK2KaVptEddAqJLbaxKpDWoowUwnCMTieJHB9OlaeapjjwikPTvWfB5ncaBRFhGGXbrdLu90iTYdWSqUyxQ033MTCwiKLi0u4vSK2qTa0o5Qo1SRpZgZYUmAria0kjtolpOd7QKITHt54iH+6+Hm+svIg7aRNxZ3kLUtv5w0L93O0dMNl2+82Y1ZO1Fl+psby8RpnH9tESJg7UmL/7VMsHC3z8tlX8vLZV9JJ2nz+wj/wydN/xe8++n/wx0/9n7x16e28ZeknmXArz3n8Pwp4/PHH+eIXvzj23s/93M9x3333vUAjuhKGBo52t1nZV7gME9ceGFcIiRaZWRjlJLI9brSJXB7tTuEIgWNZhFL36tkIOpZNOdVoBFJa2HI7VTCX/c9ATx0uW3Xvk4TEdWhO5TD9fIoecrbLbuvQlpWF36QiBTNC/EdW3fsafhOTJZrTebaaoMKLIAS2dAhEyrDY5viYU7ktoMmAb+WJdIdU18GKEdImKUTIqqJTniTUKbSqOzx1AEpqklxmII+SulEkJYlYz0beh3QMAhfaHWxLonARiUUH8O1hPwXpM+WXWa6HZEamIZUOmGHR3Z0Qg7wnIQStUpFApnAFpb5OMaDi5fEXfdorGbEIRcym2mAqmRmfSyHQQrMR1KltbBH0KPJFVQWG3nahRRYzqLNwQxtr0Ia2e9Rj+/1vpH6XqyW+yZMqjY2FkZJWKUeu1aUcxXSlAZ15AN10+9WYIbYKoNrsMH37iwedkEiYLOcMn6h33VhYWRhgDwqrJ+QBLc+g6waBRAoJcQSOwLEtQtnBnhHE50PUyPGOjWyXk2akpOUvUIkmgTqxHeBYLXQM2tII3wwiQbfPmRjJ+1JCkQDC84ZE1Y4wfpOa26Y48D8N2/C1RKNIetdvskuYaiAcJvzr0H6D7vQ0pZO7kyKz7TuiczOwfnbXba8GRkrcxZlsuPHlc/SeTyJ1VaSp0Whw8uRJDh48OHjv7NmzNBqNK+x1DdfwowUTpqRfXyZ9eB2UQL1yHnX71HMST3jWvoxhuRGy2gjZaMdstCK6cZoVozQGSwpyrkXeURQ8i+mcy3TeoehZVzTsm3GThzce4qG1b/DNta+z2s1UxYp2ietK1/POAz/DknuAwsYs4lLA1ok6W+f+iTT8V87JHNOH7uPwnS9h2j7GbONvcc7/C52na6x+p0jUKeJdfwDvnf8TYul2aCeYesRkNaRSlkytRgAAIABJREFUjTiw0YVUZw/OQJBOOawXO6w7LdZ1jfWtNVq1aq/uTAYJ2RqwAm0kOkxJw5gtOmzSC/MRYEkLWzo4ys4MJTdHIShQqUwRBDkmJipMTFQoFMsstw0n1lv840qbk989wUojZL0VsdGKuJKKrRTgWQrPlvi26v1IvJHXkJGvpPcT6ZiGOEZdPkLTegQtmwjt40e3Uwnvwo6P8OXzgq+KDr79KIGdtR84WZuBrSj5NmXfopyzKb9skltfN4uqJ2w9Xefsoxt87dgJnMDi8D0zHL53Bj8f8LZ97+AtS2/nofVv8snTf8X//cyf8v+c+M+8fv6NvOPAOzlcvO77u0B/SLF3717q9TrF4rDSfafTYWlp6QUc1TgMZttT36DtLKzIkg6Jjq4oKjW6WmtcH4Sg60wiPQVuiLM1srgzIjAhhUB6LtIYpLSwnGm0LKOK82CG4UeqmMd0uxBl4VKJ6yHCNsts0XA0U+H2/KvxzJWBkpwyPaU6wLZIbUXsONDtGadSoiwHmfcZnZBUx7R0FU/nSUgGRowQkOZLxEkH4szbMUqJYt8h0ZmXpz9H2rGR7VG3RzZOJa2xkMC+UQ/QsXrbuEW2Y/S0WXZW5yV17G2fbfPJiZ4jqkcOPMsh9BR2K6Odvq0ouA6NTog9IvVtpKLrVIhSF1gDIHTKRFKzm7+832enmCMPeLU6tjHQy2QJHEXfotOWTfuGJezuFgJDYvloChANAqUIcwrZMkhXYUybsLiV1efpIRIjpKyvBmjMIARut4BTSwo8SwyKqhqyvLlUekjpUDdNRPFeRP0i6DratmiXCjiOTVTW5NdXB20r6YDpjLVvsti8zKvWI95Nf47YSsmY/fdubqfKEJKCNQwTo9eSAISVeQ89exnLbqDZP9hGDVxVWb8DrxWgEVjCxnElM5UA1czed6xsScQIwTwTVF0b5Ua7Cj4WnSJhGNI0yS5HNjxXjlbIbXTgsrlmvTF37Cm8so+enEScXEHKjFxlp1oQK5+ON0u55/WKZ+8g9efgzHMnTbuPZxe80EIQ73nPe/ipn/opDhw4QKFQoNlscvLkSd73vvc9fyO7hmt4EUGfaRB/9iw0Y+TNFaxXzCPyP5iQJ2MMl+oh375Q4zsX65y92KS52sGLDEUtKGqBYwSKzM7QIrs1RyKrmdGUhoY0NKUhtMErOEwWHKbzLpOBBe4FqjzOhehRznaeRKPxVcCdk3fzM4f+I7e4d+JUC2yea7H67TqbF1pU0xjSbxJ3HkCnbQ7dfAevvlFTWPmvWN95H2hDbbnCpacmiFYVas8Cxf/tP2G//JWXJW061aycOMvZ4ye5uHKBleo6aTW70wfGZUqVWCoepjQ9SWnvDIX5Cr7v4zjuQLmuj2bc5GzzNGeapzndPMXpxklON0+x1l0dbOOrgEm5hNfZQ7I5S7Ve4dL6BEkcAAIlYG/ZZ0/Z48h0jqmcQ8GzsaXA7gl19MlPmGi6cUon1nTilE6c0h281lQ7MZ04xaARzgraOU3iPE3XexIjughjk09vZSK+h6K5GSVspC+QQWYcpNrQiVOaUcJaK6UTpbRjTTtKiNLdnwBKCqZLDkfLFocbhvBfLvLdBy9i7c8xc/ck83N5rsvdxe/efS/nW2f5b6f/is9d+Ayfu/AZbq/cyTsOvJOXzrwCtV1F7EcYN954I29/+9sH4XlbW1t86Utf4mUvexl//Md/PNju3e9+9ws2RsfPVn+FbYNIyDmKtYHmVs+4utoUp953seElBEDBHdYxEsCqW6NAX/Uv8w/lLBcpfejpqanCDKKekSZLCmxL4gc2iVHIGHwRoHRKV/TJzi4CCgaUsEjNuHejH5aUt4t0inWceFgTyChJYzqPZdlZEdSe4HraW/mOdaeXtnIFQ1eAL1wMEW1vBhFDGmYKdbvtJVXf1B2iurQI9D1jgniXUKMwF+C0x71nKMna/j1M1hNkehmvjtBgJZl3oO+4kXJwSDZg+xa2kviWhW9HYAxpUZO2EoxUPWN56PUZkysnC33cnkkvhKRgbBJiPOHSJUZuO27jTUB3i0S6dJwSMLpILkBJfD+fbeu3x0+DstCFoVfbUzk6VhOZKIxneo4xs+PUtWUHI3ZmsEUqR1OfQKoiOAWsES+ekZIwF2DceGwfsW0eUumSSokRbeRIftJm6VZCp4Ni7bKcabe3t9+Vc47du0r6Wws8kfYCQ/t7JPRVGxWKkrTYtCRKKXSSDrxXStp0lKYmBVtewqg+av88ddxJGnIfKlzHsyUiMjsGJYXM5OwBx+rHAO58nqi+QuJIqBwYFuU0F835sW1LIgApUFIRV4qIwEMIcJzxazxRAVo6QC9UUKrBdzWVzq7jGO7rkUqbfmaykB2gwNgQezDFDqyMvyeex2faVZGmn/7pn+b+++/nO9/5DrVajUKhwC233EKl8u871OMafvRhYk365YukD68jJlysnzmCnP/eBAx2QzNM+MaZLb5yYoNjJ6oUa5rFRDKvJQd1FrwAgBI4BRvXV1iWRCmJ0YY4TIm6KVE7QXe3PcS3IFQdmvYKTXeVlrsJMmY+uZOZ5PXY4SR+XCAwkqoW/KtZAVbQQCMQdEtVcuufx2qcp5SDN809xWL6IPoxyZZ3E9Xq/cSPLGNW1lD7Zsn/xs/jvuGNCGuXApRpyvnzZzl58jinT5+g3c6CcKamZrj5yB3smd/LtCrjrmmScw241EYup/BYk8RpU59wqJcd6iWbzaJNR0GsDUlqSHSZOL0NO72FxUTjRxGT7S0uhWdYC88SOcs03GWU91WE6kAZ/DLYwmPam2Mxv4c9uQVm/XkmnAlKTpmSUyZn5fCUi6s8POVh9WpGGWNITEI37VCP6tTjGtWwwYXWeS60znK2fZZnak/TTDLjouJO8rqZN/KKmVdz59TduM+hUK8xhm6SkbLRn612zGY7Zr0ZstaM+KITEVsxN9QFN51scu5kk0+5KV93YyIF5cChEryO/cErCYOvc2zrn/jfN3+dgpzl1sKbubX4WibdCnKwkp3lPPRXfAHKvs1Nc7tXSf9hQa1W45577qHRaAwiJe68807CMOTMmTMv8Ogy+MUyC0fu4Hj9O0AH1/EJnATLUmw0QNsakYMrKGKPIRaGVs+gkT0vT96qkE+6rFNHojL1rx6ya2BbyI/JRAksKcmuDYFdCYhWshIkbu9+lZSamMbQ0xS7DogQIxVS2FTyiqhZAHpiM/SE1OQwh8vYGuFl/TfzCzhK4jR2ErG++WdbAZV8yvKuRy+QIqvh4lhFUqW4pJaRdJlip6fI8q2BVVadnYRcRlZySo37IXqD1bZGRgqtJIX8LLGoUh3EQWVb121NeWTnUW+MFAmi4JCX87j1BvE2wqmUQfWkvJXUQ20DNU6cpRga6pknZ0gYbp+/ETa3+Orm6fHxjxnIIzPW98J5ZeK5l6Av7l6TZzz0qifY4XTJaY96vojJCfoGsxIKNx8Qq4hQuKQ0kQZMPFrA2dDZphIhRyXG5Yj8fg95xyJKbJKe6kI3H0BL0JkNcLYdmVY2kA7GPRbA1ydYvb9OL8B1e17gWNkCkW1vRj7b7iEu2dOEKk/LncET65lXEUnRniIJU4zooEYU5JRSVOQCoTlPGnRoJdkiKQKMN0kn1oM5NUhS6bKVD9nbgBI2ORUMnLcoe2wso17lvGfhkP1EYz7QHqyUeOHVdG0fX9Xo9AizqwIkEQio3/JS7L1nYPVKEWeGyMoj6YePCrqlu6imKxzuWmjRGul1OI7Yyo+1ImUTmNmVZoldXm9fAPhB4qqz1dfW1njsscdoNpu8//3v58knn2RiYuKqYvy/9rWv8Xu/93u0220WFhb4yEc+sqP207e+9S0++tGP0mw28X2fD3zgA7zkJS/53o/oGq7hBwS90SX51GnMRhd1xxTqVQsI+2qXeMdhjOGZtRZfO73FQ09v0DzfYimS7E8VR7UCFG7ZYXZfgcqegIn5HPlJDy9nPWsNp/X6Bt8+9xjPXDrBhfVLdOsxuahMOZlmLp3Ha1yH1ApjBFobsCUmJ0hsSeQIVnxBzTZ46XH2nf483QtVHJnwqrnTzJS6PBjfyukzr6Vyrs69F5/A1ht8t7Kfv33Jm3l4320UzriU/t9HKfo2eUdhCYEfbRJ0LuE2LyF1jBaKtjdNvXiQTTVBI1K0jyW0HlujHS3TTYbEbx+S21DcGCluWIk5sNJhsXcTXEFzCs1pUs6gWUazgmFDGHI5m5mCy+H8zbxh6R4OTgYcmAxYKvt0TZVTjZOcaZ7iUucSy+2LLLcv8dT641gR5NOAvA4opLnsdRpQ0NnfYponr31yqU8hzRGkmeTqvJEsGpc7uR64nhRNqjRYAmXbKMdGrFmIUxYEqyQFJ1MkLLvZz1WEdQohBqGA88Ury04DdOOUC5eaPPPgMnc/Xeeu1Ka93+fitMVGGLPZlmxuvYxa+w5S/3GSypf5iv7PfLn6X0hbh4jrt5E2j2LS3cnRp//ne5kp/HDl7o3iIx/5yAs9hKuC5boDCedgaoHyni3iFYlwciA76G2FSEYDvmzZy/IJdpICgJI1gxIWrni2x/9o3tDOFV41XSRquESeh9fMDLmON4luNpFG0JiukAhB4hfp4IEGz5IIr0CkfPomqbUtwMYog5CQlSqySB2AlJYdUhgZV2yi7LWQWOpyq9YCbIso59CenEDU6yQixTJq2xGO7GELiLOwOt2zOx1L0iH7PnqFRVSjhrBaaDfHIBlr/gCsnIb4Uq/nHvnoTVwRj25vY21tE1wXmechFdlMW8Vp4noTqI6dhb4XZvu4bSsjdQXXJrUFpg3o7Bgd6fSkr0fm+Aqr/DlXMVv0BwNzlBw7+Z1Snu5kkXE1i149HjvkYrqFmahAkqKU6JG7YQNRqsG1UGGchUD2yeRIa1IIXBkw5e5jlVNj4xNyOLeu9LOcszQjTY3pCS4cfQnzqcPkssNmtE0hMihQd/L4WtBxbKDJXUslHn/KY6OeOe1sBEXhkfMt3ESzXIgRNQerJ8eihIMG1iwzUGgbCm8IgsAjNTEJULCmCHVKbOWpHqowdyE7/7Z0WLa7KFrAUOlVi96xjZJak4l7GKkwIisAPXrtpKof7ijwlKCpJN18gJ2fx1MNIkDna4jqkIiI3kXkCpeuEr0FmN4ZsFzwfUrlKdY7MbbwSeXO3Cfjepf38vaacmxF1ymNEfwgdzMH9CHuL7V4ZB38zhbngLyr6F72shyZjP47xQmQHsLaroqyIwD2B4qrIk2f/OQn+cM//EPe+MY38oUvfIH3v//9/O3f/i1aaz74wQ9ecd92u8173/te/vRP/5SbbrqJP/uzP+O3fuu3xkIhoijiPe95D3/wB3/AS1/6Uh544AHe+9738qUvfen7O7pruIbniPTJLZLPnwNHYr/jIHL/7gbIlbDeivjmmS3+9eQmZ5+pMdky7Islr9IScFCeYv5oifnDRWYPFQlKz26MNuMmp5uneKZ2jKdrT3Gs9iSnm9lDxVcBtxy6jbsrd3DX1Es4VDwyvlK3HUkX+8LXcE7/I6cf/gZfOlOimbjcOBdz+9Eb0PHraT15nlu//lVu7RxH5/I07vsJLr7iftYqe7ilm7DUjal1E2rtiLi1hbV1kelkDddEJEguiQrLapq6PYljWbhK4lqSaV+Rc3wCRxHYFjlHZa8dNXjt24pESc5oQ24rwtsMKW2FvKQacW81QoyGrRmgK8CoTEq3EcHZGEQWVmQLwa26zK3RrZj45iyJNEp3jQMfNmmI7JTITrIfLyVxNHVHY9kax7KxbYeCW8C1PJQGEo1JNCQaYo3ppJjNEHO+CZ1tq+W+hZh0kdN+VuB4JkBMuojvQ17asxWHlkoc+h9L1Fc7PPaF81x4ssrNlyxufsMeDtw53QtBgkS/mm78SzxdPc4Dy//E19a/yHr+bwCY85Y4nL+FfcH1TNizVNwZlgrzP9SECeCBBx7gT/7kT1hdXR0TB4GscO2LB9mqcDw7gT8/BzIzDJQdkPp5XHl5Aq2kzIqlqqEAAwJC98rXlbbzDEJpAGM5V6qHCkIQ5YMsT7EHy1LUShH7Ojl02CcNFloKRK/mjS6Ct2ojhEChMG461nzgKFKpUZMp3bgD9cyorMk2SbpFqntS6MLGEi5K9PNRdpkLBLFMaeQzr4XsCw8oRdcPgM4ue/VCIEfekUKgeyqftxw8wqOrz7A75Rqxd7ctoDsj6n9Gjbl62G7mSctBqG1ERyq0MET+DCIczwuxbBukgxQaxw9pt8evD7P9gEaQBj60IxyvBT0l9L5HUgCzBRfb9TjfC4HSlgJ3Z75QH5E2pEmKlALfkiQjAiKx0ljGEEsPERSRrREvxcgE2LvUMRy00vOEBrJEwSmzkWyTEFEKpI3qMwPAeG0Sy8eREiMFcT7AJBnRKvt2RgzJQkJlkpFjKYf5Y8rLYcuEMOyAybxLkRK0wpTB6gZgT83hkqddbQ4dwcZQCWzyyoMLw7F2VIJJdj8prswBHYQQFD01CCc06IGjYrRQd9pTDBS9uY58DyMlTk9hEAPKU5AMz+tG4Xr22hZJWh+ffCGxZgvMllxmSh5PPzmc/WcjI92FJfqiK0JI5ksu53dReHGlT3+1ISdcSlaIzlkkW1nJgJ3onUd7yBhlsUJi2kR2Qk4qxgjVFUf5/eGqSNMf/dEf8clPfpKJiYkBkXnf+97HW97ylmfd9+tf/zqLi4vcdNNNALzrXe/iE5/4BM1mk3w+Y75xHPPbv/3bvPSlmXzuXXfdxerq6o6E3Wu4hucbJtEk/3IR/eg6Yk8O+yf2X1XuUphojq81eexSg+9eqLFypklQTVhKJNenkhtQoAQTSzkWry8ze6hEedYf8yIZY2gmDTa6G2yE62yE66x2VrjQOs/59jkutM5RjYbFTiecCY6UjnLfnjdxe+VOrisdHYSSXQ6ytYJz5os4p7+Ac+5BVhuSz60c5nxnhrKteJVwKH55mernPg+AmKjgvfFNOK9+LfaddzNj2xwaaa/RqPP0009y7NiTbNU3kFKyb/8Bjhw5yv79h7DtH5DU9d7xf4020Iwx9QjTiDGNCDoppptAN4VUj4dvG5NJ6xYdhC0RjgRbgqMQvgLXQngKPJV5gDwFrsL7AdY5MnGKqUaYapj93Qox6x3SxzYzkgWgBGLSQ8z6yJkAMesjpvzn5OEszvi84meOsHGuyaOfO8e3/u4Mz3x9ldvevMj8kRKWFORdiztnj3Ln7FF+zbyHZ+rHeHj9IR7dfISHt/6ZL69/etBeYAX82av+K7P+3BV6fXHjN37jN3j3u9/NddddtyNP7sUGLQ0qEOQmXKiBdAUqsqnYC3hK0Wc0wpFjQm52vohOAbJ7hSlqXCsgsjQko95NMWZHa+VQ8PMQ90QfpvZhW3PYiwGN8xGs7fSMWsImHUmYcZWk400S6RwqVmB2yhFLTyB8gYpUVhSzlyNUtKZJ7DVUJEj6DEvBSr6L0+7gJw1SLejoTM0sUGVMmiBGiM9olJojbDyZoy3XdhCG7uIMUcvDNoZuXrPplcfuay1rW+yjAe1qjJXgl6+8cKCERZRLGD3wTTeBjo1QEbsbhdmgjeMSl4sDw8zK5bHnKnC6BgiqhSNMWDmskYWVzIiWhA44iUZZEUkxgdq4rrfYxV0Yuzbk8tDOzvlQRGRcelzuch8cFVOMLR9oDvhDzpqglWxlMu8jXtFzE23u2FDUwwThlUBu4DgOJc/mgNzHicYZhkWWL8PyBuHDctsVPETBG30OGixlcHPZvOtdbumWmxFzMSq5DmhhmMk75Jsx1QgSz6bvGRJApDXdNM0EHSDLQ0zGOzDGkHMVygj65F4gmHH2s6Dq1N1hQo4WWV5SQVVY8ubYnzOca20ipMKWNjmVo5G2aU0kiLD/fbw8lRFC0PWmqHptjKpAozXYZyLvATojqOPpYFjFPEII7EEl4mF7O/roj912SP0c9Lx+ju1z7+I9nL/4yGVGN4RrbWLvD/HPtAAXz1JsHdpL7ngDV2by/9gNklweYRusrpsNWUCqNB03xNYTdKXBFTZ7y88elfFccVWkSUrJxMQEMJw0y7LGmO7lcPr0aRYXFwf/53I5yuUyZ8+e5cYbbxy8d//99w+2efDBB9m/f/81wnQNzwlholmud1muh2x2IpphSjNMCJMsJlz2Yo+lACWGktLlbsodj9co1hMuHMpz6eYy1kYTa0sQpZpurOkmKbVOwlY7YrMdc7HW5fxWB7YilhLFUiK5MZHcgsBg48+4TB9yUAsh0XSNmr7Iw2GVWrVKdbVKLapSDatUoy2q0RaR3hk/PuVNsyfYy8tnX8XeYJHF/D6uK17PlDf97OGxxmCtP56RpNNfwLr0KN2azfnaAg91b+c8FnaSctPyGkvVFtbBw9hvfDPWTTdj3Xgzau/i2IMEIIpCTpx4hmPHnuDChXMAzM8v8JrX3Mfhw9fheVcuLPuDgJACig6i+CItSLoLhK0Q0z5sK7xrtMmI1GoHs9pBr3bQz9TQj232dgQx5fU8UR6i4iIqHqLkPGvoJsDkYp7X/cJRLjyxxXc+f54v/ZenmT1c5LY3LVKeG5Y8FEJwpHg9R5zDvHPiv0e3Izbra9TbVRqdGomJKYvSD3RO/q0xMzPDz/7sz77Qw7gqVPMJM4kafMdVJUXEw7CyCXeClShFeArbUYRbmYdASIkWhlQYYmFIcwWm7ArRsEQkesSClhJ0j6NYjk0ai4GcthASZLbCa3IRxDtLZJasGVAXmSpHEJRYaRgiu8CV7gJppYhoKJx6SNpbk5dCoQXIYg6rp1CHyUQsilLjqKFlZwl7IGk++Ab0kr+XJnwaiUVasxka/+MJ8HaPdHgyoCM7tEfU8daKsNqM8ZOdpLrhdGBboXLtaGQkBt/FgppE52cQSFKdosKhSKArNe28IBiNKDLQ9RLcGmjPQwf5gWHmFMrcduCVnPzGZ+lXQwKYK7hEoaI2kA03JCpB9Az2uAjUNcKM5tnsViK490k/IsEuoIOJEeKyO8TIb4CWuwe3p+DXn4NERySMFPE1mVOmsDCJVwvZjG2k1JiiRcm3UIlgypum1t68XIe91yMLjb2/Sgpi4PRki1v3FLGb4+co71g0LBcDnJ4MmV/J4RqbPSUPRzk4EzNY8Sbp8vA7YilDR3SJpizU6s7MGTXh0o5SOmlMSfWEWlyz0+k5yIESTMocsdUmKfuIahclFarUHnh0h4ROIoVFwfaZdKeY9qbJ5yK6rTYtLXGmfeSWwiSGijsJDOdMyKHntz9VibJBZkqMa24NOdHBsIj0K6iwMbjHeMoHPU5XLbeECDdAGBQ2lZzNZmv4XdSOTTg5Q5ovDglUaRLjJvjFUQmLK0NIwbRv0bQUOVchcplYix0YaIOQwwWYWX9uGLQpBJ5Q1CxYCzRzocJ37OdNQO+qSNNtt93GBz7wAd71rneRpinHjx/nL/7iL7j11lufdd9Op4Prjq+suK5Lu93edfunnnqK3/3d3+XjH//41QztGv6do9qOefhCjWMrDY6t1Xh6fZX1bgMhQ4SIsyJtxgKjMNrFaA+0w3ahyjdh85/wiDH8r3T5yok6nLi4e6cGKkZwVCiu0/CKtsJKs5WNsNRka+oSl0rHOR48xlp6KSvuepHspwdPeZnwgF2m7JbZV9hP2Zlgyp1i0ptisvd3ypvGU9/jqkncwTn/ZZzTX0A9/QXCM1Waay6t2gSXmoc4XSmyUsohDVznF7nhnnsJbr0d6/obEP7upk6appw7d4Zjx57g1KkTpGlCqVTmnnteznXX3UCpdPU3x2sYh5ACUfGg4sHRbHHKGAONGL3Sxqx0MKtt9Kk6fHfEoJACUXag4CDyFiJng2dlXilbgiWyh3GmU8+8Nsy+co7Nk3Wqpxus/19PEZcdCnkbGWtMp+elG0EJKKGATPTHPpju8Pr9MOFXfuVX+PCHP8xrXvMagmCcALzYcmhTxeWizjAGCk6B5REiBGAJwWpQR6cCk8KWEzOssz1ibArwS60d0WlJMQ9RiJh3oTHcfiuIWEhSEjqIVUOQS+gLWythsbknj31XCbm6+3N9e+6DsW2MM5RoLrolbN3BdVyk0ti54WKIUYZUeWinSSr3EOQcptNFDAYtxMDg9wqL1LYvmQO2UIQmxpEB2mTeNyUtytYszSRb5R/1behtk76n6LERtll2q0gn3ZHGkeRiGNEGEkLiqwLdtEU0GeJUh2ZWxXJ4omIxuVWALY0kJsUmsTL/026ek4pX4VKQo9noZgn43RjHtQYhZVmnPVEMaeMrD08GCJGdXOm4mU2+2wJbz8vXnCwxnTZ715tE7WIZant8XsZ4Va//fnsCQbwQj4Up9reXroMz4WPWI9oTRcre0D70LR9b9QsNj89FnyTfMJ/n+NPZe8ZA0wE/FtQsjbF2ekPHwiwVzAXzCEKWSpMc2v/qbGxCIEYEGdpWyFxFMi8Mq1MJfk+tz8oVoK1pyRhXQJxqhASl0p5i+eh3LBuvVZ5GJXlsHHzhkOQ9ajMeYhg0MsCmG7Mw8hWSQjAfLAAQVST0xGGdvEvOV1iRjWMXUGroGd2/MEU3cmBYJQAT+FgmwFM2hb37iRZSzIpBeUXS3Axc2CLyPXIqh9kKx45DSpti4RDRRB038pGpYDv7jstZPa7BDCobMzU1JnKxA4N1kWFj4rZDFB6ojW1Wz+2nUx+RedlW57ozUcRUNIf23MLqyjNIoZ5PxfGrI00f+tCH+P3f/31++Zd/mXq9zi/90i/x+te/ng996EPPum8QBIThuCJKt9sll9upQPbwww/za7/2a/zO7/wO995771UewjX8e0KSah4+X+OBEyt8feVhluMnkM4Kyl1FOhuwR5N/ljYEgpyVJ2flmGaS/+Hc/dy5foSzxXU+c9Nj7A0sfk54xDolThNinWDCFHfNJ1iboLg+i9/NUpIbzibPTB7jfOkLEWjcAAAgAElEQVQYF0pPI33DtDfLlDfFHd7tTHv3M+1NM+VNM+FUKLllys7E906EngWyeRHn9D9hn/xH0m9/g9Z5ycZyQLil6FozLFeKXJibojajsW2Ho3e/gpt+4p0EVyA7feW7Eyee5tSp43S7XTzP44YbbuL6629kdnb++yr2eg2XhxCZJ00VHTgyPEemm2Q5UlshZrObvW7G6M0umdTSsz8uykA5UEQG2o2Y9XqEXXYp7C/glN0s18pT2V9XgS0zIuYoRHDV2kEvSvzDP/wDn/3sZ3nggQfGHuhCCD73uc+9gCO7OkwW5mh1G1hyZzKedlxIWySTc4Q1TdLduGw7hsxbUcFhVIPc9ixix8F3FYfkHjZbWT+xZahOh3CZJq3cNMrrMpYTteNSHIb6lH2bNJQ4wicVKXkrx22LU5xvrNANQxxn5DqTMHv0Ls7UNaWtHIvuYZJmyJqnaQqBJyRp+RBTE0fJp11O1J8Z69XBZlZ6pNYEdTL5ZMdykELt7qntveU7FksTNr6rMCG0VUReKKQQTOacQbFQVwXk/YVdCe7N8wVOnxiGyeUdiyMzeaY3XKL18yRG9+QDhpO1kUtY2EZm97ll6LRJlUWYaFw/u3ZDJ0W07cxoFjYCwYHiAba6CcKqYgo5yrfcwZayId9EnI3BdrMCrIB0t9BkYXmCXr4SkK/kB/TT9IQGthdYbnoJfrzTKC76feXX3v4jcXz9V/1c27FopR2Fbcf/1ZaFyReZLrgcH2mxZYMfQ+r7HA5uAb5Laptd29pT9nHn8rRPhTu66xdHl0IQqRhhuxQtj9fOvYGq/DIAtm0R5BTVboinBK0oxbf0ICxR945VOAVMnJ13oSz8+XnSixnTMwJkYKPyMGPFPNXrf8pexMm3R79C48fvZjX8CpYiBEq+xY3zZZpTdVZPDs9N3s7j42ZevkECkMSvzFBfv4S2PISVDuZl2p3nib1VtFJIrUhME2eX57ojswVVqQQH90B+b5nv7i6sOICUgoWS37sGriz3KYA076NG2J4Z/bD/0tPj4YRSEM1MMJGvMLE5j2XtheLzV3fvqp6Ax48f50Mf+tBVkaTtOHjwIJ/61KcG/29ublKr1di3b9/Ydk899RS/+qu/yic+8Qnuvvvu77mfa/jRRZJqvnJqi88eO8s31h8g8R9FBScRpRgPybS7hyOlG9lf2M+UN03eyuNbAa5ySXRCYmKiNKKdtmnFTVpJi1bSZO58gdc9dTN+4vCZPV/jk7NfpNFq0qw1EYlkvnGQvbXr2Vu7nqlWtrweWyHNqRU68xfwlwxzMxPc6t/DtPcWpr0Zcvb3L0d+VTAGtXkM9/jfY5/8PPGTx6mf8alfyBHFZap5n9qB/azd4LHZym5C5fk93PvqN3Lwnldhu7uTtigKOXfuLKdOHefUqRNEUYhtOxw4cIjDh69jaenAlVePruF5hfAsxIIFCzuvM2MMRCMiFInOkqZVLxY1i0fNyI8SuICshjz1pUuc+tY65mKbPUcn2H/nFHOHSwPBiB8lfPWrX+XBBx+kXP7h9IwemipzasNmOu9CdZtXRSmSUhFjK6ZmF7h45vKkqeYrXB90RyNDSP0EGyjO+lTTbL8jR6f45uPrCCG4IfcqDsmLsLGya3sVZ4E75vfz387+5ZUPoHdJFT2L1JNgpUg1gRRyLOqtb4T2r0BHuASqREnNDLbRYtSoytTLXLl7uK7Vkx3vw7csyr6NiSwascDqKVk6ShCoMgeKFlKv7z7+nkGZ9Iq3SiTC8Vgt28S1EC9RTDIUE9D7PErLM9jVDYQA1xLM5B3OjViCSslBu1qkYOjJu2f9+QeOoJ48SWtmAScxJNOKZpLQqCeZkS0MQm0PyxIIz0UqhVpcRDSPIfO5weR26SJGlHBa1y0Sb2WebDGSy7K1N2a+HgxLVfWmIVQpy8Uuc3WP+ZLHRs/WdZRAIKnYe9gyTzExswer1SWyhovnFa/EeTpj3rJniQikXS7iuMXMMz8SICjtgIuFDeziXpSwefnMK5FG8vjxJyHMjmI5v0IuXRqdHMY1kkymVKoCSqZMe+kghNm13s997M+U5xeRdgdVLCIcD6sLnVpE1woJXZ98A8p+Bau7U4p79I5q5QSONuRVgU4Ee4oTHC4tcPrS6s6Ne5gpuEyYBZ7pMfasPMD2MNKr87PoHmFVlkWqrWGfz3Lbdx2Fa0Ml5/Q1Hy4LicBS9Ko3s2OsN80XWB51LAlBzsrR6ol7mF2UmqQH+YIL0U4SFqgyCWCE9byJQVwVafrgBz/Ipz/96WffcBfce++9LC8v89BDD3H33Xfz53/+57zuda8bC40wxvDrv/7r/OZv/uY1wnQNQHZNPLnS5DNPrPDZk9+iG3wFp/gYTIdM23O8Yu4tvHTmpdw+eQeB9b0RFVMLSR64iH6mhpjxsd60xNsmb+dVF36OtVN1Vs7XWT/TRKcGoQRTi3lmX5op3E0s5F44Y3KEKHHs01TPLHPifIn1WpEWR2l7Lp2bCrTSJAttEBGTlQXueP2bWbrtJZTm9uzSpGFzc50zZ05x5swplpcvorXGdT0OHjzMoUPXsbi4hNotXuMaXlQQQoCbCVjA1SkI5coud71lPze8ZoGnv7rMmW9vcP6JLbyCzeJNE8wdKTG5mMfxfzTO/8033/xCD+E5wVc+YRpRcC2WJgJKvkUjNMjAygxsZQPdwQp+yXMpF+apxUPDbbR4ZWxJ1EybfnRf6u90k/hFF3u+l/R+GY/yTMGj1dz1I7DMs9aSyrsWTq5n4IzYepPuJFE4XHIXQrLPv4WgMfTa6H4hMdjh1hqmxhvyvkXa2y3OFaC6jFSSkmdRi8GzJUFPOGAicDhScLCSAk+v7kKaRrAuN2j6M3jhMGclUYamSpgcHYuryHtzlN2UlqqNqK0Nx1yYSzCXJMS9xY9ikdloganDezJPb6FAd+9+UBKSlFxQxCjYVziIqa725q9vmF5h0EJgemSzJRs0nFPMipdlZFRkx1twSkQjxqqRZAsvwGTOoQ2UfHtMFdvZluclgII1yb7ca9lsxajcafqFrg4XjxBHKXtKNTa6uy3AXcboH0zzeE6TJVz2FW+k1hujbwUYbcZUSI0w+KoAIsUOJLKocSfG+/aCHI5KUFrSzRexk9X+lJG6CfmuS6RcfDeHM70PIRXC6uf+GSIZDx07QvYWAraxf0BvW7DclztC3ZpkN3h5m7CdZMJHPTjSYeDmBPJemRUg9l3Wp/McmpvhulCz1jHEu4Sr9jMTjDSsFGycisdlipztijQ3h/F2yTvbDmEGnty8VWAhX2Qpt58Ly8O4RGvE0ytH5g6y/LD2zCyT4e4LNbtBVRzSzQhjru7591xwVU/C++67j1/8xV/kNa95DaXSeCLwsynoeZ7HJz7xCT784Q/T6XRYWlriox/9KCsrK/zCL/wCf//3f8+3v/1tjh07xsc+9jE+9rGPDfb9+Mc/PlDdu4Z/H2iGCZ/67gqffPQi57qP4039M3LhOHnh8bqFN/Dji2/lpolbnlNYmGknpN9YJv32BkZA52iZS4HN2j+cZeNskyTKHhSlGZ9D98wwd7jI1L4C9lXU03k+kCYJ9ZULNM4+ReuJL9I8/xRbjYRq6NM1c8BcVgN3ikz6emaOyvQcB+f3MnPweqb2H8bxx/M2wrDLysoyKyuXWFlZZnX1Ep1OFgsyOTnN7bffzb59B5idnb/mUfp3hKDocPubl7jlvr1cerrG6UfWOfnQGs98PTMcgpJDftLj7rftI195/pSJnm/Mzc3xkz/5k9x55507QsR/+7d/+wUa1bPjUPHIwGgs98KfitM+slODNrhW5mHxlMdcbomiU8SxNxHpkHhMFlyKnVFzS6C8Lt0kI0z9ei9Fu0hx4vKF6wOnSEgX4+TxPElX7a6QmRSSoTz4nIc8O/ReDLYJFIVKYYd6V8kps9YjTQf8Owbv3zBb4MmVBsslB6Oznbpid2bm+DE6ECiyejEhEFYmWS82mVVyvM8+AxBQDmya9fEB9fNrRp86Whg6dgrj2Qc70N9X7lmkXUjod9yfCQFYgcF1HWqdEGNZICXe9DzaL2SelSmPcKs52GlPsIfN4haO9Am3atSbu/WYkUDIOOV15etYCwXfUSfhYmawThet0QsCgJJdQruKmcpevrv12Nhnvq0oFV2Ua2Xy5Abmi27v2hkR29jmUcirCo103NAWcjvRNci5BagfH5uf3eBbBRrxBpa8jDqrgGJQoW2tEnnZAV4/sZ/pksd5tpCBGciq9/sSUuIKB0jYU/YRtT4JFRil8ZVNbm9AARfibTF0/eK4/z97dx4nV1Um/v9z96pbe+/7mj2EEMAEjKwiCRLh64bB7zggovIbcBRcRlSUQR0ZHMWR0WFUlE346ugIIrIr6shOgMiSAAmdztLdSXqvrv3e8/ujuqu7uqs6C92pTjjv16tfSVXduvXUrVu37nPPOc9hLGHP3miKeLEjXgZUBQdILGhiqOHYvKdqioZWZM60qrZsMbTOjdnWX395FU46xdjk0AB6IEiivpLBhIqnZT7oOh7HwTY0BgvkTOMb0UWoSl4X1f05qxKeCM6k44PVuBDbUBnaMaErpjFeXMjUTZqDFXnPUSafX4ye09WEddQRnUxDhrRVRr9nEfz2ifwYJsVkNKexHANVyyBSLh6/Qcrdz9m/D9B+JU0bNmwAmNLnW1GU/So7vmrVKn77299Ouf93v/sdACtWrOCVV17Zn1CkI9Tre0b47+d3cd8rPaT0rUQaHsTWtxIxy/hQ22Wsazr3gFuUANJJh+HXBnFf6sPeFUV1YYcjeDmaIfFEttpPqMpLy4oKqloDVLQE8PhmqEz2AUrGonRvfomeLZvY2/E6/dvfyJtLxlYsvHGdypE4Pt0hdMxxRN65ltCCRVj21JFcjuOwe3fPaIKU/RsYGB84HomU0dzcRm1tPU1NLfj9hSc0ld46NF2lYUmEhiURMmmX3s4ofTuiDO1JkIpnENPMa3U4qKio4AMf+ECpw9gnf8RCMcV4l6Wp+UaeiK0z7NHxaCpt8+vZu214yglQld9ASYyfRWmKglkxQFedRl8sSv3o2UD94oX4wyGiqfzWp7GL3SFPGcHWo3g9upmGqhoGE5POuseo4+WmVY9G2KglYiZoOrqMvS9syb7PBYsJ1vkYeqkPd8LFqbGxLh4tkG0hGGUUmMPMKTBmBkbPwVSmzMUWCUxN+sXE/+hTX8MzOtbHNrIbKd5ej1VWhjc5tWDBGFPxgO6n2sx2KcxWbR3/VDL+ACT6EKPTCeiahu6LYNa2QE/+tlcrvQz3eQjsHd/WHs07+rzRk/vR7nkTi536jLFtKjA1i7IGG7ffQYwOONJ1reBUdYvCS1A9+zMnW7b67Ng8QVMfzcY2VOVjZGDSdi2w2bSKCtTdIdyB7IW8wYjJ0J4MwQmV61VdwdI8mGp9/jyEk3Z407YRlTaD9EMiu+8Um5JDzTW/FH6XruGOLTj1hWD8c1Wyk/yOfV0DHp3yaj9PDmZXLCwToWfPL1R1tFBP3gXgXOZVkB3KFgpq9RtUTpgzL15tI7anRqtiFghvQrPg2ESzB3ooL7fNXBXIyVSvH93SgUEMJRuXbQRRFAVLK7wfae3zwDTh5cdy980PLqDmRIuos5M+pQ9R5LqtYWmQyuDYGUBDNaG6LojySgK9wsIOmqQGSpg03XbbbbPy4tJbmxCCJ7b1c8tT23l2+yCWZ5D6eQ+zh6cJeCr5ZNtnOatxXdEv3eR1xYdS9O+K0b9rhOSOEYzeBJVphzJdxRWCbkfQFbQw63wsrvESrrYJVXtL2vVoaE83Hc8+zo4Xn6N32+sIIdB1lWrvCMeEegk5Cmp/Geqm3ejpDMbbVuH5yPswV5+Eoo/HLYRgeHgo14LU09PFnj27cZzsgcPrtamurskVcKiqqplS1VKSJtINler2bLfUI8Vll11W8P6bb7750AayD+FqG7M5g9Kxj9beCSOlPZqKz/BN3z1rAl3ROMFuwzUWsTexO3e/YhYukKCIbMKlqCq6prMksgzbzO8qNB1NMaj3laMpkwZCGCrlq6px0i6do1WrjdHWK586oQhKkfUGPYWO39NfPZ84s43iEdlq5QIo9xRc3tAU5i1vBkcgBAhdw/R7aPErxPoLPIFsl8ITqt7OA727SWuxKW9AM7wkTR8ezUGMZjq6aaPoJoUm3R37SDyGlreuZLVLfM8wum3j19JoaoSxBSYndJU+E3tEw1MRJJ3yQV0Q89Xi2XiVt4ZdsR0FN6JQCoxDmlxcYfT1FzSH8VQHCKcE7tCEeX90DdXO/x0KN9bTn9gJukraVDENFZ9QSaT9owXqFLQKC+EIvLaZnci8iOaa+ezpyU5anevJWWBPWrK0FfGSi+obJtbfhWLk71OqJlDN0Ulba33QkR1zo036nogJE92OV/Ibv6+pzMtYZ7NlNUHYsQeEIOkzCCQdDGv/zkXagu04+viON1KWoSM2woJJQwcm7uden5cmtZFgS4LO2DbCo+c9XmNCQZxpXrM6aJJQQDM9QHLKVCRjTNWm2mpnWW3DtCtUNA29pRUAxxq7UK2g1dTCwADE+ig2o4ZuqCitSdyB/FJ6VQErN1Zrtkz7CV188cX85Cc/yd3+6le/yjXXXDOrAUlHPlcI/vx6Lz99spNXeqJUBgTvOO5pXkn8jiEU/r7tIj7U9n/x6sVn+sikHHq3R9n9xjD9O6JkuuME0y7lukKTrmCNfttSfoNoSxBrRQUtNTat+zGvzWxLxqJsffIvbH36f+nt3ApAZU0lx7eptDnPUakMMziwlMFX/GS6e1GCUTzv/xCec96L1pgdzJpMJtndtXNCK1I38Xi2y4Cm6VRWVnHUUcuprq6hurqWQCAoK91Jb3nRaJTbb7+d7du347rZa60jIyM8/vjjXHjhhaUN7iDoWrb7VdgOYfl92e/42Nd8ykni1O9/QPOgKmNj4KY/PoSM0Rpvyv5021VYVtXE1sFOBhP5fYQqPJX08GrefaZXB+/4oHtL97A4vJSBWCqXkvk9et4YKdWjwzB53azGWh7K9ACDo5ULMqZBudAZANRKE1QHKz1eMEK1JlZwY/xiv89l4qVuPZhtzQ/6PbAjm2yRyLYseA2NiVMvTabXeQkLna4JtQEiXi8OHvYEehCmIBJJMehOaGkocO4ngNay/C7X1YEa9iibQAFdL1KjfpShq8yr9JEcUEnVNaDrvbiKReHTX1gUWkx7YB4d0S0FA8qNzlKyLTllip9Mgf3DY2h4MgZxV0GMNlcLQI8E0Cf1cGiZ34wTHySezpaO1nQFj6tiqf5cYTmhKCgaJKvtaZMmW7eZF27j5fgWAlbxHiS6oVPlrWZPbZBYyAdeG+P4VSijFxabmxP0pmNkANM72lKpqkRsg7iiEPZq7I5O3CIQbluK3hZBsSzKrAq6gTKPh6U1AV7qGsZrjm/1kXILr6nS4POgeLLzL9nm/nePt3QPGa34HhjQqzA0A1+Zl3Cwjs7YNiJeg+a6QN55gb+igeH09AOcwjVthGsoWExKCxk4g2kWVoaZV+nLG4tVjLOolfToVABePbtvj8V0XGOILV0Tlg0HmdKXd4IVDbM/j+C0SdPOnTvzbj/zzDOzGox0ZHNcwcOb9/DTJzvZ2hujPmzyvrfvZEPsTl6I7eWddWfy8YX/H1Xe6oLPHxlIsvPlfna+0k9m5whlqkK5rtBqqBiGAoaG69PRmgJoTX7URj9m0JwzyUL/zm1s+tODbH36f3HSKcrr6jnh2HqWZv5KKPUXRoaq6O1axNYXuyDTi770KPwfuwzjlNPoiw7zRk83Pa++TE9PF/394/3Dw+EITU0tVFfXUl1dS3n5PuZHkKS3qM997nOkUilWrFjBnXfeyQc/+EH+9Kc/8YMf/KDUoR0UVdWoDjXhs2wSytRqXYUMexW0YP5Pf6NnKUuqTLwpDdvOdoOeeEXeNjVq6ufT1dGLMKZOcDtZg2chIdOPonROeSyvi9SkY3OZL4ymagRsPyKayZ2CLq4J0Og3cV/PnhgazTbCdWAP+NTxkzcFhaOPWU3Xn//EgDLMULmKrS+mUtOJOA5Dlklj41Es9FbQ/1gPQlUYiWQg7WbHJtk6xLKJh2KKvPFKmqLjiAx2wKJyiZcyq4GuxDZayry01wXoGSpSK5psIQVtUmqiqwoB4SMWtmnx1qEZ3SiZCXUiJhECEj49e/XdO/H4PjVpnLwKny/A3r17CAbDubLxQrfI1KygYpvJSHJSIYexCnOKgqnlVyQMGxGGye4fE7uP1oYsKiI2e536XF0BpUBsQojRbmwTtoWioYxun+pwLVpFks692Slbo6bDkJadqFfEsknUGI891lqikl+EbXyZoxafx9KWAdilgzLe9TPvvCD3PjQygTAKCmqRCptVVdV4dsXQTW9u9w17DXZHocKsYmyCpFCwAq2+Fsh2O5vvm4+l6jSEvTSEvWS2xXAY7bYJaKqarbhoKJARHFU7tbu8ErFQAlOTv1VVJ9LfW2ReScYvRkwkRisGTuSL1DLSN0Be/fxJzYmKpmGHJyQnua6JoEVM3OE0VVWjyY+qoBkqoZrix4yFLZXMzwSIlr+NgKeS3MoAU8+PzykL4YtObYU9lKZNmubKyaZ0eEs7Lve9vJubn+pk+0CC1nKbS06HZ2I/5qH+V1gYWszVx36TpZFlU54b7Uuw48U+el/qx9qboNJQWGmo6L7RXTdkojZmEyS1wY8SLFxytlSE67L9b8/y8h9+z+4tm9AMk3kLmzkm+Ab1/b8gtVtjYGgxr78WzrYq+ftxz30fA29byR5cenq62XPrj8lkspdYPR4v1dW1zJ+/KNfNzuM5fAfmS9KhtHXrVh588EEA7r33Xi6//HLOO+88rrvuOlauXFni6KajoFRaKKaGu3Mkd+/SmqknVvrYFWofJH0JrKRnbA0AqNUGWni8S5SqZCudNYTKCEzo6jbxIrHX0BCeMJm6lRi7xl8foL3CRzxdbEzLgWkPLUAExwdgrGwOQ9jCY2iICa+RnYxUx+tvIBjbjVo3oTKoR8t7XUVVcQMexPAIKUsjYgXRx7pOKeDqkEaQKPNlS/rH8t+LNnqy3xpoo9nfAsDbKk8gmh6mi22AQD2AdypUgTPautUfXEJF08no6m7U8gSp4eIjTQSQsjTUBZG8ynATW4CaFpyIZnio3zHAHrpZGFoIgGmazJ+/qOB69XKL+pjGa3UpvLoPO1P8BNdVHCq81Qyzh+YKH3ZMg5HsCbiqKNky6c74OKux6miqAhGrjN7kXrS2IG7Mhb5s3D7dT2ugjUydhlrjA1dQZpXRZ43QB6BA3KewqCpIoKopt3+HvAZltsHCKh8eQ6M7U6TFSdNRveW4E9oCY5EMosD5bbF2kXTNsXj3djKMg6qqzKuvYltffLz0uSJo9DdheuvoHk2aqueNfzcVRcGaVLRCDYdxgJrmOqxQkIiuwMh4K4paID61SPJhqEZuHqXJ3HAaoY8migFjSouyvo9CV7Y/gZJKo2pewMU7KWkbW1t90MPmRBSjyUdF8/h7r18cmXb9hqagoKEYE7bX6L+TP48yo44W/+x2v9uXI6OOrDQnJdIOv32xh1uf3k7PcJJFVX6+dFYlLyb/Hz/veohyq4IvLr+KM+rW5A3ozKQcdrzYx56n9+DrjVOtq7RqCtgaImigtQRRG/yoDT6UwNxKksYI16XzhafZeP//0L+zE38kwonH1rLc+QvmwB8ZfK2KrV1LSOwYYDDk0L98OX3r5rMbGI4Ow/NPo6oalZVVLFlydK6bXTAYkhczJOkgqapKLBbLTXmRSCSor6/npZde2u91PP7441x33XXEYjHq6ur41re+RU1NzYzHWuGpxKtPOImqGD0pmpA0aaqKUmNnJx3uzLY0abpC09HlPLvpDdxhN9daEjSDDLEHTdHzKoEX65Y3cWzAdIccn6njM4ucShzgoUpFzVWxA7B0DcWYOjYEoCZo0akZmIsWoxrFOpiNvj9TQ50fxu2JYk8cE1TojU3q3pgtQLQXS80fezNWuc0R03eJy723RWH6OlMIDYQOKdPF1UyEZgIKqschpbhFN3bBFpIJQkYQ79LlADQNb6a+qh3NLFI8SQXVl03QMj6dRNCDYwpsy6Q+UFvwKbptIRLDKGNFMbwqikeQdlziQQdzQoX2xdV+mhaV47hiNLkxKaOFKk8VXt1mWAwhvCoiOpoA19hYkez2FenRKraebDl9tTGNYRi0L3hHbv3L64MwOsepZ3T/UKzi+8BEAoiFHFLBaQo+TdrEbrCJxogPx81+1ouqAyyqDvDcjrH2rdExZBNy3lxiXoQaCmOe/i4UVWVe2GZgIFY0aaueF8rrhro/0kETerOTE+eKpdjj8xfpqk7jUaNV8F4G18pP2FVNwRXZQoiqJlA1hcqmAKHq8eRsRflx+N1hBobJdg/VlOwccm/S2D4upkwloNJ8zHGA4JmOh3L3a/vVZXhmTJs0Zatv7c4FPvk2QHV14a5U0ltXLOXw6xd2cfszO+iLpTm6Lsjlp9fT4dzLj974fwgEH5n3Uda3/d9cH1YhBL3bR9j1RDfq1iHqVIVaTcH1aFDvQ18YQW0NoITmdvEC13XZ9tyT/O3+/2GgawehsJ93LU7Ttuc+Yk956e6toCe5mJ6qKnYf1cae1SEyo4dK23Wpra3n6OXHUVNTR2VlpZwfSZJm0Hve8x7OPPNMHn30UVauXMkll1xCa2vrfhdFicViXHHFFfzkJz9h6dKl3HTTTVx99dXceOONMx7r8rIVOIEiVQYmUCOFY594jlXmN2nytZAMlrFhxMmvkl1kgPx+DEcoajiUvZilFxks/mbUh7y0NkcI2wZHVQey1Z63DkFGoNZmf0+ClgdDUfHYPuyQRU17kIziUu4z8Vs6IrYflbVG33/QCDEvOB+fnZ9MGKNJ030M+xwAACAASURBVNhvGICndVm2fF3P1FYPRVFwjfGN6oQEuyu81Fo6ZPb/hHh/r5lNd3HNas8m4yEjjE+3cfZRFrO9fQGd9jZG+nzoy1ohEYX+KMvKVtDl24lI7Mb11wLZSh6qomT/NIXW8vHtM3FbuSGdlOtOmU9VMVRQocJvsrjCYnNKL1JxYvw+y2egpPYveZ3OWAOeVaBKo2oZqKmp81GhKLnJhPMemzLp7FRTiikIwFARcRd/+XgPEssuch7gKZ4suBPGRMU94NT7UCIWqqKwMLSYcqs8V/AlUR1HjE450BfMEAq41C6OIFzBtp3lWLu7QNVQdTVvvyqzygkbFgPEEALeuaCSA5WpWILR8zxM6AY6diFn4jFpbFtpRn6yGzYrObqscCvqbJj2jGzbtm2ccsopeUnSySefnPu/oiiyVLiUM5RI84vndvGLDTsZTGRY2RTm71fWstP9I/+x5UsMpgY4vfZdXLzoEmq82R+g+FCKzg17iT+3h9qUy0JdQRgqTpUXbUUF5vwwSonmSToQruuybcPjbLz/Nwx27yTs0znF2k71GwPs3ljJo2Wr6KmpYffiWpKjVe8ikTIW1TdSW1tPTU2dLNYgSbPs0ksv5dRTT0XXdb70pS9xyy230Nvbyw033LBfz3/iiSdobGzMzR+4fv16rr/+eqLRKH7/1LL/M+ZNHBYWLGzmhLpFKP0pLM1iYZWCVesjnViOIhzU0Yvlk4tOuW8ia4r7dFA1vIZKdcBi36lfYRMnUB1T7jPR7OyJkzZaHlzMy46xUBQF4Qp8lkG97ec13SBQ7cUf8TAwEMM/oTqZL+LBV6CstjdoMrQ7Dvb4mKax8t4TaYrGirLjMTMTug0aYyd+40nT6raygolOyNaZ116ejal/7OQ5f5vnl1BXEEIU2BXGst4JS/sUUAXYxU/cDdXk+MqVdHb14u4jadI0DUVVSVeEURSF46qPp8UcxtIsbM1mT2I3mWAzmdpm6Cw22/GkdY62DpiFquNqKorrUh/2sHnPfq1uGkWqahTYkmW2gW17aC4r8Hm3Bae0fAAIRUVRIBhwCM4LkUrYRGPRA+qymReVpmDUeoonSqPUtmDB8vhqtRe3O4ZITXp9W8+dXzT4GvOfY+o4o9UxM7ogWp7JfbdiTfOI1zVTmZ46PhGmr0q4P9xQC8lQy+S15t0Sx51Gf6abQh0Q2/1HUWYdugqv034qmzZtOlRxSIex3pEUd27Yya+e38VIyuGktjI+uqqRXuVZbtj8dXbFdnJM+bFcsugyFoQW4aRdtr/YR/fTu/F1jdBkqhiKQjpkoBxbibm0DKVEcyUdKOG6bHv+KTbecwcDe/YQIsXb9u5G7Azwev0i/nx0I0OjJ1M+26a1qZWGhiYaGprw+WbxJEuSpDzJZBLLsnIJz65du2hra+Occ86htrZwl6TJOjo6aGwcP+Hw+XyEw2E6OztZsmTJrMRdzORB4akyD4ozfvJrqdmr+j7Dh6aNz8dT7rdQPQauJ1vuVxnMFpWZfD4YKFjKu3AcYiibJEzsJudWeGhINDKYGpiSNGXMQif/FD+/3VcME7MSBUQggpruIK0Vn9vPEzDQ0qPxamNd37JX9ZuOLmdLp8u+sj3bsHHJdpesC3moDXl4tnMgbxn/NGWkxx5zgs0oiX5WLXsbdz0/Xv59YvWxE5oj7I4mp15YK9Cap+gKhJLZf/fL2GD+4hv/6LIVuURHV/XcVCAe3YOm6LQH52HWp+nf9RqeAsUKJrN1m0ZfEzWemjdxUWD8ic1l3vxtXWSdDb4GeuLdVHvHu9TmJi9WFBqrfEUvXk6+PzsXmAIOBP3Zfac53ELKTqBNmhNKaCaKU7zSX96y+7FMsYvJis9Aaw8R6U0wHO8lr0JGEfPst2W3QaEGWFVFmFbRonVjm+TNtExP5jOy31t7tGXSqawjlkrkJU2mrhLQyvEX6xo8S2TfH+mgdQ0luO3pHfz2xW5SGZd3Lqjg71c2sNt9hu+//m22DL9Gq7+Nbx3/Hd5WsYr+nTGe/VMHyZf7aASONlSER8NtCWKsrMKsL36wmmuE67L9kV/x/AP3MJDIYKfTNGYMYpFa/nrC20gaBqqiUFffyPLWdhobWwiHI4fN+5OkI8mzzz7LpZdeyt133011dTUPPfQQV1xxBfPnz6e7u5vvfe97+1UIIh6PT+nKZ1kWsVh+5TS/39rnmIbpaJpKOGwT92VPyM2mAFo4211n7D7vooq85+yNZE8wwmEfqqbQUt4Kmo/WyibCYZtMEtIxFz3gwQiPd5MKBGKk1RSBkJewb7yLTBg4xTJ4uqMPv99DOGzT5xtBtVL4bAtFU1BVlbJF5bnnVLWUY1WliKhe6lsipEdc6qhmJ2kUK4ltW9lYWhUyGti2RSjoxT/63hKBOMJx0QIWjqtgBD3o4eypkkg5JHzZylne8D4q+J20nORAO2bnEE01wdz2HOMaaZK+JFbcwFJ1QvUazeEKQpXjp2V2r4XHMrBHt0mh13RQSQ2k0QIWJzVlr3a/0hvDtFKjn0X+c3wDoxN/js5NlPd4+SlkXIHtM7E8KUyhY9pmbpkwMLF9wOfLrsNvCgxdw9TH32My4CFlW5gBD1aRGAwtu+69dpSMq+GzLUQ9BL0h9Nqpv8VhmnP/n7w9/09kXfY/tdCyeMGU7TSZqqYZGrKwVR8+04MR9KKHx7ujuUtNMnvjGBV+fCNTt1XCF0O4AtdvEbXT2EGThfPzq9312lEURSEcsVFcQaI7gYJCeUUFdRVn5S2bimcYshOomkJdc+GqeYWEhlOkbAs7beLze/CHbRK+OMJj4QnbKBNbgpa/BzJJvJ6p+9HY9nRQMS0dvPqUfWdfxvbT3P4Sttm2pwsjpuHxGgRDdt73e6KAP/scO6XjSRrY9vjna/tMNEVh6TGrcdIpvMH8uEJJBzueITB6jDjQOAsJh9upK68kaAZ5dc8ukobNgKLj99i5512w4v30jaSI2MaUfXXy/jmTZNIkHbA3emPc8vR27n9lNwpw9pJq1h9XxdbE41y3+Rtsi3bQ6Gvin5ZdxfH6O9j5/AB/+NtGKuIO7ZaK11BxPRrqsZXoR5cfNq1KJIYQf/4lnX98mOd7U/TbfjQrgF4ZYE95BT2KimVaNLe00dLSTlNTi5xAVpLmgG9/+9t8/etfz43B/f73v88//uM/8vGPf5yNGzdy7bXXcscdd+xzPbZtk0zmjQgikUjg8+W3aESj+cscqPDYwPA6LwhI4sJANjETFRZoCsmB/EQtFsu+5sBADFVTGBpOoCS9RKMJBjQFoQuEJlAMgTLhuSPRJLFYmsHBGFo6/1Lz0HCS2EiKqJJdb2wkiZFKMxJLoqoqts9kYMK6Yok0hqqwsi5AdDiBMzLaAmUJkskMsViSgYEY0WSStKsRiyUZHIqTUbPtYM5IEpzsZLNiJIUyGEcdbQUSaRd3dH2T33shHlROagqTiqVwTD0vThHL4I6kSCbSJLUM8XQSYYi8ZaKJJJ4kxKZ5TTGUwh1JoWigjj4eG0mR9mvomfz1AZQp1USscqKxV3Of1URen0VsJEVXRMfO6KjDySnLjEkmXTKZNGTSpDMOqWQmt2xmOIETS5IcThCf9PxKtY6O6BuY6uhnGkuSEQ4jo/vPSLkKg9OXdR7bPw/W8HCckZEkIukSS6dQh+Io6qQuggENBuO5uCa+nhNLgSNIDmX3IaFP3dYjsSS218p+H1QFZySFEjBIFIg7k3KIxZLYIfOA3le9reN6TYyUy0gsRWYghhNLQkaQGIjlJ00A6JCYuv7c930wSSqZIaFO3Tf2ZWw/nfi8ZCJNOu2QiKcZKvD9nvxcu86L6cluu7H1LIxkW/BiSQiHw1PiGh5OEBtJMTgUZ2CaMVbTxVmYzkAsRmwkhSkiVNCOnanKe54KDA5OfU9vdv8EqKycWpk0G5Uk7adXeoa5+cnt/PG1vZi6ygePqePsZV6e6Ps9//T8XfSn+mj1t3Fl8zeo6VnAjl/3sXFwM62WygJDRfFq0OhHX1GB2h4qOOv8nCIEyo4NuA/9gsRTT/Pqbthc18BgRR3ughAZ7+hkh8EQy1rn0draTm1tfcE5ESRJKp3+/n7e9a53Adn5B19//XXe//73A3D00UfT29u7X+tpa2vjnnvuyd3u6+tjcHCQ5ubmaZ518KaedJGtlFeAx2+QiI73oRmrfqeNzbmjKSj1U7sEZ6uPpQuOwbBGX3+6Lmb7Y2VzmK39+y6+oPiMbFc/bay72Gz9Roz3JQoaRSbEnPDS6oIDmzQzbWmkC1wvWxDKDliPTprcdzLX0MBV0KepCtjS0oYQLl07XwbAZ+xfy2bEKqcj+kbutm5pZBJvvojCQTHUXPGDg5EbY7Qfu4k6LzS+X02imxpVbcHsJMsHwNBUmir8OEMKpPev691cZocsTgyemDfGrSow/YXfsdLos1kIXFEUTm9fSG+09NtYJk3StBxX8Jctvdy5YScbdgwSsHT+flUt7Y3beGzvj/jU04/huoLTzLNZmXonzgYPTn8Sxezh7baGx6+DR0NbVo52dDlKeG63vCiJftQXfkfmD78n/sJr9O/Rebm1lc7G40kuiiCMbPzV1bW0trbT2jqPSKRMdruTpDls4mTPjz/+OAsWLKCsrCx33/5e6Fi1ahXd3d0888wzHH/88dx2222cdtppuRLmpVTR7CedcFBHTwyd0bMYfR8Xp5bUBCizDcL21Bb/kNfgbc1hwt7xx9IBE1QFtd6HVR0gGd93q5qhqXgnnNSvrDyBPbFhmHQxWKmzUSo92TJmCijh2Z9SotHfxIK6xVPub7AbSSl7s3PbFKimVsz8Kh+v7R7Z94KFjCW4qkJFSwBrmpP47D6rgqlT4YFQuPCV8X2pXRAi42R4Y/e+l51patBELQug7Of4uZyxATQTJuEtJldBfh+Jmcd/cD1e1EgZM5Zyjn7ecXtmil8Zavb7U2wOp0I0RTugEt6VfpNXd0NtcHbP7Sp8JhVFuhceSjJpkgqKJjPc/bdufvn8LnYNJqgJGqw/MY3re4KHdj/CXX8bYWH8OD4S/yfC3bX444JqQ6HOK7CDBkIBrTmAurgMdX6o4BXTOUG4aN3Pw2O/JvXYY8ReHWAo5mNLSyPblp7BUKgMNA1FCKorK1l81ApaWtux7eIDjCVJmluqqqr485//zPLly7n11ls588wzc4+9/PLL+135zuPxcP3113PNNdcQj8dpamri2muvna2wD4iqqVi+8eNsfSg72aRnHy0QuqrQEC5+UlVmj5+oGB6NpCNQ54dRdBXV0mD6nlw51fNCJIazLWEBI0jCUIiTf+VYUbJzKgEo1aVNRBeGFyNOEAd8Qayt/E0kTRPY+ztReyDAyIIm/PUt+7X45HejKMoBzwH0Zk3cpvuTMAWM/OpoaqMfEU0jZrtBcj+okfzJW5UyD2J3vGir1nQUU2N33czt90EjRI3VgjD2f5zWgfJbOmsWV83a+ucamTRJeTp6Y/z387v43Us9xNIpFjb1cNri1+lIPM2DvUO0bzma80cuo76vhrBQKTNUIrqC5gdUBaXBhzY/jLogXLQbSck5KdSXH8T9w/+QeuFvjOxw6dfDbGtqYvs7TmLYF8zOvZBJU+4xWXLM21hy7Ep0/TAZeyVJUp7Pf/7zXHLJJezdu5dly5Zx4YUXAuMFIr7xjW/s97pWrVrFb3/721mKdOa0lNnUhzwYB9BKsi8VzQFS8fFyxAfCsvV9llE+ZMa2yT5aHw62B8HqtjJSzvRlvAsxNYUyn0Fr+f5flHOFQ7oygmK8id+nOdxT4qTqU6a0fCg+A8VnYIzOt7U/1fpmk+K1EfFss6la7oEJcyyVWn0wTBcUn4AaWFobyHXFnW1h22AgVqQU32FgjhzBpFKKpRwe3ryH3/6tmx09PdR7u3hP1SA+Z4jq/gqauo6hJn0mftfAo4z+kFggFFAqPKj1ftSWAGqjH8Wcm3MquV3bEH/6Jc4zfyaxeReJQZ09FRVsaz2ermUNJMzsQU5NxAil4yxYvIyjT3onHt/BdXmQJGnuWLp0KX/5y1/o6+vL65bX0NDAjTfeyDHHHFPC6GbPTCZMkJ0XyRs4gC4yKnDgucOsUywNtTmAsmN2uvsc7BgwRVF4W1Nk3wtOkHGzncNMdW53fT9YBedxGmXZOvVLIgeVxM8k44S3T63ZP0eEvQZrFk+/T03X0jzTVjUf2P69oMrPrsHELEVz4GTS9BYiHAFDKcRgEncgye5dI3TvGsKJDrNMCE53vRhUw0g1o1NPkBGChAspXSVZZqLUePE1+FErPChV9j77CZeCSCbIbNmC87encJ/+I6lNW8gMponaNtua6+latZT+UBmuqoHrosWGKXMzzFu4hIWrTiJYWbPvF5Ek6bAzMWECqK6uzlXUk2ae2haEIkUGQlVeUrHMQY8lebPmbE+IA9TobyLtpmicNGFpMUrB6XHnbkvTvhRNmA5hDqNopb9YvLQ2QOBNFmyZi1rLbVrLSz9mdMyRt4WlbEWZaDo7K3R3DLcnjuhPwnAq70ASwiGtDzKoxdjjQq/r4MZt4o5CWlPwtwSoXBCidmGY8tDcvIolYjEyW14n8+omMps34byykUzndhwBAz4PXQ1V7DnueAbClaTM7NUUJZ3CikepjERYsPgYmpYdix06sKsfkiRJUr6IWUaFpzJ3WzE0KDKmyvTq1O/jCniew/e8fopAxcwl6oZqsDA8tZDFXOb1elFVjUikbN8LH6RQtZf0sHvY7TeKcnCNVgVbi0x1ZmedlWTSdCQQsQxuTzZByiZJMRgZLe+qQjSg8LrWx+ZgJzuMLaRIosYjhKOtVPU1o7rZLmiROpuqpUFaFoQob/KXvMl7IpFK4XR2kNm6FeeNrThvbCGzdQuZrl3ELINhj8lAmZ+91eUMzl9N3A7jeuzsEch18bgZGnweWlrn07pkOYGKKlnxTpIkaQYdW3F8qUM4LFS0zCvZaxf63TvULU2apjNv3r4nwX0zQtU24YVvfr6eQ+20+RUz1tNPaz+wUvnSvsmk6TAjkg6iJ5ZtRRr9l6EJg+rKLHorYUNlF39xXuAldQNlKT81Q63UDs+nNXoWmpv92EPVXqqWBKlqDVDZEjjgOQpmmhACt3cv7vbtODs6cXZsz/5t68DZsZ00giGPyaDPS39NBf1tNUSXtpPx+HAtL8LI9k9XEAQ9HqoqqmhsaaN90TJMOcmsJEnS4e8gqpJJ01MUBZ/up8XfWupQ3vJmehyiNLNk0jSHibSL2D3avW60FUn0T5gTI2QSKzN4pWqQJ9zXeJINxDLd1EarqBlupXl4McfGTs9eRVIgXO2lYnEglyRZvkPbl1wIgRgcxO3pwunuxu3uwunpxu3ahdO1C2fnDkgkyKgqfcEAfWVhBisrGZrfRGxJO2ndwjUthG6Mz88gBH5TpbyqjtrGVurqm6isrMqbl0WSJEk6zI1dfZ9LOZNntDx6cG5VVlWra3A6tqJWTe0G6IjsGDOfnl+h74Sqtx+S2CTpcCaTpjlCZFzE3kReK5LYm8j9UKQ8Gr1+hddqozyndvKs8jIDSgeVSYOqvnoqR5pYO3QOvnR2PgPFgMrGABXNASqa/JQ3+DE8s5tICNfF7evF7e7C7e7G6e4aT4y6u0jv7iEhBEnLIu71Evd6GQmFGCqLMLJkIYljlpFSVVxt6m5pOAmCIkbIK6ioDBJuXkpZ42LKysrRCiwvSZIkHUHG+izN4JxCLS3tb6qbtmJqaAcyLusQUQMBrDPWFHws5WbnxpquKp0kSYXJs80SSI6kGd4ZJdUVhT0JzL4kvmgGdfQ3YUQVvKYleNHsZZO5g9fszTh6L2UZk/KRGipGGjkjuppQ8tzcOj0hncqFQSqa/VQ0+QlV27mZ4WeCEAIRHcbduwd3717cvXtIdXUR39NDoncv8YEBkiNRErpO0mORsDwkPB6Sfh+J6koSjfWkCjU7C4HiZFDSKbTkCCExQohhyvUolWEv1Q0NBJuWQf1K3GDznJ5PQpIkSZolugqmijqDk96a5uyUHJ/LxlqYqj2yaqQkHahDkjQ9/vjjXHfddcRiMerq6vjWt75FTU1+WedNmzZx9dVX09/fTyQS4eqrr2bRokWHIryDMhBP8/yOQRwhcFyBIwSuC7G0w0gyQyyRQYmmMUYyBGIOoYRLWdKlOgM1qIzN/tOnpHhZH2Crt4ddRg979V6Sbgp/KkIwWU5LXzUrdi5Dd8cP7lZIo6I9SFmdTaTeR6TOd8CTBgohEPEY7uAgqb5e4v19JAYGiEeHSEajJGIjJGIjJBNJkpk0SeGS0nVSpknSNEmZJq6ug98L/kZozi93qgoXzXVQMmlEKg7xIUwnjZJJozppQkSp0geo1Xup9LuU1dXjqVuIU3EcmerlZMoWgpZ9z3Nwmg9JkiTpEFJURQ5snwEBI8ipNaejqfKauSQdqFn/1sRiMa644gp+8pOfsHTpUm666SauvvpqbrzxxrzlLr/8cj772c9yxhlncP/99/P5z3+ee+65Z7bDK0oIgSvcbLe5tJP7S6dSZFIp7tmwnY7OIaqFSkAoBBWVEBptaJQLgxD5fZyTZOhV4+zRRnhVJBlwHYbTCiLtxZPxY7uLmMcicjV1FIHpcQgGVELVCgE7g9+bIeBJYaoZRKYLhjPojzyD2vEnEugk0UmhkRI6SWEQFwZxxSCmWCRUk7hmktRNUqN/GcMgbRigFmgB0hQI+FF83mxLkOPA6L9KagQtPoTuZHKPKRP+b4k4fi2JT0/h01P49RRhK00g4idYUYVd1YQIL8cpW0CmfDGuvxZHUcamhpIkSZIkaZbIhEmSDs6sf3OeeOIJGhsbWbp0KQDr16/n+uuvJxqN4vf7Adi8eTPDw8OcccYZAKxdu5ZrrrmGLVu20N7ePmOxbB54hZv+/D0u7vw/GEJHFQoKKioKQgj2KlFUF1ShoKGhY4wOKRITpjfK/v944DgAxUEokBaCjHDpc126hUtq7M91SLgOaSEAgYKD6qRQ3RS2k0JzUqgiCSKDIlIopFDIIHBwUhp7oyo9moarabiqiqtpZDQNR9dxNR1XDyIazi3wbifJS24cFDeFEothTkh4NOFg4GCpLpbq4tEEHh0MQ8XUVUyvimmomIaGYSiYuoZpGhi6B8NjYXgDGLYfzRtAmEFcuxLXW4FrVyA8EVCyydnhVQBUkiRJkiRJequb9aSpo6ODxsbxrls+n49wOExnZydLlizJLdPQ0JD3vMbGRrZu3TqjSVOVt5pj608gPaKSEQKhCFBchCLYEe9ly0gXHPKiaxowoY+2ECDc7Fgfd/Tf0du4LopwUYRAddKYbhoto6KpKoauoes6hmFiGCaWZWJZHjweL5bXi+XxopsWuuXJ+9fweDE9XnTLgzoDFefSo3+SJEmSJEmSdKSY9aQpHo9jTZojx7IsYrHYAS0zprIyMOW+/VVJgAUN/whrD3oVkiRJkjStN/M7NZPrOBRknDNLxjmzZJwz660e56zPomXbNslkMu++RCKBz+c7oGUkSZIkSZIkSZJKYdaTpra2Nt54443c7b6+PgYHB2lubs5bpqOjA9fN1knLZDJ0dHTMaNc8SZIkSZIkSZKkgzHrSdOqVavo7u7mmWeeAeC2227jtNNOw7bHx/HMmzePyspKfve73wFw11130dDQQGtr62yHJ0mSJEmSJEmSNK1ZT5o8Hg/XX38911xzDe9617vYuHEjX/3qV+np6WHdunW55f7t3/6N22+/nTPPPJNf//rXfPvb335Tr5tOp/nXf/1XFi5cSHd395t9G3PK448/znvf+17WrFnDRz/60SPu/cGR/fmNeeSRRzj33HM566yzOP/883n11VdLHdKMe+CBBzj33HNZu3btEfsexzz66KMsXLiQHTt2lDqUGbd06VLWrl2b+/vCF75Q6pCOSHPt2F7oGPXMM8+wfPnyvP3h9ttvByCVSvHlL3+ZNWvW8O53v5tbb731kMRZbP+8+eabOeuss1izZg1f/vKXSaVSJYvz/vvvz4tx7dq1LFy4kLvuuovjjjsu7/6HHnoIgKGhIS677DLWrFnDunXr+P3vfz9r8RX7zT2Ybbhr1y4++tGPsmbNGt773vfyxBNPzGqMP/jBD3IxfuYzn2F4eBiAH/7wh6xatSpv227cuHFWYywW58F+bw51nNddd11ejKeeeirve9/7APjyl7/MO97xjrzHe3p6gOxcq+vXr2fNmjWsX7+eTZs2zVicxc6VSrJviiPUxRdfLL73ve+JBQsWiK6urlKHM2NGRkbECSecIF588UUhhBA/+clPxCc/+ckSRzXzjtTPb0x3d7c4/vjjxWuvvSaEEOL2228XH/rQh0oc1czauXOnWLVqldixY4cQQoibb75ZvP/97y9xVLMjFouJdevWiZUrV4rt27eXOpwZFY1GxdKlS0sdxhFvrh3bix2j/vCHP4iLLrqo4HP+67/+S1x66aXCcRzR19cnTjvtNLFx48ZZjbPY/vncc8+J0047TQwODgrHccQnP/lJcdNNN5Uszsnuvfdecdlll4nbbrtNXHXVVQWXueqqq8Q3vvENIYQQnZ2d4oQTThDd3d2zEk+h39yD3YYXXXSR+NnPfiaEEOKFF14Qb3/720U8Hp+VGO+77z6xbt06MTw8LBzHEZ/5zGfEd7/7XSGEENdee6248cYbC65rtmIsFufBfm8OdZyTfe1rXxO33nqrEEKIT33qU+Kee+4puNzatWvFQw89JIQY/0xmQrHjUKn2zVlvaSqVSy+9lE9/+tOlDmPGFZr36n//93+JRqMljmxmHamf3xhd1/nOd77DvHnZ6YyPO+44Xn/99RJHNbPG3mN9fT0AJ554Yt74xiPJDTfcwDnnnHNEFq+JRqMEg8FSh3HEm2vH9mLHqOHhYQKBwpWp7r//fs477zxUVSUSibB26URpgwAAIABJREFU7Vruv//+WY2z2P55//338+53v5tgMIiqqpx//vncd999JYtzomQyyb//+7/z+c9/ftrt+cADD7B+/XogOw3LypUreeSRR2YlpkK/uQezDYeHh3nyySc577zzADj66KOpra3lySefnJUY29vb+da3voXf70dVVVasWMFrr70GUHTbzmaMxeI8mO9NKeKc6NVXX+Xpp5/m/PPPn/Y9FJprtbe3ly1btrzpGIsdh0q1bx6xSdMxxxxT6hBmxXTzXh1JjtTPb0x5eTknn3xy7vaf//xnli9fXsKIZl5VVRWrV68GssVdfvOb3/DOd76zxFHNvM2bN/PYY49x4YUXljqUWTE0NITjOFxyySWsXbuWj33sYzPyYyjlm2vH9mLHqOHhYTo6Ovjwhz/MmjVr+NKXvpTrDvXGG2/Q1NSUe05TUxNbt26d1TiL7Z8dHR15sYzN/ViqOCf61a9+xbHHHktTUxNDQ0Ns2LCB8847j7Vr13LttdeSSqXo7+9nYGDgkMVZ6Df3YLbhtm3biEQieePWm5qaZuSCWaEY58+fz1FHHZW7PfG3dGhoiIcffpj3ve99vPvd7+bGG29ECDGrMRaL82C+N6WIc6L/+I//4OKLL0bXs7MTDQ0Nceedd3LOOedwzjnn8N///d/A9HOtvlnFjkOl2jeP2KTpSHUgc1pJh4fHH3+cW265hSuvvLLUocyKW265hdWrV/PMM8/wuc99rtThzCghBF/72tf4yle+gmEYpQ5nVng8HtauXcsXv/hFfv/733PSSSfxD//wD2QymVKHdkSZy8f2iceoxsZGTjnlFG688UbuvvtuRkZG+Jd/+RcgO1XIxPfg8XiIx+OzGlux/TMej2OaZsFYShHnGNd1+elPf8pFF10EwKJFizjttNO49dZb+cUvfsHGjRv50Y9+RCKRQFXVvOOKZVmHLE7goLbh5Pvh0O3H//mf/0lvby8f+chHgGyrxBlnnMEvf/lLfvazn3HXXXdx9913lyTGg/nelHJbdnZ2snHjxrzaAyeddBLr1q3j7rvv5vrrr+e73/0uTz311CE7dk08DpVq3zysk6YHH3yQd73rXVP+xrLfI5Gc0+rI8vDDD/PFL36RG2+8Mdf8fKS54IILeOKJJ7jgggtYv349iUSi1CHNmF/84hfMmzeP448/vtShzJrGxkb++Z//mZaWFlRV5YILLmDv3r10dHSUOrQjylw9tk8+Rp188slcfvnlBINBPB4Pn/jEJ3j00UcB8Hq9ee8hHo/nXdWdDcX2T03TcgPDJ8dSijjHPPfcc9i2zfz58wE499xz+cQnPoHH4yEUCnHhhRfy6KOP4vV6cV037z0kEolDFidkt9OBbsPJ98Ohifs73/kODz30EDfddFPutS644AI+/OEPo+s61dXVfOhDH+KPf/xjSWI8mO9NqbYlwL333ssZZ5yRl7R/5jOfYd26dSiKQnt7O2effTaPPvroITl2TT4OlWrfPKyTpjPPPJOHHnpoyt8HP/jBUoc2a/Zn3ivp8PDYY4/xzW9+k5/+9KcsW7as1OHMuC1btvDYY48BoCgK69atY2Rk5Iga1/TII4/wyCOPsHr1alavXk1XVxcf+MAHZrTCUakNDQ2xffv23G1FUXBdN9dlQ5oZc/HYXugY1d3dTW9vb24ZIURuX2hra8vrkvP666/P+sWgYvun1+stGksp4hzz6KOPcsopp+Rub9++PddNC8a3ZzgcpqysLG+fOJRxwvTbqdhjzc3N9Pf3MzQ0dMjivuGGG9iwYQO33norZWVlea878SR5bNuWIsaD+d6UIs4xjz76aF63ONd1p1TEE0JgGMasz7Va6DhUqn3zsE6a3or2Z94rae6Lx+NceeWV3HDDDUfsJM59fX184QtfyJUkffbZZ0mn03njNg53P/7xj3n88cf561//yl//+ldqa2v51a9+xQknnFDq0GbM5s2b+chHPsLevXsB+OUvf0lNTc0R9TnOBXPt2F7sGPWrX/0qV97XcRxuu+02Tj31VADOOuss7rjjDhzHYffu3TzwwAO8+93vntU4i+2fn/jEJ7jvvvvo7e0lk8lwxx13cPbZZ5cszjGbNm3K254//OEP+fa3v40QgmQyyZ133pm3PcfKUr/++us899xzh3Rc6FlnnXXA29Dv97N69Wp+/vOfA9kuVf39/axcuXJWYnzppZe46667uPHGG/H7/XmPXXPNNdx8880ADA4O8pvf/IZTTz31kMcIB/e9KUWcYzZv3py3nyqKwmWXXZabT7W7u5sHHniAk08+eVbnWi12HCrVvqkIIcSbfldzzN69e/m7v/s7YHxAmKZp3HLLLVRXV5c4ujfvySef5Jvf/CbxeJympiauvfZaKisrSx3WjDnSPz+A3/3ud1x55ZW5ynJjbr/9dioqKkoU1cy7/fbbueOOO3BdF9M0+exnP5t3lfVIc/rpp3PrrbdOGRR7uLv55pu58847URSFqqoqvva1rx2xyX4pzaVj+3THqOuvv56nnnoKVVU55phj+MpXvkIgECCdTnP11Vfz1FNPoWkaF154Ya7622wqtn/eeuut/PznP0cIwdvf/na+8pWvoOt6yeIEeM973sMXvvAFTjrpJAAGBga46qqr2Lx5M4qicMopp/C5z30O0zSJRqN88YtfZPPmzViWxWc+85lchbKZNN1v7gMPPHDA27C7u5t/+qd/YteuXfj9fq666iqOPfbYWYnx+OOP58EHH8xrYaqvr+emm25i+/btfPWrX2XXrl2oqso555zDJZdcgqIosxLjdHHedNNN/PCHPzzg782hjvOWW27BsixWrVrF3/72t7xxQy+//DL//M//zMDAALquc+GFF+Z6dm3evJmrrrqKgYEBysvL+cY3vjEjvxHTHYd+//vfH/J984hMmiRJkiRJkiRJkmaK7J4nSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSYfIk08+yYYNG0odhiRJkiQVJH+nJKk4mTRJ0iHys5/9jOeee67UYUiSJElSQfJ3SpKKk0mTJB0CF110EX/84x/57ne/y9lnn01XVxeXXXYZJ554Iscddxx/93d/x6ZNm3LLn3766dx000252319fSxcuJAnn3yyFOFLkiRJRzj5OyVJ05NJkyQdAj/96U+pr6/niiuu4N577+XLX/4ymUyGhx9+mMcee4zGxkauuOKKUocpSZIkvUXJ3ylJmp5e6gAk6a3oBz/4AUIIbNsG4Oyzz+Z//ud/iEaj+P3+EkcnSZIkvdXJ3ylJyieTJkkqgVdffZXvfve7vPLKK8Risdz9qVSqhFFJkiRJUpb8nZKkfLJ7niQdYsPDw3zsYx+jubmZ+++/nxdffJEf//jH0z7Hdd1DFJ0kSZL0Vid/pyRpKpk0SdIhtmXLFoaHh/n4xz9OWVkZAC+88ELeMpZlkUgkcrc7OzsPaYySJEnSW5f8nZKkqWTSJEmHiMfj4Y033qC2thZN03j22WdJpVI89NBDPPHEEwDs3r0bgNbWVv70pz8RjUbp7e3llltuKWXokiRJ0luA/J2SpOJk0iRJh8iHPvQh7rnnHt7//vdz5ZVXct1113HiiSfy4IMP8v3vf58VK1Zw/vnn89prr/HpT3+adDrN6tWrueCCC/jIRz6CqsqvqyRJkjR75O+UJBWnCCFEqYOQJEmSJEmSJEmaq+QlAUmSJOktIZ1O86//+q8sXLiQ7u7ugsts2rSJ9evXs2bNGtavX583mee9997LunXrWLNmDZ/61KcYHh4+VKFLkiRJJSaTJkmSJOkt4R/+4R/weDzTLnP55Zdz8cUX88ADD3DhhRfy+c9/HoBdu3bx9a9/nR/96Ec88MADVFZW8r3vfe9QhC1JkiTNATJpkiRJkt4SLr30Uj796U8XfXzz5s0MDw9zxhlnALB27Vp6e3vZsmULjzzyCCeeeCJ1dXUAfPjDH+a+++47JHFLkiRJpSeTJkmSJOkt4Zhjjpn28Y6ODhoaGvLua2xsZOvWrXR0dNDU1JS7v6mpid7eXgYHB2clVkmSJGlu0UsdwIHas0f2IZckSTpcVVYGSh1CUfF4HMuy8u6zLItYLEY8Hs/NVwNgmiaKohCPxwmFQpPWk0LXtYOOQ9MUHGfu12iScc4sGefMknHOrLdSnIZR+Ph92CVNkiRJkjQbbNsmmUzm3ZdIJPD5fNi2TSqVyt2fTCYRQmDb9pT1RKPJKfcdiHDYZmAg9qbWcSjIOGeWjHNmyThn1lspzmIX92T3PEmSJEkC2tra6OjowHVdADKZDB0dHbS3t9Pa2srWrVtzy772/7P35nGSXPWB5/dFRF5V1VXV931JLbWQQEgghEAcliyB3ciYGxtLeAxe7FmP1zt8ZhbYXWMzPrCxP8sY4xmPV8wae8CsMSyMuCTRuoVutY4+q7vuuyrvyLjfsX9EVtbd3ULdUovJ7z9VmfnixS9evMj8/d7veCdPsnHjRrq7u18ucdu0adOmzUtI22hq06ZNmzZtgH379rFx40a+973vAfCd73yHHTt2sHfvXm666SYef/xxBgcHAfjHf/xHbrnllpdT3AsfY8Dol1uKNm3atDkntMPz2rR5CTHGMDk5zvDwAJOTE9RqVYLAx3EcurrWsHHjZvbuvZg9ey7CcTIvt7ht2vzMUCwWufXWW1uvb7vtNmzb5qtf/Sof//jHW4bSX/7lX/L7v//7fPnLX2b9+vX8xV/8BQCbN2/mD/7gD/id3/kdpJRcfvnl/O7v/u7Lci2vFJypp7DdMaJL3/Nyi3JBYaKQ5PnnyLzmtYglOXRt2rS5cBHGmAs/q2sB7UIQbV6JKCU5duwwhw49Sb1ew7IsNm7czLp16ykUOlBKUqvVmJ6eJAh88vk8V111DVde+Toymbbx1OZnhwu5EMS54sX+Tv2s5A7k+r4D8LIbTRfaeMpTfaihQeyL9+Hsvbj1/oUm52q05Ty3XOhyJpFCJZotO3ouaDnnOJ85TW1PU5s255mRkSHuv/8g9XqVLVu2cu2117N378Vks9llbbXWjI+P8uyzT/Poow9x9Ojz3HDDO9ixY9cKPbdp06bN+WH8yDNkCx1svOjSF92XV4lwSyFb9vWcufErDBPHmIaLtW792R8jJQDCPrMKZoxBCLHiZ1JLBt1+Lu6+BEu0sy0uRETsYjJdsMo9fCUweaIKwJYdP3vP7wul/ZS1aXOeSJKEe++9izvu+BaWJbjllvfxvvf9Kvv3v2pFgwnAsix27tzNLbe8l/e+98MIYfHd736Tp556jFeYU7hNmzavYOLAo1GePSd9lUYbxL7E6PQ7zKqPYZdPnpO+X2qMNq3rAEiefJzk6SdXbis1eqyBSZbkdSmV/nVObzRpr0F88C7U9PSKnw+4pxjxhpn0J87+Atq8dKiI7NBBnOlDL7ckFxxJpJg6WUPJny7ncajs48eq9XqkEnCq6J0r8ValbTS1aXMeqNdrfPObX+Po0ed53evewK/8ykfZvXvvqiuGK7Ft2w4+/OHbuOSSy3j00Ye45547W1W92rRp0+ZCozLh4ddWL7eum8ZGZupJnOKRl0qsFfGqEUmkztxwCbq/hm6uvAMY/zSKmi8xboKZDZZ00jS6zvB7YBoNANTI0MqyNItsGE6/oGa0QR2rYE5zb15uGuUQrV7Y75sxhurkKFq98Pv4ktC8P7Y7/jILcuFRnwmIA0lQj1dvZAxWbTgtKLMAqTQnphs8MTL/HB6bcumfbRtNbdq84piamuRf/uXr+H6Dd7/7A7zpTW/DPoswjJXIZDLcfPMB3vCGN3H8+BHuuuv7qAv1B6JNmzYvOXEcn34xRUXLlI7zhVsMKQ43Wq+NgZGRfOu1XmHDyXq9Rl/fsZd8Qag00mCyr3rmhgs4OHEXw9XBsz9gziZabTX9TItozc9N7YXJuQxlsPwZ6O9/cf2cI5TUi7x1cSApj3mUxl6Y0tsozVAZH6EyMXKuRTw3vNzBIeo0BslPwbmMdpnr63QLyXbpGJnpQ9jVxfPWNI9XL8MicttoatPmHNLff5LvfOefyWQyvP/9v8rOnbtfdJ9CCK699s28+c1vp7+/j3vuubMdqtemzf/AmAVhKUND/UxMjK3cUIbk+n+IXTr2U5+rPhswdrTyU33naA1Knd4wKJdLAERBiEle4gWhJZe00jWq6WnMgk2N3aS+vB8Zrjo+fq2MauYwLTjRWYknLBtIPUqnG/8wUVT95DQdgV0fwXZXmSeroGtVoh/fiQmCMzd+AYwfrVAanTeuiSKM1iThC7v/c2NiLvgIjBf/ex358gU9g3bpBLn+H4Bc/d7FKubh6QdWntMrsNDQXYp2XUyUPgf3TNzNuHf6uda6lNN8PTjlvvSfJcZfabif8OTTZyPyOadtNLVpc444fvwIP/rRf2fDho184AMfYe3as08MPhuuvvoa3vjG6+nrO8bDD99/Tvtu06bNKwNdDtH9dUwoW94Zf0mImF8vcfLIk8RB+r7dWDnnZWxspGW0LCRszCtR1UkfLfVZ631OPUYdqwBnZxvMrTSbwTr6VJ2pUzUalcVhZFIb9ItcKEqShNppPDZezeXEQ4fw6ws8ZVGEfP4ZkueeWV3+oIIzexirvlxJjDwPrzxLbWqV8KwzeZosgTGGo9XD9NWOr9rsiZEqjw1XTt8XnPU9HCz5uKFEjady6xXmyIulXp6fs/GjD6GGBpHxvOGntUbK0xiCq9DyYEQ1aMyc1TGB9ClH5dX7DAKSY0dbBTxWQyWakedK9J/op6/vp1+oWEocSJ6/617Gj569l9NqPvNChqu2KQUlgiRk2B06qz5P9wgmj/2E+LFHUUZhMJyq952hs/TP2aQsiCV7vbmzK+f4vRS0jaY2bc4Bx48f4eDBH7Fjxy5++Zc/SKHQcV7O8/rXv5HXvOYqnn32KU6cOHpeztGmTZsLg5VWlseHhxmYGYJYo/XKK/Phibtxisfwo6bSqeeVPRkrKhMexhh836NYXK5YloYHmucHbdJzrKQvxWFAZWJ0kZyOl2CMQUqJMfMKUS1IOHlyXrH3Gv5iD0Hz39iXlBd6IYCDJ2Y5NFZb8VrPltHRYaanJ9F6Za+NN1UBqfGLC84z58kIAkyk6J5ZYfsHmZY2FnKFEsfN45eHHi4+vwkkethdvpJv2a2WY/7o8v6VJjtRfMHhl/XZKYJ6akCa6aOI2rzBp42hb6ZxdkYYYMIQk5y9cRPHMaXaNNOl0UUGe1iZZmbgUMtgn5qaYGDg1Ir3auj4E1ROLFg4XNBm9PkyU6dqZIfvRQw/eFYy/WTmIQ6VVi7mAaAmJ9Djo+jJ0xfcmMuRK8+8uLm6vN8YozWl4TMbTVJpZtwFiw6rfEcAFI/7JMOL57QJQ8wLTAFotY/PPmeuZdyelRViTvPqpaVtNLVp8yJZaDAdOPCe87qvkhCC66//ObZt28F9991NsXhuqlu1adPmwuOeybt5urhYmfOjANVUhPQSJduvxWhl0NqQSEFQbxpLZl4JKo02qE7V8aqLDZOFxGEa0jPpj3O0eiRVcFbQVGYGTlGdGCHyFu9LVfGqDAycJF6QyzNUDugfTdu5dY/J8dlFK8ZnUoSKjcUhOibR6JmVQ48iFXFw4i5q8bxnSalmmW8hVrYx9JwSt3jlu+ra+IFATXlk/eUq09wqeK0RcOrUiUVK/nQwjbeSMbUEM+1jfIkJlngyBJxuZOzRcToGx8mXztIT1OyqNNzPVN8RjNaMPX43lWd+1Goil+ad+Q6murqHJX70J8SPPHxWp1cjwww89zRhlHqZwnD+/sVJ+n/c9Jo2GulcWbowkMSSaPw4MxPDiJXC8pQm9lN5x6YVkyPLvRJJkhAEL2Afn6Q595ZMHKM1xeF+/EbjvIbM6+bcDU1MLaote+4XcnjS5dBYjaj57GXHHjpt32bBrTVJQvzQ/aj+Uy9MwNMYWUmkiJfOazgry8dojUnkCosCZ1dI5XzQNpratHkRHDt2uGUwvetd59dgmsO2bd75zlvI5fL88If/nSha3f3eps3PCnEc8+d//ufcdNNN3HDDDQDcfvvtDA6+gMT8VyCVOA0b0pUyybHF3uWgXmV2oA8Zx4SNhOKwS23axwCu61DtmyKaqCAWKJ7GQHHoOcaOnCYnoKmkVOIKTsVFhwErajlCUAxnieLFCqjXfJ2sUPgBIG6GYSklVw3PKY+fviiAGfcwpRATLlfI5sZs1FvunQnchMhbQYmb07+XGE2NwKZcESBW0fKMRofbmBqpLPMoDTX6KYfLDRqjNePeGH7iLVa2lw6FaSa8Cwu1Qr6XaCrG1gphbHJkGDk40OpnpRPEcYQvDQ13/v7JpkLuWALjGVxfoaqn8STJ5Kw9DLLvOGp4+PSNVhnmSqXE8PAgI09M01lt7hekF8ulyyH5mQDRLPF+YjRkqG95kYihoQFGRxfLoWK5yIhbJJJZWUn3axXKk2McOfRY6jVbNpVPbxmEYbhozkzVAh587sSysETVvJ7JYIKfHHqKscOrhxJ6zXmiFsyrvpkGR6ZW3nA7F4tWoRLTvI/ueD/TwdTyxqtcTskN6S96ixZJWtfUV2Pq5OqeN7tyklppgiBOn0m7dLyVhxUdHSJ4+sRiEbRGN85/lbzVaBtNbdr8lBw7dph77rmzZTA5zvk3mObo6Ojkne+8hUajzo9//MN2YYg2P/N85jOfIQgC/vqv/7q1z9mePXv47Gc/+zJL9tKQPPUEenyBEWAMQTVVnuLAQzaLQ2hlEIBWAjUzzXTfYoNm7rsiSlaurKUrFeTEGCKogJZkZyqo/pMremdCGTIVTHGksrh8+JzuaM6Qnz+ngxptMEsaN0phS1lciVZo3wpGl0AgyxYTM1P4crGCNTtYY3awmbNlDLq8tIiDoD4zyeSJw4uU4MnyFFV3pYR5w6zrETTLHS8sTpAfmkIsWYUXQRk1ci9Vf5KTo49z8ujzlOqnyacBygHU+zzkkvEwdiqgWOB5sKsDoCJU33FU/8p7YSkD1SBhZGSYcpQeW58NGD1cbuWOZUNNWIqYSRrM+i+yet/ZssIcm6sWOzs7QxSFJIsMU4MOAvTcwmHTwyROU7pcDvSTDJxCxhEDTzxE3PQ4VcbrfO+R53jwuWOI4pJ8pBXk8msVZvqPo7RGIAjD4DQ1DdIOjt9xB8fu/mHzuiQjI4NMT0+2Wj15aoLpUpVisUgSBiQz/VjVQcpjqVfYRAITrXyW7NBBMsP3IgBjNGpBSO5gyWessoJBaAy9rkPHBOhSiClGIAWn3JMcrjy3qKk2mocmHqTSzP0KGy71pux9sw0akSKSurVnmGy6sM6km9jlfo7d9TgPPTmNCKs4peNkJlPvuvaC5t/5Z1idOokeGsCKgkV9R4MNZOX8l9T/6eogt2nzPzhzBtPOnbs5cOCXz2gwNRKXx2Yf4fnyswy4/cwE0wTKxxI2vdlednTuZN+aS9mRfw2Jt5Nj0z4jlYDZRsxsIyKSGscS2JagJ59hW0+ebT15Nu++iqHBp3nu+Wd47ZVXv0RX36bNS88zzzzDwYMHgdTbCnDTTTfxxS9+8eUU67xhjGHDUA5vnYRt8+83IkmpGrBr1MVpRtipJTklodSE0lAwkERrSSYLcEn6mVaSSMX4nqSwwnmTpx7HlEvYYhI7ngb2z+f2GANuAmsyCCGwrXTdNVgWgpYqdmpOeV2g3MgVFNrymEenzJHfnV/2GYBXmmh6pDbNv9nyDC1vb2GhSukcebL7cd694V3pCnW9BtkNqffGKHK+wUwHiwwvIxOKAwOIhRvPKok7NUGyxANgQomOckBCHATkWWA0VStkqnUsH9g5f0x29AGGExeSBGt8GjlpUd1yGevW9iySI1YRI/WTbMWgVAbtC2pTPut3duHXY3IdDjTHfy5EUEQ1nJnnsBqTzKmPtbhGJx3YC+SerofMNmJ29aSGszGGyoSHVx6ne++lANhKoZvKvjpNXsyLYaUS9EsZHh7ikkv2p3IYtcwSV/0nkZNTsP/VZ3XO6NQJRmeO0tFpsy3byfiRQ5gtmkAquoCN5SdRdgdW7x5wVnpCUrxSGhovAKEjTLxgHjUvS1cqNJ46jrW+G2lNICsJJhM2twlIx9RtGuJKKcJ6Me1TwNjhp3Emn2Tf/t3ANen7WmJVh6H7smXyiNhNn7oMjIRHeMAc5ZfWXHRWY2JJOHX4KOsynaxxc5Cb/+xo5TCub+jJrsVPfE7GfVy78Tomj6dGVffmrcSxbBkTU8EL22h57nkJazHQzAXXiz3BaqaI2Nts3/QGWknC3EBrbVC1MZLJMrx5J+eTttHUps0L5OjR57n33rvOaDBpo3mq+AR3jHyHR2ceRhpJh9PBvu5LuXrta+nEav4wFjk8dYyHpx4EATrpwdSvYbN4C9s6t3PZ5i4KGRulDVJrqoFkvBrwzHgNL7a4OdPNfQ/cx1cOh1x76U7ectE69qw7P4Uo2rR5uchmsxSLRTZs2NB6r1KpvKANo19RNL0H6w/NkDAfludGqUIRxBrR1GXDehW0wW4k0JtlvBriBVnWCnBMHrOg7LeAZZXojDF4saIrl6oEQtsI5bSUl7n2ZibAlCOs3V3QkWktwOs5C6ZpEAnSvKixkXFymZ2LFA03ktSLNSwBJorR1WZBAr28Ql+r/2SFFeRVVrAjqYnkvJI/t+KtZ6bRMzPoTZuZchpU4hJXOvubjeYVcfncM4yP9BNz6FDiAAAgAElEQVRccjm7F3g1dKkIPQtND9BDLkQdGNwXlJw+o+pYFJBakhGpUaK1WrRyfqx2lIo3RteC0DchIAliZgfrlNQIvpwhr2nNlXoQMzFeZ9/OLoQ3Q5zt4pm+u9mw+VJ211yMhjUASQDYhIlueUcir4pXmaIymgE2LLoXyigOTtwFwOb8Ft7Se92ZrzGYRhrJto7tq7aZHXLZsYKOW6/X02vSBqMUupgqyserR+kNt6TXkI7IsmOlloyVJthcWDkPK1RpX7WkxtZsJwAmThDNvoQxaYTmSvNrwXeNMILCjE3SKbCrgzjZCmxOjZTWvHVdJmYryHKdresqeKGFiqHv1HGyC/SGRtLg6WNPAAKhJMmhp9CZFVYDEh+BgwhrwFbcpI4vfTYXtiwS0VMVzFnFkc1fT6IUh6bHuSYBsoKOqs0p/wRDcgCiNfRk1y45Yp45r+9qz8DhynPI+i4u6r649Z4nfWwyrTBCa5WvcW0MI4NDbLykSNe6DeBkMBiEViRzYYXaoL0ydtBAew3oPX/6T9toatPmBfD884d44IF72LVrD7/4i+9e0WCKVcwPRu/gX4a+wYQ/To/TxQe6ruAdQcJrahNkxx7GCpbHudcswU8KBb7TLXlk3UGK4iCvLlzErRfdxp5dNy8rM2OMYcqNeGZwD/2PfJettcN86f6Yv7p/gIvWd/CLr9rEL7xqE1u6V169bdPmlcRv/MZv8J73vIef//mfp1Kp8IUvfIG7776b3/qt33q5RTsvGG0Yq4bsaoTI0RGslsKWKhmdpWeJ4gS0D5kORDUm48bQyGEnDh0NEB3pMY2GTedcxysoJ/1Fn/6ix/UXrcPEEYW4F6umMB1p3sekP87FBpjbR0cuNbo0UktCt0aeLAiBjEIsII5CHCDwpzFa8sjhiLW1gB29BfxDTxIojem9mBVREcKs4uUwS/42eWigxHOVh9nP4i0fTOBh1Qagcy/1jtQQ0XN5SgvC2xIliKTGj1XLGyC1BAFGaZLpEqZnzoMGoVRMisUhY2ek2cQYKFdm6SpspFSP0Rsicpu3Nz8zrJ/oxPZszJxCbwlm77yTsUqClFU6N9SohRLRmZ5/olhFJgmuW2FNfQTh5CmoLI21W/G9NIQt35igVHoIJ3MZhi2pgas0RyfrbFB6RWOhHteYUxeH3QnecuYr5PnKswAto8mYxWXj66HkmeJRChXYsWRSFscm0LN+y5tonJA5V1msF+bwNo35BWMeqxg7UZTGrBU3FU6SGGNMsyCIIVABRplFEng6ouaNsq23aVSvkNNkJU1vqqcIgoiJsRnWXcXi9sYglUYrw3A5zREKZcjEZB+Xb9+PY6Vj+vD4Q0x4U8BuhJSYJEFXa8w/tEtJ+3989lEANhe2UJINeuyOVUMEjTEoqRFCo5KETD71oomoDjHEMoMA3FhSiLtQVYco7xElIbmmmarCmKRcw2xIzy9HR4iqDcT6S1YTlDgKMEoy2OhvGU0jjWFO1PrZZV3MhgWP4OHJOq9bcrzSGlmqUHz6cbpuOpDeA5Ma8uVoGGM2t54nx62SPP4YvPeXVpXnxdI2mtq0OUsOHXqCn/zkAfbuvZh3vvMWbHvx4yO15K7xH/IPJ/8rM+E0rxFr+F8qITdXR8hyFJVfz0xhH8/ra3gm6aUoerl401peu2sjl2zsJBtXeJs/y89505Qqx/h2PMrX9SnuO/I53vHk/8Fv5y9jy84biffchO7ehRCCrd15tr52Nyc73sFdd32fP7/OZrZjL3cen+VvHhriPz00xOt39nDg8s2847JN5Jx2GmObVyYf+tCHuOyyy7jzzju5+eab6ejo4K/+6q+4/PLLX27RzguJSpXMRqQYKPrs29hcFW9+LrQEFWH5U+jei1qKWnV2iigyiERhNUt+J8lCVcrgJz520/tk1wZpiDyRFkwNlZBT44hgI7YBnUk11YzOoGcDbLPcyACQkeTI9HNUfZcOs2P+TIaWkab1fAWyucO9WpmqVNB90Zxoi8gO3wu1EkLuxZwhBDpwE4w2xFJih/MeoTmFWqhU2dZ+CYWBQgEDlEb6KY16WN09yEhRdW2Uaoa91SdISieYQZLr7CTGAmGRREFLeXL9EE8qOoA48AkbDdZQJYkylGLoMbqla9vFoxilcWohOl9IDQlMWjGuo4NGaZbc5u3UalXiMGbtVAkh1kDzPgohKNclViLQxsIOIZN0MJetUhk4jpqaZceGrrS9lmAyi8a1PPQjlOeRLT6D2PNqjAE3UuCkm+TSvGfCsMyAqvgJo5WA6Xq4MIJrEUYb9IkqecsmXNM0OuOIqckJ6m5aEEBjqARpqONgfYQdczGWRkOjgi7GIBW6VMKa8yyfJj8ubm4+bJREzkxDJ5iMhRVa0LNANmMYm54kiRM6/SwmZ6jL1CA0QKE4gl4reDwYxNS7lhtNCxAinWP1aHEu20ooBMZNY2lTz2eWKA7Q2sKamiITeMw9KIZ0U+gkBmxrcd/NwiAj5X62m/2t/gPp83QwwhanB5Fb2WxSMxHjsoKTGSfyXPZecz0Yg1ARljsGVhr/poxuRUAOugPQWnM1hKNTEGiSZojczFQftrUTu3PHasPEUP9PiJMauf27W+95Mh2L2KsT951EiB3QCzNunJ5voUcvzdJCl4ppFcHmR9VkilKUozapcTIXN0fOEIQrF7w4V7SNpjZtzoInn3yUxx57mH37LuWmmw60ciogXfG4Z+Ju/uH43zIezfDqWPJHpTJvVGWSPTcxffmb+G55J1857lCpSrb35HnPm7bwG6/ewobONKFdAwvXz3LArxrDLeWjfPvE7fwzT3CPGeDWw8/wiYf+gELvJcR7byLaczNy8+u45JLLGBg4xfHnnuADH7iUD119FWPVgB8em+GHR6f5D3f28eUHB/nAVdv44Gu30dvx0hWtaNPmXDA9Pc3mzZv56Ec/uuL7P3PMLW4DXrzA2zJncawSllivVVDSwqBwZYO12AQqQVQrdPf0ghG4SRUZSnZrheWX6JVPcI9j4VR8dkmLuW8HIWyElqxRvZSfnaXHaeBs3wpA5EsCN0FELn45T0nNYpMn0QlOU7Nxi3Vy2QKnDZYRoGtVTMdallpNQsVMHh2loA3+3v0obbAtQbVaYWpygD3rdraU91Zxh6ZWo2SCSRKsGZehHUOtrmulCWJfkNm+m0zBwS/GTIUVtnX3ID0fGzB6zqAcIEERujP4YYF4bQ/CMYg4VZQn6gGOSr1WShsqE6Pk3FlevSmkUrNJpCRYoO075T70gg1cReyCyaGLM+jNPSBSDXV6epJ6o8K6RGKyyzVRrTUIyLjb6dIebkunnpsTc5ZqjDD5Vm7SHBk3wlHQOfkUo36Mtg0ZUSWbTEGyBdKfJUK1uFhIkChIFEeOHObyvXtxajVGJhI2Zgtko4jkmadxXnUlRmt6TrhYvUXYBqee+gmlWp21zX7CeK6Ix1yhh9Q4sLxpMlMl0JehGw2IQnSz9LgME0y4stcxkTGR18CdGgctMUEMnXMWe7PwidTceegkTqLJ607sxEImimpSxWIDlhtgj5SYHPOJ9nng5hmplthxxdr5Ey1U5pc8fgbwa2XQS0c7/bRRK2P0vAVXHRsha2VY64dkhybJXrKXwAfdUAxUAxr1WdZ3dyCVJvIq8+PlecxE/RwZeYK5B3UuBLWmA7qm78EiwU0SWAPxyDSd0XHKYjtJR4NitUxPIT3QTgySZp5h83qmVB2VSNaQLjjohZGxzYvWShGpiEiHVOIS+fHh9Jpz6dOYlGpY2fQcsYoIE83opMtNSyI1xUyaF2aFKxelWYiSMcOHHmNrfg0GkCYkl1QYH6zhTR8Heoi0y4laHztPUwjkxdI2mtq0OQ3GGB577GGeeuox9u+/nBtvfCdWM/lWG80Dk/fwD0e/xFBcZH8U86Vag+u23kh04/v4MVfyjeeLPHBvEW3gLRd188Grt/HG3WsXhNqcBiFYs/4Kfv3NX+SWsMh/7fs7viq+z3fXbeJfxwU++Mzf0fH0f0Ln1xLvvpGbd97IV8dzHDz4Iz74wV9jR2+B/+lNu/nN63bx1GiNrz01xt/9ZJivPj7KR16/nY++YWcrh6FNmwudt7/97cvylyzLoquri8cee+ys+njkkUf4whe+gO/7bNu2jc9//vNs2TKfD3Do0CE+85nPLDpmdHSUb3/727iuy8c//nG2bt3a+uzWW2/l1ltvfRFXdRoWLtsuSH4PEoUVBZS8Ml3d84nqc0PTCDz8wMYiAuWjTCczYQ3/0Qe47IorMXStcDINWPjGp6U9pQu3iKAM2Q3oeo1I1rA7C8TjR3l4cgxnXQdWMIstLDLrdmPVA5Spk1mXhvOEkcSPGqxfJWRNa3A9m46OZoU0L+BUrcaudWvJZuZ9GXP78Tw5WuWNu9cyMzOFNoah4gj79y8Jw2ueK2i4JKVpeqTH8T3HsGWDalyhULNg+0YCzyfsSpitR9R0wjadwOwI5DawFCkTdCYDRqdemeY5ZhsJc7OnHknCaYtqw2XfOovp0Ql0orBFgqiO4t01ht1dx+5qhkXFLpZUCN0JVhf4PsLrTsct0YxVQ3YbFlVBY/7upNea5MD2ml6h+Zyw/mQa/DF2iA1YmRILTQ29YC5ZTYNO1OoUklGELuG4I7B+F0IbylHqEQhVgjE2RipEszS0NziAMzSMCW3KsaRrahLj1lFjo9RnulAThmySKvulWh2/FmN8wTpnFlHYlc5vrfGnXZTuTWWrlkEuMZ6b/1YOj2A3XNiT3u96qRO7f36vMbdeo+hV8bQPZn5R06mmCnkjksT1EipRZCwnjfIyhkQn5GOPXKMKZCHWyLrGzqbHxaHCXjJ/i8UZxsZG2GRyBIkmpw06Spg9+RxyYhqrdzOGjkW5dUkSIyO3ZeiY1Z6JWNMIqxigoTUnR0t4jaaX2ZjmRrIWuu9B1nRtxt+6BetEg1zQQVDwOdl4hnx2M41EEiaKidFRXBmhugRjdZdKQbBZai4GOqoKXxvKXkLQzAFLlMYNZCtvTJcsrGyQJsN5M9jVCmZJYZBS9RjrMrugkC6PuKOzzDYibtinW2OvtEFNjCN6e+cPDENAYJzFuYLLSAKS0hhOsIVYZNLS5g5gwIskdV+T1zYdYi1T9VkGyw02ZM6PbnNOe/2zP/szDhw4wJVXXnkuu23T5mUhSRLuvfcuTp48zuWXv4af+7mbEUKgjOLB8bv5p2N/w8mkxEVxwl8Eguv33Ub55z7E3w8b/vn+CQZLx+nJO/zaNTt432u3sr1n9Uo8Z2J9fgP//sr/nV/e/X7+5uh/5E8rz/KNK97M/9pzHW+aOUV26CCbT3yLXxKX8P8Gt/Ds9/8z17z9l9A9uxFCcM2uXq7Z1ctgyecrjw7z/zw2yrefneRj1+3iQ1dvx1ktC7NNmwuE48ePL3pdq9X41re+RWfnqoH/i/B9n09+8pPcfvvtXHHFFXzlK1/hD//wD/nbv/3bVpurr76aH/1ofqPPZ599lj/6oz/i0ksv5b777uOaa67hK1/5yrm5oBfAwrVrA2jfhcz8e1Z1APxXY4yDLz1ilaSV3Jq+h9hIxrwp1hfX0pmbK6OnAYNOLBrVEhmtSWyHyLT0usWOH22ItCQ/NQm5CCuMadRLYBucUh0VnSJX6gYhsPcsUIxOgx+ZZihSWn3vyZnDTLk+ltnMns37mTMRRFOQqp9Q8mIqpSKlkTLrNmxaodd5oYUMsYJZjF8maIbnhSZBac1Mpc7heIzNzbNYQQmURCTBSl21bNhIL4g5XPK16WiBozMEcdzaTBcVUa4N4WZ8XutCx/496aFGpX0and4LLbFcMIGkNFqn4AmkjGkwbxjIJftAiWZOVi5x2TF9FzVZQAMTssKaUFIhwVh17LkwBmPwm94jAZggmus4/btgxV/Gi88VVgNk0Ye5/aKkXHz9c16IyUkSb2fLKJgLLVNSI6IGSVJFyLQQRSYIMImDpxK0Vki3QTwYYnZehjaKRuLSPae+x4u9ESqxUWq+kIUxGoRInxWzIIx1LjxTQOdg33xEx4J7K6aON8doI0aAMYJ4ehy9IaBaSvBnSix0kpTLJYRvqAYxVTemx6vhGI1OQgKvDh1rGK8GzFZ9Njeni0mreKSGqikQViLsnvRJC6RBL/CO+JFLHgvdCPCnAnTnDhqJCwhUFIJVoON4QJczi+naDgLyQQdhzicJbEzzu2Gw6NMfxQTU8aNpenMFQDDtRtx5bIb9pB5Syxgima6SGMBIhzCKwAKn4pKXHmajhKiWtlkyDyPtLxrSapBgDFTrCzbQ1obqoWfoWtMJV25EhBFC6TTPbYW4voXhjnFi4VNAlOvo/PrW/RORgxEJubhKp9yDsrIoZYgSCa8Eo0kIwb/7d/8OKSUHDhzgwIEDP7Px5m1+tqnXa/zgB9+lVJrluuvewutedy3KKH48cgffOPF3jMgae+KE/8A63nL5v+EBruXfnijz4E/6iaTmVZu7+Ow7L+Xm/RvJZ86wikL6BRG6tTQmvlyldugYamQSM1PF1DysWgUnapDVIf9nhyZYs42+zDgHN32d+6+6il9+///H3qDM7qEf8+ojYzw2upUr/9t72Li2l3hPM4xvy+vYu76DP37Xq7j1mh18+cFBvnjfAD86NsNnf2E/+zacnfLZps2FQE9PDx/72Md473vfy4c//OEztn/00UfZuXMnV1xxBQC/8iu/whe/+EUajQZdXSt5X+BP/uRP+PSnP40QAtd1WbNmzYrtzjV6gdfA6FQxnPQ9erLZ+TCzQGLy8yu+Q2NH8f21C/pIFSBPxyQm1SJrjSLG38T6eA1hwyUZHcHyMpi6QDgJMmdRNZBDYYUx2chjLimkoXyKfpmeIMfF2wvNnCqJVfdRsUYlU4Q+NLJZHB3Cgj2FvGB+c0ujNVUVoWMfv7EOV1tYc4aKgURHzARTZN0CdlwlC6zxR2iQ6hJPjlQpDY3TqzL4czk4C2iV/E5fpG+qmDiM8DxJF3O6vp73uhgQzRAnhNPqp+wnxEuKXkQYZmdDosGV9y5qeRCa/VmJwlUhgQDpGExiYasOEssH49AIPTKWhUQx5eUYHz0McUwmllhBmc58N2Qg9j0O9Y+xbT69JT2bARHPABuw1Hzpdz0ni7bpnLUwiUSV60zNTjX3dbLQFQ9j5ZHKWV66vZlvFcoA6EI3DSuh0yIKaLCCDJYO6AomEUkzly1J0LPzG6OqaqV1i6TSafXEKPVY5apVshMG3bGGUlgkUT4yzNEY6afaAY6Ocf0aWiscuTwfV4Qr7ZvVPK9KS963ollb92fxa0c4hJOa2NV0AqZZds5oRfnZO/A6ehF0s7X5aCW1BrrZaRJrTCQJQou8rah5Pp2yg4rv4UaSztgnRqCWDK5T9JBFlxCHOCtxpUGNFumYaeBm5zzZBq0UxouoZ+o0/ClE4iG1wcoZbJNPQ3XnjDIgCgUqtiDSYIOuNfOtol5MboWiGIGLUYpyFCMyZpGUdc+DbhAyzcFqhAnaGOJYLq++qZ1mHmA6+9WcUZXMJx1YSjHbiFlbP4y1+7UYt4FWmTSPqbC4v/jkMHHfXS0DxSDSa9SG2XpArDRYkKl0EdoJFjUc2UCR5kDpM20Q9yI4p0bTpz71KT71qU9x/PhxDh48yKc//WmiKOLAgQPccsstXHzxKhVy2rS5gBgYOMk999wFGG655X1s2bGN7wx8nW+e/HumtMdlUcznxWa6tv5rvlu7hD+8u0QtPEFvIcMvXbGZd12xmSu2rFm1FLIxBrc4zfTJY0yfOk5pdBh3dgotV9mYrWAhOrsR9i6EtQ7L3kjB6qY79HjbyWdZ/+gR+Jtf44krdrD73b/BtR96KwP/8jW+bX2Uj3U8TuHZ/5uOQ/8ZnWsaUBe/i8t2vY0vf+BKfnxili8cPMVt//g0v/mmXfyra3dht71ObS5ApqenF73WWnP8+HFKpeWVKFdiaGiInTvn6xt3dnbS29vLyMjIiot79913H7lcjmuuSfdIcV2XoaEhPvKRj1AqlXj961/PZz7zmXNuSCktuf/u21mz/tWIOEGFASoLfrCWIPYRufm8iEYoF7iFQCbRslXgCeFjL9iRqTo1gNVUDMOKh2ODUDYZP4NYl+aAKGMwsUwNiWYieGIkodTknTlDLVV0aqHCVoqc7xIH3TjSR8zWCdz5DSmrbrH1f+TXqcoIlWgcDNpixZXm2dFjQIX1cQGx/OP0/EvChBpJgzqV+RZCkE86cTyIm9XjWLiwveCrzmgwtsCYGJ3LE0c+9w9Os66Zg7RQxOlyxOSxMtvzCxfEWmYMSopWSKEBkiRPQ/mUlKRQ7MDyN1GTfdi5jQTSwrEFM7Uq5UqJYLaCSRyE5xEGiu5s0kxsq7Np6EEqQS/CpEqkNgIjCzTkELChZfAtRCBIKjVMojAYHDeal1atJRfnkIlCNKMhE6XT6nKAlzSIlY+UNkLkmoaoxo6qWNUCVuzgSB9tDMXKcXoXhH6aprsncQMapbBVxACaxReNxsQeejaC3amBFjgZhqRNaHvouBspLYxbw11ghC28EbY/RSO0KORTL5NC4IaSQsGiXnfw4pCQxXtrzQ/MnBcTZKOAjpcr2t3xegITYTEFsowcWcdYf0h5fY4uke4PZEURiTL42keEAet0Afy0hHkQ+ZRFJ1nRi9AWkYkBgRWlXrOkUmSmO8YI8IZnyGW20YnBoptIpLlcFgIhIBdL7LiHWcp05mCuOEhHxSDXhK35t4im8dCr1rExKKAzEZ4M8FWVq6deReyWUZ6HyaxUVHNxf+MzNeKGh8Biempk0Wc62EggC8tEeGT6QWhWv3QSiSEHjoVdGyAuauo1q/n1svhANVuGDVsWvWeARCdMln10JEHYYASmOQ6OCokN5OMKIpiFzt2cD86L/+qyyy5jzZo15HI5vv71r/P1r3+du+++m02bNvG5z31u0Q9XmzYXCkHg88ADBzl1qo8NGzbyhhuu557i9/jeXd+mYiKuCiM+EW3mOf1r/NvZXST9hkJmlrddvJ5feNUmrtu9FsdevTpdfXaKgcceZOCJB2nMbYxndSCsjQj7VXRqQUFHdK7ronP3FuyNvSgdkgQNGqUZ3OIUfuU5kighAVyrwMTWHVi73k/W7mHz1LMEn/+PRM6f84abf4H7OwocvPzfcN0v/hcyow+QG7qb7NDd5E/8Czq7hnjvO/jFyz/C63/9dfzFvQP87cPDHBqr8ccHXtUuFNHmgmMup2lO8bIsi02bNvHJT37yrI4PgoBcbnHNr1wuh+8v3Zg15fbbb+c3f/M3W6937tzJ29/+dj7+8Y+TzWb51Kc+xZ/+6Z/y+c9/ftmxXV05nDPF6a+C79fITpWIp58gozdiWQItDJZ2sDQ4XRY4AstYOBkLx7ZpeBZre22qbrqxpKXTVWMT2UQmpkNAFEIQJKzJdpBYAksIhLAJQhuSDGtVhs5GBtvxsGyLBgnKcbAdC8e2yDgOti2QhLgmwbJtrEaEsXMIk7bRQoAlaAzPYmcUlm1hsMglZTJOauxlsgJhC2zHxstILGXj2IJM1iEjbWzHIuPYWELj2BY2ebJWlmzeoaNZOKfuWGRNSE88QU+HwFrTwXQyxqmZY1S2h2SzDhlHYSyL3mAbzlQByxFYlsCyIes26NYR9lqLTMamIG0sCWESk5NFnGwGrISqqJMXFsIWCOFgCQuhs+QJ2OQ9R6bzcmoGtEjno+NYoAWVUjfgYFkKy0rHJNvooN8qsn1bs8iEY2HZWRASbXJolZbPyGUzxLbBWKm8jm3h2JCrNMiJELewFqU1OmngOOuIVR7HtshFIVF+LSpjk8k66dgJK71/aCxhKJqATDa9j9gWlmVhGVjnbMC1BbYtKAcROiiSy61DOVbrugqFLLHxWKPK5Kr95LNX4mQzOI6Fq0IqyTRxvcD2ng4cx8aWFpmkTHbyMRzHxkQRti3S/DfHBgWRSK+xXJ3CJB7CzqBEN7ZtoUMNESADRFiiHsxgnJhC0cHqTkAqZqIAo2x6szYdSJJKBcsSSGOwHYGIUuOyt7cDnXHIZGwiWyCwSIjI53vJWg7ai4kS0DmdjrljIbCwLQsHB2FpMrbAqUrWyDxlNJmsg2caJNojY4FC0whK2NYuhFHYiZc+n1YeS4iWSa20xBIZhGVhjKRT9hJrhW3H6dwHFCB1SMHKkc3Y5LIZus16QqOwLAvbFumzZVnYfTP0qREKl9lkMg62rcg4NtnmPLBtiw4rT6ZeRMoanfE0+e5eujpHEI6NZYGjFLaWYKfXbBmB49hks4LYtsgIm+7ZSaJaHX/HOnr7HqCqenDsVDbbschkLDo7MuhMQCZjY2lDIe8Q2hpHKNZWj5DPXEuhq5N8PovjSGxbY2Nh2za5nEWhI0tHIYeyErSqQDaLrRUKQ80EJMks3Z1bSJz0e087gmzeIEIbyxbYQlMwAZm4SG/vq36q798zcU6NpnK5zA9+8AO+973v0dfXxw033MDv//7v85a3vIVMJsP3v/99fu/3fo9vf/vbKx5/8OBBvvSlLxHHMb29vXzuc5/j0ksvPZcitmmzDGMMp06d4IEH7iGOI/ZcuY/HnYe5/cn/gjaat/sBr6ls4QeND/C/mUu5eEMnH7yql+v3ruOq7T1kT1PGOw58hp5+hFOPPEBxqA8Q2NndOB1X4mS2sz6ssWH0cTZ1D7LuV99P9u03LN6Jfglaa2qTY8wOnWR28CQTR58jqJ9EAkNrehm5+mYsDFc/8AS7L9vOU8awY3aWbb9wC/G+W0DFZMYeJtf/PXL9PyR/4lt0rdvP//WaX+eb29/Kn90/xm3/7Wn+7N2Xc8WWlyYUqU2bs2FpTtMLpaOjgyha7M0Nw3DFnKipqSn6+vp461vf2nrvbW97G29729tarz/xiU8sMqoW0mis4jU+C1y/gVvMgTeLXtcDMiRfG2TWthDCMJMNWByWsTAAACAASURBVC+zaKWRiSaUmiQWuDWVVlUDMn6cKmk6xAhDWPSIc5oyAb6I6dAOurlvi1ECkxgsbaESjTQKL5aURYine1gTWsQqIM4lKKVxTY3JmqQUGxIvwGQ1RguUTj0URqd702AplNIYNInvolQn2hLUvBlQ6bmDxCVHjkRqZr0i0tIoqUlkWqUt0RqtNUYbkiDBb45rkmiEDJGywH2n7sPL23QdaYA/S7ShCzvSJNKgtCbWhnLVxwsktjboOIIkwnRsRMaKJFE4pUnCJIMbhgQ6pqY0lTAgk9VoDZ6dIadymMjGJBoR+wzYU/QWYaPMEeDjKI1Eo5RmolbF8lPZtbZQXp44SgiRHJ2tkNEWShs6nQzapGFP6Yq5IY4SlLRAG7Q2SKWQSmCUoWTFaK2JI48gdkk6JUpKcrN1zGxCvAlkokhiiVSaIhZulGd9PSCueRhlCP0YqQ1505kaX5rmeQxCGeJYEZTKZEcGaFgNtNZIqcmOQBwrMklIQwXEUYKOE3yZILUkGO/h1NgMYU+eTr0DqTSWVyMKEqQEI3W6V7LO4/gSK9Z4xiAl1GsROqiTza9DSkXUCJCWwEoiLKMZr03gSQ+lNcKPSHKGZKaE0h46jok6u6g99gT1GTtN1dNpvwaDVobKRJ2iDnG9EJkYjKORUtEIgjR3x4vRmSyJVmS1IYo1Mo4Yky4OWTJJhpNRFxc1j4ujhBoBvttolgjXGGHQsy6yQyMx+NMTdLteOgdEKofUhiiMka4kp7MY0jmCESiV9p31KiiZkBiFtjVxopBBg4w2zdoZmpofU/UUudwmwkaE5bhEcZbElmSFIJCK9QWLJJbpM6gNQkkKXoFN9nbKxUFKhSGccA1aG+xqgB1OIXvWECcRSqSyRLFCK02CQspmKGwgKc2MITsCpFJEcYKJQxJijh4rU/ZyKFcjs5LAT6h5MVbiYZIE6VeIMpIghEQapDQoDEop4lAS+Ao3ifACTblSIZLr2JCfpNgweNkYS+aIQomMNcpOvytkrBCxQimD0SBlliTWVKsrL4adLRs3rqz/nFOj6cYbb+TNb34zt912GzfeeCOFwuLE93e9611861vfWvHY6elpPv3pT/NP//RP7Nu3j6997Wt89rOf5Rvf+Ma5FLFNm0V4nscDD/yYgYFTyA6LJ7Y+yTfdb9KlNB9xPXbU9vJU90eZvPz1/KvtPVy5tZs1+dM/NlprJo8/x4kH72P86NMYlSDsdTiFt1DofQ3b9m5g7bM/oOehvyezZSOdv/U/k73h5xHWmfdQsiyLtdt3sXb7Li69/ucxxlCfnmDi+POMPHuImf4jKC15fE8viix2knDvs0/xzn/8Kl0fuY3cTQeICtcR7n4dbPr3ZGeeJDd2B533/TG/3tnFW6/9LT52+Ao+8Y1n+KMDl3HjpRvP1VC3afNTsbBQw2r89m//9hnbXHTRRdxxxx2t1+VymVqtxu7dy8M47rvvPq6//vpFWwtMTU2RyWRYvz5NRDbG4JxmgeOnRemERt2lluTYUCrjqBg3ibGlImMLNk4U0Z3bAJDSav2K170GiZRkFshkG0HSrLosNIgoJhKajoWb1wBazJd9BlDKtPIkVJAmeqvIIGMfrUK0yiCWlAmOlLW6QqEE3aHCz1rUTYxDug/VHFLFeEmDjkaFLq8OXRuQWiFE6gkBWFNLWOtEKFugwgxGC5LIIohdvADQEokmE4R0eh3gp3lSRoPnucRhjqxKy2+L1j5TaQiZrSPCSGGMTaIVsRWhTJYMzcIbBjKWg2nEqGbF0Q2NHHl3cV6T49WRWUgKeQi6cWKF0d7cmUAqZCzJCAuBaIVwz4ljuQ5mwR5YGkgShXDS/ChXiLR8+1zOhoqpUSfRAiyIk4ABNcVa1gEwQ0TBONTKs7SK8ps0BwXjLC7QqCIkCsdArjQNJo9cIIvQYBmwtGLMr3Fxp0AazSwRBoUdZNHEVKOAzkzriufjvgRkdRbLFLCkxNLpfJNxhqKqskYUUCKH1EkzZHNOXNM0ngWddGFUAljIKERkQOgEY0ya39bcAVdrjTLzAWd9T00xvncIL0nolj0IJy1UYIwhU60vC+CrBA5KSrYIkDImiSTCTkDHQAGMwfMrCCXm6g8CEElFFCaYDrCkbN1DzHzp8zRXaeXf+lA3cHSqN88NvSMMll8C5ourKDVXZMMGDI6Okf8/e+cd51dV5/33Off+2vSS3jspEFoI0oMhShRERIod12cV2+4q6goKu4K6yBZUlkd9FnnkQVQWQWkqhAiEEkoglCSUkF4nmT6/cts55/nj3l+b+c1khkwIrvPhFWbm97v3nHPPbd/P+X6/n6+IE8+laEjH6UkElPaYP+82NhCghcTJZImZ4j2b8LsI3B6yThaDQWZdqC/m99XkdtJFGB3p+gpLRMegNYmgC+kbOh1FUDeeVHs31LXT407E8VWoYG96jSeCh09Wu/jGQRnBrl0Jcumi3eHn0xINSAzGaDqzWYQMF7v2m27GdWeQ6QxIQeBPpCSFctgxrE/8VatWsW3bNo466iggNEg3btzIMcccU9jmlltuqTwQ2+bf//3fmTVrFgDHH388N9xww3AObwQjKMAYwyPPr2L9mjUYpdnQuJ6N9RtZ6Dr8TWuWGfGT8Y/7IlNnHcOyQRSENcaw943Xef3xJ9n96jOhtKhIYsXnUzfxWKYcPY+Jcxupfmkl2Zv+CaMV1V/4AskPXYiIvfVQOCEE9eMmUj9uIvOWnI3vOmx/8QXWP/I4nbs2ENuboWvKbJ467nTOfN5CbNyAEMXjCZhEls/TwWXE2MH45+5lZf3t/HviYr55n+Fr7/a46NiJA4xgBCM4tNi2bduwtHPiiSeyd+9e1qxZw6JFi7jttts488wzqarqW0Xotdde65OD+9vf/pZ169bx4x//GMuyuO2221iyZMmwjK0UyvPodtNoncDEwrFljUfK97GUjwjscNVeCzzHxonlE9cB5UFFIicQ2iDTaWzHxU/G8/YlAO0EQAyhAkoTiPIGvNIGExksvjB0ujFSwiKgh0DEsVH4QV1IhkSAQRMEHoGOhfU5dThAOzBhyBWQ9frW3Emls0itIHBRKiCmqpElJq3ta2Q63E8HkkBaaNegu1rp6faQdgzbVzRm4tgdrXTjEphqhFJRgrhNaZVUnevG5GwcY3C9HEQVpaTWodWaAa2CfPpIQYktMIraLoNJ+JQlhASKmNMD9eMKgnTa2JFMNGhjodqy5LUlVAkpKfymQgU4CbTZgionQFhpiPLSpA6QyiOlJERy5EG+0KrjQFCFm5EoUVtMiHezFIovAYHXiKdqQ5GL6HWQ9ffgB1mSOQ8ro4EkGTcglYhGZzTCgKUtqrI1kKIgCBAIQbxEqR6tQ4W8XpeiIDSSczpNwoRzrX0HpTQNchJt0bkOvS9uOPfG0O0EhTnTXgaoJScUyUgdsjMXkAuckAwiw1PnqOjYDFkvwFNuSJKEjdE++AHCgOm1WOkJKubYBVpjpXcDM5G+JtadwcpKiIEQRVl4XwehamX+HAeNZDEomadXAoyhxtQSiHKPtDLFe0Iag0bTkavHlOjUWK4f1hIrnM+oKK4xxL0EOQy2Cq+HnK5c/8ggMRpESREmYQJEtpivaHelkc02JsiFyn/5bzL1dPumUHMrP1eB10lgx3Db9mE7PkENdG8XJLWDpcPzWpPeCk1FSX9f++ylk4ypZZ+7iX3dO0jlGsqUCjsyHmCF4htGoAs0NWRhjvGQ3ZlokSdcjOhPzn04MKyk6c477+T222/nD3/4A8lkEsdx+Md//EcuvPDCfsMY8mhubi4LfVi1ahVHH330cA5vBMMA0+2h3uzC7M5g2p2w2JwAkbARTQnkpBrkjDpEXfzAjb2NMMawJ7ebVzs38PimFzEbOxmTa6I90crO5pdY5m3j3/YEjJ59Ie6yz6NrKxMFYwyBq8l0unTsamXPGxto3fo63S0b0EE3ILHi0xk9631MP34RkxaMoqYpiWrZS/oHV5J57hlixx5PzTe/jTVh+MlILJFk5oknM2PBCTjP7sF9aR8vBVtYV7Od18iQ6FxNYt8WmjKd1Cx9N4ml7wVlY/ZkCd5M0dn6JWRHD1+Wv2Bp/RN84c8fZX/a4wunTutX2GIEIziUqJQzVIpf/OIXg2onmUxyww03cM0115DL5ZgyZQrXXXcdLS0tfOYzn+H+++8vbLt3717mzp1btv9nP/tZvvOd7/D+978fKSXHHHMM3/jGN4Z8PAeC8v2o2KQueHuEkGHYkQStYqEynRQII0h6tTh2hrzZnfM1VVohZXlOVendq3QAFjg6IBVZzQKDlfPpsjvC1W4LVD+1ovKGksSiuMquSQFpy8MWcVJoAm1hyXCLlNdOCtgXhRBq3woNSIoCAWE3AW5HCybnEaTKazAlcq2k2wBPR8drCPbvQnfsxTKjMbpoAFsGkiTpIqCvNFwIW2lyXhZlYtiEhq/BkPA7SWZixHs0vpfDTpSH6rTpDL7tU1cyPdoHImM1MAYv0PiRjHTe0At0kh4dYz8SIWx6cj4BJppCg+V6aF/S1zQrKapqNCCoEw3IQk0tQYc3jgAfQZLAEyXKY5Sdu3iujjGyiYxKh5TDGIwQVIkausgQKBPm1Zj8HIOVa8OyM4hYvETiu8RTCFQpK8+HkW43OsjhegGO9mhze6glBcjCNaVLyGsgJIE25FW3faVRQhd4vYnGmO9Ra4NvDBkvSyMaNwjwpItFTWF8WgdooyifiBBuoGBvG/tTdXTt30p1iYCFYwnQBtvx8JIKC6ugJKjQyGwrwgoXOjttnyTxspIAOe3iaoBYYSxKm4KYZFwmCYIePNyKOdCmpC5XVnk4Mka3IyAIiX8y46GEQVVZ4eIE4fqH1BYyk8FyLexA0PBqNztlNb2XZG3lU8UkAt8iIULpPR9N2uQQQXg/GxVHeQlkbn+otWLnp9ACLdAlXjytJUSVwITbQ9CaJplxCSxNNiWwgzBMLk9mcp6H7xgghqscYiEDJOW2IZ29pHWKQAVhvp2QUa2r/H2lC3xWGJBd7dCrrJoOvMJz5VBg2EnTvffeSzIZ6mE0Nzdz9913c8EFFxyQNJVi9erV3Hrrrdx6663DObwRHAT07gzq6b3oLaGiC3Ux5KgUYoxViHPVuzPo1zthJYjmJHJeI9ZRTYi3UVQg0AE7MtvY3L2JHZnt7MzsYFd2BzsyO8j6Gaalp7GwbSHS1JOsfo1/dFYwsbOK9IJP0zrl42zzqslt9sn17CHb5ZHr7CLb1YnT04mb6cLLtaGDNoxqw+h8le4YVQ0zGDv7/cw4YTHjZo/BirxTxhice39H5qYfY4ym+qvfIHnehwYVijdUGGMwuzOota3ojZ1IDVVTG1k4ehxvrmtnTWov8fbtxOMtiJhh4sO3M/2eXzD2/ItJXngx1snjMDszBE/upnPXl5nW8xqPJK/nijXn8K/eBXzt3TMHV5R3BCM4BEin0/zyl79kx44dhdydTCbD6tWrufTSSwfVxoknnsi9997b5/NSwgSVQwLj8Tjf+973hj7wIcLxfXxkZHIVY5s8pUnZoJVP3gJUkeEptV1QoROYsPiktPBF0TAVQEInqCJBPtq/3euipqB6ZQr9Ce2AVfoJEHhIEyBNgJtzgTgpUYOT2wdWDKW88porJT9ULu9uij4xIHI1IcnIW8Zak/A7sX1F0O1ALE5QEsJnKY+aoAPlJYseMKNxMm5BQStsPp9yD0mTikIPgaguktaghQ5V4HyfnCnKIkNoNLsiiTCGpImTSNUhRZGACmMQTokCXf7/qsThlC0ZT8mvunDOBAECizBPJSTHhpjjofamEVXjsKK6RAaImyoQOiKplSDZq3tQRfuyT/cagefXQXs1sqT4q3Q9OqXAWFXggvDD79p0WGMn7QYkbLBLiJdyAja3ZZlcUluIdBgO6RpNJsji+pqc0LRu2gGiAau0Rm8vT46SEk8XqYfGlHg3BH4vCemuHoukSIEO6Am6sPwsWU8ypsRp7LlptDTEYjlq2l+mQ+9DGI3QfjhHStPlBsQ7cgQ6DPVKUY1Gkcvsx/guOq7RRuIqFyU9dvqdVJt60l47VolXqPxGCQmbIBbmOpWE5eVhRXRXmxJGUpiaoDBHJjp2q8uF6sZoNvJzpNmvPFwJYyCMX9vbQ0ykSMWhvn0uysrhxEJ10cAotJZoUw2Wg2t8Yo6mhhjYoC2DQWErjTYW+C7JTA1p0hQUxP3RpQ5LAJxsPdBe+FtE51bk5yesIhwdD+xt66ZLSKQTQ7jpvHMXy/iYbEhe29OtWNKiuXY03bkcEEfm5dUjJDJZkuke/FG1dJssqWhiVOCiW4tqncONYSVNvu/3CXWIxWJ9km8HwsMPP8y1117LT3/600Ko3ggOH0wuIHhsN3p9O6QsrJPGYc1rRDQm+m5rDKbDRW/uRm/qQj2xB/XUXuTseqzjRiMnDH8dIGUUr3VuYPW+J3m+9Vk292zG1/nifYIxqXEkzVhi7Ys4uaOJ8VoyTnZyprsW15/F+tSPWNkZo/ue3ejgdoxOY3QPmDRGpykN5QgblSRrRlEzagqjppzJpCOPZNyc2Uir762k9u4h/YPv4a95lthxi6j5x28dEu+S8TX6tQ7U2lbM/hwkJNaxo7GOHoVoTBAHLlh4Ib/5zW3o8QuwW89it/17Agt2NgnGPvx7Zt/z34w7/xKSH76I2MWz0Rs68FaC7/2Af7O+y6/XvcF1weV88z3zRojTCA4Lvva1r+F5Hsceeyy//vWvufDCC3nssce46aabDvfQhhWBWxpSkzfLRSgdrcqNzS6cKO8m/C/mBkjpAQatVVQvRWPZSaodg4wLqkQVWcI+gmwWzxTUlwtd5kOJysaVa8cYhRSKQGtsKKzoJhhLtZXAJUtS20jth8lQCLzAYAc6XCl3HHTMiqKmDJZ2wKrBMhKCLMYYaqmiG5863VDmzah29hLEqvFLQopc5dDZ6hL3a4gDvptGmL5FxGNZD2HA14aEqSdmKUSQwHU7sLXosxqvhQRhqJZ931nSV2BFK+sqgSFkKiIonre4snD67Ak+QSFkTgJucZEexwoDrnTWwkoa7FzYQiRSjVYetsx7vEKvTGm9HA0EKgeW3Sd5xBhJ2k+i8dCRN0wg8YIAsNFGoYWkVtYjnCTaCghUJ8LPYOxqnECRCjQx7RLLeMS6cth1aXxLIlVA4NeS8TQmJsHATrcVR+WwgJ25HqzYKGLajjwj+dpa5YNM28WaWQCWXyQl2ahQsNYGR/o40fWbl9dXxoeICBqj0KZYc8gOcuxu66Szq4dY4CNNDbZyCawEWgcYt558xLoV0RkZaDQ6DEstWXjIc3MdqDB8rkB4y6EiT2M1xcUCK8gQENpN1dQPKoAs0AbHN9heACWXoohYWiB0KH6AIPHaftJa4cs4CB+tFIF2cFCRpyw8HiFMgXi5aKq9oMSTFP6TEeHxu+JobejxAqrKyJ9Aa4HRpQs75UeUP8Wmt98nH+rquyUfRETLTRFNEUqH5zF/jcsCqS7vJ9npEJcNCCQGTVKk6OzYy6HCsJKms846i0984hO8973vpa6ujo6ODu6//34+8IEPDGr/p556iu9973vccsstIzWd3gHQuzP492+FjI+1eAzWiWMR8f5ldIUQiKYksikJi8ag2xz0K22ode3o1zsRk6qxF49FTOu/htFg0ZLbyz3b7ubBnQ/Q4XUghcWRjUdx/tQPM6tuNtNrZ7JlTxX/+4mdBF07OSuxBcsYRqdr8Tqn8segEe1vxaii0Ii0YiRrG6lqaKKmeTrVTc1U1TWQqm8gVddIqr6B6oZmrAPkIBmtce65m+xP/hOA6q99k+QHzh/28DbT5aJeakO90gaOQoxKYi+bhJzXiOhVULehsYl3L30PK1b8ATG5kSk7P0d6+g7W69sItlfR0lDDuIfuZu7dv2HUhz9K6kMXEvvEPILfb6a147tcZN/A/Df+jhu8a/j795+EPVLLaQRvMzZv3sxDDz0EwAMPPMBXvvIVLrroIq6//noWL158mEc3fFCqdAXboFQdvvCJqTja6p2jEIU6ldoReU9LSZiP0YakSFBqcAhjSJh4Sb5OfmOFY/U16YxR+ARgUkQRYtEXCWJUYwgK7MsqLFwVl52EH+CZAPxwXHbOJ2++xSKDt12CRFHXS6gijxYvQ85Y5MPtjO9hOR44CqqTkRcObMdBugE6LpFBqLiWH3RKVmOEIQvEXA8RDMZ8LUJqU/DmxBWkpQIjkL6PluG7QamgoofBACYah0aSLfFWFEPPNCIIjdxApegUPq4XoAKXQKRIRK+fwIDjG5Tw0JbBtSX505bzNaXLmgZBq+2Tk4qmwMJog0SGRimGAI1Ekk3EqcYQ8zN4fgcWMaQJ0Bji+zPUiwARD8+o72doD1Od0NoHFRCIOLGEhSM1jtFYJIjrJmJ+DAdNwgToiNT6xoFSb00EXyUJaUAIgUCosGypNoZAuLh+X0oaRTjimhyooNy4NWCCYt0sbcJJDHwfu8Q1pzEFT4mNhTYaPwxKK3RijEH5LoEOCWf5GY6IbERMbWOFYYKYAxZctYxFLJdD6uqypVrfBIWFEUcoxsYm0aUzQIAxFlo7+F6MeCKHMnGUFmgnQaBcjBWen5jKkH8aiApzDqCUQAX5q0ahjUZ5LjnHIWGXJFWZcA52d9j4VjVWPPTgCvreR7K7tWy/wiZegN3hkgvKw0jz2Ui5QBG3JGk3KGsPQ595TLR0Ui1HgwZPaKxYLXGT7GeWDx7DSpquuOIK7rnnHlatWkVnZycNDQ185jOf4X3ve98B983lclxxxRXcdNNNI4TpHQD1WgfBH7dDbYzYR+cgx/ZNlj4QZHMSuWQi1snjUK+0odbsx797M2J0EuuEscgjGhBDNL57/G5u3XgL923/HUorThp7KkvGv5vFo99FbawOgI370/zbH9+kfdsm3h/fjJPIYnlJqvamyTmr0cpBSEnzlNlMmHcaTZOn0zRpGtWNzQdNbII33yD9b9cRrF9HbNHi0Ls0bvyBdxwkjDGY7WnU2v3ozWE1dDmrHuvY0YhJ1QOOf86ceezf38KLLz7P/BPHYq+dygnmSna+6xm2tzzAUZvraKmvZvq9v2bWHb+i7iMfJ3n++QQr9tKx/avMi93IlG2X8bPf/wufO2/5gDWpRjCC4YaUkmw2W4hmcByHiRMnsn79+sM8smGGNiRFEiEsPBUjE/fwdRiup00UG1MhUb2QZ1TBKCrjVKHlgeUEYXgYPiYmwnA8rdFBuVHiSkMKQ87kiqvEQRB6NABtkmUErbzTcJXZxQc8DEW2JbVBRc+rSrTFYMJ8CRHmoPjpDMm8PHzUNkCjX4slrbzDBuMFyK52pNLogr+hJJEdcGSYICaULvsOoErUEhcJcv6ByZTCkJMaFEgTgJGoQKG8olHvCqKcl3AuAgzCCNJ6FIW4J0JPU1a65HxNtaHg1giURMl8HpAho9JYQFcsYBQaYzSBl4BY0RNinBhKpZDCIRGMwtUxdP7cRQzbEjYGQs9P2UFpJOXkPD8TMWNjeSEh6FJdNMhedoEuxgfGRTKkPjoGMrw8w/BNCSoALbBMGGraJ3HfWJRGeUilys+S0RH5jLoFLCGwowLxVuBDlHektcH3LGRcUi9ro2s1EgTp1a2mmEdli3B/qTVSGzxjcNywD2kUSkKfFQcTI2uFSpQppw3bjMfDIUD1k1VXRJ2uxw2y4XXUa0wAjlB4wuBJqKceaEMFTtS3wKELaAjPqTZkC97iIhGsBBNdmyooxt3FtQgVCHWUG+ZnQebpgsBXGl9o0oFGdO0n8BW2MpVv5JIz5yuDpwwEfZ9R0oR3iVKaQBm01sTjuuz6TDs+ivIi54Hn4sXBsX0ylkEaQ/0hSH/IY9j1Us877zzOO++8Ie+3cuVK2tvb+drXvlb2+S9/+UtGjRrVz14jOBRQL7USPLwTMbGa2HnTEamDu0xE3MI+fgzWMaPQr3agnttH8Idt8OQe7EVjkAuaELEDX+RPtjzODeuup9Pt4OzJ7+fjsy5lXGo8JuOjd2Tp2bWLLRvaSHW7XCE8nkhupcPKMstpZEI3dFrd2EcuZsKi4xg/9yjiqaETwf6ge7rJ3noLzm/vQNTWUfPt75B4z9nD5l0yGR+1vh39Shum0wtDJRePxVrYPCTRjZNOOp2OjnY2bHuWM859L61rY+gNJzJ36im8/IH7SK95Di0a2G4MR/3qFsb/5naqPvJJ7EmL6N71d6QSP+Gru7/CTXd186kLLiY2QpxG8Dbh3HPP5T3veQ+PPvooixcv5rLLLmP69Ol9Ctb+xcNoUrIaEATaDWW3sRBGY3QKyCGMCRPqo5AzbZnQA0LowygiUo8gn2uQJwlhaJE2YAmIeZBLhQamMHYZj8jaEEPhS02ZA8qofkOMDIbAGGwRIxu4+MYnZkIKY2unjy6D6b0Kn1fk8iVddiYKM6RglAl0GTkUSIwxWNhM21keVG10JEMdbZ+zNZ48MCFK+v1HVRQWzEVRLEGjkdpDBwGKsN5Vfu08T5p6Q4o4sV5DyXtMSvsqkgorSv2Xxf4NVMtG0iUBgcKpQimBtDSuW/n9YIRB9SInAFbg9LUMo+6TJkXcDwVKEn432H1DIUtDKi2TABESD4GIVBgt8HIUWNwBYAkZSX0XB6UCr+BVBPBFjGqtQHkFNTzh+xjLxnfD3CxLHzi32vQ+TwIst3idZdJV2CJUBdS6OJ5aOYYOvYMq2YwrwnvONh5K9RYzH070Docrkk/pWwRRWKExkJEBUvRHaqDStam1KQg+WNm9UDOp0JNC45sisQ7PRX92YpQnGXXekfGhRlbsM39UGeNSJ5O0mh4c7ZCKrtHqPR7xVIbyCkyCHlsQG4AYDieGlTT98Y9/5Ic//CF79uwpJOoaYxBCsG7dugH3PeecczjnnHOGczgjeAtQL7cRjLYANgAAIABJREFUPLwTOaMO+5xpgyIzg4WwJNaRzcgFTehN3ahnWwhW7oQndiNn1iNn1SOn1fXpU+mA//P6T7hzy6+ZXTuHf512PZO7RmFWpHH3rId0+GCKA5OUYTcZViVfwheK47pHMcOaQG1jM5aS0A28EEd2daDnghibOihio7MZnDt/Q+43t2PSaRLnfpDqy76IrKscXjIUmECjt/WgN7Sj3+wCTRjieNI45JwGxCCk0HtDSsl733su9913F4+vXsHZZ3+ASQum8vKDO5i19/1MfffFPOX8BrXyFdaKcWwMXE74rxupqh9F9dJvknM/j6qy+eq+K/npHV1ccNFnSbyFcYxgBEPFF7/4RZYsWYJt21x55ZXceuuttLW1ceONNx7uoQ0rTFs+qTosFCuAaqsOTF4nCwyaVlwgrKXjGU3SyQzUKpIAAp8OKzSiw1yBvAckfw9ramRjIY/AQmIJGwIXS5RRkdCo6qc3hUYYhS2SeCZTljtuK5dAEnqCbEmCOK6fo7aC0eOjcFTQR//ODjLlH0SP8ISVBN8v5LqUz0CFjAjT/7NfDGiDRaRO+2hTbhgLK4HvO0ilUaLcUK+StWHOmAkFIGqtRgITDBi65UmDVFaZidmHZCIwKkAaja1CuWcAreuIqtsUtnRDp2KYJ1XBcBVBqDh3wLei1theF27hmgwRlHkdBVrb2L6HFFbBYwZgqTzJK39/VJp2yy2GwoXzF/YhjMCzJEqYyDOpISJNRikcP8C2YlhYIXnu1XjcKz93RgUgY/R39F0yICvzwiJhP1IpQFMnxxR8ItIPyEgHW3mo3p48AK3RQmCRV5/T2MqlNPtfYhWEXgwglSlMgeh15xnAVVUoEiDDEDyBXVAqzEmFiilqvVJpmdLhpKBE2r+SZHePdgrfZUwO3wgQAyws+PXFjkpD86KetbYoqO55PrGOHrzmKowFigClw+LUWjWQIRQZkSbA8jJIrdAyXnYcqnSBaOCb96AwrKTpuuuu44orrmDBggXIQ+geG8GhgXqzi2DFDsS0Wuxzp70lo7w/OGmflk3ddO7Jkul08XIKKaGhOcUoJ6Dh9U6sDR0YAaouDjUSKwnaUqxrfZm5uRQ3J69lwpujEc+6KHbh2oI2X9HmGLoCRcy8TIe9jp0NExAqYBKKyecsYcyCY0AITKuD3pHGbOtBrW1FPb8fGuJYRzSGoYKjkoMmUGr7Npw/PYBz7+8wXV3ETz2dqs98DnvW7IOaJ5MN0DvS6E1d6E1dobRu0sI6djTyqGZk88HH6sZiMc4553zuuedOHnzwPs4550O850tHsuZ3W9j0x26OmnExsy77HKtW/xddT65nxZFTmJDp5Pi7vkn1GV/H43/RVhfw5fbvcfOvulj+ka+RjPX/8BzBCIYDl19+OcuXL2f27Nkkk0k+97nPHe4hHSKU5B31+iYfZuNrl2SvW873coh+jJi8kR3oUHGu9+2a71Giy/Kj6qymXiMqjmygDA0VeEjAN4oqqx5fKrTyEUiENqTas/h2HVWiOsy10gEyV076QuNdkvH1gBLCRsown0F7xEUNPgZbu4TxaqEBiwhlnwd8o0UHqQrOhv4Nr3xKus4rsUGUF2QQVgypKs+OJUoKDxMvGMWlfUkEVlAeomUZSYM1iqjgVSEXrBjcKKilllq/mlZ/N04hOKcknyoiaw6hQEFYr69C7hoGy9jIEnkMu0JNrf4CK/OGekhjLIhk4ENP34FtilDqvK8HTBgdKqwZDSI0mGMyLIbrkcMEPoF0C3XKQqKhUZYpEcYvjtkYm1hPVxml6UtGe41NaKSWYa6QKVwoIQnGBgxWFN4aOC4eXsUjDrRBCRBCEvgJhOUjjYcSChPV46qzm+hQrRitqZZ1uL4CuyT/StUSOVHpimv8SHYiPFZR4q01GKt4nRXu9QrntDA+AUKHtdvycL00WpVleEVzBkYH+MhC8QJKfhpABJr6Pd1ghceW88plHk1Xe1h2t24aVuBRIdi3AC9wImJbDoUuENlDiWElTXV1dZx99tnD2eQI3ibolizBA9sQ46qIfWB6gTBprWnbvpmOXdvwclkSVTXUj53AqGkzKyrGlbWpDDs3tLPp2f3s39YTvsBsQXVDgnjKwteG3Z5iW4+D52iabJvRtqDec6hqD4vlSQFz9RH4xuD3CLYqn7bA0BYYlN9DU+5NarwXMbKVjfVjcEZPI6UCzpwxh0mz5iHr6jDpHkR1DXJ0Cjk6BceNxjgBemMX6vVO1LMtqGdaEI0J5Ox65OyGPh4oozVq2xb8Nc/h/nkFwbpXQEriJ51C6lOfITZv/pDm2ygN2QDT5YVkbn8urH3VGq2+JS3k7AbknAbklJphJbAA8XiCc8+9gN/97g7uv/93LFu2nDMuPYJNa/az7uGdrL65h7knfJJJl0se/fV/sG+H5PaT4pz62o0smPc1tP8ptsdcPttzI7f+MsOSj/0TVQOIhIxgBAeLo446iltvvZUrr7ySM844g+XLl3PaaacRO4ji0O9EGPvAYWF9V4IFAxn5qiRPwjI+xfTrvGET1gjqv9/ebYfPo9IQndL28oZ8sQEPoxVaB8gSZb6ETOFrh7gwZUpwMjI8hZAYY6F0glg/9qwREoXB1z6eVYFgRUNplvVkdQ8q+lqaAFOyrY4kw0OjvN+pwAjwjU+l9TVdvqQeJt0LML7CaFFGNFIVlPkAGvw4VneGULAgaqfke6kVCivUCvPTYBe/jYkYVbKGrMq/L8pJE4AjFbaBjB2OuDccXOwS+XSp/dCbki+oU4KghGE7VkgbXF8XTG2tbCpezYVQ0oGu2jwiglgasljiSQxDV0vMbFP8pTQirfd1IbQkrjvJAF5JQeigZE76EzjI68QX1LSjI5YlFEwH1SgpkQMuL+Sby5Ng1cczpbWPihTvSnOTlLIojZfVWhC3EhgD8YyPjnLJ8m0A5Epy1WSp8qLu5XEruzOi/gKHgsxg2bYhPDySvfXIAUv7VHVloaHYYtpVyH4Ijt2WxSW8l7SulJ+psbWLHy0QhSHL0THl6dYh1KkaVtJ00UUX8atf/YoPfehDhVpNI3jnw/R4+L/fAimL2AenI2KSwHN5fdUK1q+8D6enu88+sWSKqceeyBGnv4fmydP7fL/7tU5eenAHPa0O1Y0JFpw5kQlH1FM/tgppCYLNm3Du+m+cFX+CXA4TjyOOOBJ//Ez86tHsS9bxbMdrOJ5gRvU86o0gkd1DKr2dyT3bmZvdxV5l2FzVzLZEHL9xHM64qYxuaeH0VY9jK0VX6YCEQNTUIurqkHV1iNroZ109oqYJaU9AeA2YZx3Us/swloeRXejMboKd6wi2rMP0tAMGa/oMqj7/ZZLvWY4cNSoUZ3AVuArjBCEZygWYbPF3stHfuehvt9eDNGkhxqSwTh2PnFyDGFuFsA6tQl0ymeKDH7yIP/zh9/zpT/exePHJHL/oRCYf2cT6P+9i07P72PqiZM6if8DMf551D9/NK1MaeFHcwkf1lxHdl/D0rhYunvML7rktw+KPXUdN8n+WATuCdw4uvfRSLr30Utrb23nkkUe48847ufrqqzn11FO57rrrDvfwhg161OhBbFU5R2ZwMGEifgk8o7BV/yvPfVvQYXhXbyUrWfm9b6VdpC43kuIlBpYARNbra54a0DrczhhBEAQE+RImBdWDUtO7OC+BNvgqNODzMxUjXjRAMX0MYlP6yyByJPwD5EYVPHeBRotojX7A02aicK+BnqMaY8pD4kpRbzXj+Uk0ASlRFM7IJ9QbIGMPPG5TErgnTDFErLeggNYDt1NlpuCLvtdVzPFAFvPrGq1RA7InrZOhIqOslJ8lyvKjbF1J7L0vpAkQQqClxLeK1K40D0n0CvM0RoczY1RYp0kmygtA9xpXoNPEIrGMSleaCRst20f3MxFCG2w3JPpdMYWPKqnbZUjIZKGp0ooBpbW9QjIkBsFUww1sN8Ae8FqEjBdUoErRmHvNjYtPNtsJVTUV/elGq9CjBuSMix6gXFFMZcnfyb09TIeyKsqwkqaf/exndHZ2cu2112JZec38weU0jeDwwPga/54t4CpiH5mNqI7RtmMLj//iP+lu2c34uQuZddISRk+fTaKqGifdQ/vOrexav5atz6/mzdWPMmraLBYsPYcpR5+A52heuH8bO15pp3ZUkpMvmcnEeY0FlTy1exfd/+cneCsfgkSCxFnvIXHmWcSOPR4RD2+9tNfND1Z/no2ZbVxvxrN0161IP42pErwxdjZ/aJmB0z2LuJsm1dBE05GL2NbWzswZs1h6yaXI//VFdHcXprsb3d2N6Yl+dneV/N6Nv3tX9FlP8cEVq8IedzT2+KOxmmZgJ4/GnnE0zIgeOEkrXHFLg39XC3i7o+r0/UAAVXYoplFlI+qqkFV28bPaOHJ0Empiwy5JPhikUlWcd96FPPLICp599il2797JkiXLOO6cqcw8YTQbHtvDxqf2IawpTDv+8+zfdBfpfXt4fP5qTsueyZhRn2LDQz9i9KIHWfv/ulj48Zuor/oflpg/gncUmpqaOOWUU3AcB9/3eeyxxw73kIYVZgjPgVKTJC6SoST4IKAHQQhKoXoNSQwizKoU0i8PzbJFIszTihBog5fLou3Kz9L8aH3HpU/11sJGGqU1CeXSHzOJyf6fTSHdinoqCb2qBK18LGn3mZeK7Zq8EEffULzekNGKvzmAodrvuIyJyqYSFn/Fj7xB5R6w/hDOT//vs5jKcmCyXiSxeTECYRRGWBitMEaH3pfe2h95DlwxZLCkOHIFZi18GynzRDIkBqrENRWgetdcLsCNxyulx4W/+0WxExPJWKsSQimFCC30ClNrC5uUOLDYlDFhfqAE4lRedDCAG3mVtIjuRxMeGdgIFGXBp7o4xjo5NrrfBZ0xTb0vy44xqHA6C945Y6iVtbjlS9D9H0vJ75avSfgdZQqRu3QbWROQMTZJ3fc+Np0dUCKWb/qRR89D0KcKFDDQFXzwGFbSdMcddwxncyN4GxA8ugvTksP+4HTk6BQ716/lsZtvIJ6q5qwvXsGEeQvLto8lU9SOGsPUYxaz6EOfYNMzq3jtsQd57Oc/pKZ5PEYcjzazOXLpJOaeNg5pFZMyc3f+huzNPwUhSH3y06Qu/mgomGA0VttrxHc9hdr1JFe769kYt/iPfa2cbhuys87jgT3jWLW+g4np7SR0hvFTZzJvyaW0+IoX1j7HvHlHsmTJsjCXrrm537rplWC0xmTSmHQa47qIRAJRWwepFCKj0C1ZSPuYTIDJ+iWFRwhFKxIWJCxEwgo9RqkSUpS0DgsZGgpsO8ZZZy1n4sTJPPHEI/z617eyaNGJHHvsIk66aCY9Syfy+pN72f5SG776MMn61bRsWMMr46o4ZtQpWIsvZfyqn5Pe9jK/989n+Sd+xZi6hsN9WCP4H4ZXX32VlStXsnLlSvbt28fSpUu59NJLOemkkw730IYVul9DodJzJFoRrqCCNhCGmibtVqjb1P+YQmgMVj/f14imPo4cD93nszBErUgE+vRuKEpoK43xM1hSonuRjrxnpjC2iocj+/m8MnqHNPWHYr5Y5Omp2Ekly/XAwWu5/s7LALsN7m000FZFQlmpG8skgKJoQJ4kaSP6XNs1oo4eU26Q62LzZch7MWUYM1f2eYJyFT8VeNhRXo82OiIZoVBAJVIGlHlUKme/lXhESpqQUlBBd4SaSPTjQPA9B+I2EkiIFEGFhY9SYqNF6PGSwoLCtpWIZu+/BEb0vWZ6+ot7fQsIBWDCe00qRVVHBllpcvoOMPqsuO1AeYwHwgD6LgeNYSVNEydOpKuri0cffZSenh4+/vGP09LSwtixY4ezmxEME9SrHeiX28LCtTPr2f7yGh67+Yc0TZzC0i98k2Rt3YD7x1NVzFtyNkec/h5evH8l61fei1H3U9UwGss6l8CtJ15VjW5vo+eaq/Gff474KadR/ZVvYDXVEt+xivhzK0hsexiZa0MDl0+YwksJm++Meh9jJp3Bb156nW33PU3C385UK86khcdx9LuXM2raLJ555kleWPsc8+cvZMmSs94yORFShiSp0vHWWVhDkPT+S4UQgvnzj2LKlGk88cSjPPPMk7z++gaOPfYE5syZy6IPTOPo905m14YOtqxtYu8bU3i95UFi9ZIFTSex84JpND98I2f9dh937VlO1SVf4GPzP4Ith/URM4K/Yvzt3/4ty5Yt4xvf+AYnnnjiX6HYUG8rw6ACv99v3xYMLimlDFY/UtOe7JtHUaaS3MuY1r1C6GpkA46urCBoTPE51J/RbMzb5CE/gNgAgOVnUSXhjKafAKjexmFgAnK6G9sbms01oJEZJe54hdo64cYeipzJEqtIMEpzqcLjlRVU5GwZo5GBS8oodNk5k0pDmZJj+eCNCggDDKPtAxUSjQqvItcExD2POCDjxRyzakb3OoqS9gfyFNpxdODlN+yFypNsjAZtD8LSz5M+IhGP0jH1PQd5omVKikEPFgPaUr2OqzTXLCR8xQWKfgnTAG2bIcu0RyF6JegvxHE4MKwWzapVq/j617/OokWLWL9+PR//+Mf50Y9+xJQpU7jsssuGs6sRHCR0uxMq5U2oxjplPK1b3+Tx/3sjzZOncdaXrhxSDaOta9vYtKaBcfMuY+bxaV599D6eueMW1tx9G5OmH8GY1c/S0NpB4ze+RfWiSaTWX09y472IIIeO1+FNPZPM+NP43ztfZs+mF/i0N5ftO99ks7eeQFi01Exj4dLTWb7sdGKJJMYYnn76CV544VkWLFjIGWe8dcI0gnLU1NRy9tnnsn37Vp566jEeeeQhVq9exfz5C5k7dz7Tjh3FtGNH4WZmsmP9Yl7+w/+jumcd02qP5PkTvsl612F+y+vkblzD5ac/zIVL/4ZTxp4+cn5GcNB4/PHH/zquo34NDVOogXMIFXWHBFvYxBka2bACUzGh/EBQSmLLyl64d8h0DA4iKFjwBc7X67rWgVWSbzV4M61HdyJMWIw1JDsWpVLSlfqC6HoqaHgYpOlruAb5NnvBq1TY+CBRWuC1IknpJ7w0DMOLwtii/aQK64MFUvRRx8uH2mmtiRtZ6GmgMM5SiF7jG1Dl8QCkfCBtx160sOT3/LXRK6cHgRH5vKmhL/pa2P3eU9IPz00Yqgm+3TukcKh3Y/Ho4mkXXzv0X8Xp8GNYSdP3v/99fvvb3zJ58mSWL18OwFVXXcUFF1wwQpreQTCBJrh/K1iC2DlTcdJd/Pln/0aqroEzL/v6kAjTq6v28MqKnYydVcfJl8wilrCYvmgx7Tu28MY9d7B1w4tsa65CNFdR/9jt1D3RTcwSyLrT8KsmkOmW5J7sJN1+D1UGTqARu9Hwev1c1ovxLDjmGP5+2XwaUqHrvJwwHc0ZZyz96zCk3mZMmTKNyZOnsnv3Tl5++QXWrn2OF154lqamZmbOnMPUqTOYsWgyM0/4NhuffISWx7ZzbPVEXq7rZLe9EN8s5pTXYMsbbbww5ZcsPeUk5h8xc+RcjeAt46/l2lF+/8nPBS+FMZQaSiVp5QdA3zkcaOX8QLCwqLZqy9srMUwrta2UW1YUVZSEbPUOozPq4Azy/qS/D4wYDDI/bKgQFWZlaKFIA2/rGbeQGdPXd9d/X1rnax8Nbc6ULpePjjo+pND9hKIO1K1UBlOB4BVzCAdzDnrHDg7feTO6quL5MkJEXqNIsbIitxraIoQ6iFWXmBOUzfPAxQeKCPUNojaylb1JUps+4hsHQqVZPZRvimElTcYYJk+eDBRfcKlUqqxC9AgOP9RTezH7Hezzp2OqbR7/z//Ed3Is+/K3SNUOvijr60/u5ZUVO5l8VBOLPzQdy84XFhPUbNvB7LvvY87EMdgneOzr6GS/Hkt3bDo9Vg2BGyD9HKn6Rsz4el5qfJNRU2djxT7Jna9nGF+X4IplszlpWlOhP2MMq1c/ztq1z40QprcBQggmTpzMxImTyWTSbNq0kU2b3uC551bz3HOriccTTJgwkUmTppA4fyzpP+5nQTCaoPlppk6soeMP69kfn0dczWf91g5eqX6S+SdM4Yh3jSdRPaKyN4IRVILrDCT9HcLyfAKZ6ne7/nH4w2UFYExx9btckrl8fEMhdJW2zdfMeWt4O8I/ozG/hTDH/lscXnurL4nqXyRDo1EmKMzcobL8+idNA4TOVXBSDj1vpv/t+0iaD6FVK3D69TQpy8IVYkj+IrtCHaNCe8IQDOOlbasc/Yqz9IN41kMR5SxScp1EhEkLgSclCguhNdaAHEL0uX2GIqYzVAzrE3T69OnceOONfOQjHwHAcRx+9atfMXXq1OHsZgQHAb0rg3puH/KoJqwZ9axbcS9731jPSR/9LI0TJg+6nU1r9vPSn3YwaUEjJ354BlIWL1L30T/T88/fIjEmxtTjn4emyYw5+3Lc2R8EWX5zvdL+Ev/+7N8zLjGTVzdeQGtPhkuOm8jnT5lWVvfHGMPjjz/CK6+s5cgjj+b000cI09uJ6uoaFi48loULjyWbzbJr13Z27tzOrl072Lp1MwDJ+iRjnVrGeJN4as3jzF82mVMf/TFtTzTw5tRFvHzEcbz2aILXH9/LjOPGcMSp46hpGilNMIIRlKLOS9La35cDGQ9ShsWGhoihiB8MX9tv0WobIO9DGzAmKBGBOHQHVrF2z1tC3kcohrHNQwNvEO/b3mSmkmfnnQWBNQSp/b57H9xVdiCHQp1sQB1AQW6oGE7CBCCFPSQ1TgNoXYuSEi8WQ1sGN9nfoCTCGFIDSI9XxF+KEMR3vvMdrr76ak477TSMMSxatIjTTz+da665Zji7GcFbhPEVwZ+2QV0M+4yJ9Oxv4aU//JbJCxcx66Qlg25n+8ttPH/vVsbNru9LmB5+iJ5rryLZHDD5tFZyp11F7qhLweq7TrI9vZVvrfkGlmpkw0sfZkZDFT/4yByOmlAuyKC15rHHHmbDhlc4+ujjOeWUM0YI02FEVVUVs2fPZfbsuQD09HSza9cOdu3awc7t29gm9sPkyTze4rNmzgUcPekV5jyxmpnbVvOrd88k03Ai+vnFbH5+P7PfNZb5SyYQTx3+FfARvLPheR433HADK1asQCnFI488ws0338zSpUuZPn36oNpYvXo1119/PdlslgkTJvAv//IvjBs3rmybZcuWYYzBjgpejh07lltvvRWABx54gJ/85Cf4vs+cOXP4/ve/T21tbZ9+Dgb2AK/l/owsiURJdWi1dnv1+E6EMSacg2FJ+npnHuNAKHpa8t6gQ/eeHMiUN0LCMBv7hwr5GVIEyKFKvR8EaxJGobSFJftvxBI2lrDx9BBJw9uIsPrYEMixiWN0Cm1LjBDEAhft9/VUSWPCGlq2PYBvs78x/YUIQYwdO5af/exn5HI5enp6aG5uLtRrGsHhh3p8D6bTI3bhTIhLnr7j50jL5sSLPj1oEtKyqZtn7trCqCk1nHzJzEJIHoD72MP0XPNtqka5jLtwKt3L70Q1zKjYzt5sC1968u9IewZn26f47OL5XHriZGJW+YtKKcWf//wgb7zxKosWvYvFi08eIUzvMNTW1jF37gLmzl2AMYbON3az7aGX2BlrZYfVwlPJk5HnBExo3c17123h9eqV/Hr5nzh+/wcwTx3H1hfbOHLpRGYuGl2o5zWCEfTGFVdcQW1tLTfeeCP/8A//AMC0adO4+uqrue222w64fzab5atf/So333wzCxYs4Oc//zn//M//zE9/+tOy7bq7u7nvvvsYM2ZM2ee7d+/m2muv5e6772bChAlcc801/PCHP+Sqq64avoPkQC/8vBJZOTuysFCHKAcnRFgPZnhw6O5xIcQ7N4O8gMEYdJW30Vr3K7/+zsJfwhgPLyQaNcSwtrcLByvZHVgWQWT7x4IAS5fmORZ/CmMwmQwxXd23EYphdlrKsjZKISAUPClLNfsLCc8b6OVx7bXXDmdXIxgi9PYe1NpWrGNHIafUsvm5J9jz2issvvBSqhqaDtwA0LUvx1O/eZPaUUlO/fhs7JLwueCpB0n/01UkGz0aL7+U7pP+rk8oXh7P7tjJt9f+Hb7oYZp7OVd95ExmNPe9aVzX5Y9/vJddu7bzrnedyvHHn/jWDn4EbxuEEDQeMZH6mgbm3b0JnZS82Pwa699Yy66mCew8YwrV6TR/8+gufnf0StYuXMnZuz7FC/cF7FjXzgkfnDYSsjeCinjxxRdZuXIlQGEx7qyzzuKGG24Y1P5PP/00kydPZsGCBQBccskl3HDDDaTTaWpqagrbpdNp6ur6lh9YuXIlJ510EhMmTADgox/9KJ/85CeHnTQNdpE06LXWr4w+ZCaYGLKIrw9vsUBrZQxe6iKMUHznhrpVHNlQPBaFYrUDtB0tzR/KFff/CShdgD1cNC+vwCdlFq0HL8L1ToaSskB4fNsmMAYpqxDC4MQERsbQUckIrzpOrKdyO4OTLBd98skO5XU/rP7nsWPHlv1LJBI8++yzNDc3D2c3IxgijKvwH9yOaExgnTYBN5NmzV23MWraLOactmxQbThpnyduewPLlpz2idnEkyV1L568i+5vf5tYjab++9/DPeUrFQlTW8bjOw++zNefvZzAauWjk77NLRe8vyJh6unp5u67f8OePTtZuvTsEcL0FwY5sZrYBTORjua4tnl84qNf5YQxtaR2bcKRhq0LjuCE3PGc8MYs7ph+A4/PupP9O7t48D/XsfHplhHxmBH0QTwep7W1PNuno6Nj0J7nrVu3FoSKAKqrq2loaGD79u2Fz7LZLEoprrjiCt73vvfxsY99jBdeeKGw/5QpUwrbTpkyhba2Nrq6yotzHiwGe+37qLJ/7yQcLgM0X7rJDLU+zF8Q9CCS0EwkT1+oGTSCiiifyYO9ag/unSVggHID7xz0niVDKNxQ+EfoIZJaY0f5YkbkM/ZEJIcuEMZgK3UQfteSMfXaQA9RAXKHnhctAAAgAElEQVQoGFZP05e+9KU+n7W3t/PNb35zOLsZwRARPLYLenzsi2cjYpIX7/5v3Gyasy65clAFIgNP8cTtG3EyAWd+Zi7VDcV6A+Lp/6bjn65HJiR1N9yEmr24z/4ZL+D2NTv55fObEeP+L1b1Tq5c+F3OmnRmxf727NnFgw/ej+97nHPOh5g8eURI5C8RckI1sYtm4f9+C/x+F8e972PMe3cXb9z6LV7ZYuM0T6S6YRTnb17G2roWbjvyn1m+4zOsfcDQsqmbE86fTqJqJNdpBCE+/elP88EPfpClS5fS0dHB9ddfz4oVK/jc5z43qP1zuRyJRHmtlEQiQTabLfyttebDH/4wF198MUcddRR/+tOf+PznP89DDz1ELpejqanolY/H4wghyOVy1NeXq47W1CSw7bfm94knBqeTVS3Lt/OEyyFLahJEcueDW2cVUpTVcBXC9FuTaLADkDL0DJS9snoX2hRWWJ4odLO8IyGE6KvnIXq7miq7noQAKUX/trWQhRpYb1mEQYhBLUTktxFSlF12hyZCchjlBUtbFaJYM6zsmAfXn5QCgUYHER3oZ9584xMTfT2vQohCt0KA7i8P7HBHO5bWVZMCTHSNAU4igTEaYwtEYFAxC0srYloTC3xikex/rXCQ0kAgUKoYTRLYkn7rtonof0IOMAf5qk4l50sIGhoOjdfukFskjY2NbN68+VB3M4J+oLZ0o19pxzphDHJiNV0tu3njyZXMOWUpTZMOTEaMNjxz1xbad2U45SOzaJpY9ArJF35H+z/9AKRN7Y//C2YvLNs36ynuemk3tz23kw63h/FzfklGbOGKo6/mrIl9CZMxhpdeeoHVq1dRU1PLuedeQnPz6IOfhBEcNsixVcQ/Ngf/ni0E92whefI4jr38Fxz92A9Y9+cHWds+G2f0JI52JjFrxzgemng7U2vmcfIb59FxU4Z3XTST0VOHN9F+BH+ZuOiii5g7dy4PPvggy5Yto6qqih/96EfMnz9/UPtXVVXh9lJhchyH6uriM62mpobvfve7hb/PPvtsbrrpJl588UWqqqrwvOLKveu6GGOoqur7ck6n33ridlflEiZlsJAFw1lElX/i2ASoIQfSDUq5bYj2al9viCKfF/VWNBoMBq1D8qV1ifXUm32YiJy9Az3V+Xmu5EnUQvSio/2E35mBT4UxGozG0w6xtxoeaQ7s7QyJXxQy2etcG2MItB5mO//QnM/wWglvJFF2zIPrT2sDorTOWD/7GV3R6Jfaw2AjpAz37Xd/EMLFDLGQ9LAhvwIiJLpEodNE39mBjzESyw/wZYyY5xOX8ZBLR/tqpaPjsyhdUdHalP1divBZYfAtiZJhEF7M93tNZZloefSJobMzy8Fg9OjKdsewkqZvf/vbZUxbKcXGjRsLMeAjeHthnIDgoR2I5iTWyaFC1Np778CKxVm4/EODauPlh3aya0MHxyyfzMR5jYXPrXX303HVtSjfpv5HN2KVEKaMF3Dn2t3c/vwuOnM+i6bGcEb9mp25LVx1zDUsGf/uPv04jsOjj65g06Y3mD59JkuXnk0iMZLb8j8BoiZG7KJZBA/tQD21F72lG/vsr3LCjBM54Y9f58nN23ilYzZi3BSW7T2FN+0O7p7/H7z3zc/wyM99jnz3ROaePr5MpXEEfz1oaWkp/D527Fg++clP9vl+7NixB2xnxowZ3HfffYW/29vb6erqKiuJkc1m2bt3LzNmlAvY2LbN9OnTefrppwufbdy4kdGjR1fMfzoYKJdw2XkAw7X0TrATqagg7uA9C3Et8ORgVtJjaD0IFjcICKEPmstUKv55OODqHIm3VCerHwzhsAbeNDRolfERiQS29/aHbUqtQgFDILwmLQ6/q6QyDnZUtnRJ/H/23jvQsqrK9v7NtdZOJ9xUt3KgCoogOVMoiCRtFFTEgK12a4tPG237tYrv+elDxfeprd367H6Gz9QqtiiGNoAiKgpIFEERJBWpEpVvPmnvvdb3x94n3VBVwC1RuOOPqnvPOXvttdM9c6w55pg2ZQLzuBcrWnNwCexJF6aOZEoxEWrake7V0zrVsy4VwXWUXjTrlrS1OAXGWkwlWzCamjyaKXu364PQaYqVTNLnjI9N0y5TiGmze3txzWRWSdNk61alFEcddRRnnXXWbO5mDnuI5JqNMBFjXroKMYqtD93Put/fypEvegVRT99ut19761buu2Ezq09YwP4ntoMSfe9VjLzvYuIJQ88/fxxzWCbJG6slfOuOjVx2+0ZGawnPXtXPi4/y+Pr6S9hU2cgHjv4wz1l48pT9PPjgA1x33S+oViuceOJzOeqoY+cc8p5mEE9hXrgCu28PyTUbiC+9D/ucw/BecyVnXPOPnHjf1fx87VHcv3A/VvfPZ9VjR/KzFV/l0B0nwy9g08M7OflVB83J9Z6BOOWUU7pWtidDRLjnnnt2O84JJ5zA5s2bue222zj22GO59NJLOfXUU7syRTt27OD888/nm9/8Jvvuuy833HAD27dv54gjjmD16tX827/9Gw8//DCrVq3i0ksv5eyzz56142zCpc2Q8/F88z++KGE6vmRdgpKZnq/Ha/o7M57MKCIeXeRwynHsve8NqwS1N5taPUkI7eymc23a8qdG7Gpo+dMteIrUce6JZmC6JXmpS7DO4qndkxgtgjiLEoXKvfCeMB7nbRVYRV2le/USxzbGYvGkfS4avjdlqkLugreH47pJ1ny7cuoTIIjj1th1LyDRekYnvdaYeziXJ4K9XtM0h6cG6QPD2HuG0CcuRC0s4Jzjt9//T6KePp512gt3u/1jD4xwx5WPsviAXo48a0WLxJi1P2P0f/1Pajt9ej74QbwTTmG4GnPZ7Rv51u0bmWiknLTvABecuA81cy+X3PEuBMVHj/sER807pmsf4+Nj/PrXv+LBB+9ncHA+Z599LvPn737FeA5/mRAR9LP6UctLWdbp2k2kv/dJTvocxeWX8fJb/5WN6x/m6q2Hsn6/gzhp+Ai2Ntby6+VrOfHh8/ivf7+Z5/71s1iyfM5Y5pmEe++9d1bGCcOQT37yk1xyySVUq1VWrFjBRz/6UbZs2cIb3/hGrrjiCpYvX8773/9+3va2t5GmKb29vXz605+mVCpRKpV4//vfz1vf+laSJOHggw/mH/7hH2Zlbp14cgtGT7z2wzrHjMncWS0peWLHp7VBexFpMoPVVj6y1pDuBfd1qxXqCTQPbmMXJ/FxnJIZL8OsBdBP7kKP2zF69ZMnTYVEqJingqTuzabIu/U9/DPDVIpkkhgvaT9gIhqcexLVlHteS9Y0kZh5++acnvBkdotZJU0HHXTQLv/gO+f2eFVwDk8crpKQ/GwDsiBCn5Bl/9bfeRvbHrqfNa++AG83srfhxyrc9M219C4osOaV+6F0Tpge+jnjF7+LyuaA8rsvYvyE0/nP6x7mO7/bRCVOOXX/Qd54wgpWL4i4/KFv8KX7P88+xX340LH/zJLC0tb4lUqF22+/lbvu+h3OwQknnMRRRx0719PrGQIpeZhzV+EeGSO5dhPJFesYXXQm1RNPZcHg/+Bv1l3DHx4e4uoFh7GgdzGLtw9xa/lyDquexa++eB/+ScO8+LQz8KdpmDyHpy/q9TqXX345d9xxByMjI/T19XHsscdy3nnn4ft7di+ccMIJ/PCHP5zy+hVXXNH6+UUvehEvetGLpt3+hS98IS984e4XnZ4MmoX0jzN3tBfmUWdPbMNFFCJ61mR8u9jT7nmBSGZuZDTJHhKnxMYYNZv26HsOEfW4s0I23WVVU9dvqVHo5PGGs08+4mz2a9VKkdonlqXUrvkUpPAn6GcUT+M1YNGove5M2Xx2/1yJU4am0b04t4c0Z3K9YecWHTB6xhE6IYCxjkbu0gftOjQ7aci9WdI4q6TpPe95D+vWreMlL3kJ8+bNY8eOHXznO99h1apVe/2LZg4ZnHMkP18PjRRz1n6IFmyacPsPLqN30VJWr3neLrevjDa4/uv344Wak163P16Q/bEyD/2ciYvfyfj6AO9N/43P9x7Dt75wK43EcuaB83nDmhWsHiyyYWI9/3jTO/jj8F08d9GpvPvw/4eCyQqth4eHuOuu33P33XeSpgkHHngwxx13Ij09vbua0hyehhARZFUP3j5l7F07SW7ZQuMXDbYNfpzo0Ls4ovAeVg8/xA/Xn8IDy1ZyQCOkMvZDxvvWsOi6A/mXtV/kgDPncfaqlxDOwqrmHP78cdFFFzE0NMTpp59Ob28vIyMjXHnlldx666173KvpLwEmeAJBa75JJhOyuNx2YCbsWUzR+SmLEONmqr3Yg9Xf3b3XaUgxlG6nXw/mQ9fBPb5nPFIBY7sIdptkJXW7YlaOTArodbyyB6YZuxxv0itNM4XHU6+5i4hw8jtOKfaao+LMe239JF2vClpp7C5d/aYLwfcmmegkY7MkP1XmCTkXdvdmreOcphmi5y1es5//xNyqOa9mhmfyWVLaI01metb2oN7ocZx2ldc21XIXVHGOWDzKU0jT3jtJs0qavvvd73at4i1dupTDDz+cF7/4xbzhDW+YzV3NYQbYe4exD4ygT16MGswKVR+48ZeMbn2MU9/8LtQusjlxPeXXX3+AuJZy2gXPotCTfUE2CdPYowEPn/0q3jN2MKO/2cBfPWsBf7dmBSsHCjTSBt986D/56v1fxFM+7z3iA5y25EzSNOHBB+/nj3/8A+vWPYJSiv32O4DjjltDf/+czOqZDlGCPnwe6pAB7L1DpLduoXLXaqq936W05Ae8uvgl7hw9nisLR2GXr6C06UZ2pOvYb+MZbPruI1xw6Os5+6CzefE+57bI+Ryenrjrrru45pprul573etexxlnnPEUzWjvQPuSOXLlYn/PCvEuTRukFcpPn2/aXd4qD9xn/Ey+siwpUMW56Q0QmoRCHDjJvmeiRKjmEiuX2xSbGeumZprn7oJ+x0Q6TlGXaUZgkROaIj6bU8npMG5HKMr0Rh5GGqQuq3Np13rtTj40/bupUaik+c7jd2nbczS74XRMaC/CoKexH5lup9L6XymDWEvaJAFkwXDqHGoSqRKaVty7n0s7a7fncG6mDHU32RQa0y4YpC5BZrifm66Wu50DMBbvoE+C1itZM+nuWK15bz2RS+qczTLCgMtdLGeCmuF8u0nZnda8lEKZADoWKVLlT5sbTJOpR+Cm2O3PDM860tzB1ClFbMyU8QDE23vZwVklTWNjYzz00ENdzkPr1q1jbGxmDfIcZg9uPCa5ZgOyuIA+dgEAca3K73/8HRauPohlhx4947Y2ddx8+YOMbKlw0msPoG9xVhzdSZh+dOwL+Yw5jmMXlPjvz92XAxeWcM5x3eZf8f/d+395rLKJExecxFsP+Edq2yv87Gc/5pFHHiSOY4rFEscf/2wOPvgwisXSn+R8zOEvB6IFfcgA6ln92LUjpLdsYWzrOYyHZ7Fv/+X8ffxNvulextbl++Ht3Ips+BwL3Gs46/YL+dHYF7jsoUs5b+WreNnKV1Dy5izKn45YtmwZo6OjXW51zdqkpxe6A4gonYE0iWrbJWs9Y9gxnYmGZxV1nebD1MFOLaQXaQd9gsMTQ+IscR6AzQRtfJI0d9DqekfhYTCqSLIH2Y89kc1N9YHI9tjrFFt3ueXMoefkWpoJO0ZZ94NKcahJmaZdB6CteepM5GWm1Qw+PuJkRe8229BwDYw8wRB7hk2UCHbSfaSRKZR0uqSZKI2zKVkPKIXYtsRLzVjSIaj883vbfyOTogI4tHgobbBpg8d7/pQax9oIQ2YO0dgFpZxiyp/u6ploz6P5p+BxzaxJeAQgxbnue9ZiUK25ZiTGkmYZ61wONxNpas1rD2SgsW9wE5MMwz3NnmZDBcE0TSCsJTam2TKqey6T9XqziFklTRdeeCEve9nLWLVqFeVymfHxcR566CEuuuiiPdo+jmM+8YlP8OUvf5lrr712ihvfHGaGc47k6vWQWMxfrcgazgF3/+IKamOjnPbmi2asN3PO8bufrOOx+0c4+px9WLx/Jpcz9/+UsYvfzcTGgK8fciY3HnE2/+e5+/LsVZn1+M1bb+DStV/hnqG7eZY5mFeWzseuT/nBby7HWksYhuy//0GsXn0gS5cu36NGunN4ZkOUoA/oQ+3fm9U83bqF0Q1/jZjzeDXf4hZZx80DB7MjKtLz6FcIK6fwkrvfxvZ9f8tXGl/k2w9fxrkrX8ErVp1P2ZtdK+g5PLU4+OCDOffcc1vyvKGhIa6//npOPPFEPve5z7U+95a3vOUpnOWTx66+7mfKmmjtdb3aOYZGTSEpgQjjk8aYsiouYF3Wb8e3IFoRiCJFTQn4rKch3X1N067WlK1otLPYnAiOuRFIYcAUcThSXE4EpsOkDMtuJyKtifgWrIImATKuc5bNs5KABpmSbXAoZQCL3YWjV1YLMtO7s7Uq7kjzbEI6acxO+qTc1BqQXcGKRs3UdHW3yM6lKIULA6SR5NLRbE46j0kCK0yoPSd5M1vhJ2RZoplijWwfrSvcvCa62vqElumldXuSD5FWz6b2cdRsBd2Rd8kOeepCxuTxpcPE3FM+tieBESglaoYtZoZnhVSrPcp9OeWRWse42k7RFoC2HA6mI01NMtUxxjTX0TG9U57T2fHEuoCX7rq30nSSY3Ey5bYpxXuvn9WskqZXvOIVPP/5z+fOO+9kZGSEcrnMYYcd1tVFfVe48MILOfTQQ2dzSs8Y2Lt2Yh8eRZ+6FDWQ6b8rI0P88RdXss/RaxhcuXrGbR+4aQtrb9nKgc9ZxOrjswyVuutHDL/vYqo7A7521Nks+pu/4xtHL0WJ4/ot13LZvZdS2TrOysZKXlF9JbaRsoFHGRxcwJFHHsuKFStZtGjJnLnDHJ4QmjVP/qoe7MZx0lu2MPHw33C4G2Wh+g4/jpYysv9h1DfexrztjzDPvZj3PTCPhw/5NV+P/4P/euQ7vHLVq3nZyldS9OZke08HjIyMcPzxxzM2NtZSLxx99NHU63UeffTRp3h2s4jJwdTjXGU3FhpaoZxDiaBETYmtlK4wuTdMxY0RiMO5EKUUSiuSZGr4M53syE6NW/LPdvwsMcwgh1LaxzoFLmbCjk4Zw4pQo47BBxw1Yvwp4cv0tTTTQbu2cbm2zXXuXZ9ohcqdwiYTiF3vrS2V0zyeXlqZ9C0FYrrqqpyHzLgyP6lEf5pD0o+DNFmjp3C6AesY0oKdVO/VRidhaQf2aeDhNWY+/lQrNPKESrCsGJSAEKNdNONZFqnhXITOm8nG1mLFIwn7iNLsfClvesIVqpiqnXS8zaa1SsE0zoqJS6i6CiVpqx8yGWH7wjgsoqoo7dFZCiWSIi6rUQSICz7eSLNpcPMk7d4kQzuIa9vQpcXT3LvtWbR3nP/npVDPXjdpiu8VSOoTMzzngpIQ53bXUHZmEbFDMZkIZkYiHTdEa+eZfNKLY+JS1PVYKRSev/fqnGe96cm2bdv4wx/+wPj4OO9+97u555576O/v3yMb1be+9a0ceeSRfOYzn5ntaT2t4UYbJL/aiCwvoY8abL3++x9/F5smHH3O+TNuu+HunfzuqvUsPbifw5+/DICd13wd/S+foFHx+MFZf8f5F/4tC8seV93zA2764/UEIwGH1J+FIIRhxIqVK1mxYiXLl+9DoTAXoM5hdqGWllAvK2E3jJNcu4n5m/+Ol9uH+Lm5i20r9mfr9k2Ybf/Jtt6Xs+i20/nS9jFuPyrmP8Y/z3cf+Rbn7/taXrbyFfj6KeqmPodZwUc+8pGnegpPEVKa0cKYHaFXZQGYVoInCmUUqaUVawRW0dAALg8kp2K617ria20Q6lRdhSLdAUhWxzE1UGtnMrKfiokAwnC6jf7d1BtqUR1xzzSGCfngacvmgpxQuHzlu+myln1QIbvMqHiuQ4zUDBIlwTkPb3IfGRwBHqkuknT0Qno8sDpAz2DnF1MHpq8TsyZGdW02NWRr1qBkxzEz8UtcwvzYZ7SgIdkzp8M4NJTHE8o5UWrCxzFNeQowfTZhmk6nmflFPt3IKrZRZSCNGCWrWWmTzUkEXcmksLv5vqCNwrNCkjpG0yF6dH/3NJh6hhIdoKh1TFU1U49d+1Ade9UihFYgVHii9pgLCwpE5w1t8+ORCsrF+fsNkJTAOuodOsemJC/1DLHS+LX8HEkD6wr5ttNf+6qdwLk6PU46BHgz55xSzwOb1w3lr5kkwTcCLQIz6UyK4InJr9yuTsC02s3Wj9oEpEkNQbErE3OVLxt4aTrtDfcXYwTxve99j3//93/nzDPP5Oc//znvfve7+f73v4+1lve+97273f7II4+czek8I+CcI/7pOnDgvWB5i5wOb97I2huv4cBTXkB5ht5HWx4c4eZvP8S85SVOOG8VCNz7+f/Ngm99nwaGtW+/mHNPXcPVt13Oxoc2EDVCFrOYqL/AoYcdzsqVq1mwYOFcI9o5/EmglpXw/np/7AMjlK7zeNHIPtzi3cA9g0tIo1EqW79FGp7F7Ssu4JDrvsx//Fhz51E+Xz/40/xo3fe58OC38+wFJ8/dr3+huPbaa/nCF77A1q1bSdPuFdNf/OIXT9GsZh+T706lKkBGOlLSvExcE2kFLkVJOxlQSjRYx5i4PKbJRqvbGoHqJD8zVkBl/0oz92J38dk2rNF4qi05UkqjHWxONuH8mcOMzgL7YupTdzVEauCmr2WquQbN6q00J0xtw+JmFJ+vjqNIVIrtYE6peGg3mTAIxoLVuWRMCT2xYqvZQsMpoJCtpCMoNE57iK23tt1TdPaXaTZkbdg61k9buYJYBK95DklJI4WNFaY2zYCtGTSP2dGlVMpr0hyQepqx2nYWsHB6iVTHkXTVqzlHyU3NDfQ5SJ3DBgFjHjCeheNBqro+LNKUy9HaQ3M/qW8w9Ww75aCMR+Q0zTyjfjyOgjmUZDVS09sQgNIw1dguI/cuzxZVGKEghfZb05UTki0OFHTYQSSmQ/fGSpkWGfAxNEgQlYDN+ERT3uflpElJHes8SomiTtarzMrUjIxDIx3MLXUJOjeoaH6qnGqGdUKAR4ImmcT0WiOKgGpkx6j9LLbEtL43lRrHC5dTrwy1ttXaw1lB652k6cAMJy6nddMVIeUT0F6Yk6YnZ5Hi1N5zjJxV0vTZz36W733ve/T393P99dcDmU3sOeecM5u7mUMH7O+249aNY85cjvS2V9Jv/8FlmCDk8BecO+12OzaMc8M31lIeDDn5tfszFqc8+N63sPKW35H2eDz2rg/yx20Pcvs37gMgKSYsPWQFZx55FsXCnJHDHJ4aiOQ1T/v1ou7YxnNueC7z4/XcWLgPWVFgYstPGXYnkB729+znPcjh132Gj9+c8siKrfzgyHdz5XNO4C2Hv4MVpX2e6kOZw+PE+973Pt7ylrdwwAEHPK3rI8W5PLBxJKR5SBdD7q5lxSDSJhWdoaXFTglwlSgS1yAgRJmsCF/ZBMjGS32NrrVHyOzFq0yGVoKd1HOn+VNsUgKyAN4qAzYmxKNba+XyzrOTXiPrU+Q7TZ2mjK99fDU3hq+LgMLiiDv0YkqadMZhtHTJ7LQOsLoONsuyNF37PCtdgX2AT0O117UFQaRBgxiHRzt8cyjRBNqjEe9ahmTFa2UPmkh9g9eKU7O9VdMR+qzXXqEXDXkWokVctWTZldwNwRND6na9pq+kCtpAmhCHYUYIWtc4P2MiJOgpJFLIrnVqHdYoMifHqfuYL71MDPZjd45kAX/7NOXzT1CS4FPIw/PsjUB5NCZp/namW0j9gyDJyGjiG5pJPRsYqOw6hHaT7kmZQZo4BTkRKAQaL/GpNqqkzJSFm/o3p1ka54xGTSM9nN7kYpIRgvJRGiILaeqo5hk9qyFIoNRQKASRTLLZeWAVN0RIYZrET0eWStn8CRMwGkksRhKSSedHeyFJXMtn2F78IIVI/NZZEcnuPa0UdaMwgChNVF6MrT/CeG0XZNcxxYSi68y05t2i1mTnvZ1NdCisClBswdoyQr5Akj9TI+kOlrFk5jk8ScwqaVJK0d+fpUObB2+M2aupsmcy3FCd5LrHkJVl1GHturHN99/Nhj/8lqPOeRVheWox/OjWKtd/7X6Cosdz//YAfv/gJsIPX8g+67ey/tjV3HrECSR3/4GaqjGyaJTTjn4+p6w8bW6Ffg5/NhAtmGMXoA/o46Bf9rLwwXlc5/2OLUv2wYz+kc2jj+Hccxl99Wc5OrqLfX90Of/4w/WM/OJmrjryfKKXv5JXHfXWuQa5f0FYsGABr3nNa57qafwJkNciAQbTtT6femZqzUdu2TvmhnGpoyxlRPtga4DK6pO65FGT5Wd5MX6jgZgiInWUKJzrNnxQXaXpGbQSYhQNUwLqkFZwupQF2pNqpiSLZqnaCikpoWpK9qYrG28jdjUKpo6SMlYUDTOBJD4eBq1i4jxAltZIjjQKYCJu7dg516KTQhafKMAkKZ5Il6zIhgapN4N3jao7/LhOjULHGcxmnIQGv7Vx20lvuojHeSEw3hXfapviOUPs+Ui9m0goaQaM+XmwDYqqgEURpEKYCiO+zT/bDtg9o6hJvUN3mDVp7cx0GTTxDMv5eV0+lYFCM3Se5miygX1vUkYnl9xV0lGKuRza75SF+T6BVYz6KWmH7C4loaB6gG1kWZ+Ou1S3J2q1mlLz1wlPNJ4yxFNFeNMerBYhDAICrwaJoFSWxzQqm7PVCpXkkj1p9w9TgOf7IGn2VCiF+AEiNTwrCCGOWk6amtbqQhx5mFr7bnModOBDognqEDkDCQznluPKZc8dQNHThM4jyemLA2Lx8to+lxE417wM2XWo2gkc9VbezfkGkhglCUKctw9oyluzzJILIlxjDJTKzU0UymlEJUTBGI2kvTSReBoSyUwcdEDoGybq0mH10T7ORHkg3YTUM1M7CmsvwsVN+aFDq3ES25b3xqZIpAqIfZ5wAy0AACAASURBVARr220G2te08pcjzzviiCN4z3vew/nnn0+apqxdu5bLLruMww8/fDZ3MwfAWUd81TrQgvf8tizPWstvvncpxf5BnnXq1IbCE8N1rv3qfSitePbr9uf73/4xJ3/r4wz3DHDleX/FhNfLaGOIyj5Vzj72XI5fuGaOLM3hzxbS4+O9ZBXzHhzgRT8v84fqg/y2DKaYMDL0X6QPncWv+g7k5H/5Kj2b7obvfINzb7yJxi2XceVxP+GQN/0vDtj/5Kf6MOawB3jb297GJZdcwimnnEKhUOh677jjjnuKZrUXoMFpDWmSrTC3XtekqrNQvntpP8AH6gR4BFKkQQ3I9VpTrKK7SZQVQXcUsme21tk2o+kQkZq+5kapGOcgLjvYATatoQF/kgOZp7P8FUDD1WiQUEtreFRRUsanNK2iRyH5yr/NamjFx9MBcaLxwhI6GSJfHEdEMNpDSEiLUU6auolHhga2UIR6jMoL+U2Wy8uOPTBMVHeCyrJwqg61dBgYoEXwpNk/K5O+6TglZgSf6XsPZtmI6SWHLs/ANXrKSOygkgnUmg1vVeu81SlSoJwYJI3xlGJcHFo3SG3Skig2Pz+5fqTFUdr6PTyrptR9eaJJidGi6adEr+cxXn+0yc2JGSfBkopDJJP+W2fRKLQOkJZ5iNCfuq4kkQkK+KFHMr6DxFma2U78AhiP1CtD3O3rOKFGicjULdbTeI3JqwZZBhBSNJreCCqTEnEicVt+SB0hyiSJIvT2LsDJeHZ/diwuqOaFzq9B6CloZM/IgGuAJ4hXwqMKDTLipBRWND1pCDLOsKmg7Rg+g3hoalqRFgJ0Lme0otE065myLGKGmMA3EOdtAUjRylA2BZKkjpMRwJAqncndWgYPGclpInYNTH7gdWVbxyP58aUdEt5ANDVxiPEQ3wPt00xHlXUfEzKGHwg78kfbmADRgrKGho4QIAg0bhScNjgarUc6NkWcH2HY0nVdFAKeB1TxVURBDGPSaP0ZCKIScRw3E5AtaNpuoU6y6ybWZvJU2bN6vSeKWSVNF198MZ/4xCf4+7//e0ZHR3nzm9/MaaedxsUXXzybu5kDkP52G27TBOasFUi5vaL34C3XMrThUU5+/T9g/EnuSKMNrv3KfSQNywEvWcrPP/hB1qy9hZvXrGHLgiVMmAlGlj7Gy45/FUfPP3aOLM3hLwZ6v17CFQdz9A0D7HPHfH6t72bzoGGs9kvqY4fws8/HHP/SfVn1z58iefQR1n3pX3j2tbfibnknt524mkPe8kGilfs/1Ycxh13gJz/5CVdddRXXXnttlyuniPDTn/70KZzZ7MKFHX93BYoqwMWKscjrcjKzlXrm3tXIAgalMvMGhUJpA8pDGw06o0hVO0GRMhpBdzrqCaBTjNlGo7gYfyLGKg9tG3mvJgisy+JJm8n9mpsqSVHi2t8VzhGoAsaNtX7PPqew4nU5M4S1KkqNYIu97WPv+BcgFJ86MMEIPbRrc30PAk8TJ+3tlMpqjgCk2djH0yjbaNmYt/ZjNC7WkAepBZNSzc9t5/eenZRJcUq3yF0pEbRTVJoLlh2yLjENUgw6D3oNBqcCrEsm9TFy+XF61AtlamkDv1HDJuPYYhFcjbKxjBlHc/jJ38rScVM4BK0NnqczRzfaebyw0aAmFaDt5BZaRWVSsii1Pk5SIltgPFpKv2rg3KZcWuVInaHKdha6Mj1BgEIRk5EmEYXxIyTJsnueZBkW5yxV3WCgsAziYcLAZ6LWLtSqz+tlv30GiB+ok6YeqTaQ905KVNzVcFUrhbW0GrZ2w+XywphOY4Qm4bOiEUkzgifQyDlbfWEf3iQPfmkuOJAtDigvAiSzEFcGdB3R/aikfRyJKmAI8xox12KqXddMTbqn8n0VVUirHi+X6Bmts+suKbFu4EVlPFskqW4CVctlkdmRal3HphY7TfNpbbbyWLHceoZSYpSSllJWRNBofGBUWfCrYBWVAApVR9nrpSglCoWAKg/QiMELCuieENlZaRF0Y4RCNEzdZj3kFMOkSaZ2svU6tVI/PpMK9Jrb4hNoGOvgPKLSKXFo4vtdxhuiNR4BaUex2t7s6zWrpGnt2rVcfPHFT4gkbd++nde+9rWt31/3utehtearX/0qCxdOb2TwTIXdUSO94THU6l7Us9ruMHGtyu9+dDmDK/dn5TEndm1TGW3wqy/fS208JtxnjPR/vo+FS+fzkxf9FbF2bFu8mbNPPJcTFp44R5bm8BcJ8TTmeUuZf1A/Z181wANDj3CTfy+V+Y+SVtZz8w+qrHtwlJNeuop9L/m/jG14kDs+915W37CWsRtfw/bTT2LJf3sXevHe00PP4Ynjxhtv5LrrrqOvr++pnsrehQh1xjG5a52ZQR413yuy3VUh8EnTFKdCmJjIhtBkxAlawXPs6rQD5qxbjuCwytAUqA2qAItr9XASUZRMgBfDEmdYSwNBSJGsX1QejErHqND+vfl/wSvSsIr6lNqTbCsAUQ3EVenkN54SNAF+YQFpErQMrkXABEXi6rbuHU0aUytNIu1latEeVnx0fk6U0iin0CrNCKESTLkMO6c95W35n7QlV809WizDdgeiDC4Ish43cRUnBo0mzcP4znjOJAlOIvDn42mfWrIdhcOpzBkwO+IUGzhco0POpny8yYX8HedA5UF3wWq2hhNUraEfGEl3EnSQJkThxIJTec+kbIZpWkDVfaxzNBo+aTJAqhpY60iSiEYakuiQeWFIJB71Ds2oUoDWiG3fFRUqVFVI4Hl0lgxpEVLnQAt9ZZ8dTe6NIMrLMiiTivoFKKaacSeTTC3aMk89qebRKEErqOKhSPF0A2tDMFA5cDnE43R0b6JGBedSUjxwcWZ0XwY1AjVXAXoIMNgOeXeqQwZMNGPXrVKiSVAQRjDattV3zjGoy4SxRyN/DnWLhFhEKkQiDHiLMompUqRUmbBjQBFMDc9JRixTqNsqwSTZeVTU1HdR5GVyTaYSYTxImKcsnvXZ0Yip2mFq9QJFUS1y1Xk1QiKMiyjYgMD2UzY10jTCY4jYutb5sHGMrbbn4DV1oPlLLi+MCzxNtQGiJvC9EZJG28AmnVfEMUA6VkcmAH+EJcFq0mqWky/HQtWbQXc6S5hV0vTe976XK6+88gltOzg4yFVXXTWb03lawqWO5CePgq8wZyzrIjh3/eyHVEeHed6b3tH1epMwVcdigp3XsP/NV3Pjc9Yw3tPHUHk7zz75NE5decYcWZrD0wJqUQH/dQdx0G/6WXHTfH4nD3JXuJ56dCuVhxaz/lNbOfsNR9G3bD+e+7+/yW8fuJq1X/gIJ//y1+z45Y0E57yE0t9egB6c/1Qfyhw68Ezp4SfO4aIQkskSOg90Ec8qjBJUaPBQlHoVQ9UUOqzB06gI9dHJI7d+8o3gYsGJjxOb0ydQKmWB81jb+qQjlFya1Bomq49pruY6oOLncqOOQD7UEx3ZEUGbANdI2/KxHFpVUBJTLnjYEcuoch3vCb1+gPWK1OO2CYUVC6LwfC/LdCmN1ookFSpFH+tl9MqJppRCy+dLabT2EaUwQYiqB0iqgZjewjzGsFkjVlJS1S2n66xRb8gWtichJb0Qkuxzi1N4VEAbn5qXgk3wreT27/m5ygeJUkeYaDarCkgZm2e8lGQ1Hk5BQ9WJVZ0wyTIHXhDn5ggOhyKdxud6snBNiQe+IalbnAiiql3xpCqCihNUEmaBuqpR9uukrkgSWtLQ4Fdr9KYNRtUEDkdtsaYSF0i8/ta17ThLaDVBIy3SCBo06gmpmgfUWzR9WrgO5t2cYGAy8wrtWlqyulQpUSTSVSaS7tDYisFJgjMBobE4k6VGnQqzZlw6ILajBJNkd7Tu/nzfTkhUg5obZ1zH9Lp2rZpRgmsytaiXTimcFQ9POZR22Nzds2kE4ak6kTWMSoTzpq+jbYdf2Q3jlMc4j9Ij/Yh4aNGt6zvmHqMhBijScqNoyvBcLZfqtqH2xImw5WqR/ag17FyxGLNpPWm9aUkDhrbhmE4dvdJHg4ig0E8Y95EQY6VAQAA6ZWdqiY3XmffL5hSWIa62FnUA4iUDpGiCB6o0qOGKIbo6TlPG6SKPgvTCPMfwUC/iK0pBgZGNMQgMJ9uJPG9XZW9PGrNKms444wze9KY3ccopp9Db29v13pyD3uwgvXULbksVc85KpNj+oz62bQt3/+JKVh7zbOavasuMmoSpMlRj5d2fpdYXc/ULziQ2MfseNchbTvjv6Gl6bsxhDn/JEC2YNYso7d/HCVf3cOimffi13Mn6wmPU2My3v7yWxUcew4tOfxbH7P98Dvx/n83XbvwYfd/9Kaf/8L9o/PgKCi97JdFf/w2qv3/3O5zDXseiRYt46UtfytFHH02x2N3350Mf+tBTNKu9AHGIUVjfw+Rifmc8UlNGkkz2JsbDiUOK40TliF7RjFQSQq+Ar0rYqAjDWfBj81qlOE+KOBwpDYwrkEyKpYbNNhYGGrpqc6YPuISsNsrhMGXFiN1BhMPk+SABChLQaoAqmsSEpLoI6XD2kjicWLSqopVH0GHoEHWEJ5kbdIxoQ5UxyoEmLCkqFYUxPsb6rWm6ggdaYZXHhNnJ5r4RykOlzBGuc/5KEfgKr5G57onSTHhjBGGBihsF6QccjUKAc14rqhUcURii64+BGgSvgkom0LaO8pvOsoIqezDUJjZGBTQrjwRQahTtKrimpFAEowMo+cSxl501mZTB6YBCE1hLqmHCbSUlxUo5L4LPjRO8HvqDiFGzBTWyHeodtYAmYXTRQsyGYUKjmJcEjBmLUlV6rLBTAZ5Ca0soDqVSnIvZ2VeB6vLsOgI4h0GR5o6OhbhGgyJJSUM9QXtt84ZmLc2URIAydN5nzjic+KTKQxTYwCNJLU4bJLGUlMe2POups5wnNogQUwI/wJoCotcSjWuqRmU1Y4UCulKlqMHk5h89zjCWy/B8pelU6HlegDMxideudTKiiFva1BC0Y0A0G/KXFpQCtk80qJNC6LekmCIOJY5AK6oCLgiRhoCLOwhP9uGaP4DnaYxSRDTYkq6lVwoUWNExu3ZWTWlNr3hMuBpjdispxcwtEk13r6Ps4XLFCKnUEBylRDFuJlHtSY+7DbN7PjTDQIjKn0urAyQnkMNM0FiwBNmyloqJ2VIfoIeYBSwmMCV8TwjVGGOkmGx5BoVPEHlImN//CPgGl+rsb4vOuXTHYr4TQbRkXFULLjSEQcROV2c8HUJclQiF2Ysh7aySpttvvx1gir5cROZI0yzAbq6Q3rwZdWAf+oC2RMU5x83f+jLaGI49t+0uVRltcM3n76Y6VOHgez/LHUcsYWTeQkrlMc576dsp9QxMt5s5zOFpAzUvxD9/f8ydOzjzlwGj9XGuS25la3ELj977Ez51z60cevKzOf2I/bnwlEu49eAX8oFrP8QZ1+zgud/6BtUffI/ola8metVrUOXy7nc4h72GwcFBXv7ylz+pMW666SY+9rGPUalUWLJkCR/5yEdYtGhR12d++9vf8tGPfpTx8XGiKOI973kPxx13HJs3b+b0009n+fLlrc+eeeaZvPOd73xSc5qCjgCqkMczhf4lbF7ch966HRqOoG8+jcZWQs+iigmm4hN4ioJv0dbPzCRy+qH8iNgvIGmNEbeToqRU3BCehKggopEHhNoTCsvn4e7ZTmfjS08JThVABZA2WtmCKNWIElb0LyAueFhjGDQFSlIiSBSRrzB13dUUtC4pThlU2pZu9UuZjnr0/BRkzUQLHQ2KVAA6iLHVBF0ewPPaErSdfUWoZT2B4sICkqSASBUrKfT0wVCCkmzUJqxnMCgKymesabHuRdS8BuMLStSkiCLBKcl6M5Fl4jxVo3dwEF0uEOeZH19P4LBYHWU1K1JH+xpjfGJVI/Ucnpe53tk86nJaIAWthkiUZOVViWA9BcZA0kHxOroUa4REpQwn2+lnPsNeUxYpWPHBU3T4i6NECHQBEUcoEIhHRQujegcqEgY9jYrBj0JEx0Bmp247FlO9IETcMBN2G6kK0eJIGppKReHIasksEBcdDRNRD3sp6QmMrlMODZurmXwNQJRDlMuMBlqT7KhRRHDaoRwUMYznx+2hmRAFLslq8gBRQkF5jDnBouiVMKsDHFwEdceY3UjMMnx6iCMNFTD5cflOoYtlxgBfBvBNjU4bRW08RMco46O87KJFykfj2qYaClxhHkmSmRe4DpLrfK+r9qbgazYFNZxXIg18JLbgYuoms/VWzQHJMmB94rEw6KEyXsWXtiXMhJ8tpNiOTGigDBNpVt+TFookjQbVRrXb7bJ5/3iZiUIkAUnTGGKqiV0HLAPBJgZLPjviEEFT9ecReganY1IV4GiAysYxWtFXUlTGJwhEiHSBsl/CpY6iSzPfBwQV9OEFwriM4jAIQi1aAuPD4CD1MslhSSLyCklqvYsJJtWekS8SpC7GkGXV5pf2XiP7WSVNl1566WwON4cOuHpKfMUjUPQwZyzreu+R22/msXvv5LiX/y2FvowIVXZW+Om/34atwYLtl/Gr5x2CKOF5R+zDwc85b06KN4dnDEQEfcQg4b49yFUP8+J1p7NpbD032NsZ6RHuu+FH3H5zH0cfexynHX08B7/km3zmgH/j+7+7gtffrDniq1+m9t1vE736tUQvfxUyybltDn8avO1tb5v29a985St7tH2lUuEd73gHX/ziFznkkEP40pe+xAc+8AE+97nPtT7TaDS48MIL+dSnPsWaNWu49tprecc73sH111/P6Ogoy5Yt2+sy8oHI4+H8z3MxKJKoAqIVOvKw/QaLBt8nSWJMO5YmNFltTskMgZqH0xbtJQQrVlDYmhCOjVFPN+NcDessqadRRkEYYhq1bE26uTJORlwCo/BwoAxOR9DIwpeiGPqCkNhv4GmPQAckfkSfFEkTIUDQrQa7GXzPp9GotXbgG0XqXFbX0vQjJ8uoiKugEZSyOK+ENGJE/HZgJ4ISoRwYlO+zo5iQepqkFuHEMBYtxZ/Xz8QBAQNVQR55CC0KpSJ842XKRyU0FpbQmxROBzTMBInOAlFrNIkJcLaAF7fFW0ocgsvmrhUYQVJprbg7RVbnInWWRoM0ovtIEk3DsxgTkIhq1ympZi1XHa8ckKYp4kB0yhRLu0CD8RkYNohS1CWmofJ+TkrQNmtki2rgVImWxqqDJFZ7Qvp21NFiSFyDhjQIEYxW+NbD7ykhSQ2bKJJCRJomjAQN0riBIsVaS5paXC2hoSCNhfFxg03bEbcuVan0lvHdfLA1xo+AJdtLDI+mxDlpSlNBlMPpAOu7PLBvZ06MFuZFJagmBLQNSwrOMNa/itDfCqNDrc/3K00N6RIrmmKB/iVF6iMV6tQYUykjRc3gjub9o/N9+fT7/dTrO6DkUa1sa1XsFJTPfgOLcaZEaXSYfi9m3DmCJKG+vIaoGpoSmAhH050vm2zqLCZnVr4RvNx4JS1kduUCaCck2geTImkzy5SpGhSKVLLapqK0ZbeBr5gA6tEipDGGZ1N6nGmdf88IYcHDOEXayMivE0WSN7auSQ3xUyKtM+mgKCAlKjg6W7MJin4/iyWbGc6Cr9kRu9wwwqNkDFWvn1Rb8Ldiei1xI4LNrYpIJuxWxpQlMJCaUYalQbHqEddrRKUByoUS/bED1UdNQhS9eGlI3D/IeF+NvrjWqu+q9kYUgwA7nnQV8DkEjCbyChTsBEp57Ika8YliVkjTBRdcwBe/+MXW7xdffDGXXHLJbAw9B7JMUvLzDTDawHvVaiRsX7ZGZYLbvvs15i1fxYHPfT4AD/7ql9z5kxqJDqgWfsbmI1ezMKxz5jmvpXfB8pl2M4c5PK0hZZ/g5Qdg7x9m0dVwXn0pd227iT/orag+xX23/Izf/eYG9jngcP7hpIv4/aJT+T/LPk50XJW3/6bI8i98luq3v0nhb95A+OJzkWDvrWbNYSrGx8f5+te/zvr16/P+ITAxMcFNN93E61//+t1uf/PNN7N8+XIOOeQQAM4//3w++clPMj4+TqmUyariOOZDH/oQa9asAeCYY45h69atjI6OMjY2Rk/P1L53sw1fS3tRSyt0YrtcxsXPgrFiuZ/SoOlqxekkJlH5Cr5OwXiIKEQZ5vUVGHLCcpYzFDjsY1nTzH3mL2LT+Ppmt5f2YGLRuk6gxiEttyRK1hh6Uo/A+PSLYrAYsn1BDxU/xMTSWr2eDKUVKZYoFWJrW/vo04LpL5GOQ+gpQuWYWBBQ2pFgw0HQBrFNG4VuGJ0FfoFRWCdY/MwcwEEQ9HHSfoey+ZHfU1EPoMVQKfcSRw5TH2o368wpYhRFEBkgC/BTFeA8D1Nt4ClFKTSM1rLsT2A0XmTYrj1kPMU25WcyigoagGJxYR4b8utY8hXzihHjYQ9xOoZOHFvtw3nbTofRHqlLUX0amUggFoJyEdeIaaQ1oADaUUl3UlRZZtSZCAjpc+M08DMipWsEkaWWOka8CvX+fVnco2H7H2mUIsYKHqpSpxLXwLmseakCzxjCchGGtpOWIyrVlKqtEI8YGrWUcWrEWJLY4YZquNJGnLXYdDnOWlxgGJQehnuLTPRupTQGymuQ9geEhxxP/Zrru66buIztK6NJXNqVaRSg4EWs8C2PbqvlDF5omBKmv5fI24ktziN+dDM+EORjdd8d0pUtHRxYhPPmYdVGwBEUelA1WObPo+ov4eH6Q2RWHim6o96pEIQkojC+xz5Lehl65DGqDmpLewh3NiCGQAxWoOEnLTLWdd+LyhovSzGrB8zpXdH6NLw4k4ZK/sznU+7z+zPDiMqjWX+0/NwUPE0VIfA10gDPppQDj/lBgZ3DmfBW+T59NWFc72Si7CjWEirBAqqFZWhJmNcfwHidxmRn7nwfCmF+qAh0AaihOmoMnVhCKbGQAcIUXJL1HrO6ztLFHhWKmJw0xaaASxNMAerSwJQzy/VoIgVboa5jeoByvYjy5hOZXqiANMqgFKKqFPwtLO0rMFGNGPUFXwu1jslGSYGRnn1xxfspNnwiLDWZ9HdsljErbdU3btzY9fttt902G8POIYf94xD23iH0iYtQS0td791xxeXUxkZY8+oL2Lr+Ln71zrdy508stTBh56KbGB8YYM3+izj39f9jjjDN4RkPEUEf2E94waHogwc4vPc5vCR8Hvus30T02A7KtQm23nszn/viZ7n7xhE+fvhnOWHNa7jonCE+8sZeRpb1M/Fvn2Dor8+j9qPv45Kpxdhz2Dt417vexa233sqiRYu49tprWbBgAevWrePTn/70Hm3/yCOPdEnrisUifX19rFu3ruu15z//+a3fr7vuOlauXElPTw9jY2MMDw/z+te/nhe84AW8/e1vZ8uW7r4jswLn8III44V4YUioW4URmbVwmJGicu88okJI2tM8JgFxTATTy0hFeex/2DkcfPhzqC1aRlWqIMLA0n4imSAwuhU4FYMITyt8M4bRNXq8XtAGTJk0zL6DPH8cCTcQllKOXHwMpUNPQPWswIkmNiVqsrErdHEOrPHwrBDmzSu1hn4cpfntGuhCWmHREo+BYpjtM0d/T9uYxam8MDw3EGjW5isbZ89400o80Jn9gIBSlrDHZ345wOtta3wC49OPRxBERCYbtyl9SvuaJFkQJShtSFS2bXnh6u7zC5S9bmfHUv560feJPE0ghn4JCBw0fcWcpMwrZJmAQqG3TR6UIEqz1Wxm2B/OX8xdAaVpdCG5ci/LSJRMX0vpFkdjxL4HCEay/0M8an5mLKGda3Wy9QcSRAvzfB8U+IstMhjgDS4lKPTQW4jwA4UXKGR+lEnPSMma8qSZ1fl8n/7eXvqWrqJ0YEB5IM+E5WFmqLL7MvAtvmgKpoDf7EskYHuFmqqjTYAoTRAKpljP0zJpJtnr9TMbfAcT6QQTbhTNNCVSiwo0epZiywvQvmFR70Lm+ctwKKxfBuVh815iwY4apUYxt9fIQ2IvGzEqFsFBGIWEUfbcWb9MWlxMpIVlYQ9F7bPogKXsd/SBHTPIXCm7YNoZIwSq5DK73I7Chn7X+739WV1hX7FAeOC+GckUob8YEEZR50cpRxFWZ/eI3zvGvHACoyS7Xs1aJh2gw4BSaBATgFfszgQrhdGKaDBpGVgAbeMLoOJtZOPgMBWjGNHjbPWrbGOUhtQ5YLBIp8gvVQGj5f0oLF9ObfEgDJQZWTiA0YKWmIGl/ewoj1MrVqktKbFt9UHs6IEdxRGsWHp6IhRQ9Dx6yx4uN6NZ0R8xv6fA4QuOYYFeg9E9KIRynnHztCIsdMfJs4lZyTTNSb32Huz2KskvNiDLiugTuq3XN937B+677mqWHn88t3/tf7H4dp9tB72BiZ6HqZS20RsEnH7WeSxatuopmv0c5vDnCYkM/gtXYg8Zo3T1Ok43r+HRyt3c8cgvmfANZuEyqhv+yH998x6kfznvO+bjfLv3S1yw4G7OOXE1519nsR/7MJVvXErxjW/GP+2MrGv8HPYaHnroIa6++moArrzySv7pn/6JV77ylXzsYx/j+OOP3+321WqVYFJ2MAgCKpXKtJ+/9957+fCHP8y//uu/AjAwMMCpp57KBRdcwMDAAB/72Me46KKL+NrXvjZl21IpwDzBauR0KEIphfJ9CuUykgi+rwlCQyE0GOsTKUNvn0JCj6g8H8/bjufBQDFgycJetmPYGsaUtKLQE+ANawq+olCOmH/sccy/fjt3lmJK3gS9g/34nibAkIQaz1MsLM9H9xV4dGQ7RmkiQsQzHHXkKu7dsA318Db8IAWVUFowwPz5i6gvVFQfq1AbTUmDPvzSIsr1cRpG0a88KsagxaK1QpmEQmEBD67ZD9Uoo5zBaI3TgkFhlu6L3lHHq2fL4QUM5UKJ7bUdFHoG8Eu9eM5gjSYK63gRuFShcPQW+ymkEUk9oacnIiiEVElRIpQKPvNLIdURjVKCLs3DY2qpWAAAIABJREFUH/ZYtHghD/s7WBr1srO2gYFSwLa6gKcQgSCEnnk9kNRRqaVYComKIcbXiLIoLWitmO8F1FWdRCuKi3zqD2gWxYqG52E8hTJCiCJReV8pLczzejh6/5Xc+egWdiRjOK1QWhH6hoKnGZoQnG/R1sPz/n/23jxOrqpO+P6ec/faq3qp3jvp7iwkIRtIooEEEExABgacYXF0cEUFFcZXZ3zkdZwRFcYRcYZxhplHHQFffd7Rz4wzooCARpBNMUAkkJCQfel0eq3qrvXee54/qnpLOtCB9IKp7+eTT/pudX/nV/eeOr9zfkseH4+MXijVRbJtNE8iQjYy52JIE13PY7g6TeEQRSOOZaZorU6g+htw/AJDaCgJ6BLD0Al31JMMKzoaCmRSCXY5y5FHXqC/z8MKBTCtLLYw0PMSTUmMgEkxXkek08HI6gR0DeVpGKZGIGQRqo8wWByEfMmwC4VtkoEWQKFLDcsUBIWG8h203BBSCeyEJBixySV0RC5MVUMdkWIfckBiBAz0oo/QfZygg25oSE9h+D6WlyNgxpEIpCzVNZI6BMIWZq6arNGPJQ1My8CxDQY1iYZE1yVKExiGRFkGTiCMqUwCR/ZTkBkCwTTzVB6iEcL1Cfx9O7EDJrqmoRsGesDEdkwiOKiCJNlShRY00ffsR5MKIQXFaDOyr6cUv6flS9+3odDRkKaN1LMIAYWaKHJIIAPVyN1pQFBVVU24oYFil44Zj+C1LUDvLWAUJNLUqK2Js7f3MBJJ0DYIh4LMy9jszRi0JhpRhX5COYO0qco1pjQMTRANBzFNj0IgRDHjI4WLFw3hNwSRe4uYQiPZFsPc0o8hDXS9gB+qoRAVWBGg7zCeU4AhAZaPa/h4uo9uSGJhB9PUEbqGLjQ0XRGNV1M3byGOZ5NYuBKjdxO8lEZaIVa//e10/eb37D50GBUBGQujm2lUUSfaGiAXdVEZDVPXCSWr0Ya6MS2duOMQjFmoXBgOGui2RXV1ANd1EF6YjO3gBAPEYlPjRn9SY5oqnFxUzsX9711gSIyLWxFjHDVzgyl+dfc/IkxB4w/+D5nY+WxeegFD8Wcp6C6L5jaz5oLLMc2J01tWqFABZGsY830L8Z7opHXTYppDp7E9tYXf791IUfcoJJIUlMeWR/YyTz+DZQvX8KDxQ35yeS8f6D2D9T/vJv23/y/a975L8MMfw3jb2ZVJpClCSkkmkyFQjinL5XI0NjayZcuWSV0fCATI58eXls/lcsdk4oNSUqObbrqJL3/5y6xatQqApUuXsnTp0pFzrr/+elavXj1OpmEGB48qYX8CDMk4BSOK5WdwXY+cNBnys+TzLvVhk1yvhwhAPJGhs6dIRitSLBdR1SL1eJ6iqFy6axOomKCuxqG6W8f0irhF6O/PYIQjhGujFGsbyBR83KKH7vkU8i5u0ac+ZtFluHi9PkWhU/Rc9PoGig3VFPd1In2FKxzaz7mMXPNbyfdnyGTyFAsungdufTNmKEOytx8jq3B0h6AIsLOqA6/zUWw5QNAukDI6yOcL6AWPbCSI7OvCUz4F3yYsJUU3h23ZSGHg+uC7CjtoUMgXKdbH8buPELRdZGIfhYHakquYq1MoeviuRyqdI1tQFNQQyk+TjNajuWk818P3FY3h0zBjvbieolAo4uoedSJMRgo8T+H6PtJ20U0fL24RzGXQhnQM06SqpR1/5x6CSuAUC7iWhSp6+LqHj6CQL+J6PoWAg+t6+IaHIQWhqE3OtclaBqGCS8QPUWgKkfaLpAcyaF0evuej2y5aQcd3fXyl8DyfsJVn/2AXvhbAw8eVEr86jJ/K4/sFCqZBuiZOvreHsGsw6BfJKxcdRdEVuJ6H53n4fqmmT8H10DRBY9Ail81DvJ6GeBPd3S9QLPgUci4DjW3Uxjvwf/v/o3xF0SvJ49rVFFO9xHWBphegKkIuX4S8w1Bu1OBNp7P4UQ1cRc6XhIwMSUuSyUviUkf3DXJBh6HBPIN11ah93eTzHr6UmFU25CEns2S0DIG8h+f5CNcDJRC+R8Y/hK41k48ZuGkP6UImUyBfcBFCEZJV6EqSzRZRQsfz3NJqmhyiWPQpGOAWfLygh6Z1IvDwPAtd+NREqylGkui9veSy/XhV9bi+RjFXIJ8rkvdd8CSRaA2erkg3N+Lt2YlSPr6S+L5fqm3l5+mnh7yXBASWkmjVYdIyy4DuYleFcVM++XCCrFbEOvNMsp3dFIsubt4jk4ee8EpWeS/hBQv0pj3ijo6uNHzfI1/w0BNhDAOUL2hd2ICnuRxI9ZZkKHoUix7Kh9qAQbahGvXyXizNwZI6rq9QmoFEkS+6ZPMFlFakKm6QS/sMiFpy+cMopchJieP6oPn4msL3fHA9BlWCQtFFdz1c6aE8DdeTRJsW4u4bJK5CbMsVKTbG0C0TTwuQy7kU8yVX3XzexVMuup7HNDRyQxrWUC0uJpH6WnRLUci7ZPw8woRwMIlnSbyiR0/jUurmNOLtB/fAETxP0d8/8WTYZKmpmXjF/qQYTZ7n0dXVVU51eew2UClQe4IoX+H+bA8qVcS4sh0RLhk/WTfLw/sf4ND//j84KcHqHZ1sX/A+DjfUkA09h2NKLrjgUua2zXuNO1SoUAEoFcVd14hcWo336EEW7Didjtgift9/iB192wj372AwaCPitRRfMDmvuBbPGeJnkaf5/tU5Ptmzjrf8bAepz/4/6IuXELjuesyVZ850s/7g+KM/+iPe8Y53sHHjRs466yw++tGPMnfu3GNWj45HW1sbP/nJT0a2e3t7GRgYoLW1ddx5W7du5cYbb+SOO+7gzDNHv8eenh6KxeJItj2lVClNtH5y5x4j0QSRSAyVylE0igwahdHAZzVakGVk15hrRSAOLgTMMA2Rpaxa0YyW9/CCe3AyGZqaSmmL7XgMu60RkdNGf6cF1IkYXrWLlayhdu4Z7Nn7e5QTQablyP2diAmahxAGscXnM5BxR64fxo8lmHPWBtL7t1MIxsnKFIFQBMMMIzWTuVYVfXKg9JGmR7ZaxyWAuQ/wSsHmISeAo2l4UhKWFgN6yYVP6WUD1TLw7QS+dwhkKdi+CNj+qGuOkLC8OcFmxySvcghNYeijggrdwDZHNRgwnVJgOoxkSvd1g3DLYojUIn0LPZdBAEasnljAwA/VYm3ZSV8sgcxCPGAwoDQ0DbJzq/DKRaI0G5rqJG5WEEjU0pDrw5T9DFlJhBQoIcgHdLxwPwN6kTl6I4YVAisIQxLPsTDkAJaepaBbeG7p29elICh9hs10Lxqi1whjGM1oBROhlbKzmcEgKpVB6hJhRglEitRUBaA/g1LgVS3Ei89DK6QxNUkk5JBL1EG3Qtkh3JiDKUIYYZ3DQCbUQSx7EIZ2YUR1pFlS2GnRxRw2O2lNp8n6RXrK7wmGYPV5q+DFA+giQLo4B+vIS2gZEyPUjOEEgD7SAQ8SJlLPM5DuQQ7oKHwOJYO0I7BNk2K2iBaowoqEabAzCDeMSMZJeHn6yym0F825gIE9j+P4PlWBIDuGQNMMgvOb0fu6CXgp4u1pjsQCZBxBNptF04YQwzWByg+0XRsFdx64LyKqGtGUouCUS8VKBR5EquNITZI+3EkgnMX1fFzTGZno1qXENhUyoHB1n0BaIC2TmrZqDLefsJ/BT4Fn2WRsDdEcRkZB3yzxo6XneTCs41h5ZKAIneWxNm7pxbN88CTCELhVC7CdbrSy66XSSu0p5WVROIaOZtiEQhEGc6X+K1Wdoz5tonyfNJBduoBq0YHVt3lMHkZACPIRm3yuBjduwpGhkUOaEaJYvRgCQK6ArQWJjIm/16VOUA/Qr6WQ1uhkfiJk0DtYROgCgSi901YKzy8ilY7ww6WVd10vZWgsG1nRZBPiYCfdtTa+JnDtKkRv+bsTU+f1cVJ6+z179rBu3bpxRtLatWtH/hZC8NJLL52MW50yeE904u9KlzLlNQR4oXczjxz8OXue+hlv/7XADtVSnyry4luvozOWwjX2MG/uHNaefzG27bzm51eoUGE8Mm4hL5uLv38QsfEAy90mFkVr2ZJew75chur8c+xWHkPKQ3ejnN11Htr2I2wSu/jFOsVl2oUsfOA5Ujdej3HmWQQ+/DGMRYtnull/MNxwww2ce+656LrO5z73Oe6++256enq48847J3X9qlWr6Ozs5JlnnuHMM8/k3nvv5bzzzhu3SqSU4rOf/Sxf+MIXxhlMAI899hj33HMP99xzD6FQiO9+97u89a1vnZLV/Noqm8FugWa5kJlo5bKc7eAobAtwoSlWSzagkXCiDOR70ZqacTQdfUzafKnJchptQa6hBmsggxQSr6EWc+WZmMDyeWtwB/qJtSxDROMMqAGCUZO8UQDGG6tNixPs+v2YHYaD1boK9u8CFI5VclcMResIR3X6/H3YhiS+4DIGRA8cKq0YhjWLRU3nIXueA7fIULGIIwx6lMNAcC5hrZwCTYKIS/xiDlAELZ0GvZ0+LQhuOdGEUgQSTdRU1TDgmrStasN79hUAtGCB6rY4WjSK9/I22iMxemvmoA6+WEqyUPBR2nA6dhsPkLW1tBe7ybk+ygxBoh0JNJ17Bn0v7UUpha4JklYptskSBkfMARw/gAJqauP4BUm2exC9IBkKdlBMzh9RWdysQ+hhEtJAFxoCgeMYFIegsWou8mAXuiyWam4BfVoKO9KDnRUMGlFi8RhpVUAF6/CMOnTPpDbeSGJuO/u3PsFg6gjSEZgFMDSvNOgvo4xAKfW38qkNm1jhCE+JIDCIBLyAgRcIYGslI1k6QULJJpTfSaAO+ssqNzWT5lALhtiEoWn0AA1RG0sv6dLSJUopTNtB6j5mBJLzl+CEI7DrAL4EYesIw8fNFxBCclrtHER0FYayMGMt5CnQLw5i1oegUEQ/nCYaMHHa6kjlSysMlmbhNcxBO7AbqWljEomM5rkLRFzqOqLs7gKVB1cLYrlDlOoRDWc3FNBUi0styWwv3eleukI7ya9YBNvS4LvI8nNSH2ik19qOClnkLYdcTMOKhjD6JUKX6GFFTvNxE4qmZAI3mqCJWkTPc7hmAfLlsk2aQItHqD93Gd0HShkr40GzVNPILRKyIuimgRuLMKA6EdEWmsP1GOk8KTOMF49hOXtQaYdQ2CZdHGJsf1FKMS4whM2QaaL00jskBMyPLiRa3ULQCPLygT2EMmnqsDAamxgMZOFQimK8ChHMQcaEvlJcpy510AyMgE3R9eiorqI1GhiX1XBesI3f0okSo7KETJ2UmQVZyoipbAvXyZEy+tH35RB+FOFGcAopnJRNR/sC7KYIZMsFtYftIzUcQzdaRHoqOClG09atW0/Gx1Qo423vx3v6ML0dLv+l/388+suNBHd18u5H4ZJDGk92NOJIm/1LLmEo2Ill6Fx44aW0VVaXKlR4w8imEMafzcff1o946jArvByLgoItg2cTGvRZ1NjH3qTJrv0vEawyiPh1VPf08HLvAX63NMxy5zQW/nozxY+8H/OcdQQ+9FH0tvaZbtabmnw+j2VZI5nvDh48SFtbG5deein19fWT+gzbtrnjjjv44he/SDabpaWlhdtuu43Dhw/zwQ9+kPvuu4/nnnuObdu28bWvfY2vfe1rI9fefvvtXHbZZezYsYPLL78cKSVtbW3ceuutU9JeszpIsLuAaxShb3gSTGBIg75gHqmNCX8vz6oqM8zwgLAuYlLbEkUvD+aQEi0+ti6fwAxZ2LaNozu0NywjWRfj8Jg6NQCJc96B8hX+tlKQebgmSe/h/dhBp5SdbMzgRMrhFTA18vdYQpZGXXsU/3AegrWIfA8LakNEI2GihClYB8mWP8cOhSmaJsotEjQM8AEPfNsaZyuOZB3ToNqxCFBLfTLMnr0DZET5uKZDuB6nUEoSIUXJWET6WCEDkR2VtXp+A0PVVehb9hAqmPQBMWd4mFQ6z9QllqGRB6JmjIFCP3q5jo8MRmgPR0mX9dJkxEjpHsUCI5PKQgiC1rFDL1uXFDxFjR7msMjTG15AbWY7c8NhcENMNFzLiTx2rSToRzhQ3UGVA1URjUJu9Lu2TIeqqir6TY18OTOjEGqk7g9QzqQxvHTpIxBEHBNVXmbQpCDnjOakLpgxEAInEidqVZG3u9ltFQgVj40jCYcjVA+mR7Z9J4HM9o5veziCkBLNUUTiIVrnzIUDewDQDUVDLMROWfrs5uoWNuf6CXs6DcEgFHaOflAkAj0TuMbKMQV2y8+mMiMlw3dEB1AwwigtTLPRg+FNkExACaQsPT9aNIaxejFCH62XZOgGiWAtvpvBjlexPRmmMFBANwPodfOQsn9E3ceM64cTLowxKPzoXDiwGYCVzTEK7jlomcPE925nZesqnmkpIH6/AzQdyzZptU3y80+D3pepb6hheaiF4qE06e6Xy9Ms5c+OlCYwEk4IZ0k7yu4BXimtNgfqkUbJZVkIQcDQSIYtxuYkt+rCzFHtuENF9iztwwtWjxzTdJ1wIjrhCrwUoyvWAMkGHy9dYEDPoMUNNE9D1VkUg2twB3Yw2LINsVtDmg2EcgqZkAQMGw4X8HwfX44qUgm9lM7dMhCBqaupWIlpmgX4yqcrd5hXUts5uHcn6x9fxG7nIJ+RtzP/CbhpU4iOFzxSwRBPzk/iRqpJJ+fj6510tC1k7bnn4TiV2jEVKpwshBBoC+PIBTH8lwcQT3WyUuU4XeR4pTuOcVDjjPhS8u0Rnjn8EjGhUYzXoOVSbO8+wvZ5NbRHTqPjt5sovO/dWBduIPCBD6M1Nr32zSuM43e/+x033HAD//3f/00ymeShhx7iU5/6FPPmzaOzs5NvfOMbk0oEAaXVpv/5n/85Zv99990HwIoVK17VK+LTn/40n/70p19fQ04AoVtI22U013iJWqcOZefL9fhS5ZPBj80FBEL1llYPhBj2LsMoVZMc+X/kHlJgBW1EobQ6YJSHAwerVrPgqPMA0AVWIMScM97K3hf3MhHJRAEVg+C6ZvBKcVaJhha8dEnW5S0xDkUtIo4OeWgNjSYpSoRqOQBo5Qxm+sLT8A4dwj90ACT0JHSk00wsU6S/50jpIqXQhgu/lutC5QaL+EWFMOUEa3Gl8xqdMId8RSQcRYSAnaWBtmFpxOoDnHZgMYWhFH10EzDGe26MjVlsCjbREGjEK3ZhNc1HqzsDXtlUPqqwpUFYD9BdLlRbrF0Og0NE8ttG6t8Mr4AsrguTlZLuXaUDnmbTXhMkaEbYmk7TO2bKXmo6VXqALrNQKvAaDqIyBlAkHqhiXiTEjiNDONUWZtnoW1gfY2enzaGcQOkaSaeBgaCP1QNCH/ugjRrjTjljmRTg6z54kK9eisr6uEZp4O22vZWinsbtf5584FiNh8MRLMtGlhtcbC57Ib38Er4dReYGRnRqNfvgC3SjlO0PIBRVxIP2mDG7Ihm2OVKMkrAiIEaNprF2iBBidIcYXZkdNhb9UB2FORccI2/MTFIXUoTTpRpmY4nWB/D2+wQT7bSEWpFHZ8gTAq2tndr0ADIRYpcv0AYV0jKRpkkw4ODKIoFy8sZEooqBgQGkFFSFDfplFXr16D39wGjGSF0KMIN4ZhuwHUPqIMp5w+VRSWeUKrm0aXKk3UPRMEovFxYwLISA2rjCWlzHzl0pXNsD4R1jzfmmXqqVbIy2VToaNcEQkiy7ByVKTvimlXUy+uew0TR8thMAKTxkGqSjYwZ1Chql1OxWmHyNg14fpOgFsKItROaayEjJIJKAGdFgsDzTY8dKv9tNtWjJhuPL8wapGE3TwJFsF7849DCe7+Ipj6yXob/QT3++j67cYfYP7aPgF2jO1/F3e24iL4scCD7Dt39cj/3ybnK2zpZFbRyMx0gn6vGCIUKWzYUXXU5DZRBWocKUUUpRHkPOj+LvGEBsOsLC/UMscDy68oJtm1wW04bRvJAXC7sR5j5oiuD7BV7u7WHXgmYaLYe2px8j9sjPsS+5FOfaD6LV1M500940/P3f/z233HLLSFzsP/7jP/LJT36SD3/4w2zevJnbbruN73//+zMs5dRj6RIpfMJ6OQ32sMEARJMBPE9BtwDHRcRNKMfBRiKlWd9A4NiEF7rUy2m7JUIImtsW0ljXdsx5sjEITmlgpr1KvMDwuEpKCVJinHEWVbZN4fFHS8c1WZ61hhUXfAgZiY9cG5xTQ8gW2CIAQiATVchEFflDpZImvhQIKYk3tmBES9fNTdaR7ttbMhw1F1xw8yUDRYbHG4nDCCFotapotuIoIRCaAG3iQV+zvYhqb9/IdQD5ORciVOkeAokmoL/pfHqNAknpETMt8iicWDP0bEXpAXrC+6gWAmJRZL2NKYao67N5ZUxBUV2TNMcCdA9vxxqw4gHoGW/E10QjOPVzcIeOMBAcjTgRuoGTiFHbvhC/6zCNMZvT5ydxysZNsW4lfvggqmiSbWrGjQty4UGK9T0IvZSgAECo4RpagpVNMQZ7XfSwCYeG71TSVdHRkM1RhCYx/dKz1hqaMyJPsf4stHRJd8dzYfXi8/AYjQ8M6EHyhTwCQTG5ApXeivCOWjnyIRm2CDZHSPWU2m+V43ZMOeoyWh2y6bcMkmEL1d8HKkJAMzEMDQUYE2Q7TVpt6MJibksIih7F5pZxx0Nxi1DcAqombA8ChGmhLZkDIQO2CwIhRbPp0C8lumVhB3VCA2UZq2upqqohrL9MIVvkhXQVXmj8c9teE0SFj6oPZ5hQLOCFHPL1NRinL4d9D447xdQl8XAQLeizd6gWzzCwgw0UWjpQRw4gqmswI/VoZbdJdI6ZpAHIN9agN5+OrvZB70vkzeG0+gLH0IgbjfSKg+OuyTUnifcfJbMCEahFIcalNJ+IsTW2Sn2cIOxEqQ1Fx9UpPb05xsGXugBYUBsic8hGlxCNxchmvVe9x+ulYjRNA092Pc6/bv2nkW1DGkTNGDEzTq1TxxnVZ7HQa+esjfVoyiW76X/zlleeoy9aw6bly2hoCrCNaoqhAJqSrDrzHFa+ZeXIzE2FChWmFiEE2rwY2rwYfncW77lukluOkDQkBT/H3sM+Wr6JIdHEkVAvaX0/otqgWF3PjmyavSsMkvk883/5cxL3/4zAFX+C82fXImOx1775KU5fXx8XXnghUKoJuGPHDt71rncBpYx2PT09MynelJNp7eA0r5+mxjj5/iM4jkMkFof0LmpCJl2AbmmjP+YCZI0zLtvq0QbT8KDFV37ZaBIUW9YSrW+dwG8IRMQcc61GMRbGGBgsFVri6CqZY+4Tj6OKEx+X8fi4basqSs2FawkWBxETJdcou/SMjZ3WpBwxZkqz3aXVhcGkzVBUp6l8apVj47eWXGRFXIdeEIYqLaEA+unLJm630MpVdBidMTeDx6xg+UYQJTyEX8TUNFqiMWSwhmJdCOvQVhJGlqYlpyFsG4RDucwSYgID1DIkTXGHxqYInhFDP8poqg1bOGELP9TAoZohiuwqF4cVhOuaMKzSSkV9xB4xmEqNdPBDDRgDPbiajl1bDQyOuoMN61ErfdfKjGDpEvP0atAEHalz2N71DELqQBFb1xDDMV9S5+0No/XNAPxwA374tWf86+oaRsYypyeWMVDox9RM8k4VXrwDo/tFAM6bV11q5+40FH2i9QGi9QHyhyBiRAhHT8OQowaHaei87a2LOXJ/uY6oUjjSYE5dEznLwu7rHy+vWXrmfMNEhnSEELgnGBsjAjpqoACmhigbI0JCsjqCWbuQXm8nFPqOWREzdElRQuYogwmpEzQ1PNsZFxtkvmUVSvmssXVEnUBo4+MLlV36XamubWZw/zbiRgMN1jyaQgkor5zKWAgZG2P8SUmj4xzzHsStKrTqBtysTVVhB6HivJF2ASTNJmqDcwBoqD8N16xh5dw1FB75+TH6MfUAKGgwosccA9DK6+MBfbS/EggMU1JwR+85EbomqU4kwPewLIts9o1lzzvufabkUyuM49LWy3lH00VIJJrUkIzp6F2XwuPPon7joQopMr++nVccm+2rz6ehJsARLck+exA8j6ZIDRdddXUljXiFCjOIrHaQFzSj1jbgb+1Fe/YVOrpNOixJjhT7/Ti7+hKkyZMKHCIfOIiqC7NXKQ5UJYkOpVn4yP00//d/4bzrSpwrr0aOizepMBZNGx34Pfnkk8yfP59EYlRff+iTR/lkI8nTVuC5LunuINFkQ+n3I12KHQoHIqQz5SWLYS8k9SruMkDSqWPP4G5iZgw1WF41MewJDYejEUKQaYqh18QmV5vsBAaeoQWrj/8xZVPF98dMh/uj2QQ1XxKrs1G6zf6Yhjc0aqzNfdefjKQglgkdPTuEHwyPDES1ZN2E97RCMRjagy4lRSbRDn90lQav9HesuZlk41LMMQVJTdOgOhHhUC7B0fPhTXGH3qEilmWDGj0aiMbRpMS2yoNeIWkINbFncNdoUdYx3/vxSh/UhS1yURvbFJRuflSCBDtOoWkNyikNqEXZRc8OVKOFm7BMjTmOyZLkyYkbiURGB9CGNKi2a8YdH17ZNMtGiGoNQ3H0GdCXrcTfmUaWDaaA6ZCj1H4ZHDv4LiEFxM+YwJ1X09Df/nYaIzHE4QePPT4JRMxCBnSEqY2/qREgGK/CP7K9tPvo98YMw9CxsVh+MIlbuxQvMn7FSwQCCMA+6nwv1DByXX7uepQnEGwDwKmNEok7WMHSsF8kbOTcyOhzIiXmUW5+ZyfXlRI8AMpJ8JblH2bnk7tLp5cN5hUNEfRYaUw6P7oQyl+nftpihDPe2JOexmKrkYQ5vLd079qIyW4gqMVZkFhJzIqzM70DhIFAkGh0cIoOpv3qJkuheS2gmMpglYrRNE3Y2hg/1YF+Cs8/R+6xX+Ft6yWw6Bo8v8jDnVtIv+UKjIBB2sqwxUwhvAHMI4dZc8HFLDr77TPYggoVKoxFmBra0hpYWoPWn0E88QT6jiwdxQgtZ+EVAAAgAElEQVQdEShaPnuYz/beOWTUEDm7k5x9kN5QlCdqG9FzOeq2vciCD/05jWevI3D1n6HVT50v9puV2tpaHn30UZYtW8Y999zDO94xOqP94osvEgpNXfX32YSm68TqGkd3vIZh9GqEjQjr6s5HExpdR0qDKqlNfjjQX18YdRM8muPG15aNm/kLIX/idaze0hJFhCP0d5WMH8MwoODi6A4RzSEpI+imRAUMFiaDvHQ4TSI40QSjQIhXn7U2A0GMqhC6FaCjfQGZ/h6cYIh8flwCZuTcMPgQKo81Y7EgdIKMJxBRCzVQIDSnYcTwGEs0GkJ2aoQD42U0NEkyYpEXAkTpO9E0QbS+jerW01CBWkQsjurvoznQTHv1u+h55TeolIZT9o8cdnebsG2GRjhk4stSjFLSOHa1WwVqjtkXCIQQPaUJ30TAxNCmdrLCK2dDM8T4gbwwJIzRp6yuhp5yIo6OCA1DNn5AG2m/1t6BsGzqdx0i0yNHk6OModauY9fgKyxvqMLUTDj8+uUeMZjGtiVeWuVMWNWkiinaVrwNSxv93tXcdRTCPazTwqV5gLHXxo51l52I/LxLGRdAZDjgjXXflCSaxvSVYryssrYWBjMIc3TVytKOLedQHTLpHiwQiBikj2SJRC2swLGusCPxu/2ld71rVwqv6KMLgWmO9wMcdpUczHtU2aNJJdzYXERoAThRApNJCq1N/YJCxWgCvM5DDHz8I6hMBjStVNfAcZChECIURpT/l9EoIhZHxuLIeOl/EYsjIxEwS/UQeg8MsWvTEZTroVwXL5PDHRyimB7CH0xDKo3M5/ClQUPNObQtS9DjevzaS5NujpF3ulDSwxYaVt8RjN4u1l57Pc1LK3VfKlSYrYhYAC6+AE35WFt+ifjNMxT6m+lQi+gIGuTsKE8Vw2zNxZD0EnD7KFp59rfNYX/7XKSriP3b3TTYARa+Yx3JFctnukmzhs985jN89KMfpbu7m9NPP533ve99wGiCiC996UszK+AU0No6h2w4SK7g0Rw5TvzECKMDJeO0RYiDB2ES3gjDM8iBaJxMXw9WcPLG5+raNRMOqMw1a8GYOJZoxBWupXXi469B2NKRtoFWVc3hw520trbhb9+GrhusCsylqNm4CGRLmJAueUtLfOIPGilwNUEAR5nGRcsJZArYhoYlq/C9uUjdwHXdcecNx1eEgHPnVWPpEj+2BhEMjrj0ToSbmI/n97KscQhZPd7ILDS+DaHG32debYh8YzP5l0qZIo2ly3F37kDW1eNJSWhZC0te2Y4uSm3yff+YxB8AsYYWIsrHjlWhWzoHug8w105CLsVrLaQlk3WcE11HZ6GTFU2nM5Q+vlvmycCQJkozaTbiuIkFxz9x2HsyapZq7sXGj671uSWDpXVgAD8bmnDlc264jZZQ68g7cbKI6CEGx1hgbeF2moLNx747uoWyY8esHJ0Qx5kFGG5ue82xMY1jkbE41pmrX3P1eGVTFEXJxbdl6Wv1TaCVDVxvzOpgMDhaVwwgWC5HoGuj383i+Okl9+HAmImiWUDFaAJkJIp10SWo1AD4Psp1UdksamgQNZjGP3Kk9P9APxzVaY5D0zjQcDZ7my8CFEL5JZcCVfpb4VCwQ+hhkyURC9dM8ZB8lkNmN4WQREPRXl+NUfDZ9+uHiCYbWPsXf02iac50qaJChQpvBCFxl7wdFp+PefApQpvuxtuVxSqs5lx/KefqdXTLWn4V2Mfe8EHoOULzoIVnaPTFIvTqLi888Qj6o48RNRLUt7TRPr+dujlV6BPMYJ4KLF68mMcee4ze3t5xbnlNTU3cddddLF/+h2dghkIhXFdyHPPjuGjxBGbDiSUHClcnCSZqTsjNMWhMPAATzvGng0X0DcbvKUVxywsYqQHa3roGAM9XKH00HbKinNjhVRlbKPj4xMesAMmyi+irucYP1yGSk1j59KoX4Vsp2P8k4ihjVQVrJ876B8imZlQqhTBNjIWLRvbruo4U0NNzhEIhT6GQx5ngu4g3NI/bPqduHVr/TshtLqesPz5CCCJOjIgTw9BKmfqmEkManN+4AdEkJspPME4uuTB23JW1YbTWVlRvD7I2OeFn6GJ0OFxsWPWGVnKHWVn9FjRPHynILISYcLJhyhClpAsr2mqwql/daCqdPjn33BOJ9DJtHcPR8QoevneUTrVSD2frGvOqgjRGR5/ZOmdypSQCpkamMDVJHyaiYjRR8g8NfvC61zxPKYUaHET19+H39+P39aL6+/FTA1AsoooFOoouc41t/L6nQEbqFCNx8tVJZHWUUKET9h/gSMbl52IIBFgUmZswmXv6Gsh5vPDAf3K48wALzr6AM694D7o5jS9YhQoVTg5CUGx8K8XGtyKGunC2/gexF/6KQn8DFmu5orgM0fOn9IkcTzX+jm1spa4rhd89hArFUYEaeoVLz55OXtjzBJobIKjHqamqo7W9lbmLmrCDJzqkfnMz1mACSCaTIxn1TkWEGh/A/0aYyrgwoesYZ5yFCL+xGBjv0MFS+nFAFQoI0wTfA93GrZ0HRh8iEn3NgZ9vlIwUPzS5QdlUIcORSelF6Q7CLRmFYw2lowkEgmQyQ6TL6d0ta3JjBy/WVoqF0d/QOsfr4rVKpUxmED/Z82QgiLnmnEl93kl7NmJt+FYM5cxMzKqwLPRFS5BVr70iNFVITVA/rxTolBssYotRl0E1xoBsq3pto24i1rRNr24rRtMJIIQodXDhMNpRqSh93yeTGSKVGiCdTqH1HMbr2k9/bxf9XQdRXaWX2lAaSSl4Ww00Ll2NEWnhwJZn2fyjH5DuPkwk2cB5H/k0zaefMRNNrFChwklGBWvJnvFxsiuvx9j/a8Iv/xfxV/6JQm4BllrHhQNnchFrGHQy/L5jK262l8O7n8cSiogRxBdhBuO1pCN5Uj0HeKXnd4indBwRIxGvpb6xjjkLmqhOVv3BJ0WoMJaTZzRNNUdnyjsR9MWn4275Pf7+faM7XbfkgugrhJSluI8YTOrpN4Pk2985Mss9k0xGL4WWtchc/2ueZ1kWmczQyHY4PHGGsgmZAYNpzpw2dH3mv4OpZqYMpmG0htnj3maHDFh4IQWvVFuptEr8xnit9OUnm4rRNAmUUhTyeYYG+8kMpskMpkin+kin+kilU6QGM6SzhXEBfEJBVBlEVZwWFSLmmwTMLPmES9oo0HVwH9ue+S6FTKnKWU3bApb/0VW0rlhVGfhUqPCHiJAUm9eWijuuy2Hu/RXhXQ8S3/0dikNNFDmbZflVBAiRn7uWw+Ignb3bODCwFbvrMG2be4jkFb0LzqCraS79Msv+vhfZ3/8iv90CKIFlBAgGQkQTEYKhAE1NrbS3z5vplleYArxwE1pqL5M0Fd60aPUNyFgcd/cu/AMlw0l5XslFSPnwen4vZ4HBNGl0Bz/02lHw2phEHo2NLeOyTs5GzIoXzaxjsit7bwgjgDJKK4zKevOV3DiljCalFIcPd1IsFlBK4fs+Svm4rjfiB1woFMjn82SzGYaGBhkaGiKTGTwmABQgyBAxUjSRIkaKmBhCqosJ+K2E9SBa2ETUVzEYEdx375fw/JJ1rVs2sfomWlesItHUSuPi5YQSx2arqVChwh8ouk2hbT2FtvWgfPTuLVTteoTs1ttIDWq8rJ1DU+5Mzoqtx49dyIDfxf7wdnZlXsEf3EnzL3/DWakMzoqz6FqyhkNOjJ7+NIODadKZHP29A6B5HNzRi+iPUd0SIlxlj6vdU+HNjZtcgVuzBLqOjOyblkHPDCAcB+O0Rfg1tRSf+x3utpfQT1uEPzBQctOrQDgcIZMZoqamtpSuvEKF4xCPJygUCiPbsVicbDb7KldMDX6onkLr+SjzzZMBVSh1EqLdppEjR9Kv+9o9e3Zx333/+arnCCEwTRPbDhAMBgkGgwQCIaKFg4QLXQQtjZBlEAo66IEYvhVF2XG8cBPKThzXVaKYz5Wy6ejG5GpbVKhQ4dSkmKFz2xM8+8JPOZjrxWAey4eWsCA3p3TYz3Ikd5Du3AFyg3twDrxETf8A0fmL0M9eR3b+anpyQXr2DtK9Z5B8pjTho1uSWDJAtM4hVhcgWusQjFvYIWNajamampNT32U280Z+pwBiscBIXaHX4tChAyNxLC0tc7Ht6Rswn4icJwOVy1F45jeQGx3giUQV5spXzy473XK+Xipynlwqcp5cTiU5j/c7dUoZTaWVpkP4vl/KuCJl+Z+GZVmYpoVhGH+ws3UVKlR4c5EpePzi5d08suP79Bd+T7vXwJJMBysH20i65UKGymew2EemcARv4CDWQBcBbwijvRltyQJy7afTWwgx0JmlvzPDQGeWYn4025DUBE7ExAxomLZOuNpm2YZmNH1qJncqRtNrcyI/+p2dB0mlBgBob58/rW5ZMzWI8vv6UJmhUnaw6prXXG06lQZ700FFzpNLRc6Ty1QaTaeUe54Qgrq6SvHIChUqvDkImBqXLGnnkiWfZ6jg8j9bt/Dj/T/nzvzdBPVuFmbnsry/g9MHm6jTkoSC85GNY4ydneDs6KXBO0QjxVKPH7dQdpChtjj9AYuh/jzZgQKFnEcx55LuznHcnMcVZh2BQJB0OkUsFp/1cSwnCxmPwxtILlGhQoUKr4dZZTQ9+eSTfPWrXyWTydDQ0MCtt95KXV3dTItVoUKFCjNO0NS5Zukyrlm6DKUUmw7t54E9j/HT8Gb+vfgUnt6FVdRY2JVkYW89LUNx4m4MS3MwhYmNjq0MrAEDDUHuV78i0Pcc1REboyqGnkwiaushlMT/1UuoWA3EahDBECIQQL7ROjsVpoRIJEokcgKZ0ipUqFChwuti1hhNmUyGT33qU3zrW99i8eLFfPvb3+Zv/uZvuOuuu2ZatAoVKlSYVQghOKOhmTMa3g28G4CeXC+PH9zECz3b+N3gLu7PbyWf76Sm1yDZZxFLGyTSJsFcuduPAJFSIVThKew9naz6xSYChQkKeAtFy+UGhau+gdtw1vQ0skKFChUqVJhFzBqj6amnnqK5uZnFixcDcPXVV3PHHXcwODhIaBIVtitUqFDhVKbKTnBp2wVc2nbByD7Pd+nMdtKT76Yn101PvoeedCe5vj681CBeOoufyxPyLBZHTqf+hlaswSMw0INK9ZUKd2eHEBQQi2pQgeoZbGGFChUqVKgwc8wao2n37t00NzePbAeDQWKxGHv37mXRouNXwa5QoUKFChOjSZ3GYBONwaZJX+OP+XtsSpyho0+sUKFChQoVTiFmjdGUzWaxrPHFzkoVrsdnwDgVMi9VqFChQoU3Lyfjd+rN8ltXkfPkUpHz5FKR8+Ryqss5awoGBQIB8vn8uH25XI5gMDhDElWoUKFChQoVKlSoUKHCLDKa2tra2LVr18h2b28vAwMDtLa2zqBUFSpUqFChQoUKFSpUONWZNUbTqlWr6Ozs5JlnngHg3nvv5bzzziMQCMywZBUqVKhQoUKFChUqVDiVmTVGk23b3HHHHXzxi1/kwgsvZPPmzfz1X//1TIs1ozz55JNcfvnlrF+/nve///10dnYec87vfvc7/vRP/5SLLrqIK664gt/+9rczIOnMMxldDbN161YWLVrE008/PY0Szi4mo6/BwUFuvPFG1q1bx4UXXsiDDz44A5LOPJPR1caNG7nsssvYsGEDV199NZs3b54BSWcHxWKRv/u7v2PBggXHfQ+3bt3K1Vdfzfr167n66qvZunXrNEs5OzmRfmw6eOSRR7jsssu46KKLuOaaa3j55Zd55plnWLZsGRs2bBj5973vfQ+AQqHAzTffzPr167n44ou55557pkXOxYsXj5PnL//yLwH47ne/y0UXXcT69eu5+eabKRQKMybnAw88ME7GDRs2sGDBAn784x9zxhlnjNv/0EMPAZBKpfj4xz/O+vXrueSSS/jZz342ZfId7719PTo8ePAg73//+1m/fj2XX345Tz311JTK+M1vfnNExptuuol0Og3AP//zP7Nq1apxuh3um6dKxuPJ+Xrfm+mW86tf/eo4Gc8991yuuOIKAG6++WbOPvvscccPHz4MTG2fPlE/BDP0bKoKs5KhoSG1evVq9cILLyillPrWt76lPvKRj4w7J5/Pq7POOks9+eSTSimlNm7cqM4+++xpl3WmmYyuhvE8T1111VVq7dq16qmnnppOMWcNk9XXzTffrG655Rbl+77asWOHes973qOKxeJ0izujTEZXAwMDauXKleqll15SSin1q1/9Sq1du3baZZ0tfOhDH1Lf+MY31Pz589WhQ4cmPGfDhg3qoYceUkopdf/996tLLrlkOkWclZxIPzYddHZ2qjPPPFNt375dKaXU9773PXXVVVepX/ziF+oDH/jAhNf867/+q7rhhhuU53mqt7dXnXfeeWrz5s1TKufg4KBavHjxMfufffZZdd5556mBgQHleZ76yEc+or797W/PmJxH89Of/lR9/OMfV/fee6/6/Oc/P+E5n//859WXvvQlpZRSe/fuVatXr1adnZ1TIs9E7+3r1eEHPvAB9e///u9KKaWef/559ba3vU1ls9kpkXG4/0in08rzPHXTTTepr3/960oppW677TZ11113TfhZUyXj8eR8ve/NdMt5NF/4whfUPffco5RS6hOf+IT6yU9+MuF5U9WnH68fmqlnc9asNFUYz0R1q379618zODg4ck6xWOSWW25h9erVAJxxxhl0dXWRSqVmROaZYjK6GuYHP/gBCxcupKWlZbrFnDVMRl+FQoGf/vSnfOxjH0MIQXt7O/feey+6PmsSbk4Lk9HVvn37cByHhQsXArB69Wo6OztPufdwmBtuuIEbb7zxuMe3bdtGOp3mggtK9aQ2bNhAT08Pr7zyynSJOCs5kX5sOtB1ndtvv52Ojg6g9PuyY8cO0uk04fDEmakeeOABrrzySqSUxONxNmzYwAMPPDClcg4ODhKJRCaU5eKLLyYSiSCl5JprruH++++fMTnHks/n+Yd/+Ac+85nPvKo+H3zwQa6++moAmpubOeuss3jkkUemRKaJ3tvXo8N0Os3TTz/NlVdeCcDSpUupr68/KZ4dE8nY3t7OrbfeSigUQkrJihUr2L59O8BxdTuVMh5Pztfz3syEnGN5+eWX+e1vf8s111zzqm2Yyj79eP3QTD2bFaNplvJqdavG7nvHO94xsv3oo48yZ86cCX9A/pCZjK4Ajhw5wr333sunPvWp6RZxVjEZfe3evRvLsvjP//xPLr74Yv7kT/6EJ554YibEnVEmo6v29naklDz55JNAaaCzZMmSU+49HGb58uWvenz37t00NY2vG9Xc3MzOnTunUqxZz2T7semiqqqKtWvXjmw/+uijLFu2jHQ6ze7du3n3u9/N+vXr+dznPjfiDrVr165xE1ItLS1T/r2mUik8z+OjH/0oGzZs4IMf/CCvvPIKu3fvHifL2GdsJuQcy49+9CNWrlxJS0sLqVSKTZs2ceWVV7JhwwZuu+02CoUCfX199Pf3T5ucE723r0eHe/bsIR6Pj4tHb2lpGZfo62TKOG/ePJYsWTKyPfycQunZePjhh7niiiu4+OKLueuuu1BKTamMx5Pz9bw3MyHnWP7pn/6JD33oQyOTpalUih/84AdceumlXHrppfzwhz8EprZPP14/NFPP5qk1bfwmYrJ1q4bZunUrX/nKV7j99tunQ7xZxWR19ZWvfIXrr7/+lB3MDjMZfaVSKdLpNJZl8bOf/YzHHnuMT37ykzz88MPEYrHpFnnGmIyubNvmlltu4SMf+Qi2beP7Pt/61remW9Q3DSfat50qzGa9PPnkk9x9993cfffdHDx4kHXr1vHBD34Q0zT5q7/6K77yla9w6623ksvlxrXBtm2y2eyUymbbNhs2bOD9738/LS0t3HPPPVx//fXU1dVhmuaEssyEnMP4vs93vvMd7rrrLgAWLlxIPB7nz//8z8nn83zsYx/j3/7t33jXu96FlBLDMEautSyL3t7eaZETSs/kierw6P0wfc/xv/zLv9DT08N73/teoLQqYRgGV155JT09PVx77bXU1dXR1NQ07TI2Nzef8Hszk7rcu3cvmzdvHjemPOecc+jo6OCd73wnO3fu5D3veQ+tra3T1neN7YduueWWGXk2KytNs5QTqVu1adMmrrvuOr785S+zatWq6RJx1jAZXT322GP09/dz6aWXTrd4s47J6CscDuN53siy/DnnnEN9fT3PP//8tMo600xGV4cPH+bmm2/mhz/8Ib/5zW/45je/ycc//nGGhoamW9w3BZWafBMzW/Xy8MMP89nPfpa77rqLjo4O1q5dy1/8xV8QiUSwbZvrrruOjRs3AuA4zrg2ZLPZKc+A29zczN/+7d8yZ84cpJRce+21dHd3o2naSGD40bLMhJzDPPvsswQCAebNmwfAZZddxnXXXYdt20SjUd73vvexceNGHMfB9/1xbcjlctOaUdhxnBPW4dH7YXrkvv3223nooYf49re/PXKva6+9lne/+93ouk4ymeSqq67il7/85YzI+Hrem5nSJcBPf/pTLrjggnFG+0033cQll1wy4rL/zne+k40bN05L33V0PzRTz2bFaJqlTLZu1datW7nxxhv5+te/zrp166ZbzFnBZHT10EMP8eKLL7JmzRrWrFnDs88+yyc+8Ql+/OMfz4TIM8pk9FVfX4+UctzAX9M0pDy1uozJ6OrZZ5+lqamJBQsWAKXyCVLKUz5G53i0tbWxe/dufN8HwHVddu/eTXt7+wxLNrPMxlqFTzzxBF/+8pf5zne+w+mnnw5AZ2cnPT09I+copUbcd9ra2sa55OzYsWMkFmGqSKVS7Nu3b2RbCIHv+ziOc1xZZkLOYTZu3Djut3rfvn0jblowqs9YLEYikRj3TEynnPDqejresdbWVvr6+sbFdE613HfeeSebNm3innvuIZFIjLvv2EHysG5nQsbX897MhJzDbNy4cZxbnO/7x2TEU0phGMaU9+kT9UMz9WyeWiOgNxGTqVullOKzn/0sX/jCFzjzzDNnStQZZzK6+uIXv8jTTz/N448/zuOPP86KFSu48847+eM//uOZEnvGmIy+IpEI559/Pt/5zncAeP755zlw4MBIh3WqMBldzZkzhx07drB//34AtmzZQjqdPqWTjbwaHR0d1NTUcN999wHw4x//mKamJubOnTvDks0ss61WYTab5X/9r//FnXfeOW7w86Mf/Wgkva/nedx7772ce+65AFx00UV8//vfx/M8urq6ePDBB7n44ounVM5t27bx3ve+l+7ubgD+4z/+g7q6Oq677jruv/9+enp6/i97bx4nV1UnfH/PXWqv3pfsC0lIQgibCA4oCOI7rjy+4zJuOCg6LqODOgzI5xVFH+cZ13Ecl8ERUXgFVEZEJ6KIoIAghCVASEhn6066O71311516y7n+aOququ6qnpJOiSB8/18IF33njr3d8+9t+7vd37LwXEcbrvtNt74xjceMzlL7Nq1q2I8v/e97/G1r30NKSWWZXH77bdXjGepLPXevXvZtm0br3nNa14QOUvHn+8YRiIRzj//fG699VagEFI1MTHBOeecc1Rk3LFjB3fddRc33HADkUikYt8Xv/hFfvzjHwMQj8f55S9/yatf/eoXXEY4vOfmWMhZoqurq+I+FULw8Y9/fPJ3e3BwkHvuuYcLLrjgqP6m1/sdOlb3ppBSyiM+K8VR4bHHHuNf/uVfyGazrFixgi9/+ct4nscVV1zBli1b2LZtG+9+97urZiK/8Y1vTFZgeqkw21hN57LLLuPjH//4SzKcEeY2XrFYjH/6p3+iu7ubSCTC1VdfzStf+cpjLPkLz1zG6vbbb+eWW27B8zx8Ph9XXnnlZCWhlxKjo6O8973vBaaScXVd5+abb64Yr66uLq677jpisRitra186Utfesl7mqD2vdbe3n5MZNmyZQvXXnstS5curdj+k5/8hG9+85ts3boVTdM444wz+OxnP0s0GsW2ba6//nq2bt2Krutcfvnlk9XfjiY//vGPuf322xFC0NHRwec//3nWrFnDLbfcwq233oqUkvPOO4/PfvazGIZxzOQEePOb38zVV1/Nq171KqDwO3vdddfR1dWFEIILL7yQq666Cp/PRyqV4jOf+QxdXV34/X4++clPHpXflZme23vuuWfeYzg4OMg111zDoUOHiEQiXHfddZx11llHRcazzz6b3//+9xUepqVLl/LDH/6Q3t5ePve5z3Ho0CE0TePSSy/lIx/5CEKIoyLjTHL+8Ic/5Hvf+968n5sXWs6bb74Zv9/Pueeey/bt2yvyhnbu3MkXvvAFYrEYhmFw+eWX8/a3vx04er/pM/0O3X333S/4vamMJoVCoVAoFAqFQqGYARWep1AoFAqFQqFQKBQzoIwmhUKhUCgUCoVCoZgBZTQpFAqFQqFQKBQKxQwoo0mhUCgUCoVCoVAoZkAZTQqFQqFQKBQKhUIxA8poUigUCoVCoVAoFIoZUEaTQqFQKBQKhUKhUMyAMpoUCoVCoVAoFAqFYgaU0aRQKBQKhUKhUCgUM6CMJoVCoVAoFAqFQqGYAWU0KRQKhUKhUCgUCsUMKKNJoVAoFAqFQqFQKGZAGU0KhUKhUCgUCoVCMQPKaFIoFAqFQqFQKBSKGVBGk0KhUCgUCoVCoVDMgDKaFIoXkMcee4z169czPj7O5s2buffeewEYGRnh7W9/O6eddhpPPvlk1WeFQqFQKF4I1HtKoaiNcawFUCheqmzfvn3y77vvvpuDBw/y8MMPE4lEuOWWWyo+KxQKhULxQqPeUwrFFMpoUiiOA5LJJO3t7USj0ZqfFQqFQqE4lqj3lOKljjKaFIqjyI4dO7juuuvYv38/69at42/+5m8m961fv55vfetbPPPMM9x88814nsfmzZs544wzePLJJyc/33TTTZxxxhn813/9F3feebbAL3oAACAASURBVCejo6OsWrWKz3/+85x11lnH8OwUCoVCcaKj3lMKxdxQRpNCcZTwPI9PfOITnH/++dx222309/dz5ZVXVrW75pprCIVC3HPPPWzZsgWAb3/72xWfv/rVr/LQQw9x0003sWTJEu666y7+7u/+jj/84Q90dna+oOelUCgUihcH6j2lUMwdVQhCoThKbN++nf7+fj760Y8SCARYs2YNb3vb2+bdj+d53HHHHXz0ox9l5cqVmKbJ29/+dtatWzf5slIoFAqFYr6o95RCMXeUp0mhOEoMDg6i6zqLFy+e3LZu3bp59zM2NkYikeDqq6/mmmuumdwupeTMM89cEFkVCoVC8dJDvacUirmjjCaF4iiRz+cRQiCEmNzmed68+wkEAgDceOONvOIVr1gw+RQKhULx0ka9pxSKuaPC8xSKo0RnZyeO4zA0NDS5bffu3fPuJxqN0tzczK5duyq29/X1IaU8YjkVCoVC8dJEvacUirmjjCaF4ihx+umn09TUxPe//31yuRy7d+/ml7/85WH19Z73vIcbb7yR5557Dtd1+eMf/8ib3vQmdu7cucBSKxQKheKlgnpPKRRzR4XnKRRHCb/fzw033MD111/Pueeey7p16/jQhz7E1VdfPe++PvzhD5NOpyf/XblyJV/5ylfYtGnTUZBcoVAoFC8F1HtKoZg7Qiq/qUKhUCgUCoVCoVDURYXnKRQKhUKhUCgUCsUMKKNJoVAoFAqFQqFQKGZAGU0KhUKhUCgUCoVCMQPKaFIoFAqFQqFQKBSKGTjhqueNjCSPtQgKhUKhOEza26PHWoSa2LbNv/3bv3HTTTfxwAMPsGjRoqo2u3bt4vrrr2diYoLm5mauv/56NmzYUNXuSN9TkYifVMo6oj5eCJScC4uSc2FRci4sLyU5672njktP05/+9CfWr19PX1/fsRZFoVAoFC8BPvaxjxEIBGZs86lPfYoPfvCD3HPPPVx++eX88z//81GRxTD0o9LvQqPkXFiUnAuLknNhUXIeh0ZTNpvlG9/4Bk1NTcdaFIVCoVC8RPiHf/gHrrzyyrr7u7q6SCaTXHLJJQC87nWvY2xsjH379r1QIioUCoXiGHLcGU3f/va3ufTSSwmHw8daFIVCoTjhyTpZ4vkYOTd3rEU5rjnjjDNm3N/T08OyZcsqti1fvpz9+/cfTbGOCNv1yNrusRYDAMf1sF3vWIuhUJywqGVVjz3HVU5TV1cXjzzyCHfccQe33377sRZHoVAoTkiklNx/6F5+ffCX7Ig9hyddNKFzavNm3rDszbxm6f+DLk6MUIvjhWw2i9/vr9jm9/vJZDJVbSMR/xGFiOi6RlNTiJ7BGB0tEUK+2V/VbiKBbnp4+NF8Bs7IGM/c9xcObXo5r9+8BEOvnCPNu3l0oaNrc5dzPDdOk78JTWgVck4nZTlIkcFJJmmULlrrcu7rGiGfjvH61Qa0nFT3GLkdz2F0LsJoa5va5uTIuTma/IUIlKFEDgksapg5nLJEPTljW7ZgrFhJ5LTNlTsShxAjzyNXng/GzMcYTA/SEeoAmByXclKWg9/QMMvGf3hsF81NqxlODpJNTrBMtuBfvHhKTs8F6YFuznpu7ugAmpNALFpfucNzwbXADCE9Dy8eR29uZiCepSXsx29MySNdF2lZaKHCGO0dTqEJOKk9UvOYJTndRAJN5hCNHTXbSSlxM1n0YABhpwvnU2s8B7eT1zSMxrXgupNykBwAoUGks2b/yXwCx3NpDjRPnXYmQ97w4Td1ZCpJxLGgsYmxxAidrYvrDSNSSjwJuibwPEk8Z9Mc8lU2shLgbwDAGRtjwk3S0LoYv+6v0eO0/m0bAGFWX9PSeEopEULguF7l8yolyUQfT6X20RJoZXPb5qo+sJLgr87Dkbk4nhHE0wRIMOdwT1m2i6lraJqoKWcFiT4ItdV9TpI5h2jAIG/l6O3ZzUnrTkVoNfw1+RTYWQi315WrezTNooYAQd/Ub5bMp9k9kmN1ZzOmBkLT6j7vC8FxYzRJKfn85z/PZz/7WcwaN5VCoVAoZmckO8yXnv482yeeYWVkFe886T20+tsYzY3wyPCf+fKz/5s7un/KZ06/jjUNa4+1uCcMoVAIy6pMLs7lcjWjIo40CdkfEYwOZ9j7s1+yv2Mxm153Hp5nsGckzaZFEfSi0jGaHaen92nWd6cxPJcBfT961wSrNi3DSgQZiwfJxlL8ZlsfnVE/ByeyXCBHEf29/PkUQTgnOKt1A/5gE24qjzs0hNbQQP9AP9mRHkKvuIDFmQH8wISI8Dg9LPIvJ5xuZYU/SWNjmKFHd5I69XQm9CFOaljHU70pMrFhxoM7Wf3Es5ziCEJveAfjA0FWPHsb8dw6etpMUrt+wcYNL0dvXof0RTCeuBXr+R6cxWfj7d7HgTOXMmaNsSy4jv/Z/QSOm+H1i04j3LSU3+1/gjZ9GZtFltxEF9nWs1jU1kTb0P2E1rwKL7yI0ZRFz9A+Ni5fSqdmMvb732K0NWNu2kTa38B47y76943h7B3gZfooj/Y9jOadSeP+p8lFxtl88kZCYjFO1kBfuozHRx6jxd9Co6+J0ewwaxo2khjppuehO3n6vHNIC4tzm87BeOpeQutP4RndwZ+xGT4Erb4sG894Fa4neWz7DvRHv0d65VIC4ybSc+jNLWJRMMfGKz5ELJHH33MvANk1b8Qb7yM4+AT2xjczmLTIO5LB8QlaDJsVuWFGH34Iwhl47WU0Hnqa4Iqz2d63nfHnH6ejfQ3721/Fiue2c1JzgOAFr+YP3cNILcOlGzfipVJ4oyN4oyMcOjDA+JkttOYkPelmgrt2E14cwfeqCzEyfbgTcbKR5YjmVqINQayMxcTPb6YxP4C2din2aI7Aea9Htq7CS6fAy3J315NEnu7m/E6D8NpW8Iewlrya/J8fILd5A8HRBOaadeS7t/JYej+LDjSxXA8TfMvluMOD+A/8Ab0xgrXm9bjjcZxnn8F34UUIw8AbG+VB6xnSeZuTIuvpzEu0Z7ezbzRJpmUl+9tHeFnPTlY0nMZzusbQvqf4q3dfQXt4CalnniXc2oTZFsbLxtjldJJKp0kMPc6q5esYcTowhp5mkTvAsnPeypAdo93T2f/MFsIhwZKT30Tu4SfY2X8f3uYOXrb5Y0gzxL1dI6zO72ftuk24/iAPDz3Iqf61NHlBnMf/jDG6E9+b34UxsgOp+8ivfDXofh7o7ePQxAh+LczZ6RRPDu/h/ItfS4OvkVjWpjG/l8cP/Bop/Ix2nMIy/SRsz8an+5CehzG0DSPZi7X0PDIP/hFTjhI492KkHmDngd8w7CTwQh14wVZe0duK2xAhtGkTuuEnN7aTrt4/sHndu+jPRzB1QfzJn4PnMR7cxI5AkrduOJ9mPzS1NBKLl0UsuHn8+x7EMUNkVlxI2hKMJPNsDE7QIzMMpfwMx03WLc5D99NYsQnM5CCxyMkMje/m5LWnEjYa8aRNeO9v0ITA6jwDL7IETTNAaEgpGcumGMj2ktof56nAYlYtbmd1a4hYfIKRbVsAeGLFa1nT/SzG5jNoXb+aWKx6Mms+1CsEcdwYTT/72c9Yu3YtZ5999rEWRaFQKE5I9if28ZknPk3aTnPV5mt53bI3Vsx+X7H+wzwwcD/fff5b/MMjH+RT6z7Km8xO9EQvwrXAc0C6SCOE9Dcg/Y14/ka86DK8SP1Z2pcCJ510Ej09PXieh6ZpOI5DT08Pa9asWdDjOJ7Do3t/w8COHayID5GUG7iv38KJrSPcd4BHxx+l6dxzOGXta/jps/ey9OkuGjuWksqkOOgeYJkLqV09OEYefOdgyzx5S5DL5nk+/RDi+QOctWgNeGHMJ7bzLL/lvLP/mtx+EKkhDgwNsN1LAZBJ7WFtIER0+CCRyAqyS9t5XDicsvc5fOnthE9dwfC+GHu3/4aAX7It0oHY+FrOefCX5JdkgSjPZgZwH7sNe6CRvtQ+hnqT+J58hvTYAMl0N5tPuYhQ10Gs4SEAjIEnGG9dx/CBcfREhj1d9yDWbaAxlqDr2TsYWbMOMzaKEXuaZM5CrIwid22hKxxgb2eW83b8FNm+kW3N6xgav52e4UYuTK4hMLSd+JDF0vA4T6ayBA8OknGbmbAP8btn9pI0HZblHmNkeC8tuTBPLevlFTueo2vkAJl8nkRHlF1hh/bO5USf3svooTtwmyz8opmxJ5/D7etnyLiHJFk6R7sYPuccmh55hqUDcQDyOZ2DZg+Rx7oYsfLwfDfDweVEs70s0lLk0hpO1+9JT6TJ6xohy+KpJ36M/nwXa90GUo2nM773YQyh05RMI8ZiTOSyWHmP/vwwu5/9FefrnTRZj5F+/E94tsu2JphIGjiJbixrPetyNoes3WTcOM/sTmA8cA+rmhfxdGqQEUtj/KCPJQ6s35FgtHEz2vCzuNs0Ai1p8o/t4GDSpOeiywmFfTgjYywan8AwXbq3Pw7AWc+ZaKtPwdoVY6LvIYxUmpQe5MkDCQIDgs2hZVhrG0mnRui95wHamzewKJ/j0dEdjI+myQ73Y4c0Th88Dffe32IBoXM3Ye76NRP7LMxAM879v8dcvIxcfz/Z/ieItwi2Nj7B0md6EI3LSNgai/QGdHMbpGLskV0MTWQBSKVjJAZiyIf+m0RnlJWb2tifihELX8rq0UcY3vsYO7c9jH/zOwjld7JdZtjz7P14iwzWpHQen9iNmza4IP072hJ5RD6N2NmL2fk0+50Wlg4/h7HtGVLbt3Lgr1/Hru095A89xqaWkznY38XJpoXv8T/QuKIV183Ru/NmNBYxsL+X0dZmNDfP0O4smjPA1l3D+IJvo2l8J+tGHsdIDpIdyyBebrM7soredC9rg+fRuvUhou5etKXt2L+9k6H+QgG1DWu7SFoOg3YCTYAeO4Rv4ADdO2DQGcDgFHRrNdbDv2FsdQv9mf9kMLuYtD/Ma3fuxu/ASPAQ3sp27o0/wd8sXoloXw6t59E1nCJk6ljZBBs8yT3928gKl9GED58bod3YTbc3yrPZdvxOCju4EsvqwXbHaUoIxg/uoss9QKIhhZ3aRJ/9JCfnn+eiyHr+vPen+ITO+R3nkVh0Jg/37qZ74GmajQQnp8JErEEOcDpiIoXd9/Tk76Yc6SUR72bvc/t59ZqPLehvcjnHjdF033338dxzz/HHP/4RgPHxcd72trfx7//+77ziFa84xtIpFArF8c2hTD//vPUf0YTOf/zVf7KmYV1VG01oXNR+HueO7OMLB27lK13fYjwW5xMTcUSNPktIzcfoFdvB99LNNV27di3t7e1s2bKFSy+9lLvuuotly5axevXqBT2O6zpoPdvJ2FliMk0mfwjt7m6ajL2MueM0imHsP97J0KMPc/L4ECA5dHAUx8sg2yNY0iZtTeB4BgGfzf70VhzHx3k7XFbldqFle+m1e2DTmxGeg57IMTrRh2s3oY/2kM0liHgxACJ94BIg5rOJW7thdIiTpE7Y6MSyPexEmoOJvQgcLAfa0wmGjULekn80jYxESOYc2HMIK2TgB/zDKdKZQm6G6JngkaZHOaPbpTlsIkp3oecS3t3H4NAwAXuCRd06rgghJbTt3YMnJTYw4IyRHx9AswMY4znGWyP0DwsW55/E2nUf2kkGuVScR/t2EooXlMl8ahBzLAGYZNyCQRPp6sVa3YIxnMEFYlmH/tEk4tAO/FY3A14T2ughtLU+XGcYJ+nDsfpgCMZDQXxjI4TtCeJekJTnkB/oo+nhACIzSh7wYZId62f84INkrPK8rsI45MhjoHP3wX102I0IIVjTdxAv1Yeha4xmA+za9ivGgnFerq/F7O4HIANIJJ4HK7d3wRmdxDL2ZB5b46E4Wss+DCdLc+5pntuzDs1OIgyP7T3/w+LUIAE7Tc4aIyx0UnYH+pgLaAStYdAsxJ6t5M9cT9718NkJmrc+gNHSSOTgE2jSZTxvY/s9TE3j4L4uOg4MYgjBQCKHKTM4WgBbugQw2JccI9bVRyC2DS2YJTv0JGN9e3Fyg4RMHcNzybgGWvwAKTfHsJMkNtJL2xNDTATGINKJ9IUJTzyHzC/BlzhAZwIGTl2MALKZDJgR8tkROnYNMSIh52YRsjDm4kAP7uN/ZsAdwcwH2bpnF7GIn8bUHQyKEIGURdYX4dDYIwS1Xhy/QTCXpMkKI5/qpmNghIFTF9MfG0EbHgUdtKyDlhlBjPVguC4eHjtH9vDovjZWdPeRAnZN7MbL7WdbDlp2JNljNLCooRDSF3nqGdryOu2jG/CST5OWEMFjrNdiXeO96ENjDA1N4GoFD4/9ZC+7W/eSdh3y8TgdAxOs9IZoChjsH9tNXDq0i0Ysx6V7JM2QsGgLmzRvH0QD4k7hzmt8bC+DRhYTaO0eZyDkY+WOx0iEVtCfH6RDNBJOD9KUiZHX/DyU3MfrfCEcZwf7t/+GodBiNstmBnxZBrMpnIM7SJvtxPUgT9kH8Okajel9aJ5Dz0gTqywTG3jO6mPMzRfOxXUZyvVip4Zw/JKd6SEGklmEECwxd9Klpdk+mqA9vY8cgB5GSI/WxA7s0QkAdrl95LDp3PE4tutiECKZGcVH6+H/CM/AcWM0/eAHP6j4fPHFF3PLLbdUJd4qFAqFopKkneDax/8JRzp8+xXfZUVkVXUjKfHvvpPIw1+iPTvCd9pP5V/a2vlB0z4GN76NT278JELzgdAQTgbNiiOsBMKKI30RMI9OjPjxwOjoKO9973snP1922WXous7NN9/MFVdcwZYthRCQr3/961x33XV85zvfobW1la997WsLLoscGcZ9qg99eSF/J2ANo3kutohDcCkZy8avCwbcJJ4ovMIdYYIHQkokctIA9umgOzn86SzC04lmezH0wl4hJVIWlOt9T23Da1hJc9oiL51KeZBk8oV2QcbwiyAhVyODxd6RPmwq23f07+cgGsKWuHZ18RE9k0dmC99JWQ6pRI5DuRw+XxShS/Zbo3ToGq6moxX7DqQy5E0dj0LOCWX58JHRNBlfAJ+TRnhhQBDPpwnY45j7dUZObkdzp8IltZE4RmyY8XwbljfVkZFzsNIJAGxXsnjnIFkGyQIhRskbUQxLo3X/KLnolKFs2kkCdkGBy3o2drHgRbOTw8vFScsAmqahjW5HSvCYMpp0t+ABGSwaqSNekAgBwgToTsdI5hxCPh0/Nr79XUTbwtBqV10fx6tdYMPM2phOmlB+grzWTPujPyMRaifvZQjbI4VzLXanFe8FK5NE0kA4NwSBAAjY89xB9LiFFIV7xx8bxHQySCQWDnnHw/RpjDppDKHTbkQrzrNUAGQ4lyFjDtJePFZfKg2yEEZlFA29RNZhJB+nOz8GQFdmmDZgImsTcQcx2taQi/cQyI9MnWjxOgbtcWwzQnNyFyOeB7pG3rYJW0No0mOiJ0zcKXwvHo8RHB0ndupi4jJDXGZYDCAluuvQ1j1GLhogt9Eh+sxu8vbUvZLZvYNuQyOqF56/XD5HOpZEYDDkxcli0Zp4nlBunEygEyHtyWdyXCbRR3WI+kAIhJTobo6wDJCUHqWyLa3dY6RPt8hnRvDLfOHeERoIgfHINqLZOIENnbQmdvKsN4i9dwx/zsaT0C4a2b17EONAP76OLGnbg3QeTRN4ZQ9POHWAfPHvyHDBu+yzCxMJw7Lwb+maj2Xy7HKS5HNPMiaTGOkkzwODmJPfa7LijDZuRsrCI6p5hedX8xw2ygaGNUmK2OTxc7bLuH2I9mwfAxaMyBHsooG7xxohll1ScT/HZYZ210csf4hemWGttoikLDxDesYCv4FwPYxkP4Rf5EaTQqFQKOaPlJJvbP8KhzL9fP3c/6hpMAkrQfS+T+Hvvge743QSr7sBe/E5XAlEdn+f2/bdQl4zueq0a9GFjjSDuMGj89I5Hmlra+N3v/tdzX0lgwlg/fr1/PznPz+qsjjZJDnHQysqmppXVKOki+7myHo6GanTFuwkaxUUBlsE8Hk5zGwx2RyB7UrC48+y2HAQ8QaQhZltT4LjeZj9I/RPZInaeZpCAbR4N1lCWDWMpnLSMosjIgx6E2jJ2gV4HTxwYSydo5RKX5rtn46ddxmVCbyMQ9SvI4HhVC/S3wI1ioW5ZYaOKDUoKnaG5SAxyUoHQUERjw4mCWWzkyq8PpJCt20caxxhNiKL4avBWLamfJPjIKBt/xj4dcqLmAWLBhNAzp0aOy15CMuVZGSKpEzj2MGizGJyTAP2lAIJEBxNs7Ohl/VyMTm7YMBl8i4ZCgaEnneRFAyvXm+UVhFlVCYnh8mRLr1ylFJWuGk5hMYLRsmgN4EUgmgmhyWzaMXrYU+73sF4lrTwExGByX71ofHJETedNI6eZUKmmJAFRRsPAoaHrmloCKSUxGQaAL+bQErI2i4WLhlnjHGZgvTkyFaN9a70IfxlezwKWnjKcoiO7UPXNYa8qbGLDk8tJq15DhNefPKzkN7kuSZzFqamYbseusxTjig9b9g0DhUMq0AyxyF3hDXDe5lwalehlMCf/vRHPNvlJG0RTtHsCcayGJ5FKDeI33Yov7ua+mL4wib59shkRbxayvhO9yDNbpyAtMAFhIbh5sjm0gTtOJ1df5o0Ts2MPXmPp2SOicG92F6S0LiOUZz08MqeHcvxEBqUrLToSOFaBuypsSsnl3fBB+PF0N0SExl7chyEBpFsH5bhYZQVkQjY40AT7aIBXbcYK5pqhphqIz0oD3fon8gyIrOUP2wHvGGaRIgebxiA57yDxXMvu5aenPJYHwWOW6Pp/vvvP9YiKBQKxXHPb/u28ODgH/nQ+o9yesuZVfu1RB+N//Nu9MRBUud/juzpHyy83Si8o644+cP4NB8/3nMjtmdz7enXoWvH7avhRY9eVJaFV61Mhq1hPKHhaCYDySnviSNz+ITAn7agaKZo0kaKQj/RbB8ltdLzJPGsQ/TgUPEzjKdyNAUNBr0YYSqrYE2XQgIHvRHmRNmXo9lCeJwbMCE7pai37isYBON2hqRtYOPQGvYhcjEoqv+zF1ouKEl63gVMvDJFKzyehvJqXUWj0eckAQ/bKCR8+7KVHpzplIxXx5PEsnkaZpVpCseTDKQyhH1GUdbaZ9TQHyfZEMDetxdRV+/zsLBx8Sa9ASWSZBn1EpRnHwZSFp5moHkOQko0mUcr8wKV99HRVVBGR2SMUakxkBAgBFa5JysxCDp404zghOXiSQfPn+CQPtVnydtQ8laW7oOZsB0bP2AVDZW4nLSwpq5t2RAaVplB48vh5KZkE2Xnmo8dwiiei88pKP9+aRAZS+MbLBiGfjuJnykjLGiNgVZfCbddD892J8Ux0LApGEYAhpcnW2O+QDgeoe4xUkXZa13vYCyLmZu6L0vGX7DohfM5STKy+r4dljFKVprjNyeNpgq5PW/epkVO5tnnDdTcJ2VhmAL5CWJ5iGWm5ArlRsFoQghBPln+bql8DrQaEjWn91R8fsbtmZLHs/CnLMIj6UnbykhYyJo9LQzqzahQKBQnKMPZIb6781uc2foy/vak91Tt1yf20fjrdyLsDPH/9VPsJdX5oUII3rfuA5iayQ+6/hNH2vx/Z3wBU1NVTI8FXjHkR6+zvpImPTxh4NRZ8yhHHj8mmvSQQiLqhG7Fs5Uz7bGsQwBfVbhdjsp288Hnpqu2zaSqVRzbc2DSZ1L0JAkfjqyWR/MK20rhiXF3qnKWmGafWJ5HvGi0+Zw0PqdaxlqYxT4t26PBPli1v9yDVKLcI1V7iZ3axlM2l6goCV6OhUNy2mz/bJQMl8L36xuHuu0SxIdZDPsseSHMaZdM1zT80sCHSVIWvE4lL0Y8n6cpeGS/HSWvT96RLH5uAE/MnEtZfo/HljUR2Tk+tbPMuDO86ntnyY6hme9xKZE1jKa844G/cF0dzY8ubSSS7ByfF3M8g5Z3cTwPoWk0pfaTQJ/0VMGU4VVXNIoG0gx4Ru3nzbI9AubsS7WKsnvUljOs+SYpWn4zT3EkwmsgOVb8jkSnrHx4jfaGU98D3NQbI5gohgCXlWj3Mjm0o5R+q4wmhUKhOAGRUvKtHd/Aky5Xbb62ao0YLdFH46/+FuE5xN5yB27bKTP29641l2FqPr73/LewnvwM1535RULGS7fww7HCKSaZNB5KzOt7sswYmVKMJcKtrcSkrXzV6vZ+YVbM6h8N5HQrpgbjmTyhcBSc8raCgBYh5ZYpxJNhbpUel3yN2fcSGcupud3QBbomsGyPufi2puPDqDBI5tJDLXW2sagoW05tY/d5t5f2OoaPV9symxdtWiMmM6/dZWjapNGuT2s7uxo+O8ItmJ9TiyGXW5+Ff8pHR1SEbHpYYR/+dMF40WTt613C8mvkNbOup9FXDP2aPrQlz5A0/OC4SMlUuOJcyLtMZG2krH0fzIXpRvpRoWLoj/x4ATtO6Zdt/2iKVbmpz/PByNlTBtM0juYS2gtxfysUCoXiBeaR4Yf4y/CfufzkD7E4VJkwK3IxGv/n3Qg7Q+zS22Y1mEq8bfXf8qlTr+bx0a38wyN/T0+y+2iIrpiBMa+gQoR8810ct1r1GvYS6HVyMXSvWkmcnt9yVKgfdzaJlCDF9DldSdRoI6pP5dqJ6eE9rkePNzyjajecr20UirJMiFpjMzuV55XOO9QyncoLJNTK8wrNklsViNdWFDVNVHkJ58tSrXVWg2k606+mmMP1nbVP15sMzYNKJdiRBdW9PD+n0uDxyLRMFa2pl6NTIr4kytiaNrJ1FkoOj1au96MXjW6jGPJZkkJQyCmbzuDG2gvz5h234hwKfcx37OZgxMzQpI6zGigWXJnGuFcIW/SOIHy78hwlZpk3ej5nP90TX27QLcDcQV2U0aRQKBQnGK7ncGPXDawIr+Rtq95RuVN6RP9wJXqil8QbfzRng6nEm1e8ha++/JtMWOP8/Z//jv/a9T1GcnPMYTlG5PN5vvKVr3DJh+IrdgAAIABJREFUJZdw0UUXAXDjjTfS3X3iGX1uazMwJ9tiVjw8AsnaC+2GrBF0r1IBz3Bki/LWok00TpNpbmTKPD4+tzCDrwmdqNFW9zvR4dln+usZFkc63CVjyNELynfBY1VNCP+c+8xFK9tqrjeZsD8dTUCvNzrnvmsxX4MJqsdNWwit0vVIl+cplSnElu2VeaCqMdzaRmUtBjYtIh+pbSyVcHyF4iSlnKyOPdN+C4uiucKsGZon9doDYtfxAM+H8h7Mwwgcm2kc3Ro5lUPFAhuuVvsezhm1M/1K90jO1zSZT1uL6UcUM4QDakVPbLKjehFaOcMxjhRlNCkUCsUJxu/7f8eBVA8fWP/hqqINoSf+A/+B+0i98nrsJeceVv9ntZ3Njy64lYuXvJaf7v8J77r//+X3/b9dCNGPCtdeey3ZbJZvf/vb+HyFQgirVq3ic5/73DGWbP7IOanv1W3m9r1KZpuFXwimKxlODWWsFnnHm8w30mvkogCHE0VXnyO0mmoZY0cqnpxmOZcURaeG0jrdS3E4p6OVXa0Zah9UYfsXNtMjkZ45LyhbJ99Pn69KK8pGrc75BpIW4zXkEYD0FRV2WVDU3XkEhuUdD02bn0c5a7ZUfC6/v+qduz91ZBMhjf3VvxFmjTzAVHAJYlYPrUATU+erSWdGt1Bb/LmpD1LS0j1Gy/4xmnpjhMcKHkC3NH7lYYSaj6OFymlSKBSKE4i8a/HjPTeyofEUXtV5YcU+88AfCW39Brn1byV36vuO6DjN/hY+c/p1XLb2/fxp4D5WRU46ov6OJk8//TT33XcfALpeeIlecsklfPOb3zyWYh0WE9lSeeDD78PR/BjewnuNoLBWjCfMOfcvROW6Spm8Ow9fy2xUK1wrtHY03aGHiRrtZ2ahK24507wJhRCiwz+KOZmPVb+P0PjC5KRJQ4c6xkkltQz4w6CshoA7lqlQTuU0xXr6uB4ZYtq/lRh5B0+vHTgnzRDSylFvymJ0zczLNsy3xpvUphtYU+NQz2jSi4Z2zmwgYM+cPaRpoipk0JjTPQB5I1qsSDkLZV4g3Z3+G1J9XY2cjeZ4aI43mafm+XU8D3LRAF7RunelxHI8fIZ2VMPzlNGkUCgUJxB3HfgFI7lhPnP6dRX5A1ryEA33fgK3dQPJC7+MBHYOJHhw/zg9+w/R0rOL1vgwzaYgsqiTk87ZzJpzzkDTZ57pXBpexnvW/t1RPqsjw+fzMTo6SlvbVOjWxMTEguRXvNA4sqRUHMGb/yietwAsswnDGppz+3Kme0/q4XOSeEKbLLM8F6IihIFOWDNhnkbTQg1Zufpcz6uWbg0THpubcdMmGhiV05TdabKaGAjhoeedeRcQqYe9bgXGztnDW4/Greaf5tmZ15Mgqj/W+36n1jS5npSc53nIqj8KlAwPKcAOFjwenq5NrrtWjuNJjsQnUp7HowltxoGSc1D3A4Y2GYY4f+p7+UpDK4WGKGtnTquuWRWe53q07R2tuKRjq1twooFJ464xO1WoI2U5+D0NOY/fjPmijCaFQqE4QUjZKW7bdwsvbzuXM1tfNrVDSqJ/+meEmyf+uv/i0f4s333oebyunbxz9/38zeBO9Okvkv+G7mADsVe+lo0ffB+hJYs5UXn/+9/PW97yFl7zmtcwMTHBV7/6Ve69914+/OEPH2vR5k/ZTKypazPmHZQjNTFZIloeV5H3NbTYOTK7wVSpZrX4mqBOLtELRb1FfKeQFSFJzSJSv+qagLAIVBlN0/0aBhqe8OjYvXC5h9I3t7LhYvJ/R8ZMxk2auecplcj424k4Y+jTyniXCOKnVWuvKE9/pBTCGwtnUT45MLShg8U7Bg+vT03gSllROj9oamRtj1FvyrPjLEARl9I1mOvlXK110u0VJk/mNhkiKoymQH4CKapzkoTrYVgORt5FAMn2CFbEj9QETtAk4tNJ5QrnO71qrOehjCaFQqFQwM/230rCTvDB9R+p2B54/qf4Dj7AyF99kWsfyvHwjj18cs/dXLD7EWhsIvju9+I7/wL0k05CmD5iB/rZ9cCj5B64n1PuvZP4fXex54LXs/ETH8XX0X6Mzu7wecc73sGGDRu45557eO1rX0soFOJb3/oWp5wyvyIYxwVlykfYpxGrsTJmxG8yPm1zdbW5wz98vfAWTxhk/e0Va9/MF+0IQ6vqqWYNIlRUWj3yTh0PT3OI8MRMSvLha/9+TGJmlKA9PmM7CRXr/sx2xOn7PaFVbF2ldTDiJWbNpvGbGp5XSP63AwZmbmYle+4hTqJayvnER9WxlgL45r1GmKTaoNTRahpN3vQRm+FCzHjPTrpR6myHI3LHWQ0Bko0BAoNTz3fAZ5C18xV5dLkZ1t+aswxzFFMKgZCSpQ1humOlbbNP1MhpRlNp69Rfhb+bemMEynKx7KCJHZ7yyRnlCXc1ZJZHEts8C8poUigUihOAcWuMX/T8jIsWX8K6xvWT27XkIcIPf5FY+zm85YmN+A9t55ZnbyUyNkTwne8h+P4PooUq11tqXreav1q3GnnFO3n2qV30ff8HnP3A3Yz8+fdMXHIpGz7+9xiNTS/0KR42Q0NDdHZ28r73va/m9hMJIWZPDK+l/+SNBvz5eFUZ7vkS8Rsk6yjUqWChtH11LkJ9potqhX2Ta98cLaw6eRhSX9hYshABMkUvSIfWyMQs1ROytockz2yqlywulQuzl6GefT9EAgamrpHMOYytaiEf9h2256MW8w1tKyda5347nC5rrSPUqkU55BUMWZ2pYg3e9IWID9dgrngYp3qZaxjqbEghyARaMHQbwy2Uo6/Vc7toYFge/cIuFCVo06IsC0YhNrVtOmYmj5m10YSGpk1g+AR+XELZQlieHTCRkan2peunOx52wMTx6wTjOVyz8jcxGjCIZeyah5XIqhy4hUQZTQqFQnEC8P/v+RG2Z/OBk/9+amMxLM9zHd42+F7Wj+/mnx75EUYoRPTfv4d55lkz9imE4PSXbeS073+Dxx7ZzsQPvs/LfvcLBu7bQvqNb2Pd378fPVodPnG8ceGFF1blL2maRiQS4bHHHjtGUh0mFecxD8VLCGwjMqdk7LwRRUgXcwFDk2YQ7Kj1bEyrqidmUZZmUmTnKmXObMJvxxCAXlbkYi5r7JTyMOQs17g0k384Y5dsj2BYDqHiwp+GrmHqGkbREyA1cVRz3qD2IrsmxhGvIzUbkuqVYssrAjaLKKP1DIvDHpJKV1mpVHepAEMyuIxotm/GHpbozdQbGiPvzEk2XehHXK4xtaoVuoard0hZec8IwWqtE61sm0Sr8jA29cUx8g4CwaqWJvaP5glJh0arEG7qmDr2hpayPqaO5/oMYsubiS2VVaUcKz5NO2dPgucdbl7W7Cyo0fTlL3+ZN7zhDZx22mkL2a1CoVC8pOlP97Gl91e8cfmlLA0vm9weeP5n+A4+wOed97MpmeQjD3wffcUqGr72TfSOuXtYhBC84vzTcP/qOzx0/+NYP/oBL7vrJwxt+TmJl53H4osuoOGiixGh0OydHQN27dpV8Tkej/OLX/yCcDhc5xvHPzPpP0eq8jq6H6SsMJo0tMmQJb+p1V1naC6s1No54BXya8plHV/ZjG+WctL1qMgVkiBqhFyVtZ53/64Zpdl1SIsc2gzrw7iaf8HNwHqVzZrDJm6kA/ori26Ue0WmG2tymoLZEvThSI+AMJFYcx+aOSrgRplR4ukFIzKeXVjjyEDDwcM1tEljpBazrVW00NfNWtKK05dBZC10zyLdGsFM5gqGThHbKPwGJdsjddfYCgk/Dl5t+XStypVXq91s51Z+ORtFiLisnjCxm4PUymQTUlYY+qX7b9b5HSnJNgRILmsmvHwj2YkgY3qUwViKhsEEgUSuQjKv+IwLTzJZD2e22vfTjSZPMpjI0bR05q8dLguaLSqE4KqrruLiiy/m61//Ojt37lzI7hUKheIlyY92/wBTM7ls7fsnt2nJQwQeup5HvVOIZzfwkft/gL56DY3fuWFeBlM5uiZ49SXncPEt3+eJq/+Nv5z0cvxPPYb95S/y39f8H/aOLEw546NNY2MjH/jAB/jpT396rEWZP5oft7hAaj2HgJjHAp51eqhaZHIhFUq9xiKpQ+s7sKIzLyQ6MyVlWRC2Bolm++u2rHsuM53kbAv2zEKtbw2eMvfnMBmcmgzJ+gp5hT5Dq1Aa20QjAUMjaFZfuynxKyVp0kOs9LXSZkRwXHn4YWh18GGySutgpdbBwpslBSa9RTN4yBZrzRUGnKMFq9rMKF2Nvt1Z1vuxliwjtnHJ5Dpihl9HLHA+jTe9jsochzhnToVXN4qpyaMQflpF7UVo6wtR+bG80Iw5Qy6lkLIQEqtrCENHM03yDWuRuoanawhXomdyhTC+sv80T849vLFGM3uOZdIPhwX1NF1zzTVcc8017Nq1i/vuu4/PfOYzWJbFG97wBt70pjexZs2ahTycQqFQvOjZm9jN/QP38p4176M1UCypLSXc82nyts2vUv+LD993A/ryFTR+89to0Xm+EGtg6hqve/MrkW86n2d6J3hk63aedUOcMsdKbi80Q0OVM/Ge57Fr1y7GxsaOkUSHT0dwGc8HOwlmDhx2HxJBuiVEeDyDUad62PQKewut7k55rqqSDuaMBJKdURqGKkMONS+PowdwNP/UAr2CWQsQzEkRm6GMm9/QmHnaQJL2dxIulmOva6BUxReJikR6Vy9byUoIwgRIk6NUAqIhaDAxzW6uZzQBNOgBEiVD+yjYNX5hTnr+SkM3trqF1u6Zi2KUUz3komrfvPKExPReqmmL+CBe7/gz36pSM5BaZQZh0NRx6njC0m1hAslcRQEOn1F/paZ8qJD7J4U4rJwxVw9AzbSfwqeapezrIORUtphjBCefMwFs0pbT1bQR3OpJjCAmubKjb+iMMpApTKh4ho4AGvcN46tR8GOjfxWPTiVMzYsTrnrehg0biEaj+P1+brvtNm677TbuvfdeOjo6+MIXvsDy5cuPxmEVCoXiRceNXTfQYDbwtye9d3Jb/PFbWDv0Z76ffifv+9N/oy9aTOO/fwdtgYs3CCE4Y0ULZ6y4kPcsaM8LSymnqZQArGkaHR0dfPrTnz7Gks0fXeiY2izLv05bMBaoMhiyTUHC4xlWaO1YRe1pzEvSpIXZX+qjjLAIEpcL6UmcUqzKmZf+JwRW1A9lRpPwHATgaAFsIzxpNOmzKNQtIspMKuJccpJKMtXrAeQ0g2duXYZMfZ514mrJVDiYE/ZjpqcKdZTOq15Y0Vwyp/JmQyFXTtfAqT+LX67c58OV9/B89f5mLYzuCWy86kp3dXCntZMzrF0UNHWWNAZoSzTQJ0fnJWDW14oRCOMv3gvJjgjR4RR+Q6ubtSV1jYnlzXTsmSoLr9d4jEs4fh3ftAi6gBYGCt+vNxlSwtV85MzGqUmFKqpPuK5nu856YyAwhYHpXwSZaqPJjwli6pqEfDoUzyndEsIOGLQQrlFyX7CsoQXkHIymWhMlJ4rRND4+zt13382WLVvYvXs3F110Eddddx2vfOUrMU2T3/zmN1x55ZXceeedC3lYhUKheFHy9NhTbB15lA9v+DgRs1BmKDFygEWP/wtP5jbwqq1daMEgDd/4Nlpzyyy9vXiZntP0YqLcc1HCECatYR9jqfqqdvmsvL+YqbBEK90j1cpWwwIbTSVVpkoPm0NlK0MX+A2N3s7GskILBbXf8HLF/ivNgOaQCdlS22rtr0mE0bRs/YMe3doIk3h6RTAd2gw5G27QhNzsgpVaxJY14RYXVK3nuany1tTwrLmtjRWfJYXiEfaqJZh7e2eVp7aMlTkxOV8LwXx9T7CGoENrYsCbmKPJVDSaBAR9BSNUTqtEWTpNv6nRECiov4u1Zvq80ck2zSJMowjT542BV/v5cvRgofACINz8ZL+zGe6zUXHfll+TYr/Neju2GAAkTSLEqExWfBsgYGrkpuUjzm+ionDsXDRAIFl41soLrNQ2suscQVJh0FegCZY0rKBFhBl091fv13VwYDy6gZbk1O+7zzi2a9AtqNF08cUXc95553HZZZdx8cUXEwxWxpS+8Y1v5Be/+MVCHlKhUChelEgp+UHXf9Ie6OAtK98KgO24xH/5j3TaLv5n2xCJQzR85/voJ1hZ7YXihhtumLXNRz7ykVnbHE9UqBdCVHguTAwaRZhF/qX0+SwWNvhwfgpfEB9WjXn1Tq3k7ZzdOKqX2N8YKBh5UoBXzN8pGU2iVDJar8w3MTSBcwTlw0xdY7albhDgE9W5MrYeqlh8tNzQnW1NpMC0/KRmEZn0iOU7InCwlhi1vQSeJmruC527ifQTz9aRYMpqMnSB40q8lsI1dBe1og+OTTVbQDxtWsmBqksnyqSTFVvrhdLVWqdpxkMUWa61MSEKBoiOgYZGgwgxLutXoszZLj5PojvZORt1JTK+VkL5McY3LaJ159Cs7cuDAE10ppfaaxZTdbv1mka4qPHXzKTbQpNGU3AiS3KxiT+WxcxkQUp0EcS10+jjOWirMwJSzhha2K7NHkpe4bmlGFJZTo3+9aNZsXMhO3vwwQc5cOAAmzdvBiCdTrNnzx7OOOOMyTY33XTTQh5SoVAoXpT8eehBno/t4KrN1+Ivvjge+tV3eEf+SbY//wrM7m6iX/oKxvqNx1jSY8eBA4ef93M8M752FdGnd1dtt3FoEEHmq8HmN56E7/nps7mVfbgtDTBaDB2aw4z59EUqG4MG8axTVOqYpuaWUaa5jq5po33PCMKrVAynvinxDJ2BUxbR2F00moqhNxKBFDqO5sfwrKq+ARw9gFFWNGN6Zbly/HqlVyK+uIHGgeqAvrmso2X62sAaAiGILW2ifd9o2d4aMpRZAg3lRpkQtVx19Q8sqg2q0idNaATNatmlYNLg64j4ORTPIYOF3xu3o2A0SSHmXoFgzlT2p2lQu4aCqFhTqbCCVe0xqN4+3csxtb/FmCqOEBEBJqa1aRJhGkSQHm+qBPeUF6fQ58FYlo6akhQmBGqcSvHfwh+eObt6L6m3Dlbt61xOwNDBBr8w5vhMQ1PQxPMkZthHIFBYQ6vkaWrsj5HU2gst3TSunUWfyGKuiFOr7J6Y4Vb1i1p1+mZHm34eNY7R5j96k4gLajTdcccd3Hrrrdx9990EAgFyuRzXXHMNb3/72/ngBz+4kIdSKBSKFy2u53DT7u+zIrySv176egDu2bqNSwe+w55dazF3HiT0sX/Ef8Grj62gx5h//dd/nXH/j3/84xdGkAUm19w44/56SiMUvAXlQUUy6Adz9ld9SVEuHmCS8ZUtmJl8VbnkctVltdZJWiSotdhMqV3ejGKQqTCOpBC4Ph3D8uqG7fmEQV4r5DFpnk1D5iCjTIWZZQKdhHIlxXaWQhCzlS8uw6sXBiTL11GqTbOxiDQ7Ko7ZHPYxkc5XKcDTw510dFrMZTiTLqbKLyw32kgJSRAfjdr0kvqC6aUFnPWnFvZoJaNz5nvncJCmiWwymWiyCR6YqN4vmNT8DU1g18iR0YWGpkmcafu8qpym+pU6aq3TVIsmLUSLXj52gmxTsPoen8VATuU9/FqEEONTxy8yvqqFk7ROxmsKJEgEV6DP8CTnwz6C8SzptikvUq1UxqCp113jKRowSGYr16qaDaO4jpcjit5XpnKaHBFiYtESJpZ2EAm8jLX5v8CfdyJcD8yyiQ8p0VyvYN6K6mO/TF/Dkbgu3chSGN9bd7++sIXBK1hwo+nXv/41gUChrGhrayt33nknb33rW5XRpFAoFHPk9/2/40Cqh+vP+j/omsG23hjLH/ss1gET95kM/je/heA7j+fSDC8sqVSKn/zkJ/T29uIVp6vT6TR/+ctfuPzyy4+tcAvBdD3xMKPQTF1gu7JOF7WVGCvqx8xWx62FhZ9s0TwTiBkmsou5NKX+5yV7madAgF7MZ3I1E1lLfZml7+n5PKauYc9SEdLWg0RcZ7KYBgJG1rXRsXtk8nC2HgQHvMnZ8zlnfVT5Qspp0qvXRQtrJktCnfTFKhVDQy9UWZvel9faBLiISABG6uQ01ROsbDxnrFwnwFmxGNuefWFlQy8YTbUulbWkAb0vPnl4y2zEtUYr2uQaA2gpD8PN0SqijM0QQlcPpymMb8WSim2u32D45Hba9pSXJZzdmzPiW0lDxE90eBvSmMc6drPYDJ6hMbhpcSHnzSk0doWfqPBj4RAQJobUC+GdRaMp42slXLfi3OznUr7VC5p4Ph3SoOddzHQeIadNPBT/nl5mvfFQnNBEFkQIqVUHjGo1DKn5IP2zhPXNIW/ycFlQc8y2bULTFj80TRPLsup8Q6FQKBTl5NwcP9rzAzY2beJVnRcymMjxyK+/y9mjzzP6RAPmy15O5NNXIxY8XObE5aqrrmLr1q0sWrSIBx54gI6ODg4ePMh3v/vdYy3aYSLK/j+FN6lszKIUiNrhbgGzFDpXfe94kfktBBwSc1tzSQB5PYynVRs5UwrY/JScnNlSOTjFOKCwf2bPwHw8TdPxyr7r+irPJe9vYKzh1Oo8HZgxR770b6ZtBs+igLxZfW0WN1bmepglT1Lxc5gAE8ubaF9xbmH/6sUk1rTi+o2K4895xn+Ovzf1rqQ1aWDXP2Zm0ZQybOtBEqEVVb4YJ+QnZ7YQwIdvDiFelTljhb68SACjo3lya0kaQ9eQgKvXW59pWkihruFJCUIjFViM17By1u8cFsUuXN1HSATYHFyKD5OICJDcOBWK5hjzX8zbitSu1Ck1QfLUxVghH/5MnrbuYm5bmUFS8l6ayTiRsRjBiQzBiQy+dB7bb5BZ0kqmeWEXRD/ZXxkQWduPd4IYTZdccgmXXXYZt9xyC3fddRc/+tGPeNe73sWll166kIdRKBSKFy13dN/OaG6Ej2z4OJbj8fVf3s8nEzfT+3A7+rIVRP/3lxHGUVkt4oRl//793HTTTXziE5+goaGBT33qU3z3u9/l1ltvPdaizZ8aWkApxMUym+s3mq2TWfYL02DglEVlxxTkQz7Goxvm1EOLHibbGMSosbCt5WvGdAu1hsvDw/JGUUku5dSIypL5VZ6TurpQ4ZgtYbNQRa8eQuDpGtnG6mIOUmgENB9eHbVoaGN1nkQpIyXbEK6q1OZos5XcLobt6aHDyhcyyhe9LSXHl+U0mULndH014VBByRSahl1jceF6ifqrW0NEA8ZUyN4RGJyVVOdHLdaqK3+WzmN6WW1R52+ARVrh+chHp8a+vNrabAUbpkz42pMLJbFL292yUEJPM5HazCp1LW9dmx6p0XLa9yblqzHZETSL+2aieq+r+RjrXMb4qhY8XcMKTzcUC9+JLW9ibFUL6ZaC8aO5hevhGGEwdNA0AqNDtB04RGAYGvvjGHmXfNhHvjWKnEe1u9P1VVi+xskJlkygOmNspqUBJIXCKwSrn++FYkHfvNdeey2/+tWvePDBB4nFYjQ1NXHFFVfwhje8YSEPo1AoFC9Kxq0xbt/3E17V+WpObT6N67bs4OMjX2P0oQYIRGn46jfRotFjLeZxh6ZpZDKZyUiHXC7H0qVL2bFjxzGWbGH4v+y9ebwkZXX//35qr96Xuy8zc+/sK6szICAKw46iBhXjEv1FfmDkm/ziFnBBgmv4RYkhGIhoJBiN0WiiEkBBWUSIgVERZHEY1oHZ79yt11q+f1TvXd23752eGdD6vF7zmttVz3Lqqaruc55zzufMmiMkTAV3qlXNlXrsH0oiaEOv7QNZkepyI3as9QwoW9KotVY0RcK2m5WXHiXC8kVrkB6qJ7Co5L5X8h18JhcCXJeIMNjVwjBqpxTmjRROKIwoFlDnyMvZubofJVvEnKxfH1dPoBFCdffh5p7xl7EGJjopEWW3XFUKB/RluCXVPK+2qJlWHqcU/qYgVy4uYw6wV1mJcGujc1okvre4zPJ9afTQtCqj6sdeCBDVFaK6wmxMZ1rWmZjp4HlqWKMQBhlydfd8kZrmN251LEkITFp5dppRdK1Sbk/zgxJCRxYyrizYtWwR0Ud3153XhQIudflMuxJHEp64vyR/A9P3PDwW6bBWJ5Pbimq7AX4z5NR4fYuadW0cUZYEiZ4Ixb3tqR/DmozbEPQ1E+1BY2dlQ6DPR1xHlSmoMsJ1MWctLK16r4QkUVg1xkT6WJ7PeJ31Qh/R7HZsVabsY2r8rtiZPIb+iQeb5mr0HFpSC292TXhfrxRlimoI555lvUiDQ369uoKub1eed955nHfeed0eNkCAAAF+73HjE1+h6BS4cNV7ufEXz7HiiRvovXcf2WyI+N9/AXlo+HCL+JLEa1/7Wk4//XTuvPNONm7cyMUXX8zY2Bi6PkeR2JcgIrqCQNRRB7sIhGgOMypDlkTdrrcryUhtWdaataPhuMHDqbVoz9xDwa7d3a+2jRkqLi4Zn4h7WRKM9YTYWaKtbuzvttkjzikJzKKXTN8yxM5trcS6yLihHph8oRKC6IdZvRepVc6HBIVQH3JmGot2OTze8bgUaroiuaT0uTXFNQtahEpBUkmgo5OhvB7lIlTeOI6s40ga2NUFHojpvOgrRbN8tWtccOs9NFJN3lnEUDBUiZgVZbfb3hAXQqArczMG+mFASrDd2UuuhsvdEAo5NYnkFukRUUbUKFP5+Rcjzbfihy97g3yMFhOdMamfaE0YW16NEy575+bwijSueO0zElJlGl8LSYg6T54fCUf2iDHMX+6qO1ZQ4+yNjhJhG4YqI7kSvRG9iRK/PJqpyRR91qP2GdEViXK2ViKksj9rM92XIj3VTHkel00aM8VigzH2RDWmYlWvoAugyDi6gWV7xpSCim0rpfn9kdV7KSphVKtaF244YcBMu14111TzXWigti1a3W10NTzvlltu4YwzzmDDhg2sW7eOdevWsXbtWtatW9fNaQIECBDg9w5PTW/j5ue+z3mL38jTO0Pc+7PbecuWn5D5NQl1AAAgAElEQVTdoxP9+CdR12843CK+ZPG+972P66+/HkVR+MhHPsLxxx+Pqqpcc801h1u0eaMnrLFhJOHRBZcw1361H5V0OySVAYwG5jVZEiST1TwPP6OhNkIrZjbvuUZ1BSFg2qwa942j1NEQl+ZoSzLQATrtbpWIFUytHH7ViSehfvBWsrYSwVFk9oynAYiZKoviERo589pJkQxr9IQ09NrcnDYXHBKtNgoEM6m1gEASoAiBKZo9PNbiwaZjqiyRCLfPHyqoUV+mtDLKYZsykufREQoxEcYQ1efIrLnGVrlPU6FFbeWoQym8c0RKe6F7soQ91IdINxMJDMT1uvn7Y81ro6lyhVEOYDDueUJaPRO1LG4Ro4WPYk4tXDAYM0vhmHMkyDV3rf2vAkUSvmFz5XajarKpk6nJFCIGETXFuHm0175y3d0J3eyL6Wiy1LbWliSoK2zt9w5PtamLdqDoqqfpc5/7HJdddhlr165FmiO2M0CAAAECeHBdl+sf+wdMJcRJqbdw6bd/xb89cR3TzxqEL3wP+imbD7eIL2l84AMf4KyzzmL58uUYhsFFF1007zHuu+8+rrrqKjKZDENDQ3z2s59lYGCgrs1pp52G67oopZyy/v5+brzxxq5cQy1MVa6jDdcUCaXD31SjnVegpIuE5RghOcF+WtP2ZowBMnqrKjTeLnpYGJg+yfg5vQdmfToBli7TtI1dA7XWMmvp7Kk/EdHmVmXyapzWqnj34eU4uRTUGCLk4ipFhJXz2NCAOv7oOay+Wu+ZIxuVZHxJgNPk1Ktm5jRIhCvpSD5nirKJamdRh3txfAk+RJ2x4Au3XF7WK/ZbVEwgUzndK8XQUD1Fu0Tb7khVw8SVBaYqV/wlWsNzbKgSM7i4SgyopzXXVQnJLnnrhIylhHBtgXA95VlDRQNcScLpSdZ5bcd7wuhZnRmp6olpBQHEDIW9JceY1kDJXXsfZVkwHImAC6NSL9NS1cPZ0igQoppTVwrf1DqggW/5VLuNbToz1T1jyP+8KUcxSnlYqiTm8M61k715/IGozqhh8szOGZ/2ZdmYM7/Oh9G+a+iq0RSLxTjzzDO7OWSAAAEC/N7jZzvv5he77+ddS9/H5T98ns9t+3uKv4XQ5ldivOPCwy3eSx7r16/nxhtv5CMf+Qgnn3wyZ511FieddBKq2lkBxUwmw/vf/35uuOEG1q5dy1e+8hWuuOIKrrvuurp2U1NT/OAHP6Cvr7Ux0Q3Upr0MxAwURaoPt2uhFMRMBd2ROrAKmhuImgT9wZ5R9ipDbGsoADMz3Ie+Y29lhEE5gdVAN2yvWAwv+MwlYFzqZ1u/S2RPC4sKkBew4RoP+asyrZTTsuGiSvWhhP6tO9XA6vNOHElhb2w5jlDJySmcsIQ86ZMr1WIs31wXLUUmvpwkuxpaV/9olbukCYV+Y5iY/ALb2VHxwgAUlQiqPb8cODdsImbr+yySeoAdpXyu8n0sq/QCEYmAUxtG5lTa7VvWQ7rmzFBcpyce4YGSfRTWFGwB69JreP655hpWRikvandsHXFTht2TSI4156swng5TmNB4MtN4xusZQifTGHjXYIFUCi7XKfMCXSisNjeRLmxhmv1zP0pCYJeM1ojaQ390L5pbKHFneM9Ebc5evpz71CoPsF6c+nMLMSzc5oHCmtwy8DasybS2RFsLYPt4QKsQUEM24/rUoGsqgNtFdNUd9OY3v5lvfOMb5HJz2esBAgQIEAAga2W49rd/x1hkKXf/chXnPflthh98AXNlH+ZH/zagFu8A73rXu7jpppu49dZbOe644/j2t7/Na17zGi699NKO+t9///2Mjo6ydu1aAC644AJ+9rOfMTNTv+M5MzNDLDZHjZAuYXZFDwCaIhALYC5bJY2wWKoad34hRHvG0vUHhGB6wyCxJeP0KwOsDp8473kJ1XsqameNi3CTV0UthWftW5RkbhzoFrLXX5UF8bCB2YGHCvyLvs6uGMUa6m0rkyOppVC0eoOqqV274sM1fYtKCFdSmtaw4lsSVfXVBYaT1XshhGBJZCUhFpbn1/T4+NbCaR266ALWcANddE3uV7mY8L7FrZ+DsK6xNN1MYa357P8vJOTTT/nvk+IUlGjpvFdLqrYHlDxNLTwgXk2ixrWa2zzPx2Io8ZGKyanI0BfVSJTZ8gRY4QHs6EhltGiLEMC62Uvr4q2ZjxzlkFnVbHM3O8NIooHFrpau3G3IY6u9X23unVRr7ePRx1trB5gxasgfXi5G0/XXX89nPvMZjjrqqCCnKUCAAAE6wE1b/5lduZ3EZt5M6qG7Oe++O9F7FEJX3xRQi88TqVSKE044gRNPPJFVq1Zx1113ddTv6aefZnR0tPI5HA6TSCR49tlnK8cymQy2bXPZZZdx9tln87a3vY0tW7Z0/RrAU95sH3roTuEikJHrcircujC6Ur2amtCaCp2yKtfsmIva5k3ovC5M67C4BF6oz6w50HTOrfG4+JsJc6MuF6h2hNiI7yhurZuv9EdtzlhlKXTVo1yuNGu3rV/NR/FT5lvRftfO6Zc9MjF6VFPbxuT/xnPtKJv9IAyt6XIaPXi9Ub10p5ofFKu24GvDtZeNkbJ0APmogV1e74Z57cQ4yB3m+vnk28RNf4KCVmvixCOAYDZSZUK0ayjty/dNON6K1FGO1ww5EVmBpsjYmsxsKlRHTx+XQnV9XASZWAMNeckt1B81KhTqI70pFqeqdPWjCcOj229pw4u6P3WhMqwvb9UYq2dNi1E6f378ntnKuZLR5Myz0G35m0Srea/NlFmXT3cQo/O6G573rW99q5vDBQgQIMDvNZ6afpJvP/VvLNVfzZ47J7j6/m+ihF2if/dPEO1k5z0AwKOPPsodd9zBHXfcwa5duzj11FN517vexfHHH99R/2w228S0p+s6mUw1ZsdxHM4//3ze8pa3sH79em699Vbe+9738qMf/Yh4vL44aSSioyyQcQxAyktouoqiyiiaCpIEjuN9FhKaJqNrKorqZT4pqoLiuKiyguLIqIqEZigoqoSryQhDwVk0gL5vJ1Kkh56+AZ7euQ9Fk5FKeRkhUyMc0kFX0W0FXTUIR3R0S0FWJSRZwjRUElEdYS0mpu1j/4xALikvuq4SCusY03l0XWG2NK6qyMiqhKJKqJqCUpSRZYmYFOJ5zTuuSOBE+1HUSZQaA0VRJSRVxsFBUSV0VUYpSMgKiBrlOR1JsSgyjJYrsdSpeSRLQlYkNElGclxUTUbTFBQhIxkx9BkJRD9SbjvZVAhdUzFkzVszWUJWvbWRFYGiCBRNRpElFF1D0WRURUHVBQN6Pzk9gu5U1SnXdVEcGb1USBbXRddlUGU0Q8EWKSR5B2k5iqYpqLoCqhfmpOsKjq1Q0MPohoopq/SF4+ye3YGphTBMFdNRwFERq1aivPhrhOrdd1lX0HSFvOKtkWFohBMhRNh7tqNRA0wVTZLJruxH7I4i7dqLoshIloQR0tBcT+ZQWAfFQF83RubJKZBVVN17pgYTIV4o2IjSvU9EdHYaCqpQcGWBrMooqoIcNZlJD5Pa/mtk13smdV1BKUV95mPjaPbjKKrlPbO6iqIVkBUJXVcxj9uIteMWtOk8iiojGSrxVeMoPynfGw2HMEo4gjLryaLpEoapYpXWXlWlynxqaf1NU/OuDzATJjNhDc1WcYsOsiIhhw0SJ69g10PPImanURXv+VdUGVVTK8+oGtbRcza5Rf0oM/tRR/uwSs+9onpyhEIay4bXsi07wb5f/5TMkhThJxUkBIrqMhJNskM8470HSCgINE0GU8U0NciqoKromko4rKHoJYbG4SMxZl/ENGRUTUFFoGsqrioj2a4na+kZVmTvOyMve7mRuqYgRoYYjI/w3GT1PdJ1BUWVvXc5pOPqCkqJNEXTVURR0B8bRC8V/w3JOka2SCisoZcY8zQUFNvrEwkZ3nuD7K131CBkeX2nhl9JZPZZjNwuFCGja4r3/ZFTUVUFTVJQVRu0qgze95ROOKzjRnT2zBbQdAVNU5FVB4FKRDcRkkQi0d2iumV01WgaHh5mcnKSO++8k+npad7+9rezc+dO+vubi8IFCBAgwB8yHNfh7x7+WzQRYs/PV3P9/f+Iolokr7gMZ9H6wy3eywoXXnghp512Gh/+8IfZtGnTvImIQqEQ+Xx93kIulyMcrnpSIpEIn/rUpyqfzzzzTK699lp+9atfcfLJJ9f1nZnx4eSeBxzHoZAvYhVt7EIRV5IQjoMmy1hZh1xRkC945wEsSWAVbYqOheXYWEWLAhZq0cEt2BRzFm7BolC0iS5eiuu45As2VtHGsb0d32y2wGwmj5ovkrWKZGyHjCiQz1vYRQfHdsgWLBK2w6p0HHdiN64rsIpef8vQyMzmyeWK5PNSZVzLdbAlh6KFJ59tY9sOtuNgFUv/bJdCwfL+VqpU2U7OwtYtLNfGKjoUSv9bQuA41XaD6gjFvIub9/JlrKKD4zjYuNiyA0JQLNgU8xZINkXJIl8QIIVwbIeiC/lCkZklw1jbH8exnco12zhYAqyCjbNqnOdCy9Gm7qdoWxTzNoZj0CstI5+vrwlkFW3yeYuloWN4MvMg+byNXLQpFGymQv3E7BewXYdCwaJYuheKKpPPWxRsi2mlh3yuSDZfwLB1ltLPC5Ygly2SdS2kfJFswVsPUSzfdxsr72BbDpblkM0VKO7PoM96z+O0kaOQs5BVmVS0j6wI47z4OEXLQbMdcpkChdKOfWY2T37pZhxlL/Zv/4uiZVFULSg6GKqENZ1HlO59Ll9kwk1SLDwDtoNlec9gdmyU3eEovbuewM7YFHJW6Zy3RnnJpuB4971oQSFfRHJcTFmQzxexXBXLdlBsB6toU8gXmZ4pYFnec2vhEOoZRtUNrP1enlc+b5GTBPmC93wUSs8YQKHgyZDTi2SUkmdrf5bibIFCvkghb2FbNkXLJZMpoMuCbNHBLdrEddmToWhV5Lcy3vuRFxJ7Vi2Bog3l595yyWWLZCiQmckzm89jlWTal0iTD4foLz5PNlPECRnY+2exhYOFRKFg4+YVstkicr6I41iohSKZ2QJ6+RnPFtGdENncDEZRoZDPk5e97wTNVrzvA9lbJ9t1KBZKfzsO+YJF3jDIzBYrMnnrY3nPrVQkk8kj563K+UK+iOto2DmFwV6VFydzZHJ5cjmLjOKtA4DIW+gFm14pjl5QsAo2khBkZvPYIkdmtkxxYzKprWR0cjtWwSZfsLzvj2KRQtGm4FoUXZu8a9XJWP6eKhS847l8kQIWL44MELGzbLAGcGyH/fubktTmhd5e/3qIXQ3Pu/vuuzn99NP50Y9+xA033ADAF7/4xaZk2gABAgT4Q8e3n/o3fjPxa1KPbOIf7vkyqpun731n4rziTYdbtJcd7rnnHj7xiU9w/PHHL4i5dXx8nKeeeqryed++fUxOTrJ48eLKsUwmw7Zt25r6KgchhLIxjy2leblHshZmKrSIXHiu4o2+ATGl/13/wzVQZQmnhgpauC7DUto3v27G9CiqtRWLm851Jpc3n19IjdREgzX/wBvf1JtWbedQifpDPWimPmd04Oz4KvYNe5vFegO1uxCCbDRcH+LmM16t2K4WQwiB3arYZ7mdqA2/c1Fb5HYco4+xVO3zCCtEG4+orIJsQA1JSEXgmoXNDWxiIrISoKFGl0dp4ZZIDBCijta7Po/F+28gptexBdaGMxb6qzWCAAbjOnJ/gtoFDMuJuvFcHyq1+lVx68RwgcnQEoqJpfSNjwGQj4Ur5AJ2tDknLNaKTrwF9o0OMpuqeqedtPe3KwSWbJDQBuhRa6nVXR+5IaSE2NzzSkxJrWtZWD3edn4B1Kbp+eZ/VSNKm7CsJ8xJS9P+J0tIijBo5TDD1i9MTk02t2iX09QQzmeViklnkjEcVfa8nfMMQZ0Pumo0feYzn+E73/kO1157LabpJYB9/OMf5/vf/343pwkQIECAlzW2Tj3BDY9fx/KtY3zmv39KWGQYumCYwrlXHm7RXpY4ULKMTZs2sWPHDh544AEAbrrpJl7zmtcQClVDPPbu3csFF1xQMZzuvfde9uzZwxFHHHFAc88FCZnh8DD5gR4vEV1L1in3KXWEpFqfYG8JDVv1lMeQJiPXaUj+VoSoGXMwptM35CmMslAZEEl0/JkIsyVa8rnIKgyf+kGmKhE3FcYSzaGoo1oKV1SNhx2rl7YdH8DqP3LONkDHKVHDUpphuT7Xau1AlNGk2aKHh0IizVR/a6UyH5lf6JAb7mV3dA2WbLJrplB3rqDGKF+QrciVSwvpcpXeHHCM+jUuvzJ5xeuvtLp/5eelzmYS9VadojUcq1UtG7PR5veulvPu7MU95Ef6KuMpyCiSRHZx9f5Yw33IJea1sijl/5OlOlMFpSFfqFa2kmiOpFNIr0UKh8ivW04u2iIvq833ji6aDal90ZVMhscqnyPlsLOatbTkMIbk5VJVxp9jI6i5VlGjWdiMuKk2yS8v8HvU/56KFjPXY098Q8t7sry3+XjjTE4jocRBRle3yFzXrSTTln/ETNPEnc9WT4AAAQL8HiNv57lyyydY9zuVD3zvaSIhi0Wn28y89csgBcQPhwOGYXD11Vdz5ZVXks1mWbRoEZ/73OfYuXMnf/qnf8oPf/hDRkdH+cQnPsEll1yCbdvE43GuvfZaIpHWSlg3kR0bJPzsJDToCKYcJampPFfD8x2STPLhfuC3GPEwRlhjR/lk5ee4tYIkEAzEDJ7el2Vl+HikmGAyt3vBrFQDxnJCsoxw6imqh+IhosYUSXOUFZGjoaZulLKol5y1u2qqCRs/JWxysLdO8oWgaJTyRGqMZFy3VFdIrWNNFqIztV+IubxcNQaNLJNJRInNZprOlWELGds0kbP1dO0FJYrOLqaOGYGJXEWBrR0hv/QckGTEvuqVSOXrKO3cx8yqUZxXoxQHjqmbp4lAsO7ifMgtFngvjBrCEiHBTH8M4biEUqHSTIJBbZyefBGRiuEqXj0sgMzgGIP6UoS2m63it951GQoSNmFVZtKG/ZFlLHYf8527ckkNBmLLIshClAycesboEDqLlJGm5rZsYMuet3B5bxh1b8kYKhmsbkMtLEdPQGQIx+wFfjvv908I/w8CKhe7Sh7hUWc74BW4bgetbU2mRrSn8j9hPIUsCe7euhdbMfAr7NbSkK/BIqWHJ3m27tjB9DR19Rd6bGyMa665hre+9a2AFxP+jW98oy7EIUCAAAH+kPGlR/6BNfc8xbt/7KKnFZactJvZ8/8VJxzkfh5ObNq0yTcq4oc//GHl73POOYdzzjnnUIrlQQhePXQaO8JFtk/mOoo5c3Wd4tJRxEC8XuVz3WroUoMStrH3OKT99bk5AFm9F1fNg+g8T2BttI8XczNge94ySUiENBnmKAc0pvVQcC1Ix2HXnsrx1MxWIj59/eq0+MNt0oqlkkcknzCZGluJHumptJYtu6ZrMzNeWFeAmjYN6Anr7PbJbSuHeWW1NOSnAChGDHZFe4g9/ETL8SQhmF61gbidhSfvaNnONwhTbvYSJkyV4aRBY8Dp0t4w+xafjdMQhlZfbLYxXG8ulGnm5q/MrtfGyC+2KMqTlWOyrCMhIY/0VgyNF4dPZDp1NDLQbyzhd+JRABQh6CmRPri2x0PYZP8ZaWy5iD1VXX8hWnvFpnuSRPd4BaRS6hD9kQh2yeBPiSgJEUb4eJpawU3GsAdyFHWJ8u6G8ARgZOB4np15unXnRq8f1Cy390exN4Gw8kwOxojuKNde8zopLQLO/AyPxekQRy9qH5bXMEhLRPTq+hiiajQdG1tJYWJHqZ6XX2hlVa5eKYYqZKKSAbZgVOptat9tdDU876//+q95+OGHOemkk9i2bRvHHnssDzzwAFde2VnIyR133MF5553HWWedxVvf+laeeKL1F0iAAAECvNxw61O30PPVf+c9P3JQxxOMn/ws2bM+R3G4M5a3AP4oFAr8zd/8DZs3b+Y1r3kNADfccENdntLLHbIk4x51bNs2thrDlVX6er2QJTfsMUl1AgFE1RgpPxrxOYw0J9bcJy6bDMmJumNLe8Mopd3qZpXMOxKRdVJKGCEEe+LrmQwtpj+mM5I0kRyrqVe7TWUX4aun++2BOyGjbihZbrVuJU/OHPp/q5CpPtlLMHcklazei4iFUVW9ecAKB3x1HFfVGF++iCbU9C0bgnIH6l0qpFWkHC3lloQ1mb46g8nFCQ82zeek/OuVeaJ48vTHdAxZQZOqJXft5DJSoebipWUDflzvLclfYm0TKlHhHw4pAGSZzNplzKyokueUjYWsWb8RlTBVeqOaR81dg+LI8TjhPoq9G9gfXlpHX+15Zern3Ts6wNNHrq5tUUE5Z2tepdWEILpkgP5YNWdt9UCUU4dOZ3l85Zzd1ZF6Y8GVJApG9R4WB9LsPXYFmbT3niqShKVGAUEq0q6QbD0k3Lp8s1r5fQ5Ch6FzK9QVnBxeAUBCiZBWvM2LI2JrSKsjHCsvqx21CWopLy/UEJp5MNBVo6m/v5/rr7+eLVu2cPfdd/PrX/+aL33pSx1VT9+5cyeXXnopn//857nllls499xzufzyy7spXoAAAQIcNvz28Z9hfvSvOetBl8JxK1hxzCPkjruE/Oo3H27RXva47LLLyGazXHPNNWia98O5ZMmS37/fkLhnhLRSClxJxYmNEA+H6hQwo6TIabLUJqep4XNzjr5va0c32L32ZKz06qZWde1bpT2UMJI06YvVK3CukFCEjiIJ+mvyHp45alUb2eYPX9Hc8q521TMnWjVu6tzcaGb1EkxJbUpkx3U5JuIp/IbUuu5VJbWojbVmJIYJCY1BKcmQkmjZrkbQyl9qO0IIRcMJ9TQc9JcjEdJwEcyYI2jJUf7oyNMZ0FMYlBRaxSCst55rWE1wpDnqeeR8rtXv8u1kDFetGkIRXcGVRCUUrgxZwJqBWMswtFAqxtTwCDMrGmuL+hi0NWPUej8SpoYQ0NvjGTJuhx4nWRIVL6QLLKrNm/OpOVULpSeButF7J3KRxbzQcxx7j2iowVRD0U/vSvalvPDLsJ8RVILV28Di6rT2rJqa/zjT5gjT5nDLfuCRO2hSc/8ePUm/Pl73zLfy/qUjGs4c69QNdDU87+Mf/3jLc5/85CfbC6IofP7zn2fZMs+iPOaYY7j66qu7KV6AAAECHBbs/PH3Ma/6NOO2y+43nMhJ+rfJLz2XzKYPHW7Rfi/wq1/9ijvu8EKW5JJysHnz5t+L35BaJUEIsM0wLoU2PQDXpcxHJ4C4oTLeG0HO7cNWFC8vqkH7bOs5KWnsckNiy1hPhB2WxFR0GXa6D2Xvoy2H2BddjcTvkICoaCZCWN4XLeWn1EOWVE4MLce0XX7Hi5XjpiozYTSwyZUMkqISgoLnzWnMN5kLRTlEQa03OExVEDEU+iI6Uz5Gjx/69FHCdtUIcnWFMa3Xt70kJFaHT6JXv5dCwa4SEkQGsSLjMLOveoltZE/39NHjTJGXIshkm+dq1P3bjNUspAZkmDGHgNaU+mXD0pZ1sv3HEpI1evUkzzNbOelvpLYPxfKdy6cw6sbFCRKmCr+rtXQ7x8zwMKZmVnPDhPCVDWrTA2s8fQJGkyby4o28sD+PM1NrzMnM5FsbHgcCUyptOAgJJJmY5k/cIglAj+HKGlCg5QIJQGogb1FbE6D474m45PQ0qjX3O+j//TMX82EVQzGTIaePzO7pg8qj0HVPU+0/Xdf5xS9+QTo9dwxkOp3mVa96VeXz3XfffdBZiQIECBDgYMKZmmTfp69AvvJT7I7D7y5+HScZ/0Fx+DimN19dUfICHBg0TWPPnj11xyYmJg6YVe+lAFOpGhgCgW14isvi8BgJdaBVt6bcFr0UbiYPDjY3agNFFghJ0BPRiDRQK3uRdp2tcUGNIoTgWHWcHuFfA6UONcPqkoIQgmhlfgGnHM2OZQ2hakJgDRzD/shyZvV+Cop/CNmo1sdIeFFL1q+CGkMStUF8glRIrWOjq8XSngYPkYBXjW5gOFofNlVmJ/PIA/Bujutljwghmp5XOzGOHV1UaurJUyuCaOVzLIdk2u3Do+qV/hZjlYo+S/HaeybVt2/xnvkyWcfrDVJHNsiF000kCK0wlyGVDGkIIerT0OaQsxUUWWBqEgOxZubHqjwtjkgKllZ/reM9YRKl0MBWz5IfpA5UdUVI9Opz58Vm++PIo4txXe8OSggGYjrp8aPa9rPSayDuExpaQuPTIyMhXJcVfRFW9rX2oJZRe1+PGEmysj/ivyFRcw/7RP366ks2kV/0KtYMxRt7dQ1d9TRdcsklTcf27dvHpZdeOq9x7rvvPm688UZuvPHGbokWIECAAIcMrutS+MntTP/d32JPTvD94wXi1Ndx6bavYPWuZ+rsfwalPW1xgM7x7ne/m9e//vWceuqpTExMcNVVV/HjH/+Yiy666HCLtiCUd0pjssFAeNT3fFSLEpZb76iWlZCi0YvVuwh23r8gWQxFZuOiBM72abaXiSCUUmJ9uI92Ti8/6VRJwSrnGrWJARQuDMYNxHQRRQbXgmRIZTpXymuSpBZauXfMllsrugNKirim8eLsC3XH3VL6uyJLpMzOcz1SIZWnzRBytkqUYaoymxYnue3RXU0XGFXqN5I70eWrFBb+jZ1QX+W8W2Zj68KOuxQKo77yROT8Dtj1HI6k4fYsITMxQZS9Te39HQYuMVPBCmloxx7L/tEM3PwLAPLptexXDeCejmWqUO6rkdJnP49Em3BDwJU17NhiUENg1TK3VXPW7J41LCtmeHqy+Trr52p+jlsxuI3ETVIhDV2RvPC3PQ3sJj5JVEf3HMuO04aRHqhniWu8nnaQhGDW6ENb5KCsXAXPV4k1dEVCMiOwvyZMs2FJXS3U0YNqKSGWSoNEhIGEFxosu6IdZ0oTDEVCViSKbTxNIUknVMQJMUkAACAASURBVCpjIErhv5KismHpEGFdYX92Dm/8AnHQtzmTyaRvQcBWuP3227n00ku57rrrKqF6AQIECPByQeGXDzL5fy5i+oqP8pRe5NJ3y2TPPJNLn/4adnKcydfehKsdGprqPxS8+c1v5ktf+hKRSITTTjuNUCjEF7/4Rc4///zDLdqCYLuehhGSdOSaWP9ON8qdaLiiXeT1JHZyacvO2aTJ5GCsyctRpwjWkhEIAZKKNXgshFuzVeXTa2oGq81J8JBoSMb3k683orGqP1qSpXre14tQJzsM6l5Oh22qFEueAtHKhmiYO6zJdR6dHsXzskQaw5VqMLX+FW1lcgxPqVUGPYNpJl3aJXdckmZzKFWTqJWcJlDHRtHGq3kiTctRYhRs5Wktjy01War+7aVQGCcxzs7E0eTVOKghJqIrmvpljPrnIVFzXQlTZTRl+knbEq2y71xJZn9kKcX+1t4R34Kttee1KHbv2qbjabVKFe6aaQrjZ0BDvpci6g2U2pkqIYOt1lLywvQAXKX181SLuJZgZWI16rGbSoPUvAul2Z3IUOWIH4SA8bGVrDj6HXWtap+R1fogK40B7MTcNdHqUPP9YMkm0wPneR9SXp6VU2JvdM1UU1cfSatr5xfKSjnvq8YTfAgDCrrqafrYxz5WdwNs2+Z3v/sdQ0NzVS/38POf/5xPf/rTfPWrX2Xp0nnetAABAgQ4jCg+9CsyX7me4pYHId3Dv7xmJTdv3Mo5oRO58omvY8cWs/+138A1mgt5BlgYdu7cWfm7v7+fd77znU3n+/tfflTu04VpAOQGBTNuqDi6QaKktBXSfWh7dyFLAld43pupY1YRi0WglAaTKbTe4nUR7B/tAduqUzxcxcApKSxCUFXS2nh2msZu8qQ25Ji4QNkgbKP1tKyR0wZrBqI8ssNbw8xAlKFJBVdSq/qJaJTFZw4XUmEVS9WISQanRddU5HEVA/KtvWS+16EohDaVlPQsTPUkYfcU4BLSFc5Y3ce9YiO5yVm03/7cT5yK6MrwAPJU0Ze+3VRlZnqShFIh5L5k3Qa/oUjMyiaaXA71ExRCBmrOmXuVhSCvp9F5GoChuNHUZCKyir7E8zCRrYxfL33rseeLohIBxT9vxxuz/J+oP9AGITmM5UOIURsGWexdj7xbxnJbeDJaTLMuuYGMNcu26ScJK2FmrVnSeg+wf66uFUiJBNLqlciaw8yuxrMuzlHrmXrSptYfUhsGKEmQNDzDxSPDEHX1t2QhISGwzSTgLJhPwZVUnh44k/FUEnY8j62YFJa8CleLwo4mwX1Q8va1eW6KZn/T838oKsJ21WgaGKiPr5YkiaOOOoqzzjprzr7ZbJbLLruMa6+9NjCYAgQI8LJB8eGHyHz1yxT/938QqRT597yPi7WHmY3fy9nKGj792Lewetczee5NHe60BegUJ598spe/0IoRTggefbQ1OcFLHUk5VFJ6PSUipMmcdNom7OeeRWgas/sVtL276I/qJHI6YVWwX/F+1mOGwixglT0UumdoCbNkzLRYs/zSs0FIuLlqDo2ydDm2JFMIuRjP7PDt5wu/lIQaTcyOjmAbeVwjUTWgKn0XrgIpDYQVg2qSbcYg4NXWaUXDXh/65nosbJrSFIJo9a5jWgmR2vmrhgFESW4/47L6py6FQQg0oYFbNWucUBirKDyeuQaDo1zXRpmDQj5hqqQNE01uzusYiBloy46kZ+bhyrGdy0dIPj+ByE23HRfADlc95GOpEDtkQdFuJpvojxqImjyvqvLrhVGVr622eOkqZYhxc365L4I2RlmDIWalVyKRQ/YJY5vXo6boQD31vagN2mohUr85wGzRM5pcF04ZPA2AmWe20oh24jjHvBHHsWHXT0rzVa9zdHg9T7kCbaaffTWkKX5Y3R8hrLhEJxS/urLzQquNjTJTpIvrGUydoo0RbadWgr2HfHQxmdk8SfY3eaIPJg56TlOnuOOOO9i3bx8f/OAH645//etfp6enkeoyQIAAAQ4vir99hMxX/4ni/9yHSCQJv+8veGLjKbz/gc/iRh7gDQzz17+7jcKS05k67RrQ5lYIAswPjz322OEW4aDCL7xKSBLK4iUA9NuTxCIakiSIhVSwLAQuA+Ygcs7Lw7CdUhHL3iQSi7GHhihufRpHyCAgYwwQmn2+OkFJqXRKloIQAqGqKCtWIl7wcioORD0RgN2bRMxkQZKxj3wlYkceEQo1FGQthTC1IGvoFEUtgVMI4dZ6EGq67x+uGhe1yp8VMyreuvqZy+FB/ljZH0Zb2n5zJKb0EAofTUiaBCbbti1jYLCH2KKEVyC4DQTCo5ZvgZ6whpipWQBJoqhp8yUZBDyjp2i7FSM0XDLUdFUQraEVd5QwMvvr1j0d0VieDpO3PLKKpBQhqdSzKtYaMwsJaS4aOuqiJM5TO0AxcMwF6pJtjSpRb8iNDSC9mANVxaOpbNHL590eURM8xm40uZldstpRAr/767rIksKi0HK2zjZbQY2XoMoSS3siyBP1Y8npOEWYV6EpVdLp1YZ5tlCfc1UmsBiPtk612bQkCTvCUJxoO8cqeYRseBw7tQx27/FvdBBZ88roqtG0atWqtmxFruu23Pk799xzOffcc7spToAAAQJ0HdbjjzH71X+i+POfIeJxQhdfgvnGN3H7sxN8+oHLkSKP8J5igj9//j6yR17E7PEfad5FD9BV5PN5/v3f/51f/vKXTE5OkkgkOPbYY/mjP/qjSt2mlxNOGT2VzI5d2LQv8H7kSJz8Y16YVGbpMOZTL3LS8Gmosoo744X9DNUwf8nxSCVcazQVYtfS49g7Vag3mkoo6x/1bG3tPSgARSVK2TVTq8KUjR9NkZge7MUphXe56RTa4iV13kJ9xSJyJUXc1aNYxhDyjkfqRmsxfRMK4VFmzHGYfI6qElsO/xEUeyNoPnqLE9LoPODH629F4xiKg6bNrVppUkkxbnLUuL7rrEYi9ISbn+XZtetYVNrRNxUTXfjE7M2JhQRBQjqskbMcrw6YC4YcYV1yA5ZjofSfXB09MgAz20ufvGsLazKaIlWMpkY01oWyetaAU2hwQrS/+zvWLUPWbc9o6sDQbhcl6IT7EPm5vXEiGcHoGyE/r+q2HhJKmGGjh0IHqrnUP4jU149vjOa8UC+nOjaIM/Ya2HPnvEYZMpfx7Ey90SSE4NSh09v2S5gqSkQvO4HrZSp9J8wa/URzO3GEfw7YsJrgBSCq+bNldhNdNZouu+wynn32Wc477zzS6TR79+7lO9/5DmNjY5x99tndnCpAgAABDimsrU+Q+eqXKdxzFyIaI3ThezHOfzOYIf7+3l/z3R2fQ448y4enirx9/+PMvPpvyK192+EW+w8CH/rQh5iYmODUU08lHo8zOTnJzTffzC9+8YuXZa0mTdawJZXM3E0rKPYkKPYkKhuXiiyxYTiGFdHriatKikgqpNEfibJtygvjaVTxykaMVKNJCiFw1Xq1oZCsKrf58TPY/cw0Mnd5Y/jIORjTCWsyu6RmZc8x04j8VP1BIWP3rEFMVsONWhI6+MATX/I7CHhGpUBQgErR00pR2w6QjuiV8LPpZWtRl0Rahv/VwtF1HGQY6oE2TH9z7Z47hkkq3Mfm1DhWeg3iyZtxtSii0ErBbx5PtkpBoB0Ye9OrjiC0cTH5p55HkgQhTfZIF2qGVSQFvfaaSuvdlFPWAsWhTZCvd311YrD7YaFe0ToRXRdXC+O2iBaoNTnlg8+vBoC6fgMAYn+JaK1xTZteaJ9BRGlVy/mLlDzLPhtNx/edgBYW7Up0dQeu0xSamlfjhHM7SzJWL2wyPM5wfgu9SpRTh9sbZ91CV42m//iP/+D73/9+5fPw8DAbNmzgda97He9+97u7OVWAAAECHBJY254k889fpnDnTxCRCKE/vQjj/LcgRSLM5C0+/P1beZS/xzCn+ezOPZyqDzFx/o3YPWvmHjxAV/Dwww/zk5/8pO7YO97xDjZv3nyYJHoJQCl5ctoo5Mf2buS+F/7L95xTw9ZWhkAws3YMWVkLpdDI3GBN7RbFxPUxhmohCUHCVNnVoHwJIXASY94Hd2dzx5qaZoPaYo5Mr+TRnXeSjYVpZV3aigKxMKKUa58wNaYLEDMV/DiQFyVDTBy9hlx0GqYebjoPzT4ZtdajoChI0Q53uyWZF098A4nQBKnEeHX8ksE1k/JC3USpTpKIdBCeJqvkV7weec9vUfbN7RUpY7I/hZiwkJPtZe+JaOwhgZxMwlPN3smO4GMw2WJub7B/kGYpVPIgh2U1bhSUEdUVBBrjPSaPlmz9PqWcu1PLcNfpRPO/Djs8iKxtw076h8BVzI8W1uNcda/KCClhEmaI/fn5bOXMHwKnJV17PVzyWvLgG3EN6KrRND09zbZt2xgfr34BPPvss0xPd/7yBggQIMBLAdYzT3uepZ/ejjBDmO96D+ab34oU9X4Ut+6Z5QM/+gazsX+hz7W59oUXWbL0j5g46Uqv9keAQ4aRkRGmpqaIxapKXzabZdGi1sUYf19RVjfs+BiurONEh9u2b4WEqaLIgvFUbUK/wNVUpIEhnHI+mY8SbMUS4GVGADAUM+jvi9YShbVFYWgTxbAF+e2VY8W+I3HMx4HniRvjJLQkCWWAeCgOmReaB5EkntuwgtEa74muCJIRE02RKWCjiHoVSBKC/mUjPD3zFOEZnQUl+vigkaK6AiHIh0fq11CS2XP0RizxuPcxmUI95hWIxMFh3XQR2LqGtGIYobQPIz5mNFE1UOoU/IVnuYU0mVAkTmLVKbC7dS2xspeqUyV/PpgrOLGY9gzY4dAo6ehynt25nbyTQZYEJ42NMVucASChJRHi4BoVTVBNCkuqm0NquYh1xWvqoUdNM+2zUXAgq1kYfRX71Km616QncoDh0G6N0eTWh9M2/33o0VWj6c/+7M944xvfyNjYGNFolJmZGbZt28aHPvShbk4TIECAAAcN9vPPkfnnG8jffhvoOubb/wTzgrchxbwfTtd1+c5Dz/HPj1xFLrGFI3N5/jajo5/xNWYWnTzH6AEOBtasWcMb3vCGSnjexMQE99xzD8cffzzXXXddpd3FF198GKU8AMgLyIkToiODqZq7JOrS1jVF4tQV9XV3Ylqcvfk9cyqu0yvWI0Zj8LSnBJuaRDpt+hpNfuqqq8dxI1qd0YQawkmMsXs2XSF1GDJWoCsS0Gw0FeIpYK9/TlZJAV8UXUKvvouni3ubsrAGlDidGE1zqXCr+iOs5NX0x1SYuQ2ADcMxntwzy2zenw5e1jSWxKsbL1LyYLNuio6zmmrz1q0+L0Ss6elsoAKXRkbhxQcqcw2aQziSZxTKkuCI4RhycgB2t5dxQVhgER+/ZzypJ9GjY/TrOnG1j1OGvFpV5bWrL3IrGIobPL0vQ1/00OVVjiYMJAGPz9bPuSqyinCqsfyCaMtDMBdcM0VBkyGXr2fvPxC7xnUXfM8OBbpqNL3pTW/i9NNP56GHHmJycpJoNMr69etJpQKa3QABAry0Yb+wncyNXyV/23+DomBe8DbMt74DKZGotJnKFbnq1lt40vk7cokc75yc5f8dexuFY/+cotJctyTAocHk5CQbN25kenq6Etlw9NFHk8/neeaZZw6zdAcO9dj2hVPrMB+FQ3jK8kR0OYXhV86pEKxPbmDGmkWRFJ896xpIEkJViRoK+WKB6Akn0KhJuTV5FE3oQrjV7NJVkLmXmKEiGpLypVIInCapxMbOZduOOzse15Q9ynZZ1BYdbp3HsjjV7HUejBlkCjZbdx8g13PXsEAltUzfXfPMqa88EdFgNKmr1qBLVVKTNcl15OPbmQ+qrIW1RU07yR+az7V11lYWCmG5+rvQ6mmNGl79rTKM0m/EWGy8qW3e7IfpEpHCARgNQghGEiaPlxxehuo9pyFNQZbav+GKT42q+cwriS6YFDUU/IeCDW++6KrRBLB7925+85vfMDMzw4c//GEeffRRksnkAVmzAQIECHCwYO/cSfZfvkru5u+DLGO88U2E3v4nSKl0Xbv7H3mcn2y5nF8mn0Fx4Sp1NRvP/TSFaGfFuwMcPHz2s5893CIcVEihzunq5xu+5LpgySEI983ZVpYU4lpz/Z9WCKkyi1ImciIBdn2xo7b8dzXK0nx43US6B3evR0e8ZihBdiJUX7TXZyw33IcdGQQ7W5KlfQb98vhKUnqavdM1RToPl3LXxXkPNOxtaW+Y7fuzHTyr3jz65jMoPvZbnOefW5B8yjzY6eR03Kus1EIPDSkhYmqcZbHl/GKv5dumPcqFoNuHkclCbskmN9VzNIXUMniidYjiQqArEqsGo6iKNOeb1KPMn9bdrhDGwIrQJkaSJi/sb1H4twM4kSFwyqG9zRI3Uv5PpTbgKvOoHXeA6KrR9N3vfpdrrrmG0047jdtvv50Pf/jD/Od//ieO4/DRj360m1MFCBAgwAHB3rOb7E1fI/eD/wTAOO+NmO94F3JPfUjSzO5n2PKjT3OL/iD/k9Y52onyV6/4FL0Dm9pU4QhwKHHXXXfx5S9/mV27dmHb9T6QO+644zBJdWigrFoDqgb2r4F5Kr9CEJYTzNr7kRZAkXwg8A1pqpycu1ipH9T1R1C407vfo0mTWPgEdmV3AFOluerHFU2kDa3VymL/kSBryEKmz+xnb/tYspcufNbWFQsgHa8dRwiW9YRZ1tOBce93H1vc2/IUiiwqTVzXC3mUqTWs206IOtRDfpdoaWRKQuIVvZtKn3a1E8kXZe9jn9EPdGYENospwRyeoK6jdJG9iVXokaVYegEp175eUiNqw3slIaMcQHkNK73aI7QoZpGnt2PHFsMuL3Jg3VCUXCzeFDCbC49SGFy74Dnni67eoX/8x3/ku9/9LslkknvuuQfwqGBf+9rXdnOaAAECBFgwnH17yXz9RnL/9T2wLYxzXof5zncj9w/UN5zYxu7b/38eydzJF9JxisLkL5a8k9etvjDwnL/E8LGPfYyLL76YFStWVEKv/lAgj4x6f5TSeub7bI4aa7Fdq45a/IDkKSegNw1Xk0/k1oZY+RtNTcZU6b4u6wkjFldDo+rY/ZR6lSauxYlrcZ7hf5umUI8/AaF3HlLrqhHckF9x1Oq1lEOhDhT9UY2O6LNE59ToreBI6tyNfCAvWoz9dJnu+oBEaAlD9e55X1Rnd014nq5I4Dge1XkLVI3y7uP4sSRFu7ruphLi5IFTUCQFqOZuHX7MTaCQX34eq0vraFPllNzYexw5K8eL3NN2BqccZtuNyy0bjXXkFt6bIAmBrsjkD/OydtVokiSJZNJjeKnUilCUg04HGSBAgABzwdm7h+y3vkH2e9+BYhH9jLMJ/cn/gzxUnywv732c3D1fYHbXj7kqneTB3iSrQqv4+MZPMRgKQvFeiujr6+NtbwtqYs0bQrB+KMEzEwdaILOKI4ZiPL8/R8xQUVYswp6Y8id7KIvgp8y1Ib4I6zJ6SCNXrPEo6kZTXZ96NM8hhecfitQOR43EiRkHplKdsWaAfROzZO1JtuzroMMB6laF0ZOwJn+K5Mw/nEpoGvLSZdhPbp1vz+qfc4ivlmqNeb1qavc4fuFwnUxdV3ypUymbEDOaDU3lUHuJOkIHz0eLNYyqMaLq3PT55dIE0iE2EhdWjvnA0dW7fMQRR3DZZZdxwQUXYNs2W7du5Zvf/CYbNmzo5jQBAgQI0DHsF7aT/ebXyf33D8Cy0E89ndC734M8Wk9Hrex6COveL2C8eAc3JFL86/AAuhzi/1v9Ps5ddB5SR0nHAQ4HLrnkEq688kpOPvlkQqH6xPtXvGIeJAp/gBhJmIwkzK6NZ6gyy3q9MC132UbU/VupV8k970g7pUfqH4CCR7VX2XRtUO5qe2snnNSZcPOIp3UiAzhGAeEU524sBH3RNgVqO4SmSBiqTLYkZ2ehlgfCflbO2xSoJRIAx0y37tANGRbokkgbaWZmplEljcrdb+NVrq7dYXJNdHidiuy102QJyulUL6NIBkPx7oEqL1xmO7YIeeJJ7PDAnG0PBuX8fNBVo+nyyy/nC1/4Au9973uZmprioosu4pRTTuHyyy/v5jQBAgQIMCesJx4n+61vkL/jRyBJ6GeeQ+iP31ENZypBeeF/cO69msSun/EDM8FnR5YyoxQ4behs3rv6fST0g1MfJUD3cMstt3Drrbdy1113Icu1rGaC22677TBK9ocNO70SO73S+9DC6PHzFvh6ENopyHOEZDrJNPAUltm5YWP1rMFJqsh7H/M9H9YU8syPkKBTOKX6NHN5UiQh2rMYdggXQaKUl1McOm4+HbuDDoyEpdHljIQXoct6tZ5pm/t+uDwRdnwx8uQzdcWY2yFhqhimipsO4e6c6rI03rqqB8CKNxfWDkTpi+oULO+ZLe9xhPXO53T1OPkVr5/XvGFNxs7DQOzQstZ21WjaunUrl19+eWAkBQgQ4LDAzefJ//R2cv/5H1iPPAymiXH+WzDf8sfIvTXsYK6L9MxdWPd+geT+LfxcTfKJgXXsMKdYEhnhM+s+zLpU4CF/ueDnP/85d999N4kaevgArTBHPtFBR01GP53vHDfKWjZWOvHwuIND7D/qldjavdAxy3eD0t0w/+KUST4VQuxeOFNYKziUGcnaK97rh2LsncmiFDs3nhrJMJogd57jJPX0YG/bitQ3N/NirQQLgRACQ25QkEtGUzsDyTUSiEzn4adHDMfYny2W6n/NH1bfkVjp1R0bTQCpsM5ElwzgRizX+whJGt1/Sj0ossRgzOCZfdWivqeu6Dno3y2mKnPC6vk8d91BV42mj370o9x8883dHDJAgAAB5oS19Qnyt91C7pYf4k5OIo8uIvzn70c/8xykaLTa0LHZ/5sfYj54DSPZx3hISvPevk38LryDuCrxFys+yLmjr5uznkWAlxbWrVt3uEUIMCdaeJpaKNFzKV2qLPHq5T1oHYYFuaraPc8IXo0gU5U9Nq8Oc4tcNYwdWzRnO6dUq0aiveId0mTCSbNM+FadR4v6d2iFBeq3UiyOvvmMhXX2gSspCKdzyu9OFPPi0CZEaBfsebQjj9ZAzDgw74UQsNCafQch/98oE30cZCOmL6rz2M4ZRhIGinwwQ9l/j8LzNm/ezIUXXsjJJ59MPF5fyyFg0AsQIEA3Ye/eRf7Ht5G/7RbsbVtBltFOOAnjDeejHvOKuh/UXXv3svv+G1nx7DdZ7rzII6KPTwycxi9DT4HYywVL3sYfL30nEbW7yeEBDg0GBgZ4/etfz9FHH004XE97/MlPfvIwSRWgHm7Dp3Kukn9rTfIKpybbhMf6eQOUI45C6P7ep8XGYiYzW5GRqFXN1yXX8/TMUxhy93K7/FAYO62jdpXCvwvMo3Rio7DjwY7axg2VqexCahMtEHWFs+qficLYaQi7CLt/2elgczeRNVwz1WnrQ47i4EbcSFUV74toZEMLYzQ8nDBVua6Q78FC+Xf9cBHMddVo2rJlC0BTDLkQIjCaAgQIcMBwMrMU7vop+dtuobjlAXBdlDXrCP/lh9BPOQ2pJjzr+f1ZHvjNQyQf/1dOz93KWpHhl/IKrh4/gXvkR5m1Huc1A5u5cOV7GQgNHsarCnCg6Onp4fzzzz/cYvzBQU6nOWksTbbYSWCRp+w4WgQpP8mAGud5IK76F8s1lRCv7Dtx3oZMXRhuAwaNQTZG1+A07LrHtQRHpI5q2c84YjmNZoUTGUSE+3Eixa7RtZchl3JQzMZwtIOARSkTx1Yg1wHhxcGGrOPKOupRR+O8sB1h+t97Zc067B0vdj5uNYEOSmvrKvN7rvJDvUjRuYkK5gsnOgSJEOz3wtsG4wZS70tn8y6SeDUJ5/AYKC9FdNVouummm7o5XIAAAQLgOg7FX20hf/MPyN/1E8jnkYaGMf/kTzFOP7PCgpe3HLY8vY8tW5/HfOpmXp27gwulx7CR+G3qZO5YtoHvTd/Nvvwv2JQ8nj9deRHLYisO89UF6AYuueQS3+Nf+9rXOh7jvvvu46qrriKTyTA0NMRnP/tZBgbqlaTHHnuMK664gomJCZLJJFdccQWrVq06ENEPHbqs2Gsnn4KZjlKYyhHSOkj6lmSKw8fhGEn0J2+hT4ly6tDpdU3UTa+EmtAeUwk1jnJgWOAaSIZGk59CUrD6j4DdDx24XA3oNftY466j32ylpB/4vXR0z1gVAuRDUNvMjo0iT3VW+FUKhZGWtf5uloeGkYeGKdilTJ25vA41DIyukaA4cCxOuL8jWcrIjg2hDh0xrz4LRpde1cljl2K68wzVbIAZWV8l3gjQHaPpPe95DzfccEPl8+WXX86VV17ZjaEDBAjwBwr7xRfI33ozuVt+iPPii4hwGOPMs9HPOAdl3XpsFx7bNcOW/32OR57ZTuiFezmFX/BX0v9iigIToVG2rfhzbuuJ8a0X/pu9e77H+uQRfOKoT7E+dYh+/AIcEszMzPD1r3+d5557DsfxWJxmZ2e57777eNe73jVn/0wmw/vf/35uuOEG1q5dy1e+8hWuuOIKrrvuurp2f/mXf8kHPvABNm/ezK233sqHPvQhfvCDHxyMSyK/9Gysp1+6YTpCVedkrWuEMwelcF3+4cFAByE9h5vSuIz2NeEWvvNfNpbs5HIAdEkn72TadekKrP6jsfpafO+2MWaLQxtb5miViTJMJUQj1UNvVCMeaQjTLM3jxEY6kvnlDteIIoolz5r20vFeHQgO9/vZFaNp+/btdZ8feOCBFi0DBAgQoDVcx6Hw85+R+863KD74vyAE6tHHErrwvcgnvIrH9ltseX6SLd97mP3bH+N4+0FOkX7J/5EfR5UtCmqMwrI388yKs/lO5nd895lvM/XUFEemj+avNnyMY3pecZgYwwIcTHzwgx+kUChw1FFH8c1vfpM3velN3HXXXVx77bUd9b///vsZHR1l7dq1AFxwwQVcffXVn9bUrgAAIABJREFUzMzMEIl4ysbjjz/O9PQ0mzd7lerPPPNMrrzySp588kmWLl3a/YuSNeSlK3ELB4v36mUIRUVEDp3yp2w4EnU2BsWd7VnlDlN+xULgmmny42dAKTzt+P4TwS7CtlsP7sRCgJi/yulEWhuPiqRwROooYmqcn+2fImVW79GyVAq0clClf62v33e4epT8yEmgHliu3pJUlz2+L2N0xWgKlJAAAQIcCNxMhtwtPyT7nW/h/F/27js8jupe/P97tqs3y7Ysyd3Y2GAbYzCh2EAAG0gglUBCbiAQIECAm28KCSEh9IQQkksKyQ9zAyaQC0kuyaUbcAPce5MtWZIlq2u1fXf6+f2x0tqyZVmWVfF5PY8e7e60z5mdnZnPnDNnDtTiGDkK+/pvsuf0C9hspLGjMULF/7eOmfZOPu3YzC/dWylxNIAD1NwpGBO+RWz8JexMy+Tftf/mg50PoFoqnxp5Pl+d9HVm5J0+2EWU+lFlZSXvvvsuAG+88Qb/+Z//yTXXXMMvf/lLzj777GNOX11dTWnpwed3ZWRkkJubS01NDdOnT0+NU1LS+Qp1aWkplZWV/ZM0Aa5Jk3s87lkjziFh9X+NwWDynD+/Vye+HR1GHO8zlZwjR2GLQnQtdPw90vUwJk+veho7djmEKw0ru7TrgYfcz+NUnByjk77+0wfJ5ghfIQAXTxnR6fM5BXMhTcehO1K1zyeTC0ZdmHzh9JzQfAaic4fhRParK0nSoLFDQRKvvEzin3+HaITA2Cms+uy3+d+sU2iMWhSsruQy12a+n7adMz1b8NoJbKcXo/hcIuPvRB93MbH0ESxveJ9/V/2JPaEyfE4fF4+5lM+P+zKTsnt+0ikNXw6Hg3g8Tnp68oqoqqoUFxezc+fOHk2fSCTwHtbjmtfrJR6PH9c4HTIzvbhcvX+gpNPpIDf3+K7u5tL9+EqrF1xe0nLScaQny5F1nMs4XG/iBFAykstPO8Hl91RunkKWz81YdxjF9EKGD3GUZWfhI8P2kpWVdkjZuq7dMuJpqOleXNm+4y5LTk4a+bnpFOX4Uheee7w+zZEoVhOiIB+0CErMC5mHlWnO53sejG0d13fS2+/9cGqWDyPkxZftw93n20I6TqcDy7KxhEY83Yszy0d6L5aTEUyum74oc1c61qcR9SW3p8zj356O1Pex9sX3np6RTOJ6Op/0DA8+2016hheR5cOVk0ZGxIvH6T3qPPpq++xKnyRNlmXR3Nyc6gLw8PcAo0Yd3013kiR9MtlCUFPdQPCvLzJy2et4dJWPxpzO3+csoCx/PHOyI/xn5nLOy1xLcXgLCjaWtwh93JcIjf80evF56A4H61rWsGzfn1nd/BGqpTIucwLfmf5dLi1eJLsOP8l89rOf5bLLLmP58uWcffbZ3HbbbUyYMOGIJOdo0tPT0bTOtzurqtqp+/KejNMhGj2xW6dzc9MJBvu21sjhHY+7bT1aDLR4Mj7rBJfR2zi9seTytT4u49Hk5qaT7YBwOIE7pmELFeMoy46EVWJxjbAjQZDu47PCCcy4hiOi9aos6UAodPBunB6vT2cxSn46wszCGWnBFdOw3Cpmb9ensI/rO+mr7dOIqNhxDT2s4uyHbaEjTjsYx4hrKG4dvRfLicU1FJQ+/0126IgztT1F1QH7bRyPvvje47Fkc+Oezice03ElDOJuDcujEnMniMU1DMfR59EXcRYWdl2z3CdJ0/79+1mwYEGnJGn+/Pmp14qisHv37r5YlCRJw0wwYbCzIcKOhjDVFbVM+vANFpZ/yBjLYHXpbLbM/xynTsngSXsNk9pexte6HdrAzJ9KfO5daBMvxxoxnUa1kfUta1mz9Wds9m9AtVRyPLlcWnw5l4y5jNPyZsqmwiepO+64gwsvvBCXy8WPf/xjnn/+efx+P08//XSPpp84cWKnDh3a2toIhUKMGzeu0zjV1dXYto3D4cA0Taqrq/utaV5fs7OK0bKKk288HpD3Sg1fipJ69tAnQr/vt0/snqZzCs/DPZAPPJfHsaMa7DXTJ1tBWVlZX8xGkqRPgKhmsrE2xPqaAOtqglT544wNN/LFihXcfWATDmHjP/MCvFefx7XePdxQ9UtcZeUAGKPOIPqpH6NOuIxKl4PtbVvZXvcq27dvpVltAmB0WhELS67k3JHnM6fgTJwDeTCThhxN0/B6valOHOrr65k4cSJXXXUVRUU9e/7WvHnzaGxsZMOGDcydO5clS5Zw0UUXpZr7AUyePJnCwkJef/11rrrqKl577TVKSkqYMGFCv5SrP3nmfQoRP7y/Mem4dZzcDvaZ3AkbnAI4CgqwG+pQhkCvid3JcB9ZmyydnOTZhiRJJ0Q3bbY3hFlXE2T9/iC7GsNYAtIcgi+Ztfxs74eMKtsEXi/pnz6HvNNhWngFzp1/QyhOjDHzCMy4nh2Fk9iq1rO9bQs7NtxJ2AgDkO8tYGb+bL6S9zXOKDiTcZnjZY2SBMDGjRu54447+Ne//sWoUaNYunQp3/3ud5kyZQqNjY385je/6VFHED6fj6eeeooHH3yQRCLB2LFjefzxx2lqauKmm27i9ddfB+BXv/oV999/P7/73e8oKCjgiSee6O8i9gvF60Px9v+DU49GH3cx2Ic/Lnb4cRSOxFk6FueEQaxtFO2dHCgn0JuDoiC82Zjt3ZAPFOfoIhwjClFc/Xwq6k72qtfvXdpLn3gyaZIk6bjYQlDeHGNde03SlgMhVNPGocD0UZncXWxwds0Wcle9j/C34shKI2d+EflFFXiUVxHNPrTS+Wyd/U3WpHnZGNrJtsaXUOuSV76L00s4d9QFnJ43i5n5sxmTXiyTJKlLTzzxBA899FDqntn/+q//4q677uJb3/oW27Zt4/HHH+ell17q0bzmzZvHv//97yM+70iYAKZOncorr7zSN8GfxIQ3e1CWa/vyES4vZsGpfTI/xeHANbVv5tVr7UmTUHrf8Qi0J7KDoN8TJsCRlY17zlyU3Lx+X5Y0MMQJPKvsRMikSZKkbgkh2B9IsKEmyMbaIBtqQwQTBgAT8tL4arGDTyUaGLd/O+J/VmMHQqBAegnkntpGVpGKnTOG2uKL+Di/hHXE2NS2iUDdEgBKM8aysPhyZhWcwel5syjwjeguHElKCQQCXHrppUDyeYEVFRV88YtfBGDmzJn4/f7BDE8aapxu9ImXdzvKsLs+I6zk/2EX+MBy5BcMdgjHpGQnHzzsKJTdfB/dJ+DhtpIkfXKYlk1Fa4wdDRG21ofZWBukNaJSkAhzmhXgNmeQmdH9jPDXIOqasNt7ChMum4wijcxTVNInZhIefwYrR4xjnctmQ2QPtbFN0LiJPE8ec0acxZkjzmJOwVxGpsmeNaXecToPXl1fvXo1p5xyCvn5B2+QdzgG6wE00nDlbK+xcZxIc7eB1HG/zgnWNEmDz5GZiefTl32iW1bMKc0hYQzf52bJpEmSTmJx3aKqLU61P87elij7qhqxy/dQFGykKNbKxWozNyVayAiHUKyDOzqHy8adbeIptPGemY972hSsU2ezNT2T9XaAjaGdlAV3Y7eW4XOmMSt/Np8Z+znOLDiLCVkTP9EHBWngjBw5kpUrVzJr1ixeeOEFLrvsstSwXbt2kZkpu56Xjk9JxlgsYTM2c9yxRx4ClFRN0zBJ8qRufdKPjYWZPXsMxFAlkyZJ+gQTQuCPGzSGVRrCWur/gUCcUG0d2XVVTArWMSV0gM+ED5AXj6SmVVwCT6aJJ9PEPcrClZ+Os3QsjsnTEePPQCuYyi6HwdbAdra2bWZ76z9QLRWH4mRazql8bfI3mDNiLtNzT8PtcA/iWpA+qb7//e9z22230drayumnn84NN9wAHOwg4uGHHx7cAKVhx6E4mJA1cbDD6DErsxhnYB92hqyxl04iJ9gjYm/JpEmShikhBKGESVNUozmi0RzVaIokXzdFdZojySTJNC1KIs1MCtUzKVTHueEaJoTq8R7yoE5PtolvhI4vz8CbD87x42DsDKwR0zELTsUomEaDYrI3tIfy8B52B1ayc//vUS0VgPGZE1hU8hnOHHEWs/LPkA+XlQbEjBkzWLVqFW1tbZ2a5ZWUlPDMM88we/bsQYxOkvqfSMtHO+Vzgx2GJA0IZ3uNarYnZ1CWL5MmSRrCwqrBgaDKgWAi9b8upNLcnijpVuerLWm2wSyjldmxRqaGaihtqSKruQGHmWzCoTgF3hwDX7GBL8/AXZSNc/JUxJjTMPKnEcmfSKUnnXq1ibr4AepjBzjQ8CoVe8oJ6UEAHIqT8ZkTuLzkM8zKP4OZ+bPJ9cpeiaTBc2jCBDBq1KhUj3qSJEnS8BVNK8ZO0zHzJuF0uJg7Yh4ZrsF5dpZMmiRpkNlC0BBWqWyNU+WPU9mW/H8gmCCsdn6WSUGGh+IcH6eOzOSKQoUpgXKKG8vJadiP68AB7JYQ2MlESnHbKPkm+ikWkRHgHzeCxpJRtGXmEvSkEXQ6CVkJwnqIcHw14dDbGPuMTsvLcGUmuwAfeT6n5ExlSvZUJmVPwesc3u2SJUmSJEka+myHB6P0gtT7nEGqZQKZNEnSgLFsQX1IpdIfp8ofo7o1QpPfT1ugFY8VJ5M4mUqCYq/B1ZkmYwoNCl0qOWoIQgHsQBijJoJo0XC1WLjUg/OOZAoaC2H/2Qp7i5zsHg1NOU5QPIdEoAE1OGJ15OjZZHtyyXZnMyajhFPdOWR7kn8jvCMozihhTHoJ2e7sT/yNqZIkSZIkSccikyZJ6g1LQ4m2IvwNEG6FWAgRC6InAsRiAYKxILF4lLgWRTdVTEvFsg3ARCgWxcKiSBEYKOhCwUTBoSl4EgrehEJ6TCEtCr4Q0F754wCEG2oKoWaawv5ChYZRTkKj03Fn55LtG5H8c2dzqSeHnI5EqP1/TvvrDFeGTIQkSZIkSZKOg0yaJOlQpoozcgCjZQ/hmh1E6vajNjVj+kPQFscZMnHHbTwJ8OpHTzyy2/+65mz/62LxToVElhs104s6OoP9s3IxigqhuAhXyTjSxoxjpC+Xye2JkM/pO8ECS5IkSZIkSccikybppKKacdoCZfhbdxGu20Wibj9GcytKWwx3QCcjLMgNKeRHwCEgjeSf6YDWbGjKUYjluoh5ncS9bqI+NwmXF8PhRfFm4PZlk5aRR25WPoVZ2YzKyiLDm4bHlYbX7cPrSsfr8uFyeVCcrmSNj8MBDgdKZhZKZqasBZIkSZIkSRpihlTStHr1an75y18Sj8cZM2YMjz32GKNHjx7ssKQhQgiBZtqohk3CtJL/DSv5p1v4tQD+RAOJcAXCvxclWIcr7Mcdi+KO6aRFbfJDUBgSjAhDkdV5/uEMhbYsN/tH+lg7KZu69AJq0oo4kFZELH0M2WkFjMnKpijbR1GOjzHZPmbmeBmT7WNEpheXQyY7kiRJkiRJfWFWcTbNUX2ww0gZMklTPB7nu9/9Ls8++ywzZsxg8eLFPPDAAzzzzDODHdrJyzZRzAQYCRQzgWLGUYwEiqWBsNv/LJSO17YF4mAmYgtQDQu1PcHRTRvVstHM5GvNtNFMC80UaKaF3j5M0y0Mw8TSdGzVQOhRXHoQjxHGY0RxWypuQ8NtGLgNE7dm49UE41SYFYNMtevixNMUIlluogUZ7JhQQDhvLKGCaeiFE7BGjMKTnobP7SDH52Ziupu56W7y0j3kp7vxubtuTidJkiRJkiT1vdHZPkZnD53bEIZM0rRmzRpKS0uZMWMGANdeey1PPfUU0WiUzMyT60GZQtMQlpl84rHg4JOPhQWmhmLqyY4ILB1MHSwdxU6+VkwVxdRQjDiYanvCo7YnO2ryM1NF0ROgJ0BVMbQEppbA0DVM3cAyTCzTxDJtLNuBZSlYNghLwbYUhJ38j6WABYqpoFjgsBQUm2TMR+Fq/0v2sK8glGRypdjgNBWcBrhMcIhj19okPKD5wPA5ED43FHrQJmVCXgGZI0vILJ2Gs3gajlElOPLyGOHxHHOekiRJkiRJknS4IZM0VVdXU1pamnqfkZFBbm4uNTU1TJ8+vU+WoRoWH5S3opn2wfP69oREdH57xHsQRw5LjSPI1Jo4t/YZKpQAq11RhCJAiEPyB5GcB6AgEOLg+9SchM3IepPL/2HisPukyL3Q0UlB8jk8jvY/pwK6CyxX8r/R/qc72197FXQXmE7oQb7TeYmKA9vlxPa4sL0uhMeN4vXi8vnw+DLwpmfiyRmBL380mQUl5I86hdz8Uka4ZRIkSZIkSZIk9b8hkzQlEgm83s4PzPR6vcTj8U6fFRZmndByvjEm94SmP7pTgQs5Ffjsic7qoROPRpIkSRocJ3qc6qt5DAQZZ9+ScfYtGWffOtnjdPTLXHshPT0dTdM6faaqKhkZGYMUkSRJkiRJkiRJ0hBKmiZOnEhVVVXqfVtbG6FQiHHjxg1iVJIkSZIkSZIkneyGTNI0b948Ghsb2bBhAwBLlizhoosuIj09fZAjkyRJkiRJkiTpZDZkkiafz8dTTz3Fgw8+yKWXXsq2bdv46U9/OiDLXr16NZ///OdZuHAhN954I42NjV2Ot3HjRr785S9z+eWX84UvfIH169cPSHzHqyflKSsr49prr2XhwoVce+21lJWVDUKkx68nZRsu39OheroNQvK7mz59OmvXrh3ACHuvJ2WLRqPcfffdLFiwgEsvvZR33nlnECI9fj0p2/Lly7n66qtZtGgR1157Ldu2bRuESI+fYRj84he/YOrUqUfdHofrfmSoOp79wEB4//33ufrqq7n88su57rrr2Lt3Lxs2bGDWrFksWrQo9ffiiy8CoOs69913HwsXLuSKK67ghRdeGJA4Z8yY0SmeH/zgBwD85S9/4fLLL2fhwoXcd9996Lo+aHG+/fbbnWJctGgRU6dO5bXXXuPMM8/s9PnSpUsBCIfD3HnnnSxcuJDPfOYzvPnmm/0W39F+771Zh/X19dx4440sXLiQz3/+86xZs6ZfY/z973+fivGee+4hEokA8Ic//IF58+Z1Wrcd+9/+ivFocfb2dzPQcf7yl7/sFOOFF17IF77wBQDuu+8+zj///E7Dm5qagP49FnS1H4JB2jbFSS4Wi4lzzjlH7NixQwghxLPPPituvfXWI8bTNE2cffbZYvXq1UIIIZYvXy7OP//8AY21J3pankWLFomlS5cKIYR46623xGc+85kBjbM3elK24fI9Haqn35kQQliWJb7yla+I+fPnizVr1gxkmL3S07Ldd9994qGHHhK2bYuKigpx/fXXC8MwBjrc49KTsoVCITFnzhyxe/duIYQQK1asEPPnzx/wWHvj5ptvFr/5zW/EKaecIhoaGrocZzjuR4aq49kPDITGxkYxd+5cUV5eLoQQ4sUXXxRf+cpXxAcffCC++c1vdjnNn/70J3HHHXcIy7JEW1ubuOiii8S2bdv6Nc5oNCpmzJhxxOebN28WF110kQiFQsKyLHHrrbeKxYsXD1qch3vjjTfEnXfeKZYsWSLuv//+Lse5//77xcMPPyyEEKKmpkacc845orGxsV/i6er33tt1+M1vflP893//txBCiK1bt4pzzz1XJBKJfomxY78TiUSEZVninnvuEb/+9a+FEEI8/vjj4plnnulyXv0V49Hi7O3vZqDjPNzPfvYz8cILLwghhPjOd74j/u///q/L8frrWHC0/dBgbZtDpqZpsHT1fKgPP/yQaDTaaTzDMHjooYc455xzADjzzDNpbm4mHA4PeMzd6Ul59uzZQyQS4ZJLLgFg0aJF+P1+9u3bNygx91RPyjZcvqdD9XQbBHj55ZeZNm0aY8eOHegwe6UnZdN1nTfeeINvf/vbKIrCpEmTWLJkCS7XkOncs0s9KVttbS1paWlMmzYNgHPOOYfGxsYhvT12uOOOO7j77ruPOny47keGquPZDwwEl8vFk08+yeTJk4HkvrSiooJIJEJWVtc9U7399ttcc801OBwO8vLyWLRoEW+//Xa/xhmNRsnOzu4yliuuuILs7GwcDgfXXXcdb7311qDFeShN0/jtb3/L97///W7X5zvvvMO1114LQGlpKWeffTbvv/9+v8TU1e+9N+swEomwdu1arrnmGgBmzpxJUVFRn7SM6CrGSZMm8dhjj5GZmYnD4eCMM86gvLwc4Kjrtj9jPFqcvfndDEach9q7dy/r16/nuuuu67YM/XksONp+aLC2zZM+aeru+VCHysjI4LLLLku9X7lyJePHj+9yZz2YelKe6upqSkpKOk1XWlpKZWXlgMXZGz0p23D5ng7V022wpaWFJUuW8N3vfnegQ+y1nm6PXq+Xf/7zn1xxxRV86Utf4uOPPx6McI9LT8o2adIkHA4Hq1evBpInQaeddtqQ3h47zJ49u9vhw3U/MlT1dD8wUAoKCpg/f37q/cqVK5k1axaRSITq6mq++tWvsnDhQn784x+nmkNVVVV1uqAzduzYft8ewuEwlmVx2223sWjRIm666Sb27dtHdXV1p1gO3TYHI85D/f3vf2fOnDmMHTuWcDjMpk2buOaaa1i0aBGPP/44uq4TCAQIBoMDFmdXv/ferMP9+/eTl5fX6X70sWPHduroqy9jnDJlCqeddlrqfcd2Cslt47333uMLX/gCV1xxBc888wxCiH6N8Whx9uZ3MxhxHup3v/sdN998c+oCZjgc5uWXX+aqq67iqquu4tVXXwX691hwtP3QYG2bQ/tS7gDo6fOhDlVWVsajjz7Kk08+2d/hHbeelKc3ZR4Kjjfuofw9Haqn5Xr00Ue5/fbbh8UJd4eelC0cDhOJRPB6vbz55pusWrWKu+66i/fee4/c3P56rtqJ60nZfD4fDz30ELfeeis+nw/btnn22WcHOtR+MVz3I0PVUF6fq1ev5vnnn+f555+nvr6eBQsWcNNNN+HxePjhD3/Io48+ymOPPYaqqp3K4PP5SCQS/Rqbz+dj0aJF3HjjjYwdO5YXXniB22+/ndGjR+PxeDqN1xHLYMTZwbZtnnvuOZ555hkApk2bRl5eHv/xH/+Bpml8+9vf5s9//jNf/OIXcTgcuN3u1LRer5e2trYBiROS2+TxrsPDP4eB247/+Mc/4vf7+frXvw4kayXcbjfXXHMNfr+fb3zjG4wePZqSkpIBj7G0tPS4fzeDuS5ramrYtm1bp/OnCy64gMmTJ3PllVdSWVnJ9ddfz7hx4wZs33Xofuihhx4alG3zpEma3n33XZ544okjPr/uuuuO6/lQmzZt4p577uGRRx5h3rx5/RLriejJ866G6zOxjifuof49Haon5Vq1ahXBYJCrrrpqoMM7IT0pW1ZWFpZlpZoAXHDBBRQVFbF161YWLFgwoPEej56Urampifvuu49XX32VqVOnsnbtWu68807eeeedIf97O5bhuh8Zqobq+nzvvfd46KGHeOaZZ5g8eTKTJ0/udOX3lltu4eabbwYgLS2tUxkSiUS/94BbWlrKz3/+89T7b3zjGzz99NMUFxenbgw/PJbBiLPD5s2bSU9PZ8qUKQBcffXVqWE+n48bbriBP//5z1x//fXYto2u66mTQ1VVB7RH4bS0tONeh4d/DgMT95NPPslHH33E4sWLU8v6xje+kRo+atQovvKVr7Bs2TJuueWWAY9x/vz5x/27Gax1CfDGG29wySWXdEra77nnntTrSZMmceWVV7J8+XJmz57d7/uuw/dDg7VtnjTN8y677DKWLl16xN+kSZN6/HyosrIy7r77bn79618P2ZO5njzvauLEiVRXV2PbNgCmaVJdXc2kSZMGPN7j0dNneQ2H7+lQPSnX0qVL2bVrF+eddx7nnXcemzdv5jvf+Q6vvfbaYITcYz0pW1FREQ6Hg1gslvrM6XTicAzt3VNPyrZ582ZKSkqYOnUqkHy0gsPh+ETc9zNc9yND1VB8VuHHH3/MI488wnPPPcfpp58OQGNjI36/PzWOECLVfGfixImdmuRUVFSk7kXoL+FwmNra2tR7RVGwbZu0tLSjxjIYcXZYvnx5p+NSbW1tqpkWHFyfubm55Ofnd9omBjJO6H49HW3YuHHjCAQCne7b7O+4n376aTZt2sQLL7xAfn5+p+UeepLcsW4HI8be/G4GI84Oy5cv75Tk2bZ9RI94Qgjcbne/Hwu62g8N1rY5tM9KBkBPnw8lhODee+/lZz/7GXPnzh2MUHukJ+WZPHkyhYWFvP766wC89tprlJSUMGHChEGJuad6Urbh8j0dqiflevDBB1m7di0fffQRH330EWeccQZPP/00n/vc5wYr7B7pSdmys7O5+OKLee655wDYunUrdXV1qZ3jUNWTso0fP56KigoOHDgAwM6dO4lEIsOmI4/uDNf9yFA11J5VmEgk+NGPfsTTTz/d6eTn73//e6p7X8uyWLJkCRdeeCEAl19+OS+99BKWZdHc3Mw777zDFVdc0a9x7tmzh69//eu0trYC8MorrzB69GhuueUW3nrrLfx+P6Zp8tJLL3HllVcOWpwdysrKOq3PP/zhDzzxxBMIIdA0jZdffrnT+uzolrqiooLNmzfz6U9/ekDi7Fj+8a7DzMxMzjvvPP76178CySZVgUCAs88+u19i3LlzJ6+99hrPPPMMmZmZnYY9+OCD/OUvfwEgFArxv//7v1x44YUDHiP07nczGHF22LNnT6ftVFEU7rzzztT+vrGxkXfeeYf58+f367HgaPuhwdo2FSGEOOFSDXNr167lkUceIZFIMHbsWB5//HEKCwtpamripptu4vXXX2fz5s189atfPeKq35NPPpnq7Wio6Ko8tm2nygLJH8T9999PMBikoKCAhx9+eFhcIT5W2YbT93Sonnxnh/r617/OnXfeOeSbHkLPyhYMBvl//+//UVVVRWZmJj/4wQ84//zzBznyY+tJ2V5++WVeeOEFbNvG4/Fw9913p3oZGqpaW1u5/vrrgYM31TqdTp5//vlPxH5kqDrasWgwvP4JTV73AAAgAElEQVT66/zoRz+iuLi40+cvvvgiTz31FOvWrcPhcDB79mx+8pOfkJWVhWEYPPDAA6xbtw6n08kNN9yQ6v2tP/3lL3/h5ZdfRlEURo4cyc9+9jMmTZrECy+8wF//+leEEJx77rn85Cc/weVyDVqcAJ/97Gf5wQ9+wAUXXAAk9333338/e/bsQVEUFixYwPe+9z08Hg/RaJR7772XPXv24PV6ueeee/pl39Hd7/2dd9457nXY2NjID3/4Q+rr68nMzOT+++9nzpw5/RLj3LlzeffddzvVMBUXF7N48WJqa2v56U9/Sn19PQ6Hg6uuuorbbrsNRVH6Jcbu4ly8eDF/+MMfjvt3M9BxPv/883i9XubNm8f27ds73Te0a9cufv7znxMMBnG5XNxwww18+ctfBvrvWNDdfujNN98c8G1TJk2SJEmSJEmSJEndOOmb50mSJEmSJEmSJHVHJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEmSJEmSJEmS1A2ZNEmSJEmSJEmSJHVDJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEmSJEmSJEmS1A2ZNEmSJEmSJEmSJHVDJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEmSJEmSJEmS1A2ZNEmSJEmSJEmSJHVDJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEn95OKLL2bx4sU9Gvfee+/lrrvu6ueIJEmSJOkgeZySpJ6TSZMkSZIkSZIkSVI3ZNIkSZIkSZIkSZLUDZk0SdIJ2Lt3L9/85jeZN28eZ511Frfccgt1dXVHjHfvvfdyzz338Itf/IJ58+Zxxhln8Nhjj2Hbdqfx/vznP3Peeecxe/Zsfv7znyOEAEDXdR599FEWLFjAGWecwRVXXMHbb7+dmq6trY277rorNe8vfvGLrFmzpn8LL0mSJA158jglSX1DJk2SdAK+853vUFpayqpVq1i2bBm2bfPAAw90Oe6KFSsYMWIEq1atYvHixbzyyiv861//Sg3fsGED6enpLFu2jD/+8Y+89NJLqQPKc889x9KlS/mf//kfNm7cyI033sj3vvc9GhoaAHjqqaeIxWK8//77rF+/ni996Uv84Ac/wDTNfl8HkiRJ0tAlj1OS1Ddk0iRJJ+Af//gHP/7xj/F4PGRmZnLppZeybdu2LsfNycnhpptuwuPxMGfOHObPn8/777+fGp6Xl8f111+Px+PhU5/6FAUFBezbtw+Am266iX/961+MHj0ah8PB1VdfjWEYlJWVARAOh3G5XHg8HlwuF9dddx0rV67E5XL1/0qQJEmShix5nJKkviG3VEk6ARs3buT3v/89+/btQ9d1bNvG4/F0Oe7EiRM7vS8pKWHdunWp98XFxZ2G+3w+NE0DkgebRx99lNWrVxMOh1EUBSA1/JZbbuH222/nggsu4LzzzuPiiy9m0aJF8mAkSZJ0kpPHKUnqG7KmSZJ6qaqqijvuuIP58+ezYsUKtm/fftQmDwCWZXV6L4RIHVSATq8Pd88991BbW8vf/vY3tm/fzpYtWzoNnzFjBu+99x6/+tWvKCgo4JFHHuH6668/YpmSJEnSyUMepySp78ikSZJ6adeuXdi2za233kpmZibAUZs8ANTW1qZumAU4cOAAo0eP7tGytmzZwjXXXMPYsWNRFIWtW7d2Gh4OhwG44IILuO+++3jllVfYvHlzqlmEJEmSdPKRxylJ6jsyaZKkXiotLcWyLLZs2UI8HufVV1+lvLwcVVUJBoNHjB8IBHj++efRdZ2NGzeycuVKLrvssh4va+vWrRiGwY4dO1i8eDFZWVk0NTUBcM011/Cb3/yGeDyObdts3boVr9fLmDFj+rTMkiRJ0vAhj1OS1HdkQ1JJ6qWZM2fyrW99izvuuANFUbjqqqv4/e9/z9e+9jUuu+yyI7ppPfvss2lqauKCCy7AMAy+9rWvceWVV/ZoWQ888AD3338/Z511FtOnT+eRRx7hb3/7G08++STp6en89re/5eGHH+b8888HYMKECTz99NPk5eX1ebklSZKk4UEepySp7yji0HpYSZL6xb333ksgEOBPf/rTYIciSZIkSUeQxylJ6p5snidJkiRJkiRJktQNmTRJkiRJkiRJkiR1QzbPkyRJkiRJkiRJ6oasaZIkSZIkSZIkSeqGTJokSZIkSZIkSZK6Mey6HG9piQx2CJIkSVIvFRZmDXYI/e5Ej1OZmV6iUa2Pouk/Ms6+JePsWzLOvnUyxXm045SsaZIkSZKkIcTlcg52CD0i4+xbMs6+JePsWzJOmTRJkiRJkiRJkiR1SyZN0rBn2zqqug/ZEeTQoMUMYoGhX4UvSZIkSVLviaiBsE6ecy+ZNEnDmhAWlZU3s7f8i7S0LB7scE56ibDO2/+1gzef2kZjRWiww5EkqQd000Y1rMEOQ5IGhG7p7AhsJ27GBjuUYU2YNnZtFFEfHexQBoxMmqRhLRxZSTyxDUVx0dzy39h2YrBDOqmVr21Gi5s4nAo7P6gb7HAkSeqBZeWtrKjwD8qyG8Iqlj38r1TvC1ew1b95sMOQeqBVa6Ep0UBttGawQxnWbDOOKdoQUfO4phNRA3GM1ijxxC4Sib0nEl6/kEmTNKyFgu/idOYxftxvse0Y0ej6wQ7ppFa/O8CoSdlMv6gYf22MWFA205OkviCEwLDswQ6jV0TMwG6MH/F5IK6zrS5MWfPwv1JdHa2kVWvpcphpH99J5VAU0Np4v/5dIka4V9M3JRoJaoE+jqp3Opry2xxM1i1bdJu8hxIGcV3Wxh4qHF1FTBz/hQK7Ntrl/iA13DbQtP2o2r4hdyFcJk3SsCWEIBrbQFbmOWRkzEVRfESiq3s8fWNjA+vWfUwicfQf78lMW/Y+iVf/hjB7dsCPhzTCLSqjp+RQNCUHgNZq+YgASeoL5S0xPtjbinmciZN9jHs9jzW8L9g1UURAO+K+0453US25j1Ettc+XnUiU0dz8+lHvebVtg3h8O6bZ1ufLBtAsjRWNH7A/Wn3McW1b8M7uZipa+6bZmGWbaFbfXLhqVZMJYZvWu/W0I7CNjf6eXdQUQiBE/18gUA55/f7eFt7f23XSC7CmOsCqfT2rjTXNALreuaVF3IxRF2mioqX77zaYMFK/8U2tG1jfsiY1zBIWUeP4jqn9W4t78Dvq23vKDyanljW0ziFk0iQNW4ZRj2m2kJFxBg6Hl8yMM4lG1xx7QkBVVV5//R+sX7+aDz54t58jHX6MbVuJ/PRHxP7r1yRe/VuPpmmuTO7cRk3KJntUGm6vk5aa4X8FWZKGgpaYDkBU6/nV7n2tMZaWtRDTE+hHOXmuC/Z9otIVIQTvlrWwtzlKWDXY1xrD5Uietpq2oD5ex0dNKwnpwT5drqpVdTvcsoJo+gEi0bWdPjfNAEL0voZod3AnqxpXpBLB5kTjMaex2k88K5qi3Z6E2sKmIV5/zPlt9G/gw6YVmGbghK/YOxRn+7ItzNYE9nF09nO8J9ThyHLC4eXHNU0y0erZcgRHjhfRTMqaon2SZESia4jFtwFQ6Y+xtjrA6uaP+L/Kj9nXGktdJOiI27KS340tBGurA2w6kLwfOKC3EW6v2bNsk82tG1nbshpb2AjDQiS63z4jqsl7e1poigxAi49DOoMQCfOEkiihm9D+PciaJknqI7HYFgDSM85I/k+fhaZVYVnHPlGvqNiDpmmMGzeB6up9RCK9a3LwSaW++W+UjAxcM2ehvvo3hH3sq37BxjhOl0L2yDQcDoWCsZmypkmSTpBp2Qgh8DiTCUaiMYbddmSiY9qCQFzv9FnHVe2VjStZ1bSiy/kfq6ZJqCbW3iCii6ZJ0VgMy9K7mOpIHedU1W1xVlcFUrHZwsSytFSyFDX67kJLVaSSsnAtlp1cP8fSUTsQaHqdcMMqgqGlPVpOV7U59fE6dFvDoSS/t67Ws90Yx244WPMgRPKEXjTGEc1HP1msiuxjV3AHLYnmbuOKJEKgWUSiawiFl2OanZvH7WqM8M7uzvMQqpn6riNGnGX179GUaOxUDrUuhDhK8yohbGy78zbRVZISTBhHPZm3bRVbJIcJSyDaOympiVaztrlzaxLd0ljZuJzQzlrEYccbf1SjIXzwtxKPb0fXDyavhzabrAupqKZNTO/bppTlzTGCCSNZlvbV0BAKYdsGqmERiJTj97+PZcWJ6FESVjg1/qHWtKwmZCR/IwKBXRHGqgqhaTVH1uAKAyGMVFnqQkffloQQ2HaCRGLvidUWtf++RMzAro5gl/X+4oddGUa0JmNWDbNHndTE4zuJ9PCi+YkY8KTJMAx+8YtfMHXqVBobkxvvhg0bmDVrFosWLUr9vfjiiwMdmjTMJBK7URQfPu9EANLSpgGgqse+eXDv3t3k5RVw7rkLAKit3d9/gQ4zwrLQP/oQ9znn4fvs57BbmrHK9xxzunCLStYIH472q8f5xRmEW1VMY3jehyFJg8WOGcmTDyF4f28ru5uiKO2Niayghmg68iRoY22QdfuDqSvlbVobtmg/2Ygb6KEayhv30XZYYoVfTZ2UdkWEdLAEItx5unBrnH8sfYvdle+lPquJ7iegtaFaKsvq3yOiHlm7YgW1VNIXT1SSSOwgGt+eOmFTFIUNLeu6vUlfxOPYra0H35s2kZoIpmoiDBu7NoLQLSojFbRoIVbvV1JNryKRj4lGN2BayQtlYdXsON/DtpNxiVYVDiuvLQQVLTFMWyBMG9Ow2XwgRFQzKQ/twa6LYQc1AnG904m6sJPr1rKPTAZFQEMEk8sRQqBuaSavMYEtDNpa38I0jzzxFJZNvKoVNAtDHHlynYq3IYbdFMduPRjL4SeVtYHO29E2/0Za9lZTtXsHVdE6/tVaTYthsCOwLVXTpFoJPgitoEav7XK5sdhGQuH3O8fcRdK0tjrAlvYaFSFMTPPI3lYNUydRGcSuSH5X5eG9RM0IIT2IMGxE1KBNb8OwdfYbtYQiOnF/IrUtfVzpZ1vdwQuimn6AWHwzup7cFprat08hDFyiDoeIYZg9Txx00z6u5q1aSEPEDbbXbqQlsIoVFX5W7kvGoqplrGn4kMroZizbOqKWU7WO/M1r7CfWuAldP9Dp82DoPYKh98DSsW2L7kKMR7cRCi9H1fZhGMeuDRW6hTBsDMum026j46pIHxzvBYCRnN+qyhgrKvzUBhJHrGvDsqnyxxFC4I/UoOoBTCuMbR/9d3GiXP0256O4/fbbOe200zp9FolEmDt3LosXyy6jpZ5TtUp83gko7TvztLRTgWQylZEx56jTmaZBU1MDs2fPJS8vn7S0NOrrDzB9+ukDEvdQZ1XsRQQDeM49H8/cswDQ13yMa+qp3U4XbklQUJqZep8zKg0EhJsT5Bdn9GvMkvRJYVlRWiu341BPobnUYL3/I2rUXGblzwY46glQQ6gNvTmA5fOhZlhsNjfQoKUx0jMeIhq2o5H3Q6soyDiLL58+Izkv08YO6oioijI6o33+Jrpeh9c7DoAP2j5ggl7CBEfyolSb5sepOImF25Oz6MGAysMHL67oWi3Lajdz+fgbceA8eOIcO3gyGFcrASe2nXx8REeCETKChIwgJRmlCAQOpfP1XX31RyBsvJcsBMCsDOPfF8a1N8SYmfnJ3rwykidOgQQoqoErI3kyZxpB6qMOcnwtZPjms2pzPWOKHUwZYUMXJ/cdana2Ut4SxZ42gklBkzbTpNklaI5oFI+CncEE3rCCpQRQUHDlgKG3EI4sR9NasUUcw5iJyzUCcKC019xEzAhlzbuZlj6NrHoVo62VXZkbidUVcpqnjOlTzknGbZu4HC7QbLDBblUR+TZCmARDS/F5J5GWdgoiZqBkuFPJWE/Uh1Tiukl18ANqVR8uCons0hGlcwlZNgVuJ4atY5lRIlqyZqrJbGZ81EDJdANg2AaGrWOYrV0uw7Y1HIqny2G7m9/Crx6gKPciCnwjU59vrFqGf/8kLh2Tj/OQ8Te0ruPC6NlgCdwTkss3hcGalgi0RFg4uwilwAemTdzfimHk4Xa7U9Mn1F2YpgeXKxchBLvqy1FEEJdoo9qfS0HmuG7XV3lLlLpQjIRuMyYnnVnFOZ2Gt0Y08tKPLKutWQhTh1wob+04sU9uc6reiN2UTNYT7u2EI+4jpk8RAl3UY5OAqImla+BNDooaUWKmSobLR6TyPdRwNq2OmYiAhpnmxO07eNovVBOtphwl1wMZbuJmjARBcjy5QPIiSJ43jzRnFmurA8yZbEGFH4/i5n1DJa66mJ/eUbhkjZWht+Iik8NZRpzmpmfxpBWRyyWdhkU1E6/LgdvpwPargECI5D1nHfuNXY0RDNtmYsHBc4nNdS3Uh1WyvKNZf8BJbppgjnMNab7TgDFHX38nYMBrmu644w7uvvvuTp9FIhGysrIGOhRpmNO0fXh9k1Lv3e5CXK4CEomybqdrbm7Ctm1Gjy5CURSKikpoaJDdY3cwdu0EwH36TBz5BTinTMXYuKHbaUzdIh7UyS5MS32WMyr5OtxNMxNJkjozrSBv+j9kyYH1rGpaRZu5n4DexP7meuz6GAJI2OoRN4RXxjZywN5DY7iej/cvRzcFqh2hPL4WIaA85CJo+qlNbMW225tFJUx0YSAO6VwikdhNLL6TuNaQ/EBApV6FhY1pxVjf+C4bWtfhaK/5OlqaYbR3rBCNrgNSrXc6sYUCliCuaSzbt5RgZAcKSrKXMgFb/JtY1vAeMSOGEMkOG4Qw0HSVrQdq2ROoJBoPo2nJ2hTbFgcDEhBKmDQEFPSwjtZWjd2mYtXH2dOgsKnc5MOdH2IEQ4QOuTffH9NY3+I5Il4tZoINoiZ5v9H2lhihQAI7omMJFcOOETYbSSR2Y9sJHIk2TC15XDHNIDYCy4oTDL1LdN8q7OpkDchHiTWsaVrJ2rq/YIkEAasBAbj9Tagfb6W+roUVlbWsaPyAxnhDp7M2NbiTaPu9WKq2D39zC0t2NNDW2rnp3Br/bhLtTQiFEKhaNYbRgi0srLjGtuoA5S3JmjBDBFDFXkyxHw5Znfuj1ajaPuKJ3QgEBs1YNQdrcTa2rmN180dHfMdCCMxdbSQCO1H16iM3AqAyUk55IMT21nI2+Teg2yYxU6U+rAAWpi2O6KjDNJNJR0ciqQsVW6gIYRONhbFsEyOgUhXfzD83v465N8DeGieBWHsTyPbaiIqaEPv2x1M1uaapoWkNVDRu5kAwjG3bJOIVqXuUACpb42wOrGJffAM1wRDrm9eTUDXMcAh/pIX6sMaBw5vEHbY9Hbz4kXxhqXqnUTpqPZPjGhh6U2oephkiIXZTG2tiWb2XD/YlaI0mv9+1TR/yUXMFHbdN2WYCYQv8+xt4d201jYfUgtJ+f6TQk7//ta0b2dC6jnhiF8Gdb7Fn9ybW7l1BqCFKuC3B/+x+i1XRD9uDEGDabGtLJndCtQiHVxFr6XxvYOr7qm3ACrZhGEd2tvFRZRvr9rc3PWxOUBXRWN7gxbLB0JuIxbYCYJjJDkJEew3rtrZt7AuXo7Xvv4IJBSEsDu1Ioq8NeE3T7Nmzj/gsEolQXV3NV7/6Vfx+P2eeeSY/+tGPZCIlHZVlRTGMplTTvA4+76Rj3vjb2Jg8GRg1KnklYvToMVRWlpNIxElLS+9u0pOCWbYbJScXx+giIJk8qW+9jrAsFKezy2nCLckdcXahL/VZZr4Ph0sh1EVTIkmSju5AzGZvtIrsWhcgELYgGK4jXZmMLQSr42twtGTw6TGXAcmbxAFM22BLeCtOj872mkoyvOMBENjodvLKra43sKHyQwLG6VyalsZGbTUB281kzsO2bZY1fkwgFiE9LcJnx12CKYIIO4Pn97zFxNGNaGYclGwiRpiwHSRL5HZdiLhBdkYWVtRI3qQP2MLAFjoCB4YdI6Qmm//ts3eiZLipsRT0vftp0MOMTm8g5tTIyJ7NmoYPmeLIICszgqK4aQjspiHeyu46LyUZhVjxBFOU0zBdBxAiH1OYCFtnf1scy7KJxwxMs4Z4cCIf+NvIMXPQY1HUdAWTPHS7vemjFWHdvhXEDYWEpaSul9fH69gfjwMuKqMqReluAobJnrYmZuRkE4tupkUL4XKAEDoJdQ8ZaiVevQ6RMQHCOiK3/XRLCAytOdUkUiF5s7tqOWmOBrDjbsgBp5pAcWZQVt1MXUaUEY4QLXV7KDQP7mP3RLfhTJtIjicDIQzWt+6mLjyaTc0RLlI82MKm2WwmyzJoUoOMTx+JXRYknrEVJdtDRdzAaIuQrRRSVDwDEBjUkczMxnTZrE6zddx2C3Grgc3qaxRFL8Th8BE79EGxQmDVRbAKPSCctFk7iERtsnzh9sEH5+uPhmmKmuxuEviCAS46ZTQbA+WYhkkoMh3V2kvcttH8+zDUIG7fSLBhm7qdM3yzsWwbU49Trq0nQ5yLkyzWhiIkhImwpwBQF4xTZddStVOhaoxF+uRGPO7k8a2hOgSGAe0VO6Ixxj6tjI8iIULs5IqMBYxkM0JkJzdr3cKRiIMtMBwazVoV5dVNVMdhlrOM5jEqkI1p2BhRlZ2RlTh0hTHaIdnuobm9BZYh2FNfRVV0FEYXVxcisXL2NjcxtsBJlq8Auz1pqIwktynD0qgLx8lytJD78TbKnVHWqE5mdMzAslnRsh0cCi0NuYy0FBSPg1hQp3F/OoVTjGQyIAS2DWpbBaADTrRYLRF9E4TGEveY7NLKKPGUgFKCiJkEcBA2LLKbExhmiJBhkZN2RBEQansi00XzPSEEkZiOVZa8566mvdObsMrB5zllAArE41vQjSbyci8HYWFZMcoaD793WqG/DHjS1JXS0lIWLFjATTfdhMfj4Yc//CGPPvoojz322GCHJg1RqlYJgNfXOWnyescTCL6JECLV/OFwTU31ZGfnkp6eTJBGjCgEwO9vpaRkbD9GPTyYZbtxTTs1tf5cM06Hf76KVVWJa/KULqeJtCQTo+yRB/eWDqdC9og0QrKmSeoDuq7z1FNPsXTpUizLYtmyZTz77LN8+tOfZsKECYMdXp9J3btEhLEbDpAoSCNekk9YtBJXQow1zidYU0t2enGqBUrICIEwiZr7aYhnUuj0gYCEGcThzOl0L4AwLGobNDJHANluLGEQdWjoegDdcAKCAyEFVzxBKG81eqyatthMmk0/Tp9NvebHaZbT5vXTYDcyOpKBsAVK+72M2IBpJ5uRGQa7zT3kOqOM811KOLgRl1BoBtS4hqlmdyq71aZSk/EhzUqImmCYi7JHEFHW4YuPJ+bIJSvNiapWIhIWtm3RHFUZnSZACHY43qXO3sf4li2IZj/BaBEwCkcUFNOgxl3Jn/dbaHobRXoaubaCw3TRKhowA+lQmoFOI7ZIXhgK6DqxhEFGlsbu4E4qzAQTHDMxRBsfNDYjRAF+5x526CG8MS9xM3lSHLVCOGwniabRkBnADmtgCRKaTVPEIPuQbpqXNQSpd+joLsHKlkbymgW24cRhOlMn1Ypt02LUkpaoRlNbwDcrNb0Z06ly1TF7xBRC0W0cSOQQFWCZWcSdcZrMZtqsAJg6tfEWvMYoHIaOHTVxZnswRfvJqWhBi22mNLNjqYd0Ja1b2IaN7UuemBq2hZNkkt5gNtBQ/SoZ+e3N4QV4WmuxoxGanSG2tGlUqxkUBNzU4GSS00k0HOKjuoMdQHy0r5y6kAOwsC0/tp2HaVuogQgVbTVE8bI+6GOeU8VMtOEuGEGiMYiuuNG8Gi9uf42YegAnIYpsjTQFdofrwBHD1d5C0RCtbI68Q7M1GqtNYxLJe8MwRer35gAsYdKiJgg1Q8wTxbTjbGmoIjNnD9VmDoqI0LIlh1N2B8nLaSZQPAq/XkWTup+8sMlebxNqs0mhLx07IkiYfojp2IbgQHvlnybi7PFvIsM7DVxg1gn2KTp+M0Z5WEUIiymHPlbAttjRtJ+4rlDbHKLUbKEmms6uijZERj4xYVAfX0m4rRY70IBh+skMm9QU1TBCZCJwE22sIE6UdCuDfbVlxIMebNtDKNTACFvHSDhI1PipDyRodjaRluMllmgmoBWRqdRgOEcDY9FNnea4g/3uGmxXUSrEj5sCXFKUyY5glEZVJbewhQyPjbfJi+JzonnriYpN7eU5ZF8U0hCqhWiII3xOghkO4pZI9qppQXmNjUEbgjiWfRp5DRvw2BvRRsyCXLDtMJoRZHPgDYqcuQRNP2v8Ya4qnEl/GRJJ0/z585k/f37q/S233MLNN988iBFJQ52mJpMmn3dSp8+93onYdhTTbMXtLjxiOiEEjY0NnZKjgoIRgEyaAISuY+2vwnPe+anP3DOS9yCau3YcNWkKt6goDsjM93b6PGdUGs1VsmdC6cR1tD54+umnueeeewAYP348P/3pT1myZMkgR9d3VEujWY+jGgWETIu8qEpcCEza0O042yKlBGIqvuo6xHSBHdAwtCgCEOgc0FsZwRhE3KDVoaOn6UxyHFJDrNtYhoYRbmVZQ5QDRi11CQ+B2BtMF3ngTV7FNg0/VihZ12KINkzTxjLBrybItOrZGvTjcWb//+y9e7BlWV3n+Vlr7ed53nvuI2/efFRmvSiqSrAUpG1RINBmBiMc7Q4fM4FGKNMaPUaMITqKGkaLtiPDxASBE6FGC9MxQzRqB2A0AiKo1DjIQ2koqEqqKrPynTfv8zz32c/1mj/OrSzSSlqeJUp+IjIyzj577bv3Ofus/fut3+/3/TH1goPL76HduxNjZsjdxd/Ka8nIFUztZdZmFU+uxFzQF7iX51P6GeKwCOOGAERWEQ1zTGOw/TneeT43lSyLEX1jqeQG29dPk8+2uEtv4ZtFaKAxltKM+EhxlV5rl9UmZfPckHN6m2TzX9K+qliqz8H9gtpdY4pH6wPqokvbVMwDzbzewWf3UXc156ZPkdR9zo5mLMmAO9YWK+SVfzp97ToO2Klj8KjM++oAACAASURBVKAO2jw6DqC1sIq3phcJS0k8bkHT4zPqAJ84njqQBKbmO1TFY9MdPmV+l6Zcx8gJW+V12mIZL+xiwc9KnBQIAY0tMGZMVi/qmow7jOgc2p4iM1yaTvnT8ZTL1jA3T3FP7fk4IywWnEMgmFaCJ6aKJ8eP0Z4X3PvYecTJk4t0Tz+nHhW3LqCfNdRcwZAj5SLKpd3n9SsqDKY3Rrs2ewc1cvy3rAjLpV6JYcq03EC4Po3Q5Bn8zRMfhu4/Xwh2oGn0wQ3BEmEF9RWDHwgM+/TThlm5yVPjbVpG8RejDpu7BbV4gh5LfGfXM5ttMTGa9RQa77g+F+yaPTaCPVzTJfAxxpdMJ208IBoBxqGzKwSiixALkY8yz9jiPFO9xwuj43BYkrTFR3keoF1D5B071y5zdBSTihnjzXW28k8vjvm0L9BYvLUQSCr/JM6USJKFtDhzpn6RnjbJxhStJ5k3l1nJEkgW36llip9uAAG7O+ew+9t020fJxzO8bZjVR3h8vgNOcsGeR+PBSOys4LreZaAbMHB9vMd6Agdlh73qgKh7mRU5YMVZPjLJMb7kRJZQBjW9gzEX/XnG7gF82PD/7dcYPSetnuJkNIV4ISFurKEykoNsiJtfoXMYij3IPssnMOwefggT/0mkj/jcU20K/ykefDDC+YLMNnTcM6lzemsPJRYHMTsVH/UldUfhaZAK5pnDs/hdmWqEcjPICsZeMzJj3LikaeYEKmUcDcnsFO30f1X44ivl68Jp2tnZIQxDVlZWgMUkGgRfF6d2m69TqvoCQsRE0c3FfnFyCoC6vnRLpynLZhRFzsbGM+NarTZp2mI4/MKN7b5RsNeugrWo089E8OTmMUR/CX3mMZLv+4Fbjpvtl3QGCSq4uUyyfyTl8meGNKUhSm//pm/z5fPII4/wF3+xUOVSh2mi3/3d382b3/zmf8jT+qozridczAR11WJXHGGZITgNTNlml0L/NUd1jd2fYi9fYnhpwvbwEqdkwudEw1CWzA4bUls3xpUBeXRYu3DY1+W8fYLNM+dJ2+u43kLhLWPOE6NHsVkf0b8DHzjsoYFzcT5lUrU5khjQGl1GpPM+844mco4PXf8wq3sf4cnhEZxY5mTXcmlLQQBTFxFWu9gmgpVn5gdVFvi0Q8Ghqlxt8Y0lKEp6uqQ3kpg7BAezkANXE2M5LR0te525Njxtvnz2/DZni7MEqkAaxWrQQrsxadHnoLrKqnfsxDkVglB30MKDNVytOrSbDuvtjL24Bud58tw1ojMx4/AJ/IlNRoVgp9zhydFFcmuxwlAYh5MlZ+1fARLhkptVvZyjp/dp3CmKcUKY7+JVht1skQ9r9JLkU5drDlSfVsui7B5UYyoZYylx5DifYyXsiglP1Y/RqTTTkeSTrX12m4+yFQ5Y0RoHdGP40PgyYZni1OI8Lh5cZm25DcbhC4toBFZAXEsqXyD2RzwlLKKsgJChuwwomLQ53pWEQuOFo9EFF6clczHkZDq58Xz9fFSpST/8ET539Cg67LNuHbWqUFaxPjzJtcxQlxcZrhs2rmdkUUb8wm+nuTBHqyFbZp9JWBCECUkeYUQBYYz2lonPML5mND/PdrFELbs8mp9HsEdX1ZydXcPn4FTFtI6wpaYZ1cz7U7LE0/IGh2PcGJbyBOcdq1WPzl7NKB6RSIf2B+ybEbtmjJMZXjoqDwfNjFApetaS5AkpIZXeoxx6ihmcCi12ssslBQ6DOYy+3YgQin0KN0ZTEHMc7a6A3qKKF3budrmDtTGRdmTjDLFWgZ3SyjPGXGZ7eheT0WXa1rKTXwcfEEyWmQaCYm5Y8g6rDbkqCX1CYyusc7iyJB41RN02n+ocsGI2GYp9Ej8lJWKJAYV1TO0V4nqVO4I2o2qHbe3QicPXFuECorIHcsTlqs2xUlL6Ra0z3nH37HGu2SOLe+aQa7mijh0ex8WZorUMW+UudZUxO9/nxTE8Vg3pKs9R6ZjbazTiLHu6w5N1w53+PlxjOZPvUYaf5luTO24SgNGjbXS9i0ngkWFEODzHqC6RxhBd3+L68ZQ6DmiabfLyCnF47Iuec78Uvi6smHe+85089thj/PZv/zZKKd7+9rfz8pe//B/6tG7zdUxdnSeOT91QznuaOF6k6VT1BTqdFz9r3O7uop5pY+PoTdtXVlZvO02AvbiI4AWf5zQJIQjufwBz5rEvOG62X91Uz/Q0T6frzfZLVk/erlG8zZdPFEUcHBywurp6Y9t4PP6Cabi34mMf+xhvetObKIqCzc1Nfuu3fouNjY0b73/605/ml37pl24ac/XqVd797neTZRmvfe1rOXr0mbnjNa95Da95zWu+gqt6NlIo8AK70I1DZCXd639LugKXIs315gKr8xWK+QmubM2YHGyR6IDPNTWTYIOyfZYzs4x134GwwtVbPFlaJBDHbQQgnGe7uMqLdq7SeSAFBnigupxhs3vpbCwz2zxgZOZMa0AsTMF57kj8kO6kxdhaTtsOKpScCzSfcTNElRC5gnZ4gDTLZGTMRcbUadp+idWxwxqDUhnR9lPckz/AmdMtNB5pPa2iICgbTs8n4J7PfidAdQNWXZ+AFhfDbTp2Rm3HFL6Lt56iqah0QlvNcHh2yhnreomGGXWTYwAtUmZ6F6FG9GNPq7obbRQ5jo4K2OvBU7MpuzshppmCCtgrFcm0y0dHj3Gp3mdPAv4cndAwii7giRaRCxsjPi+dDQ+h03gsINgvJZV3bDUB1+R/IZxmaKdQBFhXs1xaQufQgVsUuOABy9Vwl3BmENdXOKKWMVFM7Rx7NiEqSz4WZKxLSNUVeuVd+MKxLguup5a90vEZBEfiBk+D3sqY23XuEAZvDbb4BFU4wGUd6jjHMEMSUNHmupGsiprGzRgP/5iJTpBSczLXSApc0sI6R2M1kQqJpiVnhgICjV7KEDagDgX5FPpOsDZtGNuMjesNTGu2OnOm1/6AU+NvZ9S6yMXwIkETQAjCC0Q1w48mPGILZs5h3DGmWC7aISOjqWVBWzmMl7xv+69QdQvZmTOrY5bGlu7uARljpp0WrXhx36bNlKJeJQBaWlE+CX+zqnj+ygGbPmTHXKZ2U5TQqEZyUVylsZbaDVjaHhH5k5xo93lyaRtBiyDfBwlHRwoO12Z3xQ5HkYepZGP+Zl9xemkCRIuIZDlkWPeo5BmETGmsQDTXCasNMiNpi21k7WhlBVm9x2NPnMA4wUQPebQSWHOK+w9vMVPmzJptXlhGnOlEbDczSllT6326fgqlpz0uqFJFKTwTtUtHT9kxCWk0wzaajeE+dTDgYL9BJxrfA+U1TkA6XsK7EuI95maVv9xuce+ypZ4PCU2F3q9Y717igLtuRHW0E4y0QeAopjHTRhGbEcyuMammRJsjtLBkecnj4mEen+esR1BGT1CaAbVtYx3syQskzDBoosNo9NRJrnOGIL/MkayNH3iaS58iTktMavFAdDClWe4yzB2VK7g55+Wrx3PqNB0cHNz0gPnRH/1RlFK87W1vY3t7m+/93u9FSsk3f/M38wu/8AvP5and5h8ZVX2B9mFT288nDNaRskVdX7qxzVtL/ecfxDz5OFvrqwRBwMrKzVGolZU1zpz5DM45pPzG7flsLl0EKVEnbpZcDR94kOJjf81bL15hlrb5oUGP49EiPcYax3xUcfyB5Wcd72lHarZf3XaabvMV8eM//uN8//d/P6985SsZj8e86U1v4kMf+hA/9VM/9UWNL4qC173udbz1rW/lgQce4G1vexu/9mu/xu/93u/d2Oehhx7iAx/4wI3Xn/nMZ/iN3/gN7r33Xh5++OHnpDWGdg0l+xi/gfOeZFbRb68wHUwPHal6kQ6kHOcOPPvZUxxzyyBaxM0qgS6gDWm9TCcuaJIDRDlGAF29Qp1qDI7ufISX9zA4WGbaN/QkGGfRtcZNYbx8wEf2n2Q7ayEag/AttmeOKDV4YcFKvJcM1R7TUmDzChsULDmBFTmFDJnLGd2JY4oiUCN61V3oYAchK5JaUTeauhgzCy2hMbSbisjOCWqPDwy2bJBlh9W4RTd3fC7aoVYzBrpElyXB44bNzGHDdRLZYvfUY+zuCpK6j3IWVSeLvkqyojWuOCY8dbckDAqS2oCt0VHDPFe868IO92QKX1fU3mCcIK1S9vMpJA6EoDCOOPQU7plnRGdWc8Qss2nP8KSEoogQxqD1lMr1OLAxVhh05ek2KfXqnFIrdHzAsbzHN11ZAlPy2D1QXd8iiiJsp0UwugPNo4TNLrTvYaJrgizmyHRIOBrxyKkZdeC4vmNhNsL7mGWXoFzCfrDPzkHIpDWmUnOG5S4d1zBu38HMzBi1CwaznLnuEsQLuWyPo8ETOZgKQ+AsvtIMifEktGZ7BJllyACXaexSQJqs0p8eI9HXSaZdAhHgE8E500ZLgyoUykY4B0s7GcvThunRb0INEw70Wap6BIHBI2mVC0dbTg3eZayFd9ByEUNijg23cdGcpn8XxgQsyYzUJrjiGHGR0s4UemMbKxyh1lQ48jLjVCFZDlrkToPTeJkirME4cIXlWtSw1gSYIKPw+/R0jLQBgW4jumOEysn8jL2qRrUqtMlwDqbs0G7uY1bPqK0GJDkZQx8imfLXZUbMJk/MnyL0q2wUJ8mLZZ7yHjFPuctlLDUpj0QdRBlzPLjKQS7pmQKHIfMZH2n+BuZTlsSIUK6jCocwnmXTJpqNmIVzmihmqVxlXKWopEGnjv1RhEcDjsRkjMMLNH6P5z8+Ztqp+Mwde7zwQod23bC1kjHNK2RpEF0YFLAXSKz2ON9wl72Dqe3weHvCyORUfkI42SbamVGFI7y9iyYvUc1lmuQoBZ5x1UIhCIUlqS/SAsJmTlDuY+SMrNXio5MxmTxL6I5iKktQjYmyPbTzVJGFw4hp4zLG2nBO9MilY0+WLJctylyztL9HyxRcfWCVmAZZN0xHLfbDHsYYvlZe03PqNK2urt70QPp8fvM3f/O5PJXb/CPG2hytt0nif/Ws94QQxPEp6kMFPe8c83/3b6n//IMQhmy//GWs9Jeepa2ysrKKMYbZbMLS0uA5uIqvT+zFC4t0vPjmGWfrnvtYBj76t/+FT93/Av5oNOVtpzZ5sJUwH9Z4x01y40/TWopRgWC2f1sM4jZfGT/0Qz/Efffdx5/92Z/xPd/zPbRaLd7ylrdw//33//2DgY9//OOcOHGCBx5YaEr9yI/8CG9+85uZz+d0Os/uKwKL59LrX/96hBDPWWuMg3ybl+Qhw1JgmpqlYBXp2szLKZM4od1kCKtpnMY2cwIP82ZEoBJoPGWwxwtH99LVId35BLsZ0/MCHRrWbA/vHTM7YVOcAC+JrUI6TeUE01oQ2op6PmeSzflUNSWtAo5PNilEQVqNqWQb69QiKuAFVpRE85LCOgYHIwLVoRh4lE6I2CFxFSUBRTUir+5kNU455jpY6zkbTJhlHerukOVyRqhrCgGhk0gLjW1ARnRHJap2bMwU5aDBVw6lY45eyRBlSbbSIcCx11icFRx4iyFcyHwDHTPg/klF168z9VuUiac1z3FyIbeczxVR7BmbnMAvFtp0Yxb/W0F3OqeKE2atJzmQm2gRkR5Gl6wPiFzFxkFCXV0mFQ+wGpxglAbsmoRJy3IqD+lVAXVLc05VGC8oJ22SCiozQHjH8qQh9Dm2dLT3U05mir2kSxlofBOiimVcb594uEetFd5JxkVMq8gwjaGrYirnaWkNwtKbrdKZx9S9ixTW463EB46RGLMVVUhzjGgqcG1IC023SQhDmIqKodIsO0MtQ9JGgIxovFo4f2WB1AI1P00vWmdqrrPm2szLBqMCdgKFUZq9uubkDKJ8g0hVRNUcr07SeI3JJcYe4JoRMt1F+SPkosQ2+5xvWiw1EtXTQMjxkSeeOtKgIhEFSi6zJpe5sznOVlnRPSgIuw3V4AqmPs5cbWO9x1rLaq5Z8lOuyGoRt20agloilME7y3iSY4N9hBAUwqKY02nWSJo+vd0pItzGhgtZDJdfpJ3vsGvvAHEEi6KqCyZNhbAtTNbj+Z1rXHQxcwej+eOEcpdeYGjPL2BERWVjAus4XbVJs4IrYkpHpoROs+Ln1K5iLOPDOrOayIFyCUui4oFzmiadkqxtEPuEudJIpaAuiWyNbiR7IuBkNkapkJN1wNpWzCeXLdJE9MwSdjaiKWOEd0inFiqHzoPrwXBA0IZ+tsQkt+iogiChtpotd4aloqYIAgJrOLOUceBHHN3PyYd/y8AUlPcmgCInwXo4mI8IgTUR0vaLVFIBGNdg/aKRcVqfoVXU2CLC+g0gJTENjfVUxZicCZUXdOyIUO5Se41GMyiepDN+lERu0LBOqUuMb0MIwdYxsi3Nyr1fm/n5G3dJ/Tb/aKmfVs77O3LjTxPHp29Emqr3/DH1n3+Q1r/+N/Tf/xeMV1YYnH2S8g//401jBoNFys9oNPy7h/uGwl66SHDqZiWymbX8TLqME4J/N9vjT+89yZJS/NzVXUrnbjhEt0rPk1LQXU2Y7VXPeu82t/lS2N3d5ciRI/zYj/0YP/3TP80P/uAPsrKywu7u7hc1/tKlS5w4ceLG63a7zdLSEleuXLnl/g8//DBxHPOiF70IuLk1xqte9Sp++Zd/mSz7u1K3XzmqntOxHcDSoo0JThCVmsZLwiaiVRg0ntob5uMPEpUjlkcF8axAmoZvHa+CyeiPPIHx9Oo5SSNJDmsuMu1Y2w1oeQl4oqLBOoOxe+zjsMLhrSaWQ0JvEWWXhgalG5w1aAfloekgnAJ3mIjmHdJ5pHdUo2W6xYC4XuakPsVdvk+vauFKg84drpY01YDGQ1V4vuOxS6xM9rEYjNDgPVIbWjONq/pUTcRITTilPUM9xTf3s65eQkf0Md4hjaU715y8upiLrG8WaUPe024i+maZDm28i5DzAcu7Oco4pJNILVi1GaoRDPJNUt/Ceo+0Nb6p8GXBXeev8bJLOffnEbb+FJvXLhDnGcpErNs2Ye0Rssum+ue06CNcTGICUhvTmxV478A52vMZe1VDbiCkxlcdrFUIJzk+9Ivmvi7n1MgSmZI78y7aPZP6F86XEAYEjrqCl15JODk6ims0xouF8l/eZcYehpJj0zb37h6jVazTnZxgOh8j5x7lAlTjuXd0lPhqlzsenfNtlwe88ILkzkcCRtk6l/OIuSsYVIa7dgaY8T3UWHTlmdaCxhvyocWMDT1T0GoyZD1hpCtU3ZAUNbb2WNfQ0YrAHkWg8DicdvR3h3TGFc2sxI1z9l2G14b+tT3MdHE9gbEIXVPInMZbOmVIrxQcn69ydGfOxvUJ3awhLg2FN2TN5yhlBTiCOkWNUppMszSKEc5DVWMNTGqBsxnd0Q71+eu0/TaFCMlEQyZmBKbCG0VuAyon0N6hCsPpx+csT2YI3+AchONl+pM17HyJcOQY7QRUxeL7SuYND+YPcXy4gZgavIfQWkwdgJMoo+mYPokrqaw7FJXztGyOdx5XZ0zDMV54urrEAUHdIPI5xjvcjaTQhUSgw+OMwDjHkegeTs06LI0E9xwEPJits+LuAqPpjUqkrimCfZZHNd47nGtjnMBXAXIyoLIBvu5Q1Y6oDOhOHb5so5pFaq9BI7xj5M+TS81QPd0XzGO94Ji5yv07j9K7vsNqcYXQlbjDai/nHZWdgDBYXdDYmssoPhudo8HRFiOimeLyzDPyKWbWI2uGOO8pfE1pD9Ccx6sK6QxaW2IDy8Uq7aaF1JaqeKaB9lebr4uaptvc5kvhabnxJLnrlu/H8Skmk/dh5gcU//534aGHeGp9idkH/zMeOLK+QfEffp/4lf8CdeQIAMvLi+jSaDTkzjtvrRD3Tx2vNfbaFaLvetlN2//P3RFbYYy74zSdz36co5/c5/fWXsL31Xfyn0YzXrRfgoDu6rOdJlhEoIZX58/FJdzmnzAve9nLnlW/JKWk0+nwiU/cuqHi51OWJfHfiaDGcUxRFLfc/61vfetNKq5fSmuMTicmCG7d0+zvw2uL1J5aFqzKFYRraJcOdT3hBWGP1eEUowKGscSagNO5w1oFViJxRCLA2gDnPC1dgd/jWpxz/1XPqjhAtNqEeY7THhcCztEfZUx6FusFhVw4QWgQePq6h3QBvWYdZefkzmK9Yf2gYtNK4tiQk3N2AxwOaR3FbpsosEjdIXEpoY1Z9glbeKJwTstqKiRRVbNiDNI7WnPLTLaxzBYOmPe8IDvGJdHGFor93hOY+d3cae9jWR5dOBjCI5VnUNRYCWll0QjW/TpjN0buzUlVf5GSpTwKT9VopAzAg3CSqAi4//qI/dU2ibeEvoX2FuUdcS5Qeo4VlihO6dZTorDEmQnpcM5a0iKqOuAEukkRBMQoHNCIhXJdqCuKuE1iDG2xxD2zmMtBTiUdobbkwoDvIew9uEYgpcN5h0SjFJSRo8HQyRtQFl/1icMhybBheVZihaPb9gRSk9SSWeBoVEYlKyZ6wHoVsVIucdwOiKZ72H6B6ENAgKwlR4YtdH0C6wdYVSPkBv3Csdua086mBHaZdNIwCwR7g5zYrDBqDD0sa3VBaEui2hLgEQR0JgWOhiiSi+aprkJ5i3PgREBYW9qBZY3j7M7O0w0FzmUkrQalQbiQ1twjDQwmEcerTUZW4Sg5ojfQMqFVZYhGENcGLUES0Wli2q4k8AntVk3WHGPqEpZsBXqDxJTUvouzMJUVhZyi4pxe03BncMBkJJhJyUB4kmLIkhEUSkE9I2waelnE3EN3XoBN8YFDmIQXT57HBVmy5wtKrRBjx2zZcbdZpls6OrOQeWrpHVg2ckskV3A9jREgvESiCVyNDAKccxhjuMc+n/7OhKfSBhuKQ4fKLRT46oIycsDiN4+J8N7QNhEnzSbLgaSxCoHjEmvMK0GqBmAta/YIdWGQZh8TNqRVSS4CGrWYO9R8BY9AOENaWrp1TRgI1tb2CMM2UdnH2woESCxCicMKvB6qiSilomkE/bKgsz9HY5l0FbHb5XoFNlk4d7lraJldvB5T+BbWB4TpGCGvsaLHOLfEOG7TtqtYxsS6xTgYs1atYFzNXmeH6emC9NycpdkUSkNSloS9HqAZ5XOWlr42PTe/LKfpjW98I69+9at5wQu+dlrot7nNF6KqziNERBTdWh0lORSDyP7qDzHzjL8ZpIzf+5+oVzZg/Tgnf+wnqB/+MOU7/h86P/u/AIsi816vz3B48Jxdx9cb9tqVhXLeqWciePva8K7xjH+53KN7apX6ox8n/dSH+Dbxe/zsQ/8r/3fwXdyzb2n3I4Lo1kZidy3lyqMjTGO/4D63uc3fxxNPPHHT6+l0yrve9S7a7fYXNb7ValHX9U3bqqq65fidnR3Onj3Ld37nd97Y9qW0xpjP61tu/2LYurSLMo68dZ2itQHThJzjYCYMZnNKf4JRcIygcsx8jCkVpe2QuhYuUTweSk5VGcYVVGic9dxRHMMUUx5Jukx1h5fnEyLjmfcgnud894HmshozW+3j/SrKTtncrthZ63G8XMXYFSbMCAJY2y7olzmB6YEKKJsB/eYktTsPGNo2425/P1MfM8xb7CUVR9GLYnjnccIyUzWqSAhwuBIqL2nkQ9hmFeInwB5gDx3k4zONluCdxDnNUnb0sDnownxp4g6Js+S+IXMx3mpCCwO7xBllKQPFXbpBe4/wHgF4s1j19hKiusEYxcAIIjUhEA7lBUED0jhKWTAXAV3TJSwkK6VA1JJNTrGaLy3EOryhviEG4TE4PCGICFSLSie8wA+4rHqMak0U1FRe4J2kVhG16rNUavCCORHJ4aq8dwIT15h6SGoVVldgNIiUb995BCHvBy8QIkBZT8+EaHmOuI7pTwWBcWgf0cs8KvIEwpKUfdrqNLPE0LUhoZNUSIwXJI1GBgmJMSRmTi5D+rrhiFtlvzlKPrmGmASktFl1R3G+ABry0FLTQtiUdU6zU5wlTQTSgfSWtblmJJeJgx67safvYqSrCWuF94Jpa8ZgNyCxDgPIUGHLgA5LhN4wMDBi4eR6uZDKCKwndp5awZpbQ+SnGbpd+u4kpXZ0dErhI7oeMtvHS0WLmlajibXDuBIjLZOooms1myLgnvkAaCMmMyIZEdHiwF5GCQV6eVFj2JRY57EenA9InGfJtBjahildvqUesMMW1DX9mUdagY8d3dySuhZK1zS6TagzQgthVbCSxrSbFfaLbaK4T2AiVs0DsF3Sk9e5dCqiLZYxTYZrQVR64rxHJCosAatFSBrGNPEMoY4xl20qVTBxG3jj6DJFOliSLyRqNGP7URIeAAxdl1IzJ60HlBZmJdw9OyCPPE6s4aWkR0XlYpazgkDHeNMlLEKk1RiTMpaS0xcr7FKbWBiwUMkIbQTbpkAWhgORIZVg3nfUTU6Up+jxKlUgkNaTxBm5Oo+bp6zVI5ppzujIPrWaU/kxcd0BN6VuBvhiH514+t6wvntAHVdU0hBlAe2oR97MmUxuvRj2xbK2dutU7C/LaRJC8PM///MYY3j1q1/Nq1/96i86r/w2t/lKqesLh8p5t7594/gUAPmjH2D7vrsZH+zyip/8OT722UcY7u5w/synuOtVr6Z673to/cS/RvYXHe0Hg5Vv6PS8Wynn/cFoivHwP3Ycveav2W1Cdl/1PlYe+WV+5vH/g//rW17Azo5kbf0WLcAPeTptLzuoWN784gzc29zm76Pf7/MTP/ET/MAP/AA//MM//Pfuf+edd/Inf/InN16PRiOm0yl33HHHs/Z9+OGH+Y7v+I4b0ubw3LXG8EgwISfG6yjXEGIBibABgfOM1RGixpF3skWNAOrwQW5Ia0mmQHuF8g7TCE6V65ShIvIrCDegU0tq3wcRM/GWjitohzEr1Z3Mi7uZSsELyi5TfY06aTOYlUzVFKsEUrVYGxkiVtCBQ9lFfxrvOtxTD8BJjshj9LKCHqs8qgAAIABJREFUyMWMoj65jhBigneQNpLSWXTToeUtfTPnkXidwq6TmnWUUdwTZqzGU7bqRV+dRZ6dQwiPNAqpPCqy2DpEIhBIlAgItcEahbzaRpsAT0VgLIGERnnwDqkFMhJ4BPYwHQoPTvRwwiDxRN7S0uDmGcoO6KsWbXEv1i+j7Zj7Rp7dwFG2ns/QWjZcifcG6f3Trg4A6tAx67JK6Q5IGgcpyEDikBwrNvC+YZFKZkkajYs9Q9nFE3DSDTFuGaUzlscNSodMxYS6tsRynbYqkL5kHneICPBeskyHQeWZjdYYNEs48bTwoTi8QwT4hFCnGBVwoKYcLdbpySN4H2JZoSccpwrBLN5BeokVnhqJcJLNS8/jSBNhrKZcNpSEhA60iHksWMNaxT8rDliaHyeNTuB9jAkNdSTpuxYlkmULYWPBe8bBCtru0dHrLOt1MunBCeqkxVinHHMpVkIRg45jVuwyYz8nMClLwTpRqybTVwFBr4gZuwjhPWm1yuZs8Vyf1UsYNyVu4Mh8iohaOBxx7VmeCXwkkOUK3eke65lgFmqsDaHRrFaee4LnU/k+lQyoA4UMI2yt2AvaTIkY2AJlPJuuz3GTUNU9VoqcWkywzQpCThAGVoKSu0m4XoXgPUHVJRQeExqkq1GNYd1s0MRtnFOAIBfHKXxIx5W0aeNVRGM0oYaIZVyxh04C5vRI64a+d1Sqi8BhfBcrAP9MdF56CHREZFeIRYK0ioQ+QS5RRvJUHGNtQR2mxM0YERgIHatbCcI2BLkDPKGVEDiUHFEYA1jKIOOu6YDVVp91fUCa5UjZx+4qilZKMDUIalZ2DctxQSsXqErRMpKjIQTjFl54jlsNlcCaiwxmI6rUM9t0uHlIJSQjOcfUKdKEdH3NsSZnHJzGCMFys0Sc5+zORl/1efnGZ/jlDPrFX/xFPvjBD/I7v/M7pGnK61//el71qlfxlre8hfPnz3+1z/E2t7mJqrpA8gXqmQCi6CQgqcQ251uKzftfyLEHHmJa5CyHhjMf+mOCBzrQ1NQffEaYZDBYYTIZYa39gsf+p4y5eKicd3LR4Ld2jj8azXhpJFn6y1+n1Z8AUD52jvnL/zeSashPbb+HZlTTvUU909M8Izt+u67pNl8+u7u7N/3b3t7mwx/+MMPhF7fQ8ZKXvISdnR0++clPAvD2t7+dV7ziFbRaz07jeOKJJ7jrrpvTf9/5znfyK7/yKzRNg7X2a9YaQ7uUJF9BWoFlYTx5IgTpIhJsG6QHvMMIMIFCCocDtFJE1rBHh5lIMNF9dPIOsZWo0KG8IzKOxmQUznM+7HNRriC8IxZtOkDiFU2gSP19rI4j9sOCcTA9TMPxLAUBAQ7lwRMivaMdrnBydoKHxqsIZ6nwNBKUjFAupqs17TwkLWqKsscRMyZAEx4dkvRz2v7kIhIlPH1R0KjTxCKhkRFlqBhEu6RBSdBAX+XIbo5AILwjUSmp6hMKx6rNuHtygJOePJVEASgLgXFcbY5SmITUDxA4PB6cp5YBabSB8xJhIdCCoC0YRAesJHP6ssMgPIJDcEEM0PGdPBRESByNUDjh8NIjPXRERkqO8w7nF7Um0sMgPA4CvGiIdMNd0yXSwpPJgIqAxsZYEWGlwquFozOUbQSeVh5gTEzjAecPmxg7TgYBK2GJwNMmJtUAHo9HeYeTYBRouTCaGyUpoxA8pE3Cku0hPYRW4+M2Vgi0Mrggol14vuXgQV4w/CZW6/6hiIIjtSnKOoT3KGOIfEmPjFpG7C5dYdLaJmzA0SV2AS0iPJI6DBZxOOFIjEB5v3DGZEQlUrq+y7o5SWTvoBMeYZJCKHKiQqCcpkoVQgWExtOnQzJfxooecbSKQOCFJGgcJ8wmwjs2txuSXJBUjgaF9IpQgxcWJxuEgOW5Ja0sogYxcoj8JNvubq7qVaJakmgIRQgCnBBsB12eWn4eTdLCRm1KESzS66wnNI7U1xgbUKDImj6BPU0WLLEXrVCoFrVboS0W0v+FC2gkxL6Nd4JAezKl0PEqUoKQjliDcGC9QtUdPBIlAyLjQIBwArxgv+wQGU9gDXdkHrGc4/oN+zIhkTknoi2kd0hACUOqDSfEnbQ5hhZdpA2JfIJzEmU9iY9Iwz5RvIZfTDTkJQy9x/g5VfeAZv06Va+m7IQol+Ntxsw2HJQNdekIC4mqNa1ZRjwfEk8PYFzQn16nN7xOezrB6hnKTrjam9CZjekUE4qlmmJlRhEryjSkSnukNmZgCpaSjPXrc1af3KJ7TtK6FNCeF/SqOUf8Bj2WSWu9qOubfvVrTZ/mK1omu+++++h2u8RxzDve8Q7e8Y538KEPfYj19XXe8IY33FR0e5vbfDWwtkDr6wTRD/C7H7nIk3s5//23HuPFJxarSlIKpIwIqy758ZLmiuabXvZK6v/8b2j083ix/wQfdz3OfPw93Leiaf7o90n+u+9DRC0Gg1Wcc+y+/T+Q/On7iL/r5bT+p//5S+oD84+Nx8uaf7u1Rywl//tT54iPHUfECwfonRcvM7OOU598L8dn7+Wx3r3YtOHau/+I9oO/wYuOfyc/eOUjvMf+t7Q/TzmvMY7Ae9xHd3AHFa1vWUNImO3dVtC7zZfP0zVN/rAxiJSS9fV1Xve6131R45Mk4c1vfjO//uu/TlmWnDx5kje+8Y3s7u7y2te+lve+97039t3Z2eG+++67afxP/uRP8oY3vOFr3hpjVlQkPkAszCTwCo2jLduU1hK6GSZdwguJ8lCrEOmgFeQM1JQtayn8BrtBSugCMA6lKwIRAAIjG0pREllJbI8BEusbukGLU2KKR+B9Cs7zLU3A2aQm9wmNECy5hNPxaaayIOM0zntMYHAioi0KIuuIy0Uk5dCmQwlo2xTpDATr7JoYlCCSDbkMkfOcWPe4O64Z+oSa56GweCXBCZCLkvdEH6EElAkAhRGL+gglIjweEca0ppJex4CaUxCDaoFeCF7ErsU0tqwoz3Le5UBapI8RQCkDSkK6QjNWLcpkg+e3rkKxhhGORoGIC8LUkTQZR0RJlzk5PRrkDUMqUAWRgAvLM7QLcVWHTltSlJKhhyLcoYgNvjiCRaKwXE8qlF9lIgPClRlu1kGFNY0RKAQ9emwFPWyY0fWWlfmMRHi2owfpNwFdkWGrLkUaIIOG/brAKIlgGRBIDBvhGplYpCfiOzi/huY60oPDAgovF0Y6OISTtKqAWse0/SbO1gshA+XpqjFj3SawllU5Y1mNOKgHqLDBiwZPSNlSHBMJXRJ2bYX1HdzhpyStxUpBFSukkXTcgFQtMUomrBYri0irFyQuRfkESQHCYb3EC00RjLGAFw6ERwVtIg11FHCnrSjtjOsuJo5SWNzNJI2gHfQZSIh9TVfOWCJgbZIzGkjUPGFWr4NYoW0DHAeLb0co5GHaZS0UbU6zFmzTjdrs+ApvW3Trgp4oqIkYux4V4jACHOAQbCeeOhDcWS3sCBk4Ci0YYDF4UtdFUFL6o6CXEeS0q4B5KCCIEKFHNCVOOhofgFJYHJExjIwgcQXIFvJQGiK3CVZI+uE+tYiwFgIMwgdUYYBxmpapua42MGGf43pG6ANquYiqS+HYkLtI4Rn5Dg7Jp0+u0kQB37Z/ESUlJo0grZBTQeFblDRsRUu0enPGSUN/ukpoTmH9nMsbnjLpkTanOFI/ybXehKvH1vHOslfsoSvH5jVNFBl0qwEtacIUG/bIEkFrolndThZRM6Mw8RpZt0MTC7bjkHYjKFCkXlHgwHuq6itLzfuv8WU5TaPRiPe///28973v5ezZs7ziFa/gV3/1V3npS19KGIa8733v42d+5md497vf/dU+39t8g/O0lPgfPXYP7/jMVXpJwCfeNeJ/KBKOE/Dgdx/jnn92BLUrMJuC9tKA5332V/j4uAfA0df8Pvf9vx/mzF++n7tffATzgfOk//5fUf3UuxkMFmk3ux98P6eCgPIP/yPqnueR/Iv/5h/ser+WaOf5uas7FM5jveHg3DmOP2+h03n27OP8wfaITneZn20/ippLjv3I77O387sc+cTH+OMP/AlL3/xK0qcWhuZ2R7A0r/n1PzvLxy+NeWPc4aW1hFTh33ORteX4tuz4bb4i/m5N05fDS17yEt7znvc8a/vnO0zATb2bniaKouekNYa3HoQEHEiB6Ba4eQuLxARrIA2REkTWoVVAhxk2Shioxe/riNBccxFOghZ+oc7mA7QPQAjyeEzWKknqGJvsYlSC1TGNkijnMU3GmpqB7aJURCAMWi4cmNg4NEvAAcI5hLAop2hHOb6teCIZY4oHWa9iMhmSihxFCR6skjSBJPABwisEnrJeByr6AsCznM5RWhK5ABskGBexJ/usiK1D0/UwzUw68tgjsGAkSgJK4khoWkeIRI33KbEQ+GDOyEZAgEhK4mSOzo6iw5qWT6m9YxyFSCyWkvL/Z+/Ngzy7qjvPz13e8ltzz8rapCoJ7SVRIJAlJAxajBAG1A4CIvCATWNPw5ixJzzYjfEW9rjdXhiH3QG4h54GY8AMNMZmMYuxxCIwwiwCCQntJdWeS+XyW99yt/nj/TKrSlWSQC4oi65vRIYqn96799zz7nt5zjvnfE8MDRxz1nMQT0cPSEWKqefUBUgsNtQJUhBEYF+iCMpwUT/BRQV1ZxHSEyLLQB3BuwQpUrKyQ011CXoW4QOTImYgB6h6D2UcXgUKKRFRgfAB4xMm9CTKtbkXGNaGpDksJhaRZiipKGLDOSzTM5cwNujzQPMIg2iRYdzGqoLIJmzSi7SUoUcMEjQlY1KwJDVNO8SYVaSeJgAPR1M0QslEZpD1DJ8rYl3gbcALmNQBbwTNqMfATCGVoCu2EMIMKlrCC8EDajtFlBA7GEYZa6LLlBnHCA/BI0Llx0ZI6klCjQZjNmMtqrMlWmRM5uyTNSRVaqAyIwIEITC6it7ler0JMDT1FFmkUE6S08AmEUURH+PKCkg9AzHEF56YAhCM6Sab0838w8SjdEyHotjEFPGIxgP6GhCbEX5149lMXIz1Uyi/l0ldsjfUabPGwEcgQYYqCqSExEuJQdMRKTI4HIYkSol1yWb7CJIY6es0dJXZ4oMCIXCugcESMFVdHAIrFEuySU6TaTEAn9MxKzws+6AmiT3URJXJIQlIchZTB2TEwwQTQQgxHo8r17CmIESwVj/CWCFIMsh9ROQcUjg8ghhPpHPK0GQY5wQJw1aX8bUGyjYqZ8xYcCU+GMZcwVpNMUwVtq8JcpKg1yDKiYeBblogBluYWDnA/s2baHRKWguBw5NNlusGVfeUwRFlZ+Fdyv6JjEECae5p+jWEC5Q0GKaSXuzptyKmnET5Bk4aojzBa0kIHln88Gqnn5LTdN111/G85z2P1772tVx33XXUasfXM/z0T/80H/3oR0+JgGdwBsciLx6mWzT527slN100w4VHlnj3UPCx+pBfH5/k25/ah7AF4UAfdaXj/PEV9NpD3DvxFmZUnfrUNi7+qZdz35dv4e7Nl3OheoThnXtp3/6fMFf8DoRA79zzGP/d/8TaL/4c2fv/iuSGFyF+DBve3tLts7+0vPPsOUJeMLN4mPteeB0Xrq3wqa98kf3P/Sl+NVlj8/w/kV368zCxg/YLrqX/pS9wfpTy0btWeVG4AIDbpeUdH/kuC72Ct2wXXLNf8j6R8fyfmmHnp4ecF0vuOpOedwZPASdzYB6LN77xjT8CSX5EMIrlNAevCDJgdMVUNbAJhajh4lXq3Isv6wybbVoyo65yFhlDBIkPLfwoOh4EZJGj5oYUIoHQQMUGVZZkIaId+qB75CbgpGStVuLlkJaJQDVIgKGIyNHIIEf1MZA2Hav5o/ggoZYySWCvnyWzKb3Y0iyazMgjLEaWFI8ceDIpWFQNpI/RoSq2sWYMyEmiDKE0UjriRKLyBEXEYgqenDxoQI5IliVNv0YeOYxp09Y9ElFgg6AR70CL6qt0HjQTqsNaMqBjp2h4g8ejrKWXZIhQY7tYZiWkBO3wKDKhccIyaQ1FqCGHfVxakseBoRriwhh5zdEPc9RChyAtTnUorGYQp0RB4EaOXc+m6CJH2gyoWlpIHwgiUC8FEzoh0gVdBEqIdR+AmsxR5RpFUaPTaBN0TDARAtAYPBIVqjQ8KwR98wwackBDDnmEZfqJxQaHq60S5S2MlSyqGos+ZdZOMRWtYpWmoMZkkYFPCcGTyYr/bkCTbeIQM3I/97S2QFkjIwZTrUvIgFI5Mhmi0y4r1CmMYLa3g5X0MFvUFoqyR14L5KrEe1E5SqqqF8r1kCA0252nlJ5VIfHaomSBGI7YLX0gLdZwNCikwEhJLiMatqAAPBIjFdJbVBThhaWuNKUH5QRFeg4eibaKuPR0W55ARpsOxju8czidEFSb2MfERYQTCQRNwJApi0ky4ugQeTGHVZImfVRtgdU8o106GjIhKQ8g6kMK1wRviNSQWZfQSCYpsj57G4bZsETHt4hkgyRMM1f0mKZNVzkmfYc6OY5AoTzBC0KQDNMAqqAdJlhya0S+Sy40TlTxZ5xnRdVIcxjWQaWGEo2zCgh0dAFOgwiUGmo2UGqP9w6XKiKrkeUiKavsT9vYss6qSiijih5+WRtmco/VmgERuciRyrJfCwaNAh1k1V4g7pLLjE4+QV2kpFZSqgZWFSw3PdlZ++j7jEw1WBx/mO1uhSwb0nErlC4jNAqMj7h/xiE1hLggrq/iQp+hjpnuJazWJa24BFmnLyVZlqJDTiYNq60xIpOgPDgUTmqU6hBl/8Yox2+77Tb27t3LpZdeCsBgMODBBx9k9+7dG+e85z3vOTUSnsEZHIMi38Pth6+idJCs3YF+8Hwu3HonXx+cz5/X/pY373wF89/6b7ReaJESJs+/i6Vtv83hr61x+eW7ENkKTXOE86++jvtu+xznPOe5dB+4k5nvvp+weA7Nfp/+hRcioojaq19D/w9/H3v3XUSX7X5y4Z5m+Nhajy2R5ppmHXdoP50Q+OT4DMtf+2cemdqMF4Kfe/R9oCJWLvlF+stLtJ91OQjBFSriYNTkjoWrAGh9/AAHGfK7197PVV/fRtbI+ajJ+NvPLfHhc7cx+YAk7xic9Sj94+eAnsEPD3v37j3dIvxI0TFd+s0mUQbKOUogdpZ6NsATIUSJlJ7UFzRVj24aUR84+trS1SVTZcqkTVkNljwashJ12eYy2qFk3reYYY00lBxRbVKXMaW2kESag67LWK9LpjyrkaVbz7kwUzgiJJJWniJkVd+R6gbg6UUFkYq4ry7IVnNqYRVVc7isYDDmsFLQE7CnVTI+HGezXmLBzsIohWkg3SiBSrAaGwa+S1Jl7xH1BYUQCEoKpyiFJHWr9F2dtdiQu5zIt0mFpXApicyZTcY5EsCHwICIJpIgFI2oy7gxrIg6dZ/RSR3Sb2KrazPuByyJPrnU9JWlVJ5AQjnYgrYrjA8zmmkLQ8ALD7pG3+QQAjV3BB9yhEsIIcEHiet7ummN8XiAKnpkYQwpDMgqgqGinLihkMUMXpXH3HlP6QrqwuOFwcoEQoGWgR16iYeooi1aCJyUxN4QqAOSlIJAYFDrEfkGMnJI68lrXfZhqVsNycNExtIfTpBLgyLhLLWVJIq5R6RYqdmpFljyEySiIBcxq3GfTUSkOSzJBbra0DZVlGh/MsRqS8NG+GSFVlbQUoq5cpnMCVbrCisECLDSspQOCFIAMfUwZCUJDIucuq9XtTY+EFILA8kUK3ScRps1UiFpFY5nRAl9OaArIsrIkwVLrnMyBNIZBAJT0fUxqxfoq4ihncPLFI2miWZed8GXZKXFuwZFpNk22M5EKVn0KQjNtFqgW1MQa6wUWBtxuLGCJBBJ0AhqiSKRgok4xYaCpUbF7tgWq9RWUmK9Rjy5is6WUVlBO4YDjTqtUFI3NfAFsYiQ2uFkzIHE0RMFE0bSSFKEHJKFAePCEYkt+LxHEBG+yqfE2w6gcFJWgTRZ4iVo0WQL0/R4EDEigTfSoWNLLCyrDBFDKGMN3lTX5h2cK8l1gVMxA+HokJORU0aCzMa4cjO10KcTSgodaAlIbUEn1ZQhIg4loRhSdylbhzV66T7KyNOLmyTzDTZ1ShbadVZNQaOwlINJ0iyjPugh2ETdDBBRiR9bI86nOSJLnBoyMewSBU9905AjNLgv2gIhZltYwPiIRyYls0cMKs3ARUSATRcoHock7FTgKY38kY98hL/5m7/h05/+NGmakuc5b3nLW3jlK1/5uBSsZ3AGpwJ5sYc7jzyP6UbBOfedg9/W5b/84ut4/Ye/xf2LV/LxC97Bf5i4E7OiiactyzsjjvhNhLDKxUufYPo9FcvW82rncr/Yzp6ZcS78l5x8rUb2hQ8wvvtq1kYlTPHzXwBRRHHbF3/snKYV67i9n/EfZiaQQlCOmPO+s2krg9VDLJ1/GT9hFph96OM8MnMjH/jwR/HeU683eMn5F+K+9AXmrnkLnWBoq3lCZxM/u0VxwdJdJMPnol92Nm+rr/KGjzzK/zN/H78aLmZaCfrLBWObHp9p7wzO4LE4WR+kY/He9773RyPIjwompxbq5JFmNl8BB4mDupplUrXYI/chZCAWpqLhFhGliuiOUpcaeoxW5FlRh5GlJXaeyMdYaZEqAyRBSERURTdEgDhKyFSfneUECSmH04xNTJEow9m0GIZVtrv76BQFstmgI2JWoiHjjDMuzmaP2UcqVglC0zYRWkqCyxFCIiUMhOZcJsFkeLlAM5rBe8Oj8hCbwmZKvcpQZ6ihQVrBhGrh4z5pnDCdr9Dq5iylCmEymtQpnccYSyfOaVuQSISsU8qCxdgCnjqL4CWIKlXHEXBqQBY8hQpEosBmjoKMEFfGdqECkkAVzRpnPK3hgmBFgqWDwrGqBLY/JEYT5Y6asGRpinLzFGVC0IKadRALBIKtYoos7dAPq+ASlA9IGWjKZfqqXxFg4IjkgLIUlCqhiSDRfQIpshgSpKHqvCPQaCIEjZ7F1Uukb5FkA+bHwAWoGUU/Bh08CAcBhtqy020jLYbsdfMY2WJcr6HdOHEAb1MuSEvadhLrHuVgXaPjFqEcELkCF5U0Q51VfYSOcozR4CI/w1KwWCTBlyQSXNkcbeJQNaaNKod4vtmjkI7ISyLjEUmJDRoEaG9IvWfWtVjLFhA+YjLMUYgezSSl6QIhCMpQklFSlyXbbYtBVGCEoodGqhXqeppIlKyyj0QVJMLjohwd+sxSJ9KwIkfpfkjGmKiidz6mJCCCYCpaAFUggyUohx8uk/gZErFGHqecW24lVkOMPEKuAnnwFF5iUAgFQ+FJo5xCenoRiFISRALCU6pA6TwoU6XYlhItM5CSUgZkCCih6EUZkSyglFWWrnU0lSSJH6WrBbKcIXcFmJQk5DSEA8aqQOWIPCQiwshqTZm2TPmKzAP6OKEYqAgZLIRASwzwyRDYgsYyFi8jCgMioUWNllzhuuESqVilWWTIkJJqhxMel62xXJegClpqCAqGHKEWPC5OsGtnszKo0bFDagcmOeQ3M2P7RCstMh/oFwXTPiB8gQAOpzO0ilnwBUEuspZGyODYH7Vp9h1GBUzs6ZitzNMiWs64b/owO4uIZnsAwxYecK7JDwtP2Wn6xCc+QZpWBeNTU1P83d/9Ha94xSvOOE1n8EPFcvcgD6zM8UxbQuL4mdf8JFpp3vyCC/nFD91J1p1AbCnZ90/becbN+5Ei5a57vs64itix90MMd7+BFTnN9HffySXjNe45CGenMUv7z8UsHGHq7B0cXFvFOYtqNIkuv4Lyti8S3vR//FgRQnytPyQAL2hVzGHukYchirDTU9zZbLCqE/5u74fwSP5+cSs763XOvvwK7rr3u3ynWePy++/FzuyD1mZmknsIegUWz2PGvxKxqYY8b5xLxQT/29UZ7/yy5pekYU4rukvZGafpDJ4S+v0+H/jAB9i/fz/eV1/tB4MBt99+O6973etOr3CnEDN5n15cI/gqVWkVj4uatINAuECdOpYePkoJImIpKqnbcYo4R4UANsWEDC0zGpllVtUIOPKyTxhPCF7SUJvRpWBICbHDKMOFcpyGleQy0KBJkJZMKqJBn0uiBJtOgOqReXg0llhXJ3VtfICon5NEE4Bjc95mnMB3/RKqSADPsFmn9IY4SJyzrKR9ajqmFQaMi3GEmGFPmCdW45yVj1EnZqUWMcYabcaYSsd5RM7T1G1i3cKVnqHKqZs1BirCK8GkSbAq4IVABYnXJcKOTJwAURCc2xP0kjpCO9qyy5G0STABH2kGyo/qtixFTdBTgYYPKASxbOBcl81EFFgSE9Ooz6B8SceuoYTDSFDOkylLHcOQiJiUJp4gaqxFktkwxprvjkqzGngBW8M4PrIMQp9NtoY3kmXVJ4k0QyyRFWTKEFd0hcyp7cQSVu0DzA5nqEVTDPKHMXUoo3GmjnRR7GIi72IjQRK1MH6dDh1QmkbPUNYiXBAolTETz+PUDlaFI8t7dHRMImtMhlrF+gcQlwhjCVFKrKYhgO5pVmqaBM+kGEd5TaEDQVgiFyhkC+slAUdcFkiTkciCQA2hPcJ4ElkgwzSJS0hEl7WoYLtXSD3OQA2JnEdaRa4F3kEkLOiAd12k1JSRoGEdBSWJBdEL0CjoNT3bKVFBEvwAYT31MMZi3mGb3k5fW+I6THUiWoWBWDARxyA0/bILCBoDiSgfIk1yXFylWCrpkaHFQAQSYjKfgohwQlALdeqUDCRIL1BYwgbdu6YUgXj9NqBQSQxxQhR1CVlBSxzkiG8TgiGLC8pYYpRjfPwIYnWGcTFDPx2QqZL6oI+PEjAGKRxOWVZqfdpWUc8CtSDpxgojLbiq0bINhlQI5pIGarDE3tRjVETAMS47KC2oDw0yN8zFZ5EZy8GkYMtKlz2NWQYEWqXGOEMeD7AhZrWsURYO148ICPppglSaxATmVI9x0QW/Qn/wEGgTA4rnAAAgAElEQVRBK3jGQ4t+aJLKSc5yOWXo4EOLjiuZCKs4M8PE4YsIpWWx1ic3mo4HaQXtYFD1FVpqgaHZRGa3MggxNdlH6owgJFF4fDbffy2eUp6MMeYEmtYoik5oHHgGZ3Aq4VyXb8+PEZC8zI1z/U/uIK5XfxSfuXWM5+2Y4OH5a+k/0KQ/3ySUCSHsZnW1zUXRd+jd8Od8Ibqe/37HkPean+a5Ew8TguXRi85j+GAHXXNs2ZYQQmBtrSr+jJ93Nf7wIfyhg6dz6acct/cz2kpyca0yzOyeh1Fn7+Diw3s50hpnoljhuXs/wR3uQtr717j8Pe9m0x/9J26++lryZz+HgGDLyrcgSB4VCddF72enTNB5G33N5g0H8yWXbWbbzlu4XR9iNhKsHRqczmWfwdMYv/Zrv8bXv/515ubm+NKXvsTs7Cz79u3jne985+kW7ZRCFIqoCLSyLlA1cV1VJTUGNMSAzXqGHXInqUhphBqeGnksSXOPzPMq9Uf2mELTkiBGLGMIh456CGtANanLFO2qCIuQjoiIThIYxlWtjJCWgTLkqkA4Q6E8UtQ5FHlcWUVvMhWoDTukBuqiTp0GmTBk2rLNb2ZMTBIQTJgGuS6qyIKzaGMJFDQHntg6JIFNYY4J16YTQakUa5EhFDmFDBxKHVNijiRqE3B4HdMSLYT0ZCFjaDoURYeu1JRCEaRHek8pPHhHQFJicASUkahSIILACfCxJhEN6l7QzEqUEQgnMTLQ0QrpoHAZMjckTjNm2rRNDe8tXkAsEyLvKITHC1+RF1gBTuGJiQuPCIY5OcOYaDIu6vR1j4VkiERS8xk1UaMtx4lJSEWKFAGEQDmPLKt0KZEXRET0o4AvLMZ7CinoB4dozVILCVASlxoZQtXLp5fRyAVjPiHzZcV2KARROeTcfAwvBGsqkJgaaXcNmfXpJB5pLd5ZmjQqp2kUsPNKEssIAGMKgkxpuTotOepdhmBNW/pxQIhAo+wy5yXTZU4taMbUeOUw2ogpP42i2kcaiSMgjSMZenxwhKjqm2UQhFG0MJIapSoSCOU9GstsMNRGHHchK6lZSeSazBVtBqLAmQHKlRTOMMCxVW0jLh3aBqQvmPE1WqrJNgoGKiPXhkkxQcu1mEq2Y0VEsC1C0Hg8XkGBgBAQCJYjiRUKCsuYn0aNvEzTD6S5QwaHNgEbBJYqMVWIQB6XlCpQSEfwTabKSZomQQuLRzKQDqlXqY0toPMaE3mKHPZRrkQ7QVO2R0muUBsU6EFOIFBIT3MQaPgGE6GB9KKSW3pmwgRBgdUWmdSIvWM6miMhQSiPUI64DCgD2lqk90TecP9wmkcY566wnXv8Du6z2/mWP5d/8c/gkWyO2V7M2NCR9jXe1Kj1LfFiwVgvZxtLnB0XnCOXOZ9lztLLPIsD7KbDWXqBVrzMRC1hIg7s6CpmTI8d7jAvKL7Hs8M+rsqHjBdjbF+K2b20hYu7E8zlsGOhx3NWY3Z3+yi1BHbAmFoBH4j8xieCU46nFGm64YYbeO1rX8uNN95Iu91mdXWVf/iHf+DlL3/5qZbvDM5gA8PBvdy/+gwawnNdEhF9/Qh24NAvOgshBT/37IyvPtrgk3texHPEAwy62zi4EgGe4uwBn+qeywPfuIULL7yEq6/+JRY/vsrFSw9y+PA4lIbWrkDS+yZwFisry0xNzRDtfjYA5tvfQm3ddlrXf6oQQuD2/pCfaNSqAmTA7XkYf9HFnL33AfRZ5zPpeuAdXw3P4SWv/hnqr/pf6P3WfyT7nd/gOa/5PZYnv8LMwdt5cPtL+RexhTfohxjWoKsE02dXnbTvXbuHt37jzXTTLndMDnnh/GuYf3gvl3KmFcEZ/ODYs2cPn/vc5wD41Kc+xa/+6q/yqle9ij/90z/liiuuOM3SnTpEOUjraTLBmhrQEi1qRhKZgmEMRgaUC4z5FsoIUp0SdVZIlcEKT73M6LUiEiSxPMoGZnTErJ9gQBdVeECgRERUeppFzjCuKLyrZrWBYB3WVYx7joC2niBhW7/JSiMwL1YRQuGcox3PUIiA9BX5RCcJaCeRQuKDpmkrWvBuYrAYVLDEPcNWcRbOlTgtjmvCaU1Oo1CsOVcZ68EijEN4iFwgjWpUXBKKLh0iPF2Z0ZANgvQEK2kOA5FStJwm0nWcd1QFIY66DxSmgLhqtu19jgxFRXThHGm3hEZleMWFR+OQiorWWegqpc5Veo1VxJyX9GyHTBumGWPcNtgzWKalJglUfY2cCATlaZsa82lJKiXaW4SxICQxEWAIwZMQb+ijm1TE4eAZl+MgHIWTqOYWOlIwYXIg0E5m2b3iEaGOE4aWHMPLNsoEMJWOhwFmxBSZPUCURBTB4RwkIWYQVz15tIhJhpbSFyBd1eMnSNCSGTEFAhxgg6fmI5wEF6o1OOGJRi0BrKj2WGQdDd+iicdFkjTsYI2K6TEhYcgQSYwwBic0OliGBLQJoBTgGYws1UgmTPsYZQMSh0cSG48PikJ5igiUmkEIiQ+gjMEGjxYaK6u9bZDEfsRYh6XoL7LSmmAuGSCCxXuBDg7tYhZSQRaNMSVTYq8oZcB4iZUKERzaZuSxRZQCvEeYkoBHuYCwDi8lDRMjhaIsDVIUCCqnc71PGMYggyBA5SCGqg5MhwZrcYeQrHB3NMlz1yCPPNLDtJ9g0gp80sJIj1Qej4GQ0Ak5M3KKVeER1tKQetTkVhLJyrE1wpMomIimyaVgQk0yL1ao9T1WR3hqdGMQQVATCduCoO490y5Cdw8R/JCB6BLSnFC0admk6h0lHZs6PfpNTYpmfjjBAnWEdwSjUWiCtCBm6cYtlswEOlRpp0EpFryiXQi2ZIpm2SeRDq0CW3uObf0emg74JplLKMJ2xtwyLlbEfYd3isAqopajxb8x9ry3vvWtfPzjH+e2225jbW2N8fFxfuEXfoGXvOQlp1q+MziDDRy+8xYeXjuH7QTSX74MvrGI+9oCLtHoa7eyObmNZ88k3LZwFddP3sX3hjOElRnmaoeozc7ztn++j5tntnPttS9CSkn60j9k6vBPcs+3qwLbMHsuc/O3IsTrWVmpGmaqHTsRE5OYb99B+tKbT7MGTg0eLQ0L1nFls0qT8/0+fnGBzk9chQyB2BseqJ/N37duYMvksxh/ZuU4tn7vDxn+xQc49NUug7kr2fW99zC5eh/XzO7kcHgFdaH4asdw1cBSxEN++5tvoRE1+fMr/5L7vrsG85CsCJaGC8zUN51OFZzB0xBSSobD4UaWQ57nbN26lXvuuec0S3ZqIbRHohEBmrTwAkoZyJRnoASlErT7DpVWaVMqL+ibFSai7fhgcDgoLBGMUoMCDkFDtTHGMmaPpq609SQByHVFTy5EVQcRBAQnEaM0SCNAhkBwooqumIBUASXBjOwT5SrHaj2dq1SV8Txnx1HGMIwEda8qp4xAFkFaVsarLD1Iv5HKlKuKzKFBA+er7/NQcSkEQBuPVYJURDTMBEJKOmKZYdqnzQwtC1JWKUkICM5spNUkNFBCkeAQpnIEnRbURI1ExBtWkXXVtSu1gAjVnCp4ELaiTqcSS6BRQjMRz1T9c3yEcwXjuoUDBnEVlUBAFAaIUpIgiYJF2xynxMb4orLrmQgtCpNv5AK18wiTxiACwkIhA5o6HuhLgwCickjT9VHBsWoVkCARG2l5YtSzXQTYlGwFoD60rCXiuJyjad+kzxraeLRcb/TusUqt34bROIGAQNpQ9eWLPCEcHehY/jJPtX988AykInGaoAWxqDP0Q6TxZAokCpMk1EaO17pjGgVBMI4yksRGkmOqcb1Zl4Z1ascgHVXsUiCdJ1Cx7TkCUgSchNW0kj2TsLyzR308JlswVfRoFKVQRFggUjU8gdgrjCiIc4NmFH3Dsy1rMqwnaKGwxtEoLCYKNOIpUtxGNK1RglMBJywi9wyj6iPDep1awLGSsMGiWC8lHamxaivSK3pJtU5tPBbJIBJEzqN8tQfH5CQlHqxlKAQEhXYjTYiA8FV9WUu3UaVFqpgAJEV1j8eXcuq6Ti/2KKFGYgiSUGdan8vcoIsClJzC0mKGMUJegtCUShIIJCImFiXby1mipE0IljWzRh4GpJFlSAPhm2AFm3zCRWJ81Cuski3rCmqZRRkPNIlCgfeWzUslwY/j3JAghqjSEIkeMhZYBA2XIvAMsWjpET/EpLenTDFx8803c/PNPx5G5Bn820ex0sMMDnCwfzWv3rUZHSu4ejMUDnfHEuKsJj33VV7agDvEZbx97N9xU+fbuLLBpRfWGSK4ettX+a75BeQ6fXhjBtG4ktnePTw0O458JGfz7BrjrRrLy0cAEEIQPevZmG9/ixDCj0Vd0zcG1Ve+Kxvr9UwVCcShSLG2dQc3L3yOz04/n7ed++953yW7Nq6Lnvlc1OWafWuWzbsuoXywxtz8P3PeOc/E8koUD7Jkd3DwvjX+P/UOuqbDn17x5+xsncOOqwLd27/NJlHj7V99G//XDf/3j37hZ/C0xste9jJe9KIX8cUvfpErrriCN77xjezcuZMkSU63aKcUha4x7loQLNp5fJB4AoOoak6aFNBJ2XAwtPWI2hyCqk5iGAegAEapt1TNXUUAXfoN2nA4Okahjh6sIjgBaUcWvKDqejo6ZRBVB2s+QhzjNGnrTxhX20A1dCAygUIJamoMS8CJUYQCWRnYoXLwKh1UUQ8loo0xlQFBGLHtAQikCwhRvc/H4ykOiRUmC4c0R2U5GcJIQhECwrEReTgWgqNrFkIwqadHF3tMJE8wngICiSZX601iK4pxLwLSGIgUIlTNN2dMneCqFgxeC+KR4epGbk5AEMvaSP2BumphggS5IRLrHoxR6zqDrWwhSj09cSLl8rH33UtJLhxFfGIaUyRiYtWgIRvHHVc+nPQei8Dojojj5pChapIrHXh8tT9NAFVFIYOzqEhRs5rYlphI0tDtjfWtj39U/kAycrKNFMgggKPyrBv/Yd0DHDmqBEgyQ55Wz0AeQTTytXQWs7RtlolwhEhsGa3lRAQEojRE/uj/9UKi8NRlvWK4LB0+QKnExg5dd5g2dOg84BmMtrV0VI6dYKQhiEY6jlDowqOtgqh9dN5jnlkxIrAAD86DEdVzptd1Vn2YkKpK2azGrZoHD48+WgA0m1sAGCcgZBVNBBDOYU2fTnaIerKTmouAGIgRwhGLSWpSc+zOBIX1JRrJjB7H00YxjhUxIUSjiK0gBOjTxTuPdo48j8FYlK0a9Ua6RkPEXFLX4C34MXp2lSLEGFGwGCuWWzkXFjOVrOTUsjpFvnaSu3hq8JRqmj7zmc9w4403ctlll7Fr1y527drFJZdcwq5du5784jM4g6eARz51B/eKKjf9ygtmNo67q8CMrzG49SsUxR7qhztc3H+QQ+EsRKeFjnJqB2aIFi7jhdu/ztf2LfDoctUt2nc7LP/jAtQ9D22aYH6ljysEdbPCwsJhwvpL5lmX45cW8Qf2n5a1n2p8c5AzqxXb4+rNau76NgCPlDmHS88vHPx7fnnPh3h0fCufdEdfEe7OZfaXEickfxv9Vw5sfiazS99lxWcIYmaiP0OmBV//8vf4/OF/4qX1V7Gz+QygMjrEbJ1JLTh4eMCB3r++UekZ/M+FN73pTbzrXe9Ca81v/uZvctVVVxFFEW9/+9tPt2inFBG1ykCgMnqU8xtf3NfxWINSCQnhiRyFowbuEyE8xnBbn6aKgBw/52RokZThhOPHyfUYuaU73jlZTQWraSDX4YRzT7aeMGKQWx/7WLkC4NQacfnEDhNACH4U8aq+cItwom6UgciEjXmPRU0eX9N9rIQET6bX9T1y7wLExm2cE47RQ1Q+9t4OT1gzgHae9fK09fUeC+FgWbWwdoGofKI+NYZBFBjKEieqpLDHoiEbG/Uy6zjqMJ2oX4dAm0CUHz9WbB7rZFV1WiM/mrh0jDMOQGT8xjlPtKfW4cXj7b1Kt8LaDV314qN6q/z/9esi6lkPmx91+rTxJx1XuaP3s/q9WlsmHEnhNsYfRNXHgaNux5Pj8Z7LqTxBekvzmBodf4xsJ7wHymNkD9UeUDI53pkdyf14r4LqGQMRKvm19Sy7Hja06GYdlnzBkh+y5C1L3nDI5hwwa+wvV6ofs8J+s8jhch/Ldj99v8zQr2LiqrdaRwwY0mWIYTWUIAwDoegQMbSCvlesoVgNkn1ln55bIuMARi0Sa8t4Osts7Vym6zuRk7Nk6uizWCOtomf+h9fW5ClFmv74j/+Yt771rVxyySVHv9qfwRn8kLDSWWLLiuBjY9XXlkvmqpqZuzv38bn9H2T3rnku3ls1WT0yP0adEonnk9lzeP3Oj1EWMZP7X8zS3He4esu3+MC3zuY3r9xE9y1vxq102HpTRO0wHJhssbgww3TyCAdJufXWz3L99S8metblAJjv3IHaftbpUcIpQgiBbw0yLm/UEEJg9zzM8N3/DS8E3UYDMxOza/Eh9g628ZzzDX82v8y0VtzUbGC+Nc/9pmCheZD72iULs9dwvsmpyRoez1B7JuM7Obz2TOYGO5j+ynZuufvvecG/fzFJvU5t5xjxQsaW3k7eecef8Ucv+H9PtzrO4GmEN7/5zdx0002cd955pGnKG97whtMt0g8FVhoqQzZ6slM3UNUSScJJDNp1fD+G6A8K/2Re2Elg5akv0l5f2/TaJEHkCJ6YPev7lcAjRhTkx1751PR4vKr84x5/PFdAhOOjeScggOvvZ1g8Qkie9bgRkxNhOdleC4+rpQI4ngH12HE9ckTL8IPhqWr2xDUZ2OCoG50jTnR2ABSwY3EFFbbRq2kaJuf7f/Z+kGf0aOT36NxVVdYToa4a1MsmMy5iifIJz61wogYlcjR/4LF6eWLkQBVtzBsSHWKUnwWbbaQwQkwQBYTDIMzxIkjIgCysQICZtqRvJ8lXHiELbnRijamwQj9M4BF4oQjBjd5jQwiag0UD4eYQUuOFJzQKCCUmdqRhjF1+Dh08VmzExnA/xOyDp+TxtNttXvziF7N9+3a2bt163M+TwRjDn/zJn3DBBRcwPz+/cfy9730vN910EzfeeCO/9Vu/RVl+PxvkDP5nwHf/8Z8pJx5iX28rcy1BO434YucIr9kv+St+nl9vvoWvnO8Igwb5Wsw97XN4RfIgC6HNHj/FgXQfX3nkHKLhDl625TbMpz7Ows++kvy+7/H7r//f+ZuLXsiFrcMcadUZ9LZwsd4HwP33f489ex5EnXU2YrKqa3q640BpWbSO5zRSgrX0fvet4D3F2Tvo1Fv8ZP9reAT3hvN43l+/jS1LB3jLgUX+z3v2cl/hMTZi30Qdf+BXMK2dRLtfQ9k/xL7tJdI8n+fIW4h8wmt7z8d1P8z8vR/hY3/wG2S9DnKujhCCS7qX8Y3ewwzyfadbHWfwNMKll17KX//1X3PNNdfw67/+63z+85/HmBO/kj/tUdQ52dd89dT+XJ8GPP4Xdk3+rxj3yV2dVBz96iyeQF+BDPj+mDz9v8rZPHZ/Bhw/eIG6fNL7XmyMXuaO74xdQnGS6NFRPCbt7QkM9+9P3gAjYocnh9kYdz2N7tg5AgH/uHvk+3PEfhCXPHYCPdzK5HCMycH3e5/XHZAns1GPleRE2UV4vPlGkbKRfgSBtRNWZTlZhLCa9bH7xQMlAsMPEv1ah/GW9uph2t0F4jLDxBl5bRFbm8ck8xTpEbywVOsNVVrkMRHW0SL4dmMreWMeIarUOR88VmbkMsOrDCszhB9iZYYTQ1ywOFlgkyFBHsGHwyw1HuGwuotD0b0shQdolAPGyuNjP4JA6n94RBBP6S38qle9ig9+8IPk+Q/+AvylX/qljf5O6/jOd77D+973Pj784Q/zmc98huXlZT7wgQ88FdHO4McM3bLLzv0zrI7fy/7edi6YHafnHL99YIFtYR/v25pxThLxNvVi9h6a42C6nV3tVc4Je9kuV/j4/hvIah0mtjZZuP1Z7Pzvi/zyHR/hgdY0v/eb/5kdN/wU8ztewoWtRYIQ7FmybCkfBaBeb3D77V8GINr9bMydd2yk7D1d8c1h9cftOfUaxS2fw+19FIRgbXaWxS1n8zMLt/Co30JpNJc//wb+4967uOabn+dLWP7XFzb5yoWa27otLkhTLkklKm5ivvlX/I/5/8qiv5Kz4ruw5gGW7riNc654PnMXvJqit8LXPvhe5Ez13O+008jg+R93/8Vp1MQZPN3wute9jve///189rOf5corr+QjH/kI1157Lb/xG79xukU7paitM3ttvGtGxtPjGllggj3OFLZo3EkSSU40qJ4cBj267smu9VSOyMntAolE+pOlLTmOpw04HnZjHRVb2uMhAD4cTSo7UVtH5/UbtalP7jj5kxin6zKF4+Q7GY5d18ioBMT3abzGTo5qd54cIihMlDA/M8PAdZ/ozON+k4+NPognus8ncY7EkMc6Be4k98mhMHgc6jGO6LpOqjQ/c9K6YQePSVvcmP4x0Z6CGIt+XGdTjPayQJKLhM0rDre2jLLymHq5kyNQABbEEIVEh5x1nTzxdZ7vx2GxKHQoN54VHRSRlwi3zvYnR+OtO20Djt3DMpx8zRpFFDRHHb4fBIGa2UyaTdHorTK9sI/NBx9i04GHmTv8MJsW9jLRPUK7t7rx0+qvkJYdhFul2e/R7vXZsucwk/uWmO4YJrpDxgYD6nnBmm5johivNVIonNYMa4KVCcGgGUiLNRLTI3Y9JjvznLUw4PIHLM9+wNJ84Btw5F46Zmm0fsF4KdHhh1fT9JTS8971rnextrbGH/zBH6BU5dGtF8nffffdT3jtm970Jnbv3s1f/uVfbhz77Gc/y0te8hLa7Sr96tWvfjXveMc7eP3rX/9UxDuDHyN85c5buJ5z+O7UHhYefCkvn23zgcUDdELKH7TvZ3f9Wn7nni/wurGt/G3jFehGn7dknlviCV5Z+zJvz27iQ4eez5vcAtv+4YtIKbn75q28u/ErvPv6nyCWAjZdQ3rHLPVDlsP1BLMsaGyVtMfGOXz4IAcP7mdq97MpP38L/tDBpzX1+DcHORNKsjOJWPvIh5DbtuMP7OdwElOL1jgnP8gn5A1cef1NXHpZxZp30b4H2P/JFf7oGW2+8Mw2F180xjmfXWRHEjPccwumu58rvjfHf3nBV3jb0ibC8Fa8mkDccAnXNK7iY3/4CPu/+zXWfvrfkWrBmBTMdi7g02EvrzFHiKLp06yVM3g6YXJykquvvpo8zzHG8KUvfel0i3RK0ZMZLa9xwVJT68X4lSHpg0Y+psi/Y9eQ3jMWr6ekSLzwHOV2yIGUQMAiiZ7wi70HJDpIwFT9Z6jIJCRVOpOicl88AXmc8Wse8+/HpC55IEh0sBvjCszIEBWsmyMyCGol9JOAGEUhqmhERSegfCDI4w3rdedFh6q3z0aC2HGnGUDhkOTBk6JQI0NWBkEQxyekiSApRYGmRGw4FgGPH2nh2PklggxI8CMyB0F/JPtjzwYVTJWKBKPz1++JQFI15wVBbrvEcXu0Hj9yXu1xUbR1+gzvIxSaXY/ey8pUHcx6qlxBIHrceFkAtJdYuV7HJiu2uWBGFCJH1RiwJx3nsal1frQzCj9Ay9Yxcmr8qFrKj+6uJRvpp9IdYT2dLBmt1+AZoCpXYqR/IISKbU8o1MbeK2CUUCm9ACGRITwmJbTa4xZJEhIOpZolWpw10rlGUgaHEqrSnyggrO/l9WiKQIWq/ioKAjtKjTVoIix1A4PoqANviInIYUQdXz1Nzeq/gY1jDk0matSCJ6DJ8hXA0UqnQIjj3G4BqCBH1O5Ha7JGjOXHw68fDFTOZ2PkpB6fSulGSYPHzgSB+86zBNujTYIQyyBzpKiex6EOWBvjnRqxSQpqhUcVJThYS3O0cxD3WI5s1QMuFChr0S5gohSV1fHO0BaSbvCMlT3aIyIPJxTOr1ZLkAIvYjrtNl50mOhmDJUDJMJLUqvIB4dw6Q8eUft+8ZScpg9/+MNPecLdu3efcOzRRx/luuuu2/h9+/bt7Nmz5ynPcQY/HvDBE33TY9WA/d4REJw70+D3V+a5jPu5unUz5m8ewI99nuvbs/zj5pfw89N7WAnfRBJz0a6vculhzx37foZ77v4EU0nEZ371+Vw98wUWv7xIbzVjaqoOQiAveDm7Hv4Y3yi28cnsJ9mk+6wVOUmScO+9d3PtsXVNT2Onab2eyR88gHvgPpIbbqQ4sJ+D9TpXdL+GRXIvF/Cz51+0cc39hx+gsbKZV32ly63n3c+3n/k83tZIGRjHXdsVk4vncMlD+/mLFy/z5f6lON8lad7In9z2bl7+rHvZfc2NfO9z3+Suf/w0V87ewNi+Huf3ruIL43/FI4c/yPln/cpp1MgZPF1w7733cuutt3LrrbeyuLjI9ddfz+te9zquuuqq0y3aKUXUUAznD+LTWWqqgRQaYzO0SABJaiuK8HXLSDmHUDED3ycSCi1q+CCqJpvAuvGzbmx2bIcxPbYx37rB27Mdmvr/Z+/NozU76zrfzzPs6Z3PXHVqnlIhRUKAgEAAUYKESbQRRcQ4LVu9vVit0HKbexcsBFpt9a7g5eJtHFDA5sqgNNpIEkwCBExIIDNJJZWq1HCqTp3xnff4DPeP96QAsWlNwwI03//e/e79nmc/69n7/H7P7/v7fmuTgPyxis3WT5SBopWCCRxOaZQ1ZG5ELCWRLUmVISa6UFepmZxcxVjxWFv5VlokoFtsEMU7EUC7gI0wQImKUju0qVAeNDWUE1RSAwbHRGUPJupgZfQPldUmMumbeY9OCJFMcGISmg5sn4ZqEqK3CFWCTbvObDBPshUvWhER+HIrAN2aVy9w31B1yZgIThv0Vo+KR2DRKD8JYp0UWARyKzCXeHIdEZgSi0UxMdbtFJpB6PHS4qmACOch8ZOgf2R7CLtB4OpIpbA6wHuBdxXSVwgChq3JWOMAACAASURBVHaJabGAlRLvBS7ISMOCvl5ksVJMFP0qnJcIESC2ahX/sNagpWRiGTsJ/PNQExYlQzNkWte21k2PYW2NneU2oMISo7AEXjISmkDKCxLfE7KgpETjlSTc6iM6F1bsKLdUHYXCeQGUWJEhfYxEMYwieuPTLOi9AIzsBpUfM63mQHx1TU9EQOREUp4QjaHYSkOFCxBM/I8alWCoLUY5EiMotMegEGXFQ82EuNViU2xntwFciIkU3nmsncyTBJAa3ETsoW4MaRDihaBCE7qKpPKMw0mq3MondaxRULFuBnT0DB5BQYgQjtB7tJdYISiok/h0kmwIyUAoQhlSqwZAg8IH1M6vUZ+pyFvbviYb8iirJwp0wtF1a0zJDoJ4S75b4XAEeEpbIYsRJC0sMcZ3Qc+ibXUhDRcINqpVEDWm9NerJkoE5bRm0JAsiZyo3EeYdkBUCCHQ9RTng636oUB7QRdHIDKyzFKNQ4LKE0yXqDgmW7dEVYRON1hcX0dlQ4JihCJAOUfkLFZLWlmNPKix2RI4IfBikohPpXJStZSalakEFQUgxWSkTmGdRfh/Kl30n4/HRc/bsWMHjUaDL33pS9x8883s2LEDrfU/qafpH0OWZYThV0vEcRyTZd++m34C3xu4a/3LPGW8h5XZr3BmOFlb/XjMpk/44aQPfzNiOCgYzd1N6/wNgOWGp6bcqQXbxAqBbvEre+7kyfkx/vTwi/i1X3oTuw/8HEJ4XrjnM3zus1/tqSkO/TAXtyYUPb3cZSMQdLub7N69j1OnHkXs2r3l1/Tl79Bs/K/jfGk4WxmuqMcUn7lpcjBJ8FpzolHjFeuf4YQ8wNzui4jjSaOvdYb+/SucKh3rLcm/2TzF//6lJRYM3JRssDp+Lg/sjYiLgv9w3vKVwSbNdk59wXLo/DX810c+wPGDd6Pjizhz3+2IuYi2lhzOL0bIig899Pc49200VXgC/2Lwi7/4i2xsbPCmN72JW265hbe//e0897nPvcB2+JeCRhjilJq0BiCJVZ2+ynDSk1SKyDhKl5O5FA+oqiD0FuMqxvlJkmpEI/9aCvxEIrtwORvVMXpabR2d1GQsCusUqYdyEuJTBQKrLHpLhSrXJcrmTDoGJE5rUjti05xlM3uEYXYCh6RUmqiUmLKgrFKCr1Gx8nhqlcNtVXecEhQkBGYStAXeEltD5B2RdZCNyG2xFbhOUrukUhfiZukdG9UqAmgWkNuMQkisM1hn6FZD+uU6zlR0S0MZf418ua1RBCGhV0ivyAnYCL+xSV7yNXJ1W3chEORaU1JQ+kkalrmclXKdcdUDpyi1RhlJXEHXDLBC4tBYZahsxjnTp5eeAQRFpFiNugxshtF1tLeMylWK0hCVPWpbsZAQkk3XZ0136bGEpUfpx1RxcIHCVyqF1RFUMRAi0IROUNlyQovzCmk8UfnYXIyxBATuq/FWGgVYITAScqUu1ByO1wqsqmFcjsJg1NbaUGPGSUylBVYDftKXFDjw3tKTGV4neBUxtjmVnMjN54GmkgoQnFY5y6ZHoQMQASUwLDPWqagCyPVkvEYpxkGdzI1IVYSVCuFh5EoqQgyK5AI7VIIfYikITUA9Dwm2svqyKshGy8TVgELsQRNglaISATkRmVRs2C7gqQiwQrGq1lBaEAqDNenWagBbdYlcikNSBJpetOV/CBQuZ7k6g3Qhj1EYlReTimsZ4kSE9ZNqUxUIVuSYQoQMVJNcxnTVLNJ7RPc4tbKkH0AeWxwFJSGldDgMY5/RNafQZvjVcblJRS21I4qxpxAxI5vTNZYeY0aP3YNXDBihRcg4DKlQWzYFglIrJJrZlS7tdcehNc2Bo4qLHx3xlBMjLjqecvjoBhff2efQlzKe/KWUS+8c8MzTZ7iydytP0itMxw1CNY8fdei7XSi9nUAukLefxPH9z4JOkySx1OKdzEa7ENEONrcdYnnfk9jcvY+qsZ9OFtE0ISae5uT2HZxc2MXywgEe3f90eoszk7XhLcJJ8qREht9MPfJ/DY+r0vS5z32OX//1X+eKK67gK1/5Cq973ev4/d//fXbv3s0v//Iv/7N/L0mSrxN+yLLsgoHhE/jXg6G13D7OOVmUaCF4+L7jvFFfTLnvQc6c3UczUvxV716038Pdx+5kzHmi+e38Tb7JqpF0ep9jeeoHGIbn+Vj7Ti49f4SX2s/whs99lF960a/jzjd4+SuO8MA9L+AHdn6ev7rlan6kOISIFHb6IjqLu+mcrTCi4ubmEZ7WP8HMzCzHjh1ldfU89cufSnXXnd+zfk2P+TM9vZZQffkO1IGDuLNLjJoNwjnJYm+dj/N0Dh48fOGaG8/ezOzKYZaAl7/6Ipp2L8nHz/DJ7Zr3L+zglY1PsP+Se7APKpr3xJxVmrkXnqd18HfQD7+I2fqz6Pb/Ly561iUsfaZkdXiMOWZo9BRJtsiDfcMDt/wJlDuRUjG9ax/zBy9+QpXzCXwDbrnllu/J5+6fi+Z8k0eWI5qiThVFRCVYV2JDifV1wnLIyA4oVUhmSprqFPVqH4S7sfk52qFiOawxMku0tER5j5NQxGCygI3E0ikq6m7iA1S6gnHpqIIpdGWRoUIwJtMRiRWEVYhWIcqvI51CCRjQBZ9Qeoeuuiif4RGUBBjvyD2MrEXFIdiSangH28KnkLiJGp30EuUl51SXaREQGksaO1yaEZBQ2IzcZVQuQOuAcRiSVBF52GA0Ok9btyc74AFYObE0yF2B9AFelqQux4iA0HuwUJKTiiYtV1B6D6VgE8uihMJVLKmKfi3iWb1JtenC28eBkXarhpbj8aQqptSO0DikdyAcPbeJ85YNl7JDQ0TI6W0ddp3vUbkJzbEILUWZIcargGDkFZKMgcwYqjHD1gK7i5LSawoCrFEo7+jrPlbPEVAhXIUhJypOkZanEfE0IlCQe3qbK9ikTsvBWuuxBFAwzpepZAcVzKFdRmQ0XkhwmkpqohIGvouKtpGHk0qZsI6T0ZBa1cAZjXAOQx/jp4icJPiax7AgRTmB8g4vJMqloASbpseaLHDUkVWGFWOsDkm1IHIBVrWQrk8pGpydMcz0BA0UlbRIF1MYRyYFm3oOUxtTtxE141hxglFcsgeNdh7nBVVZ4ElIdZvN/DRz8TzGjTlvDKLqsz2YR8opuukqJheMMcSipHSSwKaU0nHUOCop2FFp+mpAHpZMWzmhEdqMUICTBiHA+gLtEqQP0WWBCiW5lDhv0SbmVHaSviq3yJZfpblJ76kZO9lcMJIV7XC6RiIHjNQaw2AHc6XA+hAJjHUNLySjwnBydBYd7qVKNFlgMC5FiR5BZQh8gqxDMLRID+t+QOxCAjUh05oyY1Rusj5Vo14m2GwTlYeIRgMnNL14jiYpZWYZpxs06tNUvoawkkw0qA8N51ue2rCgNjZMuyEJhqGbQSdr9NiD9yHSWxBQrtfQfcm+HSeYEiNQES4oUIUk8BavWjw8Nc9qbZ4zYjfeeerDBh0j2FSKUQviQmF1jLWWXHWYs47uth14k5JkFbLm0CG4bJbQnWXgBgzzAXcvXs5Ls3u/be/nx5U0/eZv/iYf+9jH2LVrFy95yUsAeMtb3sKrXvWqx5U07d+//+voeI888ggHDx58PEN7At+D8N7zgY0+713tMnRfw7effwY3/IDhPfJOTj/0/YjoLPfavSTlA5zJllhuLvPajav53fX/hCoNmU541Q8K7t+5j+fZ/XzMf4EXfLTObtXlqv1f4FOPvoDPHFvnWYf/N449cjPt3TfRveVipq+ayIiXh17JRUc/zB3FTp50/ChEkx1fIQSnT5/ksqc+nfLmG3HL51CLj6+q+p3E50YpM1pxSEu6X7mP6OqXkV3/t3RjxZHkPLYnOSYO8oz9k2fPe88NX7yBK/MfpzUbsndvm6UPPIAC7jaWk9saRPNHkVawtn8XZ1JBv1nyQRnRPe0JW7dwmfRcFjnKvceQwU6On/oL5vh3tJTgR+5+JlH3Lu7klq8bZ3thkWe8+mdZvPjS78AsPYHvVvxrSJgAOhcvEN8xIG+XeCGpGUced+jKBnWrOJF0oXRkOmYQh2wQktbrXLZRI3QheMiihA1VJ5YV2jo0GVNuk+WZKboKlmyf7WlKicBINaGuBZYNr6jLkNin9KyiZusYVUfgSAcZ9akA5Uq6QcU4ajAKNLafUjQG5OWYMi6Z8jU6VZ0xgqWoInQ5e/JJYHlv6yJUb0DLQUdolpoNBk7QSTco5YDKZ7jsLF42CeU2VigQuo7C46VEGMVyu0WQ9giNR9QmgtOhFzASBMIgQklZTxiYBsKUaOcxSlC6AGEcg3IVsoKsjOm7iFQrlusxSpesVhVSRcxLQRUIdBGwuX6OufaTSXTGWBVsqJKm0GyaDVqiwXqQsxFrtm1OqiHWTihrPoAiCgg3Ko7NOXwSIbIOifJ0Buv0qwZDHSDkOcoGUCiSDIwLJnRED33RwMsaazJl2mRE6ZixOg/eMlNKBsJzZmyYTkcI46jCyXWBtxfEFoTxEGz1mlRbvWE6oVbmjLTC+ymq0ZAOAYXI6VLD+k2QEumhFDFSWXRRJxAjlEuQ0iGJCLEMAk1kagg5YE2cpx5uBylYDisaWU7qEtY7bZq5ZqQDTrsB7apPJdrssiFGgxcBYDgj+hTCMOskOE+pIywl/VhSjQPG1CikwEuHYISs2qAtpbY4QvIgwRAxKleJgDPzi2AMpdxJ3WYMTE6SN3HKUlaK3KyyrzpN1B5xUryEtlScr/pYaTBBjBtUFC7DVqskjVWK5i66SY2sytgx8mzEAcOggWRCnS18RegtwgmEjfGypAxCyEtEGBA6x9CssTOfZagUPTOijcfIIZUv8EqxKgwLxQargSQX81gcnohaFiKrGCk1noxNJ1GujQwrlDXQ1ISDCrzA2YzUFoxETliNiVAs1TsEwuC1xLqASiosIY46I1UwEk18PWBYPUwTzVi3CKzFSqAWkIcZDovQEm0dyhj2qGPkVAywEzkXoZAY2sBA1th3vsQnI8YYNuMFhIROuMG4ipnqFRRyALMZdRMRjnvEIqIpwNqAPStreD3NsYWEYRtUbZFme8TU5mkW8nXGscSoeWobJZutKWw3ZaQ8RrcQOvlH3qzfGjyu7VzvPbt27QK++o8sSZLHrSz2kpe85IJqnjGGD33oQ7zsZS97XL/1BL634L3nt5c3+L3zG1xei/mzfYvcdvFe/l3vb7n2i0NevfoVQj/gZL/DsKZweoaf3dzNlSf+I3/w6P/J00dHMI0TqLRg0TY4vLLEA9v3sXjgjbztkR/m4OmCTzwn4GX7/xsLesS1n34EFRyg4Eq+f/dnufv+U7gtl/H80Cs41FzHC8H33/cZSqX51NI5pmYXWF4+e8Gvqbzji9/JKXtcqLznC8OU5zdq+BPHIcvoN+vINGVp2yJX9W7lpNjDtn1HiKIJtecTj3yey5Yup/LwjJftpXq0x9xayUO54+nju5j1q/w5r6Oz8C5GO1/AOA4Rss8jOuXioSLM21w3Uvzu2Rnue/CFqNY+zp7Kcd7SliVNs4svX9Rl6Rk5P/62N/Hjv/1envezr8cDN77nt1i673tf4v0JfHfh1ltv5Ud/9Ed58YtfzM/93M99ne3FY3jRi17EVVddxdVXX83VV1/Nz/zMz1z47pOf/CQvf/nLefGLX8zrX/96hsPht3yMZUPzwO5DrEzV6Ys+QzZpVgUjC303YCNv4rI5XJWzGQ04PxeTxZJcRSTGE9iSx1rxNQobeIRwWJ1S9WuU1RDlDJRg8ODBYQmqEX2XYgg46xwDu84ZzhFXJY0i4/T0IvPKEssx1gtKIjIT4l2NDXGEZRnRCz3KC7xLaZSA9+Q+QBlNzZU4ZVhW2+nYCKUluVDkccLR6VnmshEUFlcfUMwGuGIVIypOii4ng7UtwpDHeUlQVJNuoSBAmoDCaXKpSW2JDg1CeKowIRdNch3htMChqBeCcJizNLMd4ySBUUghaW1R4MZRi1JocpshdIQ1knqWIH1Ep7TYZIMV3eeEWmelHnG0JhgbR72IyEKNzwvyjTVWqnWWlOYsjm6rSX0sKLXFoildBEYSO0eztJRolkNPIUpSUbEe5hhn2NSC49v2UUQLaK+RDBHRJlWYYQNBR+R4KdlUivGoYjWe4qF925lTQ7Sr6JdrDMt1tNI0TJ8qDbFByL3NgjyewQsY1WogYRxOUbRq5LWQgUuIS0MtE6iiBiLCyRgvIlIlmR6PJtUTqXFa4QJNv+qTK8NAFRiZUGjNoBEh6m2qqSZCOLyWJMOSojLYDFr5GdJiE190kWRUakQeeDIRMdYBIxeTARtTiopJBUM6R2QqnIgIEAipkBVUQcCjtZAzoWHcaGPLAacTRRbVWG0uoKxGi4rBTB0hPKWSrDUTQkZkiwFls0AH+eS+Ak9gwNiMrDhOPeti5ZCzqs5twTLvX/AMkgAXBzipOMoUXyRlPd+ksAOWqlXKJkg3ERbpNWIerlmqQFPUNefrOeeSGYo4JDAZuckoqZDO0ypzrMvZVJ5Sh2Ad56fnCawgqoZgKqQ39I0CB6VM6HY6nNuxHeUFw3CFc1EBMkLZkEKAsxEBMSbYRohAIPBSUwYRToW4QGNkSqVKmpUlUJa1rMtqPqCkpKckJ/Y06M1pinidrJUx2hXRDA06DGiEDTrWotyEzmragiyKCaWhSBYJ833Usl20B/M0Rzuo5btQ1XbaaYMjyyOme32ODCoOr2Vc8vC9LCxVzJ2v0EOBy8/wzPXbucrdxhXydr5vdCfbxkusD+dI021sL9ZpRhvkIiGNmqw0p0CA+keott8qPK6kad++fbz73e9mfX0dgDzPed/73seePXu+6XXr6+sX/hEB/PRP/zRXX3018/Pz/MIv/AKvfe1reelLX8q+ffv4yZ/8yccztCfwPYaPd4d8aLPPT8+0ede2DuKmv+b6d76B7X91mmdvlvzg+HrOj+ZwTlLOHgLAPbDOzxOzmp7k04/+EZ976Gbu79/KCXmOS888jJGa3zi2THjbXaT1Bh+/zPKJvuYnL/0Ay3nFX/zdcS7a+yvUg4y1XTeyct2kt8m19zK9+wBNXbFhI1q6oOpu8KmDl3FmdQV27kJuX6T8wi3f7Ja+K3HXOGfoHN/fqlPddw+b9Zijt076mpaPHOBAtsSDfh+HD18CTJLZ993/X6l3DzJXV7T21jh/3T30neOMWmX39/0XfrD8OOfkAT5/wynOrB4lMBVXnBjRtpa3ba7y0ZOP8qfLKwj6fK59E0lyClMZhtUmU0mKDvby8PYmDycZOz78w2z71E9xcXOZl73xN5jauZfP/dm76S0vfSen7Qn8C0KaprzhDW/gne98J9dffz3Pfe5zedvb3vYN5w0GAz70oQ9x3XXXcd111/H+978fgHPnzvGOd7yDP/zDP+T6669nbm6Od73r2yCbH0icnshSj73C0qWQbVZUyUmVUsk6lhhsSN97Mq/ZVI5M1KirmJEICIQAJ2kbQWw8A7/GelIhidnRnZ6o8FXhREfMS4KyRHgwqeX0sEvXxYz9DOPgLOeqNc6bHn2Rc7+ELgP6NCZ0PCepooSZqCQLIno+5Y4k41wrYmVxDzaeogxrFDMRrh0SOYcJQ9LGCYZ2iULlfKldp6unOGX20RfTzNfPIWPHlxb2s+Eb6MwxrLutZvkJ1XAt6aBUgJHTjMqKs3mPUk8zF2wiahGRLWiNUwgFvnI4IsrhClnRR/mSmsyYyh2J00jvCMclPT/NZrvFqNag1J6xG3BUCE4s7scqRZGEjOKYvNkA6XCiQ1rfPZFKdhqTj0ljTxbWgYDt6TJyPMIrQU9DNk5Ro4zpXkln1CUxOU4JYpegbIvUtjhrM9YC2KgnaJOyTVtQMYopUtNAINnmWnSSGg1ZIbUCJCdmdnBqYQdT84ZM9MjKgAJFtzZFUY+QAZyshdwtLKc789w5nfP320qyeNJTUwhJKhJGqo12AVFZIygq+mKGIohZSyRBuBMrr2CtXjKIEspQgzIkpcSXQ86JVbwXSJ+ACxlGJWnL40MLcpLG5+Fkvr31TKl1Ki0ZijFtY9GiQJeCoJITEQYp2Zjq4BYqpK2QOLyrEDajZspJ9VHA2KUTAQqfo13OaLrDmalZ8jAglx6jLGfKTTZtiUzm6M7uY1QLGbWH6L1jhEsopyDwKcJqrC4oAs100WW1M0eKROgeoZgImVhdoxZaNv05ToplUqFYC6bAZIR9TaksIjqPziYCD6VwVEqw6s6BuI3dwVkCb9kMLE4pTKjQMiNyJYE2WCkYiQaVmfQejupNzm3bxSiqMwrXGJhlrDQILC4ISasWxsUMZI0CwUgNODt9lm5oSeUMw2SWbmcXDQcirCilw4aGcaQptKdQKYlO2VB96qMlmjag8HUqk7NhhxTK0W3X8VKg5ipGUwOsiLAymNAVlQaxghcrlD5D1DYI5QkachE7c4BsfhfZwm6a/gjzxTSR7JCQ4PV2THCQPeNDTKd7qbWfzODAc2i2DrHX7WZe7aeW7USOpmgNc/yghhs2KHGsxnWGTiJMxEQofqvbUCksikHnwLf+vbyFx0XP+43f+A3e+ta38rznPQ/vPVdccQXPf/7zefvb3/5Nr5udneW66677R7+75ppruOaaax7PcJ7A9yjOlRX/+fw6z6zH/FR/mY/+zu9hq6/2tn389P9N3Y24c2XSY7NYrDAezvKzbgenzAn+YOojjHZfxcFTDyFWT3KfS5jKGnz/asXtO+ssbJzny09+NUfGj3Cbvp257nYuaZ7iT+43vFjUOdu+lJ17biT47NUUj84Q1DTl4X/Dofvfz93Vdg5vPEjejvjrIOb0ZVdy5Nwyz7zyeeR//d/weY6Iv7nr/HcTPjMcEwrBMyPNvV/8DA8fWOSSkcELwdxcH7cpeDQ6wmU7F/ni6q3ctTTgyWvbsU6y79JpPnLdJ/ix9CAfqHIOP/ODeOG595YnEz4j5aZGyI/kXfL6gINfcXzygXXqjYqHhrNkWcw7Z7v8R9Xhhv2P8qyl/ZSsM6O3c1nyST64sc4he2zinLF6F8Hf3UWtc4CrrvkjPvGu3+WLH34fP/Tv3/Kvhpr1BP7HKMuSa6+9lk9/+tNYa7n55pv54z/+Y174wheyb9++/+n1t912G7t27eLIkSMAvOY1r+Haa69lNBrRaDQunDcajS7YX3wtbrzxRp797GezuLgIwGtf+1quueYa3vKWt3yL7nCCGRkyM+4SRWC8YtW22FyIGI1bJEFGZRUyzCfS1CjyPETNrWLbSzxQPp2B30QEY1qFJkTQj0uEG1PHIqRCEdLXCcVUyJSzNFODyCpGyqB8TBloKhUgjUAGhq4f4nQDpQVnRMSjpaYpIXCGwFXYwKLaJfRCauV2hJB0E4UPA7zJKdQU5XSbXKyzYecwuuSoW8BVAdlmgyJuMY4LUhUwmjpIY+YmVFaQ1RNa1mCrBCMk42ZAayQI1RArS066DlUwxWaYUTlwqoESjg32UHpAe3wUYF0LV1i8H3Km3mXcaBA4RyCmOcGY1bomqixhpfCBxgUp4yqALCGRjjRQPFquc151GSct4jyhVo2RZcVyO6bhJcrluETgpcJnDpuFxH2B9CWlmIgzaBPiow3S2jRd1aCZGfJY4oI29RJQUClDFaYoplmbWmDXIMKbJqIRkctp5twJTsgOFxmJndMM5yRuTTFsxJT1hMpk5JHGWMVQ78LXHGMhoAO60JRBm1wbIs7TbS6ye9CkCsasNwPaQUiuHTrOyMop1n2TcdxEyj5G1hB6Du01R1tXEMebVL5EiSGqtBi5ndisUA6bFEEfqWBPd4qyASL1xL5ECI2THuU0UJFIT1dLCtchwuCrOqMqIJOCol4jqzxap0xlgr6CdddF+JRRq85UWrGpNTOBJBUSWXm0Ai8EERWjWoREIRHMViVWlRTKEFYNhFZsTGmqoMmezkmGxTNxwSYyzOjrMbbZocwHhO2IEds4E2n21pZpbsJU0SbxlzCqFdTFCSrVZr21k0rB3v65iXpc0CYUGknFIM9Zq0XMZRYVBDRaPUgTTomzOA4xqGlc7Gjhqao2RQxFplHOEOuSQGeoypI1Pcs7DzKXr9E2G1S6Qzds4AOBDRTKV6wE04yYwo7WyNCkDcG8yTEiIpPTIB2FDSi9RgU5qXX0RJcF2aKSBe1igPMtEunJazVcYdGiBGlYyNsUwYDSHqasBI9UMxQqJtERDd0giUucr3Nmehtmuo3uzJCMAAnp4imWizr71rZROMUgOEFaGE7PH6QlplnUG2yWKUokrJGSmjYLpScgoC0XEMUMebnO2vyI3caR2PlJDxk12GiQDg1F0ptUTz24SFK2F76l7+SvxeNKmhYWFnjve99LlmUMh0NmZmb+xSkYPYFvDdLeJptnTmKqgrjRYmrHHqL6JED5g9Uu1sMbqgE3vee38d6x7ZLLuasz4KJTs3j7KEU/Y320H9F2rG7bzg+tC5ajLm88/B6e0riY50XXc8/mD3Gycxkz/iw2H7MwKkkXGnzwNa/no1dchhQ/wFNXb+O6qS9zxdpLOSokv3XT53l+GLLjx8aQ9OCvTlABo2e+kEPtd3Pn5g7sRg4Nw2/WFW8vQ/79oOTfHjrCT5YfpvzS7UTPff53dnL/ifDe89nhmCNVxg3v/A+Msx474yYHGg0GvTFX5neyxDamD13K67/4S5wYHgcv+MH8NUwrwW/VVvm9O3fxkDMMdnyEzsKDLN36LF5x7FM8VJ6gMzjBODa0t2xiNk83+c/bns9LxRp3D68hEn/G62Yf4b9sxFxerxgXJ5kLn8Szmn/JqEq4a7NJt9vk0BU/wK7qJlTvOIuf/hme+rK3cttHPsDpu29nz1O/DwA5OIPqnUBUY3w8RTV/OQTfPv7yE/juwZvf/GaazSbvfve7+dVf/VUA9u7dy1vf+lY++MEP/k+vaYTFgQAAIABJREFUP3ny5AVaOUC9XqfT6XD69GkuuWRSYU3TFGstb37zm3nooYeYmprijW98I0972tM4efIku3fvvnD97t272djYoN/v0263v+HvPV4oWcdJxVB5alQgBaWb7KQ6CT4UICKUHdCQmgOqyyCq47BUOiJXMUpq1sJ5RmKTKXUc4SRGJPhWghkZkvoa5Thiq28bq2DQrIGJGDTrSKcQXiCjBVzaIFI1lJBkdUXWaNHpW2QQ0hhlZA1Nq/Q4JJFQNFND2REM9YA2MdobnPOMdJeBLhlNhXRdwFxWR0hHoyioRWO603XG4znuD3dwNDuEFo40mUETo8sNHmycphYsEqmAahzghaKK+uSdGrLXJDQSK3NcMI3wfQIxppASE8RUxlGqEDEv2BwFWCJaVUAhE5w2IBS71sck0wWJG+CtxzsBGkofMko6DBsNXOnwLsCGlhHTzFRDBq0mSS8nUzGjuEmzJ7Eiw9USZBiTBQk4CVik0Dgp6bbabE7NEGmJzhWmmkbXc8qkQ01WCJnTCxtU4yYSzTgoKUTAvclBClcD/xDGCNaiJv16C0xt4gxVRpzbOU+xqkniEoXkuNhJTVZUcoCo6mwzZ5AiJ6paJNk0/bhJXj+PMYrKjQiYQycpjGJiIlpiE+8Fm3I/OIXIEqbtkDPuIMdre6jnx9C2QVG1Mbak649TDy1CT2FoEckc6UKcEBglMPEiue7zJHcKKabIGgsokyP9DI4J3dWqaQa6YsYb4syTB5ZADDDBdqqkzkjMMpTgiwxLjTKZw4kSKx3COZCSUgQ0rEUphYsqIjFxQhomA4SqiF2NKZuR2QbrugZthagmFV7lHS6SUIAIWvTUDnI5y7Q9x3Prd3BWzGDUHOAokgi2nlMVKGaTeVbkUfJag5XWxA9sEE3RLDdQ2jE42KJxd8m6k4wih5aCTSJ6Yj/ClER1S1A5PCGRAOVhOdxDFUdsqG3MpysYqRDSMdCKvohZqApCBC4QRP0aZjqlMaqRqBwhK0YCugJaKByeiTTnRPZ8JfZcsrfP2SVJc+NRpGiQtRYpSkHTb6C1ZE/aRxOSpntYlSVDHZDpFCuaxOIQOujTrDsW2xFah0ihGMw9SjEU9JTHN0OKxgy11KJEyFRVcFpKgsYyo7QiEEPG9Rre1FlLVsgpCbMRNdOmLnZA+AKU1xg7JnFwkCZKOaxzpG4DG9SoaiE9X0crwY7OkW/Z+/gf4nElTd9sZ+0d73jH4x7ME/iXg7UTD3Pn33yYlWMPfN1xISXz+y8i+b4X8N+bO3lNK+Ge33/7pNXx8it5pCxpdKcZNwJ2XfII9c4aH7v5CC0hWaklPKOb8bZd72Us5nn1zBc4f8ccz3tknbw+w+k9AY3l0yw88ju88OW/xsevuJzLHliiiAUvXpzhfZs9Hjz8//DjDz+Vj8y/gGetP4h/8Bqa2TZSZ4kPTWFu79E8/OPUTn+Z4XDyeBwyBb/08Je5Z9ch/r8d+3llnND77Gc4+D2SNJ3Ick6XhotuvYEoTjhy/Bx7/u3ryT70QVZm27w0vY8beB73te7j5PKjXFF7Hff3PsFn93+UK8Qu/o971gl4Oo/EN/CDl36W0flL2Dy7l6eEFtO/D90T3POUKf6ouIMTU/Pce/4AH3zOq/iJ0VuIlxPsvVdz8cvfw5VG8sh8yq7zA/Y24SPDN7ORXszld76Nulsn//LNHIsT5p+xk5kdZ3h694M8uG0H937yIxy2t5M89FF07+v927yKyC9+Nekzfg1X//btLj2B7zzuvvtubrzxRoALm3RXXXUV11577T/p+izLiKLo645FUUSaphc+O+f4sR/7MX7iJ36CSy+9lOuuu45f+ZVf4YYbbiDLMqanpy+cG4YhQgiyLPuGpKnRiND68W0k1kYxTkgqPemJUEKwmrYQgBQeLRxZMsNG3AFxnDnXQeCoihpLXhDYBia0NNCc1xFtAYFL6I+3U01VUGlqEsyW32UWx5RIzk0vUDOewFSUauKZUsqQKqoR2QmTX+oKLRN6szO0soKzMy1c3WLEmNPNfexeX8LGEVU4ORckGMlS0UFVUNQ8sW9QExNqlQjHdCpDY1wwVk0UMPIRGcnEAFUqiiChZhKa2WGKYkw3qDNdOWIqEvqMtKI3XSNQ51irBEfCnF41pBtYIqcokoAiUIytY1r3qJRGWkEe1vHWAHZigqomwgeP1bSdFFRATkQVhgifUxmPECU75IijIqBpUiInObn9AEElWBwUmGQNt+WjNYxbGB2hRg6vNMP6HOeTaWr1KUwOR4bH8QTANALoN6dZyLoMhcOpnFG8DRtsMmzm9Ko2kY8ofYP1bp25JEB4TYjHesW2fI1nP3wn917coUw0gYfQBQwVjF1CAHhpUFJQD3JW1zJ6QlIpj1BwrjLELsb5iXdPw7ste16YuDgJrAx5Wj7EDUY8PKWIiYD6lsS1AjmRgndSomWFRTEkIhGPmbF6ch2jlCWMPSaV2CBEmgwbSZx3E+XUSBObHBfFUObM57tpynsovaPvFVVQQzlP4D0OgVEa5w0EA7wHTIAQHu0sWkqKaLLgnRMIaZHSIF1I4DwjP3EreswLCCZUUKMFUZGiRJvEh6RKsgCYdIPoXJ9jYidKwKGVZaz1nJ3ZxW55nuHODR4pDlFGDbRPSPwagZmh0TrB7S5g1iTUnaAvDSIIkT5nY2EHcydLBsJiA4lQE6Na6yR6yytMCEiDCNNIsKUisiMQTZpVhtR+y/RZon2DA6NtDAKNlet4HKeVIhCOaRy6GiNQBEJhcHgESQiHtafd2iRlhI92U8ZtTKGx5YD7vSX0nqdVTWK5gVOSvR6kjDnZbHHKDjg3pynlmBBP7Ay7MOxwMd4A3pLM1hmJiynzWwk9PHXtHrrNOpnYxSiNEXWHF55LplfRZYpYGvNwkrCCpINiaGMqZ1hzlhWhkEJRkxltSkKZIY1FhA3aQ0MQhnQ63x4F7sddafpa9Ho9brnllgtKek/gXy+899x/wye4679/hKTZ5qmv+AkWDl1CECdkgx4rxx7g9D138OenluBJ21j8w9/EFAX5zgOMioLtYoVXuQeZkl9BHS3JZchbMTRaFSvAA8lDnA2P86r4EDjoHW3ygodv5LanH0HZRZ720MPcuzjLC274Uz7/87+G3THD2/7Tf0C+ssvP7694r1uDhTuonXs2t85dySvOXsZg+9/jgdX0heyNFWn+Mg41b+D+7gISx/r6KnsXtuGO3sWbfvoXuf/Jl7P31i9wIsvZn3z3U/T+/NbPw8J+Xnn4Yr6vPMz4us+g9h/AnV/G7d0LwMrO53DDyl/ywsWX8OmvLPEjSz/HDRe/j+sW/oLnn3kTj7hTzF3+d3ghOfeln+Jdr7yI55z7Ek++6R76U/Db7jbO1hb4y2f+EK+6/noOTp/jU53nc2X3Ju7KXsGxc1fwo3tu50+WEwbFCgBF3GG9+Xn+7qUvZKzH7D73KC/4/DFWb3GoZyW03ed4TudyPnW0yeZN17P9oicxevLPUM1dig8bqNEy4aM3ED/4YaLjf8vgxf8v1c4rv4Mz/QS+nQjDkPX1dWZnZy8c63a7/2TqZq1Woyi+3hMsz3Pq9a+aOTYaDd75znde+Hz11Vfznve8h7vvvptarfZ11hhFUeC9/0ftMUajx+89NuxnuLpiplIop5jyXUJfURLjhaMUjm6txbg2Yvf6Nvb7BlF7zJIuSIUjkJJSVZwLDV1aHKwUUmhSM5Hv1UIhxzuRtsRLSV0POd+aIo07GCeRDuI0I3AVg4Wd2GqO5ngZE4FDEcR1rFyhpyEtFylaMdu7GS6K2ahtZxnFLrdKZT01dZqRrnG+nJ9EfTqm7QWmkmhXgvSErqDZSxm3KgJTEm5YhM1x9Rr9sMYw6XBxUXImTbBhxjCewSc9dmY5YZgyq8+yVh4g9JooOcA2cy/zZok72A/MorzFSkHPxXQbi+QqIDKKtq2RBgL8KnkzJNx0xGWGUBNPKIdkGNaphGe90aSSgmaxyZQzNBsChyfuF6y1O9SMIVcz9MIxYSOk4ccYk3A2msHHirnxJoFzVCIkCxoknZR0DcBROUuhJSGWjbDBrKzYsAE4x6nI0GmOEMqzadq4OOaw7FKOEo6FiyzkY/BDakoSlDlFvsa08vS8QoQjZB5QzwakRpBsq9hhSur2FI/SJhk4bq93sUHEfBWgq5jQWZTyNFWPvp9DOodwAunAC4d1lrPNGbJigUhBND5JmK9SBosUSYnzHidrOJGRG4WXk+dFCUOlQ5CeNJpUUBJVIVSFNQaLxSd9MBblBXEzZK2cZ6rK0BlYP82OaIoH4iY5MSu1abaPVsm9ItYly1FAqyip+QqwQEDDpcgqwkXgghqhrCiqgDC2SOmo501sWVEb99iYcYx1hK8koXQY7/ARiLEHW7BYduk0S0ZqjvYdS0iR4doOp2NapcHjyfU06fwClch4VG6j3QRVznCgmGOjWTCH4cxUSE9HHA6bFCbE2Io52yXqOcbBDLv9Jg/LA0TC0/IpYxp452nJJTbcRaRC0Ku1sGjIoC4y2nkXUWnm6XKcHSAlwmuCoI6lh5eWnompOcGUGDD0E2GYLpP1J1yBe6Ck39xPsL+LkUPEiqcMQlIXkVQFnXHBtBQEYkzU1Fg3BcsjQrWJ0n02piROaSIrEGRYU+cUexgYwaY4xTbRxGZjSm/otzTtc4qBCuluBPTVJrVqO2Fm0f8/e+8dZ9lR3nl/q+qEm+/t3D0dpicHzYzyjAISioAlMjIG29jGNi/B8Fn7fVde7LXNYvu1geW1XxbDgnFgAdsYxEuQBDICIRCShkFxRhN7cujcffO9J1XV+8ftSZLMsrK0YFu/P/rT99xz6lQ9dU7d51dPCnzSqSILYTflVsxkZgBBjeXJTuJSllZDk5gMviiRUi6z3YqCclnNIntkh5fkmw6i0qJSaT3L6vrjo68v/6zHnxNpeve73/2MY4uLi7z3ve99Ls29iH9DeOyrf8/ub93F+KVXceXPvw3XP0squpaNsmz9Zi645Wf54N7DbDq6H1OrYLJ5klyRG9L7uLp9D4gcR3Mj6N5pavsvZ07kGChkWFkPuc//GFdNx1y75UnKE3lOpcf57K/fTHHuCdaKI8yOjLF28iQHhgS//N3v8Zc3vJTP/8p7uKz+P3j70e3s7hnm6/kqpb4aD82u4kHRIh65n3HVJPu9rZhL+mHPIsuXr+LJSot8UGV+bo7Va9axd+9TpJt1LrrpJtQjD/Pxh3/AH9zw0p+gtP/nmDt6kO1aMhI0ue6Gn6Hx4Q8gslmIYwBWZk8xTS/TK9LEJyNM/XLG9VcZbKzi54+8ihWpXmIRU858lmJpjv37rqLhnOSr3/wUX2wqlHa4eHmb7rjBq9d+gNv2fB2AD33y43znkm42laZ5ovUqHqn9IuPLHufa/oTW7hZ1W2fEehwIBuiykunSHhb6N3HPmy/guvseYG5nQmG0zXj1KdL+1Tzsv4EbX/v+88amezcSjd9I+6K3UfjG2yje+YtUb/008dhP95y8iOeGt771rbz2ta/lxhtvpFwu86EPfYh7772Xt7/97T/W9StXruTOO+8883lxcZFqtXpeAqNWq8X09DQrV64871rHcVixYgXbt28/c2xiYoK+vr5njX/6lyBeaNG7sEjJy5JuOkhm6crMMttYBlKQOA4LxTpKGDJJjnrWYpuKvr7DHGunaSVFmnEetCYn29jIQSBYZxb5oR4mbmWp5wtYeYQk5eOwQFP10xOWaXg9JMrBtxEOCTmZZUFKZrM5sk5CADiRpN+NETZGaEFsMmTkIt3NOq7Kg45wjaRpDTLdotsLWIjHmRdZsDmkShCVKokX0y56FKoBzTBLI0iR+Ibl9IPViEQgfEWvW6Y/VOxNuwiRJW+a1IfStNuLlBLLTKrIFL0M2jkaGUs0tZdsNAtqiERZjuQVI+UpYn8MhMY4abR1aXiSWZXDyiZ5JemOa8TZMg4eTixQSURc7MGnSk1LAjxKiWVNUKXPLZCNIrpEFUynqOYR0UdLKTxhCFxNW1uENmhlMFiKBFSdLIkxEApiK6m4RaQMycYCFUNCm5TfxGRGKTvjmHqVnEwYjivMqCGscVBxDdyE416RTUFIYKucdIqEskDbarS1OEJzPJNihTpOKWqTdRQNkcPmKnA4S2C60cVeXJvFtQE6UlRUBeHGZB1Nf3yAjKvZ7ndTMS4lnYARJBgmMwlFN2GlfYwjtguTTWj6GdzUDO2MIpp3SANdYY50qkwtcthiyuxyV4Lj4YQpbCai253HOOMUzQJ+EtBySrjJPDEpHOEwWyzizzZYVzlByy3Q6HIIVIJxmmjtUcZjVBiaMk13XMORZbRJSBAUMGRtFSdwmY9KJF0dC/O4alIWTcpyFcucBBP0UksJQldCpClmpsjUQ6qhpCVWU0n75AODTgbJenWMyJCV4wTyCBaBtZYj3b3kWg2ssEibMO8W8WOJHyb4ukJdpzBek2zK4vurmHML/KBrMytmFjmR7mIoOE5eBqyiTIiHE4MUmvVqmu1iHUncy3whj7ZptIqxRpF4DvV0H9koIVaKQhTRQ4UoECyoIi3SpOQCrgiJRCernZaWloRIQV8qJAhrJKFDWiQUWg1s3CLo80nZOk4mIbaKRCpi6XCpOETaFqjSw1zPAseChISTFO0kU6VFsqUsBesz1xqmFFbB09RIM6HyBEmauvFRgUscGxZzg1QHujme6aFtwKuWadJNd1Pihg6zUYIrQ06WJNVleTKqSrmlyLinGMjXmAsHmbI+OC0iN+SAA5v1LKHtx4SSxITEQftHrrH/EjxvFSS7urrOq7X0Iv79Ye/997D7W3ex7tqXcc2vvPs8wgRg45jk4AHuf/hh6gg27dmBNJqoZ5Bbo29ybfsbNKItHK7+Dge31Nkpr+Lr7TcCMNmXYrD1AII2t5Y7u0DTu3ppj23ln0Z6iITHitZRLnnyKbasG2V03SZK+/+Jd+2+n2L3PtalBEpb3llXvL4W8rbWEUaQfIoFPqzeQ7MwT2FoD0eemgADhc3/AV/GOGGDubkpBgeHAJienqTvJddgpSS3/SF2NF64l/P5wIPf+DKnBsd4+VBnFybe9STOBZvRhw4CsDp/goPFrexqP8lYdpzdR+7m4qnrcM1xhiuaS5ob+Ov+LzO7eY5jj62lcmILzVSNrybLyetBgg05bgsf48Blv8uu4lq+cOMrKXeV0G2JnM1Qd+YZzjzB5r0+341uZsOaMs2CZSGeoleneUiPkKmtpqS7+M7wE4RRwLev2sri6BCVwxlShYR1apZTExPce+IkR8LoGaUNdNdqKm/4CrprDcVv/Dpqbvf/djm/iBceb3zjG/n4xz9OLpfj5ptvJpPJ8JGPfITbbrvtx7p+27ZtTE9P88gjjwDw2c9+luuvv/48S9HCwgJvetObzvyWPfjgg8zPz3PhhRdy0003sWPHDo4cOXLm+le+8pXP8yjBLtQxCKSxCGswWrMuPkTiQMXrYSHXhRUakaRpuIoGGutN4tgAvUww53nUnRRFUWc8mUZYRWgUU24WGXsMyT5GswZbzGIdQ9aLKYoGRV1nTXiYrvYsOVXlWvcpBDE1L6ZiMsRGMdf2mIt9jNEYJCkFjoaGWInVDt1mhoZ18EQE1rDgdZEdoJMGWvgoI6knWU71ZKmUNHUhmVVDVDwHE7UoZzwOdW0gbWJSScTN8kFe4kzQnakDZqlQqEHJmKIKWKsqmEhSi1xmsn3IOEecGDAGYRLq2TL9ehKsZTCeodLOg5PgtAVCR7g2oU8vMhRNkvYXiVJ1dGoWmVhSJgRZPVOaNJvEFIIm1eIQUgiKUiNIgVVgYZ3ej3UsVoJbisjWLDISWAyVTIarwodYVT2EE9bwwgCZQNvzkKks/cZSw9I0EEUSDCiTkDOaWFpiJIPhNClXI1PDzPZdyHRpeSeeyXRSxmsh0HaAtnXwRY2+aI6mEGghiRyHuk7xLXMhjw2sYSGXYaKQouZ7ZGyI1DFGGAwGawKKmTky3adodpWJUyFVH2aLBWIPjmR8fLeNyQfU8oLE0ezPGFoSlLS0U0USP4ebalHI1FjZnkQJQzYO0BiUifFo40QpKm6OismRixSyUyeYoaTMmDiJxdIuClKuS79pY60iMYJ+vYAfGhLR8YGMjEJYgyum6WnVkC2H7qRGRisUIZGBhbbDXJJCCZdZ0UVDOZzoyXC0dhEtR9FwJa4M6Y0WcbwAillE3aFuM9TIMGf6SciQ1914ThfWKREYj0aSQhhL28/TU6gxaBYAyBfbLDOL9DFPQc3g6oRmO4OcG0QG/TgkHE2XMEoRlgqkRURaNsnpFnlbJZWtM+ycRImEhqdIZIqFXAbHb9LWEEkHHIe2n0KLmASJ1pYud55Cdg6ve55Vxb0EGUvoCPpEyKAOmZcFmvkSxaIhRQtfRignplc22KCepF1zedzZzGIpi0kssek8v9Jo0jJiJtNDpbWRRmI4PNjN4bXdJEpRUnU8r41UMQ2RYXnhCCPZeaxaxNeKWAsINHk9h9aCGIm0CRnaDKoZupxZhp15BsUiI+48494i48kkXdk5TOYYJ/IBp2gyITRB0eCXArTSRLKFQ6dkDEITCYnRmpnqied9XT6N52Rp+r3f+73zXCK01kxMTJzJKvQi/v1h/tghHv3y5xjdchlbb/vlM8+HTRKiHzxM+I27iHf8ANtu8eX/4zdJbygwMHMC7ad5Y+Ve1g2fYOp4H5WHZmlc899wHEt93/Uk8gCwjbjosafyKD9fb/CS/ibfPz5OuJiht/sEl5yIUGjszggcy0DXvVzS6OKVa2tk5h+EeWjJFFWnwMbgBFvaBms/xkX+d/mN6K30nizzofX/mfeNfx732KsxXV3ouRLL85p9QUIQRriuRyqVYmrqFBs3bsbZfCHX7HqUf1issjX305mIoDp9iu2RxkrJDV1FTL2GPnwI/4abiCf2E6cdvJQhfeUvsPPA77FBbyRxpuirZkmaX+Oi0bey1zlMO4TpXa/pNOo1EcZgu8YIugANn7B9pHc8xcZVY+weXsX+Fau44rFH2XhqniDrcc2yv+WzyR+SeaxAvM1j2UCD5tw8o6XV+MsN03s06YVr2H/1q5laVuENu7Zz52U3s3xmBW9TX2FdfYonVC+fv/9edlx8LSUlubGQ5dZinkuzKaQQWL9I5VWfo+uLP0Phm++k/LPfAC/7I+XzIv51YGZm5sz/AwMDz8iyOjMz8wyX8WdDKpXiz//8z/nDP/xD2u02Y2NjfOADH2BmZoZf+7Vf46677mJ0dJT3ve99vPvd70ZrTbFY5GMf+xi5XI5cLsf73vc+fuM3foMkSdi4cSPvec97nvfxNkKPflnFSI9aXrDoeFyjD7GdGifpo1cL8tEsvckMq/waDTOEaxKINTkRELoK1xp6WSSWCrEUpTOZ8wnaAT1yL0XdZkEqEJYz5cS1JAQyusWYM4sNJDNNvxNYbySB8fCyMUhDgkEJ6LPTRImPcdIsi44hjYcnikylS5hUix4DWkPNTxEkLulWRFzSrNBTHJJ9ZLRDxS8SuZIbyw8ybSvUgi7GVJ3ewgS+myZozfGoHCZjDYGFotvmpeoxulItmm4Po+05Sm6ZAS+ir30cx2j0kGKZmmdK9CHQDObLVBsj9MdlBk2Zo3INOdVCUCeygny7iRUxVdcHHQEeaWnJ6gZGZMnZJhs4RCObom1dalaxIjXHAXqQWPxE4Dgt1psJTnZlqDp9aH+IQKXJxbP49QhjBRhN3lQg0rihj3QMAkNPcgwdxBz1eigLH+NGWLdNK51Fu4K+KCQlW5RKsziNHiKtcKIMjl1yJEwvUjO9RJke+qMFZuIWdeGh0CymizgqZCQ4Rc1LMZV0U3BqWCBNlT53ljBJUxGGBS9DKVjA+hZXJIzFJ6krRSIFipiG32KlPoZWikRoXKGxUuAlBitjXGGI/WUENmYuD7WelaxJn8Q51QIsW6pHmfGqEIDrBESJwsQaJ05wVBOddsmYBiJOGJAzZGmzb3kf1xybYRoPDKR0yLJUjdXJBDU2wJIM5snjJi6JTpMQEkmJS4KyIbQUca7NkWKJeRWTGEFbalyVw3MS2o5gYKkdLX2yMmRQT3LMXgjap0mawyxjoOHQcgTCuFgEWgiiRNDC45rkONlEM6NTlEpVRtQck8kgRhiECImNwIQFaKcJBIi+EN9KTKLQRiBiQypKIJ0QF12m8wWy5SazIs9cpouUCtCRwFchNZPGM4BwqGcKIBNsS1Nz8tSyGUTaUBQtYtxOIpllPsMnFgmwZL0GjgODfoUo7kFJgZsxKC+ht1HlVGqItQuHOVBbRZKChuvT8hRxpshiOsL6LbymolZMUwlGGW/EpArzaGORiUE5YABHxAzaOeKcIANc6ZwAI9HpExRJcLpyyHJCHDRYRo288cCGiIZLqFzm8oOMJrvoOREyEGYwGUPdCHZ3FwmX1VBNS7ZucJI0Es2gX2ZCa7CWcqvxzIX1ecJzIk2Dg4PnfZZScvHFF78Y0/TvFDqOeeDTf0Gq0IXzhl/ho3Nl5qOYnkMTbPvi51i983FMTy/zr3gF+/oHeHjzZWzb9ygqbLN1fRfrxAnKR3JUHs2R2ngRx27ZSbJYov+Jh9mx9nX4ShB4Fr89wfV9I5Tbh1gZzTI5PEhDWFYuTLE8OEHhaIPWZR7SF6xML7BPj3PoZIq0l2PPht/kI+tHCIXhtw7u47bpr7BG3Mu3/P/IB6fexCdW/Aof7Xk5HxxIcXLmAKNsYPDy29jz4P0AzM/NMDi4jOnpSQD8l1zLio99hD1HjjK/rJde5zm9Si8oJh76DoeWr6dbCjalfZLtjwLgbLmI6tfvwitppp0+DqUjtNVcXH2IyZlfJa5/iYt6rmOHe4gDzhTdOsuh1F4GTzTpm4dqLuLUeJo/0Ic5GfbySLiFmcIoNx8kDLnfAAAgAElEQVTdQSWX545rbuaKxx5lbKGGPZjh1LIhYm+RVGUNJ3ddx9CGB6icnEEhUYWneKp3OTfNZLh2xy5+sKnBP150Pa/b+X0mB9eyKFbSP36M0r42r3zg67yr1uCb267ly9bypcUqV80c42WLkwzbhGxXD6sv/SNGv/d2cg/9MY3r/vQnPAMv4vnAS1/6UoQQ/2zxdCEEe/fu/bHa2rZtG1/72teecfyuu+468/+tt976zxZXv+WWW7jlllt+rHs9V8yXm4wLD5s7QTOWHCVNTXeTpYbyeljQHuPxIlhBT+444YyH01NDJOAqD2E7SouVCmtlx21IaTY7R3lMrqQqwE0ChPBpWp+Km8GVCcaNaOlOkXphE4LIsDY4xG6xmkSmKcsMK8VeRpxpZm0BKcAIQy4JES7kqbFoe1DSIkWKgfgYrchBW0vauITWEBOzMplEC0uvaLLoDkDbkJIRq+QJpCuYCwrs7xtlwEwTakkLyXo9waS9pDM2K2nFaRZNgSE3AaBP1NncnmIkmkILSZj2yKZCjLUII/BTETQSxvQp2jpLnjKBaNIEVrBA3c/iReCIkFnZS49q4Zs0RklKcZllcQ3lKrRNga4TIAiNJSVCFoWPVAbPSIbVPFkxx95kA4kjcUTAQHuBVlYxlxSxicJI1amxA4gkQQrDdD6LCetcII4TAQPeAkftEC4RXU6ZtnYxRrCtvotADrKPDXQlOTzjshAbbFvj5gNqqxTDNkFYiI0iQeIvJTZYRhkbn2CH3cys301XUqGXJis5hvUEE6ofYxxC5dCkGyNdhNVgwQpJzgYsi/eQZ47IKpQrWe3O0CXrtOQwViYk0qBUhDWQcVukYkNvMocUWdbIBYJ0hQUK+LLJyWgQiYO0gm4VsCA8mn6OyLaQQDoJydgQX0rSsoy1/VgsFkGGNq4bEUoXYSwYSdtNE6YcVODQkAJrJYOOxZcuRvg0ZQPRVcbWJdZKYjRDffvpdmL6jcdTqQwi6iIr2ww5C3RJw3B7Bt+RaCkY7p3kSa5lwCyw0l+k0lYcFzlCpTBaEhtF24J0DGmj6JaGgjOHFopqlKCkS8km+LU5+pI6jzir0RrakUONDL10yoJUpUcqjqhkFEHO0sTHdzR+DK5xULFCJpacaNFDgyNJN6EEUpYpv4eKyNCr25wSReqhpOR24itNqc2G5AQN5ZFY0THrWUtLeDREmrxeZH/PehA5sDVyskWIC25CJVdCuRliqTFW4GmXOJXQ9vvJzgXUW5IF0oDFCElZr6VQizCqSkCVWBkez2YJVZuDOUU2G1NYCOiaDWkGgt4YXL9GTICMc8z5Hr32JD1HFslbgfIKNHN9ZBbbDE351JIS2fmAodpxypkU7VGPHlGllGrjOGAS/YKtz89bTNOL+PeL3d++kyOJ4eGfew/7piooayk26lS6Bvird/426xtlrpzYiV8rM5EtoJVi84HHUVJwubmbericqUc07s2/wL6RCbxilb17L+bK2xSHDmSJCopUuJ/f6o6J8mWO2gwIWLN6D6PHZvnhsZfTf3CK/FUhG8YmOd7u4s70q7D5Hi6ufJntc330Vz/Df39gmH+88KV8eO1GPrliIzdMvZy3TL2f9/E5Nj2yj9+84j/z6Y27eM1sHhFbhja9DP9bd9K2lsruf2Jw2eUcPXqYdruFf/U1tD72EbbufJRvb9rAz/U8fymHny8c2/kox1/zNm4qZJFCEO98EpRCj46hpiYpbaizd/RWfjB5P3ltuN/r4abjJxgbL/Kk12Ze1sjkp5g8dpgtMyli1+HI8gIL1+T44FM7GNan2C62cfN3HuDUWB9PXHghtz75EN+8YBvTvX2UqjXuvux3yC6McNrmE06MUmn30dYd98CL5vaxdShkYm4z46cGiNjOvtUNvrzlGn5t93YeaG3gNbnDbDSzPOQtp+urX+Btn/8st124mceyLmGzSk0qyp6PF7R4HFg3fgs37Pw8zoafIxm46Ccl/hfxPGHfvn0/6S78b0XcCHBTTUTW0G775FttwoJhPJjhmBwm68WUbJP5JM/RpJepFT6XVmrkleWYCsnbgKZKkwiDQCN1gMTguIJ8ytJUAXnRxNEO2giqJs2os4DKCJ6orUJhUSSUMz49osK4naItuzkqBxAWMoSssNNoL83JMIfSITknIkNIWRik1QhcjOlkNsuYhA12F12pKo+0NyCNwShJxlqmQ4lDwpg5yf7iCqJE0S8WOKBH2ZNZyXiwgBEGLWOu1I/wXTbTiHqIpY8UAmNDLBYfKMQNsA4JikOZ1aTcGNHqZCHLyoBhMUvKMRyKi3TZCiEujrX4qQbTqkjsZtjiHqEalmgVQLtlFF20rUR5Ft8JEbqIIqCTKqIDITWJTOixTVSmihNlGdZzPJrpI0WEBhSCdsqn1UjjGMm4PoVXKDAanyQjBCfawyRFh5JtgTH0qCqrOMGC7MOBjpUKcJKYkiyzOpxAJQFpJ6Ll9iGwZBt1RjOzbLALTIuzcXrNxKOgDJGbRVlJnog6Ln2mjMEDHePbNtCPFWCBpnaJhYNZyrCItfhUGZBV2kIiEQgBUggiFGs4ygRFYiMZc2dIxyGxNow2T9FGUtXduMaQ5LP02wWUE9O0OTAWIQUrxSwTIkdiPALrkKFD+iIE4+Fhqq6HQWOBRYps0KewLrS8JkpLAr8OVlBQMbuzK9nozRKEMC3yHFN5WkpjnBzhYovR9jFmnUFEDrTXQhoH32oO1QZYHUVIY4jdEJ0yCCRCWFb5+1GJYbeMOln2FKSIGDdTzFqYcQYw1gCKdALlSppa5JPzEtI2oSkAJIPMEekIxxiKtkEzzmA6aQUpe2lMKkssHDK6TSNOE3iik5wCTTsUDIk6iVVoUtRDQZEGxjq4jiHyS7haIxA0Y5dIno6+0RAldEezhNIjExpMaLBakPIsdekxk89TVmly2pAqL6AQSKvwiTHGoIWHE8YI2jjaIes2MSokZwRp1aSR5NDKARKsgJppUQli8vUmI4RkpcfIkR4iZxpPJ7iOTzpQeI7HgQtGKS5aunoP0Qwke5xr6Zovo5qzeKpFUVkOr+8FIjIFSB8pki7HOM0UMpWjqBsYPNqxR1NqhlMVXHO27t7zjedEmtavX/8jMxZZa/+Xdv9exL9e1OdnuWPfPu6+7V3kpMN/evh+rvu7v0GsWsVjL3sFd3oZHlm+niMXvoT3+nDX9BzFepW+8inGc7NE/iin7ghp3CJYvO4LRLUhZJhl3cAj5B7/Uw5iiLuy3OQ8yYjXxBjJk/dexar6fjZceZxTy+dZ5z3IpYf30TvW4K8GX8+J6VGUNvzqSy5i6N6PcKpdYuopzc6rH+bnu+7kpV/dyN9f+Z/5yvLL2N77GX77yT/m5+NH6HnknbztwtvZNjTEcA0mv3ovyyTUo4CF40fZsvEqttOJa1qxYjVybDnX7XmSz9de91NHmupzMxwUipbrc1WuE7MR73oSZ+16nvrm3aywlkxXRG79q9m1+3cZSDQX7FrH4NaDHC3fTJsGmXAG9k8zKDwOLd/McHQ9PYUmbzv5ZywPJ/iGvImpvk1c895tOH/0YbLzFe57yTW8bPcP+M62q9l4fIhse4Qoe5g3ux/muwd+kfm+K6ifvA7tHicyIWPRIJ+x+9kqN7I89tg/82redczlr16m+MKarbh72iT6HsYvL/DwXsvchSNUetbw1IkDpBcTLlxskNxwC79/9cuoBC3efPAxDuz4DlPOJbz2nt+Ht3wF5Is15P4tIAxDvvCFL/D4449TrVYplUpcdtllvOENb8DzvJ909543+IFhorePNcxiBAzLOm2bwnNjXi5+yIQYJ21ClqtOPGUxqZMWhobIMdI+yoIbg/YQ0gAWlUuh/JDYQESMsoA8x2pnITYuaSdgtTOFcqJOLRdt8IVltTfFISPJuqlOYjJrsFKRJaZtHEIM49Eh5nAwwLCdpKF78ESCJy1CwIhaIDQwqObPEA6JwbExPbaBFALXdZFAIB1STsiy5gKBUEg6ZWU8EfNS90ke5cKOS5aFStQJ8B/V07S1w5xXJOsGtBOHQLuE2sWXsBgUyKoIIVwAHFwioXCERQrRkZMKzogkzPg4MiaMJalUxIhbIbIddUkgiDAor4XRLhiXkqgTmYQw7NSzysgGyzmBti5B4uE4BikksSfpktN4YZ2y04sUBiMUVRRC+2TdNjI21Fpp1rvHOCViklAzR+f3pR5nMCaFNk1wI2LtoqWDomNxixOPWKSQxkEi6VINFpISoXGJHYecabFV7KRKlhmKSBVjY4HyYjBgsWxwjyOsQxvRsVgCAkvaOUoBS2A9XDfBiM4zVHNyKNk5x1jBsDMJjsBaiI2glaRwU00aSR8p00R6nUTXVSeNjjr3XBAOrcTBSpBaIY0g0C6CFMYRzGU7qdATK5FLcVoCKKZPMRd30emKZVBVKYqdaNmmIQv4ToijQgqmTo+uIRyJxJIJGzTaOTJuSKPZj+81SazEYkksOCKgGvuMuvP4scYaQyXI0Cummc/1EJl0R15CUjANGn4GYQ1adNwUNS4xBi9doR2kUaRBWLQF1yo0hrX6GCftQMfiI4C0oeWAbRkMGqOhrjJoASQhw2aBWIB2NNoYciLACI3WDhZNw/iknSYkhY7roOnMXWIlI8EpwBIYj7SAhtOEXJZeYrrsFDEuGQcGkykaxqNpfRIhESRIDPnJeUSQYbPI0zZNYhsgHYGhiluZxyFDUUmstSSEOFhM26MryNDjZkgrgVut41pFb3cB5VmUKNJKFVk200VONEjKaZxEM6AKSLfA/EAP5a4eckELV/tgPdoFwcmNI504w5rHqJGkJ8ukRUQYK/rcMtO9JYbOcel+vvGcSNPv/M7vcPz4cV7zmtfQ09PDwsICd9xxBytWrHjBXRdexE8X/vJ79/GVG36WjUnI+//0d8mXFzn0C7/AniTCzE/zlk0X8Z9WDPHbc1X+qB1AVy+f/N77ORBZ+kaqHH7Y4BQUcs0GJr//M4y97IMcqOW4+sRrOKpTGNqYossVYidCWI4f24KdiZgpF3jZjpDHLr6QK3ic3pVtti8uZ3dqA2kV0TPzOH3f/jQURrniP/wZd/7X97PmkQzhasHq4n5+9y8+xORr/i/evynD7Vd8gInv/g/eF3+Wj+x5P+/d9D6+9MAohD7Z/mFE0OaU28drD3wSKdefIU3eZVvZePfXeLxap6Y1hZ+iAs+T+3ZydHQ1AFfk0p0kHHv30H7t6yjv2M4KoDmQ5djxB5hSmsGmx4b1R5ms3UxsDd0LLYK5k0wXE+7bkiUeeQNvv6fGyvQdbJnZxXzf1fRt/QN+cPeXeTDYz/rL0pS213j5fffy7df+DEE+zfTgGMXK9zh8hcvg0Sk2Vb7IA92XUEtP4QcXUIlmuay2no+v/UfWRBeRO7aGHi35av80644e5oGLLmef2sYBVjEijpDxruRgo4VuT7D8kiu5/JKrSb50B9HnP8dn/uluHnr9m/kvF1/DBWPrufVrn+KLjzV55aq/JP2Sd/5kJ+NFPC+4/fbbKZfL3HjjjRSLRarVKnfffTc7duz4sWs1/WtArVVhWXuR0FOAZSHd1fG3IwEso2ZmKSFCB8uSORKpWIhzhMoy7C7gS8Fh06kpJZQAKYiNRBtJw3igICNCKmTxRCeTZjtxcVQCwnLaE1IiEcJgpWFUT3UOCokSisTAWHqKDAGBtCjjQgIOmovELpQbwTn9FFhC10Nag4NBCs0KM4VCYoUAL0JhcYRLGosQnfEjOimrrZWkbUCfWQDZ2bRNTGfNLdoWCMFckKXmDaAIEdZijEurYwBAKR+DYbk7SyPqpik69m8HQbeq0hTnJy46HQuWERE5GdIwIGSCJ0NUqgXW0i3rtKxPVrbBOCjR6Y9HjAWGxAKzIkdHw7YI2ZlDKSxbkwNLUgGpEqwV5G2IQoKFWpQhl64h2oY5SkgpMMJHC5BuZ86aMkF0JIixcMAu52T3CrK1ALCUVJNFUcRage342SGBblFnhiIIS+D6xF6RQVvGWonUmkRJMIZ24izNoaWeuMzYzvikis/KyU1hMYx7M0TW6ZCsJUIlsBgBYTrAipNUAw8Hg0AsFVnt8IXJVIHESAQCKyXV5LQ1S1E33Xiio5CzZAkTSgOSPAFz1iIQCCQITcqGKBkRug2Ksklb5NG6QV62GUkWOEUJsKxqnGCOQRyy5BudpBLSShIcpOwUgc2KkIzUlP08YFnBCZarKYz0aWXzaNmRz3I9hVQai2JzcpCnnFVIFbMQpJaoJxhjEZ27LG3kmQ7zX+p92/FpaQ8wSKkR1iJ1xKBzjNXJKQ4xtuR6KxBCI23nOQIIrAE3QpmOgFwRn7FOhtphVE9i0CjpUNMgHQl0NjQcLMa6tGPQp+cPsPL05oak0D1IWw3QpkHYGsBqiZadkxJvhD4B0naIrMXgmZiUNJh8GpuBIKUwqy2WkEapgONqJBptDaYt8FSLVtrBb7XRjkVGkv4gT2ZOYk1AqekuWTwhciyzeYEVgrZXwE+1scRLfe3EUApd44XCcyJNX/rSl87zCx8eHmbLli28+tWv5q1vfevz1rkX8fxDm4RjjWOcap2klTQB6Pa76U31sSwzgq/8/0kLZ/HNgwf5zKpLWL04w5/86e8zeemlPDD+UsKgxZo169m27WqKxRIAfzI/zTsaVf74xEfJz55AimUEow6FL2v8Lbfyd/PXctHovVgsTV5B18wN/BmdnVS/ELOsPU3s+cxNjOG0DzLQbHMiM4ZzvMRK2kz2+5i+EdbPHWF+WY5f4geYKGDyqv+H9NBarv712/n2xz/Iie8OEmydZsMX9tK349v8SXw9X1yzl09c+ku4OxJ+t/UPzB/+EE92f4xLyyNsP3IKp3eQRrEbe/hbXFwaYnKqE9fkXnoZzv/3RVYfPcgPV45wY+GnJ/HA5N6dHF9zGRtSHj2OQ7xrJ0QhjxXyjC0uolKGiWUXUDjyGRjo5pqFIjOZy2knistqPeyZ285M1zj3XPFdKvn/mw3liIxc5NrG/ST5MXjNp1juF3jJ6m6+fxAO9N/IirX7GK42yC12E6cN9eITrN/7AN+M30SCpK9vgf6Z76GHX4bqPUC5KVntX0pvXGL34D1sosWW41v4flAkW/sGblDiwU2j3PbtV7Ax99/wVxapHncZqixwzS+9C+m6cPFlxLufovnfP8pVf/1x7l72Vf7iVW/kk69+B+/88v/LN770bV6+9tVk+4d/bNlZGxNGp4jC42jTAGtRTpGUvwLXXfZj1wV6Ec8vnnrqKe67777zjr3lLW/hpptu+gn16IXBgqMoJgpPdqwiHUXEdpRuFCkCzjqHQTXKEKs+AuUhEORlG2vOWt46CmanFbEUEwJQUG1yYhIpO0pdbCTITiyAEgr5NO1gSe1GiY6iaKwgJzvKOXQUedsxeKDcZ9ap6lQ+MigpyMk2DZPGcxNC7YOIOa2cF22DzclBbMc5qnOtWIqtAdbKifPGz5J8rAVhJY5QZ8Z7LhKpkGhSIsKhziwdC7wjDANOE2g+rb8SoRKwHfnkZMC4N0NaRbCkkPoyYZWa7Zzjnq3h5QrNOv84VnvMkerIXpztjyMFSpx2n7JIYdC2028pHaToCH82zNFNhTF3cckSwhLxWqLNolP+ygIYWAzybNi/m6PZ0bPjUJrT6vrpkZ0nOwuOUOREhMCijaLp+GBDbPS0OELRmaNzm1hK+YQnNJ7Qp4cEQDtxzjw3HcIml1jP6XY7RDLxDURLhALReX7iziiFkxAlp618Z2WGdfCX7l9SbUqyiZQRJlQIoEc1kEIxZBY4ydmi1HKJxFgsQilO6gLZhkCq04NyMagz92mlOs+7YMnQuvSNUT5gcU4TIAA0aau5PN6DWSL99vRfFSNV5wWRwnYsakvjkUJ25lwqBBalOkVnVag7LpPeaSmffZM9IXBF5z0//Wx5wjDizpMWEfpcWXGanIFQyZn7ck6caKCdM7N57qYMwGyfRLuz6NClnopphF1LhYwtA6kyKStQ57SlkaSDFvWUwrh1NAkirYiFISREkuA7EcKJka5LJdXEeJZK2sPqk2RDl3zbxdUhmpggifFkiAlG6JMBi8JFJAYrIMwJ2tJHCUWPaTIVdzO9FOv4QuA5kaZ6vc7hw4fPq2Vx/Phx6vX689axF/H84lDtIHcc+TwPz36fWvzsLFwiGc2NsTK/mg2lC7i09zLGcyufVUk8Ecb8fi2kq1HjHV/8NN951a0EQrB82Sjbtl1FX9/ZbFbJwgJP/OOn+cToTq6uPsGHgxsJx7oZuqcfrR7nO1v6GZlMUbjke+xpK27Yfy0tLBP5o4h4lGXOUbJ+nYXj/RQmZ2kBPoInyuO8NvUtGhWPg5cVcO1u3jb/IHISnsiv4/PiOi7/7g6uXXUFwxsv4sJb3sCTX/8SxeE2+9c1WbvnDi4d2sJY8mWGVizw8ZE3MXiqzK9W7uFvu76IW30LWa+PuNUkAE6mN3FNcC8frRXROsG9+FKQkm37d7N969afGtJkdMKJQ/s5eeWr+ZXTrnmP/ZCpwUFONmpcWpkn3R2xqr6Pv8ylkRpKXStZLBe4PlzHzuk7aC9bwXTeEKYvJe4e4/qDj/KKrk+SVprKrX+D9QuQBFw/80lOTm/iaN8aJi65nING0T23GY+Adu4JDmzYyEA0zRE7zOjgFOPuA8zWriWp38B8ci/rhOJdR3+d96/9r0ytHyV77GLWx4qTrZczNPMIx5ev4cmXX8zN31dssnu5e+xmgmAfX/n4n/GK99xORkrcCzZR/OgniLc/RPMTf8FvffLP+bmVq/mnbZsZ3fck3/3Yf+Hlv/cxlPtMFy5rDUFwkEZzB83mowTBYaLoJPDsgaSu00+p9DN0d9+G748+6zkv4oXByMgItVrtvLpIp7Pg/VtC2/UoQidYm9NK2o8m6uWkgCdOE5WOa9S4OwuYM0o2AtZ4k+ddJ8W50Tln73b+5zNq7zP68XTlSsqYswrk+ZBiaRdbagSw3j9Fw6Q4aXvOELdnxZIydpZ0PJssOsdOq8NKSLQ1pGVEe4lAynNIzZmr5DOVq7xsUzfpJaXT4nqn3fYEaXm6jbOK6LmK51m1FpSjMSRnlhIpzn6r3OSfGcf5KNkQgSAnw6XWnz0ZSqd3EqedoCNJK+cAGodnUx6XSLNskpIJKlaAPjOXTTd97mkADDplHKGRMsSET7PIqQirn7622nNo+tljnJb3OcMQS3M/6sxTTvK4GBAxKREx4FQ7JymNOEeWZ64VsN6fXCJTZ+gMFosUZ4nPaQq9RO/PDM8Yg83ELCYZ3KhjPSupp2VeE4Yl+oZyI3QoEU6C1A7CCU/bzJ4xm+e/VQbpxE/7/myPOid33ltHck7fJcJaSnGbld40iVWkRIQ0UCBcIkBnNyikEOSW1gFtz95JShdMglQRwvlfS5IwrBYQIaTiNiVmiFkkJofFYIVEuTDndNN+mqX2SKkPKwWDmc6aEx/spZ5WNHPDOIUqyzKHcRODmZfUnTQpGWCNR0SKoxmfVj6Fbzz6o0VimyUSJdbZkK44zaWtEGkNO9tFFqxmmBqOsPSZMi8RLU6lXjhd7DmRpne96128/vWvZ8WKFeTzeRqNBocPH+b2229/vvv3Iv6FWAwX+Yvdf87909/GESl67CUUo/XYuB9X5Mi4glymRT7bRPlzVM0xdpd38Z2pbwHQ4/dy/dCN3Dz8ClYX1iKEoGUM79hzAGMtr3zqB0xs3MDIyBjbtl3N4OD5aeeTiQPs+OgHefnm3ayqneLvB69B7ot4YGwrR/MN/k+O05y9lK7BnXipBnLiJgYqeT5VfIpmWCQppVkXHMWmoXt4lprIYmWGPWvX8At99yOs5anpS3n80BibNt/H/uvfSHfu53jrlE9NOeTu+DgbjkzQt2INW17xemYOP87kQ5YT151i9aGQ4Mm/Y/G6DXz40Af44fK/54+cX2IjR3hz5YtUxDUM9V5GefZeAHbbLawN/pY1HGBubpbBwWU4a9fxkok9vP+nqF7T3JGDHC/2YoTk0mxnIYsee5SdW7fSnUqTKjdwRzSD4SIPZ0fZUl3JYnUFl8YrKc/v4mDfBXQV4ejQIzS7bmdEH+eVlbsZ8vdTu+Fj6J51AKR3/jXHH2+xGDW4IDrOinf9R44+1GBmts26Pf/AZ151AxcKwQ37HyUz3yC1NiHd7kbLFAJo604tnFxjiIvKF/EV80PeXLiEK5ICfym6GN7fQ6Frkvl7v8oRr8Ta3AnuCQ2T6zawYdcRfuuhH/IHWy9h2HMRQuBdeTXu1isIv/kNRv7mU7z1H77GyRVFdhqH+/7+k9z8y5300NZaWq0nqVTuplL9Flp3aqN73igpfy1F9VK85iButQ/ZTENkSWSVMHuMZn4nc/FnmZv/HD3db2Jw8J0o9cIFnb6Is9i4cSOve93rzrjnlctlHnjgAa688ko+8YlPnDnvHe94x0+wl/9yxOrZ47NOk45nw2nl9FxFLSXjZ5wnn6HZPf2q00TtXFX3nyMr56vwUhiQFl8+08p0Gk9PMpoVAd2qTvcZRfVHEAn1I4jV6T5IsRSb09m9H3Pnnr0ffgvJuSTqrByG3UUAKjpDy3i4zzqepxOlf6Y/6hxFX5gfee6zwSMGca7b99MtaJ3MiCBAGiIBJ7NZHDQpGaJO+zSdlus5ly9zKwCY5HzvEnvOHJy2TOZlGyWebcwC6Wg4Jx7smTjbXoe4nv5s/3/23jver6O883/PnPrt5faqqy5Z3bbcewODTTcxpmYJoYQ0EkgoMSwlQHaTkCXZUELv2LjguGEb9ybbkqzeda+k2/u3njqzf3yvmm1+4ecA3g08ekm695Q5z5mZc87zmc9TTvrflSHt9tSx/X322ElHSTN4wbWs4+zTXGsn3bM+dk/HNT7+U17M4scphkSK+XHDuM/LGr9onDQgnbl7DQm8BWUAACAASURBVH4R+Djx3KP9rk/acqIL43Gd5hYH5theKRpFqRUGm8RCloqRY0xek33CwvcxXPxC0O3otWIMKRFm+AuPe/5ZjbTzSRnQq4ZwdY26Y+JZSerJo8+iQmEwHWRQWM9rRRCDaDCk4z3TNAlJmM2ihERLQWhDLRRo08K06/g4lElRNVyqRhJla8bzSRYHB0npkClHkC5nCKMERuySV6COvS8bPSsxWDL3Tf91yIsCTddccw1XXHEFW7ZsYXZ2lkwmw6pVqygWi//xyb+T35j8ePfP+Lf9/4NIe/iTl1CePA8jkac5ZZO0DWKlGatEbD1kUw0yQDuGWMXKjizn9Mak8gfp957mloGfcGP/j1iaW861C97M3f0ZDqULXLXlUbrSKc67+HJ6evpQozWih4dQR6oQxmgrYvb+77L6zM3M90b58yUfZMXjEfA0aysJvnXeGWxffgaXPhOzbOHD1H2Hy/rfQL89ybxTvs3s4x9D5Ww2pk5je3UF63mSLmcvlpSc17yXDjHBU/uXszXbSz5/IbmczXDpPjKtf8qn0zneOTjJI+ddRfvN3+NVf/5xhJRc8I4Pcstn3kX3lg6+c8ER3vHzbSw5nEf0wod238+7e6/ijw/9KbcnP0jO/hwq8RlSUwlqXo39ZUXY1cfFpcfZPHiI9vZOrLWn0XPjjxis1hgOQjrs5784ftMytGsLQ+3zAFiTcNG+z6GJMWaWLOQcp7GKmC563FXppdaRYcHIatriJIv9AvvsdmZzMRld5lDHxSgzw+cHPsYqZwvDbW/CXNyo1yTqk8Q3f4mHJ+djZCVnfvjTeDWbsZ0TLDy9hUWBw2QiQ/uRQTZ2raG4d5wupjlUW4gIb8Ovz+ArSSWcpmjYXLDvOrad+jEeX3AT527+AE3FB0mMFHjbjV/HVBE/PSXFX4aTeOIIbq3IzlULuOiO+3mbvZvTxA4qwQQpK8W64mlccMHFdF16A95Pb6bzG1+m6k2x/6nHuKt3EWes8Rmf+Da+fwAhXLLZC0jH60mOLsXYnkAPV48vlFsSkbHAMbBFO8npReQrFxKpcSYW3Mqk/j6lsXvobvkkme6zXoqh/q2S2dlZzjjjDMrl8jGvhlNPPRXf9xkYGHiJtfvViZDRC7Iic3t5IYMupXxi4z+oVf+Cp/5yrqbNRpmJ+CjDd6IbjokxZ8laIqbLmiQp/BMu9hxmSipCYR5rQwhoNV9s/MHJ7WsBC6MZRn8Zq+aXuO28USNvVFFSgzqhbxtW6C/RsD7JWGbORU4/r19ONuiPmvkvpKjQNOK/foHUkpqtZjM9gUGO4wyZKxrzSZ+AnY6J8YuMf4UlIgJtcXQ8G/FEz2fJtGzsk3Oq/zLsKMA8axx5rGjxC51zosLPB/fHfnwB5uroTmsOaKTmWMKs8JgmTUL4mMLgNVMHqDHOzU43GjHHev5/sa9zLmxz/VYwKkzF6efs1yedJ+3jz/NRUGqeAIaPOsXZooGAnLnxMqXGMQIyzD5Hn+P6OSLCnxsjLY5POXOOPewWk3MxcC/snvlCIsRxRhhga34BoQ2edin6s8i5WEKhNbZZoWAOEp3gEqyEpBznqYQJZgMbCVTyLs2zPlGsiYQiiGOydom2QgkzYZIwa7jSw1WNew21yYxIM1bKMVYp4MYBE2EKYSgQAktCu9/MIttn1jKP9QzAsDruBferlhddXGZ8fJytW7dSqVT40Ic+xM6dOykUCr/z9/+/QLYNz/KJJ/+JKfsutNfFqe77eOVZK1nTlaMp9fxVzNCP6O8vceBImcMTNXZN1/j3R2tMy1aa06/h0qXXkmvexqOTP+Vvdv6U6dY/Zt3Abs4zFFe+6Z2IUkj404OovbMNL5COFFgKdWCczlNyFLxRvtHxdg5ZV7B69qsU7HZefce36DpwCl947Tv4tyskD+jf4607FWu0zSNn/TMTMx0A6JxJpx5itN7GjS3XkXh1lb/d/XHOmn2WDXo1epeHuiTPZZddiRDnUi4/wuDQ51jf9795xUyFu3oWs/zIPpY9+TBLz7oAN51n5es62fTdUWK3lcmWKnLjJuIeg654jK5DM4ynCnwg/hO+Kz7LafFtPLVoNdb0EJV0nunmV9FW+l/I3bfBaWdhrlyF8cPvsuhwP0/0dfLa/xtA084tjJ1+OQsdi5xpEGzZxM7Fi0hbNtN7N9ADTCezDOw3Wd28FkPDpeGpzPiHeDC5hGb5NJOuj5e5it8vf50LD+1gKFiGf9H1HP00GD/6G7ZsLDA+P8VpV12Dk83z6A934qRMVl3RA5d/mvVf+jLDbp5sucxDay9ATEfsGNuLBtJOkkqUY8IbpDMzn6DmcPW267h59TdZJG7gjbsmMcMaU1aeW1/7Fpz4Fv5s5yHmt97H2Ma1hH0rGe4R2KPf4Ck7zarcAmb8Gf5tz5f42p4vc2nn5bz9yj+g4/KX4f75G5iu1Jm86ZscsPeTbV1AV+YjpPvXwWMBqhwwSMjhPPjzE7hNCdo608zryZK0n/+KtCsh3YNryQ88yVD+7zk4+Ue07/gDmte8HdmW/E0O9W+VfPazvx11t9KiSi6oMmsfN8RONpbF8wxFQ8doLVHiFwOnX2Z9+Wi7UtNIhTy3sdksM6Gyc9ds7EjKiFpscKJnVEZ6z2ns5N8EEIjj78inneXEymBBPERbPHXCNRv3FIvnJNc5yiJogdANIxFx3EQtJEeZiFqeQ0g8Hy2movqx834BDp2LFZoDC0eN0Tn9bCMiiJ//bpBaY6qICStPVlWOnWAKhdTQbs7gCp8Wb5pxtzB3nyf0ldAYbv35ZMXcmBw9rAFRFJzAsiyzjrCdU4mkwTw9cSxJwGJ76CQnOWHGHDS66PVHkKY6FmdzojhGhB8Z9FoT1JTTaGsOLL6Qe5dGYyBIRh5Vwz2m6EnzSDA3bqBFgx1LiZCUHVAJrcZ4njh99S+YrXObQ0wsET1/Xs8xb6nIo2q6OCKiksqyLBoEGuBpqTvU0AOBjss4oQdOd0Nn2Uhe8dw58dxNR3+fsYssjw4eez6HZQsOPkWeuxhwcgvyBDbs6NakDOizxo6xxGmjkVCkYEZHQ+vQQiPm+kYJmGeNoY7GRs1tExoKYYWlzhA5apRInARLjzJd+qQ+nmOZBTSSljRiEKWGQ2GRjBUy5rcwEHeTUHVUbKFig9gKn7M4cPQGBRWVZCyej0VINc4wlJXYZiNOcCxYjBXGJGSIGQrMuI4OUtS0S810CIWBX5eEPkzVQ7QyCFxJ0q7TaY4gtImRENgzJzJ2ghiB8+KhzX8oL6rlm266iS9+8Ytcfvnl3HvvvXzoQx/illtuQSnFRz/60V+1jr+TX1LGKz5ffHgv98/8C1buWZa4l/CZCz9MU6rh36liRXnSozRaZ2a0xsxIndmRGpVp/9iznAXOAM7ARSQNhiLFY5uGqOg8b+6fxz/+/jtoKU1z6jP/zr+fVeWUO5bRuTcJUmCc3Y6xrplwZpLxP/0DKm+d5ewjA9Si1Vww8HqKpSH2+cOsTK8iHH+E5JJreM8dE2xdt51aSx9XHGnm8dW3sMDdxjeHr0MbgvPTD/KGPT9i6LFlyBz84MLXcWltH+MUeWb8FBY2HeCc2+9EJD2sP/pb2tvez9Dw55gt3cMHuy/h/t0DPLFkHc1PPMy81afjJpN0LryI8fO+gH6wk5vXKv7g3jGCapJWey+XiBlu8Is8Eq3ih82X8XuVm/DbrscKcmCa3H7LU7zxtFZWTN+JV/8Y9opVAJzRv48n1q3jtYXsCw/Ob0i8SpmJQwc5/LJ2rkw2XPOOPPoQEy0tJJetYt3Pv4VMKUYesth+xXxavVZWVluROqI9uZDHmeYyEbCtfT5N3gAf2fE9Qp3mEfFRLm7OAKA23sfItzewc3Ef6WILyy69igNPjzM1WOXMNyzAcg3+cvN+njj7InrGhvnUv32Be664nPvNs1icegZn2TzOK2/kR2P/xFTwMH2spLPvHui/iFVDe3h8yTNcvXE1UVeC71tvwK4ahMVX8LR7E1fVBB9c4dFffIiLhy/l5Qdfz7SxlPvO7OWGtQswmOHm/hu4ZeBGHhy+n5e3r+GKdwec++V+7oiWsv2mFdQu+Qve9tg+Dhvbuamri3usgJkwhhkaf/c3+lIAXXmXhU0pFrakWNScYmFzkt5CEnNpgdzSl5OqnsXA3r9kpOPL+E8eos1+N9Z5XYj0Sw+e/6vJgw8+yFe/+lXGxsaI45MNt/vuu+8l0upXL5Yb0RbMMEsaqY8bOWOyQGs8hUTwrL2AleGBY8a0dhJk6tPM2mkOGR30MnysvaO1dlKRR91wT3bumjOwKiJJWteOkShCC4RWhMLGJOKYzQwMGq10qjEyVoAXm1SES1J7c8bwXMNzShuaRspkGoDioOymxxgB1QA8dhRRMh0O0ElbPHVMrzFZZL4/SNVOHA/7mAM5SoCtIpQwj9UVAsg6HiqCfFDFkyahNAiME5/D4waioU+eP8ac4vFJ1vfR/HmNfwtOnWk/AVoTSBvi57sLmiqiJFLsN7tYF+xBaui1xilGFUJs8kaVgl8iJzy80KNsuyghGuACUGKOzREnupaBbcToSKIaefJ4btyYBvZZPTgywNIJ0k4NMRdrZbyAQTssm3BUxCGrjTPDLTQ4LnEMXCWtgLSpmPTTZOdS28s5lHl0HsQnhhHNDb6pFJyAc48SRKmoRsVMNmo76YbBnvdKTNsFXCtC1RU1I4ljBJhSUQntxtrACwAXN/bRAmrSIauOAz6pxRxAa4xXIvapmo1vYIyD1gaGiBk022lXIwCousu9iU6ylQME2sYSAVqcmC5lrj0B2bCG1lCyTlwYE5TMLDI+itwVB5wuFkf9z+vzxtECT7vss7pYEe0/Nr9OJNKSImyQlGgWylHaazP0293EZv3YWAsgwsAkBgFuHJCKahhCMenkjyeBEI1xE7oxsqOimU41QSxhXBRo1jPHdBtKd5L0K6xVexmxihCDIRSpyIOSoDaZoiSyRCZUSBNHFiI2EWZAwvAaBQeEAK2xZAWLOkhNS2KclOMzVY0ITJe8VQalqPgO4/UCk0iceoSDh+VJSnYSHYCODEQYIU2J1StRJkilsCyDwXAxSXy8WhXfDGktxdhEuHZMNXTAnHjB/v9VyIsCTf/6r//KTTfdRKFQ4OGHHwYa6WCvvvrqX6lyv5NfXu7aOcbnf74V1fZNrNx+3t79Xi7iFQw8MMG28SNUpnxqs/6x1QoEpIsO+bYEi5fmyLkmCVsiJERCUPJinj2wE6u2nQucxovphte8ksC0ePXDt7Cu9QretqOdRGzzRMs2ui5dx6KudsrPDuL98AeU/yxkwdAQKMXn572Nc0Yl+YOHAMiX9lJJdlKz5lPzNrI2eIwLn3090x1baWq/hadKDoPlVaiCzTnm40xtb+bqtsd4YrqPb27+GHm7zNe4lp6Bftrf8HqyN3+Z0o/vob3Vo+m1f8vU9C0MDf0Pli45l3e1FvlfQH9zJ7fc8B3e+NZ3kc6cQ9Oy/05pahlshb3LV9I29DBti/YybyJHnDEouGU+XbmOS6zNvGf62/xT+lpyfp2RllYO7x1mWd9+tm++kdaz34rs6ODsgf18pFJH6aN1P14aGd69jYlCCzVpcmoygdaaLVPjGE1NeNMPo0YgFgYHO5rIOkux/YD1xkoqQY0tMgazkUFqJN/L9/a8l5QXcdvsh8itadDd8fAQpY/+DUeaspQtiwtf9xYCD7bec4TWBRlalyT4x3t/xs86FnFuME0llULHmvm7d3Jg+Qo6Y5P+qsG4kWB+4knGSg2jpqtliNr4MOceuobbl00zPn8Zb5zZxA41wO7dWfZetoqHU22cNXmImbbDJGczJOr9+IkFLJ6U5O7fwnXTt/GZFa/nD5e9j5e1LOKrOz7Hvw8/xc+lwduv7mbZHSNs9ztZ9/UPUh+bJg9clSyQu/It2Bcvw0lMEVEljBVxmKJcLTA+nWL/RI2HD0yi5j7gliHoKyZZ2NwAUouaP0u7+BrT839INDxDxzffjXXZPIxlhZdiCvyXlY997GO85z3vYcmSJUj5H7ii/T8srnJw54K5XTPGi012yj7GjBRFNYEnspRFY3HG1BEFr0bZCuixapiu5PG4lVZ/hqRRb3iVzRni8+Q4U36Wqu1SEY04lpQVUgssdpl9rI12z1VaYg45xQ3bXEBNJo8ZkUOyhW41dgzQTcg8vWrkWD2lRtZjTU2kyOoaLVadoKq5311PrAzScQ0E7LTmkwh8SlYKJS3cOKBq2QgNB41OltLPIj3C4bDIpJ070RGPo65IEkHRrRIiCI0k9WCKpXKMshbMiDSHRQtoaPZnmXAamVxtGdAsZnFkRKDMY+0mjZCkrlE2kiTMkHLdIZQmG+1lnOHvQqIxtKLol7g/fSYrw90nURw5xyOpPIy6pr0+yVIxyF7RxWG7k55wKzPYDIkuWvQsBVHDC5M4OmbSSTfA7zFPNE3SiDGkohQ2PEOyVoB0YKqWRKCYFhnysgwx9FttmJHmlPphlidGmBBFFsQTVKzGM/JCLnktyRpUwYyPjleMoQ00gha3hpoDN4ZWxM9hL1/QgW4O0coTILmvHZL4c8BezTGNgkFZZAFDIDWu3XD1S4cB++0eFplHqBkJRDiXXGEOiB+dawKoqQSPW6tZFe2j2Z/BlzYVM3mc1RKaWOg5GNg4X8s5plYIRmQLI0aWdeEeQqnoz69kpY5xnRrFuHbCnTUYKykFsRbYcURdJ7FlSGhY9FgTSBTKCGi1K0QYPBiswkCQ0XXSbg0XKIc2EZIkEbXIZmNiBeiYTXIZSb8814eNdBJ7zB5OCY8gNLRSYl65hufnMHyXfc1F+tRgAw4JeNJexfnBs4AmG1Vok9MM6A7cOOQJcwUXsBGpBRYaU8fEGAgBSTOiokwmjRzNegZDQUUkWOxNkBAVinGVkpOiKSyTNypkghpJZQCSZCAoWFOkrBA/asIOTLRZQ9iVxtiLBkBzpI8wPBR1hG8T1rMkx1uZzOcoxiUce5SEb9ASxMTSx9QWzWKG/JjDSE5jpUfBmsHUMUYAk+OLmMlBkzGGGQWMVhfSFxxmZ7ILpTU5x6erPsaAaCblBoS/xhDzFwWapJQUCg2D4Kg7nmmajTz6v5PfqJS9iM/ft5e79xymeeE3yYQBbxr7O+INLk/GBzBtSbY1QVN3it7VRVIFh1yLS8aPEbtnUAdLMHxyqlUL2GP0c8jaT7sssKjeyuPNSfa19XB6/04KyQK9tRxbhMmOlQd4wPgxax58mrfOvIqiVky8+meYeoKOUZ9N3ny+1byCXeYE6/buRplp/qLjKmYWJqkSoFnF+f3ruLJtK4OnfIedMx18byoGL4Xuttn/9FrWFGzuEOvpS+1gidjET7mYUd3M2okNbNF7ufiz30e881qmvnU/nfo6ui//APuO/DGjY1/irW1/zg3TJZ5auIqOjQ/w4P0/4+JLX47rLmHZhTXuPqTYXa6xtNJCUfZTkFOs1wkOGXWma+18rP3dfGXkM8zrnGZ60CFo7uDePcP0+Ydo2vF1OPutWCtW0bdpI1NxzF4vYGnil0/b/quW4V1bGOlZDMC6pMv4xqcYbG5mvLXAp5/4LCNxgboNu09Zialt1gddBDIkbSX5iZikVZZRCN4w8TXWTo9xoPu1HBlZzvlL8qiZGUp/+i6CMGJPTydtvYvpXbOeJ244QBwqFl6Q4zs3/5gfLz2dLhRfWLWQr3z1Zh447Uyufuheqk1NPFA8jwvuv4c9jkE1ez/d4jSqxRLJQ2fSfuG/oO7+FC/f804eWfQ93PAdfEK76FgR/fQwAf8N8p/gE6ML2HPoFEpGiSnDQ4jH6ChfzuufNvlU9T3My5mclxrhuuYOXuv8Ht87/CQPju1g+bCiuVhjb3ue21fmsNOaVz05xOt/8kW+GEgeXvl8QzyfyHPmqefwVx2vIK0Xc2Cyxv6JKvsmqmw8PMNdOxvByin7fC7sW8HF7X8Pa/+VjjvehdrfgnlpF8L99bkK/DZJa2srb37zm19qNX7tYmtBQkcUTA/LBMeM6FQlJlSCR6xV2LKRWtyVMVYc0WXMsk/52MLEUpANQ6oqRW88QiXhUhE2aE3FtOlWM4zZOWqBiRIGrhniBRZKOzxtreascDMAThxiUkXEdWadNEOyFaEbLkPzmKLZbLBSlog5LNuw09BZGm5Y/kIwaLQSapOsqoEBERahsAhEhNCKjmiSRD2mIzHJmC4i4FhsFEBXbbxR90mHSK0pBiUEkmkrjURjS0VZOLQ6FYSAmtHEbifLhbXDCGmQNHxcXaaoZol0AltE+CJNWZv0BKM0mT4Fv8qoyAGC5voU2IIeMQmRxvAku3U7s7ZJiIOtFUIKTBTmHA/R8GISJMyQjB0jUChVp8MMAItC5JN0AmrCRmhNVSQYsjpp82bJmgFKCSwdkw0b39+jRr6tIlwnIp6LG3nWWsLl8lkA0lZEJZLssuexID3C7EySnKjQLir0GCWaS23sdg1ac4Le2iHG3SZKfoJsUCGUFpvdBSRsk1Zdojp3D0qEoA0GjVba4in6rQX0hQdp80aYjhcizQZ4MYQiZ/nUtEU9shgVTXQwDloSiwBTOyexmINGC4vjIxgaiqJCYCSYEWl00sGuRAg09tEU91KRCEKeya7EMBTVwGRNtBtTKEIkh8wO+sJhhNC0WWVmRPMxL1VBIwukpRVHjHbG3QLLazsBSMQxu+xetBBUpUtOV1EC6jKJAkqOpt/qoL+1hVY1zumzz+B4HqNODtuM+bm5knyiSp9foS/u54GojwNmjnlylAQltCFwowq9tQkOpVpJRR4l3WCILeWjzQRZO0JJTbrkkQ7q6GSDyfVxSFEiHXn0GSMcMoqUZaP+kBZQpELdNHmYdqbydQatebhhQIcaJWM1sirmrRBDxrSHh3Glw6howYtcVhoDWDoiGQe0ixIzogUlBVJITEOjlcaQmpzjUaknGEt20xwPYsWSSBiMOK0M6G6awu20WyVajBBXxKSmctgEKAKsSp6EFsjQpmRV0abG0BJXGUSmwItTtI8OMCESSLNCatYlF0eYQZVstYqfMDDCkNAMMZSNDEPiekhLfRIsxXTewY49LM+me7ZArT2B0+JhpcoUAkl8ZCXdvaPEWtBRnwZ8WquHsGUrI+lf34Lli/qar1mzhg9/+MNce+21xHHMvn37+MEPfsDq1av/U8qsWLGCnp7jaXxXr17N3/3d3/2n2vyvLANTNT5wy3YGy9MsXPoDlh5cz4qRc8ExWbi+id7VTRQ6U8fqD2ilUXtniR8cQo/V0QkTubSA7Ekhii4i0ZgO/Qf289Sj+1lU7OPcIyb12To/uXAJvZWI9+522epobnc2MpnoYWJbB38nr6dDGZTEVgbO+N/MIilsbCPSU/yp8QF4fJpnlOLU+hH2ZZaiLIsuFZLSIb35Q7ylaYThRbfiz8zjlqkIVToNAGFofjq1nvuFx5XmZv5QPMR+PY/Nei3tw8M8umI9YVvEbV//G5Zc8yZav/ltZu7ZS7f/IabPuYSJie9TyF/Nn7V18FdhxIF0DrlrO8XmVjo6rmBk9J/JveoNqO/t5PH0MpbofjrM7VzqL+VzspvWxARPDC3noeKpvGPsO/yL+YeEwma6ZwnPjh7hTGcvo4cew1yxCufen9EyNckT7U0vGWjSWjO0cwuTl15Dk2nQbZvc/cQjKATvH/4GYxsaVeVvObcPmW8jXaqw3FnOWBiTMjQbMLjE9TBNjw8O3cmRXJat9fdhJz1aOyxKH3gfamyc0XOa8cqKS1/3Vkb3lzi8dYquU5Pc+fMbuXPpaViG4iflW1H/+ABO9WweOP1MXvfAz5i//Ummz34Zm9adxct3lkj2vgHsNP2VbfTKZYwmJwjn/z1R/9s5b+9b+GrTJhZPGDRFGboMRRM5gnQfK9UUbcVGQopnxF42FQ+xZnQTpreOV+/8CHct/yJfqzssGk7z7oMpPr6ng3DrNkZzLnevlKwehJwKuXWNw8CZZ/MX39nL++8Y5S0Xf5T0inVoNNP+FP2Vgzw7uZGHRh7g7sE7WJJdxnWL3sYfLb8AObf6WvYito+UuGvnGHfvUtyz779z1YLbuebCr9L98DvRozXM1y5AFl46IP1fRd7//vfzyU9+kgsvvJBk8uTYsfXr179EWv3qxY4lptb0htOMWEVsESLUNNCONC1yZkTS8sl6AQVRoWZkCANJVWewfYOO+gQ116RLlAikxzbdhtACiYU0quSiOkeMLFIcX/3HNBFKscFaSZuaZHncTzJS9MsW8nGZmkwQSQs38lion2Z+WOWw08lmazmLalOEThpDxAhhsM3oY8hMssoaIx96IDWd0ifSPgIbE58OUSaKM+REeKwWU9GNUSLkcFQEGRHgEeAR6pBNcgFXmfuYsJuQcZ1t7nLWshtTQTGYRok8y2u7qMsYZISJJEIQ6Tp5bYGhsVUFX7ZgKQ9LCzKiTlVYzMo8WTNgeTSANCSB2aAmtIJdZg8CKIdFFosdiCBD2S7gGjFxHCENC1NqDCShiLFogIuMEVHVaQYS3ci6xlI1ipaPMKCYrDFoJRiLsqxkGgeFJRVyrphoU1RGiSTx3Ph4IoURTNIewajbwqNiNS3+LFZaM2IV6ZvezeLcGE3CJSPbMYMUMTZZ4ZOrD3EkaCInAzbFi5gwmug2qywuDxGYJoOynafNJawVA4hZh2HRg2Fr7HpIOqgSm41aQxIQQiINQZKIemQxqYtUUzmuKD9Af9JFlVoZFq0MyDxZPGwd0+aV6HDqWGZI1Y3Zl+1EKJ9ivUzOLjFoJEFDQoZEwkRqAxvNuEwyYrTRrUZQWlE2ExCCLRWmMo65tWkpKJiaWIKhNZ31SXJJTZ88TNawmYjbcXywRcyA6CSl6zSlPEaqaSRg6ZCM8jHwWC4OEcU+hg7J23UMU5F2PRwrZNbKZ3gnJgAAIABJREFUMllvoR4nUKbBVmMRZ0cbiHCYsnwwNPOrIwzJIqO0IdDkwglqRi9SN1zWXOVRNgqNJ05DiJr7E2GJOsvEYaqqiiCPJkbqaQbtFip0YvEYraqT2E9g2wGWHbHAqWBXVcMFT8UoVQdbUBWKDhFjy5hWNUXG8JFoJJruRAkVRsRaEJgKW4OVsklbEUbcqIs2bHZTMrNE2kYAppIYh0ykbWDXppFmFU2A6Y9hKU12NiIKW4iyUxiApQQtQR277qNqMF0QeHaKReWA5npA0qkxGyeIoyzYAWZmgllvPgVjCsuTWNkxgvo88pUU0gxJUESqHN2VFLZaiZH2yEYxdpjBG3Zx2UqU8YhEnRQNxrEqfn0ZbV8UaLr++uv5h3/4B9773vdSKpV497vfzSWXXML111//ohWpVqsIIbjrrrtedBu/TbJhYJq/vm0n0qxz6sI7WLv5DeTrrSw6q5UVF3XipI77cutIoXZOEz81hp72EQUH84oe5PICwjx5dd33Pe7f+ABNTS2c48/g/fTLfPIjn2IkYXDdz29gNGol75/BrLWfJg4zzx5nMOqlMvIk2y46wL373sbhyR4ed/6YW+JzsVGcax6kp3wYU8dcWa7yN9k8sZGg7ExQPeUOZrOHsEbXcdf+8xjv+RrV+Hy0I7mu48eIvT1s02neLm6lisst4TUoO2bp7t18+VW/x9P2Gv6s6XGOjFToP+MM+nZt4/SBEl3xnUyelmVH/wfx3etYWJ/hmYUR9va93PrUJK89/yIAzu3O8OWFGmNvlacnepgnn2B7+DLyboUma5Kd9WZ+KP+As+M/ZkX+WTZPrybOFrmPi1kTfg/z7o8Tn/9PAFxyeD+P93bz9ub8b2wenCizI4PUZqY4XGxnTcKlMj3JPq3p5gj23RWCwCRIa8zsSnQUsiy5GC+KKZiC74spQm1RVBXeGN5EgMX4aa9g5MYavauKlD//EWq17dhvrHFENLFsfo7IfpqnftyDnVbsGL+HgZ41nOE/xfuf/DpPH7ZQB9Mkc1tRrKC/vYv2iWFaxwY40ruU7WesYXHNY9tQP4ZTY0HGxjywnM6+3QzoDTCyinkTp7M3v50v996M546jzBQf6Td5c7yT6qbPYMg+ljbPZ9sCSbU5y8sDm8HQom37X/O9rmdYtfcHZJ/5In4NfrrwfG499Wr+2vwGxUSZp6Zd3rn7dP7+4tcw8okkbX/yLpr/6Vvkv/kyhGnSmexiRWEVr+x5FfWozn1DP+OHB77LJzZ+hHnpPq5d8BYu6bycjGtxVl+Rs/qKvOuceXzxoYPcvOcqtk7s54MXfY/lj78d/f09WFf3IXszL8m8+K8id955J3fddRcPPvgghnFC5ikhuPvuu19CzX614giLSJg4qlHgMhazlF0bFTaKnxbcAIjZnljCPDWK1GNUEilClUUiMC1F3dRIbZBUkoVikjEFMWUiYaC1w+HmblbX+pEabB2jUPTla1SnPSoiiSMjEJISNhU9nys4wHesVRQcm4opGERxyO0kikysumJR5QgzqQxFqhR9jZ+qk/BqtIfT2CpkzO4iF5QIbJNONcGI7zBDSJtjoEODrFVn0i+yP9UBYUi65JMWJZRh0GaPs8BymNXtDKfmcUSZLGUcGRp0B1PE0QSByGALCE0AhdYCoRppx48GjHTFI9hY1FxNU2ywyhllg7mQpJlkTbiLyPdIkm4YtAIOCYcJI4cB2BKSyme+G3HYypGyYjJuDWlIHGmCtAh1hKsjAq1Q0mTKbKJuZvANhwwlhu2l9KUruGWDIadCPFtAa0WXVWNbUuL7kjanRFe5yg6dZMTqoF91IrVmUiVYoBuuY01Jj2amKNamyOhZnMw4UsZobVKyE6yw91KfWoCZ3I3QsNAsNRIExAK0wJAGCWHjyojYjPClQ0ZoqkJQ1WViJUjpMmUd0OR6TIcuWsAudzGX+tvYle1iyjJwZ0NW1g9iiXEM2UPK9unSFZ405zFutLLUP4yywLMcHBGQjWqsqB6mZrlkI4/EXDIP30gy40i8yMI2Anxq9PgRXrGVoDLMYV0gMmwiaYESKGxiHZOMq42E16pGpywzGyXwDZMV3iBB5CNFjbwzRIIpLF8SCE03sxgh2OkOhqq9dFX7OV/vJC2mKNozKLdGOvApyVQjhMGusdg7gG904JlJRACGNknM1VyyjJjYUEzJNoQR0m7OgjQoyxRJ5VM/VnkYtFRMqYZtIOZi0zzDIEWIbzeDlKQsi2JQQscx0oipq3ZUnKGdJL3RLupmjhCffckuqjqkPzGf1TP7QGkifGoqIETioplnlI8tSCSjAIRPuzfFWMLFd9KkLNgtVxMr1Uj8YCexgxAR+SRjTVPCpzhVx9M1ZMnEd2KUOU7k+yh80HVCBcWKAZFElxulf22lcUSMUD6+iDFpQQbzEaKMG8YIu44t02ClCRMlusMxbC+N4fUgEhO4WUnKEMQzrZj5SWzDQ1oeEy4Q5ghn8kyIMp1+QMXKIlUTcVaxL1Ogr+Ii4yL1+NeXkOlFgaZ9+/Zx/fXX/6dA0nOlUqmcVLTwd/KL5Y4do3zyrt30Fg3mFx5g5dOvJWEnOP8dS2lbeLwPdS0i3jpJvHkCKiGiNYF5dR9yUQ7xvIIdDdmw4TE8r87LOnrw//aTbL72rTzYvYDTJobo2vMsZ//lp0jZHWz6jsmBySaqmQPcZoyyueNcJnddQYKQv7RuwBEhY6Kb5h5Nc76V0x8dZUi6rBUdROkKlZ47mJ73M0CRHbqaN267lM6eL2FEafRsEtXhcFVbF+uNf0MG09gy4r3+n2BaNh21GfJTVeaVunjATXJvTzdr1U7c7GJU7ypuz2zj3paNnDYZ8OamAXYc+Z+UyhYm8NQckfnA/gf4q3aHzNTNlNfNwzrcxmOTmt9r34YOLa4JB/haaRFFq0r/UBPfnvcyfn/0TvY484kmNUG2iW96r+FdwU1MMQmOw7kDB/jQ2jPxlcJ5CWIuhnZuoe4kGDEsrk063HbXbTiBx8X3P4RfsRBoHlm5FpVIkQiOsFZdyXAU0GHZ3EZMOiE4Xz3FMkb4SfMaipMXEQUKzM9w6I1Pz13FopthYJhn71xIfXYePRf9I/Na9lAYvInUnYKZZx1OCeDRJXkQEEx43HDZK/ngd7/C+eICNkeCreYhtmbAvfRicrfuJtYxYu+ZWFdu4w1PRtSzzXwldy9rhy7hTeX5bO66l50tG7ixs5m3HNlH5Q9PY++du8nv38R8uZB98yJOPTxGb8fZ9Lkul+/MEuzuZFMi5uOnX8XsMo8vvWoFS/auJxF9jr07z6W+YwNnn3MZfzUj+P4ffYD8x/8a79abSLz+jSf1a8JMcFXvq7my+5U8OHI/39//HT6/5dN8fc9XuGb+m3hlz9UkzCRduQSfvWo5d+0a4zM/03zk0TwfPftmzthyLeFP9mO+vBdj+e/KMrxYeeyxx3jooYfI51+aRYnflJhGCiILbVjEOkPFOkjSzpCQIQnDx9ASpSWaJIk4oqoVyjAIVIiFTbs5RZU8B+08aZGhN9pPhhkGZAcJKfB0jkA67EwuYlV1N04cUpeSmghZbI7Tn+ii5BdpjTx6w4Mk6SVhSV5pb2Ky3I0wLLZbecatBAXLZ1k4SNarsN1ayrjZxcpwmJLTTKHkkw+Chm+XE3Oq3EcYGYTJPFpU6FGT+FKQSdYwjSncmoeSJkuiIzTbHlNmhpYgRpmKbCyQhqJdTZFKjrJwxqcpDEDMNmINRSOepkyKip7GwEQbGYxYABJEjBAKw5nBi2t4NOGJFlpq0zTRD9IjNE0iKRBaIohJGFVy+VGKUYLW4DBKhyBtxsKA5uoOer0xxhLNGMKiLl2qMqa3dpBZsngyhROVMSQ05+sMe93021lSGHOZzwQVK0ccjWMJhZU0SDqTJPwKddXImFYzbbzApqs2iTDSSDwQGtdUdMgATzkUpQBqaGFQ0bO0xxW0bsJTNrEUWMJCqIhQhyxyJomMGdI1TagVlp3CkBbS0IjYoTM5TBTMkq5oRq2AejJLkxHjeiEjdo66kyP0LCrCZzDlcjpTZIIysQ6xtYdtZkjVYwQSiSQTeQgtiQXsT2ZIqjRFXacYeMzIVlJqaC55g4VrVjndPMRgWYMKabML7LAWsi/fw6SXYp4I2GiuhNCjyfJ5tdrICJrAaLgGGkaNoj2Ba5QpIcloB0N51JItIGBJUGIsTNGqZ6lHJtIV5LMK4bl0qEkio0qsTarJVoawaDI8bB1w+sx+wmRMT+Ahlc1CYxo7LdglfJ42l2C7gg52UjJSKAwUZSIRs9foJWe1ou1upIrpjIYZF60M0k6dGJOQM2o7wBCMqwyGtFFCYooAhYfQMUrDKE14pDii11OwNyJFCZH0mUkkqfg5tKoijMSxd0dCVJkV7lw9JwO0IiImb9apRRYmIQiXwDaomzmScwFjdVGHCIQwsaRJIo7IJXx67BJCJ1hIMzquMJHvoS41NVlFS0FTRVNI1xnLF6hLDzM5y/zqKH4qSd1OYY7laA0dPFGi2fKZEiGmMsgQUTYVeAGUWykSEAvBWDGBcG1agxSmGVPRETV8phyPyLNJy+WM2zYTWYPmoE5TfTcDqQkMx2RCzydr1Skqg5hfH9NkfOITn/jE/9+T3vnOd/7KfcuHh4f5yU9+wjPPPMM///M/c//997Ny5crn1X6q1X5R/YrfDrllyzCfunsP63ozLCjeyylPXUYyZ/Pyd62l0JlCBzFqX4n4yRGiew6jB8qI9iTWZd0YF3QimxO/MC18tVrhnnvuZGnvPLq/+AVYsoy/uPqNxMDrbvsGC05ZzbLVF6NvPoAVabZ6BvdZaTapVlzTY73axwX1jbzDuZNhleWvV7yJgc7V/MnmBEdGbmXeKQact4/J5T+iXthDamIlHVvfxw8qvRSrNTpDB2fmSkYil86+Eu+crtI8eSeGpdg83U7OcaiYOVZv2szutqW4OcmYY7K1p4dkdCdN9TSzOiIdNvGaiYtYMlagmN7OgqLgv638AntS17HPOIMLN/TTnOilJmqckp7k0dIMTxcnWHYoRR0D4c1HhnkeS7l0qBn2kCRnxKxnOy3WJBvMZTyS28C+YokjcR+FzT9Dx30Upif49lkXckYqQfdLkHp88+030t/Ww5aeJbw6hulnH+BCeRuVs2LqrRblsQw71q3HjmdZ7q4kH+WwpGKrrHOjtljVPMQHvW9xwM3jr/EYeOxUhIzpTH+fwpEC+eESTz+yiKb820klPszBx1uIc7sI3McZvT3m3BsFXYOCgdWa/gsKTM1mSWUNXnHaCr60YB2veuwh5FQ/i0/Zwm5aCLA44NdZ0XMqztB+csZ8vlJP8hQWtZkuRgrjPNrzQwr1dlaMncfq4YvAz9Kiy5TL9/GPLWtwvZB4GdRUB5ngSToOfodKJDCaTsedfyFDPWfxQMqk1nILT87cyvqV76N1/+0UEwm2zdicd3APG9ady+2ZAtccOUB4/724V78W4TzfnU4KyfzMQq7ufQ3L8ysYqPTz74dv4ab+Gxio9GNJm5ZEK8tb85w9v4m7dk5xb387i896gO5gDeqZSUTG+q1PS55KvThXxQ0bNnDZZZfhuu5/fPBLLP+Z79Suzc8ikooYm7JRYDI5iovilLDClNuMg4XQGmFYLPBKBExRM2zMyCcgABHQYiuQEl/EKHOSMil8maBqtWIaDgfSRQwhWDt7EGEk2N7SRoZZuusRZTuFxzQGFaZI0SNBYONVUhAYCHeKyIyYNluRCBb7U0wwjhuO0KktCkqTjgZx6jVatY8XwA63iZQu49hJynYeQ9VIEDGZrNAfLse1yji1GVq9A8R6kggPnZA0BT5owax0MEyXJl1j1t4PvkebX2LELuLrxoq9nYSanaPNG29kmDMcdKQYt5fg2VlsZhi1UnhOgKVsZnUTjp6h1arRISpIaRLEHoYw8KWkv1Qk22TSFfkkdI1cXAZhsXuqFze1l24/IhPWkGaCIaeXnB7F8H1mRIJKMoetLGpOkrph0OJXGE0342iL+fUSoVZMhi24IqDDKLMv2YOrSnQEOyFKUbLSjDgdVFUKR0nytk+3nmHKdhizmkkGMaa2QRvAFJgSlMKMcjikmNKdNFvb8YkYIMWsMIntDK4zgRP6ONrENNPMpl1Mp0arGiEpAhzTBcMgFnUGzQTKsOmJajQupbH9QYbdBDOmS9baTxyM0RTXaYoF2dhgzFvOYZ2gmYCkDmlmBulYTLsRVRliKIuyKBIZNkE4iqU0OWUzlkhgSrDqVWoySbOVYMQt0h3to11OsSoq0+NXaLOrNNsGFRcG4gxHZDu2GZOwAlJRlUiAJyU1p43QSDFsdYGStKEomCHT+jChgNjIkJtOM4qNFIsYSjnkozoVUtTNJnZm5+PLLIav0FbE/2HvPaP1uupz39+cc7W3l92bpL3Vi5FtWbZlg2Vh3CAGDIQAhlwz4KQQyCG0hJBwCS3GJyFAKIEDJNTQAhgMNjbYSJaRi2xZVu/akrZ2329/31XnvB82MC4nyaWZM+4I5xljfVhrzLXWXHXOf3ueUPgEoaYkBPVMmjYav+Nh5Sz6g2NkIkHDeJx10zR1ETdo0i4r1rR9Eu1QThIOJQ5zxqOWyWHFMUvjaZRjUVQt5qUkLVvgxLRdhz57Hldrzsq15P0MflqjlSElAqTdIhGSedNPVgt6wwZeMAlCE7qSlOVTljbFpIHA4BNQ9wRuqkXDzhEIw0F3OT45csIw4ldIRJOeoIotJHXdpjdu0REVeoLzKCVwmhtISQ88RS3tIKSDZSv6/IQgl6PmOFSlRRhnGWiCP1jFtwwVmaYnSdMjUpRil4V0le4kR14EJKkURWPoDzVFkScrHMpCkrHSSDuDbib47TqJbzPd7ZBya7TTGcazabQd0B21GVD7SIsFHC9DQ5XIJyGJiTht59lywZZf6x/+n41Tv5LRNDMzw6c//Wnq9Trj4+McPXr0p8vq1at/pQ62223q9Tqve93reM1rXkO1WuV973sfL33pS3+GKem32Wj6yp7z3PaD41y+rMCyrvsYffAyenI2z7pqFPtUneTBKZLtE+gjVUwrQq4tYd24FOuSXkTR/bkaWo8+uoupqfNc8cBO7HqDz7zpr3jAy/GCU/voPrqXbS98Lckd53m8GvCJxOfOdEhoB9y89DtcdXwHfbMRa22bi3K7edL/E5aqi3nT9EPokc9RvOIA7pJJwk7CzPHr2Td+EVedfgXjSRt/soehMEep3c9uJ0vNgss7ZcQezZrM/XR8i29MrKPdO0JDpNi6cyf/vOG5fCs9SqTvo9W/jmoqw8X9n2CVZdGZW845Zw6fIv2TNyIGHsJv3MXVAy/gXztlbKuPG09UaHcuYnDwIN1ilB2NEiNM48/0UPBO0nGuYch/mD3eMFksiIqcGTzEyxYO8sjgRVTCaeayNfbk5zCizOzpEiuPH+DfLriGfCnNltz/3olx5Hd4+CufZvqy53Ekk+H5997LitEvEm8MSdwi3t0xOy68kiSVZrTU4orqNTzqHWV5PMh/7wpodOCD1gcYjuc4utElOX81U8euZsX8MZae9liV3cXd41uI6Wbs6S/n0a9NYZxpxp1/4Onf8Fl3EnYtW8r+C34fuWI1tfFprEzE5Vt6GTv2TI7kXI7mbS57bAft4RKXuI+whw3QTvhEI89w8wwXpsa4o9nFo3qQB6XL6U4/lB7meO8jLO9qcbC2krHOINPNq2g3ttLxqjy0+izH4zZOtILz2RFO9ha4rOvbZOQPOehfxXrlcTNpmtWLecTX/Kj5Oa5c8SKWn/8Kc40VnGo1eMnIEr6cKhKOjnHRXd8CKXA2/ec1MkIIhjMj3DD8HDZ3X0ZsYh6cfoC7zt3Jl05+nkdmd9EyE1yxIs2+iSY/OL6E1Zt/xFDyNPRjc4i0hez/7TWcflWjaffu3dx22208+eST7Ny5k/vvv/+nyzOf+cynuJe/Hn6dcerJg2c4nG5j0YVActyL8PUS+k2FSXuQSGTpjuZII+hOAkJRY8HLk/cjjIEkSiM9tUhbLDUzbpaaGqJHNghNhoxJcTLdRSQclnYCUC5zlmFVeBLaDSa8PCOd00ypHFKDkkVSaGqNwiKfmDeHI7NEIks+quFYs4QqoVaM6HTWk7F8EquCSVxs3aRGjinXISMaRBmLji5hRU08nTCvJHNilJzVodxqI2niyWQxo8lxmLS6aMs8xrQxdONaMfPOApHSlLVFKNKEnkPiSJTncCB+FuvDhxeZ12wDxqVqlWhYmqoqUbckTS+kIpYyO3cx/aVppBdDYqOxsKkQozkfljnuF9jgTTEQQ00lCDlJtVlir38lSeySSkPT68VSXeSSiNPSoxxUaEqXyC1glGbQb1EOZjGxw0y6QAqboh8hxAK1pEDejuhngUPp5eSTCuX4HMZ0obTA1zkqkcKokC4VsSyZZ8bNMm6P0BW2UCZGA80KeOUIox28wEV1hqjpXoLsFDWVZh7JtJUnlarRbvbRtl3spEXKTuOokHnHZjCYoq5ypGKBETHaSlgQXbTMABYWc26BdAypqMKCV6Rh5RmKm+SDFs2oSCNTpFa9gjgqYsUwlqtxzuToiBRZFyKrSUumGKebmkrh4uNQx41dtCrTUJKshjDy6UiHHmUzGDRoyRbTpgvHFBDKI5Q2HlCxFUeSHjrSI5uOKVKj1hoE20dLwXx6iCo9JDgI46BECkRExTFMixwjYUQ7GOJJOcwyupi1S9h06MQeBsHZbJFA5TA64CwDoBJyWtCREVg1plQ3m9rHGTEBhbBK26QJjUVgd9FNh1gUKGQUmeQ8A7GLwGJetmn7GQZzM4z65+mRNdr2IEaH+DIhLRoYy0JJQ0NlyCUB06wh35bkRAvfC/Eti7ycw4oNx90RuqtFupkjzTxGwoTTjaUSEhPRH0eL7Ja4RE4KoTRNy2FPdg0zqoe1lUmW6A7F5BzzEvJJA59FxsyOmcPVLTCSmp0nUxsGY5guLfBIUTLhQUvWybSb1NMKR/o0XI+x2SZeYNMcmmDaqzJh0nhYRLYiqXWYSE/h+g4yOsXJrE2mU8ULQ2CetqzhpwJEZorAlqRmWxRDg9JtmmmNQaKkoJmKyYcNVrTOo90KFQ/StmZOlchow7xVoGO5XL7u/0dG00c/+lHiOObEiRMcOHDgp8vBgwe5+eabf6UOFgoFtm3bRrFYRAjBxo0b+cAHPsC11177M9Gm31aj6Y59k9z2/eO8YrDE8+LzXHVkLRe6KZYJGzHexFQDRNFFrSpiPX0Aa9swankBkf7FMjB93+f73/8uS6KEZT+8n9rfvJe/ThVZ1qxy2R2f5qKtL8DZk+GblQ4fd3yOOJrL+x/lNas/Tee4xfm+Li4ZuJarrHsxTovW8BiZ0Y/TGt5BaNdYOFKk8GXD4cl3c8Tv5ZZgI6GB3XWbHi/k0+v+B/sHJzlXXY0ZcHnj7F083f0SeXuWb1XfTb2whEpK0n1uiqFGlcdekWK8oglqm8lNzVMdXstNnRSDA3fT132errPbmBRVjlsVipVLsAb2wtQ3CNzr+WFxmAOTaR5pLSHnNNjUvYfp+v9Fpj7KUOMIC8RIdSmrpk7ySF+VZ5HhBzrLs5Y9geunuLa2i2/2/SlfM9PcF9nszs7w7GnNwLkau+UoO2dgbSnDklLq59/4pwiTjz1B//kevjs6hqs1z55/N1zQpnR6Kw/sKzEVl2kNLsVtWqz1t+BKmLMq3LsMdsw4XFnYy2s73+IRaw0Ndyvt46+g1Y7Z3DOCW7qYPZU+TlTOsnLTzTy5o0MiOzD/AX73/g7VVIYPP3MTueItpBmmFR4n1Qi4rvs6CpUb6RSO0F55gE8tvZbnb7+beDLkKyPPYLdZxXK1gG/bOInHJWRZ3T7G9Te8h2edeYQnvYRW8zJE+WFO1Uc5pfv50YDLUO/jrK1XcKtXsmF6K+VohHp6gu7E5ah9iJNrBwi6z7DO7OLhuYtIC49tymW9v4R7F5Zwl72dax2Ptc44B6aKtI/u54Lrn8cnsHnO/DTu9vvwbn4hwvn3QtD/K3pSvVzR9wxeuOz3WF+6gG6vh1l/hh/N7OSR+e3o/MOI4kPcP1vl/MBjDHgrKDwWIbK/vRGnX9Vo2r9/P+vWraNUKpHNZn9mufTSS5/iXv56+HXGqVNHTjCuQvrjGIGkJjIooWiKLiZzXWgj2dA8xkAsiVHETpVTbpHezqJo5Gx9DblsjdhYzFkl6sLF01BgDhGniYXF4Uw/VWmzoj1HW4bMmq7FyWqnQn97loITkogCJgrJqAyh8EjaNlpA4iygLEXLKmKkoscskEsME+0ungwvZEb30BPPkHZb1FU/bVOgYWkiYTHjDuJFNiryAcXZRNG0R/CSDF3hNFkJnghRChacPuomQ1bN4ScKIQqkVMS8s8CMXaJpltFSaVLSX6xbUjan46dRbE0QOIu03RKXGbuIcRr4ukwoJFkVMt5eTd0fJWcv4HmzzKksXlviigrzVjdnxRLmUy5LvQUS0cZX0FAxlc4SFsJB2olFf6aCsWxadp2TdoqJZAgvqTCniri2i2skiQ6oqRAnTJMXCxRiFxo9aG+WbqtDRRXJkuZsqo+asOkLT1JLlpMRPguqROyFDLhtTOKQ0m2qTopjKk+xNUlKWlRNiO54hHEvsd/N+bAbx5KcTApks8cxqEVKbidN3moQBTla2TKR6CaLoaibFKIzWAg6IkWgHbLM0YnThLIXTIqAPAEKrRWhn2ImnaHtlrEjG9ExHJvbSAaLVNCPQDJpFPmuGtUgRUe0yXqTKJEwKbuIdIpYKiCiZGpoUaKjBslEgkCmqQmXhpOngEUoXM7aNpGxKRkBQuIbQxpBxU6Yjhb/n72pgGnTxaHgSrSsgStoZYoQeYvaTEbQcmPmtMOMl0FLQXcMJu6lmvc4V4iZdKbpsapYgUAjqHhp6kpX7kNIAAAgAElEQVQR1QrM+gP0epMU4hjlp/DrHjkxSahKdFSRukoj4sVMhI6VwZZghINJJRT1NBnt0NTdVEUd0c5RyHUYSlpYbkCcdBEqhcYnJ9oY2+Kgs4o5VWZGDJHvOOBbtLMp6tkKGklaNnF1QidR1Gu9iFaKIe8EoRLM/bgWKwZ05GKbCpOyxLg3xjm3h6KpgoDZoJ9+XcNOGmDPc14NUIgb2Fi0yZKJ5oklSMsFITELZSITEmXmWUil6K02Wdqewokz2ArSRKydb0HHZqbQTSM3SwsI4jyDYYayX+VMQ1HsOUoxyCLDGtnQp+1pEuESZUIm0g2kSohMQk9cQTVPU1ItlLNAyqpSNFUKpklGz9OVLNAXztEWgnOuRyfVhW8K+EmWtlKktcvFGy77tf7h/9k49SvVNH3uc5/7tTrzH6Fer1Or1X7KnieEQGuNZf0fut4dx+d44J5TfNXOM3A+ITZ9zBtN+sJuUstyyJ4UFJyfG0n6/8L+/U8QRRGrvnc33gt+l9dnShjguY/fT1dpiPTZFXyq0ebOtI+NzxtGdrE1KhM8+Va2hP0QQmKdYW75Ic4MZzDqDs6Ki7n/0CYu+dHjpFEwLzD9WbYkObK24jF1imZvC7wFKpkpmv5rEBrWDZzm4u9+kcFL68zWejnfWqA5LLCiDF31dTywZoYDrZ28/tq1+GeLfPzRCO/Bad4/cilf9CLm818ns/U2nr3/93lkusgTosrowesY3nAX18z9NXdl30njaUM8Y8c99CWbwOzk1avu48ux4OmdKt+ZGKCRuherZxtvfeRt3H/9Nvrmr+PfDr+ECy56Dxseb/PSzl28Mb6av9syzMv2vZ2vrTc87WF4fm6e9yZjvP4b+9m6vIs3PXM5/fnfXDqRiTXJY7OUd0qS9BhPli22HHsQLq2TOtXD4/5mSke/wfSai5FhxFB4BavsFF8ofYee5fN8Ivh9VFjj3fpz+Dh8RlzKc7mUc3MBS8fvQV1dwCwc4clKnd7Uek4cyaKNpP/0P7HxRJVvXjzEgXVruHTi+UjbItnicNGDJZYPvxolIuTWHvSy46yZ+gpW+0q+cPH1/PHOb3Li3CCZFXWiRLI5GefRNVs498QJRlLr2H56Kf3PGCeYvpc/eORP+WJxI83yDrqrmxmf9fn61ov5i/qLGPaWMjf7fky9TF/zRrQMSXJpvt7+PF+VeZz+mLGB91I6+3S21i7jGWKQz0XDvPXwLbx4ybf5tvwalw6sZ8dsyKZvf4HLrn0x7956Ax/c9QD+t75J+qUv/4Wfg6McLuvdwmW9i96tRMecaZ3hWP0Ij00f4N5Tu7m/cpD77b9i/epV3PKjG9js3YBa9V+7PuepxGtf+9r/cPu//Mu//MLH2LVrF7fffjvtdpvBwUH+9m//lv7+/p9p89hjj3HbbbfRbDZJpVK89a1vZfPmzUxNTXHNNdf8DMPrtddeyxvf+MZf6Xr+MxQsRSoApSETx3TrAFQHncnQFXfI+Jqa3Y2jHZwo5BQDRNKh4XrkdY26NYas5KHrPEJFdOYGMCLNyvxxQgM+IW1psGOfQ62n0UocplOSdd37kbaHlBYuPp7R9HgeDZFCJBCIBFdp6v4SZKlNWYYsxBZngwHySYypr0OkPPzQxtgWtkkIpUArRS3qQ+QiCha4hGgELTtPTbQp1ytYDGHnuliwSqipIsO5EyyobtJBA9ckmCSm1l5KV/dBjLEIkjTzqguHmD49hwbmZT/bxmfQ+T7CVALRLC2VoyIKlESFVrOXpFChrKvEdGOEphZ1UdbHaCqbjoopAtNOjnmnxHC7QaIEdmI4qUZZnoAIRuk4eSxClFokH1cyAGIwsGAVQNpUyYIIKRifAjnO008kpuntRExogyW6SZGQYLGgGoi2YD5b5HHn6QzEihm7h1gs0pkXXMOc1ux2RpjI9tLSCt9KcdxP8JQgnUpDYtM2BTqmyNFEYCK5KHoMaNshn3YQoQQjCKSLnZY0A41nmvxE9yrAIW0EUhgSbDKhgMAwXV2DPXwQWxgOhVcSpU6jpYWFILayJDho45CLU8zIXlqmSuREdNsdYlo4SlNplgkLEonGimMCkeGsGsGVXQzNjaBKJzksBdIMElsN/EjhITBxDFIDBiMMvjDMo2lLjTSL/fYcQRA7RCbDpNhELruPgVadmvToaA1I8kYj8bEcwULoElsC13bp1THtzmG0mCZvB2jdy1x9DW6+ToUCtTgDZtEBIgBVK1HInifOejT9HMoIsmSoqiWElQztRNCfPYsQBmE0CENDdJh2FEQGjIWXuFgqXGS0MzFFEzEroDbXg5W3OOZeQkktkLePUwg1QeiR6tSplSASgnG9lBQdlNHMWAGjrZhFLWQJCGLLp+amIFlCw3iYJCBSKRIRc0IuxY1DimEDjM+Cl2aGlYv6SkiEgVC4uK6D5QpOiAGWBJM0vTZGORRCySUTk1SNjaVcjBEU/DkcIjqii4qKqHaqVGsZkqCEKATkWjMkicSxPcTCSjqWTZjxkFHCuWKLsVqBlI5IxRKpEkxHkU1iEhJCuRgta6scIGjLXubjAm4QcIISx6wWtbCXvlwbO/kxF6gWpNRvrjzil7JIXv3qV/PJT37yp+tvf/vbeec73/mUdOTIkSO8+c1v5mtf+xrd3d185Stfob+//2cGqN9GHDi+gPWt07yHNE03Yme7zkKQZturNpAdfmrYuKIoYu/exxhcWKCcyXLfC1/K3nrAsyaOkT56kIHB1/DBVotdmYSVJuY2Wabv7M10pM90borChSnOi7vR6c+CnWJGXsL79S18fNUVrEuO8cD2nfR2As4OPRcpEi50XWZUlfbFX6GxbxPfKz/A8vYS9s2mifKCl++7i4FLFrUr9h7LEfTtJ7FWIuuSVnYVlvNa/vS0zYaRLtIbHsM9/CCf9K+hfirNK+fW8gdrBhnNn2H+ok8SzqzniSPXYiqCzsFtrFz3Qz7W/kv+PP9X5G/yGUg+z8z0GP0Dj/KCFZLiuVUsSTc51zhCnHkm+eRS1j32BBcuu4l3dXr46uxm1MBxXjJ5N1/eeCN3PvFDbiyO8i15gmbGY+Mj9xK+43e4el7z8JMz/O4/7+YPrljKSy8ewlJPLTmEPl0nvm8CUwmYDsbZNdKkI69kffIECGiU/xL9uY8zNzSGdjys+SVcko+YFz6PD9/L/uLt2A/XeY79MGP+BHexFat6AWdOlVF0sMI63zp+BVFrHC1t5rKXIbRi7aEPMzx9nvjCVzJcvpj8OYkDLBWwcl8HVbgY2vcztaQXP17GzMxW7jw5Csdq3Nm9hd/N/4C3HP0yy5bP8N78m5DNFmsq+zkWKZZlPVJHN+CMneYlNc1le+4hkC/lCxcdZLrv23Du9+lMOWzPL+H62lkG/2Ad9p4HeOybXyIz+Gz6ahfxxw8sw7uqxZHhJ3li9j6ODG1n19B2vuAP8J6zr+YDcS/vH38RN/Wkubv78xyd2Mz+vQ/xthtu5pbRFRxfu4GVX/lXUi988S8UbfqPoKTFaG6M0dwY1w3dyPMHa/zRV7eTKu3ifN/j/OWSD7Ht8Yd4rXozpeVDT+l78V8VzWaTz3/+85w9exatF0VYW60Wu3bt4tZbb/25+7fbbd7whjfwyU9+kvXr1/OpT32Kd7zjHfzTP/3TT9uEYchrXvMaPvjBD3L55Zezfft23vCGN/DAAw9Qr9cZHh7+jTO8enZIdiKPl28i0UgDYWxRCEMs5rGDRRFyacA2msB1cIxFW1qEwiEQWSbdhLQ3SZ9tIBhEWwKRSIRZLNJf2jxLTWeZjAcJHEi0wRGGlGOjjaRiuhBBlly6zXzcIUk0gVXGkg1ysg/fPo8yEMRpuk2NXtmg6edYkpNUEsEe1rJKODikkJHHeWsdbqtDr7cfQULidtH0PBr19ViRxdNaCV7GkGgLX+SYnduAW0wQiUUgMlTcPO2wCzAUQ5fzTn5x0izAlXpxgioVwtg4wmMiGaauunFEFoGFQrBAlsRtg7WMVidLLolxI0UtHsDOJCRC0qBAW+bIuUtYW20CC0zILtK2QGiDtKtELqStnkUPvEgw6J+ylLUyZRQSL05oq4QCi+KiUThARJWmtMi1ffozPgt4LHgxwviUgyYT+TRa2j9Vj207i+KqxSChmUS0XAtfpdAmQSQaVR/gkDvKJfZeEiXpa0S0lUQbjWUkvvCwCKmToyhCpmQvFTNCWnRYFoQYJSEWzIsuQuHSIoMjGkzrYeJODwPnh0gE5GzNOItisRLQUi3S1GuJ73VTLY4RNuGUjJmSGhlDX6NOx2oi7ArGCGIkoXHwgGwU03ZtFqwCfbGkEduUyVDy2iRG4VkxfifElh5CWiBjYpXgJBYSgS3BahToRGmyXgeNwCgLoSVL0yFY9iLlud+hYTzqlovWNo4JESICIzAiTRaHDJJy8zyOPAvBWmY6Q2RoUzMWEgVGIjT4OLSdGsW0D8qmRRYtDLYR2IkmH8FpM0gnqQEQODDXXE+UanMmWEVBxPTGkwRJFkc38ESd2EiazV4G3ZMUTMx+NkBYJmMUXgp6ggCLFIFW2HUH3SdBxVjapo0FhCwak5rYuLRUmqoeZYTDaL+PxImphP1EnkRLBcQY4RDhUnYNJb/DvCsQQYq0CWnoMq6OcbFJZJpYWkQ/NhG600cASBtw4yJF7RGJhIh5MgQoErSqkXIt+iObgYkOxoooJlPkdRaFIOukFzXOtKDjdrBTHdYGITl9mh5jUSSBBGwDMYoFVSJIhpGWIjQhrvRIRWm6fY2f7hBZivRskYyyyfZIFBC3Y0JX4/5EpPs3gF9qFjcxMfEz67t37/5PWv7y2Lx5M7feeiu33HILN9xwA3feeScf/vCHf4Za9rcNE/vn6LljnPVGcfSCNl+qjjPbyXDFLavpfooMJoBDh/bh+z5rHt+D+Yu/4n0LTbpadS76/jcZ6PlvfNoE7EolPBubjzgWemQn71z6AT5+9b2sfPkmKoMfQhf+mUw7ZPRIN28wf87W7vWMODYnd30PgWDpuRbVwlouTi1y/zcufzenJ4aZdBeYcmdZXrmRpB2THwq51j+GsBRawymrm6S3H191uPzhLzE2+X7GrpokqC6w60tTbP94hi53gFsnH6S4VLEQlnjfo6/nj37wd3x638sYKx3jtVd+iC2DZ5modbN//zaEV+PdvIXjrOb11sf4SN9bOBWtQJsye9Kwrf8IOhYYfsTBlVt5+pPzbIxaLBUxd528ifdJxbQq85GD7+aTS55HCQvLGE4PCOxWi0vOHWV+xOUrr7yEzUuKfGjHKV7x+T3snag9Jc/L1EOib50i+reTANQvlTxw/qs8YS8KBS4ZO0Ll3IUc+/IdVHNZonIf6fYCWzc9SD7J86neOzhjbqQ+4yJrMX+TuYPzMsNuNnLVioDE8uib+ianhqYJ6/8TofK4uRdDYtj8+Afpb5zhO1ufy47iJTS14Mqs4oaCxbqUYrpzmn2H/5GD5aP83ewK/mTHMf7srkPsPNbmkoEC7auHOP6iHqxqiBnXZL1pjNHkW3X2lAW1cI5RcTnnfMlFPRGFhcN0ty02ztyAnTuIyhzBOVXnnt4bSJsYWd3JmquupdCriP3vUC3tBalpPjTMZQdv4WOX3MnH1j+T/5aXdLVGeP3IR3k8c4g3k+ZFlSt4tvNKrlwyi9SGIx//H7yhr8wnnvU7mLlZgnufOhrrtf0F3v+8K6nPXos4/TKe33c1O3KP8cf7/5Djp/Y/Zef5r4w3velNPPLII/T397N9+3Z6e3s5c+YMH/nIR36h/R966CFGRkZYv349AC95yUvYuXMnzWbzp22iKOJd73oXl19+OQCbNm1iZmaGer1Oo9H438LwaiUCq1VAn7uERQXPRQ9yvrE4YMfSwkZSkTHaGCxtLU7g0SQ6BQgioejyfUbqdbqVwhgHtdBDa36Q+sIyJtpLOd8co+FFWISL2mTNtdQ7AzhOk27h4TW7sOrDWFogRMicLnM+HmHIh8K8B0LihIIkkcTC4elAr6Pp9SoYY5HRgMxzONwIgDQGFzDCxzYhwhiySReJlyZFDakDrEQiy/1k0nk2tKo4BiqiCyVslLapJ2X8eAW2LmEZDQiEAFtItLYXxWHtxQl9RxRIJ4JEWJxTvUxaQ9gGMAopFo0AISDGotHpwWBYvMMWJvLQRuEYxRoTo/xuvCDGWB36hSJrXJLQwsgGGIH+fwnzAhSCAMssWj/t+hAxHgmL6dpauuR1Qi5IoY1AAhcunGF1NIM0kgRo2zGhldBqZCh1EgqhwELQFdZZVjuP9lOkTYHQcjkil+NKG2UkORExKNustH20U2BWdKOFRGBoUWBa9AFgJwl+2MUJq4t5uvGcDPkgYXZhjCySAQy9RtNvEjQQiwRhYL3dYaihKNbT9PktUBptBJWkh/3ZEhVPUEhswrOrmK5fiK8znBbLeURcimVs3CRiOKgx2FmM3nQyMSaXkDSX0e6sQzqwJGxRtCrEtkZbili6LAhNO+1TsDSeMkTVAZQuMJSu8ZMEm7IfQWIvfjNxCqfdhWUgmwRYSUAqDhltN0BAAuQ6sGmhuki5X89iC4OFjRIW0kgysSatHdZaNu32CBOqn4qV55h3AYGXouEldCwDRqJjiSctHF1kMiowtJBQ7EjOzF5AYDLU4gGOh5sI0/24IsFBE7YLNBoDGFg0JMhg2R6ekiTaRgHCKCzRIh3aCARpZbCMjYXClQk9nQbaKALHRiYO3sIazoUbEXiEoYeRkMhFx58yBi9JsIQkjMsUhKYn8rGRFBF4sUVbZrEIkcqlYxdoqCw1q4uq6qJllcgYQ4GEgtYMiCZlu0WXaNErOsjCXtJWlV7dpJi0KJgaqpEmE9lYnSyWEcQIlGWhRAakR0TIQpgjZICq6mHGLtIWgzQZJDQ2pTimYNkM6jJdcYqC9lGcwIiYKJbkTEIBBxMM4kiD1yyQiTqkcr961tXPwy8Vafp10r9+Edx6662/kMfwtwELe2Yo3DfBeWGYf1bCw/ecpr+1nEtfvJShFU8dbXGSJOx5ZBfds7OMXLWNv0mXaISa39/3EEOZl/Flz7BbGl5Owk3r/5WHu5/ko3OCV67+72wteIyfeBlx4lM/Mcozzz/KOze+kS5L8ZreEkEcMH1sP2XtMTV4LT22YsiRnOl7gKbtE1Z6Od39KK5O8121GmNHfHjqC/R6p2mpEeammlQKRUI3Rz05yMi8ofqcKdr9b2ftzWuI5p7PwsnVTJ+4CtcxvGqvoZKVLAhNLYhonHo6P6g/kwuiuymtOsJFSyrcWb+Z71Wfwyvy/8Cb7fdyaP56dsy+kPuTv2ZbuAMZZtjV2kbKm6FTexInv5EdV32QdYnkLVrzJ8bCO/AOfqiP8KLy23nf4Q/w+nV/wQb/H9mzZA8bjhuesfchPta3hOP673nz5au5buVm/vHBiFd/aS/Pu6Cf1z5jlGLqlw8f/yQVL3loGjD468ucsxWH7v08ORMh6xGZsEW/e55De9YTivNE/WuIEsHX1TO4/nAvh1SNH+YfpXn49aiwxkvU/ZT9cf4oeh0P6o3kjqVJO5OoZesp6JhV2REGdC8NPcuM/yPo72em9w9p22laxYCNKs1dnYjzMmG8dYYJy6Oy5lZ0ILBUzMb+HJekUgzNJtQPtTgwmvDR0VexqettzB3NctPTvsfXeT5Rpp8y0zwYLPBscQ2H9mxEbNlDvLHAyPi9XGo/lydLu8gMfIP6iTdyT+tZtMUnqO29jfyy67n0d2/lng+9i+zAMHXxKOsfixiXNzFzss5Fz/kzrlu3mTXehzj1w9dyvzNOPb+dF9e3kotX8PIewf99bg9P1ubZsmcnd19yGSdGljH2xc/i3vgcxFNEH79pSRe33bSGt3xL8ujehHdv3cjfHfwMf3rgdbxLvodNS694Ss7zXxUnT57knnvuAeA73/kOf/Znf8aLX/xibr/99l+opun06dM/k7mQyWQoFoucOXOGdevW/XTbdddd99M2O3bsYNmyZeTzeRqNBtVqlVtvvZXJyUlWr17N2972Nvr6+p7S60znUmBCakmCu0i9wPTMSga8KcZkjXG7B7/UxPVTdGSC23FpxCXieZeaGKSeShhMApAJURyySs9iCY+pcJgj1gDj6SXUoxhDgqHNYHuWVVrQ55d5sGslvtthTdwgkS5Ekn63SVXYpEKPXKAop2o4ATSQiNBlpj1AKpYMSo0WgIIBJRgTHZrNhD1esqg39eMoQUtEaHyKvodrJNJKkCJktracpCsmTrowsrUYSksgIwQBhq5OhJWTdJIuhOcTaRebkAVVJBKpxbmymyDcDOgWpTjGtRJ8JyGQ6R8blhKM+Yl0DokWKAS9rRZaWcTCJXDL6MAjSVIIAZFosXQmIe50k5GCNYlPd9wkEJfS4gxm+RMYIYlYJOJAgBaajs7Timwa0RApT5OyFEFsEEYhZRZb2+TCBkooMjph2A84JD2MjPmxHj0iMkhLkkiJlFAKmqT9OtMLqxhys8RCcEb1U7BcurEpi2k8dY7ReJgg6PCQ9EgEkHiLgr1CMDV3AVfO13h0NGY+VAypKbRYjFgkRuHKmILQWAgCqbG0IWezGBmo1GiRJhPnGfZgQQiMlAQ6IjIKI20G4yopYcB4HNFPw7OqpI1LwYY+00E5DhlhcBKNnSw+k44MuHTKJiwv0HQTpBBAB9vNYWIohpoiEaG2MWrx1bAkpNRitDFtwdpWk2M6g99ZRl+9g270QeoIEkE+7mDbHVxA/ZgS3RhDKhL4qQ6JVniNPi7QaSbdNsurx5iOhnAqMfPdBab9QWb8XsaSQ6yuNWi6VY65GbQ0gI0jwVUQyg7ZRg/L7QZe1ceTDU7kCmgpsJRDBkMmDplKhphsr0ZpG2ksiga6PRsbC1zNQqeLsLWKrqZLK24AhrKdoCV0gP5WQsqq0AgGsVQKT/RTsTKLdV8LZeJ0m1YnTdaOmBP99PScIBVFyGo/c9lltGSMX1tCvnAOkxUkWtCnDDMqRrkhKRSRjjjXWknSGWSdNYm0YEaNEtZ6iROfnJqhnXHwg5BIxxxO2fiV9RSMhfEjtGygjGJyLiSdcTnZ3aTP2BgnJhsvoSlmONtSDHTSaKdI7GhOOAe4qNmPMSna7TyYR9D04nSWk6cbk50l7KQJwxQYG4QgZRmmcJEk9ImAtIz4Dco0/Wo1Tf8Hv1m09s2Rue88e4Wm/RyL3Xc9yZLaejY8t5exDf0//wC/BI4e3Ecz8Ll4apon/+TN3D1d5eJzJ7j0/Ho+k5XsQ/MK+xjbtn6Mx0P4eq2f91zy52SbX+PcxHZsez27H1rB8+v30EwX+GT+cv52oJucUnz2wQ9D0KZ7rsOZVc/g6pSiZSL8DZ9l4ux6poVmKjOBLZ5Huxqyqf8MWxfuYtrZRj7cwefNBnRXH7GIuXRvQphXpK97AcN9L8aopdwbzXKHNcWhbJsRrdgYtSkJRUEUGYtAGQEThhbX05q5HoBNAAegot6CvfFrrFtxN8vtJ5h85JXU65eRdufwTZW+bJEz0UkSfwdh4Qbis7vZuPIatpmzbPe6uKg1xvbod3jewrf50fmL+Wb5DWzMHObksscpVWOev/sOvrWmn1v8TzEo/id/c3mJ747fwrf3G7Yfm+F1Vy3npg39v5AjwhhDcqJOdN85ZCNiwZHsqcY0H5xe9NrKXVxxboKPP3cNXZNn+NyB3+Np03uhdymR63EgLPKHwqVoBLf13Uksygz2p6ifafEW59/YLUc5Fo/QR0SsIxoyZFgs49Ikh20EO72Ih9wsRlwHgz/plYYQvs+il14lMRkry7rmOTZ0Z1nhl7gokmSaNmpZHnVNF21tOHtwis90j7G7fzlbDpxgxfEJNm25l387djODrsN4vkm1XWP11HUsRE9Q27LA4OcPcyp+DpvOPofdKz6D07WD4MQ17Ohez5bpA1Saj9O/6mJGN1/JsSOH6AyN4VkPcPnZGY5c9joe/tpJBtesY/11H8G+7u2o77+Y2tkBnujbwY3tq0hnQ96/rsKL9pxm9x1f5C/fcTkfu+4m/vxT/0i4cwfuVVc/Zd/bVSsG+evrAv7me4JP/ugQtz/jLbzriY/wtv1v5T3W7Wwa+vWKV/8rQ0pJu90mnV4cEX3fZ2hoiAMHDvxC+3c6Hdz/hUredV3a7fZ/2P7w4cO8973v5e///u8BKJfLbNu2jVe/+tWUy2Vuv/123vzmN/PZz3723+2bzbpY1q+WJdHVPwTmNFWTsFQDFojYI54rk9E5BmUPh3M5RG4C00gx19lATUMqAOO5xCoi3ZQgQUuPSM0TktAyZbTTx2gYcci2EXGEQiOFJpekyUYBWni0ZYKRMYvV7SnKcZrY8elWkE/5SCLSJKxthujY4lRUJEUbIzQGjbYERVNFKElXK8GgkMbQ7SxWz+QSh47xcHXAWKOOF7YQUiISj/koR0roH5dnCEaReCpiV20pGVJMttYwZtoEpXF0I4XOSBZUN552gRgUkPJY2qmCBs8JyKkO6VgzIcEIAbpJrDS20TQ6ZZJmi9E4Zkg1GU8N4EhFW2qMThG2yqTyFWIZMskoIsqy2o8JvQi8MlG4hoqepqNS5JsRlCS2AkNMZAwV2UWf73O+J0EJQ85O6BIdYhQtFSGE4KwYQoSrMJNtuktnkUgyUYQwmpqGWGiSlEOpLYGEydoAIOnWEgcbUITRIFDDNoJIdYilBtUhthwqwRIuajew8y2aiYdKbDAOSkQEcRYvTFERfSQ1QRhL0BLd6iUupbHtBG/eMFJvofPztLxuRCoiTLIIJ0CbLNpWiB/XRUmhKMQCy0og8UibCCc2ZCPIJhrlOxhcemQbN9J4HYtgLkUTEGgsFDpxkbFNWiWs6PgsJBmyZ1fhpOepqQGSVIgtoa/TpivoUPUkjuUwqDTHlE2oixTaRWw34oQVkcRpZJDHsjsIaZBKo1crh/8AACAASURBVCVUhCJxq6SEJGWXKLe7kLbNgOcSWJr+sEMiEuZTaeJWyJqFNnbGYEtFPu6QURYWitVSUmn3MWnHhJZhtNpmupglj8TDopQk1C3NaMdnNAkIG0/jDIIgsvFQCCFRloNnBIkQpOOYgmuzpt5POvHp6CahiBd/DkJiC01oxeTQSCEwkYfBot822KmQWhKyL8xiy5AZP8NUroRf2cgSdz9rI4fEEag6RGGOtLTQMiEgIFE2zfooqe6DOCi6opjB+TZ5oeizesDq4MfdYGUh9kEKxI/zhDuRQ80MIr0WcdshZeqExkIISERAzQlQZQdZNcSWRc1qouxeTDxPJ5tCK8WAzhJZ/cSujZ3YtNJFxFyeqGyTOmOjjMZKekmCDtIWBL7GljaOcgiVQOgEqS2kkljFFMXib8Zy+qWMpiRJmJmZwRjzH64DT7nX7bcNwak63HOOJ4ip3OCy/57dLJnfwPJnFVi3eelTei5jDI/tuI9CtcrIq/6IF0zN092q86YDR/lONs1BPcYru+/hyk138WBTcYRNvO+CrdRn3kZTB/T3vYEf/hDS7WOstM/xTwMv4bpSiesLWc61znJ254MsNRbTQy9jzLPIK8HxJd8nxDA9sYrJ/DEMMFO7kiJ1PlG/jUT2EEav4nXd44ydLpP0lpjOlrnl4EHcV72KM+7L+JcHJrnn8EO0woRl5RSvuXqMZ6/rxQubfPUD72b3hi1sX3UhS6ZnuPLsJCeyK5k93UAAG1IRz+//PlOmzaHxVfS1sqxc9SBLr7mNu8WziWOHt+/9HOnGGHdnXsaJ8e9hd6b46up5/qrT4A8bLfb0O9xbMninbcpr1/Cek//Aycwgd1y5lq52H04iGZ1qMtk5ym1Lx1jan2NlSrJl6Ve5uEvyhcO/x7vu0fzr7sf4o8s9rly5Gcsq/Pt3oRUx89gs3t458qGmnRj2BT665xwDF57CLR6mHhzhxJfX87b1NzF3AIbbDS6Y2oco9NHo6qF77ihbei/k2naJx5059hUeJu1uJTXR5I+8+8mZBv9Q6uMZc5Nk2imcie8isv8Pe+8dptdV3ft/9j79nLeX6V1lVEbVau4WrhgMpjjYmBKSC5dAAgEMOHAvzaYkJDGYEFpoNr0ZsE2wjQ0Yd0tykVUsy7JGmqLR1Le/p//+eGUJ/yAJ5pqbcvN9nnlm5i1nn7PP3mev715rfddmFC3NtH2ATTtv4OQjk+waej63r0qxIkizOl6KiH1KqXl+ER6iZ/+DpN0Gmw8eYtVl3dRf+XriSBA9WSLcOUd47xThvVNo/UneMJLju82jfHvrxWx4/BPMPp5gZO1T1Ddcx5dnOtg4uoXb1Ed4mX0a448OY6zbi9Jm0Tl5DxvkmWwrPoSZ/zl+aS23lE/nArmTp/a8B3vDjWy65I858pF344UBo6v66fzhvWx53jbGLjifx342xvRByZrn/z0rX/gpHv/ZEkYnTyaVeZjTqmuInJj7lh5l0eGQQ9d9mjWXvYmJH36b5Fe/zMDpZz6nXvYXjAxSbrr8/S8Fn7zvYa7e8A7+186/470Pv4sPKx/npI7/WEpw/1Fw0UUXcd555/GLX/yCTZs28cY3vpHBwcHfIEL/EmzbxnXdZ7zWbDZxHOc3Prtjxw7+8i//kg9/+MNs3twisqtXr2b16tXHP/OmN72JLVu2PIPIPY1q9ZntPBv4YYwK+AIqR5exoAdoSGIBstGNlrBBqRApglpHlupYAmIXoUpkFHBWVOWQEiFjmyBUUBQN1zUQoiVDrqrQJyPGj/lbRAQCydEQ5tUFLBEQxyFqHCFjDc9PgFnGxiJWIJQqvhajEBNHZiuBXLS8seJYxL/ebBJpBWSjQF9aIVKhGMUkw4C6plIJE0zNFZFRRFITpPw2SkiEiIEIAcRIEui4DZ3ZZhtlJaLDd5jSpyke0VBqBaaSYyBBoqALcIQD0QKRCJFCRQBLogXGhY0CxAi0Wszi+jxe3EaMpBnmcKw6cyxCaoextJiqJ4h1iTQsUBZI6ga+10tFqMzFo6TCNL7QSRswr+cgiGChEzUZYRqThIGOIiNUxSelqkwc83IlfJc4GRBoYDZtaDpgTyEQyHonNXsex6zTrntMBSpO4BCLOeK45V1ZKC2m7pVRRIwVlznVTzJpBpg1FSk9JBH1ZsiC1sCWAR2+i1JxUP0UebeBERl0N0EVAiOOWaJGdDRWMjwTMR1FVJQmcn4xCI/IqOIGEh2T5mQvfhTj4iHjBJHl4cUepivpajRQYpUojpF+iCc8zCAgXfcopyRW6NFeC8lKg9hwkWhISyPl+khfJQpA6iY16qhRBiOKCaMyqGBGEU4kqcWCwHPIuwkqYUg6rGBKlQ4kC1LFbnh4wqLGJLHIIWMVIzYoVweY8TJkmlUMe5pYghYo/LKxmlMVDVvoVAvQ4S0l0lRCVVKRAVLTkZEkVCNCVSWSMRKVhJRoikFNhbTXJDiyHkfmCbw6Ra9Bsj5FYBnERFjSZ1j6LGGGhyv9qETosYoXGQSBihQBKRmDahDgPq03gR4JDCUiVBVKYYOQAITaml0yxo4hlIIoFkRIYtFS/BAiJq26lCPBkFKhGgmavk4+jEmhIxfa0RSPM2Zq3O9LFlBpj1vqeGFsEEYRbrMT35sBcxy/kUaNJKFfIELDi6YhTCKJQREgBBW7QdJXmJEqceQSR605FllFVKVGZEqUAALLwY+axJFCiMBT0iQjHXQN6RrM1mPczDi+AN1PUW/kqKUiDmWXEjcV+t0ytmYRCoFnulRlhBLbCGkQCxs3zBOWu/DKSeK2KVRTYWHht2+G/a4oFn97CsyzIk2jo6OceeaZzyBJZ5xxxvG/hRDs2bPn9zzF/0YwVaf5wwNMEDK51WT/zx+g7+gqes60OenMpc95e/vv+iUlYk4zLD5R6MaeOcBPdryDvDXJ84Ar1DRPrJR8e95kIHcBbzJHmZ/6OLa9hp6eD7Jn9zTT03dyQfMuIkfy4/5L+MeuAnEc88mdH2dkUsOMs5AcZNiUHI2aBEu/w5Hx5Yz5acaS+4HNKJMBH0l+mbxf4c5lFzHwUJKLx1/LI6m9gGTFzj14ms6V/nIe+fpDGKrk3OEiF6/qYHVX6oRBa+c499LX0bzhWyTcOvuWruUbneuwfZ9T1uQJds1xy1MLPHngbN6dLhENf5uJ0bXMPXIOm3smeH7PzcwoRQ53WozU9zEUL+No8VHqpTtZ2XglDzHK+vQSXjP6La7tfikHMmvYFfTwETHDlx/7X1x40mf40foK7/rB3RwY3Erv7Hp6Z9czlxrn0dy93JAfQ3Milq24g/7ag2w/sJ4rfrKYVYVvcvmqfawf3EoycQ5H9jU4fN9R8kfr9GpQSx7mqaV7iDp3kxd7cEN4aGYlD+48nUfHX4nXoWPjkmjzecn2GyFVpNLVS/LoJJuyu3Fq/4NyHPLhVYcRjYAt1TL7KiGvNH7KvbnNNIIUxKDUQpTMSwhlzP7U93jlrQ9iuR4Pnb6J20ee5K3Tl9NOBn9Q4eHp+xjb8yCDCDoTKVY9spfBLSGNl3+ulZAtQRnOogxnicse4WOzhI/NYdw8yktXmHxj+XpGu/pQDz9F1+NNfmzHHBGTtHW6zE4oPOodpPPwhTTW76W09ikG7kkzHp/OaaMv5O6RvZjtN/KziZfR1FWSoweYGfgmxeJrOO3Vf8ZN3/wyo4VeNix9lMaXv8CiL55B15tHePCGp9h2wySdS/+U1Rds5/F7bmXHgc3cnb0TNwwpptYzPzhJ9OReTjmwk5+94CVcct3nmNn2IMWNzy2RuWzDMspNl3+6fy2f1u7mI8vfzXv2foz3bb+ST5z6GZZkfr96d/+V8eY3v5mzzjoLVVV5z3vew1e/+lVmZ2f51Kc+9Tt9f2hoiBtvvPH4/3Nzc5RKJfr7n7kZtXfvXt761rdyzTXXsGHDhuOvz87O4vv+cbW9OI4RQjznCq8iYzOiWYzFIQKNnOIzIRVkwqCpGajCAmFg6DpDiQ4erMTU6iZKNSLl1XCiIyzTighDg6ZGVM0RShdb6BhAlwYDUURoxyzUJYYEEdvMGxqEPnps4tsemtbJpOGiVJNEMytA2AjVo9lIENgqeuwTRRqq6hDjEgJrK2X2GQ0UJYZ6W8sgNDQEMUHTItF0AQtds5k3MzwRxyi0kTYjYk0i1AA8l0QIcawTiRghY1ShIlSFRbrKGCahr5IROinNIPRC/BgiVaBJBV8KGqaK4arEsmWXtPsOW+MyvyyvpFh/HF3EhEISEhFLSaQahAE01ArIPKARCRPF1FAsE0u3yYgkU5ZL2U6xxHOIFUkMhIYKUUQx0qh77XQpIXpTYoTzxEaDUGlj5WRAKBIkUjVmcwnUsI5pQnVhmFK1yID0SccWqAah4uKQoyibxGoTX/FpuFkapQJ+kELGM2hxjEAlqbtMOhHNSMfxJD4B0Xw3YdEgLHXRGZkUvTyabBCFCQxdUCOk4jVZPupDStA0JbY0GJCSWeFSknWkGoEWEzYMskjm4piqnydQsxRdn4YeEZX7MJUBFF1gKwpLS3WErlNPadhlhUDMESykKGsO3RgElUFqJRe9YxQfk9B20QJBQ1NRlFYh5qYpWFBcnKiJKeyWgmQtTU2GCMCUMVpF0ml5dKsSRRr0u/NofoKSqZCP9iEaCmF8CnFsYMseDMOGxjFPjaJDrII0QYmJlCKW2YmPg2tIpqkRNbNYRh5CG8PkuNezZEmq8RBJdZ7QSyHUBgKNSAdVSMywgqurLDgV0o0se615kkENM06Q09sJ6hD7AYEuaYtCjqKSNzRQDIggNB2ESPC01EAoWqGHplSomTb9R9uJCoeZxGiR3khHD01Cw0EKHUXRmLfqNCMwgR6zTq8U6L5HoSmZNUNQBNUoCdRRRNTKB5OSktdD+4yGUGMScR5XLBBIiJD4CGbNGGEkSQgDWfM4zBEsv8GMMkyYKLPgz6FLnRBB3dJQIgtRcNC8WVyltSn1NGvQ0dHVPARlzMwAesKiNiEJ9WkIwfTyVIVKWFBRgjYajTqhXkGoCk3VxVWaRB3dxLMWcT0klCpS1/HncxBHhH4/uXTPc/pM/nU8q6f93r17/1Dn8f88opJL6dtPUI8iHt6kM37/A/QdWUXHKTqnnLPyuW/P99l27504QjB9+ev55+lp7tnxDtSowlv8P+fCnts4e3Yf5g5JdPIGwvhmPC9NT/cHyGZfxMzMDPfddxfZoMwaZ5Qftp3DOxavIqUo3DFxG9O7dyGCNvzkaay3FISAI0PfQ40lB8dWUkrtpal6lEov4DL5Cy7y7uH77Vk+0Pwlb0s6nFW5gB3ZBaxainPu/y43Dp1Kw3B499mdXLC8jYTx24du17JVnLpljPDhHQyVZ/m0lUL54uexL70c581v5Y5903zkxp38RTXLO3e/nY6O73K0keDOp/ppa6wgsfhmZroU9iomqYN30i5PZ//0d1AXHmPfYDcn1U1eOOFxf/tObnGWc/njO3nH1nfyucMf5McPvZkL13+OH25czMfr7+QfwlejiiE6yzly5Zdz2ujLaBRn2Z27j52Jewh7HqIoEjxVHuJ/b1vJ8vsXeN78fZykmCzq2kl9/SMcaNtNqM4z30xxYPZMds29hAfGczR8gRW7nHtwG5vFk1z/whez6e6fEjpZmu095I5OMRLdT1l9C12hxl8vdlmI7ycb29x16EK+Yv09sZbkaiHYNHUKmcoQmkjihk8i/Bv40xsPExgW333tElQ1zYfHX0XFUjAuXYTR5fDjw0VuOfX5fHZqH8NXfQCn04e3fpXYzP7GPREpHfWUTpQtHcSHKrxm9yzfjUO+/+I/54p/uILdBy0eHRGco+dZ3vN9dpZeyPYYLrJPYm7fAPLUg+S2Q/fk3cTidO6eOhe182ZIHeLm2hYumHqQbROfJp0+j87hEdas28iDhw5x//IRTh9/mMpV7yfz2S9y1p8uY/99U+z82Tgzh4bJr8tRKj2MDCwW1/uxTJ+dNtR6FO79xhc4+S+vYv6GbzH75S9S2LDxOc/pfMOpqyk1HuS7j24kod/O1X1X8rbx9/NX97ydfzjrn+iwO5/T9v4zw3VdDMM4LuIwMTHB0NAQL3rRi+js/N36afPmzRw5coRt27axYcMGrr/+erZu3foML1Ecx1x55ZW8//3vfwZhAvjVr37Fddddx3XXXUcikeArX/kKJ598MvrvqbD4L0EYCq6hoYcQKArtmkmX5+MqCoEiMIVJhIOhCDQjh9KZQSlFyNl5kqoPbhsJo51So4koS3TRQFpJXN9hmS1AgidAVywQVbqVJHUzDdSJVAspDSTtiEwBv7iAnNQRZRU8SWz5xA0NREgQWoSRzYIS4SoSXygYekxv6DNnKPiKRxA69NQ8DmUkDcXBLffQaFsgW88hdEmkBMRqgHQVhCoJNJNCDH7oIIWGp+rMeAlUqZNWU/hWjTm/RirWCGKFxcFGqjNlwkqIMBv4SoArO6mELpof42ut8DYpYrp8yTmRzxHRCqvypYoeRzRVQSXqYr5Qw7I0ZCCJnk45DRzSiSzlaUkcK8QCfMvCVU20Y56BnqaPJwW21Y4oCQj6IApRbRehlIlSCzSnixi+hnQ7IDOPFJKM1kafAfWmSjYwaKgSz1ZwhE7TG0RWExjKBCnNImwaNOM00mySaLikgxSOlqKqKiTjIwjfohpLMoGFLU3UsAPPaSdSdULp4Zt1alFAoGosKB5T1RJqwiBp9gInvKKtvK6IBbOCHRqkTY26pVE2TRo5QbueJZlLYpdKxGqerCaxUk0S8zUCyyE2I7ymoJozqJlZ6gqYFRNFBihCQ48kjdIwBd1Hze4mjHUiKRGKQpxw0DSFnBNTCRah1GxE04agnWRYQsiW6EMsQGgWSUMj8AexaeDOL0YYNkIEqBEEikHdUFliZWmPPJpSEmsaiAA9apEFM4zBaWeuvp6ihJJWQo8lHhK/2Y4hGlgYNNQQ1wgRroU0TXQ8JmKNo7N9ZA2VSGvVZTLDDLUkCG2GPckJRNlg1oGNUQ9t0mHa9fGFQDFjOlIp2iNBKGkVolY6KFYDUgsuBzImyIidhQrLYwW9aZIlTaNqQ+YQvTqgKBhVGz020HHwg0XYJInEGHVDJemqxEISazajUR0bk2SUZz4SzFoxHWGBI94CnoxRadBWLaGKPIsdied30GQK1yrTjw8iZNqI8dIRIw0NW7fJ+SZxrBNECYRqkFNblGheC2loEbbMEiYiND8LjV2gt+aOl7aRVop5q0G6otE0VKShgJNEzSZxvQh3qp1IryIIsfQ2GmKC+UKGzihPwz0IsU2odIHto6DTsJOoigGaQDcDPM1AUf5wNTJ/r+K2/574r1jcNm4ETF+3F+FG3DQcU3p8F91HVpDfJDnrwrV/EAGOfV/9IrtEzKKBZbxXSfDJ3X/H2tqj/Kn3TtauvwcvP8HO/AAbpqfpmDqIt+wy+oc+ieOsIQgCbrzxB8RhQK/6KGvDA+w4/eOc3j5A1a/w3u3v4nn3FVBDhwHnVJY5Fk8qsygbPsvY2Eoemh7hyfafU1eGGRwt8nn9GnZYBldkMrykcCorH7yHQ2YvU3qNFTtHKcyNUfjQR/if561kZWcKXf3XE/PbBpdQO3SAI5UKh0TE8kXD+N/7NlgWS886meev7mLH7nG+G4S0VUfY6rqMpsepzRnclLqYuqbTkTjAQudj6BMG07MNIn8M0z2Zgh0R2x2svvOr3LZ0IxNmJ0smHuKB9tM5o7mNS47+hGs2vI5GOebM9kker4ZUktNsFpPkt2zGn1QpjC1i7cTZbKifQ188hCfG8Ao/p6fzfpYP3YO94odMFXayzc1y59GL+O6+S/nevnN4cHIR880UZyxpoygP8qlvXcWp0S7uWX86zviT5Jouzc5BijMzpKb3sm4oTbF5MQ8mPP5uBJJz15MqrWBLtc4fy5spxSq7Fi6jZ34txJKgegsds3dy+iMHqXbk+eCfdLGltomXz53D0T6brsuWITIGf3NklhsWKlzVnGXDB69EcwLSH/0YYf+p/+p9EUIgMgbJJVmOlqv8KGOz4rHddI4uMDHis7h0Cau6z8TIfZ+picWMyTL9EyuIVz5AWCrTMd3G4cQiCpU2DnbsIrD2MCqfz2vdO3igugItu4dM5jy6lq5g//Z7OapmGMgcQt0+Bp6HsWkL+d4EvSM5xg6NsW/mIQyRYmRRhfJUEafeS1EPOWqFKL7L6P0/Q6w7i5W/uJVtazcy8Dsa578rhBCcPNTF2Ow4N+7rpqzu4C/SF/MT93buHfsVZ/edj6H8foVg/yPj2Ra33b59O5dccgkXXXQRiUSC2267jde97nUcOHCAL33pS6xatYru7n9btl1VVUZGRrj66qv50pe+RLPZ5KqrrqJarXLppZfyyle+kocffpjPf/7z7N69m6997WvHf9atW8fpp5/O2NgYH/7wh/n6179OFEVcffXVJBKJ32jr/2SdqlXKzO8u04gFCJ9c0kS3u6irIUlhEWtJDtgZDK2X5QMDPBnqyACSNRdDHCEba0RZm6ZnoTQ9ErGFUrRoaDZPS43FAvanVSxV0B8lkIFCEPvoygztDQNbDkBsMtZex3AlsqoRh5IwrZIKHWrSJTAqmPVB5tJNHKuGZwVYhoftd6I4GWRYp6GETGMxk1JJhCp50cZTokCvt4z+dAqt4BK4IYlIw9UUFgydlKbSUTPx4pCKP4gbGBTVmH4jTaXo8nh0EF/42KTodDppNgQ0YoRUCJWAye6AxoJNKqphaSpNIirNDDIs0NAcEnUJUZKKlyTWPRQ7IoPJzFKPJJNUYpOG10chDLCUIkOLz8QuZ5kOIry2DI2wRGQIEg0NKRQ06xA2MVGt95gYRYT0S5h2E3CJ9BS1OEWYSjOdVDncO093vYHm5ZlBJx+FZDwNT6ocLkxjE5AIs0zLmFyyjXZ9CUeqCRwlot1uEDDFelFA9CymatQRCZ18w6QeNml3YzridmI7gdqZQ4skIpDIgo+dUpjXQqTi4Wpgpg2WWP1EoYXtSwxpMm/41KwqkSZRtAIjWoZazaKckGhZj45sG0JA2Zd44unNghgjLcnYGTRVQaGMr3qIQobpICDvWdgEFNU0kSZQLYv2wWUo9jhN1WZqvpu0kAg1ROpl7LYAzWlnvBnR9AVanMQLGkyodTQtRwKbpOGiKAbzHT1US2WEm8FUDebDORTVJ9NchjQEUnNw44BmHKLlxlBlSNnX0WU7bY5LNt3FAiHJwCAd+sSEKKrG485Runwdx0oTRTFScVksNUwEJjUiG+Yq7Sy2k6RiQRDFjBoRsSZIqAZVExasSURe0FfuxJFJAsoQVRCFDiQh6DG9qU58fT9R0sdws2QWbI4kdRQjoLM3JlOJQSqUtAi0KoozQ6To2IZKU49xwl56hYHQM8R6N0f0gJAItWGix0mioJ2yppBwI2zToubAEcejN+jAi+rIxASWLYnrKlojgbSzhITEkUkoS1i1dhwlZrrQ8lKdmlyCWwnReIrQSDBrJ2hJa1QAaGAQaiFKSsdvD3CCIp5fJtvdwXinSsLTSCcsnO611B1omjW66UZrOqQLDVSZIKguAprM2z6xEDSiCk1Lx01m8EWFWiIGvR3TSGOHChKFsmXS7VXIygi30yPdm6fd/D/zNj2nxW3/G88d4iDi8PV7yDZCvtnTJHh8go6FpeRPg+edt/4PQpj8g0+xfeIQZjLDZ9L9rJt+jIsWbuWz0Qs5Y8NtuNEYxWQbZnSEfevXsWLbIww/vJtSr0kcx9xxx09ZWJijltT4i+oDbO/YyvlDGwH44uOfI3dAQW+EONoyVqRSlOKA6sovoHome0bXEyV3UtMbaAsv5LPq1dQVhXfnCtQm/ojeex5iZ6mdenGCNi/Jsv13crh7K+a8/az64sw/ei3u1z7P/lKFn6Rsnr/1bOr/eC0ym6V4wQv4/BvP4JqbH+M7++Y5ynLeeaiTGwfvYtX+/Vy36Y951a5fUhtYoLb5Vlb09rP3Dg2/9s8cNV/MiswAFbuNN+/4AR9d+1r6qt0s+A7X8XJeE36Hm7f9GS9Z90k2Hvg08x3Lyc54/ExtIB+/l586feB7DAQK/SVJz9wQ57AIT3pMZSe5zWywN3CYcwsAmMSsQ+MiFE5CZZFucmtpjtOuvwbd9vn51pfiL8zQ2WjQ6Bqg7ehRVuzYxvCZJSrep/FkxBWbsyyd+j6zxJSnT+Uj6vsYDxbz1erbWNzsomkexWveTrI+zponDnJw00o+sLXOe8bO46TacuonFeg7sxshBF+cnufrsyXeUTvCmR94B4iA7HvfRjh8/rMag81DTSgKvn/+SjZ/fg/vub9JsOjbmD/9BGb2zTSXf5tHdp3BeCJF+vF+xFmjZPe69E3eRdTzPJyxlxEMfJZR7TF2yQFWzhzhtidVsrm7SCVP48JX/DFf/9ZX+Jm1nhdtGaPxza+hLl+JsfVsYs1lSnkI27TJzq9h7F5BcfE8pcpD2LNryebmaXQuIfPETrYvbGOZaVP/4ueYW/1pcr9ncv+/BCkEH3zhKVi3/JIbdq1ivns/707/GVeF1/L+n7+Tj53zKXTlufVk/GfDxz/+ca666qrj+bLXXnstb3nLW3j961/Po48+ysc+9jG+8Y1v/E7H2rx5Mz/+8Y9/4/WbbroJgHXr1v2rIeZXXHEFV1xxxe9xFb87YkMQWyEiiFFVH4SGVA0U1WY+DFAcrSWzbSfJ5Qqc4Vdpajr2XMjEjKCsVLDtAnjgRBadySQTyXaYHSPvaMzWfGYNlxWqg2UUQEwihUBVddyuBNmgE1E5Rq7ksaCahAAZUkzoJFydubhIfaGIY0rSpmCqC0gW2dAc5MiMjqMIZthO6DqE/hSK6Ge51kngjgEt7mYbCaSUNJVWTRVDEZiagowlRTNFpbmMKbOJbfk0VYg0kIrE1lN4cRn81ql19p7w9wAAIABJREFUL+lnfHIMfaaKp9bI1kxmRZ3YL5DKhlQXxigpIaoWoCqtakNRYOFrgo7iHIN6zEw1jZQCkdlI7jGBEgTEEqQt0HvbUD0TvXoUU9MRpqRCSN4ukHFDmoAqJb9OkyMnBUwjhAWWRqDppD2dVFeeg3KOo7rC4sYQME1k2qiBRDEUNGmgxzG2TOHLKtVEgKf3s94vURNVRjVJatkF1KsOhguhO4EUCkcLNQqhT9xo5YNlChpVQ2L6CoahggleBB0OjHkQmhphOsT2NZQGRLqkKSBIegQIwCaMdDRVoKUVyKkU7N+MIgBQVY2lXX1k4jzTkx77G2O4IsBWYYnTpF/NMds0acYRkWZRLHagGzkizieh+5iDMxjTKp4H0m8nY4QsBCka2gRNzSMVQjkVE9o2smwSZJMIs0agQqm9k9pYnqzUEVaEH63ArdqomoWWbECkoKIjTYVAqhjCZUh3GXAEc/UIRSrk9R7KzhihLJGvtRPLAkkjIGlmkJEk0/CwMyFdUtJudVGtz1NSbM4sZulMdLEwNQVIGiLC+LUqPkV9AMMwMGUrPC1t91HVE6haEdcbp5QMWGPYuEKQTGgcrlkYTp41Cws80VEl2aOSGk/jey5u3iaeqRI2CmDWiB1J6CsYpkY5DLEUUI3W2M6ZCepajB8mOJQpIZtJjiR1Qj2krkRExAhdkqZI6OggJJ4VoycCVEXiSIUwylEuLSEpNELNxS1AX30VQoCQkva2PprBM2X2Q7uOCHKIWNLI19F0g6RZYDzfgbVKhfF5xp0SjULAgJLETDgYgY2Saido1tGkhougmtHx/ByRGOdEUB/05TvI2Rr3l3cSOwFD+iBNf5Kw2mBjLYSMjeomaLNs2pN/uCiN57ba5n/jWSGOYvZdv4f2SshNhRrqk2VypW66n69x9vnPfTgQQOx57L7275nPZtnbv5l9is6V+z7LdJxGWzJOQkwwkvdJyIDeng9T3PBDKs/7W/Txu0necQUP7XiA/fv3waJhTjIfxog9erZ+ECEEj809ys/23cJZu1YACiflNmFLwYHM49gdj3NodDUHgyx78nsIWcE/zH6OfnmUdyZO4+CBDxGXh4mqFdRMkkhVSB/ej1AM0qe+hN2/mGDhyO+e2CeE4LzLX0+/Y1JqNrm5p4N4/QaqH7sa7967UaXgnRet4oqzhrgr9rnSSnLR+AvY0iwzPDXKT52z2LR9AemD2j7BileMkhvewVP1JwnjmLGNf8Ipo7vYOr2dezOrSe/ewxPmAP+ovQbTr/Gjh97CNb2v5uXKNh5QOvmu2MBX3HY6/TIXDiZY1bGf8cEdfCY3z7WpBtemAr4VtnF/tZ9UrY3LQ43PYvNlAWsTDzNf/Dnh0gOM4XLhmEXitPdz4KStTJXrmM0mza5BUrUyZ/zyVyQXVakZb8SMDN6zXifrNqh5txBUl/MZ7ds8Un0pP5j5GLZXoGFOUUnvQS1Ps2i6xA0v3cpHz5jhr0dfw9raMuS5PWTP6kEIwY/my3xiao43zI7y4ve9HfyA3HvfTHjyq5/VGLznqTlueeQInY19PLjmYiayNtV9eYbjAzzZ8RVkrHHSw+9lQAvZr05ReepCIgtmT7qfxTro7gIXjfXiNFYSJXdwbXGQlXKURx/bwo59nyOKmmQKRUaWj9BMFfm5rhIuH6by0Q9R2bOLm276AVEUc/HLXs4L33oSK87qYu5gjsbsOsrFfWQq3TRFQPfAOSwvpbh1lc3GR3dw3W13PCOf87mCFIK/Ov9MXr8x5N7xxfzDRMxrxWU8HO7k43e873gh1/9XMT8/z7nnngu0agXu37+fl73sZUBLnGF2dvbf8/Sec0SGoJby0cyISA+PiyuklAKWnqdaMJCWwpDpoCgKa7rSbOpK4ygSE52CaYAQpE2VTF8Xsr3juIdJAKoUNLWYM9sXsXFLH8lUgXQ6h7O8yPnrTqaQaRl5KT1DMdXabc2aXRiWQFMFUhXYVoKuzm5iPQYd3rz+Ul614gLarTaWdiRpSxo0NYdGMmZ/5giaPkm916aUbBla0dNrm6AlUw50K4K2OGKg6aNJDUVK/IxPqtMgm+ymVABtkcfG1YNklC7MYxEHlqWhZPLM9hwhsD1iVaDrJoncIpLemfjNAWqahSoFeb2bIJmmkdARCWhP5VAkzJs+WUfHTCVQOjNUjDqHizXcXu9434XHfpsygSp0vIwOCILqamTyRA6ilVfQCgnyeRNVLbI7XwApUbIhyXadRYUE+7IWh4aLiHwXabuDTG8BQwNN8VqiGrFKTNTqH0shZ+bQszENMyRlFkFRj9cnyuga+eUKEysP4WXKeGZMPScpZQ2EEBiqgkQgrRiZCunpXonXF5Je6qDK1r55U5dk8haO88xNIQFkHJWB5DJ6nBNy/ZZ6Ikne1hR6E30kkw79i9OUehocTZUZzzQYTPaTNR2mkg08JSIwoG1ZGwCSAo7aSc7JESvHnqthkow8B7CwZQYnLOAoGTL5fupLBGpPyPCKAo1UJ7VUFzEwkO4iaTotpTZDx8sHpDIplmT6MC0NVeggBaFsnX8UJUgYkmX5bobyx/JtpErotHPUgem0REFFyFYHS6N4/FpVqeAkRrCdYQzNRkoVO5Uib2aOf0aRYOmtflzunEpCbb2nCJW01oartd5LZRS8TgfXkQTH+ajEkA6FRGujbNHSZQyOLMbpcLAz7Uh9Lb6hohdb70+YPvO6j64I2hIGKVvF1hVSpkI+Y9AwAoJEQDXlMW/6zBgeoYAwoaIU2sjqq6nrAfXBFBODNoqqoiuSMBMQOAFqIUuQEqAoqEI/3ieVxCCp3rXHr7mgb6S941zksfIcPeZy8loPTl+K0zdsIWG0vPGzZg1fbT0DhJCsKg6SdnRiIQiDdXjOFtSiiZI75uVRWv0G0JlIYWoKOUdDbQ8546w+erM26YRKe8LANQWRJtGlcXxc/yHw36Tp3wl+GPHA9bsZmPO53VkgPiBQQo1ll6Y49ZS1//YBfk+Mffo6tvUvYTw3wG1mmvN33M5GuZeDWYO+jgk6Mz6FwqsZXvpDstkXIITAHX45tc3vwtz3A5z7Poq1dAVPaLO84ugtVNa8AZkbwgtdrtnxN7zqvj8iCJ5i2FpHu5XgCVlCW/UFqtUM28bXc7T7Hjy1yhWTMWfKR/mgeQkN6+186IIR/kK5mXJo4BY7qKk66x78FcbGF9LtGxQthfu+8yS+G/7bF3kMQkpe8No3MZRJU/F8blw6RHN4GeX3/RX+rp0AvOKkHv76xSvZr8T8mfTpb57L23fO8ZPi6UigbcpnLOqD6mJ6Tpui83n/yLh2iE1mgW+vvYw33/8D2rw57iiei374Kepegg8lX4NVa/K1XX/FPxZfwGPxYkx8zrF30pV+iPur2/lKuYu7ZkZwY5PcscU372h844LlXGeleINmIVSNHfM2ibGNtD15Kr/cXefovd/n6MNfJdBjsvqpKI0abucAM2mHU372c3wLuoc2YHkb+X5vk51Zkw37f0hT8XjxfJqnpl/NjtorOGofQI00XOtxjEoJy/X45EsL3DPwBNeMvotBvxvzpYvQVrc8Xj8tVXnf+DRvPLiNy6++EhEH5D7wNuKz/uRZjb+jFZcP/PPjdHXtw1v4BHrs8aMzXoBRanJwooPN5X8mPr+M8ZrVnDt8GUXf4QmryuG7T6Z6co3SwKMsmfwVCSXB4IGXQ+BwtzrDAa3A2+QP+PADl/DE4a8CcOqZ55AwdWYLS9helLipFDf+6HuUyyUuvPDFZLN5VF1h5OxuLnjrKrqXZXEnh6nEGZK+xR5titO6LqVLX8N4RmPzF/6Wz+wb/zeu8PeDEII3nLGVq843mKxm+Kf9Q5wZPo/b/Tv54q1/Rxw+92TtPwt+vcD5vffey9KlS8nlTtSqk89RHa3/KHi6ipAubfqT/XTq7RSSBkJIFlIJpK2yOZKs5NcMXF1BFSqm0UsmlUVRHDRFoFsWUtNb1u8xZCyV3o6WUTJf9zEUm1Co9GW66Ut1IxAIKyaVtRgpLKM7UUQzFZJqGsWOqfW5rFm0HL27m6oekLJVTO2EN9TSFNoSreOnCirL+peytP1kIkUw3LWEvN7HbELFyxhI58S4lsBwwyeTy+Jk84RdIYWkydrCOtZ3DJBOamiqoDvVRVfGRFMkuqWgKK3iv41ej50DB+lecQrm0FqKG1YgUbCVToQimTNdvGVJAkUwXwjAaBm3C/lZkm0qSUMhrWWO91U17VIvBqAKREZn3mkZYnm9l67eFSCgrAnCzAAyd8z4VmKqTkjd0rHc1eAVyVit72k2OG0qptZSQgx1iTmQRU2bqIag0eNTli1vahwmiVqDARBg6RTMAn32wDPGStbWsLokjqEw0DEIeYuKGiCIcS0F15DEiiDQIxqZEK0tRE2YJGwN+f/3mrfbZJ1frx/Yujd5x2BFe4Ze54RgiiZO3O+TFq1AJFvfU6SkONLH0MbVtKdXsXLdGoa2juDmXSIrpK8roq8vTefwCZLR09eGNFttpdU0CbVlYPdmsxipBMJRaPZKOrMmA20pCkmDnq52IsUhUgQrzlhJfrCDhhbiqRGKVJHdDmrGpn7svLJqB46zlLJZZ0FvtZ009FZu9PGNMAVfBT8j0dsjAiUmpafRu7KM5mpMZ328dofiyX1kk21kjRbT0fIZzLxNT6qbeS2gM6fRltDpTJsMdyQpJDQMVWIeOxdPlbgdEditgdZgmGZ6eWsOOAq6Y2EfI11SSqxUEmtAIqRkoDvPlvZX0NfzRzxmL6KpwoIeIAs59P4c3ev6yBkFVKky3RYgcjpCwKa+NczrAbEqWDOwHrEqR+6kIkZ/DxUzQFEtBpY4LFuUZdXipUwO1hkflGTyPYhUGk205rOqKxgplVoih9ROqI6a7W3YegHZpaHlLPLJHtqNIc4eLjLSnWNL2ykssp/OET3xMFrZmWJTX5YlRYeUkUMmEqhFA3Hslgws1kipRdJaG2k9Q8fwenrWrWRJsdV2Uk2haSayK0/TiJhN+8z2uvwhV8v/WqvNfxJU3YCbvrKTtTM+DytlquMOlfQ0Z//ZctYeK7L4XMNvhuz9wgM8Gac4mHa4NepD3zXHh4wvUtMUKiMhyfR6li75Dl2db0dRnhmnf6D75WwXaziNbSxe+C7X7Ptrak4fweZ3AHD97i9z3m3n43tPYgiD5W1bqUUxs0PfQ7MX2PfEFh7q3c20fYBXVRfxJ81b+KZ+Hpdf+hGufdkqtqRdov2ztHcoNNQ0q3buZMGxOfL6VyNSOpsclWC2yfYfH3xWu/1CSp7/qtcz0tNDI4q5aWQ5UwP9lN/1NoL9+wDYuqTAZy5dS8XW+Z+UsdxOBko97HQWkz8s6dae5Bv2JnaMXYSRaVI/44OU+m/h/O4t3N+1lvff9RVcoXCvvpEwiKgoA+y8u0i1ofCaPd+jJzFHqAp+Vl/FzUe3MFPPc2Gby99fvJI7/vw0fvz6LXzplWtp88G+dYxIk5h/vJz1b13Di65cy8mvGKLeA4MzOSa7L+begVdyY6nE7f5duB19jGbb6BrbQ6bh0rO2gOf/D/YmS3x8eZGXPTTBPak7OXn0QvrGL6EUZ5m0f0BnKYOIJ/ANoFbizpEF0laSa0bfQ5uWxbxsKXIwBcDt5RpXHp7iQ7/6Opd+/G9R1IjsR99PfNrlz2oMBmHEe2/eQ1Mexs1+g5HUIH/pZPnBOS+iZNsc3ZXCCFzaHtuOzJvoZ/Vy4aWXko0dxsIlzEx2MrZqFPWM+0iXnuS0hQS9h1+O0Eu8J9vBKvEUW71HectPOzm6cABV1XjeeS8i0k0OO9389PSTWXBsTn/iSTozzywQ7WQMTn7FYrb+6TKy2RxqaQU+AQ8oh3he4Y8I119O33yV0jdfxztu/2fq3u9O3p8NLhjZzBdf0UfGrHHzvrPp9VbzzegGfvTjfyJuBn+QNv+jo62tjTvvvJNSqcR111133OsEsHv37t+aU/SfHZERIZI2A70FFKFgqJIobxIe2+kt502UnhPXLbTWUi7VNEeKy3H0DEM9fVhqS+RC/tpSnzeLnLpuA13LMqQsldmsztFjBp2UklqfoLSygbLcpi85QMHoRNEk3acvYtHaVaSNDIalEyVUZqzgt+aYSiHoy1oUAp1ixsZQW/lUtmpjSqclmWypKOmQYtKgmWt5U5VcxLKVQxhZk+X9w5zUtQpDGiT6k2xcthgEDCYXMZQbIrBV2no6octmrqjhqDYjiWWomo6iW2DqWGkD0IiVDFUzgV2weXzpHO0OJJ2ITgMiGSLM8FjfFDhp0RrgRGiiEALZ6RDnWkRBSWlI65hRWzCJLZOlqWGUlE5otY7T6/RhJzrQCjkKSYO+rIWQLXNRkeK4ESoU0Qq1lDqRFeHpg8zObwEEQgpiYlIFh9BS6Uh0cvLAYtb1nChPUc9L3ESr7yzVon1gJaoaYB/7TKQKqmmNSIJnhkgpOG1RnpH2DoaSi2m2WfhtFrI3xdMVdVNqkZTa9i+OzcCISWg5hG4jB1eRWdSN7HnmHNRVwUtGFpPOWRhJjaX5LejpGEO2rlszThC23u4OzKJEy8YUe1qEZr7Lw+sKsdsFk1kVyypyStcIA+lW7mLCUJlut0C0NgbSdgqR7yKjdVDQ+2i0mShrC/jmMcJqqJTzg3hyA2p3F7VccKyALnQU7OOS+VIIlhQTbFo6SK3Lp7isjy0bOtkwOEAkASkwUzqOlUSRrWsIbY10T4LTzhjkrFNW0rFyUet+aAq9RYeoI0FmcZblgyeIoqpLjjODOIOqWTSGghZh+C3zaaAwRLrHopDJYykWQkgiKQjt1poQGhIjbbA0t5zBwgCpgo3We2K9SJoque5e2o1BVvam2TyQZWVHkkxuKTPR4uPFoRVFoBsag9kT62OvtZgV2XUkDAXdUqmldRZyOjFgGyqxEiMdlZ6MyZKOJGr6t+cCGWrrGfO0F+5pKFIc845pnD3c8uqJY/NLTcb0ZGy6Uy2SpCgqmztOZWNhS+u+So2i2Uaxr9W3sYRYObHx9IfAf5Om/8vYP13j6196hAsXYg6GLk/NGswufYJX//n59BSe+zjMOIo5eM8Rxq59BCN+ghvtJj+tLyM9N8XnB95PXzTLaG+K3v6/YWjw85jmot84xvz8HDf/5AZuyr6Cb3RdzMuO3ko+LOOdfy2oJnvHHiV9fYIojomCUTZ3X4IuBLfb+0gP3sXk5BJuTRlUki6vriq8e/rn/DA8hWUv/TsKzv/H3pvH2VHVef/v2uvW3dfe9y3pzp6QhBAhQDBBwQioICogo+I6o+Po4/wYxucZcH1kXJ4RcRRFFhdUwIU1CmEPEMi+b52l9/X23Zeq8/vjJg1NEkggBBz7/Xr1696+XV31uadOVX0/53zPOTqO4/D07T9Cl236Ai2IosPcDev57/Oz/MOar/OnptIj/6yoSe/GYbY+1nPC5XDWey/jHXPmIhyHVTNmsL6pntF//DTF7aXxCzMqfdzywVmYXhf/aMKMdXv5Tfn5lBdGkHo9fED+Fc9IM/jD4GcZ67IYmPJrlNNvpH3+coTu59Mbfs9+I8q6VJTiqMOX5/4T5+S/zydz/8zosIHfk2Z+y24+7jzA+eymoXM1sxL7xluUOtwmP9K8yAI+T4q+Q+kKplvjiWIPS//wVd7xwv/hHM83GRC/IqWtJltWRTKg8EjHXC5Y3YcUiBCP/gtjeoZrTqti4eZBntHu5KItn2Rm9zKqredQuJcpe70ILQrSOnBs8tkBqiPv4//uvwaPz41xeQtyWSnYejyR4ro9e/nVrV/mjF/+GbNcwf/jnyHmvufE6qEQ3LByJ+v79+Bv+AU+zcu/av/AggPXUikd4OZLPoRvOMkLne0Edv8RvfMvAHjKA0z3zsQjXOzcu4Si7mFPQaZavhMJiSviEYjPYpM1xh/MGq7T78ROK1zx2x0MJDLU1NQxbepUiv4wWUWnMpckuuZ5xq77CqJ4pAmJ1ntZ+sl2Fry7HT1fxl69lyeT3TR5TkdZei0fWetldP9NvOfeL3L3pp1vSrpeS/kUbvvI2Syp62TL7kvRMo38l/4LHv39r3H6Myf9eG93vvSlL3HttdeycOFCTNPkqquuAkoTRFx99dVcc801b63Ak4ylWBxsKJCYEUBv9mNrMpIi0VDvZ2aVD0mCgqEg+SaOdbNDBklDIeVTsas9+LxekCVyYRMkiXwwh5BA93rxGT5UXaHK76KoyUjqS62/LZEpRD3lBIMvBc45U8HRFfyeELUNbSjlbg63GAvp6NeAWy0FOlOCrzJ9vgQuTUYPyEydN4WmSCOKKuEOGuiyjt4URm70IQUM3LqHcyvfiVtz47EspkxtwmoL4Y1aFDV5wj4P4/JpmF7QtQALymczpcxLQ8TCHYTyjjzu6W1oshtJeSmdJ1YWIlOdPiI6kg6ZiqZoaXytVmPRWuenvdyD1/DhVgIE1XJafVPw6wG8kTJ83lLwKUtKKSiVVBZEF/HRmedxTmupF380bGBG/DQ3zMJSfRQOBc2OZuILB6loCFM5N4pS60WPuTDUUk8VwMLYaSwuOwsAQzaYPX0OlRctobFl4sQog3U5Cq7SefIYKvNjC2jwNoIiUx1xU1ftQTtkMEzZQ0yvJyBHD5XlodROv06lVUWNuxZFUokZ9bRFXzICcpMPufrINc9kSeKsligzY82lYx4NS8GIyLjDJlLUxNYFebeD7BKlnk9ZptZTP8H8i8NvhcBnauiqB7cSRJE0ZL+BpMmEvSZxl0rbO+tYOqUco7kcNaweXqEMgDnTI7TE3OMdTh5dZ1qkg2WzzyXQ7MfQFeaXzWZK4KVZjFVDIRdxkYu6UPw6xowIgbCLOZXV1IVr0UwFd/Bwipl0aCFYaULdPMzhj8I+fTwV9JW4VBcN3kYUqRQvBIwgQa0CM+QjU5km0KDjDZulomwIkaovjPfelUy5RGtlLQvm1uCNmOP7NVUFGwNdKRVmsUpHrrBYGDudj8+4kKn1QdpnlfOO1jKaIm7c7WEGy1wIWSqlbpoa2VjpmVTmNTiz6nRmxY5+vS+qKyfsNvFqR9aRcK2HirYAqizhNVWkoEa2PIOkQMwVZUZ42vi2uqLj00sNulLMhRTUUQ5d/5IK0tEK+SQyOXveKUIIwV1ru3n8Dzv4TEGnp+DwWHGQ4LuyXL78veiq9to7OUEG946x744dBEdeZKDsWW6I17I+F+Xc2sf4QvuPOHNvN3kMpEuew3J3HHUM1ejoMH/4w29Jajprprbxwf2/IZYfRpIl9AOPMZAPsvrWJEXFh536HS3BObS4Z7HJiSOd+VVU2+DO+OVsC6t8pXsV/zi4kz/ZC3m09hNcMKd0E9q66gF2P/s40XovvVoV5zzyCMq8+fS95yy2Zx/m2cwqupVGzkwGqHarvLB5BN2nE6w88uJ7NcpqG6irqmb31k30Rss4EPDgv/0XeGbMRonFCFga57VFeWrvCA/nFQp6BRfmHiYUj9Bfk6Qht5/Ovil0ZdqxtvXhbu6FhkeJVC7BfTDANkWwzVPPbidCSnNz1oEXmV18gO+U/Yov5O/mhehMtkxfQfPaxxkLRti9bTM1Hh8uX4TCXbuRszajy2v42e5+Vu0c4p1tMR5f/TRz/v2L+AtJYitC3LvHwvb6yMeqcBt93DLnEj7w7GpOW/ME1plfRVa83OrRyA+twZ1ezfK978NjmywN/YShvl1Ubhijq/FD6Jk99FRn0UeHOL32Ii4cakWucqO9rwnpUD71w6MJnnz8Nr5/0//BtW0M74JqzB/cjRSpPaFyF0Jw05Od/G7zJspafo4iF/m3wjnkfd+j6O5jcWge/y8wh4WbXiS8e5hsk4tI31/ITb0MVIPIlApizxTZr/TTPVRDsKaPnj6Lsr4xBlxzmVO2k+dFgSd9BS5JDrHIvY9fJs7i7o0HKEvuZ9f2zchSKdkkNzJAsaWJyONPYnfuQX/HEiTlFXn8kkSo0k1NczWbt6wnKUPPmBdDcVPVeBZz90GvIXgkdRd3b++mLTiFMq959C//OjE0F0unTqfcWM3TW2dQNA/wlPcRKtcY1FGJVHFiE6O8nTjR2fNisRhXX301l19+OVdcccX4FN+KorBkyRIWLVr0Zsh8Q7yR55SpumiONuNRVYIRi9G8g1rpRpIlinmHAcdG0mWaoxPvf6mxAj6fwdyOKFVRN8gSIzkbNAXFtilIGZRqL5X11RiH0rBkCXZ3J6jQNSxdwV9mocoqMVcZ8qHW9z5F0IsgaOmELB3JUpFcKsl0gc6+g7j9gvaq5pKIbBHJryNHTbxpF1K1m5pgPbsHUwBEhUw8W6DoCMp9BmlXnFzcRpJhSrgeLa8geTVEsoDk05ADR295tyw3um7gcpUad6Iek3wxTWP5LLymm+6xLC1RN0a8wKDoQzF1YkaMYLmbrsxeFK+gPdZB1FsLSiUjVh+SDCEjTMAIsrp7CwBlPoNGb6khsSZi4ZNkaur9xHwmdREX2eE8gQoL3Rb0J3P4giZlTSEUTcbMO3h1H/5YjOpCDE0zKa+sxVAMdEVFkSV2D6awNZnWGTFMj8mW/hSqDbIuMVjWy+KOdrx6aS1CSVeQJAkB9HUlqbF0QmVuVKuksdZTjyxJhDylsUx9yRzaSGk68Uz0pXF/h78PQLyvFPBWtAXwRlxYowoDWgATk1n1UeSRASQrgOzxIvl1XDkNt9fH4GiWjCoxsy0yvi9JkZEMha7UQWxhTziOIksYoyXzKEddE47tL7PwRSJIYYNgZTmSpbE3sRuAOVWz6MuryIfquxjMluptuUUkYuHSFYKyjEgU6Mrmyfs0wuUuZtQEkCUJe8zG59GI1HiRJWl8v3VKDWVOBAkJJWYRiFns2nkAnxSgvaMRwzUxHpMkiUR/dlyvN2Lir3RjeHV8UReyLE3YttvZj6xINHqbxr+nT5Ho6UuhBU1yDKN7XABWAAAgAElEQVRGbSKFCkZzI6ixIoWiTYeoQck5eCNRpje2oQyXei7lqGv8uwPIERf9oyYZJ0FGJJhWUU3QKBlYyVDYld0FwGnBudQo5fgCLprq/Hjc+oTnhqUrpOxhPKZAkiDqK8frDSBJErqqooZMZJeKrEj4oi6C5R40FQKWTn2Vl05pN0P5HFG9jpqgi4DpRsPHQLJ0/3v5Pcqtm8yKTKcjOJ3OodyEv+uminLoOq8Jutg5GGfY7qLMZ+Aa8+PVfbiDBv5ya0JZ616dogO+mIvO3G7UsE17eBo1gSrsAm+IYz2nJk3TKeDgaIZ/u28roRd7+SQWA0XB3cG1LL/yNBY2n/wJH9LxPNvv2oW+7Tky9ffw29F6bhxqpS66jU/NvZXTo8/Tti5FOJsnccEvkULNR93P8PAQ9977W+KazmCjj/9a90UqsgP0LbieselnI297gvKuewiqfXQl1uDS6zk9/F567CJrFvwbzd40P09/ij4TfrLjJi5IdHO7ch7XF6/gxkvPwdQUkkMDPPaT/8TrkukMT6d+zx7CiTSN3/0v5lct4rToAlb3P80240E2igJLk63UWCovrB9CdqmEq08sNcftDzB9znx69+5iUFbZU1nB4AN3EzQs3E0tuHWV5VNj7B1K83xnFs0lWFpYRSH7Dpy6rTjDLuy4m4FMGNeGCvbq7fwsFeXn1kyGzQCH88DPVPdwfnYV5z6zh/+1qJHzCmO8d2gVG/UQm2dfTOMLj5L0h9mzdx8tW9zIaYF2cRPBxgAzK/38dl03f123m8tv/ioBLUn0vVF+tT3EWKSafLSKYL6Hp9/RxgGpnm/e9jW8069B8VZhS+AM56kaCFMfn8qQdxtX+G+g54UkFZuG2db+cTKmjw2tT+EpujhXzKS5WI08K4L2rnokXQHH5sUNd9N0x+c54zfP4iRl/P/wAfQvfR9JO7GAVwjB9x7bw50b1xBuugVZSvM504W3/AlMpZmG1pupCy8imErw/aYOVjz2MENDAWoq9qFk+sk3LkNSZVKpLNN6IuxyOhlI16FXZBke7cayq2FoFp7ybvao/fzV4+Wfh7YRCDp48xK5wX3YIsJ589+FntlKn+wjnktTbKwl9MgqnF070c88+wjjBOB2u0gXCvQM7SRpeskkPOzL5ajwtbA0X4OCiTyW5Zd9v+SZ/RIzy+rwmidvAKokybRVzmBpU45tOwV9TpynQ6vI7tCYuSeIXOVGOonHO1WcqGk6jMs1ce0Nj8czvtDs2403+pwqC1qYhxZmdfk0vBGTdDxPMe8wgkM4YFLpn2jUrYCOpiuYnlLAJ1kq8YFSoFXt0qgLlFEzrX7cMEFp/+WmjpQtpXj5yyxeiQ30JnK0RD2Y2kvXSdCnUxYN0V5dh6EeSjfzG0iWhqQpKFELr7sUyO0eTIEomaawpRHzlgL71pomlKRJ0AoQtizI2kheDanKjeTTj/ls1DRt3DABmJpCmb8Gy3Dj0hQaw1ZJa6pIf6IH0SJoLW9B1RRq3XU0eBvx66UUtqKWoy9Xyl6ImFH8eoDO5G6KDoTd+njwr6oy/ogLRZUxNQVDK5lMw62BKhMsQtijY9X7sPw6YjCLhIQVCcBoAcvlQQ5OPGcHRzNIEjSG3UiSxBktUVzxAkMZQWtjC1NjR9ZvTZEpk2Q8SKWyOsY9oNJvYsYLWLrCgK8P4FAv2EvpfZlEAbvgjJ93o8yP4TMJV3vxVfqRvD4kxYscMks9b+kikk9njwoJTaI5euTzt8JVQdSMYaoTr9dxw3PINMmqjGYouLw6qqzhe5muw+ZmWmQ6lWEXUY+OpauQsyHvINeU6mLIKjWgiJEce3BwLJUlU2LjqXeWpWMLB9ehXtnOxB5q3LU06A2QLJYaAAIGuqJT2K/jEm4qWgKo2pFG/eUm7zCqrkwI4l+p/5WmySXACrlwu9xMa27D67NImXGKeoY5gfm43RaZtINqGEQq/BPK7OWmSYqY7B5K41K8zKvz0ORrHG/kACgzy6ly1+CTvRQTNqrxsp6vV1DjrcCtuckU0zT5WsZ7s16JJEmYpobiCPwuDUWT2ZXaxWAqT1Svoz5soasy6bxNX2KiKTqMoZQmaTjciPLKvx9mx8AYw4WSaSoPx6goi+GLuI4oa0WVcQcNJFmi3+6hKBWYEZqF122Rzb4x1zRpmt4C8kWHXzx3gP/8wxY+MZTnfMXLAZHh2TM6ueq9lxGxwif3eJki2x/eT+qxp5Grf8l9mRDfPXg6RX8nH59zO0trHsNIF2i9N0OdmSTd+gFycz521H319HTx5z//nkHTIhLq5vqtXyflaKybdS63dWfZ9EgtnaOXImdHafU9zZxgF60eP1mh01v5JPUVG9gRn8vsnm18c+/tBAT8R/hqvj/0Xv55cSWz68oQjsNj//VVEsk0Y3VT8Ywladmyneobf4ArWsptjbpiXFS/Asc2eDT3RzZY2zgrPpsGQ2PLllHiqQJlTb7xWV2OB0VRmDJ9Nj6Pl/1dBxmOlrFz2zpGHl+Jr6GZQDjCeW1RPIbKz3Z4WaE8hZXso99XTaxiB1vSTWzOtPEHbRpPxlsQeT9L6h7livZfUyfniQ9Xs5EwhgEz92+jad8on3jnpbxvdBsXDD3BDs3N/XMvZ+bapzjbWIK7YLK3boTIaS2l1etVG/2RP/MXuZK9sUqWndbH7zZ5icdqKEQqMFMj5M4Y4Xfmh7ni8ZUsznWgVczh1tgTpOMeRrIubCXPk/W/4yrlVpRHLNSDRTZP+RAjkRlsq7mPaD7EzGItU5RGtHfWoi4sRxIFtG13UbjnU8R+8xCFNRJKeQzfD36CtuTCE66PyVyR6+7fzgOdj+Ct+wVuOcenY3GqLInK6BeparoWTSulr3SEgnSuf4HH69tY+sxTbFfqaJIeJR+ZhhNswt0QIr6mh/ZCPTvTL5CUqyiEI2RFJ5IcI9JdQacFPkdhU/FMspkK/GqCh/VpPJEsY3tPFx2jdXiVDMMumWFJJlVdRvSJJ3E2bkA/YzGScWRvUUVZOZu3bGTESvNkWxWtXSMcLLgYKticZjcxWw7iy3lJj/Tw0733cWAkyIyKGMZrrCV2Iviscpa3TyeQ6WPNyCCbAk/zaCLN3GeCeCQZqcJ9QvX/reb1mqa/Jd7oc8o0tfGHvqorSLJEYjCLXXRobw5Se5RgQ1bkCYYIoJBzKGRtfA1elJA5Pvbp5eSSBbLJ0rGOZprchkpdyIX7FQuKS5JEbUUYUXztuj7e0+TIuHw6/piLQs7BHdDJjthYhguPWysF5QEdyVTfUGPi4f+VAgab5R0Ypkqdp6E0PkmSJwSYmWKa3kzJNM0MzUaSJKaGmvCYDjNCs9Dk184CkTQZeShX2v8hUyDG8mALpICBGM0jaTJSYGLdrwu5aAi/1GtsmRrDB5N4TZXpbZGjBuQAsqWCAClkHrOcZEnCiOdx6ypmWYB6bwMxV9mEbSy/gTtkjLfyA3gN9aWJCLwWUsSF7NURqWLp/LhVEpaKKkGV/8hFRBVZPcIwwZGmybBUXN6jL6fwctOhK3LJMAF4NaTwxO8sqTJS2CQadtEYtlCVl75LIGIh6S9t2+BtImxGEFkbkgUkj4Z0qJEh3puhkLWpbAsctdyPZpqOxcv151JFinkHnyKRTRYoWBq1LVFchomqK0S9Ecr8ESy8oCvER3IomozvZUZJjrqQ/DriUM+hFDEJe3RClklTsGpCfYZSCpuu6BTzDunRHJ6wecS94TCKpODVfFS7a49pmA7z8vsSwK747nHTdLjs3bqCANrLvcdcU/O1TJPbAFvtR5UlYp4oYU/oqNu9nCp3NfXeBmRJPkLn62HSNJ1inu0c4d9+vwlzyz6+aAeZqplssvrwX9XIGa1nvGblPBHsosOup3rpuf8p3L7f8mTR4ofd8zAim7lq+h2cU/sEBdUgvMbgrD37CAVy5Mvmkzj/h3CUB8KWLRt46KE/MxyJcra4n6u6fs+LnjK+bJ3J3t0zaNnzDnx5N6GeP7Ja7aFndDo1nml41KcIaH+lIbuR2q4scwf2UJvt55cVF/K98g/z6N4W2vyC//Xu+UiSxPZff4ttW/bi1DbiOAozXlxL1+f+hRkzZ07Qo8gqc6KzuLDuQtZnDvAb5ffMT02hXfUwdCDFhi1DRGq84y2sx0skWsaUqdMYHhxgREiMyAq7H72f/s1rEXiptANECzq3ikreXXyCX3Wdy3cPfJgN8WYGhYWl5KlN9/CdvMy5hRZGfetpqV/NaeFdrOmbxUapjvK6BPNfPEhoaDsfW3Y9lwyt5l1DT5JGotr8CC1Zkyfyq3mxcID9O7dRMRJn8NovM3Xj09QHetiqxUjsGyBbUU8hFENNjWE07eXHFV8gMpbl60/vwqw+k4f19eT6GnGyAYYCL/K7jpv5eG4X7Qc/TUrroGvqB7HCLUStFHFljKBw05TVyCx/FCfch3f7/fge/hL5Bx5i4FGdzLCBcenl+K7/Dkr02IOCj8Wa/aN8/t7n2GH/BqP8Pqr1PJ8Jy7T7r6Buyv/F7Z81Pvj2MGfU13Hvzm2Muf3MeX4zowEvgcE/kmm9CMXlw6jyomyJExCN9I+uxBYGBX+AnHuYrDdOQ95DRaacrFIk7t7Ov2d/x7TYdu4ufxeDQ/CoA4VAP9OMHClbY8S06C0PUbF2LfZfVqLNnYccnHhzVlWVcDjCvs3r8duj/GLxFKZ0b0RkfBwsqoxmZWbYNUzTLUzHpq9vBz/ZtoaiU8nUMh/KSTIzsqwxtWoh51U288T+F+mz1vN7eYDuPSpTNjm4AgZSwPibSNmbNE2vzdEe+tlUgULWLqWoKMd3nk2vhuXX0dzaUQ0TlMZnJAZeSj06Gseqx8cbnOweTCFJEtObg6UAzir1nhXyNqmRHKqu4Kl2Ix1lrNYbJV4YxZbzVJt1R70+ZElmINtPs691vBdGlmRirrLjMkyHeaUpkAIG0qGpk8VIrhSgv8IkSJI0QZNhavTvH8MfNPGGjp3yK8lSaX+vcb1Lfh3Jo+FzBzGVI/cnydIEw3TUfRxeEDlVgIyN5NFoawoTNo6/l1uSpCPK59WocFVS66k/YuroV5bXyz/XVXmCYYJXqZ9Zu5QC6lLHTVN6NIfl1wlWHD2QPxHTpEkaqqwRc5VhBUqNBJJbRTZVcg74ylzj30OWZCLeINlsoWS6VRl/mYWiyhNNk1Iy3ZKpILlUXFpp8oRX1WEoGB4Nd+Dk3HNfzTS1RD3Ih85P2K0f0zDBa5smQ5PozuwHoMqqxq29dkbR4QaRo+l8PUyaplPEzoEk37h3C7uf3sqKURcX6j5CmszBaXnaP/AOAq6jLxD3enAcwb4XB9j85weJ5p5mc9HinoKJv/JZLu34NbNimzmo1fBAdgVL7kwSffggSmMLhaVfIHXm/wZ1YqXIZjM8+uhKnnvxOQZrFT4zeBPz4tv4gXYWT41dzJwD76QsVU5VzzOIxO10edPUKM0sKruSBHP5YesMXLUvsM8b5Q5lCd9v+Aj/1vIF/MJh1x6VbNHHjz60GJ+p0X/fd3jskReRK+pIWz4WrHmW337o43xy6dJjPghcqouzq8/gnMZ3cqf8NLnRYeY55fhzBdau7mP1/q34K3QCbt9xl6GuG7S0duCSvPT2dpENhkjkHfJbtiPFd9Jv7OMFotyYfD8bRRPVYpAsGkU0bEkhEfDTKx1kbtpL/cAyDhyMo1QcYH7j4zzfO5tnpOk01u3gjKfjVPQ9x9XLvstZ8c0s6llEWaaaGzoMnoo6NG5ew5S16wnc/Tts8lgLUhzM+4hmexmpmwZeL+pIP8WyEW6d8RnUAvxg5RbKQwvYkU3TEy9Hl0Y5UH8T99Y/wSd2jTFv3TJygWl4IlMpMy1y+iiPmeuRHfAc2MOLWpA1fRmCO++m8rGnOfC4m1SnwXBzDYEbPo1n+QeQtdd+wB1GCIcdPZv5+v3P8eONz+KU/wTFvYslpsW/VF5J+7Rv44ucgSwfPSiSNY0zEnHuEA6hVJrgxhHc0RTFffeRbb0IMxYglckQHRAkacNRVyLt7cejxHHHVZTiLMxhhx360zxf08nDZjmf7tvBR/N/5umORQxoUbr7vDyeqiHnS6LJDhheutv8GP09GHf+FsntRp0ydUIdDASCRMJRxrr3I4Vj/HpqCy6jk7JdqynKQXodF4Npk+ZcDVNUD46xmy29T3PP1vWoSiONEc94usgbxWtWclHTRfTGt9IpnmO3azd3jXmJ7ximbq/AU+5Gsk7++MiTyaRpem2O9tA33Boun45+AimZkiSND5I+FrIsnVBA+Fo6j8VIukBbhXfCtVXI2aRH8+gutZRmY5y8xsTDxMwYjZF6ROEYplFWqfXUjQ8uf70cYZqk0gx4kiojudXjatRwuXRkQ8YdOjkNIJIil1KuTwZFB5EoIIdMXD7zxINSR5TGqB1H/dVk7aSstXMipskKGHgj5jFNpKLJeCMu1OMoT7/uH+/VO2z0JF1B9ZeO8cpz+3KdhvXS+B4pZCAFzfFJSCRFOuGU7OPRe7y8qmmKHf9QidcyTY6w2Z/aB0Cjt/mEF3h/M02TJN6M6Z/eRAYGEm+1hKNycDTNnQ/uoLC3m9nZCG2mTI2ukraKeC9oQa3xv/ZOjhO7aLN11WbEzt1UoLJOTbO3fDVTKtbgNxLkCgZrnAXcb1xIeU+Bf//B93BlMrj/8QuY77noiAtWCMGWLc9w/3MPssGbZI7YwCe7C+zInMWm3FloRR9CKVI3/ALBnffxfHMAR8CU4FKm++fQb8B35u/jCtc32Jev4ge5KxnxT8PIdvHl0T/yYFcTmwbb+c6Kds5sjjL4x6/x0Mr1SJEqRiLVzFv/PD96z0f4/pIz8Xu8x/jWRykH2+bZx9fQsN4hZLs4WLDZni2wObgDbWqGmR3NzI7MIWBMNKqFrM1Id4qBfUlG9o5R6EnhcRzkUCeb/J1slRz2pCvpHKtBIBPUxtAr3Ew1d/PTA1+jqMisbfSz++D72Sk18vvZddR0J/mPzQ4VUow9ifXsDd+LmOrwg+0fJV2w+EzoJ5z9m072eXwUzv0m8xIaAfUmtnr28YkZXyVddHHVn3/LaQObWBOrQx0dBJeHXHk9OcPkyUIDcmOWbY1zqI/Huf5JmxbNYlfWZl9hD3XhO/le9UH26hqXPSdRvSfCkL+eRyLnsVByobkGSLq7MBUZdds6zKpGipl56IXSjd2TPIiU28UL5QX21ju0BAZp9HfTHHVTHujA7Z6D2z0LVZ3YE1Mo9DEUX83j2/bwwC4fW9MqZuxhZGsv5ZKHL9Z+mjntK04oAOj87jf4rifIVQ/eTzA5Rvs5++nz12Ffcgf+cCVjd25F78vxTDZLd+AHSHttnIJM2HST0D+OU9jDDu9veHzWIEbR4vv9vSwojHJLxXu5ofYaWgYFQ7uHGM3KuOQcddIora6DLK58hKpdoxgHy/Be9lWC86YdodsWgv8eGOHm/hGq4kN86K4fIqQYHqmNorsdR9KwZHC5xniifCWbrO14DRdLai7j8pkXoCknL21vdd/jfGv9DcQLSQrxuRSHlrBEUbm8rJX2JfUo4eM3vKeSaPT4r/G/Vd7ocyoQsBgdPf7FvN8o+zeUJgqonXFiKeNvVKcQgtGeNL6o6zXN3RvhVJSn0zmGyNgoU19/w+ipPu8nisjZSIbyttd5mGPpFKM5nJ40UkBHPkbP0qnkb7U8e5JDPLp7P2G9imVTjz8jZddAipzt0FF+7GfBqp6/oskaZ5Sd+YZ1vh6O9ZyaNE1vACEEW3eM8OCqTfh6HRqEh1rToUbTcBRQ58XQFlQcMy3iuI+TsxG9aYZ3d5Ha0U8wo5H3d7IjtoZi7EUCrhGKjsLB/lpekN/Bn2LLUYrw6ft+y4UP3Yc2fyGeL3wJpfqlFb2FcOiJP8dftt3Nqq4uDuhxmscCvKenFZJzSNhlCEkQrXNRM7gGHn+A7dWVDGuD+PUyZpe9lzLVyyMxhYfb1/Ju+SbuyF3Ai673IGSd9pFH+Jj6J27ffglbh1tZUZHmn969gO7fXs/z67rQg1EGyhuYsmsrd559IdfOm0dTZdWrlMKrlE/BZuzJbuR1g+iORFexyP4s7GeMzuBmEtF+ynwBpoy1UdFXjkhDykgy6Blgr5Zir5DYl/PQnwkjkFEkmzpzgBrRQwCZoJ2B5Cj3LXoXMX2U27d8k1Cuk8GQxtZQDXuGzuP+mnqe8s7ni1tGuKTHoODk2BZfzcbaTu4pvIOhfICPtfyBS/aejplr4zE24rMf4N3mU9jI/Cx0MSudduauewpVOCSqq5DNMFIxixjs476lFxEZK+fMPUMsz7qJaTJdw10UfT/i7qqDPByyCKRg6XMBPOkIWXMhvb7p1GlDpDz7EUoBn2rjbF7PdG2Aju4exrpcJF1lbJi6hNFoK3ougiJKrVhjxjBDepwBtcCY6qCZGcK+fmojYzSHs5hqns29Htb01bBpsIWiezdW6CmEaz9+yceHm67kwqZLTriFCEAUi2z78uf4RfNUPvanP5A3NGYv3kXa8jO29Hu4k15yD/ShGDE2ZRw2Bv5COPckY50eTLeNGphPbqSKLv0eVs3uIWM6nDHi5saxrfRRxlfKPsvautO5yHAz3DnGqp0DFISESYGOwE7e0bCKKWYn5r4wIrSCaOsyorW1E1KitmVyfKNnkHWJFB9ZeRexvZtQHYWwXI/qXcCQVg5I6EqRfcFNPFP+V4bdBykzwpxVuZT5Fe+g1T/lqCkzJ0KqkOLnO27mD/vvxXEcimOzyA6fToUTYFnQw7sWzaSu8eT1bp8MJk3Ta3Oqg6h8pohjixNOcf5bDfbeDA6HUm+kh2iyPE8uxzRNORvnYBK5wnpb9Mz/rZZnpmDz+K4h3IbC4saTO0b/jfB3Y5qeeeYZvv3tb5NOp6msrOQb3/jGEbMjvdWmKZcucnD3EM8+vwf7YIFqYRFVocxw8Ek6tirQZpehzoshWSfevSyKDmIwi+hLk+saJX8wjp7Okfd0kwnsZCS8gUxgL5qapWCr7BhuoXewlrXexayvakMgsXjrOj7/ix9TNrUd68NXoc6aTdHJsn3oMTYPPcWLAzvYlIij5lSq423Uj7ZRG29Dsi0U8oRCcapntmBueoqeF/ZyMFhJytlIUNVojJxFg1HHmCZxU2OOYddP6TRj7HevwFHDeDNbuNL+BYWRKPfsWEHWsbisRSG67R7cvXsYzpp4wwF6Yk3UHejkwTln8IWFC2iqbTjxshKCdMEmkS0ymsjRuz9Betsw+eEcaQRxx6FX2AwrGUbVDAlJYsQ2SDsvdbtKOJRZo9QHirSWB5hX18KsmmpcmkJh5w46b7uFbdk0B2tqyOgGD7WfxkAgxLd23MH7+3+NJrL0RXQOVLnYL5rYpDezyb6AD2wLsXAEsiLPr9Xn2Ssa+bRTRghB19TbyJU/hrxTInnATyGj0jMUJGmEKMZi5MwAQpLIFFVsEUNRmqkdcIhJMnPdYEoyiU2/4zetK7l7loaeh2l7PXQcmIlLnk7G1YTsGiTtPoCj5sgoSaq7usiPJGgaHKa1a4Skx819p59N6t0ruHJGB+Wail1w2N/Zy9Yde+g7GMceVvCkA8i81L1fkIokFIdByaHHt5uB0DpGA5soqml8jp/T3fO4pPadlEdacLmjKK9cdf54z20uS+f/90V+FavkwysfIuW2aF7QRcwXZ09vFWJPGdZZ/4qUNOgqFtmRLZCK3U5hfz/5hIYVzeErD5AYGeXhUIKd1SlcRZkPjGW4KjHAU4WFfM19JcnyKq5orySSyHPP05vZntIpoqBJeaYEdzI9tpWO8FZiRRuKMzA8MwlEZhCp6EDVDVaOpfjpwAijnXu4/P7bkfMptKJNyDYo8y1ixD2LQVFaF0TIBbq8u9gb3Eyvbw9xs59yT5CpwRm0BabT6p9Cs6/ldRmpgewAv959O3/efy8FUUQp+kmPzsFOthJzwswv97B4ehunNURx62/tjHuTpum1+VsNot6uTOo8uUzqPLn8LevcNZii0meOTx7yduDvwjSl02nOPfdcfvrTn9LR0cEtt9zC888/z8033zxhuzfbNAkhKIoiRafIWC5OX/8w/fviDO/LoPUoxPJuAoqETxWEVBkVGVsSSDUW+rQYcrP/uHuW7GyaeM9KCqMj5ONjiGQGJV/A0RLYeoKCMUre3Y1tjo7/T18qyvaRZjrjDXTSTndDDQm3B9Uuctr2jVz14D0EW4NsP72KbfoI+1K99OSHyRSzhDIxKhI1NCbq8KeaMXKlFmhLHqZWX0dlRYqk3sb+TRnGchGShk3A2U1Ut6j2thNQQyQVh19WHuSB6Dr6XbXkrXkI2UUos5NF8ccQQ26e6z2NRNHF9ECR93k2kd76IskRG9XrAn+MuBWkbl8n3YvO5gNLziYQCJIt2MSzRUYzhdJPuvQ6cuj3kVSekVSesVSBRLZIumiTcl573Wcd8CARQBDVMgS1BH41g2WDlJdJFNMkPQm0KESq3FTEIpRbFZS7KoiYEdyqB3vHNkbvuI3dBzrZ0dTAyrmLWV/dQqAwxv/ecSvvHX4AnSxJ02QgJjEY0uknQt/gHKp7zqE5WY4uaQyQ5ytOmnT+IEvEcwREjpztwbZKP0gyigP+nAeSrSh2KUc4qg8wzSzik2spZPrJPf8zfnh6J882+Wjtnc7svkUgu5F0h6w5SM4cQJLAKcYJdXdRTKXRizbt3YN01TXyxzPOp2rRGVxZFqZGV7DtMQqFfvKFbjLZbvYPDrG7P87OYYndoxFGx2LoUgpVH0Aye8m69zFmdeHINqqtUz8yjZaBedSOTkV6xYqQRbmIUG0UAwxTwnKreLwuXJaF7jLRLRXdVNHM0mrjpVcFzVRRVEj97tf8cutWzn7+WbypJPG2AHMrtiMCsMNaAL6PEeoNo9jQZxfoyxcZVZ+gf2Atdg40T4FAQ4JRl8pkhVUAABj2SURBVM0qM89OTxFZCBZlspyVztGbnM1vMhfT46ugtUzjXG+BfTs72ZPW6Lb9jFEyMF4lSUtgDy2RXdR5D1BpDeAt+FHyjShyE/1WDSutSro2d3LWUw8hFdIgSfjyNg1WB5rvdEbVEINFQfbwQvAIkvoII1YvKW2MjJYgqyXxmgZRT5gKXzVt0xpoDDbi0Y7PaKQKKR7rfYSHD/6ZjSObEAgkR8XOVlPM1OJkqyhTLKaG3Ewvt2gv16kLWqiKC0k2UNUQhl59XMd6vUyaptfmbzmIejsyqfPkMqnz5DKp8+Tyd2GaHnnkEW6++WbuuusuAFKpFAsWLGD16tV4PC8NMDtZpkkIgRjJkRrMkBrKUcwXeWDXnzAzOsFCgFAhSND24pUULFnCJTM+mLuAw6i3SKApgtUYQap2Ix1av0IIgRjIQt5G2A77BzqJDw6iZSXUrISak3ClFdw5nUJ4I92z/t8R2oqORto2SRTcdCfL2R+vpi9ZxsF0PWO+ckSFG8VQMfI2sfgQ/tH9FPLbcZQ0mgSugoWr6MFV8ODORfBnY7gLpQG+MuCRRyjT9lChb8On9jFiV/KI550cdEdRpDy6bGPIMobipqCqDGmCXUaGvWqaEVxQMJAyNkomiycTR03bxHOlCqZg0yrtZ2Z6C+FChqwvxqjsYb1Ugy1kpKKNZRdRq8IkigpjWYmxnETOPrrRlBB4lBxeNYNHT+PWUri0BKaexNIyuNQslprBUjO4tAyWUsBnuPG7AwQ8YdxKJa7hVvSeKFK/ghjI8vIF7AtCkHcgLwR5AVnhkJTTJNUkY2qClJomq6bJ6ykcLQVyAlmkidsVrClbwPayBnQpz6UHH+R9B1+kNjNGqljBUL6WwUIVcVtnlBGSUpysWsDWwTEtxOHFjAUoRRM9H0YrWCjCQVLj+LQhoopCmVNJuWjBdvIUdv2F4f0P8Md3ekjXtKHnYyhxP3rBRiilQY+SXcQVH0SOD0M2jVEsEpDz7JsaY1+rB01JoNoZisIm5cgkizIpWz30XiPrSKDkkJQkkppAVpMgOePlpUkajd4mGnxNhPQwhmzQG+9jeGyMsXiaXCaPUlQxii6MooVul16Nogu96D703kK3TQzn1ScEEJJA0h0kTdDrzRDe8wBLXngKvVgEwNElaJSJn1aJll5M0J6GSWmq+qKwSdpZksU+UrkhMnaSrJ0ir40ybI5wQB6jX0+R0xwsbDy2jF30kLZD9MhRUr4w1VIRA5sR282Q42XEdpMoltLuADxKkpg1SNA1it+IEzDG8GgpTMdAGdKxd+fIj+YpyKUezaAWotHVStTVTAEXWdshXiyQsgV5JGyUI0zn4w13saX8KXRU/KqLkOrFp1l4NBc17kaao2dgKjou1cXUQMeEqWeThQQvDq7hxcFn2dy/hs5cLzYvnUun4MfJh5FsDy5Jwq/aBNQCFb4z8VkBaoJeGkN+OoLT33Aa4cuZNE2vzd9TcHIqmNR5cpnUeXKZ1Hly+bswTT/72c/YvHkzN9544/hnixcv5r//+79pb28f/+yNPIx2D6b46gPbSeeLLM/IXJl79TSVlLAZlAsMGw52yEWsKkx9a5je/iyDB5IIccgkCRCOQBSK7NrbxQuKTpIsSamAQOBQWsXbQeAAjuSMv4/oYyxO+tCKGjgawlGRigYypdCs9PrKUOroOHYcO7cOsLElQVER2JLAkYvoIkUHKtPDlxwxpz/AeUvcjBilz9UdceShXGmNCVtA3n553HwIgQtBpS5QR3YTzI1QnuujNtnN0q170ByHzro6eior6FTC3O+bg4aEqVo4/l40JY9bS+HRUode03j0FF4tiVdP4lVyeGUbryyQhYEkTCQsFMWPqocwvRE0TwTVDKEqAVQ1iKIEKf7pr2Tv/j0oCqhqadFSVUVS1UOfGSRlmZSkoGkhFNWHJLuQhYkmu9BUD5rsIlVM8NzgAyTtArYQlBatFQgE2UgY29DhcO76oVXakSSQROl3RUUo6kvbADgCpWCjZR1s22FL1QjD5gCSWuBTQysIFb1Yjkkk70eSSybcTvRSPLCakb6n2V7tZV/zbPKHF/kUAqmQQ8mkUbIplEwSkUuR8OQYDOTZV5amK5xFHFflUZEdA9XRMRwdr7AICguvcOFyLAJKiIARweO4wYFisYht29j24VebKVPaOf30M0kVUgxk+xnMDjBWiDOSjdOdHKQ31cdQeph4PkHGSZG3s8hFFbWoodsautAwbfOQ4XKhHzJXum2iFV1IhSkcqAAjv4fgWD+R+Ahb65v56/wzkITDyjUfZ0oySU60U3Ca6bHOwc668RQE6lGuIEc42KJA0SkwlOvmqf57AMirDr859wD2UbINLopHeG9XinxeMKa4yasajiIdOvcSPy8uZ61oOY4Cn4gCqALcAgwBXiS+lC3QaGeBIo6wcQ69CslBSBJCApBIumDQB09aKgORDgxZYrzWSaX3bTEPF8+MsndsDwcP7mT/4B62J3azz+5jTE6SU1I48tFnfLs4vpSPxz8Amoy2rBb5BBeUfiWTpum1+XsKTk4FkzpPLpM6Ty6TOk8ufxem6Yc//CFdXV18/etfH//s3HPP5Vvf+hbz5s17C5VNMskkk0wyySSTTDLJJH/PvHlzfJ4glmWRy+UmfJbNZnG73/rpICeZZJJJJplkkkkmmWSSv1/eNqapsbGRvXv3jv8+PDxMPB6nrq7uLVQ1ySSTTDLJJJNMMskkk/y987YxTQsWLKC3t5c1a9YAcPvtt3P22WdjWSe2Qvkkk0wyySSTTDLJJJNMMsnJ5G1jmkzT5Lvf/S7/8R//wXnnnceGDRv493//99e9v2eeeYaLLrqIZcuW8dGPfpTe3t4jthFCcMstt9DR0TFu1k41x6PzhRde4P3vfz/nn38+F198Mc8///zbUudzzz3H+9//fpYvX85FF110ynUej8bDbNu2jfb2dp599tlTqLDE8eg877zzWLp0KcuXL2f58uVceeWVb0udyWSSf/qnf+Kss87ivPPO46GHHnrb6Vy7du14OR7+6ejoYPv27W8bjQCrVq1ixYoVLF++nMsuu4wNGzacMn0novPxxx9nxYoVnHPOOXziE59gdHT0KHua5PVwIvewU8Ff//pXVqxYwfnnn88HP/hBduzYwZo1a5g5c+aE6+mOO+4AIJ/Pc+2117Js2TLe9a53cdttt50SnR0dHRP0fPnLXwbg1ltv5fzzz2fZsmVce+215PP5t0zngw8+eMR9qK2tjXvvvZe5c+dO+HzlypUAjI2N8dnPfpZly5ZxwQUXcP/9979p+gqFAt/61rdoa2ubUO9eTxl2d3fz0Y9+lGXLlnHRRRexevXqN1XjD3/4w3GNn//850kkShOx3HTTTSxYsGBC2R6+r75ZGo+l8/VeN6da57e//e0JGpcsWcLFF18MwLXXXsvixYsn/L2vrw8oxVSXXXYZy5Yt47LLLmPbtm0nTefR7kPwFtVN8T+QVColFi5cKDZt2iSEEOKnP/2puOaaa47Y7rrrrhPXXnutWLx4sXj++edPtczj0pnL5cT8+fPFM888I4QQYtWqVWLx4sVvO52ZTEbMnz9fbNy4UQghxMqVK8WiRYuE4zhvG42HsW1bXHrppeLMM88Uq1evPiX6DnO8OufPny/6+vpOqbaXc7w6r732WnH99dcLx3HErl27xIc//GFRKBTedjpfzrp168Qll1zytqqb8XhczJkzR2zdulUIIcRjjz0mzjzzzFOi70R0Dg0NiXnz5oktW7YIIYT4zne+I/71X//1lOr8n8rrqctvJr29vWLevHli586dQggh7rjjDnHppZeKRx55RFx99dVH/Z8f//jH4jOf+YywbVsMDw+Ls88+W2zYsOFN1ZlMJkVHR8cRn69du1acffbZIh6PC9u2xTXXXCNuueWWt0znK7nvvvvEZz/7WXH77beL66677qjbXHfddeKGG24QQgixf/9+sXDhQtHb2/um6PnYxz4mvve974nW1lbR09MjhHj9ZXj11VeLn//850IIIdavXy8WLVokMpnMm6LxgQceEBdccIFIJBLCtm3x+c9/Xvznf/6nEEKIb37zm+Lmm28+6r7eLI3H0vl6r5tTrfOVfPWrXxW33XabEEKIz33uc+JPf/rTUbdbvny5WLlypRDipXNyMjjWfeitqptvm56mk8nq1aupqamho6MDgMsuu4wnn3ySZDI5YbuLL76YG264AU3T3gqZx6WzUChw/fXXs3DhQgDmzp1Lf38/Y2NjbzudX/va15g2bRoAp59+OoODg6dM5/Gec4Bf/epXTJkyhdra2lOi7eUcr85kMonP5zvl+g5zPDrz+Tz33Xcfn/rUp5AkiaamJm6//XZU9dWn8j/VOl/J1772Nb7yla8gvXw6+LdY44EDB3C5XEyZMgWAhQsX0tvb+7a7zteuXUtdXR1Tp04F4KqrruLhhx8+ZRr/J/N66vKbiaqq3HjjjTQ3NwOlZ8+uXbtIJBJ4vUefjvf/b+9sg6Kq/gD87ILsksurI8IISIJTH9LQcbQiXqbs7wZGTRkqSdBghEZhbwolkSLo2NjLIMSUkGDKTDLJTCqgNO3oIAPNQNbogKGuUkTJxsaaK8Hu/j8wbKwJsyDc3ZzzfLt3l9nnHs753fM799xzamtrSUhIQC6X4+Pjg1qtpra2dko9R4uVtbW1xMbG4unpiVwuZ82aNdTU1DjMcyT9/f18/PHHvPXWW2OWZ11dHatXrwYgKCiIJUuW8M0330yJ08svv0xmZqbNuYmUocFgoKmpiYSEBAAWLFhAQEDApMzquJVjaGgoO3bsQKVSIZfLWbhwIT/99BPAqGU7lY6jeU6k3TjCcyTnz5/nu+++Y82aNWNeQ3t7OwaDgWXLlgGgVqvR6XRcuHDhth1Hi0OOqpt3ZNKk1WoJCgqyHk+fPh1vb2+uXLli873w8HCp1Wywx3P69On873//sx6fPHmSkJAQSTvU9nh6eHhYG4zFYqGqqorFixfj5eXlNI4AV69eZf/+/bz++uuSeN2MPZ7Xr1/HZDKRnZ1NbGwszz33HC0tLU7nqdVqUSgUfPXVV8TGxrJy5UpOnz7tdJ4j0Wg0KBQKSbcxsMcxNDQUuVxOY2MjMNRZuu+++5yunctkMszmfzZtc3d3x2Aw8Mcff0jmeacy3ro81cyYMYOoqCjr8cmTJ7n//vsxGAxotVoSExNZvnw5b7/9tnU61KVLl2wGo4KDg7l48eKUevb19WEymUhPT0etVpOamsqFCxfQarU2LkFBQVYXR3iOpKqqikWLFhEcHExfXx8tLS0kJCSgVqvZuXMnf//9N729vej1esk8b9UfmkgZXr58GR8fH5v30YODg20W+ppMx3nz5lkHa+GfegpDdaO+vp6nn36a2NhYSkpKsFgsU+o4mudE2o0jPEeyZ88e1q1bZx0I7evro7Kykvj4eOLj4zl06BAwVE8CAwNt/nZkXbkdRotDjqqb0g0JS4jRaEShUNicUygUXL/uXJtyjdezra2NgoICmw2ApWA8nrW1teTl5eHh4cGePXukUrTbsaCggA0bNjjsKY49nmazmZUrV7Jq1Srmz59PbW0t69ev5/jx45IlofZ49vX1YTAYUCgUHDt2jFOnTvHqq69SX1+Pt7e303iOZO/evaxbt04KNSv2OCqVSvLy8njppZdQKpWYzWb27t3rdJ7h4eFotVoaGxt54IEH+Pzzz3F1dbXOJRdMHGe+bzU2NlJeXk55eTldXV1ER0eTmpqKm5sbmzdvpqCggB07dnDjxg2ba1AqlRiNxil1UyqVqNVqXnjhBYKDg6moqGDDhg34+/vj5uZ2SxdHeA5jNpspKyujpKQEgHvvvRcfHx+ef/55+vv7Wb9+PZ9++inPPPMMcrncZiaMQqGQdIDCaDSOuwxvPg/S1eNPPvkEnU5HUlISMPRUYtq0aSQkJKDT6UhOTsbf35/AwEDJHYOCgsbdbhxZlleuXOGHH36w6W9GRkYSFhZGXFwcFy9eZO3atcyZM0ey2DUyDuXl5Tmkbt6RT5r+K3s+jcezpaWFtLQ08vPzWbp0qVSKwPg81Wo1DQ0N5ObmkpyczNWrV53G8dSpU+j1euLj4yVxuhX2eKpUKrZv3878+fOBoTL18/Pj+++/dypPDw8PTCaT9dF9ZGQkAQEBnDlzxqk8h+nu7ub8+fNERkZKpQfY5/jbb7/xzjvvcOjQIZqbmykqKiIjI4O//vrLqTx9fX356KOP2LVrF/Hx8ahUKhQKBSqVSjLPOxVnvW/V19eTlZVFSUkJYWFhREVF8dprr+Hp6YlSqSQtLQ2NRgMMPXkceQ1Go3HKV8ANCgpi69athISEIJfLSU5OpqenBxcXF5tkfqSLIzyHaW1t5a677mLevHkAPPnkk6SlpaFUKvHy8iIlJQWNRoO7uztms9nmGm7cuCHpisLu7u7jLsObz4M03rt37+bEiROUlpZafys5OZnExERcXV2ZNWsWq1at4ttvv3WI40TajaPKEuDo0aMsW7bMJmnfuHEjK1assE7Hj4uLQ6PRSBK7bo5Djqqbd2TS9F/Z88lez7a2NjIzM/nggw+Ijo6WWtMuz19//ZX6+nrr8YMPPsisWbMk60Db43jixAnOnTtHREQEERERtLa28sorr1BdXS2Jo72e169fv+VjbSnfFbLHMyAgALlcbtOxd3FxQS6XLqyMp61rNBoiIiJwcXGRzA/sc2xtbSUwMJB77rkHGNqCQS6XT8qc8Mn0hKGb/+HDh/n666957LHH8Pb2FknTJOCM963Tp0+Tn59PWVmZdRCnu7sbnU5n/Y7FYrHGprlz59rEro6ODuu7CFNFX18fnZ2d1uPhKaTu7u6jujjCcxiNRmNzH+/s7LRO04J/ytPb2xtfX1+bOiGlJ4xdTqN9NmfOHHp7e23ex5xq78LCQlpaWqioqMDX19fmd0d2kofL1hGOE2k3jvAcRqPR2EyLM5vN/1oRz2KxMG3aNObOnYtWq7VO3R4cHESr1RIaGjopLreKQ46qm3dk0vRf2fPJHk+LxUJWVha5ubmSvocxXs+BgQGysrKsL2BqtVouX74sWYC3x3Hbtm00NTXR0NBAQ0MDCxcupLCwkKeeekoSR3s9dTodq1evtjb6hoYGenp6rPO0ncXT09OTRx55hLKyMgDOnDnDL7/8Yg1qzuI5TFtb26QF8fFgj2NISAgdHR38/PPPAJw9exaDwSDpYiX2eF67do3ly5fT1dWFxWKhqKjIuhyt4PZwtvuW0WgkOzubwsJCm3ZTVVVlXd7XZDKxf/9+YmJiAHj88cc5ePAgJpOJ33//nbq6OmJjY6fUs729naSkJHp6egD48ssv8ff3Jy0tjZqaGnQ6HYODgxw8eJC4uDiHeQ5zcxwqLi7m/fffx2Kx0N/fT2VlpU15Di9L3dHRQWtrK48++qgknsO/P94yVKlUREREcODAAWBoSlVvby9LliyZEsezZ89SXV1NSUnJvwZvtm3bxr59+wD4888/OXz4MDExMZI7wsTajSM8h2lvb7eppzKZjIyMDI4cOQIMJYF1dXVERUURFhbGzJkzrZ9VV1cTGBjI3Xfffdseo8UhR9VNmcVisdz2VTkhTU1N5OfnYzQaCQ4OZufOnZjNZlJTU63/2BUrVjA4OEhnZyd+fn4oFAp27drFggULnMaztbWVxMTEf4027t6927rKkjN4AtTU1FBcXMzAwAAymYwXX3xR0g6VPY4jSUpKIiMjQ/LpjvZ4Hj16lKKiIkwmE15eXmRlZbFo0SKn89Tr9bzxxhtcunQJlUrFpk2bePjhh53OEyA9PZ2YmBjralTO5lhZWUlFRQVmsxk3NzcyMzOti6s4m+dnn32GxWLhoYceIjc312ZuuWDi3Kr8Z86c6RCXI0eOkJ2dzezZs23Of/HFF3z44Yc0Nzcjl8sJDw9ny5YteHh4MDAwwHvvvUdzczMuLi6kpKRI0t727dtHZWUlMpkMPz8/cnNzCQ0NpaKiggMHDljr6pYtW3B1dXWYJ8ATTzzBpk2brNOE9Xo9OTk5tLe3I5PJiI6O5s0338TNzY1r166RlZVFe3s7CoWCjRs3TklM6OnpYe3atcA/L9G7uLhQXl5OXV3duMuwu7ubzZs309XVhUqlIicn57bvX6M5Ll68mOPHj9s8YZo9ezalpaV0dnby7rvv0tXVhVwuJz4+nvT0dGQy2ZQ4juVZWlpKcXHxuNuN1J7l5eUoFAqWLl3Kjz/+aBPbz507x9atW9Hr9bi6upKSksKzzz4LDCVZOTk56PV6ZsyYwfbt2ydlkHKsOHTs2DHJ6+YdmzQJBAKBQCAQCAQCwWRwR07PEwgEAoFAIBAIBILJQiRNAoFAIBAIBAKBQDAGImkSCAQCgUAgEAgEgjEQSZNAIBAIBAKBQCAQjIFImgQCgUAgEAgEAoFgDETSJBAIBAKBQCAQCARjIJImgUAgEAgEAoFAIBgDkTQJBAKBQCAQCAQCwRiIpEkgEAgEAoFAIBAIxuD/cFGPylNi8OAAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "pm.traceplot(trace_2);" + ] + }, + { + "cell_type": "code", + "execution_count": 449, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdmc_errorhpd_2.5hpd_97.5n_effRhat
rho0.0262620.4861980.019586-0.7766720.982571219.4775971.008274
beta__02.8827231.2939770.0290460.5876715.1875841975.8275761.001178
beta__13.6055521.0444560.0228831.5336405.4226741807.8815421.000942
mu__02.8236931.2836690.0279960.6820764.9961972139.2284381.001272
mu__13.5133951.0543670.0267761.5738474.999955947.3425081.003287
tau__00.4941150.1622960.0050020.2001950.801636580.1548041.002979
tau__10.4953820.1642860.0040090.1961060.8165791725.9871610.999951
diffe0.7797110.1945530.0040660.3560600.9862072466.7868181.001018
alphas__0_00.2725020.0574800.0012370.1621450.3821021891.1555091.001204
alphas__0_10.7274980.0574800.0012370.6178980.8378551891.1555091.001204
alphas__1_00.3490280.0570600.0016260.2420970.457237731.1951951.001921
alphas__1_10.6509720.0570600.0016260.5427630.757903731.1951951.001921
alphas__2_00.3770730.0310980.0006190.3167250.4360522513.1493241.001167
alphas__2_10.6229270.0310980.0006190.5639480.6832752513.1493241.001167
alphas__3_00.3322050.0466990.0014090.2414220.419479429.9803361.002426
alphas__3_10.6677950.0466990.0014090.5805210.758578429.9803361.002426
alphas__4_00.3465220.0624970.0024450.2278670.477527200.2451051.007706
alphas__4_10.6534780.0624970.0024450.5224730.772133200.2451051.007706
alphas__5_00.3628070.0419450.0009950.2819510.4453961122.3739471.000759
alphas__5_10.6371930.0419450.0009950.5546040.7180491122.3739471.000759
alphas__6_00.3907910.0370410.0010720.3194140.461805482.4058461.002960
alphas__6_10.6092090.0370410.0010720.5381950.680586482.4058461.002960
alphas__7_00.4118230.0327330.0007990.3497770.4746761313.8017511.003810
alphas__7_10.5881770.0327330.0007990.5253240.6502231313.8017511.003810
alphas__8_00.4241230.0822780.0018310.2715340.5883621557.6577041.000735
alphas__8_10.5758770.0822780.0018310.4116380.7284661557.6577041.000735
alphas__9_00.3785830.0410340.0009100.3016290.4590861687.6263791.001155
alphas__9_10.6214170.0410340.0009100.5409140.6983711687.6263791.001155
alphas__10_00.3820990.0401390.0010110.3057770.4602701108.3168531.000925
alphas__10_10.6179010.0401390.0010110.5397300.6942231108.3168531.000925
alphas__11_00.4046470.0291140.0004320.3459780.4611854908.0695771.001670
alphas__11_10.5953530.0291140.0004320.5388150.6540224908.0695771.001670
alphas__12_00.3534410.0650670.0010990.2271310.4813163692.5587071.000163
alphas__12_10.6465590.0650670.0010990.5186840.7728693692.5587071.000163
alphas__13_00.4030520.0444340.0009710.3238510.4920072385.7666201.002089
alphas__13_10.5969480.0444340.0009710.5079930.6761492385.7666201.002089
alphas__14_00.3955010.0351400.0007080.3325990.4669092488.5970001.001680
alphas__14_10.6044990.0351400.0007080.5330910.6674012488.5970001.001680
alphas__15_00.3936410.0465910.0020290.2938700.486166166.5110381.006395
alphas__15_10.6063590.0465910.0020290.5138340.706130166.5110381.006395
\n", + "
" + ], + "text/plain": [ + " mean sd mc_error hpd_2.5 hpd_97.5 n_eff \\\n", + "rho 0.026262 0.486198 0.019586 -0.776672 0.982571 219.477597 \n", + "beta__0 2.882723 1.293977 0.029046 0.587671 5.187584 1975.827576 \n", + "beta__1 3.605552 1.044456 0.022883 1.533640 5.422674 1807.881542 \n", + "mu__0 2.823693 1.283669 0.027996 0.682076 4.996197 2139.228438 \n", + "mu__1 3.513395 1.054367 0.026776 1.573847 4.999955 947.342508 \n", + "tau__0 0.494115 0.162296 0.005002 0.200195 0.801636 580.154804 \n", + "tau__1 0.495382 0.164286 0.004009 0.196106 0.816579 1725.987161 \n", + "diffe 0.779711 0.194553 0.004066 0.356060 0.986207 2466.786818 \n", + "alphas__0_0 0.272502 0.057480 0.001237 0.162145 0.382102 1891.155509 \n", + "alphas__0_1 0.727498 0.057480 0.001237 0.617898 0.837855 1891.155509 \n", + "alphas__1_0 0.349028 0.057060 0.001626 0.242097 0.457237 731.195195 \n", + "alphas__1_1 0.650972 0.057060 0.001626 0.542763 0.757903 731.195195 \n", + "alphas__2_0 0.377073 0.031098 0.000619 0.316725 0.436052 2513.149324 \n", + "alphas__2_1 0.622927 0.031098 0.000619 0.563948 0.683275 2513.149324 \n", + "alphas__3_0 0.332205 0.046699 0.001409 0.241422 0.419479 429.980336 \n", + "alphas__3_1 0.667795 0.046699 0.001409 0.580521 0.758578 429.980336 \n", + "alphas__4_0 0.346522 0.062497 0.002445 0.227867 0.477527 200.245105 \n", + "alphas__4_1 0.653478 0.062497 0.002445 0.522473 0.772133 200.245105 \n", + "alphas__5_0 0.362807 0.041945 0.000995 0.281951 0.445396 1122.373947 \n", + "alphas__5_1 0.637193 0.041945 0.000995 0.554604 0.718049 1122.373947 \n", + "alphas__6_0 0.390791 0.037041 0.001072 0.319414 0.461805 482.405846 \n", + "alphas__6_1 0.609209 0.037041 0.001072 0.538195 0.680586 482.405846 \n", + "alphas__7_0 0.411823 0.032733 0.000799 0.349777 0.474676 1313.801751 \n", + "alphas__7_1 0.588177 0.032733 0.000799 0.525324 0.650223 1313.801751 \n", + "alphas__8_0 0.424123 0.082278 0.001831 0.271534 0.588362 1557.657704 \n", + "alphas__8_1 0.575877 0.082278 0.001831 0.411638 0.728466 1557.657704 \n", + "alphas__9_0 0.378583 0.041034 0.000910 0.301629 0.459086 1687.626379 \n", + "alphas__9_1 0.621417 0.041034 0.000910 0.540914 0.698371 1687.626379 \n", + "alphas__10_0 0.382099 0.040139 0.001011 0.305777 0.460270 1108.316853 \n", + "alphas__10_1 0.617901 0.040139 0.001011 0.539730 0.694223 1108.316853 \n", + "alphas__11_0 0.404647 0.029114 0.000432 0.345978 0.461185 4908.069577 \n", + "alphas__11_1 0.595353 0.029114 0.000432 0.538815 0.654022 4908.069577 \n", + "alphas__12_0 0.353441 0.065067 0.001099 0.227131 0.481316 3692.558707 \n", + "alphas__12_1 0.646559 0.065067 0.001099 0.518684 0.772869 3692.558707 \n", + "alphas__13_0 0.403052 0.044434 0.000971 0.323851 0.492007 2385.766620 \n", + "alphas__13_1 0.596948 0.044434 0.000971 0.507993 0.676149 2385.766620 \n", + "alphas__14_0 0.395501 0.035140 0.000708 0.332599 0.466909 2488.597000 \n", + "alphas__14_1 0.604499 0.035140 0.000708 0.533091 0.667401 2488.597000 \n", + "alphas__15_0 0.393641 0.046591 0.002029 0.293870 0.486166 166.511038 \n", + "alphas__15_1 0.606359 0.046591 0.002029 0.513834 0.706130 166.511038 \n", + "\n", + " Rhat \n", + "rho 1.008274 \n", + "beta__0 1.001178 \n", + "beta__1 1.000942 \n", + "mu__0 1.001272 \n", + "mu__1 1.003287 \n", + "tau__0 1.002979 \n", + "tau__1 0.999951 \n", + "diffe 1.001018 \n", + "alphas__0_0 1.001204 \n", + "alphas__0_1 1.001204 \n", + "alphas__1_0 1.001921 \n", + "alphas__1_1 1.001921 \n", + "alphas__2_0 1.001167 \n", + "alphas__2_1 1.001167 \n", + "alphas__3_0 1.002426 \n", + "alphas__3_1 1.002426 \n", + "alphas__4_0 1.007706 \n", + "alphas__4_1 1.007706 \n", + "alphas__5_0 1.000759 \n", + "alphas__5_1 1.000759 \n", + "alphas__6_0 1.002960 \n", + "alphas__6_1 1.002960 \n", + "alphas__7_0 1.003810 \n", + "alphas__7_1 1.003810 \n", + "alphas__8_0 1.000735 \n", + "alphas__8_1 1.000735 \n", + "alphas__9_0 1.001155 \n", + "alphas__9_1 1.001155 \n", + "alphas__10_0 1.000925 \n", + "alphas__10_1 1.000925 \n", + "alphas__11_0 1.001670 \n", + "alphas__11_1 1.001670 \n", + "alphas__12_0 1.000163 \n", + "alphas__12_1 1.000163 \n", + "alphas__13_0 1.002089 \n", + "alphas__13_1 1.002089 \n", + "alphas__14_0 1.001680 \n", + "alphas__14_1 1.001680 \n", + "alphas__15_0 1.006395 \n", + "alphas__15_1 1.006395 " + ] + }, + "execution_count": 449, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pm.summary(trace_2)" + ] + }, + { + "cell_type": "code", + "execution_count": 450, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 1000/1000 [00:00<00:00, 27298.67it/s]\n" + ] + } + ], + "source": [ + "with model_hier:\n", + " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1000, vars=[alphas, diffe])" + ] + }, + { + "cell_type": "code", + "execution_count": 451, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(1000, 16, 2)" + ] + }, + "execution_count": 451, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ppc_hier['alphas'].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 458, + "metadata": {}, + "outputs": [], + "source": [ + "th1 = []\n", + "th2 = []\n", + "\n", + "for i in range(16):\n", + " result1 = ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1]\n", + " result2 = ppc_hier['alphas'][:, i, 1] - ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1]\n", + " th1.append(result1 - result2)" + ] + }, + { + "cell_type": "code", + "execution_count": 459, + "metadata": {}, + "outputs": [], + "source": [ + "th1 = np.asarray(th1)" + ] + }, + { + "cell_type": "code", + "execution_count": 463, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.14891755, -0.13593357, -0.15645181, -0.13211676, -0.13384177,\n", + " -0.13437302, -0.13437302, -0.16392439, -0.15918594, -0.14332431,\n", + " -0.15431079, -0.17379302, -0.16523523, -0.15819441, -0.14353797])" + ] + }, + "execution_count": 463, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", + "res2[:15]" + ] + }, + { + "cell_type": "code", + "execution_count": 461, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAGAhJREFUeJzt3XtslfX9wPEP7YFehNpN6zYj/FC7EcUIGXiZF3QXhdIucy4mgyHT1KnxEhfnsITMGxZBw0imJpKJEakuGrPtDxHcZJso4oZOt2yJF+aaGTeY4qVUDhS65/fHYrMKwtdyTk85vF6Jf5zT0z6f+qWn7z7POc8zLMuyLAAA2KuKUg8AAHAgEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJcsXewFtvbS32Jg5II0dWRXf3jlKPwUdYl6HHmgw91mTosSaF09Aw6mM/Zk9TieRylaUegT2wLkOPNRl6rMnQY00Gh2gCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEuRKPQDAUDayriZqqor7VJnfsSu6u/JF3Qaw/0QTwF7UVOVibNvKom6jc2FzdBd1C0AhODwHAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACZLO07RmzZr4yU9+Ej09PVFfXx8333xzdHV1RWtra3zuc5/re9ysWbNi1qxZRRsWAKBU9hlNmzdvjra2tvjZz34WjY2N8eCDD8YNN9wQl112WUyePDmWLVs2GHMCAJTUPg/P5XK5WLx4cTQ2NkZExKRJk2Ljxo2xdevWGDVqVNEHBAAYCva5p+mwww6LKVOm9N1eu3ZtTJgwIbZu3RqdnZ0xc+bM2LJlS0yaNCnmzp0rpACAsjQsy7Is9cHr16+P6667LpYvXx7//Oc/44UXXojW1tYYMWJEXH/99VFbWxu33XZbv8/J53sil6ss+OAHusrKiujt/U+px+AjrMvQU+o1GT68clCuPbdzZ29Rt1FIpV4TdmdNCmf48I9vluQL9j755JMxf/78uOeee6KxsTEaGxv77YG69NJL45JLLtnt87q7d3zCcQ8O9fW18d5720o9Bh9hXYaeUq9JQ8Pg7D0/kP7dlXpN2J01KZy9/cwnRdOzzz4b7e3tcd9998Wxxx4bERGbNm2K4cOHx2GHHRYREVmWRS6X3GAAAAeUfb4QPJ/Px9y5c+POO+/sC6aIiEcffTTmzZsXPT090dvbGytWrIizzz67mLMCAJTMPncNrVmzJt5555247rrr+t3f0dERS5Ysiebm5qioqIiJEyfGnDlzijYoAEAp7TOaWlpaoqWlZY8fa29vL/hAAABDkcuoAAAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQIJcqQcAONht39kbDQ2jirqN/I5d0d2VL+o2oNyJJoASqx5eGWPbVhZ1G50Lm6O7qFuA8ufwHABAAtEEAJDA4Tmg4EbW1URNVeGeXvb0eh+v0QEGm2gCCq6mKuc1OkDZcXgOACCBaAIASCCaAAASiCYAgASiCQAggXfPAQekwbj0CMD/Ek3AAWkwLj0S8d9TGwBEODwHAJBENAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQICma1qxZE9/4xjeiqakpZsyYEa+++mpERNx///3R1NQUU6dOjXnz5kVPT09RhwUAKJV9RtPmzZujra0tFi9eHKtWrYqWlpa44YYb4qWXXooHHnggHn744Vi1alVs2bIlOjo6BmNmAIBBt89oyuVysXjx4mhsbIyIiEmTJsXGjRtj9erVMX369Kirq4uKioqYMWNGrFq1qugDAwCUwj6j6bDDDospU6b03V67dm1MmDAhOjs7Y8yYMX33jx49Ol5//fXiTAkAUGKf6IXg69evj+XLl8fcuXMjn8/HiBEj+j5WXV0d+Xy+4AMCAAwFudQHPvnkkzF//vy45557orGxMWpqavq98Dufz0dtbe1unzdyZFXkcpWFmbaMVFZWRH397v+/KC3rQrnavrM3GhpGFezrfdzX2r6zNzzjDz7PXYMjKZqeffbZaG9vj/vuuy+OPfbYiIg45phj+h2O27hxY9/rnv5Xd/eOAo1aXurra+O997aVegw+wroURiF/OVMY1cMrY2zbyqJvp3Nhc7z11taib4f+PHcVzt6ev/Z5eC6fz8fcuXPjzjvv7AumiIimpqa+d83t2rUrHnrooWhubi7MxAAAQ8w+9zStWbMm3nnnnbjuuuv63d/R0RGtra0xc+bMyLIsTjvttJgxY0bRBgUAKKV9RlNLS0u0tLTs8WOzZ8+O2bNnF3woAIChxmVUAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgAS5Ug8ADJ6RdTVRU+XHnuLZvrM3GhpGFXUb+R27orsrX9RtwJ549oSDSE1VLsa2rSz6djoXNhd9GwxN1cMri/5vrHNhc3QXdQuwZw7PAQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACZKiaefOnbFo0aIYN25cbNq0KSIinn/++ZgwYUJMmzat77+Ojo6iDgsAUCq5lAddccUVccIJJ/S7b+vWrTF58uRYtmxZUQYDABhKkvY0XXnllXHNNdf0u2/r1q0xatSoogwFADDUJO1pmjhx4m73bd26NTo7O2PmzJmxZcuWmDRpUsydO1dIAQBlKSma9mT06NFx1llnRWtra4wYMSKuv/76WLBgQdx22239HjdyZFXkcpX7PWi5qaysiPr62lKPwUdYFzgw+Dntz3PX4BhwNE2ZMiWmTJnSd/vSSy+NSy65ZLfHdXfvGOgmylp9fW289962Uo/BR5T7ujQ02BNMeSjnn9OBKPfnrsG0t+fJAZ9yYNOmTbFly5a+21mWRS434AYDABjSBhxNjz76aMybNy96enqit7c3VqxYEWeffXYBRwMAGDr2uWvo7bffjlmzZvXdvvDCC6OysjKWLVsW//rXv6K5uTkqKipi4sSJMWfOnKIOCwBQKvuMpsMPPzxWr169x4+1t7cXfCAAgKHIZVQAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABIkRdPOnTtj0aJFMW7cuNi0aVPf/ffff380NTXF1KlTY968edHT01O0QQEASikpmq644oqorq7ud99LL70UDzzwQDz88MOxatWq2LJlS3R0dBRlSACAUkuKpiuvvDKuueaafvetXr06pk+fHnV1dVFRUREzZsyIVatWFWVIAIBSS4qmiRMn7nZfZ2dnjBkzpu/26NGj4/XXXy/cZAAAQ8iAXwiez+djxIgRfberq6sjn88XZCgAgKEmN9BPrKmp6ffC73w+H7W1tbs9buTIqsjlKge6mbJVWVkR9fW7//+itKwLHBj8nPbnuWtwDDiajjnmmH6H4zZu3BiNjY27Pa67e8dAN1HW6utr4733tpV6DD6i3NeloWFUqUeAgijnn9OBKPfnrsG0t+fJAUdTU1NTXHXVVfG9730vDj300HjooYeiubl5oF8ODnoj62qipmrAP5IAFNk+n6HffvvtmDVrVt/tCy+8MCorK2P58uXR2toaM2fOjCzL4rTTTosZM2YUdVgoZzVVuRjbtrKo2+hc6A8bgIHaZzQdfvjhsXr16j1+bPbs2TF79uyCDwUAMNS4jAoAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAhe6ggSuCweA3wKQwHXhAHB4DgAggWgCAEggmgAAEnhNEwAHlO07e6OhYVRRt5HfsSu6u/JF3QYHHtEEwAGlenjloLwxo7uoW+BA5PAcAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQwGVUAOAjBuP6dhGucXegEU0A8BGDcX27CNe4O9A4PAcAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkyJV6ANgfI+tqoqaqsP+MGxpGFfTrAVAeRBMHtJqqXIxtW1n07XQubC76NgAY2hyeAwBIIJoAABKIJgCABKIJACCBaAIASLBf754bP358jB49uu/2iSeeGLfffvt+DwUAMNQMOJo++OCDGDZsWKxevbqQ8wAADEkDPjzX3d0ddXV1hZwFAGDIGnA0dXV1RW9vb1x++eUxbdq0aG1tjb/97W+FnA0AYMgYcDRVV1fHtGnToq2tLR5//PE488wz44orrohdu3YVcj4AgCFhwK9pGj16dNx88819t7/73e/GnXfeGZ2dndHY2Nh3/8iRVZHLVe7flGWosrIi6utrSz0GACVWiN8FfqcMjgFHU1dXV7z//vt9754bNmxY/Oc//4lcrv+X7O7esX8Tlqn6+tp4771tpR7jgOfiusCBrhC/C/xOKZy9/V4Z8OG5V155JS688MJ4++23IyLikUceic9+9rP9TkEAAFAuBryn6aSTToqLLroovvOd78SwYcPiiCOOiLvuuisqKx2KAwDKz36d3PKiiy6Kiy66qECjAAAMXS6jAgCQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAn26zxNAMDAbd/ZW7DLQX3c18nv2BXdXfmCbONgJ5oAoESqh1fG2LaVRd1G58Lm6C7qFg4eDs8BACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJXEaFohlZVxM1Vf6JAVAe/EajaGqqcoNyTSUAGAwOzwEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAECCXKkHAACKZ/vO3mhoGFXUbeR37IrurnxRtzEUiCYAKGPVwytjbNvKom6jc2FzdBd1C0ODaAIA9stg7M2KKP0eLdEEAOyXwdibFVH6PVpeCA4AkMCepiFmZF1N1FQVf1m27+yN6uGVRd8OAJQL0TTE1FTlBm0X52C8MBAAyoXDcwAACUQTAEAC0QQAkGC/omn9+vXxzW9+M6ZOnRoXX3xxbNq0qVBzAQAMKQOOpm3btsW1114bt956azzxxBNxxhlnxE033VTA0QAAho4Bv3vuueeei9GjR8f48eMjIuLb3/52LFmyJLq7u2PkyJEFGzDVYLxVv9RnIgUASmfAldHZ2RmjR4/uu33IIYdEfX19/OMf/4jjjz++IMN9EoPxVv1Sn4kUACidYVmWZQP5xLvvvjvefPPNWLBgQd99X/3qV2PRokUxefLkgg0IADAUDPg1TbW1tbFjx45+923fvj0OOeSQ/R4KAGCoGXA0HXPMMfH3v/+97/Y777wT77//fvzf//1fQQYDABhKBhxNp5xySmzatCmef/75iIhYsWJFfPnLX47a2tqCDQcAMFQMOJqqq6tjyZIlccstt8Q555wTf/7zn+OGG24o5GwHvNTzWL3wwgtxwQUXRFNTU5x//vmxYcOGvo+tXLkyWlpaYurUqXH11VfH1q1bB2v8spS6JlmWxbJly2L8+PF9fxh8aOnSpTFt2rRoamqKq666Kt56663BGL1sFWJNNm7cGBdccEGcddZZ8a1vfSs2btw4GKOXtUKsy4c6Ojpi3LhxxRz3oFCINXnkkUeiubk5pk2bFq2trc6v+EllFMUHH3yQnXrqqdlf/vKXLMuy7N57780uu+yy3R63Y8eO7OSTT87Wr1+fZVmW/e53v8vOOOOMLMuy7M0338xOOeWU7M0338yyLMtuvvnm7JZbbhmk76D8pK5JlmXZj370o2zevHnZGWeckW3YsKHv/meeeSY755xzsq6urizLsuyOO+7IfvCDHxR/+DJViDXZtWtXNnXq1OyJJ57IsizLfvGLX2QLFiwo/vBlrBDr8qHNmzdnX//617MvfOELRZ253BViTf70pz9lp59+erZ58+Ysy7Js4cKF2bXXXlv84cuIy6gUyZ7OY/XMM89Ed3f/kxbs3Lkz5s+fH6eeempEREyaNCn+/e9/R1dXV6xZsya+9KUvxZFHHhkRETNnzoxVq1YN7jdSRlLXJCLi/PPPj1tvvTWGDx/e7/5XX301TjjhhBg1alRERJx66qnx2muvFX/4MlWINXnxxRcjl8vFueeeGxER5513XsydO7f4w5exQqzLh9rb2+Pyyy8v6rwHg0Ksyac//elYsmRJHHHEERERMXnyZHtlPyHRVCR7O4/V/zrkkEP6nuwjItauXRtjx46Nurq66OzsjDFjxvR9bMyYMbFly5Z4//33i/8NlKHUNYmImDhx4h6/xsknnxwvvvhibNq0KXp7e+PXv/51nHbaaUWbudwVYk1efvnlOPLII6OtrS2mTp0al156abzxxhtFm/lgUIh1ifjv81l3d3dMnz69KHMeTAqxJkcddVScdNJJfbfXrl0bEyZMKPywZUw0FUk+n4+qqqp+91VVVcW2bds+9nNefvnlWLBgQdxyyy19X2PEiBF9Hx8xYkQMGzYs8nlnJR+IgazJR40fPz7OO++8+MpXvhInn3xybNiwIS677LJCj3rQKMSadHV1xYYNG2LGjBmxatWqOO6442LOnDmFHvWgUoh12b59eyxatChuvPHGQo93UCrEmvyvX/7yl/H000/H1VdfXYjxDhrFve7IQeBXv/pV3HHHHbvdP2PGjE90Hqs//vGP8f3vfz/a29vjlFNOiYj/ngurp6en7zE7duyILMu8Q3EfCrUme7JmzZp46qmnYt26dXHooYfG0qVL44c//GH89Kc/3e+5y1kx12TUqFFx3HHH9f3FfPHFF8fSpUtj27Ztflb2oZjrcvfdd0dLS0u/veXsWzHX5EMPPvhg3H///bF8+fJoaGgY8KwHI9G0n84999x+h9c+9NRTT8Vjjz3Wd3tv57F6+eWX45prroklS5b0O5v60UcfHc8991zf7ddeey0aGhqirq6uwN9FeSnEmnycdevWxZlnnhmf+tSnIiJi+vTpsXTp0v0fuswVc02OOuqofu8qraysjIiIigo70velmOvym9/8Jt59993o6Ojou+/000+Phx56yPn89qKYaxIR8fOf/zwefPDB6OjoiM985jP7Pe/BxrNKkaSexyrLsmhra4sbb7xxt8vPfO1rX4s//OEPfScRXbFiRbS0tAzON1CGCnFusaOPPjrWr1/fd4j0t7/9bXz+858vyrwHg0Ksyemnnx7vvvtuPP300xER8fDDD8cXv/jFqK6uLsrMB4NCrMvKlSvj2WefjXXr1sW6desi4r9/dAimgSnEmmzevDl+/OMfx7333iuYBmjA155j337/+99He3t75PP5GDNmTCxcuDAaGhpi8+bN0draGo899li8+OKLMXPmzN2eSBYvXhzjx4+Pxx9/PO66667YtWtXHH/88dHe3u5SNfshZU0iIlpaWmLXrl3xxhtvxBFHHBFVVVVx++23x3HHHRe33XZbPP3001FRURENDQ1x0003RWNjY4m/swPX/q7JiSeeGH/9619jzpw50dPTE0ceeWTMnz/fYaH9VIh1+V/jxo2LV155pRTfStnY3zVZv3593HPPPf2CKZfL9duDxd6JJgCABA7PAQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACT4fx8oWSslxL0OAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 6))\n", + "_, _, _ = plt.hist(res2, bins=20, edgecolor='w', density=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 456, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAFkCAYAAADv4QVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAH01JREFUeJzt3XtwVPX9//EXyeLmsoRlMMFLFiHJEFtksF6KFgujEklNqrWl41rBgjBFlJbh5oBWErkoCpGOGIeZAjMRO7a2VqYEJCoz3iDY4o3pJemQZMd6SWoSQ7JsEkN2f3/4y36/+w2w+9Gzu8fk+fiLc87Hz3mTN2f35Tkn54wIhUIhAQAAIGYpyS4AAADgm4YABQAAYIgABQAAYIgABQAAYIgABQAAYIgABQAAYMiR6B1+9lmXpfO5XE75/b2Wzglr0Bv7ojf2RW/si97YVzx7k5096ozrv/FnoByO1GSXgLOgN/ZFb+yL3tgXvbGvZPTmGx+gAAAAEo0ABQAAYIgABQAAYMgoQL322msqLCzURx99NGhbbW2tbrvtNs2ePVsLFixQc3OzZUUCAADYScwBqru7WxUVFXK73YO2BQIBrVixQhs3blRNTY2uu+46lZeXW1knAACAbcQcoLZv365bbrlFmZmZg7YdPXpUHo9HkydPliR5vV699dZb8vv91lUKAABgEzEFqPr6eh05ckTz588/43afzyePxxNezszMlNvt1ocffmhJkQAAAHYS9UGaoVBIZWVl+vWvf62RI0eecUx3d7ecTmfEOqfTqUAgMGisy+W09HkNqakpcrszLJsP1qE39kVv7Ive2Be9sa9k9CZqgPrDH/6ggoICXXXVVWcdk5GRod7eyCeA9vT0nPFyn9VPCnW7M9TRMTioIfnojX3RG/uiN/ZFb+wrnr35yk8iP3TokA4dOqTp06dr+vTp+vTTTzVnzhwdPXo0PCYvL09NTU3h5fb2dp08eVKXXHKJBaUDAADYS9QzUL/97W8jlm+44QY988wzys3NDa+bNm2ampubdezYMV111VXas2ePrr/+emVkcKoTAAAMPV/5QZrHjx/XwoULJUlpaWnatm2b1q9fr6KiIh0/flzr1q2zrEgAAAA7GREKhUKJ3OFnn3VZOh/XpO2L3tgXvbEvemNf9Ma+bHkPFAAAACJFvQcKAAAMDa6sdKU74//V3917Wv7O7rjvJ5kIUAAADBPpTocmrNkf9/34NpdoqL+LhEt4AAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhhyxDKqpqdHTTz+t3t5ejRkzRg8//LAmTZoUMaaoqEihUEgOx5dTjhs3TlVVVdZXDAAAkGRRA9Qnn3yisrIyvfDCC7r44otVVVWlBx54QH/6058ixnV2dmrfvn3KycmJW7EAAAB2EPUSnsPhUEVFhS6++GJJ0rXXXqumpqZB4/x+v7KysqyvEAAAwGainoHKyckJn1U6ffq0XnzxRd14440RYwKBgPr7+7V27VrV19drzJgxWrlypa644or4VA0AAJBEMd9EXlVVpenTp+vYsWNatWpVxLZgMKg5c+bo7rvv1oEDBzRv3jwtWbJEJ0+etLxgAACAZBsRCoVCsQ4OhULav3+/nnjiCR04cEBpaWlnHfvDH/5Qq1at0syZMyPWd3d/IYcj9atX/H+kpqaovz9o2XywDr2xL3pjX/TGvoZCb0aOTNWENfvjvh/f5hL19fXHfT8D4tmbkSPPnFmiXsJraGhQS0uLvve972nEiBEqLS3Vhg0b1NTUpG9961uSvryE19zcrLy8vMjJHYOn9/t7v0r9Z+V2Z6ijI2DpnLAGvbEvemNf9Ma+hkJvsrNHJWxfifxZxbM3Z/uZRb2E197ervvvv18tLS2SpHfeeUd9fX3yeDzhMW1tbfJ6vWpsbJQkHT58WK2trZo6daoVtQMAANhK1DNQV199te655x4tWLBAwWBQ5513nrZt26ZTp07J6/WqurpaHo9HZWVlWrp0qfr7+zV69GhVVlbK5XIl4u8AAACQUEb3QFnhs8+6LJ1vKJxSHarojX3RG/uiN/Y1FHqTnT0qYfdAWf19fy62vIQHAACASAQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQ45kFwAAAIaWnr5+ZWePius+untPy9/ZHdd9nAsBCgAAWCptZKomrNkf1334NpfIH9c9nBuX8AAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAzFFKBqamp06623qri4WHfccYf+/e9/DxpTV1cnr9er2bNny+v1qq6uzvJiAQAA7CBqgPrkk09UVlamp59+WgcPHlRxcbEeeOCBQeOWL1+uRYsWqaamRvPnz9fq1avjUjAAAECyRQ1QDodDFRUVuvjiiyVJ1157rZqamiLG1NfXq6urS7NmzZIkFRcXq62tTQ0NDXEoGQAAILkc0Qbk5OQoJydHknT69Gm9+OKLuvHGGyPG+Hw+5ebmRqzzeDxqbGxUfn6+heUCAAAkX9QANaCqqkpPP/20xo8fr8rKyoht3d3dcjqdEeucTqcCgcCgeVwupxyO1K9Y7mCpqSlyuzMsmw/WoTf2RW/si97YF72xn4F+JKM3MQeon//857rrrru0f/9+eb1eHThwQGlpaZKkjIwM9fb2Rozv6elRZmbmoHn8/t5B674OtztDHR2DgxqSj97YF72xL3pjX0OhN9nZo5JdgqUG+hHP3pztZxb1HqiGhgYdOXJEkjRixAiVlpbq1KlTEfdB5eXlyefzKRgMSvryUp/P5+PyHQAAGJKiBqj29nbdf//9amlpkSS988476uvrk8fjCY8pKChQdna2qqurJUl79+5Vbm6uJk6cGKeyAQAAkifqJbyrr75a99xzjxYsWKBgMKjzzjtP27Zt06lTp+T1esOhaevWrXrooYf01FNPaezYsdqyZUvciwcAAEiGmO6Bmjt3rubOnTto/UB4kqTCwkI9//zz1lUGAABgU7zKBQAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwJAj2QUAAADJlZWudCdfy98UdAoAABtIdzo0Yc3+uO7Dt7kkrvMPJ1zCAwAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMBTTq1wOHTqkJ598Ul988YXcbrcefvhhTZo0KWJMUVGRQqGQHI4vpxw3bpyqqqqsrxgAACDJogaolpYWrVmzRs8995wKCgr0u9/9TuvWrdPvf//7iHGdnZ3at2+fcnJy4lYsAACAHUS9hOdwOFRRUaGCggJJ0pVXXqkTJ04MGuf3+5WVlWV9hQAAADYTNUCNHTtWM2bMCC+/8cYbmjp1asSYQCCg/v5+rV27VjfffLPuvPNOvfvuu9ZXCwAAYAMx3QM1oLa2VlVVVYPubQoGg5ozZ45uv/12TZkyRQcPHtSSJUv08ssva/To0RFjXS6nHI7Ur1/5/5eamiK3O8Oy+WAdemNf9Ma+6I190Rv7GehHMnoTc4B69dVXtWHDBu3YsSN8OW+Ay+XSxo0bw8vFxcWqrKzU+++/r5kzZ0aM9ft7v2bJkdzuDHV0BCydE9agN/ZFb+yL3thXvHuTnT0qbnMPVQP9iGdvztaXmB5jcOTIEW3atEm7d+/WlClTBm0PBAJqbGwctH7gN/IAAACGkqgBqru7W2vXrtX27duVn59/xjFtbW3yer3hEHX48GG1trYOulcKAABgKIh6iujQoUNqb2/XqlWrItbv2rVLixcvVnV1tTwej8rKyrR06VL19/dr9OjRqqyslMvlilvhAAAAyRI1QJWWlqq0tPSM26qrq8N/LikpUUlJiXWVAQAA2BSvcgEAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADDkSHYBAADYnSsrXSNHpio7e1SyS4FNxBSgDh06pCeffFJffPGF3G63Hn74YU2aNCliTF1dncrLy/X5559rzJgxKi8v16WXXhqXogEASKR0p0MT1uyP6z58m0viOj+sFfUSXktLi9asWaOKigq99NJLKi0t1bp16waNW758uRYtWqSamhrNnz9fq1evjkvBAAAAyRY1QDkcDlVUVKigoECSdOWVV+rEiRMRY+rr69XV1aVZs2ZJkoqLi9XW1qaGhoY4lAwAAJBcUQPU2LFjNWPGjPDyG2+8oalTp0aM8fl8ys3NjVjn8XjU2NhoUZkAAAD2YXQTeW1traqqqlRVVRWxvru7W06nM2Kd0+lUIBD4+hUCAADYTMwB6tVXX9WGDRu0Y8eO8OW8ARkZGert7Y1Y19PTo8zMzEHzuFxOORypX7HcwVJTU+R2Z1g2H6xDb+yL3tgXvQFiN3CsJOO4iSlAHTlyRJs2bdLu3buVn58/aHteXp58Pp+CwaBSUlJ0+vRp+Xy+M471+3sHrfs63O4MdXRwpsuO6I190Rv7ojf2xOML7GngWInncXO23ke9B6q7u1tr167V9u3bzxiIJKmgoEDZ2dmqrq6WJO3du1e5ubmaOHHi1ygZAADAnqKegTp06JDa29u1atWqiPW7du3S4sWLw6Fp69ateuihh/TUU09p7Nix2rJlS3wqBgAASLKoAaq0tFSlpaVn3DYQniSpsLBQzz//vHWVAQAA2BTvwgMAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADDkiGVQX1+fnnjiCe3evVuvv/66LrjggkFjioqKFAqF5HB8OeW4ceNUVVVlbbUAAAA2EFOAuvfee3XZZZedc0xnZ6f27dunnJwcSwoDAACwq5gu4d13331atmzZOcf4/X5lZWVZUhQAAICdxXQG6vLLLz/n9kAgoP7+fq1du1b19fUaM2aMVq5cqSuuuMKSIgEAOBNXVrrSnTF9lQGWsuRfXTAY1Jw5c3T77bdrypQpOnjwoJYsWaKXX35Zo0ePjhjrcjnlcKRasVtJUmpqitzuDMvmg3XojX3RG/uiN2ZGjkzVhDX7474f3+aSuO8D5gaOlWQcN5YEKJfLpY0bN4aXi4uLVVlZqffff18zZ86MGOv391qxyzC3O0MdHQFL54Q16I190Rv7ojdmsrNHJbsEJNHAsRLP4+Zs/8YseYxBIBBQY2PjoPUDv5EHAAAwlFgSoNra2uT1esMh6vDhw2ptbdXUqVOtmB4AAMBWop4iam1t1dy5c8PL8+bNU2pqqqqqqrRw4UJVV1fL4/GorKxMS5cuVX9/v0aPHq3Kykq5XK64Fg8AAJAMUQPU+eefr4MHD55xW3V1dfjPJSUlKinhJjsAADD08SoXAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQzzpEgAQF7ynDkMZ/7IBAHGR7nTE/T11vKMOycIlPAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEOOZBcAAEg8V1a60p18BQBfFUcPAAxD6U6HJqzZH9d9+DaXxHV+IJliuoTX19enxx57TIWFhWpubj7jmLq6Onm9Xs2ePVter1d1dXWWFgoAAGAXMQWoe++9V2lpaeccs3z5ci1atEg1NTWaP3++Vq9ebUmBAAAAdhNTgLrvvvu0bNmys26vr69XV1eXZs2aJUkqLi5WW1ubGhoarKkSAADARmIKUJdffvk5t/t8PuXm5kas83g8amxs/OqVAQAA2JQlN5F3d3fL6XRGrHM6nQoEAoPGulxOORypVuxWkpSamiK3O8Oy+WAdemNf9Ma+6A0Qu4FjJRnHjSUBKiMjQ729vRHrenp6lJmZOWis3987aN3X4XZnqKNjcFBD8tEb+6I39pWo3mRnj4r7PoB4GzhW4nncnO1YseRBmnl5efL5fAoGg5Kk06dPy+fzKT8/34rpAQAAbMWSAFVQUKDs7GxVV1dLkvbu3avc3FxNnDjRiukBAABsJWqAam1tVXFxsYqLiyVJ8+bNU3FxsVpaWlRaWhoet3XrVj377LO66aab9MILL2jLli3xqxoAACCJot4Ddf755+vgwYNn3DZwxkmSCgsL9fzzz1tXGQAAgE3xMmEAAABDBCgAAABDBCgAAABDBCgAAABDBCgAAABDBCgAAABDlrzKBQBgjX7xmhXgm4AABQA2kjYyVRPW7I/7fnybS+K+D2Ao4xIeAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAId6FB2BIcGWlK90Z34+0nr5+pY1Mjes+AHwzEKAADAnpTkfcX8Lr21ySkH0AsD8u4QEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABiK6UGatbW1evzxxxUIBHTRRRfp0Ucf1QUXXBAxpqioSKFQSA7Hl1OOGzdOVVVV1lcMAACQZFEDVCAQ0IoVK7Rz505NnjxZu3btUnl5uXbs2BExrrOzU/v27VNOTk7cigUAALCDqJfwjh49Ko/Ho8mTJ0uSvF6v3nrrLfn9/ohxfr9fWVlZ8akSAADARqIGKJ/PJ4/HE17OzMyU2+3Whx9+GF4XCATU39+vtWvX6uabb9add96pd999Nz4VAwAAJFnUANXd3S2n0xmxzul0KhAIhJeDwaDmzJmju+++WwcOHNC8efO0ZMkSnTx50vqKAQAAkizqPVAZGRnq7e2NWNfT06PMzMzwssvl0saNG8PLxcXFqqys1Pvvv6+ZM2dG/Lcul1MOR+rXrTssNTVFbneGZfPBOvTGvugNgKFg4HMsGZ9pUQNUXl6e9u3bF15ub2/XyZMndckll4TXBQIBNTc3Ky8vL3Jyx+Dp/f7eQeu+Drc7Qx0dgegDkXD0xr6GYm+ys0cluwQACTbwORbPz7SzfbZEvYQ3bdo0NTc369ixY5KkPXv26Prrr1dGxv8kvba2Nnm9XjU2NkqSDh8+rNbWVk2dOtWK2gEAAGwl6hmotLQ0bdu2TevXr1d3d7fGjx+vzZs3q6WlRQsXLlR1dbU8Ho/Kysq0dOlS9ff3a/To0aqsrJTL5UrE3wEAACChYnqQ5rRp0/SXv/xl0Prq6urwn0tKSlRSUmJdZQAAADbFq1wAAAAMxXQGCgC+KldWutKdfNQAGFr4VANsKBGhIzt7lLp7T8vf2R3X/aQ7HZqwZn9c9yFJvs3cQgAgcQhQgA0lMnT4ow8DAPwfBChgGOvp6+f5SQDwFRCggGEsbWRq3M90cWkNwFDEb+EBAAAYIkABAAAYIkABAAAYIkABAAAY4iZywBAPhgQA8C0AGErEM5r4zTUAsDcu4QEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABjiMQZIiEQ9O6mnr19pI1Pjvh8AwPBGgEJCJOLZSdKXz0/iGU0AgHjjEh4AAIAhAhQAAIAhAhQAAIAh7oFCXG/wzs4eFZd5AQBIJgIUeDkuAACGuIQHAABgiAAFAABgiAAFAABgiAAFAABgiJvIbS5Rr0ABAACxi+mbuba2Vo8//rgCgYAuuugiPfroo7rgggsixtTV1am8vFyff/65xowZo/Lycl166aVxKXo44TfkAACwn6gBKhAIaMWKFdq5c6cmT56sXbt2qby8XDt27IgYt3z5cq1cuVKzZs3SwYMHtXr1au3bty9uhZ9LIs7a8NJaAACGr6gp4+jRo/J4PJo8ebIkyev1atu2bfL7/XK5XJKk+vp6dXV1adasWZKk4uJirV+/Xg0NDcrPz49j+WeWqLM2iXo5LgAAsJeoN5H7fD55PJ7wcmZmptxutz788MOIMbm5uRH/ncfjUWNjo4WlAgAA2MOIUCgUOteAyspKffzxx3rkkUfC62688UY99thjuuqqqyRJe/fu1YsvvqiqqqrwmLvuuks/+clPdOutt8apdAAAgOSIegYqIyNDvb29Eet6enqUmZlpNAYAAGCoiBqg8vLy1NTUFF5ub2/XyZMndckll0SM8fl8CgaDkqTTp0/L5/Ml5f4nAACAeIsaoKZNm6bm5mYdO3ZMkrRnzx5df/31ysjICI8pKChQdna2qqurJX15SS83N1cTJ06MU9kAAADJEzVApaWladu2bVq/fr2Kiop0/PhxrVu3Ti0tLSotLQ2P27p1q5599lnddNNNeuGFF7RlyxbLiqytrdVtt92m2bNna8GCBWpubh40pq6uTl6vV7Nnz5bX61VdXZ1l+8fZxdKbd955Rz/96U/1gx/8QD/+8Y/1t7/9LQmVDj+x9GZAXV2dvv3tb+vtt99OYIXDVyy98fv9WrZsmWbOnKmioiLV1NQkodLhJ5bevPbaa7r11ltVXFwsr9er48ePJ6HS4amvr0+PPfaYCgsLz/qZlrA8ELK5U6dOha655prQ3//+91AoFArt3LkztHjx4kHjiouLQ6+88kooFAqFXnrppVBpaWlC6xyOYulNb29v6Lvf/W6otrY2FAqFQq+99lrouuuuS3itw02sx00oFAr19/eHbr/99tCMGTNCR48eTWSZw1KsvXnwwQdDGzZsCAWDwdCJEydCc+fODfX19SW63GEllt6cPHkydMUVV4T+9a9/hUKhUOj1118PzZgxI+G1DleLFi0K/eY3vwlNmjQp9Omnn55xTKLygO3fhXem51C99dZb8vv94TFneg5VW1ubGhoaklLzcBFLb/r6+rRhwwZdc801kqQrr7xS//3vf9XZ2ZmUmoeLWHoz4LnnntOll16q8ePHJ7rMYSmW3nzxxRfav3+/lixZohEjRig/P1979uyRw8FrneIplt785z//UXp6evhNG9dcc42am5v5TEuQ++67T8uWLTvr9kTmAdsHKJ5DZV+x9CYzM1M33XRTePmNN97QhAkTlJWVldBah5tYeiNJn332mfbs2aMVK1YkusRhK9bPNKfTqT//+c+6+eabNWfOHB05ciQZ5Q4rsfQmPz9fKSkpqq2tlSTV1NTosssu4zMtQS6//PJzbk9kHrD9/850d3fL6XRGrHM6nQoEAkZjYD3Tn3tdXZ0eeeQRVVRUJKK8YS3W3jzyyCO69957+fBPoFh609nZqa6uLjmdTh04cEBvvvmmfvWrX+nVV1+V2+1OdMnDRiy9SUtL04YNG7R48WKlpaUpGAxq586diS4VZ5HIPGD7M1A8h8q+TH7u7777rn7xi19o06ZNmjZtWqJKHLZi6c2bb76pjo4O3XLLLYkub1iLpTejRo1Sf3+/7rjjDknS97//fV144YX64IMPElrrcBNLb1paWvTggw/qj3/8o/7617+qsrJSS5cu1alTpxJdLs4gkXnA9gGK51DZVyy9kb4887Rs2TI98cQTmjlzZqLLHJZi6c0rr7yif/7zn5o+fbqmT5+u9957T7/85S+1d+/eZJQ8bMTSmwsvvFApKSkRX8qpqalKSbH9R/Y3Wiy9ee+995Sbm6vCwkJJXz7qJyUlhXtubSKRecD2RyPPobKvWHoTCoW0Zs0alZWVhV/9g/iLpTfr16/X22+/rcOHD+vw4cP6zne+o+3bt+tHP/pRssoeFmLpTVZWlm644Qbt3r1bkvTBBx/o448/1pQpU5JS83ARS28mTJigEydO6KOPPpIk/eMf/1BXVxe/hGETicwDUd+FZwdvv/22Nm3apO7ubo0fP16bN29WMBjUwoULwz+k+vp6PfTQQ+ro6NDYsWO1ceNGzkAlQLTevPfee/rZz3426KxURUVF+DddEB+xHDf/27x587R06VIusSZALL3p6OjQypUr1dTUJJfLpfvvv1/XXXddkisf+mLpzXPPPadnnnlGwWBQ5513npYtWxb+rS/ET2trq+bOnStJampq0vjx45Wamqqqqqqk5IFvRIACAACwE9tfwgMAALAbAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAICh/wc15Tmjhok3/QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(10, 6))\n", + "_, _, _ = plt.hist(ppc_hier['diffe'], bins=20, edgecolor='w', density=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.6.7" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 24affffe555ebc07a7ff60ff2a3658e2eb1047f9 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= Date: Sun, 28 Jul 2019 17:31:13 -0500 Subject: [PATCH 2/9] Improvement of chapter 8 --- BDA3/chap_08.ipynb | 2822 ++++++++++++++++++++++---------------------- 1 file changed, 1390 insertions(+), 1432 deletions(-) diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb index 4034a59..ac4938c 100644 --- a/BDA3/chap_08.ipynb +++ b/BDA3/chap_08.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -21,6 +21,11 @@ "import pandas as pd\n", "import scipy.stats as stats\n", "import theano.tensor as tt\n", + "import arviz\n", + "import seaborn\n", + "\n", + "import warnings\n", + "warnings.simplefilter(action='ignore', category=FutureWarning)\n", "\n", "plt.style.use('seaborn-darkgrid')\n", "plt.rc('font', size=12)\n", @@ -28,9 +33,32 @@ "%config Inline.figure_formats = ['retina']" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A survey of 1447 adults." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "participants = 1447" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This is the Table 8.2" + ] + }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -231,7 +259,7 @@ "15 West IV 0.554 0.361 0.084 0.057" ] }, - "execution_count": 2, + "execution_count": 5, "metadata": {}, "output_type": "execute_result" } @@ -241,19 +269,68 @@ "data" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We need the number of people of each region and each candidate." + ] + }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0.298 0.617 0.085]\n", + " [0.5 0.478 0.022]\n", + " [0.467 0.413 0.12 ]\n", + " [0.464 0.522 0.014]\n", + " [0.404 0.489 0.106]\n", + " [0.447 0.447 0.106]\n", + " [0.509 0.388 0.103]\n", + " [0.552 0.338 0.11 ]\n", + " [0.571 0.286 0.143]\n", + " [0.469 0.406 0.125]\n", + " [0.515 0.404 0.081]\n", + " [0.555 0.352 0.093]\n", + " [0.5 0.471 0.029]\n", + " [0.532 0.351 0.117]\n", + " [0.54 0.371 0.089]\n", + " [0.554 0.361 0.084]]\n" + ] + } + ], "source": [ - "data_obs = data[['bush', 'dukakis', 'other']].values\n", - "proportion = data['proportion'].values * 1447" + "data_obs = data[['bush', 'dukakis', 'other']].to_numpy()\n", + "print(data_obs)" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 46.304 46.304 166.405 69.456 46.304 94.055 115.76 144.7 21.705\n", + " 95.502 98.396 182.322 33.281 76.691 124.442 82.479]\n" + ] + } + ], + "source": [ + "proportion = data['proportion'].to_numpy() * participants\n", + "print(proportion)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -263,30 +340,16 @@ "(16, 3)\n", "(16,)\n" ] - }, - { - "data": { - "text/plain": [ - "array([ 46.304, 46.304, 166.405, 69.456, 46.304, 94.055, 115.76 ,\n", - " 144.7 , 21.705, 95.502, 98.396, 182.322, 33.281, 76.691,\n", - " 124.442, 82.479])" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" } ], "source": [ "print(data_obs.shape)\n", - "print(proportion.shape)\n", - "proportion\n", - "# np.ones_like(data_obs" + "print(proportion.shape)" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -295,50 +358,39 @@ "1447.0" ] }, - "execution_count": 5, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "sparsity = 1 #not zero\n", - "beta = np.ones(data_obs.shape)/3 #input for dirichlet\n", - "# print(beta)\n", - "n = 16\n", - "testval = np.asarray([stats.multinomial.rvs(p=a, n=n) for a in beta])\n", - "testval\n", "valores = data_obs[:, :] * proportion.reshape(16, -1)\n", "valores = np.round(valores)\n", - "np.sum(np.sum(valores, axis=1))" + "np.sum(valores) # Check if the sum is equal to 1447" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### **Nonhierarchical model**" ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 10, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/subtensor.py:2190: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", - " rval = inputs[0].__getitem__(inputs[1:])\n" - ] - } - ], + "outputs": [], "source": [ "with pm.Model() as model_non_hiera:\n", " \n", - "# thetas = [pm.Dirichlet(f'thetas{i}', a=np.ones_like([3, 3, 3]), shape=(1, 3)) for i in range(0, 16)]\n", - "# post = [pm.Multinomial(f'post{i}', n=proportion[i], p=thetas[i], observed=data_obs[i, :]) for i in range(16)]\n", - "\n", " thetas = pm.Dirichlet('thetas', a=np.ones_like(data_obs), shape=(16, 3))\n", " post = pm.Multinomial('post', n=np.sum(valores, axis=1), p=thetas, observed=valores)" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -349,7 +401,7 @@ "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 7, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -360,56 +412,25 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 12, "metadata": {}, "outputs": [ { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "%3\n", - "\n", - "\n", - "cluster16 x 3\n", - "\n", - "16 x 3\n", - "\n", - "\n", - "\n", - "thetas\n", - "\n", - "thetas ~ Dirichlet\n", - "\n", - "\n", - "\n", - "post\n", - "\n", - "post ~ Multinomial\n", - "\n", - "\n", - "\n", - "thetas->post\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" + "ename": "ImportError", + "evalue": "This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 157\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'graphviz'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_to_graphviz\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_non_hiera\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmodel_to_graphviz\u001b[0;34m(model)\u001b[0m\n\u001b[1;32m 194\u001b[0m \"\"\"\n\u001b[1;32m 195\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelcontext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 196\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mModelGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 159\u001b[0;31m raise ImportError('This function requires the python library graphviz, along with binaries. '\n\u001b[0m\u001b[1;32m 160\u001b[0m \u001b[0;34m'The easiest way to install all of this is by running\\n\\n'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m '\\tconda install -c conda-forge python-graphviz')\n", + "\u001b[0;31mImportError\u001b[0m: This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz" + ] } ], "source": [ @@ -418,7 +439,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -429,7 +450,7 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [thetas]\n", - "Sampling 4 chains: 100%|██████████| 16000/16000 [00:15<00:00, 1039.68draws/s]\n" + "Sampling 4 chains: 100%|██████████| 16000/16000 [00:14<00:00, 1119.48draws/s]\n" ] } ], @@ -440,14 +461,13 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 14, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1QAAACECAYAAACXt2rvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzs3XmwJWdd+P93L2e9526zTyaTPQEjSwQSvmDEkC9LGcGvFgLyQymltMrSUkvAClSxCJFSqLIQRaX8WREU8CcJ6hcJBkL2fZtkJrPfO3ffzn5O78uz/P44d+5kMpNknIXJkOdVlcqcPn26P92n7+nn82xtaa01hmEYhmEYhmEYxv+YfbYDMAzDMAzDMAzDOFeZhMowDMMwDMMwDOMkmYTKMAzDMAzDMAzjJJmEyjAMwzAMwzAM4ySZhMowDMMwDMMwDOMkmYTKMAzDMAzDMAzjJJmEyjBOo+uvv55vfOMbZzsMwzAMwzgh5r5lGKfOJFSGcYoeffRRduzYcVq2tW/fPu69997Tsi3DMAzDOB5z3zKM08skVIZxiv7pn/6Jp5566rRs69ZbbzU3JsMwDOOMMvctwzi9LK21PttBGMa56sMf/jAPPvggruty0UUXEccxH/jAB5iYmOCOO+6gXC7zsY99jPe85z0ARFHEl770JX74wx/S7/e58soruemmm7j00kv55Cc/ya233opt25RKJZ566il83+fzn/88DzzwAGEYcvHFF3PjjTfyxje+EYCZmRluuukmdu3ahZSSK6+8kk9+8pO88pWvPJunxTAMw3iJMvctwzj9TAuVYZyCm2++mW3btvGRj3yE2267DYBvf/vbvPe97+Wxxx7jgx/8IJ/73OcIwxCAT3ziExw8eJBbbrmFRx99lDe/+c38+q//OkmS8Gd/9mdcffXV/Nqv/dpazeEXv/hFJiYm+N73vsfjjz/Oddddxx/8wR+QpikAn/vc59i0aRMPPPAADz/8MK9//ev59Kc/fXZOhmEYhvGSZ+5bhnH6mYTKME6za6+9lquvvppCocAv/MIvkCQJi4uLdLtdfvCDH/DRj36UTZs2USqV+P3f/32UUtxzzz3H3danPvUpvv71rzM2Nobrurz73e+m3+8zOzsLgOd5FAoFCoUCpVKJP/7jP+bb3/72j/FoDcMwjHOduW8Zxqlxz3YAhvGTZtu2bWv/LpVKAKRpyuzsLFprPvjBDx61vlKKpaWl425rcXGRL3zhCzz11FNrtYWHtwfwh3/4h/zJn/wJd999N9deey3veMc7uO6667As63QflmEYhvETyty3DOPUmITKME6z57spHL5Jff/732f79u0vuh2lFL/zO7/D5Zdfzne/+102b97M3Nwcb3/729fWectb3sI999zDgw8+yL333stHP/pRfu7nfo4vf/nLp+dgDMMwjJ945r5lGKfGdPkzjB+T7du34zgO+/fvP2r5/Pz8cddvt9vMz8/zoQ99iM2bNwOwc+fOo9bpdDpUKhXe9ra3cdNNN/G3f/u33H777fR6vTNzEIZhGMbLhrlvGcaJMQmVYZyicrnM9PT0i94MarUav/RLv8Rf/dVfMTMzgxCCW2+9lXe/+93U6/W1bc3NzdHtdhkdHWVoaIgdO3aQ5zmPPPIIt99+OwD1ep0kSXjnO9/Jv/zLv5BlGXmes3v3btavX8/IyMgZP27DMAzj3GTuW4ZxepmEyjBO0fvf/37+67/+i3e9610vuu4nP/lJXvOa1/D+97+fq6++mltuuYV/+Id/WKvJe8973sNTTz3FO97xDjzP4/Of/zy33HIL11xzDTfffDOf/exneec738lHP/pRnnjiCb7yla/w3e9+lze+8Y286U1v4t577+Xv//7vsW3zp20YhmEcn7lvGcbpZZ5DZRiGYRiGYRiGcZJMdYBhGIZhGIZhGMZJMgmVYRiGYRiGYRjGSTIJlWEYhmEYhmEYxkkyCZVhGIZhGIZhGMZJMgmVYRiGYRiGYRjGSXLPdgAvptn0z3YIhmEYxmm2cePw2Q7hjDod965arUQQpKchmjPrXIkTTKxnwrkSJ5w7sZ4rccK5E+vpiPOF7lumhcowDMMwXoJc1znbIZyQcyVOMLGeCedKnHDuxHquxAnnTqxnOk6TUBmGYRiGYRjGGSC1PNshGD8GL8uEKmpN8kf3/H989j++Sthtn+1wDMMwDMMwjJ8w3bTDPct30k07ZzsU4wx7WSZU337yNu7acDW3Xv52/vuu757tcAzDMAzDeInTWqPUS3+siPHS0U27APSy7lmOxDjTXnYJlY4DHq5u44JgiYpMeNTJkXl2tsMyDMMwjJcVrTS9lQgl9dkO5YTEyT763l0olZ/tUAwDGPwNGS8NL7uEKrvv33hy9Ep+dt8Ormnv4sDmy1mZ2Hu2wzIMwzCMl5Wwl+I1Yvr16GyHckLyvL76L3FW4zAMgF49YvLJneSZmQ37peBll1DNzO0itUucv/UCrjm0k+nhC9g/dfBsh2UYhmEYLytaH/3/nxR5Ipnb1SYNz35LltKKWMRnO4yXDa3P7HeexYJ+Y/B9+u0euWjjezvP6D6fTyziE7q2dJCjk5/8SoiXXUI1uzrbyhWXv5rXLS0DsDdsns2QDMMwjFOUZRlf+MIXeNvb3sZb3/pWAP7xH/+R6enpsxzZS5dUGvlj6jKktDrq9T3LdzIZrlZmniMZldYnViiM/cEwgqh/9ocT7O3u5qHG/cec/3PJXQebTDbDtdf9rMfB/oEfawxRtJswfPqY5TqVaDk4t2m2QK//I6QMj1kPQIf52rona2WyT3/lxFp0k1xy36E2cS5RKj/t4/8eatzPQ437X3Q9NR+gpn/yW9FeVgmV1prZ0fVYWvHTW8/j4g2vYET4TJUrKHXu/tgYhmG83H3iE58gjmP+5m/+hmKxCMBFF13Epz/96bMc2dnXWQyZ23XsjLb3Tra48+DxKxRVJ0FHp6dWeX9vL3cv/2jtdRA8QZo3WYrnATjT6ZTWmn4jRopTu8+fi2OnHmo8wFwwgz6NCZXWmiSZPKXWGDnZRy0EJ7RuLjWHWkeSlCdajzEfzp70vo9Ha/2C45HSbJ4sXz5muZryUDODZEHkLQCk7B3ZLho0qFSi5gL04vGTrcMWejGt8AUS8bVWXX3swmdZjpaYbHeJM8l8N6bv/Yi+d9cL7vts0olAR//z60nm6iUzBvNllVCpVpOl0c1sjDsMV6sUfuYtvKGzh8mNl9Bfnj/b4RmGYRgn6emnn+ZP//RP+amf+ikcZ/AAx7e97W10OufudMUzu1o8tmsnD6zce0rbCdrJcZfnUj9v41D/YJ/owOmZmWwxWjjq9Up4iJlGm93L7ilv+9ldoJ5La02cTBB2Q/orEUv7esesk8qU/HkSJa01OhZr6z3Q2sNKcuLXU+znp5zEnahMZty59EPmg7nnLE/xc588U6dlrJrWmiB4iDiZII6PDJdoBE2kEqvrCKT08YNHnz/pyhXaz8liQWcxfE6CcOJylbOvt3dt3ydLzQXEO4//GB2ljv/3syYbfMeWPajIUc85Zu3lqNkALRU6f+HrYc+yz5NzR1+nUT97wfNjtW10evSzrvb2drO79xQA8sfUAry7+wx3Lv2QTP7PW2bVtI+affEEO+gkRP0jLW2L+7qsTPRfeNtLIWruzLeQvawSKjk9QX1oPRtSDwD3p1/F6xb3MDOynZnFhRf5tGEYhvFSVSwWabVaRy3rdrtYlnWWIjp1IlPMRIdIV7vq5Kkki49fcGzNBSRhjtKaJH/+B4m2k9ZRhe5UHV3IXvYSWkFKv5vSXDmSqGitT7rQ+1y+iGn7FbSGTCToFxhrtLPzFI82Hn7e91cm+iwtNTjkTR7zXp4vkSSTLE9NAc+t1R94oH4vD9cfWHv/2evoVoKa8dGJoJ/10GgayZHCm5AennffMUnDbDRNomJEKmmutl48t1AedBMem+7QfqHWiFVqzkfuO5Lc6n6K3NdFPytZy9RgO4vR0ZXDisE6eycn6ddjRPbiD5lNZMKB3r7jnq8sm0dIb23rAPVGm3t238+ulWcA6PXvwPMfQIgOed46ZhsAsUqQenB+gnaCfJ5EQ73INTfjT7EULRyTtMNgBrwTnQWvMx/QWInIk2PPjz7hB/Me+1uTJxJx+DtWGuzj/x4lYU5zxsdvHV050G712TW5l6BzJIk4/L1YWCAtrJ593Na+w7t6brdeoQQP1u+nnx1bwfBcQe5zsH+AHYvLBOkLJ631eNCC18le/Pmug0TfO2Z5+iIVEJ2FkNZzEq8Xuqa11vQaEZMLx+7rdHtZJVTW0gTLpY2sE4ML0x4d4zUrgx+fJ80Dfg3DMM5Zv/Vbv8Uv//Iv85nPfIZut8sXv/hF3ve+9/Gbv/mbZzu002b5QO+4tbFKKqJeSnPaZ8+yz72T7WMKUZGQzDx9gDsmbuOgtx8AL2szGT3BympB6J7lO7l7aoon54/eh9Y5Dy1/l7uW70Du66JOsqXjQG8fWurD5XBQ8MTKvUT1528Jm68v0fEGBT+dCLTWx9SAP5PsYMafOiYBUFIOWuCep7tbFE0QR4vkqwnRU+0nuWv5DkSuBs+cmvcHY2QyxcOL97MYt9i/skBrz6C7WRIfRKoQIY7EH4uI2Xia/ckepNbkiUTKkL53N3F8CLmvi+gk1Gd9pmc8di4e+31qrZFTHtIblFV0eHRBVvcyklgQtQZJms4lzmqZUj7PsTazFZSfvWALidQSqSX7entYiObpZh2UVke1/mg9OPdB26G3NNhWGAzi6AceobdIGloc6PTxk4zjJRkqznk4eoS96T6s1VK/VoPuW4cn8jj8Xb7QGL+jkt9nHYOSq9/fgR7q0Au3XgAoqQm8wXFJodCJQDVj0jBHK02ucqRW9LMX7q53PAenpzjQmmEmnaaTd9das3QmUe2EvSs+K15C45BH7GWk0dHJwZ7uLubyKfxkkJgnKubR+D7q0cpzTsbgf0kueWi6Q5zB4bqk555CL/dIZMy++mAyC+1la5NGxCJmMVxAS4Xc1+XR2fuZ8We5++AzPDp1+srJDzce5LHmI6Qy5c6lH+JJj8Uo456JFv342AoWHeaopSPnPxOK7DjJl5SSPD/yeSUVX5l4iB/Mzpy22J/Pyyqh0o0JlosbWe8cOexXKpeSSjmgzv7gUcMwDOPkvO997+Pv/u7vqNVqvP3tb6darfLlL3+ZX/3VXz3boZ00rQV53kIr+Zzlz6lxlj5xfBCtJY1gUAgPgwy5GCDzhCjey+P1DrcuTrLSWwQGBcfGcossEvjZoPZWaslytAQMWgZ2BTHdKCOK9tIODyLEYD3def7B7VksjorvSW+F/mrBZyGaRx3sYS8NukZpP0OHYq0F7niiforXjNBehpr2aS7Nc3/9Hjrps7ve6bUCZSrT1QfwJizuTejMFtbWykWHmYnb1sYTLR2cpbN4pJa+6Tfx2ylL+7rEvRRiie4m6KUQ3U4IREIQpjzYe3h1r0cSjSSKODSzB6UVlgVzPjy04mFZoFSMyFv0WrejUeh2gtKDgvxxW1ClhlSSz/jPO66kWY9pzQ9q6tWkh3VokOQmMiZP2qgsPXxCUL0ML+2Cl6OXjk6GdXe1tUtr7l2+i3uW7zzq/cebj3L7xA9ozQ32dXhiDr/hEHY1sZ/Tmg8G53wlZvGeQzRmHO4+kPB/n+wyHy4cc73q1ZaOlmhjryZUSmmWJ/rUD3ns7+3lruU7Bsv/B42iohtx1xPf5cEnn2BlcrVFQhzZgFIZYXhsS+bCng6d1eQ0yRVqxiddClmZ7NNY6nF//X4eau1lV3+aMA9JZHLcST5iETPXa7Ic1Gkng5a5xXyOvuqjlOax+acJlgbXrZoL0I2YuXbEzsUjrScagXrW5CditXXs8P4iNUgq5vqPPWtMlx50odSahTkPL8rpBtbgOnqOsJcS9VO6Sx3a89N028tMT+9bmzRiR/tx9vf3IpPVxDYUKKGRQYZsPn/Xx3aYMd9+4d4AUkv0aiWDWD3GRjx4FMET8Q5WvJTWXEDbiwnyQTz9ekR3KRycr2dN8nL3RIu7J45t/ZyZOcT09JHvWGmFFJoubcQpTgjyYk69A/M5JOgtEbpVNpWra8vsrVfxM94+JobGz2JkhmEYxqmo1+ts3ryZD33oQ8ddfi5K0hWkCsnF0RNHdBZC1q0vE1sJiZ3iplNIFZGKLvujJltL5/HPP5piYyXl+ivHWI4ysnwJZQ8KZ37q8/0dd6B0mV6nj+/76JHVFgGtSGTMomzSFC57Vnyu2jQoXKXpNGG2TKGwAScW9Osx67cPkR7qoUsW7U6C1w0Z3zjM+HlDHJzbzQP+BKLocJVbBgZJRHPFQVaOFEB0JNCJwCq7zAWzjBXHGbZrNJMmWkMeSNTqYP5e2IEadKMuyY4M0Ulh/aBA3un1eNx/jIvKY1izAVqMorAorO4oz5ZREmY7fQ61BM1DLvWKYmM2SCL79Zg0ErABel7G0y2fq6slxp/VzTISKakzSFaE6KK0Jg5ibtlzC624zdvLNwy2lVqMH8nlyPM6FhUWgpiFLKNopUAZ+zkJVT/r0Q0buC2Bm2yk6IXU7BqRiNFLRYY3lI9bE96e9wlVSnXcJd6zC8cZYeiq16MOt26t7uaoVp1cIQ920YHA2lZFo5FKEIsjSVcgfNrNjHA4oTD2+FrXxcPbqT/ZoEkTbQ9eK22BAstzWLACJr0phsrb2OBuJuqljGysHJWMKKVpzQVUx0t4zZhyzT2q+97h/WitkUJhO6stWr0MmXpY6wevu0sR0/3BjHONbJkL40uhYPNYy6exI+a67eOIdB957jE05lIb24jIFIWSs7avmSjFn25zXaGILTU4FmEUk/YW0EMSq+ggdM4j9QcB+N/nveNInErzWOtp5KKHWz1AYUuf67Zcj1KaLBK004Q8z7krfIQ3RRU2qsraZ6UKENLGdYZJ0wXiWAGXkaeSPBmcKynV4NoUESpcJstdhBgikTaxrRkGskN9OvUGPZWjVILyE9TFR77vNLTw2wGejIh6CZUqPNPeSZpGrLPHGGOcnr+TiAo6jiAWaFfTXQwIAwdVe05irMBavRjvmVqg7VtsXz9YJxIhjzUf5fUjV1NWGsuCe+d/xDqxmfXBdrLIxy25MHJkeweDQxwiYry1kWnZ4+c2X0f7niWQmpGf2XD4gjjS9LZK5IqJuT7nb60x309RueJyqbEci2y1skYD/717hZ+7cIwz5WWVULVWT+yWkXVry6wrruaaxg/5ykX/D93AY7w28nwfNwzDMF6ifv7nf/6Y2n7btqnVajz66KNnKapTk2eNwT8ChTzYQ2mB0vDIyg5+tv8KHs92YG+p8obV+1Zn4SBxrcBkcIBQZ3R8gWzME/vnASBFn1za3LWnz2UFG6EHhUnP6zEzFOG2HZajORzLZgMt5ihzhTwfPxgUsLPY4sHwARK9ifO8a9haLZHHZVSYo1o58+EKE9leXtt7A+PnDTFbn2AozelvHuwn72fMTvbRFqSBjWtDrqxBF6sZH+eV40x4g+mwr+tfTZK3WPBcvI4N56+elNUyXdTL2Lco8GOBNSTprUQcWFlgLz4L+X4u1htZF5UoDUMucxbrs5TxWS+q3LtjltGhMeLIppdDnjRQvRT1rMRp3hskDsupYFxDslp+EJlLnCui2CcQMXfOTLCxFzPXldhlWGgtkwQ5UECpBJ0rnmnvZqa7wJuGL2dvP2FvcpCN2qNYvIZndZhBx4LHdt9NVmvQnvsp+u4Kr7ykT5pXmW6G/KL4WfxWwtZhhUavdabLYoHfSQhrGdXxwQaVOv5EHV43ZePqv9Wcjw4FWgv++95HmNwQUhxboGgVOa98Pt96ZD/l4ZT5jsNFVsrIajJVT7o8mdd5nfNmiBJmxH5sB8LhAKnK2J6LFJBIiD3JnsIzbFgKGGaUynCRJ1oHmfNcLhgRa5N2eI2IxM+JeylqvQI3JZ7ZR55tJk8lUT9jUXQpXZ6j2+mg++fhFsJUErVjVvwu68dL5GmKJ/rsXvZ5KJzEXbiQraFgrKfwKzFhdT+XjDuoHDZdMrx2bnpCYgOJ1FSURguFdBLSxjyUbAoXja4lg9Wugx4TeNKnFNk889QODrlzXMQYKhm05s0E04PGU6mZCEuEaN5YAS/rs5EKqYhQMqOZPMNYWuP88auwQ4dw3sbvROzcs59Wr4PlQnPWx+oXcToT2LpPJ3Vp+BP0Vq5kpqb5P+PwzM4mt+V7qa0rsSFJSaUi7WUwPkjetHz276MFaOIkhW5G3AoY2Z7QyVrUwz7L0evYKjYhxjUqEpACzxqbuXfhUerTs6w/f/CHKQ5PSJIPuvQuR0tIKdj18B4u0NvYuK2EqkfMentZN7YNmWt6GexciKisfgW75E4iPUIvK5K0I1r9f2dbfjnn2SNorUmVppXkbKgUUUqvVRL0VkL2tXwOdSKWewK6KXqTj3XxCPv7+wbXOme2dQpOMKH6i7/4C2644QZe85rXnOl4zqh2aXC429aft7bMuexyXrfjr1CXODy8uMQNrzAJlWEYxrlm//79R73u9/t85zvfYWho6CxFdOoyCbPtUYZ0QDJ2iCjuEdoOsR1wIJlCKclEZy8Xq1cAxUGy0c/Q9qC7j3RWiPM+cPieJ1lqlUllxlIOSi5iVRQaaB/q4a+O9VZysClbW8jdHZ5ZP0EiiqRKUyzAoaBA5CZsrZbQq2NPlJIs54OWhW7cYfrJCiutPt5QQj9xYOhClvb3aSx0GNsgoATEgj1+ie1lwQVKUQGEhMWORcuLiWoxE/0l1jHoQRKqcK0l5K6ZOn1m2aR/mpGGB3aM2DiOKCXsjyfRdkpRbGM2n0b6F7AcDXNxqrig4pD1u7T7Cba0sFwgFXhPzNLuLTGybnCuZnshk9FeRGkdP6WGWc5W0C50g1FSPc13n/w6V5xfYf/SCPN+jpNuJozGWCnECFVHyovoyxn6SyFNlojTIpEs0U2aRH4LVSuCHnT5ayZNWvunGc9H8GVAKZVIDZHq0oltJr0IkThkUUpUWkTqWR6SDV6jrmfXJLhzHpNZTpaptSRD65w4mUAphVIgVzPR0M/JD/TYesXoYDyPHky6kEuIsxDCmDwUTMtF2l2bqFWnYLn4+WC7cz24a3mRagYHnYNkTB11zS74Ak8WYbV1TmSD6+NA6yCX5D9NsLHIzqWQILS4YIS1Z5Adnvchb6+QzM/Dlj65N8JSvcuUtOjoNleNXoWjBmPpkIr20hJ6SxHVStDdFA43NqWS7yzupeLlBIU2/cBnYvpCrhx22dNeJG9X6Uc5F6gLcRo+vdYCE0xSiS5Aq2Huaze4PCphpeDrPqoMB3qbWd91aOKR2ZIN/RLxVJ87uk+xOdf0q3DIr3G+BY7OiLPVLm5i8MckZIq0Yvb66xhrw6XAD+cn6Cqf5aE23b7F+eOAtBCBxeTOh5jKVlAoMk/AsMaTPUJfMVtuMhwVGQ7KyNCCGuydWuLJekI47BPHfapphTRIEXGbnrufDZekWEl1beIVJTUTmctIM0N1c1bafc6L58hfAXljM7usaUaKNVQioZ8BLsKLkDLEcYbYt3wHSRrTWxkfJDcMxisF813azS7ZuCBMUsqZQloaoQVS9lnxJY8056icB1NtaHQfZWjjHn7e+V9obSG1oBtlxE6Hg22YTxtcbLVpH7QIR1wWw4w3bR+ns+hTKNiwaRSlQOSSTiMmzQQlYE9zBl/GuMMKTQ5aoU5xJsgXc0IJlWVZfOxjH0MIwQ033MANN9zAlVdeecI7ufPOO/nrv/5rsixjbGyMz372s1xxxRV87Wtf49/+7d9QSvGGN7yBz3zmM2vPDzkT2tUaAOcPH0ma7PUbuHJhGltLHut73HDG9m4YhmH8uIyOjvLhD3+YX/mVX+H973//2Q7npKzEkAQF2hUXOexBbBPmbfrFhL3tjKpuYw/32bnQZqO4mFaQIeyQ2FWgSyiliXzBUGKjSwo79SHrAeOQSzKdQpLwg/37uVaFtIsdqEDYTahmFk5q4aUpm9wagR2TSo0eASk1OINCVG+lTnXdOu7ft5fGSJPKUBGhU2bn59gvJ5HSRqoKIt1IKylAskx9to5aN0JUSGnqjNuiBtbcGFs2LlPvWdQbkgf7h4haPjIWRIT40uPxeAep1Cw02yymkooqMMU+XqsSRNJEdeY4mPWR1jom0wq9gkfZTUn8NnGWUnG66MY4C2qBUEhc6WArSJTgP4K7qdOlprewP9rNQt3F82Nm5AqaKwjDnDgu4+c1onQwbKDblRSSAo5yEFriapuZroZai1gMk1mwy11kXVYhaVS5MxtlPtpJn5ChzGWzK9Fa8fjKM2wOHCaXJtg7NMVFG0YBqNOk50mG1SDJS1TG0/37mdFNxkSNlmhw374DbOwOU5BVktRGNWdxO6/mVaMws3KI2VaClZc4f9vgmrKFx/D83egt72RfcghPtni9NSjP5RHYIiX1A3A8lqRm1HaOmldi74qmvTdiTgxhX9xgmCMV1EIollNJQUFSyIlJWIoWGRVbAGjkAtWJUP0UnUhyNXhOU8/RjB7eSK7J/QR3C0zmCxTyC2lHHVqFFg9Gd/EOrh+slyqelLt5RfwahFL0tUemU/YkU2RhmQXV5yK1nlD6YJUpyoB+VkB5VRy3xEShzYPdFS4vSq6QY4xkisRO6aQNdoePU48u41XZVlrFOaIlF73OphOWaTtdulGdSrPAj3qjzAaQFHPmVAWvOMqBZIV2VKIS+viVvavTma9ORAGgBSuegNV6HrH6nkBy31QbpaHZt0jFoPCvtKIT1WnbXeblIv3sMToyJu5qrKyNoEszd/CYYcEawst7lLwC/bxACfCFR9pIWcoizmeERrvFvI6JpSKNoFOUdHyLSp4z0s1IWjV6YZW92qE4vgOkS5APWj2zvM0zs/MUKtfSiXJaYYkLyopePaLrJcwvNIgFdJ0+l15iEXVD1vsjqPEm9XiEJd+mlRRZiidZN6eYkU0KrkMkNOHibqLNG6EAg/ZXjQgcZCrYZSd0G202MIoIfXSvSMHPCaTHbKFOOdwIQ6u5+eq4sf+YmeYyIbHDTWvdVP1gN3DdSf0Wn4gTSqhuvPHIVITPAAAgAElEQVRGbrzxRvbv38+dd97Jxz/+cdI05YYbbuBd73oXl1566fN+tl6v8/GPf5x//dd/5bLLLuOb3/wmn/70p/n4xz/OP//zP/Of//mf1Go1fu/3fo9vfOMbfPjDHz5tB/dsKgxojQxquTYXjxy2ZVmUnI28KphkL2YclWEYxrmoXq8f9Vopxf79+2m3z80ZXLUWJDIhTRRBV7Icu6RNl64N8yNtloVkmCHW54InqmNcrEtkkUPf9gilS60MlgtZr0Att5FZQJpkpAqUm6+2VyhCy6MT2fRVmSzLoVJG54pG4OIITexootRlLF+PV23R6MfEcZdla5ZUVdgT7WBfYjGnIxpRi7ZXYp8P1UKHRJRpRWM4icvenhrUIpcajLdjhtoSb30Zz21TzYocOLBE055EV7aglMWkP0uCSyYlrs7wk0NU4iXCZJh2qUE31GRiCKWqzKoOvXSMjiiRVXwKStNVGSruUc0TorBF6PaQTpemHsfPYtr0qeabiMo+Vb9LParhZSOcPyKZm5lhUoSkVkAl3TT4PlQKNmhr8F/UzzgwvR7HTnCVTa4TwELminZso5VizC5iaZ+s2aGX5DhasqxDUg011ceL99GfLhFafea99YyqHC8d4pFlzauSHFGVDPVGsDNol5s8PttjWo7jDQs6ueI1QOzlBKkPtk8k+nidGuO5xeNtxWRvP0E6RJJU6a1EdEgYypaRhYDa0ixTjVlCL6OqEjqRRToiQAmSVCLcjEgHjOTj5IGLtGLiwOLgikUiHBIR05sbY2GoQq08SZgFXBhdxIwKOE9swApsipbLrrkS5SRgPC4OJhZpWISrXeL2too0maNedCllkrKw0ZlF6NnoBQe70GY4uZDhrMiKI0hWJ2eJQkHXS2gJyeZewg+W2yRxg/PHGtS0S0+0UaqMCkNquU/Z2UjZLdCJXKzMQloJsSyRkRPloO1BAb6V5XSDFUgV0+kSKltH2W1DZiETcHybpztPUap2gS0koUeWKSb7sFJcQmARqZBQlGl0p6n2tlCpxWsTeSg0QR4TZB79gofvWSgXLOGQhTbaFsRCkyqLZQ8Ygl7eYiassOzvo1cIKTo2Y8UeSXcbyvGwin06UYnNtsQnoEeIk9u42RBBIWSTWsbpFdinmywXWzzUb3I+26GiybKQyCshpQVakUhFcXYEmUNSGYybVBqW0jJawzPZApP7Fa/e0mWloVjob6UX2ly6scPiko+INIm28LWgO5fS1CmbRELqzvJ0ezONuICUCik1be0iHUGuYsTyELrnkVWHsEerTHR9to5ntETKiBqnqGwUCVIUieKAoK8QSZlu3mCu0eKiuAZD5bXfTk/2aOs2F8hxej2FyMG1LHT7zM7D9z8aQ/XKV76S4eFhSqUS3/rWt/jWt77FHXfcwaZNm/jsZz/L9u3bj92B6/KXf/mXXHbZZQC8/vWv50tf+hK33347N9xwAyMjg9aiD3zgA3zlK185cwlVo0Gjtp6RLKBsH31SxcZX8cb+Lr629ZfJlabwPM8JMAzDMF6aDo+hOjyI3bZtNm3axEc+8pGzHNnJ8fwHEfogqajRiS32RhbL7k7monG6dpGCG+C7PrmvaDiH8K0ul+pRlIaa6GInLiofpm8PM1YWaDcllw5S20hlETsRHasFSpLaGXWZ08srg5HmXoLyetiFURQ++8MiIrXo6zJJZuEoSd9dZKqTMxUtcEF5I1meEVoBjRhG6ROHBTbI7bSqHlppWoEg0PHhnmAo9ayHClspntOj1awwNN5jMW5QUhVU0QcUSpTw8gXKjScoR8McGnkdGdNIu0dVFVgmIHA0m6TGlhm2VqAgyEPS0EfbQ0hVJJMui7lPlx527mBrC63A9wvEYYYtFbN9m0syF6wGUaWHSEaY9QbjkeKsAmhQksZiiEzHqVhj+MUA29IoKdCWg5+MULY1Q3GNMWCl1McpZcyqOjJ3sWxFOxlno53TCSL0SJ9aajMZVfClS4ZgIWyRFDJqAWTFBJEnaJGCpckjm6LqsnPpAbJsO7ESYGuW/Jy8E9HWi1xRTgitJv20SlHAYrfDEzzF5WWLaWeZDbuWmREaW9n8yBuMgQpSjVWM0dpF5YpCppHSJtUJDzZ38dBdGVm6hTBzuTDPsfU6qoUCddejSEQXhyiHGd1lyHYYy0Zol5dwFjLGqJJqjfJScpXh2gUsYPe8R4rPE3bGq73zcJMMlQuQsKJ79AJFOU5QOmOhkTM10SIKczrRYJKKlQM9sAYTbHh+iaGSQGkbhMZOYrQNjpJMpja1OMXJBLLgoFNJ3+7hyQorzgqZG7Gz0MLxx9FKoYQiiXvsL+RcQ4LWFlbgcMiuM5w2uDjcQkqXQiYopkWmEgvH0Sg5mLpcZwWSDOJqE7BIc0gtjcThibn9+OP/TS+4glcsteleWEUqi57usEwMymFne4pN6TArLBLoMUr5RhQpKVW8eAvDBYfH42FehyYROXPlWSQXUUjl2lhSYQmWrSZj4TCZ26crYg4Ux1gUi2zoDpFbir7T5TxVwNUhh+QIXjqET5coa9FNxnk6ifC0zagsoTX4TZu0MUmuHWw7RhOy0O2jOjnSlWTKoaHrTIcBPiHrWCboNtmfJXRUTiIk48k4BTuDIbCERkuLRTWMlAIRJVAICUSIUi6CDHvQbEXiSabFInRj9llNpCMQvSFG8w5xR1EaHkLZKfWwTt31ebrfZ7NVQ+USbbmQntmy/QklVJ1Oh+9///t873vf4+DBg7z1rW/lU5/6FNdeey2FQoHbbruNP/qjP+Lf//3fj/ns+vXrectb3rL2+r777uO1r30tMzMzXH/99WvLt2/fztTU1DGfP11Uo059aD0bs+M88+Hia7im9+/8v+e/lz1RzFW16nG2YBiGYbxUPXcM1bnu4ZllJus1MhQNadNGMCmGiN0uFWWjswKxjshUhgg1XinA0zZYKSPKRcqMlWKZsFCinc5ynrawkBRJyKwSge2RK41jSZSElbiC7WqETEn7ClsJXCtHF4BUoDLNSphTs8oIK8ONyji9CaZHL+DJ8gqb1CHa0QUgNSpPKeU1QjR5GmKLCl16pKSsi/WRh7UqyO0S9aERtvckMszoujEyyRCWi73a1yyxYh5O9nOZajMlNE2WsJwSY8lg5j9fK5wMRCjRRYWyLCw5GFJjB1VkMkxS6dAXwxwqzSHzAlvjdZTUEP6QhUgzxjtdxvyQpaELWI6G0NXBzGQazUOLPnoMgmAUTU5BlKinRcaSiHVaka+LyO0htExRtkWuoWhLlLB4WhYZlgWUPU+eb2FrtgllayaHiri5zQahaCiXaqqRUqGVQucZwpJINRjPlmSCLckouTOFKAnSLGJzfwXPqzNsDyqyQyTIDbj5IlalRTvwcEoVcl2kBPTtFFutsGDVUd4wKR4Nt0QuHKykQbPSwqNKzfIY1UVeO1VnJZdMXjhEr5KxJSlixw4Fq886mXCJKKJUwGJtFDSkusDTtYSsVqIWh2hqFNHYkaSnIwpWlcDJ6AQz+O4SVWcdqlVGFcv4yuGgyMntp1DDMV5YY2OvS6fiUVWLiDyCTp9D+SaeFLuxLZeFuEKPRcblAtgaIRWtoErBatBINiOtFGGVGMyUrclUgt9dYMROicpbSSwNDixJyQUoUjsCUSTvKTIrQ7NMY0hQkUtstSdoixHC4gh+VsP3FXvzNnEhItEOBUaxtcW6vISIHIQYJOoNd4UNUgMWOklQhRSla4S+T1dbaG+SJA7ZMOmyuH0zB4cFy1aXzZFA94doxmCN2JRkAc3q89s0xGKEGgnlLGHJ6hJZZapaoJyYYS9BWjatCvQq67HRVOKQTgpjWqNsh05RgYRKrrBWJ9lInIBCLrHtOrYNGodDQZEpXWcoiRgtXEZMgiNt9jBJp9iFbBStcx7Z+ySRJWgXY1rF9VzoZyRWjGf56PAZ5guSlryCBAulHCQ5Wg5acQ/LrLVpKImjPnEpgHyUZm0/I/kwG8OxtfF4vfoU7lhOWq7S1/CIbuDZLTa11hFUJFGmkTonUjFhtoSdZ9gFsfassjPlhBKq66+/nje/+c38xm/8Btdffz2VSuWo93/xF3+R73znOy+6nYcffpivf/3rfP3rX+emm246arxUuVwmjo8/K83pIBanWNm6gQ3y2Hn07cuv5Gdu+zy8Ch5utU1CZRiGcY746le/+qLr/O7v/u6PIZLT60Dboqsi/ELCUAIzci9RWRM6ISXt4CIQuYVIhsmoEqkCQ0ox5EVUCqNYssyB6qBFxS/YzFltNuseJSclIMHOi7h2yIa8yYoaB62wck3id7GRJEXFmHZZ1ksM5zk12cW3YtBQVJK6XePuynb6kY3vFhlPAnKdYNsuSmWgJQUrpuR2yZUmRmEpTVCo4DguVa1RSoE7jHYEmRPhxH3O15M0rM0IN6OkwdYSO+rzyGSNkbJNy42xsghLWAghyFWf2OmztTBKTVWwtMbGGkwtrqESbgal6ZYlISHT8Tpg8IwbS1mgJCrVXNzqYAnNZDhPrsdwSCkwSEKF30O6IUptAA2WAqmgKCMcCyw/peJK0rKN1BmqIEi0h2cNY1spobBY512Kq0bBhoIOSaSgK8oUYkVSg76wQEgyciyZYOVlClkZlGIokowwRHO4TyhzYPXZRKnCcXOk69Iu19BKsT4rYVltwlyhxTBJyaFsgdYKpTJ6ymZYaRJywlShbUnm+ChlY2no+tuwwhxbB9i2Td9xyDQkeAxRo5a5qNX9WzonSRrESlCxBKEqY9kOua2QApQqobOtTJcX6Fg9WskkJVFCFjQi7VERJdJ1FbAG07PPO8tsKAl0rqi3Q+aHqlxORq+yhBM6ZHZOy2qwMbwIrWJSt8tBSyCzCkoLcttnyVuPpQS+ldCSBcbtYXBjfN1FVFNc7dDKCnjlYDBZhyWYlyXW2zG2KhO7gwkywsoIkW1zcV5ABRrd8ahXcjIpQCjqooRyBUppbJVQ6a6nMJoQ+tuxCemWbBJbMJLYxIBf7KJ0me5QGSWh4xe5sjNL4mhcOYqftVi2E1KdI+yMVFZJI826cDvjskj0rITAAvx4BNvyWbLbVPVmgmyYsuWziXFWLEFvaBRBjGtZJHbMoXic80UJaofHcoHvKnIK2ColcppcmG4lt4dpryszLFOCKOaiXoMxPyLdsJXlch9sm2I+Su6CJTU66pIqyCwbYZeAnMS2CQkpypQyglrfY29NgXYYU4OxXWWl8LMeiVPD0hrF4JENoVOlrH2iNMTJKuhKhF8MCNML8GUB5SiU02fUzwnLVeJ8lF5xiZLOcGmju6OkuCgUThpS6M0jVA2VFvH7Rz/P73Q7oYTqvvvuY3Z2lle/+tUAhGHIxMQEV1111do6N9988wtu40c/+hE33XQTX/3qV7nsssuoVCpk2ZGHdMVxTLV65hIZubCPlQt/iWuy3jHvuRdfQqkecFG4wA696YzFYBiGYZxes7OzZzuEMyJvx6TKQ2sHJwcpE4KhjCJQJqMxtIk8CykSMqojFtQGVoolLg1jdLGCZVlkGlAayxFkssKQVSe3K/TKF7LO9xktxBRsRcnRpNhU05xINWBIoPJRAtdmndZcrJ5B2hlVZwPlZIhSIomKAedPLdK6+HK2LVoUwk2U3ICsWsKWNrYsU3bKjMgy/YKHnVvoNMGrridzCmzrtchkiqurODokVZrtzOPKNuusMsuOzYZWzKhOWbIdZCoRjoNyNVYucS2NZfVIGMKyBdrKQUmsbPCsIjeKSKwilXwct9pji/CIPRtvHLRwcVGgNHYiCdIh0MngobvkuFpRtCTrXEHRWmIxKdBNyrSVxNI2SWU942lrMHOehrG2x4hM2OhIXGXRu2w9rh3i2iPo3MUVIzjYjIhRRDlCMZgJ7tVTu/CrFVrrqkgV4pVreO4443YEVhcnd0AptFZYKBIRkYgAVntmWii2dRStdTar0/XRro5RlQsUchfPdQfHpDW5Ukil8fICcSEglItsSLaT2SELdoIrtlALSnSrM7iJwk9HKdigCiWcNODVC3O45W007TFcN6FYdIlUTlvFlPKc0fwCxpwSnkgoJglZaQtQolkVVHWO7waE7jIj6SUISxE6OeuyEYTKwS6glcRzFAVlUcLhvOYyUVykNVTGcnIqxRLojLY/jK1hLK2yWCoxZ0m0zHALDaSd4Kgybu5ScG3GEJS0g9IZiSXQBQeZu0BKFtehorGsAkvleXwrIJPj5EgsbITlDlpoLc2yUyXO+4ReB1kES1s0a9MUheIVK0VWRrdTlBG9qE0p38gGuQ6ciKCQk2CjCy3SSolADzOa2wQ25JnCVeMUig0C18VJMlCDJigbyahq080LxKqI5VrMVmKGM0UBjcJCOTGWUmBLtB0gpSTIEjbYm9HD51PKUrSb48oUW2ikJcmFwtISVxUAQbdiU8zKKLmEX5VkegPKLWFpm9CpkFkZVSHI3JwwmcC2KvTHtxIoh1SVcMjQbpthkdC2aig1jMwFUakNUpK6VbruMMhhhjKLTCaUrSJheZHx3iWs1xuYrUS4aCKrRGgX8QsVUtemFqyAkFhKIWxNpkMcXaZdbDFMPrje0bhoUjulLBU9e4yqgp6tUdrCSjNyZVHJ2lywnLNsbXy+n9vT4oQSqltuuYVvfvObfP/736dcLpMkCTfeeCPvfe97+e3f/u0X/fxDDz3E5z//eW6++ea1CSwuueSSo7r4TU5Oro2zOhNEZ45mcZxN1rGtYFapTMYm/pe3i9vKb0fr53l6uWEYhvGS8ud//ucv+P7Xvva1H08gp5mfNtA6Z51zKf8/e28ebFtW13l+1rCHc/YZ7vzm93LChExAcWDURhuUBFHKsqQdQsSgDa3WMFqlbROrOgytrlI7urWDsgOjNaIJLQwDyg6ngraLVqBbJhkkIUlyfPOd77ln2uNa69d/7PPueykYpJAZONzvixeR75yzz/6tYZ/8fdf3NwylQtePYXB4MvLoOQxqxygyfH2dE0VbbEpbNa8wino2Q7oxM11iUcTGY1RC6TrM0mVAcMqyFLrsZz3ykIEaot01Zj5D9JQOS+TxMvs+wdQlQXm6nCJhncYUnNp7GMUqz710CS8z1HzCxbMniVWOqSoyl+IzgxaLkTE2KIqoi5UKMSByyPmrF+nPL/DI7ZbN/oTVsdCvV4l8j/WDMUvlPt08ZevcabSfMpOMRgtIQCthvVlGmiGHdYoo8FIQF47YC5VAZSumnWVO+oKuKVkbFRzomq1un5ghiaoQCe13+ra8ddcrmgg0rlV10JR6m0vqHuYxLDcOUQlV0mHSjOioEyQRPLL8KMuzLmtl4Hwz4Hqs8MFjvSVuEow2KOcIAZK0xLgM4y0bo10uLvXR2uJNRieq6KZzZnlDMm9IgkckwivQTc3afJtraR8QRCwqrujaCLwBBK8NE+UZ+IZYn6ArDVocxsPYz9BWI0Yo9YRGf5q4d8CgPMO1aI2eSdkothBtCD5Hk3Ch7JBXfYbzhOEkpzrbp5GAAWadhN10mTtm2xTJFK973HP9Mmnt2TvvuJGOXsQWMRGIp7Ce2KV0fcIonmMVhEUpb1lUvCtjS60UvXxKnoCzBq0MHRG8wJUIzjIjC5pdP2EgA7zUgBCoWelPSJwhEsFKimoSKtWQSsxBdhYUzPUQ7bZRWgEBLznOA8phgiNqBlg7Q+kKJQGfDJh21hC1R883KNOQjcfMrGHcKwlqgzNhl1hK9uUs3VqDTzgzfhHF4GN4USAR/WabtfpzaH2KTC6gg2JMoA4BX9YsM+Z0mNNDEauaA87iVEKerqLDIUNfMIk26LqLqOp5nJwptgeX0HUMYqmNBQWRWJwbYxC+MTyBUPNZTpBUDbVN0C6Q6TmiYDON6TYFKRrRHbreEFzOiB365EwHY+okRdddvDZcT2vSooOLR+QCMQKqpAoZRnk6NufcZAt3GCMnFRbImopSFdQqRQehiCZocXSlRxdFpUpqQEuN8VDISYZmig+Bme2yNTDclm8RuQ4NgYi2VYNvKnyqmNIhRH3KjlA3U9Zyzdz26CrLV1/L8QhSPLMFip5SyYt3vvOd/NEf/RFp2lbRWF1d5Q/+4A9417ve9UWvLYqC+++/n7e+9a1Pqgb46le/mne/+93s7+/jnOMd73gH3/7t3/4lDuOLYxwKRGlO9r5wl2S38mxeOHmAqYl4om6eMTuCCH82nvGvru7wlqvbfLaonrF7HeMYxzjGPxXMZjPe9ra38fM///Pcf//93H///fzkT/4kv/Ebv/GVNu1LwljPOYwzHIrl+ZTbd6bEVYNtLC40eGpi58m0JW6WOVPtoYLHIRAUW8yIyFn1DcZbjGiMxBD6xM4w9BkRFustUVBU0WXmdo/YQRGlTLNVEEXjFFIHgsAkSlABtEqJJOLKyiU2l7YQhG7s0EZxEC9zbv8QFx5kJ72KQmFDRKljZukKdaLpxFAqT1bVbMz30Avi0hVHojzP2hswRNgdTsGmuP6zWbYXiCuzqEAtJBKjg0A0pT9dJy07bEWG4AM+TUELIV5ChYCgGR40rI8r+pOaZQ9FOqDsWTqmplYxmBRnLHfs77MT99mJl9iJVyjUOdbcnXTKBE3bPkvQRMoTIsdBOmRzaUwZF+SpsNOvibqH9GeG09evUy0XaFHsR+cpk4w6g3G6RL+o0Xji2vM1c8Fr1da74JDtjjCLFx2lJCAEHJoLe2Myt4uVLZQIYgKzKCWI4LQmoJCg2E1u58zYc/vuJolRbMQT8q6Q5h4JCePsNME0NMkYmmVO10t08BgJFMlZ7trcA2VIOMlw3qGMlxilKY6cE1sPc3Zvjm48RjmUDgTp8cSgoc4eZUUmdFRJN5SklBjTqglCAD1ARKGJWS826PseQQRtG7p2iTLqUgZhZJaYRxlKNLM4oqEdW+p7BNVD1ISxqZFoTNcWrEVzOrYkmdWkeYFRnuVoTq2E1K3SaZYozCHRLc2OreoRfIYPkJse89Ancw3dck5agm0UceTph4ZYaWobE5QwT4eENKZWhsgJ86QmakosbUU8Uqi1JdcDTo+WEdfQ+DP0Ck+vaUjdCCWCEUdpY7xKaTAk5ZyXPHaJl04/x/N4Ah2GbEY7ZMxolEGCweku0/hZWEm594kJJyZCwPK8iwd0yzYgsFaC6IKBVQxDB43m3NVtTl2dcLFzgtOTJc5OU1I3JjWObtzglKFTxHyyq9hLO21OnO1S+Rzj53R8RKkVWnfRdcPADTDxPSyHuzh3uEo/X6E/d6xWGiOaSBIGhzm9ukCCYLxnpAUTcqLa0c0LbN2QlpblOqWrB2wOagZNRlYobG1xOmW/ewod1wzrEUFXNElO36xRWIMTYRJlHGYxSWiIizneV8x1ReId9yKcnK2QlKeJQwdCgv9bml0/XXhKClXTNJ8XjhdFEVX1xcnAe9/7Xg4ODnjzm9/8pNd/93d/lze96U18//d/PyLCS1/6Ur7v+77v72D63w37cdvx7fTKyS/4vjv/Dbxo/H8A8Il5yR3J098PqwyBn7i0xYfnBUtG4wX+82TOf7zzHOeS6It/wTGOcYxjHOML4s1vfjN1XfOCF7yA3/u93+N7vud7eN/73vcPllCN9Dq94pBCHdKt5tTac+dsg4urJ5jFjwFCHJYJWmGC8NWXLrOjc8ZdS0lEt5zwwzsfpUpO8ecbF5gkDaP0FB3XIwESNUVjSRvDqYllP75ESDdYbbrsJCNeqj7LVnQbeXWamU1QdsbSdEypR8xTx6n9PoXaB1EYArG9nbXkAkV3jO5s4MwmjRI2xufpR2P2wjbTZUgDFHaEXt4i2c9wDgiBaZywl20QhSnDoNFGkYWGxqREoeb55lFM4Ugzh5HQKi5xh6Uwp1c3UA9YHW2y7HI+c/cpfCclKxOcGnEpu8hqfQbVLViabZHFXSZLEbaZ0UtL5rKBV3MaG2FcRRMmONoTZ1OfoNs0vOri/8sTWZ8r528jSIM3EfvDk5zKBS2gBIJp2B8eMulmnL9UIFY4jHv4vsE6zfnDLbbsI3QmQy5MShQxBsezo+vM9AFXd0+ybffZTXpMOj2WDneJ6hiLhliYxV2KjsUE6MucCE8SKg70EhIUTmmMBDq1Aa9Bw1nx5PEYXSacOazxKqZOPGRLMJ0hAaImQaFoFR7L0GtCEsCBeIUKhkCg0W25/TxJEDunFzLu3vkUaxPPYxsDluYdMt/hbHiInXqNR6LTJHFF4Vpnv+dS1qYeiU9SRpsUnS0knCK2OVW8Czj2JGPgPco0IJpZDDZExKKJVUVuFU10hbHOEQMmKIx3dHSHkwf7ZOJ56OS99MsJd+zucO1MiiYi8duAwrgLzNKSLHTJ45PMBzlCgQ39dm+qhJ65jX4uTKMDIokJQG1af1cRaFQXxZiMgr14QFLW+Lh9V4KiiBK8ijl1sElHW64sZyg7IK48VTIlRlEv5IyARmE462ZcXtnDNjt0ojX2on0OB0ss1TWnD+eMYsVBp09QwrBs0MFwrjwgDoHuyGNo+PiJjKvLu9ikYK24F2sDZR0R+RqfpNzudzm3E9ha0VzofYrp5oBHuuuEuOCEathOHybyG4isYnxOYi7TY4XcaPI0Qcd9Oq7BCMTBsj4dko2vc6q8xmT1FIWNWa8ilomJMJwOI7ZZIxJHCAptFKZxCILyM7p8Fd7PabSn67p0mpS5ROx1KrSFjYNDltinMpZ0vk3Tg2lkWcZQG9XmSmaBc/Mx+bRDKkOW3QgvW9wlORJuY6S7iEqYmpxJ+vegyt8rX/lKfvAHf5BXvepVDAYDRqMRf/Inf8J3fud3ftFrX/va1/La1772C773hje8gTe84Q1/N4u/BIgIo6wlhCe6wy/4GX3313H+z/8tS+WYj826fPfK4At+7svB23ZGfHhe8D+sJnz3xkm2vfDPHr3Cv9854FfOnXja73eMYxzjGP9U8Pjjj/Nnf/ZnAPzpnzYGI7EAACAASURBVP4pP/VTP8XrX/96fvVXf5UXvvCFX2Hr/u6459ohY/sYh0uew84aKyV0PcQ6YaYUgmFgY1I1gzqG4LHqAN97IVsm46ueuEZsBFsGVmYR564/yqNnTlHZAyK6kB6QTnaY9zfolyUVM6bdVTBCNwSGFPSqK3xcnSbvarK5cPf4cS4tKWbxOippy38rQAeobEoS4I5xn647wahbMo67lINl5ukBZj4lbYTb8y4XV7YwSYRbLSjTPlltmHdKolRQZUCU0KOi1hvYuGYl+jiZmTC4nLMnjrvsPkE62ABDZoQwwKUFceNoVEJXVlCuQNcBn45wyrCSxyRqibmuOLu1w0P9Z3Fib8a6DTx+ZgmXHBDhEGda5SsoEE2kdjihSxI8o6LLpgJPQ21TEpcT+5JMCkYCRZojGGY6wkoOaBTCPElZbwRlckBR2ClDE3BB0+2USOLpjODkrMPS1ibmzDKPu7vZWV7DRh3uOLjOlaUnaNIKRcJKUtPL51SkJOJQEsjiKZO6R4JDmpjY99AIy+VZcj3HugOC7hA7h9HgZYNpf490DFFQGF+hJUJjqNIELQETLEFiUj/lnOxS2YyKhOvLnmEy45Q7R57M2etNEfpkecEpH6EwGG8IFqxyxKrGEzg93eauUhF3LB+Nc7JqTo5HSaBWYzQQlCIyNUVaEs0jghKUCJMkI5M1Yi9I4zmzu89kNaFIU/KwQWKuYLBI6KBqxcp+Sb+uyW2FpWG5qFAqZRZvMo3naHcaHSIy0cyjBtUolpPAgbcYDycmE85OrtPtnOGJ/pjp0oQeJYWCFzyxhek9RqobDqRPadvMJtN4iATVr3j26BIbOGZmiedcf4RAwSzsc+2EbbOkVBvxpQT63iG6LTahUIiCYGq8jjC+y3oR+NrLW/zVnc+jsCXG1RxkDc9u5pg6brOJxCDpOWz8iXYetWCahn7ZoERAC3df26KUFUQ/wqNZzouvVmgr5N2GqFEkQeNon2mvJ2SlZnsoaG+IrCNVFnGBuVzinl3D0nQJJxptPenQEusarWJssOB6ZHpKJJ6goNIpZXovIdlmMPXMuyPWRxMqShobuGMSM+31UCRUyvGCxy/jmxy/VtGIYTfbZKk8RKUFHSlpdEpWOUwnEItCwkkGc8dantNxl3ngbsu0VCxNtthLDS5EjCPzjP5mPyVCdf/99/OHf/iHvP/97+fw8JClpSXe9KY38ZrXvOYZNe7pghwesre0AsBG/IWVIPusr6L6g4gXHD7Ip/4W0vXlYOo9/2H/kH8++iD/zft+jiAxHfN8/tl9v847JzPe4tcYmmd2sY9xjGMc4x8rtNbkeX4UTVGWJWfOnOEzn/nMV9iyLw26PkTZDsuzCVYPiLuO6XLdltWWwLnRZXzaR1RGhGcyTGjMlEgsSIUWQ2AVgPVJyXI14Pxowv9z4YCKCDs6jZcevTxH6HPj7HYpn7DS7KKWMk5c2eZ281E6/VmbWyxtCWhFYK+3zY2yY2rxxyqPCgaDJmhDpD2GGphQ9Az/xfgqQ+fY8gpnMzaHE5zSxAESGbF8oImyBhcJXmmMwH6Wk87G1Nouqog5NAqra0RDcGt01AylpnSTQC4ZJ6t97upcI589l89GnqjxiAJrDdbHPHDmAKfbFipZ7fnq/es8X13k0+k6O3HDHVvXeeCOjEEzJuKzjO0Z1tQpMjWkbiKyZIqvU55z/ZA1SspshkRjpuo8BEGUJ5IOOhgQMN5zbvsqZXKzcLMJfTwV42QJFdf0mwQl0KiISBxxU2PFEOuMyh5ivCePSk6FGY2FxlqUB0JAS+DCdk1n/7M8cscdrOZLdDgBfsIYixKFNQ6DENt1ombA2YNNylWHDZZUSpJOQnAdOrVrwyoVOFNTmxl3NQcsqSlpNOLT+i4UmkonOOVIfQzBEpua0/k+cJqGu9hN9ykYcc9jBR+7sIJaFBHoxnPW0yfYaKDTNETpR3hYzmGDJqgbtxYkRFSpZVhaMl9giFieGWZsM+lMCWhuKzYpog5b4XbmoUeRWO6e7nMQKqImI48VvbJg6KZtKKwoRDl01GBsztlrhyzvjPnEVymMbRgkFafKGtXcSa8JjDuOWl8kLRtO74yYpwOWfMBIu7cDglKBRJVk1SFJVeL6hpOjmq+9voXXfWaLJ0uAEBl00EReE3tHsCVXBzsMZhlx0Bhbo1zABcVh16G94azfoSMrODXkuZOaaPcBrp6ImWcFxWzCUpUxN4aD7pAkKulMDmmsJVjHc5+4SFEJc9vDiCNSEQ6L0YEoOJRkpHKWmUwR9rEI2oFSAeMVqVtB4VGA9QGjNauzFSZ2k1k0Zj10CcDMLLMyPkm+MmWWFly0JauSAX2sidGqYB6t0NcNEtSiBmdgWO9zrbNLWnu6ao2ZccRRRUyCce1hREJJLDWNROhGs1rtsCITajqo2ZyrXdi2ZzmZ9VjfmRGMxSU9vK45t/0I570G47jIufZ5eQbxlBv7vu51r+N1r3vdM2nLM4aws8Xm0jqpr1g2XzhtTLIeRT3gG/LP8Bf+xUy9p/80Epx3jw4pBX7k2n9k9+odRM0mw/N/xevf/5O84+t+jQ/NCl417D1t9zvGMY5xjH9K+I7v+A6+7du+jb/4i7/ghS98IT/2Yz/G7bffTpIkX2nTviQU2S42rDMsFcv5FrZ2PDIYUyUPktYNWnlu21F0h55gPVo0ERHfPPoUMWMu2hUeWt3h9sMNBE1HKURrzjS77IYBXjWLs2hodJvQP5zNsN4RtJBOFVd6PUbxLvF+QSqKHTNAKU/m5sSNo77hQWhHQ4OWRblyFJhA6hTPuf4Qm90r7PRTluvTTG3ORpiyjyZgQMFSmNKrdrh9R1H1O0xNThNVRB40gb7LicdnEfZA2tC0SBy1sti4BN++nAZYMhsksy50rtHTM0AznM9BOoiATz0h0hR2ryU1eonn7O1gbEyZTQjaokNGFuDugydw/iSdyYT9bkW3ibGhx72PXiJBg7sNscVixKGVGGibS+exZ7lZo1NaTDnDLwoutLwioJuAtoHt3phRMuf5nEGJotGCRritvMLp3YqttZOERBHphiSENptIFk66ikhqR1M/TmlndLp9tH4Cm9yJVgElKVpaIqMUJNZwIRdSYxlMxghbNHKCg+gixn8NOgTuuXQZYuiHgt2VB5mnOXdO1zAItUqxqgvkJEVNo0uUgtAxROIW89DaNjM53dyi0GSlEKwhk5LtfsUJ5zGmtWsWbXEqn+Ht7Uw7JUoHvDMYGSJAz83pViVG52wceAZyjbBW0rFtCf/ssOD5W0+wvVTRkIGsce9BQRUq7pDr5KGHtu3enN9QU8qa8ztXiCtAwx3jCSE2rJgpcTZnOttCB8dhL6cXImIAGVCrHURtkSrHgk6htGcYSrJmTq2FWXLI+esVgVWUEkS1BEJJjDUeayAyEStzzTSd4JWQRzVx1f5Oae355PoUpzKMN4AhIydXS5w42GfmNeuzA+q4Q2gKHlmdoJcU9zYl1VxhmpJhmPNs+QibskpEjMa2jYnlNhrTsorBfo5wL+Pho5S2QzpJGFQR3VnBxs5nmfcixn2h6xsMgfVRyWqZs9KdsiO7zEiYpxOmyT57xnLuIOfFfsKDFx7ic+Y2In2C0htMPcfpDl976SKxdjx0YdA+AwoqHVNHEWXngJV6hdhfYyw73MYqqzJiX1u8boutrIYJB3oJpO1boBb9C07uXebCXiARgygFYtnPNCpALDUmd5hYoXTAuL8HIX/vfve7+fVf/3U2NzfbvhFwVAnv05/+9DNq4NOB+tJFtvrrnKpGn1e9T0T48If/Pz7xiY8yOPvd3DV7CFGKB4uKFz2N/ajes3mReye7PD59ER+y+9z5whdyz+aDPO/62+l/9ZwPH2wfE6pjHOMYx/gS8eM//uN88zd/M9Za3vKWt/D2t7+d/f193vrWt36lTfuSsCQzCumDViw3GXuRoVtULE/GjJaWQWAgV0FOEDsBK2j6dPOEyBesdC6zQ4dpXKIaQAe0DwwPC9aaffZTQ0qDCY7ECHMMpgmgNJbAYLvH/vKMSFm8yiDkbPgxV0OPbplTG7gRp7S3dEhjChRnYBGy1ELoNAkay6lZYMIOe52KzrxCOimK1okczg8Jw4BgSGcVn1u92oY/SaCrCprQpXEdUvrAnGWZ0hGPoAhLCREes9XBqAso0QynFZmdU2hQoVWFirhgr7eLUyNsWKI3vor4c+QmoRcfLkL8wCiDUmDl5rV5VLGfTRjWNecn+yzZ65wsO1yKLiCi8Dog3CTuARDTcKV/ibkdkmQNk7Ud4mYJhcKEGct1YKI8lW3ozWsIQkADCu1g7TCADgS1g4p36ClPYRziNdm0JjAg6C7jdEpl2wbHe/0J2mcYN8UYh3iw3nNqtkfhZ1xZn3N+tMyJeYFnmbkTvCrAxmzMLae29iiSFBss/eDYBdaLPQaHmkDKp1ctJjeLlVVk4wIGUOse3UWBLSWg1E1iBbCaV9huoB/m+ODx1KAjlA5khzmOHkvRBEVFZz7njp2KzTaoCL3oeTVJdtHRkGf7x9m3rQ0KsLXjRDhgj9N4UwIJNH3WG6i0Orq+VjHeaJya0pvn7PZzbmeAjQryokYVCh87DtMpcf4QWpaxAjFucacucXWNxAk6dBe6DSAKK55SOzQQqQaTXkTNlgBFFAKo0xgcc64czclBNmJYLgMdxt0x42yGWgiY0dywHu0jhwalzrQxtVpY9RN6kjMx7kgdBvBGkU7GqBNPsFZ6ggzoHcxRZgUb1xjncfRQgIsqkFZRjvBYPKl3VGnKRrUP7KPtCRRtsZouDeCoJaOOLrIZl21xEw17vT0CimhxVpDmDXbaZ2O4T5UYHulsQwN1P8ZGXVJvOL23T5EYQFGZCG0cOqyiAszSMV5VrOWPsewb9s3q0RhFhCVvmJIevaaO/i6OcRRY70hdTdE4rKtosJQK5llF4m9e+0zgKRGqX/7lX+b+++/n3nvvReunVBjw7xXyz3yS6y96Hifk85v6/v5HPsT+xz7M7topzN51HpzeDcADTyOhmjrPJ0PGmz73fj5dWforK/zl9ctM7n4RX/3r7+FlL/4kH5LnAHd+0e86xjGOcYxjfD5+5md+hle/+tU861nPIk1TfvRHf/QrbdKXBVk4PABWHGICg6rABcXq4QiAcTrntp1Je8G6EASmcclhd0y/7rIInsKaGhx0pwUmbk93h+WsvS4AaAx9AOLQsKwO8eoUlWnoBY1X68AT9CWnS8yMLiAY2lLjzrZFDdbqEaP4BEp0S06cxysWYVGeGbuks4CxEf18Tq0TEnHEOKpqnQfXrvLcvezmJKiAaHDO4VyJGEVjhFTCYoZuOu2iA0pBB4/HkB0Ivl8RujkA82S+cCTbsH/rHdv9K1wIh6TuFIXZ44bUpcUReUNYkCRRgkIIKlBEB+ybAisXyFVBR6bkUY1wM1Wgn8/QKgMasqKkX8xROtDEBwgDrDicaUiTTSwZnVlFJ68ZL4aTjeBw4Fk/zDDqM23J9BvjVArtBbcYx242QoiP1LF+PieqH0dkiWAVPf8oTgpQAwpyJumMtVlKES1O9IEIx517n+KJYcLEeL5ulBBzCs11dAhcXdqmLpcRmXDY3UQphRK41j9AvKB0xOp4ITsAjfKtkiAKE3okYYZtPD6ABCEohyJC6AATBMVKM2ZjNGNHx8xTj1kQ5rhp+5V2XUWZTAh5RCwVteqjqi6wS1AXgEV1ZiUMD0aEyPLoSga6fb1DRSURp2a7WDyVlCydmGOawG4RY3REPM2Jy5KgHSv+gFmw7VjaDYYNoLRm3kmxRGiaxR7Ui5BG2v5mNx9i1hmxyTqNaSgTTVI3tIXEBQGcNHTdlMpm7QEBMXbeZUPnFNqTFA2KhNKWNGbMihujiReE6ijris3emGEDzitEKho5hZUhjZriyUBFgMZSowUgJrc1AmgREn0ITTuK7dUJJ+cN81t+j/qSt7fLF9OMkEhDRYxXikbXfHpwETULnAkz6q5vLRMhndWUsUaV7W+MlkCEa2XlRZdhQwK0Pnq6N6YWS6S6zFhr5yqYlrCoGC+DdqdJ+1RoH0CDdQesjv+aqhTK2IIWatXh8eXAxDiW3d8DQjUYDLjvvvueUUOeUTzxKa69/BV805O2B/zl/gFbH/8w42zAB87cQX/1FN/6uY+zMdvngX4HWH5abv/Rq5/m3mvXoQi8+C8/yHP/9S/ykf1d/vqvP8bqN38H9z78MO952cs43HqApZNt8+Qggf/72nv4o8v/J0E8P/SsN/HijZc9LfYc4xjHOMY/Njzvec/j7W9/O295y1t4+ctfzqtf/Wq+6Zu+iSj6h1lBVYWbB3peBVAZEFB41uo5D6+dJ50Zus2E/c6MjggZJdcGYPEMc0+naJjFFf1J+/8+WTgvtyIQ0AGsDnjaa7WCw87NEsMSAo2HNqf7BolRDKT93oKERGqm9nPAMsvhkLHMYKZpdES8cP9FbjqbAmiEnsxpXIHNI0THbC1y4JzL8doS3UzUAhKElMAKinKR39E63PHaHn56khXnqVTCxJ7gsewSG8FSi8Epu/ia1pk1OJytuYpCvLDTj/F6ypqbkvmY2w49YeEDKONRCvK4JpJlPIrr/REj5RnKGL1wahGIQ0Fn0uB8gmomDHF0KRmrhN7CVoDLK2OMauh6AWW40iu5kl5kVQldHFPdcHV1hKGP1v5o0oKs4HAI5sipzSiZ06FWEaCo4prd7BLBFmRyq5tnmaUzZukMkUC/ueFgCpeHE2oylilBr7PgynQlp1SWva7Hu4qYijpauWUDeXQAFfWAOSLC9e4+nbkjKE0qCUPZghI8GrXwoUuxXDd9zniFZUFYyVBY8k7DQFrPfRIyTCjI6gZrMiouYGQHTQoUBFI2B4cgfZQEDpOc1blmrmpq65601wcyRy/2U2Qago+ISEAcENGIRwTMYi3b/aIW1OfGTClmyT7d0CfWUywOxRKBgHMl0aS6+Yipds873bTtBVTgFvkWgNTPSagYhht9tFIUECSlq4QqqlipO0x7T1DTsFoHspBTm+SWZ7FVUXXQR8+Yp8spX3PFdJnodToSkUjNmhwyxeFZo7YeUCTUiECQBqNjepLTUUJPCkIIaP356S/d4NvraNU/l+4gNw6Aak8VWiJrdLu6sZkDfbzy9KVCIyi5kdTUhvGqGyRRtUU1Ut9l5DzWJNi6HWtPcoSbv43KO6JGI5HD6V3yqMLIDdI1Yr9rF+SeJ63jM4GnJDe9/vWv5x3veAdl+fkKz993SFHA3mV241XOZP2br4vwro98mCh4fnryW/zpQz/O/uoSJ9QOK/Mpn9o/fNps+ODOVb728sOc2t7irmc9m/g59/KSl3wT6+sn+Migx9mPXQbgkUf+MwCFK/hXH/vv+ZVP/RtqX5O7nH/9sZ/jM6MHnjabjnGMYxzjHxPe+MY38ju/8zu85z3v4cUvfjHvfOc7+ZZv+RZ+7ud+7il/xwc/+EG+67u+i1e96lX88A//MFtbW5/3mW/91m/lla98Jffddx/33XcfP/RDP/R0DuMIPvSRlgFxfTgBAia06o1iQCKWvUyx352BanONbpxYBzqk4zkn9qZUtsFG18ltQdsMVqjlZlVZ70qaUNKXnL7kCyepcxTCphDqZk7lIw6TjGmaoFV4kq2dhYNk8HT4AFvD60fv3VB3ju6H5opZZarW0LeGyYUGRNjq3KI6BXc0B6V1iFoFElCCJ6WwwyNFoNSeK0ub7HanWAlcGu5hG09c1KRSoyWglKClQ0ZBrCrswgHMbevbmGBwQTiMp0c2qEUc1g2r2nnWTGMF3b0bLBVCwcDvE/sxQYStbk1EQyYlFYaJSTjQHZZlQkRbJONytEEuHRpZZ5yA0QEhI5CgVY3HgoS2ZLkv6QVHew5uFmvZEmARIfFj4lCzCDiksY74FgKXSI3CoiRgxS3Gc2t7GENnoRAoUVS6aR374BBfEIKnDUoM2IUj/IUc1KqZ0ISSIIFMCnQ0urnGDI/mcy4GHxrKW9xQ50pS59EIIQSC+HZv+QLnKmZxyZXBARah46eE4GmbGQdKMwM3ZRzPeWRjj+tLN9cwBI8PDWpBNqwOXFen2XdrlEdktWHTJm2KzpH6c2PNW9IBiuUwpRemSHA0DoZeFnu1/R5Vdhinc7a7Yy72d6nqKePuxaN9cxPtU2HbbmMI0WJd1WLftbzsMM252h8R0yAI1zoFMQ2GluQf2aiEqLzZQzUo4TCdMU9GVM0YJ4ErKxe50t9HhwJEcCocjdKHhhCadr1Dw346Q4UaHypCcIv1qQiLtU9u7C03Az8nT2+usxAvvqs5Go+2AcRQxO1vhSAcxo9AqOhJziBoUl+z7g/Y61R8bm1OkxQEhP1ehr9FTb0VShRFHPHI6QH4Nuw0iMf5gkarxe9PoCvlUUjlM4WnpFD95m/+JoeHh/zSL/0SZlGo4R9KDpXf2mRvoy2Bfqp7sxT6B6ZzTlx9nCyacT4NzF/xq/y3e48w2uiyMp3w0Inb2Lx0iVMXLnzZNlzdq3iud9z12Ye5/gv/C5PDgjPDlJe//JW8613/AfoDtAQenI75+jrnVz79b/jIzgf5iXt+iu+68C+Yuxn/9QfewL9/8Nf4317625+XB3aMYxzjGMdosbKywste9jLKsqRpGt73vvc9pevyPOenf/qn+a3f+i3uvfdefvu3f5tf+IVf4G1ve9uTPjeZTPjjP/5jNjY2ngnzjxB8STAKoyI204gonbIUQNsZdtkjeoWDpsO6iuiGGhHhRkR+YAkfXJsUL8ITnW2244aXbQ4xc4fr1FiVHB2WOxUwgBa/CENaOrLjxom+Z4XPrJ5mnB1wxk2Yu89X/qw4TOXZ78YoidHOt6fygCyKFkx1uvisR3uHl5tOYOW7wE1lrKP7aDwNOduDKUuzFVTHodIt9qrbmKRd7tD7xMGhUKyaIaPumHF67aZREjDSMNCOieohKKw4/C1j0wpqY7g2PM+ZvYfQT+aLOH0zd3xIGyo57gQcEV3fkNgYCY6KNiyp1h2ECpGKVlVr4UWO8tA9gPLMTJelZoy1KVaHG28w1i3Z3GjGON8SnTjEiBEsgaIpAU1kU3xoEHEkMqG7IEmH6qbKAgvlUTL6fp8QPNYmT3JNm4WzHy0I6tWVbawC524Q9RZlFNOT1nH1viHFUZBAMyGYW32T9uaTdMqTXpVFeGJogBi5JUROeUckOaItPrRjtkbfmC2sCpRRu198aB16o6BWBXEweG5VQW8h8aG1d5ZE9I1CLfpiXeqUfE7FnJICxKHQBDqAUFmHv4VwWNoql7fqVYLgvMbaW+6rNHMdM8o8Q1dxfVgipqEfOoxDQGnLpL9C4hwHpsC6Jc64MZ5VRFqiYZ50CCFM4/aZcL5iKy7xpkPqm1apXPjiwK3Bhmz1xkyTklGoOTHNUBIIqlysp6C0PipQsViYm/8Z6rYPm7YIME0T+pVD8Hjv0baLVYEm3Mgja8P7nDbo4PGscBQbeIQYSx9FG1orCC49RIWMyAg9mbGWHzINDmUziiRwKVtjEk/xcQeFpj8v2DZdTvlZ24vOjUAlPHh+TJnkDJYr+gXIgvSNOhUq1DRBKE0XrR7mmcRTIlS///u//4wa8UxiEmk+fM9XAXD7cP3o9Xc/9DnO1iWv4C+ZfPfv4FefzXeeF/7Hvf+du3cv8pc8n4//p//Et//Lf/ll3f9g/zGWd8Z8qDnHO178U9TvuQZc42vODPh333EPd9zxLB4X4c7ty3wyu5OX/vX/yvt3/4IfffZP8M9v+x4AelGfH3rWm/ifHvi3fGL/Y3zt2td/WTYd4xjHOMY/Nnz2s5/lve99L+9973vZ2dnhFa94BW984xt5yUte8pSu/9CHPsS5c+e49957Afje7/1efu3Xfo3ZbEavd7Ng0Gw2YzB4+vsU/k10mrM4F3CdPZwzNNqypCskah25sMgZmqqYJMxBGowWhIgggZxAYVMCUOoIkcDEPcapPc8TZwNJXuG1pkkCjQ4MdYYOwsSPsPrJje2LuGGqSzwdQmiw9QgVMpxqMDpCKUWsUpKgGYUpu/12fs7u7bPXE2IBR2gb1NL60y40pH6K3Oh7g0YUmFtIQGIWIWk+x+jASA6QKEcBpW0dJ49CKyFRGSCkpsuc6ZNO3kUcBsWQKVOVsWsyPBHrvlUxnPZM0y4iNUWckpU3VI0aa1JmcXl0eo8yWNOSHSuBa9GAO6SkQbMdDZHEMOknLDW7yIFiHifouqUuIdT4UHJgMsYmQzPDKmjbuwqxPPn0XUTwi1N3aFWQ1Nz8d2UNmysrnNzbRsuCtEoESpEtcsZFBB8aIhMBslANWjLUOu3tTG2ado+f9xPmnRmjbpdRt8upzU0AGhryJOFgsMy+jjk93kf79nrRIFpBcNQYchVhxC0iuQKiblIyoVWBzN9QOTWec5tT6siwdTo9Int/U4X5m6KYD+ClJFrkH92qmmnx1Nqy1x+ic8dhf8DIBO4atRFIjWoobUqrk4WFQxxTdQ651FFtvzZYKGHQC7s4ZdCqFRZ0gJXDOaMVg+DRTgjGM4pTAoohc2ZJRduCNtCVit1+F0mEeWKJDiuc0kz0BiuA91WrApqIxjVENsbqgAtmkTMUEPoEeojK2e3NwINSFsQ9aWoK2xJOt+i9lBhHCHVbwCFuDyAO1fwWFtZePZiWLI8mPH5mgISGedphv5tRa8fSrEAFwYhHaQBFjKPRmqtmmXIJemXB6VuUMhY7TNOqq1oyYHIz/1ECQYTt3gTx0LMbGGXYN9M2lNbEC+uEqY5QcUNZGbrO06HCiUZiAZFFERmFXvzOWC1UeLbtEHRCrJ78fD3deEohf2fOnKHX6/FXf/VX/Pmf/zlnzpzBWsuZM2eeUeOeDogIo3N3oiVwV69NGp37wOTaJUQJt5+/G7/6bAAirXhudJ77Zu9HB9vqPgAAIABJREFUh8DHbY27dPHLuv8HHn6Ajx6c4mG3wYXhIetn/4TeyT/jgc0R/90fPsDXvOAbaJTinic+x4UPXGL+P/9f/Jfbp/kXt/9XhNDgfcvyX3H6W+lHff70yh9+WfYc4xjHOMY/RvzIj/wI+/v7/OzP/iwf+MAH+MVf/EW+8Ru/8Siq4ovh4sWLnDt37ujfWZaxtLTE5cuXj17L8xzvPffffz+vec1r+IEf+AE+/vGPP+1jAVqFRxJ8aOjWjl7Z9qAK4vF4qmCR4PGhPFJ/9MJHCUDd0ei4xilPs3AVw438ighcL8dKuMWfak+6RTwigVHa5kdZ7dnplZTRGbwI9SIRPKPASaAOJbmuSXRKHlmurt08uAwyQ5kJgQavw6JvT1suW8uTQwGvr65xbe1vU/3age32p9yqlgSEgKdUUGjNzECjHA2exhUEEa5EQ8amg17U0BuGObmyzG2CTmvi5SllfAtpWcyVk4ZCt+WxHVAgODQi/sjBBtBoYpUyshmiFDOboE1AlOagv8T+sAe2DZ2rF3lccxW3zYNZOOZa2LFdRkQLpUNAB3xo8Nx0lLVqScoN0jDpZgSlqeKEq9EyY905unaiU65FyzhfkCvFZZOhVL0YI5SqRHT72bBQJ6yK2esYZmcvM+p2ABjMK7K8wuGojOaG4311kFEu2tDsrS1zsDIAqfnQRuBaZInnbQin8wXOlRBuhh8+lM0Xq3oz2WgePFOTkjjPYWLJ4+SoitsRbBviV4ricrTMWKdUUYpXbVEI9TekRSuBR5c3mCQZ+0mfXGKCCOVCyp3ZDnOTkqet0x6UoEwgWZ+gk/oWG0tarUYQcUeK1+oh9POabFZinBCXAdsIsqgBGELJJMsY9xOitT1MVFNFEVq1z8ENsiiL4g0THVGoiBBqhIDzjhAChoYgnlGvT20tcxOxGfWfpP4WcUxtbmokjfbMkoSD4ZDDrMdOt1VW9wZD5hsWPWyVTx9KCuUICsbdHoNpiaBojEW0pzGGQiyXoh41hiQPJPPmScS11JagIKk6rByeJNSCAowWvKuQsmK7k3Bl6bF2nv9/9t48yLKrvvP8nOWu77187+ValbWoSjtIQsgSqLGtwBjEYhxuR7MYY+yxHdFjY+Me97Rx4G4DY0zQxhvB0DBtt0e2h3FM20MzNMY2IGSMWI2FkLUgoRKlUqlUVZmVy1vvfs6ZP+7Ll5lVAstCMuDOb0RFZb5779nuvS9/3/P7/b4/axAYSgwRI4wp6EVjMq/EyjoUERRJc5NAxRNbOMeJFOHnuLA39WBmYUCdE1nX1gpkRKgaSFeHTQ9URCUUlS3Anu81e2rxhDxUt99+O2984xu54YYbuO+++3jd617Hu9/9bg4fPszP/uzPPq0D/GYxd+go95y+nMvKNUJ5GQCfHoy4aO0MS+oc7qZf3HX+S45cxujEJnPjPvdc/kyyP/8AzTf80pPu//++W9F3IVc1v8gjyx9iuX8ps94Cd+37b9x7+tV8/kxJmCVcnCT8wK1/gXSO//mWk3xl9edwL7sHREq383IOHPhVbj7wMj78yAfpFz3afucf7nwPe9jDHv4Hwac//elvKhw6TdMLalYFQUCSbP8Rttbyyle+kh/5kR/hmmuu4aMf/Sivf/3r+fjHP067vbsgfLMZoPWTr2WY+T6p1qSeJnExjWyMESVaOHp+i6JUOCzKbodkGVsx9mNWZ1p01zcROBLtOKdniPIMKSxOWM7s69JZT/ByiZVuKqhQiDqgqbBpLeDtJALQLqzbMgFj52OQ9PyYHhGzVY9oy+zUejKOAiUV4dyglg5YiyknghhCOKwrsFLsMpatlIytxwNzB7li/dSOYw4hHV57jDNy6sKSUYErFIaKM9E+AhlhTMxFvQzhLAKBmRDN9ajFfLIGOE6JFhtxhBUCT9WhVJ4zKFnnuFgRMQgdfetjcByRA4639jGqAmaHAw5WG1hnEJOAwUg1sBgea2ikg24WE458Uq9Ppb1aVENKRFXnk6TCJyoqgqKg3wwoleBsexabe2AtVZGBU+iFERZFZSzSOpTzcDjKIqXOCtkqGGs5K5t4NmegI/x2TkeuM+otgYOVmS4md0gBfXwWVZfCZRSMJoTUIdyQQHTQUmN8TWZzjMppjAzdzZRIKEZNn1g1yEUtE6JcXWNpHISICS23QpLpnGc+us5slbMaT94nJzC2wu2mR5PIvxKvcKxEAfMiwyJZjxts2nkuHpxlzkpk5UBbVDtBpyHrow7DMKAsFb2WwjnBvsE67SKlkg1GCCJbMraOkVFIfFwIarKhYF0tye+EYGk9oTUuqXyBcILZUQLGksiKUjg8KYl1vUlQFj36oY9VivZ4SDOZeGJciRI+IFAlGGvQUiAl9BsN8A3NSjFqR7XTzhkcik1f00wnniQEPdVAO5gxtRy5zgsKT2KExEnBSriIFk0aRYF1hlJYvMk7utruAoLD51bIpaIQkMg6LPfOQyWtxGc5hXEQUviWvj+DzhXdYZ+zs/NEWUoZ+gyjgDh1nO3OUylbhwCbWhHydKtDJ1mhMiVBL6WY6hLUT8B8NgfW0Dca2Qho2QydlhTSI9UBZUMQJXUI5jAM6csW7XJE7EC4kkQ7Ts3N0k4ynNmt2eAQJEIhXVnXPkNSCIUnDAJHZSEXNVndGpFDUk3ItkMQ2YRO56krh3Q+nhChesc73sEHPvABDh06xMte9jIA3vzmN/OKV7zi255QDQYr3Bkd5Y3l/dPP/u6hY8wWGdfps5jOxbvObx45wqmkzWXDR7hj8Zl4X/33uOLfIHz//Kb/Qdx3esCJUZtn+I/xyOEP8UNrN/MvT/8QX0oslz7jXv4kPMV7PzPibX9/N3fd+C948y+8kWh9jdd/7P9h31/cyVc7HU7ufw5XHfkLjM156YF/zQdP/BmfPH0bP3zkFd/02uxhD3vYwz8XfLO5pXEck+f5rs+yLKPR2JbxbjabvP3tb5/+/tKXvpT3vve93HXXXTz/+c/fde1otLutfyzGcYxxlnEQQQ6VlFib42GonERXBi83qB2ZE7FokvotlFUYqTBCstk5TF4pvCJBBgVZS2BwGKfqXByh6CYlRPBw1MTZIZf31hjMONbaS8xYQ+mFzCQBhTcgzgrOijbrM11KK2j1Rjza3U+eOFrOIJxAWokV5dSQCVIILJSNEguMfZ9xEOCPHcuFwdo+QjhypwGBkRLP2roo7UyPrm/ZtDP4ehMpXK1mF0Y0aXK2mqVXtNgXVuQOUgQt2UYKx6oZUGmPcRByPJrn0LlVCg1WCMLKIoxA+pJIRAhb1vkvYUilFWViwRjKuYoSW5M5BKXwyKVCOIcRgko6No2dSg40qzZCVWw0u7TSAlk4bJIjZASyFrkIbK0LqEvL7ChjEEckwhHYEpU7Mg2irJByK3hpRz6QlDw4u0xZWuZNQpgI/OwQj7Y3ETZDNyU9uYQZWArhkXhNYnIaWY5xFin8miDZ0bTNDdUAW6FlHZp51rZxCo6c3CB1Hon2ONY9xFLlEwiPxA7Yqka13mpPCdVGcwZS8I0GtY9mVpCUI0YzGiktFYqV2WX22zNgNY1qDmHGCEpiVWClobB2W7hC+Ei/oj1SBHnFit+mFzVJKo/MDyn8OuwOB367w/yqYU0vEAx6SF3QizXOVXUo6bTwMgTDgpYd05uNETiM0Gz6i3Srik7/GG5kybrgAkckmhybmyHMCuJ8wKi9SGUz2uMRlVQU2ifxAx5tz3IoXScRPl5pcIFiww+RmcV6sBIv4HKNKSqck1TOUXgB8ahDaEJWQgc2J1JNWi7ngVbAFSfXmVce98wtsxFrVJpx5WPrjCLFerdDLxKkfoy0298BFse93YMoJwiLHJ+S1AZUfshisolAMKhCCuPRDixxYqkwjH2FnkRU2okHT1gHcuJBw7Hht0j0BgvDlHaWY1EM45pGFNIgky2PmWFIQK4UcyIj84PacUqFVw7ItMfJeB5TWgqnOVANGMgWpbIIB8f9GRppSQOQssJrpsiqAq8uj50SMQjmyGzG3ES5MXE+myqmVv2spfml2/ZyCmeRxtHrfXNeqoWF1tc99oRC/pxz01CIrT9aURRN1Xe+nbF46jbu/cIr+PGjz5x+dnqlViA6dPWFMuRCKeY2Gzx/+HcU2ueuay6j/OzHn1Tff3j7F/CoaLU/wzU65vrvjtj3/HmuDiX7vnI1F8+fYVA0yYcKZyydMuWe/Vcw+KWcfEly9L8O+eu/vZL//uAPMhjcykz2IBe3LuXW0x99couxhz3sYQ97eFxcfPHFPPzww9PfNzY26Pf7XLRDmChJEo4fP37BtVo/ob3JfxSMBoRjK9Uk9UO+2jyMdI7HWOTKR1a48tQ5cqnIKofnPPz2iOFCgRYK4aBQAQOraeaG/YMSLT3W6OKlbWZGMRaLVzhKFdHzFOtxSHts8fMmh06PWF4dcC6IGHoxaTiHEgHtJKObWhARSmishH1nB+SpwUnF3GCO+dG+2oOBwYkSYSGwB4iLS8kljIMIiSbz2mz4M6xFs1RW1fMVdWgeBvpC4rycoQs4JRc5nS1gM8kj6gDreRMbJmTECGAtixlZzarzAUPm+/QXj5JpD5xlzYasujpPSOJYHBbo3jyhjBEixJgCnMFORB9Kqek3WpwNuki5HeB0Zm6ejAA19IgHAussQ6GJswJcTSAFAis0sYho9IZ4Wa3ElwQBUvr4IiKQEd1xztwopdvP6jVx4MmYXjxDP5jBOUFfRxQoclFhcZzpzjN2mlz7LJ/rc+mpnMzz0Man1JqNImZY1p4hCxgs3UHC0uaYSnmMPUU5cZxaLG09IhceuiyZP1erFiYuoHISWVmsACs1Qrbxs4toJdue2I6aJ1AxYV5RWUE/iClbEqVmQApGoU+/0eRkd5G72kc40Vqmk8xzLpwj8y7GNw0UPlZN8r2UwIhaDl4IhzCw0WzRGBk6g4KB8ykHPkbtLu7qCUkgIySq3izQGl05hn6ABTQSJSNKwDrNZiMiU5ArHwGkXoDTIYmOySdU0U/grO+xXicLsfzIObyBT9+EBLL2cvTimGEYsOq36YuIgR9RCU03gzESXYaEI83AtOpQza16YkGBDusNl1bVInAH0CKYPJkCKXy8qs5H68m4zoNUAWFRe6M7pc8omkH6XRquJivKgnGCvtLMZY5OoXDOkjkPg2QpWaRRHgUgt3U+Xe4kVgqMFvRlg00b4UQtLoETzG2mzAwKjJNIFALLKIjQZR16KapaFEM6V8vnmwkjcwIjI1baBxiGCxil8aSPxaJUxUIvw5Z1AfDKE3RUB0zEUEYTeXPoBXUhYqsNKI1rVfTDJpWUONlC46GRSOlPVs2BgAJFJTwKrSmlIBEe0tZiH+d7SJ9qPCFCdfToUd7znvewtrYG1Lt2t9xyy64/NN+uyK54FdXr/gYzWwtTnC5KGqO6inh4/ase95rW/ufywsHnALi1exPxHe/7R/f7yNlP8JnTHpeqdX4wuZ6f672Quc2Pc3fjlcy89DMs+iXf+0BAXKZ88IrvJbcHObyxwmu7HyRqprzzp38ebeHf3PtBVldv4nj/MA+d+g2uDW/m/t59nBw98uQXZQ972MMe9rALN954I2fPnuWOO+4A4P3vfz8veMELiOPtEJH19XVe85rXTEnVZz/7WdbW1rj22muf8vFIZ6ic4IyemeYrpF7EOTUDhSZKLYFuQ8tSVgEyrRC6JLAZs+4sFXV6thBw5emzzBSCQmgEgoOnW8z1JMK6eoddBcycHbC02UcJn4HfYNyaZy69lG62xMj4ZE4SFdDNushJbSMlPVIi5ocjDq5usO4U0ahPo1rHCskJsY/SKQbNBpU/C87DKwMO9TO0ChAo1sOI02GbcalwDqSD0ZzH6mzAWuzIUKx5MUMvQmYBwYkWVzwQMzMSjCuf0muh8Dm4mtNIC6TQlFLSD+o6PUb7VEgWeymXnt1EmVqRLK4CqmKRjewgx0SDk8ECIxeQiZANfHLfZ7GfcOgrCSq3BOVEOlorFvsjDq0MKKWHsob2cMR3PXyGhV7t9ZGmYml1gDYVwsJG0GSj3aWMOgyal9Ao5vCqEG3rAshDE7C0McI5ATKoU/1VbQj2dZMVf46wMOjMUkw2tQUOWSoEGmVq1q0MzG6OuPzYBgfWhlRS4ZRgqZfilY5ho8FXGm1OdNqcEx0KqSh8D79hOHQuIU5zZgYlSni1iTohAVooLloZ08hjsqKBJyJEPk+KIlOK5TN9Dp/dpG9D0jjEeRIr6/BSIzwKJxHS0LFdIhugTe05SKKYSkmUUOhKYJzPIG7g5QYtQ4x0tO0mIPGUR7gqaA5LnJ6QT1ErKCoRkOGRCUE/CEj8kMrvMpdchOcEUvp1MWIknh+gfShCfypNjhNsRhFjJRkSUhAxthFnvTbH4ya5FVizRLNoMb/RgxwKb2ZyH2B5c1CHxglF6QVU2sdTAVrUIXcBBmMluRUYJxFIZvtHaOVtKt9ReYZMg5W1J2gz8CkQZFbRF6qW/wasqsc78n2MlLT6A/zNhFIECAebLuBMNMczHl3h2Y9K9mUH2LeScP3XVnA4fFmymK6zuJkjhcY4Qe4rZhnyDM6hbS3invgeqVMUTuGXdT6YJ318ETDTL1GloaCNLBvoxJABoYqRopYpj22TrjqAkAJdlCyvplijSQmxY4WXCa55ZAUEZF5ImTviLGOmqgsZ1AIcULna45ZWmqHXoFSa0muBhTBN6IwrwvxqWvk82li0sWzqZXrxFZyZ3ceZi5p0/RkiLmUc+Jxe3M7vfDrwhAjVr/3ar3Hvvfdy0003cfz4cW644QbuuOMO3va2tz2tg3tKoDxcPD/99XOr59jfX+Og2MSFj1+4V1333cyf28Q3Bfe1LsHqR2C4/oS7HCd38xef/iLGKa6Ua1xeHOGix17G4c+/neHKUda8P2Tppb/Ns47fwU2P3c0dC5cz39uPBBYHPYLTs1w/dwUf+L4Xs7zR57WrH8Ozb6Dpj1g/+SA2uZhbH9vzUu1hD3vYwxaKouCd73wnL3rRi3jBC14AwB/8wR/s8jp9I4RhyLve9S7e9ra3cfPNN3P33Xfzlre8hZWVFX7wB38QgEOHDvHWt76VN7zhDbzkJS/h3e9+N+9973t3qQA+VaiAzHns3xxyZH2MFj5KSNb8FpetzBC5eXwTMzs8AFqw0lzgIbnIYrpKszfCyEUiewlXPJYjZF0U1cguuDp8ygI4R6MUtAYlBji8Dog6zyM1HrYcE5Ux0tViBDOjPiDI9PZ8r9o0KFWiTYlMc6wFPy+YHTcoVZtHvQPMMiCWGf2oydxmyvLGEBwYqSmUYqk3Yn4wrnekgUEzZBQEIA2lk6y5Vl2bUwQoGgSloTtqEuTbZPfARoerTitWmg3u97usGybqc7WZExUlhedjdIQDfOvhrGD/yZBKCIKigS47lIGPCDRGag6vDWkkJTO9goVRho+HV1iiYqt2EBghaKYFSmhalUQJD10ZtNEUVUkhYoyUIBVWCHTWpdIC38U0nYcWHo1KIIXEK+HRuIlx0B4Zes15+o054pmKVh7jshBV1vNSUYnR4GiyfzBASoNXGoJSE+eWzrgk9yMQAiU9pJCUcuJxco7uuCBOYwrZppnNI7zLSD2f1qCkUbY42DuCdZLSCwHB/mFMMwecwiRLBPks54jJywJVGryyzm1pSIVRHqVUzK5p5kdt5ns5S+MKicIJSzaWdV0h4XBBl8fCfTgZAg5VOFoZ+KXB13X9p4YoGPgextUeJazFE36t5qY0i70BwXrKw2Fn6kns62VCGbF/vG/iqavRqxSjykdLjaiLBSCsI8wKLjl9DqtmqdwyQioWRmMKrXCjCG3MNHysyAwr/gxS+PgEGOkjpCb1QnLPY9ywyDCBrE03a7N/Zci4aDMyDXo2JsvbFM5jpmzSyiqCrKQXhaThLNDlbKPFXHoxiAgjJeuNmKDI8HWOkpBPlPsKVVHoioyYSDcIZMT8yKKMQdkBIpB0Rxm+6OIbi67GHHl0wGWPbhAVDq1qQY+ZLKPZ67A/PUTpWii3SOoUpauLYC9tDuqNCKGICkEuQwo5RyVmGbkG+9cSpFMTNUNQKJxURNZjXy/HOGBs6KkGSkRUYgZJAysjrPBZd5PSzjvyQT3hsW4VlRMklc/ciYzuqKBQMQhHrjyc6pD7BTLzWeqNaGTFtKrXEc7SIsGJJSpPkcQhPf30Fnl/QnEKS0tL/N7v/R5pmjIcDpmbm3vCyknfbrjrwXvZX5VcsW/+657jXf0s+CPDtcOvcmLmIHf7z+S6W3+L8l/9xj/Y/qMbG6zf+T4eOPk6ZshwwRqXPzeg/eU3otIVlh64iv+ULHH9RY9wdKi52mk+xo38n3OneG0j5dzZixkMXkNjMGBz+UoGjU+z+LkvcvCHf4S17HpecuSvuf0Lb+RjnT/hpy7/10jxhDjxHvawhz38s8av/Mqv0Gq1eM973sMv/mItNnTkyBHe8pa38P73v/8JtXHjjTfy4Q9/+ILPP/KRj0x/fvnLX87LX/7yp2bQ3wAjE+ALxYGBT+i6KEDLgGHQRk6S64UpiYoAWGLgDREb0B6WqMywKbogBHNZSCW6aDeLwtAEZLaJkdAeG1a6DWaLHgKL9mdZTBy5e5S4mqGipNHboNNo4yZiEEJolkZrPONBywNzh9DVHJ4SOJFSCOgOEjxVEaWKtVCzGXYobIpCsbCe0XcOaQzSCjJf1MVprcJqja8jEI7DX81RZY4Ufh3KdBloBJ20g3C63m0vMvava4ZLTNXOBLV63kVrdQHRU75DSo994xb7hmtI6aPx8ImxosArLJWQ2GDAQnExzjnOtk6AkMzl82hxDsiIciikojfTIe6tAtB1FjeM2VB6KnYwiXbCOWjlLfKqJBMVnaxDv/IxExW6TGusVewbpGS+z9ygoOp2scJQulpuwisrZCw4Opxjn9V0SMk5R9/4OCFpjwV+KbDG4GlHQwTM9QI8GSDoY4N9xCbCxAVCl6iiLgY8Oxix2YiIVYNR4OgOe3iFwSkNRqIMHH3IYfVaHU4pKrSxGOpwTHD4pr5vVkra4xHKKHw7jxGOIyd6QIxBYh1Yq0EowsLgtMRLx+xPYvqtAuVLhlWEVyZQyIlXQrF4esyiUpzYH6PEmFrufSubzDHfH7DebqNkjkayvL6GLgx3XnIE5SzdrE3hB+SBj3aSbtphYeA42cgoWvVzHGUl+zY0cdFgafMcB9ZOYgOLlE2cAUQXXzniLOaqRzYQkxptdb0mR+gilKwQuUOrFo2iztHyqxLjQT9qsN8qpLUsr5dYb8ipbgftJIGVKAtBWTKbpch8yFKoUd6VCAG90tAgoskcqRiwfzBHmD2KNAlS1HW0POuTWw/pBIubA5qiQHX20ylm8KnDXr0yRWqDLKGV9DBOoiqHVA0OrQw5va+BySPCpCTIHGIGQo7iTML+fkFcxoy1AGGZ6w9YneuCgCSYwRce2jnmU4sWPr28rPMnnYcSAaXUzI9mUMxSinMoUSJciEHiyWUcoCVcc+IsgclZazXxy4qxqfOdrF8hVcXMY0Mu6W0iHcwPCh7e78FYMpO3QFVUzqCLFM8FzCZ9EHWNK298Od3wftalh/Ycy8WYKnt6Q/6eEKF685vf/HWP/fqv//pTNpinG845Vscp+4Hlm159wfFROaKyJZ2wS+pdzvf27+SOw1fzKfkcnnfqDynNr4P6+gx3ZZDxsdt/h1c88mN8CcPFaoOXyLuY/dzvsRldRjZ/I4vnbuffPZrzuWPXEZ47wfJhAzLD+gOOHriLhx58HgszX0D0v5/lU5dw7LLncv1dn+Qrf/z7XPdrv8DDj/wk373vy3zy9OXcs/H3XDt33dO4YnvYwx728J2Bu+66i9tuuw1guuH3ohe9iHe9613fymE9aWhjmBmtoV0b6NEqGqyXFXEVTGtwSmfIVVgX5BXguRJVTmqxiK1NT4FwCmyFwTFjB1gKEkIUmsVxDykF0sY4W6CqERFNtoQQWsM+y3lWezaUJPM8uoUEUtrZCsLmRDaidCnKGCSS0ilE7rjqaz3ue2aX2dGV6FIwVpawsEghuPakYG2xSyWgXTo2/R7zuSasQhqjHCscxrPI0jG3OebIuahWe9ualbPocUaUVaS+hzA5ssiYSWdBOHynmR9u0BnO0U7HCBEBY+JcMGj6QAECcqUJyjmMcEjriNMCZWcIyghNB8GQ5Y2SzVYbfy1jeSPCSh+cx+wwJbCKfihpoJkdJfSjOjfGAV6lsKIOYpqpfC45s8IobJAq8E1JGnQxJIR2jnahUFZwVpa08oy0EfKsgWLxzGM4pbDC4pclrSqjVS5y/ck+fhmQuYQqd8z2JFtlmny7DydaLBWznJYnkZVBVYYbj51BakWzPEpkZinsJkKAsrVsty5ypDK1R61KCOhiyEDUnspR5JBUXHb6FC0sd+/zyLXAd/MYE3JguJ+5NEa4EYLtWkRz/QQl5zBZH11UeM5ShA0KD3ItiTLLbL/AI8aKAcItIyu48lzAphcDCRaYSaJahdJlzOQxF7mCXD6Mriq0bHF0IyD3I4wYEJiUoW2BskSFx8Lmo8z0LafmRywPIsJ0jEwFa1GIMppK5khTk9lC+SxkOa3VAFutAExERwQzpYeNHbFpY8ouOIiqiDgr8Uufpc1NnF9wZqkFOKSx4GBuMOTw+gaJa6KUzyiyYCVRlWJdCU5PM3wstTdTiYhGFaOHdThemBQoBwsmIE+6tJKJsIhRdLM1TDVA4k3bCbIx2hjm2cQNKgZNBQRo16RRaMgqWrlXKxQKh9Pl5Lsno5P6SCXQlcdIJWgU+0b76NoVCjSV2JKcoVacDCrmh4ayitB5zriosFJilMSjQzsZI/QzQNcCb9IaoiJCuQAhUpZ6Q5RtMw5SGrZifcmj1c9YXBvSJgdR0c9bdPopldoulu1lGUGSIfwYTywntQABAAAgAElEQVShZQmyQDnJ2HgIHLHLuPbUmDX99NahesIeqp3o9Xp8+tOfnir+fafgWJrRGQ3xZEVj8fD087RKeNe9v8Vtpz+KQ3Bl6yp+9prr+BdrX8Jd9D/xSGeZr2wc5pIH/5ziGf/q67b/1r/6MP9xcD1ftooCx6vU7bys+Fu+srrIX60vAZtcN/+j3DT3IW7Ud3K8PcMdL34EfeoYRXKUv/VOM6MkZ0XMGzr/mb90b2LT/kuS4PMs3f8gqw8mBM0beNnhT/LXn/8l/urkR/cI1R72sIc9AL7vs7a2xvz8dvTB5ubmN63+962CX2aERYlwdbBSZ5TxrHGOzwL9Rm0YCAS+q9iq8LM/38AVAiFBlhlO2anJo8q6iK0lZyusxqcgrGIEbcAh7JiQlIxa1MCjQrkKz0j8yqIpOd3pTAW79/X7JDJAIlA0iIq6yKtEgrOEpsXlgyZBXgENfNVBiFWsq5jLN2iOEpKmh8eAIY6ZjQRI0G6WUmzUghxOcmhQMlNKMqfRGCoUYOkOU+LjKV+5KK7JloSLehORBVenoc8kKb7J65Ayt8jBTUXebAMjlHU4CYfPCdaCFRaGFenmGkoKVKlrrwwCiQ84Dq8XWCBwbZgSBod0Ek2bTrlJa/U0g1CQe5qFfoKxCb12A28i0z2TZtjIIITFdxppJ+R0XK/qZWONImadmIgEW2VIYpzNUFKxvywQyTl0noDzkBg01KqIFmaHY1A+OMdC7zTG9olLjQ+UTiCURze3zIxHjO0IzysokShXIPCxIq9JAjUxTAmoJlJ6nWyEl2zgVWMccLTfYjX0gQFemXA4fZSG02Q7lCfBMZMafDJIt6UByqDAqZRWlQAW30VECBBdkq0NgzJh30mJowUULPXqd6GwCcLz0MUqnWGMYR5Hyf5khXHUYCA1LTPGE5qBiYlHG2BLms5wZHUdjyW0UHjlAB35SDmDFAm4CoSoRRaA0OSkEzNZSIuzglYuKdIS7UqEC0BU4AQzecLBoUIT0bcZ+9ZyEAHSgaLJXFbiiZzSNZGENfMVFlvV0v3NsoGXrTCO2xw5lyJtgZ8PUHaGLBZ0xwmwRMRDFHJEI00RwEJvzCCMaOeOls0ZU0zfb+kEzWIRoWvJ+pnh9rHGaMTl2SbjwCOQHZCOOddDlmOENFw02qAMFavBHN2iA0IwnNRf8ynwceR4VEJQaMGhc+vE2QFKCgoJfmEQLsEXGaUDbX2irGBurKnI0WbEkXMeEQcwdhOPWYTUNCqIijbR2T5LGym+XQRRfy8oIpY3PCSK1Va9hGFa0UoLmmmOJx2eLVE2h4FmftXycGsTLwJnZ2lUJ/7hL95vAk+IUL3hDW+44LONjQ3e9KY3PeUDejrxha/ewf7+Ood2KKAbZ/jNO3+Rq8WX+IGDhrSI+NzwGG9a+Cp/8vdr+NcVfG3hALevPZcrv/j7X5dQ3fa1h/jRvEc8eC636RMcNBU/Jv6S0bkA90nN+hWX8OgVVxKdfoAj8b/nSPRLxDcN+IgLCBsPMRpew21rR3hO4wwXDZcIvHt5Xmn568UmJw7/AM889kG+8Ef/Bze94+fIH3k9z1u8j1sfXOUXn5UR7lC82cMe9rCH/xHxUz/1U/zwD/8wL3zhC9nc3OQ3f/M3ufXWW/mZn/mZb/XQnhQEgkaeseUp8kuLlLOEIqQo+1gJISVzeY8iN3imRWc0ETYAPJtT2goBaDIUtTjDdgeOhhMI45PhCMlrgxLwKZFsF69tV6N6B9sJIrdbDn6LrioZctFGXFc2kglCOgIKsl4fqJXhZDVGEqBcgMPQ7I3xEiiAS84KNmcERljAQ2DpVH0y9uNnCuEqNAKPsjak8nqsQRly+FyIR00YlwYDxg2Nn1Uo1yIoS5AQ2TESQ2EdrcEKDmrvgekhpIfwY4QZ41ctVFXR0uuUVUHBZEPZWSJSsi0PwGTiEsuctUiZovAwZoQ3VqTt+gQrHBYIywDlasnl+V6fJKjNr4AKKKgmJDYgQ1HSGUFstgxgC1g0bRbGligdARIk+OQ4BE0zojQxPhWVsVglmRmlhElJaGsbwTcZXhJR+bWq3nw6gLRkHOU0ipRchmQumTxxtU8mIsfVfsf6n8uA2sMnnWNxc4wEIkoYGzQRkR2RUueq1XezM/mpfq4dDq8siJIBlS6w0iGxIDWg0K7EoAlMClJgadJ2fUoqKjSSkPZ4FY8Kz1gaJPSlJsgrsjSlWXl4xlCJjANnh2ibUQeEVvg2wcjJFoTVKDuRvHfx5L46IrJthQGxJZPgEFLgiZJWGUDVA0ALCa5kaRiiyQBJ2wYcWAsYB9BM67YsTVzZIHIBVl6okN00FbosKEtNnGf4RU1iZTUkwENTYlDgAoLcsLRxjjQoUBgaeT0faVKa1PXdSjSBKfGosJUAV07mUc8FAb5N8EYBslUT8NAU+C6hFAolQOWGhXSERTJqaxZPPVTfx8n4PSyIDh1T4coQZL0JYzA0hmt0sxFSGDwgqWborj1GKCGv6s2I2eEY47Xw3Owknw0WhpbUc8RFTGAdbip3H6OIdq3Z3GiEtoqQ+nku8ervKVMQZmDLBQ6vnaXXirBVii+eXg/Vk07A6Xa7jysf++2Mu1dX8E3FpVc+d/rZXzx8C9/vf5GLlOLLJ27m+OBibp7v8frZFv9u3+u4ov8wp2fn6MkOD49yZP/E47b9//3N3Tx37TrGcw9zT8/wFu/9KGG49ZKfZ/isZ/PjD9zK933xk5xofD8PrD1M3/wkh5sZ/3vS4zdad6NlSbd/HSfi+5EO7meZ2J3gpktmWNn/PZTK4+DJ03z59sfwvWfyA0c/QbJxDZ9duf2faPX2sIc97OHbF69+9at53/veR7PZ5OabbyaOY9797nfzyle+8ls9tCcHIfFdSYO0zs2RDoFGYIltiajLvuKPxrVIwzBDuAiYA7uAnnhQNIbIOXx3YV0sYesC8VNRcFcb7lKWTNxDF1wTZVuemdo0VphpCwKBh0HvIGPSWhBim3kBkUxwLseaHC8tCIr6/NlBgmcrNIamlSjn0XAWr6yPe5M5+ZS0bL2zH5FzsL+JppzM2dEYF3ilYb6/VXNGTAmiR4VnSyLy2ogHnCtwW16YQqMIcGYRhT9ZAcdisQlASDG9bqs9aYPJOoDC4E98hg1b0HAey8kGl589hs6HCFMgsLS2ap7JrQ3R2sit5Z8F8fR+OZyrpuPXVV3od+d6CueYSXK6yQjP1Ua0NAng0La5tQR4ooPG0Co2J/IB80CXxrgEV6GpCNzsjvte5wuJLYpVFQhbTNdElBnCbR13RLnBltn0SkVIIy/wKIlEUv9PWisUWouuDIc3NFecuwTJttBJw7pdhL4uodyk1qBzSBkSyIxmmk/HuuVRUxbmxyMaSUnYGyBNTmAKAsrJqfsn4uo15tKEkAI9uad1PpyYTj+i3tRo25KAnHaa0nAJ0lkiMgKXE7C9JjVxDGhkBYu9ETEpCotnLM5ty++LOstsOse54Yg4L5gdb9DIczxbEznhHPuGG3hUE+LQxQnwSZjPhgQUtMx4UpBr6/lxeK5kaTTEp4Tp+AQwS0RO4Eq0i+kIR2uU0xoUzJ7emEiQb49LSIsnSpaGfXzyKZmq74slIMe5rfMnmz80aeSOac0Ham9fYBNUNSCWCZGswzgdIJ1GUAtgNApbe1mBlq2m93Xn8wj1e9aqMiI73h6rq98LWxV1WSdnETi6w0kBbzvD04kn5KH61V/91V1hE8YYjh07xvLy8tM2sKcaRT6mV9QVvg9+140AjIoR1cbvE2rF73zxl3g0X+YHnrnITHkvy83f4qee/Ze8c/UaRp2YjajFZ5Ln8GP3/Anp9/6HXW3f8dhxfi6dwamcBz7/l+y/4kZerL/Exxvfx/f++P+Ke50j/eP3c+Mt7+OhZ74D8bUxmzNvJW5/jO9bOYEQX+W/cQ93DS7hcOckQ2/Ix+2zebW9jejYxRz8nkOsHruB/We/wN23f4LLv+tHKMq38uzWgA89+De8cPnF34IV3cMe9rCHbz1WVlamPy8tLfETP/ETFxw/P2z9OwHSVXiuAlEb8QYxMdQ9wsyQTQwL6QSeC/DkmOnuM7URGlBskxsBbivJZiKcsHVA7u548nEwcY4U21uvDprnFT8OKEjZzmlo2YxUlmyFxLWGJYh6nFLYCemZ2BOTAq66spSyDq9bHgywwgHf2PiRWPQ02HF7LvX43fQcJyCe7GBvocWYMC+JJppgpdMc2txAYvBQhBNvEQTEbNbtZlurKqbkCUBTYR5nb3qSSlX7s8qqnqszhNUG3uT6dNqPw6fCTtQUp4Rmci+cK6bnTW/grrA68EpDKeSUlAUTL2OOP71/kcsJncai8SkopARidhqp07lJmEgr7upHYfFlTWT8fEQh9ZRwAThbr2lMSmwNGaZuUYCePM8Ree1BxGBYnHQRAXW7QrhJH1tzriFwSGqy1RiX2+PcWgoJcbZ9fnNUE+ytc3ZWItIYPKvwckcp63kXO/KPAHynKURF1xokitBaFJpxaWgn2YToMZ3vTggUnguRpPhT6iBqTzCWtqlwQoBQgMGjQjsDBQSuRGEp8CckUkxbDZxPLg2eS5m+7+d7vKZfAxduiGytqUaD82BHrpuzdQ5ZtOOz0OZ1XSrY9dxvtfN4bQvh73hmayzktvYh7xqrA1ERkuPbklIaDIpKOhYGJQpJuYOURWwT6AODYtemArDjuy6GagnciV3HPTf3eIvxlOEJEap9+/bt+l1KyXXXXfcdlUN1/30fZl8vJ5QQRbXU6qcefieXBiX/9b5X0rOH+OMfexaXzDeAy8myZ3PsgZ/gLfvfztt4O1+IL2E2HXLm3o/Sed4v7xKn+JtPfoVfyA+y3vgQ92cN3uL9X/Rdk69d/mNcBwghKA8c5bd+8nI2OMZP3GYJk4/Qi/8ti/7/wtkFn+vO/T2fzL6L3z99H787fzWtjYs4I/6cw8Zxlaz41NHnc+DM5zl88iRf+vyYI1ce5uVHb+U3jl/DRr7ObPD0Pih72MMe9vDtiOc///kIIb5uoXkhBPfff/8/8ai+eRzKe1PjQ2J3GW9CtIiswYlzBE4jKEkmxma9J1sbIdOqLhPi0nDbxEIKNzW0gwkxEWI/9W72OTQHMMLi5Am2QoW26dpO1Ea+2jL2HydnrfZkCTQVim0P184WALSz+E6RXRCaU1vE2qppPk+Qm2k7Ymr3b5GNeqR6y0jdMaTQalqjos49shIr6h34LVNbIhAinLa9NcLYBFgElbRUOw1LuXtHf+u6VmLJdxr7og7RlNuVdtDOB5GBdHgTw9lSk6LQepRYjNzuKyKHXEyIxYWr7ImarKodnQY7SGfoNHUVJIGlLshqRU1Cnd19fwNbt7K13lvwJ15AACUsEXktSjCBZxWl3OldAjvxnmydpq2CyTk1YTDYiadTTs4Tj2usC4IdHgspHNbVhXuLyfo1ckcqucDYdhd+dAH8855N7STa+JNn2qEnb2FnZCnlhR7f3SOdrJLcUU5WOrB18auZYUnpLyBEA+dOwuTNjXe8o/6uPuoWLeBbRSFrpczt8MHz3s4dk5XUsvyVsJPnUaAsILeJ0/RceR5pkjuIyq6+zh/a1kbMRBQHS9N6JJPwSgE0rSST29e36OGK/q6RKwxq+s7WIXzSickmy44unfs6N1Qg5CzO2cnTtE1mn2486Ryq7yTos1/iE6tnWRo6Lu7UCcvWWvzxx1gpu9x++iZued01EzJVIwwv5tJDv8fxB1/Lf2j8b/z2/L8lWfP4RHUdrz35SYqjtVcoKTJevrpAHp2l+ugnMNc/h2fL43yQF3Pd1c8DwJQ5/+Xch7hz30P89ocMQjrS+76IvvE1bATPYXHt7zi6fBKOW/6qupZf7t/Kh/hJPuFfylUrtxJ9eRl942H69yxxaKPHX9/7Ja59zqs4bH+Hy+X38NGH/4rXXvm6f/qF/WcA5xynT5/i+PFjjMdjms0Wl112BUtL+7/VQ9vDHvbwBPDAAw98q4fwtCDOix1m+vnGZViHhZn+xE6oTQclHNbVhEJR4YQEq/CtITuv0kmdC1UbGUpchJHrIDzAA3cOjZiYUVvmzja52P3z1s6xIGa4wwew28DTwnGh+bbdXkSOP6llc377QhwGN8ajB3bbyN8ikNopygkJ862mkCXCgXAXUh0lXU2yAB8NzlFgKKXd4fTZytXYve4SgXKwm+5tixhcaLRtB4IJ4ok5nqGEwzlou4zkvEuk2Fp1QYCa6Nvtxra+2laf5+36fx3jUez4SeKQzmInapA7W/OtRk+eo0nFsolRe36D297QnQitvmAMW1xiZ1/aTepR4ZCig3ODmuifD3nhGtT9WjivdIxgu5N6fvL8i544plPYPSaFpDyPVO+GR8MlWCd3OM9qErszDM4va+LuWY0VFUbYbbI7ebYfDxpFQQOFwNLfHoaonwqzw6sonSCcFOKuhEGj8KxC4MhchRUOLQwWMfGQPu4CfANMnjcJPhLjXF2bzaaAOu9MDTsI+c4edvX0dbvd8Z7tWPPQ1qIxGdUF10aWmmDv9Pw+TXhChOrKK6/8hkpJzrlvuAtYliW/+7u/yy233MKnPvWpqcfrj/7oj/jTP/1TrLXccMMNvPWtb8X3/cdt40mjyog/9KP83WX/iZvcPVz2Xc8B4KurH2DJK7jlq6/iZ553lMsXLyzMGM1dxcKf72fj1Rm/vPjbfPj0q1gZLvHlL9zGVRNC9TefupMXupg19WFkz/KKzud51C3ymfg5vKlVJ+J+6o738pedz/Ois4c4+rWHGMz5fHH+Iq4/dweHgp/HhT/Nc8uHib013i9fzH+//Ic4190HvJyFtdNccfw+rvrsJxlf0uXaB3uEpePTny+44opZXnrwTv7f+0/tEaongUFvjTMfeTuH+p/jZnoULuB4Ms+nPn4x3sGrufk1P01zpv2tHua3JfI858EHv0K/36c702RhsUk3ivBaB0F+Z9ao28N3NvI858/+7M/48pe/TL/fp9PpcMMNN/CKV7ziqf+78k+AIKsmhsBuTI3E83dsJ3+ifRwFAinqEKfACrQTFA6YCCTsvlbWeTBid6H7nYZtnbPjJqFtFlBTI3enEwZqe2bLwLbUHgunmNhcDuMgsh4VblKXyUx22cXkekFoNZncoi1bO98x2m0ghMa6AiHddFPcQ00MXIdGoK1P4HIqpRiy7WHxreJCo0rgO0UlzCSp3k4CBM8z9cQWURXE1iORZW2smoBSVpTyfJo1XbzaZybqsFPnTlCH5NWkw7cehaw9S9palKzqML1d2PImBWgxj3XrQD710Gyv0za50lZOiOdu282K/ZN+H6HYeWjqDa3nuD18i5USITxqQW92EG2IrSGR2w+qD2hrsEiM3DYxlTNT8rZzXjU5rHt2aHbSbmkdVl7A4nbMF4Jt9QjOh5gIa+yY/QXnAGhhEc5RotBOUInd7W357nY4G7ePi90bDEL6SLEfXI9QpGxl8WmrEDLFCE113hw0CuccRkyelWn7Am3rt2nLU7mVCxWyCBIajOhNRuZPCfAOb+NWmC/QQk/e4clRsUN7gy0FRrE9tF1zOx9u4inbzp/aGvtOHrr9RFpQ+xGTDQPnTkzGWd9/PSGpUlisk2irtj3zTpw3jAs3OiZuzQuO+Vbw/7P3puGSVeXZ/28Ne6q5ztzz3DRDQ9PMIBIQISAaETUial41GiUmr+ZV1BiHmPxjojHGgZBofDWSaBxAgiAoAiKTzEPTA9D03Ke7z1hz1Z7W+n/Y1d3giAQufQ33dZ0Pp07tvddetXad517P/dxPjMTyk8/9s4+nRaje//73s2PHDn7v936PwcFBpqen+da3vsWSJUs499xzf+nxF198MUccccRTXnvwwQf5yle+wlVXXUWhUODiiy/m3//933nTm970zO7k50H7/MM532XsrnuR1jJ3xUoAdk98jVwSsGPmOD75+wt+/vFHvpadOx9kYPEmXr7m6zzy0OlcPrmUd+7ZydicBczdaGk5DeztD7BnTZlz5SN83l6AKPoIIejFLT4/fT0DvUHev+kRpqM86wvDmAsv4Su7b+C9k0XqjZMZ5TZWjXa4f9cIJow5Zffd7HPmsrvictMpL+Getady5i3foWNj3Ok91J/w2e0vYdXS+wgm5rBp8lFWDR/y7M7dbyOsRbb3UH/kesr3f5pldpqZtMre2TxFuhwz8Dhrvc3s+vHd7Lni27RecBpDb3gzetHiZ+XyqU1JTYKrvF/+5t9QjI/v4vrrr6bb7WbfcxZars+PVh3FsckNvFPsZOjIi0gHVv66h/o8/gfhPe95D7Ozs7zoRS+iXC5Tr9e59tprufvuu/+f7EW1X/KkhSGxLkLMB5J+iZB9ys67RWa1VEhcBEbtRZhBUkCJFGEhn0JXpljp9IOLn9yxfTLZEByUXGUObAdInBUom2WvJBZpUozMjnXkfjmbIRaZfbovM4olaBOK/UGXQCPBJFgMUooDgSJkx+WMS0yCJSZVoJ5cy9OPnexTkjP7z5CFhco+NXyWuCDKYGsH3qtMlPWU4iAxDEyPtj6Y6YN+xkXYTNbUv3bOZDXZUs5FigjY9ZTPTwLSRkibvQ+1P+Mg+qRTImyCFfopsy2fFJhKLK6RJDLr72XFvP4oB4Hx/vqwJAfmxiKFxUtdBILkJ2rMBAIrHLAWYTPSrEVKYhWO0cQyQZn98rz+ZyE6YHKIPrERAjSWrCWY6Ge0MgkagCtTjBVImxEvLQ30zymNBSnQ8mDljhAmm8c+YbHsD/L3G4nI/rw/2cJhFzAPyGqKUllAMpvd1/4FQiZJTPtEU2D7pFEc+KwdesT4QGamkhqRuWGKhGyE+0s7cqRyEMwuJAl5IkIOPg/SpCRSZZRQSBAG+aTwWiJwJFmGijTrM/UziEr2PIFS80lR+FYj7ASu7JKiaJHiGXOABUlh+nsjFaBFYA3N/kaIsAIrDNocJFCSTNIXG4VAZBltbOaqKBSCAqJvgrOfoCshSa0HdHGNk/UlUwIrLAExCoiNJn0Sk5L7Wb6AQiIIpcJRtSeRfw6MSRlDIrMK0YPPgMAnAqmRwiKlIYEDc+YYH+gi0CTCAZlijSRnNFYYQpWNXpvsKXAyQ37KZvtPzfmziadFqK644oqndI+fN28eRx55JC972ct44xvf+EuP/+M//mPWrFnDP/3TPx147frrr+fcc8+lVMoKTy+88EI+97nPPeuEamM35LKZmP81Oc7KygBKaeK4xoDdzg/HX8AfnrAC9VM7IAcx8NILOPyyK7l48V/xd+ojrD7yJuRD8JZv3cVl5yoOjfPsGfoGha0Jhx47zhNmDjvFAhaMDAPwX5v/kQnZ4t375hJu307kSMTRx7A5LrBq/n3s1Zp1yZ/xss56Lml/ldfw5xR238U9a8/jojuvY0dhN0fltvGd+Rfz7d+9iLPu+SEn3n4dwfhWJmdzVJ0yrxnZxhUPXMUHznrvszp3v1WIu3Qf/gozW25G13azqredJJY89sAwybbsH9qMcOmsXMXYYbtZdMweVNVQu+F7zN7wfYLzX0n+4j9FeL8aEbKdhO2PrON7U9/jPvswW8QODIYRf5Qz5r6Y3196EWX3mWfBenGKkgJHPWPDzl8Je/eOc/XV30KolGtXH8++QpVTNtzDstlJznnox9x2yBrOGTmBT9z4Mc5edASd4971U5KM5/E8ngs88sgj3HTTTU957fWvfz1nnnnmr2lE/z0UCYn7QaQhQAmBRKEw/cxMf1/fpiRqIXnbQ4jd+GICRb8AHNDSIoxAIMjZMXqUEGYnsQr7gW+W1bFk9TSZLYJEkQXc1rpAB2wmKUxVAT9JaLO/F9ZByD6ZKRpLQ1piIZHYLBQUDlJ0sSL9qePEwQ3zp/zFRROJPUiWoA8Qvmw/GzEXzDjSHCQNWlhcY7BYHMyBoF1bi2akT24aQJYxkSh8QkLpHdhtF/1d8aeSMYFillRWcUiJ+0TCtwmRAGU1QjyVnkr2B7zZmCMhEcZF2axeyjMQWYkQffMMK8gMIpooY1HWoK3FkyndFIzKAmRlLWJ/7dOB3E4WbMo+JTngumdHSGyL+IBhSZTJDQ/Me1af4hjVr61KETQQjB44T97OIKnQ7V/DR/6ExcdB+aEWFm0zm+vYumi5n1jvJ00GjWZ/rktaSXwgI5Jd70C24cDpDdJCTu5CJYsJMYTKkpKt6VSMIqzEETlSm+DavVgDHbk/Q7X/A3lyFhTyxsE1HWLpH8ioagzCCgKjCegQ274s0skjMKQopIkRMsEHQpz+eC3aGKQ0KGMx0iLIY2SZItuQ/cyJSAWxFKSCbK4NICRWjGJsHWlmcPvVZGl/HqRwyNkaWNBGI6wkNUF2DiEwchhhnWzt2L1om5Kgca1BGgdP7cIYl5jRrMm0lQgEromI+wlDgwA7iBJVrJ1EmBCjBsDWccRcJILYbuuPyOsT+x14JsTDYaY/qXb/apAakWZ8s9/FC2H77pT9ayqxCEM364tmdxPi9bO4e/prIUaKkEzenD1rHRwgwVFljPVBFHFRCLv7wCp0jcUKTSoEvgFNg5AcilmeazwtQtVsNtmyZQtLly498NqOHTtoNpu/4KiDWLNmzU+9tm3bNs4444wDvy9YsOA5sWFfuGsH7/ruf1IvFznyrCybtnH8S2hpeHjf0bzrJb/YqVDn8wzvaREbn7udS1gT/xWrV9/EEw8Mccc1Q5xDCbHlNvILeyxUs3w4fRNKCtauOorJ7iTf2vYD5tXHeGXnTnbsKbNzqMT840/k/27awbnHPc5/sYgvDwzQefQV/MnEFznduY3beotReHRKBRY05nG1fz9fu+OdfObwN/HF4y4gtZpT7/gO9YLD1uvmMvf4fQi9jTiJcbTzC+/nfxqMtXxn0z18vVZjXfFM3hHu4c/D2whnHbbcOcKD8w8jPt3h8NGYxRe8D8YOoTX3t64AACAASURBVG0SuO0vmc+XmCgXmVhXYdGV3yTZuIHSJz+DLBZ/+XVTw4/v/B7/sfdrbMxtRlrJsu5yzm2fScW6PFEd5xtbvsr3dn2XDx79UdYMrn3a99SLU/7z/t1c/chedtZ6OEpwwqIqf3TyIlaN/vKxPVN0ux2+e/W3MLVJxp2A8665nELn4HeARXD2to3MDo7yqcNezhPjd/En172F5lmXgn6+V9rzeG4xf/58Go3GgU06gG63y8KFC3/BUb+5UBgK1qUpelkYqFyErWFSjUUhrcG3MQaLNSlSSsrsJsXgGuhY0c9iaRApWDCigGPBk3voiQbWzkMIhY+hgyW2GWlRYpD9Eh7kANgEqR10mhCqYTxTIxQW03fykqS4RtJxAvw0JMsLKLId/hTftOiIAoE1tOQ4pMuBvjxIeNluOj0sDtqkOCJFqSYRFWLVQxrTD1yz8yrjYSVYUcZlK/DU75eDMjKy+7AGT9jMDsIYNClWgpYpjpUkrkL2LIGRfUFUJmuUZDIqQRcpekibkBMh9X6NlRKZzNARbXp9Gpo+yXTCIyHqy/cmVAUtYaTP8nrSRfQd8RwkqRVYOYIhQDCNthYwDLKdrtBMMR9poWCnSKygJpoIDtZ90x/3/u0rzSypnQdOGZk+gWEngiIOER5NPLmXWJRIcHH67oLGNghlGTcxWCnQKmXIRnRMSipMvwNUnUT4WATSpmgB1sqnmAZoDInKmjAba3DlDnpmIRUMkTGkMuso5NFgRhT7Y1YENia1HlZU0GY6y9L1M2GOjfFskwSJtoZUaKyYi7Wa/bkfKTWujYmtgzbJU9R+0slh4hbSarQFxxyUt1ksjsnyM6HM5K0FY4hF5qXZIcbi4JoEbeqoagTN4pOOF/312QGbx7dZ5i0Wti+fzNZjnghpO+wRWS2/ayBVAis0rs3jmA3kMDTlIuI+p1RSgckybAH76DEHIweR1iJFDyF6YDP5qBFZNs8xKUGqiUWKI2JSqREmQaQCVIdUFshJjzZdssbVBSxexoDEIJ6RmLROKkZQSFKREUuJwhMFMqPyAFfUCK2D72q6SYwQfQmnEAcyyNZCWbToipiAJpHtAlWszLYz8jRxbQ6LZov20PkyI7M1vLSDT5eOGmN/1lubFCMSfNGmJ0Rf3Gj7hD3L7boyxRGWGIO2UyhCNJMokZCTBy3Wnws8LUJ18cUX84pXvIIlS5ZQLBZptVps2bKF97znPc/4wt1u9ym6dt/36Xa7v+CIZ3gdmxKWi5xw2JEMj2S1W5OT19EO53PW/BN+YW3YfjSXn85x9Ue4w1/Aofq9dPkov7fmW8y55xAejEJW3tshf3qXx8081uuVLHbrPNK+g68/9FlmrOFN0/Po7VgPFnYMFLl8/MusyB/FtBjhG+XXMa/Z5YxdZxElX+Yj6uucZj/D6p2buX3x0Zz18J3kWMAnwpiPPnA5w71p/vb4t+KqkNLsNBNpjLgLDl25j6tu+javOuvVz/oc/r+KeqfDu++7kx9XF3NkNMHXv/wOXrhoHa2az817T2H9MfPZsGQFd645hpaX4+Ubf8j7omnyC0+mfepHAVi77kvcebjk0YVrOeT+h2m8988of+qzCO/nE4RHJh/kU3d+nK16GwVV4YTtL+WQyePJxVmgp7Xg/L2SVxfG+dSKr/Deu9/Fh9b+NaeMnvpL7+mRPXX+4Qe3s6/VYdnwHF60apRmN+Gmx+r8wX88wNtPWcwfHL/gaa3rXwVx2OOaSz+G2rGVgklZ4vqMzF9MaWwexeoAruPSmp7g8QfvYXDPdl6+eyux0nxiToXXz76N/Gu+8BRnzOfxPJ5tHHbYYZx//vkHJH+zs7PceuutnHTSSfzzP//zgfe97W1v+zWO8unDSkHO9BCyTc0Oo+kQuhFBVMemgwgrcEiwEpApHjV800FhiYTCl7uIOZFEeOR5mC5lIqnIEeOQ0hMGSQcokggJNs2ESMLi45CTgtCkCJFgnABDimMBWkiR4DCPHg2s2MdAUscRLtbUMKaKBSKxEC1SiundJGIeLiEN6TBgHGL2ETlzyUfQlaN41Altm8g6IF2GWEeMxnVjdttlhMYSo8lJ8EyPrpDEWEI8pI3RokmeHJoWWvokJsalRodRZD9bJbEImeKaGIyimc+j2jVAoVWI6e+cF5Ld1G0JIwZI8BiQg0w6PQhb+LaNlA4yhUCMI0QVTRMtOmg7gaFIIsoHMjKpyCRLKs0Mp116YCGRDo6VNGRA0cQ4QpK1aNUgPATQtR45EQOGqtOjJhcQJ2DzCtnoIqj3M0xFHCGJ7T4SMZdUzMXnMfKiQSiahKLQl41aFAvJ2WkANG0EDhYXhESaFKjgiAE6okTALNA+kCvSNsVhGisjpFiKR0DC42ChmCvSjmI8Gz1F7qWMJWctsTZomVKQmkacrbuinaahDiV0DCSaXOZrjhYBRhRwkzqetbRkjO4TowJTGLmfrPjo/gaAJQveHaY44D8gBGFBo3qWaKiMX0+IknHKDJOygkRKfLMBSYJhMbFuMqSyjGI36WJMdl4jArSIia3FkQKZLyODbcStQYTSiDRBYenh4YkpEFl+MJRZltdahWd6WXcqsY+uKiHEJNIME+IcCMK1beObrFkzwkFZB6EdRNoCICfGCb0iubBFnf0VZ/t7OaXEFFGyRjUW9NJcX7Bn8W2XgoiZYQBjcsRK09EugyTIpIogxkGS4JOSIsiki8oKfBoILC3lExiDkqMETGUNdG0Fjw0gG7TlagLdQtjZ/udRQiuDTRVapARS4qhROmmnvzSyTQ5HCIwUdG1A2l82M7JArrSZwZkIlx59+5T+d4qmUxHMqUMsGmRbEfm+q+U+hFoJFLOSijTGWEtL+vgqRYonSRGfIzwtQvWqV72Ks846i4cffph6vU6xWGT16tUMDAw84wsHQUAUHUzVd7tdcrncMz7fz8PQylW8eeWqA7/XmusZ9ia4efvv8uHznl6NR/7Uczh2/ZX8w+HHctyKBfz1jW/mD0b+hdrRn+bB713E8aWQwaDHR6LzmasbJL7gsk2fZqHnErcVr03uZ3ZHnkbRgyWwUqxm7dj9fCF9O7FVvPqGb1Iuns8u+wKWerdwVngv908V2bX0EALZ5dipxVyxZjuHXxPwR863mZqu8K8nvJoL1l9DNOcYauyBx2qY9o10Tz3vgC38/2RMPvEEF+/exnhukPfffTmLJnfwgsXr2S3GuHzgFYi5FeaMjHKcULz7hv/iPz2H/zjjZazbu4/LutcRlE/j3tk3MdM4jdSG2Nw0T5xzMkuu+Scm/vHjRG/93wwVCgTOwSLb2MRctu7TXLX7SvJphTN3v4oTxyYprbkRHVyBTTzC2qE0d76QrVsPQfdG+LPOn3DZEV/gow98kI8f/ymOGjj6p+7F2piZ2RtYv/3b5MSDvGs1OL0hZJxjT2z4kW0gFwhKUxdx6W2wcWoPf3POcSj57Ejt9m3exM2f/3uiTpvJ0YW0RoYYjgU7hIDZOszWcRyH+fMXsfZ1b2fn45vY9tgGTLuOu2+GK3ZFLN/1No5++ycJSpVnZUzP43n8JOr1OscffzzNZvOAemLt2rWEYcj27c+tdv65QCQctDCUTZ19UtFSRUbSNu3RIfQ4WCGJVRfPZjJkIw3GJgzoLil5ZkwVoRxECgUxS9dW+vUEHXKmR127WJ1SYoCeFZBmQZpvBZ5JkSIlZ2vEpChpmZEek4MF5sz0pWEiqzyRhJTlLBKXWRbSk8tI2YEQCmUbeFaQCEl30EXOZjKtwPSQOYOfCjzTJZKA46HSQbScoE2RyFYZUy2cJI/BkggIrCKxllDGSGtxrSGxHkr0pWIyx5h9lBnKaNsmFYvwqJETs3SUQ8AMc51xNsVLaes8oWqRpjk83SCyAVmWRqGsxCXEd4soA5tLw3h1ydHxRowukLczCBmCmEKIQaRnUN0W2ih6ci5pKklEDys6aFEk7zbBZpmMMBjFDSdxjUKbENdGOKmg4wyjRRsrJFZVsLFDlUcZ8nuEaQVH7iW2JbSrcFRMy0sRSZucGSB2BDLqgqhjZIlIVkDWGVMNemmKoYtrYxwsnaILMiCcLVE1LUIV05PzMLaMZzVSxLTVANpAxTxGV/kYDIlwEGgaajmBlOhU0jEaRwr8JEZ6BejVkKKHMS5ROSAJE7yOJBGaVNRpzDuUcOc0VbOTMa9LaDTKxlnesS+NtCJrwBvZAq4skHfHwU5jUwiFQywdIpESqBlEOgAoFE0QXbAGr9il08hErLlKlcCps7W6gWI7ohQo/EgQxR1CfBQNtAjoiVlCOYdJmTAneRAvETjUiUWBRMzBoQ5K02Ue6IjQdlBeEWwNlUisFBTUZEZIbJaCVI4iMV3SdCGe3UTe9XFMSkeA5+fwksXUbYGUEGVNPwcD02IQ6ac4oSI1bVJZIUkn+i6dBpeQIpNZRs4YelLj2wREm0VmgrZJaYlDMX2JrjYOZS9hr5kL0kOLaZR1aOgSpBJBSoEOCJ9ZIlxCDD4KS7sQ4KURQRJh5BguTaRNcUU3M7SwKaCo53KUWxbf9AhzltApo/Ao1mISBC01hCJHJLpYEqTqIW0ObZtIkWKtx8EqypSpXJnQybHc7sY0JhH2OKydoedEVGghrTzgfiGRaJv1gtMyRZmYothNLAJSWuzLD1EIa/h6hJJuPKff2U+LUAFMTk6ybt06Wq0Wl1xyCRs3bqRarT7jnfClS5c+ReK3efNmli9f/ozO9avg1o1fZK6r8cyhON7Tu/3R5Yey8NotcDg88OgD/F4rwE68lXTN5zjxuH+lQpvtDHAXR3Gu2cCEV+dPy0fwudp6zm8eTjW8hpmZUYYPP4/TgxMoTc2yceUsG+RqzrrlKkIdUne7KPMOeuFtfED8B2fVP0ix12F8aJjqRMBRdhWfOWcT5WsrvH/+F9h9+zBXnHIer9xwA9tPu5iF6v00NsP1//eTnP/HH3yOZ/E3G4277uT/NKYYaYacvucBPLqcm7+JmaTE/Ud9mKMKQzSbDXbv3sW2Rg13sMKpK1Zx7A1X8qHfOZvP3hVw9OZHkFoxunQh7sSdzDQG2N4cY+J3/obDtjyEd+UHuGd+xMZoFc7QSzj1kCqf3vABNjTWs3rPaZzdPYQFL/wmlepaXO/3UbKAMR3iuZOEy+6gtup6dt/1UjZNL+eih/6Qz6/+FH9x73v5p5P/lQWFgxKlev1Gduz+BLLTZnT7WeT2vYLB7giqL0ReBJwIxG6dLZVdfLG0gZs3HcZ501/m7847liMHjvyZczTVjrhr2yzr9jSY6cS4SrCgEnDswgpHzy8j+8/11vvu5PavXEqsNHtXHcP06BCvrORZXjF4rkcYBjQ27SLcuAF78w/Jzc6ySkrc1UewccF82sNzeQKJfew+xv+/d3H6Oz7E4IIlz/USeB7/A/Gxj33s1z2EZxXaKZJGbZoyT4RBA4Ffoe2QSXmsQghDLtelF4WYfiWUEAlK9XB6CakWKNGiowtUvd3otISTGLruUoJ0D918gWRgCCZiVHea1A5hLUiaBCakh4tUhpmqYlbnkdLSHsghQkOuM00at3DlbqzRRE6VTm4BNEGwCCEtJnUZ8Q2bZY5m2aE0m9IVq+jIOmUEulwgmrVoK5AqR1W0scMThPvmAgENXSYdHkDvqqNsQM+WULZOxdZoWw/puMykHj1pUSKgErcQwkUNRHTaOWKKGKsxeR86kAqZ1Z7okKJTR9JFG0NULhC2A3zTxgqNQw6pXHzj44hpynYYpIujNmARGJnwhL+AXuqy2AoSBa4wuLLJRK4IkcHRmpFYoWyOWmCI8MnHEQVjCcQgDnvxREgkfXw5DMIjCeokoki3kmdw1z4kIUIatI0ZMSnTGjwPciqh6bVIojxZTYlm67whgsihWotoOyUKNmC6vIK0OUGSDFCSO6jaHuOUCa1DQUq8xFLWPTq2wYRYiKKJwpBXme28tiFd6WNFE2kbma2BKqFsRIBFqAoYQRvJABFmYBZvOqEuVpIiMb7GSoeG49HOJ3japeetJIkiZiiihWTAEbRt34oiBa0MTjxNXQ+TtzN0mcHYvbjCpS0cLCNoBumOJXiNCK/RIybNLNmtQOcibFNkPbLiMtYME9tp8mmDxF+CNGPk0i6dvCXfMTSpYLAoNYM2BZQsoKijLYRqMUbAgGPo0aGXFIjzOaJiCae9sf9feD6hcKiIgI6djxAJgamhpGZbaQibKlbUmwjadEyFmWqeqcohVCdGyNtJ2nYIbAtpYY87Rtc4lIo9cmGTQDq0RUAsHRQ5HLPfKAQ8mdBFEdBD+OB3JGiX2mged2KKSC5GiRYNUWSEaXzRIvV7yNRQsJPktaYdLcDgEgmDKwRS+BgRYdMWPRzauoTjzeI2DI7KMkqRUcRoHJsQCU3DKzM+WCEVKfNqMUZYUiloOjlc6uh+DykJxNIhlAJ0yiI6xAYSqQhtvwm5SEEYyjqmlIfIriVqjeOlYEQRO3A3c8IKxoKvU5oSjMkTmhyurtFVLko4aBOB6FHRCd18jXwk0MKlyXPLMZ4Wo7jyyiv57Gc/y4tf/GJ+8IMfcMkll3DVVVdhjOEDH/jAM7rwOeecwzve8Q7e8pa3UC6X+epXv8pLXvKSZ3Sup4tap8GwvoMHppfyxhOfflNixw/QjOCnIQ/t3sQ7T3oRrW9OsG3DBYwsvJzCQMTH4/OY58wAcEE4j0ceK2JGH+GlrQlqOzNL9sfzMcvmjrFQreND4nUs3rOdYzZvYvqQJXym+B98cO8fsm3sWFbV7uLsaBOPbNjNdYe/kNdOfJ/zHl1MY3WHvzlnB8E9Y/z59Zexb3SYqw85jQ/EM2xbsYz5je00Nm3kvh9dyzEvfG7n8jcV4Y9v55Pb17G6npCLQ9bILud0/pMEydbTP8NJaw/W7Vlr2bt3nAceuIe71z9EYXCEd95YI2qVeWJBxGtW3EJ+YoC8Ws5I9e/ZEzvc1nwn9428gKXjL+TYWckJQhA/McO9D93HwsIASybezAllxeEXzaFS+S+E+NmPmF1sOfSoHdx79UbG1w/yuvUXc+kRH+ND913Cpad8EV867Nz1lzRmvo+z6bXM3f1CPBS7i9N0j85TmTMCvobE0JvYRLhjB8snlvDxpMCE3+XvJg/hbd++lotOvJm3HnoxjszkduvHG3z+R1u5Y3cNEGiZkNcpWgTcEBn+9cc7mFv2ectJC1nS3c59X/4MU/4Q3x99MS+M1/HevV/gsImn7vYnPUkrCejMWUR98WpmZposf/AhFq7fwJ0nnYiuVNi05jRWbbiNGz79Uc5+10eozlv0nK2B5/E/E7fccgtf+MIXmJiYIE2f2pzyxhtv/DWN6plDK42VihSPUuqTuB5xSQJdXDoooVFS0VqhsFssJnaoU2BQ9LA2AGclpaQHOITWJ6cTXAFGePRyZWwtxkkVidFYL0ea1sB0ccOkXz1l8bWlqxURC9GqhhtbSqZHohW60EPXMgNoYRWelAe6zCihEVJQHwrYVDqCMBxGhREyjfoeNQuoBzUcmUO1Y0TiMpBqhOjSdgPyvsYmiqSYSQVdpYiTOqFbxuLjaIMX+wTSMiMUOTpU9AxGLWMqHSLVG5iaM4Sc6aF1SK/i4o5ntSg1WYVyjF9sssEdQadzWFmcJi99MJqWLGLQ5K2PxMGzBjcVGGuI0wqeoyh7EAiPVAagLT3lZ81ltaZaHWCm0USKNmlcRckhZuQgMknR1hC4QL5E2M1T6q7PlNDWgKjTDQQqEqAkM4UBFjd3Y+YrOjsz4wU38bLMoAUbu+S8JrlUMa0CKu4UxpTJSUFF1nASn7bvE+YDcnsSBsQQIhbE2sMYSXugSLXboxR2ibWDdH1UZxZHa0wqQWhC62OtpOBDq6uJTUIpaZNKn1Y+j7QaOjGp6pJTk/SkpGuWYylirY8qrkOGJeLAo1ASeD1NRwhCfxgd+9jAxZQFYjITH5a8SZrxIkrK4guHfJKQWGiIgCRX5bFwAUMmYBhLWTuZeYJJcTwAjc05tEtjpA2JyY3QTZag6aJrx9ARPyKwCbtHRlm5ZwvFUoTT85FKgkwyYZlNkFaQWouxFo864KNRuLJGoC2Jm8dzFZuX5Vm8pcUcHVNPFZYxXGFJSdFCEFPES0CKmJrrEZklhI6mVqrTHCgQdBuUZ9rkbYGuI2n6VcLcHKQ7TreTxxsxeNMhym3C8jzOxiqualLUCQ0L7UoVcAk6E7SUg/AUHWeUts2TszUclWUUZV8QF8iElnQys5TUomVKqgKMTWkNFinNxCSORuPjpDGxkRR8gVf2CAsCPSGwIiEULl08IusS4BLqAIulo3P0RIiPgzUFaHk0VYu5dgapCqTGErgukxZ8kWQunBKSRKGMoSclSV4hlGLIBgjPxfZAqzKPj4xS6LXRyqMlKjTkIF3tM2ASXBEivPlM6QXgWnL1ViZTLfjUckdQz7cQzTZWlknT59Zd+WkRqssuu4wrr7ySarXKrbfeCmQWtS996Ut/6bFTU1O87nUHeyS9/vWvRynFv/3bv/HmN7+Z1772tVhrOfnkk7nwwguf4W08PVx177+zttpjc7PK/AUjv9Kx5SNOYfXsJh4sDmFbDoGV7JweYFVL0pUO30x/h5fqaXzrsGxiLZ9Y/jfMa4yyxtzD+t3zaOcUk3Mt6358E+sugi45Trv1S6ytnM7C9iHc4d/GFncvI9MX0/Dv593mG1y85c30jnKJcopdPcvfHvMJ3nXL2/nI2mku6yk++C+f4R0f/iiXapfzK69mydl/yvpvHsJDV32L6SVHctaCX2AH/1uI+KH7+dIjP2Q49JG+5hVHrGXFzW9E5C3fL7+JU55EpgCEEMyZM485c+axfdt2fvy1rYSdHPHwY6zVyxi8/3SEjNmu20TR+1jofYjXeG/mO7MfZkt0CHuTkKMKgseKG1nRXcRJ7QuJrOXGVsy1Dw5x5jEJY6Wf/YgJIQhyi3jB7y/kweu28/id8NrNf8jnV3yOjz3wPl5TaqGnphm675MMxCV+VHyY0gsXcsKqFwGQJDH1ep1er4tdNBdv5UKayQ/orXuQgc2/yycZ4e766Xz87pt4ovku/uyQv+Yfr93GLfsaCNHDHbwTXVyH9vZhZEpsJWv3vYDlXMCP0i6fu/pOXjn+bWbdIWqr5vDPlb9iwK/TSgK+0TyOW5vHMhVWOUqNc8HwFpaVHqQSbWCOfJz4xBOoj5zPhtt2cMZ1P+DRQ1ZhjziCqcVHMbr1QW7+l0/wkvf+LV7+p3u/PY/n8UzxF3/xF7ztbW9j5cqVyGdJ7vprheogREKsFlHGwbg9sIIgdWiPVSlOtMkLj244SOKUSIWgXBU4s/BYupauKJEUQbdCctpFhAXCco7ILbAo2kBd92jYYr/PaEgkHJAJsVSkVtIUDggH19XEQQsj2yxqdEj0ELYoyMUwFaRUpxMqVtE0EiE9oqJhoGdwbI0IH5SLFD5BWgQmkUJRcVLiag6dCMJWlVwnJHE1UZDHdVNEmMtszpXEYIikxEhBOJCH1OKWB/B2+RnZHBO4swZXQZxCNygyLeegk1KWbZP7ragdfAfq8xehZYu0E9HSBQI/j7B1qAziTs3QkwFGSRxStOgRiQpKjWLFDF1nKZBSFDNohilIDWNZUD9l8+jCKvJRgUExya7BAR6fewTHT9coObPMNCUmkRit6OQL5OgR95aRFzN08AlsF4smKXukns+uwSoP6RxHV+7GhmXUvhQEzKhRIr+FNC7aCJQqYdMiqutTiKt0CxE0eygVk0hJJa3g2YRUBewbmps1Qg5jQjePi6XbS+gUy7giohQpUk+T9KaJrKaHj03BiQr40iMt5eiW8kSRQSUBg6KIThRTditprOk6BVxAiSaum6CVJRaWIwbnU1ddklChgwGMSjC1kDRwSROFlh2ksbjxCMOpxjiLoDxIR/ao7E1os4TYrUHiYGWFwM4SiQItqdC6hysF1jNQCGjnXMQCiWjMwdEtHNllyFYppWVKaZ1Uddm7YA7FZIpQjGGRNIOAkU6EtmCsRnt5sJrQz+O6AbRTIpMijEEYgbUQtJehzDghi/GdLpEB3ypSPUA750PeQyeSjkmz1gXCYqplBuM9TDuG6dEKQzM1NDMI10U6DnNyIVN+ntQ6GBK6o0W6UuI2BnB1DldtYFoVEalHLR/g4GLFEHg+bqKoqTymZ5EqExB2y1W8eo/QZjGHdRQ2BCOGqTnDyF6TjgdFWcaUHQIl8We6fZe8lFQaonaJUEJetFCxRjpt8mkHUpdyWTMeHEEiHIyISYUmL+fgyYBpbxInSXDaFikKhKrfgkBafBWCTfsbCTmkkJk9u1LkhENgVtLrpiQYjJZEnsdEoJkXryaSKfV2kR4eVfaR68tkBxOo5T0cJUmMh3arzGKITYe4NE7aLNAp5H/u1+2zgadFqKSUVKtZ07/9Ej+tNdb+8gKvoaEhrr/++p/5tze84Q284Q1veLpj/W/h6nW7GdbXsLtbZPXQi37l4+ccsprFd1/LlavPY/Lm+/AYY3TqB8wbqXGFOgXXDVlWeZBaayW7Lsix+4F9vLa5DNM1OFMx+8aKbBovcf2qPLu8k1m2eRNOs8fr582jKNvMnT6GM6TlIlNk1+CZHBZfx5GVCYLb/oXbDzmP0zsPEt5xHx+f/3e8c8f/5p0n9Pj8uhp/+eVP8idv/ytuNxHVzkrGzhhnz3fnsv6Ln+L2P7yEv5g7ivMLbOF/W5Ds3sm3bruClAF6A2X+5Lzfp/CJF+CNJPzX1Ekcd/HPt5RP45T1109DJ0en/CgdNUG9u5fHPViTLuTYaAXT3iR3HxawZkfEy/X7uGvLC3lEvZnbbMDdA4/zap2jWHiAOwqjPFxcy71BzD9u3Y4BxpTLsZU8Ly7nOamQQz9JJiuEYM05izApPHE3vDT3Mq7mahZMz+HCDR+mLnv8/Yqv8soT3wizlptuYw4diAAAIABJREFU+h7j47uo12s/dR9CCObNW83SU75HZYfm2M0XcHn9DP7ugcd4ze0PECJwB29h4ejjvPGw13Py3P9DXufZ2d7ONzZ9ne9yNY/MRkT7zuSi2esYO2aS1Yc9ThB0aQB1m0MIGGQrL2cr+0KfO/ecxCu3XUgQXMh7j93B6fEEhR23Mnz/JzgtB73XDDH/sTs5/MFH+cbaC5iduwqzbQO3/dulnPG29yB+GwLf5/EbgZGRES666KJf9zCeNTTHLJVkmnhihJwN6cg8cd/XymgfxwnRRhH1hrMCdCloLi4QDjbZs3mQ2YFBBp0aAybFjSQ522VKuBilyKkenjPDrDsXJTwEHYrGIxQxWrs4SQ8rFBqHcKAMooljysSqjYkLJDambQJaviApjVJtFBCJJbQG8j46auEmPjYpIOMQmfhIbXCUQgoJQhD3SjSMT97tIXoRRkCaD/DRxHmfFIfAZjVd3aESHZMnVYIJk6ekXcRQATcxtHMl0rRCioPnB9hUoOQ8lBSoQOIWE2a7Y3hyCoSB1ig6Z0lMA2Wyup1URsSBix0oEabLkUGeWProyVkMRVIFSSFPkhbp5iJszWBNQqqbSFxynmLP2CpGe8OYJEEwj1nPQwqIfQdXVin5ikg7bHHnoROXhTZEC0nIIFJkfbZcFMOjO9grq+Qn87hOjlDl0VLTlUUSo9mZVCh4S5nb2YXO50kji7KzgI+yhp4j8ZEYFvXL+QXaKhyjMDogJw1K+xi3RIc6cSWkPayRMxqEwTgSY0B2exghUQbo28KbQh4HAY4gVTVsOoLxBU63DiKk65YZ0JqekRgVE4ULEGGZWivCqgrS6eLmWmADuqM5EqVIez2ETRDEtIeGkJMBDg5ISUOX6Qx6iCjGcxNyKkC0MmkgEqzrI2SEFBo1BFpJJALjthA6JqcyEwTPBOTIIWiS5FtYI5nsVhjVhq7VjLslkkKH6niEJcuShOSJ/BxGWboViW0qEiuJrUKnHjlj0aaCwgIByZBBxA421aicRypgiiJGQ686Rs/mwVU4uSGWxLPEqUQKEPRw8gFK+whC9pvgGyFItcIQIVNNe6REtzxMYWuH2PRd/SR0C8XMTCYFYzSIBCMUWoBCkIghJsUwtbllgnoDlbq4Ip+1FBgtI5XBi13wMo9KCSAUbrVIu9sgMYZ8aQwhVKbKTD2MEXjSpZcsxyofQ+aO6RsHt993zXMMOu8hosxoRdmY1nCRfA3KRFgBoc31bdz77RACC0KRtzliOiRYagM+7XwBJdvYuodwNCLn0fYEE36OXBLgT7fxUCgv824PhU/O5nBsDh3PUsv7hPlyvzXBcwf1kY985CO/7E3r1q3jpptuYnh4mO9///ucdNJJXHrppVSrVV784hc/pwPsdKJf/qZfgHaU8I5vPsyOfVdz+oLbuXrW4a0nfBTP+clO5L8YQanCvTd9j3VLjuaPHoXHnL2cMHMlQbnLW7vv5siRx3jBYddwy8Th7Crey5bGVj4+tZOZbUOkewx/u/YN3DhyOK1VC7B5h1dd9xVmigs49QUnMX+oQMfG/KAVswjFvNbx7FV3cYa6nx/sPIPNhy7g0MndbKw9wtEvOptTfryM71R+hG8kx99bY1lpB19bcTatZAFnD1/DnuYI+Z1NttWbXDO8kLNLBdSz7Pr2mwQb9rjh8r9iXI6xb3SUd1/wevyvv5cB9z4eHp9D6Y2XMjD0szOS96/fyI1fehAz49EpbmbIS8kFVWbTLkpYFqbDtJwm3xMb2Vabz3jpaBbX17O4vI2bnYfYFyzkiL2nMSl8/nH1Wr66eDEbCynVmRorthpye5rMTO5j42SPqxtdvjYxTW1HnUOrBXw3U2ALIZizokxrukfy2BBpdQO3ignmxCNcP+duVnEU6+56gC1bHqdZr5Evl4lH5rB13lLumbeMdaML2TE4St3Pk8422PuEyx6p8Y54lK/uGebacJiK6uAt/jzvOOFUPnDsn7OiuhJXuQghkEh+tOt2Nj1xHMnsqfyvoX/jpNPWMbCwwWizA1vLhMP/wILq++i0z2VPbTGTPQ9f11g7tIEzF/2QnKrxlUdX8i/JY0wceTLLT/xL5OChaBuRV9sYG53mlN49xIWAXcyls+1xcpUBBhcu/Zmfy/P47Uc+/+zKL0ZGRrj88suBrOZ3fHz8wM+8efOe1Ws9Hfx3/3dt3PgAsVPEqXvo1BLncxgJRgpSC8Woi0kqxBVFolyE0tjiXnImZEbPIz80AShMkMNrWpQISXJDJMpnQO6BXMq0czwaRURMN8xRyJXRaYhRAilcYuVArsCs7CGNS0nUSewAXeVhZIm6atMuxSyY0YTVgNCdj3Ic3G4bx7i0aWfyH+VkAXkuh3UdUt9BoDBSoZA43R5R3iX1XHB6RJSZcnLsTiVF1UUiSbWDFIKWlXQVlFGEWuHZOrgeoesiNMQojLY4OsJVLtINmTA+nQhKdIiCCtbkSUVAbEcJYo+53j7iZADXbSJzCVKWiCWIVouankPHdUBaCqKFryXFzj72mRGMTnGsjxQVSlEFP06RIsF1cuwpO0hXMafTA2EYiocpKI+ajFFIRvzsvhGK3lABrRxkOY/KzdBRDk1VRScQeE26ZoC6O5fE92ng4qYdlvUmidwxQBJi6ZUcvNBF+JrYhIhShcTJbN39Zg9P1qnlxnBkihCKRFiQAT23gOt2iGQZ7aakvks3FyDCFJIEnc7//9l70zDL0qrO9/e+ezz7zCfmyMjIOWvKGrJGyBooCpBBQNBCBG1wQhobr2Pr7aa79AIO7aM09m3UVlRAlNFCRKDAsqCgBiiypqysnMeIjDnizOfs6R3uh0iwvbYtjSCo/L/tOM+z9zp77+fEu9611u9P4PbIRJm8VMAIgYeDkIJQb3o4mfwIgeMQjk0gugGZ0VCygENgMzxZRIkArINVm15KVnpYYbFKQ5pvIrG9BlIZXBmhwpC2VHiBpFmsUHACrCMZBhWCikSYkDyE1C9jwgqBDyYv4QYDyEJsHiGE2vRqEh5qHJZ3hJz3dlBRCpFFlJIiMQXWAkFBwGgvR4o2QhiUFcTBKEgHv6RRAzgvxhn4ZWpBF61htLeJ/kaCKJQxVlEIJa6jyYVPRwdYAaVIo5RCOiEqDwlsgk59mmlARWboMMCRIdKLSRyLykICoQnwyYXFNZv+cNqLCTsxxpbRpQiEwLEu2jFoadGuQDo+Tq+JKzzC2nai1CUXhmElQPplfC1wjEEXPLQbUTVFBJumUVZK3H6CtKCCAGVjesYnLBRpZh6eNRib89TsLIEjKTs5Ha9M25W4QlMxgkCWsJ7Ayh5Sd/HyISbYSm+siJAexvUppQOywMNJA1wseRiggoCB2wDHpyoMRigs0HdzhsUySmbU4z4V69O1ZfqupuCl1B0Pb5CRFSIy16E4UFjrkhWn0VKQuX1yoXAIcYXgyhv+ro3T/4n+d/+3vqoK1V133cXb3vY23vCGN9Dtdnn961/PHXfcwV133fWPCuyfQp6UXD25yk21jzGfuIj8FsqF//NWI8d1uSyqcX1TERAwMXiQkdkuj9lrWWSEfeYCxjg8f9/dvH0JLu9Ms0U+xOfmpxiUPc7VxpievYezUz/Erefuoxz3uPHlt3HjM/5mSC7u9Tn2nocpJKOcM69mn/NWrp6a5+AXL2ex2qBuNK/67Ct59Y7v4o3z3887bng3z/ui5cBnD/KGre/jd3a+ir/MXsLu6z7PcOUyrn3qIe7espM3uzfw5i1jX3eU9reErOXwH/0Up509XBid4Gdf+kqClVPU23fT6hQ4duXruWPn39AcdZ6zfPIIZ48e5tC5eUrJlYTJOONRj0vsOA80P8+FtS6jmUCqPod5ijQscFmxRXvbczi32ubd7g/wGt7F68tn+e3We7n3in/P7UcbPP/+HrNFw0HZY9H6LJIjsRQIgITgTIIONe/eO8oHj53kuWdbvLKhSdtzrJ08xPrSIlYbrvmcwzVs4WzhXkqlKU6VT6GLFSp5RhYP2Di1jjPscVmnyaWui5yaJdi+h8ElV3H46ut56MIcVxx/kj96tEovL3CDv8GvZduJey/g9Mofcab1OJ4Fk2mOD3v8j8EyS3M/wGXlDX70wC9RKXbQKx43HN3gr7M7+NXWa2jNG17Re4rJdBnPLDAbrDIVKspVQ7JDc8v0oxyYegy1XuSpQ+d4ffkT/MKBt3H5vteAzsn/+vcp3f+bvDD4HNc2GvxJ7zq+9GfvYeaK/US1r50W+m19W1/WJz/5Se655x7uv/9+HOdv6JtCCD71qU99EyP72lSwBbJhFeMOIVNYH4QjsFoyqjtEpZx+1EC6GYEVgOLkylW0nAuUvBiNRUoFApQtMRRbML7ENaCkwBQFcugirCXxyyxXQ7qOYOewh8Rho17kxNZptrW7X3GsdYLdpL5DW/tsZCWm7AheNsLKlE/gNnG6F81iSXGdKoFSZElMTUzT89tc0EXKpkVBF/HDDEcYhO+QjtUxwiClQmclrIBE+0hylNYE1m6argoHV4KxYnPOy2RE8QaO9FgrTpAKA9IS6z7+RS8gi0WKTWrh08Esi9Eebuo+ScdJ6fsFRoYpwribwAXsZvL2FXNZgfoyf0wIvGKANClZpYzu++R2syqgcfCEBlVjhQJRaQXljVOw/v/kVWRwLt5HCyjh4AoJQmOlgypFYDY9lRypsI5k1atiWrvxqg4rpVF2r61gMkMeuqSDIlkxwItzhkEZbAGvFKHzRYItF7BJCDYCBNZ1UITkEjwXUBatYnAqFGwXGwebC3bfxdMV+k4Pd1RRXtnCwS2X4EwM2bPcw5eb1QQjLD0dUkViPUu33sCplChJB1ULkLKECNfAkQhfYbHoPMARLkZlpMMueWkrobRYDIMgwtMCEUS0oyqjQ5cH6jUyE3BlvML5Ro0lW2DL2gpWbFYzFDnSwqqsI4wkcouM5wOywQgbSYl+ZvEsjASWwIV8MMOgdvF3Qbj4WJ6YHEMOFK7pYzFoV4K26GqBdKSO7PhIz6drPfoVgUpcBC6hKTER1zF2iRw4WdtGQyka+MAAw6bxspUSkQrSpInAxRElpGMRvRLtrIYuKMgVmSySe4KC16czmKRoDEIGFLMqnWAZhIvBksdjGJsjpEFKsDgX7wcX3bFBSIe4VqQb1VgabXDpUODHAywRuWPIhCASGukYqk6CVzlHrzOOhyU3BaRxQCissKxpH2kdmsZjEPqkymVs0hAEsFAapahWMMMcpI8VoFwJDhjHEqLQ5PSmRvBF4SLAwyX3IfPqzLlbSCuGuu5QjBSu6+KmIdIqMqvQMkUgmNBV2rhkIkUKjYsAsenfljsuj9VnGC0NmW73sYMiiCFaiIvJjWXDuNSRSCdH2a+aw/c16as6+6lTp7jrrrv+WSRQ/3/p/CS3jvwCqfJ5b8vlP+7/2ltCdl92JS863yGVHrt9gxQJ/0UcoCQSwtzn0NE7uPrKT/JvxgSlC5K1QY3GWovHd1zD9Oj/izf1BiIGXH3/F8gb41x3wzP/1vkL5RL7fvg2+r9/kMvzm1gszPIG+xfc27uG836FrW4T/9RP8nu1p5ipPsq2fBcfu+4UL38Ynv/AfRyp7eJD9e/nLu8oyT6f4GDEy+99P++sj/HnxZCX1yt/zzf756u1D/08nzV7WK3Uec2Lv5tR38N//w8jPMunBzdw+yt/GIDWwhxHP3sPZx7/AplwSLbsophcTpiMs91tsZo8yUcHJygkfUaA0CkTOkXWRIcgTTnfFYjFv6Zaq7Natbx6xw7et3qB7633+NNVmC8mvGDoc11HstctI3c8wu7r69x94QF+6MyzmR7s5b9VHuZTaQP/kINbzPmL/Vu4l5gDx9eYiRWru69lo1Ij8wMKwzmmlr7AWGed+toKWjqcm9lFe2yKbU3Dzl6TyVZClMR4pxfQf30fqedyzegoZ7bO8vuFq+m5Y1w+82G+21R45HyJ/umryE5dxYWL9044KQM34bZim0uuvJutE0dI+z7zfzXJd3mn+LUtP8wnZvextddh8GSJj1QS3sYfsrXRo+uVWXfGadpZwpbD1Moa8cgKnZk++0cHPKuT07n3Tv7Sewkvesmv4X3HjzM3GKP03rcyeXOXV099gT85s5/73/MOXvh//eumUn5bXx899NBDfO5zn6NW+5eB5vdNkUynJNUithwS0mNIFYlLYGCISx5IXCcHHSCkxe1GxP4EpUoXiSFQAmUsRmz6ImEta67ARlV8TyC7Kb4I8U3AXnkGyBmMbcXrD2jXKmChHxhspgg9Hyk0RmuGaYEQTTOvMuVtIupV3sCEAmTO2kRIoefjDi0OLg4ajCKzhv5guLkeCor4nkYJS65K+H4XIxQyD+irCC0sng5AOhhh8HtDjONDuYDUHmDRSZ+8H9NzNaoUYxyDayV0u2QSSlZiSEAo0rDE3MgYqXVJ0yEnJnaSuqNs6fW5kNUQmUG6DsFFN57cChIEfeGiVQG8PgFDBNBvNOjaBk7cZphmVMsaKQ2xLWARLDkD+jKloANwLNYKXHIcwDEChOSMKbBHSDyRkQvBooowecREVsf6GUIImqWIqQ2HjnSwWmE2O5rYGCvwxNiVXLZaxa8cY6FSo5dFlNstHC/ZfIG8PgveKFu6PWQlodmVqLyHCIqIYUqUKWS5TdG26HglkBqHFKlchNbkMqEX1XAcSdZ2OVON2BkPwOas2hDrxcznZWadHN/fi24uM1SSsADBIGXoT6IzeGyqzJYsZk97Ed9qFlSB1XKZE/VRLmt1GSt3WRajNKNRasUSq1FILd8gdizDQKJjiyeGtFSJMSmxyiPMBEbk5L6L1z3LRmOaM4VRxnXA1WqVrvHw4wUkOYk/TnDRrSkZTGGLGqwl8SRJJIhFQNbNiMSAwUiEcsfwRrubyPvYY9hZZt2tIb0iXqjIAavqOIBPiNEx2kJoW5veaWw6MSmRY4VhZH0RXYSViVHCoYfjSibsECk2LVHSuMXRyXG8QLKtWUbpi1YEqsoF5bFhx4mCDgKByA25LeFKjRt2yPIy2joI4xNrQ+DnSCvwGlXaQREhDN1GkUiN4CFIe0vERlMApJ9RkE9DrPBlRKIKzGcROzJFEHaxF33BrJUsyyGe72NqZRpewnrQQFjBE8XLmR5ukBlwOh2wHrgCIy1GS7RxcSQYd0AgNWnSoBkW8EoObhJQEh1WvSplsY7Ic4S1RGmZppFUiz1yR9IOI+TFpNEVBufLbXtW0g1CHGC9EDHR7UNcwdj5zdZeAV3r0E2rON6QktD4FxOxb5S+qoTqTW96Ex//+Me/oYF8o5QNJjl15FX8afGTbImu4MqJ/zVG+qvR7FXXU378DF9oCL63+ymWsjpfMjdwub9INR6wLGc42Q54VSNhats89x3ez1WcQZUXua27m3fUrua75j9AmCRc9YqX4zh/9/Z7hYDiD1yD+aNjiN7PUwx+gldW7mftrMtgz16uocWnN27jbPM25suPs3zdPC/+0pCJC01+9jN/yOnv/EXeHvx7Xjz1X5i85Fo6h4/x6nv+mN8o/TuujwpsDf7lmKsOH3gHH9oYoxsWueLW53FZMYKH/5hqeJ7jp8e44iffyqC5xsMf+VOWn3wE5bi0ZvcQeCWKG2O4/ZMYdQ/HdAuAoFzHHR/j2eY7cKuKP0sPopqWgsoZzuzG6Tahs8RoW3P94iW8qX47v1X/A96T/SoP6P/IjaWIc5lBxBJx8hlY/SBvUndQHuzFiJw3dQ/wCh7mPesneVjfRPjAMnp7gb+65aVIAVe1NFctXqA//0XqHODETML9++/lwNw+9p6AvWePo+dO4GpNtT3ASzRGuBgrcd2AymBItHGGbcfPcJt8kFN7XsrqxitpSp+ihClPUJCbOzcKWJZ9qpf8Bft3fQGjfBafvI3F4wpb2MvvmpDoTMadZ87SKfqEs+M8Mb6XH6r+1ld2wv5nOcYw022zo9nFc+a4uvoAey89xv7mx7nwx/fgzPwHpl/2Kk6fPk5+z0eYfEGXm0bn+eIJy7EvfI5Ln3HbP+3L8239i9O+ffu+2SF8XVUeDDGmR2sASg7BSghSZFBjqBy0hFRm5KrI8foUezoXcFULL4FqtU9qIMkaBLlCkjPhXaBpt7JaHmMsc4ltg05eoBgM8EgpE2PIebRUpVSK8PWAUCl2ZU/TtTMUpU9VLePnA5ZNTigqOI4ioE+uSxjhMnS79EsBba+BLFXZdqFNQaf47oCAIVBg6HZBQZKNstdktP0ha27IsCzR5T4TG0OSXgHpe5hMgizg6nXEwMESQznEyX1I+sjmMn3hcHJyiok8paA1uZcR4qKkj8oVQcvi1TVKgCtK6GxtMyvRPtIVm4tfnTFu1siVwHcVuYRcS1bdKgWhMWZzRkTIDLRP3J9GCZDC0DMeRQOBNaT9ORwvwpPZ5qwRFimzTetZexHPJ9gcxs+HDLGUUVwwBRy3j0kmNysE1kf4CegKZB56EGOcNnPVCtHqlxeFBYyEx6t7MXkHrMEhx6BxUTQdw5onSQojeCxxbPtWRloDFB6uzXERBDambRzWeylBZUjkDrBWY/pNMl8jpUWZPpaAdiq4kBWY8gYgXBylya3mcKOEn2U0WgkpUFmRhDqlXOjxuNpJnFfZCA2z2oLNkSJkrVzBzVqQ9ggKCQtTVYLcYTULKKaC1PgYuOh3ltPMo836obAX630Cg6CnfKzQoPoYRlHCkDkpJ6emKQd1tq8vo8nBKIxwyU2RhM2Fu7YCUYgxfoBpO/hWUHa6DEyDPFymY8aoWYNwY8IsxYgZhHQ2Ee2YzY0CKRAqRZgET+akg+bmDFZYoCdcrAV0n+OT28iigIqFRpax1MtwzCKyMEOGIDeblRc7aBGqhKBUxOYDetoipYNFMnASvPV5ksRSLpdJ+uscGm+wfejQbg4Jsi7joxG+hSl1lqa/F2PBZit00gbD6gDrC+YnZpBpnyk5ZCRbRwiFdsZoqgAjYM0NGBOSRVvBMTFSWaSVrJYDRnJYzT2s2Nx0SPICvq1gU0WgwVNdRLGOT4kzeRWRajbkFKOlNrvjLrmtsIxlPTBcOzi5OTklp+mrEn56ZnPeP9iCsBor4Hy5Th46uFoTmE2T7C+TG0pJA4cew4vHiSMxYY7TV1hrNqEeuFjr0DchS17AdrnxDf3N/qoSquc+97m87nWv41nPehbVavVvffbVkP6+mRqYlN8ufYyiU+Lnb/q//1HnCuOAUeXSLz2E19/gHc5LwDh8R/8c7UpI4sAjfYdrVRmmIZpdo/+0R22Y8eEDr2ZKL3DJ/U+RVCpcfeOtf+91/EaR9nVdCo9up63u4N849/LG6N/hhRHjNHn/TXfwh5+Z57ODK1gJWnxq/z1850GPwSVF3v7QL/PqZ/8mjzR+kLGZdfJWQnH+NHd89iP8h+IP8O5dM/9s5qmssdi1GLsSY3sZ5GbTgCFyUclRPnioSexUae+7gVdum8FmQyoP/iJJ7nJi/48xOHaY+U9+GIxhYfYSSsqwZW6O3CisTdEW6kYwJX2C2OJ1TzA6txtVuJflfSG3bb2Oz4xnrDdXaecZj5aeQzsqsFOd46bWl9i9epTf6xzgReOHua3zViov/yO2RzUWVoecfGiZ5TM3sxE1uerSlBNn7mOqM8Jl1Wfy2qmTPHJVCXXBxTmXUF+ex98zxhPTBXa0j/KM+cOcHZX8xJ+f5m0vtjw5/hSvuEcSN7bTmh5lzbGc9Vu4WpF6Pue27mFuyy7a2qc3X+COTo+r7SSpGzG6fohtc59GqnUWZ7dypLKb55mIpPAEhcYRxJxh49Q4C8leusEIyXiEFRpHp5xvbOHJ2W3MjzTAWsZ7LfbMnaDe75I4Hiv1UapJwhWtdYSxnKnWOVkbYbF+C38lNxOkyfoiuxonuLn1BZ71G3/A6HN+ibkzp+BTh7jyhcsc64zyxQ/+AdOX7qPy7da/b+sfocnJSV72spdx7bXXUiz+bZrTW97ylm9SVF+7RFxAyQwlNkiES+oJRujho0llEawljA19USGjQ9sROHlC7tewucYNLR0bMmIzmoFgUK8za1oIKwGBMiGpKqPyIa6Oqfk+xs3B69NyA3YkG0QqweYegZPgJBGuk7HWNhRpI6KAcp7jTS2QJ5P4ukDBSdhwfDbSSUzaoRoGFOMhDgopBww8gYcmdnu4xkW5fSSG09UigQkoZy16qkeYGnQwBYUEWegStwXtUsBCQSJ1RsEoHNNHGs38yBSpH+B1l3GGUBgRDI3l2NgUVe2wf26RiaSLJuaYmdnERtvNChdopEgppA0cdwUpLEnisuIIZtWATtUntX38uESOYSBSRvJpcqeDtRrQWOHTzTRn3QatrS7V9bOonsItp2hcEOuEzQ2kKkEwgpu0WKv6DN0CbU9yyYZlhnMURZunzQ7AkBsfz5awIseaTWsKx7PkISgxoOcI6ipAkIOVWAzKyWknQw6NXQ55n8vVEpoh3bzIsg0xCByRMJH2WXTGWS1VuGp4khgXmXk4G0N01SLJyIVhkEFvpMQQHwdQUmIHC5tL2FpEdaOHVB7NmRID3zC5nNNSI1jPY4oljLG4KISRrGUNMn2GETtLbts4coi0ESl93NYqoR4jrYzj2wEtIrRxNz2lREzLcTFpiA0SUuOQaAdnrURSbBKFLkYVcLW3CSNwBY+HIzg2ZVjYXN66xqdsI3puzFpWI1Yxwm7gGDBKIaVHOa8y6q5gchfPak6k1xOjmRTnKY6fJl/cSjJsYktjBEApi/DtMqZk6XVjSr0Lm3OBeojWmm5saYZjbB/OkYkUbQxDK4h8xfSgRaLXEY7LlFzmaTuOzjXCyYi1YLlSoaI1SadLjRXWG7vILHTziFrfwWQKhUsuHKRWLJSqjPefRk1JzgxGuDqL8cME3+RghuR5k2PVCk6gKA9cBpnHRqlAxykx1broN5lNELshiXFYG01YNykHHcBKAAAgAElEQVRFKfBNQIMNArrMRfsopoKJYZ8TdmITKy9SPJHh4JJYn0n/LK2BT+7N4uJjnIQ1zye2AbutYuAOwRQA6Gc9jkxvIxrGjG70iF2J0n0K5AihccJ1hFfAyBLFrItnPbboMsb2qKnN59n2IwpohLGcqlXY1lFoqWmahLC3QL+0HaRDkPRYC12OBd/YNcZXlVA99thjAH+nD10I8S2fUE2NjfH2A7/N1uJWqv4/rhWk+dAcJSw3dz/MsmzwYftMIq+NmBiBzoC+OYkVlltOrbNiKkTP2+B4fxtndx7gbGGaf7v8Nmwf6s+/6h+cZyrf8kz6xz4Dw++j7DzA90w+yCfOX4MzUcaZf4S3vPHlrL7zCL/b3sfHrn2QFzzWZeeZs3z8ltfyH8/8d35p188Sle/jp265lYP3xuw5eYi5L93Pe2sv5rWj37otMdZY7FwPfayFOdmBzGx+IOBi8zxKKz7un6LrlHhkz438dn8cO9cn+9TrCAsZ9y1czZPpScoPfobx1BIHATvPHCF3HTJ8HHcbO5rL7PYSgkqF9qCPyc9Q6Y2hk/NY3WfqeArcx/ddjGvoBlwof5Gju/awsWWUms5oVA3rSchH5vexpdDh8YPv5cBLf5yR8TqzMxHbP3qOpwdlHn1MotJJjkfHeGTmGl57YQ+/Ptdj+dLfYrX3A9w9rLH+VJP68T4f3fdsjj53N2/5vf+KkILvPLyN33nOAr/ymhq3Lu//Sj8+YzO4gy6y32XnhVNccuZpAAb+BFXnCjqVaR7f3mW23KS+3GZiMGDvsae5hCObBB5gs2teUqPJLr6wef8FZFWfY9M7UVs6BJ1lnqFjBu4Gk92tjKhZlC9JwxXMyjkMgtNj06iRiNdOOtx0ydV0jcvhpSU+cm6d+0yZXv06Hmzczm+8QHOg8yivmnEI5qq49xmec/Mp7p7fx0d+59d59c+9Bc/7l1NB/bb+aTU6Osqdd975zQ7j66aBs85AS/Kkytx0FRO4jK09TdZ2UMMB7eoWisZnQbQZqIhux2N1dAt+JNmaDjkS7mS9PMme1TnWCg12GoVyNrDWgN2slBT8NY4VKly6cAykT0RC1bTpUiPFIdI51kpypfFlhqtjrHHAscikR0nnHC1PkFciLp9LUZllSVZxbE4ihpxq+JTWQsp6FRu0UUOXUBhwUg5tB9lzWBNFUgy56eOamJLM8A2E8TlUVAbg5PgorWEFbfukZZ8Rm1F6+gQ9HeHKkIqJ2cIyvrGYXh8los2vqDQaTeZIzldGMSZFyISTxSpSpQRkCGPJZUTiSkDTkh6ivwTDDWSxxulwGyMCpNunlaRY0yd0fCbGn0L3PT4tbiYoOexIOmTAILI0ZYNCJ0GGmjH/PHEWYYAulpV6hDUZoBkUNBtVn12qT6ZDYrmBH88TyT2s6oCiN0fLZ7N1ylgyo4n9NrktsZEl5CZB2Cmk0Gjr8dTENnJliWWRtirheAqRd0iVJDEeSksybThfqpNKeKwww47+AgO3AsJyxJmhPhLgz+cgJK2yJOlLhAXtOiyNbydaOEvLL7IyEXDN2TUGeYFwmBJsGIKSZmnUY8nZwq60SeR0KBPSkgGO0GghmKtuIbYJnlWs1SpEzQGeykitoeeDkxsWcbBG4hrL0HQo9i8wDEZZiQTF/kkueH0yVceoDUbCNi1RAJPRdzVRvEFoXTIZAAbXFDBOxoIaoYlimGuOF+rkWiHjBBEGjPVWQebU5Sg2STnSi8lUkSzuUzY5jmqiTYnUGEqZR9Md0hA9AmFw/ZgoE+SxRAqNRx8nl4w7Q6rOBRa2lcFCkKQg4II3pOYopt11VotVlqsVmrnPYu7RHZ9F24DlQYiZbjLS1DQrDvVhTJBFSAyP7riEaesxqo7hZJo87+F6Oeej7RhV4tHU53DjenLlYlXKiVqdvmyTxwXqGZR1htdzGFQ8hp7ANwYd5xwf3UpeDqisb/qq1ZMyQq4w5a4QGg+hDa4CbyAvVlsNbi4RSR/puZTdHgXToiomWE4cml6OEjmGIUOtOKQdfONhpcFg2ChtjqAMQ5cyHRbdAcrmFDLB+bEKYXkKpQWZcskHKY40DHNNrX+aVK/gRlMM8624aUYhdPBEjidCrO9zdHSciTREZAP8/iprUyUihmTxt4AP1ZfJSf8cJYRgX/3Kf/R5bG6Izsf44kn2DU/wpq0/TnJyO7eNLnHBWEIhOF45SmNY5yo1x9sfqnLtNQLvu3p8UDyfa5InmXxknlZQ5aXPffU/eD3HDencsEj42etYU3fyfO9PuKd8gMxKPr6wyI8XXMZedzm/8Hvw653n8Zkr7+a5h3walx3knvi5vGD6E9xTfxEP9OYY3zZLGne546FPcvfoFHfcdtu3XOufNRZzvI16eAFaCuUqumMr9KqL9P11cpmD4yBlwNKRPmu6zIO79vPTcZXSqSbmsYPMBA+ytFhnsRlw4OTj9AOfM+M1tFSEVBDFZ1P0tnPdlpTJ1xxAFkOemDtJa+EnuPrwT+P3ttJ6SZmtey7FpglPPHGKd3/kM9R7PaZlh22DeZ731OeJDm62XLRKEWG1yvHZ7TTTnPGjx/j8uV/lgdozWA4nuT1f4fr2p9H+ftzwBkT5ah4cX6M4aHLn2mWknTcgV1rcfvLtfC6c5UN7nk382AZnozKvfd1b+JHVe9izusJNC1fwwOwnycY/xyvO70YqgcoND1aG/NX2Hmr5exgOBC/szFNKz6Ky++jJg1x2tMTzDx6kGMcMI4/htRZzRUa7VGN+6QqqxwxXugvMVA/zsTNXIMoR7dokXluxY3GOVxz7BI4xX3lGw0Cy0LB0ClP0g5txqltpjmj2miXsmuFjiyP82fkP8kZ9gptv+3EOPOtaHp1v87MffZrtk0fYumuBh6vP5oGX3sh1zzzM69/zXm44eoRLp1c5vmj5y49+gJd9z/f/y4SnfFvfcL3xjW/8X/79Xe961z9tIF8nne+3OTO6hcnhOh05hc0lTeUSJkP8jmZpzKHnRwReD6Og6ZVZzzzqqs+F4iS54+A4OaWVRc5u24WVsO5XUGkHTIz1Qkb9UzjqcnqlAGszKjbBteCEHQZph2rWARFwsrCTklMjWO3giWWs9FlulFlquix1PLZUuyz2DYu6xIpn2CqamDwnLJUIdZ1s7QnSWs7ytstIB5M01jdQts/xosf4yhLBSMjAHZIZyxY9xWi2Tqd/gV5tKx0kKoZcp7hIhDHs1UcYLSwjkhsp+XU0ayQixzoCJ3ZYcapspBEFm7DiGc6OTSCExAw3KGQxiefg6BSjhiTrC5zfdynbs7NMmlUWvMuYoEnazdDGYPMhSocENkP1+2T6PMKZ4MTWWRpuC9vJ6SlL083BWrSVtG2dPNVUq0NaZgcLW2dprAnmykDeQ1iJ9hUHzGOU8pwR1cOVhqeKdTJXsBRETLZPMZ3NcbSyF78HGINKLKFSWAUq1hzKFWUngeIQ3+aoZoOQIdrxWQvHQFmipM8ZUadgLCu+j4gzOri4qs9GGDA5dFkaraEpkGqNwmOrNXSKoyRutJl8exkRhpooU9ERR6MCxXiF+bLGJgMSpRA2Z493kpoocEzv5lCpSByNUjQGrCJJ+hwrSVbCElmWEzDEV5a54gQleoz2z7FgQxIvoEJORXtcHh+moGJScZp73VtInCLFfJ7T5RFso8AIQ1w1pMEaq0kJnAH5RQCJEZKOOyTPBOfKJYZuSk8LBkOfpq/wTY5VPoVeh4WJMgWnztZMsFoJaQuLby0DnbNLtOjaIueCAmvlArtW1/BNm27aJfJ8dD+jVmqz6k5iUw8nA3fLGuU4JhMGR1h8m2O0olhu4qg+qZPTD0Ok3aQwGgQOII1gRDdZDffSMG3Oj47Rz4ecVQWuGszh6BhXGDZGfUZPa0xkcF2P89XtBEqRWEOvEJJnPbTJiepddN+n1W8ghWWlVqOgFZlwsXkC1iCswRmuI/IpfDVAOjk1ExFFC6T5EGxOsTeg5LegMIDeBiYrUTCGooZikKBHFaHs0o1DHOnR1D6yd4GKk1Cyksy6LIQNirZBP01wMYzTR7D5nDy3h1SWKMkwwQoDb5SqyhjYAnEmyKyD1Brd6cPAYCOoxYts5EVkPkLPDKgUJMU051CxTMeJMI7kkv4ZMt+Q2gDpWKz5JkIpfvRHf5R3vvOdXzm+6667ePOb3/wNDehbVdl9Z3GspGjeRaI83m/vADLu7J7ns1GJQaiJ/S4/0oIlXeO6gyWCRwXvfvPriJ2Al/f+mP5ikfWrQmqF+ld1zemr76R55EMU119CU3+Gnwnfx39KfpqZyjp3f+GLvPymG/FeMMsrPnwHv3nNp7njyR7POvkE777ihaw8PMP2207xnuIM/+3W5/N4N6F27hAv/PT7+eXpGX7n8r3fEgtXnaesPfQ47UcN3UFAV8T0bE6elWB9HPgb3LnFMiifJi4uUuzu4HseKDMvWyxFG7xYv42V01WWT9S4jGWe2DZFO/IRfkRWv5kwu5JRR3DN3h6NO5+F9B0emzvDxsJPcPWJV1Ho7iB5QYOte7aRa8NvPXSeDzy2gdm2H72vQsl+msnm01znv5ia2mDvfRtsObfCNQtLXL20RLLXkIz4PJbmTC0tEdRT0rZPs1zmAy/Yz66h4ju+oPiOhxwem15nf36GnXY7hhalfsqOsQ4vmjzMSl7k82on8akqv+fezgsbD/JvN77ESvFKPlF/muufM86ekZdw98G3MtO1vHDpEjzzCFc4BlMP2CgVUfMha60OQ7/Ll3ZupXKlYvzmY2R5kbOnbqJzZA9XnH+KfUuPk7cEf3blAf7kpS/jyN5rGO81ed36Klfc/Ey8ahWzskx+7iznDj1J5+jThEtnmVhepjL8EADdQp3m6H7mZmcRMx1sV/E/qnuo3P8h3rBykGtv+yne+X3X8LMfcTn4+QY/cu1/YqN6DR9t3Mnrf+ZXuOHkfTz/1Od4XO5j5Xif//6OD2BMiETiSah6MBkVuGy0wa27Z7l0ewPHc/6et+nb+tesfr/Pe9/7Xubn5zEXNwIGgwEPP/wwP/iDP/jNDe5r0NlGncxzwEuwQlORZU5MXcu29YfJxRgYyUS+wYw8xzFnJ4u6gsAQ47FSHMElw8m69ApFtNZkQqNUH8/1MFYTqpSBlxEbhSlYEj/hnCzQ9TvklJCegY6i6RsWEp8ZX5MFHfxSRlPNkrkuC7UKLkOsSgiyPh2niOd3kVEP1kuUcWkVJYO4RiSbTJgm51Wd+foU4+kA44cERmHUkJA+vqywUCwyLTepa8ejKspaduqzTJuMx+yVXGnm8TJNEoTIfNOzR2IYzTyaIsWVhvVihUxJVvCIGxUYDvE8Hw+BY83F2rxhQefYMCJWq0zqNSywS5yjGiQc3rYHr5/RLoXsscfoliMuyRY4yaUMWxvsiTssOQ2CPMOROQV3SGYLfBmJaPCw0uWoU0fEPoOGh8lzXOkwMBnKMbhGU5YDXCvoOoawMuRwbS9VYwlsiraGUb3OujNKkHnUdZ/plWWatSraCtZLFXr9jLKj0R6E+QAtDKpgkI5DMctYCCsoLQiTnMQpca5cQnl9bKLQSC6UJnGQWDEgkuAZy+GpvWjhUBnm2HSA8AsEVjJql1ke9yiurZFLS17PuVEf4rwZp+0kNOQQ40ZcxnEO6W1kKmZbvEpROSRV8JmjESvWpSCVAg/AulwmziGARX0F0pE0ZRdti5h0QNOG+CLHH/QxTsDR6qVkrseMXMYaQ+qkYBNKekCsUlZNjdBNsS7MizEgo2t9pnSb69UCuePQcvbhOgpHb5DIKtZPkSrl8fHRTQCLXqOm12iNVkhzj9GgQ69YpKB6PF2tE/lFvOWEbf4GfmTQEUSFLk+zj1kUAo8kEEhClMhJBbSMT2YKXFs6RdxpYKXB0RpJjjQGKTWz5gJV22UuqyI8Qe6mdOMa3SBgOvYYdTw8GaNTwYJfIjESqyUF9Oa8mbEYR2G1QToalUMgEoyRCKmxwqXmVdAmpm9jYteQGgfUED9OKXoxvQD65ToTnCTzW2RdRdBJqXpNGkGLzkQPmEFJjSwoynqZhBppyaMty+ROxFk3YizLaRaq1B2Xy/PjfNGpkwlFbiWeVDillCmzwrIc59CW3TjNDaZ6GwwKQ3zVJU0kmRdjsgGZ2CR70m2S4HOJnOOsU+Q4MHAzCiZntL9AQ67SLOyjoDv0oxLnxos0iyFhrNC5JhHfWN/L/21CtbCw8LeODx48+A0N5ltVZi3GHN7cmSsWTnNiYxt6OYOypXLmi1S2HuCp4hpS+7w2Ps0Hgpdwffsgf37H7Tzm3sj36T9mmz/HkcJuZq57xj94PWssST9n2HE4Ptbj+rWQ8+IH2S9/hWe6D3M8vYLa4Uc4dPQ0Y7LBlmqBF6vv5cHL/5Bbjhd596W/y/Ps/8PGgw7OzTlv3Wjzk7sv5XSeUTx/lPFPvJ8PTf4U3ztS/Qdj+XrLWktnNWbu8FEWD7UZtkoo6wDOJnUuGNBxXdSIoVApUSp5lMs+ri9JFh8lXl9kvrqVeGyKKwZrhO1Vbn3sL+jOJxgdcW5mG2cbYKUDlevx3SsJsiJbPcHuK08SPmc3uIqHzpyjs/wTXHPupVTXr0bfPkb9ii2c2xjyxrsfZaVrUTNFdu8+R9j9ddaSNX5sNmHS+yDKSrqvrfHQoQN4S4Jrlh9i/HCPwjHFi7ac5OHZWZZbm2j+TlTnlc17eHZlju6BnLmHf4xbL+yg9Oh/JQ52Elz/o0TPuYvGrg9x+44PEpS+m7umn8UvfuxzfDqp88m1m7k3vJHXb3yMVlny7jP38Mt//STPya6mqbbSVlvIbJEnvnyDh0AAdlzjJo8wTL5IfLxOa+GtuG4Z10koyQxva49495B3RbfwwWfeipUOL//8p3h+wWXb9ddDIUQ4Ds70FpzpLVx64BYA8jznqeNH+MuHP8jw9CLXnFTsv/AZts9bWtVdnN1xCfZSCR3Df554Cdc9/We86uRTvO32n+E/n1vgD89fwkumHuNlacxfrjyXJ1uXcci5DOpQVH1k3iUPOhhh6FuXZlLjTN/jodUBf3DkKFLGVL0NdoiEG92IA+Es28em8SYi5FgBMVVEeN82C/7XqJ/7uZ8jyzL279/P+973Pl7xildw//338453vOObHdrXJOW65ELQKZUQdsBKOkLgStyZMZxmDRKoig5SW65WS1hZZs4UETbHMxmO0bhoilsGVNxNiEOuQ7yCT+Tn5ComyS0WRSY0Ou+TBIaZ7DzzTDHab9HzJIGb4SiFUT65n4C1BN4oEQ5CL1DJu1wSLzIpOxw3VSKr2JYvc9K/AptD23NZHZnGl3X29c+wRS9zQmzFpj4H0kNMREssOwc4PxynJBVYSDzLmi+5cvAlnuISigxIhINb6jHqz4ORdCsBGwXDShASqpBuZQykgVaHpBjgDDKGUlMSQG4RWYYbSjw/Q2U+A9Og4XTplwPG9TqZNbjKUHQ3KXmJdTlen+RW9TiuNexLeiTRNKlXYiMqsl9fINJDTrIDUsgDgyXGuBKpIZIhY2KRp+JJbBbgKIcZN6fkVOnbZbAwFIJz1Ro7N1oEssR2b5EjZhu+kbhoBIqtYpHH2MmILLPLS3GzjGpWxsgCOWuYTJFi8ARom2McB89IXFwi7SBtjnJ8UlKKMiKzCdZktO00aEktTAmtZEWsUhQevVihvU08uh12UNLDS3yIUrbqU2TEzNV34g811bxHph2KpkOnFrHc0OTGonDINazrIrfbRZSGvghwhGUyPElT7qTfs5CDYxSykhD4Pl5aQMQxJkvAFpAGXBEiREAt80jNgDWvjjQGKyDHIgx4KsY1PQIrcAxYFeF7EVeJoxwRLlp6jHoNJrPzDPOYnkqZkm1G9ClOsIfO/8fee8dJelT33t+qelKHme6ePDthd2dzkFarjCSEAAmJJLDBgIEL2Lyki80Fh/e9Fxtf29jYxvZ7nbg2mGhehMEYECZJQkigrNVqV5vz7szsTg6du59QVfePnp3dlUQywvjzfnT+me7peiqcOlXP+Z1TdY5sx5eWqBEipWTALjIg6pSTMpOpXiZsN5GSeJHFsWU2Jscod3fxWH8XCTA8cQAJXOrtxvoxs2E7CoEWYF1FOm4wYdtJbBsHcptp2gKFyh4UBqsilI1xbYpOXKrWENCgaAPaBDRlK2DF/u4uXtlW4SJ5hm83N1HpWkEQhQQ6YZMuMudkmPdSzNo62ho8J8GxMZeGxwjimP3OWnBiGsZgbECzuUgpm8Mg2dezgRmTYq1pII1ge30H9ZTHWNRJh18i6utjqz6BE8ccKqwiW4vZ5BylQzU45m8mURrjQkwrbUJiEg71DRElMGyqWKDTltjVGKQtCVknj9MmmzgOTIsOPBvTnq7TNhITySpG5Kk1QVZDelRA7MVMRe0k7Su5wtYp5dNoN8SxEWldQUtJp54nCKcQdgu9Zp5cc5yjDKF0K6qjsAKPny434I+iHwqo/jN4MH7eZI2l8c1DKGFJ8zmsgW+lfw2qEG/I883MNaSLMNN2kBeUPITxkMcNY30DfOKVb+LSyiGu1d9DZQ19t0yzd4eksrJJW1fQqt9aKrNNZk5WWJioMTtWorYQgTnL++s44gs2pq7hCC/kbf7XeXu8mSOlDB3FdRymFWkoUBdxevhdnKqdoj5+is+uuoPfjm/k4M4mp6/o5vb0Ilf6bYiuYdaOHuLw7V9n6nW/RF/6J0tw/O8how3Tx8uc2jvDxOFZdKPVZla20xWETOarzK0cYsv6Xm4ayJFPP/U44uFD+/jOnhPM5Nu5f8MmPj/cz+j//mvW3XMXymqSIctXV1xKqlHGBp2ItufhJ8MI01KuZ2KLPbCK7Nx+Rnv+Bdt5gMsmnk/H5DWI5/QQbO/jEw89wkcfbmCUg3+Jw9s6P87o5CgP2RI3Vy7nc+Jx2pO1rLcbaS4kfOHiV/NGcw/3F26lMhJxzf13s3FmnkvPTHN0WPDAJdvomzyF/E7CkcJKVMc6UqU7aQS38MS6/0bn1X9H+8AHGNz7DjYdewPFyespbfw046dezO/Ob+bXVcyvXPFWiifTfGT2Fxk6egtXVtv4vvEwIkIS41iFjEYpzO2id3EeKyyTnTnKa7tZtekkyXyWU8crRJXPs6IwgK9WUta9jCfP41R4EyNleO+/VeipTTB8dBfp6lF23/tNFtuz9G3YyupLr2bo4svxMy2A6Loul27dxqVbtzE5OcHv3PE9Pjz5el489VVec+AIl+4+zqaDeQ5u3opKEub8Lt61eh0nZ3+PxBlAl6/hX3bfCtalK5hnQ89exjvWMda7mrWTe7nxgTtJ+rfw5s2vRjiSoixzUk+xY3GK/eUGY03BQqOLx/UgjwMfjSYJ4gfpmS6xKfHYHA6zNb2R4bVDtF3SiWz/2Z6Zfpb+89CJEye48847AfjGN77B+973Pl7zmtfw4Q9/mCuvvPLn3LufnJquh5tqMCm6SDcSYmvAS3CER+wWqCYJK/NV3ChE2DSrOcUptYEr9D66GiUC4dKMS6SCBjIxxJ7GOBFOc4HIUygZI41EKkOUKGatTy6q4aY0iRKtCGWydRzJSTQmU8ERDXRFIF3JUHyMdupIG1ONMxwqZIikZIuepF3XmadAMfQYdCsM2wmyuoRnIqRIscGe4VC8Cikiim1p2uMyWb+TUAhsapK9mzT5RclilCGQNYTVCN9gPYOWAsePqKUc2swpmqVeChSxLkgk091DNIXEcQMMlgUr6BBFjPLxohibj1lZnSUIp0GC5yfUJQRBgi45iECDjCktBhR0GSE1WloSIXGlzwa9gFZlNJasdLleHSW0CSfCHoSGBB+PiAExx6rmCY7pNhZUmiCB04miz4mxuZjOVJ3aZAajfObzDkFbSCAsftRkuDmFZwMaBGjdxEsMUka4tsZEzwDzJkNiFSmxgk7VILQlVtWmOe0M4+sGTcelbDJIG+PahKxIKNssGQLSSmNteSmQADS0aHnEEsN84tIUPoGp0aabOEJRtC3D603REyQYKkIQx4r2tipuLaLacEAa8rka1cSljocEmvgENgQEC/hII7AKXBPRHkQEKZd57ePKCCUNRljyKmGBhLlCDusYrBBYKwmBtGcoRILpMEQAMoGOeJHYKFImYSvHaJJhjZpll91KLinTq2vU0tMs6nas42NwEMR023lSpklgfVbHY9yhr6TgWAygjWG1qVLRiiY+zVC1klAbF3zLNo6BsbiyQo1WmHwpWhEdVUqBcEGqJT+loEsYetw5ZBhywnYTyBSBliwaH4Rg0DlN4FQpN9bixFWshS3mMMe4mLKboT0OIIbBxhyhI2nisM6cQSYwJbvIKpecqZBNiqAzzJIljhWZbJH1i6dxnCyDMuKgkGQpE8URIT4i1Y4xaRJt2SDHmZbdNLB4uToybpDTDcaya9gQzqJsBq00xTDFtGnHWkXer4FseczyWpIxTYx0SAxMWYHI1lB1nw45SeKBb11EZFilKji41JOYNhmyliOEkcRYSdVmyNsiM95GZKyYMRolHSpxQmQt0+05zgS95O0ibTrFc/RxGkbRUIqEhOP9QyzKLJebfWDBJYbmkj4pBArzlH32maSf7YHC/x+Q3j2LMyeQ1Ghz72eiWOBbWResoT1X5/RcL6uYohQs8GtzUxS5nvz0Ar/7rt8ibRu8c/Z2amXB2Fw/q144wSm+zRc+08ONL7yKxYk6E4eL1BZCAJSKyXsRfb5HBp+UFHgCKl17aMRdeI23UNSP8T+dT/I7+t28JROR+GV2WEOX6aatspZTKzdxSkhYhFtVnSsbJb63x+f7l2xizfAJsuRor3Yxsuvb2NleGkMFnJFe1OoORE/qGQPR1lrmxqqc2jXH6L55TGhRKqbLgf6UwmtrsLClhzVXr+T6HwHqxsdH+e7d3yZJSb669Xo+dOBxzPt/nQ2NOmKFxqw33P9db0UAACAASURBVFHcRNCs0Owdwu/ZgJzqRyHYnDYc70mYn/GJGgo7tgXGNnF54Ra6bAdzvY8ymT/Dhz97MSfnujGdAdvW7eCNJ7/NvQdu5KE1e7hq8Uq2X/Rifm3Tn5BxW8Ci+a2v07X/c/zDxa/j9Y/fS0YpHtuwgbneMV4SHWXd4UlGzsxwYMMG9q8YxM6OohZG2TI+Q6ojYu/KV3L06AdZu3KKStc/sUUOUCi/kvzOD5CSDxCoL1IKN/JfH5jgfz3vEqo9EZP74Z/aQnq6v8wl8+vZOL+FjtHPsO7MPrxEM5lv48S69cyuz3LxJV8jcGq4nyhwaPha7MIEJxfGya+cID8s2RSXWTNfohStYjy8mDH/UvZtfTtKh3TPPM5AZYITh4/x4MEnsLd9DDWyifVXXscll12NF7Si9PT3r+CTb/llPvLdI3x61xv42qbdvP70/dy4S3PprvvZvC9g1+YBZlfdwKhzE3WdxSfmiqTMXq+DNYWjvHXr5ymXsxwZu56Prn4DR161gVv3fZN/2/vPvPrdv0GvO0QvWzjfr2utZf/UHF/fd5QdYxlOly5j1CpGRcJd6ZM47pdpn5hh+GSGLfEmru27mouedxFu28/eePAs/fxISkm9XiedTgPQbDYZGBhg//79P+ee/ftIYbkuOcpuM0QGwRZ28pCzDqRL0SZcJA9SaTqklUDGAiS0BYsIE9HUDmUbYJ0Y100g9hHKJbTQYacoxgHtbozAJTAR87TRJRZoOg6ujdgUjbMoWpESY+MQiJDV+giuL4hcn6pnSHQMxkUQ09QuxtOsZQKLoJqksAICUWVFchgjNcY4NFUeB5fYhFStTwOXUujhKY+r7X4WVY6V4QSl2Md4oGwaqyF2PFCtZKdS+ggb0dSKUtzGKnEKI6EpITGCtK4yJOocbvMwUYBJ2jBuhCsypE3C8abLBjuJFq2AF5HjkA0qOCiEamNRJ9hE46s0sIj0WndmZ6M0fUSUjSLlxKBSrZxEboTSgi22yaxKo+IF1qtJlHAIjeRifYTdOqDk5HG1ZUIaVkZNRsQMJVK4FiLl4dOkFAYIEVA2DqlE0iRFm3Ixrs8l7CFNwl3ZTUuBQSBIQsqFMh3EFEyVjD5F1XoMm2kOsJluFlnjVsBoHlJXsahhBhchXK5Qu5gzBbCS9UzxiOyl7LT29hG7yHp1GplkqYspjtphFAnCgCNdrkgOk44MqVTCggiQxlC3Hjp2UEtqZUoGbBHHcWUGZTR2KUFyzSjWRUcoGZ8u0cZUsAYpWkrvpuQwszLgoBrkWvdRkqxLYyku9rr4MI60dCqPKZGiGGfp00UWTBqTEjS0T6w9hIDLzAFKIs9iIUusHTDQtBILOCrFgJmgJAtI7aFtTAdFZAom6y7CShxr0EIilYtQAt8KrrZHOSNX4UgHbWICG7O1doi93lqqdOEzTyxACosSrWPp2kmoJGkSBD1ikf5khpnmMH1mHOE6hNqgkPRTpVseIZIaV7W8KFvNAR6ymxkSo0gHCkmVhlU0hSRHFanhiNxEPrVAIgwCGNSnOaq3Uw4F/bEhFgsUE0gkdNsGI3qMVkgquM9uoxylsYBSFo+IxLqsaITM6jSdXgMXn1B5YBNcoZCyxcsBs0gi0yhjKJTniK0EHPDqiLDClTzAUZNnjbsAOkAYWGlCfHUAL0gQsUvdWIxNUU+WwKhwkFLRMAGbor2cFAP4coARvQ+HJofopeQM0RCtu5ZNBdpmyDgGPyojpEONHNUkIMFB2QQhLLFSLOgsrjDkqP3sNmxAWGvtD/rx5ptv5rOf/Sxni7zpTW+64DtAb2/vz7SDs7OVn2n9P4xsOaLxyb1ob47O6G5y7m18tfk+/m+1HukV6e9pcsVUnfnMOFGwh8/MH2T36ZfxRxfdwMNbt/PuQ19gXfdDTH47w7hqp+vFPlcUHmR69CoWH/0VhJV0eJYB5dDjSAKVUGurYLvayQ0N4vZkEN0BJiW58743cMPO32RG7WK7/CBfNdexN3khb5ZbUFZyR/sxMrUt3G0+xDvuSKhv7KdRWM1RfTXSeHzrsgw71wa85eEDdM3OwPT3sEEnL1p1M521PgDiVBOx2sXftBo1VEConxxcJZFmbM8Chx+aojLTxMqY7twMq3QPvdKj1jeH2uYQd1RI4gWSZJ5EL2B0GWObWBtiCWk5jxXGQKlcIdEOo9EQl35hjL5DC1QKLgsbHXAl+0t9mCBFc8Vq1qx9LguP+3hGcXkhouc1K/EHhgh1yAe++2murxzh8jM3U4h6OC5meGTtHfzj2EuJYgdnjeENyV9ww1iD+5Nf5fb1n6Q37uAfnvcJUl1PTYpc+/Pf40trEu6QV3Lt+FFEs04XE2w8fYjrB05x4IkhvLGIRhBQymQ5WfBYzKToT+UZ7ujkifrLSAVHcQf/gjOuZVz0UpLdxErSFBFNCxEJRobMZ/LEIoOzINDGI8cpbjnQYMV8BY9eyiuuYaZT4auQSy++lyBVIt7xeqbG1+LGFcg1OaUPkpo8zfGVGzi87RbedNe/MuBN09XbYJATNJIejjav51jjWmJSBPEiPTIkkeOMV3cSJ3WMlCRdK2hfv4Vt269iYGCQQCs++O37+ObpFE52P+m+L/LG+65h4/Fx1s0dou743DlyFcfWr6U00k1X+xy/eN83+PP2t5LuO827tn2CcsPFfaiHv734HRzo3cS6xZO8/s67eeXb3okzvPKHylyYGHafLnHfyRnuOz7LRKllhZJOGZU5jMoepVOWuDhZx0vWvpirrrj6We/7fwLq7m57Ruv7yEc+wuc//3nuvfde/vAP/5CxsTFWr17No48++nPJo/jTvrv+52c/xrXOLubqGZLQx/FiJt1ObE6iSgnd8RxIjbAONm4pwq5XJ8GgNbhOyzsvhcUagT1f5JcSdpq4dVLilGln2JlCOAmeVGSciMXI4ex9oChuI+3V6fQb6CjguFnPanOKxcRD+nVYzg5k0VYDAqEDYhSOBmMsUrbuOyENLF0OFybB+jVcXIwEJQzGSsxSjTpMt7ogQPktzTrnNREiZr6ZRgnVKgMEMqFpHCSGNifilNvOBD0shn1slqNkdIX5zhwnGxluiPcRR+lldhivSbdfY7FSQPitI3829qiaLG3+AgA68sEqwKK8Ziun1Fl2WgtxgLHn3+80ZNNVGtrBaocwSfOYvZhhNcGwcwIExA0fKRVgcN0m5rzTymfH5WB4yK7lCnECgLvtZkZkmdW2laL9LF8Sm+BHgkimUG6E1QqTnPPQPyE3sM0cBCTIpFUmcTC6ZWgKrWIvawHLNWIfKZlQMud4lHIiGlrhWEvs1XGEgxIGbSXaJi3FHAfOk6sLqTWRyq/T4TdYCFNYIymnexixJ9FWkDTSxMbhiOhhW2Y/xnosVjoB8ITGEZa6cTBGk5IGZSVVofG9BP2kdh2vjhGW2WYXu1lNWqR5Dq1rK64wJFZgrUDbiGNuH+m2OkONEg9FV3ON3omVEqkihNM67uqaVnAEAGkMRkqymRLzup2UbZyNv0veb1AMU0uTKNFJq09G1RBKI4WHxCAshE0PLxVdKF9uCSldSByEk2ATB5wEqyXWOCg3wlhDEkkUAdl0FVdpXKmJG2nKS8mf00LTsAprBSZKcUIMMWLHka2ct+zKDrNdH1qeGYAkMbhOK6qjxDKnchRM+YJZnNcZukKLTdd5OtJhCqlihAgRUpFEASDJypiKcXH8emvsDYVSLfnUJkFJB4TGiriV30tpRCNAWEmsAAz3yyvpdeqsiw4st9fhRCwmLkiNNYqdYiuX2f1gNIvWpZwaYTqEyAoi6fPJd772afv949IPe2/9UEC1ceNGhBD8oCJCCA4ePPhTde5H0c8LUFlrif71CHp8kUQtsor3sliCv0n9I/8kYFXPE1Tmh3m5e4wdXTv4H+X9bCgP80fcwBdu/kVevecOhqMzrAwe4PT9/RwbXssl4a3k1v4b3Vu/xujkNroPvIU1nccpdcQU1mylsOYqpPv0VvRDCzswD36ONYffQln9BZvde/nD+E3oYICXeVn6F7cxHcxwX7VJ3/4/Zu2kZftLJhkzI/yvnhvplh63Dd5KJefyX+6t0D95iLj2NUpdlxMM5diSnWV92ENmfivS+CROk8XuRfRIgb5LtuEveSV+EBltOL5jlj13n0aIeYKuI/T2HCftJYTpOeL0NG6wuJzx+ixF2qESZajFaULtExmPSLtoo3CFpt8po3RC7qEmg3fXwLGUX6FZWOlx5rv9VGOfjq1lchtcbOWlTO28iBSKS3vL9LzhMpxcgSOlQ/zePZ/hPVZx8ZkXouJ2Tm74Nz5FinsPPQcbKLa2p3jJsUVW+Uc4qkf46oZ/pOkX+ftNH2Fw3YanjDc5dpR7PvFxvrZuJZftup9i3yrcfCcjbsTEQsxzszu5Vuzk+ye3UNhdxAktxU7Lfduz2IUeLDA6mGFT6e1M5I9y17pPEegMXpIiSFw6hUdK+mjVJPbKlOIMo1lDTBOnWcWoBkI+Neu3ANqkpbfZR19zgK64wHyqiwd7e5hNd3Lr4ydY88T3yTp5ruv9BXJe9/KzihkC9Siu2MFElOFQ8wbGo22ApFvV6VCaor6X8eJxTGIwSjHbJdk7PMPprjJm9gZq8zejRIi2LqC4fu40rz36fVZP70IrycnVq9mzdSv3br2Ma+qPsbhTcnxNJ7+2/WNUI4n35SzfHLyR71z9Mhp+ipt33cc72/OMvOIXfmwQNF0JefjUAg+dWuThU/PUopbMSX8ClTlK3p3lBblV/PJ1v8RAYejHqvNZeubpmQZUAPv372fLli00m00+85nPMD8/z+te9zpGRkae8bZ+FP20766//dKHWROOUgxT6DDACRrAOeXHWoMUcklh8kEalNtSzqxWCKV/YN0WWopvFCC9JmDAqNY5quWL2xZjDRIBQiCWUq22uSHFehvCKFAxwklgWZ205z5ZgRAWm7gYI8EqpNdECIMOU0vPGKTXWKr/3NjOUgtUtcpKv75cd2dQZ67ROlFxFnhIr4FN3KVIXgblN7FWMBP100URaIGPo2ol6/ToBWDibN06DFBLgApYVmYBTOwtAUFzYZnWYJf6cnZcIGSCdM/d2TCJh9UOjoqwS3Xq2AMrUF74lPkxYXrpkwXOIS1jNFKe5YRA+ktyYQ02yp4DS1ZiIg/pN2FpLqAlG6gW6CVRyzx4erLL4zkL3HTiIVV43n5sWm2hl3JcSnQYXNBnoSKkkyzzN1AJTd0C1aHw8O0SqAgDpBeCsEu6giBpBkvtNy+sVyZIlWASF+WFWCMxS3Wq8/iuw4BTqp81zskL5gdAOhFgOSZWsk6eWCp/DkSeBVQtcOqi/CYm9pajxSm/viyzT/d2slphjEK60bJ8n19Oh+llvoJtgZFl2RKte2xPqvNsPUYDyYXyqiO/xb/z1mPrjwQsJjqnx0mvcU4mlv5nrEYJdcGYntzns7yQ57X75DFJFYGTtJ5f4sH5PBNA1PBaIGqZLlxXrbrOzrcBDKdFLwEJXba0XMYTmkTqZfB5gTxrTZtnqOiWB/R+eTn/8PZX8NPQvxtQ/Wegnxeg0gcWSL41xsLgdxiabFBwP8rXS6/kL9PXc1J3I9wFttFkm5rk3uH7uXfsMT4dv4P3v+B1vGjX/fz39Q47i7cz950Ao3vwsq+j15WMZBuc2PR58oMPcabaz4O73shbn/siRi7u+pF9+tzBD3HDEwFdZ55HXb2Xlc44H6q8Hrt+JaudJ3j+6C8j4zS3RZ/j5d+8n9NrBDdfcYZdznV8ZWUazxd8JPNbCFfxOw/eTjhawdaP4mZfiXJHkG0SnSvS5k6zxhoGK6twdBYjQ2byp5jsitCrV7N55DIK6RSl2gR7T9zD3JkDtMULZLPTuLkJHPfcoqhEGWbqXcw2uphrdDLb6GAhzFJJUtSNj0bhSotSGiEThEwwGNCaq+pNRqZn2LxzH4PFGcYKeQ73tzNX6CFXXSDnNsluFkyuylIo91B74tX4uQkGn/vXFI1iod5LNexkoZjm9dWr6CivpZI9zdHNn+MPTr+e+YkcptNyaf7jfPBkhaPNdzBR7+SeNZ/jSPdjvHnilziR387zL9nCc9d0omTLuFD9ypf486kpqM2zdvQwjc5OMpvSnKqvIdtcZMEvgpzHSe/iYEoyoxTXHLC88R5DZwUeX9fOqc5BgkaIcXsIUi9FSp8OO8Fgm6A3lSdIupG0rGHWWhq1eWZPfYM/fPkLeGJkIyvuP8JC7JLp+C5XmQid7mKo434awSx7Sh0s1HtQwTwNp0bL23eOlJa01RXtNZe4fTNpdzPPHctTwCNjNSnjsMo49OlHQRxmNBnkUPP5lHUfrogYdA0FN2EmOchEeZy9wuFEdphTwWqa0gMsDprhtvt5ve0gN7GBSiVkePwb9E0/jgDGhoe578qrefjii3jBvge5Pxjg3Zd9nDCB5IsdHNd9HLvmCr6z/gU4WvOaPY/wzle+mmzuqZ7CH0aJsRyervDIaJEHjs+wb6qKQYJIUKlRBvw6r9m8jVddcQ2OejaYxX8kPZOAKgxDfP+cNf7EiRMcP36crVu30t/f/4y185PQT/vu+vyn3odFIqzAb0AzbS8AHS0lZsmXY+UFHpNzJZ7+9d4CAQKaPqSWlHktEcqc98SFatVZQAUtICCERTjxeWXAMQlaPjUKZwsgBCg/xGJbANC2PDN9doqZIH9Bbz2dEKmWsmXCgBZwaC4dGruQdJgmX6vjZCokUlHV7RhfLyuLLQX5qcqahaV+iOXfngKotINQuqXWJk5LYRf2AgB0QY/MOS/J+YDqrFJ6fv3nP/dkxfUsoJJuEyENOkwvl1dOuAyWdRgg/XD5KROmQOolQHFOHX+ysr8Me3VLbkzscQ4AnS2dtEBM7INxLgRUTnSe/HHes+fJSOjRulVikF6EEC3gJYThqSCkxYFzhoBW38/yxSYO0kmw2sEYiXQShEgAiY78pwDSC8d6YVs6DEAapBOfWzNPMkC0QJNEqmTJYHBefWcNGBiUHz0toDo7l1YrkBaEeVKZFp/s0po7C5xt4iAcvTw/P3gFt/oMAqHO9e8coHr6p815gPR8QFUIKyz4befN6ZLugaWnWVxenxfw4bzP58uvjr0WoH8SX6yR6NhH+Y2lteAv/brUnyVZP/+5FqBqrSVrQHoxCLFkbDhHZ2XTageTeEi3uWSvEejER6kIYyWTup/fftd7fhBHfyx6FlD9hGRrMc1P7aMZHKOsIy6J/px6pcpXV3yOPyjOYRBYneIV7bswYo6rg+/Qx0revvED9M/O8pd3/iW71/wy0ZlpospOVP7FDAznGFz/z8zlQ4b738iR6gRe+bMo4OuHXsEVhdfw8pvX/FArfKQj/uzhX+bdh15LUOzG9d6LEpo7Dj4H901vYkfj73jz+AvIzVzOd0bfz7W7Fpm6RvP84Wk+Ja5EXNJk2vTyV8H/A0LwgUf/hvqxOjbWdF/yGtrd9cyeqpAsJdN1UhIv06TN1OnUknRmATqOU+raT9h2mnRq8Vzfmm1M1vo4XeujXuujGnfSzHbT2dHLmo4OVhU6GGzP05H2UfIHjxHAGMOXP/2PDH3vHtacOEEpneZwb47JlcPQqOM261ycn6RgJF992TtxDrXRfbKTDtdSHt7NwfwJVuXGGMmNknFbC00kPjJJ8ZBZy8eeeAu2YhADE/x28ie8uegx9YJP8N2vJjza+XUeHvo2V52+he3jLyYrob29yENZxaqNfWz43hf532uGuGTXg/hRE3o7qBTaOZibYCY1Q9FfXD5aMxzFbG7GbI1ipiduJFV+EWvGdjA8fhcWy5E1lzCeqWGsQaWuYSBzGRs7Emr5kJ3RPgozl5NfmGRTRy9KCmo7P8Loyln+31vfxhP57bTtniCehUzuMX536E66+6f47LFtVErPp7qumz35jayoneblk58irB3lW12b6J2boLComctH1ANN3U8w5+s/FgQSaQWucUglKa45VOed43WS/iFOqas43ryGBB+rKuxyJHs8RV1q1rBIN3spBUc4mFmFETBiDH1S0xMV6J68kmwtom3202w+dRI3sYwND3PP5f08smqMdKrEO/tKJFbw2P29dB7OM3qRYefWl3I8dy3tjQVem8zxXy59DgX/35ecuhFrdo0V+ebDx3hwdo6Kbm2OUoasbTO8/JJNPGeki+HCM3ef8Fl6enqmANXOnTt597vfze23305vby933XUXv/Ebv8G6deuYmprir/7qr34uQSmeCUAFilxYxbMJM0Gepwc5YFFLisuSN9ZqjHAuUErFeSqRbWl75OIqifSoqRQC8ExCqJxWaXvOep3SrYhaVad1h/R8xbhlR2+10hUWmfdz5/UEuhtFIselYnJYXy8r+SZMU2hW8f0yM8G5VCICTXezSNlto6mWLpRrtaR4sly3ZxJcExHUQUiLdJqAxArB7NL+IJas/hldpZl2loAkCKGxyGWutPhhMaGL9BPOQg5roS1pUHFT5/XvrMfoPOu+EK3CCEysUDGQjpbKCTrCIvN+fhninO97SOsGrml9K7uZ5XpNmEYGDYRdUre1wmp1AXjQoY/0z/OChQEIjfIiWJYIy5P9f+f8iGa5HImDE0qSIMYkCukmLQVXuy0GOUuAQ8sl8GEvfN5CJmm0ZESAiVwCp0Ekzx0dvdBvsiSRF7hAnuIPOQ9Qne9x1a3cslZijLN0WuN8tf5cPReCGLEM2i4EBK1Sno4Ilbu8uoBWaPu4jpaKREgS4VBPMq08VimzPKOeSYjl+d4dgTWiBaguGPFZvsnldSM4V6Y16qdLDWIvGFGr7vP4D9hEtQCZWJpz29oj7Hnewpa38kIOd4Yl5v3cUk2as+EVCmEZx7ZyRWkEiXSouqkn7Sd6uXc9zRJ116fmpJ/mZJvAJD7SCfF0QiwFCIWJXZQTA5pCVGFhae0qq4mSAOWGpHSDwIQUnXascNBhilyjTsUPMFIueWlbY74QVIIJ/SUjhkA3Urzxv37waXj749OzgOonIGst8b+dRB9b4PDWf+Dy/YMUvI/zjbnr+FLuF7hHt6yd18gS670jnGg/wN/W7uPSq/8VmRj+6B++QHngZYRJSFj+JDrVS2X1ChqOz+aRIi97/n9HLFnwdkx9i/HRP2FtuszhhTXsHX0L7/vFmylkf7AL/kztNH//8Nt5z9HfYqE5xUXOH1AzAYcfWkXfH3+MU5l9hA8+ysDxyyk/8Hvkqhr53CbbCwv8mX4um547xonkIv7C+W8Y6fCqx77CyJ7daD9NsHUbVz/vpYwthhw8eBBnISZTzaEaObDnXLNCJii3gRUJwio865ETAW1uhFnpMvicDXSuaEP9O8JXVxPNtz70Bzzn+/fgRRFH+7o4unIFcTaHNzuBcuAVfXvpqFiav/l99t0zweHdDXpdS2XjKW545Uv51NGPc2TPEX5n9tWk3Qbzq79Ose8xPjb/FnbsvwhhLa/e+nVe3HUH9XqWE/WVRIsrWbB1duUfYR0X8/4b/p7RB49x9KFZyjUfBYwP15grf4/CwhOM9Qvmug3TmVmMNEgLm5uaK5oh483r6am0cdnhPJXuddzS9QEMijvn30+Hs4IhE2IPfpnkzA7qmTyPbxihrEsI1YeXv5ZHOqZ40X7DhvHv0VYdJ872EDz3PQRBgZ0d9/FEzfLEwAg7Vm9EnaggTjTxs0d40Ya7eSD1GiYyF+Mmi6SLX8Gtfx+xtOH1LqS4cUc3oSfYtbkN40UMTYR0zsbM5S1PrA+oB01cU6Gp6tglqxpWQFTA1IZJR128sDHPjTWHcnM7k/EmQOKrBv0qRY+r8Lwau9sOsCO7j8fSR2nIJr4VdEfdbB99Gf3FTVTEPgozt3H14QpuYhgfGuLey9cyPljkVWsfRwjDge/24Z1s45FLZti7ephq/vUk/hqc6BT9xdu5KCVZW1jP2vb1rGlfx2BmCPkT5pk4cnCKjz14DzuTBWrhIDZuKXZdaYfr1nRxy6Yetg/mlqI4PUvPJD1TgOp1r3sdb33rW7npppsAePnLX86tt97K2972Nvbs2cOf/umfcttttz0jbf0k9NO+u/7u03/AYDxNRjeQKKb9AkYIehsLzAb5JSVsCVAJh9a1dI3EMsI0J0Qf0kBHWGHBawchaIurlN00jtV4JiSwTSJ8Kk6WjG4SmHAZjGR1SF16uEbTGVYo+R4NkSaTNKm5LctxZ7PEfJDHCIG0ls64yIJzDlAJLN3NBUDSUD5V95ynxdGWXFLBwTB9tg4AkdBdK7cSs3pZ2pMartFUnYC6CrBCkE4i2qMalgQrHKwQYHXLKK0cNLDo5hBYZE3SwQJzmUIr0IDVZOI6NTcNCLrDItOpQot3dgks2RbkaY/LuAbm/TxpXSOdNDBWMh90gNBgBekkpOm6S7usoKe5SMnLEosWgOsNK1hrqbkBNSe1BJAEWhmEsXRHRZRRWCzzXo6UDvF0zKzsQfoh0sYtVdG2wNk5BXwJw0nT8vYJ8CuS0FcIN6Y9blDxWoptPqqy6GXoDMsoayj7bTSFS3tcIq1b/AfIJjWqboCvI0LptZyfZ9sVEmUTjJXL7waxpKo7OiYX19BCMu+39lCbSPp0kemgHYOgJyoS4VB1MhgBRgocA66OiaTbAkhYrLRLDh1xFqNirAsqRBhBV1xk1s8hrEWgCExEJmoy77e3pE7IVpBkC11hEcdGWAQSwYzfuSSXLYMDwiCtXGIkdIZFEDDv5VremXCxFSlYiFY/lmTXKJCxg5QxVZUCDJkkZC4oXACo2qIKJS/LWbDkGUMsFa5pjXmZRAv46CWYkkoMzSUPbaAj6q6PNC1sZpeP6Z0DaRa97KXWovXXMWJJTs56vM4CuNZwskmdmkpjaPFpzs8tyb2mKymCcVu+KqtbxkWrkUaw6GdpKm/JASSQNkGj6A4XkQjqTkDNTWEsSGuxwmKRFjZHWgAAIABJREFUdEYVFr02sJZCWCF0JQ2ZBiHJR1VcE2OBBa8dIyQ9YZFpvw1hwSckqxtIbRC4oB20Z5hX7a21v2T9CHTLIGSFaJ1EWeKRsi3jj4lSvPEdzwKq/zA6e9Rvdu2XWJhZzw3hn1ItGr6x9aN84PQEOhxgnS2zYegEnXMRF3lf4Qtrf5P7ui7mV+8cY6DYhnFLOPKT1KYt392ynY3+DoLwWoyQXLNW8JwX/BpnTQSTtQm+dvC3uVgdwZOGu0efz6ahd/KyS36wt2rH7CP866Mf5tdP/g7f0ffyLvUR6k2fsfu7af/jj5Pfso7HvvYojScOMfT9j1BJS4aeW2XEKfJ35oVseuEeptUN/E79zURBhq27H+OWR2/H6ZEMXL9AW24Od+koR7HZxpniIPWZjbQ3L0YU+9FFgUAQCHCEILQQP50U+TFBzqerN0d7Z4p8X4pcX5pswUc8yUtlreXunbto/8sPMXJ6jNlCnoP9HcyPrEPNTeE0qqh2j7f3fA9T9Ci/+RvsurvIqVFYkQrZuWaGTZd38JnDf867itdx+eTNxKk5JjZ/gn+pr+Jr5VdizsSIdMQtvX/Da6NFnuhci+PU6E4t0JGev+B+10IzT7HZgzYDzE+F7HWalOrjzLQ3iNzWttoRZtnesLy8Mc7VYQ2mHY6PbWN37oWcWBvjRnmGSpvZnBpne/Z3MbaNJyrvYrw6z3RzHG2bXHJ8lMJikcND/ZzozIHVeO52Lj3yGDKew27p4K4Vaznato33NHpYYQo8UriPu3ruZyZawemRF3BmaiXOgUWEVyHZHNPh7efiuXvYXp+mrT7EqfIrcZMx2k6P4qmAjTf+Bh2DvWQ7fcrNGe77+m0kp0/iNOuc6h3h/uHrKFY8MCVUMIkKJvCD04jgNMZpndf3Yhgqt7FBu6xtpAlKV1KtXY3BR2DJKUGXIykomHINB5IiGXMXffkSXc1XcKjYgTYaSt9iaHoXq2aLeEnM+OAg+y5bz+rnPYirIqbvHaJ8QnLFwCR72q7hzIqIf131SxS9HvKV3Tjlf0boVr68tEyzvn0DGzu2sDG/mY25TXQHPT+WpylsRHz9nm/ypeJdjFsXW92Irq1HW4eerMctm3p48aZe1nZnfmRdz9KPR88UoLr55pu54447gFbuxBtvvJEHHniAjo6Op/z+H0k/7bvrg5/9My4Pj9LnVZiKsiRkkcTkTJUpVSCSEmVhYzLFRHsvUd1BJnVcItYECzzGCF6s6W6WOZ3pQmDpiBcoptrINBooa8iokIoFYwt4tk6nU2O2rdDyORUtTSVxTAIYaiogwYdYkZE1LJaUTih5WZSN2SPXcXW8j3mnjWNqiDppbqo/gqsjjHApeHUajkspcpAGEuXiqyYm8Zj287QOMBnavTqykiCtw5C/wEzUiTYhBktTurTRJCLAS0KkTTA4HPYGGWAKB8OQKiOMZizpIZEejqnhy4R6W4Fy4pIJmmTLDaZkHhB0RSXm/BztqSopq2lULFmjyMky84mPEK2egeGgXMk6M0nNS1F1XLJRg5SpUfNSnHZ6WBHPk42r1J0UsXARjqCzXmn5HwTM+gVcY4mExEhL2tTpikOMNWBaIdeHnQW8RPBgahWShM6wwumgk7SNGWkscF9uA0Ec0pMsIkgouhmwDmldJ78QU+kQaOHTFdWgXRJWBdmkwbTIIbH02jKxDLBoHFNHWIESlqZUSKGJAoNsSBCSkpcHIzAIMjIh3WwQ4VHyXAqiTCEpU0110axAQA0rFBXVRlM5KJGQS2rMuAUQhuFwHrRiMZ2lZlyQlkwoGLGnKZsM804W1WaoxA6h9knJJpFx8EwrZL0Rho6ohFry5ji+IbAp6qHEkFD202gjMcpirUJY6GkWsU6MFxlGvFkedLeiLbSLMr3Mc8YbQMegIsOwXKAUpzEWnsisoc/Oko9KuInAM5aS7SAnqiRSIKUh55ZoNyFl7TMrfVRCK3CFp5h1c2STmHRcRVhIhEPNTZFJNEU/wDERDZUiSBLycYn5oB2PGC9pokWKfBgy76VbRg8ipoNcyyt8FmFiKcRlFr0W4EjrGl2qQiWVoYlHNUyRFpBrlIkyglLcOl6X0gmhdOnUIY5pMuXmMUjycZlFL4e0ho5wAelYlJHMkidvqq0gGsRICTJxmfdbcyyxGAuPuRt4SfXBVu4t5bPotiNkRGIAYdBCMVAvYZVH3Vp80/J+znl5QNITlYjx0aLl1dU4tMcN5oIUddUKv1/XPlXRwUXRKJHwQDaZdXNoHITQSCvob84jpGXObafTaXI0s5L5esDKeJK68ElkwDvf9P6fal/+Ye8t9fu///u//1PV/jOmev1nm4jrfLKLIdFXjtFoP8I96VFeOnsSX+7lzvnL+Ot0TLG6BU/W+cdbtnPwyMPU3CLj/TfxzYGreMnOOpcem2b/6hK5wheJjmp2dm/nyOrH+R9XvpfhT3+BY6tXMTmvcSt7WLH6cgDavDYuX/EqpsVqDs/u5trevdjoDv6/nfOs7rmEXOqpOZkGMoNkcoN8qbKbW4tX8GHdz0v8h+nrX2Txk9+mmRtk9Yuv5+ghyVTaZ+2xfRwvp3CGfW6W+9lzfD3dI7vZZvZxIF7HieEtHOlaz6b9u2mWFTpd4MzEJorHXku/+162jLyKemMljcNAzaPPhaszLuvXaja+bD0bXzjI+v4UK9yQ3iihRypyShDIBBNXWJyrMH28yfi+RY49PMPhB6aYOFRkcbJO3NSM18vc91cf5oqP/i3ZZp3dmzewf90QtVwn/uQo1hpWdDd5a9d96JLDws2f5bE7aoxPK/rbF/lS7yLNjn+ms/Ig7zn1dlYuXEZx4Ht8ufcB/v70r7CjuhlmElTHBL8p/4T/q/AaBn7hI7SXr2PyW5s5Od/D3zv7OFrPMVO+ggPlNEdCw0Fd5P5olJ3eNLPuHG5byOaU5Xrl8FateWd4hpua86jRIfaffjWPyHdzrHAT2h+kS/ospM7guwvYWoXTC5KR7D7azUMsXP8GTMpj/vQJxvMZipkutoydYfXMHNVUloozzZmuHia3XcnDK32U6qDTlLm3fQeOslxTvoqqjcmv3U3NG2S0fS2m4KJmBPJMwEizzGfm72BdPmZ0dT9qfAFvdJaOrOKW//5hhretIt+XJt3uoWSK8cUVfDcZ5owM2DB/mG1nduPLmMW+OZx+j99rdPGSmcvoqPYwVB2mf85l5USFmltjZ3eThzrKPNB7kON9dyEK38ELjmCSgMVGFxOxoBxaekyKQXERhXAbNKbItO3CyByRcxmLHUOMZcuEnmRgZo5NB44RH+jE9Gg6r5rApFIcPtDBdnEIXb6JXzx2nLXqcR7rvoZq+4u4uLSZTWOraWummGlOsaPyIPdMfYcvnfoCtx//Mo9P7WSieYbYRrS57fjqqbmpHFexed1GXn3RS9lqCyw0vstCzxdR3jSiUmDHuOZLT0xyz9E5wsQwkAtIe093LONZ+nEpk3lmcoR9/vOf5w1veAMAd955J2fOnOFXf/VXl3+/7bbbeOMb3/iMtPWT0E/77npw9wNMe91UC1lG/g97bx5l6VGeef4ivv3uS643t8rKytqrtK+IRSAQiw1e2sJu3Hbb2B7PjNvtHvfpnt0+xxxsM+AeugcfxoDUNG6M6TZgyyxiEQgJCUmlpaTaK7MyK/fMm3n3+937bRHzR5ZKiM3Y4NNwhvefzJsZX9z4Yn8j3ud5kg3i2MF3RkgbCiPskhiSJDCZcgMKSmPFEV00WiQkbkROS3wrRU738GUKoaGcRIwafcLYRAnJlF0jbzbw4yKBGZKVfVztYUkDgoSUgpYZU7Z7RJaN6ymqZoHZoE6MIMIkoxWu1qzIMhndx0x6POHswzBS3KwvEhk2fiLIWCFnjHFSKiAyTUacFo50qCoLoQQ2MRl67JebLNsDSC9NUfcwnS46kURaYggbI23iiQgvThDaYIciO2aZKWcNzzTIGoqeDCkLCFMVkCazYoW0ipnL7qdllRkL1tiRWbQQzBhNAiPHVLLMWOKzQwlDK8bsPomOkcLEkyGDbsQlvYc8bTJmRCIt3DDAkYqc0SdlWPimwVn2MJFsYGRMqpkJtvxJerhsyyEcNIOiybZI05UuJdMk9HLMyk1KIsQzQkxhI0xBJ2vhWn10z+JR9zgVtcOs0aTjDbLpjlIUdfbJFS6U99N2Bgn6EXYiKIgG6Ugx6MaMqJAogATBspzCkB5Z2WdTlsjqPkorck6PrCOwlWSDISrmOhmzR9OdInSyPGPuQ6KYlZuMqICiFaGNHrO9BoZpYkmTDVWiYPRQ0sBWCTnVx9Y9zlnTHLWq6FCSSXyEIch4EukYCEOzpkc4YGyQBdIqpiR6eFabE+UyF7IVjrU3SEUShCIWkllrnUAaLLgTTNlVJqM+jjToxg4Fo8Nw0ibQiq6yUUmGlO6ipMumTjMl+iyaAygUWeFjOQbC8UhsxUR/hUgnaLLUjQK+znOURcpei3PxLFWrzGDaRTkuxBGJhLyzzaK7h9gqUJJVfK/JNJK00jSSPAXVJ5ExJadL7O1lXqWRKIa9EJNdunk3CSioGloluAKG3D6WiImVhyk0iYSOTLMhhtjrVnFFD8OVpFSPcd2glxhckPu40TqDR8iqO8xoXCUnEkJzgllVZ1IssxFnWWSUKbGBKyCnfAbMDnXlYAlwlcLSmnwcEpoaKWDM7PKEOsp54RJnE3rpFOcoMawUntYMOwETSZvHisdoRSlEBIM0kM4AA1TJJG2el5MUZQdhahxnlQUxyxoDDKgdJJDJJ9hAJ9TYwqJl9uh6CZP0eVIcZSrcIDINlsQoS6KIL1K4Vo5AmdhGEzutEK6L48YYwDViiSU5Q8pqMKQDnstfy4Dosr+/Ris3jOk5XHvwtu9rXv5u69aPHaorpmNF8IlzJL0uJ/Z/hNsv3URFfIDqapE/2vcznG3cAEj+5Ja9fLL2CXJVg+3cTXzywA3ccXGHX/3Uh8h2vsh9d93J/oefpV9O8dnhPfzsdWXedOjnKY5PkPqL/8yF2VnWt/qE9WeY2nvj1ZuqSmaGo+Nv4+Q29PqnuXnoCU4tfYlHVwyOjx/+lpCjicwkhYE87zJCXrHl8M7oJt7kfp2xqTrB5x5me77O3l98Exeey7Ax2OfouXnOdG3knhQvMxZpZSzcbJ2X8VU2OwXmhq/hudkbGJlboXre5VxyLT4der0m6yfqhJcEeUyuT8PMcUHmJw/h3DKNLLoI18QYSZM6MkTu1grFwyUGhjzKRsRk3+KATDPrSAayNbzCMrG7Tb0XUFtMWD3dZPvZFlYwzMboUc4cvIZGOYdsbmI3tugNFrgrf5E3FJ6nt+2wcd27eerrOda7JtnRs5w//J951Z7PcnfjFq499+sIoXlk6tO8Y/06zkbXs9KUECSMDj3Ie+pf4c5f/RT2odu48OVVnvrMMmvDT3L/zIcp2x4HCtfxXPsCp8UGK6pPIzQYXnc5UC1xWzLOLxgRrzJq7En7RCXN9pDNesWleSgg2r+NN7rIWGmd6cwOfuMk3ahDPeVwajhD5SfeRvTYeSYKlxm89CU2K2/BCoYYP7fAsdU5QNLOlNiztYYbw1bWRjWXyXbGWRxqcq7cpKAqPNdNoS2bN7SP0Ozdxf2lCd60/mn+yVOfZe9wyHOpCtvVYf7U/Cn+unAD2bM+3nyD7N42rdsT1psQdyv87VeW+JMHLvJ/P7XEww2fqgzZHqzSGbApaoc92/Mc3awxHhl86PjLuClzhtdv3YinPNpmipQ1w/WXUvzqp7e4/UxEJS4ROFOcy/Q4UdzgqeFnmKt8lrDwCDh1EpWh4WeoxgZVVSKJZiiLHBNWzLhdJpO5kVZ+jPl0j44jGN1qMPhon+RChuzxbdwbFWe3DzDYfIr+iMXx/Xfxis+8Dy8T8MDkLaxURrm9m/Cqy7dx3fLdjO8cp9wdR0QGy9FlHu88zBfXHuBjl/6cvz33KU4sPspyfRGNoJQuY34D29DYyDivP/wGXj30arq1C1zOfxxZ+hoDkUevWeTBxRZ/8dQKpzfamFIwVvAw/w5c4I/tW+0H5VB94QtfoFQqUSgU+P3f/31e97rXXcVMnTlzhkcffZR77rnne8rrscce47d/+7e57777ePDBB7n11lvJZDIvSXPu3Dl+67d+iw984AN8+tOf5ujRowwMfCup0Pe7dn3p7FdoyDJGPsAljyPKWNJgUWxRSpoIq81mDvIywFQWlhHxeXsWmTWwZcCCkcW0Imw3QNoRE2GHxIOV9AQ1Y4QZc4O+LdhxLByrj5YKoR02jGESK2AobmOZKfJuh4y0MKXFFwePI9wtlGOR1QN8XUxiGj4bRomGG7CVjLAsRoEeUzpiMAM52SMtA7Rh0nArzOtpVhmjlhFkLB/PCpGij2VqRq0mUllE7gihm+a5nEndKqBFwHCyylypxEp+gMNhDWHFIE0ylqDqlZjWTdIW7FiKyzJNPzVDy/FYslrIJMSwXFbcDK7uYsk0dZmjbPuUkj4dJ0MhWWbLzdM2Enwzg29N0si7pOnQsSRSWHjpDMrLErommXiNnFA0U2M4dhrP3qZvxzQydVJ2FswUpjDJGG0GPMWcHqJBCbPUo55tIFNditYghukx76TQcZ7EyLOQH6ftFhlMdnCjiA2zzJrw6Ohh7LSDQ5+DYRvHsrmQKXEkWkKKKlL10WlNRifE2sL3BsmqNlIkLEoH04vJ5DyeYxxdiHBUEZ2KMUUdG5dTQ1Mk2ZBWqsiaO8KGkaZlJgzrFfBcWmRxpWQ7N8qCdDiVGWXbdCnoDuezJa6R5xFuQsqImXMqbCcl0m6aMbnMtpasmEMcNKv07DIbSYZaKkcqC13TQqo2jmGwnJph3c0Sum08mkz1unhCoaWDabu4IiSxFFvZEik9TEpvoyVkrRCBwbI7ylxqkLrt0DBSODQxLI1TVDTcEv3IJJIwqHp0UsNUgh2UDNjOlKhmHI4lVYTrsGVFTMrNXfHj9DiRYZF1ItrSpW6W8VI1Nr1BlGmghUTKJbSpSIRNScE5Yxqp2oTCwLISVpwiHU+SsX0ywqeFwHc0o0aTrOzTyrsMSR8sBSJhTpVZ9UZwU2meV5NEhkNQ6jMabBEKi21RpuVk2XSLFKRCptI0ZRlLprCiTSItCOQAFhBbETWZ4qzlcqNRp2BqhOvyVG6YvXITzw3p2R7TqoXpBEizy4ijmXcP0U33sNI1utkeDTvGMQqkIk1oCUw5iG+mWS5UyKcVA+156l6BMJ1ly0uxY9vUgxwVs8mo0eHZcpFWVhOqNN10Dj+TMBN1KImIS/kSqBZz6XH6VoZls4Aq9hg1ffaKJiJXRNg+MruN6bZYj4tMpPvkRMCmmyeRO5Ro4CYBO06WTWcUIYZYyWQh6TEsAzqWpO70uWX2Vd/XvPzd1q0fh/yxG24W3n8eLvaZP/wB/KU7uSt8F0Q1/ufWPfxV9k7AZMaL+beFLF+rPsXS4AAPHL2B63fm+T/v+wOyCyEPvvblBK1Vumaa//gz/4Jbz36O3/v536Do7Iae9D/3Gc7e+//y2de/nmy/R7bi8rbX/zMs96VXiF3f568e+T+YLj9K3u5xvj7L5Pgvc/P0GxHfhBH5j08/wieCQaYfP8VCIvmw+0fsZ5X6vMdpNctTrznEHncdc+4iez4qmBuXjNwON4s1FtNjXLrBp+/fQ6vym7yjvsaO9Lj29ONcd+IxHs/dxIa7hzElOCJj3nA4//cWSNVao6s91FIbf34dYyPGCDTR8mP0L3yajkixXrmGpfHjaDGAobwrzwUYTpUZ4yTHvEdwa1usDv4eJ1tDNAKXwtFPMHL4s4h2hcqp3yDT3kN14Bn+uC9o9Ic5Z6QgEIhCh1+K/pQ3H3k7ky//aVSiePijT/Po9tOcGXuQ1czS1bJaiUO5O03Kdzg0t02hYyMrRe72LjCp66xHh1kKbmMtPEoPCyu9RTG/RDZ7Eae0iVGsEaW2rjIHRYnFTncA5afo+kUuB6McXjnNL1hPEPYsVr9UxI8KnJ++lk/cWid2FdesD3Hr03MMbWzw+IHjtK0WUuYZG7mOp/fv5yuViMvZaX5+qc+/PB+hzR61yqfYd+EL5PPbrLfT3DP9yyzVbkb4NsozMCqaPYVLjLU2ubQ2wVq3AoBtVyF7GjNzliNDWe4cv5PXjL2ONGke+KsP8ezqFlOXL+5qTw0W0NcM8NbNa7BaUzzhXORZYwMnCjh49iwHz57DTBLi/S4Lt17HKVVgNX2G+cwqa1e6SyqRVDoThO1jzDT3s681hsFu2MCQKanYkhFLoHRM018mXHoI7/Kz2EEP/wD4d8bMZQ+zOTfJeLTJoVf+cxZOnaC39Dj3v/Kn+OrwTYz0q7y9/hyvv+YwYTumt+jTW4PtuuCS2mbBW2Y5tcRmZomus0ulLLRkMBhiXI+wN1XhyOAhjk7eTLE8hjQkjaDOf33uo/z15l/TlR3y9Wuwqq9kO6nQBjK2wd2HhnjT4WGOjmZ/TGbxPdoPKuTv9OnT/OZv/ibb29scO3aMe++9l0wmc5Ws4h3veAd33XXX35mP7/u85jWv4YMf/CBHjhzhQx/6EE8++STvf//7X5LuDW94A7/7u7/LXXfdxec+9zne9773cf/9939Lft/v2vWeB/5XYm0gMZgOLFIBrFhNQqkphG3qqTSJkBz1G9TsPCuWBUJQDgVaK1qmiSkttNBM9jYp9Hc4mxmlZ3lYONzcXKQnEzpGD085dCODdGRwzjmMzHQp+y3y2sFlhZRyWXfG2LAVO14XS5uYscVibQgtBRPWKsIGM7Ko9gqIVIdxF0qBianBCVpUjTyB0EhbsZ4IhDAo2REH/IskWtE0XfJRj6Z1CEuYbNgRbdnD0QYJEGr1AvkYtzUvo5HMp2bIxZJTMuHm7iVsQ9CyCsylsmRjg1BLdmLBoWiVjlMkMrMEIsRSAiHKONEyU9EOF9OTdHWfgvJxVUA3HMdC08z0GA36tAODxMgzYppsm4qW7GFHPfIqJkuFNSuiafqklY2lFMP9EGSKBdun3zUoyQQZD1EL09jDC4TmLmh+sF/CUhpfSuzAxxWSmmsyHjqgOpjxZebSe4mVQxhYzBoRm7qBIU2yhkfbgED3iQV4vYDYNijHmn7oUDQdlBQsOD79wCZj+WjTQApNkhjYykQQ4/c1tu3gWRpLx6AlsZbEIqSPRGqFF8X0rBSuNslrwSZten0Lz7JwHAiIONKew5Bw3pugZwjcOMVE7LBk9WihsLRiX5xGYLJqRcQiIpS7hw7FqHcFm5VGGCZt0wctGelsY8QJO7kx3MRAhXVCUxALh54Jlg65prPO2dQ4fuzQx8G2AyJl4MoAP3KZ1TvU3RyhiLEiQb+VopzZwjYH8I1dXFSgQkKp2ec72DomNi8y3BFYeGyaB6lpCW6PlhETCkFKOCRC4SQRvujjG9s4yiLTy5DSATW7yMBOn2FzkyVvgJ7MEdo+dhBTTuqsOyVCw6SEZJ+/zJydR4lBSrpFKajy1dQ40lK42qAZulhC4lg+eWVgxTEID50IAiPGvbIlrNOlSAbRbWHgUxMFco5BipCWmdA0bNJxTFp7NIwAOw457m+ipMFFdwqZSEILxoLLSDlFINKsWn0MQ9NMYlTkYUtNKhQYqF1KnMjh0mCJyLSY6C/i9hVeYhHbIKwawz2PAAlYLKR6oBXZSGJpQd1W2LEir016lk1H9Il6Gaw4IlYxKiWxjYS8MgikxsKka/RQSpDRu/vEctRixzIIrAgrilEig6ldvK6FowS1tA9SkE1M1q+MuX9z9zu+r3n5xxiq72Jaa/zPP4N5StLJz+F38xwW/w5HPs9/WriD36v8OtLwUUmOt/s2GVqc3rvBZ4/dyvHOBf7gb/4I57GIxT3jXCi7GESsHJtkbfpavly+hf/l0x/lLW/7ZVITewAIH3+MhXf/IZ98w91ke30amQxjhw7whmtuZ9h5qaNy7tQ5vnD5/+K6kXPk7C6NMIeRvpVjYz9DJn0DUlporfmXD32KS2IS+fQ6O8rjo5k/44b4awS25Py+NIvmEOHmTfROdrn24adopmD5Npd/UrxE6OY5ewgu92eh8iv8l40SXx0YxQkCbjr5MPsvnOFcah/PpI+hhIFjwrVjea4fL/Ky6RL7h9Lf8wbSr27z3H94DxNfewQnDIhyw1y49hZOD5kMbLeJGsskOBRHpyA7hFkbpB2PA7usTC/AMAsHH2B7cJ79tWMcWXslSsb8eeYsf9PNs6UGIDFQecm16Qf55eolsj/937GYLPPs4uOcrs1Tc7eulikV5ji08TIsUYFejX0Lz2GqmErOYl/aoqkPsBoeo6N2T6BtnVAKquQbF+l3n6NdLnB08qcpyCzLA1/nXNdCxQ5B6SJG6RJeboNCqknGepHaNF+LuOZMC4XB54qHOGvOIDoF+n6OvpJkN5YYWV3m8EaDWmaU86MFlKrT84Z44qabmB5fZ+b81zi5fg//m2Vhy1mkqNKMH+WzkSDenuepPTs8OzJOVH8jqltAC1BDLqIEB93n+bn037A3dZmVXpr5+hh25xhHMm9k3959lCczWI5BGIX86ac/xspqlUMXTmIlEeRc9o8OcCR+M4b2eNiZ5xljk1K7ycGLc8xevIAZJ/RGs3h3HaQ/cw1b5zbZsJ/mUnaRpz2Ty9ZuGKuRWJjdvRxszDBbn6HkT2MgyUrBqCWYtMFTMeHCVwgvfRH6LeKypnWbwZnKMdaa+8nHfSojk2yffIw4A5+//Q2cGDzKYFDj1zYf4WeP3IYzeQtc0dPTnYBwfY3OYo3l9W3O9VeYM1dYTF1mLb1EcAUjZiY2A36F4WiQMbPMdG6MvUP7OWct8vmNz3A5uQxKkt1+GUnjJnaSQWIEEzmHNx0b4dWzg0yXX0rt+mN7qf2gdahqtdpV3BTA5uYm6+vrXHvttd/T8w8++CDvf/+I6aLVAAAgAElEQVT7+fjHPw5At9vllltu4etf//rVW6rz58/z9re/nUceeeTqc7fffjsf+chHmJmZeUl+3+/a9YHP/wvaareOHGVgI1BOkyQx6WsHtUsvR0qbRCIhuQKZt7QgEZqUiNA6S0CE1jGlqMmWld8dC0Jg6BipIaNbTHbrgGDFLFO3BzCNhJgEE5NU7NOXLkUt2DSSXWS82uUXTGKTQBukrYBvXgU0BiYaR0mEMFlsTjKYv4gyFAKBmZiEcQHLaiB1QCjFLkEAgpQy8GWMAnaCIQacLa5yFUqNoRJMpUgMk1hLmlGRMWeNvnZY7Y0ymNpAaIHQXAGnKyRyV5KDXRSKgWChO80+dwfbCOhwhS5dgB2ZmIlkjhGmvBX6PW8XP2J1v01LiSvbS5BJAdvoYqgEhaQvY7xegBSSQV0glpoVZ5fwJxEaN9kl0JDCRugEJRSettE6IkETfAOLm+ZFTaJv5LEzrrzXC58dLEBg9LMIu0n3il7hFZ4HcmaXXpgmkrtEIleakxeYB1f8KYSyiRLFoeIZbK1YjQfJGwECA0e06GobkSgcmUIKTaBDLBUjiOkZDv2wgGc3sTEJvkG2w1PGFbY4dbUtXjB5RdR598PumwZX6tVWEr3LyHCFpXGXW25XgPaF/rZrloyJlXml1cUV7jf1zeSBAKRxaQVlCu4ltKHoxR5JYmPKiIN+nUzS42xqkpPdvTh2h+n0Aj21S8hwldgRMLRASY1UAoRJQoSlJA6KjnyRoMWOYkLLutpWAompJYkO0VJiYRMRE4mEnOgTJCmiKxpwGsjgEhIh2MWuSxnjaIuEhAiFH+fwZGeX3EIqzBcoIr/BunGWtN3CDULSQuNogx3TI0FhCpNQhCihEUpiYxKyO7dEiUlWSGIjxBIhhp/FSgxaXoxvF8nFNWIVkwlcAicitEK03mU6NK70rQQDg4Ss0eNs+zBjqQUysodC0tMOUkukCvEjG8tOuOgfZH/6/G6TvaAMoXfbTQM+fQwgudK27TCLFpKS7JBOHFpWDy12R6e+0m9+9+53fpsx/L3bjx2qb2NhtMn2wp/jPDFFZnMf1YHHGagbDFgfwtXL3LvxOv597lc4oLs8Y3jsiQzeGHU5sX+dhw7dxr7eZf7g8+/F/FqLlutwamoIw4lIvTLkjy79M/71sSf5jH07z2X28+73v4PD+44y9D/+K4Trkmys03rXO/l82WVtYAw7TuibFp1imcHKJDfu2cuNlVGklMRhwpcefpyv1u7n8MACh0oXMKUiVAbrYZFNP0cQmwwUJV5V8O9P/3O62uHd1llebr2XsurQWXeYr9/M45lfI1fYYfixf8dIPWF5SGDPhNw8vIM/arDBG1ma/xWezyu+dMzjucEUVhyyb+EsB5bPMNHa4Ky9lyfcPYTRroMxUXR4w6ER7j44xGTxW8V/tVIsf+5vqf/FRxi5vIShNVv5DI9ffyPdXBa3sYXVrCG0YiA/w3XZOxj15iha/w8SnxPDRzi9/lb8zSMg4l2w6ZWpP2cINuwuT5gBqzpN1fIJx3YYTj3DofazbOVd1qiTiF3+JS/MkIryNJ0qSia8fOnljIezZOonCXY2EUDeLaHdVxGIPQDYhOSDHYpbz1PcOEGotlkfKLE5dZADA7diORbz1hqPG2usuuvUUuu0nJ3dka81B1ZMXv9MihuW2nT2OKxeWyEY0wyZm9yxcolMP2Jp3GNhKkUoDDZ7ZbZ7JTpBkUVzL7k5wWu+fIJGdpqtVAut6hjCYTZrc2PhMYZSdS74dxF4P0Ep3IfSmpPa528lfC11HsY+io6KFKp3stHfT5LYaEuihmyGC3VelX2Q12a/gCkUYWKy0B5htT4Gvf0cyN3OtfsOkYw6/MmJh2ktr3DtqcfJdVtow2AqN8FB71V4Xo6n7GUelRsM7qxzZGGZvQsL2FHEzmCRZLZE5eZbcQ69it7XP0vgP8li+hxPewZPui5L9m64nZXYjLTHKXcmKPtTlLtjlPpDZOiSS+YZrl0is30Ka3MTbWr84zbz4wc45x7EEBYZowD9CNVb56GbjvP46HFycZuf2XiIe1yYuuHnUNnKt/bRKEFX+6hqj/nVs5xsnOZ8cpkFZ5l1d43AfFGXJtsvU/ZHyekUYapLzdhhy9pAKwfduAHVuJleOALAsCN57cER7jo6zOHhzI9vrr7J/jGEfb8fu/feezl9+jTvec97rv7tjjvu4M/+7M84fPgwAA888AD33XcfH/vYx66meetb38qv/dqvXWUZfMG+37Xr/Z/7n/CFu7vBDQTlbJUBexs0hJgEykJrSDplqjJHKGzG3QXq/SEG0yukRY8gyrHRH2EgvUwiJJYKdhnWcEiEwCIhS5dGmMWydrflhp8mSfkgBHHsMCrqNIWHDj0uJeNUMhdJqYTzrSMczJ6hqHy6lsVCb4wxbx2TGKUNNoMRNsMhytYGtlCEcZautsnZOzTCIWJMUqLLTOYCHZVCiwSLhEutQxzIn8avDbAqxtEIxvLnMYnJiD4YknPdvYy7SyRhilpURiIYsqoM6Brn+weQRoLn1an2B+klGSyjR6JN9qTnAVjo7sNQgrRWZI0ettthtTfA4dxZYhQJknaUZbNbQduaQdmiGWWw7S4Zs4MhA1yh8HRILc7TitNE2gEliKI0o8U50LsOg9SSTBhh2JoWFo2wxJS9ia9dEiQOEb7YZSSzdURaKNo4bPtFNDa9OIcvLQwRMp2Zo+qPMuJtXnGgNaaWaAEuAaYO2BFZpFB0OkWMSKJzIf3Eg0iSs3wKdfC1R2p4BWEotuoHaEqHvd55+obkQvsIUgqKokHabDNhb3CmPw3AqFMlJ/poNDVcHCSRiMnrhC1/lLxRpxqM0NAZXOlj4aNsSJstMlaLQDukdUKIgdYJjtGno9NkZUCjnweZECQZcnYDqROkEbHRq9BXHj3lUTaaFK4ciK73ZsglIZX0KRIhaYscGZ0Qhil6UY4IC2G16QmLvFVnuz/MqLPOcn+CireKqxMsnaLeGSOvt8nnztA08ix09jPtLZFXATXShAYstWbR2mSPuUrXUdTiApPuMlkCrCDkXHIQpU32enMIqVFS4ysTqTQRDrYRIITCQONEirrhEmubZneErFMnZdRJix4bzVkmrIt0bYudYC87SR5DJkznzxJoE6HAFpqdJMdObxiJYjq1iJIahaYbFbB1QNHcpi9sDEMQaYkfZvFMn1ZUoBEMMpG9SF74xAIMESNjhdA2bemx0ZpiMr2AbxqgNRKJrxxqwQCT7goZ0SARJr0ki6kM+laCrSVKJ8RC01cpMkYbW4S0VQZX+QSGTa0/SL+XZii3gZAQtwdwrQaF1A4ikWwHQ0Q6y6Q1z2IyQJikKQcBSaGOpTUpuiy0ryM2Q8bTKzi0MYjxdRbPiLC7fb4e34RAkbebhLFLgmBf5iIKQaJtOkGZ//0t/+r7mpd/aB2qxx57jHe96134vk+lUuEP//APGRkZeUmafwyH6vJja7hPrpKPDJRIOJW7n9cF92Gh6SqP+9q/yVZwByUl+FgmoG4ofjK5nyePH+bC+CvY317gd77wAZxnatSyKTbzaZxyxPhr1njnqd9h78FLvPfOf0Nv4cv8022TmpXjzz/5r8mf97Hf9m/xfnJXqTl64ut0/+I+zg34nBo/SCvK4oa7p0mhYaIMm4oUTOQl572ER+sdlI64bmCJw6WLDHi1q8x0SkNNlzlXP86nT97JVlzgLhLe6n2El8dfwjUSmiseZ9uv5lT+zVjt/8rY5XOM1RISAdtjiuKEz/SUQRz9Ai3zCI9WIj47PMyjboGus3vanm03GKuvMuyvsUSfjeYwqlFBINhXdHndwWFevTdH9LXP03zg0wzNz+OFEaEhWRod4fzhA/SEwGlUMfo+Skhq48PU9vU5ZK5yT3OeSrvBkrmHx8Wbqa6+HK0M9rqaQ45NgubxpM8p7aNjKEcennrxZq9jN2g523ScOkrGWIlJLk7je3VODj3CWnqNA80S91wYo1bv0Y0jhLCQ9nFM9zpcwyAbbeBunGZ0/Vky3U26jsG5MY+nZ4usjA0Spnya7jY7VuPq90otKEdZCr7D7HzMkbk+B9cTsr1d/YrVsWnOHJyhWb6ij5I4WPR5vfF5rucMHeHx0PBhzk8VGHE2GGbzat5KCYxnTXhigiVupW41UPEioEHbLDujnCgeQ3tjvFE4vFEYDGqbkJizmWUeKz/DZ9yvUA6yzFT384w4zKa/D5SBtiXmgOBAap0jmac4mnqG8cwGAImSrHRGudwaZdMfpWHOsprfS9JtcfjCs+xfOIOhEiwry7R3kNH0JK1smy+LJtTXOLK0zL7lNdJ+j3Ymw9z+vTRnBpjNGRzcewQdSZJzD+FzksX0Nk+6DqcclznLIr5y7Ggok3xvkEJ/mHyvRK6tGagucl1tmZlLfYwAkgzUp0c4O3iAjfIghrSpqBL1bJkTIzkergwRGSa3NE7xxu2nuLNQYOCaN5MUZuC7ODm6F6O2e2xsLnF+6yTnWwss6DWW7HWq7uZV+lojsUhHOYSWREZAB0HcOUTcPkLizwASW/aZyPa5aU+O1x6b4vDgxEtwW/9/tB82h+p973sfq6urvPOdL55gvuY1r+GP//iPufHGXRKhT33qU3zyk5/kwx/+8NU0v/RLv8TP/uzP8pa3vOUl+fV6Iab5DycuOT13lg9//TleO5DgtDoE7WUWJo9R3rzAuLrI8/YehrcqXO8ENA4kLFbrnIgOcqw0winR4/aNj5C09vNYksNO+sy0GjRyCXFG06lXYGCHIFfhGq/H4TBi092HszXHKWOQ5lgXVe1zhxCkZIfaIrRf+SZG42XM0ydZ2wiZHxthX7KJ79apm0fwrQyB59DodBlo94lVgakj43STdQ7M7fBsaHNoooTRWOXpIEW6VWO/eYrnrWOctAocdtvs2dakvCFUKsHb6nN2p0a/XODYAY+tkZt4+dZZYktxbvQ2Np87TWnpAVKOw+qr387hsye4VF0iN3mc6b0zPPvcZ8hUF1gdeT2JuMSSytCPikw3NxnsX8YYHSZeb5JOB2xk91DpNbClZHB6HXO1xLPJCLVggb2pAWq5ETZ6mzRDzZQNQ84O3uAAC+0hZtdOsxVnMaKIA5mI09Y0zV6f2fQODaeG24nJZW7ECVY552VY6xa5KdOgaaTZrK0wsJNmbHSKzZLPUrXNHfZZ/G7M13q3cvPAABMzJR6tNmiGIQQLHDIHWUqVGdu6n1p9H1x/FLt2gbbfwNE2JduhwQZ2+mYygcOXtaTjC/aKy0z1LnKDdZA1w+aS7rKc38ue0w/SszLccf0Yf3OxRUn2GTRi7FqLY8Eq9YmDnHSKnPYTCuYQ1wcGc8Ei7SDkcsNkuFBibGyAXLXO9dElmt0mOor54tFXsT+uYphFzGaHsWnFit8iu+lw3lxmp+OxWRxg9tCN3LG8w5nNs2xqRbmYIrBCYm8SFeQYaW5T7/eo2CZdz8bK5rm0VOUVR27F7m9R6z7NSLODO1Jmbv4kQStDKzPISNyiawVcKu1hrpOjJBR7ox38sMy1hT74Kzxc3su1UZ6DmS7KNFlMlnmiOUg6TPDSAbe7A8y7WS40XW4rpREDQzx46Wv0MdgfbGIXW8xutXnUuobKzibDfo/8G9+M6zV49uIT1PVhpqqrrG/6jOUFnnmZXGGIQIf8aWc/09KnIwxu9B9nKy4wI1NEmy6IHll3nTPZvZhRl1LU5YRb4fZsmuMHC8QdQcHf4vlTz+IHk1yYnSDfPoGtXaZwaISrlMpNNuxpkt46gbiNC2aZA6mAxnLCraUeqzsNaqVtzIyJahQIUzG6VcCbfSXe2mXSjUe5kC1xxpmlsqmo2G3i4WlmG49RFfO041HKSYOVgdvoOA7XJyfZ7gUsuVMQSnb6NlOby6Sql6jnhsilxjlTHmdipMCZSHDtxgoq7RKJCq9feZS5EYcbnUG2VutciM6zbRe5ceha1NYzrFUGSJ0LqWVGGZ81CTY2sbxVdC+LW6rg9U/TqM2wLXwuTU3R7A+wVe/wuvQSA0MlDP8MJ5r7mDn+Kn7y0IF/8JwMYFnfeU7/b+ZQfa/x6v8YDtWTj3wVnu+QDlKcbTgo3eGo+xB9VWQxuIlAu6ykNvi8l1CPSxwaeYDFmddRz05wfOscP/dXH0L4mmbaRQCFa7pUblzmT5/7deKC4gM/8evYV5jE1nYW+acrbZyozbsvvJvbl5+m0Rykfed/T+YVb8N0HNTONsFTX8Ja+E/UVIv703eyZgzj9WO8fowWmlRpmz2jz1EuriEE1HsF5moHuNCcINYG49k1DpTOMZ6pEimT++fu5oHLryHWJiOizf9g3M/PyAfJSJ+dZIi54EbWetewHKxiNJ7g8FKLkQb0bFg9HDG5r8N+MUGsj+KrGZ4oV3g463HRVFwqDLCVH0Bf0dPygi7p1jZhQ9JreshGyL6dZW7ZOM1EWEUWTbbLGcxOE6Pb2iWgTVswoxmf2uGIWGa06hNvTXE5vIH56HYawThKJNTz8+wMnGbNDli2t+mYWwirebUttZYMBbMcrx9gurWHbH8AM8wQJIJQvxRvpggRqoNKGmjVBg2GmcU2I2RrjrGVZ5jaWkcAGwV4/IDgif2SuTF2tQ6AYpxjNBwkn6QQiaK4GTO52GO02qPgR5SbDaw4RgPVwUEW9+xheXyCHbeA4/XZ26lRzB9gLVfhabPEsu3ziu2H+PX6f2GMTWoix2PFI2yNahxfEvoWptvFy7RwMz6u7JM8vYfq3CvYSdLE0UV0vAZopNZ4GJhOGrdQZiA7RiXeR0EM0TdCHs88zxfyj3HBWWayPcpOPMDl+CaidgWhBFqCkYMxs8Yea4uR3CWmcheYzi7jXqHRV1ow15vhi+pu5vUsQysb7Fs8y56VeQyVgLTIeBVKdhbl9FlXTfKrVWZXNim3OighWB8dZXWswuWJcXrlFGUjYJ8dUoh32KltMK7WSTlrzDuSC5bNObPEgumy43Rf1MYCzMQkF3gM+ILhqmZ4J2K40SMjXQJ3FN8bws+WCXJDLI7M8szoCOtXAKWHWzVubCxzfdjgSGWU4X3XQ/F7o1jXfky/2uDS+ikubp/igr/MIhusOBt0rG+YrzQYYZG4c4Cgt5fY34tOdkPHhFXDc6oMpLpMDxgcniwzUxxlND3KgDtIwS7+vTW1ftTsh82huu+++zh16tRLbqhe9rKX8cEPfpBDhw4BuyyC995770tuqO655x5+4zd+41twWj+ItSuXc2i1gr874XcxrRRCfu996YX0WuvvOB50kiCMFzcWhUKKRsN/8f/f5dl/iP0g8/vmsl61JATDvvp9Wmvk91hv31i+v6u+X9hyfbv3+eb3/I5l/XuaShKk8a0bwe+3Xl94l2Ix/Q8q53eri29J+/fsx98pj2IpQ73W/RbplisFejGs8r9xRMG3a/tvHndaa7RSSMMgSRKMb9PGV2PdvoN9P31A6xghzO/aT/+uNtZKf1sZnR90/Wut/8H99Bvth/KG6nuJV4cfvEOlOxFnLt4DSY3Bp36HZ3ZKXOj4qCTADaqcHGlxchSM+mF6SQp3WtLYX8GJQl5+8hGuOfEgEnCimMxozODdq+BpPvj8L2HmR/gPP/HTGNJEKU0cJIT9mGdbLX6v3WQLSSbqsre/TCXapBDV0XFALEIc2aEkG1ScdUbSVRxjF6zZ6RRZXT9AtTqNjk1CW1JLZzEiSSpSOLHAJ0cvzBAHHq6OqBTmGR08i11c5EJvlPnmHja6w9Q7JV6pnueNxuO8TJ7CFbub5I24yJafZ1M59AKTdNWg2GqyMtglGouYTAfs1QElINKDRNEo62GFh80JTmTKXCwNsDFYoVoaQUuJUIpUq0vUSNCNBLPeZ6S1TlnVqLg1KukmORljhTZmlCUJ9qD7U0jtoFBsZZa4VH6GC4NP0r8Ss64TFxUOkoghPGuEQyrPKxoGt+0ENGWbddmliqKWGPiRidk3SPcs3BCEVgjhIWQOYZSRRhaBB9L9ps6h0LpDYnYQJDjJri6EG/axoy5u0MEIajj+NqnONuluE0PvhhMqIWhls2wOjXK5so/T4we5VCjTyibk6NC18tTMLG0jDQmIWGGGIYVwh2zUJN3v8treaX4q+Rr7xDIaWNHDnNIznFMTLKohOomLrVuMuusMpqrkUwaydpDO1hH8foyKlxDhMomqv8TxQGscqXENiWtZmI5NL5XQzsbUUwF1S7OUTLMWH6HZHyIIHBTG1UlYSI1tBaStHgWzSc5uUXQbDLrbxJbDspxkSwxjdDUjG2uMr19maGf9ash6YhjEmTSGhFyrw+BWg6wfYCpFZFv00mn8dJZeJk8v5dLyUly2swgZUaTLPrHBfrHCjFhmx/B4RuxhwcizalpULUXLadB2alf7yjeaFRtkAodM3yIdWtixgxYesZEmtNKEVobASoNwKMUuA6FJORSkzAxZM0tK2aSkhXQthGdiuBbSsTAcE8OyMG0b07IwbYu0lBT6TS5vnGSxtsjl3hbLaocNa4ctZ4tAhqhgmKS7j6Q3QdKfQEcvYn6QPaS9jbR3kEYHy+jhyYisAQXTZNDOMOTmqbglKtlhhrJDlLNFcl4e44oIJIZApL5VauGH0X7YHKqHHnqI9773vXziE58AdjFZr3jFK3jiiSdIpXZv6Ofm5vjFX/xFHn300d2Q7Djm9ttv5y//8i+Znp5+SX4/iLXrB7Wh/se2H5Vywo/L+o9hPyrlhB+dsv6olBN+dMr6gyjnD6VD9b3Eq8MP3qFKztQIP3+B+dwFPuh9nANPeXRdH0PAV64ZZnXlVxCJJik7xLM5itLnwPI8N5x8guHtFUwkpQNV0q+sEkqbE1vX8Jn5u7F6QxQzl3j9kY/jGRFSaCQaQygMoTFMxRnzOBfEQTYYZYdBapQJxEs39aaOGI6rZOMOKsyi+1nM0MRMNJEZ0bdjjq7NMd5c+/YvqCVa2ygsImGhzT4V7zzF0hbpwg7KjGnEaWrdMum6ptANqQQNplSVcbGNI6Jvny+72MZEGCgkCgMlJIkwiAxJaBlEwqRhFNi0Sqzbg6zZAyQYmDohlfikVBdXBVg6QiaKuG/SFR73Zn+SQDq7QFuhr4BVBTU7R2i4SASGVjhhyNjzC7hhcEXg7gpGVWs06qoi9y5ucRd4LTC4tXaRw81VMp02OtYYOsGOIywtwEihjQyJlSGyi/TdIn2nSOAUiewMkbmr5P2dTGlFJDWBFARCEAu9C9YGlNa7P4Hkhb9fUVv/xkFnigiTGCOJMVVCgQ4T5jZlo01WdK/om3/3YdpTOVbUPvykCImNVglaB6BDtA4Rug8qQF8BqL/ARKiVTxI8zYsa8C/aiB/ghBZ9HEJtkiCJMa7EI+/G7e/a7i97Bi5RtmooYZL8f+3de1BU5f8H8PeevXIV5WfhV1hNMJy0vDHCeAG1bBdUTEtER/OC4Q2Dbl5CNEWUatSMNGrEBFRm0immVCS0SFNETUZKA0UlMVpNbrvoctvzfP8gNlbB77K/ds8Kn9eMM+7hLLz3w3OefZ7lnOdAAsY373MrwBlNTiJImhohbWyEpKnR+JzWHOsb4V6rh0gPuGSJwdU179MgkaBBLEW9WApeJoLUxQCpiwgSN0coHHmI5ApALEWtSIYysRNuSRxwlxOjimOokRigldXjvvQ+9DId6iT30CCuQ5PYvCWtxbwEUl4CEVOAY3KImQxiXgYxk0LMZOCYBCLGQQQxFMyAbnwdOIjAseYL7Dnj62TGm3sycM1tlTHUA6hlYughRiMkuM846EQ8mngJmmr8wDc80U4yA8A1NC/WIvq7xYl4iEQ8WlqY1OU3OP7fcXjo/wM35gIxODQnEkHU8j/R31k5EVw9KiFXNEEi6QEnx38WcmAPtD0pJ8Vk5VR0k3Uzq4btsbcJVV1dHcaPH4+PP/4Yfn5+2L59O0pKSpCUlGSy3+TJk/Haa68hNDQUBw8exP79+42TsNZoQmWfKOu/73HJCTw+WR+XnMDjk7XTTqjMOV+dEEIIsZX8/HwkJCRAr9dDqVQiMTERPM8jIiIChw4dAtC80l9cXByqq6vh7u6OjRs3PrTCHyGEkK5FsKuiHR0dUV9vem54XV0dnJycBEpECCGkK/P398c333zz0PaWyRQA+Pr6Gk9VJ4QQQoB/lvC3uX79+uHGjRvGx5WVlaipqUGfPn2EikQIIYQQQgghHSLYhMrf3x8ajQbnz58HAKSnp2PcuHHGi38JIYQQQgghxN4JNqFSKBTYtm0bNmzYgAkTJqCwsBBr1661+Pvl5eVh6tSpUKlUmD9/PjQazUP7FBUVITw8HCqVCuHh4SgqKvr/vIROw5za/fzzz5g+fTqCg4Mxbdo0nDt3ToCk9sec2rUoKirCM888g/z8fBsmtE/m1K22thbR0dEICgrChAkTkJ2dLUBS+2NO7XJzczFlyhSo1WqEh4ejsLBQgKTEUh3pV2zh+PHjmDJlCoKDgzFz5kxcuXIF58+fx+DBg6FWq43/9u7dCwBoaGhAbGwsVCoVQkJCkJaWZpOcAwcONMmzYsUKAMCePXsQHBwMlUqF2NhYNDQ0CJrz6NGjJjnVajV8fX2RmZmJ4cOHm2zPyckBAGi1WkRFRUGlUmHSpEk4cuSIVTM2Njbi/fffh6+vr0n7s6SW5eXlmD9/PlQqFaZOnYozZ85YPeeOHTuMOWNiYqDTNS8Ss3PnTvj7+5vUuKV/tGbO9rJaehzZuqYffPCBScaxY8di2rRpAIDY2FiMHj3a5Ou3bzffS9Pa4+62+iZAoHbKOoF79+6xgIAA9uuvvzLGGNu1axdbtGjRQ/up1WqWk5PDGGMsKyuLTZo0yaY57ZE5tauvr2cjRoxgeXl5jDHGcnNz2ejRo22e1d6Y2+4YY8xgMLAZM2awwMBAdubMGVvGtDvm1i02NpbFx8cznqPjgpQAAAukSURBVOdZSUkJmz17NmtsbLR1XLtiTu1qamrYsGHD2G+//cYYY+zHH39kgYGBNs9KLNORfsUWNBoN8/PzY1evXmWMMbZ37142Y8YM9v3337MFCxa0+ZzPPvuMLVu2jBkMBlZZWcnGjRvHCgsLrZqztraWDRw48KHtBQUFbNy4caympoYZDAa2aNEilpKSIljOthw+fJhFRUWx9PR0FhcX1+Y+cXFxbOPGjYwxxm7evMkCAgKYRqOxWqaFCxeyjz76iD399NPszz//ZIxZXssFCxawL774gjHG2MWLF9nIkSOZXq+3Ws6W8Z1Op2MGg4HFxMSwrVu3MsYYS0xMZMnJyW1+L2vmbC+rpceRrWv6oHXr1rG0tDTGGGPLly9n3377bZv7WXPc3V7fJFQ77RR3jjxz5gy8vLwwcOBAAEB4eDh++ukn1NbWGvcpLi6GTqcz3nxRrVajoqIC165dEySzvTCndo2NjYiPj0dAQAAAYPjw4bhz5w60Wq0gme2FObVrkZGRgQEDBkCpVNo6pt0xp24NDQ04fPgwlixZApFIBG9vb6Snp0MiEWwdHbtgTu3Kysrg4OCAAQMGAAACAgKg0Wi6/PH6uOhIv2ILEokEW7ZsgY+PD4Dm/r+kpAQ6nQ4uLm0vIXz06FGEhYWB4zh0794darUaR48etWrO2tpauLq6tpklJCQErq6u4DgOM2fORFZWlmA5H1RfX4/t27fjnXfeeWRNs7OzER4eDgDw8vLCiBEjcPz4cavlWrZsGaKjo022WVJLnU6H/Px8hIWFAQCee+459OrV6187U6OtnN7e3ti8eTOcnZ3BcRyGDh2Kq1evAkC7NbZ2zvayWnIcCVHT1q5cuYJz585h5syZj3wN1h53t9c3CdVOO8WEqrS0FF5eXsbHTk5OcHNzw82bN0328fT0NHmel5cXrl+/brOc9sic2jk5OeHFF180Pj5x4gT69u3b5ptXV2JO7QDgr7/+Qnp6Ot58801bR7RL5h6vcrkcX331FUJCQvDKK6/g9OnTQsS1K+bUztvbGxzHIS8vD0DzQGzQoEFd/nh9XJjbr9iKu7s7AgMDjY9PnDiBwYMHQ6fTobS0FLNmzYJKpcK7775rPK3qxo0bJh8eKZVKq7/XarVaGAwGLF68GGq1GhEREbh27RpKS0tNsrR+3xci54MOHjyIYcOGQalUQqvV4sKFCwgLC4NarUZiYiIaGhpQVVWF6upqm2YdMmTIQ9ssqeXvv/+O7t27m1wfr1QqTRYl+7dz9u/fH4MGDTI+bmmzQHM7OXbsGKZNm4aQkBAkJyeDMWb1nO1lteQ4EqKmrX3yySdYuHCh8QNOrVaLjIwMhIaGIjQ0FAcOHABg/XF3e32TUO20U3zcq9frIZfLTbbJ5XLcv3+/Q/t0RR2tS1FRETZt2mRyQ+auytzabdq0CUuXLqUB7d/MqZtWq4VOp4NcLseRI0dw8uRJvP766zh27Bjc3NxsHdlumFM7hUKB+Ph4LFq0CAqFAjzPY9euXbaOSixkz+9VeXl5SE1NRWpqKsrLyxEUFISIiAjIZDKsXLkSmzZtwubNm1FXV2fyGhQKBfR6vVWzKRQKqNVqzJ8/H0qlEmlpaVi6dCk8PDwgk8nazCJEztZ4nsfu3buRnJwMABgwYAC6d++OV199FfX19ViyZAk+//xzvPzyy+A4DlKp1PhcuVyOyspKm2UFmttmR2v54HbAtu35008/RUVFBebMmQOg+a8YUqkUYWFhqKiowNy5c+Hh4QFPT09Bcnp5eXX4OBKypjdv3kRhYaHJGHDMmDHw8fHBxIkTcf36dcyePRt9+vSxaV/Wum+Kj48XpJ12ir9QmXNPK7rvVds6UpcLFy4gMjISCQkJ8Pf3t1VEu2VO7U6ePInq6mqEhobaOp7dMqduLi4uMBgMxlMKxowZg169euHixYs2zWpvzKnd7du3ERsbiwMHDuDs2bPYsWMHoqKicO/ePVvHJRaw1/eqY8eOYdWqVUhOToaPjw8CAwPxxhtvwNXVFQqFApGRkcjNzQUAODg4mLwGvV5v9RV8vby8sH79evTt2xccx2Hu3Lm4e/cuxGKx8YL0B7MIkbO1goICODo6on///gCAKVOmIDIyEgqFAt26dcO8efOQm5sLBwcH8Dxv8jrq6upsviqyg4NDh2v54HbAdtm3bNmCnJwcpKSkGH/e3LlzMWvWLEgkEjz55JOYMWMGfvjhB8FyWnIcCVnTw4cP44UXXjCZ3MfExGDSpEnG0/MnTpyI3Nxcm/VlD/ZNQrXTTjGhMueeVv369UNpaSl4ngcANDU1obS0tMvf4d7c+4EVFRUhOjoaW7duRVBQkK1j2iVzapeTk4PLly9j1KhRGDVqFAoKCrB8+XJkZmYKEdkumFO3Xr16geM4k0mAWCwGx3WKLsti5tSuoKAAnp6e8PX1BdB8iwqO47r89aKPC3u8R+Pp06eRkJCA3bt349lnnwUAaDQaVFRUGPdhjBlPAerXr5/JaT0lJSXG6xysRavVoqyszPhYJBKB53k4ODi0m0WInK3l5uaavJ+WlZUZT/cC/qmpm5sbevToYdIubJ0VeHS92vtanz59UFVVZXINpy2yJyUl4cKFC0hLS0OPHj1MfnbrgXNLjYXKaclxJFRWoLnNtj7Njuf5h1buY4xBKpXaZNzdVt8kVDvtFKMTc+5p5ePjg549exrveJ+ZmQlPT0889dRTgmS2F+bUjjGGVatWYd26dfDz8xMqqt0xp3YbNmxAfn4+Tp06hVOnTmHo0KFISkrCSy+9JFRswZlTN1dXV4wfPx67d+8GAFy8eBF//PGHscPsqsypXd++fVFSUoJbt24BAC5dugSdTkcLojwm7O0ejXq9HqtXr0ZSUpLJQOjgwYPG5YgNBgPS09MxduxYAEBwcDD2798Pg8GAO3fuIDs7GyEhIVbNWVxcjDlz5uDu3bsAgC+//BIeHh6IjIxEVlYWKioq0NTUhP3792PixImC5WytqKjIpKY7d+7Ehx9+CMYY6uvrkZGRYVLTluW0S0pKUFBQgOeff95mWVsydLSWzs7OGDVqFPbt2weg+dSsqqoqjBgxwmo5L126hMzMTCQnJ8PZ2dnkaxs2bMCePXsAADU1Nfj6668xduxYQXIClh1HQmUFmo+z1m1WJBIhKirKOLbWaDTIzs5GYGCg1cfd7fVNQrVTEWOM/SuvTGD5+flISEiAXq+HUqlEYmIieJ5HRESE8ZdZXFyMuLg4VFdXw93dHRs3buzyf6EC/nftCgoKMGvWrIc+Id2yZYtxJaquypx219qcOXMQFRXV5U+ZNKdu1dXVeOutt3Djxg04OztjxYoVGD16tMDJhWdO7TIyMpCWlgae5yGTyRAdHW1caYnYv7Z+xz179hQky6FDh7B69Wr07t3bZPvevXuxbds2nD17FhzHYciQIVizZg1cXFzQ2NiI9957D2fPnoVYLMa8efOMK9RZ0549e5CRkQGRSIQnnngC69atg7e3N9LS0rBv3z4wxjBy5EisWbMGEolEsJwtJk+ejBUrVmDMmDEAmvu8uLg4FBcXQyQSISgoCG+//TZkMhlqa2uxatUqFBcXQy6XIyYmxmrH9N27dzF79mwA/1zELxaLkZqaiuzs7A7XUqPRYOXKlSgvL4ezszPi4uIwbNgwq+X08/PDd999Z/KXqd69eyMlJQVlZWVYu3YtysvLwXEcQkNDsXjxYohEIqvlfFTWlJQU7Ny5s8PHka1rmpqaCrlcDn9/f/zyyy8m1yhdvnwZ69evR3V1NSQSCebNm4fp06cDsO64+1F905EjR2zeTjvNhIoQQgghhBBCbK1TnPJHCCGEEEIIIUKgCRUhhBBCCCGEWIgmVIQQQgghhBBiIZpQEUIIIYQQQoiFaEJFCCGEEEIIIRaiCRUhhBBCCCGEWIgmVIQQQgghhBBiIZpQEUIIIYQQQoiFaEJFCCGEEEIIIRb6L+9ipcz8GRcFAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -455,12 +475,42 @@ } ], "source": [ - "pm.traceplot(trace_1);" + "pm.traceplot(trace_1, var_names=['thetas__15_2']);" ] }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAAD3CAYAAADBqZV6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhT55k28PtoX23Jsryv4AVsCGHfQhK2QAhJ2hnSJFPSLJ35kqad6Te50k5IMpO2TNImHSYLST86SdOSZL5OE5oNwr6GACZsBgwY7zbeZMu2LMvaj878YWwwxkjCks6R9Pyuy1fQ0fbwRro5fs+7MBzHcSCEECIoIr4LIIQQMhKFMyGECBCFMyGECBCFMyGECBCFMyGECBCFMyGECJAkFC/S2dl3w/s1GjlsNlco3iomUHtcQW1xBbXFFfHSFkajdtT7InLmLJGII/E2UYPa4wpqiyuoLa6gtqBuDUIIESQKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIEaCQzBAkRChcHGD3sMOOqaRiyBmeCiLkJlE4k5hi97DYV9kx7NjCCSmQy2jGGYku1K1BCCECROFMCCECROFMCCECROFMCCECRBcECfGDRoAQPlA4E+IHjQAhfPAbztu3b8cbb7wx7Fh9fT1OnDgBjUYTtsIIISSe+Q3n5cuXY/ny5UO3t27dim3btlEwE0JIGAXVreFyufDmm2/i3XffDVc9hBBCEGQ4b9q0CdOmTUNOTk646iEk5BiGQY+bLuiR6BJwOPt8Prz//vvYsGHDiPs0GvkNN2QUi0XQ6VQ3V2EMova4ItRt0ddjR7PVhQvtfajptMHhZvHanhqIGQZahQSJSim0CgkmZyaiJD0BBUY1xhs1SFBKR31NR68TKqVs2DGFXApdoiJkdQP0ubgatUUQ4Xzq1CmoVCoUFhaOuM/fFuY6nQoWiz346mIUtccVoWyLZosDz225gIsmG6RiBvkGFRIVUuQmq9Fo7kefy4s+pxdmmwsVrVawPm7ouQa1DPkGFaZnJeK2cUkoTtGAYQZOrZ1uFnaHe9h7OV0eWCy+kNQ9iD4XV8RLWxiN2lHvCzic9+/fjzvuuCMkBRESanurOvGrHVUAgJWlqZiYqoFEPDDHam6hEUeqO4c9/o7iFLRbHWjqdqCp246mHgcauuz4r8ON+P3hRuTolXh0VjZWTEyJ+N+FECCIcK6srMSKFSvCWQshN+VYUw+e33IBJWla/OyuIlxotfp9jtvH4WJbHwDAqJbBqJbh2SWF8HlYHKrvxsenWrF2RxX+cKQRzywZ+dsiIeEW8PTt9vZ2JCcnh7MWQoLWZnVizeYLyElSYf2qyUhLGFs/sEEtw32T0vDh6ql447uTIBGL8PPPKnCkvhscx/l/AUJCJOAz582bN4ezDkKC5vSw+NkX58FyHP7j/lKoZRK4rxmVcbMYhsH8cUmYkpmAX+yowv5qM8z9bqwsTR3qiyYknGj6NolaHx5vxsUOG/7zO6XI0SvD8h4auQTPLyuCj/XhYF03FFIxlhTRb5Ak/CicSVQy21z48NglLC5KxoLxhrC+1+BZtNPrw7EmC1RSMRZNTA3rexJCS4aSqLThcCM8LIefLMiPyPsxDIPFRckoTdPi69ounGyyROR9SfyicCZRp6azH5sr2vG9qRnI0oWnO+N6GIbB3SUpSFJJ8R+7q2F1eiL23iT+UDiTqPP/DjVAI5fgidmhXUZgcJr3tT/sVYM0pGIR7puUhh6HB6/tqQnp+xNyNepzJoJ39WL3LRYHDtZ24bE5OUi8wZTrm+Hw+kZMVgEGJrFcLT1RgdWzsrGxrAmLioxYVEgXCEnoUTgTwbt6sfudlR1gGGB5adqIxYwADDvLDaeHpmfhUE0X3jxQh/n5SZBL6JdQEloUziRqOD0szrZaUZKmhVIuGbE7CTDyLDdcJGIRfjg/D2u+OIc/HbuE703PopXuSEjRP/ckapxptcLNcpiRo+O7FDi8PljtbhQkq/HB0UvYcqZ1xD6DhIwFhTOJCj6Ow4lLFmTrFEgf4xTtUFpUlAyvz4eDtd18l0JiDIUziQqN3XZYHF5Mz+b/rPlqBrUMt2Ym4nRLLzr6brx0LiHBoHAmUeFsWx8UEhEKjWq+SxlhTp4eAPDxiWaeKyGxhMKZCJ7d7UWVyTZsjWYhSVRKMTkjAdvOm2D2s/EEIYES3iedkGt8U9sFj4/DpIwEvksZ1dy8JLA+Dh8ep7NnEhoUzkTwdlV2Qq+UIjPEe/aFkl4lxaIiI/56ug0WO03rJmNH4UwErc3qxOnmXkzK0Ap+HeXvTc+Cy+vDZ2fb+C6FxAAKZyJo2y8MTDSZlC7cLo1BeQYVZuXosKm8FV42tJu/kvhD4UwEbW+VGRPTtNCFeB2NcHlwWiY6bG7sq+niuxQS5QIKZ5PJhMcffxx33HEH7rnnHhw7dizcdRGCZosDlR22sC+mH0rz85OQmajAX0628F0KiXIBhfNzzz2H22+/HQcOHMCLL76Ijz76KNx1EYJ91WYAwPwoCmexiMH3pmbgdKsVF0wDu3u7OIxYhtRFe8USP/yGc1tbG86dO4fVq1cDAObOnYs333wz7IURsqfKjImpGqQLeJTG9dw3KQ1KqQibylsBXFlV7+ofWoeD+OM3nCsrK5GVlYV169Zh2bJlWL16Nc6fPx+J2kgca7c6ca69LyrXStbIJVhabMTui2Y4KITJTfK7ZKjVakVVVRWefvppPPfcc/j444/xk5/8BDt37oREMvB0jUYOiUQ86muIxSLodKrQVR3lqD2uuLYtrE4P+l0sdly+oDavOAWMRASVUjbseRLxyGOjHR/LsWAeq5BLobt8lv/wnDx8WWHCkWYr5o4z3PCxg+hzcQW1RQDhrNVqYTAYsGTJEgDAAw88gFdffRUNDQ0oKCgAANj8TFnV6VSwWOwhKDc2UHtccW1b9LgHugA+P9WCFI0MFU09mFtohN3hHvY8L+sbcWy042M5FsxjXW4v6jsG+pmTFGJk6hT4qKwRt2QkjHis0+WBxTJ8uB19Lq6Il7YwGrWj3uc3nLOystDf3w+fzweRSASGYSASiSAS0Sg8Eh79bi+aLU7cNi6J71KCcu02VwXJahyo6UJjT+yHDAk9vwlbVFSEnJwcfPLJJwCAbdu2QavVIicntJtrEjKo1jwQZkJcgS4Yk9MTwADYWzlyX0JC/Ano9Pett97Cpk2bsHjxYvzxj3/EW2+9NdTfTEioVXfaoJVLkKqV813KmGgVEuQbVNhb2QGOo7FzJDgBJWxWVtbQmTMh4eT2+lDfZcek9ATBr6URiEnpWnxZYUJLrxNZOiXf5ZAoQh3HRFDKm3vhYbmo79IYVGDUQCpmcKHdxncpJMpQOBNBKWvohlTMIFcfG2eZcokI03P0qDT1UdcGCQqFMxEMjuNQVt+N/CSVIHc8uVm3FSTD5mbRbHHyXQqJIrHzDSBRr6qjH2abO2a6NAbNzNNDImKG1togJBAUzkQwDjd0AwDGJcdWOCulYoxPVqHSZIOPujZIgCiciWAcru9GgVENjTz2hmlOSNWi382iucfBdykkSlA4E0Hoc3pxttWKmbl6vksJi4JkNcQMg+rOfr5LIVGCwpkIwrGmHrAcYjacZRIRcpKUqDFTOJPAUDgTQThc3wONXIyJaaMvBBPtCpLV6LZ70NU/cnElQq5F4Ux4x3EcjjR0Y1aOHmJR9M8KHE3B5VEotXT2TAJA4Ux4V2u2o8Pmxrz82OzSGKRTSmHUyFBD/c4kABTOhHdHLg+hm5MXXUuE3oyCZDUuWRywubx8l0IEjsKZ8O5wfTcKktVRvwpdIAqMavg44ESThe9SiMBROBNe2VxelLdYMTcvtrs0BmUkKqCUilBW3813KUTgKJwJr8rquuD1cZiXH/tdGgAgYhiMM6hxoslCswXJDVE4E164uIH9ArefM0EpFSHHqEaPmwUbB3mVb1DB4vDQhBRyQxTOhBd2D4u9F0w4UN2JLJ0S31Sbsa+yAx5f7KdzvmFgV+myhh6eKyFCRuFMeNNt98Bi92Dc5bCKFxq5BOMMKpQ1UjiT0QW0wkxpaSmys7OHbt9yyy147bXXwlYUiQ+DkzFibRW6QEzL0eGLM21weFgopWK+yyEC5Dec+/v7wTAMtm/fHol6SByp67IjWSODTinlu5SIm56jx6ZTrTjZ3Iv5cXIxlATHb7eGzWZDQkJCJGohccTpYdHU40BhiobvUngxKUMLuURE/c5kVH7D2Wq1gmVZPPXUU1i+fDl++MMfora2NhK1kRh2pqUXrI9DUUrsLnR0I3KJGFOzEnGUwpmMwm+3hkKhwPLly/H4448jJycHH3zwAZ5++ml89dVXkEgGnq7RyCGRjN5vJhaLoNPF10WfG6H2AE41WyEVM8g3DqxzPEgiFkGllA17bKDHxvr8cLzmaMcVcikWTkjBr7dfhINhkJ6opM/FVagtAgjn7Oxs/PKXvxy6/eijj2L9+vVoaGhAQUEBAMBmc93wNXQ6FSwW+xhLjR3UHsCRui7k6JUQMwzsjitLaHpZ37DbwRwb6/PD8ZqjHXe6PLgldaBLZ9eZNtw3OY0+F1eJl7YwGkf/zTGgbo1Lly4N3WYYBj6fb+ismZBgXepxoLXXiXGG+BulcbXxBhWMGhmOUNcGuQ6/4Xzx4kU88sgjMJvNAICPP/4YaWlpw4bWERKMI0Mbucb3r60Mw2B2rn5gF5g4mHxDguP39HfmzJl47LHH8P3vfx8MwyAlJQVvv/02xGIam0luzpGGHmQkKpCkGtk/G2/m5Oqx5ZwJlR02zE+K798kyHAB9U089thjeOyxx8JcCokHLq8Px5ssWFaSyncpvGIYBj1uFkUZA8NU99d2YXIcrGdNAkfTt0lElTf3wun1YUaOju9SeOXw+rCvsgOnGnuQppVjT2UH+l0s32URAaFwJhF1qL4bMjGDW7IS+S5FMPINKrT0OtFPu6OQq1A4k4g6VN+N6dk6Wk/iKvkGFXwccOoS7Y5CrqBwJhHT1ONAU48Dt42jvtWrZeoUkIoZHGug3VHIFRTOJGK+qesCAMyncB5GIhIhR6/EtzTemVyFwplEzKG6buQnqZCZqOS7FMEZZ1CjxeJAs8XBdylEICicSUT0u70Dy2PSWfN1De6O8i0twE8uo3AmYefigL213fD6OEzJ1sXNXoHBSFJJkaqVo6yRLgqSARTOJOzsHhafl7dCLhGh0+qMm70Cg8EwDGbmJeFYUw+81DYEFM4kAnwch1pzP8YZVBCLGP9PiFOz8vSwuVica7PyXQoRAApnEnY1nf3od7MYH4d7BQZjWo4eIgY4Sv3OBBTOJAK+vTx+d3ycr0LnT4JSipI0LcoaqN+ZUDiTCDh6eRU6lYzWAPdndq4e59qtsDo9fJdCeEbhTMKq2+5GlclGZ80Bmpunh48DjjfR2XO8o3AmYXW4vhscgALqbw5IaZoWapkYZdTvHPconElYfVPXDYNahlStnO9SooJELMLMHB3KGnrAcTSkLp5ROJOw8bI+lDX0YFauHgxDQ+gCNTtXjzarC009NJU7nlE4k7A51dKLfjeLWXl6vkuJKnMutxcNqYtvQYXz/v37UVxcjObm5nDVQ2LIvuouyCUiTIvzXU+ClaVTIkunQBmtUhfXAg5nh8OBdevWQaejLxrxz8dx2F9jxtw8PS2sfxNm5+px4lIvPKyP71IITwIO5/Xr1+O+++6DWk1X3Yl/59r60GlzY2FhMt+lRKU5uXrYPSzOtNJU7ngVUDhfvHgRhw8fph24ScD2VZshETFYMM7AdylRaWauDlIxg69ru/guhfDE75QtjuPw0ksv4cUXX4RUKr3uYzQaOSSS0X91FYtF0OloEsKgWG8PjuOwv7YL88YbkJ2WgLZeJ1RK2bDHSMQiqJQyiETMsPsGj1/vsf6OjfX54XjNYB7LiBjotAOfCx2AeeOT8XVtN35x/6S4G+0S69+RQPgN57/85S8oKCjAjBkzRn2Mzea64WvodCpYLPbgq4tRsd4eVR02XOpx4JEZWbBY7HC6Wdgd7mGP8bI+2B1uqJSyYfcNHr/eY/0dG+vzw/GawT6/vqNv6Pa0rAQcqOrEoapOTErVjHjdWBbr35FBRqN21Pv8hvOePXtQUVGBffv2AQC6u7uxatUqvPHGG5gzZ07oqiQxY1+1GQyAOwqoSyMYDjeLg5UdQ7dZ1gcGwJ6L8RfOJIBwfvfdd4fdXrRoET744ANkZWWFrSgSvTiOw66LnZialYgk1chf8Ung1DIJsnQKHKrrwk9vz+e7HBJhNAmFhFRVRz8aexxYNsHIdykxoShFg/ouO238GoeCDue9e/fSWTMZ1Y7KDohFDBYVUTiHQlHKQHfGvmozz5WQSKMzZxIyPo7DjoudmJ6tAycWocfN0mauY6RTSlFgVGMvhXPcoXAmIXOmxYqOPhdStTLsq+wY+qHNXMfm9oJkVLT1oaWXujbiCYUzCZkdlR2QS0QoNNLIglC6s2hgluWuyk6eKyGRROFMQsLr47Cnyow5eXrIJfSxCqW0BAUmp2ux8yKFczyhbxEJiUN13ehxeLComC4EhsPSCSmo7uxHfVfsT8wgAyicSUhsrmiHQS3DrLwkvkuJSUuLksEA2HnVJBUS2yicyZiZ+934pq4L95SkQCyKrzUgIiVZI8f07ETsvNhJ21fFCQpnMmbbzpvAcsC9k9L4LiUmMQyDHjeL2wqS0dTjwLEWK1yUzzGPwpmMCcdx+LKiHVMyEpCXFN+riIWLw+vDvsoOcD4OIgb4oKwJdg/Ld1kkzCicyZicabWioduB++isOexUMjHyDSpcMPXBR10bMY/CmYzJ5goTlFIRltAojYgoSdPC6vTiQluf/weTqEbhTG6a3c1i18VOLC02QiWjfQIjodCogUTEYF8VjXmOdRTO5KbtruqE3cNSl0YEySUiFCSr8XVNF7w0LT6mUTiTm7a5oh25eiVuyUjgu5S4UpKmhcXhwYlLFr5LIWFE4UxuSkO3HeUtVtw3KS3u9rfj27hkFVRSMU1IiXEUzuSmbK4wQcwAK0pT+S4l7kjFIswfb8DeajNMDs/Q0qw09jm2+N2mihAXh2Hjar2sD1+dN2FefhKS1bQVFR/mjTdgV2UH/nS4YWgVwIUTUiCnC7MxI6Bw3rFjB373u9/B5XJBr9fjl7/8JYqKisJdGxEIu4fFvqt+ha7qsKGr3437J6fzWFV8m5KVCIVUhPPtNlqiNUb57dZobW3FSy+9hN/97nfYvn07li9fjueffz4StRGBOt1iRZJaivnjaJEjvkjEIkxI0aC60wYP6+O7HBIGfsNZIpFg3bp1yMzMBADMnTsX9fX1YS+MCFOf04tacz/umpiKPq9vqL+TtqSKvJI0LTwshxpzP9+lkDDw262RkpKClJQUAIDX68Vnn32GxYsXh70wIkxn26zgANxZbBzW1TFobiHNFIyUbL0SapkYF9r7MDFVy3c5JMQCHq2xceNGzJ8/H8ePH8ezzz4bzpqIQHEch9MtVuTqlchIVPJdTtwTMQwmpmpRY7bD5aWFkGJNwKM1Hn30UfzgBz/AV199hYceeghbt26FQqEAAGg0ckgko18lFotF0OloxbJB0dYejl4nVEoZ6jptsDg8WDIxBRKxCCrlyJEa1zt+o2MiETPsvmCfP9b3D/drBvNYhmGCfv7UXD2OX7Kg0eKCQi6FLlEx4vnRKNq+I+HgN5xra2thMpkwb948MAyDlStXYu3ataivr8fEiRMBADab64avodOpYLHQ9jqDoq09nG4WdocbR+u7oJCIkKdTwMv6YHe4Rzz2esdvdEyllA27L9jnj/X9w/2awTyW47ign29QiJGokKD8Ug+cLg8slti4OBht35GbZTSO3h3lt1uju7sbP//5z2EymQAAJ06cgMfjQXZ2dugqJIJnd7O4aOpHaboWUjHNXRIKhmEwMU2L+i47rA4P3+WQEPJ75jxz5kw89dRTePzxx+Hz+SCTyfD6669Do6GxlfHkXHsfWI7DlMxEvksh15iYqkFZQw++qe1C7rRMvsshIRJQn/Pq1auxevXqcNdCBGrgQmAv0hLkSNXK+S6HXCNVK0eSSor91WZ8n8I5ZtDvp8Svqg4bOm1uTKHV5wRpsGvjdHMvzH6u/5DoQeFM/Np2zgSJiEFJGo2lFaqSVA04AHuqzHyXQkKEwpnckMvrw4FqM4pTNFBIaVEdoUrWyJFnUGE37ZASMyicyQ0drO1Cv5vF5Aw6axa62wuSUd5iRUcfdW3EAgpnckNfnTfBoJYhNym+JwREgzsKDQBAZ88xgsKZjKrb7saRhh4sLjZCRLudCF62XoVCoxq7L1K/cyygcCaj2lnZCdbHYfEEWswoWiwtNuJsmxXtViffpZAxonAmo9p63oTiFA3yDWq+SyEBYBgGM/MH1tjefKGDtq+KcrRNFbmuWnM/Lphs+Oc7x/FdCgmQw+tDVXsf0rRybD7TBoNSCoC2r4pWdOZMrmvr+Q6IGWDZhBS+SyFBmpCqQZvVBQuttRHVKJzJCKyPw/YLJszNT4KBNnCNOhMuL7xfabLxXAkZCwpnMoyLAw7Ud6PD5sYdRUbaeioK6VVSpCfIccHUx3cpZAwonMkwdg+LD482QS4RweX2Yl9lBzw+SudoMzFVi3arCz32ketDk+hA4UyGcbhZXOywYWKqhtZtjmITUgeW9KWujehF3z4yzKG6LnhYDpPSaQW6aJaolCIjUYELFM5Ri8KZDLPzQgd0SimydLGxF108m5iqganPhRaLg+9SyE2gcCZD2qxOlDf3YnK6FgxN1456g10bB6ppOnc0onAmQ746N7BP5CRaVD8mJCikyExU4GsK56gUUDjv2bMH999/P+6++248/PDDqKqqCnddJMI4jsNX502YkpUI3eWZZST6TUzToq7Ljoau2N/JOtb4DWeTyYTnnnsO69atw7Zt27By5Ur827/9WyRqIxF0usWKZosTd9GMwJgyIUUDBsAuWkY06vgNZ4lEgnXr1qGgoAAAMH36dNTU1IS9MBJZW86ZoJKKcVuBge9SSAhpFRKUZiRg90UK52jjN5wNBgNuv/32odtff/01pkyZEtaiSGQ5PCx2V3VicVEylLQVVcy5oyAZdV121Jr7+S6FBCGoC4JHjhzBxo0bsWbNmnDVQ3iwr9qMfjeLlZNS+S6FhMGCAgMYADvp7DmqBLxk6O7du7F27Vps2LBhqItjkEYjh0Qy+hmXWCyCTkfbHA0SWnvsuGhGtl6JO0vSYepzQaUcvtiRRCwK6Fgwjx08JhIxw+4L9vljff9wv2Ywj2UYJizvn5GkxvwCA3ZUduBf7p4IkUj4wySF9h3hQ0DhfPjwYbz88st4//33MX78+BH322w33lBSp1PBYqGrxYOE1B5tVieO1HXhH+blwmp1wOlmYXcMX4/By/oCOhbMYwePqZSyYfcF+/yxvn+4XzOYx3IcF5b3d7o8WFZkxL/WdGFvRRtm5OhGPEZohPQdCSejcfSNk/12azgcDqxZswbr16+/bjCT6Lb1vAkcgHtKqEsjlt1ZYIBaJsaW8ya+SyEB8nvmvGfPHnR3d+PZZ58ddvyjjz5CcnJy2Aoj4cdxHLacM2FGdiIyEmm6dixTSMVYUmzEzsoO/HxRAVS0M4rg+Q3nlStXYuXKlZGohUTYqZZeNFuc+OGcHL5LIRFwb2kqvjjbjr3VnVhZmsZ3OcQPmr4dxz493QaNXIwlRbS7djy4JSMB2ToFNldQ10Y0oHCOU912N/ZUmXFPSSoUNLY5pjEMgx43C4vHhyUTUnCyuRfVNJ1b8Cic49RnZ03w+jgsLUlFj5sd+qEtqWKPw+vDvsoO7KvsgFYmhogBPilv4bss4geFcxzycRw+P9OKHL0StR22oS8ubUkV+9RyCSakarDzfAccHpbvcsgNUDjHobKGHrRbXZialch3KYQH07J06Hez2FnZwXcp5AYonOPQJ+Wt0CmlKE7R8F0K4UGWToE8gwqbytvAcfSbklBROMeZhm47vqnrxr2T0yCOgmm8JPQYhsG9k9NQ2WFDRVsf3+WQUVA4x5n/OdkCmZjBysk0zjWeLSlOQYJCgg+PN/NdChkFhXMcsTg82HLOhOUTU6BXjVwgh8QPpUyMVVPSsb/ajIZuGlYnRBTOceSzM21weX14eHoW36UQAXhwWiZkEhH+m86eBYnCOU64vT58Ut6K2bk6FCSr+S6HCECSSoaVpan46rwJZj8rS5LIo3COE5vPtaPT5sYjM7L5LoUIyOoZWWB9HP58kialCA2FcxzwsD786eglTE7XYlau8NfyJZGTpVNiabERn5S3ots+ci1owh8K5zjw5TkT2vtceHBGNiweH03TJsP8w9xcuLwD/4AT4aBwjnFe1oc/HW1CWoIcNoebpmkTAFcWQ+pxs0jQyLF0Qgr+eroVpj7qexYKCucYt/V8B9qtLtyWnwSGoUknZMDViyHtq+zAOIMKPg54v6yJ79LIZRTOMczpYbHhcAOKUzUoMNIIDTI6nVKKu0vT8EVFOyo6bMNWKnTRL1m8oHCOYR8db0anzY0nb8uns2bi16rpmRAxwK93XBx2Vm2n1et4EVA4ezwevPrqqyguLkZ7e3u4ayIhYO5344Njl7CwMBmTMhL4LodEAb1Khrl5Sajq6EcTzRrkXUDh/PTTT0OhoA1Ao8nvDzXAzXL4yYJ8vkshUWRWrg5auQR7qsy0Yh3PAgrnH//4x/jpT38a7lpIiJxpteKLs+14cGoGcvRKvsshUUQqFuHOQgPa+1y0Yh3PAgrnW2+9Ndx1kBDxsj68sqsKRo0M/2deLt/lkChUmqZFeoIc+6rNcFJ/M28koXgRjUYOiWT0TULFYhF0OlUo3iomhLM9NhyoRa3Zjg1/Nw2ZKQN9zY5eJ1TK4avQScSiEcdGOx7osZt5vkjEDLsv0u8f7tcM5rEMwwji/wkA3H9rJn7/dR3Kmiz47owc6BIj261JmRGicLb5WTRFp1PBYqELDIPC1R6N3Xa8vb8WiwqTMT1dM/QeTjcLu2P41Fwv6xtxbLTjgR67meerlLJh9yGNB0gAAA0lSURBVEX6/cP9msE8luM4Qfw/AQC9XIwpmQkoq+/GhRYLlFxkLyrHS2YYjdpR76OhdDHCy/rwr1sroZCI8Oyi8XyXQ2LAHQXJkEtEWH+gDj66OBhxFM4x4r+ONOKCyYafLy2CRCYZNomA1tEgN0MlE2NhQTIqWq34/CwNoY00v90aZrMZq1evHrr9yCOPQCwWY+PGjUhNTQ1rcSQwJ5st+NPRS7h/Uhpm5umx75pdlecWGnmqjES7KZkJaO1z4a0DdbgtPwkpWjnfJcUNv+GcnJyM7du3R6IWEgQXB9g9LLr73Viz5QLSExV4Yn4enSWTkGIYBv934Xg89edyvLanBr+9v4Rmm0YIdWtEKbuHxe7zJvzs0wpYHV7cPTEFZXVdtNocCblMnRJPzsvFgdoubLvQ4f8JJCQonKPYvmozLlkcuLskhX7dJGH18PQsTM1MwKu7a9BscfBdTlygcI5S286ZcKzJgunZiZiUTmtnkPCSiBj8asUESMQMXviqEh7Wx3dJMY/COQodbezBW/trkW9QYUkRXewjkZGWoMALdxXhfHsf1n9dz3c5MY/COcrUdPbjX748jxy9Et+9JQ0iEV2cIeF19a4pU3P1+M6UdPz5ZAs+KW/lu7SYFpIZgiQyGrvt+PGmM1DJxFh7bwnOtfTyXRKJAw6vD0eqO4duFxvVmJOvx3/srUGaVo4F4w08Vhe76Mw5SrT2OvH0J2fAccA7q26hC4CENyKGwZplxShO0eD5LRdQ1tDNd0kxicI5CjR22/HUx6fh8Pjw9qrJyDfE94IwhH9KqRivf3cSsvVK/PNn57CzkobYhRqFs8BdMPXhH/7nNJweH955YDKKUjR8l0QIAMCgluH335uCyRkJePGrSvyhrBEsjbMPGQpnATtQY8ZTfzkDhVSEdx+agompo69gRUgkDV4k9IoY/OreibizKBkbDjXiR5+cQbvVyXd5MYEuCAqMiwP6XF58+G0T/v+xZhSmqPHa/ZOQlUB9zEQ4rr1IODtHhxk5erxzoA4PbTyBx2fn4KFpmZBL6PzvZlE4C0xdVz/+9cvzaOxx4JaMBCybYIRGKUWPe/iOFLSGBhEShmGwdEIK5uXq8Pr+Orx9sB6fnmnDT2/Px8LCZFqP4yZQOAsE6+Pw+dk2vHmgDqwPWFGSglsyEsAwzIizFIBWmiPCwzAM1CoZXlwxASebLNjwTT3+ZfMF3JqViGfuHEfdckGicBaAk80W/Oe+OlzssGFqViLm5umRqJTyXRYhQbn2JOLBWzNQ3tKLsoYe/OCjU7htvAGPzM5GvkENlVQMOZ1M3xCFM4/Km3vx/tEmHGnoQapWjpfvmYAZ+UnYf7HT/5MJETiRiMG0bB0em5+Pd/bV4NuGHnxT24WSNC1+trQQk2jk0Q1ROEeYw8Ni98lm/HdZEyrarEhUSvHE3Fx8Z0o6FFIx9SWTmKOWS7BgvAHTs3X4trEHx5ss+OFHJ7G02Ii/m56FkjTq7rgeCucQG1wEf9gxD4uTjT34urYLR+p7YPewyNYrsaTYiFszEyAVi3CktgsA9SWT2KWSiXFnYTJm5ujQYnVh+3kTdlR2YnJ6Au4pTcGSIiN1512FwjnE+lxe/PVkM9p6nWi1unCpxwFz/8COxga1DMsmGvHgrFzoFWLqviBxSS2X4MkFGfjJbXn4sqIdX5xtx2921+C3e2sxKV2L6Tl6zBpnQFaCHDKJKG77pwMK5yNHjuC1116D3W5HRkYGfv3rXyMtLS3ctQmeh/WhvsuO6s5+VHf2o7KjD+fb++DwDKx1K5eIkJmowH23pOP2fD0mpmkhYhjodCrUd/TxXD0h/NLIJfi76Vl4eFomqjr6sfm8CfuqOvH+kUa8f6QRIgZI0cgxI0+PqRkJKE7RID9JBVmcjJ32G852ux3PPPMM3nvvPZSWluIPf/gDfvGLX2DDhg2RqI9XHMeh382i0+ZGq9WJ1t4rP009DtR324emq8rEDAqMGiydkAKfj0NGogJJKikYhsHCCSnQy8Q8/20IEY7BGYaDUvRKPDYvD+MMKthcXpgdXjR02tBqdWJvZSe2XN79WyxikJekRKFRg8JkNQpT1ChMVsOglsXcWGq/4VxWVobs7GyUlpYCAB566CG8/vrrsNls0Gii52or6+Ngd7Owub3oc3ov/5dFv9sLm8uLXocXXXY3uvqv+rF74PIO3/FBJmaQnqBAtl6J28YlodCoRqFRg2y9EhLRwAfu2t2vr/0gOnqddOGPxLUbjd3XyCVI0amQp1MAAO4oNqLP5kZVpw3Vnf2oMffj5CULtl+1n6FaJkaWXokcnRLZOgUydUoYNTIkKWXQq6TQq6SQiqPrjNtvODc0NCA7O3votlqthk6nQ1NTE0pKSsZcwN6qTjRbnGA5DhwH+K76rw+Az8fBxw2cxfouH3ezPri9Pri8PrhZH5ze4bddg3++/F8X6wtoQRadUooklRSJKikmpidAr5IiSSWDUStHslqGtAQ59GoZRAwDmUQMt/dK4PZdDvHrhe61H0SVUoYpWYljbjtC4oFYJEKiVo6ZWjlmjhtYO5rlgB0Vbejsc8Fkc6Pb7oaIYXDB1Ie9VZ3X/R6qZWKoZGIopYM/omF/lohFkIgYiBkGYhEz8OerfiQiBiKGweD5+eCJ+qxcPYrDMCyQ4Tjuhqn1zjvvoKWlBa+88srQscWLF+PVV1/FjBkzQl4QIYSQAFalU6lUcLlcw445nU6o1eqwFUUIIfHObziPGzcO9fVXNnPs7u5Gb28vcnNzw1oYIYTEM7/hPHv2bLS3t+P48eMAgA8//BALFy6ESkW7cRBCSLj47XMGgKNHj+Lll1+Gw+FATk4OfvOb38BoHDmTLZDx0N9++y1++9vfoq+vD0qlEs8//zxmzpwZur+RQAQzNryyshJ/8zd/gz/+8Y+YPXt2hCsNv0DaYunSpeA4DhLJwDXq1NRUbNy4kY9ywyqQtrDZbHjhhRdQXl4OmUyGZ599FsuWLeOp4vDy1x6nTp3CmjVrhj3n0qVL+PTTT1FcXBzpciOLC5H+/n5uzpw5XEVFBcdxHPfee+9xTz755LDHOBwObtasWdzZs2c5juO4Xbt2cfPmzeN8Pl+oyhCEQNpiEMuy3IMPPsjdfvvtXFlZWSTLjIhA22LWrFmcyWSKdHkRFWhbvPDCC9zatWs5n8/H1dTUcKtXr+Y8Hk+kyw27YL4ng8rLy7m//du/jbnMuJ6QhfOePXu4Bx54YOi2zWbjSktLub6+vqFjVquV27Vr17DHFBUVcRaLJVRlCEIgbTHoo48+4l566SVu9erVMRnOgbZFSUkJ53A4Il1eRAXSFi6Xi7v11ls5s9nMR4kRFcz3ZNADDzzAHTt2LBLl8S5ko7JvNB56kFarxZIlSwbP2LFp0ybMmDEDiYmxNeY3kLYAgM7OTnz44Yd45plnIl1ixATSFna7HSzLYs2aNVixYgW+//3v4+TJk3yUG1aBtEVDQwPkcjk+/fRTrFixAqtWrcLhw4f5KDfsAv2eDNq/fz/kcnncDOEN2cJHDocDcvnwfe7kcjnsdvuIx27fvh1r166FVqvF22+/HaoSBCPQtnjllVfw9NNPIyEhIZLlRVQgbeHz+bBq1So8+OCDmDx5MrZv344f/ehH2LlzZ0z9wx1IW1itVvT19UEul2Pr1q04ePAg/umf/gm7d++GTqeLdMlhFUxmAMB7772Hv//7v49EaYIQsjPnYMZDL1++HIcOHcJLL72ERx99FJ2dsbU6WyBtcfDgQVgsFtx3332RLi+iAmkLjUaDf//3f8fkyZMBDHw+UlJSUF5eHtFawy2QttBqtWBZFg8//DAAYMGCBUhPT8fp06cjWmskBJMZ7e3tqKqqwoIFCyJVHu9CFs6BjIdua2vD7t27h27PnTsXqampMffBC6Qtdu3ahfPnz2P+/PmYP38+Tp06hX/8x3/E559/zkfJYRNIW9jtdtTV1Y147uDIjVgRSFukp6dDJBKhv79/6JhYLIZIFF3rQgQimDkU+/fvx/z58yEWx88CYiH7Px7IeGiPx4PnnnsO1dXVAAb6nBobG1FQUBCqMgQhkLb41a9+haNHj+LQoUM4dOgQpk6divXr1+M73/kOX2WHRSBt0dXVhYceemgooA8dOgSz2YwpU6bwUnO4BNIWCQkJWLRoEd5//30AwOnTp9HS0jL0W0UsCWYORWVlJcaPHx/pEvkVyquLZWVl3L333sstWbKEe+KJJ7iOjg6uvb2du+eee4Yes3XrVm7lypXcsmXLuOXLl3N//etfQ1mCYATSFleL1dEaHBdYW2zZsoW7++67ubvuuot74IEHuBMnTvBYcfgE0hY9PT3cE088wS1cuJC79957uYMHD/JYcXgF+j158sknuT//+c88VcmPgCahEEIIiazY68gihJAYQOFMCCECROFMCCECROFMCCECROFMCCECROFMCCECROFMCCECROFMCCECROFMCCEC9L8hX9+civeC0AAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "seaborn.distplot(trace_1['thetas'][:, 15, 0])" + ] + }, + { + "cell_type": "code", + "execution_count": 16, "metadata": { "scrolled": true }, @@ -498,483 +548,483 @@ " \n", " \n", " thetas__0_0\n", - " 0.299542\n", - " 0.063400\n", - " 0.000454\n", - " 0.180092\n", - " 0.424889\n", - " 20003.999850\n", - " 0.999805\n", + " 0.299653\n", + " 0.063840\n", + " 0.000534\n", + " 0.176089\n", + " 0.423617\n", + " 19226.807333\n", + " 0.999785\n", " \n", " \n", " thetas__0_1\n", - " 0.600838\n", - " 0.068622\n", - " 0.000541\n", - " 0.472058\n", - " 0.738207\n", - " 19574.808076\n", - " 0.999795\n", + " 0.600337\n", + " 0.069006\n", + " 0.000571\n", + " 0.460822\n", + " 0.729916\n", + " 18468.245681\n", + " 0.999809\n", " \n", " \n", " thetas__0_2\n", - " 0.099621\n", - " 0.042064\n", - " 0.000344\n", - " 0.026869\n", - " 0.181569\n", - " 18288.502947\n", - " 0.999783\n", + " 0.100010\n", + " 0.042210\n", + " 0.000300\n", + " 0.024209\n", + " 0.181230\n", + " 15983.247000\n", + " 0.999842\n", " \n", " \n", " thetas__1_0\n", - " 0.489548\n", - " 0.070977\n", - " 0.000502\n", - " 0.350217\n", - " 0.628429\n", - " 20746.731257\n", - " 0.999894\n", + " 0.490342\n", + " 0.070030\n", + " 0.000527\n", + " 0.352220\n", + " 0.622480\n", + " 15033.358733\n", + " 0.999812\n", " \n", " \n", " thetas__1_1\n", - " 0.470114\n", - " 0.070791\n", - " 0.000489\n", - " 0.331658\n", - " 0.607298\n", - " 20348.017508\n", - " 0.999843\n", + " 0.468789\n", + " 0.070418\n", + " 0.000516\n", + " 0.329812\n", + " 0.603250\n", + " 14397.420075\n", + " 0.999846\n", " \n", " \n", " thetas__1_2\n", - " 0.040339\n", - " 0.027768\n", - " 0.000209\n", - " 0.001238\n", - " 0.094066\n", - " 14794.810535\n", - " 0.999792\n", + " 0.040869\n", + " 0.027871\n", + " 0.000216\n", + " 0.000746\n", + " 0.095530\n", + " 13813.564556\n", + " 0.999929\n", " \n", " \n", " thetas__2_0\n", - " 0.464976\n", - " 0.039588\n", - " 0.000290\n", - " 0.392415\n", - " 0.547059\n", - " 19608.426756\n", - " 0.999818\n", + " 0.464064\n", + " 0.037702\n", + " 0.000243\n", + " 0.392602\n", + " 0.538467\n", + " 19458.166318\n", + " 0.999827\n", " \n", " \n", " thetas__2_1\n", - " 0.411480\n", - " 0.038778\n", - " 0.000281\n", - " 0.334516\n", - " 0.485972\n", - " 18898.459216\n", - " 0.999768\n", + " 0.412692\n", + " 0.036871\n", + " 0.000283\n", + " 0.340354\n", + " 0.485125\n", + " 18771.180462\n", + " 0.999881\n", " \n", " \n", " thetas__2_2\n", - " 0.123543\n", - " 0.025375\n", - " 0.000183\n", - " 0.074736\n", - " 0.172042\n", - " 18301.159357\n", - " 0.999839\n", + " 0.123243\n", + " 0.025265\n", + " 0.000194\n", + " 0.074236\n", + " 0.172532\n", + " 19247.971606\n", + " 1.000048\n", " \n", " \n", " thetas__3_0\n", - " 0.458266\n", - " 0.057701\n", - " 0.000477\n", - " 0.345977\n", - " 0.569688\n", - " 18225.217843\n", - " 0.999807\n", + " 0.458331\n", + " 0.058274\n", + " 0.000404\n", + " 0.350884\n", + " 0.573547\n", + " 21956.980693\n", + " 0.999798\n", " \n", " \n", " thetas__3_1\n", - " 0.514034\n", - " 0.058093\n", - " 0.000475\n", - " 0.404447\n", - " 0.630516\n", - " 18565.118556\n", - " 0.999820\n", + " 0.513887\n", + " 0.058365\n", + " 0.000421\n", + " 0.400916\n", + " 0.625856\n", + " 20763.790406\n", + " 0.999808\n", " \n", " \n", " thetas__3_2\n", - " 0.027700\n", - " 0.019353\n", - " 0.000175\n", - " 0.000600\n", - " 0.065729\n", - " 14321.896338\n", - " 0.999856\n", + " 0.027782\n", + " 0.018636\n", + " 0.000155\n", + " 0.000876\n", + " 0.064515\n", + " 14496.997795\n", + " 1.000732\n", " \n", " \n", " thetas__4_0\n", - " 0.399427\n", - " 0.067030\n", - " 0.000554\n", - " 0.258701\n", - " 0.522959\n", - " 16948.597789\n", - " 0.999917\n", + " 0.399457\n", + " 0.068020\n", + " 0.000426\n", + " 0.266600\n", + " 0.529972\n", + " 19987.478184\n", + " 0.999802\n", " \n", " \n", " thetas__4_1\n", - " 0.480680\n", - " 0.069271\n", - " 0.000566\n", - " 0.338205\n", - " 0.606578\n", - " 16740.132362\n", - " 0.999915\n", + " 0.480441\n", + " 0.070492\n", + " 0.000481\n", + " 0.342083\n", + " 0.620177\n", + " 19274.322698\n", + " 0.999810\n", " \n", " \n", " thetas__4_2\n", - " 0.119893\n", - " 0.045741\n", - " 0.000386\n", - " 0.037606\n", - " 0.208929\n", - " 16741.302054\n", - " 0.999967\n", + " 0.120102\n", + " 0.045973\n", + " 0.000342\n", + " 0.038873\n", + " 0.208613\n", + " 16807.535528\n", + " 0.999758\n", " \n", " \n", " thetas__5_0\n", - " 0.442896\n", - " 0.051409\n", - " 0.000355\n", - " 0.340510\n", - " 0.541677\n", - " 16794.992103\n", - " 0.999927\n", + " 0.442632\n", + " 0.051158\n", + " 0.000391\n", + " 0.346236\n", + " 0.547049\n", + " 18835.749177\n", + " 0.999964\n", " \n", " \n", " thetas__5_1\n", - " 0.443766\n", - " 0.051202\n", - " 0.000353\n", - " 0.342852\n", - " 0.544234\n", - " 17767.447460\n", - " 0.999845\n", + " 0.443866\n", + " 0.050986\n", + " 0.000394\n", + " 0.344361\n", + " 0.542416\n", + " 18516.609427\n", + " 0.999944\n", " \n", " \n", " thetas__5_2\n", - " 0.113338\n", - " 0.032096\n", - " 0.000245\n", - " 0.054936\n", - " 0.176641\n", - " 17639.128472\n", - " 0.999845\n", + " 0.113501\n", + " 0.031837\n", + " 0.000248\n", + " 0.054894\n", + " 0.177011\n", + " 18403.883543\n", + " 0.999763\n", " \n", " \n", " thetas__6_0\n", - " 0.504338\n", - " 0.045477\n", - " 0.000314\n", - " 0.416045\n", - " 0.591921\n", - " 17878.918381\n", - " 0.999851\n", + " 0.503893\n", + " 0.045648\n", + " 0.000363\n", + " 0.416098\n", + " 0.593584\n", + " 18822.631233\n", + " 0.999842\n", " \n", " \n", " thetas__6_1\n", - " 0.386066\n", - " 0.044039\n", - " 0.000261\n", - " 0.297701\n", - " 0.467826\n", - " 19335.357314\n", - " 1.000018\n", + " 0.386539\n", + " 0.044409\n", + " 0.000325\n", + " 0.297472\n", + " 0.470055\n", + " 18637.837019\n", + " 0.999820\n", " \n", " \n", " thetas__6_2\n", - " 0.109596\n", - " 0.028589\n", - " 0.000207\n", - " 0.056338\n", - " 0.164964\n", - " 16620.502172\n", - " 0.999871\n", + " 0.109568\n", + " 0.029372\n", + " 0.000212\n", + " 0.055798\n", + " 0.169069\n", + " 19242.299863\n", + " 0.999787\n", " \n", " \n", " thetas__7_0\n", - " 0.547144\n", - " 0.040603\n", - " 0.000291\n", - " 0.463409\n", - " 0.623170\n", - " 21752.922723\n", - " 0.999914\n", + " 0.546738\n", + " 0.040534\n", + " 0.000260\n", + " 0.466839\n", + " 0.625034\n", + " 20173.606252\n", + " 0.999806\n", " \n", " \n", " thetas__7_1\n", - " 0.337982\n", - " 0.038473\n", - " 0.000278\n", - " 0.266599\n", - " 0.418985\n", - " 22648.026952\n", - " 0.999949\n", + " 0.338108\n", + " 0.038778\n", + " 0.000260\n", + " 0.262366\n", + " 0.412310\n", + " 18502.545097\n", + " 0.999833\n", " \n", " \n", " thetas__7_2\n", - " 0.114874\n", - " 0.026502\n", - " 0.000216\n", - " 0.063648\n", - " 0.165765\n", - " 19394.159143\n", - " 0.999853\n", + " 0.115154\n", + " 0.025975\n", + " 0.000179\n", + " 0.067962\n", + " 0.168853\n", + " 21699.085193\n", + " 0.999798\n", " \n", " \n", " thetas__8_0\n", - " 0.541670\n", - " 0.098625\n", - " 0.000702\n", - " 0.353311\n", - " 0.728645\n", - " 19817.141604\n", - " 0.999922\n", + " 0.541549\n", + " 0.100485\n", + " 0.000804\n", + " 0.337228\n", + " 0.731867\n", + " 21756.221327\n", + " 0.999811\n", " \n", " \n", " thetas__8_1\n", - " 0.290240\n", - " 0.089277\n", - " 0.000741\n", - " 0.128312\n", - " 0.466948\n", - " 16702.776201\n", - " 0.999845\n", + " 0.290757\n", + " 0.090019\n", + " 0.000699\n", + " 0.127399\n", + " 0.474719\n", + " 16702.111324\n", + " 0.999843\n", " \n", " \n", " thetas__8_2\n", - " 0.168090\n", - " 0.076763\n", - " 0.000555\n", - " 0.036407\n", - " 0.315335\n", - " 16327.324542\n", - " 0.999965\n", + " 0.167694\n", + " 0.075138\n", + " 0.000628\n", + " 0.040590\n", + " 0.321044\n", + " 17292.538473\n", + " 0.999977\n", " \n", " \n", " thetas__9_0\n", - " 0.464514\n", - " 0.049093\n", - " 0.000343\n", - " 0.372742\n", - " 0.565418\n", - " 19773.418066\n", - " 1.000055\n", + " 0.465101\n", + " 0.050474\n", + " 0.000368\n", + " 0.367399\n", + " 0.562391\n", + " 18417.435051\n", + " 0.999771\n", " \n", " \n", " thetas__9_1\n", - " 0.404198\n", - " 0.048211\n", - " 0.000364\n", - " 0.308598\n", - " 0.497266\n", - " 19121.972234\n", - " 1.000018\n", + " 0.403843\n", + " 0.048088\n", + " 0.000332\n", + " 0.312779\n", + " 0.500643\n", + " 20102.952739\n", + " 0.999900\n", " \n", " \n", " thetas__9_2\n", - " 0.131287\n", - " 0.033976\n", - " 0.000252\n", - " 0.071256\n", - " 0.201547\n", - " 17608.775331\n", - " 0.999766\n", + " 0.131056\n", + " 0.033691\n", + " 0.000255\n", + " 0.070047\n", + " 0.198067\n", + " 16906.085964\n", + " 0.999889\n", " \n", " \n", " thetas__10_0\n", - " 0.509467\n", - " 0.049920\n", - " 0.000366\n", - " 0.415125\n", - " 0.606912\n", - " 20384.767845\n", - " 0.999815\n", + " 0.509483\n", + " 0.048419\n", + " 0.000370\n", + " 0.414436\n", + " 0.602676\n", + " 18239.457463\n", + " 0.999843\n", " \n", " \n", " thetas__10_1\n", - " 0.402275\n", - " 0.049378\n", - " 0.000341\n", - " 0.304823\n", - " 0.496507\n", - " 19864.980278\n", - " 0.999888\n", + " 0.402299\n", + " 0.048224\n", + " 0.000390\n", + " 0.303979\n", + " 0.492355\n", + " 17933.905733\n", + " 0.999860\n", " \n", " \n", " thetas__10_2\n", - " 0.088258\n", - " 0.028137\n", - " 0.000213\n", - " 0.036467\n", - " 0.143403\n", - " 19072.805319\n", - " 0.999927\n", + " 0.088219\n", + " 0.027850\n", + " 0.000209\n", + " 0.038264\n", + " 0.142583\n", + " 16701.621952\n", + " 0.999828\n", " \n", " \n", " thetas__11_0\n", - " 0.551484\n", - " 0.036077\n", - " 0.000304\n", - " 0.480387\n", - " 0.620999\n", - " 17971.979629\n", - " 0.999792\n", + " 0.551560\n", + " 0.036577\n", + " 0.000267\n", + " 0.482718\n", + " 0.627536\n", + " 19075.753671\n", + " 0.999804\n", " \n", " \n", " thetas__11_1\n", - " 0.351147\n", - " 0.034832\n", - " 0.000275\n", - " 0.286476\n", - " 0.420702\n", - " 18751.059591\n", - " 0.999881\n", + " 0.350830\n", + " 0.035199\n", + " 0.000255\n", + " 0.281403\n", + " 0.420081\n", + " 18337.153621\n", + " 0.999793\n", " \n", " \n", " thetas__11_2\n", - " 0.097369\n", - " 0.021451\n", - " 0.000167\n", - " 0.056457\n", - " 0.137625\n", - " 16655.438790\n", - " 1.000040\n", + " 0.097611\n", + " 0.021902\n", + " 0.000163\n", + " 0.056112\n", + " 0.140080\n", + " 15975.056272\n", + " 0.999787\n", " \n", " \n", " thetas__12_0\n", - " 0.487054\n", - " 0.081856\n", - " 0.000572\n", - " 0.331627\n", - " 0.646837\n", - " 22317.887267\n", - " 0.999806\n", + " 0.487553\n", + " 0.082854\n", + " 0.000546\n", + " 0.335342\n", + " 0.657384\n", + " 18946.751402\n", + " 0.999796\n", " \n", " \n", " thetas__12_1\n", - " 0.459273\n", - " 0.081735\n", - " 0.000585\n", - " 0.296760\n", - " 0.614881\n", - " 21613.940681\n", - " 0.999836\n", + " 0.458404\n", + " 0.081950\n", + " 0.000524\n", + " 0.301804\n", + " 0.617216\n", + " 17765.816253\n", + " 0.999796\n", " \n", " \n", " thetas__12_2\n", - " 0.053673\n", - " 0.035955\n", - " 0.000297\n", - " 0.001050\n", - " 0.123781\n", - " 14369.678831\n", - " 0.999780\n", + " 0.054042\n", + " 0.036801\n", + " 0.000269\n", + " 0.002726\n", + " 0.126433\n", + " 16322.152351\n", + " 0.999752\n", " \n", " \n", " thetas__13_0\n", - " 0.525185\n", - " 0.056698\n", - " 0.000453\n", - " 0.414782\n", - " 0.637703\n", - " 18713.552046\n", - " 0.999923\n", + " 0.524909\n", + " 0.055371\n", + " 0.000378\n", + " 0.416199\n", + " 0.631048\n", + " 21114.413565\n", + " 0.999861\n", " \n", " \n", " thetas__13_1\n", - " 0.349890\n", - " 0.053009\n", - " 0.000369\n", - " 0.246689\n", - " 0.452988\n", - " 18417.329562\n", - " 1.000012\n", + " 0.349478\n", + " 0.052214\n", + " 0.000429\n", + " 0.248569\n", + " 0.450790\n", + " 21404.231979\n", + " 0.999807\n", " \n", " \n", " thetas__13_2\n", - " 0.124924\n", - " 0.037107\n", - " 0.000310\n", - " 0.055596\n", - " 0.197043\n", - " 15360.916767\n", - " 0.999979\n", + " 0.125612\n", + " 0.037012\n", + " 0.000287\n", + " 0.059061\n", + " 0.199523\n", + " 17155.047936\n", + " 1.000053\n", " \n", " \n", " thetas__14_0\n", - " 0.535523\n", - " 0.044578\n", - " 0.000315\n", - " 0.447226\n", - " 0.619735\n", - " 22608.228539\n", - " 0.999809\n", + " 0.535991\n", + " 0.043761\n", + " 0.000362\n", + " 0.449082\n", + " 0.619943\n", + " 19147.629781\n", + " 0.999848\n", " \n", " \n", " thetas__14_1\n", - " 0.370130\n", - " 0.043078\n", - " 0.000289\n", - " 0.284101\n", - " 0.453287\n", - " 22849.604954\n", - " 0.999792\n", + " 0.369384\n", + " 0.042359\n", + " 0.000326\n", + " 0.285364\n", + " 0.450912\n", + " 18691.274239\n", + " 0.999761\n", " \n", " \n", " thetas__14_2\n", - " 0.094347\n", - " 0.026209\n", - " 0.000170\n", - " 0.046132\n", - " 0.146732\n", - " 18450.854602\n", - " 0.999785\n", + " 0.094625\n", + " 0.025174\n", + " 0.000201\n", + " 0.047936\n", + " 0.143532\n", + " 18401.157619\n", + " 0.999886\n", " \n", " \n", " thetas__15_0\n", - " 0.546602\n", - " 0.051971\n", - " 0.000373\n", - " 0.446791\n", - " 0.647236\n", - " 18513.323181\n", - " 0.999907\n", + " 0.545857\n", + " 0.054085\n", + " 0.000376\n", + " 0.444635\n", + " 0.653482\n", + " 19266.951987\n", + " 0.999766\n", " \n", " \n", " thetas__15_1\n", - " 0.360566\n", - " 0.050000\n", - " 0.000342\n", - " 0.263580\n", - " 0.455823\n", - " 17212.557755\n", - " 0.999999\n", + " 0.360848\n", + " 0.052028\n", + " 0.000336\n", + " 0.263611\n", + " 0.468789\n", + " 19861.024869\n", + " 0.999786\n", " \n", " \n", " thetas__15_2\n", - " 0.092832\n", - " 0.030467\n", - " 0.000195\n", - " 0.038994\n", - " 0.154317\n", - " 19788.407714\n", - " 0.999775\n", + " 0.093294\n", + " 0.031597\n", + " 0.000240\n", + " 0.034255\n", + " 0.153912\n", + " 17169.191302\n", + " 0.999770\n", " \n", " \n", "\n", @@ -982,107 +1032,107 @@ ], "text/plain": [ " mean sd mc_error hpd_2.5 hpd_97.5 n_eff \\\n", - "thetas__0_0 0.299542 0.063400 0.000454 0.180092 0.424889 20003.999850 \n", - "thetas__0_1 0.600838 0.068622 0.000541 0.472058 0.738207 19574.808076 \n", - "thetas__0_2 0.099621 0.042064 0.000344 0.026869 0.181569 18288.502947 \n", - "thetas__1_0 0.489548 0.070977 0.000502 0.350217 0.628429 20746.731257 \n", - "thetas__1_1 0.470114 0.070791 0.000489 0.331658 0.607298 20348.017508 \n", - "thetas__1_2 0.040339 0.027768 0.000209 0.001238 0.094066 14794.810535 \n", - "thetas__2_0 0.464976 0.039588 0.000290 0.392415 0.547059 19608.426756 \n", - "thetas__2_1 0.411480 0.038778 0.000281 0.334516 0.485972 18898.459216 \n", - "thetas__2_2 0.123543 0.025375 0.000183 0.074736 0.172042 18301.159357 \n", - "thetas__3_0 0.458266 0.057701 0.000477 0.345977 0.569688 18225.217843 \n", - "thetas__3_1 0.514034 0.058093 0.000475 0.404447 0.630516 18565.118556 \n", - "thetas__3_2 0.027700 0.019353 0.000175 0.000600 0.065729 14321.896338 \n", - "thetas__4_0 0.399427 0.067030 0.000554 0.258701 0.522959 16948.597789 \n", - "thetas__4_1 0.480680 0.069271 0.000566 0.338205 0.606578 16740.132362 \n", - "thetas__4_2 0.119893 0.045741 0.000386 0.037606 0.208929 16741.302054 \n", - "thetas__5_0 0.442896 0.051409 0.000355 0.340510 0.541677 16794.992103 \n", - "thetas__5_1 0.443766 0.051202 0.000353 0.342852 0.544234 17767.447460 \n", - "thetas__5_2 0.113338 0.032096 0.000245 0.054936 0.176641 17639.128472 \n", - "thetas__6_0 0.504338 0.045477 0.000314 0.416045 0.591921 17878.918381 \n", - "thetas__6_1 0.386066 0.044039 0.000261 0.297701 0.467826 19335.357314 \n", - "thetas__6_2 0.109596 0.028589 0.000207 0.056338 0.164964 16620.502172 \n", - "thetas__7_0 0.547144 0.040603 0.000291 0.463409 0.623170 21752.922723 \n", - "thetas__7_1 0.337982 0.038473 0.000278 0.266599 0.418985 22648.026952 \n", - "thetas__7_2 0.114874 0.026502 0.000216 0.063648 0.165765 19394.159143 \n", - "thetas__8_0 0.541670 0.098625 0.000702 0.353311 0.728645 19817.141604 \n", - "thetas__8_1 0.290240 0.089277 0.000741 0.128312 0.466948 16702.776201 \n", - "thetas__8_2 0.168090 0.076763 0.000555 0.036407 0.315335 16327.324542 \n", - "thetas__9_0 0.464514 0.049093 0.000343 0.372742 0.565418 19773.418066 \n", - "thetas__9_1 0.404198 0.048211 0.000364 0.308598 0.497266 19121.972234 \n", - "thetas__9_2 0.131287 0.033976 0.000252 0.071256 0.201547 17608.775331 \n", - "thetas__10_0 0.509467 0.049920 0.000366 0.415125 0.606912 20384.767845 \n", - "thetas__10_1 0.402275 0.049378 0.000341 0.304823 0.496507 19864.980278 \n", - "thetas__10_2 0.088258 0.028137 0.000213 0.036467 0.143403 19072.805319 \n", - "thetas__11_0 0.551484 0.036077 0.000304 0.480387 0.620999 17971.979629 \n", - "thetas__11_1 0.351147 0.034832 0.000275 0.286476 0.420702 18751.059591 \n", - "thetas__11_2 0.097369 0.021451 0.000167 0.056457 0.137625 16655.438790 \n", - "thetas__12_0 0.487054 0.081856 0.000572 0.331627 0.646837 22317.887267 \n", - "thetas__12_1 0.459273 0.081735 0.000585 0.296760 0.614881 21613.940681 \n", - "thetas__12_2 0.053673 0.035955 0.000297 0.001050 0.123781 14369.678831 \n", - "thetas__13_0 0.525185 0.056698 0.000453 0.414782 0.637703 18713.552046 \n", - "thetas__13_1 0.349890 0.053009 0.000369 0.246689 0.452988 18417.329562 \n", - "thetas__13_2 0.124924 0.037107 0.000310 0.055596 0.197043 15360.916767 \n", - "thetas__14_0 0.535523 0.044578 0.000315 0.447226 0.619735 22608.228539 \n", - "thetas__14_1 0.370130 0.043078 0.000289 0.284101 0.453287 22849.604954 \n", - "thetas__14_2 0.094347 0.026209 0.000170 0.046132 0.146732 18450.854602 \n", - "thetas__15_0 0.546602 0.051971 0.000373 0.446791 0.647236 18513.323181 \n", - "thetas__15_1 0.360566 0.050000 0.000342 0.263580 0.455823 17212.557755 \n", - "thetas__15_2 0.092832 0.030467 0.000195 0.038994 0.154317 19788.407714 \n", + "thetas__0_0 0.299653 0.063840 0.000534 0.176089 0.423617 19226.807333 \n", + "thetas__0_1 0.600337 0.069006 0.000571 0.460822 0.729916 18468.245681 \n", + "thetas__0_2 0.100010 0.042210 0.000300 0.024209 0.181230 15983.247000 \n", + "thetas__1_0 0.490342 0.070030 0.000527 0.352220 0.622480 15033.358733 \n", + "thetas__1_1 0.468789 0.070418 0.000516 0.329812 0.603250 14397.420075 \n", + "thetas__1_2 0.040869 0.027871 0.000216 0.000746 0.095530 13813.564556 \n", + "thetas__2_0 0.464064 0.037702 0.000243 0.392602 0.538467 19458.166318 \n", + "thetas__2_1 0.412692 0.036871 0.000283 0.340354 0.485125 18771.180462 \n", + "thetas__2_2 0.123243 0.025265 0.000194 0.074236 0.172532 19247.971606 \n", + "thetas__3_0 0.458331 0.058274 0.000404 0.350884 0.573547 21956.980693 \n", + "thetas__3_1 0.513887 0.058365 0.000421 0.400916 0.625856 20763.790406 \n", + "thetas__3_2 0.027782 0.018636 0.000155 0.000876 0.064515 14496.997795 \n", + "thetas__4_0 0.399457 0.068020 0.000426 0.266600 0.529972 19987.478184 \n", + "thetas__4_1 0.480441 0.070492 0.000481 0.342083 0.620177 19274.322698 \n", + "thetas__4_2 0.120102 0.045973 0.000342 0.038873 0.208613 16807.535528 \n", + "thetas__5_0 0.442632 0.051158 0.000391 0.346236 0.547049 18835.749177 \n", + "thetas__5_1 0.443866 0.050986 0.000394 0.344361 0.542416 18516.609427 \n", + "thetas__5_2 0.113501 0.031837 0.000248 0.054894 0.177011 18403.883543 \n", + "thetas__6_0 0.503893 0.045648 0.000363 0.416098 0.593584 18822.631233 \n", + "thetas__6_1 0.386539 0.044409 0.000325 0.297472 0.470055 18637.837019 \n", + "thetas__6_2 0.109568 0.029372 0.000212 0.055798 0.169069 19242.299863 \n", + "thetas__7_0 0.546738 0.040534 0.000260 0.466839 0.625034 20173.606252 \n", + "thetas__7_1 0.338108 0.038778 0.000260 0.262366 0.412310 18502.545097 \n", + "thetas__7_2 0.115154 0.025975 0.000179 0.067962 0.168853 21699.085193 \n", + "thetas__8_0 0.541549 0.100485 0.000804 0.337228 0.731867 21756.221327 \n", + "thetas__8_1 0.290757 0.090019 0.000699 0.127399 0.474719 16702.111324 \n", + "thetas__8_2 0.167694 0.075138 0.000628 0.040590 0.321044 17292.538473 \n", + "thetas__9_0 0.465101 0.050474 0.000368 0.367399 0.562391 18417.435051 \n", + "thetas__9_1 0.403843 0.048088 0.000332 0.312779 0.500643 20102.952739 \n", + "thetas__9_2 0.131056 0.033691 0.000255 0.070047 0.198067 16906.085964 \n", + "thetas__10_0 0.509483 0.048419 0.000370 0.414436 0.602676 18239.457463 \n", + "thetas__10_1 0.402299 0.048224 0.000390 0.303979 0.492355 17933.905733 \n", + "thetas__10_2 0.088219 0.027850 0.000209 0.038264 0.142583 16701.621952 \n", + "thetas__11_0 0.551560 0.036577 0.000267 0.482718 0.627536 19075.753671 \n", + "thetas__11_1 0.350830 0.035199 0.000255 0.281403 0.420081 18337.153621 \n", + "thetas__11_2 0.097611 0.021902 0.000163 0.056112 0.140080 15975.056272 \n", + "thetas__12_0 0.487553 0.082854 0.000546 0.335342 0.657384 18946.751402 \n", + "thetas__12_1 0.458404 0.081950 0.000524 0.301804 0.617216 17765.816253 \n", + "thetas__12_2 0.054042 0.036801 0.000269 0.002726 0.126433 16322.152351 \n", + "thetas__13_0 0.524909 0.055371 0.000378 0.416199 0.631048 21114.413565 \n", + "thetas__13_1 0.349478 0.052214 0.000429 0.248569 0.450790 21404.231979 \n", + "thetas__13_2 0.125612 0.037012 0.000287 0.059061 0.199523 17155.047936 \n", + "thetas__14_0 0.535991 0.043761 0.000362 0.449082 0.619943 19147.629781 \n", + "thetas__14_1 0.369384 0.042359 0.000326 0.285364 0.450912 18691.274239 \n", + "thetas__14_2 0.094625 0.025174 0.000201 0.047936 0.143532 18401.157619 \n", + "thetas__15_0 0.545857 0.054085 0.000376 0.444635 0.653482 19266.951987 \n", + "thetas__15_1 0.360848 0.052028 0.000336 0.263611 0.468789 19861.024869 \n", + "thetas__15_2 0.093294 0.031597 0.000240 0.034255 0.153912 17169.191302 \n", "\n", " Rhat \n", - "thetas__0_0 0.999805 \n", - "thetas__0_1 0.999795 \n", - "thetas__0_2 0.999783 \n", - "thetas__1_0 0.999894 \n", - "thetas__1_1 0.999843 \n", - "thetas__1_2 0.999792 \n", - "thetas__2_0 0.999818 \n", - "thetas__2_1 0.999768 \n", - "thetas__2_2 0.999839 \n", - "thetas__3_0 0.999807 \n", - "thetas__3_1 0.999820 \n", - "thetas__3_2 0.999856 \n", - "thetas__4_0 0.999917 \n", - "thetas__4_1 0.999915 \n", - "thetas__4_2 0.999967 \n", - "thetas__5_0 0.999927 \n", - "thetas__5_1 0.999845 \n", - "thetas__5_2 0.999845 \n", - "thetas__6_0 0.999851 \n", - "thetas__6_1 1.000018 \n", - "thetas__6_2 0.999871 \n", - "thetas__7_0 0.999914 \n", - "thetas__7_1 0.999949 \n", - "thetas__7_2 0.999853 \n", - "thetas__8_0 0.999922 \n", - "thetas__8_1 0.999845 \n", - "thetas__8_2 0.999965 \n", - "thetas__9_0 1.000055 \n", - "thetas__9_1 1.000018 \n", - "thetas__9_2 0.999766 \n", - "thetas__10_0 0.999815 \n", - "thetas__10_1 0.999888 \n", - "thetas__10_2 0.999927 \n", - "thetas__11_0 0.999792 \n", - "thetas__11_1 0.999881 \n", - "thetas__11_2 1.000040 \n", - "thetas__12_0 0.999806 \n", - "thetas__12_1 0.999836 \n", - "thetas__12_2 0.999780 \n", - "thetas__13_0 0.999923 \n", - "thetas__13_1 1.000012 \n", - "thetas__13_2 0.999979 \n", - "thetas__14_0 0.999809 \n", - "thetas__14_1 0.999792 \n", - "thetas__14_2 0.999785 \n", - "thetas__15_0 0.999907 \n", - "thetas__15_1 0.999999 \n", - "thetas__15_2 0.999775 " + "thetas__0_0 0.999785 \n", + "thetas__0_1 0.999809 \n", + "thetas__0_2 0.999842 \n", + "thetas__1_0 0.999812 \n", + "thetas__1_1 0.999846 \n", + "thetas__1_2 0.999929 \n", + "thetas__2_0 0.999827 \n", + "thetas__2_1 0.999881 \n", + "thetas__2_2 1.000048 \n", + "thetas__3_0 0.999798 \n", + "thetas__3_1 0.999808 \n", + "thetas__3_2 1.000732 \n", + "thetas__4_0 0.999802 \n", + "thetas__4_1 0.999810 \n", + "thetas__4_2 0.999758 \n", + "thetas__5_0 0.999964 \n", + "thetas__5_1 0.999944 \n", + "thetas__5_2 0.999763 \n", + "thetas__6_0 0.999842 \n", + "thetas__6_1 0.999820 \n", + "thetas__6_2 0.999787 \n", + "thetas__7_0 0.999806 \n", + "thetas__7_1 0.999833 \n", + "thetas__7_2 0.999798 \n", + "thetas__8_0 0.999811 \n", + "thetas__8_1 0.999843 \n", + "thetas__8_2 0.999977 \n", + "thetas__9_0 0.999771 \n", + "thetas__9_1 0.999900 \n", + "thetas__9_2 0.999889 \n", + "thetas__10_0 0.999843 \n", + "thetas__10_1 0.999860 \n", + "thetas__10_2 0.999828 \n", + "thetas__11_0 0.999804 \n", + "thetas__11_1 0.999793 \n", + "thetas__11_2 0.999787 \n", + "thetas__12_0 0.999796 \n", + "thetas__12_1 0.999796 \n", + "thetas__12_2 0.999752 \n", + "thetas__13_0 0.999861 \n", + "thetas__13_1 0.999807 \n", + "thetas__13_2 1.000053 \n", + "thetas__14_0 0.999848 \n", + "thetas__14_1 0.999761 \n", + "thetas__14_2 0.999886 \n", + "thetas__15_0 0.999766 \n", + "thetas__15_1 0.999786 \n", + "thetas__15_2 0.999770 " ] }, - "execution_count": 11, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -1091,16 +1141,23 @@ "pm.summary(trace_1)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the goal is to reproduce the figure 8.1 (a)." + ] + }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 1000/1000 [00:01<00:00, 960.74it/s]\n" + "100%|██████████| 1000/1000 [00:01<00:00, 889.86it/s]\n" ] } ], @@ -1111,7 +1168,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1120,7 +1177,7 @@ "(1000, 16, 3)" ] }, - "execution_count": 13, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1130,52 +1187,38 @@ ] }, { - "cell_type": "code", - "execution_count": 14, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.03206413, 0.03206413, 0.11523046, 0.04809619, 0.03206413,\n", - " 0.06513026, 0.08016032, 0.1002004 , 0.01503006, 0.06613226,\n", - " 0.06813627, 0.12625251, 0.02304609, 0.05310621, 0.08617234,\n", - " 0.05711423])" - ] - }, - "execution_count": 14, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "proportion / np.sum(proportion)" + "Just check if the column **proportion** (look at the data frame) is equal to what we got." ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([ 17., 23., 95., 27., 15., 32., 56., 73., 14., 45., 51.,\n", - " 112., 15., 40., 64., 52.])" + "array([0.03206413, 0.03206413, 0.11523046, 0.04809619, 0.03206413,\n", + " 0.06513026, 0.08016032, 0.1002004 , 0.01503006, 0.06613226,\n", + " 0.06813627, 0.12625251, 0.02304609, 0.05310621, 0.08617234,\n", + " 0.05711423])" ] }, - "execution_count": 15, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "ppc_non_hiera['post'][0, :, 0]" + "proportion / np.sum(proportion)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -1188,28 +1231,28 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.26980898, -0.23141623, -0.24449352, ..., -0.12200188,\n", - " -0.50776797, -0.13584611],\n", - " [-0.01775869, -0.04502462, -0.06671272, ..., 0.16036084,\n", - " -0.12880336, 0.16525048],\n", - " [ 0.10781733, 0.17692549, 0.09324814, ..., 0.16421782,\n", - " -0.04678985, 0.18552823],\n", + "array([[-0.36602273, -0.19682315, -0.36796852, ..., -0.48749388,\n", + " -0.32218869, -0.04764414],\n", + " [-0.02860091, 0.13603276, -0.15743739, ..., -0.17841541,\n", + " 0.26005232, 0.15633098],\n", + " [ 0.09419482, 0.08172248, 0.02700719, ..., 0.07112208,\n", + " 0.06369524, 0.01833077],\n", " ...,\n", - " [ 0.23109658, 0.2585616 , -0.12535769, ..., 0.26713797,\n", - " 0.07612264, 0.262102 ],\n", - " [ 0.21515438, 0.32335733, 0.23051151, ..., 0.03288159,\n", - " 0.27377512, 0.04011775],\n", - " [ 0.18442349, 0.25988253, 0.00884456, ..., 0.34105401,\n", - " 0.14567319, 0.23388622]])" + " [ 0.2096655 , 0.12545752, 0.34367845, ..., 0.25501784,\n", + " 0.31038741, 0.20693177],\n", + " [ 0.24176366, 0.22392918, 0.20225605, ..., 0.16170903,\n", + " 0.09215016, 0.12158467],\n", + " [ 0.26952366, 0.11230593, 0.32890665, ..., 0.31401458,\n", + " 0.10214156, 0.15254369]])" ] }, - "execution_count": 17, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1221,416 +1264,174 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 22, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(16, 1000)" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "diff.shape" + "res = np.sum(diff.T * proportion / np.sum(proportion), axis=1)" ] }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 23, "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAFkCAYAAAANPR4aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAf5klEQVR4nO3de3BU9f3/8VeySy5rCBFZoDRJBaJUUKAKKqKgbdKEJNY61ikgaJwwaIMU8YJYBrkTQPFSYEpbw8jFtlKrzEgkFKEKRVqwYp06QwrCVkYNY6KQXbOEXM7vj/7cut/EkN3zyV7C8zHjjOecz8nnve8ke17sOTknwbIsSwAAADAiMdoFAAAAdCeEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADDIGe0CvvLZZ95ol2BbWlqyfL7GaJcRV+hZ6OhZ6OhZeOhb6OhZ6OK1Z253z2/cxidXBjmdjmiXEHfoWejoWejoWXjoW+joWei6Y88IVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIGe0CwCArpSWnqoePRxyu3tGbE5/Y7N89f6IzQcgthCuAHRrqclOXTq3MqJzelYUyRfRGQHEEk4LAgAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAzq1E1Em5qa9PTTT2vDhg1666231L9/f61atUp79uwJjDl79qx69+6tV155JWjfd955R6WlpfrWt74VWDdlyhRNmTLF0EsAAACIHZ0KV2VlZbryyiuD1s2ZM0dz5swJLC9cuFCDBw9us6/X69WoUaNUUVFhs1QAAIDY16nTgjNmzNCsWbO+cfu///1vHTp0SJMmTWqzzev1qmfPyD3TCwAAIJo69cnVyJEjO9y+du1aTZs2TU5n2y/n9Xrl8Xg0efJk1dXV6ZprrtHjjz9O4AIAAN2S7Qc3f/TRR3r//fe1evXqdrdnZWVp/PjxKi0tVVJSkh577DEtX75c5eXlQePS0pLldDrslhNVDkeiMjJc0S4jrtCz0NGz+NAdvkf8rIWOnoWuO/bMdriqrKxUbm6uevTo0e72cePGady4cYHl6dOna9q0aW3G+XyNdkuJuowMl06fboh2GXGFnoWOnoXG7Y7Op+Td4XvEz1ro6Fno4rVnHb232L4Vw5tvvhkUnv6vmpoa1dXVBZYty2r39CEAAEB3YDtcVVdXt/tXgl95+eWXNW/ePJ07d04tLS3avHmzbr75ZrvTAgAAxKTzfoRUW1sbdE+qqVOnyuFwaOPGjUpOTpbf75fb7Q7aZ8uWLaqtrdWDDz6o6dOna9GiRSoqKlJiYqJGjhwZdAsHANGVlp6q1OTIfZrsb2yWr94fsfkAINLO+47ap08fVVVVfeP26urqNuu+HsaSkpK0bNmyMMsD0NVSk526dG5lxObzrCiSL2KzAUDk8fgbAAAAgwhXAAAABhGuAAAADOKeCAAi6mxTS9TuPQUAkUC4AhBRKT0cEb+AHgAiidOCAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGNSpcNXU1KSVK1dqyJAhqqmpkSS98847GjFihAoKCgL/bdmypd39KysrVVxcrPz8fM2cOVNer9fcKwAAAIghzs4MKisr05VXXhm0zuv1atSoUaqoqOhw308++URLlizRK6+8ogEDBmjx4sV69tlnNX/+/PCrBgAAiFGd+uRqxowZmjVrVtA6r9ernj17nnff3bt3a8yYMRowYIAkafLkydqxY0cYpQIAAMS+ToWrkSNHtlnn9Xrl8Xg0efJk5efn6xe/+EW7p/s8Ho+ys7MDy9nZ2aqrq9OZM2dslA0AABCbOnVasD1ZWVkaP368SktLlZSUpMcee0zLly9XeXl50Di/36/evXsHlpOSkpSQkCC/369evXoF1qelJcvpdIRbTkxwOBKVkeGKdhlxhZ6Fjp7Fh+7wPeJnLXT0LHTdsWdhh6tx48Zp3LhxgeXp06dr2rRpbca5XC6dO3cusNzY2CjLsuRyBTfS52sMt5SYkZHh0unTDdEuI67Qs9CZ7pnbff7T+whdd/i55vczdPQsdPHas47eO8O+FUNNTY3q6uoCy5Zlyelsm9UGDhyo48ePB5aPHj0qt9ut9PT0cKcGAACIWWGHq5dfflnz5s3TuXPn1NLSos2bN+vmm29uMy43N1cHDx7UiRMnJEmbN29WcXFx2AUDAADEsvOeFqytrdWUKVMCy1OnTpXD4VBFRYU+/fRTFRUVKTExUSNHjtScOXMkSbt27dKePXtUXl6ufv36acGCBZoxY4aam5s1dOhQzZw5s+teEQAAQBSdN1z16dNHVVVV7W5btmxZu+vz8vKUl5cXWC4sLFRhYWGYJQIAAMQPHn8DAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIPO++BmAEBozja1yO3uGbH5/I3N8tX7IzYfgI4RrgDAsJQeDl06tzJi83lWFMkXsdkAnA+nBQEAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGNSpcNXU1KSVK1dqyJAhqqmpCaxft26dJkyYoPz8fD344IPyer1t9q2pqdGwYcNUUFAQ+G/16tXmXgEAAEAMcXZmUFlZma688sqgdVVVVaqqqtIf//hHuVwuPfzww3r++ec1e/bsoHH19fXKzMxUVVWVuaoBAABiVKc+uZoxY4ZmzZoVtG7w4MEqLy9XWlqaEhMT9b3vfU9Hjx5ts6/X61V6erqZagEAAGJcpz65GjlyZJt1l112WdDy3r17NXr06DbjvF6vTp8+rZKSEn366acaMmSI5s2bp379+oVZMgAAQOwyckH7r371K9XV1Wnq1KlttvXu3Vu33HKLVq1apcrKSvXv31+PPvqoiWkBAABiTqc+uerI6tWrtX//flVUVMjlcrXZPnz4cA0fPjywXFZWpuuvv14NDQ1B49PSkuV0OuyWE1UOR6IyMtr2AN+MnoWOnuH/OtvUIre7Z5d87fa+7tmmFsX3u3XX4fczdN2xZ7bC1Zo1a/Tuu+9q06ZNSktLa3dMXV2dmpqa1L9/f0mSZVlKSEiQ0xk8tc/XaKeUmJCR4dLp0w3RLiOu0LPQme5ZVx2UETkpPRy6dG5lxObzrCjSZ5+1/etw8J4WjnjtWUfvnWGfFvzggw+0bds2rV+//huDlSTt27dPZWVl8vl8kqQXXnhBY8aMUVJSUrhTAwAAxKzzfnJVW1urKVOmBJanTp0qh8OhUaNGyev16s477wxs+/a3v62Kigrt2rVLe/bsUXl5uW677TYdO3ZMt99+uxITEzVo0CCVl5d3zasBAACIsvOGqz59+nzjPaqWLl3a7vq8vDzl5eVJkhISEvTII4/okUcesVEmAABAfLB9QTsAs9LSU5Wa3PGvJtdJAUDsIlwBMSY12Rnxi5MBAObw4GYAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABvH4G+A8OvOsPwAAvsIRAzgPnvUHAAgFpwUBAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCoU+GqqalJK1eu1JAhQ1RTUxNY/8ILL2jChAnKz8/XvHnzdO7cuXb3r6ysVHFxsfLz8zVz5kx5vV4z1QMAAMSYToWrsrIypaSkBK177733tGnTJr300kvasWOH6urqtGXLljb7fvLJJ1qyZIl+85vfaOfOnXK73Xr22WfNVA8AABBjOhWuZsyYoVmzZgWtq6qqUmFhodLT05WYmKhJkyZpx44dbfbdvXu3xowZowEDBkiSJk+e3O44AACA7qBT4WrkyJFt1nk8HmVnZweWs7KydPz48fOOy87OVl1dnc6cORNOvQAAADHNGe6Ofr9fSUlJgeWUlBT5/f52x/Xu3TuwnJSUpISEBPn9fvXq1SuwPi0tWU6nI9xyYoLDkaiMDFe0y4gr9AyIT/zeto/3tNB1x56FHa5SU1ODLmD3+/1yudo2x+VyBY1rbGyUZVltxvp8jeGWEjMyMlw6fboh2mXElXjomdvdM9olADEn1n9voyUe3tNiTbz2rKNjQ9i3Yhg0aFDQacBjx44pJyenzbiBAwcGjTt69KjcbrfS09PDnRoAACBmhR2uJkyYEPgrwebmZv3ud79TUVFRm3G5ubk6ePCgTpw4IUnavHmziouLw68YAAAghp33tGBtba2mTJkSWJ46daocDoc2btyo0tJSTZ48WZZl6YYbbtCkSZMkSbt27dKePXtUXl6ufv36acGCBZoxY4aam5s1dOhQzZw5s+teEQAAQBSdN1z16dNHVVVV7W67++67dffdd7dZn5eXp7y8vMByYWGhCgsLbZQJAAAQH3j8DQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgp52dq6qq9OyzzwatO3HihP7xj38oLS0tsG7YsGHKysoKLA8fPlyrVq2yMzUAAEBMshWuCgoKVFBQEFh+/fXXtWPHjqBg9eWXXyohIUFVVVV2pgIAAIgLtsLV1zU2Nuq5557Tb3/726D1Pp9P6enppqYBAACIacauuXr55Zd19dVXKzs7O2h9fX29WlpadP/996ugoEClpaX68MMPTU0LAAAQU4x8ctXa2qoNGzZo/fr1bbalpKSooKBA9957r7Kzs7Vp0yaVlZWpsrJSTuf/pk9LS5bT6TBRTtQ4HInKyHBFu4y4Qs+A+MTvbft4Twtdd+yZkXB1+PBhuVwuXXbZZW22ZWVladGiRYHle+65R2vWrJHH41FOTk5gvc/XaKKUqMrIcOn06YZolxFX4qFnbnfPaJcAxJxY/72Nlnh4T4s18dqzjo4NRk4Lvvnmmxo/fny72+rr63Xy5MnAckJCglpbW4M+tQIAAOgujISrI0eOaPDgwe1uq66u1tSpU1VbWytJ2rp1q/r37x90awYAAIDuwsjHRzU1NerTp09g+f3339dzzz2niooKjR49WiUlJbrrrruUkJCgvn37au3atXI44vv6KgAAgPYYCVevvfZa0PLw4cNVUVERWC4pKVFJSYmJqQAAAGIaj78BAAAwiHAFAABgEOEKAADAIO6HgLiSlp6q1GR+bIFoOtvUEtH7v/kbm+Wr90dsPsAujlKIK6nJTl06tzKic3pWFEV0PiDWpfRwRPT30LOiSL6IzQbYx2lBAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADHLa2XnYsGHKysoKLA8fPlyrVq0KGnPkyBEtXLhQX3zxhS6++GItXLhQ3/3ud+1MCwAAELPCDldffvmlEhISVFVV1eG42bNn6+GHH1Zubq6qqqr06KOP6rXXXgt3WgAAgJgW9mlBn8+n9PT0DsdUV1fL6/UqNzdXklRQUKC6ujp9+OGH4U4LAAAQ08IOV/X19WppadH999+vgoIClZaWtglNHo9HmZmZQeuysrJ0/PjxcKcFAACIaWGHq5SUFBUUFGju3Ll6/fXXddNNN6msrEzNzc2BMX6/X8nJyUH7JScnq6GhIfyKAQAAYljY11xlZWVp0aJFgeV77rlHa9askcfjUU5OjiTJ5XKpsbExaL+zZ8/qoosuavP10tKS5XQ6wi0nJjgcicrIcEW7jLhCzwB0Rry8T/CeFrru2LOww1V9fb3OnDkT+GvBhIQEtba2yun835ccNGiQPB6PWltblZiYqObmZnk8Hg0ePLjN1/P5GtusizcZGS6dPs2ncqEItWdud88urAZArIqX91aOA6GL1551dDwK+7RgdXW1pk6dqtraWknS1q1b1b9//6BbM+Tk5Mjtdmv79u2SpG3btikzM1MDBw4Md1oAAICYFvYnV6NHj1ZJSYnuuusuJSQkqG/fvlq7dq1qa2tVWloaCFRPPfWU5s+fr7Vr1+qSSy7Rk08+aax4RF9aeqpSk23dLo1PowAA3Yqto2JJSYlKSkrarP8qWEnSkCFDtHXrVjvTIIalJjt16dzKiM3nWVEUsbkAAAgHj78BAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADLJ390cAALrY2aaWiN5s2N/YLF+9P2LzofshXAEAYlpKD0fEb1bsi9hs6I44LQgAAGAQ4QoAAMAgwhUAAIBBXHMFAMDX2L2APtR9uYC++yFcAQDwNVxAD7s4LQgAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAg3hwczeTlp6q1GS+rQAARAtH4W4mNdkZ8ae5AwCA/+G0IAAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhk+68Fd+/erV/+8pc6d+6cMjIytGjRIl1++eVBY/Ly8mRZlpzO/07Xr18/bdy40e7UAAAAMcdWuDp16pTmzp2r3//+98rJydGLL76oJ554Qn/4wx+CxtXX1+u1115T3759bRULAAAQ62ydFnQ6nVq9erVycnIkSddcc42OHTvWZpzP51N6erqdqQAAAOKCrXB1ySWXaNy4cYHlvXv3asSIEUFjGhoa1NLSoscff1yFhYW666679O6779qZFgAAIGYZu0P7gQMHtHHjxjbXUrW2tuonP/mJfvrTn+qqq65SVVWVfvazn+nPf/6zevXqFRiXlpYsp9NhqpyocDgSlZHhinYZAIA4cyEfO7rjsdNIuHrjjTe0ZMkSrV+/PnCK8CtpaWlaunRpYLmgoEDr1q3Te++9p/HjxwfW+3yNJkqJqowMl06fbohqDW53z6jODwAIXbSPHdEUC8fOcHR0vLV9K4a3335by5Yt04YNG3TVVVe12d7Q0KDjx4+3Wf/VXw4CAAB0J7bCld/v1+OPP641a9Zo8ODB7Y6pq6vTxIkTAwFr//79qq2tbXNtFgAAQHdg6+Oj3bt36/PPP9cjjzwStL6iokL33Xeftm/frqysLC1YsEAPPPCAWlpa1KtXL61bt05paWm2CgcAAIhFtsJVcXGxiouL2922ffv2wP8XFRWpqKjIzlQAAABxgcffAAAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIO4TToAAFF0tqkl4o8u8zc2y1fvj+icFxLCFQAAUZTSw6FL51ZGdE7PiiL5IjrjhYXTggAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAM4vE3XSwtPVWpybQZAIALBUf9Lpaa7IzoM6M8K4oiNhcAAGiL04IAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABg0AX314JdfWsEt7tnl31tAAAQ+y64cMWtEQAAQFfitCAAAIBBhCsAAACDLrjTggAAXOjONrVE9Bphf2OzfPX+iM0XbYQrAAAuMCk9HBG//tgXsdmij9OCAAAABtkKVwcOHNDtt9+u/Px83XvvvaqpqWkz5siRI5o4caLy8/M1ceJEHTlyxM6UAAAAMS3scNXQ0KCHHnpIS5cu1c6dO3XjjTdq4cKFbcbNnj1b06ZN086dO1VSUqJHH33UTr0AAAAxLexrrv72t78pKytLw4YNkyRNnDhRzzzzjHw+n9LS0iRJ1dXV8nq9ys3NlSQVFBRo8eLF+vDDDzV48GAD5QMAgFh3vgvoTV9cH+0L6MMOVx6PR1lZWYHliy66SBkZGfroo480dOjQwJjMzMyg/bKysnT8+HHCFQAAF4gL7QL6BMuyrHB2XLdunT7++GMtX748sO4HP/iBVq5cqVGjRkmStm3bpldffVUbN24MjLn77rt1xx136LbbbrNZOgAAQOwJ+5orl8ulxsbGoHVnz57VRRddFNIYAACA7iTscDVo0CCdOHEisPz555/rzJkz+s53vhM0xuPxqLW1VZLU3Nwsj8fDKUEAANBthR2urrvuOtXU1Oidd96RJG3evFm33HKLXC5XYExOTo7cbre2b98u6b+nCTMzMzVw4ECbZQMAAMSmsMNVSkqKnnnmGS1evFh5eXl6//339cQTT+jUqVMqLi4OjHvqqae0ZcsW/fCHP9Sf/vQnPfnkk0YKjxRT9/LasmWLhgwZEomSY4Ldvh07dkx33nmnxo8frzvuuEPHjh2LZPlRYbdnv/71r1VQUKAJEybogQce0GeffRbJ8qOiMz2zLEsVFRUaNmxY4B+DX6msrFRxcbHy8/M1c+ZMeb3eSJUeNXZ7tnXrVhUVFamgoEClpaXt7t/d2O3ZVzgOhNa3uD4OWPhGX375pXX99ddb//rXvyzLsqznn3/euu+++9qMKygosHbt2mVZlmXt2LHDKi4uDtp+6tQp69Zbb7Uuv/zyri86BtjtW3Nzs5Wfn2/t3LnTsizLevXVV63ly5dHqProsNuzv/71r1ZeXp5VX19vWZZlPfnkk9bDDz8coeqjo7M9mz9/vjVv3jzrxhtvtA4dOhRY//HHH1vXXXed9fHHH1uWZVmLFi2yFi9eHJnio8Ruz/75z39aY8eOtU6dOmVZlmWtWLHCeuihhyJTfJTY7dlXOA6E1rd4Pw4Qrjqwe/du68477wws+3w+a9iwYZbX6w2sO3LkiDV27Nig/caMGWMdO3YssPzzn//cqqysvGB+qez27dChQ1ZRUVHE6o0Fdnu2YcMGa/bs2YH1+/bts370ox91feFR1JmeWZZlHT582LIsy7rllluC3rw3bdpkPfjgg4Hlo0ePWmPGjOniqqPLbs9OnjxpHTx4MLD8xhtv8HP2/31Tz77CcSC0vsX7cYBnC3ago3t5fX3MN93LS5L27t0rn8+nwsLCyBQdA+z27ciRIxowYIDmzp2r/Px8TZ8+XSdPnoxY/dFgt2fXXnutDh8+rJqaGrW0tGjXrl264YYbIlZ/NHSmZ5I0cuTIb9w/Ozs7sJydna26ujqdOXOmawqOAXZ7lpmZqdGjRweW9+7dqxEjRnRNsTHCbs8kjgNS6H2L9+MA4aoDfr9fycnJQeuSk5PV0NDQqTFnz57VypUrtWDBgojUGyvs9q2+vl6HDh3SpEmTtGPHDl1xxRWaM2dORGqPFrs9GzZsmH784x/r+9//vq699lodOnRI9913X0Rqj5bO9Ox8+yclJQWWk5KSlJCQIL8/end17mp2e/Z127Zt0759+zRz5kxT5cUkuz3jOPA/ofQt3o8DhKsO2L2X17p161RcXBz0r+MLgd2+9ezZU1dccYVGjBihxMRE3XvvvTp8+HBYB4B4Ybdnu3fv1ltvvaX9+/fr0KFDuvXWW7v9czzt3kfP5XLp3LlzgeXGxkZZlhX0F8/djal7D7744otat26dNm7cKLfbbbLEmGO3ZxwH/ieUvsX7cYBw1QG79/Las2ePNm/erLFjx2rs2LGSpLFjx+o///lPZF9IhNntW2ZmZtBfbTkcDklSYmL3/XG127P9+/frpptu0sUXX6zExEQVFhbq0KFDEX8dkdSZnnVk4MCBgdP3knT06FG53W6lp6cbrzVW2O2ZJL3yyit68cUXtWXLlqDTPt2V3Z5xHPivUPsW78eB+KgySuzey6uyslJvv/229u/fr/3790uS9u/fH9IbWTyy27exY8fqiy++0L59+yRJL730kq6++mqlpKRE/sVEiN2eDRw4UAcOHAic0vrLX/6iyy67LPIvJII607OO5Obm6uDBg4EDwObNm4NuI9Md2e3ZqVOn9PTTT+v5559Xv379urLUmGG3ZxwHwutbvB8Hwn624IXi73//u5YtWya/36/s7GytWLFCra2tKi0tDRzkqqurNX/+fJ0+fVqXXHKJli5d2u5d6IcMGaLq6upIv4SosNu3Dz74QHPmzNG5c+c0YMAALVmypNt/rG6nZ01NTSovL9e+ffuUmJgot9uthQsXKicnJ8qvqmt1pmfFxcVqbm7WyZMn1bdvXyUnJ2vVqlUaPny4Xn/9da1du1bNzc0aOnSoli1b1u0fz2WnZwcOHND69euDgpXT6Qzs113Z/Tn7Oo4Dne9bPB8HCFcAAAAGcVoQAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwKD/BwxXn5sGcEmRAAAAAElFTkSuQmCC\n", "text/plain": [ - "(16,)" + "
" ] }, - "execution_count": 19, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "proportion.shape" + "plt.figure(figsize=(10, 6))\n", + "_, _, _ = plt.hist(res, bins=18, edgecolor='w', density=True)" ] }, { - "cell_type": "code", - "execution_count": 20, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "res = np.sum(diff.T * proportion / np.sum(proportion), axis=1)" + "### **Hierarchichal model**" ] }, { - "cell_type": "code", - "execution_count": 26, + "cell_type": "markdown", "metadata": {}, - "outputs": [], "source": [ - "# res" + "The authors are using other parameters, so we need to find the number of people for $\\alpha_{1j}$ and $\\alpha_{2j}$." ] }, { "cell_type": "code", - "execution_count": 288, + "execution_count": 24, "metadata": {}, "outputs": [ { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAG5dJREFUeJzt3XuQVnX9B/AP+6zuxV1ak42GVkJFGaMJLFMRfzqZhcDaZcpJG2FybHQCzVs5lFrmFSy0qchLaqHYpE1lMxKUIKEiJU5Uow0o6eZlgvGGsLEgl/P7w3E35OK3Pc9td1+vvzjnuXw/z4d9vue955w9Z1CWZVkAALBXNZUuAACgLxCaAAASCE0AAAmEJgCABEITAEACoQkAIEFtqQd46aWNpR4iWVNTXXR2bql0GVVBL3roRQ+9eJM+9NCLHnrRoz/3orW1eY+PDag9TbW1hUqXUDX0oode9NCLN+lDD73ooRc9BmovBlRoAgDoLaEJACCB0AQAkEBoAgBIIDQBACRICk1bt26NWbNmxahRo2Lt2rXd6x9//PFob2+PE044IaZOnRrr1q0rWaEAAJWUFJqmTZsW9fX1O63r7OyMCy64IK6++upYunRpHHfccTF//vySFAkAUGlJF7ecPn16jB07Nn784x93r1u0aFGMHj06xo4dGxERZ599dmkqBACoAkl7mt4KRv9t9erVsf/++8f06dNjwoQJceGFF8arr75a9AIBAKpBr2+jsmHDhnjkkUfi7rvvjmHDhsVll10W1157bXzve9/b6XlNTXVVc+XQQqEmWloaK11GVdCLHnrRQy/epA899KKHXvQYqL3odWhqbm6OcePGxfvf//6IiJg6dWp8+ctf3uV51XRvmpaWxli/flOly6gKetFDL3roxZv0oYde9NCLHv25FyW591xbW1ts3NhzM95CoRCFQnXsUQIAKLZeh6aJEyfG448/HqtXr46IiHvvvTfGjRtXtMIAAKrJOx6ee/nll+OMM87oXp4yZUoUCoWYO3du3HjjjXHuuefGoEGD4tBDD42rrrqqpMUCAFTKO4amIUOGxMKFC3f72NChQ+OBBx4oelEA76RpcEM01PX6tMx39PbzGrq2bIvODV0lGw+ofqWbcQBKqKGuNkbMKN8FdTtmTo7Oso0GVCP3ngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCgttIFAPQFm7duj9bW5rKO2bVlW3Ru6CrrmMCeCU0ACer3KcSIGfPLOmbHzMnRWdYRgb1xeA4AIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQICk0bd26NWbNmhWjRo2KtWvX7vL4rFmz4sQTTyx6cQAA1SIpNE2bNi3q6+t3+9iqVati0aJFRS0KAKDaJIWm6dOnx/nnn7/L+h07dsQVV1wRF1xwQdELAwCoJkmhaezYsbtd/4tf/CIOO+ywGDNmTFGLAgCoNrW9feFLL70Uc+fOjXvvvTc2btxYzJoAAKpOr0PTddddF9OnT493vetdew1NTU11UVtb6O0wRVUo1ERLS2Oly6gKetFDL3roRfWp9P+Hn4keetFjoPai16FpyZIl8ec//zlmzZoV27dvj9dffz3Gjx8fS5YsiX333bf7eZ2dW4pSaDG0tDTG+vWbKl1GVdCLHnrRoy/1orW1udIllEWl/z/60s9EqelFj/7ci73NLb0OTStXruz+9wsvvBBTp06NBx98sLdvBwBQ1d4xNL388stxxhlndC9PmTIlCoVCzJ07N4YOHVrS4gAAqsU7hqYhQ4bEwoUL9/qctrY2e5kAgH7NbVQAABIITQAACXp9IjjAf2sa3BANdaaUYtq8dXtZ/0qwa8u26NzQVbbxoK8xwwFF0VBXGyNmzC/beB0zJ5dtrEqp36dQ9p52lm006HscngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkqE150tatW+OGG26IO+64I5YuXRrvfe97IyJizpw5cf/998eOHTvi8MMPj6uuuiqam5tLWjCQpmlwQzTUJX3Fd9La6jsMsDtJM+q0adPigx/84E7rFi5cGAsXLoxf/vKX0djYGBdffHHcdtttceGFF5akUOB/01BXGyNmzC/beB0zJ5dtLIBKSDo8N3369Dj//PN3WnfIIYfEddddF01NTVFTUxNHHHFEPP300yUpEgCg0pL2NI0dO3aXdYceeuhOyw899FB89KMfLU5VAABV5n8/4WE3brrppnjllVdiypQpuzzW1FQXtbWFYgyTW6FQEy0tjZUuoyroRQ+9gB5v/y74fvTQix4DtRe5Q9Ps2bNj2bJlcfvtt0dj464N7OzckneIomlpaYz16zdVuoyqoBc9+msvnNBNb7z9u9Bfvx+9oRc9+nMv9jZ35gpNP/zhD+Mvf/lL3HnnndHU1JTnrQAAqlqvQ9OTTz4Z9913X9x3330CEwDQ771jaHr55ZfjjDPO6F6eMmVKFAqFOPLII2Pjxo1x6qmndj/2vve9L26//fbSVAoAUEHvGJqGDBkSCxcu3O1jV199ddELAgCoRm6jAgCQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAAS1Fa6AACqw+at26O1tXmX9btbVwxdW7ZF54aukrw3lILQBEBERNTvU4gRM+aXbbyOmZOjs2yjQX4OzwEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQICk0bd26NWbNmhWjRo2KtWvXdq//2c9+FhMnTowJEybEpZdeGm+88UbJCgUAqKSk0DRt2rSor6/fad1f//rXuPPOO+Oee+6JBQsWxCuvvBLz5s0rSZEAAJWWFJqmT58e559//k7rFi5cGJMmTYrBgwdHTU1NnH766bFgwYKSFAkAUGlJoWns2LG7rOvo6Ijhw4d3Lx944IHxzDPPFK8yAIAq0ut7z3V1dcW+++7bvVxfXx9dXbveeLGpqS5qawu9HaaoCoWaaGlprHQZVUEveugFVE5f+u6ZK3oM1F70OjQ1NDTsdOJ3V1dXNDbu2sDOzi29HaLoWloaY/36TZUuoyroRY/+2otS3Zkeiqkvfff661zRG/25F3ubO3t9yYGDDz54p8Nxa9asiZEjR/b27QAAqlqvQ9PEiRO7/2pu27Zt8fOf/zwmT55czNoAAKrGOx6ee/nll+OMM87oXp4yZUoUCoWYO3dunHXWWfHFL34xsiyLY489Nk4//fSSFgsAUCnvGJqGDBkSCxcu3O1jU6dOjalTpxa9KACAauM2KgAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCgttIFwEDRNLghGup85QD6KjM4lElDXW2MmDG/bON1zJxctrEABgKH5wAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkCB3aPrVr34VkyZNiokTJ8aZZ54Zzz77bDHqAgCoKrlC0z//+c+4/vrr46c//WksWLAgPvnJT8Y3v/nNYtUGAFA1coemESNGxNChQyMi4phjjomnn366KIUBAFSTXKFpzJgx8dxzz8VTTz0VWZbFH/7whzj22GOLVRsAQNXIdRuVoUOHxkUXXRSf+cxnoqmpKerr62PevHnFqg0AoGrkCk3/+Mc/4qabbopFixbFsGHD4re//W185Stfifvvvz8GDRoUERFNTXVRW1soSrF5FQo10dLSWOkyqoJe9NALqJy+9N0zV/QYqL3IFZqWL18eRxxxRAwbNiwiIiZNmhSXXHJJvPbaa/Hud787IiI6O7fkr7JIWloaY/36TZUuoyroRY9y9aK1tbnkY0Bf05fmIfNmj/7ci73N1bnOaTrooINi5cqV8dprr0VExNKlS6O1tTX233//PG8LAFB1cu1pOvHEE+PJJ5+ML3zhCzFo0KBoamqK73//+92H5gAA+otcoSki4rzzzovzzjuvGLUAAFQtt1EBAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAly37AX+qKmwQ3RUNfz49/a2lzBagDoC4QmBqSGutoYMWN+WcfsmDm5rOMBUFwOzwEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEiQOzStW7cuzjzzzDjhhBNi8uTJsWLFimLUBQBQVXKHphkzZsTxxx8fS5cujcsuuyzmzZtXjLoAAKpKbZ4X//vf/44nn3wybr311oiIGDduXIwbN64ohQEAVJNcoWnVqlXR1tYWs2fPjiVLlkRra2t885vfjA984APFqg+Afmrz1u3R2tpctvG6tmyLzg1dZRuP/idXaNqwYUM89dRTMW3atJgxY0bce++9ce6558Yf/vCHqK19862bmuqitrZQlGLzKhRqoqWlsdJlVAW9ACqtfp9CjJgxv2zjdcycHLU55j3zZo+B2otcoam5uTkOOOCAOOmkkyIi4tRTT41Zs2ZFR0dHjBw5MiIiOju35K+ySFpaGmP9+k2VLqMqDPRelPO3W6B65Jn3Bvq8+d/6cy/2tn3IdSJ4W1tb/Oc//4kdO3ZERMSgQYOipqYmampcyQAA6F9ypZvDDjsshg8fHr/85S8jImLBggXR3Nwcw4cPL0pxAADVItfhuYiIH/zgB3HhhRfGrbfeGgcccED84Ac/6D6fCQCgv8idbtra2rr3NAEA9FdOPgIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASFBb6QIAoBw2b90era3Nud7jf3l915Zt0bmhK9d4VBehCYABoX6fQoyYMb9s43XMnBydZRuNcnB4DgAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCgKKHpj3/8Y4waNSpeeOGFYrwdAEDVyR2aurq6Yvbs2dHS0lKMegAAqlLu0PTDH/4wPvWpT8V+++1XjHoAAKpSrtC0evXqePTRR+NLX/pSkcoBAKhOvQ5NWZbFt7/97bjssstin332KWZNAABVp7a3L7znnnti5MiRceSRR+71eU1NdVFbW+jtMEVVKNRES0tjpcuoCnoBUHr9dZ4dqNuQXoemxYsXxxNPPBFLliyJiIhXX301Pv/5z8f3v//9OOaYY7qf19m5JX+VRdLS0hjr12+qdBlVYaD3orW1udIlAANAf51n+/M2ZG/bh16Hpp/85Cc7LZ944olx5513RltbW2/fEgCgarm4JQBAgl7vaXq7Bx98sFhvBQBQdexpAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAgqJdcgDyaBrcEA11fhwBqF62UlSFhrraGDFjftnG65g5uWxjAdA/ODwHAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkqK10AVSnpsEN0VDnxwOgtzZv3R6trc1lG69ry7bo3NBVtvEGIltFdquhrjZGzJhftvE6Zk4u21gA5VC/T6Hs82hn2UYbmHIfnlu8eHF8+tOfjokTJ8bpp58eTz31VDHqAgCoKrlC07p162LGjBkxe/bsWLBgQbS3t8e3vvWtYtUGAFA1coWm2tramD17dowcOTIiIj7ykY/EmjVrilIYAEA1yRWaDjjggDj++OO7lx966KEYM2ZM7qIAAKpN0U4EX758ecydOzfmzp1brLcEAKgaRQlNixYtiquuuipuvvnm7kN1b2lqqova2kIxhsmtUKiJlpbGSpdRFfQCoP8p17w+ULchuUPTo48+Gtdcc03ccccdccghh+zyeGfnlrxDFE1LS2OsX7+p0mVUhXfqRTmvLQJAcZRrG9eft6d72/7lCk1dXV3xjW98I+bMmbPbwAQA0F/kCk2LFy+OV199Nb72ta/ttH7evHkxZMiQXIUBAFSTXKGpvb092tvbi1ULAEDVcsNeAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACWorXQBpmgY3RENdcf+7Wlubi/p+ANCfCU19RENdbYyYMb9s43XMnFy2sQCgLxCaAIBeKcVRkL3p2rItOjd0lW28txOaAIBeqcRRkM6yjbYrJ4IDACQQmgAAEghNAAAJnNMEAP3A5q3by3opmYF42RqhCQD6gfp9CmU9KTti4F2exuE5AIAEQhMAQAKH53qp3Bf0AgAqy1a/l9zWBAAGFofnAAAS5NrTtHz58rj++utj06ZNMWzYsLjuuuvive99b7Fq+5+kHi4biH8iCQDk1+vQtGnTprjooovitttui9GjR8ftt98eV1xxRdx8883FrC+Zw2UAQCn1+vDcn/70pzjwwANj9OjRERFx2mmnxSOPPBKdnZW8lR4AQGn0OjR1dHTEgQce2L283377RUtLSzz33HNFKQwAoJoMyrIs680L58yZEy+++GJce+213es+/vGPx6xZs+LII48sWoEAANWg13uaGhsbY8uWLTut27x5c+y33365iwIAqDa9Dk0HH3xwPPvss93Lr776arz++uvx/ve/vyiFAQBUk16HpqOPPjrWrl0bjz/+eERE3HXXXfGxj30sGhsbi1YcAEC16HVoqq+vjxtvvDGuvPLK+MQnPhF///vf41vf+lYxa0u2fPny+OxnPxsTJkyIM888M9auXbvLc1atWhWnnXZaTJgwIU477bRYtWpV92P33ntvTJ48OU4++eQ466yzdvv6viJvL94yb968GDVqVDlKLom8fVizZk2ceuqpccIJJ8TnPve5WLNmTTnLL6q8vbjlllvi5JNPjokTJ8a5554bL730UjnLL6qUXmRZFrfffnuMHj26+5fCt8yfPz/a29tjwoQJcd5558XGjRvLVXrR5e3FQJs399aLt/T1eTMify/609y5W1kf95///Cc75phjsieeeCLLsiy77bbbsnPOOWeX55188snZAw88kGVZli1YsCBrb2/PsizL/va3v2Xjx4/P1q1bl2VZls2cOTO76KKLylR9ceXtxVvWrVuXnXLKKdlhhx1W+qJLIG8ftm3blk2YMCH7/e9/n2VZlv3mN7/Jrr322jJVX1x5e/HII49kn/jEJ7INGzZkWZZl3/3ud7OLL764TNUXV2ovLr/88uzSSy/NjjvuuGzFihXd61988cXs6KOPzl588cUsy7LsO9/5TnbllVeWp/giy9uLgThv7qkXb+nr82aW5e9Ff5o796TPh6bFixdnp556avdyZ2dnNnr06Gzjxo3d61atWpWNHz9+p9eNGzcuW7NmTfb8889njz32WPf6RYsWZZ/61KdKX3gJ5O3FW7761a9m8+fP77Nf/rx9WLFiRTZ58uSy1VtKeXtxxx13ZBdeeGH3+ocffrhffz+yLMtWrlyZZVmWfexjH9tpg3DnnXdmF1xwQffy008/nY0bN67EVZdG3l4MtHkzy/bci7f09Xkzy/L3oj/NnXvS5+89l3K9qI6Ojmhra9vpdQceeGA888wz0dbWFh/96Ee71z/00EMxZsyY0hdeAnl7EfHm5+/s7IxJkyaVp+gSyNuHVatWxbBhw2LGjBkxYcKEOPvss+P5558vW/3FlLcXRx11VKxcuTLWrl0b27dvjwceeCCOPfbYstVfTKnXlhs7duweXz98+PDu5eHDh8crr7wSr7/+emkKLqG8vRho82bEnnsR0T/mzYj8vehPc+ee9PnQ1NXVFXV1dTutq6uri02bNv1Pz4mIuO++++Lhhx+O8847r3QFl1DeXmzevDlmzZoV3/72t8tSb6nk7cOGDRtixYoVcfrpp8eCBQvi8MMPj0suuaQstRdb3l6MHj06PvOZz8SJJ54YRx11VKxYsSLOOeecstRebKnzwN5ev++++3Yv77vvvjFo0KDo6uoqap3lkLcX/20gzJt701/mzYj8vehPc+ee9PnQlHK9qJTn3H333TFnzpyYO3dutLa2lrboEsnbizlz5kR7e/tOv033RXn70NzcHIcffniMGTMmampq4swzz4yVK1f2aoNSaXl7sXjx4li6dGksW7YsVqxYEaecckp8/etfL0vtxZb32nKNjY3xxhtvdC9v2bIlsizrk38xXKzr7A2UeXNv+su8GZG/F/1p7tyTPh+aUq4XdfDBB0dHR0fs2LEjIiK2bdsWHR0dccghh0RExK9//eu4++67Y968eTvtmuxr8vbiwQcfjLvuuivGjx8f48ePj4iI8ePHx7/+9a/yfpCc8vahra1tp7+KKhQKERFRU9P3vi55e7Fs2bL4v//7v9h///2jpqYmJk2aFCtWrCj75yiGvNeWO+igg7oPY0dEPP3009Ha2hqDBw8ueq2lVozr7A2keXNv+su8GZG/F/1p7tyTPv9JUq4XNXLkyGhtbY37778/It7cndzW1hYHHXRQrFu3Lm644Ya47bbbYujQoRX5DMWStxfz58+PRx99NJYtWxbLli2LiIhly5b1uQuW5u3D+PHj47XXXouHH344IiLuueee+PCHPxz19fXl/zA55e3FQQcdFMuXL+8+BLVkyZI49NBDy/9BiiDvteVOOumkeOyxx7o3KnfddVe0t7eXrN5SytuLgTZv7k1/mTcj8veiP82de9Lre89Vkz//+c9xzTXXRFdXVwwfPjxmzpwZO3bsiLPOOqt7Q7B69eq4/PLLY/369XHAAQfE1VdfHYccckjccsstcfPNN+/0xa+tre1+XV+TpxdvN2rUqFi9enW5P0JR5O3Dk08+GZdcckm88cYbMWzYsLjqqqv67O73PL3YunVrXHfddfHwww9HTU1NtLa2xhVXXBEjR46s8KfqnZRetLe3x7Zt2+L555+P97znPVFXVxfXX399fOhDH4rf/e538aMf/Si2bdsWH/jAB+Kaa67ps7eOytOL5cuXD7h5c28/F/+tL8+bEfl70Z/mzt3pF6EJAKDU+vzhOQCAchCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJPh/AhPfbjGZtUAAAAAASUVORK5CYII=\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 42. 45. 146. 68. 41. 84. 104. 129. 19. 84. 90. 165. 32. 68.\n", + " 113. 76.]\n" + ] } ], "source": [ - "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(res, bins=18, edgecolor='w', density=True)" + "alpha_2j = np.round((1 - data['other'].to_numpy()) * data.proportion.to_numpy() * participants)\n", + "print(alpha_2j)" ] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": 56, "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.6744186 0.48888889 0.46938776 0.52941176 0.54761905 0.5\n", + " 0.43269231 0.37984496 0.33333333 0.46428571 0.43956044 0.38787879\n", + " 0.48484848 0.39705882 0.40707965 0.39473684]\n" + ] + } + ], "source": [ - "### **Modelo jerárquico**" + "alpha_1j = valores[:, 1] / (valores[:, 0] + valores[:, 1])\n", + "print(alpha_1j)" ] }, { "cell_type": "code", - "execution_count": 282, + "execution_count": 57, "metadata": {}, "outputs": [ { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
regiondensitybushdukakisotherproportion
0NortheastI0.2980.6170.0850.032
1NortheastII0.5000.4780.0220.032
2NortheastIII0.4670.4130.1200.115
3NortheastIV0.4640.5220.0140.048
4MidwestI0.4040.4890.1060.032
5MidwestII0.4470.4470.1060.065
6MidwestIII0.5090.3880.1030.080
7MidwestIV0.5520.3380.1100.100
8SouthI0.5710.2860.1430.015
9SouthII0.4690.4060.1250.066
10SouthIII0.5150.4040.0810.068
11SouthIV0.5550.3520.0930.126
12WestI0.5000.4710.0290.023
13WestII0.5320.3510.1170.053
14WestIII0.5400.3710.0890.086
15WestIV0.5540.3610.0840.057
\n", - "
" - ], - "text/plain": [ - " region density bush dukakis other proportion\n", - "0 Northeast I 0.298 0.617 0.085 0.032\n", - "1 Northeast II 0.500 0.478 0.022 0.032\n", - "2 Northeast III 0.467 0.413 0.120 0.115\n", - "3 Northeast IV 0.464 0.522 0.014 0.048\n", - "4 Midwest I 0.404 0.489 0.106 0.032\n", - "5 Midwest II 0.447 0.447 0.106 0.065\n", - "6 Midwest III 0.509 0.388 0.103 0.080\n", - "7 Midwest IV 0.552 0.338 0.110 0.100\n", - "8 South I 0.571 0.286 0.143 0.015\n", - "9 South II 0.469 0.406 0.125 0.066\n", - "10 South III 0.515 0.404 0.081 0.068\n", - "11 South IV 0.555 0.352 0.093 0.126\n", - "12 West I 0.500 0.471 0.029 0.023\n", - "13 West II 0.532 0.351 0.117 0.053\n", - "14 West III 0.540 0.371 0.089 0.086\n", - "15 West IV 0.554 0.361 0.084 0.057" - ] - }, - "execution_count": 282, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "valores\n", - "data" - ] - }, - { - "cell_type": "code", - "execution_count": 280, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 42., 45., 146., 68., 41., 84., 104., 129., 19., 84., 90.,\n", - " 165., 32., 68., 113., 76.])" - ] - }, - "execution_count": 280, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "menos_uno = np.round((1 - data['other'].values) * data.proportion.values * 1447)\n", - "menos_uno" - ] - }, - { - "cell_type": "code", - "execution_count": 204, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 15., 42.],\n", - " [ 24., 45.],\n", - " [ 88., 146.],\n", - " [ 33., 68.],\n", - " [ 21., 41.],\n", - " [ 47., 84.],\n", - " [ 66., 104.],\n", - " [ 90., 129.],\n", - " [ 14., 19.],\n", - " [ 51., 84.],\n", - " [ 55., 90.],\n", - " [112., 165.],\n", - " [ 17., 32.],\n", - " [ 46., 68.],\n", - " [ 74., 113.],\n", - " [ 50., 76.]])" - ] - }, - "execution_count": 204, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 31. 42.]\n", + " [ 23. 45.]\n", + " [ 78. 146.]\n", + " [ 37. 68.]\n", + " [ 25. 41.]\n", + " [ 47. 84.]\n", + " [ 50. 104.]\n", + " [ 55. 129.]\n", + " [ 7. 19.]\n", + " [ 44. 84.]\n", + " [ 43. 90.]\n", + " [ 71. 165.]\n", + " [ 16. 32.]\n", + " [ 30. 68.]\n", + " [ 51. 113.]\n", + " [ 33. 76.]]\n" + ] } ], "source": [ - "nuevos_valores = np.round(np.stack([valores[:, 0] / (valores[:, 0] + valores[:, 1]) * data.proportion.values * 1447, menos_uno], axis=1))\n", - "nuevos_valores" + "new_values = np.round(np.stack([alpha_1j * data.proportion.to_numpy() * participants, alpha_2j], axis=1))\n", + "print(new_values)" ] }, { "cell_type": "code", - "execution_count": 476, + "execution_count": 58, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/subtensor.py:2190: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", - " rval = inputs[0].__getitem__(inputs[1:])\n" - ] - } - ], + "outputs": [], "source": [ "with pm.Model() as model_hier:\n", " \n", - "# rho = pm.Uniform('rho', lower=-1, upper=2)\n", - " rho = pm.Normal('rho', mu=0, sd=0.6)\n", - "# mu = pm.Uniform('mu', lower=0, upper=20, shape=(2,))\n", - " mu = pm.HalfCauchy('mu', beta=1, shape=(2,))\n", - "# tau = pm.Uniform('tau', lower=0, upper=5, shape=(2,))\n", - " tau = pm.Beta('tau', alpha=4, beta=4, shape=(2,))\n", + "# # rho = pm.Uniform('rho', lower=0, upper=1)\n", + "# rho = pm.Normal('rho', mu=-0.5, sd=.2)\n", + "# # mu = pm.Uniform('mu', lower=0, upper=50, shape=(2,))\n", + "# mu = pm.HalfNormal('mu', sd=4, shape=(2,))\n", + "# # mu2 = pm.HalfNormal('mu2', sd=1.4)\n", + "# # tau = pm.Uniform('tau', lower=-2, upper=3, shape=(2,))\n", + "# tau = pm.Beta('tau', alpha=2, beta=2, shape=(2,))\n", + " \n", + "# covariance = tt.stack([[tau[0]**2, rho * tau[0] * tau[1]], [rho * tau[0] * tau[1], tau[1]**2]], axis=1)\n", + "# # print(covariance)\n", + " packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist=pm.HalfCauchy.dist(5))\n", + "\n", + " L = pm.expand_packed_triangular(2, packed_L)\n", + " Sigma = pm.Deterministic('Sigma', L.dot(L.T))\n", + "\n", + " mu = pm.Normal('mu', 0., 10., shape=2, testval=new_values.mean(axis=0))\n", + " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=2)\n", " \n", - " covariance = tt.stack([[tau[0]**2, rho * tau[0] * tau[1]], [rho * tau[0] * tau[1], tau[1]**2]])\n", - " \n", - " beta = pm.MvNormal('beta', mu=mu, cov=covariance, shape=2)\n", + "# beta = pm.MvNormal('beta', mu=mu, cov=covariance, shape=2)\n", " \n", " alpha1 = pm.invlogit(beta[0])\n", " alpha2 = pm.invlogit(beta[1])\n", " \n", - "# diffe = pm.Deterministic('diffe', 2 * alpha1 * alpha2 - alpha2)\n", - " \n", - " alphas = pm.Dirichlet('alphas', a=tt.stack([alpha1, alpha2]), shape=(16, 2))\n", - " post = pm.Multinomial('post', n=np.sum(nuevos_valores, axis=1), p=alphas, observed=nuevos_valores)" + " alphas = pm.Dirichlet('alphas', a=tt.stack([alpha1, alpha2], axis=1), shape=(16, 2))\n", + "# alphas = pm.Dirichlet('alphas', a=np.array([alpha1, alpha2]), shape=(16, 2))\n", + "\n", + " post = pm.Multinomial('post', n=np.sum(new_values, axis=1), p=alphas, observed=new_values)" ] }, { "cell_type": "code", - "execution_count": 477, + "execution_count": 59, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "rho -0.41\n", - "mu_log__ -2.29\n", - "tau_logodds__ -1.21\n", - "beta -0.45\n", - "alphas_stickbreaking__ -25.34\n", - "post -105.64\n", + "packed_L_cholesky-cov-packed__ -3.91\n", + "mu -47.78\n", + "beta -1.84\n", + "alphas_stickbreaking__ -22.18\n", + "post -159.77\n", "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 477, + "execution_count": 59, "metadata": {}, "output_type": "execute_result" } @@ -1641,109 +1442,25 @@ }, { "cell_type": "code", - "execution_count": 478, + "execution_count": 60, "metadata": {}, "outputs": [ { - "data": { - "image/svg+xml": [ - "\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "%3\n", - "\n", - "\n", - "cluster2\n", - "\n", - "2\n", - "\n", - "\n", - "cluster16 x 2\n", - "\n", - "16 x 2\n", - "\n", - "\n", - "\n", - "rho\n", - "\n", - "rho ~ Normal\n", - "\n", - "\n", - "\n", - "beta\n", - "\n", - "beta ~ MvNormal\n", - "\n", - "\n", - "\n", - "rho->beta\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "tau\n", - "\n", - "tau ~ Beta\n", - "\n", - "\n", - "\n", - "tau->beta\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "mu\n", - "\n", - "mu ~ HalfCauchy\n", - "\n", - "\n", - "\n", - "mu->beta\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "alphas\n", - "\n", - "alphas ~ Dirichlet\n", - "\n", - "\n", - "\n", - "beta->alphas\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "post\n", - "\n", - "post ~ Multinomial\n", - "\n", - "\n", - "\n", - "alphas->post\n", - "\n", - "\n", - "\n", - "\n", - "\n" - ], - "text/plain": [ - "" - ] - }, - "execution_count": 478, - "metadata": {}, - "output_type": "execute_result" + "ename": "ImportError", + "evalue": "This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 157\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'graphviz'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_to_graphviz\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_hier\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmodel_to_graphviz\u001b[0;34m(model)\u001b[0m\n\u001b[1;32m 194\u001b[0m \"\"\"\n\u001b[1;32m 195\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelcontext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 196\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mModelGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 159\u001b[0;31m raise ImportError('This function requires the python library graphviz, along with binaries. '\n\u001b[0m\u001b[1;32m 160\u001b[0m \u001b[0;34m'The easiest way to install all of this is by running\\n\\n'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m '\\tconda install -c conda-forge python-graphviz')\n", + "\u001b[0;31mImportError\u001b[0m: This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz" + ] } ], "source": [ @@ -1752,7 +1469,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 85, "metadata": {}, "outputs": [ { @@ -1761,31 +1478,33 @@ "text": [ "Auto-assigning NUTS sampler...\n", "Initializing NUTS using jitter+adapt_diag...\n", - "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/basic.py:6592: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", - " result[diagonal_slice] = x\n", - "/home/rosgori/anaconda3/lib/python3.6/site-packages/theano/tensor/basic.py:6592: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", - " result[diagonal_slice] = x\n", "Multiprocess sampling (4 chains in 4 jobs)\n", - "NUTS: [alphas, beta, tau, mu, rho]\n", - "Sampling 4 chains: 16%|█▌ | 2568/16000 [00:46<06:16, 35.72draws/s]" + "NUTS: [alphas, beta, mu, packed_L]\n", + "Sampling 4 chains: 100%|██████████| 12000/12000 [23:40<00:00, 2.55draws/s]\n", + "There were 54 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 43 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 36 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 43 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "The gelman-rubin statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", + "The estimated number of effective samples is smaller than 200 for some parameters.\n" ] } ], "source": [ "with model_hier:\n", - " trace_2 = pm.sample(draws=2000, tune=2000)" + " trace_2 = pm.sample(draws=2_000, tune=1_000, target_accept=0.98)" ] }, { "cell_type": "code", - "execution_count": 448, + "execution_count": 86, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA00AAANUCAYAAABv2sZ/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAIABJREFUeJzsvXewJNd52PvrnnTjZuwC2EUiQAE0g2hJpoIZQAAURFoSVbKEp6ciXFBwWY949UjalGmyipLDHyZpusp6svTssksmnkQ+SSzRIg1SIIglFgsQOW5ON+fJufM574/u6eme6Zk7d9NFOL+q3TvTffr016d7Zr7vfOFoUkqJQqFQKBQKhUKhUCgS0bdbAIVCoVAoFAqFQqF4PaOMJoVCoVAoFAqFQqEYgjKaFAqFQqFQKBQKhWIIymhSKBQKhUKhUCgUiiEoo0mhUCgUCoVCoVAohqCMJoVCoVAoFAqFQqEYgjKaFIptYnl5mdtvv51z585ttygKhUKhUPShfqcUii7KaFIoFAqFQqFQKBSKISijSaFQKBQKhUKhUCiGoIwmheIqcfvtt/O1r32Nu+66iy9+8Yvh9sXFRX7zN3+T97znPdx7770cO3Ys3Dc/P88//af/lJ/+6Z/m/e9/P5/+9KcpFovbIb5CoVAo3uSo3ymFYjDKaFIoriLf+c53+PM//3P+7b/9t+G2r3/963zlK1/h2Wef5dChQ3z5y18GwLZtfvu3f5vrr7+ew4cP8/DDD2MYBp/+9Ke3S3yFQqFQvMlRv1MKRTLKaFIoriL33HMPBw8eRNO0cNt9993HoUOHmJiY4O677+bChQsAHD16lGKxyL/8l/+Sqakpdu3axWc+8xleeOEFFhYWtusSFAqFQvEmRv1OKRTJKKNJobiK3HDDDX3bDh48GL4eGxvDtm3Ar1p03XXXMTk5Ge6/9dZbw30KhUKhUFxu1O+UQpGMMpoUiqtIJpPp2xadzdsMKSUAjuNcNpkUCoVCoeigfqcUimSU0aRQvE654YYbWF1dpdlshtvOnz8PwE033bRdYikUCoVCAajfKcVbC2U0KRSvUz7wgQ+wf/9+vvKVr2AYBqVSif/4H/8jP/mTP8ktt9yy3eIpFAqF4i2O+p1SvJVQRpNC8Tolm83yJ3/yJywuLnLnnXfy8Y9/nP379/Onf/qn2y2aQqFQKBTqd0rxlkKTneBThUKhUCgUCoVCoVD0oTxNCoVCoVAoFAqFQjEEZTQpFAqFQqFQKBQKxRCU0aRQKBQKhUKhUCgUQ1BGk0KhUCgUCoVCoVAMQRlNCoVCoVCMiOM4fPnLX+b2229nfX19u8VRKBQKxVUivd0CbJVCobHdIigUCoXiIrnmmuntFuGS+OQnP8m73vWuoW0u9XdqaipHs2ldUh9XAyXn5UXJeXlRcl5e3kpyDvqdUp4mhUKhUChG5MEHH+RTn/rUFT1HOp26ov1fLpSclxcl5+VFyXl5UXIqo0mhUCgUipF573vfu90iKBQKhWIbeMOF5ykUCoXi6uLOz9H4wy8w+cn/i+xP/+x2i/O6Z2oqd0mznamUzq5dE5dRoivD5ZJzvtTCdAQ/tn8KXdcug2Rx3mrjeaVRcl5e3shyWmfOIEyjr23m0A3oU1OIVmtgf/rEBPr4+FWR83KhjCaFQqFQDMSdn6P2qf8DgNQNN26zNG8MLjWefteuCarVduI+zayQLp8FKXt2aLi7344c3wuA7Vk03RZ7cnsuSZaLlTMJb3EBb2mR1M23kDp4KNz+3LkCAONSsHM8k3hsy2mR0lOMpcYui5yekKSugIF2KWx1PLeLKy3nsdU6huPx0zftvqR+LklOu0W6cg5339+DVC62S0rJKys1ik2bA9M5fvzgzu2T8wojbRsZGD6TTotGtWsESeEhlpcgm6Xhwmyxzbuvm0a3LfS6gWy3kc3B+Z1au0TuujHc/T8OqWy43ctvgOEbYtquXWTe+e4tyXw5xnNQTpMymhQKhUKRiLRtGl/4fUBj5//9/5C6/uB2i/SWR2+uoTfXEWO74tutGqnMJG5gNB0rv0bNqfKha+8irV/6T71oNKjOL3Jm6joO7Rrnxt1bnyH2SkWk0UaUyzGjqYMjZMJRPi8Un8WTHh84cCfZiIJ1MSxWDE6vN/jArXuZyCZ7BD3pAZDS3hh5HG8ECk2Ll5dqfOi2vYxlBo/rWs28ilIlk67NkqotIMZ2I3beHNs3W2pTaNgArNct3nO9RNMurwEumk2k0SZ1zf7L2u9WcY69iqxWALAncnhtC/RIZk8mS+Yn/wEXCja161ysm3YzceoVRKUCrou+/1pSh/o/697qCtrJM7hnmnjrNnK8x0DOZtHSGcTGOgRGk2g1Eaur4YSRNjV11X+TlNGkUCgUikSMrz+Et7TIjq/+Eembbt5ucRSAJgVST+PceGdse3bmeyBF+L7mVAEQUuAJiSskufTFpzE7L79Is9ygedsu1jTtoowmPN8Q6fOSBbieSNwOXSMmb25waPKGrZ87wkrNn8W2PcEEycr7j9aPIhDced3dl3SubcMJQqYylz/8KYpemweIGRZ6ax3NbuLtvg2A5arB6Y0m2ZT//FUNh2s1h9zsIzgHfwYxee0VlbEXzSiFHtmBCP9502T/M2k43pUQK4bz7I8ASN1z7xU/1yCklMhqBW3PXlIHrkUvrZH5e+9F37Wrr63IlwHfnkoduBZveQlyOVKHDqHv6R9rfc9e0uMFdKOMs//HETujUQwaWi6HOzuDN3sBKX2j1Ftawl6cJZ3JgSdA02jtm2a1vczbd95+VSY4lNGkUCgUij68xQXaf/41cvf8vMpjCigWi3ziE58I399///2kUikeeughDhw4cHWEkB5oCcaPpoeKHsCxlToAP3ON4KWVCnXD5d53bD5rbToexZbNoV09yrboKo/uAI+QlJJT1RPYwua2HW9nOrMj3sAbrmwOcTSR0lJ40sMV7tA+BqFZNaSWhuwkXuREXiGPpuvoe/fF2jvSuajzXFGES2btedw9dyDHh4dd5ua+D4D1Y78ycvdau+iHpF3zHmR2aqRjMhuv+ueJGE2ZlWcBQqNpvW4hhMSMPJ+a5T+fqcrMQKOpoyxvlVT5HGLyANCf15KqzqKdeYp2MUv6gx9F35EcWle3XKyGxb6Ej0y6J6xTAklSyo5HJOEa2rbHXKnF9FiGyenBIadSCDT94ic77OeeQTbqZH/uA2gTW8vz6XiYtPEJUgcPMfnOH8NJCHtrWi4N0/9cLlYM3nXDjZuGcjueIJPNoHkZtFwWLZcwBmnfRLGPHkFLp1kvzVGwNnj3r34KfWEJb/YCq2efY2WvZO/YNVwzds2Wru9iUNXzFAqFQtFH+//9M0inmfw/P73dorxu2LdvH4888giPPPIIZ8+e5Qc/+AGPPPLI1TOYwDeMkmZUtVTM09Sh2raoG6MbGqc2Gpxca9Cy+4/pOIgcTyBdF+nG27i1OdZbS5StEtXicTSj1CP7YE/SZuiBuiISrnEUsguPk5v/AUDMaHJfewXnlZcuWq6LwZ2bRZRLm7aTjoOo18L3mmugt/Jk1n15NbOK3lztO05IiekmG6hnNhqhgutJj7yxEe5Ll89i/vBxxNmXt3Q9myFJsIb14BmWHggXzfQV9FPr3RyYYUY0gHPiGNZjj/acTJIuniK7eDTxGM1u4lWb4Np+CNkATq41ydctcE00q0569flwUmIq5yvzO8bTnVPG8WzS+WP8cOVRTlZPBJfpYT32fdzFBQCKLZvlqsnp9QaPnByySLYQiFYT6WzdiJeOg2z4xqlsB8aOF+/Hy28greRwSBlMcqSuvW7oec7mm+HrlapJpW0jpeTw6qPM1C/0tV+rm/zwXJGWFcgywPOs796Ntms3+p69aBOT1I0NEBLDa0NgiMoLF5g8OYtw7aEyXi6U0aRQKBSKGN76GtZjjzL2S7/SNwOv2Gak6CqcUTQ9NJqcYpGJZoGcU2W2vLWE6JblK0pJeoxEgvRzj+wjh2k+9oPuTruFvv4i6cosAHrxNNmlJ2PGlewxmqpth++fzsf734S55gym11Xymk6Dul0feky+YYb5UppVjxlNSTiuid5Y2Vxrv0i8mfM4L7+4aTvnpRdwnn82YY8vV3bxCJnV5/v2nt5ocm6j5V+z261sZrmC/LFTnHjyBQAu1M5xvPIaVSswHoLcN+dCv6J7KUQLbujCJmWUut5S4ZFZe4Hs4hPgOSxVuvKKAcp0uH99DQY9M7LzHMu4d1LTIDWC6hso5enyOfRTj+GdeAnNiVeC2zWgaEm6fBa9fIF0+Rwb7cCoDT4D3rkzvuybXFsHb+Y8zjM/Cp8Dr5D3vUeR45tOk1Ygm+l43X0Rz65EopkVcjPf9Z/tAPfYq9gv9D9D/kFBP73jJSV4XSPF7gmrFRIWqy2khKXWQl+3pZZ/rGEP9zzr0zvI/tT7yL1tP5nrJsg1VvAa69jCCfOqhBRkqg2keXXy4JTRpFAoFIoYxl9+HTSN8f/tN7dblLcsliu4UGjFlCMApEBKmG/M4YjurLGTr+Bs5GlaLu3nn+dtx15mR2uBStvG9Jq0vCqOcMLcoK0jsTwLKQVCSISQMaNCQ/iKYCBTxwCynzyCfeSw38iLe6YWq/2ligefvXuu4+VXw9fPFZ7hhWK/YWF6ZuhFeW6uzIWCr1RmF37Izsb5oecS5TOkmmvo7Y2+fYbjYbsX7zGL4gk3ZgBGkUL0Vx4boGhnlp4Cz0ZIwUprmXyzFfQvyM1+P2ynAWOri+TWlxGNBvLll8HzYs8RQKq5tqnslit4bqGSWLxDSol1YdmvgtbDgcoLTK0/HXpLNSnQzHKw93KMayBPYPScr5/lifUfbtlDKYOAO4nEOjOHu1EOJyU6t0EP28Rx5hcxXjjN1IkZdj19LLn/Ee1xb2nRb2/4kx/uyRO+9yji5X2u8DTPFn6E5QqeuFAKPT+rjSVOVI6FRqNm+nmOetufqHA9h5JZAtOg3Lb5/um8n6/VEU7Gx7JDqnyG3Mz3wPWf3d5JiI2Gxcm1Omt10/+eGHDtC+UWixUDZ0guI/jhntnSCWxXUmu2WKm2wop+snNfr8z8Rh/KaFIoFApFiKjXMB/+Nrmf/yip/Vcx7EwR48Ranfn5Vao/+C7SdfGWFpGeh4ak6DWZaZznQv1c2N6ZW2H1pdP8aLYMbhs9UFYcYTJvHmO5+TxHVx7l5eILeELy/dN55kpt5upL/M/zj/cbZz2Yrslye4aS7c8cJ7UWEaVXBC1cx+XUWoOnZku8uljB9WR4dG/F75EVyYjhVzMcyq240i/qNc5+7884UeiG3TkRQycXFMkYqGiVTvt/e5RF1xMcvVDiydnNQ+uSyKw+R+7c34bvXyq9yI82EsLIpKD28rOs1QfMnvcMlG4USdWXKJlFztROUbSWY/tFuYQoFtE0qDhrNNwK7vmzpOot0vV2aJDKqGHRY2SIRgPR6oZhLVbaVNtO6DWIN5Z4pRrusVf7xM26nT46ivlghbncdljYoqe0d2zWDT/0zRUJ4W1S0nJafUZjFCFBC4yD0HsV7nMp2At9HlQvXwQg1YyOTVwub9SHPcLJ9QYNyzeACg2TJ2dKMY9Vx/goBvdkvek/B3W7ztNLhykW48/Fhfo51owVGnad5ap/je2VY+TOf3vgfVmuGrx66jSekGiev7TCmfpztKpPoAXj48shKTZtXlutJobodai2HZ6bLzNTHLyeEwDpFPaeKWrX7aRhtmNGI4DgyhfnAGU0KRQKhSKC9egjYFmM/9r/tt2ivKURUrL//JNkl1/GO/ky7tnTeDO+8uFKDyTYscIKOmZQ1aszuau7HrXlp0k36uytniZdPEndqYeFHM7lm/zt2eeYr5aoGh0PUQS7q8g4wkYiMd3+dVcajQJSSrxA0dJNC+bzSClZqRo4QtKyPDTPi1Ue2yzJXzOr6I3+nJ0oC2WD5R6PlTc7g2u2SNVHU7i1dimW6+GFo9CVr2Y4vPDKi6TdNiutGf7i2F+N5HGKGqN6jwenYta4UGgxX2zw4unzHD7jewBSxdOUjj9BuVpjdGRoTDbs+HU7L7+I86pvQLa9KhVnI7g6DbSIFy+myMfvjfPc0zjP/GioBO7cDNbRI0h7hPybBKOhN2Tt1eUas8ur6PXFzfvrdgyAPbNC6/v/k/G1F9GNUszQtlxBI8inebbwI54vPLNZd4GA3ZA/gCXjAgV7gbwZCTF1XaRhIpHYnkAKaDh1XOH5nye7FfahaXDN9Ojl85crBjOBx/TUeoO27fHcQiWUse32PO+BMdd2W0xcWKL+UicMz7+3HWMxOtmRq88Fx7qRa+8+C/OBEetEDEWtNUe7eYydrRkAJusXuHG96+Gcb87GxOp0m3O63yXV0mo4vun8MdL5uIdO0zTsG6/B3JNj19pRsNs0TJdzhkAadTIDctguN8poUigUCgXg/5Cb/+vbpG+/g/Tbf2y7xXnLk3EDo8X2Z4H9ZHCJh2SlZvLyYr2rlGtad3ZY+krO7sUqN595httffZJdy1W0IEwnaU1XrUdJ1swaufkfkKr4hprE13NTniTV6io769V5zj3yNYqnXgyNjYkzi1CoIZpGt9JeWEmse44kOaSUVNr+THl28QiZtQH5FiMipWRfcUgfjkGqNkdm4+XoQf7fyHpQz8/m2dM4w4HqCxjNF2HjBHMrww06d+YC9uFHkZ7HbH2GpmfFjKhSy6ZteVTOPcX0+jPYLT+3SLeqgBber4hgQy5UbNqq304JwsvCHZGqgmsrvgG0BY+IN3MBbAvrXNfICQsQhGfwz9m2nb6wLE/QVyzk+tLT6BeeQtSqNC13sPcNAkXfV7zdQpXFlRMYwkZzjJjRtFgxWI2sBdUJkbSf+RHWj54EQAvG4sRqneONDZqeGXpSXq08S83Jh94NicR78n+hHX8Ub+YMSIHhCBqmS8Nyeb7wLGerp0mX/H8El6lpGtNpSdbrN+4TK1RG7kWnSEPdcHG8wKsrbK4rPcOh1b/zi7AkGqaC5ar/udQ6H81og06u2YAw3s73hCck7aBYzLgZGOHB+abqZ/uewd7nKOt08xCzbpO9hedIF3xDKVWdJVWNG1r+uX1c6ZG+8Vo20hPUr9mLaBX8e38VUEaTQqFQKABwz5zGm71A7hc/vt2iXDS2bfPlL3+Ze+65hw9/+MMA/Pf//t+Zm5vbZsm2TrhGTI9HRkhJuW2jaVo3rUjT0IIZ42zNz9nRXYGGrwCONayh5+qtaqy5ftiWHlTA64Ru7ZlfYMfJroHRavuKvllYD0PyYrkpgbKUrlejb/1zJhRqXqwYPL9QJd+wcEVQBa5H4Wq5LVbnXsEyGuxZWme64OfESNdFf+6vySx3PSJSSsasYvzaogphx5iLJPnLdM7/GyvtHoQUCpdMoOTqMiE0TUo0w5fHWVrEE5KaUWauOcMz7Rnm7K4snpRMWBtMWIWw766QWl8d6yTjprtziNerMoMdqbKnCduXM3gfehoi4+yeOgm2NTRmcmdzBpmk3HcqL0qJRMa6yMsaM3ae5+bKnF5vAhIh4HyhSe2559n94pNMzJ+Plc+3Ts7hvPAcP5otc2yljiiXsB4/3Hfa3IWHyS78MHxfsmuhHF0vloYlHZbtBWxhxa5btppgtGMKvoegbLdZdCrMlVosV9sYbpsV62z3YymB+WO4r75AduVpdLMc5vJ0jJ9ixBvlHyLRNdiZf5YD60di+5arBifXGqHneK4xy4nKsViu0WR9oc+ozjdmyTk1pOzmLUHUoyuptWxOl4s8vzIb+16JvmoJC9Np05sfFumQmUKbZ+aq8WvqtJP9RV1632uyK7subD8M0u73YkfpfF/UDJcnV9s073gvItU1/B1PcHqjgieuXKieMpoUCoVCAYD13W9DLkduGxdUvFQ+//nPYxgGf/zHf0w263sKbr75Zv7gD/5gmyXbGv6Mbk+YmKb5CqAmgxbdn3AZMUE04Svzsl/v9rcPn8QO+pMcX2kw15NTkjGtYL9PR1XXNMLwPNBwQ4+B33L6rD+LPFvy+9PsZoJRAO1AUWw7Hmc3GpzbaPmzyK5Lpugraelak7UXH+P4se+xo1Bm71KQt3L2NM6584haN/cmqSJf1q6Qdeo4QnSNzugACN9QyxS7nryTrac47/nhddPrVcaqBhr+OjjWDx/DevibAKSqM2SXjlIrrnBspc6JtQYiYqTlI5X+hJDk3BpORIH0pMdjlZepyhahJ8iyMF2L7yw+zrJd6ebYxAZPJN9sYK52lpn8C6QaK0wZy0wZa+itDbTAKJQRZbzbX/+4OZ6fCzdf8g3MnYvHka+cQTouTcvltZU6LduLj3lPP4uiwJJbppvT5HssDFuwtujfx1x+lVx+zT/W6fcguDMX+oqKdNDczuSAjBiScYOyIpsIJCWjiGY1yKy/hGaUMB2PatuJFTboeE88KThdyHPhxRPoVpOUsIjaTCEDKvP1hqJ2jknb/SGY+aZ/DaerZ6lYFVpuMzggMPDNKvtfeoQd7fnYcV7kOUqXzpJqdMJBu0UthOuxYBzjfOWVmDBa038u1xs23y+f5en8U3GhpPQLP2gMNqRl4svw3N2uEvZuwaO5Ikp40g1DigFkqcHZfJPHlp7klbWZkfvaKspoUigUCgXScbAOP0bugx9GnxptYcvXI6+++ir/+l//a97xjneQSvkVuu655x7K5fImR76+cIXDortKU1iARqp4Cv2lb/NY5WVmzW5OSjftoBueF01FSBMvT+56ksWqgSYcpoxuYnivzvLyoq/M5QMPlRQdP1Kv8hdslf6sPIDtCvINi7rhRCXsYtXJzj/GeH0WXTgcKhwh6/jnCyuSySBcKzjLxNkFJs8uoJsWWqBIu80ehTNYy6bhdHOcBpUxz7p1XptfZ25pHgDDcUmVzpAqnYVKndxancnzy2H1MoCq9I2xHRs1di8HnrNGHa22SLpyDvvx70IQYndiYS0cVDvikcoUugZd50KPi25Z5ppdxfUEFa3r+XLPn+Vsvsp8ucXpdp5y2+alF47Erq1oVzmy9BJt26PzBFwotDhXaGIGuSvedx5CD54RzeiMnTa81HvnwRACx/GfhaWKgYZGquL3IR03VPRrhoMlHOasYph7l9R/0nORdiJjIyXjy3NkT8/2Hz+qgm12PU0d6qYTe4S1wIjV2wXO5lssVIzAPgk8pCtdj42zdJLx5Tn2nXqePfXTCNtg/4VFtFqk5H1n/aCIGONzq2hSo2G5WK5AGgZapTzIxvUnTKTEETYr7aWwv4I5hyXaIBza0qLtBgVJOhMUQdlt2xU4QiJrS7F+W5bHStkg7ZlMV0+SanWrG+Zee5F0o4blSiotB8txaXbKeGtQnX+J2iv/E004LHhrnPbiRSX8ZjKUtbM8QYd+o6jfiNSNMpq1eR6fRFJwlsMDpQTWKziexJU2jrhyazYpo0mhUCgUOM8/i2w2yH3kjetlAshmsxSL8XCsSqWyadGB1xuWaGNjU3AbSCnQnHYYIufJIOxOi/+Edy6xbXmk0ZGaxpQ2Fu6XwHKlyUy+yd7GKfbVTpAOQs0GKSvZtXXc5SUkEk24/sy7lDSDJO7QaEILFSPH89WndlC+2JUWJXsx9Lhojq+Mpa0qY3aJtGey/9UfkHrisfAaeosCaJ2FMIUMFVqZEDYE4IxQSUuic235BcatEm3b48xandbKcdKl09SOz2HPB2sXDVn/Rdd07PoSc/UZ38vWqONVouPoy3kqWOAUQHO9WP6Fhl9AQ2sbpDyTk/l1Gq8ts6vq+Hulr3warl850fYEyxWTqeZibBmpM81Z1mpmWFodgGoTdza5fLhZbaAH4xWW404yRgIDNFU6Ra7QTc6PGjKelJzP++fVNFi1qzSFxZnqqVifu5rn0DqhU9H8nODvVHMuDJ1Mt5uMrS0lixUNIxxlLS3phYU+irU2YwXfyBEDSpyvG2vURdCm1W0ztVHoXDAAubk5JupN9Fde7esjSm61QMq0qbQcNuoW3uG/JnvyVT9EctSvJQlFZ4miNUfDtlgTFZabLyFtgz0/eoldT73G2Esn0Ou+4Xl6rcFKkLfVOUWhp5rfRrNTCdMP1dQtMwzxvVBs8Z3zfi5gqjbPxvwpHl2/wEr7LEVRpSkN9tdejX1OO8d6UlKXkfA+Bk9eQNebB6C3+svUR4agr78gfRNburjBPb6SX/XKaFIoFAoF1uFH0XbsIPNT79tuUS6J3/qt3+JXfuVX+MM//EMqlQpf+cpXuO+++3jggQe2W7Qt0fnh9xCIQqG7Q8pwp9Z5330HQNPy6J3J7TBdPsbu5jlSwWys7jncePwkuWPfIVWd7VNQM+t5nFMnkUjGWstMG6u0RIXF5jxVq9KvDHmCbNNAIsKQoqZbwRQtDNGzCG2xTLrmewD1VhsJZK0yU+2lWK+llkU0nEsLywN2VZiZ+gVKTiUue7mOCBLmNdPCePU8MvBSSU1DCzwwtifIzC1irPmyVA2nWxkvMVfIP3/G3KBQOY1hVWgE+THOuVms80ux0U9Xm6TqXWMmVZn117oK+srVTVIXFth34XHK9Qrj1Tb6APWs3B4wix6T05cvtVpAL3eNuA23O/7LNYOM7i/OaoRV1+JhdVq7RG7+UTSjnBwSGMrUDZPS0MICA537L6Xf365IFbWupyluPE23F9GkIFuK5ABJKJtl3B4PQsv2OLnWYH1YcQhAb5fJzPnV3PSVNYIYs1ipcOnZTLcX0KXH6eoJZp05gDB/rStKRMEPy15rm5cQj+YPVZb9j7EbqTLoGKQ3XiWz8nTfoVJAw/bQJBhTE1Tb/rOWEg6ZdgXqy+hGiUxtFs2IjIWUOJ6M5TR1SLdtNKv32ZaxfCDD8ydG0oWTAJREg7KzHu7PuC1eWqqG12an/AiFRa/IoijEvIlJ4XemdDACL2xbWjjSwxqwblkv3Svy+y25LWZbpwDCyYArwVUxmhzH4ctf/jK333476+vriW3OnDnDb/zGb3DvvffyG7/xG5w5c+ZqiKZQKBRveaRpYj11lNydd6Nlkle5f6Nw33338ad/+qdMTU3xkY98hImJCf7oj/6IX/u1X9tu0bZEN2coSRnTAj1luHIgtZ4gKOlzKlrpAAAgAElEQVQfkTIWMKSvsOnCI9du4s2v+XlGA2RZrjWwXcGYsHGFiwTsYEFV6IbV6a4XDxuMKUuSplsOq5Vpcwvkzh4jL6ph1a7U+uNM1l6JKVkvL9Xi08cdT1Ok/N58c5a5Rkcp94sL5DZKtM/7Cl+qUEFaNl61c416OMNdN1xS9QZiod8r00kw74x1SjikOwZnJOwueie8cp299VPhTZw8u8D08chaNdLl5HqDatsBKUnbLvMij2ba6J5JGOCk9eeG9HrghqH1lP4u9JSL14PQzeX2EsfK/d4SLQiX6/NCdsY//jY4qCd/R/r5KpboXYcn6qHoknPqZNz4c2hJl1VjmSXrVGy7YfsKfqk9uMS5bjrseGUF7/hcn7CdV44neXHlccbsKuNWnsVKvIR9r6SuCPLHAqNrvV3mmeoChrCxOzGlPbepYZqsijJNaVAVBtnmEkjJnFOgLS1yc98nVZtHb8ULRgDUTJdq2wYkIp1ixd4Iz6ELm4bpIh3TfzZ6zrtWM8k3+g3tydN5po/HS7k33RKveP5zGvX+JBWC6FBuObhp31hacVcAaIuEojOeRWbpKJrdQEr/u+mMWOaEt4AlTU64CxxpnuXJ8kv9xyagJ3wMSqYfYfCGN5o++clPMjY2NrTNZz7zGX73d3+X73//+zzwwAP8/u///tUQTaFQKN7y2M88BYZB9u6PbLcol8zGxgYHDhzgn/yTf8KDDz7Ir//6r7N37142NgaHfbw+6Simkn7VuUNixlB0dxzXw3EEJ9xZTrl+svS0sexntUiJ1HwlOmlWuFMGvLc0OaZFsJZlKHEwj0+5ZceUDCmh5m5wttH1OGy4qyzaG37UHfCKtcAJb4GW1V/hDvzcqTAubYAyV2o51FfPIht5Tq++EPYhkdRNByGC0L7NDBDPJp0/xun1euJu3UlakDNah6y/fz+k0K96mLZsdqzWurdXCyO/wqBH2xUgZViefWj+Ecltko7QhYvtCZovXUAIKJj55JYy+Tr6noPuJUDED2A7JiutE+RLf0tLdpVpTQqElJjCSZTP9JphOGpnvxcY+qJeG3hdveimiwBcI14pDwhL+a/VTE6WOgsWazTMSJGJ3lkHCAtFdAyLpVoZ15Ms1JrMFduYjhdWvus8ouvzBUxs8rLGiWYBt7aOJ2yW3TKnnWWclQLCsHrOJdHsFqKzhpiEtGeCsR5pJSOt+8m4LWphwYR4CyvwpnY+7y03Xg1PS/h8aFp3myltXNk1WItu73dsxEA99z2qpXXSxY7hq4UFUGzZb2SJcLIiGS3BfOlcz5UMxb4qRtODDz7Ipz71qYH7z549S6PR4J577gHgF37hFyiVSszMXLkKGAqFQqHwsY48jrZ7D5kf//vbLcol86EPfYg777wz9u+uu+7il3/5l7dbtJF5rfAqBWslVJxjRMKw+hRXCXW3QFkGHoUe5WHHsTX2XCgEqf+Beis8NDw/30HXWTXPc7r1JFLzSzMH3cYUqGhojPPiCVaqBq1g1h/XCuXSaw1aCQudCjy8ii+jkC7Xntnoy09aq7dpB8rUknmmm38iBBNzq3FBOvIEloXp+G2NVo1MpUH6lTPojRZ1w2W11lHQotUJk9GNMmJhhkyr64E6662ErzNmMemw/n4a6+itPGPLVX9xquBar5lbYarUJBMqtf3K3tl8K1Lcwc9/8vNFkkl7BroXH/OORyZK1q6x0bCw2yatTolwMVhJ9ekdL1/eY9YSF9rPh206iqXmtnm28DRW+WnG7Ao2Ubkkc2KdJ+qnfQ+JJ8LuJ1rnqVoztIxzYWu9vsze2nE02wqliK61BFB2W6w7cQNXpnUqLZu1nvweAG0lOfIpvFYhYmMSLfGQa1mkjPj5OxGdhuOv0xRl50b3WemGfvq9StfDWc5jnujXefVWnrF29/mbNHrXBouH5zZFm/kLL5A5dhbNk4zbJVIiXvFy8CUntzgbKV4SnVA57i0w234pfJ6zCQtfAxSbNjOlFssVExHK0b0Ti8bJ8HXne2a22ObJU/Ok118mibR0GbNLZJyuF3S83tx8IuQSSY/S6Etf+hIf+9jHeM973nNRJ3nve987dP/8/DyHDh2KbbvhhhuYnZ3l1ltvvahzKhQKhWJzpG3jPPs02bs/gpZKbX7A65ze0O5arcbf/M3fMDk5uU0SbZ211hpW7QQTno2GRtNyydoeLdsl9fQMY7sn4LbrgbiOoEsHa+3/oypbpEmRadtANtZ3JphFj3oPck4DMtOATsn2jYKSu8GiN897RC44R7TkWPDarKGVzoC+F8vxmASy5TYSf6w1VyCloOXFc40AnOU8Vber/HekGSs0aad1Vq1zlLxF/n7qbdS9UthubLXACOpfSKoyi2QfeIKa0VVkhZYKq/CF20Q87KzD3uqrdOaY67JN50nqbbdcMxhrLHFgOhc0kJhei6zrh3tlN0DetiNs31EQx4OcHIlEBEU+ghYYXp3ZmWfQp38+3HrWW+EnU7f5MktJqeWQ0jaAW9jdOMd0ugDs615XxxsxQKFcmy9g37AP0tHPfzeHrMNG3Sbr1LDrBuOLy+imBVloShNb+Ncw1lyic1f1Vh5NSlKu0Veaw/RaVGULs51DZiWaYcZCUifNdTKkQQ+uw3NICZub1h8Fbx9kI9FLgYwvGQt4QnLn5B3dXX0rKA/3QkyYG+wIQuHS86vhUNhet6S7lLBnrox2zQFSnoWmx0OavWFrZnVEkNH7EfwV/v2vmy7jgOZ1PqtBcQzHDb24kYsP/0okG16FdNPA0SdIOXG/3yZ+6a755QpufOUcjb37YC84rox9jaTdbviiK21Snn/vxuzO5zw+xqtVkzs8SSri3JWD7oOUzFgF2naOg8WnSOV20Aj6j0q/qzXHtUaVkrGEKwQ5dPYtrZGyHXjXPxh6nZfCSJ4mTdP47Gc/y1133cVXv/pVTp06tflBW8AwDHK5XGxbLpej3R48m6JQKBSKS8d56QVku0Xug3dutyhXhJ07d/Lbv/3b/OVf/uV2izI6wiFndos/zJVqnG4UaNkuLcsl1eqGypWtModXH8VKWGhVFzIxnEtDMl5pxYoE4Amajz1GquzPFreCJHAHp0/ZDtWd6iIS/BwUCdKyya3W0TSwcFiWJaT0SHsGaTceyiaEIG/2lt8WTK3U2LNQwbZ9L4BABspepzLGEIW0T0Em7KMqW7Gx0GyL7Ln5WLum5fklqXvQNI2s25/vFVX8WrZHw3SxIh4GR1qU7fmEGm0aMpVC1+Lz1l3F0Je06VYoOyvk2zXMp5/pOzsS8k3fi9K0XNJeUOnO6z4LeVH1l9gRgqrRNRLrsqv4ap5gpWpAXyU63ycZvf/Xl55hz/xhyourxJTjoInuGrHwKOElK+q29BVhTwhEoUJmtr+EdfTIuumgWw66YZEuHI9o35K8sYwXVN1bqZr+2l5JnSRs0BIWQs3ZVbJOA73Z1UEbptvJNCO88xpMWhtM9Xh/2kGBBVeP67W9eF4n/FDiCYnpeKw/cQzT8fzPVTM+Jtefme2/Htl9YsotBy1huHXpodktck4ltj/qMdYAreTnOGVMh5xTYaLaXWC3Q8qN53ulvTa6GJRTJsk6ddKiW0kv+pnJ9Dz/QvqLHB9vxj2Az7Znea49m2j0SySmI2jbLumOV3vYd8QlMpKn6XOf+xyf+9znOHPmDIcPH+Zf/at/hWVZfOxjH+MXf/EXL9kbNDExgWXFYxpN03xDzQwqFArFGxHr6BG0iUkyP/FT2y3KZaE3d0kIwZkzZyiVSgOOeB3SoxxU3AK6NBgnG9F0JLrjkjd9BaM1pLpZ2G2k/z2LRdLShtu7+91miRtaZ1i8473I1J7wVHlznaZbYkfk+Fh/4Fe06+R6BNvqGGSkwYQVGIBjbwvbG66gLUzQfTVEQBB66BsDexpnSFTFBkyWj8+ukK40sFwv1tbxBCVRpypbZLQUaRnkCNl2YihP2+pXojVgR2u+/6R2V2+xXQERh4MnPYSQjFsFKsJmz2Q2Uu1QQ/O8cB2xkGo9vLyWNKh5BVJSYhsGk+PJ1y2ERGsZiBxMWSt9+5uYZNFxeoyXomiA3fFkQM6uoFtdhdYRknLDwlhtkHKK3BJsTxXKpItlmHx3WO45hpRheKYnJGc2GkyLTu6M38RyBdl0Vx4RLE7caZDUretJdqxUSRsSdo2h1+ZB7sEQDRbb55hr9Bigg8K0ooahcNDbheR29D/jbbcIbRPZcy+i8upt/3NYk61wR6HR8yRrfoWPyfYSru0bY2t1y39esv2+jPaBaQiWmdMi8qdNl7a2xjh+aOCg/McpYwVdczB6qg/qVgVtfBrNqgMT5Op17H3+8WlhM2Ws0LT+PqtjZYRIB26WeP+7mhf6JivC0EQJO1tz/svUTQB4wsPoKwri99rJYaqb/QsXS+JVGrvbZfecaemP7XYbTR3uuOMOpqenyeVyfOMb3+Ab3/gGP/jBD9i/fz//5t/8G2644YaLEuJtb3sb8/PzCCHQdR3XdZmfn1eheQqFQnEFkZ6H/dRRMj/zc2jZ7OYHvAH40Ic+hKZ11wzSdZ39+/fzz//5P99mybaGlvCqQ9N22bu4yoFqGXHDzwCwahcZE4JsuxOS08nASFIe/W0CwVShX4EZtwowsSd8X6rNxqpV6TF/CKBpiTP2A9OGpL8r67WIxW11lOYh3gGtG99DLeI5ya35OSPRXBLbE9ieYDrtWzOO9DgrFhkX1zCtvzMWrqQHaydpCVP1AwO6Ts5DQkTrmlPjZc9k2hlnMvAAdnxlmtTCDtNmO1yXCECzHL8NEi+QbdLyJwGcsVuA/oJaMl8hM7NCJpWCsQGWFZukekjJjvYi7O7e8/WaiW26pIBypdE1mtaKkOlX7HXPpXcwwsy5SJl8gKblsiNrR56fTvtkSsH6QtmWDbrfTjQLZLwxWpo/fo6IK9qnrXW0dH+5ipwRMSy9fuV8GGNOHUEdxoNxThhUvep7aEuyAZrvaTJ6wkDRwMGluPy/OFBqI66dRoh4uGHKM8OPhshGVXUZDtS+uRJ2+mh0z1YiV315G8vomQZMXdu/T3q40mVNVBAi1bdQNnQ+j4OKgkQM4+D18dYcp50N9ns3JVYGzTo1epafQ+IvqLw3ZrJEM8x62m+am3fxjGQ0lctlvve97/Hwww9z7tw5PvzhD/PFL36R97///WQyGb773e/yqU99im9961sXJcRtt93GNddcw8MPP8wv//Iv87d/+7ccOnSIW265ZfODFQqFQnFRuCePI6uVN1Vo3ptxuYpOOW8RzCS3bY+xcgP0MZZLLcS4h6xU0KRg79yQjnqUvGVRJNcMKuZ1LBkkGbcVSS+XpIwCU5HZX104NEwXoUmQEqGlSVrPSGqx4uNx+ipcyZgBETX2bnrlDKm9074hGFxD0/Iol5pM9PTiVzaLn7OzFoxfIGMXZdlkWtPQApkFAg9JWssgZ+OhVg3PxJEJBmEgZZLaVnSbQA7dbfSNud6y6Ch8O1oLMZtRIBhf75Scjh9XddaBm2NnBiCI0tFth0xaJBzpi2C4vdfQL3e0nHkYhCaH6eEaq2aDdCvNHSefhF139vWbMSyuO79O5YZdaJMO151Zo3TzHury6fCcTWExK9a5MbWXNBl6lfCul8z/WzUcv7riVLJU66LKTimwLEG+YbGjcz1SYnm27wViF5rZzbVLqhTn4A5YL0v2/B3MoCqDS6JI2vSNLz/3sGs07TjxErub5yh2PJfD0rDkkLeJ4kkmSvGJEk+K+DpTvdX9Y++HTyqcbT3DzZHAv/AcwZNechtIJpi3TrBbeqS0VBhaCX5J/+j6axDkGkoo0S00UZdtdva6/PCANHibL259sYxkNN1111383M/9HPfffz933XUX4+NxQf/RP/pH/M3f/E3iscVikU984hPh+/vvv59UKsVDDz3E7/zO7/Dwww8D8NWvfpUvfvGL/Of//J/Zu3cv/+E//IeLvSaFQqFQjIB19AhkMmR+5me3W5RL5r/8l/+yaZvf+73fuwqSXDq5mRWmlyokB6kErwLFwrI9GtJmckDyeVTF6eg7HQXRL8bsG01rosIB+mebM24LO6IpeAjG23Osir2U6Yb7ZGqzgF/QKaZoDnBx9KYfdbKvOj4sN7ievjT+IDxJSJioNaIdYBVnaTl7+86VNKNtC4uqbLFLm2RZFHERvE2/FmrxCmDzdonC+nH2rtYo3bqvr59BaK7ohiUGuEIgVyoYO68ZmAcytbxGZCnfkIzb6lHsA69csRp5F9/XfTdcud8/t0zrbdDy7IhSGFWi/WIkUToGriM8plZbmMLFEWbgVfLbmK4ga/pG3XjVIKX5oWsTlTb2lO+FsVxJNVhA1pAO0/SvE9eRxEPSlAYp1zeVJ81VHGyQ+1kvvRb6QVrSYCfQtkW3Uh2wWjcpiO791awKsHvguAwbt2FVrZvSGLwz2keC7aUBmVa8cErvuWJS9bplYv0neMJqDXaudSsMSmCjYeHoyc9j7xgk5UxFN3nSCT+ze+unw+2u9AtpdPrrPD850rT7yoR0sdzklepqskXNaxHNGps2Vmnn9qFtt9F09OhRFhYWePe73w1Aq9Xi/Pnzsap4f/Znf5Z47L59+3jkkUcS93UMJoDbb7+dv/7rvx5ZcIVCoVBcPFJK7KNHyPzk+9AnB0zZvoFYWFjYbhEuG5mVAmNlg2YuHTMairIBWhaJhtA1EKB7HnLIL3lU6WkllJ7uqDwmdiy8R9JVuqJKiz9LD7CHumcwFqgRbdNmImgr6763preMeIhw6ckvp+DmMZrpSDpCkqo0ZG0lKXFdDw9BRSYv0hvtdcE+B7LBtDYWGI8+SWM0uVjuKyHd6atTKc1wPMh0Zdt/LmGRUsMlh8ZKzWSvc4pmzzUuuyUs0QxDBaPXmvLiOWu9o+CXWR+9+mVSUNXjtfN8JCEESoNYEQmAfbUT3VbBTcvbc9ye7ho9liNIBeXRdU+SXSv3Ca/RLVYS5kINUKIlkrysMS4zpEiTcdvkZJu0XSNld8PudDue19Z5IQQRr6FECMl6PWEhVvxn3zf+BxlOWv8ABoQl/wcc2/u50HreZIKiKU3LJZfOxtr3GS3a4LeTG/U+A1xvxAuslVs2uzX/nmXcFrqIG63+erndXkdZJyzJoizKOgtenr3yAAC7mn55dX2oGw3mK23kFtZbn7CK6NUZuPZdox+0BUYymr75zW/y9a9/ne9973uMjY1hmiaf+9zn+PVf/3V+93d/94oIplAoFIorhzdzHrG2ysT9D2y3KJeFf//v//3Q/V/72teujiCXgc5kfa5to42PoUNfBbaOIqXJeFhVX1+R14mLRUYaFNsmJKTF1Ix+n9eUuYqb1iBSAcv1JE3LJROpsFV0V/tC6FKtPMXmrtg2G4e8UWTKE31uqJRngZz2r3PAteYbJllPUNfaeAn16nqRA0LuHHeAsQZoQoQePvCHriX6qxaCX7mw54ThS0OapMKspS4egrTXHkH6oB9hU3FbpMjFCj2MltYimTRWqab960nZLoz15M5EEH2V9ZKxpUPZ64Z/TRr+GkOaJ9Bd/zkar5uMnVxn/Z2+Z1P2hA6uC9/T4oS+1h7PWW81R+l288QMh90zFUioI2Z5gnYkzLRmujFP1Kj0VgrvZ7ghEOmpr5+2JWBSY0kkF6jQtR7vcefZdK0eg2ZAnlF7cMGYcbtElWsZWA58YK8+Ttr/8tASvN6dyZaFsoGMOPeSFqmNscUcLfDH4koxstH0ne98h7ExP+Zy7969fOtb3+If/+N/rIwmhUKheANiHT0Cmkb2/R/cblEuK81mk7/4i79gaWkJESQEt1otnnnmGR544IHtFW4EhJQslNuMd8oRy3hxgrSwcfWxcDZXI/ByDGS41pGJhF3NeQUIA16GH+crRima0gRtGvAXpHRcwSipGG2SjY0kJuwSVWMXDdNjVzrFdEIbx7bIMuJM+IiE3pjAiNM8idR7W0CpZXNAn6DorlMSG+xKCDGLsuEVKYt2kPMVZ5hxorse151Yo3pwJ3IfvGIs0bAq7NQmsGSa3jW5OmgDKnLknDqkfeN1/7kCzk8dom176Dr+7H53gZ+RMYTvseyUbg+7EL2GTtTI819b0mVK21xPbmOTQfrVJDvbHI9iw2bM7gkjjPTWNN3YxVgXYTAFAsfuU6+R7g4JN4OII6YnXLZDxq6GffaORarnXuRii/mONnmStE8fYKrLSLil37a/Jy+cjNG7x/TQyV3qNchGWvdo2HUlPJuX7xugn5HkdRyHiYn4XFEmk+krE65QKBSKNwb20SOk3/0e9EjFrDcDn/3sZ3n++ee59tpreeKJJ9i/fz+Li4v8yZ/8yXaLNhJuwro2k2a8jHpamGQNf8bYsLy+ctJRkhSYycLg8DXwvQIT+dLI2kdvfk5Uj4nm9dTc7nWsiP4S8IkVrIO/bccDDfKNuN6hSUFK2Iw7o5eUT5sOKTFYf9kIPB1Vw4kJtnOlFitZ3Ztt0RZtJJKaMWjdmjiJJbsHoUEqqMI2lffvnxMo5zXZv6alJR0WRH+IYHjuyP8dKm2XYtMmX7dHVjz7jD4kluN1n+NOFcuBxqAMx7EmW7To94T0Hln0GqyJcqSBpBktFa9plFpxo7zTx1aGXCJZGODx2XJnsX6HHzjmVMPX5ZZNw0oKN4wj5LDpAknLHl4pcHfDL6AzVWiSjTy/+tpLPV1t/mQ4CdmYP5EKlhsIis106HiapIBSpKS4Kz1qshVb92xUtC19sLbGSJ6me+65h/vvv597772XHTt2UKlUwkp3CoVCoXhj4a2u4M1cYPLBT223KJed2dlZHn30UQC++93v8pnPfIb77ruPr3zlK7zvfe/bZuk2pzfUzi9BfXHhMpCsY43VTQb9/GsSdi9WyHg5vOs3Uf4DB8a4U6aATor9/uZgHZpBCpZA9BkcY04dM5KTM15pk2k7cGP8hL3XO2mtd3OA2Hw8si2b3ctVnJ2Dk/U7knW8CR0vyVjTYjofKSQw4Pgkb1F3KC5Woesel3Y8ehedjZ0LqDbyI4UpRhkvNumUpBNWyw+LZBptk346+V5pt4WpmfEgsU4ZeZGc0A/E1tbaENUBrYbIXW4iMoI982VyTYvYlEBw0ppoMy5ln8drGIMk1gPPihhQfCXWxwhGxqDPiZNLU79+B5onSXsGbmpwSfm27ZGK+EFcPKxgpTNJp6pkHDsSrtsOFrOe7plQmXXzwIFuv0MmaDqD3ZbJExLX6XuY7dkWzWlyI56/dVllTZS5WT+APfScV5eRjKbPf/7zfPvb3+bo0aNUq1V27drF7/zO7/Cxj33sSsunUCgUisuMdfQIANk3UanxDrqu0263w+gI0zQ5ePAgJ0+e3GbJRsMPCZM97zc5IIHObO/W1A2/da5lo2f8HIS8rI10pEBETJ6LMwyyrn8uTcKuleC8N/a3a1kebhB6qfeszzNYNfeZrPheGb/Mc29+iBxqoIIfotdhxa6iRyLihh3pjaI8Dz9z7F35tefI3rwzsWXKcpiaK1FJ3DuY6XwTdN9oGqteAMCWe0fyLoAfRtnI6L7R3CEMQWOgK7Fu25uMevL5PTxMHLKNNmmzTro52HtoYDE1f4Fs0xoaGGrjwibhlbmWTS6jDy+hhx9K2zCdTdsNor1nAnsyR65hMmEVqE/ciDZkDaLoKHXywobR8eJY0tk0pHA0Aq8iWuLnsGMgxQpTdCZYemWTvsFnJ3itNhfjdbC47cc//nE+/vGPXzFBFAqFQnF1sJ88Quq2t5O6/uB2i3LZ+aVf+iV+/ud/niNHjvC+972P3/u93+OWW24hl8ttfvDrgP6Z6U2U+E302aSgHU3GDbOwrYSMEVEpR9GVE9p0JJ4s94eNDSPxSiOlxzUgbdm4Woam5ZJKKMJQH7Hcc4fFSPhVTbbZpSVUEIiQi4R91RyLYDLf92TYg9XxRqQAQSYosT04ZC2Z6ALCLh65tYhBGxk8PbFKYj/OyIryMDk3ez67xyaFbfm5cRdnUK6Isq/sSzlSmenM+kpC8F+XNibrogpct2lffpRZ0qIAvdcSVDWMbE5F8gg1bfPPcHSMM2Z/AZHNqMs22hA7wsAmM8QcSKqCqetan0d1M9Owf/WmYdXzIjljW/2cXLQ3d3NGMpr+7u/+jv/0n/4Ta2trYWKtlBJN0zhx4sQmRysUCoXi9YIol3CPH2Pit96cRXwefPBB7rzzTtLpNF/4whd46KGHKJVK/PEf//F2izYSvRPJvoETVwK8wL1RddbJnFpn8uZk41fXtVgOThc5UE9NBSEytrTRvc1VhFg3l+xNSTg+tik+Djm7TC+XVghCJir2UdIDckPMLRS2uCg0GK/HFyVtWcmGQtS4GkZSLlSSt+1SVNBcJAetKuPyT5RaZEwncT2hUeh6RwYfHzNIPEHnalLC6TvKkt1S79omIWEaoLn9JlgnJG5LjHr9ErSEqosdBAJLOn3VKkc5hTvsuY8a5EMM7U7VvF3aJOXEsv9+R2NGMbIl+emK+tqr7a2N6SV/DQ1hJKPpS1/6Ep///Od55zvfia6PVutCoVAoFK8/7KeeBCnJfuDO7RblivAv/sW/4KMf/Shvf/vbGRsb45/9s3+23SJtCduLKwhtadPuKY/tafHwoclycghdWtcwBpTETothc+5+vsaexa0FeKUMe3SVMSlkKbGWc7/nrWZehGI6AhJYEsVN210Kg9Yg2gxNuOhDQrMuF33eNinJFjcGH9CDDP/zGeZNiy6yekk08v1l5RKQUoQquu/tG4vt7+xL2R5S1zbJCdMSvbW96MLFS42+fhZEhk+Lb8m69d4W/VJtIpIYeE3JFRb9Xd2x7ZSQH9RWF/ZAD2Y49k41lGKQ0dQJy1sV/RMj28lIRtOOHTv4hV/4hSsti0KhSEBKSd2pUTJLlKwCRbNIySpSMouUrBKG28YWNrawAI3J9Ao0vg0AACAASURBVCQT6Ul2ZHZwaPIGbpy6mZumbub6iYPxWHPFWxLryGH0g4dI3XrbdotyRXj3u9/NQw89xBe+8AU+9KEP8dGPfpQPfOADZDJbWCFxGymaQ6p1DWDLn+orNBM7vlrCZIg8kk2LCiQcEjLKdU5r4zS2GKLXIcnz0ra9TUq6b42t5Y50rz7jGexoLG/xqK3Ta9Sl82WyA4zyq4E7xLPSQfM8HE0bsLTvFvIDA/afL1A/MM26aAxvOELuzKS1QX0iITEvQr+h06lt2FOeOyEccKvkRfK9HGIybQHJ7uZ5GgPl1Bi3CuhpPWI0JQvTksMndaJtE8S4YoxkNN1333184xvf4Fd/9VfDtZoUCsWlI6SgalcpmnnyxgYFs0DBzFM08+HrglnASZgtTslJMuxkTJ8gl8oxnp5gIqtjehYVq8xJu0LF7s4U78ru4sf3/ATv3fsT/INrfprrJ958+SyK4YhqFeflFxn/3+9/0xrQDzzwAA888ADlcpnHH3+cb37zm/zBH/wB73//+/nSl7603eJtSm942aWEmmz1FkfPlfVagxsGOJ5EJCyYO0jkcbvoz/DvTFppqW9iHYBUvtLTRhsagjdqPoMXK1zhkzQLfzkNpq2S6vEGTlRHzBHTRvGB+OjCCarkBe97V6JxroxXb1Qa0mBC2yQfUUrkyGWmu+16xyj6PjNi2fhRGXZH0pFzCWQ3tK3vki79O7vN5VkqKPFqpOwrzBKlI320St6VyT+6clbTSEbTf/2v/5Vqtcq/+3f/jlTgZlQ5TQrFaDSdJqvtZVZay6wEf1fbK4FxVMDtmZVJa2l2Z/ehebswjOswG7fh2NNIdwfS3cF0eg97cnvJ6jksT1Bq2dQjScZjaZ13XDvNPYd28lN3ZBmfKDHfnOV45TVeLb3ME+s/BODW6bfzwWvv5IPXfZibpm6+mkOi2Cbso0fA88h9+O7tFuWKs2fPHv7hP/yHmKaJ4zg88cQT2y3SSPQaBJdede3qM0jiTgGEtj16MnumMDhEsFfdMnaOsfMyRXy9HhhzLvZiRn9mpsy12PveMdUbWyvmsS1IGGhQRIait0S7GBLSl9rEWHaEIGrKXa5P6bwYHAqpS8efNLgi3wmXx9e02RlG2brFug99XMmrGMlo+qu/+qsrKIJC8eZASMFqe4XZ+gVmGheYqZ9npnGBDWM91m5vbh/XTxzkXbvfwzVj+/1/49cwnd7HsQV4/KzJsVV/pumO/VN84OAOfvzgTt557TT7p7KkU/15habjsdGwOLPR5PhanRNrDb723CJ/9izsm8zygVvfwd0/9kE++66d5M1Vnt54kqMbR/gf5/8b/+P8f+Nt07fy4evu4c7r7ubg5KGrMl6Kq4915DD6oRtIvf3HtluUK8bp06c5fPgwhw8fJp/Pc/fdd/PAAw/wsz/7s9st2ojElZc3oM20KU3rYsOMehWs+ODYE1moe5t6o96MTOWbjFcMSrfuu8Se3nge6Fzbpr1r8BpGHdq2hx55LmrZwc9hdjNPU08FSk8f8z1eww4YwKgjnvZMSPj93w6SIhM3928mVOFLaBX1RG0qR0Kf21497+DBg9RqNY4cOUKj0eATn/gEGxsbHDhwYPODFYo3IYbbZqYxw0z9fGAknWe2MYvp+bH0Ojo3TN3I39v1Ln7phl/hxqmbuH7iENdNXM94Ov7lXmha/PUrq3zr2Bp10+Vteyf45Ptv5t479nP9ztHCYccyKW7aM8FNeya49x3+ApNVw+HpuTJH/3/23jtOjupK//7eih2nuydHSTMajcIoIQSDSAKEAAO2sQEbMGaNbWzsZR0XfmZtWIzjer3W8mLW2AYcsDHYGDDJJBEkhABJBAWU8+QcO1fV+0dP6p7umZ6kxDyfT890V9+6derWrepz7jnnOXtbeG57I49vrsdrVzlvVjYrKi5iVdVVtIebWVP/Kq/Wreb+Xb/m/l2/ZrZnTr8BlWufusdPFPSH5l1z4obmAdxwww2sXLmSW265haqqquOOvMiyrDhLaTKU/5EpjseGRHa0sSJ+dlqD/o4wb0WsRYmUHUcl/mGAHDVjr1AUUmT3HGnISKMusDsU6d0BcgqadVvXQIjjSL6UtqSMb6PDhN6vSZ7Tx/NiQLqepnFjElea0jKa1qxZw80338zSpUvZtm0b1157LXfddRfTpk3jxhtvnDThpjCFowXLsuiKdNEcbKI+UEdNz2Gq/dWx/z2HaQo29j+8nIqLmRnlfKT4EmZmzGKmu5wZ7jJ0efg47F2N3Ty0qZrndzTiNTu4ZIbGZXM8VPhMBLWY4S6sTjeWloGle2Jx6qEQZkc7hMNY4XAs3lzXkVxuhMsFut6vEHvtKhfPy+PieXkEIwZvHGhj9c4m/rm9gcc21+Gzq5xXkc35FStZVXUFzaEGXq17mVfrXuLeHb/k3h2/ZLZnLlU5y6jKPZ3ZnjlI4vhSQKcwgIHQvPOPtiiTirVr1x7XRqFcX40jUN+vao43VCUZlHAUU0hIE1wEMm2FbgznZFnJ15QTEbYM5A/xcyp3dxPR3Kwx7z/akRvuTpu4Ff90WOqSt0llTE0MEusUJT9fxQigRVKTSoxYqegI2EkTcaWENdJYp+8VsoQYMxX95IQvxpCW0fTjH/+YRx99lJKSEj7ykY8AcNttt3H55ZdPGU1TOKqIGiY1HUEOtwc41BagqTtMxDCJGBZR08Stq2Q5VbKcGsVeO7NynNhVGcuyaAk1x+UYNQYaaO4nYmgiZMYnTLpVN0WOEhZmLqLEOZ2yjHJmZpSTZ8tPT0kzIkhte9i/YyM1uzfi6drDt6UmVuktqGYIY79E5AOZqF8mEpCI+mWigdgrElSJBmXM0Ai1I1wu5NKZKGVlyOUVaEtPRS4uwabKnDcrm/NmZfcbUC/tbOKZbQ38/f06Mh0qy0ozOXXaCn6w+ApCNPJK3Uu82biOB/f8jj/ueQC36maedz7zfQup9C1gumsGXs13XCuoHyaEXnkpFppXPutoizKpON7no9QV7yFJLCAJ6YTB9LU7hpGmcH1napgWypB9ho7DsPVmBmGknJXjGc7GThDaGPeeuFkzEUZT2upvCkV5sFfVSgjmmliPa2zJIGwNDetzhNLzeu4z60duNAKkJMQsRwqpjJxM4QKSG+ST8YyS6iePpjwto8myLEpKSoCBHyS73T6p1twUppAMpmWxpbaTTYc7eKe6nc21nQQiAw8JXZHQZAlVFsiSoDMYJRQ1kLRGJPthFPthbK4aLLUJcxCLjCzk/vyiCs9sTs87i2xbDjm2XHJtuRQ5S/BonmFlsywLq6sTs7UVq70ZqW4Hon4nomk/Vks1VnsLRtiiICLIiciEDTumaeNAuAijKzy0qqUsIXtcyBk2lEwLmxZAk9pR5G4k2QK7AyN7DuHM+URsMzDDJmZ9PdH9ewmtfgnrH4/TA0hFxWhVy9DPWYGyaPFQA2p/K6t3NfP63hae2RZLQp3uszMnr4rT8s7nijkGrdY29va8zwftW3iraX2/iC7FTYlrGiXO2KvQUUS+o5BCRyEZque4V2BPFJhtbbHQvM9cN3VNxon169fzs5/9DL/fT2FhIT/5yU/Iz88/ojKE1OGfRScuEor8Cg05oTJUruSZ1JyGYxntRR6czT3oCQRpkVEp0uMfu6PxiBHpuGQtc+KcNmLoSJmYKYq6pu5jHF8nhd49Mex4E4ksqY8tMx1f8eiQdAEpMn5q9lRIy2gqLS3l7rvv5uqrrwYgGAzy0EMPMX369EkTbApT6INlWWyu7eSlXc2s3tVEU3eMfrs828lHK/OZm++ixGtnms+O164ihCBqRnm/9V3WNazj9fq1NIcaAVBxYDOn09NZRtDvwwxnkaUWsrRwBqfmZnFyiYf8jOR5RJZlYTY2Yuzbg1FTHXvV1mA1NWC2NGF2dPZWHE9xHsJBRNPA6cKWmYXszkA4nSguN1p2DlJuLlJ2DnJuLlJOLsLrQyTmY1gWZuch5Nq30GrfRD38GnLnOqwumUjBKYRWXky47DoMZz5mTTXht98k/OYbBJ95kuBjf0MqKES/6GJsF12CXFgUM6AqcjivIgfTstjV2M1bB9vZUtvJu9UdPL+jb4XMha6cRZFnJQu9JnZ3DbLeRERqoMusY1PzBl6o+WecqHbZQYGjMPayF1DgKKIsYyazMipwKE6mcOQQXvsqmCb6eSd2aN5kw+/3861vfYv77ruPyspK7r//fu644w7uvffeiTtIGouRppRezakTwXRItnLfj4QwPAsxlDL7BIKhSMgjJMlHdQVCY/einbijB/ZQIykreE2AE2DsOVGpmP+OnGPiSDwrkh0j9QJHmmx+yZpMotWeltH0/e9/n9tvv52zzjoLy7JYunQpZ599NnfeeeekCTaFKQQjBs9+0MDD79ayv8WPJgtOL81kRUUOp0334XUMVRxqeqp55vCTPF/9LG3hVnRJZ2nOqXwu9wvM9y2g2DkNSUhYlsXB1gAbDrez6XA76/a18+wHsUrwxV4bJxd7qfKaLGw7hOvgbqLbt2Ds3o3ZORCXLFSB5jJQbGEUj4mSZyC57YQyizikF/JWOI/XQ7H3p8wt4ROnzGBh0Ti9L0JgeqYT8kwnNPdTYJkojZvRDryIvu853Gtvh7W3E8lfSqj8UkIrL8b+ySuxgkFCa14l9M+nCfz+fgK/vx+1ahm2yy5HO+10hCwjCcGcPDdz8gZqqLT6w+xu6qG6PcDhtmDsf3uAmoM5hKJZwJz+tj6nSa63hwx3JzZbO7LeRkRqprrnMBub3uoPdxQIip0lzPPOZ0n2UpZkLSXLNl7GpykMh9DLvaF5M0/s0DyAcDjMqlWrePHFFzEMg1deeYX77ruPFStWUFpaOq6+33zzTUpKSqisrATgqquuYtWqVXR3d+NyuSZCfE4MU2d4ZUcJRzHU0ZMVpONBOqG9TCP9dgjRW6Np9Mq2hITJ6D0xkz3aFqlnU1pq9SDDQzIj6ewxZox23CVjhPYprvdk2FLRcRN2DAeR8D/ZdxOHLnNsxa3TQVpGU15eHr/+9a8JBAJ0dXWRlZXVX69pClOYaDR0hfjbe7U8sbmOjmCU2bkubruwgvNmZePSk0/ZLa3v88c9D7CpeQOSkFmWezoXFl3M0pwqbPJQz5EQghlZDmZkObhyUQFWoIW6XVtoX/MK8tvbcD7WgK0z5tEKCAvdE8WRFcE2K4zNG8X0uejJmkaHYwYH5WJ2Gfm8HZzGW60a3SETScCScg8rKnI4ryKbTMdY48tHgJCI5i0mmrcYf9XNyG170Pc+g77nGVyv34Hr9TuI5J1EaOYlyKddjO2CizAa6gk+/SShp56g6zvfRsrLx/axy7Bd+nGkzPgE4kyHRtV0jarpvrjtlmXR0hOmtjNEbUew/1XTGaSmLkhDZ5C+3wNVFszMdjC7wCTL14Sl1VAX2sP6xtd5vuZZAMrcM1mefx7nFKygxDV89fQpjA5GY0MsNO+6z38oQvNuvfVW3G43d999N9/4xjcAmDFjBrfffjsPPvjguPo+cOBAf6g6gNPpxOv1cujQIebNmzeuvvswsfqQ6P+bLDPqaKGP6W30GJ5yfHALBZkoJ27e0kRjIjOZjhTGf68c3RQTvTsEmpyaDKH3f8Q+sEAcHcnQOgbRd3a6GLrQncqzKcZBUmOak3ffp2U03XbbbSm/+8EPfjBhwkzhBIURQWl8H7XubZTWncidhxDBdjCjoOhYsg1Lz6BJzmN9u4eXm1zst/I5tWw+V55cyuKijJTK3vb2D/jdrt+wsfltfFomn6/4EhcVX0K2LSdBhhByZzVyxwGkzoPInYeROw9hVh/Av6ORnsMCvVEn1xQI2cSeD8o8Fz1FOVT7CtllZLG5O4P90SyqrRy6og4YVIMuy6lR5LGxcraDRYUelpX6Js9QGgaGrxz/0q/jX/p15PZ9aHufRd/7DK43fojrjR8SzZxNuGQ5tpVnE77mEcJvvk3wib/j/+29+H93H9rZ52K/7HKUxScNq2ALIch26WS7dBYWZgz5PmqYHGgLsKeph91N3XxQ38XzW7sIRl3AbHJdC1hcfB0zCzqw7LvZ3P5mf82o8owKLin5GBcUXYRdcUziaH04EHruWbAsbB+55GiLckTw3nvvsXr1aoD+xb3zzz+fVatWjbvvQCCArsezYuq6jt8fXwDU5dJRlLEtLOq22HNDGqYei5LgpVFVOWl7RZGQTAsJMcSHIIRAWOMPxkp2XFmSkMyJCfSSJQlhKiiqjCpJYEr96fyKKSENOgdFk5FVGRlBKXlUG82EeouHDzeekwVZio/YViVBZITcm2HllMWw4yqrMtFMB3JPF7IY3TWQeisYyZKEMgJNvxACRY21kU057jiyIiEhkGQLRUgY45xjsiRi52IM34/cO9eHbFclpHBsX0WTkM2BcZEVGUXrvZdMa1RzRJYFqqr07yNL0pjYZWVZImJasXs1Gr+/rPXKpyW/v48U+scIMeh9+lAVBU1S0FCoNKexM1oz8J2soBhjd8IoqjRkbGRZweudHN0hbU/TYLS3t7N27dp+Jr0pTGEILAu15g1sO/6Gtv8FpHCssrnhKsDImI6ZWYElKViRIK2dnXS31JETfYcrRDdX9C5GWNUCs6MYw1tG1FuG4ZuJ6S7BtHnZGW3ngep/sL51Ix41gxtLP8snMk/DEe5GOvQ6Unc9cseB2KvzIFJXTazcoQXBNpWuWhddtU7CrSZgR8n14LhgPtoZZyGdch7C6QVAA3zAAuByYiGDXaEoncEohmmhKxK5bh37GEJNJhuGt4zAyTcROPkmpI6D6Pv+iXboNexb/4Dj/d9gCZlo9jyinzwJ/2XX0/3WQQKvrSf88ovIM0qxXXY5+oUXI40h7EiRJcqznZRnO7mot25U1LTY09TN5tpO3q/pZOOhdl7YEQVKqciZz2UzBbpnK5vaX+aubT/nvp2/4sLiS/jE9CumCu6OEZZlEfzn0yiLTkIu+nCMoaZpNDc3k509EPLZ1tY2IV42h8NBKBSfaB0MBnE643P0useRjB0MxPY1h8mPjCYwv0UiRtL20ajo3T7UaDKFGDfluCRLSY9rmCbmBNGZG6ZJSNKJRgyEMIlaJlZvKFE0asaxhUUjBkbE7DeqTNPCxEwp52TDJss4NEFHIGa4RSyRlA2xDyPJaQiGzZuNRgxMVSIQDfeH26ULiRiRQdQ0iYrh91NUiWgvAZNhxV/rqCGQic1fA3NUMiSDYZoYwsBMJEpKbBcViISxkWQJI2Ii926Phg2i0QF5jahBtI+S3LJGNUcMBJFItH8fYQTGdKaRKAgrNp6J52hEBuQ7GvO3D30yKJo8MF6jQMSIEhZ990CUqDHQR1QyiI7DMySHkzz7TGhv9yffIU3k5LiTbk/LaLrpppuGbGttbeU73/nOuISawgkII4K+63Ec7/4fStseTN1DuOwiQjNWEClchmXPBKDdH+HxLXX87b1amrrDTPPZ+XRVER+dZccdqEZu34fcthe5fS9y+z5sOzYiRXrYpar8n8/DaqeDDMPgax1dXNN5GOeurUNEMW2ZGJ4ZhPOW4leX07Ork8D7+zGbWkGSUBYuxnn1WWinn4k8LT1SE5sqY1NlclzD12A61mB6phM46UYCJ90IkQBq7ZuodW+jNryLvvMx7JFustxgXiToqMuibddBev735/jv+QWuBTk4q8rQpmcjJBmQsIQ0EG9tmb1Uo2asTHh/cU6rt2y4BbKGJesskXVOknWs6TpmuZvqoMbmFlhf28rLb5p0kEt25ldZUdZBt20NTx58jCcOPMrygvO4ZuZ1zMwoP3qDeBwiumUzZvVhHJ+9/miLcsRw/fXXc9lll7FixQra2tr42c9+xosvvsiXv/zlcfddVlbGU0891f+5tbWVjo6OCSVFmsh8hQE7Mc2k6mMQASKDgpcSz2H4oEOXsBEajkjiCGM4g2miEO6NcOghOELLRIxtUUGa5HC8DstPJA0DXEmXQj7FDeat7hiNWBMGi9R5eGPJ+zs2IVK8H12JCFUoRKwEZrwkl3MIgdYEIi2jKRl8Ph/79u2bSFmmcJxDO7Aa57rvo7TvI5JdSef5/0to5qWgDOQU7Wnq4eF3a3hueyOhqMlp0318d2UFy0p9SL03T9TlI5qzIK7vQ10H+OOO/+OVpnU4JI3Pe5ZwlWM2LtmGKWS6hIypu7HsWZj2bAzZQ3jrTkJrXiX8+hqsjnbQNNSlp+L4wjlop5+F5IvP0/nQQLUTmX4ukennxj6bBnLnwX5D1daxn6LlLYQONtL1Tgtd7zfQ9U4DisPAXRLGVRzCkRVCkoyY8YSIsVj1hSb0brMGbRNmGKKhIfSgHqASuBqgd5pE/TKNWzw0Wl7qbT7W5Eq8VPcqr9S9xOmuCq4v/iTlBWdi2XxHh9v2OELw6X+A3Y5+znlHW5Qjhk996lPMmTOH559/npUrV+JwOLjrrrsmJOeoqqqK+vp6Nm7cyNKlS3nwwQc599xzcTiOchjpCVz+o8vyA6nH145GgHDS75zCRouVuqjoZEMwelOkSMqixmwZxwFFWix7k4m+6ThRpBz+URuAyTGEVGLQB3vH5JEHDAfLSj1HIgkh/ookiB4Bw3ss8NtycARHrkeVeK6jmSEKMpEkddg8wkmH1dP/eTJHKC2j6Xvf+16cNWgYBrt376awsHDSBJvC8QO5fR/O17+PfnA1UW8ZHRc/QHjGyn6FNmKYvLK7mUffq+Xdmk50ReKSeXl8ekkhZVnDU0/X9FTzxz0PsLrmBTRZ5+qZn+VTpdeQocXyaPoepZZlYezfR3jNm0Te/jOR99+FcBjhdKItOwPt7HNQq5YhOaaorodAkjG8ZRjeMpgRT0mtAb6uLsLr1hJ+7WXa3n6Ltp0hsNlQFy9BPfkU1IWLUWZVINQRaJAtC8wowghBNIgIdyGFOxGhTkSoAynchQh1IgVbcXTW42uqwd1Vz8mHW7lF6uZhj4sHje3c0P1Tztnk58buMLPtRRgZ03pfJbHzyJqL6cj90BtUZkc7odUvYPvIpYijrdQfATQ0DCQZ5uXlcd111w35PjHUfLSw2WysWrWKO++8k0AgwLRp0/jpT386rj4TYY1h3tq7eob9PhZ6dSJAIISE1ed5sEARcpyWdDTY86KqnL6nYwTopH6OTmwx1oS++8ft2FTKx4rEMRu9B+4IQIgxs2sfK9AjnWPabyLuVzmhj7GwR6aLtIymxMJ9kiRx0kknTeU0fcghwt04Nt6F/f37sGSd7tNvI7DwepBjqyN1nUGe2FzHE1vqafVHKPba+PryMi6tzMNrH17BPth9gIf3/okXa59HFQpXlF7FVWWfwavHvENWOEx09y6iH2wlsnUL0c3vYTbHVjn68nG0U09DPelkhHbkCRlOJEhuN7aLLsZ20cVYfj/hjW8T2bSByKYN+O+5K9ZI01Aq5qBUzketXIAybz5Sbm68610IkFUsWQXNheXIHlaR61PzdzZ08/SWajbu3IO3qZaC/Hd4y72dV50RzrEEN3btY97h1xDRgR9D05YZy9fKmks0ay5G9jyimbNBTq++zYmA4NNPQjiM7ZNXHm1RjgiWL1+OECJl0XUhBNu3bx/3caqqqnjyySfH3U9qDKJIlobPgRkJfbefSGo2jdyvEMeaE8s6okZRxKagBkculGlJx84CjVMkrzM4BZAjzRPa30Rd9WNn9owHqR8UYphP4z17cYQfUGPOaZrChxiWib7z7zjX/wTZ30hgzqfpOe3/YTlz6QpGWb2tjn9ub+Sd6g4EcGZZJlcsLuS0GQMheEm7tSy2tW/lkX1/Zl3DGmyyjcumX85VpZ/B12kQXbeR7m1biW7bQnTXTojEYtWl3DyUhYvQTqlCPeU05HGuJk8hNYTDgX72OehnnwOA0dRIdOuWmPG6bSvBxx8l+MhDAEjZOSjzKlHmVaLOW4AyZy7Cbh/1MWfnuZidN4fQORW8vLuJv717Ko27GrFnr+P1rNd51R3irPIr+VzxJ6iIRlGatyO3bEdp2Y596x9jni3AUuxE8k8mUnAqkcIqInlLQB29PMcDLMMg+MTfUU86GaVs5tEW54hgx44dR1uEicEgHUAWQwkcUsEUUkpiBylJSlNiqGwyODWF7tDIRsORhISMQYo8pQn2LpsJrFyaIhEeTdib6P8zQRj5milHuzztMWVkx6PObB1V+1i+0Ugtxo90Z0jf0SbSszlRMIVMOhlY47sb0hvvox6eN2fOnGGTtSzLmrBVvCkc21Aa3sO19jbUhneJ5J1E58X3U++cx5o9Lby2dwsbDrUTMSym+ex8+fTpXDwvj0LP8CtfneFOXqp9jqcP/YMD3fvxyC7+Tfkoy5tyUNbuJrr1X2hr6V0h0nSUOXOwX/5plMr5KJXzkXNyj8CZTyEZ5Jxc5HNXoJ+7AgArEun3AEY/2EZk+zbCa16NNZYk5LKZsbC+JUtRFy9BcidnqEkGXZH4yNw8PjI3j50N3fzt/Rk8t/NMrIw1vG6tY23Da5yZdw7XV3yB0kVfiO1kGsgdB1Cat6LUbUSrfQvHhlUxJkVJIVK4jFDZhYRLL8B0nTjhxuG1r2HW1+H8168fbVGOOEKhEH/9619599136ejowOv1snTpUi6//HK048DrPPgHf6LU7aRKRBortKOxQaKSjtJbwHoylZYsrZj60J602k70Cr5DHaXRxMTacRnCQTepQzEtkY4pPDqYQkayRqugH0uWk5Xk3fghEGktPIwIi1FPkrBTQ2mPz8HKk7w0mO2j6ieqKSjhiVoUGWqs24VGwAoz+E6cWD9TCkxiaH5aRtOtt97KoUOH+PjHP05WVhYtLS08+uijlJaWcvHFF4+4//r16/nZz36G3++nsLCQn/zkJ0NC/lauXIllWShKTKS8vDz+8Ic/jOGU0sNrdS9zqOcgmqQz013OPF8lDmUq3yUVlICBrgAAIABJREFURE8jzjf/C/uOR4jac9iw4Ic8Hj2DDc93srvpLQCKvTauXFzIBXNymZfnGtbQbgo08kbj67zRsJb3mjcyrTbKBXXZLK2bhndPHQQexwSiBYWoS05GqVwQM5LKKxDKmPlLpjDJEKqKOq8SdV5l/zazvZ3o9m1Etm0lunUzwaeeIPjoIyAESsXsmAFVtQx14eKR86J6MTvPxfcuqOBrZ5fy9La5/PX982hSXuJ18w1eb3iN07LP4cvzbmC6awaGbyaGbyahWR+nBxChDtS6jag1b6AdeBH3mu/Bmu8RyV1EuPRCgrM+jumZODa0Iw3LsvD/8XdIxSVoZy0/2uIccdx88820tbWxYsUKPB4PHR0dPPPMM7z99tsTUqtpsmENDseboN/+ZLTPx2tIkJykQGYquGwKjI95eNyY0ILSaYRqHkvmyrGAdMIrU+FI3SOjZSCM2FVIMJrUtPw88Qhm6PRkZZK3szHp9xoK4STEC8lgJalRJU2C1zNmqg6a5Ukm/GRG7KWlff7973+Pi+EuKipi4cKFfOxjH+P664ensvX7/XzrW9/ivvvuo7Kykvvvv5877riDe++9N65dZ2cnTz31FLm5R8Zr8OCe37Ova2C1yibbWVl4IVfNvJYCx4mz4jxehLtaiKz//yja+2eEGeUh5RP8qO1SejbY0ZUGFhZm8NUzZ3D2zCzKshxDfiAsy6Ij3M7hnkPs6dzN9vatbG//gNruwyw4YHHePgc37ZKwdxhAA3JZOepFl6AuOgll0WLk7Jzkgk3huIHk9cbIOJadAfTmo32wlci7mwhv2kjg0UcI/OVPCIcT9ZSqWNvTliFlZY/QM2TYVK45uZirlhTx9sFF/OW9j7Gp8x+sN9fxZtOrLPCczdcXfpmyjBn9+1i6h/CMFYRnrKDnjNuQ2/ag7XsOff/zON/6Gc63fka46HSCcz9FqOyS4y6EL/LmGxi7d+L6zm0I+UShrE0fW7du5eWXX47b9tnPfpbzzz8/xR7HFuRh8mMsAR2FHqS25N87sSVNdDeONA3EIK1lcF7QaHKk0mWA67FC/YpUYtfjTTWSjPFrX4NFiGoKetgc/nooMinIANPM3xibzH1yBopzyKgZ5M0aRFLQ7JlPdsfQ8h5TGDtGDgEcQF9+Y3JCkNFNdoeu0OSxY6agNXdhQwhBOJHie9wYu6/JAirlErYah/q3GboMgww7RRYoI+TMjwdpGU1dXV3s27ePsrKy/m2HDh2iq2tkKs8333yTkpISKitjK89XXXUVq1atoru7G9egopnd3d1kZGSMVv4x4zdn/h7LMumJ+tnZsZ2Xa1/k+Zpneb7mWa4qu5Zryz+HIn24PBqmZbG/xc+2ui4OVe+nvPpRLgs9iZMgT5rL+IN2NRl5FVy3yE1lgYNp2SZ+o5OOcCOHwrt4/2AbbaFW2sKttIXaaA21UOuvpisyME/KQj4+td3N4g0O7M1dYDfRqpahnbk8pih7vEdxBKZwJCA0LRait3gJjutviJFLbNpAeP06IuvXEX4tpvAqc+aiLjsD/YyzkStmD7tiKwnBaTMyOW1GFXWdi/jLu7t4pvYRNluv88W1a8iRF3PFjCu5vOJspIQaDoavfKAIcFcttp2PYtv+CBkvfQNTv4Ng5bUEFn4O05mf4ujHDmJepgeQ8vLRL/xwEvUUFxfT2dkZ93vSx3R3PMBtU6kb474eyUEOGRwwYyvHfaQJY1X9ZQFB1YctksJKSwEzRZDhcEQdiTA0BTnaZz2k3sfEREEiOgk+FnkS8kYmm8jCgjGFJ/XJZdg0iAsBTF1jp/94cRssrOPVjTlaJJlyCjKZwkWjNYl1nybAldK6qJCoP3UNs5GMuSzhTpvOf/gZNDwyhYtWq7v/s5pgtkTsGt0zM2HPbgAceW6ccyevkHtaVsFXv/pVPvnJT1JaWorb7aa7u5t9+/Zx8803j7jvgQMHKCkp6f/sdDrxer0cOnSov26G3+/HMAxuvfVWdu7cic/n49vf/jZLliwZ42mNDKm3hkyGlsEpOVWcklPF5yu+xL07fskf9zzA201vcttJd57QXqeuYJR3qjvYWtfJ1voudtZ3MD+6lWvlF/mstIlWBR7LWcy2glMIuQSuyGoaAn9hZ2c7f2rtTtqnJGS8mheflolP93FOwfmU2IuZvauH/FfeR7y1Acwm1FOqsH3t42inn4XQj69CsVOYWAiHA/2s5ehnLY9Rx+/ZTXj964TXryPw+/sJ/O4+pNxctDPORjvjrBEZEQsybHxr+UJuis7nxd37eXjvI1SHX+FX+/6DX+8sYLHrYj5XeRmVeZlDDDHTXYh/6dfwn3wTau2b2Dc/gP2de7C/92tC5R8lsPiGITXEjiWE17xKdOsWXDff+qENY503bx6f+MQn+sPz2traWLt2LcuWLYuLcLjxxhuPopSpIQmQJTCNZLrv8CqHSFEZqL3Ei/dQevkOg5UlIQSGNPo8MFlIcQqlKSlIZnTM5oJLCpGqio6MRK7kpdZsRROJq+bj1d4TldPk/YUdGuowhBlOXabO58DRGhjZaBpGIU78xpA0ZDOFWyoFdDRCqVxZgDUkoip1aeGk+zP+UT9+kKy4skAWMgElE3skfeKJ0dBkD+dxjEoaykhzIu0CYsMtVEpjXI0ZNJ9E7G5QhEw0Rd6cQ9jijKZkMLWB37pwthNrEiMs0vpVvfLKK7ngggvYvHkzHR0duN1uFixYQGZm5oj7BgIB9ASlWNd1/P6BQGPTNLniiiv49Kc/zYIFC3juuef4yle+wgsvvIDH4xnlKY0dOfZcbjvpTs7KP4f/2fJTvvrGF/nhyf9Fpe/YVZJGA8O02Fbfxbr9rWw42Ma2+i6yrHaWKTu40b6FMtu7bNSjPOd089+OMlqsENAE3c/iC/socBRR4ZmNV/Ph1XxkaB68mheP5sWjefBpmWRontjNBBgNDYSefZLg0w9hNjYgMjOxXXMdtks/hlw0eSsBUzh+IYRAmVWBMqsCx3Wfx2xrJbz+DcLr1hD859MEH38UYXegVp0WM6KWnZ7SO6kpEpfMncklc/+DVv/X+e2WJ3mt6XHeCd3Ppg0PYQsu5ey8C/nUvFOZme1KEEQiUnQ6kaLTkToOYN/8ALbtj2Db9Rjh4jPxn/INIoWnHYERSR9WOEzPr+5GLi1Dv/ijR1uco4aOjg5OPfVUurq6+qMhlixZQigU4uDBg0dZujRgJafVzpe8HNZ6RvQiJPt2NJTYEbuKFki9Ap0OskQGOirNVieWgKjQ0Yg3mhzo+AkN24+OSojIsPqdjISSJJ/D9LohNHz9qnQQlW1EJXu/ty1ZMV1TTZ67MdlepYhs7zeaSqU8iuUitjM6MoAhSAyxj/uYhqfpGEDfuEgjSDfuulfDGbij8PYZsm1UhdREkty2ZEfLk7zszjHIaBhbgefhzqDFTKjLNGgsHLqMP2Qk3T/ZNgc6nWkmHx5tgzztpcimpia2bNlCd3c3t9xyC9u3b8fn842Y5OhwOAiF4h+MwWAQp3OAdMHlcvHDH/6w//NFF13EPffcw3vvvcfy5Uc+kfmcgvMoz5jFdzZ8i2+/9W98d/H3OSv/OEuotixEpIdwVyM79u9nz6FD1NfXYAu3Ml108FFbA7OcB/FbnTzpcnKv281ONRbOkm/LZ0nWYmZ75jLbM4dSd1naJBlWNErozdcJPvk4kbfWg2WhnlKF82vfQjvjrA/t6vcUxgbJl4nt4kuxXXwpVihE5J2NhNetIfz6WsKvvgyShDJnXoxM4uSlqAsWIvShbI2ZDif/r+pqbrGuYl3dBh7c+Tf2SOt5sXstz63JxxM9jQuLL+Kjc2cxzRefw2R6ZtBz1p34T/02tm0P4XjvN3gfv4Jw4Wn4T/kmkaLTj4lCuoG//xWzppqMn9/1ob7PfvKTnxxtEcYFS0qugKtl5bSoh7F1pTY0hmQLjGFaCgtsaAQJj3leSwgcQh/WUeOVnPjNYYwmy6KnwINSl7q2TiJ7WZyimkJ2VZaIGEM11M48N/5MB/nbB4okJ7pNhACb0OgRJpKZ2rOkyhK6EnvF5BxcOHaEMTWt1PW5hijpg1nJBCIt4ziVoi/i/k0GDFUeVcijrkqEIqPMx+ujeRdJePYHIVO4aUzpvxzFoZJsE4yuflBEccBI4zLodJIZTcngxEYwY6jRZFOkuMzHkFNDDUaRktwXqaALjYCV6v5NdxIJGnynYJecdDb+Ka09ZCEzQ8rjgNmQss08d+mk8b+k9cv62GOPcffdd7Ny5UpeeuklbrnlFp544glM0+S73/3usPuWlZXx1FNP9X9ubW2lo6OD6dMH2Kn8fj/19fVxOVNAP5Pe0UCxs4RfLvsN39t0C3e88x98de7XuLz000dNnqQwDeT2fShNW1BadyF11yB31SC6asHf1E//Wgic17ePChHVxStZxdzrLOFNswMTi0rvfL6Uv5xluWcwzTl91Iw/Rn0dwaefJPTMk5jNTUhZ2div/Rdsl3wMubBoQk97Ch9OCF3vJ5SwvvX/iO7aQXjd60Q2bSDwlwcJ/On3oKqo8xfGjKglJ6PMnhNnRAkhOLPwVM4sPJWuSCdPHXieJw88RWPkCR5te5JHXiojyzqZC6et4OPzyinIGNjX0j0ElnyFwMLPYd/2Z+zv/ArvPz5NuKAq5nkqPvOoGU/Rgwfw3/drtDPOQqtadlRkOFbw2muv8dvf/pbGxkYMI14RWb169VGSahTIHojgMAfpMJbLgRUdce18AgQYuYBsX7jdeFEoZVFrtqT8PuLUURh9HZvh4LIpdAYiGEkUz1TegcSWZiIvWF+DQYqtrkhEfHbUtgCWNIpwIcvCY1cxTZOOwNjGeLhxMLGGpZq2hhvtNJ9vfccPJdTTMiWRNsebIglsyuiNpnTnijoklHN0SLa2EVAz0SK9HphR/BaYkkaTZxa0vZiyjSZJhHuNmu4cF87WsZsFWn48f0BraRa29gC+6ngv5XBnkCe8HLBSGy6pekh0XIZVN4qcOqLMnoQt0yviF/HNQWOdK7vQZe3oGk2/+tWveOyxx/D5fKxduxaI0bp+9KMjh4BUVVVRX1/Pxo0bWbp0KQ8++CDnnnsuDoejv01LSwtXXXUVDz/8MGVlZaxbt47m5mYWLVo0xtOaGHh1H/9T9Ut+9N4d3LP9LppDzdww+yv94WdHHJaF3LoD7eAraIdeRW14DxGNTQ1LyARseRy2stkeKKXOWERA9VGQX0xpyTRKS6YRsXn4Z9sGHj34d6r9h8nWnFxd9FkuLL6EYmfJCAdPIo7fT2jNq4Sef5bIpg0AqFWn4/zmzWinn/mhXu2ewuRCSBLqnHmoc+bBF76E6e8huvl9Ips2En5nI/4HfgP3WyDLyGUzY96oOfNQ5s5DLi1DKApuNYNrZl3JNbOuZH/XPp468Byv1K6mw3iER1r+ykPPlzJNO42rZ1/EhRUzUfpWcRU7gUVfJFB5LbYP/oLjnXvwPnk1kfyl9Cz9OpFp5xxR48mKRun+0fcRNh3Xv996xI57rOJ73/seN954IxUVFUNIP44LDJK5uTQT9752yshMi/h3QsLBRmA8V2WJLsmNzUwkh0ihqg+6FwTxq/82RsFylcJJM5yBkMoT4NZl2tMwSMQoE3QkEWMF76uJG8pzo7YFCDuLgKYh7R3Y0IRMuxUfRigAZQxz1zJHFtfATEoPLYa8iUE2Rs6ZSvSMOYWNUBK1NarYUEOx/BQVBY9w0Gx1Dml3JDDeO8WhKRMfmpjCOWZJMro6YDSZqkyenkNDKDanMkV8vUNTKEjDsd6lffKCkCN5TuNoZmf8KcXTQhgjsPN5hYuZUgF7zQF6nOHEn63njUKy0SMtrVaSJHw+HzBQc0BRlLRYcGw2G6tWreLOO+/sZzD66U9/SkNDA1/4whd4+umnKSkp4T//8z+56aabMAwDj8fDPffcE8eud7Sgyzr/ueSH/HLbKh7Z92daQy3cvOA/jiiznty6C9vOR9F3PYHcXQtANGsugbmfpsZewbMteTy030FDm4lTkzl3VjYXzcnl5GleFEkQNkL87dDjPLz1QdrCbcz2zOH2k37AWXnLkUd5HpZhEHl3E6HnnyX02isQCCAVFGL/ly9gu+SjyPkFkzEEU5jCsJAcTrTTTkc77XScgNnRTmTz+0S3byO6YzvhV18m9NQTscaajlI+K2ZMzSxHLi1jelk5X1vwVf5t/lfY17WXZw68wOral6k1H+Lne//Cqu0zWOQ9g+vnf4T5OaWxfhQbwYXXE6y8Btv2R3Bs+iXepz9LJHcR/pO/Rrh0JRyBBZaee+4iun0b7u//CCl7ZJr2Ex25ubl85jOfOdpijB29c8aUJcIunR69ABEapLgO5whIsX00+RWxflK3FwLy3DodI+S4J+tBkoBe51+f9lAoZVJrjpwwP1whUcPjgramUYVEJVKau2wKPSKWD6MaA2FbFoKo4oR+BsHUx1CEhG6TUHutJtOmEM51Qc/Ac8DCQpUlArKEL+rE3xvi5NdzcEXjvW5Bt46tK4RDk/GHjQlR0rOFmzoxNCzN0FWaSjIYPfXVUKmKZB8ZkqufxdGpyyiSwD9oVqjI6EJNOZzmGJ+dw41RfGjm8OF7iU3s6AQJJTgVjbimiNhcsUbhHLN6VwMSiSA689yD2gg0OX48HGIgCsIrnHH1lPx6Dq7g6Dg41WD6eYwlUg6D7/BIivSNkZ46FgKzlwAisTivKhRmSTF90iG03vbJr1eRV+dw3zFF2iwXY0JaGvOiRYu49dZbueqqqzAMgz179vCXv/yFhQsXpnWQqqqquDpPfXj66af7319yySVccsklaYp9ZCELma9VfpssWzYP7PoN7aE27ljyI+yKY+Sdx4poENuux7Bt/RNq02YsIROefi7+U75JS96ZPHtY5qmt9Wxv6EaVBWeU+vjm3FzOKM3E1su7HzWjPHXoaR7c8zuag00syVrKbeWfY1HmSaMKv7NCQSIbNxBa+xrhdWux2tsQTif6+Rdiu+hilAWLJraA3xSmME5IHm8/Ix/EqLjNmmqiOz4gsv0DjN27CK99ldDT/+jfR/gyUcpmkjd9BjeUTOPLRd+k2mPx57aNrG97g3cDf+LdDX/CbhVzRu7ZXFmxkvKMCoSsE5x/HcG5V2Hb+SiOTffg+ecXiGbNwX/y1wnNvBhGE54zCgT+/leCjz6C7VNXo5+3clKOcbzhpptu4s4772T58uVxEQ0Ap5xyylGSaozoy2FIUwnoaxV2aGj+0bGqJe8piUhWzLMwEmRk3MJBM1HsqkyGphBOUvdouHOzhvk0GBkOjZq2obkew0mZaEjae383TUlhQBe2ettKhFU3EBzxWiQqt4MRctuwtQRx2xT8hhnXk5Wwdm+68skSbShRg5FSTfpomP16HjDgAfTalSEeNZewM82ZTU1wb/zxNJmoTU1kfkgLuizhtnpptq2Y4jo4gFESAsmZ20/MYUoKmMObLJakQoJ/VVMkwklqd7mw0Z1Yn6zXS6hIgmjvvHDbFFp7xnZf6CLmKAgOIgERxmD5hjPrY8gQDjqtAQ+cS1cIRg36ZmqfjRZyaPTkjN9pIEsibfthNPlMdqFi9C5QRGUbHc5SMnoODLPHwMgkiiOJ2NzNFV4aBpGYOLHhFEPzk5PKow42ZcSoF4lGg7SMpttvv51f/OIXfOUrX6Gzs5Mvf/nLnHfeedx+++2TJtixBiEE15Z/jiw9m//Z+l98662b+PHSn+PTR2YQHNVx/M3Yt/4B+9Y/IgVaiGbNpfvMO/CXf5y3mxWe2lrPKy8cIGxYzMpx8u/nzuTCubl4BxXzMiyD1bUv8Ifd91Pnr2Wedz63Lrqdk7JOTksGyzCI7t5JZOMGIps2ENn8PoRDCKczllNy9jmx8LskCfdTmMKxCCEEcnEJcnEJ+vkXAjFDymptIbp/H8bePUT378XYt5fQc89i+WM/7h7gq7LMTQWF9OTMZ7MaZKuzhfqcP3P7zj8TzMphefG5nFt4DvN9CwjOu4bgnE+h7/4Hjk13k/HCV4h6Z+I/+SZCsz4G8sTR6wce+xs9d/0P2hln4fzq1yas3+Md//znP3nuued47bXXkAdRzwoheP7554+iZOnBpFd5EgOqhmVPb970KfQRu4rmD8dFicpIwxZV7ctzEVZi3kHskypLGJaFQ5NiXlbVh8OMr0WjanZyogNEKl7hoJlOhABZkiAuxyy5ipno6RmMVEpprsfOBzUwdIl/4EwCWhb2cOr8qb6mccbLBBQRHYzOfDeelmB/DzJSau+gakex2lEkCcNMft3M3rycPvbADmcZDU4n04mxRMqDQvx8To22XoMhkpcFLfFGU39NrzGcnl2TsRnaoAkbP3A2ZzG5meVU18fC+IOqF1eom1RXVEUhksQ8dekKrdF4o8dQZTDlQYZuH2J9S5IgIuyoRsxYUWRBdAxFi73CSYOVmpkwMQg1GZQEw1hXJILR5B5EQ1Ix7NPRevaMWlYAj3Dg1GUMxaIr140wTFwtA2GgiTKO1tDoWzfpckzDSsgPkwR4HSpGYGT+PLcS06G1YbPdRjspj7LRtGfPHm6//fYPlZGUCh8puRSv5uPOd7/HTeu/xPeX/JjyjIpx9yu37sL+/m+x7XwMYYQIzTifwKIbOORewtPbGnnqoX3UdYbIsClctqCAj83PZ3Ze/EqEaZmsrX+V3+++n4Pd+ynPmMWPl/43VTmnD+sJskJBojt3ENm6hejWzUTefQerO8a2IpeVY/v4J9CqlqEuWYpQJ6/S8hSmcCQhhEBkZaNlZcPSU/u3W5aF1d6GcfgwRvVhjOpDGNWHcVUfpqr6MFWBAYUuKtXT5HmYet/D/C1LxzW9nOKK05g991yCVzyPfuhFnBvvImP1NzHW/4Tg/OsIVF6L5Rh7GJ0VjeL/zf8R+Muf0M48G/cdP0RMYl2K4w1vvPEGa9aswes9/gtlW5bFwcWzmdszwFKVjnLTme+OEQoEBhTMaVIOEYdGdffh/m2DU3YMTe4lB7CSRi65bUp/21lZi2n3V+M3a7D1howDFNkLkLoG57LEVroVMbCSPhyc2PrXmhUh9/sZbKqMKktoUh8bnYQ1yAAUkqDbXoxspq7nMkQx7RXGlAVSghIdVtxo0a44o7OvaGxqM2cAGbKNTiPB89HP6DYAeRhFseOUeWS8nTrEKqh6sUSfCmfRkjEvprwKGVUVqAkFlyToz8tMpg9YQtDpnAE9w9fESQbLXYgpTOiOjVPiWMtCwa26B5FMDD+GrRX5uPcPDdksUDJoJZ5NsXF2LpbkQdm8I1Gq/neGpKD2GlUZNjVtb1NnQQYZtZ29EieTOT3vTEdhBp7a5LlbTk2mU8TL2+EsozVjBrPw0c4e8jOSL5rEhxtavXL2Sdsrr4DuXBd6VwhaUlPwt7tm4mzdgoYSF+o3GF67SkvU6D/CYCT62TJsCnbdxs42f4pS1/GkIx0Zc1jUafK+sT/psXtseeih5GG85og+volDWkbTd7/7XZ555pnJluW4wbK8M/ifqru5493v8q9vfIl/m/dNLin52OhD1CwLtXotjvd+g3boVSxZJzjnStorP8/qZi9Prq9nw6HYykzVdB83nVXK8vLsfhrTPvQZS3/c/QD7u/cx3TWD/zzph5yVf05S0gqjsYHoti1Etmwmum0r0V07IBq7SaSiYrTl56AtPRV1yVKkzKyxDdIUpnCcQgiB8GUi+TJRF8aT0ViWhdXSglFbjXH4MPU799K1YxcZDfuYfbgdx4atwFZ6uI8uSRAtyMVZvgQ961ScoW24X/kF9o13E5p9GYGFX8DInjcq2SIfbKPnf/+b6PYPsH38kzi/8e9ThCsJmD9//tEWYXwQ8WqFKSkYioVsxnIOuh1FeEmugA0oSgJDU6DXaLJ6v1OFgk+4aOstFqkpMpFowhK9lVxBHLxFkRSEEENWmJPtk5Gh4wgqEGZEq8kuNDp6w59KRR7biRJW3UgiRL5bQ5Z0wn7I1csImV2EQjEFWpVU3GouecIBKcZmaH5hv2sp9k/QP/Z9RlOy9gm8efTY8oHuhJa9fUtDjcWAlomHjrjWgxEpn0ZIGFha/AJlWHbiHOSpM5ONfa+HJ0NXUcRwFNZDL4RPOAipHhCjM5ocukxLlgebZiQOQ8IRhxqNFlZ/+Fzd/AIKtsaMRENXkpLp2KXki7Zdjmn4SDSa4o+e+C7BThkWmpy8kGui2dBcWoBrb82QdmFHX07OUCiSRJZLJzDYudrbsSrFvLa6OvRah1U3LkWjrTvROE+OkDs9b3VGAjlHd56LHLcOWHgcGroAugaEHJZtUYlFI/n1bDxhPz22PNRA9aAGgopcF7sau+lwltFlL4Hae4d0o6sSfls+hq0YupPc34kFt5w5o6p7NRqk9Wt7/vnnc8MNN7B8+fIhxWbTYdA7ETHPN5/fnPF7fvT+Hfxi63+xufU9vlb5LVyqe+SdIwFsux/HvvkBlJYdmPYcuk/9dzbnfZLHdoV4/pEmukL1FGbo3HD6dC6tzIujPu5DorE0zTmd7y6+g3MKViD3PlBNfw/G7l0xT9K2rUS3bsZs7KWJ1HSUuXOxf/oalPkLUSvnI/kmNtxwClM4kSCEQGRnI2Vnoy5czIxLYAbQHojw9NZ6Vm/YDs0bKIl+QEnwEMXNjUzb0kxum0G3BQ3kIzlV7J7V2LzPopbPxFx+DcZJn0SoycNdza5OIm+tJ/jMU0Q2vo3weHD/4Kfo55yXtP2HHfn5+Vx22WUsWbIkrh4gwA9+8IOjJNUoYCWsywo4nLuCGfXPARDUfSQaBl3ZPlyHq3v3iCkxra4KCsK1EKglFSIeHVqGspylt/yXTAVMMACK8yC3HbF36DGspHsMoM80MVAhoQiuIlSQnANp+QLcSg6qMAg6daRwaAhVuTmIuthi9GFoffImUiAbkkZYzcDdazF0LcincEc7QQjvAAAgAElEQVSADiMQp/jnSl72EyGsZgAd/R1mCDtBK0xPb1vLYaMwu5TdCcePKC4wOhgWwxBhaJJCuZxF2IipuX49B0cv+1qplEe3LUYB4bfnkIzprw8hNQNlkHXktam0jLRgLARCSEmMpgGUywX0MOBZC9sdZKITDHQP5BGlOI4kxUfdJFPkxZD0nvQngN9VQrtZTCi4CyKDxiYhHDTgdSftVtdkPDlOBjvJ4q6UkDFlmfYSL55DMV+rJBQckhNVDKOm6x5I02gaCQMkKvEnEHbqaLKIhXqKocbn8J3KNGdUYrdXElKzcAZq8QwymsyEXF9TUumx5eIMNsb1r8mpj2ZIKiYWEgJvX8qIOx86JmZcEpGW0fTOO+8ADIkHF0J8aI0miFGS//SUX/DQnj/yh933s6l5A1+a81XOL7qw32gZDKmrBvvWP2Db9hBSqJ1o1jwazvwZj0aW8cQHrexecwBdkTh3VjYfm5/HySVepCQPiZ5ID8/XPMsTBx6l2n+431g627kUa/ceQq8+RHTXToxdOzCqD/c/SKXcvJhxtGAhSuUClPJZU+F2U5jCBMBrV7n2lBI+s7SYvS1nsHpnEy/srqc6/A6KZxNOfQfTG00WNeVwWkcu0+s66dlxED5ohCf/FyGtQvY6kYpmgDcXLBOzqRGjtharK6YgS7m5OG78V2yfuALJkV6x6THBjKK07EBu24MIdxKcfQWok0h6M8HIzs7miiuuONpijA+94XGZTpXBlVAkSaCpCorQiFoDIUZBl6N3t9jvhSHrSRXMRJU6Q9jpHEQN3WUvxhGtY3BieiqYyRT0hB1MXwZIIyj6SZD0uKni66D/XBsyT8UotFO45bkhbUxJISI7mKfnsCVQ02ePgogV8022MD1YjmKlhLl6D4cVCbrizymg52FRi0uycbKrgoiyl9pIfBu3sCOIYmFiOvOgI2YgSEjkS744M6Vcy6HDltdvKvoLMqB+FFZeCuNC9BZ8FYAhDapfNwoDotsxDaf/g/7PfYxm/T0k6UogkIQgoGWhy0GC9gwIdfU31Yh5QE00Ar0GUuO8acwVJtYbW0nsuq4yn4Jt9UCMZe2Tcxaw+o3H+tsZukJ3jpfsQXWH+ijcizUfemAoU5wqS1iW1U8aAeBujyneNlUlaroww8npt0eC16bgn51LlhWA5qHuOEvW6Jw1D6N+Y/+2WY5TIdSEA43EQfWI2P1u2b2YUuo8vWT6YyoM0NAPvtESbrp+vVb0y+S2ybQPQ7xnSYlew4H3EcU17MzrK27cZwQnPgIMScOUVExMzs6ekfQYE420jKYHH3xw0gQ43iELmc/Oup6q3NO5a9vP+a/NP+ThfX/i6rLPck7BeWgItIMvY9vxN7QDLwEWodKL2Jh7Bb+vKeK1V1qJGIeZl+/mO+eXc8HsXNy2oZfFtEy2tW1hde0LvFjzPFpnD8u7pnOL/1xK6iIY99xDR93AKo2UX4BSMRv9wo+gVMxBmTV7io54ClOYZAghKM92Up7t5MtnzKCh6yQ2HPokaw8e5H33q+zMfZ1HtQ8wIxl4uj7C6R3lrGjdwszm97E31xKtbceo0bH0DKT8EpQVK5GKilFnz0VZtBgxSXWHhL8Z/cALaPueQ6t5AxGNKQuWrBMpPA0jc/x5m0cKN910U9Ltv//974+sIGOFLJNhVwnZ1VhYziBtfpEyg0bXYpyaQk1oZ/92cxBjW2TWdCC+6GSB7MUSMc/HYHVCZjAVdq/iZFl4bQo9oYGWPXoeWSSryzTSynOSEKtBinEylDnykIMDXppstw69tX26F89FeyNeDitG1xb7kECYINwO6BncVsQpkhmyg6jqxodEI8k1v4hNRSChoKBOy8ds6ukNT4oTAgCHJmNOPw/e2zukn76Rbs3PpNDqgSG25CADz13EPN983u39HMifDfX7yZLc9Jixe9OUNESCp0P0B2IOj9i1FoRlJ5rR07st9V4ZdoXOYetaxTOWJVJDm71EJqZQCOjZtEwroLi9BhsaWbILG/Z+Hoc4ZkbLwhjE8NCfTzboWD7hRErwWFhAMMMOtNPnpFB737iFThcijgUvdlywKXJ/QeHWaT7y2vy4HCqmJmOO4LgYMEeHQpIESAJLlojIdqKSHVsklp9juguRAFORB8LyhA2538MU36cdjWK5CCsht0tOUjnJbZNBDL1uiXmRliTTVphD0aH4dl3Tc4HQQOqJKw969hNvAg0321KH+ba7ZhKRh2cI9NgVGiNDnxXxM03EOSkMb2nKRYOJwLBG0xe/+EXuu+++/s+33347d95556QJczyjwjObu5f9mrX1r/KH3ffz080/4N7NP+WCnh5WdLazSLhpn/sFHuYC/rwLGj8I47V3cuXiQj5amU95ztCV45ZgM9vbt7F7/3pq332VzMNtzKsXfKJJxdlhAPuAfRjFJShz56N8/HKU2XNQZlUgeY7/JOgpTOF4R55b59LKfC6t/P/Ze/Mwuao64f9z7lZ7dVX1vibdWcmeEJIAQohsAZGZd9xwQRl0EGFedUYdQWUQEGXwQRwRZHxEBVR+Or4qKsgiGFBklbAIJGRPSOju9L5UdW33/P64tXd1p7N0dwLn8zx50nXrLt977jm3zvd8tzpgNZ1Dn+G32x7j0Y5f024+xIPhR7k/spSR8MWEWzycoz/DP5jPsILX0HmNHvcm9ofOIloxn5Cc4CrXBNEG9uDa8SDWtj9gtj+LkDbpQDOx4z5Iqn4lqch80sEWMD0HPtlRxNDQED/5yU/Ys2cPdmYSPTw8zJNPPslFF100vcJNBEMntrwJM10ckxJzVWK7Q7h1/6j4nLjPS19TmERoNugaUgqElLkMV6FIA13dXirTxZm4jILz2JVe2A9xfxivlHgbItDuaAfpMlkfsxPj3uYQRjyNtys+ap+JqvjZOkRJ0swIhOiMJ0jgpJi29PwEXArJwHHLCL72Qm6by9TzqbxksSKnVYWhPX8dWy9wgZVQowUZMmvQ030whtJkzV1CxU4XMt6FXheBrtHB9FnXJlMXyBKrrMzKlmnrvvpqBqvrCb/ZXrRfNOhDWI57f6p2WW4y6tIMbN2xNmSz5A16mpBCQ0+XtLmUzKvx5+aM6WAzDI9W4IzMJDNuVWDFiu+ndDXfDvrRUvnrjFTVknYNke4aQO/sydmZxs2+t2wuZtVqav4YIxXNB/oLBDVGkOG0oxppaARcOt1IhNCwgFRm1UCOUX9nVlXJ3ElC0vST1hyrkKYJan0ujHj5jIxuS2ckMTr+Kx50Q28UTQjs8cxoByAgvBReOeaqdq6bUZrycYGjLTxxM4QAbE8VznxvbAqTimStRoUKjVkSCy91C0jSEDyFv8tOJw18AQJIBT3UBfLDC6Hl1PKoqxqib5Aep9Znqe2q8BkmdV/Z5iyMk8zJX2LV1oWOT7gZJIUmNFqtalI47ZkOtowpz5Fg3N/gvXuLA9qee+65MfZ8myMlet823G8+w3lvPMH/2bWRZ7U4vwxWcK/Pwy98NSB10r0bkck91Nc3cUpdM8fVhPEYfexKbmPHXpu+RB/7ht9gZMcWPK/toHFHP/PfkLw7Y2GWQqC1NGOtXuAoR3Pnoc+Zi+ab/iLACoXiwNT43Xxi6dl8grPZPbSTX+/8JQ/uvR+94m80e5cRNc/hrsEPc0v3m8zp+zPrhp/gxK13oG/7ATtlHRvME3kjdAJ2/Upm1lUzq8pHU8jj1OM4EHYao/MFrF2PYu18BLPLcXtx6kl9mnjbOU5iimO85trnP/95EokEy5cv55577uF973sfjz32GLfeeut0izYh3JoLaeqjrCYd4RMwDQ3v8OhAaCkgFvYS8rvoi+Yn/wKo9FmEvG5iQhC3QoBTcFRHwyPyylDFjDCx45fj37EPsf31gplSeTR0pBBUVPno647ixB0VH9MROQGdOIUTvuH6EDI6gBXVcmmiPaZOFyFciQHwViMyMjo3kT2nM11LB/Jx1QKJx9ByyVCkYZCIVJOsroSQhihZZU+aQVLVS2CXE1dR5L40xu26DV+mKUTZZE+GcFE04c3s02yFeQWI1weJBmuoSNkg+3P7hISPwjzZnbOaqImPZCyLAk1ozHfVoZsxth1gsl44pfRYOralo42kQDcY9tTji5XPwicxcgklYu5aHBWldFqYt5+k/EGiM+ciB98kbVg5panIvlXSRpU+C9NloVWE8Oh+UlowNwluCrnpG8k/o0otgG7GaQm1MVzTQEt3O29mak1Fw56iVqgRFXTKfnx6sctc0vCRNHz0+VpyqdfLu6k529yGxkgiXbaFE64qZKIvd0s+zc/Y+eeKz5u9x4pCpSlzot6GGgJbdxftX2ylcsZ+WvfQXrmaNtfoVOc1AYsdFCuCDVqEPQwhhYbwHQfkXffqg66iZQHb9LE/NJtq/zLSQ48XKCbFrnCldcdkJrnmgK+NLjOFXxhAioDHRAxZxArchmWZvwrx6eFR4y5mVePP9Nfsc7OEScRsIKxXwdBTAFQIH4P0U6NVYghtjHx/R55xlaa3dcFSmXkVSNv5206hjfSgxbrRovvRBnZj9G1D79uOsf9ltBHHZcD2VBFvW48vdAp612xiW7oYMbYSjuymOtyHbXTSOfIID3WleChjXfWMSJbslBy/VXLedqgYdjpYIujFXjgf14qTcS9c6sQgeY6tVV+FQlGeFv9MPrPo8/zz3Ev4/Z7f8Oudv+Th6DeY4W/lvQs/wJkNXySW0HiifS/a1j9Qt+8h3jf0W4yuX5Pcr/P3F1t51Z7BQ6KBkUArnsoWaquqmBHx0RoyCIsh9P6dGF2vYnS/htHxAlq8Dyl0UnXHM3TSV4i3rceumDndTXFE2b59Ow899BAA9913H//2b//G+9//fm688UZWrVp1gKOnnxpXmDErs0hJuiJEsroO9rwGQJXfykwNoSXscZSmzG93yAwwPJJ34+n1zyURt2HwBfzCg14SYG2YjpOPoLzFoEL30GA4SotfDzNs7yc76/FSbI2yhU7cqsLlbqRQaRqpCpB2udBeKk4O0d3YguiMIj1hBioW4optLYqsKhQn2tyGtdtxT9Q1gV4ZZDjZRqKqFjSNZGMDZnw/pIunUgIBuknH6eeSeOxpRBwQmrPqzehkFQBpwwMUJ3Vo0KqIWZ0k0jaGUUWvjOLNZjjLtr2esThpgmhzLV2DrQwN5xXhdMAHI44CHPQYVPlc+XwXGUtBqKGB4f7tJP2+cavYgLNCL3UdSBNtrcSzpw9NOm58LtM5n6EL4mlBzFUJ7AEBQ55G9ruPI2kEgR4GfK0Mebrxx5xF86irhsqUo2QOLliOkGnm1QR4eXcvad1CZoq1ZhOYSSFyc+SB2gDeKi/ezP0sqg/Sh4/XMpP90iLJBjotViXeoI+Uvwkt2perNWWi5+ocJcwAfiHRhU6LGSFVzmKhGUSrvHj7SvzqRNF/mIaBrUnMEuWgJzCP1lgPdjy/KO3V/NRqdfTJYUqTk+Td85y/+hoq8ezqca5T4laddY+rM4P06O5MQpMCFWOchB5ZXGVctTUEttAxhAvbCALduCwNt67j19y8MmMBkX17CWT2Lmb0OBtFrnSAcx1ZYKn2mRp+UcEumY/OG10eocD2JQQzPIvHvEbhn1JK6lyz0TIZRGUmNi9uBEdn+CiTMfpI8rbNVRt48DJcOx/GUYwyylFGSSr1Ex4L2/STDs8iPvMsUvUn0BVexm/3+vjtKx1seyGKy+jn9Ln1nL9oOcubKnJacyqdZGjnJpJPPol86inE319DpG0IBLBOPNFJ971kGVpT89tbcVUo3gYErSAfmvVR3tf6QTa8+Qj/u+Mebnr5Bu7YfDv/MOM9nN/yfwi3fgr4FL2JYcz259D2/JW2N55iQd+zuFIDznwvCuwZff6UMOnzthKvXYdoXYc5ax14wlN8l1OHpmlEo1G8XmfSOjIyQmNjI6+88so0SzZB7PFSRYOpCXpb59EReJPaVzfhtXTKxg5IiZF1nSn4OuV2ow06cw1T10mbOiFp0OyqxQnvz6x552csAPh8DbRk/JRSue+dz2G81JS46byx6p8KLjy6UkupUiaFyIcm5awHxS5LAauCaBLi9c2Y+/cSSWhEDA9CCBI19SUNAFpJUeDsJRfWrKHT2AtxJ7PgoKeJlJUAWaw4CQG9vtn4eblIErdwEReQDLgxbL0kvEsg3SGID5K1GCwMrWBnQieWrAJspDBoXtjMvo4Y1mvbCXlMLKNgtTwz8dMr/HhWL3SC6TOT8bGQQiNRWYuPPWBoJMMeXD3QGgkge5xnE6qoINhSSb8tqLFa6UwU1MQR+fPEXFU5pWnEWwXD+YxnQoAvE3fd65+LFRoCknlXLC2vNI0E3SQr8+5zXssgbhVPalOmD0bKJwsRBUrVHFEPjDBihun3tjHo2U8gtjczRxLUmgE6koPoIj9ZT7lNpF4a95U/54gVwd90PDVpG2vb70hlrLu2ZjCztpLIQJpovJNSvMIiqqWJ13lhS1fuzAhBxGvCYILB6grqdxU0bBn8mpv+gnislOElYSZJy7yyH/E6rpnR2VV4XuyiUgsWy2LqOc/SAU8LI/b+IgW71u+MgRN9bfzNsx/Lcpwex+LAM06ns2drhBXqdxG/xa4Bx03Vp7kwcRKNaUUudxQpWwCLG4K8XFLHSjDa2C0RzKj08Eo0RLvVylDqTYgPlcRVTe6ceVylKZ1O09nZmdN6Sz8D1NbWTqqAk0V81rnY/vqMluqsrUmh5bXUzDYy26SmI91hbHcltqcSO9iM7a0hlrJ5fGs3D2zq5Mmd+0nbnSysC3DlmXM4a141flemYyUSJF7cSOLJJ0j89S/Ye99AAEbbLKwLPox10jswFixSNVcUircppmZyZuN6zmg4mxd7NvKLHfdw55Y7+Nm2uzmz8WzeO/MCZgZaSbashZa1ACSkRIz0ovdtQxvuIDrYy/7BEdqjNtujbl4aCvJ4b5ihbs3x1HgdfNartIQ9tIQ9NIc8NIc9VPksqvwWlV6LoNs4phdr3v3ud3PWWWexYcMGVq1axaWXXkpraysu18TqlEw79tgTGgk5V8yZlWsJudLM8Bn8uaROSfaTBsTrA7nfNSFtuhYtovqNrdR22kgh6JxTjcsTZKZV6ShNMuNlUtIHbG81DDkTRH3ufNj7TO47j7AQGRkSx7WBlKR8wbL9KDv1NzUto1I4+/jdJhFrtOKTJWSFqfTPoWMojjfejg4sMKtxjZGO2NAEms+FQODVTPoAgQYCQmaY/pxroqQm6GZLsIVYrJMK0w12zuRTsHI9OuQ97TbwjfioMiuAvxPRfSAE6fBstL6dZN2jQlaEbOaHmREvGIYzNzANpGkgTS8tvllYRk+mnlXBajvZz6MVJtvQig0ehYk+BESsSqqrZ7E7sZfGhBvcYfxuE+IaqaZ5sL18IVFwFI90Uy2x5pnQ5cSQuU2dE5rD0OXEyFimCZqJpqdys2dbAzm69NeYG2K+FgbsIfoiq5nB60X3UogQAuzMoQI6V5xNOvoakEQKnRZ3mERK0q8LmiIe6quWMZKsIRH9K5ZdmrmjuM1MQ882GQBho5EYoJfWhcoqY9hgFL9PdJ9F2Gvmk/UIQazCA4Mg9bHSJRTG60G/bxZus/iZGBkL2IzqFhKaM2ISQNr0QXIYd4HSlDCDyEQ3vc311GdD5oTIPZv5tX58PS5S5ZQmAWZBov5yRYqz32kApbFYQqPaZ1EvXJi6ho7GTLOWJtGMTw8VHV9KQ4WbwZEUO3vyixZp8ta/XPlezcAz5xy6tw5iJ/dAuky7TqeladeuXaxdu7ZISTr11FNzfwsheO211yZPukkkMfs8ErPPO6Rjk2mbp3b28uCmTTy2tZuRlE2N3+KC5Y2ct6iW2VU+pG2T3r6V2HPPkvjbsyRf3AixGFguzBUr8XzgQ1gnnoxeV3/gCyoUircNQgiWVa5gWeUKdg/t4v/t/AUPvnEf9+/5Hauq1/C+1g+yonJlbmIrPRFSHqe+mgHUZ/4tB96Dkxp6X/8Iu3pi7O6LsafX+ffym4M8vHk/dskvo6kLwh4Tn2XgNjU8po7H1KkLuvjM2jY8ZQotHk1cfvnlnHbaaRiGwZe+9CXuvPNOuru7ueWWW6ZbtIkhNE4LzmXQ9vFnLQYdJW5AudARgSYMAlYQWaaga1vES6BD0A4ErQCd2hAp20ag5WuyZJZzZYlrkkAUWILKTJ10HdvlpjrdwiDb8Ao3UXcQv+gGM5/1qzpg0Z8YPVGKBmYRcG+iPw56ZtpTH/awWITz91gyaXZpJpoQuJM91PS9SGIkhibKxxmBkyBgOJFiplZD0GOyLyWoMEYv8s6t8pH2udlujjAkmhFiO6WuV4PHLSOV6kQIx+qQMjwkQx6SbhNGIGhUMt/VSEDXR7lijWq7rEXH8gMxknNmoB3/LurTBintVRJlJrQBt4k0dfRUGr9pMDjG5LPkSkRclVi6xXHueux0jDQCYRkEhEG3Pn6yqH5vK4nmuUjdxF8TYjiWYkVTRcayCcfV+hmIe3gzOgianpuYS00UhmrlZCllJOLLWSsTZpC4FSZh+skebHsqc/tGrUqGPHUwnFco0j4/XZ5lpGriyMy+WQXT1DWCrhq6RWnGx1KJ8n3bo5kM2XGG3PXoVm3O0a4cFgbxkufkWtkyqp5mX2MFI+kGpOHEJKVNLxAvqIlUQME2txYo3i4EXs0iEnTRPhBnb+XJVNu7oKfYCpYdC0mvh1GJTYROKuhY/VKh8mEezVoVw4xkmqVcSQGnb2tokLU0Zb5KBmci0/G8m6MAS9cJUp073BZ6Zulh9LlLh82MSk8u4+GwJ5/cQVp+pIgWnKH0HTCNlqZNm8arsPz2YjiR4tldffxlew8btnbRP5Kiwm1w7oJazj6umiUBsLe8TuqhJxjY9CrJjc8j+5wBq7fMwL3+XVirT8Q8/gSEu3wRS4VCoSikxT+Df1v0BS6e+y/8dvev+c3O/8cXnvkMbYFZvLf1At5ZfwZWmcxmhWhC0BTy0BTycHLJd4mUzb6BEbqHE3QPJ+gaTtA9nKQnmiCWTGf+2bnPqbSEo7i0Wzwex+VysXDhQgD27dtHW1sb559/PvX1x8YClR1owu3TGdHqkG/+kcIJvJQFaZeBijLlKXII8OteTvC1YrjDCIYRto1HC4KEgOamL3OqwnMiJdL0gYhlTiNHKTBZPLqfpb7ZvNHbT68ZIlrRQiST7lwKwXG1AZ7aA9lJUqLCQ4MWYcBVhV9z0U8cPas2FVhJhBDYQjDirqcw/Z3b0DBTTvpx30gnWKBH8okhCrEMQbd3DkL/OzoaTe75xU6Ctu0ohylnkm7ogkXVQdIvCdJp6GuoQA+6EAJSgQoGZRC7upr+Ch8MdyPNfXnFUsr8PPBgrbSGjhapga6x6lkJNE0Q9ls0uiQ9MS239J6ttRTSfKMSFJSLSbMWzEMTHcwN+al3hXkwn4SQlM+JacpmRUyaAfr8c3HHu/DNn0EbEHcbozKZgURoOna4guiQB7vKm3MTnq3XE2OINm9L9lZyRBsjuKtmwOb8xn7fLFJ1AeJz1xddIVt3zChwZQu4Dap8XtIhf4FLqyBphfEYXqSUB2V0qDGCDKW6sDUz9ww1BBGrkqSdpDAVg4GOKNEMs4tYRc2uCTBd1BlBDCEYSieBOFoqL29ho0ggYjZhWg0FWe3z31uZDHhJMzBuNyt8Qo1mmKSdwvZWYosh+tfMQ+/bwWA8VVYDyBaBLusIKgSL3U30DheXKgBAt0hXNMNQPiIz4DKKQgWzGfoKlcbsbbRl3DhfzZSxWuxpyPXznoqFUCbDoXO8cwY9EiTdM3rx6EjztvIFS+3YxtDXr0WmUo4bnK6Drjt/Wy6n0KvlQlgWKd2kOynpjEveiNrsGU6TQCNEms/7BbO8UN01jHy+A7ujnb7+/JDSauuwVq/BPP4EzONPQK85Nl0YFQrF0UGFFeLC2f/MB1o/zKNvPswvd/x/3PjS9dz66rdZW/9Ozmxcz+LwUrSDdE2wDI2ZEa/jMnSM87e//Y3LL7+ce++9l9raWh5++GH+/d//nTlz5tDe3s63v/3tYyIRBEJA5WzoG52YQOJYUDoGHUWq0peJ/SmT6S67xUBDeNygCWKNM3AbYVa52/DqXWQTRusF/UYgsUNtSNduAnoUUuXcq2QujkcXGjLj3pT2+snWiMpOjKRw9rctnaHWCLVxN0tCJ+E/foi6Z1/DtiVDaW1USunO0EpGPCPklCYpMVJDrAvsZcjlZffuILrHxGwIj6mopF1hErNbEFoab7fOcGbi5VR3yfydmYiLZApNA5elM5KEWMSL4QuxfnY1T293kmukI3NJeKIYmZpVqYzVJeUPkm0lIfIr7aXPonBFvNSxyNZM9leuoj/pYR6jjy1q/pKtXlyjs7rlL5rfZBmQBE03cBekoO5ftJK0xwPDO0dfq/SdUuq2KW003QQd+ptC+JKOBUbXBSfU1+LytpDUzZyLlZlxefOI8gWYMYpXZfSikIn8bZ3UGimUMreP1HR8ZoDRJWRLEbnkFac3nEWiqod07yaIZvqHo8nT4GsEoCstIdFTdPzocZf/7LU0J38IsMjdiKEJXgkP0xirxx9uI7JrC56sgibzLmhj60LFo1AAFWaYlNZRfvcMx/lmkKxfTdIVhPZHQUrmueoY1ON0ZIxRNX4XnUNx+n0zGRI2DOwn5DHw+C0GC62uQqPODNJb2LoFYhkF7oxuYToLLgXYYnSh3iy6JphT7ce1V8MwNNyaidQkXktnYX2AZ3eVZBAsUd7FwpOwX34FI1LJZPK2UpqEx4ve3IKMxbBTKboHYiSjSUjF0VJ9yEQCmYgjEkm0dBIrnaLVTjK3NDDXciE8HmQkglZbh3nccWj1jRhz5zlFZEOqRpJCoTjyWLrF+qZ3cXbjuWzs/hsP7f0Dj+77I/fv+R21njrOaDibtfXrmBUHw+EAACAASURBVBWYc0zHJR0K3/zmN7nuuutycbbf+c53+PSnP82//Mu/8NJLL3HDDTfws5/9bJqlPDzmVvuKip8XPuKYVTiJzJlAnNVv3WBg1VqSqczULJvcQXMDMer0YmuNQBT7y5T2pZKV4nQgwGDtMqTbhG6nLpCQ6fxuklETqMTss9C3RLEG9yDTErSMGqFl7F4C0lY+nbQEyNQLctcvonl+I3JwgPisNWiBAGwqLvYpEM6c1mVB2EMrXkZSdi4hk7DTmYX+bLxXYXyJwYCvEbd/jN/yzDEJj0X/khOw3V7YUn7XgyHursJOFxfzzNeqcf6b46phRwwGK8PUj8SwYhqVHotczrJSDVcIrFmNpN7sQvO5oA+kZhY9Q9vryyTDGo3mqyoqsFxKWqbR9ACQKYgtBDZOTJmZ64b5OZTX8NLiaqQh+Vpu/6zQg3MXYy2bUXT+uVYNg6lGZK4/lncbswxB0gjiNXVkLgxt9Duw0KqqJe1can/pDoPpg4I03oVHS8MovrKgyK01n3Jdx0AvqTfk0NpWy47qOUhdJyz8GRENpEwV3FexzG7NcWN0ZRQSI+OyJoBmfzMM9rCPAZKzW5jlipDu2Et3ibua9ESKztlkhnmZTsyUG00T1AVc7B+OM1zdRtplIaJbmOHx0ekxGSz08hMapi6ZWRsi2BLG6PbzRl/WIg01rhqkq464TNFohkYpNinDiwCqAwX9tYR5NX4MvZpUzRKMzpeYXe0j7rXG2LtAtOpGzHcff8D9Dpe3ldKk19UT+M/rAOgeTvDPdzxDLJkPRY34LBor3DRUuJkR9rC4IcjCugA+U4NkAplMIdxulaxBoVBMK0IIVlStZEXVSj6z8PM80fE4D+99gHu23c1Pt91JraeOk2reweqak1gcXoLHOPYtSQeit7eXM888E3BqDG7dupX3vOc9ACxZsoTu7u7xDj/qOfu4mjG/m18bQBAgUXU87L2fTFRS7nuJKJo/WtUh9HgCd20lJ0SrCGr5SUmiKoTYY5PyuUFCtTvIsFk8kSuMcxbzzqN3f5xUXKKn8+mdk4YPuzB2quh4wBVE+mtJmR7MAQ2paRkXp/y0VroN+lfNw/fKMEEjgJYNDPfVAgXxKmNYWCMei6ilUVdTS2zxyeh/+mOmPZzCocTbnckykAw5cSShOWt4JbqFuOnDJUb/1hemUbaldBSmQg60WCGy0TTFE8rGkIfdQ4lyR2Qu7JR/Bdi9ZA62YdCmJfA/vxOfS6ct7GWzy8glDshlN5QSzePCamsk4auD/p2kQ20wVBo7VSx3wG2wcn41ArDfqEKLdVGOtExjGBazFq+g49UukHESGsTD87FdfjSGR2Ukdut+RC5PeF5pSoUio8qquBtrsfZ4sPVx/IKFhmhYQUuin72xvdjITDtoRY/Dr7kQQtBVsRhjZB9JBvGmy2mEGathQZuEli+lcnuSob0DpPvTQK9TT60EM1CDJnXWtJ3G8xt3YRRMs01dw3Z7EMmEUxyWITShYUsbiSxbwLfOPYOZFVWER54hSoHKmHUhdDntsrfhHdRG2x0LV8E9FPKO2rXI/h1oXZtY7G9jRMwvGstDcxcBEO5YhVt7HSvT/2dZNWxLdGbGWZqApZFyWbhNjeawh/2DcbyWjhCCloLFGylt6jJxWAAnt0VwpbzsKjCLllvcS1XOJR1qw+h8adR3uXNn7i9ndZ1AmvYjwdt29l/ps3joUyc6WXx0DeNAxSFdbsQxknxJoVC8ffAYHs5oPJszGs+mJ97DU51P8ETHn7lvz2/59a5fogmdeRXzWRJZxryK+cwJzqPB2/iWs0Tpen4C8+STTzJ37lwikfwPuHaAAP1jkeykzjJy2SGKd8imwi5ImLCwPoDLdTYscRPZ+gAD6Si1fguEYFF4CXvM3fS1+LH3Ps6gHWdOZTWvNXtgT6FLTn6CousGJ7UFefC1ztwExmVlss5K59q2txrs4VzNnWwyAVFZheyGlsolVLctxwxE0WrrEPc/TLymAY12MHSWzl2Oq/E0hJaxWIjxk5FEXTXAHnRPkBnL1+OuqWVkqNhjpPe4VRh9LVQKZwZne534IM+sJSR37QeZzDSp4B2zIgxmirCm0jYmYGlGURKVwimbPqMVS3ppHPk7xgRdZseag+S2Gm6k7sI2vUhNQ9MMPDNnYtbVoKXriQQbODkc4cXuXY48QjhWtcLJpOkhPud85/tBJ4lALOBj/exKUmmb117O34lGvrhosqk0GjKPLW3s5kZcumCWWUe7XUGvL0pQE8jKJujd7Fi2YHT/LJOlsRSzqYaaSBuD2jD0baKcMgCA5SEAWPEu6jz1eKt9+Id9dO3UwS6+RnV9DXv6XND3UlERaVO30EUSDSdhgamZOSvbwhnVaOGFvMZ+hluriPE6aXepC61ACI2mphm4KtuoDS+geyiOVqjHZhjxNZCqD6IN7yXpNkm7LBiWmbJDBfcoBEFrdNyepuuQBquphkRVhLTpw627iViV1LvnAy/mZMri0l0Iby2wibrQHMyYC5ehkwIaKzwYUjhxqxlmWpW4NYNqI+AoTYYLiCIKMny6DI2msGf0DQLINIvqg7QPOHYlv8vA5TKZQIXgUSysD4xKWlR8d1PD21ZpAid9pkKhULxViLginNv8bs5tfjcj6RFe6X2ZF7qf56WeF/jVzl+QzBQH9BsBmv0tNHobafA2Ue2pIWSFibgiBMwgXsNLxDW5vuFHmpqaGh5//HGWLl3KXXfdxVlnnZX77tVXX8Xv949z9LHJePNNV30LdO5CDwexCwLUQx4TXM4kR3P5mFWVsXwInVpPHbWeOl7ofp50RQvStQstUEe8wULMWQm//aVzEilJBYIw1ANlPC+y8TI5+TQd21WJx4zS6vNiVjrWGWv58cQ3PIqRgkpPNWKWM7mOnfxOEgNxEO2AQBMawrLQOzMTwQMoIkPeZuKzl4JmgOXPTfayGJog7Q+iN9XAK08Wt5uhYwiTtMz7JfksA5/l3KfXcty0lnhnMOKtKTv/M+bMRdsfZ0Gvk3zkjdxzKg76L2XljAhb9hbHbmSV3ZCrkrSvETs1QqYqL8dXnZDfr+SPiOHD0q0ipUkWFjSVkoBRRVSP4zF1ZEGMU6CxjuaGgvE/RkeT69bS1+UjaLlJ++qc+DTfDLz2awifD7tyDkmXH9vfUHJgxpKjZ0spj43QBC1L56P3bSfxMkTD5cex9Y5TMTramfuagWb5MHSNGZVeuhyfz6J9Z569joHnX6L3by+jD2eso6bFcbNPIfmS417aEl5MtXs7RAsVo4ysmsHK1pOw+nbxaKZws+PSWjynrAu4qA1YucUNUfCQFtZlSswKjeiyWdDn1HgS5Xwhy/R3YRiQoKg8gAAafI1s0725Y2xvVdFx0h0m3nY2GB4WiRgRr8X2oXraAl5aA9U8+FonsYYZWO5BNCFoMB0X1bSvjoi3Drqd+3WXTUBUqjTZo8K+EjPPYEQI6CvJ7ncAmgoy/i1tDLJ1wEv3mwd1iiPC21ppUigUircqbt3N8VUn5CZWSTvJjsHtvN7/GlsGtrB3eA8v977EI/seHuUqBPDvi/6D81r+carFPmS+8IUvcOmll9LV1cXixYu56KKLgHyCiK997WvTK+AkYwoT6Y4w4G2hzrOGpc0z8VTUo3Vvxi5xz8uSaD4VkRjEeuMJ7EBjbrtEgmYwuGwZoTnvZLkeI2SFi3pJ1YqlDMdiCGt0vEFzyIPeWJGrU+gz/FT5Gwl6owR0g3ihMDkXvoKEBbm/Zc610NrzeP4QoR0wtTfa2NOboNtkWVMFVT6L1BYLEnm3uOaQmxVVK3iy8y+ZcVHccIvqA8R6fIiWhSSMGsjEiSXdVZCpBgWQisxH79026toF0WajqK9w45HFxUul4eG0+tNJeh/Ob0Mw1t0LBNIdphGzKHOZ813BSJcQNKpxe6pKT8GcdSfn3fzKkLTTdKYGea7DeSaVohIsH/G5/0jijS48gCGcPmQHm8ueo9c/B+kaZJSQZXFc7byrF9LTUaaCNxklwsinu3f+y/yvj+4LszySZMiNfH03cqGEZAK9ILNxtbsWYyakXv07uItdBqUQ+HRvUR0ngdMvR6eGKJ/8I9vH7VUr8bm7afUH2d3pYWG9i00DecVJypLsldkHmLlX218LI3sxzGIF2RYGqepF6LXLR907hnM/jRXO/wvDi3Nf6ZpgxopFGN37ctvSgSZOqjmHSNhPas/2zH4Gpzecxc7BHURclQStIESLXTilMTq1ubT8SN3EOAxPh7qgG2lU8eybrxe5P04FSmlSKBSKtwGmZjK3Yh5zK+YVbU+kE/QmeuiL99Kb6GUwOUDCTnBSzTumSdJDY+HChfz5z3+mp6enyC2vqamJ22+/nWXLlk2jdIeGLgyq/Ba1gfK+4VpdPQwPcFrdyTlXp57gAjTAZVqQWQ2WuguPqTMcTxcrT4YbabiJzzoHCuKasnEOyeowwuslgmMZEvVVpN7sAiGY3xAiFGqgr0yWP00Iqv3OtdfWvZOk/zGE6SKgl1lFz8a7FAjmzXiBSCTS9CN1C0YKUnILDXPxUtJ7diMCjpKxtDHIi3snnnI426bampORqSRt6Q66RvY7ddIaqtnYFSDkSY3KcmdqAs2lIzRBusBfKLrkdKitKJiomyQbViGFgRgn3KLfN3PM7+KzzgWhowudVK59slnbyk86W3wziNfEcYWXom/fhdbUBG9kFK7CqrMl7Z6dxMtxUsxn+evgNvpiwxCqZW5wPtUeJ95O10Qu5qvcpFj4A7C/E9u06PfPIjGrGjbeO+61AEf5ysSeRUJhUqnyCl1WgReBEmtUOctkYYr4eDyzW7HMekMj6DpaKFxy0OgMhprQDmgBLU2GAuTSqHtdkrTbAuLoFSXueJm2dM1pZiDq9HeRqYeWDs+lduYqZri90LM9J5smAMN9QJlKOWNepq5SYQioELh0F6ZmEqs/AWnl60jNDLSOkhMg2bAK2x1BCEHAbdBWmY/9W1m9AiOWcX8tuX6Dt4k3o3ude/M3oA/toxz13gZa3IsJpvcB/XkX0ElGKU0KhULxNsbSrZxb1luBQoUJoLa2NpdR71jjlNpTkbVgjGE1cS9ZissonhS5TZ2RpDM5Tle0IjUDO9DMkoCkeziRczMrosTVxm/66S1Kr+yQbFhDOrWTco7tJ7dF6B8aosUIFG3XhJYvull3PNIsTpygVVVjd3YUWY5mV/vwuXQ2DVrYIkE6shDe+CuQWb023AjDcYPLUhd0U+mzePT18gkLALT6hoIJsIOwLIRl0UobrYE2wGnDVTMq6Uv0jNYfcqv5gqDboC/qTP7sxmb0Kl/Rrjm3tKHiYrmFDLkbx/wOfeysYaXKXJaQK8wJ1audD3OdBRLpCiLiA8jChDBlLHy6MOlPdiClDWWfssOInaTaCFBfeQIhV749dS3voqZ7Ryef0dtmoVVWkX4zkbm0c+1E5dhJTrIySl8N8bb1RDofJzLGblo4gnn8KkQug3HOPzS3T6rueHTAVVVH2KrEW9eCTDkxOqKgb+R039qC92JG0ZRCz+9gWfhqmpxqYwV9HSBVvQhj/9/HvTU9M7ZTdgoMHf2kE1lshdk7lGTb/mEq3GZOfj0SZMjr9FGtIDV7KOCMuYTpbFvVGkbbfwTckUtj4qDIIj0ehS6ZxenhoSlQh9E8wot7B4qygQIcF1rAcaEFAKTqTyhT6jlP2BWhTw+SrJdI72iL6WSglCaFQqFQKI5C9HFczAAsffTE+aTWMMl0fkJsB53CoqYuqAtOrLD6TH8be4Z3o5cmXNCtzOr16Ov6XQZ+w4PRXSbYP0M5Vy1j4WKYM29UYpL6oBuPaynbB7fhMvOKmO0ZO9bOHMelDMBcuHjc7wtZFF7Mm9F9BMxid7lc4gBNY0VTBdu7o+zsjhJ0TWw6lb3LVO0yRt58jqThG3f/sRjPfa6UxIx3jt4oJUG3QVdBuxvCJG5H6Y7vp85bfhFFSomNxOeuKlKYACJek1CFF3PZCoJzRk+uhRCOQvNmZ27byElrGe5P4LF0ljQERx1ThHHg/quFCxWfjPVMMxieU0PoDXL9Ua+uodHXiF7dihxwrJiiwI2vnFKazQIo0dD7HKvOSe9YB8A2KwpCkDzxBKzwwvGFLDh1doxn4001jw+PaTHbbVEXcDkurgVlb1yWCRL0xiZIjBQpeubiJaQ7OqiIhIgbB2dhKiU+9x/R+ndidrzAaHvQBG7sAGQXOcYdsweweJ7YGqE/lsQOTOy9diRQSpNCoVAoFMcg5TIgmrrG4eY4yhZJlmOk8R1zKpMtaFuYHjpjQRLu8hMboevgGR37AI7VZIVrZckBU5Mvy6W7il2PshRYaExdY261j8YKdy5+qxzZ51QoudtXjznrNOiNlT1m1Dk8XmQsiqZpLKoPUOed2Ir/mOerqGBGxMPMJfNz25rdC9kafZaUPXaQvi3TUL8MaY5uG7/LYNWMMMwIlzkyz/EtIcyMK5zQDRBJ2iq9TpKSAhIzz4BksfunLgzScjz7QwEim13STcvqj+JPbURraMp8lXFxtG1kJqat0K2vbDeTNg0VbuojQdKBWozuzTmZ9bgjp+H2lI3zA0hXzIRovtYSjFaaCpW1XJ8qEGZRQ4QeUYEVcEEknwgEQLjcGC3Fda4OizLWyHE5yLF5oEWOA+ExdTxTnNBNKU0KhUKhUEyAZDLJt771LX74wx/y2GOPUVc3PS6NzWHPmArNkaAovqUAeaBJVDZjly/fLsIwMJYsQ6s4vKLvtjuENtLHgdKNTzolbSCEGFdhgnw6cVN4AJsGrzNxX1AXYEFdYJwjC86xfAXJv/4FSzNZVbMan3F47leaz4/nzPVF2xqCAbZGoXOkgxG7vDJnSxt0C007cMHRsajy5Y+dU+1DE9BQMVqplpbfyX5YwCl1ayd8nawCYlhuqr11cOY5xTtoAhmLYfd0O3u73KTdXpLhyjEWBgRVfou01yAVmY8W70caXvS+7ei6I78hysfWxNvWg+FmjSuJJSRkQnV0w4IU7BnelRGpzJUL4pIs06TWc+D6N9Yppx1wnwMhTccKarsObuxK461bn0cpTQqFQqFQTIDLLruMRYsWTbcYE55oHypaJoaiVGnSqqqx39iDKA1Uz6JbJGa805nsFm6uOfyYMjvYAkLH9o+vqEZ8JiPJcgVLjxDZZAFy4tfIrqi3epaxsiZIla+8ZW3cy3p9GPMXIONxKqzDU0DH4vjmCClXIwPJfgaS/WPu5/e58ZlHJoW/qWvMr514fx7lMjoOHpefKlc1IdcYUVCGgd3h5K3OJhRJn7CGWDxdVnmR2ZTiMu244jWscT5afrRkLyS7cRe4EMqsrELPuRZWZCxT8pS1IEGYAgad3dy6+4CFyMtlpCuHcB2+4iJ9NSRmnpFTng64vytEsnYZtv/wrKBHM0ppUigUCoViAlx++eUsW7aM2267bbpFmVSEEFS6qmj0Fccg6VXVaO88EzFOum/pOkBcyiGSDrWRDrUdcL8TWsZ3DTtchDczgSyTxnosPKbGzIiXtJSEPIcef6E3lU/ffSRZXXPiAfcJhbxlsyYebZg1NdQ3LUIfw2XNXL4SGY0iPO6c0rSyOcRI0sYqExNk+xuxh/aRihRnIE2H2mhJJ/CMdFLrzi8Q2MEWkoa7rKVGuJx+YAFrm07jjf0dRMZS7oBEy1pHUTcPXuE+HEoXQMZFCOyKmZMmy9HAlChNTz75JDfeeCPRaJSGhga+8Y1vjHJr2LRpE1/96lfp7e0lHA7z1a9+lfnz549xRoVCoVAoppZjMW35obKsckXZ7eMpTG8H9No6kBLtIKxnQgjm1b71iisfC1grVo75nRYIQKDYyuU2ddxjxcnoJsnGk8pfR7do9DWVXEDH9tcfUEaP4cmlbR8L6Z7cxQDFxBByMh2jgWg0yumnn84PfvADFi5cyB133MGzzz7L7bffXrTfOeecw+c+9znOOOMMHnjgAW699VZ+97vfjTrf/v2DkymuQqFQKCaR6urJdS2bCubNmzduTFMslsAwDj32Rtc10ulJdDE7Qig5jyxKziOLkvPI8naS0xxDcZ50S9NTTz1Fc3MzCxc6KRgvuOACbr75ZoaGhvD7nZWXzZs3Mzg4yBlnnAHA+vXrufbaa9m2bRuzZs2abBEVCoVCoQDgoYce4pvf/Oao7Zdccgnve9/7JnSOoXHq8kyEY8X9Scl5ZFFyHlmUnEeWt5OcYy3uTbrStHPnTpqb8364Pp+PUCjE7t27WbBgQW6fpqZis2ZzczPbt29XSpNCoVAopoyzzjqLs846a7rFUCgUCsVRxqQrTbFYDFdJFg+Xy0U0Gj2ofbK8FVw7FAqFQvHW5Uj8Th0rv3VKziOLkvPIouQ8srzd5Zx0pcnr9RKPF7sqjIyM4PP5DmofhUKhUCimi66uLj7ykY/kPl944YXous6dd95Jbe3hp9RWKBQKxdHNpCtNbW1tRQkdenp66O/vZ8aMGUX77Ny5E9u20TSNVCrFzp07lWueQqFQKI4KqqqqeOCBB6ZbDIVCoVBME5OeO3T16tW0t7fz3HPPAXD33Xezbt06vN58Aa/Zs2dTXV3N73//ewB+85vf0NTURGtr62SLp1AoFAqFQqFQKBTjMukpxwGefvpprr/+emKxGC0tLdxwww3Yts3HP/7xnKK0efNmrrrqKvr6+qisrORrX/vauJamZDLJt771LX74wx+Om/p1vPpP9913H9/73vdIJpPMnTuXr3/96wQCk+MHOZFaVRs3buTKK68s2rZnzx5+9atfMTg4yMc//nHq6/M5/z/ykY8UuYtMpawAZ555JlJKDMMxWNbW1nLnnXcCU9e2E5X1b3/7GzfccANDQ0N4PB6uvPJKTjjhBNrb2zn99NOLkpWceeaZfO5zn5sy+Y6lPjpd7Xgosh4N/XMish4t4z7LRN6tR0uffasx0ffZVPHII4/wne98h0QiQSgU4pprrmFgYGDMPplIJLjmmmt47rnn0HWdCy64gI9+9KOTLufChQuL3j1Llizhxhtv5Mc//jE///nPsW2blStXcvXVV2NZ1rTI+cADD/Dtb3+7aNuOHTv4r//6L6677jqqq6tz2z/3uc9x5plnMjAwwJe+9CW2bNmCaZpcdtllnHvuuZMi31jj/lDacN++fXz5y19m3759eL1evvjFL7JmzZpJk/HWW2/l97//PbZtc9xxx3HdddcRCAS47bbbuPPOOwmH8zWObrzxRpYsWTJpMo4l53PPPXdI42aq5bzxxht59NFHc/uMjIwQiUT41a9+xZe//GUee+yxXOZrIOeePJm1Vsu9h+bOnTs9fVMeo3ziE5+Q3/72t+XcuXPlm2++OeZ+69evlw8//LCUUso//OEP8rzzzpNSSrl37165evVquXfvXimllNdcc4289tprJ0XW4eFhuWbNGvn3v/9dSinlD37wA/nJT37ygMe98MIL8j3veY+0bVs++uij8uKLL54U+Qo5GFlXrVolOzo6Rm2fqradqKzxeFyuWrVKPvnkk1JKKTds2CDf8Y53SCml3Lx5szzrrLOOuGwHI9+x0kenqx0PRVYpp79/HoyshUzHuC9kIu/Wo6HPvtU41N+JyaK9vV2uXLlSbtmyRUop5U9+8hP5gQ98YNw++T//8z/y8ssvl+l0Wvb09Mh169bJl156aVLlHBoakgsXLhy1fePGjXLdunWyv79fptNp+clPflLecccd0yZnKffdd5/813/9V3n33XfLq666quw+V111lfza174mpZRy9+7dcs2aNbK9vX1S5Ck37g+1DS+++GL5ox/9SEop5YsvvihPOukkGYvFJkXG7PtncHBQptNp+dnPflZ+61vfklJKecMNN8jbb7+97LkmS8ax5DzUcTPVcpZy9dVXy7vuuktKKeX//b//V/7ud78ru99YvwmHy1jvoenqm8dsae/LL7+cz3zmM+PuU67+U3d3N9u2beORRx7hxBNPpKGhAYAPfehD/OEPf5gUWcvVqvrLX/7C0NDQuMddf/31XHHFFQghGBwcnJLV2oORdWhoiGAwOGr7VLXtRGVNJpNcd911udWE448/ns7OTgYGBhgcHCx7D1Ml37HUR6erHQ9FVpj+/nkwshYyHeO+kAO9W4+WPvtW41B/JyYLwzC46aabmD17NuCM961bt47bJx944AHe//73o2ka4XCY9evXT3oc2Fjj/IEHHuDcc88lGAyiaRof/OAHc31xOuQsJB6P89///d984QtfGLc9H3zwQS644ALAKcOyatUqHnnkkUmRqdy4P5Q2HBwc5Omnn+b9738/4Fj96uvrefrppydFxlmzZvGNb3wDv9+PpmksX76cLVu2AIzZtpMp41hyHsq4mQ45C3n99dd59tln+eAHPzjuPYz3m3C4jPUemq6+ecwqTcuWLTvgPuPVf9q5cyctLS257S0tLXR3d9Pf33/EZR2vVtVYbNiwAZfLxcqVKwGns+7cuZMPfehDnH322XzpS19icHBw2mSNRqOk02muvPJKzj33XD784Q/z/PPP584xFW07UVl9Pl9R3ZXHH3+cmTNnEgwGGRwcpK+vj4suuoizzz6bT3/603R0dEyZfMdSH52udjwUWY+G/jlRWQuZrnFfyIHerUdLn32rcSi/E5NJZWUlp556au7z448/ztKlS8ftkzt27Bj1/Ldv3z6pcg4MDJBOp7n00ktZv349H//4x9m2bduovpjto9MlZyG//OUvWbFiBS0tLQwMDPD888/z/ve/n/Xr13PDDTeQSCTo7e2lr69vyuQsN+4PpQ137dpFOBwuiltvaWlhx44dkyLjnDlzWLRoUe5ztp+C0zf++Mc/8k//9E+ce+653H777UgpJ1XGseQ8lHEzHXIW8t3vfpdPfOITORf3gYEB7rnnHs4//3zOP/98/vd//xcY/zfhcBnrbOSFywAAIABJREFUPTRdffOYVZomwnj1n2KxGJZl5bZbloUQglgsNqVyjMUPfvADPv7xj+c+Nzc3s3btWm6//XbuvfdehoeH+frXvz5tstq2zXvf+14uvvhi7r//fi688EI+9alP0d/fP2VteyjtumnTJr7+9a9z7bXXAhCJRFi3bh033ngj9913H3V1dXzhC1+YMvmO1T46le14KLIeDf1zorIWMl3j/mA4WvrsW41DeZ9NFU8++SR33nknV1555bh9cmRkpOge3G73pD97t9vN+vXrueKKK7j//vs55ZRTuOyyy0b1xUJZpkPOLLZt88Mf/pCLL74YgPnz57Nu3Truuusufv7zn/PSSy/x/e9/n5GRETRNwzTN3LEul2tKx9KhtGHpdpi6fvy9732P7u5uLrzwQsCxSpxxxhn84he/4Ec/+hG/+c1vuPfee6dFxkMZN9PZlrt37+all17ivPPOy2075ZRTOO+887j33nu5+eab+da3vsUzzzwzZe+uwvfQdPXNSU85fjg89NBDfPOb3xy1/ZJLLuF973vfAY8fr/6T1+slkUjktsfjcaSURRrokZL3gx/84EHVoWpvb+f111/nlFNOyW079dRTi7TtSy65hE984hPTJqvf7+drX/ta7vP69eu59dZbeeGFF4542x6pdn3++ef57Gc/y/XXX8/q1asBxzy7ZMmS3D6XXXYZa9asIRqNHlZfgMOvUTYZffRwZM0y1e14KLJOZf88XFmzTMW4PxIcLX32rcbRWq/wj3/8I9dddx233347s2fPZvbs2WP2SY/HU3QPsVhs0p99c3Mz11xzTe7zxz72MW655RYaGxuL+mKhLNMhZ5aNGzfi9XqZM2cOAP/wD/+Q+87tdnPRRRfx/e9/n4985CPYtk0ikchNDkdGRqZ0LHk8noNuw9LtMDVy33TTTTzxxBPccccduWt97GMfy31fW1vLBz7wAf70pz9xySWXTLmM473Lj7a2BCehzxlnnFGktH/2s5/N/T1r1ize9a53sWHDBpYtWzbp767S99B09c2jWmk666yzityBDpbx6j91dHTw1FNP5fbdsmUL1dXVhxWXMZa8jz32WC5LIJSvVVXIhg0bOPnkk9F1Pbetvb0d0zSprKwEKMoKNh2yRqNR2tvbaWtrK9puGAatra1HtG2PRLtu2rSJz3zmM9x888051yeA7u5ukslkLguPlBIhxGG1bZbDrVE2GX30cGSF6WnHQ5F1Kvvn4cqaZSrG/ZHgaOmzbzUOpq9MFX/961+5/vrr+eEPf5jLZjten2xra2P79u3MnDkTgK1bt+ZiESaLgYEB+vv7c66NQghs28bj8RS5BxXKMh1yZtmwYQNr167Nfd6zZw+hUCgXK5Jtz1AoRCQSYceOHcybNy8n57p166ZETsi3U5aJtOGMGTPo7e1lYGAgN+63bt3Ke97znkmT85ZbbuH555/nrrvuKsrstnXrVpqbm3PWhWzbToeMhzJupkPOLBs2bODyyy/PfbZtm9dff70oI56UEtM0J73Warn30HT1zbe0e9549Z/OOOMMnnnmmZwv4913311khjySTKRWVSGbNm0a1dl++ctf8uUvf5lEIkE6nebuu+/mtNNOmzZZu7u7ueCCC3Kd9oknnqCrq4ulS5dOWdtOVFYpJVdccQVXX3110UQf4M9//jOXXXZZLtj6xz/+MSeeeGKR2Xcy5TuW+uh0teOhyHo09M+JypplOsf9wXC09Nm3Ggf7OzHZxGIxrrzySm655ZaifjlenzznnHP42c9+RjqdprOzkwcffHDSUmRn2bx5MxdeeCFdXV0A/OIXv6Curo5LLrmEP/zhD3R3d5NKpfjZz37Gu971rmmTM0vpOL/tttv45je/iZSSeDzOPffcU9SeP/nJTwBncrdx40ZOP/30KZEze/2DbUO/38/JJ5/MT3/6U8Bxqert7WXVqlWTIuMrr7zCb37zG26//fYihQng2muv5cc//jEA/f39/PrXv+a0006bchnh0MbNdMiZZfPmzUX9VAjBv/7rv+be++3t7Tz44IOceuqpk1prdaz30HT1zSmp03Sk6erqytUpyQZ86bqeq8Ey0fpP999/P9/97ndJpVIsWLCA66+/ftJcIcrVqqqurqajo6NIXoBLL72U0047LZc1B8jlnX/mmWfQNI1ly5bxla98ZVIya01U1vvuu49bb72VdDpNRUUFV1xxBStWrACmrm0nIuvGjRv50Ic+NGrF9qabbmLBggXcdNNNPPjgg2iaRltbG1/96lepra2dNPkOpkbZdPfRQlmnsx0PVlY4OvrnRGWF6R/3MP679Wjss281xnqfTQe///3vufLKK2lsbCza/pOf/ISbb765bJ9MJpN89atf5ZlnnkHXdS666KKi/jxZ/PjHP+aee+5BCEFNTQ1XX301s2bN4q677uKnP/0pUkpOOukkvvKVr2AYxrTJCfDud7+b//iP/8i54fb19XHVVVexefNmhBCsXbuWz3/+81iWxdDQEFdccQWbN2/G5XLx2c9+Npeh7Egy3rh/8MEHD7oN29vb+eIXv8i+ffvw+/1cddVVuXfvkZZx5cqVPPTQQ0Qikdy+jY2N3HHHHezZs4f//M//ZN++fWiaxvnnn8+ll16KEGJSZBxPzjvuuIPbbrvtoMfNVMt555134nK5WL16NS+//HLRwuerr77KNddcQ19fH4ZhcNFFF+VCZQ621upEGe89dP/990953zwmlSaFQqFQKBQKhUKhmCre0u55CoVCoVAoFAqFQnG4KKVJoVAoFAqFQqFQKMZBKU0KhUKhUCgUCoVCMQ5KaVIoFAqFQqFQKBSKcVBKk0KhUCgUCoVCoVCMg1KaFAqFQqFQKBQKhWIclNKkUCgUCoVCoVAoFOOglCaFQqFQKBQKhUKhGAelNCkUCoVCoVAoFArFOCilSaFQKBQKhUKhUCjGQSlNCoVCoVAoFAqFQjEOSmlSKBQKhUKhUCgUinFQSpNCoVAoFAqFQqFQjINSmhQKhUKhUCgUCoViHJTSpFAoFAqFQqFQKBTjoJQmhWKSmDdvHg888MB0i6FQKBQKRVnU75RCMXGU0qRQHKU8/fTTPP/889MthkKhUCgUZVG/U4q3E0ppUiiOUn70ox+xcePG6RZDoVAoFIqyqN8pxdsJpTQpFJNIR0cHH/3oR1m2bBnnnXceTz75ZO67np4evvjFL3LyySezfPlyLrnkEjo6OgC4+OKL+dOf/sT/z957h9l1lYfev11Om6bRqFrd3XJDMm5gG2NjBwc7/kiBkC+B2EA+iEm+gIFrnFyI8eWDxJdQYiB5boAnN06A0C5xb4CNiyzbsrpmJM2Mps/p/ey+1vr+2GdGM9Koz1gu+/c8ejRn77XWeXc5e693ve1rX/saN954IwDj4+P8xV/8BW9729t461vfyp/8yZ/Q09NzUo4rIiIiIuKNQfSeiog4OiKlKSJiDrnvvvv4zGc+w4svvsi73vUubrvtNiqVCgAf+9jHCIKARx55hGeeeYbFixfz0Y9+FIDvf//7LF++nNtvv52HHnoIgL/5m78hCAKefPJJnn/+eVauXMntt99+0o4tIiIiIuL1T/Seiog4OiKlKSJiDrnxxhu58MILicfjfOxjH8PzPF588UV27tzJtm3buPPOO+no6KCtrY077riD3t5etm/fPuNY3/72t/na175Ga2sriUSCG2+8kb6+Pur1+qt8VBERERERbxSi91RExNFhnmwBIiLeyJxxxhmTf7e0tNDZ2cn4+Die5wFwzTXXTGuv6zqjo6NccMEFB421Z88evva1r9Hd3Y1lWZPbJ8aKiIiIiIg4VqL3VETE0REpTRERc4gQ4qDPiUSCRCKBruts2bIFwzCOOE6tVuMjH/kI73nPe/j6179OV1cXGzZs4JZbbpkjySMiIiIi3gxE76mIiKMjcs+LiJhDhoaGJv+u1+tUq1WWLl3K6tWrkVKye/fuyf1KKUZGRmYcp6+vj1qtxp/92Z/R1dUFwNatW+dW+IiIiIiINzzReyoi4uiIlKaIiDnkoYceoqenB8/z+Kd/+ifa2tq4/PLLOfPMM7n00kv5yle+QiaTwXVdvv3tb/OBD3wA13UBSCaT7Nu3j3K5zLJlyzAMg02bNuF5Hk888QQvvPACANls9mQeYkRERETE65joPRURcXRESlNExBxy66238qUvfYlLLrmEp59+mm9961skEgkAvvrVr9LZ2clv//Zvc8UVV/Dyyy/z3e9+d3L/H/7hH/LAAw9w0003sXjxYu68807uuece3va2t/H444/zj//4j6xfv54/+qM/Yu/evSfzMCMiIiIiXqdE76mIiKNDU0qpky1ERERERERERERERETEa5UoEURERERExJuaRx99lG984xvTtu3bt49NmzbR1tY2ue28885j5cqVk58vvPBC7rnnnldNzoiIiIiIk0dkaYqIiIiIiJjCww8/zCOPPMK99947ua3RaHDZZZexY8eOkyhZRERERMTJIrI0RURERERENHFdl29+85v8y7/8y7Tt9Xqdjo6OkyRVRERERMTJJkoEERERERER0eSnP/0pF110EatWrZq2vVqtIoTg4x//ODfccAMf+chH6OvrO0lSRkRERES82kRKU0REREREBCCl5Pvf/z4f/vCHD9qXTCa54YYb+NznPsfDDz/MVVddxW233UYQBCdB0oiIiIiIV5vXXUxTLlc72SJERERERBwnixa1n2wRDsmmTZu46667eOCBB47YVinFxRdfzH/+539yxhlnTNt3ou+ptrYE9bp7QmO8GkRyzi6RnLNLJOfs8maS81DvqcjSFBERERERATz11FNcffXVM+6rVqsMDw9PftY0DSklpjn7ocGmacz6mHNBJOfsEsk5u0Ryzi6RnJHSFBERERERAUBPTw+nn376jPt2797NBz/4QfL5PAA//vGPWbp06bQU5BERERERb1yi7HkREREnTCYzztDQAK7r0NW1kNNPP2uyYnxExOuFdDrNwoULJz9v27aNb37zm3zve9/jkksu4ZZbbuGP//iP0TSNxYsX861vfQvDeH2svkYcTCYzTmtrG21tr12X0YiIiNcOUUxTRETEceO6Dk8//Uv27u0BwDRNgiAglWrhqquu4cwzzznJEka81ngtxzTNFif6nursbKFctmZJmrnj9S7nnj3dAJx11tpXW6QZeb2fz9cakZyzy5tJzkO9pyJLU0RExHHhODY///l/Ui4XueSSt3HhhetJJJJkMuM888yvefzxh3Bdh/PPX3eyRY2IiIiIiIg4DHKgCgkD/ZTWky3Ka5YopikiIuKY8X2fBx74OdVqmZtv/gMuvfTtJJMpNE1j6dJl/N7vfYA1a07j6ad/ObmaGxERERER8VqkVCpQKhVOthgnFWULVNk72WK8pomUpoiIiGPm2Wd/TTab5rd+6yZWrFh10H7DMLjhht/hlFOW89RTT1Aul06ClBEREREREUcml8uSy2Xn9DuG60OMNkbm9DuOBaUUMmOhAnmyRXndEClNERERx0R//1527drORRddwmmnnXHIdoZhcv3170HXdZ544mGkjB7MERERERFvTvZUe+ip7DrZYuyn5qOKLipjn2xJXjdESlNERMRR43kuTz31JAsXLuLSS684Yvv29g7e8Y53kc2m2bVr+6sgYURExATpqsOv9uQQ8nWV7yniKJGN+skW4U2P53nY9ms/OcLhmdvnw3B9iJw9t1a8V4tIaYqIiDhqXnxxA7Zt8c53/tZRp1o+88xzWL58JS+88CyOE61oRUS8WuxK1/CFIphJaRIumlN+9YWKmETmbMTe47sGYmQYf8NzyFJxlqWKOBYGBvoYHh482WK8ptlT7WFbacvJFmNWiJSmiIiIo6JYLLB9+2bOPfcClixZetT9NE3jqquuwfNcXnppwxxKGBERMRVfHHoFOT70G+JDT716wkQchMo7EBzfKr+sVsMxrNe7lSMi4vXDq6I0bdiwgd/93d/l3e9+N7feeivpdPqQbXt6ejj33HPZuHHjqyFaRETEUbJx43MYhslll115zH0XLFjEOeecx44d26jVqnMgXURExKGYqRyj5jcO2yex936MUt+syZCuOoyUT66lWeSyBIMDJ1WGNzqy6CD6D/+M15wyRv41FNsTMeMzIuJg5lxpsiyL22+/nS996Us89thjXHnlldx1110ztpVSctddd7Fo0aK5Fisi4k2LU6+S6e1hrHsb5fERpBBH7JPJpOnv38u6dW+lpaXluL734ovfBig2bYoWRCJmF8/z+Pu//3uuu+46rrnmGgC++93vsm/fvpMs2dxiFPdgjr806+M69RpKCszc7MUhbh2tsnP85BanD7ZuRuzdDUSTxGNBllzk2OGV7AlUxgb38O+U+PDTmMU9oKLkQEfL0LYCpfHaUb2vI+aOOS9u+8ILL7By5UrOO+88AD7wgQ/w9a9/nXq9Tltb27S2P/zhDznnnHOIxWJzLVZExJsKKQJ6NzzF3ud/TWGof9q+eEsrq9ddxnnvuomOJafM2H/jxmdJJlOsW3fxccvQ0dHBuedewK5d27n44stpa5u54nZExLFy55130t7ezr333ssnP/lJANasWcMXvvAF7rvvvpMs3dxhNlfrg1MumXG/Lj0M6QELjnpMp1ZlvGc7IqjStWDebIj5usbyBDFDI2Yc/xqzbVukUse32PRaQKWbLoDLZqno6aTCqs3OeK8DZkNJ793wPItP7WT1+stmQaKI42HOLU0DAwOsXLly8nNrayudnZ0MDQ1Na5fL5bjvvvu4/fbb51qkiIg3FZnebv7rS5/lhR99DyUl62/+AO+67XO8+5N/yxUfuo0V562n/6Vn+a8vfZpNv/gPhD+9uF06Pcbw8CDr119CPB4/IVnWr78EpRTbtr1yQuNERExly5Yt3HXXXaxdu3YyQcl1111HsfjmDpJfXniW5flnjyk3VuC7APiePzdCvQ4oukU2ZJ5DKMEzfQWe6w/vIynlMU9+y+USw8OD1Osn18o2I0pNUWDmYnhFreAgD5m9Mdwuctk3fEIL6dq0b9mDNuV3NVknSey3uJVKBXK5zAwD+CADpAheDXEjDsGcW5ps2yaRSEzblkgksA4IXvzyl7/MbbfdRkdHx1yLFBHxpkApxfbH/g9bHvopbQsWce3HP8vy89ajaftX95ZwDqdfehVv/d0/ZsuDP2Hnkw8ysv0VrvjQbSxcfToAmzZtJJFIcv75bzlhmTo65nH66Wexc+c2Lr74cuLxxJE7RUQcgXg8Tj6fZ+HChZPbSqXStHv9zYghwgWQ2ZgXi0AyuqvEwjXttHQc++JJLKijKQksPmQbKSVjYyMsWrTkoHnDTDjC4aXcRi5acDGtsdZwEtpTRl/agjb/8P2nKj/Zmkt3psZVpy9A1zT2VnZjiQZ2EM5T3Gbxz97e3SSTKVatWnPkA27ieeE18P1ZVkJn4aIm9v4XMtWFv/IdsyBQmCzIdB1aE6FVzap4lEYbCE/SecqhLW3B1s2hPNe9e9p276WN6AsXYZ562nHJUys42JZPqv3key+JkWGMhk0iXYQ14TZV9lBFlyBjQUtow5gosLto0ZJp/c3sdozqEJ493UPrSGheDWXEwYjetbPBnFuaWlpacF132jbHcWht3W/mfeaZZyiXy9x8881zLU5ExJuCwPN45l+/xZYHf8JpF1/B79z596w4/6JDTiJTHZ287f/+M677xJ34rsOjX7+LvhefIZfLMjDQz1vectEJW5kmWL/+YjzPY9euHbMyXkTErbfeynvf+17+9m//llKpxD333MP73/9+brnllpMt2msCNcXWpGoecvxI8SkHT8g9O4ylqOWdw/b0AsmLgyUcf3rsxZKxX7No7KnD9nUcm/reLJm9Q4dtN0HWTuNJl1FrJNzQXLCX2ekJJ5RSyLw9uf9AujN1HF/i+GEDdRjb3ETZBKFOPLakXnIpp09u9jvdnj0LTz6fZaw0PvlZNrM3CnF8sUuqUkb07T1ueTL7quT2TU9K4Tg21ersJiPSAhflH+E6znRLTSi+R9B/lVKT8V/V3OF/fwcSH/gl8X1PHFOf48F3BJ4dWsHyTg5PeEfo8fpkzpWm0047bVowbrFYpFKpsHr16sltTzzxBLt27eKKK67giiuuYPPmzfzlX/4lv/jFL+ZavIiINxye1eCJe7/EwCsbWH/zB7jiQ7cRSySPqu+ytRfyO3f+PYtOPYvn/u07/PLBnxKPx7nwwvWzJt/ixUtZtmwFW7duQkRBrRGzwPvf/36+853v0NbWxvXXX09LSwvf/OY3+YM/+IOTLdqcoJRCysNPRJUviNkHry7LkQaqPHcTmtGKw3PZX/Lk0PSEL+VMjko2f4Te4aKOqrhHaHdAL6mm9zlgbUjWfVTOAftQFodw1nrgmtKhlKe6X+Op8V+SsQ+dCXhSlMMYO92ah/Bm/xmolEIFR3bjUkrhuYe3gBUKOUaKY8clh+N5VOrFk5J0IzjEeR0aGiCdHj1s33oxx8ArG4466YKZ206i/7HDtjmhM3CCp0+Th78X/E0v4b28P6GMVOqYr9n4njLpvRWEDNha3MzW4rG54MtKGTE2it+9i2B39zH1fTWZc6XpsssuI51O8/LLLwNw3333cc0110zLwHX33XezceNGnnvuOZ577jnWr1/Pvffey3vf+965Fi8i4g2F26jzxL3/H4Whfq7+yCe54Lf+r2N2UUq0tnHdJ+5kxaXvoNCw6BA+hja7j4p16y6mXq/R17dnVseNeHOSyWRYsmQJH/rQh/jEJz7B+973PhYsWEAmM0NswBuAbDZDb+/uw05s5EiDuJ1CE/rhPblm3DlzBy2QEOxX1nY//xty/TP/hktunvL48DTlzlIuO4rbDinKxKPqaKdrClBCEssEyDELnENMDmdY0Z8xDfsBn6UKY5ga+ZFpMUlVP7RU7Cgd+lhOFKtcxG3Uj6uv6O/De+qXqCO4BFbKNYYGxg77PYVCHts79lTxA0WLZ3b1UaqXcNyj6++6zqzFfo31HH/h5sJgP0pKZH32nh9SieYNq1C+jyyVCPbsPqxVs+DkkXOQYVBzShiFnsnPtisImvGfmUqWR7YOsjN9fNdh4mis4GDLm8znUYdY7PFf2kiwawdydBgxfLClWUjFY91ZBoon2TI711+QTCb5+te/zt13383111/Ptm3b+MIXvkAmk+Gmm26a66+PiHjT4NSrPP6PX6I0PsI7/59Ps3rdpcc9lmGayGVr0HUdu2cLj3/zbuxaZdZkXbPmNDo757Nly8tR6t+IE+bqq6/mne9857R/11577RvC5du16gTedMtLtTrzhHDahOSQwfdHRkmFqDYo5Eqk9+yc3B4byKE/v33a99SLuWl9JxWPap3S6BCV8WFyuQyBgrQskXEOts54djD9OXAMots9A9R7m5OsQxyzKM7s0iQKI+gjL6IFDmvSj2JUp0/WhJIoKZCBTza7X+7ZeGYdqShtprebse6tB213HHvSQl/zajyfeYa6P32Cm+tOM14U7MpsDq1OUuHtyKLK++8jvZGZTPbhzkGSilzdRUpBIOVBirlSCjk1CYUUaOlt9O3YythY6Go57R6r12ZMjmDXPBrlg62SSkqCkRGUf7BFVUxVJH1rxkUDpSSaXcLYtBV6eydlFodJwnDkO0KhN9KYhV14T/8Kf9OLqEIOnJnvzcHBnby44zH21fqPOHaj7OLNsGAgD3GfxoeexhnbQbUeKv8jFZv+QuiyW7WreIVBRsvH5gZ4SAIbozKIUanjb9mE6Os9rmH8povnQOHkKk1znggCQmvT/ffff9D2Bx98cMb2b+QUsRERc4FdLfPEvV+mlk9z7cc+w7K1F57QeNVqhT17urnwwvWsuuIqnvnXb/HIV7/Au/78vzFv6fITllfTNNatu5innnqC8fFRli1bccJjRrx56enpmfa5Uqnws5/9bFrs7OuR7tEKanArqbjBmre+HeCQlmPlOnjPPI159lqMlauQgYBqjfjwXuTlARWpqLkBU4sKKKGFE0TNmD7W8F78bJZy3UFPNBW0wIb0PojHIQjC/2diwlqkJFIpMtv3IZYtpBFoMy7TenZAem+FeUtSxCfzQE2f7Dm+wPElnS2he93O8SpCQUf7lFgtFMHwIJqaj8b04xHVKZPnwEGzCxDvpLF7BM0UJBaFC0KxSj8sOBVtUvWbedIZBAGB42MmY0gpEb6HGU9g2zZSCnzfZ/78ruYBNqYVEhZK8NK2/+KMUYkM3oJ+YMILJWGKO1Xh0QdpM2PEr7oaLZFkaGiARCLJMqDmV4EUG3MbuOaU69CbHgENC8YqJYQrWBNY6BWXylA/7WI5rZ3NbMbCRWu2VwdYM3KlMnHp05GaP+Pxe4ODSC2O3nH4lPTS90DXDzqPmapL2fJZc4YKz7TXoNBopTaSofPsZimKptLkBIKhoSESpn5QcoTcvhpS+JTi4yw5/RxiyRQAL27pg5E0SR20xcv2y21bFIf30TJ/Ifg2iX2Ph4kwlk5P2a8U6MJGiXYoOWjA+Pgo9XqNs85ae9hjBrBrFSrjoyw5c+3k71UBmm8DB7iI6uE1EFLRk62jSYWpaxRHBgisGo6wj6iRFYbqjJQd5p/dwdol4fkrWz4bB0tcEwS0J0xKYw2kUCxYGSaSGCna+DJNa3wZ7fYoGTeHE7wdvZGhKxjDVWftPx+eBzOUAlJKsbO8g5WxU6CaxfBLIC9Gr41B23KEVLgDG9GtHIZrYY7XkV0nVsZAuhb+pv8gccYVyHlrTmis4+GoLE1/93d/x7Ztc2eGjoiIOH6sSonHv/k/qBeyXPvx/3bCChPAK6+8iKbprFt3Mavecgnv/qvPE3gOj3ztb8n0zo6/8VlnrSWRSLJt2+ZZGS8iYoJ58+bx4Q9/mB/96EcnW5TjxvUETk/19DmpAAAgAElEQVSJ/Ei4Mr53bw9DQwOT+3WnNK29spoJCtLjBH29jPVsJp1vxhB5Li8MlKYVl1USgnRLWIz0APTSIFVfkC3bWM3YkNjAryFw0ZzSQUHe47t3UM2OHzCKhiyVaQyMU+k7dOyPY7tYTq2ZaGL/BBPCxZtqtcJzezNsHCyhyi5yJJwgjlfClXDp+SirgCqXkYMDyANcMoUvqeZslFLUAw+R3UF8+JlJS4bytYNcpCYmuodyjRobHKGRbhC3dMq/6Sb9wivkMxlGRgYZGxuZZhXRtj6O2vqbyc92YEM+T9oeBylRwPYdWTIjBQDM8ZdJ9D082b4wNgguiJH98WCu6yCVIlAKNA3ddrF/8yuUG56TvFehIm3QQNd0XCtU2nzXpuYECKkIp38TbovTj7O45X7Kzz5DuWd0xgm7u3Mn/osvoIREVT2kkgQzxs0o4o0A7ICiW2gqeVC2/WnDZl2XWmA0e0x0Df/anWmwOxO6D+bzuYNi+Zx6Gd+2KIwOI0vh8dd9ScMTxCqSRM5Gz/cQ3/lfBE5opQgcm2opzFKn20XY/H8QY1PinJRqKq4KtNC2MOk2GDhoVmhdDTyx31A15YBy/XuwygWczZuQtdrkblcZ+ELDCabESjUV1/Gqw0jJJl0Nj0Gzc2jCayrCiqrXYMgr4suZXS4LDY+h4v7fctkJ21WdgEq5xuiu3TSyByT9aApvCIuaO0RfrRdNhN/v2zUc10U5Dt5vfo0YCHMT1IsOQ9sKSCFxpUvGHqf7p/+L9LP3g13FKO3FqI9h1EbYMV6lf7yALySpvrA+pOZU0avD6PUDnxdHhzuwg/RYHiMXWsAbXsBj3VnGckWc2uwm+JiJo1KaNE3jM5/5DNdeey1f/epX2bVr11zLFRERcRTUizke+8bdNMpF3nXb5zjl7PNPfMx6je7unaxde/5kAdqFa87gtz/9P0i1z+OJb32Z/peePeHvicVinHvu+fT376X2KjzsIt64ZDKZaf/Gx8f59a9/TaFQONminTAtvkHdtpGZNI2XXyA29DRa4IBS7M1OyYKnaSB8GO9H7OujMLKLhq4Ip34zzHwnNpX2K1Ke1UAKgac0RmQCp2rjNt1inLE8aSwKos5zuf1KgJCKTLYwWTR70g6WK4IQzbij8H8pDXTHw33yMWQhTxD4jGdGKVVzBySFCYVLp8fofnkDtb2hm5oYb6BqU+rcoHDKZcbzFk6lGZfTTIDQnanxWHeW0ngDu+bj2QEZr85oEE57gueeQDT7aAcUW53RziQ8EB6BFIyMpglyBomajlcvEatJrH0H3GsidBsLskWkE/4tpUQIgXA0lIKMk2NfeYSe3f1s3ryber2OUW8mXZiY0FYG0MazqJxHprebwmAvRm4n2cIYWTsIx9zeS61UIEiHE1Ffhe6Oe7INnu0voE14wSl4fl+R7WNV0DSCQMNxdMzcdkbKNvn6FPc9YZAppQl2bEPZVlMkxejIEGPpPgg81FgDOdpgW/oVnk7/atrhFxs+ZuBgOg20ksPmwiZezL0AQKMGw0WbuhuQHsvR38iwL6hNO+nS97AdC0Pqk9enWMxTmlLPqdYoUbOrSAW9W7OMbE8jh2rQtJyWvRqucKluGyHItiCt8Pg0XSeTCxUfEQj6nttMo38XcmQn2X3V0H3Qc0CCMqZbWOIjzxIfeQ4I46ZqefvgewVQVgOZy+Dv6QndOQsCP1hDZlywO9OYPJ99uQH60zmcYKoyqJC1EYJSBt8LEGNjNPaNoPkST+y/RkMlm8e6s5OJGwKnwZaBIntf2IfRzFyolCKXKWIXhjDz3ThDm6lO/FaaUpdkAw0NofYrvk4lx/NbdqKaCrex4xH88a1h9j7hQbYXvalC2A0rtPSO5aYknZCUrPC3KhXodvPvQpFYehOxsemJYo4WpRS1mkF/X6jMVpoZ+/ZsfoXx3duPa8xj4ajc8+644w7uuOMOenp6+OUvf8nnPvc5XNflPe95DzfddBOnn376XMsZERFxAOX0KE9+68sErsv1n7iTRaeddeROR8Err7yEUpKLLprustC+cDE3fPqLPPUvX+fZ//1tark0F97we2j68YdGnn/+OrZs2cTOndu4/PIrT1T0iDcpV199NZqmTcaa6LrO4sWLj6lY+nnnnTetEPuFF17IPffcM61NT08Pd911F6VSifnz53PXXXdxzjnnzM5BHMiUWZjr+xjlAngWulNCr9eRsQ7qdRuvs+nepWtoxT3gNyC+DiFATVhuFDjVPL5Vo4rBvHnzoZmLycxup74wQW5c4Ns9GKaOUGD5LWi+RodQDG0r4NUUviYRMpyQ1/u7CbJZhtwYVSfg3KX768cYwiNmFxDGsma65PBwhEygilVgAbm9e6h0zcdvWrJk4IMdTnYb5SL5TRuhvYPAc4kHScxdOxDnvAXLtSAVugYKqSa8uLAtRTzFpNVksGAhlI+U0zOHTqhm+tBmIPQHVFJMnvLiSJ36gAanTbithRfCzGxGE4pS12koLzyv5UKFFQUP0xQwbx6VTJrW+QuJizrx3t140+ofKYaHBynXyvgDcTS9jVosj6fptJttmC0x+l7ZxOrRUfREjKBqYa5oZhmWPkiFVS4i3TrK9LCroUuhcDzKJZceP83a9BhLVp86+Y1eIHF8gTCb90FTGyxaHszTGB43qTd0VtiFSSvklad3getBIKBZY0o16oyWxrFe7EaTDma9yAK/jvLfAUpSqY9A69Q6TJJ59V4MewDN7UC5+y2Tqubh1Q1MYnQPjcHGTWTKJTTHoL1SovD8ZtTZ55Dt201+tB/spbRVfGh6cE+NJ6s2SrhOjfkkaRkdws3X2Gmv4dTGNgZUiqoI5V5jQMcSUE3FZOo7K2gq636jQKO0kNQCj3S6TLB9E13zL6B98fT3quaFCodMNzAaPn6tAalpTRCei1Ydg/hixkYk8VSZzkaoNOhuMNleKIWQkm0DQ8hlq6eNMe5X8YIkpfE8klCR15qLD4HnYVdL9JfC30sgFUHQwC81cPbtokv6GJ2XIHyJFApvYBxau6AzRX57H5pXg642QIXPBryJWzQ8RiDIe5TKEnlqM9V5UGVj3y/o4gO0lgYwYkWC+YvCc9H8DSrXn1wsUGiTGf4VYXxVoeHRMU8yMphm3vx2pjr4+kJRdXwWtB65tInjGNhjA6ycYd/RZjw8Xo4ppumcc86hvb2dRCLBD37wA37wgx/wxBNPsHjxYr74xS9Oe+FERETMHfnBPn75nb9D0w3e/cnPM3/56iN3OgpqtSo7d25j7drz6ZjBXz3R0sZ1t32ODT/8F7Y+/DMKwwNc+aHbiKcOXbjwcHR0zGPNmtMmi92a5qsSZhnxBuPAmKZjpdFooGkajz766GHbfepTn+LTn/401113HY8++iif/exneeCBB07ou4+IBqHWodDtLPvySSzVTqs1QLVSZ1jYLF8rkWmHHcUqGAXaMy9Q95cjhAkGBIHEt8JJsVsZx6Q0qTShIDuaw3JjGL7EMMNse0IE6MpA+hIlJbabABRCCtL7hhnp3wak8JauRUqB5YQTL03TaLcHMfwaiZKJkjGKSqGUBn4Mq2zTP64RLLBIdM0HrRmP9PJWglQcOpM08hmK+SJybVhQe4EdTqTG+/sYLKTxLjgPrWSww6nQcAMWqCkKogxX3euZAUa0XhbJ8ziLJQclb1Bh4+aHcLVaWg61wVE05ZPsG8Nde+5+TWOCKckAhKNwHAPTVAjfw/PqSLfB4liFQC5F2XkqloNnhPK7roOSCsf3KPkNVNJCxueBoYhnc5SNgI5SkY64jvIcWLEaXSWaIgZIPEAnlykyv+FASxdt9VZqno4nFXZjwlqjUCg06aNQbOzPsrCeZ00znkSq8L4q+h6elJSKFYRWwm0x+OGOnbxjdy+GXI06e6JYtIblWsjSMARuOHFUklrVpVHagdmyhyBxLm6jjpNLo9pamV/vpY6GrFlkB7ahzu1EVBqoVPPL0aiWCrQrhRASQxnISgNN1/BfeRlnx/OUnBJ+YKCxav/5lwLheehTY2ya11YBKTeLIQUt9gi0rcEJAiqBC8RDq2fzt6QaAtkyfcEvEBqqUMDr20stqDPqV1lpNXAH+/CES/fwJqRdYO2ZZzDY20uqPg/kwZP07HgfZiXP0jYDxSJEIKmPjIexUsqkFuSAjslskWa5SCo7TmXd5QeNJZUkOMCOld67E9+2oP10JhzGAumgCZ+iN45pxNCz/VQDjQ2ymzVeAxlU8BXEnAA91YJs9QlGRwi0/ffzcNFilSdQZngypYLs9kHMGrjKBUwsYdEaNK1dmo5oOARWKxNLJkZt5KBjUErR8AQNKdDdAEdzccbdaUrPvmID25O0xU3i5v7r4rkO4yOjLFm1ZlrsnaYkYnwYgjiJzBhyOE3QtppaLk3XgvaDZJgtjmqGUiwWefjhh3nwwQfZs2cP11xzDZ///Oe58soricViPPTQQ/zVX/0VP//5z+dM0IiIiJD0np38+n/9Q5ga/C/+mo5FS499EOFhlHoxi3vQ66Po9TS6U+S5TBea7ODqxgO0/eY3yNRCgq4zCRavR7adApqGEYtxxQf/nAWrTuPln/87D//P/847/+x2Ok85vmQOF154Efv29bF3bw9r1564e2HEm4d//ud/PmKbj3/840dsU6/X6ejoOGyb3bt3U6vVuO666wC44YYbuPvuu+nr65sbbwvhYgb2pGUEL3ST2Ztt4MRjnNUaTmq6hzTa+8rESj51dwF+TEeLFQiURMPACQLK235BXK3Ai83DCyRVJyBWaWB4ceLxGPlyHt/WWWBXYHnbQTVgReBOTvAsx8UarKBkHKlclBA4Tp1sxUI0amC5gEJV5lHGJakSoZXJM9H9JMLWqEsHv2pij4+QmrcYValQDVxM28bU0+hWAQyb3FA/Wns7RrWC0bAoNFKgXJxsmiTLqI/vn/DVxrLMO02haRMTaIXmBBS9ArCEmXB8Aa6gnu7FiRdZvc9B1FIk7CzSdChpFVRLeF8UC1WSqQRmsRsIV9hDE4CGUhq6bkBgoddzsKiZQEEoGp5PQ1OsqqeZGhHhIfanBGhOBscKZZxMnnUrmspKtkKCpeFEP5MmqPYgF3dOjqKjEXdipJwkNekxVrZYLUQ4kZcBXfUBWuNrCHbvxWtpZ7g4DvMWhFnVppSRCPwAd6yX/FKTzi0vYkmfdjSOlIFga3qYoD7Awt2jiGwHRU2nBRgqpKk3FdEAgSkF7sA4ql5Hxo6cPc3ofgKtUqUY+CSki5A2tUIDTddp6+tjt91g8TuuQaEmJ9KBbyJjOobnoQ9lkHL/9LYReOzIltHa5iGzWYJcDnXKuYhGChY6SBVaQnSASpZYPXQ1zQPOWD/zzXnUrDEq6SyjMYvMnjwdLcuoNCxkUEW2KrrHa6w61SXuauArXBleobijgR3g+aGy2MpCPLeO7VWJN1zwwSgXaVdt6DmHYkwSTHHVU0oxUMhSDzziWgJP+Di2jdawoEViCKikR6hWeomlOmhFI0AwXu8ng2JlHGrCJa6DcjyUgGoWal6VxLwWnHotXNBo/r5tT6IXCyS9Vrxlq9jdN8Qq5RBfvH/xQJvyhJCWNXmXTF2YEEqiNa/N1KSW09r4PkZT+Q2CcPt4Po6hwWkiQDdMNr28mcrOneTeuppuWWGpX2dixuNvegHPcVk6sosRZwm1rsUsWHXk+mQnwlEpTddeey1vf/vb+eAHP8i1115LKjXdFnnjjTfys5/9bE4EjIiI2M/e53/FCz/6Ph2Ll3L9X/w1LZ1dh+8Q2BiVIYzqYKgkFboxC90Ypd5pBe9kvJ1CYiXbatdzUWKYBeUt6Okiurs/zbhoWYK3+p14p74bb8VVrH3nDXStWM3T3/sGD//P/84VH/xzVq+/7JiPafnylXR1LWD79s2cc855x1xXKuLNy+Dg4KyMU61WEULw8Y9/nIGBAZYvX85f//VfT1OGBgYGWLFi+sLAypUr6e/vnxOlSd/xGIVMGr2+nMSCKdngppQccj1FVQR078tyfkcLtq6RkAuRXoOJWVDdcYkHkkRjELfrPKq+Cw2FcgukGhodHW0EuouZtfCUTb/2Mp3CA+KAYk+lhyVqAYmaYsLRbWLB15YKZ3wI2dZOtpFl8Mkfk2uYyC4NlEZJWbRKiVJx2mU7GimU1AiEwCvUGTaLzKuXaPXasIVHWXnE0VFSYnl5YBF4DlRBYIR+QEoSz43T3hpQMkNB3EDiSoHtKVoSGiCbioMEqcjm9tDptVK3DFowyGbj5GuLgRoSKOZ7SeYH0JafTcLRMaSOZ5tojTya2YJSgtF8jQVxCy2mILVo8iJIKZCWhz84SkbfTXvVoEVpsHDptLTZgWeR6x8j5YWr4AJF7ADrV9BMke3LMNW5NbSPBDAgPWJOmaJdYcyyWJapoNpSaI1xClN8w1xfUNuxDdepM+F6ZVTHCCBMbd18tEp/wuErpFxPkHAcpOHiKZ0Up1Cb8KkEak4OPJMD1++LtTFigaSkklSGJa2LQhW/2qhR1wJQBiiNwLER9QCzNoxRatb1Uhq6G7bXpc+BWeWmxuHVgxLjvQVMXWdhwkOvpanufgpntIpnthPs8xCyBd+NkaoUybkOFc9ncfP8ep5FoeARm1dAeS4kkri2hUhJNCBtWVQSOosUVPK7Kan6hIgAGJmtEDPR3RploVidTGA5PpRK5Br96JqOF0+ye8cIF/gpTDuGEgm2ZjKgtxEb9oj5NoHUkUKhOQpVz+CWLFA1TN0kpnVieoKGWydTm/JcU6GyFVdJ4nSQt2pk0mMsyudIuikSxgqSgzna7DJ62ziGTKIZKUy3yJKxMh2xZgKRZmzixFnNeoJkvYpWjuHLZUizAE1lSHc9lKbwanmKTo2uwGdipjH17VzL1jFzu5BCBz2BVCp0/WzSXXs5XF5ofqmYomwJobH7mWc58+2XY8Ri+NLDES7z9C7yhX70l+OcdtlV1AoF9FqJxo4MnHs2DVGBKY59e4s7QVRIBAtoq8Yp7x2ivnwxaAf4TM4SR6U0/eY3v2FwcJALLrgACF0Z9u7dy7p16ybbfP/7358TASMi3oxoTonY6AbM0l706jAqP8yzu3y25xMsj7u8w9tM7B/ejxQaSugopaGkFgau+h74PnhWOOFQGkqCkhpSTyKNFpS+FqUnoX0+zF+M3tnFc0ECDcFZZ76X3Mq/Ql+6FD1uYBZ6MLNbiI29SKLvEVLd/4mMteKe+V7M8/6Ym+74Ck999xs8/b1vcN71N7P+d/4Q/RjinDRN44IL1vP000+STo9xyiknntI84s3BV77ylcPu/9d//dejGieZTHLDDTdw6623smrVKv7t3/6N2267jYceemjSZdS2bRIHpIdOJBJYM9TbaWtLYJrGQduPFpnPQe9u4vkW/HgNgk7icQPNNzFjOrGYSSIhMAwdXQfPL1ISDnEtgVIuOvPRlERDxzB0YnENP1dHTxRxHRvbcvHMFMqPo/Ij1GWZhLkEs02n0LBoCIjpGlJTWIEgb5c4x2wj8BsoTUPXTVw/oOS2IJVEb1Uo18RTcRqNCmarQNc1PCWQsoFOAk3X0AQozDAttxaQ1OLYboW4J2gzWzA1HaoNNCnBNIg7OYQLuh468ijpkwyqJGQLbVQwZIKE5aIBMTxaRJ2EJyFfRGYypGoNtPo4tRxYXjuabhDIFoIggWmaaLqO0bBYJOZh6gmk41N2swgdTL9Ca7nCKj/DvpiLpmvISo2CE8c8W0N6Npqn0FWcwA3IFqsE8zXyFYHmWKw/Rae2aye66iCmtdCz/Sk8cxmJYhFdBOiahiYVuq4wDB1Dg5STwTB0lAmZUjdJ5pPSV1ALWkkqgaHpxGSoTui6Dr6EWhFd19E0RU1WGRvpx/MbWFKgee0Iv0CLX8VoWYn0HOJ1C7+m46/SMQ2dwNARQRLT1DFjBoahkzNMkppkflxHeQLfLyMcWBBvA0OiXEWROroJIlBoeiuG0mnIKl2x+UjfIp7PILQuAplEColejKNrSRLJGKbhEvdjxCyXeaoNTfpouobSBKYeJ5GIoZsGuhRoEgxDw3FqLDY6sRtDxJJxYsIhqFYwF8/DqmXwWYpuLMA0DaqxGC5h6nY9phEQYOo6uDYx00AHAsfCUgoTKCuXWrCYOA4Vp0JgJjGFjaZpxAwNVzOJxww0Q6OqNFxL0hofIVOv4HtlRoqCZSvXkGyJUc9LbOWSEEl8U6ICDzNmUJA2np9ECR/fcOitDtDldSBi7cSDOmbKwCiMEvN2EO9KQTyB40BLqU4+X8I1NRQCQwgSfpFEPEar9NBbTGK6iaFr6LrClIqW0RxtCQdfudSK7fjCpLNFYsYMTKXQdA2hhRbneSQIdEXNmE/M0NBNHQwdTQp8axjNrqHFFxKLm+iaRiqVwFMwmm5BUwG4beiqimGkqDgN3KxALdGJx2PgeSRMja49OaShM6zyLE5cgG85VIP5CFOS792Brmtk/D7QdVYlTsc0DYy+3STOP49EwiDljdKoJFi2L4OezeO7bSQXzEPFJIEC0zAwzRg1GtDQ8Bp1ulYsOO7n7+E4KqXpJz/5Cf/xH//Bww8/TDKZxHEc7rjjDt73vvfx0Y9+dE4Ei4h4s6FZeZLdPyLR9xAM76I2lKSej1GotfPygiWUWlOsyZU5Z6zAQWVmtaa3hU44OTF1MJJgdqDF4pBIQrIFYgkwTTTTBF1HWRZy714qUtB35ZWcuWcP4kc/YqJ0ptbWjr54CfrixRiLV6Iv/CSxZJV4aRuJX91P/Fc/Yf6C03n3Oe9lY0srO5+4n3z3dq684fdJpFpB19Ha2tAXLkKboc7DBGedtZYNG55h27bNkdIUcczU63X+/d//neHh4cmUxI1Ggw0bNnDLLbccsf/KlSv54he/OPn5T//0T7n33nsZGBjgjDPOAKClpQXXnV5I03GcGWtB1esHF9w8Flr9gN5GDvwVaLqD3fDpzZVZYrh4bQGO5uE4PkEgkVKjmhthn9eO6wXoBHhKTFqDhJC0GCB8gRofwxcgjQQBgsCTCBHWU5KeT8EPcEQc3bIwlSJQEj9QzK8ZyGB/QVLT02k0NATNjHBugG57WHmJp5uILhlmbBYCiYGyA/TQB4ogayM8kE4DWXORGniugW8kqPtZLOESkyaBkAS+hy0V8aZ/jxQBbpCAQgWhEsSdIn5DomsummEzMuIRm5eh4OgYpQwxR+BIE2jFL9WQKkDEAhzHw7LtSUuQbjlITWNzeRxHLYFYEjOQFK0GNW8bZk0i3TpCDwvF2rk0mlNBGC0ElQ58IfGVheMqOvV2CFIM7csiai6+l8TWA7ycjTOvSouIhQVzUbiuj6KCMDrxZOjWKISkuzqOCMJ05KMxRVwoLMtFyPC81h0fL6hRCxxSWgt6LE5dVggaLsnAx/UlUlPo2Th2a4y4aEEEAuV76NueJD7/bPb0J/BFQMm3aNfiBEj8ILwflJQoTeEWyyD98BoHAZ7wIfBxApuaX8YTVeblqxhmK4HysBo1RFsHBBIZhPeOqSRSgu7peEqnUq4TBBLhB8QqIyhvPkKCjkK4OslYiqHcIFlfQ0rVjK+TtDsSpdep+z6tpk65dxThgLAcClYRRCeBkAzYtXChUAG+jeZpSBReIAhG96GZMZSpYeiCrGMTVOoIkQBDUvFskjJAqv2xcZZtU/KqmEYHqpmRrlitIDtBiSAsBC0FgS+wahalhkPDaxDUXPSUjiYljmVhCRc9CGPSbAVVWxILBCoeRymbIBAwMoia59IotRAIgVFwyFZ7IRUjLuMoTSGqNp5p4RrtOJYLuoUZSISUqEBi1lykCF38NOlhyTZMGVBwqiTjKRZ5Pq5MIqWaPE5XlwgRR9kuyg8IRBCmkFd1kH5oGXZ9pIpj2x4jg4PEYilOCTqJ9RSouQpLeEjl4m4aZOj8JAl3GaRMPJEhqDpIQApJtl7AH89S6WgllgoYyddoS8RwChXMzg5c1ycIBK4XUB4ax7dtEkLSKGm01ou4ukPVNpCGxk4zH553lUJpEr+ch7qHH1xEuXxiRXAXLZo5Luqolab777+fZDI0zi9YsICf//zn/P7v/36kNEVEnCBGoYeWTfcS732YxqjO2PByrMGloVvJqmVsXd2K0jQuX/92Tl13Odr8+WipFFo8gZZIQDweKkEnwMZH7scYGuBtd3yeRKWMTKcR6XFkNoPMZhDZLMHuHlRpap2H9ua/CvC/OQtIdbWzUyoe/s5XeOu+NB3N4HAMA2P1qcTWrSd+5TuIvfWSaRmM4vE4a9eez/btm2k06rS2thERcbR85jOfwfM81q9fzw9/+EPe97738fTTT/Ptb3/7qPpXq1UqlcpkMiNN05BSTktMctpppzEwMICUEl3XCYKAgYGBOXHN02IxLCOBpkDqCQIRKieWEIyIAsoqcnbLCqamyLaD/el9J/yKprrSmMUKMmGANLFTZtPtZ2qwAQRKoUlFCwto1edRIYceBMwvFtF1AXrYY76XwMRAQzCPVoyahee7k0PqSiNRbEC7xFMasbqHDphegFWp4GltIECvuKAJVLydiiyTmpJO2aAjPIJmCvGgpQ0/YSG80M0sqJRAuCiVxNDNMKFFpUh7axsF3yeoVFliLEa5NsRaQSmkVNRdh32D++hy4vgaGFqAwCdotCFbaghTYsbAAQLhomQMzwU9UKi4Ni3KR2vGwigUgaZAaRjNwrq1tAf6/oWiwD84pTqA5nroMgANXJGiXdUmY1o0Qi8CAM+1MJRHvFgDTLxptX7CNomGhdHIA53h55qPiJkEspUYYTY936nRWs/S6PdwPBdfBtSli64LNKvBFK88cN2DarHK6ghFx6MzKWlpFNCVwAsMAs/B8Bxk67LQkiMlCoUQLrqacKdSFAtlfCuOV9Yw2hW+7jfPpY6OiVQC2/Nx9eTkPZyqVydlqgRdtNJASMlEjHE84LAAACAASURBVJhSOhpQCwp4aNNq6WiBjzI1AhlOeA1T4TdacKwqg6bFaG2UluY1a3gBCcJrCqF3Z6WYplIfJrX8fBI5HT9lQhJsOTX1PeAHkN1HvSpCSylgBh0IHTyrggqaiVL2p6OYkBAhDTxXRwKxcgmpxRANiZ+SSF9iBA3ixNGAJClko0DFGyCHQ0LGSSoflMIoNfCdFPVA4SqJbBq7A6kQhoGFxFNQMANAI6FiYVyYbqJUEso+vi5IezVcrUZKJRD4zeQZ+89p4FphzatkDq8ZixRIha6B5yfQ0hbG2B7iZ19M3StTrwW0tDdThAcVAifA0h3mLYSxmkBVDrPIpEApDV9IYjFIeXnqSqPuS4yKoMUv4tGFp0MC8AMdOTWIapY5qpmW7/u0tEzPjhWLxQ5adYuIiDh69OoIrS/9A4men2LXOhjYdTbuviL6wnZif/j7dCdgz+YX6Fqxmnd8+P89voQPR8HIyBD9/Xu57LIraVuxElashPMumLGtcl1kIY9ynNA33PNQth0WZOx9gBWlPk41BU/WVrHh3FO57NJ3sqJzEWJ0hGB3D85D9+P8/Cfop5xC6o8+SPLGm9Hi4Qv1ggvWsXXrJnbs2Mpll10xJ8ca8cakv7+fxx9/HICHHnqIT33qU7z//e/nnnvu4dJLLz1i/927d/PZz36Wn/70pyxcuJAf//jHLF26dFpG2DPOOINFixbx4IMPcvPNN/OLX/yCFStWcOqppx5m5ONDVKbbksM5XDgRaHXaMJRBvW4wtc6nE9jNCR9oaCgt7OfH4kjHn+zvoLBVQFwp2pTCQ2FMxAg0E5vFtHlA6LoVcwM86ZCQAkcX05SGmDQIAFMaaOxP7T3fmo9KJpoDKhA6E8m+QwXPJa4lEEEMqekQV9Oy1CkFQqYwLQPVaMZimCbSjKEMDVPGyNtlAiT6ZEFciS0d/n/2zjvekqLM+9+q6u6Tbr6TmDzDMAxJck6SBVRcWVndVRfTgmnXxbDii6zKrrKYF19XdtVdzIi+JhARR2BGyUHCSBgYhhkmz80ndndVvX90n3jPPfdMYoC9v88H7pxzuqurqqvPeX71PM/vUSUXEpKkiGwWNx5baAzFoIQWAWE2oCRi2XLrYEmCTaADKOsHFCU4xTw2EARWIcIU+fJ4ABFoEJpSaMgpTVhWOQQCNFprBE7F2Az8ELYPMuinkVYhRCzDjsErbEXqAG0ctHWQMhqTNmlKRuBagwkLjBKA0jQ13Swk82NIMUDopikTihEKdJGgWPIpZguktEZu3EzOG0YnkhEBNZZEOIzIBzQWuq0sCgQvDD7OtDABCIKih3QiQhuEHSStJrBFCrpABkHWD7AiwMNDiwAbSnDie+EbQBH6FqlKgMAlVScSEBGhyOpX+SyQwmJxhAfkKkIWhaERbKjpAko6izWletJkLcJGJMUv6liwA6Sfh47y9cbn0TqkCbRA+CEm7EMXQ0DiFgxCQQJFbVloZ9M2+tlGyVmM1mFk6IcSHF3XelnlMeK50b8Dk8AtDeIbQOrK7dXa4pFHEIDTE68lgWvTZLVPobCBjrCLzcUQ44+hXY0xMCYkRicJTZKI/oMRUPDzSGIVTB3iWU2uZrKUKTGWK+H7HaQSCVJ+QJ5EtO5DDcayKb+RMZOnW6Qp5rbhaw1UQ5EDkyQ5UEIan66hbfiqGN/PaK5zOk8CkCPZSBE03YU/uDmSJQ8iIhpow5bREnPiXZiC7gJKsWc43kTQhs4wW5nPSIbTgDCEheK4+7m70BZpOvPMM3nb297GOeecQ1dXF0NDQ5UfjilMYQo7CKNJPfJfZO79PCaEF9YeR/be5xHdhsxlH2NgyWLuvfG/yQ1u54DTzuWI17+lojCzu6G1ZuXK2+nq6uaww46c9HiRSKBmNwufO57AfgCx9jYW3fNvvH3rSn6x5Sjuuvt3HHLOGzjs3ZcipMSWSvh/XEHhxhvIfekaijf+iI5/+j+4hx5Od3dPjfz4sSg1JT8+hfYgpSSfz1c294rFInPmzGHVqlVtnX/00Udz8cUX8zd/8zcIIZgxYwZf+9rX2L59O+9617u46aabAPjCF77AJz/5Sb72ta/R39/P5z//+d0+ltLIGBtuup3scBGPaNd7rOiTKBc7DVwwgrE8FEqChPFQ+QJFkiRij0OIoGyVF6RiczaomhZBAEqRkwZDHk8aXJ2irDk3vTStrj8ilIyoAnkTkGxwOzgk0VYDlqR1EdoHGdc1wsWGAUiB0X653ijYKOxKS4swGlSUhymcKunSVlC0DqIoUcJighGwnRER9BxckSaDJB8OVAovBVYTEFDQAWrU4Mn6+kwFGxCYEC0NWvs4KgEawjg5Pe854Ao6ABWb3UaHIBx8UyBpLfnAIuLxqUIQET4gFBaBRRkXISQWS0EY0kQCFracAO+HCD/AWBUT4UhMupQfRTWkwOVUmgIplLWMBEUcExHckjEkUGBDkjLK2zDG4oVjeMEYJUfg6yLIJMJEktUQGcTOWIgcGSGZ6GEk6EEIScpT6EKAdRKIvMAUqbWB4zWgEaUAGWik6UPazRT19Mpx5TpXMnZFFnKGrE7gUsBTHlpYvKESHSHQJdBhSBhqXM8jGQxiTCcIS6ANUAIFHn10kCHARiIGKhqnaHCQBtpgi2n8pMZaH1cInJr6ZNIGaECG0Z3WBlwbYjCUcqW46GrMHGzkXRIoesUBDBsJMVUe8f3KtKhiAEGIiIm+N1aEVAJNRMyVdonKSlPpRxUuYBFhvdPBWosKC7heKi5IHV/LFLESwjDAcSRgK2p0xkTFebEWGeSxxQLIjngoChsrGGopUUhGSnm0GxPXwMeIkNBaiKM+hLUElc2NqrfaxyJyRVKriwzOCAj9AiTSaLf+N7rcL6cUYnFRQRErBX7Qj6tDrC3g5rez1ZQwNkmHtXjFUbZvXUNH4GJj72nO1zgYCr6mODaCdj2K1iLQdNSQpLxIoaSioi8RlhAipPTMGjrn7P7NLGiTNF1++eX84he/YMWKFQwPD9PT08O73vUuzjvvvD3SqSlM4ZUKNfg0ncsvw936J8Y6TmHTbT76+edJvunNFF9zIbf/8ka2L/8pTmIa05f8LUGwhCdXbmXWft30zckg5O5Vlnv44fsZHNzOuedesOs1koTAX3Q2/oIzSKz+ORfe/QXuWJ3ksVt/zvC6pznxnR/GS6VJnH4W3mlnEtx7N9kvXcPIBy8l/Y53k3r7OznkkMNZu/anPPPM0+y//4G7Z5BTeMXjda97HWeffTZ33HEHxxxzDJdeeimLFi0aJ9zQChdffHHT/KcyYQLYf//9+fGPf7w7ujwhilsHcMIkaAdrXYo2IB2kwSpCXBiLDKf1wQuExtBFAq3zyLEQbSI1sEKNAqUxlqFCSKdJI/wk2voo3wfXwVqLtjUhZwbcQoipJUdRGlMUgmYNCJChISQiB9IEoATChpEYDXWnRoIUQRYbsyZRu+9ugii30lpC38dIG3tZRF2Q1airkWYESQoII0EbRyFlGlPZVY7OI9SgLROZNyUbVD6JTOeogK0VEqMDbFy3xgJBaHFVeWoMRQJcK5FGYm09sxA2wAmril02lj4v2gDfhghroUY9rNaOtlhyYQHfFgmth2shFA4pkYjvYUisooFEkRSddc4RGyqsra51x0beqVpIo0HGnhvhEpJHI0iGCSiG4IaQBIyskqb8NsiA0BZnpAA2SdH4KBKR2nrFeI/IpTUa35RIWJcQjSuqxNUVHsmy/l4pIo4mCDEOeLg4okE9z9bPkDYQWIu0sC2bR6YSgMKYECsF0bZB1Acho4Ktw6VRJBlyFEliohDU4igOAoPCWMg8PkJoY4n4OIcvrWbU3ioAvFypIv9vrUIO50DUR2BpDCYUEXkk8uAJY6PprBmONAF+2MNwkKYrDaXQR8fhfo7qQYQOQc0NFgiM0dQ9qI1t2gChoc7NVt4KEYJO2wESxvyQQKnKZ8aElNXohDbjRObLgYQWGB0CP7sO41vGPE1QyJNzEiihm9wzECak4BexVhEEfZGAnxaE4baoZWvpGVvNtnAMJyiibZIt+Q0Y42OsZuSRu3G2rickiQC0FGicqEdaY3AgLBL4Id1OtEWB0RXytSfQtpV0wQUXcMEFF+yxjkxhCq9oWEvyiR/SseKTWDfD5p73M/Tfv0ak0hT/6avc+9Q6Bq79FFifZNcJ9C98NVK5jGwusOHPQ6y6fSMdfQn2PXYG+x41HcfbeWWuMgYGtnP//XezZMn+LF68ZNfHWIZUlPa/kNK+53PiQ19nxm03cvsTlt/86wc47YOfoXPmXIQQeMedQO/1PyT7pX8j/+3/Ilz9NHOv/Ay9vX08+uhDLF16wJT8+BTawvvf/35e/epX4zgOn/jEJ7j++usZGBjg2muv3dtd22EYA6M5ge/3RE6bUhaSKZJ0gAmQwmIEZIRLKCxe/DNeBKyNQoGimP5q7kTg+6RFEs+AsQ4KHz2WxTeSvAApQhKinOdUj65Svmodx3BLmoIyGOOgUCSNJLQwSn2oDoCwGhAYE+9mN7QvjEbrEGEjIQIvIccdgxD4hNhCCRWCDiNJ6A7SZGNZnEDoSvBcbU6DMQZrI2nw6HXF5dV4CSQyEmmwhlBHdXsskMRDiSRFG6CxdBYsUvZUvDiVIC9btVjHpCYTk02LBOMjrUGITLNpjnPKDGNa0YfFod5TZipWfJPvRAvGVnOAomo9LlmGcfM+UWhbmVbKhjbKIhsKYf3KZyGGAV0iyA3i0YcwITpIksXHVRJLlKNWhrQGa31MWKScCOXFpK+SEiMsKkiCjbws2mg2+g4Z1V0ZY9FoAiEbjP+4mTh/rBR6JEMV3Ws9DBI8o5EiGqG1EoUTESrrY8MwCiMFsmEeR3XE8+CidU88rYJMQdApu7F2NJ6TmLoIgdZBTU8i9UgkdeReawO6FHvFHDAlrAlQqYZIEe0RIsgrQcaYSPREBwSEFGyp8kxHU2fR9dsYjbcObfzal+MQCIG2FiUEg+jKuo1CMQXWGIwJEIUiONH9LxM/ayOhmM2lPMMmSTiyAVdrEqNZvOldZEVEymoRSkWoXExhiIIrSBmDCCIRDKscYhqJsZHnsNxvC+jcFkql7eSUZWTbIMZAItQY7VNMpSk5KYLYi+xi0GETmld3r3Yv2iJNt9xyC1/5ylfYtGlTRZnIWosQgscff3yPdW4KU3glQPhZOu74J5Krf0FpzklsGT2N3De+RXjYCfz5oDey8Xc/w4TryfQv5Pi3vJvZy+oTy0v5kE1PD7PmgW08cst6nlyxiUPPmceCw/p3mlQEQcBtt92M5yU45ZTTd8cwx8NJUjjmMuYv+0su+MWV/OaBUW69+jLOfuff0XVIVCBUpFJ0fOKfcZYuI3ftlxn9yD9w8Dvezcp7Vk7Jj0+hbXz4wx/m3HPPZb/99iOZTHLJJZfs7S7tNEaLAWPFgMAYAi82boIQayFBVGhVAimRpCSjQB6Figw7q5EiMtiisJqQEmFsvNej7PExFoQoCw/U7itHx0zTM8grg9EBoQ0qlMjE+Qa+DTCmhEBScAwy9sBIUUtOBEElXKn6nRUaiyQkERqEqtZeaWb+SeMTymYmS9TekPIpuJJklcIAUCoVKQofHQtlWKtA1BfcLCMju7FYglKeUIckZFSYN2kFQqZAjyEAqW3lCrahr7EeRM0oJdY6aJ1EycZ8oSoSMkVe5/Hx8QOLEPWsQVsT3bMmNWcbelB519c+jBXA7Yk/EfQ7s3FFMxM8Cn9yTAlNAt8WSaDGeQ8BlE2hiQz1KkGN1oP0o7yotMgga8ZQEoYiChHWiGPokKKt1vWJctRguNSBTZVbrSElQQmEQ9FPEhpDoKsjd0Qt0RB0xETMYuNwS1MRFWhEuQhrp59Aao2u9eIReffSoosxO063lk7ZW3lf4iFtlPtky9l2FmxQqDvHoigJS8Ia/MDgCA+BJURXcvvKIyvZoCIuYgMdeWZr3WAxA9dKIUySMEwhRcP1auyEkoxWSFTgOHrPmACjfayKcs0A3Mq8W/K6QDY/F5xt2FIBN9QEZOmJKUTgOORrSFagElgrI8+QdCCZpCRGMLaDQHkUYlG5odIowhi0FuQTHRgpGbWQTySwImC4ZmELwAs0jipBGGCUIij6KFv+vObg0Y3j7tPuQluk6eqrr+byyy/noIMO2qH6K1OYwv92yJG1dN/8TtTwM2SP/ijb7goo/vRbbDn17TwaaILH/xPlehzzpney/8ln1CnKlZFIOyw8bBoLD5vG9ufHeOTW9dz3/55j7Z8GOPL1C+jsTza58sSw1rJixXIGBrbzutddSCqVnvykXYDpmk/X2/6H8w+4kVu/fwO3/Nd1vObMlXSf/39AeQghSL3pzcjePsauupLZP/geiQOW8vDD90+Rpim0hUMOOYTrr7+eT3ziE5x66qmce+65nHzyybh7KBdwT8KPldPKal8RbOSJMQpJgHUkCZ2iJMewGAxRnlDl28N6FYMoKXojbxORQRM3Vwfb8Feg0Si6VB9F42OwSBuplVV2iQ1IUQ7Bq4b4NIMhkkMWRMp61QvHlMNGIzVW4gddJPCbNYMTVmWEy16gMrQJMFI0Dg2AINQYa6PaSM08NZWZKyeZW8KgSCKRAVs1qstHSD/KjykTG9uYaAO4Nu5hPN6MmIYSJcImRnsjtLYTWmfGVUwwPfXHmRBrI++axscB3DgUy8RhllBJFyI0IdpqompA1fAm2cTHoW3V71UddvQPWfCx0ichxxcXHRKGLbkCeRtp3Mm4LdVAEC1Q1AlCo6JcH7+A9iJBB0QUXogtYSaZy0hhL0QGJlI6xGIbxiNqtgrq+1B9r1N0YaWLox3C2lwlypsPltCYOjEUiNc94wQIKxsToTXkw4heCRkga7y0Op4TiUuXmIEmIvCRcr8l0BmcUCNLBUBipJzUoNc2kk0wmHizpNqbeDIqUCao+jZ1QOi6OESRr+Xr6GIOZQyGiCBBlZS6YYhjBL4UeEGAUlm09kh6KcJY8CEtXZCK9Fj0XMuixYok0kQeu8Cpek8BHKPxKGG1piRlFHIKpGRn5NEuk8NxYia7D22Rpq6uLl7zmtfssU5MYQqvRLjr/0DXrZcAguHzv8fQ924n/9vf8thp72bT8ENYM8K8Vx3HcW/+W1JdPW21OW1BJ6e/+wCefWAbj/32BX77tcc57PwFLD5yWttepwcfvJcnn1zFUUcdx/z5C3d+gDuIzFFv4pw5R7L8q1dy821PcO76NzD9omsIpx8MQOLMs7GlItmr/4Wl06fxWKnE4OAAfX17pkjdFF45KOcjDQ4Ocvvtt3PjjTdy5ZVXctJJJ3H11Vfv7e7tGITAlL0KMUo6hxuGhEYh0WgnMqh8bShnsjh+EH8HWLSt7HNjbYp8TpOMPRQGS2DC5t4JW/4ThQSVP5K2PtxlojCglsNq+FtG1YC3BFoihcGr8S6EaJRwcBMZglKursHatnwTyShLIWIvWJTg4cbeIktkNE7WQ4FFmnKS/vjjG82x7V4QCwIIVE2PLLbOm9WcrDVHqDtIOJ011KXB9dEC2phxQg7E6tzSBIBHIchXOK6xEQ02GFTYuC5A2vFmYshEOSNxEGCLnJLNeizqJwZlm5Pc0Nr4fpYh6iJEXeERMrl6c3S7DcqYhvfdqj+uiYFtrcuYU31fIuIRTzz5W0qjZDyBoFq3LcTUe4VqoHWIEg7aRt61hOtRiL16AZrAiaiWFE6UC1SDQHeQNi6jZlMdP3DF5DmctmFzI2jcp7WWRE07Fov0fTJKEpoijlZU1mM2S0r6KN/QKdzKdxeigDVJtFCk8kWkMTjCR9ksrunC1THZKWYRGVl57QYlEBmSvg84ODKJloy7fwDSmChsUZeQjiJER94tbPPw192EttxGF110ET/4wQ8oFvecjN8UpvCKgbUkH/1vun/1N5j0TAbf+EuGvrOcLX+4nzuOOp2Ng7fjpVzOeN8nOO3v/qFtwlSGkIIlx8zgNX9/MNMWdvLgL9Zyz4/X4BfDSc995JGHuPfeP7J06QEcc8wJOzvCnUZmn8WcfcXX6Z05k5ue6GLDN99J8tFvV0IMkue/nswH/5HFv7sNZS0PP3z/i97HKbx80dfXx4knnshJJ53EsmXLuPPOO/d2l3YYQgpKplBnn6kgxI/zZWprpji6agDZCjWIX9dYDkZHhAIig9e3XsWjVUbJBJEqWBuw1sHaGk+CbTAlwlb7sc0N5VpLp/yv0GpCa9DYCaNcUnEyvhSQkpmKPVd/lcmtqFaUxjQx2mpRFn1wbK1vELabIgVV9itYbJvEKQiTk5Isi8Q2GaU24MbddXBxcAgxFGyVZAx6jSQ4/v7N58dNlaL9SIYEqTg3q/63qHb2rFDRzSIiFUqMz8+tDdkrQzYhYgmZIilSlfC1pqhhFVIoetU0yoNs7KeNiZoWKcKa5RaUVQIZv0bL0DWszjQ8W5OtPotlwA0ZdAPKQbJdsg+ApB7/u66ES0JkSNFDMV5zCZEgKdN112vmQSsjLSauhZiW1cKulihfMChlkaVC3ao0Vle8RiUCCuX7Vq4TZ23kNQIcT2AxlAqj1fO3b6OWEVocTE39KwkktCVfs3a1ifrmaE0qyOKGkby7tobQaoomQPXtmE21I2jL03TdddcxPDzMVVddhYp1MadymqYwhSYwmo6VnyT1+HcoLTyL0dO/zNg1X+DRpzby7JIZUHqOxce+luPf/CaUO3E4SztIdXmc8ralPPmHzTy+/AUGN+Q4/qLF9M0d/2VojOGee1by8MMPsGjREk4//Zy9JrKQ7OjizI9+njuu+zdufVpwys+v41Uv/JGx07+ITfaQuugt9A4OsuiJx3haCI499kQ6OppX557CFACeeOIJli9fzvLly9m6dStnnHEGF198Mccff/ze7tpOo/bplMbWvSFDAx4kYsU0i0FaHYXQifZC6FOqxjAq7/hbhyj2a+Lvhmo2T60xWG9KOHkXK/xG/Yim0DbyAEUtlPMiyl6ySRoQFicuIFv2GEglcITAr7M1q+20/t6baO4iV42Li2byzakyitJULq2NwNrkhJ4HoGL8l0JDEmKaVd9fqctKZdG9Fw35KxEit2Kn6qZgsnEAZ5OjjBmXxO+JepIUaIOSIhZZaA0lXECjG7w3tWeK0GDjXKTxWm1R+JmNC6XWfixjt522Fp+wIrqRkhlSNd6dOlhTF3zniQzFOq9p/fWjNdSMgMUhlrKLUTPcZGQWRySRqEqLusbNmPULsXpic/g2pEO4RMWMvbo+O8agrdNw/wTWWlySlTywWkGKaEOjgIkFERJNPFCeSIzzNtc/rzVBuyaM1kmNkwkgCEuV8mplopsQTmVtyhpCJIQYt10SaENi21DldegrynWloitbRm2u7hxtUkA51NegdT/CJuv7tatKwC3QVss33HDDHuvAFKYwEay1MOJjh0vYfIjNhVAIqxm8FvAkJBUi6SC6PER/AlLO3iEEYZGu2z5IYs0t5A+/lOzRH2PgXz7Dii1DZPsKuMl9ePV7Psg+S6v1A6y15HJZstkxfL+6u+Y4DplMB5lMR0spcCEFB5yyD9MXdnDPj9fw+28+ySFnz2Xp8TMrczA8PMTvf38rmzZt4OCDD+Xkk0/f67mJbiLJ6e/9BH/4ztdZ8TDk713NCYMXMPra/8H0LCL9nks5+IqP8awxPPS733DKG960V/s7hZc23vOe93DWWWfxsY99jGOPPXavr+9dQj5PiCGXUNRvFcShT4wTs4sMplilrpztU3tIJ91Avu4ciRxnskb1gyQTmQYGi5FteG1s2asy/tjab+aETOHXKX/V3DcL44Sx6vpan2tURinUJFzZcOzuidfpUN2EBBO6DmqNRCsa71OZCFblnhvRpXooiBx+Iom2UXifjPOlol34FFI2I0nV2lKNSJXr9li3zhsCoEJD6NV4xwQ4VhEGUX6cb3RFbMFV1ag7IWxUd8vCeCfcRL+98bXzfp0YwwR+R+oVL6rHR/lWFkv75QR2BEYohFIQjve6qhqxifpQT4eM7EVZKpS69lNZx+B1cwJbtx1RA+vgGRe/6XM3uZ0jEXWeo4mQFGmkNpXQ33auUbB+vce5BRxXUBq3dA208G6P85RN+BzXvi/w92B4Xlukac6cOYyMjHDHHXcwNjbGW9/6VrZs2cLMmTP3XM+m8L8K1lrsUAm7MYfZmMNuKWAHi+N/NaUAVRPM7jfZtUsqxIwUck4GOacDMTuDcPesESVKI3T9+p14G+8le9KnyB90Mc986l+4b3gb2hlj5tKzOP2St+ImPMbGRnn22dWsX7+WLVs2Uyq1DntNpdL09vbR19dPb28fvb3R30ymo0KMps3v5Kz3HcT9P3uOR25Zz9Y1o8w/McEza57gqaf+jOu6nHHGa9h//wNfMjLeynU5+R0fJNHRwQMrf0fBDnHmja8je/43CWYfxz6f+BTzv/CvPGEMR254gcycuXu7y1N4iWLlypUvmXW9y/B9fGkQppxj0zxRvRlkk1AniEKbmuXMN2vVtgh1auYZGHe+1Vg7sQCHMCHEO/KOcGtU/OK2jakmdLeJ2qMtlmKgsVSNucYwLIjCFGvnVbYK8YpbBnCbiz8DEQkpo6jb9/rVQktJWnRWRByqkICKavU1SRnqUn2E4doWLTv4tjnhqkLEc29BCoSoDiG08b9tbLvq9vPtBQZ0M/WKie7zrj3LpmaDoVnLtu5VhGa5Tc2QEuOFkzrl9Bb+w0bIyv5HTUDfhEcb001aiwpp0tYSGB1XLqpF/bMpUfTIPrJmlHbQLEyyae/DqjfONFmIE1JgEUlQ1L1nG9+Z+L5Vj6hVDmz0eEffl9lwsnW+82iLNK1YsYKPfvSjHHXUUaxatYq3vvWtfPWrX2X+/Plceumle6xzU3hlwwYGs24Ms2YUs2YUsvGOQ1IhZqZRh05D9CURfQnIuIi0nE9ovwAAIABJREFUA56sM46stVDSUNDYkRJmsIQdKGI35dF3b0GzJSq8OK8DtbgLubgL0b17d6hkdhPdN70NNfQso2f/X7Jzz2XlFV/ihewahHA48g3/wIGnH8MLL6zjoYfu44UX1gHQ29vHvvsuZfr06XR0dNUV4gyCgFwuSy6XZWRkmKGhQZ5++kl8vxrb63kePT19dHZG54ZhSNgXEC4Z5bGhQR79dYhSDocccjhHHHE0mczEMcx7C1JKjr3onSQ7unn0lp9SsEle+7O/pnDGNZSW/SVHv/Einv/D7Tzwrf/glCuuaqouOIUpvGIIE6CFQOoSslJkNc6JidXrJkKt5PI4w6NGXrgZyh81k+HeUVhrsKXCxB4Ea/BkuvJph4xk1HWs/hc6Mi5OO76Hrpcm8PO0QjOSaerIURTMpG09BWxMondxcUOB9saHkjX2zm8ashfJsTd7vxUC1yUtnKjOzw6juXevFoPKrw/Wi2+6kA7CRDWlpDQ4SmKFQTU+W9YShtVN/3aXTNVJUKt7WCucISNyBQhv4t+qqihDcxgsfo2aY+1aCE07tL++X42vy3lDxsa+vUm+e0RZ7rzmHdFk+yHyzY5XEWxStSwO/au+b+z4+6CIFDTLz9dkKBcXnmw0bd/w2rPKha1F450zbGrhTh4/R5MfKRATPI+7B209lZ/97Gf5yU9+wrx58zj33HMB+OQnP8mFF144RZqmsMMwW/LoxwYwTwxFniJXIhd2Ihd2IeZkEH2Jto0gIQQkHUg6iN4EcmH1M1vSkddq7RjmuVHC32+A329A9CWQZQI1uwOhdt7gUkPP0P3Lv0GUhhk67zs8u30/7r3ii5RKj5JIzOSsf/w4Y7rAT3/6Q7Zs2UQ6neGYY05g6dID6O7esWRFay35fI6hoUGGhgbiv4MMDGzD930cx8FxHBIdCRb378fIagUj3cw4ZCHp9AQx3y8BCCE47Py/JNnRxX03/jc3u8fw+t99CDW6jplH/yOLHrqfJ4OAQ77/HfredvHe7u4UprBHIVS8q9zEQigbAzv1jdXU4hhvvO4OyBbsKyM7CWqzoco1g6wENMYRGB0JqUup6kUYJvhdKLcmYxW7Vp65lOwgMOPJjGzwCpXr/Dh+KxN9IsJU7i87ZWRCRCIm/mwn27SKnIxUBctw4pg7QRRWiRREGWameTSUqB9UOX+l+rp1H4z1sIyf/1oaUFKN4t1V6B3w6TRiYtW/Vpjo2Yjz76SL0Q7sgKEuhVOTGxdRoxDd5I7XS+SX5c0NYlzIaWPum7UGIeS4el+VzyfqW8N6r5eDn3zT0rS4P0KESJEFXfbWtV4s48Nq2yVYe25ztS3SZK1l3rx5QHVHL5VKTZ6kOYUpxLDWYtaMou/dgt2UB0cg9+tBHdiLmNuBGBdHu+sQCYVa1AWLuuC0OZihEmbNCPrZUcKHtiEe2EboCAb6E2zv98jOSiG7PbqSLrO7k/Sn3Zbkzdn8IN03X8xIOItV877B6hs1wxu+jglWM6d/X46+7MP84Y8reO65Z+js7OLUU89k2bKDWuYotRyPEJU8p7lz5096vF8Io3C936xn23NjHP3GRSTSey5Bclex7NSzsUZz/0+/w29SZ3PufV9ChAWOe/0lrP3h//Dg/Xdz2jHH4ux/wN7u6hSmsOegFFbYWMZ69yCIjcVwAoOmWX5TO9i9NkCVwPkmJPJ57GSdrRbhgRARpF3xqrVzanWm2wt7asREfMuaxIR5JGXiMXFWkUerULDoGFuRrm95nCUOw2zvt7vRxG+FQEiStnkuWnTfds+zUQ6A7ZTdGFEO9Wq8ZkQgW8IqGkmTtuGE4bIpmSFr68Pybc36n4wcCCBsyE9Lyd1Tb1Hasmc7+puWnZQYaftZz9vx6QblM/O9KWRe4cScORLHmPhe5iYNJ22Orhl7WT1v0aJFXHvttbzlLW8BoFgs8oMf/IAFCxbssY5N4ZWBClm6azN2awG6PZzT5iAP7EUkXxwDfvNokbvWDnHf80Os3pZj41CBbgPHWJfjjOKwzZqDthThz6NssoZVJuT31rBWWmzGZW5figX9aRZ0J5mR8iAwFNY8Re6pR9kefp6xsB+7bgyT/Qkm3MYhC/ZHveb1/OiG72Kt5fjjT+bQQ4+sKE++WPBSDie8ZQmr79nKo7eu57avr+K4i/Zl2vyXXpheGQecdi7F3BiP/eZnpJa9ltMe/g/m6RJL9z2K1cZw4OeuYvZ/fAuRai/5dAr/O+D7Pl/+8pe57bbb0Fpz++23881vfpMzzjiDRYsWTd7ASwiFNiqXCmMo+bqFIle9MWKxsWT57i36uEvEQ4i6/su4b+3mloxrj1rzvbVRrXDQO+mvafeskDDOudhFA78xF76hzk4tgbIItMnstCeqIt0tJKaF50SqNEYrhBB1EtHa2khZuebYxrvZKt+ogkbesLMDEmJC15clEnZIyW46VDe+jAsBW02rQs3NIbE6BU7VyDexr7BdZ2N5Ruq7LOo8RWViZTCMuo0GfBzCagRBG2Itk2F8Tt0utRb935Foz8HJld/dwX42HG7M+Aia/kCS7Ng9BLIZ2rJaP/3pT3PllVdy8sknY63lqKOO4pRTTuEzn/nMHuvYFF7+sCMlwuUbMM+NQo+Hc8485AF9uxQO1w780PDwhhHuenaAJ54eQg8VmKlhH6E40DgkgmRlFzcL/AFNh9TMcCTTXcGrHZcz412nUs4yPFpi+NkiOW151kDeWALrkPbmk140hzkzLKtvvpaC9jli2eE8t2gJ61bezvz5CznllDN2OAxvd0IIwdLjZzJtfgd33/Ast3/rSQ45aw77nzArSih+CeKw899EcXSEh+76Pb3HXcRhj36bVx/gstrJ8FhvN93X/V86PvSRvd3NKbyEcPnll9PZ2cm1117Lhz70IQAWLlzIlVdeyXe/+9293LsdQ06XDa9Jns+SH3kVhGxCNCZ/tuvsj10II2uGxj41M5ONI5FBE8Mszr+S5YT5HUD9bv2LiQn9QjvVUi39C62u81i0qt9krQcmjZQONAmBmwydqnecwl5zJJAyBGHGqecZE2k1VV43JeotxtDSV9YeKqGNLdZ1ea10qiYkU4ARDgozKYmXIqL7E9bgmuD65Ry6KkFq4lUznTgtbocel/tXM3MvpTzPeJCqP4kZScDQzuYc1Y+3MTS0DLUHc5/bIk0zZ87kuuuuo1AoMDY2Rn9//4u+az6Flw+ssegHtqLv3gxCoF49G3X49N1ipFtrGfGH2VrcyrbiFrYWtjJY2s6m7BBrh7cTbFf0DvYzJzuX2dkFzDEJIEVJFRhKbWBdcoBsYpCcN0JJFfCdAqH0sVissFhhENYyO5zGktJsFvtz2Nffh/3C/gZ1JZec7Cc7sBlnfYnOaeezLj3EH5w8et1auqelCTvHuP2pm1FpFyeTIpXMkHEydLgdJFWKlEqRUAmSKkVSJfdoMnvfnAxnvfdAHvj5Wh699QW2PTfGMW9cRCKzk+EvexBCCI656B2Mbt3IHQ8+S++pb2HBE9fxqpkf4RGzhGU330Ti1NNxDz9ib3d1Ci8R/OlPf2L58uUAld+mM888ky9/+ct7s1s7BaPb87SYRBJhNUiFNZqGwkQxQtr5ma/fjHd2mUO1CuUxNgShJjHqRMuXLdueFLs5f0u6CCnRYWnyg9tAj5pW99pg6zxostX9rCM8AaAQwmkw/OvHb5Cxl08gpYNwHNAhZjI1NRkgRQkpXYxpOHanFo9o8q+J32mNeI7acIXmzSgWF4iLJCsPIxxQBmE1tqnqXxVSKayWkydz1UAIibIOGo22rbLXWpPkltfYifPa8AGyM+GmUsUiE1Ig0x5uMkVQHMMYu0fSj5qVIthdaIs0ffKTn5zws6uuumq3dWYKL3/YUZ/g5uexG3PIJd04p81BdO1cEddckOPJkT/z1MgTrB1bw9rsc6zPrqNkqj9O0ijmDh/AwoHDOGn4ONJhFHpWyIzhLx5A71PCma5J9zhMc9IkVV9EUpwkKZUiqVK40kVJhUIhhUQKibaawAQExicwAWv9IokHb0StXUWp82iKPUdhnh8hs6UIMslzXQFPuDm6dZrTg4Ppf6ETXqgfT0EUGXWyjKjNbFBjjDhZRlSWkfjfebdE0QsoJTRBQoOrSLrJmGAlK+Sq3P8y8ZqWnM6s1D7MTM0i5UwctualHI5/8748c99WHrllPb+59nGOeO0C5h3ct1P3Z09COQ6nvOtD/PqaK/j1A3n+6tjXcfq6/+Bx9Xc8ctxxdF19Fb3/84OpML0pAJGS5Pbt25k2rWpwDg0NvTxV9WwkuS0nsSYCN4MXZiPShMVIiRxfNCcyAscZfrG2nYjUsKo1ZyKFPiEdrIkIiLRgxk3jZKZDC9I0yZlNW9vNm7TthAUJS1OZ9nHYwc1AISShqpUnb62KWAslHDyRaqK9FtFcaV261fQauYNY9rwFaar9XEhVGbO0amKJeakRcfieVLZJraaGS4zzho6fMyuiWmNWqKaft4uCyZGS7QsfKeEyGA7h0IlEU1FdVx7oyXNq6obeUmylybVxoE5dr97z2uXLHdtcmOg6FnQbh04s0h5hHDluCxLHq4bL1RZTLmkDdV6hNscjJbrJousMZSSdkdrLOU2N9ZiGh4dZuXJlRUlvClMA0E8NEd62HiyI18xjy5w0uYJPYbRAIdQ4UpB0FAlHknQVSUeS9hRJV+FIQSEs8MjgQ9y37V4eGXiItdnnKj9u3c40OuUcpplTGR3rRG2dxrKx2SwrdpG0EusIpu3bxZKD+5ixuIvUThK15gML6LzvoySf+QmFQy4me/LHeOKnP+CBx28iHRoSJ5/D8yPDzJq/BDP7ML69Ice6jVnCXEA3ll5hmJ+SzPYk01SaLpthWrgPSV+S8CVKN//BDIQm5xYYc/KMOjlG1BiDcoRhOciAzDGm8mRlnqzKk1N5RlQWkXKZmZ7FvMx85nXMZ35mAYs692VOZi5KRDHo+x07k+kLOrn/Z89x9w3Psv7xQQ4/b/7unbPdgFRnN6dd8mFu+eKV3Pr8Mt4470hOfuEubp92Aht1iPefX6fjHz68t7s5hZcA3vGOd/CGN7yBM844g6GhIa655hpuu+02Lrnkkr3dtR1GIt6VTcjJNwS6bYLRlqpdYgI7ZCLjJCZNgHZkXd2hRthY3LuMiQ2zRlLQ3o58edfbSIF0Wxtrloi7mDaMLhsXjW3d3oTBVnWQ0q3b0VfIluphjuPhW4NxRMu5LcMgI69H+XyVoBXtnO4sQJo0uTb6PhGsW0LaAtONZdsEhFAIMbE30SoQNrpvlYluzxjWYtcjH0q2SIrmpCl0FU5DSOiYp8grj/aEucejdhqakceJvLaO8FAofARGOlQJU3Wu+pxpKCvq1CZfbhBC1G9eiVp/lt3BMMJGOREZF4RORF8AGjKp3l3tcku0RZo+8IEPjHtvcHCQj3/847u9Q1N4+cEYw+Bv19G5aph1CfhiMuBPv/1zXEugNYQ7iNO5Cq/jaWTqOZAhGA+KCwkLZ+Ln5qEL8xgzKZIGjifBGSVFumQRjmDuwb0sPKyfGYu7UHtAgY+gQNetl5J4fjm5Yz5C7ogPct9XPstTz66iB5fsCSezeWSY448/mcMPPzr6cjgyOnXzaJEntmR5ZluOP2/P8avtOdYPFOoee1cJ5nUlmOu5zHQVM5SkXyq6rSAdWlJhilTYy6zQsqBgSAQGt0V+Zig0QyrHgDvMdmeALc4j/Nm5k03eENmkxHR2Mad7EQf2LeHIty5j6KGAVbdvZPPqEZadsg/7nzALtYOFgI01DPvDjPjDKCFxpIsrPfq8XpTcNbGPvrkLOeqNb+PeG77N3fv9Jcf1XcefBkf506knM+PGH5M49TTcw6bC9P6346KLLmLZsmXceuutnHXWWaTTab761a9y4IEH7u2u7TCUUPQEihEnrHxXJHWU3F1PSmoMjx3EZOJogvod4WZoJE3NkA4FBSfAsgu18eoMron7VN+bFnLd8UFSOhhTTzh3NSyxHfMvTDig20+yr+2PaCJsEJGTVmdNjnQoKMZ7ZsYRTKZFkrGWbM3rpBYUVT1BslK0FR7XLCQsQwcIzU76JSmaIgmZHD9fTdbPmB2OvVs1HWoTJumhguoJOg5trW1INBsgNaIb8bHa+iibqMtE2xk9h0gufsfz2aphmhND617A4OIStHkNIes3PLpEijA+N9rsGK+21y46ZCdp2UlR6Mr3lYBJ1++uYKctmt7eXtasWbM7+zKFlxk2jhT5+cMbOfCRIY4PFT/F5xcpwaIZGd7eO425PSm6Eg4pV5F0JdpaioFhoDjEY6MrWTW2gk3+kwB0yrn0i7PosQfT7y7FSyXwpkv6Mx69GuSzeXKrRzGhZfqiDhYeNo25B/XiJvZcbp0oDtF98ztwNj/I2KmfY2zhG7jz8vezMT/CtHQvm/Y7EBv4vPa1b2TBgvEKXbO6kszqSnLaftWQoWKg2ThaZNNIiU2jRTaNFtk8WmK0GLKqFHJ3tshYMSTr6wlJpwI6EXSL8n+SLiHoRTINQT8Z+v0OFpbmcLiFjK2fo0E1wvrEJu5MPMBab4Ds/inmbj2U8HeGVfc8T+8Jlq79JY50kEKSD/PkwxzZIMuQP8hAaTuDxQEGSgMMlgYY8ocwTZR2lFDMzcznkN5Xccz04zhm+nF4aseNp6Unncmmpx7noZt/xqxL/pmz7/osN/in88yRR7Ls6n+JwvSSE1X1mMIrGVu2bKn8e+bMmbz97W8f93ljpMRLHRNJjTczvpRyEdKCmchKmNiMN7GZBBB6DsIYpJEIAwgRlU2ifRtSWlEREZDSweqQpJE0Bji1E/KmjUFJiYkL0JZDu5QCEh0EpWzd8QaDqvH5GOsxkeU08XgEVjrQpIbTZLA1CmcJU0sgmh3b8FqCMOAaCJpwPVe40LRIbvn8mJwoCWFZNrtZ+FtDylMMp6ZDAg1yx1XTErr1mFuyUQFKJTBIrK6SWCsUVsoWa3s8jHAwJAkJSIgkYcJBlsKKjHYjttsx0n4R1zj4yRJJ2ahHJ6Lw1rDesA89BwQ4SkKgI3l8azF1pCk+1oYY123hWbQgQwSWhJUUha3MVXlFGynRDpN4J6MviJ2tVGCFagjjLGN8g431rkKZwDHjc/qUk0S5Db/Njc21JTzSDIIONT4ML9CWbD5kxk62OhnaIk1XXHFFnXtNa83q1auZPXt2Wxe5++67ueaaa8jn88yePZvPfe5zzJo1q+6YBx98kKuvvppsNksqleLyyy/n6KOP3oGhTOHFwiMbRrj+vvU8vmaIz5HiQBz+vLSD00+Zw193Nw8p0VZzz9a7uGnTz7l/+30Yq1nUsZh3L7qU0/Y5k33S9WvJWsv257M89cfNbHxqGCkFCw7rZ+kJs+iesefzWNTQM3Tf9LfI7CZGz/kPthTnseJjlzAsDNMXHMDajk56Mh2cd94F9PS07w5OuorF/RkW97cXc22sJdSW0FikACkESgqkoO18DVvS2OESerBIflsBvdVj9lCaA0b2xYtjlDWGF6ZvI1tMkr89w5Mrt/DQjD/y1PT7KLn5SlsSSU+il75EP32JfpZ07Udfop/+xDR6Ej0YawhMQEmX2FrcwrOjq7l903JuWv8LMk6Gc+aez4ULLxp3v1tBCMHxf/0eBtatYcWNN/KGiy9nyc03sGrJAuY/9lgUpvf3l7Xd3hReOTj11FNbhgoJIXjiiSfaamv58uX8+7//O77v09PTw6c//WmWLl1ad8xZZ52FtbZSa23mzJlcf/31uzaIBoTJqslbm1tUC+tEz62byCCCiciBiHXImn9P1JImAOMoRKhRLbLBm4U3lVHeFZfSBSyJciJUg8FcL2zQGjYWKLBx3JPyNNY0N1tEbHwZoRDteCgai36KKJnFCAfZlqAElXmqDaFLa0lRNZ+jKI+svm/alThNNCQsYKWsk2VvZV5aUfO5lGDKCnBxH5XEKIlbmnhsQhYAh1AlwUycz9Mso6oRXaFDrkxcLUgngTV63HquWe3j2tDWIlBxwOjksAjc0CCdmnZbEDYv0UVGGIq5scr6HXd4k0vbmt9fQe0Jsu7sYT2AYyHJ9An6Wz225Qhl9HxaJXFq75+t9fhGD66040NyGzdcHAPhLgTm2DY9gEKqcXbKpHaLkJEXeAIBDhvXlHNFNZ1AShdNWTLekm+xxncVbZGmRoIjpeTwww9vK6cpn89z2WWX8c1vfpODDjqIb33rW3zqU5/iG9/4RuUY3/d53/vex1e/+lWOO+447rzzTi677DJWrly5g8OZwp7EC8MFvrbyOZY/vZ2DEx7fT3TTGVrc8xdw+H7NE+9G/GF+vf5X/HLdz9hS2My05HT+atFfc8bss1ncte+44422vLBqkKfu2szQhjxe2uHAU2ez5NgZJDteHKU3d92ddN36XlAeQ2/4Matue5AH7/keAkHXYSfxnF9i0cLFnHnmeXjens0DkkLgOWKHq0bUQiQUYmYaOTNN9wHQzRwgVrga9jHbCpQ2jNG9LsFs7eMqwdHM4bWDb2L7tgtZ6/hsn+2w3xHTOWzJbFx3x3oTmpA/DTzErRt+zS+f/3/84vmfct681/POpe+h22svYTOR7uDEt76X3/77VTzw4HOcfOzRXH/vZh49+xSO+ckNJE4/E/fgV+3w3Ezh5Y0nn3xyt7SzZcsWPv7xj/PDH/6QJUuW8P3vf58rr7ySH/3oR3XHjY6O8qtf/YoZM/bUPiboYmQGZbQk8BxKsSqedlUlrMuoaj2dCho9GMjIcxDDSIHSFs8IAk9F4g8TGJM64UAYeTe6QsmIG9dQinfWG2FQ2EQn0mQRUlZITqVrNWIDbXuupFNXAwhASYtMBuT9JEoXK6FdFghTHnasgLWJSWmZdLyKFwEBJqwaaBYR0UnRnmGohRvPdQQjJY0J/c1QIWeT5PkbKZFh7VsOdoI8NougaHJoMs0jGeM3c3qMjOqc8LKB56G1od04p2b3VI2z3AVSKnSTTYDavrVq0+AgW4wdoukUNiKJNY03bTHwXKzfcN0dyLFxpAfUeKFs/XVsmcg0adMS59bFH5WN8ZZOOSHHbVwY4aBsQDkk1TMSz0iUgRGv+RpWVhC2+SQ2dt1PegjALfoIEQA1nqRJ4lvDhAOF6pIvWB+vzS0UX0UiX44pEH27RedZJFp5WJ0nTLjgemR2Y2HwRux0TlO7uOeee5g3bx4HHXQQAG9+85v58pe/TDabpaMjmoQgCLjqqqs47rjjADjyyCPZunUro6OjdHXtbHreFHYX/NDwrXue57sPvIASgisOms05zxQQUuD+1SLkPuO9Juuyz/OjNd9j+cbbCIzPYf1H8N5lH+TEmSc3zXMJipo1D25j9d1byI/4dPYnOfL1C1hwaD+O9yLJ21tL8rH/oeMPn0L3LWX9oVdx1xe+weZSji43Se6I49mYzXLssSdy5JHHvjyVuWoghIDeBKo3QdfSHroAqy12W4HC86MUnhxixkCJBTaF3WQZ+uUgj4bb2eBImJ5k9swM6YyLl3JwPIlyo/+c+K+bVKR7Ejiuw1HTj+Go6cdwybL38/1nruem9b9g5ebb+fuDPsKr9zm9rf7OWnogS08+kyfuuIUFH/pnTpz2fVbSx5wDlqKu/hd6vvVdRGIXciem8LJFqVTixz/+MQ8//DAjIyP09PRw1FFHceGFF7a1seE4Dl/84hdZsmQJEP0GNZMrz2aze/43KQ7LTag0Fk2J2OtQl9tT9wdggt34Gk+Sq5hWtFgsAykPHdjxkU8m3imvaUq1YYBYIZFC1eUvOHWSexbpeFhjMKGPamEnGekCQSXkTVAuiAq+m0HLJGZshMYttLLJrEkhY2PfIDEOOHFYU1kRr+x981OdJIpZ0qEkX9NgY6hS4868QUVKa9ULV5FOgV9P9soCB7V9biU1Uc4v8YVBeElkGIVvCeIckQbioaUbqShaCOwwVmSi7te7QQDImzF8SmRoRprqj+02lpEmYhBJmFRsooE/YIVAihTQ4FYrr2XpYGtIWmDLuXU7Xq8LK7AqusuuFVjHwdbkkUnHw0pJvifDtOz2+JRYdEPU072Wwh5SlSMi6wZjK/+Lojg6tUMuLqdcXqe10feuFaQt5GvaaAYXhV9D5ifKFfRMvcerGXY6f0+Cdh3cog/CB1KAwHX6MdZH67GJT02loFCdBdtUOXKC8dd8/wmokKYxM4YlSoEoSQkpl4LZ+TypydAWaVq2bFlLA9FaO2EYxNq1a5k3b17ldSaToaenh3Xr1lWSdDOZDGeffXblmBUrVrBw4cIpwvQSwNNbs3zqN0+xeluO8w6cwYdm9ZG+cxOi28P9i8WInvqH9rmxZ/neM9dzx6bleNLj3Lnnc8GCC1nUubhp+7nhEqvv3sKaB7cRlgzTF3ZyxGsXsM/S7he3+Kqfo3PlFSSfvJGxuWdx99ZXseprX0EYy5xFB7Cmtx8RhLzudRcyf/7CF69fLzKEEohZaTKz0mSOnYW1Fru1wPaHtiKeHeXgkuFgYHh7kec35lntW0qTfPMmMg5dM1JMX9jJjEWdfGDZZbxu/l9wzaP/ymcevoI7Nr2afzjoI/QmJpc+P/KCv2bDqj9x1w/+k3M/9H9Y/f2v8NDB+zPt57/Bu/5bZP7ufbtnIqbwssJHP/pRhoaGOOOMM+ju7mZkZISbb76Z++67r61aTf39/ZxyyimV1ytWrODQQw+tOyafz6O15vLLL+epp56it7eXD3/4wxxxxO4VIikH2wjhkLRV49TKKLzKquaVelwUGtNUJlo6Xn1ITRyKZmPDX3geNqw1xFsJLhCrfjUqWdXDqyFbke9MxKSqRXJLlB0SnWMtjonypHTcdyscAicDjNJhPUqiIddHuNjaBHtRlXOW0sUNQkrKktGKnNKVayWNxBgI3AS6icHVGUqGJti1nwxZPULKmTb5gQ2IPFgatewOAAAgAElEQVQ2Jg4qqsnVBFZEMsvlGzBOTr0hdLUxkrUc2AVUpTTitjxoGq7oAJ3GMiYFYcKDbNWLWDHGRTVeUHsKZUHa8WxZu6qpuJF2o1XulGqYvQCtJlN1tDHxjpA0gqISdZsO9SGrtZ6h8cGsreTpp6lu8iZkeyyLYSse1Vq2WPVDCqArkIw17OOoyucCISXGVEm5lgmEbcfjFwDupIGMQpQJVXSnmqlklu9hk0g/gLqwXhHfZ6NSlLRuSSoSeEwkHlNeZ636X0olcbIRtZTxpoquWZvljLKuFl7UXUVbpOnyyy9n3bp1XHDBBfT39zMwMMBPfvITFi1axHnnndfy3EKhQKJh9zeRSJDP55se/+STT/LZz36WL37xi20OYQp7AsZavnv/C3zjj2vpSjp86YIDOX57iP79RsTcDO4FixDJ6vLZWtjCt5/+T27b8BuSKsWbF7+Vv1z0VxMawoMbcjz1x828sGoQgHkH9bH0xFn0zWm/vsLugtr+Z7pufS/+9nXc6V7Io8sH8M19zAwgcc5fsGrzBqZ39/Ka17yOrq7uF71/exNCCMTMNDPOXQj/n733DtesKs+4f6vs9vZTpvdCHQakzTAKggUlEY34WbAk0ahRDFGSIMGomKBGoihRw6dfrMSGsUZR0AgCIsiI1KFOYRrT5/Tzll3W+v7Y+23nnIHRMEw0576uueac9+y99lprr73f51nPc98PYMcjwseGcO7dxwkDDVYElrU25r9NxK6iwynzyjxrdpFF5YC4FjM+HFIdChncMc7DN+/goZ+DGygWrOzjitWf4sej3+Wa9V/gkaGHufzkj3Bk+egn7Y/jB6x57Vv52dUfYd2NN/D8F/0J115/I/c/fxWnfv0reGc+H33Uk7cxjT88rFu3jptuuqnrsz/90z/lhS984W/d1h133ME111wziatkjOGVr3wlr3nNa1i5ciU33HADF1xwAT/96U8pl7vfC4WCh9a/W4Q8FziMizQNvmXoCYGQYLSPMBFCCoQSKEciYpGWOhES6eQwUQ0wmTGTyv0KRMr5EeC4eZCpMW6ERVgQSiFdB6LMaOmSCc52hbOSBc12ZSdhXYi0Fo+USGNTcQLabYgODohrVWZUt8cslZPyXaxNN8uEQAlBPhaEOu1rSecYVwqtJcYLkEmIyIxwB0lOKerWEEmDsm1WU2scMuN7YFFSIoTJauym/SxYhasrbJEDCGMwsUCaECGbptgEp9N2zFM2fmx6n6wUiCyUYDvm0ljSAp/N8VtaG+22Y++/3aZF6KyPtPsqERgsRkuElBlnJZ1zmx1L1m9BWiOp2UbmhbWHkh2FTPsupUiTn2QavbTaRcQTvJrsPgkhQAkMhnLoYD2FSgTS0zQErew+4yp0CELKlrBb4qQcHQHkraYmNI1snmJjyUi8xMpPuVijUWs1SuVgkm6HWQA+ipqUabSo9ezIrrELqVMepBBIRzO8rA+5KcI17fltr1uBsGJSyp4QArSP52hipRFxeuusozBGAhFEokl+AiXSYmfCIrNnMnEcRCzQUiBsgpQCYURWI8rJUnFFyk8TMo00SoGRHiai5cgGOkcYDdMUChTNlN2OTedcomgIQUSSPZt0r7Xm/x3Ps00bSzceRLeTJKQAqZFSoL0CcaOGUjJVBDSadt2vdH0CSCVxXYVyBLG0rTbT511m/ZDZOhRgJIlK03Cbbc2TM/C1jxUhWA0IrLRIKTEmfWcIJfCUS6XSrg31dOKgnKbvfOc7/OAHP2j9Pm/ePI4//nhe9rKX8aY3velJz83lcjQa3eHYer1OPj/ZOL777ru56KKL+PCHP8zq1asPpmvTOAQYa8R84PpHuXXjfl5wZD+XnrWc/O27SNYNII/pQb9oASKT9x6LxvjGxq/wnc3fxAKvWfo6zl/6p5TcyVFCYyw7Hh7ksTt2s2/LGNqTHLFmFkecNot85TCkVSURzl2fYf+tX+a24TlsHF6DsXuYOTLOopWnsm7RYvbseoJjj13JGWc8v0X+/r8MkXfwTpyBd+IMzP46at0Apz24n2fXHHaH8KUN+/m79bsoBA6nL+3lucv6OO3ZswgcRViL2bt5lG3rBnj87r1sXLuHJcc9mytXn8qHN/0D77zj7fztyr/nRfOenCs595jjWf7s5/HQjdex6FmrOG1pH7dvUsxduhB1xQepfO6atKr9NP7PYP78+ZPSuWu1GgsXLvyt2vnZz37GBz/4QT772c+2UvWaKBQKfOhDH2r9fs4553D11Vdz7733cuaZZ3YdOzY2BbP/IFGvZ6llmfgLgLQWaztEFIzFJJYkthiTFheV1pJIB0stNaqtRWBbIhlpypAFa7Em3T+3zRQoY7GZA2Vt82/NHeHsfGuRJpO4Tmzr3ObfhJXt80wav2g2YW27HyQNULo74GTb+/nWZOeZ1KDPR5JYawLjMpKExLHBKh9jRto74dbiSUtd1LASlBkjwk/FEdqdwDegI4mDwAqLTdp9U0aSJBYjwGiNG6VGqZASgyARAmWjzGFJkU8UDjn2yzpSNMB6WNNJzgesad8DK7DGUrMj5EwJIXVHql17QqSFOJs/Y2yrtpQmNWxFoUjcqGIlSMfDRo1sDi2xaWBUHmHGIUlakZL2fe2OhFhMlreYXcek6yMyEcJYGp6LiiZvcltjsRKSzNlTQMNxsL6DowS20cn1af6zJMJB2DRVzQiNsDFRMcBLivhjNYacthx1M0MydvJIRtM5VS4imRytMEJhSFI+nbI4aCJipJatsTcbtdYi8WlUXHIDBpGN2Urb6mdzzlJp8O5Im2mqTsYGm6TpmooYg8B4CtVoOnQWNwzZ6e2iQLmdtycV1vXwE4hNiJvdZ4wlUaKlFmlkul6QBovInttmombzCiLjNWUeqtBACCaLyiUGbSEXKfY66cZEoANCW22Nsfl/021vP9eQSE0sNNqEICSRq9DGEuFghI/O+m6S9P9EBrjxaLZGTIvfaBJDHCaoSFBXZYQdTD83aXTOohDWgMmeHGtIUDg2jWwJo5HCQaJJpMXGCTU7irEG12ji7B1Jkt7LoaGpAzMHixkzpo5WHZRlMTo6yqZNm1i6tJ1itXXrVkZHD5y72MTSpUv54Q9/2Pp9YGCA4eFhFi1a1HXcI488wrve9S6uuuoqTjnllIPp1jQOATbuG+eSHzzEE8N1Ln7eMl517CziH27GbB1DnTYL9ezZ6S6JTfjhlu/z5fWfZzQa4YXzXsxfHPmXzApmT2ozrMc8/pt9bPjVbsaHQvIVlxPOWcDSk2fg+M8QXymDNYahndvZe++N7Fl7HdsGFJE9CgfBwr2DLCr3M/qmC7n1sUdQI8O8+MXnsnz5Uc9oH39fIPt85JlzUafPwawfYvba3Vy6Fy7yC/x3RfDZ9fu57sHduEqwalEPZyzr4/nL+zntmB7qYxHrf7Wb9XfsxjxiufTMj/Mf5au44r4P8vjoJt561AWt8PtUOOW8N7Djofu4/ev/zjl/90E27biKu048np7rfor3tWvI/fmbn8GZmMbhxrHHHst5553XSs8bHBzkF7/4BWvWrOkSHXr7299+wDZuv/12PvzhD/PFL36RZcsmi9RUq1V27drV9T0IPO2bKaIj9cVDUYgljhEtvoMRmkj6aRJaB4fIZDvGstNgpx31aCcITXXN1FhKHIkyAqtFulM+Aa6VxK7GJBLCcFIbT1ZHqZhoHCvZ+1syKVwrsROLnrZS0SaMSKaenG45fKLrCIHA6bx80ymV2Q73FNcXNIuPhkgrUUISW+gNNcpVJMisnYNR7Ev/UygcKzBS4lsohJIxnZ5fiCVC+QyJMHV6p/iKdLRH1SRpJExFWGEARaQstqkqJhUimUJ5cVL6XnfnrBJgYFDsYBaTv88nInEdIi/BNgWCploDB7jlVqS3TCkHIzWuXwGzb3IOYcedkVJ21blq1tuyKoYkXSctFWvXTY8PJ6e3+doj6klgYEIHD7CEEy0RscyEKNoL0BEaKxTJhHHrTFHRCI9IxDRMA0962SXSiBEioRKDUV1KH632EyeN3BkgkB7GJGm0rCMqRMuJsrjo1jvBdi99jO8RugrdqCOtoBBLRnWWApg9X0JM4EY2I6TSI5QeWjYyGfj0z7H0iFQOI+MsgCkyn3ByJLCJSOcxUraTaC1oN0c9TtoKhs0gIYKZznwEglj6RMD+ZA+RCltCNZ4uUbQ+NtZEzVfxgQovPw04qLf9O97xDl7xilewZMkSisUiY2NjbNq0iXe/+91Pee7q1avZtWsXd911F6eccgpf+cpXeN7znkcu1w6dWWu59NJL+cAHPjDtMB1G3LllkEv+6yF8R/KZVx3Ps0oB0bUbsIN19IsXoI7rA2D98KN8Yt2/8OjwI5zYdzJvP/pCjihPdixG99dZ/6vdbL57H3GY8pVO+KOFzD26gnyG+ErGGAaf2MLuxx5i14aH2bPhIcJaKqVadAQLc0V6Ht5Mf2hw3vI27szn2PjQA8ybt4AXvOAcisVpXt1TQSiBOroHeVQFs3mU4I5dvHRnlZf29fL4MSV+PF7llk0D3LZpgI/euIHnLOnlj4+dyRlnpaqId/9wC4/duJ8/XnABS1bexDc3fY2Bxn7evfIf0AcojusGOVa/+k38/N8/ziM//zEvePkb+da11/Drs07jjGu+iPvcs9BLJhu+0/jDxPDwMKtWrWJ0dLS1mXfSSSfRaDTYsmXLU55fq9V4z3vew9VXXz2lwwSwf/9+zj//fK699lqWLl3KL3/5S/bt2zeJ+/Q/hXY797UFrhFpXZjMSjJCo1oiCelnsc4hTARYvEQSqrYBHwapQVSuGaCRpWMdwKgQAutIfOESTSDs2yzNxmCzFK6J9qWY9KMQIn3XSxcZp2llrvBbdP9EOKljIB0wMcKaAwgkdHhJgBAK7efTFKV6vaPUS3qcBsqhZF9BIaWakkvTCak9HJ0jkVMfZ6WkEjkIK6k5qeEaS49qeSZxEMBgFZk5GxM5ZZOcFJmapYlIR5rITkNVkEchEk1iDIMiSlOZOhAYheiQOEeFNFsIaSCVJiGNSiUiydKY0mytjphjR//akRNIVedkJEjEk6sdtt3SdH2qVp5htjKExLeaajOJpDM0CVM4V50poRP/kvXNmq6Cr4mW6XWz5d5cB04CsQpANNBSdrXRbrP7XifCPKlB3Ep7zKC1P3kcIiuZlfVDGoPN7lWTU2g7DlbSIX3aOzY5RHtsTa0R6QU4bo5GfSTdFJCCpkCl9AoQj7V2PsSBCspncvpCKkhAH0Th4cSRdKrnh0HTMU7/aSWIdQ4YASExSkMYtnmJU9zjsBjQrS5pIchjxutEQuHaEEf6+NLFqB6EScVLxqhRI0DbOkqqrljppKEebvW8V73qVbzoRS/i/vvvZ3h4mGKxyMqVK+ntfWritu/7XHXVVVx++eWtdIkrrriC3bt38+Y3v5nrrruOe++9l0cffZQrr7ySK6+8snXuxz/+8Zbq3jQOLW58bC/v+9EjLO7N8clXHEf/SET41cfAGJxXLEMuKlKLq3zpsc/x3c3fouxWeP+zLuesOS/oetFNVV9pwXG9HLFm1jPGVxob2Mf2B37DrsceZNf6hwirKZW6XPQ40t/GvJ5RAud4olu3Yoe24p7zEna8+Bx+ed9vCPfuZM2aM3jWs05Jd6imcdAQQqCWlJCLi5j1w8S/2MGS2/bw10tLXPTKE9gQRlz/8B5ueHgPt27cT2/O4eXHz+G8cxcwf0Uvd1+3hXk3ruHNp8/iC09cxXA4zAdO/BCBnrou14LjT2HRiau5/4bvsfjE0zjrtFP56a/u4eEVR3HCRz5I+TNfQKhnNpI5jcODj3zkI/+j82+88UYGBga4+OKLuz7/whe+wNve9jauu+46FixYwAc+8AEuvPBCkiShXC5z9dVXt1Rgny64OZEWuMw4LQCJq2mRQQBHSUwCdacMtT1paouIu7gqkEo0W6lbIgLNPyuRGh1GSWScYGTbaPetJCddRoHId7CxJdaSxHGoGIXMEpGMVsgJBPJJDo8FqSakE00UJqDJm9CYSbZOKxQ0yaCWbgERjnSZTKL1zs44W1qhZFqv1RhDzYwTyMnfQwKBVg4JbUPPOBoRx60dcYFIIwpS0Sw2a2XbmYydPHOSAqNFHzHamDK6AbTeSbGwuEjCKaoWCwS66ehNmJMSmtGOz1wpW+6tpUmlMTgWIt/HDZO0Xq1MBegnmpgSMMKhM1JWl3UOdlULJwcMd3xiWymHyvMoYBnGTJIKF44L1tK8ZZHv4Y22NfmMTlLOmhWthWuxJI5EJobY1Vgp0IkmIcQ1gpzOM9jYl/KehCbUDkkugnqzCUM+UeStR81V3WO2dRILefy0HqHJMcKBVdhc2aYUSOVhO+paWSUhMWlEJaMmNe+jEZpEaKwQeLbbBG86z2HOx4kTSFJfc1iOUZB5hLStZ8kg8Y1FOh6lyGmpP1ohsF4ZmVRBRO0xCjCuB3EICUgU2pgu96UnUtSURVvBkDYZ7yi93mhfBd+OtLlWQClnGEnAlTkQbccy1AWcZHKKsgB85bF1YZme9Vtx6ulzFAaaqi6QGx4DCxVnBo5ShMqHxhANU6MmNDWhKCLQSjLUm0fFCd4UWXjicEeaAPbu3csDDzzA2NgYl1xyCQ8//DA9PT0HJbu8evXqLk5UE9dddx0AJ5544kEXIJzG04/v3reDK362gePnlvjEeSvIbxwl+u9tiKKDfvlyZJ/PL3ffyqcfvIo99d28dOF5vPWot1Nw2jmfJjFsWzfIY7fvYnBHWl/pmOfOYfnqmQTFQ1vLCCCsjrPxzlt5/K5fsm/LRgDyvf0sXHE8C73dLBv6McV4L4PyLPav7SfceD/6uOOJ/+nD3Lx9C9vuvI1Zs+Zw1lln098/dSG6aRwchBCoIyvIZSWSe/aR3L4Lc80jLF0zm3eevoQLz1jC2q2DfOueHXzpV1u55s6tvPCoGbzh9UvZ+uMnSG5azF+vvpyr9/wj7177Lq449RMUnKm/wle96o3sfGQdd3zjc7zone9j2+ZHedAew4ybbsb91rXkzn/9Mzz6aRwO3HLLLXzuc59jz549JEk3af3GG298yvPPPfdczj333Cn/1vyeAnjJS17CS17ykv9ZZ58CQbmHMUchlQ+2RjMlr9NpSnetFbEq0HDKEDXJ0u1NgjEzRl6XM75D02lK/+4KjUAT6phIpw6JFqorI09bgWsVYU5iZQiOS7+eye76LuJmzaUuaW6BkS4YgWKcTinhWLpEysOJmwLq3TBKIyfonzu6o95RMNnRqXt9RPFeUjp4lpo4hZZ5rHKkLiCEtk7AgTbvmnVf0rZirRGoyVl3UkGWehTnddffPavoJC2YqRTvzOSNHDsFbwaAXIm0DtAEO0sIjJdDGUFOhjSyThgBDSVxWiE5EMpHmkYrAhYJF52pDgoLQaxo6G7FuUh2xjqnRqQLRMISy4BOp0lgum5xrHwQVRLh0DXyZmSkFZaccAEBRlvkhDpKdSfBKhdbT+c2bzRBKDGuRCpNVtk25Q0pCcEYUeBk3JlxfONMVrnOEBKTP9jSy6IdRfScEvUodZqs40OcOgyJ9HEIs5S6piCClwqmILuiXTW3H5VIoLt2V2hDPKGRQiCkASuwnsZLFL50CYVE6w5OuFCgHWI3h2E/asK6ij0FEWjXgQl10CSKYsYXa0jNuOdik/YCN9JFJmmhJeUOIET6vexIH4SgXiwQNNqOb1lUUPke3GqIj6U2PJOKmoetGQpyHrEapcZQFq3rjMEJQhmzT9Uo2zqhbZC6K51plILE0cSBy6RNh8Mdafrud7/Lpz/9ac4++2x+9rOfcckll/D9738fYwzvfe97D1nnpnFoYa3ly2u38f/etpnnLOnlipccjf7VHuK79iAWFnDOXcw+BvjUb/6RX+6+laXFZbz/xMtZ0bOy1UbUSNj46z2sv2M3tZGIYv8zW19pbGAvD/7sOjb+6hbisEHvgiWc+LLzWbx8IbO3f5fg4U8jxmoMqWez8f5jiR5+DDl7Ds77/pH7Ap8H77wNpTTPfe7zWbHihOno0tMIoST6lJmoIyvEP3+C5Bc7MY8Oof9oIWsW97JmcS9PDNf4z3t28L37d/LTR/Zy9rJ+zswXGfoVvGvFR/mUuJRL1l7ER1dd1eWkNxGUKpx83uu44+ufY/0dP+f0c/+CXdd8gl+dcRrF//gi3nPOQC347cQApvH7h/e97328/e1v58gjj/y9f4a1UFnx1VTGN9JTcwMOeL4V1F2NrbcTxRJhEPk81kqIqhOYPs3rSiIhMq0IS8G2jWjXShraQ3ak/gjlYkmwpt2WFWClIpGCRLpoE+MADSRWKCKitjCBgKqtkhc5NJrE1piMLAoj5aQ0N4sgEipzmlJI1eRzCKSQWMdPHZ8pYMSEXX7HQzIKTpC1IdNiQbUI6RWxtdQx0LpInCl6Ga2RIZRNDqlCQFAQPqPZZvKwGURZRey53dLZdKQuWbqKnxqrWr+XPZ+tchh/qjFImYa6Og3sKZZ+yVdUkziluhgFAhKRGtn5uKMorzjw97WDIiKh31gS6RI5AcZKbBqySP0fp4GIXLCGRpejKYhUDi3DVCRDSkSStAzlgi7TcHoOeO20Bdn6KZYJnnEQnkcRDxmlHKO0LFWq3CYA4eaAOgibFoO2BiskYeASpJmsk6fUCbqy7RLpIm2EnOJYi2A8CEnGqggbIJSmKhM87XQFfHNOH0PsB0BpjzhXwfEKuFEdR8UpQ6qZkqfy5JVLjRG87F5ZLJHyuioyWa2xOcCWsQikk0MLiWuD1v10pd8RZGoqD7YdVCmrCCNIlIdK0jncLYaZY4uAYFAN4YpZ3Q6wzuNEU0ffokIZZJVEa3R2jit8ajkHqqOUgpARNySWlqqTkMPgi2CS0xRJL43qEhFJiet7mLHOBdWeXBHkEG6hWeCqlTIsDl2g6eCcps985jN897vfpaenh1/84hdAWhfjpS996aHr2TQOKYy1/OvNm/jG3U/wR8fM5P3PWwY/3kqyaQR5Qh/irDn81/b/4vOPfYbEJPzlUe/glUvOb3FM4jBhw9o9PPqLXTSqMTOXljjlTxYze/kzU1+pUR3jgZ/8F4/ccgMAS05+NkefdQ4zgxq5ez6Dd8MPQAhGCi9i312G8O77Eb19uBddzPqFC7jnvt8QhiHHHLOS1aufTS73zEud/1+BKLk4f7KEZP0Q8X9vJ/rqY6jnzEGdPIN55YC/OWsZb1q1kK/fvZ3/vGcHN4YJb1lYgQfhnUd9lH/jUi6+8118dNW/TqnKuHzN89i09jZ+8/2vM/+4kzjnZa/n29/5Breftoqzr/gnej79uY60nWn8IWLmzJm8/vV/GFFFLQQ9ssCQgaRYpEGMMt2pLsJtBqFEurMOKCePietoKyhYh2HaRtK4atBniyS+B1G1K11OWMhJD+OPIyINcYKYELHJWY2ri6kR1pQoVqmaVVudjozLkKb12Jaha0m0YigZR9t9OGgSJUEIQtvAFx5apDWcbCZcMFUtl06uUC0ZJemIvAWJQJfyOHvT87UF5QRYrSGG3sQlSRIGm3wbyMQdOuZdSRoJSO2TNCNcSTbWLg7FZAjpkFdFHCFR+Cg/IEoiSNKIlTPh/dP1Dem7oPpxwiFkViurSbbPOz6oLE3TgpR1jKhAfiaM70zb6kyP72i42V9fe4zKQSQ9LaV0qzQ2aXN0msd6jsrqgnWuj/acCSDSJZSSLSK+cQzWq6WRnSjNKomVjzJhqobWOcdZyqG2ggiBazVKOhipntTQzckCMYPdHwqZrf3U4JeOC8gWd0oKF0THcyPSCbIHsk+mcoxEKvvfEyn2TEqYEWjtMi4isAFCuRTKBZQNiMX+tDlhcJw8iAFCE5IDYt8l780gjHciJkSBLCCEoiSKjDoxnpFYW6Pu9lIgytL30v7X+nqxcQFdnzoNVAmXnHFRSQ0hGx3cK4tUw2A1rhGMd9zrRKYpgUnRpaZKCJ3HFSNdY06LTrcjqMIdplFZnn4UV6lWipQGm6tI0JARdTtMruJSLY5ArsS+xh7ytoYn8hRFBW0K6DjGy54ThcLqXcCiSUW7Y+XjqWy2HBfp5KCWOrhpVBkmPGFPKw7KaZJS0tOT7gQ0H1Ct9aTc5Gn8fiBODJf/5DGuf3gP5580j4tOnEfynxux++voF8xny9JhPrH2Ah4aepCT+0/lb467hLm5eQAkkWHjXXt55Nad1MciZi8vseIF8+ib//Tm9R8I1loev+t2fv3tL9OojrNs1XN51kteSaW2ntzd78fdejPGyTM869UM/Dqk8cs7EKUS6m1/xYZly7jvwfto7NrGokVLWLPmufT1/fZFB6fxu0EdUUHOyxP/93aSW3dgNg7jnLMQUfGo5BzecfoSXnfyfP799i187r4dnFFwWfWo4q+W/guf4T1cvPav+diqT1F2u2viCCFY89q38oOP/D2//vY1nPnmizh7zUn8+I77WTswxJnf/w7BK151mEY9jWcCF154IZdffjlnnnlml8gQwKmnnnqYevU7wpos0iBIfA857oCpZ1GephGfHioQSMfHKg2NEOJ0F7hZLBMpka4hzg9CrUDDqSDKdRgPAEHOaFwkQmjqKgHlIf1c6wKxCtBJdwSoL9/P7sYIcdTevbbZHm8UeKixthHXDIQYR1G3lnIIjqHFwYkdjY1tKkGeuIiOaEeaYeUwmOzBF3PbRq2FhBgt3JRL0ZwHLQl7SrhW4u8bpTM+J5u8KWjVrZo07cUCoY3J2wIj0T4ASiLASUyL2a8OsPmSOIpAliArcjpfz2CTSBP1jGqS5yWJ9FtXbkfHJNYtQjyMEZJY+2nEBEBYkjkzYNdeAGpln5pTpuC77G5nQXWOot2n7GdBFhECjPIBi1AeJBNlIQQIQaAVsUqaQ2n1MxYJnXltbe0NgVAJuC7ULLFTwiSWPWiOTlAAACAASURBVHqQuVHQctAb+RxukqcyWCcyCQcdPxUgDxAFq3t9FMROHDdHpAVp6SJL7Dj4rfpa7YZ8mSPSAXGUOlbHzy0RDj5BdYtIJd6nuEaSZcx0OlsCCFQRS5yupUyVoWIVdeW3XSEZ0XLSiRk3w5SZ35rUA5r2InXYwlI/xh2l3lOB4b0gDcUkQEuD1c6UGZ3NVpVwCEQOnYymty2rnYYwCBGB1XhGUiAgtgnSCmrZuVZKrJC4qoBjx7uelzS223aGha4iKy7J/vS57xR/qPVrrIDIV9QXzKR32THsH1wE7KEqNQXpEFBAESCLBfz6nva8i/S9M9FpArDKg4xvZrOUZCOczKHryBg+BDgop+mEE07gPe95D+effz5JkrBhwwa+8Y1vcPzxxx+6nk3jkKAeJbznuoe5bdMAFzxnMX8+r4f46+vTZ+C8hXw5/BbX/vKrFJwi7znhMl4498WpxHhs2HzPPh66eQe1kYgZi4usOX8ZMxYdusrLE1EdHuRX3/g829fdTf/i5Zz9mjczi23kb/5LnJ1rMUE/w8vfwf47x2h87SbwA8b//E1sWLCADZs3Et99J4sXL+WUU9Ywa9ZTS6lO4+mHyDnoly3GPDRIfNN2wv94FP28ecjjehFCUAkcLnnBcs47fjYfu2kjN20Y4/mbXN4S/TOfn/9e/u7Ov+bKVZ+k4nWnc5RmzeGEP3oF9/zwm2y9/y6WnHQ2p259hF+znN4ffY+Tn306avacwzTqaRxqXH/99dxwww3ccsstqA7xDyEEP/nJTw5jz357JCpV5Woam4EsUWeUXFCiZhPiIEaSCRK0nKisNksGK1Klq1g6BD0BOqhR1TkS0cBtiFZ9I7fDCN40K8avR8zIhBIs7ZStzrpnRR2wJxprq3y5HjKsE3suVkYIHeKKADBdhqaRioZTIteoZr+7yMwEEaQb4YnjgQ1bm+Jjcgzj52iGSApunvGM+6SEiyNj4k5eSLlAIj1G9DAMN+cxNYUdZw/KC1DSbxl2saOIGx6hLmBLBUIToUbbY7U6h2/r1GWbTD9lrtYEOB2pfxZSIQvtZw5AKsjQNES1EHhKEllJRNKVTlhTMcZ1aJvXYqLWx1MLuEtD7DaNXYHwClnkvR0tcI3MnBiJqwRjfb34g1sBaOQC3EQTigGGxrfgMWGjUQiSfhcncRgZHqNEBbCMKUFIEePlsLJOoiFy/FaamYMmmUKmPSFBIVtRMYns5qh0RtN0Gn80LRW61DFolAoUhOxWTZQChcDoAOHEVEqG3QJyveNEuRHqI20us5QhWBeBJFGWRsEHEbZm25M+Wvo0PctQGkjAMwk1lfbBCI0TRwgNViUEYYIn/NY18qoHy84D3LS0qC5KU++f0RIbSSfOks/3UpWtnRM676UjJUmmjNcVhZzwUxQ4NKQDUuHpAhGGiZ6sq3zyxqVGmqorrcBBUaZIJMZQViOt6tzPyPokiVSBWqEf2xhkfGaRwpK5FNzs7gtBVcbsMDupuLsYCo5lsFIhGB/EryYUrcUTaTpsrPKtqLXRCldLjOdCo04iHRKnyMSOH3YhiMsuu4xPfOITXHDBBYyMjPC2t72N5z//+Vx22WWHrGPTePoxWo/52++v474nRrj0Bcv4k8Qh/vYmRNllw1k1rthyAdur23jRvD/igmP+mrJbwSSWzfelztL4YIO+BXlWvWIpM5cWD0oE5OnC7g2PcOsXP0lYq3LKeW9g5bIcxbUX4ey6iyQ/m6GVlzJ45zD1r1xHw/PZ/erzWd9bYd/AfvTmTRx55LEcd9wJzJgx8xnr8zSmhhACtaIXuaBAdMNW4p9uQ24aSYsmB+kr6YgZBf6/Vx/P9x7YxY3Xb+bMbZrz43/i2iWXcfHad/Hx1Z+eFHFa8cJzefw3t7P2P7/E7COO5ZSXvoO9n7+cu551IpVPfIgj/uXfntE1O41nDrfffju33norlUrlcHflf4w4mMGOnn68/YNdlHTRTGFzJTIoMdMvYOPJ61kKkRZj1RIsRCrHQPEoymEeaZrRoY52s0LzvXMX4YzX8Ec0jQ5VPFEoEmdOQ9Mfrcg8VTkGiYuVgnohoKdYhPEBLOAInxbRoGlKWYuRbmZASwySA2VKSSFSBa+Cw0hRIrEIaym4eXbUBgBwhEMMaOkBEQjR2mk2WoJWrWsbNAoQyiHSxWwGxrBKpQ6ZmMzyGtcJZVMhdNoEmPQoi2u6I05Bz1LsyJaO6NEEZ0CI1AnIOCqig6WTUw4IyKPxYonjGJKoGelLBT+ajI/ck9QEE0KgLLgmJu44zMoEp1gmrEuIwPh5lAVbryJtKn3uWInRirjoI4VgLEgo6TL7iIkdn2pfL9GYYdTEeB3aFiZbEA2vwD5vM2KHS2cCtfXyWC9AxPWWQS39IiqySKGpdjj6SmWppKZKSRQI+mZjq6M4oUjvU/MGNCETEj8hdEqoOEYwBrKB9MvIUg/CiG7Ol5CYcgk57qPjAVxXNG8NcSBhJONbqRCkQYgqwjYd4KR9H00qgJIkMFCNaDL/HKuxrgs2LQHghFWktdTnLoChjZnoRetuoYXLXjlMj9QYp7sOmQmK2DjBajcTfelwfqRFBXmQaahRZX22VmHRSClIjCUJ8ni1/cRA7GocwBc+WigcYMwpEZv0HbFfjGGRqLxPkqSR0cDV6OwBzcmA/cCcpEKPKeNgkaoIJiSIXfYn6UZAXlcYjnanHECpQfvQaG9cTIRwh4krIlMHhXhxAfW4gnA/sfTAQM3tI9LpOyrRGubNwEhBmFhCbyblKbRWmmvpUOCgnKYNGzZw2WWXTTtJv8fYNx7yzu88wOP7q/zLi47k9A1Vkk17SZYGfH7hf/H9R77PnNxcPrbqk5zcfyrWWLbev58Hb9rB6P46PXNznHTuEcw+ovyMGp7WWh6++Xp+872vUeibyYtf/xoWbPgs7o9uIynMZejk9zN01zgDV3yfJ2bPYsd557FLK6xN6BOCM898AUceeQyu6z31xabxjEKUXJxXLSO5ay/JbTsJr3kE55xFyMVp9FIIwSuOn8OaxT186asPsXynxznh+/nxUZfz7rXv4uOrP0XRaX9FS6VZ87q/5PqPX8bdP/gGp73mzZz92nfwnS9czc1z5lP61leY/eo/O1zDncYhxHHHHXe4u/C0wkzwJoxMlcfyTi+NjFQuRDfzp0f0YozBOimHyIrxlr/SjF4VfTflQiFRjpea7ll6i9ISP8jDSLfC3cZSQt6U6KuT7vLaVH0PHUHGYYmKlpb1ODEpKtv1daUPRES+Th2cXBGGB1vnTDSrytZhT8Fg/TrbtWXxiGVMeYwnw2h0K1IjkKjsO8nRKS+pCS0drIiJdQAyTw2ffCudcGo0240zko3CwWTGvUDQT5mBZAK/RupUmEGlJpWXbxAMKKJGg1E/3dyxvUXqkUHbkFjl8UIFJOjM0VPSQRClzpRKuSXNqSwkmiQBKRXkQtyyJGcE4Wg9K5JaQwK5BBJpu7K25JLFhPWIeiQYe2KMRs9c/HpMeX8dBSRS0sgFyFIfqhBjowZWWIQUjDgdkznBrxya1UcjDtFA1Z8FdnPrbzYokJR9bD1HV6FRAUiFFg7hhHUiSaX0O4MGEokwWU0w5QIJDbdMf2yoUZ1kiwhdQ1ofUyjDCJMhZAe3p43E1Yz1lPESBRYahTxhDHLWLIJdQ9js/mslKYo8oSjhKo99jQSv1qDizcIT0DfvSIa3b8H6OUbH9qR6bx1F2qPMeREA1qa1ofwSiRuTxJ3RTEm9WKDQEIw4MQ5tQpV1DKrfYEYtCEvR00SjKddH2hwCGJnRS69TwIsy7byscLOUkpxNnfBYejRExD45RC7bfImKecyYxC2XqcyqUBnT1AAHh4LRBDogVmPUzCiuqqNyCYQuyja5SJqcKlMQhpzbw5iAmluh6heyoaXX6Vk0n/qOtTAGjaLXDpQ5qZJnze1DehHUaOcitxaFoM+fwb5mGnCxDrs7inwrF7/n0NFFDsppeu9738uPfvSjQ9aJaRxabB+qceG3H2CgGvK5M5ZzxO37MbWYB07YzT8lH6e+p8b5S9/Anx3xF3jCY/uDA6y7aQcje2qUZwY857XLmXtM5RnfpY8ade742r+z+e47WLBiJS9atp/yLX+GdUuMnPQPbL4/YdM1d7J91kz2/fE5IATlcg8nLjuCZcuOYMaMWdORhf/lEEKgT52JXFgg/vEWou9sRJ00A3XGHIROX5ZzSj7vueBErv3GI8x5GE5fdym3rvhnLln7N3xs1Se75MhnLF7OMWedw8M/v56FJ6xi7tEredlLns+1P7qNGzY/zivXP0bhiCMP13CncYgwe/ZsXv7yl3PSSSeRz3eLunzwgx88TL363dCXc9k0ay75kRGMo4AIpIsqzcI2urdVO99vWmgSJI1yhThfwQ6nvJyG7oh6SE3d7SNxivjWQEfajxRgnSDdLY+HWp/n8keTjO+FTKY67yrGY8CkEsWt6yuBloJ6MUdhPN21T1yHooUxlScyaSqTdXy0tURZ34NE4uExzEBLDtz4DsbP0XA1oeOQCJeR3CJsdjlH+HgqTzVK+5nXLjEwoxAwVDdQTefGl3mESEDUiVVAIhR742GsVFjfb+2kA3jKA23RwkUgUiO9Y7r3JHuZq2YhkQz6gtkdMRUjBONLjya/ZX12X8AVDo1igJOfjRWaghtQj8eJpY+RNZSQSEA4DerE9OZ7CBsjGOokQQ7CGsqJU26JlVgjCbFYP0IFAqeqGYmKhNZD6ATl+oiaBCwF4+Nb2CaGwRckfhEVghjPgXYp+YJ8UMBEMbH2iUt9ONKltxCwf7CBwDK76DEeJuw7wDo1WmPNRCGDjCfl5UDXWmtUIFMOlQZfSax0CcXkEME+OdwS/FBoSr1HMTa6MU1vVLoVn9NISipg/ADf70mHqsRURwzpYZKiAXq6jpPZtRMlGe7vRU/BpRIIfOFnZ1hMFCE9iSMcnKZsuxDtYrlZlHGsP4cu5wnMBNVGHTLc30Owa3/X57GwPF6oIQRok15LoVJfOpOnM15CVab7FV72LHbyj5yeWciBXUQq80QtJE56/Sjw2BHtAWvI4WQR6nZaX+wIRvIJ1ka4wqXfZs+mUjRsg+jZqylvvh32QaXuUMzqFURG4mWe77iTMIpDrLrHXAlmsytwUDYHTEHOE2n+cE51Zw4k/fMh2Y3quC+t0WbOVd0pkRRmTW7zacJBOU0vfOELeetb38qZZ55JudydEjOtoPe/G+v3jvHX31mHiQ3fOGYB/bfuplGwXHnUf3BbeCen9q/mHce+i4W5RWx/cJCHbt7A8J4axX6f0169lAUrep8RNbyJGN69g5s/9wlGdu9g1eojeXb1GsSGBhsXvpEHtvWw+ebdDJdKcNwK+oplTj36WJYtO4Le3v5pR+n3EHJWDucNRxHfuoPk7r2YraPoP16EnJHK/woheO3rjuGm722Eu6H6wCX8+rgr+Ptf/w0fW/Wv5HTbUD7xpa9hx0P3cftXP8tL/+FfyB95Fi9/9E6+9bjDj77zVc5756W4E8QCpvH7jf7+fl75ylce7m48LSj6mlUrFvLo8O7WZz25Xsr+fHbGwwyyZ+pISZNc7jqMOV0fdSF0Cl2CBlaINBqUHWy1TyQTdnuDVEVEvywzxt5WewJBOXCwWYXVQAQ0VAO3B0RJsnM8YVZUoNFTQOmIkVLM7HgxG6J1AETlubhWpRGRJK0F5QidEr6dBoQS6wTEfbNpmDFqXoxM1bxb4lNaOC1xAKV9fGOZ7c5kgxTkXEFTusJXPrFICeNh3qfY6GUo2U5tzjwqNUvckUIYqIDFpeVsr49QMD2MOQ0I2/M81JNjfthITWWZck7iXEwuCgi1SA3XQgOTKe7ldQlVWAGVOexrbGeecukyELNCoEIZqmEqsuC4eRpxnSSfx44OEvaVyXtR83AAqmG7jo8VaU2inKMxulmdyaKQqdT5BMdE+wEiSy0U2kPZcaQqk/NmUDWp3uJAbhDBDBwtqGhNEjgIoxjKuj7eWybqK0F1Kon4blhtELHsEAsB6YaYRhpZsm6MqEBYaOAO+yTC0IxyKqnxgx5GSn0dU6bwyQPjSNN2UADGe4rks8hlqC3jriK79Vi3jrAKqwybc+MsNFWsTKM3R3uz2SsGAZFGUC2tmkpPzhhrR0ctkHNlaxNCCY30img/wUifWPego1TBLpGT61Y2ivkupymQRZpyKVJIbMaF044m1N2O3HiQMCcAGpqc7SUWHTWzgoDheUtxzAbUaNq3RlBmx4wCxuQIquXWxkM6ohS6NAZUqPmGUQZRSZVQ9jOfAN3vEozXQTlYDCNqGO0kGBmjSnOoJ8PEe56gSsiugsYZ6U49bEKWK8hof2sOXZ26rK4MSEycSctMiDJpB+ladNzcPXFpCkKIoITNOewMGsSHsDboQTlNd999N8AkQq0QYtpp+l+Me7cP8zffX8cSpflkqRf3/kHWzdzCByqfpBL08aFjPsrqvjVsf3CIn9yyjpG9dYr9PqtfuZQFK3uRh8FZAthy71pu/+pnkUryJydZeka+zU35l3Df+DzGtoAwMTM9n2OPWsHyVWsolcpP3eg0/tdDOBLnBfNJlpaIb9hK9LXHUGfMQZ00o+UIP+/lS/m1VrAWogffzd3HfpR33/m3XLn6KgKdOkLa9Tj9z/+KH195GXd+84s8903vpO/cd/PiT76d6/NHcP3nP8m5f3VJl2DANH6/ceGFF075+Ze//OVntiNPE5oGsgB6Cw7FXp+6bau+TTTlPK2I3RLIGl5JtcQRXNwpBbZUzsUhwoYeDbc3u2aD43qP59HoAcaiEfLeTGThWRPSmTJHKRfTG3uMVUGj8QMHoQX5ZQFyd0I+eBbjOx5HhUOTrj3kJMywBTyg2uynzNFDL1UxhJcnldieME7b8bsWbUNMSk3eaRLMJZ4DXeb8FF9jWkkUsmtuBCCF7hpvUzDCKEkiFdViBeXNhl2bEXocZAHZik9AozADIzRu7QmCwkyCmfOoVXel/RSSnKNQec1wlS44WrYlBUkVweqFHMZ3md+jybmaai1BiFRA4UCw2FQZLe189wxKmBMsYn1tRyoPL33GesvE7mx8mRbxrZZCxkfGsbS5v0oK8o7GzecYbdXZ7Wg7myNfuDR0OqN5VcaVEJcb6GEnTbkTqRks/AhGVepI9eVRM3shS7Wyi2ZjH04ddDtB9j4q5HB1D57UTBWdiLMISlH3kffmM14dQjQLxaoYS4x1EsJKDR3WIUt5m6GLlGYXqIsSpVDBWBVP5ugteAyOQ8Mpo2QdI4EJTmhQKCOGU5XEnFatTMRAFbHSJ59TjJuI2M3jmqgjCtReY3v0PqDDMUThqyJzvB42JY9SCTQ92sMbVkTagxm9HTc8jch0RkwTv9thsFKASSPBYIlUjp6yZO9Ygit82kuxvVakjnGkS5ilJSYkBAXLE/EwyxfMpTw+kwGZXntcjiG8iESFuJUK44nF2bsesFg/gRGHKZ3PbN0kWUR3RsHDjSVCS+qRZAqqUrt/SJLZSwBoFAuEfkIjH2CloKHqjEQJh4q9flBO01e+8pVDdPlpHCrctmk/l/7gYV7r+fxF6BBFY1w5/+v8snIff7r8TZzb/wq23TPMj9c+QG00ojQz4LRXL2X+isPnLJkk4Z4ffpMHf/ZD+mf1clzvFm4dP5It4hQYs8zetZOVrs8R572a4spp5cY/VKglJeSfH0X8k20kN+/APD6aSpMXHIQQnHruIqQB7gL7yMXcc8zHuOj2v+WTz/lX/Iy70bdwKSf88f/Dvdf9J/NWnMiyVWew9B0f5/T3v41fLDyZG7/5Jc5+7Zuno5J/IBgbG+OrX/0q27Ztw2Tyv+Pj49xxxx288Y1vPLyd+x0xUIrpHdEopZAScpmT77p+N0+kCSHQPUUMVbRVaL+MpoeJBsssdylD4W6kMIyoekvSt/kkRK6lMV8TOoso0keyv80+scJi/RLezAqlksarDjM4o02UT8UqppLltijhILx9hLKvlfYWBQEibhDniyjfo+ZFlKPGFOdD023K5YsUk9TIrDgzcUw95QBNAQHErkscxEQz+hDbUmM752qEsDgi5fOMO+WOczpJ95J6uUTNj0m0RXg5TOJipJp0HUi5PTrODPpMuAOg7MxiXn4BFosqSYZ37qHTcHad9pz5+Z4up08I8P081VpIUQb4uq38aipFGGibvVKCFW1SkCuzdLLeHLX9VXJBkchrYHelcRIjFa7KtfqS5GczGo0ROiVgP2FfpbmRj+wvYwYk9VyAAsKJYheA1Q2iyOCLyRzixEvYOnuE/moR9tdBWoSUrXfwPj8iXwqolvLkYo95ZY+FpRx7dqTnz6nMoBzMxFkcsOf2QaLM5bWkinEow8D8WQj/CAo6xziTHXYAVJK6fB2vfrfk0eMuQG/aBUh6gvksL8/lXmcj9bEERlwMMSan2acjZoTpWp+/5Gj27q8hDYhSEZtFgYQQSCRlP080q4w3kCfvJtSfzBPIkHf6SQCTUyx1K8S2ga80QqapsU4udYpmFj0KToVtph2RFgJir9NpygbpZGIi2ms5vb4r01sr2sfpGXNwRB0Y48jyUawbfqCrb0ZYkBqpFAKDkikPbaqNGeENcsycJWzcE025cTE0dybWJgzOOxJ/Z4Ei0NOoQ1Bhd3zgiXJm9pNvzKOnsZvBakioLfViM9OkGaU8dN/rT1rx8S1veUvX79NCEL8f+MEDu/jn7z3EJ1Set1Q1D/kbeMuiyxBHlfm3I65h6b3P4SdXPcy6G5+gNCvg9DccwYv/agULV/YdNoepOjTATz/1IdbdeB29S+cwWOnjhzyPvbUeVt5/P+dtfYKXve5NnHTZh6Ydpv8DEDkH/fIl6BfOxz4xRnjNIyTr0y9BIQQnv3QRi0/qZ/XwPFatv5jHRh/gL2++iHrcrlZ+3NkvY9byo7nz2i8wtHMb1i1ywkXv44RH72f94DC/vPFH07Xm/kBw8cUXs3btWmbPns0tt9zCzJkz2bp1K1dfffXh7trvjMhJ12apfz7FmXNS/osAx/WeUmZaCoVzzBIas9rvc9WSwRYt4YQR3TbPO/cPGpVeEq+EKjo48wNQFuskRE6MFQIT9GJdh7Gls+grLn3qwdg0+oDsNq+M1ozOKOP6DmHfTJTXbWxP/jayCCGRWfqUFho/ixg4TntWYtWWdvadlFRvlWr5j0oKju6bS1/Qg9EqVeU6ABLPJR844AaQGaQDC2bxm+OK7Ck2sLrJA2mekSn4yXY0TAiJEDLlvHTUiZIydXC6ODjZd3CzBhWA67lov4QvNEq6bceuJeGcjVVL/I6h9OUcFs1fgJt3Kc4rMeuY2SS5BJELifyByYOVgrqXSooPr15BdPQyIi91jozvsX3lERitJmkpzC559DmzW+sySzyk5iREuWIrNa/hx5hijrhUAgQV1Y6aVDtEJ6y0FFz9/7N35mFylVX+/9z3rrUv3dX73tl3QjYICUQCBIhxR/CHwoCiI4qiMoM4DKsjgyOojJpxAAUEBwdZZAtLIDCQhZ2wJYHsJOkkvS/Vtd17f3/cququTnfSCZ1UwPo8D0/oqlu3zn3vUue87znfg1uTSaaVGxWhEDT8VNVVobgbiKtBkED3liPLJilNxVQVpPIAstE/qE2ndAoJt555vV9grOjY6V5aFqBg0xPxIMYWEQirpDwphOJKj49MImNnv+bIJjYiGMJWc13qEqMKrSjMpBmLmB5uwJQsOtVMywBnm0Slc56ba8uJuw1Mr5+4IrCDGqP8zr0VNpxJAkMVqGlluPGhUdSFKikxypCEhSfooaiuKmelKbuuJQu8waJ0OptDZ3ES4eknoCAEwnAjDcjASGmZnmHpVdf0c0TYJt0TGugaV4ta3ogcqsl+JuZxE3e7B88PTuM3KmmpKUdWHElxIUEqmKlPFmyZPgEGkaRXQgG84YrsNWgKm1QVBJVSYsLClu1B55RGiv0GTTt27Mj5+5VXXjl8lhT4yNi2ze9e2MxzT27iTuFmfNLkd6V/4fbxy/h+yb8x+6Uv8cofdrHj3TYaZkRYdMkkTjxvLBVjg3mpW8qw8721PHzDFezsaCc5ZiJb9UqU1iTHv7iSz3X2cPwPLqfixptRJ0zMm40FjjySJCFPLUb96likgEbqb1tIPrENO2EiCYkZn6mjdloR01uqOGnbP7E99hb/78lL6Ig5M69Clpn3D5eg6AYr/vtmEr1R7PIJHP+5Uxi9YQNvrl/P66+uzvNRFhgJNm3axO233853v/td/H4/l156Kb/5zW+4++67823aR0bWVAyvIzpQ7PaiSjpuuU/8xKuFCOlF+3xOKHKO09LmdgKW0RVeyv06Pa4Kuo2+VQsJ0FwKSFDmN2gIVjivK4JEURzTExtMeCxbW9Reltj3zRyvSaLcr2dXFqy0drVHUyj2ZgIfnf465P1bIsVz4pp+aU4ShF1dGIbFhOC+vxFCSBhpURmpX0qZW3VnC/3bNSd4SQTVnBTIlC9Bqp+mcXMwQbRYByFIqRKWZGP6LURRnzOaUlzsLKunzeOcEzmo5Uakso2/4jgMLYyE7RT6px1hWe4LKtV+qzUeQ0LS43QVlyF5+hKPMpM+hqTgE24nOJEyjqaUbZIMThPdbNqnP0avsZftnmacEGeQ8FRROK5sHnWlo3JGHKC+2JdzbmaVzCJVfAZRI5Le1tl6ZyhG3Oul3Btx0vFkCZcqZ4MoQ+xbW+rWFAwt7Zo2+NllJOhRTJDAdDnpk5ZQsRQZt6pREimmZtIcLEWmyR9D0gSe6r4aV8sCn6bgUWVIn+/+7k6i/lRSkUmZIaNddGKqzliZ6VNgYqPJAtnjRa2oQw6UISnOOVeUFHGRIlFkYOl9AUf/7wj5PI7whxC06Ela/S5adefcS5pJuzeBLQTRgAckCVGsIbllFKEyKTQFr+Yl5c7t1SFNCAAAIABJREFUReRRvOhehUC1gqykUBWBkp506HA596IQZHsc2f16h0lAVDeR3ArJQILuoiDt5elz5CrC9FZkt+0JBugJ+bMH1OWuprKslEBZA6mQj1jQj+wNIrv7RDW6IiH2NFaR84UDKNUaGOeZS42rbxK8t648Z2M1EiblH9BGQhoQEQkbSUCrV6PJlSAeieUvaCqkrnx8SKQsrnv4PUpf2sm/4aZJ28E19bdT5z2F01Z9mw8fSxKPpph2Rg2fvmwa0xfX4k8X2ecLM5XitYf+h8fv+i/aymvpjVThb+5kwYrnOEN3M/mGmwhedwPK2PF5tbNAfhFhA/Wc0cizSrDebiVx53qsLV0IITHzc/XUTAkzfmcFS5ovp423+fLj32Njs1MM6w6EOPHC79HVvJuVd/8XtmUhFpzLSY0BarZuZdWalbz37lsHsKDA0Y4Qgmi0L00pFotRWVnJO++8k0erRgrnd9g7uQhtSjGlej1yv1UMd3GIYLnjsGRqfQyXjpl2xI0iibC7b3tdFshCoGp+LKFknTtJgrLRAfRRSRRZYlJZXyBWotYRUUr7xCYG8Q1Sxr7OjJm2U/JppCZWY1UWY3v6fncCbhVDEXjLNZQKF0LIKEEfStBHrDJJVLayq0PrlM30mLkpV7YQJEmhBFwcwJ1JfyC3DidDbzrVLNVvmUa2JSzFziliiBomY6uDVIf6VrKQbMSAFYa2UAkd6TGX0gFAxtdLRlIkDB2f8BE2ZWRJQtVtEnoSURchWt2Ysy/JBr/qI6CHaa8YTdmx5fRPufTIIYKSTtxlYnmKSHicQFgRIh00wcTQZGZF5uQqqynCkRZPv+bT03LpiqBYrWZG8SxUoaIIFVVo2cATnPosWdUQQqAoGuAEMrZQ8OhyOgyTqA4ZlPo0QoYXjzsAkkSdrz6bEioGykkD7sYAasjINlROeJPsMRLsiSQxvaoTaIRVEoEE7moFUeXrq4/x5AZhAoGhCmQh4S+pxucPMCpUiUcfUM8qpQUXrL5aOgkJ02WzLRwlLqfIlFhJkoSl9jVplRWT4mAKW8sNyIqrUunMt74xr5KKKNZqMIWEz2fgUmUsVaHLcIJl4ZEyu83eY2p61UzyVRAuy50UkJDQywIkIkHipX33655ALLsFQEwvwnTnVvmU6NVIksCrK8QDfkxVQZUlRFjCVvqub1ty+iPJRSYV1QaTakrxjj+N8VUl/b9iUDyym7BHo9S3b7rmgjERFo4tRRcuvErYGSYh0Cs1opXOamf9yY2kRteg6wOk7zO2yTa2z3kvKTuNn21lfw0FPjrDeMoUONrp6E1y0z2v87WN7SyyXTwQfJ433TJz3ryAxKteQhUe5n1tDKdfMpkxx5Vmb8J80vrhVh644Se8tGEdscoG/J3dfGrNSs6sb2Tc7/+I7/IrUWpq821mgaMESRYo8ypQvzwKSUgk/7qR5LKtSHGTWZ93hEsqPyjjK53/QkJ/h68/cxlPrXe6rZeOGs/0z5zDtjde4vVH/gKA+t1/56TenZQ2NfHss0+wefMH+Ty8Ah+RT3/605x66qmkUilmzZrFt771La655hp0/ePZn63/TKlIBz/uCg9KSN/nfUn0pXS5ZQ8Ro5TJpaX4fSqbiruJBiyKPTqSlFb4sm1GlTbgc++7OjUUfjmMW3jSDouNSLsOqpReYSmpYlIoN206XCUhlep0uyvBY4DfTe+oKhBgyxaaIlFfNxXNH8Sn+qiJeCj16aiqCkIi6jOZVzOZCSW1lPsNKst0YpZTLxRTHRnnmCrTVVuHUhQgFazLfrcsKRiSilv4sq/5lOLswGUc0sy/McUiVu7B1OWscpqcXsUCO1torysCBgQZQzGm3Isc0rJOXjKok/RZ9AbT9V9IKJJCzHDjrY4xZkIC0xNwJN/7ISGla2ScVRZFU3LSijNplwnZxKcFIB0AykoiG1uVucrxqf4c/1ZXJapDrux3uILOxmNKvJwzZRYBLT3DLwQexYPWL9iVgG63hcvtQwhH5jyDSDcLDqplVHqqmD6mGgkJK50daQiD0qJ63GoYydVv1Sz9r782SLC0CLCRgEQ4QW9VNMdZlmTn3CRdFggJM6CjV0+lzpjqnBtDcRTt5ABCkij2aii6D0lITC+vS/cyTq8o2jbTi2Yw2j+WBl8txWpdX6AjSSQUK8cJr/c30uJRaHP3W7npZ1sgItDLTSZ9agmpcZOx0ylxtuZDQUYXzipYSVUp8fIiesqLSao27Q0JdF+fSz69OkBJg5+SBmeVuax8AsFAOYPRPMGLp8pZ5XPLXvxaCXa4L/BZV2LREzDY7HHScY8tmUqZUYtaMw6jIpIdfKXMRHL1HW1I63tGFHnCNJZXUebvN2GwX2xMLPyGSsS9r1iXrginLxdgltmoFU7gKM+qZ/xJVYwv9aG6BXJQQ5FlJNUJiPvH2abhrEAKl03Eq5MocuohbXs/kdxHZL93vWma7NmzJ3uDDvwboLT08OmhFzgwm/d089JfX+R70Qh75ThPaG2ILcehKhJ1x0YYc3wpvqLhXuSHn9Tu3bxy5+9YG+slGYqgJhPM2fAyE078FOqPr8nOLhUoMBiiyov6tbGYa3ZjvrSbxKYulAWVzPp8PRKw7S24cMJV3Oa/hmtfv5q3dv6IS+Y3MuFTZ9K1p4m3n3wIbzjCmBNOxnvDHZz0D0t4Sp/NE48/yOlnfoHa2vp8H2KBQ+Diiy/mpJNOQlEUrrjiCu644w5aWlq45ZZb8m3aIZFK9s2suoN9jreQJJKqgF7QvSqJ+L4TYIasI8kShiqwBJQaVRxb1sCG+FvILUnwq9AJLlXGZ6jstZPEsSgZYsrYUAWRoIErpiKbEiAwZJ0aby0llUWs3NqG5i2h1FXC221rs5+ThDPrayVznUsrEidpQ1C4CAUrCfkrUITMqIiHtR8KdJ/jJO4hiU9zY7ghWbILWQK9R6M1mqDNLVNeGmLXnh58KUGydDqk+x5VeqpwyQlsHHU+C5uk28IjDNoipaSaWxCl4Bdu6N73eIUkE1LKSeq7sNOSdpomKNcN3G4zu3rTh0S53+ADn0nR3r6ayrHTIowFHnqpkyRRbLdKd42T4ijcMp1KCq9dRFJXERV1uG2V5LtuiKdQiipJKUkmBksoLfYg17fh73Z69rhUgeRRSEQthJJZQXTWRgJ6EEEZLTVuRFN3NrjtZyohtRwbp5+Upoq+1cN+Ct791dgUQ8GKuJg0Zhot7zQT7o0R1JMoYnfujgEtXIu0Jy0qIGmM8dfjcWu4KiR8HTJeQ4FqL1q3Db3VzjmTBFGPDN3ONS9rMrq2r2R01u2UyHrOLtlxpE2vip2ykIDZdSEChsKr/ezK3VHun4pQ8KsBukU7kiyjqjaJdG+lGm8l7xg7KXbrtHc7F4tPD2CJLuLpMUqEI1j9pDtURSLkUlF1N1axKyvUYYbH4HXXEVYVNNlZBawon0Cb9G6fMenTZVuOmlwGb1inuzU+5KqOpdqkAgJll4IvFqRY07BkCRLplS/JEZbQOl10VPYgV3mxOnqRNReyy4e/Q6HSXU2M7Tn7rfRUspY3AajwVDq9zIbApQl6E1Y2rdRZ8bGYEJxEl91JE22Dfm5uQ5h3W3fTZXdlXzNUBVXpk6l3hSLEO9PPun5jkPIlASeluCJg8KWKebzYvIVxZT7MWG4640ixXw9169atnHjiiTlB0vz587P/L0kS77333mExrMCBWfbiG9S92sxnk6W8QxubW7wII8D4E0sYPacUwzu4Pv6RxurpJvH8CrY/8TBrdJmOilpweZnY9i4nTSmC79wOaqFvToHhISkCZW45YkyQ1JPbST22FVHvZ+apVaiGzMaX4ZtjruX34at4oOlm3v3fr/PTMycy66x/oKe9hTV/uR2XP0D1lBmEfn4rJ33rPFbMm8fjj97P6Wd+vhA4fcyIx+Pous7EiU7qys6dO2loaGDJkiWUlw8+M3u0k4o7qwUiaKGofYGR31CIuRQatEo8GmzoEWgJk7BbY7ckYagyliYjuZWsc98bF3hVH3YmP0xxXh9V7GGbpbDDTJEyrawjOto/FkM2MNOpSqosGNUYglIXH74nEFFn1tivBpyUpiGOodYzijei67J/Z1PD3Da2bPc5ryK7QS6Zv20JoQEmeHWZ1qizrxyFrH7TzyEtjD+0m6Z4M9GkU8vlCdkQA9Ptoa2ihKAXVFPe9zvTNgVdGlFdYLh0XLIOUgwjYCFcNsT7+kSZOEps1WEX6zujaaNzR0T3hpE8GkLqqymSgxoxQ8dnmsQMGWQN0z+ajrIW4l0JAk0WQpHQZB1NqFgeD2GPh1PHOWmYiSoFvdiP3lYMu532s37Nj1I3kcqamWxb9TRhJUlMzu2lFHSpuIQPl55OHZQFUQW8KWflZrAJ+srKGnp6ulEUhXSLJyo8FXyxqJQX3lxDNGlmVzpLi4+lVjVJpCDmkgmlld4kIQi5VBqK3QiviuVyXM+QWyPomkBrbzO93VthwBzAYNeWhIQsyRSr1YwL1dHSFctZeg26nGOTNTfEEtkx92sB2s12JJ8PWwjU+kbmlZ6IKlSSthOwaXXVWFu7MV2e9HFWcuHkSt5c9wzt3c5lNjBojlU3EA/pZLS7LTlzSfddCzbgCuioLoVkzERWBWbSoqw4wjv9SwGlwY87VOkhWO5GStlUbqimKxCHHpAMmaTlBAeqUPGMDtD0RgLJJSN1W9lVyszOT6ieQOVkD5KqMVoTxFJJZMnpxVUXLGYd2zFVm6nuyexMDHVn96EKDUFuLaMm3FSMmkCntYdppeNpb08Q0APgKqfRP5qduztztvfqCkG3RldGRd62+8t09A2N3kqsNIwqnBXPkDfMDqU9Z9wCup8vjp+Bz1Bpz0fQtG7duv29XSBPtPd08Nxfn+SUvQ1E8bGqJ0mr8DPhlApGzS5BHZivmwfsZJLES6uJP7mM9jUv8lp9FbtGjcUy3JQkmvic71VcS/6VZM1J+Ta1wMcUEXGhnjMa841mzBd2Yd2xnqmzStBPKOPdF+Ab1ddxe/m1fNDzB86588tcsXAsJ17wPZ789fU8d/uvOOnCS6maPJ2ia29k/hU/4v8+NZ/HH72fRWd8jrq6YSiCFcg7r776KhdffDEPPfQQpaWlPPXUU/zgBz9g9OjRNDU18ctf/pJZs2bl28yDpqjKg+i0ELHciMKrK5wwoxwpboIkMdayUD/owFBkyhuDSL0p7DIP4SoP5b0Gb+2FYNpBTfghbqYgrEFrEkUoTJzaSOqlODt63886lzVeJy26ucdxhlQ57XiFPdj+ChIuC6nYBa3OKkyPL3dyzi07KXGG4iLkVmiN5tYR+XSFbaEo7lQ6bSmoIykC+v1u9fpNJ7BKgib0dMDV50D1r1oYbPJdU2SEDCShxKjA7bWxY331JrYiZWXPZa9EZdCVPdYel4yqKfRaFiFV4FEUelKghK3MlzMuOB4hmtkcey/HhrghGO8xaKjrJ2EuSf2apaZf0wTWzAa2tEr0FLegCWd23tRkkukaqOTA4gll8GWGZl8CtbcZCCPJMkVBD5Nr/DS1vY0tVFRXX1pd0KVyfEOYDR3FxLCIVRbT2i4RtWUiHpOYd1+pZ1VVCQbTNXOZmi/JcdKLPBqelIWhydADsldDjaXQ3RIT6vzZfZSOG8X2bSvTH3WOozrkojho0B03kSRBsjqGVtx30H4tkJOGWuOpzX43gCF7UGWnuelghf+qHsDt99Bd+hahZi8V7krK5QpiqkrHcZMJqEG0ASsnwuOhe5yTZto/NgqWj6YjEUcK2lRNCrN2Txd2MnNdg9SvJ1ZHZRxXSjhCLP3U3yJ1PpIxk10b2pGERM2UdOrbBucfXbhQilNIrXK2Di6DJElOSqIMxZMbKAbshAmywJtwVjeDWgi9woOugdjbA91W/+FyxkxR8KiOiIxXV5hdG+aZHRJmv/upoySBHPbDRie4sb1BbGtwCfATSufjNzvZ3ZnAqHTTu9lZjdMVNxHq8Os+RFUMw6tSpWWUEjsH3VeGlJ3CkJzsKKvfiZXkOD5XETMis2ntilJmVBHVgrTzFsJrISWkI+L7FnKhPkZYtsVjax5jzMsqixKj2ZJI8W5MUDerhONOqkD35HdlybYsUmvfIP70E8SfXU6yu4t1jTVsmD+XZCCMYcU4w3qU0RMn0jP/fpJG8MA7LVBgP0hCQpkeQR4VILViB+bKJkb7VYKzI6x6CS7ovpa763+GXXkvP370c5w5oZLvfeMyVv7+RlbcdrMTOM2cQ9H3f8S8m/6DF06dx7LHHigETh8Tfv7zn3Pddddl08R//etfc8kll/CNb3yDtWvXcsMNN3DPPffk2cqDJ1TmQW01YUufk5pBSBIZXekgMlbIAFVgJy1SmkxVgx8hSzSoNcys3su0SH12H70Bk/7zuNXBat6WtqTfznXKMzU79UV9SmSqLpO0QSo2sNNBU6Jfjez8sgWsibWT0B1HTpUFpT6dUtWgJS3NXezVCBgqGU0H21AQJY5jPyYwlpSVYm+wi1TCkcQ2ZIMF5Qt5v+U9enEanyphneI6HzR1E/cM7cYkFPD5goQMg710UOzWaIurhN0axEG4ZJIJOxuvVQcNknUBjKjJhx1D7taxO+1oRnx96e8dIQ3/qDCSluu8qVUuShsDvN9fx0LIuIpHUe4ro8pT3bdfIdEW0rAyygNuBYSTmpyln0efVGySeg/hyljWEbeqKrDbK5DLwnjDkRxbRLqeJ1ZTmt6VhCkkuoMpxAF8zhMawqQq/BgRH7HdXdl0QSQ4vj5MRyxJUHbOvVzdZ6/udhHz9/XyAmc1RsJRNjRkH9NLJ9BubQFgUmgKIiXR289pDukhzNQACeoDlK5EfQaibAwdXifwl8UQ18pgbc/67VzyGLh1H17DQAgJ4VUw25L4DIXKkEKNz6Bzew+6R8V22UTTK5AZwQlXRiikr1Rqn0MY559OnWqxcVfPsETYMtdYxFXC8eo8XGlZdFd6ZVob0BxYDSgMWBRyVqJEzgvYMkj9fUkhYwUHbxUr+sn/y4aMEtHRZUH/NR5v+ODKQ4Qk+ilYpqXq/QHi8W5UyUBLp6TagCF7wQLZb1FVdmR6jBaCpo8Jb+1+gw1PrOH0vTOJ2TarelKoowMsPK067zVLqc0biS97jPjTT2Lt2Y1tGDTNnM4rHoOoP4wkScyxXmWB611iJ11P96jFebW3wCcPya+hLqnH2t5F6tkdRNa3c3q9l9U7Bee+96882HgLvkn/w+Pvfok3Puzgys9fDPf/hhW33sRxX7mIxjM/S2h3E/P+dBcvLHICp1MXLaGhYXS+D63Afmhra+OUU04BnBYZH3zwAV/4whcAmDJlCi0tLfk0b8QQNd6h38s407udVKyMv+VS3JxQNi+73aB+mASWLBHWqpgcDue8pSuC08bnOkuRej/x7iRCFgw29+yorcm0hzWsGh+kS5xKR4UoDsg815TeTpFIOWU4OXZpQkcTOvVFZZSnLPZ2d2HbNpIkMTo0DjNURiraRnPAjeFV0eo86Kog46VJHgW7JwVIiLIeEgmZcne/mjABwXTqomjw48ZHbbwCxQqkx0ii1KfT2duLHDahs0/kYGr4GNyKGxHTiHUnkfRM7U66aARnEmdgwDS3wVEG0zWFTL/VuQ1hNrVE2dURI6yX7OMkKz6NWpfzuy4pAnlsiMEZIoVKUegdVTUspS+BMqjk+GCoskD1aEiajOTTGF93DLQ7nrjPUBwBBiE7XXWHQEKiYnwISxMgSagITmgMI8IVLN+5xbFJyl2lAfZpi2L0k9TPqN4N+n1CkPCQTZ8bDJFexfMVGbDXOZ6cUzIgAJEDGsKnUjfRUXmLR1N0Qo7IliQJqoI6Xk0hmFZSVHUZf8SFJ7xvbZAqNHyqBvTs896ByARM4NT26IqgJ9lFosWZ/Ai6FCrqPISN8KCfV0VaPt095BVFuKoOYfbu83rKyvTRkhAehfKwi22t+243HAzZYFxgPE29TWm7nHFrGzOGPQmVIvoFs7bzACkxqoHmI9ZjtBA0HeV82LOdh164l9PWT2ZxcjZb4xbvqzLHnF1Hxdj8rdTY8Tjx554l9rf7Sb35Bsgy6sw59J51Fi/u2EyzULFVjXp28RkexRi7kK4TlmO7hq/YVKDAwSKqfajnjsV6qwVe3MUJhsxOXLje+z4rqh5GnfIn2jZ/lW//7QPOmXYO4/QHePGu39HdupfJ51+Ev6ubEx56gBcXncCyxx/ixBMXMnHStHwfVoEhkPs1Yly1ahVjxowh3M/5d5S9hseqVau48cYbiUajVFRU8LOf/YyysrKcbdatW8fVV19NW1sboVCIq6++mnHjxn30AzkAkjH8n+oD9dwbKMg7YUoxm5oMqrxlQ3yiD0UVWQW/oZhSEWBbWxS/RyPpBbUbpJAOlqOOJZEu8M4ETYPYK7kUpG4nEuoTAHBkrMeUBGisDeQeRTo7Sqr0YG9wlojqIy4qyopI6kF2b+vMHDwZUTxJl5FkQcgdxGOWYSatnDQvRxmw7wVFUnArHvBCzZQiNmxqztoFNqNLPEQ8+46NdxCVPa+u4NH2XdYJuFRImkwt9tK+dRCVin6H28e+bq5bGV6N8OTQVNaIKJadynqDGQd6OCiaii2ZORGG5N//5yUkFFWCcSGspih2W3yIiL6vmWtV0IVsS6QSjtrdxFKvs+IqD2NFRhqQ2jlILp+siL50ub2daTtzCWgBvG4nkD2mKkC836qX7laI1PswPCo09R0nkA2YMgTLB8iip49dHsbq0nAp8mjZ0EsWUBk2Bh1iSZKYEpqGe4YPQ9EpE/Mxbec+LR0VwEyasNHZNlBWSTDopr09N/rMyMcPXNk6GIJakO09W5kQnIQm61R7apAlmQp3Je+kV5cnlfsoMwLZE+Mo79mMCYylsXj6IX/3wVIImo5SOhId3Pv2XZS9JvP1joV0WxYre1OEZpVw2qcqUQZ54B4JzL17iP31L8QeeQi7owNRWYX7H7+LNXcuLzz7OJu3b8ZyeQhKMT5n3UuVX6brpN/RVahdKnCEkITTFFeMDWKu3k3l63sp92k07P4sKzre46WJf2By9T9w91utVPkWcv4kP28+eh8du3Yw56Jv4zct5v3tAV4+bRYrnltOT3cnM2fPK/StOwopKSnh+eefZ+rUqdx5552ceuqp2ffeffddvN6hV2j6E41G+cEPfsCtt97KxIkTue2227j66qtZunRpznaXXnopP/zhD1m4cCHLli3jsssu4+GHHx7RYzp8DBKcSBINJV4aSoY3TsPBrcmMK3XqmiZOmEl3oiv7XY4VTtBkW4DYT5CXFYJIy4RnZNVVGdmtZoUqGos9CJ8B2Ehpx83WA8BOJMOHqskkgzrWdomU2lfL1B+hOIX5/W/xaUXT8UkxtnRvGdS80cUe2tpUPLbzW9zQL41xf6jS0Gn080dHaG+PEu1MNyc9QFBQETDYvSuT6tZHubuCd9vfPqAtJa5SYLPzXboznjOLh18DKLlVbGJI3oMI6vfzHI0YJeyN7cn+LQuJ8WXOtVQU8dHTFkczFMz0ZIidOd/pYHgwiowi2rqbsz2TMulkyhCpeiU+nT1d8RwFQQBvsIjStC0lg/QdcvmcYHFq+Bh2RD9Elobno4XdKqqm0Fjsga7BGkR/NOQiC0nbN/02Q6Sf7LuMBjjHobsVhhMiTCjzEXSraLKgqTOOKgvqitwHlOTvT4mrlHnaidkaM0mSqPRU5WwjhKMImiFgqEyvclHsGX6QPxIUgqajjM5EJ/dv/gt7X9vI+U2L8Zhu3o+b7AhqzDq3kVB5flTmUhs/oPd//kT8qSfAttHmnYjxmc8jTZnG6mUP8s59d2MabnSXzkKe5VjeJTb9QlpnXlpQxiuQFyRDQTmpEnlaMalVTYx6t416eyJzXx/FXZV/5R9PnccjL5Vxfec0vjrey5bXl9P64RbmX/g9vJbF7L89gPGpOC+/Cp3tLZy0cDGKcnQoUhZwuOyyy/jWt75Fc3MzkydP5vzzzwf6BCKuv/76Ye1n9erVVFdXZxX4zj77bG6++Wa6u7uzgdf69evp6upi4cKFACxatIhrr72WjRs30tjYOOS+jz5GrvWj8KjU6W52dsYGfd+luHGlVz0yTltYL6I5vtdRokuC1j+lKahBekJQM5z0K3/J4E3YZSENSB9M18pUeUBpJK7WQrpJp63LNJe7KHcJxB57nw6VkVov0Y5EzmSkLIl0mli6H9AAil0hyv06gd4AQ3rsA5hRPAtDPnBT+Uyq0VB1ypmxrA27qZpQxe4X12IF9+2FMxgDVxprQi52d/elU7mGuUoFOCqN44LDmlDyKB56UoOnnmU+PSXsrOrbvSns1hj0a6irqIJA+loQNV7s7n6VM7Y9pBLixOBkkkYv0raUcz1pfkb7x1DmqhjUlmmVfkybfYKmZFBH1PoG/Ux/io0IxUbkgNtlmFJ0DB6fipyUsHEC4V7XyEyK20JC0nJ7kx0shvDQ7R66wE9TBHVhN7ZtY9k+KgLGILL8B2agKMdQZHZt23aOLPuRohA0HSV0JNq5b/P/sPadNZy369NMjM2gJWXxfMKk8ZRqTplVcsRyNjPYtk3y1Zfp/fOfSL60GgwD43NfxPWls5HKynllxZO88btfkFR1VE1lvrWSueJlUqM/Tduc32H5qw/8JQUKHGakoI56ei3yrFJiz+5gwtYurt3zFV5/solPz3mLjtRc7n5VYkytn1P3PM3j/3ElU8/4InXBENPuuA33nChvAG0tf+C0T5+N3+8/4HcWODJMnDiR//u//6O1tTUnLa+qqoqlS5cybdrwUiu3bNlCdXXf88rj8RAMBtm2bRsTJkzIblNVlTv7WV1dzaZNmw5L0DQ7cjx0dQ87xpGEtP/ajmE69sNFjA6ghT2M7exlbOmBV6qEJJgdOR6X4mLFruXIAYvKSAi53+yxKO8+82b8AAAgAElEQVRbrRGyoGbygHRuVSAdQCFL8mVmnvvcm4w8ueaVUbVU1oGsrW1AkiQUzak12QdNYET8bNNb0eXc2mGP6mFu6XysHcOvQck2jKUvHWswB9PwqpQ2+tHc+3fRbGwI+OmYOQFvYN/U90zj2/6UGCWs73iPY4tmAtA4NkRNwstr5vvDPo7+DNcZP7Z4FtGBQVMmVW7ALiSXglTpXFNjA+PxqbnBiuRRkTxq9noPlrthd6fTBypNXaUXFzKykJFlFxZdWfnEGm/dfo9nCKHCw0LEiBD09KW9FXt0pMDIrJ6oFcWI6gSVsoZfHV5QPZDyMeOJeA9sjyQ5aZSHg0GfXSM393NQFIKmPLOj50P+tu1+Vr//HOfsXsS5nd+j17J5PZbCGh3gxDNqcR0gR3iksVMpEiuWE73nT5jvr0cKh3F/4x8xPvt5krrB6hef5e2/3k1KyMgSzImvZqH+MqnRi+mcvgyzeMIRtbdAgeEgigzcX2zE3BWl6/EtzGwt49hVZbzl2si0BSXc+d5o/tvysaRrJeZDf2ZbbSPTL/4OY5f+jlBLByunz+Z//+dWFp76WWoLynpHFeEBIgalpaUH1Xi9t7cXXc+dtdR1nWg0elDbZPB6dRTl0GeLZVlQFSmBSElWCOFA+GYbmKaFNkT902ipng1t6ykJhzA9zsyxK/jRsgBkWRA8iH0Ecbb1dDjjWBQ5uLRAe7orLR5xcF6tP+jGpcqEfDHa9+j4XK603fvabkUtUt0WPp9BeGwxYbuMUebYnGL7DCaCRHsS2aejHeRYTvG7cHt1GiPebFCXM577KVme5B5H9642Gkqq2RPdjTvpxedz5ZyLTxkn4lJcGMpAoSg3Xyj6bPavYNCNZVus36pn/z4QB3ve+8h13JNdJqkkqH4XSnBwQatgcOx+9xia7wTaX6wLIdG3Sjf3hBqwHJEHqydJ3BNHuFX0Q7C72d2NkKVDPOYDkxnPlCVIelLIPuOgr6eB+Oca2DbISt1H2s8XZtUgi7T64CGf9z7c6XS64e7H7dHoUVQ8bt25xr1u2t29KOrQtoyEnUNRCJrygGVbvLR3NQ9t/Ss7PtzEF1tO4bcdP8G2JdbHTXa6Fab/v0ZKGo7sjLYdjRJ77GF6770Hq2kXck0t3n+6AmXhqXy4u4m3lz/Gth07sCUJNd7DLHMtJxdtxhz/BTom/QdWoPaI2lugwKEgl7spvmAC3Vs62f3I+0zurUAshypfFztn1HPDugBBpZZTdr7Ik9s2MeqLn6H+qWdZ+MRy1iyYzSOPPsCEsWOYO/9UNO3IpwcUGHncbjfxeDzntVgshsfjOahtMnR3x/d57WAYrOB6uERjg9dFhCljZiBCtCuFXWpALEX8EL8jw6HaGaKEnlTPIR/jwRIMuinRZdq7EvRE4/hte8jv7uyMEY3GUToFwt23ChYfRH7NTphYPQlESCV6CMdSost0dfalxg1/PBVmBeYR67bo7InRE43TRYx2ue+zErrTi2l/snH96InGqXBXDuv7P8r12R9btbFiSYSVQjoM10LGzsx5ktyC3kP4nmCNC0lIh+16zdrZGXfsVEC057/f5kBG4rxH0/3fhrufaE+CWCLpXONSL+1mL9FoHKGIIfcxEnZGIoOnYhaCpiNIU3QXy3c+yWPbH6a42cOStpM5rutcLBu2JSw2WTaNJ1VwypxSZOXQlUgOFnN3E7G/PUDsgb9id3WiTJmK65JLaS318+6GN1h3x2+ImQIplUTramGa/D4nTK3EGvt1OutOAfnIroQVKDASeOv8eL9zLFvf2EHb09to6PRS/Xovd2kqb4+dw007ahnbugZ7/VtsGVXJuITN/L89wwfHjeMtLLZv3cyJCz9NTU1dQSTiY05DQ0OOoENraysdHR3U1tbmbLNlyxYsy0IIQSqVYsuWLR+reqZMcbqkyznNZI80Y4Pj8/K9QT3E+OBESo2hVyGVtFy2sh/Z7AySJiOPH0oO/Mhg2ekmptJH8xlOKvtUtobrSCEZCvKYw68CLGkyotEP6qGN0RET3krXsEnBT+5kXHnAoC166IIX2V/awToaHwEKQdNhpivZyXO7nuWpHcvYvWc78zqnc13bt6lMhonZNhvjFptTNjWzSjh5frkjWXkEsFMpEqteJPa3B0mucTp1W7OPoX1qFR+mkmxau4o4GpJtInd14OlsYXK5zNSzvoAy6mfEhmoSV6DAx4zaaZXUTKnglZfeovv5NsZEfczZkeTPUhEbas7kwfaZuFqeIWVv5YNjxtG4YScLNu7hteOO5ZFH7qe6vJTj5p1KJDJ4A8ACRz+zZ8+mqamJV155hRkzZnDXXXexYMEC3O6+FI9Ro0YRiUR45JFHWLJkCQ8++CBVVVXU19fn0fICB0uFu3K/73vDBrIijnha/KFi2o4c4HDV2oZiyMavnxAG9s86GpFUkfcg/HAzpeLgM6hU4QSRLsWNlFaUdOcpsJTswUTrj2L27u3KtwkHpCXWzMo9L7B614t07djDpO5G5nXNpCFWDsBOy6Kp16LJhtpjI4w9oQzPEbgAbNMk9dabxJ9fQeKZp+np6aa5tpL2xhL2eL00C6cuwLBjGPEeYnvbMBK9jJ27gImnfAaXP399oQoUOBJYpsWzL62mZWUHk+MlVKgCQ0j0SharEu20dr6E1bkWzYa6Xc2Y5RHeGzuBmKwzqr6eqdOPp6ysPN+HcVQzVNpDvlmzZg0//elP6e3tpaamhhtuuAHLsrjwwgt55JFHAEdB78orr6S9vZ2ioiKuv/76QVeaPurv1EilPx1uCnaOLIdi58bO99nSvZlG32jqfEcmgP8kj2c+KNg5NE+850jQz2xQCOuOj2qmLIQsDZnhcTjT8wpB0wiQiifYvGcDG3e8R/POD9HaoSFWxdhYHZrtrBxtM03akrA3YWF6VBpnRhg1q2RISdGRwurqIvnm68RfeJa9b75Os27QUlxES1kxnS4n4tekFBHdQjYlunc2kWjejdsfZMwJJzN23qkYvoJaWIG/P159by2vrVxP3c5K6hWDclVCkSR67BTberfR1v02e6MbCbe1YZaWsq22gYSsUVYcYtK0OdTXj0LTPh6z1UeSozVoGkkKQdPRxSfZzr29e1jb9gbHFs0kqB+ZVYpP8njmg4KdQ5MJmnLbC+yfQk3TUURq5S7Md1tJmUmSqSQiCbqpUgPUMBoYTVwyabJNXk9CMpGkKwVJIVE5Lsj06cWUNgYO2LTuUDGb95Jc9x7tr61iz6b32W0JWsNh2kIhzBPmAWBISco8gmrDwOy1af1gE53trUhCpnLCVBqWfJmaqTMRcuHyKPD3y7Hjp3Ds+Cm0dLfw3MsvsfzdLsa2VVMp6zQY9ejuBizboqVsF82xD3Fv2kwn7TTHyni6uQ1ZgvqaahrGTqGqqgaXq9CvrECBAiNLxFXCfH0Bqij0kCvwycOrK3THU/k2I8sR8YpXrVrFjTfeSDQapaKigp/97GeUlZXlbLNu3Tquvvpq2traCIVCXH311YwbN+5ImDckppViT2wPu6I72da9lfc71xPYI1FDMSmRAlVGV71Y+Ij3euntdiElBFgSICFcMlXjA4ydGKZslH9EiwntVApr105imzfSvP49mrdvpjUapd3toT0YJKHrMHo8smUSsnuodSVRZBkzZtLdtIOW1mZaANVwUT52MpVnTKV6ygwMb2FVqUCB/hR5i/j8gtNhAezt3stLb73JM+/vJdzkZ2yylGK5jLGBckRwNgAdiWa29u5gh9zGto1b+WDrdgCKPQqVlVUUVzQQKasiGAwjy0d/nn2BAgWObgoBU4FPKrNrgyTMoych7rCn50WjUU4++WRuvfVWJk6cyG233cbLL7/M0qVLc7Y7/fTT+eEPf8jChQtZtmwZv/nNb3LUjDKMdHrebeuXsiO6A9MyMe0U0VSUzmQnnckO7DaVadsXItsKwhbothuX6UdLetDiBordp8RiASmvTLDczegxIcob/fiKjUNW1bJtm+TePbSse4vY3r10t7fR09ZKd08XPakUPbJCr8dDzOXOtkgWZgo90YOaikMiidnVidQbRUp3AROyjL+knGB5NcV1oyhpGEOoqg5ZKawoFShwsNi2zfaOD3lv8wZ2btuDukNQ0+WhytQJyi48ihcLm2apk+1SMztEC81yN5aU7tBug9vUMCwVQ2gYqo5L82DILirLoWG0CbKGLWuQKfKWnAkZJAnTW4Hlr8nfABwihfS8A1NI1xlZCnaOLAU7R5aCnSPLxzo9b/Xq1VRXVzNx4kQAzj77bG6++Wa6u7vxep3GduvXr6erq4uFCxcCsGjRIq699lo2btw4onKutm2zdmcnsaSFadtYts3qXW/RltyDZAtsBDIGsh1ANssIRKsp7h6HacnOfwhaJUgI0IIywYhBRbmXyaND1FT6hpQJt22bTe+spfPF/8NKJLBtC8s0Id6JZVkkLZukaZGwbJJIJCSJpJDp9LhJajqI9H5dLuc/00QkYohEHK2nAxGPopsJdEVFc3txBUK4K0K4g2HcgTDuYAh/STn+krJCyl2BAiOEJEnUBKupOaYajnFeM60Uu3p38XrrB7y3/lX0DzqobFMpT/qYLoVxyzUkVZUuJUmL6KJF6qJDjdJCj9PhPN3e59UPJFwbBIYlMCwJ3bJRbAvVspFtGxUb2YIeyYuNjQ00+12YiowuC4o9GpJtY9tgWzbYFrZtE1CDFOsRbNvGti1si/R7pPdjI40PIvl1wE5v5+xHlgU1NfUohUmWAgUKFCjwd8hh//XbsmUL1dXV2b89Hg/BYJBt27YxYcKE7DZVVVU5n6uurmbTpk0jGjSt2tLG9+5/e8CrX95nO10RhFwqLq/O5qkaEa9OiVejNuymPuymImBkO3gPh+7uLp58fjmWbYMAkEBWQEt3sbdt1FQSzUyiWkk0K4HLjhFKtCOSFh7VxuNW8QT9+PwhjHAVFI1CLqpDc3tRdAMhjlxfpwIFCgyOLBSqPNVUeao5uXoBLOx7L27G2d61kw073mf35i1ITa14OuKU9Eq4kiqKpGErMqaskBKChJCIyza9wqZDsUlKkJQs7JxHT3e//++BFJCCpiF7q+488EG8OPRbp5xyBmPG5KfHToECBQoUKJBPDnvQ1Nvbi67nymnruk40Gj2obTJ8lNSOz0R8fGZW7YE3HGEiER//etVVR/x7CxQocDTho6qsmONGT4GT8m1LgcPJSKQgflzSGAt2jiwFO0eWgp0jy9+7nYd9ecLtdhOP5057xmIxPB7PQW1ToECBAgUKFChQoECBAvngsAdNDQ0NbN68Oft3a2srHR0d1NbW5myzZcsWLMsCIJVKsWXLlhFNzStQoECBAgUKFChQoECBQ+GwB02zZ8+mqamJV155BYC77rqLBQsW4Hb39SwZNWoUkUgk23X9wQcfpKqqivr6I9PdukCBAgUKFChQoECBAgWG4rBLjgOsWbOGn/70p/T29lJTU8MNN9yAZVlceOGF2UBp/fr1XHnllbS3t1NUVMT111//sVtpGk4/qqOJZDLJTTfdxO23385zzz13VNsKsHz5cn7961+TSCQIBoNcc801jBkzJt9mDckTTzzBb3/7W+LxOKFQ6Ki3F2DFihV885vfZPny5fuIsxxNTJw4MUdgZsqUKdx44415tGj/7N69m8svv5xNmzbh9Xq5+uqrmTlzZr7NGpRly5bxy1/+Mue1zZs38+qrr2YVTwscHo6235DBnrmdnZ1ceOGFlJeXZ7c799xzOffcc0kkElxzzTW88soryLLM2Wefzde+9rXDbudQz4M//vGP3HvvvViWxYwZM7jqqqvQNC0vdg51X/37v/871113HZFIJPv6D3/4Q0455RQ6Ozu54ooreP/991FVlW9/+9ucccYZh8W+ofyBQxnDnTt38pOf/ISdO3fidrv553/+Z+bMmXPYbPzNb37DI488gmVZjB8/nuuuuw6fz8dvf/tb7rjjDkKhUHYfN954I1OmTDlsNg5l5yuvvHJI982RtvPGG2/kmWeeyW4Ti8UIh8Pcf//9/OQnP+G5557L+R244447KC0tPay9Vofy/fJybdoFRoSenh57zpw59ttvv23btm3feuut9je/+c08W7V/vv71r9u//OUv7TFjxti7du3Ktzn7pampyZ4xY4b9/vvv27Zt23/605/sL3/5y3m2amh27Nhhz5492/7www9t27btP/7xj/YXvvCFPFu1f6LRqL148WJ71qxZ9vbt2/NtzpB0d3fbEydOzLcZB8X5559v33777bZt2/bKlSvtSy65JM8WDZ9HH33U/s53vpNvMz7xHG2/IUM9c5955hn7ggsuGPQz//Vf/2VffPHFtmmadmtrq71gwQJ77dq1h9XOoZ4Hr7/+ur1gwQK7o6PDNk3T/uY3v2nfdtttebNzIJn76q677rKvvPLKQbe58sor7euvv962bdvetm2bPWfOHLupqemw2DOYP3CoY3jBBRfYf/jDH2zbtu0333zTPv744+3e3t7DYuPjjz9uL1682O7q6rJN07S///3v2zfddJNt27Z9ww032EuXLh10X4fLxqHsPNT75kjbOZCrrrrKvvPOO23btu3vfve79sMPPzzodosWLbKfeuop27b7zslIMNRzKF/XZkGneoQYrB/VCy+8QHd39wE+mT8uvvhivve97+XbjGGhKAq/+MUvGDVqFADHHnssH3zwQZ6tGpqMvZWVlQAcd9xxObV9RyO33HILS5YsOeoFWLq7u/H7/fk2Y9js2rWLd955h3PPPRdwroVf/epXebZqeMTjcX71q19x2WWX5duUTzxH22/IUM/crq4ufL7BlamWLVvGWWedhRCCUCjEokWLWLZs2WG1c6jnwbJlyzjjjDPw+/0IITjnnHN4/PHH82Znf/rfV/sbzyeeeIKzzz4bcNqwzJo1i+XLlx8WmwbzBw5lDLu6ulizZg1nnXUW4Kz6lZeXs2bNmsNiY2NjIz/72c/wer0IITjmmGN4//33AYYc28Np41B2Hsp9kw87+7NhwwZefvllzjnnnP0ew2C9VltaWti4ceNHtnGo51C+rs1C0DRC7K8f1dHKtGnT8m3CsCkqKmL+/PnZv59//nmmTp2aR4v2T0lJCXPnzgUcYZMHHniAk08+Oc9WDc369etZuXIl559/fr5NOSCdnZ2Ypsm3vvUtFi1axIUXXjgiD+fDxbp166iqquIXv/gFp512Gueeey7vvvtuvs0aFvfddx/Tp0+npqYm36Z84jnafkOGeuZ2dXWxZcsWvvKVr3DaaadxxRVX0NXVBTjpZv2vlZqaGjZt2nRY7RzqebBly5YcWzK9H/NlZ3/631ednZ289tprnHXWWSxatIgbbriBRCJBW1sb7e3tR8zOwfyBQxnDrVu3EgqFcurWa2pqRmTScDAbR48ezaRJk7J/9/cNOjs7efrpp/n85z/PGWecwdKlS7Ft+7DaOJSdh3Lf5MPO/vznf/4nX//617MNzTs7O/nzn//MkiVLWLJkCf/7v/8L7L/X6kdlqOdQvq7NQtA0QhxMr6kCH41Vq1Zxxx138OMf/zjfphyQO+64g7lz5/LKK6/wox/9KN/mDIpt21x11VX8y7/8C6qq5tucA2IYBosWLeLyyy/nscceY968eXz7298mlUrl27RB6ezsZMOGDcyYMYMnnniCJUuW8J3vfOeotTeDZVncfvvtXHDBBfk25e+Co/k3pP8zt7q6mhNPPJGlS5fy0EMP0dPTw7/9278BTv1D/2MwDIPe3t7DattQz4Pe3l40TRvUlnzYmWHgfTVu3DgWLFjAnXfeyb333svatWv5/e9/TywWQwiR80zWdf2I2Qkc0hgOfB2O3HX8u9/9jpaWFr761a8CzqrEwoUL+ctf/sIf/vAHHnzwQR566KG82Hgo900+x3Lbtm2sXbuWxYsXZ1+bN28eixcv5qGHHuLmm2/mpptu4qWXXjpiz67+z6F8XZuFoGmEKPSaOjI8/fTTXH755SxdujS7XHs0c95557F69WrOO+88zj77bGKxWL5N2od7772XUaNGMWPGjHybMiyqq6u55pprqKurQwjBeeedR3NzM1u2bMm3aYPi8/koKirKpi586UtfoqOj46i1N8Prr7+O2+1m9OjR+Tbl74Kj9Tdk4DN3/vz5XHrppfj9fgzD4KKLLmLFihUAuFyunGPo7e3NmdU9HAz1PJBlmUQiMagt+bAzw8D76jOf+QwXXXQRhmEQCAQ4//zzWbFiBS6XC8uyco4hFosdMTvBGaeDHcOBr8ORsfsXv/gFTz31FLfddlv2u8477zy+8pWvoCgKpaWlfPnLX+bZZ5/Ni42Hct/kaywBHn30URYuXJgTtH//+99n8eLFSJJEY2MjZ555JitWrDgiz66Bz6F8XZuFoGmEGE4/qgIfjZUrV/LTn/6U22+/ncmTJ+fbnP2yceNGVq5cCYAkSSxevJienp6jsq5p+fLlLF++nLlz5zJ37lx27drFF7/4RVavXp1v0wals7OT7du3Z/+WJAnLsrIpBEcbVVVV9PT0ZPvQSZKEEAIhju7H74oVKzjxxBPzbcbfDUfjb8hgz9ympiZaWlqy29i2nb33GhoaclJyPvjgg8M+uTXU88Dlcg1pSz7szDDwvtq+fXs2TQv6xjMYDBIOh3OuiSNpJ+x/nIZ6r7a2lra2Njo7O4+Y3bfccguvvfYad955J+FwOOd7+zvJmbHNh42Hct/kw84MK1asyEmLsyyLdevW5Wxj2zaqqh72XquDPYfydW0e3b/aHyOG04+qwKHT29vLj3/8Y2655ZaPhRR9a2sr//RP/8Tu3bsBePXVV0kmkzk1C0cL//3f/82qVat48cUXefHFFykvL+e+++4bMVnTkWb9+vV89atfpbm5GYC//OUvlJWVHZVjCzBmzBhqamqy+d+PP/44Pp/vqK8TWrdu3cfiXvukcLT9hgz1zL3vvvv4yU9+QiKRwDRN7rrrLk466SQATj/9dO655x5M02TPnj088cQTh00iO8NQz4OLLrqIxx9/nJaWFlKpFPfccw9nnnlm3uzMMPC++u1vf8vPf/5zbNsmHo/z5z//OWc8//SnPwGOc/f6668f0drY008//aDH0Ov1MnfuXO6++27ASalqa2tj1qxZh8XGd955hwcffJClS5fu0xLh2muv5Y9//CMAHR0dPPD/2XvTYEuu6kD32zszz3inqnurSqXSVEKoJGwQDcLCNCCjh0wbDG3c2I3D8TpwOMLRPxxtG3e07Q4MdId/uLujg3A4wuF4YRw2xuNrwwuDwZKxEWCEJYTQgIaSSjXeeTpzjnvv9X7kOeeee6vqImyVhMz+fkh1z8ncufaQedbaa8hPf5of+qEfetFlhH/affNSyDni5MmTu9apUoqf//mfH78maHV1lXvuuYe3vvWtV/Rdq5d7Dr1Ua/NFeU/T9wqXeh/V5LsXvpvY3NwcV/MaJc0FQTCuuf/dxmc/+1l+7dd+bVyNbsQnP/lJFhYWXiKp9ueTn/wkf/Inf4Jzjkqlwi//8i+/LHbu77rrLj7xiU98V7+n6Q/+4A/40z/9U5RSHD58mI985CPf1Qr+4uIiv/RLv8T29jbz8/N8+MMf3pW8/N3Iu9/9bv7Lf/kvvOUtb3mpRfme4bvpN2S/Z+7HPvYxHnzwQbTWvPa1r+VDH/oQ09PTFEXBRz/6UR588EGCIOADH/jAuPrbleRyz4NPfOIT/PEf/zEiwpve9CY+9KEPEYbhSyYnXHxftdttfv3Xf52TJ0+ilOLOO+/kP//n/0ylUqHf7/Orv/qrnDx5kmq1yi/+4i+Ow3xfSPbTB+65557veAxXV1f5lV/5FZaXl5mamuLXf/3Xed3rXndFZLz99tu59957d3mYjh07xsc//nEuXLjAhz/8YZaXl9Fa8573vIf/+B//I0qpKyLjfnJ+/OMf53d+53e+4/vmxZbzD//wD6lWq9xxxx08/vjju/KGnnzySf7bf/tvtNttwjDkAx/4AD/xEz8BXLl3re73HPrc5z73oq9NbzR5PB6Px+PxeDwezz748DyPx+PxeDwej8fj2QdvNHk8Ho/H4/F4PB7PPnijyePxeDwej8fj8Xj2wRtNHo/H4/F4PB6Px7MP3mjyeDwej8fj8Xg8nn3wRpPH4/F4PB6Px+Px7IM3mjwej8fj8Xg8Ho9nH7zR5PF4PB6Px+PxeDz74I0mj8fj8Xg8Ho/H49kHbzR5PB6Px+PxeDwezz54o8nj8Xg8Ho/H4/F49sEbTR6Px+PxeDwej8ezD95o8ng8Ho/H4/F4PJ598EaTx+PxeDwej8fj8eyDN5o8Ho/H4/F4PB6PZx+80eTxeDwej8fj8Xg8++CNJo/H4/F4PB6Px+PZB280eTwej8fj8Xg8Hs8+eKPJ43mROHHiBJ/5zGd4//vfz2233cZP//RPs76+zoc//GFe//rXc+edd/L5z39+1/F/8zd/M/778ccf58SJEywuLr4U4ns8Ho/nXzj+d8rjuTzeaPJ4XkQ+8YlP8L/+1//ii1/8IouLi7z//e/nrW99Kw888AD//t//ez760Y8iIi+1mB6Px+P5HsX/Tnk8l8YbTR7Pi8g73/lOrr32Wg4ePMhrX/tarr76at7+9rcThiE//MM/TLvdZmtr66UW0+PxeDzfo/jfKY/n0nijyeN5ETly5Mj43/V6nauvvnr8d61WAyBN0xddLo/H4/F4wP9OeTyXwxtNHs+LiNZ637/3wzn3Qovj8Xg8Hs8u/O+Ux3NpvNHk8XyXUq1Wd+3mnT9//iWUxuPxeDye3fjfKc/3Et5o8ni+Szl+/Dhf+MIXyPOcCxcu8Bd/8RcvtUgej8fj8Yzxv1Oe7yW80eTxfJfyX//rf+XUqVO84Q1v4IMf/CA/93M/91KL5PF4PB7PGP875fleQomvG+5Jk70AACAASURBVOnxeDwej8fj8Xg8l8V7mjwej8fj8Xg8Ho9nH7zR5PF4PB6Px+PxeDz78KIYTV/72td473vfyzve8Q5+5md+htXV1YuO6ff7/MIv/AJ33nknd999N/fcc8+LIZrH4/F4PB6Px+Px7MsVN5riOOaDH/wgv/Ebv8E999zDm9/8Zj760Y9edNxv/uZvcujQIe677z5+93d/l09+8pMYY660eB6Px+PxeDwej8ezL1e8EMTf//3f87u/+7vjMpSDwYA77riDf/zHf2RqagqAPM+54447+MIXvsD8/Py+7W1s9K6kuB6Px+O5ghw6NP1Si3DF+ef+Tk1NVen3sxdImiuHl/OFxcv5wuLlfGH5XpLzcr9TV9zTdPbsWa699trx381mk7m5uV0vQDt79izVapVPfepTvPOd7+R973sf999//5UWzePxeDye7zrCMHipRXheeDlfWLycLyxezhcWL+eLYDQlSUK1Wt31WbVaJY7j8d/dbpder0e1WuVzn/scv/ALv8B/+k//iXa7faXF83g8Ho/H4/F4PJ59ueJGU6PRIMt2u8nSNKXZbI7/np6exlrLT/3UTwHwlre8haNHj/Loo49eafE8Ho/H4/F4PB6PZ1/CK32BG2+8kc985jPjv7e3t+l0Olx//fXjz44ePYrWmsFgwNzcHABBEKC1r4ju8Xg8/1REhHPnTnP27Gm2t7cIgoD5+QVuvPGVHD16DKXUSy2iZx9UvIHUDoDe+alO05Tl5QscOjDLwfgU5tBrkEqZH5wO1lBbF4gPHadRmSJUEXGvxfTUFKkLeXixw/ddNc1sPYIiIWyfwix8PwzXgYjgrCV+4m85sHCA+PCrORtf4Fj1GiqEdL/yDaZueyXR/Dxb62uExSxEzV0y9/pdHlj+KjcdvYXra9cjWYZbXSQ9cJD+dsrhG4+iAz2+Xm99lebBeZRxEIObDQiCcNfa7K0ts72xwXU3nWAwEHpbGUdumkXr3etXspTK5sOgArYOvo71fs5NC6V84oS1pQ1mF6aoVeuY7Zgz2xc4duwachXw5MY6b5yypI0jtOMe54vT/MCh15N3NlHTV9E59yzB1DQzBw9RqVTKNhODO9tDX9MkrwhLS+cxxjA/f4j5+QUA4vYWlXqDsFoHYHOQU9EZU6qOroUkheXChQ43HJsZzzlhDalMI0VB8cg36E9N065WuPHGV2JXVzDfegz5V7fTXltkYz5lKqlw7PDNVBplX22SYk4/R3T8BrqqwsnFNq/oJcy/6mpU7fJqX7fbIQgCmo0mIKD218HWVleYTs8zq2KKa9+KMZb+qSVmpg+xPhviRDjUCImiaHyOjQvaXz8JJxao9wL04Wmi6SqBVqh4E4mahK1n0L1F8mt/CCrN8Vohs6jIotIOpnaQCxfOc/XV14znA0C6ORvimGnsXFMGBW6pjT5+EBUFLC1dwBjD9dcfv6hP4hzF1x8gfOXNyOwcxhSErRb21NNEr7sDqdUwpiDLMqampsfrNM0LHl3pc+tcnel6hKpcHCKWZzFy/jzRgQUyVSPZ7DFTTeG13wdAJykgHxCGEc1mk9xmVIJhpJZJwBa4aOoi3diur0GziWo00TajcuErFIdvQ5qHWY1XaEZNIl2hFtR299U43IU+aq6CmquilCLutDBpyjJT6CymFgtHZjWVwzv1BnTnLGH7NPl1bxs/O3bJI5buRsLAwpaz3HZsFtfrQp6jh/fFXowzFCajGjTKawTDZ1KWkn3j66wfqnD1K15P3u0SVqrjtf5ic8WNpjvuuIPV1VUeeughbr/9dv7oj/6It73tbTQajfExMzMz3HXXXfz+7/8+H/zgB3n00UdZWlri1a9+9ZUWz+PxeP5FsrW1wX33fYHV1WWiKGJh4TBFUfD444/y6KMPc/ToMf71v76TI0eOvtSiei5BsPU04dbTGDuHueVOnHMsLp6n2ZzCFIZ45Snmg22oryEHmiSnL/DEF3+L1qEFihtuZGbQJHuu4NDBTV7/igUWp97I8tnzVDnOq480aW5+HZ226co0wdQC7V6fTqfFgUpEevZposWQ9evOcLZa53TvWa5zV1HdyDn1l5/n4BtvpTj9HGsm49ib7mLu6jJvOf/819la+gdWb2xhXcJCV+E2VwjCNmeWnyTXB6k33ot9+ItMvfFNLJ07hQisP/oQR+Ma4TW3cCbd4MDxI8w7SzI3Ry3p8+if/Rm5iTj4+AYbqkZwywmcFZ579mnUM9/i2I2vJrz6Kjr338vBmQ71I4f44hP3w+xV3DBzE0kvp7uRcubkOWZadW696hUUa31c1mctf4z7zQC3dT+z6lry6DCb247G9iqDE1t0V4TnbrqF48tfYqmXMf/au6lLn6PXvQq1XFb4Lc73eNwuU3EZZtDBnH2Yxu3vpnZgmmf+9hM0qxGvfM/Pc/Kxr/PY6SWmbMb3XXcryezV/OP617ixcxXdzz/Kq289RjU5RfWV15Ld+A7s6jr68W+wWo3g6HHkhldgvvUYOMvp++6l0zlNEK2z0W6QHL+dW975XrTWLH/mfvICDrdW+erUzcjKOlFgaK42qd8wUWxLHKDGiu/q6jKSplz13CPUr2sSvebfoaIAaWe4lRh98xzooQED9FafIe6c58DRaVTeZfP8CpztshqtsarXSZvX8op6wnW3vI5qtVTYlx/9FqvnnyRaFTh4M+GjIcae57V3vYqVf3icZuscszfNQq3KmbW/pHv4+7ntptchawnSyoj4Jmr7HP1b3smgvc23Vpd4zcIRNjsRjcOHkK02pwdCZJeYfe3NfOlcwdWDmBPJKWheS7JwA73TG6hQwXDv3hY50ea3MGEFcYeQXpf8G19nKQpJjhwmf+LTnOhMEbtTfDOYI9RNjswf58CBg8w8+giDapXnZg6ypQ6wvjhgakYRzCySLuUEN92KnjvA6uYDLH35/6UWXo9TiqhzPSbt0DwWMFh5ks3wKA9Kg3R7keuvPsKhG6d5qnWSmfZB3nD9zVQe+zStrmP78AlueN0PoiYMJ/PYIzy21GX7jh/kYP0Rbs8S2DrFl8/36dgnURc2qN28wN2veDcAG8tnyE7fz7Eb34ZqpxQPPYs+7Kjc/nrWnn2WXpKxNHcrgzOnObq9TnV2mvnXHof5UieP1h9DnKOz0qFm+pzf7HJ4axF9yy3YhaM80f0anactNr6B6nUVksNTBPd9DtEh1Xe9D91fQYIKUp8n++LfoapVztR69J/7Fgdv+r8JgojrXjMPNoOlJ7mw/hStVs7SjOHwU33s2TPUb38j13zfbSilyL/5DaTbhTe8gUr9yhpTV9xoqtVqfOxjH+O///f/TpIkXHfddfzmb/4ma2tr/OzP/iyf/exnAfiN3/gNfvmXf5m77rqLqakpPvaxj429Th6Px+N5/jz33LN84QufIwwj7rrrHdx8860EQbnzmec5zzzzFA8+eD9/+Zd/yg/8wL/m9a//Ae91+i4j6J5nY9PRjDPUoZRBJSfLUtK1DjIwFAcynj5/gdYZw/Q1KdnDTxHYBdRqCz3dZnC+T5iHbK1v07p6lsHmQ8Bhigf/mMUDhzjxigWKpSbbpx+jODhPEc2QpSss2hqNtRa5Vmxsr5FddQ1m5iCCBcqd+LS1StQ5S2qmSB9bRlrQ236CeKlCJS53/fPzKyxufAlREVkgJPEsLszYeuZbmLXzJN/QdGyTIrNkySYJTW5MBmAcW998mqX1k8RzBziULVK0+ui519DKE0yeIU9+i2wtp9tZYaWzxNZiylW3fD9bnZNs9gfc1GySr25SrC2zXFugajPyU0/hGlWKNKS/0Wf7uXXa8cOI6zMzk9KLcqTiCKSgstojUxFyegPqCxAnSJGgBDbbWwy+9ShP3Xsft7zyTRy7/lVcaK2z3O+hk2WKzjKRzDDVXOJIcp5kcY31uQPMrq/y6NLX2UhSmusR2+0+ywuvQ+URbXcBI5Ynl07zGroARM/9Dd3WtdRtA/oFLPUwT/wDF858nW5haek+DsWBrMCIZfHkaS6oezlh1rH5MVrpBs+cfIT+AQhSTW7amKuOIHIQpRTPdE5y4cm/5E0H3wBH34DJM3KTIc8+zfnFM8wOXsmxRht10wy0hykWccLS1gqLpzOORk22njuJrgc8na7yzOl7uVVOYE2OKfqIXeZAukHSL1hMYo7fcRdZr8tWaw1lUtAhhXFUWysoe561v94kHShSZmmcW8WJ8Gxk6FgImjfwyo2CQdpn+umH0SqDa/t0HnkIMzPLE489Squ3QPXErczWU2Z624RnvsETZ1foLNzGVJiQFClha4mHnzzFbD6NHnnlipz7v/pZTPEYeq7C7fP/jt72Kt3uNmfUAdaSPq9a11wQxZm1DfrZBZrZHIdffTVZI6NwltXVJZg5iC0yMlNBd5fQ8SnSRSG7kNOdP8wTg5NcnQu57SCVBv2NJwmtUFQLNrcCVs1BiiM3kPXbtIsVzkhEP6zDA/ezdWaNynqbs33NrNnGnugRTs+Wc2IS+ounyXsF7cGzVKI+i0UXc/IC2dmYrm4wVSTYmRQjzyLxgM75f0SFAf3nHqeWCln7aWpJD3UgY20toGtiupsRYgQnFskGSJzsPJzEkWWajeVVGif/jlQrToYzJCtLFDe8ErkxASrU8i2uW38Sd927qbSfG58eLT/AhXMryI1vY84aNrfW2Oyfp6o1YiyCRpwjuvAA5qlHyTeegUNHeXxtnTcud9G58PQjzxAfuokTR6aQrU3ieED7yUc5dOPNHDhw5QynK240Qelt+qu/+quLPh8ZTABzc3N8/OMffzHE8Xg8nn+xPPnk43zxi/dy5MhR3vnOf0tjTxhDpVLh+7//Nm6++Rbuu+9veeCBf2B9fYW7737XrjAaz0uHSxLSk6fpdg4zqOYcsTtvBrH9HInbZE3DUscR25javEEQcgkIXI3aM8+RFUcIomkGVvHwuTbT0xb0YTb7OTZb5MS1TXpdRbixDbkmbzgGa08zCGrEA0sULCB6AxFBnKN/9ilsdi2DOKdp81KWuMHmqVW6wBSaIOswklTFHQZ9g+oKK82DzCHkVtPttTHtZ6jmXbLazei5OXLjEC1jj4dNM3JxSJ6xsT1ACKBSxc3OkXR7VKoR+thhTPs8RZ5j05jq4jpF29CfCzn5nGU6a9APNCJCceYM1V4AvXXsyirJ/E2YfI6i3SHMImbjaWb6S4TzGyzNVYglQ0RY781Rq0EeD+gXoJRisJnT2+5TtY6l1jkWZhYYbKzSSAsWWWPaFdBLKE6dgWMBeVKQT0O73SLtGSgAJ+SDFtXwaXTQYHpzHUWMSmK2XEHcz3n6/Ekkb3GDKchdRJb0+NpDT+CSnEBAKuV4WQERUEC8+CDPhJr5rXX6gaWoxVSSLVxWo4hbrD34NTbyVa565eu4MDhHsd7ksfVzTG8pNrfh8cFTHE9Sakqo24AiHnD6r77A/MIrqc0epnv/PaSxQvU3KA4cIV1aYvvaWVrdlGypz7mKo1ZMQTGgu71CWD/CIDFsp0+yXpnn5mOHkaGDxBpLfXCWwDrAstIuGETQQHMtmtVWSmYyZPNxTs29CXnuHGkRc4sIDQX0e3T7jlanS2+wzZw12M0F5GDB4OwzdLvC1HSHPG9jOpYN0yF3GxQtQ25moNkk6XbYSi2PrZ3jWBCjXY1n177E1MppAmexzRka60+SpY4kEqyx5VjbANoduhvn6PW20PEatS2NmvsBnANQZEmF7fU+Lb1GrisE/Sp241a25et0gwMcDQ6DzTFBlV6c0CxWaMQ1jC3QyzGV55YoXvP9GBE6Wcp2P0NRQ5bOU3zzYcK3vg2cpXr6Hha7lk48oNl6AGauQw2qrD/7TQZFnaJaJxGN7qWkg2cJVcDaOaEWDNie7dOMDS7v0nHbzJ/rEXSr5P3nqFQrZM15krjPhTglPdcjufYI09NleF0nNmw++zBHjKUh2/QGISpbpak2WL36+wgKqKabuGkhOPu39E3GmWIT9dhf8wM1yNIc09piDji/9hhZaqA5jVtbQbo9CpmGzVPYrQ5ZEZF3MoLtU6x2p6gNNC7N6D/5BMycIF5/mvOuSTOE/Kprruiz+UUxmjwej8dz5Tl37gz33fe3XHfdDfzIj7yHMLy8EVSpVLn77ndx5MjVfPWr9/HpT/8Z73rXe2k2p15EiT2XYvDFL2LWttDdEDl2eCdvQBzJ2hkk7dOYruCcAoQitWigEIhklmq+wKDQBBGU6jTI0jrRcHc6c3D+zDK6NYPrxpj0PN0DN5FYwyDZRkyN8zrADZqYgUIalu2sxeGtaZpFfdxmKjlkKRVgEMdUjKMyFDV/dp22vppG3kSFGYkSAjEsLj7DtGtyVTaLzmOYm2Nkaa0PWpgIFArjNK7fQxuLQgMKh2a7DrXZKu0DB8gXDjE4v0qNJtZBlF+HDHo4MWhCGiYgNjF29RkKAV2ZxZmUrY1VVEWRDDIiFMpBRBXaPZgIcFmTlGtsjTju0C0E2j1UbxWV9TFKI4MW3YfvI6NGkSWYqwqqRUSdKsYU9JccoZ5Fb7VprZ8l6gy4yh4EMrLCovuGeiXH4IjEUljHILcMvvIYRnVgapanYk2j0iBOY4JQsAgBCocCJ7SkwbQ7QpWDDLiAyTKsUcTGQBVwlrDTQkXlrLVXeoRRF12PqWRVBmJgpUU1WQAxtJKcaUnYkB799cepAFtbq2jnkLObICE2ynh6/X62RWHiWTaWAqLlbWwzgrkpxAnxoE2QTFOrVYjTGoNuiwflLFdRpxCHsZbI1qgUPZJIaBtLFAXEOMChzAINEuJ4iejs/VhzGIZrHEArNTRQYEspokCY7XXpu4y4yHEKAlNhqtOh6jLOZTmStBEdYUQwW5ss3/9lBkf/FdV+Spj2KfQxBqllSiw9l2HdABRkBsJISNs5tgGFFdLWMlGkoRgAoNzugmf9lYAiFximEU3HiogqcRKQNxROKySIsGEDKL04zhUYZ8j6EUUvJDi/QuxqLHe3h80olKsgeRkW6tafopsU5DL0AucFnGvTW3GIHBy2KxgnFAUsmj7Tw/pvnSIgLjoc70RsVQNyVyFLBkw7jW73qIeLJGGNPC9QFVDxNr3tdYKgTrjeon82RssMPWdwShMXGUWhqG51iVe6RIMKkguDzPKptSc41F7hYKOCffpJ1q69im5myft9oiQmTmLSXCiqM1Q2Vwi04tBGQpimtOKCzd5BtGpSTTrMJNv0elNE0Sy11SW2P/UQy3HCRlYlHGywfugkR05cN35GvdB4o8nj8Xj+BdBqbXPPPZ9hfv4Q73jHu/c1mEYopbjtttcxOzvHvfd+lv/zf/6Yd73rvSwsHH4RJPbsx8BmrLptZmSW+0/dwwIVwmyTtGOpVKDT7pe2lIAzOWG8wSDN0K5CoZuAASnTVpxV1OIu852H6ASaOArppobpYW5KFgtGt2jTo1cpEBNSDxztAirtEDmoMMkAlWxRJyBes8zkBygwJGFCLR6Qbq8xW0zjgtKzqVwd0Yrt0BK4HIIIbTVFkeFUg4HLUcqMPVPGGc70zoATDvY1oalT6AFKFCZQhAqscVjnuNBOqK+tM9iwNN0s62FKPc0RE6Ct0O+0MfUFVOY4s/wlIttnQTdJ0g42HzA1fQg12ASkDDuUEJEANxRGKVV62IB2kWK2HBIE2CxnkG6SBxrjhMhYXC4YG2JEUJlGWQcidLqrNBsHCPU0uXRZe/R+KiaiahJQIKJQhaOWD0i1IxTop4YoS7DOkQYJ9coAmMY6Q4EhoEyyh5A8E7BVwlqGooI4S2gTpLvBmruGpBpRFYVzhmCoQC4WA1w8S77YpVgZgNbY2GGnhJkA0BoljioRWy6jEfe5CrBicLLTTi5mbMdXi4iKqdC3LVrFNqG9hghAIgylIWhFkCyhNgMma9N1pZEwI4KoMuQTAFGokZE/XBkKYOscm1QxNuC4UrRRmNMPQN5DBVMoIAmEhcIR27KtQaiZF40e9NjUXSQ2KAp0M6Sb54R5j/pylY1Kl+mVjEHUIEgr5HnEsii2CXHJaWgcximFMUKmHFkhNESw1pLmfaacRQult9RZTK/PKbVB3O0QZAVUQZxFWYsAJoywOiRRDhByVxpAuTFsFsv0XcQss2gnhMWA6biPTDcRIDMVFtHodsr1zz7AuYceprAxjgALJD1NvejR64YMiIAEnEBu0f2UTbfJRutZCnc9OW7X80ZLGVabmdIAc2Jxg00KM+BgZYpKUcVtnWK9ViN+9jlcPIvT03SVIKIYkCOhpsgCCuOoaY1SwiAzpHFAX08jEiKx4R+eXAbgwFTKwBhyIgrlcKLJJMcZON+1HA+ERasZBBFKBLt2CKsW0WKo5VuofspTgzWcnsfYFFUcY31theXBMoc49h0+cZ8f3mjyeDyelznWGu6996/ROuBd7/qxXdWkng833HAjP/7j7+ezn/00n/rUn/HDP/yj3HDDjVdIWs/zYTN3FGmV9uYWthVzpugQ1Oap2WmKQmPiFNBUcotdWmZrEKKkiXMFucshCBCBIo1IejXi3JYenF4XFwZsTdXIXME8gkGRxy1U1WKcRRGQFgU2UCzksyRtRZ6OdtIFs96BRo3Rbq6zpfEjOFoS4IxC3AzW1hAU1hWEqkImBu0qWKeJTZOeXaV6JoMmtG0CBURWMzB1jNEkSqNNjSwUQlKSTp24YmnIMr3HnoN+SKBClDM4AYMhxJE7R5EPqNuQtJcSiMK4EJzBujK3z/USUDJ88YpQFNewbDtlFb+R4m4t61lcKrxFnV5qsJFjaGvihlaWSKn4zpgGtd4mSqpEgZA6S6qEUOoUxgLlfamlACBROaF1FBpSm1ENIDOGniQEAURSIRFNbgxmqOQOyKkTomyNGjPgEpQ4ckmoFS0KsXS1I3CQDxSODaZNFXGWQVghiXMOFS3yLEVsGW5WKQxmkBPWqyiETErPpYjDKc1mfxWnU64eLU5ThwoEUkU5GXs+oDSwlAEnDQqtCBwkhVAZjpXpryCiKawgUhpH+SCicDlVO004rIg4GG4IAHSMpZHFiAR0XJNiqiDtDlDiqNg+djie1hXjc8p5AW2KctgFwOFEwGkKG2HaA6qtk+A01jYJhxO77QwVd4x+NoC0QFA4J1T6GdaBCgTbHTCgwLmEQAxJakjXztPaSjGqjRPHjKqSiyFvXcCmA7oqwA0rYQqwQkY86PIqAkKZYz4p6E+81jTKY7I8pOpyjLhxn7Y6m8hXHqaQiFgMfWlSBKpcznGOEOJciHMNat0ExKLWBsSViCSN0C5GqhUqvZQekBQOow1B4ZDC7gweoGyGo0lR1DB5l28+9Qi1zizTNMnoU1WWor9F3ShCcShVoddaxhWzzKkD1LQQ2JSaS7AJNCt16ms9zNFDLMzNcQ0DnmtVaFa7VAPD4WiWM702513MQIcYF44N6MpWj2QQjH1I53unSIIG2B51E7KhW8StnbV4JfA1vT0ej+dlzgMPfJXNzXXuuusdTE1N/5PaWFg4zE/8xE8zN3eAz33u/+Oxx775Akvpeb5kecZWehRrKmwqaFtLL3OQFxjnKAwMBgEIREYjWY/CGKwd7YMOc4OK0kAwRTpuO5GMxCUgYEToKmEzKBUllRkaSWmIWJujnOBEkKWUyB5GKUVKQd9mdNOdcKQ87o//3dcFZhBO6q4Yk5dGlQjKRTgXImicCL2iixNH4XJcP4EiwRkzrOxWemQAnBuwmG2SFBaXD8j6pXIUSoE4AwiWkfEGQZaRUNBv96jIhCY6EbZTuGp58DDRJnURdqVDbhyD3JDkCabVIzCGbFB6R6zs7NBra7EyUVp6YvNeSZVN2wOgwgJaKjsKl3XEIrvHCE2fFIMlkwL0YeK+A1EU1uKcpW1DXKDHBiqAJkTbci6KXHYZDbmbwYkFEaxzhC4FpQjynCDOESvghJnNJYJ4mTAt14kg1Loplc0N0rRN0N+isrZBKgWFdaS5kOUhNaapd1Oifg6iUUUNjMHko3nPaDLFTBGhllcxayGJsWSFwzlhsWghorB2hk7eIckz7NC4aqudwcyzuOyWOLaSkF7eRERoqANUqI5ndaATVL47TA4ROlkLgy3X1GiBAMYI/VNPEtphkQMZrlE0gVRo6mmiVg+ZKJJTiQsqgwIQ8ixgkGqKoafM2YI0iUnTssR9OzDkJgdn6QeGTFsCPYUSQ9/lgKOQgKeSdVxRp+GmiNKCxI7moaTXiWnlIakrKJwlzTLirIIT4Vy3TSsfUFDOJXGNNCnztqydHvYJxNZReY2mOkxEWVJeGehihkvSkVuHdsVwXQUcMFWUc+CEvkk5p1eRvkGJEACBcQQ2p2879F08nof66Q3y/oBAB2TbbfSaIhJLhYJwsErVWYIihAKSjQvDudipqB0VwrQx1IoqyaBGmMYEmxtIllBINB6bRDdw1mGxZK4AcbieGXsrrwTeaPJ4PJ6XMZubGzzyyDd41atezY033vTPaqvZnOK9730/119/I1/5yt/z5S//PdZe2Z07z27iToul5Qv04xYAiTgqponYiKKrMMaRGYuxYJJqqVhNKHVjnVlKbUk5h83TMrzH1hEJUUBhwDjHqmTl7julwjOXTVHXZe6TNoa4sJi8wFhNufk/9BiIxYxyKRBsP6YYGhQLrWPU9I4SNKnJu6Gy75wtdbwAzNBT4wgozAyYAkyGlmEuk4B2BSIQuIwi6WKcoIYeBthtzDgru65Z2DKvA8AiDIaFLARN7mpYWxo+Sll6mSEtXBnVZEpjYBy3B7sVMqtpm8p4TPTQSBXA4ujmGbFYDIq6PUyDmZ0RkVLpFBEkh9xGpK5g2/VxCLmuk6Cww/EKXEFSWJLcYqzFiUMQ4tSN5yDPLNaMYgyHfc9jjN0ZJ4Bw0MOKEOYGRNjQVXIpCEyMs47aKLHLFrR7Z8rGXGksmzKbijw/Oh5h7cDZBpGdRXUHkOejicBa3oEnxAAAIABJREFUg7MFM6bB4XVNkttdslinMCaDsIJzlkIsp7J1ckbHKaq9DJxDIWjKsbLtMpeoospsn1BF41LoADkFA5uOvYAGS+Eisu4WKh8Ml4eCwqKG6ziyEXkv5iJk9D+FdbM4qWPQVE2IyIQarRRiLT2bEg8MCQXZcK2NaOhZIld68RChYRdw7vi4v5V+Sm5KIzHMhqFyE9a4xZIVmkFHyK1QlRkCCTBFQtFOyAuHsTJ855opq98hmLxCUZQePoXGWUuWJbihhTvanBivEVV6RQMVIeLY7G5SrViCfocw6TMnITMuIEpjdOmLG86nQfcTpN8rnwt5gCqqGHMQEY0bbjJkSUR3I4Vkq+yjE7YGBQLk8QbRxhP02lv04jVsnmBsud67gSMLNP1KgLGKIpcybHe0yeI0YneHHr6QeKPJ4/F4XqaICF/+8t9RrVb5wR98ywvSZhRF/MiPvIfbbns9jz/+Tf70Tz/B6dPPYq399id7/tnYIgeB1AhGlZ6DPIcpNUuFGiZPyEzKth3Qtzl9l9F2Cflwx1ikLNSgHagsR8UZ2ikQTe7qOClzjpI4YGsgFFZTyGhudysbojVaLAwN55FKKkDqDJnd2dVvm5x1HZNQgAt2GReRqqCGuRIiDlGQO0cqgp0sdS/hUIrys7rUqMoMWgVETlAI1byzI4TZUUjbJAyThYZhXyU1qZVhitaBs0RMs20NdsKTkRrBFik2z2lKk8YwjE4Aq0oDTEQjsvuFpSrTbAcFuRL0UDnPFYgq507cZAaEoATCiTFzzuJsTjDczUeCstwyUDiHdYIRi0PKOTUOpRSBXSBwUxhbejQ6GjpBecwIOxybYI+RUh4yMebD8c9V6dUCIWAnHzJw9V2n91wylMcQTGR4aHbGRorRRosaGy0ALunRsDuecLGQFgcwYqioWpkj5wyrvWvIrBq2sLOSdF56eJQLdgykscGvyExCUZT9NjgSY8aheyNyWy0NFiATQ+HsuP1aUaEi9bHncTwGRlAonNspktOxKblNUarsd+JyuskiOo3RhcHiyoIXuLGM47Ga+NMU5VpzLhz3NhyOvxQjyfa8xFlkbMhHNGio4YuRR2MxrKZobcboTlA4cDtzkefD4hPicFLF2gVUvvPyWwVYClIylrodrClguJasczvPAgHrpsee4XRivAet1Z3rZVXy/Dhpdu2uvpjh70puLcY6ulsr6Lz00KbZhAErglIaqyEL9dD7N46T3WX0FdmV2+jzRpPH4/G8THnmmadZWVniB3/wLdRq9W9/wvNEa82b3/xD/OiP/jggfP7zf8Uf/uH/w9raygt2jZeCPM/5H//jf/D2t7+dt73tbQD83u/9HmfOnHmJJZsgttTSA+AU3dCCDVAuRIka7/4qJzR1lZqKqKmQ0NQu21yoKjRdg8jN01BT1FWdWY7gRFCAcdF4T1/2nqwAG6NcQbnfLRd9rcWg2y36Li89T3JRKwQqgqFnBBSFgnbFkUYByuaEyaD0Khk3bHcUP5UCiqaeHV5tx4OktZp0AGGdRdyOgaCsI0oLAgnG56ihx8UVllgNVX+x6NwyUIZUKcTmZR7MHkqvVB0le0dhNBblbruooT2HsCsAzxn0nrArmVBiFYK1gjULOLfjkSq/KxXCSmLGozNp2IxygyaJCHdU7QnDNDJ99ES45kQHAagWnd3tyNREG2p86MjUGBXMqKrJPMqysXBv2ry4secMQNnSSOhUHKEqc1dkaPQ6FyESMqOvoqbKMDM1nHBXKPKCMnR0YjPH4UiG5fX0qPdyaQXaYukboUeOG46PM0OvlCuLV4yWmxCMc+FGhEPF3LkabTOgaDsOb2wRuBQutcEkjGUtja+RfIJzVYpojl4RMScHaAYzhHrnnrZ2d8ihSNlXO76nSiq9dPdBo8+pjg3cSc/Y6P4RV3qFdTIcXwStIsT0EIHtfIsk7o3XU1pY0mLnqSEThnVOPu6bm9jUGK91EVIp2JIeYi3teNIwAsm6aJtc8h4LnCMyhnqW0cjyCZtp52idG8Rd6uwXBm80eTwez8uQPM+4//4vcfjwVdx666uvyDWuv/44P/VTH+Cd7/y3HD9+E2H48q4d9Gu/9mskScJv//Zvj4tl3HDDDXz4wx9+iSWbwJaGxehlw2qYL6GdwQ5DfQICqoREhEQqQMzeGH4Z78TXdKnQmKESWNNNFBpJMnS+/46sQpMoM1Z4tiKDcPE5g2G5ZbPXU0XpHRopypfSZZwI2i2g9nhxJr+fRF9CbVGA7XUwebwTMjbc+VaFvuhcVdjSG0SZDwFgAoXo4bHOEOYdlDgC68Y7+MMvJ/pHqVwPCWwGIhSYUqZLdLjM7aojsru6ZVXvlHKvs4B2B7iUiqbVyFgJhsFqao98ZT+nglmaano8PgDGFcwk23Td+kXt7kh3KXl3e7F2fe/K/kQj78jE+DSDHa+SNTlFPBi3qvIQsioDtdtAtSYjz0vl37oIpaCqmmhnUVIQa4t1lm2bkLiCYujZGHmPRh6P2WAeJWWOTpQWY4MrJcdQVrJrh5Y0qpBWy7woN/JSTcxbIhrnGji5fDXSXp4RthLqe2xRK7JLoRexO2GBqvTADrceiLVFrKAoDZhqbQHFjqEIUlYhFNAuZ9vEnE/bpbdxct6GXqa8KO9JjaIZTA/X145cwJ51owiS8pyeJGSSD83zifXdz4Ze56FxJY6Wu0Q44xCHwxQhQWbQemf82lYI+wlmaXGX3PWifC9cT2LaMtjVlgKqhSEylkRSYklomJhoj0EZuBD7bZ5r/xy80eTxeDwvQx588GvE8YC3vvX/GivYV4IgCDh+/Cbe9ra7mZ8/dMWu82LwyCOP8NGPfpRbb72VICiV9Le//e1sb29/x23dd999nDhxgsXFxW9/8HeADMPYRoZGWZl49861ArJckxa2NIb2Krt7lHVByI0hN8nOZ8Wkl6OkqeaHpwvTwQFm1AGC4jK75pN5SjKZtzFU6svXCO14jSa+nfTVCILD4mzAXsV8r8EEUHXVPZ8Md7UV9KKdro/yVLQpPT7GFuXO/K4m5aJ2RthiZ6zCbHdeSsBOBS/nZPdwS6n0XspgKq8yOvPyGxB11RxKVx5r2JkDHQTkYhAqiFTLiMSJY2En/EurHUPUisW4nGZWR4kdhxN+OwrjKMyonYnwvz39C1WIwlG4i710AC7NiOK8zOUqLGEmKCfEepRfNnHNfNJjUnqjlBi0OCxlqKW5aKNgJKHb8aZIaRgEotFOKOyOJwXKNbN3fe5qSweEVMf+tYqqXuw9Gx07tNkMFmNlorLiZdqmLOIxNvKVIZi41YbRiWQyIBfHKE2nTFUcecTKcXNSGkfFcJ1kWu3K77oUMvlf53DOlqGzDpwrcxqDPcaHfXqNorMGwLprkxaDXbmEe2nJAIVQ66eItMYyOTdd5tMxOU4Rylri4bMkc5c2UidnXePK8GEm1roT4rOP7dv3fw7eaPJ4PJ6XGVtbmzz22MO86lWv5siRq15qcV42VCoVNjc3d33WarW+Y6MzSRL+9//+38zNzX37g79TOq3hPyaUYHexgluXcue4MHJZxWzEMDVqF7sTv3cXkhgn4YtD71GOR46boW1XKluXCVibZFK12hs+Y4dFKybPLHMl9hhcw3nSotk7YxqFVZDuOUc7QazBOTORuwWZcrvOniQgICQaK2KTBkZdNZjWc0TshKPJnh37cZ8uxT5LTWSvQj4qT727rb0BgtbVwVZQQzlHc6Zl97xqceg4w11iPZU5VxfL7HbNix5e/2JFWYkhsALiykpme9oe9UMAPTRegqwMN7yorV3GWW3oUdtNXc3uanuSeMKIF0CpkdyyE6ZGOUeBsQSjcLq4ACe78rOm9IGxjDXdYDoo73kn4WSE3UVSTPoj5RJja62ZCHaEQOUofbFBpkSGc/A8Qs4kxEn1+RxJKDvhf84UOFMaqqYIaKgyJLP0cpWtFU6Ic4fejkEczhYYm1/kMS3lUFR7KVGcE2xsAhYkwe0pSIJJaSdm591QboZYys0Kcc3LSH6pG0ioqYnw9Cy7xDEvDN5o8ng8npcRIsJXvvL3VCpV3vjGN7/U4rys+Jmf+Rl+7Md+jI985CO0Wi3+5//8n/zkT/4kH/jAB76jdn77t3+b97znPTSbl/th/6cjqgw1KvOFpHxZKrCftn2REjw81GAvCpkbsdcgGSnipRJ0OS+I0A8n1TdVvodGdpRfZ3PCQXqRkmguEdYHpTJWnjj5/eXUvvIaTZkqQwwv/gpjLj73UrvuZYG9i71gI6aD2bHyPnl+ODSW6nr/uR/VFbxcHy6FG3rR9hrx+xnFI3nUZYyeXVeU/VW+KM4v/+XE/BRyCe/j+BoXK/gjb0A7cmVR+Mm8molclx159/R/nzG7ZO7L5bxBwFQwu+szAbSbuEesZUrP49ROG3KJyxsDqHBYe2S39/MiAynOx4asEKBRNNQMimDcbasuvk9LQ9eWhULGbRfDoFfB7um8SIPnq9bXdRPFZEjssCAIBVVdu2hgR/eAGn5eZH1QisLujFMqo0p8VcLcUEl21pNSOVrvzpdTZncInpXdr8tQ49ywCev0eXAFAy+80eTxeDwvJ06dOsnS0gXe+MY3U683vv0JnjE/+ZM/ye/8zu8wNTXF3XffTaPR4Ld+67d43/ve97zbOHnyJPfff/93bGg9b5Rmq2cZKQrhpcLjnicOGXoFLu0LGqEJycdKcalI5cNSBpOUIYPqIo+IiEZPKirF5ZXvSc9FRdXQ6D05GZfPnym/36cjQ5Tee/7FJ+VSXNag1HsqrslQ6Tc4zHCcJkPfLimmuvia7tsYLTvslX9HzvAy+Rr7hds5oJAKSH2/kQUg0peT8dIDf5EeOwoNnLzS8CBRUIjZ6Y7IOE9vl6ardsymy03381Ofvz3i3LDEyChPZ9T+hLfrEq5aBYjSoMuCFZPdvWj2Jo0yQqqqTqQqVNTI2HLDKo0Xo4vDHObgrpykiBqz6sjwOjvzFanLF4S5FOHQMNQqGHvQ9obb7Yo8FdnXgM3k0vf9aGpttHujY29bCrNrg6Inu5PEBHAToapFJgS7vJpDD+tW97Iy/nN5eWf1ejwez/cQeZ7z1a9+iUOHDvOqV12Z4g//kllbW+PIkSP8h//wHy75+bdDRPjIRz7Chz70IaLo8onhU1NVwnB/pfpyZPUqIkIwoURqkdL7oIYJLAq0LhXTkcqkhrvP478mKvKqvACtUE6NE8WVmtzRVyglOJmsgHYpU2vUaDBUeASNQ6jQ1LVL5iBdikhXh/+vMMOBMiejTPJA6VIqBSAKJw6tFFpTHuRc2XelJocDpcriGZVamW+U7wlbVMPjJ/sS6crEbvtQANg1kpPnG1wpp9oxFnLMToGJiQsoNSqWvdO+SG2nYMHlUBqldNk3GbYpAqos+qC1ZmgHj8UehTMqrUuP02heS82eAkuERquwXAejgRsdAzg1UmErO2GQqhxnocwjqoYBSmtwDpRC3N4xHlY1dIqGnhlfQOHQLi9N7rLRseE0MWI7azgIxv0ardedparIKWAUXjZR1W9nQNQw787tjBe7Dd3J65aenPKTQhwi9XK4pWzKakWoJiZ92IDWCq2D0vhQwwGbaL8MDVRDT+zFIjL83g1P3Vk/w3tLHFVVHVbN3PE4OyU0dJWKaoy9XIGKaOhh4Q+lh8fvrOnxpZUad2Mko1Y7x4x7MJwjUYzXY5ZQhhAOvWLl0E+cu2eIYHQ/a5RWiHZlyOjwnCAIkUCBHd13dujBmpR5sv3Rm7pKrJsnitao6+nxQ00NF8vc3JXZUPRGk8fj8bxMeOihf2Qw6PNv/s27S2XA8x1x5513XhT6pLVmamqKBx544Nue/+d//ufcdNNN3H777fse1+//02Pq4zjHimAdu4JnZFJTl1JvdUxs2u/x1kzu4sqwipdMnL+7TLUMc4gUO8rWxew+PqSiVBluxaWLNlyyjYtC4oZhfVK+JFWclBXZXFm8wOIIpNTTnBPGGfF6UpphuzLqm+DcbgMwk2KifEPZl52d/vKTUcjdpfxymRSlSn+JBJZRjs9k38pd+Z2/jQOtZFikYJ8wOimr9Y1yzkZtioQ418QF8Z7t/4llMcxBCUbPBpk4YNj10ijQu86HiXfv2GkkGM6pk/G8ynBcxY1eTuzYm7okAoWJQIRIReMLTEZCSlYFN8xbwY1D9Sa9PYnWTO0d5tH54zHeCdlSlxkQZ/Jd90FNNSlG7zMbH+6GVRINBIyN2l2vgdozl6PPnROcK5jWBxGyXQVYxmtTLuGbmZyzkawT1xivJxOWoX67bbVyrkRRlxl2/MOTIY9VIGbkm/n/2XvzKEmO6t7/cyMiM6uqu3qZ0WyaGe0CwSDEIrRYC0JisQQGgQ02/sF7sjE/8wzv2cbYIH5Gx4jfs3U45x2wOfiBjTE8QBizvAeW8A/EILQLIYOQRtKgEZJGGmmmZ+m9u5bMiPj9kVlrV3VX9/RokFTfc2a6qzIz4kZkZPa9ce/93la5F8rYjBqVepPLjbRcQGoMOxrMlOW41NJ+p1dAbA1eKng8VefIOUuN4TCxCZLlwQHYJIG2PLwW2aF+bv0759NNCw9lG6e084ljcrI7q18vWLeu2PH7noyma665hssuu4wXv/jFhyVEH3300UcfK8PExCF+/vP/4LTTtrFx47FHW5xnJHbu3NnyeWpqim9+85s95yZt376dHTt2cOONNwIwPj7Ob/3Wb/HJT36Sc845Z1VkjJ2nkrgFeR3OqS7BZAvRHuAWY1HiFihfK0cnD1Rv6Grqe8G1qabt6p2ic6hiu69hJVDoerhSNwi6LfeqF/Qu2YheS4WnMiKCRQyrJnQ6q6hHqeJx4smRJ1ANA3LGLG7cajeIywyexEoLZXa5munSArh56HQ/fJOLsxsyQyk1wDqRSixsoRaW6Jby1KUt9HBO7czVCvQ7HHSR1+XrJBbpWbLI2b2OeaVPirT8ACjTmSmxGRWfgARoI3iBcmm2cbCt5tmSd6LDCb7ta+stpaXFWjF6MppEhA984AMkScJll13GZZddxgtf+MIjJ1UfffTRRx91eO+5+eYfEgQB55574dEW51mD4eFhfv/3f583v/nN/PZv//aS5//jP/5jy+eLL76Y//W//hdbtmxZNZmmK5Y5X0rDVlrgF5ApLOSQ6wyPp+IsnWosQaoI9+opar9uuVA2BrUwtNFBGkrmHGHbMRFFEBVwSdxQ05t05wVidJkW3xy61oZILZ0PUtTDiyp24n2q8EsnU6A3bAg2Z0GXveayLe5xbiescNKJiy71+tRNVi/1EKzm2U3vt4A3Wb8rz7dbDIHzrW7WJrQzB2oxXe9pb3j6jSbTvP6zcLJuxluvI+tGftGh9x7PS9H6jvFNdaPSz0uhShXBIJKuPduc3+UdZZ/Agic+wwL7e2F/NlkPQb7+GDjnKScrffqWRk+z98EPfpAPfvCD7Ny5k+3bt/OhD32ISqXCZZddxhve8AZOPvnkIyZgH3300cdzHY88sos9ex7nggsuplDokz+sFGNjYy2fnXPs3LmTQ4cOHSWJFsIDczqh6h35Jc5VXTTLdPe1LZyI9vpGDbQaTL0rkSsxtJZs02iqcapo1SEKpTSWRqJ5u1q0IG+kU9sedPfouMOGqTaMiNTATfOQWrCEI0aQrPRqioVTnIUzKsErwSxit3QqBLwUrItBJyhlCbRaWIfHC843GOhEB3SxxVeMboZCmsNXy9dpICeNd6KjO1VB52lv9cs6FL6F5MNAyx1ZHqSDvMuRLq8GF4apdSBLCVUbgx9CXgrEXcgZesWAHqLCNLWixTo5DGIao4gjQ5CFAFZdktbpsjWjqe3O9Tzp7SG/Rw7LMjlPO+00isUiURRx7bXXcu2113LDDTewfv16PvrRj7J169YjJWcfffTRx3MS1WqVW2/9EWvXruNFLzrjaIvzjEYtp6kW16+UYv369bz//e9fUXs//OEPV1M8AKquzGpo9YvZM87nSHMejgKW0GiSQGGqDudrRkcDzq6Cdv60OxaWr8JNha5uW3US12mwxqASu4DuuqVn6WQ0tcrTzMYngM9ZsKmyv5iCWDNNvMvRajX1MsHNgZedqbY7QzqG5/XiJeyExMd05BN/GuC8Ry3Fje09tLHqeZ/OtluCZVKLwUhA4Lt4cZaEX/TjiiAOaxpGk8NjgoCkFk63kvi8JqT7Ib6NSGJ10ZPRND4+zne/+12uu+46HnroIV71qlfxkY98hPPPP58gCLj++uv54z/+Y771rW8dMUH76KOPPp6LuOuu25idneG1r33900r+4L3H7n6M+Kd3kzz0C/zkBAN/+ufoZ3Ax3facpl9FzPuaMdNdIRJ3uOEnq60o9pDHkiEvA3XyiI6wK9vJrjGsVWJHFPQuz5HHkZjrFO0+lcXV6N4QEgDxIu14vHdNBYqF0AlVtYz5bjJUbCcvTLsx4Tv+2nxBT93apnBClxGeSLZ2jXRnwzyasN62bB0sFmIKoDw4aXgZFy820B2dCyAfBgTQMahGuxXXXtz48FZv4NL7uaQxehjoyWi6+OKL+bVf+zXe+c53cvHFF5PPtwYNvP71r+eb3/zmERGwjz766OO5irGxvdx778940YvOYNOmzU9Ln278EOVvf4vKDd/DPvE4ADK6BnPKqSnP9TMQn/nMZ5Y85z3vec/TIMnS6CnPfTX6eXq6WTZ8E/1zO7QJsUnncKPGeITE+izIbWW076uFTnkqq2rOdZgm64YWftmEBEfYZV5G9DFp3tuiiVtgkxjwLCiHtQhqynuaE+NYLBcrUUJnE2aZZqG0s8V1H9iwXktcOy4aFivgu0h/NVifoER3JLVYQXN11GZgKrAdjxsvVKVpnlbDkl5UouVd7U0V6gadQ46Ip+8oG00333wzu3fv5vTT07ogc3Nz7Nq1i5e85CX1cz7/+c8fGQn76KOPPp6DsNZy443fp1AY4JxzLjji/SWPPkLpa9dS+f6/Q5IQvPRl5N72dsKzzkEf+/QYbEcKu3fvPtoi9AznUsrpxXFkQ4qOrp+mE0VWakkqHfRgNC0uu8c36kKtKjppp50kWXx2p4KVW80pO/TSoWrdivo2w3XTtlMObkQiUL2xTtYvoxYOuLjqaYP8KnFMrGwli5IV2UwrwiLiDau15MjXjbnm0VgBvci1tdpLvXqanJhFCyRnrfbU1kJ09445V4AeWPh6Qa0HHR05r2FPRtPXv/51vvKVr/Dd736XXC5HuVzmgx/8IG9961v5gz/4gyWvv+OOO/j4xz/O/Pw8xx57LH/zN3/Dxo2dQzx27tzJW97yFv75n/+Zs88+e3mj6aOPPvp4luCee+7m0KGDXHrpm4ii7nkLhwu79ynm//F/UrnhexBG5F7/RvJvezt663FHrM+nG3/zN3+z6PEvfOELT48gvUAppAdSg2c6EqMwXViu2msZee+y3I7uqfwpUrXSOUc3+rWW+jttODxjcXWsMHdYRHDLL73pUDST2XuyGmDOE1tLp1skYrOCp0J73a2VwEtr6k4aatmhUmqv7fV4L9K6WIchvwjiU0IWl9Ux6iTNYqiRqcQd2DRCFbVwSNSYA2uGkLW9/F3obXy9zdlhPB1d7K2UoGZ1jKbACQULhY1rVqW9TujZaPrOd75DLpfuYKxdu5Zvfetb/OZv/uaSRtP8/Dzvf//7+dznPse2bdv4p3/6J/7qr/6qY7iEc46/+qu/Yt26dSsYSh999NHHswOTk+P85Cd3cPLJp3LSSacckT7czAylL3+B0je+BiLk33kF+be+HTU6ekT6+1XA7OwsX/7yl3niiScyxTqNnLjjjju44oorjq5wGWo60uIqjEcyFquVKq5LqUiJ0ZjDYMrqhjoPmeqVVWx5WNVopF8BJC5upahetCpVVihWGVauiPp6SpH1C9OLAJSqIqqKiJDYzt4mpxXKthOE9yzBCq5KUXHlBjFED89FOpttfhBlwFmUBLj2Cr5NcLkQU84K6Ca5elHarPMlek2POxRKeSxuwai7swD2PquBWs0Nt5XfFxMo9Lo8yd6l5mV5iCRP0lRfLXQgcuTCcnvytcVxvIDmNggCKpWlq57feeedbN26lW3btgHwO7/zO9x6663Mzs4uOPerX/0qp512Gscd9+zZ4eyjjz76WA6stXz/+9/FmIALLrh41dv3cUzpG19j4u1vofTVLxNd/BpGr/0GA//3Hz2rDSaAD3zgA9x1111s3LiRm266ifXr1/P444/z6U9/+miLVoe4zBha4s+zJAm5qkMSiyTdPFOCUsv3PgDLjl/rtR/bMz917wnirkXh7LV2Ve+I7OqaYZ367rWPkALedZ7rOjXDIk3Frtqm3INp+iha0Cb9lwsav7f+S71MAEoa4ZIe3/DkLYM92q9i4n7v66uBTs+aCvLIUjmcqr3Y7MLzO41M2sbrViVX9PA9fm6J4s7WDq6s4Wy8opby5S5vHRgMa8z6FhKPUOUOy3m4dJ894NWvfjXvfOc7ed3rXsfQ0BATExNcd911vPGNb1zy2scee6yFinxgYICRkREef/zxlgK5Bw4c4Etf+hL/+q//ynvf+94VDKWPPvro45mPH//4Vg4cGOPSS9/IwMAK/0h1gPee6o9+yNw//D1uzxMELzuTgff+MeZ5z1+1Pn7V8cgjj/D9738fgOuvv54//dM/5W1vexsf//jHOeuss46ydCmsyejQlzCaXC4idCEVY3HOQrlVWfSAVQHoAFbChJXpL7VirauFnvSZjqFZS/neGmd4FL5bwcwmOBFUDxpWwQqVxRJIlgnbITSx291uZgILJCBEiLuendGAe0g9TUJaOLR3j17zdETWM9uD8Rw4qKpa8VuHRi1L//VKlqiUvATb3gqhvWTVtBblCly0Dec7+8UcnqqbQ1BEqq3imkj9QVjcM7qcBy9tSTqIaxwkPdhlS3n4vA8QrHYYAAAgAElEQVRYiXdYB03eruWwLC6BsAvVfKR7z7VbLnoymq688kq+/e1vc/PNNzM5OcnIyAjvete7uOyyy5a8tlQqLYjHj6KI+fnWGhF//dd/zR/90R8xNLQ480sfffTRx7MVjzyyi5/97G62bTuDk046ddXaje+9h7m//zuS+3egTzqZoY9/guCcX1uw4/lsh1KK+fn5euREuVxm8+bN3H///UdZsgYaKkkP90bq/y0/B6THW5+3wrxpb/dwwl96k/FwgvdS5a4H9JjE1J7E3p4HlPWKRi/w4jRD6QDnErzWtCcLdRNDtez+q8VP7tCaKFmSkbFldJ207kUQeTCuMZFLlA9agG5UGb2e244wcfRgLwM1IgWhqEe7+6cOw21R8iWM72A0kTJBehu3DEqhWvgvVvJ2jtzyDHznLeoIhrOZaBCtG2s4T9hiiPY6RicGj0I3FevVHUwYExbQwVJlwVeOnv32b3rTm3jTm9607A4KhcKCML5yuczAQMMSvOWWW5icnOzJc9VHH3308WzE+PghfvCD/4/16zdy/vkXrUqbya6HmP/nf6R6y02oY9Yx+KG/JPr11yN6kT+Stoo5sAOz/+eYyV+iJx9FTT+OJCWmf/0fSDa+bFVkOxr4jd/4DV772tfyox/9iLPOOov3vOc9nHjiiUeUaGO5qO326mUqMk4JyvZOca2X0CwbVXg6YeG32ktHc0H7lOmrLqcHvYSm5H0r21bD09WbipUW712amlxMANXO5y0fi/krGn2Cgw5hUO0cAp60+Gpr/aCMRa2LTjwga6iKYrHQxk6eE+OlQbfd9cojh1rPA4lQalL4tRdipG6i95LLE1qHdhArcEahupCNpBAiicipArMtq7dp7XW99PBC6kQU7RlfkVetmWjN9alkKXu2sTZW1zu8uqsgt3aYZMYSl2davvcoZBHKRCcap0LEWpS3aAyDerhxvVYNxsWjXafp3//93/nkJz/J3r1768mz3ntEhB07dix67UknncS//du/1T+Pj48zNTXF8ccfX//uhhtu4IEHHuC8884DYGpqiv/6X/8rH/7wh7n88suXPag++uijj2cS5ubmuP76/40xhksvfSPGrDAPJUN878+Z/9IXiO+8DSkMUHj3e8i/9e1IvsMOnPfogw8Q7d5O+PiPMPt/jth0o8sFg9iRk0iO2YYb3IQdembnm773ve/loosuwhjDhz/8Yb74xS9y6NAhPvWpTx1t0erQWmOckKhejaaV7YQbFZJ0VFJa+03rqLSYGisumAmkO/dL6DQ281YoUkNM69TAU0phghxJXF5wzXLVJKUMThu6GVeLY2VK2fKvWt4VRbWGaTe/6Dnt906hEG/T+XAJGCERzcZK7yGdi0l5OOF0JvFgVq4AO6MXNZqUaAb0UnmcC9e6R0BMfdwdJfSLHCMN63OeFkuo27nWaJJIE5QXI/c4ekUCFoNqe49pY7DS5JUEEIXDoH1WcFgUfgHne+v4ch28d41Oj6DnrJeTrrnmGq688kq2bdu27Ir0Z599Nvv27ePuu+/mzDPP5Etf+hKvetWrWoglrr76aq6++ur653e+8528733v61OO99FHH896VKsVrrvuW8zPz3H55b/N4GBxRe24mRkqP/geleu/Q/KLncjwCIV3/xdyb/4tVLGtzXiecM+thI9tJ9y9HT23L/16/RmUTr+CeOPLSDa8FDew6Yju2j3d+LM/+zMuvfRSTj31VHK5HH/4h394tEVaAGMMQ4lmPOyutLrA4EyRCgPEqoSuTi27H5epz0KaY6O7KJdBmy5WM6F8Zj7V0IufJUVvyp0IuNp2eVNejTZBR6NJZXki3i9dp+iZjLSuTXdDYCkCka6quSi0iUA5sPaw6NeXb1RLh3ya3iTo7FXpXXqtIsp2jik7T16NopRuI6ZY2JZHcKFpUaC7eXc8DSbBdgROsE36fe3yWvhn6pc0pC6U3t/Dh3PvVhMmHEAkLR8wnDdMQEtIcWwdgYEoP8xsJcZ7MK7akvPVDYe1cXMY6MloGhoa4td//ddX1EEul+MTn/gEV199NaVSieOOO45rrrmGsbEx3vWud3HdddetqN0++uijDwBnLXGlRFwu4ZKEIJfHRDlMGP1q5ex4j5QOoef2oub2I6VDVMuzXHfvFONzjstfkOf4/d/DTxTwuVFcbhSXPwY3sB5M5101NzlJ9c7bqd5xK9Vbb4FqBX3yKQz8yQfIvf6NSFYmAhtj9t9DuOdWgiduJRj7KeJiXDBIfNyFzB3/aqrHvwpfeHaXezj99NP54he/yIc//GFe+cpXcumll3LBBRcQBEeuGOJy4cqeWoBVN7XA1zcv1bLomYMsbKlze50V8W5FKVuNJo8SjVIhznb23CgTZgWAluPZyWiZuxSrbE6fcaFGyjHeG341VMYO6DiVjvQ+djiiDdYHaN/sYeh8r7xRuDhHJHTMz3E+yfKjWnvqKNIyXpulkTxmvtHjSt64ohROFM2Se2VwCjqPZiHajfjmUSoT4q3t4L2AcmAZt4eA7F3Z5qXwuI7PgDMahdSLyHaVSy00pgTVFmqXhdZ18F05lRlNy/hbFjqh3JbXpFGdvX7aLEHCsRgszZ7pBQVym2SuO1y6xBh6wKtwGe+HboHDckT3+Xoymt72trdx7bXX8pa3vKVeq2k5OPvss/nOd76z4PtuBtOXvvSlZffRRx99PPvhvWd8z2M89cDPGfvlTib27KY0PdnxXFGa3GCR3NAw+eIwueIw+aHsZ9vnaHBo2V707kI61MxT6IldmIld2c+H0eMPoSoNj8Aceb7F5YyxjrdyPS944Jddm3TRMLawgWqyltJ4RHnMUX5imvjxA+A9amSY/MW/RuHi8wm2jKJLB1APfiHt+9BOzPgvkKSMR0jWnU7pjD+guvWVxMeeBbrHrOlnAa644gquuOIKxsfHufHGG/n617/OVVddxfnnn88111xztMUDqCftGy/ETQpG8251y0bsMhLVC4nCKWHGrLz+Ujd9pOv3mWUjCCiNslVQS6856zLzQKSFQa7W14JRZ94oLwo6KMe9Ct2Z5GFxpNes3C+znCNL7bAfdvhkS1tLw3Vj1+sggpV2AzBDGxW1kBnyGVHDYhsD7QZJ2ZUYoDnkLjN6RBY8Kk404IhzAUGXyDfn3YL8QhumqvOw5Am9cGiJEM/uZBetR1yv63YJ5K2Qs8Jk2Ewr0zpRoROqyndlLmzckUW4/VQF79KoMY/CStBqNLW1t5pobk+pANcUanwkt0p7Mpo++9nPMjk5ycc+9jF0lkDca05TH3300cfhojI3y67bf8iu229k5kAaSjayaSvHvuDFDB6znjBXwORyKG1IKmXicolqaZ7yzDTlmSlKM1NM7XuK0swULunw11EEE0YEUY4gX0h/5nKYKE+QyxG0/MyTHx5lYHiYYlBmsLqXYOoRzPhD6ImHMRMPI0kjr8Dl1pCsOZXKKb+BHT0FW9zCuBvg/9z+ALPzJS591cWsGfld9o0fxE0cxB/ajz+0Dz9+AD9xCHvwIHb/BMmhObxN69uJ9uRGqwxvqzB4bIXc6FOIPAg//Qr8tDEsl19LsvYFlLa9g3jTWcSbz8Xnnt21mHrBmjVrOO+88yiXy8RxzE033XS0Raqj2T5QJsQlqULmTOcQnxo0Ct9V2W+oQJEpMMNMl/OWQBAgiUX5hb6OrkaTVFBmuN6/arrQZfvf3f1qvsV7sCh8ZymSjN5blMFn1OuBE2zbHonxkuVa9EbnAGS5Fw5rQlRSaTraWWZrW9sXUVjlUd10ZdWU3A5pu/WmF8opKsQotagK387ut1LzqnmUia/SSZ2MVkzVLrgooCoaKsst0uuYshPk1Uj9czdUSJjzkyBgpffNI1+rzyTSNRzSqCC7d9KDl0ia/m//Nvtd6ZTspc3AqeeitVy30DfmjYamYtW9kyQutoHQg9eyCWFhCErtxCTLaaHzuV5p8BabM1RNsFwCyGWhJ6Ppa1/72pGToI8++uijC+JKmQe2X8f9268nqZTZcMoLeNFr3siW019Gvji8dANt8N4Tl0uUp1NDqjwzRWl6ivLsFHG5RFwuE1dKJPOzJPNTzE/sS0P/KjFxnNBJZxU8g6bCYM4zMDBMYfgScqMbyW84nmjT88kNbyScmoY9e+DRvewev4dbQo2yjot+8hOif/kXHjeaqtFUsn9Vo6kEhmouopKLqBy7meqxPs1DybZLw3yewuAAhVzISFDgmE3rWLdpA8ObtuAHNuAK6/DR8ufo2YwHH3yQ7du3s337dvbv388ll1zCFVdcwbnnnnu0RWugidnQKIWyqdnQVXU0IcQQoEmwCxi5mlFXM5QhMaCr7bvCi2dDBKLx2KyGVPt53XJlfPdmO+QuWBVhSFDa4GyctSwYFM4kuCUKzvgm4mYvKc23woNr+F+MZwEFhpCGifXmZMr24JXGt70UFp1BgWohqN9M0QanfQfWQ40TaSnZ2+g1hVMB2tp6WJqQ5nWJClGStBAR+MVkWiEi7ynLQn9JM+tie0meyCmSrnpxo62QlM3SdWH5rBmrvaH7eplyM4QqTvORmqRoFlubEOwirG52oYy9md69Qwc5MJJ6uCq+zZtT62nxO+yV6oGBr+2aHs/3CCZch02mFz8vNPhSW4M9esoFCIsbiKbGqPiZulk472aANelJUUgchUc0OLcno2nz5s1MTU3xox/9iJmZGd7xjncwNjbGhg0bjqBoffTRx3MVzjkevv2H3HP9NyjPTHHcGWdxxmVvYXTz8UtfvAhEhDBfIMwXGB4toidK6NwkJngopdZO9qBLe1AyBQOk/0hDflx+HXF+A+VoPTMyyowrMu0GmIlzzFZgbmqa/VMTzD96iOShncBO4Hv1vr0oquuOpbp2I7o0R+7JX3LXaACjJ3aUMxocIj80Qr44zJosjFAbA5LuI1bmZylNTTI/Nc6uXU/ywH0PAxANFtl6+pkcd8aZbHr+6ehfoXydo413v/vdvOY1r+Ev/uIvOPvss1cvJHM1IQI6VQmE1CsSeKHSEoeU/q4GRqB6oOkrIazRLTedrXTQkmvkBnL4uLUUSAqPkjRfo7NstfCvhgwtEq2ipticjyjAGlVkXB/KjKbOpokTjVKanJtgjjBjOVMo8ThsoyZNF61KKQOuVUHultPVkGx58B1kbzcujBgqTXewliuiO+QkKZPDJw1iDIXCBnmUnW8ZilcKJ7Ly4ldd0dmwG7CKnHOEVWEqdCAKcdJyukNTo5mu2c+pop7K2ng629ZaB2M17VtlIXeNS5xWy6oq1moACkaFuAV5NmnjxWCYEodIsxC7GFZ1tsjGfV/srSMqzTFySvCSrT6lu1svaul7WmOhTEJDkLEidiKtmPfzFGn8vei0VuNcgCnHLeGFVkWEKkcgZTylxYVZIRSKYQbJa8s+P1NfEWVXQkjZCJcOKDx89GQ03Xzzzfz5n/85Z555Jvfffz/veMc7+Nu//VuOO+443vOe9xxB8froo4/nGqbH9nLbVz7LgUd+wfqTn8+r3v1+1p30vJU36D1q5knMgXsxB+4jOHAfevwh9OxTjVNUiB05EVvcQrLxTGxxC664BVvcjBvchCusA9V4Xeayf+sA7xzJjvuo3nITlQd+hntyD4kSKiMjJKecTHXjRg4Vi/zCQ9U51ucijttwDOaUk1HaEA0WyQ1m+VWDQ+SKQ8vOsXLOMT32FAcfe5indt7H7p/dycN33EiQy3P8S8/hpLPOZ8PJp6U76c9h3HLLLb9a5CAdUBevTc6815Q6+pvaFEpPVvGkOQxM8Lk8xqf3vyXCq4Mu5rvMUesOeqfAmiMztz7TtbX2i9IC6Kz/oItVpKrzEBUxXuhkMnbCckcUOUVJd/NMLGwthzAUK2bMwjpBqa5t8V7j66pvW4sCVgX1nK7UC9h4zo0Sqi41HtAaEt9S0HS16vm051KFTmUesGYfzlJtpEhEsM7VjR2lFM41ndVlfTrRxDqPzubJK8MiPtq0tSiHr5To9CBYFaLdQqZGp0x9hoXU6+edo5vhNMc8wxnRhGszmbSSFu9w83NkA4NZIjoxkQBFdVEPZyERrNdUJH16TBcjq1NhZtdWU8xqRdglFNhi09GJonNFZVn2AzWq16HF4CUgybxSm4LNuPbCZkDsPAaO6Du+J6Ppr//6r/nGN77B1q1bufTSSwH4yEc+wm/+5m/2jaY++uhjVeCc48Ebv8s91/0r2oSc987/wklnXbDsF6CUxgn2/hiz/16C/fdiDtyLKk8A4EVj1zyP+NizKY8+j2TNqdg1z0vrD6neayP5OCb+6d1Ub/4RlVtvwo+PgzEEL38F+d/+XYKXvAx9/AlUqhXuuut2duz4OYODRV538evYsmX1ax0ppRjZtIWRTVs45dyLsHHMvofu57Gf3sFjP72Dh++4kYE1x3DSK87npLMuYHjDsasuwzMBv+oGE2T6hqQKoF5Sw1g8nK4ZNjJIeeFOes85QyzelfhGrke7hK2flx8849vMtXYoAbTFOGHYDeA50FGAwHkGqjWltVWOvFVEKmCsY+DeQrTTRdeQCyJKbbWSFqN0b6A2xlYGuCQKMWXbeQbq4Y2qQc/eBZJRVTjvmfGTDOu1WR91po5Gv5KGBypf7dQrAOXhPHNGYc0aCvUcuZp3yLcY3nEuIKi0BxvWL6kjdMJcjTHRNR1vakubzrlHoa9SbmK+0xiqotu8TDE0eVKUElQUYSvN3pEmgXp8X3gyr1CHpR1ayxRlIufqtYW8CEkuIGjz9jYMJt/8BZaEARlglhJOFOKbn9vW8Lzap6BOVZ5uogQ+nQlRhkLsWooIdxx77Zu2EMkFz3PHItzd5205b2CFJqcKJL5KTEIiloovY8SSeE/sqqQruG0z6GjnNHnv2bp1K9D4o5PP5+ux9X300Ucfh4OpfU9y25c/y8HHdrHl9Jdzzu+8i8Jwj4QFSYnwyTsI9txGsOdWgoP3AzUD6flUTnwtyboXk6w7neSYF3Sl714Kbn6O+M7bqdx8E/Gdt+Hn5pB8geCcc4kuvIjgnPNQg4MAWGu59757+MlP7qBarbBt24s599wLCcOnh6lOBwGbt72Ezdtewllv+z2euPduHrnrFnZ8/9vc973/wzHHn8xJZ13ACS8/l9zg0NMiUx+9IRxQVGBJKuMGOoTJrYbS0qYwLkVtrrJANlEB3tss50TQRte9Q2VfoluwaMWViLoUrGzXNKyOULbhARAk85i0ytjsEai1o1jILremqgnF0Cmp35gIqgupFYqJwirDFFUawZTgjaE4p5gJuhtJvs0wWgxpqGSm/OqaRyO7VgmJ1lBKurTT5MGQVH9LdNjCLhhZlRVSdmg1g8UQ6wJe5hYVzga6cz6KgHiPDVWLl0QpjVuC2nrxUMjOqLEd5hzkfUDNXFWy0KshbRl/YirUqMYb63t5MtTWfXO7gSiSuqdFZZPfOJ7kU7ICK+nT0Lw5Iipjf0xvGCVfZjaEEQZBx0CIE1NnIbRRgOqBK0MQRJssf85RsMJUW1yo9QksIMRY6MluPlLV+XruXfMMekCrKeCY1pbaPFBKlYHWPjWGQCJMNj8zdopZscyKZ8juJw9YPIlzRJJbEJIpq+U+7YCejKYTTzyRT33qU7z97W8HoFwuc+2113L88YeXX9BHH308t+Gs5YEfXs89138DE0ac/5/fx4ln/trSHgEbEz5xE9GubxM++n1UPIdXIfGmlzN39p9T3XweybptKzaQ6t2M7SP+8Z1Ubr2J+D9+AtUqMjJKeNElqaH08lcgUVQ/33vP7t2PctttP2JycoKtW4/nvPMuYu3aYxbp5cgiiHKph+kV5zM/NcGjd9/GI3fdyl1f/wI/+eaX2LztJZx81gVsedHL+vlPPWD79u383d/9HdVqlZGRET760Y/yvOcdRvhoG1L9yhMQYMU25bt0eyZaFZ/ICdVAFqcRruV7hBoS11OI1lJGU03hrZEp1BL1s9qWRE4xQzkNn+nQeqfQoNbe6xpRagy1O4SUSj1OqtLI8Wh+jywxxijMU8XSPJ9DsSZHxMyGY2DiiQXXBFncYMEGVJsC/oJsQhMXpyxqbShRIqC3DZQZVWJtzV8igtYBSZPXqp73wlKhdo0slNoVxVgBmkrdWeBaHB0eT6LzGLtYnkpjvhw+Xa9t0y5BAImrsxa2y+lVa+ihR/DGIS5rv+mCJNSYauPmaxXhXU2+tI3mQssFq4gzTbc6GKLLGpXYbKxNdaFEp6FosrR/txnNfh4FVHMBErt6pJ6TiGwgQBq2WMZh0PX1WXCKEfHM4vFKYY0GX8USUhqOSAYqLMFqTgubRRcUMFhiVBbCq9oIUXTDOdUVcc4QzTesNKdCcDXCllYERBhSSvLIDVOoFIhiMAKBssS+Sqc6XMN6DWFLbpXHqbClfRsZmK9m4YPpwBOJCGiphb3q6Mlo+uhHP8pVV13FBRdcgPeeM888kwsvvJCrr776yEnWRx99PKsxuXcPt3/5Mxzc/UuOO+MVnP3bv09+aGTRa9TMU+Qe+Aq5B76Knt+Pi0aonPomKidfRrzpbAgOz0jypRLxz39G9a47ie+6E7v7sbTfjZvIvektRBdehDn9jAUhCwBPPbWHu+66nSeffIKRkVFe//o3c/zxJ/5KhYQVhkfZdskb2HbJG5h4cje/vOtWHv3Jrey57z8IcnnWn/x81p98GutPfj4jm7YQFQaPtsirimq1yic+8QluuOEGrLXceOONfO5zn+OSSy7hxBNPXPL6sbExPvShD/HVr36VU045ha985StcddVV/Mu//MuqyVhbLXlvyDnDfKYtqSgPcaocShaG1L4zn+5AWwomxwQxKummRWUKtEjqMQCSnKArAH5JA6MZnoV1dJSew7lWoyDymoLzKNfIhmhc14mNr1XWGsJcwrxtrRcpKlWs8lEFMQF+GfVzJfPoKR1Cm3GgvSJAkQSDDGdhfVOhq8urENbYPJXCAHF1GnzrOGb9FCNNO+21oXjSe2U6Bit2oARXCdjsYqWQcIDFNOT6vDbXP8q8Qt4vYv5Ko9UZ2c8wQ5ilLGpRaITQCSXtEd8pkLDxeSBRzDZ54STzwsT5CMrzVFwJHw6SUwE2cjDXfZxDsWK+EJBkRpOKXD2FSZkAdIjkHcQNSyAt5FxjV2z1Q3p6L4zqTchEfp5BqXlZsmuVYH1T5pIojKtSCwssWMWchIgKkLol1OjUKo0zgkqymyGqJTTT5gIkcehqXG+/GUZJU/5XK0I0hURIMkNlKFaUtaZMcyxkd9jItGxE1DZgBnQaFRLqAap2lkRFaDvPkKzFyDCIJ2cThueHMRVwArE2WJ8wyb4F/SgvVH2ZCSoU0VR9hWZzxeUM8UBIVBWCoEBMSkahVA7wRzQKriejacOGDXz2s5+lVCoxMzPD2rVr6/Wa+uijjz6Wg6Ra5b7v/x/u/8G/EUQ5Lvi9/8YJLzunxbjw5TLx/feR7HoIt/cp/P7dyJ4HYXqcaTw+P4wvngJrtyBjA8iOn6GGfokUh1BDQ0hxqOn3IjJYRLTGWwtxjJ+fw+4fw42NYfc+hX34IZJf7MQ+vjsNpg8jgjNeQu4NbyI4+xz0CSd1NX727XuKH//4NvbseZxCYYALLngV27ad8Sv/jhzdfDxnvvl4Xvamt7PvFzt4/J67GPvlTp68/576OdHAIMV1myiMjLLuhFPZ9uo3HEWJDx9XXnklxWKRT33qU/zJn/wJACeccAJXXXVVT0XVjTH8j//xPzjllFMAePnLX84nPvGJVZVR6gaEIM1eiswL6MSQmAH0oikykuUXdVce0gpJaQhdqjAavNiWkKskNFBtfDaoNOzVu5a2vWgSnYd6bkv37WpFahZ4UXWTQRkD1cUUtqbwJSE1GiqTdYKIyAlaNAXfmvavrIPMKFRqHpHWHJJERUTaEoQRKogQV8YGBpIY5TxWhVSDIZA0hKoW3OVEsCpAjOBlDRKESByDj5YMtxOvsc3FfXtR0pvqRw34HFPK4aIA7aTrVCe6gFUJuUBgJrt6GcZwSebwTDPINmYXFw4nimICKE0V25o3J6oejqh0DnynPJ503ScqR0XmCZoCHrvNpzIhJvUr1NtRxjTix4yBKI8LBSZqI2hW+FuNjQX9iMuM4G7DztoyIYU4gtgzH4GTkKCJbS8vBcq0kkkoU8A5hzYRia9QHh5gjoB4Lkd5II+qzLRJ24BDoUNV9zx5UagmZ5xXBlyCiEKbLAqiqbRA80aLQgi9YiHVBQwnmvEuIabxQISZa9pgqFHPqxxi1mKVQ9t5BKFMiWk/hTF7GBtOiIDEQ+Q8eRno2L6IYL2l6stMdSDiqM2M0gFBWCAWDTolu8HOs6yFvkz0ZDR95CMf6XrsYx/72KoJ00cffSyE9x4/UcGPlfDjZfx0FcoWH2fhL4GCvEFGQmRtDrVlEMn3TmrwdGLP/T/jrn/9ArOH9nPSK87n5W95R73ekh0bo3rzjVTvvJ34np9BNf3jqiKFCauoHLBuM3ZwM14CfBzjx8bwu3bhZqahtATVqTGQdObeUsesQz/v+YQXXULwotMJXvJSJMp1PLeGsbG93HXX7Tz++GPk83nOO++VbNt2BsEzLMRNKcWxL3gxx77gxQCUZqY4+OgupvfvY/rAPmYO7GNq35PE5fIz3mi655572L59O0DdqH31q1/ds+Gzdu1aLrzwwvrnm2++mTPOOGOVpWwyRjqEl3oUJgjxlRjRBtGN9WaCPK6aKhlWAUGAzph4G1kHrZ6kZjIIF2p8khE6NCliShkSlXoUMEG6Exw3kR2IBoQk0CmlcVP7tfDCRphhp7DBhd6qxdBQtBvXRKIWqNrWaHQtqk8S2smefRMzmFZZSVBRxLkcQam2ky+AwqoQcZV6/x6FVVF7xgcAlY3rYHxfV4XfdSCdqZ0bOPBt+y1NJiN5DOJDSipe4NnyQFUsVhTGC3EDU3kAACAASURBVLHRuCiCmYVJL0oFUA9H7Dz3VhbnGIyDIkqE6kBAIEE6u7XQOVEkoaESDeClilMaMRG6g3E8TERMDpjtzNzY8SuhmQ6hmTxBEHxmLBNkxaHr7ILpz8CHhLaCW4RRVC2iIgdi6sZgXvLEylJiBi+tfzdqBZWbp1nQeBxaKRILLlCMr9uCP2jxrkKCw1KiSL5+kVaq/rvRDZm9CIOJYiazw8Xk8ckMgckBrYQkzRCp4v3CmkZKwGvFfHkSgtZ815pnzgXdNwRTxsKGB82nwXV4cXjlEBMjqopVBqHIGtmISIHBQgFbncEwiMFQySSLCqNU5icac9jeH9lGignrxaCPZGxHz56mZkxOTnLLLbfUmfT66KOP1YUvJ7jdM7hHZ3CPTcNck7I/GCAFA0HGGDMb4/eX4P7aH3mQjQXUCUXUKcPIuvxRDxE79MSj/PTbX2XvzvsY3nAsr/1vf8nG523De0/17rsof+vrVG+7BZxDH3c8A5ecRTG3k6K/DzUyQumMd1F60X/G57qH7/k4xs9M42Zm8NPT+Omp9PeZ6dSoqsZp/lEYIvk8av0G1LoNzOfWMF8JmDlYZn66SjLmkO/tw4SawkjI4JqIwTU5BtdEiBL27XuKu+/+Mbt3P0Iul+Pccy/g9NNf+owzlrohXxxm64vPPNpiHBGEYcjBgwc55phGyNTExMSKno877riDL37xi3zxi19ccGxwMMJ0q3W0BAYLISUEJaC14HQOcEim9LnIkMuHSDSMifJo8qR6n6CUShUILSRiUUGU2khVm45RGYQEkTRR3nlwJkTV6vwowUcpeYKzHi2pX0hpg480SuehnJ6rlEqf1yBCdA7l0mu99ehsh15EGAJEBpHAIMmBejiRZMfx2c9ayKESRCQL2xIQjyhBGcHmijgJEBegFGndH9IQO6UUWgtKS8OLoASlNcTpzrsjpKG5CqLSvkUJRiuCYD41AJUBsYhSaKVQWmW5Ws3XKpJiAVNJjyOgRSEiqPq9b5yf3SEQSRV3nd6rdCJSIgaAvBNKJjMKlE/vadaGNwrlFUoEpQTxQl4FlFWMKJjWFarKYWWAAV9bQ417gQiBA6tBaY0xhsR5JOtDRBCtUF7QRlCkc9opsV5pwQd5tJc0XFlrxKY5USq7da6QGqE2GIBqBSWCRigkinnj0nnUBm/yKJfOqYigFJjEoPKeqghpaFuqDdfWR32t1BJYlEZphVJpnyLpPRkchANzIc5ZhLjuiSpgKBlhfjiHmlHpvVEqI5AQUJmhbxcaVaKESOUIQoXWFu2ERCl8FNTLOsy5meyZFAZNHqdqSyH9znuF1iZbw4IJDDYEVRWs8iTKIl7QKl3TxguDOmTeaZSACTShj8ibEYwfT4kUPYS5Ag6PRje919LnQJTLHj9BxON9OpcejQpCBmKPEsFrhRNbJw+xpoBXGvHV9FlMJwGlsueuKYnIkq6b9Hg6NiWCCTRBaFDDhii3hyk2IomQF4sSjw8ULvZYHBWpUvLzmDCXzqcoREn6fEs6H1or5jYPEjCITDXeAUqna2xkpLDgvq0GejKa3ve+9y34bnx8nA996EOrLlAffTwX4b3Hj5Vwj03jHp3B782YiyKNOr6IOr6IbCogayJEd94Z81WLP1DCPTaD2z2DvXMMe8dY6n06bQT9glFkOOp47ZHC1L4n+fm/f4vH/uN2wsIgZ775HTz/la9DaU3lRz9k/vP/gH30EWR4hPzb30HxJWsZeuIrBPu/hh3YSOmlV1F64e9CsPQLUIIAWbMWtWbtoufNTlTYt2uKsYen2H/TDHG5UcVcBwoTpvObVCw2ywnxeNzgNJXhPczZQ4RBxFlnnccZZ7zsaWPE6+Pw8Xu/93tcfvnlXHLJJUxMTPDxj3+cG264gT/8wz9cVjs/+MEP+NjHPsZnPvOZeqheM2Zne60CtBCl2TlSYgSw1qd8DqLxzhPnAhKlsc5TDA02sTiX5tgoEpzzeA/eeryk5AqVMMSpNBAvVjmUm6eqIyJfTXNrHGgTpEp5HINOaakHnMmY5hISCXBhjjAIKZfKOA+iApTSaU6T93iX/iNJd5Qhfa/hPYYQi6TMb752jHrugfeeBIOVAJeRSNSuBRj0ES7xJFZRCQextgyuVtBS4b3DOYezqbFXzwtqNJESU2RhhQJYycaXyW58gHiFz+WxOsTMVRAVYp3Deo9zoPApV5v3eOeo5CJKuRz56dmsL58d82gP2iagBCdp9pLOBPLZmH3zPNT0zkxmj8c7sM6lHo3se+ccTnx6r50ncoayS42YOV/CekfgB3Cka8c633IvVOIAhzcelMEnMYhLvQE+bdd5j008c2sKOFXE76+FXaYQEZz1WOuxmRxOXCqTBDgfp2MIyvjqAN5l47WpLEJavBWX1VZSOSQp4126dpyDJExQVuF9SqxRJssic03rJlvvVgJiNMa6VK4woqoKeO+wiUvZ1bI5BY0oi4uzY4nDhoYyAaGDyGe1pVzNsdGhdpED6x1JnK639LlLx6RcGsRpfYIJciibx7oy4jUI9TlO14FkOWaeOLHpPLr0vvlamy6dY2vT9eAciPdEPmbQCZN4EhXhfRqCaK0H57FGmnJ70vdJ/RnFZ89F1geZ0eg8XqXHYhvX17QnSK8zgnKSvnN8er9d9nw05iZ996TCCp50vSaxJalaEE0yGFGZq1BJDjGg51BUKDlH4ibJSxmtw5QVMRjE2znwDp/NgavNiXUkHkrhEIGfyt4BHmfTMU1Odvey9YJ164odv19xDM/o6CiPPPLIigXqo4/nOvxcjHt8FvfoNO6xGSil3iTZkEefvQF1wlBqKPVIBSOhRjYPojYPwnmb8PMJbtck9sEJ7G37sLftQ44bRL9oLerUYcQcuUKnB3f/kh3f/w6P3/sTtAk4/bWXs+01v0GYL1C9605m/uHvSX6xE338CQxe+RGGTogZuPd/Yv7jQezQccxcdA3l094KenWMvPmpCk/smOCJ+8YZf3IOgMJwyJZto6zdOsjQuhzFtTnCgqnvznnvKc3EPPTATnbs/ClTc4fQScTAzEnkS5t4YiygvPMx1p80xIaThhjekO/5XvVxdPC2t72N0047je9973u85jWvoVAo8Ld/+7e88IUv7LmN22+/nf/+3/87n//85zn55JNXXUYRnan1TSE4QNUUcSpVjFR7aJIKEWkkt9gWXmCF02kuUnloEFUxONUofVskTxLExOEsTDXWb42s+xBziDTCBOtnSHt4VOsJeStU0s1+Qomo+ipxPkSXk7aGanDtTaRyeCGUhaqK1TmsT9DSYLwzoaFzxsxCeFH10D1Ic7xG1QCRypNoUGEecRkddXOdIFTHArtpuFYmmwQMx5r5OMZFJjWXpHl82W58NubKQI5Yykh1sdK9UPDdVbbmV48HEjw5NM0xTU7nUUx25Cl0auG71oYa5xpcdKPOUxKoSHfChJb1IL71u+bEqqYGXDSAcg5RDW7FWjrRaGwIlKKsksxrpdCJIIvRl4sguoCSJsVZa0CB02gb1D2eiE/Pj0Km5udYT0gz211cCPFlh+lwb3I6AkqNMbUHayrQRPXhShaWWQ8gFUh80pWGvzn8tLllXRhC5iZopYgASD0yVTOAUiG4abpBJPV2dYPDEvsyETk26Y3E+RzoMvv83q7XNEsOUB7K4acXztvk1hGsK5J7qvVpNQPHYCoH0zGasMM6bR2vE9UxnFMdbcrxv/zLv2wJX7DWsmvXLo499rlZILGPPlYCP5/g9szinpjFPzGLP5SFxOQ06oQh1IlF1AlFpLA6YV5SMOgzjkGfcQx+uop9YBx73zjJd3dDTqNfMIo6fS1q3eExztXgvWfvL3aw44bvsO8XOwjzA5z+uss57ZWvI18cxu55gqm/+3+I77gNtXETxQ+8n5FNY+QfvBr96F6S0VOYfvUnqZx6+bIKzXZDabrKngcmeGLHOAd3p8rm6LEFXvy6LWx+wWgabtflL3/6jtvJT396FxMT4wwNjXDRRa/htNNeSFKBA49OM/bINPt/OcPeh1Iq4qhgWH9SkfUnDbF2yyDFdTn0ETRM++gdY2Nj9d83bNjAf/pP/2nB8fYw9E4olUpceeWVfPrTnz4iBhNAVNzIxGDEukrr2rQ6osHJJYRa6ukjOlfEOI+tU1F7YhxBc+K7BFRzET4KMMkcCklDq2rn1JOOBKWDOhPwnJ9HUcW0UWQrhFEbMKl8lhlTU3bTIp95qxmUEKgQmEGq8Xi2z6+JRbL8CJuOyRjE6bp27cl0WQ95p3AdnlMnAWREFiIJKhQiFTLXrIctQ3fS64/Bz8xlLHWdE+BrzSU+ob22zIDRzGb3Iw6KREbVWSnai/5qNEo0UEWrNKwPl4aF+Vpdn8btyP4TCqmbpVWowgSUs9C/NkToRYncM+lSD1sTC9ucmW8aXeZdw2GAoodh79lbtxMUaIUayMN02+6+UWRFx+rtJzqH82U8qeE+5CLmlEIVR1DzFuKDWa81r1TTGvWpgVMthEQ9eHNb2CVFIAqQjIXQBobxEzeTyxgTB0LF/LxHVIxoi7c5Bt0AFaOYVV36klY1voBGSQGXEaJoNUtpwxZk8ilysWJEmYx8pTaznhlmWcNwS7MahfEewiilY5dSvZMES9ThefCi0TpIN13EpZsKRGi3UHYTDqCUp1purKXmIrWpLeVJtCOU9N5PBTEjXmO8wS3Jf57Jmg9Q0418ujBQ1FK8yAmYMiY4hLPDjG/dyJo9B4j1AIGdq8/QksjHBF638KH4pRf9itGTZrJx48aWz0opXvrSl/ZzmvroYxH4coLbM4d/YiY1lA5kRlKgkM0D6BeOoo4rIuuPvIdChkLMORvRZ2/APz6Lve8Q9t5D2J8dRDYW0KevQT1/FImWn4fhnePxe+9mx/e/zaHHHyE/NMLLL/+/eN75lxDk8vhymbnPfYbStV9CTEDxHW9m7fF7yT36YWRPleqWC5i94P+lesKr63kNK8X8dJU994+zZ8cEB59IQ2aGN+R50SWb2Xr6GoprFyd3KJdLPPjgDu677x5mZqZZu3Ydr33t6zn55OelORyALsCWbWvYsm1N2udUlf2PZEbUI9M8sSNNWlVaGFqXp3hMjoHRkMJIxMBoxMBwSH44JFhirr337C+P8cvphzlUOchMPI33HqMCRsNRNhQ2csLgiQyHi9O09wGvfOUrs53Vzn+ERYQHH3xwyXa2b9/O+Pg4H/jAB1q+//KXv9ySJ3U4WD+QZ/LE43GHKshMzSsjdN3aB7zJAdN4SfMdPJBIKyFD0RTrHpIwKyJb9AFVoBIMg5QbPpTAQKWhhtT09loKDsCQzeF1kJEFuLqMcc7gCQmqjZBaHxjIeAtCiShLSoagsSnznslBUqozwXmV5v2oyhyBGU6Z+TyM5kfYZz2ITgkwlIL5WQompkZG0TIvzb+3ukCy85tgNFIchMlUYat29CelqPgqUEjptWvKrM5D5ufySFprh9Sj5WpGYabAahSDNqSq03tUo4h2KBIVpAQVPmFOSimbXweDKB2Gb3JbpAhdW8UrIaNV704rHXihRqNjQ42zzfWLVKvxUT9Qa05Qg0Mo0+RtEZ0eLoY4XwRVpTKQh+lWbTZyQkYfgRIhF+iGodkp6X/Jgs8Ze0nNjdNhuCEGJwkiqVfLD04iWYHbwAT1sQqKAE3cNPdOTMtc54rrsPJ4fdwKjRaVmvICFTNEoATRlsAZtJJsVUn9fxMWsCNDLaIqFAYPJsAPDGPczILnX6RGY54ZgSrA69yC8TZvDFbCYQLmsIFmYDZjFFSCtHsZRSiNFNKixzbdJJgVS1GNssaOMOdnCMQRaE1RrSGf1WLSQYFKdRIrFquSdH6bJmzrSJ7dBzM9qJAnGJnFVFLuEKcVM5tCinupG01LkcOUw7UMil+wPqUHW2ulWHFOUx999NEK7z1+33ydvMHvm09fsEaQYwfQ521EbS0iGwuIXvxlcKQgIkiWI+VLCfbBCdx9h0hu2AM3PpnmT500lIYGDi2eq+Oc47H/uIP7vve/mdr3JMV1Gzn3d9/NSa+4AB0EeO+p3HQjc5/6BG5sH4WXn8iGFzxJLvk07vEBytveTulFV2DXnLri8cQVy6EnZhl7eJqxX04zuS/d6RzekOdFF29my7ZRhpbwpHnv2bv3SR58cAe7du3EWsumTZu58MJLeqqzVBgOOeGlx3DCS4/Be8/seIWJp+aY3DvP5N55Jp6a48kHJ7JciwZMqMgXQ/JDAbliQH4oxBdiHk4e4OfJXexwdzNlJ5ecg2MLm3nJmpdxwcaLeNkxZxJ0KKb5XMfOnTtXpZ03vOENvOENR55BsBBqZpvWXTW/uLGvTEglGME3heNI0/+ddmxNVIBSE51vi6bRZnxkGwYDOodlliSzblIWuMZOtkch4knyAclsDmPT9pPiEA/nx8hVDD7TilsVIkF0WKdYj3N5dDgMs2M0B3hFOgRbSe2z/DDE0/WjjZE2edea8j+VADrEhIXUd9H+XIdFfLIfq0Pw5azQ7UKkfqgsL6s5AkcPtMxFPV5OBBFFLhBspZIp3qnEtZKuaV6L1McReEUVUgp4pVvsomoxT1kPgjuEz82BMy2Kac2/Uht5JazggjGsDJLScoAzTQZtetcWKJ61ebRRAIMRanYeq0J0RqddzZjVasumFhFlQ4PXIYnLo3QVHw5AUq172+pM+Jlt002/VcNDUGrPSxEGVY7ZjIY6NoMI1dQA9q5DWwvf3XkMORsyOzCI3ayR6YMEKg2tNPkBKDmUGIyK6rV+IaXfl1ia41MprttKKTeBw/L/s/fmMbZdd73nZ6215zPWqbnurbqzfT2PsTOPjpMGkhDSRGlo3muEaEKEGpSnpEmHDnQQJEIJEaIlkAB1v8frRmLIowkJSQgBO3Nw7Dh2bF/7zmPNdeZz9rRW/7HPWFX3+saJsRPuV6qqU+fsvdbaa++z9++7fr/f90faGqwuaCuTBDc9YoaAUHd65DU7p+gYQ/bdxR4+a3OyTEf1ZLN7Nayc7QF8DnSLLsr4Y4e43dtoSQEpxCbEQoCQxL4zxkhDp0CatkiIx3uRAscY8trBENEV2Xhd4eEaG8ctU853WG1bSCSp0VhOMVtI6W6iVLmXh5b11bh5Dpfx87293qHOdYDhe6nyCXTCbn6+1J0gldtbhKrdwvgvcHje0aNHr2g4GGOueqXuGq7hRw2mFWdem+9uQi17oIi5IMtL2tcjSS/CMC3hW1h3TmPumMIst0mf2EKfrKFPZIaIKDvZ2OcC5IyPKDhQsDFoTn7zyzz2+f+Pxtoy5fm9vPI//gqLt92L0RB1Dcnxk4R//An0I9/CnRTsff0GuZmLRDP3Uj/6vxAe+nFwdq/RcDmE7YT6aof6Woeti202zzeprXQwJvPqTC7lueW+Pey58dmJUpqmrK4uc+LEMxw/foxWq4lt29xww83cfPNtTE5OP7c5FYLCZJYftXTLUJBCa0O3GdPeCmlVIzqNiE49plOPaNW7rJ3aIm0JpFbALLfwFm6WP44sJRRmPKYWiuw9PEllIU9sYraiTS62L3CycYLvbj3GA8tf5DPnP0XBLvCK2Vfz44tv5cbyzS+4auKLDWEY8pd/+Zc88sgj1Go1yuUyd999N+94xztevIIeMstJ+n5gvM5InkY/HG+8Td9R6H7xJ2nRj8+zJg/SyikKiaEkfeo9o/fZrq2hV8AghKRVDDC1KaS1sWNbrRQmHnpEbMumFExSG1CmnX3lrBJhjzR5JisTKnQMuHTzLrouQVlgUsqpjVDQtL0BOfB6XjYjFKm0Qdm0S0eh+cQVooKyfZMe8UscGzmIVMp2Snp5mGl+GhVvIS0P4wTQ7ZAoj1RakIbb7HlBYBQmBatHmABs1X89pISpZ5MKi12L6wiQ2uBrl8DAJVVF2RY6cGhHkiJg/DyWbyOizDhVbgEpHIpakNq7n1PtOqhWh1jlEUmDyC0RWzlI4pFsnowCaUsR60wC/tR0GZlG5HtODW3bvQLKuyMTwOi9thy0nxLmNKkjoJH5wiZUnraJCHMOufb40gAATgMIRsIax3roeUt7pNn3uKm1xFkamaetxwB9VSDVmXlsRHZfMHKcVioypT/HLRB2a+PzZaltBZYNMTHrYp2Ss4CwXExPsTLxd3qHjOMinTIwzJPb7nqLfZtE2xCBtH2kFeKIYKwpPZHH1BOagWA3KaWssLWgTgeEYhCzIHrd5QLsqqJJDAjOWVvk4yyXqmyfx3NtVsKAgpghihwCWWHlwALxuYsUW3USt4Mo26R2jrzb2mUEV0bOmiCfJGwNp5FU2IAZ3l/aNkMPLzStLrU4Yc/33NvV4apI0wc+8AHOnj3L2972NiYnJ9nY2OCv//qvOXDgAD/2Yz/2PA3tGq7hxQ293CZ9eA19rAraZCILL5tDHihmkuA/JBBCIOZzyPkc0WtnWL94gfDEOvJSi8LpBrmn3LE1145uUUgi7nTuI1xyiUWOxhcsHv3so0TGEJmsHmZY/g90X/MfslVZkWCqGtPRmPMJ+sGvgJNi3CQrTKIlSissHGxto7BRWiG6FqatiFqauDMche0pKntz3HB0gsnFHNP7C1jO7uFuWmvq9RpbW5tsbKxz8eI5Ll26SJLESKlYWtrHy172ag4cOPS8Gc5SCoKiQ1B0mNoHYRrytdWv8MWL/8g31r5KvDdm3l/gDVP/Hff6rybfqlBb7VBf6VBb7XDyWJWT/1zFDSxmDxWZO1Li1iN3cc/0SwGI0oiH1r/JA8tf5MHlf+az5z/N9aUbeMf+d/Ka+ddf8z718L73vY+trS3e8IY3UCqVqNVqfPrTn+ab3/zmD7xI7fcFMRRY8ESOzmWt+N3fd43a5n3YpYv+SjZgCXvM2DICLomVTHLavR7luvh6PI9BWjU03nh7u6A+V6C/PBJ5OZTVQMuMkPU9aK6lCIHUssBESAGeI+mbolkeyPj3W4nhNV2RHiuWgFAjMMR5F61dsHzcsEsmxcDYnATGJTQxWtqkvWR9A3gqT1e3EBiE1ULJFMgTBT5+e2ic7YbE8gbestQKiN0JLMsdU2kwvdX/UThYxCQ4Ogvtwg4gamfyz/2snp6NWCxJ2tvz+3vN5+NMIXssDwjI+x7aV2x0mhRFT7Z5EAsmEUJlsztCpEc5cYBLnLdJu4bQKuFIOcJu6BX9FcQiZjTXq+7H+LZNCUUqU1qlAqWotoPwJYUIp+2Nz6wAnQtISgEqrpFLJKFtIQoR/pZN1eqF1GERAUkugDQeEUTZ5XqUKdgdRk1fNeqdMYYqdfIUCPCwkERunkpjk80hO8aWLjm7PPCW9b1Jolc2S7geVuqTijT7zBopLrvLYkNfLrw/ai1slLRItY0BOs4M5bCReYsAIc34VFluJs1tIPU8iNqDhlPHQiRqcHz9Ts7vNRSXh/MwyMtKJcYoEAFbgWKlukmia0AZIwyJSPGFjRYhWoAWOwsjhZ5FM44xSqMK+TERlJ0HP3yxU9Rh/P/EtUlth3hycvDZv/Wy4FVZdn/zN3/D3/3d3w3+37NnD7feeitvfetb+fmf//nnbXDXcA0vRuitkPSBC5lHxpGo2yaRd0wjJ/5t5by/XxhjONc6wyMbD/N07SmeqR/jVOMkqek9dEogS5KD0SFeduE2DqwoCloRWFN4zh4cNYkvDY4A11FIZ+ftS6OpiZiqCNkUIRs6pNo1tJsSOwlwkwK2dtGkpDKlK2KaVptEddAqJLbaxKpDWoowUwnCMTieJHB9OlaeapjjwikPTvWfB5ncaBRFhGGXbrdLu90iTYdWSqUyxQ033MTCwiKLi0u4vSK2qTa0o5Qo1SRpZgZYUmAria0kjtolpOd7QKITHt54iH+6+Hm+svIg7aRNxZ3kLUtv5w0L93O0dMNl2+82Y1ZO1Fl+psby8RpnH9tESJg7UmL/7VMsHC3z8tlX8vLZV9JJ2nz+wj/wydN/xe8++n/wx0/9n7x16e28ZeknmXArz3n8Pwp4/PHH+eIXvzj23s/93M9x3333vUAjuhKGBo52t1nZV7gME9ceGFcIiRaZWRjlJLI9brSJXB7tTuEIgWNZhFL36tkIOpZNOdVoBFJa2HI7VTCX/c9ATx0uW3Xvk4TEdWhO5TD9fIoecrbLbuvQlpWF36QiBTNC/EdW3fsafhOTJZrTebaaoMKLIAS2dAhEyrDY5viYU7ktoMmAb+WJdIdU18GKEdImKUTIqqJTniTUKbSqOzx1AEpqklxmII+SulEkJYlYz0beh3QMAhfaHWxLonARiUUH8O1hPwXpM+WXWa6HZEamIZUOmGHR3Z0Qg7wnIQStUpFApnAFpb5OMaDi5fEXfdorGbEIRcym2mAqmRmfSyHQQrMR1KltbBH0KPJFVQWG3nahRRYzqLNwQxtr0Ia2e9Rj+/1vpH6XqyW+yZMqjY2FkZJWKUeu1aUcxXSlAZ15AN10+9WYIbYKoNrsMH37iwedkEiYLOcMn6h33VhYWRhgDwqrJ+QBLc+g6waBRAoJcQSOwLEtQtnBnhHE50PUyPGOjWyXk2akpOUvUIkmgTqxHeBYLXQM2tII3wwiQbfPmRjJ+1JCkQDC84ZE1Y4wfpOa26Y48D8N2/C1RKNIetdvskuYaiAcJvzr0H6D7vQ0pZO7kyKz7TuiczOwfnbXba8GRkrcxZlsuPHlc/SeTyJ1VaSp0Whw8uRJDh48OHjv7NmzNBqNK+x1DdfwowUTpqRfXyZ9eB2UQL1yHnX71HMST3jWvoxhuRGy2gjZaMdstCK6cZoVozQGSwpyrkXeURQ8i+mcy3TeoehZVzTsm3GThzce4qG1b/DNta+z2s1UxYp2ietK1/POAz/DknuAwsYs4lLA1ok6W+f+iTT8V87JHNOH7uPwnS9h2j7GbONvcc7/C52na6x+p0jUKeJdfwDvnf8TYul2aCeYesRkNaRSlkytRgAAIABJREFUjTiw0YVUZw/OQJBOOawXO6w7LdZ1jfWtNVq1aq/uTAYJ2RqwAm0kOkxJw5gtOmzSC/MRYEkLWzo4ys4MJTdHIShQqUwRBDkmJipMTFQoFMsstw0n1lv840qbk989wUojZL0VsdGKuJKKrRTgWQrPlvi26v1IvJHXkJGvpPcT6ZiGOEZdPkLTegQtmwjt40e3Uwnvwo6P8OXzgq+KDr79KIGdtR84WZuBrSj5NmXfopyzKb9skltfN4uqJ2w9Xefsoxt87dgJnMDi8D0zHL53Bj8f8LZ97+AtS2/nofVv8snTf8X//cyf8v+c+M+8fv6NvOPAOzlcvO77u0B/SLF3717q9TrF4rDSfafTYWlp6QUc1TgMZttT36DtLKzIkg6Jjq4oKjW6WmtcH4Sg60wiPQVuiLM1srgzIjAhhUB6LtIYpLSwnGm0LKOK82CG4UeqmMd0uxBl4VKJ6yHCNsts0XA0U+H2/KvxzJWBkpwyPaU6wLZIbUXsONDtGadSoiwHmfcZnZBUx7R0FU/nSUgGRowQkOZLxEkH4szbMUqJYt8h0ZmXpz9H2rGR7VG3RzZOJa2xkMC+UQ/QsXrbuEW2Y/S0WXZW5yV17G2fbfPJiZ4jqkcOPMsh9BR2K6Odvq0ouA6NTog9IvVtpKLrVIhSF1gDIHTKRFKzm7+832enmCMPeLU6tjHQy2QJHEXfotOWTfuGJezuFgJDYvloChANAqUIcwrZMkhXYUybsLiV1efpIRIjpKyvBmjMIARut4BTSwo8SwyKqhqyvLlUekjpUDdNRPFeRP0i6DratmiXCjiOTVTW5NdXB20r6YDpjLVvsti8zKvWI95Nf47YSsmY/fdubqfKEJKCNQwTo9eSAISVeQ89exnLbqDZP9hGDVxVWb8DrxWgEVjCxnElM5UA1czed6xsScQIwTwTVF0b5Ua7Cj4WnSJhGNI0yS5HNjxXjlbIbXTgsrlmvTF37Cm8so+enEScXEHKjFxlp1oQK5+ON0u55/WKZ+8g9efgzHMnTbuPZxe80EIQ73nPe/ipn/opDhw4QKFQoNlscvLkSd73vvc9fyO7hmt4EUGfaRB/9iw0Y+TNFaxXzCPyP5iQJ2MMl+oh375Q4zsX65y92KS52sGLDEUtKGqBYwSKzM7QIrs1RyKrmdGUhoY0NKUhtMErOEwWHKbzLpOBBe4FqjzOhehRznaeRKPxVcCdk3fzM4f+I7e4d+JUC2yea7H67TqbF1pU0xjSbxJ3HkCnbQ7dfAevvlFTWPmvWN95H2hDbbnCpacmiFYVas8Cxf/tP2G//JWXJW061aycOMvZ4ye5uHKBleo6aTW70wfGZUqVWCoepjQ9SWnvDIX5Cr7v4zjuQLmuj2bc5GzzNGeapzndPMXpxklON0+x1l0dbOOrgEm5hNfZQ7I5S7Ve4dL6BEkcAAIlYG/ZZ0/Z48h0jqmcQ8GzsaXA7gl19MlPmGi6cUon1nTilE6c0h281lQ7MZ04xaARzgraOU3iPE3XexIjughjk09vZSK+h6K5GSVspC+QQWYcpNrQiVOaUcJaK6UTpbRjTTtKiNLdnwBKCqZLDkfLFocbhvBfLvLdBy9i7c8xc/ck83N5rsvdxe/efS/nW2f5b6f/is9d+Ayfu/AZbq/cyTsOvJOXzrwCtV1F7EcYN954I29/+9sH4XlbW1t86Utf4mUvexl//Md/PNju3e9+9ws2RsfPVn+FbYNIyDmKtYHmVs+4utoUp953seElBEDBHdYxEsCqW6NAX/Uv8w/lLBcpfejpqanCDKKekSZLCmxL4gc2iVHIGHwRoHRKV/TJzi4CCgaUsEjNuHejH5aUt4t0inWceFgTyChJYzqPZdlZEdSe4HraW/mOdaeXtnIFQ1eAL1wMEW1vBhFDGmYKdbvtJVXf1B2iurQI9D1jgniXUKMwF+C0x71nKMna/j1M1hNkehmvjtBgJZl3oO+4kXJwSDZg+xa2kviWhW9HYAxpUZO2EoxUPWN56PUZkysnC33cnkkvhKRgbBJiPOHSJUZuO27jTUB3i0S6dJwSMLpILkBJfD+fbeu3x0+DstCFoVfbUzk6VhOZKIxneo4xs+PUtWUHI3ZmsEUqR1OfQKoiOAWsES+ekZIwF2DceGwfsW0eUumSSokRbeRIftJm6VZCp4Ni7bKcabe3t9+Vc47du0r6Wws8kfYCQ/t7JPRVGxWKkrTYtCRKKXSSDrxXStp0lKYmBVtewqg+av88ddxJGnIfKlzHsyUiMjsGJYXM5OwBx+rHAO58nqi+QuJIqBwYFuU0F835sW1LIgApUFIRV4qIwEMIcJzxazxRAVo6QC9UUKrBdzWVzq7jGO7rkUqbfmaykB2gwNgQezDFDqyMvyeex2faVZGmn/7pn+b+++/nO9/5DrVajUKhwC233EKl8u871OMafvRhYk365YukD68jJlysnzmCnP/eBAx2QzNM+MaZLb5yYoNjJ6oUa5rFRDKvJQd1FrwAgBI4BRvXV1iWRCmJ0YY4TIm6KVE7QXe3PcS3IFQdmvYKTXeVlrsJMmY+uZOZ5PXY4SR+XCAwkqoW/KtZAVbQQCMQdEtVcuufx2qcp5SDN809xWL6IPoxyZZ3E9Xq/cSPLGNW1lD7Zsn/xs/jvuGNCGuXApRpyvnzZzl58jinT5+g3c6CcKamZrj5yB3smd/LtCrjrmmScw241EYup/BYk8RpU59wqJcd6iWbzaJNR0GsDUlqSHSZOL0NO72FxUTjRxGT7S0uhWdYC88SOcs03GWU91WE6kAZ/DLYwmPam2Mxv4c9uQVm/XkmnAlKTpmSUyZn5fCUi6s8POVh9WpGGWNITEI37VCP6tTjGtWwwYXWeS60znK2fZZnak/TTDLjouJO8rqZN/KKmVdz59TduM+hUK8xhm6SkbLRn612zGY7Zr0ZstaM+KITEVsxN9QFN51scu5kk0+5KV93YyIF5cChEryO/cErCYOvc2zrn/jfN3+dgpzl1sKbubX4WibdCnKwkp3lPPRXfAHKvs1Nc7tXSf9hQa1W45577qHRaAwiJe68807CMOTMmTMv8Ogy+MUyC0fu4Hj9O0AH1/EJnATLUmw0QNsakYMrKGKPIRaGVs+gkT0vT96qkE+6rFNHojL1rx6ya2BbyI/JRAksKcmuDYFdCYhWshIkbu9+lZSamMbQ0xS7DogQIxVS2FTyiqhZAHpiM/SE1OQwh8vYGuFl/TfzCzhK4jR2ErG++WdbAZV8yvKuRy+QIqvh4lhFUqW4pJaRdJlip6fI8q2BVVadnYRcRlZySo37IXqD1bZGRgqtJIX8LLGoUh3EQWVb121NeWTnUW+MFAmi4JCX87j1BvE2wqmUQfWkvJXUQ20DNU6cpRga6pknZ0gYbp+/ETa3+Orm6fHxjxnIIzPW98J5ZeK5l6Av7l6TZzz0qifY4XTJaY96vojJCfoGsxIKNx8Qq4hQuKQ0kQZMPFrA2dDZphIhRyXG5Yj8fg95xyJKbJKe6kI3H0BL0JkNcLYdmVY2kA7GPRbA1ydYvb9OL8B1e17gWNkCkW1vRj7b7iEu2dOEKk/LncET65lXEUnRniIJU4zooEYU5JRSVOQCoTlPGnRoJdkiKQKMN0kn1oM5NUhS6bKVD9nbgBI2ORUMnLcoe2wso17lvGfhkP1EYz7QHqyUeOHVdG0fX9Xo9AizqwIkEQio3/JS7L1nYPVKEWeGyMoj6YePCrqlu6imKxzuWmjRGul1OI7Yyo+1ImUTmNmVZoldXm9fAPhB4qqz1dfW1njsscdoNpu8//3v58knn2RiYuKqYvy/9rWv8Xu/93u0220WFhb4yEc+sqP207e+9S0++tGP0mw28X2fD3zgA7zkJS/53o/oGq7hBwS90SX51GnMRhd1xxTqVQsI+2qXeMdhjOGZtRZfO73FQ09v0DzfYimS7E8VR7UCFG7ZYXZfgcqegIn5HPlJDy9nPWsNp/X6Bt8+9xjPXDrBhfVLdOsxuahMOZlmLp3Ha1yH1ApjBFobsCUmJ0hsSeQIVnxBzTZ46XH2nf483QtVHJnwqrnTzJS6PBjfyukzr6Vyrs69F5/A1ht8t7Kfv33Jm3l4320UzriU/t9HKfo2eUdhCYEfbRJ0LuE2LyF1jBaKtjdNvXiQTTVBI1K0jyW0HlujHS3TTYbEbx+S21DcGCluWIk5sNJhsXcTXEFzCs1pUs6gWUazgmFDGHI5m5mCy+H8zbxh6R4OTgYcmAxYKvt0TZVTjZOcaZ7iUucSy+2LLLcv8dT641gR5NOAvA4opLnsdRpQ0NnfYponr31yqU8hzRGkmeTqvJEsGpc7uR64nhRNqjRYAmXbKMdGrFmIUxYEqyQFJ1MkLLvZz1WEdQohBqGA88Ury04DdOOUC5eaPPPgMnc/Xeeu1Ka93+fitMVGGLPZlmxuvYxa+w5S/3GSypf5iv7PfLn6X0hbh4jrt5E2j2LS3cnRp//ne5kp/HDl7o3iIx/5yAs9hKuC5boDCedgaoHyni3iFYlwciA76G2FSEYDvmzZy/IJdpICgJI1gxIWrni2x/9o3tDOFV41XSRquESeh9fMDLmON4luNpFG0JiukAhB4hfp4IEGz5IIr0CkfPomqbUtwMYog5CQlSqySB2AlJYdUhgZV2yi7LWQWOpyq9YCbIso59CenEDU6yQixTJq2xGO7GELiLOwOt2zOx1L0iH7PnqFRVSjhrBaaDfHIBlr/gCsnIb4Uq/nHvnoTVwRj25vY21tE1wXmechFdlMW8Vp4noTqI6dhb4XZvu4bSsjdQXXJrUFpg3o7Bgd6fSkr0fm+Aqr/DlXMVv0BwNzlBw7+Z1Snu5kkXE1i149HjvkYrqFmahAkqKU6JG7YQNRqsG1UGGchUD2yeRIa1IIXBkw5e5jlVNj4xNyOLeu9LOcszQjTY3pCS4cfQnzqcPkssNmtE0hMihQd/L4WtBxbKDJXUslHn/KY6OeOe1sBEXhkfMt3ESzXIgRNQerJ8eihIMG1iwzUGgbCm8IgsAjNTEJULCmCHVKbOWpHqowdyE7/7Z0WLa7KFrAUOlVi96xjZJak4l7GKkwIisAPXrtpKof7ijwlKCpJN18gJ2fx1MNIkDna4jqkIiI3kXkCpeuEr0FmN4ZsFzwfUrlKdY7MbbwSeXO3Cfjepf38vaacmxF1ymNEfwgdzMH9CHuL7V4ZB38zhbngLyr6F72shyZjP47xQmQHsLaroqyIwD2B4qrIk2f/OQn+cM//EPe+MY38oUvfIH3v//9/O3f/i1aaz74wQ9ecd92u8173/te/vRP/5SbbrqJP/uzP+O3fuu3xkIhoijiPe95D3/wB3/AS1/6Uh544AHe+9738qUvfen7O7pruIbniPTJLZLPnwNHYr/jIHL/7gbIlbDeivjmmS3+9eQmZ5+pMdky7Islr9IScFCeYv5oifnDRWYPFQlKz26MNuMmp5uneKZ2jKdrT3Gs9iSnm9lDxVcBtxy6jbsrd3DX1Es4VDwyvlK3HUkX+8LXcE7/I6cf/gZfOlOimbjcOBdz+9Eb0PHraT15nlu//lVu7RxH5/I07vsJLr7iftYqe7ilm7DUjal1E2rtiLi1hbV1kelkDddEJEguiQrLapq6PYljWbhK4lqSaV+Rc3wCRxHYFjlHZa8dNXjt24pESc5oQ24rwtsMKW2FvKQacW81QoyGrRmgK8CoTEq3EcHZGEQWVmQLwa26zK3RrZj45iyJNEp3jQMfNmmI7JTITrIfLyVxNHVHY9kax7KxbYeCW8C1PJQGEo1JNCQaYo3ppJjNEHO+CZ1tq+W+hZh0kdN+VuB4JkBMuojvQ17asxWHlkoc+h9L1Fc7PPaF81x4ssrNlyxufsMeDtw53QtBgkS/mm78SzxdPc4Dy//E19a/yHr+bwCY85Y4nL+FfcH1TNizVNwZlgrzP9SECeCBBx7gT/7kT1hdXR0TB4GscO2LB9mqcDw7gT8/BzIzDJQdkPp5XHl5Aq2kzIqlqqEAAwJC98rXlbbzDEJpAGM5V6qHCkIQ5YMsT7EHy1LUShH7Ojl02CcNFloKRK/mjS6Ct2ojhEChMG461nzgKFKpUZMp3bgD9cyorMk2SbpFqntS6MLGEi5K9PNRdpkLBLFMaeQzr4XsCw8oRdcPgM4ue/VCIEfekUKgeyqftxw8wqOrz7A75Rqxd7ctoDsj6n9Gjbl62G7mSctBqG1ERyq0MET+DCIczwuxbBukgxQaxw9pt8evD7P9gEaQBj60IxyvBT0l9L5HUgCzBRfb9TjfC4HSlgJ3Z75QH5E2pEmKlALfkiQjAiKx0ljGEEsPERSRrREvxcgE2LvUMRy00vOEBrJEwSmzkWyTEFEKpI3qMwPAeG0Sy8eREiMFcT7AJBnRKvt2RgzJQkJlkpFjKYf5Y8rLYcuEMOyAybxLkRK0wpTB6gZgT83hkqddbQ4dwcZQCWzyyoMLw7F2VIJJdj8prswBHYQQFD01CCc06IGjYrRQd9pTDBS9uY58DyMlTk9hEAPKU5AMz+tG4Xr22hZJWh+ffCGxZgvMllxmSh5PPzmc/WcjI92FJfqiK0JI5ksu53dReHGlT3+1ISdcSlaIzlkkW1nJgJ3onUd7yBhlsUJi2kR2Qk4qxgjVFUf5/eGqSNMf/dEf8clPfpKJiYkBkXnf+97HW97ylmfd9+tf/zqLi4vcdNNNALzrXe/iE5/4BM1mk3w+Y75xHPPbv/3bvPSlmXzuXXfdxerq6o6E3Wu4hucbJtEk/3IR/eg6Yk8O+yf2X1XuUphojq81eexSg+9eqLFypklQTVhKJNenkhtQoAQTSzkWry8ze6hEedYf8yIZY2gmDTa6G2yE62yE66x2VrjQOs/59jkutM5RjYbFTiecCY6UjnLfnjdxe+VOrisdHYSSXQ6ytYJz5os4p7+Ac+5BVhuSz60c5nxnhrKteJVwKH55mernPg+AmKjgvfFNOK9+LfaddzNj2xwaaa/RqPP0009y7NiTbNU3kFKyb/8Bjhw5yv79h7DtH5DU9d7xf4020Iwx9QjTiDGNCDoppptAN4VUj4dvG5NJ6xYdhC0RjgRbgqMQvgLXQngKPJV5gDwFrsL7AdY5MnGKqUaYapj93Qox6x3SxzYzkgWgBGLSQ8z6yJkAMesjpvzn5OEszvi84meOsHGuyaOfO8e3/u4Mz3x9ldvevMj8kRKWFORdiztnj3Ln7FF+zbyHZ+rHeHj9IR7dfISHt/6ZL69/etBeYAX82av+K7P+3BV6fXHjN37jN3j3u9/NddddtyNP7sUGLQ0qEOQmXKiBdAUqsqnYC3hK0Wc0wpFjQm52vohOAbJ7hSlqXCsgsjQko95NMWZHa+VQ8PMQ90QfpvZhW3PYiwGN8xGs7fSMWsImHUmYcZWk400S6RwqVmB2yhFLTyB8gYpUVhSzlyNUtKZJ7DVUJEj6DEvBSr6L0+7gJw1SLejoTM0sUGVMmiBGiM9olJojbDyZoy3XdhCG7uIMUcvDNoZuXrPplcfuay1rW+yjAe1qjJXgl6+8cKCERZRLGD3wTTeBjo1QEbsbhdmgjeMSl4sDw8zK5bHnKnC6BgiqhSNMWDmskYWVzIiWhA44iUZZEUkxgdq4rrfYxV0Yuzbk8tDOzvlQRGRcelzuch8cFVOMLR9oDvhDzpqglWxlMu8jXtFzE23u2FDUwwThlUBu4DgOJc/mgNzHicYZhkWWL8PyBuHDctsVPETBG30OGixlcHPZvOtdbumWmxFzMSq5DmhhmMk75Jsx1QgSz6bvGRJApDXdNM0EHSDLQ0zGOzDGkHMVygj65F4gmHH2s6Dq1N1hQo4WWV5SQVVY8ubYnzOca20ipMKWNjmVo5G2aU0kiLD/fbw8lRFC0PWmqHptjKpAozXYZyLvATojqOPpYFjFPEII7EEl4mF7O/roj912SP0c9Lx+ju1z7+I9nL/4yGVGN4RrbWLvD/HPtAAXz1JsHdpL7ngDV2by/9gNklweYRusrpsNWUCqNB03xNYTdKXBFTZ7y88elfFccVWkSUrJxMQEMJw0y7LGmO7lcPr0aRYXFwf/53I5yuUyZ8+e5cYbbxy8d//99w+2efDBB9m/f/81wnQNzwlholmud1muh2x2IpphSjNMCJMsJlz2Yo+lACWGktLlbsodj9co1hMuHMpz6eYy1kYTa0sQpZpurOkmKbVOwlY7YrMdc7HW5fxWB7YilhLFUiK5MZHcgsBg48+4TB9yUAsh0XSNmr7Iw2GVWrVKdbVKLapSDatUoy2q0RaR3hk/PuVNsyfYy8tnX8XeYJHF/D6uK17PlDf97OGxxmCtP56RpNNfwLr0KN2azfnaAg91b+c8FnaSctPyGkvVFtbBw9hvfDPWTTdj3Xgzau/i2IMEIIpCTpx4hmPHnuDChXMAzM8v8JrX3Mfhw9fheVcuLPuDgJACig6i+CItSLoLhK0Q0z5sK7xrtMmI1GoHs9pBr3bQz9TQj232dgQx5fU8UR6i4iIqHqLkPGvoJsDkYp7X/cJRLjyxxXc+f54v/ZenmT1c5LY3LVKeG5Y8FEJwpHg9R5zDvHPiv0e3Izbra9TbVRqdGomJKYvSD3RO/q0xMzPDz/7sz77Qw7gqVPMJM4kafMdVJUXEw7CyCXeClShFeArbUYRbmYdASIkWhlQYYmFIcwWm7ArRsEQkesSClhJ0j6NYjk0ai4GcthASZLbCa3IRxDtLZJasGVAXmSpHEJRYaRgiu8CV7gJppYhoKJx6SNpbk5dCoQXIYg6rp1CHyUQsilLjqKFlZwl7IGk++Ab0kr+XJnwaiUVasxka/+MJ8HaPdHgyoCM7tEfU8daKsNqM8ZOdpLrhdGBboXLtaGQkBt/FgppE52cQSFKdosKhSKArNe28IBiNKDLQ9RLcGmjPQwf5gWHmFMrcduCVnPzGZ+lXQwKYK7hEoaI2kA03JCpB9Az2uAjUNcKM5tnsViK490k/IsEuoIOJEeKyO8TIb4CWuwe3p+DXn4NERySMFPE1mVOmsDCJVwvZjG2k1JiiRcm3UIlgypum1t68XIe91yMLjb2/Sgpi4PRki1v3FLGb4+co71g0LBcDnJ4MmV/J4RqbPSUPRzk4EzNY8Sbp8vA7YilDR3SJpizU6s7MGTXh0o5SOmlMSfWEWlyz0+k5yIESTMocsdUmKfuIahclFarUHnh0h4ROIoVFwfaZdKeY9qbJ5yK6rTYtLXGmfeSWwiSGijsJDOdMyKHntz9VibJBZkqMa24NOdHBsIj0K6iwMbjHeMoHPU5XLbeECDdAGBQ2lZzNZmv4XdSOTTg5Q5ovDglUaRLjJvjFUQmLK0NIwbRv0bQUOVchcplYix0YaIOQwwWYWX9uGLQpBJ5Q1CxYCzRzocJ37OdNQO+qSNNtt93GBz7wAd71rneRpinHjx/nL/7iL7j11lufdd9Op4Prjq+suK5Lu93edfunnnqK3/3d3+XjH//41QztGv6do9qOefhCjWMrDY6t1Xh6fZX1bgMhQ4SIsyJtxgKjMNrFaA+0w3ahyjdh85/wiDH8r3T5yok6nLi4e6cGKkZwVCiu0/CKtsJKs5WNsNRka+oSl0rHOR48xlp6KSvuepHspwdPeZnwgF2m7JbZV9hP2Zlgyp1i0ptisvd3ypvGU9/jqkncwTn/ZZzTX0A9/QXCM1Waay6t2gSXmoc4XSmyUsohDVznF7nhnnsJbr0d6/obEP7upk6appw7d4Zjx57g1KkTpGlCqVTmnnteznXX3UCpdPU3x2sYh5ACUfGg4sHRbHHKGAONGL3Sxqx0MKtt9Kk6fHfEoJACUXag4CDyFiJng2dlXilbgiWyh3GmU8+8Nsy+co7Nk3Wqpxus/19PEZcdCnkbGWtMp+elG0EJKKGATPTHPpju8Pr9MOFXfuVX+PCHP8xrXvMagmCcALzYcmhTxeWizjAGCk6B5REiBGAJwWpQR6cCk8KWEzOssz1ibArwS60d0WlJMQ9RiJh3oTHcfiuIWEhSEjqIVUOQS+gLWythsbknj31XCbm6+3N9e+6DsW2MM5RoLrolbN3BdVyk0ti54WKIUYZUeWinSSr3EOQcptNFDAYtxMDg9wqL1LYvmQO2UIQmxpEB2mTeNyUtytYszSRb5R/1behtk76n6LERtll2q0gn3ZHGkeRiGNEGEkLiqwLdtEU0GeJUh2ZWxXJ4omIxuVWALY0kJsUmsTL/026ek4pX4VKQo9noZgn43RjHtQYhZVmnPVEMaeMrD08GCJGdXOm4mU2+2wJbz8vXnCwxnTZ715tE7WIZant8XsZ4Va//fnsCQbwQj4Up9reXroMz4WPWI9oTRcre0D70LR9b9QsNj89FnyTfMJ/n+NPZe8ZA0wE/FtQsjbF2ekPHwiwVzAXzCEKWSpMc2v/qbGxCIEYEGdpWyFxFMi8Mq1MJfk+tz8oVoK1pyRhXQJxqhASl0p5i+eh3LBuvVZ5GJXlsHHzhkOQ9ajMeYhg0MsCmG7Mw8hWSQjAfLAAQVST0xGGdvEvOV1iRjWMXUGroGd2/MEU3cmBYJQAT+FgmwFM2hb37iRZSzIpBeUXS3Axc2CLyPXIqh9kKx45DSpti4RDRRB038pGpYDv7jstZPa7BDCobMzU1JnKxA4N1kWFj4rZDFB6ojW1Wz+2nUx+RedlW57ozUcRUNIf23MLqyjNIoZ5PxfGrI00f+tCH+P3f/31++Zd/mXq9zi/90i/x+te/ng996EPPum8QBIThuCJKt9sll9upQPbwww/za7/2a/zO7/wO995771UewjX8e0KSah4+X+OBEyt8feVhluMnkM4Kyl1FOhuwR5N/ljYEgpyVJ2flmGaS/+Hc/dy5foSzxXU+c9Nj7A0sfk54xDolThNinWDCFHfNJ1iboLg+i9/NUpIbzibPTB7jfOkLEWjcAAAgAElEQVQYF0pPI33DtDfLlDfFHd7tTHv3M+1NM+VNM+FUKLllys7E906EngWyeRHn9D9hn/xH0m9/g9Z5ycZyQLil6FozLFeKXJibojajsW2Ho3e/gpt+4p0EVyA7feW7Eyee5tSp43S7XTzP44YbbuL6629kdnb++yr2eg2XhxCZJ00VHTgyPEemm2Q5UlshZrObvW7G6M0umdTSsz8uykA5UEQG2o2Y9XqEXXYp7C/glN0s18pT2V9XgS0zIuYoRHDV2kEvSvzDP/wDn/3sZ3nggQfGHuhCCD73uc+9gCO7OkwW5mh1G1hyZzKedlxIWySTc4Q1TdLduGw7hsxbUcFhVIPc9ixix8F3FYfkHjZbWT+xZahOh3CZJq3cNMrrMpYTteNSHIb6lH2bNJQ4wicVKXkrx22LU5xvrNANQxxn5DqTMHv0Ls7UNaWtHIvuYZJmyJqnaQqBJyRp+RBTE0fJp11O1J8Z69XBZlZ6pNYEdTL5ZMdykELt7qntveU7FksTNr6rMCG0VUReKKQQTOacQbFQVwXk/YVdCe7N8wVOnxiGyeUdiyMzeaY3XKL18yRG9+QDhpO1kUtY2EZm97ll6LRJlUWYaFw/u3ZDJ0W07cxoFjYCwYHiAba6CcKqYgo5yrfcwZayId9EnI3BdrMCrIB0t9BkYXmCXr4SkK/kB/TT9IQGthdYbnoJfrzTKC76feXX3v4jcXz9V/1c27FopR2Fbcf/1ZaFyReZLrgcH2mxZYMfQ+r7HA5uAb5Laptd29pT9nHn8rRPhTu66xdHl0IQqRhhuxQtj9fOvYGq/DIAtm0R5BTVboinBK0oxbf0ICxR945VOAVMnJ13oSz8+XnSixnTMwJkYKPyMGPFPNXrf8pexMm3R79C48fvZjX8CpYiBEq+xY3zZZpTdVZPDs9N3s7j42ZevkECkMSvzFBfv4S2PISVDuZl2p3nib1VtFJIrUhME2eX57ojswVVqQQH90B+b5nv7i6sOICUgoWS37sGriz3KYA076NG2J4Z/bD/0tPj4YRSEM1MMJGvMLE5j2XtheLzV3fvqp6Ax48f50Mf+tBVkaTtOHjwIJ/61KcG/29ublKr1di3b9/Ydk899RS/+qu/yic+8Qnuvvvu77mfa/jRRZJqvnJqi88eO8s31h8g8R9FBScRpRgPybS7hyOlG9lf2M+UN03eyuNbAa5ySXRCYmKiNKKdtmnFTVpJi1bSZO58gdc9dTN+4vCZPV/jk7NfpNFq0qw1EYlkvnGQvbXr2Vu7nqlWtrweWyHNqRU68xfwlwxzMxPc6t/DtPcWpr0Zcvb3L0d+VTAGtXkM9/jfY5/8PPGTx6mf8alfyBHFZap5n9qB/azd4LHZym5C5fk93PvqN3Lwnldhu7uTtigKOXfuLKdOHefUqRNEUYhtOxw4cIjDh69jaenAlVePruF5hfAsxIIFCzuvM2MMRCMiFInOkqZVLxY1i0fNyI8SuICshjz1pUuc+tY65mKbPUcn2H/nFHOHSwPBiB8lfPWrX+XBBx+kXP7h9IwemipzasNmOu9CdZtXRSmSUhFjK6ZmF7h45vKkqeYrXB90RyNDSP0EGyjO+lTTbL8jR6f45uPrCCG4IfcqDsmLsLGya3sVZ4E75vfz387+5ZUPoHdJFT2L1JNgpUg1gRRyLOqtb4T2r0BHuASqREnNDLbRYtSoytTLXLl7uK7Vkx3vw7csyr6NiSwascDqKVk6ShCoMgeKFlKv7z7+nkGZ9Iq3SiTC8Vgt28S1EC9RTDIUE9D7PErLM9jVDYQA1xLM5B3OjViCSslBu1qkYOjJu2f9+QeOoJ48SWtmAScxJNOKZpLQqCeZkS0MQm0PyxIIz0UqhVpcRDSPIfO5weR26SJGlHBa1y0Sb2WebDGSy7K1N2a+HgxLVfWmIVQpy8Uuc3WP+ZLHRs/WdZRAIKnYe9gyTzExswer1SWyhovnFa/EeTpj3rJniQikXS7iuMXMMz8SICjtgIuFDeziXpSwefnMK5FG8vjxJyHMjmI5v0IuXRqdHMY1kkymVKoCSqZMe+kghNm13s997M+U5xeRdgdVLCIcD6sLnVpE1woJXZ98A8p+Bau7U4p79I5q5QSONuRVgU4Ee4oTHC4tcPrS6s6Ne5gpuEyYBZ7pMfasPMD2MNKr87PoHmFVlkWqrWGfz3Lbdx2Fa0Ml5/Q1Hy4LicBS9Ko3s2OsN80XWB51LAlBzsrR6ol7mF2UmqQH+YIL0U4SFqgyCWCE9byJQVwVafrgBz/Ipz/96WffcBfce++9LC8v89BDD3H33Xfz53/+57zuda8bC40wxvDrv/7r/OZv/uY1wnQNQHZNPLnS5DNPrPDZk9+iG3wFp/gYTIdM23O8Yu4tvHTmpdw+eQeB9b0RFVMLSR64iH6mhpjxsd60xNsmb+dVF36OtVN1Vs7XWT/TRKcGoQRTi3lmX5op3E0s5F44Y3KEKHHs01TPLHPifIn1WpEWR2l7Lp2bCrTSJAttEBGTlQXueP2bWbrtJZTm9uzSpGFzc50zZ05x5swplpcvorXGdT0OHjzMoUPXsbi4hNotXuMaXlQQQoCbCVjA1SkI5coud71lPze8ZoGnv7rMmW9vcP6JLbyCzeJNE8wdKTG5mMfxfzTO/8033/xCD+E5wVc+YRpRcC2WJgJKvkUjNMjAygxsZQPdwQp+yXMpF+apxUPDbbR4ZWxJ1EybfnRf6u90k/hFF3u+l/R+GY/yTMGj1dz1I7DMs9aSyrsWTq5n4IzYepPuJFE4XHIXQrLPv4WgMfTa6H4hMdjh1hqmxhvyvkXa2y3OFaC6jFSSkmdRi8GzJUFPOGAicDhScLCSAk+v7kKaRrAuN2j6M3jhMGclUYamSpgcHYuryHtzlN2UlqqNqK0Nx1yYSzCXJMS9xY9ikdloganDezJPb6FAd+9+UBKSlFxQxCjYVziIqa725q9vmF5h0EJgemSzJRs0nFPMipdlZFRkx1twSkQjxqqRZAsvwGTOoQ2UfHtMFdvZluclgII1yb7ca9lsxajcafqFrg4XjxBHKXtKNTa6uy3AXcboH0zzeE6TJVz2FW+k1hujbwUYbcZUSI0w+KoAIsUOJLKocSfG+/aCHI5KUFrSzRexk9X+lJG6CfmuS6RcfDeHM70PIRXC6uf+GSIZDx07QvYWAraxf0BvW7DclztC3ZpkN3h5m7CdZMJHPTjSYeDmBPJemRUg9l3Wp/McmpvhulCz1jHEu4Sr9jMTjDSsFGycisdlipztijQ3h/F2yTvbDmEGnty8VWAhX2Qpt58Ly8O4RGvE0ytH5g6y/LD2zCyT4e4LNbtBVRzSzQhjru7591xwVU/C++67j1/8xV/kNa95DaXSeCLwsynoeZ7HJz7xCT784Q/T6XRYWlriox/9KCsrK/zCL/wCf//3f8+3v/1tjh07xsc+9jE+9rGPDfb9+Mc/PlDdu4Z/H2iGCZ/67gqffPQi57qP4039M3LhOHnh8bqFN/Dji2/lpolbnlNYmGknpN9YJv32BkZA52iZS4HN2j+cZeNskyTKHhSlGZ9D98wwd7jI1L4C9lXU03k+kCYJ9ZULNM4+ReuJL9I8/xRbjYRq6NM1c8BcVgN3ikz6emaOyvQcB+f3MnPweqb2H8bxx/M2wrDLysoyKyuXWFlZZnX1Ep1OFgsyOTnN7bffzb59B5idnb/mUfp3hKDocPubl7jlvr1cerrG6UfWOfnQGs98PTMcgpJDftLj7rftI195/pSJnm/Mzc3xkz/5k9x55507QsR/+7d/+wUa1bPjUPHIwGgs98KfitM+slODNrhW5mHxlMdcbomiU8SxNxHpkHhMFlyKnVFzS6C8Lt0kI0z9ei9Fu0hx4vKF6wOnSEgX4+TxPElX7a6QmRSSoTz4nIc8O/ReDLYJFIVKYYd6V8kps9YjTQf8Owbv3zBb4MmVBsslB6Oznbpid2bm+DE6ECiyejEhEFYmWS82mVVyvM8+AxBQDmya9fEB9fNrRp86Whg6dgrj2Qc70N9X7lmkXUjod9yfCQFYgcF1HWqdEGNZICXe9DzaL2SelSmPcKs52GlPsIfN4haO9Am3atSbu/WYkUDIOOV15etYCwXfUSfhYmawThet0QsCgJJdQruKmcpevrv12Nhnvq0oFV2Ua2Xy5Abmi27v2hkR29jmUcirCo103NAWcjvRNci5BagfH5uf3eBbBRrxBpa8jDqrgGJQoW2tEnnZAV4/sZ/pksd5tpCBGciq9/sSUuIKB0jYU/YRtT4JFRil8ZVNbm9AARfibTF0/eK4/z97dx4nV1Um/v9z96pbe+/7mj2EEMAEjKwiCRLh64bB7zggovIbcBRcRlSUQR0ZHMWR0WFUlE346ugIIrIr6shOgMiSAAmdztLdSXqvrv3e8/ujuqu7uqs6C92pTjjv16tfSVXduvXUrVu37nPPOc9hLGHP3miKeLEjXgZUBQdILGhiqOHYvKdqioZWZM60qrZsMbTOjdnWX395FU46xdjk0AB6IEiivpLBhIqnZT7oOh7HwTY0BgvkTOMb0UWoSl4X1f05qxKeCM6k44PVuBDbUBnaMaErpjFeXMjUTZqDFXnPUSafX4ye09WEddQRnUxDhrRVRr9nEfz2ifwYJsVkNKexHANVyyBSLh6/Qcrdz9m/D9B+JU0bNmwAmNLnW1GU/So7vmrVKn77299Ouf93v/sdACtWrOCVV17Zn1CkI9Tre0b47+d3cd8rPaT0rUQaHsTWtxIxy/hQ22Wsazr3gFuUANJJh+HXBnFf6sPeFUV1YYcjeDmaIfFEttpPqMpLy4oKqloDVLQE8PhmqEz2AUrGonRvfomeLZvY2/E6/dvfyJtLxlYsvHGdypE4Pt0hdMxxRN65ltCCRVj21JFcjuOwe3fPaIKU/RsYGB84HomU0dzcRm1tPU1NLfj9hSc0ld46NF2lYUmEhiURMmmX3s4ofTuiDO1JkIpnENPMa3U4qKio4AMf+ECpw9gnf8RCMcV4l6Wp+UaeiK0z7NHxaCpt8+vZu214yglQld9ASYyfRWmKglkxQFedRl8sSv3o2UD94oX4wyGiqfzWp7GL3SFPGcHWo3g9upmGqhoGE5POuseo4+WmVY9G2KglYiZoOrqMvS9syb7PBYsJ1vkYeqkPd8LFqbGxLh4tkG0hGGUUmMPMKTBmBkbPwVSmzMUWCUxN+sXE/+hTX8MzOtbHNrIbKd5ej1VWhjc5tWDBGFPxgO6n2sx2KcxWbR3/VDL+ACT6EKPTCeiahu6LYNa2QE/+tlcrvQz3eQjsHd/WHs07+rzRk/vR7nkTi536jLFtKjA1i7IGG7ffQYwOONJ1reBUdYvCS1A9+zMnW7b67Ng8QVMfzcY2VOVjZGDSdi2w2bSKCtTdIdyB7IW8wYjJ0J4MwQmV61VdwdI8mGp9/jyEk3Z407YRlTaD9EMiu+8Um5JDzTW/FH6XruGOLTj1hWD8c1Wyk/yOfV0DHp3yaj9PDmZXLCwToWfPL1R1tFBP3gXgXOZVkB3KFgpq9RtUTpgzL15tI7anRqtiFghvQrPg2ESzB3ooL7fNXBXIyVSvH93SgUEMJRuXbQRRFAVLK7wfae3zwDTh5cdy980PLqDmRIuos5M+pQ9R5LqtYWmQyuDYGUBDNaG6LojySgK9wsIOmqQGSpg03XbbbbPy4tJbmxCCJ7b1c8tT23l2+yCWZ5D6eQ+zh6cJeCr5ZNtnOatxXdEv3eR1xYdS9O+K0b9rhOSOEYzeBJVphzJdxRWCbkfQFbQw63wsrvESrrYJVXtL2vVoaE83Hc8+zo4Xn6N32+sIIdB1lWrvCMeEegk5Cmp/Geqm3ejpDMbbVuH5yPswV5+Eoo/HLYRgeHgo14LU09PFnj27cZzsgcPrtamurskVcKiqqplS1VKSJtINler2bLfUI8Vll11W8P6bb7750AayD+FqG7M5g9Kxj9beCSOlPZqKz/BN3z1rAl3ROMFuwzUWsTexO3e/YhYukKCIbMKlqCq6prMksgzbzO8qNB1NMaj3laMpkwZCGCrlq6px0i6do1WrjdHWK586oQhKkfUGPYWO39NfPZ84s43iEdlq5QIo9xRc3tAU5i1vBkcgBAhdw/R7aPErxPoLPIFsl8ITqt7OA727SWuxKW9AM7wkTR8ezUGMZjq6aaPoJoUm3R37SDyGlreuZLVLfM8wum3j19JoaoSxBSYndJU+E3tEw1MRJJ3yQV0Q89Xi2XiVt4ZdsR0FN6JQCoxDmlxcYfT1FzSH8VQHCKcE7tCEeX90DdXO/x0KN9bTn9gJukraVDENFZ9QSaT9owXqFLQKC+EIvLaZnci8iOaa+ezpyU5anevJWWBPWrK0FfGSi+obJtbfhWLk71OqJlDN0Ulba33QkR1zo036nogJE92OV/Ibv6+pzMtYZ7NlNUHYsQeEIOkzCCQdDGv/zkXagu04+viON1KWoSM2woJJQwcm7uden5cmtZFgS4LO2DbCo+c9XmNCQZxpXrM6aJJQQDM9QHLKVCRjTNWm2mpnWW3DtCtUNA29pRUAxxq7UK2g1dTCwADE+ig2o4ZuqCitSdyB/FJ6VQErN1Zrtkz7CV188cX85Cc/yd3+6le/yjXXXDOrAUlHPlcI/vx6Lz99spNXeqJUBgTvOO5pXkn8jiEU/r7tIj7U9n/x6sVn+sikHHq3R9n9xjD9O6JkuuME0y7lukKTrmCNfttSfoNoSxBrRQUtNTat+zGvzWxLxqJsffIvbH36f+nt3ApAZU0lx7eptDnPUakMMziwlMFX/GS6e1GCUTzv/xCec96L1pgdzJpMJtndtXNCK1I38Xi2y4Cm6VRWVnHUUcuprq6hurqWQCAoK91Jb3nRaJTbb7+d7du347rZa60jIyM8/vjjXHjhhaUN7iDoWrb7VdgOYfl92e/42Nd8ykni1O9/QPOgKmNj4KY/PoSM0Rpvyv5021VYVtXE1sFOBhP5fYQqPJX08GrefaZXB+/4oHtL97A4vJSBWCqXkvk9et4YKdWjwzB53azGWh7K9ACDo5ULMqZBudAZANRKE1QHKz1eMEK1JlZwY/xiv89l4qVuPZhtzQ/6PbAjm2yRyLYseA2NiVMvTabXeQkLna4JtQEiXi8OHvYEehCmIBJJMehOaGkocO4ngNay/C7X1YEa9iibQAFdL1KjfpShq8yr9JEcUEnVNaDrvbiKReHTX1gUWkx7YB4d0S0FA8qNzlKyLTllip9Mgf3DY2h4MgZxV0GMNlcLQI8E0Cf1cGiZ34wTHySezpaO1nQFj6tiqf5cYTmhKCgaJKvtaZMmW7eZF27j5fgWAlbxHiS6oVPlrWZPbZBYyAdeG+P4VSijFxabmxP0pmNkANM72lKpqkRsg7iiEPZq7I5O3CIQbluK3hZBsSzKrAq6gTKPh6U1AV7qGsZrjm/1kXILr6nS4POgeLLzL9nm/nePt3QPGa34HhjQqzA0A1+Zl3Cwjs7YNiJeg+a6QN55gb+igeH09AOcwjVthGsoWExKCxk4g2kWVoaZV+nLG4tVjLOolfToVABePbtvj8V0XGOILV0Tlg0HmdKXd4IVDbM/j+C0SdPOnTvzbj/zzDOzGox0ZHNcwcOb9/DTJzvZ2hujPmzyvrfvZEPsTl6I7eWddWfy8YX/H1Xe6oLPHxlIsvPlfna+0k9m5whlqkK5rtBqqBiGAoaG69PRmgJoTX7URj9m0JwzyUL/zm1s+tODbH36f3HSKcrr6jnh2HqWZv5KKPUXRoaq6O1axNYXuyDTi770KPwfuwzjlNPoiw7zRk83Pa++TE9PF/394/3Dw+EITU0tVFfXUl1dS3n5PuZHkKS3qM997nOkUilWrFjBnXfeyQc/+EH+9Kc/8YMf/KDUoR0UVdWoDjXhs2wSytRqXYUMexW0YP5Pf6NnKUuqTLwpDdvOdoOeeEXeNjVq6ufT1dGLMKZOcDtZg2chIdOPonROeSyvi9SkY3OZL4ymagRsPyKayZ2CLq4J0Og3cV/PnhgazTbCdWAP+NTxkzcFhaOPWU3Xn//EgDLMULmKrS+mUtOJOA5Dlklj41Es9FbQ/1gPQlUYiWQg7WbHJtk6xLKJh2KKvPFKmqLjiAx2wKJyiZcyq4GuxDZayry01wXoGSpSK5psIQVtUmqiqwoB4SMWtmnx1qEZ3SiZCXUiJhECEj49e/XdO/H4PjVpnLwKny/A3r17CAbDubLxQrfI1KygYpvJSHJSIYexCnOKgqnlVyQMGxGGye4fE7uP1oYsKiI2e536XF0BpUBsQojRbmwTtoWioYxun+pwLVpFks692Slbo6bDkJadqFfEsknUGI891lqikl+EbXyZoxafx9KWAdilgzLe9TPvvCD3PjQygTAKCmqRCptVVdV4dsXQTW9u9w17DXZHocKsYmyCpFCwAq2+Fsh2O5vvm4+l6jSEvTSEvWS2xXAY7bYJaKqarbhoKJARHFU7tbu8ErFQAlOTv1VVJ9LfW2ReScYvRkwkRisGTuSL1DLSN0Be/fxJzYmKpmGHJyQnua6JoEVM3OE0VVWjyY+qoBkqoZrix4yFLZXMzwSIlr+NgKeS3MoAU8+PzykL4YtObYU9lKZNmubKyaZ0eEs7Lve9vJubn+pk+0CC1nKbS06HZ2I/5qH+V1gYWszVx36TpZFlU54b7Uuw48U+el/qx9qboNJQWGmo6L7RXTdkojZmEyS1wY8SLFxytlSE67L9b8/y8h9+z+4tm9AMk3kLmzkm+Ab1/b8gtVtjYGgxr78WzrYq+ftxz30fA29byR5cenq62XPrj8lkspdYPR4v1dW1zJ+/KNfNzuM5fAfmS9KhtHXrVh588EEA7r33Xi6//HLOO+88rrvuOlauXFni6KajoFRaKKaGu3Mkd+/SmqknVvrYFWofJH0JrKRnbA0AqNUGWni8S5SqZCudNYTKCEzo6jbxIrHX0BCeMJm6lRi7xl8foL3CRzxdbEzLgWkPLUAExwdgrGwOQ9jCY2iICa+RnYxUx+tvIBjbjVo3oTKoR8t7XUVVcQMexPAIKUsjYgXRx7pOKeDqkEaQKPNlS/rH8t+LNnqy3xpoo9nfAsDbKk8gmh6mi22AQD2AdypUgTPautUfXEJF08no6m7U8gSp4eIjTQSQsjTUBZG8ynATW4CaFpyIZnio3zHAHrpZGFoIgGmazJ+/qOB69XKL+pjGa3UpvLoPO1P8BNdVHCq81Qyzh+YKH3ZMg5HsCbiqKNky6c74OKux6miqAhGrjN7kXrS2IG7Mhb5s3D7dT2ugjUydhlrjA1dQZpXRZ43QB6BA3KewqCpIoKopt3+HvAZltsHCKh8eQ6M7U6TFSdNRveW4E9oCY5EMosD5bbF2kXTNsXj3djKMg6qqzKuvYltffLz0uSJo9DdheuvoHk2aqueNfzcVRcGaVLRCDYdxgJrmOqxQkIiuwMh4K4paID61SPJhqEZuHqXJ3HAaoY8migFjSouyvo9CV7Y/gZJKo2pewMU7KWkbW1t90MPmRBSjyUdF8/h7r18cmXb9hqagoKEYE7bX6L+TP48yo44W/+x2v9uXI6OOrDQnJdIOv32xh1uf3k7PcJJFVX6+dFYlLyb/Hz/veohyq4IvLr+KM+rW5A3ozKQcdrzYx56n9+DrjVOtq7RqCtgaImigtQRRG/yoDT6UwNxKksYI16XzhafZeP//0L+zE38kwonH1rLc+QvmwB8ZfK2KrV1LSOwYYDDk0L98OX3r5rMbGI4Ow/NPo6oalZVVLFlydK6bXTAYkhczJOkgqapKLBbLTXmRSCSor6/npZde2u91PP7441x33XXEYjHq6ur41re+RU1NzYzHWuGpxKtPOImqGD0pmpA0aaqKUmNnJx3uzLY0abpC09HlPLvpDdxhN9daEjSDDLEHTdHzKoEX65Y3cWzAdIccn6njM4ucShzgoUpFzVWxA7B0DcWYOjYEoCZo0akZmIsWoxrFOpiNvj9TQ50fxu2JYk8cE1TojU3q3pgtQLQXS80fezNWuc0R03eJy723RWH6OlMIDYQOKdPF1UyEZgIKqschpbhFN3bBFpIJQkYQ79LlADQNb6a+qh3NLFI8SQXVl03QMj6dRNCDYwpsy6Q+UFvwKbptIRLDKGNFMbwqikeQdlziQQdzQoX2xdV+mhaV47hiNLkxKaOFKk8VXt1mWAwhvCoiOpoA19hYkez2FenRKraebDl9tTGNYRi0L3hHbv3L64MwOsepZ3T/UKzi+8BEAoiFHFLBaQo+TdrEbrCJxogPx81+1ouqAyyqDvDcjrH2rdExZBNy3lxiXoQaCmOe/i4UVWVe2GZgIFY0aaueF8rrhro/0kETerOTE+eKpdjj8xfpqk7jUaNV8F4G18pP2FVNwRXZQoiqJlA1hcqmAKHq8eRsRflx+N1hBobJdg/VlOwccm/S2D4upkwloNJ8zHGA4JmOh3L3a/vVZXhmTJs0Zatv7c4FPvk2QHV14a5U0ltXLOXw6xd2cfszO+iLpTm6Lsjlp9fT4dzLj974fwgEH5n3Uda3/d9cH1YhBL3bR9j1RDfq1iHqVIVaTcH1aFDvQ18YQW0NoITmdvEC13XZ9tyT/O3+/2GgawehsJ93LU7Ttuc+Yk956e6toCe5mJ6qKnYf1cae1SEyo4dK23Wpra3n6OXHUVNTR2VlpZwfSZJm0Hve8x7OPPNMHn30UVauXMkll1xCa2vrfhdFicViXHHFFfzkJz9h6dKl3HTTTVx99dXceOONMx7r8rIVOIEiVQYmUCOFY594jlXmN2nytZAMlrFhxMmvkl1kgPx+DEcoajiUvZilFxks/mbUh7y0NkcI2wZHVQey1Z63DkFGoNZmf0+ClgdDUfHYPuyQRU17kIziUu4z8Vs6IrYflbVG33/QCDEvOB+fnZ9MGKNJ030M+xwAACAASURBVNhvGICndVm2fF3P1FYPRVFwjfGN6oQEuyu81Fo6ZPb/hHh/r5lNd3HNas8m4yEjjE+3cfZRFrO9fQGd9jZG+nzoy1ohEYX+KMvKVtDl24lI7Mb11wLZSh6qomT/NIXW8vHtM3FbuSGdlOtOmU9VMVRQocJvsrjCYnNKL1JxYvw+y2egpPYveZ3OWAOeVaBKo2oZqKmp81GhKLnJhPMemzLp7FRTiikIwFARcRd/+XgPEssuch7gKZ4suBPGRMU94NT7UCIWqqKwMLSYcqs8V/AlUR1HjE450BfMEAq41C6OIFzBtp3lWLu7QNVQdTVvvyqzygkbFgPEEALeuaCSA5WpWILR8zxM6AY6diFn4jFpbFtpRn6yGzYrObqscCvqbJj2jGzbtm2ccsopeUnSySefnPu/oiiyVLiUM5RI84vndvGLDTsZTGRY2RTm71fWstP9I/+x5UsMpgY4vfZdXLzoEmq82R+g+FCKzg17iT+3h9qUy0JdQRgqTpUXbUUF5vwwSonmSToQruuybcPjbLz/Nwx27yTs0znF2k71GwPs3ljJo2Wr6KmpYffiWpKjVe8ikTIW1TdSW1tPTU2dLNYgSbPs0ksv5dRTT0XXdb70pS9xyy230Nvbyw033LBfz3/iiSdobGzMzR+4fv16rr/+eqLRKH7/1LL/M+ZNHBYWLGzmhLpFKP0pLM1iYZWCVesjnViOIhzU0Yvlk4tOuW8ia4r7dFA1vIZKdcBi36lfYRMnUB1T7jPR7OyJkzZaHlzMy46xUBQF4Qp8lkG97ec13SBQ7cUf8TAwEMM/oTqZL+LBV6CstjdoMrQ7Dvb4mKax8t4TaYrGirLjMTMTug0aYyd+40nT6raygolOyNaZ116ejal/7OQ5f5vnl1BXEEIU2BXGst4JS/sUUAXYxU/cDdXk+MqVdHb14u4jadI0DUVVSVeEURSF46qPp8UcxtIsbM1mT2I3mWAzmdpm6Cw22/GkdY62DpiFquNqKorrUh/2sHnPfq1uGkWqahTYkmW2gW17aC4r8Hm3Bae0fAAIRUVRIBhwCM4LkUrYRGPRA+qymReVpmDUeoonSqPUtmDB8vhqtRe3O4ZITXp9W8+dXzT4GvOfY+o4o9UxM7ogWp7JfbdiTfOI1zVTmZ46PhGmr0q4P9xQC8lQy+S15t0Sx51Gf6abQh0Q2/1HUWYdugqv034qmzZtOlRxSIex3pEUd27Yya+e38VIyuGktjI+uqqRXuVZbtj8dXbFdnJM+bFcsugyFoQW4aRdtr/YR/fTu/F1jdBkqhiKQjpkoBxbibm0DKVEcyUdKOG6bHv+KTbecwcDe/YQIsXb9u5G7Azwev0i/nx0I0OjJ1M+26a1qZWGhiYaGprw+WbxJEuSpDzJZBLLsnIJz65du2hra+Occ86htrZwl6TJOjo6aGwcP+Hw+XyEw2E6OztZsmTJrMRdzORB4akyD4ozfvJrqdmr+j7Dh6aNz8dT7rdQPQauJ1vuVxnMFpWZfD4YKFjKu3AcYiibJEzsJudWeGhINDKYGpiSNGXMQif/FD+/3VcME7MSBUQggpruIK0Vn9vPEzDQ0qPxamNd37JX9ZuOLmdLp8u+sj3bsHHJdpesC3moDXl4tnMgbxn/NGWkxx5zgs0oiX5WLXsbdz0/Xv59YvWxE5oj7I4mp15YK9Cap+gKhJLZf/fL2GD+4hv/6LIVuURHV/XcVCAe3YOm6LQH52HWp+nf9RqeAsUKJrN1m0ZfEzWemjdxUWD8ic1l3vxtXWSdDb4GeuLdVHvHu9TmJi9WFBqrfEUvXk6+PzsXmAIOBP3Zfac53ELKTqBNmhNKaCaKU7zSX96y+7FMsYvJis9Aaw8R6U0wHO8lr0JGEfPst2W3QaEGWFVFmFbRonVjm+TNtExP5jOy31t7tGXSqawjlkrkJU2mrhLQyvEX6xo8S2TfH+mgdQ0luO3pHfz2xW5SGZd3Lqjg71c2sNt9hu+//m22DL9Gq7+Nbx3/Hd5WsYr+nTGe/VMHyZf7aASONlSER8NtCWKsrMKsL36wmmuE67L9kV/x/AP3MJDIYKfTNGYMYpFa/nrC20gaBqqiUFffyPLWdhobWwiHI4fN+5OkI8mzzz7LpZdeyt133011dTUPPfQQV1xxBfPnz6e7u5vvfe97+1UIIh6PT+nKZ1kWsVh+5TS/39rnmIbpaJpKOGwT92VPyM2mAFo4211n7D7vooq85+yNZE8wwmEfqqbQUt4Kmo/WyibCYZtMEtIxFz3gwQiPd5MKBGKk1RSBkJewb7yLTBg4xTJ4uqMPv99DOGzT5xtBtVL4bAtFU1BVlbJF5bnnVLWUY1WliKhe6lsipEdc6qhmJ2kUK4ltW9lYWhUyGti2RSjoxT/63hKBOMJx0QIWjqtgBD3o4eypkkg5JHzZylne8D4q+J20nORAO2bnEE01wdz2HOMaaZK+JFbcwFJ1QvUazeEKQpXjp2V2r4XHMrBHt0mh13RQSQ2k0QIWJzVlr3a/0hvDtFKjn0X+c3wDoxN/js5NlPd4+SlkXIHtM7E8KUyhY9pmbpkwMLF9wOfLrsNvCgxdw9TH32My4CFlW5gBD1aRGAwtu+69dpSMq+GzLUQ9BL0h9Nqpv8VhmnP/n7w9/09kXfY/tdCyeMGU7TSZqqYZGrKwVR8+04MR9KKHx7ujuUtNMnvjGBV+fCNTt1XCF0O4AtdvEbXT2EGThfPzq9312lEURSEcsVFcQaI7gYJCeUUFdRVn5S2bimcYshOomkJdc+GqeYWEhlOkbAs7beLze/CHbRK+OMJj4QnbKBNbgpa/BzJJvJ6p+9HY9nRQMS0dvPqUfWdfxvbT3P4Sttm2pwsjpuHxGgRDdt73e6KAP/scO6XjSRrY9vjna/tMNEVh6TGrcdIpvMH8uEJJBzueITB6jDjQOAsJh9upK68kaAZ5dc8ukobNgKLj99i5512w4v30jaSI2MaUfXXy/jmTZNIkHbA3emPc8vR27n9lNwpw9pJq1h9XxdbE41y3+Rtsi3bQ6Gvin5ZdxfH6O9j5/AB/+NtGKuIO7ZaK11BxPRrqsZXoR5cfNq1KJIYQf/4lnX98mOd7U/TbfjQrgF4ZYE95BT2KimVaNLe00dLSTlNTi5xAVpLmgG9/+9t8/etfz43B/f73v88//uM/8vGPf5yNGzdy7bXXcscdd+xzPbZtk0zmjQgikUjg8+W3aESj+cscqPDYwPA6LwhI4sJANjETFRZoCsmB/EQtFsu+5sBADFVTGBpOoCS9RKMJBjQFoQuEJlAMgTLhuSPRJLFYmsHBGFo6/1Lz0HCS2EiKqJJdb2wkiZFKMxJLoqoqts9kYMK6Yok0hqqwsi5AdDiBMzLaAmUJkskMsViSgYEY0WSStKsRiyUZHIqTUbPtYM5IEpzsZLNiJIUyGEcdbQUSaRd3dH2T33shHlROagqTiqVwTD0vThHL4I6kSCbSJLUM8XQSYYi8ZaKJJJ4kxKZ5TTGUwh1JoWigjj4eG0mR9mvomfz1AZQp1USscqKxV3Of1URen0VsJEVXRMfO6KjDySnLjEkmXTKZNGTSpDMOqWQmt2xmOIETS5IcThCf9PxKtY6O6BuY6uhnGkuSEQ4jo/vPSLkKg9OXdR7bPw/W8HCckZEkIukSS6dQh+Io6qQuggENBuO5uCa+nhNLgSNIDmX3IaFP3dYjsSS218p+H1QFZySFEjBIFIg7k3KIxZLYIfOA3le9reN6TYyUy0gsRWYghhNLQkaQGIjlJ00A6JCYuv7c930wSSqZIaFO3Tf2ZWw/nfi8ZCJNOu2QiKcZKvD9nvxcu86L6cluu7H1LIxkW/BiSQiHw1PiGh5OEBtJMTgUZ2CaMVbTxVmYzkAsRmwkhSkiVNCOnanKe54KDA5OfU9vdv8EqKycWpk0G5Uk7adXeoa5+cnt/PG1vZi6ygePqePsZV6e6Ps9//T8XfSn+mj1t3Fl8zeo6VnAjl/3sXFwM62WygJDRfFq0OhHX1GB2h4qOOv8nCIEyo4NuA/9gsRTT/Pqbthc18BgRR3ughAZ7+hkh8EQy1rn0draTm1tfcE5ESRJKp3+/n7e9a53Adn5B19//XXe//73A3D00UfT29u7X+tpa2vjnnvuyd3u6+tjcHCQ5ubmaZ518KaedJGtlFeAx2+QiI73oRmrfqeNzbmjKSj1U7sEZ6uPpQuOwbBGX3+6Lmb7Y2VzmK39+y6+oPiMbFc/bay72Gz9Roz3JQoaRSbEnPDS6oIDmzQzbWmkC1wvWxDKDliPTprcdzLX0MBV0KepCtjS0oYQLl07XwbAZ+xfy2bEKqcj+kbutm5pZBJvvojCQTHUXPGDg5EbY7Qfu4k6LzS+X02imxpVbcHsJMsHwNBUmir8OEMKpPev691cZocsTgyemDfGrSow/YXfsdLos1kIXFEUTm9fSG+09NtYJk3StBxX8Jctvdy5YScbdgwSsHT+flUt7Y3beGzvj/jU04/huoLTzLNZmXonzgYPTn8Sxezh7baGx6+DR0NbVo52dDlKeG63vCiJftQXfkfmD78n/sJr9O/Rebm1lc7G40kuiiCMbPzV1bW0trbT2jqPSKRMdruTpDls4mTPjz/+OAsWLKCsrCx33/5e6Fi1ahXd3d0888wzHH/88dx2222cdtppuRLmpVTR7CedcFBHTwyd0bMYfR8Xp5bUBCizDcL21Bb/kNfgbc1hwt7xx9IBE1QFtd6HVR0gGd93q5qhqXgnnNSvrDyBPbFhmHQxWKmzUSo92TJmCijh2Z9SotHfxIK6xVPub7AbSSl7s3PbFKimVsz8Kh+v7R7Z94KFjCW4qkJFSwBrmpP47D6rgqlT4YFQuPCV8X2pXRAi42R4Y/e+l51patBELQug7Of4uZyxATQTJuEtJldBfh+Jmcd/cD1e1EgZM5Zyjn7ecXtmil8Zavb7U2wOp0I0RTugEt6VfpNXd0NtcHbP7Sp8JhVFuhceSjJpkgqKJjPc/bdufvn8LnYNJqgJGqw/MY3re4KHdj/CXX8bYWH8OD4S/yfC3bX444JqQ6HOK7CDBkIBrTmAurgMdX6o4BXTOUG4aN3Pw2O/JvXYY8ReHWAo5mNLSyPblp7BUKgMNA1FCKorK1l81ApaWtux7eIDjCVJmluqqqr485//zPLly7n11ls588wzc4+9/PLL+135zuPxcP3113PNNdcQj8dpamri2muvna2wD4iqqVi+8eNsfSg72aRnHy0QuqrQEC5+UlVmj5+oGB6NpCNQ54dRdBXV0mD6nlw51fNCJIazLWEBI0jCUIiTf+VYUbJzKgEo1aVNRBeGFyNOEAd8Qayt/E0kTRPY+ztReyDAyIIm/PUt+7X45HejKMoBzwH0Zk3cpvuTMAWM/OpoaqMfEU0jZrtBcj+okfzJW5UyD2J3vGir1nQUU2N33czt90EjRI3VgjD2f5zWgfJbOmsWV83a+ucamTRJeTp6Y/z387v43Us9xNIpFjb1cNri1+lIPM2DvUO0bzma80cuo76vhrBQKTNUIrqC5gdUBaXBhzY/jLogXLQbSck5KdSXH8T9w/+QeuFvjOxw6dfDbGtqYvs7TmLYF8zOvZBJU+4xWXLM21hy7Ep0/TAZeyVJUp7Pf/7zXHLJJezdu5dly5Zx4YUXAuMFIr7xjW/s97pWrVrFb3/721mKdOa0lNnUhzwYB9BKsi8VzQFS8fFyxAfCsvV9llE+ZMa2yT5aHw62B8HqtjJSzvRlvAsxNYUyn0Fr+f5flHOFQ7oygmK8id+nOdxT4qTqU6a0fCg+A8VnYIzOt7U/1fpmk+K1EfFss6la7oEJcyyVWn0wTBcUn4AaWFobyHXFnW1h22AgVqQU32FgjhzBpFKKpRwe3ryH3/6tmx09PdR7u3hP1SA+Z4jq/gqauo6hJn0mftfAo4z+kFggFFAqPKj1ftSWAGqjH8Wcm3MquV3bEH/6Jc4zfyaxeReJQZ09FRVsaz2ermUNJMzsQU5NxAil4yxYvIyjT3onHt/BdXmQJGnuWLp0KX/5y1/o6+vL65bX0NDAjTfeyDHHHFPC6GbPTCZMkJ0XyRs4gC4yKnDgucOsUywNtTmAsmN2uvsc7BgwRVF4W1Nk3wtOkHGzncNMdW53fT9YBedxGmXZOvVLIgeVxM8k44S3T63ZP0eEvQZrFk+/T03X0jzTVjUf2P69oMrPrsHELEVz4GTS9BYiHAFDKcRgEncgye5dI3TvGsKJDrNMCE53vRhUw0g1o1NPkBGChAspXSVZZqLUePE1+FErPChV9j77CZeCSCbIbNmC87encJ/+I6lNW8gMponaNtua6+latZT+UBmuqoHrosWGKXMzzFu4hIWrTiJYWbPvF5Ek6bAzMWECqK6uzlXUk2ae2haEIkUGQlVeUrHMQY8lebPmbE+IA9TobyLtpmicNGFpMUrB6XHnbkvTvhRNmA5hDqNopb9YvLQ2QOBNFmyZi1rLbVrLSz9mdMyRt4WlbEWZaDo7K3R3DLcnjuhPwnAq70ASwiGtDzKoxdjjQq/r4MZt4o5CWlPwtwSoXBCidmGY8tDcvIolYjEyW14n8+omMps34byykUzndhwBAz4PXQ1V7DnueAbClaTM7NUUJZ3CikepjERYsPgYmpYdix06sKsfkiRJUr6IWUaFpzJ3WzE0KDKmyvTq1O/jCniew/e8fopAxcwl6oZqsDA8tZDFXOb1elFVjUikbN8LH6RQtZf0sHvY7TeKcnCNVgVbi0x1ZmedlWTSdCQQsQxuTzZByiZJMRgZLe+qQjSg8LrWx+ZgJzuMLaRIosYjhKOtVPU1o7rZLmiROpuqpUFaFoQob/KXvMl7IpFK4XR2kNm6FeeNrThvbCGzdQuZrl3ELINhj8lAmZ+91eUMzl9N3A7jeuzsEch18bgZGnweWlrn07pkOYGKKlnxTpIkaQYdW3F8qUM4LFS0zCvZaxf63TvULU2apjNv3r4nwX0zQtU24YVvfr6eQ+20+RUz1tNPaz+wUvnSvsmk6TAjkg6iJ5ZtRRr9l6EJg+rKLHorYUNlF39xXuAldQNlKT81Q63UDs+nNXoWmpv92EPVXqqWBKlqDVDZEjjgOQpmmhACt3cv7vbtODs6cXZsz/5t68DZsZ00giGPyaDPS39NBf1tNUSXtpPx+HAtL8LI9k9XEAQ9HqoqqmhsaaN90TJMOcmsJEnS4e8gqpJJ01MUBZ/up8XfWupQ3vJmehyiNLNk0jSHibSL2D3avW60FUn0T5gTI2QSKzN4pWqQJ9zXeJINxDLd1EarqBlupXl4McfGTs9eRVIgXO2lYnEglyRZvkPbl1wIgRgcxO3pwunuxu3uwunpxu3ahdO1C2fnDkgkyKgqfcEAfWVhBisrGZrfRGxJO2ndwjUthG6Mz88gBH5TpbyqjtrGVurqm6isrMqbl0WSJEk6zI1dfZ9LOZNntDx6cG5VVlWra3A6tqJWTe0G6IjsGDOfnl+h74Sqtx+S2CTpcCaTpjlCZFzE3kReK5LYm8j9UKQ8Gr1+hddqozyndvKs8jIDSgeVSYOqvnoqR5pYO3QOvnR2PgPFgMrGABXNASqa/JQ3+DE8s5tICNfF7evF7e7C7e7G6e4aT4y6u0jv7iEhBEnLIu71Evd6GQmFGCqLMLJkIYljlpFSVVxt6m5pOAmCIkbIK6ioDBJuXkpZ42LKysrRCiwvSZIkHUHG+izN4JxCLS3tb6qbtmJqaAcyLusQUQMBrDPWFHws5WbnxpquKp0kSYXJs80SSI6kGd4ZJdUVhT0JzL4kvmgGdfQ3YUQVvKYleNHsZZO5g9fszTh6L2UZk/KRGipGGjkjuppQ8tzcOj0hncqFQSqa/VQ0+QlV27mZ4WeCEAIRHcbduwd3717cvXtIdXUR39NDoncv8YEBkiNRErpO0mORsDwkPB6Sfh+J6koSjfWkCjU7C4HiZFDSKbTkCCExQohhyvUolWEv1Q0NBJuWQf1K3GDznJ5PQpIkSZolugqmijqDk96a5uyUHJ/LxlqYqj2yaqQkHahDkjQ9/vjjXHfddcRiMerq6vjWt75FTU1+WedNmzZx9dVX09/fTyQS4eqrr2bRokWHIryDMhBP8/yOQRwhcFyBIwSuC7G0w0gyQyyRQYmmMUYyBGIOoYRLWdKlOgM1qIzN/tOnpHhZH2Crt4ddRg979V6Sbgp/KkIwWU5LXzUrdi5Dd8cP7lZIo6I9SFmdTaTeR6TOd8CTBgohEPEY7uAgqb5e4v19JAYGiEeHSEajJGIjJGIjJBNJkpk0SeGS0nVSpknSNEmZJq6ug98L/kZozi93qgoXzXVQMmlEKg7xIUwnjZJJozppQkSp0geo1Xup9LuU1dXjqVuIU3EcmerlZMoWgpZ9z3Nwmg9JkiTpEFJURQ5snwEBI8ipNaejqfKauSQdqFn/1sRiMa644gp+8pOfsHTpUm666SauvvpqbrzxxrzlLr/8cj772c9yxhlncP/99/P5z3+ee+65Z7bDK0oIgSvcbLe5tJP7S6dSZFIp7tmwnY7OIaqFSkAoBBWVEBptaJQLgxD5fZyTZOhV4+zRRnhVJBlwHYbTCiLtxZPxY7uLmMcicjV1FIHpcQgGVELVCgE7g9+bIeBJYaoZRKYLhjPojzyD2vEnEugk0UmhkRI6SWEQFwZxxSCmWCRUk7hmktRNUqN/GcMgbRigFmgB0hQI+FF83mxLkOPA6L9KagQtPoTuZHKPKRP+b4k4fi2JT0/h01P49RRhK00g4idYUYVd1YQIL8cpW0CmfDGuvxZHUcamhpIkSZIkaZbIhEmSDs6sf3OeeOIJGhsbWbp0KQDr16/n+uuvJxqN4vf7Adi8eTPDw8OcccYZAKxdu5ZrrrmGLVu20N7ePmOxbB54hZv+/D0u7vw/GEJHFQoKKioKQgj2KlFUF1ShoKGhY4wOKRITpjfK/v944DgAxUEokBaCjHDpc126hUtq7M91SLgOaSEAgYKD6qRQ3RS2k0JzUqgiCSKDIlIopFDIIHBwUhp7oyo9moarabiqiqtpZDQNR9dxNR1XDyIazi3wbifJS24cFDeFEothTkh4NOFg4GCpLpbq4tEEHh0MQ8XUVUyvimmomIaGYSiYuoZpGhi6B8NjYXgDGLYfzRtAmEFcuxLXW4FrVyA8EVCyydnhVQBUkiRJkiRJequb9aSpo6ODxsbxrls+n49wOExnZydLlizJLdPQ0JD3vMbGRrZu3TqjSVOVt5pj608gPaKSEQKhCFBchCLYEe9ly0gXHPKiaxowoY+2ECDc7Fgfd/Tf0du4LopwUYRAddKYbhoto6KpKoauoes6hmFiGCaWZWJZHjweL5bXi+XxopsWuuXJ+9fweDE9XnTLgzoDFefSo3+SJEmSJEmSdKSY9aQpHo9jTZojx7IsYrHYAS0zprIyMOW+/VVJgAUN/whrD3oVkiRJkjStN/M7NZPrOBRknDNLxjmzZJwz660e56zPomXbNslkMu++RCKBz+c7oGUkSZIkSZIkSZJKYdaTpra2Nt54443c7b6+PgYHB2lubs5bpqOjA9fN1knLZDJ0dHTMaNc8SZIkSZIkSZKkgzHrSdOqVavo7u7mmWeeAeC2227jtNNOw7bHx/HMmzePyspKfve73wFw11130dDQQGtr62yHJ0mSJEmSJEmSNK1ZT5o8Hg/XX38911xzDe9617vYuHEjX/3qV+np6WHdunW55f7t3/6N22+/nTPPPJNf//rXfPvb335Tr5tOp/nXf/1XFi5cSHd395t9G3PK448/znvf+17WrFnDRz/60SPu/cGR/fmNeeSRRzj33HM566yzOP/883n11VdLHdKMe+CBBzj33HNZu3btEfsexzz66KMsXLiQHTt2lDqUGbd06VLWrl2b+/vCF75Q6pCOSHPt2F7oGPXMM8+wfPnyvP3h9ttvByCVSvHlL3+ZNWvW8O53v5tbb731kMRZbP+8+eabOeuss1izZg1f/vKXSaVSJYvz/vvvz4tx7dq1LFy4kLvuuovjjjsu7/6HHnoIgKGhIS677DLWrFnDunXr+P3vfz9r8RX7zT2Ybbhr1y4++tGPsmbNGt773vfyxBNPzGqMP/jBD3IxfuYzn2F4eBiAH/7wh6xatSpv227cuHFWYywW58F+bw51nNddd11ejKeeeirve9/7APjyl7/MO97xjrzHe3p6gOxcq+vXr2fNmjWsX7+eTZs2zVicxc6VSrJviiPUxRdfLL73ve+JBQsWiK6urlKHM2NGRkbECSecIF588UUhhBA/+clPxCc/+ckSRzXzjtTPb0x3d7c4/vjjxWuvvSaEEOL2228XH/rQh0oc1czauXOnWLVqldixY4cQQoibb75ZvP/97y9xVLMjFouJdevWiZUrV4rt27eXOpwZFY1GxdKlS0sdxhFvrh3bix2j/vCHP4iLLrqo4HP+67/+S1x66aXCcRzR19cnTjvtNLFx48ZZjbPY/vncc8+J0047TQwODgrHccQnP/lJcdNNN5Uszsnuvfdecdlll4nbbrtNXHXVVQWXueqqq8Q3vvENIYQQnZ2d4oQTThDd3d2zEk+h39yD3YYXXXSR+NnPfiaEEOKFF14Qb3/720U8Hp+VGO+77z6xbt06MTw8LBzHEZ/5zGfEd7/7XSGEENdee6248cYbC65rtmIsFufBfm8OdZyTfe1rXxO33nqrEEKIT33qU+Kee+4puNzatWvFQw89JIQY/0xmQrHjUKn2zVlvaSqVSy+9lE9/+tOlDmPGFZr36n//93+JRqMljmxmHamf3xhd1/nOd77DvHnZ6YyPO+44Xn/99RJHNbPG3mN9fT0AJ554Yt74xiPJDTfcwDnnnHNEFq+JRqMEg8FSh3HEm2vH9mLHqOHhYQKBwpWp7r//fs477zxUVSUSibB26URpgwAAIABJREFU7Vruv//+WY2z2P55//338+53v5tgMIiqqpx//vncd999JYtzomQyyb//+7/z+c9/ftrt+cADD7B+/XogOw3LypUreeSRR2YlpkK/uQezDYeHh3nyySc577zzADj66KOpra3lySefnJUY29vb+da3voXf70dVVVasWMFrr70GUHTbzmaMxeI8mO9NKeKc6NVXX+Xpp5/m/PPPn/Y9FJprtbe3ly1btrzpGIsdh0q1bx6xSdMxxxxT6hBmxXTzXh1JjtTPb0x5eTknn3xy7vaf//xnli9fXsKIZl5VVRWrV68GssVdfvOb3/DOd76zxFHNvM2bN/PYY49x4YUXljqUWTE0NITjOFxyySWsXbuWj33sYzPyYyjlm2vH9mLHqOHhYTo6Ovjwhz/MmjVr+NKXvpTrDvXGG2/Q1NSUe05TUxNbt26d1TiL7Z8dHR15sYzN/ViqOCf61a9+xbHHHktTUxNDQ0Ns2LCB8847j7Vr13LttdeSSqXo7+9nYGDgkMVZ6Df3YLbhtm3biEQieePWm5qaZuSCWaEY58+fz1FHHZW7PfG3dGhoiIcffpj3ve99vPvd7+bGG29ECDGrMRaL82C+N6WIc6L/+I//4OKLL0bXs7MTDQ0Nceedd3LOOedwzjnn8N///d/A9HOtvlnFjkOl2jeP2KTpSHUgc1pJh4fHH3+cW265hSuvvLLUocyKW265hdWrV/PMM8/wuc99rtThzCghBF/72tf4yle+gmEYpQ5nVng8HtauXcsXv/hFfv/733PSSSfxD//wD2QymVKHdkSZy8f2iceoxsZGTjnlFG688UbuvvtuRkZG+Jd/+RcgO1XIxPfg8XiIx+OzGlux/TMej2OaZsFYShHnGNd1+elPf8pFF10EwKJFizjttNO49dZb+cUvfsHGjRv50Y9+RCKRQFXVvOOKZVmHLE7goLbh5Pvh0O3H//mf/0lvby8f+chHgGyrxBlnnMEvf/lLfvazn3HXXXdx9913lyTGg/nelHJbdnZ2snHjxrzaAyeddBLr1q3j7rvv5vrrr+e73/0uTz311CE7dk08DpVq3zysk6YHH3yQd73rXVP+xrLfI5Gc0+rI8vDDD/PFL36RG2+8Mdf8fKS54IILeOKJJ7jgggtYv349iUSi1CHNmF/84hfMmzeP448/vtShzJrGxkb++Z//mZaWFlRV5YILLmDv3r10dHSUOrQjylw9tk8+Rp188slcfvnlBINBPB4Pn/jEJ3j00UcB8Hq9ee8hHo/nXdWdDcX2T03TcgPDJ8dSijjHPPfcc9i2zfz58wE499xz+cQnPoHH4yEUCnHhhRfy6KOP4vV6cV037z0kEolDFidkt9OBbsPJ98Ohifs73/kODz30EDfddFPutS644AI+/OEPo+s61dXVfOhDH+KPf/xjSWI8mO9NqbYlwL333ssZZ5yRl7R/5jOfYd26dSiKQnt7O2effTaPPvroITl2TT4OlWrfPKyTpjPPPJOHHnpoyt8HP/jBUoc2a/Zn3ivp8PDYY4/xzW9+k5/+9KcsW7as1OHMuC1btvDYY48BoCgK69atY2Rk5Iga1/TII4/wyCOPsHr1alavXk1XVxcf+MAHZrTCUakNDQ2xffv23G1FUXBdN9dlQ5oZc/HYXugY1d3dTW9vb24ZIURuX2hra8vrkvP666/P+sWgYvun1+stGksp4hzz6KOPcsopp+Rub9++PddNC8a3ZzgcpqysLG+fOJRxwvTbqdhjzc3N9Pf3MzQ0dMjivuGGG9iwYQO33norZWVlea878SR5bNuWIsaD+d6UIs4xjz76aF63ONd1p1TEE0JgGMasz7Va6DhUqn3zsE6a3or2Z94rae6Lx+NceeWV3HDDDUfsJM59fX184QtfyJUkffbZZ0mn03njNg53P/7xj3n88cf561//yl//+ldqa2v51a9+xQknnFDq0GbM5s2b+chHPsLevXsB+OUvf0lNTc0R9TnOBXPt2F7sGPWrX/0qV97XcRxuu+02Tj31VADOOuss7rjjDhzHYffu3TzwwAO8+93vntU4i+2fn/jEJ7jvvvvo7e0lk8lwxx13cPbZZ5cszjGbNm3K254//OEP+fa3v40QgmQyyZ133pm3PcfKUr/++us899xzh3Rc6FlnnXXA29Dv97N69Wp+/vOfA9kuVf39/axcuXJWYnzppZe46667uPHGG/H7/XmPXXPNNdx8880ADA4O8pvf/IZTTz31kMcIB/e9KUWcYzZv3py3nyqKwmWXXZabT7W7u5sHHniAk08+eVbnWi12HCrVvqkIIcSbfldzzN69e/m7v/s7YHxAmKZp3HLLLVRXV5c4ujfvySef5Jvf/CbxeJympiauvfZaKisrSx3WjDnSPz+A3/3ud1x55ZW5ynJjbr/9dioqKkoU1cy7/fbbueOOO3BdF9M0+exnP5t3lfVIc/rpp3PrrbdOGRR7uLv55pu58847URSFqqoqvva1rx2xyX4pzaVj+3THqOuvv56nnnoKVVU55phj+MpXvkIgECCdTnP11Vfz1FNPoWkaF154Ya7622wqtn/eeuut/PznP0cIwdvf/na+8pWvoOt6yeIEeM973sMXvvAFTjrpJAAGBga46qqr2Lx5M4qicMopp/C5z30O0zSJRqN88YtfZPPmzViWxWc+85lchbKZNN1v7gMPPHDA27C7u5t/+qd/YteuXfj9fq666iqOPfbYWYnx+OOP58EHH8xrYaqvr+emm25i+/btfPWrX2XXrl2oqso555zDJZdcgqIosxLjdHHedNNN/PCHPzzg782hjvOWW27BsixWrVrF3/72t7xxQy+//DL//M//zMDAALquc+GFF+Z6dm3evJmrrrqKgYEBysvL+cY3vjEjvxHTHYd+//vfH/J984hMmiRJkiRJkiRJkmaK7J4nSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSZIkSZIkSZI0DZk0SZIkSZIkSZIkTUMmTZIkSZIkSZIkSdOQSZMkSZIkSZIkSdI0ZNIkSYfIk08+yYYNG0odhiRJkiQVJH+nJKk4mTRJ0iHys5/9jOeee67UYUiSJElSQfJ3SpKKk0mTJB0CF110EX/84x/57ne/y9lnn01XVxeXXXYZJ554Iscddxx/93d/x6ZNm3LLn3766dx000252319fSxcuJAnn3yyFOFLkiRJRzj5OyVJ05NJkyQdAj/96U+pr6/niiuu4N577+XLX/4ymUyGhx9+mMcee4zGxkauuOKKUocpSZIkvUXJ3ylJmp5e6gAk6a3oBz/4AUIIbNsG4Oyzz+Z//ud/iEaj+P3+EkcnSZIkvdXJ3ylJyieTJkkqgVdffZXvfve7vPLKK8Risdz9qVSqhFFJkiRJUpb8nZKkfLJ7niQdYsPDw3zsYx+jubmZ+++/nxdffJEf//jH0z7Hdd1DFJ0kSZL0Vid/pyRpKpk0SdIhtmXLFoaHh/n4xz9OWVkZAC+88ELeMpZlkUgkcrc7OzsPaYySJEnSW5f8nZKkqWTSJEmHiMfj4Y033qC2thZN03j22WdJpVI89NBDPPHEEwDs3r0bgNbWVv70pz8RjUbp7e3llltuKWXokiRJ0luA/J2SpOJk0iRJh8iHPvQh7rnnHt7//vdz5ZVXct1113HiiSfy4IMP8v3vf58VK1Zw/vnn89prr/HpT3+adDrN6tWrueCCC/jIRz6CqsqvqyRJkjR75O+UJBWnCCFEqYOQJEmSJEmSJEmaq+QlAUmSJOktIZ1O86//+q8sXLiQ7u7ugsts2rSJ9evXs2bNGtavX583mee9997LunXrWLNmDZ/61KcYHh4+VKFLkiRJJSaTJkmSJOkt4R/+4R/weDzTLnP55Zdz8cUX88ADD3DhhRfy+c9/HoBdu3bx9a9/nR/96Ec88MADVFZW8r3vfe9QhC1JkiTNATJpkiRJkt4SLr30Uj796U8XfXzz5s0MDw9zxhlnALB27Vp6e3vZsmULjzzyCCeeeCJ1dXUAfPjDH+a+++47JHFLkiRJpSeTJkmSJOkt4Zhjjpn28Y6ODhoaGvLua2xsZOvWrXR0dNDU1JS7v6mpid7eXgYHB2clVkmSJGlu0UsdwIHas0f2IZckSTpcVVYGSh1CUfF4HMuy8u6zLItYLEY8Hs/NVwNgmiaKohCPxwmFQpPWk0LXtYOOQ9MUHGfu12iScc4sGefMknHOrLdSnIZR+Ph92CVNkiRJkjQbbNsmmUzm3ZdIJPD5fNi2TSqVyt2fTCYRQmDb9pT1RKPJKfcdiHDYZmAg9qbWcSjIOGeWjHNmyThn1lspzmIX92T3PEmSJEkC2tra6OjowHVdADKZDB0dHbS3t9Pa2srWrVtzy772/7P35nGSXPWB5/dFRF5V1VXV931JLbWQQEgghEAcliyB3ciYGxtLeAxe7FmP1zt8ZhbYXWMzPrCxP8sY4xmPV8wae8CsMSyMuCTRuoVutY4+q7vuuyrvyLjfsX9EVtbd3ULdUovJ7z9VmfnixS9evMj8/d7veCdPsnHjRrq7u18ucdu0adOmzUtI22hq06ZNmzZtgH379rFx40a+973vAfCd73yHHTt2sHfvXm666SYef/xxBgcHAfjHf/xHbrnllpdT3AsfY8Dol1uKNm3atDkntMPz2rR5CTHGMDk5zvDwAJOTE9RqVYLAx3EcurrWsHHjZvbuvZg9ey7CcTIvt7ht2vzMUCwWufXWW1uvb7vtNmzb5qtf/Sof//jHW4bSX/7lX/L7v//7fPnLX2b9+vX8xV/8BQCbN2/mD/7gD/id3/kdpJRcfvnl/O7v/u7Lci2vFJypp7DdMaJL3/Nyi3JBYaKQ5PnnyLzmtYglOXRt2rS5cBHGmAs/q2sB7UIQbV6JKCU5duwwhw49Sb1ew7IsNm7czLp16ykUOlBKUqvVmJ6eJAh88vk8V111DVde+Toymbbx1OZnhwu5EMS54sX+Tv2s5A7k+r4D8LIbTRfaeMpTfaihQeyL9+Hsvbj1/oUm52q05Ty3XOhyJpFCJZotO3ouaDnnOJ85TW1PU5s255mRkSHuv/8g9XqVLVu2cu2117N378Vks9llbbXWjI+P8uyzT/Poow9x9Ojz3HDDO9ixY9cKPbdp06bN+WH8yDNkCx1svOjSF92XV4lwSyFb9vWcufErDBPHmIaLtW792R8jJQDCPrMKZoxBCLHiZ1JLBt1+Lu6+BEu0sy0uRETsYjJdsMo9fCUweaIKwJYdP3vP7wul/ZS1aXOeSJKEe++9izvu+BaWJbjllvfxvvf9Kvv3v2pFgwnAsix27tzNLbe8l/e+98MIYfHd736Tp556jFeYU7hNmzavYOLAo1GePSd9lUYbxL7E6PQ7zKqPYZdPnpO+X2qMNq3rAEiefJzk6SdXbis1eqyBSZbkdSmV/nVObzRpr0F88C7U9PSKnw+4pxjxhpn0J87+Atq8dKiI7NBBnOlDL7ckFxxJpJg6WUPJny7ncajs48eq9XqkEnCq6J0r8ValbTS1aXMeqNdrfPObX+Po0ed53evewK/8ykfZvXvvqiuGK7Ft2w4+/OHbuOSSy3j00Ye45547W1W92rRp0+ZCozLh4ddWL7eum8ZGZupJnOKRl0qsFfGqEUmkztxwCbq/hm6uvAMY/zSKmi8xboKZDZZ00jS6zvB7YBoNANTI0MqyNItsGE6/oGa0QR2rYE5zb15uGuUQrV7Y75sxhurkKFq98Pv4ktC8P7Y7/jILcuFRnwmIA0lQj1dvZAxWbTgtKLMAqTQnphs8MTL/HB6bcumfbRtNbdq84piamuRf/uXr+H6Dd7/7A7zpTW/DPoswjJXIZDLcfPMB3vCGN3H8+BHuuuv7qAv1B6JNmzYvOXEcn34xRUXLlI7zhVsMKQ43Wq+NgZGRfOu1XmHDyXq9Rl/fsZd8Qag00mCyr3rmhgs4OHEXw9XBsz9gziZabTX9TItozc9N7YXJuQxlsPwZ6O9/cf2cI5TUi7x1cSApj3mUxl6Y0tsozVAZH6EyMXKuRTw3vNzBIeo0BslPwbmMdpnr63QLyXbpGJnpQ9jVxfPWNI9XL8MicttoatPmHNLff5LvfOefyWQyvP/9v8rOnbtfdJ9CCK699s28+c1vp7+/j3vuubMdqtemzf/AmAVhKUND/UxMjK3cUIbk+n+IXTr2U5+rPhswdrTyU33naA1Knd4wKJdLAERBiEle4gWhJZe00jWq6WnMgk2N3aS+vB8Zrjo+fq2MauYwLTjRWYknLBtIPUqnG/8wUVT95DQdgV0fwXZXmSeroGtVoh/fiQmCMzd+AYwfrVAanTeuiSKM1iThC7v/c2NiLvgIjBf/ex358gU9g3bpBLn+H4Bc/d7FKubh6QdWntMrsNDQXYp2XUyUPgf3TNzNuHf6uda6lNN8PTjlvvSfJcZfabif8OTTZyPyOadtNLVpc444fvwIP/rRf2fDho184AMfYe3as08MPhuuvvoa3vjG6+nrO8bDD99/Tvtu06bNKwNdDtH9dUwoW94Zf0mImF8vcfLIk8RB+r7dWDnnZWxspGW0LCRszCtR1UkfLfVZ631OPUYdqwBnZxvMrTSbwTr6VJ2pUzUalcVhZFIb9ItcKEqShNppPDZezeXEQ4fw6ws8ZVGEfP4ZkueeWV3+oIIzexirvlxJjDwPrzxLbWqV8KwzeZosgTGGo9XD9NWOr9rsiZEqjw1XTt8XnPU9HCz5uKFEjady6xXmyIulXp6fs/GjD6GGBpHxvOGntUbK0xiCq9DyYEQ1aMyc1TGB9ClH5dX7DAKSY0dbBTxWQyWakedK9J/op6/vp1+oWEocSJ6/617Gj569l9NqPvNChqu2KQUlgiRk2B06qz5P9wgmj/2E+LFHUUZhMJyq952hs/TP2aQsiCV7vbmzK+f4vRS0jaY2bc4Bx48f4eDBH7Fjxy5++Zc/SKHQcV7O8/rXv5HXvOYqnn32KU6cOHpeztGmTZsLg5VWlseHhxmYGYJYo/XKK/Phibtxisfwo6bSqeeVPRkrKhMexhh836NYXK5YloYHmucHbdJzrKQvxWFAZWJ0kZyOl2CMQUqJMfMKUS1IOHlyXrH3Gv5iD0Hz39iXlBd6IYCDJ2Y5NFZb8VrPltHRYaanJ9F6Za+NN1UBqfGLC84z58kIAkyk6J5ZYfsHmZY2FnKFEsfN45eHHi4+vwkkethdvpJv2a2WY/7o8v6VJjtRfMHhl/XZKYJ6akCa6aOI2rzBp42hb6ZxdkYYYMIQk5y9cRPHMaXaNNOl0UUGe1iZZmbgUMtgn5qaYGDg1Ir3auj4E1ROLFg4XNBm9PkyU6dqZIfvRQw/eFYy/WTmIQ6VVi7mAaAmJ9Djo+jJ0xfcmMuRK8+8uLm6vN8YozWl4TMbTVJpZtwFiw6rfEcAFI/7JMOL57QJQ8wLTAFotY/PPmeuZdyelRViTvPqpaVtNLVp8yJZaDAdOPCe87qvkhCC66//ObZt28F9991NsXhuqlu1adPmwuOeybt5urhYmfOjANVUhPQSJduvxWhl0NqQSEFQbxpLZl4JKo02qE7V8aqLDZOFxGEa0jPpj3O0eiRVcFbQVGYGTlGdGCHyFu9LVfGqDAycJF6QyzNUDugfTdu5dY/J8dlFK8ZnUoSKjcUhOibR6JmVQ48iFXFw4i5q8bxnSalmmW8hVrYx9JwSt3jlu+ra+IFATXlk/eUq09wqeK0RcOrUiUVK/nQwjbeSMbUEM+1jfIkJlngyBJxuZOzRcToGx8mXztIT1OyqNNzPVN8RjNaMPX43lWd+1Goil+ad+Q6murqHJX70J8SPPHxWp1cjwww89zRhlHqZwnD+/sVJ+n/c9Jo2GulcWbowkMSSaPw4MxPDiJXC8pQm9lN5x6YVkyPLvRJJkhAEL2Afn6Q595ZMHKM1xeF+/EbjvIbM6+bcDU1MLaote+4XcnjS5dBYjaj57GXHHjpt32bBrTVJQvzQ/aj+Uy9MwNMYWUmkiJfOazgry8dojUnkCosCZ1dI5XzQNpratHkRHDt2uGUwvetd59dgmsO2bd75zlvI5fL88If/nSha3f3eps3PCnEc8+d//ufcdNNN3HDDDQDcfvvtDA6+gMT8VyCVOA0b0pUyybHF3uWgXmV2oA8Zx4SNhOKwS23axwCu61DtmyKaqCAWKJ7GQHHoOcaOnCYnoKmkVOIKTsVFhwErajlCUAxnieLFCqjXfJ2sUPgBIG6GYSklVw3PKY+fviiAGfcwpRATLlfI5sZs1FvunQnchMhbQYmb07+XGE2NwKZcESBW0fKMRofbmBqpLPMoDTX6KYfLDRqjNePeGH7iLVa2lw6FaSa8Cwu1Qr6XaCrG1gphbHJkGDk40OpnpRPEcYQvDQ13/v7JpkLuWALjGVxfoaqn8STJ5Kw9DLLvOGp4+PSNVhnmSqXE8PAgI09M01lt7hekF8ulyyH5mQDRLPF+YjRkqG95kYihoQFGRxfLoWK5yIhbJJJZWUn3axXKk2McOfRY6jVbNpVPbxmEYbhozkzVAh587sSysETVvJ7JYIKfHHqKscOrhxJ6zXmiFsyrvpkGR6ZW3nA7F4tWoRLTvI/ueD/TwdTyxqtcTskN6S96ixZJWtfUV2Pq5OqeN7tyklppgiBOn0m7dLyVhxUdHSJ4+sRiEbRGN85/lbzVaBtNbdr8lBw7dph77rmzZTA5zvk3mObo6Ojkne+8hUajzo9//MN2YYg2P/N85jOfIQgC/vqv/7q1z9mePXv47Gc/+zJL9tKQPPUEenyBEWAMQTVVnuLAQzaLQ2hlEIBWAjUzzXTfYoNm7rsiSlaurKUrFeTEGCKogJZkZyqo/pMremdCGTIVTHGksrh8+JzuaM6Qnz+ngxptMEsaN0phS1lciVZo3wpGl0AgyxYTM1P4crGCNTtYY3awmbNlDLq8tIiDoD4zyeSJw4uU4MnyFFV3pYR5w6zrETTLHS8sTpAfmkIsWYUXQRk1ci9Vf5KTo49z8ujzlOqnyacBygHU+zzkkvEwdiqgWOB5sKsDoCJU33FU/8p7YSkD1SBhZGSYcpQeW58NGD1cbuWOZUNNWIqYSRrM+i+yet/ZssIcm6sWOzs7QxSFJIsMU4MOAvTcwmHTwyROU7pcDvSTDJxCxhEDTzxE3PQ4VcbrfO+R53jwuWOI4pJ8pBXk8msVZvqPo7RGIAjD4DQ1DdIOjt9xB8fu/mHzuiQjI4NMT0+2Wj15aoLpUpVisUgSBiQz/VjVQcpjqVfYRAITrXyW7NBBMsP3IgBjNGpBSO5gyWessoJBaAy9rkPHBOhSiClGIAWn3JMcrjy3qKk2mocmHqTSzP0KGy71pux9sw0akSKSurVnmGy6sM6km9jlfo7d9TgPPTmNCKs4peNkJlPvuvaC5t/5Z1idOokeGsCKgkV9R4MNZOX8l9T/6eogt2nzPzhzBtPOnbs5cOCXz2gwNRKXx2Yf4fnyswy4/cwE0wTKxxI2vdlednTuZN+aS9mRfw2Jt5Nj0z4jlYDZRsxsIyKSGscS2JagJ59hW0+ebT15Nu++iqHBp3nu+Wd47ZVXv0RX36bNS88zzzzDwYMHgdTbCnDTTTfxxS9+8eUU67xhjGHDUA5vnYRt8+83IkmpGrBr1MVpRtipJTklodSE0lAwkERrSSYLcEn6mVaSSMX4nqSwwnmTpx7HlEvYYhI7ngb2z+f2GANuAmsyCCGwrXTdNVgWgpYqdmpOeV2g3MgVFNrymEenzJHfnV/2GYBXmmh6pDbNv9nyDC1vb2GhSukcebL7cd694V3pCnW9BtkNqffGKHK+wUwHiwwvIxOKAwOIhRvPKok7NUGyxANgQomOckBCHATkWWA0VStkqnUsH9g5f0x29AGGExeSBGt8GjlpUd1yGevW9iySI1YRI/WTbMWgVAbtC2pTPut3duHXY3IdDjTHfy5EUEQ1nJnnsBqTzKmPtbhGJx3YC+SerofMNmJ29aSGszGGyoSHVx6ne++lANhKoZvKvjpNXsyLYaUS9EsZHh7ikkv2p3IYtcwSV/0nkZNTsP/VZ3XO6NQJRmeO0tFpsy3byfiRQ5gtmkAquoCN5SdRdgdW7x5wVnpCUrxSGhovAKEjTLxgHjUvS1cqNJ46jrW+G2lNICsJJhM2twlIx9RtGuJKKcJ6Me1TwNjhp3Emn2Tf/t3ANen7WmJVh6H7smXyiNhNn7oMjIRHeMAc5ZfWXHRWY2JJOHX4KOsynaxxc5Cb/+xo5TCub+jJrsVPfE7GfVy78Tomj6dGVffmrcSxbBkTU8EL22h57nkJazHQzAXXiz3BaqaI2Nts3/QGWknC3EBrbVC1MZLJMrx5J+eTttHUps0L5OjR57n33rvOaDBpo3mq+AR3jHyHR2ceRhpJh9PBvu5LuXrta+nEav4wFjk8dYyHpx4EATrpwdSvYbN4C9s6t3PZ5i4KGRulDVJrqoFkvBrwzHgNL7a4OdPNfQ/cx1cOh1x76U7ectE69qw7P4Uo2rR5uchmsxSLRTZs2NB6r1KpvKANo19RNL0H6w/NkDAfludGqUIRxBrR1GXDehW0wW4k0JtlvBriBVnWCnBMHrOg7LeAZZXojDF4saIrl6oEQtsI5bSUl7n2ZibAlCOs3V3QkWktwOs5C6ZpEAnSvKixkXFymZ2LFA03ktSLNSwBJorR1WZBAr28Ql+r/2SFFeRVVrAjqYnkvJI/t+KtZ6bRMzPoTZuZchpU4hJXOvubjeYVcfncM4yP9BNz6FDiAAAgAElEQVRccjm7F3g1dKkIPQtND9BDLkQdGNwXlJw+o+pYFJBakhGpUaK1WrRyfqx2lIo3RteC0DchIAliZgfrlNQIvpwhr2nNlXoQMzFeZ9/OLoQ3Q5zt4pm+u9mw+VJ211yMhjUASQDYhIlueUcir4pXmaIymgE2LLoXyigOTtwFwOb8Ft7Se92ZrzGYRhrJto7tq7aZHXLZsYKOW6/X02vSBqMUupgqyserR+kNt6TXkI7IsmOlloyVJthcWDkPK1RpX7WkxtZsJwAmThDNvoQxaYTmSvNrwXeNMILCjE3SKbCrgzjZCmxOjZTWvHVdJmYryHKdresqeKGFiqHv1HGyC/SGRtLg6WNPAAKhJMmhp9CZFVYDEh+BgwhrwFbcpI4vfTYXtiwS0VMVzFnFkc1fT6IUh6bHuSYBsoKOqs0p/wRDcgCiNfRk1y45Yp45r+9qz8DhynPI+i4u6r649Z4nfWwyrTBCa5WvcW0MI4NDbLykSNe6DeBkMBiEViRzYYXaoL0ydtBAew3oPX/6T9toatPmBfD884d44IF72LVrD7/4i+9e0WCKVcwPRu/gX4a+wYQ/To/TxQe6ruAdQcJrahNkxx7GCpbHudcswU8KBb7TLXlk3UGK4iCvLlzErRfdxp5dNy8rM2OMYcqNeGZwD/2PfJettcN86f6Yv7p/gIvWd/CLr9rEL7xqE1u6V169bdPmlcRv/MZv8J73vIef//mfp1Kp8IUvfIG7776b3/qt33q5RTsvGG0Yq4bsaoTI0RGslsKWKhmdpWeJ4gS0D5kORDUm48bQyGEnDh0NEB3pMY2GTedcxysoJ/1Fn/6ix/UXrcPEEYW4F6umMB1p3sekP87FBpjbR0cuNbo0UktCt0aeLAiBjEIsII5CHCDwpzFa8sjhiLW1gB29BfxDTxIojem9mBVREcKs4uUwS/42eWigxHOVh9nP4i0fTOBh1Qagcy/1jtQQ0XN5SgvC2xIliKTGj1XLGyC1BAFGaZLpEqZnzoMGoVRMisUhY2ek2cQYKFdm6SpspFSP0Rsicpu3Nz8zrJ/oxPZszJxCbwlm77yTsUqClFU6N9SohRLRmZ5/olhFJgmuW2FNfQTh5CmoLI21W/G9NIQt35igVHoIJ3MZhi2pgas0RyfrbFB6RWOhHteYUxeH3QnecuYr5PnKswAto8mYxWXj66HkmeJRChXYsWRSFscm0LN+y5tonJA5V1msF+bwNo35BWMeqxg7UZTGrBU3FU6SGGNMsyCIIVABRplFEng6ouaNsq23aVSvkNNkJU1vqqcIgoiJsRnWXcXi9sYglUYrw3A5zREKZcjEZB+Xb9+PY6Vj+vD4Q0x4U8BuhJSYJEFXa8w/tEtJ+3989lEANhe2UJINeuyOVUMEjTEoqRFCo5KETD71oomoDjHEMoMA3FhSiLtQVYco7xElIbmmmarCmKRcw2xIzy9HR4iqDcT6S1YTlDgKMEoy2OhvGU0jjWFO1PrZZV3MhgWP4OHJOq9bcrzSGlmqUHz6cbpuOpDeA5Ma8uVoGGM2t54nx62SPP4YvPeXVpXnxdI2mtq0OUsOHXqCn/zkAfbuvZh3vvMWbHvx4yO15K7xH/IPJ/8rM+E0rxFr+F8qITdXR8hyFJVfz0xhH8/ra3gm6aUoerl401peu2sjl2zsJBtXeJs/y89505Qqx/h2PMrX9SnuO/I53vHk/8Fv5y9jy84biffchO7ehRCCrd15tr52Nyc73sFdd32fP7/OZrZjL3cen+VvHhriPz00xOt39nDg8s2847JN5Jx2GmObVyYf+tCHuOyyy7jzzju5+eab6ejo4K/+6q+4/PLLX27RzguJSpXMRqQYKPrs29hcFW9+LrQEFWH5U+jei1qKWnV2iigyiERhNUt+J8lCVcrgJz520/tk1wZpiDyRFkwNlZBT44hgI7YBnUk11YzOoGcDbLPcyACQkeTI9HNUfZcOs2P+TIaWkab1fAWyucO9WpmqVNB90Zxoi8gO3wu1EkLuxZwhBDpwE4w2xFJih/MeoTmFWqhU2dZ+CYWBQgEDlEb6KY16WN09yEhRdW2Uaoa91SdISieYQZLr7CTGAmGRREFLeXL9EE8qOoA48AkbDdZQJYkylGLoMbqla9vFoxilcWohOl9IDQlMWjGuo4NGaZbc5u3UalXiMGbtVAkh1kDzPgohKNclViLQxsIOIZN0MJetUhk4jpqaZceGrrS9lmAyi8a1PPQjlOeRLT6D2PNqjAE3UuCkm+TSvGfCsMyAqvgJo5WA6Xq4MIJrEUYb9IkqecsmXNM0OuOIqckJ6m5aEEBjqARpqONgfYQdczGWRkOjgi7GIBW6VMKa8yyfJj8ubm4+bJREzkxDJ5iMhRVa0LNANmMYm54kiRM6/SwmZ6jL1CA0QKE4gl4reDwYxNS7lhtNCxAinWP1aHEu20ooBMZNY2lTz2eWKA7Q2sKamiITeMw9KIZ0U+gkBmxrcd/NwiAj5X62m/2t/gPp83QwwhanB5Fb2WxSMxHjsoKTGSfyXPZecz0Yg1ARljsGVhr/poxuRUAOugPQWnM1hKNTEGiSZojczFQftrUTu3PHasPEUP9PiJMauf27W+95Mh2L2KsT951EiB3QCzNunJ5voUcvzdJCl4ppFcHmR9VkilKUozapcTIXN0fOEIQrF7w4V7SNpjZtzoInn3yUxx57mH37LuWmmw60ciogXfG4Z+Ju/uH43zIezfDqWPJHpTJvVGWSPTcxffmb+G55J1857lCpSrb35HnPm7bwG6/ewobONKFdAwvXz3LArxrDLeWjfPvE7fwzT3CPGeDWw8/wiYf+gELvJcR7byLaczNy8+u45JLLGBg4xfHnnuADH7iUD119FWPVgB8em+GHR6f5D3f28eUHB/nAVdv44Gu30dvx0hWtaNPmXDA9Pc3mzZv56Ec/uuL7P3PMLW4DXrzA2zJncawSllivVVDSwqBwZYO12AQqQVQrdPf0ghG4SRUZSnZrheWX6JVPcI9j4VR8dkmLuW8HIWyElqxRvZSfnaXHaeBs3wpA5EsCN0FELn45T0nNYpMn0QlOU7Nxi3Vy2QKnDZYRoGtVTMdallpNQsVMHh2loA3+3v0obbAtQbVaYWpygD3rdraU91Zxh6ZWo2SCSRKsGZehHUOtrmulCWJfkNm+m0zBwS/GTIUVtnX3ID0fGzB6zqAcIEERujP4YYF4bQ/CMYg4VZQn6gGOSr1WShsqE6Pk3FlevSmkUrNJpCRYoO075T70gg1cReyCyaGLM+jNPSBSDXV6epJ6o8K6RGKyyzVRrTUIyLjb6dIebkunnpsTc5ZqjDD5Vm7SHBk3wlHQOfkUo36Mtg0ZUSWbTEGyBdKfJUK1uFhIkChIFEeOHObyvXtxajVGJhI2Zgtko4jkmadxXnUlRmt6TrhYvUXYBqee+gmlWp21zX7CeK6Ix1yhh9Q4sLxpMlMl0JehGw2IQnSz9LgME0y4stcxkTGR18CdGgctMUEMnXMWe7PwidTceegkTqLJ607sxEImimpSxWIDlhtgj5SYHPOJ9nng5hmplthxxdr5Ey1U5pc8fgbwa2XQS0c7/bRRK2P0vAVXHRsha2VY64dkhybJXrKXwAfdUAxUAxr1WdZ3dyCVJvIq8+PlecxE/RwZeYK5B3UuBLWmA7qm78EiwU0SWAPxyDSd0XHKYjtJR4NitUxPIT3QTgySZp5h83qmVB2VSNaQLjjohZGxzYvWShGpiEiHVOIS+fHh9Jpz6dOYlGpY2fQcsYoIE83opMtNSyI1xUyaF2aFKxelWYiSMcOHHmNrfg0GkCYkl1QYH6zhTR8Heoi0y4laHztPUwjkxdI2mtq0OQ3GGB577GGeeuox9u+/nBtvfCdWM/lWG80Dk/fwD0e/xFBcZH8U86Vag+u23kh04/v4MVfyjeeLPHBvEW3gLRd188Grt/HG3WsXhNqcBiFYs/4Kfv3NX+SWsMh/7fs7viq+z3fXbeJfxwU++Mzf0fH0f0Ln1xLvvpGbd97IV8dzHDz4Iz74wV9jR2+B/+lNu/nN63bx1GiNrz01xt/9ZJivPj7KR16/nY++YWcrh6FNmwudt7/97cvylyzLoquri8cee+ys+njkkUf4whe+gO/7bNu2jc9//vNs2TKfD3Do0CE+85nPLDpmdHSUb3/727iuy8c//nG2bt3a+uzWW2/l1ltvfRFXdRoWLtsuSH4PEoUVBZS8Ml3d84nqc0PTCDz8wMYiAuWjTCczYQ3/0Qe47IorMXStcDINWPjGp6U9pQu3iKAM2Q3oeo1I1rA7C8TjR3l4cgxnXQdWMIstLDLrdmPVA5Spk1mXhvOEkcSPGqxfJWRNa3A9m46OZoU0L+BUrcaudWvJZuZ9GXP78Tw5WuWNu9cyMzOFNoah4gj79y8Jw2ueK2i4JKVpeqTH8T3HsGWDalyhULNg+0YCzyfsSpitR9R0wjadwOwI5DawFCkTdCYDRqdemeY5ZhsJc7OnHknCaYtqw2XfOovp0Ql0orBFgqiO4t01ht1dx+5qhkXFLpZUCN0JVhf4PsLrTsct0YxVQ3YbFlVBY/7upNea5MD2ml6h+Zyw/mQa/DF2iA1YmRILTQ29YC5ZTYNO1OoUklGELuG4I7B+F0IbylHqEQhVgjE2RipEszS0NziAMzSMCW3KsaRrahLj1lFjo9RnulAThmySKvulWh2/FmN8wTpnFlHYlc5vrfGnXZTuTWWrlkEuMZ6b/1YOj2A3XNiT3u96qRO7f36vMbdeo+hV8bQPZn5R06mmCnkjksT1EipRZCwnjfIyhkQn5GOPXKMKZCHWyLrGzqbHxaHCXjJ/i8UZxsZG2GRyBIkmpw06Spg9+RxyYhqrdzOGjkW5dUkSIyO3ZeiY1Z6JWNMIqxigoTUnR0t4jaaX2ZjmRrIWuu9B1nRtxt+6BetEg1zQQVDwOdl4hnx2M41EEiaKidFRXBmhugRjdZdKQbBZai4GOqoKXxvKXkLQzAFLlMYNZCtvTJcsrGyQJsN5M9jVCmZJYZBS9RjrMrugkC6PuKOzzDYibtinW2OvtEFNjCN6e+cPDENAYJzFuYLLSAKS0hhOsIVYZNLS5g5gwIskdV+T1zYdYi1T9VkGyw02ZM6PbnNOe/2zP/szDhw4wJVXXnkuu23T5mUhSRLuvfcuTp48zuWXv4af+7mbEUKgjOLB8bv5p2N/w8mkxEVxwl8Eguv33Ub55z7E3w8b/vn+CQZLx+nJO/zaNTt432u3sr1n9Uo8Z2J9fgP//sr/nV/e/X7+5uh/5E8rz/KNK97M/9pzHW+aOUV26CCbT3yLXxKX8P8Gt/Ds9/8z17z9l9A9uxFCcM2uXq7Z1ctgyecrjw7z/zw2yrefneRj1+3iQ1dvx1ktC7NNmwuE48ePL3pdq9X41re+RWfnqoH/i/B9n09+8pPcfvvtXHHFFXzlK1/hD//wD/nbv/3bVpurr76aH/1ofqPPZ599lj/6oz/i0ksv5b777uOaa67hK1/5yrm5oBfAwrVrA2jfhcz8e1Z1APxXY4yDLz1ilaSV3Jq+h9hIxrwp1hfX0pmbK6OnAYNOLBrVEhmtSWyHyLT0usWOH22ItCQ/NQm5CCuMadRLYBucUh0VnSJX6gYhsPcsUIxOgx+ZZihSWn3vyZnDTLk+ltnMns37mTMRRFOQqp9Q8mIqpSKlkTLrNmxaodd5oYUMsYJZjF8maIbnhSZBac1Mpc7heIzNzbNYQQmURCTBSl21bNhIL4g5XPK16WiBozMEcdzaTBcVUa4N4WZ8XutCx/496aFGpX0and4LLbFcMIGkNFqn4AmkjGkwbxjIJftAiWZOVi5x2TF9FzVZQAMTssKaUFIhwVh17LkwBmPwm94jAZggmus4/btgxV/Gi88VVgNk0Ye5/aKkXHz9c16IyUkSb2fLKJgLLVNSI6IGSVJFyLQQRSYIMImDpxK0Vki3QTwYYnZehjaKRuLSPae+x4u9ESqxUWq+kIUxGoRInxWzIIx1LjxTQOdg33xEx4J7K6aON8doI0aAMYJ4ehy9IaBaSvBnSix0kpTLJYRvqAYxVTemx6vhGI1OQgKvDh1rGK8GzFZ9Njeni0mreKSGqikQViLsnvRJC6RBL/CO+JFLHgvdCPCnAnTnDhqJCwhUFIJVoON4QJczi+naDgLyQQdhzicJbEzzu2Gw6NMfxQTU8aNpenMFQDDtRtx5bIb9pB5Syxgima6SGMBIhzCKwAKn4pKXHmajhKiWtlkyDyPtLxrSapBgDFTrCzbQ1obqoWfoWtMJV25EhBFC6TTPbYW4voXhjnFi4VNAlOvo/PrW/RORgxEJubhKp9yDsrIoZYgSCa8Eo0kIwb/7d/8OKSUHDhzgwIEDP7Px5m1+tqnXa/zgB9+lVJrluuvewutedy3KKH48cgffOPF3jMgae+KE/8A63nL5v+EBruXfnijz4E/6iaTmVZu7+Ow7L+Xm/RvJZ86wikL6BRG6tTQmvlyldugYamQSM1PF1DysWgUnapDVIf9nhyZYs42+zDgHN32d+6+6il9+///H3qDM7qEf8+ojYzw2upUr/9t72Li2l3hPM4xvy+vYu76DP37Xq7j1mh18+cFBvnjfAD86NsNnf2E/+zacnfLZps2FQE9PDx/72Md473vfy4c//OEztn/00UfZuXMnV1xxBQC/8iu/whe/+EUajQZdXSt5X+BP/uRP+PSnP40QAtd1WbNmzYrtzjV6gdfA6FQxnPQ9erLZ+TCzQGLy8yu+Q2NH8f21C/pIFSBPxyQm1SJrjSLG38T6eA1hwyUZHcHyMpi6QDgJMmdRNZBDYYUx2chjLimkoXyKfpmeIMfF2wvNnCqJVfdRsUYlU4Q+NLJZHB3Cgj2FvGB+c0ujNVUVoWMfv7EOV1tYc4aKgURHzARTZN0CdlwlC6zxR2iQ6hJPjlQpDY3TqzL4czk4C2iV/E5fpG+qmDiM8DxJF3O6vp73uhgQzRAnhNPqp+wnxEuKXkQYZmdDosGV9y5qeRCa/VmJwlUhgQDpGExiYasOEssH49AIPTKWhUQx5eUYHz0McUwmllhBmc58N2Qg9j0O9Y+xbT69JT2bARHPABuw1Hzpdz0ni7bpnLUwiUSV60zNTjX3dbLQFQ9j5ZHKWV66vZlvFcoA6EI3DSuh0yIKaLCCDJYO6AomEUkzly1J0LPzG6OqaqV1i6TSafXEKPVY5apVshMG3bGGUlgkUT4yzNEY6afaAY6Ocf0aWiscuTwfV4Qr7ZvVPK9KS963ollb92fxa0c4hJOa2NV0AqZZds5oRfnZO/A6ehF0s7X5aCW1BrrZaRJrTCQJQou8rah5Pp2yg4rv4UaSztgnRqCWDK5T9JBFlxCHOCtxpUGNFumYaeBm5zzZBq0UxouoZ+o0/ClE4iG1wcoZbJNPQ3XnjDIgCgUqtiDSYIOuNfOtol5MboWiGIGLUYpyFCMyZpGUdc+DbhAyzcFqhAnaGOJYLq++qZ1mHmA6+9WcUZXMJx1YSjHbiFlbP4y1+7UYt4FWmTSPqbC4v/jkMHHfXS0DxSDSa9SG2XpArDRYkKl0EdoJFjUc2UCR5kDpM20Q9yI4p0bTpz71KT71qU9x/PhxDh48yKc//WmiKOLAgQPccsstXHzxKhVy2rS5gBgYOMk999wFGG655X1s2bGN7wx8nW+e/HumtMdlUcznxWa6tv5rvlu7hD+8u0QtPEFvIcMvXbGZd12xmSu2rFm1FLIxBrc4zfTJY0yfOk5pdBh3dgotV9mYrWAhOrsR9i6EtQ7L3kjB6qY79HjbyWdZ/+gR+Jtf44krdrD73b/BtR96KwP/8jW+bX2Uj3U8TuHZ/5uOQ/8ZnWsaUBe/i8t2vY0vf+BKfnxili8cPMVt//g0v/mmXfyra3dht71ObS5ApqenF73WWnP8+HFKpeWVKFdiaGiInTvn6xt3dnbS29vLyMjIiot79913H7lcjmuuSfdIcV2XoaEhPvKRj1AqlXj961/PZz7zmXNuSCktuf/u21mz/tWIOEGFASoLfrCWIPYRufm8iEYoF7iFQCbRslXgCeFjL9iRqTo1gNVUDMOKh2ODUDYZP4NYl+aAKGMwsUwNiWYieGIkodTknTlDLVV0aqHCVoqc7xIH3TjSR8zWCdz5DSmrbrH1f+TXqcoIlWgcDNpixZXm2dFjQIX1cQGx/OP0/EvChBpJgzqV+RZCkE86cTyIm9XjWLiwveCrzmgwtsCYGJ3LE0c+9w9Os66Zg7RQxOlyxOSxMtvzCxfEWmYMSopWSKEBkiRPQ/mUlKRQ7MDyN1GTfdi5jQTSwrEFM7Uq5UqJYLaCSRyE5xEGiu5s0kxsq7Np6EEqQS/CpEqkNgIjCzTkELChZfAtRCBIKjVMojAYHDeal1atJRfnkIlCNKMhE6XT6nKAlzSIlY+UNkLkmoaoxo6qWNUCVuzgSB9tDMXKcXoXhH6aprsncQMapbBVxACaxReNxsQeejaC3amBFjgZhqRNaHvouBspLYxbw11ghC28EbY/RSO0KORTL5NC4IaSQsGiXnfw4pCQxXtrzQ/MnBcTZKOAjpcr2t3xegITYTEFsowcWcdYf0h5fY4uke4PZEURiTL42keEAet0Afy0hHkQ+ZRFJ1nRi9AWkYkBgRWlXrOkUmSmO8YI8IZnyGW20YnBoptIpLlcFgIhIBdL7LiHWcp05mCuOEhHxSDXhK35t4im8dCr1rExKKAzEZ4M8FWVq6deReyWUZ6HyaxUVHNxf+MzNeKGh8Biempk0Wc62EggC8tEeGT6QWhWv3QSiSEHjoVdGyAuauo1q/n1svhANVuGDVsWvWeARCdMln10JEHYYASmOQ6OCokN5OMKIpiFzt2cD86L/+qyyy5jzZo15HI5vv71r/P1r3+du+++m02bNvG5z31u0Q9XmzYXCkHg88ADBzl1qo8NGzbyhhuu557i9/jeXd+mYiKuCiM+EW3mOf1r/NvZXST9hkJmlrddvJ5feNUmrtu9FsdevTpdfXaKgcceZOCJB2nMbYxndSCsjQj7VXRqQUFHdK7ronP3FuyNvSgdkgQNGqUZ3OIUfuU5kighAVyrwMTWHVi73k/W7mHz1LMEn/+PRM6f84abf4H7OwocvPzfcN0v/hcyow+QG7qb7NDd5E/8Czq7hnjvO/jFyz/C63/9dfzFvQP87cPDHBqr8ccHXtUuFNHmgmMup2lO8bIsi02bNvHJT37yrI4PgoBcbnHNr1wuh+8v3Zg15fbbb+c3f/M3W6937tzJ29/+dj7+8Y+TzWb51Kc+xZ/+6Z/y+c9/ftmxXV05nDPF6a+C79fITpWIp58gozdiWQItDJZ2sDQ4XRY4AstYOBkLx7ZpeBZre22qbrqxpKXTVWMT2UQmpkNAFEIQJKzJdpBYAksIhLAJQhuSDGtVhs5GBtvxsGyLBgnKcbAdC8e2yDgOti2QhLgmwbJtrEaEsXMIk7bRQoAlaAzPYmcUlm1hsMglZTJOauxlsgJhC2zHxstILGXj2IJM1iEjbWzHIuPYWELj2BY2ebJWlmzeoaNZOKfuWGRNSE88QU+HwFrTwXQyxqmZY1S2h2SzDhlHYSyL3mAbzlQByxFYlsCyIes26NYR9lqLTMamIG0sCWESk5NFnGwGrISqqJMXFsIWCOFgCQuhs+QJ2OQ9R6bzcmoGtEjno+NYoAWVUjfgYFkKy0rHJNvooN8qsn1bs8iEY2HZWRASbXJolZbPyGUzxLbBWKm8jm3h2JCrNMiJELewFqU1OmngOOuIVR7HtshFIVF+LSpjk8k66dgJK71/aCxhKJqATDa9j9gWlmVhGVjnbMC1BbYtKAcROiiSy61DOVbrugqFLLHxWKPK5Kr95LNX4mQzOI6Fq0IqyTRxvcD2ng4cx8aWFpmkTHbyMRzHxkQRti3S/DfHBgWRSK+xXJ3CJB7CzqBEN7ZtoUMNESADRFiiHsxgnJhC0cHqTkAqZqIAo2x6szYdSJJKBcsSSGOwHYGIUuOyt7cDnXHIZGwiWyCwSIjI53vJWg7ai4kS0DmdjrljIbCwLQsHB2FpMrbAqUrWyDxlNJmsg2caJNojY4FC0whK2NYuhFHYiZc+n1YeS4iWSa20xBIZhGVhjKRT9hJrhW3H6dwHFCB1SMHKkc3Y5LIZus16QqOwLAvbFumzZVnYfTP0qREKl9lkMg62rcg4NtnmPLBtiw4rT6ZeRMoanfE0+e5eujpHEI6NZYGjFLaWYKfXbBmB49hks4LYtsgIm+7ZSaJaHX/HOnr7HqCqenDsVDbbschkLDo7MuhMQCZjY2lDIe8Q2hpHKNZWj5DPXEuhq5N8PovjSGxbY2Nh2za5nEWhI0tHIYeyErSqQDaLrRUKQ80EJMks3Z1bSJz0e087gmzeIEIbyxbYQlMwAZm4SG/vq36q798zcU6NpnK5zA9+8AO+973v0dfXxw033MDv//7v85a3vIVMJsP3v/99fu/3fo9vf/vbKx5/8OBBvvSlLxHHMb29vXzuc5/j0ksvPZcitmmzDGMMp06d4IEH7iGOI/ZcuY/HnYe5/cn/gjaat/sBr6ls4QeND/C/mUu5eEMnH7yql+v3ruOq7T1kT1PGOw58hp5+hFOPPEBxqA8Q2NndOB1X4mS2sz6ssWH0cTZ1D7LuV99P9u03LN6Jfglaa2qTY8wOnWR28CQTR58jqJ9EAkNrehm5+mYsDFc/8AS7L9vOU8awY3aWbb9wC/G+W0DFZMYeJtf/PXL9PyR/4lt0rdvP//WaX+eb29/Kn90/xm3/7Wn+7N2Xc8WWlyYUqU2bs2FpTtMLpaOjgyha7M0Nw3DFnKipqSn6+vp461vf2nrvbW97G29729tarz/xiU8sMqoW0mis4jU+C1y/gVvMgTeLXtcDMiRfG2TWthDCMJMNWByWsTAAACAASURBVC+zaKWRiSaUmiQWuDWVVlUDMn6cKmk6xAhDWPSIc5oyAb6I6dAOurlvi1ECkxgsbaESjTQKL5aURYine1gTWsQqIM4lKKVxTY3JmqQUGxIvwGQ1RguUTj0URqd702AplNIYNInvolQn2hLUvBlQ6bmDxCVHjkRqZr0i0tIoqUlkWqUt0RqtNUYbkiDBb45rkmiEDJGywH2n7sPL23QdaYA/S7ShCzvSJNKgtCbWhnLVxwsktjboOIIkwnRsRMaKJFE4pUnCJIMbhgQ6pqY0lTAgk9VoDZ6dIadymMjGJBoR+wzYU/QWYaPMEeDjKI1Eo5RmolbF8lPZtbZQXp44SgiRHJ2tkNEWShs6nQzapGFP6Yq5IY4SlLRAG7Q2SKWQSmCUoWTFaK2JI48gdkk6JUpKcrN1zGxCvAlkokhiiVSaIhZulGd9PSCueRhlCP0YqQ1505kaX5rmeQxCGeJYEZTKZEcGaFgNtNZIqcmOQBwrMklIQwXEUYKOE3yZILUkGO/h1NgMYU+eTr0DqTSWVyMKEqQEI3W6V7LO4/gSK9Z4xiAl1GsROqiTza9DSkXUCJCWwEoiLKMZr03gSQ+lNcKPSHKGZKaE0h46jok6u6g99gT1GTtN1dNpvwaDVobKRJ2iDnG9EJkYjKORUtEIgjR3x4vRmSyJVmS1IYo1Mo4Yky4OWTJJhpNRFxc1j4ujhBoBvttolgjXGGHQsy6yQyMx+NMTdLteOgdEKofUhiiMka4kp7MY0jmCESiV9p31KiiZkBiFtjVxopBBg4w2zdoZmpofU/UUudwmwkaE5bhEcZbElmSFIJCK9QWLJJbpM6gNQkkKXoFN9nbKxUFKhSGccA1aG+xqgB1OIXvWECcRSqSyRLFCK02CQspmKGwgKc2MITsCpFJEcYKJQxJijh4rU/ZyKFcjs5LAT6h5MVbiYZIE6VeIMpIghEQapDQoDEop4lAS+Ao3ifACTblSIZLr2JCfpNgweNkYS+aIQomMNcpOvytkrBCxQimD0SBlliTWVKsrL4adLRs3rqz/nFOj6cYbb+TNb34zt912GzfeeCOFwuLE93e9611861vfWvHY6elpPv3pT/NP//RP7Nu3j6997Wt89rOf5Rvf+Ma5FLFNm0V4nscDD/yYgYFTyA6LJ7Y+yTfdb9KlNB9xPXbU9vJU90eZvPz1/KvtPVy5tZs1+dM/NlprJo8/x4kH72P86NMYlSDsdTiFt1DofQ3b9m5g7bM/oOehvyezZSOdv/U/k73h5xHWmfdQsiyLtdt3sXb7Li69/ucxxlCfnmDi+POMPHuImf4jKC15fE8viix2knDvs0/xzn/8Kl0fuY3cTQeICtcR7n4dbPr3ZGeeJDd2B533/TG/3tnFW6/9LT52+Ao+8Y1n+KMDl3HjpRvP1VC3afNTsbBQw2r89m//9hnbXHTRRdxxxx2t1+VymVqtxu7dy8M47rvvPq6//vpFWwtMTU2RyWRYvz5NRDbG4JxmgeOnRemERt2lluTYUCrjqBg3ibGlImMLNk4U0Z3bAJDSav2K170GiZRkFshkG0HSrLosNIgoJhKajoWb1wBazJd9BlDKtPIkVJAmeqvIIGMfrUK0yiCWlAmOlLW6QqEE3aHCz1rUTYxDug/VHFLFeEmDjkaFLq8OXRuQWiFE6gkBWFNLWOtEKFugwgxGC5LIIohdvADQEokmE4R0eh3gp3lSRoPnucRhjqxKy2+L1j5TaQiZrSPCSGGMTaIVsRWhTJYMzcIbBjKWg2nEqGbF0Q2NHHl3cV6T49WRWUgKeQi6cWKF0d7cmUAqZCzJCAuBaIVwz4ljuQ5mwR5YGkgShXDS/ChXiLR8+1zOhoqpUSfRAiyIk4ABNcVa1gEwQ0TBONTKs7SK8ps0BwXjLC7QqCIkCsdArjQNJo9cIIvQYBmwtGLMr3Fxp0AazSwRBoUdZNHEVKOAzkzriufjvgRkdRbLFLCkxNLpfJNxhqKqskYUUCKH1EkzZHNOXNM0ngWddGFUAljIKERkQOgEY0ya39bcAVdrjTLzAWd9T00xvncIL0nolj0IJy1UYIwhU60vC+CrBA5KSrYIkDImiSTCTkDHQAGMwfMrCCXm6g8CEElFFCaYDrCkbN1DzHzp8zRXaeXf+lA3cHSqN88NvSMMll8C5ourKDVXZMMGDI6Okf8/e+cd51dV5/33Off+2vSS3jspEFoI0oMhShRERIod12cV2+4q6goKu4K6yBZUlkd9FnnkQVQWQWkqhAiEEkoglCSUkF4nmT6/cts55/nj3l+b+c1khkwIrvPhFWbm97v3nHPPbd/P+X6/n6+IE8+laEjH6UkElPaYP+82NhCghcTJZImZ4j2b8LsI3B6yThaDQWZdqC/m99XkdtJFGB3p+gpLRMegNYmgC+kbOh1FUDeeVHs31LXT407E8VWoYG96jSeCh09Wu/jGQRnBrl0Jcumi3eHn0xINSAzGaDqzWYQMF7v2m27GdWeQ6QxIQeBPpCSFctgxrE/8VatWsW3bNo466iggNEg3btzIMcccU9jmlltuqTwQ2+bf//3fmTVrFgDHH388N9xww3AObwQjKMAYwyPPr2L9mjUYpdnQuJ6N9RtZ6Dr8TWuWGfGT8Y/7IlNnHcOyQRSENcaw943Xef3xJ9n96jOhtKhIYsXnUzfxWKYcPY+Jcxupfmkl2Zv+CaMV1V/4AskPXYiIvfVQOCEE9eMmUj9uIvOWnI3vOmx/8QXWP/I4nbs2ENuboWvKbJ467nTOfN5CbNyAEMXjCZhEls/TwWXE2MH45+5lZf3t/HviYr55n+Fr7/a46NiJA4xgBCM4tNi2bduwtHPiiSeyd+9e1qxZw6JFi7jttts488wzqarqW0Xotdde65OD+9vf/pZ169bx4x//GMuyuO2221iyZMmwjK0UyvPodtNoncDEwrFljUfK97GUjwjscNVeCzzHxonlE9cB5UFFIicQ2iDTaWzHxU/G8/YlAO0EQAyhAkoTiPIGvNIGExksvjB0ujFSwiKgh0DEsVH4QV1IhkSAQRMEHoGOhfU5dThAOzBhyBWQ9frW3Emls0itIHBRKiCmqpElJq3ta2Q63E8HkkBaaNegu1rp6faQdgzbVzRm4tgdrXTjEphqhFJRgrhNaZVUnevG5GwcY3C9HEQVpaTWodWaAa2CfPpIQYktMIraLoNJ+JQlhASKmNMD9eMKgnTa2JFMNGhjodqy5LUlVAkpKfymQgU4CbTZgionQFhpiPLSpA6QyiOlJERy5EG+0KrjQFCFm5EoUVtMiHezFIovAYHXiKdqQ5GL6HWQ9ffgB1mSOQ8ro4EkGTcglYhGZzTCgKUtqrI1kKIgCBAIQbxEqR6tQ4W8XpeiIDSSczpNwoRzrX0HpTQNchJt0bkOvS9uOPfG0O0EhTnTXgaoJScUyUgdsjMXkAuckAwiw1PnqOjYDFkvwFNuSJKEjdE++AHCgOm1WOkJKubYBVpjpXcDM5G+JtadwcpKiIEQRVl4XwehamX+HAeNZDEomadXAoyhxtQSiHKPtDLFe0Iag0bTkavHlOjUWK4f1hIrnM+oKK4xxL0EOQy2Cq+HnK5c/8ggMRpESREmYQJEtpivaHelkc02JsiFyn/5bzL1dPumUHMrP1eB10lgx3Db9mE7PkENdG8XJLWDpcPzWpPeCk1FSX9f++ylk4ypZZ+7iX3dO0jlGsqUCjsyHmCF4htGoAs0NWRhjvGQ3ZlokSdcjOhPzn04MKyk6c477+T222/nD3/4A8lkEsdx+Md//EcuvPDCfsMY8mhubi4LfVi1ahVHH330cA5vBMMA0+2h3uzC7M5g2p2w2JwAkbARTQnkpBrkjDpEXfzAjb2NMMawJ7ebVzs38PimFzEbOxmTa6I90crO5pdY5m3j3/YEjJ59Ie6yz6NrKxMFYwyBq8l0unTsamXPGxto3fo63S0b0EE3ILHi0xk9631MP34RkxaMoqYpiWrZS/oHV5J57hlixx5PzTe/jTVh+MlILJFk5oknM2PBCTjP7sF9aR8vBVtYV7Od18iQ6FxNYt8WmjKd1Cx9N4ml7wVlY/ZkCd5M0dn6JWRHD1+Wv2Bp/RN84c8fZX/a4wunTutX2GIEIziUqJQzVIpf/OIXg2onmUxyww03cM0115DL5ZgyZQrXXXcdLS0tfOYzn+H+++8vbLt3717mzp1btv9nP/tZvvOd7/D+978fKSXHHHMM3/jGN4Z8PAeC8v2o2KQueHuEkGHYkQStYqEynRQII0h6tTh2hrzZnfM1VVohZXlOVendq3QAFjg6IBVZzQKDlfPpsjvC1W4LVD+1ovKGksSiuMquSQFpy8MWcVJoAm1hyXCLlNdOCtgXhRBq3woNSIoCAWE3AW5HCybnEaTKazAlcq2k2wBPR8drCPbvQnfsxTKjMbpoAFsGkiTpIqCvNFwIW2lyXhZlYtiEhq/BkPA7SWZixHs0vpfDTpSH6rTpDL7tU1cyPdoHImM1MAYv0PiRjHTe0At0kh4dYz8SIWx6cj4BJppCg+V6aF/S1zQrKapqNCCoEw3IQk0tQYc3jgAfQZLAEyXKY5Sdu3iujjGyiYxKh5TDGIwQVIkausgQKBPm1Zj8HIOVa8OyM4hYvETiu8RTCFQpK8+HkW43OsjhegGO9mhze6glBcjCNaVLyGsgJIE25FW3faVRQhd4vYnGmO9Ra4NvDBkvSyMaNwjwpItFTWF8WgdooyifiBBuoGBvG/tTdXTt30p1iYCFYwnQBtvx8JIKC6ugJKjQyGwrwgoXOjttnyTxspIAOe3iaoBYYSxKm4KYZFwmCYIePNyKOdCmpC5XVnk4Mka3IyAIiX8y46GEQVVZ4eIE4fqH1BYyk8FyLexA0PBqNztlNb2XZG3lU8UkAt8iIULpPR9N2uQQQXg/GxVHeQlkbn+otWLnp9ACLdAlXjytJUSVwITbQ9CaJplxCSxNNiWwgzBMLk9mcp6H7xgghqscYiEDJOW2IZ29pHWKQAVhvp2QUa2r/H2lC3xWGJBd7dCrrJoOvMJz5VBg2EnTvffeSzIZ6mE0Nzdz9913c8EFFxyQNJVi9erV3Hrrrdx6663DObwRHAT07gzq6b3oLaGiC3Ux5KgUYoxViHPVuzPo1zthJYjmJHJeI9ZRTYi3UVQg0AE7MtvY3L2JHZnt7MzsYFd2BzsyO8j6Gaalp7GwbSHS1JOsfo1/dFYwsbOK9IJP0zrl42zzqslt9sn17CHb5ZHr7CLb1YnT04mb6cLLtaGDNoxqw+h8le4YVQ0zGDv7/cw4YTHjZo/BirxTxhice39H5qYfY4ym+qvfIHnehwYVijdUGGMwuzOota3ojZ1IDVVTG1k4ehxvrmtnTWov8fbtxOMtiJhh4sO3M/2eXzD2/ItJXngx1snjMDszBE/upnPXl5nW8xqPJK/nijXn8K/eBXzt3TMHV5R3BCM4BEin0/zyl79kx44dhdydTCbD6tWrufTSSwfVxoknnsi9997b5/NSwgSVQwLj8Tjf+973hj7wIcLxfXxkZHIVY5s8pUnZoJVP3gJUkeEptV1QoROYsPiktPBF0TAVQEInqCJBPtq/3euipqB6ZQr9Ce2AVfoJEHhIEyBNgJtzgTgpUYOT2wdWDKW88porJT9ULu9uij4xIHI1IcnIW8Zak/A7sX1F0O1ALE5QEsJnKY+aoAPlJYseMKNxMm5BQStsPp9yD0mTikIPgaguktaghQ5V4HyfnCnKIkNoNLsiiTCGpImTSNUhRZGACmMQTokCXf7/qsThlC0ZT8mvunDOBAECizBPJSTHhpjjofamEVXjsKK6RAaImyoQOiKplSDZq3tQRfuyT/cagefXQXs1sqT4q3Q9OqXAWFXggvDD79p0WGMn7QYkbLBLiJdyAja3ZZlcUluIdBgO6RpNJsji+pqc0LRu2gGiAau0Rm8vT46SEk8XqYfGlHg3BH4vCemuHoukSIEO6Am6sPwsWU8ypsRp7LlptDTEYjlq2l+mQ+9DGI3QfjhHStPlBsQ7cgQ6DPVKUY1Gkcvsx/guOq7RRuIqFyU9dvqdVJt60l47VolXqPxGCQmbIBbmOpWE5eVhRXRXmxJGUpiaoDBHJjp2q8uF6sZoNvJzpNmvPFwJYyCMX9vbQ0ykSMWhvn0uysrhxEJ10cAotJZoUw2Wg2t8Yo6mhhjYoC2DQWErjTYW+C7JTA1p0hQUxP3RpQ5LAJxsPdBe+FtE51bk5yesIhwdD+xt66ZLSKQTQ7jpvHMXy/iYbEhe29OtWNKiuXY03bkcEEfm5dUjJDJZkuke/FG1dJssqWhiVOCiW4tqncONYSVNvu/3CXWIxWJ9km8HwsMPP8y1117LT3/600Ko3ggOH0wuIHhsN3p9O6QsrJPGYc1rRDQm+m5rDKbDRW/uRm/qQj2xB/XUXuTseqzjRiMnDH8dIGUUr3VuYPW+J3m+9Vk292zG1/nifYIxqXEkzVhi7Ys4uaOJ8VoyTnZyprsW15/F+tSPWNkZo/ue3ejgdoxOY3QPmDRGpykN5QgblSRrRlEzagqjppzJpCOPZNyc2Uir762k9u4h/YPv4a95lthxi6j5x28dEu+S8TX6tQ7U2lbM/hwkJNaxo7GOHoVoTBAHLlh4Ib/5zW3o8QuwW89it/17Agt2NgnGPvx7Zt/z34w7/xKSH76I2MWz0Rs68FaC7/2Af7O+y6/XvcF1weV88z3zRojTCA4Lvva1r+F5Hsceeyy//vWvufDCC3nssce46aabDvfQhhWBWxpSkzfLRSgdrcqNzS6cKO8m/C/mBkjpAQatVVQvRWPZSaodg4wLqkQVWcI+gmwWzxTUlwtd5kOJysaVa8cYhRSKQGtsKKzoJhhLtZXAJUtS20jth8lQCLzAYAc6XCl3HHTMiqKmDJZ2wKrBMhKCLMYYaqmiG5863VDmzah29hLEqvFLQopc5dDZ6hL3a4gDvptGmL5FxGNZD2HA14aEqSdmKUSQwHU7sLXosxqvhQRhqJZ931nSV2BFK+sqgSFkKiIonre4snD67Ak+QSFkTgJucZEexwoDrnTWwkoa7FzYQiRSjVYetsx7vEKvTGm9HA0EKgeW3Sd5xBhJ2k+i8dCRN0wg8YIAsNFGoYWkVtYjnCTaCghUJ8LPYOxqnECRCjQx7RLLeMS6cth1aXxLIlVA4NeS8TQmJsHATrcVR+WwgJ25HqzYKGLajjwj+dpa5YNM28WaWQCWXyQl2ahQsNYGR/o40fWbl9dXxoeICBqj0KZYc8gOcuxu66Szq4dY4CNNDbZyCawEWgcYt558xLoV0RkZaDQ6DEstWXjIc3MdqDB8rkB4y6EiT2M1xcUCK8gQENpN1dQPKoAs0AbHN9heACWXoohYWiB0KH6AIPHaftJa4cs4CB+tFIF2cFCRpyw8HiFMgXi5aKq9oMSTFP6TEeHxu+JobejxAqrKyJ9Aa4HRpQs75UeUP8Wmt98nH+rquyUfRETLTRFNEUqH5zF/jcsCqS7vJ9npEJcNCCQGTVKk6OzYy6HCsJKms846i0984hO8973vpa6ujo6ODu6//34+8IEPDGr/p556iu9973vccsstIzWd3gHQuzP492+FjI+1eAzWiWMR8f5ldIUQiKYksikJi8ag2xz0K22ode3o1zsRk6qxF49FTOu/htFg0ZLbyz3b7ubBnQ/Q4XUghcWRjUdx/tQPM6tuNtNrZ7JlTxX/+4mdBF07OSuxBcsYRqdr8Tqn8segEe1vxaii0Ii0YiRrG6lqaKKmeTrVTc1U1TWQqm8gVddIqr6B6oZmrAPkIBmtce65m+xP/hOA6q99k+QHzh/28DbT5aJeakO90gaOQoxKYi+bhJzXiOhVULehsYl3L30PK1b8ATG5kSk7P0d6+g7W69sItlfR0lDDuIfuZu7dv2HUhz9K6kMXEvvEPILfb6a147tcZN/A/Df+jhu8a/j795+EPVLLaQRvMzZv3sxDDz0EwAMPPMBXvvIVLrroIq6//noWL158mEc3fFCqdAXboFQdvvCJqTja6p2jEIU6ldoReU9LSZiP0YakSFBqcAhjSJh4Sb5OfmOFY/U16YxR+ARgUkQRYtEXCWJUYwgK7MsqLFwVl52EH+CZAPxwXHbOJ2++xSKDt12CRFHXS6gijxYvQ85Y5MPtjO9hOR44CqqTkRcObMdBugE6LpFBqLiWH3RKVmOEIQvEXA8RDMZ8LUJqU/DmxBWkpQIjkL6PluG7QamgoofBACYah0aSLfFWFEPPNCIIjdxApegUPq4XoAKXQKRIRK+fwIDjG5Tw0JbBtSX505bzNaXLmgZBq+2Tk4qmwMJog0SGRimGAI1Ekk3EqcYQ8zN4fgcWMaQJ0Bji+zPUiwARD8+o72doD1Od0NoHFRCIOLGEhSM1jtFYJIjrJmJ+DAdNwgToiNT6xoFSb00EXyUJaUAIgUCosGypNoZAuLh+X0oaRTjimhyooNy4NWCCYt0sbcJJDHwfu8Q1pzEFT4mNhTYaPwxKK3RijEH5LoEOCWf5GY6IbERMbWOFYYKYAxZctYxFLJdD6uqypVrfBIWFEUcoxsYm0aUzQIAxFlo7+F6MeCKHMnGUFmgnQaBcjBWen5jKkH8aiApzDqCUQAX5q0ahjUZ5LjnHIWGXJFWZcA52d9j4VjVWPPTgCvreR7K7tWy/wiZegN3hkgvKw0jz2Ui5QBG3JGk3KGsPQ595TLR0Ui1HgwZPaKxYLXGT7GeWDx7DSpquuOIK7rnnHlatWkVnZycNDQ185jOf4X3ve98B983lclxxxRXcdNNNI4TpHQD1WgfBH7dDbYzYR+cgx/ZNlj4QZHMSuWQi1snjUK+0odbsx797M2J0EuuEscgjGhBDNL57/G5u3XgL923/HUorThp7KkvGv5vFo99FbawOgI370/zbH9+kfdsm3h/fjJPIYnlJqvamyTmr0cpBSEnzlNlMmHcaTZOn0zRpGtWNzQdNbII33yD9b9cRrF9HbNHi0Ls0bvyBdxwkjDGY7WnU2v3ozWE1dDmrHuvY0YhJ1QOOf86ceezf38KLLz7P/BPHYq+dygnmSna+6xm2tzzAUZvraKmvZvq9v2bWHb+i7iMfJ3n++QQr9tKx/avMi93IlG2X8bPf/wufO2/5gDWpRjCC4YaUkmw2W4hmcByHiRMnsn79+sM8smGGNiRFEiEsPBUjE/fwdRiup00UG1MhUb2QZ1TBKCrjVKHlgeUEYXgYPiYmwnA8rdFBuVHiSkMKQ87kiqvEQRB6NABtkmUErbzTcJXZxQc8DEW2JbVBRc+rSrTFYMJ8CRHmoPjpDMm8PHzUNkCjX4slrbzDBuMFyK52pNLogr+hJJEdcGSYICaULvsOoErUEhcJcv6ByZTCkJMaFEgTgJGoQKG8olHvCqKcl3AuAgzCCNJ6FIW4J0JPU1a65HxNtaHg1giURMl8HpAho9JYQFcsYBQaYzSBl4BY0RNinBhKpZDCIRGMwtUxdP7cRQzbEjYGQs9P2UFpJOXkPD8TMWNjeSEh6FJdNMhedoEuxgfGRTKkPjoGMrw8w/BNCSoALbBMGGraJ3HfWJRGeUilys+S0RH5jLoFLCGwowLxVuBDlHektcH3LGRcUi9ro2s1EgTp1a2mmEdli3B/qTVSGzxjcNywD2kUSkKfFQcTI2uFSpQppw3bjMfDIUD1k1VXRJ2uxw2y4XXUa0wAjlB4wuBJqKceaEMFTtS3wKELaAjPqTZkC97iIhGsBBNdmyooxt3FtQgVCHWUG+ZnQebpgsBXGl9o0oFGdO0n8BW2MpVv5JIz5yuDpwwEfZ9R0oR3iVKaQBm01sTjuuz6TDs+ivIi54Hn4sXBsX0ylkEaQ/0hSH/IY9j1Us877zzOO++8Ie+3cuVK2tvb+drXvlb2+S9/+UtGjRrVz14jOBRQL7USPLwTMbGa2HnTEamDu0xE3MI+fgzWMaPQr3agnttH8Idt8OQe7EVjkAuaELEDX+RPtjzODeuup9Pt4OzJ7+fjsy5lXGo8JuOjd2Tp2bWLLRvaSHW7XCE8nkhupcPKMstpZEI3dFrd2EcuZsKi4xg/9yjiqaETwf6ge7rJ3noLzm/vQNTWUfPt75B4z9nD5l0yGR+1vh39Shum0wtDJRePxVrYPCTRjZNOOp2OjnY2bHuWM859L61rY+gNJzJ36im8/IH7SK95Di0a2G4MR/3qFsb/5naqPvJJ7EmL6N71d6QSP+Gru7/CTXd186kLLiY2QpxG8Dbh3HPP5T3veQ+PPvooixcv5rLLLmP69Ol9Ctb+xcNoUrIaEATaDWW3sRBGY3QKyCGMCRPqo5AzbZnQA0LowygiUo8gn2uQJwlhaJE2YAmIeZBLhQamMHYZj8jaEEPhS02ZA8qofkOMDIbAGGwRIxu4+MYnZkIKY2unjy6D6b0Kn1fk8iVddiYKM6RglAl0GTkUSIwxWNhM21keVG10JEMdbZ+zNZ48MCFK+v1HVRQWzEVRLEGjkdpDBwGKsN5Vfu08T5p6Q4o4sV5DyXtMSvsqkgorSv2Xxf4NVMtG0iUBgcKpQimBtDSuW/n9YIRB9SInAFbg9LUMo+6TJkXcDwVKEn432H1DIUtDKi2TABESD4GIVBgt8HIUWNwBYAkZSX0XB6UCr+BVBPBFjGqtQHkFNTzh+xjLxnfD3CxLHzi32vQ+TwIst3idZdJV2CJUBdS6OJ5aOYYOvYMq2YwrwnvONh5K9RYzH070Docrkk/pWwRRWKExkJEBUvRHaqDStam1KQg+WNm9UDOp0JNC45sisQ7PRX92YpQnGXXekfGhRlbsM39UGeNSJ5O0mh4c7ZCKrtHqPR7xVIbyCkyCHlsQG4AYDieGlTT98Y9/5Ic//CF79uwpJOoaYxBCsG7dugH3PeecczjnnHOGczgjeAtQL7cRjLYANgAAIABJREFUPLwTOaMO+5xpgyIzg4WwJNaRzcgFTehN3ahnWwhW7oQndiNn1iNn1SOn1fXpU+mA//P6T7hzy6+ZXTuHf512PZO7RmFWpHH3rId0+GCKA5OUYTcZViVfwheK47pHMcOaQG1jM5aS0A28EEd2daDnghibOihio7MZnDt/Q+43t2PSaRLnfpDqy76IrKscXjIUmECjt/WgN7Sj3+wCTRjieNI45JwGxCCk0HtDSsl733su9913F4+vXsHZZ3+ASQum8vKDO5i19/1MfffFPOX8BrXyFdaKcWwMXE74rxupqh9F9dJvknM/j6qy+eq+K/npHV1ccNFnSbyFcYxgBEPFF7/4RZYsWYJt21x55ZXceuuttLW1ceONNx7uoQ0rTFs+qTosFCuAaqsOTF4nCwyaVlwgrKXjGU3SyQzUKpIAAp8OKzSiw1yBvAckfw9ramRjIY/AQmIJGwIXS5RRkdCo6qc3hUYYhS2SeCZTljtuK5dAEnqCbEmCOK6fo7aC0eOjcFTQR//ODjLlH0SP8ISVBN8v5LqUz0CFjAjT/7NfDGiDRaRO+2hTbhgLK4HvO0ilUaLcUK+StWHOmAkFIGqtRgITDBi65UmDVFaZidmHZCIwKkAaja1CuWcAreuIqtsUtnRDp2KYJ1XBcBVBqDh3wLei1theF27hmgwRlHkdBVrb2L6HFFbBYwZgqTzJK39/VJp2yy2GwoXzF/YhjMCzJEqYyDOpISJNRikcP8C2YlhYIXnu1XjcKz93RgUgY/R39F0yICvzwiJhP1IpQFMnxxR8ItIPyEgHW3mo3p48AK3RQmCRV5/T2MqlNPtfYhWEXgwglSlMgeh15xnAVVUoEiDDEDyBXVAqzEmFiilqvVJpmdLhpKBE2r+SZHePdgrfZUwO3wgQAyws+PXFjkpD86KetbYoqO55PrGOHrzmKowFigClw+LUWjWQIRQZkSbA8jJIrdAyXnYcqnSBaOCb96AwrKTpuuuu44orrmDBggXIQ+geG8GhgXqzi2DFDsS0Wuxzp70lo7w/OGmflk3ddO7Jkul08XIKKaGhOcUoJ6Dh9U6sDR0YAaouDjUSKwnaUqxrfZm5uRQ3J69lwpujEc+6KHbh2oI2X9HmGLoCRcy8TIe9jp0NExAqYBKKyecsYcyCY0AITKuD3pHGbOtBrW1FPb8fGuJYRzSGoYKjkoMmUGr7Npw/PYBz7+8wXV3ETz2dqs98DnvW7IOaJ5MN0DvS6E1d6E1dobRu0sI6djTyqGZk88HH6sZiMc4553zuuedOHnzwPs4550O850tHsuZ3W9j0x26OmnExsy77HKtW/xddT65nxZFTmJDp5Pi7vkn1GV/H43/RVhfw5fbvcfOvulj+ka+RjPX/8BzBCIYDl19+OcuXL2f27Nkkk0k+97nPHe4hHSKU5B31+iYfZuNrl2SvW873coh+jJi8kR3oUHGu9+2a71Giy/Kj6qymXiMqjmygDA0VeEjAN4oqqx5fKrTyEUiENqTas/h2HVWiOsy10gEyV076QuNdkvH1gBLCRsown0F7xEUNPgZbu4TxaqEBiwhlnwd8o0UHqQrOhv4Nr3xKus4rsUGUF2QQVgypKs+OJUoKDxMvGMWlfUkEVlAeomUZSYM1iqjgVSEXrBjcKKilllq/mlZ/N04hOKcknyoiaw6hQEFYr69C7hoGy9jIEnkMu0JNrf4CK/OGekhjLIhk4ENP34FtilDqvK8HTBgdKqwZDSI0mGMyLIbrkcMEPoF0C3XKQqKhUZYpEcYvjtkYm1hPVxml6UtGe41NaKSWYa6QKVwoIQnGBgxWFN4aOC4eXsUjDrRBCRBCEvgJhOUjjYcSChPV46qzm+hQrRitqZZ1uL4CuyT/StUSOVHpimv8SHYiPFZR4q01GKt4nRXu9QrntDA+AUKHtdvycL00WpVleEVzBkYH+MhC8QJKfhpABJr6Pd1ghceW88plHk1Xe1h2t24aVuBRIdi3AC9wImJbDoUuENlDiWElTXV1dZx99tnD2eQI3ibolizBA9sQ46qIfWB6gTBprWnbvpmOXdvwclkSVTXUj53AqGkzKyrGlbWpDDs3tLPp2f3s39YTvsBsQXVDgnjKwteG3Z5iW4+D52iabJvRtqDec6hqD4vlSQFz9RH4xuD3CLYqn7bA0BYYlN9DU+5NarwXMbKVjfVjcEZPI6UCzpwxh0mz5iHr6jDpHkR1DXJ0Cjk6BceNxjgBemMX6vVO1LMtqGdaEI0J5Ox65OyGPh4oozVq2xb8Nc/h/nkFwbpXQEriJ51C6lOfITZv/pDm2ygN2QDT5YVkbn8urH3VGq2+JS3k7AbknAbklJphJbAA8XiCc8+9gN/97g7uv/93LFu2nDMuPYJNa/az7uGdrL65h7knfJJJl0se/fV/sG+H5PaT4pz62o0smPc1tP8ptsdcPttzI7f+MsOSj/0TVQOIhIxgBAeLo446iltvvZUrr7ySM844g+XLl3PaaacRO4ji0O9EGPvAYWF9V4IFAxn5qiRPwjI+xfTrvGET1gjqv9/ebYfPo9IQndL28oZ8sQEPoxVaB8gSZb6ETOFrh7gwZUpwMjI8hZAYY6F0glg/9qwREoXB1z6eVYFgRUNplvVkdQ8q+lqaAFOyrY4kw0OjvN+pwAjwjU+l9TVdvqQeJt0LML7CaFFGNFIVlPkAGvw4VneGULAgaqfke6kVCivUCvPTYBe/jYkYVbKGrMq/L8pJE4AjFbaBjB2OuDccXOwS+XSp/dCbki+oU4KghGE7VkgbXF8XTG2tbCpezYVQ0oGu2jwiglgasljiSQxDV0vMbFP8pTQirfd1IbQkrjvJAF5JQeigZE76EzjI68QX1LSjI5YlFEwH1SgpkQMuL+Sby5Ng1cczpbWPihTvSnOTlLIojZfVWhC3EhgD8YyPjnLJ8m0A5Epy1WSp8qLu5XEruzOi/gKHgsxg2bYhPDySvfXIAUv7VHVloaHYYtpVyH4Ijt2WxSW8l7SulJ+psbWLHy0QhSHL0THl6dYh1KkaVtJ00UUX8atf/YoPfehDhVpNI3jnw/R4+L/fAimL2AenI2KSwHN5fdUK1q+8D6enu88+sWSKqceeyBGnv4fmydP7fL/7tU5eenAHPa0O1Y0JFpw5kQlH1FM/tgppCYLNm3Du+m+cFX+CXA4TjyOOOBJ//Ez86tHsS9bxbMdrOJ5gRvU86o0gkd1DKr2dyT3bmZvdxV5l2FzVzLZEHL9xHM64qYxuaeH0VY9jK0VX6YCEQNTUIurqkHV1iNroZ109oqYJaU9AeA2YZx3Us/swloeRXejMboKd6wi2rMP0tAMGa/oMqj7/ZZLvWY4cNSoUZ3AVuArjBCEZygWYbPF3stHfuehvt9eDNGkhxqSwTh2PnFyDGFuFsA6tQl0ymeKDH7yIP/zh9/zpT/exePHJHL/oRCYf2cT6P+9i07P72PqiZM6if8DMf551D9/NK1MaeFHcwkf1lxHdl/D0rhYunvML7rktw+KPXUdN8n+WATuCdw4uvfRSLr30Utrb23nkkUe48847ufrqqzn11FO57rrrDvfwhg161OhBbFU5R2ZwMGEifgk8o7BV/yvPfVvQYXhXbyUrWfm9b6VdpC43kuIlBpYARNbra54a0DrczhhBEAQE+RImBdWDUtO7OC+BNvgqNODzMxUjXjRAMX0MYlP6yyByJPwD5EYVPHeBRotojX7A02aicK+BnqMaY8pD4kpRbzXj+Uk0ASlRFM7IJ9QbIGMPPG5TErgnTDFErLeggNYDt1NlpuCLvtdVzPFAFvPrGq1RA7InrZOhIqOslJ8lyvKjbF1J7L0vpAkQQqClxLeK1K40D0n0CvM0RoczY1RYp0kmygtA9xpXoNPEIrGMSleaCRst20f3MxFCG2w3JPpdMYWPKqnbZUjIZKGp0ooBpbW9QjIkBsFUww1sN8Ae8FqEjBdUoErRmHvNjYtPNtsJVTUV/elGq9CjBuSMix6gXFFMZcnfyb09TIeyKsqwkqaf/exndHZ2cu2112JZec38weU0jeDwwPga/54t4CpiH5mNqI7RtmMLj//iP+lu2c34uQuZddISRk+fTaKqGifdQ/vOrexav5atz6/mzdWPMmraLBYsPYcpR5+A52heuH8bO15pp3ZUkpMvmcnEeY0FlTy1exfd/+cneCsfgkSCxFnvIXHmWcSOPR4RD2+9tNfND1Z/no2ZbVxvxrN0161IP42pErwxdjZ/aJmB0z2LuJsm1dBE05GL2NbWzswZs1h6yaXI//VFdHcXprsb3d2N6Yl+dneV/N6Nv3tX9FlP8cEVq8IedzT2+KOxmmZgJ4/GnnE0zIgeOEkrXHFLg39XC3i7o+r0/UAAVXYoplFlI+qqkFV28bPaOHJ0Empiwy5JPhikUlWcd96FPPLICp599il2797JkiXLOO6cqcw8YTQbHtvDxqf2IawpTDv+8+zfdBfpfXt4fP5qTsueyZhRn2LDQz9i9KIHWfv/ulj48Zuor/oflpg/gncUmpqaOOWUU3AcB9/3eeyxxw73kIYVZgjPgVKTJC6SoST4IKAHQQhKoXoNSQwizKoU0i8PzbJFIszTihBog5fLou3Kz9L8aH3HpU/11sJGGqU1CeXSHzOJyf6fTSHdinoqCb2qBK18LGn3mZeK7Zq8EEffULzekNGKvzmAodrvuIyJyqYSFn/Fj7xB5R6w/hDOT//vs5jKcmCyXiSxeTECYRRGWBitMEaH3pfe2h95DlwxZLCkOHIFZi18GynzRDIkBqrENRWgetdcLsCNxyulx4W/+0WxExPJWKsSQimFCC30ClNrC5uUOLDYlDFhfqAE4lRedDCAG3mVtIjuRxMeGdgIFGXBp7o4xjo5NrrfBZ0xTb0vy44xqHA6C945Y6iVtbjlS9D9H0vJ75avSfgdZQqRu3QbWROQMTZJ3fc+Np0dUCKWb/qRR89D0KcKFDDQFXzwGFbSdMcddwxncyN4GxA8ugvTksP+4HTk6BQ716/lsZtvIJ6q5qwvXsGEeQvLto8lU9SOGsPUYxaz6EOfYNMzq3jtsQd57Oc/pKZ5PEYcjzazOXLpJOaeNg5pFZMyc3f+huzNPwUhSH3y06Qu/mgomGA0VttrxHc9hdr1JFe769kYt/iPfa2cbhuys87jgT3jWLW+g4np7SR0hvFTZzJvyaW0+IoX1j7HvHlHsmTJsjCXrrm537rplWC0xmTSmHQa47qIRAJRWwepFCKj0C1ZSPuYTIDJ+iWFRwhFKxIWJCxEwgo9RqkSUpS0DgsZGgpsO8ZZZy1n4sTJPPHEI/z617eyaNGJHHvsIk66aCY9Syfy+pN72f5SG776MMn61bRsWMMr46o4ZtQpWIsvZfyqn5Pe9jK/989n+Sd+xZi6hsN9WCP4H4ZXX32VlStXsnLlSvbt28fSpUu59NJLOemkkw730IYVul9DodJzJFoRrqCCNhCGmibtVqjb1P+YQmgMVj/f14imPo4cD93nszBErUgE+vRuKEpoK43xM1hSonuRjrxnpjC2iocj+/m8MnqHNPWHYr5Y5Omp2Ekly/XAwWu5/s7LALsN7m000FZFQlmpG8skgKJoQJ4kaSP6XNs1oo4eU26Q62LzZch7MWUYM1f2eYJyFT8VeNhRXo82OiIZoVBAJVIGlHlUKme/lXhESpqQUlBBd4SaSPTjQPA9B+I2EkiIFEGFhY9SYqNF6PGSwoLCtpWIZu+/BEb0vWZ6+ot7fQsIBWDCe00qRVVHBllpcvoOMPqsuO1AeYwHwgD6LgeNYSVNEydOpKuri0cffZSenh4+/vGP09LSwtixY4ezmxEME9SrHeiX28LCtTPr2f7yGh67+Yc0TZzC0i98k2Rt3YD7x1NVzFtyNkec/h5evH8l61fei1H3U9UwGss6l8CtJ15VjW5vo+eaq/Gff474KadR/ZVvYDXVEt+xivhzK0hsexiZa0MDl0+YwksJm++Meh9jJp3Bb156nW33PU3C385UK86khcdx9LuXM2raLJ555kleWPsc8+cvZMmSs94yORFShiSp0vHWWVhDkPT+S4UQgvnzj2LKlGk88cSjPPPMk7z++gaOPfYE5syZy6IPTOPo905m14YOtqxtYu8bU3i95UFi9ZIFTSex84JpND98I2f9dh937VlO1SVf4GPzP4Ith/URM4K/Yvzt3/4ty5Yt4xvf+AYnnnjiX6HYUG8rw6ACv99v3xYMLimlDFY/UtOe7JtHUaaS3MuY1r1C6GpkA46urCBoTPE51J/RbMzb5CE/gNgAgOVnUSXhjKafAKjexmFgAnK6G9sbms01oJEZJe54hdo64cYeipzJEqtIMEpzqcLjlRVU5GwZo5GBS8oodNk5k0pDmZJj+eCNCggDDKPtAxUSjQqvItcExD2POCDjxRyzakb3OoqS9gfyFNpxdODlN+yFypNsjAZtD8LSz5M+IhGP0jH1PQd5omVKikEPFgPaUr2OqzTXLCR8xQWKfgnTAG2bIcu0RyF6JegvxHE4MKwWzapVq/j617/OokWLWL9+PR//+Mf50Y9+xJQpU7jsssuGs6sRHCR0uxMq5U2oxjplPK1b3+Tx/3sjzZOncdaXrhxSDaOta9vYtKaBcfMuY+bxaV599D6eueMW1tx9G5OmH8GY1c/S0NpB4ze+RfWiSaTWX09y472IIIeO1+FNPZPM+NP43ztfZs+mF/i0N5ftO99ks7eeQFi01Exj4dLTWb7sdGKJJMYYnn76CV544VkWLFjIGWe8dcI0gnLU1NRy9tnnsn37Vp566jEeeeQhVq9exfz5C5k7dz7Tjh3FtGNH4WZmsmP9Yl7+w/+jumcd02qP5PkTvsl612F+y+vkblzD5ac/zIVL/4ZTxp4+cn5GcNB4/PHH/zquo34NDVOogXMIFXWHBFvYxBka2bACUzGh/EBQSmLLyl64d8h0DA4iKFjwBc7X67rWgVWSbzV4M61HdyJMWIw1JDsWpVLSlfqC6HoqaHgYpOlruAb5NnvBq1TY+CBRWuC1IknpJ7w0DMOLwtii/aQK64MFUvRRx8uH2mmtiRtZ6GmgMM5SiF7jG1Dl8QCkfCBtx160sOT3/LXRK6cHgRH5vKmhL/pa2P3eU9IPz00Yqgm+3TukcKh3Y/Ho4mkXXzv0X8Xp8GNYSdP3v/99fvvb3zJ58mSWL18OwFVXXcUFF1wwQpreQTCBJrh/K1iC2DlTcdJd/Pln/0aqroEzL/v6kAjTq6v28MqKnYydVcfJl8wilrCYvmgx7Tu28MY9d7B1w4tsa65CNFdR/9jt1D3RTcwSyLrT8KsmkOmW5J7sJN1+D1UGTqARu9Hwev1c1ovxLDjmGP5+2XwaUqHrvJwwHc0ZZyz96zCk3mZMmTKNyZOnsnv3Tl5++QXWrn2OF154lqamZmbOnMPUqTOYsWgyM0/4NhuffISWx7ZzbPVEXq7rZLe9EN8s5pTXYMsbbbww5ZcsPeUk5h8xc+RcjeAt46/l2lF+/8nPBS+FMZQaSiVp5QdA3zkcaOX8QLCwqLZqy9srMUwrta2UW1YUVZSEbPUOozPq4Azy/qS/D4wYDDI/bKgQFWZlaKFIA2/rGbeQGdPXd9d/X1rnax8Nbc6ULpePjjo+pND9hKIO1K1UBlOB4BVzCAdzDnrHDg7feTO6quL5MkJEXqNIsbIitxraIoQ6iFWXmBOUzfPAxQeKCPUNojaylb1JUps+4hsHQqVZPZRvimElTcYYJk+eDBRfcKlUqqxC9AgOP9RTezH7Hezzp2OqbR7/z//Ed3Is+/K3SNUOvijr60/u5ZUVO5l8VBOLPzQdy84XFhPUbNvB7LvvY87EMdgneOzr6GS/Hkt3bDo9Vg2BGyD9HKn6Rsz4el5qfJNRU2djxT7Jna9nGF+X4IplszlpWlOhP2MMq1c/ztq1z40QprcBQggmTpzMxImTyWTSbNq0kU2b3uC551bz3HOriccTTJgwkUmTppA4fyzpP+5nQTCaoPlppk6soeMP69kfn0dczWf91g5eqX6S+SdM4Yh3jSdRPaKyN4IRVILrDCT9HcLyfAKZ6ne7/nH4w2UFYExx9btckrl8fEMhdJW2zdfMeWt4O8I/ozG/hTDH/lscXnurL4nqXyRDo1EmKMzcobL8+idNA4TOVXBSDj1vpv/t+0iaD6FVK3D69TQpy8IVYkj+IrtCHaNCe8IQDOOlbasc/Yqz9IN41kMR5SxScp1EhEkLgSclCguhNdaAHEL0uX2GIqYzVAzrE3T69OnceOONfOQjHwHAcRx+9atfMXXq1OHsZgQHAb0rg3puH/KoJqwZ9axbcS9731jPSR/9LI0TJg+6nU1r9vPSn3YwaUEjJ354BlIWL1L30T/T88/fIjEmxtTjn4emyYw5+3Lc2R8EWX5zvdL+Ev/+7N8zLjGTVzdeQGtPhkuOm8jnT5lWVvfHGMPjjz/CK6+s5cgjj+b000cI09uJ6uoaFi48loULjyWbzbJr13Z27tzOrl072Lp1MwDJ+iRjnVrGeJN4as3jzF82mVMf/TFtTzTw5tRFvHzEcbz2aILXH9/LjOPGcMSp46hpGilNMIIRlKLOS9La35cDGQ9ShsWGhoihiB8MX9tv0WobIO9DGzAmKBGBOHQHVrF2z1tC3kcohrHNQwNvEO/b3mSmkmfnnQWBNQSp/b57H9xVdiCHQp1sQB1AQW6oGE7CBCCFPSQ1TgNoXYuSEi8WQ1sGN9nfoCTCGFIDSI9XxF+KEMR3vvMdrr76ak477TSMMSxatIjTTz+da665Zji7GcFbhPEVwZ+2QV0M+4yJ9Oxv4aU//JbJCxcx66Qlg25n+8ttPH/vVsbNru9LmB5+iJ5rryLZHDD5tFZyp11F7qhLweq7TrI9vZVvrfkGlmpkw0sfZkZDFT/4yByOmlAuyKC15rHHHmbDhlc4+ujjOeWUM0YI02FEVVUVs2fPZfbsuQD09HSza9cOdu3awc7t29gm9sPkyTze4rNmzgUcPekV5jyxmpnbVvOrd88k03Ai+vnFbH5+P7PfNZb5SyYQTx3+FfARvLPheR433HADK1asQCnFI488ws0338zSpUuZPn36oNpYvXo1119/PdlslgkTJvAv//IvjBs3rmybZcuWYYzBjgpejh07lltvvRWABx54gJ/85Cf4vs+cOXP4/ve/T21tbZ9+Dgb2AK/l/owsiURJdWi1dnv1+E6EMSacg2FJ+npnHuNAKHpa8t6gQ/eeHMiUN0LCMBv7hwr5GVIEyKFKvR8EaxJGobSFJftvxBI2lrDx9BBJw9uIsPrYEMixiWN0Cm1LjBDEAhft9/VUSWPCGlq2PYBvs78x/YUIQYwdO5af/exn5HI5enp6aG5uLtRrGsHhh3p8D6bTI3bhTIhLnr7j50jL5sSLPj1oEtKyqZtn7trCqCk1nHzJzEJIHoD72MP0XPNtqka5jLtwKt3L70Q1zKjYzt5sC1968u9IewZn26f47OL5XHriZGJW+YtKKcWf//wgb7zxKosWvYvFi08eIUzvMNTW1jF37gLmzl2AMYbON3az7aGX2BlrZYfVwlPJk5HnBExo3c17123h9eqV/Hr5nzh+/wcwTx3H1hfbOHLpRGYuGl2o5zWCEfTGFVdcQW1tLTfeeCP/8A//AMC0adO4+uqrue222w64fzab5atf/So333wzCxYs4Oc//zn//M//zE9/+tOy7bq7u7nvvvsYM2ZM2ee7d+/m2muv5e6772bChAlcc801/PCHP+Sqq64avoPkQC/8vBJZOTuysFCHKAcnRFgPZnhw6O5xIcQ7N4O8gMEYdJW30Vr3K7/+zsJfwhgPLyQaNcSwtrcLByvZHVgWQWT7x4IAS5fmORZ/CmMwmQwxXd23EYphdlrKsjZKISAUPClLNfsLCc8b6OVx7bXXDmdXIxgi9PYe1NpWrGNHIafUsvm5J9jz2issvvBSqhqaDtwA0LUvx1O/eZPaUUlO/fhs7JLwueCpB0n/01UkGz0aL7+U7pP+rk8oXh7P7tjJt9f+Hb7oYZp7OVd95ExmNPe9aVzX5Y9/vJddu7bzrnedyvHHn/jWDn4EbxuEEDQeMZH6mgbm3b0JnZS82Pwa699Yy66mCew8YwrV6TR/8+gufnf0StYuXMnZuz7FC/cF7FjXzgkfnDYSsjeCinjxxRdZuXIlQGEx7qyzzuKGG24Y1P5PP/00kydPZsGCBQBccskl3HDDDaTTaWpqagrbpdNp6ur6lh9YuXIlJ510EhMmTADgox/9KJ/85CeHnTQNdpE06LXWr4w+ZCaYGLKIrw9vsUBrZQxe6iKMUHznhrpVHNlQPBaFYrUDtB0tzR/KFff/CShdgD1cNC+vwCdlFq0HL8L1ToaSskB4fNsmMAYpqxDC4MQERsbQUckIrzpOrKdyO4OTLBd98skO5XU/rP7nsWPHlv1LJBI8++yzNDc3D2c3IxgijKvwH9yOaExgnTYBN5NmzV23MWraLOactmxQbThpnyduewPLlpz2idnEkyV1L568i+5vf5tYjab++9/DPeUrFQlTW8bjOw++zNefvZzAauWjk77NLRe8vyJh6unp5u67f8OePTtZuvTsEcL0FwY5sZrYBTORjua4tnl84qNf5YQxtaR2bcKRhq0LjuCE3PGc8MYs7ph+A4/PupP9O7t48D/XsfHplhHxmBH0QTwep7W1PNuno6Nj0J7nrVu3FoSKAKqrq2loaGD79u2Fz7LZLEoprrjiCt73vvfxsY99jBdeeKGw/5QpUwrbTpkyhba2Nrq6yotzHiwGe+37qLJ/7yQcLgM0X7rJDLU+zF8Q9CCS0EwkT1+oGTSCiiifyYO9ag/unSVggHID7xz0niVDKNxQ+EfoIZJaY0f5YkbkM/ZEJIcuEMZgK3UQfteSMfXaQA9RAXKHnhctAAAgAElEQVQoGFZP05e+9KU+n7W3t/PNb35zOLsZwRARPLYLenzsi2cjYpIX7/5v3Gyasy65clAFIgNP8cTtG3EyAWd+Zi7VDcV6A+Lp/6bjn65HJiR1N9yEmr24z/4ZL+D2NTv55fObEeP+L1b1Tq5c+F3OmnRmxf727NnFgw/ej+97nHPOh5g8eURI5C8RckI1sYtm4f9+C/x+F8e972PMe3cXb9z6LV7ZYuM0T6S6YRTnb17G2roWbjvyn1m+4zOsfcDQsqmbE86fTqJqJNdpBCE+/elP88EPfpClS5fS0dHB9ddfz4oVK/jc5z43qP1zuRyJRHmtlEQiQTabLfyttebDH/4wF198MUcddRR/+tOf+PznP89DDz1ELpejqanolY/H4wghyOVy1NeXq47W1CSw7bfm94knBqeTVS3Lt/OEyyFLahJEcueDW2cVUpTVcBXC9FuTaLADkDL0DJS9snoX2hRWWJ4odLO8IyGE6KvnIXq7miq7noQAKUX/trWQhRpYb1mEQYhBLUTktxFSlF12hyZCchjlBUtbFaJYM6zsmAfXn5QCgUYHER3oZ9584xMTfT2vQohCt0KA7i8P7HBHO5bWVZMCTHSNAU4igTEaYwtEYFAxC0srYloTC3xikex/rXCQ0kAgUKoYTRLYkn7rtonof0IOMAf5qk4l50sIGhoOjdfukFskjY2NbN68+VB3M4J+oLZ0o19pxzphDHJiNV0tu3njyZXMOWUpTZMOTEaMNjxz1xbad2U45SOzaJpY9ArJF35H+z/9AKRN7Y//C2YvLNs36ynuemk3tz23kw63h/FzfklGbOGKo6/mrIl9CZMxhpdeeoHVq1dRU1PLuedeQnPz6IOfhBEcNsixVcQ/Ngf/ni0E92whefI4jr38Fxz92A9Y9+cHWds+G2f0JI52JjFrxzgemng7U2vmcfIb59FxU4Z3XTST0VOHN9F+BH+ZuOiii5g7dy4PPvggy5Yto6qqih/96EfMnz9/UPtXVVXh9lJhchyH6uriM62mpobvfve7hb/PPvtsbrrpJl588UWqqqrwvOLKveu6GGOoqur7ck6n33ridlflEiZlsJAFw1lElX/i2ASoIQfSDUq5bYj2al9viCKfF/VWNBoMBq1D8qV1ifXUm32YiJy9Az3V+Xmu5EnUQvSio/2E35mBT4UxGozG0w6xtxoeaQ7s7QyJXxQy2etcG2MItB5mO//QnM/wWglvJFF2zIPrT2sDorTOWD/7GV3R6Jfaw2AjpAz37Xd/EMLFDLGQ9LAhvwIiJLpEodNE39mBjzESyw/wZYyY5xOX8ZBLR/tqpaPjsyhdUdHalP1divBZYfAtiZJhEF7M93tNZZloefSJobMzy8Fg9OjKdsewkqZvf/vbZUxbKcXGjRsLMeAjeHthnIDgoR2I5iTWyaFC1Np778CKxVm4/EODauPlh3aya0MHxyyfzMR5jYXPrXX303HVtSjfpv5HN2KVEKaMF3Dn2t3c/vwuOnM+i6bGcEb9mp25LVx1zDUsGf/uPv04jsOjj65g06Y3mD59JkuXnk0iMZLb8j8BoiZG7KJZBA/tQD21F72lG/vsr3LCjBM54Y9f58nN23ilYzZi3BSW7T2FN+0O7p7/H7z3zc/wyM99jnz3ROaePr5MpXEEfz1oaWkp/D527Fg++clP9vl+7NixB2xnxowZ3HfffYW/29vb6erqKiuJkc1m2bt3LzNmlAvY2LbN9OnTefrppwufbdy4kdGjR1fMfzoYKJdw2XkAw7X0TrATqagg7uA9C3Et8ORgVtJjaD0IFjcICKEPmstUKv55OODqHIm3VCerHwzhsAbeNDRolfERiQS29/aHbUqtQgFDILwmLQ6/q6QyDnZUtnRJ/H/23jvQsqrK9v7NtdZOJ9xUt3KgCoogOVMoiCRtFFTEgK12a4tPG237tYrv+elDxfeprd367H6Gz9QqtiiGNoAiKgpIFEERJBWpEpVvPmnvvdb3x94n3VBVwC1RuOOPqnvPOXvttdM9c6w55pg2ZQLzuBcrWnNwCexJF6aOZEoxEWrake7V0zrVsy4VwXWUXjTrlrS1OAXGWkwlWzCamjyaKXu364PQaYqVTNLnjI9N0y5TiGmze3txzWRWSdNk61alFEcddRRnnXXWbO5mDnuI5JqNMBFjXroKMYqtD93Put/fypEvegVRT99ut19761buu2Ezq09YwP4ntoMSfe9VjLzvYuIJQ88/fxxzWCbJG6slfOuOjVx2+0ZGawnPXtXPi4/y+Pr6S9hU2cgHjv4wz1l48pT9PPjgA1x33S+oViuceOJzOeqoY+cc8p5mEE9hXrgCu28PyTUbiC+9D/ucw/BecyVnXPOPnHjf1fx87VHcv3A/VvfPZ9VjR/KzFV/l0B0nwy9g08M7OflVB83J9Z6BOOWUU7pWtidDRLjnnnt2O84JJ5zA5s2bue222zj22GO59NJLOfXUU7syRTt27OD888/nm9/8Jvvuuy833HAD27dv54gjjmD16tX827/9Gw8//DCrVq3i0ksv5eyzz56142zCpc2Q8/F88z++KGE6vmRdgpKZnq/Ha/o7M57MKCIeXeRwynHsve8NqwS1N5taPUkI7eymc23a8qdG7Gpo+dMteIrUce6JZmC6JXmpS7DO4qndkxgtgjiLEoXKvfCeMB7nbRVYRV2le/USxzbGYvGkfS4avjdlqkLugreH47pJ1ny7cuoTIIjj1th1LyDRekYnvdaYeziXJ4K9XtM0h6cG6QPD2HuG0CcuRC0s4Jzjt9//T6KePp512gt3u/1jD4xwx5WPsviAXo48a0WLxJi1P2P0f/1Pajt9ej74QbwTTmG4GnPZ7Rv51u0bmWiknLTvABecuA81cy+X3PEuBMVHj/sER807pmsf4+Nj/PrXv+LBB+9ncHA+Z599LvPn737FeA5/mRAR9LP6UctLWdbp2k2kv/dJTvocxeWX8fJb/5WN6x/m6q2Hsn6/gzhp+Ai2Ntby6+VrOfHh8/ivf7+Z5/71s1iyfM5Y5pmEe++9d1bGCcOQT37yk1xyySVUq1VWrFjBRz/6UbZs2cIb3/hGrrjiCpYvX8773/9+3va2t5GmKb29vXz605+mVCpRKpV4//vfz1vf+laSJOHggw/mH/7hH2Zlbp14cgtGT7z2wzrHjMncWS0peWLHp7VBexFpMoPVVj6y1pDuBfd1qxXqCTQPbmMXJ/FxnJIZL8OsBdBP7kKP2zF69ZMnTYVEqJingqTuzabIu/U9/DPDVIpkkhgvaT9gIhqcexLVlHteS9Y0kZh5++acnvBkdotZJU0HHXTQLv/gO+f2eFVwDk8crpKQ/GwDsiBCn5Bl/9bfeRvbHrqfNa++AG83srfhxyrc9M219C4osOaV+6F0Tpge+jnjF7+LyuaA8rsvYvyE0/nP6x7mO7/bRCVOOXX/Qd54wgpWL4i4/KFv8KX7P88+xX340LH/zJLC0tb4lUqF22+/lbvu+h3OwQknnMRRRx0719PrGQIpeZhzV+EeGSO5dhPJFesYXXQm1RNPZcHg/+Bv1l3DHx4e4uoFh7GgdzGLtw9xa/lyDquexa++eB/+ScO8+LQz8KdpmDyHpy/q9TqXX345d9xxByMjI/T19XHsscdy3nnn4ft7di+ccMIJ/PCHP5zy+hVXXNH6+UUvehEvetGLpt3+hS98IS984e4XnZ4MmoX0jzN3tBfmUWdPbMNFFCJ61mR8u9jT7nmBSGZuZDTJHhKnxMYYNZv26HsOEfW4s0I23WVVU9dvqVHo5PGGs08+4mz2a9VKkdonlqXUrvkUpPAn6GcUT+M1YNGove5M2Xx2/1yJU4am0b04t4c0Z3K9YecWHTB6xhE6IYCxjkbu0gftOjQ7aci9WdI4q6TpPe95D+vWreMlL3kJ8+bNY8eOHXznO99h1apVe/2LZg4ZnHMkP18PjRRz1n6IFmyacPsPLqN30VJWr3neLrevjDa4/uv344Wak163P16Q/bEyD/2ciYvfyfj6AO9N/43P9x7Dt75wK43EcuaB83nDmhWsHiyyYWI9/3jTO/jj8F08d9GpvPvw/4eCyQqth4eHuOuu33P33XeSpgkHHngwxx13Ij09vbua0hyehhARZFUP3j5l7F07SW7ZQuMXDbYNfpzo0Ls4ovAeVg8/xA/Xn8IDy1ZyQCOkMvZDxvvWsOi6A/mXtV/kgDPncfaqlxDOwqrmHP78cdFFFzE0NMTpp59Ob28vIyMjXHnlldx666173KvpLwEmeAJBa75JJhOyuNx2YCbsWUzR+SmLEONmqr3Yg9Xf3b3XaUgxlG6nXw/mQ9fBPb5nPFIBY7sIdptkJXW7YlaOTArodbyyB6YZuxxv0itNM4XHU6+5i4hw8jtOKfaao+LMe239JF2vClpp7C5d/aYLwfcmmegkY7MkP1XmCTkXdvdmreOcphmi5y1es5//xNyqOa9mhmfyWVLaI01metb2oN7ocZx2ldc21XIXVHGOWDzKU0jT3jtJs0qavvvd73at4i1dupTDDz+cF7/4xbzhDW+YzV3NYQbYe4exD4ygT16MGswKVR+48ZeMbn2MU9/8LtQusjlxPeXXX3+AuJZy2gXPotCTfUE2CdPYowEPn/0q3jN2MKO/2cBfPWsBf7dmBSsHCjTSBt986D/56v1fxFM+7z3iA5y25EzSNOHBB+/nj3/8A+vWPYJSiv32O4DjjltDf/+czOqZDlGCPnwe6pAB7L1DpLduoXLXaqq936W05Ae8uvgl7hw9nisLR2GXr6C06UZ2pOvYb+MZbPruI1xw6Os5+6CzefE+57bI+Ryenrjrrru45pprul573etexxlnnPEUzWjvQPuSOXLlYn/PCvEuTRukFcpPn2/aXd4qD9xn/Ey+siwpUMW56Q0QmoRCHDjJvmeiRKjmEiuX2xSbGeumZprn7oJ+x0Q6TlGXaUZgkROaIj6bU8npMG5HKMr0Rh5GGqQuq3Np13rtTj40/bupUaik+c7jd2nbczS74XRMaC/CoKexH5lup9L6XymDWEvaJAFkwXDqHGoSqRKaVty7n0s7a7fncG6mDHU32RQa0y4YpC5BZrifm66Wu50DMBbvoE+C1itZM+nuWK15bz2RS+qczTLCgMtdLGeCmuF8u0nZnda8lEKZADoWKVLlT5sbTJOpR+Cm2O3PDM860tzB1ClFbMyU8QDE23vZwVklTWNjYzz00ENdzkPr1q1jbGxmDfIcZg9uPCa5ZgOyuIA+dgEAca3K73/8HRauPohlhx4947Y2ddx8+YOMbKlw0msPoG9xVhzdSZh+dOwL+Yw5jmMXlPjvz92XAxeWcM5x3eZf8f/d+395rLKJExecxFsP+Edq2yv87Gc/5pFHHiSOY4rFEscf/2wOPvgwisXSn+R8zOEvB6IFfcgA6ln92LUjpLdsYWzrOYyHZ7Fv/+X8ffxNvulextbl++Ht3Ips+BwL3Gs46/YL+dHYF7jsoUs5b+WreNnKV1Dy5izKn45YtmwZo6OjXW51zdqkpxe6A4gonYE0iWrbJWs9Y9gxnYmGZxV1nebD1MFOLaQXaQd9gsMTQ+IscR6AzQRtfJI0d9DqekfhYTCqSLIH2Y89kc1N9YHI9tjrFFt3ueXMoefkWpoJO0ZZ94NKcahJmaZdB6CteepM5GWm1Qw+PuJkRe8229BwDYw8wRB7hk2UCHbSfaSRKZR0uqSZKI2zKVkPKIXYtsRLzVjSIaj883vbfyOTogI4tHgobbBpg8d7/pQax9oIQ2YO0dgFpZxiyp/u6ploz6P5p+BxzaxJeAQgxbnue9ZiUK25ZiTGkmYZ61wONxNpas1rD2SgsW9wE5MMwz3NnmZDBcE0TSCsJTam2TKqey6T9XqziFklTRdeeCEve9nLWLVqFeVymfHxcR566CEuuuiiPdo+jmM+8YlP8OUvf5lrr712ihvfHGaGc47k6vWQWMxfrcgazgF3/+IKamOjnPbmi2asN3PO8bufrOOx+0c4+px9WLx/Jpcz9/+UsYvfzcTGgK8fciY3HnE2/+e5+/LsVZn1+M1bb+DStV/hnqG7eZY5mFeWzseuT/nBby7HWksYhuy//0GsXn0gS5cu36NGunN4ZkOUoA/oQ+3fm9U83bqF0Q1/jZjzeDXf4hZZx80DB7MjKtLz6FcIK6fwkrvfxvZ9f8tXGl/k2w9fxrkrX8ErVp1P2ZtdK+g5PLU4+OCDOffcc1vyvKGhIa6//npOPPFEPve5z7U+95a3vOUpnOWTx66+7mfKmmjtdb3aOYZGTSEpgQjjk8aYsiouYF3Wb8e3IFoRiCJFTQn4rKch3X1N067WlK1otLPYnAiOuRFIYcAUcThSXE4EpsOkDMtuJyKtifgWrIImATKuc5bNs5KABpmSbXAoZQCL3YWjV1YLMtO7s7Uq7kjzbEI6acxO+qTc1BqQXcGKRs3UdHW3yM6lKIULA6SR5NLRbE46j0kCK0yoPSd5M1vhJ2RZoplijWwfrSvcvCa62vqElumldXuSD5FWz6b2cdRsBd2Rd8kOeepCxuTxpcPE3FM+tieBESglaoYtZoZnhVSrPcp9OeWRWse42k7RFoC2HA6mI01NMtUxxjTX0TG9U57T2fHEuoCX7rq30nSSY3Ey5bYpxXuvn9WskqZXvOIVPP/5z+fOO+9kZGSEcrnMYYcd1tVFfVe48MILOfTQQ2dzSs8Y2Lt2Yh8eRZ+6FDWQ6b8rI0P88RdXss/RaxhcuXrGbR+4aQtrb9nKgc9ZxOrjswyVuutHDL/vYqo7A7521Nks+pu/4xtHL0WJ4/ot13LZvZdS2TrOysZKXlF9JbaRsoFHGRxcwJFHHsuKFStZtGjJnLnDHJ4QmjVP/qoe7MZx0lu2MPHw33C4G2Wh+g4/jpYysv9h1DfexrztjzDPvZj3PTCPhw/5NV+P/4P/euQ7vHLVq3nZyldS9OZke08HjIyMcPzxxzM2NtZSLxx99NHU63UeffTRp3h2s4jJwdTjXGU3FhpaoZxDiaBETYmtlK4wuTdMxY0RiMO5EKUUSiuSZGr4M53syE6NW/LPdvwsMcwgh1LaxzoFLmbCjk4Zw4pQo47BBxw1Yvwp4cv0tTTTQbu2cbm2zXXuXZ9ohcqdwiYTiF3vrS2V0zyeXlqZ9C0FYrrqqpyHzLgyP6lEf5pD0o+DNFmjp3C6AesY0oKdVO/VRidhaQf2aeDhNWY+/lQrNPKESrCsGJSAEKNdNONZFqnhXITOm8nG1mLFIwn7iNLsfClvesIVqpiqnXS8zaa1SsE0zoqJS6i6CiVpqx8yGWH7wjgsoqoo7dFZCiWSIi6rUQSICz7eSLNpcPMk7d4kQzuIa9vQpcXT3LvtWbR3nP/npVDPXjdpiu8VSOoTMzzngpIQ53bXUHZmEbFDMZkIZkYiHTdEa+eZfNKLY+JS1PVYKRSev/fqnGe96cm2bdv4wx/+wPj4OO9+97u555576O/v3yMb1be+9a0ceeSRfOYzn5ntaT2t4UYbJL/aiCwvoY8abL3++x9/F5smHH3O+TNuu+HunfzuqvUsPbifw5+/DICd13wd/S+foFHx+MFZf8f5F/4tC8seV93zA2764/UEIwGH1J+FIIRhxIqVK1mxYiXLl+9DoTAXoM5hdqGWllAvK2E3jJNcu4n5m/+Ol9uH+Lm5i20r9mfr9k2Ybf/Jtt6Xs+i20/nS9jFuPyrmP8Y/z3cf+Rbn7/taXrbyFfj6KeqmPodZwUc+8pGnegpPEVKa0cKYHaFXZQGYVoInCmUUqaUVawRW0dAALg8kp2K617ria20Q6lRdhSLdAUhWxzE1UGtnMrKfiokAwnC6jf7d1BtqUR1xzzSGCfngacvmgpxQuHzlu+myln1QIbvMqHiuQ4zUDBIlwTkPb3IfGRwBHqkuknT0Qno8sDpAz2DnF1MHpq8TsyZGdW02NWRr1qBkxzEz8UtcwvzYZ7SgIdkzp8M4NJTHE8o5UWrCxzFNeQowfTZhmk6nmflFPt3IKrZRZSCNGCWrWWmTzUkEXcmksLv5vqCNwrNCkjpG0yF6dH/3NJh6hhIdoKh1TFU1U49d+1Ade9UihFYgVHii9pgLCwpE5w1t8+ORCsrF+fsNkJTAOuodOsemJC/1DLHS+LX8HEkD6wr5ttNf+6qdwLk6PU46BHgz55xSzwOb1w3lr5kkwTcCLQIz6UyK4InJr9yuTsC02s3Wj9oEpEkNQbErE3OVLxt4aTrtDfcXYwTxve99j3//93/nzDPP5Oc//znvfve7+f73v4+1lve+97273f7II4+czek8I+CcI/7pOnDgvWB5i5wOb97I2huv4cBTXkB5ht5HWx4c4eZvP8S85SVOOG8VCNz7+f/Ngm99nwaGtW+/mHNPXcPVt13Oxoc2EDVCFrOYqL/AoYcdzsqVq1mwYOFcI9o5/EmglpXw/np/7AMjlK7zeNHIPtzi3cA9g0tIo1EqW79FGp7F7Ssu4JDrvsx//Fhz51E+Xz/40/xo3fe58OC38+wFJ8/dr3+huPbaa/nCF77A1q1bSdPuFdNf/OIXT9GsZh+T706lKkBGOlLSvExcE2kFLkVJOxlQSjRYx5i4PKbJRqvbGoHqJD8zVkBl/0oz92J38dk2rNF4qi05UkqjHWxONuH8mcOMzgL7YupTdzVEauCmr2WquQbN6q00J0xtw+JmFJ+vjqNIVIrtYE6peGg3mTAIxoLVuWRMCT2xYqvZQsMpoJCtpCMoNE57iK23tt1TdPaXaTZkbdg61k9buYJYBK95DklJI4WNFaY2zYCtGTSP2dGlVMpr0hyQepqx2nYWsHB6iVTHkXTVqzlHyU3NDfQ5SJ3DBgFjHjCeheNBqro+LNKUy9HaQ3M/qW8w9Ww75aCMR+Q0zTyjfjyOgjmUZDVS09sQgNIw1dguI/cuzxZVGKEghfZb05UTki0OFHTYQSSmQ/fGSpkWGfAxNEgQlYDN+ERT3uflpElJHes8SomiTtarzMrUjIxDIx3MLXUJOjeoaH6qnGqGdUKAR4ImmcT0WiOKgGpkx6j9LLbEtL43lRrHC5dTrwy1ttXaw1lB652k6cAMJy6nddMVIeUT0F6Yk6YnZ5Hi1N5zjJxV0vTZz36W733ve/T393P99dcDmU3sOeecM5u7mUMH7O+249aNY85cjvS2V9Jv/8FlmCDk8BecO+12OzaMc8M31lIeDDn5tfszFqc8+N63sPKW35H2eDz2rg/yx20Pcvs37gMgKSYsPWQFZx55FsXCnJHDHJ4aiOQ1T/v1ou7YxnNueC7z4/XcWLgPWVFgYstPGXYnkB729+znPcjh132Gj9+c8siKrfzgyHdz5XNO4C2Hv4MVpX2e6kOZw+PE+973Pt7ylrdwwAEHPK3rI8W5PLBxJKR5SBdD7q5lxSDSJhWdoaXFTglwlSgS1yAgRJmsCF/ZBMjGS32NrrVHyOzFq0yGVoKd1HOn+VNsUgKyAN4qAzYmxKNba+XyzrOTXiPrU+Q7TZ2mjK99fDU3hq+LgMLiiDv0YkqadMZhtHTJ7LQOsLoONsuyNF37PCtdgX2AT0O117UFQaRBgxiHRzt8cyjRBNqjEe9ahmTFa2UPmkh9g9eKU7O9VdMR+qzXXqEXDXkWokVctWTZldwNwRND6na9pq+kCtpAmhCHYUYIWtc4P2MiJOgpJFLIrnVqHdYoMifHqfuYL71MDPZjd45kAX/7NOXzT1CS4FPIw/PsjUB5NCZp/namW0j9gyDJyGjiG5pJPRsYqOw6hHaT7kmZQZo4BTkRKAQaL/GpNqqkzJSFm/o3p1ka54xGTSM9nN7kYpIRgvJRGiILaeqo5hk9qyFIoNRQKASRTLLZeWAVN0RIYZrET0eWStn8CRMwGkksRhKSSedHeyFJXMtn2F78IIVI/NZZEcnuPa0UdaMwgChNVF6MrT/CeG0XZNcxxYSi68y05t2i1mTnvZ1NdCisClBswdoyQr5Akj9TI+kOlrFk5jk8ScwqaVJK0d+fpUObB2+M2aupsmcy3FCd5LrHkJVl1GHturHN99/Nhj/8lqPOeRVheWox/OjWKtd/7X6Cosdz//YAfv/gJsIPX8g+67ey/tjV3HrECSR3/4GaqjGyaJTTjn4+p6w8bW6Ffg5/NhAtmGMXoA/o46Bf9rLwwXlc5/2OLUv2wYz+kc2jj+Hccxl99Wc5OrqLfX90Of/4w/WM/OJmrjryfKKXv5JXHfXWuQa5f0FYsGABr3nNa57qafwJkNciAQbTtT6femZqzUdu2TvmhnGpoyxlRPtga4DK6pO65FGT5Wd5MX6jgZgiInWUKJzrNnxQXaXpGbQSYhQNUwLqkFZwupQF2pNqpiSLZqnaCikpoWpK9qYrG28jdjUKpo6SMlYUDTOBJD4eBq1i4jxAltZIjjQKYCJu7dg516KTQhafKMAkKZ5Il6zIhgapN4N3jao7/LhOjULHGcxmnIQGv7Vx20lvuojHeSEw3hXfapviOUPs+Ui9m0goaQaM+XmwDYqqgEURpEKYCiO+zT/bDtg9o6hJvUN3mDVp7cx0GTTxDMv5eV0+lYFCM3Se5miygX1vUkYnl9xV0lGKuRza75SF+T6BVYz6KWmH7C4loaB6gG1kWZ+Ou1S3J2q1mlLz1wlPNJ4yxFNFeNMerBYhDAICrwaJoFSWxzQqm7PVCpXkkj1p9w9TgOf7IGn2VCiF+AEiNTwrCCGOWk6amtbqQhx5mFr7bnModOBDognqEDkDCQznluPKZc8dQNHThM4jyemLA2Lx8to+lxE417wM2XWo2gkc9VbezfkGkhglCUKctw9oyluzzJILIlxjDJTKzU0UymlEJUTBGI2kvTSReBoSyUwcdEDoGybq0mH10T7ORHkg3YTUM1M7CmsvwsVN+aFDq3ES25b3xqZIpAqIfZ5wAy0AACAASURBVARr220G2te08pcjzzviiCN4z3vew/nnn0+apqxdu5bLLruMww8/fDZ3MwfAWUd81TrQgvf8tizPWstvvncpxf5BnnXq1IbCE8N1rv3qfSitePbr9uf73/4xJ3/r4wz3DHDleX/FhNfLaGOIyj5Vzj72XI5fuGaOLM3hzxbS4+O9ZBXzHhzgRT8v84fqg/y2DKaYMDL0X6QPncWv+g7k5H/5Kj2b7obvfINzb7yJxi2XceVxP+GQN/0vDtj/5Kf6MOawB3jb297GJZdcwimnnEKhUOh677jjjnuKZrUXoMFpDWmSrTC3XtekqrNQvntpP8AH6gR4BFKkQQ3I9VpTrKK7SZQVQXcUsme21tk2o+kQkZq+5kapGOcgLjvYATatoQF/kgOZp7P8FUDD1WiQUEtreFRRUsanNK2iRyH5yr/NamjFx9MBcaLxwhI6GSJfHEdEMNpDSEiLUU6auolHhga2UIR6jMoL+U2Wy8uOPTBMVHeCyrJwqg61dBgYoEXwpNk/K5O+6TglZgSf6XsPZtmI6SWHLs/ANXrKSOygkgnUmg1vVeu81SlSoJwYJI3xlGJcHFo3SG3Skig2Pz+5fqTFUdr6PTyrptR9eaJJidGi6adEr+cxXn+0yc2JGSfBkopDJJP+W2fRKLQOkJZ5iNCfuq4kkQkK+KFHMr6DxFma2U78AhiP1CtD3O3rOKFGicjULdbTeI3JqwZZBhBSNJreCCqTEnEicVt+SB0hyiSJIvT2LsDJeHZ/diwuqOaFzq9B6CloZM/IgGuAJ4hXwqMKDTLipBRWND1pCDLOsKmg7Rg+g3hoalqRFgJ0Lme0otE065myLGKGmMA3EOdtAUjRylA2BZKkjpMRwJAqncndWgYPGclpInYNTH7gdWVbxyP58aUdEt5ANDVxiPEQ3wPt00xHlXUfEzKGHwg78kfbmADRgrKGho4QIAg0bhScNjgarUc6NkWcH2HY0nVdFAKeB1TxVURBDGPSaP0ZCKIScRw3E5AtaNpuoU6y6ybWZvJU2bN6vSeKWSVNF198MZ/4xCf4+7//e0ZHR3nzm9/MaaedxsUXXzybu5kDkP52G27TBOasFUi5vaL34C3XMrThUU5+/T9g/EnuSKMNrv3KfSQNywEvWcrPP/hB1qy9hZvXrGHLgiVMmAlGlj7Gy45/FUfPP3aOLM3hLwZ6v17CFQdz9A0D7HPHfH6t72bzoGGs9kvqY4fws8/HHP/SfVn1z58iefQR1n3pX3j2tbfibnknt524mkPe8kGilfs/1Ycxh13gJz/5CVdddRXXXnttlyuniPDTn/70KZzZ7MKFHX93BYoqwMWKscjrcjKzlXrm3tXIAgalMvMGhUJpA8pDGw06o0hVO0GRMhpBdzrqCaBTjNlGo7gYfyLGKg9tG3mvJgisy+JJm8n9mpsqSVHi2t8VzhGoAsaNtX7PPqew4nU5M4S1KkqNYIu97WPv+BcgFJ86MMEIPbRrc30PAk8TJ+3tlMpqjgCk2djH0yjbaNmYt/ZjNC7WkAepBZNSzc9t5/eenZRJcUq3yF0pEbRTVJoLlh2yLjENUgw6D3oNBqcCrEsm9TFy+XF61AtlamkDv1HDJuPYYhFcjbKxjBlHc/jJ38rScVM4BK0NnqczRzfaebyw0aAmFaDt5BZaRWVSsii1Pk5SIltgPFpKv2rg3KZcWuVInaHKdha6Mj1BgEIRk5EmEYXxIyTJsnueZBkW5yxV3WCgsAziYcLAZ6LWLtSqz+tlv30GiB+ok6YeqTaQ905KVNzVcFUrhbW0GrZ2w+XywphOY4Qm4bOiEUkzgifQyDlbfWEf3iQPfmkuOJAtDigvAiSzEFcGdB3R/aikfRyJKmAI8xox12KqXddMTbqn8n0VVUirHi+X6Bmts+suKbFu4EVlPFskqW4CVctlkdmRal3HphY7TfNpbbbyWLHceoZSYpSSllJWRNBofGBUWfCrYBWVAApVR9nrpSglCoWAKg/QiMELCuieENlZaRF0Y4RCNEzdZj3kFMOkSaZ2svU6tVI/PpMK9Jrb4hNoGOvgPKLSKXFo4vtdxhuiNR4BaUex2t7s6zWrpGnt2rVcfPHFT4gkbd++nde+9rWt31/3utehtearX/0qCxdOb2TwTIXdUSO94THU6l7Us9ruMHGtyu9+dDmDK/dn5TEndm1TGW3wqy/fS208JtxnjPR/vo+FS+fzkxf9FbF2bFu8mbNPPJcTFp44R5bm8BcJ8TTmeUuZf1A/Z181wANDj3CTfy+V+Y+SVtZz8w+qrHtwlJNeuop9L/m/jG14kDs+915W37CWsRtfw/bTT2LJf3sXevHe00PP4Ynjxhtv5LrrrqOvr++pnsrehQh1xjG5a52ZQR413yuy3VUh8EnTFKdCmJjIhtBkxAlawXPs6rQD5qxbjuCwytAUqA2qAItr9XASUZRMgBfDEmdYSwNBSJGsX1QejErHqND+vfl/wSvSsIr6lNqTbCsAUQ3EVenkN54SNAF+YQFpErQMrkXABEXi6rbuHU0aUytNIu1latEeVnx0fk6U0iin0CrNCKESTLkMO6c95W35n7QlV809WizDdgeiDC4Ish43cRUnBo0mzcP4znjOJAlOIvDn42mfWrIdhcOpzBkwO+IUGzhco0POpny8yYX8HedA5UF3wWq2hhNUraEfGEl3EnSQJkThxIJTec+kbIZpWkDVfaxzNBo+aTJAqhpY60iSiEYakuiQeWFIJB71Ds2oUoDWiG3fFRUqVFVI4Hl0lgxpEVLnQAt9ZZ8dTe6NIMrLMiiTivoFKKaacSeTTC3aMk89qebRKEErqOKhSPF0A2tDMFA5cDnE43R0b6JGBedSUjxwcWZ0XwY1AjVXAXoIMNgOeXeqQwZMNGPXrVKiSVAQRjDattV3zjGoy4SxRyN/DnWLhFhEKkQiDHiLMompUqRUmbBjQBFMDc9JRixTqNsqwSTZeVTU1HdR5GVyTaYSYTxImKcsnvXZ0Yip2mFq9QJFUS1y1Xk1QiKMiyjYgMD2UzY10jTCY4jYutb5sHGMrbbn4DV1oPlLLi+MCzxNtQGiJvC9EZJG28AmnVfEMUA6VkcmAH+EJcFq0mqWky/HQtWbQXc6S5hV0vTe976XK6+88gltOzg4yFVXXTWb03lawqWO5CePgq8wZyzrIjh3/eyHVEeHed6b3tH1epMwVcdigp3XsP/NV3Pjc9Yw3tPHUHk7zz75NE5decYcWZrD0wJqUQH/dQdx0G/6WXHTfH4nD3JXuJ56dCuVhxaz/lNbOfsNR9G3bD+e+7+/yW8fuJq1X/gIJ//y1+z45Y0E57yE0t9egB6c/1Qfyhw68Ezp4SfO4aIQkskSOg90Ec8qjBJUaPBQlHoVQ9UUOqzB06gI9dHJI7d+8o3gYsGJjxOb0ydQKmWB81jb+qQjlFya1Bomq49pruY6oOLncqOOQD7UEx3ZEUGbANdI2/KxHFpVUBJTLnjYEcuoch3vCb1+gPWK1OO2CYUVC6LwfC/LdCmN1ookFSpFH+tl9MqJppRCy+dLabT2EaUwQYiqB0iqgZjewjzGsFkjVlJS1S2n66xRb8gWtichJb0Qkuxzi1N4VEAbn5qXgk3wreT27/m5ygeJUkeYaDarCkgZm2e8lGQ1Hk5BQ9WJVZ0wyTIHXhDn5ggOhyKdxud6snBNiQe+IalbnAiiql3xpCqCihNUEmaBuqpR9uukrkgSWtLQ4Fdr9KYNRtUEDkdtsaYSF0i8/ta17ThLaDVBIy3SCBo06gmpmgfUWzR9WrgO5t2cYGAy8wrtWlqyulQpUSTSVSaS7tDYisFJgjMBobE4k6VGnQqzZlw6ILajBJNkd7Tu/nzfTkhUg5obZ1zH9Lp2rZpRgmsytaiXTimcFQ9POZR22Nzds2kE4ak6kTWMSoTzpq+jbYdf2Q3jlMc4j9Ij/Yh4aNGt6zvmHqMhBijScqNoyvBcLZfqtqH2xImw5WqR/ag17FyxGLNpPWm9aUkDhrbhmE4dvdJHg4ig0E8Y95EQY6VAQAA6ZWdqiY3XmffL5hSWIa62FnUA4iUDpGiCB6o0qOGKIbo6TlPG6SKPgvTCPMfwUC/iK0pBgZGNMQgMJ9uJPG9XZW9PGrNKms444wze9KY3ccopp9Db29v13pyD3uwgvXULbksVc85KpNj+oz62bQt3/+JKVh7zbOavasuMmoSpMlRj5d2fpdYXc/ULziQ2MfseNchbTvjv6Gl6bsxhDn/JEC2YNYso7d/HCVf3cOimffi13Mn6wmPU2My3v7yWxUcew4tOfxbH7P98Dvx/n83XbvwYfd/9Kaf/8L9o/PgKCi97JdFf/w2qv3/3O5zDXseiRYt46UtfytFHH02x2N3350Mf+tBTNKu9AHGIUVjfw+Rifmc8UlNGkkz2JsbDiUOK40TliF7RjFQSQq+Ar0rYqAjDWfBj81qlOE+KOBwpDYwrkEyKpYbNNhYGGrpqc6YPuISsNsrhMGXFiN1BhMPk+SABChLQaoAqmsSEpLoI6XD2kjicWLSqopVH0GHoEHWEJ5kbdIxoQ5UxyoEmLCkqFYUxPsb6rWm6ggdaYZXHhNnJ5r4RykOlzBGuc/5KEfgKr5G57onSTHhjBGGBihsF6QccjUKAc14rqhUcURii64+BGgSvgkom0LaO8pvOsoIqezDUJjZGBTQrjwRQahTtKrimpFAEowMo+cSxl501mZTB6YBCE1hLqmHCbSUlxUo5L4LPjRO8HvqDiFGzBTWyHeodtYAmYXTRQsyGYUKjmJcEjBmLUlV6rLBTAZ5Ca0soDqVSnIvZ2VeB6vLsOgI4h0GR5o6OhbhGgyJJSUM9QXtt84ZmLc2URIAydN5nzjic+KTKQxTYwCNJLU4bJLGUlMe2POups5wnNogQUwI/wJoCotcSjWuqRmU1Y4UCulKlqMHk5h89zjCWy/B8pelU6HlegDMxideudTKiiFva1BC0Y0A0G/KXFpQCtk80qJNC6LekmCIOJY5AK6oCLgiRhoCLOwhP9uGaP4DnaYxSRDTYkq6lVwoUWNExu3ZWTWlNr3hMuBpjdispxcwtEk13r6Ps4XLFCKnUEBylRDFuJlHtSY+7DbN7PjTDQIjKn0urAyQnkMNM0FiwBNmyloqJ2VIfoIeYBSwmMCV8TwjVGGOkmGx5BoVPEHlImN//CPgGl+rsb4vOuXTHYr4TQbRkXFULLjSEQcROV2c8HUJclQiF2Ysh7aySpttvvx1gir5cROZI0yzAbq6Q3rwZdWAf+oC2RMU5x83f+jLaGI49t+0uVRltcM3n76Y6VOHgez/LHUcsYWTeQkrlMc576dsp9QxMt5s5zOFpAzUvxD9/f8ydOzjzlwGj9XGuS25la3ELj977Ez51z60cevKzOf2I/bnwlEu49eAX8oFrP8QZ1+zgud/6BtUffI/ola8metVrUOXy7nc4h72GwcFBXv7ylz+pMW666SY+9rGPUalUWLJkCR/5yEdYtGhR12d++9vf8tGPfpTx8XGiKOI973kPxx13HJs3b+b0009n+fLlrc+eeeaZvPOd73xSc5qCjgCqkMczhf4lbF7ch966HRqOoG8+jcZWQs+iigmm4hN4ioJv0dbPzCRy+qH8iNgvIGmNEbeToqRU3BCehKggopEHhNoTCsvn4e7ZTmfjS08JThVABZA2WtmCKNWIElb0LyAueFhjGDQFSlIiSBSRrzB13dUUtC4pThlU2pZu9UuZjnr0/BRkzUQLHQ2KVAA6iLHVBF0ewPPaErSdfUWoZT2B4sICkqSASBUrKfT0wVCCkmzUJqxnMCgKymesabHuRdS8BuMLStSkiCLBKcl6M5Fl4jxVo3dwEF0uEOeZH19P4LBYHWU1K1JH+xpjfGJVI/Ucnpe53tk86nJaIAWthkiUZOVViWA9BcZA0kHxOroUa4REpQwn2+lnPsNeUxYpWPHBU3T4i6NECHQBEUcoEIhHRQujegcqEgY9jYrBj0JEx0Bmp247FlO9IETcMBN2G6kK0eJIGppKReHIasksEBcdDRNRD3sp6QmMrlMODZurmXwNQJRDlMuMBlqT7KhRRHDaoRwUMYznx+2hmRAFLslq8gBRQkF5jDnBouiVMKsDHFwEdceY3UjMMnx6iCMNFTD5cflOoYtlxgBfBvBNjU4bRW08RMco46O87KJFykfj2qYaClxhHkmSmRe4DpLrfK+r9qbgazYFNZxXIg18JLbgYuoms/VWzQHJMmB94rEw6KEyXsWXtiXMhJ8tpNiOTGigDBNpVt+TFookjQbVRrXb7bJ5/3iZiUIkAUnTGGKqiV0HLAPBJgZLPjviEEFT9ecReganY1IV4GiAysYxWtFXUlTGJwhEiHSBsl/CpY6iSzPfBwQV9OEFwriM4jAIQi1aAuPD4CD1MslhSSLyCklqvYsJJtWekS8SpC7GkGXV5pf2XiP7WSVNl1566WwON4cOuHpKfMUjUPQwZyzreu+R22/msXvv5LiX/y2FvowIVXZW+Om/34atwYLtl/Gr5x2CKOF5R+zDwc85b06KN4dnDEQEfcQg4b49yFUP8+J1p7NpbD032NsZ6RHuu+FH3H5zH0cfexynHX08B7/km3zmgH/j+7+7gtffrDniq1+m9t1vE736tUQvfxUyybltDn8avO1tb5v29a985St7tH2lUuEd73gHX/ziFznkkEP40pe+xAc+8AE+97nPtT7TaDS48MIL+dSnPsWaNWu49tprecc73sH111/P6Ogoy5Yt2+sy8oHI4+H8z3MxKJKoAqIVOvKw/QaLBt8nSWJMO5YmNFltTskMgZqH0xbtJQQrVlDYmhCOjVFPN+NcDessqadRRkEYYhq1bE26uTJORlwCo/BwoAxOR9DIwpeiGPqCkNhv4GmPQAckfkSfFEkTIUDQrQa7GXzPp9GotXbgG0XqXFbX0vQjJ8uoiKugEZSyOK+ENGJE/HZgJ4ISoRwYlO+zo5iQepqkFuHEMBYtxZ/Xz8QBAQNVQR55CC0KpSJ842XKRyU0FpbQmxROBzTMBInOAlFrNIkJcLaAF7fFW0ocgsvmrhUYQVJprbg7RVbnInWWRoM0ovtIEk3DsxgTkIhq1ympZi1XHa8ckKYp4kB0yhRLu0CD8RkYNohS1CWmofJ+TkrQNmtki2rgVImWxqqDJFZ7Qvp21NFiSFyDhjQIEYxW+NbD7ykhSQ2bKJJCRJomjAQN0riBIsVaS5paXC2hoSCNhfFxg03bEbcuVan0lvHdfLA1xo+AJdtLDI+mxDlpSlNBlMPpAOu7PLBvZ06MFuZFJagmBLQNSwrOMNa/itDfCqNDrc/3K00N6RIrmmKB/iVF6iMV6tQYUykjRc3gjub9o/N9+fT7/dTrO6DkUa1sa1XsFJTPfgOLcaZEaXSYfi9m3DmCJKG+vIaoGpoSmAhH050vm2zqLCZnVr4RvNx4JS1kduUCaCck2geTImkzy5SpGhSKVLLapqK0ZbeBr5gA6tEipDGGZ1N6nGmdf88IYcHDOEXayMivE0WSN7auSQ3xUyKtM+mgKCAlKjg6W7MJin4/iyWbGc6Cr9kRu9wwwqNkDFWvn1Rb8Ldiei1xI4LNrYpIJuxWxpQlMJCaUYalQbHqEddrRKUByoUS/bED1UdNQhS9eGlI3D/IeF+NvrjWqu+q9kYUgwA7nnQV8DkEjCbyChTsBEp57Ika8YliVkjTBRdcwBe/+MXW7xdffDGXXHLJbAw9B7JMUvLzDTDawHvVaiRsX7ZGZYLbvvs15i1fxYHPfT4AD/7ql9z5kxqJDqgWfsbmI1ezMKxz5jmvpXfB8pl2M4c5PK0hZZ/g5Qdg7x9m0dVwXn0pd227iT/orag+xX23/Izf/eYG9jngcP7hpIv4/aJT+T/LPk50XJW3/6bI8i98luq3v0nhb95A+OJzkWDvrWbNYSrGx8f5+te/zvr16/P+ITAxMcFNN93E61//+t1uf/PNN7N8+XIOOeQQAM4//3w++clPMj4+TqmUyariOOZDH/oQa9asAeCYY45h69atjI6OMjY2Rk/P1L53sw1fS3tRSyt0YrtcxsXPgrFiuZ/SoOlqxekkJlH5Cr5OwXiIKEQZ5vUVGHLCcpYzFDjsY1nTzH3mL2LT+Ppmt5f2YGLRuk6gxiEttyRK1hh6Uo/A+PSLYrAYsn1BDxU/xMTSWr2eDKUVKZYoFWJrW/vo04LpL5GOQ+gpQuWYWBBQ2pFgw0HQBrFNG4VuGJ0FfoFRWCdY/MwcwEEQ9HHSfoey+ZHfU1EPoMVQKfcSRw5TH2o368wpYhRFEBkgC/BTFeA8D1Nt4ClFKTSM1rLsT2A0XmTYrj1kPMU25WcyigoagGJxYR4b8utY8hXzihHjYQ9xOoZOHFvtw3nbTofRHqlLUX0amUggFoJyEdeIaaQ1oADaUUl3UlRZZtSZCAjpc+M08DMipWsEkaWWOka8CvX+fVnco2H7H2mUIsYKHqpSpxLXwLmseakCzxjCchGGtpOWIyrVlKqtEI8YGrWUcWrEWJLY4YZquNJGnLXYdDnOWlxgGJQehnuLTPRupTQGymuQ9geEhxxP/Zrru66buIztK6NJXNqVaRSg4EWs8C2PbqvlDF5omBKmv5fI24ktziN+dDM+EORjdd8d0pUtHRxYhPPmYdVGwBEUelA1WObPo+ov4eH6Q2RWHim6o96pEIQkojC+xz5Lehl65DGqDmpLewh3NiCGQAxWoOEnLTLWdd+LyhovSzGrB8zpXdH6NLw4k4ZK/sznU+7z+zPDiMqjWX+0/NwUPE0VIfA10gDPppQDj/lBgZ3DmfBW+T59NWFc72Si7CjWEirBAqqFZWhJmNcfwHidxmRn7nwfCmF+qAh0AaihOmoMnVhCKbGQAcIUXJL1HrO6ztLFHhWKmJw0xaaASxNMAerSwJQzy/VoIgVboa5jeoByvYjy5hOZXqiANMqgFKKqFPwtLO0rMFGNGPUFXwu1jslGSYGRnn1xxfspNnwiLDWZ9HdsljErbdU3btzY9fttt902G8POIYf94xD23iH0iYtQS0td791xxeXUxkZY8+oL2Lr+Ln71zrdy508stTBh56KbGB8YYM3+izj39f9jjjDN4RkPEUEf2E94waHogwc4vPc5vCR8Hvus30T02A7KtQm23nszn/viZ7n7xhE+fvhnOWHNa7jonCE+8sZeRpb1M/Fvn2Dor8+j9qPv45Kpxdhz2Dt417vexa233sqiRYu49tprWbBgAevWrePTn/70Hm3/yCOPdEnrisUifX19rFu3ruu15z//+a3fr7vuOlauXElPTw9jY2MMDw/z+te/nhe84AW8/e1vZ8uW7r4jswLn8III44V4YUioW4URmbVwmJGicu88okJI2tM8JgFxTATTy0hFeex/2DkcfPhzqC1aRlWqIMLA0n4imSAwuhU4FYMITyt8M4bRNXq8XtAGTJk0zL6DPH8cCTcQllKOXHwMpUNPQPWswIkmNiVqsrErdHEOrPHwrBDmzSu1hn4cpfntGuhCWmHREo+BYpjtM0d/T9uYxam8MDw3EGjW5isbZ89400o80Jn9gIBSlrDHZ345wOtta3wC49OPRxBERCYbtyl9SvuaJFkQJShtSFS2bXnh6u7zC5S9bmfHUv560feJPE0ghn4JCBw0fcWcpMwrZJmAQqG3TR6UIEqz1Wxm2B/OX8xdAaVpdCG5ci/LSJRMX0vpFkdjxL4HCEay/0M8an5mLKGda3Wy9QcSRAvzfB8U+IstMhjgDS4lKPTQW4jwA4UXKGR+lEnPSMma8qSZ1fl8n/7eXvqWrqJ0YEB5IM+E5WFmqLL7MvAtvmgKpoDf7EskYHuFmqqjTYAoTRAKpljP0zJpJtnr9TMbfAcT6QQTbhTNNCVSiwo0epZiywvQvmFR70Lm+ctwKKxfBuVh815iwY4apUYxt9fIQ2IvGzEqFsFBGIWEUfbcWb9MWlxMpIVlYQ9F7bPogKXsd/SBHTPIXCm7YNoZIwSq5DK73I7Chn7X+739WV1hX7FAeOC+GckUob8YEEZR50cpRxFWZ/eI3zvGvHACoyS7Xs1aJh2gw4BSaBATgFfszgQrhdGKaDBpGVgAbeMLoOJtZOPgMBWjGNHjbPWrbGOUhtQ5YLBIp8gvVQGj5f0oLF9ObfEgDJQZWTiA0YKWmIGl/ewoj1MrVqktKbFt9UHs6IEdxRGsWHp6IhRQ9Dx6yx4uN6NZ0R8xv6fA4QuOYYFeg9E9KIRynnHztCIsdMfJs4lZyTTNSb32Huz2KskvNiDLiugTuq3XN937B+677mqWHn88t3/tf7H4dp9tB72BiZ6HqZS20RsEnH7WeSxatuopmv0c5vDnCYkM/gtXYg8Zo3T1Ok43r+HRyt3c8cgvmfANZuEyqhv+yH998x6kfznvO+bjfLv3S1yw4G7OOXE1519nsR/7MJVvXErxjW/GP+2MrGv8HPYaHnroIa6++moArrzySv7pn/6JV77ylXzsYx/j+OOP3+321WqVYFJ2MAgCKpXKtJ+/9957+fCHP8y//uu/AjAwMMCpp57KBRdcwMDAAB/72Me46KKL+NrXvjZl21IpwDzBauR0KEIphfJ9CuUykgi+rwlCQyE0GOsTKUNvn0JCj6g8H8/bjufBQDFgycJetmPYGsaUtKLQE+ANawq+olCOmH/sccy/fjt3lmJK3gS9g/34nibAkIQaz1MsLM9H9xV4dGQ7RmkiQsQzHHXkKu7dsA318Db8IAWVUFowwPz5i6gvVFQfq1AbTUmDPvzSIsr1cRpG0a88KsagxaK1QpmEQmEBD67ZD9Uoo5zBaI3TgkFhlu6L3lHHq2fL4QUM5UKJ7bUdFHoG8Eu9eM5gjSYK63gRuFShcPQW+ymkEUk9oacnIiiEVElRIpQKPvNLIdURjVKCLs3DY2qpWAAAIABJREFUH/ZYtHghD/s7WBr1srO2gYFSwLa6gKcQgSCEnnk9kNRRqaVYComKIcbXiLIoLWitmO8F1FWdRCuKi3zqD2gWxYqG52E8hTJCiCJReV8pLczzejh6/5Xc+egWdiRjOK1QWhH6hoKnGZoQnG/R1sPz/n/23jxOrqpO+P6ec/faq3qp3jvp7iwkIRtIooEEEExABgacYXF0cEUFFcZXZ3zkdZwRFcYRcYZxhplHHQFffd7Rz4wzooCARpBNMUAkkJCQfel0eq3qrvXee54/qnpLOtCB9IKp7+eTT/pudX/nV/eeOr9zfkseH4+MXijVRbJtNE8iQjYy52JIE13PY7g6TeEQRSOOZaZorU6g+htw/AJDaCgJ6BLD0Al31JMMKzoaCmRSCXY5y5FHXqC/z8MKBTCtLLYw0PMSTUmMgEkxXkek08HI6gR0DeVpGKZGIGQRqo8wWByEfMmwC4VtkoEWQKFLDcsUBIWG8h203BBSCeyEJBixySV0RC5MVUMdkWIfckBiBAz0oo/QfZygg25oSE9h+D6WlyNgxpEIpCzVNZI6BMIWZq6arNGPJQ1My8CxDQY1iYZE1yVKExiGRFkGTiCMqUwCR/ZTkBkCwTTzVB6iEcL1Cfx9O7EDJrqmoRsGesDEdkwiOKiCJNlShRY00ffsR5MKIQXFaDOyr6cUv6flS9+3odDRkKaN1LMIAYWaKHJIIAPVyN1pQFBVVU24oYFil44Zj+C1LUDvLWAUJNLUqK2Js7f3MBJJ0DYIh4LMy9jszRi0JhpRhX5COYO0qco1pjQMTRANBzFNj0IgRDHjI4WLFw3hNwSRe4uYQiPZFsPc0o8hDXS9gB+qoRAVWBGg7zCeU4AhAZaPa/h4uo9uSGJhB9PUEbqGLjQ0XRGNV1M3byGOZ5NYuBKjdxO8lEZaIVa//e10/eb37D50GBUBGQujm2lUUSfaGiAXdVEZDVPXCSWr0Ya6MS2duOMQjFmoXBgOGui2RXV1ANd1EF6YjO3gBAPEYlPjRn9SY5oqnFxUzsX9711gSIyLWxFjHDVzgyl+dfc/IkxB4w/+D5nY+WxeegFD8Wcp6C6L5jaz5oLLMc2J01tWqFABZGsY830L8Z7opHXTYppDp7E9tYXf791IUfcoJJIUlMeWR/YyTz+DZQvX8KDxQ35yeS8f6D2D9T/vJv23/y/a975L8MMfw3jb2ZVJpClCSkkmkyFQjinL5XI0NjayZcuWSV0fCATI58eXls/lcsdk4oNSUqObbrqJL3/5y6xatQqApUuXsnTp0pFzrr/+elavXj1OpmEGB48qYX8CDMk4BSOK5WdwXY+cNBnys+TzLvVhk1yvhwhAPJGhs6dIRitSLBdR1SL1eJ6iqFy6axOomKCuxqG6W8f0irhF6O/PYIQjhGujFGsbyBR83KKH7vkU8i5u0ac+ZtFluHi9PkWhU/Rc9PoGig3VFPd1In2FKxzaz7mMXPNbyfdnyGTyFAsungdufTNmKEOytx8jq3B0h6AIsLOqA6/zUWw5QNAukDI6yOcL6AWPbCSI7OvCUz4F3yYsJUU3h23ZSGHg+uC7CjtoUMgXKdbH8buPELRdZGIfhYHakquYq1MoeviuRyqdI1tQFNQQyk+TjNajuWk818P3FY3h0zBjvbieolAo4uoedSJMRgo8T+H6PtJ20U0fL24RzGXQhnQM06SqpR1/5x6CSuAUC7iWhSp6+LqHj6CQL+J6PoWAg+t6+IaHIQWhqE3OtclaBqGCS8QPUWgKkfaLpAcyaF0evuej2y5aQcd3fXyl8DyfsJVn/2AXvhbAw8eVEr86jJ/K4/sFCqZBuiZOvreHsGsw6BfJKxcdRdEVuJ6H53n4fqmmT8H10DRBY9Ail81DvJ6GeBPd3S9QLPgUci4DjW3Uxjvwf/v/o3xF0SvJ49rVFFO9xHWBphegKkIuX4S8w1Bu1OBNp7P4UQ1cRc6XhIwMSUuSyUviUkf3DXJBh6HBPIN11ah93eTzHr6UmFU25CEns2S0DIG8h+f5CNcDJRC+R8Y/hK41k48ZuGkP6UImUyBfcBFCEZJV6EqSzRZRQsfz3NJqmhyiWPQpGOAWfLygh6Z1IvDwPAtd+NREqylGkui9veSy/XhV9bi+RjFXIJ8rkvdd8CSRaA2erkg3N+Lt2YlSPr6S+L5fqm3l5+mnh7yXBASWkmjVYdIyy4DuYleFcVM++XCCrFbEOvNMsp3dFIsubt4jk4ee8EpWeS/hBQv0pj3ijo6uNHzfI1/w0BNhDAOUL2hd2ICnuRxI9ZZkKHoUix7Kh9qAQbahGvXyXizNwZI6rq9QmoFEkS+6ZPMFlFakKm6QS/sMiFpy+cMopchJieP6oPn4msL3fHA9BlWCQtFFdz1c6aE8DdeTRJsW4u4bJK5CbMsVKTbG0C0TTwuQy7kU8yVX3XzexVMuup7HNDRyQxrWUC0uJpH6WnRLUci7ZPw8woRwMIlnSbyiR0/jUurmNOLtB/fAETxP0d8/8WTYZKmpmXjF/qQYTZ7n0dXVVU51eew2UClQe4IoX+H+bA8qVcS4sh0RLhk/WTfLw/sf4ND//j84KcHqHZ1sX/A+DjfUkA09h2NKLrjgUua2zXuNO1SoUAEoFcVd14hcWo336EEW7Didjtgift9/iB192wj372AwaCPitRRfMDmvuBbPGeJnkaf5/tU5Ptmzjrf8bAepz/4/6IuXELjuesyVZ850s/7g+KM/+iPe8Y53sHHjRs466yw++tGPMnfu3GNWj45HW1sbP/nJT0a2e3t7GRgYoLW1ddx5W7du5cYbb+SOO+7gzDNHv8eenh6KxeJItj2lVClNtH5y5x4j0QSRSAyVylE0igwahdHAZzVakGVk15hrRSAOLgTMMA2Rpaxa0YyW9/CCe3AyGZqaSmmL7XgMu60RkdNGf6cF1IkYXrWLlayhdu4Z7Nn7e5QTQablyP2diAmahxAGscXnM5BxR64fxo8lmHPWBtL7t1MIxsnKFIFQBMMMIzWTuVYVfXKg9JGmR7ZaxyWAuQ/wSsHmISeAo2l4UhKWFgN6yYVP6WUD1TLw7QS+dwhkKdi+CNj+qGuOkLC8OcFmxySvcghNYeijggrdwDZHNRgwnVJgOoxkSvd1g3DLYojUIn0LPZdBAEasnljAwA/VYm3ZSV8sgcxCPGAwoDQ0DbJzq/DKRaI0G5rqJG5WEEjU0pDrw5T9DFlJhBQoIcgHdLxwPwN6kTl6I4YVAisIQxLPsTDkAJaepaBbeG7p29elICh9hs10Lxqi1whjGM1oBROhlbKzmcEgKpVB6hJhRglEitRUBaA/g1LgVS3Ei89DK6QxNUkk5JBL1EG3Qtkh3JiDKUIYYZ3DQCbUQSx7EIZ2YUR1pFlS2GnRxRw2O2lNp8n6RXrK7wmGYPV5q+DFA+giQLo4B+vIS2gZEyPUjOEEgD7SAQ8SJlLPM5DuQQ7oKHwOJYO0I7BNk2K2iBaowoqEabAzCDeMSMZJeHn6yym0F825gIE9j+P4PlWBIDuGQNMMgvOb0fu6CXgp4u1pjsQCZBxBNptF04YQwzWByg+0XRsFdx64LyKqGtGUouCUS8VKBR5EquNITZI+3EkgnMX1fFzTGZno1qXENhUyoHB1n0BaIC2TmrZqDLefsJ/BT4Fn2WRsDdEcRkZB3yzxo6XneTCs41h5ZKAIneWxNm7pxbN88CTCELhVC7CdbrSy66XSSu0p5WVROIaOZtiEQhEGc6X+K1Wdoz5tonyfNJBduoBq0YHVt3lMHkZACPIRm3yuBjduwpGhkUOaEaJYvRgCQK6ArQWJjIm/16VOUA/Qr6WQ1uhkfiJk0DtYROgCgSi901YKzy8ilY7ww6WVd10vZWgsG1nRZBPiYCfdtTa+JnDtKkRv+bsTU+f1cVJ6+z179rBu3bpxRtLatWtH/hZC8NJLL52MW50yeE904u9KlzLlNQR4oXczjxz8OXue+hlv/7XADtVSnyry4luvozOWwjX2MG/uHNaefzG27bzm51eoUGE8Mm4hL5uLv38QsfEAy90mFkVr2ZJew75chur8c+xWHkPKQ3ejnN11Htr2I2wSu/jFOsVl2oUsfOA5Ujdej3HmWQQ+/DGMRYtnull/MNxwww2ce+656LrO5z73Oe6++256enq48847J3X9qlWr6Ozs5JlnnuHMM8/k3nvv5bzzzhu3SqSU4rOf/Sxf+MIXxhlMAI899hj33HMP99xzD6FQiO9+97u89a1vnZLV/Noqm8FugWa5kJlo5bKc7eAobAtwoSlWSzagkXCiDOR70ZqacTQdfUzafKnJchptQa6hBmsggxQSr6EWc+WZmMDyeWtwB/qJtSxDROMMqAGCUZO8UQDGG6tNixPs+v2YHYaD1boK9u8CFI5VclcMResIR3X6/H3YhiS+4DIGRA8cKq0YhjWLRU3nIXueA7fIULGIIwx6lMNAcC5hrZwCTYKIS/xiDlAELZ0GvZ0+LQhuOdGEUgQSTdRU1TDgmrStasN79hUAtGCB6rY4WjSK9/I22iMxemvmoA6+WEqyUPBR2nA6dhsPkLW1tBe7ybk+ygxBoh0JNJ17Bn0v7UUpha4JklYptskSBkfMARw/gAJqauP4BUm2exC9IBkKdlBMzh9RWdysQ+hhEtJAFxoCgeMYFIegsWou8mAXuiyWam4BfVoKO9KDnRUMGlFi8RhpVUAF6/CMOnTPpDbeSGJuO/u3PsFg6gjSEZgFMDSvNOgvo4xAKfW38qkNm1jhCE+JIDCIBLyAgRcIYGslI1k6QULJJpTfSaAO+ssqNzWT5lALhtiEoWn0AA1RG0sv6dLSJUopTNtB6j5mBJLzl+CEI7DrAL4EYesIw8fNFxBCclrtHER0FYayMGMt5CnQLw5i1oegUEQ/nCYaMHHa6kjlSysMlmbhNcxBO7AbqWljEomM5rkLRFzqOqLs7gKVB1cLYrlDlOoRDWc3FNBUi0styWwv3eleukI7ya9YBNvS4LvI8nNSH2ik19qOClnkLYdcTMOKhjD6JUKX6GFFTvNxE4qmZAI3mqCJWkTPc7hmAfLlsk2aQItHqD93Gd0HShkr40GzVNPILRKyIuimgRuLMKA6EdEWmsP1GOk8KTOMF49hOXtQaYdQ2CZdHGJsf1FKMS4whM2QaaL00jskBMyPLiRa3ULQCPLygT2EMmnqsDAamxgMZOFQimK8ChHMQcaEvlJcpy510AyMgE3R9eiorqI1GhiX1XBesI3f0okSo7KETJ2UmQVZyoipbAvXyZEy+tH35RB+FOFGcAopnJRNR/sC7KYIZMsFtYftIzUcQzdaRHoqOClG09atW0/Gx1Qo423vx3v6ML0dLv+l/388+suNBHd18u5H4ZJDGk92NOJIm/1LLmEo2Ill6Fx44aW0VVaXKlR4w8imEMafzcff1o946jArvByLgoItg2cTGvRZ1NjH3qTJrv0vEawyiPh1VPf08HLvAX63NMxy5zQW/nozxY+8H/OcdQQ+9FH0tvaZbtabmnw+j2VZI5nvDh48SFtbG5deein19fWT+gzbtrnjjjv44he/SDabpaWlhdtuu43Dhw/zwQ9+kPvuu4/nnnuObdu28bWvfY2vfe1rI9fefvvtXHbZZezYsYPLL78cKSVtbW3ceuutU9JeszpIsLuAaxShb3gSTGBIg75gHqmNCX8vz6oqM8zwgLAuYlLbEkUvD+aQEi0+ti6fwAxZ2LaNozu0NywjWRfj8Jg6NQCJc96B8hX+tlKQebgmSe/h/dhBp5SdbMzgRMrhFTA18vdYQpZGXXsU/3AegrWIfA8LakNEI2GihClYB8mWP8cOhSmaJsotEjQM8AEPfNsaZyuOZB3ToNqxCFBLfTLMnr0DZET5uKZDuB6nUEoSIUXJWET6WCEDkR2VtXp+A0PVVehb9hAqmPQBMWd4mFQ6z9QllqGRB6JmjIFCP3q5jo8MRmgPR0mX9dJkxEjpHsUCI5PKQgiC1rFDL1uXFDxFjR7msMjTG15AbWY7c8NhcENMNFzLiTx2rSToRzhQ3UGVA1URjUJu9Lu2TIeqqir6TY18OTOjEGqk7g9QzqQxvHTpIxBEHBNVXmbQpCDnjOakLpgxEAInEidqVZG3u9ltFQgVj40jCYcjVA+mR7Z9J4HM9o5veziCkBLNUUTiIVrnzIUDewDQDUVDLMROWfrs5uoWNuf6CXs6DcEgFHaOflAkAj0TuMbKMQV2y8+mMiMlw3dEB1AwwigtTLPRg+FNkExACaQsPT9aNIaxejFCH62XZOgGiWAtvpvBjlexPRmmMFBANwPodfOQsn9E3ceM64cTLowxKPzoXDiwGYCVzTEK7jlomcPE925nZesqnmkpIH6/AzQdyzZptU3y80+D3pepb6hheaiF4qE06e6Xy9Ms5c+OlCYwEk4IZ0k7yu4BXimtNgfqkUbJZVkIQcDQSIYtxuYkt+rCzFHtuENF9iztwwtWjxzTdJ1wIjrhCrwUoyvWAMkGHy9dYEDPoMUNNE9D1VkUg2twB3Yw2LINsVtDmg2EcgqZkAQMGw4X8HwfX44qUgm9lM7dMhCBqaupWIlpmgX4yqcrd5hXUts5uHcn6x9fxG7nIJ+RtzP/CbhpU4iOFzxSwRBPzk/iRqpJJ+fj6510tC1k7bnn4TiV2jEVKpwshBBoC+PIBTH8lwcQT3WyUuU4XeR4pTuOcVDjjPhS8u0Rnjn8EjGhUYzXoOVSbO8+wvZ5NbRHTqPjt5sovO/dWBduIPCBD6M1Nr32zSuM43e/+x033HAD//3f/00ymeShhx7iU5/6FPPmzaOzs5NvfOMbk0oEAaXVpv/5n/85Zv99990HwIoVK17VK+LTn/40n/70p19fQ04AoVtI22U013iJWqcOZefL9fhS5ZPBj80FBEL1llYPhBj2LsMoVZMc+X/kHlJgBW1EobQ6YJSHAwerVrPgqPMA0AVWIMScM97K3hf3MhHJRAEVg+C6ZvBKcVaJhha8dEnW5S0xDkUtIo4OeWgNjSYpSoRqOQBo5Qxm+sLT8A4dwj90ACT0JHSk00wsU6S/50jpIqXQhgu/lutC5QaL+EWFMOUEa3Gl8xqdMId8RSQcRYSAnaWBtmFpxOoDnHZgMYWhFH10EzDGe26MjVlsCjbREGjEK3ZhNc1HqzsDXtlUPqqwpUFYD9BdLlRbrF0Og0NE8ttG6t8Mr4AsrguTlZLuXaUDnmbTXhMkaEbYmk7TO2bKXmo6VXqALrNQKvAaDqIyBlAkHqhiXiTEjiNDONUWZtnoW1gfY2enzaGcQOkaSaeBgaCP1QNCH/ugjRrjTjljmRTg6z54kK9eisr6uEZp4O22vZWinsbtf5584FiNh8MRLMtGlhtcbC57Ib38Er4dReYGRnRqNfvgC3SjlO0PIBRVxIP2mDG7Ihm2OVKMkrAiIEaNprF2iBBidIcYXZkdNhb9UB2FORccI2/MTFIXUoTTpRpmY4nWB/D2+wQT7bSEWpFHZ8gTAq2tndr0ADIRYpcv0AYV0jKRpkkw4ODKIoFy8sZEooqBgQGkFFSFDfplFXr16D39wGjGSF0KMIN4ZhuwHUPqIMp5w+VRSWeUKrm0aXKk3UPRMEovFxYwLISA2rjCWlzHzl0pXNsD4R1jzfmmXqqVbIy2VToaNcEQkiy7ByVKTvimlXUy+uew0TR8thMAKTxkGqSjYwZ1Chql1OxWmHyNg14fpOgFsKItROaayEjJIJKAGdFgsDzTY8dKv9tNtWjJhuPL8wapGE3TwJFsF7849DCe7+Ipj6yXob/QT3++j67cYfYP7aPgF2jO1/F3e24iL4scCD7Dt39cj/3ybnK2zpZFbRyMx0gn6vGCIUKWzYUXXU5DZRBWocKUUUpRHkPOj+LvGEBsOsLC/UMscDy68oJtm1wW04bRvJAXC7sR5j5oiuD7BV7u7WHXgmYaLYe2px8j9sjPsS+5FOfaD6LV1M500940/P3f/z233HLLSFzsP/7jP/LJT36SD3/4w2zevJnbbruN73//+zMs5dRj6RIpfMJ6OQ32sMEARJMBPE9BtwDHRcRNKMfBRiKlWd9A4NiEF7rUy2m7JUIImtsW0ljXdsx5sjEITmlgpr1KvMDwuEpKCVJinHEWVbZN4fFHS8c1WZ61hhUXfAgZiY9cG5xTQ8gW2CIAQiATVchEFflDpZImvhQIKYk3tmBES9fNTdaR7ttbMhw1F1xw8yUDRYbHG4nDCCFotapotuIoIRCaAG3iQV+zvYhqb9/IdQD5ORciVOkeAokmoL/pfHqNAknpETMt8iicWDP0bEXpAXrC+6gWAmJRZL2NKYao67N5ZUxBUV2TNMcCdA9vxxqw4gHoGW/E10QjOPVzcIeOMBAcjTgRuoGTiFHbvhC/6zCNMZvT5ydxysZNsW4lfvggqmiSbWrGjQty4UGK9T0IvZSgAECo4RpagpVNMQZ7XfSwCYeG71TSVdHRkM1RhCYx/dKz1hqaMyJPsf4stHRJd8dzYfXi8/AYjQ8M6EHyhTwCQTG5ApXeivCOWjnyIRm2CDZHSPWU2m+V43ZMOeoyWh2y6bcMkmEL1d8HKkJAMzEMDQUYE2Q7TVpt6MJibksIih7F5pZxx0Nxi1DcAqombA8ChGmhLZkDIQO2CwIhRbPp0C8lumVhB3VCA2UZq2upqqohrL9MIVvkhXQVXmj8c9teE0SFj6oPZ5hQLOCFHPL1NRinL4d9D447xdQl8XAQLeizd6gWzzCwgw0UWjpQRw4gqmswI/VoZbdJdI6ZpAHIN9agN5+OrvZB70vkzeG0+gLH0IgbjfSKg+OuyTUnifcfJbMCEahFIcalNJ+IsTW2Sn2cIOxEqQ1Fx9UpPb05xsGXugBYUBsic8hGlxCNxchmvVe9x+ulYjRNA092Pc6/bv2nkW1DGkTNGDEzTq1TxxnVZ7HQa+esjfVoyiW76X/zlleeoy9aw6bly2hoCrCNaoqhAJqSrDrzHFa+ZeXIzE2FChWmFiEE2rwY2rwYfncW77lukluOkDQkBT/H3sM+Wr6JIdHEkVAvaX0/otqgWF3PjmyavSsMkvk883/5cxL3/4zAFX+C82fXImOx1775KU5fXx8XXnghUKoJuGPHDt71rncBpYx2PT09MynelJNp7eA0r5+mxjj5/iM4jkMkFof0LmpCJl2AbmmjP+YCZI0zLtvq0QbT8KDFV37ZaBIUW9YSrW+dwG8IRMQcc61GMRbGGBgsFVri6CqZY+4Tj6OKEx+X8fi4basqSs2FawkWBxETJdcou/SMjZ3WpBwxZkqz3aXVhcGkzVBUp6l8apVj47eWXGRFXIdeEIYqLaEA+unLJm630MpVdBidMTeDx6xg+UYQJTyEX8TUNFqiMWSwhmJdCOvQVhJGlqYlpyFsG4RDucwSYgID1DIkTXGHxqYInhFDP8poqg1bOGELP9TAoZohiuwqF4cVhOuaMKzSSkV9xB4xmEqNdPBDDRgDPbiajl1bDQyOuoMN61ErfdfKjGDpEvP0atAEHalz2N71DELqQBFb1xDDMV9S5+0No/XNAPxwA374tWf86+oaRsYypyeWMVDox9RM8k4VXrwDo/tFAM6bV11q5+40FH2i9QGi9QHyhyBiRAhHT8OQowaHaei87a2LOXJ/uY6oUjjSYE5dEznLwu7rHy+vWXrmfMNEhnSEELgnGBsjAjpqoACmhigbI0JCsjqCWbuQXm8nFPqOWREzdElRQuYogwmpEzQ1PNsZFxtkvmUVSvmssXVEnUBo4+MLlV36XamubWZw/zbiRgMN1jyaQgkor5zKWAgZG2P8SUmj4xzzHsStKrTqBtysTVVhB6HivJF2ASTNJmqDcwBoqD8N16xh5dw1FB75+TH6MfUAKGgwosccA9DK6+MBfbS/EggMU1JwR+85EbomqU4kwPewLIts9o1lzzvufabkUyuM49LWy3lH00VIJJrUkIzp6F2XwuPPon7joQopMr++nVccm+2rz6ehJsARLck+exA8j6ZIDRdddXUljXiFCjOIrHaQFzSj1jbgb+1Fe/YVOrpNOixJjhT7/Ti7+hKkyZMKHCIfOIiqC7NXKQ5UJYkOpVn4yP00//d/4bzrSpwrr0aOizepMBZNGx34Pfnkk8yfP59EYlRff+iTR/lkI8nTVuC5LunuINFkQ+n3I12KHQoHIqQz5SWLYS8k9SruMkDSqWPP4G5iZgw1WF41MewJDYejEUKQaYqh18QmV5vsBAaeoQWrj/8xZVPF98dMh/uj2QQ1XxKrs1G6zf6Yhjc0aqzNfdefjKQglgkdPTuEHwyPDES1ZN2E97RCMRjagy4lRSbRDn90lQav9HesuZlk41LMMQVJTdOgOhHhUC7B0fPhTXGH3qEilmWDGj0aiMbRpMS2yoNeIWkINbFncNdoUdYx3/vxSh/UhS1yURvbFJRuflSCBDtOoWkNyikNqEXZRc8OVKOFm7BMjTmOyZLkyYkbiURGB9CGNKi2a8YdH17ZNMtGiGoNQ3H0GdCXrcTfmUaWDaaA6ZCj1H4ZHDv4LiEFxM+YwJ1X09Df/nYaIzHE4QePPT4JRMxCBnSEqY2/qREgGK/CP7K9tPvo98YMw9CxsVh+MIlbuxQvMn7FSwQCCMA+6nwv1DByXX7uepQnEGwDwKmNEok7WMHSsF8kbOTcyOhzIiXmUW5+ZyfXlRI8AMpJ8JblH2bnk7tLp5cN5hUNEfRYaUw6P7oQyl+nftpihDPe2JOexmKrkYQ5vLd079qIyW4gqMVZkFhJzIqzM70DhIFAkGh0cIoOpv3qJkuheS2gmMpglYrRNE3Y2hg/1YF+Cs8/R+6xX+Ft6yWw6Bo8v8jDnVtIv+UKjIBB2sqwxUwhvAHMI4dZc8HFLDr77TPYggoVKoxFmBra0hpYWoPWn0E88QT6jiwdxQgtZ+EVAAAgAElEQVQdEShaPnuYz/beOWTUEDm7k5x9kN5QlCdqG9FzOeq2vciCD/05jWevI3D1n6HVT50v9puV2tpaHn30UZYtW8Y999zDO94xOqP94osvEgpNXfX32YSm68TqGkd3vIZh9GqEjQjr6s5HExpdR0qDKqlNfjjQX18YdRM8muPG15aNm/kLIX/idaze0hJFhCP0d5WMH8MwoODi6A4RzSEpI+imRAUMFiaDvHQ4TSI40QSjQIhXn7U2A0GMqhC6FaCjfQGZ/h6cYIh8flwCZuTcMPgQKo81Y7EgdIKMJxBRCzVQIDSnYcTwGEs0GkJ2aoQD42U0NEkyYpEXAkTpO9E0QbS+jerW01CBWkQsjurvoznQTHv1u+h55TeolIZT9o8cdnebsG2GRjhk4stSjFLSOHa1WwVqjtkXCIQQPaUJ30TAxNCmdrLCK2dDM8T4gbwwJIzRp6yuhp5yIo6OCA1DNn5AG2m/1t6BsGzqdx0i0yNHk6OModauY9fgKyxvqMLUTDj8+uUeMZjGtiVeWuVMWNWkiinaVrwNSxv93tXcdRTCPazTwqV5gLHXxo51l52I/LxLGRdAZDjgjXXflCSaxvSVYryssrYWBjMIc3TVytKOLedQHTLpHiwQiBikj2SJRC2swLGusCPxu/2ld71rVwqv6KMLgWmO9wMcdpUczHtU2aNJJdzYXERoAThRApNJCq1N/YJCxWgCvM5DDHz8I6hMBjStVNfAcZChECIURpT/l9EoIhZHxuLIeOl/EYsjIxEwS/UQeg8MsWvTEZTroVwXL5PDHRyimB7CH0xDKo3M5/ClQUPNObQtS9DjevzaS5NujpF3ulDSwxYaVt8RjN4u1l57Pc1LK3VfKlSYrYhYAC6+AE35WFt+ifjNMxT6m+lQi+gIGuTsKE8Vw2zNxZD0EnD7KFp59rfNYX/7XKSriP3b3TTYARa+Yx3JFctnukmzhs985jN89KMfpbu7m9NPP533ve99wGiCiC996UszK+AU0No6h2w4SK7g0Rw5TvzECKMDJeO0RYiDB2ES3gjDM8iBaJxMXw9WcPLG5+raNRMOqMw1a8GYOJZoxBWupXXi469B2NKRtoFWVc3hw520trbhb9+GrhusCsylqNm4CGRLmJAueUtLfOIPGilwNUEAR5nGRcsJZArYhoYlq/C9uUjdwHXdcecNx1eEgHPnVWPpEj+2BhEMjrj0ToSbmI/n97KscQhZPd7ILDS+DaHG32debYh8YzP5l0qZIo2ly3F37kDW1eNJSWhZC0te2Y4uSm3yff+YxB8AsYYWIsrHjlWhWzoHug8w105CLsVrLaQlk3WcE11HZ6GTFU2nM5Q+vlvmycCQJkozaTbiuIkFxz9x2HsyapZq7sXGj671uSWDpXVgAD8bmnDlc264jZZQ68g7cbKI6CEGx1hgbeF2moLNx747uoWyY8esHJ0Qx5kFGG5ue82xMY1jkbE41pmrX3P1eGVTFEXJxbdl6Wv1TaCVDVxvzOpgMDhaVwwgWC5HoGuj383i+Okl9+HAmImiWUDFaAJkJIp10SWo1AD4Psp1UdksamgQNZjGP3Kk9P9APxzVaY5D0zjQcDZ7my8CFEL5JZcCVfpb4VCwQ+hhkyURC9dM8ZB8lkNmN4WQREPRXl+NUfDZ9+uHiCYbWPsXf02iac50qaJChQpvBCFxl7wdFp+PefApQpvuxtuVxSqs5lx/KefqdXTLWn4V2Mfe8EHoOULzoIVnaPTFIvTqLi888Qj6o48RNRLUt7TRPr+dujlV6BPMYJ4KLF68mMcee4ze3t5xbnlNTU3cddddLF/+h2dghkIhXFdyHPPjuGjxBGbDiSUHClcnCSZqTsjNMWhMPAATzvGng0X0DcbvKUVxywsYqQHa3roGAM9XKH00HbKinNjhVRlbKPj4xMesAMmyi+irucYP1yGSk1j59KoX4Vsp2P8k4ihjVQVrJ876B8imZlQqhTBNjIWLRvbruo4U0NNzhEIhT6GQx5ngu4g3NI/bPqduHVr/TshtLqesPz5CCCJOjIgTw9BKmfqmEkManN+4AdEkJspPME4uuTB23JW1YbTWVlRvD7I2OeFn6GJ0OFxsWPWGVnKHWVn9FjRPHynILISYcLJhyhClpAsr2mqwql/daCqdPjn33BOJ9DJtHcPR8QoevneUTrVSD2frGvOqgjRGR5/ZOmdypSQCpkamMDVJHyaiYjRR8g8NfvC61zxPKYUaHET19+H39+P39aL6+/FTA1AsoooFOoouc41t/L6nQEbqFCNx8tVJZHWUUKET9h/gSMbl52IIBFgUmZswmXv6Gsh5vPDAf3K48wALzr6AM694D7o5jS9YhQoVTg5CUGx8K8XGtyKGunC2/gexF/6KQn8DFmu5orgM0fOn9IkcTzX+jm1spa4rhd89hArFUYEaeoVLz55OXtjzBJobIKjHqamqo7W9lbmLmrCDJzqkfnMz1mACSCaTIxn1TkWEGh/A/0aYyrgwoesYZ5yFCL+xGBjv0MFS+nFAFQoI0wTfA93GrZ0HRh8iEn3NgZ9vlIwUPzS5QdlUIcORSelF6Q7CLRmFYw2lowkEgmQyQ6TL6d0ta3JjBy/WVoqF0d/QOsfr4rVKpUxmED/Z82QgiLnmnEl93kl7NmJt+FYM5cxMzKqwLPRFS5BVr70iNFVITVA/rxTolBssYotRl0E1xoBsq3pto24i1rRNr24rRtMJIIQodXDhMNpRqSh93yeTGSKVGiCdTqH1HMbr2k9/bxf9XQdRXaWX2lAaSSl4Ww00Ll2NEWnhwJZn2fyjH5DuPkwk2cB5H/k0zaefMRNNrFChwklGBWvJnvFxsiuvx9j/a8Iv/xfxV/6JQm4BllrHhQNnchFrGHQy/L5jK262l8O7n8cSiogRxBdhBuO1pCN5Uj0HeKXnd4indBwRIxGvpb6xjjkLmqhOVv3BJ0WoMJaTZzRNNUdnyjsR9MWn4275Pf7+faM7XbfkgugrhJSluI8YTOrpN4Pk2985Mss9k0xGL4WWtchc/2ueZ1kWmczQyHY4PHGGsgmZAYNpzpw2dH3mv4OpZqYMpmG0htnj3maHDFh4IQWvVFuptEr8xnit9OUnm4rRNAmUUhTyeYYG+8kMpskMpkin+kin+kilU6QGM6SzhXEBfEJBVBlEVZwWFSLmmwTMLPmES9oo0HVwH9ue+S6FTKnKWU3bApb/0VW0rlhVGfhUqPCHiJAUm9eWijuuy2Hu/RXhXQ8S3/0dikNNFDmbZflVBAiRn7uWw+Ignb3bODCwFbvrMG2be4jkFb0LzqCraS79Msv+vhfZ3/8iv90CKIFlBAgGQkQTEYKhAE1NrbS3z5vplleYArxwE1pqL5M0Fd60aPUNyFgcd/cu/AMlw0l5XslFSPnwen4vZ4HBNGl0Bz/02lHw2phEHo2NLeOyTs5GzIoXzaxjsit7bwgjgDJKK4zKevOV3DiljCalFIcPd1IsFlBK4fs+Svm4rjfiB1woFMjn82SzGYaGBhkaGiKTGTwmABQgyBAxUjSRIkaKmBhCqosJ+K2E9SBa2ETUVzEYEdx375fw/JJ1rVs2sfomWlesItHUSuPi5YQSx2arqVChwh8ouk2hbT2FtvWgfPTuLVTteoTs1ttIDWq8rJ1DU+5Mzoqtx49dyIDfxf7wdnZlXsEf3EnzL3/DWakMzoqz6FqyhkNOjJ7+NIODadKZHP29A6B5HNzRi+iPUd0SIlxlj6vdU+HNjZtcgVuzBLqOjOyblkHPDCAcB+O0Rfg1tRSf+x3utpfQT1uEPzBQctOrQDgcIZMZoqamtpSuvEKF4xCPJygUCiPbsVicbDb7KldMDX6onkLr+SjzzZMBVSh1EqLdppEjR9Kv+9o9e3Zx333/+arnCCEwTRPbDhAMBgkGgwQCIaKFg4QLXQQtjZBlEAo66IEYvhVF2XG8cBPKThzXVaKYz5Wy6ejG5GpbVKhQ4dSkmKFz2xM8+8JPOZjrxWAey4eWsCA3p3TYz3Ikd5Du3AFyg3twDrxETf8A0fmL0M9eR3b+anpyQXr2DtK9Z5B8pjTho1uSWDJAtM4hVhcgWusQjFvYIWNajamampNT32U280Z+pwBiscBIXaHX4tChAyNxLC0tc7Ht6Rswn4icJwOVy1F45jeQGx3giUQV5spXzy473XK+Xipynlwqcp5cTiU5j/c7dUoZTaWVpkP4vl/KuCJl+Z+GZVmYpoVhGH+ws3UVKlR4c5EpePzi5d08suP79Bd+T7vXwJJMBysH20i65UKGymew2EemcARv4CDWQBcBbwijvRltyQJy7afTWwgx0JmlvzPDQGeWYn4025DUBE7ExAxomLZOuNpm2YZmNH1qJncqRtNrcyI/+p2dB0mlBgBob58/rW5ZMzWI8vv6UJmhUnaw6prXXG06lQZ700FFzpNLRc6Ty1QaTaeUe54Qgrq6SvHIChUqvDkImBqXLGnnkiWfZ6jg8j9bt/Dj/T/nzvzdBPVuFmbnsry/g9MHm6jTkoSC85GNY4ydneDs6KXBO0QjxVKPH7dQdpChtjj9AYuh/jzZgQKFnEcx55LuznHcnMcVZh2BQJB0OkUsFp/1cSwnCxmPwxtILlGhQoUKr4dZZTQ9+eSTfPWrXyWTydDQ0MCtt95KXV3dTItVoUKFCjNO0NS5Zukyrlm6DKUUmw7t54E9j/HT8Gb+vfgUnt6FVdRY2JVkYW89LUNx4m4MS3MwhYmNjq0MrAEDDUHuV78i0Pcc1REboyqGnkwiaushlMT/1UuoWA3EahDBECIQQL7ROjsVpoRIJEokcgKZ0ipUqFChwuti1hhNmUyGT33qU3zrW99i8eLFfPvb3+Zv/uZvuOuuu2ZatAoVKlSYVQghOKOhmTMa3g28G4CeXC+PH9zECz3b+N3gLu7PbyWf76Sm1yDZZxFLGyTSJsFcuduPAJFSIVThKew9naz6xSYChQkKeAtFy+UGhau+gdtw1vQ0skKFChUqVJhFzBqj6amnnqK5uZnFixcDcPXVV3PHHXcwODhIaBIVtitUqFDhVKbKTnBp2wVc2nbByD7Pd+nMdtKT76Yn101PvoeedCe5vj681CBeOoufyxPyLBZHTqf+hlaswSMw0INK9ZUKd2eHEBQQi2pQgeoZbGGFChUqVKgwc8wao2n37t00NzePbAeDQWKxGHv37mXRouNXwa5QoUKFChOjSZ3GYBONwaZJX+OP+XtsSpyho0+sUKFChQoVTiFmjdGUzWaxrPHFzkoVrsdnwDgVMi9VqFChQoU3Lyfjd+rN8ltXkfPkUpHz5FKR8+Ryqss5awoGBQIB8vn8uH25XI5gMDhDElWoUKFChQoVKlSoUKHCLDKa2tra2LVr18h2b28vAwMDtLa2zqBUFSpUqFChQoUKFSpUONWZNUbTqlWr6Ozs5JlnngHg3nvv5bzzziMQCMywZBUqVKhQoUKFChUqVDiVmTVGk23b3HHHHXzxi1/kwgsvZPPmzfz1X//1TIs1ozz55JNcfvnlrF+/nve///10dnYec87vfvc7/vRP/5SLLrqIK664gt/+9rczIOnMMxldDbN161YWLVrE008/PY0Szi4mo6/BwUFuvPFG1q1bx4UXXsiDDz44A5LOPJPR1caNG7nsssvYsGEDV199NZs3b54BSWcHxWKRv/u7v2PBggXHfQ+3bt3K1Vdfzfr167n66qvZunXrNEs5OzmRfmw6eOSRR7jsssu46KKLuOaaa3j55Zd55plnWLZsGRs2bBj5973vfQ+AQqHAzTffzPr167n44ou55557pkXOxYsXj5PnL//yLwH47ne/y0UXXcT69eu5+eabKRQKMybnAw88ME7GDRs2sGDBAn784x9zxhlnjNv/0EMPAZBKpfj4xz/O+vXrueSSS/jZz342ZfId7719PTo8ePAg73//+1m/fj2XX345Tz311JTK+M1vfnNExptuuol0Og3AP//zP7Nq1apxuh3um6dKxuPJ+Xrfm+mW86tf/eo4Gc8991yuuOIKAG6++WbOPvvscccPHz4MTG2fPlE/BDP0bKoKs5KhoSG1evVq9cILLyillPrWt76lPvKRj4w7J5/Pq7POOks9+eSTSimlNm7cqM4+++xpl3WmmYyuhvE8T1111VVq7dq16qmnnppOMWcNk9XXzTffrG655Rbl+77asWOHes973qOKxeJ0izujTEZXAwMDauXKleqll15SSin1q1/9Sq1du3baZZ0tfOhDH1Lf+MY31Pz589WhQ4cmPGfDhg3qoYceUkopdf/996tLLrlkOkWclZxIPzYddHZ2qjPPPFNt375dKaXU9773PXXVVVepX/ziF+oDH/jAhNf867/+q7rhhhuU53mqt7dXnXfeeWrz5s1TKufg4KBavHjxMfufffZZdd5556mBgQHleZ76yEc+or797W/PmJxH89Of/lR9/OMfV/fee6/6/Oc/P+E5n//859WXvvQlpZRSe/fuVatXr1adnZ1TIs9E7+3r1eEHPvAB9e///u9KKaWef/559ba3vU1ls9kpkXG4/0in08rzPHXTTTepr3/960oppW677TZ11113TfhZUyXj8eR8ve/NdMt5NF/4whfUPffco5RS6hOf+IT6yU9+MuF5U9WnH68fmqlnc9asNFUYz0R1q379618zODg4ck6xWOSWW25h9erVAJxxxhl0dXWRSqVmROaZYjK6GuYHP/gBCxcupKWlZbrFnDVMRl+FQoGf/vSnfOxjH0MIQXt7O/feey+6PmsSbk4Lk9HVvn37cByHhQsXArB69Wo6OztPufdwmBtuuIEbb7zxuMe3bdtGOp3mggtK9aQ2bNhAT08Pr7zyynSJOCs5kX5sOtB1ndtvv52Ojg6g9PuyY8cO0uk04fDEmakeeOABrrzySqSUxONxNmzYwAMPPDClcg4ODhKJRCaU5eKLLyYSiSCl5JprruH++++fMTnHks/n+Yd/+Ac+85nPvKo+H3zwQa6++moAmpubOeuss3jkkUemRKaJ3tvXo8N0Os3TTz/NlVdeCcDSpUupr68/KZ4dE8nY3t7OrbfeSigUQkrJihUr2L59O8BxdTuVMh5Pztfz3syEnGN5+eWX+e1vf8s111zzqm2Yyj79eP3QTD2bFaNplvJqdavG7nvHO94xsv3oo48yZ86cCX9A/pCZjK4Ajhw5wr333sunPvWp6RZxVjEZfe3evRvLsvjP//xPLr74Yv7kT/6EJ554YibEnVEmo6v29naklDz55JNAaaCzZMmSU+49HGb58uWvenz37t00NY2vG9Xc3MzOnTunUqxZz2T7semiqqqKtWvXjmw/+uijLFu2jHQ6ze7du3n3u9/N+vXr+dznPjfiDrVr165xE1ItLS1T/r2mUik8z+OjH/0oGzZs4IMf/CCvvPIKu3fvHifL2GdsJuQcy49+9CNWrlxJS0sLqVSKTZs2ceWVV7JhwwZuu+02CoUCfX199Pf3T5ucE723r0eHe/bsIR6Pj4tHb2lpGZfo62TKOG/ePJYsWTKyPfycQunZePjhh7niiiu4+OKLueuuu1BKTamMx5Pz9bw3MyHnWP7pn/6JD33oQyOTpalUih/84AdceumlXHrppfzwhz8EprZPP14/NFPP5qk1bfwmYrJ1q4bZunUrX/nKV7j99tunQ7xZxWR19ZWvfIXrr7/+lB3MDjMZfaVSKdLpNJZl8bOf/YzHHnuMT37ykzz88MPEYrHpFnnGmIyubNvmlltu4SMf+Qi2beP7Pt/61remW9Q3DSfat50qzGa9PPnkk9x9993cfffdHDx4kHXr1vHBD34Q0zT5q7/6K77yla9w6623ksvlxrXBtm2y2eyUymbbNhs2bOD9738/LS0t3HPPPVx//fXU1dVhmuaEssyEnMP4vs93vvMd7rrrLgAWLlxIPB7nz//8z8nn83zsYx/j3/7t33jXu96FlBLDMEautSyL3t7eaZETSs/kierw6P0wfc/xv/zLv9DT08N73/teoLQqYRgGV155JT09PVx77bXU1dXR1NQ07TI2Nzef8Hszk7rcu3cvmzdvHjemPOecc+jo6OCd73wnO3fu5D3veQ+tra3T1neN7YduueWWGXk2KytNs5QTqVu1adMmrrvuOr785S+zatWq6RJx1jAZXT322GP09/dz6aWXTrd4s47J6CscDuN53siy/DnnnEN9fT3PP//8tMo600xGV4cPH+bmm2/mhz/8Ib/5zW/45je/ycc//nGGhoamW9w3BZWafBMzW/Xy8MMP89nPfpa77rqLjo4O1q5dy1/8xV8QiUSwbZvrrruOjRs3AuA4zrg2ZLPZKc+A29zczN/+7d8yZ84cpJRce+21dHd3o2naSGD40bLMhJzDPPvsswQCAebNmwfAZZddxnXXXYdt20SjUd73vvexceNGHMfB9/1xbcjlctOaUdhxnBPW4dH7YXrkvv3223nooYf49re/PXKva6+9lne/+93ouk4ymeSqq67il7/85YzI+Hrem5nSJcBPf/pTLrjggnFG+0033cQll1wy4rL/zne+k40bN05L33V0PzRTz2bFaJqlTLZu1datW7nxxhv5+te/zrp166ZbzFnBZHT10EMP8eKLL7JmzRrWrFnDs88+yyc+8Ql+/OMfz4TIM8pk9FVfX4+UctzAX9M0pDy1uozJ6OrZZ5+lqamJBQsWAKXyCVLKUz5G53i0tbWxe/dufN8HwHVddu/eTXt7+wxLNrPMxlqFTzzxBF/+8pf5zne+w+mnnw5AZ2cnPT09I+copUbcd9ra2sa55OzYsWMkFmGqSKVS7Nu3b2RbCIHv+ziOc1xZZkLOYTZu3Djut3rfvn0jblowqs9YLEYikRj3TEynnPDqejresdbWVvr6+sbFdE613HfeeSebNm3innvuIZFIjLvv2EHysG5nQsbX897MhJzDbNy4cZxbnO/7x2TEU0phGMaU9+kT9UMz9WyeWiOgNxGTqVullOKzn/0sX/jCFzjzzDNnStQZZzK6+uIXv8jTTz/N448/zuOPP86KFSu48847+eM//uOZEnvGmIy+IpEI559/Pt/5zncAeP755zlw4MBIh3WqMBldzZkzhx07drB//34AtmzZQjqdPqWTjbwaHR0d1NTUcN999wHw4x//mKamJubOnTvDks0ss61WYTab5X/9r//FnXfeOW7w86Mf/Wgkva/nedx7772ce+65AFx00UV8//vfx/M8urq6ePDBB7n44ounVM5t27bx3ve+l+7ubgD+4z/+g7q6Oq677jruv/9+enp6/i97bx4nV1UnfH/PXWqv3pfsC0lIQgibCA4oCOI7rjy+4zJuOCg6LqODOgzI5xVFH+cZ13Ecl8ERUXgFVEZEJ6KIoIAghCVASEhn6066O71311516y7n+aOququ6qnpJOiSB8/18IF33njr3d8+9t+7vd37LwXEcbrvtNt74xjceMzlL7Nq1q2I8v/e97/G1r30NKSWWZXH77bdXjGepLPXevXvZtm0br3nNa14QOUvHn+8YRiIRzj//fG699VagEFI1MTHBOeecc1Rk3LFjB3fddRc33HADkUikYt8Xv/hFfvzjHwMQj8f55S9/yatf/eoXXEY4vOfmWMhZoqurq+I+FULw8Y9/fPJ3e3BwkHvuuYcLLrjgqP6m1/sdOlb3ppBSyiM+K8VR4bHHHuNf/uVfyGazrFixgi9/+ct4nscVV1zBli1b2LZtG+9+97urZiK/8Y1vTFZgeqkw21hN57LLLuPjH//4SzKcEeY2XrFYjH/6p3+iu7ubSCTC1VdfzStf+cpjLPkLz1zG6vbbb+eWW27B8zx8Ph9XXnnlZCWhlxKjo6O8973vBaaScXVd5+abb64Yr66uLq677jpisRitra186Utfesl7mqD2vdbe3n5MZNmyZQvXXnstS5curdj+k5/8hG9+85ts3boVTdM444wz+OxnP0s0GsW2ba6//nq2bt2Krutcfvnlk9XfjiY//vGPuf322xFC0NHRwec//3nWrFnDLbfcwq233oqUkvPOO4/PfvazGIZxzOQEePOb38zVV1/Nq171KqDwO3vdddfR1dWFEIILL7yQq666Cp/PRyqV4jOf+QxdXV34/X4++clPHpXflZme23vuuWfeYzg4OMg111zDoUOHiEQiXHfddZx11llHRcazzz6b3//+9xUepqVLl/LDH/6Q3t5ePve5z3Ho0CE0TePSSy/lIx/5CEKIoyLjTHL+8Ic/5Hvf+968n5sXWs6bb74Zv9/Pueeey/bt2yvyhnbu3MkXvvAFYrEYhmFw+eWX8/a3vx04er/pM/0O3X333S/4vamMJoVCoVAoFAqFQqGYARWep1AoFAqFQqFQKBQzoIwmhUKhUCgUCoVCoZgBZTQpFAqFQqFQKBQKxQwoo0mhUCgUCoVCoVAoZkAZTQqFQqFQKBQKhUIxA8poUigUCoVCoVAoFIoZUEaTQqFQKBQKhUKhUMyAMpoUCoVCoVAoFAqFYgaU0aRQKBQKhUKhUCgUM6CMJoVCoVAoFAqFQqGYAWU0KRQKhUKhUCgUCsUMKKNJoVAoFAqFQqFQKGZAGU0KhUKhUCgUCoVCMQPKaFIoFAqFQqFQKBSKGVBGk0KhUCgUCoVCoVDMgDKaFIoXkMcee4z169czPj7O5s2buffeewEYGRnh7W9/O6eddhpPPvlk1WeFQqFQKF4I1HtKoaiNcawFUCheqmzfvn3y77vvvpuDBw/y8MMPE4lEuOWWWyo+KxQKhULxQqPeUwrFFMpoUiiOA5LJJO3t7USj0ZqfFQqFQqE4lqj3lOKljjKaFIqjyI4dO7juuuvYv38/69at42/+5m8m961fv55vfetbPPPMM9x88814nsfmzZs544wzePLJJyc/33TTTZxxxhn813/9F3feebbAL3oAACAASURBVCejo6OsWrWKz3/+85x11lnH8OwUCoVCcaKj3lMKxdxQRpNCcZTwPI9PfOITnH/++dx222309/dz5ZVXVrW75pprCIVC3HPPPWzZsgWAb3/72xWfv/rVr/LQQw9x0003sWTJEu666y7+7u/+jj/84Q90dna+oOelUCgUihcH6j2lUMwdVQhCoThKbN++nf7+fj760Y8SCARYs2YNb3vb2+bdj+d53HHHHXz0ox9l5cqVmKbJ29/+dtatWzf5slIoFAqFYr6o95RCMXeUp0mhOEoMDg6i6zqLFy+e3LZu3bp59zM2NkYikeDqq6/mmmuumdwupeTMM89cEFkVCoVC8dJDvacUirmjjCaF4iiRz+cRQiCEmNzmed68+wkEAgDceOONvOIVr1gw+RQKhULx0ka9pxSKuaPC8xSKo0RnZyeO4zA0NDS5bffu3fPuJxqN0tzczK5duyq29/X1IaU8YjkVCoVC8dJEvacUirmjjCaF4ihx+umn09TUxPe//31yuRy7d+/ml7/85WH19Z73vIcbb7yR5557Dtd1+eMf/8ib3vQmdu7cucBSKxQKheKlgnpPKRRzR4XnKRRHCb/fzw033MD111/Pueeey7p16/jQhz7E1VdfPe++PvzhD5NOpyf/XblyJV/5ylfYtGnTUZBcoVAoFC8F1HtKoZg7Qiq/qUKhUCgUCoVCoVDURYXnKRQKhUKhUCgUCsUMKKNJoVAoFAqFQqFQKGZAGU0KhUKhUCgUCoVCMQPKaFIoFAqFQqFQKBSKGTjhqueNjCSPtQgKhUKhOEza26PHWoSa2LbNv/3bv3HTTTfxwAMPsGjRoqo2u3bt4vrrr2diYoLm5mauv/56NmzYUNXuSN9TkYifVMo6oj5eCJScC4uSc2FRci4sLyU5672njktP05/+9CfWr19PX1/fsRZFoVAoFC8BPvaxjxEIBGZs86lPfYoPfvCD3HPPPVx++eX88z//81GRxTD0o9LvQqPkXFiUnAuLknNhUXIeh0ZTNpvlG9/4Bk1NTcdaFIVCoVC8RPiHf/gHrrzyyrr7u7q6SCaTXHLJJQC87nWvY2xsjH379r1QIioUCoXiGHLcGU3f/va3ufTSSwmHw8daFIVCoTjhyTpZ4vkYOTd3rEU5rjnjjDNm3N/T08OyZcsqti1fvpz9+/cfTbGOCNv1yNrusRYDAMf1sF3vWIuhUJywqGVVjz3HVU5TV1cXjzzyCHfccQe33377sRZHoVAoTkiklNx/6F5+ffCX7Ig9hyddNKFzavNm3rDszbxm6f+DLk6MUIvjhWw2i9/vr9jm9/vJZDJVbSMR/xGFiOi6RlNTiJ7BGB0tEUK+2V/VbiKBbnp4+NF8Bs7IGM/c9xcObXo5r9+8BEOvnCPNu3l0oaNrc5dzPDdOk78JTWgVck4nZTlIkcFJJmmULlrrcu7rGiGfjvH61Qa0nFT3GLkdz2F0LsJoa5va5uTIuTma/IUIlKFEDgksapg5nLJEPTljW7ZgrFhJ5LTNlTsShxAjzyNXng/GzMcYTA/SEeoAmByXclKWg9/QMMvGf3hsF81NqxlODpJNTrBMtuBfvHhKTs8F6YFuznpu7ugAmpNALFpfucNzwbXADCE9Dy8eR29uZiCepSXsx29MySNdF2lZaKHCGO0dTqEJOKk9UvOYJTndRAJN5hCNHTXbSSlxM1n0YABhpwvnU2s8B7eT1zSMxrXgupNykBwAoUGks2b/yXwCx3NpDjRPnXYmQ97w4Td1ZCpJxLGgsYmxxAidrYvrDSNSSjwJuibwPEk8Z9Mc8lU2shLgbwDAGRtjwk3S0LoYv+6v0eO0/m0bAGFWX9PSeEopEULguF7l8yolyUQfT6X20RJoZXPb5qo+sJLgr87Dkbk4nhHE0wRIMOdwT1m2i6lraJqoKWcFiT4ItdV9TpI5h2jAIG/l6O3ZzUnrTkVoNfw1+RTYWQi315WrezTNooYAQd/Ub5bMp9k9kmN1ZzOmBkLT6j7vC8FxYzRJKfn85z/PZz/7WcwaN5VCoVAoZmckO8yXnv482yeeYWVkFe886T20+tsYzY3wyPCf+fKz/5s7un/KZ06/jjUNa4+1uCcMoVAIy6pMLs7lcjWjIo40CdkfEYwOZ9j7s1+yv2Mxm153Hp5nsGckzaZFEfSi0jGaHaen92nWd6cxPJcBfT961wSrNi3DSgQZiwfJxlL8ZlsfnVE/ByeyXCBHEf29/PkUQTgnOKt1A/5gE24qjzs0hNbQQP9AP9mRHkKvuIDFmQH8wISI8Dg9LPIvJ5xuZYU/SWNjmKFHd5I69XQm9CFOaljHU70pMrFhxoM7Wf3Es5ziCEJveAfjA0FWPHsb8dw6etpMUrt+wcYNL0dvXof0RTCeuBXr+R6cxWfj7d7HgTOXMmaNsSy4jv/Z/QSOm+H1i04j3LSU3+1/gjZ9GZtFltxEF9nWs1jU1kTb0P2E1rwKL7yI0ZRFz9A+Ni5fSqdmMvb732K0NWNu2kTa38B47y76943h7B3gZfooj/Y9jOadSeP+p8lFxtl88kZCYjFO1kBfuozHRx6jxd9Co6+J0ewwaxo2khjppuehO3n6vHNIC4tzm87BeOpeQutP4RndwZ+xGT4Erb4sG894Fa4neWz7DvRHv0d65VIC4ybSc+jNLWJRMMfGKz5ELJHH33MvANk1b8Qb7yM4+AT2xjczmLTIO5LB8QlaDJsVuWFGH34Iwhl47WU0Hnqa4Iqz2d63nfHnH6ejfQ3721/Fiue2c1JzgOAFr+YP3cNILcOlGzfipVJ4oyN4oyMcOjDA+JkttOYkPelmgrt2E14cwfeqCzEyfbgTcbKR5YjmVqINQayMxcTPb6YxP4C2din2aI7Aea9Htq7CS6fAy3J315NEnu7m/E6D8NpW8Iewlrya/J8fILd5A8HRBOaadeS7t/JYej+LDjSxXA8TfMvluMOD+A/8Ab0xgrXm9bjjcZxnn8F34UUIw8AbG+VB6xnSeZuTIuvpzEu0Z7ezbzRJpmUl+9tHeFnPTlY0nMZzusbQvqf4q3dfQXt4CalnniXc2oTZFsbLxtjldJJKp0kMPc6q5esYcTowhp5mkTvAsnPeypAdo93T2f/MFsIhwZKT30Tu4SfY2X8f3uYOXrb5Y0gzxL1dI6zO72ftuk24/iAPDz3Iqf61NHlBnMf/jDG6E9+b34UxsgOp+8ivfDXofh7o7ePQxAh+LczZ6RRPDu/h/ItfS4OvkVjWpjG/l8cP/Bop/Ix2nMIy/SRsz8an+5CehzG0DSPZi7X0PDIP/hFTjhI492KkHmDngd8w7CTwQh14wVZe0duK2xAhtGkTuuEnN7aTrt4/sHndu+jPRzB1QfzJn4PnMR7cxI5AkrduOJ9mPzS1NBKLl0UsuHn8+x7EMUNkVlxI2hKMJPNsDE7QIzMMpfwMx03WLc5D99NYsQnM5CCxyMkMje/m5LWnEjYa8aRNeO9v0ITA6jwDL7IETTNAaEgpGcumGMj2ktof56nAYlYtbmd1a4hYfIKRbVsAeGLFa1nT/SzG5jNoXb+aWKx6Mms+1CsEcdwYTT/72c9Yu3YtZ5999rEWRaFQKE5I9if28ZknPk3aTnPV5mt53bI3Vsx+X7H+wzwwcD/fff5b/MMjH+RT6z7Km8xO9EQvwrXAc0C6SCOE9Dcg/Y14/ka86DK8SP1Z2pcCJ510Ej09PXieh6ZpOI5DT08Pa9asWdDjOJ7Do3t/w8COHayID5GUG7iv38KJrSPcd4BHxx+l6dxzOGXta/jps/ey9OkuGjuWksqkOOgeYJkLqV09OEYefOdgyzx5S5DL5nk+/RDi+QOctWgNeGHMJ7bzLL/lvLP/mtx+EKkhDgwNsN1LAZBJ7WFtIER0+CCRyAqyS9t5XDicsvc5fOnthE9dwfC+GHu3/4aAX7It0oHY+FrOefCX5JdkgSjPZgZwH7sNe6CRvtQ+hnqT+J58hvTYAMl0N5tPuYhQ10Gs4SEAjIEnGG9dx/CBcfREhj1d9yDWbaAxlqDr2TsYWbMOMzaKEXuaZM5CrIwid22hKxxgb2eW83b8FNm+kW3N6xgav52e4UYuTK4hMLSd+JDF0vA4T6ayBA8OknGbmbAP8btn9pI0HZblHmNkeC8tuTBPLevlFTueo2vkAJl8nkRHlF1hh/bO5USf3svooTtwmyz8opmxJ5/D7etnyLiHJFk6R7sYPuccmh55hqUDcQDyOZ2DZg+Rx7oYsfLwfDfDweVEs70s0lLk0hpO1+9JT6TJ6xohy+KpJ36M/nwXa90GUo2nM773YQyh05RMI8ZiTOSyWHmP/vwwu5/9FefrnTRZj5F+/E94tsu2JphIGjiJbixrPetyNoes3WTcOM/sTmA8cA+rmhfxdGqQEUtj/KCPJQ6s35FgtHEz2vCzuNs0Ai1p8o/t4GDSpOeiywmFfTgjYywan8AwXbq3Pw7AWc+ZaKtPwdoVY6LvIYxUmpQe5MkDCQIDgs2hZVhrG0mnRui95wHamzewKJ/j0dEdjI+myQ73Y4c0Th88Dffe32IBoXM3Ye76NRP7LMxAM879v8dcvIxcfz/Z/ieItwi2Nj7B0md6EI3LSNgai/QGdHMbpGLskV0MTWQBSKVjJAZiyIf+m0RnlJWb2tifihELX8rq0UcY3vsYO7c9jH/zOwjld7JdZtjz7P14iwzWpHQen9iNmza4IP072hJ5RD6N2NmL2fk0+50Wlg4/h7HtGVLbt3Lgr1/Hru095A89xqaWkznY38XJpoXv8T/QuKIV183Ru/NmNBYxsL+X0dZmNDfP0O4smjPA1l3D+IJvo2l8J+tGHsdIDpIdyyBebrM7soredC9rg+fRuvUhou5etKXt2L+9k6H+QgG1DWu7SFoOg3YCTYAeO4Rv4ADdO2DQGcDgFHRrNdbDv2FsdQv9mf9kMLuYtD/Ma3fuxu/ASPAQ3sp27o0/wd8sXoloXw6t59E1nCJk6ljZBBs8yT3928gKl9GED58bod3YTbc3yrPZdvxOCju4EsvqwXbHaUoIxg/uoss9QKIhhZ3aRJ/9JCfnn+eiyHr+vPen+ITO+R3nkVh0Jg/37qZ74GmajQQnp8JErEEOcDpiIoXd9/Tk76Yc6SUR72bvc/t59ZqPLehvcjnHjdF033338dxzz/HHP/4RgPHxcd72trfx7//+77ziFa84xtIpFArF8c2hTD//vPUf0YTOf/zVf7KmYV1VG01oXNR+HueO7OMLB27lK13fYjwW5xMTcUSNPktIzcfoFdvB99LNNV27di3t7e1s2bKFSy+9lLvuuotly5axevXqBT2O6zpoPdvJ2FliMk0mfwjt7m6ajL2MueM0imHsP97J0KMPc/L4ECA5dHAUx8sg2yNY0iZtTeB4BgGfzf70VhzHx3k7XFbldqFle+m1e2DTmxGeg57IMTrRh2s3oY/2kM0liHgxACJ94BIg5rOJW7thdIiTpE7Y6MSyPexEmoOJvQgcLAfa0wmGjULekn80jYxESOYc2HMIK2TgB/zDKdKZQm6G6JngkaZHOaPbpTlsIkp3oecS3t3H4NAwAXuCRd06rgghJbTt3YMnJTYw4IyRHx9AswMY4znGWyP0DwsW55/E2nUf2kkGuVScR/t2EooXlMl8ahBzLAGYZNyCQRPp6sVa3YIxnMEFYlmH/tEk4tAO/FY3A14T2ughtLU+XGcYJ+nDsfpgCMZDQXxjI4TtCeJekJTnkB/oo+nhACIzSh7wYZId62f84INkrPK8rsI45MhjoHP3wX102I0IIVjTdxAv1Yeha4xmA+za9ivGgnFerq/F7O4HIANIJJ4HK7d3wRmdxDL2ZB5b46E4Wss+DCdLc+5pntuzDs1OIgyP7T3/w+LUIAE7Tc4aIyx0UnYH+pgLaAStYdAsxJ6t5M9cT9718NkJmrc+gNHSSOTgE2jSZTxvY/s9TE3j4L4uOg4MYgjBQCKHKTM4WgBbugQw2JccI9bVRyC2DS2YJTv0JGN9e3Fyg4RMHcNzybgGWvwAKTfHsJMkNtJL2xNDTATGINKJ9IUJTzyHzC/BlzhAZwIGTl2MALKZDJgR8tkROnYNMSIh52YRsjDm4kAP7uN/ZsAdwcwH2bpnF7GIn8bUHQyKEIGURdYX4dDYIwS1Xhy/QTCXpMkKI5/qpmNghIFTF9MfG0EbHgUdtKyDlhlBjPVguC4eHjtH9vDovjZWdPeRAnZN7MbL7WdbDlp2JNljNLCooRDSF3nqGdryOu2jG/CST5OWEMFjrNdiXeO96ENjDA1N4GoFD4/9ZC+7W/eSdh3y8TgdAxOs9IZoChjsH9tNXDq0i0Ysx6V7JM2QsGgLmzRvH0QD4k7hzmt8bC+DRhYTaO0eZyDkY+WOx0iEVtCfH6RDNBJOD9KUiZHX/DyU3MfrfCEcZwf7t/+GodBiNstmBnxZBrMpnIM7SJvtxPUgT9kH8Okajel9aJ5Dz0gTqywTG3jO6mPMzRfOxXUZyvVip4Zw/JKd6SEGklmEECwxd9Klpdk+mqA9vY8cgB5GSI/WxA7s0QkAdrl95LDp3PE4tutiECKZGcVH6+H/CM/AcWM0/eAHP6j4fPHFF3PLLbdUJd4qFAqFopKkneDax/8JRzp8+xXfZUVkVXUjKfHvvpPIw1+iPTvCd9pP5V/a2vlB0z4GN76NT278JELzgdAQTgbNiiOsBMKKI30RMI9OjPjxwOjoKO9973snP1922WXous7NN9/MFVdcwZYthRCQr3/961x33XV85zvfobW1la997WsLLoscGcZ9qg99eSF/J2ANo3kutohDcCkZy8avCwbcJJ4ovMIdYYIHQkokctIA9umgOzn86SzC04lmezH0wl4hJVIWlOt9T23Da1hJc9oiL51KeZBk8oV2QcbwiyAhVyODxd6RPmwq23f07+cgGsKWuHZ18RE9k0dmC99JWQ6pRI5DuRw+XxShS/Zbo3ToGq6moxX7DqQy5E0dj0LOCWX58JHRNBlfAJ+TRnhhQBDPpwnY45j7dUZObkdzp8IltZE4RmyY8XwbljfVkZFzsNIJAGxXsnjnIFkGyQIhRskbUQxLo3X/KLnolKFs2kkCdkGBy3o2drHgRbOTw8vFScsAmqahjW5HSvCYMpp0t+ABGSwaqSNekAgBwgToTsdI5hxCPh0/Nr79XUTbwtBqV10fx6tdYMPM2phOmlB+grzWTPujPyMRaifvZQjbI4VzLXanFe8FK5NE0kA4NwSBAAjY89xB9LiFFIV7xx8bxHQySCQWDnnHw/RpjDppDKHTbkQrzrNUAGQ4lyFjDtJePFZfKg2yEEZlFA29RNZhJB+nOz8GQFdmmDZgImsTcQcx2taQi/cQyI9MnWjxOgbtcWwzQnNyFyOeB7pG3rYJW0No0mOiJ0zcKXwvHo8RHB0ndupi4jJDXGZYDCAluuvQ1j1GLhogt9Eh+sxu8vbUvZLZvYNuQyOqF56/XD5HOpZEYDDkxcli0Zp4nlBunEygEyHtyWdyXCbRR3WI+kAIhJTobo6wDJCUHqWyLa3dY6RPt8hnRvDLfOHeERoIgfHINqLZOIENnbQmdvKsN4i9dwx/zsaT0C4a2b17EONAP76OLGnbg3QeTRN4ZQ9POHWAfPHvyHDBu+yzCxMJw7Lwb+maj2Xy7HKS5HNPMiaTGOkkzwODmJPfa7LijDZuRsrCI6p5hedX8xw2ygaGNUmK2OTxc7bLuH2I9mwfAxaMyBHsooG7xxohll1ScT/HZYZ210csf4hemWGttoikLDxDesYCv4FwPYxkP4Rf5EaTQqFQKOaPlJJvbP8KhzL9fP3c/6hpMAkrQfS+T+Hvvge743QSr7sBe/E5XAlEdn+f2/bdQl4zueq0a9GFjjSDuMGj89I5Hmlra+N3v/tdzX0lgwlg/fr1/PznPz+qsjjZJDnHQysqmppXVKOki+7myHo6GanTFuwkaxUUBlsE8Hk5zGwx2RyB7UrC48+y2HAQ8QaQhZltT4LjeZj9I/RPZInaeZpCAbR4N1lCWDWMpnLSMosjIgx6E2jJ2gV4HTxwYSydo5RKX5rtn46ddxmVCbyMQ9SvI4HhVC/S3wI1ioW5ZYaOKDUoKnaG5SAxyUoHQUERjw4mCWWzkyq8PpJCt20caxxhNiKL4avBWLamfJPjIKBt/xj4dcqLmAWLBhNAzp0aOy15CMuVZGSKpEzj2MGizGJyTAP2lAIJEBxNs7Ohl/VyMTm7YMBl8i4ZCgaEnneRFAyvXm+UVhFlVCYnh8mRLr1ylFJWuGk5hMYLRsmgN4EUgmgmhyWzaMXrYU+73sF4lrTwExGByX71ofHJETedNI6eZUKmmJAFRRsPAoaHrmloCKSUxGQaAL+bQErI2i4WLhlnjHGZgvTkyFaN9a70IfxlezwKWnjKcoiO7UPXNYa8qbGLDk8tJq15DhNefPKzkN7kuSZzFqamYbseusxTjig9b9g0DhUMq0AyxyF3hDXDe5lwalehlMCf/vRHPNvlJG0RTtHsCcayGJ5FKDeI33Yov7ua+mL4wib59shkRbxayvhO9yDNbpyAtMAFhIbh5sjm0gTtOJ1df5o0Ts2MPXmPp2SOicG92F6S0LiOUZz08MqeHcvxEBqUrLToSOFaBuypsSsnl3fBB+PF0N0SExl7chyEBpFsH5bhYZQVkQjY40AT7aIBXbcYK5pqhphqIz0oD3fon8gyIrOUP2wHvGGaRIgebxiA57yDxXMvu5aenPJYHwWOW6Pp/vvvP9YiKBQKxXHPb/u28ODgH/nQ+o9yesuZVfu1RB+N//Nu9MRBUud/juzpHyy83Si8o644+cP4NB8/3nMjtmdz7enXoWvH7avhRY9eVJaFV61Mhq1hPKHhaCYDySnviSNz+ITAn7agaKZo0kaKQj/RbB8ltdLzJPGsQ/TgUPEzjKdyNAUNBr0YYSqrYE2XQgIHvRHmRNmXo9lCeJwbMCE7pai37isYBON2hqRtYOPQGvYhcjEoqv+zF1ouKEl63gVMvDJFKzyehvJqXUWj0eckAQ/bKCR8+7KVHpzplIxXx5PEsnkaZpVpCseTDKQyhH1GUdbaZ9TQHyfZEMDetxdRV+/zsLBx8Sa9ASWSZBn1EpRnHwZSFp5moHkOQko0mUcr8wKV99HRVVBGR2SMUakxkBAgBFa5JysxCDp404zghOXiSQfPn+CQPtVnydtQ8laW7oOZsB0bP2AVDZW4nLSwpq5t2RAaVplB48vh5KZkE2Xnmo8dwiiei88pKP9+aRAZS+MbLBiGfjuJnykjLGiNgVZfCbddD892J8Ux0LApGEYAhpcnW2O+QDgeoe4xUkXZa13vYCyLmZu6L0vGX7DohfM5STKy+r4dljFKVprjNyeNpgq5PW/epkVO5tnnDdTcJ2VhmAL5CWJ5iGWm5ArlRsFoQghBPln+bql8DrQaEjWn91R8fsbtmZLHs/CnLMIj6UnbykhYyJo9LQzqzahQKBQnKMPZIb6781uc2foy/vak91Tt1yf20fjrdyLsDPH/9VPsJdX5oUII3rfuA5iayQ+6/hNH2vx/Z3wBU1NVTI8FXjHkR6+zvpImPTxh4NRZ8yhHHj8mmvSQQiLqhG7Fs5Uz7bGsQwBfVbhdjsp288Hnpqu2zaSqVRzbc2DSZ1L0JAkfjqyWR/MK20rhiXF3qnKWmGafWJ5HvGi0+Zw0PqdaxlqYxT4t26PBPli1v9yDVKLcI1V7iZ3axlM2l6goCV6OhUNy2mz/bJQMl8L36xuHuu0SxIdZDPsseSHMaZdM1zT80sCHSVIWvE4lL0Y8n6cpeGS/HSWvT96RLH5uAE/MnEtZfo/HljUR2Tk+tbPMuDO86ntnyY6hme9xKZE1jKa844G/cF0dzY8ubSSS7ByfF3M8g5Z3cTwPoWk0pfaTQJ/0VMGU4VVXNIoG0gx4Ru3nzbI9AubsS7WKsnvUljOs+SYpWn4zT3EkwmsgOVb8jkSnrHx4jfaGU98D3NQbI5gohgCXlWj3Mjm0o5R+q4wmhUKhOAGRUvKtHd/Aky5Xbb62ao0YLdFH46/+FuE5xN5yB27bKTP29641l2FqPr73/LewnvwM1535RULGS7fww7HCKSaZNB5KzOt7sswYmVKMJcKtrcSkrXzV6vZ+YVbM6h8N5HQrpgbjmTyhcBSc8raCgBYh5ZYpxJNhbpUel3yN2fcSGcupud3QBbomsGyPufi2puPDqDBI5tJDLXW2sagoW05tY/d5t5f2OoaPV9symxdtWiMmM6/dZWjapNGuT2s7uxo+O8ItmJ9TiyGXW5+Ff8pHR1SEbHpYYR/+dMF40WTt613C8mvkNbOup9FXDP2aPrQlz5A0/OC4SMlUuOJcyLtMZG2krH0fzIXpRvpRoWLoj/x4ATtO6Zdt/2iKVbmpz/PByNlTBtM0juYS2gtxfysUCoXiBeaR4Yf4y/CfufzkD7E4VJkwK3IxGv/n3Qg7Q+zS22Y1mEq8bfXf8qlTr+bx0a38wyN/T0+y+2iIrpiBMa+gQoR8810ct1r1GvYS6HVyMXSvWkmcnt9yVKgfdzaJlCDF9DldSdRoI6pP5dqJ6eE9rkePNzyjajecr20UirJMiFpjMzuV55XOO9QyncoLJNTK8wrNklsViNdWFDVNVHkJ58tSrXVWg2k606+mmMP1nbVP15sMzYNKJdiRBdW9PD+n0uDxyLRMFa2pl6NTIr4kytiaNrJ1FkoOj1au96MXjW6jGPJZkkJQyCmbzuDG2gvz5h234hwKfcx37OZgxMzQpI6zGigWXJnGuFcIW/SOIHy78hwlZpk3ej5nP90TX27QLcDcQV2U0aRQKBQnGK7ncGPXDawIr+Rtq95RuVN6RP9wJXqil8QbfzRng6nEm1e8ha++/JtMWOP8/Z//jv/a9T1GcnPMYTlG5PN5vvKVr3DJh+IrdgAAIABJREFUJZdw0UUXAXDjjTfS3X3iGX1uazMwJ9tiVjw8AsnaC+2GrBF0r1IBz3Bki/LWok00TpNpbmTKPD4+tzCDrwmdqNFW9zvR4dln+usZFkc63CVjyNELynfBY1VNCP+c+8xFK9tqrjeZsD8dTUCvNzrnvmsxX4MJqsdNWwit0vVIl+cplSnElu2VeaCqMdzaRmUtBjYtIh+pbSyVcHyF4iSlnKyOPdN+C4uiucKsGZon9doDYtfxAM+H8h7Mwwgcm2kc3Ro5lUPFAhuuVvsezhm1M/1K90jO1zSZT1uL6UcUM4QDakVPbLKjehFaOcMxjhRlNCkUCsUJxu/7f8eBVA8fWP/hqqINoSf+A/+B+0i98nrsJeceVv9ntZ3Njy64lYuXvJaf7v8J77r//+X3/b9dCNGPCtdeey3ZbJZvf/vb+HyFQgirVq3ic5/73DGWbP7IOanv1W3m9r1KZpuFXwimKxlODWWsFnnHm8w30mvkogCHE0VXnyO0mmoZY0cqnpxmOZcURaeG0jrdS3E4p6OVXa0Zah9UYfsXNtMjkZ45LyhbJ99Pn69KK8pGrc75BpIW4zXkEYD0FRV2WVDU3XkEhuUdD02bn0c5a7ZUfC6/v+qduz91ZBMhjf3VvxFmjTzAVHAJYlYPrUATU+erSWdGt1Bb/LmpD1LS0j1Gy/4xmnpjhMcKHkC3NH7lYYSaj6OFymlSKBSKE4i8a/HjPTeyofEUXtV5YcU+88AfCW39Brn1byV36vuO6DjN/hY+c/p1XLb2/fxp4D5WRU46ov6OJk8//TT33XcfALpeeIlecsklfPOb3zyWYh0WE9lSeeDD78PR/BjewnuNoLBWjCfMOfcvROW6Spm8Ow9fy2xUK1wrtHY03aGHiRrtZ2ahK24507wJhRCiwz+KOZmPVb+P0PjC5KRJQ4c6xkkltQz4w6CshoA7lqlQTuU0xXr6uB4ZYtq/lRh5B0+vHTgnzRDSylFvymJ0zczLNsy3xpvUphtYU+NQz2jSi4Z2zmwgYM+cPaRpoipk0JjTPQB5I1qsSDkLZV4g3Z3+G1J9XY2cjeZ4aI43mafm+XU8D3LRAF7RunelxHI8fIZ2VMPzlNGkUCgUJxB3HfgFI7lhPnP6dRX5A1ryEA33fgK3dQPJC7+MBHYOJHhw/zg9+w/R0rOL1vgwzaYgsqiTk87ZzJpzzkDTZ57pXBpexnvW/t1RPqsjw+fzMTo6SlvbVOjWxMTEguRXvNA4sqRUHMGb/yietwAsswnDGppz+3Kme0/q4XOSeEKbLLM8F6IihIFOWDNhnkbTQg1Zufpcz6uWbg0THpubcdMmGhiV05TdabKaGAjhoeedeRcQqYe9bgXGztnDW4/Greaf5tmZ15Mgqj/W+36n1jS5npSc53nIqj8KlAwPKcAOFjwenq5NrrtWjuNJjsQnUp7HowltxoGSc1D3A4Y2GYY4f+p7+UpDK4WGKGtnTquuWRWe53q07R2tuKRjq1twooFJ464xO1WoI2U5+D0NOY/fjPmijCaFQqE4QUjZKW7bdwsvbzuXM1tfNrVDSqJ/+meEmyf+uv/i0f4s333oebyunbxz9/38zeBO9Okvkv+G7mADsVe+lo0ffB+hJYs5UXn/+9/PW97yFl7zmtcwMTHBV7/6Ve69914+/OEPH2vR5k/ZTKypazPmHZQjNTFZIloeV5H3NbTYOTK7wVSpZrX4mqBOLtELRb1FfKeQFSFJzSJSv+qagLAIVBlN0/0aBhqe8OjYvXC5h9I3t7LhYvJ/R8ZMxk2auecplcj424k4Y+jTyniXCOKnVWuvKE9/pBTCGwtnUT45MLShg8U7Bg+vT03gSllROj9oamRtj1FvyrPjLEARl9I1mOvlXK110u0VJk/mNhkiKoymQH4CKapzkoTrYVgORt5FAMn2CFbEj9QETtAk4tNJ5QrnO71qrOehjCaFQqFQwM/230rCTvDB9R+p2B54/qf4Dj7AyF99kWsfyvHwjj18cs/dXLD7EWhsIvju9+I7/wL0k05CmD5iB/rZ9cCj5B64n1PuvZP4fXex54LXs/ETH8XX0X6Mzu7wecc73sGGDRu45557eO1rX0soFOJb3/oWp5wyvyIYxwVlykfYpxGrsTJmxG8yPm1zdbW5wz98vfAWTxhk/e0Va9/MF+0IQ6vqqWYNIlRUWj3yTh0PT3OI8MRMSvLha/9+TGJmlKA9PmM7CRXr/sx2xOn7PaFVbF2ldTDiJWbNpvGbGp5XSP63AwZmbmYle+4hTqJayvnER9WxlgL45r1GmKTaoNTRahpN3vQRm+FCzHjPTrpR6myHI3LHWQ0Bko0BAoNTz3fAZ5C18xV5dLkZ1t+aswxzFFMKgZCSpQ1humOlbbNP1MhpRlNp69Rfhb+bemMEynKx7KCJHZ7yyRnlCXc1ZJZHEts8C8poUigUihOAcWuMX/T8jIsWX8K6xvWT27XkIcIPf5FY+zm85YmN+A9t55ZnbyUyNkTwne8h+P4PooUq11tqXreav1q3GnnFO3n2qV30ff8HnP3A3Yz8+fdMXHIpGz7+9xiNTS/0KR42Q0NDdHZ28r73va/m9hMJIWZPDK+l/+SNBvz5eFUZ7vkS8Rsk6yjUqWChtH11LkJ9potqhX2Ta98cLaw6eRhSX9hYshABMkUvSIfWyMQs1ROytockz2yqlywulQuzl6GefT9EAgamrpHMOYytaiEf9h2256MW8w1tKyda5347nC5rrSPUqkU55BUMWZ2pYg3e9IWID9dgrngYp3qZaxjqbEghyARaMHQbwy2Uo6/Vc7toYFge/cIuFCVo06IsC0YhNrVtOmYmj5m10YSGpk1g+AR+XELZQlieHTCRkan2peunOx52wMTx6wTjOVyz8jcxGjCIZeyah5XIqhy4hUQZTQqFQnEC8P/v+RG2Z/OBk/9+amMxLM9zHd42+F7Wj+/mnx75EUYoRPTfv4d55lkz9imE4PSXbeS073+Dxx7ZzsQPvs/LfvcLBu7bQvqNb2Pd378fPVodPnG8ceGFF1blL2maRiQS4bHHHjtGUh0mFecxD8VLCGwjMqdk7LwRRUgXcwFDk2YQ7Kj1bEyrqidmUZZmUmTnKmXObMJvxxCAXlbkYi5r7JTyMOQs17g0k384Y5dsj2BYDqHiwp+GrmHqGkbREyA1cVRz3qD2IrsmxhGvIzUbkuqVYssrAjaLKKP1DIvDHpJKV1mpVHepAEMyuIxotm/GHpbozdQbGiPvzEk2XehHXK4xtaoVuoard0hZec8IwWqtE61sm0Sr8jA29cUx8g4CwaqWJvaP5glJh0arEG7qmDr2hpayPqaO5/oMYsubiS2VVaUcKz5NO2dPgucdbl7W7Cyo0fTlL3+ZN7zhDZx22mkL2a1CoVC8pOlP97Gl91e8cfmlLA0vm9weeP5n+A4+wOed97MpmeQjD3wffcUqGr72TfSOuXtYhBC84vzTcP/qOzx0/+NYP/oBL7vrJwxt+TmJl53H4osuoOGiixGh0OydHQN27dpV8Tkej/OLX/yCcDhc5xvHPzPpP0eq8jq6H6SsMJo0tMmQJb+p1V1naC6s1No54BXya8plHV/ZjG+WctL1qMgVkiBqhFyVtZ53/64Zpdl1SIsc2gzrw7iaf8HNwHqVzZrDJm6kA/ori26Ue0WmG2tymoLZEvThSI+AMJFYcx+aOSrgRplR4ukFIzKeXVjjyEDDwcM1tEljpBazrVW00NfNWtKK05dBZC10zyLdGsFM5gqGThHbKPwGJdsjddfYCgk/Dl5t+XStypVXq91s51Z+ORtFiLisnjCxm4PUymQTUlYY+qX7b9b5HSnJNgRILmsmvHwj2YkgY3qUwViKhsEEgUSuQjKv+IwLTzJZD2e22vfTjSZPMpjI0bR05q8dLguaLSqE4KqrruLiiy/m61//Ojt37lzI7hUKheIlyY92/wBTM7ls7fsnt2nJQwQeup5HvVOIZzfwkft/gL56DY3fuWFeBlM5uiZ49SXncPEt3+eJq/+Nv5z0cvxPPYb95S/y39f8H/aOLEw546NNY2MjH/jAB/jpT396rEWZP5oft7hAaj2HgJjHAp51eqhaZHIhFUq9xiKpQ+s7sKIzLyQ6MyVlWRC2Bolm++u2rHsuM53kbAv2zEKtbw2eMvfnMBmcmgzJ+gp5hT5Dq1Aa20QjAUMjaFZfuynxKyVp0kOs9LXSZkRwXHn4YWh18GGySutgpdbBwpslBSa9RTN4yBZrzRUGnKMFq9rMKF2Nvt1Z1vuxliwjtnHJ5Dpihl9HLHA+jTe9jsochzhnToVXN4qpyaMQflpF7UVo6wtR+bG80Iw5Qy6lkLIQEqtrCENHM03yDWuRuoanawhXomdyhTC+sv80T849vLFGM3uOZdIPhwX1NF1zzTVcc8017Nq1i/vuu4/PfOYzWJbFG97wBt70pjexZs2ahTycQqFQvOjZm9jN/QP38p4176M1UCypLSXc82nyts2vUv+LD993A/ryFTR+89to0Xm+EGtg6hqve/MrkW86n2d6J3hk63aedUOcMsdKbi80Q0OVM/Ge57Fr1y7GxsaOkUSHT0dwGc8HOwlmDhx2HxJBuiVEeDyDUad62PQKewut7k55rqqSDuaMBJKdURqGKkMONS+PowdwNP/UAr2CWQsQzEkRm6GMm9/QmHnaQJL2dxIulmOva6BUxReJikR6Vy9byUoIwgRIk6NUAqIhaDAxzW6uZzQBNOgBEiVD+yjYNX5hTnr+SkM3trqF1u6Zi2KUUz3komrfvPKExPReqmmL+CBe7/gz36pSM5BaZQZh0NRx6njC0m1hAslcRQEOn1F/paZ8qJD7J4U4rJwxVw9AzbSfwqeapezrIORUtphjBCefMwFs0pbT1bQR3OpJjCAmubKjb+iMMpApTKh4ho4AGvcN46tR8GOjfxWPTiVMzYsTrnrehg0biEaj+P1+brvtNm677TbuvfdeOjo6+MIXvsDy5cuPxmEVCoXiRceNXTfQYDbwtye9d3Jb/PFbWDv0Z76ffifv+9N/oy9aTOO/fwdtgYs3CCE4Y0ULZ6y4kPcsaM8LSymnqZQArGkaHR0dfPrTnz7Gks0fXeiY2izLv05bMBaoMhiyTUHC4xlWaO1YRe1pzEvSpIXZX+qjjLAIEpcL6UmcUqzKmZf+JwRW1A9lRpPwHATgaAFsIzxpNOmzKNQtIspMKuJccpJKMtXrAeQ0g2duXYZMfZ514mrJVDiYE/ZjpqcKdZTOq15Y0Vwyp/JmQyFXTtfAqT+LX67c58OV9/B89f5mLYzuCWy86kp3dXCntZMzrF0UNHWWNAZoSzTQJ0fnJWDW14oRCOMv3gvJjgjR4RR+Q6ubtSV1jYnlzXTsmSoLr9d4jEs4fh3ftAi6gBYGCt+vNxlSwtV85MzGqUmFKqpPuK5nu856YyAwhYHpXwSZaqPJjwli6pqEfDoUzyndEsIOGLQQrlFyX7CsoQXkHIymWhMlJ4rRND4+zt13382WLVvYvXs3F110Eddddx2vfOUrMU2T3/zmN1x55ZXceeedC3lYhUKheFHy9NhTbB15lA9v+DgRs1BmKDFygEWP/wtP5jbwqq1daMEgDd/4Nlpzyyy9vXiZntP0YqLcc1HCECatYR9jqfqqdvmsvL+YqbBEK90j1cpWwwIbTSVVpkoPm0NlK0MX+A2N3s7GskILBbXf8HLF/ivNgOaQCdlS22rtr0mE0bRs/YMe3doIk3h6RTAd2gw5G27QhNzsgpVaxJY14RYXVK3nuany1tTwrLmtjRWfJYXiEfaqJZh7e2eVp7aMlTkxOV8LwXx9T7CGoENrYsCbmKPJVDSaBAR9BSNUTqtEWTpNv6nRECiov4u1Zvq80ck2zSJMowjT542BV/v5cvRgofACINz8ZL+zGe6zUXHfll+TYr/Neju2GAAkTSLEqExWfBsgYGrkpuUjzm+ionDsXDRAIFl41soLrNQ2suscQVJh0FegCZY0rKBFhBl091fv13VwYDy6gZbk1O+7zzi2a9AtqNF08cUXc95553HZZZdx8cUXEwxWxpS+8Y1v5Be/+MVCHlKhUChelEgp+UHXf9Ie6OAtK98KgO24xH/5j3TaLv5n2xCJQzR85/voJ1hZ7YXihhtumLXNRz7ykVnbHE9UqBdCVHguTAwaRZhF/qX0+SwWNvhwfgpfEB9WjXn1Tq3k7ZzdOKqX2N8YKBh5UoBXzN8pGU2iVDJar8w3MTSBcwTlw0xdY7albhDgE9W5MrYeqlh8tNzQnW1NpMC0/KRmEZn0iOU7InCwlhi1vQSeJmruC527ifQTz9aRYMpqMnSB40q8lsI1dBe1og+OTTVbQDxtWsmBqksnyqSTFVvrhdLVWqdpxkMUWa61MSEKBoiOgYZGgwgxLutXoszZLj5PojvZORt1JTK+VkL5McY3LaJ159Cs7cuDAE10ppfaaxZTdbv1mka4qPHXzKTbQpNGU3AiS3KxiT+WxcxkQUp0EcS10+jjOWirMwJSzhha2K7NHkpe4bmlGFJZTo3+9aNZsXMhO3vwwQc5cOAAmzdvBiCdTrNnzx7OOOOMyTY33XTTQh5SoVAoXpT8eehBno/t4KrN1+Ivvjge+tV3eEf+SbY//wrM7m6iX/oKxvqNx1jSY8eBA4ef93M8M752FdGnd1dtt3FoEEHmq8HmN56E7/nps7mVfbgtDTBaDB2aw4z59EUqG4MG8axTVOqYpuaWUaa5jq5po33PCMKrVAynvinxDJ2BUxbR2F00moqhNxKBFDqO5sfwrKq+ARw9gFFWNGN6Zbly/HqlVyK+uIHGgeqAvrmso2X62sAaAiGILW2ifd9o2d4aMpRZAg3lRpkQtVx19Q8sqg2q0idNaATNatmlYNLg64j4ORTPIYOF3xu3o2A0SSHmXoFgzlT2p2lQu4aCqFhTqbCCVe0xqN4+3csxtb/FmCqOEBEBJqa1aRJhGkSQHm+qBPeUF6fQ58FYlo6akhQmBGqcSvHfwh+eObt6L6m3Dlbt61xOwNDBBr8w5vhMQ1PQxPMkZthHIFBYQ6vkaWrsj5HU2gst3TSunUWfyGKuiFOr7J6Y4Vb1i1p1+mZHm34eNY7R5j96k4gLajTdcccd3Hrrrdx9990EAgFyuRzXXHMNb3/72/ngBz+4kIdSKBSKFy2u53DT7u+zIrySv176egDu2bqNSwe+w55dazF3HiT0sX/Ef8Grj62gx5h//dd/nXH/j3/84xdGkAUm19w44/56SiMUvAXlQUUy6Adz9ld9SVEuHmCS8ZUtmJl8VbnkctVltdZJWiSotdhMqV3ejGKQqTCOpBC4Ph3D8uqG7fmEQV4r5DFpnk1D5iCjTIWZZQKdhHIlxXaWQhCzlS8uw6sXBiTL11GqTbOxiDQ7Ko7ZHPYxkc5XKcDTw510dFrMZTiTLqbKLyw32kgJSRAfjdr0kvqC6aUFnPWnFvZoJaNz5nvncJCmiWwymWiyCR6YqN4vmNT8DU1g18iR0YWGpkmcafu8qpym+pU6aq3TVIsmLUSLXj52gmxTsPoen8VATuU9/FqEEONTxy8yvqqFk7ROxmsKJEgEV6DP8CTnwz6C8SzptikvUq1UxqCp113jKRowSGYr16qaDaO4jpcjit5XpnKaHBFiYtESJpZ2EAm8jLX5v8CfdyJcD8yyiQ8p0VyvYN6K6mO/TF/Dkbgu3chSGN9bd7++sIXBK1hwo+nXv/41gUChrGhrayt33nknb33rW5XRpFAoFHPk9/2/40Cqh+vP+j/omsG23hjLH/ss1gET95kM/je/heA7j+fSDC8sqVSKn/zkJ/T29uIVp6vT6TR/+ctfuPzyy4+tcAvBdD3xMKPQTF1gu7JOF7WVGCvqx8xWx62FhZ9s0TwTiBkmsou5NKX+5yV7madAgF7MZ3I1E1lLfZml7+n5PKauYc9SEdLWg0RcZ7KYBgJG1rXRsXtk8nC2HgQHvMnZ8zlnfVT5Qspp0qvXRQtrJktCnfTFKhVDQy9UWZvel9faBLiISABG6uQ01ROsbDxnrFwnwFmxGNuefWFlQy8YTbUulbWkAb0vPnl4y2zEtUYr2uQaA2gpD8PN0SqijM0QQlcPpymMb8WSim2u32D45Hba9pSXJZzdmzPiW0lDxE90eBvSmMc6drPYDJ6hMbhpcSHnzSk0doWfqPBj4RAQJobUC+GdRaMp42slXLfi3OznUr7VC5p4Ph3SoOddzHQeIadNPBT/nl5mvfFQnNBEFkQIqVUHjGo1DKn5IP2zhPXNIW/ycFlQc8y2bULTFj80TRPLsup8Q6FQKBTl5NwcP9rzAzY2beJVnRcymMjxyK+/y9mjzzP6RAPmy15O5NNXIxY8XObE5aqrrmLr1q0sWrSIBx54gI6ODg4ePMh3v/vdYy3aYSLK/j+FN6lszKIUiNrhbgGzFDpXfe94kfktBBwSc1tzSQB5PYynVRs5UwrY/JScnNlSOTjFOKCwf2bPwHw8TdPxyr7r+irPJe9vYKzh1Oo8HZgxR770b6ZtBs+igLxZfW0WN1bmepglT1Lxc5gAE8ubaF9xbmH/6sUk1rTi+o2K4895xn+Ovzf1rqQ1aWDXP2Zm0ZQybOtBEqEVVb4YJ+QnZ7YQwIdvDiFelTljhb68SACjo3lya0kaQ9eQgKvXW59pWkihruFJCUIjFViM17By1u8cFsUuXN1HSATYHFyKD5OICJDcOBWK5hjzX8zbitSu1Ck1QfLUxVghH/5MnrbuYm5bmUFS8l6ayTiRsRjBiQzBiQy+dB7bb5BZ0kqmeWEXRD/ZXxkQWduPd4IYTZdccgmXXXYZt9xyC3fddRc/+tGPeNe73sWll166kIdRKBSKFy13dN/OaG6Ej2z4OJbj8fVf3s8nEzfT+3A7+rIVRP/3lxHGUVkt4oRl//793HTTTXziE5+goaGBT33qU3z3u9/l1ltvPdaizZ8aWkApxMUym+s3mq2TWfYL02DglEVlxxTkQz7Goxvm1EOLHibbGMSosbCt5WvGdAu1hsvDw/JGUUku5dSIypL5VZ6TurpQ4ZgtYbNQRa8eQuDpGtnG6mIOUmgENB9eHbVoaGN1nkQpIyXbEK6q1OZos5XcLobt6aHDyhcyyhe9LSXHl+U0mULndH014VBByRSahl1jceF6ifqrW0NEA8ZUyN4RGJyVVOdHLdaqK3+WzmN6WW1R52+ARVrh+chHp8a+vNrabAUbpkz42pMLJbFL292yUEJPM5HazCp1LW9dmx6p0XLa9yblqzHZETSL+2aieq+r+RjrXMb4qhY8XcMKTzcUC9+JLW9ibFUL6ZaC8aO5hevhGGEwdNA0AqNDtB04RGAYGvvjGHmXfNhHvjWKnEe1u9P1VVi+xskJlkygOmNspqUBJIXCKwSrn++FYkHfvNdeey2/+tWvePDBB4nFYjQ1NXHFFVfwhje8YSEPo1AoFC9Kxq0xbt/3E17V+WpObT6N67bs4OMjX2P0oQYIRGn46jfRotFjLeZxh6ZpZDKZyUiHXC7H0qVL2bFjxzGWbGH4v+y9ebwkZXX//35qr96Xuy8zc+/sK6szICAKw46iBhXjEv1FfmDkm/ziFnBBgmv4RYkhGIhoJBiN0WiiEkBBWUSIgVERZHEY1oHZ79yt11q+f1TvXd23752eGdD6vF7zmttVz3Lqqaruc55zzufMmiMkTAV3qlXNlXrsH0oiaEOv7QNZkepyI3as9QwoW9KotVY0RcK2m5WXHiXC8kVrkB6qJ7Co5L5X8h18JhcCXJeIMNjVwjBqpxTmjRROKIwoFlDnyMvZubofJVvEnKxfH1dPoBFCdffh5p7xl7EGJjopEWW3XFUKB/RluCXVPK+2qJlWHqcU/qYgVy4uYw6wV1mJcGujc1okvre4zPJ9afTQtCqj6sdeCBDVFaK6wmxMZ1rWmZjp4HlqWKMQBhlydfd8kZrmN251LEkITFp5dppRdK1Sbk/zgxJCRxYyrizYtWwR0Ud3153XhQIudflMuxJHEp64vyR/A9P3PDwW6bBWJ5Pbimq7AX4z5NR4fYuadW0cUZYEiZ4Ixb3tqR/DmozbEPQ1E+1BY2dlQ6DPR1xHlSmoMsJ1MWctLK16r4QkUVg1xkT6WJ7PeJ31Qh/R7HZsVabsY2r8rtiZPIb+iQeb5mr0HFpSC292TXhfrxRlimoI555lvUiDQ369uoKub1eed955nHfeed0eNkCAAAF+73HjE1+h6BS4cNV7ufEXz7HiiRvovXcf2WyI+N9/AXlo+HCL+JLEa1/7Wk4//XTuvPNONm7cyMUXX8zY2Bi6PkeR2JcgIrqCQNRRB7sIhGgOMypDlkTdrrcryUhtWdaataPhuMHDqbVoz9xDwa7d3a+2jRkqLi4Zn4h7WRKM9YTYWaKtbuzvttkjzikJzKKXTN8yxM5trcS6yLihHph8oRKC6IdZvRepVc6HBIVQH3JmGot2OTze8bgUaroiuaT0uTXFNQtahEpBUkmgo5OhvB7lIlTeOI6s40ga2NUFHojpvOgrRbN8tWtccOs9NFJN3lnEUDBUiZgVZbfb3hAXQqArczMG+mFASrDd2UuuhsvdEAo5NYnkFukRUUbUKFP5+Rcjzbfihy97g3yMFhOdMamfaE0YW16NEy575+bwijSueO0zElJlGl8LSYg6T54fCUf2iDHMX+6qO1ZQ4+yNjhJhG4YqI7kSvRG9iRK/PJqpyRR91qP2GdEViXK2ViKksj9rM92XIj3VTHkel00aM8VigzH2RDWmYlWvoAugyDi6gWV7xpSCim0rpfn9kdV7KSphVKtaF244YcBMu14111TzXWigti1a3W10NTzvlltu4YwzzmDDhg2sW7eOdevWsXbtWtatW9fNaQIECBDg9w5PTW/j5ue+z3mL38jTO0Pc+7PbecuWn5D5NQl1AAAgAElEQVTdoxP9+CdR12843CK+ZPG+972P66+/HkVR+MhHPsLxxx+Pqqpcc801h1u0eaMnrLFhJOHRBZcw1361H5V0OySVAYwG5jVZEiST1TwPP6OhNkIrZjbvuUZ1BSFg2qwa942j1NEQl+ZoSzLQATrtbpWIFUytHH7ViSehfvBWsrYSwVFk9oynAYiZKoviERo589pJkQxr9IQ09NrcnDYXHBKtNgoEM6m1gEASoAiBKZo9PNbiwaZjqiyRCLfPHyqoUV+mtDLKYZsykufREQoxEcYQ1efIrLnGVrlPU6FFbeWoQym8c0RKe6F7soQ91IdINxMJDMT1uvn7Y81ro6lyhVEOYDDueUJaPRO1LG4Ro4WPYk4tXDAYM0vhmHMkyDV3rf2vAkUSvmFz5XajarKpk6nJFCIGETXFuHm0175y3d0J3eyL6Wiy1LbWliSoK2zt9w5PtamLdqDoqqfpc5/7HJdddhlr165FmiO2M0CAAAECeHBdl+sf+wdMJcRJqbdw6bd/xb89cR3TzxqEL3wP+imbD7eIL2l84AMf4KyzzmL58uUYhsFFF1007zHuu+8+rrrqKjKZDENDQ3z2s59lYGCgrs1pp52G67oopZyy/v5+brzxxq5cQy1MVa6jDdcUCaXD31SjnVegpIuE5RghOcF+WtP2ZowBMnqrKjTeLnpYGJg+yfg5vQdmfToBli7TtI1dA7XWMmvp7Kk/EdHmVmXyapzWqnj34eU4uRTUGCLk4ipFhJXz2NCAOv7oOay+Wu+ZIxuVZHxJgNPk1Ktm5jRIhCvpSD5nirKJamdRh3txfAk+RJ2x4Au3XF7WK/ZbVEwgUzndK8XQUD1Fu0Tb7khVw8SVBaYqV/wlWsNzbKgSM7i4SgyopzXXVQnJLnnrhIylhHBtgXA95VlDRQNcScLpSdZ5bcd7wuhZnRmp6olpBQHEDIW9JceY1kDJXXsfZVkwHImAC6NSL9NS1cPZ0igQoppTVwrf1DqggW/5VLuNbToz1T1jyP+8KUcxSnlYqiTm8M61k715/IGozqhh8szOGZ/2ZdmYM7/Oh9G+a+iq0RSLxTjzzDO7OWSAAAEC/N7jZzvv5he77+ddS9/H5T98ns9t+3uKv4XQ5ldivOPCwy3eSx7r16/nxhtv5CMf+Qgnn3wyZ511FieddBKq2lkBxUwmw/vf/35uuOEG1q5dy1e+8hWuuOIKrrvuurp2U1NT/OAHP6Cvr7Ux0Q3Upr0MxAwURaoPt2uhFMRMBd2ROrAKmhuImgT9wZ5R9ipDbGsoADMz3Ie+Y29lhEE5gdVAN2yvWAwv+MwlYFzqZ1u/S2RPC4sKkBew4RoP+asyrZTTsuGiSvWhhP6tO9XA6vNOHElhb2w5jlDJySmcsIQ86ZMr1WIs31wXLUUmvpwkuxpaV/9olbukCYV+Y5iY/ALb2VHxwgAUlQiqPb8cODdsImbr+yySeoAdpXyu8n0sq/QCEYmAUxtG5lTa7VvWQ7rmzFBcpyce4YGSfRTWFGwB69JreP655hpWRikvandsHXFTht2TSI4156swng5TmNB4MtN4xusZQifTGHjXYIFUCi7XKfMCXSisNjeRLmxhmv1zP0pCYJeM1ojaQ390L5pbKHFneM9Ebc5evpz71CoPsF6c+nMLMSzc5oHCmtwy8DasybS2RFsLYPt4QKsQUEM24/rUoGsqgNtFdNUd9OY3v5lvfOMb5HJz2esBAgQIEAAga2W49rd/x1hkKXf/chXnPflthh98AXNlH+ZH/zagFu8A73rXu7jpppu49dZbOe644/j2t7/Na17zGi699NKO+t9///2Mjo6ydu1aAC644AJ+9rOfMTNTv+M5MzNDLDZHjZAuYXZFDwCaIhALYC5bJY2wWKoad34hRHvG0vUHhGB6wyCxJeP0KwOsDp8473kJ1XsqameNi3CTV0UthWftW5RkbhzoFrLXX5UF8bCB2YGHCvyLvs6uGMUa6m0rkyOppVC0eoOqqV274sM1fYtKCFdSmtaw4lsSVfXVBYaT1XshhGBJZCUhFpbn1/T4+NbCaR266ALWcANddE3uV7mY8L7FrZ+DsK6xNN1MYa357P8vJOTTT/nvk+IUlGjpvFdLqrYHlDxNLTwgXk2ixrWa2zzPx2Io8ZGKyanI0BfVSJTZ8gRY4QHs6EhltGiLEMC62Uvr4q2ZjxzlkFnVbHM3O8NIooHFrpau3G3IY6u9X23unVRr7ePRx1trB5gxasgfXi5G0/XXX89nPvMZjjrqqCCnKUCAAAE6wE1b/5lduZ3EZt5M6qG7Oe++O9F7FEJX3xRQi88TqVSKE044gRNPPJFVq1Zx1113ddTv6aefZnR0tPI5HA6TSCR49tlnK8cymQy2bXPZZZdx9tln87a3vY0tW7Z0/RrAU95sH3roTuEikJHrcircujC6Ur2amtCaCp2yKtfsmIva5k3ovC5M67C4BF6oz6w50HTOrfG4+JsJc6MuF6h2hNiI7yhurZuv9EdtzlhlKXTVo1yuNGu3rV/NR/FT5lvRftfO6Zc9MjF6VFPbxuT/xnPtKJv9IAyt6XIaPXi9Ub10p5ofFKu24GvDtZeNkbJ0APmogV1e74Z57cQ4yB3m+vnk28RNf4KCVmvixCOAYDZSZUK0ayjty/dNON6K1FGO1ww5EVmBpsjYmsxsKlRHTx+XQnV9XASZWAMNeckt1B81KhTqI70pFqeqdPWjCcOj229pw4u6P3WhMqwvb9UYq2dNi1E6f378ntnKuZLR5Myz0G35m0Srea/NlFmXT3cQo/O6G573rW99q5vDBQgQIMDvNZ6afpJvP/VvLNVfzZ47J7j6/m+ihF2if/dPEO1k5z0AwKOPPsodd9zBHXfcwa5duzj11FN517vexfHHH99R/2w228S0p+s6mUw1ZsdxHM4//3ze8pa3sH79em699Vbe+9738qMf/Yh4vL44aSSioyyQcQxAyktouoqiyiiaCpIEjuN9FhKaJqNrKorqZT4pqoLiuKiyguLIqIqEZigoqoSryQhDwVk0gL5vJ1Kkh56+AZ7euQ9Fk5FKeRkhUyMc0kFX0W0FXTUIR3R0S0FWJSRZwjRUElEdYS0mpu1j/4xALikvuq4SCusY03l0XWG2NK6qyMiqhKJKqJqCUpSRZYmYFOJ5zTuuSOBE+1HUSZQaA0VRJSRVxsFBUSV0VUYpSMgKiBrlOR1JsSgyjJYrsdSpeSRLQlYkNElGclxUTUbTFBQhIxkx9BkJRD9SbjvZVAhdUzFkzVszWUJWvbWRFYGiCBRNRpElFF1D0WRURUHVBQN6Pzk9gu5U1SnXdVEcGb1USBbXRddlUGU0Q8EWKSR5B2k5iqYpqLoCqhfmpOsKjq1Q0MPohoopq/SF4+ye3YGphTBMFdNRwFERq1aivPhrhOrdd1lX0HSFvOKtkWFohBMhRNh7tqNRA0wVTZLJruxH7I4i7dqLoshIloQR0tBcT+ZQWAfFQF83RubJKZBVVN17pgYTIV4o2IjSvU9EdHYaCqpQcGWBrMooqoIcNZlJD5Pa/mtk13smdV1BKUV95mPjaPbjKKrlPbO6iqIVkBUJXVcxj9uIteMWtOk8iiojGSrxVeMoPynfGw2HMEo4gjLryaLpEoapYpXWXlWlynxqaf1NU/OuDzATJjNhDc1WcYsOsiIhhw0SJ69g10PPImanURXv+VdUGVVTK8+oGtbRcza5Rf0oM/tRR/uwSs+9onpyhEIay4bXsi07wb5f/5TMkhThJxUkBIrqMhJNskM8470HSCgINE0GU8U0NciqoKromko4rKHoJYbG4SMxZl/ENGRUTUFFoGsqrioj2a4na+kZVmTvOyMve7mRuqYgRoYYjI/w3GT1PdJ1BUWVvXc5pOPqCkqJNEXTVURR0B8bRC8V/w3JOka2SCisoZcY8zQUFNvrEwkZ3nuD7K131CBkeX2nhl9JZPZZjNwuFCGja4r3/ZFTUVUFTVJQVRu0qgze95ROOKzjRnT2zBbQdAVNU5FVB4FKRDcRkkQi0d2iumV01WgaHh5mcnKSO++8k+npad7+9rezc+dO+vubi8IFCBAgwB8yHNfh7x7+WzQRYs/PV3P9/f+Iolokr7gMZ9H6wy3eywoXXnghp512Gh/+8IfZtGnTvImIQqEQ+Xx93kIulyMcrnpSIpEIn/rUpyqfzzzzTK699lp+9atfcfLJJ9f1nZnx4eSeBxzHoZAvYhVt7EIRV5IQjoMmy1hZh1xRkC945wEsSWAVbYqOheXYWEWLAhZq0cEt2BRzFm7BolC0iS5eiuu45As2VtHGsb0d32y2wGwmj5ovkrWKZGyHjCiQz1vYRQfHdsgWLBK2w6p0HHdiN64rsIpef8vQyMzmyeWK5PNSZVzLdbAlh6KFJ59tY9sOtuNgFUv/bJdCwfL+VqpU2U7OwtYtLNfGKjoUSv9bQuA41XaD6gjFvIub9/JlrKKD4zjYuNiyA0JQLNgU8xZINkXJIl8QIIVwbIeiC/lCkZklw1jbH8exnco12zhYAqyCjbNqnOdCy9Gm7qdoWxTzNoZj0CstI5+vrwlkFW3yeYuloWN4MvMg+byNXLQpFGymQv3E7BewXYdCwaJYuheKKpPPWxRsi2mlh3yuSDZfwLB1ltLPC5Ygly2SdS2kfJFswVsPUSzfdxsr72BbDpblkM0VKO7PoM96z+O0kaOQs5BVmVS0j6wI47z4OEXLQbMdcpkChdKOfWY2T37pZhxlL/Zv/4uiZVFULSg6GKqENZ1HlO59Ll9kwk1SLDwDtoNlec9gdmyU3eEovbuewM7YFHJW6Zy3RnnJpuB4971oQSFfRHJcTFmQzxexXBXLdlBsB6toU8gXmZ4pYFnec2vhEOoZRtUNrP1enlc+b5GTBPmC93wUSs8YQKHgyZDTi2SUkmdrf5bibIFCvkghb2FbNkXLJZMpoMuCbNHBLdrEddmToWhV5Lcy3vuRFxJ7Vi2Bog3l595yyWWLZCiQmckzm89jlWTal0iTD4foLz5PNlPECRnY+2exhYOFRKFg4+YVstkicr6I41iohSKZ2QJ6+RnPFtGdENncDEZRoZDPk5e97wTNVrzvA9lbJ9t1KBZKfzsO+YJF3jDIzBYrMnnrY3nPrVQkk8kj563K+UK+iOto2DmFwV6VFydzZHJ5cjmLjOKtA4DIW+gFm14pjl5QsAo2khBkZvPYIkdmtkxxYzKprWR0cjtWwSZfsLzvj2KRQtGm4FoUXZu8a9XJWP6eKhS847l8kQIWL44MELGzbLAGcGyH/fubktTmhd5e/3qIXQ3Pu/vuuzn99NP50Y9+xA033ADAF7/4xaZk2gABAgT4Q8e3n/o3fjPxa1KPbOIf7vkyqpun731n4rziTYdbtJcd7rnnHj7xiU9w/PHHL4i5dXx8nKeeeqryed++fUxOTrJ48eLKsUwmw7Zt25r6KgchhLIxjy2leblHshZmKrSIXHiu4o2+ATGl/13/wzVQZQmnhgpauC7DUto3v27G9CiqtRWLm851Jpc3n19IjdREgzX/wBvf1JtWbedQifpDPWimPmd04Oz4KvYNe5vFegO1uxCCbDRcH+LmM16t2K4WQwiB3arYZ7mdqA2/c1Fb5HYco4+xVO3zCCtEG4+orIJsQA1JSEXgmoXNDWxiIrISoKFGl0dp4ZZIDBCijta7Po/F+28gptexBdaGMxb6qzWCAAbjOnJ/gtoFDMuJuvFcHyq1+lVx68RwgcnQEoqJpfSNjwGQj4Ur5AJ2tDknLNaKTrwF9o0OMpuqeqedtPe3KwSWbJDQBuhRa6nVXR+5IaSE2NzzSkxJrWtZWD3edn4B1Kbp+eZ/VSNKm7CsJ8xJS9P+J0tIijBo5TDD1i9MTk02t2iX09QQzmeViklnkjEcVfa8nfMMQZ0Pumo0feYzn+E73/kO1157LabpJYB9/OMf5/vf/343pwkQIECAlzW2Tj3BDY9fx/KtY3zmv39KWGQYumCYwrlXHm7RXpY4ULKMTZs2sWPHDh544AEAbrrpJl7zmtcQClVDPPbu3csFF1xQMZzuvfde9uzZwxFHHHFAc88FCZnh8DD5gR4vEV1L1in3KXWEpFqfYG8JDVv1lMeQJiPXaUj+VoSoGXMwptM35CmMslAZEEl0/JkIsyVa8rnIKgyf+kGmKhE3FcYSzaGoo1oKV1SNhx2rl7YdH8DqP3LONkDHKVHDUpphuT7Xau1AlNGk2aKHh0IizVR/a6UyH5lf6JAb7mV3dA2WbLJrplB3rqDGKF+QrciVSwvpcpXeHHCM+jUuvzJ5xeuvtLp/5eelzmYS9VadojUcq1UtG7PR5veulvPu7MU95Ef6KuMpyCiSRHZx9f5Yw33IJea1sijl/5OlOlMFpSFfqFa2kmiOpFNIr0UKh8ivW04u2iIvq833ji6aDal90ZVMhscqnyPlsLOatbTkMIbk5VJVxp9jI6i5VlGjWdiMuKk2yS8v8HvU/56KFjPXY098Q8t7sry3+XjjTE4jocRBRle3yFzXrSTTln/ETNPEnc9WT4AAAQL8HiNv57lyyydY9zuVD3zvaSIhi0Wn28y89csgBcQPhwOGYXD11Vdz5ZVXks1mWbRoEZ/73OfYuXMnf/qnf8oPf/hDRkdH+cQnPsEll1yCbdvE43GuvfZaIpHWSlg3kR0bJPzsJDToCKYcJampPFfD8x2STPLhfuC3GPEwRlhjR/lk5ee4tYIkEAzEDJ7el2Vl+HikmGAyt3vBrFQDxnJCsoxw6imqh+IhosYUSXOUFZGjoaZulLKol5y1u2qqCRs/JWxysLdO8oWgaJTyRGqMZFy3VFdIrWNNFqIztV+IubxcNQaNLJNJRInNZprOlWELGds0kbP1dO0FJYrOLqaOGYGJXEWBrR0hv/QckGTEvuqVSOXrKO3cx8yqUZxXoxQHjqmbp4lAsO7ifMgtFngvjBrCEiHBTH8M4biEUqHSTIJBbZyefBGRiuEqXj0sgMzgGIP6UoS2m63it951GQoSNmFVZtKG/ZFlLHYf8527ckkNBmLLIshClAycesboEDqLlJGm5rZsYMuet3B5bxh1b8kYKhmsbkMtLEdPQGQIx+wFfjvv908I/w8CKhe7Sh7hUWc74BW4bgetbU2mRrSn8j9hPIUsCe7euhdbMfAr7NbSkK/BIqWHJ3m27tjB9DR19Rd6bGyMa665hre+9a2AFxP+jW98oy7EIUCAAAH+kPGlR/6BNfc8xbt/7KKnFZactJvZ8/8VJxzkfh5ObNq0yTcq4oc//GHl73POOYdzzjnnUIrlQQhePXQaO8JFtk/mOoo5c3Wd4tJRxEC8XuVz3WroUoMStrH3OKT99bk5AFm9F1fNg+g8T2BttI8XczNge94ySUiENBnmKAc0pvVQcC1Ix2HXnsrx1MxWIj59/eq0+MNt0oqlkkcknzCZGluJHumptJYtu6ZrMzNeWFeAmjYN6Anr7PbJbSuHeWW1NOSnAChGDHZFe4g9/ETL8SQhmF61gbidhSfvaNnONwhTbvYSJkyV4aRBY8Dp0t4w+xafjdMQhlZfbLYxXG8ulGnm5q/MrtfGyC+2KMqTlWOyrCMhIY/0VgyNF4dPZDp1NDLQbyzhd+JRABQh6CmRPri2x0PYZP8ZaWy5iD1VXX8hWnvFpnuSRPd4BaRS6hD9kQh2yeBPiSgJEUb4eJpawU3GsAdyFHWJ8u6G8ARgZOB4np15unXnRq8f1Cy390exN4Gw8kwOxojuKNde8zopLQLO/AyPxekQRy9qH5bXMEhLRPTq+hiiajQdG1tJYWJHqZ6XX2hlVa5eKYYqZKKSAbZgVOptat9tdDU876//+q95+OGHOemkk9i2bRvHHnssDzzwAFde2VnIyR133MF5553HWWedxVvf+laeeKL1F0iAAAECvNxw61O30PPVf+c9P3JQxxOMn/ws2bM+R3G4M5a3AP4oFAr8zd/8DZs3b+Y1r3kNADfccENdntLLHbIk4x51bNs2thrDlVX6er2QJTfsMUl1AgFE1RgpPxrxOYw0J9bcJy6bDMmJumNLe8Mopd3qZpXMOxKRdVJKGCEEe+LrmQwtpj+mM5I0kRyrqVe7TWUX4aun++2BOyGjbihZbrVuJU/OHPp/q5CpPtlLMHcklazei4iFUVW9ecAKB3x1HFfVGF++iCbU9C0bgnIH6l0qpFWkHC3lloQ1mb46g8nFCQ82zeek/OuVeaJ48vTHdAxZQZOqJXft5DJSoebipWUDflzvLclfYm0TKlHhHw4pAGSZzNplzKyokueUjYWsWb8RlTBVeqOaR81dg+LI8TjhPoq9G9gfXlpHX+15Zern3Ts6wNNHrq5tUUE5Z2tepdWEILpkgP5YNWdt9UCUU4dOZ3l85Zzd1ZF6Y8GVJApG9R4WB9LsPXYFmbT3niqShKVGAUEq0q6QbD0k3Lp8s1r5fQ5Ch6FzK9QVnBxeAUBCiZBWvM2LI2JrSKsjHCsvqx21CWopLy/UEJp5MNBVo6m/v5/rr7+eLVu2cPfdd/PrX/+aL33pSx1VT9+5cyeXXnopn//857nllls499xzufzyy7spXoAAAQIcNvz28Z9hfvSvOetBl8JxK1hxzCPkjruE/Oo3H27RXva47LLLyGazXHPNNWia98O5ZMmS37/fkLhnhLRSClxJxYmNEA+H6hQwo6TIabLUJqep4XNzjr5va0c32L32ZKz06qZWde1bpT2UMJI06YvVK3CukFCEjiIJ+mvyHp45alUb2eYPX9Hc8q521TMnWjVu6tzcaGb1EkxJbUpkx3U5JuIp/IbUuu5VJbWojbVmJIYJCY1BKcmQkmjZrkbQyl9qO0IIRcMJ9TQc9JcjEdJwEcyYI2jJUf7oyNMZ0FMYlBRaxSCst55rWE1wpDnqeeR8rtXv8u1kDFetGkIRXcGVRCUUrgxZwJqBWMswtFAqxtTwCDMrGmuL+hi0NWPUej8SpoYQ0NvjGTJuhx4nWRIVL6QLLKrNm/OpOVULpSeButF7J3KRxbzQcxx7j2iowVRD0U/vSvalvPDLsJ8RVILV28Di6rT2rJqa/zjT5gjT5nDLfuCRO2hSc/8ePUm/Pl73zLfy/qUjGs4c69QNdDU87+Mf/3jLc5/85CfbC6IofP7zn2fZMs+iPOaYY7j66qu7KV6AAAECHBbs/PH3Ma/6NOO2y+43nMhJ+rfJLz2XzKYPHW7Rfi/wq1/9ijvu8EKW5JJysHnz5t+L35BaJUEIsM0wLoU2PQDXpcxHJ4C4oTLeG0HO7cNWFC8vqkH7bOs5KWnsckNiy1hPhB2WxFR0GXa6D2Xvoy2H2BddjcTvkICoaCZCWN4XLeWn1EOWVE4MLce0XX7Hi5XjpiozYTSwyZUMkqISgoLnzWnMN5kLRTlEQa03OExVEDEU+iI6Uz5Gjx/69FHCdtUIcnWFMa3Xt70kJFaHT6JXv5dCwa4SEkQGsSLjMLOveoltZE/39NHjTJGXIshkm+dq1P3bjNUspAZkmDGHgNaU+mXD0pZ1sv3HEpI1evUkzzNbOelvpLYPxfKdy6cw6sbFCRKmCr+rtXQ7x8zwMKZmVnPDhPCVDWrTA2s8fQJGkyby4o28sD+PM1NrzMnM5FsbHgcCUyptOAgJJJmY5k/cIglAj+HKGlCg5QIJQGogb1FbE6D474m45PQ0qjX3O+j//TMX82EVQzGTIaePzO7pg8qj0HVPU+0/Xdf5xS9+QTo9dwxkOp3mVa96VeXz3XfffdBZiQIECBDgYMKZmmTfp69AvvJT7I7D7y5+HScZ/0Fx+DimN19dUfICHBg0TWPPnj11xyYmJg6YVe+lAFOpGhgCgW14isvi8BgJdaBVt6bcFr0UbiYPDjY3agNFFghJ0BPRiDRQK3uRdp2tcUGNIoTgWHWcHuFfA6UONcPqkoIQgmhlfgGnHM2OZQ2hakJgDRzD/shyZvV+Cop/CNmo1sdIeFFL1q+CGkMStUF8glRIrWOjq8XSngYPkYBXjW5gOFofNlVmJ/PIA/Bujutljwghmp5XOzGOHV1UaurJUyuCaOVzLIdk2u3Do+qV/hZjlYo+S/HaeybVt2/xnvkyWcfrDVJHNsiF000kCK0wlyGVDGkIIerT0OaQsxUUWWBqEgOxZubHqjwtjkgKllZ/reM9YRKl0MBWz5IfpA5UdUVI9Opz58Vm++PIo4txXe8OSggGYjrp8aPa9rPSayDuExpaQuPTIyMhXJcVfRFW9rX2oJZRe1+PGEmysj/ivyFRcw/7RP366ks2kV/0KtYMxRt7dQ1d9TRdcsklTcf27dvHpZdeOq9x7rvvPm688UZuvPHGbokWIECAAIcMrutS+MntTP/d32JPTvD94wXi1Ndx6bavYPWuZ+rsfwalPW1xgM7x7ne/m9e//vWceuqpTExMcNVVV/HjH/+Yiy666HCLtiCUd0pjssFAeNT3fFSLEpZb76iWlZCi0YvVuwh23r8gWQxFZuOiBM72abaXiSCUUmJ9uI92Ti8/6VRJwSrnGrWJARQuDMYNxHQRRQbXgmRIZTpXymuSpBZauXfMllsrugNKirim8eLsC3XH3VL6uyJLpMzOcz1SIZWnzRBytkqUYaoymxYnue3RXU0XGFXqN5I70eWrFBb+jZ1QX+W8W2Zj68KOuxQKo77yROT8Dtj1HI6k4fYsITMxQZS9Te39HQYuMVPBCmloxx7L/tEM3PwLAPLptexXDeCejmWqUO6rkdJnP49Em3BDwJU17NhiUENg1TK3VXPW7J41LCtmeHqy+Trr52p+jlsxuI3ETVIhDV2RvPC3PQ3sJj5JVEf3HMuO04aRHqhniWu8nnaQhGDW6ENb5KCsXAXPV4k1dEVCMiOwvyZMs2FJXS3U0YNqKSGWSoNEhIGEFxosu6IdZ0oTDEVCViSKbTxNIUknVMQJMUkAACAASURBVCpjIErhv5KismHpEGFdYX92Dm/8AnHQtzmTyaRvQcBWuP3227n00ku57rrrKqF6AQIECPByQeGXDzL5fy5i+oqP8pRe5NJ3y2TPPJNLn/4adnKcydfehKsdGprqPxS8+c1v5ktf+hKRSITTTjuNUCjEF7/4Rc4///zDLdqCYLuehhGSdOSaWP9ON8qdaLiiXeT1JHZyacvO2aTJ5GCsyctRpwjWkhEIAZKKNXgshFuzVeXTa2oGq81J8JBoSMb3k683orGqP1qSpXre14tQJzsM6l5Oh22qFEueAtHKhmiYO6zJdR6dHsXzskQaw5VqMLX+FW1lcgxPqVUGPYNpJl3aJXdckmZzKFWTqJWcJlDHRtHGq3kiTctRYhRs5Wktjy01War+7aVQGCcxzs7E0eTVOKghJqIrmvpljPrnIVFzXQlTZTRl+knbEq2y71xJZn9kKcX+1t4R34Kttee1KHbv2qbjabVKFe6aaQrjZ0BDvpci6g2U2pkqIYOt1lLywvQAXKX181SLuJZgZWI16rGbSoPUvAul2Z3IUOWIH4SA8bGVrDj6HXWtap+R1fogK40B7MTcNdHqUPP9YMkm0wPneR9SXp6VU2JvdM1UU1cfSatr5xfKSjnvq8YTfAgDCrrqafrYxz5WdwNs2+Z3v/sdQ0NzVS/38POf/5xPf/rTfPWrX2Xp0nnetAABAgQ4jCg+9CsyX7me4pYHId3Dv7xmJTdv3Mo5oRO58omvY8cWs/+138A1mgt5BlgYdu7cWfm7v7+fd77znU3n+/tfflTu04VpAOQGBTNuqDi6QaKktBXSfWh7dyFLAld43pupY1YRi0WglAaTKbTe4nUR7B/tAduqUzxcxcApKSxCUFXS2nh2msZu8qQ25Ji4QNkgbKP1tKyR0wZrBqI8ssNbw8xAlKFJBVdSq/qJaJTFZw4XUmEVS9WISQanRddU5HEVA/KtvWS+16EohDaVlPQsTPUkYfcU4BLSFc5Y3ce9YiO5yVm03/7cT5yK6MrwAPJU0Ze+3VRlZnqShFIh5L5k3Qa/oUjMyiaaXA71ExRCBmrOmXuVhSCvp9F5GoChuNHUZCKyir7E8zCRrYxfL33rseeLohIBxT9vxxuz/J+oP9AGITmM5UOIURsGWexdj7xbxnJbeDJaTLMuuYGMNcu26ScJK2FmrVnSeg+wf66uFUiJBNLqlciaw8yuxrMuzlHrmXrSptYfUhsGKEmQNDzDxSPDEHX1t2QhISGwzSTgLJhPwZVUnh44k/FUEnY8j62YFJa8CleLwo4mwX1Q8va1eW6KZn/T838oKsJ21WgaGKiPr5YkiaOOOoqzzjprzr7ZbJbLLruMa6+9NjCYAgQI8LJB8eGHyHz1yxT/938QqRT597yPi7WHmY3fy9nKGj792Lewetczee5NHe60BegUJ598spe/0IoRTggefbQ1OcFLHUk5VFJ6PSUipMmcdNom7OeeRWgas/sVtL276I/qJHI6YVWwX/F+1mOGwixglT0UumdoCbNkzLRYs/zSs0FIuLlqDo2ydDm2JFMIuRjP7PDt5wu/lIQaTcyOjmAbeVwjUTWgKn0XrgIpDYQVg2qSbcYg4NXWaUXDXh/65nosbJrSFIJo9a5jWgmR2vmrhgFESW4/47L6py6FQQg0oYFbNWucUBirKDyeuQaDo1zXRpmDQj5hqqQNE01uzusYiBloy46kZ+bhyrGdy0dIPj+ByE23HRfADlc95GOpEDtkQdFuJpvojxqImjyvqvLrhVGVr622eOkqZYhxc365L4I2RlmDIWalVyKRQ/YJY5vXo6boQD31vagN2mohUr85wGzRM5pcF04ZPA2AmWe20oh24jjHvBHHsWHXT0rzVa9zdHg9T7kCbaaffTWkKX5Y3R8hrLhEJxS/urLzQquNjTJTpIvrGUydoo0RbadWgr2HfHQxmdk8SfY3eaIPJg56TlOnuOOOO9i3bx8f/OAH645//etfp6enkeoyQIAAAQ4vir99hMxX/4ni/9yHSCQJv+8veGLjKbz/gc/iRh7gDQzz17+7jcKS05k67RrQ5lYIAswPjz322OEW4aDCL7xKSBLK4iUA9NuTxCIakiSIhVSwLAQuA+Ygcs7Lw7CdUhHL3iQSi7GHhihufRpHyCAgYwwQmn2+OkFJqXRKloIQAqGqKCtWIl7wcioORD0RgN2bRMxkQZKxj3wlYkceEQo1FGQthTC1IGvoFEUtgVMI4dZ6EGq67x+uGhe1yp8VMyreuvqZy+FB/ljZH0Zb2n5zJKb0EAofTUiaBCbbti1jYLCH2KKEVyC4DQTCo5ZvgZ6whpipWQBJoqhp8yUZBDyjp2i7FSM0XDLUdFUQraEVd5QwMvvr1j0d0VieDpO3PLKKpBQhqdSzKtYaMwsJaS4aOuqiJM5TO0AxcMwF6pJtjSpRb8iNDSC9mANVxaOpbNHL590eURM8xm40uZldstpRAr/767rIksKi0HK2zjZbQY2XoMoSS3siyBP1Y8npOEWYV6EpVdLp1YZ5tlCfc1UmsBiPtk612bQkCTvCUJxoO8cqeYRseBw7tQx27/FvdBBZ88roqtG0atWqtmxFruu23Pk799xzOffcc7spToAAAQJ0HdbjjzH71X+i+POfIeJxQhdfgvnGN3H7sxN8+oHLkSKP8J5igj9//j6yR17E7PEfad5FD9BV5PN5/v3f/51f/vKXTE5OkkgkOPbYY/mjP/qjSt2mlxNOGT2VzI5d2LQv8H7kSJz8Y16YVGbpMOZTL3LS8Gmosoo744X9DNUwf8nxSCVcazQVYtfS49g7Vag3mkoo6x/1bG3tPSgARSVK2TVTq8KUjR9NkZge7MUphXe56RTa4iV13kJ9xSJyJUXc1aNYxhDyjkfqRmsxfRMK4VFmzHGYfI6qElsO/xEUeyNoPnqLE9LoPODH629F4xiKg6bNrVppUkkxbnLUuL7rrEYi9ISbn+XZtetYVNrRNxUTXfjE7M2JhQRBQjqskbMcrw6YC4YcYV1yA5ZjofSfXB09MgAz20ufvGsLazKaIlWMpkY01oWyetaAU2hwQrS/+zvWLUPWbc9o6sDQbhcl6IT7EPm5vXEiGcHoGyE/r+q2HhJKmGGjh0IHqrnUP4jU149vjOa8UC+nOjaIM/Ya2HPnvEYZMpfx7Ey90SSE4NSh09v2S5gqSkQvO4HrZSp9J8wa/URzO3GEfw7YsJrgBSCq+bNldhNdNZouu+wynn32Wc477zzS6TR79+7lO9/5DmNjY5x99tndnCpAgAABDimsrU+Q+eqXKdxzFyIaI3ThezHOfzOYIf7+3l/z3R2fQ448y4enirx9/+PMvPpvyK192+EW+w8CH/rQh5iYmODUU08lHo8zOTnJzTffzC9+8YuXZa0mTdawJZXM3E0rKPYkKPYkKhuXiiyxYTiGFdHriatKikgqpNEfibJtygvjaVTxykaMVKNJCiFw1Xq1oZCsKrf58TPY/cw0Mnd5Y/jIORjTCWsyu6RmZc8x04j8VP1BIWP3rEFMVsONWhI6+MATX/I7CHhGpUBQgErR00pR2w6QjuiV8LPpZWtRl0Rahv/VwtF1HGQY6oE2TH9z7Z47hkkq3Mfm1DhWeg3iyZtxtSii0ErBbx5PtkpBoB0Ye9OrjiC0cTH5p55HkgQhTfZIF2qGVSQFvfaaSuvdlFPWAsWhTZCvd311YrD7YaFe0ToRXRdXC+O2iBaoNTnlg8+vBoC6fgMAYn+JaK1xTZteaJ9BRGlVy/mLlDzLPhtNx/edgBYW7Up0dQeu0xSamlfjhHM7SzJWL2wyPM5wfgu9SpRTh9sbZ91CV42m//iP/+D73/9+5fPw8DAbNmzgda97He9+97u7OVWAAAECHBJY254k889fpnDnTxCRCKE/vQjj/LcgRSLM5C0+/P1beZS/xzCn+ezOPZyqDzFx/o3YPWvmHjxAV/Dwww/zk5/8pO7YO97xDjZv3nyYJHoJQCl5ctoo5Mf2buS+F/7L95xTw9ZWhkAws3YMWVkLpdDI3GBN7RbFxPUxhmohCUHCVNnVoHwJIXASY94Hd2dzx5qaZoPaYo5Mr+TRnXeSjYVpZV3aigKxMKKUa58wNaYLEDMV/DiQFyVDTBy9hlx0GqYebjoPzT4ZtdajoChI0Q53uyWZF098A4nQBKnEeHX8ksE1k/JC3USpTpKIdBCeJqvkV7weec9vUfbN7RUpY7I/hZiwkJPtZe+JaOwhgZxMwlPN3smO4GMw2WJub7B/kGYpVPIgh2U1bhSUEdUVBBrjPSaPlmz9PqWcu1PLcNfpRPO/Djs8iKxtw076h8BVzI8W1uNcda/KCClhEmaI/fn5bOXMHwKnJV17PVzyWvLgG3EN6KrRND09zbZt2xgfr34BPPvss0xPd/7yBggQIMBLAdYzT3uepZ/ejjBDmO96D+ab34oU9X4Ut+6Z5QM/+gazsX+hz7W59oUXWbL0j5g46Uqv9keAQ4aRkRGmpqaIxapKXzabZdGi1sUYf19RVjfs+BiurONEh9u2b4WEqaLIgvFUbUK/wNVUpIEhnHI+mY8SbMUS4GVGADAUM+jvi9YShbVFYWgTxbAF+e2VY8W+I3HMx4HniRvjJLQkCWWAeCgOmReaB5EkntuwgtEa74muCJIRE02RKWCjiHoVSBKC/mUjPD3zFOEZnQUl+vigkaK6AiHIh0fq11CS2XP0RizxuPcxmUI95hWIxMFh3XQR2LqGtGIYobQPIz5mNFE1UOoU/IVnuYU0mVAkTmLVKbC7dS2xspeqUyV/PpgrOLGY9gzY4dAo6ehynt25nbyTQZYEJ42NMVucASChJRHi4BoVTVBNCkuqm0NquYh1xWvqoUdNM+2zUXAgq1kYfRX71Km616QncoDh0G6N0eTWh9M2/33o0VWj6c/+7M944xvfyNjYGNFolJmZGbZt28aHPvShbk4TIECAAAcN9vPPkfnnG8jffhvoOubb/wTzgrchxbwfTtd1+c5Dz/HPj1xFLrGFI3N5/jajo5/xNWYWnTzH6AEOBtasWcMb3vCGSnjexMQE99xzD8cffzzXXXddpd3FF198GKU8AMgLyIkToiODqZq7JOrS1jVF4tQV9XV3Ylqcvfk9cyqu0yvWI0Zj8LSnBJuaRDpt+hpNfuqqq8dxI1qd0YQawkmMsXs2XSF1GDJWoCsS0Gw0FeIpYK9/TlZJAV8UXUKvvouni3ubsrAGlDidGE1zqXCr+iOs5NX0x1SYuQ2ADcMxntwzy2zenw5e1jSWxKsbL1LyYLNuio6zmmrz1q0+L0Ss6elsoAKXRkbhxQcqcw2aQziSZxTKkuCI4RhycgB2t5dxQVhgER+/ZzypJ9GjY/TrOnG1j1OGvFpV5bWrL3IrGIobPL0vQ1/00OVVjiYMJAGPz9bPuSqyinCqsfyCaMtDMBdcM0VBkyGXr2fvPxC7xnUXfM8OBbpqNL3pTW/i9NNP56GHHmJycpJoNMr69etJpQKa3QABAry0Yb+wncyNXyV/23+DomBe8DbMt74DKZGotJnKFbnq1lt40vk7cokc75yc5f8dexuFY/+cotJctyTAocHk5CQbN25kenq6Etlw9NFHk8/neeaZZw6zdAcO9dj2hVPrMB+FQ3jK8kR0OYXhV86pEKxPbmDGmkWRFJ896xpIEkJViRoK+WKB6Akn0KhJuTV5FE3oQrjV7NJVkLmXmKEiGpLypVIInCapxMbOZduOOzse15Q9ynZZ1BYdbp3HsjjV7HUejBlkCjZbdx8g13PXsEAltUzfXfPMqa88EdFgNKmr1qBLVVKTNcl15OPbmQ+qrIW1RU07yR+az7V11lYWCmG5+rvQ6mmNGl79rTKM0m/EWGy8qW3e7IfpEpHCARgNQghGEiaPlxxehuo9pyFNQZbav+GKT42q+cwriS6YFDUU/IeCDW++6KrRBLB7925+85vfMDMzw4c//GEeffRRksnkAVmzAQIECHCwYO/cSfZfvkru5u+DLGO88U2E3v4nSKl0Xbv7H3mcn2y5nF8mn0Fx4Sp1NRvP/TSFaGfFuwMcPHz2s5893CIcVEihzunq5xu+5LpgySEI983ZVpYU4lpz/Z9WCKkyi1ImciIBdn2xo7b8dzXK0nx43US6B3evR0e8ZihBdiJUX7TXZyw33IcdGQQ7W5KlfQb98vhKUnqavdM1RToPl3LXxXkPNOxtaW+Y7fuzHTyr3jz65jMoPvZbnOefW5B8yjzY6eR03Kus1EIPDSkhYmqcZbHl/GKv5dumPcqFoNuHkclCbskmN9VzNIXUMniidYjiQqArEqsGo6iKNOeb1KPMn9bdrhDGwIrQJkaSJi/sb1H4twM4kSFwyqG9zRI3Uv5PpTbgKvOoHXeA6KrR9N3vfpdrrrmG0047jdtvv50Pf/jD/Od//ieO4/DRj360m1MFCBAgwAHB3rOb7E1fI/eD/wTAOO+NmO94F3JPfUjSzO5n2PKjT3OL/iD/k9Y52onyV6/4FL0Dm9pU4QhwKHHXXXfx5S9/mV27dmHb9T6QO+644zBJdWigrFoDqgb2r4F5Kr9CEJYTzNr7kRZAkXwg8A1pqpycu1ipH9T1R1C407vfo0mTWPgEdmV3AFOluerHFU2kDa3VymL/kSBryEKmz+xnb/tYspcufNbWFQsgHa8dRwiW9YRZ1tOBce93H1vc2/IUiiwqTVzXC3mUqTWs206IOtRDfpdoaWRKQuIVvZtKn3a1E8kXZe9jn9EPdGYENospwRyeoK6jdJG9iVXokaVYegEp175eUiNqw3slIaMcQHkNK73aI7QoZpGnt2PHFsMuL3Jg3VCUXCzeFDCbC49SGFy74Dnni67eoX/8x3/ku9/9LslkknvuuQfwqGBf+9rXdnOaAAECBFgwnH17yXz9RnL/9T2wLYxzXof5zncj9w/UN5zYxu7b/38eydzJF9JxisLkL5a8k9etvjDwnL/E8LGPfYyLL76YFStWVEKv/lAgj4x6f5TSeub7bI4aa7Fdq45a/IDkKSegNw1Xk0/k1oZY+RtNTcZU6b4u6wkjFldDo+rY/ZR6lSauxYlrcZ7hf5umUI8/AaF3HlLrqhHckF9x1Oq1lEOhDhT9UY2O6LNE59ToreBI6tyNfCAvWoz9dJnu+oBEaAlD9e55X1Rnd014nq5I4Dge1XkLVI3y7uP4sSRFu7ruphLi5IFTUCQFqOZuHX7MTaCQX34eq0vraFPllNzYexw5K8eL3NN2BqccZtuNyy0bjXXkFt6bIAmBrsjkD/OydtVokiSJZNJjeKnUilCUg04HGSBAgABzwdm7h+y3vkH2e9+BYhH9jLMJ/cn/gzxUnywv732c3D1fYHbXj7kqneTB3iSrQqv4+MZPMRgKQvFeiujr6+NtbwtqYs0bQrB+KMEzEwdaILOKI4ZiPL8/R8xQUVYswp6Y8id7KIvgp8y1Ib4I6zJ6SCNXrPEo6kZTXZ96NM8hhecfitQOR43EiRkHplKdsWaAfROzZO1JtuzroMMB6laF0ZOwJn+K5Mw/nEpoGvLSZdhPbp1vz+qfc4ivlmqNeb1qavc4fuFwnUxdV3ypUymbEDOaDU3lUHuJOkIHz0eLNYyqMaLq3PT55dIE0iE2EhdWjvnA0dW7fMQRR3DZZZdxwQUXYNs2W7du5Zvf/CYbNmzo5jQBAgQI0DHsF7aT/ebXyf33D8Cy0E89ndC734M8Wk9Hrex6COveL2C8eAc3JFL86/AAuhzi/1v9Ps5ddB5SR0nHAQ4HLrnkEq688kpOPvlkQqH6xPtXvGIeJAp/gBhJmIwkzK6NZ6gyy3q9MC132UbU/VupV8k970g7pUfqH4CCR7VX2XRtUO5qe2snnNSZcPOIp3UiAzhGAeEU524sBH3RNgVqO4SmSBiqTLYkZ2ehlgfCflbO2xSoJRIAx0y37tANGRbokkgbaWZmplEljcrdb+NVrq7dYXJNdHidiuy102QJyulUL6NIBkPx7oEqL1xmO7YIeeJJ7PDAnG0PBuX8fNBVo+nyyy/nC1/4Au9973uZmprioosu4pRTTuHyyy/v5jQBAgQIMCesJx4n+61vkL/jRyBJ6GeeQ+iP31ENZypBeeF/cO69msSun/EDM8FnR5YyoxQ4behs3rv6fST0g1MfJUD3cMstt3Drrbdy1113Icu1rGaC22677TBK9ocNO70SO73S+9DC6PHzFvh6ENopyHOEZDrJNPAUltm5YWP1rMFJqsh7H/M9H9YU8syPkKBTOKX6NHN5UiQh2rMYdggXQaKUl1McOm4+HbuDDoyEpdHljIQXoct6tZ5pm/t+uDwRdnwx8uQzdcWY2yFhqhimipsO4e6c6rI03rqqB8CKNxfWDkTpi+oULO+ZLe9xhPXO53T1OPkVr5/XvGFNxs7DQOzQstZ21WjaunUrl19+eWAkBQgQ4LDAzefJ//R2cv/5H1iPPAymiXH+WzDf8sfIvTXsYK6L9MxdWPd+geT+LfxcTfKJgXXsMKdYEhnhM+s+zLpU4CF/ueDnP/85d999N4kaevgArTBHPtFBR01GP53vHDfKWjZWOvHwuIND7D/qldjavdAxy3eD0t0w/+KUST4VQuxeOFNYKziUGcnaK97rh2LsncmiFDs3nhrJMJogd57jJPX0YG/bitQ3N/NirQQLgRACQ25QkEtGUzsDyTUSiEzn4adHDMfYny2W6n/NH1bfkVjp1R0bTQCpsM5ElwzgRizX+whJGt1/Sj0ossRgzOCZfdWivqeu6Dno3y2mKnPC6vk8d91BV42mj370o9x8883dHDJAgAAB5oS19Qnyt91C7pYf4k5OIo8uIvzn70c/8xykaLTa0LHZ/5sfYj54DSPZx3hISvPevk38LryDuCrxFys+yLmjr5uznkWAlxbWrVt3uEUIMCdaeJpaKNFzKV2qLPHq5T1oHYYFuaraPc8IXo0gU5U9Nq8Oc4tcNYwdWzRnO6dUq0aiveId0mTCSbNM+FadR4v6d2iFBeq3UiyOvvmMhXX2gSspCKdzyu9OFPPi0CZEaBfsebQjj9ZAzDgw74UQsNCafQch/98oE30cZCOmL6rz2M4ZRhIGinwwQ9l/j8LzNm/ezIUXXsjJJ59MPF5fyyFg0AsQIEA3Ye/eRf7Ht5G/7RbsbVtBltFOOAnjDeejHvOKuh/UXXv3svv+G1nx7DdZ7rzII6KPTwycxi9DT4HYywVL3sYfL30nEbW7yeEBDg0GBgZ4/etfz9FHH004XE97/MlPfvIwSRWgHm7Dp3Kukn9rTfIKpybbhMf6eQOUI45C6P7ep8XGYiYzW5GRqFXN1yXX8/TMUxhy93K7/FAYO62jdpXCvwvMo3Rio7DjwY7axg2VqexCahMtEHWFs+qficLYaQi7CLt/2elgczeRNVwz1WnrQ47i4EbcSFUV74toZEMLYzQ8nDBVua6Q78FC+Xf9cBHMddVo2rJlC0BTDLkQIjCaAgQIcMBwMrMU7vop+dtuobjlAXBdlDXrCP/lh9BPOQ2pJjzr+f1ZHvjNQyQf/1dOz93KWpHhl/IKrh4/gXvkR5m1Huc1A5u5cOV7GQgNHsarCnCg6Onp4fzzzz/cYvzBQU6nOWksTbbYSWCRp+w4WgQpP8mAGud5IK76F8s1lRCv7Dtx3oZMXRhuAwaNQTZG1+A07LrHtQRHpI5q2c84YjmNZoUTGUSE+3Eixa7RtZchl3JQzMZwtIOARSkTx1Yg1wHhxcGGrOPKOupRR+O8sB1h+t97Zc067B0vdj5uNYEOSmvrKvN7rvJDvUjRuYkK5gsnOgSJEOz3wtsG4wZS70tn8y6SeDUJ5/AYKC9FdNVouummm7o5XIAAAQLgOg7FX20hf/MPyN/1E8jnkYaGMf/kTzFOP7PCgpe3HLY8vY8tW5/HfOpmXp27gwulx7CR+G3qZO5YtoHvTd/Nvvwv2JQ8nj9deRHLYisO89UF6AYuueQS3+Nf+9rXOh7jvvvu46qrriKTyTA0NMRnP/tZBgbqlaTHHnuMK664gomJCZLJJFdccQWrVq06ENEPHbqs2Gsnn4KZjlKYyhHSOkj6lmSKw8fhGEn0J2+hT4ly6tDpdU3UTa+EmtAeUwk1jnJgWOAaSIZGk59CUrD6j4DdDx24XA3oNftY466j32ylpB/4vXR0z1gVAuRDUNvMjo0iT3VW+FUKhZGWtf5uloeGkYeGKdilTJ25vA41DIyukaA4cCxOuL8jWcrIjg2hDh0xrz4LRpde1cljl2K68wzVbIAZWV8l3gjQHaPpPe95DzfccEPl8+WXX86VV17ZjaEDBAjwBwr7xRfI33ozuVt+iPPii4hwGOPMs9HPOAdl3XpsFx7bNcOW/32OR57ZTuiFezmFX/BX0v9iigIToVG2rfhzbuuJ8a0X/pu9e77H+uQRfOKoT7E+dYh+/AIcEszMzPD1r3+d5557DsfxWJxmZ2e57777eNe73jVn/0wmw/vf/35uuOEG1q5dy1e+8hWuuOIKrrvuurp2f/mXf8kHPvABNm/ezK233sqHPvQhfvCDHxyMSyK/9Gysp1+6YTpCVedkrWuEMwelcF3+4cFAByE9h5vSuIz2NeEWvvNfNpbs5HIAdEkn72TadekKrP6jsfpafO+2MWaLQxtb5miViTJMJUQj1UNvVCMeaQjTLM3jxEY6kvnlDteIIoolz5r20vFeHQgO9/vZFaNp+/btdZ8feOCBFi0DBAgQoDVcx6Hw85+R+863KD74vyAE6tHHErrwvcgnvIrH9ltseX6SLd97mP3bH+N4+0FOkX7J/5EfR5UtCmqMwrI388yKs/lO5nd895lvM/XUFEemj+avNnyMY3pecZgYwwIcTHzwgx+kUChw1FFH8c1vfpM3velN3HXXXVx77bUd9b///vsZHR1l7dq1AFxwwQVcffXVn9bUrgAAIABJREFUzMzMEIl4ysbjjz/O9PQ0mzd7lerPPPNMrrzySp588kmWLl3a/YuSNeSlK3ELB4v36mUIRUVEDp3yp2w4EnU2BsWd7VnlDlN+xULgmmny42dAKTzt+P4TwS7CtlsP7sRCgJi/yulEWhuPiqRwROooYmqcn+2fImVW79GyVAq0clClf62v33e4epT8yEmgHliu3pJUlz2+L2N0xWgKlJAAAQIcCNxMhtwtPyT7nW/h/F/27js8jupe/P97tqs3y7Ysyd3Y2GAbYzCh2EAAG0gglUBCbiAQIECAm28KCSEh9IQQkksKyQ9zAyaQC0kuyaUbcAPce5MtWZIlq2u1fXf6+f2x0tqyZVmWVfF5PY8e7e60z5mdnZnPnDNnDtTiGDkK+/pvsuf0C9hspLGjMULF/7eOmfZOPu3YzC/dWylxNIAD1NwpGBO+RWz8JexMy+Tftf/mg50PoFoqnxp5Pl+d9HVm5J0+2EWU+lFlZSXvvvsuAG+88Qb/+Z//yTXXXMMvf/lLzj777GNOX11dTWnpwed3ZWRkkJubS01NDdOnT0+NU1LS+Qp1aWkplZWV/ZM0Aa5Jk3s87lkjziFh9X+NwWDynD+/Vye+HR1GHO8zlZwjR2GLQnQtdPw90vUwJk+veho7djmEKw0ru7TrgYfcz+NUnByjk77+0wfJ5ghfIQAXTxnR6fM5BXMhTcehO1K1zyeTC0ZdmHzh9JzQfAaic4fhRParK0nSoLFDQRKvvEzin3+HaITA2Cms+uy3+d+sU2iMWhSsruQy12a+n7adMz1b8NoJbKcXo/hcIuPvRB93MbH0ESxveJ9/V/2JPaEyfE4fF4+5lM+P+zKTsnt+0ikNXw6Hg3g8Tnp68oqoqqoUFxezc+fOHk2fSCTwHtbjmtfrJR6PH9c4HTIzvbhcvX+gpNPpIDf3+K7u5tL9+EqrF1xe0nLScaQny5F1nMs4XG/iBFAykstPO8Hl91RunkKWz81YdxjF9EKGD3GUZWfhI8P2kpWVdkjZuq7dMuJpqOleXNm+4y5LTk4a+bnpFOX4Uheee7w+zZEoVhOiIB+0CErMC5mHlWnO53sejG0d13fS2+/9cGqWDyPkxZftw93n20I6TqcDy7KxhEY83Yszy0d6L5aTEUyum74oc1c61qcR9SW3p8zj356O1Pex9sX3np6RTOJ6Op/0DA8+2016hheR5cOVk0ZGxIvH6T3qPPpq++xKnyRNlmXR3Nyc6gLw8PcAo0Yd3013kiR9MtlCUFPdQPCvLzJy2et4dJWPxpzO3+csoCx/PHOyI/xn5nLOy1xLcXgLCjaWtwh93JcIjf80evF56A4H61rWsGzfn1nd/BGqpTIucwLfmf5dLi1eJLsOP8l89rOf5bLLLmP58uWcffbZ3HbbbUyYMOGIJOdo0tPT0bTOtzurqtqp+/KejNMhGj2xW6dzc9MJBvu21sjhHY+7bT1aDLR4Mj7rBJfR2zi9seTytT4u49Hk5qaT7YBwOIE7pmELFeMoy46EVWJxjbAjQZDu47PCCcy4hiOi9aos6UAodPBunB6vT2cxSn46wszCGWnBFdOw3Cpmb9ensI/rO+mr7dOIqNhxDT2s4uyHbaEjTjsYx4hrKG4dvRfLicU1FJQ+/0126IgztT1F1QH7bRyPvvje47Fkc+Oezice03ElDOJuDcujEnMniMU1DMfR59EXcRYWdl2z3CdJ0/79+1mwYEGnJGn+/Pmp14qisHv37r5YlCRJw0wwYbCzIcKOhjDVFbVM+vANFpZ/yBjLYHXpbLbM/xynTsngSXsNk9pexte6HdrAzJ9KfO5daBMvxxoxnUa1kfUta1mz9Wds9m9AtVRyPLlcWnw5l4y5jNPyZsqmwiepO+64gwsvvBCXy8WPf/xjnn/+efx+P08//XSPpp84cWKnDh3a2toIhUKMGzeu0zjV1dXYto3D4cA0Taqrq/utaV5fs7OK0bKKk288HpD3Sg1fipJ69tAnQr/vt0/snqZzCs/DPZAPPJfHsaMa7DXTJ1tBWVlZX8xGkqRPgKhmsrE2xPqaAOtqglT544wNN/LFihXcfWATDmHjP/MCvFefx7XePdxQ9UtcZeUAGKPOIPqpH6NOuIxKl4PtbVvZXvcq27dvpVltAmB0WhELS67k3JHnM6fgTJwDeTCThhxN0/B6valOHOrr65k4cSJXXXUVRUU9e/7WvHnzaGxsZMOGDcydO5clS5Zw0UUXpZr7AUyePJnCwkJef/11rrrqKl577TVKSkqYMGFCv5SrP3nmfQoRP7y/Mem4dZzcDvaZ3AkbnAI4CgqwG+pQhkCvid3JcB9ZmyydnOTZhiRJJ0Q3bbY3hFlXE2T9/iC7GsNYAtIcgi+Ztfxs74eMKtsEXi/pnz6HvNNhWngFzp1/QyhOjDHzCMy4nh2Fk9iq1rO9bQs7NtxJ2AgDkO8tYGb+bL6S9zXOKDiTcZnjZY2SBMDGjRu54447+Ne//sWoUaNYunQp3/3ud5kyZQqNjY385je/6VFHED6fj6eeeooHH3yQRCLB2LFjefzxx2lqauKmm27i9ddfB+BXv/oV999/P7/73e8oKCjgiSee6O8i9gvF60Px9v+DU49GH3cx2Ic/Lnb4cRSOxFk6FueEQaxtFO2dHCgn0JuDoiC82Zjt3ZAPFOfoIhwjClFc/Xwq6k72qtfvXdpLn3gyaZIk6bjYQlDeHGNde03SlgMhVNPGocD0UZncXWxwds0Wcle9j/C34shKI2d+EflFFXiUVxHNPrTS+Wyd/U3WpHnZGNrJtsaXUOuSV76L00s4d9QFnJ43i5n5sxmTXiyTJKlLTzzxBA899FDqntn/+q//4q677uJb3/oW27Zt4/HHH+ell17q0bzmzZvHv//97yM+70iYAKZOncorr7zSN8GfxIQ3e1CWa/vyES4vZsGpfTI/xeHANbVv5tVr7UmTUHrf8Qi0J7KDoN8TJsCRlY17zlyU3Lx+X5Y0MMQJPKvsRMikSZKkbgkh2B9IsKEmyMbaIBtqQwQTBgAT8tL4arGDTyUaGLd/O+J/VmMHQqBAegnkntpGVpGKnTOG2uKL+Di/hHXE2NS2iUDdEgBKM8aysPhyZhWcwel5syjwjeguHElKCQQCXHrppUDyeYEVFRV88YtfBGDmzJn4/f7BDE8aapxu9ImXdzvKsLs+I6zk/2EX+MBy5BcMdgjHpGQnHzzsKJTdfB/dJ+DhtpIkfXKYlk1Fa4wdDRG21ofZWBukNaJSkAhzmhXgNmeQmdH9jPDXIOqasNt7ChMum4wijcxTVNInZhIefwYrR4xjnctmQ2QPtbFN0LiJPE8ec0acxZkjzmJOwVxGpsmeNaXecToPXl1fvXo1p5xyCvn5B2+QdzgG6wE00nDlbK+xcZxIc7eB1HG/zgnWNEmDz5GZiefTl32iW1bMKc0hYQzf52bJpEmSTmJx3aKqLU61P87elij7qhqxy/dQFGykKNbKxWozNyVayAiHUKyDOzqHy8adbeIptPGemY972hSsU2ezNT2T9XaAjaGdlAV3Y7eW4XOmMSt/Np8Z+znOLDiLCVkTP9EHBWngjBw5kpUrVzJr1ixeeOEFLrvsstSwXbt2kZkpu56Xjk9JxlgsYTM2c9yxRx4ClFRN0zBJ8qRufdKPjYWZPXsMxFAlkyZJ+gQTQuCPGzSGVRrCWur/gUCcUG0d2XVVTArWMSV0gM+ED5AXj6SmVVwCT6aJJ9PEPcrClZ+Os3QsjsnTEePPQCuYyi6HwdbAdra2bWZ76z9QLRWH4mRazql8bfI3mDNiLtNzT8PtcA/iWpA+qb7//e9z22230drayumnn84NN9wAHOwg4uGHHx7cAKVhx6E4mJA1cbDD6DErsxhnYB92hqyxl04iJ9gjYm/JpEmShikhBKGESVNUozmi0RzVaIokXzdFdZojySTJNC1KIs1MCtUzKVTHueEaJoTq8R7yoE5PtolvhI4vz8CbD87x42DsDKwR0zELTsUomEaDYrI3tIfy8B52B1ayc//vUS0VgPGZE1hU8hnOHHEWs/LPkA+XlQbEjBkzWLVqFW1tbZ2a5ZWUlPDMM88we/bsQYxOkvqfSMtHO+Vzgx2GJA0IZ3uNarYnZ1CWL5MmSRrCwqrBgaDKgWAi9b8upNLcnijpVuerLWm2wSyjldmxRqaGaihtqSKruQGHmWzCoTgF3hwDX7GBL8/AXZSNc/JUxJjTMPKnEcmfSKUnnXq1ibr4AepjBzjQ8CoVe8oJ6UEAHIqT8ZkTuLzkM8zKP4OZ+bPJ9cpeiaTBc2jCBDBq1KhUj3qSJEnS8BVNK8ZO0zHzJuF0uJg7Yh4ZrsF5dpZMmiRpkNlC0BBWqWyNU+WPU9mW/H8gmCCsdn6WSUGGh+IcH6eOzOSKQoUpgXKKG8vJadiP68AB7JYQ2MlESnHbKPkm+ikWkRHgHzeCxpJRtGXmEvSkEXQ6CVkJwnqIcHw14dDbGPuMTsvLcGUmuwAfeT6n5ExlSvZUJmVPwesc3u2SJUmSJEka+myHB6P0gtT7nEGqZQKZNEnSgLFsQX1IpdIfp8ofo7o1QpPfT1ugFY8VJ5M4mUqCYq/B1ZkmYwoNCl0qOWoIQgHsQBijJoJo0XC1WLjUg/OOZAoaC2H/2Qp7i5zsHg1NOU5QPIdEoAE1OGJ15OjZZHtyyXZnMyajhFPdOWR7kn8jvCMozihhTHoJ2e7sT/yNqZIkSZIkSccikyZJ6g1LQ4m2IvwNEG6FWAgRC6InAsRiAYKxILF4lLgWRTdVTEvFsg3ARCgWxcKiSBEYKOhCwUTBoSl4EgrehEJ6TCEtCr4Q0F754wCEG2oKoWaawv5ChYZRTkKj03Fn55LtG5H8c2dzqSeHnI5EqP1/TvvrDFeGTIQkSZIkSZKOg0yaJOlQpoozcgCjZQ/hmh1E6vajNjVj+kPQFscZMnHHbTwJ8OpHTzyy2/+65mz/62LxToVElhs104s6OoP9s3IxigqhuAhXyTjSxoxjpC+Xye2JkM/pO8ECS5IkSZIkSccikybppKKacdoCZfhbdxGu20Wibj9GcytKWwx3QCcjLMgNKeRHwCEgjeSf6YDWbGjKUYjluoh5ncS9bqI+NwmXF8PhRfFm4PZlk5aRR25WPoVZ2YzKyiLDm4bHlYbX7cPrSsfr8uFyeVCcrmSNj8MBDgdKZhZKZqasBZIkSZIkSRpihlTStHr1an75y18Sj8cZM2YMjz32GKNHjx7ssKQhQgiBZtqohk3CtJL/DSv5p1v4tQD+RAOJcAXCvxclWIcr7Mcdi+KO6aRFbfJDUBgSjAhDkdV5/uEMhbYsN/tH+lg7KZu69AJq0oo4kFZELH0M2WkFjMnKpijbR1GOjzHZPmbmeBmT7WNEpheXQyY7kiRJkiRJfWFWcTbNUX2ww0gZMklTPB7nu9/9Ls8++ywzZsxg8eLFPPDAAzzzzDODHdrJyzZRzAQYCRQzgWLGUYwEiqWBsNv/LJSO17YF4mAmYgtQDQu1PcHRTRvVstHM5GvNtNFMC80UaKaF3j5M0y0Mw8TSdGzVQOhRXHoQjxHGY0RxWypuQ8NtGLgNE7dm49UE41SYFYNMtevixNMUIlluogUZ7JhQQDhvLKGCaeiFE7BGjMKTnobP7SDH52Ziupu56W7y0j3kp7vxubtuTidJkiRJkiT1vdHZPkZnD53bEIZM0rRmzRpKS0uZMWMGANdeey1PPfUU0WiUzMyT60GZQtMQlpl84rHg4JOPhQWmhmLqyY4ILB1MHSwdxU6+VkwVxdRQjDiYanvCo7YnO2ryM1NF0ROgJ0BVMbQEppbA0DVM3cAyTCzTxDJtLNuBZSlYNghLwbYUhJ38j6WABYqpoFjgsBQUm2TMR+Fq/0v2sK8glGRypdjgNBWcBrhMcIhj19okPKD5wPA5ED43FHrQJmVCXgGZI0vILJ2Gs3gajlElOPLyGOHxHHOekiRJkiRJknS4IZM0VVdXU1pamnqfkZFBbm4uNTU1TJ8+vU+WoRoWH5S3opn2wfP69oREdH57xHsQRw5LjSPI1Jo4t/YZKpQAq11RhCJAiEPyB5GcB6AgEOLg+9SchM3IepPL/2HisPukyL3Q0UlB8jk8jvY/pwK6CyxX8r/R/qc72197FXQXmE7oQb7TeYmKA9vlxPa4sL0uhMeN4vXi8vnw+DLwpmfiyRmBL380mQUl5I86hdz8Uka4ZRIkSZIkSZIk9b8hkzQlEgm83s4PzPR6vcTj8U6fFRZmndByvjEm94SmP7pTgQs5Ffjsic7qoROPRpIkSRocJ3qc6qt5DAQZZ9+ScfYtGWffOtnjdPTLXHshPT0dTdM6faaqKhkZGYMUkSRJkiRJkiRJ0hBKmiZOnEhVVVXqfVtbG6FQiHHjxg1iVJIkSZIkSZIkneyGTNI0b948Ghsb2bBhAwBLlizhoosuIj09fZAjkyRJkiRJkiTpZDZkkiafz8dTTz3Fgw8+yKWXXsq2bdv46U9/OiDLXr16NZ///OdZuHAhN954I42NjV2Ot3HjRr785S9z+eWX84UvfIH169cPSHzHqyflKSsr49prr2XhwoVce+21lJWVDUKkx68nZRsu39OheroNQvK7mz59OmvXrh3ACHuvJ2WLRqPcfffdLFiwgEsvvZR33nlnECI9fj0p2/Lly7n66qtZtGgR1157Ldu2bRuESI+fYRj84he/YOrUqUfdHofrfmSoOp79wEB4//33ufrqq7n88su57rrr2Lt3Lxs2bGDWrFksWrQo9ffiiy8CoOs69913HwsXLuSKK67ghRdeGJA4Z8yY0SmeH/zgBwD85S9/4fLLL2fhwoXcd9996Lo+aHG+/fbbnWJctGgRU6dO5bXXXuPMM8/s9PnSpUsBCIfD3HnnnSxcuJDPfOYzvPnmm/0W39F+771Zh/X19dx4440sXLiQz3/+86xZs6ZfY/z973+fivGee+4hEokA8Ic//IF58+Z1Wrcd+9/+ivFocfb2dzPQcf7yl7/sFOOFF17IF77wBQDuu+8+zj///E7Dm5qagP49FnS1H4JB2jbFSS4Wi4lzzjlH7NixQwghxLPPPituvfXWI8bTNE2cffbZYvXq1UIIIZYvXy7OP//8AY21J3pankWLFomlS5cKIYR46623xGc+85kBjbM3elK24fI9Haqn35kQQliWJb7yla+I+fPnizVr1gxkmL3S07Ldd9994qGHHhK2bYuKigpx/fXXC8MwBjrc49KTsoVCITFnzhyxe/duIYQQK1asEPPnzx/wWHvj5ptvFr/5zW/EKaecIhoaGrocZzjuR4aq49kPDITGxkYxd+5cUV5eLoQQ4sUXXxRf+cpXxAcffCC++c1vdjnNn/70J3HHHXcIy7JEW1ubuOiii8S2bdv6Nc5oNCpmzJhxxOebN28WF110kQiFQsKyLHHrrbeKxYsXD1qch3vjjTfEnXfeKZYsWSLuv//+Lse5//77xcMPPyyEEKKmpkacc845orGxsV/i6er33tt1+M1vflP893//txBCiK1bt4pzzz1XJBKJfomxY78TiUSEZVninnvuEb/+9a+FEEI8/vjj4plnnulyXv0V49Hi7O3vZqDjPNzPfvYz8cILLwghhPjOd74j/u///q/L8frrWHC0/dBgbZtDpqZpsHT1fKgPP/yQaDTaaTzDMHjooYc455xzADjzzDNpbm4mHA4PeMzd6Ul59uzZQyQS4ZJLLgFg0aJF+P1+9u3bNygx91RPyjZcvqdD9XQbBHj55ZeZNm0aY8eOHegwe6UnZdN1nTfeeINvf/vbKIrCpEmTWLJkCS7XkOncs0s9KVttbS1paWlMmzYNgHPOOYfGxsYhvT12uOOOO7j77ruPOny47keGquPZDwwEl8vFk08+yeTJk4HkvrSiooJIJEJWVtc9U7399ttcc801OBwO8vLyWLRoEW+//Xa/xhmNRsnOzu4yliuuuILs7GwcDgfXXXcdb7311qDFeShN0/jtb3/L97///W7X5zvvvMO1114LQGlpKWeffTbvv/9+v8TU1e+9N+swEomwdu1arrnmGgBmzpxJUVFRn7SM6CrGSZMm8dhjj5GZmYnD4eCMM86gvLwc4Kjrtj9jPFqcvfndDEach9q7dy/r16/nuuuu67YM/XksONp+aLC2zZM+aeru+VCHysjI4LLLLku9X7lyJePHj+9yZz2YelKe6upqSkpKOk1XWlpKZWXlgMXZGz0p23D5ng7V022wpaWFJUuW8N3vfnegQ+y1nm6PXq+Xf/7zn1xxxRV86Utf4uOPPx6McI9LT8o2adIkHA4Hq1evBpInQaeddtqQ3h47zJ49u9vhw3U/MlT1dD8wUAoKCpg/f37q/cqVK5k1axaRSITq6mq++tWvsnDhQn784x+nmkNVVVV1uqAzduzYft8ewuEwlmVx2223sWjRIm666Sb27dtHdXV1p1gO3TYHI85D/f3vf2fOnDmMHTuWcDjMpk2buOaaa1i0aBGPP/44uq4TCAQIBoMDFmdXv/ferMP9+/eTl5fX6X70sWPHduroqy9jnDJlCqeddlrqfcd2Cslt47333uMLX/gCV1xxBc888wxCiH6N8Whx9uZ3MxhxHup3v/sdN998c+oCZjgc5uWXX+aqq67iqquu4tVXXwX691hwtP3QYG2bQ/tS7gDo6fOhDlVWVsajjz7Kk08+2d/hHbeelKc3ZR4Kjjfuofw9Haqn5Xr00Ue5/fbbh8UJd4eelC0cDhOJRPB6vbz55pusWrWKu+66i/fee4/c3P56rtqJ60nZfD4fDz30ELfeeis+nw/btnn22WcHOtR+MVz3I0PVUF6fq1ev5vnnn+f555+nvr6eBQsWcNNNN+HxePjhD3/Io48+ymOPPYaqqp3K4PP5SCQS/Rqbz+dj0aJF3HjjjYwdO5YXXniB22+/ndGjR+PxeDqN1xHLYMTZwbZtnnvuOZ555hkApk2bRl5eHv/xH/+Bpml8+9vf5s9//jNf/OIXcTgcuN3u1LRer5e2trYBiROS2+TxrsPDP4eB247/+Mc/4vf7+frXvw4kayXcbjfXXHMNfr+fb3zjG4wePZqSkpIBj7G0tPS4fzeDuS5ramrYtm1bp/OnCy64gMmTJ3PllVdSWVnJ9ddfz7hx4wZs33Xofuihhx4alG3zpEma3n33XZ544okjPr/uuuuO6/lQmzZt4p577uGRRx5h3rx5/RLriejJ866G6zOxjifuof49Haon5Vq1ahXBYJCrrrpqoMM7IT0pW1ZWFpZlpZoAXHDBBRQVFbF161YWLFgwoPEej56Urampifvuu49XX32VqVOnsnbtWu68807eeeedIf97O5bhuh8Zqobq+nzvvfd46KGHeOaZZ5g8eTKTJ0/udOX3lltu4eabbwYgLS2tUxkSiUS/94BbWlrKz3/+89T7b3zjGzz99NMUFxenbgw/PJbBiLPD5s2bSU9PZ8qUKQBcffXVqWE+n48bbriBP//5z1x//fXYto2u66mTQ1VVB7RH4bS0tONeh4d/DgMT95NPPslHH33E4sWLU8v6xje+kRo+atQovvKVr7Bs2TJuueWWAY9x/vz5x/27Gax1CfDGG29wySWXdEra77nnntTrSZMmceWVV7J8+XJmz57d7/uuw/dDg7VtnjTN8y677DKWLl16xN+kSZN6/HyosrIy7r77bn79618P2ZO5njzvauLEiVRXV2PbNgCmaVJdXc2kSZMGPN7j0dNneQ2H7+lQPSnX0qVL2bVrF+eddx7nnXcemzdv5jvf+Q6vvfbaYITcYz0pW1FREQ6Hg1gslvrM6XTicAzt3VNPyrZ582ZKSkqYOnUqkHy0gsPh+ETc9zNc9yND1VB8VuHHH3/MI488wnPPPcfpp58OQGNjI36/PzWOECLVfGfixImdmuRUVFSk7kXoL+FwmNra2tR7RVGwbZu0tLSjxjIYcXZYvnx5p+NSbW1tqpkWHFyfubm55Ofnd9omBjJO6H49HW3YuHHjCAQCne7b7O+4n376aTZt2sQLL7xAfn5+p+UeepLcsW4HI8be/G4GI84Oy5cv75Tk2bZ9RI94Qgjcbne/Hwu62g8N1rY5tM9KBkBPnw8lhODee+/lZz/7GXPnzh2MUHukJ+WZPHkyhYWFvP766wC89tprlJSUMGHChEGJuad6Urbh8j0dqiflevDBB1m7di0fffQRH330EWeccQZPP/00n/vc5wYr7B7pSdmys7O5+OKLee655wDYunUrdXV1qZ3jUNWTso0fP56KigoOHDgAwM6dO4lEIsOmI4/uDNf9yFA11J5VmEgk+NGPfsTTTz/d6eTn73//e6p7X8uyWLJkCRdeeCEAl19+OS+99BKWZdHc3Mw777zDFVdc0a9x7tmzh69//eu0trYC8MorrzB69GhuueUW3nrrLfx+P6Zp8tJLL3HllVcOWpwdysrKOq3PP/zhDzzxxBMIIdA0jZdffrnT+uzolrqiooLNmzfz6U9/ekDi7Fj+8a7DzMxMzjvvPP76178CySZVgUCAs88+u19i3LlzJ6+99hrPPPMMmZmZnYY9+OCD/OUvfwEgFArxv//7v1x44YUDHiP07nczGHF22LNnT6ftVFEU7rzzztT+vrGxkXfeeYf58+f367HgaPuhwdo2FSGEOOFSDXNr167lkUceIZFIMHbsWB5//HEKCwtpamripptu4vXXX2fz5s189atfPeKq35NPPpnq7Wio6Ko8tm2nygLJH8T9999PMBikoKCAhx9+eFhcIT5W2YbT93Sonnxnh/r617/OnXfeOeSbHkLPyhYMBvl//+//UVVVRWZmJj/4wQ84//zzBznyY+tJ2V5++WVeeOEFbNvG4/Fw9913p3oZGqpaW1u5/vrrgYM31TqdTp5//vlPxH5kqDrasWgwvP4JTV73AAAgAElEQVT66/zoRz+iuLi40+cvvvgiTz31FOvWrcPhcDB79mx+8pOfkJWVhWEYPPDAA6xbtw6n08kNN9yQ6v2tP/3lL3/h5ZdfRlEURo4cyc9+9jMmTZrECy+8wF//+leEEJx77rn85Cc/weVyDVqcAJ/97Gf5wQ9+wAUXXAAk9333338/e/bsQVEUFixYwPe+9z08Hg/RaJR7772XPXv24PV6ueeee/pl39Hd7/2dd9457nXY2NjID3/4Q+rr68nMzOT+++9nzpw5/RLj3LlzeffddzvVMBUXF7N48WJqa2v56U9/Sn19PQ6Hg6uuuorbbrsNRVH6Jcbu4ly8eDF/+MMfjvt3M9BxPv/883i9XubNm8f27ds73Te0a9cufv7znxMMBnG5XNxwww18+ctfBvrvWNDdfujNN98c8G1TJk2SJEmSJEmSJEndOOmb50mSJEmSJEmSJHVHJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEmSJEmSJEmS1A2ZNEmSJEmSJEmSJHVDJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEmSJEmSJEmS1A2ZNEmSJEmSJEmSJHVDJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEmSJEmSJEmS1A2ZNEmSJEmSJEmSJHVDJk2SJEmSJEmSJEndkEmTJEmSJEmSJElSN2TSJEn95OKLL2bx4sU9Gvfee+/lrrvu6ueIJEmSJOkgeZySpJ6TSZMkSZIkSZIkSVI3ZNIkSZIkSZIkSZLUDZk0SdIJ2Lt3L9/85jeZN28eZ511Frfccgt1dXVHjHfvvfdyzz338Itf/IJ58+Zxxhln8Nhjj2Hbdqfx/vznP3Peeecxe/Zsfv7znyOEAEDXdR599FEWLFjAGWecwRVXXMHbb7+dmq6trY277rorNe8vfvGLrFmzpn8LL0mSJA158jglSX1DJk2SdAK+853vUFpayqpVq1i2bBm2bfPAAw90Oe6KFSsYMWIEq1atYvHixbzyyiv861//Sg3fsGED6enpLFu2jD/+8Y+89NJLqQPKc889x9KlS/mf//kfNm7cyI033sj3vvc9GhoaAHjqqaeIxWK8//77rF+/ni996Uv84Ac/wDTNfl8HkiRJ0tAlj1OS1Ddk0iRJJ+Af//gHP/7xj/F4PGRmZnLppZeybdu2LsfNycnhpptuwuPxMGfOHObPn8/777+fGp6Xl8f111+Px+PhU5/6FAUFBezbtw+Am266iX/961+MHj0ah8PB1VdfjWEYlJWVARAOh3G5XHg8HlwuF9dddx0rV67E5XL1/0qQJEmShix5nJKkviG3VEk6ARs3buT3v/89+/btQ9d1bNvG4/F0Oe7EiRM7vS8pKWHdunWp98XFxZ2G+3w+NE0DkgebRx99lNWrVxMOh1EUBSA1/JZbbuH222/nggsu4LzzzuPiiy9m0aJF8mAkSZJ0kpPHKUnqG7KmSZJ6qaqqijvuuIP58+ezYsUKtm/fftQmDwCWZXV6L4RIHVSATq8Pd88991BbW8vf/vY3tm/fzpYtWzoNnzFjBu+99x6/+tWvKCgo4JFHHuH6668/YpmSJEnSyUMepySp78ikSZJ6adeuXdi2za233kpmZibAUZs8ANTW1qZumAU4cOAAo0eP7tGytmzZwjXXXMPYsWNRFIWtW7d2Gh4OhwG44IILuO+++3jllVfYvHlzqlmEJEmSdPKRxylJ6jsyaZKkXiotLcWyLLZs2UI8HufVV1+lvLwcVVUJBoNHjB8IBHj++efRdZ2NGzeycuVKLrvssh4va+vWrRiGwY4dO1i8eDFZWVk0NTUBcM011/Cb3/yGeDyObdts3boVr9fLmDFj+rTMkiRJ0vAhj1OS1HdkQ1JJ6qWZM2fyrW99izvuuANFUbjqqqv4/e9/z9e+9jUuu+yyI7ppPfvss2lqauKCCy7AMAy+9rWvceWVV/ZoWQ888AD3338/Z511FtOnT+eRRx7hb3/7G08++STp6en89re/5eGHH+b8888HYMKECTz99NPk5eX1ebklSZKk4UEepySp7yji0HpYSZL6xb333ksgEOBPf/rTYIciSZIkSUeQxylJ6p5snidJkiRJkiRJktQNmTRJkiRJkiRJkiR1QzbPkyRJkiRJkiRJ6oasaZIkSZIkSZIkSeqGTJokSZIkSZIkSZK6Mey6HG9piQx2CJIkSVIvFRZmDXYI/e5Ej1OZmV6iUa2Pouk/Ms6+JePsWzLOvnUyxXm045SsaZIkSZKkIcTlcg52CD0i4+xbMs6+JePsWzJOmTRJkiRJkiRJkiR1SyZN0rBn2zqqug/ZEeTQoMUMYoGhX4UvSZIkSVLviaiBsE6ecy+ZNEnDmhAWlZU3s7f8i7S0LB7scE56ibDO2/+1gzef2kZjRWiww5EkqQd000Y1rMEOQ5IGhG7p7AhsJ27GBjuUYU2YNnZtFFEfHexQBoxMmqRhLRxZSTyxDUVx0dzy39h2YrBDOqmVr21Gi5s4nAo7P6gb7HAkSeqBZeWtrKjwD8qyG8Iqlj38r1TvC1ew1b95sMOQeqBVa6Ep0UBttGawQxnWbDOOKdoQUfO4phNRA3GM1ijxxC4Sib0nEl6/kEmTNKyFgu/idOYxftxvse0Y0ej6wQ7ppFa/O8CoSdlMv6gYf22MWFA205OkviCEwLDswQ6jV0TMwG6MH/F5IK6zrS5MWfPwv1JdHa2kVWvpcphpH99J5VAU0Np4v/5dIka4V9M3JRoJaoE+jqp3Opry2xxM1i1bdJu8hxIGcV3Wxh4qHF1FTBz/hQK7Ntrl/iA13DbQtP2o2r4hdyFcJk3SsCWEIBrbQFbmOWRkzEVRfESiq3s8fWNjA+vWfUwicfQf78lMW/Y+iVf/hjB7dsCPhzTCLSqjp+RQNCUHgNZq+YgASeoL5S0xPtjbinmciZN9jHs9jzW8L9g1UURAO+K+0453US25j1Ettc+XnUiU0dz8+lHvebVtg3h8O6bZ1ufLBtAsjRWNH7A/Wn3McW1b8M7uZipa+6bZmGWbaFbfXLhqVZMJYZvWu/W0I7CNjf6eXdQUQiBE/18gUA55/f7eFt7f23XSC7CmOsCqfT2rjTXNALreuaVF3IxRF2mioqX77zaYMFK/8U2tG1jfsiY1zBIWUeP4jqn9W4t78Dvq23vKDyanljW0ziFk0iQNW4ZRj2m2kJFxBg6Hl8yMM4lG1xx7QkBVVV5//R+sX7+aDz54t58jHX6MbVuJ/PRHxP7r1yRe/VuPpmmuTO7cRk3KJntUGm6vk5aa4X8FWZKGgpaYDkBU6/nV7n2tMZaWtRDTE+hHOXmuC/Z9otIVIQTvlrWwtzlKWDXY1xrD5Uietpq2oD5ex0dNKwnpwT5drqpVdTvcsoJo+gEi0bWdPjfNAEL0voZod3AnqxpXpBLB5kTjMaex2k88K5qi3Z6E2sKmIV5/zPlt9G/gw6YVmGbghK/YOxRn+7ItzNYE9nF09nO8J9ThyHLC4eXHNU0y0erZcgRHjhfRTMqaon2SZESia4jFtwFQ6Y+xtjrA6uaP+L/Kj9nXGktdJOiI27KS340tBGurA2w6kLwfOKC3EW6v2bNsk82tG1nbshpb2AjDQiS63z4jqsl7e1poigxAi49DOoMQCfOEkiihm9D+PciaJknqI7HYFgDSM85I/k+fhaZVYVnHPlGvqNiDpmmMGzeB6up9RCK9a3LwSaW++W+UjAxcM2ehvvo3hH3sq37BxjhOl0L2yDQcDoWCsZmypkmSTpBp2Qgh8DiTCUaiMYbddmSiY9qCQFzv9FnHVe2VjStZ1bSiy/kfq6ZJqCbW3iCii6ZJ0VgMy9K7mOpIHedU1W1xVlcFUrHZwsSytFSyFDX67kJLVaSSsnAtlp1cP8fSUTsQaHqdcMMqgqGlPVpOV7U59fE6dFvDoSS/t67Ws90Yx244WPMgRPKEXjTGEc1HP1msiuxjV3AHLYnmbuOKJEKgWUSiawiFl2OanZvH7WqM8M7uzvMQqpn6riNGnGX179GUaOxUDrUuhDhK8yohbGy78zbRVZISTBhHPZm3bRVbJIcJSyDaOympiVaztrlzaxLd0ljZuJzQzlrEYccbf1SjIXzwtxKPb0fXDyavhzabrAupqKZNTO/bppTlzTGCCSNZlvbV0BAKYdsGqmERiJTj97+PZcWJ6FESVjg1/qHWtKwmZCR/IwKBXRHGqgqhaTVH1uAKAyGMVFnqQkffloQQ2HaCRGLvidUWtf++RMzAro5gl/X+4oddGUa0JmNWDbNHndTE4zuJ9PCi+YkY8KTJMAx+8YtfMHXqVBobkxvvhg0bmDVrFosWLUr9vfjiiwMdmjTMJBK7URQfPu9EANLSpgGgqse+eXDv3t3k5RVw7rkLAKit3d9/gQ4zwrLQP/oQ9znn4fvs57BbmrHK9xxzunCLStYIH472q8f5xRmEW1VMY3jehyFJg8WOGcmTDyF4f28ru5uiKO2Niayghmg68iRoY22QdfuDqSvlbVobtmg/2Ygb6KEayhv30XZYYoVfTZ2UdkWEdLAEItx5unBrnH8sfYvdle+lPquJ7iegtaFaKsvq3yOiHlm7YgW1VNIXT1SSSOwgGt+eOmFTFIUNLeu6vUlfxOPYra0H35s2kZoIpmoiDBu7NoLQLSojFbRoIVbvV1JNryKRj4lGN2BayQtlYdXsON/DtpNxiVYVDiuvLQQVLTFMWyBMG9Ow2XwgRFQzKQ/twa6LYQc1AnG904m6sJPr1rKPTAZFQEMEk8sRQqBuaSavMYEtDNpa38I0jzzxFJZNvKoVNAtDHHlynYq3IYbdFMduPRjL4SeVtYHO29E2/0Za9lZTtXsHVdE6/tVaTYthsCOwLVXTpFoJPgitoEav7XK5sdhGQuH3O8fcRdK0tjrAlvYaFSFMTPPI3lYNUydRGcSuSH5X5eG9RM0IIT2IMGxE1KBNb8OwdfYbtYQiOnF/IrUtfVzpZ1vdwQuimn6AWHwzup7cFprat08hDFyiDoeIYZg9Txx00z6u5q1aSEPEDbbXbqQlsIoVFX5W7kvGoqplrGn4kMroZizbOqKWU7WO/M1r7CfWuAldP9Dp82DoPYKh98DSsW2L7kKMR7cRCi9H1fZhGMeuDRW6hTBsDMum026j46pIHxzvBYCRnN+qyhgrKvzUBhJHrGvDsqnyxxFC4I/UoOoBTCuMbR/9d3GiXP0256O4/fbbOe200zp9FolEmDt3LosXyy6jpZ5TtUp83gko7TvztLRTgWQylZEx56jTmaZBU1MDs2fPJS8vn7S0NOrrDzB9+ukDEvdQZ1XsRQQDeM49H8/cswDQ13yMa+qp3U4XbklQUJqZep8zKg0EhJsT5Bdn9GvMkvRJYVlRWiu341BPobnUYL3/I2rUXGblzwY46glQQ6gNvTmA5fOhZlhsNjfQoKUx0jMeIhq2o5H3Q6soyDiLL58+Izkv08YO6oioijI6o33+Jrpeh9c7DoAP2j5ggl7CBEfyolSb5sepOImF25Oz6MGAysMHL67oWi3Lajdz+fgbceA8eOIcO3gyGFcrASe2nXx8REeCETKChIwgJRmlCAQOpfP1XX31RyBsvJcsBMCsDOPfF8a1N8SYmfnJ3rwykidOgQQoqoErI3kyZxpB6qMOcnwtZPjms2pzPWOKHUwZYUMXJ/cdana2Ut4SxZ42gklBkzbTpNklaI5oFI+CncEE3rCCpQRQUHDlgKG3EI4sR9NasUUcw5iJyzUCcKC019xEzAhlzbuZlj6NrHoVo62VXZkbidUVcpqnjOlTzknGbZu4HC7QbLDBblUR+TZCmARDS/F5J5GWdgoiZqBkuFPJWE/Uh1Tiukl18ANqVR8uCons0hGlcwlZNgVuJ4atY5lRIlqyZqrJbGZ81EDJdANg2AaGrWOYrV0uw7Y1HIqny2G7m9/Crx6gKPciCnwjU59vrFqGf/8kLh2Tj/OQ8Te0ruPC6NlgCdwTkss3hcGalgi0RFg4uwilwAemTdzfimHk4Xa7U9Mn1F2YpgeXKxchBLvqy1FEEJdoo9qfS0HmuG7XV3lLlLpQjIRuMyYnnVnFOZ2Gt0Y08tKPLKutWQhTh1wob+04sU9uc6reiN2UTNYT7u2EI+4jpk8RAl3UY5OAqImla+BNDooaUWKmSobLR6TyPdRwNq2OmYiAhpnmxO07eNovVBOtphwl1wMZbuJmjARBcjy5QPIiSJ43jzRnFmurA8yZbEGFH4/i5n1DJa66mJ/eUbhkjZWht+Iik8NZRpzmpmfxpBWRyyWdhkU1E6/LgdvpwPargECI5D1nHfuNXY0RDNtmYsHBc4nNdS3Uh1WyvKNZf8BJbppgjnMNab7TgDFHX38nYMBrmu644w7uvvvuTp9FIhGysrIGOhRpmNO0fXh9k1Lv3e5CXK4CEomybqdrbm7Ctm1Gjy5CURSKikpoaJDdY3cwdu0EwH36TBz5BTinTMXYuKHbaUzdIh7UyS5MS32WMyr5OtxNMxNJkjozrSBv+j9kyYH1rGpaRZu5n4DexP7meuz6GAJI2OoRN4RXxjZywN5DY7iej/cvRzcFqh2hPL4WIaA85CJo+qlNbMW225tFJUx0YSAO6VwikdhNLL6TuNaQ/EBApV6FhY1pxVjf+C4bWtfhaK/5OlqaYbR3rBCNrgNSrXc6sYUCliCuaSzbt5RgZAcKSrKXMgFb/JtY1vAeMSOGEMkOG4Qw0HSVrQdq2ROoJBoPo2nJ2hTbFgcDEhBKmDQEFPSwjtZWjd2mYtXH2dOgsKnc5MOdH2IEQ4QOuTffH9NY3+I5Il4tZoINoiZ5v9H2lhihQAI7omMJFcOOETYbSSR2Y9sJHIk2TC15XDHNIDYCy4oTDL1LdN8q7OpkDchHiTWsaVrJ2rq/YIkEAasBAbj9Tagfb6W+roUVlbWsaPyAxnhDp7M2NbiTaPu9WKq2D39zC0t2NNDW2rnp3Br/bhLtTQiFEKhaNYbRgi0srLjGtuoA5S3JmjBDBFDFXkyxHw5Znfuj1ajaPuKJ3QgEBs1YNQdrcTa2rmN180dHfMdCCMxdbSQCO1H16iM3AqAyUk55IMT21nI2+Teg2yYxU6U+rAAWpi2O6KjDNJNJR0ciqQsVW6gIYRONhbFsEyOgUhXfzD83v465N8DeGieBWHsTyPbaiIqaEPv2x1M1uaapoWkNVDRu5kAwjG3bJOIVqXuUACpb42wOrGJffAM1wRDrm9eTUDXMcAh/pIX6sMaBw5vEHbY9Hbz4kXxhqXqnUTpqPZPjGhh6U2oephkiIXZTG2tiWb2XD/YlaI0mv9+1TR/yUXMFHbdN2WYCYQv8+xt4d201jYfUgtJ+f6TQk7//ta0b2dC6jnhiF8Gdb7Fn9ybW7l1BqCFKuC3B/+x+i1XRD9uDEGDabGtLJndCtQiHVxFr6XxvYOr7qm3ACrZhGEd2tvFRZRvr9rc3PWxOUBXRWN7gxbLB0JuIxbYCYJjJDkJEew3rtrZt7AuXo7Xvv4IJBSEsDu1Ioq8NeE3T7Nmzj/gsEolQXV3NV7/6Vfx+P2eeeSY/+tGPZCIlHZVlRTGMplTTvA4+76Rj3vjb2Jg8GRg1KnklYvToMVRWlpNIxElLS+9u0pOCWbYbJScXx+giIJk8qW+9jrAsFKezy2nCLckdcXahL/VZZr4Ph0sh1EVTIkmSju5AzGZvtIrsWhcgELYgGK4jXZmMLQSr42twtGTw6TGXAcmbxAFM22BLeCtOj872mkoyvOMBENjodvLKra43sKHyQwLG6VyalsZGbTUB281kzsO2bZY1fkwgFiE9LcJnx12CKYIIO4Pn97zFxNGNaGYclGwiRpiwHSRL5HZdiLhBdkYWVtRI3qQP2MLAFjoCB4YdI6Qmm//ts3eiZLipsRT0vftp0MOMTm8g5tTIyJ7NmoYPmeLIICszgqK4aQjspiHeyu46LyUZhVjxBFOU0zBdBxAiH1OYCFtnf1scy7KJxwxMs4Z4cCIf+NvIMXPQY1HUdAWTPHS7vemjFWHdvhXEDYWEpaSul9fH69gfjwMuKqMqReluAobJnrYmZuRkE4tupkUL4XKAEDoJdQ8ZaiVevQ6RMQHCOiK3/XRLCAytOdUkUiF5s7tqOWmOBrDjbsgBp5pAcWZQVt1MXUaUEY4QLXV7KDQP7mP3RLfhTJtIjicDIQzWt+6mLjyaTc0RLlI82MKm2WwmyzJoUoOMTx+JXRYknrEVJdtDRdzAaIuQrRRSVDwDEBjUkczMxnTZrE6zddx2C3Grgc3qaxRFL8Th8BE79EGxQmDVRbAKPSCctFk7iERtsnzh9sEH5+uPhmmKmuxuEviCAS46ZTQbA+WYhkkoMh3V2kvcttH8+zDUIG7fSLBhm7qdM3yzsWwbU49Trq0nQ5yLkyzWhiIkhImwpwBQF4xTZddStVOhaoxF+uRGPO7k8a2hOgSGAe0VO6Ixxj6tjI8iIULs5IqMBYxkM0JkJzdr3cKRiIMtMBwazVoV5dVNVMdhlrOM5jEqkI1p2BhRlZ2RlTh0hTHaIdnuobm9BZYh2FNfRVV0FEYXVxcisXL2NjcxtsBJlq8Auz1pqIwktynD0qgLx8lytJD78TbKnVHWqE5mdMzAslnRsh0cCi0NuYy0FBSPg1hQp3F/OoVTjGQyIAS2DWpbBaADTrRYLRF9E4TGEveY7NLKKPGUgFKCiJkEcBA2LLKbExhmiJBhkZN2RBEQansi00XzPSEEkZiOVZa8566mvdObsMrB5zllAArE41vQjSbyci8HYWFZMcoaD793WqG/DHjS1JXS0lIWLFjATTfdhMfj4Yc//CGPPvoojz322GCHJg1RqlYJgNfXOWnyescTCL6JECLV/OFwTU31ZGfnkp6eTJBGjCgEwO9vpaRkbD9GPTyYZbtxTTs1tf5cM06Hf76KVVWJa/KULqeJtCQTo+yRB/eWDqdC9og0QrKmSeoDuq7z1FNPsXTpUizLYtmyZTz77LN8+tOfZsKECYMdXp9J3btEhLEbDpAoSCNekk9YtBJXQow1zidYU0t2enGqBUrICIEwiZr7aYhnUuj0gYCEGcThzOl0L4AwLGobNDJHANluLGEQdWjoegDdcAKCAyEFVzxBKG81eqyatthMmk0/Tp9NvebHaZbT5vXTYDcyOpKBsAVK+72M2IBpJ5uRGQa7zT3kOqOM811KOLgRl1BoBtS4hqlmdyq71aZSk/EhzUqImmCYi7JHEFHW4YuPJ+bIJSvNiapWIhIWtm3RHFUZnSZACHY43qXO3sf4li2IZj/BaBEwCkcUFNOgxl3Jn/dbaHobRXoaubaCw3TRKhowA+lQmoFOI7ZIXhgK6DqxhEFGlsbu4E4qzAQTHDMxRBsfNDYjRAF+5x526CG8MS9xM3lSHLVCOGwniabRkBnADmtgCRKaTVPEIPuQbpqXNQSpd+joLsHKlkbymgW24cRhOlMn1Ypt02LUkpaoRlNbwDcrNb0Z06ly1TF7xBRC0W0cSOQQFWCZWcSdcZrMZtqsAJg6tfEWvMYoHIaOHTVxZnswRfvJqWhBi22mNLNjqYd0Ja1b2IaN7UuemBq2hZNkkt5gNtBQ/SoZ+e3N4QV4WmuxoxGanSG2tGlUqxkUBNzU4GSS00k0HOKjuoMdQHy0r5y6kAOwsC0/tp2HaVuogQgVbTVE8bI+6GOeU8VMtOEuGEGiMYiuuNG8Gi9uf42YegAnIYpsjTQFdofrwBHD1d5C0RCtbI68Q7M1GqtNYxLJe8MwRer35gAsYdKiJgg1Q8wTxbTjbGmoIjNnD9VmDoqI0LIlh1N2B8nLaSZQPAq/XkWTup+8sMlebxNqs0mhLx07IkiYfojp2IbgQHvlnybi7PFvIsM7DVxg1gn2KTp+M0Z5WEUIiymHPlbAttjRtJ+4rlDbHKLUbKEmms6uijZERj4xYVAfX0m4rRY70IBh+skMm9QU1TBCZCJwE22sIE6UdCuDfbVlxIMebNtDKNTACFvHSDhI1PipDyRodjaRluMllmgmoBWRqdRgOEcDY9FNnea4g/3uGmxXUSrEj5sCXFKUyY5glEZVJbewhQyPjbfJi+JzonnriYpN7eU5ZF8U0hCqhWiII3xOghkO4pZI9qppQXmNjUEbgjiWfRp5DRvw2BvRRsyCXLDtMJoRZHPgDYqcuQRNP2v8Ya4qnEl/GRJJ0/z585k/f37q/S233MLNN988iBFJQ52mJpMmn3dSp8+93onYdhTTbMXtLjxiOiEEjY0NnZKjgoIRgEyaAISuY+2vwnPe+anP3DOS9yCau3YcNWkKt6goDsjM93b6PGdUGs1VsmdC6cR1tD54+umnueeeewAYP348P/3pT1myZMkgR9d3VEujWY+jGgWETIu8qEpcCEza0O042yKlBGIqvuo6xHSBHdAwtCgCEOgc0FsZwRhE3KDVoaOn6UxyHFJDrNtYhoYRbmVZQ5QDRi11CQ+B2BtMF3ngTV7FNg0/VihZ12KINkzTxjLBrybItOrZGvTjcWb//+y9e7BlWV3n+Vlr7ed53nvuI2/efFRmvSiqSrAUpG1RINBmBiMc7Q4fM4FGKNMaPUaMITqKGkaLtiPDxASBE6FGC9MxQzRqB2A0AiKo1DjIQ2koqEqqKrPynTfv8zz32c/1mj/OrSzSSlqeJUp+IjIyzj577bv3Ofus/fut3+/3/TH1goPL76HduxNjZsjdxd/Ka8nIFUztZdZmFU+uxFzQF7iX51P6GeKwCOOGAERWEQ1zTGOw/TneeT43lSyLEX1jqeQG29dPk8+2uEtv4ZtFaKAxltKM+EhxlV5rl9UmZfPckHN6m2TzX9K+qliqz8H9gtpdY4pH6wPqokvbVMwDzbzewWf3UXc156ZPkdR9zo5mLMmAO9YWK+SVfzp97ToO2Klj8KjM++oAACAASURBVKAO2jw6DqC1sIq3phcJS0k8bkHT4zPqAJ84njqQBKbmO1TFY9MdPmV+l6Zcx8gJW+V12mIZL+xiwc9KnBQIAY0tMGZMVi/qmow7jOgc2p4iM1yaTvnT8ZTL1jA3T3FP7fk4IywWnEMgmFaCJ6aKJ8eP0Z4X3PvYecTJk4t0Tz+nHhW3LqCfNdRcwZAj5SLKpd3n9SsqDKY3Rrs2ewc1cvy3rAjLpV6JYcq03EC4Po3Q5Bn8zRMfhu4/Xwh2oGn0wQ3BEmEF9RWDHwgM+/TThlm5yVPjbVpG8RejDpu7BbV4gh5LfGfXM5ttMTGa9RQa77g+F+yaPTaCPVzTJfAxxpdMJ208IBoBxqGzKwSiixALkY8yz9jiPFO9xwuj43BYkrTFR3keoF1D5B071y5zdBSTihnjzXW28k8vjvm0L9BYvLUQSCr/JM6USJKFtDhzpn6RnjbJxhStJ5k3l1nJEkgW36llip9uAAG7O+ew+9t020fJxzO8bZjVR3h8vgNOcsGeR+PBSOys4LreZaAbMHB9vMd6Agdlh73qgKh7mRU5YMVZPjLJMb7kRJZQBjW9gzEX/XnG7gF82PD/7dcYPSetnuJkNIV4ISFurKEykoNsiJtfoXMYij3IPssnMOwefggT/0mkj/jcU20K/ykefDDC+YLMNnTcM6lzemsPJRYHMTsVH/UldUfhaZAK5pnDs/hdmWqEcjPICsZeMzJj3LikaeYEKmUcDcnsFO30f1X44ivl68Jp2tnZIQxDVlZWgMUkGgRfF6d2m69TqvoCQsRE0c3FfnFyCoC6vnRLpynLZhRFzsbGM+NarTZp2mI4/MKN7b5RsNeugrWo089E8OTmMUR/CX3mMZLv+4Fbjpvtl3QGCSq4uUyyfyTl8meGNKUhSm//pm/z5fPII4/wF3+xUOVSh2mi3/3d382b3/zmf8jT+qozridczAR11WJXHGGZITgNTNlml0L/NUd1jd2fYi9fYnhpwvbwEqdkwudEw1CWzA4bUls3xpUBeXRYu3DY1+W8fYLNM+dJ2+u43kLhLWPOE6NHsVkf0b8DHzjsoYFzcT5lUrU5khjQGl1GpPM+844mco4PXf8wq3sf4cnhEZxY5mTXcmlLQQBTFxFWu9gmgpVn5gdVFvi0Q8Ghqlxt8Y0lKEp6uqQ3kpg7BAezkANXE2M5LR0te525Njxtvnz2/DZni7MEqkAaxWrQQrsxadHnoLrKqnfsxDkVglB30MKDNVytOrSbDuvtjL24Bud58tw1ojMx4/AJ/IlNRoVgp9zhydFFcmuxwlAYh5MlZ+1fARLhkptVvZyjp/dp3CmKcUKY7+JVht1skQ9r9JLkU5drDlSfVsui7B5UYyoZYylx5DifYyXsiglP1Y/RqTTTkeSTrX12m4+yFQ5Y0RoHdGP40PgyYZni1OI8Lh5cZm25DcbhC4toBFZAXEsqXyD2RzwlLKKsgJChuwwomLQ53pWEQuOFo9EFF6clczHkZDq58Xz9fFSpST/8ET539Cg67LNuHbWqUFaxPjzJtcxQlxcZrhs2rmdkUUb8wm+nuTBHqyFbZp9JWBCECUkeYUQBYYz2lonPML5mND/PdrFELbs8mp9HsEdX1ZydXcPn4FTFtI6wpaYZ1cz7U7LE0/IGh2PcGJbyBOcdq1WPzl7NKB6RSIf2B+ybEbtmjJMZXjoqDwfNjFApetaS5AkpIZXeoxx6ihmcCi12ssslBQ6DOYy+3YgQin0KN0ZTEHMc7a6A3qKKF3budrmDtTGRdmTjDLFWgZ3SyjPGXGZ7eheT0WXa1rKTXwcfEEyWmQaCYm5Y8g6rDbkqCX1CYyusc7iyJB41RN02n+ocsGI2GYp9Ej8lJWKJAYV1TO0V4nqVO4I2o2qHbe3QicPXFuECorIHcsTlqs2xUlL6Ra0z3nH37HGu2SOLe+aQa7mijh0ex8WZorUMW+UudZUxO9/nxTE8Vg3pKs9R6ZjbazTiLHu6w5N1w53+PlxjOZPvUYaf5luTO24SgNGjbXS9i0ngkWFEODzHqC6RxhBd3+L68ZQ6DmiabfLyCnF47Iuec78Uvi6smHe+85089thj/PZv/zZKKd7+9rfz8pe//B/6tG7zdUxdnSeOT91QznuaOF6k6VT1BTqdFz9r3O7uop5pY+PoTdtXVlZvO02AvbiI4AWf5zQJIQjufwBz5rEvOG62X91Uz/Q0T6frzfZLVk/erlG8zZdPFEUcHBywurp6Y9t4PP6Cabi34mMf+xhvetObKIqCzc1Nfuu3fouNjY0b73/605/ml37pl24ac/XqVd797neTZRmvfe1rOXr0mbnjNa95Da95zWu+gqt6NlIo8AK70I1DZCXd639LugKXIs315gKr8xWK+QmubM2YHGyR6IDPNTWTYIOyfZYzs4x134GwwtVbPFlaJBDHbQQgnGe7uMqLdq7SeSAFBnigupxhs3vpbCwz2zxgZOZMa0AsTMF57kj8kO6kxdhaTtsOKpScCzSfcTNElRC5gnZ4gDTLZGTMRcbUadp+idWxwxqDUhnR9lPckz/AmdMtNB5pPa2iICgbTs8n4J7PfidAdQNWXZ+AFhfDbTp2Rm3HFL6Lt56iqah0QlvNcHh2yhnreomGGXWTYwAtUmZ6F6FG9GNPq7obbRQ5jo4K2OvBU7MpuzshppmCCtgrFcm0y0dHj3Gp3mdPAv4cndAwii7giRaRCxsjPi+dDQ+h03gsINgvJZV3bDUB1+R/IZxmaKdQBFhXs1xaQufQgVsUuOABy9Vwl3BmENdXOKKWMVFM7Rx7NiEqSz4WZKxLSNUVeuVd+MKxLguup5a90vEZBEfiBk+D3sqY23XuEAZvDbb4BFU4wGUd6jjHMEMSUNHmupGsiprGzRgP/5iJTpBSczLXSApc0sI6R2M1kQqJpiVnhgICjV7KEDagDgX5FPpOsDZtGNuMjesNTGu2OnOm1/6AU+NvZ9S6yMXwIkETQAjCC0Q1w48mPGILZs5h3DGmWC7aISOjqWVBWzmMl7xv+69QdQvZmTOrY5bGlu7uARljpp0WrXhx36bNlKJeJQBaWlE+CX+zqnj+ygGbPmTHXKZ2U5TQqEZyUVylsZbaDVjaHhH5k5xo93lyaRtBiyDfBwlHRwoO12Z3xQ5HkYepZGP+Zl9xemkCRIuIZDlkWPeo5BmETGmsQDTXCasNMiNpi21k7WhlBVm9x2NPnMA4wUQPebQSWHOK+w9vMVPmzJptXlhGnOlEbDczSllT6326fgqlpz0uqFJFKTwTtUtHT9kxCWk0wzaajeE+dTDgYL9BJxrfA+U1TkA6XsK7EuI95maVv9xuce+ypZ4PCU2F3q9Y717igLtuRHW0E4y0QeAopjHTRhGbEcyuMammRJsjtLBkecnj4mEen+esR1BGT1CaAbVtYx3syQskzDBoosNo9NRJrnOGIL/MkayNH3iaS58iTktMavFAdDClWe4yzB2VK7g55+Wrx3PqNB0cHNz0gPnRH/1RlFK87W1vY3t7m+/93u9FSsk3f/M38wu/8AvP5and5h8ZVX2B9mFT288nDNaRskVdX7qxzVtL/ecfxDz5OFvrqwRBwMrKzVGolZU1zpz5DM45pPzG7flsLl0EKVEnbpZcDR94kOJjf81bL15hlrb5oUGP49EiPcYax3xUcfyB5Wcd72lHarZf3XaabvMV8eM//uN8//d/P6985SsZj8e86U1v4kMf+hA/9VM/9UWNL4qC173udbz1rW/lgQce4G1vexu/9mu/xu/93u/d2Oehhx7iAx/4wI3Xn/nMZ/iN3/gN7r33Xh5++OHnpDWGdg0l+xi/gfOeZFbRb68wHUwPHal6kQ6kHOcOPPvZUxxzyyBaxM0qgS6gDWm9TCcuaJIDRDlGAF29Qp1qDI7ufISX9zA4WGbaN/QkGGfRtcZNYbx8wEf2n2Q7ayEag/AttmeOKDV4YcFKvJcM1R7TUmDzChsULDmBFTmFDJnLGd2JY4oiUCN61V3oYAchK5JaUTeauhgzCy2hMbSbisjOCWqPDwy2bJBlh9W4RTd3fC7aoVYzBrpElyXB44bNzGHDdRLZYvfUY+zuCpK6j3IWVSeLvkqyojWuOCY8dbckDAqS2oCt0VHDPFe868IO92QKX1fU3mCcIK1S9vMpJA6EoDCOOPQU7plnRGdWc8Qss2nP8KSEoogQxqD1lMr1OLAxVhh05ek2KfXqnFIrdHzAsbzHN11ZAlPy2D1QXd8iiiJsp0UwugPNo4TNLrTvYaJrgizmyHRIOBrxyKkZdeC4vmNhNsL7mGWXoFzCfrDPzkHIpDWmUnOG5S4d1zBu38HMzBi1CwaznLnuEsQLuWyPo8ETOZgKQ+AsvtIMifEktGZ7BJllyACXaexSQJqs0p8eI9HXSaZdAhHgE8E500ZLgyoUykY4B0s7GcvThunRb0INEw70Wap6BIHBI2mVC0dbTg3eZayFd9ByEUNijg23cdGcpn8XxgQsyYzUJrjiGHGR0s4UemMbKxyh1lQ48jLjVCFZDlrkToPTeJkirME4cIXlWtSw1gSYIKPw+/R0jLQBgW4jumOEysn8jL2qRrUqtMlwDqbs0G7uY1bPqK0GJDkZQx8imfLXZUbMJk/MnyL0q2wUJ8mLZZ7yHjFPuctlLDUpj0QdRBlzPLjKQS7pmQKHIfMZH2n+BuZTlsSIUK6jCocwnmXTJpqNmIVzmihmqVxlXKWopEGnjv1RhEcDjsRkjMMLNH6P5z8+Ztqp+Mwde7zwQod23bC1kjHNK2RpEF0YFLAXSKz2ON9wl72Dqe3weHvCyORUfkI42SbamVGFI7y9iyYvUc1lmuQoBZ5x1UIhCIUlqS/SAsJmTlDuY+SMrNXio5MxmTxL6I5iKktQjYmyPbTzVJGFw4hp4zLG2nBO9MilY0+WLJctylyztL9HyxRcfWCVmAZZN0xHLfbDHsYYvlZe03PqNK2urt70QPp8fvM3f/O5PJXb/CPG2hytt0nif/Ws94QQxPEp6kMFPe8c83/3b6n//IMQhmy//GWs9Jeepa2ysrKKMYbZbMLS0uA5uIqvT+zFC4t0vPjmGWfrnvtYBj76t/+FT93/Av5oNOVtpzZ5sJUwH9Z4x01y40/TWopRgWC2f1sM4jZfGT/0Qz/Efffdx5/92Z/xPd/zPbRaLd7ylrdw//33//2DgY9//OOcOHGCBx5YaEr9yI/8CG9+85uZz+d0Os/uKwKL59LrX/96hBDPWWuMg3ybl+Qhw1JgmpqlYBXp2szLKZM4od1kCKtpnMY2cwIP82ZEoBJoPGWwxwtH99LVId35BLsZ0/MCHRrWbA/vHTM7YVOcAC+JrUI6TeUE01oQ2op6PmeSzflUNSWtAo5PNilEQVqNqWQb69QiKuAFVpRE85LCOgYHIwLVoRh4lE6I2CFxFSUBRTUir+5kNU455jpY6zkbTJhlHerukOVyRqhrCgGhk0gLjW1ARnRHJap2bMwU5aDBVw6lY45eyRBlSbbSIcCx11icFRx4iyFcyHwDHTPg/klF168z9VuUiac1z3FyIbeczxVR7BmbnMAvFtp0Yxb/W0F3OqeKE2atJzmQm2gRkR5Gl6wPiFzFxkFCXV0mFQ+wGpxglAbsmoRJy3IqD+lVAXVLc05VGC8oJ22SCiozQHjH8qQh9Dm2dLT3U05mir2kSxlofBOiimVcb594uEetFd5JxkVMq8gwjaGrYirnaWkNwtKbrdKZx9S9ixTW463EB46RGLMVVUhzjGgqcG1IC023SQhDmIqKodIsO0MtQ9JGgIxovFo4f2WB1AI1P00vWmdqrrPm2szLBqMCdgKFUZq9uubkDKJ8g0hVRNUcr07SeI3JJcYe4JoRMt1F+SPkosQ2+5xvWiw1EtXTQMjxkSeeOtKgIhEFSi6zJpe5sznOVlnRPSgIuw3V4AqmPs5cbWO9x1rLaq5Z8lOuyGoRt20agloilME7y3iSY4N9hBAUwqKY02nWSJo+vd0pItzGhgtZDJdfpJ3vsGvvAHEEi6KqCyZNhbAtTNbj+Z1rXHQxcwej+eOEcpdeYGjPL2BERWVjAus4XbVJs4IrYkpHpoROs+Ln1K5iLOPDOrOayIFyCUui4oFzmiadkqxtEPuEudJIpaAuiWyNbiR7IuBkNkapkJN1wNpWzCeXLdJE9MwSdjaiKWOEd0inFiqHzoPrwXBA0IZ+tsQkt+iogiChtpotd4aloqYIAgJrOLOUceBHHN3PyYd/y8AUlPcmgCInwXo4mI8IgTUR0vaLVFIBGNdg/aKRcVqfoVXU2CLC+g0gJTENjfVUxZicCZUXdOyIUO5Se41GMyiepDN+lERu0LBOqUuMb0MIwdYxsi3Nyr1fm/n5G3dJ/Tb/aKmfVs77O3LjTxPHp29Emqr3/DH1n3+Q1r/+N/Tf/xeMV1YYnH2S8g//401jBoNFys9oNPy7h/uGwl66SHDqZiWymbX8TLqME4J/N9vjT+89yZJS/NzVXUrnbjhEt0rPk1LQXU2Y7VXPeu82t/lS2N3d5ciRI/zYj/0YP/3TP80P/uAPsrKywu7u7hc1/tKlS5w4ceLG63a7zdLSEleuXLnl/g8//DBxHPOiF70IuLk1xqte9Sp++Zd/mSz7u1K3XzmqntOxHcDSoo0JThCVmsZLwiaiVRg0ntob5uMPEpUjlkcF8axAmoZvHa+CyeiPPIHx9Oo5SSNJDmsuMu1Y2w1oeQl4oqLBOoOxe+zjsMLhrSaWQ0JvEWWXhgalG5w1aAfloekgnAJ3mIjmHdJ5pHdUo2W6xYC4XuakPsVdvk+vauFKg84drpY01YDGQ1V4vuOxS6xM9rEYjNDgPVIbWjONq/pUTcRITTilPUM9xTf3s65eQkf0Md4hjaU715y8upiLrG8WaUPe024i+maZDm28i5DzAcu7Oco4pJNILVi1GaoRDPJNUt/Ceo+0Nb6p8GXBXeev8bJLOffnEbb+FJvXLhDnGcpErNs2Ye0Rssum+ue06CNcTGICUhvTmxV478A52vMZe1VDbiCkxlcdrFUIJzk+9Ivmvi7n1MgSmZI78y7aPZP6F86XEAYEjrqCl15JODk6ims0xouF8l/eZcYehpJj0zb37h6jVazTnZxgOh8j5x7lAlTjuXd0lPhqlzsenfNtlwe88ILkzkcCRtk6l/OIuSsYVIa7dgaY8T3UWHTlmdaCxhvyocWMDT1T0GoyZD1hpCtU3ZAUNbb2WNfQ0YrAHkWg8DicdvR3h3TGFc2sxI1z9l2G14b+tT3MdHE9gbEIXVPInMZbOmVIrxQcn69ydGfOxvUJ3awhLg2FN2TN5yhlBTiCOkWNUppMszSKEc5DVWMNTGqBsxnd0Q71+eu0/TaFCMlEQyZmBKbCG0VuAyon0N6hCsPpx+csT2YI3+AchONl+pM17HyJcOQY7QRUxeL7SuYND+YPcXy4gZgavIfQWkwdgJMoo+mYPokrqaw7FJXztGyOdx5XZ0zDMV54urrEAUHdIPI5xjvcjaTQhUSgw+OMwDjHkegeTs06LI0E9xwEPJits+LuAqPpjUqkrimCfZZHNd47nGtjnMBXAXIyoLIBvu5Q1Y6oDOhOHb5so5pFaq9BI7xj5M+TS81QPd0XzGO94Ji5yv07j9K7vsNqcYXQlbjDai/nHZWdgDBYXdDYmssoPhudo8HRFiOimeLyzDPyKWbWI2uGOO8pfE1pD9Ccx6sK6QxaW2IDy8Uq7aaF1JaqeKaB9lebr4uaptvc5kvhabnxJLnrlu/H8Skmk/dh5gcU//534aGHeGp9idkH/zMeOLK+QfEffp/4lf8CdeQIAMvLi+jSaDTkzjtvrRD3Tx2vNfbaFaLvetlN2//P3RFbYYy74zSdz36co5/c5/fWXsL31Xfyn0YzXrRfgoDu6rOdJlhEoIZX58/FJdzmnzAve9nLnlW/JKWk0+nwiU/cuqHi51OWJfHfiaDGcUxRFLfc/61vfetNKq5fSmuMTicmCG7d0+zvw2uL1J5aFqzKFYRraJcOdT3hBWGP1eEUowKGscSagNO5w1oFViJxRCLA2gDnPC1dgd/jWpxz/1XPqjhAtNqEeY7THhcCztEfZUx6FusFhVw4QWgQePq6h3QBvWYdZefkzmK9Yf2gYtNK4tiQk3N2AxwOaR3FbpsosEjdIXEpoY1Z9glbeKJwTstqKiRRVbNiDNI7WnPLTLaxzBYOmPe8IDvGJdHGFor93hOY+d3cae9jWR5dOBjCI5VnUNRYCWll0QjW/TpjN0buzUlVf5GSpTwKT9VopAzAg3CSqAi4//qI/dU2ibeEvoX2FuUdcS5Qeo4VlihO6dZTorDEmQnpcM5a0iKqOuAEukkRBMQoHNCIhXJdqCuKuE1iDG2xxD2zmMtBTiUdobbkwoDvIew9uEYgpcN5h0SjFJSRo8HQyRtQFl/1icMhybBheVZihaPb9gRSk9SSWeBoVEYlKyZ6wHoVsVIucdwOiKZ72H6B6ENAgKwlR4YtdH0C6wdYVSPkBv3Csdua086mBHaZdNIwCwR7g5zYrDBqDD0sa3VBaEui2hLgEQR0JgWOhiiSi+aprkJ5i3PgREBYW9qBZY3j7M7O0w0FzmUkrQalQbiQ1twjDQwmEcerTUZW4Sg5ojfQMqFVZYhGENcGLUES0Wli2q4k8AntVk3WHGPqEpZsBXqDxJTUvouzMJUVhZyi4pxe03BncMBkJJhJyUB4kmLIkhEUSkE9I2waelnE3EN3XoBN8YFDmIQXT57HBVmy5wtKrRBjx2zZcbdZpls6OrOQeWrpHVg2ckskV3A9jREgvESiCVyNDAKccxhjuMc+n/7OhKfSBhuKQ4fKLRT46oIycsDiN4+J8N7QNhEnzSbLgaSxCoHjEmvMK0GqBmAta/YIdWGQZh8TNqRVSS4CGrWYO9R8BY9AOENaWrp1TRgI1tb2CMM2UdnH2woESCxCicMKvB6qiSilomkE/bKgsz9HY5l0FbHb5XoFNlk4d7lraJldvB5T+BbWB4TpGCGvsaLHOLfEOG7TtqtYxsS6xTgYs1atYFzNXmeH6emC9NycpdkUSkNSloS9HqAZ5XOWlr42PTe/LKfpjW98I69+9at5wQu+dlrot7nNF6KqziNERBTdWh0lORSDyP7qDzHzjL8ZpIzf+5+oVzZg/Tgnf+wnqB/+MOU7/h86P/u/AIsi816vz3B48Jxdx9cb9tqVhXLeqWciePva8K7xjH+53KN7apX6ox8n/dSH+Dbxe/zsQ/8r/3fwXdyzb2n3I4Lo1kZidy3lyqMjTGO/4D63uc3fxxNPPHHT6+l0yrve9S7a7fYXNb7ValHX9U3bqqq65fidnR3Onj3Ld37nd97Y9qW0xpjP61tu/2LYurSLMo68dZ2itQHThJzjYCYMZnNKf4JRcIygcsx8jCkVpe2QuhYuUTweSk5VGcYVVGic9dxRHMMUUx5Jukx1h5fnEyLjmfcgnud894HmshozW+3j/SrKTtncrthZ63G8XMXYFSbMCAJY2y7olzmB6YEKKJsB/eYktTsPGNo2425/P1MfM8xb7CUVR9GLYnjnccIyUzWqSAhwuBIqL2nkQ9hmFeInwB5gDx3k4zONluCdxDnNUnb0sDnownxp4g6Js+S+IXMx3mpCCwO7xBllKQPFXbpBe4/wHgF4s1j19hKiusEYxcAIIjUhEA7lBUED0jhKWTAXAV3TJSwkK6VA1JJNTrGaLy3EOryhviEG4TE4PCGICFSLSie8wA+4rHqMak0U1FRe4J2kVhG16rNUavCCORHJ4aq8dwIT15h6SGoVVldgNIiUb995BCHvBy8QIkBZT8+EaHmOuI7pTwWBcWgf0cs8KvIEwpKUfdrqNLPE0LUhoZNUSIwXJI1GBgmJMSRmTi5D+rrhiFtlvzlKPrmGmASktFl1R3G+ABry0FLTQtiUdU6zU5wlTQTSgfSWtblmJJeJgx67safvYqSrCWuF94Jpa8ZgNyCxDgPIUGHLgA5LhN4wMDBi4eR6uZDKCKwndp5awZpbQ+SnGbpd+u4kpXZ0dErhI7oeMtvHS0WLmlajibXDuBIjLZOooms1myLgnvkAaCMmMyIZEdHiwF5GCQV6eVFj2JRY57EenA9InGfJtBjahildvqUesMMW1DX9mUdagY8d3dySuhZK1zS6TagzQgthVbCSxrSbFfaLbaK4T2AiVs0DsF3Sk9e5dCqiLZYxTYZrQVR64rxHJCosAatFSBrGNPEMoY4xl20qVTBxG3jj6DJFOliSLyRqNGP7URIeAAxdl1IzJ60HlBZmJdw9OyCPPE6s4aWkR0XlYpazgkDHeNMlLEKk1RiTMpaS0xcr7FKbWBiwUMkIbQTbpkAWhgORIZVg3nfUTU6Up+jxKlUgkNaTxBm5Oo+bp6zVI5ppzujIPrWaU/kxcd0BN6VuBvhiH514+t6wvntAHVdU0hBlAe2oR97MmUxuvRj2xbK2dutU7C/LaRJC8PM///MYY3j1q1/Nq1/96i86r/w2t/lKqesLh8p5t7594/gUAPmjH2D7vrsZH+zyip/8OT722UcY7u5w/synuOtVr6Z673to/cS/RvYXHe0Hg5Vv6PS8Wynn/cFoivHwP3Ycveav2W1Cdl/1PlYe+WV+5vH/g//rW17Azo5kbf0WLcAPeTptLzuoWN784gzc29zm76Pf7/MTP/ET/MAP/AA//MM//Pfuf+edd/Inf/InN16PRiOm0yl33HHHs/Z9+OGH+Y7v+I4b0ubw3LXG8EgwISfG6yjXEGIBibABgfOM1RGixpF3skWNAOrwQW5Ia0mmQHuF8g7TCE6V65ShIvIrCDegU0tq3wcRM/GWjitohzEr1Z3Mi7uZSsELyi5TfY06aTOYlUzVFKsEUrVYGxkiVtCBQ9lFfxrvOtxTD8BJjshj9LKCHqs8qgAAIABJREFUyMWMoj65jhBigneQNpLSWXTToeUtfTPnkXidwq6TmnWUUdwTZqzGU7bqRV+dRZ6dQwiPNAqpPCqy2DpEIhBIlAgItcEahbzaRpsAT0VgLIGERnnwDqkFMhJ4BPYwHQoPTvRwwiDxRN7S0uDmGcoO6KsWbXEv1i+j7Zj7Rp7dwFG2ns/QWjZcifcG6f3Trg4A6tAx67JK6Q5IGgcpyEDikBwrNvC+YZFKZkkajYs9Q9nFE3DSDTFuGaUzlscNSodMxYS6tsRynbYqkL5kHneICPBeskyHQeWZjdYYNEs48bTwoTi8QwT4hFCnGBVwoKYcLdbpySN4H2JZoSccpwrBLN5BeokVnhqJcJLNS8/jSBNhrKZcNpSEhA60iHksWMNaxT8rDliaHyeNTuB9jAkNdSTpuxYlkmULYWPBe8bBCtru0dHrLOt1MunBCeqkxVinHHMpVkIRg45jVuwyYz8nMClLwTpRqybTVwFBr4gZuwjhPWm1yuZs8Vyf1UsYNyVu4Mh8iohaOBxx7VmeCXwkkOUK3eke65lgFmqsDaHRrFaee4LnU/k+lQyoA4UMI2yt2AvaTIkY2AJlPJuuz3GTUNU9VoqcWkywzQpCThAGVoKSu0m4XoXgPUHVJRQeExqkq1GNYd1s0MRtnFOAIBfHKXxIx5W0aeNVRGM0oYaIZVyxh04C5vRI64a+d1Sqi8BhfBcrAP9MdF56CHREZFeIRYK0ioQ+QS5RRvJUHGNtQR2mxM0YERgIHatbCcI2BLkDPKGVEDiUHFEYA1jKIOOu6YDVVp91fUCa5UjZx+4qilZKMDUIalZ2DctxQSsXqErRMpKjIQTjFl54jlsNlcCaiwxmI6rUM9t0uHlIJSQjOcfUKdKEdH3NsSZnHJzGCMFys0Sc5+zORl/1efnGZ/jlDPrFX/xFPvjBD/I7v/M7pGnK61//el71qlfxlre8hfPnz3+1z/E2t7mJqrpA8gXqmQCi6CQgqcQ251uKzftfyLEHHmJa5CyHhjMf+mOCBzrQ1NQffEaYZDBYYTIZYa39gsf+p4y5eKicd3LR4Ld2jj8azXhpJFn6y1+n1Z8AUD52jvnL/zeSashPbb+HZlTTvUU909M8Izt+u67pNl8+u7u7N/3b3t7mwx/+MMPhF7fQ8ZKXvISdnR0++clPAvD2t7+dV7ziFbRaz07jeOKJJ7jrrpvTf9/5znfyK7/yKzRNg7X2a9YaQ7uUJF9BWoFlYTx5IgTpIhJsG6QHvMMIMIFCCocDtFJE1rBHh5lIMNF9dPIOsZWo0KG8IzKOxmQUznM+7HNRriC8IxZtOkDiFU2gSP19rI4j9sOCcTA9TMPxLAUBAQ7lwRMivaMdrnBydoKHxqsIZ6nwNBKUjFAupqs17TwkLWqKsscRMyZAEx4dkvRz2v7kIhIlPH1R0KjTxCKhkRFlqBhEu6RBSdBAX+XIbo5AILwjUSmp6hMKx6rNuHtygJOePJVEASgLgXFcbY5SmITUDxA4PB6cp5YBabSB8xJhIdCCoC0YRAesJHP6ssMgPIJDcEEM0PGdPBRESByNUDjh8NIjPXRERkqO8w7nF7Um0sMgPA4CvGiIdMNd0yXSwpPJgIqAxsZYEWGlwquFozOUbQSeVh5gTEzjAecPmxg7TgYBK2GJwNMmJtUAHo9HeYeTYBRouTCaGyUpoxA8pE3Cku0hPYRW4+M2Vgi0Mrggol14vuXgQV4w/CZW6/6hiIIjtSnKOoT3KGOIfEmPjFpG7C5dYdLaJmzA0SV2AS0iPJI6DBZxOOFIjEB5v3DGZEQlUrq+y7o5SWTvoBMeYZJCKHKiQqCcpkoVQgWExtOnQzJfxooecbSKQOCFJGgcJ8wmwjs2txuSXJBUjgaF9IpQgxcWJxuEgOW5Ja0sogYxcoj8JNvubq7qVaJakmgIRQgCnBBsB12eWn4eTdLCRm1KESzS66wnNI7U1xgbUKDImj6BPU0WLLEXrVCoFrVboS0W0v+FC2gkxL6Nd4JAezKl0PEqUoKQjliDcGC9QtUdPBIlAyLjQIBwArxgv+wQGU9gDXdkHrGc4/oN+zIhkTknoi2kd0hACUOqDSfEnbQ5hhZdpA2JfIJzEmU9iY9Iwz5RvIZfTDTkJQy9x/g5VfeAZv06Va+m7IQol+Ntxsw2HJQNdekIC4mqNa1ZRjwfEk8PYFzQn16nN7xOezrB6hnKTrjam9CZjekUE4qlmmJlRhEryjSkSnukNmZgCpaSjPXrc1af3KJ7TtK6FNCeF/SqOUf8Bj2WSWu9qOubfvVrTZ/mK1omu+++++h2u8RxzDve8Q7e8Y538KEPfYj19XXe8IY33FR0e5vbfDWwtkDr6wTRD/C7H7nIk3s5//23HuPFJxarSlIKpIwIqy758ZLmiuabXvZK6v/8b2j083ix/wQfdz3OfPw93Leiaf7o90n+u+9DRC0Gg1Wcc+y+/T+Q/On7iL/r5bT+p//5S+oD84+Nx8uaf7u1Rywl//tT54iPHUfECwfonRcvM7OOU598L8dn7+Wx3r3YtOHau/+I9oO/wYuOfyc/eOUjvMf+t7Q/TzmvMY7Ae9xHd3AHFa1vWUNImO3dVtC7zZfP0zVN/rAxiJSS9fV1Xve6131R45Mk4c1vfjO//uu/TlmWnDx5kje+8Y3s7u7y2te+lve+97039t3Z2eG+++67afxP/uRP8oY3vOFr3hpjVlQkPkAszCTwCo2jLduU1hK6GSZdwguJ8lCrEOmgFeQM1JQtayn8BrtBSugCMA6lKwIRAAIjG0pREllJbI8BEusbukGLU2KKR+B9Cs7zLU3A2aQm9wmNECy5hNPxaaayIOM0zntMYHAioi0KIuuIy0Uk5dCmQwlo2xTpDATr7JoYlCCSDbkMkfOcWPe4O64Z+oSa56GweCXBCZCLkvdEH6EElAkAhRGL+gglIjweEca0ppJex4CaUxCDaoFeCF7ErsU0tqwoz3Le5UBapI8RQCkDSkK6QjNWLcpkg+e3rkKxhhGORoGIC8LUkTQZR0RJlzk5PRrkDUMqUAWRgAvLM7QLcVWHTltSlJKhhyLcoYgNvjiCRaKwXE8qlF9lIgPClRlu1kGFNY0RKAQ9emwFPWyY0fWWlfmMRHi2owfpNwFdkWGrLkUaIIOG/brAKIlgGRBIDBvhGplYpCfiOzi/huY60oPDAgovF0Y6OISTtKqAWse0/SbO1gshA+XpqjFj3SawllU5Y1mNOKgHqLDBiwZPSNlSHBMJXRJ2bYX1HdzhpyStxUpBFSukkXTcgFQtMUomrBYri0irFyQuRfkESQHCYb3EC00RjLGAFw6ERwVtIg11FHCnrSjtjOsuJo5SWNzNJI2gHfQZSIh9TVfOWCJgbZIzGkjUPGFWr4NYoW0DHAeLb0co5GHaZS0UbU6zFmzTjdrs+ApvW3Trgp4oqIkYux4V4jACHOAQbCeeOhDcWS3sCBk4Ci0YYDF4UtdFUFL6o6CXEeS0q4B5KCCIEKFHNCVOOhofgFJYHJExjIwgcQXIFvJQGiK3CVZI+uE+tYiwFgIMwgdUYYBxmpapua42MGGf43pG6ANquYiqS+HYkLtI4Rn5Dg7Jp0+u0kQB37Z/ESUlJo0grZBTQeFblDRsRUu0enPGSUN/ukpoTmH9nMsbnjLpkTanOFI/ybXehKvH1vHOslfsoSvH5jVNFBl0qwEtacIUG/bIEkFrolndThZRM6Mw8RpZt0MTC7bjkHYjKFCkXlHgwHuq6itLzfuv8WU5TaPRiPe///28973v5ezZs7ziFa/gV3/1V3npS19KGIa8733v42d+5md497vf/dU+39t8g/O0lPgfPXYP7/jMVXpJwCfeNeJ/KBKOE/Dgdx/jnn92BLUrMJuC9tKA5332V/j4uAfA0df8Pvf9vx/mzF++n7tffATzgfOk//5fUf3UuxkMFmk3ux98P6eCgPIP/yPqnueR/Iv/5h/ser+WaOf5uas7FM5jveHg3DmOP2+h03n27OP8wfaITneZn20/ippLjv3I77O387sc+cTH+OMP/AlL3/xK0qcWhuZ2R7A0r/n1PzvLxy+NeWPc4aW1hFTh33ORteX4tuz4bb4i/m5N05fDS17yEt7znvc8a/vnO0zATb2bniaKouekNYa3HoQEHEiB6Ba4eQuLxARrIA2REkTWoVVAhxk2Shioxe/riNBccxFOghZ+oc7mA7QPQAjyeEzWKknqGJvsYlSC1TGNkijnMU3GmpqB7aJURCAMWi4cmNg4NEvAAcI5hLAop2hHOb6teCIZY4oHWa9iMhmSihxFCR6skjSBJPABwisEnrJeByr6AsCznM5RWhK5ABskGBexJ/usiK1D0/UwzUw68tgjsGAkSgJK4khoWkeIRI33KbEQ+GDOyEZAgEhK4mSOzo6iw5qWT6m9YxyFSCyWkvL/Z+/Ngzy7qjvPz13e8ltzz8rapCoJ7SVRIJAlJAxajBAG1A4CIvCATWNPw5ixJzzYjfEW9rjdXhiH3QG4h54GY8AMNMZmMYuxxCIwwiwCCQntJdWeS+XyW99yt/nj/TKrSlWSQC4oi65vRIYqn96799zz7nt5zjvnfE8MDRxz1nMQT0cPSEWKqefUBUgsNtQJUhBEYF+iCMpwUT/BRQV1ZxHSEyLLQB3BuwQpUrKyQ011CXoW4QOTImYgB6h6D2UcXgUKKRFRgfAB4xMm9CTKtbkXGNaGpDksJhaRZiipKGLDOSzTM5cwNujzQPMIg2iRYdzGqoLIJmzSi7SUoUcMEjQlY1KwJDVNO8SYVaSeJgAPR1M0QslEZpD1DJ8rYl3gbcALmNQBbwTNqMfATCGVoCu2EMIMKlrCC8EDajtFlBA7GEYZa6LLlBnHCA/BI0Llx0ZI6klCjQZjNmMtqrMlWmRM5uyTNSRVaqAyIwIEITC6it7ler0JMDT1FFmkUE6S08AmEUURH+PKCkg9AzHEF56YAhCM6Sab0838w8SjdEyHotjEFPGIxgP6GhCbEX5149lMXIz1Uyi/l0ldsjfUabPGwEcgQYYqCqSExEuJQdMRKTI4HIYkSol1yWb7CJIY6es0dJXZ4oMCIXCugcESMFVdHAIrFEuySU6TaTEAn9MxKzws+6AmiT3URJXJIQlIchZTB2TEwwQTQQgxHo8r17CmIESwVj/CWCFIMsh9ROQcUjg8ghhPpHPK0GQY5wQJw1aX8bUGyjYqZ8xYcCU+GMZcwVpNMUwVtq8JcpKg1yDKiYeBblogBluYWDnA/s2baHRKWguBw5NNlusGVfeUwRFlZ+Fdyv6JjEECae5p+jWEC5Q0GKaSXuzptyKmnET5Bk4aojzBa0kIHln88Gqnn5LTdN111/G85z2P1772tVx33XXUasfXM/z0T/80H/3oR0+JgGdwBsciLx6mWzT527slN100w4VHlnj3UPCx+pBfH5/k25/ah7AF4UAfdaXj/PEV9NpD3DvxFmZUnfrUNi7+qZdz35dv4e7Nl3OheoThnXtp3/6fMFf8DoRA79zzGP/d/8TaL/4c2fv/iuSGFyF+DBve3tLts7+0vPPsOUJeMLN4mPteeB0Xrq3wqa98kf3P/Sl+NVlj8/w/kV368zCxg/YLrqX/pS9wfpTy0btWeVG4AIDbpeUdH/kuC72Ct2wXXLNf8j6R8fyfmmHnp4ecF0vuOpOedwZPASdzYB6LN77xjT8CSX5EMIrlNAevCDJgdMVUNbAJhajh4lXq3Isv6wybbVoyo65yFhlDBIkPLfwoOh4EZJGj5oYUIoHQQMUGVZZkIaId+qB75CbgpGStVuLlkJaJQDVIgKGIyNHIIEf1MZA2Hav5o/ggoZYySWCvnyWzKb3Y0iyazMgjLEaWFI8ceDIpWFQNpI/RoSq2sWYMyEmiDKE0UjriRKLyBEXEYgqenDxoQI5IliVNv0YeOYxp09Y9ElFgg6AR70CL6qt0HjQTqsNaMqBjp2h4g8ejrKWXZIhQY7tYZiWkBO3wKDKhccIyaQ1FqCGHfVxakseBoRriwhh5zdEPc9RChyAtTnUorGYQp0RB4EaOXc+m6CJH2gyoWlpIHwgiUC8FEzoh0gVdBEqIdR+AmsxR5RpFUaPTaBN0TDARAtAYPBIVqjQ8KwR98wwackBDDnmEZfqJxQaHq60S5S2MlSyqGos+ZdZOMRWtYpWmoMZkkYFPCcGTyYr/bkCTbeIQM3I/97S2QFkjIwZTrUvIgFI5Mhmi0y4r1CmMYLa3g5X0MFvUFoqyR14L5KrEe1E5SqqqF8r1kCA0252nlJ5VIfHaomSBGI7YLX0gLdZwNCikwEhJLiMatqAAPBIjFdJbVBThhaWuNKUH5QRFeg4eibaKuPR0W55ARpsOxju8czidEFSb2MfERYQTCQRNwJApi0ky4ugQeTGHVZImfVRtgdU8o106GjIhKQ8g6kMK1wRviNSQWZfQSCYpsj57G4bZsETHt4hkgyRMM1f0mKZNVzkmfYc6OY5AoTzBC0KQDNMAqqAdJlhya0S+Sy40TlTxZ5xnRdVIcxjWQaWGEo2zCgh0dAFOgwiUGmo2UGqP9w6XKiKrkeUiKavsT9vYss6qSiijih5+WRtmco/VmgERuciRyrJfCwaNAh1k1V4g7pLLjE4+QV2kpFZSqgZWFSw3PdlZ++j7jEw1WBx/mO1uhSwb0nErlC4jNAqMj7h/xiE1hLggrq/iQp+hjpnuJazWJa24BFmnLyVZlqJDTiYNq60xIpOgPDgUTmqU6hBl/8Yox2+77Tb27t3LpZdeCsBgMODBBx9k9+7dG+e85z3vOTUSnsEZHIMi38Pth6+idJCs3YF+8Hwu3HonXx+cz5/X/pY373wF89/6b7ReaJESJs+/i6Vtv83hr61x+eW7ENkKTXOE86++jvtu+xznPOe5dB+4k5nvvp+weA7Nfp/+hRcioojaq19D/w9/H3v3XUSX7X5y4Z5m+Nhajy2R5ppmHXdoP50Q+OT4DMtf+2cemdqMF4Kfe/R9oCJWLvlF+stLtJ91OQjBFSriYNTkjoWrAGh9/AAHGfK7197PVV/fRtbI+ajJ+NvPLfHhc7cx+YAk7xic9Sj94+eAnsEPD3v37j3dIvxI0TFd+s0mUQbKOUogdpZ6NsATIUSJlJ7UFzRVj24aUR84+trS1SVTZcqkTVkNljwashJ12eYy2qFk3reYYY00lBxRbVKXMaW2kESag67LWK9LpjyrkaVbz7kwUzgiJJJWniJkVd+R6gbg6UUFkYq4ry7IVnNqYRVVc7isYDDmsFLQE7CnVTI+HGezXmLBzsIohWkg3SiBSrAaGwa+S1Jl7xH1BYUQCEoKpyiFJHWr9F2dtdiQu5zIt0mFpXApicyZTcY5EsCHwICIJpIgFI2oy7gxrIg6dZ/RSR3Sb2KrazPuByyJPrnU9JWlVJ5AQjnYgrYrjA8zmmkLQ8ALD7pG3+QQAjV3BB9yhEsIIcEHiet7ummN8XiAKnpkYQwpDMgqgqGinLihkMUMXpXH3HlP6QrqwuOFwcoEQoGWgR16iYeooi1aCJyUxN4QqAOSlIJAYFDrEfkGMnJI68lrXfZhqVsNycNExtIfTpBLgyLhLLWVJIq5R6RYqdmpFljyEySiIBcxq3GfTUSkOSzJBbra0DZVlGh/MsRqS8NG+GSFVlbQUoq5cpnMCVbrCisECLDSspQOCFIAMfUwZCUJDIucuq9XtTY+EFILA8kUK3ScRps1UiFpFY5nRAl9OaArIsrIkwVLrnMyBNIZBAJT0fUxqxfoq4ihncPLFI2miWZed8GXZKXFuwZFpNk22M5EKVn0KQjNtFqgW1MQa6wUWBtxuLGCJBBJ0AhqiSKRgok4xYaCpUbF7tgWq9RWUmK9Rjy5is6WUVlBO4YDjTqtUFI3NfAFsYiQ2uFkzIHE0RMFE0bSSFKEHJKFAePCEYkt+LxHEBG+yqfE2w6gcFJWgTRZ4iVo0WQL0/R4EDEigTfSoWNLLCyrDBFDKGMN3lTX5h2cK8l1gVMxA+HokJORU0aCzMa4cjO10KcTSgodaAlIbUEn1ZQhIg4loRhSdylbhzV66T7KyNOLmyTzDTZ1ShbadVZNQaOwlINJ0iyjPugh2ETdDBBRiR9bI86nOSJLnBoyMewSBU9905AjNLgv2gIhZltYwPiIRyYls0cMKs3ARUSATRcoHock7FTgKY38kY98hL/5m7/h05/+NGmakuc5b3nLW3jlK1/5uBSsZ3AGpwJ5sYc7jzyP6UbBOfedg9/W5b/84ut4/Ye/xf2LV/LxC97Bf5i4E7OiiactyzsjjvhNhLDKxUufYPo9FcvW82rncr/Yzp6ZcS78l5x8rUb2hQ8wvvtq1kYlTPHzXwBRRHHbF3/snKYV67i9n/EfZiaQQlCOmPO+s2krg9VDLJ1/GT9hFph96OM8MnMjH/jwR/HeU683eMn5F+K+9AXmrnkLnWBoq3lCZxM/u0VxwdJdJMPnol92Nm+rr/KGjzzK/zN/H78aLmZaCfrLBWObHp9p7wzO4LE4WR+kY/He9773RyPIjwompxbq5JFmNl8BB4mDupplUrXYI/chZCAWpqLhFhGliuiOUpcaeoxW5FlRh5GlJXaeyMdYaZEqAyRBSERURTdEgDhKyFSfneUECSmH04xNTJEow9m0GIZVtrv76BQFstmgI2JWoiHjjDMuzmaP2UcqVglC0zYRWkqCyxFCIiUMhOZcJsFkeLlAM5rBe8Oj8hCbwmZKvcpQZ6ihQVrBhGrh4z5pnDCdr9Dq5iylCmEymtQpnccYSyfOaVuQSISsU8qCxdgCnjqL4CWIKlXHEXBqQBY8hQpEosBmjoKMEFfGdqECkkAVzRpnPK3hgmBFgqWDwrGqBLY/JEYT5Y6asGRpinLzFGVC0IKadRALBIKtYoos7dAPq+ASlA9IGWjKZfqqXxFg4IjkgLIUlCqhiSDRfQIpshgSpKHqvCPQaCIEjZ7F1Uukb5FkA+bHwAWoGUU/Bh08CAcBhtqy020jLYbsdfMY2WJcr6HdOHEAb1MuSEvadhLrHuVgXaPjFqEcELkCF5U0Q51VfYSOcozR4CI/w1KwWCTBlyQSXNkcbeJQNaaNKod4vtmjkI7ISyLjEUmJDRoEaG9IvWfWtVjLFhA+YjLMUYgezSSl6QIhCMpQklFSlyXbbYtBVGCEoodGqhXqeppIlKyyj0QVJMLjohwd+sxSJ9KwIkfpfkjGmKiidz6mJCCCYCpaAFUggyUohx8uk/gZErFGHqecW24lVkOMPEKuAnnwFF5iUAgFQ+FJo5xCenoRiFISRALCU6pA6TwoU6XYlhItM5CSUgZkCCih6EUZkSyglFWWrnU0lSSJH6WrBbKcIXcFmJQk5DSEA8aqQOWIPCQiwshqTZm2TPmKzAP6OKEYqAgZLIRASwzwyRDYgsYyFi8jCgMioUWNllzhuuESqVilWWTIkJJqhxMel62xXJegClpqCAqGHKEWPC5OsGtnszKo0bFDagcmOeQ3M2P7RCstMh/oFwXTPiB8gQAOpzO0ilnwBUEuspZGyODYH7Vp9h1GBUzs6ZitzNMiWs64b/owO4uIZnsAwxYecK7JDwtP2Wn6xCc+QZpWBeNTU1P83d/9Ha94xSvOOE1n8EPFcvcgD6zM8UxbQuL4mdf8JFpp3vyCC/nFD91J1p1AbCnZ90/becbN+5Ei5a57vs64itix90MMd7+BFTnN9HffySXjNe45CGenMUv7z8UsHGHq7B0cXFvFOYtqNIkuv4Lyti8S3vR//FgRQnytPyQAL2hVzGHukYchirDTU9zZbLCqE/5u74fwSP5+cSs763XOvvwK7rr3u3ynWePy++/FzuyD1mZmknsIegUWz2PGvxKxqYY8b5xLxQT/29UZ7/yy5pekYU4rukvZGafpDJ4S+v0+H/jAB9i/fz/eV1/tB4MBt99+O6973etOr3CnEDN5n15cI/gqVWkVj4uatINAuECdOpYePkoJImIpKqnbcYo4R4UANsWEDC0zGpllVtUIOPKyTxhPCF7SUJvRpWBICbHDKMOFcpyGleQy0KBJkJZMKqJBn0uiBJtOgOqReXg0llhXJ3VtfICon5NEE4Bjc95mnMB3/RKqSADPsFmn9IY4SJyzrKR9ajqmFQaMi3GEmGFPmCdW45yVj1EnZqUWMcYabcaYSsd5RM7T1G1i3cKVnqHKqZs1BirCK8GkSbAq4IVABYnXJcKOTJwAURCc2xP0kjpCO9qyy5G0STABH2kGyo/qtixFTdBTgYYPKASxbOBcl81EFFgSE9Ooz6B8SceuoYTDSFDOkylLHcOQiJiUJp4gaqxFktkwxprvjkqzGngBW8M4PrIMQp9NtoY3kmXVJ4k0QyyRFWTKEFd0hcyp7cQSVu0DzA5nqEVTDPKHMXUoo3GmjnRR7GIi72IjQRK1MH6dDh1QmkbPUNYiXBAolTETz+PUDlaFI8t7dHRMImtMhlrF+gcQlwhjCVFKrKYhgO5pVmqaBM+kGEd5TaEDQVgiFyhkC+slAUdcFkiTkciCQA2hPcJ4ElkgwzSJS0hEl7WoYLtXSD3OQA2JnEdaRa4F3kEkLOiAd12k1JSRoGEdBSWJBdEL0CjoNT3bKVFBEvwAYT31MMZi3mGb3k5fW+I6THUiWoWBWDARxyA0/bILCBoDiSgfIk1yXFylWCrpkaHFQAQSYjKfgohwQlALdeqUDCRIL1BYwgbdu6YUgXj9NqBQSQxxQhR1CVlBSxzkiG8TgiGLC8pYYpRjfPwIYnWGcTFDPx2QqZL6oI+PEjAGKRxOWVZqfdpWUc8CtSDpxgojLbiq0bINhlQI5pIGarDE3tRjVETAMS47KC2oDw0yN8zFZ5EZy8GkYMtKlz2NWQYEWqXGOEMeD7AhZrWsURYO148ICPppglSaxATmVI9x0QW/Qn/wEGgTA4rnAAAgAElEQVRBK3jGQ4t+aJLKSc5yOWXo4EOLjiuZCKs4M8PE4YsIpWWx1ic3mo4HaQXtYFD1FVpqgaHZRGa3MggxNdlH6owgJFF4fDbffy2eUp6MMeYEmtYoik5oHHgGZ3Aq4VyXb8+PEZC8zI1z/U/uIK5XfxSfuXWM5+2Y4OH5a+k/0KQ/3ySUCSHsZnW1zUXRd+jd8Od8Ibqe/37HkPean+a5Ew8TguXRi85j+GAHXXNs2ZYQQmBtrSr+jJ93Nf7wIfyhg6dz6acct/cz2kpyca0yzOyeh1Fn7+Diw3s50hpnoljhuXs/wR3uQtr717j8Pe9m0x/9J26++lryZz+HgGDLyrcgSB4VCddF72enTNB5G33N5g0H8yWXbWbbzlu4XR9iNhKsHRqczmWfwdMYv/Zrv8bXv/515ubm+NKXvsTs7Cz79u3jne985+kW7ZRCFIqoCLSyLlA1cV1VJTUGNMSAzXqGHXInqUhphBqeGnksSXOPzPMq9Uf2mELTkiBGLGMIh456CGtANanLFO2qCIuQjoiIThIYxlWtjJCWgTLkqkA4Q6E8UtQ5FHlcWUVvMhWoDTukBuqiTp0GmTBk2rLNb2ZMTBIQTJgGuS6qyIKzaGMJFDQHntg6JIFNYY4J16YTQakUa5EhFDmFDBxKHVNijiRqE3B4HdMSLYT0ZCFjaDoURYeu1JRCEaRHek8pPHhHQFJicASUkahSIILACfCxJhEN6l7QzEqUEQgnMTLQ0QrpoHAZMjckTjNm2rRNDe8tXkAsEyLvKITHC1+RF1gBTuGJiQuPCIY5OcOYaDIu6vR1j4VkiERS8xk1UaMtx4lJSEWKFAGEQDmPLKt0KZEXRET0o4AvLMZ7CinoB4dozVILCVASlxoZQtXLp5fRyAVjPiHzZcV2KARROeTcfAwvBGsqkJgaaXcNmfXpJB5pLd5ZmjQqp2kUsPNKEssIAGMKgkxpuTotOepdhmBNW/pxQIhAo+wy5yXTZU4taMbUeOUw2ogpP42i2kcaiSMgjSMZenxwhKjqm2UQhFG0MJIapSoSCOU9GstsMNRGHHchK6lZSeSazBVtBqLAmQHKlRTOMMCxVW0jLh3aBqQvmPE1WqrJNgoGKiPXhkkxQcu1mEq2Y0VEsC1C0Hg8XkGBgBAQCJYjiRUKCsuYn0aNvEzTD6S5QwaHNgEbBJYqMVWIQB6XlCpQSEfwTabKSZomQQuLRzKQDqlXqY0toPMaE3mKHPZRrkQ7QVO2R0muUBsU6EFOIFBIT3MQaPgGE6GB9KKSW3pmwgRBgdUWmdSIvWM6miMhQSiPUI64DCgD2lqk90TecP9wmkcY566wnXv8Du6z2/mWP5d/8c/gkWyO2V7M2NCR9jXe1Kj1LfFiwVgvZxtLnB0XnCOXOZ9lztLLPIsD7KbDWXqBVrzMRC1hIg7s6CpmTI8d7jAvKL7Hs8M+rsqHjBdjbF+K2b20hYu7E8zlsGOhx3NWY3Z3+yi1BHbAmFoBH4j8xieCU46nFGm64YYbeO1rX8uNN95Iu91mdXWVf/iHf+DlL3/5qZbvDM5gA8PBvdy/+gwawnNdEhF9/Qh24NAvOgshBT/37IyvPtrgk3texHPEAwy62zi4EgGe4uwBn+qeywPfuIULL7yEq6/+JRY/vsrFSw9y+PA4lIbWrkDS+yZwFisry0xNzRDtfjYA5tvfQm3ddlrXf6oQQuD2/pCfaNSqAmTA7XkYf9HFnL33AfRZ5zPpeuAdXw3P4SWv/hnqr/pf6P3WfyT7nd/gOa/5PZYnv8LMwdt5cPtL+RexhTfohxjWoKsE02dXnbTvXbuHt37jzXTTLndMDnnh/GuYf3gvl3KmFcEZ/ODYs2cPn/vc5wD41Kc+xa/+6q/yqle9ij/90z/liiuuOM3SnTpEOUjraTLBmhrQEi1qRhKZgmEMRgaUC4z5FsoIUp0SdVZIlcEKT73M6LUiEiSxPMoGZnTErJ9gQBdVeECgRERUeppFzjCuKLyrZrWBYB3WVYx7joC2niBhW7/JSiMwL1YRQuGcox3PUIiA9BX5RCcJaCeRQuKDpmkrWvBuYrAYVLDEPcNWcRbOlTgtjmvCaU1Oo1CsOVcZ68EijEN4iFwgjWpUXBKKLh0iPF2Z0ZANgvQEK2kOA5FStJwm0nWcd1QFIY66DxSmgLhqtu19jgxFRXThHGm3hEZleMWFR+OQiorWWegqpc5Veo1VxJyX9GyHTBumGWPcNtgzWKalJglUfY2cCATlaZsa82lJKiXaW4SxICQxEWAIwZMQb+ijm1TE4eAZl+MgHIWTqOYWOlIwYXIg0E5m2b3iEaGOE4aWHMPLNsoEMJWOhwFmxBSZPUCURBTB4RwkIWYQVz15tIhJhpbSFyBd1eMnSNCSGTEFAhxgg6fmI5wEF6o1OOGJRi0BrKj2WGQdDd+iicdFkjTsYI2K6TEhYcgQSYwwBic0OliGBLQJoBTgGYws1UgmTPsYZQMSh0cSG48PikJ5igiUmkEIiQ+gjMEGjxYaK6u9bZDEfsRYh6XoL7LSmmAuGSCCxXuBDg7tYhZSQRaNMSVTYq8oZcB4iZUKERzaZuSxRZQCvEeYkoBHuYCwDi8lDRMjhaIsDVIUCCqnc71PGMYggyBA5SCGqg5MhwZrcYeQrHB3NMlz1yCPPNLDtJ9g0gp80sJIj1Qej4GQ0Ak5M3KKVeER1tKQetTkVhLJyrE1wpMomIimyaVgQk0yL1ao9T1WR3hqdGMQQVATCduCoO490y5Cdw8R/JCB6BLSnFC0admk6h0lHZs6PfpNTYpmfjjBAnWEdwSjUWiCtCBm6cYtlswEOlRpp0EpFryiXQi2ZIpm2SeRDq0CW3uObf0emg74JplLKMJ2xtwyLlbEfYd3isAqopajxb8x9ry3vvWtfPzjH+e2225jbW2N8fFxfuEXfoGXvOQlp1q+MziDDRy+8xYeXjuH7QTSX74MvrGI+9oCLtHoa7eyObmNZ88k3LZwFddP3sX3hjOElRnmaoeozc7ztn++j5tntnPttS9CSkn60j9k6vBPcs+3qwLbMHsuc/O3IsTrWVmpGmaqHTsRE5OYb99B+tKbT7MGTg0eLQ0L1nFls0qT8/0+fnGBzk9chQyB2BseqJ/N37duYMvksxh/ZuU4tn7vDxn+xQc49NUug7kr2fW99zC5eh/XzO7kcHgFdaH4asdw1cBSxEN++5tvoRE1+fMr/5L7vrsG85CsCJaGC8zUN51OFZzB0xBSSobD4UaWQ57nbN26lXvuuec0S3ZqIbRHohEBmrTwAkoZyJRnoASlErT7DpVWaVMqL+ibFSai7fhgcDgoLBGMUoMCDkFDtTHGMmaPpq609SQByHVFTy5EVQcRBAQnEaM0SCNAhkBwooqumIBUASXBjOwT5SrHaj2dq1SV8Txnx1HGMIwEda8qp4xAFkFaVsarLD1Iv5HKlKuKzKFBA+er7/NQcSkEQBuPVYJURDTMBEJKOmKZYdqnzQwtC1JWKUkICM5spNUkNFBCkeAQpnIEnRbURI1ExBtWkXXVtSu1gAjVnCp4ELaiTqcSS6BRQjMRz1T9c3yEcwXjuoUDBnEVlUBAFAaIUpIgiYJF2xynxMb4orLrmQgtCpNv5AK18wiTxiACwkIhA5o6HuhLgwCickjT9VHBsWoVkCARG2l5YtSzXQTYlGwFoD60rCXiuJyjad+kzxraeLRcb/TusUqt34bROIGAQNpQ9eWLPCEcHehY/jJPtX988AykInGaoAWxqDP0Q6TxZAokCpMk1EaO17pjGgVBMI4yksRGkmOqcb1Zl4Z1ascgHVXsUiCdJ1Cx7TkCUgSchNW0kj2TsLyzR308JlswVfRoFKVQRFggUjU8gdgrjCiIc4NmFH3Dsy1rMqwnaKGwxtEoLCYKNOIpUtxGNK1RglMBJywi9wyj6iPDep1awLGSsMGiWC8lHamxaivSK3pJtU5tPBbJIBJEzqN8tQfH5CQlHqxlKAQEhXYjTYiA8FV9WUu3UaVFqpgAJEV1j8eXcuq6Ti/2KKFGYgiSUGdan8vcoIsClJzC0mKGMUJegtCUShIIJCImFiXby1mipE0IljWzRh4GpJFlSAPhm2AFm3zCRWJ81Cuski3rCmqZRRkPNIlCgfeWzUslwY/j3JAghqjSEIkeMhZYBA2XIvAMsWjpET/EpLenTDFx8803c/PNPx5G5Bn820ex0sMMDnCwfzWv3rUZHSu4ejMUDnfHEuKsJj33VV7agDvEZbx97N9xU+fbuLLBpRfWGSK4ettX+a75BeQ6fXhjBtG4ktnePTw0O458JGfz7BrjrRrLy0cAEEIQPevZmG9/ixDCj0Vd0zcG1Ve+Kxvr9UwVCcShSLG2dQc3L3yOz04/n7ed++953yW7Nq6Lnvlc1OWafWuWzbsuoXywxtz8P3PeOc/E8koUD7Jkd3DwvjX+P/UOuqbDn17x5+xsncOOqwLd27/NJlHj7V99G//XDf/3j37hZ/C0xste9jJe9KIX8cUvfpErrriCN77xjezcuZMkSU63aKcUha4x7loQLNp5fJB4AoOoak6aFNBJ2XAwtPWI2hyCqk5iGAegAEapt1TNXUUAXfoN2nA4Okahjh6sIjgBaUcWvKDqejo6ZRBVB2s+QhzjNGnrTxhX20A1dCAygUIJamoMS8CJUYQCWRnYoXLwKh1UUQ8loo0xlQFBGLHtAQikCwhRvc/H4ykOiRUmC4c0R2U5GcJIQhECwrEReTgWgqNrFkIwqadHF3tMJE8wngICiSZX601iK4pxLwLSGIgUIlTNN2dMneCqFgxeC+KR4epGbk5AEMvaSP2BumphggS5IRLrHoxR6zqDrWwhSj09cSLl8rH33UtJLhxFfGIaUyRiYtWgIRvHHVc+nPQei8Dojojj5pChapIrHXh8tT9NAFVFIYOzqEhRs5rYlphI0tDtjfWtj39U/kAycrKNFMgggKPyrBv/Yd0DHDmqBEgyQ55Wz0AeQTTytXQWs7RtlolwhEhsGa3lRAQEojRE/uj/9UKi8NRlvWK4LB0+QKnExg5dd5g2dOg84BmMtrV0VI6dYKQhiEY6jlDowqOtgqh9dN5jnlkxIrAAD86DEdVzptd1Vn2YkKpK2azGrZoHD48+WgA0m1sAGCcgZBVNBBDOYU2fTnaIerKTmouAGIgRwhGLSWpSc+zOBIX1JRrJjB7H00YxjhUxIUSjiK0gBOjTxTuPdo48j8FYlK0a9Ua6RkPEXFLX4C34MXp2lSLEGFGwGCuWWzkXFjOVrOTUsjpFvnaSu3hq8JRqmj7zmc9w4403ctlll7Fr1y527drFJZdcwq5du5784jM4g6eARz51B/eKKjf9ygtmNo67q8CMrzG49SsUxR7qhztc3H+QQ+EsRKeFjnJqB2aIFi7jhdu/ztf2LfDoctUt2nc7LP/jAtQ9D22aYH6ljysEdbPCwsJhwvpL5lmX45cW8Qf2n5a1n2p8c5AzqxXb4+rNau76NgCPlDmHS88vHPx7fnnPh3h0fCufdEdfEe7OZfaXEickfxv9Vw5sfiazS99lxWcIYmaiP0OmBV//8vf4/OF/4qX1V7Gz+QygMjrEbJ1JLTh4eMCB3r++UekZ/M+FN73pTbzrXe9Ca81v/uZvctVVVxFFEW9/+9tPt2inFBG1ykCgMnqU8xtf3NfxWINSCQnhiRyFowbuEyE8xnBbn6aKgBw/52RokZThhOPHyfUYuaU73jlZTQWraSDX4YRzT7aeMGKQWx/7WLkC4NQacfnEDhNACH4U8aq+cItwom6UgciEjXmPRU0eX9N9rIQET6bX9T1y7wLExm2cE47RQ1Q+9t4OT1gzgHae9fK09fUeC+FgWbWwdoGofKI+NYZBFBjKEieqpLDHoiEbG/Uy6zjqMJ2oX4dAm0CUHz9WbB7rZFV1WiM/mrh0jDMOQGT8xjlPtKfW4cXj7b1Kt8LaDV314qN6q/z/9esi6lkPmx91+rTxJx1XuaP3s/q9WlsmHEnhNsYfRNXHgaNux5Pj8Z7LqTxBekvzmBodf4xsJ7wHymNkD9UeUDI53pkdyf14r4LqGQMRKvm19Sy7Hja06GYdlnzBkh+y5C1L3nDI5hwwa+wvV6ofs8J+s8jhch/Ldj99v8zQr2LiqrdaRwwY0mWIYTWUIAwDoegQMbSCvlesoVgNkn1ln55bIuMARi0Sa8t4Osts7Vym6zuRk7Nk6uizWCOtomf+h9fW5ClFmv74j/+Yt771rVxyySVHv9qfwRn8kLDSWWLLiuBjY9XXlkvmqpqZuzv38bn9H2T3rnku3ls1WT0yP0adEonnk9lzeP3Oj1EWMZP7X8zS3He4esu3+MC3zuY3r9xE9y1vxq102HpTRO0wHJhssbgww3TyCAdJufXWz3L99S8metblAJjv3IHaftbpUcIpQgiBbw0yLm/UEEJg9zzM8N3/DS8E3UYDMxOza/Eh9g628ZzzDX82v8y0VtzUbGC+Nc/9pmCheZD72iULs9dwvsmpyRoez1B7JuM7Obz2TOYGO5j+ynZuufvvecG/fzFJvU5t5xjxQsaW3k7eecef8Ucv+H9PtzrO4GmEN7/5zdx0002cd955pGnKG97whtMt0g8FVhoqQzZ6slM3UNUSScJJDNp1fD+G6A8K/2Re2Elg5akv0l5f2/TaJEHkCJ6YPev7lcAjRhTkx1751PR4vKr84x5/PFdAhOOjeScggOvvZ1g8Qkie9bgRkxNhOdleC4+rpQI4ngH12HE9ckTL8IPhqWr2xDUZ2OCoG50jTnR2ABSwY3EFFbbRq2kaJuf7f/Z+kGf0aOT36NxVVdYToa4a1MsmMy5iifIJz61wogYlcjR/4LF6eWLkQBVtzBsSHWKUnwWbbaQwQkwQBYTDIMzxIkjIgCysQICZtqRvJ8lXHiELbnRijamwQj9M4BF4oQjBjd5jQwiag0UD4eYQUuOFJzQKCCUmdqRhjF1+Dh08VmzExnA/xOyDp+TxtNttXvziF7N9+3a2bt163M+TwRjDn/zJn3DBBRcwPz+/cfy9730vN910EzfeeCO/9Vu/RVl+PxvkDP5nwHf/8Z8pJx5iX28rcy1BO434YucIr9kv+St+nl9vvoWvnO8Igwb5Wsw97XN4RfIgC6HNHj/FgXQfX3nkHKLhDl625TbMpz7Ows++kvy+7/H7r//f+ZuLXsiFrcMcadUZ9LZwsd4HwP33f489ex5EnXU2YrKqa3q640BpWbSO5zRSgrX0fvet4D3F2Tvo1Fv8ZP9reAT3hvN43l+/jS1LB3jLgUX+z3v2cl/hMTZi30Qdf+BXMK2dRLtfQ9k/xL7tJdI8n+fIW4h8wmt7z8d1P8z8vR/hY3/wG2S9DnKujhCCS7qX8Y3ewwzyfadbHWfwNMKll17KX//1X3PNNdfw67/+63z+85/HmBO/kj/tUdQ52dd89dT+XJ8GPP4Xdk3+rxj3yV2dVBz96iyeQF+BDPj+mDz9v8rZPHZ/Bhw/eIG6fNL7XmyMXuaO74xdQnGS6NFRPCbt7QkM9+9P3gAjYocnh9kYdz2N7tg5AgH/uHvk+3PEfhCXPHYCPdzK5HCMycH3e5/XHZAns1GPleRE2UV4vPlGkbKRfgSBtRNWZTlZhLCa9bH7xQMlAsMPEv1ah/GW9uph2t0F4jLDxBl5bRFbm8ck8xTpEbywVOsNVVrkMRHW0SL4dmMreWMeIarUOR88VmbkMsOrDCszhB9iZYYTQ1ywOFlgkyFBHsGHwyw1HuGwuotD0b0shQdolAPGyuNjP4JA6n94RBBP6S38qle9ig9+8IPk+Q/+AvylX/qljf5O6/jOd77D+973Pj784Q/zmc98huXlZT7wgQ88FdHO4McM3bLLzv0zrI7fy/7edi6YHafnHL99YIFtYR/v25pxThLxNvVi9h6a42C6nV3tVc4Je9kuV/j4/hvIah0mtjZZuP1Z7Pzvi/zyHR/hgdY0v/eb/5kdN/wU8ztewoWtRYIQ7FmybCkfBaBeb3D77V8GINr9bMydd2yk7D1d8c1h9cftOfUaxS2fw+19FIRgbXaWxS1n8zMLt/Co30JpNJc//wb+4967uOabn+dLWP7XFzb5yoWa27otLkhTLkklKm5ivvlX/I/5/8qiv5Kz4ruw5gGW7riNc654PnMXvJqit8LXPvhe5Ez13O+008jg+R93/8Vp1MQZPN3wute9jve///189rOf5corr+QjH/kI1157Lb/xG79xukU7paitM3ttvGtGxtPjGllggj3OFLZo3EkSSU40qJ4cBj267smu9VSOyMntAolE+pOlLTmOpw04HnZjHRVb2uMhAD4cTSo7UVtH5/UbtalP7jj5kxin6zKF4+Q7GY5d18ioBMT3abzGTo5qd54cIihMlDA/M8PAdZ/ozON+k4+NPognus8ncY7EkMc6Be4k98mhMHgc6jGO6LpOqjQ/c9K6YQePSVvcmP4x0Z6CGIt+XGdTjPayQJKLhM0rDre2jLLymHq5kyNQABbEEIVEh5x1nTzxdZ7vx2GxKHQoN54VHRSRlwi3zvYnR+OtO20Djt3DMpx8zRpFFDRHHb4fBIGa2UyaTdHorTK9sI/NBx9i04GHmTv8MJsW9jLRPUK7t7rx0+qvkJYdhFul2e/R7vXZsucwk/uWmO4YJrpDxgYD6nnBmm5johivNVIonNYMa4KVCcGgGUiLNRLTI3Y9JjvznLUw4PIHLM9+wNJ84Btw5F46Zmm0fsF4KdHhh1fT9JTS8971rnextrbGH/zBH6BU5dGtF8nffffdT3jtm970Jnbv3s1f/uVfbhz77Gc/y0te8hLa7Sr96tWvfjXveMc7eP3rX/9UxDuDHyN85c5buJ5z+O7UHhYefCkvn23zgcUDdELKH7TvZ3f9Wn7nni/wurGt/G3jFehGn7dknlviCV5Z+zJvz27iQ4eez5vcAtv+4YtIKbn75q28u/ErvPv6nyCWAjZdQ3rHLPVDlsP1BLMsaGyVtMfGOXz4IAcP7mdq97MpP38L/tDBpzX1+DcHORNKsjOJWPvIh5DbtuMP7OdwElOL1jgnP8gn5A1cef1NXHpZxZp30b4H2P/JFf7oGW2+8Mw2F180xjmfXWRHEjPccwumu58rvjfHf3nBV3jb0ibC8Fa8mkDccAnXNK7iY3/4CPu/+zXWfvrfkWrBmBTMdi7g02EvrzFHiKLp06yVM3g6YXJykquvvpo8zzHG8KUvfel0i3RK0ZMZLa9xwVJT68X4lSHpg0Y+psi/Y9eQ3jMWr6ekSLzwHOV2yIGUQMAiiZ7wi70HJDpIwFT9Z6jIJCRVOpOicl88AXmc8Wse8+/HpC55IEh0sBvjCszIEBWsmyMyCGol9JOAGEUhqmhERSegfCDI4w3rdedFh6q3z0aC2HGnGUDhkOTBk6JQI0NWBkEQxyekiSApRYGmRGw4FgGPH2nh2PklggxI8CMyB0F/JPtjzwYVTJWKBKPz1++JQFI15wVBbrvEcXu0Hj9yXu1xUbR1+gzvIxSaXY/ey8pUHcx6qlxBIHrceFkAtJdYuV7HJiu2uWBGFCJH1RiwJx3nsal1frQzCj9Ay9Yxcmr8qFrKj+6uJRvpp9IdYT2dLBmt1+AZoCpXYqR/IISKbU8o1MbeK2CUUCm9ACGRITwmJbTa4xZJEhIOpZolWpw10rlGUgaHEqrSnyggrO/l9WiKQIWq/ioKAjtKjTVoIix1A4PoqANviInIYUQdXz1Nzeq/gY1jDk0matSCJ6DJ8hXA0UqnQIjj3G4BqCBH1O5Ha7JGjOXHw68fDFTOZ2PkpB6fSulGSYPHzgSB+86zBNujTYIQyyBzpKiex6EOWBvjnRqxSQpqhUcVJThYS3O0cxD3WI5s1QMuFChr0S5gohSV1fHO0BaSbvCMlT3aIyIPJxTOr1ZLkAIvYjrtNl50mOhmDJUDJMJLUqvIB4dw6Q8eUft+8ZScpg9/+MNPecLdu3efcOzRRx/luuuu2/h9+/bt7Nmz5ynPcQY/HvDBE33TY9WA/d4REJw70+D3V+a5jPu5unUz5m8ewI99nuvbs/zj5pfw89N7WAnfRBJz0a6vculhzx37foZ77v4EU0nEZ371+Vw98wUWv7xIbzVjaqoOQiAveDm7Hv4Y3yi28cnsJ9mk+6wVOUmScO+9d3PtsXVNT2Onab2eyR88gHvgPpIbbqQ4sJ+D9TpXdL+GRXIvF/Cz51+0cc39hx+gsbKZV32ly63n3c+3n/k83tZIGRjHXdsVk4vncMlD+/mLFy/z5f6lON8lad7In9z2bl7+rHvZfc2NfO9z3+Suf/w0V87ewNi+Huf3ruIL43/FI4c/yPln/cpp1MgZPF1w7733cuutt3LrrbeyuLjI9ddfz+te9zquuuqq0y3aKUXUUAznD+LTWWqqgRQaYzO0SABJaiuK8HXLSDmHUDED3ycSCi1q+CCqJpvAuvGzbmx2bIcxPbYx37rB27Mdmvr/Z+/NozU76zrfzzPs6Z3PXHVqnlIhRUKAgEAAUYKESbQRRcQ4LVu9vVit0HKbexcsBFpt9a7g5eJtHFDA5sqgNNpIEkwCBExIIDNJJZWq1HCqTp3xnff4DPeP96QAsWlNwwI03//e/e79nmc/69n7/H7P7/v7fmuTgPyxis3WT5SBopWCCRxOaZQ1ZG5ELCWRLUmVISa6UFepmZxcxVjxWFv5VlokoFtsEMU7EUC7gI0wQImKUju0qVAeNDWUE1RSAwbHRGUPJupgZfQPldUmMumbeY9OCJFMcGISmg5sn4ZqEqK3CFWCTbvObDBPshUvWhER+HIrAN2aVy9w31B1yZgIThv0Vo+KR2DRKD8JYp0UWARyKzCXeHIdEZgSi0UxMdbtFJpB6PHS4qmACOch8ZOgf2R7CLtB4OpIpbA6wHuBdxXSVwgChq3JWOMAACAASURBVHaJabGAlRLvBS7ISMOCvl5ksVJMFP0qnJcIESC2ahX/sNagpWRiGTsJ/PNQExYlQzNkWte21k2PYW2NneU2oMISo7AEXjISmkDKCxLfE7KgpETjlSTc6iM6F1bsKLdUHYXCeQGUWJEhfYxEMYwieuPTLOi9AIzsBpUfM63mQHx1TU9EQOREUp4QjaHYSkOFCxBM/I8alWCoLUY5EiMotMegEGXFQ82EuNViU2xntwFciIkU3nmsncyTBJAa3ETsoW4MaRDihaBCE7qKpPKMw0mq3MondaxRULFuBnT0DB5BQYgQjtB7tJdYISiok/h0kmwIyUAoQhlSqwZAg8IH1M6vUZ+pyFvbviYb8iirJwp0wtF1a0zJDoJ4S75b4XAEeEpbIYsRJC0sMcZ3Qc+ibXUhDRcINqpVEDWm9NerJkoE5bRm0JAsiZyo3EeYdkBUCCHQ9RTng636oUB7QRdHIDKyzFKNQ4LKE0yXqDgmW7dEVYRON1hcX0dlQ4JihCJAOUfkLFZLWlmNPKix2RI4IfBikohPpXJStZSalakEFQUgxWSkTmGdRfh/Kl30n4/HRc/bsWMHjUaDL33pS9x8883s2LEDrfU/qafpH0OWZYThV0vEcRyTZd++m34C3xu4a/3LPGW8h5XZr3BmOFlb/XjMpk/44aQPfzNiOCgYzd1N6/wNgOWGp6bcqQXbxAqBbvEre+7kyfkx/vTwi/i1X3oTuw/8HEJ4XrjnM3zus1/tqSkO/TAXtyYUPb3cZSMQdLub7N69j1OnHkXs2r3l1/Tl79Bs/K/jfGk4WxmuqMcUn7lpcjBJ8FpzolHjFeuf4YQ8wNzui4jjSaOvdYb+/SucKh3rLcm/2TzF//6lJRYM3JRssDp+Lg/sjYiLgv9w3vKVwSbNdk59wXLo/DX810c+wPGDd6Pjizhz3+2IuYi2lhzOL0bIig899Pc49200VXgC/2Lwi7/4i2xsbPCmN72JW265hbe//e0897nPvcB2+JeCRhjilJq0BiCJVZ2+ynDSk1SKyDhKl5O5FA+oqiD0FuMqxvlJkmpEI/9aCvxEIrtwORvVMXpabR2d1GQsCusUqYdyEuJTBQKrLHpLhSrXJcrmTDoGJE5rUjti05xlM3uEYXYCh6RUmqiUmLKgrFKCr1Gx8nhqlcNtVXecEhQkBGYStAXeEltD5B2RdZCNyG2xFbhOUrukUhfiZukdG9UqAmgWkNuMQkisM1hn6FZD+uU6zlR0S0MZf418ua1RBCGhV0ivyAnYCL+xSV7yNXJ1W3chEORaU1JQ+kkalrmclXKdcdUDpyi1RhlJXEHXDLBC4tBYZahsxjnTp5eeAQRFpFiNugxshtF1tLeMylWK0hCVPWpbsZAQkk3XZ0136bGEpUfpx1RxcIHCVyqF1RFUMRAi0IROUNlyQovzCmk8UfnYXIyxBATuq/FWGgVYITAScqUu1ByO1wqsqmFcjsJg1NbaUGPGSUylBVYDftKXFDjw3tKTGV4neBUxtjmVnMjN54GmkgoQnFY5y6ZHoQMQASUwLDPWqagCyPVkvEYpxkGdzI1IVYSVCuFh5EoqQgyK5AI7VIIfYikITUA9Dwm2svqyKshGy8TVgELsQRNglaISATkRmVRs2C7gqQiwQrGq1lBaEAqDNenWagBbdYlcikNSBJpetOV/CBQuZ7k6g3Qhj1EYlReTimsZ4kSE9ZNqUxUIVuSYQoQMVJNcxnTVLNJ7RPc4tbKkH0AeWxwFJSGldDgMY5/RNafQZvjVcblJRS21I4qxpxAxI5vTNZYeY0aP3YNXDBihRcg4DKlQWzYFglIrJJrZlS7tdcehNc2Bo4qLHx3xlBMjLjqecvjoBhff2efQlzKe/KWUS+8c8MzTZ7iydytP0itMxw1CNY8fdei7XSi9nUAukLefxPH9z4JOkySx1OKdzEa7ENEONrcdYnnfk9jcvY+qsZ9OFtE0ISae5uT2HZxc2MXywgEe3f90eoszk7XhLcJJ8qREht9MPfJ/DY+r0vS5z32OX//1X+eKK67gK1/5Cq973ev4/d//fXbv3s0v//Iv/7N/L0mSrxN+yLLsgoHhE/jXg6G13D7OOVmUaCF4+L7jvFFfTLnvQc6c3UczUvxV716038Pdx+5kzHmi+e38Tb7JqpF0ep9jeeoHGIbn+Vj7Ti49f4SX2s/whs99lF960a/jzjd4+SuO8MA9L+AHdn6ev7rlan6kOISIFHb6IjqLu+mcrTCi4ubmEZ7WP8HMzCzHjh1ldfU89cufSnXXnd+zfk2P+TM9vZZQffkO1IGDuLNLjJoNwjnJYm+dj/N0Dh48fOGaG8/ezOzKYZaAl7/6Ipp2L8nHz/DJ7Zr3L+zglY1PsP+Se7APKpr3xJxVmrkXnqd18HfQD7+I2fqz6Pb/Ly561iUsfaZkdXiMOWZo9BRJtsiDfcMDt/wJlDuRUjG9ax/zBy9+QpXzCXwDbrnllu/J5+6fi+Z8k0eWI5qiThVFRCVYV2JDifV1wnLIyA4oVUhmSprqFPVqH4S7sfk52qFiOawxMku0tER5j5NQxGCygI3E0ikq6m7iA1S6gnHpqIIpdGWRoUIwJtMRiRWEVYhWIcqvI51CCRjQBZ9Qeoeuuiif4RGUBBjvyD2MrEXFIdiSangH28KnkLiJGp30EuUl51SXaREQGksaO1yaEZBQ2IzcZVQuQOuAcRiSVBF52GA0Ok9btyc74AFYObE0yF2B9AFelqQux4iA0HuwUJKTiiYtV1B6D6VgE8uihMJVLKmKfi3iWb1JtenC28eBkXarhpbj8aQqptSO0DikdyAcPbeJ85YNl7JDQ0TI6W0ddp3vUbkJzbEILUWZIcargGDkFZKMgcwYqjHD1gK7i5LSawoCrFEo7+jrPlbPEVAhXIUhJypOkZanEfE0IlCQe3qbK9ikTsvBWuuxBFAwzpepZAcVzKFdRmQ0XkhwmkpqohIGvouKtpGHk0qZsI6T0ZBa1cAZjXAOQx/jp4icJPiax7AgRTmB8g4vJMqloASbpseaLHDUkVWGFWOsDkm1IHIBVrWQrk8pGpydMcz0BA0UlbRIF1MYRyYFm3oOUxtTtxE141hxglFcsgeNdh7nBVVZ4ElIdZvN/DRz8TzGjTlvDKLqsz2YR8opuukqJheMMcSipHSSwKaU0nHUOCop2FFp+mpAHpZMWzmhEdqMUICTBiHA+gLtEqQP0WWBCiW5lDhv0SbmVHaSviq3yJZfpblJ76kZO9lcMJIV7XC6RiIHjNQaw2AHc6XA+hAJjHUNLySjwnBydBYd7qVKNFlgMC5FiR5BZQh8gqxDMLRID+t+QOxCAjUh05oyY1Rusj5Vo14m2GwTlYeIRgMnNL14jiYpZWYZpxs06tNUvoawkkw0qA8N51ue2rCgNjZMuyEJhqGbQSdr9NiD9yHSWxBQrtfQfcm+HSeYEiNQES4oUIUk8BavWjw8Nc9qbZ4zYjfeeerDBh0j2FSKUQviQmF1jLWWXHWYs47uth14k5JkFbLm0CG4bJbQnWXgBgzzAXcvXs5Ls3u/be/nx5U0/eZv/iYf+9jH2LVrFy95yUsAeMtb3sKrXvWqx5U07d+//+voeI888ggHDx58PEN7At+D8N7zgY0+713tMnRfw7effwY3/IDhPfJOTj/0/YjoLPfavSTlA5zJllhuLvPajav53fX/hCoNmU541Q8K7t+5j+fZ/XzMf4EXfLTObtXlqv1f4FOPvoDPHFvnWYf/N449cjPt3TfRveVipq+ayIiXh17JRUc/zB3FTp50/ChEkx1fIQSnT5/ksqc+nfLmG3HL51CLj6+q+p3E50YpM1pxSEu6X7mP6OqXkV3/t3RjxZHkPLYnOSYO8oz9k2fPe88NX7yBK/MfpzUbsndvm6UPPIAC7jaWk9saRPNHkVawtn8XZ1JBv1nyQRnRPe0JW7dwmfRcFjnKvceQwU6On/oL5vh3tJTgR+5+JlH3Lu7klq8bZ3thkWe8+mdZvPjS78AsPYHvVvxrSJgAOhcvEN8xIG+XeCGpGUced+jKBnWrOJF0oXRkOmYQh2wQktbrXLZRI3QheMiihA1VJ5YV2jo0GVNuk+WZKboKlmyf7WlKicBINaGuBZYNr6jLkNin9KyiZusYVUfgSAcZ9akA5Uq6QcU4ajAKNLafUjQG5OWYMi6Z8jU6VZ0xgqWoInQ5e/JJYHlv6yJUb0DLQUdolpoNBk7QSTco5YDKZ7jsLF42CeU2VigQuo7C46VEGMVyu0WQ9giNR9QmgtOhFzASBMIgQklZTxiYBsKUaOcxSlC6AGEcg3IVsoKsjOm7iFQrlusxSpesVhVSRcxLQRUIdBGwuX6OufaTSXTGWBVsqJKm0GyaDVqiwXqQsxFrtm1OqiHWTihrPoAiCgg3Ko7NOXwSIbIOifJ0Buv0qwZDHSDkOcoGUCiSDIwLJnRED33RwMsaazJl2mRE6ZixOg/eMlNKBsJzZmyYTkcI46jCyXWBtxfEFoTxEGz1mlRbvWE6oVbmjLTC+ymq0ZAOAYXI6VLD+k2QEumhFDFSWXRRJxAjlEuQ0iGJCLEMAk1kagg5YE2cpx5uBylYDisaWU7qEtY7bZq5ZqQDTrsB7apPJdrssiFGgxcBYDgj+hTCMOskOE+pIywl/VhSjQPG1CikwEuHYISs2qAtpbY4QvIgwRAxKleJgDPzi2AMpdxJ3WYMTE6SN3HKUlaK3KyyrzpN1B5xUryEtlScr/pYaTBBjBtUFC7DVqskjVWK5i66SY2sytgx8mzEAcOggWRCnS18RegtwgmEjfGypAxCyEtEGBA6x9CssTOfZagUPTOijcfIIZUv8EqxKgwLxQargSQX81gcnohaFiKrGCk1noxNJ1GujQwrlDXQ1ISDCrzA2YzUFoxETliNiVAs1TsEwuC1xLqASiosIY46I1UwEk18PWBYPUwTzVi3CKzFSqAWkIcZDovQEm0dyhj2qGPkVAywEzkXoZAY2sBA1th3vsQnI8YYNuMFhIROuMG4ipnqFRRyALMZdRMRjnvEIqIpwNqAPStreD3NsYWEYRtUbZFme8TU5mkW8nXGscSoeWobJZutKWw3ZaQ8RrcQOvlH3qzfGjyu7VzvPbt27QK++o8sSZLHrSz2kpe85IJqnjGGD33oQ7zsZS97XL/1BL634L3nt5c3+L3zG1xei/mzfYvcdvFe/l3vb7n2i0NevfoVQj/gZL/DsKZweoaf3dzNlSf+I3/w6P/J00dHMI0TqLRg0TY4vLLEA9v3sXjgjbztkR/m4OmCTzwn4GX7/xsLesS1n34EFRyg4Eq+f/dnufv+U7gtl/H80Cs41FzHC8H33/cZSqX51NI5pmYXWF4+e8Gvqbzji9/JKXtcqLznC8OU5zdq+BPHIcvoN+vINGVp2yJX9W7lpNjDtn1HiKIJtecTj3yey5Yup/LwjJftpXq0x9xayUO54+nju5j1q/w5r6Oz8C5GO1/AOA4Rss8jOuXioSLM21w3Uvzu2Rnue/CFqNY+zp7Kcd7SliVNs4svX9Rl6Rk5P/62N/Hjv/1envezr8cDN77nt1i673tf4v0JfHfh1ltv5Ud/9Ed58YtfzM/93M99ne3FY3jRi17EVVddxdVXX83VV1/Nz/zMz1z47pOf/CQvf/nLefGLX8zrX/96hsPht3yMZUPzwO5DrEzV6Ys+QzZpVgUjC303YCNv4rI5XJWzGQ04PxeTxZJcRSTGE9iSx1rxNQobeIRwWJ1S9WuU1RDlDJRg8ODBYQmqEX2XYgg46xwDu84ZzhFXJY0i4/T0IvPKEssx1gtKIjIT4l2NDXGEZRnRCz3KC7xLaZSA9+Q+QBlNzZU4ZVhW2+nYCKUluVDkccLR6VnmshEUFlcfUMwGuGIVIypOii4ng7UtwpDHeUlQVJNuoSBAmoDCaXKpSW2JDg1CeKowIRdNch3htMChqBeCcJizNLMd4ySBUUghaW1R4MZRi1JocpshdIQ1knqWIH1Ep7TYZIMV3eeEWmelHnG0JhgbR72IyEKNzwvyjTVWqnWWlOYsjm6rSX0sKLXFoildBEYSO0eztJRolkNPIUpSUbEe5hhn2NSC49v2UUQLaK+RDBHRJlWYYQNBR+R4KdlUivGoYjWe4qF925lTQ7Sr6JdrDMt1tNI0TJ8qDbFByL3NgjyewQsY1WogYRxOUbRq5LWQgUuIS0MtE6iiBiLCyRgvIlIlmR6PJtUTqXFa4QJNv+qTK8NAFRiZUGjNoBEh6m2qqSZCOLyWJMOSojLYDFr5GdJiE190kWRUakQeeDIRMdYBIxeTARtTiopJBUM6R2QqnIgIEAipkBVUQcCjtZAzoWHcaGPLAacTRRbVWG0uoKxGi4rBTB0hPKWSrDUTQkZkiwFls0AH+eS+Ak9gwNiMrDhOPeti5ZCzqs5twTLvX/AMkgAXBzipOMoUXyRlPd+ksAOWqlXKJkg3ERbpNWIerlmqQFPUNefrOeeSGYo4JDAZuckoqZDO0ypzrMvZVJ5Sh2Ad56fnCawgqoZgKqQ39I0CB6VM6HY6nNuxHeUFw3CFc1EBMkLZkEKAsxEBMSbYRohAIPBSUwYRToW4QGNkSqVKmpUlUJa1rMtqPqCkpKckJ/Y06M1pinidrJUx2hXRDA06DGiEDTrWotyEzmragiyKCaWhSBYJ833Usl20B/M0Rzuo5btQ1XbaaYMjyyOme32ODCoOr2Vc8vC9LCxVzJ2v0EOBy8/wzPXbucrdxhXydr5vdCfbxkusD+dI021sL9ZpRhvkIiGNmqw0p0CA+keott8qPK6kad++fbz73e9mfX0dgDzPed/73seePXu+6XXr6+sX/hEB/PRP/zRXX3018/Pz/MIv/AKvfe1reelLX8q+ffv4yZ/8yccztCfwPYaPd4d8aLPPT8+0ede2DuKmv+b6d76B7X91mmdvlvzg+HrOj+ZwTlLOHgLAPbDOzxOzmp7k04/+EZ976Gbu79/KCXmOS888jJGa3zi2THjbXaT1Bh+/zPKJvuYnL/0Ay3nFX/zdcS7a+yvUg4y1XTeyct2kt8m19zK9+wBNXbFhI1q6oOpu8KmDl3FmdQV27kJuX6T8wi3f7Ja+K3HXOGfoHN/fqlPddw+b9Zijt076mpaPHOBAtsSDfh+HD18CTJLZ993/X6l3DzJXV7T21jh/3T30neOMWmX39/0XfrD8OOfkAT5/wynOrB4lMBVXnBjRtpa3ba7y0ZOP8qfLKwj6fK59E0lyClMZhtUmU0mKDvby8PYmDycZOz78w2z71E9xcXOZl73xN5jauZfP/dm76S0vfSen7Qn8C0KaprzhDW/gne98J9dffz3Pfe5zedvb3vYN5w0GAz70oQ9x3XXXcd111/H+978fgHPnzvGOd7yDP/zDP+T6669nbm6Od73r2yCbH0icnshSj73C0qWQbVZUyUmVUsk6lhhsSN97Mq/ZVI5M1KirmJEICIQAJ2kbQWw8A7/GelIhidnRnZ6o8FXhREfMS4KyRHgwqeX0sEvXxYz9DOPgLOeqNc6bHn2Rc7+ELgP6NCZ0PCepooSZqCQLIno+5Y4k41wrYmVxDzaeogxrFDMRrh0SOYcJQ9LGCYZ2iULlfKldp6unOGX20RfTzNfPIWPHlxb2s+Eb6MwxrLutZvkJ1XAt6aBUgJHTjMqKs3mPUk8zF2wiahGRLWiNUwgFvnI4IsrhClnRR/mSmsyYyh2J00jvCMclPT/NZrvFqNag1J6xG3BUCE4s7scqRZGEjOKYvNkA6XCiQ1rfPZFKdhqTj0ljTxbWgYDt6TJyPMIrQU9DNk5Ro4zpXkln1CUxOU4JYpegbIvUtjhrM9YC2KgnaJOyTVtQMYopUtNAINnmWnSSGg1ZIbUCJCdmdnBqYQdT84ZM9MjKgAJFtzZFUY+QAZyshdwtLKc789w5nfP320qyeNJTUwhJKhJGqo12AVFZIygq+mKGIohZSyRBuBMrr2CtXjKIEspQgzIkpcSXQ86JVbwXSJ+ACxlGJWnL40MLcpLG5+Fkvr31TKl1Ki0ZijFtY9GiQJeCoJITEQYp2Zjq4BYqpK2QOLyrEDajZspJ9VHA2KUTAQqfo13OaLrDmalZ8jAglx6jLGfKTTZtiUzm6M7uY1QLGbWH6L1jhEsopyDwKcJqrC4oAs100WW1M0eKROgeoZgImVhdoxZaNv05ToplUqFYC6bAZIR9TaksIjqPziYCD6VwVEqw6s6BuI3dwVkCb9kMLE4pTKjQMiNyJYE2WCkYiQaVmfQejupNzm3bxSiqMwrXGJhlrDQILC4ISasWxsUMZI0CwUgNODt9lm5oSeUMw2SWbmcXDQcirCilw4aGcaQptKdQKYlO2VB96qMlmjag8HUqk7NhhxTK0W3X8VKg5ipGUwOsiLAymNAVlQaxghcrlD5D1DYI5QkachE7c4BsfhfZwm6a/gjzxTSR7JCQ4PV2THCQPeNDTKd7qbWfzODAc2i2DrHX7WZe7aeW7USOpmgNc/yghhs2KHGsxnWGTiJMxEQofqvbUCksikHnwLf+vbyFx0XP+43f+A3e+ta38rznPQ/vPVdccQXPf/7zefvb3/5Nr5udneW66677R7+75ppruOaaax7PcJ7A9yjOlRX/+fw6z6zH/FR/mY/+zu9hq6/2tn389P9N3Y24c2XSY7NYrDAezvKzbgenzAn+YOojjHZfxcFTDyFWT3KfS5jKGnz/asXtO+ssbJzny09+NUfGj3Cbvp257nYuaZ7iT+43vFjUOdu+lJ17biT47NUUj84Q1DTl4X/Dofvfz93Vdg5vPEjejvjrIOb0ZVdy5Nwyz7zyeeR//d/weY6Iv7nr/HcTPjMcEwrBMyPNvV/8DA8fWOSSkcELwdxcH7cpeDQ6wmU7F/ni6q3ctTTgyWvbsU6y79JpPnLdJ/ix9CAfqHIOP/ODeOG595YnEz4j5aZGyI/kXfL6gINfcXzygXXqjYqHhrNkWcw7Z7v8R9Xhhv2P8qyl/ZSsM6O3c1nyST64sc4he2zinLF6F8Hf3UWtc4CrrvkjPvGu3+WLH34fP/Tv3/Kvhpr1BP7HKMuSa6+9lk9/+tNYa7n55pv54z/+Y174wheyb9++/+n1t912G7t27eLIkSMAvOY1r+Haa69lNBrRaDQunDcajS7YX3wtbrzxRp797GezuLgIwGtf+1quueYa3vKWt3yL7nCCGRkyM+4SRWC8YtW22FyIGI1bJEFGZRUyzCfS1CjyPETNrWLbSzxQPp2B30QEY1qFJkTQj0uEG1PHIqRCEdLXCcVUyJSzNFODyCpGyqB8TBloKhUgjUAGhq4f4nQDpQVnRMSjpaYpIXCGwFXYwKLaJfRCauV2hJB0E4UPA7zJKdQU5XSbXKyzYecwuuSoW8BVAdlmgyJuMY4LUhUwmjpIY+YmVFaQ1RNa1mCrBCMk42ZAayQI1RArS066DlUwxWaYUTlwqoESjg32UHpAe3wUYF0LV1i8H3Km3mXcaBA4RyCmOcGY1bomqixhpfCBxgUp4yqALCGRjjRQPFquc151GSct4jyhVo2RZcVyO6bhJcrluETgpcJnDpuFxH2B9CWlmIgzaBPiow3S2jRd1aCZGfJY4oI29RJQUClDFaYoplmbWmDXIMKbJqIRkctp5twJTsgOFxmJndMM5yRuTTFsxJT1hMpk5JHGWMVQ78LXHGMhoAO60JRBm1wbIs7TbS6ye9CkCsasNwPaQUiuHTrOyMop1n2TcdxEyj5G1hB6Du01R1tXEMebVL5EiSGqtBi5ndisUA6bFEEfqWBPd4qyASL1xL5ECI2THuU0UJFIT1dLCtchwuCrOqMqIJOCol4jqzxap0xlgr6CdddF+JRRq85UWrGpNTOBJBUSWXm0Ai8EERWjWoREIRHMViVWlRTKEFYNhFZsTGmqoMmezkmGxTNxwSYyzOjrMbbZocwHhO2IEds4E2n21pZpbsJU0SbxlzCqFdTFCSrVZr21k0rB3v65iXpc0CYUGknFIM9Zq0XMZRYVBDRaPUgTTomzOA4xqGlc7Gjhqao2RQxFplHOEOuSQGeoypI1Pcs7DzKXr9E2G1S6Qzds4AOBDRTKV6wE04yYwo7WyNCkDcG8yTEiIpPTIB2FDSi9RgU5qXX0RJcF2aKSBe1igPMtEunJazVcYdGiBGlYyNsUwYDSHqasBI9UMxQqJtERDd0giUucr3Nmehtmuo3uzJCMAAnp4imWizr71rZROMUgOEFaGE7PH6QlplnUG2yWKUokrJGSmjYLpScgoC0XEMUMebnO2vyI3caR2PlJDxk12GiQDg1F0ptUTz24SFK2F76l7+SvxeNKmhYWFnjve99LlmUMh0NmZmb+xSkYPYFvDdLeJptnTmKqgrjRYmrHHqL6JED5g9Uu1sMbqgE3vee38d6x7ZLLuasz4KJTs3j7KEU/Y320H9F2rG7bzg+tC5ajLm88/B6e0riY50XXc8/mD3Gycxkz/iw2H7MwKkkXGnzwNa/no1dchhQ/wFNXb+O6qS9zxdpLOSokv3XT53l+GLLjx8aQ9OCvTlABo2e+kEPtd3Pn5g7sRg4Nw2/WFW8vQ/79oOTfHjrCT5YfpvzS7UTPff53dnL/ifDe89nhmCNVxg3v/A+Msx474yYHGg0GvTFX5neyxDamD13K67/4S5wYHgcv+MH8NUwrwW/VVvm9O3fxkDMMdnyEzsKDLN36LF5x7FM8VJ6gMzjBODa0t2xiNk83+c/bns9LxRp3D68hEn/G62Yf4b9sxFxerxgXJ5kLn8Szmn/JqEq4a7NJt9vk0BU/wK7qJlTvOIuf/hme+rK3cttHPsDpu29nz1O/DwA5OIPqnUBUY3w8RTV/OQTfPv7yE/juwZvf/GaazSbvfve7+dVf/VUA9u7dy1vf+lY++MEP/k+vaYTFgQAAIABJREFUP3ny5AVaOUC9XqfT6XD69GkuuWRSYU3TFGstb37zm3nooYeYmprijW98I0972tM4efIku3fvvnD97t272djYoN/v0263v+HvPV4oWcdJxVB5alQgBaWb7KQ6CT4UICKUHdCQmgOqyyCq47BUOiJXMUpq1sJ5RmKTKXUc4SRGJPhWghkZkvoa5Thiq28bq2DQrIGJGDTrSKcQXiCjBVzaIFI1lJBkdUXWaNHpW2QQ0hhlZA1Nq/Q4JJFQNFND2REM9YA2MdobnPOMdJeBLhlNhXRdwFxWR0hHoyioRWO603XG4znuD3dwNDuEFo40mUETo8sNHmycphYsEqmAahzghaKK+uSdGrLXJDQSK3NcMI3wfQIxppASE8RUxlGqEDEv2BwFWCJaVUAhE5w2IBS71sck0wWJG+CtxzsBGkofMko6DBsNXOnwLsCGlhHTzFRDBq0mSS8nUzGjuEmzJ7Eiw9USZBiTBQk4CVik0Dgp6bbabE7NEGmJzhWmmkbXc8qkQ01WCJnTCxtU4yYSzTgoKUTAvclBClcD/xDGCNaiJv16C0xt4gxVRpzbOU+xqkniEoXkuNhJTVZUcoCo6mwzZ5AiJ6paJNk0/bhJXj+PMYrKjQiYQycpjGJiIlpiE+8Fm3I/OIXIEqbtkDPuIMdre6jnx9C2QVG1Mbak649TDy1CT2FoEckc6UKcEBglMPEiue7zJHcKKabIGgsokyP9DI4J3dWqaQa6YsYb4syTB5ZADDDBdqqkzkjMMpTgiwxLjTKZw4kSKx3COZCSUgQ0rEUphYsqIjFxQhomA4SqiF2NKZuR2QbrugZthagmFV7lHS6SUIAIWvTUDnI5y7Q9x3Prd3BWzGDUHOAokgi2nlMVKGaTeVbkUfJag5XWxA9sEE3RLDdQ2jE42KJxd8m6k4wih5aCTSJ6Yj/ClER1S1A5PCGRAOVhOdxDFUdsqG3MpysYqRDSMdCKvohZqApCBC4QRP0aZjqlMaqRqBwhK0YCugJaKByeiTTnRPZ8JfZcsrfP2SVJc+NRpGiQtRYpSkHTb6C1ZE/aRxOSpntYlSVDHZDpFCuaxOIQOujTrDsW2xFah0ihGMw9SjEU9JTHN0OKxgy11KJEyFRVcFpKgsYyo7QiEEPG9Rre1FlLVsgpCbMRNdOmLnZA+AKU1xg7JnFwkCZKOaxzpG4DG9SoaiE9X0crwY7OkW/Z+/gf4nElTd9sZ+0d73jH4x7ME/iXg7UTD3Pn33yYlWMPfN1xISXz+y8i+b4X8N+bO3lNK+Ge33/7pNXx8it5pCxpdKcZNwJ2XfII9c4aH7v5CC0hWaklPKOb8bZd72Us5nn1zBc4f8ccz3tknbw+w+k9AY3l0yw88ju88OW/xsevuJzLHliiiAUvXpzhfZs9Hjz8//DjDz+Vj8y/gGetP4h/8Bqa2TZSZ4kPTWFu79E8/OPUTn+Z4XDyeBwyBb/08Je5Z9ch/r8d+3llnND77Gc4+D2SNJ3Ick6XhotuvYEoTjhy/Bx7/u3ryT70QVZm27w0vY8beB73te7j5PKjXFF7Hff3PsFn93+UK8Qu/o971gl4Oo/EN/CDl36W0flL2Dy7l6eEFtO/D90T3POUKf6ouIMTU/Pce/4AH3zOq/iJ0VuIlxPsvVdz8cvfw5VG8sh8yq7zA/Y24SPDN7ORXszld76Nulsn//LNHIsT5p+xk5kdZ3h694M8uG0H937yIxy2t5M89FF07+v927yKyC9+Nekzfg1X//btLj2B7zzuvvtubrzxRoALm3RXXXUV11577T/p+izLiKLo645FUUSaphc+O+f4sR/7MX7iJ36CSy+9lOuuu45f+ZVf4YYbbiDLMqanpy+cG4YhQgiyLPuGpKnRiND68W0k1kYxTkgqPemJUEKwmrYQgBQeLRxZMsNG3AFxnDnXQeCoihpLXhDYBia0NNCc1xFtAYFL6I+3U01VUGlqEsyW32UWx5RIzk0vUDOewFSUauKZUsqQKqoR2QmTX+oKLRN6szO0soKzMy1c3WLEmNPNfexeX8LGEVU4ORckGMlS0UFVUNQ8sW9QExNqlQjHdCpDY1wwVk0UMPIRGcnEAFUqiiChZhKa2WGKYkw3qDNdOWIqEvqMtKI3XSNQ51irBEfCnF41pBtYIqcokoAiUIytY1r3qJRGWkEe1vHWAHZigqomwgeP1bSdFFRATkQVhgifUxmPECU75IijIqBpUiInObn9AEElWBwUmGQNt+WjNYxbGB2hRg6vNMP6HOeTaWr1KUwOR4bH8QTANALoN6dZyLoMhcOpnFG8DRtsMmzm9Ko2kY8ofYP1bp25JEB4TYjHesW2fI1nP3wn917coUw0gYfQBQwVjF1CAHhpUFJQD3JW1zJ6QlIpj1BwrjLELsb5iXdPw7ste16YuDgJrAx5Wj7EDUY8PKWIiYD6lsS1AjmRgndSomWFRTEkIhGPmbF6ch2jlCWMPSaV2CBEmgwbSZx3E+XUSBObHBfFUObM57tpynsovaPvFVVQQzlP4D0OgVEa5w0EA7wHTIAQHu0sWkqKaLLgnRMIaZHSIF1I4DwjP3EreswLCCZUUKMFUZGiRJvEh6RKsgCYdIPoXJ9jYidKwKGVZaz1nJ3ZxW55nuHODR4pDlFGDbRPSPwagZmh0TrB7S5g1iTUnaAvDSIIkT5nY2EHcydLBsJiA4lQE6Na6yR6yytMCEiDCNNIsKUisiMQTZpVhtR+y/RZon2DA6NtDAKNlet4HKeVIhCOaRy6GiNQBEJhcHgESQiHtafd2iRlhI92U8ZtTKGx5YD7vSX0nqdVTWK5gVOSvR6kjDnZbHHKDjg3pynlmBBP7Ay7MOxwMd4A3pLM1hmJiynzWwk9PHXtHrrNOpnYxSiNEXWHF55LplfRZYpYGvNwkrCCpINiaGMqZ1hzlhWhkEJRkxltSkKZIY1FhA3aQ0MQhnQ63x4F7sddafpa9Ho9brnllgtKek/gXy+899x/wye4679/hKTZ5qmv+AkWDl1CECdkgx4rxx7g9D138OenluBJ21j8w9/EFAX5zgOMioLtYoVXuQeZkl9BHS3JZchbMTRaFSvAA8lDnA2P86r4EDjoHW3ygodv5LanH0HZRZ720MPcuzjLC274Uz7/87+G3THD2/7Tf0C+ssvP7694r1uDhTuonXs2t85dySvOXsZg+9/jgdX0heyNFWn+Mg41b+D+7gISx/r6KnsXtuGO3sWbfvoXuf/Jl7P31i9wIsvZn3z3U/T+/NbPw8J+Xnn4Yr6vPMz4us+g9h/AnV/G7d0LwMrO53DDyl/ywsWX8OmvLPEjSz/HDRe/j+sW/oLnn3kTj7hTzF3+d3ghOfeln+Jdr7yI55z7Ek++6R76U/Db7jbO1hb4y2f+EK+6/noOTp/jU53nc2X3Ju7KXsGxc1fwo3tu50+WEwbFCgBF3GG9+Xn+7qUvZKzH7D73KC/4/DFWb3GoZyW03ed4TudyPnW0yeZN17P9oicxevLPUM1dig8bqNEy4aM3ED/4YaLjf8vgxf8v1c4rv4Mz/QS+nQjDkPX1dWZnZy8c63a7/2TqZq1Woyi+3hMsz3Pq9a+aOTYaDd75znde+Hz11Vfznve8h7vvvptarfZ11hhFUeC9/0ftMUajx+89NuxnuLpiplIop5jyXUJfURLjhaMUjm6txbg2Yvf6Nvb7BlF7zJIuSIUjkJJSVZwLDV1aHKwUUmhSM5Hv1UIhxzuRtsRLSV0POd+aIo07GCeRDuI0I3AVg4Wd2GqO5ngZE4FDEcR1rFyhpyEtFylaMdu7GS6K2ahtZxnFLrdKZT01dZqRrnG+nJ9EfTqm7QWmkmhXgvSErqDZSxm3KgJTEm5YhM1x9Rr9sMYw6XBxUXImTbBhxjCewSc9dmY5YZgyq8+yVh4g9JooOcA2cy/zZok72A/MorzFSkHPxXQbi+QqIDKKtq2RBgL8KnkzJNx0xGWGUBNPKIdkGNaphGe90aSSgmaxyZQzNBsChyfuF6y1O9SMIVcz9MIxYSOk4ccYk3A2msHHirnxJoFzVCIkCxoknZR0DcBROUuhJSGWjbDBrKzYsAE4x6nI0GmOEMqzadq4OOaw7FKOEo6FiyzkY/BDakoSlDlFvsa08vS8QoQjZB5QzwakRpBsq9hhSur2FI/SJhk4bq93sUHEfBWgq5jQWZTyNFWPvp9DOodwAunAC4d1lrPNGbJigUhBND5JmK9SBosUSYnzHidrOJGRG4WXk+dFCUOlQ5CeNJpUUBJVIVSFNQaLxSd9MBblBXEzZK2cZ6rK0BlYP82OaIoH4iY5MSu1abaPVsm9ItYly1FAqyip+QqwQEDDpcgqwkXgghqhrCiqgDC2SOmo501sWVEb99iYcYx1hK8koXQY7/ARiLEHW7BYduk0S0ZqjvYdS0iR4doOp2NapcHjyfU06fwClch4VG6j3QRVznCgmGOjWTCH4cxUSE9HHA6bFCbE2Io52yXqOcbBDLv9Jg/LA0TC0/IpYxp452nJJTbcRaRC0Ku1sGjIoC4y2nkXUWnm6XKcHSAlwmuCoI6lh5eWnompOcGUGDD0E2GYLpP1J1yBe6Ck39xPsL+LkUPEiqcMQlIXkVQFnXHBtBQEYkzU1Fg3BcsjQrWJ0n02piROaSIrEGRYU+cUexgYwaY4xTbRxGZjSm/otzTtc4qBCuluBPTVJrVqO2Fm0f8/e+8dZ9lR3nl/q+qEm+/t3D0dpicHzYzyjAISioAlMjIG29jGNi/B8Fn7fVde7LXNYvu1geW1XxbDgnFgAdsYxEuQBDICIRCShkFxRhN7cujcffO9J1XV+8ftSZLMsrK0YFu/P/rT99xz6lQ9dU7d51dPCnzSqSILYTflVsxkZgBBjeXJTuJSllZDk5gMviiRUi6z3YqCclnNIntkh5fkmw6i0qJSaT3L6vrjo68v/6zHnxNpeve73/2MY4uLi7z3ve99Ls29iH9DeOyrf8/ub93F+KVXceXPvw3XP0squpaNsmz9Zi645Wf54N7DbDq6H1OrYLJ5klyRG9L7uLp9D4gcR3Mj6N5pavsvZ07kGChkWFkPuc//GFdNx1y75UnKE3lOpcf57K/fTHHuCdaKI8yOjLF28iQHhgS//N3v8Zc3vJTP/8p7uKz+P3j70e3s7hnm6/kqpb4aD82u4kHRIh65n3HVJPu9rZhL+mHPIsuXr+LJSot8UGV+bo7Va9axd+9TpJt1LrrpJtQjD/Pxh3/AH9zw0p+gtP/nmDt6kO1aMhI0ue6Gn6Hx4Q8gslmIYwBWZk8xTS/TK9LEJyNM/XLG9VcZbKzi54+8ihWpXmIRU858lmJpjv37rqLhnOSr3/wUX2wqlHa4eHmb7rjBq9d+gNv2fB2AD33y43znkm42laZ5ovUqHqn9IuPLHufa/oTW7hZ1W2fEehwIBuiykunSHhb6N3HPmy/guvseYG5nQmG0zXj1KdL+1Tzsv4EbX/v+88amezcSjd9I+6K3UfjG2yje+YtUb/008dhP95y8iOeGt771rbz2ta/lxhtvpFwu86EPfYh7772Xt7/97T/W9StXruTOO+8883lxcZFqtXpeAqNWq8X09DQrV64871rHcVixYgXbt28/c2xiYoK+vr5njX/6lyBeaNG7sEjJy5JuOkhm6crMMttYBlKQOA4LxTpKGDJJjnrWYpuKvr7DHGunaSVFmnEetCYn29jIQSBYZxb5oR4mbmWp5wtYeYQk5eOwQFP10xOWaXg9JMrBtxEOCTmZZUFKZrM5sk5CADiRpN+NETZGaEFsMmTkIt3NOq7Kg45wjaRpDTLdotsLWIjHmRdZsDmkShCVKokX0y56FKoBzTBLI0iR+Ibl9IPViEQgfEWvW6Y/VOxNuwiRJW+a1IfStNuLlBLLTKrIFL0M2jkaGUs0tZdsNAtqiERZjuQVI+UpYn8MhMY4abR1aXiSWZXDyiZ5JemOa8TZMg4eTixQSURc7MGnSk1LAjxKiWVNUKXPLZCNIrpEFUynqOYR0UdLKTxhCFxNW1uENmhlMFiKBFSdLIkxEApiK6m4RaQMycYCFUNCm5TfxGRGKTvjmHqVnEwYjivMqCGscVBxDdyE416RTUFIYKucdIqEskDbarS1OEJzPJNihTpOKWqTdRQNkcPmKnA4S2C60cVeXJvFtQE6UlRUBeHGZB1Nf3yAjKvZ7ndTMS4lnYARJBgmMwlFN2GlfYwjtguTTWj6GdzUDO2MIpp3SANdYY50qkwtcthiyuxyV4Lj4YQpbCai253HOOMUzQJ+EtBySrjJPDEpHOEwWyzizzZYVzlByy3Q6HIIVIJxmmjtUcZjVBiaMk13XMORZbRJSBAUMGRtFSdwmY9KJF0dC/O4alIWTcpyFcucBBP0UksJQldCpClmpsjUQ6qhpCVWU0n75AODTgbJenWMyJCV4wTyCBaBtZYj3b3kWg2ssEibMO8W8WOJHyb4ukJdpzBek2zK4vurmHML/KBrMytmFjmR7mIoOE5eBqyiTIiHE4MUmvVqmu1iHUncy3whj7ZptIqxRpF4DvV0H9koIVaKQhTRQ4UoECyoIi3SpOQCrgiJRCernZaWloRIQV8qJAhrJKFDWiQUWg1s3CLo80nZOk4mIbaKRCpi6XCpOETaFqjSw1zPAseChISTFO0kU6VFsqUsBesz1xqmFFbB09RIM6HyBEmauvFRgUscGxZzg1QHujme6aFtwKuWadJNd1Pihg6zUYIrQ06WJNVleTKqSrmlyLinGMjXmAsHmbI+OC0iN+SAA5v1LKHtx4SSxITEQftHrrH/EjxvFSS7urrOq7X0Iv79Ye/997D7W3ex7tqXcc2vvPs8wgRg45jk4AHuf/hh6gg27dmBNJqoZ5Bbo29ybfsbNKItHK7+Dge31Nkpr+Lr7TcCMNmXYrD1AII2t5Y7u0DTu3ppj23ln0Z6iITHitZRLnnyKbasG2V03SZK+/+Jd+2+n2L3PtalBEpb3llXvL4W8rbWEUaQfIoFPqzeQ7MwT2FoD0eemgADhc3/AV/GOGGDubkpBgeHAJienqTvJddgpSS3/SF2NF64l/P5wIPf+DKnBsd4+VBnFybe9STOBZvRhw4CsDp/goPFrexqP8lYdpzdR+7m4qnrcM1xhiuaS5ob+Ov+LzO7eY5jj62lcmILzVSNrybLyetBgg05bgsf48Blv8uu4lq+cOMrKXeV0G2JnM1Qd+YZzjzB5r0+341uZsOaMs2CZSGeoleneUiPkKmtpqS7+M7wE4RRwLev2sri6BCVwxlShYR1apZTExPce+IkR8LoGaUNdNdqKm/4CrprDcVv/Dpqbvf/djm/iBceb3zjG/n4xz9OLpfj5ptvJpPJ8JGPfITbbrvtx7p+27ZtTE9P88gjjwDw2c9+luuvv/48S9HCwgJvetObzvyWPfjgg8zPz3PhhRdy0003sWPHDo4cOXLm+le+8pXP8yjBLtQxCKSxCGswWrMuPkTiQMXrYSHXhRUakaRpuIoGGutN4tgAvUww53nUnRRFUWc8mUZYRWgUU24WGXsMyT5GswZbzGIdQ9aLKYoGRV1nTXiYrvYsOVXlWvcpBDE1L6ZiMsRGMdf2mIt9jNEYJCkFjoaGWInVDt1mhoZ18EQE1rDgdZEdoJMGWvgoI6knWU71ZKmUNHUhmVVDVDwHE7UoZzwOdW0gbWJSScTN8kFe4kzQnakDZqlQqEHJmKIKWKsqmEhSi1xmsn3IOEecGDAGYRLq2TL9ehKsZTCeodLOg5PgtAVCR7g2oU8vMhRNkvYXiVJ1dGoWmVhSJgRZPVOaNJvEFIIm1eIQUgiKUiNIgVVgYZ3ej3UsVoJbisjWLDISWAyVTIarwodYVT2EE9bwwgCZQNvzkKks/cZSw9I0EEUSDCiTkDOaWFpiJIPhNClXI1PDzPZdyHRpeSeeyXRSxmsh0HaAtnXwRY2+aI6mEGghiRyHuk7xLXMhjw2sYSGXYaKQouZ7ZGyI1DFGGAwGawKKmTky3adodpWJUyFVH2aLBWIPjmR8fLeNyQfU8oLE0ezPGFoSlLS0U0USP4ebalHI1FjZnkQJQzYO0BiUifFo40QpKm6OismRixSyUyeYoaTMmDiJxdIuClKuS79pY60iMYJ+vYAfGhLR8YGMjEJYgyum6WnVkC2H7qRGRisUIZGBhbbDXJJCCZdZ0UVDOZzoyXC0dhEtR9FwJa4M6Y0WcbwAillE3aFuM9TIMGf6SciQ1914ThfWKREYj0aSQhhL28/TU6gxaBYAyBfbLDOL9DFPQc3g6oRmO4OcG0QG/TgkHE2XMEoRlgqkRURaNsnpFnlbJZWtM+ycRImEhqdIZIqFXAbHb9LWEEkHHIe2n0KLmASJ1pYud55Cdg6ve55Vxb0EGUvoCPpEyKAOmZcFmvkSxaIhRQtfRignplc22KCepF1zedzZzGIpi0kssek8v9Jo0jJiJtNDpbWRRmI4PNjN4bXdJEpRUnU8r41UMQ2RYXnhCCPZeaxaxNeKWAsINHk9h9aCGIm0CRnaDKoZupxZhp15BsUiI+48494i48kkXdk5TOYYJ/IBp2gyITRB0eCXArTSRLKFQ6dkDEITCYnRmpnqied9XT6N52Rp+r3f+73zXCK01kxMTJzJKvQi/v1h/tghHv3y5xjdchlbb/vlM8+HTRKiHzxM+I27iHf8ANtu8eX/4zdJbygwMHMC7ad5Y+Ve1g2fYOp4H5WHZmlc899wHEt93/Uk8gCwjbjosafyKD9fb/CS/ibfPz5OuJiht/sEl5yIUGjszggcy0DXvVzS6OKVa2tk5h+EeWjJFFWnwMbgBFvaBms/xkX+d/mN6K30nizzofX/mfeNfx732KsxXV3ouRLL85p9QUIQRriuRyqVYmrqFBs3bsbZfCHX7HqUf1issjX305mIoDp9iu2RxkrJDV1FTL2GPnwI/4abiCf2E6cdvJQhfeUvsPPA77FBbyRxpuirZkmaX+Oi0bey1zlMO4TpXa/pNOo1EcZgu8YIugANn7B9pHc8xcZVY+weXsX+Fau44rFH2XhqniDrcc2yv+WzyR+SeaxAvM1j2UCD5tw8o6XV+MsN03s06YVr2H/1q5laVuENu7Zz52U3s3xmBW9TX2FdfYonVC+fv/9edlx8LSUlubGQ5dZinkuzKaQQWL9I5VWfo+uLP0Phm++k/LPfAC/7I+XzIv51YGZm5sz/AwMDz8iyOjMz8wyX8WdDKpXiz//8z/nDP/xD2u02Y2NjfOADH2BmZoZf+7Vf46677mJ0dJT3ve99vPvd70ZrTbFY5GMf+xi5XI5cLsf73vc+fuM3foMkSdi4cSPvec97nvfxNkKPflnFSI9aXrDoeFyjD7GdGifpo1cL8tEsvckMq/waDTOEaxKINTkRELoK1xp6WSSWCrEUpTOZ8wnaAT1yL0XdZkEqEJYz5cS1JAQyusWYM4sNJDNNvxNYbySB8fCyMUhDgkEJ6LPTRImPcdIsi44hjYcnikylS5hUix4DWkPNTxEkLulWRFzSrNBTHJJ9ZLRDxS8SuZIbyw8ybSvUgi7GVJ3ewgS+myZozfGoHCZjDYGFotvmpeoxulItmm4Po+05Sm6ZAS+ir30cx2j0kGKZmmdK9CHQDObLVBsj9MdlBk2Zo3INOdVCUCeygny7iRUxVdcHHQEeaWnJ6gZGZMnZJhs4RCObom1dalaxIjXHAXqQWPxE4Dgt1psJTnZlqDp9aH+IQKXJxbP49QhjBRhN3lQg0rihj3QMAkNPcgwdxBz1eigLH+NGWLdNK51Fu4K+KCQlW5RKsziNHiKtcKIMjl1yJEwvUjO9RJke+qMFZuIWdeGh0CymizgqZCQ4Rc1LMZV0U3BqWCBNlT53ljBJUxGGBS9DKVjA+hZXJIzFJ6krRSIFipiG32KlPoZWikRoXKGxUuAlBitjXGGI/WUENmYuD7WelaxJn8Q51QIsW6pHmfGqEIDrBESJwsQaJ05wVBOddsmYBiJOGJAzZGmzb3kf1xybYRoPDKR0yLJUjdXJBDU2wJIM5snjJi6JTpMQEkmJS4KyIbQUca7NkWKJeRWTGEFbalyVw3MS2o5gYKkdLX2yMmRQT3LMXgjap0mawyxjoOHQcgTCuFgEWgiiRNDC45rkONlEM6NTlEpVRtQck8kgRhiECImNwIQFaKcJBIi+EN9KTKLQRiBiQypKIJ0QF12m8wWy5SazIs9cpouUCtCRwFchNZPGM4BwqGcKIBNsS1Nz8tSyGUTaUBQtYtxOIpllPsMnFgmwZL0GjgODfoUo7kFJgZsxKC+ht1HlVGqItQuHOVBbRZKChuvT8hRxpshiOsL6LbymolZMUwlGGW/EpArzaGORiUE5YABHxAzaOeKcIANc6ZwAI9HpExRJcLpyyHJCHDRYRo288cCGiIZLqFzm8oOMJrvoOREyEGYwGUPdCHZ3FwmX1VBNS7ZucJI0Es2gX2ZCa7CWcqvxzIX1ecJzIk2Dg4PnfZZScvHFF78Y0/TvFDqOeeDTf0Gq0IXzhl/ho3Nl5qOYnkMTbPvi51i983FMTy/zr3gF+/oHeHjzZWzb9ygqbLN1fRfrxAnKR3JUHs2R2ngRx27ZSbJYov+Jh9mx9nX4ShB4Fr89wfV9I5Tbh1gZzTI5PEhDWFYuTLE8OEHhaIPWZR7SF6xML7BPj3PoZIq0l2PPht/kI+tHCIXhtw7u47bpr7BG3Mu3/P/IB6fexCdW/Aof7Xk5HxxIcXLmAKNsYPDy29jz4P0AzM/NMDi4jOnpSQD8l1zLio99hD1HjjK/rJde5zm9Si8oJh76DoeWr6dbCjalfZLtjwLgbLmI6tfvwitppp0+DqUjtNVcXH2IyZlfJa5/iYt6rmOHe4gDzhTdOsuh1F4GTzTpm4dqLuLUeJo/0Ic5GfbySLiFmcIoNx8kDLnfAAAgAElEQVTdQSWX545rbuaKxx5lbKGGPZjh1LIhYm+RVGUNJ3ddx9CGB6icnEEhUYWneKp3OTfNZLh2xy5+sKnBP150Pa/b+X0mB9eyKFbSP36M0r42r3zg67yr1uCb267ly9bypcUqV80c42WLkwzbhGxXD6sv/SNGv/d2cg/9MY3r/vQnPAMv4vnAS1/6UoQQ/2zxdCEEe/fu/bHa2rZtG1/72teecfyuu+468/+tt976zxZXv+WWW7jlllt+rHs9V8yXm4wLD5s7QTOWHCVNTXeTpYbyeljQHuPxIlhBT+444YyH01NDJOAqD2E7SouVCmtlx21IaTY7R3lMrqQqwE0ChPBpWp+Km8GVCcaNaOlOkXphE4LIsDY4xG6xmkSmKcsMK8VeRpxpZm0BKcAIQy4JES7kqbFoe1DSIkWKgfgYrchBW0vauITWEBOzMplEC0uvaLLoDkDbkJIRq+QJpCuYCwrs7xtlwEwTakkLyXo9waS9pDM2K2nFaRZNgSE3AaBP1NncnmIkmkILSZj2yKZCjLUII/BTETQSxvQp2jpLnjKBaNIEVrBA3c/iReCIkFnZS49q4Zs0RklKcZllcQ3lKrRNga4TIAiNJSVCFoWPVAbPSIbVPFkxx95kA4kjcUTAQHuBVlYxlxSxicJI1amxA4gkQQrDdD6LCetcII4TAQPeAkftEC4RXU6ZtnYxRrCtvotADrKPDXQlOTzjshAbbFvj5gNqqxTDNkFYiI0iQeIvJTZYRhkbn2CH3cys301XUqGXJis5hvUEE6ofYxxC5dCkGyNdhNVgwQpJzgYsi/eQZ47IKpQrWe3O0CXrtOQwViYk0qBUhDWQcVukYkNvMocUWdbIBYJ0hQUK+LLJyWgQiYO0gm4VsCA8mn6OyLaQQDoJydgQX0rSsoy1/VgsFkGGNq4bEUoXYSwYSdtNE6YcVODQkAJrJYOOxZcuRvg0ZQPRVcbWJdZKYjRDffvpdmL6jcdTqQwi6iIr2ww5C3RJw3B7Bt+RaCkY7p3kSa5lwCyw0l+k0lYcFzlCpTBaEhtF24J0DGmj6JaGgjOHFopqlKCkS8km+LU5+pI6jzir0RrakUONDL10yoJUpUcqjqhkFEHO0sTHdzR+DK5xULFCJpacaNFDgyNJN6EEUpYpv4eKyNCr25wSReqhpOR24itNqc2G5AQN5ZFY0THrWUtLeDREmrxeZH/PehA5sDVyskWIC25CJVdCuRliqTFW4GmXOJXQ9vvJzgXUW5IF0oDFCElZr6VQizCqSkCVWBkez2YJVZuDOUU2G1NYCOiaDWkGgt4YXL9GTICMc8z5Hr32JD1HFslbgfIKNHN9ZBbbDE351JIS2fmAodpxypkU7VGPHlGllGrjOGAS/YKtz89bTNOL+PeL3d++kyOJ4eGfew/7piooayk26lS6Bvird/426xtlrpzYiV8rM5EtoJVi84HHUVJwubmbericqUc07s2/wL6RCbxilb17L+bK2xSHDmSJCopUuJ/f6o6J8mWO2gwIWLN6D6PHZvnhsZfTf3CK/FUhG8YmOd7u4s70q7D5Hi6ufJntc330Vz/Df39gmH+88KV8eO1GPrliIzdMvZy3TL2f9/E5Nj2yj9+84j/z6Y27eM1sHhFbhja9DP9bd9K2lsruf2Jw2eUcPXqYdruFf/U1tD72EbbufJRvb9rAz/U8fymHny8c2/kox1/zNm4qZJFCEO98EpRCj46hpiYpbaizd/RWfjB5P3ltuN/r4abjJxgbL/Kk12Ze1sjkp5g8dpgtMyli1+HI8gIL1+T44FM7GNan2C62cfN3HuDUWB9PXHghtz75EN+8YBvTvX2UqjXuvux3yC6McNrmE06MUmn30dYd98CL5vaxdShkYm4z46cGiNjOvtUNvrzlGn5t93YeaG3gNbnDbDSzPOQtp+urX+Btn/8st124mceyLmGzSk0qyp6PF7R4HFg3fgs37Pw8zoafIxm46Ccl/hfxPGHfvn0/6S78b0XcCHBTTUTW0G775FttwoJhPJjhmBwm68WUbJP5JM/RpJepFT6XVmrkleWYCsnbgKZKkwiDQCN1gMTguIJ8ytJUAXnRxNEO2giqJs2os4DKCJ6orUJhUSSUMz49osK4naItuzkqBxAWMoSssNNoL83JMIfSITknIkNIWRik1QhcjOlkNsuYhA12F12pKo+0NyCNwShJxlqmQ4lDwpg5yf7iCqJE0S8WOKBH2ZNZyXiwgBEGLWOu1I/wXTbTiHqIpY8UAmNDLBYfKMQNsA4JikOZ1aTcGNHqZCHLyoBhMUvKMRyKi3TZCiEujrX4qQbTqkjsZtjiHqEalmgVQLtlFF20rUR5Ft8JEbqIIqCTKqIDITWJTOixTVSmihNlGdZzPJrpI0WEBhSCdsqn1UjjGMm4PoVXKDAanyQjBCfawyRFh5JtgTH0qCqrOMGC7MOBjpUKcJKYkiyzOpxAJQFpJ6Ll9iGwZBt1RjOzbLALTIuzcXrNxKOgDJGbRVlJnog6Ln2mjMEDHePbNtCPFWCBpnaJhYNZyrCItfhUGZBV2kIiEQgBUggiFGs4ygRFYiMZc2dIxyGxNow2T9FGUtXduMaQ5LP02wWUE9O0OTAWIQUrxSwTIkdiPALrkKFD+iIE4+Fhqq6HQWOBRYps0KewLrS8JkpLAr8OVlBQMbuzK9nozRKEMC3yHFN5WkpjnBzhYovR9jFmnUFEDrTXQhoH32oO1QZYHUVIY4jdEJ0yCCRCWFb5+1GJYbeMOln2FKSIGDdTzFqYcQYw1gCKdALlSppa5JPzEtI2oSkAJIPMEekIxxiKtkEzzmA6aQUpe2lMKkssHDK6TSNOE3iik5wCTTsUDIk6iVVoUtRDQZEGxjq4jiHyS7haIxA0Y5dIno6+0RAldEezhNIjExpMaLBakPIsdekxk89TVmly2pAqL6AQSKvwiTHGoIWHE8YI2jjaIes2MSokZwRp1aSR5NDKARKsgJppUQli8vUmI4RkpcfIkR4iZxpPJ7iOTzpQeI7HgQtGKS5aunoP0Qwke5xr6Zovo5qzeKpFUVkOr+8FIjIFSB8pki7HOM0UMpWjqBsYPNqxR1NqhlMVXHO27t7zjedEmtavX/8jMxZZa/+Xdv9exL9e1OdnuWPfPu6+7V3kpMN/evh+rvu7v0GsWsVjL3sFd3oZHlm+niMXvoT3+nDX9BzFepW+8inGc7NE/iin7ghp3CJYvO4LRLUhZJhl3cAj5B7/Uw5iiLuy3OQ8yYjXxBjJk/dexar6fjZceZxTy+dZ5z3IpYf30TvW4K8GX8+J6VGUNvzqSy5i6N6PcKpdYuopzc6rH+bnu+7kpV/dyN9f+Z/5yvLL2N77GX77yT/m5+NH6HnknbztwtvZNjTEcA0mv3ovyyTUo4CF40fZsvEqttOJa1qxYjVybDnX7XmSz9de91NHmupzMxwUipbrc1WuE7MR73oSZ+16nvrm3aywlkxXRG79q9m1+3cZSDQX7FrH4NaDHC3fTJsGmXAG9k8zKDwOLd/McHQ9PYUmbzv5ZywPJ/iGvImpvk1c895tOH/0YbLzFe57yTW8bPcP+M62q9l4fIhse4Qoe5g3ux/muwd+kfm+K6ifvA7tHicyIWPRIJ+x+9kqN7I89tg/82redczlr16m+MKarbh72iT6HsYvL/DwXsvchSNUetbw1IkDpBcTLlxskNxwC79/9cuoBC3efPAxDuz4DlPOJbz2nt+Ht3wF5Is15P4tIAxDvvCFL/D4449TrVYplUpcdtllvOENb8DzvJ909543+IFhorePNcxiBAzLOm2bwnNjXi5+yIQYJ21ClqtOPGUxqZMWhobIMdI+yoIbg/YQ0gAWlUuh/JDYQESMsoA8x2pnITYuaSdgtTOFcqJOLRdt8IVltTfFISPJuqlOYjJrsFKRJaZtHEIM49Eh5nAwwLCdpKF78ESCJy1CwIhaIDQwqObPEA6JwbExPbaBFALXdZFAIB1STsiy5gKBUEg6ZWU8EfNS90ke5cKOS5aFStQJ8B/V07S1w5xXJOsGtBOHQLuE2sWXsBgUyKoIIVwAHFwioXCERQrRkZMKzogkzPg4MiaMJalUxIhbIbIddUkgiDAor4XRLhiXkqgTmYQw7NSzysgGyzmBti5B4uE4BikksSfpktN4YZ2y04sUBiMUVRRC+2TdNjI21Fpp1rvHOCViklAzR+f3pR5nMCaFNk1wI2LtoqWDomNxixOPWKSQxkEi6VINFpISoXGJHYecabFV7KRKlhmKSBVjY4HyYjBgsWxwjyOsQxvRsVgCAkvaOUoBS2A9XDfBiM4zVHNyKNk5x1jBsDMJjsBaiI2glaRwU00aSR8p00R6nUTXVSeNjjr3XBAOrcTBSpBaIY0g0C6CFMYRzGU7qdATK5FLcVoCKKZPMRd30emKZVBVKYqdaNmmIQv4ToijQgqmTo+uIRyJxJIJGzTaOTJuSKPZj+81SazEYkksOCKgGvuMuvP4scYaQyXI0Cummc/1EJl0R15CUjANGn4GYQ1adNwUNS4xBi9doR2kUaRBWLQF1yo0hrX6GCftQMfiI4C0oeWAbRkMGqOhrjJoASQhw2aBWIB2NNoYciLACI3WDhZNw/iknSYkhY7roOnMXWIlI8EpwBIYj7SAhtOEXJZeYrrsFDEuGQcGkykaxqNpfRIhESRIDPnJeUSQYbPI0zZNYhsgHYGhiluZxyFDUUmstSSEOFhM26MryNDjZkgrgVut41pFb3cB5VmUKNJKFVk200VONEjKaZxEM6AKSLfA/EAP5a4eckELV/tgPdoFwcmNI504w5rHqJGkJ8ukRUQYK/rcMtO9JYbOcel+vvGcSNPv/M7vcPz4cV7zmtfQ09PDwsICd9xxBytWrHjBXRdexE8X/vJ79/GVG36WjUnI+//0d8mXFzn0C7/AniTCzE/zlk0X8Z9WDPHbc1X+qB1AVy+f/N77ORBZ+kaqHH7Y4BQUcs0GJr//M4y97IMcqOW4+sRrOKpTGNqYossVYidCWI4f24KdiZgpF3jZjpDHLr6QK3ic3pVtti8uZ3dqA2kV0TPzOH3f/jQURrniP/wZd/7X97PmkQzhasHq4n5+9y8+xORr/i/evynD7Vd8gInv/g/eF3+Wj+x5P+/d9D6+9MAohD7Z/mFE0OaU28drD3wSKdefIU3eZVvZePfXeLxap6Y1hZ+iAs+T+3ZydHQ1AFfk0p0kHHv30H7t6yjv2M4KoDmQ5djxB5hSmsGmx4b1R5ms3UxsDd0LLYK5k0wXE+7bkiUeeQNvv6fGyvQdbJnZxXzf1fRt/QN+cPeXeTDYz/rL0pS213j5fffy7df+DEE+zfTgGMXK9zh8hcvg0Sk2Vb7IA92XUEtP4QcXUIlmuay2no+v/UfWRBeRO7aGHi35av80644e5oGLLmef2sYBVjEijpDxruRgo4VuT7D8kiu5/JKrSb50B9HnP8dn/uluHnr9m/kvF1/DBWPrufVrn+KLjzV55aq/JP2Sd/5kJ+NFPC+4/fbbKZfL3HjjjRSLRarVKnfffTc7duz4sWs1/WtArVVhWXuR0FOAZSHd1fG3IwEso2ZmKSFCB8uSORKpWIhzhMoy7C7gS8Fh06kpJZQAKYiNRBtJw3igICNCKmTxRCeTZjtxcVQCwnLaE1IiEcJgpWFUT3UOCokSisTAWHqKDAGBtCjjQgIOmovELpQbwTn9FFhC10Nag4NBCs0KM4VCYoUAL0JhcYRLGosQnfEjOimrrZWkbUCfWQDZ2bRNTGfNLdoWCMFckKXmDaAIEdZijEurYwBAKR+DYbk7SyPqpik69m8HQbeq0hTnJy46HQuWERE5GdIwIGSCJ0NUqgXW0i3rtKxPVrbBOCjR6Y9HjAWGxAKzIkdHw7YI2ZlDKSxbkwNLUgGpEqwV5G2IQoKFWpQhl64h2oY5SkgpMMJHC5BuZ86aMkF0JIixcMAu52T3CrK1ALCUVJNFUcRage342SGBblFnhiIIS+D6xF6RQVvGWonUmkRJMIZ24izNoaWeuMzYzvikis/KyU1hMYx7M0TW6ZCsJUIlsBgBYTrAipNUAw8Hg0AsFVnt8IXJVIHESAQCKyXV5LQ1S1E33Xiio5CzZAkTSgOSPAFz1iIQCCQITcqGKBkRug2Ksklb5NG6QV62GUkWOEUJsKxqnGCOQRyy5BudpBLSShIcpOwUgc2KkIzUlP08YFnBCZarKYz0aWXzaNmRz3I9hVQai2JzcpCnnFVIFbMQpJaoJxhjEZ27LG3kmQ7zX+p92/FpaQ8wSKkR1iJ1xKBzjNXJKQ4xtuR6KxBCI23nOQIIrAE3QpmOgFwRn7FOhtphVE9i0CjpUNMgHQl0NjQcLMa6tGPQp+cPsPL05oak0D1IWw3QpkHYGsBqiZadkxJvhD4B0naIrMXgmZiUNJh8GpuBIKUwqy2WkEapgONqJBptDaYt8FSLVtrBb7XRjkVGkv4gT2ZOYk1AqekuWTwhciyzeYEVgrZXwE+1scRLfe3EUApd44XCcyJNX/rSl87zCx8eHmbLli28+tWv5q1vfevz1rkX8fxDm4RjjWOcap2klTQB6Pa76U31sSwzgq/8/0kLZ/HNgwf5zKpLWL04w5/86e8zeemlPDD+UsKgxZo169m27WqKxRIAfzI/zTsaVf74xEfJz55AimUEow6FL2v8Lbfyd/PXctHovVgsTV5B18wN/BmdnVS/ELOsPU3s+cxNjOG0DzLQbHMiM4ZzvMRK2kz2+5i+EdbPHWF+WY5f4geYKGDyqv+H9NBarv712/n2xz/Iie8OEmydZsMX9tK349v8SXw9X1yzl09c+ku4OxJ+t/UPzB/+EE92f4xLyyNsP3IKp3eQRrEbe/hbXFwaYnKqE9fkXnoZzv/3RVYfPcgPV45wY+GnJ/HA5N6dHF9zGRtSHj2OQ7xrJ0QhjxXyjC0uolKGiWUXUDjyGRjo5pqFIjOZy2knistqPeyZ285M1zj3XPFdKvn/mw3liIxc5NrG/ST5MXjNp1juF3jJ6m6+fxAO9N/IirX7GK42yC12E6cN9eITrN/7AN+M30SCpK9vgf6Z76GHX4bqPUC5KVntX0pvXGL34D1sosWW41v4flAkW/sGblDiwU2j3PbtV7Ax99/wVxapHncZqixwzS+9C+m6cPFlxLufovnfP8pVf/1x7l72Vf7iVW/kk69+B+/88v/LN770bV6+9tVk+4d/bNlZGxNGp4jC42jTAGtRTpGUvwLXXfZj1wV6Ec8vnnrqKe67777zjr3lLW/hpptu+gn16IXBgqMoJgpPdqwiHUXEdpRuFCkCzjqHQTXKEKs+AuUhEORlG2vOWt46CmanFbEUEwJQUG1yYhIpO0pdbCTITiyAEgr5NO1gSe1GiY6iaKwgJzvKOXQUedsxeKDcZ9ap6lQ+MigpyMk2DZPGcxNC7YOIOa2cF22DzclBbMc5qnOtWIqtAdbKifPGz5J8rAVhJY5QZ8Z7LhKpkGhSIsKhziwdC7wjDANOE2g+rb8SoRKwHfnkZMC4N0NaRbCkkPoyYZWa7Zzjnq3h5QrNOv84VnvMkerIXpztjyMFSpx2n7JIYdC2028pHaToCH82zNFNhTF3cckSwhLxWqLNolP+ygIYWAzybNi/m6PZ0bPjUJrT6vrpkZ0nOwuOUOREhMCijaLp+GBDbPS0OELRmaNzm1hK+YQnNJ7Qp4cEQDtxzjw3HcIml1jP6XY7RDLxDURLhALReX7iziiFkxAlp618Z2WGdfCX7l9SbUqyiZQRJlQIoEc1kEIxZBY4ydmi1HKJxFgsQilO6gLZhkCq04NyMagz92mlOs+7YMnQuvSNUT5gcU4TIAA0aau5PN6DWSL99vRfFSNV5wWRwnYsakvjkUJ25lwqBBalOkVnVag7LpPeaSmffZM9IXBF5z0//Wx5wjDizpMWEfpcWXGanIFQyZn7ck6caKCdM7N57qYMwGyfRLuz6NClnopphF1LhYwtA6kyKStQ57SlkaSDFvWUwrh1NAkirYiFISREkuA7EcKJka5LJdXEeJZK2sPqk2RDl3zbxdUhmpggifFkiAlG6JMBi8JFJAYrIMwJ2tJHCUWPaTIVdzO9FOv4QuA5kaZ6vc7hw4fPq2Vx/Phx6vX689axF/H84lDtIHcc+TwPz36fWvzsLFwiGc2NsTK/mg2lC7i09zLGcyufVUk8Ecb8fi2kq1HjHV/8NN951a0EQrB82Sjbtl1FX9/ZbFbJwgJP/OOn+cToTq6uPsGHgxsJx7oZuqcfrR7nO1v6GZlMUbjke+xpK27Yfy0tLBP5o4h4lGXOUbJ+nYXj/RQmZ2kBPoInyuO8NvUtGhWPg5cVcO1u3jb/IHISnsiv4/PiOi7/7g6uXXUFwxsv4sJb3sCTX/8SxeE2+9c1WbvnDi4d2sJY8mWGVizw8ZE3MXiqzK9W7uFvu76IW30LWa+PuNUkAE6mN3FNcC8frRXROsG9+FKQkm37d7N969afGtJkdMKJQ/s5eeWr+ZXTrnmP/ZCpwUFONmpcWpkn3R2xqr6Pv8ylkRpKXStZLBe4PlzHzuk7aC9bwXTeEKYvJe4e4/qDj/KKrk+SVprKrX+D9QuQBFw/80lOTm/iaN8aJi65nING0T23GY+Adu4JDmzYyEA0zRE7zOjgFOPuA8zWriWp38B8ci/rhOJdR3+d96/9r0ytHyV77GLWx4qTrZczNPMIx5ev4cmXX8zN31dssnu5e+xmgmAfX/n4n/GK99xORkrcCzZR/OgniLc/RPMTf8FvffLP+bmVq/mnbZsZ3fck3/3Yf+Hlv/cxlPtMFy5rDUFwkEZzB83mowTBYaLoJPDsgaSu00+p9DN0d9+G748+6zkv4oXByMgItVrtvLpIp7Pg/VtC2/UoQidYm9NK2o8m6uWkgCdOE5WOa9S4OwuYM0o2AtZ4k+ddJ8W50Tln73b+5zNq7zP68XTlSsqYswrk+ZBiaRdbagSw3j9Fw6Q4aXvOELdnxZIydpZ0PJssOsdOq8NKSLQ1pGVEe4lAynNIzZmr5DOVq7xsUzfpJaXT4nqn3fYEaXm6jbOK6LmK51m1FpSjMSRnlhIpzn6r3OSfGcf5KNkQgSAnw6XWnz0ZSqd3EqedoCNJK+cAGodnUx6XSLNskpIJKlaAPjOXTTd97mkADDplHKGRMsSET7PIqQirn7622nNo+tljnJb3OcMQS3M/6sxTTvK4GBAxKREx4FQ7JymNOEeWZ64VsN6fXCJTZ+gMFosUZ4nPaQq9RO/PDM8Yg83ELCYZ3KhjPSupp2VeE4Yl+oZyI3QoEU6C1A7CCU/bzJ4xm+e/VQbpxE/7/myPOid33ltHck7fJcJaSnGbld40iVWkRIQ0UCBcIkBnNyikEOSW1gFtz95JShdMglQRwvlfS5IwrBYQIaTiNiVmiFkkJofFYIVEuTDndNN+mqX2SKkPKwWDmc6aEx/spZ5WNHPDOIUqyzKHcRODmZfUnTQpGWCNR0SKoxmfVj6Fbzz6o0VimyUSJdbZkK44zaWtEGkNO9tFFqxmmBqOsPSZMi8RLU6lXjhd7DmRpne96128/vWvZ8WKFeTzeRqNBocPH+b2229/vvv3Iv6FWAwX+Yvdf87909/GESl67CUUo/XYuB9X5Mi4glymRT7bRPlzVM0xdpd38Z2pbwHQ4/dy/dCN3Dz8ClYX1iKEoGUM79hzAGMtr3zqB0xs3MDIyBjbtl3N4OD5aeeTiQPs+OgHefnm3ayqneLvB69B7ot4YGwrR/MN/k+O05y9lK7BnXipBnLiJgYqeT5VfIpmWCQppVkXHMWmoXt4lprIYmWGPWvX8At99yOs5anpS3n80BibNt/H/uvfSHfu53jrlE9NOeTu+DgbjkzQt2INW17xemYOP87kQ5YT151i9aGQ4Mm/Y/G6DXz40Af44fK/54+cX2IjR3hz5YtUxDUM9V5GefZeAHbbLawN/pY1HGBubpbBwWU4a9fxkok9vP+nqF7T3JGDHC/2YoTk0mxnIYsee5SdW7fSnUqTKjdwRzSD4SIPZ0fZUl3JYnUFl8YrKc/v4mDfBXQV4ejQIzS7bmdEH+eVlbsZ8vdTu+Fj6J51AKR3/jXHH2+xGDW4IDrOinf9R44+1GBmts26Pf/AZ151AxcKwQ37HyUz3yC1NiHd7kbLFAJo604tnFxjiIvKF/EV80PeXLiEK5ICfym6GN7fQ6Frkvl7v8oRr8Ta3AnuCQ2T6zawYdcRfuuhH/IHWy9h2HMRQuBdeTXu1isIv/kNRv7mU7z1H77GyRVFdhqH+/7+k9z8y5300NZaWq0nqVTuplL9Flp3aqN73igpfy1F9VK85iButQ/ZTENkSWSVMHuMZn4nc/FnmZv/HD3db2Jw8J0o9cIFnb6Is9i4cSOve93rzrjnlctlHnjgAa688ko+8YlPnDnvHe94x0+wl/9yxOrZ47NOk45nw2nl9FxFLSXjZ5wnn6HZPf2q00TtXFX3nyMr56vwUhiQFl8+08p0Gk9PMpoVAd2qTvcZRfVHEAn1I4jV6T5IsRSb09m9H3Pnnr0ffgvJuSTqrByG3UUAKjpDy3i4zzqepxOlf6Y/6hxFX5gfee6zwSMGca7b99MtaJ3MiCBAGiIBJ7NZHDQpGaJO+zSdlus5ly9zKwCY5HzvEnvOHJy2TOZlGyWebcwC6Wg4Jx7smTjbXoe4nv5s/3/23jver6O883/PnPrt5faqqy5Z3bbcewODTTcxpmYJoYQ0EkgoMSwlQHaTkCXZUELv2LjguGEb9ybbkqzeda+k2/u3njqzf3yvmm1+4ecA3g08ekm695Q5z5mZc87zmc9TTvrflSHt9tSx/X322ElHSTN4wbWs4+zTXGsn3bM+dk/HNT7+U17M4scphkSK+XHDuM/LGr9onDQgnbl7DQm8BWUAACAASURBVH4R+Djx3KP9rk/acqIL43Gd5hYH5theKRpFqRUGm8RCloqRY0xek33CwvcxXPxC0O3otWIMKRFm+AuPe/5ZjbTzSRnQq4ZwdY26Y+JZSerJo8+iQmEwHWRQWM9rRRCDaDCk4z3TNAlJmM2ihERLQWhDLRRo08K06/g4lElRNVyqRhJla8bzSRYHB0npkClHkC5nCKMERuySV6COvS8bPSsxWDL3Tf91yIsCTddccw1XXHEFW7ZsYXZ2lkwmw6pVqygWi//xyb+T35j8ePfP+Lf9/4NIe/iTl1CePA8jkac5ZZO0DWKlGatEbD1kUw0yQDuGWMXKjizn9Mak8gfp957mloGfcGP/j1iaW861C97M3f0ZDqULXLXlUbrSKc67+HJ6evpQozWih4dQR6oQxmgrYvb+77L6zM3M90b58yUfZMXjEfA0aysJvnXeGWxffgaXPhOzbOHD1H2Hy/rfQL89ybxTvs3s4x9D5Ww2pk5je3UF63mSLmcvlpSc17yXDjHBU/uXszXbSz5/IbmczXDpPjKtf8qn0zneOTjJI+ddRfvN3+NVf/5xhJRc8I4Pcstn3kX3lg6+c8ER3vHzbSw5nEf0wod238+7e6/ijw/9KbcnP0jO/hwq8RlSUwlqXo39ZUXY1cfFpcfZPHiI9vZOrLWn0XPjjxis1hgOQjrs5784ftMytGsLQ+3zAFiTcNG+z6GJMWaWLOQcp7GKmC563FXppdaRYcHIatriJIv9AvvsdmZzMRld5lDHxSgzw+cHPsYqZwvDbW/CXNyo1yTqk8Q3f4mHJ+djZCVnfvjTeDWbsZ0TLDy9hUWBw2QiQ/uRQTZ2raG4d5wupjlUW4gIb8Ovz+ArSSWcpmjYXLDvOrad+jEeX3AT527+AE3FB0mMFHjbjV/HVBE/PSXFX4aTeOIIbq3IzlULuOiO+3mbvZvTxA4qwQQpK8W64mlccMHFdF16A95Pb6bzG1+m6k2x/6nHuKt3EWes8Rmf+Da+fwAhXLLZC0jH60mOLsXYnkAPV48vlFsSkbHAMbBFO8npReQrFxKpcSYW3Mqk/j6lsXvobvkkme6zXoqh/q2S2dlZzjjjDMrl8jGvhlNPPRXf9xkYGHiJtfvViZDRC7Iic3t5IYMupXxi4z+oVf+Cp/5yrqbNRpmJ+CjDd6IbjokxZ8laIqbLmiQp/BMu9hxmSipCYR5rQwhoNV9s/MHJ7WsBC6MZRn8Zq+aXuO28USNvVFFSgzqhbxtW6C/RsD7JWGbORU4/r19ONuiPmvkvpKjQNOK/foHUkpqtZjM9gUGO4wyZKxrzSZ+AnY6J8YuMf4UlIgJtcXQ8G/FEz2fJtGzsk3Oq/zLsKMA8axx5rGjxC51zosLPB/fHfnwB5uroTmsOaKTmWMKs8JgmTUL4mMLgNVMHqDHOzU43GjHHev5/sa9zLmxz/VYwKkzF6efs1yedJ+3jz/NRUGqeAIaPOsXZooGAnLnxMqXGMQIyzD5Hn+P6OSLCnxsjLY5POXOOPewWk3MxcC/snvlCIsRxRhhga34BoQ2edin6s8i5WEKhNbZZoWAOEp3gEqyEpBznqYQJZgMbCVTyLs2zPlGsiYQiiGOydom2QgkzYZIwa7jSw1WNew21yYxIM1bKMVYp4MYBE2EKYSgQAktCu9/MIttn1jKP9QzAsDruBferlhddXGZ8fJytW7dSqVT40Ic+xM6dOykUCr/z9/+/QLYNz/KJJ/+JKfsutNfFqe77eOVZK1nTlaMp9fxVzNCP6O8vceBImcMTNXZN1/j3R2tMy1aa06/h0qXXkmvexqOTP+Vvdv6U6dY/Zt3Abs4zFFe+6Z2IUkj404OovbMNL5COFFgKdWCczlNyFLxRvtHxdg5ZV7B69qsU7HZefce36DpwCl947Tv4tyskD+jf4607FWu0zSNn/TMTMx0A6JxJpx5itN7GjS3XkXh1lb/d/XHOmn2WDXo1epeHuiTPZZddiRDnUi4/wuDQ51jf9795xUyFu3oWs/zIPpY9+TBLz7oAN51n5es62fTdUWK3lcmWKnLjJuIeg654jK5DM4ynCnwg/hO+Kz7LafFtPLVoNdb0EJV0nunmV9FW+l/I3bfBaWdhrlyF8cPvsuhwP0/0dfLa/xtA084tjJ1+OQsdi5xpEGzZxM7Fi0hbNtN7N9ADTCezDOw3Wd28FkPDpeGpzPiHeDC5hGb5NJOuj5e5it8vf50LD+1gKFiGf9H1HP00GD/6G7ZsLDA+P8VpV12Dk83z6A934qRMVl3RA5d/mvVf+jLDbp5sucxDay9ATEfsGNuLBtJOkkqUY8IbpDMzn6DmcPW267h59TdZJG7gjbsmMcMaU1aeW1/7Fpz4Fv5s5yHmt97H2Ma1hH0rGe4R2KPf4Ck7zarcAmb8Gf5tz5f42p4vc2nn5bz9yj+g4/KX4f75G5iu1Jm86ZscsPeTbV1AV+YjpPvXwWMBqhwwSMjhPPjzE7hNCdo608zryZK0n/+KtCsh3YNryQ88yVD+7zk4+Ue07/gDmte8HdmW/E0O9W+VfPazvx11t9KiSi6oMmsfN8RONpbF8wxFQ8doLVHiFwOnX2Z9+Wi7UtNIhTy3sdksM6Gyc9ds7EjKiFpscKJnVEZ6z2ns5N8EEIjj78inneXEymBBPERbPHXCNRv3FIvnJNc5yiJogdANIxFx3EQtJEeZiFqeQ0g8Hy2movqx834BDp2LFZoDC0eN0Tn9bCMiiJ//bpBaY6qICStPVlWOnWAKhdTQbs7gCp8Wb5pxtzB3nyf0ldAYbv35ZMXcmBw9rAFRFJzAsiyzjrCdU4mkwTw9cSxJwGJ76CQnOWHGHDS66PVHkKY6FmdzojhGhB8Z9FoT1JTTaGsOLL6Qe5dGYyBIRh5Vwz2m6EnzSDA3bqBFgx1LiZCUHVAJrcZ4njh99S+YrXObQ0wsET1/Xs8xb6nIo2q6OCKiksqyLBoEGuBpqTvU0AOBjss4oQdOd0Nn2Uhe8dw58dxNR3+fsYssjw4eez6HZQsOPkWeuxhwcgvyBDbs6NakDOizxo6xxGmjkVCkYEZHQ+vQQiPm+kYJmGeNoY7GRs1tExoKYYWlzhA5apRInARLjzJd+qQ+nmOZBTSSljRiEKWGQ2GRjBUy5rcwEHeTUHVUbKFig9gKn7M4cPQGBRWVZCyej0VINc4wlJXYZiNOcCxYjBXGJGSIGQrMuI4OUtS0S810CIWBX5eEPkzVQ7QyCFxJ0q7TaY4gtImRENgzJzJ2ghiB8+KhzX8oL6rlm266iS9+8Ytcfvnl3HvvvXzoQx/illtuQSnFRz/60V+1jr+TX1LGKz5ffHgv98/8C1buWZa4l/CZCz9MU6rh36liRXnSozRaZ2a0xsxIndmRGpVp/9iznAXOAM7ARSQNhiLFY5uGqOg8b+6fxz/+/jtoKU1z6jP/zr+fVeWUO5bRuTcJUmCc3Y6xrplwZpLxP/0DKm+d5ewjA9Si1Vww8HqKpSH2+cOsTK8iHH+E5JJreM8dE2xdt51aSx9XHGnm8dW3sMDdxjeHr0MbgvPTD/KGPT9i6LFlyBz84MLXcWltH+MUeWb8FBY2HeCc2+9EJD2sP/pb2tvez9Dw55gt3cMHuy/h/t0DPLFkHc1PPMy81afjJpN0LryI8fO+gH6wk5vXKv7g3jGCapJWey+XiBlu8Is8Eq3ih82X8XuVm/DbrscKcmCa3H7LU7zxtFZWTN+JV/8Y9opVAJzRv48n1q3jtYXsCw/Ob0i8SpmJQwc5/LJ2rkw2XPOOPPoQEy0tJJetYt3Pv4VMKUYesth+xXxavVZWVluROqI9uZDHmeYyEbCtfT5N3gAf2fE9Qp3mEfFRLm7OAKA23sfItzewc3Ef6WILyy69igNPjzM1WOXMNyzAcg3+cvN+njj7InrGhvnUv32Be664nPvNs1icegZn2TzOK2/kR2P/xFTwMH2spLPvHui/iFVDe3h8yTNcvXE1UVeC71tvwK4ahMVX8LR7E1fVBB9c4dFffIiLhy/l5Qdfz7SxlPvO7OWGtQswmOHm/hu4ZeBGHhy+n5e3r+GKdwec++V+7oiWsv2mFdQu+Qve9tg+Dhvbuamri3usgJkwhhkaf/c3+lIAXXmXhU0pFrakWNScYmFzkt5CEnNpgdzSl5OqnsXA3r9kpOPL+E8eos1+N9Z5XYj0Sw+e/6vJgw8+yFe/+lXGxsaI45MNt/vuu+8l0upXL5Yb0RbMMEsaqY8bOWOyQGs8hUTwrL2AleGBY8a0dhJk6tPM2mkOGR30MnysvaO1dlKRR91wT3bumjOwKiJJWteOkShCC4RWhMLGJOKYzQwMGq10qjEyVoAXm1SES1J7c8bwXMNzShuaRspkGoDioOymxxgB1QA8dhRRMh0O0ElbPHVMrzFZZL4/SNVOHA/7mAM5SoCtIpQwj9UVAsg6HiqCfFDFkyahNAiME5/D4waioU+eP8ac4vFJ1vfR/HmNfwtOnWk/AVoTSBvi57sLmiqiJFLsN7tYF+xBaui1xilGFUJs8kaVgl8iJzy80KNsuyghGuACUGKOzREnupaBbcToSKIaefJ4btyYBvZZPTgywNIJ0k4NMRdrZbyAQTssm3BUxCGrjTPDLTQ4LnEMXCWtgLSpmPTTZOdS28s5lHl0HsQnhhHNDb6pFJyAc48SRKmoRsVMNmo76YbBnvdKTNsFXCtC1RU1I4ljBJhSUQntxtrACwAXN/bRAmrSIauOAz6pxRxAa4xXIvapmo1vYIyD1gaGiBk022lXIwCousu9iU6ylQME2sYSAVqcmC5lrj0B2bCG1lCyTlwYE5TMLDI+itwVB5wuFkf9z+vzxtECT7vss7pYEe0/Nr9OJNKSImyQlGgWylHaazP0293EZv3YWAsgwsAkBgFuHJCKahhCMenkjyeBEI1xE7oxsqOimU41QSxhXBRo1jPHdBtKd5L0K6xVexmxihCDIRSpyIOSoDaZoiSyRCZUSBNHFiI2EWZAwvAaBQeEAK2xZAWLOkhNS2KclOMzVY0ITJe8VQalqPgO4/UCk0iceoSDh+VJSnYSHYCODEQYIU2J1StRJkilsCyDwXAxSXy8WhXfDGktxdhEuHZMNXTAnHjB/v9VyIsCTf/6r//KTTfdRKFQ4OGHHwYa6WCvvvrqX6lyv5NfXu7aOcbnf74V1fZNrNx+3t79Xi7iFQw8MMG28SNUpnxqs/6x1QoEpIsO+bYEi5fmyLkmCVsiJERCUPJinj2wE6u2nQucxovphte8ksC0ePXDt7Cu9QretqOdRGzzRMs2ui5dx6KudsrPDuL98AeU/yxkwdAQKMXn572Nc0Yl+YOHAMiX9lJJdlKz5lPzNrI2eIwLn3090x1baWq/hadKDoPlVaiCzTnm40xtb+bqtsd4YrqPb27+GHm7zNe4lp6Bftrf8HqyN3+Z0o/vob3Vo+m1f8vU9C0MDf0Pli45l3e1FvlfQH9zJ7fc8B3e+NZ3kc6cQ9Oy/05pahlshb3LV9I29DBti/YybyJHnDEouGU+XbmOS6zNvGf62/xT+lpyfp2RllYO7x1mWd9+tm++kdaz34rs6ODsgf18pFJH6aN1P14aGd69jYlCCzVpcmoygdaaLVPjGE1NeNMPo0YgFgYHO5rIOkux/YD1xkoqQY0tMgazkUFqJN/L9/a8l5QXcdvsh8itadDd8fAQpY/+DUeaspQtiwtf9xYCD7bec4TWBRlalyT4x3t/xs86FnFuME0llULHmvm7d3Jg+Qo6Y5P+qsG4kWB+4knGSg2jpqtliNr4MOceuobbl00zPn8Zb5zZxA41wO7dWfZetoqHU22cNXmImbbDJGczJOr9+IkFLJ6U5O7fwnXTt/GZFa/nD5e9j5e1LOKrOz7Hvw8/xc+lwduv7mbZHSNs9ztZ9/UPUh+bJg9clSyQu/It2Bcvw0lMEVEljBVxmKJcLTA+nWL/RI2HD0yi5j7gliHoKyZZ2NwAUouaP0u7+BrT839INDxDxzffjXXZPIxlhZdiCvyXlY997GO85z3vYcmSJUj5H7ii/T8srnJw54K5XTPGi012yj7GjBRFNYEnspRFY3HG1BEFr0bZCuixapiu5PG4lVZ/hqRRb3iVzRni8+Q4U36Wqu1SEY04lpQVUgssdpl9rI12z1VaYg45xQ3bXEBNJo8ZkUOyhW41dgzQTcg8vWrkWD2lRtZjTU2kyOoaLVadoKq5311PrAzScQ0E7LTmkwh8SlYKJS3cOKBq2QgNB41OltLPIj3C4bDIpJ070RGPo65IEkHRrRIiCI0k9WCKpXKMshbMiDSHRQtoaPZnmXAamVxtGdAsZnFkRKDMY+0mjZCkrlE2kiTMkHLdIZQmG+1lnOHvQqIxtKLol7g/fSYrw90nURw5xyOpPIy6pr0+yVIxyF7RxWG7k55wKzPYDIkuWvQsBVHDC5M4OmbSSTfA7zFPNE3SiDGkohQ2PEOyVoB0YKqWRKCYFhnysgwx9FttmJHmlPphlidGmBBFFsQTVKzGM/JCLnktyRpUwYyPjleMoQ00gha3hpoDN4ZWxM9hL1/QgW4O0coTILmvHZL4c8BezTGNgkFZZAFDIDWu3XD1S4cB++0eFplHqBkJRDiXXGEOiB+dawKoqQSPW6tZFe2j2Z/BlzYVM3mc1RKaWOg5GNg4X8s5plYIRmQLI0aWdeEeQqnoz69kpY5xnRrFuHbCnTUYKykFsRbYcURdJ7FlSGhY9FgTSBTKCGi1K0QYPBiswkCQ0XXSbg0XKIc2EZIkEbXIZmNiBeiYTXIZSb8814eNdBJ7zB5OCY8gNLRSYl65hufnMHyXfc1F+tRgAw4JeNJexfnBs4AmG1Vok9MM6A7cOOQJcwUXsBGpBRYaU8fEGAgBSTOiokwmjRzNegZDQUUkWOxNkBAVinGVkpOiKSyTNypkghpJZQCSZCAoWFOkrBA/asIOTLRZQ9iVxtiLBkBzpI8wPBR1hG8T1rMkx1uZzOcoxiUce5SEb9ASxMTSx9QWzWKG/JjDSE5jpUfBmsHUMUYAk+OLmMlBkzGGGQWMVhfSFxxmZ7ILpTU5x6erPsaAaCblBoS/xhDzFwWapJQUCg2D4Kg7nmmajTz6v5PfqJS9iM/ft5e79xymeeE3yYQBbxr7O+INLk/GBzBtSbY1QVN3it7VRVIFh1yLS8aPEbtnUAdLMHxyqlUL2GP0c8jaT7sssKjeyuPNSfa19XB6/04KyQK9tRxbhMmOlQd4wPgxax58mrfOvIqiVky8+meYeoKOUZ9N3ny+1byCXeYE6/buRplp/qLjKmYWJqkSoFnF+f3ruLJtK4OnfIedMx18byoGL4Xuttn/9FrWFGzuEOvpS+1gidjET7mYUd3M2okNbNF7ufiz30e881qmvnU/nfo6ui//APuO/DGjY1/irW1/zg3TJZ5auIqOjQ/w4P0/4+JLX47rLmHZhTXuPqTYXa6xtNJCUfZTkFOs1wkOGXWma+18rP3dfGXkM8zrnGZ60CFo7uDePcP0+Ydo2vF1OPutWCtW0bdpI1NxzF4vYGnil0/b/quW4V1bGOlZDMC6pMv4xqcYbG5mvLXAp5/4LCNxgboNu09Zialt1gddBDIkbSX5iZikVZZRCN4w8TXWTo9xoPu1HBlZzvlL8qiZGUp/+i6CMGJPTydtvYvpXbOeJ244QBwqFl6Q4zs3/5gfLz2dLhRfWLWQr3z1Zh447Uyufuheqk1NPFA8jwvuv4c9jkE1ez/d4jSqxRLJQ2fSfuG/oO7+FC/f804eWfQ93PAdfEK76FgR/fQwAf8N8p/gE6ML2HPoFEpGiSnDQ4jH6ChfzuufNvlU9T3My5mclxrhuuYOXuv8Ht87/CQPju1g+bCiuVhjb3ue21fmsNOaVz05xOt/8kW+GEgeXvl8QzyfyHPmqefwVx2vIK0Xc2Cyxv6JKvsmqmw8PMNdOxvByin7fC7sW8HF7X8Pa/+VjjvehdrfgnlpF8L99bkK/DZJa2srb37zm19qNX7tYmtBQkcUTA/LBMeM6FQlJlSCR6xV2LKRWtyVMVYc0WXMsk/52MLEUpANQ6oqRW88QiXhUhE2aE3FtOlWM4zZOWqBiRIGrhniBRZKOzxtreascDMAThxiUkXEdWadNEOyFaEbLkPzmKLZbLBSlog5LNuw09BZGm5Y/kIwaLQSapOsqoEBERahsAhEhNCKjmiSRD2mIzHJmC4i4FhsFEBXbbxR90mHSK0pBiUEkmkrjURjS0VZOLQ6FYSAmtHEbifLhbXDCGmQNHxcXaaoZol0AltE+CJNWZv0BKM0mT4Fv8qoyAGC5voU2IIeMQmRxvAku3U7s7ZJiIOtFUIKTBTmHA/R8GISJMyQjB0jUChVp8MMAItC5JN0AmrCRmhNVSQYsjpp82bJmgFKCSwdkw0b39+jRr6tIlwnIp6LG3nWWsLl8lkA0lZEJZLssuexID3C7EySnKjQLir0GCWaS23sdg1ac4Le2iHG3SZKfoJsUCGUFpvdBSRsk1Zdojp3D0qEoA0GjVba4in6rQX0hQdp80aYjhcizQZ4MYQiZ/nUtEU9shgVTXQwDloSiwBTOyexmINGC4vjIxgaiqJCYCSYEWl00sGuRAg09tEU91KRCEKeya7EMBTVwGRNtBtTKEIkh8wO+sJhhNC0WWVmRPMxL1VBIwukpRVHjHbG3QLLazsBSMQxu+xetBBUpUtOV1EC6jKJAkqOpt/qoL+1hVY1zumzz+B4HqNODtuM+bm5knyiSp9foS/u54GojwNmjnlylAQltCFwowq9tQkOpVpJRR4l3WCILeWjzQRZO0JJTbrkkQ7q6GSDyfVxSFEiHXn0GSMcMoqUZaP+kBZQpELdNHmYdqbydQatebhhQIcaJWM1sirmrRBDxrSHh3Glw6howYtcVhoDWDoiGQe0ixIzogUlBVJITEOjlcaQmpzjUaknGEt20xwPYsWSSBiMOK0M6G6awu20WyVajBBXxKSmctgEKAKsSp6EFsjQpmRV0abG0BJXGUSmwItTtI8OMCESSLNCatYlF0eYQZVstYqfMDDCkNAMMZSNDEPiekhLfRIsxXTewY49LM+me7ZArT2B0+JhpcoUAkl8ZCXdvaPEWtBRnwZ8WquHsGUrI+lf34Lli/qar1mzhg9/+MNce+21xHHMvn37+MEPfsDq1av/U8qsWLGCnp7jaXxXr17N3/3d3/2n2vyvLANTNT5wy3YGy9MsXPoDlh5cz4qRc8ExWbi+id7VTRQ6U8fqD2ilUXtniR8cQo/V0QkTubSA7Ekhii4i0ZgO/Qf289Sj+1lU7OPcIyb12To/uXAJvZWI9+522epobnc2MpnoYWJbB38nr6dDGZTEVgbO+N/MIilsbCPSU/yp8QF4fJpnlOLU+hH2ZZaiLIsuFZLSIb35Q7ylaYThRbfiz8zjlqkIVToNAGFofjq1nvuFx5XmZv5QPMR+PY/Nei3tw8M8umI9YVvEbV//G5Zc8yZav/ltZu7ZS7f/IabPuYSJie9TyF/Nn7V18FdhxIF0DrlrO8XmVjo6rmBk9J/JveoNqO/t5PH0MpbofjrM7VzqL+VzspvWxARPDC3noeKpvGPsO/yL+YeEwma6ZwnPjh7hTGcvo4cew1yxCufen9EyNckT7U0vGWjSWjO0cwuTl15Dk2nQbZvc/cQjKATvH/4GYxsaVeVvObcPmW8jXaqw3FnOWBiTMjQbMLjE9TBNjw8O3cmRXJat9fdhJz1aOyxKH3gfamyc0XOa8cqKS1/3Vkb3lzi8dYquU5Pc+fMbuXPpaViG4iflW1H/+ABO9WweOP1MXvfAz5i//Ummz34Zm9adxct3lkj2vgHsNP2VbfTKZYwmJwjn/z1R/9s5b+9b+GrTJhZPGDRFGboMRRM5gnQfK9UUbcVGQopnxF42FQ+xZnQTpreOV+/8CHct/yJfqzssGk7z7oMpPr6ng3DrNkZzLnevlKwehJwKuXWNw8CZZ/MX39nL++8Y5S0Xf5T0inVoNNP+FP2Vgzw7uZGHRh7g7sE7WJJdxnWL3sYfLb8AObf6WvYito+UuGvnGHfvUtyz779z1YLbuebCr9L98DvRozXM1y5AFl46IP1fRd7//vfzyU9+kgsvvJBk8uTYsfXr179EWv3qxY4lptb0htOMWEVsESLUNNCONC1yZkTS8sl6AQVRoWZkCANJVWewfYOO+gQ116RLlAikxzbdhtACiYU0quSiOkeMLFIcX/3HNBFKscFaSZuaZHncTzJS9MsW8nGZmkwQSQs38lion2Z+WOWw08lmazmLalOEThpDxAhhsM3oY8hMssoaIx96IDWd0ifSPgIbE58OUSaKM+REeKwWU9GNUSLkcFQEGRHgEeAR6pBNcgFXmfuYsJuQcZ1t7nLWshtTQTGYRok8y2u7qMsYZISJJEIQ6Tp5bYGhsVUFX7ZgKQ9LCzKiTlVYzMo8WTNgeTSANCSB2aAmtIJdZg8CKIdFFosdiCBD2S7gGjFxHCENC1NqDCShiLFogIuMEVHVaQYS3ci6xlI1ipaPMKCYrDFoJRiLsqxkGgeFJRVyrphoU1RGiSTx3Ph4IoURTNIewajbwqNiNS3+LFZaM2IV6ZvezeLcGE3CJSPbMYMUMTZZ4ZOrD3EkaCInAzbFi5gwmug2qywuDxGYJoOynafNJawVA4hZh2HRg2Fr7HpIOqgSm41aQxIQQiINQZKIemQxqYtUUzmuKD9Af9JFlVoZFq0MyDxZPGwd0+aV6HDqWGZI1Y3Zl+1EKJ9ivUzOLjFoJEFDQoZEwkRqAxvNuEwyYrTRrUZQWlE2ExCCLRWmMo65tWkpKJiaWIKhNZ31SXJJTZ88TNawmYjbcXywRcyA6CSl6zSlPEaqaSRg6ZCM8jHwWC4OEcU+hg7J23UMU5F2PRwrZNbKZ3gnJgAAIABJREFUMllvoR4nUKbBVmMRZ0cbiHCYsnwwNPOrIwzJIqO0IdDkwglqRi9SN1zWXOVRNgqNJ05DiJr7E2GJOsvEYaqqiiCPJkbqaQbtFip0YvEYraqT2E9g2wGWHbHAqWBXVcMFT8UoVQdbUBWKDhFjy5hWNUXG8JFoJJruRAkVRsRaEJgKW4OVsklbEUbcqIs2bHZTMrNE2kYAppIYh0ykbWDXppFmFU2A6Y9hKU12NiIKW4iyUxiApQQtQR277qNqMF0QeHaKReWA5npA0qkxGyeIoyzYAWZmgllvPgVjCsuTWNkxgvo88pUU0gxJUESqHN2VFLZaiZH2yEYxdpjBG3Zx2UqU8YhEnRQNxrEqfn0ZbV8UaLr++uv5h3/4B9773vdSKpV497vfzSWXXML111//ohWpVqsIIbjrrrtedBu/TbJhYJq/vm0n0qxz6sI7WLv5DeTrrSw6q5UVF3XipI77cutIoXZOEz81hp72EQUH84oe5PICwjx5dd33Pe7f+ABNTS2c48/g/fTLfPIjn2IkYXDdz29gNGol75/BrLWfJg4zzx5nMOqlMvIk2y46wL373sbhyR4ed/6YW+JzsVGcax6kp3wYU8dcWa7yN9k8sZGg7ExQPeUOZrOHsEbXcdf+8xjv+RrV+Hy0I7mu48eIvT1s02neLm6lisst4TUoO2bp7t18+VW/x9P2Gv6s6XGOjFToP+MM+nZt4/SBEl3xnUyelmVH/wfx3etYWJ/hmYUR9va93PrUJK89/yIAzu3O8OWFGmNvlacnepgnn2B7+DLyboUma5Kd9WZ+KP+As+M/ZkX+WTZPrybOFrmPi1kTfg/z7o8Tn/9PAFxyeD+P93bz9ub8b2wenCizI4PUZqY4XGxnTcKlMj3JPq3p5gj23RWCwCRIa8zsSnQUsiy5GC+KKZiC74spQm1RVBXeGN5EgMX4aa9g5MYavauKlD//EWq17dhvrHFENLFsfo7IfpqnftyDnVbsGL+HgZ41nOE/xfuf/DpPH7ZQB9Mkc1tRrKC/vYv2iWFaxwY40ruU7WesYXHNY9tQP4ZTY0HGxjywnM6+3QzoDTCyinkTp7M3v50v996M546jzBQf6Td5c7yT6qbPYMg+ljbPZ9sCSbU5y8sDm8HQom37X/O9rmdYtfcHZJ/5In4NfrrwfG499Wr+2vwGxUSZp6Zd3rn7dP7+4tcw8okkbX/yLpr/6Vvkv/kyhGnSmexiRWEVr+x5FfWozn1DP+OHB77LJzZ+hHnpPq5d8BYu6bycjGtxVl+Rs/qKvOuceXzxoYPcvOcqtk7s54MXfY/lj78d/f09WFf3IXszL8m8+K8id955J3fddRcPPvgghnFC5ikhuPvuu19CzX614giLSJg4qlHgMhazlF0bFTaKnxbcAIjZnljCPDWK1GNUEilClUUiMC1F3dRIbZBUkoVikjEFMWUiYaC1w+HmblbX+pEabB2jUPTla1SnPSoiiSMjEJISNhU9nys4wHesVRQcm4opGERxyO0kikysumJR5QgzqQxFqhR9jZ+qk/BqtIfT2CpkzO4iF5QIbJNONcGI7zBDSJtjoEODrFVn0i+yP9UBYUi65JMWJZRh0GaPs8BymNXtDKfmcUSZLGUcGRp0B1PE0QSByGALCE0AhdYCoRppx48GjHTFI9hY1FxNU2ywyhllg7mQpJlkTbiLyPdIkm4YtAIOCYcJI4cB2BKSyme+G3HYypGyYjJuDWlIHGmCtAh1hKsjAq1Q0mTKbKJuZvANhwwlhu2l9KUruGWDIadCPFtAa0WXVWNbUuL7kjanRFe5yg6dZMTqoF91IrVmUiVYoBuuY01Jj2amKNamyOhZnMw4UsZobVKyE6yw91KfWoCZ3I3QsNAsNRIExAK0wJAGCWHjyojYjPClQ0ZoqkJQ1WViJUjpMmUd0OR6TIcuWsAudzGX+tvYle1iyjJwZ0NW1g9iiXEM2UPK9unSFZ405zFutLLUP4yywLMcHBGQjWqsqB6mZrlkI4/EXDIP30gy40i8yMI2Anxq9PgRXrGVoDLMYV0gMmwiaYESKGxiHZOMq42E16pGpywzGyXwDZMV3iBB5CNFjbwzRIIpLF8SCE03sxgh2OkOhqq9dFX7OV/vJC2mKNozKLdGOvApyVQjhMGusdg7gG904JlJRACGNknM1VyyjJjYUEzJNoQR0m7OgjQoyxRJ5VM/VnkYtFRMqYZtIOZi0zzDIEWIbzeDlKQsi2JQQscx0oipq3ZUnKGdJL3RLupmjhCffckuqjqkPzGf1TP7QGkifGoqIETioplnlI8tSCSjAIRPuzfFWMLFd9KkLNgtVxMr1Uj8YCexgxAR+SRjTVPCpzhVx9M1ZMnEd2KUOU7k+yh80HVCBcWKAZFElxulf22lcUSMUD6+iDFpQQbzEaKMG8YIu44t02ClCRMlusMxbC+N4fUgEhO4WUnKEMQzrZj5SWzDQ1oeEy4Q5ghn8kyIMp1+QMXKIlUTcVaxL1Ogr+Ii4yL1+NeXkOlFgaZ9+/Zx/fXX/6dA0nOlUqmcVLTwd/KL5Y4do3zyrt30Fg3mFx5g5dOvJWEnOP8dS2lbeLwPdS0i3jpJvHkCKiGiNYF5dR9yUQ7xvIIdDdmw4TE8r87LOnrw//aTbL72rTzYvYDTJobo2vMsZ//lp0jZHWz6jsmBySaqmQPcZoyyueNcJnddQYKQv7RuwBEhY6Kb5h5Nc76V0x8dZUi6rBUdROkKlZ47mJ73M0CRHbqaN267lM6eL2FEafRsEtXhcFVbF+uNf0MG09gy4r3+n2BaNh21GfJTVeaVunjATXJvTzdr1U7c7GJU7ypuz2zj3paNnDYZ8OamAXYc+Z+UyhYm8NQckfnA/gf4q3aHzNTNlNfNwzrcxmOTmt9r34YOLa4JB/haaRFFq0r/UBPfnvcyfn/0TvY484kmNUG2iW96r+FdwU1MMQmOw7kDB/jQ2jPxlcJ5CWIuhnZuoe4kGDEsrk063HbXbTiBx8X3P4RfsRBoHlm5FpVIkQiOsFZdyXAU0GHZ3EZMOiE4Xz3FMkb4SfMaipMXEQUKzM9w6I1Pz13FopthYJhn71xIfXYePRf9I/Na9lAYvInUnYKZZx1OCeDRJXkQEEx43HDZK/ngd7/C+eICNkeCreYhtmbAvfRicrfuJtYxYu+ZWFdu4w1PRtSzzXwldy9rhy7hTeX5bO66l50tG7ixs5m3HNlH5Q9PY++du8nv38R8uZB98yJOPTxGb8fZ9Lkul+/MEuzuZFMi5uOnX8XsMo8vvWoFS/auJxF9jr07z6W+YwNnn3MZfzUj+P4ffYD8x/8a79abSLz+jSf1a8JMcFXvq7my+5U8OHI/39//HT6/5dN8fc9XuGb+m3hlz9UkzCRduQSfvWo5d+0a4zM/03zk0TwfPftmzthyLeFP9mO+vBdj+e/KMrxYeeyxx3jooYfI51+aRYnflJhGCiILbVjEOkPFOkjSzpCQIQnDx9ASpSWaJIk4oqoVyjAIVIiFTbs5RZU8B+08aZGhN9pPhhkGZAcJKfB0jkA67EwuYlV1N04cUpeSmghZbI7Tn+ii5BdpjTx6w4Mk6SVhSV5pb2Ky3I0wLLZbecatBAXLZ1k4SNarsN1ayrjZxcpwmJLTTKHkkw+Chm+XE3Oq3EcYGYTJPFpU6FGT+FKQSdYwjSncmoeSJkuiIzTbHlNmhpYgRpmKbCyQhqJdTZFKjrJwxqcpDEDMNmINRSOepkyKip7GwEQbGYxYABJEjBAKw5nBi2t4NOGJFlpq0zTRD9IjNE0iKRBaIohJGFVy+VGKUYLW4DBKhyBtxsKA5uoOer0xxhLNGMKiLl2qMqa3dpBZsngyhROVMSQ05+sMe93021lSGHOZzwQVK0ccjWMJhZU0SDqTJPwKddXImFYzbbzApqs2iTDSSDwQGtdUdMgATzkUpQBqaGFQ0bO0xxW0bsJTNrEUWMJCqIhQhyxyJomMGdI1TagVlp3CkBbS0IjYoTM5TBTMkq5oRq2AejJLkxHjeiEjdo66kyP0LCrCZzDlcjpTZIIysQ6xtYdtZkjVYwQSiSQTeQgtiQXsT2ZIqjRFXacYeMzIVlJqaC55g4VrVjndPMRgWYMKabML7LAWsi/fw6SXYp4I2GiuhNCjyfJ5tdrICJrAaLgGGkaNoj2Ba5QpIcloB0N51JItIGBJUGIsTNGqZ6lHJtIV5LMK4bl0qEkio0qsTarJVoawaDI8bB1w+sx+wmRMT+Ahlc1CYxo7LdglfJ42l2C7gg52UjJSKAwUZSIRs9foJWe1ou1upIrpjIYZF60M0k6dGJOQM2o7wBCMqwyGtFFCYooAhYfQMUrDKE14pDii11OwNyJFCZH0mUkkqfg5tKoijMSxd0dCVJkV7lw9JwO0IiImb9apRRYmIQiXwDaomzmScwFjdVGHCIQwsaRJIo7IJXx67BJCJ1hIMzquMJHvoS41NVlFS0FTRVNI1xnLF6hLDzM5y/zqKH4qSd1OYY7laA0dPFGi2fKZEiGmMsgQUTYVeAGUWykSEAvBWDGBcG1agxSmGVPRETV8phyPyLNJy+WM2zYTWYPmoE5TfTcDqQkMx2RCzydr1Skqg5hfH9NkfOITn/jE/9+T3vnOd/7KfcuHh4f5yU9+wjPPPMM///M/c//997Ny5crn1X6q1X5R/YrfDrllyzCfunsP63ozLCjeyylPXUYyZ/Pyd62l0JlCBzFqX4n4yRGiew6jB8qI9iTWZd0YF3QimxO/MC18tVrhnnvuZGnvPLq/+AVYsoy/uPqNxMDrbvsGC05ZzbLVF6NvPoAVabZ6BvdZaTapVlzTY73axwX1jbzDuZNhleWvV7yJgc7V/MnmBEdGbmXeKQact4/J5T+iXthDamIlHVvfxw8qvRSrNTpDB2fmSkYil86+Eu+crtI8eSeGpdg83U7OcaiYOVZv2szutqW4OcmYY7K1p4dkdCdN9TSzOiIdNvGaiYtYMlagmN7OgqLgv638AntS17HPOIMLN/TTnOilJmqckp7k0dIMTxcnWHYoRR0D4c1HhnkeS7l0qBn2kCRnxKxnOy3WJBvMZTyS28C+YokjcR+FzT9Dx30Upif49lkXckYqQfdLkHp88+030t/Ww5aeJbw6hulnH+BCeRuVs2LqrRblsQw71q3HjmdZ7q4kH+WwpGKrrHOjtljVPMQHvW9xwM3jr/EYeOxUhIzpTH+fwpEC+eESTz+yiKb820klPszBx1uIc7sI3McZvT3m3BsFXYOCgdWa/gsKTM1mSWUNXnHaCr60YB2veuwh5FQ/i0/Zwm5aCLA44NdZ0XMqztB+csZ8vlJP8hQWtZkuRgrjPNrzQwr1dlaMncfq4YvAz9Kiy5TL9/GPLWtwvZB4GdRUB5ngSToOfodKJDCaTsedfyFDPWfxQMqk1nILT87cyvqV76N1/+0UEwm2zdicd3APG9ady+2ZAtccOUB4/724V78W4TzfnU4KyfzMQq7ufQ3L8ysYqPTz74dv4ab+Gxio9GNJm5ZEK8tb85w9v4m7dk5xb387i896gO5gDeqZSUTG+q1PS55KvThXxQ0bNnDZZZfhuu5/fPBLLP+Z79Suzc8ikooYm7JRYDI5iovilLDClNuMg4XQGmFYLPBKBExRM2zMyCcgABHQYiuQEl/EKHOSMil8maBqtWIaDgfSRQwhWDt7EGEk2N7SRoZZuusRZTuFxzQGFaZI0SNBYONVUhAYCHeKyIyYNluRCBb7U0wwjhuO0KktCkqTjgZx6jVatY8XwA63iZQu49hJynYeQ9VIEDGZrNAfLse1yji1GVq9A8R6kggPnZA0BT5owax0MEyXJl1j1t4PvkebX2LELuLrxoq9nYSanaPNG29kmDMcdKQYt5fg2VlsZhi1UnhOgKVsZnUTjp6h1arRISpIaRLEHoYw8KWkv1Qk22TSFfkkdI1cXAZhsXuqFze1l24/IhPWkGaCIaeXnB7F8H1mRIJKMoetLGpOkrph0OJXGE0342iL+fUSoVZMhi24IqDDKLMv2YOrSnQEOyFKUbLSjDgdVFUKR0nytk+3nmHKdhizmkkGMaa2QRvAFJgSlMKMcjikmNKdNFvb8YkYIMWsMIntDK4zgRP6ONrENNPMpl1Mp0arGiEpAhzTBcMgFnUGzQTKsOmJajQupbH9QYbdBDOmS9baTxyM0RTXaYoF2dhgzFvOYZ2gmYCkDmlmBulYTLsRVRliKIuyKBIZNkE4iqU0OWUzlkhgSrDqVWoySbOVYMQt0h3to11OsSoq0+NXaLOrNNsGFRcG4gxHZDu2GZOwAlJRlUiAJyU1p43QSDFsdYGStKEomCHT+jChgNjIkJtOM4qNFIsYSjnkozoVUtTNJnZm5+PLLIav0FbE/2HvPaP1uupz39+cc7W3l92bpL3Vi5FtWbZlg2Vh3CAGDIQAhlwz4KQQyCG0hJBwCS3GJyFAKIEDJNTQAhgMNjbYSJaRi2xZVu/akrZ2329/31XnvB82MC4nyaWZM+4I5xljfVhrzLXWXHXOf3ueUPgEoaYkBPVMmjYav+Nh5Sz6g2NkIkHDeJx10zR1ETdo0i4r1rR9Eu1QThIOJQ5zxqOWyWHFMUvjaZRjUVQt5qUkLVvgxLRdhz57Hldrzsq15P0MflqjlSElAqTdIhGSedNPVgt6wwZeMAlCE7qSlOVTljbFpIHA4BNQ9wRuqkXDzhEIw0F3OT45csIw4ldIRJOeoIotJHXdpjdu0REVeoLzKCVwmhtISQ88RS3tIKSDZSv6/IQgl6PmOFSlRRhnGWiCP1jFtwwVmaYnSdMjUpRil4V0le4kR14EJKkURWPoDzVFkScrHMpCkrHSSDuDbib47TqJbzPd7ZBya7TTGcazabQd0B21GVD7SIsFHC9DQ5XIJyGJiTht59lywZZf6x/+n41Tv5LRNDMzw6c//Wnq9Trj4+McPXr0p8vq1at/pQ62223q9Tqve93reM1rXkO1WuV973sfL33pS3+GKem32Wj6yp7z3PaD41y+rMCyrvsYffAyenI2z7pqFPtUneTBKZLtE+gjVUwrQq4tYd24FOuSXkTR/bkaWo8+uoupqfNc8cBO7HqDz7zpr3jAy/GCU/voPrqXbS98Lckd53m8GvCJxOfOdEhoB9y89DtcdXwHfbMRa22bi3K7edL/E5aqi3nT9EPokc9RvOIA7pJJwk7CzPHr2Td+EVedfgXjSRt/soehMEep3c9uJ0vNgss7ZcQezZrM/XR8i29MrKPdO0JDpNi6cyf/vOG5fCs9SqTvo9W/jmoqw8X9n2CVZdGZW845Zw6fIv2TNyIGHsJv3MXVAy/gXztlbKuPG09UaHcuYnDwIN1ilB2NEiNM48/0UPBO0nGuYch/mD3eMFksiIqcGTzEyxYO8sjgRVTCaeayNfbk5zCizOzpEiuPH+DfLriGfCnNltz/3olx5Hd4+CufZvqy53Ekk+H5997LitEvEm8MSdwi3t0xOy68kiSVZrTU4orqNTzqHWV5PMh/7wpodOCD1gcYjuc4utElOX81U8euZsX8MZae9liV3cXd41uI6Wbs6S/n0a9NYZxpxp1/4Onf8Fl3EnYtW8r+C34fuWI1tfFprEzE5Vt6GTv2TI7kXI7mbS57bAft4RKXuI+whw3QTvhEI89w8wwXpsa4o9nFo3qQB6XL6U4/lB7meO8jLO9qcbC2krHOINPNq2g3ttLxqjy0+izH4zZOtILz2RFO9ha4rOvbZOQPOehfxXrlcTNpmtWLecTX/Kj5Oa5c8SKWn/8Kc40VnGo1eMnIEr6cKhKOjnHRXd8CKXA2/ec1MkIIhjMj3DD8HDZ3X0ZsYh6cfoC7zt3Jl05+nkdmd9EyE1yxIs2+iSY/OL6E1Zt/xFDyNPRjc4i0hez/7TWcflWjaffu3dx22208+eST7Ny5k/vvv/+nyzOf+cynuJe/Hn6dcerJg2c4nG5j0YVActyL8PUS+k2FSXuQSGTpjuZII+hOAkJRY8HLk/cjjIEkSiM9tUhbLDUzbpaaGqJHNghNhoxJcTLdRSQclnYCUC5zlmFVeBLaDSa8PCOd00ypHFKDkkVSaGqNwiKfmDeHI7NEIks+quFYs4QqoVaM6HTWk7F8EquCSVxs3aRGjinXISMaRBmLji5hRU08nTCvJHNilJzVodxqI2niyWQxo8lxmLS6aMs8xrQxdONaMfPOApHSlLVFKNKEnkPiSJTncCB+FuvDhxeZ12wDxqVqlWhYmqoqUbckTS+kIpYyO3cx/aVppBdDYqOxsKkQozkfljnuF9jgTTEQQ00lCDlJtVlir38lSeySSkPT68VSXeSSiNPSoxxUaEqXyC1glGbQb1EOZjGxw0y6QAqboh8hxAK1pEDejuhngUPp5eSTCuX4HMZ0obTA1zkqkcKokC4VsSyZZ8bNMm6P0BW2UCZGA80KeOUIox28wEV1hqjpXoLsFDWVZh7JtJUnlarRbvbRtl3spEXKTuOokHnHZjCYoq5ypGKBETHaSlgQXbTMABYWc26BdAypqMKCV6Rh5RmKm+SDFs2oSCNTpFa9gjgqYsUwlqtxzuToiBRZFyKrSUumGKebmkrh4uNQx41dtCrTUJKshjDy6UiHHmUzGDRoyRbTpgvHFBDKI5Q2HlCxFUeSHjrSI5uOKVKj1hoE20dLwXx6iCo9JDgI46BECkRExTFMixwjYUQ7GOJJOcwyupi1S9h06MQeBsHZbJFA5TA64CwDoBJyWtCREVg1plQ3m9rHGTEBhbBK26QJjUVgd9FNh1gUKGQUmeQ8A7GLwGJetmn7GQZzM4z65+mRNdr2IEaH+DIhLRoYy0JJQ0NlyCUB06wh35bkRAvfC/Eti7ycw4oNx90RuqtFupkjzTxGwoTTjaUSEhPRH0eL7Ja4RE4KoTRNy2FPdg0zqoe1lUmW6A7F5BzzEvJJA59FxsyOmcPVLTCSmp0nUxsGY5guLfBIUTLhQUvWybSb1NMKR/o0XI+x2SZeYNMcmmDaqzJh0nhYRLYiqXWYSE/h+g4yOsXJrE2mU8ULQ2CetqzhpwJEZorAlqRmWxRDg9JtmmmNQaKkoJmKyYcNVrTOo90KFQ/StmZOlchow7xVoGO5XL7u/0dG00c/+lHiOObEiRMcOHDgp8vBgwe5+eabf6UOFgoFtm3bRrFYRAjBxo0b+cAHPsC11177M9Gm31aj6Y59k9z2/eO8YrDE8+LzXHVkLRe6KZYJGzHexFQDRNFFrSpiPX0Aa9swankBkf7FMjB93+f73/8uS6KEZT+8n9rfvJe/ThVZ1qxy2R2f5qKtL8DZk+GblQ4fd3yOOJrL+x/lNas/Tee4xfm+Li4ZuJarrHsxTovW8BiZ0Y/TGt5BaNdYOFKk8GXD4cl3c8Tv5ZZgI6GB3XWbHi/k0+v+B/sHJzlXXY0ZcHnj7F083f0SeXuWb1XfTb2whEpK0n1uiqFGlcdekWK8oglqm8lNzVMdXstNnRSDA3fT132errPbmBRVjlsVipVLsAb2wtQ3CNzr+WFxmAOTaR5pLSHnNNjUvYfp+v9Fpj7KUOMIC8RIdSmrpk7ySF+VZ5HhBzrLs5Y9geunuLa2i2/2/SlfM9PcF9nszs7w7GnNwLkau+UoO2dgbSnDklLq59/4pwiTjz1B//kevjs6hqs1z55/N1zQpnR6Kw/sKzEVl2kNLsVtWqz1t+BKmLMq3LsMdsw4XFnYy2s73+IRaw0Ndyvt46+g1Y7Z3DOCW7qYPZU+TlTOsnLTzTy5o0MiOzD/AX73/g7VVIYPP3MTueItpBmmFR4n1Qi4rvs6CpUb6RSO0F55gE8tvZbnb7+beDLkKyPPYLdZxXK1gG/bOInHJWRZ3T7G9Te8h2edeYQnvYRW8zJE+WFO1Uc5pfv50YDLUO/jrK1XcKtXsmF6K+VohHp6gu7E5ah9iJNrBwi6z7DO7OLhuYtIC49tymW9v4R7F5Zwl72dax2Ptc44B6aKtI/u54Lrn8cnsHnO/DTu9vvwbn4hwvn3QtD/K3pSvVzR9wxeuOz3WF+6gG6vh1l/hh/N7OSR+e3o/MOI4kPcP1vl/MBjDHgrKDwWIbK/vRGnX9Vo2r9/P+vWraNUKpHNZn9mufTSS5/iXv56+HXGqVNHTjCuQvrjGIGkJjIooWiKLiZzXWgj2dA8xkAsiVHETpVTbpHezqJo5Gx9DblsjdhYzFkl6sLF01BgDhGniYXF4Uw/VWmzoj1HW4bMmq7FyWqnQn97loITkogCJgrJqAyh8EjaNlpA4iygLEXLKmKkoscskEsME+0ungwvZEb30BPPkHZb1FU/bVOgYWkiYTHjDuJFNiryAcXZRNG0R/CSDF3hNFkJnghRChacPuomQ1bN4ScKIQqkVMS8s8CMXaJpltFSaVLSX6xbUjan46dRbE0QOIu03RKXGbuIcRr4ukwoJFkVMt5eTd0fJWcv4HmzzKksXlviigrzVjdnxRLmUy5LvQUS0cZX0FAxlc4SFsJB2olFf6aCsWxadp2TdoqJZAgvqTCniri2i2skiQ6oqRAnTJMXCxRiFxo9aG+WbqtDRRXJkuZsqo+asOkLT1JLlpMRPguqROyFDLhtTOKQ0m2qTopjKk+xNUlKWlRNiO54hHEvsd/N+bAbx5KcTApks8cxqEVKbidN3moQBTla2TKR6CaLoaibFKIzWAg6IkWgHbLM0YnThLIXTIqAPAEKrRWhn2ImnaHtlrEjG9ExHJvbSAaLVNCPQDJpFPmuGtUgRUe0yXqTKJEwKbuIdIpYKiCiZGpoUaKjBslEgkCmqQmXhpOngEUoXM7aNpGxKRkBQuIbQxpBxU6Yjhb/n72pgGnTxaHgSrSsgStoZYoQeYvaTEbQcmPmtMOMl0FLQXcMJu6lmvc4V4iZdKbpsapYgUAjqHhp6kpX7kNIAAAgAElEQVQR1QrM+gP0epMU4hjlp/DrHjkxSahKdFSRukoj4sVMhI6VwZZghINJJRT1NBnt0NTdVEUd0c5RyHUYSlpYbkCcdBEqhcYnJ9oY2+Kgs4o5VWZGDJHvOOBbtLMp6tkKGklaNnF1QidR1Gu9iFaKIe8EoRLM/bgWKwZ05GKbCpOyxLg3xjm3h6KpgoDZoJ9+XcNOGmDPc14NUIgb2Fi0yZKJ5oklSMsFITELZSITEmXmWUil6K02Wdqewokz2ArSRKydb0HHZqbQTSM3SwsI4jyDYYayX+VMQ1HsOUoxyCLDGtnQp+1pEuESZUIm0g2kSohMQk9cQTVPU1ItlLNAyqpSNFUKpklGz9OVLNAXztEWgnOuRyfVhW8K+EmWtlKktcvFGy77tf7h/9k49SvVNH3uc5/7tTrzH6Fer1Or1X7KnieEQGuNZf0fut4dx+d44J5TfNXOM3A+ITZ9zBtN+sJuUstyyJ4UFJyfG0n6/8L+/U8QRRGrvnc33gt+l9dnShjguY/fT1dpiPTZFXyq0ebOtI+NzxtGdrE1KhM8+Va2hP0QQmKdYW75Ic4MZzDqDs6Ki7n/0CYu+dHjpFEwLzD9WbYkObK24jF1imZvC7wFKpkpmv5rEBrWDZzm4u9+kcFL68zWejnfWqA5LLCiDF31dTywZoYDrZ28/tq1+GeLfPzRCO/Bad4/cilf9CLm818ns/U2nr3/93lkusgTosrowesY3nAX18z9NXdl30njaUM8Y8c99CWbwOzk1avu48ux4OmdKt+ZGKCRuherZxtvfeRt3H/9Nvrmr+PfDr+ECy56Dxseb/PSzl28Mb6av9syzMv2vZ2vrTc87WF4fm6e9yZjvP4b+9m6vIs3PXM5/fnfXDqRiTXJY7OUd0qS9BhPli22HHsQLq2TOtXD4/5mSke/wfSai5FhxFB4BavsFF8ofYee5fN8Ivh9VFjj3fpz+Dh8RlzKc7mUc3MBS8fvQV1dwCwc4clKnd7Uek4cyaKNpP/0P7HxRJVvXjzEgXVruHTi+UjbItnicNGDJZYPvxolIuTWHvSy46yZ+gpW+0q+cPH1/PHOb3Li3CCZFXWiRLI5GefRNVs498QJRlLr2H56Kf3PGCeYvpc/eORP+WJxI83yDrqrmxmf9fn61ov5i/qLGPaWMjf7fky9TF/zRrQMSXJpvt7+PF+VeZz+mLGB91I6+3S21i7jGWKQz0XDvPXwLbx4ybf5tvwalw6sZ8dsyKZvf4HLrn0x7956Ax/c9QD+t75J+qUv/4Wfg6McLuvdwmW9i96tRMecaZ3hWP0Ij00f4N5Tu7m/cpD77b9i/epV3PKjG9js3YBa9V+7PuepxGtf+9r/cPu//Mu//MLH2LVrF7fffjvtdpvBwUH+9m//lv7+/p9p89hjj3HbbbfRbDZJpVK89a1vZfPmzUxNTXHNNdf8DMPrtddeyxvf+MZf6Xr+MxQsRSoApSETx3TrAFQHncnQFXfI+Jqa3Y2jHZwo5BQDRNKh4XrkdY26NYas5KHrPEJFdOYGMCLNyvxxQgM+IW1psGOfQ62n0UocplOSdd37kbaHlBYuPp7R9HgeDZFCJBCIBFdp6v4SZKlNWYYsxBZngwHySYypr0OkPPzQxtgWtkkIpUArRS3qQ+QiCha4hGgELTtPTbQp1ytYDGHnuliwSqipIsO5EyyobtJBA9ckmCSm1l5KV/dBjLEIkjTzqguHmD49hwbmZT/bxmfQ+T7CVALRLC2VoyIKlESFVrOXpFChrKvEdGOEphZ1UdbHaCqbjoopAtNOjnmnxHC7QaIEdmI4qUZZnoAIRuk4eSxClFokH1cyAGIwsGAVQNpUyYIIKRifAjnO008kpuntRExogyW6SZGQYLGgGoi2YD5b5HHn6QzEihm7h1gs0pkXXMOc1ux2RpjI9tLSCt9KcdxP8JQgnUpDYtM2BTqmyNFEYCK5KHoMaNshn3YQoQQjCKSLnZY0A41nmvxE9yrAIW0EUhgSbDKhgMAwXV2DPXwQWxgOhVcSpU6jpYWFILayJDho45CLU8zIXlqmSuREdNsdYlo4SlNplgkLEonGimMCkeGsGsGVXQzNjaBKJzksBdIMElsN/EjhITBxDFIDBiMMvjDMo2lLjTSL/fYcQRA7RCbDpNhELruPgVadmvToaA1I8kYj8bEcwULoElsC13bp1THtzmG0mCZvB2jdy1x9DW6+ToUCtTgDZtEBIgBVK1HInifOejT9HMoIsmSoqiWElQztRNCfPYsQBmE0CENDdJh2FEQGjIWXuFgqXGS0MzFFEzEroDbXg5W3OOZeQkktkLePUwg1QeiR6tSplSASgnG9lBQdlNHMWAGjrZhFLWQJCGLLp+amIFlCw3iYJCBSKRIRc0IuxY1DimEDjM+Cl2aGlYv6SkiEgVC4uK6D5QpOiAGWBJM0vTZGORRCySUTk1SNjaVcjBEU/DkcIjqii4qKqHaqVGsZkqCEKATkWjMkicSxPcTCSjqWTZjxkFHCuWKLsVqBlI5IxRKpEkxHkU1iEhJCuRgta6scIGjLXubjAm4QcIISx6wWtbCXvlwbO/kxF6gWpNRvrjzil7JIXv3qV/PJT37yp+tvf/vbeec73/mUdOTIkSO8+c1v5mtf+xrd3d185Stfob+//2cGqN9GHDi+gPWt07yHNE03Yme7zkKQZturNpAdfmrYuKIoYu/exxhcWKCcyXLfC1/K3nrAsyaOkT56kIHB1/DBVotdmYSVJuY2Wabv7M10pM90borChSnOi7vR6c+CnWJGXsL79S18fNUVrEuO8cD2nfR2As4OPRcpEi50XWZUlfbFX6GxbxPfKz/A8vYS9s2mifKCl++7i4FLFrUr9h7LEfTtJ7FWIuuSVnYVlvNa/vS0zYaRLtIbHsM9/CCf9K+hfirNK+fW8gdrBhnNn2H+ok8SzqzniSPXYiqCzsFtrFz3Qz7W/kv+PP9X5G/yGUg+z8z0GP0Dj/KCFZLiuVUsSTc51zhCnHkm+eRS1j32BBcuu4l3dXr46uxm1MBxXjJ5N1/eeCN3PvFDbiyO8i15gmbGY+Mj9xK+43e4el7z8JMz/O4/7+YPrljKSy8ewlJPLTmEPl0nvm8CUwmYDsbZNdKkI69kffIECGiU/xL9uY8zNzSGdjys+SVcko+YFz6PD9/L/uLt2A/XeY79MGP+BHexFat6AWdOlVF0sMI63zp+BVFrHC1t5rKXIbRi7aEPMzx9nvjCVzJcvpj8OYkDLBWwcl8HVbgY2vcztaQXP17GzMxW7jw5Csdq3Nm9hd/N/4C3HP0yy5bP8N78m5DNFmsq+zkWKZZlPVJHN+CMneYlNc1le+4hkC/lCxcdZLrv23Du9+lMOWzPL+H62lkG/2Ad9p4HeOybXyIz+Gz6ahfxxw8sw7uqxZHhJ3li9j6ODG1n19B2vuAP8J6zr+YDcS/vH38RN/Wkubv78xyd2Mz+vQ/xthtu5pbRFRxfu4GVX/lXUi988S8UbfqPoKTFaG6M0dwY1w3dyPMHa/zRV7eTKu3ifN/j/OWSD7Ht8Yd4rXozpeVDT+l78V8VzWaTz3/+85w9exatF0VYW60Wu3bt4tZbb/25+7fbbd7whjfwyU9+kvXr1/OpT32Kd7zjHfzTP/3TT9uEYchrXvMaPvjBD3L55Zezfft23vCGN/DAAw9Qr9cZHh7+jTO8enZIdiKPl28i0UgDYWxRCEMs5rGDRRFyacA2msB1cIxFW1qEwiEQWSbdhLQ3SZ9tIBhEWwKRSIRZLNJf2jxLTWeZjAcJHEi0wRGGlGOjjaRiuhBBlly6zXzcIUk0gVXGkg1ysg/fPo8yEMRpuk2NXtmg6edYkpNUEsEe1rJKODikkJHHeWsdbqtDr7cfQULidtH0PBr19ViRxdNaCV7GkGgLX+SYnduAW0wQiUUgMlTcPO2wCzAUQ5fzTn5x0izAlXpxgioVwtg4wmMiGaauunFEFoGFQrBAlsRtg7WMVidLLolxI0UtHsDOJCRC0qBAW+bIuUtYW20CC0zILtK2QGiDtKtELqStnkUPvEgw6J+ylLUyZRQSL05oq4QCi+KiUThARJWmtMi1ffozPgt4LHgxwviUgyYT+TRa2j9Vj207i+KqxSChmUS0XAtfpdAmQSQaVR/gkDvKJfZeEiXpa0S0lUQbjWUkvvCwCKmToyhCpmQvFTNCWnRYFoQYJSEWzIsuQuHSIoMjGkzrYeJODwPnh0gE5GzNOItisRLQUi3S1GuJ73VTLY4RNuGUjJmSGhlDX6NOx2oi7ArGCGIkoXHwgGwU03ZtFqwCfbGkEduUyVDy2iRG4VkxfifElh5CWiBjYpXgJBYSgS3BahToRGmyXgeNwCgLoSVL0yFY9iLlud+hYTzqlovWNo4JESICIzAiTRaHDJJy8zyOPAvBWmY6Q2RoUzMWEgVGIjT4OLSdGsW0D8qmRRYtDLYR2IkmH8FpM0gnqQEQODDXXE+UanMmWEVBxPTGkwRJFkc38ESd2EiazV4G3ZMUTMx+NkBYJmMUXgp6ggCLFIFW2HUH3SdBxVjapo0FhCwak5rYuLRUmqoeZYTDaL+PxImphP1EnkRLBcQY4RDhUnYNJb/DvCsQQYq0CWnoMq6OcbFJZJpYWkQ/NhG600cASBtw4yJF7RGJhIh5MgQoErSqkXIt+iObgYkOxoooJlPkdRaFIOukFzXOtKDjdrBTHdYGITl9mh5jUSSBBGwDMYoFVSJIhpGWIjQhrvRIRWm6fY2f7hBZivRskYyyyfZIFBC3Y0JX4/5EpPs3gF9qFjcxMfEz67t37/5PWv7y2Lx5M7feeiu33HILN9xwA3feeScf/vCHf4Za9rcNE/vn6LljnPVGcfSCNl+qjjPbyXDFLavpfooMJoBDh/bh+z5rHt+D+Yu/4n0LTbpadS76/jcZ6PlvfNoE7EolPBubjzgWemQn71z6AT5+9b2sfPkmKoMfQhf+mUw7ZPRIN28wf87W7vWMODYnd30PgWDpuRbVwlouTi1y/zcufzenJ4aZdBeYcmdZXrmRpB2THwq51j+GsBRawymrm6S3H191uPzhLzE2+X7GrpokqC6w60tTbP94hi53gFsnH6S4VLEQlnjfo6/nj37wd3x638sYKx3jtVd+iC2DZ5modbN//zaEV+PdvIXjrOb11sf4SN9bOBWtQJsye9Kwrf8IOhYYfsTBlVt5+pPzbIxaLBUxd528ifdJxbQq85GD7+aTS55HCQvLGE4PCOxWi0vOHWV+xOUrr7yEzUuKfGjHKV7x+T3snag9Jc/L1EOib50i+reTANQvlTxw/qs8YS8KBS4ZO0Ll3IUc+/IdVHNZonIf6fYCWzc9SD7J86neOzhjbqQ+4yJrMX+TuYPzMsNuNnLVioDE8uib+ianhqYJ6/8TofK4uRdDYtj8+Afpb5zhO1ufy47iJTS14Mqs4oaCxbqUYrpzmn2H/5GD5aP83ewK/mTHMf7srkPsPNbmkoEC7auHOP6iHqxqiBnXZL1pjNHkW3X2lAW1cI5RcTnnfMlFPRGFhcN0ty02ztyAnTuIyhzBOVXnnt4bSJsYWd3JmquupdCriP3vUC3tBalpPjTMZQdv4WOX3MnH1j+T/5aXdLVGeP3IR3k8c4g3k+ZFlSt4tvNKrlwyi9SGIx//H7yhr8wnnvU7mLlZgnufOhrrtf0F3v+8K6nPXos4/TKe33c1O3KP8cf7/5Djp/Y/Zef5r4w3velNPPLII/T397N9+3Z6e3s5c+YMH/nIR36h/R966CFGRkZYv349AC95yUvYuXMnzWbzp22iKOJd73oXl19+OQCbNm1iZmaGer1Oo9H438LwaiUCq1VAn7uERQXPRQ9yvrE4YMfSwkZSkTHaGCxtLU7g0SQ6BQgioejyfUbqdbqVwhgHtdBDa36Q+sIyJtpLOd8co+FFWISL2mTNtdQ7AzhOk27h4TW7sOrDWFogRMicLnM+HmHIh8K8B0LihIIkkcTC4elAr6Pp9SoYY5HRgMxzONwIgDQGFzDCxzYhwhiySReJlyZFDakDrEQiy/1k0nk2tKo4BiqiCyVslLapJ2X8eAW2LmEZDQiEAFtItLYXxWHtxQl9RxRIJ4JEWJxTvUxaQ9gGMAopFo0AISDGotHpwWBYvMMWJvLQRuEYxRoTo/xuvCDGWB36hSJrXJLQwsgGGIH+fwnzAhSCAMssWj/t+hAxHgmL6dpauuR1Qi5IoY1AAhcunGF1NIM0kgRo2zGhldBqZCh1EgqhwELQFdZZVjuP9lOkTYHQcjkil+NKG2UkORExKNustH20U2BWdKOFRGBoUWBa9AFgJwl+2MUJq4t5uvGcDPkgYXZhjCySAQy9RtNvEjQQiwRhYL3dYaihKNbT9PktUBptBJWkh/3ZEhVPUEhswrOrmK5fiK8znBbLeURcimVs3CRiOKgx2FmM3nQyMSaXkDSX0e6sQzqwJGxRtCrEtkZbili6LAhNO+1TsDSeMkTVAZQuMJSu8ZMEm7IfQWIvfjNxCqfdhWUgmwRYSUAqDhltN0BAAuQ6sGmhuki5X89iC4OFjRIW0kgysSatHdZaNu32CBOqn4qV55h3AYGXouEldCwDRqJjiSctHF1kMiowtJBQ7EjOzF5AYDLU4gGOh5sI0/24IsFBE7YLNBoDGFg0JMhg2R6ekiTaRgHCKCzRIh3aCARpZbCMjYXClQk9nQbaKALHRiYO3sIazoUbEXiEoYeRkMhFx58yBi9JsIQkjMsUhKYn8rGRFBF4sUVbZrEIkcqlYxdoqCw1q4uq6qJllcgYQ4GEgtYMiCZlu0WXaNErOsjCXtJWlV7dpJi0KJgaqpEmE9lYnSyWEcQIlGWhRAakR0TIQpgjZICq6mHGLtIWgzQZJDQ2pTimYNkM6jJdcYqC9lGcwIiYKJbkTEIBBxMM4kiD1yyQiTqkcr961tXPwy8Vafp10r9+Edx6662/kMfwtwELe2Yo3DfBeWGYf1bCw/ecpr+1nEtfvJShFU8dbXGSJOx5ZBfds7OMXLWNv0mXaISa39/3EEOZl/Flz7BbGl5Owk3r/5WHu5/ko3OCV67+72wteIyfeBlx4lM/Mcozzz/KOze+kS5L8ZreEkEcMH1sP2XtMTV4LT22YsiRnOl7gKbtE1Z6Od39KK5O8121GmNHfHjqC/R6p2mpEeammlQKRUI3Rz05yMi8ofqcKdr9b2ftzWuI5p7PwsnVTJ+4CtcxvGqvoZKVLAhNLYhonHo6P6g/kwuiuymtOsJFSyrcWb+Z71Wfwyvy/8Cb7fdyaP56dsy+kPuTv2ZbuAMZZtjV2kbKm6FTexInv5EdV32QdYnkLVrzJ8bCO/AOfqiP8KLy23nf4Q/w+nV/wQb/H9mzZA8bjhuesfchPta3hOP673nz5au5buVm/vHBiFd/aS/Pu6Cf1z5jlGLqlw8f/yQVL3loGjD468ucsxWH7v08ORMh6xGZsEW/e55De9YTivNE/WuIEsHX1TO4/nAvh1SNH+YfpXn49aiwxkvU/ZT9cf4oeh0P6o3kjqVJO5OoZesp6JhV2REGdC8NPcuM/yPo72em9w9p22laxYCNKs1dnYjzMmG8dYYJy6Oy5lZ0ILBUzMb+HJekUgzNJtQPtTgwmvDR0VexqettzB3NctPTvsfXeT5Rpp8y0zwYLPBscQ2H9mxEbNlDvLHAyPi9XGo/lydLu8gMfIP6iTdyT+tZtMUnqO29jfyy67n0d2/lng+9i+zAMHXxKOsfixiXNzFzss5Fz/kzrlu3mTXehzj1w9dyvzNOPb+dF9e3kotX8PIewf99bg9P1ubZsmcnd19yGSdGljH2xc/i3vgcxFNEH79pSRe33bSGt3xL8ujehHdv3cjfHfwMf3rgdbxLvodNS694Ss7zXxUnT57knnvuAeA73/kOf/Znf8aLX/xibr/99l+opun06dM/k7mQyWQoFoucOXOGdevW/XTbdddd99M2O3bsYNmyZeTzeRqNBtVqlVtvvZXJyUlWr17N2972Nvr6+p7S60znUmBCakmCu0i9wPTMSga8KcZkjXG7B7/UxPVTdGSC23FpxCXieZeaGKSeShhMApAJURyySs9iCY+pcJgj1gDj6SXUoxhDgqHNYHuWVVrQ55d5sGslvtthTdwgkS5Ekn63SVXYpEKPXKAop2o4ATSQiNBlpj1AKpYMSo0WgIIBJRgTHZrNhD1esqg39eMoQUtEaHyKvodrJNJKkCJktracpCsmTrowsrUYSksgIwQBhq5OhJWTdJIuhOcTaRebkAVVJBKpxbmymyDcDOgWpTjGtRJ8JyGQ6R8blhKM+Yl0DokWKAS9rRZaWcTCJXDL6MAjSVIIAZFosXQmIe50k5GCNYlPd9wkEJfS4gxm+RMYIYlYJOJAgBaajs7Timwa0RApT5OyFEFsEEYhZRZb2+TCBkooMjph2A84JD2MjPmxHj0iMkhLkkiJlFAKmqT9OtMLqxhys8RCcEb1U7BcurEpi2k8dY7ReJgg6PCQ9EgEkHiLgr1CMDV3AVfO13h0NGY+VAypKbRYjFgkRuHKmILQWAgCqbG0IWezGBmo1GiRJhPnGfZgQQiMlAQ6IjIKI20G4yopYcB4HNFPw7OqpI1LwYY+00E5DhlhcBKNnSw+k44MuHTKJiwv0HQTpBBAB9vNYWIohpoiEaG2MWrx1bAkpNRitDFtwdpWk2M6g99ZRl+9g270QeoIEkE+7mDbHVxA/ZgS3RhDKhL4qQ6JVniNPi7QaSbdNsurx5iOhnAqMfPdBab9QWb8XsaSQ6yuNWi6VY65GbQ0gI0jwVUQyg7ZRg/L7QZe1ceTDU7kCmgpsJRDBkMmDplKhphsr0ZpG2ksiga6PRsbC1zNQqeLsLWKrqZLK24AhrKdoCV0gP5WQsqq0AgGsVQKT/RTsTKLdV8LZeJ0m1YnTdaOmBP99PScIBVFyGo/c9lltGSMX1tCvnAOkxUkWtCnDDMqRrkhKRSRjjjXWknSGWSdNYm0YEaNEtZ6iROfnJqhnXHwg5BIxxxO2fiV9RSMhfEjtGygjGJyLiSdcTnZ3aTP2BgnJhsvoSlmONtSDHTSaKdI7GhOOAe4qNmPMSna7TyYR9D04nSWk6cbk50l7KQJwxQYG4QgZRmmcJEk9ImAtIz4Dco0/Wo1Tf8Hv1m09s2Rue88e4Wm/RyL3Xc9yZLaejY8t5exDf0//wC/BI4e3Ecz8Ll4apon/+TN3D1d5eJzJ7j0/Ho+k5XsQ/MK+xjbtn6Mx0P4eq2f91zy52SbX+PcxHZsez27H1rB8+v30EwX+GT+cv52oJucUnz2wQ9D0KZ7rsOZVc/g6pSiZSL8DZ9l4ux6poVmKjOBLZ5Huxqyqf8MWxfuYtrZRj7cwefNBnRXH7GIuXRvQphXpK97AcN9L8aopdwbzXKHNcWhbJsRrdgYtSkJRUEUGYtAGQEThhbX05q5HoBNAAegot6CvfFrrFtxN8vtJ5h85JXU65eRdufwTZW+bJEz0UkSfwdh4Qbis7vZuPIatpmzbPe6uKg1xvbod3jewrf50fmL+Wb5DWzMHObksscpVWOev/sOvrWmn1v8TzEo/id/c3mJ747fwrf3G7Yfm+F1Vy3npg39v5AjwhhDcqJOdN85ZCNiwZHsqcY0H5xe9NrKXVxxboKPP3cNXZNn+NyB3+Np03uhdymR63EgLPKHwqVoBLf13Uksygz2p6ifafEW59/YLUc5Fo/QR0SsIxoyZFgs49Ikh20EO72Ih9wsRlwHgz/plYYQvs+il14lMRkry7rmOTZ0Z1nhl7gokmSaNmpZHnVNF21tOHtwis90j7G7fzlbDpxgxfEJNm25l387djODrsN4vkm1XWP11HUsRE9Q27LA4OcPcyp+DpvOPofdKz6D07WD4MQ17Ohez5bpA1Saj9O/6mJGN1/JsSOH6AyN4VkPcPnZGY5c9joe/tpJBtesY/11H8G+7u2o77+Y2tkBnujbwY3tq0hnQ96/rsKL9pxm9x1f5C/fcTkfu+4m/vxT/0i4cwfuVVc/Zd/bVSsG+evrAv7me4JP/ugQtz/jLbzriY/wtv1v5T3W7Wwa+vWKV/8rQ0pJu90mnV4cEX3fZ2hoiAMHDvxC+3c6Hdz/hUredV3a7fZ/2P7w4cO8973v5e///u8BKJfLbNu2jVe/+tWUy2Vuv/123vzmN/PZz3723+2bzbpY1q+WJdHVPwTmNFWTsFQDFojYI54rk9E5BmUPh3M5RG4C00gx19lATUMqAOO5xCoi3ZQgQUuPSM0TktAyZbTTx2gYcci2EXGEQiOFJpekyUYBWni0ZYKRMYvV7SnKcZrY8elWkE/5SCLSJKxthujY4lRUJEUbIzQGjbYERVNFKElXK8GgkMbQ7SxWz+QSh47xcHXAWKOOF7YQUiISj/koR0roH5dnCEaReCpiV20pGVJMttYwZtoEpXF0I4XOSBZUN552gRgUkPJY2qmCBs8JyKkO6VgzIcEIAbpJrDS20TQ6ZZJmi9E4Zkg1GU8N4EhFW2qMThG2yqTyFWIZMskoIsqy2o8JvQi8MlG4hoqepqNS5JsRlCS2AkNMZAwV2UWf73O+J0EJQ85O6BIdYhQtFSGE4KwYQoSrMJNtuktnkUgyUYQwmpqGWGiSlEOpLYGEydoAIOnWEgcbUITRIFDDNoJIdYilBtUhthwqwRIuajew8y2aiYdKbDAOSkQEcRYvTFERfSQ1QRhL0BLd6iUupbHtBG/eMFJvofPztLxuRCoiTLIIJ0CbLNpWiB/XRUmhKMQCy0og8UibCCc2ZCPIJhrlOxhcemQbN9J4HYtgLkUTEGgsFDpxkbFNWiWs6PgsJBmyZ1fhpOepqQGSVIgtoa/TpivoUPUkjuUwqDTHlE2oixTaRWw34oQVkcRpZJDHsjsIaZBKo1crh/8AACAASURBVCVUhCJxq6SEJGWXKLe7kLbNgOcSWJr+sEMiEuZTaeJWyJqFNnbGYEtFPu6QURYWitVSUmn3MWnHhJZhtNpmupglj8TDopQk1C3NaMdnNAkIG0/jDIIgsvFQCCFRloNnBIkQpOOYgmuzpt5POvHp6CahiBd/DkJiC01oxeTQSCEwkYfBot822KmQWhKyL8xiy5AZP8NUroRf2cgSdz9rI4fEEag6RGGOtLTQMiEgIFE2zfooqe6DOCi6opjB+TZ5oeizesDq4MfdYGUh9kEKxI/zhDuRQ80MIr0WcdshZeqExkIISERAzQlQZQdZNcSWRc1qouxeTDxPJ5tCK8WAzhJZ/cSujZ3YtNJFxFyeqGyTOmOjjMZKekmCDtIWBL7GljaOcgiVQOgEqS2kkljFFMXib8Zy+qWMpiRJmJmZwRjzH64DT7nX7bcNwak63HOOJ4ip3OCy/57dLJnfwPJnFVi3eelTei5jDI/tuI9CtcrIq/6IF0zN092q86YDR/lONs1BPcYru+/hyk138WBTcYRNvO+CrdRn3kZTB/T3vYEf/hDS7WOstM/xTwMv4bpSiesLWc61znJ254MsNRbTQy9jzLPIK8HxJd8nxDA9sYrJ/DEMMFO7kiJ1PlG/jUT2EEav4nXd44ydLpP0lpjOlrnl4EHcV72KM+7L+JcHJrnn8EO0woRl5RSvuXqMZ6/rxQubfPUD72b3hi1sX3UhS6ZnuPLsJCeyK5k93UAAG1IRz+//PlOmzaHxVfS1sqxc9SBLr7mNu8WziWOHt+/9HOnGGHdnXsaJ8e9hd6b46up5/qrT4A8bLfb0O9xbMninbcpr1/Cek//Aycwgd1y5lq52H04iGZ1qMtk5ym1Lx1jan2NlSrJl6Ve5uEvyhcO/x7vu0fzr7sf4o8s9rly5Gcsq/Pt3oRUx89gs3t458qGmnRj2BT665xwDF57CLR6mHhzhxJfX87b1NzF3AIbbDS6Y2oco9NHo6qF77ihbei/k2naJx5059hUeJu1uJTXR5I+8+8mZBv9Q6uMZc5Nk2imcie8isv8Pe+8dptdV3ft/9j79nLeX6V1lVEbVau4WrhgMpjjYmBKSC5dAAgEMOHAvzaYkJDGYEFpoNr0ZsE2wjQ0Yd0tykVUsy7JGmqLR1Le/p//+eGUJ/yAJ5pqbcvN9nnlm5i1nn7PP3mev715rfddmFC3NtH2ATTtv4OQjk+waej63r0qxIkizOl6KiH1KqXl+ER6iZ/+DpN0Gmw8eYtVl3dRf+XriSBA9WSLcOUd47xThvVNo/UneMJLju82jfHvrxWx4/BPMPp5gZO1T1Ddcx5dnOtg4uoXb1Ed4mX0a448OY6zbi9Jm0Tl5DxvkmWwrPoSZ/zl+aS23lE/nArmTp/a8B3vDjWy65I858pF344UBo6v66fzhvWx53jbGLjifx342xvRByZrn/z0rX/gpHv/ZEkYnTyaVeZjTqmuInJj7lh5l0eGQQ9d9mjWXvYmJH36b5Fe/zMDpZz6nXvYXjAxSbrr8/S8Fn7zvYa7e8A7+186/470Pv4sPKx/npI7/WEpw/1Fw0UUXcd555/GLX/yCTZs28cY3vpHBwcHfIEL/EmzbxnXdZ7zWbDZxHOc3Prtjxw7+8i//kg9/+MNs3twisqtXr2b16tXHP/OmN72JLVu2PIPIPY1q9ZntPBv4YYwK+AIqR5exoAdoSGIBstGNlrBBqRApglpHlupYAmIXoUpkFHBWVOWQEiFjmyBUUBQN1zUQoiVDrqrQJyPGj/lbRAQCydEQ5tUFLBEQxyFqHCFjDc9PgFnGxiJWIJQqvhajEBNHZiuBXLS8seJYxL/ebBJpBWSjQF9aIVKhGMUkw4C6plIJE0zNFZFRRFITpPw2SkiEiIEIAcRIEui4DZ3ZZhtlJaLDd5jSpyke0VBqBaaSYyBBoqALcIQD0QKRCJFCRQBLogXGhY0CxAi0Wszi+jxe3EaMpBnmcKw6cyxCaoextJiqJ4h1iTQsUBZI6ga+10tFqMzFo6TCNL7QSRswr+cgiGChEzUZYRqThIGOIiNUxSelqkwc83IlfJc4GRBoYDZtaDpgTyEQyHonNXsex6zTrntMBSpO4BCLOeK45V1ZKC2m7pVRRIwVlznVTzJpBpg1FSk9JBH1ZsiC1sCWAR2+i1JxUP0UebeBERl0N0EVAiOOWaJGdDRWMjwTMR1FVJQmcn4xCI/IqOIGEh2T5mQvfhTj4iHjBJHl4cUepivpajRQYpUojpF+iCc8zCAgXfcopyRW6NFeC8lKg9hwkWhISyPl+khfJQpA6iY16qhRBiOKCaMyqGBGEU4kqcWCwHPIuwkqYUg6rGBKlQ4kC1LFbnh4wqLGJLHIIWMVIzYoVweY8TJkmlUMe5pYghYo/LKxmlMVDVvoVAvQ4S0l0lRCVVKRAVLTkZEkVCNCVSWSMRKVhJRoikFNhbTXJDiyHkfmCbw6Ra9Bsj5FYBnERFjSZ1j6LGGGhyv9qETosYoXGQSBihQBKRmDahDgPq03gR4JDCUiVBVKYYOQAITaml0yxo4hlIIoFkRIYtFS/BAiJq26lCPBkFKhGgmavk4+jEmhIxfa0RSPM2Zq3O9LFlBpj1vqeGFsEEYRbrMT35sBcxy/kUaNJKFfIELDi6YhTCKJQREgBBW7QdJXmJEqceQSR605FllFVKVGZEqUAALLwY+axJFCiMBT0iQjHXQN6RrM1mPczDi+AN1PUW/kqKUiDmWXEjcV+t0ytmYRCoFnulRlhBLbCGkQCxs3zBOWu/DKSeK2KVRTYWHht2+G/a4oFn97CsyzIk2jo6OceeaZzyBJZ5xxxvG/hRDs2bPn9zzF/0YwVaf5wwNMEDK51WT/zx+g7+gqes60OenMpc95e/vv+iUlYk4zLD5R6MaeOcBPdryDvDXJ84Ar1DRPrJR8e95kIHcBbzJHmZ/6OLa9hp6eD7Jn9zTT03dyQfMuIkfy4/5L+MeuAnEc88mdH2dkUsOMs5AcZNiUHI2aBEu/w5Hx5Yz5acaS+4HNKJMBH0l+mbxf4c5lFzHwUJKLx1/LI6m9gGTFzj14ms6V/nIe+fpDGKrk3OEiF6/qYHVX6oRBa+c499LX0bzhWyTcOvuWruUbneuwfZ9T1uQJds1xy1MLPHngbN6dLhENf5uJ0bXMPXIOm3smeH7PzcwoRQ53WozU9zEUL+No8VHqpTtZ2XglDzHK+vQSXjP6La7tfikHMmvYFfTwETHDlx/7X1x40mf40foK7/rB3RwY3Erv7Hp6Z9czlxrn0dy93JAfQ3Milq24g/7ag2w/sJ4rfrKYVYVvcvmqfawf3EoycQ5H9jU4fN9R8kfr9GpQSx7mqaV7iDp3kxd7cEN4aGYlD+48nUfHX4nXoWPjkmjzecn2GyFVpNLVS/LoJJuyu3Fq/4NyHPLhVYcRjYAt1TL7KiGvNH7KvbnNNIIUxKDUQpTMSwhlzP7U93jlrQ9iuR4Pnb6J20ee5K3Tl9NOBn9Q4eHp+xjb8yCDCDoTKVY9spfBLSGNl3+ulZAtQRnOogxnicse4WOzhI/NYdw8yktXmHxj+XpGu/pQDz9F1+NNfmzHHBGTtHW6zE4oPOodpPPwhTTW76W09ikG7kkzHp/OaaMv5O6RvZjtN/KziZfR1FWSoweYGfgmxeJrOO3Vf8ZN3/wyo4VeNix9lMaXv8CiL55B15tHePCGp9h2wySdS/+U1Rds5/F7bmXHgc3cnb0TNwwpptYzPzhJ9OReTjmwk5+94CVcct3nmNn2IMWNzy2RuWzDMspNl3+6fy2f1u7mI8vfzXv2foz3bb+ST5z6GZZkfr96d/+V8eY3v5mzzjoLVVV5z3vew1e/+lVmZ2f51Kc+9Tt9f2hoiBtvvPH4/3Nzc5RKJfr7n7kZtXfvXt761rdyzTXXsGHDhuOvz87O4vv+cbW9OI4RQjznCq8iYzOiWYzFIQKNnOIzIRVkwqCpGajCAmFg6DpDiQ4erMTU6iZKNSLl1XCiIyzTighDg6ZGVM0RShdb6BhAlwYDUURoxyzUJYYEEdvMGxqEPnps4tsemtbJpOGiVJNEMytA2AjVo9lIENgqeuwTRRqq6hDjEgJrK2X2GQ0UJYZ6W8sgNDQEMUHTItF0AQtds5k3MzwRxyi0kTYjYk0i1AA8l0QIcawTiRghY1ShIlSFRbrKGCahr5IROinNIPRC/BgiVaBJBV8KGqaK4arEsmWXtPsOW+MyvyyvpFh/HF3EhEISEhFLSaQahAE01ArIPKARCRPF1FAsE0u3yYgkU5ZL2U6xxHOIFUkMhIYKUUQx0qh77XQpIXpTYoTzxEaDUGlj5WRAKBIkUjVmcwnUsI5pQnVhmFK1yID0SccWqAah4uKQoyibxGoTX/FpuFkapQJ+kELGM2hxjEAlqbtMOhHNSMfxJD4B0Xw3YdEgLHXRGZkUvTyabBCFCQxdUCOk4jVZPupDStA0JbY0GJCSWeFSknWkGoEWEzYMskjm4piqnydQsxRdn4YeEZX7MJUBFF1gKwpLS3WErlNPadhlhUDMESykKGsO3RgElUFqJRe9YxQfk9B20QJBQ1NRlFYh5qYpWFBcnKiJKeyWgmQtTU2GCMCUMVpF0ml5dKsSRRr0u/NofoKSqZCP9iEaCmF8CnFsYMseDMOGxjFPjaJDrII0QYmJlCKW2YmPg2tIpqkRNbNYRh5CG8PkuNezZEmq8RBJdZ7QSyHUBgKNSAdVSMywgqurLDgV0o0se615kkENM06Q09sJ6hD7AYEuaYtCjqKSNzRQDIggNB2ESPC01EAoWqGHplSomTb9R9uJCoeZxGiR3khHD01Cw0EKHUXRmLfqNCMwgR6zTq8U6L5HoSmZNUNQBNUoCdRRRNTKB5OSktdD+4yGUGMScR5XLBBIiJD4CGbNGGEkSQgDWfM4zBEsv8GMMkyYKLPgz6FLnRBB3dJQIgtRcNC8WVyltSn1NGvQ0dHVPARlzMwAesKiNiEJ9WkIwfTyVIVKWFBRgjYajTqhXkGoCk3VxVWaRB3dxLMWcT0klCpS1/HncxBHhH4/uXTPc/pM/nU8q6f93r17/1Dn8f88opJL6dtPUI8iHt6kM37/A/QdWUXHKTqnnLPyuW/P99l27504QjB9+ev55+lp7tnxDtSowlv8P+fCnts4e3Yf5g5JdPIGwvhmPC9NT/cHyGZfxMzMDPfddxfZoMwaZ5Qftp3DOxavIqUo3DFxG9O7dyGCNvzkaay3FISAI0PfQ40lB8dWUkrtpal6lEov4DL5Cy7y7uH77Vk+0Pwlb0s6nFW5gB3ZBaxainPu/y43Dp1Kw3B499mdXLC8jYTx24du17JVnLpljPDhHQyVZ/m0lUL54uexL70c581v5Y5903zkxp38RTXLO3e/nY6O73K0keDOp/ppa6wgsfhmZroU9iomqYN30i5PZ//0d1AXHmPfYDcn1U1eOOFxf/tObnGWc/njO3nH1nfyucMf5McPvZkL13+OH25czMfr7+QfwlejiiE6yzly5Zdz2ujLaBRn2Z27j52Jewh7HqIoEjxVHuJ/b1vJ8vsXeN78fZykmCzq2kl9/SMcaNtNqM4z30xxYPZMds29hAfGczR8gRW7nHtwG5vFk1z/whez6e6fEjpZmu095I5OMRLdT1l9C12hxl8vdlmI7ycb29x16EK+Yv09sZbkaiHYNHUKmcoQmkjihk8i/Bv40xsPExgW333tElQ1zYfHX0XFUjAuXYTR5fDjw0VuOfX5fHZqH8NXfQCn04e3fpXYzP7GPREpHfWUTpQtHcSHKrxm9yzfjUO+/+I/54p/uILdBy0eHRGco+dZ3vN9dpZeyPYYLrJPYm7fAPLUg+S2Q/fk3cTidO6eOhe182ZIHeLm2hYumHqQbROfJp0+j87hEdas28iDhw5x//IRTh9/mMpV7yfz2S9y1p8uY/99U+z82Tgzh4bJr8tRKj2MDCwW1/uxTJ+dNtR6FO79xhc4+S+vYv6GbzH75S9S2LDxOc/pfMOpqyk1HuS7j24kod/O1X1X8rbx9/NX97ydfzjrn+iwO5/T9v4zw3VdDMM4LuIwMTHB0NAQL3rRi+js/N36afPmzRw5coRt27axYcMGrr/+erZu3foML1Ecx1x55ZW8//3vfwZhAvjVr37Fddddx3XXXUcikeArX/kKJ598MvrvqbD4L0EYCq6hoYcQKArtmkmX5+MqCoEiMIVJhIOhCDQjh9KZQSlFyNl5kqoPbhsJo51So4koS3TRQFpJXN9hmS1AgidAVywQVbqVJHUzDdSJVAspDSTtiEwBv7iAnNQRZRU8SWz5xA0NREgQWoSRzYIS4SoSXygYekxv6DNnKPiKRxA69NQ8DmUkDcXBLffQaFsgW88hdEmkBMRqgHQVhCoJNJNCDH7oIIWGp+rMeAlUqZNWU/hWjTm/RirWCGKFxcFGqjNlwkqIMBv4SoArO6mELpof42ut8DYpYrp8yTmRzxHRCqvypYoeRzRVQSXqYr5Qw7I0ZCCJnk45DRzSiSzlaUkcK8QCfMvCVU20Y56BnqaPJwW21Y4oCQj6IApRbRehlIlSCzSnixi+hnQ7IDOPFJKM1kafAfWmSjYwaKgSz1ZwhE7TG0RWExjKBCnNImwaNOM00mySaLikgxSOlqKqKiTjIwjfohpLMoGFLU3UsAPPaSdSdULp4Zt1alFAoGosKB5T1RJqwiBp9gInvKKtvK6IBbOCHRqkTY26pVE2TRo5QbueJZlLYpdKxGqerCaxUk0S8zUCyyE2I7ymoJozqJlZ6gqYFRNFBihCQ48kjdIwBd1Hze4mjHUiKRGKQpxw0DSFnBNTCRah1GxE04agnWRYQsiW6EMsQGgWSUMj8AexaeDOL0YYNkIEqBEEikHdUFliZWmPPJpSEmsaiAA9apEFM4zBaWeuvp6ihJJWQo8lHhK/2Y4hGlgYNNQQ1wgRroU0TXQ8JmKNo7N9ZA2VSGvVZTLDDLUkCG2GPckJRNlg1oGNUQ9t0mHa9fGFQDFjOlIp2iNBKGkVolY6KFYDUgsuBzImyIidhQrLYwW9aZIlTaNqQ+YQvTqgKBhVGz020HHwg0XYJInEGHVDJemqxEISazajUR0bk2SUZz4SzFoxHWGBI94CnoxRadBWLaGKPIsdied30GQK1yrTjw8iZNqI8dIRIw0NW7fJ+SZxrBNECYRqkFNblGheC2loEbbMEiYiND8LjV2gt+aOl7aRVop5q0G6otE0VKShgJNEzSZxvQh3qp1IryIIsfQ2GmKC+UKGzihPwz0IsU2odIHto6DTsJOoigGaQDcDPM1AUf5wNTJ/r+K2/574r1jcNm4ETF+3F+FG3DQcU3p8F91HVpDfJDnrwrV/EAGOfV/9IrtEzKKBZbxXSfDJ3X/H2tqj/Kn3TtauvwcvP8HO/AAbpqfpmDqIt+wy+oc+ieOsIQgCbrzxB8RhQK/6KGvDA+w4/eOc3j5A1a/w3u3v4nn3FVBDhwHnVJY5Fk8qsygbPsvY2Eoemh7hyfafU1eGGRwt8nn9GnZYBldkMrykcCorH7yHQ2YvU3qNFTtHKcyNUfjQR/if561kZWcKXf3XE/PbBpdQO3SAI5UKh0TE8kXD+N/7NlgWS886meev7mLH7nG+G4S0VUfY6rqMpsepzRnclLqYuqbTkTjAQudj6BMG07MNIn8M0z2Zgh0R2x2svvOr3LZ0IxNmJ0smHuKB9tM5o7mNS47+hGs2vI5GOebM9kker4ZUktNsFpPkt2zGn1QpjC1i7cTZbKifQ188hCfG8Ao/p6fzfpYP3YO94odMFXayzc1y59GL+O6+S/nevnN4cHIR880UZyxpoygP8qlvXcWp0S7uWX86zviT5Jouzc5BijMzpKb3sm4oTbF5MQ8mPP5uBJJz15MqrWBLtc4fy5spxSq7Fi6jZ34txJKgegsds3dy+iMHqXbk+eCfdLGltomXz53D0T6brsuWITIGf3NklhsWKlzVnGXDB69EcwLSH/0YYf+p/+p9EUIgMgbJJVmOlqv8KGOz4rHddI4uMDHis7h0Cau6z8TIfZ+picWMyTL9EyuIVz5AWCrTMd3G4cQiCpU2DnbsIrD2MCqfz2vdO3igugItu4dM5jy6lq5g//Z7OapmGMgcQt0+Bp6HsWkL+d4EvSM5xg6NsW/mIQyRYmRRhfJUEafeS1EPOWqFKL7L6P0/Q6w7i5W/uJVtazcy8Dsa578rhBCcPNTF2Ow4N+7rpqzu4C/SF/MT93buHfsVZ/edj6H8foVg/yPj2Ra33b59O5dccgkXXXQRiUSC2267jde97nUcOHCAL33pS6xatYru7n9btl1VVUZGRrj66qv50pe+RLPZ5KqrrqJarXLppZfyyle+kocffpjPf/7z7N69m6997WvHf9atW8fpp5/O2NgYH/7wh/n6179OFEVcffXVJBKJ32jr/2SdqlXKzO8u04gFCJ9c0kS3u6irIUlhEWtJDtgZDK2X5QMDPBnqyACSNRdDHCEba0RZm6ZnoTQ9ErGFUrRoaDZPS43FAvanVSxV0B8lkIFCEPvoygztDQNbDkBsMtZex3AlsqoRh5IwrZIKHWrSJTAqmPVB5tJNHKuGZwVYhoftd6I4GWRYp6GETGMxk1JJhCp50cZTokCvt4z+dAqt4BK4IYlIw9UUFgydlKbSUTPx4pCKP4gbGBTVmH4jTaXo8nh0EF/42KTodDppNgQ0YoRUCJWAye6AxoJNKqphaSpNIirNDDIs0NAcEnUJUZKKlyTWPRQ7IoPJzFKPJJNUYpOG10chDLCUIkOLz8QuZ5kOIry2DI2wRGQIEg0NKRQ06xA2MVGt95gYRYT0S5h2E3CJ9BS1OEWYSjOdVDncO093vYHm5ZlBJx+FZDwNT6ocLkxjE5AIs0zLmFyyjXZ9CUeqCRwlot1uEDDFelFA9CymatQRCZ18w6QeNml3YzridmI7gdqZQ4skIpDIgo+dUpjXQqTi4Wpgpg2WWP1EoYXtSwxpMm/41KwqkSZRtAIjWoZazaKckGhZj45sG0JA2Zd44unNghgjLcnYGTRVQaGMr3qIQobpICDvWdgEFNU0kSZQLYv2wWUo9jhN1WZqvpu0kAg1ROpl7LYAzWlnvBnR9AVanMQLGkyodTQtRwKbpOGiKAbzHT1US2WEm8FUDebDORTVJ9NchjQEUnNw44BmHKLlxlBlSNnX0WU7bY5LNt3FAiHJwCAd+sSEKKrG485Runwdx0oTRTFScVksNUwEJjUiG+Yq7Sy2k6RiQRDFjBoRsSZIqAZVExasSURe0FfuxJFJAsoQVRCFDiQh6DG9qU58fT9R0sdws2QWbI4kdRQjoLM3JlOJQSqUtAi0KoozQ6To2IZKU49xwl56hYHQM8R6N0f0gJAItWGix0mioJ2yppBwI2zToubAEcejN+jAi+rIxASWLYnrKlojgbSzhITEkUkoS1i1dhwlZrrQ8lKdmlyCWwnReIrQSDBrJ2hJa1QAaGAQaiFKSsdvD3CCIp5fJtvdwXinSsLTSCcsnO611B1omjW66UZrOqQLDVSZIKguAprM2z6xEDSiCk1Lx01m8EWFWiIGvR3TSGOHChKFsmXS7VXIygi30yPdm6fd/D/zNj2nxW3/G88d4iDi8PV7yDZCvtnTJHh8go6FpeRPg+edt/4PQpj8g0+xfeIQZjLDZ9L9rJt+jIsWbuWz0Qs5Y8NtuNEYxWQbZnSEfevXsWLbIww/vJtSr0kcx9xxx09ZWJijltT4i+oDbO/YyvlDGwH44uOfI3dAQW+EONoyVqRSlOKA6sovoHome0bXEyV3UtMbaAsv5LPq1dQVhXfnCtQm/ojeex5iZ6mdenGCNi/Jsv13crh7K+a8/az64sw/ei3u1z7P/lKFn6Rsnr/1bOr/eC0ym6V4wQv4/BvP4JqbH+M7++Y5ynLeeaiTGwfvYtX+/Vy36Y951a5fUhtYoLb5Vlb09rP3Dg2/9s8cNV/MiswAFbuNN+/4AR9d+1r6qt0s+A7X8XJeE36Hm7f9GS9Z90k2Hvg08x3Lyc54/ExtIB+/l586feB7DAQK/SVJz9wQ57AIT3pMZSe5zWywN3CYcwsAmMSsQ+MiFE5CZZFucmtpjtOuvwbd9vn51pfiL8zQ2WjQ6Bqg7ehRVuzYxvCZJSrep/FkxBWbsyyd+j6zxJSnT+Uj6vsYDxbz1erbWNzsomkexWveTrI+zponDnJw00o+sLXOe8bO46TacuonFeg7sxshBF+cnufrsyXeUTvCmR94B4iA7HvfRjh8/rMag81DTSgKvn/+SjZ/fg/vub9JsOjbmD/9BGb2zTSXf5tHdp3BeCJF+vF+xFmjZPe69E3eRdTzPJyxlxEMfJZR7TF2yQFWzhzhtidVsrm7SCVP48JX/DFf/9ZX+Jm1nhdtGaPxza+hLl+JsfVsYs1lSnkI27TJzq9h7F5BcfE8pcpD2LNryebmaXQuIfPETrYvbGOZaVP/4ueYW/1pcr9ncv+/BCkEH3zhKVi3/JIbdq1ivns/707/GVeF1/L+n7+Tj53zKXTlufVk/GfDxz/+ca666qrj+bLXXnstb3nLW3j961/Po48+ysc+9jG+8Y1v/E7H2rx5Mz/+8Y9/4/WbbroJgHXr1v2rIeZXXHEFV1xxxe9xFb87YkMQWyEiiFFVH4SGVA0U1WY+DFAcrSWzbSfJ5Qqc4Vdpajr2XMjEjKCsVLDtAnjgRBadySQTyXaYHSPvaMzWfGYNlxWqg2UUQEwihUBVddyuBNmgE1E5Rq7ksaCahAAZUkzoJFydubhIfaGIY0rSpmCqC0gW2dAc5MiMjqMIZthO6DqE/hSK6Ge51kngjgEt7mYbCaSUNJVWTRVDEZiagowlRTNFpbmMKbOJbfk0VYg0kIrE1lN4cRn81ql19p7w9wAAIABJREFUL+lnfHIMfaaKp9bI1kxmRZ3YL5DKhlQXxigpIaoWoCqtakNRYOFrgo7iHIN6zEw1jZQCkdlI7jGBEgTEEqQt0HvbUD0TvXoUU9MRpqRCSN4ukHFDmoAqJb9OkyMnBUwjhAWWRqDppD2dVFeeg3KOo7rC4sYQME1k2qiBRDEUNGmgxzG2TOHLKtVEgKf3s94vURNVRjVJatkF1KsOhguhO4EUCkcLNQqhT9xo5YNlChpVQ2L6CoahggleBB0OjHkQmhphOsT2NZQGRLqkKSBIegQIwCaMdDRVoKUVyKkU7N+MIgBQVY2lXX1k4jzTkx77G2O4IsBWYYnTpF/NMds0acYRkWZRLHagGzkizieh+5iDMxjTKp4H0m8nY4QsBCka2gRNzSMVQjkVE9o2smwSZJMIs0agQqm9k9pYnqzUEVaEH63ArdqomoWWbECkoKIjTYVAqhjCZUh3GXAEc/UIRSrk9R7KzhihLJGvtRPLAkkjIGlmkJEk0/CwMyFdUtJudVGtz1NSbM4sZulMdLEwNQVIGiLC+LUqPkV9AMMwMGUrPC1t91HVE6haEdcbp5QMWGPYuEKQTGgcrlkYTp41Cws80VEl2aOSGk/jey5u3iaeqRI2CmDWiB1J6CsYpkY5DLEUUI3W2M6ZCepajB8mOJQpIZtJjiR1Qj2krkRExAhdkqZI6OggJJ4VoycCVEXiSIUwylEuLSEpNELNxS1AX30VQoCQkva2PprBM2X2Q7uOCHKIWNLI19F0g6RZYDzfgbVKhfF5xp0SjULAgJLETDgYgY2Saido1tGkhougmtHx/ByRGOdEUB/05TvI2Rr3l3cSOwFD+iBNf5Kw2mBjLYSMjeomaLNs2pN/uCiN57ba5n/jWSGOYvZdv4f2SshNhRrqk2VypW66n69x9vnPfTgQQOx57L7275nPZtnbv5l9is6V+z7LdJxGWzJOQkwwkvdJyIDeng9T3PBDKs/7W/Txu0necQUP7XiA/fv3waJhTjIfxog9erZ+ECEEj809ys/23cJZu1YACiflNmFLwYHM49gdj3NodDUHgyx78nsIWcE/zH6OfnmUdyZO4+CBDxGXh4mqFdRMkkhVSB/ej1AM0qe+hN2/mGDhyO+e2CeE4LzLX0+/Y1JqNrm5p4N4/QaqH7sa7967UaXgnRet4oqzhrgr9rnSSnLR+AvY0iwzPDXKT52z2LR9AemD2j7BileMkhvewVP1JwnjmLGNf8Ipo7vYOr2dezOrSe/ewxPmAP+ovQbTr/Gjh97CNb2v5uXKNh5QOvmu2MBX3HY6/TIXDiZY1bGf8cEdfCY3z7WpBtemAr4VtnF/tZ9UrY3LQ43PYvNlAWsTDzNf/Dnh0gOM4XLhmEXitPdz4KStTJXrmM0mza5BUrUyZ/zyVyQXVakZb8SMDN6zXifrNqh5txBUl/MZ7ds8Un0pP5j5GLZXoGFOUUnvQS1Ps2i6xA0v3cpHz5jhr0dfw9raMuS5PWTP6kEIwY/my3xiao43zI7y4ve9HfyA3HvfTHjyq5/VGLznqTlueeQInY19PLjmYiayNtV9eYbjAzzZ8RVkrHHSw+9lQAvZr05ReepCIgtmT7qfxTro7gIXjfXiNFYSJXdwbXGQlXKURx/bwo59nyOKmmQKRUaWj9BMFfm5rhIuH6by0Q9R2bOLm276AVEUc/HLXs4L33oSK87qYu5gjsbsOsrFfWQq3TRFQPfAOSwvpbh1lc3GR3dw3W13PCOf87mCFIK/Ov9MXr8x5N7xxfzDRMxrxWU8HO7k43e873gh1/9XMT8/z7nnngu0agXu37+fl73sZUBLnGF2dvbf8/Sec0SGoJby0cyISA+PiyuklAKWnqdaMJCWwpDpoCgKa7rSbOpK4ygSE52CaYAQpE2VTF8Xsr3juIdJAKoUNLWYM9sXsXFLH8lUgXQ6h7O8yPnrTqaQaRl5KT1DMdXabc2aXRiWQFMFUhXYVoKuzm5iPQYd3rz+Ul614gLarTaWdiRpSxo0NYdGMmZ/5giaPkm916aUbBla0dNrm6AlUw50K4K2OGKg6aNJDUVK/IxPqtMgm+ymVABtkcfG1YNklC7MYxEHlqWhZPLM9hwhsD1iVaDrJoncIpLemfjNAWqahSoFeb2bIJmmkdARCWhP5VAkzJs+WUfHTCVQOjNUjDqHizXcXu9434XHfpsygSp0vIwOCILqamTyRA6ilVfQCgnyeRNVLbI7XwApUbIhyXadRYUE+7IWh4aLiHwXabuDTG8BQwNN8VqiGrFKTNTqH0shZ+bQszENMyRlFkFRj9cnyuga+eUKEysP4WXKeGZMPScpZQ2EEBiqgkQgrRiZCunpXonXF5Je6qDK1r55U5dk8haO88xNIQFkHJWB5DJ6nBNy/ZZ6Ikne1hR6E30kkw79i9OUehocTZUZzzQYTPaTNR2mkg08JSIwoG1ZGwCSAo7aSc7JESvHnqthkow8B7CwZQYnLOAoGTL5fupLBGpPyPCKAo1UJ7VUFzEwkO4iaTotpTZDx8sHpDIplmT6MC0NVeggBaFsnX8UJUgYkmX5bobyx/JtpErotHPUgem0REFFyFYHS6N4/FpVqeAkRrCdYQzNRkoVO5Uib2aOf0aRYOmtflzunEpCbb2nCJW01oartd5LZRS8TgfXkQTH+ajEkA6FRGujbNHSZQyOLMbpcLAz7Uh9Lb6hohdb70+YPvO6j64I2hIGKVvF1hVSpkI+Y9AwAoJEQDXlMW/6zBgeoYAwoaIU2sjqq6nrAfXBFBODNoqqoiuSMBMQOAFqIUuQEqAoqEI/3ieVxCCp3rXHr7mgb6S941zksfIcPeZy8loPTl+K0zdsIWG0vPGzZg1fbT0DhJCsKg6SdnRiIQiDdXjOFtSiiZI75uVRWv0G0JlIYWoKOUdDbQ8546w+erM26YRKe8LANQWRJtGlcXxc/yHw36Tp3wl+GPHA9bsZmPO53VkgPiBQQo1ll6Y49ZS1//YBfk+Mffo6tvUvYTw3wG1mmvN33M5GuZeDWYO+jgk6Mz6FwqsZXvpDstkXIITAHX45tc3vwtz3A5z7Poq1dAVPaLO84ugtVNa8AZkbwgtdrtnxN7zqvj8iCJ5i2FpHu5XgCVlCW/UFqtUM28bXc7T7Hjy1yhWTMWfKR/mgeQkN6+186IIR/kK5mXJo4BY7qKk66x78FcbGF9LtGxQthfu+8yS+G/7bF3kMQkpe8No3MZRJU/F8blw6RHN4GeX3/RX+rp0AvOKkHv76xSvZr8T8mfTpb57L23fO8ZPi6UigbcpnLOqD6mJ6Tpui83n/yLh2iE1mgW+vvYw33/8D2rw57iiei374Kepegg8lX4NVa/K1XX/FPxZfwGPxYkx8zrF30pV+iPur2/lKuYu7ZkZwY5PcscU372h844LlXGeleINmIVSNHfM2ibGNtD15Kr/cXefovd/n6MNfJdBjsvqpKI0abucAM2mHU372c3wLuoc2YHkb+X5vk51Zkw37f0hT8XjxfJqnpl/NjtorOGofQI00XOtxjEoJy/X45EsL3DPwBNeMvotBvxvzpYvQVrc8Xj8tVXnf+DRvPLiNy6++EhEH5D7wNuKz/uRZjb+jFZcP/PPjdHXtw1v4BHrs8aMzXoBRanJwooPN5X8mPr+M8ZrVnDt8GUXf4QmryuG7T6Z6co3SwKMsmfwVCSXB4IGXQ+BwtzrDAa3A2+QP+PADl/DE4a8CcOqZ55AwdWYLS9helLipFDf+6HuUyyUuvPDFZLN5VF1h5OxuLnjrKrqXZXEnh6nEGZK+xR5titO6LqVLX8N4RmPzF/6Wz+wb/zeu8PeDEII3nLGVq843mKxm+Kf9Q5wZPo/b/Tv54q1/Rxw+92TtPwt+vcD5vffey9KlS8nlTtSqk89RHa3/KHi6ipAubfqT/XTq7RSSBkJIFlIJpK2yOZKs5NcMXF1BFSqm0UsmlUVRHDRFoFsWUtNb1u8xZCyV3o6WUTJf9zEUm1Co9GW66Ut1IxAIKyaVtRgpLKM7UUQzFZJqGsWOqfW5rFm0HL27m6oekLJVTO2EN9TSFNoSreOnCirL+peytP1kIkUw3LWEvN7HbELFyxhI58S4lsBwwyeTy+Jk84RdIYWkydrCOtZ3DJBOamiqoDvVRVfGRFMkuqWgKK3iv41ej50DB+lecQrm0FqKG1YgUbCVToQimTNdvGVJAkUwXwjAaBm3C/lZkm0qSUMhrWWO91U17VIvBqAKREZn3mkZYnm9l67eFSCgrAnCzAAyd8z4VmKqTkjd0rHc1eAVyVit72k2OG0qptZSQgx1iTmQRU2bqIag0eNTli1vahwmiVqDARBg6RTMAn32wDPGStbWsLokjqEw0DEIeYuKGiCIcS0F15DEiiDQIxqZEK0tRE2YJGwN+f/3mrfbZJ1frx/Yujd5x2BFe4Ze54RgiiZO3O+TFq1AJFvfU6SkONLH0MbVtKdXsXLdGoa2juDmXSIrpK8roq8vTefwCZLR09eGNFttpdU0CbVlYPdmsxipBMJRaPZKOrMmA20pCkmDnq52IsUhUgQrzlhJfrCDhhbiqRGKVJHdDmrGpn7svLJqB46zlLJZZ0FvtZ009FZu9PGNMAVfBT8j0dsjAiUmpafRu7KM5mpMZ328dofiyX1kk21kjRbT0fIZzLxNT6qbeS2gM6fRltDpTJsMdyQpJDQMVWIeOxdPlbgdEditgdZgmGZ6eWsOOAq6Y2EfI11SSqxUEmtAIqRkoDvPlvZX0NfzRzxmL6KpwoIeIAs59P4c3ev6yBkFVKky3RYgcjpCwKa+NczrAbEqWDOwHrEqR+6kIkZ/DxUzQFEtBpY4LFuUZdXipUwO1hkflGTyPYhUGk205rOqKxgplVoih9ROqI6a7W3YegHZpaHlLPLJHtqNIc4eLjLSnWNL2ykssp/OET3xMFrZmWJTX5YlRYeUkUMmEqhFA3Hslgws1kipRdJaG2k9Q8fwenrWrWRJsdV2Uk2haSayK0/TiJhN+8z2uvwhV8v/WqvNfxJU3YCbvrKTtTM+DytlquMOlfQ0Z//ZctYeK7L4XMNvhuz9wgM8Gac4mHa4NepD3zXHh4wvUtMUKiMhyfR6li75Dl2db0dRnhmnf6D75WwXaziNbSxe+C7X7Ptrak4fweZ3AHD97i9z3m3n43tPYgiD5W1bqUUxs0PfQ7MX2PfEFh7q3c20fYBXVRfxJ81b+KZ+Hpdf+hGufdkqtqRdov2ztHcoNNQ0q3buZMGxOfL6VyNSOpsclWC2yfYfH3xWu/1CSp7/qtcz0tNDI4q5aWQ5UwP9lN/1NoL9+wDYuqTAZy5dS8XW+Z+UsdxOBko97HQWkz8s6dae5Bv2JnaMXYSRaVI/44OU+m/h/O4t3N+1lvff9RVcoXCvvpEwiKgoA+y8u0i1ofCaPd+jJzFHqAp+Vl/FzUe3MFPPc2Gby99fvJI7/vw0fvz6LXzplWtp88G+dYxIk5h/vJz1b13Di65cy8mvGKLeA4MzOSa7L+begVdyY6nE7f5duB19jGbb6BrbQ6bh0rO2gOf/D/YmS3x8eZGXPTTBPak7OXn0QvrGL6EUZ5m0f0BnKYOIJ/ANoFbizpEF0laSa0bfQ5uWxbxsKXIwBcDt5RpXHp7iQ7/6Opd+/G9R1IjsR99PfNrlz2oMBmHEe2/eQ1Mexs1+g5HUIH/pZPnBOS+iZNsc3ZXCCFzaHtuOzJvoZ/Vy4aWXko0dxsIlzEx2MrZqFPWM+0iXnuS0hQS9h1+O0Eu8J9vBKvEUW71HectPOzm6cABV1XjeeS8i0k0OO9389PSTWXBsTn/iSTozzywQ7WQMTn7FYrb+6TKy2RxqaQU+AQ8oh3he4Y8I119O33yV0jdfxztu/2fq3u9O3p8NLhjZzBdf0UfGrHHzvrPp9VbzzegGfvTjfyJuBn+QNv+jo62tjTvvvJNSqcR111133OsEsHv37t+aU/SfHZERIZI2A70FFKFgqJIobxIe2+kt502UnhPXLbTWUi7VNEeKy3H0DEM9fVhqS+RC/tpSnzeLnLpuA13LMqQsldmsztFjBp2UklqfoLSygbLcpi85QMHoRNEk3acvYtHaVaSNDIalEyVUZqzgt+aYSiHoy1oUAp1ixsZQW/lUtmpjSqclmWypKOmQYtKgmWt5U5VcxLKVQxhZk+X9w5zUtQpDGiT6k2xcthgEDCYXMZQbIrBV2no6octmrqjhqDYjiWWomo6iW2DqWGkD0IiVDFUzgV2weXzpHO0OJJ2ITgMiGSLM8FjfFDhp0RrgRGiiEALZ6RDnWkRBSWlI65hRWzCJLZOlqWGUlE5otY7T6/RhJzrQCjkKSYO+rIWQLXNRkeK4ESoU0Qq1lDqRFeHpg8zObwEEQgpiYlIFh9BS6Uh0cvLAYtb1nChPUc9L3ESr7yzVon1gJaoaYB/7TKQKqmmNSIJnhkgpOG1RnpH2DoaSi2m2WfhtFrI3xdMVdVNqkZTa9i+OzcCISWg5hG4jB1eRWdSN7HnmHNRVwUtGFpPOWRhJjaX5LejpGEO2rlszThC23u4OzKJEy8YUe1qEZr7Lw+sKsdsFk1kVyypyStcIA+lW7mLCUJlut0C0NgbSdgqR7yKjdVDQ+2i0mShrC/jmMcJqqJTzg3hyA2p3F7VccKyALnQU7OOS+VIIlhQTbFo6SK3Lp7isjy0bOtkwOEAkASkwUzqOlUSRrWsIbY10T4LTzhjkrFNW0rFyUet+aAq9RYeoI0FmcZblgyeIoqpLjjODOIOqWTSGghZh+C3zaaAwRLrHopDJYykWQkgiKQjt1poQGhIjbbA0t5zBwgCpgo3We2K9SJoque5e2o1BVvam2TyQZWVHkkxuKTPR4uPFoRVFoBsag9kT62OvtZgV2XUkDAXdUqmldRZyOjFgGyqxEiMdlZ6MyZKOJGr6t+cCGWrrGfO0F+5pKFIc845pnD3c8uqJY/NLTcb0ZGy6Uy2SpCgqmztOZWNhS+u+So2i2Uaxr9W3sYRYObHx9IfAf5Om/8vYP13j6196hAsXYg6GLk/NGswufYJX//n59BSe+zjMOIo5eM8Rxq59BCN+ghvtJj+tLyM9N8XnB95PXzTLaG+K3v6/YWjw85jmot84xvz8HDf/5AZuyr6Cb3RdzMuO3ko+LOOdfy2oJnvHHiV9fYIojomCUTZ3X4IuBLfb+0gP3sXk5BJuTRlUki6vriq8e/rn/DA8hWUv/TsKzv/H3pvH2VHVef/v2uvW3dfe9y3pzp6QhBAhQDBBwQioICogo+I6o+Po4/wYxucZcH1kXJ4RcRRFFhdUwIU1CmEPEMi+b52l9/X23Zeq8/vjJg1NEkggBBz7/Xr1696+XV31uadOVX0/53zPOTqO4/D07T9Cl236Ai2IosPcDev57/Oz/MOar/OnptIj/6yoSe/GYbY+1nPC5XDWey/jHXPmIhyHVTNmsL6pntF//DTF7aXxCzMqfdzywVmYXhf/aMKMdXv5Tfn5lBdGkHo9fED+Fc9IM/jD4GcZ67IYmPJrlNNvpH3+coTu59Mbfs9+I8q6VJTiqMOX5/4T5+S/zydz/8zosIHfk2Z+y24+7jzA+eymoXM1sxL7xluUOtwmP9K8yAI+T4q+Q+kKplvjiWIPS//wVd7xwv/hHM83GRC/IqWtJltWRTKg8EjHXC5Y3YcUiBCP/gtjeoZrTqti4eZBntHu5KItn2Rm9zKqredQuJcpe70ILQrSOnBs8tkBqiPv4//uvwaPz41xeQtyWSnYejyR4ro9e/nVrV/mjF/+GbNcwf/jnyHmvufE6qEQ3LByJ+v79+Bv+AU+zcu/av/AggPXUikd4OZLPoRvOMkLne0Edv8RvfMvAHjKA0z3zsQjXOzcu4Si7mFPQaZavhMJiSviEYjPYpM1xh/MGq7T78ROK1zx2x0MJDLU1NQxbepUiv4wWUWnMpckuuZ5xq77CqJ4pAmJ1ntZ+sl2Fry7HT1fxl69lyeT3TR5TkdZei0fWetldP9NvOfeL3L3pp1vSrpeS/kUbvvI2Syp62TL7kvRMo38l/4LHv39r3H6Myf9eG93vvSlL3HttdeycOFCTNPkqquuAkoTRFx99dVcc801b63Ak4ylWBxsKJCYEUBv9mNrMpIi0VDvZ2aVD0mCgqEg+SaOdbNDBklDIeVTsas9+LxekCVyYRMkiXwwh5BA93rxGT5UXaHK76KoyUjqS62/LZEpRD3lBIMvBc45U8HRFfyeELUNbSjlbg63GAvp6NeAWy0FOlOCrzJ9vgQuTUYPyEydN4WmSCOKKuEOGuiyjt4URm70IQUM3LqHcyvfiVtz47EspkxtwmoL4Y1aFDV5wj4P4/JpmF7QtQALymczpcxLQ8TCHYTyjjzu6W1oshtJeSmdJ1YWIlOdPiI6kg6ZiqZoaXytVmPRWuenvdyD1/DhVgIE1XJafVPw6wG8kTJ83lLwKUtKKSiVVBZEF/HRmedxTmupF380bGBG/DQ3zMJSfRQOBc2OZuILB6loCFM5N4pS60WPuTDUUk8VwMLYaSwuOwsAQzaYPX0OlRctobFl4sQog3U5Cq7SefIYKvNjC2jwNoIiUx1xU1ftQTtkMEzZQ0yvJyBHD5XlodROv06lVUWNuxZFUokZ9bRFXzICcpMPufrINc9kSeKsligzY82lYx4NS8GIyLjDJlLUxNYFebeD7BKlnk9ZptZTP8H8i8NvhcBnauiqB7cSRJE0ZL+BpMmEvSZxl0rbO+tYOqUco7kcNaweXqEMgDnTI7TE3OMdTh5dZ1qkg2WzzyXQ7MfQFeaXzWZK4KVZjFVDIRdxkYu6UPw6xowIgbCLOZXV1IVr0UwFd/Bwipl0aCFYaULdPMzhj8I+fTwV9JW4VBcN3kYUqRQvBIwgQa0CM+QjU5km0KDjDZulomwIkaovjPfelUy5RGtlLQvm1uCNmOP7NVUFGwNdKRVmsUpHrrBYGDudj8+4kKn1QdpnlfOO1jKaIm7c7WEGy1wIWSqlbpoa2VjpmVTmNTiz6nRmxY5+vS+qKyfsNvFqR9aRcK2HirYAqizhNVWkoEa2PIOkQMwVZUZ42vi2uqLj00sNulLMhRTUUQ5d/5IK0tEK+SQyOXveKUIIwV1ru3n8Dzv4TEGnp+DwWHGQ4LuyXL78veiq9to7OUEG946x744dBEdeZKDsWW6I17I+F+Xc2sf4QvuPOHNvN3kMpEuew3J3HHUM1ejoMH/4w29Jajprprbxwf2/IZYfRpIl9AOPMZAPsvrWJEXFh536HS3BObS4Z7HJiSOd+VVU2+DO+OVsC6t8pXsV/zi4kz/ZC3m09hNcMKd0E9q66gF2P/s40XovvVoV5zzyCMq8+fS95yy2Zx/m2cwqupVGzkwGqHarvLB5BN2nE6w88uJ7NcpqG6irqmb31k30Rss4EPDgv/0XeGbMRonFCFga57VFeWrvCA/nFQp6BRfmHiYUj9Bfk6Qht5/Ovil0ZdqxtvXhbu6FhkeJVC7BfTDANkWwzVPPbidCSnNz1oEXmV18gO+U/Yov5O/mhehMtkxfQfPaxxkLRti9bTM1Hh8uX4TCXbuRszajy2v42e5+Vu0c4p1tMR5f/TRz/v2L+AtJYitC3LvHwvb6yMeqcBt93DLnEj7w7GpOW/ME1plfRVa83OrRyA+twZ1ezfK978NjmywN/YShvl1Ubhijq/FD6Jk99FRn0UeHOL32Ii4cakWucqO9rwnpUD71w6MJnnz8Nr5/0//BtW0M74JqzB/cjRSpPaFyF0Jw05Od/G7zJspafo4iF/m3wjnkfd+j6O5jcWge/y8wh4WbXiS8e5hsk4tI31/ITb0MVIPIlApizxTZr/TTPVRDsKaPnj6Lsr4xBlxzmVO2k+dFgSd9BS5JDrHIvY9fJs7i7o0HKEvuZ9f2zchSKdkkNzJAsaWJyONPYnfuQX/HEiTlFXn8kkSo0k1NczWbt6wnKUPPmBdDcVPVeBZz90GvIXgkdRd3b++mLTiFMq959C//OjE0F0unTqfcWM3TW2dQNA/wlPcRKtcY1FGJVHFiE6O8nTjR2fNisRhXX301l19+OVdcccX4FN+KorBkyRIWLVr0Zsh8Q7yR55SpumiONuNRVYIRi9G8g1rpRpIlinmHAcdG0mWaoxPvf6mxAj6fwdyOKFVRN8gSIzkbNAXFtilIGZRqL5X11RiH0rBkCXZ3J6jQNSxdwV9mocoqMVcZ8qHW9z5F0IsgaOmELB3JUpFcKsl0gc6+g7j9gvaq5pKIbBHJryNHTbxpF1K1m5pgPbsHUwBEhUw8W6DoCMp9BmlXnFzcRpJhSrgeLa8geTVEsoDk05ADR295tyw3um7gcpUad6Iek3wxTWP5LLymm+6xLC1RN0a8wKDoQzF1YkaMYLmbrsxeFK+gPdZB1FsLSiUjVh+SDCEjTMAIsrp7CwBlPoNGb6khsSZi4ZNkaur9xHwmdREX2eE8gQoL3Rb0J3P4giZlTSEUTcbMO3h1H/5YjOpCDE0zKa+sxVAMdEVFkSV2D6awNZnWGTFMj8mW/hSqDbIuMVjWy+KOdrx6aS1CSVeQJAkB9HUlqbF0QmVuVKuksdZTjyxJhDylsUx9yRzaSGk68Uz0pXF/h78PQLyvFPBWtAXwRlxYowoDWgATk1n1UeSRASQrgOzxIvl1XDkNt9fH4GiWjCoxsy0yvi9JkZEMha7UQWxhTziOIksYoyXzKEddE47tL7PwRSJIYYNgZTmSpbE3sRuAOVWz6MuryIfquxjMluptuUUkYuHSFYKyjEgU6Mrmyfs0wuUuZtQEkCUJe8zG59GI1HiRJWl8v3VKDWVOBAkJJWYRiFns2nkAnxSgvaMRwzUxHpMkiUR/dlyvN2Lir3RjeHV8UReyLE3YttvZj6xINHqbxr+nT5Ho6UuhBU1yDKN7XABWAAAgAElEQVRGbSKFCkZzI6ixIoWiTYeoQck5eCNRpje2oQyXei7lqGv8uwPIERf9oyYZJ0FGJJhWUU3QKBlYyVDYld0FwGnBudQo5fgCLprq/Hjc+oTnhqUrpOxhPKZAkiDqK8frDSBJErqqooZMZJeKrEj4oi6C5R40FQKWTn2Vl05pN0P5HFG9jpqgi4DpRsPHQLJ0/3v5Pcqtm8yKTKcjOJ3OodyEv+uminLoOq8Jutg5GGfY7qLMZ+Aa8+PVfbiDBv5ya0JZ616dogO+mIvO3G7UsE17eBo1gSrsAm+IYz2nJk3TKeDgaIZ/u28roRd7+SQWA0XB3cG1LL/yNBY2n/wJH9LxPNvv2oW+7Tky9ffw29F6bhxqpS66jU/NvZXTo8/Tti5FOJsnccEvkULNR93P8PAQ9977W+KazmCjj/9a90UqsgP0LbieselnI297gvKuewiqfXQl1uDS6zk9/F567CJrFvwbzd40P09/ij4TfrLjJi5IdHO7ch7XF6/gxkvPwdQUkkMDPPaT/8TrkukMT6d+zx7CiTSN3/0v5lct4rToAlb3P80240E2igJLk63UWCovrB9CdqmEq08sNcftDzB9znx69+5iUFbZU1nB4AN3EzQs3E0tuHWV5VNj7B1K83xnFs0lWFpYRSH7Dpy6rTjDLuy4m4FMGNeGCvbq7fwsFeXn1kyGzQCH88DPVPdwfnYV5z6zh/+1qJHzCmO8d2gVG/UQm2dfTOMLj5L0h9mzdx8tW9zIaYF2cRPBxgAzK/38dl03f123m8tv/ioBLUn0vVF+tT3EWKSafLSKYL6Hp9/RxgGpnm/e9jW8069B8VZhS+AM56kaCFMfn8qQdxtX+G+g54UkFZuG2db+cTKmjw2tT+EpujhXzKS5WI08K4L2rnokXQHH5sUNd9N0x+c54zfP4iRl/P/wAfQvfR9JO7GAVwjB9x7bw50b1xBuugVZSvM504W3/AlMpZmG1pupCy8imErw/aYOVjz2MENDAWoq9qFk+sk3LkNSZVKpLNN6IuxyOhlI16FXZBke7cayq2FoFp7ybvao/fzV4+Wfh7YRCDp48xK5wX3YIsJ589+FntlKn+wjnktTbKwl9MgqnF070c88+wjjBOB2u0gXCvQM7SRpeskkPOzL5ajwtbA0X4OCiTyW5Zd9v+SZ/RIzy+rwmidvAKokybRVzmBpU45tOwV9TpynQ6vI7tCYuSeIXOVGOonHO1WcqGk6jMs1ce0Nj8czvtDs2403+pwqC1qYhxZmdfk0vBGTdDxPMe8wgkM4YFLpn2jUrYCOpiuYnlLAJ1kq8YFSoFXt0qgLlFEzrX7cMEFp/+WmjpQtpXj5yyxeiQ30JnK0RD2Y2kvXSdCnUxYN0V5dh6EeSjfzG0iWhqQpKFELr7sUyO0eTIEomaawpRHzlgL71pomlKRJ0AoQtizI2kheDanKjeTTj/ls1DRt3DABmJpCmb8Gy3Dj0hQaw1ZJa6pIf6IH0SJoLW9B1RRq3XU0eBvx66UUtqKWoy9Xyl6ImFH8eoDO5G6KDoTd+njwr6oy/ogLRZUxNQVDK5lMw62BKhMsQtijY9X7sPw6YjCLhIQVCcBoAcvlQQ5OPGcHRzNIEjSG3UiSxBktUVzxAkMZQWtjC1NjR9ZvTZEpk2Q8SKWyOsY9oNJvYsYLWLrCgK8P4FAv2EvpfZlEAbvgjJ93o8yP4TMJV3vxVfqRvD4kxYscMks9b+kikk9njwoJTaI5euTzt8JVQdSMYaoTr9dxw3PINMmqjGYouLw6qqzhe5muw+ZmWmQ6lWEXUY+OpauQsyHvINeU6mLIKjWgiJEce3BwLJUlU2LjqXeWpWMLB9ehXtnOxB5q3LU06A2QLJYaAAIGuqJT2K/jEm4qWgKo2pFG/eUm7zCqrkwI4l+p/5WmySXACrlwu9xMa27D67NImXGKeoY5gfm43RaZtINqGEQq/BPK7OWmSYqY7B5K41K8zKvz0ORrHG/kACgzy6ly1+CTvRQTNqrxsp6vV1DjrcCtuckU0zT5WsZ7s16JJEmYpobiCPwuDUWT2ZXaxWAqT1Svoz5soasy6bxNX2KiKTqMoZQmaTjciPLKvx9mx8AYw4WSaSoPx6goi+GLuI4oa0WVcQcNJFmi3+6hKBWYEZqF122Rzb4x1zRpmt4C8kWHXzx3gP/8wxY+MZTnfMXLAZHh2TM6ueq9lxGxwif3eJki2x/eT+qxp5Grf8l9mRDfPXg6RX8nH59zO0trHsNIF2i9N0OdmSTd+gFycz521H319HTx5z//nkHTIhLq5vqtXyflaKybdS63dWfZ9EgtnaOXImdHafU9zZxgF60eP1mh01v5JPUVG9gRn8vsnm18c+/tBAT8R/hqvj/0Xv55cSWz68oQjsNj//VVEsk0Y3VT8Ywladmyneobf4ArWsptjbpiXFS/Asc2eDT3RzZY2zgrPpsGQ2PLllHiqQJlTb7xWV2OB0VRmDJ9Nj6Pl/1dBxmOlrFz2zpGHl+Jr6GZQDjCeW1RPIbKz3Z4WaE8hZXso99XTaxiB1vSTWzOtPEHbRpPxlsQeT9L6h7livZfUyfniQ9Xs5EwhgEz92+jad8on3jnpbxvdBsXDD3BDs3N/XMvZ+bapzjbWIK7YLK3boTIaS2l1etVG/2RP/MXuZK9sUqWndbH7zZ5icdqKEQqMFMj5M4Y4Xfmh7ni8ZUsznWgVczh1tgTpOMeRrIubCXPk/W/4yrlVpRHLNSDRTZP+RAjkRlsq7mPaD7EzGItU5RGtHfWoi4sRxIFtG13UbjnU8R+8xCFNRJKeQzfD36CtuTCE66PyVyR6+7fzgOdj+Ct+wVuOcenY3GqLInK6BeparoWTSulr3SEgnSuf4HH69tY+sxTbFfqaJIeJR+ZhhNswt0QIr6mh/ZCPTvTL5CUqyiEI2RFJ5IcI9JdQacFPkdhU/FMspkK/GqCh/VpPJEsY3tPFx2jdXiVDMMumWFJJlVdRvSJJ3E2bkA/YzGScWRvUUVZOZu3bGTESvNkWxWtXSMcLLgYKticZjcxWw7iy3lJj/Tw0733cWAkyIyKGMZrrCV2Iviscpa3TyeQ6WPNyCCbAk/zaCLN3GeCeCQZqcJ9QvX/reb1mqa/Jd7oc8o0tfGHvqorSLJEYjCLXXRobw5Se5RgQ1bkCYYIoJBzKGRtfA1elJA5Pvbp5eSSBbLJ0rGOZprchkpdyIX7FQuKS5JEbUUYUXztuj7e0+TIuHw6/piLQs7BHdDJjthYhguPWysF5QEdyVTfUGPi4f+VAgab5R0Ypkqdp6E0PkmSJwSYmWKa3kzJNM0MzUaSJKaGmvCYDjNCs9Dk184CkTQZeShX2v8hUyDG8mALpICBGM0jaTJSYGLdrwu5aAi/1GtsmRrDB5N4TZXpbZGjBuQAsqWCAClkHrOcZEnCiOdx6ypmWYB6bwMxV9mEbSy/gTtkjLfyA3gN9aWJCLwWUsSF7NURqWLp/LhVEpaKKkGV/8hFRBVZPcIwwZGmybBUXN6jL6fwctOhK3LJMAF4NaTwxO8sqTJS2CQadtEYtlCVl75LIGIh6S9t2+BtImxGEFkbkgUkj4Z0qJEh3puhkLWpbAsctdyPZpqOxcv151JFinkHnyKRTRYoWBq1LVFchomqK0S9Ecr8ESy8oCvER3IomozvZUZJjrqQ/DriUM+hFDEJe3RClklTsGpCfYZSCpuu6BTzDunRHJ6wecS94TCKpODVfFS7a49pmA7z8vsSwK747nHTdLjs3bqCANrLvcdcU/O1TJPbAFvtR5UlYp4oYU/oqNu9nCp3NfXeBmRJPkLn62HSNJ1inu0c4d9+vwlzyz6+aAeZqplssvrwX9XIGa1nvGblPBHsosOup3rpuf8p3L7f8mTR4ofd8zAim7lq+h2cU/sEBdUgvMbgrD37CAVy5Mvmkzj/h3CUB8KWLRt46KE/MxyJcra4n6u6fs+LnjK+bJ3J3t0zaNnzDnx5N6GeP7Ja7aFndDo1nml41KcIaH+lIbuR2q4scwf2UJvt55cVF/K98g/z6N4W2vyC//Xu+UiSxPZff4ttW/bi1DbiOAozXlxL1+f+hRkzZ07Qo8gqc6KzuLDuQtZnDvAb5ffMT02hXfUwdCDFhi1DRGq84y2sx0skWsaUqdMYHhxgREiMyAq7H72f/s1rEXiptANECzq3ikreXXyCX3Wdy3cPfJgN8WYGhYWl5KlN9/CdvMy5hRZGfetpqV/NaeFdrOmbxUapjvK6BPNfPEhoaDsfW3Y9lwyt5l1DT5JGotr8CC1Zkyfyq3mxcID9O7dRMRJn8NovM3Xj09QHetiqxUjsGyBbUU8hFENNjWE07eXHFV8gMpbl60/vwqw+k4f19eT6GnGyAYYCL/K7jpv5eG4X7Qc/TUrroGvqB7HCLUStFHFljKBw05TVyCx/FCfch3f7/fge/hL5Bx5i4FGdzLCBcenl+K7/Dkr02IOCj8Wa/aN8/t7n2GH/BqP8Pqr1PJ8Jy7T7r6Buyv/F7Z81Pvj2MGfU13Hvzm2Muf3MeX4zowEvgcE/kmm9CMXlw6jyomyJExCN9I+uxBYGBX+AnHuYrDdOQ95DRaacrFIk7t7Ov2d/x7TYdu4ufxeDQ/CoA4VAP9OMHClbY8S06C0PUbF2LfZfVqLNnYccnHhzVlWVcDjCvs3r8duj/GLxFKZ0b0RkfBwsqoxmZWbYNUzTLUzHpq9vBz/ZtoaiU8nUMh/KSTIzsqwxtWoh51U288T+F+mz1vN7eYDuPSpTNjm4AgZSwPibSNmbNE2vzdEe+tlUgULWLqWoKMd3nk2vhuXX0dzaUQ0TlMZnJAZeSj06Gseqx8cbnOweTCFJEtObg6UAzir1nhXyNqmRHKqu4Kl2Ix1lrNYbJV4YxZbzVJt1R70+ZElmINtPs691vBdGlmRirrLjMkyHeaUpkAIG0qGpk8VIrhSgv8IkSJI0QZNhavTvH8MfNPGGjp3yK8lSaX+vcb1Lfh3Jo+FzBzGVI/cnydIEw3TUfRxeEDlVgIyN5NFoawoTNo6/l1uSpCPK59WocFVS66k/YuroV5bXyz/XVXmCYYJXqZ9Zu5QC6lLHTVN6NIfl1wlWHD2QPxHTpEkaqqwRc5VhBUqNBJJbRTZVcg74ylzj30OWZCLeINlsoWS6VRl/mYWiyhNNk1Iy3ZKpILlUXFpp8oRX1WEoGB4Nd+Dk3HNfzTS1RD3Ih85P2K0f0zDBa5smQ5PozuwHoMqqxq29dkbR4QaRo+l8PUyaplPEzoEk37h3C7uf3sqKURcX6j5CmszBaXnaP/AOAq6jLxD3enAcwb4XB9j85weJ5p5mc9HinoKJv/JZLu34NbNimzmo1fBAdgVL7kwSffggSmMLhaVfIHXm/wZ1YqXIZjM8+uhKnnvxOQZrFT4zeBPz4tv4gXYWT41dzJwD76QsVU5VzzOIxO10edPUKM0sKruSBHP5YesMXLUvsM8b5Q5lCd9v+Aj/1vIF/MJh1x6VbNHHjz60GJ+p0X/fd3jskReRK+pIWz4WrHmW337o43xy6dJjPghcqouzq8/gnMZ3cqf8NLnRYeY55fhzBdau7mP1/q34K3QCbt9xl6GuG7S0duCSvPT2dpENhkjkHfJbtiPFd9Jv7OMFotyYfD8bRRPVYpAsGkU0bEkhEfDTKx1kbtpL/cAyDhyMo1QcYH7j4zzfO5tnpOk01u3gjKfjVPQ9x9XLvstZ8c0s6llEWaaaGzoMnoo6NG5ew5S16wnc/Tts8lgLUhzM+4hmexmpmwZeL+pIP8WyEW6d8RnUAvxg5RbKQwvYkU3TEy9Hl0Y5UH8T99Y/wSd2jTFv3TJygWl4IlMpMy1y+iiPmeuRHfAc2MOLWpA1fRmCO++m8rGnOfC4m1SnwXBzDYEbPo1n+QeQtdd+wB1GCIcdPZv5+v3P8eONz+KU/wTFvYslpsW/VF5J+7Rv44ucgSwfPSiSNY0zEnHuEA6hVJrgxhHc0RTFffeRbb0IMxYglckQHRAkacNRVyLt7cejxHHHVZTiLMxhhx360zxf08nDZjmf7tvBR/N/5umORQxoUbr7vDyeqiHnS6LJDhheutv8GP09GHf+FsntRp0ydUIdDASCRMJRxrr3I4Vj/HpqCy6jk7JdqynKQXodF4Npk+ZcDVNUD46xmy29T3PP1vWoSiONEc94usgbxWtWclHTRfTGt9IpnmO3azd3jXmJ7ximbq/AU+5Gsk7++MiTyaRpem2O9tA33Boun45+AimZkiSND5I+FrIsnVBA+Fo6j8VIukBbhXfCtVXI2aRH8+gutZRmY5y8xsTDxMwYjZF6ROEYplFWqfXUjQ8uf70cYZqk0gx4kiojudXjatRwuXRkQ8YdOjkNIJIil1KuTwZFB5EoIIdMXD7zxINSR5TGqB1H/dVk7aSstXMipskKGHgj5jFNpKLJeCMu1OMoT7/uH+/VO2z0JF1B9ZeO8cpz+3KdhvXS+B4pZCAFzfFJSCRFOuGU7OPRe7y8qmmKHf9QidcyTY6w2Z/aB0Cjt/mEF3h/M02TJN6M6Z/eRAYGEm+1hKNycDTNnQ/uoLC3m9nZCG2mTI2ukraKeC9oQa3xv/ZOjhO7aLN11WbEzt1UoLJOTbO3fDVTKtbgNxLkCgZrnAXcb1xIeU+Bf//B93BlMrj/8QuY77noiAtWCMGWLc9w/3MPssGbZI7YwCe7C+zInMWm3FloRR9CKVI3/ALBnffxfHMAR8CU4FKm++fQb8B35u/jCtc32Jev4ge5KxnxT8PIdvHl0T/yYFcTmwbb+c6Kds5sjjL4x6/x0Mr1SJEqRiLVzFv/PD96z0f4/pIz8Xu8x/jWRykH2+bZx9fQsN4hZLs4WLDZni2wObgDbWqGmR3NzI7MIWBMNKqFrM1Id4qBfUlG9o5R6EnhcRzkUCeb/J1slRz2pCvpHKtBIBPUxtAr3Ew1d/PTA1+jqMisbfSz++D72Sk18vvZddR0J/mPzQ4VUow9ifXsDd+LmOrwg+0fJV2w+EzoJ5z9m072eXwUzv0m8xIaAfUmtnr28YkZXyVddHHVn3/LaQObWBOrQx0dBJeHXHk9OcPkyUIDcmOWbY1zqI/Huf5JmxbNYlfWZl9hD3XhO/le9UH26hqXPSdRvSfCkL+eRyLnsVByobkGSLq7MBUZdds6zKpGipl56IXSjd2TPIiU28UL5QX21ju0BAZp9HfTHHVTHujA7Z6D2z0LVZ3YE1Mo9DEUX83j2/bwwC4fW9MqZuxhZGsv5ZKHL9Z+mjntK04oAOj87jf4rifIVQ/eTzA5Rvs5++nz12Ffcgf+cCVjd25F78vxTDZLd+AHSHttnIJM2HST0D+OU9jDDu9veHzWIEbR4vv9vSwojHJLxXu5ofYaWgYFQ7uHGM3KuOQcddIora6DLK58hKpdoxgHy/Be9lWC86YdodsWgv8eGOHm/hGq4kN86K4fIqQYHqmNorsdR9KwZHC5xniifCWbrO14DRdLai7j8pkXoCknL21vdd/jfGv9DcQLSQrxuRSHlrBEUbm8rJX2JfUo4eM3vKeSaPT4r/G/Vd7ocyoQsBgdPf7FvN8o+zeUJgqonXFiKeNvVKcQgtGeNL6o6zXN3RvhVJSn0zmGyNgoU19/w+ipPu8nisjZSIbyttd5mGPpFKM5nJ40UkBHPkbP0qnkb7U8e5JDPLp7P2G9imVTjz8jZddAipzt0FF+7GfBqp6/oskaZ5Sd+YZ1vh6O9ZyaNE1vACEEW3eM8OCqTfh6HRqEh1rToUbTcBRQ58XQFlQcMy3iuI+TsxG9aYZ3d5Ha0U8wo5H3d7IjtoZi7EUCrhGKjsLB/lpekN/Bn2LLUYrw6ft+y4UP3Yc2fyGeL3wJpfqlFb2FcOiJP8dftt3Nqq4uDuhxmscCvKenFZJzSNhlCEkQrXNRM7gGHn+A7dWVDGuD+PUyZpe9lzLVyyMxhYfb1/Ju+SbuyF3Ai673IGSd9pFH+Jj6J27ffglbh1tZUZHmn969gO7fXs/z67rQg1EGyhuYsmsrd559IdfOm0dTZdWrlMKrlE/BZuzJbuR1g+iORFexyP4s7GeMzuBmEtF+ynwBpoy1UdFXjkhDykgy6Blgr5Zir5DYl/PQnwkjkFEkmzpzgBrRQwCZoJ2B5Cj3LXoXMX2U27d8k1Cuk8GQxtZQDXuGzuP+mnqe8s7ni1tGuKTHoODk2BZfzcbaTu4pvIOhfICPtfyBS/aejplr4zE24rMf4N3mU9jI/Cx0MSudduauewpVOCSqq5DNMFIxixjs476lFxEZK+fMPUMsz7qJaTJdw10UfT/i7qqDPByyCKRg6XMBPOkIWXMhvb7p1GlDpDz7EUoBn2rjbF7PdG2Aju4exrpcJF1lbJi6hNFoK3ougiJKrVhjxjBDepwBtcCY6qCZGcK+fmojYzSHs5hqns29Htb01bBpsIWiezdW6CmEaz9+yceHm67kwqZLTriFCEAUi2z78uf4RfNUPvanP5A3NGYv3kXa8jO29Hu4k15yD/ShGDE2ZRw2Bv5COPckY50eTLeNGphPbqSKLv0eVs3uIWM6nDHi5saxrfRRxlfKPsvautO5yHAz3DnGqp0DFISESYGOwE7e0bCKKWYn5r4wIrSCaOsyorW1E1KitmVyfKNnkHWJFB9ZeRexvZtQHYWwXI/qXcCQVg5I6EqRfcFNPFP+V4bdBykzwpxVuZT5Fe+g1T/lqCkzJ0KqkOLnO27mD/vvxXEcimOzyA6fToUTYFnQw7sWzaSu8eT1bp8MJk3Ta3Oqg6h8pohjixNOcf5bDfbeDA6HUm+kh2iyPE8uxzRNORvnYBK5wnpb9Mz/rZZnpmDz+K4h3IbC4saTO0b/jfB3Y5qeeeYZvv3tb5NOp6msrOQb3/jGEbMjvdWmKZcucnD3EM8+vwf7YIFqYRFVocxw8Ek6tirQZpehzoshWSfevSyKDmIwi+hLk+saJX8wjp7Okfd0kwnsZCS8gUxgL5qapWCr7BhuoXewlrXexayvakMgsXjrOj7/ix9TNrUd68NXoc6aTdHJsn3oMTYPPcWLAzvYlIij5lSq423Uj7ZRG29Dsi0U8oRCcapntmBueoqeF/ZyMFhJytlIUNVojJxFg1HHmCZxU2OOYddP6TRj7HevwFHDeDNbuNL+BYWRKPfsWEHWsbisRSG67R7cvXsYzpp4wwF6Yk3UHejkwTln8IWFC2iqbTjxshKCdMEmkS0ymsjRuz9Betsw+eEcaQRxx6FX2AwrGUbVDAlJYsQ2SDsvdbtKOJRZo9QHirSWB5hX18KsmmpcmkJh5w46b7uFbdk0B2tqyOgGD7WfxkAgxLd23MH7+3+NJrL0RXQOVLnYL5rYpDezyb6AD2wLsXAEsiLPr9Xn2Ssa+bRTRghB19TbyJU/hrxTInnATyGj0jMUJGmEKMZi5MwAQpLIFFVsEUNRmqkdcIhJMnPdYEoyiU2/4zetK7l7loaeh2l7PXQcmIlLnk7G1YTsGiTtPoCj5sgoSaq7usiPJGgaHKa1a4Skx819p59N6t0ruHJGB+Wail1w2N/Zy9Yde+g7GMceVvCkA8i81L1fkIokFIdByaHHt5uB0DpGA5soqml8jp/T3fO4pPadlEdacLmjKK9cdf54z20uS+f/90V+FavkwysfIuW2aF7QRcwXZ09vFWJPGdZZ/4qUNOgqFtmRLZCK3U5hfz/5hIYVzeErD5AYGeXhUIKd1SlcRZkPjGW4KjHAU4WFfM19JcnyKq5orySSyHPP05vZntIpoqBJeaYEdzI9tpWO8FZiRRuKMzA8MwlEZhCp6EDVDVaOpfjpwAijnXu4/P7bkfMptKJNyDYo8y1ixD2LQVFaF0TIBbq8u9gb3Eyvbw9xs59yT5CpwRm0BabT6p9Cs6/ldRmpgewAv959O3/efy8FUUQp+kmPzsFOthJzwswv97B4ehunNURx62/tjHuTpum1+VsNot6uTOo8uUzqPLn8LevcNZii0meOTx7yduDvwjSl02nOPfdcfvrTn9LR0cEtt9zC888/z8033zxhuzfbNAkhKIoiRafIWC5OX/8w/fviDO/LoPUoxPJuAoqETxWEVBkVGVsSSDUW+rQYcrP/uHuW7GyaeM9KCqMj5ONjiGQGJV/A0RLYeoKCMUre3Y1tjo7/T18qyvaRZjrjDXTSTndDDQm3B9Uuctr2jVz14D0EW4NsP72KbfoI+1K99OSHyRSzhDIxKhI1NCbq8KeaMXKlFmhLHqZWX0dlRYqk3sb+TRnGchGShk3A2U1Ut6j2thNQQyQVh19WHuSB6Dr6XbXkrXkI2UUos5NF8ccQQ26e6z2NRNHF9ECR93k2kd76IskRG9XrAn+MuBWkbl8n3YvO5gNLziYQCJIt2MSzRUYzhdJPuvQ6cuj3kVSekVSesVSBRLZIumiTcl573Wcd8CARQBDVMgS1BH41g2WDlJdJFNMkPQm0KESq3FTEIpRbFZS7KoiYEdyqB3vHNkbvuI3dBzrZ0dTAyrmLWV/dQqAwxv/ecSvvHX4AnSxJ02QgJjEY0uknQt/gHKp7zqE5WY4uaQyQ5ytOmnT+IEvEcwREjpztwbZKP0gyigP+nAeSrSh2KUc4qg8wzSzik2spZPrJPf8zfnh6J882+Wjtnc7svkUgu5F0h6w5SM4cQJLAKcYJdXdRTKXRizbt3YN01TXyxzPOp2rRGVxZFqZGV7DtMQqFfvKFbjLZbvYPDrG7P87OYYndoxFGx2LoUgpVH0Aye8m69zFmdeHINqqtUz8yjZaBedSOTkV6xYqQRbmIUG0UAwxTwnKreLwuXJaF7jLRLRXdVNHM0mrjpVcFzVRRVEj97tf8cutWzn7+WbypJPG2AHMrtiMCsMNaAL6PEeoNo9jQZxfoyxcZVZ+gf2Atdg40T4FAQ4JRl8pkhVUAABj2SURBVM0qM89OTxFZCBZlspyVztGbnM1vMhfT46ugtUzjXG+BfTs72ZPW6Lb9jFEyMF4lSUtgDy2RXdR5D1BpDeAt+FHyjShyE/1WDSutSro2d3LWUw8hFdIgSfjyNg1WB5rvdEbVEINFQfbwQvAIkvoII1YvKW2MjJYgqyXxmgZRT5gKXzVt0xpoDDbi0Y7PaKQKKR7rfYSHD/6ZjSObEAgkR8XOVlPM1OJkqyhTLKaG3Ewvt2gv16kLWqiKC0k2UNUQhl59XMd6vUyaptfmbzmIejsyqfPkMqnz5DKp8+Tyd2GaHnnkEW6++WbuuusuAFKpFAsWLGD16tV4PC8NMDtZpkkIgRjJkRrMkBrKUcwXeWDXnzAzOsFCgFAhSND24pUULFnCJTM+mLuAw6i3SKApgtUYQap2Ix1av0IIgRjIQt5G2A77BzqJDw6iZSXUrISak3ClFdw5nUJ4I92z/t8R2oqORto2SRTcdCfL2R+vpi9ZxsF0PWO+ckSFG8VQMfI2sfgQ/tH9FPLbcZQ0mgSugoWr6MFV8ODORfBnY7gLpQG+MuCRRyjT9lChb8On9jFiV/KI550cdEdRpDy6bGPIMobipqCqDGmCXUaGvWqaEVxQMJAyNkomiycTR03bxHOlCqZg0yrtZ2Z6C+FChqwvxqjsYb1Ugy1kpKKNZRdRq8IkigpjWYmxnETOPrrRlBB4lBxeNYNHT+PWUri0BKaexNIyuNQslprBUjO4tAyWUsBnuPG7AwQ8YdxKJa7hVvSeKFK/ghjI8vIF7AtCkHcgLwR5AVnhkJTTJNUkY2qClJomq6bJ6ykcLQVyAlmkidsVrClbwPayBnQpz6UHH+R9B1+kNjNGqljBUL6WwUIVcVtnlBGSUpysWsDWwTEtxOHFjAUoRRM9H0YrWCjCQVLj+LQhoopCmVNJuWjBdvIUdv2F4f0P8Md3ekjXtKHnYyhxP3rBRiilQY+SXcQVH0SOD0M2jVEsEpDz7JsaY1+rB01JoNoZisIm5cgkizIpWz30XiPrSKDkkJQkkppAVpMgOePlpUkajd4mGnxNhPQwhmzQG+9jeGyMsXiaXCaPUlQxii6MooVul16Nogu96D703kK3TQzn1ScEEJJA0h0kTdDrzRDe8wBLXngKvVgEwNElaJSJn1aJll5M0J6GSWmq+qKwSdpZksU+UrkhMnaSrJ0ir40ybI5wQB6jX0+R0xwsbDy2jF30kLZD9MhRUr4w1VIRA5sR282Q42XEdpMoltLuADxKkpg1SNA1it+IEzDG8GgpTMdAGdKxd+fIj+YpyKUezaAWotHVStTVTAEXWdshXiyQsgV5JGyUI0zn4w13saX8KXRU/KqLkOrFp1l4NBc17kaao2dgKjou1cXUQMeEqWeThQQvDq7hxcFn2dy/hs5cLzYvnUun4MfJh5FsDy5Jwq/aBNQCFb4z8VkBaoJeGkN+OoLT33Aa4cuZNE2vzd9TcHIqmNR5cpnUeXKZ1Hly+bswTT/72c/YvHkzN9544/hnixcv5r//+79pb28f/+yNPIx2D6b46gPbSeeLLM/IXJl79TSVlLAZlAsMGw52yEWsKkx9a5je/iyDB5IIccgkCRCOQBSK7NrbxQuKTpIsSamAQOBQWsXbQeAAjuSMv4/oYyxO+tCKGjgawlGRigYypdCs9PrKUOroOHYcO7cOsLElQVER2JLAkYvoIkUHKtPDlxwxpz/AeUvcjBilz9UdceShXGmNCVtA3n553HwIgQtBpS5QR3YTzI1QnuujNtnN0q170ByHzro6eior6FTC3O+bg4aEqVo4/l40JY9bS+HRUode03j0FF4tiVdP4lVyeGUbryyQhYEkTCQsFMWPqocwvRE0TwTVDKEqAVQ1iKIEKf7pr2Tv/j0oCqhqadFSVUVS1UOfGSRlmZSkoGkhFNWHJLuQhYkmu9BUD5rsIlVM8NzgAyTtArYQlBatFQgE2UgY29DhcO76oVXakSSQROl3RUUo6kvbADgCpWCjZR1s22FL1QjD5gCSWuBTQysIFb1Yjkkk70eSSybcTvRSPLCakb6n2V7tZV/zbPKHF/kUAqmQQ8mkUbIplEwSkUuR8OQYDOTZV5amK5xFHFflUZEdA9XRMRwdr7AICguvcOFyLAJKiIARweO4wYFisYht29j24VebKVPaOf30M0kVUgxk+xnMDjBWiDOSjdOdHKQ31cdQeph4PkHGSZG3s8hFFbWoodsautAwbfOQ4XKhHzJXum2iFV1IhSkcqAAjv4fgWD+R+Ahb65v56/wzkITDyjUfZ0oySU60U3Ca6bHOwc668RQE6lGuIEc42KJA0SkwlOvmqf57AMirDr859wD2UbINLopHeG9XinxeMKa4yasajiIdOvcSPy8uZ61oOY4Cn4gCqALcAgwBXiS+lC3QaGeBIo6wcQ69CslBSBJCApBIumDQB09aKgORDgxZYrzWSaX3bTEPF8+MsndsDwcP7mT/4B62J3azz+5jTE6SU1I48tFnfLs4vpSPxz8Amoy2rBb5BBeUfiWTpum1+XsKTk4FkzpPLpM6Ty6TOk8ufxem6Yc//CFdXV18/etfH//s3HPP5Vvf+hbz5s17C5VNMskkk0wyySSTTDLJJH/PvHlzfJ4glmWRy+UmfJbNZnG73/rpICeZZJJJJplkkkkmmWSSv1/eNqapsbGRvXv3jv8+PDxMPB6nrq7uLVQ1ySSTTDLJJJNMMskkk/y987YxTQsWLKC3t5c1a9YAcPvtt3P22WdjWSe2Qvkkk0wyySSTTDLJJJNMMsnJ5G1jmkzT5Lvf/S7/8R//wXnnnceGDRv493//99e9v2eeeYaLLrqIZcuW8dGPfpTe3t4jthFCcMstt9DR0TFu1k41x6PzhRde4P3vfz/nn38+F198Mc8///zbUudzzz3H+9//fpYvX85FF110ynUej8bDbNu2jfb2dp599tlTqLDE8eg877zzWLp0KcuXL2f58uVceeWVb0udyWSSf/qnf+Kss87ivPPO46GHHnrb6Vy7du14OR7+6ejoYPv27W8bjQCrVq1ixYoVLF++nMsuu4wNGzacMn0novPxxx9nxYoVnHPOOXziE59gdHT0KHua5PVwIvewU8Ff//pXVqxYwfnnn88HP/hBduzYwZo1a5g5c+aE6+mOO+4AIJ/Pc+2117Js2TLe9a53cdttt50SnR0dHRP0fPnLXwbg1ltv5fzzz2fZsmVce+215PP5t0zngw8+eMR9qK2tjXvvvZe5c+dO+HzlypUAjI2N8dnPfpZly5ZxwQUXcP/9979p+gqFAt/61rdoa2ubUO9eTxl2d3fz0Y9+lGXLlnHRRRexevXqN1XjD3/4w3GNn//850kkShOx3HTTTSxYsGBC2R6+r75ZGo+l8/VeN6da57e//e0JGpcsWcLFF18MwLXXXsvixYsn/L2vrw8oxVSXXXYZy5Yt47LLLmPbtm0nTefR7kPwFtVN8T+QVColFi5cKDZt2iSEEOKnP/2puOaaa47Y7rrrrhPXXnutWLx4sXj++edPtczj0pnL5cT8+fPFM888I4QQYtWqVWLx4sVvO52ZTEbMnz9fbNy4UQghxMqVK8WiRYuE4zhvG42HsW1bXHrppeLMM88Uq1evPiX6DnO8OufPny/6+vpOqbaXc7w6r732WnH99dcLx3HErl27xIc//GFRKBTedjpfzrp168Qll1zytqqb8XhczJkzR2zdulUIIcRjjz0mzjzzzFOi70R0Dg0NiXnz5oktW7YIIYT4zne+I/71X//1lOr8n8rrqctvJr29vWLevHli586dQggh7rjjDnHppZeKRx55RFx99dVH/Z8f//jH4jOf+YywbVsMDw+Ls88+W2zYsOFN1ZlMJkVHR8cRn69du1acffbZIh6PC9u2xTXXXCNuueWWt0znK7nvvvvEZz/7WXH77beL66677qjbXHfddeKGG24QQgixf/9+sXDhQtHb2/um6PnYxz4mvve974nW1lbR09MjhHj9ZXj11VeLn//850IIIdavXy8WLVokMpnMm6LxgQceEBdccIFIJBLCtm3x+c9/Xvznf/6nEEKIb37zm+Lmm28+6r7eLI3H0vl6r5tTrfOVfPWrXxW33XabEEKIz33uc+JPf/rTUbdbvny5WLlypRDipXNyMjjWfeitqptvm56mk8nq1aupqamho6MDgMsuu4wnn3ySZDI5YbuLL76YG264AU3T3gqZx6WzUChw/fXXs3DhQgDmzp1Lf38/Y2NjbzudX/va15g2bRoAp59+OoODg6dM5/Gec4Bf/epXTJkyhdra2lOi7eUcr85kMonP5zvl+g5zPDrz+Tz33Xcfn/rUp5AkiaamJm6//XZU9dWn8j/VOl/J1772Nb7yla8gvXw6+LdY44EDB3C5XEyZMgWAhQsX0tvb+7a7zteuXUtdXR1Tp04F4KqrruLhhx8+ZRr/J/N66vKbiaqq3HjjjTQ3NwOlZ8+uXbtIJBJ4vUefjvf/b+9sg6Kq/gD87ILsksurI8IISIJTH9LQcbQiXqbs7wZGTRkqSdBghEZhbwolkSLo2NjLIMSUkGDKTDLJTCqgNO3oIAPNQNbogKGuUkTJxsaaK8Hu/j8wbKwJsyDc3ZzzfLt3l9nnHs753fM799xzamtrSUhIQC6X4+Pjg1qtpra2dko9R4uVtbW1xMbG4unpiVwuZ82aNdTU1DjMcyT9/f18/PHHvPXWW2OWZ11dHatXrwYgKCiIJUuW8M0330yJ08svv0xmZqbNuYmUocFgoKmpiYSEBAAWLFhAQEDApMzquJVjaGgoO3bsQKVSIZfLWbhwIT/99BPAqGU7lY6jeU6k3TjCcyTnz5/nu+++Y82aNWNeQ3t7OwaDgWXLlgGgVqvR6XRcuHDhth1Hi0OOqpt3ZNKk1WoJCgqyHk+fPh1vb2+uXLli873w8HCp1Wywx3P69On873//sx6fPHmSkJAQSTvU9nh6eHhYG4zFYqGqqorFixfj5eXlNI4AV69eZf/+/bz++uuSeN2MPZ7Xr1/HZDKRnZ1NbGwszz33HC0tLU7nqdVqUSgUfPXVV8TGxrJy5UpOnz7tdJ4j0Wg0KBQKSbcxsMcxNDQUuVxOY2MjMNRZuu+++5yunctkMszmfzZtc3d3x2Aw8Mcff0jmeacy3ro81cyYMYOoqCjr8cmTJ7n//vsxGAxotVoSExNZvnw5b7/9tnU61KVLl2wGo4KDg7l48eKUevb19WEymUhPT0etVpOamsqFCxfQarU2LkFBQVYXR3iOpKqqikWLFhEcHExfXx8tLS0kJCSgVqvZuXMnf//9N729vej1esk8b9UfmkgZXr58GR8fH5v30YODg20W+ppMx3nz5lkHa+GfegpDdaO+vp6nn36a2NhYSkpKsFgsU+o4mudE2o0jPEeyZ88e1q1bZx0I7evro7Kykvj4eOLj4zl06BAwVE8CAwNt/nZkXbkdRotDjqqb0g0JS4jRaEShUNicUygUXL/uXJtyjdezra2NgoICmw2ApWA8nrW1teTl5eHh4cGePXukUrTbsaCggA0bNjjsKY49nmazmZUrV7Jq1Srmz59PbW0t69ev5/jx45IlofZ49vX1YTAYUCgUHDt2jFOnTvHqq69SX1+Pt7e303iOZO/evaxbt04KNSv2OCqVSvLy8njppZdQKpWYzWb27t3rdJ7h4eFotVoaGxt54IEH+Pzzz3F1dbXOJRdMHGe+bzU2NlJeXk55eTldXV1ER0eTmpqKm5sbmzdvpqCggB07dnDjxg2ba1AqlRiNxil1UyqVqNVqXnjhBYKDg6moqGDDhg34+/vj5uZ2SxdHeA5jNpspKyujpKQEgHvvvRcfHx+ef/55+vv7Wb9+PZ9++inPPPMMcrncZiaMQqGQdIDCaDSOuwxvPg/S1eNPPvkEnU5HUlISMPRUYtq0aSQkJKDT6UhOTsbf35/AwEDJHYOCgsbdbhxZlleuXOGHH36w6W9GRkYSFhZGXFwcFy9eZO3atcyZM0ey2DUyDuXl5Tmkbt6RT5r+K3s+jcezpaWFtLQ08vPzWbp0qVSKwPg81Wo1DQ0N5ObmkpyczNWrV53G8dSpU+j1euLj4yVxuhX2eKpUKrZv3878+fOBoTL18/Pj+++/dypPDw8PTCaT9dF9ZGQkAQEBnDlzxqk8h+nu7ub8+fNERkZKpQfY5/jbb7/xzjvvcOjQIZqbmykqKiIjI4O//vrLqTx9fX356KOP2LVrF/Hx8ahUKhQKBSqVSjLPOxVnvW/V19eTlZVFSUkJYWFhREVF8dprr+Hp6YlSqSQtLQ2NRgMMPXkceQ1Go3HKV8ANCgpi69athISEIJfLSU5OpqenBxcXF5tkfqSLIzyHaW1t5a677mLevHkAPPnkk6SlpaFUKvHy8iIlJQWNRoO7uztms9nmGm7cuCHpisLu7u7jLsObz4M03rt37+bEiROUlpZafys5OZnExERcXV2ZNWsWq1at4ttvv3WI40TajaPKEuDo0aMsW7bMJmnfuHEjK1assE7Hj4uLQ6PRSBK7bo5Djqqbd2TS9F/Z88lez7a2NjIzM/nggw+Ijo6WWtMuz19//ZX6+nrr8YMPPsisWbMk60Db43jixAnOnTtHREQEERERtLa28sorr1BdXS2Jo72e169fv+VjbSnfFbLHMyAgALlcbtOxd3FxQS6XLqyMp61rNBoiIiJwcXGRzA/sc2xtbSUwMJB77rkHGNqCQS6XT8qc8Mn0hKGb/+HDh/n666957LHH8Pb2FknTJOCM963Tp0+Tn59PWVmZdRCnu7sbnU5n/Y7FYrHGprlz59rEro6ODuu7CFNFX18fnZ2d1uPhKaTu7u6jujjCcxiNRmNzH+/s7LRO04J/ytPb2xtfX1+bOiGlJ4xdTqN9NmfOHHp7e23ex5xq78LCQlpaWqioqMDX19fmd0d2kofL1hGOE2k3jvAcRqPR2EyLM5vN/1oRz2KxMG3aNObOnYtWq7VO3R4cHESr1RIaGjopLreKQ46qm3dk0vRf2fPJHk+LxUJWVha5ubmSvocxXs+BgQGysrKsL2BqtVouX74sWYC3x3Hbtm00NTXR0NBAQ0MDCxcupLCwkKeeekoSR3s9dTodq1evtjb6hoYGenp6rPO0ncXT09OTRx55hLKyMgDOnDnDL7/8Yg1qzuI5TFtb26QF8fFgj2NISAgdHR38/PPPAJw9exaDwSDpYiX2eF67do3ly5fT1dWFxWKhqKjIuhyt4PZwtvuW0WgkOzubwsJCm3ZTVVVlXd7XZDKxf/9+YmJiAHj88cc5ePAgJpOJ33//nbq6OmJjY6fUs729naSkJHp6egD48ssv8ff3Jy0tjZqaGnQ6HYODgxw8eJC4uDiHeQ5zcxwqLi7m/fffx2Kx0N/fT2VlpU15Di9L3dHRQWtrK48++qgknsO/P94yVKlUREREcODAAWBoSlVvby9LliyZEsezZ89SXV1NSUnJvwZvtm3bxr59+wD4888/OXz4MDExMZI7wsTajSM8h2lvb7eppzKZjIyMDI4cOQIMJYF1dXVERUURFhbGzJkzrZ9VV1cTGBjI3Xfffdseo8UhR9VNmcVisdz2VTkhTU1N5OfnYzQaCQ4OZufOnZjNZlJTU63/2BUrVjA4OEhnZyd+fn4oFAp27drFggULnMaztbWVxMTEf4027t6927rKkjN4AtTU1FBcXMzAwAAymYwXX3xR0g6VPY4jSUpKIiMjQ/LpjvZ4Hj16lKKiIkwmE15eXmRlZbFo0SKn89Tr9bzxxhtcunQJlUrFpk2bePjhh53OEyA9PZ2YmBjralTO5lhZWUlFRQVmsxk3NzcyMzOti6s4m+dnn32GxWLhoYceIjc312ZuuWDi3Kr8Z86c6RCXI0eOkJ2dzezZs23Of/HFF3z44Yc0Nzcjl8sJDw9ny5YteHh4MDAwwHvvvUdzczMuLi6kpKRI0t727dtHZWUlMpkMPz8/cnNzCQ0NpaKiggMHDljr6pYtW3B1dXWYJ8ATTzzBpk2brNOE9Xo9OTk5tLe3I5PJiI6O5s0338TNzY1r166RlZVFe3s7CoWCjRs3TklM6OnpYe3atcA/L9G7uLhQXl5OXV3duMuwu7ubzZs309XVhUqlIicn57bvX6M5Ll68mOPHj9s8YZo9ezalpaV0dnby7rvv0tXVhVwuJz4+nvT0dGQy2ZQ4juVZWlpKcXHxuNuN1J7l5eUoFAqWLl3Kjz/+aBPbz507x9atW9Hr9bi6upKSksKzzz4LDCVZOTk56PV6ZsyYwfbt2ydlkHKsOHTs2DHJ6+YdmzQJBAKBQCAQCAQCwWRwR07PEwgEAoFAIBAIBILJQiRNAoFAIBAIBAKBQDAGImkSCAQCgUAgEAgEgjEQSZNAIBAIBAKBQCAQjIFImgQCgUAgEAgEAoFgDETSJBAIBAKBQCAQCARjIJImgUAgEAgEAoFAIBgDkTQJBAKBQCAQCAQCwRiIpEkgEAgEAoFAIBAIxuD/cFGPylNi8OAAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAEoCAYAAAAt0dJ4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZRcV33o++8Zap66eh7UUmuybMuSbHnABlsWNsGxg8EQ8GXIcB9JCC+Im4RA8rh4wXUIGSFc32gRwlq5l/cSmyGQEDAzGFm2bGw8SUbWZEnd6kk91Dyf8f1R1dXdUktqTdWDf5+1tFR1zj5n71NDV/1q7/3biuu6LkIIIYQQQgghFpy60A0QQgghhBBCCFElAZoQQgghhBBCLBISoAkhhBBCCCHEIiEBmhBCCCGEEEIsEhKgCSGEEEIIIcQiIQGaEEIIIYQQQiwSEqCJ17wNGzbwhS98YaGbIYQQQixK8jkpRGNJgCbEJXLXXXfxzDPPLHQzhBBCiEVJPieFmB8J0IS4BDKZDAMDAwvdDCGEEGJRks9JIeZPAjQhANu2+Yu/+AtuuukmrrvuOj7ykY9QKBTq+8fGxvjjP/5jtm3bxpYtW3j3u9/Niy++CMDQ0BA33XQTruvyW7/1W9xxxx0AZLNZHnjgAW6//XY2bdrEnXfeyc6dO3Fdd0GuUQghhLhQ8jkpRONIgCYE8PWvf51IJMLXvvY1PvOZz/DYY4/xuc99DgDDMPjt3/5tDh8+zGc/+1m+8Y1vsGrVKt7//vczODhIV1cXX/rSlwD4h3/4B77xjW8A8OlPf5onn3ySz3/+8/zwhz/kT//0T/nSl77EV7/61QW7TiGEEOJCyOekEI0jAZoQQE9PD3/4h3/I6tWrueeee7j33nv53ve+B8BPfvITjh8/zl/91V9x0003sX79ej796U8TCoV45JFH0DSNWCwGQCwWo7m5GYCPfvSjPPzww2zdupXu7m7uuusutmzZwp49exbsOoUQQogLIZ+TQjSOvtANEGIxuO6662bd37RpE1//+tdJp9Ps3buXWCzG5s2b6/u9Xi9bt27lwIEDZzynoij88z//M08++SSJRALHcahUKlx//fWX7TqEEEKIy0E+J4VoHAnQhABCodCs+4FAAIByuUw+nyebzZ724WQYBqtXr57zfK7r8ju/8zuk02k+/vGPc8UVV+DxePjv//2/X54LEEIIIS4j+ZwUonEkQBMCKJVKs+4Xi0UAgsEgkUiEpqYmvva1r512nK7P/RY6fPgwhw8f5jOf+Qz33HNPfXsul6sP8xBCCCGWCvmcFKJxZA6aEMDzzz8/6/5LL71EW1sb0WiUzZs3k8lk8Hg8rFq1qv4PoK2tbdZxU5mnTNMEoLOzs77v4MGDHD58WLJTCSGEWHLkc1KIxpEATQhgeHiYL3zhC/T39/Poo4/y3e9+l3vvvReAO++8k5UrV/KRj3yEF154gaGhIb75zW9y33338Z//+Z8ARKNRAPbs2cMrr7xCX18fkUiERx55hBMnTvDEE0/w8Y9/nDe+8Y2cOHFC1oIRQgixpMjnpBCNo7jyM4V4jduwYQN/9md/xvDwMN/5zncwTZM3v/nNPPjgg/j9fgBGR0f5m7/5G/bs2YNhGKxcuZL3vve9vOc976mf50/+5E/40Y9+RCQS4YknnuDxxx/nr//6rxkbG+PKK6/kk5/8JKVSiQ996EOoqsrTTz+9UJcshBBCzJt8TgrRWBKgCSGEEEIIIcQiIUMchRBCCCGEEGKRkABNCCGEEEIIIRYJCdCEEEIIIYQQYpGQAE0IIYQQQgghFgkJ0IQQQgghhBBikZAATYjz9OUvf5k777yTa665hrvvvptHH310oZskhBBCLCryWSnEhdMXugFCLCUPP/wwn/vc53jwwQe59tpr2b17Nx/72MeIxWLcdtttC908IYQQYsHJZ6UQF0fWQRNinlzXZfv27bz5zW/mE5/4RH37hz70ITKZDP/6r/+6gK0TQgghFp58Vgpx8WSIoxDzdOzYMU6ePMmtt946a/vrX/96nn/+ecrl8gK1TAghhFgc5LNSiIsnAZoQ8zQwMABAT0/PrO29vb04jsPg4OBCNEsIIYRYNOSzUoiLJwGaEPNUKBQACAQCs7YHg0EA8vl8w9skhBBCLCbyWSnExZMATQghhBBCCCEWCQnQhJinSCQCnP7r39T9qf1CCCHEa5V8Vgpx8SRAE2KeVq1aBXDa+Pn+/n48Hg8rV65ciGYJIYQQi4Z8Vgpx8SRAE2KeVq9eTW9vL7t37561/fHHH+fmm2/G6/UuUMuEEEKIxUE+K4W4eLJQtRDnYceOHTzwwANs2rSJrVu38uMf/5hnnnlG1nURQgghauSzUoiLIwGaEOfhvvvuo1Ao8MUvfpGxsTFWr17Nzp072bp160I3TQghhFgU5LNSiIujuK7rLnQjhBBCCCGEEELIHDQhhBBCCCGEWDQkQBNCCCGEEEKIReKsc9AmJnKXpJJw2Ec+X7kk51pM5LqWjuV4TSDXtZQsx2uCM19XW9trZ62jUslYFs/tcnmNLofrWA7XAHIdi41cx+Jyts/JhvSg6brWiGoaTq5r6ViO1wRyXUvJcrwmWL7XdT6Wy2Mg17F4LIdrALmOxUauY+mQIY5CCCGEEEIIsUhc9gBtIFnkHV98iucH05e7KiGEEEIIsVg4Nt6j30VLHFzolgixpFz2AC3k0zl4Mse/Pjd0uasSQgghhBCLhVlEsU305OGFbokQS8plD9BaQ17efm0P+0ayyJJrQgghhBCvDcr4/uoN15neaJuz7wshTtOQOWjr2sNkyxbpktmI6oQQQgghxELLDtdvqpl+ALxDT6BP7j/vUymVLEopgZofBfnBXyxzZ02zf6n0tQQBOJEqEQ96G1GlEEIIIYRYSLofqKZD94y9RCXWh2LkUZTzz8LnHXisfttq3YjdvP5StVKIRachPWh9LSEABtOlRlQnhBBCCCEWmmvPvl8b3qgYF7fO7oX0wAmxlDQkQOtpCgAwmln6i8oJIYQQQoh5cGzsaG/9ru/odwFQHAusi/zR3pZpM2L5akiA5tVVmgIeJgtGI6oTQgghhBALzXVw9QBW++bTdvmO/RAtfeyCT63Y8qO/WL4atlB1a8grAZoQQgghxGvBVKZGRcPV/XMW0cf3Xfj5JUATy9hlD9AG8yf4wE9/j2BkUAI0IYQQQojXALUwBoBi5HA139yFzidZyCllFUsCNLF8XfYAzaf5+OXkyyT932IyL28mIYQQQojlbipAcz1BUD1zlnEVZd7ncz3VfAZW8xXV8xfHL7KFQixelz1Aa8k4/MPDfq4+cJhEKS+LVQshhBBCLHvV73t2y1W42vQSS5W192DH1wK1ZCHzPZuq4wTbsFuvxvWEUEuJS9tcIRaRyx6gKYEAoYLDf/2xBfpJCoZ97oOEEEIIIcSSpWUGwN8EigIzAjQ0L1bL1QA44c55n09xHVCry/c6gWY4j+BOiKXmsgdoaqwJ7wd+m3gB1hYOkS5JWlQhhBBCiOVKKdSGH04NYVRO+bqpari+KDD/IY64Lu5UeVVHsUpok6/AqSOzjALYkvNALG0NyeLYddN2ANbmBshIgCaEEEIIsWxpuUEA3I7Z6fWdUEf9tosynelxvupz1qr/68nDKJX0rCK+/h/jHXjs/M4rxCKjN6IS/8o+DF1hZWaSdEm6pIUQQgghliM1N4KWrQZoBOJgVhPEVda/bXZBRWVqntqZKOV0tadNUavBXK0nzvE3MZXTUbFKuMRnH2eVL/YyhFhQDelBUzSNRHuQVak8mbL0oAkhhBBCLEee0WerNxQN1Bmp8RVlRg9Y7f5ZEscpRh7viV3oEy/XtkyXdaIrMXpeXy9XNyMw05JHLvgahFhoDVuoutDTTG+yInPQhBBCCCGWofrcM6Cy/t5zlT5rgKbmhqr/FyfBNqrrnqnTA7/cUDuuHkCpZOvbtMxA/bY+uV8SiYglq2EBmtvTRWvOJZVNn7uwEEIIIYRYUrzDTwFgdt147sJnGeKolJLoiYPV20YO78DPwLWxw92zyrm6D8WZTgiiJw/ieiPT5zGL53kFQiwODQvQPJ09ABTHpMtZCCGEEGJZmREMOZGeeR40d4DmHdw9675ilaqlfbHZBTXvdMZGs1jN9OgJTu93ZNSWWJoaFqAFe1YB4E4eb1SVQgghhBCiAc47MceMOWhKcaI6HNEqnXXY46z11AAUDcWprq+rmAUArPh6zM7rq/vPN0ukEItEQ7I4AkS61wDgSY02qkohhBBCCNEAai3dvbHy9nkeUU2zrxh5vEN7cMKdqPmTs1Lxz2S1bjxtm6uo9ZXUlKmeNM2LW0tOorj2OfJECrE4NawHLdazDoBwZrJRVQohhBBCiMtEKYyjGDkA1OwJXG8E1x8/x1FVrqqjWMXpZCD5k9X/C2P1Mlb79DpqdvP6ORqgTveS1YYzuqpnemFsx0ZLHJyV3VGIpaBhAVok2EIqBE3ZVKOqFEIIIYQQl4l3+Cm8/T9FSx9DLaexw13zPtb1x1Fss54M5FRm5w3Y55zLNr3YtWfspeomVa8HaJ7RX6AnDuI79oN5t0uIxaBhAZqiKKQjOrFCoVFVCiGEEEKIy8Gu1G/q4/uqN06dI3YWrh44ewHNA+o5zqcowCnzzFQdV9FmbXJ90Xm3S4jFoGFz0ADyYR9NmQpl08bv0c59gBBCCCGEWHTqc75msKOr5n28e0owZ/S9CaWcAsdCTxzA8UZnL2w9ZyOmhzg6wTZw7eoxqmdWMWdG6n0hloKGBmjFaJCe0STZsiUBmhBCCCHEEqUlDs26b8fXVXu95mtGEGV23YTrDeN6wwAYTavr+6z2zWcOsBR1Ouuj61IfGHZKOxTJ5iiWmIYNcQQwoxFiRZtMQSZrCiGEEEIsVVotuccFU6a/gjqR7jMWs5vW4AbbznQSFNdBKYxP957NxbUvoqFCNF5DAzQ3HkdzITuRaGS1QgghhBDiEnI1T3VYYY2a6T+/42tz0MzOGy68DbUhjt7hp1DLKVCnR2dV1r91RkFJti+WloYGaFprOwCZsYFGViuEEGKZOnToEG95y1u44447Zm1/9tlnuf/++9m6dSu/+qu/yle+8pVZ+x9++GHuvvtutm7dyv33389zzz1X32cYBg8++CDbt2/nda97HR/84AcZGxtDCFGlFsZQbHNWog+rfcv5nUTzULniPpzoigtvyCk9Zu7Mr7WKitH3pmqCEBniKJaYhgZowfZq+tX8SQnQhBBCXJzvfe97/O7v/i6rVs1OTDAxMcEHP/hB7rvvPp566in+8i//ks9+9rPs3r0bgF27dvH3f//3fPrTn+bpp5/mHe94B7//+7/P5GR1nc7Pf/7zvPjii/zLv/wLP/nJT4jH43z4wx9u+PUJcUFsE6zSZa3CM/w0AIpZrG9zQu2Xtc45nZrlUZn9tdb1hnF1vwRoYslpaIAW71oJgJkYbWS1QgghlqFCocDXvvY1brnlllnbv/3tb9PT08N73/te/H4/W7du5W1vextf/epXAfjKV77C29/+dm644QZ8Ph/vfve76erq4tFHH8W2bf7t3/6NP/iDP6C3t5dIJMLHPvYx9u3bx4EDBxbiMoWYP9fBd+z7+I7/5LIN61MLJ2fUZ2NHe2s7ziNByCXinpqUZI45aK6io8xYEkCIpaChAVpzZ+1XzvR4I6sVQgixDL3rXe+iu/v05AL79+9n48aNs7ZdffXVvPzyy/X9V1999Zz7BwYGyOVys/Y3NzfT2dlZP16IxUqpZKq9Ra4NjnnpK7ANPMM/r9+1Oq7D6riOypq7Tuu9agQn1Dl7g3p6cnI30IJiFlHz0jkglo6GptmPN3WT84KeSTWyWiGEEK8h6XSadevWzdrW1NREKpWq749GZy9cG4vFOHbsGOl0un7/1P1Tx59K0xSamoKXqvkLRtNUuY5F4oKvIZtCCfkACEQ84L3Ej4Ph1M/vrrqNQHhqWGN4zuKX/7kIopz01e+5sSicWl9wNUrxMLgTuE1rL6iW5fCaArmOpaShAVrEG2UwBP5cppHVCiGEeI1zXRflLIveuucYDna2423bJZ0uzrlvKWlqCsp1LBIXeg1qNo+nUB3OZ6SyuL5zLPR8npRKHm+hgtl1E44VhnO0sRHPhRK/Ae/QHgAqnSvmaJOKR4mjJCcxIhfWluXwmgK5jsWmre3MC6g3NoujopEJ6YTz+UZWK4QQ4jUkHo+f1tuVTqdpbm4+4/5MJkNzc3O9zFz74/H4ZWy1EBdPLU5M37Euw7yrqfXE1MYPZzyjGZkkz7RQtusJoxgFSbcvloyGv8OyIS/hoixULYQQ4vLYtGkTv/zlL2dte/nll9mypZoG/Jprrjlt/759+7j22mvp7e0lFovN2j82NsbJkye59tprL3/jhbhQZhEte6J+VzELl74OxwKqiTcWC3cec98cT6gaXF7m7JZCXCoND9AK4QCxwmWYuCqEEEIAb33rW5mYmODhhx+mUqnwzDPP8J3vfIff/M3fBOB973sf3/72t3nuueeoVCp8+ctfJpPJ8Ja3vAVN03j3u9/NP/7jPzI0NEQ2m+Vv//Zvufnmm1m/fv0CX5kQZ6aWEgDYTasBUKZ6uy4hpRagzVwQesHVAjTHf+YebtdbHUqmFmQ9Q7E0NPwnkFIkTLiSwDUMFK/33AcIIYQQc7jrrrsYGRnBcRwsy2LTpk0A/OAHP+Cf/umf+Lu/+zs+97nP0d3dzac+9SluvPFGAG699VY+/vGP88lPfpKxsTE2bNjAl770pXpikA9/+MMUi0V+4zd+g3K5zE033cTnP//5BbtOIealFpDZTWvQ0sfnPZxPKSVQrApO5PSMqKdxpoY4Lp4eNHQ/ZucNZ12HzfVVAzTP+F4qkR7Q5PunWNwa/g4zo9UPwNL4BMEVPY2uXgghxDLxwx/+8Iz7enp66uuezeX+++/n/vvvn3Ofx+PhgQce4IEHHrjoNgrRKEptzplbDz7mF6B5B58AoBJ+67lT5btTQxwXUQ8a4ERXnL2A5sOOrEDLDaEnD2G1bWpMw4S4QA0f4ug0tQKQHBludNVCCCGEEMuSWk5Wh/JNLRh9vgkxrHPnB1Bcp1bZ4grQ5sPqugFX1cE2FropQpxTwwM0T0sHAKnRgUZXLYQQQgix/DgWanECJ9gKTKXWP78ATZlPAo2p4GYRJQk5L3pgepimEItYw99hwdbqsMb82FCjqxZCCCGEWFYUI4+WPASug+Nvhqn1+qZ6u87B1Twotolilc8Z0qmVDK43vCR70ABcVUOpDdMUYjFreA9aU0d1nLCRONnoqoUQQgghlhXP0B607CAA7tSaYPNIPV+n+avnGf0FinGOdWrNIq4neCHNXBwUHZz5Ba5CLKSGB2jdzT3k/EAq0eiqhRBCCCGWDbUwNmtoohtsrd1S5j0HzZ3RG+bt/8mZC9omqpGtp6xfklQVxcwtdCuEOKeGB2grIi2kw6Bl0o2uWgghhBBieXAdPMNPz71LUVDmOQdNmedQSMWugOvi+Jrm3cTFRi2Mo1gVlEpmoZsixFk1fA5azBciE1QJ5+QXDCGEEEKIC6Hmp6eKmN034YS6ZheYZ+A17/XSzEL1huaZ33kXITu+Fi11FByZhyYWt4b3oCmKQjrkIZSfR7YgIYQQQggBtonv8LdQsycA8Iw+C4DrDeOEu6eTg0Dt9jyzOLo2TqC1flcpp+YsNtVb52q+82/7ImGHOqs3zncJAiEarOEBGkA26CeSl3UohBBCCCHmQ8tVE4FoqaNgV+rbjb43nV5YUecVhKiFkyhmESfUgbHi1uqh51gPzV3CQxwvdAkCIRptQQK0QjCE33Rwi8WFqF4IIYQQYmmpBU5qJYPv6PcBMDuvP0NhBbWUwHf4W2fsEQPQJg/geoLYTatBr2ZznGshZ330uequ+NrZPXVLTS275Xzn3QmxUBYkQCtGogA4qeRCVC+EEEIIseS5vuic2xWrjGJU5/qrhfG5D7bKqJUMdtMaUPXq0EWlGtidSstV1661Y6svTcMXylRw6djVoaJTvYxmEWWO6xZioSzIUvBGNA6AlZhA61mxEE0QQgghhFgy5ur1cX2xcx6nJw6g5YYw2zbhhtqnz1frKXNr66CheXD8zajlZDVwOaWnzNX91UWql7TqNenjL6HYBqbr4IQ68B3/EQBmzy04oY6FbKAQwAL1oLmxNgAKY0MLUb0QQgghxNJySoDm+M88F8xqvmLWfcXI4R1+anYhx6yeVvNOb9M8KEYeLXkIADU7hPfVRwGw4+sutOWLx9QQx1pwqphF9NTR+m7P8NNgG9UFuyXTo1hAC9KDpjdXU8HmxodoXogGCCGEEEIsJa4NgBPuwuzYetZ0906oE5KHcQItcw5ZhOkgZdZ5rGryES07iN1yJZ6Tz01XPzOQW6qU2f0SWn4EJ9Aya5vv6PcAsCM9WF03NqxpQsy0ID1ogeYeHAXyY6MLUb0QQgghxJKiWGVc3Y/Z/bpzrkXmBpqprH8bZvfN2NHe6R2OPX17aoijOh14OcHqCCdX95+eBXIZBGgus4dtKkYeLTMwZ1ktN9yIJgkxpwUJ0NrDbWSDYEyeYeKqEEIIIYSoUwtj53eAooDmweq8vp7tUUsdmd5dG+I4M/CyW67E9UYAFzU/Mut0rmepzz/jtB60mSrr7sXsuA6Y0Vs4M6AVooEWJEDri3WQDoGblIw5QgghhBBnVZt/dupwvPmaWohaTxyc3mgb9SCuTlFx/E0oVgWlttaa2XMLldVvXgYJQqhfqx1fh9l5w+x9qoYTW0XlivuwWq+ubptjyQEhGmFB5qCtjLawP6jSlskuRPVCCCGEEEuGWjgJgBPpubATeALV/xWtvkmxDVx1jqGSmg/FKqKP76vWGWgFVTu93FKk6lTWv62eobIS7qwGYacO56wN+1TsCu7UYydEAy1ID1pr2Ecy5COcKSxE9UIIIYQQS4ZSyQC15B8Xw7Wnh0o6Jmi+04ucOv9suQRnU2YuH6Dq4AmCNzSriDvVq+jKEEexMBYkQPNoKolwiEjOwDXNhWiCEEIIIcSSUE0Q4jvrHKp5n6u2gLViG9OByAzujF42Y+XtF13fkqRWB5gptayWQjTaggRoAKloHBVwxs9z0qsQQgghxGuIYpWmF5S+QEbP6wHQJ34JZgm1OIFaSp5Wzp2xvprrj19UnUtWLUj1jD67wA0Ry9KpQ2rnsGABWjFeTeVqjAwuVBOEEEIIIRY310UtjE/PI7vQ04Ta67e9g7vOXM4fp7LuXipX3HdR9S1pinLuMkJcAC31Kr4j/3nODKELFqDZLdV1ObJDry5UE4QQQgghFje7DIA7x3yx8zWVRn5q6J7Ru23ugstt3tl5mlpSwNUv/jEXos6uVHuwAcXMn7XoggVo/vY11cWqh44tVBOEEEKI1yTr6KsYz/58oZsh5kGtVDNeO8H2c5Sch1PmnLmB5os/53KkKDjhzoseVirETL6j35++Y589B8eCBWh9LatIhqEwdGKhmiCEEEK8JtnHj+JmMzi53EI3RZyDPvqLS3Yu1xM6dyEBgKt6phfzFuISU5yzr7G3YAHaVS2rmIwpuGMnF6oJQgghxGuaWyw2rK7hwhC7Rh+jYMoSO+fD9VWTdlx0in3A9cXqCTDqizGLuWleWahaXDq1xeaneEbOnoBmwQK0lU0hxsJ+gglZrFoIIYRoFCc3/bnrJBMNq/do7lVs1yJvSa/d+XFxgm2XbF5Ype9NmB3XYTdfcUnOt1y5mg/FsS5ZkGY7587cJ5YXpZRAKU6C61T/Pw/6ZWrTObWFfYxGo9x2cAy3UkbxyThfIYQQ4nIzn3m6ftsZHsQOh9F6V17WOh3XwawN6TmR76cjcPG9Qa8VailRDdAuFU8AJ7bq0p1vmXJ9MWBq3bimsxc+i2cGUqSL1aGSb1jTTNi3YF+9RYN5B58AwAl3oeZHz+vYBXuVaKrCZHMnKmNU+o/h3yBd7UIIIZau3bt3AbBt2/az7p+ybdt2du58iEce+f+IRKJ84hOfmnXse97zTn7xi59jWRa6rnPjjTfzla98g4985L+xf//LNDe30NXVzZo1a9m8eUv92Kl69u3by7FjR7nvvnfMOu/+Y0dRKxWuuqr6uWuPDNcDtN27d7Fv39562c2bt5x2HWe7vqljT23Piy8/j35l9SvH4IlBSmvLp7V327bt9XNs3rylfq4dO/6QnTsfqtezZ88TvOENt9Xbdupxb33rPXOed6aZ7TxTmTNd97me55mPx7nKTV3Xjh1/OOc+HYs3r6xw4MQkkc3mWc81s/3f+ta/s2bN2vp5d+/eBa7Lbbe8AcXrPWPbZj6Oc72eph77udo717H5fI7du58462N3pudp5jXMfJxm1jNl5mvlTPXMVd/Z9rmaF4Bnn9rFLXfdB1R7MHfufGjO99Vcj8W6q7egdE1/v81XLMI+fc7Har7O9j6beV1zPa5T742ZzvUaPHXfqc8RcNpjMVfd53rtnvp4nKldO3c+xAc+8H683sic9c38W3Gm6zr1mFOva+b2qb+3995736y/F1Pe8553kkwm6n+/d+58qP4++ZM3V38IUfOj/PBHPwAgcPXdVLQI2687ew/2gg1xBCh1rAUgceTFhWyGEEII8Zrg5HKolQpWJIJ+7VYA3Hwe155ekydUyLNyoB+PcWmGdiWcBCPBYQB8ih8XB8u1Lsm5lzud6uOUInbR5wqcGMDY/bNZz7U4s6llDVT3wh+vk6XZ9/uTRdx5LFIslq+KFgFFJec/+yiCy96DpmYH0f7jQ8RLOVA92OFO7FgfVvu19Kzow1EgcXgvPbzvcjdFCCGEeE0zn3kKAMfjRWttgyuvxjr4CpjT2epi6TQAHReRxOuo9SrmiMH2zjsYsYfq271KNc27i3xJnY9ehoFOLsWyyZ50Crq6cCvlS3C214BaD5rPTF/wKdIGdAGbe6L0J4tkShYvj8oczNcqCx2vonIiD6WjSfp64mcse9kDNNcThLarsPIZFLuMmh/FO/w0yr7/zaeAx+Pd2PufQymncP1nbqgQQgjxWqW365T6imSNS5NYy2yqfd7q1a8B1kP1o70AACAASURBVKEDmM5qontfJG1Ve21Ux8E7MY7Rdn7rb7k4FN1qpsajuaPotaAsokaJKtWeIAfnjMcvG5egp8RHtRdTvYjHy3Ucgv3HpzeUl2+AZh19Ffv4UbzZLEbrRc7bU6vvjaB5fskdpsx8+ruifjoiPna9mmAyX1m4+UWioVzdj2KVMbtvAn5AihitLkxW4FyvzssfoAVaeKH3/dx44431bZoCG9tV7ru+kys7FNYN5Gj+PzdgrL+X0jW/hdW5tV52vmO9Z7qQYxaj5XIdQrxWnM97Vt7f4nx4V1R/zX859dLZCxoF2nMvkwqsPsOJfFjhCHakNn+jFqA5E+NY4dOTdflHhjHjzbj6/L8uOIqDWptBMVgYwHJNokaMPm01aScFLHwPmqmYFD0FHNdBVS79bA+lnKIn+wsMLQS88YLPY1ANbjNE6LnAc7i5LHpmuhfIXcYBmn38KAD+4aGLD9AukoWKAlzTXX2vqYrCFW0h9o/mMC7zCN8jmUNknAwx9eKHxoqL4WLHVuGEuznAehw08vn5Hbkgc9BsF/aNOfzPJws827SOcFEh0f0WvMe+T/ybbyX2H7+O58SuS/LrkxBCCHE5TZQmyBgXPgzqXBTP9AC3sl2mFCqdsayeOYbXzhEyxucu4Dg4/ulATNE99dvW2NichwQmh9HtM9d5WhW14EtTptPC++xqnUrta8dCB2gZX5qsJ8N+62XGnTGGCoOX7uRWGc/JF1BcC5+VwamkMezKBZ1KxaXgbcfCc+7CZ+DOmEtoOTaV1MS8jutPFBlINm6dvEtiZrDtXHwvrTW1FMEFpNo3a6/1kGf6x42mQPV5LF/maYAnCgOcsPtlrudMrgNOg+dfuk593UEbHReFTO2lpKlnH7i8oElCwOWoXp0k97K1juR/fZ78rf8DLTNA03d+g6Z/+zW6M784bXE3IYQQYrF4fuw5nps8+6Kj580q8bp4ipAHfH3VZAVaoTYc0WueVtyw4ZejWYxS9edZ9UxfzCwLV5sOnJRYDH3DVbOKjHT3cLKzq36/JXWQztz8k3k5SvUz++qma1Bqs6c8TvWLqVq7X3bnH/BVy+sMO5F5/27ruC77kpA8Q1w0HSA6jNknOZQ5wKQzv8DlXPTJV2qp2avB6uP9/8kTY48zkO8/S3sdXkq8cFqgqGHjKBc52MlxcF0Xx3U4mjvCvtFnznmI5cCh8TwHx+b5c//5cF1c6/IEDkogMH37EiRDmZp6oxjzexws2+GHB8ZJVcB0q++zoHfGDxV69Wu3dZavtYnyJLZzfo9PzsyScao/EtkzkpoctV89r/M0nF3Bd/hb+M3kZa/KM/w0vqPfvez1zKQ4Nq46/f6d+ffruhVn791c4AANRvMhcn5IPfkYrjdMacvvkvzNPeS2/w1qJcMtJx7iV478P/gOfQPO8wUrhBBCXKjR0VE++MEP8rrXvY7bb7+dP//zP8c0Tw+O0iUTy547ckhXUqdt805OoJ4jUYOWHSKgOaxrnv6Y1lM6fs2P5TVP64FKVGA4XSaRrX6R1N3pX/y9Vg7r8AHMl/cBLq6u47jVL5OKosxaA63c3YPl8WD4fCi4GEaFcqEWTLkOyQqUzbN/8S1r1fJ+xcstba9njb4WjalfkavHDtmD2CcGcEvzC9ROOmEc18V259eTYVgOlgv9Z/hebagGQddmU2GMptqX5VF7BOc8fxB2LWtWDxUAioLtOhxQJklRgtpz9Wr2MCVrdo+Uv1QinM8xXh4jUZmkP3EIt1TCtW0sbZLjgSzOefReAtVgTJ1xHbbNmHuSQ7E0pbAXxbQYtUdOOy5VmCA5/Dym7bLv9JftJeMfGcbY9VPcS9DDdSrbrJCvBf+KffHfGV211nM5R8+L4lqndSAUa++N0VK1B01TwKvPeA/Xek1st/oaNN3a3xPXQR99jv7EPl5KvsBAfuC0+px0mmRpcs7X6AuTz3HCHqDoFjmcOVTfbrjTv1A4LvQnCrz0vZ9R/PnTFCvWJf1ebTsuzw+mGctVcNxqL+GuI5O8mIAXEvDz/iTWjMW60yWTgdFqT3+0PHzWcyuV7EWPqlOLE9Xn6wy92apj4rFO/4NRCpVwA+dft4Zdra+WDRTArv1A1RuClpD3rMcv+DzFYGaQF1e0sOWVYTKlFLFAHDQf5Y3vo3zVf+HYo3/LlePfJvaTP8J+9u8pXvd/U77yXaDLwtZCCCEunx07drB+/Xp+/OMfk8vl2LFjBw899BAf/ehHZ5UbHJjAUVWc4jBXBqrr5Bh2hVRpkv3JvayLX41utlKxIXrsCL5iHsfrm6tKnEIex6PjDJzA9TbDCj+6OohTNDDDHVTM6gd8KGjjWZOjQjXQy5jVpXRdoxoAeK0sGj48ik174gWYOE7ZF0PVPGSjYfqzDpXDk9x1VTUBiOeWN+DJTFIxHBitLqhqt+kolREKjoMPUCoZ+gtx9o6kCUaGWBtdR1APzWp/Qc+R9aTpSWtE+3+C1nYNUVcnQPVLc0SJ4rouPfv6qdgH8OROyWjnOngxSFTAdFU8ikO+bAI2qxmimSwBzSJgZIn0H8TtjFI+8i3GMkOzEo8MpYrVL3SKwk+PHSRXGaOj6MWMxzFcA0UxCTkVVtABpShRfSW28UsOJJ7i6vZbsBQHjzI9rNB1XYYLQ7T52zFds9ozWE4z9ORP8Bo2bXe/C1VRcV0XxSyStIuMeJvIVxJ0uA49wRUMF4foH3+Fq7pvqJ+3dXwMFcgXUziWTfPupzCbU+Sb2ognjpPscXiuMv3dtHJigJFfvETPW38Nj14NenMVE02pFrBdeNU6QqYtRdqT5sB4iqZcEtM1SXd0Ygd8lAYn2Bs08DT5MKwKHttF8fk5sX836tgQlKcTtunZNJ6hIXJdK7BP+YLsZDNYFZOEL4ztzP0F1snn8Y2M4OSyqJFo9bU5OQFtbbjFInYgSNGCwHQnE2qlTEk9e+AQTmdQJiZx21pJlCHj+GiysvQnDpEOayhuGa0W/LuOA7aN4vHgJCbxDRyn2FOd0ZcoT2K5Fh2BTiZK4ySdBK2VAG6ljOLzg6pRtuGJIxOsXdVEi5VFrfXM9WSeRR32U+66iaJVwDTLKEUfWBYBK0VzdpJYsQ3PwUdRVQtj5e2oZomAUybhwlhglEOWzp3unVilSYrpwwwWB/DgYq/urH65tyq4jop1YD+TQwcZNkZJNPfiutXXJI6DVS5A8iB+M8kx9yCeYvWrvU/xz3pPHEq7aIMpfBOT9Gc08uYuVnrHa8PwqkFkeXwCbzjEUXOQoBaY+ZBTMCwc0wLbJmgnmSBOXC9RtD2Mm0kGJpNM5m0m8wbjhWq+iRbLqf+UlC4aDCXy9LWGsScnOPy9x6lcuZawWsa2bZiRq9RxXVa5A3gUEyvTT3poFx2x9Vid0/ksXMeBchklGKxvyxhp8i6AFw2HeDmHVSoxYSr02A4eTcUsFdDmCI7aCq/gsQsMxW7GxOanIz+qPibhIsF2u/4mVBwLbANLUXlu8jmaIhWiVgXz8DMoq5vQsVBcF7f2tzlZgUjt2KxmEsTAp509OANQ3LMsyDAxcWlSgQ4MHJqVJGRKNBrlxhtv5pZrb+G9j36NJz90B/e9+69nlakurujwppUWwef+F57xl7CDHZSu+31KV78PvKHTztuoyfdNTUHS6cs3Pnuhkghc7utaCMvxmkCua7E523v21GtaLklCzvRctbVF5ii9dLz88svcf//97Nmzh+bmZgB+8IMf8MlPfpKf//znqOr0r+KP/PnvYZsWdimD4kToa13J4RUFmrMeiqkCrpahu+DnRMGHige/lqCiBfC3Rpjof5Hs6ASqrhO58gqua17HWHEMq5hn5MgJHvNUsCzoMFyuNNq47k1b+OLQq3TnhuktWDieMD5fFK19JX3rt9J85AWGckPkOgIMORW8Y5Nc2bWedkMjqxSYaA+zT/HhuNDRtZ6ocZyWoA9Ti2F4fCSOvYg5XiRu+bCsAO2qSiiRY6BHwdJstLRJGx5UFSw0Wrxx/J4w5bXt7D+ZRzn6JHrZoc3bTV93D0FdYTifoTQ+iie2irwRpJT+JflYgOb4CrzmOCf8LmHL4rqN2zh65CDW4aOYsbXkGCPRUWZttJdXkoM0lT1EM2X6MwZrgyZNgQhBPChNPgq5DCcrXlbrPlZf+XpSmSQHTmapeEexNq/Cc/AEgYKBrTdhBC28kwO0G14iTb2UfF6Ujbfz4qEf05McRQ2EGW724rFjtOZKhD0GiqKQ7Ogm7ji8mhvD0hU2Fgy8jgu6n1wkRtkI0OSWyMcrOG6M8cOTtFhjhLo62ehvJVUeZ8wJ4ot1MVHMszqb5eRQPzm9QltXL5moSyhZREUl4gvTP/IqJ1uCFCNXkMllWHXVBtaftNCcKFlrAretEyZHSbYEiU4k8edU0qbNiTaX46Mn6PEFWN/Vh69UxsknSa37FdZFu7CPPk3/xBHG2uNcZUK7dzU5O0EoUObw4Bipok2kvZtN4RUoqGQmBhl1EuSySV6sFOnrWM8d13TQW2miZKgcdcoU29sJp5IkXj5AdtUKIn2d9BpFugsmTx3Zy4rWPjT8ZCeTRHWdlX19vJI8yMmV3aRPDLIy5bChr4UT+SLhTIUJO8OzmUkizVdz2/Zf58kffR/VdLn2tq0UnvoZ2WSBeHMTNAeplHXyIyMY+jjXXLGWY+2t+F86RlSLsG7VSsomFEwDPaCh2jkODx/FdKCpqwPf2m7K2RKthXb6PaPYx48RsRR6OlcwokIoFic98hTrWtfhlgrEM3mODb7KqFWis7cNnxIArw+Po+Dx+ahkMwT0ThJKBnVgHKsJelrjRLxBWtesZsjKMHRwgOOaF/9ggmiHTqi5CzNr4nEKFONBFNelJV0mEutg0EzSVFaJ2jBpVjOjDrZ4GKtUaOrXaQv7iMdUrDadSSNHYKJEaMUVqGaJsYRL2edw+xVb2bf/IJHJY2jt3VSMIh67gA8PcTXMC2aK9kSKeO96fE4Qn1Oi4E1h2C4HEzopNcQNTRqWU0bRLMhNErHCZONNvJqcZDJcorUpSq8eI6KsxRcOYb/0BK4Cob41HB3JoDNBsW8lPifJmt5N9EzC0dFBChEfiWCS2IFxTjhl1O5errWDOJUcieGTDLZYrF6zEsVwcHGJpxz2j2RYtaEHfymJ7YAvtJFi5iRuUx7D46P/2DFaMwEM3UvQyRJdtYVKxCGq2BSLCVR/FL/byfGhQbq1Am19XXgKJsXsBEZbE+mxcXLFAr5oO2o4zguv/pJYepJYZzO+0FVU/GOsiIRot7z0V/I8nR5ixUiBzs4OOqLNpAYTjFYm8UcidPStxrJacLweXj1+kKQvSLs/QHNvJ33tzdxz/9yLaMMi6EEDuOVdv0XysX+n6Ts/4/FtP+X27jtnF1BUjNVvxuj7FTxDewg+/78I7/lzgs89RGXdvZSveAdW142gXIqVQoQQQrzW7d+/n66urnpwBrBx40YymQwnTpygr6+vvl0383S7MY6aBi6TjObLRA6CCfXUDpMYOG4eB8hbgAW+dBjXBsejg6biy+Y4YR+pn7fitbmuaOC6LuGMSjxSIpwo8obkOOWyBZqOV7HRKRDIHqd4cIIikHdNlJMmreUypuGSUk5ihsIAFFSVUG1dJ3/hKAYwmikBJXSvRs6AnO4woVe3FR0PrVoe/8wl0UIeHAdUbFLlSShPwkv9RAt5SmWHsOUlroNaKFEG1FQOp+jiVRM0kyDlgOPk0ctDOEDTeHVY0fEXHqdYyFPylgm4R9HKZdr7wd8yQW8ij46DhUq7W8AiRMG1KWATNnQKFuhmlknNjzH8NI7t4HfzxExQ9x8nX6jNzbNLeCpQMlXsih+3UMFfqBD/5VP05Ko9h04pT9cwQHVezNSgp7hRHRrVWTuXHQpX+wXNInqpSLj6tOLPQNFXG9KpaKjZLPm8F8NVcN1xyvlxIsAkkPJWe3ksq0CoNg3HwSFn5bFQaU2UKZYz+PIFtJeOkI7HgVpCmvFq6vzoRPWX+hErAQq0ToKTKhMMqPhi1fMnXR95O4Dj9RHRWoEjdIynIB5n3KiepzZ9EY9dRM+PUYm6pEsmSXsq8yb0lSo0pYeZPKExyXT6eU/mBKOpFHkzR3isSMSYIA1klOrQuryVATIk3RQJEzKT1Xa19Q+jpTIUgP6UTjKVqp+1rWATdI6Se/arxLMnqo/nwSxFJU3ZmyOnmFAbimno1Q6FbNnEijRR9JgY1gROekZPXG0kqlnrVFLLBub+fjQgxRgxIFmxyQHjxQw6YGYThBJpcsUD4CrkgbTmotsqRtbEG/KBVcJCwShXf6jKmSMYtddxjOpor5xRJHdwPwABy6UrOUGJMlrGj24l6l/Go2M5POgYWCQmhgnWmj0z0X/8RAp/uQwKaLYfpxLGN6QTLFSX4OgazhDEh5YZJaOW6M8nUAt5Ciqs1LNkDQMLqGBy0knhSU+S0kCvTFLvlqmNqg0YYwQA02ytvgZsyFsuWXKQyhHIZVmRg1gBvCGHCs9RmYC8Xn0xRVKv4nHyBDSIjg9iOS4T409Tn+2ZgHgC8kqFkFkhMDZEsva3KuktEcqBO5Sp98IlAV3NUE6qGLVh04XK3ur7OwvhUJhgyaLorb0eVPCV+6EM9QVK8mUMxvE5eRIOVEaqL4x8IQ/56bG9HrtILAtXFCwSuopquOjqMfQSmIbCMEU8QN94Bav2Os9ZBilvBdes/oDn5HIU/WEc08FyNKKlCk1+L/7RYVT17MMmF0WAduOaNv79tnex7YeP8I//7yfYfdeTvK3vbVzddM3sgoqC2Xsrmd5b0U8+T2Df/8F/6JsE9v8rdqSXytp7MHq3oTkVbHXu4SNCCCHEuaTTaaLR6KxtsVh1UncqlZoVoG1+2/+Ff99BmsM3kRw+QsZWsI0yPsVmhaYyFPMz4TdwQ534yxWaW/pYMXgY3CgrWkYoaSvxGqMUAzrZHj/x0SIlf5A1G25A9yTIui0EfH2sLo0Rz01wg7KZUT2NN7SWmJHC8Ucxmvw050Y5GfARiF2DNrCftK4QKxmoIZ1i1E80ciW+zii3VcbIq1EK5gl0RcUKrGI0P0FY9bMucBVjdpJyJYkWvYqNPesZe+4FxioJOnFZkZnEVFRKOBRa/ATLDhmvD+3kJIHWFZSAiNJHKKrjsQ3Cjo2vu5eA10eTT8NwNNZkBxhoCWLEw/gPjNHeqVEuG2g+E82w6TUVSnEDK10i3NyLr5Jm/ZXXktAt3MFJyk4Jf1sbulH98tPs7aWkBUlMDKEqSdyeLqKFEq2OTZsapBQI4Q4do6S4FD02/oxBqXsj7eN50nqcLi1BPKri5CJUekL053OsGJsgHOklRwXdUciXxmkO9mBooLgFUq6GrgYI+gLkQxpNrxyi1LWWrkqOZCjMMV8HNzZ34aYPE6+YBMomoVQKxd+B62bI2Rr5lW1sHB6i4A8QSlboaL6CQo+HSjzCyGg/qz1X0WquJODTGUqkyORymLpG64b1uK8M0hSNYra1oJULlItZWlqyWJToXPM6zJFxMjj0rmnF73oZ9/WghcNEAwH8cQ3fgIcBaxLv6qtYZWVJaS7+0TIRPYKdG6JZd+hatZphV0UrZfGX0kSSAQbyQ6ywNdxrXoeV6EctZ+jrWsVYdpzmRBNKyQXVhVgYYkFMXaHT8hEPxDk5cZSOng7K4Q680SjdWpTh4Re5cmU3k5Eo9kQR38Yr0Zwo4aJJy/hBml3weWN4bulGKZYJ6TZ6dwdR3YffsmnJZvCs6MZQPSScCBtXXUWHx89kWx/F1ADFVJJIqkC4u5dyKoE/2EboxjZ6400MnRwiOzlETzBCMJfCv3oLQ6MjZEpZVjbFcTrXUul/hciqVrq9PtJOB0ex0MyD+JMWga51XJ1zIBbAdg3cbILjWop4xqE95pAJawQCZSLx9ViFBK5TwW1eQVd+Eiszhq95AxsrZZKFHFawg7asTk53MdUoUX+Z8cIQ5bDKppb1pDw2RlOEwCtjjOUnKLsFnOwY3qYwq7VWQraHEc2H6inQojRjl/OsaIkRbNFQyyX8toHPo3Fjex/Djo2dKeI0tZMdPkaps5kVRQU33Imhj+FxveRbW4j4VtJ8eASrOERTi5dSKoPVdwMhr0Vu5BBhJYLf0VDVAJtjYfZnKqxws/jtLMc9KlbrKnpCKqzpZWV0Hc2ZIoNHDnMkO4we9lPQXIp5kw69hVWujR2AiVKGYKGEGwpiruijhThNXhOrYwupsVcIZ7N423qJKxqZWCua14Oq2nQOT5IOqfQVTSLxKAQgGOokp4OnEEDVy5RbeihqHjyD+7FDGh4rS3yySJOnjVAsQsKrMGJHCPqaCefTRL0OeqiLiPI0elSjHAyRjQSZSA/hlizCq9ZhOxrrOteiKREqUR/hUgVWQbaYZZ2/GZ/fJN+5kVeDBm0nN3B9pIkNKzYwluineI55bYsiQAO492N/wCuHXuD3vn+Ib2Z+xCdu/AFmKECv0kuX2k1xqEBXsJt2fwctvlbovJ5c5/XkjTze4z/Af+g/COz73wRf+ifuVXQSwfWE9CexWq7CarkKO76uviq8EEIIcb6mZgQop4zWWLvlTtKrbuH53btgZdtpw1a7a//v3r0LAlAuwqstN7Jt23Z27nyIRx75ApFIlE984lPccdv0se95zzv5xS9+jmVZ6LrOjTfezFe+8g3+x0f+G/v3H6K5eZKurm7WrOlg86otrL33j1hbq8da286RfXs5duwo9933DrbPaNP08NoP1bddS3W46re//T2O7zsJhIFBmjc3Q2QVbZFV2MBA65mH5e7evYsD+/YCGTav3FIvt2/3Lvbt28vmzdX5efuOTbC5ewvbbtgON8we7rt79y6e2reXze1bePnkXhiBHTv+kp07H6I6R6WNPXue4A1vWMnmzTcDcEXtuFcSg2zevJ233nsP6XSR3bt3kZlx3imVDti3by8Amzd3c4Rutm3bzvDuXeBCOATpNfV+qrr1teuZOtcbZj4Ot0/f7AI2TpXz9LHlzulyp65lVr0u2LFj9lCnm28O8hd/8VfAEJs3b2HfQD+bN2/hV6bq3HLaw8/u3bvQgcm8wbcee4w1a9ay7S3vAOBIrc3XbNsOsQ0cnBiliTjbNt46fYJrqufYdyLH5s1bWLFxOyvq1xvj+aG97NnzFG94w23suP5m4Ob6oatq5arP87X1517XbR577Ak23LSdDbyx3sZbt1b3r9lyQ/X8Dmx/+/TzZAf97H5pkDVr1rJjxwdmPU67d+9ioPZ6smLVXst9e6vP51tvf3PtPbCfJlrZdvc753ycJvIJfmXb3aftO5nZRUuwleunHuerNrN79y6uv+M22iyN9bXn7Nixo9y3agVdb98+6/jeGXVMveavv3V2GYDR3bt4Zd9egpu3sO2u0/cDrJlxu2XGAz24exe/3LcXiLC5fQs9M95nAFee8jrddnf1cS0C4bvvoeOUIemP7XyIfmDH75w+3G7n8w8BneyYMRRv9+5d+Hr7MIEffuvfAfDd9w7u+LXp6+jfvQsPsKH23htLlNm27Q5ar7mD1jmudfrx2s7WWvt37nyIV7HYseOPaqXeWN/+gQ+8H683Mut4gJ5t2/mPnQ9Vu71r3XQ7dnx4dmW3vKt+jBmHq2r19e/exdQZS74Wbqxt/8i3f8T+/S9z7733sblrE03hTbP+Br7nPe8kmUzwiU98ihvvqf5N37Pnher7pPa+3grsfOwhfsxJxkrVDqRt286+PuKiCdA8Pi+bvvgFRh58kP+y53He+ZTCq20KQx0DjLYc5sm9P6Pog4JPwVEhSoRmJUqLG6HZDhJ3OolWfh1/bhImhvA7OXzP/RsaDorioiqA348bDOOEYtihKHbtthKM4/FH8fhi+HxB/L4AuieA6vVi4cVQFEzHxXRsDMfBdF06mwJ4igHKhQr8/+zdd3wc1b3w/8/MbNWuuiXbkjtg425McWihJpQLgXATQ0gC997wCySBJEBIeS6BkNzchH5JHPjBTZ4UAgaHFAjFgCGAAwYXjLstd1myurZr+5znj5VWu9JKLrJWhe+bl1/szsyZOWdmVme/e86cg4bq/A9S3QA0TaPQ0vv5uCPhjqb6lBjePd0LlUo90KlMwATTRMPsXtb5T1O9l/VenuxcptKvwURzWHCEIun907l/zUymSpeeS8IEpdBU6uFOpemd3Uz11AOnupGxPPtf9zItNUeEpgM6StN6bdvXPrL2g5ZjeUZekgUYgWjGfozOY3funx7dY3t1lz2C9Ufb1TbrcVDVx/Ie6ywOtM4R1rRe8wr1tQ+V8+VhpznsfWen6Z2/3NuBgoQDIxA5unPS73Z9SF8zLfVP6/x/ep2WdV1VH9sUxFpRgB6o70xDd1rDiR6KpO81e9yXStqR0XklKx/0cS/1XJdrW607nzm37Wt/OhhHP9/SaFJWVobHkz2Unc/nS68TQgghBsuwCdAAdJebCffdT2JXDYHXX2Pc6rVU7dxP4aZcQ/p66f37FphAzAqaAsO0Y+k1GmlH57+GnHlQpLve9mKl+3mCSMYeTMDUwdS6/w8QUAqLUhnfF7X0665F40/1UjI19xEv6npR00eGBtHIfrw/t9H6lSrXr1GjwUi8XunfY3fkXl+e8fqyrhfbBy07R0zpFnyXP0V8wplDnZUhN2fOHJqammhubqayMjXS4caNGykvL2fixImHSC2EEEIcvX4DtGM1CldlZe8RHLvY7Zbex6k4mfGnnwzAG2+8QQC44IILeifuwxtvvAFHmGY4Gi3lEOLj4kg+s8Px862RGqr9SI30ERtzmTVrFgsWLOCBBx7ghz/8IV6vl8cee4wvfvGLvbo4Wq0GFRWFlJSkhnvu63x0re9SUVGI223HMHSsVoOSkoKstHZ7dhXdVV86nVasVgO73YLTacXttmel7TqO223H6bT22m9/+SwpKcDtT6N18gAAIABJREFUtvfatme++ypfV9qe+enKY1e+cuW36xx2re/aV9d5yjwPmfvrmS7X9ehZjsx89rVNX+U+1HXOPB+H2i6zjH2tyyxbf/vKzH/XfdFXnvvKW65jZV63rnPf372TmfaNN97o81r3zHfPa5BZhszz1PN+yjxXh3ONjnRdSUkBH364Lv23uq/P1aHOxZGs709/n7PMvOc6r12fjUyHcw/mul6QukY989HXsQ917/Y8H33ly+228/TTT3HHHXfkPF7m34r+jtvX+eqZruvvbc+/OV3sdkvW3+++Pie5/ub0p99h9oUQQoiPq6amJu655x7WrVtHQUEBl1xyCbfffjuGYRw6sRBCCHGUJEATQgghhBBCiGFCP/QmQgghhBBCCCHyQQI0IYQQQgghhBgmBjVAa2ho4KabbmLRokWcc845/PjHPyYejw/mIY+J+vp6brnlFhYtWsQnPvEJvvWtb9HU1EQ0GmXGjBnMnTs3698TTzyRTrt8+XKuuOIKTjrpJD7zmc/w+uuvD2FJsp1xxhnMmTMnK+933303AKtXr2bx4sUsXLiQiy++mKVLl2alfeqpp7jkkktYuHAhixcvZu3atUNRhCxr1qzpdS3mzp3LjBkzqK+vH3HXaseOHVx22WWcf/75WcsHcm1isRj33HMP5557LosWLeKmm26iqakpL+WBvsu0Zs0arrnmGhYuXMi5557LfffdRyKRAODtt9/mxBNP7HXtPvzwQyA1F9UvfvELLrzwQk455RSuu+46du7cmbcy9VWu3bt357znXnzxxfQ2I+1aPfroo73KM2fOnPQ2I+FaDZaRVL+NhjpttNRfI7neGi111Gipl0ZLPSR1Tx/UILrqqqvU9773PeXz+VRdXZ268sor1f333z+YhzwmLrvsMnX77berQCCgWltb1XXXXae++tWvqsbGRjV9+nTl8Xhyptu2bZuaM2eOev3111UkElErVqxQc+fOVTt27MhzCXKbPXu22rx5c6/lzc3N6qSTTlJPPfWUCofDat26dWrhwoXq7bffVkop9Y9//EMtXLhQrVmzRkUiEbV06VK1cOFC1dLSku8iHNLSpUvV1VdfPeKu1UsvvaTOOuss9fWvf12dd9556eUDvTY///nP1RVXXKFqa2uV3+9X3//+99XnP//5IS1TfX29WrBggfr973+vYrGY2r59uzrzzDPVr3/9a6WUUs8//7y67LLL+tzvH//4R3XOOeeo7du3q1AopB5++GF13nnnqUgkMuhlUqrvcq1du1addNJJfaYbidcql1tvvVU9+OCDSqnhf60G00iq30ZDnTaa66+RUG+NljpqtNRLo6Uekrqnb4PWgrZp0ya2bt3Kd7/7XYqKiqiurubGG29k2bJlmGavycmGDb/fz5w5c7jjjjtwu92Ul5ezePFi1qxZg8/nS01AXZh7aMxly5Zx5plncuGFF2K327ngggs4/fTT+dOf/pTnUvQWCoWIx+MUFRX1WvfCCy9QXV3Ntddei8PhYOHChVxxxRU888wzACxdupTPfvaznHLKKdjtdq655hrGjx+f9YvMcNDe3s4jjzzC3XffPeKuVSgU4tlnn+X000/PWj6Qa5NMJvnTn/7E17/+dSZOnEhhYSF33HEHGzduZNu2bUNWptbWVq666iquu+46rFYrM2bM4Pzzz2fNmjVA6jOY6z7tsnTpUq6//npmzJhBQUEB3/jGNwgEAqxcuXJQy9Olr3IdTr5H2rXqadWqVaxfv56vfe1rwPC/VoNlJNVvo6FOG83110ipt0ZLHTVa6qXRUg9J3dO3QQvQtmzZwvjx4ykr655udvbs2fh8PmprawfrsANWVFTEz372M8aOHZte1tDQwNixY/H5fFgsFr7zne9wxhlncP755/PQQw8Ri8WAVJlnz56dtb9Zs2axadOmvJYhF5/PB8BDDz3E2Wefzdlnn81dd91FMBg8ZL63bNnCrFmz+lw/XPzqV7/ivPPOY+bMmSPuWn3+85+nqqqq1/KBXJv9+/cTCASy1peVlTFu3Li8lLOvMs2bN48f/vCHWcsaGxvTnzmv10tbWxtf/vKXOfXUU7n88st5/vnnAYhEIuzatSurTFarlenTp+ft2vVVLp/PRyKR4Ktf/SqLFi3i4osv5re//S2qc6DckXitMiml+NnPfsa3vvUtnE4nMPyv1WAZSfXbaKjTRnP9NVLqrdFSR42Wemm01ENS9/St34mqB8Lr9faKbouLiwHweDxMmTJlsA59TO3Zs4fHHnuMH/3oR2iaxpw5c7j00ku577772L59O7fccgsAt912W59l9ng8Q5H1LIlEgvnz53P66adz7733UldXx6233srdd9+N1+vl+OOPz9q+pKQkne++yrVnz5685f9Qmpqa+Mtf/pL+gI7ka5VpINfG6/Wm3/dcP5zK+eKLL7JmzRr++te/AqkvlBMmTOC2227j+OOPZ8WKFdxxxx2MGTOG448/HqXUsCyT3W5n6tSp3HDDDZx00kmsWbOGb37zmxQUFHD11VeP+Gv12muvEQ6Hufzyy9PLRuq1GqiRXL+NxDpttNZfo6HeGq111Eitl0ZjPfRxrXvyOopjVwSvaVo+D3vUNm/ezJe+9CX+/d//ncsvv5xTTjmFZ555hk996lNYrVbmzp3LV7/6Vf7yl7/0u5/hUN5JkyaxbNkyFi9ejM1mY9q0adx222289NJL6euSSSnVb75zpRlKTz75JGeffTaTJk0CGNHX6lAGem0OlT6f/vznP3PXXXfxi1/8Iv2l9rrrruPXv/41s2bNwmazcemll/KpT32KP//5z33uZzjcj5dccglPPvkkp512GlarlTPOOIOrr76633tuJF2r3/zmN1x//fVZkzSP1Gs1GEZC/TZS67TRWn+N1nprpNdRI7leGo310Me17hm0AK2srKxXpNrVTSGzW8hwtXLlSq6//npuvvlmbr755j63q66upq2tjWQySWlpaa8ye73eYVveCRMmoJTKea0y852rXD6fb1iV65VXXuHCCy/sd5uReK0Olc/+rk3XNrnWl5aWDmKuD8+jjz7KAw88wK9//WvOPvvsfretrq6mubmZkpISdF0f9vdjl658w8i+VvX19WzcuPGQnzEYudfqSIzE+m201Wmjof4aDfXWaKujRmO9NJLroY9z3TNoAdqcOXNoampK3xQAGzdupLy8nIkTJw7WYY+JDRs2cOutt3Lvvfdy7bXXppe//fbbWcPdQqq7yPjx4zEMgzlz5rB58+as9Zs2bWL+/Pl5yXd/NmzYwP3335+1bPfu3VitVmbOnNlvvnOVa+PGjSxYsGBwM32Ytm/fTl1dHZ/85CfTy0bytco0d+7co742EydOpLi4OGt9U1MTjY2NQ37tnnzySZ555hmWLl3KwoULs9b9/ve/7zV09O7du5k4cSJ2u50TTjghqx95LBZj+/btQ16mF154odfD+nv27GHChAnAyL1WACtWrGD69OmMGzcua/lIvVYDNdLqt5Fep43G+mu01FujqY4aDfXSaKuHPtZ1z2AOEXn11VerO+64Q/n9flVbW6suvfRStWTJksE85IDF43H1L//yL+p3v/tdr3Uffvihmj17tnrppZdULBZTGzZsyBqGdefOnWrOnDnqtddeU9FoVL388stq3rx5at++ffkuRi+1tbVq3rx56re//a2KRqNq9+7d6tJLL1X33HOPamtrUyeffLL64x//qCKRiHr//ffVggUL1OrVq5VSSq1cuVItWLAgPSzrb3/7W7Vo0SLl9XqHuFQpzz33nDr55JOzlo3Ua/Xkk09mDTU70Gvz4IMPqssuu0wdOHBA+Xw+ddttt6nrrrtuSMt04MABtWDBgpxDZiul1OOPP67OOusstWXLFhWNRtULL7ygZs6cqTZs2KCUUuqZZ55RZ511ltqxY4cKhULq5z//ubroootULBbLS3m69CzXSy+9pBYsWKBWrVql4vF4+tq88sorSqmRea26fPe731Vf+9rXei0fKddqMIyU+m001Gmjsf4aqfXWaKmjRku9NFrqIal7etOUGrxOmU1NTdxzzz2sW7eOgoICLrnkEm6//fasfqTDzdq1a/niF7+IzWbrtW758uVs2LCBxx57jLq6OiorK/nXf/1XbrjhBnQ91Ri5YsUKlixZQm1tLVOmTOHb3/521i9kQ2nVqlU89NBD7Nq1i9LSUi6++GK+/e1vY7PZWLduHffffz81NTVUVVVxww03cOWVV6bTLlu2jN/97nc0NTUxY8YMvv/97zNv3rwhLE23xx9/nL/+9a8sX748a/nLL788Yq7VRRddxMGDBzFNk0Qikb7/li9fTmNj41Ffm3g8zr333suKFSuIRCKcdtpp/OhHP8pLM39fZbrxxhtZsmQJVqs1a/uqqipeffVVTNNkyZIl/O1vf8Pj8TB16lS++c1vcu6556a3ffTRR/nLX/6Cz+dj3rx53HXXXUyePHnQy9RfuZYvX85bb73FH/7wB5qbm6murubf/u3f+NznPpdOO9Ku1fLly6muruYrX/kK1dXV/PjHP85KN9yv1WAaKfXbaKnTRlv9NdLqrdFSR42Wemm01ENS9/RtUAM0IYQQQgghhBCHL6+jOAohhBBCCCGE6JsEaEIIIYQQQggxTEiAJoQQQgghhBDDhARoQgghhBBCCDFMSIAmhBBCCCGEEMOEBGhCCCGEEEIIMUxIgCaEEEIIIYQQw4QEaEIIIYQQQggxTEiAJoQQQgghhBDDhARoQgghhBBCCDFMSIAmhBBCCCGEEMOEBGjiY2/GjBk8+uijQ50NIYQQYliSelKI/JIATYhj5KKLLuKDDz4Y6mwIIYQQw5LUk0IcHgnQhDgGfD4f+/fvH+psCCGEEMOS1JNCHD4J0IQAkskk//Vf/8Vpp53GSSedxG233UYoFEqvb2pq4tZbb+WTn/wk8+fP55prrmH9+vUA1NXVcdppp6GU4rrrruP8888HwO/3c+edd3LOOecwd+5cLrjgApYsWYJSakjKKIQQQhwtqSeFyB8J0IQAli1bRmFhIc8++yw//elPefPNN3nwwQcBiMViXH/99dTU1PDAAw/w3HPPMXnyZP7jP/6DAwcOMH78eJ544gkAfvnLX/Lcc88B8JOf/IR//vOfPPzww7z66qt897vf5YknnuCZZ54ZsnIKIYQQR0PqSSHyRwI0IYDq6mq+9a1vMXXqVC699FIuv/xyXn75ZQBWrFjB3r17+dnPfsZpp53GCSecwE9+8hNcLhdPP/00hmFQXFwMQHFxMWVlZQB85zvf4amnnmLhwoVUVVVx0UUXMX/+fN59990hK6cQQghxNKSeFCJ/LEOdASGGg5NOOinr/dy5c1m2bBler5cNGzZQXFzMvHnz0uttNhsLFy5k27Ztfe5T0zR+85vf8M9//pO2tjZM0yQajXLyyScPWjmEEEKIwSD1pBD5IwGaEIDL5cp673Q6AYhEIgSDQfx+f6/KKRaLMXXq1Jz7U0rxla98Ba/Xyw9+8AOmT5+O1Wrl//yf/zM4BRBCCCEGkdSTQuSPBGhCAOFwOOt9R0cHAAUFBRQWFlJSUsKzzz7bK53FkvsjVFNTQ01NDT/96U+59NJL08sDgUC6m4cQQggxUkg9KUT+yDNoQgDr1q3Lev/RRx9RUVFBUVER8+bNw+fzYbVamTx5cvofQEVFRVa6rpGn4vE4AOPGjUuv2759OzU1NTI6lRBCiBFH6kkh8kcCNCGA+vp6Hn30Ufbt28eLL77ISy+9xOWXXw7ABRdcwKRJk7jtttv48MMPqaur489//jNXXnklzz//PABFRUUAvPvuu2zdupUpU6ZQWFjI008/TW1tLStXruQHP/gB5513HrW1tTIXjBBCiBFF6kkh8kdT8jOF+JibMWMG3/ve96ivr+fvf/878XicT3/609xzzz04HA4AGhoauPfee3n33XeJxWJMmjSJa6+9li984Qvp/dx+++289tprFBYWsnLlSt5++21+/vOf09TUxIknnshdd91FOBzmG9/4Brqus2rVqqEqshBCCHHYpJ4UIr8kQBNCCCGEEEKIYUK6OAohhBBCCCHEMCEBmhBCCCGEEEIMExKgCSGEEEIIIcQwIQGaEEIIIYQQQgwTEqAJcYRM0+QXv/gFJ554Ir/85S+HOjtCCCHEsCL1pBADk3t6dyFETu3t7XznO9+hrq4OXZffN4QQQohMUk8KMXDyyRHiCLzwwgsYhsFzzz2HYRhDnR0hhBBiWJF6UoiBkxY0IY7ABRdcwHXXXSe/CgohhBA5SD0pxMBJgCbEEZg4ceJQZ0EIIYQYtqSeFGLg5OcNIYQQQgghhBgmJEATQgghhBBCiGFCAjQhhBBCCCGEGCYkQBNCCCGEEEKIYUICNCGEEEIIIYQYJmQURyGOgNfrJR6Pp993dHTQ0tICQFlZmcz5IoQQ4mNN6kkhBk5TSqmhzoQQI8WXv/xlVq9enXPdG2+8wYQJE/KcIyGEEGL4kHpSiIGTAE0IIYQQQgghhgl5Bk0IIYQQQgghhgkJ0IQQQgghhBBimOh3kJCWlsAxOYjbbScYjB6TfeWT5Dt/RmKeQfKdTyMxz/DxzXdFReExzM3wFg7HRuQ17mmk3qs9jYZyjIYygJRjuJFyDC/91ZN5aUGzWEbmiD2S7/wZiXkGyXc+jcQ8g+T742C0nCspx/AxGsoAUo7hRsoxckgXRyGEEEIIIYQYJvISoAUicd6oaSFhyoCRQgghhBBCiBFAKYz2GoiF8nrYQQ/Q9rZ1cOH/rOT7f9/GsvX1g304IYQQQgghhBgwLeLB0roV+77X0WLHZmyOwzHoAZrbbvCZeeMB+GC/Z7APJ4QQQgghhBADp8z0y3wGaP2O4ngsVLjt/OelM2kPRPjnnvbBPpwQQgghhBBCDJhmxrrf5PFJrbwNElJd7KS9I04knszXIYUQQgghhBDi6JhDE7fkLUAbX2wHoNE/8uctEEIIIYQQQoxyqjtA0zua8nbYvAVole5UgNY0CiaWE0IIIYQQQoxuWsYzaIZvf96Om7cArbTACoAvHM/XIYUQQgghhBDi6KjsB8/yNVBI3gK0EmcqQPOGE/k6pBBCCCGEEEIcHZX9DJqleWP6tdG2DfvOFwblsHkL0Ioc0oImhBBCCCGEGCE6uzjGplwIgOkoTa+ytO1IrVfHfnjHvAVoFl2jyGHBKwGaEEIIIYQQYjhKhLE0re8MvkzQNJTNjdItaGaOnoC5lg1Q3gI0SHVzlABNCCGEEEIIMRzZ97yK4duPHmrsHCQkFS5pZgLDuweUiR442J1AHfsAbdAnqs5U7LDikQBNCCGEEEIIMdyZCZSRHS71fO5Mj/owTRNsrmN22Ly2oBU5LASjMkiIEEIIIYQQYpgzE6CnxtFIlM/MuYm1/n3s+14/pofNa4DmshmEYkMzI7cQQgghhBBCHA5L03qMQB1aLAhAsnBC3o6dlwDNjEQAcNulBU0IIYQQQggxDGVMTK0lezyWZdjylo1BD9CSB+vZe9aZBB++H5fNkABNCCGEEEIIMfxkBGhd4tWnp14Y1iPbVzJ21NkY9ABNrxyL67zziPztz4yJ+IglFbFE78ILIYQQQgghxJDJEaCZVnf6dbJk6mHtRvftw777ZbRY4KiyMegBmmaxUHrDDWCaVO/bCkAoJq1oQgghhBBCiPwz2msw2mt6r8gRoKFp6ZeJyvl97zQjrd7Rkkoa8R1V/vLyDJrt+BPQ3G4q9m0HkIFChBBCCCGEEEPC0roVS+vWHGtU70UZAVp/tHio+43eOTT/Uc6RlpcATTMMLHPmUbQ3FaDJc2hCCCGEEEKIYUXlCtCyw6XYhDNzJu0a7RFIB2iaOYwDNADLtOOwNx1EN5MEo9KCJoQQQgghhMgf3V+L7t3b53qts5ui6SzLXNpjJ9kTV6eZ3aM+Ks3oXHZ0MU8fRzj2jElT0BJxxnZ45Bk0IYQQQgghRF5ZGz/sf4POAE3ZiyHcnlrWowWt1/seaVPbdAV1OVrkDkPeWtCMyZMBmBRokhY0IYQQQgghxPDSFaBlzXnW8xm03M+kaVkDjOhZ+ztSeQzQpgAwIdgiz6AJIYQQQgghji1lQjI6kB2k/mfYuxcddgtaRmtZVwtarmfaDkPeAjS9sAhcLirCXhnFUQghhBBCCHFMWRrWYt/9ymFtq2yFORZ2taBlBmjZLWYqowUtMWYWyuLISptKkwqxNIZpC1pLuJlrX/kCS7b+D0blOMaGPdKCJoQQ4pjYsWMHl112Geeff37W8tWrV7N48WIWLlzIxRdfzNKlS7PWP/XUU1xyySUsXLiQxYsXs3bt2vS6WCzGPffcw7nnnsuiRYu46aabaGpqykt5hBBCHD0jeDD1IhHJWq5792J496RWlU0n6a7KvYOcXRx7yGhBS5ZNJzb106ljhBozN8ra35Ea9ADNYXEwxjmGv+xbhqfEYGzEJy1oQgghBuzll1/mhhtuYHLnM85dWlpauOmmm7jyyit57733+O///m8eeOAB3nnnHQDeeustHnroIX7yk5+watUqrrrqKm688UZaW1sBePjhh1m/fj1PPvkkK1asoLS0lFtuuSXv5RNCCHFkugIrrUeAZm3egKV5Y+qNpqVbxbRYAGv9KugaDr+rS2LXKIy59HokLRVO6eG2zJyk/neUozgOeoBWaC3if855hAmuSeywt1HR0S4taEIIIQYsFArx7LPPcvrpp2ctf+GFF6iurubaa6/F4XCwcOFCrrjiCp555hkAli5dymc/+1lOOeUU7HY711xzDePHj+fFF18kmUzypz/9ia9//etMnDiRwsJC7rjjDjZu3Mi2bduGophCCCEOV1frVr/zj3VHWJbGdeihJrSIt3NNZ4uXpmG6x2EWVPSbvk+dgZ6WCB9GpnvLyzNouqZzUfUl7LR7cEc7iAaDh04khBBC9OPzn/88VVW9u6ls2bKF2bNnZy2bNWsWmzZtSq+fNWtWzvX79+8nEAhkrS8rK2PcuHHp9EIIIYapzpYvLWNOshwboSWiaLEAeldgpjpburq6JGo68apPEM81KXVfg4Rk6QzQjnLAkrzNg/aJyjP5fdFjAFjbWvN1WCGEEB8zXq+X448/PmtZSUkJHo8nvb6oqChrfXFxMXv27MHr9abf91zflb4nw9AoKSk4VtkfMoahSzmGidFQBpByDDejvhyJCJotATY7ymVAxjaaq3vQD1XkRIt1QMYyAptQ1VNBc6C57DiLXeDo41wlren9OTuPoVVPB+/+1Hul0Hyh1P6tBgVHcc7zFqBNLZxGqMwFBHB4W/J1WCGEEAKlFJrWd7cUdYihkPtLn0wqvN6OAeVvOCgpKZByDBOjoQwg5RhuRns5rLVvoUdSLVbJ1mYSWmV6nT3U3ZKVCESxBMNZQ+CbDidxbwe6P4Q1FCXmj6AifYRJZjK9v2hnPoyIjiUUJeoJYa17Fz2caoxShkmsj3NeUZFjFMlO+RtmX9MpnXACAAVeaUETQggxOEpLS3u1dnm9XsrKyvpc7/P5KCsrS2+Ta31paekg5loIIcRAaPFQ95v+Rk/UtF7zkyl7cVY61V83xlw/1nVtn4ikgzMAzUwc1VxoeQvQACZMOgkAV0Ba0IQQQgyOuXPnsnnz5qxlmzZtYv78+QDMmTOn1/qNGzeyYMECJk6cSHFxcdb6pqYmGhsbWbBgweBnXgghxFFRtiKUvQhlsfcfoOVa1xVEqe5BQvrWd4BmhBp677ffAUtyy2uAduKYOXgLoDhyEPMoZ9YWQggh+vOZz3yGlpYWnnrqKaLRKB988AF///vf+fKXvwzAF7/4RV544QXWrl1LNBrld7/7HT6fj8suuwzDMLjmmmt47LHHqKurw+/3c9999/GJT3yCE044YYhLJoQQoi9aIoJpKyIVQB1hnNEZmGld6Y62BS3XsPr9DliSW96eQQOYWTKbHYVQFm2jI5bEbc/r4YUQQowiF110EQcPHsQ0TRKJBHPnzgVg+fLlPP7449x///08+OCDVFVVcffdd3PqqacCcNZZZ/GDH/yAu+66i6amJmbMmMETTzyRHhjklltuoaOjgy996UtEIhFOO+00Hn744SErpxBCiMOQjILFDmR3YdT9ddnb5Wok6mo5S687sjasri6Reqip1zotEUFZj2ygkLxGSMW2EvxFNsa0BwhGExKgCSGEOGqvvvpqn+uqq6vT857lsnjxYhYvXpxzndVq5c477+TOO+8ccB6FEELkgVJoZgKlWzpbs7onirY2ru25ca/k6ZazjGH2j/T4QNbzZ+l9J8JH2p6X3y6OAJHiYso6ogRjRzezthBCCCGEEEKkdT3npVuzBgHRor7ubdJBV64WtN7zoB3R4Qsqs94nKudhOsekdnUUk1XnPUBTZRUUh00CgUC+Dy2EEEIIIYQYbVQqQFOaAWipCaKTsexNuoKunF0cu1rQOgO1fgcJgWTxFJKlGfNt2lwoi6N7fdEk4hPOAMDSsrln8kPKe4Bmr5gIQHP99nwfWgghhBBCCDHKWA+uTr3QU49P6R0t2Pa9jpYxQEd6KH3D3jM5KIWlaT2W9prDOl5i7AISFXOyF2pGxmv9yLtJZsh7gFZSlRoFy9OwNd+HFkIIIYQQQowyeqRz7krdkm790pLxrCHuTfd4YhPOIlk8JcceTAzf/oFlIisgS+VBWZwom/uId5X3AG38pFS0GWnZne9DCyGEEEIIIUYppVtQmfOUZc1BpqEKxoBukCyZ1iNhP/OmHY3OIFE5iju7XR6ZvA+jWFY9hTCg2g/m+9BCCCGEEEKI0Uq3oGUEW1kTR6vuAQoTlfNIVM7DaNuB4d2dlebo5RqrUTuqfee9Bc1ZXkLM0LD5eg9DKYQQQgghhBBHRbdktZrpwcb0ay3e0WvzZPkMzIKK3AOHHKlcE1KrJFrsyAdGzHuApus67S4vQ/cZAAAgAElEQVQ7bn8Q81g3JwohhBBCCCE+lpRuyWopy17ZR9yh6aBMTEfJwA5upo4brzotvUgPNacO0fn/w5X3AA3A6yqkNJCkKdx46I2FEEIIIYQQ4lA0S1YgpqyujJV9tZJpWWkyA6wjO3bnc2c5RonUsp6FO7QhCdACrjLKArA/uG8oDi+EEEIIIYQYbXQLGLb0Wy0e6l7XXwsaJpqZJOmuwnRXHdWhzYKxqRe5hvHvMzjMbUgCtLB7HKVBqA3sHYrDCyGEEEIIIUYbTetzWPs+B+vo7OKImQD9yEdc7JIYt5DYhLNyH/8In3EbkgAtWjwOewIaWnYOxeGFEEIIIYQQo4RpL8Z0jwMgPnZh1rpEaWoO5j6fTdP0VAClkumJro+KpqeG8c+dwyPa1ZAEaPGScgB8B2UuNCGEEEIIIcTR01B0TQ6NxZF+jixeOZ9k2XSU1UWifGbOtErT0cwEWjKG0o7tDGTK4kzlbyQ8g0Z5KroMN9WjjsWwlkIIIYQQQoiPJ6WyJqg2XeOJTbkAs2QqGFZiUz+FcpTmTqtlTGw9gC6OucQmfbIzQ3203vVhSAI0Y0wlAE5fB55Y+1BkQQghhBBCCDEaaRrKVnh4m2a2bmnHNkCjswUt5xxp/RiSAM0+NhWgyUiOQgghhBBCiAHLbAk7EslYxj6OfWikLA70mD9jgXnIedGGJEArKirAZ3NSFlDsD+wbiiwIIYQQQgghRoWMZ9AG4miDvH4oezHEw+n3ltat2Orf6zfNkARoxU4r7Y5iyoMG+0P7hiILQgghhBBCiI+7jPEw1GC0oOnWrG6UWixwyDRDEqCVOKy0OoqpCFqolS6OQgghhBBilGoJN7OudQ3JvoZ5FwOn1ABavzIHLDz2LWjolpHxDFqx00Kbs5jSgEltcP9QZEEIIYQQQohBV99RhzfmYW9AppcaPAMYFT5zRPlBaEFDJdGSMfRgw2EnGZoWNKeVNkcx7lAMb0cLwfihm/qEEEIIIYQYaSy6FYC2SNsQ52QUU0f/DJrG4AZoWiICgNFec9hphiRAc1gNfK5iNAXFIRnJUQghhBBCjE7hRAgAU5lDnBORS3zMnPRr015y7A/QObeaHvFAPIweajp0kmOfi8MTKSoDUkPtSzdHIYQQQggx2iTNBIHOnmJJlTjE1uLoDeAZNJuL6PQriU6/EmyuY5stwHSUp1/r4ZbDSjNkAVqidAwAFSFDWtCEEEIIIcSoEzPjKBSGZpEWtEF1jIbZHwTJ0uMx3eMA0OKhw0ozZAGaKk8FaMdFS2QkRyGEEEIIMeooUkGZjkZcxfFE24c4R6OUGsAgIYNN00iUnpB6GQseVpIhC9AKKspI6AYTIi72BfcOVTaEEEIIIYQYFGZn4BBXqWHWN7R/NJTZGd0GYZLpY6ZzoBg96j+8zQczL/2pKHTS7CyhymfQGG7AHzu8DAshhBBCCDESdLWgFVmLAHkObfAM3y6OAEq3pF4kwqAZh9x+6AI0l406dwXFzWEAanzbhyorQgghhBBCHDOmMlnXuoaDoXoAphQel14XS0aHKlujkhbxoiXj3UHQcNQ5kqNmJlD6cA7QCu3UuSuxN7SgKSUBmhBCCCGEGJG0qB/Dsyv9fm9gD96Yh7qOAwAYGa0mocThDRQhukX/+Q6JXTtzrrPVvgWAGowh8o8VLSN41HQS5TP63Tw/AVrEj9bRgpbR77KrBU2PxZgVH88OCdCEEEIIIUApdH/d8B74QGSx1r+HpWUzmKkujAkznrVez+h+F06G85q3kcL0tJPY1XsyZ2WaEAmT3LcnZzplK0yl7xwpcVjKnABb00mWz+x380FvCzQ8u7E8cyFjOm9U015MovxEZlWcgZY6nyzsGMervm2DnRUhhBBiaCRj6B0tmIXVQ50TMRK0bMPa+BFxTccsrBrq3IgjYN/1ItHpV6Jp2W0gumYwp3Qemz0b8cd8VBXI34Ke4uvWAKCPHY9emAoSlGlitnTPHWZ62qGkICud0g2UqzI7CBpuNC317JlKHlY+Bz1ASxZNInn5rwh7W9HiHRi+/ViaP2Lchod5pFxnF+OY3RDkyZImmsNNVDrHDnaWhBBCiGPunXfeAuCTnzy31zpL8wZq1rxOm2sGYWt5erslSx7h6af/QGFhEf/5n3dnpf3CFz7HmjXvk0gksFgsnHrqJ1i69Dluu+2bbNmyibKycsaPr2LatOOYN29+Om1XPjZu3MCePbu58sqrsvbbXz7feectNm7ckH4/b978XtvkStczbc/8bNy4Ib2vrtc98/vJT56btW3Xvm6++VssWfJI+jjvvruSM888O72/nuk+85lLc+43U2Y++9qmr3L3d/56no9DbddVrptv/lbWci3czquvLaeWzUyZd1avc9bf8QD+9re/MG3acen99sxLX3nLPI+57qeuc98zv32lDQYDvPPOyn6P29d1yixD5nnqeT915a1rfX/lO5p177zzFueffzaQ6qK4ZMkjOT9XGDZIRNJp3t7+D8YcP4bpJ6a6shmawVjnOPb4d/PGutf5be2vuXTa5Zxzznm98tGf/j5nmXnPdV4vPeM0lGZHM7q7W/Z1D/a1ruc1Avr9G3M4n4OuMp2lTGbOnEX8g/dY9v4qAoVFfGX27KxtX/zvn3DxT3+MrbPVTCnF1pXvouJwwtUn8avfPJG1fa5y9cxjz3JlLu/6e3v55Vdm/b3o8oUvfI729rb03+8lSx7J+TlZsuQRZlLD1EnVJPQCpk+5sM/zAfno4mhYUXM+R2TOdYRPuonguT/Du/gVWv/9I/5/93VoNpi2eT0Am7b/YdCzI4QQQuRb19DK5aEdQ5wTMSJ0dpMzh/GodCKb0m3Z7zWFTncgZO0aZj2j9SRM/ro66pEw4dWrSdQMr79BiT27sba3oZnZk3gX+3xMqDvQa/ukJXuAjdhbb2Ktb8Zo9RN7952sbsGVTY3EOlvlhoOuz7M6jOkAhm6i6oIxvF95DVsrZ2KJTKbEhM01T1L04vXoXpkXTQghxOhh2osBiBuuIc6JGBE6AzQNeQZtpFDWjG53SqFQWc+d5QrQOlT+BgsxOjpSWQsG8nbMQ0k2NpDcswvngVrGtLX2u60xaQpaSSlGIonZ2Jixk9RnpeuTUurxpFc5IhGUpx2V6J7aQCmV9T6fzM6wSx1G+DWknTUnljrZWDSRRH0LJ5eeyQclY7EcfJ+ypRdQ8MH96aZiIYQQYiTr+vIWtRQNyfG1WBCto/8vQAOR2L8Pi1/mMz1cgUiCtbVekqr7C3yyqYn4xo9SAyKYSQAqGbxrNlo1B6Js9+V3fBWjdSuGvzb9XlNJQKFlBGhaZ6tJzOweYj+pknnLo/NAKn/K583bMQ9FxWLp187OANK64OSsbbTCIqynLsIyfQaawwFAsqbnQCKK+NgxABQGUn+HjIwgLLGrhmTtflQ8TmLLJmJvvXGsi3JYugK0w5lQOy8TBmzYsJ5TTz01a5ndbufMf/tPSooncbVSTNma5I3qEHerz3LncUFcax/BvuvvBM+7j3jVJ9J9OoGc/Z8Pt0+4EP0ZSfdRrv7Th/OcgujWV5/zI0kr51oclq5vi0M0Kp9t3woAotOvPOb7NltbSe7cgfPA/mO+72MpoRJYtLx87Tmkmrp2zHffxunzEytJPUuT2PQRAMrrgVgQACej+4dq3V+HbsYwe3QPHIitjQE6EtCYh96DiaSJxdCxtGcHDIaK0WHpIKqinFx+alYgFkl2X9MEQ9OSo2IxNNuxO+dHn5Hefw+1oiK0klIA/EXFWE8+Fc2S+txaZs4m4nRCIoEyTTRdB8OCphSJijL0seMBKPL5suasNusOYAJ6WxtmW2rAES0eR1mtg1u+HlRnpuK645DbDmkLWkHcz47SSQDMrtNBQY2rjcCnl+C9/Cm0ZJySv34O91s/wI5M6ieEEGJk0jq/oA15l7VjHCAm6+uIf7QOAG0Qug1ZiEMydugND6HVbGFbYgshFTwGuRoYZZpYPkj94FwU8GOJx1EZ10X52oYqa4NGDxxEi3R3PdMiHuw7/461cS1V/rXH9FiGnvoS3BCGV7c1E4nnbqWKDfC+agrDGzWtdMR6778ysD79usReSrljTPr9GZVnU6QXoyuDJBlpk/Gsc3SsJYq75wgzM7sTKoUj3DFox+1PcmfqebjgiTOpmzCR0HEnoNls2E45jdrJU/CWlqJZLCRNRSCSIK40/E4Xu1rDeJcvR0WjkExiVhShNB29rAyAEq+Hks6ujl3BHpAOzgDsLc1HnN+YihFVRx+PFBzBM4dDGqAVxj2EbE7aJp5A+Y49uLxu6typBwLjk86h/Qtv0DH/qzi2PsXN/F/OKGsfyuwKIYQQRy4WwvCm5u/RlHmIjQdZMvvLRcJMEEse5hcOpbC1tqS64HWl37Yl9cJI/cLtDhzb51tOZBe2va8NeD9+0wdAaADP/Oz272KPfzfhBATih94+l3jSJOLzE02kzqFKQtXBehIbP+reyHswK83YwMb060g8SZ135M2hZW1Yja32bUxl0ma2YTRvShX+KOmYTPC+hzOW3QX0rZ29A6Z3drdlBcAAPtPLyqa38MV8/R5HC2d/71RK4Vc2AtZS6jtjmmC09w8TERKpPBqTeq1zWpxMNqZgURaSqjutpW0bttq30WKD8COCUlj8vtTQ9c4CEls2kdi7B6UUhQE/lc3NJJsaD72fQWLaHZiGQdLt7rWu0R9hxY4W3tvbzj92trLbNZ5wPIknHCe28i1AoVw2TAz0seMIO51Z6a0nZ/fgw5JqNbO2H35MoSuFKxjgQHI/NYntNIYbjrSIaQGixPSCQ243pAGaoZKMd8L6ifNw1tdx3J5CAjY/NV2TVlsLCJ11F95/fYEOnPx4Vg0/PLEGN0P/C5gQQojRraGhgZtuuolFixZxzjnn8OMf/5h4/Mi/meuZLQd9tKAZmqKsYxemt5XoO//ADHbWczpoju6+Oh2JEOoQrXDWRBBLHxPhmslIVpCypuUDVja9nbWNwsw6hi3ux711EwV79+CoryO+6t3UvjqDsQPBA7w/1kdSJSlrP3Trj1JQGwRf+PDOpWYOvGVOQ8cSjZOMhVFKEbD6SWhHdi33BfewN7ibbT7Y2dfjdspEDzZg2/9mztbKVfs8rNrWHYBFVCqwNTN+zVee7HNoTQYxOltatjcF2dIQ6D538Q6stW9jxsO0RIZwXmszQbVvNUX0H6C3mM0cTNbRED+6liKVTKJ3dGBVqdav8o7uroVKkQ58S5SPhQVt6eXeHvdaq5lqSfH3E6AZ3j3YDryDPeohvnUrZijInr0NtCWdhC3dgUQk0ftHlxBxXHTg0Pruylaqgjhi3V/09a5n2BIDCMCVSSwZZYd3W1a3Sltba2rgklgUy9RpACR37yS5by/Wzr9pZp4DNBWPooWaMaYe1+c2SaWxoT77wxZVFnwz59EajJFIKjSXC5xWlGagWSy0VI6lrTzVYuktLUXTNKwnn4r1jLPQx43HMnsO2OwkOudZOxyTlEl5WxumP3VPbfFsOooSQ0hPsFVrZbfl0H97hnxGtymF8EzJbJSuc+GmGBbTwrN7ns7aJjF2AY/zZX6zbyKnl3m4mf+Lc/3jMoiIEEKIQXPzzTdTUlLC66+/ztNPP8369et55JFHDp0wQ1IlSex5m1htEyiV7urYta5Ea8ZtMakuiFMQa8ZY8xxbDqxmy/Y3ASiYX0DBnAJsk2yYVpNVze8SLurujmRLJCj0tmHxeVDJzoElAhsp83Z3sbLHuwcF2Lb37+xJ7CLW+QVX27SZknc3EF35NrF4hKRKUu+qw2NP/bpsC3sYt/5Vyn1bcXobQYHP10jk7VdQnhbMZIKGKW4SJW72lXSQ0OJY4nEw+24pbFMOGqMx3t/X/SXdFW3CtucVbIncX/BzBaUdfcVtUX+vbpEx02TMlj2M+XA5jftW4LV5aHWkvqSbyqQueCDdypZL0jQJRZNE4qngNWGGaP1wJe1tB4jt/Cv2mr+hBQ5i2fE81oMfoEX96CqOvamRjoMNxDvCJBsbCMeS6NEIKBPT5qBm3FQOFleSMFPl00pKCbc10hrKHshBxySkgjTuWo1j73ZCna1EtoPvo0c8ePZ+yIEQtESAXK20ysSS7LxvzARF4dpe2yXNBAl1dMGwFvWTSCZQZpjagMK27w0sB1dn7FthKkXEDOJuC9DSVE+iqR1/3UEaM390VwotFqNow3oKo1HskQjxzRvRTJMJtfuI/WMF7p07mFhbi97sI9zgJx4OEDMTWFWAkuBOtI7dzNTWMSG6g4rC1HNW8WT2/ZMkVfaoGenVuhZSISLJSLq7obP5IIm61A8TiTUfMMbXzmxbPeWhXTj3bKWx1Y9CEU+m9lkXb2c3HkrxY8fe61yZba3okRAVyosl3pzuapluXW/eRrSlGe9HHxGMBXvlry8FsRYm+N7ngG8ndR0H2JrYzI7ENlrCzdgjHgwzjn36dPTxVZhjKgGI7NxGQchHxAhjer3pY6lYCKP+fXT6aOU0zX4/4z0lFbSFuj+TyeYm1PsvYvhr0Y04OXqJElc6MQzcHbUUxxtYUGnh5InF2LUE9tJSTIeTaMLEqE5N5K607uH3g+4Ctk4txFOYGjVXLy1DL3BhnTMPo6ISYlGsXg9aPE5iZ01Wr4AuoXj3D1mWzkvgTGSMwBkNoJSio3ACSWdJz+Q57XWm/r61JzswD3Fdh/xp2Xmliveai9h34gJO2baekw8cx9v6m/z79P+PCa6J6e1MDJbWVbOyrYw7F/o4/r2f4Nz4G0KL7iA6/aohLIEQQojRZtOmTWzdupX//d//paioiKKiIm688UbuuusubrvtNnS9u6L++3O/ZKzHQkcsgMVZjNnhJ/zOm2gavHOCnTHvr6TaVkyoNYTT3I/lOIgW6ezY0kg0sYMzx2mUJUzU3kZiJSae9n00O22UTw6wKGFn88EwRce5UGMjaMEgE7VmJpaGOGgrYHwsymTvXkq3x4iUldM4zU6jN0zE4kAz25hZ0IY10kbUb8PmdNL84Vr8qpjtpe8wf5XCXrcbZS9iX+t2Nr7bwOrW/ViicYq9dVRF2ygs8LI/2U40CZM7FKYeo65uJwWajcC25zF0nbbS6VijLkKuOLqtFXdbC0XbQtQk9mIJtVKrWqmLG5Tu9jE2kaTMbKU12k7CW0n9gRZisRi29vU0VMxibNMujEgBRaE9zEpsw9XgYdW297Em9mFlGq1WJ2W2BKgWDu77iKjdIP7hTlo9rRjE2Rfdy1vvf0QoZLCl2c3kwjKiB9fgbzxIVdRHELAf2MNMPUZbWRHh1ka2mttp/dvbtIUS1NktmK4YZxpFRNzH05y0UNW0m78VRalwTKbI08jkrRsAxYZaB8WFLiJ6guqx0/Cv+hBH1VRMXQMtQuu+DioCQTa+amLVIlSU2GgsVYzxWvBEd1JyxuXMb/kHUex8WLufqjE26ooP4GjbiutdHTNmErLY6EiaxDritG99C5dWQFLphMc6qK15D1uFizFtHjzldVS3HyDZVkW8rI7p1hbGdMRprXkXV+VMxq15Ec2psXLcbEra3ydSu4Nxvi0kJkzAMmUyyWiA91Y+Sk2zD6vPQczXSLPPh7t+B+6aDXQk4li9TTjHVBHuSFL7wbsYHX6iURg3ZzZ1jW9ysDWMPe4hGHiZf7wT53jdTck8jebdW9nUHMNXEKbw4D6MoBPlD7AxHiFqxKmp1FBtr3D8Cwdw7W0kEW+jOW5lnnYAS3OEwHoH1vgWfLYO2jo8NIQjBLUkrQc9RJVJtGAt1cpPIuIj2l6ArTzCHksbZeY45sR3s9Yfw6xP8pYep1Ify5aG14m7HUSjVWyvf4s620pOKjyNNXtrcTS9T7vhY/VH+znbbxB0FNDaEqDN0YwjEScUK8audVAV30dlfSPJeDsFHVv5sNxBg9nOnJDJOiNM8kCIaSEHBaEPiZS40NExdq4iYqvEYlio3vgmoaCPYKGTV9f9Aq/lNM6OeejQPWzyfUTJjqcIW8ZT/VGUKkc5tmmzCFQ70RNO4rEYpQ01xAiRqBqPb/Ub7BkzBs2/FWUYaM31xAiTDLejaYqt216kbP8HaDYLByK1bKlrpMb0cmXCx/727XhsHkxMaho2kPzHQfb4Y9hsXuJWP8Xxndj9ZTTUrKXV0YK2z4NlbwjDU097vJmykgS7dY0DW15gZ6yFWNxLyCwjsP0DiixFqEWnEwhGWReqY992jU9XH0+FgvCGNTibt2JoOgdMP1vbA8RViP2hTRxoPw6Xo5L9ykmZdTc+T4iTKyopbd5GeMwsxhltHJ/4gHr/aup9bmxTrCgFB8IWqgMBvKaNpKMBrzVMUcxgX1sH/miCcDzJ+GKdYCxJVTxBW9JHwZY17PLuY0oyjn3vXtrGl7E/vJ1kewehsjYWMAkLEQrRiWkxtLZ27LZS8Hewf9UyvK4qHIaGq6CMtkiMA80HMZMKlwnxmIf3X3uFSNF4Js0Yzy7TzbSoRjSUZFciwh8/eIPbL/9sn3WQpvoJzVtajk1f8v37d+QcxfHzn/8Cn7niKu7b7mBCRzM/fP5nRF0F3HUDVIybzsOf+FV6voieozjeeuUpuFb9N9bmDSRKj2ez4wz2l57FGeddekzyDFBSUoDXOzQPTg7ESMz3cMnzkY7MN5T5HsgojsPlfB+JwchzPkZxHInnGgae74qKw+8+Mhw988wzPPHEE7z55pvpZQcOHODCCy/k1VdfZcqUKenly374BcykSTCUaglwu3o/RxEzXET9LWh0/1LrdrlpaWvF5/GgGzqVlWOz0u6pqyUQCYGpMNAochQwadJkDh6sJxKNYDEsWKxWrDYbTocjnbYrH+FIhHgsRlFRUdZ+e+YzUOGmsCWIbuj4/X7Cke7eKU5H7y5amftKWnSaTxwLgK+5hYptjZid6TLzE45E0vvqet0zv26Xm1AoREckjNPhSOejonwMLRmDGoRDIZwuV3p/bpc7fQx7gZMSd2Gv6xEMBSkwbbiUnRYjkN53z330J1d++9PfdokiB8bccXyweScoxTy9mI7yAuJOG+M3N6AbOk3Nzek89jxn/R0PwO/3Y7XZqOjs6hXuCJJUvctQ6HZndYvMvFY57ydfGGuxM71fAz3dGpUrLZoiGAxl7UuhUehyZR2zKy+BYO4ydF3/ivIxve6nrrx1rS932fB4Ui3AJaVleDpivcrY13XJXGcxNBJJRTAUxO12YVVW4iTwtzUSDYcYWzmW4tIyPKEYcbsFa+ezaEFHFbTVUOK1UugupLQ0NXCFrkFnQykeTzsN4TYShdoh76Ncecy8f/u6L3ve/wDhs08k0dlcVXLAi9MXpqWtlUChjWm23lOAZJ73nucIUtcI6PdvjLcjikXF+yxnw5zxtHvaCQSDFLrdlHWer/2d0wJMnjiJCaVOOsd+YePGDZw4aya+2iAldV6aT6igLeynzjqFsdVT2bhxQ9b+582b3+uYJQebMbftBKCsNDWIiM8TIJkxqmbX8u07thMMBqmsqMTd2S2ya11XfmLxONOmHUdZaSm1tbV4vR5KSkqZNKn7GcTa2lrGaq04HQ5aLeMpKy3lq3fen/OcwDBoQdM1+I9Fk7j3jRj/O+eTfGPT2zzwOxc/v2g9j5f8iptOvDk9d0Sm+IQz8X7uRWy7X6Jg/WMsaPgDs5uWkdD/SWTGv5IYexJoQ96DUwghxAjk9XopKsr+wlJcnJps2uPxZAVoALqhU+YuJkYiq3VNh9TXV4cbCopxhRowrCUQD4KWpLy8lKLKMZBIYNcNYs4KzKII5Z4k0yZPJWoz0DWdSCJMaVhjgn0syXEJTFOhaam5lTrmj8e9uTl9XLfbRaHLhi8YQZkKi2FBWWzErMU4om3MLZpKndlGUodAdRGRMW5UsYOSve243S4qXCWEOkdO1jWd9qlltJdNo6JpJ0rTSPpjGOE4esLEPnkSFluC+dYp+KrG4ovZ0b1+dE1H13WSdgOHo5iCiBNd09HQKCksoMBuJZqAmAYORzGWaOq8udwFOF0OdE2nwOVMn9vy8oyR2EqK0Q0ruqbQNA1N03G7XRS4nOkfdXUjtQxA11Ovy0snUOJLUEEZPlcID6FUPtGwGTYchSXESPTZ9WiMpYg2M4Tb7abcZUGzFdDuS30RTdoNjGgSp81CKKGhm3FchYWgKfQeT5MUum3E51SB08LEianuWSGbHSsGTs0gXuEmGSvBah1HkfKjxTsocBego1FqKyBhhVA49QU9YXESKSjD7a9Pl9fU7TidDjRdQzdSx3a53ZhKZd0jAIahp4OGruVd57FrW2PiGJyecOp6lJSAkdqv0nSUMtPlKygq44QxOt5okqiWxNQt6GYCt9uFrutEHOWUagZuzUHQlqRlQgmORp0KvYWwiqHpOtbxZdiDMdonl6KbSVyeMFpIUV5eistdRlCPYlYV4ojGsAUd6GYUSyJMobuApFIUOq1YrAZl5aWYdguG1UoRqXnnMssIMMFazsFkZzfbAgdRi8Jps6KUhm4mUIBhaLjdLvxTxxAtcVJ80M9kp44DC3GLwjAMigvs+MwkWB0kDRu63U7p8Z9ifOtudM3AkvEdtutOKCsrpZximvATsCRBAz1uEnGMwRHzUmUrgLiB1wzR0dkd2aH9v/bOPCyq6+7j3zsb+yJuKBqXtiCryOoGgxgfd2NN1MYYbBJfxMSYKE1j2rqgfWOMSxtf1Cd5tEaJ0dc2mlBRElcgiamKLQgKBnlSgoFBEEZBmWFmfu8fMNe5wyy4DNzpez7Pw6Oc7X7P73fu+XHmnjlXjlauDd5envD0cIeBAyTgOvlUIpHAV+IOqScHH84dTdx9eHp64J6fOwAOChcZDERo6+sBj2YN/Pr6wfCz3rjfrIdHXTM8FFK06QBvuMPQW8/fT0Y8vDwhJcDAAXJfTxgUcrjd00IikfCL0F6ePiAQSAL09vIc0XsAABmvSURBVHSFnhTwcpXjvtYAg8l25aYhveDuJoefRz/Ut3hDKpFCKmvfqmi8N/y8XeDq+uA4/NDQELi5uUEzWIb63u5QSOXo5SaFzmcIFAoZQsOC2+0l8YCedPB094JG/+DDRrnEBdqAvuival98ShRySAyE3n16Q29ot7W3rDc8XXxRr/0RP//5z2AwGKAZMgyDbmngKvXCXbqF+1IdpG06BAcHg0BwUbhAKpNi0OCBGDDAH1KZBDL5g22XgwYPhNTQF1Lo4ePuC5lB5FscAWB2xAB8duF75A6dAs8+fbG47FusOXgX//ruE/xv8lWMmZCOCr0f1H3Dobjf8GAy4Thohk+DZugUlOTuwbDGsxh67X/hVrIfBrc+0A5JhmZIMnT+0TB4+HfpxXAMBoPBYFjCuOHE/EPDX675BE1N95Cffw5yPHiqSkR8WSJCQYHwMI7ExCRkZn6AA5/uh7eXN37/+7WYaPJE9vnnn8PFi99Bp9NBJpMhNnY0Pj3wEXb85k2UlBajt18fDBgwEMNd/BERNVnwNL0VQHlxESorb2D27DmCJ73Gp78TzJ7++vq6Izv7OC6bfAIdETES/QH0JwD92v/wSXxWWM+03e9b9IAcCAsLQ1LSRD7d+HQfaP/EOSJkpEAvEUGpnCAoa/wkfNmyN5CZ+UGHHYFvLxRg3LgEvr3ExCTk5Z3FlSvFiIgYiVmzpqGpsQX5HfZOTFAivyAPdwDc6Wik+Eox3z8YDBiXlIz8/HOQApCi/TtTEk7o65Emeu8QIVE5waIdzO1s/pTddFwU5n3A99EUHx83/Pd/v4ca9EbEqHZbRIRHIEo5AaTXg5NKO7WZn5/X/mcOET7/4iiGD/8Zlr22HOA4vm9CmwNKZZJAk/lODIPBgIKCfHDDgKKiIt725nqNbZ4pLkLEqJFISlCC4zjIZHqcOVMguG4zgLHjEiGVcPw1jfeN0Wb9AXz++REMHz4Cy5Z3+F/Tbifz8WQgoORKx1hJewMGMuDrgnyB7U3vXeM1ghKTENTJhufAcVyn+2VucgJ0OilAhMwd21FZWYHZs5+1uoMiL+8cTtQ3IyJcuKOls50nC+759v4YwIGz+HDCqKe0494w3THTaVdN3lnc5ThMSFAiP+8sfCQSvDhrmmBnhEGvx45d/wPuBw7Pv7YcBOI/5ACAvMw/A+AE/jZeR0KEnC+OggD8cvZ8JHT4nIhQkH8OBA5JyiTk5Z2DDIS4jvtFZyDIJCZ9I0J+QR4qy4U7gNrveULKa8vb32FmsqMuNfVlKBReAk2D7wGJMUn8XAHcghTAKxbGqsFgQEFLPjgOnexnJK4jfeXK5SgtvYKZM/tBGj4SOg6YnJjCl3v++edw+3YD3vndaiQpk/kdf2PHjMfraW/y5Yy6IiJGwhv2d9+IYoEmk3BY9HPC5u8a8VevONTPScYvq77Fz08fRuSeQmDPArwt4aCXSADiILl+Eaq/HYLU8OBbhQMAtAIocw2AxEUGqUwHKfIgkZ2GVG4A56oAfPoAXn1A7r6ARy+Qe2+Quw/g6tX+wj6ZHJxCDs7VDZybO1r79YJOLwHn1v475+rKvyyPwWAwGP+5+Pn5obFReNKcWq3m87qC6R9Y1v7YAgTvU7XfZsen5dxD1ep+JBKp/UIm2LKPsFwX65v+bisPACSdd9tIJXb0PMYHvl3pq8UyHWnmizNjeb6Krb53bs6mJolEwpd7mC7b66NM+uR2OJm7SmJh91RXbW633AMjd63YI+iwpP+RMHWchTEOABKplJ9LOI6zMK/YGj+coAT/e/ujff5pYXvyg3Zk5g6zaRMO4MyfQT8+puP6YbBVx9xvnL05xA6iWW24y4Dw+ny0PDUa/6ofgrNcBCTJoXgapfhF63kY1D+A6zhdyCAB9JwEerhADzkMnAwGSCDXA146Dp5tgGebAm5aV7i3auHW2gZXtR4uVY2Q6W5Dauia0Syd56SXcdAp2n/0cknH/yXQydv/1Xf8Dq79jeEGGYfKGC9ovOQdp1AZbxjA2sDv6im51spJpRz0+q62ImzP+OhZCg4vuAyDv8TNdqUnhMRVDo9WG8eOOvzpZ3v7YTXt7+Hz+PabLtWyq1twiSfbh7Da9v3ZHue/BQCE1v6IfqhD39oyeJw/b7PuQ+kW4Fg/kA0bSVzkcNc84suHeITth9T+W/C7+3cX0FWMdTvVMeuDxEUGdwvvyRElUhfcD10IcuvaAuQ/mbCwMKhUKtTV1aFfv/YTz4qLi9G7d28MHjzYTm0Gg8FgMB4dmwu0J/Ul7379Yi2mu7nJ4evrjr59veDr6w4PNykifZvw+Vv/ZVJqFgBg8+bNOHfuHAAgKSkJq956S9DW6dOnAQATJ058IpoZ3Y/91/Y5nuqOcRT0EOOop3Sba715+jQu37uMqBFRGNEF/WKw98PiYb/IQ/FThw2NBD+E3411u1LnSet2JKZanf2gj8chJCQEkZGR2LJlC1avXo2mpibs2rULL7zwQqdPweVyKR/HAOt2M+Yb6dvXC56eLpBKJZDLpXw8NOLiIgzRLi4y9O3rBTc3OeRyKVxcZHBzk8PT00VQ13gdT08XQZw112FJp6+vOzw9XTqVNddtrX/GuuZ6jBqNuizpNdrQmG9sy2gnUzuYtmdez5I/zPthqtNaGWv9tudnU3vYK2faR2t5pn2z1ZapfuO4sKbZmjZL1zL1m9H2tsaOad3Tp09b9bW5bnMfmPbB1E7m48nUVl3x0cPm+fq64/LlQv7vS2v3lT1bPEy+LWzdZ6baLdnVeG+Y0pUxaMlfQLuPzHVYu7a9sWtuD2u6PD1d8OmnB/CWyTrA9Bqmc4Wt61qzl3k943xrPucYcXGRCeZva/eJpTnHFjZPcWQwGAwG4/8rKpUKGRkZKCwshLu7O6ZOnYr09HRILWwxYzAYDAbjScEWaAwGg8FgMBgMBoMhEtg59AwGg8FgMBgMBoMhEtgCjcFgMBgMBoPBYDBEgkMXaDU1NUhLS0N8fDyUSiXWr1+PtrbHPYXt8bl58yZef/11xMfHY/To0XjjjTegUqkAAOXl5UhJSUFMTAwmTpyIzMxMmO4Czc3NxTPPPINRo0Zh1qxZOHnyZLfrf/fddxEU9ODtHRcuXMC8efMQFRWFKVOm4ODBg4LyBw4cwNSpUxEVFYV58+bh0qVL3ap3z549SExMRGRkJBYsWICKigoA4rb1tWvXsGjRIsTGxmLMmDFYvnw5fvrpJwDisnd5eTlmzJiB5ORkQfrjaNRqtcjIyEBSUhLi4+ORlpbG3x+O1n3x4kX86le/QlRUFJKSkvD+++9Dp3twAqKtMUFE2L59O55++mnExMQgJSUF33//vcM1GzEYDJgzZw5efPFFQbpYbd3S0oI//OEPiImJQXR0NNLT09Hc3Mzn96StnQGxxjdLWIt5Go0GQUFBCA8PF/x89NFHfF0xxDwAGDt2LMLCwgQ6165dC0Bcc7I9Ll682Mne4eHhCAoKws2bN0XtD2eNN13th634k5eXhxEjRnTyzeXLlwH0zJxoqR83btywOIaOHTvGl3EGf+zcubNTH8LCwvgyYvTHE4ccyJw5c+jtt98mtVpN1dXVNHv2bNq8ebMjL9klZsyYQenp6XT37l2qr6+nlJQUSk1Npfv375NSqaRt27ZRc3MzXb9+nZRKJX366adERHTt2jUKCwujkydPUmtrK506dYrCw8OpvLy827RfvXqV4uLiKDAwkIiI6urqaNSoUXTgwAG6f/8+FRYWUlRUFOXl5RER0dmzZykqKoouXrxIra2tdPDgQYqKiqJbt251i96DBw/SpEmTqLy8nJqbm2nr1q2Unp4ualu3tbXRuHHjaPPmzaTRaOjOnTv0+uuv0/PPPy8qe+fk5ND48ePp1VdfpQkTJvDpj6vxvffeo2eeeYaqqqrozp07tGrVKpo7d67Ddd+8eZMiIyNp3759pNVqqaysjMaNG0e7d+8mIvtj4pNPPiGlUkllZWXU0tJCf/rTn2jChAnU2trqMM2m7N+/n6Kjo2nhwoV8mlhtTUS0YsUKWrJkCdXX11NdXR2lpaXR/v37iahnbe0siDW+WcJazKutraXAwEBqbGy0WE8MMc9IaGgolZSUdEoX05z8qBw8eJDmz58van84a7zpaj/sxZ8vvviCZsyYYbXd7p4TrfXj0qVLNGrUKKv1nMUfllixYgVt3bqViMTnD0fgsAVacXExjRgxghoaGvi0EydOUGxsLOn1ekdd1i5qtZpWrVpFtbW1fNqxY8do1KhRdOLECYqLi6O2tjY+b/fu3TRr1iwiIsrIyKAlS5YI2ktNTaU//vGP3aJdr9fT3LlzadeuXfwCbffu3Z0GaUZGBi1dupTXt2HDBkH+9OnTae/evd2iOTk5mY4dO9YpXcy2rqqqosDAQKqoqBDojYyMFJW9Dx8+TDdv3qSsrCzBxPY4GnU6HUVHR9OXX37J5zU0NFBQUBBdvXrVobqLiopo/fr1grKrV6/mx4G9MTF9+nT6y1/+wudptVqKiYmhkydPOkyzEZVKRWPGjKE///nPggWaWG1dXV1NISEhgnnQlJ60tTMg1vhmCVsxr7y8nIKCgkin01ms29Mxz0hzczMFBgZSVVVVpzwxzcmPQkNDA40ePZquXr0qan84a7zpaj/sxZ+srCxasGCB1Xa7e0601o8zZ86QUqm0Ws9Z/GHOt99+S0lJSXTv3j0iEp8/HIHDtjiWlpZiwIAB8PN78MLT0NBQqNVqVFVVOeqydvH29sbGjRvRv39/Pq2mpgb9+/dHaWkpAgMDIZM9ePdMSEgIrl+/Do1Gg9LSUoSGhgraCwkJwZUrV7pF+6FDh+Dq6ooZM2bwafY0lZaWIiQkxGq+I1GpVKiursa9e/cwc+ZMxMbGIi0tDbW1taK2dUBAAEaMGIFDhw6hubkZjY2NyMnJQXJysqjsPXfuXAwcOLBT+uNo/Pe//427d+8K8v38/ODv7//E+mBNd0REBFavXi1Iq62t5e9VW/1qbW1FRUWFQLdcLkdgYOAT0W1Ns5F3330XCxYs6PQCY7HaurCwEP3790dubi6USiXGjRuHDRs2QKPR8Lp7ytbOgFjjmyVsxTy1Wg2ZTIbf/OY3GDt2LJKTk7Ft2zZotVoA9ueS7kKtVgMAtm3bhoSEBCQkJGDNmjVobm4W1Zz8KOzYsQMTJkxAcHCwqP3hrPHGnEeNP01NTWhoaMCLL76I2NhYzJw5E1988QUA9MicaK0farUaOp0OqampiI+Px5QpU7B3717+6yPO4g9TiAgbN27EG2+8ATc3NwDi84cjcNgCrampCd7e3oI0Hx8fAEBjY6OjLvvQVFZWYteuXXj11Vctavb19YXBYIBarbbap+7oT319PXbs2IF169YJ0q1pNmqyprmpqcmheoH2yQ0Ajh07ho8++ggnTpyAVqvFypUrRW1riUSCzMxMnDlzBtHR0Rg9ejRqamqwdu1aUdvbyONoNOo03qum+d193x47dgwXL17ESy+9BMC67sbGRqjVahBRj+j++uuvce3aNaSmpnbKE6uta2trUV9fj8rKSuTk5GDPnj04ffo0du7caVN3T9taLDhLfLOEaczjOA5hYWGYNm0a8vLy8MEHHyA7OxuZmZkAbI+D7kSn02HkyJEYM2YMTp8+jX379qGoqMhp5mRrqFQqHDlyBGlpaQDgNP4w5T8l3phjHn+8vb0xaNAgvPPOO/jmm2+wdOlS/O53v8M333wjqjnRxcUFw4YNw+LFi/H1119jzZo12LFjBw4fPgzAOf3x1Vdf4f79+5g5cyaf5iz+eBy69RRH4wqe47juvKxVSkpKsHDhQrz00ksCx5vSFc3d0Z+NGzdi7ty5GD58uN2yRGRTE3XTq++M13nllVcwYMAA9OnTBytXrkRhYaHg4Afz8j1ta61Wi6VLl2Ly5Mm4dOkS8vPz0a9fP6Snp1ssLxZ72+JxNdqr/6T57LPPsGbNGmzfvh1Dhw61WbYnba/RaLB+/XqsW7cOCoWiS3XEYuu2tja8/fbb8PT0xIgRI5CSkoLjx4/brCP2cd6TiC2+WcI85sXExODQoUOYNGkS5HI5wsPDkZqaiiNHjthsp7v7+NRTT+Hw4cOYN28eFAoFhg8fjpUrVyInJ8fiuHOGORkAsrKykJCQgKeeegoAnMYf9nC2eGOOpfiTkpKC3bt3IyQkBAqFAtOmTcOkSZPw2WefWW2nJ8bZ1KlTkZWVhbi4OMjlcowdOxbz58+3OYbE7o89e/Zg0aJFkEqlfJqz+ONxcNgCzc/Pr9NK1bhNwXRbSE9RUFCARYsWYdmyZVi2bBkA65qlUil8fHzQq1evTvlNTU0O78/58+dx5coVLF26tFOePU2W8tVqdbf4oE+fPgDaP00zEhAQAAC4deuWKG0NtNv7hx9+wIoVK+Dl5YX+/ftj+fLlyM/Ph0QiEa29jTzOmDCWsZTfq1cvB6p+wM6dO7Flyxbs3r0bCQkJfLqtfvn6+lr0jaNtv2vXLkRERGDMmDEW88Vq6z59+kChUMDd3Z1PCwgIQF1dnVXdPW1rMSH2+GYJSzHPEgEBAWhoaIBer+/RedgegwYNAhFZ9IXY5mRrnDhxAk8//bTNMmL3h7PHG3OsxR9LGOdMsc+J9uZ2Mfvj5s2bKC4utnufAM7jj67isAVaWFgYVCoVPygAoLi4GL179+70PY3upqioCCtWrMCmTZuwYMECPj0sLAzl5eX8fm+gXXNwcDAUCgXCwsJQUlIiaOvKlSsYOXKkQ/VmZ2dDpVIhMTER8fHxmDNnDgAgPj4egYGBNjVZ0lxcXIzIyEiHagYAf39/+Pn54erVq3xadXU1AGDOnDmitDUA6PX6Tp+0GJ/4xcXFidbeRsLDwx9Z4+DBg+Hj4yPIV6lUqK2t7ZY+ZGVl4dChQzh48CCioqIEebbGhIuLC37xi18I9pdrtVqUlZU5VHd2djbOnj2L+Ph4xMfHY8OGDbh8+TLi4+NRU1MjWluHhISgtbUVlZWVfFp1dTX/XQAx2lpMiDm+WcJazMvLyxMc4Q60b4EcMGAApFJpj87DphQVFWHz5s2CtBs3bkAulyM4OFj0c7IlysrKUF1djcTERD7NWfxhijPHG3NsxZ99+/Z1eqXBjRs3MHjwYFHNidnZ2fjrX/8qSKusrMSgQYMAOJc/AODUqVMIDAyEv7+/IN1Z/PFYOPIEkvnz59Nbb71Fd+7coaqqKpo2bRplZmY68pJ2aWtro+nTp9PHH3/cKU+j0VBycjJt2bKFWlpa6Nq1azRu3Dg6evQoERF9//33FBYWRl999RVpNBo6fvw4RURE0A8//OBQzU1NTVRTU8P//POf/6TAwECqqamh6upqio6Opk8++YRaW1vpu+++o8jISLpw4QIRERUUFFBkZCR/pOrevXspPj6empqaHKrZyPbt20mpVFJFRQU1NTXRyy+/TKmpqaK1NRHR7du3KS4ujt5//31qaWmh27dv02uvvUbz58+nhoYG0dnb/PSjx9W4detWmjFjBv3444+kVqtp5cqVlJKS4nDdP/74I0VGRlo8SpvI/pg4dOgQjR8/nsrLy6mlpYXee+89mjx5Mmm1WodprqurE9ybe/fupXnz5lFNTQ3pdDrR2pqIaOHChfTyyy9TY2MjVVRUkFKp5I+UFoOtxY4Y45slbMW8y5cvU2hoKOXk5JBWq6WioiLB0eI9OQ+bUlVVRREREbR3717SaDR048YNmjZtGmVkZIhyTu4Kf/vb3yg6OlqQ5gz+cNZ4Y68f9uLPhx9+SOPHj6fS0lLSaDSUnZ1NwcHBVFRUREQ9Nyea9yMnJ4ciIyPp/Pnz1NbWxtv/xIkTROQ8/jDy29/+lj8R1BSx+uNJwhE5blOmSqVCRkYGCgsL4e7ujqlTpyI9PV2wj7S7uXTpEl544QWL3xfJzc1Fa2srNmzYgJKSEvj5+WHevHlYvHgxX+bUqVPIzMxEVVUVhg4dijfffFPwCVh3UF1djYkTJ6K8vBxA+4lsmzdvxvXr1zFw4EAsXrwYs2fP5ssfPnwYH3/8MVQqFYKCgrBq1SpERER0i9a2tjZs2rQJf//736HRaJCUlIR169bB19cXN27cEK2tS0pKsGnTJpSVlUEulyM2NhbvvPMO/P39RWPvyZMn46effoLBYIBOp+PHdG5uLmprax9Zo9Fnp06dQmtrK+Li4rBu3bontjXAmu4lS5YgMzMTcrlcUH7gwIH48ssvAdgfEzt37sSRI0egVqsRERGBNWvWYMiQIQ7TnJuby2/bBYAjR47g6NGjyMrK4tPEaOvc3FzIZDKsXbsW//jHP6BQKLBgwQIsW7aMn597ytbOghjjmyXsxbyioiLs2rUL1dXV6NevH5599lksXrwYEkn7BhsxxDygfev5tm3bUFFRgV69emHKlCl48803oVAoRDMnPwwffvghjh49itzcXEH68ePHRekPZ403Xe2HvfhjMBiQmZmJzz//HI2NjRg2bBiWL1+OpKQkvmx3zom2/HHu3Dns378fdXV1CAgIwK9//Ws899xzfF1n8Icxtr7yyisICAjA+vXrBfXE5g9H4NAFGoPBYDAYDAaDwWAwuk63nuLIYDAYDAaDwWAwGAzrsAUag8FgMBgMBoPBYIgEtkBjMBgMBoPBYDAYDJHAFmgMBoPBYDAYDAaDIRLYAo3BYDAYDAaDwWAwRAJboDEYDAaDwWAwGAyGSGALNAaDwWAwGAwGg8EQCWyBxmAwGAwGg8FgMBgigS3QGAwGg8FgMBgMBkMk/B98ATSHCqhWDQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1793,13 +1512,15 @@ } ], "source": [ - "pm.traceplot(trace_2);" + "pm.traceplot(trace_2, var_names=['beta']);" ] }, { "cell_type": "code", - "execution_count": 449, - "metadata": {}, + "execution_count": 87, + "metadata": { + "scrolled": false + }, "outputs": [ { "data": { @@ -1833,496 +1554,532 @@ " \n", " \n", " \n", - " rho\n", - " 0.026262\n", - " 0.486198\n", - " 0.019586\n", - " -0.776672\n", - " 0.982571\n", - " 219.477597\n", - " 1.008274\n", - " \n", - " \n", - " beta__0\n", - " 2.882723\n", - " 1.293977\n", - " 0.029046\n", - " 0.587671\n", - " 5.187584\n", - " 1975.827576\n", - " 1.001178\n", + " mu__0\n", + " 6.093069\n", + " 8.234688e+00\n", + " 0.180893\n", + " -10.544320\n", + " 23.177832\n", + " 1487.397063\n", + " 1.003119\n", " \n", " \n", - " beta__1\n", - " 3.605552\n", - " 1.044456\n", - " 0.022883\n", - " 1.533640\n", - " 5.422674\n", - " 1807.881542\n", - " 1.000942\n", + " mu__1\n", + " 6.828961\n", + " 8.101430e+00\n", + " 0.207703\n", + " -10.357080\n", + " 22.868710\n", + " 1295.971757\n", + " 1.002388\n", " \n", " \n", - " mu__0\n", - " 2.823693\n", - " 1.283669\n", - " 0.027996\n", - " 0.682076\n", - " 4.996197\n", - " 2139.228438\n", - " 1.001272\n", + " beta__0\n", + " 71.476829\n", + " 2.364595e+02\n", + " 22.766323\n", + " -0.432098\n", + " 518.181069\n", + " 20.715361\n", + " 1.118284\n", " \n", " \n", - " mu__1\n", - " 3.513395\n", - " 1.054367\n", - " 0.026776\n", - " 1.573847\n", - " 4.999955\n", - " 947.342508\n", - " 1.003287\n", - " \n", - " \n", - " tau__0\n", - " 0.494115\n", - " 0.162296\n", - " 0.005002\n", - " 0.200195\n", - " 0.801636\n", - " 580.154804\n", - " 1.002979\n", - " \n", - " \n", - " tau__1\n", - " 0.495382\n", - " 0.164286\n", - " 0.004009\n", - " 0.196106\n", - " 0.816579\n", - " 1725.987161\n", - " 0.999951\n", - " \n", - " \n", - " diffe\n", - " 0.779711\n", - " 0.194553\n", - " 0.004066\n", - " 0.356060\n", - " 0.986207\n", - " 2466.786818\n", - " 1.001018\n", + " beta__1\n", + " 45.594681\n", + " 1.622495e+02\n", + " 14.815154\n", + " 0.717871\n", + " 127.227294\n", + " 29.192842\n", + " 1.046725\n", + " \n", + " \n", + " packed_L__0\n", + " 87.552578\n", + " 4.057062e+02\n", + " 29.018480\n", + " 0.067557\n", + " 420.374156\n", + " 37.670767\n", + " 1.061497\n", + " \n", + " \n", + " packed_L__1\n", + " 15.383483\n", + " 9.962871e+01\n", + " 9.395267\n", + " -85.943822\n", + " 78.652195\n", + " 58.090749\n", + " 1.028396\n", + " \n", + " \n", + " packed_L__2\n", + " 48.618601\n", + " 2.808802e+02\n", + " 19.692748\n", + " 0.048352\n", + " 150.110619\n", + " 62.179535\n", + " 1.021208\n", + " \n", + " \n", + " Sigma__0_0\n", + " 172262.998738\n", + " 1.954825e+06\n", + " 75746.255571\n", + " 0.004564\n", + " 176714.430813\n", + " 200.089723\n", + " 1.014189\n", + " \n", + " \n", + " Sigma__0_1\n", + " 925.703579\n", + " 1.274978e+04\n", + " 632.969995\n", + " -1382.733453\n", + " 2487.531151\n", + " 275.110813\n", + " 1.009295\n", + " \n", + " \n", + " Sigma__1_0\n", + " 925.703579\n", + " 1.274978e+04\n", + " 632.969995\n", + " -1382.733453\n", + " 2487.531151\n", + " 275.110813\n", + " 1.009295\n", + " \n", + " \n", + " Sigma__1_1\n", + " 91419.983202\n", + " 1.737843e+06\n", + " 70796.653921\n", + " 0.002772\n", + " 36693.792554\n", + " 284.767092\n", + " 1.004790\n", " \n", " \n", " alphas__0_0\n", - " 0.272502\n", - " 0.057480\n", - " 0.001237\n", - " 0.162145\n", - " 0.382102\n", - " 1891.155509\n", - " 1.001204\n", + " 0.427572\n", + " 5.778023e-02\n", + " 0.000612\n", + " 0.320502\n", + " 0.543854\n", + " 8315.028470\n", + " 0.999864\n", " \n", " \n", " alphas__0_1\n", - " 0.727498\n", - " 0.057480\n", - " 0.001237\n", - " 0.617898\n", - " 0.837855\n", - " 1891.155509\n", - " 1.001204\n", + " 0.572428\n", + " 5.778023e-02\n", + " 0.000612\n", + " 0.456146\n", + " 0.679498\n", + " 8315.028470\n", + " 0.999864\n", " \n", " \n", " alphas__1_0\n", - " 0.349028\n", - " 0.057060\n", - " 0.001626\n", - " 0.242097\n", - " 0.457237\n", - " 731.195195\n", - " 1.001921\n", + " 0.341799\n", + " 5.614980e-02\n", + " 0.000671\n", + " 0.238711\n", + " 0.455260\n", + " 9430.781643\n", + " 0.999975\n", " \n", " \n", " alphas__1_1\n", - " 0.650972\n", - " 0.057060\n", - " 0.001626\n", - " 0.542763\n", - " 0.757903\n", - " 731.195195\n", - " 1.001921\n", + " 0.658201\n", + " 5.614980e-02\n", + " 0.000671\n", + " 0.544740\n", + " 0.761289\n", + " 9430.781643\n", + " 0.999975\n", " \n", " \n", " alphas__2_0\n", - " 0.377073\n", - " 0.031098\n", - " 0.000619\n", - " 0.316725\n", - " 0.436052\n", - " 2513.149324\n", - " 1.001167\n", + " 0.349223\n", + " 3.115593e-02\n", + " 0.000304\n", + " 0.289770\n", + " 0.414278\n", + " 9097.989761\n", + " 1.000082\n", " \n", " \n", " alphas__2_1\n", - " 0.622927\n", - " 0.031098\n", - " 0.000619\n", - " 0.563948\n", - " 0.683275\n", - " 2513.149324\n", - " 1.001167\n", + " 0.650777\n", + " 3.115593e-02\n", + " 0.000304\n", + " 0.585722\n", + " 0.710230\n", + " 9097.989761\n", + " 1.000082\n", " \n", " \n", " alphas__3_0\n", - " 0.332205\n", - " 0.046699\n", - " 0.001409\n", - " 0.241422\n", - " 0.419479\n", - " 429.980336\n", - " 1.002426\n", + " 0.355128\n", + " 4.650339e-02\n", + " 0.000524\n", + " 0.266052\n", + " 0.446879\n", + " 9320.463193\n", + " 0.999780\n", " \n", " \n", " alphas__3_1\n", - " 0.667795\n", - " 0.046699\n", - " 0.001409\n", - " 0.580521\n", - " 0.758578\n", - " 429.980336\n", - " 1.002426\n", + " 0.644872\n", + " 4.650339e-02\n", + " 0.000524\n", + " 0.553121\n", + " 0.733948\n", + " 9320.463193\n", + " 0.999780\n", " \n", " \n", " alphas__4_0\n", - " 0.346522\n", - " 0.062497\n", - " 0.002445\n", - " 0.227867\n", - " 0.477527\n", - " 200.245105\n", - " 1.007706\n", + " 0.381824\n", + " 5.855220e-02\n", + " 0.000565\n", + " 0.266639\n", + " 0.494051\n", + " 11200.584389\n", + " 1.000243\n", " \n", " \n", " alphas__4_1\n", - " 0.653478\n", - " 0.062497\n", - " 0.002445\n", - " 0.522473\n", - " 0.772133\n", - " 200.245105\n", - " 1.007706\n", + " 0.618176\n", + " 5.855220e-02\n", + " 0.000565\n", + " 0.505949\n", + " 0.733361\n", + " 11200.584389\n", + " 1.000243\n", " \n", " \n", " alphas__5_0\n", - " 0.362807\n", - " 0.041945\n", - " 0.000995\n", - " 0.281951\n", - " 0.445396\n", - " 1122.373947\n", - " 1.000759\n", + " 0.360964\n", + " 4.152221e-02\n", + " 0.000416\n", + " 0.278941\n", + " 0.440660\n", + " 8727.625497\n", + " 0.999790\n", " \n", " \n", " alphas__5_1\n", - " 0.637193\n", - " 0.041945\n", - " 0.000995\n", - " 0.554604\n", - " 0.718049\n", - " 1122.373947\n", - " 1.000759\n", + " 0.639036\n", + " 4.152221e-02\n", + " 0.000416\n", + " 0.559340\n", + " 0.721059\n", + " 8727.625497\n", + " 0.999790\n", " \n", " \n", " alphas__6_0\n", - " 0.390791\n", - " 0.037041\n", - " 0.001072\n", - " 0.319414\n", - " 0.461805\n", - " 482.405846\n", - " 1.002960\n", + " 0.327035\n", + " 3.733396e-02\n", + " 0.000364\n", + " 0.258575\n", + " 0.406455\n", + " 9361.317435\n", + " 0.999833\n", " \n", " \n", " alphas__6_1\n", - " 0.609209\n", - " 0.037041\n", - " 0.001072\n", - " 0.538195\n", - " 0.680586\n", - " 482.405846\n", - " 1.002960\n", + " 0.672965\n", + " 3.733396e-02\n", + " 0.000364\n", + " 0.593545\n", + " 0.741425\n", + " 9361.317435\n", + " 0.999833\n", " \n", " \n", " alphas__7_0\n", - " 0.411823\n", - " 0.032733\n", - " 0.000799\n", - " 0.349777\n", - " 0.474676\n", - " 1313.801751\n", - " 1.003810\n", + " 0.300670\n", + " 3.371497e-02\n", + " 0.000316\n", + " 0.233952\n", + " 0.365609\n", + " 10122.205449\n", + " 0.999875\n", " \n", " \n", " alphas__7_1\n", - " 0.588177\n", - " 0.032733\n", - " 0.000799\n", - " 0.525324\n", - " 0.650223\n", - " 1313.801751\n", - " 1.003810\n", + " 0.699330\n", + " 3.371497e-02\n", + " 0.000316\n", + " 0.634391\n", + " 0.766048\n", + " 10122.205449\n", + " 0.999875\n", " \n", " \n", " alphas__8_0\n", - " 0.424123\n", - " 0.082278\n", - " 0.001831\n", - " 0.271534\n", - " 0.588362\n", - " 1557.657704\n", - " 1.000735\n", + " 0.285507\n", + " 8.330494e-02\n", + " 0.001026\n", + " 0.130199\n", + " 0.450643\n", + " 6580.377657\n", + " 0.999851\n", " \n", " \n", " alphas__8_1\n", - " 0.575877\n", - " 0.082278\n", - " 0.001831\n", - " 0.411638\n", - " 0.728466\n", - " 1557.657704\n", - " 1.000735\n", + " 0.714493\n", + " 8.330494e-02\n", + " 0.001026\n", + " 0.549357\n", + " 0.869801\n", + " 6580.377657\n", + " 0.999851\n", " \n", " \n", " alphas__9_0\n", - " 0.378583\n", - " 0.041034\n", - " 0.000910\n", - " 0.301629\n", - " 0.459086\n", - " 1687.626379\n", - " 1.001155\n", + " 0.346399\n", + " 4.092672e-02\n", + " 0.000451\n", + " 0.267563\n", + " 0.426795\n", + " 9671.180808\n", + " 1.000124\n", " \n", " \n", " alphas__9_1\n", - " 0.621417\n", - " 0.041034\n", - " 0.000910\n", - " 0.540914\n", - " 0.698371\n", - " 1687.626379\n", - " 1.001155\n", + " 0.653601\n", + " 4.092672e-02\n", + " 0.000451\n", + " 0.573205\n", + " 0.732437\n", + " 9671.180808\n", + " 1.000124\n", " \n", " \n", " alphas__10_0\n", - " 0.382099\n", - " 0.040139\n", - " 0.001011\n", - " 0.305777\n", - " 0.460270\n", - " 1108.316853\n", - " 1.000925\n", + " 0.325235\n", + " 3.991164e-02\n", + " 0.000489\n", + " 0.251642\n", + " 0.406766\n", + " 7711.242913\n", + " 0.999759\n", " \n", " \n", " alphas__10_1\n", - " 0.617901\n", - " 0.040139\n", - " 0.001011\n", - " 0.539730\n", - " 0.694223\n", - " 1108.316853\n", - " 1.000925\n", + " 0.674765\n", + " 3.991164e-02\n", + " 0.000489\n", + " 0.593234\n", + " 0.748358\n", + " 7711.242913\n", + " 0.999759\n", " \n", " \n", " alphas__11_0\n", - " 0.404647\n", - " 0.029114\n", - " 0.000432\n", - " 0.345978\n", - " 0.461185\n", - " 4908.069577\n", - " 1.001670\n", + " 0.302479\n", + " 2.893751e-02\n", + " 0.000325\n", + " 0.245747\n", + " 0.359223\n", + " 8002.112214\n", + " 0.999828\n", " \n", " \n", " alphas__11_1\n", - " 0.595353\n", - " 0.029114\n", - " 0.000432\n", - " 0.538815\n", - " 0.654022\n", - " 4908.069577\n", - " 1.001670\n", + " 0.697521\n", + " 2.893751e-02\n", + " 0.000325\n", + " 0.640777\n", + " 0.754253\n", + " 8002.112214\n", + " 0.999828\n", " \n", " \n", " alphas__12_0\n", - " 0.353441\n", - " 0.065067\n", - " 0.001099\n", - " 0.227131\n", - " 0.481316\n", - " 3692.558707\n", - " 1.000163\n", + " 0.339100\n", + " 6.608551e-02\n", + " 0.000606\n", + " 0.213611\n", + " 0.470117\n", + " 10931.114116\n", + " 0.999913\n", " \n", " \n", " alphas__12_1\n", - " 0.646559\n", - " 0.065067\n", - " 0.001099\n", - " 0.518684\n", - " 0.772869\n", - " 3692.558707\n", - " 1.000163\n", + " 0.660900\n", + " 6.608551e-02\n", + " 0.000606\n", + " 0.529883\n", + " 0.786389\n", + " 10931.114116\n", + " 0.999913\n", " \n", " \n", " alphas__13_0\n", - " 0.403052\n", - " 0.044434\n", - " 0.000971\n", - " 0.323851\n", - " 0.492007\n", - " 2385.766620\n", - " 1.002089\n", + " 0.309679\n", + " 4.608976e-02\n", + " 0.000404\n", + " 0.221624\n", + " 0.399965\n", + " 11051.903283\n", + " 0.999854\n", " \n", " \n", " alphas__13_1\n", - " 0.596948\n", - " 0.044434\n", - " 0.000971\n", - " 0.507993\n", - " 0.676149\n", - " 2385.766620\n", - " 1.002089\n", + " 0.690321\n", + " 4.608976e-02\n", + " 0.000404\n", + " 0.600035\n", + " 0.778376\n", + " 11051.903283\n", + " 0.999854\n", " \n", " \n", " alphas__14_0\n", - " 0.395501\n", - " 0.035140\n", - " 0.000708\n", - " 0.332599\n", - " 0.466909\n", - " 2488.597000\n", - " 1.001680\n", + " 0.313434\n", + " 3.605603e-02\n", + " 0.000378\n", + " 0.240504\n", + " 0.381174\n", + " 8990.191148\n", + " 1.000523\n", " \n", " \n", " alphas__14_1\n", - " 0.604499\n", - " 0.035140\n", - " 0.000708\n", - " 0.533091\n", - " 0.667401\n", - " 2488.597000\n", - " 1.001680\n", + " 0.686566\n", + " 3.605603e-02\n", + " 0.000378\n", + " 0.618826\n", + " 0.759496\n", + " 8990.191148\n", + " 1.000523\n", " \n", " \n", " alphas__15_0\n", - " 0.393641\n", - " 0.046591\n", - " 0.002029\n", - " 0.293870\n", - " 0.486166\n", - " 166.511038\n", - " 1.006395\n", + " 0.306025\n", + " 4.460394e-02\n", + " 0.000435\n", + " 0.219731\n", + " 0.393783\n", + " 11163.889994\n", + " 0.999909\n", " \n", " \n", " alphas__15_1\n", - " 0.606359\n", - " 0.046591\n", - " 0.002029\n", - " 0.513834\n", - " 0.706130\n", - " 166.511038\n", - " 1.006395\n", + " 0.693975\n", + " 4.460394e-02\n", + " 0.000435\n", + " 0.606217\n", + " 0.780269\n", + " 11163.889994\n", + " 0.999909\n", " \n", " \n", "\n", "" ], "text/plain": [ - " mean sd mc_error hpd_2.5 hpd_97.5 n_eff \\\n", - "rho 0.026262 0.486198 0.019586 -0.776672 0.982571 219.477597 \n", - "beta__0 2.882723 1.293977 0.029046 0.587671 5.187584 1975.827576 \n", - "beta__1 3.605552 1.044456 0.022883 1.533640 5.422674 1807.881542 \n", - "mu__0 2.823693 1.283669 0.027996 0.682076 4.996197 2139.228438 \n", - "mu__1 3.513395 1.054367 0.026776 1.573847 4.999955 947.342508 \n", - "tau__0 0.494115 0.162296 0.005002 0.200195 0.801636 580.154804 \n", - "tau__1 0.495382 0.164286 0.004009 0.196106 0.816579 1725.987161 \n", - "diffe 0.779711 0.194553 0.004066 0.356060 0.986207 2466.786818 \n", - "alphas__0_0 0.272502 0.057480 0.001237 0.162145 0.382102 1891.155509 \n", - "alphas__0_1 0.727498 0.057480 0.001237 0.617898 0.837855 1891.155509 \n", - "alphas__1_0 0.349028 0.057060 0.001626 0.242097 0.457237 731.195195 \n", - "alphas__1_1 0.650972 0.057060 0.001626 0.542763 0.757903 731.195195 \n", - "alphas__2_0 0.377073 0.031098 0.000619 0.316725 0.436052 2513.149324 \n", - "alphas__2_1 0.622927 0.031098 0.000619 0.563948 0.683275 2513.149324 \n", - "alphas__3_0 0.332205 0.046699 0.001409 0.241422 0.419479 429.980336 \n", - "alphas__3_1 0.667795 0.046699 0.001409 0.580521 0.758578 429.980336 \n", - "alphas__4_0 0.346522 0.062497 0.002445 0.227867 0.477527 200.245105 \n", - "alphas__4_1 0.653478 0.062497 0.002445 0.522473 0.772133 200.245105 \n", - "alphas__5_0 0.362807 0.041945 0.000995 0.281951 0.445396 1122.373947 \n", - "alphas__5_1 0.637193 0.041945 0.000995 0.554604 0.718049 1122.373947 \n", - "alphas__6_0 0.390791 0.037041 0.001072 0.319414 0.461805 482.405846 \n", - "alphas__6_1 0.609209 0.037041 0.001072 0.538195 0.680586 482.405846 \n", - "alphas__7_0 0.411823 0.032733 0.000799 0.349777 0.474676 1313.801751 \n", - "alphas__7_1 0.588177 0.032733 0.000799 0.525324 0.650223 1313.801751 \n", - "alphas__8_0 0.424123 0.082278 0.001831 0.271534 0.588362 1557.657704 \n", - "alphas__8_1 0.575877 0.082278 0.001831 0.411638 0.728466 1557.657704 \n", - "alphas__9_0 0.378583 0.041034 0.000910 0.301629 0.459086 1687.626379 \n", - "alphas__9_1 0.621417 0.041034 0.000910 0.540914 0.698371 1687.626379 \n", - "alphas__10_0 0.382099 0.040139 0.001011 0.305777 0.460270 1108.316853 \n", - "alphas__10_1 0.617901 0.040139 0.001011 0.539730 0.694223 1108.316853 \n", - "alphas__11_0 0.404647 0.029114 0.000432 0.345978 0.461185 4908.069577 \n", - "alphas__11_1 0.595353 0.029114 0.000432 0.538815 0.654022 4908.069577 \n", - "alphas__12_0 0.353441 0.065067 0.001099 0.227131 0.481316 3692.558707 \n", - "alphas__12_1 0.646559 0.065067 0.001099 0.518684 0.772869 3692.558707 \n", - "alphas__13_0 0.403052 0.044434 0.000971 0.323851 0.492007 2385.766620 \n", - "alphas__13_1 0.596948 0.044434 0.000971 0.507993 0.676149 2385.766620 \n", - "alphas__14_0 0.395501 0.035140 0.000708 0.332599 0.466909 2488.597000 \n", - "alphas__14_1 0.604499 0.035140 0.000708 0.533091 0.667401 2488.597000 \n", - "alphas__15_0 0.393641 0.046591 0.002029 0.293870 0.486166 166.511038 \n", - "alphas__15_1 0.606359 0.046591 0.002029 0.513834 0.706130 166.511038 \n", + " mean sd mc_error hpd_2.5 \\\n", + "mu__0 6.093069 8.234688e+00 0.180893 -10.544320 \n", + "mu__1 6.828961 8.101430e+00 0.207703 -10.357080 \n", + "beta__0 71.476829 2.364595e+02 22.766323 -0.432098 \n", + "beta__1 45.594681 1.622495e+02 14.815154 0.717871 \n", + "packed_L__0 87.552578 4.057062e+02 29.018480 0.067557 \n", + "packed_L__1 15.383483 9.962871e+01 9.395267 -85.943822 \n", + "packed_L__2 48.618601 2.808802e+02 19.692748 0.048352 \n", + "Sigma__0_0 172262.998738 1.954825e+06 75746.255571 0.004564 \n", + "Sigma__0_1 925.703579 1.274978e+04 632.969995 -1382.733453 \n", + "Sigma__1_0 925.703579 1.274978e+04 632.969995 -1382.733453 \n", + "Sigma__1_1 91419.983202 1.737843e+06 70796.653921 0.002772 \n", + "alphas__0_0 0.427572 5.778023e-02 0.000612 0.320502 \n", + "alphas__0_1 0.572428 5.778023e-02 0.000612 0.456146 \n", + "alphas__1_0 0.341799 5.614980e-02 0.000671 0.238711 \n", + "alphas__1_1 0.658201 5.614980e-02 0.000671 0.544740 \n", + "alphas__2_0 0.349223 3.115593e-02 0.000304 0.289770 \n", + "alphas__2_1 0.650777 3.115593e-02 0.000304 0.585722 \n", + "alphas__3_0 0.355128 4.650339e-02 0.000524 0.266052 \n", + "alphas__3_1 0.644872 4.650339e-02 0.000524 0.553121 \n", + "alphas__4_0 0.381824 5.855220e-02 0.000565 0.266639 \n", + "alphas__4_1 0.618176 5.855220e-02 0.000565 0.505949 \n", + "alphas__5_0 0.360964 4.152221e-02 0.000416 0.278941 \n", + "alphas__5_1 0.639036 4.152221e-02 0.000416 0.559340 \n", + "alphas__6_0 0.327035 3.733396e-02 0.000364 0.258575 \n", + "alphas__6_1 0.672965 3.733396e-02 0.000364 0.593545 \n", + "alphas__7_0 0.300670 3.371497e-02 0.000316 0.233952 \n", + "alphas__7_1 0.699330 3.371497e-02 0.000316 0.634391 \n", + "alphas__8_0 0.285507 8.330494e-02 0.001026 0.130199 \n", + "alphas__8_1 0.714493 8.330494e-02 0.001026 0.549357 \n", + "alphas__9_0 0.346399 4.092672e-02 0.000451 0.267563 \n", + "alphas__9_1 0.653601 4.092672e-02 0.000451 0.573205 \n", + "alphas__10_0 0.325235 3.991164e-02 0.000489 0.251642 \n", + "alphas__10_1 0.674765 3.991164e-02 0.000489 0.593234 \n", + "alphas__11_0 0.302479 2.893751e-02 0.000325 0.245747 \n", + "alphas__11_1 0.697521 2.893751e-02 0.000325 0.640777 \n", + "alphas__12_0 0.339100 6.608551e-02 0.000606 0.213611 \n", + "alphas__12_1 0.660900 6.608551e-02 0.000606 0.529883 \n", + "alphas__13_0 0.309679 4.608976e-02 0.000404 0.221624 \n", + "alphas__13_1 0.690321 4.608976e-02 0.000404 0.600035 \n", + "alphas__14_0 0.313434 3.605603e-02 0.000378 0.240504 \n", + "alphas__14_1 0.686566 3.605603e-02 0.000378 0.618826 \n", + "alphas__15_0 0.306025 4.460394e-02 0.000435 0.219731 \n", + "alphas__15_1 0.693975 4.460394e-02 0.000435 0.606217 \n", "\n", - " Rhat \n", - "rho 1.008274 \n", - "beta__0 1.001178 \n", - "beta__1 1.000942 \n", - "mu__0 1.001272 \n", - "mu__1 1.003287 \n", - "tau__0 1.002979 \n", - "tau__1 0.999951 \n", - "diffe 1.001018 \n", - "alphas__0_0 1.001204 \n", - "alphas__0_1 1.001204 \n", - "alphas__1_0 1.001921 \n", - "alphas__1_1 1.001921 \n", - "alphas__2_0 1.001167 \n", - "alphas__2_1 1.001167 \n", - "alphas__3_0 1.002426 \n", - "alphas__3_1 1.002426 \n", - "alphas__4_0 1.007706 \n", - "alphas__4_1 1.007706 \n", - "alphas__5_0 1.000759 \n", - "alphas__5_1 1.000759 \n", - "alphas__6_0 1.002960 \n", - "alphas__6_1 1.002960 \n", - "alphas__7_0 1.003810 \n", - "alphas__7_1 1.003810 \n", - "alphas__8_0 1.000735 \n", - "alphas__8_1 1.000735 \n", - "alphas__9_0 1.001155 \n", - "alphas__9_1 1.001155 \n", - "alphas__10_0 1.000925 \n", - "alphas__10_1 1.000925 \n", - "alphas__11_0 1.001670 \n", - "alphas__11_1 1.001670 \n", - "alphas__12_0 1.000163 \n", - "alphas__12_1 1.000163 \n", - "alphas__13_0 1.002089 \n", - "alphas__13_1 1.002089 \n", - "alphas__14_0 1.001680 \n", - "alphas__14_1 1.001680 \n", - "alphas__15_0 1.006395 \n", - "alphas__15_1 1.006395 " + " hpd_97.5 n_eff Rhat \n", + "mu__0 23.177832 1487.397063 1.003119 \n", + "mu__1 22.868710 1295.971757 1.002388 \n", + "beta__0 518.181069 20.715361 1.118284 \n", + "beta__1 127.227294 29.192842 1.046725 \n", + "packed_L__0 420.374156 37.670767 1.061497 \n", + "packed_L__1 78.652195 58.090749 1.028396 \n", + "packed_L__2 150.110619 62.179535 1.021208 \n", + "Sigma__0_0 176714.430813 200.089723 1.014189 \n", + "Sigma__0_1 2487.531151 275.110813 1.009295 \n", + "Sigma__1_0 2487.531151 275.110813 1.009295 \n", + "Sigma__1_1 36693.792554 284.767092 1.004790 \n", + "alphas__0_0 0.543854 8315.028470 0.999864 \n", + "alphas__0_1 0.679498 8315.028470 0.999864 \n", + "alphas__1_0 0.455260 9430.781643 0.999975 \n", + "alphas__1_1 0.761289 9430.781643 0.999975 \n", + "alphas__2_0 0.414278 9097.989761 1.000082 \n", + "alphas__2_1 0.710230 9097.989761 1.000082 \n", + "alphas__3_0 0.446879 9320.463193 0.999780 \n", + "alphas__3_1 0.733948 9320.463193 0.999780 \n", + "alphas__4_0 0.494051 11200.584389 1.000243 \n", + "alphas__4_1 0.733361 11200.584389 1.000243 \n", + "alphas__5_0 0.440660 8727.625497 0.999790 \n", + "alphas__5_1 0.721059 8727.625497 0.999790 \n", + "alphas__6_0 0.406455 9361.317435 0.999833 \n", + "alphas__6_1 0.741425 9361.317435 0.999833 \n", + "alphas__7_0 0.365609 10122.205449 0.999875 \n", + "alphas__7_1 0.766048 10122.205449 0.999875 \n", + "alphas__8_0 0.450643 6580.377657 0.999851 \n", + "alphas__8_1 0.869801 6580.377657 0.999851 \n", + "alphas__9_0 0.426795 9671.180808 1.000124 \n", + "alphas__9_1 0.732437 9671.180808 1.000124 \n", + "alphas__10_0 0.406766 7711.242913 0.999759 \n", + "alphas__10_1 0.748358 7711.242913 0.999759 \n", + "alphas__11_0 0.359223 8002.112214 0.999828 \n", + "alphas__11_1 0.754253 8002.112214 0.999828 \n", + "alphas__12_0 0.470117 10931.114116 0.999913 \n", + "alphas__12_1 0.786389 10931.114116 0.999913 \n", + "alphas__13_0 0.399965 11051.903283 0.999854 \n", + "alphas__13_1 0.778376 11051.903283 0.999854 \n", + "alphas__14_0 0.381174 8990.191148 1.000523 \n", + "alphas__14_1 0.759496 8990.191148 1.000523 \n", + "alphas__15_0 0.393783 11163.889994 0.999909 \n", + "alphas__15_1 0.780269 11163.889994 0.999909 " ] }, - "execution_count": 449, + "execution_count": 87, "metadata": {}, "output_type": "execute_result" } @@ -2333,25 +2090,130 @@ }, { "cell_type": "code", - "execution_count": 450, + "execution_count": 88, + "metadata": {}, + "outputs": [], + "source": [ + "matrix_s = trace_2['Sigma'].mean(axis=0)" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[172262.99873826, 925.7035785 ],\n", + " [ 925.7035785 , 91419.98320238]])" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "matrix_s" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "415.0457790873895 302.35737662968336\n" + ] + } + ], + "source": [ + "tau1, tau2 = np.sqrt(matrix_s[0, 0]), np.sqrt(matrix_s[1, 1])\n", + "print(tau1, tau2)" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "metadata": {}, + "outputs": [], + "source": [ + "rho = matrix_s[1, 0] / (tau1 * tau2)" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.007376585362288601" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rho" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 93, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 1000/1000 [00:00<00:00, 27298.67it/s]\n" + "100%|██████████| 1000/1000 [00:00<00:00, 23062.73it/s]\n" ] } ], "source": [ "with model_hier:\n", - " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1000, vars=[alphas, diffe])" + " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1000, vars=[alphas])" ] }, { "cell_type": "code", - "execution_count": 451, + "execution_count": 94, "metadata": {}, "outputs": [ { @@ -2360,7 +2222,7 @@ "(1000, 16, 2)" ] }, - "execution_count": 451, + "execution_count": 94, "metadata": {}, "output_type": "execute_result" } @@ -2371,80 +2233,137 @@ }, { "cell_type": "code", - "execution_count": 458, + "execution_count": 95, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.3255814 , 0.51111111, 0.53061224, 0.47058824, 0.45238095,\n", + " 0.5 , 0.56730769, 0.62015504, 0.66666667, 0.53571429,\n", + " 0.56043956, 0.61212121, 0.51515152, 0.60294118, 0.59292035,\n", + " 0.60526316])" + ] + }, + "execution_count": 95, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "valores[:, 0] / (valores[:, 0] + valores[:, 1])" + ] + }, + { + "cell_type": "code", + "execution_count": 96, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.34716292, 0.65283708],\n", + " [0.35770391, 0.64229609],\n", + " [0.28406868, 0.71593132],\n", + " [0.32453006, 0.67546994],\n", + " [0.4686527 , 0.5313473 ],\n", + " [0.33529416, 0.66470584],\n", + " [0.35546567, 0.64453433],\n", + " [0.28125523, 0.71874477],\n", + " [0.31280583, 0.68719417],\n", + " [0.32138581, 0.67861419],\n", + " [0.33186565, 0.66813435],\n", + " [0.29384942, 0.70615058],\n", + " [0.26703781, 0.73296219],\n", + " [0.34783915, 0.65216085],\n", + " [0.29775929, 0.70224071],\n", + " [0.27425 , 0.72575 ]])" + ] + }, + "execution_count": 96, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ppc_hier['alphas'][250, :, :]" + ] + }, + { + "cell_type": "code", + "execution_count": 97, "metadata": {}, "outputs": [], "source": [ "th1 = []\n", - "th2 = []\n", "\n", "for i in range(16):\n", - " result1 = ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1]\n", - " result2 = ppc_hier['alphas'][:, i, 1] - ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1]\n", - " th1.append(result1 - result2)" + "# result1 = 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] - ppc_hier['alphas'][:, i, 1] \n", + " result1 = - 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] + ppc_hier['alphas'][:, i, 1] \n", + " th1.append(list(result1))" ] }, { "cell_type": "code", - "execution_count": 459, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ - "th1 = np.asarray(th1)" + "# print(th1" ] }, { "cell_type": "code", - "execution_count": 463, + "execution_count": 99, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-0.14891755, -0.13593357, -0.15645181, -0.13211676, -0.13384177,\n", - " -0.13437302, -0.13437302, -0.16392439, -0.15918594, -0.14332431,\n", - " -0.15431079, -0.17379302, -0.16523523, -0.15819441, -0.14353797])" + "(16, 1000)" ] }, - "execution_count": 463, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "res2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", - "res2[:15]" + "th1 = np.asarray(th1)\n", + "th1.shape" ] }, { "cell_type": "code", - "execution_count": 461, + "execution_count": 100, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAGAhJREFUeJzt3XtslfX9wPEP7YFehNpN6zYj/FC7EcUIGXiZF3QXhdIucy4mgyHT1KnxEhfnsITMGxZBw0imJpKJEakuGrPtDxHcZJso4oZOt2yJF+aaGTeY4qVUDhS65/fHYrMKwtdyTk85vF6Jf5zT0z6f+qWn7z7POc8zLMuyLAAA2KuKUg8AAHAgEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJcsXewFtvbS32Jg5II0dWRXf3jlKPwUdYl6HHmgw91mTosSaF09Aw6mM/Zk9TieRylaUegT2wLkOPNRl6rMnQY00Gh2gCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEuRKPQDAUDayriZqqor7VJnfsSu6u/JF3Qaw/0QTwF7UVOVibNvKom6jc2FzdBd1C0AhODwHAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACZLO07RmzZr4yU9+Ej09PVFfXx8333xzdHV1RWtra3zuc5/re9ysWbNi1qxZRRsWAKBU9hlNmzdvjra2tvjZz34WjY2N8eCDD8YNN9wQl112WUyePDmWLVs2GHMCAJTUPg/P5XK5WLx4cTQ2NkZExKRJk2Ljxo2xdevWGDVqVNEHBAAYCva5p+mwww6LKVOm9N1eu3ZtTJgwIbZu3RqdnZ0xc+bM2LJlS0yaNCnmzp0rpACAsjQsy7Is9cHr16+P6667LpYvXx7//Oc/44UXXojW1tYYMWJEXH/99VFbWxu33XZbv8/J53sil6ss+OAHusrKiujt/U+px+AjrMvQU+o1GT68clCuPbdzZ29Rt1FIpV4TdmdNCmf48I9vluQL9j755JMxf/78uOeee6KxsTEaGxv77YG69NJL45JLLtnt87q7d3zCcQ8O9fW18d5720o9Bh9hXYaeUq9JQ8Pg7D0/kP7dlXpN2J01KZy9/cwnRdOzzz4b7e3tcd9998Wxxx4bERGbNm2K4cOHx2GHHRYREVmWRS6X3GAAAAeUfb4QPJ/Px9y5c+POO+/sC6aIiEcffTTmzZsXPT090dvbGytWrIizzz67mLMCAJTMPncNrVmzJt5555247rrr+t3f0dERS5Ysiebm5qioqIiJEyfGnDlzijYoAEAp7TOaWlpaoqWlZY8fa29vL/hAAABDkcuoAAAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQIJcqQcAONht39kbDQ2jirqN/I5d0d2VL+o2oNyJJoASqx5eGWPbVhZ1G50Lm6O7qFuA8ufwHABAAtEEAJDA4Tmg4EbW1URNVeGeXvb0eh+v0QEGm2gCCq6mKuc1OkDZcXgOACCBaAIASCCaAAASiCYAgASiCQAggXfPAQekwbj0CMD/Ek3AAWkwLj0S8d9TGwBEODwHAJBENAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQICma1qxZE9/4xjeiqakpZsyYEa+++mpERNx///3R1NQUU6dOjXnz5kVPT09RhwUAKJV9RtPmzZujra0tFi9eHKtWrYqWlpa44YYb4qWXXooHHnggHn744Vi1alVs2bIlOjo6BmNmAIBBt89oyuVysXjx4mhsbIyIiEmTJsXGjRtj9erVMX369Kirq4uKioqYMWNGrFq1qugDAwCUwj6j6bDDDospU6b03V67dm1MmDAhOjs7Y8yYMX33jx49Ol5//fXiTAkAUGKf6IXg69evj+XLl8fcuXMjn8/HiBEj+j5WXV0d+Xy+4AMCAAwFudQHPvnkkzF//vy45557orGxMWpqavq98Dufz0dtbe1unzdyZFXkcpWFmbaMVFZWRH397v+/KC3rQrnavrM3GhpGFezrfdzX2r6zNzzjDz7PXYMjKZqeffbZaG9vj/vuuy+OPfbYiIg45phj+h2O27hxY9/rnv5Xd/eOAo1aXurra+O997aVegw+wroURiF/OVMY1cMrY2zbyqJvp3Nhc7z11taib4f+PHcVzt6ev/Z5eC6fz8fcuXPjzjvv7AumiIimpqa+d83t2rUrHnrooWhubi7MxAAAQ8w+9zStWbMm3nnnnbjuuuv63d/R0RGtra0xc+bMyLIsTjvttJgxY0bRBgUAKKV9RlNLS0u0tLTs8WOzZ8+O2bNnF3woAIChxmVUAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgAS5Ug8ADJ6RdTVRU+XHnuLZvrM3GhpGFXUb+R27orsrX9RtwJ549oSDSE1VLsa2rSz6djoXNhd9GwxN1cMri/5vrHNhc3QXdQuwZw7PAQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACZKiaefOnbFo0aIYN25cbNq0KSIinn/++ZgwYUJMmzat77+Ojo6iDgsAUCq5lAddccUVccIJJ/S7b+vWrTF58uRYtmxZUQYDABhKkvY0XXnllXHNNdf0u2/r1q0xatSoogwFADDUJO1pmjhx4m73bd26NTo7O2PmzJmxZcuWmDRpUsydO1dIAQBlKSma9mT06NFx1llnRWtra4wYMSKuv/76WLBgQdx22239HjdyZFXkcpX7PWi5qaysiPr62lKPwUdYFzgw+Dntz3PX4BhwNE2ZMiWmTJnSd/vSSy+NSy65ZLfHdXfvGOgmylp9fW289962Uo/BR5T7ujQ02BNMeSjnn9OBKPfnrsG0t+fJAZ9yYNOmTbFly5a+21mWRS434AYDABjSBhxNjz76aMybNy96enqit7c3VqxYEWeffXYBRwMAGDr2uWvo7bffjlmzZvXdvvDCC6OysjKWLVsW//rXv6K5uTkqKipi4sSJMWfOnKIOCwBQKvuMpsMPPzxWr169x4+1t7cXfCAAgKHIZVQAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABIkRdPOnTtj0aJFMW7cuNi0aVPf/ffff380NTXF1KlTY968edHT01O0QQEASikpmq644oqorq7ud99LL70UDzzwQDz88MOxatWq2LJlS3R0dBRlSACAUkuKpiuvvDKuueaafvetXr06pk+fHnV1dVFRUREzZsyIVatWFWVIAIBSS4qmiRMn7nZfZ2dnjBkzpu/26NGj4/XXXy/cZAAAQ8iAXwiez+djxIgRfberq6sjn88XZCgAgKEmN9BPrKmp6ffC73w+H7W1tbs9buTIqsjlKge6mbJVWVkR9fW7//+itKwLHBj8nPbnuWtwDDiajjnmmH6H4zZu3BiNjY27Pa67e8dAN1HW6utr4733tpV6DD6i3NeloWFUqUeAgijnn9OBKPfnrsG0t+fJAUdTU1NTXHXVVfG9730vDj300HjooYeiubl5oF8ODnoj62qipmrAP5IAFNk+n6HffvvtmDVrVt/tCy+8MCorK2P58uXR2toaM2fOjCzL4rTTTosZM2YUdVgoZzVVuRjbtrKo2+hc6A8bgIHaZzQdfvjhsXr16j1+bPbs2TF79uyCDwUAMNS4jAoAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAhe6ggSuCweA3wKQwHXhAHB4DgAggWgCAEggmgAAEnhNEwAHlO07e6OhYVRRt5HfsSu6u/JF3QYHHtEEwAGlenjloLwxo7uoW+BA5PAcAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQwGVUAOAjBuP6dhGucXegEU0A8BGDcX27CNe4O9A4PAcAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkyJV6ANgfI+tqoqaqsP+MGxpGFfTrAVAeRBMHtJqqXIxtW1n07XQubC76NgAY2hyeAwBIIJoAABKIJgCABKIJACCBaAIASLBf754bP358jB49uu/2iSeeGLfffvt+DwUAMNQMOJo++OCDGDZsWKxevbqQ8wAADEkDPjzX3d0ddXV1hZwFAGDIGnA0dXV1RW9vb1x++eUxbdq0aG1tjb/97W+FnA0AYMgYcDRVV1fHtGnToq2tLR5//PE488wz44orrohdu3YVcj4AgCFhwK9pGj16dNx88819t7/73e/GnXfeGZ2dndHY2Nh3/8iRVZHLVe7flGWosrIi6utrSz0GACVWiN8FfqcMjgFHU1dXV7z//vt9754bNmxY/Oc//4lcrv+X7O7esX8Tlqn6+tp4771tpR7jgOfiusCBrhC/C/xOKZy9/V4Z8OG5V155JS688MJ4++23IyLikUceic9+9rP9TkEAAFAuBryn6aSTToqLLroovvOd78SwYcPiiCOOiLvuuisqKx2KAwDKz36d3PKiiy6Kiy66qECjAAAMXS6jAgCQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAn26zxNAMDAbd/ZW7DLQX3c18nv2BXdXfmCbONgJ5oAoESqh1fG2LaVRd1G58Lm6C7qFg4eDs8BACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJXEaFohlZVxM1Vf6JAVAe/EajaGqqcoNyTSUAGAwOzwEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAECCXKkHAACKZ/vO3mhoGFXUbeR37IrurnxRtzEUiCYAKGPVwytjbNvKom6jc2FzdBd1C0ODaAIA9stg7M2KKP0eLdEEAOyXwdibFVH6PVpeCA4AkMCepiFmZF1N1FQVf1m27+yN6uGVRd8OAJQL0TTE1FTlBm0X52C8MBAAyoXDcwAACUQTAEAC0QQAkGC/omn9+vXxzW9+M6ZOnRoXX3xxbNq0qVBzAQAMKQOOpm3btsW1114bt956azzxxBNxxhlnxE033VTA0QAAho4Bv3vuueeei9GjR8f48eMjIuLb3/52LFmyJLq7u2PkyJEFGzDVYLxVv9RnIgUASmfAldHZ2RmjR4/uu33IIYdEfX19/OMf/4jjjz++IMN9EoPxVv1Sn4kUACidYVmWZQP5xLvvvjvefPPNWLBgQd99X/3qV2PRokUxefLkgg0IADAUDPg1TbW1tbFjx45+923fvj0OOeSQ/R4KAGCoGXA0HXPMMfH3v/+97/Y777wT77//fvzf//1fQQYDABhKBhxNp5xySmzatCmef/75iIhYsWJFfPnLX47a2tqCDQcAMFQMOJqqq6tjyZIlccstt8Q555wTf/7zn+OGG24o5GwHvNTzWL3wwgtxwQUXRFNTU5x//vmxYcOGvo+tXLkyWlpaYurUqXH11VfH1q1bB2v8spS6JlmWxbJly2L8+PF9fxh8aOnSpTFt2rRoamqKq666Kt56663BGL1sFWJNNm7cGBdccEGcddZZ8a1vfSs2btw4GKOXtUKsy4c6Ojpi3LhxxRz3oFCINXnkkUeiubk5pk2bFq2trc6v+EllFMUHH3yQnXrqqdlf/vKXLMuy7N57780uu+yy3R63Y8eO7OSTT87Wr1+fZVmW/e53v8vOOOOMLMuy7M0338xOOeWU7M0338yyLMtuvvnm7JZbbhmk76D8pK5JlmXZj370o2zevHnZGWeckW3YsKHv/meeeSY755xzsq6urizLsuyOO+7IfvCDHxR/+DJViDXZtWtXNnXq1OyJJ57IsizLfvGLX2QLFiwo/vBlrBDr8qHNmzdnX//617MvfOELRZ253BViTf70pz9lp59+erZ58+Ysy7Js4cKF2bXXXlv84cuIy6gUyZ7OY/XMM89Ed3f/kxbs3Lkz5s+fH6eeempEREyaNCn+/e9/R1dXV6xZsya+9KUvxZFHHhkRETNnzoxVq1YN7jdSRlLXJCLi/PPPj1tvvTWGDx/e7/5XX301TjjhhBg1alRERJx66qnx2muvFX/4MlWINXnxxRcjl8vFueeeGxER5513XsydO7f4w5exQqzLh9rb2+Pyyy8v6rwHg0Ksyac//elYsmRJHHHEERERMXnyZHtlPyHRVCR7O4/V/zrkkEP6nuwjItauXRtjx46Nurq66OzsjDFjxvR9bMyYMbFly5Z4//33i/8NlKHUNYmImDhx4h6/xsknnxwvvvhibNq0KXp7e+PXv/51nHbaaUWbudwVYk1efvnlOPLII6OtrS2mTp0al156abzxxhtFm/lgUIh1ifjv81l3d3dMnz69KHMeTAqxJkcddVScdNJJfbfXrl0bEyZMKPywZUw0FUk+n4+qqqp+91VVVcW2bds+9nNefvnlWLBgQdxyyy19X2PEiBF9Hx8xYkQMGzYs8nlnJR+IgazJR40fPz7OO++8+MpXvhInn3xybNiwIS677LJCj3rQKMSadHV1xYYNG2LGjBmxatWqOO6442LOnDmFHvWgUoh12b59eyxatChuvPHGQo93UCrEmvyvX/7yl/H000/H1VdfXYjxDhrFve7IQeBXv/pV3HHHHbvdP2PGjE90Hqs//vGP8f3vfz/a29vjlFNOiYj/ngurp6en7zE7duyILMu8Q3EfCrUme7JmzZp46qmnYt26dXHooYfG0qVL44c//GH89Kc/3e+5y1kx12TUqFFx3HHH9f3FfPHFF8fSpUtj27Ztflb2oZjrcvfdd0dLS0u/veXsWzHX5EMPPvhg3H///bF8+fJoaGgY8KwHI9G0n84999x+h9c+9NRTT8Vjjz3Wd3tv57F6+eWX45prroklS5b0O5v60UcfHc8991zf7ddeey0aGhqirq6uwN9FeSnEmnycdevWxZlnnhmf+tSnIiJi+vTpsXTp0v0fuswVc02OOuqofu8qraysjIiIigo70velmOvym9/8Jt59993o6Ojou+/000+Phx56yPn89qKYaxIR8fOf/zwefPDB6OjoiM985jP7Pe/BxrNKkaSexyrLsmhra4sbb7xxt8vPfO1rX4s//OEPfScRXbFiRbS0tAzON1CGCnFusaOPPjrWr1/fd4j0t7/9bXz+858vyrwHg0Ksyemnnx7vvvtuPP300xER8fDDD8cXv/jFqK6uLsrMB4NCrMvKlSvj2WefjXXr1sW6desi4r9/dAimgSnEmmzevDl+/OMfx7333iuYBmjA155j337/+99He3t75PP5GDNmTCxcuDAaGhpi8+bN0draGo899li8+OKLMXPmzN2eSBYvXhzjx4+Pxx9/PO66667YtWtXHH/88dHe3u5SNfshZU0iIlpaWmLXrl3xxhtvxBFHHBFVVVVx++23x3HHHRe33XZbPP3001FRURENDQ1x0003RWNjY4m/swPX/q7JiSeeGH/9619jzpw50dPTE0ceeWTMnz/fYaH9VIh1+V/jxo2LV155pRTfStnY3zVZv3593HPPPf2CKZfL9duDxd6JJgCABA7PAQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACT4fx8oWSslxL0OAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "array([0.23662175, 0.23282416, 0.22871552, 0.25399912, 0.23206242,\n", + " 0.23172383, 0.28342552, 0.21808228, 0.25160088, 0.26640258,\n", + " 0.21603326, 0.22289922, 0.22426174, 0.23504322, 0.23136687])" ] }, + "execution_count": 100, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ - "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(res2, bins=20, edgecolor='w', density=True)" + "res2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", + "res2[:15]" ] }, { "cell_type": "code", - "execution_count": 456, + "execution_count": 101, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAFkCAYAAADv4QVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4xLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvDW2N/gAAH01JREFUeJzt3XtwVPX9//EXyeLmsoRlMMFLFiHJEFtksF6KFgujEklNqrWl41rBgjBFlJbh5oBWErkoCpGOGIeZAjMRO7a2VqYEJCoz3iDY4o3pJemQZMd6SWoSQ7JsEkN2f3/4y36/+w2w+9Gzu8fk+fiLc87Hz3mTN2f35Tkn54wIhUIhAQAAIGYpyS4AAADgm4YABQAAYIgABQAAYIgABQAAYIgABQAAYIgABQAAYMiR6B1+9lmXpfO5XE75/b2Wzglr0Bv7ojf2RW/si97YVzx7k5096ozrv/FnoByO1GSXgLOgN/ZFb+yL3tgXvbGvZPTmGx+gAAAAEo0ABQAAYIgABQAAYMgoQL322msqLCzURx99NGhbbW2tbrvtNs2ePVsLFixQc3OzZUUCAADYScwBqru7WxUVFXK73YO2BQIBrVixQhs3blRNTY2uu+46lZeXW1knAACAbcQcoLZv365bbrlFmZmZg7YdPXpUHo9HkydPliR5vV699dZb8vv91lUKAABgEzEFqPr6eh05ckTz588/43afzyePxxNezszMlNvt1ocffmhJkQAAAHYS9UGaoVBIZWVl+vWvf62RI0eecUx3d7ecTmfEOqfTqUAgMGisy+W09HkNqakpcrszLJsP1qE39kVv7Ive2Be9sa9k9CZqgPrDH/6ggoICXXXVVWcdk5GRod7eyCeA9vT0nPFyn9VPCnW7M9TRMTioIfnojX3RG/uiN/ZFb+wrnr35yk8iP3TokA4dOqTp06dr+vTp+vTTTzVnzhwdPXo0PCYvL09NTU3h5fb2dp08eVKXXHKJBaUDAADYS9QzUL/97W8jlm+44QY988wzys3NDa+bNm2ampubdezYMV111VXas2ePrr/+emVkcKoTAAAMPV/5QZrHjx/XwoULJUlpaWnatm2b1q9fr6KiIh0/flzr1q2zrEgAAAA7GREKhUKJ3OFnn3VZOh/XpO2L3tgXvbEvemNf9Ma+bHkPFAAAACJFvQcKAAAMDa6sdKU74//V3917Wv7O7rjvJ5kIUAAADBPpTocmrNkf9/34NpdoqL+LhEt4AAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhghQAAAAhhyxDKqpqdHTTz+t3t5ejRkzRg8//LAmTZoUMaaoqEihUEgOx5dTjhs3TlVVVdZXDAAAkGRRA9Qnn3yisrIyvfDCC7r44otVVVWlBx54QH/6058ixnV2dmrfvn3KycmJW7EAAAB2EPUSnsPhUEVFhS6++GJJ0rXXXqumpqZB4/x+v7KysqyvEAAAwGainoHKyckJn1U6ffq0XnzxRd14440RYwKBgPr7+7V27VrV19drzJgxWrlypa644or4VA0AAJBEMd9EXlVVpenTp+vYsWNatWpVxLZgMKg5c+bo7rvv1oEDBzRv3jwtWbJEJ0+etLxgAACAZBsRCoVCsQ4OhULav3+/nnjiCR04cEBpaWlnHfvDH/5Qq1at0syZMyPWd3d/IYcj9atX/H+kpqaovz9o2XywDr2xL3pjX/TGvoZCb0aOTNWENfvjvh/f5hL19fXHfT8D4tmbkSPPnFmiXsJraGhQS0uLvve972nEiBEqLS3Vhg0b1NTUpG9961uSvryE19zcrLy8vMjJHYOn9/t7v0r9Z+V2Z6ijI2DpnLAGvbEvemNf9Ma+hkJvsrNHJWxfifxZxbM3Z/uZRb2E197ervvvv18tLS2SpHfeeUd9fX3yeDzhMW1tbfJ6vWpsbJQkHT58WK2trZo6daoVtQMAANhK1DNQV199te655x4tWLBAwWBQ5513nrZt26ZTp07J6/WqurpaHo9HZWVlWrp0qfr7+zV69GhVVlbK5XIl4u8AAACQUEb3QFnhs8+6LJ1vKJxSHarojX3RG/uiN/Y1FHqTnT0qYfdAWf19fy62vIQHAACASAQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQ45kFwAAAIaWnr5+ZWePius+untPy9/ZHdd9nAsBCgAAWCptZKomrNkf1334NpfIH9c9nBuX8AAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAwRoAAAAAzFFKBqamp06623qri4WHfccYf+/e9/DxpTV1cnr9er2bNny+v1qq6uzvJiAQAA7CBqgPrkk09UVlamp59+WgcPHlRxcbEeeOCBQeOWL1+uRYsWqaamRvPnz9fq1avjUjAAAECyRQ1QDodDFRUVuvjiiyVJ1157rZqamiLG1NfXq6urS7NmzZIkFRcXq62tTQ0NDXEoGQAAILkc0Qbk5OQoJydHknT69Gm9+OKLuvHGGyPG+Hw+5ebmRqzzeDxqbGxUfn6+heUCAAAkX9QANaCqqkpPP/20xo8fr8rKyoht3d3dcjqdEeucTqcCgcCgeVwupxyO1K9Y7mCpqSlyuzMsmw/WoTf2RW/si97YF72xn4F+JKM3MQeon//857rrrru0f/9+eb1eHThwQGlpaZKkjIwM9fb2Rozv6elRZmbmoHn8/t5B674OtztDHR2DgxqSj97YF72xL3pjX0OhN9nZo5JdgqUG+hHP3pztZxb1HqiGhgYdOXJEkjRixAiVlpbq1KlTEfdB5eXlyefzKRgMSvryUp/P5+PyHQAAGJKiBqj29nbdf//9amlpkSS988476uvrk8fjCY8pKChQdna2qqurJUl79+5Vbm6uJk6cGKeyAQAAkifqJbyrr75a99xzjxYsWKBgMKjzzjtP27Zt06lTp+T1esOhaevWrXrooYf01FNPaezYsdqyZUvciwcAAEiGmO6Bmjt3rubOnTto/UB4kqTCwkI9//zz1lUGAABgU7zKBQAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwBABCgAAwJAj2QUAAADJlZWudCdfy98UdAoAABtIdzo0Yc3+uO7Dt7kkrvMPJ1zCAwAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMESAAgAAMBTTq1wOHTqkJ598Ul988YXcbrcefvhhTZo0KWJMUVGRQqGQHI4vpxw3bpyqqqqsrxgAACDJogaolpYWrVmzRs8995wKCgr0u9/9TuvWrdPvf//7iHGdnZ3at2+fcnJy4lYsAACAHUS9hOdwOFRRUaGCggJJ0pVXXqkTJ04MGuf3+5WVlWV9hQAAADYTNUCNHTtWM2bMCC+/8cYbmjp1asSYQCCg/v5+rV27VjfffLPuvPNOvfvuu9ZXCwAAYAMx3QM1oLa2VlVVVYPubQoGg5ozZ45uv/12TZkyRQcPHtSSJUv08ssva/To0RFjXS6nHI7Ur1/5/5eamiK3O8Oy+WAdemNf9Ma+6I190Rv7GehHMnoTc4B69dVXtWHDBu3YsSN8OW+Ay+XSxo0bw8vFxcWqrKzU+++/r5kzZ0aM9ft7v2bJkdzuDHV0BCydE9agN/ZFb+yL3thXvHuTnT0qbnMPVQP9iGdvztaXmB5jcOTIEW3atEm7d+/WlClTBm0PBAJqbGwctH7gN/IAAACGkqgBqru7W2vXrtX27duVn59/xjFtbW3yer3hEHX48GG1trYOulcKAABgKIh6iujQoUNqb2/XqlWrItbv2rVLixcvVnV1tTwej8rKyrR06VL19/dr9OjRqqyslMvlilvhAAAAyRI1QJWWlqq0tPSM26qrq8N/LikpUUlJiXWVAQAA2BSvcgEAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADDkSHYBAADYnSsrXSNHpio7e1SyS4FNxBSgDh06pCeffFJffPGF3G63Hn74YU2aNCliTF1dncrLy/X5559rzJgxKi8v16WXXhqXogEASKR0p0MT1uyP6z58m0viOj+sFfUSXktLi9asWaOKigq99NJLKi0t1bp16waNW758uRYtWqSamhrNnz9fq1evjkvBAAAAyRY1QDkcDlVUVKigoECSdOWVV+rEiRMRY+rr69XV1aVZs2ZJkoqLi9XW1qaGhoY4lAwAAJBcUQPU2LFjNWPGjPDyG2+8oalTp0aM8fl8ys3NjVjn8XjU2NhoUZkAAAD2YXQTeW1traqqqlRVVRWxvru7W06nM2Kd0+lUIBD4+hUCAADYTMwB6tVXX9WGDRu0Y8eO8OW8ARkZGert7Y1Y19PTo8zMzEHzuFxOORypX7HcwVJTU+R2Z1g2H6xDb+yL3tgXvQFiN3CsJOO4iSlAHTlyRJs2bdLu3buVn58/aHteXp58Pp+CwaBSUlJ0+vRp+Xy+M471+3sHrfs63O4MdXRwpsuO6I190Rv7ojf2xOML7GngWInncXO23ke9B6q7u1tr167V9u3bzxiIJKmgoEDZ2dmqrq6WJO3du1e5ubmaOHHi1ygZAADAnqKegTp06JDa29u1atWqiPW7du3S4sWLw6Fp69ateuihh/TUU09p7Nix2rJlS3wqBgAASLKoAaq0tFSlpaVn3DYQniSpsLBQzz//vHWVAQAA2BTvwgMAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADBEgAIAADDkiGVQX1+fnnjiCe3evVuvv/66LrjggkFjioqKFAqF5HB8OeW4ceNUVVVlbbUAAAA2EFOAuvfee3XZZZedc0xnZ6f27dunnJwcSwoDAACwq5gu4d13331atmzZOcf4/X5lZWVZUhQAAICdxXQG6vLLLz/n9kAgoP7+fq1du1b19fUaM2aMVq5cqSuuuMKSIgEAOBNXVrrSnTF9lQGWsuRfXTAY1Jw5c3T77bdrypQpOnjwoJYsWaKXX35Zo0ePjhjrcjnlcKRasVtJUmpqitzuDMvmg3XojX3RG/uiN2ZGjkzVhDX7474f3+aSuO8D5gaOlWQcN5YEKJfLpY0bN4aXi4uLVVlZqffff18zZ86MGOv391qxyzC3O0MdHQFL54Q16I190Rv7ojdmsrNHJbsEJNHAsRLP4+Zs/8YseYxBIBBQY2PjoPUDv5EHAAAwlFgSoNra2uT1esMh6vDhw2ptbdXUqVOtmB4AAMBWop4iam1t1dy5c8PL8+bNU2pqqqqqqrRw4UJVV1fL4/GorKxMS5cuVX9/v0aPHq3Kykq5XK64Fg8AAJAMUQPU+eefr4MHD55xW3V1dfjPJSUlKinhJjsAADD08SoXAAAAQwQoAAAAQwQoAAAAQwQoAAAAQwQoAAAAQzzpEgAQF7ynDkMZ/7IBAHGR7nTE/T11vKMOycIlPAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEMEKAAAAEOOZBcAAEg8V1a60p18BQBfFUcPAAxD6U6HJqzZH9d9+DaXxHV+IJliuoTX19enxx57TIWFhWpubj7jmLq6Onm9Xs2ePVter1d1dXWWFgoAAGAXMQWoe++9V2lpaeccs3z5ci1atEg1NTWaP3++Vq9ebUmBAAAAdhNTgLrvvvu0bNmys26vr69XV1eXZs2aJUkqLi5WW1ubGhoarKkSAADARmIKUJdffvk5t/t8PuXm5kas83g8amxs/OqVAQAA2JQlN5F3d3fL6XRGrHM6nQoEAoPGulxOORypVuxWkpSamiK3O8Oy+WAdemNf9Ma+6A0Qu4FjJRnHjSUBKiMjQ729vRHrenp6lJmZOWis3987aN3X4XZnqKNjcFBD8tEb+6I39pWo3mRnj4r7PoB4GzhW4nncnO1YseRBmnl5efL5fAoGg5Kk06dPy+fzKT8/34rpAQAAbMWSAFVQUKDs7GxVV1dLkvbu3avc3FxNnDjRiukBAABsJWqAam1tVXFxsYqLiyVJ8+bNU3FxsVpaWlRaWhoet3XrVj377LO66aab9MILL2jLli3xqxoAACCJot4Ddf755+vgwYNn3DZwxkmSCgsL9fzzz1tXGQAAgE3xMmEAAABDBCgAAABDBCgAAABDBCgAAABDBCgAAABDBCgAAABDlrzKBQBgjX7xmhXgm4AABQA2kjYyVRPW7I/7fnybS+K+D2Ao4xIeAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAIQIUAACAId6FB2BIcGWlK90Z34+0nr5+pY1Mjes+AHwzEKAADAnpTkfcX8Lr21ySkH0AsD8u4QEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABiK6UGatbW1evzxxxUIBHTRRRfp0Ucf1QUXXBAxpqioSKFQSA7Hl1OOGzdOVVVV1lcMAACQZFEDVCAQ0IoVK7Rz505NnjxZu3btUnl5uXbs2BExrrOzU/v27VNOTk7cigUAALCDqJfwjh49Ko/Ho8mTJ0uSvF6v3nrrLfn9/ohxfr9fWVlZ8akSAADARqIGKJ/PJ4/HE17OzMyU2+3Whx9+GF4XCATU39+vtWvX6uabb9add96pd999Nz4VAwAAJFnUANXd3S2n0xmxzul0KhAIhJeDwaDmzJmju+++WwcOHNC8efO0ZMkSnTx50vqKAQAAkizqPVAZGRnq7e2NWNfT06PMzMzwssvl0saNG8PLxcXFqqys1Pvvv6+ZM2dG/Lcul1MOR+rXrTssNTVFbneGZfPBOvTGvugNgKFg4HMsGZ9pUQNUXl6e9u3bF15ub2/XyZMndckll4TXBQIBNTc3Ky8vL3Jyx+Dp/f7eQeu+Drc7Qx0dgegDkXD0xr6GYm+ys0cluwQACTbwORbPz7SzfbZEvYQ3bdo0NTc369ixY5KkPXv26Prrr1dGxv8kvba2Nnm9XjU2NkqSDh8+rNbWVk2dOtWK2gEAAGwl6hmotLQ0bdu2TevXr1d3d7fGjx+vzZs3q6WlRQsXLlR1dbU8Ho/Kysq0dOlS9ff3a/To0aqsrJTL5UrE3wEAACChYnqQ5rRp0/SXv/xl0Prq6urwn0tKSlRSUmJdZQAAADbFq1wAAAAMxXQGCgC+KldWutKdfNQAGFr4VANsKBGhIzt7lLp7T8vf2R3X/aQ7HZqwZn9c9yFJvs3cQgAgcQhQgA0lMnT4ow8DAPwfBChgGOvp6+f5SQDwFRCggGEsbWRq3M90cWkNwFDEb+EBAAAYIkABAAAYIkABAAAYIkABAAAY4iZywBAPhgQA8C0AGErEM5r4zTUAsDcu4QEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABgiQAEAABjiMQZIiEQ9O6mnr19pI1Pjvh8AwPBGgEJCJOLZSdKXz0/iGU0AgHjjEh4AAIAhAhQAAIAhAhQAAIAh7oFCXG/wzs4eFZd5AQBIJgIUeDkuAACGuIQHAABgiAAFAABgiAAFAABgiAAFAABgiJvIbS5Rr0ABAACxi+mbuba2Vo8//rgCgYAuuugiPfroo7rgggsixtTV1am8vFyff/65xowZo/Lycl166aVxKXo44TfkAACwn6gBKhAIaMWKFdq5c6cmT56sXbt2qby8XDt27IgYt3z5cq1cuVKzZs3SwYMHtXr1au3bty9uhZ9LIs7a8NJaAACGr6gp4+jRo/J4PJo8ebIkyev1atu2bfL7/XK5XJKk+vp6dXV1adasWZKk4uJirV+/Xg0NDcrPz49j+WeWqLM2iXo5LgAAsJeoN5H7fD55PJ7wcmZmptxutz788MOIMbm5uRH/ncfjUWNjo4WlAgAA2MOIUCgUOteAyspKffzxx3rkkUfC62688UY99thjuuqqqyRJe/fu1YsvvqiqqqrwmLvuuks/+clPdOutt8apdAAAgOSIegYqIyNDvb29Eet6enqUmZlpNAYAAGCoiBqg8vLy1NTUFF5ub2/XyZMndckll0SM8fl8CgaDkqTTp0/L5/Ml5f4nAACAeIsaoKZNm6bm5mYdO3ZMkrRnzx5df/31ysjICI8pKChQdna2qqurJX15SS83N1cTJ06MU9kAAADJEzVApaWladu2bVq/fr2Kiop0/PhxrVu3Ti0tLSotLQ2P27p1q5599lnddNNNeuGFF7RlyxbLiqytrdVtt92m2bNna8GCBWpubh40pq6uTl6vV7Nnz5bX61VdXZ1l+8fZxdKbd955Rz/96U/1gx/8QD/+8Y/1t7/9LQmVDj+x9GZAXV2dvv3tb+vtt99OYIXDVyy98fv9WrZsmWbOnKmioiLV1NQkodLhJ5bevPbaa7r11ltVXFwsr9er48ePJ6HS4amvr0+PPfaYCgsLz/qZlrA8ELK5U6dOha655prQ3//+91AoFArt3LkztHjx4kHjiouLQ6+88kooFAqFXnrppVBpaWlC6xyOYulNb29v6Lvf/W6otrY2FAqFQq+99lrouuuuS3itw02sx00oFAr19/eHbr/99tCMGTNCR48eTWSZw1KsvXnwwQdDGzZsCAWDwdCJEydCc+fODfX19SW63GEllt6cPHkydMUVV4T+9a9/hUKhUOj1118PzZgxI+G1DleLFi0K/eY3vwlNmjQp9Omnn55xTKLygO3fhXem51C99dZb8vv94TFneg5VW1ubGhoaklLzcBFLb/r6+rRhwwZdc801kqQrr7xS//3vf9XZ2ZmUmoeLWHoz4LnnntOll16q8ePHJ7rMYSmW3nzxxRfav3+/lixZohEjRig/P1979uyRw8FrneIplt785z//UXp6evhNG9dcc42am5v5TEuQ++67T8uWLTvr9kTmAdsHKJ5DZV+x9CYzM1M33XRTePmNN97QhAkTlJWVldBah5tYeiNJn332mfbs2aMVK1YkusRhK9bPNKfTqT//+c+6+eabNWfOHB05ciQZ5Q4rsfQmPz9fKSkpqq2tlSTV1NTosssu4zMtQS6//PJzbk9kHrD9/850d3fL6XRGrHM6nQoEAkZjYD3Tn3tdXZ0eeeQRVVRUJKK8YS3W3jzyyCO69957+fBPoFh609nZqa6uLjmdTh04cEBvvvmmfvWrX+nVV1+V2+1OdMnDRiy9SUtL04YNG7R48WKlpaUpGAxq586diS4VZ5HIPGD7M1A8h8q+TH7u7777rn7xi19o06ZNmjZtWqJKHLZi6c2bb76pjo4O3XLLLYkub1iLpTejRo1Sf3+/7rjjDknS97//fV144YX64IMPElrrcBNLb1paWvTggw/qj3/8o/7617+qsrJSS5cu1alTpxJdLs4gkXnA9gGK51DZVyy9kb4887Rs2TI98cQTmjlzZqLLHJZi6c0rr7yif/7zn5o+fbqmT5+u9957T7/85S+1d+/eZJQ8bMTSmwsvvFApKSkRX8qpqalKSbH9R/Y3Wiy9ee+995Sbm6vCwkJJXz7qJyUlhXtubSKRecD2RyPPobKvWHoTCoW0Zs0alZWVhV/9g/iLpTfr16/X22+/rcOHD+vw4cP6zne+o+3bt+tHP/pRssoeFmLpTVZWlm644Qbt3r1bkvTBBx/o448/1pQpU5JS83ARS28mTJigEydO6KOPPpIk/eMf/1BXVxe/hGETicwDUd+FZwdvv/22Nm3apO7ubo0fP16bN29WMBjUwoULwz+k+vp6PfTQQ+ro6NDYsWO1ceNGzkAlQLTevPfee/rZz3426KxURUVF+DddEB+xHDf/27x587R06VIusSZALL3p6OjQypUr1dTUJJfLpfvvv1/XXXddkisf+mLpzXPPPadnnnlGwWBQ5513npYtWxb+rS/ET2trq+bOnStJampq0vjx45Wamqqqqqqk5IFvRIACAACwE9tfwgMAALAbAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAIAhAhQAAICh/wc15Tmjhok3/QAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAXoElEQVR4nO3de2yV9f3A8Q9toS0W0gW7i7GMaSNRtkGC4hQHbouDUpy7kawMmaZGFy9zc8ogJk5lIGxhLl4Sl00nUF00ZpdEBkZZNrywDTfdoolOxroZsxLFSFs5FIrP74/fz/7sQPnSc07P4fB6JfvjXHqeT/nac947z3OeMyrLsiwAAHhPVaUeAADgaCCaAAASiCYAgASiCQAggWgCAEggmgAAEtQUewOvvtpb7E0wDA0NtdHX11/qMTgEa1PerE/5sjbl62ham6amce96m3eajlE1NdWlHoF3YW3Km/UpX9amfFXK2ogmAIAEogkAIIFoAgBIIJoAABIkfXpu8+bNcdttt8W+ffuisbExbrrppujp6YmOjo740Ic+NHi/RYsWxaJFi4o2LABAqRw2mnbu3BlLly6Nn//859HS0hL33Xdf3HDDDXHZZZfF6aefHnffffdIzAkAUFKH3T1XU1MTa9asiZaWloiImD59emzfvj16e3tj3Lh3P5cBAEAlOew7TRMmTIhZs2YNXt6yZUtMnTo1ent7o6urKxYuXBi7du2K6dOnx7Jly4QUAFCRjuhA8K1bt8batWtj2bJl0dzcHLNnz4677rorfv3rX8ebb74ZK1euLNacAAAlNSrLsizljo899lgsX7487rjjjvjYxz520O3PP/98XHLJJbF169Yh1+dy+yrmTKCVpLq6Kg4ceKvUY3AI1qa8WZ/yZW3K19G0NqNHv3uzJH167qmnnooVK1bEPffcEyeffHJERHR3d8fo0aNjwoQJERGRZVnU1Bz8cEfLd80caxobx8Ybb+wp9RgcgrUpb9anfFmb8nU0rU1e3z2Xy+Vi2bJlcfvttw8GU0TEQw89FNdff33s27cvDhw4EOvXr49zzz23IAMDAJSbw77TtHnz5nj99dfj2muvHXJ9Z2dn3HrrrdHW1hZVVVUxbdq0WLJkSdEGBQAopeRjmobr1Vd7i/nwDNPR9FbpscbalDfrU76sTfk6mtbmvXbPJR3TBFBuGsbXR31t8Z/Ccv0D0deTK/p2gPInmoCjUn1tTUxauqHo2+la1RZ9Rd8KcDQQTUDBjdS7QAAjybMaUHAj8S5Q16q2oj4+wH87ojOCAwAcq0QTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAECCmlIPAIychvH1UV/rzx5gODx7wjGkvrYmJi3dUPTtdK1qK/o2AEaa3XMAAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAECCpGjavHlzXHDBBdHa2hrt7e3x97//PSIi7r333mhtbY05c+bE9ddfH/v27SvqsAAApXLYaNq5c2csXbo01qxZExs3boz58+fHDTfcEM8++2ysW7cuHnjggdi4cWPs2rUrOjs7R2JmAIARd9hoqqmpiTVr1kRLS0tEREyfPj22b98emzZtinnz5sX48eOjqqoq2tvbY+PGjUUfGACgFA4bTRMmTIhZs2YNXt6yZUtMnTo1urq6YuLEiYPXNzc3x44dO4ozJQBAidUcyZ23bt0aa9eujbVr18by5ctjzJgxg7fV1dVFLpc76GcaGmqjpqY6/0kpqOrqqmhsHFvqMTgEa1N+3rke1qd8WZvyVSlrkxxNjz32WCxfvjzuuuuuaGlpifr6+iEHfudyuRg79uB/kL6+/sJMSkE1No6NN97YU+oxOIRirk1T07iiPG6le+d6+NspX9amfB1Na/Nez5NJ0fTUU0/FihUr4p577omTTz45IiJOOumkIbvjtm/fPnjcEwBApTnsMU25XC6WLVsWt99++2AwRUS0trYOfmpuYGAg7r///mhrayvqsAAApXLYd5o2b94cr7/+elx77bVDru/s7IyOjo5YuHBhZFkWZ599drS3txdtUACAUjpsNM2fPz/mz59/yNsWL14cixcvLvhQAADlxteoAAAkEE0AAAmO6DxNQPE0jK+P+tr//ZN0agCA8iOaoEzU19bEpKUbirqNrlU+4QowXHbPAQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACRwRnCA97B3/4GDvtam0F9zk+sfiL6eXEEfEyg80QTwHupGV4/I19v0FXULQCHYPQcAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkSIqm/fv3x+rVq2Py5MnR3d0dERFPP/10TJ06NebOnTv4v87OzqIOCwBQKjUpd7r88svjox/96JDrent74/TTT4+77767KIMBAJSTpHearrjiirj66quHXNfb2xvjxo0rylAAAOUm6Z2madOmHXRdb29vdHV1xcKFC2PXrl0xffr0WLZsmZACACpSUjQdSnNzc8yePTs6OjpizJgx8Z3vfCdWrlwZt9xyy5D7NTTURk1Ndd6DUljV1VXR2Di21GMA/8ffY/48r5WvSlmbYUfTrFmzYtasWYOXL7300rjkkksOul9fX/9wN0ERNTaOjTfe2FPqMXiHpibv0h7L/D3mz/Na+Tqa1ua9nouHHU3d3d0xevTomDBhQkREZFkWNTXDfjgoaw3j66O+1n/fAMeyYb8KPPTQQ/Hcc8/FbbfdFtXV1bF+/fo499xzCzgalI/62pqYtHRDUbfRtaqtqI8PQH4OG02vvfZaLFq0aPDyhRdeGNXV1XH33XfHf/7zn2hra4uqqqqYNm1aLFmypKjDAgCUymGj6fjjj49NmzYd8rYVK1YUfCAAgHLka1QAABKIJgCABKIJACCBaAIASCCaAAASiCYAgAROcQxQYnv3Hyj61+jk+geirydX1G1ApRNNACVWN7p6RM4431fULUDls3sOACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASFBT6gEAKL69+w9EU9O4om8n1z8QfT25om8HSkE0ARwD6kZXx6SlG4q+na5VbdFX9K1Aadg9BwCQQDQBACQQTQAACUQTAEACB4JzVGsYXx/1tf4zBqD4vNpwVKuvrRmxTwQBcGyzew4AIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEiRF0/79+2P16tUxefLk6O7uHrz+3nvvjdbW1pgzZ05cf/31sW/fvqINCgBQSknRdPnll0ddXd2Q65599tlYt25dPPDAA7Fx48bYtWtXdHZ2FmVIAIBSS4qmK664Iq6++uoh123atCnmzZsX48ePj6qqqmhvb4+NGzcWZUgAgFJLiqZp06YddF1XV1dMnDhx8HJzc3Ps2LGjcJMBAJSRmuH+YC6XizFjxgxerquri1wud9D9Ghpqo6ameriboUiqq6uisXFsqccAKlCpnls8r5WvSlmbYUdTfX39kAO/c7lcjB178D9IX1//cDdBETU2jo033thT6jHy1tQ0rtQjAP+lVM8tlfK8VomOprV5r9eVYZ9y4KSTThqyO2779u3R0tIy3IcDAChrw46m1tbWwU/NDQwMxP333x9tbW2FnA0AoGwcdvfca6+9FosWLRq8fOGFF0Z1dXWsXbs2Ojo6YuHChZFlWZx99tnR3t5e1GEBAErlsNF0/PHHx6ZNmw552+LFi2Px4sUFHwoAoNz4GhUAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASHPYLe2G4GsbXR32t/8QAqAxe0Sia+tqamLR0Q1G30bWqraiPDwBvs3sOACCBd5oAKJi9+w9EU9O4om4j1z8QfT25om4DDkU0AVAwdaOrR2S3fF9RtwCHZvccAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJKgp9QAAcCT27j8QTU3jDnnbu11/pHL9A9HXkyvIY1E5RBMAR5W60dUxaemGom6ja1Vb9BV1CxyN7J4DAEggmgAAEogmAIAEeR3TNGXKlGhubh68/PGPfzy+//3v5z0UAEC5GXY0vfnmmzFq1KjYtGlTIecBAChLw94919fXF+PHjy/kLAAAZWvY0dTT0xMHDhyIr3/96zF37tzo6OiIf/zjH4WcDQCgbAx791xdXV3MnTs3Lr744pg4cWKsW7cuLr/88tiwYUPU1Pz/wzY01EZNTXVBhqVwqqurorFxbKnHAChbniMLp1Jec4YdTc3NzXHTTTcNXv7a174Wt99+e3R1dUVLS8vg9X19/flNSFE0No6NN97YU9RtFOrMvAClUOznyGPJSLzmFMp7vXYNO5p6enpi9+7dg5+eGzVqVLz11ltD3mWifB0IUQMAR2LYhfPiiy/GddddFw899FAcf/zx8eCDD8YHP/jBIacgoHyN1NcQAEClGHY0nXHGGXHRRRfFV7/61Rg1alS8//3vjzvuuCOqqx2/BABUnrz2pV100UVx0UUXFWgUAIDy5WtUAAASiCYAgASiCQAggfMDlJmG8fVRX2tZAKDceHUuM/W1NUU/FUCE0wEAwJGyew4AIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggTOCA8B/2bv/QDQ1jSv6dnL9A9HXkyv6digM0QQA/6VudPWIfaVVX9G3QqHYPQcAkEA0AQAkEE0AAAkc0wQAJTISB5w72LxwRBMAlMhIHHDuYPPCsXsOACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACBBTakHAACKZ+/+A9HUNK6o28j1D0RfT66o2ygHogkAKljd6OqYtHRDUbfRtaot+oq6hfJg9xwAQALRBACQQDQBACRwTNMRaBhfH/W1/skA4FikAI5AfW3NiBxMBwCUH7vnAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABJUzBnBfcUJAFBMFVMZvuIEACgmu+cAABLkFU1bt26NL3zhCzFnzpy4+OKLo7u7u1BzAQCUlWFH0549e+Kaa66J733ve/HII4/EOeecEzfeeGMBRwMAKB/DPqbpD3/4QzQ3N8eUKVMiIuIrX/lK3HrrrdHX1xcNDQ0FGxAAKG979x+IpqZx73mfw92eItc/EH09ubwfZ7iGHU1dXV3R3Nw8ePm4446LxsbG+Pe//x2nnXZaQYYDAMpf3ejqon8YK+J/P5DVV/StvLtRWZZlw/nBO++8M1555ZVYuXLl4HWf+cxnYvXq1XH66acXbEAAgHIw7GOaxo4dG/39/UOu27t3bxx33HF5DwUAUG6GHU0nnXRS/POf/xy8/Prrr8fu3bvjwx/+cEEGAwAoJ8OOpjPPPDO6u7vj6aefjoiI9evXx6c+9akYO3ZswYYDACgXw46murq6uPXWW+Pmm2+O8847L/72t7/FDTfcUMjZGIaUc2f9+c9/jgULFkRra2t88YtfjG3btg3etmHDhpg/f37MmTMnrrrqqujt7R3J8Stavmvz4IMPRltbW8ydOzc6OjqcF62A8l2bt3V2dsbkyZNHYuRjSr7rs3379liwYEHMnj07vvSlL8X27dtHcvyKlu/a/PjHP465c+dGa2trXHnllfHqq6+O5PhHLqNivPnmm9knPvGJ7LnnnsuyLMt++tOfZpdddtmQ+/T392czZszItm7dmmVZlv3ud7/LzjnnnCzLsuyVV17JzjzzzOyVV17JsizLbrrppuzmm28ewd+gcuW7Nn/961+zmTNnZjt37syyLMtWrVqVXXPNNSP4G1SufNfmbTt37szOP//87JRTThmZwY8R+a7PwMBANmfOnOyRRx7JsizLfvnLX2YrV64cwd+gcuW7Nk888UR23nnnZT09PVmWZdkPfvCD7Nvf/vYI/gZHTjRVkM2bN2cLFiwYvNzX15dNmTIl6+3tHXLd208eWZZlvb292SmnnJLt3r07W7duXfbNb35z8LaXXnopO+uss0Zm+AqX79q8/PLL2Z/+9KfB2x577LHsc5/73MgMX+HyXZu3feMb38g2bNggmgos3/XZtm1b1tbWNqIzHyvyXZt77rkn+9a3vjV42+OPP172z2u+e66CvNe5s9553Wc/+9nBy1u2bIlJkybF+PHjo6urKyZOnDh428SJE2PXrl2xe/fukfkFKli+a3PiiSfGGWecMeS2qVOnjszwFS7ftXn7cl9fX8ybN2/kBj9G5Ls+L7zwQpxwwgmxdOnSmDNnTlx66aXx8ssvj+jvUKnyXZsZM2bEM888E93d3XHgwIF49NFH4+yzzx7R3+FIiaYKksvlora2dsh1tbW1sWfPnkPe/4UXXoiVK1fGzTffPPjzY8aMGbx9zJgxMWrUqMjlSnf21UqR79q8069+9at4/PHH46qrrirKrMeafNdm7969sXr16vjud79b9FmPRfmuT09PT2zbti3a29tj48aNceqpp8aSJUuKPvexIN+1mTJlSnz+85+PT3/60zFjxozYtm1bXHbZZUWfOx+iqYIcybmz/vKXv8Sll14aK1asiDPPPHPw5/ft2zd4n/7+/siyzCciCyDftXnbfffdF3feeWesXbs2mpqaijrzsSLftbnzzjtj/vz5Q96lpXDyXZ9x48bFqaeeGlOnTo2qqqq4+OKL45lnnnnXF3bS5bs2mzdvjt///vfx5JNPxrZt2+L888+P6667bkRmHy7RVEFSz531wgsvxNVXXx0//OEPY/bs2YPXf+QjH4kdO3YMXn7ppZeiqalpcBcEw5fv2kRE/OIXv4j77rsvOjs7h7wlTn7yXZvf/va3sX79+pg5c2bMnDkzIiJmzpwZ//rXv0bmF6hw+a7PiSeeOORTwNXV1RERUVXl5S9f+a7Nk08+GZ/85Cfjfe97X1RVVcW8efMO+anUslLqg6oonFwul5111lnZtm3bsizLsh/96EfZlVdeOeQ+b731VnbBBRdkjz766EE/393dnc2YMSPbsWNHlmVZtmTJkuyWW24p/uDHgEKszcyZMwc/2Ujh5Ls2/82B4IWV7/r09/dnM2fOzLZs2ZJlWZb95Cc/ydrb24s/+DEg37VZt25dtmDBgmzPnj1ZlmXZz372s+zLX/5y8QfPw7C/e47y9Mc//jFWrFgRuVwuJk6cGKtWrYq33norOjo64uGHH45nnnkmFi5ceND/E1izZk1MmTIlfvOb38Qdd9wRAwMDcdppp8WKFSt8NU6B5LM2TzzxRNx1113xgQ98YPD6mpqaePjhh0f616hI+f7dvNPkyZPjxRdfHMnxK16+6/P888/HkiVLYt++fXHCCSfE8uXL7U4tkHzW5pRTTolbbrklHn/88aiqqoqmpqa48cYbo6WlpUS/zeGJJgCABHbqAgAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACT4H769l+H9r7oKAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2455,7 +2374,46 @@ ], "source": [ "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(ppc_hier['diffe'], bins=20, edgecolor='w', density=True)" + "_, _, _ = plt.hist(res2 , bins=20, edgecolor='w', density=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext watermark" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "%watermark -iv -v -p theano,scipy,matplotlib -m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Intento con pystan" ] }, { @@ -2482,7 +2440,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.7" + "version": "3.6.8" } }, "nbformat": 4, From 3ae5b79a19e0c70bd109e81934abb5f7a30a57c3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= Date: Tue, 30 Jul 2019 20:17:58 -0500 Subject: [PATCH 3/9] =?UTF-8?q?Modelo=20jer=C3=A1rquico=20con=20pystan?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- BDA3/chap_08.ipynb | 2713 ++++++++++++++++++++++++-------------------- 1 file changed, 1452 insertions(+), 1261 deletions(-) diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb index ac4938c..a4b2b91 100644 --- a/BDA3/chap_08.ipynb +++ b/BDA3/chap_08.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -42,7 +42,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -58,7 +58,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [ { @@ -259,7 +259,7 @@ "15 West IV 0.554 0.361 0.084 0.057" ] }, - "execution_count": 5, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" } @@ -278,7 +278,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -311,7 +311,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -330,7 +330,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -349,7 +349,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -358,7 +358,7 @@ "1447.0" ] }, - "execution_count": 9, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -378,7 +378,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -390,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -401,7 +401,7 @@ "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 11, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -412,25 +412,56 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 10, "metadata": {}, "outputs": [ { - "ename": "ImportError", - "evalue": "This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 157\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'graphviz'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_to_graphviz\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_non_hiera\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmodel_to_graphviz\u001b[0;34m(model)\u001b[0m\n\u001b[1;32m 194\u001b[0m \"\"\"\n\u001b[1;32m 195\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelcontext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 196\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mModelGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 159\u001b[0;31m raise ImportError('This function requires the python library graphviz, along with binaries. '\n\u001b[0m\u001b[1;32m 160\u001b[0m \u001b[0;34m'The easiest way to install all of this is by running\\n\\n'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m '\\tconda install -c conda-forge python-graphviz')\n", - "\u001b[0;31mImportError\u001b[0m: This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz" - ] + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "%3\n", + "\n", + "\n", + "cluster16 x 3\n", + "\n", + "16 x 3\n", + "\n", + "\n", + "\n", + "thetas\n", + "\n", + "thetas ~ Dirichlet\n", + "\n", + "\n", + "\n", + "post\n", + "\n", + "post ~ Multinomial\n", + "\n", + "\n", + "\n", + "thetas->post\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -439,7 +470,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -450,7 +481,7 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [thetas]\n", - "Sampling 4 chains: 100%|██████████| 16000/16000 [00:14<00:00, 1119.48draws/s]\n" + "Sampling 4 chains: 100%|██████████| 16000/16000 [00:13<00:00, 1165.84draws/s]\n" ] } ], @@ -461,41 +492,34 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAACICAYAAAD6SUoaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeaxk2X3Y9+9dan9r78vsW3HIIUXSXCSR2iJZcAQnhgMbSewoVmwZyII4gBEkdgAnSAwjzgI4RhwYghXADiMokcRYG0WKFEeaIYecvaene7q7ut++1r7d/az5o15v0zPDmWE/9nB4PsDDq7pbnVtVt+753fM753rWWhzHcRzHcRzHcZzvn3+vC+A4juM4juM4jvNh4QIsx3Ecx3Ecx3Gcu8QFWI7jOI7jOI7jOHeJC7Acx3Ecx3Ecx3HuEhdgOY7jOI7jOI7j3CUuwHIcx3Ecx3Ecx7lLXIDlOHdZs9n82wf//6zZbP4H73HdSrPZ/A8Pp2SO4ziOc5M7XznO4XABluPcRc1mMwD+l+9jE58C3AnLcRzHOVTufOU4h8dzNxp2nLun2Ww+Dfwc0AJqwK8DPw88DjwL/PVWq2WazeYXgP8NWAb6wF8DEuA1YAF4tdVq/VSz2fy3gX8EVIAI+FutVuu1ZrM5B3wJ+MjBvG8C/2mr1ZI/sJ11HMdxfmi585XjHB7XguU4d9ffBHSr1foIsA78LPBvAk1mJ7IvHJxsfgf4b1qt1mPAPwV+q9VqdYC/D3z34GQVAv8K+NutVusJ4PeA//Xgdf4GMG61Wk8CTwAK+NgPaB8dx3GcH37ufOU4h8QFWI5zuL7carWyVqsVA9eA+4CfBqatVusbAK1W6zeBx5rN5gO3rthqtRRwotVqPX8w6VvAIwePu8BPNJvNXwSCVqv1n7Rardd+APvjOI7jfDi585Xj3CXhvS6A43zITW95rIEAWALuazabV26ZVwDH32L9v9NsNv8Gs7SKKmABWq3WbzebzSPAPwQ+0mw2/2/g77ZareIQ9sFxHMf58HPnK8e5S1yA5Tg/eHvA5Var9Zk3z2g2mx+/5fFPAv818LlWq7XRbDb/PPAvrs9vtVq/Bvxas9k8C3yZWWfjf4HjOI7j3B3ufOU474NLEXScu0sCfrPZnH+HZV4ATjebzc8DNJvNR5rN5peazaZ3sP7CweMTzFIrtpvNZh34FaDRbDb9ZrP5D5rN5t8EaLVau8zy592INY7jOM675c5XjnNIXIDlOHfXPvBtYAv4ybdaoNVqZcBfAf73ZrN5GfjXwG+3Wi17sO4ZZlcNv3Hwfxv4OvBPgMnB8l8CfrnZbLYOUjfEwTTHcRzHeTfc+cpxDokbpt1xHMdxHMdxHOcucS1YjuM4juM4juM4d4kLsBzHcRzHcRzHce4SF2A5juM4juM4juPcJS7AchzHcRzHcRzHuUs+cPfB6vUiN+qG4zjOj7Djx+e9e12Gd+NunK/m5irE8Q/P/VZdeQ+XK+/hcuU9PD9MZYW7V963O1+5FizHcRzHuUfCMLjXRXhPXHkPlyvv4XLlPTw/TGWFwy+vC7Acx3Ecx3Ecx3HuEhdgOY7jOI7jOI7j3CU/MgHWn0xi/v3VHV5NsntdFMdxHMdxHOdDTF8eYTrpvS6Gc4/8SARY0lr+8X6fi1nBP97vY60bR8NxHMdxHMc5PHb4wzPog3N3/UgEWJezgo7SfKSIuZwLvv7tP73XRXIcx3Ec5y6YdDOUNPe6GI7jODf8SARYr6Y5AJ/92m8C8NUrl0nHw3tZJMdxHMf5wLHW/lBlechcM2mn9Deje10Ux7nhh+kYcg7Hj0SAdSkrOCYLHl2/xmkMm6ceZO2lb9/rYjmO4zjOB4rdjDBXxve6GO+aZVaRNfoHW6Ht5T2+23kOY+9ey1mWtdDa9RN3Phi01Wir73Uxfmj9SARY63HCw1ev8NOtbT6Xp+yefYTN8y/f62I5juM4zgeKzW5WqJQaMhp/Fa0/mB31lZ4ynT6NsfKOefaQA67W+BKpTpDmztd+P5SekhdrTKev3pXtOT9YNlPYD1ma6jP7T/PsvutS83596AMsYy0bheSB9i5qYZ7Hv/4VsnKF1fEIkX0wTxqO4ziOc68JsQuA0h/MlPoiX8diMPr29ECbK8zVMXZyeAMMXA/f7laAxUFLmOXDVUn/QbHG0t+MkPm9aXExGxFmdXJLgd79uloZ0om4+4V6l4x+67RgOzu6bjzX18ZvOyri3iRnlN6bfbCJ/ECmZH7oA6yeVORhyH3BLh/9pQ2+aJ4BYO/YGTorl+9x6RzHcRzn3ktkQiKT26bZ91JLfB+UNHRWJ2h1F4KKW4tazCrZJj68ipcwBVi41H/9ULZ/WGymMDvxXXlfCmVotaNDrdw+13mW3WTne5clVaQTwXA3+Z7LHpr3+Tb01iP6mxFG3zwOjLY/kLRXrQw7bwyZdN5Faqqybzsq4oW9Kd9udWffrfdRbmUUmXrvjR42lpitGDvI3/O6h+3DH2Dtzq7AffzIJpTrfGb5ClUt6Jy8n87KlXtcOsdxHMeZSWTC03vfeM8VDWslQrTfYb4lT965peX53nM833vuPb3umxkjmE6/hdY3K7mFyPmTi39AO9m/Y/mol1Ek6ntWim2qsFOBVoZJN7ulQm8P/ry3vgK/FVFcvtn61s06dLK3f5/eKzuV5LtjrNQkMqGX976frR389+5G0d6W2YiwkYTo+295u7g/5Wo3YpzdpVa8t5DrnCuTSzy99w3eGF04tNex1mDM+2vxfGFzxLnh+w/slNAHZZg9NxtTtl/ssvPGO7ccv9x7kb109129hnmbwWuMmk17ty1oO3KXp/e+ccd0YQqS4RQxTWnvbbyrbd3q5f4LfKf7PsZGuH5x5gOYnvmhD7A6+7Mf9TOqz+gv/DpSneCp6VX6Zx9muL12j0vnOI7jODPtbA+LpZN17pgXy4juLdPH7fRGxSxNL5Ck59A6fsvtTjoZ3dUpxfcIsu5wUCHzvkelX2SK0X6KlPtoE1MU67NyqYTu3jY2U2x33/58m32Pyp3ZjDC7CaO9hEk7JY+v74fF82YlfCuXZItL0SxTZVyMuDA6z8XR6/Sy7t0ZnEKo2X9leb73HK8Pz33fm1Ty+xtgxBb6HVuozmXnWSlWb9bmATsV2OKtU+sydXvLhlYGY2brqoP/b9deYbW5a61bFks7uzNIv8P7jE/T9DUm06ff17rjVNLL33Rs2Vm6p7Wz7/bOG0OiQf6uWmttprHj7x3sTeSYy+M37piepheYTp+5bdo3rvR4dWdyx7Lv1bViBcvNYC0uFJnUXJ20uBqvcDG/xMX2a+T63bUoXR+1NFGzAFVLw+r5Np1u/y2Xn3RuPf5v2sw22Yo33+deHY7wXhfgsPWGQ1g4QTXL4L7PkTz47/Lp5BL/6vRfpreziTUGz//Qx5mO4zg/sprN5j8BfpxZXfC/aLVaLx1MPwv8xi2LPgL8PaAA/ifgem7SN1qt1j86jLKN9hOEUVQapXdc7oXedwH4+dovkmeSS2sjHtorc/pTxzBmVgm2bzPi1/V+KXclFe8tdFamWGupLc2e76Rttsd7GJ2RTibUmb+tL4eVBjvM31NGlbU3U6a+V509nQr8QtMxPcZFxCN8mlcGLwEQy5jXR69xf+NBnlhsvpfdvCHLrpAk56nzxKw+/6byCC0oB+W3XlelVIManvfmSODOnYoGOaVqQPV7fDdu28p+OksDTAq+G7/Ax5af4kjl6I35Iz1ipEc8wcdvTDMHLYjBk8sMiyGxnPLA3EN0sw5feuUCn7/vCb740AMA7F4aUSr5nHp88cb6HjAqhiyUFwm8YFYOazFXJ3hLZbzTjRvLbr0+YO5IhdqxfUqlk4TBwtvvy9t80FYZ7FTgH6nesuz3fm9MN0NEGuZnZRRiF2MyqtXHELKDtRClu8zXzyIyRToWLJ2uf+8N36I9zVmolqgFPqLYRqoR8+YIRltGuwmj3YSzH10mCN+63rnzxpD5RN3cL2OxmcKrhbdNI5azlL1MYVMFoYdXnu1XWmxhc7Dz9rbvWT++80LGrWnARht23hjRWK6QjArMksUPb/+eGmPxb/kZeW7t9la2ws4CQ/Om36LhTkyeKM40l27f3voUCgMHXyclDa/nL2N3NP/Oib9027LRIGf1pR5Lp+s88ueO3zZvNVvFm1Z4YO7BO/bxXvnQRxbdePbD4ckGeB76C7/MU/2rFEGJ/do8Uf/OK4WO4zjOh0Oz2fwZ4PFWq/UTwK8C/+z6vFartdtqtX621Wr9LPALwBbw+8Ac8M+uzzus4ApgsJvQWZ2+7XxjDULffjV7c5ixPkjY2b/e98DDKJh0ixuVUlloov7tV5FHYkRr/F76Ht9ZaxWZorcZzSp5ty6ZKVgRZFKwGm0BkOVXkXJvNv+Wxe1eMuvLccuABMYaUvX2aVYvbFxmOr3ZQpdOBDK/daM3H/Z3Ezr7b51maaxmZXKV4i2usGuj3tWw1PlBC91b1ekzlfKtzp+xFW+85bzvdL/NWrR6s9jSoK+MsMWdwe/gxS7tZ/ex1pJml29LvXxbB/XhWCcIU7A6XQFmg3HsTC+T5esMVPdtVz83eJlr06sADJMhdhSzdfEceXQzNbPYiDArkxtvQK4yXh28fOO7db1VQvcjJpd2GOSz1ggh+mwMzrOyMybPV4ii524sb7ajWaBwC4sFbbGjglvH/rDtFNvJiKYjrk5u7+rx5rBVK0Nvd8I3d79Oe3+brHPzPUzS18nyazeeX+37fPPKDkJq2tcmTPaSG611xry7ywHnd6c8vzEELEkyZX8zJH2tf1sL4fVjYZrLg9S9m+sbbRnd0p9IbkWztE5t6G9FZJHEtMaY3QTTSWeps2sTzC2/Ied213hh5Rq2+9b9qmyhMbvJbQGs54ESszc5GsYoPSXqZ5hCM+lk7O9EpEIzHORsr2ekUr3ltt9OPCxYi66xE2/f3FdrWI/WUPbmtjwfpBVYa1FGsR6t3ijnb333/2OPTUT2zq896Wa3LfPmQD0Vmj++3GWYHO6gHB/6AGtoMpbklGLuUQD84yd5bHsAQP/EaQZb6/eyeI7jOM7h+nngdwFardYlYLnZbL7VZfNfAb7carViYP4HVbg7rtKb26ddGJ3nW51nsEah5OzcJY1BasV5fZ5EzIKOaSdk2ilupM+0r04Yrk4wt1y1fn1yjp10m1hGN15bXx6R7J4jTV6nN/F4abqCuD7s+UFcl4w10UGlb399QjwqGO4lt/WdslPBOJvyZxsRV9u3XPXPfLAw6s5Se9orE3r76Sx9LJ29jtWW11//Dt9pPf2WqXuDfMLF/DVe775wY1p/M6K79t7TzyyWwhSIXBMPbw+y/mD9af75C98hk28fZNlxAfnb56FlB4FbP78zxWkiJsQi4vzw3I3RB20swUKxn7M58BjGd34nlBpQFBskye1DuOcHg3iM91PSN42YaLUlHQmk7BNFz3Fx9Drne0/TMxN28ha9oofMNfvXxncGD5nGTgVKGShiRn2Pbqt7+0AIFsbFLJ1RHQSl+9keWhm+9nqbZ1YGiGiL58WzvNZ/BYAoeolrEVzqb9/2cnZYYGPFzspVrva+Sp5cQ18eYUcFdlgwiLoMxrf0nTtoyfzu1gtc2rxKoQvAUqSKOBaIW1pqR3sJve6QIpX8TvsPefbKKwymrTs+G4BeL2C8Ztl+Y4gd5NhuxjDv80fX/oiNC507KvaTbsb2xZstODcC0P0E08/JUg8rfURhsLdcTBimgj++3OW59SGX2+98g2w9PfhcDaRjQW/99osx1sL1j28ixhSyTzEwqCjk+Y0R+Zu+y+NM8rUXdpgOstlgMPb2bQHk+QpJtEa03aF/qcv+zga/8cxF/vDq7Du9NQ747vpotg72xjFrMeRv048tNxnPJF/nmfbNNMx2ts+62GBNzOrhw2JINxsQCw9tYC1aYS1ava3fZIfbBzyx1qIO+l9Zo1BqxKSd0r42S4fMVMr2hSH9rdnvpI0E/Z3Ze7g9OtyRxD/UKYLWWoaVEifEAH38ZnP4Ce8MizIiPnuCwfY6D3/mJ+9hKR3HcZxDdAp45ZbnnYNpb242+lXgFw8ezwG/1Gw2f4nZRfH/stVqnX/zhufmKoRh8L4LViQxnZWXOf7QJ1hcrDFvq5Q2CmpWsfRAHTXIiNM+jbkKabpLLidsTkc0GjVyOaU0Zxh5PU6VylQqkiAsEQ8ElcUqtVoZ0cupDgRzcxV6WYd6vUSlXmJxsc58uU42LdgdFDRUTHkxYHVNspd1OLoIn0yPYboh4VKN4QjCULJwX8AzW0NErvmZuTJYzdLScfq1GFkRbA/GrFZyGvVlGvUKSoVQsuzZPebNGd7Yu8SyOYqWOaen85Q9MMs1VC9lpPYpH62yMF8lDG9WTcaDNbr7U9pmj8TE/HT9z5OXJuSlhCoh9VqFSVVTrZcoRpJJFFGUE+YqNcKSj+f5LC3Vqe54eJUAGVSoyJB0ULDl73Ji8QiPHT2LtZadLcUkT9BhQH2iyC/0mfu5+/FvSdHLthLq0zkqCyFVU6ISlFhcrNEQFQAWFqo0sgpz1SpLS7NA0xqLyBUb46u05Q71UoOLySt87tTnqagqMlK0dyPemNa4SsEvf9FSPV7FTCWJtRi9RqNewfM0S0t1pJS8sX+FzY0OH7v/CUiqyIni1Il5ZK3MNFaM91K0sIh0DysbsFiiXLYQWALPo9YI0YkhtD6eB9VaSLlWoVGvIPpT0mLEbtxHasNc4FGvhpSDkHq9gqgUrHurfKt7nvvNJ0hPZshGTIN5sr5kOIg5dv8cpVKIbyRVApaW6mysSwo85oMSjfrs/VpaqiMijW5o1serZNkKZ0slWnafE9FJyp7HvlzBZgUP1P8SS0t1ioHAeD6qbcAaFuplbBiyOu3xSnvKA3WfM96Qjzz5EHONKtOsTKniodH8WdRmugV//YufQhx8ZouLFYSoUE5LhDqgVqvgjRS24tEzewR4mIrE+JL6fPVG+md/JaZU8ViZXuG4UuDfR71+AmljglfPEU8tSRzwYK3ExclVxpOEnzz9BXYHs4BwNb2CqZzkCTXCV5L2cw9TqddQpQAsVOoVfN+n3ihTXarRL8dgLPXG7PioyJBLvRA/i/mxM4IXB6/jmZRS6DOUNRZ9j4mGU8fr1BuzMheeT7UaMvHg/vkqyvOZ1nPKtYDFxRpRPUcpg29KeFZhZczl7nP0/XnOeEsEvgfSo1wtsbRUpzQQFL7AY4QoMryleSpeyOJinUbp5oWWsOYRJgHCFBgJR47XeXm6QaUSUi4HNOoVrib7/NHac/SSGl7m8fmqT12VmVuosDRXJwgs2uT41qO/EvPQJ44yauf0ezn7jTKn2SZZfp56/acAGHkdfuPCeYpByl+p/DiPLZ2YHb+Fnb0fnnfjGD0MH+4AK44Yzc9zQgzxzzx1Y7p59Gf4sckV9k7cz/i1l+5hCR3HcZxD9ubmBo83ZXc1m82fAK60Wq3rQdfTwAutVutPm83mTwFfAj7x5g3H8fd3n6V+b8DLw5gHzAucQ/DAyZQiV0w6MeP7U/TVEWkcIxbKpJ2YdljFRlvMl88glSYZC3bWx2RbHmFNEIs+5zeHVDcbPDqfsJzXSWNBZAy9pE9aligMu/0ub4y/yWPJj2EjgfE1RVWR5X1MXmYawWtbr1OKB5RTy14SsVZ6maOrcyTqIUwRMh6tIdWAo8N5nu5/nX7nJIGwqOOaoshIkpyiUEgJQzOmwglWRmuM03XmRMFD4RfIfY9kfdYKIgONKhTjUUJYmgU01krau+cZDD1USSBFRDJOuaBeIulnfKr8EOMk5sXxi5zJH+Xh6RM8nz6LLRSfLz7PKB3hC8GfvrTOi2tjnjoSkh6XFEIRx13+uHuOxuAB/v5P/0W0MhSDDOGV+NYbbX6hq8hyTX6uTeljR2apat0MHSVkRUyUGPJEsQxcfa3DsBwDHpvFV+gONwkan2VcnV0hH+zEJMOCltqkqChQCYPJiK9F3+DT3idYSCoUhWSQRmTBiFdWLvHR7FGm0wLlwXhDUj6l8KSPd22HP+h/m342QTYSRtsDPmV/AruXMrIaGwl2OhntIGZayagIxf52yO78LuaRDK0M2lqSuCAYROxsTOgs5Cy3G6hJzrX6GkfyBl+PnmHqZ+SiQGlBluboaUaRKkyhWO3vMB3kDMsj6Azos8bjlScZzSWsJC32O2W+IOsoNHkmePHcG1x5Y8jWFM7OHydJZwlU43GKiXJsIigKRVEonu9exiT30SkGICFLC4LQkKQFa+faVEYFQdWyn3VQSc7wtTb+2aMIoRBSM+jE9ILXuSyv8uPVL5KmBROxRVbMPo+ikIzHKUk6O36Tzd8F4NXxDlo1yLKHCIpZy+LuyojMV2S64P89/zQnT8zxFx76GXbGGXmUMZoOyELBfjFgPPQZbUNlZ5Nk0sPKEFO/nzyTXO1v4FV8WtWrxMlRdrpDeoyxxxLGk1X+nP9JCKcEqcWMZ7cA0CerrG4VlMseR05Vbxwr6UPzCKEZDiZMxwtcFJtspi8Tn8wplX0eUDWUNuS5pDOKqQSK1f4GJ2unyNMyea4Ya8PvXvtDTtTOspieQeSQC0F7fUo4JzHDEKMMVvmkfo4RDcZxTinLyFSJ8Sjl9We3SaKCntcjr0SENqTIFNqHySRFHvTfWpuuMopzlNK0VuA319f4qz//EK+uJtwvFJkWJElBmnSRwwWiXCB8xVdf3OTR6glGlZSd3Q7dOGG+lBGNE8IFWN8u0B3LXlKw21N49QV2vTH+JKJrDFP2We3vUs3muTy5xIPjU+hEUGSSqZ5QzJ9mPH73/RvfzvHjb53w8KEOsEy3S39+mQejPWoPffbG9PCjT/Hk+d/nO099in7n9+5hCR3HcZx3q9ls3gf8t8Byq9X6q81m898Dvttqtd5p+KhdZi1W150B3jxW918E/uT6k1ar9eItj7/VbDZPNJvNoNVq3dW7mKayIFZbiBxU8QTfXtmjtx1QrWY8Umg8a7HSsHp1i3ljoB4wDraYK51BKUNPhnR3YrwzhuO1gMviAuvFPPcFD7IqrnGa45xWT9JZmzIdrBIursPHP3djaOfd7j7lXo390mWGeczEnkIZw3q6Slbscsz3ubC5QMyIjz7koYRhM1vnvvhBdG0CJdAH/Sc6ps/SCOrFCPFgTp7fPmLZfrJL3H8QUw4JU4s6qmibPnV79MbACMZkFFmMHy5hLPSignTsIwsLpYNR2Xo5SZrNUutC6A1nKZBjNTqo0dyMndM8x/c8nrt2kU0x4mP2GJPIZ6uneTjs05EZQXubdrtHffFgwARpyKaSr3QinhSG6rjL/c0l6GSoccK5+I8pZJer0yOUCo9PHknIxgWDaURluUxmfPxBiI0n2DMGZUdst/u8OijYrWyzeLRCnm+TlTTV2lNc2+zz6cUzCNVGWU2SeEymMbacM/JGhKrC6kaJ9tDjFyoBUSWmE2/TMxFHWZzt70FKnBAabyq4Nkjwl/bI5ID+xDBXDBCBoJT7s3en8LC5YW8n4txkwk68yXHb4IvLD7Hba5PbGsvmNKJQ4Hl4WNpqj2O6hm/LGGNIktmh0FcjBuEyZVNDSYM1FmNm/XlSZumSRlu2dzpMJhoIkFaBLkNw0MfQCG6t5ia6oAbgQZpIhPDwYw+RaaZXZ0FG+8RV+qaDpEBoyfXhLmZ9iTSgudzWlE9OeaAKuZywGx3hlO8xkSlSSawEMwkJlhQJObkA4wlMLPHGBf5iBVloZoWBjY5ld5Lxk6ckb+xHTFe3qI42GZ/UNBKFrnlcKa5xNpuCBe8go3A8LDBSU44bXCt2WD4yj9IKSU40KVgqfEaJz/yywlSnzNnKbcfO+nSXfCq4fq0omgqGg4g4G2NECUGNvfEmc0Bx9ghQQxuQ/ZzXiiGvPjJmEPUIhY9/ajaaxLbcgViya3dYKE4SDTM2VMG2eonHvQqV5ARa+xhfkOoM7PLs0DIWrEUdvC+iMIxKN9Mk48mIBW8e3U3oL4SM85xNsUpHzFIKU1HGVi1Xd4Zc7u+yniv+2tlTJLsJtqTxkgCT52Q1wdaoga6UuPD6VY5Xj9PL68yXMqZa8d3+CzxSL/FJ+xleHyYoa9B1S9Avc6E9IZsPGYmcPJJUQ7D47E1yTgKeZyiKDabREJZ//C1/m++GD3WApXtd+rVlFrpTGsvHbkwPH3ucx353A/WJkFHFILKUcu3wmgkdx3Gcu+LXgX/KbKQ/gC7wL4Gfe4d1vg7898CvNZvNTwF7rVbrzR0fPgv8P9efNJvNfwBcarVaX242m08BvbsdXAF4NmbBjDgl2vTHC6xEdbTo86fli3wiuY/yYMokGfFGrFnwPE6GAVGeY+YtItdYa+jku4zzjCQ8yU7kkZkUw6yoAkGWKrBwcVimbpZ46pbXj6eSvEgZTBWb3pQ89yC3dHoho3qbo0uniYWAchUhtulvz6HlWZJhm0xMqTzUQEjF1rjERAjGqsuxog7Wok0Cuc9UBBAKBmkPOWlg5ytMTcIFc5kdJqhkm8/UP43wJWLa4yvP/hbx8U/SUMeRseFoWqIsZv2VPDy68TV2gzVO2bPYYsiFa/v4y8sU/qwyX4nWUP7BFeWDWGukbw59vt31yQsPOzerAFtr+MNXn+Hhjy/OFrfMBhJIFfnOG5RCybWLS6ypiyznC3yNCDvwKcptknxAMyjxlf5lJhgenRvBzklEIFmxm3yy1SMrX6A18JFmGVGEqGEBMsDOadqdiEGkOB4KEhVTGIG1Glko+r2MHW+fwA+o5EvslHps6WXOVAwR+xTFPIXwSLdizLwEa2lvRNgSdLSG1GDqgmFuuMQ1HqLMGaA3arCXHKWzEXE1LhNIi1CKXRETX5ugjmsowyCaIvEAD4zHulhju93BTj9J2k6onlZYQHoBJSyjvEpaCKTNKRJJkqcM5gMslmhUEPYTrJIQ+GA8gtUqSJ8vzz3NZifjPz/7BXblHuQR23sJT9ZPcm2rhkh9WARReOzuFDxqCoxqMxWDG7cP+OOt5zhRPYlhAYMm6o6ZKxVkecilwSq9I9uM/RioUyjFuWs9Jtn/xefEI3S0xyNLA3ZP7J/2xHsAACAASURBVAKzkensWKCsYivSdEqWmhFckrMh4rU05GoW1O+PpxidMBknGFVnba8gqY4x2sPoDG3n0ELTs4YBhpM5dKvzdLVhygZDhkRScp8J8JTPutgmqUZ8zHuShm1gtSUbTFjhEqOVBk/wWXppm1g0KPvX+8NpdvU2eX6KeV9x/LjPhcEyyRTSYpv5ygP4ymJjSTve5sJA43lHmGYZqt+hmjbYGcdsTQWRycEoejplnJxgU89hGhc5JuYRUs7uOmehZMcgC2SYIUSB8S31uIYsSXoMaGhJuvsq53o/hvI0vleQq9lnZXRGPFrj+RersAyZtnTbKftBB7VokYWHMTeHYc+URyojtElnA50Yj29kV6gEAQ8DOpNIoVGBZI2r3CeOz1poR4JicRbhKjlkY7tAZ/t4vQJV8+EUKH24g1x8qAOsqNcjf/gk9TSl0pi7Md2rVHlsNLvik5w5xqS9y/GHH79XxXQcx3HenaDVan212Wz+VwCtVuvpZrP5373TCq1W6zvNZvOVZrP5HWan6P+s2Wz+CjBptVr/+mCx08yCteu+BPzLZrP5d5idJ//W3d4RAM9mlFDEKkTFE6QoMZUJYVbwlRd+l0+oh7g68bBWkntlhqMQI3ySipjdWDOEXPsoGXJpGLCeD9BYhjvbqONjplLy8LCAyqyFaCpm/TCSVPLt85K5VFFRGl8dDK2toVTtcq3wmAsCJkODveUuWNrEGCPRMmMjW+Fh+1Ge3xwzl7b5XLHGs/597JZTgkJSHwQU7bN0iimnjoWgFNZaItkHv8aq3aCtBszr+1gp1rgWrOGPpyyLk7xcvEYQVWgufIT5qc+ofNDgqOGCeoW10YghR3mqvkKaF4QTxdxcwWC6zc7kMvdXTkIJPD0r+SiJUJ7BjgvMtMDzfGwDsGA09EaaU9OcTGYkwCvZd6gFJR7Pcnzf8JU3znF2SXOxOmFzssgZ3SMSFkXAlWKHkT2FH4zQpo/VxwkHNYIQxtVzVIsK2lpSk9CLFvHzPtV4gdBPKWSXinoUZS3P5ht0i4xUxWxmZc6mZ9lMy+hgjC76jPQU4+3zRe8kWzGIImAqasx7kteCF1FIPiU/zWtJSmEkOgm4oMpIHeP7IWmWc0yX6MQLaCNYTxV+EVKS4GlFoXNeHcVQV0R+zMD0OM0jzIYx8MgiSTnYRU6fwBaafi9DhArViFliNgy7KSRvDL9KRdXoeVOet0PG3oT781N0sjXUNMFUQ0zgE22UmTuiWRnuIAx8c3/Mmm1TNTGm8NnO95lED2OFpT7nYYxmf5CxoiMetz47Kz5X/Spn5xK63pgLb5Q5Ii5Tsaep6DLTQqJFTNQICYs+kyBDKY/USCI/YmuwzBk0mhLnZY/Fo+bGd6xddLjirbAZ1ZBxzomTOyTxlElaZunkMs+c/w6+9xFUFrBVzmaDlOicvN7C+D5GLzGRA0TeIK0kMB1REebGyJt705yQmwOsWE9iqltkngFr2fV3OCUeYG5Q8Jz3KhhLlivO21ep6Qq5mHIisKjQp7A+qUpQtkxUlBG9GqeB1MvJvRwzGbB00CJmTM6lTpePcYReZtkc9HkoXGWankWICioMKZcsIvZIZU6GTxlQaQra0C3t8SAxZa3xN1t0T1h2C4MpAipU8Rd8bAWkMuSFYa29w9nyIitFxl4xZf6YxlrBjmnTJ6aqZr9HFkvPdAiMoVCz1FFrDHiQFTHTrE1wZA5UhTiuYHwFBFhl+dbgGYQ4S0EfnXqcL61Stk9i7AIy14hCYwPD1WSL7TSjYpepTksIb8D83Mm7+nv+ZocaYDWbzf8Z+KmD1/kfgZeYnbgCYB/45Var9f0lsb+D/qQDPEVNmTvuOXHixCMcEWN6x88w3t9xAZbjOM4Hn2g2m/8GEDSbzZPAXwbeeiziW7Rarb/3pknn3zT/4296vgH87PdV0nch8D2M9om0x2aySl4sYJXGU5Le1PLlZI+x8tElZmP++h42l0T7CdcH22vLKrpTcGqpQBuFX/jopGBTWSr1MqI+YrN7jonWzCuDkhC3M0yq8KTBkz4iD1Dy5jlSk9ObNujWI2Bulu6U+diKQaoJkV/DCweM268zH5/l8f4eu0aws1yjGlY4afdYbwc0hj5RoDgiillakZIHI8BZRlnEuLzBXDlk359VRS5HdU4XlmmRUw4knXwPL8hQ3iz2LXSJvqxRBDmEmlx5WGPQheGh/otoLjKupcxlYy6HF+l5Iwbj0yQixZY1UaGZTjWqDkJJUAZjLdpaXtidsF7q0BB1UD6+VwUMU6UpChhNLIn2mdicwCTE1TNoHVKaWMKkx7Jfwqrj7CU5aUkTVEJSJfEnNewUdHnWqpjldUpmSNK2eNJHljKuZZeJRM50MusCOKx1mfY28HWM8Dxim6FzjzVV5pifUugKHnp2X7DQYyAS0gzKg5gLC8+T+WWO6lNkJgcTUvYhUwHXLjfQQmFDyLWlr/eo21lyXeYnvF4+z1w+R6RSVO7hlSeYkkCIOVaiMqdCQz0uKCRYYanFCxR5DbWsSWTBVdNlOw6ZVxXw6uzpiEqoQRkSJdC+IdcQxYKWP+KsWkbVPJLM0vbW2IyWmKtVOREOZ0O3G4tnDDuNR5hP12lkHQb2DMdNxkqeo0s+7ekSRRihshojv4ys7vKIeZD1yMMPCvR4l4m3jS2VEEZSt4D1KFSO1h6F9vAXZxcXQuURFmWkbLPrVxE6oVfeI0x6JDon9o+yZJaIdExnd4CfexD6YAS5n4Kd5RJaaxnHQzKOsN+YcDzJWfIrGG3R0pAGET7xjRZWG05R2RF6Cq70C5Y9TS3TzK2W2ZjvMa8XOBUN6dk+x8xxTnQjdHaUbz18PwQB2F3wCqBCMdakctbNNLc5vhUU2sNoRV5MKImErniEnhrTtwlHdYaXQaYn+HiUfMvUFLwwn5JZy5NBjopCQpWRL6UHrbyKwWhIoJboqAlL5UWGJqIqS+hAMUl8ni7W6AQabxwxNDme72OsISo8GsLDBAYdSYKSj8WABRF7KCvBA60TBoXFiJSFOsiDX/mubOCjMVJjNl5C5WdQYgHKkEoJ2mNkBiQMqRUHgb9WeOUxIw+MLlj2Gng9zYYew/u7Fd67cmgBVrPZ/DngqVar9RPNZvMocA74JvB/tFqt3z4Ivv4m8M8PqwyjYjakZMOr3DGv9HiTj/WusXbkIcZ723fMdxzHcT5wfhX4h8Ax4GvAC8B/dE9L9H3wrMcwV9hyn252As8aEILIlMiCOqksU7ECYz2EF0BhsZFlLxshUVAGiYcUknwaYUlYGpygwEOWFSWTs9kZ812ZYaSHqcHmSkZ1MsKoACuOAD5Gw3B4lKXMIGpgDoK39XieulGEXhkRh7MKfeYzCEcoMU86qXI63WfZgDazQQE8K/DiCOlbjPGwQcbuFI77grE/pVRYqFQZ0GdzfIJRsMuJ6gna1Qco9A77ah4T5ljPYC2kShLiIUyJaHKaCXN42QC5IOmTUhifng1o4lG2CUUachmPrcaLdKVP3UyQpgRGsptMGdkcMp/n9ocgAwgs/qhNuRaAB7JQWFOi8AKwCfFBJbjt7zPIj4ENUFZjDWgNRQGRmlA3x+iUp8yn97NVaxCpkM9uv8I4+1mUCGFOQABJnlNnRMtamslT7NshnZqkV4pn7as+GOWBGIFnMR5gDUp5WO3R62WYup59SEqSGsmFSkIi7mMjaFGYlJqxZCKh6iXkXgPhg01zKr0cs7RIyYzQ6S5xkTM0Am09hF+g0cRFjUqcEOXzPHh8iBRz7AQdlC2xUNQoRIa0lornMSrVqWjDQI6YRMt4qccpf4pl1ncwzXzCmuV83CYKtjHqSQgsI7pc84dMkp9BI0lkxr66hspzEmUpLYYsFnX2rcEYgRABI46SiyGRWaGjFsF6GA3SL6HRSGsIi5hhuM8Ru4yxHj5glQbho2VAYUBYCz4UImNQKEwgWJIe43UfJS2LsozyFb40WCWxJcsgqVL2xwRiEX91m9VanXJlSmgtBh9jFAbLihmj7TIeFg9LSkSUaE6Wj9IoB4ytR5RAGk5oSDX7sEPYF3uMJ1WGCw+QeGPmEaQq5/JcHVHv84lRncvjfXRQoS4zOlbzetXHMOsfh1+AVWAr+MKA8sCHyCaQV4k3L5ON5pgow2mbsDPuslPqY/wKKpygjQGvwPgRmdW0xSJpPcV6BsIxEx4EPLS2aN9DGHixssWRyjWQjyMoqBiYJJKSX9BJFxkGExZqE3IdkEqLwSPLA5AemQJlDTazxKrMxcYIKy3FxKPIDKKcogBf5RilKFIfOyoRAjYAtCUad3jB2yQvKpzgFIIETE6ea6b5hMBboKYUlBRjm9EIQmxQYLSho0fUZY14dNezvm9zmC1YzwLXOwqPgAazK4L/8cG03wP+LocZYNlZyDtXWb5jXvhEk488//t853OfYtp57rCK4DiO49w9JeB/OHh8fTTA738YqHvFA2UKjJVUlKKeK7LQkssSC2lGWNZIH6alBbxSneVckMgyR4QFD8ZeDpVTFCbkSNKH0GB8HxH69ALNiVRzLo2R4SwoSI3h1MYLbKqzmPI82kgkPikpsiiBEPglSerneKZM5Zb7I62P5rATiVcCoSGyJ6iokFxJMJaSVvieoZZLqomgOGbxNHilHE/nGF9ijUX7PpaUSaFRviGTVdarPUKlyLRH2VpCmaONx4iMZVUwFEsMrM+xYpHID5mWj1ASI7arU7biJsI02PQC6trSDu7Hw8PPFNrWsNaQG5+SNET1TZQ/T2gaJNKf3RDXWNASf9BHLy/O7u9UmqegimFMZDM8uUBUCFQ1pmKqoA2hEsiyT1FUUMZHW0umJSsa+rbKoNrg/0wf49/SGT1PIikhC4WnCwqvig4jCHMQcyTSEtkqgT8GH3azOaQFg0fuWYSI8BMfTYAKsllspS0owWZ1g0F+BN9GWDNPSkES5ngmp25zArlIvwKP9gYcnXhU5yqz71S0T2xCSlQIZRkTzir7ZTWhVMRUrUbnGULVGJqEE3IJ4U0Yl3cxHpR9RUFAaC1TNMLzwHqgzey+SL4Gv00a+/SKPllxnJqXUs4sQWnMftijpteY68NYGzLd5/T0JLoqeKBcZ5IeJ5AxiV8QxYv42iLKDeZiiKUgtBn4Zpa6Vp1DmgqfifYpZQHaz4AyWA9toY9PZMooy+xm1tZgkYwYkVkBMmJruEzZCMCSmwyVCYyZYCt2VtnXRwkLySMbewwrZTaWGyyrRYQFaz2M9XheWcIwQpgFEgsX56/Q5jHmckmjmmCogJ+Re2OWZUzDFyRigUJIct9itMJ6kigY4pd8jHmUqH4/0VTR8R7k4ck+i+NtVsqfpmLKGA2Bf/0YtWAMi3rEkQKm1QDfVMiLgGhaJ5FTCltgiy5eMEDoYwRY9rMzNApBVovxkeQHF1c8a7CexhqPblhmSXoIqVnTC5RsjvIMO8UCJ2evjNAemdLkozIiyynqKb0iRdgU4QusbNBtN/Bv/qQg8pjIP8351BCMjmLsEg/G81iqbB3popUGaxkJQ0MrFrwyXgD18YCoPGH37MeIWCb02yTVNiEw1IKxGXGfXqJiPBaoMPRzUr9KaOTsuAHiIMZws+vQYTi0Gw23Wi3darWu34XwV4E/Ahq3pAS2meW9H5phebZ7R+ZP3TEvfPRxHlvbRHshXT25Y77jOI7zgfNl4HcO/n4PuMgs7fyHkpYWo33AUlYegVGzVgyrsApKaorn5UgvxIqckZpybQ76FahaGMwFCC+h6nmMRYyxFnwLZjbSW6ElhY4xgETT83ooHXHabCAz6KsOI7/NJK2ibMa0vMZQ9NHGECtLpkFJMFIzURlFEiNyj2FpnklwlIrwkUqRW02ITxAIsAZt5yBtoLwRIQbPBBRqdqVfG42xmkF+hJqo4luf0IZINURW9zFmlqo4S0USbNgF2pUyeFOE0KBCAlvFL8p0soCyNFQQBEJj45jTnQnVpMQ0bWCNQUlFUl0k8pdYjatYpZF45CiU0XiFoCGOoYoaVhx05EdDEJPJMdpqlne3kLLKk2KPX1TnCKMyWtXxjUbjHYyuZoijk6yW91Geh7GWyAv4enyFUnyBaNqinnjUVJWxOkpXnOENBMYoJiZhXPbxvRoBPkobXqGEMrOWql5wmn79fqQp0bdtKialZiPKykeNHkfJEsKbfc4w+wppK8D4hKpGJWlQEZLcKHxjsLZMT4A2BUoIUIJaMQuMlBRYqfCtwuYFyP+fvTePtSy7zvt+ezjjHd9Yc8/dl4PFSaIoRQkcyDEMybITRI6TvxQ4QOI4FpAYkR0gAgTEiJ0AQmDABpxEQAIQFuB4SJzY1mAqTijJkkhJJiVSbPL1UNVVr6re/N6dzj3T3nvlj3OrurpJUR2y25So9wEHVe+ec/bed+9z713fXmt9K8YHTaFOmMmCh3HLg34P0S1aWlQI6LoTw3ACXjyhaRC1RJolsjAs1FV8EC76d5j17wPCvhvzMPo8vm2Z969zUj+LAawbULcxp03N3N2m5ZB27alpdUQrHhsKXnzjFZ46OEDZC5q4IZMajSHBgRMMGsRwxpLN1S3U4jqRQNqMiOsd8AknzYxl27JsKm64I3bDMQFF4uekzCA+pxFPLYITyJkzDhcsVMHL2zMa75Cmpa1aGuk8SrOQcOFWvNH08CHHRJ6pWKqgOWtjnLMEZ4hDTd2muFXM8+2YxKas3BF4R1CBKCQErRAV8arN8GXE1oMSWQQCAe+FWhoqqRHxIIFGB/rFVczCILMjJLQEamZlwwkLMlOinKLRFU7VWFOvRSs8OmiOuaAJNVI22CYBURwtn+Miu0IxepYrbY82CAKsIo24FIJGu0AbQLznnn2Bc+0IrgtL9M5Rs2TXOfJGiLyn0DM2XR+8QtDUZy3togsjfqSkEeqWIEIQRa1gaU4IdKIVSVWim5bZdJt4/Z3pTI0CTuuU1gm1lCjxuCC0AueqzwNzlSAz/Dq+uuWthaPfbbwjgjWZTL5hIjaZTP5tugThH+WttUe+qhbJu43zLCPyDbvjza86p9KUF6ade/BkPKRZFV91zSUucYlLXOL3D/b29j6+t7f33evjI8BLwCvf6nF9o5jPKm7dv2D3XsU8WSLZMbFeYamwVUVeKsauQonGNA1X532uLQJlVODNisjUSHaHKv8y1jlq51BBUMETdEzjXuVO/w61NDjlaZTl3LU0VYsPwowLRNXEJoLgUNMlw1VB8DW6rmidYtXActlwEqecZBucM2eVFDy1+BJm/grzuiG4Cqc1Bo+RGBVy2tCieoeM0pJS9bhtPsooK7E6IL6hDY5+kxF7RVVnLGtBTIvToQtxbC3JMmUZx9SRQrcJte4RBUUIsHlWcP98SK1aaqkIEhgfLbl+rtBB0ZYJL94+J56fgwRaJVB6tPfEYYmpHapuyZolrfcs3S7Ox5xbQWgI3uHUBa00NFIzXo3YXXS2hA15J2gWQAnY0KCdQvsIIxqjWhSBhdSIKthQr/LM6jXGTcLIjRERtIeFnrE/+CKL+AQRTZFdI8iYhZnxi1sHTNOu4GxHNoXaaELb4FrDLBmzVWVkpWa7tmz6hrk+J4ggEnCuAF93AgoqdF4GNN612DpCvBD5ElENZXqXxLZEsg6pQ/OvhTuMKkHXIzRgncG1hkp3GwJnXrBKY0TjFnlnqNMQe0uhgQDl6nk2ThK+841TZr2rKATBU+gGbMvroY9D+B75ApuqpE4GtFHKbzdb+LrGB48Lnk2fMQ5jBIdnTgiByrZsFwVJiKiLAUYUXnkEWHiNDwUVDTpq2FcnbDQJSEB7YZYPueht8MYQLjJ42MZIEKrI8Eo/8LneHWrXUrWOgcu51u6iREhUxYmtQSWINihfY9qKQb5kI1lSRrvM9TaF1nivaXRCmi0p83OO2opWzXHBEYJwku5ykl8BaXnQ3mQZJRwOriBKIwIpGbE02NASfMvHDs4wqkfjLQ0Nla6ZmYYTXdL4QAjChWji0KMxKSIeT8CFFbYp+MBizAtH0Kt6xJRkekqka5K4xOkW8BBa9uWCvjg26oQ0WK6trmJM1uVJISz0ggdJZy/HzYjoQhOqChsU1gWCb6ksXPQvoC2wrib2gWN7Suw1aZgyaHP6bcaGjBgES6QbNvWUNtogVgNMsChRIJ5Ay9ifsbs8Q0mJa2sqW6B0g5UW6wL96II0RMiaoAnCUk+J5FUSKVDKsUxGBG3Zmc9J6wtKPCd6+Z5+v79T4vTqZDL5m5PJ5BP/fxqfTCZ/Avhx4Af29vZmQDGZTNYVBbhBJ3TxniAUS84GI7aqKf3N7a95zdUrN9iuL3i4fYPpwf33ZByqOGbwz/4Cm5/8BMOf/08w539gbYFLXOISl/h9hb29vUPgw9/qcXyjKOc1eI/3PRo0ui245q5xvb3B+w4f8rEHr/PRYo+b6giAK7MZz51NMcBFz5LYhsacIWpFlGgcjqdOzrh5dh+tLISaZX6Hi+QYF69o8k3IU4hrKlUSQld49TQbUSTXyRJDOlBEzpPZOV7X1LrkxNTU2tLiKapzrHYU9j7nw1NaX9O/d0TvpMBEij4jdusdKp2wSjyihIXdwIomjgPjdAq2JPaCeI0SIaIlOE1kPSWKSikCMaNgO8OZgBZHZAWL5uN3T7hxNiVqcy6iHfCAD9RJj5D0QBJCAOs0O6eaqFkBGsGSuKfYbuCW89xqrnRESQK1aaB12KbpCqz6hv1oxiJesEwSWtOJQRixDNUuneq0Iw2a52RKFhwqKKxybIQ5RjyBgDMVYmrqqNuhP8o2WdkcVULFGQ0eGxRBab7PvcwH7CGBkoW1NFGOVV0YUwBaG5Oen7Hym4S2j5UWELZayw2XI3ZK1jqutnOe5YA+BV4FCBBEU+RbeNVDlS1VtSAgOONYmTlNUlLGWxif49hAiSfzNaUHJS1KNFocvdYSe2h9TEJKLjEqKK41IyIPeAVBo0Qz9yPEjdBocvpoNI1xyOADRPn70M5TWUuE54VwiihLHFpaPEudY7xmmWyg8BgvZGXgoL+Fk3Mebs0ok5KdZoeR62FUhccT1h6QuD2nVac0usG4hswtiCm5OT3mE7d/i610jo0VC2NY1TmBQKEV59ErvG6FRlXkruFKyInEggRSHN5EgJCritPhGxTpgkX2gL6usD5Hu5izqKVpSwZFAQRENzzPy9y0nVJer6lwKByBs/4Wx1nK3eEpHkdQGvGBiwiqyDAqA/26YpU+5HDjGOsDJgQWsUXRYmXFkoQghueLDTI0mUqoMAQCLY6e91wrpzw1a9mezkGEnClBKTwKpQo+JL/FJ+qCZxdXWabHBLPPKEAeIBNNpFqCaan0BQELIohApQtm4RgnDkcgKEWwNSoEnjm+w4f2v0zkzhDzkGm+IjRCVqbYJmakxmyS0mWyWZIwZh7F6GAxrcG4BJXMSG23cWPNjGm2z1nPoXWOt68h8RGT7HWe0g+I4zn99oJZL6OvFjytXuVGfYQKnddPCDx//4zvuHPIqC1o1Hsr0/5OCdb7gZ8D/txkMvmlyWTyVyeTyfu+3g2TyWQE/CTwQ3t7e4+qkP3fwA+v///DdEnK7wnCwX1O8w3Gqyn5xtbXvMa+NGFydpu7o6eYHT14DwbhGP3snyN54xdwVz7Cz5Sa//Zzn+Lo/ufe/b4ucYlLXOLbHJPJ5Dcmk8mvr4/fmEwmd+nCBP9AYjafU+PRWvBWE8I6QkaByUri3pzRaUHPV2vVwG6HNhDANmhn18FTAmqEDhanLT0qRnqOV4E0tMTRlJ3BjJ6pMdpj4hVGPFZ7FCVOwUY75Cmd8YJpkHSbLVOzo86IdUEdpWiEnvR5MXis6vKnAFpTU0eGuHbExkFWoxBiD1qEzdWQbLVFcPC+V4/ZPZ+iXJ/xLJCtzlHBgtdkISU3DcP4CI0nA0J0wiq9wzz5CvPBLpF2WO2xIQIRstYQt5rxqkK7EkTzjDpiOtxmQEOqLHHQJA52Y6E/2uCit0nDiL4fAw3Xa01QlhGbPF+NGbhzjLSICOdxyjRJMKFlQ1UoBONjLtKcWDRDb1j0hjytK542C3qsiKi7UE3Aa4OTiJiGEM9QMscHyyLe7IwvEUzbELuEJur2nnNp2Gq32WnH6KARBb3IYW1NLIek8YBYegjgxeDxzJN7qOiQq+0tPmKXfFjOuMacD3KCDoYbZ2dkPqPHBn1JkeGS89F9dMiJ64TMK+oIjMoo0+co0wkRwsCnvBAqQlA4WoKCLFiiEHCETnUOsCGiwTAIFu01iCMqKlzrcOsQykEb0/cJNqTEkcMowamIaZyjgCgYkiZw7WzKh+/O6Ldb7DbfQaQ2MUFhvAIRouDZah/Qs0uwipuH53z37S/Si9a1kwRoBRUGzNNrXPFn3JRDivicERdcKY5Bgw6BhBZpK3rtipHKiUqF1Q1tMKhHoXCJpY00V+KK713tsxuX5GrEC/WAi2uW6abHoFECgYK86dHRYUe/KjtPjBeiZYX2dB5mCcRuk7hJsM5zkZaIamnTORf5dexywFIPCRiqxlKlhzTWIWiKaIN5b8ysNyJygaerGZuSEFSfVpmO+CuhiRKsqsnbQM9ldDxbI04xXl3l2fIGo8RTRxGFLYlp2ZSSpPUoUcTBYaMSlRUMoxW9+ASrF7hoQBk/y1NNIG4qjjbvc9w/ItQWXRkE0MoSKUOvcRACT52csD2fUkWWWbLFzeU+1+u7KC9oOu9qULBZpDRmSaDBeNA+RimLDgmxu4LDQWnA9bjYuI5WQisFpe0jWhhcrNhZNWytNK0dsGDAC/ce8sGDeyTiiIIBZYiD4Tv8Oc+Wr7+n3+/viGDt7e01e3t7Pwf8ReCvAX8C+CeTyeRTk8nkg7/Lbf8+ndLT359MJp+eTCafXt/7H04mk18GNoFPfrNv4HeDfvBFjuMt+qslva8RIghgX3yJ5w/v8lrvaWYPXnvXx5C8StIa6AAAIABJREFU8n8SHf82i+//H/jUd/11/r7/Y7zcPM9fuX8E9fxd7+8Sl7jEJb7N8WeAf299/DDw4b29vf/oWzukbxzTpgIlaBNQUZdzYIMnGSwo8j4rm+OtxYjHCGil0RII4gAh8hq7rvV0llmipiM9WzJjx3yRKluReItFaEyCVR4rFis99DLiqtfk6QnDecFHXrvH5tkbnIeUDyzHBD1E+YiV7VGmGRGerFmSiSOqpgTt0cZRREddnSzRXDueYrzFK+gpy7++WPCd1RvEISJxDuUVG9OG5x7M2Fh0ORORs2yef4XYe7IQ0/dCT095yScMxKBoSIAEj0ajCN1chE6F0YQFt9QBkS7R0kIIfOTkdZRzPBWOeY6HKJ1hVEDRY8MqqqGlthE+egXUlH47p4oHbFCy6Zf0aYiCgB6hRPG0O+SKn6IQ9Oo624slURPzwvA+7+/t0UYZQkIjIxb2JifqCuLWeUOmR74sadDMkxNUAOMVuXIMV3PyYk62ekgsfbSAUpZFXFEne4h3pLolpkXr++wUd8hXJ8RRRkwgloQNGZD6AO0S/ClWDDoRVtEWgQwCbC9mGOnzcPM+ZXpISC/IYwViyJsMG1J0UtJXS6zx5FVBE0aYYDChBm+xWmhVhEIIKqCdwwSP14E8GBSBDZcT9FNUKsPpOXV6RKscWgKRNCiBwapEO4OIpYo2sb4jJ0JXSDqoOYfjI4wErO7R932iYNBBk6aBLCh2WxixRCvPcD5HC9jQeZmC1hwPc47G1yi0MNYzslAzTwzH+XPUxnDen+KlZehX/NHwFZ7OTvH5nOu9fXosCZGmjjWzfAdxGnGWa7LALAIJDktGLC1RUPTF0kNTmILGnqPDishplAooNEn9Iv2ZJT67Rey6MDtE0ycljyDzJaCwxtHXBVnQnA2e5YWDB3z49m1cBTwxR0Fb6igijRtMa/hwc59PuDdo9TbTbMgiT1BRy276NL20R+od3mzibA+FJSjYLa+S+TFJHTOoEnqrDAldHp3G4pXqVDy9orIWJaDEIUFR2T5bWAZui9RWYGOqqM8s26BKr3O1SrDiebo5JVHggyGRGqMakrhGxbA9POUW+9g2RbctH1/u8TQXaDxF+hrnw30G7ZBh4Xj28JC8rvEajqMzWnFoFeHTFitgmwjtYyqb0hDRss2NeZ/hYsbW/gm2FW5eeBIJJMGR2Ke4brfot3109d6WAn5Hra8l1/8D4PuATwF/YW9v73OTyeQl4O8C3/n2e/b29n4K+Kmv0dwf/8aH+85hjl7m+IUfYrc+wkTx17zGvvgSz/3c36H6WMLx4t0PEcy+9NO4jZeonv9TfPrv/TTvOz8B4OfzT/BbX/iHfOTjf2Dtgktc4hKX+FeGyWTyk/wuObuTyYS9vb2/8q94SO8K6voNEgsajaBojEbHDfeym3yMI2IlxNqR6Yrt1RwlKRpPJA1p2zKaL3ADx2A1Z54uML5T3RJA+YQNv2Q4TTm7lnMe3SAPcxRCGeeMkqugdzmMD9k9OCOXLQ4GYwqlGStY9q8wmHuurgy9gWaWe2xoKU1CHZ+glgAC1nSGRAg8czRjuplTJUNC/wxfJSy0Q7THeoMS0BJh24QNd86ZBlUbRBz9YkVjh8yHfagfInKDuL/CRhVtC7EoLAYjmpgco0f06oaLrRnH9gQdthmECwC2i8A86fKXDILGokKJwfKd8tv0N4/Zj3fJ755T62s4HVAiZNOCFwvP0YfAisYQ6IVt8lCTnldUOwmIcOtkny0CSXbMcvAAWzyFDVtAhBZLqz+P8YravsA0N2zst/TVCjUQVNxggsb7mMyXVLaP6HOuNoa4HuFtxcbiVXBDVGh4OhxyrTzkS6bASqCOYnTu2ZKGvngCqhNmKBxBPWAwc/hxhCdhESfYuqaNcvIQo/QMF7VUxpIqTa1LfHyNeZxRaMUnXrnN2TCjv5izvVpQ7eaUcURudvHRK7QhI/YeHzwfPX6dxpS8cv0lTBDy0qHqK9SbLVnzHAfRCU6BoIi8Jq9nJNEJSbUkOjll/9oOmdvimXPFlbLg+PoYK47V4BCnEloOGMiIOCupWsEERwCuVn2EPkLELGlpCXgUz9y7SxHX+I0YnRWcrxRZ7GnRRCHQGsOHXr/LPFbUdkHDnBe8IfcJPW051oaX5sd8oNX8+vh5FvEI03h2VvsskxKTWpyKeXWjYtFOmfhA5ApejoXQXCGp7pPGVSek4SOUCqQqIakU3mj2t4456k+hfh4llia7C3qf760rPh9plvTQwRIZhzEpG66gRZG0Xd0yABM3JHGD1Y6nZg95OLqJpSO3V2dT2twiOkGpQN9niK7YLQuuzlfMBylFnJP0ztgqltii5isbN/H+Onm5wKs+UVYQZRXBCMo22GbA+GLJ2U7GcXKP/a0eT08HfKL3JX6j/0H6ZUGNELURBsdAPLbJSULO9VqzmXsWJqNRNbVVvN/dY0uOoWc5i3IeRBkv3X+dD9Qzbj+Tcx5/EY1hlYAxh9w8HhC0R1Ur4uWcg60CkpZ02aNyFqtS+nVCNM+xzLtiZqIATxHdo4oaEqOweZ/cnGAAZwZEvsC6EUM/ek+/398pfftP6bxN/9ne3t5j4fi9vb1XJpPJ1yJR33KE6Wucx2PSr6Pgq4cjnr7oYtAP9Lurh6+LQ6LD36T47h/jX965zeD8BPvR7yF7/ct8+P5rfOrqio+0JUTZ793YJS5xiUv84cbXCwN8b7ch30MYPcXEb/72ZPTplbeQQctTboZWNWC5erZg96wB/QLWOIzyfNfRqyzVIV/crkELeXVKbHdIJAV1BiFiXNY43afRGYQeIZQc2jnbzZhdFpzQp9Ipg9Uxu7riTAn60SY7hmEZuFW0HNgV5ahFqdCpholGdf6GTs7bjAhRzVmv4Or5IaZJON7pcky+0l9Ry0OicgtBYUXImpodydDFgv1+hmdK0gq9YoHIEh88w+k5DFNAmLj7fOh4yu/k/xZBDNp4/EDYqeccaIMzcVfAWCuUcmyrYyrV5YkoAjZqieuWZw+O2MkecJEf8ZzMmbPgwFzviJ9WRFKxisaoIGjriIwDrXltWPHMrEBL1oVAxQWp8kTtDB0CoUoZrkpkrDEq0C/OCAQiP2CxccR5mnXhmMZD3LLbXpDlD7AzUHhAEdQ5Cx3YKLewcs7WckqdN9g2oILjJhdMdYICvvfeFzEbNSYp+B01RrBUOgGB8fmSk3FE0txCKyFPl9xwJxTRDgpwyrKKhjQhxcRnDNyzxG3D9sFDkG0Kc5fVCG7VQtQ0+E1PE+9zrZ3SBs9K3eR6eYwymp6fo0TQ6QGbiy9xZTEh1hu02jMc73Ci57TZiruDU7IyIy8XbKoZ189e4eHuNhIyevUFlVYkZwW3ti9YugZPxDQ/xYTAZrHFQXyH1npE3syZERSZXfHG7hGZbGP0HKUMADEVf1J9iVf8dbQEdOnIBwvS0LJrj4h0xUl4hkxZ+vGCQ3+T0SxmcPxlso2GuKd54fA1RtWLnI87YU4TIly4SmPuszJLdBixJTWxsUgbsVkkqPKco4GgjaaJNNrEeP+Ak1GBqmqc1sRxS5rWBH/EsC3wriGViCU9ggskukbbLvxSE/gj997gC8+niOqU4ZQSPnT6Cs8X9xlUDfmmEMrArbNjmuo+8933UylF1rQ8E/YZlHA777F9dZ/E9DhSV0iqlpVNaEzMteoU24DrNVSpoilTVOQAy/WTY/rLFf1+QTuoUc2ITbVE6h7DeMV+z2F9FyLaRnNm6T1ulTG+yQHW4csRjR4QpPN+91ULWFRco82CtHF4HzDOYmKFtk1XR00rpsOI8UwQ7Umbls0V0DN8Z/EFju7t8C+f7ZPTMDhX9FRFYWJAsVuecDgsOOjXbLHB3AyxBIyqEDOmJce2gfAeF/h4pzlYfxX4xCNyNZlM/taj0MC9vb3/+b0a3DeDmeuk1zft15/BZ/ItTPAcDsY05epd6z++8wsA1M//IJ/53K9TxCl/+mPfxeSl93N1dsb/2/8o8Ws/8671d4lLXOIS367Y29v75KMD+E3gzvp4CPwX39LBfTMoA43ujIKkcgQdQBRJC47ncLKLEs2NsuBpN0XpLpAqjtouvylMgc7Y7FclrbFdngca44Qg+WO3nwqOWs8ptWdmV1ykDwFImhptOj+A8w0IZAF+4P4XuLnUWC3EwXYCDlGXeaO7oEAQxU6pCWqLo7zPKq5ZJAuwnve3dzmNVqBAJWdEYljGYyprSaUjlU4Z2tijlEFEMHiUFrRWuKBYhCHaaTZOPPnUkK8W3bs1HkGho5YotCgLad3lchwPIvZ2Z0RJyTJytLEltp4P7FvSJmfZTGnKCl1OqWxMXxVs6QV1esjJ6JBcOb5nT7g+bdFBUcUFIBz3Z9zu7dOqBiUDev0FA85RCqq4E7BobEwcFMq2aOPZXB2htVBYQ2G2GKdnKBwf9a8yVAtQeh0aB9bcZh4tICiUaJR2xNkX0ChMOcY6iNSYeniKCQ/Y3Z9xt39Oq87IqmZtfHdPQyea34WifdTe5po9YZcCpRRb8xUGi1IelRVcX+zTrwq05NiwiZacGLg9qjkPnjZoOmF7IaHLc0raFvVIE16E1h6uJRUCW7MZOxczvFqRRi1NvkTrhr49I8KhEHqsVegkAoHbW0sejI+wPuDWT9dGccEiPiTULxOFVSdUoDpFTQFaDEoJqyzjLJ8TVN7NpMC1aZ94dZPIp5iFJylb8tWKZV5xPCowBP6Iu8N2mKGV4jh6yCx/g1r1abSiVTDNC0wkoD1KhHPjEDbxYYwmUKqSnBXPufvshnNSGiKVYpOCKF1RjDSLJGcZr7CtW6+yAt2SVbfZPTtm83xOXZ0horB1J0YftS3Gf4FlWnbqjdLlMho8vVAhAs8tD1jFBagHXHvjjKsHC64mr9P0j1jEh7zRm7FzdsbovCIoy+HwiKNoRpwv2VyOGDNnFArSJsa6rghwaDdomwG96YLeYsWNi2MGfoknYlIe8FzxgLyqWEUrpNql1Zp+cY/xYkHPLkmSUwZhxag85tbiFK0FEYUKFt0kEEBJhK1vQPE0QUPPX0AQvrQ144E9QBtHl77YURNNwA0VogNFtkLrmFu+5XhY4Xt3ePHsIRuhpIhqHgc4KDDKkhZQCxz0K2rTlV8Yzxdo3dUQzJcB++h77D3COyVY/yPwC0/8/b8Cf/vdH867h2ncffp3k+SrztUh8HfPZvw/84L8+Zd4brHPw/ENZkcP37X+owe/hu9f42E7RB0fsHjufVxLE55++lkUEJeeh3d/+V3r7xKXuMQlvt0xmUz+J7rfnn8A/GW6yIr/5Vs6qG8CumpojeE00fRnK9KmYK6F973+GoIwj+POW+QHOPM0kTg2Zc6L7gAUnPRqoFNtI0CVnXG6+RAB0mVNGxmUbQGFltDVdwLmtmSVnrN7esjH7/4OVf+ImhIRB66hLy35hbCtpsSqZVgUfODOPUQc0+yQK+czlAhIzA2VPBG72YU6CortsFzXlDKYIMTiOByvuDse4OO4E4xwAdO2aAakVGyFliQMMYyw0mP36ISbRxXoAV/Zajnpv8p1dYgWi5URgjAqChDhTA8JkWIWD3Bc4ZzA/c0lr44ztpYjbGixMqDhJqA4ihyyFuqIpcHLPhuc8YKfYiTjmcOYOFxHdayFxnh6s5KH0UO8ykAJ09hjQp8qbrjoz0l0Q67XJARNEhq0B6dGBJ3TP9N4d4+H8RynDEPdhWzmZsGtcICygch6MjViB0VfapRzRMcFUnVEXGM4y1qUBlrBese18oCNsFivgUEXTz1ekTokOEYoUrQICZq46bwEc9ND+7AWVoloIjCkjIIFUZyYC2y75GoVUD5DBSGu7rO5WHXPpfJ8x+mv8fzB62yFOX2pQBRKApFoRlW/ezaB52YP6VGCtoAlrUviqMHYBnS3ET5t9jkwA0rVOaXH8wWBBeNizqicr43nLtTUa81KjzAywMiYIuq8V4PZiny1opYM21jOe2OUhpEsqSMI9FF0ghn91YqkqFEClaoRhjiucuv4lEgFxrKgrxaMWFB3djloS0rDRbjP/egc03YpKF51xHD7/LNY333OFEKmp1gcThuMDzTRXWI5eUu882i65MrpGb2V4333brM9r1ikFjBEsWcjxGyiGYUlep2LedRvmScOr0bdd4CGbTPl6uIQYcVJ73z9iexyFVvlUUpIms4L2JOK8SrvBDAIVKZBlTnn+TEAKSuecwdkYZt+tUM+r7henKC1I5+t2Do/J68dUYDdtuCZYopHYRvPo0p2Zv0utRJirbrX22HX/0XBxnxOQBDjO0+jF5RokuAYSklfr4hHFTKuWfYLeq2mNCmtztAoEu/ozVbcG54hdPcaEbJQIyGiMDl1vORoeIyVhqyqsERo04lr2Pr3B8Gye3t7/+LRH3t7e5+H95j6fRNQ1ZTzXueivLr+9xGCCH/x7iF//eCU//zeIT/9wY/x4ukb3B4+zezh/rszABGig8/SXvtuPvWpn6Uxlo989jM0v/LL7O5exUYRNy5O+M3SoZr3Vof/Epe4xCW+jfDBvb29Pwp8eW9v708BnwA+8C0e0zeMk2iTJl/yoN8nSGd4qOhfcH5ln2N7woPBjGnqOLN9nGnZ5YL8UXFMgdZ0BMHKBpnbIinvUsQFQQVAoZXvdmvLAh2EOCh069CrhMGsoNdO6elTdDLl9a2Tx+0OjroIEKs8I1mifE0kDvwrpK2QNhodEhSGvCi72yRgWwPSGVimzaF99PuryK3DyhAtlsPxOYIQlKDXinuReAJ9jAQUFqtzytCunRIdVRtRsRsaUhGM9FE+QrdzJHgW6ZRXN9vHc+vaBpTgdeCZgyNMECJp15aLeWIVFMf9OcNiiXps9pqOKBDRmGZ9VYeodlTxam08JsTlup5mb0HWvAwIWegEOkbB8bGTV7q0EAAds3Vx3FVv9gpvxhjdJ8IxPpuhXefBtHjAkKxa+mdLkrIltF2eWC+U6KwlumGI27pr1vpOgEOEw3zM+KylN6s6Qni0zav2/Vg0I1kyCDUvnJRstSUvFEsMAW06SfmjwdFjR4CQIapPWjxge9nltuWLkqg9J+gxNlzhuD+lir/CZrUgACndeLbDgqvhgmenx1wJM7JQEUJCo1JaNabhWV64+xClao77x49XYp5069eoLtTy0fqAQYtDrdflEXZYPH5+erIi2jjHZCvysmJ0VmAZPm5j3BoMfWBIoMf4eMHWgwvik1O2igvisuH2uCKogNERG3pFLi1WOq9qNq8e96vx6CAMT5f0pl3/TgLKFaBgsFwQVys0KyyeXOouF612XC9P2Q1zNIpMuvmyTUC7lu2LhoghVlJAUScZ87yi13i07jxgO36BSPf8ahlxJ4cv7Z6jrccMK3qjM/qrgpCcEBg8nsF+s6IwJbWpHy0wxnlsAGVa7g+OeZifsilzUmmxKsK3O5Dd5Y30DgJYBVldY+uGfHGBkT4I5POS+dmAsug+C31KHnnsBjiiKEJJzMLUeATtAoOLgvF8xvW40z/IljUbiwWbiynXilM2yjl5ewqmxegGayNEgfbhq8iHXocixgSGsmLweLMBLIGdcMGz/iFXwzlXwznTpOSVnQNMU/Ne4p0SrM9OJpN/OJlM/tJkMvkvJ5PJPwV+/b0c2DcDe/9XOYk75cDrg+Fbzv3T6ZJXjo/40c/8Y/78L/1fvP7al9i+OON+dpWzw3dHSVAv7mOKI47uW2bzC27vXOff2PsS8//6L+M+86vcuH6Lp6YnfHbwQaJ7n35X+rzEJS5xiT8EsJPJZAgwmUx29vb29vkDXAdrYftU5lEOVpePG/eW2Kyg1Z1SoFPCQW/KG+NT1nvAtMrx+sYxjX677odg8dwdn6NQZNKRsUExZfP8M9x8eEjvHLKFQYLjJL2HkxudIaYFZR3aBfZHjyqrKLwK7G/e42A0JWksG25BKg4dNAqLdo6AcJJOQTStWrEaHpJHJySVJ5k7Jse3ed/5nESazqgUxeFwyTx902i1bWeO5NQoES6GxxyMTtEScK7EuRIrPWIn3N66S6tbMtH0qEmmS8xySVCDx+GLWgcCXQ2pvpRcCTN2ZLoWhX4cOAlArVtUuwSE25tT6mzahTYKFNGbqQMheEKz6kRGJDzRikKjWCYFyr2BXud+59RoHRDejKQxDBheVCBbCDGpBHToA0JWVIiEx+tsG8Us6Yx23WhwS9ABHXuEBKUDqSlRRgDNhpScZksktJ1sfuUATaEs8GauX0rL9ZMl2bLCrkPPrKzJ+iMCr+NuAgDjPdqHjvSIcDA64JoU9Ozx+ql7yyNIvCbZdt1njxL8kFZv0uis8zagSar7FOuitbLO2On+EIayJJMGJHQHgd5ySt5OOehPcUEIArHyWDpiihZsXnTe1UdrxpBAn1Y06XpeHxEPgGUcsI3DOk9tuveuJEHUmwIIii5Mrxv3m8/N438FJLSwLnSrvEOjcev3bwhruqFIVi24bbaCIaJFb1niJMVIoI6X7ISCkSwxutskaa2QVW8SAc1TBJ5GEFK/4CKa0wSNX5NJBQzaFTGOL289ZBnVjFgSieckvuBgcLsrRK08V08PGRQFAU9UOVQ1RxB2dExP91G+z1m2xPgAWJQSsqri4WDK6fCEvpTk0n2Gi3SOkcCTaLlKMEOmfUGrAVERc5yckpQtFS9hGdOk5295fiLviJqWpHa0xqOCx4hGS4ImIy7f3ESxhCfWIiUOj+NWn3j9TaIj6wlaJN2mkLe/DwjW3t7eX6ILE7R0Av///d7e3o+9lwP7ZpB8+R9xGHW1r25sbLzl3D/4ym/z737+F4nrJd/By1ybnnKaXANgvzj+qra+EURHnwfgn98JLCXGbH8A+dGfJP7oD7L4b36Ca8MRg7Lg870PkNz51Ffdv2jnvD5/DR/cuzKeS1ziEpf4NsHfBP4s8LeAL04mk33gS9/aIX3jaJ3GrUlSeGSgrYPsHr12kG6zv7FBHevOZhBgfkRjHEt7hY1QsiFzMqlRxAxkhdOdgTtwfZR0xr4mw8g2gYwQAiqUrOKa/eE5EBOPZ8QbBVHdUkUlRmmUAqc9SMDUCiRgW4fFk/rOMC7imr3tg3UfUCQVF8Nj7tkZQS2x5ZB+u+LW+T16lCRrg2yZvM24kT6gcL4hdlOqqCYPmoHvvGkezYXXfC45xYqnjRYk8qiNt+5ph/DI8BqigFXvoCu4++g8A7SYx/cFcWgCPkBpLa5/h8ONV3lj885b2vWhRQgMZc6VcAZrKvRm74J2F6TUiAiyzjvx9B6b5p2ASISpFoTQrg3U9HEo4kPzZm0erYSjflfSRZQ80Y9iFve5s7mDzVaYLUC/1ZxT8iYJcL5iLuXXlOG04olpGbAiXntsnsSBGfDA9EkWBSKBDVmgg+f17btoek+MCO5uPCBlSSDQn711fTsjfT0FIsTtgitPlKtZ0+KOzKxHavFsyJKRdGGgWjy75euE4PBBEBF6smLI6vEiGAKb/s12Za2BY3wg1gucdIWlS32Nhme5iK/AmhAL3RqrdkYAVrZ5y6P1ZCjsk6Puzcsn5nPMeW+BkhjtO0/TI2+cArRxaB8I4gl0YZ9RVtCjohfO8TqsvUUBQUjkzTl+BKc8rVMQ6vW4BsyjHM+YWNrHuXIAd/qHOPdoIyOgpKX1Ja9uHfFg8wGzzXvsbz4gAAsV8UDHzNchml/ZOnizT3Yez8AirhiEhghHLDUheNo1WZknJWdZF5lVa83x4IShvyAPBdHSkszmHKkz7hvDLG14mMePtzz6YfXYI9nNVwDR3Xy/zW0lRI/X9hGix1sT8jZ6pbHLAWDxKjzeEDHmnfqYvjG8o9Ynk8lN4INACgyA759MJj/xXg7sG4WqLkjv/TPuVVfprZaMN3cen/vy/h12790j8o4//fHv4wdmv4HcaBmuuofhgXl3oh7t6cu0Yvn0zsf4P+oP8Su/ecaf/aXX+fKtHyR+8YcY/WwnbhEqzcXh76x/VMGL52//1k/xJ/+3/44f+Uef5Ef++Z/ncHXw9bq6xCUucYk/TJgDn9zb2/vfgVv8Aa+D1fqKBkPwLRIa8EuSsCKmBQEfhGm8RQgtTptHDoW32BoRBqyjT8Hoa2zKRZKjxKClk2+GCB/qLgfhCQ+Yeps3bGkN5lGH4ojzkrT/ZuhNnK5IsgVn+Wx9zdr7RCDOOvJVY2Frik9inAhCQORtZr7rjOd0fS/SPi7CmwUhPDYi15cDCQ2bMsfS8HZoanyoCOu5UCimacFJf05pWmrbJbwHejiuPL4vkU6IIKxJ2UCt6K0NVbeecffoPQGBHCElmG7X+REuehHLJMGHljo01GGn84Y9cY1nC3zbkWo6IvFoLXQQnOkMYqW6nfjadHl0EQ6ICEScJuMuzKvfedii4bx7X+I5SM+78EsCXmKcNrxy8xbT/M2UiUfepSJ6wouoHEq/dY0aOnLrfU3jurXo+XNcqGklY8UWjc6RR1ri8Sn743MCikWarud047ERXRLR4hiEObqtGEtnfz3yjqEgqLdb053S4o3FCSf2wfrFCFmHehreSgr3h2fdbW+jlAsVc0+nlL6lMY5ARGVatBKs9kBMCC2artbc3fHpE+vAOvQWnCvWZPurBUy1WwAVp1sLtHqzRJAgHRExnYyH9zW1X+cvSkDoE7tHuVtd/lYnfb4i500Ct795lzubD/Ckb+m31i1fCyIOWXvQYjxa4KS3xCmFFocxRxg8h0mfV0Y7zK3mdD2vT1Kdbp7fJC6ObQC8b/DhrWS6Xatyr+KaiLb7vvEF3pUs1Zzf6bX89uYJF9l0LcQzQkiIcCRPfKb7lCjWcxg8aWgwPqw9kmMaF9abKdBqQxulCO5tLlVNE3rYZUUgp7Rvtm+ir1n5413DO6Vv/wS4BpwDZ08cv+8g6QYPhj/GPX+VwWpO0us/Pvczn/tFnjs94ENPXWHru781gFLRAAAgAElEQVSf5X/88/zIK/+Y37r5AnHb8Oroadq6+jqtvzPou5/l79V/jF9pn2Xc0/wNcnbymJ+wNcWz/yajl/fRSnFtdsbnoyuY6eu0oeW/+sUf55O/0qc8/gGa0z/Oa1/+d/jxz/61S0/WJS5xiUt0+DPAy5PJ5O8APwhrObLfA5PJ5G9MJpNfm0wmvzqZTD7+tnOfn0wmn37iuPF73fNuoZUW56NOXKKLM4J1WN80X4exrI2V9gmbM9by+Mc76IRoNMMMZtgncot8aAkERlJgQs4ozBjKo+nqDAuF4H2Dmf1/7L15sG3pWd73+4Y17bXHM92xb99udWtL3RpaEkIIhBEouEwIMw5UGdty2RXiKCEpVwDbAbugwImLio0dmyEVghkT7IANCMVhRgNIGCFaLSSdVre6+/Ydzj3jntfwTfljrXPOvS0hGqnbCHOeW7vO2cNa69trfevc9/2e533eJeI58dlTA0ONw1mDCo44L9DpaSAV9QpG6cFJoH6M7I4A6bbocdONUHnFRzf37zD6uiOwCRa8aWzMsUgZSESNxuJ8ecJmAHf9vtOdMk1PA09Bk1ystGk/1wRePnicq7F4nhru4WyNPjzZDB88IXgUHsuo3ZfAuookTOmKBXsqw8ous/QKu1GfhQp8tFfjheBa5yJH3fwkoVukgp0sYTfvYFV0lyAxhEAnnI75eNzHxORxeO2Fw7Zbxmt7MFiCCCfnuvYR1hucrwkt4ySUoxQK5ypm0YR5b4oQAeNTnNL4EFjquAlIlYF2Qfkw3z89p8MBN0d9rGvGqAj4YHFtIiiAuU5Ytiv/N0XEfidDSIlok4mdfMJKlhx2cw7yLku90aQKyrMUMbu6z6/fP+D3XyJwW89wOhdBhaq5XliODVmsd+wHiWjHEEIgBE8gxfkMGwKuvRuO2QsfHAQo1bxlpRwhBKrWxt2I0/vEe38iQzS2SVaDhErrE7mpbhOrW91pe1483hs8fZ5LrUyGOfN+ipQF83yBbxnp4At4zrVvjm/uygeWUYUTAuVW1Kq5NrE4nhkaJW07v+/u7+pce2/eybiF8NyXyKnYzwuur61TrS8Qgz0ySla6kbFapdpxKJ6bfnhvsbY62Z/zhmRRo+vmHgJYxgknVVLB458jGwQIMiCVI+AQvmnIHI0M0XByMscD8OTaeWZJlzRUdG0zztOxOBrbHksIgRujETe6OdbW3OpNiVupax1SnlZrLEKbtgpa10GQ5hPH9kLi+SZYB9vb239ve3v7X975eFFH9hmg2r7J7fVNRs6c0O5+PmO/EHgheP2Xfj0AcuMC3at/ky27x7nVIR8b3s/hC2B0Ifc+wvfLr0MLx3eFLm94xRb/y9e/kqlz/KisyV//jazt7XFxesBvdF7LwX94O9/z/n/Abz/Vx5eX+M43XOW/6wwRpscfbr+aX7v5K3/8Qc9whjOc4T9xbG9v/w1gDPww8CbgnePx+Kc/1Tbj8fiLgAe3t7ffCPwt4F98kv2++Y7HjeezzQsBFSxSghKhqdM4iWgCi6SpyVrGCyyB2/0ONwcDHr18maOkWfWXUcM4eG9w6pRdkp0F0fo+zpZo6VBugXMVTjq09MexNQKLaQNM9ZzYr0LxIdFnTwiiYIlaq26Z3skaaZ4bYKo2QTTeNoEuAmFB2pM0gwSDkp4oK5HS0XWHCMC2QTQC+rQGUDKgZJMASdFwEsaukEEwzcu7JHp7aK6pAcQWFTfj9K5JQpp2tJDWFuFPx+xceZKkHKet3ts2OHTUsgk4fRvQaqG51g08sX6RZdQBAUWkgIqunxO8ZRJSbiZrGB1jXcU0aiRr1hVIO38OixeI1w9YdODjUYc92QGxpBJVKycMqOHihCU7yjJqeZq4+ZahKINiT+ZMdYbKKvbTBU/nlmXaHPu2WrKoNbWvkf194uEE7z3aThs2JgSsCphQnRzLRMdMRpMkpMbwVDri8cHl5n0JZCXxqKkZkiKcMBpWSOoguY2i9o5nRxOsaFwmF3JJOZLIyJ5EoVIEvKvx3lIPauqNKcKXHMgUXQqSctUyVgEh7Mk1vyY6XFc9yrYlj/MG5yoWHBJo5rb1CufNiaudE6cSP+dLaltRu9PE4WDQ5fawYd1csBhnEHhKsSKEgPB31/BBI0FMqLFaU8YJCs8yWWFUjROBhYi4c7IuZHKcehGAvcGIWmlupp4dnVN5Q2CO9ooYgxIeKwcUocY/lwWG5ru2uzd2dZIsQlOPCP5kEcC1Y6izhoETbknAHROIlFrybDdhr9OltCWyTVY0uklpbCOBPWFg64ALlgrLXq/HQbeL9B5rS5wr8Qh2dR9zzDhmFbpTMseR6z7DaI1IS4I4XcAJgJOGZdxBxhYR370CtEwzFqnGUJ4sCEDDxB/kGtPet2VoEseFSnDOcTM/Ovms9y9uC8Xnm2D9+ng8ftt4PH7VeDx+6Pjxoo7s04RfLanf9ZvsDdfYuOPv/hO/8Yucm0zIRhlpetrcN/6qv8JXvvd3OG/22MtHfPgPH/3MBrC4zc+G17Pvu7x83fBar9FfeJEHNnO++lUX+Hlfcyu/ysZkzvpiyjvjR/iFX3gfg597kmT31XzZfRt85Zuu8F/+1ZfzZpvilmN+5A9+/RNlFWc4wxnO8OcQ29vbnka5VLWPzqfegrcA/67d9sPA6Ngoo0Xv09jmBcHIW4SXJ2YCiWvkLUfJkMP+gGub5zGqCSpDkPxBfoF6cgCLEpUvifozpK4IBIwQXB+NKHWEz+9WPRwXohtp2UexlBolPf6YfZIeFzzOemxwHMnGD84LSyFiYmrSypLZCtkGOjfzc8x1hrBly3AEaq25trlJqeNmRVtYZjqlXHWIjMO4CudNu0ot0L2C4XCfUkcsvKGI7zCDEB51l4QRgncnDF9H5gz1aY31QibMooy97oDpIEL3F3h/LI+SJ0nCMWMivT8xQ3hucYAP/tS/wLuG5WoD2EjE7HZzChuxl3TxwXJEzFylqOAowmnvTSsayZ/35kTKBB7XBoRxsAS7QnqLSptgrxCaYCuCq0+YoxtxjZWCm+sbHKYRN3vneDa6jWjrsnZthyMXU0iPzT26VxCUYS+fUuQHeCFIqkNG8xX4QC0jduIc68v2O3qsK/AtkxoI3B6tc2O4ccJoCODi7oqHnm2cBl0j+Gwvjsd7R08NyORxk9nAwkfUUnMrGp2wTE0yKDky3ePT0b4Ox8rARZSz19nEe8M0z1nFKcIFhInaTTxBOpTwSGARJ3y4u06tTgPmSTJv2a52/8GihWPS6XJrtAEIFrpip7tGoU6vmcFjtSDgqXGsxBIfLMl8xuWdCZsHC+67OSMyDu+b+ycrDPfempOUFaVt5pqMDUiDShYcyJRD1eUwab5zEQRHKmeWNUm7VZoyiTjq9albdu36aIvbo3VsW5MlRKDwNYUIpwsCIXAUOsyloMYBAREEItDc327VmmXQSOdomvbW0uHavzmhvf7On7JQR1lKCHBbZOzoAd47YpES64xIZng8tSuZyM5d1U7H12ZXdriuOhxzsqWM2cuHPNtrZIUosG2Su4wjbva7JKrZbwgB75raqzslnvGgSW4DjVvmQa/HwWANozXztIOn6ZCebkw4WkvZWWuM7o5L/4aLkivPznEn9WiCvP5EifELieebvn1p+/Pr73gtAF/ywg7nM4fs5Ojv/xcsopwL9Wmh47v3bhA7xete/shdnxdRxOe/6gt4h11gdMRjezu8OYQT5utPCvH+/5f/NXwDQ1HwDVWO+pwtRKc5zX/rjffyi4/t8FOu5OFhr1nMSFM+7/KTvPPmmK8q387X/s1/BEDajfhrX3SV97znQzzz7EN8dPoRXj78rMxpz3CGM5zhPwrG4/GPAH8B+ADwc8A/3t7enn/qrTgPvP+O57fb147/g1gfj8c/BVwFfgP4zuexDQDdboLWd1p+/8kg2pVhh0PgiWjqTyqd0DpeNw10feAwl9DZJlodMqgcQjeBl4ynyIXkWj9QI9kZ9dG55Mr0aUoRMZMJg1ZaY13FRA6Ydwf0XUmoDUmoSVmgbKCa9Hg27hOhiURA9p9BTSuEM1y6XrLvh1y/5wEiIViywmQpl8Ihvu11VOoOE5eQRTED1yGWigMVs9QdOp0DpI/xwXOn+EjIwO5oDRVbgtFszI7olQVeNiHTU+sXGRULBqvTliaqU7F+e48yySD1VHFCaWPqKAYCzybn2aymON8EUIN0QGEjKAfM1DP0KJr6pdDa2UuP8w1T54mQ4vi6QOUrgojZj3IWsaJbWMqgieY1wUDIofKSj/Uv8MjRDe4sACm1BSc4zAcM5/OTFW0pPXiP8IIgHSEYAhF5aTDx6bq3DxYfJDfCJkXeRytxlwGiJPCs3SLxFalKKbtr2BjuMTsYV2J8xGHvHHOV0TOuTaDgIB1RqRiXeFTwjGqPxTcJrIAQBLXWFGhWnRgZAleODnCEpnZMhBMJowAIEmstaEmsUkp9iB7MYNk48R32BmgHvaUlkRmRipvmtm1Ar2pDXpVM8wQZ/F0ugMdy0lmnS6QMHbs8SeyUEMjgKGWzrxqHDA2rOk8rJmKCUKcyMCHAKXWSLD87qLmdDJipnFdPn6aQUAiF9o4KzRRFjkJLhbYl1td07RwnIiLrmUcVmkBa1XjA1ZLepMRedES9FYmQrEJCYTWrKMLEMQUBVVRgYNXTPJ1fYas8wAXRMNnSE0IzB4zWHKUpg9UeAscyzdnaN4yKJbfWI2QlMWnKJI65WO/jvCFdPMTACObq2t11lQEsipnMWHRPSQZLwMpPLEMxCKxS7PWHbBYV2jiE0GgRczPP2Im79JcFPWkwWYSRmnneYYOaMgQKHEY4ktAsb1gtKUgpRcR+1iyMjGYlt3o5UpxYEeCDJauuEhB4d4QEOrIxwDm0FXWmyQAZLAi4PdpEeYVwjq4ZQSTQSQ11zq31dQaHjayzv6ophWKHjHPeEeMITjMc/nHrc58+nleCtb29/cUA4/E42t7e/uSVdJ9FeKKTg4F7Bs2Co9/f57bskGrHq1/x+Z/w+e5XfDXjH/s+fv38G7mWrXF75ybnL1z6tI792Ic/wr79cl6f3uBN5iLqNRsn723kMV/+inP84qO32Djah/UNLh3ucj0e8zu9L+ALJ7/Fv/uZ/4Nvedu3AjD+nC3e8O6U31q9hP/7I7/Kd73xLME6wxnO8OcavwC8bXt7+09SLPvc1bLjkpdj/H3gp4AC+Hnga5/HNgAsFp+Zza9zKbnqsgpQYkA6bnYvImRzOIvi3luHLH3M7Zf00N4gBNzI1plrRdpzvPTpa620x+NEjUlgXnVI3Yhrw0t4Ca83gY5MmZimwWmlY/Z0zKg+opLNKnpAMNV9Sh2jjKUErk4K+ssaIwOVSlioDsHfg1WCub1Gh5pK6NYuuYEPnonrMHL3ktcS0d1n87BgUFmKYWDRyemWK1QI6OCpkai0RsUW5wW1Uhx0YkZqwQfjl+M8TOOEV69Oy+1cJ7BIHaPDBeVlwW5vhKslVjSpW1MrlCOsxcuY272aUA4Jrof2A5a6IPEFtSvY031qFXHJHoEz1N1A3S2ZHIwQgRNXvf084/zBYVMz0tX0lxVZbZjnGoHHIrkuT2u+AWoCs26XIknQ1rIyGiMUl8wBx5bR2oum99KR4v6dI26MuhA3ckWtY46EhpAwjXPWaWRfDsGB7XHMuxyvB0sEKJC1pxYelZR4JVl1rtGdglGSZ0cbDMMEgGe6G4Dmkaqinz9J3C2o52lbcyRaLVlTWuFQVNFp3Y+lcZmMK0dcCOTajGBTdtR5VoMLpGFJvzacOyqYXOgyjYZs6prVHbeSjxSJiNnY2WmMJDoRD1/fZ6/OOXgghgAyNOxNQLATDRDDAfcePouTAt8SjUZKhIRVSFj4lI4UTHWXI+FZC4IEi5USjW4t7ZurI6IKSIllSk+vc11YFkJh0SxCSiwNu90BnSzgl55OVBLHloCgkoGZ0uShwGAReJRrxipswwgvQk4o7qfEUSvF5mROhOPWqI+tBCLWdHzFfugxlxFRcER2hVGSY2fDwywiXgQGuiTyGcIC1lHSQcvmVNpEQxFYu54y6zReetp7DIJl6EDsiJmz4zfZy9ZItUOrCi01QogmYW0yZWIlqEJg7hWD5YIilszTDnldIENEFASdsmZUF6S1xUiJk4pZ3kWEQOEtTugT9km2zFIzZwT7unvXnHVBNk2cZbNgcKdYSwSPJ1DqhNvJkKE/ZL83YIGi8CkDefo3oRMyumQos0mkIqahxwpFqqfHNwczlSJ9wARNjkbJmMnkVEr56WJz85OJIJ6/i+Cbx+Pxo8Bj7fPvHY/Hf/EzHtWLhMdvNHVUD15sdMLF77ybuPb4boTU0Sd8XqQpb3n8WUTwHHa7fPg//OqnfewfrsdEOB6JI/QbzlHVnpvbE1atZenXbyY4AofufkZHh3zJo7/Lq/7tNv/4nf8nn7e34vyjv8svvvc9ACgt+cuP3IvA8ZsftRj/WZ/bnuEMZzjDi4bt7e2f/xMmVwA3aNinY1wEdu7Y5w9ub2/P2sXDtwOv+uO2eaGQ1Ioqyphmj2DDa7FCUYSIwmnmIWbuYwwSIU/774QgMJFmTspgP0W45v+0qu4ydQlLo7FBcrvtBak83NrYYpImlFmPWgl8CIyKIb1qjW5h8YAxDzNY9lhmObNOhzqSGAlVFLGzts5c9FBGN7URQhB8oDAxu1HDUlgUUeXYOJphkdQyYhVlICArHZEJlFpz2Onx8fw8NeouNka0P/dFlyIT7KQ5MgQ2Zyu6q7KVQDWYZJusvOZG1KEKCk/ASoVVChk5AmClZjQ1hDLiSHY4ivtUKsIGQR00Ck+lNDcHGyziiGfVCE/C7vqIZ6PLzOMuhUhY6ZQy1acGHUIgkYi2niggTxiH09iw+e1meo6b0RaR7DDr9jDtmvZUxRwLtPJoREAjTIDgiOxpb59Y9sjMBv3iXiIfUaE5Cilzm2K8okQ0NWIBvJAQYLjaoPIpZYiwWUAmNYi7bEWARuInspogHPu9hHnUbZzrhKKnR6xNV8S1a9SrAW7rAZUcEckYgafQCSHAS59eMNpxiFqgsgWzOCIIzTLq8MCNPbamq8ZAAkk8WXBx/4D+siAtLSqkxCoHlba2FgFQbKzuRZuUGtuwXEGisAzlAiMzBmqT3f4Wi2SEFQqNI9GGBx5fcGFvyUoNiFSfSKakMkeHmIBAy4wkAZlUHJz31IMJIPFCMIn0ifmFD835mnZyKtVI1ZY6YS47mJBQcp5DnTOPUtT6ilWs2/MkkJFDo5p6M98hMTk6XKBWktofNwgOVFEEAWYmZ0+OAIEPjdT1IO+jvIYgGscNATejc8xDh1A2LObtaMBuNuD8bM4rb9ymq0uK5Qi3TJioDhWOQqdYrSlU1s62JrldxTE6WSJFRCZyQGCURitYN1vcM1V44Xhwb8Yrnt3j/mcOuDEYsUxiCIKAoGnf1yRmUmiO7fUrHx/f0mia2kntT5sDH/RP+4vJEJg4xdwJPppe4KOd+3B4hGrY64nPcF5wOx6wazrMogwXYOXiRqAaYOVjpsToWOCM5Jrfau4HwCOoVUIRKfY7fZyM6a0qfBBIqRGdT54YvVB4vjVY300jBzz2DP9nwHe9KCP6DOGM4QPPXgPgpf2GwXr0o4+RWsOljU/sJ3CMe177Jq4Ut5j1cx6/vkv9J+jw7IPnV278e77v976X33P3ca865M31Jk/Vnnf80w/y7p/8GL/0Tz7Ik+++hf3+7+VNNx/jly+/jok4YndznX/y1Zq3v6nP+uSAz9+5zvDW3+fxj/11Pv7UN3Pppe/gAXXIavIK3n3zfZ/ZyTnDGc5whj9/+GVaeft4PH4NcPNYVjgejzfG4/E7xuPx8crbFwEf+lTbvJAQ0rCygVCnrNIOM9WhsB0WNsO0AZeVAqkdQvnmp/CcP5pz/40jukeKZbif/WREqGMUksg4zu1OMUFzbNqwb2OuZT2O+pcY2fvpuT6ZT+jWkiLJCAh604TNZRNwWK1ZZDmxVdQ6wtguqk4YWEEWSvCeS7drNg6WLLKMymgOyTFeIUNTm1O4uJHBB5BIKpWyjDW1CCxFxIE4R10P8O0/vMdZwSJKqfUAJ0YoEZM6yaAKCO9OuI9+AbXTVFojVjGCQCQTEpkh2/5BQmhSkbJZlZhKI4LAKkmFYulTlmWXAz0kAKsoIwTHfHiFWKbEOkG3ieN00KMaaKSyRC5CeY2SCQJJ7VNK3/QyUqExOuiU5UktS0j6bBYBjyYbOMgLHIrgBAfRGv0ZZGVF12Y428MLSVCQVZYtP2jYGfoUOkFbQTKp0d4jHQgPXmlWUdYwdlFG5DVJ1aNYvI5DhsxCI3+KZIwWEcp7XvrsjN683xIWomGh6ppgHFko6egYLyUX9xdcvdkwXQGPEU2QHITAS8lTvUsc9tZwQnOgBtwuNxG3BH5asyp6TUIXTq3ShfSszeYo43jJzj6v+tgu9VRwI1iOOk2Q3wThaZNmlQOeXrtIZByR06wzpy9meKW5dPOAVz+V4O3LmHVyzk8KNg8LypCwNquJRIxtLe49oETGLEmZy+a5Fx4zfS1F+VKkcCA1u+FhECmrJIWQQBAYIegVBhf8CUdb8TCVuERgQBQF9twah1HnJIGVSJTQXO9d5WZ0ns58Qm81O3X9JMaK/Dg3OUWAIoqZJCmjcsjVHc1gWiKCo1Yxxut234JSx8TOkpc1WQ0BjcQjQhddL6llhJeKSafTSCyDR3pJIlKSWKClYmWH7FUd9l2fvdE6Xmk0iryy3HtkuDjfQ4iAlM1x89qz280RtSWWCZHQWCkQQqFl1C44QDCCh68f8IBcko88yyyhqWBszqFr+7WJAJO8TxDQXRXomwamiuWmRHdKpmmKQVLaGBMUNkhu9tZoygabfdigyGaWVz9xg9UqJp5PiSuYVHFbqwUL+lidNT4GAlZpxlIantwY8v7NuxTfLzieb4Jltre3D2iXZba3t3e5u/XDZw+EYPGShxgK2NCKUFV8uPW6f8N99/2RmyVf+EU8OH2GSaeLC5KnP/L+P/Kzd8IFx/f8wT/kf370u1m+T2GD4kExY2Ak7/jYD/Duh36GC9/g2Lqvzx/+3G+z/vFHeePBByh0ym9sXUUIxeKhN/LjX7jiXW8tSOaOK28v2N8/wNkZh9Mf5H/4gh9iLV7x04/+me2neYYznOEMLwjG43EyHo+vPt/Pb29v/zbw/vF4/Ns0DYrfNh6P3zoej79me3t7n6bu6nfG4/F7gD3gZz/ZNi/4FwG0LAnCI1WNimqMiFBEKBEjvSJRKboNcLq+QMQGGVk6tWFzskItQdgIT0LlM6TQbE0bxmJjUjR21sETBBRBsvQamyq25pL7dqdo58iqmsKf1iGcmy7JTYpoV6o9kJtL4DeRwjMKC/qrfXp1D0KgTDJmuk9e1BjVayyXK0d/sos0FSoohJAIGbOMc/JljfKSB/aHDHceoO16xdxkZPuGtXnJMuoxSXrN6n0AhKRXdTFBMY0jNm410qBGZtckBFZmXJidIzUZBMHtcosKSUDSKSvy4rjpa4RTGYuqj5QpEsnGfEVsNZM45sQWw1tkCNg28A/S0bE5nWNzhjY8NqbLuhkRiQwVdeivKvpFhcezOZlz/84+3XnJUZ0y6/ToiApcjPMxTnaIjwq2ngkQHsZklzGdERemmgu7M6ogWZCAgPWV5tyizz2HXS7sWtaPSgSBK7dnbc2SYFD28UickMy7m1SqmUuN0E+QV4a+vZdL14dcvRERedCxYVTs0J+u2JhLustN9gc54IlUjdCWWCUoFATfBuzQq3OCgCpq2LgaTXCS+/cS+ost5kW/vXQKndaI2DBPk7vYtKLsocyK3M0ppUbaDcpsiECwshkL0WG4VPRsD+UzlBd0p8tGVkqOQRG7AYmLW1v2lGnS5Z7bh3jhiGxNUtSU0lP1r3A4FGjn2dyrGEz2iGaaSKxYr5pk2qvzEDQbq4u8YpVwT7VPt2wWEkCxijt4EqSCXthiWF8lKEUsukzjNcJxc2cBk6pzkkAlzqFl2swko/AiwmlFRYwQMU7Ktq5NQjpkVMX0FiXKOPJphVJ5u1uJIiMIwUt2Drg8qYhZJ6kHuM6xK0tglaX0oi0GhUJ4hTYdrg0eoK41D1yfo4zHOklnUbMneqRRTifkSKFRQdFjwb31DqFdrIiIGExWZMuCnTRj4RRBgJcCpzN8EESimQfnjxZ0akdsDa6j2b/YIciASg1SWVJj6dslETVGNfLEpDZE3rM2WdFbWI6iNXplDSGQ1hu4uvEs6C0qsoVD+obVTJcbPHh7SuIE/aI16feS2uvGHt8HNgrF5akg97JJ5mwfyXmWwFHyiYq2FxLP1+TiqfF4/N3Axng8/gbga4APv3jD+vQhlOL61mVeHjXa0voPfp9p3qeIMq5efd0fuZ285wrjdz7Nr53/POZpwhOPvZeXvvoT67Wei5964sf4zVu/xncm38ZvlVtEVKxlO0xCzn+9/7X8rPgV/uEzf4fPvfdz+fpfukEQ8DN/6RrR/g47i0fwyQf54mrCJIn50Txn642v5GXvejf1P4dzP/QDKP00Tz753/Lfv+aH+Ecf/EZKV5Kq9I8d1xnOcIYz/KeG8Xj8jcB3tE9fMR6P/znwe9vb2z/+qbbb3t7+u8956dE73vs+4PuexzYvPNqALKJmIxQ80YlQTnHloIcRPW7nRxACykNWGuo0QYiGmdJCkVSGUDvUqqYbD4GUbtlnnswIwtK3C7p1zWE3RYcUzYTYCEZ1hEST1YZ8sWwC3jbWyCtFotZIQk0k97HeIaXEt31klLEIIkDQq/scuRQpFD7pNjIsoemviub95YL5oEQEz8LH6Cn0fMxGvYb0BcYKjubryFSRFlsMq5JZvGRBs4J7frVJvwpM0hnTTp/RIqZbWCojSSkZhDnOv5IjPcUXEXS+VmQAACAASURBVF7AernFbiR46dNPI0KGo8C3+kMtmpXt5vkGkdhAq5rITpqgOCi8ych0RadcEcyxAxtI2TiYiZNXmjRhrcy572iXRX/BM+mQXrEkriWRdggCOgzpHyzYWRugTSByGhlKHjl8GkuPKRFTMcT5QAaYzFLKFC/vZ+YSVF0gvCM4BQiCVHTrLtPU86qP38YGRQWoesXa0QSnS+b9HglzQps4S2mIMKwvV4gYyhDT38k4R0noW3K3RNcDlLqMl4JzezNKuihREWmIixQtUkoxhxAY1SN6poNRjahPCEliwLguSkUEAqPZOWSYIjFIAZlNyeQVSneTpoJLUYs+I7+PDI402mLZucrmogQMEgkh4ENM5DzCS/qTLTaXlpmOyQRclEfoVYdO3UEJEF4iZYSXXdbKGevTFcHG3NjqER3OGaQlHavxXhIbx2iyhyhnLNeaa/nS2wtKuWBnpOgIj7aOA9VFCU9cWWSIKGSTJIpMsYy7pMU6edWhk3Qw3pNXgpX1vMQERhPHVGeIIOkvS9bmK4ZF4Mb6EI0jloJBvc5edx+nLUsX0xFwce8m2jpqqxkWI7T0DM3T1PmQiD6ECqcNygmEBBUk+9lGa4cqEAgOk5cglk8RV2sYlyN3e9xzfQ9da/anglVquLQzYXd9nUTdg3USkx9g73BGXIVAEAJTe5JKwMKyEqe8jACWcczaqs9GskbwmvOlQnCd/rxmNuiS2nW6GwVaREgdGO0uuRTtc7iR8EzUBe/pG8eGi1HTKXLVRVmDDZDVlmFYa+66wU2Ud0Qu5vLiAkfJPt26QxpGKHdEbDWNM1DDmYogkMHTNTlBSJJQEAmP9hHCj5hSUp3Y7b84eL4M1n8FPA68G/g8mkLgb36xBvWZ4IaxPFMbvmLYTLXFe95FbDwql4j4j5YICiF4aV0ShOQjF67y9NRTFJ+6+O3G8jo/+cS/4k3VW3n9oxd4FxWX5JSN/oSbV9/BzsXf5Ov2vpTvqP4iT+7/Phf3n+G3Xx4x7dc8LCaUIaXIK24ePsjr5w+yjJb88j0jdu6/n4du7PKuH/1B8vw1XDr/3Vzu7fAlm0/y9iff84KerzOc4Qxn+DOEtwGvpWGaAL4N+G/+9IbzmSEN0LEDtG8slJNYsnFY01nOWDu6wYUZJKVBW8doViHRaCtIxToRG00tEILIavpLz6VDR6/wyCCJfUrummDpfLHOWjmkP1+RL+do5xEI0tohaazRjwVa/cqTOMNGqBAhkHIOVFOnRVDoskAKRWwDl/ctV1Y9LkxWbLJH7gqSumF+ZBte3LfSpL6R3Cs01jcslwoezJLeYoPOTcm9NyvW5zW56TQJkACEar8hLH1TB6W8wvlj6/kthqVE+AEiqulPbxGXC4blkKRO0fSRNMxBbAzSeRIruHrriN4qoj8p6C9ad0INIhjSom46ZgkHoUN35YmNICtKlPNsThcMVp5ROUAESRwcwlnSZcmDk2e5OFny8I5mvJ+xPg0osUZWxzgJV3ccw6LH5akndoKOW2KkxHpNUk5RdkmnHoB1WDxG9ckWK+67cYNL0xKFRgfXOP+VQ1J/CYHE+ohLt2asLQ6a/l1C8/CNKS+/fkSvvpdXHN3knNghEo08DoDWNn4wLSm9wpo+EsGan9JtG1KLEDO+NWK9GKGcJ20D2DRotvyUz72+RLRSt3OzmGCvnJh3rK3W6IT7UfIlbE0CnSojpWLteF0/aPIqR5s+QjuC7JMVd9roSxKVMAoFG8sV+apJuhJvSXwPxRQ9P2JUHAEC5SNEyMj8FRJO7fsJikl+AW81tpb0asdGEdO4lwtiB2ll0d6jQqBXJuTGolB06nPcdxBz7rZhWI/I6yGqniJcRakz0rqmN43pmCmYJV5KEpfQn66xdgTS2tZwQtFdWXJniOWQ9VWP87OSl+1OuVrPGJZ9ujWcmyVcOJyhvUMKhUSyvlgxWhRsVjUby5qEmjTUKKlQMkXiCShGO02NvkSgRIw2EYugwDeuipvVLj2/AATDRcKVGxPWlhnnZjnBNmYrV/Y9cbUkhIBeBGJbQQhYD+mqw5U9ibYe5RWp0awXI7LWgPDc0S0uT3p0/JD1MEFbz+aNc/SLLk5Iktrzho8Yrk4dAkkmPYlU3De/wEbV/O1JGBDMAOF7RGzQNV1Omyt41sSUnmvqyR65odmcLRFoIkZkq1k7b04XRbRTiBCQwRH7DMWxZDIgCXc1b38x8HwTrG9qP/teGnvcqH3tsw73xBHvevlVvmLUI4TAY9efRobAvaP4j9xmVXyEW7f+KRfHH+Kvhh9ha3iNADz1od/5lMf6vz7+E5jDN/A3DoY8hWOG4rycYt9X8Qe/sc475js81vsAn//0V/A9Ny4RW/iFz3N81aHkW8PPkosVj6/OQRGxzB5ioxzy5Ohx3vvK11AkCQ/90juY37rB+tZbWB49wl+6+mv8/GMfe4HP2BnOcIYz/JmB297erjn1E/jMbPz+lJGuAksriauiKRYPcPXWIeuzFcNixXjn5knDXdGaQty32wQSgUBCTRZKdBgigG5R0C1qeuWAftlDO0mniom8aYp2gMGyIq3bYEwoErFOLIbIkACtmcBqn2Fd0WVJJPM7fN9SpKdJvOomsrqwP2FguvQWhnuPZlw6OkL4wGi2IjclyuYEP0IETWZAI8lcihCN5AlS1lc9hosFUXDErWnHhaqgY5oGu0FAahOg6fEjAgQrgT4oT3++RuyrJvislkRWo8hPztvaIuHC3iH33XySi5Nm3FllkMFz70HM1Ynm8nTBlYMdzh8oNncuktiYQd3jvsOcC5Mp4/2ac8spQQYefvaA2Fiu3C4YHExIKofymvW5Q4RAjEeKJsltim0Eylu2ZobRokSjmqxEBkAi20RYhoT1icepHi4s6c1u0S1qAhDZAghsVfv0WDFYFsjQyBUrGd/V00uGhv0hBCJbsdG2+5EhwVuHME054bGiLdAYAuADwlqilYUQSMIVRou6kSiaQBpKcr/kkWsf5579A/o+EIW1dt8aWc8RwZCZJSOzIKJP8AvuvR0YTo7QxQHKCJLgiWjPDRLcBXAFveIIqWq6dspouk9iHZkrSahQLhCER+CJgsGbkuG0SfiQgdHcEYctpF2i7ITRzEGQJOE8r3uy4uJS0q8jNqqIew4Ng6K5B/LCce5ozuX9I5QtEMCFo6aOX9UV2lki1kiM5zhklrYAH0iqgk5pUb5JAVLTzK2BnyFc22QbiXaOC7MEFQISz6AwxEGRUINzDP2KS7uCy7OEq/unRMDQnBpCQBdQbZPlHBVSMiRpqJray7K5m4IAgsPNJ00/LCWJlEOvlnjbnK+t1YyOW0eSENUV9+xNubw/JTIefdwLrZ0cmZFosY6XHhEEo0LQq7t0TIccy4Uq0K+W5CwYVSWZg4hGWmidpPYxH+M8w+kKZSEzGcrmaNPj3CLn3LRCcByfa/CSEATKO7aKIXiPrktyV5B7RQ9DJDQ6SLr1sWfoKYQXbO17UlfyuvkttmZzpA8Ib5qroQOi7ZcWXuQE6/lKBF95x+8RDYv1IeBTyjL+tDBoG+O5jz3Okxe3qJXm9fdc+ITP7a6ucf3GP0KX70WImKg/5IvDr5L0anZeeZXtxy0Pvf4tn/QYe+Ue7/jYB/km3sjF6Uv59u77YfEg56Mjvuzce3moex1p4KDoUYi/y+Xym7m28d28LDvg2w+uc5ik/GX/W/xk8aW8PHmMqenzn88NP775JKr7X/D+N7yBv/Bb7+SZ7/kHvOJf/gij7K9Rx3+Hy1xjVs/oxy94z8sznOEMZ/hsx7vH4/FPAJfH4/G3A18JfPq2r3/K8FFCViwZVpYi75GuDDr0UDjitnkvACGhX29wcXqejj/Cy4qCFNlaiIu2oL/tHcrWZMHusMvVW1MiNnDxnKcvxegiapicyJIGS9EeIZIxioQoCCIsERXZtEKQggysT1qWR0BvWiNZYpLGgtk1PnpEVQBGxKwYFgrlPb2iZj5M8EjiMGJUZ2gyOuE4Rw50as/WckYtNeAYMeXC/OVcsDeJVjc4FANAkLiEYT1nGSXEdYoIXVyYQxLTn+5xYbnD2jxhpjNWeUnDasQkxPQnU2oiHI2bXOTPgXeMqgNAUMiYujQkxlLHa1T2iN5KM4toanbqJb1lTOwdVkoa+WNFECmbh5bEO1Kj8azRCQfEGIblEu8lyhyQ6T6fu+PoU7AIgY6PELq5ZhlD4lByhAcR6K4a6/qUiguLkmmaAYY4FEReo73Hx4KBWbHwCYn33MsCEdzJfAlAXAaMps0/BMrkaAYEV5waMviG4VC2iSfSoylOCbyTBCVO3B27yxWpTUF2yZ0j+AXep4BEyZgkFEhfUiOR1Zz12ZT+SlPKnBAMeW2oq3ZswTJkA08j4SNyNL3CDSrUJEEiQs3FSUxcS7TvABYR+s08lwFvOYmr12YrdkddUmPwOkG0bssdswUyRtolBMe6Keh6QZmcRtUBiMIG3TBHhIhlcKQ0LnPBGLAeIVRjBkIE8vSeHK320EtHagwJpplvaGTwqBOTtEASagYLQ4RDqh6CiuFixjljyUlY9VZk0RbCNqydqpftwkMgqQORGOI5BDIIsr3OMbFLUKI6uUYDew8JE7wXXNzdoVSBrOpiUo+y/uT+zb3F1pairT8SAWR5hFZDfNraggTfHA9QdFub/FODGVEsmHVjzs2ntMphKiJi63BC4l0EUqF9oLOq2CxL8nIAGMChTZ90NWQ406RVRS09RkOERWAIwRMLz/0TxTP+AOkd9+3dIKnOscxr7l3eIrILApJaKRSOpLYIAv1yDbXqUIgdOvSJMETenoxTu9AsgtSG6rOhBmt7e/tb73w+Ho8V8P+8KCN6AVG9+50s8h47wxEvufTqk9dDCPybj/8Y0eH/xn2J49/ffoAP7D3MN9/3lfxr8zgPJI/xxcP/j240ZTZ/K/3e+U/Y9zuu/SLxwZv5GrHGIpnyfu85J474e/W/YjPf52g7xxaK0YNL1jr/E0fib5O+5q/w1uqf8bejr+Y/e+276U8/iv3Al7HvYr7g1qO8Itvnx8l4gie5dOESH71ymZd98DFWv/terrzsTbznA1d4y+X38RMffBdv+5wv/495Ks9whjOc4U8d29vb3zEej99E0zKkAv7H7e3tTy01+CxGrGvWFxopa9ZvTBjYGZXcJKY+/VC4iA4Zke/TmzeJTuo15XET0ZO6+kCQrrWfavrgBNHUIWhf0JvsQsjQ1HRYEUIjvvEIUkqapseStXqJKjTCB3x8iWZ92ZK2zYqRgcxXaA9JMBg8EYZTV/uMXpURhEf7QDxfQMtWdFkBEbHROJqhdmwFMhDTBMalkFyoFHlpkKWFNDAo+6hgGVRLuqagpotsxxObBVdn4L2G4Bp3tcUUETwCTTfMWAEKjwE0FoHDnwh4mtAxDluUYZ/uqiI3FbHx+KDomRXxog8iASIQFSKoVmrUZjAn+wEtBggRGFRLDJoIC7ZA7EeE4EBETQPYcI5WNAlAFEx7MQWa5OT7KdcYS0RYzs+nCDyhvRTCleQMcDYQBU9Fwy7GpkCGnNT0GE2mjUytTaICAdVWkz14q4NLBDZt3unODUGNEOIiQ3apQ0DYgq3VrJmTsq3ykacJhPKGqGnO1E6PgPA0Nt7SNfMmGM7Pl+08AO+a+Z2FCioH7aJ4WhkUTQIYiXXOLTNs28dIW09cgbbHbYLvuI9M05sKARlNcl0YgdcBEexJ5VxkHCLI9ix7vDht3BzCsQQSpA+cOzKsakMhQcvLTXuE8CxBQIylYxZNgnqCLolc5/L0NnVsiOuWMaY+ua7HM6VTlbTO/nTmJUkyo0LRXy1AOoKXSAJdkZKImIAGyuPdnI75ZM/+pBedJJBUqxPhbyEkVaQZTCoiFFFQ2LZNtMLRK0oCAilKoLWpNyWwjgw18mTsLUMaJDkF+XIB8lhaHO5iUIV4JTgDumZjUmHyHqlfQwuB4zrSB7auTwheATHaGaattUDkS4xo5ql0NZeODhGExmSFQL6skXqOp6a5fwQKhzWS1BjykBFkSeokkQyAZaOcUmpNHiryomRjNaezgOubd/ete6HxfPtgde58AFeBl72oI3sBsPt770N5SDoe2T138vrPPfWvWe3+MPclnv/9g2/l33zwW3ji1lv4tvceUk0lP51+E+/Y+To6nQlPPfEtJ5arxwgh8G8//AR/fW2HfPogP9v7TWxxL98f/QBb6v9n773jLLmqe9/v2ntX1amTOk735KCRdGaEAiIIJZBEtMAYC/OMA3CFI7afDfYzOFxfnm3s6+cLPNnXGHyNE1nXRGGCTBBBBCWU0EjqkUaTNdPT0/H0CZX2vn9UndNnRmlQMGBmfT490326ateuXXtXr9/+rfVbRzk8czGdn3oPc//Pp/hfM3/Ivk6F0eA9nFY/QjR0EdsmRlnrO+6Sg4yoLru8U9nPWrZ1WpzWHmXn2G1srp7G3WefRddojl71PwhrHt7RlzJRnuWefXf+Rw/lSTtpJ+2kfd+s0Wj8eu+LvE7VMvl26LnFZz+UtpxBj3ZyNkUzVOyGD1hRAFRhERv3AVVoDboXxkNE6Lr4NuekHDCy1KHmFIGN8NIlfJeHmgXEZFETm7TxSKhwbK6xl1WL/BQIEgGb4MfzqIF4msBCkCQgoONW/x561isiDJag23O8fcBSbUV4Se9vqhAk2THnijjWzu+hstAhiFI8l59fkbyfytp+Vkbel4TSwA59QML4YgtBE7BSMk1hKamIQHXxSdH9ulqucDYt5cyjQpdq0sUnZixazIGFgMgEokb7Tm1Il5BuvuOvVmpXaResjGUBOnxrcFnuaPdy3SAEa4pCrDlY9VyGKkK08jYd9axN3RbnKIsoh3IroM6QEkRZ/3oj2TLjnSOM2JS6FdbMJkg02u9TDpYjNCU8GacSrShIokCR/+xnCTpZwmQdpHDIV8KxguJwR9iP0lX9ZzLWLEBrupx/Jhoo5YeIA9vbQBAQg7P5+JmBWmcah9iYUrd3bQi76cD49XoSMx4toUlZAbtFj9JW0VYxB60j6GZ5yGkOR/MDbYrNji2vl8TN/rU8UgJiyq5D2XUxNkUchMlAhLL02BCNH/fYRAeUQfLxF+fwrKZEVABBAEdtqU0lSvCzGBFHRdqUaONnRYJTDzxZ1w8t9V3Sh2wBMTrJQ4eDLAXJWeUKbcY7S6xdmgcFvlsBhNUoxifGI32YULmiDpsbwYrL2bsiG8o8BN4Wz6GYg4oMUSHi6ti4TRDn4K9S7B+UiCmlCpsNRnfbPKSVnpBMXpbB4TCut1ZH6UEWl668B3v9VeTvBS2l/jODBJRDZ5ZK71lJ/o6ZaAdsPDrKU2knmoO1Y+DrLnL26p1PVaeeDEun7uE+nT+B04dWFt2upfu5Zc97eEa1w2fufzk/9ayf45tvvJh3XLGBcnma25ZPIdIB3Ffnzv3PQ8xOjs5++Ji2dy7eS3R0Ay9oryMxXT4W7uT16ktcoHawUL4M70+vJrj0+QRqFXGtwWcODrF0KGDE+1s23dfgrNHbiBKf5v4ttEe+xZ6Oz7IL2Km28JOtfcxWDnL4wH78quaBDeOUDxwg/faXmJx8CVHqsS3cw4HmDCftpJ20k/YjYquO+xovvno//1Ba28udR68AVb1d5Twhi2I72KBwrErnGM3y3XwFVIiLXd2VvXHjEkIihmxGSITqObU41iwsEnaLECcBVFawJw9V0uqBCJ01CZIFFBY1cJjJt66La6Z9ENj7dzjqULUpCgpnM3dqqq3CsRYIXYpH2mdwelZbitHNFJdNgjKMLbeot7sEadK/1z44UitAq9+uzQGnL2vxpXoMw9cfW3oOWH5umQifhIDjFHofxkOquO6Ac0yfecsdUEt1gF3o9cwo6R9Tdp38uywPheoNrJdYfHxqrLB5vfvzWDnumL4MAkjnKFlHmCpqiUGj8ImpZ8uEzS5DixEh0QroK8ZeZIjaUszQYu8+pGgvl6oPyM9TKhv4/aB3a8CtA3QfbGkcCsFz+iHgO597uZMeWo/B5+cPbC4IlsHyyL0rqt7aGPhUZ5aABJWsbBZoMhSWkG6e61Qc71QIkjNx2lkUNs9NssfOQwBj8zwpKUCFyEj/9svtpL9GH82RFplAZCWlw0M/ZMWV4oxyNwJsPkfz4nGY7Fgw48W2P1xaZTycKTIq0karBEelGLGHzh2FRduV34nL8F3KyIC4W9V2UEBgIyrFhsKxG0ADdFreSN7PXuFtyfBdh6GkRTXqYly+/kw6OJcApRlaWmHtDWlfJOeYqdbLGVQr3+uslx0a9UFz4PIZuHKzx96/K9ZYaAOeSjshgDU1NbVl4OuUqampc6empv7hKe3ZE7TOJz/O3i2bOVqp8+zxFZT6v25/Jz8+3OW++a385Pm/wwu2TeAbxSWnbOFTV76M57jrAPhS/UxujC5kdnYdhw+/iySZ7rfx4btu4uXD09SPPINvBDdx0f11ftf8K3fZU8l+ZgV37vzSQe5e+0nOvB923DfB/HKNsdK7OGPnxdTvSnjLB3Yz7N2OQ9hjR/lI7ce5vJMnJt4zfoQNG8/gprOfTaIUS+/6b2zZEHH40Jk8a/IO/uXWb/xHDeWPhDnn8kJ0J+2knbQfOJuamvqTqampPwH+nFxoqQO0gJuAt30/+/ZELK06FA/vKAEopxFZT4kafpQyupgWORcPk53d93sdQcF4HdOWdUy2C+eo5/Sqh9+NFmXxCo3CSqHKNegtiGR9Byd3XlfAlTve6SqsYhNgRWwqQOORPMT5Uw6chMVPJXySXG6+swIAPNIBxyvfre+ZLpw7hQMZDAFa6Vdgj82OyP2v48Da8WPscjW4FRsBjs2Flj40XTn7e/mrIjIJamKAXTvWevep7cM8fwSDotqxlLtrcJLnnZtcE7HfmxUmcqVnK/e/YlYcQY+dUu4R+3S8hQO6M4pjWROA0A4Kjh0bXik4SnYlL+ZY8J33uzQwZY93YEvkIW3iHOVikyFnf1buWWQSkbH+8Sv9feiY5jBV+r8XGTruUJcX3u530SGUENmMZ0MGTTlFOcvv3XsY11s5R40WgRsAMEJ/C+XYYx9bncHgUGockYl+Yw7QxXr2SPExVK1G4dBZzFD0UOXs0HUJiucgKiveGXkb5hEmtyD9d4zCUmnlGzuec5SswY96DzFnPUUmH66Fh3z2vfhohgEU9tCmAIufPLpS+BO1Ew0RfOARvnY3Go0HntIePg6Lb/w2c1//CnFQ4uDoKk5ffQYAdxy9jYl0DxUT4Uq/yZlrh485bzgY4S8veS7GJiwO19hzoMauXc/G2pRDh/+mf9zNu1Jeaisgjs+Zz/Ob4a20KfH54UtwlXwyx/MR9x1ZYM7czMQSzLoxjny5QmZhQ/sT0D6Pu592JS+7bxPiHeVAEqLbsJit4VndLrsnruebRzJuPPtC9kyMkh50fPr2q6nMP4+y12Vx/tb/uAH9T2jOOR784meZ+uXXsOull/HAS57LjitezK1v/nUO3HbjSbB10k7aD6Z9GHgtK17TLwEf+r726AlY2UJdVpxI7bLjCJkCLEgv4VxRtsFx7keOrEQ2AzX6DI01GKtRDozN0DjKJIRW49sAzxbOojpOicvlV/UQUA5T7CX7A8eogfejuBMLhFFqHSJri/sAJ0O5nPvA/XpWU+qDmIKdIMsFAqQHGt0xvxcBrXr5J/nIBNYQPuwrvNemKsBKGVSQq+7x8O5Yz+FXgB44QmQIkYcLMTr2wqLcwCcP3Y43dgW49MFIMSjKCuUCkOR6dCv3rORYYMkAuPNtBmIGPl8Zsz4zcNw4PlL/j+/vw5lXPLMckA9c1z20tUFArd3K3DcFg6Qe5Tr5ObYPEiiEQfprgCx/MUge1FayglYbUfJoJHfveselgvT/XemvKeBOYDWBNZStV6wFh+qxN9TwnUbTC72Ulf+Kb/1jXO88NDIkRR/nkguCRh27ISBgjgOtAP7AulHOFeMphZJlcS/ycG8O8pwq6VDp9vLFegc83Fxw/fl5zNqXlfk3sEpw/c8cBo30GTwNmP76V/bY95BygnEKnEExiW/9YnWr/nzLG7Yo1Rv/gfN7fT3OVLFOKlZYHz21kWAnqiL4AfLCwl8l7/cl5MqC//2p6dbjN7u0yNJbfps955+PAyrVDjK6FYCr7/wgrxiZ4+7ZZ/LqSy552PPra85j+74vsjRiOZIFPNidZN+hMxH5DONjr2Yh28BmtcSq6fM4YO7ntXsO0lgzxzvSn2PMX1mge687wM7xmzljd/7ZxsMzXL/pWexccz8vP3Iv57S30znbp7n7ZxkKbuBQcjZevI+3Tr6JF7bezs3jbcL0Di69b4wHzno6p33xS9yxf4J7nnMavx3VOLP2AHsWD7J5aN1TPqb/2aw1fYgDb/lNNnZ2sn5thHtmQGrLdPYvEN10M51bbuO2C8/nzD/6c/yw/NgNfh/tvsUp7pr/Lr72ec6qCxgv/dBGS520k3Yitm5qauqiwQ8ajcbXv1+deaJWdZbhtMuSCmmrNFdJ64W+2FwtbMWOA0LkGThQgZ6Uuwzj3DIOweAjpIhVxIVEu3YZVhRO1uDEoFwT29tpdg5QBNY7JqxOEErWR9SKMzzoQAVOkTohVnmuROYGAVIPBOTwzDhdOFkKkTyfIyUvoBtanTuUzmLJfbhsoJ08lDIlKioi+1YTq9yJFKDcYz6EPnzqWcl6pFhSNVA42AqiJvL7lxahXUCAtjouB47C+VOD4C4HQylZ0ccBsHLMIypCN1WGEostHFK/qE3ksLgi/NIed6q2eX2jXjuh9UhxxCpBJHfeUnGsJNAMMC1YtBKsXfnUs5pcby1nHwPUoJQKPTh/IluLCouyhlRluahFz4l2eY6ZcSmZOJxlgPcSjB0Ed7LiXIvDV725kDvB0nPuZQPWTUMRDulEoUhX2pWVsdfWRZMXFwAAIABJREFUkaki1NZm1EiYUQ4lPkpl2IcBfP1PJAd3dhAO94CuOIJUYQU85+XrTspol4fPWtEr0W6DSGoAXIlYxArIQwMflSvj1CrEHaVshbbKn4zvDE7y+ZOKxeYjA+Thi2kxJw0ZxjHwPAWjcoVPJ3mPSiR4Vg+Iu/Su7wbJ3eNGJr8XpSxGHOlxzNkxcKp4DoFbAdgim7CiqNi9WJ2vSc9ZEr0REYdyD2XQtTjEWYwDh0bpdXnEpNQpu0WcFURlZC4X9XG9597HXFLcvyvebbb/TlJi++vFJyPUD13rT6adKMC6bGpq6v8d+PnqRqPxhqmpqdajndRoNM4kL0p81dTU1LsajcYGcrCmgUPAa6empp7UOiaqPoT/nn9g57e+yr7KMM/xWyCK2e5RTPIAZROxfvV/QSt5hAYMjfZhrhs+i9r6v2L3oR9nYvc2Nq/bw+Hp9/DR/T/LFWETc2SIm5Kr+eXRZW63p3C3nMav1R4EcnZkzz1z7Nr2Zf7vb2XEoeK+U86g9aIXwJbb2bl0CqfzRc7YV6F5aJlTJldxK4Y7KhuoZTHbvmjQP+PwS3dSveccFlfXaJXLvPqbX+D3nnk2N6oLuWz8S3zozuv4r8997ZM5fP/pbenu79L6w1/lGeceojyekKkSiW/wo0OotRnpBRXm9lap3vJ1pn7p59n67n+iPDTy2A0/gkXxATqdu8E5wnAbvr8Rkcem9x/NutEephe/zcd2XcdXDs/TMvOI7hCogDds/01esemVT6j9EzW98ACluz+M2fMV5qIWndI4yboL6Jz5OqpDa6kp9YTv9aSdtOPs5kaj8eypqambARqNxrnAzd/nPj1uk6yCosOKhzO4C9xjo/KfHWWgewwDgFqTMziEZAOfO6njZBjsIZQkeFbhVO64GpvQMbnTFTifjqz8Cc5zJx4K5GAlk+PhgnfK1uUyCDp37hUOT3IVEsRDZC3O5nvXngjOWTI5FgapQtsuh3kxmjLKKpJeHpJLqVvFjJrHMUKfF3L5znxASjzg0niSJ85nrDBb2mZkSpPn9+ROr0VQUqeUHUWpnP3oYFHOYu2KI6sG8s4g9yd77zfPKhJl0TYrQC+gXH/EtORj34NoASkoTSoWl+UsjJZlsh7gwOKpjMRNYvHxssNkapC1cAQYFGkBO459JtpZUtE4GUfc0byPBZAVFAkZHrmCZK4dWZwnth+UZyQj7T+enBWxxf0a8hDSFIu4rO+I+5LinIdlPO+ROIzNSMgBncEwqAF4/ExSvSBTKcC9OKxolNRxdPvPEXqsLETFffVy4Ho8o5acDTZYhA4pDiUrgE+Rc1b5880oOw9tHU3dy/XLx1mRZ/OIZBiEiuuwrLZgxUPsAkrIpfOPI5U8ZYlZEegwzuI7iGUleM2RK4Km4uXZgeLTg0mDgZy98fAlIynAQmihqfL7GLdCJIZ2L69QHF4xmkWgL8ICZYmxWtGkB/RTYnVsx5W1WFUwusWrQA2A2BwA9tg6hbKKDEeisr7oTm9tGgREUXMxy8Vcy9UGe+84259TK3Oix1QLucijHBPurFSKQ+XrUzSh1Xg2Y1k/8tZAYA2R6o1NwfAVNdWeSjtRgBU1Go3/QV5o2JHXwXrUnjUajQrwN8CXBz7+U+Bvp6amPlq09wvAe77nXj+KJUnCx2/8BnGacuOWM3hz9X4A/vWOj3LJyDx7l07hZRde/KhtNMolPhaM8NaDVd679l6yozVu3v10nrX5q+w//DR+ob2FyCzyrKXrKddi/ix6DePDiq0bTiUDFnbsZ8rsY05m2XwQDo1W2Xf++bjOjZS9Lu9bPp+3ssj4qm/wd+ddzp3rGgTXHeK26imk24e5df2pnL7nO8zO3sCp6QKy9wB3rRtjzdwir77xy9z2zNPxyv9Oc2FHLrV70ok9IVu+b4r4v/0S2y8+hA00n+LFfNduI+vmUrlb2M+59i62bdjF+Dph5J4WO379dWz9+48QVE5cztNZR3fPPSzf/U3cQsZCc5xDzTrz3X1k9iCVcY/NT1/PqedNYPyHUv2PZEkyy4GDf0qz+TUAXlSFF2wVbj1yDjPulcxUv8Ff73gH1lmu2Pyq73l8TtSku4C+6f/nE3MLfG7kIvauvohKu0WQptjlgPCbt6PtrXTCKuGGTfzE6kkuH65iTs7Tk/bE7VXAbzUajRa5bxECs41G43WAm5qamnjUs3/AzCvCuHoiyCW1lxZbit9N4kTjXIbGx6lxxLXAzQ20UDiW4ufOpFUoZxAJMGSkaBw1DA6xR1c2rAviw7MpEQ6rhBCVO9eSO6n9PtoUI5YMg89WlFtGs5KTHLBEKBktQpTTRUaLoATqmWZZ676TpnCFWx/jOUUbXQRGtRHJ60gZNUtKGy/nSUgocnkKNqaKpjXgaEvRpk+KtUJaOIzaZQTM0FIZWIUhJcERWId2KZFq5n1y6hgZgKpMU8ax7EbJAOMyatbQUeq4kKk8hMlXAmiUVUifQ1CIm8C3c1jJVgRLcm4OgwNSMqfw1V6sWEatYpZlLBWM5EVRPamDEzSWrJCppmAVey6qcBTjIJPx3AknByopICocoJByx7ZkLYKHUoI4iyalx+sdEz4m8zgnlOwoim7OLjmHVWrA4RWEoAAhrsjVKSM6wLk0h7Gux2SC0SFp1u6fm4+U7YecBraMlWHgwf7cTpTGsw4jNTxbQjiKpyyJzTcJPDKyQttO4fDIZc6N9B6XIJJfIxCPVsFSKTaB24uPxrcKX2UENqVtbR/M5pL2WR66W/B7geoSS0rsNOCBWgd2muNDLn2bEqmMhFz1sRf6aJSjwNQ4MaA2gSvqzGEx1iB6LeIOolSWbwa4XPkwB875bNX0cqkMVlXIKKHkwRx8YKllmi5CVwFSWkFqQJm4GD8/Z8qLccqFUoR2gbhzhtn1V5kSSwVLLIbU5TPGuDJKNwekXnpMlsYnwjqDFOMBHkraOfAoQgBzuGSKuRAXbK5DxOIG1pvHDIqjoCdJspX1r1Cofp5hmAM0cTi6aJeRSm+15CG21gH4JDJKiV08lXaiAOuV5HHvl5HPnnt57PDACHgp8HsDn10KvKH4/hrgd3iSAZYxhmc86wL+vNni1Gwvk+ufTeIy7pv5FhdtWmCu/Buox3D0zli3DZag0tX81kSNmxcr+Pu3EG+4hZes+SK1m97KffbLXFxf4ub4dHbLBsaqDyKTZwKw+/qd3DN5Pc/alVe+3r1tE0utJlvPaBNlHqfcMM+7L3kBb8w+yn9pf4ZrvrOfBxhn8WCVs/Ve9g+NcNM5LwZexN27d3DeHd+COGZ2/SrU/fdyzuIcM5ePcXZtDzfO7uT88caTOYT/qSyxjt1xTOvoUVa/5RfZftEhun7A51b9Bmr103jexGrWrl2P1pput8PRozN88r6bOG3/hzn7afdy3tG7uOWtb6Dx9vcj6tFzDZx12LvmiL/9AGrZo2WfxtfVQR7wDzK/6kZa4QypigmSCpN3bOPcWy7mslefxfCaxw5DjOPD7Hrg9XTjGT51/0vZfXQ7rzp1nHWrdnDOqk8g/DE3z7wEPXwpf3vPX7O1fipnjz79yRrGvumZHXz+q//MN+fWsXrfHBcsXcOFx+WrZWGFeGQVaX0Me/8dfHxjg49vP5t3bFrDuDnRV85JO2kPtampqfXf7z48meblsS9onRaqZzEeM+DGCCSjiyZA0SHAIyFwuZC1ZzOsp0iKwsCOPLTGYDCWPJxPFEoJ2BJWCVpUPyRHQ854yQhKjpCh0FiUWHwXM2dqJJ7PaKsJWHxnadNjgir9/iscw8ySqXVMumU6dhjfOpRK8XCk/RyNfDfaaB+bgpKY1JXJBDpylIotoyXAEICMknodxPr5powLsG4ZUYAVSqIQZ4CEzNp8lxyhyh4St5UeZwEgVhHSJbE+mQK0QmV5KJuvOmRylMCuygshyxE8EqzoYud/AeMNY6xPV63ts23KrYRxKkdRV0jwiKjYGdoqBDbiiYczw5TcLJ6N2Wjm2edWkbEWz+4n9AKaySKpyplEXIYhIqWEUxR1mbJjwrI8lwtclMlIdA8Ed/sAwrcpvioXTIGgcJTtPIomTbWhzzTlZlEsFkGKKyyWweLEAinDEmOJEUISQnyxWGsLsATKrUMpheYAWTH/EFswdTlbgPMpW4vWDq0Dsmy+34c8VNOhVA8srCYWNdDDHI4jGmQEJx5wNAdWyqKLfmtxZD3Q4UApi2cF2wuxdXl/lOsxeQ5lLQkluhhKxAyREZNR0vtpESJiUG41TnKgZ4owW+cK9lNZMheg0SgV4hDiQRYZoYKiYyEbZD7zaUiQGUSXMWqeDEdGmM9x56GdJZYymgTlYgJrsfoojtFjnmDFemhZg5FpPNUBF+AGVP6UytACAULZajLK6KIsg1EWZ/N3gU9GjAZn0Zji6a2EcPZAvedSRCkqThNbTeKNEiRhcc1cHTNnji0aiyEj0j7ldBqrRoltSF6dbgkYRjsLro2iRhULHGGZVYDgJC+cHoig6VKyCb60WQZ8bXHO4mHxbS/Py2DUKjybIaIQ5nEuRVHhISqKMo4vS4TeD0CI4NTUVLPRaNwOzE1NTV3daDTWTE1NLT7GOSmQNhrHOP+VgZDAw8Cax9PpRzMR4YPDq7lHlnn/3o9jh6/gq7uu44KhBea6I1z8jJ98zDYaa88kmL+fezdv4rfO+Hm+s/+9DDfLfGn3Bbz01C8S1fYTHLwWf8JyVfQq1qglhvQS8dBmDh98J7s769i14RZe/82U1Bg2XHEH6737STLL3bMNjp6/gQ9c+FrW3N3l56c/zYtndnD1+Km8M7qSjQfv53kzN/O066b51ZeexZ6Nz2fqlLN45tw0v/jut3O0qmnOHGHmixNse+kUb7t7Lx9/7umPCRp/1Gwxzfi7mXmumW/STmKu+pu3cdFzDpGEHv+if47Z2Qxm72THjjsZHh7hBS+4nNWr17Bq1STbt5/JwsIVfOlzb+fS9IOcF1zPbe/972z91T96xOu5hYjk8/toH5rlmonP8LVVu9jnH8AWUqplU2FTZTPDcch08yDfGNnBrfEX2Pevr+M1r3wFYxsemSFLsyUe2PNrtKJ5rv727/PT0WrOSau5lpqsgQ0/zgNrP8sFkx9gU2sTzdJa/r873sY/PveDhCZ8xHa/V2vuvI5/uP47DO1cYmvrIAQhlVO2o+tDmFKZcimkjOXQXd+h+eAeRufuRc66FLX3XnZ1Wvxy9hz++ZT1DJsTZ+1O2kkbtEaj8RPAlcAQAxFGU1NTz/9+9emJWCusMCH76bjNeQ0gcUy4JZpuVR56VOzgps5glcNYjW9T8uwdjSc2zxlxFmQZjyF04SAf0kNEqsbaqEUsZWqiC+CRUtEeURaBDlFYtAg4h4dDETC1fhuJlDhn9xQlm4eYaZvXYModPEclU3ja4ordc0tIIhM410E4TIYlE3CVEmGni6OSy3ebYSRZ6I9B6GKUhHmkH46K6dISgyfCuH8EG8/S0hHW1tGEaJdRc3tw+HhZQiZrCIkxpERVDzpCU1Wps0wiHmU6KF0mcjm7ZHFFbZ91iFP4apmu9ViQgPECrC7LMIYDOEnQZhhchO+6IBWQJHdGgVDmUDKN0RUMy9SIOexPoDMPRYtYBwQZJGozmRoGK6hCPXEy202EImEVViaZrx3ANDM8aRHLURxj4FKU5Nfy0oSqgZSc1cgcKOlSIsY5jZYMU1bQBa0UsWicE0ZGy6RzTZQIqazHqjlAYaWMsJxnYrkcZPkuJZKcl1qVWazyaFErArYcSmJCmSbm6YCHT4CxESEzIHUqfhlxAUuDIo/kkvBZXyJEKFmDUQ5PdUESPOZxjKNUhkIRKx+PNqkkYEvkdbc62KLorqMELBJY6EgNXxIcFuUHpGlC1QUIMctmM0iKEAFDLJsOJmkCNXL+RpGwiHYBFa+EpFHOqaoIA4y6PRyi2NMRyEQRoXE2F6ZwypCh8V2IuFYOMaQJUsMqi7YOozIyFD4PUsWRUqbNKkLJgAhxMZEyeA7EaiKXYFxEV3ys5Pl5mdTw3TwxebqCBlIMJdfCZ5bAWAKVEdvNLLkDOCZxapkSs6SMYZxDSZ1MaohNKFtLIg5PMpAQW1aEiaWZxQUzJnmIJsOUXAlPZtADqVqBTUjxSL2AIFkBL4YlQpcBKZoYbcZJlU8kPhRMoFNJPxfOIqTKI7A5hAukCW4ViCnCEy2+zFMnL6KtraMsh4lMQCWtoS39AhcpPs7XlLspnlsgweLLUZwL0dZSswrr2bwMtfEIswzxVhQrnwo7URXBtwNvBN5cfPSrjUbjfz6O6x3Lr59YPuX3bBdnR/ire/+CC9dvB+Azd32WxvB+Uv2TGP3YAxoYjzOX93DrhjOIb/gmr9f5pN47vQ2XhBzZ+jGeFu5mplXlW+5prFVLbJJFDn/5vYSfOZV06BAJGZv2KNTk2ciOXyZ0qymXlnlweT2fet4rGVucYfq2DqldxdDwItvjSwF4QDyCNOMFa77ACw/8K5v2vpm37P4HdtSG+J03/xmt4Y24So34EBz82mpOb3+HD88+Ktb9kbOblzu84r59XLtvP5fPHuAPv/BRtp/xIOVaxEd5GbcMN/j25jMYenCG8264gWT6MJ/8xEfYs2eFLh4eHuHsn/1zvn3q72NKlnPm/pHp27/5sNez023iD+3ky53reM3pv8/7Rq9jycZcql/KW8/6cz506cf4txd9gb+96L2847L38P6XX8Nfjv0aY67Mp099N39/zQdYmuk8bNvOOfbueyudzj5u+9Yf8KetrZztD6EvXI152Sb0eZNwNOWUG17A5N1/y6ha4vUje5m0h/mX+568Sgq7br+Wf/78jQzftQPd7XD6j13B8PMu57Bf5mA3Ye/CIvccPswdR+eYeOEVXPizVxJbj/mbv82pXsbW6X2MT32XPzhwBHtSofGkPX57O/Au4LeA3xz4+qE0f3gMJwrf5o5NgLBauTwMRxk0MSbLivCaCBMcQehiWMI4i3VCKnkmgXERFZap6/0kytBWJUDRUTHQpOyPAILT6zAkVP2sCG8DZBpfFlB0iPRaMl1FiSGlRIyPSJGzoRYxklFSMcPSJbAZoeR8RR6450B8VNAlDTRR2YBRhQpgC+1SxJUQEjJRGKcoq5SqS/CyGO2FxNpgJSPFYTOFLym+JFDwA77N0ER4tDCuSkYFO2JJJ0oofw7PLeIFi3mVJzF0ZR3KeaRU6VLKd+Ylz8vwrCVwEZ5KyMSQGo9Zb4S28hAX0qluBmUxLKNIVxzMoEJJUpRkiFh81SSr5vXKXLiF1phFSYd6cpSyO8yIN0sgbZT0ZApydsdiyaRChiX1emqFXawUdajIUCpnDTyVogQ8r07ZD1GSEMgcFUkJJEPIUAFYX7AqoJRF+FhuqTS4rXQaQoQVwUqIqFoRrgngWBqeIyppAqUouwzPZdR0l6paQ2S2sKjOwCmDFUfoqlSdLkL5Mow0KZMw4g6hXZlIhygTIEUopC/T1DnCiH2QcduhkrXQRZBjhQOEeh9K2ghLJGJw4vCtJRWTq1iK0PUNUS2iJAmiR0HGEPGJy2PUxCejQqTKrHVH8PBIlaFryiSjKdafBQHDLE7l80kVmWseCRU1x5DK15IjF4Vom1rOkI0mNCc0qUjeHwQhQsSCCJGq50BBPBBDSRbRKiEtg/Pzu8z5uGWMs4SqQ9nOU7FHiAt2raQztHE4r4UiZthPSfGp4/BcLnOQ6EouViFNhshrd0WUiGQoj8C0PuI8PFFYtQ4QEgWZVgRuEZ92Lnmvumg1z6RepOwUiRrD6iG8sVWUR0qYaohWGmUzlHU4GaGs87WvgZrME0uIxrLBHMFzWcFWFlDCRhzRVY6YOoKjzDxaHAv1Kou1Elo16Y64gp3qkHpBXlCahEytYUGX8SXEoPDQhLpN6Oe5gQ6DJ461NFnPHKn4xJLP4gifrja0ghKZKAI6BFlKZGKEU/DVMGVSqikkFZ8kMGSeT2v0B6AOFvCsqampVwNLAFNTU38MnPs4rtdqNBq9LfV15EIXT6qp1jS/8MWf5v9avp3u9p9h/+I+GpXDRKnPc8+88oTbOVMsdw2dRuu2T7P+J15H4gmn65TRfS9EqrcxXIv5FOfh45gwMS/dezlj97yQaHmSa4a/zov3JEgkpBOnc8b8+dQfOJ3MKXaOP4cIn5dfezX7R7ewx1yA781yZud/U5UOD7g6h5nkps6ZXN6cY95b5qJDn+XrN7+OLdP7+Msrf4NvPf1S/LEJ5u8f4oIDN/BXB49wfzd+7Jv6EbAvLDR5+w3f5mXfupZX3XIdo3fexFrvAc4KdnLATfJTXMsb439CRjL+8md/mU+84Re45LZbGJ6b59rPf5rp6ZUpKSJse9mvc+fwlZSqCePX/Apx51hdF3ukTfzR+3nP6P/m7avfR215HVce+UP+8bkf5I8u/wMu3XAZa8prj8mTExGe/ZzX8s5nv4Xt3Y18acsH+cePfZio/dBChwenr6bV/CozN/8ur2tvQm2uELx+O+aC1ehtI5iL1+D/0nb0+ZMMH6yw7TtXsXT4Gbx+okX76IeYWrjnCY/pd+/8Jp//+p1U9+7EGE3jsh9n6UtfYcPHP8ZP3HYHP7P3AK+xileu38zWDZu4/fZb+PYD+7nwF9/I1uEm03fexqrZgzx99w7279nF1XNLT7hPJ+1H1m4HvjU1NbVj8Ov73anHbfUJOmsUykAl1azGISqmVbUYtYyWNk5FBLJIKB20SRg3+xjWs/iymKvlOciIsc6ggirN8RFAIy5PMPfIKKtuLkUuilRKgE+FGSAjLhmyMEJlaR4kpWK0c2jnCCSl5rfAr+OzAAgugI4K6Og8y6ura+Ckr4BoJCMYOky74tMqhdTdEoFtE7guCEQVoemVsAgiintWj2Elz1PJ0GhSTBbjZympb8hsHcd6UhWSqIBE+XkmkkCiN4IK6FS7RNU6h9QYh0brbKCJX3g3kfLJBKysxRHkOUTSxUpA2UrBWFhW+QuIU2R1DxnxUPUxKvUqbRXQpEzqTJGNohG9D0hoF2HjmXhUVIwSSL08xAoHTg2TmZi2ycFT4HUQ6aDEA5H8GRUhgKn28cgIJCny4EDCDqgIqx3iJfj6ME4dIPFTNnkH2Rx02KQdGZMoDIKCQOjUDEKMCByWECuG0LUI3HyelSdgJN/7Nwa88Rg1OU/F+JSNT11SuoFPSwUkrkJFAjzjo0oKp3J5CM9m+LZLLCEZNTRjODLaw3VEhYgJiMXgG4VPC8+1mJC7GdFz6F7smVZ4Js+fGbNpHupVKL85yQgoUXagjc3DCL2eUHcHY44wOjaTlxPWCudpYtNBK4+kHmDXjCElQ1LJFfVKaZMwqTFKl7pdQinBUzElbRnyujRZR6w8YvJwP8IQqwPqtkxZlgj9CKUMmfXxaaIQdE+VUDJC1UJLh1iCXEgBL9fLdKCtx7w/xtGhYQTBL7XJAo1ygicW7WuSsmBUE62g6nVz+OXKJAVjl4cBz5OqSZxeC/hYqZGYXkZfDZElWt4kkT+G1pD6oEyE5ysiXcKJRlQMKs+P01LCH/JpeRltv0S7HBH6jrIveEXIcEUvEckarJTRCFU7h6h5KvoIVQ+MbxGExWoJi2ZB1WlJSIbGOYvO5ulUa2QSsDxcoTVUolUPKZmELO1SkoyyWsSjjWISTx2g4s3hmTaeSYjWhARehuhRFs0QablCy4wy4i2COsqyqhCLYXHIx6GwSrMYhrS9MFdK9So4qWDoEksJX1fxS3U6Q2toVseeqjd7vrZO8Div0Wj0S243Go1xOL7k+QnZl4CfAj5Y/H/t42jjUc2WRmg/+7eJNr8I51d517+/l1dvvJcjnecT+EMn3M6568/gfUuWXfWU8XKFclpic1JjdN+LsfwrDni/egUb1RKnpjWWRqZ4nwRMHrUcDqd5670xjhIfmZhn477PcOazbuObnZ/hlqGzecnXPknNZWy/6Bbef+RMfm//85kc+gqvWH6AD7ltxMFhPrnmxVypQrzs/Xyhpvij2Wk+fcdv8Dt7fo9/e94L6YrjRTs/x9IdIVfYj/HWymv5wNb1eajHj6jdsLjMv3/hs1wyc5AJWeQ56Y3wjQ7nXLiH5bRK/ZmvxY6t4TSb8tHmDt47s5t3jL+Ee37rTfzpZ/6JW5se1/7bx3n1a36RUmkltG79lW/jgf96A1vX3sO+9/wJS95r8FKHMgKp5e5gDwuyyDMPP49f2PYrbDt/C/JIKpUDNr7+Av7Yz/iDb/w1n1//AdZ8cA2v/qXL++cemN3B9OF34n/317lkcTv2jBqll5zykLbF05iL1qA21+Gze7jg3l/huqWNvGj71dyz6w1sPvsaAm/44brwmLZj51189fob8A/vwUsTTs9CNl91Fdpa7HAdGRtGHWqS3HIjXpJybrnCWRdcyPUOPvG1G7n8Ja9h0/V/zXWHHPXmEi8W4e9HxnnxUOVkPtZJezx2LbCn0WjshJUqpI8VIthoNK4iF2dywBt7KoTF7y4D/oJcDmCKvLbWueR5wvcXh313amrqSWfKtPiMrIo5MgtRWubghjMJJCBJLaNzMThFN7FUscS+EGc+LRkGFWBdDQFKzpFoR8mFpIEhHS8hc4XTXvLx41zsW8QR16rYZq6GF2dlAkk4ZTxlvjNBe7nMQX+cuopzBUAnBAJGbcHKAtalhGmCrfpEHYNT0A4cy5VRRjsJSWxIxKBVxkxYJbKL1KJVlFlA7CSJgrhqycII60qYRWHRrzJdr7B6rsnGJM/xMhITJgmZsjTXjBEfGKFViQgTQalh1FKdCgnVsMXsMniSEFc9lswIQVPTSTVRNpmDT3GknmYxrON1IHGGdOwQMmtIWYeTlE4tIMEQtDXWCdUkJvMtyi8hvsZJRuoMkQZPfDwXoE+tkX63i0NIXUpNfNaucSyVgjxnJwXjZUgmZATYLKDpCVUehB4BAAAgAElEQVSxqNQj1muBAyCWxOWgMbMbQS2TKA1iUfV9xKX1ZH4JPWuY1xP4aZYn9Mss2nbxPYenEyQbw4ngezPMpSM4LyIjBRbJvCpxrQT+BnTXolyMVh41s8zM0DCR0WyJNlAv7cVZg1XrEBG0yoVJPGdpjgzhj3WozEyTRA00joB5nFO0GMVD48goM8Oc2ULqBZi4RWhSkqSKuEWkCi6OiVReSsQoj1BrnMmoZRDqJZaGmtiFBCVHiNQYUgowC1BKfcpGo0wbUS0ypYl8i5NJBIMhxqt0oWsIh2dxuooeb5PNrGOzCVAuZU5pomqIaEFmYwxtHAGd7ExSs0Ao0yzIODZrUkkXKQ15dKPT0MYnHjZ4rTZKYqwnkGWISsBXGNvFS5YJlSWp1EltGfEUJa/CUAa7dYkFKdMqrSpq3i0Ti49T+XwTZ3FDw1Ra0K1XKLVBu1zcBnF4roPDYF1ewSwLh1mOy5ScD8zm4asoIjxMJtiyYtkrYeMhMplH+YLXBb8ENlWUcDg7gvJPR+mEzjio8jKuFLNqvEM9WqKbCi7tEri1JEbwswQYIXYJys4iXsb02Baq6RwtF7AQllBVh2utiPK7gr1zCBgvF9VQgm8DbMmji4Mlg3I6VwQMDSqdwPcdqJy9Xq4GKCDyDZL64Jc4FNYJWinOJbRGqjivSxSHuHIZFiEdg92V9eisjvFjtu61SDBE0/eQJEZJmcBPEBWgjpd+fJLtRD2cd5IrCG5sNBqfB7YDb3q0ExqNxjOL8zYDSaPReBXw88C/NBqNXwX2Au97nP1+ZNM+naf/CgAL3UVG5H6UWJ57zm98T808Z+1G9MIubj+1wTPv/i53D5/NZdMduuLYdKDL/lqd/d1VPE/v4rbVdfamX+AVw5qrBKoprN5jOFIpccnZ57D+H67i3tEyH7Avo3HoMOfceztLz7yU4cpNnLNxhn0Lr+D01q28Sb2bq/mf3Kd91qaaytgqnjd+Cde4G3jNoWG21O/n9679O8SlfPqSH6MsXS6NP8vGe7/L/ZPf4UPDNV43/vgc6R92u78T8Yl//zdOmXmQ89NbeBHf4N6bTmXDKQ8iHsSv+RzZ8CnHnPNa4Gn77uB30yq/dsWb+LOv/D33tkt8/pqPUznnxdx6YJEHjrZoTMe8buQv6GRvY73/Ma5pP4MpvYWhGLbpNluiSf7g4C/iNOglg5vtIqtOLPdpfOJi/ujCJd5001/xkfF3s/WTa3n2Tz2d3UfnuO/+N7Nt92uZPHIe8VkVqi865VEVI9W6Cv7Pn07yqd28cP+P8ZnltWx91lXcPvUqntH4CJ63ip1Hlrn+7hnu2LvAdCumnWaICGNlj6etr3PZGROcu34IJcLeBw/wqS9+jXShw5aleUYCy5qhA4y8vMWQ16ZqHuxfO3NCZMt0W5buff/G879R4vDpZ/OVVouLt7+Mn/Y+wicPncvQfXdycVjlr8ZG+bP1P1SCbyftB8P+EHgN30P0Q6PRuAQ4bWpq6oJGo3EG8M/AcwYO+XvyUiQHGo3GR4EfA1rAx6amph7179wTtarv022P4zzBVUZwXoJF44YqyMIizjp8o9BWYYzHku+h4zqoLhk+3ZKPVYWsQzelG2qM1yUhQ7RBXEqnVslrKq3vEHYjWk2hI2UsIQpYKm0liqZR4uEEOuJjJMrD1gKDpIpIDVE30/hkNMWjPVyh1NzFzo1Px0qFyvIiumvRzTZIh1QqeHY9mR2hGx5EFTlL2l8EM0RYHcJbmgWzxLCswga5dHTNLqFNRjw8hEurlFxEVqniTIpSBnEZojQLdjOk+wjEEpUUlbrGtUuMqYSmrWHIw+9UUbrVjvjopImXtYnNCJ3JALvkkaaGxPcJVIJq5aWEe5oSmR1FiRD6KYHr0BmbRE9bStIiUytp86WywqSaVqZRI5aRo/M0nULJML4Ryjqgk/SqIxmkXMaFZViAKAtpmjo1l+K0gBicCCork6Qh1RGP5U5Ism4cszTOTDBOqHZTTh2LRzN8LyVyq+mMB7TjEt3RMSTLqDbJM7XEEWmLrVXwVETUUXgiVNSDLPkhplSig6UUh7hkPdo18WQRIcEoQ0SdubEJSsYyVvMpzwUc1cOAYcgus0yln5PnUEQqJQmPEHZC4tihyHBqkiw7zPC4Iz40RM0EzCUhqBKRGWNsjU9p9zJLaj0qcHSrHtRDonQYFXmE2sPLEpQzeDohUwonllQbummNIR3DxmX8yYzb57agQliflWhnKbHyWLRVjG0x5vkk5TKWGCuCeJosHcE5iEsBnZGQdlojbJ2B396JzyjK1yx2fZzxcJKhlCWqlJCmj9JdrF/GETKsl1GxJinVUZGHbxRd3yc7zaIPLBC2hqjXN1DJ5lherLEoZ5KZOl09h69KpBJiVYSVOp5rkbhc+jwQSF0KKiFJn4HPLhbx8SRFVJlQLF41QDc7pKKJpRC8UQpXHyFtt/BdRLS2QierEj7YQbOaNmOk2kNUN687JSUcKUop4pKiEy2TdmtkAr5oAi8iiaFLDaUcQZwR1SuUmx1U5P8f9t483JKrrvf+rLVq3POZh56nnAydkcwDJICAiIrIqBBARPB6Hd9XvcKrgqgXFfF5UVT0XmSGEC5zgAAZSEhMICFDp7uz050ez+k+Q5+z55rXWvePfSKDaFDIBb18++mn965+alXt2rWr6rd+3wGBJA8DUBFIidQSKR3ySZdUTVITOWtCsEYd7Tqkzizas9Q9w1RrnlyHJGGVMGrhKIm2kNbKRIGlLGMK30MlEmxA19lJZlsgSmj/5DDPyhuw4jZASEyQIxyBESVOLzbh2ojIU5jqLtAObvkYstBoLemJJ5b59Z0WWEeAJwNnMTTpbzabzW8vGllHs9m8l6Fr4LfiR/4N+/dd4fU3fIqXbbuX1eh8zgu3/pvWrTiKuc48t05ezCu+8mGOp5eywWzgpHMLpwvNF+UFSAwbZIeVqub06hFW9j6fQxvfzS/M9yg6ISc3Ndj6Dx/DPjnnel5CKhyuuvn91KtnU149m3d+5bXsLTV5dm2F17dfy0T5zfxC/gk+bHdz1qDDg4NlfvKKn+Gm1m38ufsi/iD6FPUN8/zah95FMhLy+XOuZsPEYTZ//CBX3vV5Pl4b5ZrLL2OT/8QK937QkBjD227/EnMrJ7jI3sfT5b0sn/VnVO/6Y2qbE07t/iXstxRXj+GCzefyvskBv3XPXj42+xoue3SRZC0k33uIHQjOFIKqlOx1C+5aupqfnXmIi+2beL/9SxqlBf5u8/9gPJng3M5P8KPuLnY+3MLsXUPsrONcOYMce/xG75bpZ/NbZx7g9x7+CH/dfju/c/PvcVf8Vzxn+Wcpr51F52zFxI/s/I7s+EXZxX3hTopPH+HHD53D++/8Pc64+L/zN198K7cc/jHm4yH1xBcJoRrgSYPQioV2iX2tAdc9tMhU6LJ7tsw9h04yk5d4xuLtbC63+elND7FGlT1mOwt2nMV8BMcqtno5O9xFgsE8U+Eio0/KKM6VTBzpMHXLHr529GycCy7hWvc23n3iKnY9eAc3jU5xYPw57AqeWA70D/GfDvcBt66bKH2neBrwcYBms7lvbm5uZG5urtZsNh/jqj7pG16vAGN85/T57wpetcyx/mVsKK9RDmv0xQqoYeBrVneRKejB0NnLSEVRleSFj5umCJtilGRZVKlJiTtmEKGL7W+DcYMqLMIN0F6FxAHXSwn8gKju4GZdZA4aTSFC0I+Z7Ah06NKSFUq6j3U8KAoKJ0CaoeObkB5ZeZZsqgfCBSPIvQrkCkyCUYq8tpVSdwJSyyKbmZAujjD4QlLggpR4jiIWDjXtI1WGdl1klmFsGVUJsaaMQ0FYKlO2daybEJiM3AqctmZgBakIycpAZxuOE5GakEC4WJGuu4MLrJQ4KIznIfISwg9RSZvcc8gDF0cKwrqm0pfY3MWvenQjjbE1hMwIPNCFoetYfDoo1UKbcfLApVAaa8FiOCZPwwm7uK5hwi2h+hYhNEo4WCegcAJEXFCEAnyXA9su4PhRRW5nqZkFCAQlx7Li1KmbEGOG5tNtQvpCM1NKAJe4PIUQA+Kaz9SJkyRqjKgsWXInUEg2+KvowVA3Z4TBKxzavsNAj+D4MU6u6NFgsR5SNVVqJqQjRvFsn1HnEQqnoLAeNWmxocfmUgujHZQQiErAKT1B5tcpxYv0bZVKv0eOwRFfTzXTEhZlAysFWzgB7ELRBOHjColyZ9DAiYkaZbufQEasic2YrIpWBbZoYHUFI3M8MjJRgIU8iwlNidgxrGwqMdKSOJPjSKeCIw5wKPTxDGwuXKL+FCDppx1CHZNMziBcj9T4mLolVSHljiV3FadmAhSGMK7glMsUoyVs3sLaBJspwMG3PoXQOHUX02edKmkBRawrFCIndgNUEK4bm4CUEq/Wp0hGcFQIxsEIhRGSQmVoWdAKG/TzEWbsEpgQwwBXKmJPEQpDmFsyIejWq2TxToIipWozqBtsL6FXnqAoK0R3gJOVCSmTix4SS1pu0Men5sQYo1lRDTKbUjEenlwF2UPTQCYVdBGgwy5SSSb0JKdKPjoy5EoSiGFgubWgc4GREu0MzUgMAutAYBPMqKJIPdy8wCiHQlqQYHSAFZJUeCQGqqFHJjVTukVvokbPKeMIl7DXB9dgFeSBS4hGpTXSGohKRMfZiC18stI00igkNaQ5jisdRp02hQNdJ8RoDw+Fmw+py0YqpBhB+wOckovoGYy05PH0E3p9/7d0sJ7RbDa/8kTuzPcK1lo+sqfJjNpDyU04a9f/++8a52wrua6yi2O9v+e59V2oeDNVdRuF9Xhv+6eYGz1A2XRpFC3OHivxPucIAstzHsmJCenXpqicuI8HL97AbVzNrocfoNzv82ebziMhhf4c9Of4GHARAc/Rl/Krzif4XHoh1u1w/fgI/2V1nG2V7eyfvYPPP/Q6fmz6tYiHBG+57y1cOz7BR6d+ll+/6g9xv9Ti6XfdyJ9WfN524cX/V2VjvXXPPnYefIhRucYzuZfuiz/D8d96Hec/qU1HTGKv/Je//9WFPvf/r0f4iRWAjIocJXY79NUa2/Uk0nj0tKUbKwiu5J2ty5jx9vHzEzfz/slH8GXBa3c8SsN5KwAHswrOgZ9m46ErUAfb3D3qkD1pnKvPmCRw/+V29KU7foUXru7ng/JBPnXgg7w2fQ5Wexy8uMeZV175b/o+hStxfnwrxaeOsP3QRt54y5+wisIJjuNPfRWnuhfp9gBF/PWQFErGRS39KIPBbu6fX+TVzo1MLh5hkRpzrPB3W15IccaFPNpZ5J6Th1hs+bj93YS2zJSI+clztvDMi+aYf+gmyvvez4Yd91PfFjH+cIdDH5nk0CU7eOnsl3nnsSu55rZP8D92zPEn5+7+jj/XD/FDMLxnNefm5h7gmymCL/xX1pkG7v2G90vryx7TFHcB5ubmZhhOAP7u+r9XrjM2ysDvN5vNW76HnwOAwh1BSIfCjBJKQ9bdTHXqAFBBl11MWZA5AV5rOOseOiHW0ZCCFGCUAeWRmhyCr1u3CTHUXwkkYt3QISKnL3KyEY/E+ojMG7q0odfJPAIsZEFIIRRCCdwwQGcxuQgQytCjTE9VQGjSmkvkjyO0QC4NsEZgRcGS12A+UexO+oi0wPc3oGiBHe6fIMBKSTw5Rs91KQ1GUDbELS3hOC66qnDdMjp10EkDJRQICTrAkZIcRTEt8JfsUHsmQxAWqTKs3gAiBSxKaYqgiiz5CBlQNBSZrDBVWSVJPRAW5ZdQLug8xHU80BGpUhT5lqEJhPEYHpav/8nkZrLuJEVgyZXAxGZopS7rmNSHkQyb+dj1RDCsoD8xSjDo48bDzCGBBVvHlqapJi65cvDNCqvCZ0WOMGpnmTV9TlkXMCBzXAHCuvR7G6hVj2GEYHHkEpSXsC0z5MYnZY0JOU8sziSplRl4gkZaIXUjcumS1yT+WkphXYxysFqv201YchEyGGtQrNbIypZE+wxlewKMwBqPeHOd/pESXqHIRqrUjaGcZKTFNhyOISoJ0o1IyjUyU8KJE5CSiBL99Eo2ikfACAwltCNB9rFWoasuDCRIiZIe1miM51Pu93FljFQORWGHxb7NCESIkR7LxSgdEbA1kyTtLYS2oB6PYCtrWL6ebxbXy/RKNQKt6Ko6Tq0CwmNQ9imERyBWcaUlMBWsUcRYcreOpoY0CZ4IKJJkqDU0ilwplsqjNJwSoQKTxeR2GO1biKFKDATK6aOtRniTWCr03V1Yt0cRuIAGWZAVw2BfKxVKW4rQhUJgx0fRyQqqkyOEQfkObu5RyVOkNORVSa9cRxpJ6oAshYzkHsJNcPwBhZWsmgZGONRkjLWC5XqDjh7jtGQBVyYUIwk6rZLbEjJooYsya9EZqEIj1QkWG3VWx0Y4b+EEerSC1+4h9fCU9IxPq1RDRBJfKCx9Gp7LKgEpkp5MiNVQ92n1JL4dEDoBGs1EOiAwOUINLV+kY7B62At1hSGaDlEDEMIFofAaKxQY7KDM0Gx1eHwFkrBWwTEGKQVJXaHwSSoljBEkyTS+G5HWfEIxDLCm8FBKg8hR8gfApp0hXeLA+k3tn3pqj3NT+77h2g/cSbt7gjdc/kWy7FKq1TP/XeM8ZbTBdcAjG6a5ohtSOEvsYC/77VkcziZ48cSXmPaW6Z/aRnLS5Z6Ju7iyY7HHQyLXYXxpmVuffClvFq9C5oZn3XUDR0d2cO72+3nN5a9gsplhv7bCg2QkG2+mP/+LNLzX8t+dd/PX+sWUTxW88vZ3ctnMLu4Ob+TB0iKX8xKc4NN0jvq8++jrecrou/jA6a/ieXvfRfnkEbZ85ct8ZLTGC3ac8T09pj+ouHFlFXPvHUhh+Dn7cXrP/xAn9xxjV+V+nMCQP/fv4ds4RxaZ5tYPNlk72McVgh3ljNLmY3xqcoovB1P8xP37OGpP0pnay66txzm3P0Z2/Dyi+TPo5eMsLJzNpQtwicw5HEYsugMmaycZKR8gDw5y39Z5aoMnsWlwFttv2sveW99OeNZ2zrz0x6E88c8/iLW8SL6ch7p/xY0bPs1TD29lt34PF+zpYQ/XySuT9Ms7GDTOwo7uwg1DSo0xgkr12x6XRBve2OtwEzFbcDmr8VX0tg9xgZ7l8od/nfF8lHmr2E/OKTWgtOEuqlP3s3HDxwicD/3TODqVlJMWS9UtnF9LMfZmzq8NeG65RZavIrjxm7bbPOJQGj8f9YL/whqn4978BsbVTVQ2Jyx+pc6h8izPOrvJZ49vZ/OH/5aHdvwpuyuPnwP2Q/wQ6/j/v82yx5uG/NbZiX/mYDs3NzcJfAr4pWazubp+r/uDZrP5ybm5udOAL87Nze1sNpvfxCmpVHyc7yJ2YKrs0REgHIckC5BZiTxpIHUd6QzDS7OyR6pdspIHGHKV4znQc0sYYXBch8BIhB3StBAVtLEIR2GEwfWGuTQiL+MGa3haDXOWXA8jDSaqIWzEcmUCLRykGcqtXQnGrbAiFV2vyljhYnAQfoQoLdHxl9FK46yHshblANmL6LoVIMakAzzpguvguw5YRZGUwHWQGIyz7puYlclKCrfWI0trWApyo9Zzh9azlB77uqxPWPGJPUGmwdoUt15DiHRoXV5zcfMcN8pwVU46smGdzjd82C4RYKyLE9YITIByfDKRgVGYiouIMvqdnGLQQVVmyHuWvhsgywLrKLJaGekN98kKkBQM/K2QjiLTEDfsE3Vj9tc24c1McN7Jw3RmtyEKg/U9lI3IwwAXgU7rZL5LORX0zSS9isP46iq5KzG6AvQQIkcIMHZ4D3OQ1NMKsiYRxsNkAbYoI/15HBXjxWUeKe+kHPqUkwQpBA0MiZFDTY9a7zK5Hp5VFHEL4ddxBFjjEVWnSL0qRb/PifRsZj2JFQqjhuYPJlJI42KkHtqQy4J4MoBY4vcE7mhMXmnR7+2g8FxUvE50khYhFS1mCFlAYhmEAVWd4ilIVGWoPXsMxUY20AdPIS2EJUmrV+CENUxsCPDZ3DmLQ1Kh0Lg2JY8qTNsAiSVLhx3ZEJdUCrSBxaJCtQgZc3tY5Q0znozANwayOlolYCRaGLQocJAIC9LzGVaawwJAWMGjkzMsBBvY1onZqvoIMdQ4OsZHmfVUJuOvUy19TJ4hA0A5FLUAqRQjxQh91VnPcFJYoYCcuDYGKqDQPiYMEJ0cK8CTIXU1SqFbaKEpkDh4wzwuFEXJI6U8DGcb+pBgtE9eDEhVCWsDtHQphGQwUcN3wQsiZBsUajiHkWwgbzTw4gQpdxF7HiCIRrdR04LepEc1HZCXJkFJwrQCvoOQGXk6ybJZNyHxHITrk0mBZxVICKtVXGNQ0lIxw2iAYt2d1EFihAXpkuZl4rw6PCe/IRMtlznIglCl5NrB4OMw7FBZR+D0x1Eio2ZgyXOHs29Sko7XhpouoxFGkS37FCUHV0lcJWg0nrjnj3+1wJqbm3trs9n8DeAt64uuAL69V/UPCIwxeJV38sunPYwwLrt3v+nfPdaTNm9lZN8B/nH0Ip42vw0n/yRBOeVj5gIAZkzElukmfzZ/Ja1jLunkF/n57iLx8jiHxyb4y3NewqGt28hHalz8tc/hFTmDc7byl896JqIyBbOgt9S47FNHyOefThKustp/AZeW38Ot4l4SsQPTupQvdlNqO27ja5tu5J7mL3DR9Mfoz/ssnizz1+U/5GfO+TO++qyrecp1tzJ6ZD97v1zjiqlZZivfuanHf0SczHI+d+tN7Ij7/CyfpHju35OO7ca+88mMXBSxOP0c1OyTiOOIlZVl+v0e1lrW1jQnvjR0eZwNBXefA3+9dYqGnMaNEn7n/oSJfDc3evcxJQumw3nC6TOYufA8gpOnsfgnr+a08w7xRa6i33kVeVpmy6CGbM9yTJ3PrUHOcXc9lNDpImoVtnrP5drDd3H5vgsptl1Det6ryTdeQWd1hfZH3kSSLnNs9OVc5PxXDvIGfnfzB/nF5Sdx2olbOHUoZj5rEZsHgQe/6RhUxibZfN7FbL/oCkY3bsUYw5FjXX7lYw+wZAT+6O28rr+bs9rX8JnDY+y4+K3sDR7mvQ9diulkbCkt8exz38fU6GEG0QjL8+ewsZ/j6gELSZui4jA/MsPOICMs1lAyxHHHCYKdOM4oUlZZWLib5YWvUM8bWN9Dj+8lzb7Kang2G3/sTbD885S+8Otseeoi5b0pJ79QZ/Yyy8m1VT5z3T+w+1X/Nn3kD/F/Ne4AnsmQxgfgAb8DXPevrLPANxdhswxzGAGYm5urAZ8F/r9ms/l5gGazuR/Yv/76kbm5uUWGzreHv3Hgfj/lu0E6yEm1x0Edsl0ZPKuxaYm2LiGVwC0CHCFIHUPeWUY1xlGlgOXJMRaqo1RXDH4UIzR4mSULDUaHiJIPucCKHMc46w9cCr+AzBZEKkBai7QJq3qMUTNGEfRIfQ8HMH5ILjLyNKU/VqEwikF0OoE0eHiMZDMsisNEAspmXYUjJXm1jLU8Zq2GWHeLy+tVgk6PxPMZRpYOIZUBDG2VMJqXcRC0sgYtK5gyGQ0Zka9HlioyPIbXVU8skzo5joyxwg7zdQoPpSxWJjhqgJUhrisYzUZZlR0QxfDh04L0PVx8TAHuer2d10K+KjfgDGImGYr0bdwjIyUYGaVQlu5YnYlogOca3KqiEJZE1rClsaENdhGi7ClSq2j5dVacURp6mD1mXZdowwSqUIBAymHxpEsOi6UKsp6gpyQ2K0hqIT1nav0oDY0CEuOyko0xYyVWSPKiihRyPcNqmH1mLLSCGh1T5szWCmteFWX0erqtwFGSaKKOkRKRtSmyARpDGE4ihR1Sq0yGLyPqKiIKZlBCYBBoIzCRRRZtcBpII4bhzQgKYWmPb0WOFNg8pFeEHJmuUSpJti0sktV83HVzpohZXNVhjREGeYmQ7dwxsx0vHnBW3IFcY62LS4LjKbLpMq7WOMEwMDtpOPT8SRYzFyiQWKTVSCyOEzNSP4ZpbcVbd83M1NCZ0qoCYw3O+jcuDOTW0tEOdZuidIgpSuAMsLJA4iIyn1QZUI8xPSy2KBH7HkqEeHZowS7WCy8BDI3Lh2lSWmmkk+AApSIkL1yUH+JQ4BqHQIbYddfEYWvIUiCREuL2RmqNVRyV0bZVlosJqmKAkAJrDDkOgoIhUdFirCRLOwjdg6BCJiXWRDjxGm0/xFs3lZIoKlmdRA1YzmpMiIicAORwnMhzsJ5EFWA8j6xc4nC5Tq+fMtkvEKMVhEyQgzEa2TjCSRn4PaJBafibF1CyFUKpyUwO0qKNRFGAynELBQJa8Rgaw1YBy8EaZTyqY9tZDlMK44H017P3htl1ADb3cLU/LNAxeAji/uj6PIxGCI0nDYEVaJFTyGGRI+I+EgekhKJgeWCwYYNJd0C7HX1X13CAiYlvP9H9eB2s8wCazeaXAObm5n6/2Wz+8Xe9N08g8uwEv7r9XkxRZtOGv8D3v0234DtEqdZgZmWV3L8AaQwNfy+ZqXJDcSFlN6d3chvZ5j08Y8tdXNfpsHVQZef8EvMartv+o/RrHvXdBpEvcuU9/0g8sYErNniIytfv9Wp7ncorTueRf9jH1ngK1At4ML2TX/I+z9/Zl/LsxlH+cVBn5dQ1LEx9hhtLxzln/Gw4coDlgy4bTp/m2rUP857RF3LalgUmD+5jw+H9vPszH+W3n/9ypPw/IiX4P47CWt58y82ctnyc3Wo/U894PdmGy9n/9rdw+dw8UR7yyK6f46Hr38/y8vBZqh2WWfXO5JJHQnzANBa4232E0oM9XvLVCFnkTJsRXOrscTo4fsJqd5xbVp7H2LjmMj6D+/CA11+0ixcIeGVxA88rX8x9dideGc4rJBetGl488GnbJZbNcY6WKxx0pzjSDvgDzuHN/vt55rGv8Mrjr+fWDZdxy+jFNM+9lpnFeWaWH2Wstcwz2psJ01CPj7oAACAASURBVA5LxQGOe7tI/ZC4UUG4HmNpwqZijTHTws36LKzmHLvhoxy74aPE1ToLkzv5tH8BMYrq7Ed4uT2DM86/hOJgjwsO7mbPF96ITn1eGClqm7/K9IXvxWiPha++jNbRS6iQcMg4RP2bMPlhvNrLkH7Ixx2HYjrhz19wMV73FM7eTxMs3kY4uI/dNsZa6Ig2IKkfyVmc9Gnu2MOB5vPZsuWt5C+7jfKtr2NCfARvssC5U3PigvOZuv9Obm8+javmTv++nk8/xH8YfBjoMdT3fhK4BnjD46zzeeCNwDvm5ubOB040m83eN/z/nwN/0Ww2P/vYgrm5uZ8DKs1m821zc3PTwBTDQu17ivFymTsJCAFjBK7QLOmQnnVZS7axO1yiJFJ6ccywatFI6VH4JXAkoawgbUxBH4CSGSCQRATrZg1y/e/QUltajREFj4zUwUoameVEpUxpSWPVgPnx2jpVUGAcn8xpgfXAOGipsHpIcUuspLN2JpPl9jBLxwy7a26lgpuWwaYYYYbid5VQlCr0Sg4asNKgjMGVMSoLSJ2Ynoro25w6DrmwiMLF2JgEBylTEhSuzSjWKzPHGChrgtFTJJUaNnFZyrfy0NQIu1ciECCFpiJBSENgfPqyj11/0LNCYoRACkNoByBg0BsbFmoCDIbYevjrBZ0ycGx0HCMtG7wh9dIVPlpFFFiWioCqSPBqbbAarMTaHrEbMSJd0u5GBv4AL+8SyBDhKDQZDmb44O/kFFgKKVBCoB1Fx04Troc8CyydZBiOm2hLpANKfQc/61NkfQLf0vFC3PViyxMpQVjgOJY8lTiFD3KAEAG5JykKOSSHiwIpJNLt4nsdct2gYxSjUmMrAtfJMXhoqaE3hk4fRecRq/WNbEn7CGtBahxtsHmJ1JRRaPqBB1h61YDlqUkckTFt+2DlsEvqDxClHtZYcutglKLfKJHG85gsQ3qjeE5GknTQVlB2a8Ou53qnpW8lRmjWc7jpWUOhXRyvwOiASuMYndUZ8iLhkclZ6smAMK1gyTB5jBOWsVjaRjGwLkINqAqN1Gad3adxCkNiXVwjMI6HdiWuLsiZHFLbpBrGBRjNMVul4kZsFftZELuIHA8rBGNmaFYhbEKoXUpW0XFjAm0pFTEpFoRBkFNu9OhlPq08pCEHWDukr+WTIUuDUYzwiErg9ZYIxRq9QYT1J6g6Bany0canpVJWwwp4PkvVOk4U00CxXB1DewHhcR9XOVhZsFKUKQqfMhlWaiQGLw15tC5J1Si71pYwJQcpHUxREImIotuhKDlIPQnWRRuFeszVWLugimFglrWkeQnht4dasP4ixub4lVGE8Mjx0MYZBp87MYfHp0jyClcsd9GqxHxco2QCUlFQqhdstsNriU4a4GYIXFxpKPIIXQR4wZC+a4BCGBwShB3qrEThIaIuBSBrY0O6sbVYA9J+XSLxRODxCqxvR634gYbnb2DXzuvwvBmUqn3X44Wpz5VdSSFPEar7uF1PsWRrnGNPUhQB98WXctnkl7hb+PzUIcvxhQlSpUjHuvzCln38vv+r/OQdH0BIyb4zz+OV5z7zn21D1H0Wn7WRRz+3l6fpBvvMr7GL3+Cp4mbeKV/Cx17+47ztY/CJ4hZu2/opsvyn+G35J2zSXW7fV+Nn9EPcOXIe11/zXH673cWemmfkSJXrb/4EL3r6T33Xx+AHEe+480tsOdIkdCKueerzybY/k9WVZU5rvgt/TvMh9Rwevv126iOjjExtZHl+iS1HY7bZ/ZAcxMSHiU4pJr6lAF1mheX114/5AIYLYIDP+iM8UH2Yw70f5a3uM/gx/7d4Y+09PG/XtTxrJeZXjl1IXrV8lEcYaZ2GrRnKk7dw9ZpCjSbcXns693Sn+WTrQj7FhQTHMi6+/x5evXz9kO8vJVnog/DpVgSLjTanz+fMLHbJ5SLRunnJWqFxuwkb12IuGrS+4Ud5HHiIn1E3sFpTZGOTrFUP8fFHb8YU23GNQg1mGQ9iRs6+Ac74OMurO3jHPS/iZa0uLyp+CZnnHG1fytFokfHqmZSiRU4U49TcUZIjFd7ylzfxxuA3GQkidCboLQT0jo/SWi1xYGYb+7bt5Mu7d9Man2Q07uGUIsKjj3CGWObqK97MBbOXUL31d9jxrBWecs/DfGliM/vf+3Yue8Nf4PzQtv2HeHyMNJvN583Nzd3abDZ/eW5urgH8LfDef2mFZrN559zc3L1zc3N3Mvwp/9Lc3NwrgA5wI3AtsGtubu7n11f5AHA98P5191sf+MVvpQd+LyCl4ehGh4k1wfZ+jBOskdoALTOEkLg6hDwgtyfwZEFdLNOXE+ikjpEhuQMHZxpMtGEyHwxna7EYFSOLMr52QffInJSxlkfYaNGxElfmSOOSeAKRWrRjMTrFUKDWZ/hVntMjpxDDcN5EROiiT2hnSLVl0rYZjyJansXaBkoYCuEipSDIQhAFylq8XoeGk7KsQcsQEToIqQlZJaSKEVVOjkzhiYzJU93hg7/O0NEKtlzDKMtA5IzKhKLwsNJgjMSOWUTJoI2mSGuslEOwlkfr02w9cRJjc4TWgMZisNaQtVeY0cvoUok2IzhagwIpE453JwjyVRLH5ZQv6MqQzXmBiyHVap3uZFhlnJleDUcO8Ig4kY9AHrOWnaQ+1cOHYS0sLIqIsqPp2o20tIczSNgklxG1EbykB9Qww9YBRhiMkFgpOFkNyWSN7acECEOtV6WU9kn0KstBSMeOUwkidrRjhAPWGk7W60gkdXkS8JBmqBmywuBnJUTQw0QrGOCE2oSjfVy/hKdc6qKNiLvkfpls+AmwxiU2Dv66Y6LUPlIrVhojdCoebSwjuSa0dXK1wp6NU3j1jK2tBQoHyLqoImc1dhCMMFtuD6cIrOFk6OATYYVDh6F2D2EoogwpNaLk0isKRB5hrKTwQhQFEoOyDMO3gZIEl4y1PMTgUyoysIK28aj1jhNrD1mr0vdDwm6H1MTkRZuyrjEIRvBEhsahno1hwhW01SyXfGo6wacgpozNKoS6jQlc4sBHuw7ZWAn6CVZ3yfqL2EwxUupzrFJnxamwElQRsmAsbgB9kBmujTDSYp0YN3PwDDywYRPL0mVLv8AIxb6padppg3NPLbImBEFaxavGFJ5A5rCoFeNOAD7YIkEULSpK49gQK1yOTIzTtlBzU5SISR0HgSVC4qHBFAipOJT7OO6QnLhkypQcGO9NU80zRJijXcvRwRRpBYRryM0qCJeVaoVyq8PWkSWifIoibaCcGBVnuFFBXoWCAtcaTlmHLPHZKE8gbYG2EqtzXGVZzWqsbIgI2yXiVCKGZTzaeETpOMfGp5npFqRKs6bWWA43si1dRnXKpGEDWTpFywuYx2Pb/EmcLSM8FimnASkLrJVEQJqNkBenKDkDChUh12mHVnt0+zPf60v6N+Hxnmjs47z/gYMQgjCc+56MZa2lu6K4Mi3ol+5CFJq/qJ8Oq4ItskXseixkFzCX3cELGjk/ni2z58QOlmsV/qj2Pl607Z3sTB5m1559RNNb2L2pTFAa/bbbuvK0cZ5/R4kt7n1csHIebytewG+77+eq6D6+sniEX3vF8wluXuHDznu5fXyRV25oMHWyxRb3PvTL385rjv4Gvzv2x3z0kqt47q2fRi8e5dTeEvu3PswZO/9zdQe++rUbWTl4nDGT88KrLsHsegbWWubf8ms8bVebZmsz0lY4e/UwpWNfpOtLzGhjeAODYTdeSSppgaMLlLZUZY0zaxcRmVPc7SyggxHG4y5JnDK6ukLmwnI1o5a2uFzcy75d5/C56GJeYT/H2x78MNlPv447djU5/a4qr+ifxRfGDqHXZkhPXcq7z/gbcpWTlio8O7uK+saNfMjTxCdibitfzoPbLubVfJFdvVvw7i0x3uljheX3Xqr46FVt/p8bxnFp0HLKLJdLdClIvDXmR2ukfokirOOmivl4lJF8jXNb+xiLcjJ7Hv3K1ajMZ7JzgK0iZXJ6js7M9aQn7iD9whibjrT5m2TIAG7hAz4VHuIsAG4DbmMOOE1CrzLJmY1z+dD47zCzfT/J2CoPnHY6X6vvZl9txz9x6Gv9DpVexENyOyNRH1MR3C7H+btDC8w6l/Cy59zIS2/8Wc6/9CgLB0Z4tG34Xx/6B1700ld/P06nH+I/Fvy5ubktQLGujToOPO4Fv9ls/rdvWfTAN475L6z27H/fLn7nSIoBVkAvhCjqoAfL2LCO8UJ0AsuxR1+VSLWLW5UIT+P2T1ETExxI67TDAbGIWalJ9jDN2f2T1IqIMfqkJiChghCGB+rjXNBZIxqMsGjL+EWJsukR25hI5bjFgMyu4kU+UpWGwa3FGsuBpB2M4nciGlHBo1u3MBW3UIUiUTPI4gRFXiGyUBaG3D2FK0I8UaVEBI5GpBJBDZmniLiKa8/Aqe9nXzbLwPchHmC0g5YphhhhQOkMazN6eRu/5JIRkAoFBLjEOAaKbAI3XMN2u2jGwPYwokvuDa3Hc8dSaiUc2DRBOcrwog6eGhANYmouWJ2S90bIRyIyaSgKTeR5HJ2YxaHAKDjv1BIn8nE6OKhcY/IyB1WFNC3YXlojl3BofIzpI0fRIqEgw0dSWINrM8LcoX1qgsMNxWKlwqS3xkXRPkjmWSkaWLkK7iwCGCQ1Or6LU48ZFRZfxCRZjdPMQVaFpELGKZGzUK9RWEE3KLFaNkxkPXJhkNrgFQVBNUPKhHoxxbHU0FVLuKpENZV0kx6OSAhKY2Q5HJuaQjgh6WrGVLTCo5USE6wbD2DpWzmMADCC0bxMHI9hygIYGjO4xsM1LoEb8lg7KRMKsKjcIHDJozb9+jidvI6fHeHo5DY2Vx6llRQ09TZqxoIbIY2Dk2siFdBpn8IrSaaMxkGAHWr4wOClfXRJ49qcWdNGYDnohcQipSoCHKFJRYpBE4tht7VETqwExydnaMy3mekOaLljDIzEtz6SFB1FHJJ91irjbLIetSTC5oJHB9NsDNewkWLN8Zj0LTrPkHkPmayCC4Xv0qtVEBRkCqQ7oK0DTuoGU0UfnwJZXsJJSyi3Q1nXOdhoIOxQZ6h9Q54IGkWfvq1CYnB0RqQdWhRk1uIDenCCnu1TcQuEFAgDHe3T1h6jagCmipAg8gGo0jAcwUJqFB4FxriY6AiHNkwjahPMrR7FCEmWWWJTIrA5aZ4xyMG1IR3lUyPBihQU9CtV5sUk2+whfNnmuOOyVB1j88EV6oMep8oVqt4q0+IYJ/LTSJUhibpIoWjpGm6/g6hOgOpRlCytwGCODDWZVmgi12DyCsIKVio+ntboQqO14oA3xYRto2SDTK6yXDkDsRxRLcDpdrANFyULpAYrUhLrs5aFlNEkTshABcxkDgRHGGuc5MT8NqzzxLoYP16BdeHc3NxjzoECmFt/LwDbbDYvfkL37vuMI2sxl4hTlHWNRN1Cb+Cxx7mMcQVjIiIzDg/4dfptxS9PFhyYaVCNYtJZw6e3PI81d4Tnfuk9WNdjz2kX8Ee7r/4Xt6Wk4CUXbODNXznE38mMA+lT2KPu5NniFj7+pSdjt+3k1df8Al+55U4WJ2/gXVufxm8e/yiVUsb+z3+e5uYLeQV/z99u+hXO3bif6QMPkq3M84WbPseW2c2USv85jAT697yP6w7Dtn6Hp55zOpXdzwDg1g+8kyevPcCRR8YpVjXbvJt5YPM0R2YbgEJ5p+OVxpgttRlz76Z21rOQmy8mSvex9OjHOXf+tUQm5cvRZ8mWYxjE3F7fxs2bryCiwozf4ar2Pq6+/1Z6nsIxX2NVSD43eiaXTRzhwC3v4coXvo38zJzW56/j6Q9fSLMesb+9jacfehPN6SZn/eMexlvvo17fyMcmfpoPbg64vuyxdrTPn/WexWj5Cl47+gnaUxHHNm6k7k9xxP0E73hGwJh3LV59idl8GYHliDiHZKlg9shhNi4eRSMp6iWS8XEeVK9mZnUaaxQzsmDz6u34xz+HWmsRVSHoCQIcBiVYnqxzYnQL7UqDqFwicz1i32e1XCMXCmEM9U6XidVTbFs4zs5jN7H12BdYeXSEz132FG6avYTJbI1Xz1/PBb197B6ZQZ7zYn7/4feS3tXla+JVbMkW+PMn/U/u2ng+d3ev5k+Kc3jHldfxm/v/mpeJD/M/D11O/6u3ceSyp7B1x2nf3xPsh/hBx+8CFwJvYqibqgFv/77u0XeBXA+pWstBzrH0BJ6p0M9aZH6djSamgiUyAcIYjlYmOOFEeJ5hxgxn82OVDYX4SQ9ByL7xKa5YPEBAxNjgAG13lofGSqSdhDUnYkI7IA0102J79jDGrHGsaLDWO8XabECmInxjkRREQuIbiatzjLB0VInIdzgZGKZOLqDSCoVUiNijWtSw7gJ9Z5VmbQ6HKiNrVaQ1lBmQpuBbnw4BJcAtfI6NjCKsZSxu4UQRiZNRi5dJ9CyxLSgowAzo5g0eqcwyVu4iC5fdR9sEQqPI6BYxsVQsjIyQmhRlDDpLyJw6jhG4ss9AGNZKgl2DIwT1PjJNiDKPQXQCE+fs2zKBW0zQmXTBiR+Tj1FptPB0l+7KJjomYC1z2JF3OOmMILIeyw4sV0JyUTAIPMbaBi9NMaaMIGctr/CwN0U6GtJ3XIJsBeNbekYx3umRJRPIUIM7nMztZxlh2sfKkMhU8Z2cRnUPYXSIstmMdFgPa83IcPC04VBtgqlTj0BaYsq2wQqUGyPLIFAUvZSKbJOHltsmZvGrPq6OGO2sYVMXN/cY4JNVd6KjFLfoc9KBUyMTuFiqbY0qNIX1sEIzSDx8XdDXgkeVYqLo07A9EiFQtsDNHXpiGksx9Ca0khNTMyRhmb12nHOPLiOdHGPgzLzNMeOzi3/kcHcrx5wtlFXCIMjRiYvf61LCsK+xmUo8yyZ9COMsUUhBKTmKAmRZ4Y8uEfenyU2NvZMj7DKLBLEml5q4cDEWHJFiXYu0Bl0ex0lXOWEFY3YVIQRZEdLuGA5O+xRFwawUDJRHz3FIRcFad4rR1X2MeBpdnkYkEX5mSHyHTDh0ymX8imXUtnCKhO6ghHFSBDFHvRlKQYMNusujbRD9iIFwWWEGZVrgSGb0cc7IH+Z4cQl+alHxCp1Jj6kooZeMUk/XyESZkl2jHHRp5Qm4HrnTYU3vxArLmLtC125AmAxhDSLtEhQ1BkEDhMHmGuFbjBEINDqOMe2Evp8zkQ+YsA/Q8sfAbiVHcEz6GK3wg1W89VJBCEtdhKjEo1hM2bclxsm7HJ2oMMsATMGI6ZD1e2hxlPmJDcTBLI4UNJb6KGPRrVUIK2BcAtuhYtu0BtOMeS4HR8psWx7qWrUwJDLHGokLpCj2TU8w2znKZD8hHimoWIPBYtqrOHWPsg+VjqaV7iQTDhv0KRzrcmhqDCEGBC1DWI1RpsBT3XUzmScOj1dgnf2Ebv0HHLccOMVPWBfkPDvT/XxwZDu6dRqXTZWhDZ4ucNq3cqjwGTnZZXmHz/icoXq25G82vogLO3czdnCFaHYb41urjJT+dcric86a5p13b+Xw+D6ev3wmv5m/hk97r+Pi9IN033cWtRft5jcv+G/88h2vYfn0IyR7HCYOd/nzScFrfuxVnDj6Kq4o3cb7n/JTvG51GXvqBPglPvzp63n5C679gbduT/o5g3ZK3MnIEo0pDDobcuAdR+Kd+DIfGBi29VaYHtnI7GnXMDhwlMW/ejNn33cvLVtm0CjxhUvPxo1OgZSY2pmUuIYJH87efgOz5+4iP+ujWARLy+8gOfEuTl99A7lwiV44xos3v4VBe40//eRdfGaljA0U+dmj2Cynd2KSD81u40f2WC555BGOjpbZyxhHuxU2xqvs+eAf8uyn/jTjP/oKDtX/gl33XMWJRszWUyU2Ligi2+Os2Q1UXvmTzO95B7+4579yre7w2e7NfOiMS1lq1fmjc17KyExOadJw9YN3sWVhhI+eO8+2hdv5lfc+gF9EqP/N3nnHV3qVd/57zltvlXSlqzrSaDRF02fscTcGGwy2gVRaaCGQDQmkEFKWhPRNCBuygU1CCgmEmmxiupPYGNtgsMHjOr1omqRRG9V7devbzjn7x9WMxyFk2WRNsrt+Ph99Pu/VW85zntOe55TfT0Q4GYG7+Wremb2Or6y7gT3hAbavnMVZjZH2CkFuL0FnhH3hSQoTR0iv1gFB0q+ZHSxwIHUjQTpD0VQYlBNUy2VO5Hs5tHkvk/0b1jg+QGiNHzXxwwA/CsnXa+w7eYKbDz7O6+/9Iq+/94tMDA/zxK497O/cQ5NT3Pz3b+H9m+/gl25JI89/mPHpH+c3D7+L99Z+i5u2fo1oaoA/y/0EvzL6dj7XczO/I3+Pr5wc5Cuf+FNe98vvxfe/M5Lm5+T/PxkbG3vg4vXo6OgtwMLY2Fjw76jSv0mmyg2qooGFzXRHD+vnq63tbPEKjmmdd0JC5EkCbaMThx57HidwiXWICBJw8ghjI7TGhD6NRhMpqiQ6YkNjjHF9I7bwkTriTH49vrVCfm0vikoUvk6wBSgZkUbQJTspmxquCYm1A80WOIAUoMQat5OOAYEXV7BFlQlp2Dw5Q3kww4JO0ZNOMLKFdiERqCSmJjI03ZCUmCZeKmFyiqxq4kVl2lyB0h6LCKzqPAvd7VS0oR9oaIPFeZoBuImLUEsEcYzxJUpKGsZlIU6RlTHStHgRz/VuY2h2kgFnjILJMRPbKKeKaxcIapKwlCZEMpw5wrloC8sM48UBsRSkabJRTzKnMjRwmWjfTkU4dMZLGNHEihROPM1qTXGhvQhRFTdq4IYJM14/fUkNERsibTGbaaOTCD9cRthJKxg2CpTBxAnC0xjV2tiZbpawRAv+LRUaqrGH1jVEFBE7CssWiEjQNIJUs4YiA07Mwd4tbGOZXcFJDrGZVAKSEIOkbhscrVCmTpxUwKSoOj5pMYkTB3imC2VkywFPr8NbnSBISeYLeVKhRiUNOqo1Ftx+UikbiyppYxE3lpBSY9cmWS26hE4V19ZI7bAxPEc6WuJRfyuOyiKROOEKka6w2Gbo9MYJtIsdB+TDKvW8w0A0y3ldZHWwiaugtrKeXFhhLN/FXDoHnT7rTzQxdkhfVCNihZPJOtr8FDoRSK9BQ7chkxpLbpr10QyLUS9CGqTQNJSPp+s4xHhOnpyVkNFn6crOopw2FufbWZICgjoqDmmYJge7dpJgk2+uUBTzLXwUI7GjGunQI0xslrMpylmHcpKhO5kGBJoYWytQEaEbM5fqoZCxoTyHiCCOFRUZ0fAa4EVIfHrCSVRcJ1VfQch1XGjvQBARhitkV5vIeohuK5DLL1LvhqVGhlS5wWK2i5rMsn5mFhMts6n9LNNxkXQtoNzhktVlFjo6QDUxxjDX7tIjXaQVESeG820dNNMeaEEmqWCJGpGB2LTOJwZGIcIIEFg6xtZNhOvRtlzkTHiWVDhLlPIJPMGZ7hTDpQWODA5RNLM0VIrFMI2xoNsKONubpb96gbbV+hpyIji6SRQEuCrCjZoEto9BYyUR2XCOpiVxRRPQ+DpBihJuWCJyDVKHIBXSqSEsmNcpaqR43tI4KauIyOZZxzQTmQqx7Ocm9QSpQopGHOOLgO7UJKvVzc9q//4vBlhjY2OTz2rq/8HlnmPneW2jn4z1cRIkf9jxSsyKw9YezWIZSr5NkjzF5moHe8rn+Krjs/JmxafiH0YjuP5r9yHSFid6tvNzu276X6aXdi1+8nnDfOBrF/hjHKQq8FfRHbzV+0cmK49Q+x+w9bU7edOGH+Oj4kM8tHczL37wBG9cfoCf/LtRdvS9lLfs/EvOJaN8/I7v523/cCdm/jxNz+eBxx/h1mtu+C5Y7TuXKEiYOV5i7lSZhYlVovq/vAM1sQtkO8/jRG2oY4Ocuvv3GDp/HzkB7RvrlPpHeTC6ArdxHJ0qogpXkGvspNeBLVvupvtlbyfODmCMYmb2vawsfwb/8V8n3eim/vICG4aGibTmTfcdZXIxi+rx2VU8znXfVDwwfCdWeAUj4QgX0meY3reLnZNzDJ+e5shQNyfPe1iri/x5+X50+wEeTO3iWvkwxfGjuP51eN7VdHcNs+ttN3Dvl+4ic2gHKwf/G4V9b+P7c7dwNniUBzaNEyy9iPJcFysNh3/cdTNvVldyk7iXh/rv594Xv5k3vfUtsBSw+rmz/HBwlvOqQLbzIC+t38hy9ELC5DBB9CRu6S76pwJ2Ts0jLJvZG9uwb19korGNo0f2ce3YQbaMj9M7UuLJG17L+654Kav5dgqNFd4y+znOeut4NLudTKNBtlElV1ula2We7uULdC9Mc/fAVjqHXscNUw8wdP4xhicmODcywpN79/LpwdtJh3V+aPEB8r15/lH8KUtTP87Pzfwev2F/gNym87x/7Bd4bP4F/NrGn+E1N3yQH7M+gn1snrv/9uPccNWrWL3QJGgkRKFCKYOdsrBdi3S7S74rRb47RbrN/S7V1Ofk31tGR0dfRAvl75bR0VGLFnDFOkCOjo7+9NjY2Jf+fTX810mlWUYkCi+O6RFLVG2LxfYBulenaTYhX2uwtL6L+UIntpLExiGnV2m3lrHYgqMV8ytZAlIUvDpGxRzq6sGSnXhxheJMmXSzTNProup6rDoC1RHSnpSImpoocUnFdSJXoW2bUtROp52QloZEt5zzpkxYr6cZzkwyrouEpkwjdPDjBEtqkqBKiRSzMsskPXQqFxOWQEhs5eLpgBiFsGsU25uUw4hmWwfpSLEYuOhEkhhBm1djLDNE2cng2yuU2zvoX14gyOTIE1BOPCITI7wmEEKgiElQ0qDDiIbnYicBjrIILejTCRUpSCU1dupFuqwSTZnjVNJHtV2RMxHT7e1sDOaoiW6ktrCihM32OQqmyhwusWVhRTaecNBGMys1KXuJDhYR+LgmwVMJgetRS2eoOVnO5jtpLPgooUBbGNM6+CfQGKlR/E70GAAAIABJREFUWkBVY5kAKRfxpYOttuFKG2HH5INlvGaIZdktjMwkwUSrWJ1NSslGykkaXyu6qCKlj8CQlysIozA6JAzBsm3G86sYA8kFi1JfB1JEGOMAFue7BiiICA04SR2sFHOpDH32Mt2WptQsYpQmzKU40tlBLXJZtRQjKOquh0ODdEcJJSrUmx4pv87G8BiT7nYkkDYVUkED1zTQeBg3RdW2aaY1OVtBorG0akHySwtQhFbEbKpI2jRYNgVqwscxCmNCZBxQFoJMtJmMfRIRttDp5r0sS36eagOMk6EQr5JnmWUvj5CG2GqNEUKmaOR8DBFV3yMwGo+AOZ2nK0zwkhWE7qBkXHQsaYYWqx11ukObTfn92LMuc5kOlNMk1ssYsw6gBYqhNJYGo0OMG+AnZYxsgX3MyQHipsOG6AyhXUHGOVKqSV3WqRXz5JQhb6rUUx5hppeh6AL9VolzmU7qQZ75tOHKYIyml+d0XMXLVzmV3sqylaZQXmTFbUMnkrPF9fSJKTrNCrO6gIwljQBqbR6+buImDSLpg1VjqQBZ3cDgEPouGI1MagjVBNtFyQRP2ZScmDgAZYHdVPhRQIdYxdedPNJXhIUS0igsFSBUEyFdFtNtWFpTyfVTiR2sKG4BeSBR2FTaUvRXFpikj9VQEqqYY+1ZIh0xryGIDL6wSdcm2S2OUI0znHXXo2WCNoacLLFcLLCqbUStgSWg6jnMFHuJZILUFo3QwtIRmVhBoY72HWQzRGoNKsRRMUe6R4lljt5a81nt3587Vf5tZHy5we31OpIUOb7Mo5mdzDT2kREN2moLzEqLg7llkAk/Xx3nSNxN8UOSh39pM3fbN7Nv8mH82YBgcIjyYCfrU9/ZUuRLt3fz6YNDjPmneGN5mN8wr+Zl5jGy3gepV3dw/sMHCNt3s93fwUeuPc7zT1hsOz7Bdd3zPDS3l49FLq/f/Ne8P/8O9l9/BfsefAQ9c46xbz7IxsFhNvT1P7uG+w5kZabKk/efpHROg5Z4lqIobTp8ScpWiMwigVuhZofUZUIqCnB1ky/ZWVKJzfMjl+KxD2AvTxL17WFk78OErsu904OI5DjS24Pn3YJoCGzA6j5D4fvejfGd1lmtmd+iVLqL1cd/gdHqBsLndVAcXc/Jaok3f/EoyTzY/U0+UPsgi9/4Kb66/m5W8lV6N+6i+uQipm8TmfFjnMzbKH8bt586zHixnXPGkK4dp9k/xLXJWfrnJljoXcf1/lZoCGaWsrzvv9/NjtKjbNv/TZTtcDD1UXbbP8LP1q/n5dO7+LTZzyP9FwguvILKMYf37Rlmu/taCivLfKb3Tob/VjJ4to2fTkcsMcDV4gDfN7GdZdlGRzxNfvohOkoLLGUcznV38LVt68ls0Wx6/hiTs9s5cvZ6jmwaobSnnevvPMifDL2Wj+x7DW4U8NpH7+S19fv4VPrlbB7q4Ob2LD1bt5CSkpSU+FKQFpK0URz6zDe558Qkd46+mhv7v4eh8c8wcu4phqam2LhrF2c3beSz7S+iUbF5Vfsh7rI+SnniDfzy+bfyrswnYPQUtfEjXHf8/TyWfj1/WHgTha2LuBca/MH930QYC4kghSJnBIXEpi9KU4xdClpgI0hlHYobcvRsytO3pR0/+618Z8/J/zPyHuD1a9c/SGtr4DagHfgC8H9lgKWTgEbFYrs+y/pkhfH2LdhasZzrZSknOVuUxCLBDhISaWPjIEVEIDXCaGylWa/nCJUPvQlZSxLOShQua9RJuCi61AIz6U4UEb5WKBNQ14IUCTYJlazX4pkxhjkMvWFIXzLHrLOOvKrSZ+apuRaWVcFP1Ul1xzjKoC3FoJxmnizjm7Oo2EVoQ1sgqRMjTQO7oTi8bpjYNezTY7SnV5jw+siQxjErbLUnaARpprz1ZHSBXDJOVpRYcNu50NbNumCeFSvPquNipOGp4jp2nT6HYzVZdovU7RR2FBJJIFAoLDYFY0x2ethOG7HSZP0QbcU81D7MbJJlJDxBrduhc1mhhcHVASE2RggMClIBNgkpXSMxIImpK8k2s8KguUBHuka10dfiEws1tbRNxe/Dp041klRCgy1jjLFJLIW0mjhNhXASlrMpnGyDcuyxxZvAqEkyziKHzAbSsoO0dvHFcXrFIg3hMVfopU2s0M0Fvu5tRgF9eo4r8ieJEx8Cl3oWXKnAxASAMTEZq8oFOYzfo9kdj3PYG8bIFsJhRyzotbPMCY1tKgjtoY3BMQkaiRsmaCEJXAejbbKqieOVqK4LaToxGEVWJbg6QNseUqSwTZMtjRaLgbZtSiaLjCOKVh3lgREOc8XtdEaPYMmY6fYMQckiw9Mw3JvCCSwEU2Y97VQIGlkWkzSJq5nKFcilimTlFEG6yFlvGMfYWHZC4li0q3aGa6fRbomvyt2kjYWbN8gkIW0VUE5CWtfAeCz6Ps5ig7H1Q3QkZ+m0GpQbKRIDFoqFXBbqAVGhSsWukYRZptraCGUbzYygMxIYqRFakkQOdaMJ3BDPW6A7CjjfzKNsRahdtsfnkdph2c9jwpBGJs2J3j5AsJ1TxIEksC1yUYwB3HSF0C8im5rVtgFKySR1N0V1uUZJDpIgkEoT2RkC4+CZVpAnRIyjG1gyxBVNlk0niYatSRWNJnHc1v0gJEj7LTAZLUhQOJGiZjzSRuN5OYRyGBDj5JILlFQWO/ap+Gk2RufIJHMc4wpM90ZS8RzdqkSg06SR1FM2UjRxk36McEEo0AYrVtzCY5zSXVQcw2y3C80EN4loGAiFS13ZZHSAcuaxjMGIGE/WQMcIYpSAbfEUVWFx2Owl5a7QSZ2pziKx0GhjESib8+3daAPr1VGkXaYniNjf3IStNEIkzGR6sZQmFoJY6Ge1f38uwPo28jcHTvJ2ncMTB7CdGg9aW5HLhi3+DPMXVpnNFliUj9IeZrghPs/vqzdwx9zX+NvwzXRai7xBf4LZ9iJP+rv4yWuv/7bpaGMYW6jx6ESJw9MXqDdPUtAlPl3dzLux2IDiXdGP8Snvd6l5f0Nv8228cQl+UL6Fdwy/j995WYnf/mjCbx7/JB+65mf47PJWztX6eenmo3xx6AVcu3sJ/7HjyKmz3P+5z/KGm1+Dv6kT4f3ryTH/NWKM4dTxRzjxQIlosRtbaDY4NgOegY4yld4Ea30X/uAmCrmrMMYQJJrV6UmG/uEV/FrPO+gplZkJe/Hu/gg6CXjk6n3c0rsfnIBPTV2JShYQxQ1s867jXF3gC4FyAmZmNjH/+4cZuapIx5Yvs9q4izMHfpyXlXeS7Ggjd80QHz9/nD96YBW5YthSPMifzN/DN8zrOLXlcxwtPMZu3Y248CjWehumeqlv3UZX7hBtwSRH9+TY8/givadrHFrfgzN1hiwwvnEX3fU8j2QneKHfDSsZtlT62HlkFjJdfG7Ter7pvJTbh77EqyZvY7Se4ef79vDEgQYf2fEnTJdfg/sUnNqSxe96J271I/xJ8gW22DfyPONxR+0Ytt1G0ztFWzUmrljU8y+i0u0RZVw8B+LG49RPzXJk4mrs1LUMZLKMjE9yg/N13vXK9/DVgR1snjjKa+65k1vTNzBxyy/zI3u30NFRIJPJfpttpTY3vf4Wig/P8dGvjnNXm89to29mru8GNp36GFc9+SSbps7zjauvobaapewPs63dZ3LTX7DS9PmvF0YonL+N+coGlGl1QY5doZxqxy+k6KudZjGviLVmVaUpJTkmTYEDKQOpEIEiZ6/SJUJ6piXrT+cY+Hw7xf4c/TsKDO0ukGl/dg+vPiffdWmOjY2dXbu+A/jU2NiYBlZGR0fjf0e9/k3Srg2RBh1ZOFaGDWKFZdOFMDHrmOeA2sB6sUCeJrNJN6Gn8JWiGXvUI5cRP0+/OISxJYsMEBtN3U4hkiYjepnlfI4uWca2I5qWJFVTND2bGBA6JgEc4QIB2xlnxS2zqLbSyTI9ZpmUTpgwvXgqoIJNzq+xK5gkxkMiqBuJwKJTLFPOOlhxClPz6NWLBE6GckaQOJpIQGe0grItHJGjjKDXaNKqRsPLIjHkLA8hbRzbYCnDHv8Mhzu3UJhdJS9WWYrWkXUE8zLgSN8weAHaD+mvlxiND/OYHCHSHuv0PFmaJHaV5cSiLmw6hGbZ72Kh6rFOzLHJmqNWTyMF2E6IIcJxmlyodSKdGGMnjEYzuI5FEgEYbnBO0SuaLNdtltJpzuQGIdGEa6skroE2naYRC4aYZ1jPc0huIa1q7NXjzFjdVGQbUgvOdvTzoLySW2yLDgI8UcezVrlCneI0WxnyDImykaIFPl31sghZZJNaYFoPMSDmEcLgOE0IXRLVggvvs+cZp5Mrq6doSodOKvSxSoqQQlynqQ1d9IFQlHxDTtmM6JM4co6D1g6MlNiJxiahzW5QMn0UVBaDzVDjEFoCicFDUoxrKNfGjiUGTaItyo0UHXYIGNpVlW3mHFP00qYM+YJC17ux6wZlRxg8prt8ekRMSiVIaeFIB6ES9sRjpGybWauPMCmzrAtM+TnWSYugxT9AVjUJaVtbwStgxTFNDSpJ4UnNaj5Hwdakwjqxm2CvcVklxkYXVtBtPst+gWY8i3AsFgvdmDggER5GCFAxgYnJeQlxR0gT3bJ5JMnHFVzh0EinubJ5miWRoikEtcBDRglYiiDxuFqcwsLBEw4rJuTEhnV0hiFGwoDtkEoyaB0CggY2Ngm2UEgCbhJlxkwHNb+Lkoo5ncmi7AxdSZP2sMJqJo8XQiapkVJNhGytE1U9h9XuAiq2ETpGGQXCwqIFW46RNAw0Gw4Zt0HsKAJjkzGSQFh4mTo9zTIeFbSMGQgXyHgJx/JDpOsa3dTEVgvNcas4izGCAIUFrPcXOCk3s2AgqyNcFFK20enUKDdsimKVJZHl2vgYM1YHG/Q8WjmYUNMpmyyZQQQhQghkC8SdxGhScYKyBZHU5E0GY7pIqWk6zQLTdNNrFkkTckZvYK69g5SqYFFjKc6jpcBVMQZBaATZaJWmGqCNNqb7nguwvutijKF8uELatJM2dxFpj3u0QkSa2kiB6uwyS3WN1TnJq5YEy3Sw49BZ7nzpyzid2chbFj9K9/AyJdnOgVMD9Kpv3cp0Yr7KvU9Nsjp1lPVJQFfQxgubbUTRFhLdCn4mfMlPex38FDu5R1/P7eJu/iG6hiTeg922xPfNv5i/6bqPr1zV4IWPL/G9qXdzz8tHkHOv4yvH2+lPzfLenbfxRzNnODFVw5o4zNe/3M7N9+1GbmxDbu9Absgj5LN3NiuMlnnq2Oco7XeozW7HFUW2+ZKuzgRnZxud+4YRKZt/bl3NDev0fvqV/Mbm/0TfQoktQyO87sMfIrQ1D+3ayo7sMdqdKh87fy1JYji382pu1XXG59LkLMENWXDJsuQHnNARpx5JEPu3k+56Ny+JNpP0p0ndup5fOnY/9z+SQVZjXjP8BV667mHOp2OWG/+d+5ZdRn3N6wtTaLOAJWyaHe0cO3Qd1fpWRnZ/GT9V4/Tzclz5xQodjwSMZTs509PB5pkD9F2/hD+YUG947Py8xTnrpziy5ycIh77AlM6xd+wROr92gcX1H6C4/mfJzha4aeUoNz44y6Htf8BHnTdx9NRu5KpkZec72b40w+6mi2y4nIEWJilg2QFOewPfreE5TVwSchh0dh8Ve5jV6pNE0ddxkpeAezXf5GpuWILrWQGVJm/fxtjyNO33nOL4U2c4n1lBpX2KfQMM9K2jp6ePgYFBXPfpurz1eX38mGvx5/ed4c5MxA+IzRzb99v0T3+C4fGD3HbP3ezfMcyxbc9nuXIFS+b5hKb1/pyIuTo3zrUjX6XYNHR+Y5nV3et417afZybI83OnvsQr3/jLVOJVZhuznK9Oc2JxhjOLdaZLhqVylnONHs4Zj0d8EOkyaXWGwuGIoSd8bsqOsvfKIQZ3dOCmnuvm/h8Qf3R0VAI+8DLg9y679+yeVH4WRQuJYxp06ArKs7F0ExDkqJOWTa7iNJZWdJiQtA6YS4pkRYZAuFwvJjgW72MAC0tqmqJ15im2WiShGZ3GSmWBgKp22aYn0ThUKy6JZVFJ0nQ6CbadwbPmKKpVUjphIA5ILBdjuaRlyKg5QxOLSDsEodPa4mYJlGUTxyliYVgiT6FeZQNjKJOmjQYH8kPsUmeopdLkRD/rzBz1JI8RUJA+UdQAabBNBiECQksjpCaFBAFaWsTKouL4KEtjZIybZGgLA6x0DretzNbGKbSysFKafLrO8mqGflNqESkDkbKoKwuhDUjJVfExhA01q4DWCb5rs4xDyfW5OjzJZmuBgh1DAlrCimpD6BY3kmdiVoWgKX1sCxqOgxMGWHZMOq7TQYIb28zTTh8rCOAa/wRChghlMcgFFkUOX6eYwWO7nEdqD2m3dlr0m4Q4gpxdYVU7tMs0WS1YDG0ECjvb4n3qUzESm6ZK4bsJOClUKGhqiWs5mNhDaUFTe7SJZivvFkihWZddYCZM45LBSWLa1CLohKrQrE8OEwkXj4DdnMYRec7KPqRWKF/hBpLVyGJ7PMGyvYcONK5IYVokIxhaQFoN5aC0pF+2CLA72kuMmAWoupxwbTw7TTOqEEiBSDUhlGAJevUqFhIhbFyTYCuXLfoEeSlJ9HksbZAmTVnYOEmKwbBMIsusOllCk2dndJKlNVfGNyF7rOMou4OJeJilxMaXgrZEE9qAbpAmASHWtnA6ZLqqvKh8nplohMAq0IxXCZLWMnDZZLmg2+izSkgFffYF8CJOpffgRwKZROSTGG0EkbFp0xUWWIexASHAgFI2I3KRrFfjgr2dTDJNwwJXepQSByENlpbkzAxR3WHRDtkQnKBuLIzQkJIIFKkoYFSdZ0kVGLM3UjWSXfYUiZFE2qGolrkgu0iZgOuSo3TIOkeczZiUxgoyCKGpRj7a2OSNgxvEJEIikdiOwaNOKqmgZQsYMjE2pcQHo0EYDGCbhKwo49sZIkDEYNwQ247xjIVUTRaSdqSqY2MIpIUtPBQa1T5CmoNsUBeQUuBYLuuYxzYOvdQ4n+7DDpZaNtM20rLYFUxiCQPGwzWGuoaiEiR45KUkp+stwuYoInRdaqqddWIGEEgDaRNSJoOxwbYSNoeTTOhebJ5dntjnPI9/Rj575CS/IC2kKpHyDnAy9SLmVT9SaGr5DpiFFXcCYeB1jWme0regwxofu+2VbJ4+Sd9Xz1G6IcfoyFl+QN3Fj/21zcfedDUdUvLQ/vNMnzhFbjVFf5iln41Ai/ssa0EqD6mCh1fIMRmWuXY25FqV8O7ozdzgHuG69J/zxdX/SrjUC/TyQzNX02ir8OQVkxSq53nn+DJf3vTX1Mu3cujobsz1Ln940/fysw98gKPz3UzPf5MvbCxyxzh4p8qQd7CuLGLt6kS4/+dWtRbLpzly5i+xjnWzdPZ5aGMx4gmGduTpunEdsvtpVEOtNHGoMdogLYG0JRKF8/4f4K+3vJDMYkzOz3Dlhz9E0GjwyIZecvYiGzIlPjmxjxCHx265nZ9ob+PMg0VSUjA1eI5PbdjBxtpJtpQjrhANJkY+TXDwjexu7CA08Eh4gbv2f40nj2zHCmLeuvdjXNN2mKMrOzkxneIh/wj5oI9h67UctGIia56lYJFls0RpeJm9E0N87dBrKHV6MLlIVP0Gr779MNFRQfepOofX9zD11V78YsKu8XmKZwPki/+cY/Ln8Esv4o0veA/F0RIdF2KihmBB/zJneC2z113HOfsU80ISW4/T5TxI06lTmEo41gEnrouxtMLSBic2eErgyDSx5WBpm/Yky0Zpkek4yrpajq3z6+hrXuDRmRRz9X9ko/039Ha3k8S7aESbKCe9rDrbmOrYxnkEJNBRapAszhCMz3BCPMZRT2E8n0JvH+t37mPrzr1kszk2XdPNu3pSvO/vjvOJbMSrG4KF9W/iE1s388rH9/O8I+Nk5yw+eMUP0pNvMCSnyfkxk6qHxyobKcT3sGfoDGFvL9XPVnj/8n/h1698J+/Z8woan/lj3vi9P8629u1sa9/ObYPPrGOrYYVHps/y2NQ8J2frTK/kmArbmELyjWod5+H9FB9K2Jcf4Ja9g1yzuxvP+e6u3D4n/8fkk8CTtCDVvzQ2NjY2OjrqAX9Bi0/g/0pZPDvPzfooQrSG4mXtMK+6cKVHoquAwZFpIsvFNTb9eoHQtluEu1KygwMkFjhuwEw9wyY1hUwCNB4l7WNbGmFcDBEN4xHjI2ULlUtJl3JiU82sMujWMMHFiTaFTY1Vz8KK3BY58dqhdCs2rOosQtu4WGC5SJ0wyDwpk6yRG2u07ZBCYQsH0PTqcwSmxT8jDGwMTqNEK4jRBqQALQQVoeinSWKncUSDLbVZEumBiNhuxtAqRVFqOpII2agSagulbVJWyEg4SyFqEmibQLi4IkFgcEioGws7ac1WX0QJlNKmaiRSQk4bEAJHWKxqj5QVUg1bY5RNQJtqYCxDYtbAf4Skw15mczJHrDM0EdhWSH8YUEhmqAgHpA8iwMbBT8U0jKCtuQhWK3jsYwVkwqqWpDEsaQcXGydZoGpSJMJB0+JK0waqzXZsBNutc4BLpDK4ZhVtINISbdlERrK5NkUgPKS06CRASR9lIowxpMIGg/occ9Z21umTKAMV4RHrVlCrtI9rp7CTKhrIxnPMMsCyFAw6LrH2MCi2cJqcWkUZQ1XZ+CJCiZZhAy2JTKpF5CwdUioh1BmaykbEdQzQ0D4N6dCpV1v2xGJnOItwDCAItYVAom2N5UboJEHEaaRQLU42k0JYEmk0w9EsVlxD8/TkXx6B4yV0WDMoEjrxCSOXWdPGopFslIJA50BYaAlJLNlUn6ZOlj4WOUI/ZVxEVKFkCkjL4/mcwAAzcieOTLGaeAT1hBWTxhYaQ0xiSaR02UCF8yICKTECAhsc5aKlwZIZ8qoFElNWDjkrxnIDhDCoME05yTNMCWEJVhMfIQXaSPZwDjsJyTkBRkraqdOnFzghRmiIDNp4KKnoTKpU7CzbONNakZRpdtinOe/1sCE+j5NYLCiXkmijabVjnBpu1ALmVzJhW3OMOdnVaisCBAJLOHTVmiwaD9+CIXMUWxgSIdBmrU1ZCmNJtoSn6aCNr1vXEFoOUiT4/gwysRDGoleMI4WNNBFSWOCFiNBGCIlHnabOsEGeJVEOkEGaFKthjk6/jpvW1FVIdzKPlC5oyRAzREKCtBg1s5zSO4gxICSWaI33+8QZpOWtkTorGonLKZUip57dM1jCmP9Y1FaLi9V/V4W0MfzuB+/nF6MiOfFJ2ry/43fkW/lIuI8r/SwyPcvWyhxfHPoKe5tV/nJ+jiNzg/zn63+B8YFBbjx4P1cceJSOGyPmu/Jc03uAg+duZvnQqxiIHaA1W9VpCzpdQ0efoDDah7e+HdHT6jQul3u/+EFGzlzPG0yV19sP8tvOh3ncXEuQ/n7aFndwmhLHVJ1UZEgnva1IDTDeKlWvyQOd/Ry9pp2XzT7EK45+lBPn+gnau4hvkvQtr2d36QoGg44WMeDuLtLX9iLS//q4+/j0Acan/pyeyQHmxm6lmTh0u4LtV3ZSHRRML5YorZYpV6vUag2SUKHVtxb5kHOMjuIxnmjcRnulwsvv/TIkIY+O9LE02M8t8iD75wdQjseDr3gLv9rRx5E7S9gIJgZneOWr76Av7wOwVHmKiYn/RFQaZtsTv4IvNKe2foQP5ffw2IFd2DrhPT1/iq5LfrX8VorZ4wQDf0dvYx03Blv4dNd9APhWii6/SJffRZfXxeqFAsVJ8KOA9MRJRjPzXBeeo2ewyufPXEn32YCyA2d6OtBSMCIHGMluopI5z+Ho5Wh3llMjf8LBbEzJfqYN2pIsbuxjxQaZZKiJIsvGwZIWYU+adSsL7Dt5GDo3MNPuUbFrazxfgsCp0fRKl7ZSXBKRpVBPMTgTMVQXvCE9yXanNcBFOkdFb6cU3sSFZC/LSZaVxNBcU0vqMnE0RhKdxqgFlJciUyyy8erns+v5L+b+c/v5b/fPUGsOcDHZXq141fjXefHxL2EwHFtXZGXjeqbWbSEVxcxbefY3Btm2/ku8afODxKKD2sEXUT13ho9e9WrOrR/lByYe5F3bbyIz8p3Bt5eaTb588AAPnjnLyVpMPerGJC30TgvNrvYst+7u5QWjXfSu1Y/n5D+eFIu5b1lWX+O/ahsbGzt82f9+FPjo2nbB77r8W8erj/3Rb+Haq1ieICsNpTCDsGJi7WKLGKMk0tIY3eqTtW4i5beibFpe4xJJpQ7TaBMjhfOM+wBRaON6CQAq9AGBtCNcOybRLWdQhR7SiUFqdOShjcYyAi0scGoIAUQZWJv91UYhhXUpDRX6WIAnNYGWLSLdNRG6xfGi1/7Vcqc1lhcwlt9MX3WOTKO1YlRsW6IS+iRGoo1GYKOji2229Y4BUBbSDtBGoI3AaIFIsmv2SpDSvqTb02mu2UVZqLWtY8rEOHEa7cYok6zZU1CPuhEYcl4JgSFuutiOxlgJOVtRi1y0trDtqOWQCkWz4WILF8tvtuihLqvNfmJTX9vVclEvk9jMqn56WfqWshUahBMh7AQSC6W8S/nXRmOiLNJpIqTBKAuxlh9jxJrT7gOamu2TtyoIIBW7NLXEeC0yYh09s061mYRVcdEPWLP12nOxDinaAj9ToRT7xLELdoIAZOtYNSq8OIFqsN3mpTHBGIGbuFSTBEd6l+qtDn1AIr0GAgibNrZcs5HbaNUg03L4CXxMKlj7nsaxQ1SUI0la6HjCTpgXnfSY5bX6+O0pasbTXQwn50gCD8ePkAh0lEUheIztyHSV69XJS/ohExYo0q1LSCdASI2KWgTMpFq6q2YaF03kRFi2foYOwgoxyoHL2oREI7zg6efc2hqa5MU2Kol12No+6TYQCFIIKk1A2Dgu6KR1vlyZBFu6GKNb7VaulaFbI+coPCOJA49V7bbK1Q0/e29PAAAgAElEQVQxIkGGGZSWiFSDjB1Trbe1dFvL48W6dLlOeStq8bcpG732btaOsKViud4G2uagPcKV1lE8oQljF31ZvRdaX0IrvmgfaYdgJL6OaJgMQoORIN0mWSfEtWJKYQYT+sylcvTpRWi23r3YpxwVmzHCsMdpDRMCUAqkBSZ2kU6LL/5xdQUmSvjA23/k29aP71T+ufEKnguwvkU+vv8YL9u/QjZx6XN/mAV3gNe7NzBeegl3ZMrIeAbtxDw89Le8d36ZXdXN/GXqBj58/Wu49fAj7H3iHnJdVRbaX4JQVzI68BkKm7/C0vQVfOPgj/DyFGzaliG9dTNyIIew/+UlypXmApXPfIFPLWzjLjR3Jv+Fq7Nj3FX4Rforw/TU1/FYPeZvhv+Q2x+eZsdsPwv9m/nG+hewxWkQVnp5cGeGh3ekuO2pKtcc/RJB4xAqvYnu7e2k04ukjEtHaTsdlc04lmapf5xgZ8S6oU1k0xux7a5/EeLdGMMj504zNfXHDK94BEubCZ0qqcwyqjDJhcwEwgrxpMETBvvbfCo2EBpBpCEwDvlghPxsyOjHZ7ASOHh9kZPriuyYXOFCJU1GGv7sjtfw4tIYW8duASM4MXiC21/+YvaugXnMVY9y7tyPQDPL+id+jc44y8RVv8+vB69g/OgAnqV544qkQ/mcS5U5Mng/ix37KTR7eO/iTzD/fR69+T6Kfg8ZO4MQglqS8BuPP8j4YoPbH/574v4RYtenu7tKdT7mHdHfoRyLL5x/PlftP0hsScbWdTHTliG2NYc2Vqi29XHr2R8lsgKO9jxESqXpDNN0UmbUt9gV3II0LsoY7LWF5qdWzvAbmTQ116e+rwcvfY5dE19i79IIqYFFdnc+RVwbIt19HK0tTtz/nxnrsHlypMxSdomO5knyjZMsy+alAb8QuQwLl12J5ntXZtkSVQAImzka1REW/duZ0dcwH1ssrwXCrlUn5iiN0mEm3A6Oto0y6W/ACAtHhCTa4yVRyO5mO20WDPV+Dvu+x+hYqDLTnuX4YDdq4wCLmSEclTCWFAk7lvjRPZ/ECJfV6Geof+oe7t37Ar551QvZuXqa3y+Ps+5lb/vfaMlgIsXYoSf4zLn7+VoyTz3sR1e3o5J2ALYXM3zP7j5uHS3SnnoOIOM/kny7Aes/mvxbx6tPvP+XcNtDjJCYxEYr92mnG2DNYdaJg1EWSrecJiETjJZcdNTkZQGEDtM806dvOcjQco7k2rWA1jeMAEsjuOhAPR1gXXpuTTfpNtccLYOKfaRMEJbCGAGiBb6sQg/4X68UW14Doy107FzSD0DHbgt3bM0RurwiqDCNtCOwkqd1+yfPmDUbQMsBF0J+2wDLJHYrcFm7YxLnst9racYuRttYXhMw6DUdhPXM557xzlr6l6d7+fdYC5gvv58vQWmNr1JaMQiNTry139ElvVrf1pfKUccu1pqtLpdnBFgiQbrxpZxftM/FetMKIOCS4y9Uy/lObLSRrbJYC7CUTrD+SdD6rflfC5gu0xvWymYt/xfvXR5gXfxmHLhYtsEo55KOl8pMS4R8ej5FGYXUa2dupboUCFxK71KA1drihhGXIsFW4KjRUfqyNpJu1S8lkV6IwFzKz9OTCGmkHSCsVoCFuXyCIYWQqvV3sW1oiVY2ltvEKAedOAjrIkQ/z/ju5Xa9PN2LuWrV+dZZKpTVsmHioNU/HcOefsO6zIbJmr4Xg9lLaa0FH4LLAp61AOsZX9WyVYbIFoiFEc+wDYBRFjpxkG54qV+4WBbSDluTAObiCtm3tpd/GhQ/3e9c1EUS4eAQr5Wv4vI+55/aSxuNEBY6sbHs+FJ+Q2Xzo2/7bf6t8lyA9R3ISiPi3r/6Cj8Y9pKWX6Hgvp/7U7/C202VpHw1tr3CD1kTHC3WmMzex9cnpvh6/nrefMV7eMETD7Fj4giZpVlSxdsxyXZcYRhyJflt/0h98+eZrK7jz46+ihdfBW/f+xp86zubQf/04d/khoev47VNj25R4gv6F3Fdw917/webj5YpNIt8o1Hn48Pv5j0fD2nLRDzeuZMjP9jBC/of5UMnruJkz0+w0pPm1Y+dZtvpx2jUTiK9bTip2xDimUGeADwBjl/FLp7E6pwmW8wxOLKJQte1eN4QsYo5s/I1Dpz/e9zoEINC4vuVZww62giqUZpA+UQqRax9Qu2TaLs1G7a2tNyqggZHJrgywLUi8ladtlKT/j+NEQqWfzahTIrp+/sImw6jG2epXmOzWh1BPvE6VOJzZvA4jxvJcuQSoWl3Il6y7jGu6Bhn57EfJb26ifu3/hW/23gZ8WSO7lSZv0rex1Pih+hcvY5D1jSf3fHHpOIc7zz9DvQ1G7j2pkFSl20re3hlmV89M8mepx5i39H9dKaaDLRr7um5g0wUkAiXETXOHfZn+LLO8pV8hqAheMcXNTJxeWhnD07ooq0Ujn8DjrMDISTDcpktmTZ8KwOAIkYjMUZyNJml/Ym7Kc4/zmxfB792/ZuZ1X0km3OYgQqvO/1+trn9fCp3jh8uLFK0bH7tzG9R6x6gUsjS2ajwU7Of5PbxE3zx/DUE+iRHt+4hEEdoeAtc6EyI1zodKTvYWY+5uVrm+xrzdBuFUoIp3c+ydSurtZcwGaZprJ39mrIUY26TujzEYHyEbn+Fo+nrOWaGeVG1jSubHWCg247JTH+ewbGHCW2bw4OdNDrzLG0fJQlTBMZhwnf5oSv/Cs9KOLj0PeTuHmesZ5h7X/wKHBR/cOQvuOalv4jp2vi/3baDuTIPHb6Xz1fu5phdRlV2IkrXEag2bCF4webO/8nee8dZdl11vt+9T7w5Va6u6tzV3VK3uhUstawsS7IswFkEY5sxwXgYYIAxY4YPYOLDzPvMEIyHZ4NhJDC2ccBYtizZkpWlltRBUufqUF053br53hP3fn/c6uoWxmMY85j3+Vjrr/s595yz8z7rt9dav8W9e4fYO5z7/32+uO8F+V4BWA/+yc9STV/0GIh9F8PpKssXABaGgliuAi0bHZuvBmFriKGrxlwAWIYZoKILCpwHqFUFzl8trVt1HZtgxMBFgCQt/6KuDehYoiL3WxQdfclJfC5o0bISBEGCrvKlQBur5awezkSKwLxQpw4aTaamaOZWPS8QoMQl4E5wqaIY+/YqsJCrd6vVTFuXtEh036GCrhIobR8h4rU79OpbhVao2L4EACguqIKrDpHd+5VEhS5yDWC5SCP6FiB2qcSdJMgLCuNqMrPV8uPQgdU4a8Npkww90sonaGUop9KsAWItutYRqUHE3xZgXeyni2MK3dgiIbpWLaVEFzRfCrA0SLe9dv/aZNISpHqV8q2BnN+i7iSIQ7cLkP6Rgn6pXLB2XVS6u32gV+un1oCEQF/oU9tfA0c6MsGMkIGBsuMLNaTo17sU7P+4vIut+Jbr3bZ2+0uIi/de7DcNsaQvXGHRzRP7JtKJXt2rkQVGeNGKE1hIK0YItTaea0r9BdSw2rq1+mmJEBFaWatmSd21yAqNtPw1oHHhPUJ31+aFQ5dXbzSaTNjBV0kCB/gWgKVeBRhfBX5Wx+Yfj9+rD0mSGLFCu8G3AKwLcul7Yz+5tj4uXbEX+xkMrQjCBDlRoWV2XUgv/Bf7CS4FgpcCPJTs7k+iu967rZevAm2GCoilDTJam5sXxNIxoTAAgYoMiqpCzc4AEEYG7/nJP/gn2/cvkdcA1j9DfucLL/KL5xV4DYZSH6Iq2vy6+CkeDMcQImadDrjdPstjA0/z+niCu70RfmLnb1Ao1/jRrzyBp88hzWHs3htwzYDtPR5Hiib7brkLJ3qBian/gqcEHz/6g1Ryp/mVfT/MdX3fOTdVLajx5FM/xtLhX+BjGv5952v8Qu5+ymqYl974eXoffZne1gAPW8/ySvM+3v81Rc+uOg+oayj85Did2OIjswWW+n6DOJ3jykMvcPfkIwQLLcINO3jne/8TfivGa4Z0GiH1hRaNc1VUPaYedy1LXVGYuVnM0jnSvccoDBzDcNr4XpawMkqrNsTx9gAvBCUW/DyNIEvadcknTBKWgWtKHNPAMSWOKbFNiSkFhhQYQmBUp0me+wpLqsD6yOOWR7+JjGM+feOdFI1FzKUKOavDLX1neHzLZRQH8pSffjOhn2bk5v9GonRurc9CZSDQmEBq4RqS1c18yqzw6codUDXZnT7H71cfpPAD/w1zxxCT5w/x8y9/iDCWvPPIfyThF9F2m9O5Gukd23n7Nev4UmWOz52f483f+AzF6jLbczWmS3dz3H09Pc0zlPOvMJucoW6fZjrdBSybg4C99RHS03vY9/RRCvUJjm67jcVMh060SMbqwUzcSFtuYCS/wND2x6ikz/OHZ+8gWNrBnypB0kzQOfg/Gc9NcPCmvfgreZ6JRzkb9aF6LKIdBoOV/8p7c7MsJK/jb4L34LlpBlcW+OnZz/DelS9jhyF/P3MD59rQ6hkhGOjhvFsjsTTP1vMtxtd5HNi+TGC/ejMteoqbF332yQ7Xxy2SseBZdRlfD28i8q9m1M+jVDeAupOZ5vmhb3C08NLa88kgy+vPvY3NK3upOUvMJj7L2x4/yWAl5rHLbR7a45AT6ymxnWxoUHZ89u3+BgVnhReO7iXzYkgrleShu+/ldGY9v3z2k7wvlSC49T+D8S9nCtRBzNlXXuLvz32Br9vP0IkKmMs34TV3EWiTLT1J7t07zN07+nBfi9f6PybfKwDrix/7FYJEB4Wg5FdpmwnaRoJ06NO0HEBgqwu5gl6tuOpVZCXWEFb3l46MVWVckAxCmjqzqmzFqwDO54Ky2wVPqyBuDWDZq1aiSyoaG6jI6brqRG0SUZvlRAEtDNDd0nu9ChpYEH1IM+q+M7SRpo9EEQuD7IqmXnz1gV5hxaNS7K7lCwBLSE0mbBFIC9+wuMR+gUZxAfxcCrC0uOS6BhWZ6NgkY9ZpG12XqJzfQCCxdEzdSuEZNheVwlfvfQJjrY/dMMazjLVaxLHRBVmX3L+m5GuxaqmxMGxv9R/zooubAKH1qkILmaiNq0NUM8WKm0AnAlKRT9u0UaJbplICV/uE0uxaIY0IzAtWvEsB3KUQEop+lRiDqp3qBrqtVjL2k7hhRJgOuBSWiEtm1YXsXX1etXtNQMVMEBjOGjC5aA18dU9cOjNBI7WiEDZYsbOAJAocTNsnEfu0DQflO13AKET3xDU2KERVLB2zYmeIpEkq8khGHktungvQPhH5dAwXLS6UeqHc1TFdfZ/yHUzHXxthQ3fnjRKCXr+KEhJTxbQNm1BKfOmiRbeVycgjFXssOfkLo3+hVQgEhmfgCxvTaaKRuHG4Oq/AVN30Cqz1Q4zSFq728f7RvL54mNC91uNVaKzO0Qtr/BK4Rr9XBQQtw8byJcIKWHGyKC/RtbCa8cV5aIWXztDV+Ru/6hpr/QfatxEolKMRxK+C7wJwYx+3KankrDVAJp0OmbBFw0q9qh0XxI0DPMMmE7VIhiELiW5/9nkV5s0+DDO8CMyUgQq6LrZcHE1AUfJrVOxc12UZTbLZDdNopBIYZoClIhpWAoGix6ujDEnZynbrowW9wQrLTh4tBIk44q0//od8t/IawPoO8vzECuZXXmCHlyclnqLk/Heey36An1UNlpbfBMA7jbM4dpkvr/8iH19Y4V1X/i1xbPHTD0zj1F8h9l9k+EaTs8u3ElBhMZfjP9x4Db3rrwCg3Zrg2NGfx3Qn+Yczb+Thms0PXd3LT+/8aUz5v457evj8/aw/+SgffOU9NEXI/Wd/lz07zjCVvoP2mz9K4/79DARFPpH9FLu/+RhjC5oN15d5ytyI9bYyS427+OREhWNb3kfk9pB5ZZ53nv4SpaVp7B17uPcDH0TKi5v0TL3M/hNfobB4gpKxQpuAdm2I9tI2Osub0cpGo5EyJFIm9awitauXLVsLDBYS5BMWGddE/jOtAcHp5zj3Pz/Ic53NmJlBbn7yKRTw5HVXEzbLiChkLFfm9vwpHjp5OaPv/SGOPrKNVgyvDAW8/4e3s9D6CuWVz1BUs5iSrm++14N2KzxX380nXn4PKoSbd+zn3p4vMNvpo+wVqAVZpp2jTPsxdx/5eX4wMcKSpznbESxHmtAO+fw+k8zSKW559mtYSFLpm/CNy5nNHWd28GucT89QthRoKPlFbqxHfF/d4VrjAC82386B5rsYMRTrj9+HnH0Rf2QPxzeuZ65zGh14JO1RIvcWVvJ1PufAjXMG737lc+Q789g3/CxObjPP2+O8JCbZZp5me3Ocj5bu4YnKFUSWSbQzTSY3TtW9mny1zC+f/CT74q8zaUlOSZdzszsYnjE4OdLk2cvLa3tfys8xupDnyuMCJQUnt26gEA4TyJC5xCLzuQmaianuyZCGwY7FzZ06N4cN9nZ8YtYz1fkBxjvXMhckUUDKiBHOWZ5wx3kim6RXzPA6s82GyXdg+QU6iXMMTv8VV76yzGxR8tF7JGeGBVvqW9hZ2Ylpemzf8zUKrsfD48MMPJHGSsTsv+0evjl0I3cuP80fnP4E7h2/Rbj+1n/pUl+T1myZh1/+B77YfpApewFduRrKt9CKc+Rdk3v3DvOOPYMUkq8lNP63lu8VgPXxz/wxfa0ToDSpyENqRZd7SlB2MqQiD0PE1M0UkTC68UzKQopuugJLx4SYCCQIgRJccAkgGQekog6+n4aEj6NbzJsDYEXdPHNKr6qimoQZkuj4rFhpDB0TS9k1nAkBQuFEijgyiVxBNmzh6A5LdgGNiQBK3gpSG0ihmBO9Xdcguu6HmaiDG7dQwoJmEplpo7SgbqXJqQZRy6KWc9fsRrmwQcdIkIuaGFoQSqhYedSqcUsLhRF3LVi5sAbKpO6kUFIhVkkoejtV4sBBxRZmst1lRBNdbwhTSaSWhIYmWGWsW3ZyqwBNILSmz19hwekFNCW/hkDSNF080+ka2LRe0yEveKQV/RplN98FnFqjhSYbNqg6adAmctWSl4w8MmEHJaBpJXHjEAuNVDFlikSOIhU1aZrJ1cARUFLR166y7Oa7AEIDKLTUXWOIkGRDj7ZhEwkDgSAVtnF0ew2wrji5tbQYoZ+k2G7TKHTrLjUkog4tywUhVtukKfptbNUlL4mMiFAY1MwcCIkTR/iyaxmQq/BUEqExVsdytXO0wo0jMqrGgtXTpQsXgrzfxtYxy3aOOLKQVogSAjcKKURNAC7op7FwEDqiZDZYjLNUnAyWDujx2iwkCigBqbBB27wYS6YxkIASXXfAnqDOopvFUNDvVwmFJJYGhvCQWkIsgRiBJjIFK2ZxzWom0RgaOoZFze4eBhhK48SaZOxTtbMERozUkkLYomJ2LTA9XnVVme/Co35vmUjbGFKvArZV8LA2j2LAJB12SCpvDRB60qVpuWTCNnUruXqgsdJto1YIBJGULLtZlOesWljjLkjU3XkNkIp96paFZQiiWCKV7oL+i7eszocYIbt0N93nL2Qq6+4xQ50KWksWE/nuMUfgYNg+6bBNw05iqohs0GbFyQGCXFjHjkPaZgJHRdhasWhnUULQ51dYdAoINEoIbKUIRfcgwXRaa/F7XYnp8av4MkHTTKLpHsS4fgRWtx986VCzktixRyFqEUuTFSuDQpKKWqRDj7aZoGWnaVk5fvxdv/qdtunvKN/ue2V8+MMf/q5f/q8p7Xbw4X/rMr0w5vOfe5Z72n0E9WP0Zf6KSgR/rd/Ifm8EHWe4TCu2ylPMp5sI+xQv9v86p9MjvP2ZDhuXFvG8RyhsrVLrz/NXmRRvTA8RLi/zzOwCW0oFMrkilp2nf+DNLM9OsL33YUYsg785sJtHlv6e168bI21lvm0dN+Z28eXyJ7kuSvNIYx3ni1u46fR+hrLHif2Q9Nt+lCPPTHBbsJu/3n6M3UerdFZs9m6YYTlOovvP8Lax36P+2ANM9qZoja7nFXsb2Vqd0uTLHD11iv3hNE+f+CvOz3wcs/Mx+uynSObHmTd8yl6JYns9I81NeF4KT3fVAENqtDZJ+BKnPI/ZnqQ3m6DUW3gVYPt20iwvcfgLn+Spz3+WSb9A2i5w09PP0ki4PLVrC7pZwXdT3Fo6z609J3nh6AjZN76NU/uvoBnD4eEW229+jsn536YneJwkTap+gbxfoPT075M/fxe/UN3Mo2dvAkvwnwuf5Y50nQUnhaZBf2qeXaVx9qY73JzzSK8/wMHiS4z3TmL1RzimwX07Xa488ABXHt0P9ijzo1s4tPVZntrwWY72H6Ds1Njrd/jhyQ4/eOwKEvFtqHiE+cat9OqYXakH6BPzTLU6vNxrEIqI/vMn0a0lzuy+ksiyiVvzaO8wrueyr7WBu165n2Rnnid37+KrY1n6AoNd0Xo2Z2YYtmf4i90uT5tP867qJo5aGZiK8b0+ss5BBjq/w2PJeT6bS/NwOkWlUmTX6TSLRcHMpjRXhzfx1uy7eO+6D/DOwR9g78kv4JZsJqI+Nk5OsyJsnjEv55x/Ga3aVewo38K6donNi2UIajzZZ/HlbIq/zGV53g6Iki+yI/F5rrdexhUlVqISzaCPkc5Wvq89QinYxanaEL2dvyPfv4jZ2k3bvYO4v4eh+RPcfjBi15k8sqkQzgptu4fW/A5yxRl2DCyyv+CROZnHXDzKbN8iR0p3cd/ArfjH/5j0859ANF0sUUTaCYT1z6ddtTNJdmzZy5vH3s7V4nIazePMFj+LTJ0m7GR4/pzBpw9MMV/usL4n9Vqc1r+hpFLOb/6frsM/R77b79WBM89itSawNfQZdTztooVNbEh0qEkREgsLV8coIUF3k+0KoSmFFaRUtGUKLUymjVF61Qr5sE0i8khHIQOJFr6pLypMpiAQVheISMiHLTzTIJ/QyHaMZzo841zOkC5TcH2apoMtY4bjGo4bIkwQISipaZsJpO4q1/mo03VpExJkjE3IklUiG3lk4w62UtgKpBUyzQaKuo6lPIQE7QR0ZJqkHVFs15A6wiEGITG0wIzaxNIkkjZCXnBOlJRMDxkGSGkiHIOM2yJyLaQX4xJ1DTbaRjgBUiqk7CqcFqugQAn0qktUw04hRcyUMcCIWkJoaBtJTB0zrGu0hEssTEJTdHP0aImtI/qDDi2zmzcpGfkEhkssuhY1Uwe4KiDpGpiBIBkp+qMyg8YKHZVYbYUGIZCYGEIglYlnGaSjDoG0sNCrFNqaZOQTSxOFiUYiiXCIyEUtMsLD0QJJgE6ahJFJIWoRGRAZBkjNNP04MkQjyegmbhRjpjQHjcsYoEIxbCCSkHFjOpGFFooV1UNTpDhvDjNmncWPLSwVoR2bAdmgoJqUZQpTC7QUXe/CVZAbyy7oFwIcFRPi8FRyF9vlHJu9eQLVPRhwdIzMaDxl4qqAjbJKRvg0lY02VpkmhYGpJAkzIAolytAkdRsnVjQtm0wyJBU2aRoppND0ezVaRpK04xMrg1gYJOKQepymP6xwzhjFFxZb5Sw9VpOq7gLLLtIRaAPmoyGGoiWEUGhD4sQGpopJWz5OCrLCRwSghYEbQcs0AUkqVnTMLpFFMurQNkxsrSh5dTTQm6jSjlPYcUjHdFBCkA08QsMCoYmkxIoUpozJOCFBZGArRSL2MIXA0iH5sE1dZbGNNlpIDKBktamYCaSI0Ibo2teEwIxXsSOSjaJMv7GE56ZJWBo/NHHjkFTcJYwJTYnQ3ee6Lnyy6zIvuocXQggMowuCDa0REoQlScVNHBVi6y5pfzrqYJiAEiRjj20sUFdJTKAtHQygZbloYZBQHh3DRRATS5OsjsA2MAOFZYRoYSBW3V2TkYcUGkNHCCS+NClGHbAUSgrqRh7fTPC8dRmDqkwy7K6ZJglSukNSd4iRaClR6Sw5BGO7bv5utnDg23+vXgNYwF8+fpp3zwZEcpaSeYiU/TRfzdzORxPLhLXXkdKK/2uHyZnGHDPuFKb9AZ4Y3ckdhxvc+/B9VNInCWiz/o5Z/mT6R/iJa3O8dd8PszRzgvZKg/1TU6xog7GBAaS06Ru8k8jLkpZf4dr+ozwzfgefPDyOk6iyu2/DP1lHIQRDxVsQrQ9yevE2jsZ5ciTZsnSCHvUcTWViXn0H+18s83oxyH3bDnPdoRg/shhLVaj1mJxaeIw3Xvtr9D7wDeayHVbWb+LcwCbCimJ08gAl70V2X/4SgTY4U97IzMItpFZ+lvzEnYycv4LFhQ2ca7loK+aysRzXrEuzORJsMARpCVFsUl5IMvlyhxNPTTBx5iRoQbaYxfhHZB7NlSVe+Pz9PPupj7MyfZ5iISLdzHDdwQMcGx3g2GAB4ogz2/fyY8Yh9uROcnJiGLX7P3D89G6aSjG+80vs3Pnn7DQPkwWenLmeWMPO1ij9B/4TUwrelVyh2ujB6YOPL3+J19/1awy97h1sXfdW1g28lT88/xxfXGqSOvEWFv0CS0LRYzfYUjhOobCfzPAjbBUPs5Kb4qWNbZ7afJZTvcfwzTI3tjv80LTg/Ye2MbLwfqrBu5mV15Ds9GPaLeqpWc7WBVlviW25Izj1ab58+6/xtU1bKcRNxsZPM7KwyNTIepbT+yjWGkTxOFF4nPnBm3j+qhto95uk4zZfVAons8zO2jVMWEk+K16gnbqe5y67FW+khz51HG8uQThXpJG4gXv9g7w9WmBPJ8vAi33U+4vI/p3szV/JT7zj/WzbtIlSX5ZUMcP00F185UTE09YYFZHlsspRxhqnCHo9xi77NN9fjPnJuTupZC9jeMHmfQ/McuW4j6UHOJsr8kQu5EuZNH+b95jLPUt/9otssc/gxj0s+CWcQHKlyrLOvQZZDwhajyAL89TkNcz03EpOzTI6c571KwFxW0K7xXZnjpdXbqBUmGNXX4PD+TEGjwXsnpvASx5gLnsF+3t/gAcyNl+s38eDU5/nm0ee4uWDzzNz5Ajh5ByZpoUZ22DL/yWZjBCC/tIwt43dyVs2vo2+jkU7eoZ64VghPMkAACAASURBVFEiJMdmM3z20BzPHjvDoOEw1PftEjC/Jv9a8r0CsA4en+SI8ujRVXotn3qYIpbQFg4nxCADegktHHrNmBIB/aqJ79jkPJ9ZZ5CS06Sis8yIITYZATv1OFmzTlN32fHSpktGdn348nbMQ/IykiLCRZGMA1zRpJiCWLhsDVdo2w7nVY4+t01KxLSdPL5oYYgSNi45USUIIgIDBu2AZpxEoFgnKuR0hCU1HZHAQKLtYUrBMgYKR8QMiw6WCkg6KQo0qONiSUUowNQC1zXYqBao6QQCk5zZZsBoIJ0WXmSCsGkZFlPFdaRVRN4IUFGbwLDpo8qgrlN1M5Q680QqwSajSdHskEr6IBU5u07kpUFKQgwCKwHSQBqa8fw29qc2UYnzXM0pokiQjkOGxQzLVommzmIIRWyYFCKfQhxRjXoQps3ZngFqvk0q0WKdWUfZggU7z7Zomji22MQcSrdoxiYlEZMlJCs0dW0TCNDCoWQqIjeHjkPcOMSwXNrSpmb00dEWSTySUYChNYHp4kubBHVKUZWs5SO0hYeD1gIjZeCaig3a46Qepc9YJOFWaNo9lOwIS0gKok3eXWZ97NFIDFIMlhky29iyQyRNnDBGmDCt1xFjIwyT7fY4vrJAgyuSDIgKrgzYIFoMiAatlE0jtrFjSSS7gMu1ujFgBR0xn1jHmF1hi1ehVzXRps0sJZI6JG00cOOAIaOGJRVLsodIQ10WCEyJoxUGmoLps2zlKRgrRMpiWqRIODGGo9ioF8iICFuHnNKD9Ec1zJQgaYNtxpgigRZ5MsJkoxmh84rheAlte0wwQEskyIUBAsnBxC4ikSISsMuaph4X0cKgYCvmi+vZ1pljqN3Asm1sKejoLpj0DIuUiomEwaQcoapNeqMKRQKIYV6nKKU0QjkUaSEisFWEUh6OFdHr+GREm8PqckJps90u04pSmEpSt9pInUAhOSs3UYvybE+eJhIJIqPEkLVIzTGoRwnmKJAQISJSlGSFipkBBMOiiRYWU+4A8+YojmoxJ4poJ0sprhNLj3QiJowsUnGIZ6RIxB5amkTCIm8GiFSCfuEhQ5dBZ56M9KnpAhLNOtsjF/qEscEZcxOluMmS7KE3EWIGEGmbsjvCWTlIv1rCVRFSd0GjFoJsGNNxBtB2nhZZsqbBhOhh0hoiY/jYagWJQVM4ZJRPn2wRaZckIZ4MOSEuQ5ZSLIYFBvUSW40FzjLEWWOYq+wT+HGSWAhMDesNHx+bzbtv+66/A68BrG8jpxeb5B9/iaEwSzT7KIM9n2MqKvLTxTzNuR8BBL+/dxMrz3+RlYRNy3oLj+wa5paJJh/881/m6JBNQzfpv3KZ8+ZWnrPP8Kt7fwbXTLBtx16Ye4HFasDy3DT3VVus6+ll0HXI5neTSe/Dq3+dG4e/yUprkM8e3MhXxw9y+UAPfenUt9Q1bWVYMAcoOJ/h2dmrWEjmWDddoy9aoKf9BE1D4+Vfx4lzglSywtHCNFtfMSDtsDmoEo3EnJx5ErltnjcXH6RPLHI4cTWzWzYxRx8bj51h8twObr/xj7kqfw+9p/pInxdMVTTnPYlyfXbd1c91P3gZfVf0Yu0oYr6uD2d7geJgkpJtMhqF9GqJ0Ab1FYeZEx1OPjXDmUNHmVmawJAhJx75Mk/f/z8oz06xoafGtnSD/MGQ4vICT4+tp5qw8HIlzt/5dn791KfYWDjGfHUz1eLvcmhxgI4McPd9jNdteRpTJfnK2Tt4cHYHbxx+kWum7qZw+u18zKzzERSxdhgbWeKjK6fZ9nO/itXT7ddW2OJDz/8sJ2qnuO3kj3N79fUM+VchT13P/Nlr+XzUx3PLyzzQUjweSM4IsJyQvamIe3Ihb0+YjKkxlLGP085VLMaD2CpmndFgXzaL5Z/jhBtCMsUL/dcwNnWEjYNLXPXyQ9z4rl/hvh1XshhH7D76ChsmF9k2O8XOqZdIRCYLpRQqOEOyvoySvTy68evMDDzLM9kXqZp17irfyuXRjTy0cR+95hS/VP8dfvTsM2xvZzmYlQQLeQ6Ht3DUGmP0uRXSvW32vukoI+tOMGEe51D9Fc4tZXnwmRq//dA4nz6yyLjK46emqQ6fopRxMMIEO6fPYCyNsFgK2JKb58qF3Rwc284/7NrE5dNV7nxugjsOttm+dDcpfTN2lGXa8fhmTvNQvs7+vv3I0gPYibM0oyydVolI9DOa2ssGVcTyj9GxFpnpuZNKdic91VNsWFwk1wqY7Fi4qobXXIdZ6LBr6DhzuQ3I43DbQpkPVR5nIn8147krMBI3ss2fJtBHOJyZ4sXkKzwsnuHTjS/x1fMP8ewrT3H80AEWTpxEzzZJtxwMJcExviUtgmO47Fh3GffsvId7+u4kU17Ek4/TcBeYa/Tz1TNN/u7gYZYnT7E9XcDNJV8DW/8fyPcKwFqammZcLTJvJ8g6CSrJQaqhxUmjyHChyqBcoSyHWScb2EJzONPPHm8WI2HSSuewzAKn/EHawJjbwNYVfGHRdmzOuxmWzSJVswdhdzhRGCZneUSWZsCskY3apBM1ZlK9pH2TDD46TlNNdTicH6NqOAypDvM4dAyXpJkmNEpUnQa4bRZS/Sy4WUpWh4zlUrEGmLCGSUcNXFtiJ5JYlk3FbVGy5tGmSS2pqCaK9IoWlhswYW1DxG2SVoN6NoPUDovCImVUyBua5zP9nMn00Eym2O77LBc20jaXSUvY6peJkjHC8ohtxbHMIDWjTDVhMsgAAZIsbbRl0bFKNO0MfiCJhcQzI6ykx6AZIiyPppvFSneoJxx2Nw6QNCOGhYfQDer2BppximTcxHRhg6iDETFNieVknry5SMppsuC6xKLECZnGIKRElSHZPWlfyLi0tCRpaJLSJNAtzGRA1lZkTHDRLCYKYGRYtEqYSUknmWSr7JBTLYrBCgkzxBRNGgygtWQ0OU1P7DFr5ahnJISCFd3LTH4QS0W0RJJqocOKVcUhZsocpCd2MXEITIM+4dEUQ9iGhW1LqrKPqu0RRTH9sY9hekzFQziGg0Ay4B6kbdskdUxB2My4/aSlT2Ta+JbGFBq0ieWAtkDaAQnLw40tLDtFIq1xpESgSUYtlG3R0FlSVp2OE2PSoWDAlDNMW+YhENRSBZr5DMdViREjxHDAtiIiawEXyctyhM3WNMVYYBgOdVlkxXQ5wCibdZle2aJhpVHCwCOPLUAms3Rch5prcSyb4WyqSDktCGwo+xuYdDaRcwSRCBlITRFGUE+uJ7YstJ1nKhXSlh4pHdC0hzlvFuioNkfMMTK6wqBZJW816bgpjsQFqmqIq+0FcGK8hKYoJEmpWExuIhnXaCqPkl3BSMcspErM2i6uU2fI1lhCcCxd4pQYYqNdxjR8Zq1e8gkD4QoyokzGUMy5Q5xOZcnrFpboMJlOkTY0A2EN24xYTvfg2gZunAPRwNAJTKWJhU/K8KnmfFKdgIwd0St9aokezoSbCOIsm41ZFg2Xp7K7WSc1kemgrSxZ6aPtCGSGA2o76+Q8GB3aoo8gFpTTfTwtB1FWgZINWaOMYbexhM9iIcNpVWI4XMTERiI5Yw3Rrxo0UmmUjHEMWDQMalGOjtZE/R5O5KFjjyNGkXlrANWTwTWzpPVpsF2W7Tyu3eJcPMAOMUFeKg6YI3imw3rnPI04B1pTS/QQm70shza79tz4XX8Hvt336ns6BsuPFH/zyW/wrkYfM8ZX2M2TOOYpvr+wl6ML7wftsMOI+aWeHM+Wn+dcqZ8Hr9jNtfOT/PL/+L9Jl8t8be8YtVSWHW89w30v/ABbr53iw1f+3sVCtKbzpZ/nr+cH8GKX5zZdxsDoRn59bDM50yCKKkxMfIh2Zz+H5nfy/xx7F2GU4vJ1Hr9+xz42FnPfUu+zT/47/svM93Fmppc3GPO86ZVP8Ibec2RHPI72vJXDiz9FfeU4z2/8OHc/3GDntGDD7TGJnnle3pFhMsrzghpAtDP0HA345k3v4LnCHrJLZd7y6Kdw2w1SfdfQ09mDFxs46To7bhlky9XbkcZ3dsHSjYD2RJ3yqfP4Ux71psN82M2+DeDSQrhTDGYfI3Fgjvz5CkdG+ljIJlGWzfyWy7n+zu/nlvvfR6l/kmpwJS/7H+JIWyKdOiM3/RErZsRjE7cy7ltcNvol3h3tYPDkj3A8SPEhu049MFElm/fpx7j3ijvovfKqtfotdRb55Wffz1RnidvG382GxmYmMmeYzZ5mIX+MslsBwA4Fe5oR18cxY9VNSG4gsnM0s9MEuQmc4gR2emntvaJRItPYxmLH4QmjzlUPznJk860I16Tluvz4wv3syE0zu5jn7/p+DmdygB0n/4Hecjdfw8ubM7x09c04JKkE4wxOeVhhgHJGmRpJUU+YnB+4gv70Bn7rlRAMj8qWPyJoDLLHrpCZ+TpzwRDvLt7OeOcNiJYFGYE9+Az7rG8wFG5h0Rvk0OJuVrwiUsTkkufoZA+STJ3hjtLredOGNxF/4z7S7RP8g38t9twsqXaThaF13DE4yI6V2ziwLeYjxZBbX3yKOx//Jn1LS6xks8xe8U6M5OXMhHXO5adYzL/EfO4EC243mV82Egw31lOqXMVwbRvbogE2OQZmNM9M0GRJlyhN7mfD5IMYkc9sIcOpgSLWaJLsdSv09E8xt7CBuSd6Ge7MsGu4zskb/oA/CWxOZgvsqR7nF8//BZ25Fvuz11BORiwYZZacRepOeS1YQmhBwS/R7/ezLh5ggzvK1t4tbB0dIzvYh3BfHQ8ZdCLGD87xyPGneSJcYjocIQ6LCKPFUHKKNw1kedsVr6c0uu41sPWvJN8rMViPPP41TnovYmpFrwcWNo93MgREjKVnUKaJ4Tts8moM6DJPub04TpJC7FCVMVpECKVX/eY0bUOS9CWxaBFJgWfZuDFgmiBMfNoYSpEWBltbE6yYaY64eXKBJkOKmq9pyQiVShJqTRGfVuBgRTGXCYuOEbPg+GhiIixq2iRLm5yq48leXD8i6vRQSviYkUbrgON47GGCFSfDglXC9g02+j6+laZiCexomslki4QsEIV5IjSva47j+DaHsz34Vtf1aqufoSEl47LJWGSzw59m2Woxnhjqsm4T0LaXiXUvRb8HM5Dsa53BsxzmnBFqTowRaazKDHm7g7YVCd8hFDGH8yMETkQ7stjZPEMpbDHLDsqWh+2YVMMiRtQiIU1u887TMDUHnPUElkVaRaAjpqVNhMZ0Wgy3TEbaM2g7IqEFT+VH0FqysVlhxGsjteBQYQgn6rCuVaXl9qO0yZLZoukYmNgYSrLTt2jVWkQph+HoFG0r4oC/j0wyxHUauJFiyZQgQzJBm2LYj5aKZmgRaZ9KLmAl7uCoNAlhYRGRVQmEkhQiDxeXmgNpP0YrxfFsmZ5qhpyActYjaKc47w1g2G322S+hY4nbgWVjC+0sCAlu1GSsNUPVCGgaW7GjBh2ajGcGyCkPXyZQKsKUJi4mJa/FULBAKpZ4cRFfLFMz4JiznkFZwZG9EJm0QolhCFqpACOOsBRYWtOOmxTiCoZWHDdGcQ3FzlCiDUWLDCeNFg3PYZc/w5DToGKXGG21OOVsI6BDv5lAS81pt4GvBIbQmEhMP8L3k5SjQXKpJRKWjzJaWD4k20kUikpS0HEi1nlVNvoN5uUAVZHluJfHQzKQWWRPOyISJiuWpBxFpP0kd6izrLg+h61hYqEJY5MBaRGJiBoBmWiJUeFxMrmVugyJhcJWAksKhDaIjIBk5JJrt6hqge/amJ7NLu8YSSTH3T0sJutkMan6BoGlSDoespaiEC3QkgMgXYqhYNpskjcEwrawvTIyMpnNmuxqTWBrSUzIqcQGGjrBUCBJ6Bqnk70o7TAQLCEtE0M4rPM7FIMJ5m2XttzI5s4xmtKjIQfI4VB2evlaK0WP3aY/0SHdNvBlRJToxnZJERH5DkEnRUIFhPkmuY5Fw/VJeIluInMUbS3RCMr5ECtu0hNWmcUiaxSIpcIMOthaEZkJDFwQ0IwD+lSEJW0OtfoB+H75LKGGE4kBIsOmx3OoNV0+8J4PfrefgddILv4p+bPPPc57JpO0sifpm/oCPX3P85fOdfxm/QNIEaJUgp9qOyR1k1e2zPHg5a9je+0sv/V7f0DS83hpfT/ldIK/e8uP4RYUH/uL32TlvR9i+7VveXVBcYD94M/w5fMOp9nIfLbI0Q07+MjunWzNZdE6ZmHhz1hc+gQdb4g/PXEtx5duAC3Zub7CL920h919m171vnNfeQM/Nfthai3J24xltqz8MfcmZyllPI73FZgdk8QIPnXO5if/DFIiybbbAtzkJMc39HD2a7fxhY1XcO/V68k//xDjo21+e8v7aBpJdp44xI3Pf52qvQlju+amG1/P69a//jsScfxTEnTaHH34qyw+d4ScOYpyNtH0DKqiS1EvlE8czxFHM5gJ0JeFXDlis/ubf0GmsMJ8/CYeje6iUhkl1X+U1tg3OL50A+VUhJf8W94j17Nz6k2Uyzv4A7PF4Qi0Iymsb/Eb009z7b/7FUzHhVZEOFXmyWNf54/M++kYHoO1zdQTZepuN7mjHUP/ikPfisvVQchdYh2xfAO1aIz5QDAfaiLAjAPs9imq6hjamcIZLbBnqAcjP0Uzew7hdpP3xkqy7KepeEmsRomgmWWsNsUd4WGWVoZYekwQR5rDW4qsqwgGlsrMDA7w/BVXoVwTQwtkrYNZmQA0k+sv5+vX3czW3Gl+svEA2w79OAm/RNq+nyxfoHwsyWF1I8ddixfXT/Ds8I1Ei9dDIIh7HZRrYC616TFPc83Qfu4aepms3aERmZxsZ4kTm9nQew9X991ENDnD5OMfoeY5PBVuZOj8OFYUoIZGuVveSXNdi4dv2MPz48d588Nf5ZpDB3F9n+mBEkd+5Me47Yq76LxylqWjk0x6HaZ6z7FSeJHTmXmWVkOZEmGKgfpmRpobuNrbxr5oFK18ltse+sw3KU49itAxs/kUZ/ryFN/gUdw5h+elGH/5KsT5DrcXX+Iz2bcj9t7Fl4OY+XSOq2tH+LGJL5A4Os3ZcD0ju6+jOLabaX+KM+WzzLSXWaRG2SpTSywRy4t0y6kgQ1/Qz6AeZL27gc29mxnbvIOhvnUAVOfajB9c4O/PHOGQ6LAc9XYD2J05BlJnua0vwx3br2ds4xUY8jUWwv9d+dcGWGNjY/8duI4uNcHPnzx58oVL/nsD8Ht0I8y/evLkyd/+Ts9ckO/2e/XS09/gifp+HBHjaR+JoBabLHV6Gc3MoAClwVYSZSg0JlILkkISoohEhB3FuLGF0oq60+U2U0IhDI2OJZEW2HSVG4XCWc0jlNDQ1AKpu4HrBgYQoCV0wgwJYzUJrDZAa4xVumZLCkzlEBIRihCpNVp245IMZdATORgIZo0WphYEMl4l8OpG8rsdGycyaSd8ItnNPKy16gbkrzK3ubEHoUDGEt+20EYCU2s8PPzIIicVhXiFgWCF8cwAbZ1ACTAVxKszxwlNRsMuw7MyLE6n2wglGGzGjPhztO2QGadIS2bwTLnGYKa1JtXxQQjaCWeNv8xXBiYxvaGm5tCNUdGClO6SHlR1RKAgYfsUlcW2xnkaUnM8NbrGIdDnNdjUrDOdKDGTcUAJXJXEkIowaCCVpu1eJNUxEMy01rPJOolU0HZNhAmdOElax0Rc3Ls6UuMoA0tBppMgJqaR8giVJAhtsk5ELFfTcWhBMbDoCEUsLdJxTFV4RKaBExrYkUUz4aPQNPwUjhngrObCMlUSCwFGgJAhgY7ZUZ9AIWhYu3BUhRk7omWkuiQq+iJR/QV2wrH2NC05SMlLYOqzLDoOk+4IGDHDgYWlBJOWhxVLfCuiFadJGF3iCwEk/W6qgbqVAAnrQ5dEJJlzGzQtRYTCjLvujCJeJYEQBo4EV0kkBnXpE2iHkuxgaJPa6kh7QYGk3UALD60vpg8IZJfB0tQmhtKMhh2WjCwigrYdoI0u60l/I0tETGTEtJIddAy2FtjCpCoUsRGSiByyoQatWXG6BBJK6K6rrPRpK+cCTciaJOnqTKFo0o67OZyuap8hLQJeym0l0goDiakNQsNDIfFDCy82GQ4lQmhcbdFKBbTxMITEEt0YtQALTUwyDnCUT9XKIKTGVC4RMW6njYFFK9EFPUlcrDii15/ifLKEJxwKUQNDKapGlh7t0pKatvDX6m/oLnOpJaxV+hFQSpHquJxp7sAoniRt1QBN2OqjlybYbTxpIjDxDA8tu+l8osjCxMQTIcYFak40NhYxGnXJugiDLEqE5Iw6ydhj5RKug+XOAL/31p/7jvv0d5LXANaqhCrkyfnHeH7/Ij8zsQWdKKPm/pitfUc4r67ibu8/MhbFvGxZ7AhM3hUYPHT5SR7adj193iQf/53fpmo4eAacHijSe2WFk7su4y8S/57rqi/xp899hMSbf5d4y+2rQZOrEgekH/klTo6f5AFuxxcWxwY28OahYe6+7loA6vUnmJr+DeK4zszSPj5+ZjvT9ctAKHp7JnnHnn5+aOfNhKHkxIt/zivRMb585B5mgwxvsxe55/r/yvYzKwwveZxXaZ7wf4jFxk5eKn2UX/yiRy2dYvsbAvrM85weHUac/hCxShPEBcaDNme1w+OXp3lxs40ZhVx36AnGjh/i5QGH8uYZ3jCyj7u2fj9bstu+40l94HV48tGvMvnoVzG8Not9I4z6il3HjtGzvMxE/zCn1+1CWyNY9ga0zK8964oGJWuCjp2g0hlBK4Ng4DhncjG9YyHH65/nLdEQuxdvYHnhav5cdnhCxWhDokds3hs8zLtLd5Aye6nNLPFSdYaXzAme63mWcnL2IoNeZLM9iNm0HKNnekhWk/SkbcYyNxGxl8VQsxQpFAIz9uhZOozyTzKTWsbLFQgGi2SHtmDVGyzaCxxPjTMvOuCWWedGjNiKQUszZEiKVrSWQ2Nw1mPH6SYt0+Tx4g6mjREazQSbD82x6aUZjDjmzMZN/297Zx4lx3Xd56/23rune6ZnxQy2QQEgCYAkIFLcBNGUJVn28ZEtxT5e4kU6dmLZiZ3EdhJHUWwlUeJYdhRZdqw4lrzKSSwzUixrsSlKJEVqIUUSIJaHwTb70tPT+1J7/qgGOISxkBYwGNj1ndPAdNWr7l/dfvWq7nv33cfS3j5ODo5xMnsPb3jmGbTWCcBDK3qMTtg81CghOz9Ax7+fbnKKp1ufZf68w3xqO/PZ+xDpRYLhT2G334i3uh88CW8whjq6yt7mMUZK42j6EqMDR7hj4ARJrY3jy5xpZSkFeQp9BxiqDZE49jhH/ElOOWl2TR1Bcx20/C4OJLZz5gGV5o4HefYrX+Vtj32WvSdOIvs+M1uGmD58F4fe9i7GR8aw2k0Wn/oSK9+YZdmuszR8nLncWU7FYLm3zonq6Yy1xtjTnuSe7iS3VQsEJx8nmHkKybOpZvPM7VRJ/oMVjLTN8tJ2zk/dznhrjtVkhj/rfys7BpIciekspguMdpf4wem/ZPuRY5xdNejfsZs9h9/C+P5DSLKCZS2yunic0wsnOL+6xHyzwwodVrUq5dgKttq5WCc1z6DfGmTYH2E8tpWdxd2MxLbSnFX59PQZnnMs6n4G8FES50mlTnJXWuL12/dzYOvr2JreFo1uvQaup4NlmuYbgJ8XQnynaZp7gY8JIe5Zt/848GZgHngKeDcwcLVjLvCt3q9mnv0rPnJuhoxeRdPrZOUm8+0RKl4f21KnCZOFh4Ovlhen6aXI6asokoxLuEir6vvEnYCT1g7GsueRggAlkHGlgITcoeWHzkeg1rEDjZRnEJcs1jpD5PUyMqBLFmXiqMjE1BYvVA4ykpghobRAgtnWBJrkMhSfB0D3wV4XzHBh8VdV8oh7KVacLHFjCbWXAszttX0x2QYffC+GL4cT4i98joyP30u+0Uu4F36JHj7U+pLLmfouUri4csBw6hxSENCw81TcLNsS0wD4UriIqS/JJHEYbKeYj1ms+n0sdwfZHZ8i5XWxFJ+OYlDpDDEQWyYAPCnM6qZ5Dir+xXTbChKuFGBIDq6vX8ypBqAjQwC25KMGMn4gE3NztH2VimTTZ6ytM1RAn+VSMXSQgzDJfCBRao/Sn5gnAGbqJn2xEgmjihLA2YbJsDFHVq6CooDsIxp72JESobZAwpHDNbw6boqU0kTzwUfGu7CGkRT+E8fFChQCXyGQPVTfQ1U9un54njWnj6xWuSjXR0YPAlwpoOklSCnh+kKr3RH6YwuklXA0zvUDOoGBL6koeNTcLMvdUVJqncHYwivrfG0PgWSjqTbj+gKu4qIGHq6s4ssuid7iyq7s4QKrVpGqnWd75mSY7ABQHQ/dc2nHdFJKl8CHueZ2BtMz2H7Yg5eUO6gBdFFAgoqbo2rlGUnMQQBz7XGyeoVhfQU5UPBlj6aXYL6xjy3pY+h+k44cDxODBKBJHpVuP4beACCBgRM4OFJo46XuKMOxeZK2iubouKrLkpwirtaRJffi7+ASoAcKaU+lIVv4koQqeThBmJI/JXdo+HECKcCx49ScfoaSM+hBjLX2OIXUMSw3RsfVyGtVNHzqUop6t59Ur7M4IVvIgUQzCBftznRi+J7GSu121tJNPBy2pU8RyB4K4XVoSDYLnXHadoqY1kYlIBVbWffLhWGghuQg+dDEIJBkZjrjWL5OIugwmppF9n0C6fKRTnagU+4OMBZfIoZGG4uAgOnaXuJGhbH4DEutcZpOnomsIC63kPDxULB8nUAOI1DO1XewNX365Q9+Oct8L+F9ELYnUnhtqoSD/AHh+m5TTRNdtvH9LB96x/dfVutrIXKwejw2/wW+9vkX+Se1N6DoswT2rzOhT9P0DvAfqr/AgGPwv1M2NcXnvX1T/K+JJF8beh0DjbN8/EPvY0YZAMfibLGPxITNjjed4yNHf4LjY6fo5H+CEavEx4//EpNGjM7dP4W1jKg9HAAAIABJREFU422g9LrsgwDj1J/jPf1hPtvdyyl/Bx1Vx8lqvHkiwZ07D+Llhlhc+g0q1b9AwqC8ejtPrvZT9VP0GXUmc2fZlp0hpoaLUS51i/yPr76H83YfptzAHfwDPnjiJAeGyrSWdc6c3c9zQw/zjeKf81N/0WIlp5J/0OVAYoHlfIJa+5+TqN6DFfgs62VSfaexVx/lQ3f9MH9VuA/d7nL3kWfYJo5zKpNnaqzM1lyTR8YP8eC2h9me3vGKB8e5eoPHvviX2E99AaPTIibHGK+2GJ9fQHUczg0WODOUx8XH02O0h7bQ2qVjd0r8aMlF7jrMuncwa+/H9+J/4/eTJZ+Y7ONJKmdkj2nZp6YEVIs6Zu4Y/3AeTspwLH6W04lzLCVncBXn4vF9tsH3VGUO1leoL/dzql7EC2SyxgjpxBtoycN0evck1a1RXH6BgfJLlLVpHjuQZG40TTPlUzHKdNWXF7NTfJVsZ4BCd5ABu0C/k6S/pDE0L9G/NsdA5Xmkvgbz+4os35FnQprnvsWz6K7HwnCMmbE4nbiCX1EwPh0n/6yD7Aec3zXMiwcn0Sab5I/fRmNawrOfJ/DbxBWHPq9DO38/D6bfhC6pfFqy+D0cmkoLPX6Wya6GkjnBqf4XofwdtCt34vsqfp+ONxpjhzbLvSsWiWCMNWeKVO45dvWfYks6vCm2XZ3TrT4adobtZY+Xuvcw34qx6/QREt02XqpIv5GkcUfA6APv4oUvPM5dX3qcnefOo7kus8PDvHRoN8r2Yb6tfxcD++5F7svjri2z/Fef59iLUyznK3jZOWYNleNxj5XESpjdK5AYbo+wt7mV/dNdzG8eI1dpQjxL+44k9bfM4A7A8vJ25uZuI95yOC/188XCASYyFnZS4YWBHSiBy0Ol53jw2NdJv3iObv8QO974Vibvf5hYKvOK+uW6a3S7Z2k1zzI7M8v0YoP5psWi32FZq7ASW6Ldu8ECGE6CAWuIwWCQuLODpcYYU50YzSAG+CjJKbTMi2SS09yWnOTg+CHuHLyL7ZmdKFI0wnUlrrOD9SvAjBDid3vvTwEHhRB10zS3A38ghHigt++XgDqhg3XZY9Z/9rd6v2otTvH+Lz+NJck8WDmKE08wXO3w6eFxFN8niA+yNXmcrptEsVNMzi7QzNnMdvJMFbdyj/EcjuKAJXOmvZOt0gJarsBarYhFA0NZpWPHyWab9GllKqU0hUELzYN2fYz+5irnM/0UjHkkS8EyAixDZWamgOLpdNJ5NMmnGTMYr6yRL5RQ5BbNpsSAsUpDKTDXHMNQm4yklgl8WCxPsqzr7M4IkpJL000zU92Bq3XYmj1JxRojr64x19xGNmjjSR7xdIlRq0k77jPb2Um/vsTI6hqfTdzPztRx9iwv0ekqnEzeS4Y2cd+imbXIGC1Wm9uY9woUUkuknBZj8WW+WZlgV/oMKc9DKeU5qm+nHlPJOV0qhsrO1HG8ah5HMkh6PlquhKQbtB0fFw+lrbCdJc7Gi8x2JhiNLRDX6iw2J2h3+lDVDlqsTaU7wA6phL4yS3U4z6C8Rqqc4mRmF0HQRfd9WjooQYPt/ilsxcCTYUUq8vrKPMdio8zbW3BjOkltDa8TAyfGFqmC0Vdmzk4yPKcymDzNzGiMgCSenWLGGSGrLrHDn6GtFHHVGmmvxkL3dozMEprs0GkXSMWqaFKHb1gPsFuaZSI4zao9SFUqskU+iSz5VOJ91NUMpUqG8c4cZXWYQt8MWAYNLUaaOo16DlW2SBk2RrzL+dZWtsZPsstucjrYhR5rUaGLEbjIis5ac5yc5XI2niKtN3GDANlz6LT62D6/yEvZPoZSa+xMTtMNkix3i8wpO9CDFlvUY8RkhZpTYMXrw2i7TPizGHGP1XiOhlXEMhw6jsZoUGc0PcOcO4zacKhndPrkFZKBjbEa0GSCigFlOc5Oa4ajsf2oQYAbuEwwS0XtZzQ1jd9W8AINggSr7QGQJSb6XqSLzqBTpaXHcHyN2dZdZJUlAtUn1fLw/Rirg00WV4vY8gBpGkwqS3h2Crm/yWxjgNetTVFMn+eldJEFe5Rlf5iDqRPoXodmkGK+u4u7uudYTXfoaAFpWWF3eZpzwQh1p4+0pZMePcoq/czWTfakj1CS82QbGjU9iWZ7ZFttmokceXkBo6VQiaVpaHkaVJF0n4xep1sfZcZXUWWJhK9gewYJySJWWKRt90FgM7HWwlfiCKNIWveoaB63yy8y54/StXTGOwqdVIpYd5F2rk2nU2CBIo6kMOKsorop3ux9kr/OHiKv17FbWRxVYaRqowcLCMMkp3bIuiWqCRUl8DinbCfV1hluVlDTHVb0HSx6SYqxaWSlSdJtklA6NIIcdj0HcoJFWWMoeZYY4PsaMh5UNIYDjxPpfnZ3TlFJxyh1C7y+Mc1C5nXIVFnu6qhSB6EXcdHYk5ngnz7yrc/B+nvvYPnLbawnFugs1UlYAQPxdxOjRBBI1L3v4jOVf8hM4PG/82usuVmKkxbzW8fwJY09C0d43yd+g2Y7QymuUU7HiW912fWmKf5UvJOvxZ7kkdF7GDm9jd8dvwMrFuPXj/wq39N8DDc+ROfQT9Pd8/2ghkO8eA7a/NMsimf4xKyB3PGxFJUzQyMMZkpsj9VIyXMU1GOk9RryhdXNA3B8laqVZbE1yLlmAa/ts5jah7UwyslGCoAhfZG3a3/Kz9rPI/sBa2dSTHUP8LmRNm9/cpGuLvHY4RTmyDz3WB0UJU9z7RFi8vegBHE8pUNDP4mQlvhTcydPFu9C9j12nD/JxOlTzLWKlFJpjMQ59GSFg315hvQtVKdmKJ58nuFKjYG2zWC1iWHbVJNxxJYh1mIqBKFj5Yz00dxRYTRu8aA7z+TyeazmIE9572Sm8hCu7PJkzOPgyFn2dhQyrWG6VhbhB8wFProH6QBSvozEK+t2W6vT1KvYWpOuXmIxsYIsNXhruUWy6jPflLA9FwkVxbgN2diPrPQTyBaed55C6RjmuSMkuiWe2S3x5/fLzA6E35Gw0wxZRXa6g2y1h0kpLug2sertaLOC7NwUar1Jqt0i2S4hEeAoKueGx1meGGZ5eAhX1tHcBLpW4jDPcJAjyFLAktbHmYEB5vJZCDqMP10m9SyopV4vcH9AaZvJmcT30XHbOM5zBNYcEgEVo0AxtZc3J/dhqAb1kadZG/tr5hOwtfIwX5uK8ejA56noDdLLb6bauo2OmyaQwc8b+AWdIWWJu6pr7PMGqEoadekomb5j7MifYTAR9ox5vkylleF49yCnF7YxNnWaYnkJX1awCsOkjTo79+1juhqn8KXHmTw3TbzbpWsYvDRp8uyd+2j3xzEra+y0NXakCuRGhvl6q8ynXjrPsG5xQJ2nrkociRmcTtZYSU1fdJL7OlkmVpNsn22yc77JVltGNzvYu10quWFma9sor46jujFaSj/zAzmstMWJwihL8X5insWhpSPsP/ESW06eY2xolLG3fx/5/XdzNXy/g23PY1XnWJ1eZGqhxLlmjdmgyryxzHJ8AVvtXrxOjcYkUu0gjfZOLD8J+GjGPFLmBGryFAmjws7YJPsG97FvcD97+24jrWWuquHvE9fZwfoo8BkhxKd6758E3iWEOGWa5n2EI1Vv7+17F7AD6L/SMes/u9OxA1X9FhzlIGBx5hjd6RoTd96O1JzBTW7BKh9nzuun6aUZGtMRlTpb6ysM58ZQJShnC3Qsj1KrTuLcV5hLjXJnXkOSdbr9u3hpscSh/jRLZ46iJxzGE4PIi2dRxg8SdBbwEsMEtovmLDLtpGn0D7Kl3sFIdPHjCaZnjpOyM3QyIwwlHDLZLC9NL7M9mUKSLbxWDTndz3LHZ7B7kro2TiZR4bw8iOZYqItl+keGOTczRTk7wh1948Try7TaFaYTfYy4bV60fNACpPwId9hrDKgG8VgXq7ZMUymAY7DY7nKUNN/eXqARyzDSl6Wq67idZYaGRqkEHq12gKpnsaw2Kckn0Zih1Jch123SrJQYLwzSUcY4d/QY/SMZBvbciVWfpTOzho1EYet2ZsQxXPUFfO02qnoWmg7bOqss22sIbwv7btvJsfIKw6eepji2k7irUw7qxGMGCWMLhcEitW4XLZ8hp8WZXWpQCCy0fIrTTY+1F6aIG8sE2gByvowRTDKR6qDNT3NeKXLE8zloBHTrNXZsncTbspXVVoWBtTZdPU6l+U06c4sc1xRu2/kwOzJZzjzxMfKZMVpbb2dM60JqjJnZE1h0GQkCWt08eHM0JBnG76UmSfTbq6QsGz2ZwZBiBFaXU1KTU06C1yeyZOeeY9FXSaUTPF2dJ50eZ0dqBF1yMNQqw3qK2UabdsthPJUhUexDlQLs8god3+KkImFmt+F++fMoe2/Dy+SxAgmjM8uTbpHRU0+x/Y5vw0jEWXz0t8necxgpU+DczBry6CDOQon+fIGM5LBSn2dgfB/xyjTlhRmc5hqNbB9BcR+jhRidSp14/zDa2nFW9AHKiQFaXhm/vICpqjiLTXbetpN5smi2xfGlZzAn7kNrOyhLL5DccifNtsexE19h770Ps1qepT+/ncbCPNLoNp5ZPMED/RlGCjs5Mf88zYaPWbyNJ90uCcXnjbksquxxZKGG+OZJ0oUkI4NFJr0THE+M4fdPMuJKJAKPVMqiszDHU/OnqKQyPDT6IIXG0zw3LbMcz/COew9xfrFGQelg1BvYus9ZMcW5QGKvniCntOgqCiRHiElnSGSG6dRjlFIJUvOnSIzsRFptocVbNM+XSN71Ouz+YRKShN5cwJYNHBsWxTfYsmsnjY7BudkF7jAnieXSlM89g5cbZSAxiP3Cc7zYaGHt2c/evjRT8y9Qb5bZMfkA47lBpKNHUQyL47KEXQ/oT3ZZqVfxxvczEWhkKmdYO7NCcO+DqKeext1yBxMjW/DLs0jtFcpdnVw+x6mvPYuRMVib3M9go0zeckjtvZOphWO0qy2KySJl3aBRmSKp9VOQNOyWRXa4iFpb4XR3CSO/g7VSnREdJgppJB8q3QZBZwW9uIPq9ElGi8NoIybzQZxCexbL0ijXG0wlszwyMYF6HSJLNE3ZHA7WteLab4SD9fTnzjP/3CwZR8fyAwqqyhsyX0Ciw4pziA+6aZ5Nz1B1C3hemmCXijoks61cZ8/SEQ4/8RUsy2Uxl0IG+u5pMHZgnj+f+i6e4hxbB+A37/socTXB8VPH+aXlOqf7BviRr3ySn1v9A4ZyVRw1Q23P21kcf4iVZIamNU21MUu1NodXa+KW87QrRUAmlSrTV5jDTfmsqTHano8RuIzpAXnVR6GKoi+jKS/HmfqBxFxtjMfPP8xz5T20vARbpGXeq/4Jj8jPIksBXT9J1UkilVvIZZkXUhr/c1+MSg4OdboccGx22AaxYDeK+zbizdvxJY/nkyUeHdX4yvAgTSOJbnfZsnAeZbXDYiuP3VXJujV21qfZuzzPeHOJjF+lkdNoGFovvh7UfpW+PasM7VpGlzyKJYuhGZnVtQOc7L6BOesAgRSgpkoMpqsU3QJd3+CLeokn4susyCUkrYwUX0PRSkhSF9lXSFt9bG1tZUtriIF2Ac3O4NlZJC+B4seQLhkpCHwLJA9fAUeqgrNIvjrLxNIy8W6TjtrghW02x3b2kU6abLEHGfIKDLVkRmsd9FoTpzNDs36WoF7B6LRRfe/i53diKSrZPKv9WUpDA6zl81QVha6xzAOeS7zUpZTusjK4jaqbZ6i2ygGOM6HMsc2bRe0FoCwGA5xghHJbQ16D9HKH/pUGsYbPwvD9nJ94C5ZmIHWexXePYPsWEJBKexSGdHKFLEYiTVV1qeoNqlqDOcfmBCUqOPjluwlqd7DqjmI74cN9IEOQ1pCTXTLSKmPtVfY0G+TUNN1UGzU7zVBulvHMAjHVYjEY4rnVg7RPxRk9fY5kt4UvSdT7ByCtkwocCrN1xudWGCmtovg+lq6zODzE9NAIU+PbmB0bJem2GVpdpn+txvF0guPeEMUA7pXOstdtUdUDjsUlTiVbLCeWaMZeDrtJWHGGaimKVZWiFVBUbPpkhUDKsKxuoy1nifsGa7kRpvv7OJ3PMpcMk8dk7Qa3rQgmZ89TWO1SzA6z/cBdDNx+G32pGIp87cbXb7Sx5xZYmD/LqfIsZ7rLTCsrLBgLLMeWse0h3MYe3NYu/O5Y7ygX1VhCis8gx5aQ9RJ52WMyNsy+4l3cOXYn2/u3k9ASf5sm75bnOjtY/wP4i3XO0lPAjwkhpkzTvB/4F+scrHcD24DilY5Z/9nX436VyyWoVtvXLrhJiPTeWCK9N5ZI743jVtIK10/vphjBulYsPFx/B2t65hc587RGZ+FO9DkPtVnmRH6MYjxOLahTV0scTUkc9yY5IJ+gL3WaMXsUALVZxpifQfY9ZDmgsHON4j1lalKWT0y9mVOxZzk0Nsx773w/WT1Lea5Co1bmt5c/wLPJB1lJPgiBT86pkaVOWq6TkFok5CZJmmSpMsI8aauK1VRYrhdZa47SlgZxlSTbVhdRAx9bUWjpCSzNwPAD0q5P1pbIYZNU2/iGhWrU0RJrGKkSWmaB6fYgR1f3cHR1L616hgflo9ynHWOPNM0Wf5WM/HKlalsKQtL5WtLgG0mDNhJ3Nx12Wy6jOZ2MvBPZvgevcYAn0gaf6+vw/MgAjWT4UB7rtBkoLZOo1VGbXbRGF6nr4TkSigyxmEssbRGTXWKOSszWURwdzy2AUyQWyCiyTTs1w+ni86wk5uioNTylcXHeEkAQyCj0MWCl2FLX6W9kyTZyJBs5JAcCr07g1wn8KgQvz5+RlQFkbQBViqM5ATFHR5ZyOHoey8jhXRhZvJTAR/EdVM9CcduobgfF7aJ6XRTPwpd8HFXC0hU6MZVm0qCSSdFMGDRVjZYqYek2it5CSflYmRgrSh8rQZ6OpyNZAUrHYrQ9x/baIsOdDoWgzShLjAWLjLDEBPMkehNFK36K09YgK/Uicr2AYhtY5KnGTerxrfjeGoF9ksA6hUutdw5gSDK6LKFroGkBSW0JXXNQdQ9J9fFlmN6e5qw3hmjvYbY1QauVIfAkHEnDk1XQQUt0ScaqZNVV8m6ZIX+Vfq1MOtkknbLRjATzjSFqc0mM2S758ipyEMZb2rqOl9JJehZ9tSb5UotE28FwPVTfx02q2CmDbipOM5WkkUizZuQ4ow0glEEWgwL9QYs7pHPcHqwy4Lep6S6zcY/zhsNirEktVqGrtV7xE8btBCkrQdqKkbEMUo5OwokhBWlaeoFmskgpN8JiroitxbA1GWSf4W6VHZ1FilaZjNUg5nTRJRkSGRK5IXLJPMl0mmwqQz6ZJh2LoykqoIYOfSAR1Gzc1RZzq+c4uXqcM93zTLlrzNtJ1pwsHbuI1x2B3iT5sLJ2kLUKklZF1mooSgNdbhOTu8TlgLQkkVVUUppOWk+SjWfJxHKkEzkmC7sp5AokjCS6YqBK6i077+s6O1j/DlgUQvxO7/1ZYL8QomGa5lbgE0KI1/f2vQ8oE45gXfaY9Z8dOVibn0jvjSXSe2O5lfTeSlrh756DdcVY+AtlrreDVa9/mUbrGEeOPkdnJYHaiLOo+9y/9t2cqSs4na9yf/5zqLJNy4nzzNBezsmjZGfmiHVbxFIdcuOrGBMuStKj5eh0XQNNAUNxiSkWhtLBULqo67KRAUwxyRHupBQMUPX7qPsZbGJYUpyWksCSr/BgD8h+wE8+foZ0p44jO3iKja9Y+LKNLzsXU05fio+Mq8goMZtxw2YgVkHSbF6ws3y9Ns7Jyk68QCFJh73yeQ6pJ7lbnmIfZxkg/Bm6gUZLNVA1F1cJV/SWAlCCANmH6f4BFrMDlKRRzijbENoEQhtiSRvEk17ONCgHHmm3TsatkfBa6IGF7lvogY0aOEiAKyu0lBQzjTHqdi+7SxAAfrh6eG8Cpup5qK6HJK2bzyity7IjgST53Hvmy+yeO8N4qU3K8UnYPmoQ9MwV9D6bMO2r66A5NrLn4ysxHC2NraWw9TSOlsLWk3RjabpGCltP4GhxPDWGLxsEaDhKDN0F+W9RYwMCHMDtTXr1JR9wCQIXVXJQ8JAlH0kGQ3ZISG2StEjTxJC6SOEUZiTJC8MQ/Rinu/fhenrv8318ugRBE/wuQWBDYAE+nn2MwCtdTd5F3LjKEw++kYXWELVmGq8Fkvc3T1hSAxTVR1E9VMVDln3k3oTSV5x3ALIUsG37AomETdxv8+3Nz6D7YYaqIIDAl5B8elUgeLmqB4AUlmnPJqi92Bf+lnJAUVHJprM0smlKKY81pc2K1qWseVQ1h7ph0TBatPUWwRWuHdlXMNwEmq+j+Bqqp6L6KpqvovoKii/TW7MVOQA5CHp/S+iexj2z+/H9ARxJQw580paNHFyYrQ9S4BMQ4MsSiT6LzIBNW/NYDCRKgcJZT2HBjlMONFq+hu0nCfwrtBGShaR0QHaQJA8kFyQPqff/xe9EQpYcMoXHMNR2mAErUC7+LxFmkZMllcO1t7K7eweSLF3Mz3PBQRsqGBTzxoWNr0xv1ZtAjwTyeAp567ce6nidHaz7gF8WQrzJNM07gQ9fmHPV238MeBswBzwD/CChg3XFYy4QOVibn0jvjSXSe2O5lfTeSlrh756DdcVY+A0TERERERHx9wrTNP8T8BBhMqn3AHcCNSHEo6ZpPgT8517RTwohfu1yxwghXtx45RERERERtyKvfWGjb41Lvbx1yRUjIiIiIiKuP0KIf3nJphfX7XsCeP2rOCYiIiIiIuJVcflk9TeOeWBo3fsRYGmDNURERERERERERERERNwQNtrB+gLwDoBeXPvCpZOGIyIiIiIiIiIiIiIiblVuRpr2KK49IiIiIiIiIiIiIuLvJJtuoeHXytXW1TJN8xHgPwIe8JdCiPffHJWbl2vY743ABwjtJ4B3CyH8myJ0k3Ktdd16ZT4AvF4IcXiD5d0SXKMObgE+AejAN4UQ/+jmqNy8XMN+7wF+iPAaflYI8bM3R2XE5Xg17cfNwDTNXwUeJJyn/QHgjYTz1Jq9Iv9FCPEZ0zR/EPhZwg7T3xFC/N5N0Ho38CngdG/TUeBXgT8EFGAR+GEhhLVJ9L4L+OF1mw4CjwN9wIVUxP9cCPGcaZo/D7yTsH78shDiLzdQ5+2Edv0NIcRv9triV2VT0zQ14OPABGHb82NCiLM3Qe/HAA1wgB8SQiyZprlI+DxzgW8jjOa62Xo/zKu8xjaJff8PMNDbnQe+CvwrQtu+1NteEkK80zTNLPAnQLZ3fj8ghFjjBnKZNuwbbHD93egQwetKb12tyd4aJu8GfvOSIv8N+F7gfuCtvbW3Inq8Cvt9FHiHEOJ+IA28ZYMlbmpehf3o1bmHNlrbrcKrsOEHgQ8KIV4HeKZpjm+0xs3M1exnmmYG+HngwV6K8b2mad57c5RGXMqraT9uBr2Otdt7ut4C/FcgRdjBdrj3+oxpmkng3wKPAIeBXzBNM38TJKeAP1un7WeAXwE+IoR4EDgP/Phm0SuE+J8XtALvA36/dw7fue4cnjNNcxvw/cADwHcCHzJNU9kIjT1bfRh4bN3m12LTHwCqvXbnPxM+4G603n8PfFQI8QbgUeCfmaYpEU5NObzu5W0Sva/lGrvpeoUQ71xXj58Ffrd3Dk+tO4d39or/LPClnt5PA794g/Verg3b8Pp7SztYhD0P/xdACHEc6Os9VGCa5nZgTQgx2xt1+UyvfMTLXNF+Pe4WQsz1/i4BhQ3Wt9m5lv0gdBB+aaOF3UJc7RqWCXugPt3b/x4hxMzNErpJuVodtHuvlGmaKpAAbmivYcRr4tW0HzeDJwhHTQAqQBLIXabcPcA3hBA1IUQHeJKwM3OjSV9m22F67QZhr/sjbB696/m3wPu5/Dm8EfisEMIWQpQIHwo3qpPYAr4DWFi37TCv3qbfRujUAHye0EncaL0/BXyy9/eF55ck4QjGpWwGvZerA5vZvgCYpmkCOSHE17n8OcAr9V6oOzeSy7Vhh9ng+nurO1hDhBfOBZZ5OUvhpfuWgOEN0nWrcDX7cWEBaNM0h4E3ARsWnnCLcFX7mab5o8CXCW+MEZfnajYcAGrAr5im+WXTND/Q64GMeJkr2k8I0QV+GThLWAe/Gq05uKm4avtxsxBCeEKIVu/tuwnb/TjwPtM0v2Sa5h/1enk3yz02BTxgmuZnTdN8otd7nRRCWJfo2ix6ATBN8xAwK4RYIjyHj5im+aRpmr9lmmaMm6hXCOH2HjjX81psenF7b4TIN01T30i9QoiWEMLrjfq9hzBELQUUTdP8M9M0nzZN85/0it90vT1tr/Ya2wx6L/BPCUe3IDyH3aZpfso0za+Ypvl9ve3rz+OG1+MrtGEbXn9vdQfrautqRWtuXZtr2sg0zSLw/wgTkpQ3StgtwhXt12scf4xwBCviylzrGh4Dfg94mHBx2O/YOGm3BFergxngXwO7gO3AvaZp7t9YeRFXYVPfo0zT/G7gXcBPA78D/GIvHOgEoeO+WfS/CPyKEOKthA9Tv0847+ZSXZtF7wXeTTjPA8IQpH9BGE6uEjoEm03v+u++lk03hfaec/WHwBeFEI8BbeC9wA8C3w78aG8O32bQ+1qusc2gl57T8YAQ4vHeplnCULy3914f6HXQr9e7YVovacM2vP7e6g7W1dbVunTfKOHEtoiXueq6ZL0HtM8C7xVCfGGDtd0KXM1+DxOOwDxJONR8V29Ce8QruZoNV4EZIcSZXi/SY8BtG6xvs3M1++0BzgohVoUQNmFdvHuD9UVcmU27LqRpmm8mDG1+ay985tF1o5+PAvvYJPdYIcQJIcSFMOJThDbMmaYZv0TXptC7jsPA0wBCiN8XQiwKIQLCsNFNY991tF6DTS9u7yUMkIQQzgZqvcDHgCkhxC9DGJXTmwNnCSGawF9zia1vlt7XeI3ddL093gAgVb7kAAADCElEQVR8/cIbIcS8EOJPhBC+EGKFcG7Wbl55HhtSjy9tw7gJ9fdWd7CuuK6WEOI8kDFNc2tv/sF39spHvMy11iX7IGHGmM/eDHG3AFerf38mhNgrhLiXsCfnm0KIn7t5UjctV7OhC5w1TXOyV/ZuXpn9KeLq1/B5YI9pmvFeaOVBYOqmqIy4HJtyXchexq//Qph0Ya237dPrEswcJswS9jXgkGmaOdM0U4RzF568CXp//EKol2maQ8Ag4YP19/aKfC/wuc2it6dzBGgKIWzTNBXTNB9bN//uMKF9vwi8zTRNvVd+FDh+M/T2+GtevU2/wMtzYL6LMEvihtLLDmcLId63btsdpmn+vmmaUu+58AHg2CbR+1qusZuut8chwhFkIHRqzHAppguJMQ4Ap3il3gt154ZxuTaMm1B//y6kaX/FulqEYUQ1IcSjpmk+RJgBBOCTQohfu0kyNy1Xsh/hxL4K8My64n8ihPjohovcxFyt/q0rsxX4uIjStF+Wa1zDO4H/DsQIb4T/WERLBbyCa9jvJwlDVV3gaSHEL9w8pRGXculvJzbBupCmaf4E8O8IH4wu8HvAzwCt3uvHhBArpmm+gzBTZQB8WAjxxxssF9M0+4A/Jpz/YRCGVj0P/AFhuzHd0+tsBr09zXcD/74X1ohpmj8E/ByhbeeBdwkh2qZp/gxhOFsA/JtemNtG6fsgsJUwxfl8T8fHeRU27YXm/S4wSZgg4UeFELMbrLcIdIF6r9hxIcRPmab564SOlQ/8PyHEf9gken+L0I7XvMY2id7vIbzWnhJC/K9eOZ2wc2MbYajrbwshPtZzXv6IMNFIlTBlfu0G6r1cG/YjhDbbsPp7yztYERERERERERERERERm4VbPUQwIiIiIiIiIiIiIiJi0xA5WBEREREREREREREREdeJyMGKiIiIiIiIiIiIiIi4TkQOVkRERERERERERERExHUicrAiIiIiIiIiIiIiIiKuE5GDFRERERERERERERERcZ2IHKyIiIiIiIiIiIiIiIjrxP8H8VnRkIOwkc0AAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "pm.traceplot(trace_1, var_names=['thetas__15_2']);" + "pm.traceplot(trace_1, varnames=['thetas']);" ] }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 32, "metadata": {}, "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 15, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAAD3CAYAAADBqZV6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXhT55k28PtoX23Jsryv4AVsCGHfQhK2QAhJ2hnSJFPSLJ35kqad6Te50k5IMpO2TNImHSYLST86SdOSZL5OE5oNwr6GACZsBgwY7zbeZMu2LMvaj878YWwwxkjCks6R9Pyuy1fQ0fbwRro5fs+7MBzHcSCEECIoIr4LIIQQMhKFMyGECBCFMyGECBCFMyGECBCFMyGECBCFMyGECJAkFC/S2dl3w/s1GjlsNlco3iomUHtcQW1xBbXFFfHSFkajdtT7InLmLJGII/E2UYPa4wpqiyuoLa6gtqBuDUIIESQKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIESAKZ0IIEaCQzBAkRChcHGD3sMOOqaRiyBmeCiLkJlE4k5hi97DYV9kx7NjCCSmQy2jGGYku1K1BCCECROFMCCECROFMCCECROFMCCECRBcECfGDRoAQPlA4E+IHjQAhfPAbztu3b8cbb7wx7Fh9fT1OnDgBjUYTtsIIISSe+Q3n5cuXY/ny5UO3t27dim3btlEwE0JIGAXVreFyufDmm2/i3XffDVc9hBBCEGQ4b9q0CdOmTUNOTk646iEk5BiGQY+bLuiR6BJwOPt8Prz//vvYsGHDiPs0GvkNN2QUi0XQ6VQ3V2EMova4ItRt0ddjR7PVhQvtfajptMHhZvHanhqIGQZahQSJSim0CgkmZyaiJD0BBUY1xhs1SFBKR31NR68TKqVs2DGFXApdoiJkdQP0ubgatUUQ4Xzq1CmoVCoUFhaOuM/fFuY6nQoWiz346mIUtccVoWyLZosDz225gIsmG6RiBvkGFRIVUuQmq9Fo7kefy4s+pxdmmwsVrVawPm7ouQa1DPkGFaZnJeK2cUkoTtGAYQZOrZ1uFnaHe9h7OV0eWCy+kNQ9iD4XV8RLWxiN2lHvCzic9+/fjzvuuCMkBRESanurOvGrHVUAgJWlqZiYqoFEPDDHam6hEUeqO4c9/o7iFLRbHWjqdqCp246mHgcauuz4r8ON+P3hRuTolXh0VjZWTEyJ+N+FECCIcK6srMSKFSvCWQshN+VYUw+e33IBJWla/OyuIlxotfp9jtvH4WJbHwDAqJbBqJbh2SWF8HlYHKrvxsenWrF2RxX+cKQRzywZ+dsiIeEW8PTt9vZ2JCcnh7MWQoLWZnVizeYLyElSYf2qyUhLGFs/sEEtw32T0vDh6ql447uTIBGL8PPPKnCkvhscx/l/AUJCJOAz582bN4ezDkKC5vSw+NkX58FyHP7j/lKoZRK4rxmVcbMYhsH8cUmYkpmAX+yowv5qM8z9bqwsTR3qiyYknGj6NolaHx5vxsUOG/7zO6XI0SvD8h4auQTPLyuCj/XhYF03FFIxlhTRb5Ak/CicSVQy21z48NglLC5KxoLxhrC+1+BZtNPrw7EmC1RSMRZNTA3rexJCS4aSqLThcCM8LIefLMiPyPsxDIPFRckoTdPi69ounGyyROR9SfyicCZRp6azH5sr2vG9qRnI0oWnO+N6GIbB3SUpSFJJ8R+7q2F1eiL23iT+UDiTqPP/DjVAI5fgidmhXUZgcJr3tT/sVYM0pGIR7puUhh6HB6/tqQnp+xNyNepzJoJ39WL3LRYHDtZ24bE5OUi8wZTrm+Hw+kZMVgEGJrFcLT1RgdWzsrGxrAmLioxYVEgXCEnoUTgTwbt6sfudlR1gGGB5adqIxYwADDvLDaeHpmfhUE0X3jxQh/n5SZBL6JdQEloUziRqOD0szrZaUZKmhVIuGbE7CTDyLDdcJGIRfjg/D2u+OIc/HbuE703PopXuSEjRP/ckapxptcLNcpiRo+O7FDi8PljtbhQkq/HB0UvYcqZ1xD6DhIwFhTOJCj6Ow4lLFmTrFEgf4xTtUFpUlAyvz4eDtd18l0JiDIUziQqN3XZYHF5Mz+b/rPlqBrUMt2Ym4nRLLzr6brx0LiHBoHAmUeFsWx8UEhEKjWq+SxlhTp4eAPDxiWaeKyGxhMKZCJ7d7UWVyTZsjWYhSVRKMTkjAdvOm2D2s/EEIYES3iedkGt8U9sFj4/DpIwEvksZ1dy8JLA+Dh8ep7NnEhoUzkTwdlV2Qq+UIjPEe/aFkl4lxaIiI/56ug0WO03rJmNH4UwErc3qxOnmXkzK0Ap+HeXvTc+Cy+vDZ2fb+C6FxAAKZyJo2y8MTDSZlC7cLo1BeQYVZuXosKm8FV42tJu/kvhD4UwEbW+VGRPTtNCFeB2NcHlwWiY6bG7sq+niuxQS5QIKZ5PJhMcffxx33HEH7rnnHhw7dizcdRGCZosDlR22sC+mH0rz85OQmajAX0628F0KiXIBhfNzzz2H22+/HQcOHMCLL76Ijz76KNx1EYJ91WYAwPwoCmexiMH3pmbgdKsVF0wDu3u7OIxYhtRFe8USP/yGc1tbG86dO4fVq1cDAObOnYs333wz7IURsqfKjImpGqQLeJTG9dw3KQ1KqQibylsBXFlV7+ofWoeD+OM3nCsrK5GVlYV169Zh2bJlWL16Nc6fPx+J2kgca7c6ca69LyrXStbIJVhabMTui2Y4KITJTfK7ZKjVakVVVRWefvppPPfcc/j444/xk5/8BDt37oREMvB0jUYOiUQ86muIxSLodKrQVR3lqD2uuLYtrE4P+l0sdly+oDavOAWMRASVUjbseRLxyGOjHR/LsWAeq5BLobt8lv/wnDx8WWHCkWYr5o4z3PCxg+hzcQW1RQDhrNVqYTAYsGTJEgDAAw88gFdffRUNDQ0oKCgAANj8TFnV6VSwWOwhKDc2UHtccW1b9LgHugA+P9WCFI0MFU09mFtohN3hHvY8L+sbcWy042M5FsxjXW4v6jsG+pmTFGJk6hT4qKwRt2QkjHis0+WBxTJ8uB19Lq6Il7YwGrWj3uc3nLOystDf3w+fzweRSASGYSASiSAS0Sg8Eh79bi+aLU7cNi6J71KCcu02VwXJahyo6UJjT+yHDAk9vwlbVFSEnJwcfPLJJwCAbdu2QavVIicntJtrEjKo1jwQZkJcgS4Yk9MTwADYWzlyX0JC/Ano9Pett97Cpk2bsHjxYvzxj3/EW2+9NdTfTEioVXfaoJVLkKqV813KmGgVEuQbVNhb2QGOo7FzJDgBJWxWVtbQmTMh4eT2+lDfZcek9ATBr6URiEnpWnxZYUJLrxNZOiXf5ZAoQh3HRFDKm3vhYbmo79IYVGDUQCpmcKHdxncpJMpQOBNBKWvohlTMIFcfG2eZcokI03P0qDT1UdcGCQqFMxEMjuNQVt+N/CSVIHc8uVm3FSTD5mbRbHHyXQqJIrHzDSBRr6qjH2abO2a6NAbNzNNDImKG1togJBAUzkQwDjd0AwDGJcdWOCulYoxPVqHSZIOPujZIgCiciWAcru9GgVENjTz2hmlOSNWi382iucfBdykkSlA4E0Hoc3pxttWKmbl6vksJi4JkNcQMg+rOfr5LIVGCwpkIwrGmHrAcYjacZRIRcpKUqDFTOJPAUDgTQThc3wONXIyJaaMvBBPtCpLV6LZ70NU/cnElQq5F4Ux4x3EcjjR0Y1aOHmJR9M8KHE3B5VEotXT2TAJA4Ux4V2u2o8Pmxrz82OzSGKRTSmHUyFBD/c4kABTOhHdHLg+hm5MXXUuE3oyCZDUuWRywubx8l0IEjsKZ8O5wfTcKktVRvwpdIAqMavg44ESThe9SiMBROBNe2VxelLdYMTcvtrs0BmUkKqCUilBW3813KUTgKJwJr8rquuD1cZiXH/tdGgAgYhiMM6hxoslCswXJDVE4E164uIH9ArefM0EpFSHHqEaPmwUbB3mVb1DB4vDQhBRyQxTOhBd2D4u9F0w4UN2JLJ0S31Sbsa+yAx5f7KdzvmFgV+myhh6eKyFCRuFMeNNt98Bi92Dc5bCKFxq5BOMMKpQ1UjiT0QW0wkxpaSmys7OHbt9yyy147bXXwlYUiQ+DkzFibRW6QEzL0eGLM21weFgopWK+yyEC5Dec+/v7wTAMtm/fHol6SByp67IjWSODTinlu5SIm56jx6ZTrTjZ3Iv5cXIxlATHb7eGzWZDQkJCJGohccTpYdHU40BhiobvUngxKUMLuURE/c5kVH7D2Wq1gmVZPPXUU1i+fDl++MMfora2NhK1kRh2pqUXrI9DUUrsLnR0I3KJGFOzEnGUwpmMwm+3hkKhwPLly/H4448jJycHH3zwAZ5++ml89dVXkEgGnq7RyCGRjN5vJhaLoNPF10WfG6H2AE41WyEVM8g3DqxzPEgiFkGllA17bKDHxvr8cLzmaMcVcikWTkjBr7dfhINhkJ6opM/FVagtAgjn7Oxs/PKXvxy6/eijj2L9+vVoaGhAQUEBAMBmc93wNXQ6FSwW+xhLjR3UHsCRui7k6JUQMwzsjitLaHpZ37DbwRwb6/PD8ZqjHXe6PLgldaBLZ9eZNtw3OY0+F1eJl7YwGkf/zTGgbo1Lly4N3WYYBj6fb+ismZBgXepxoLXXiXGG+BulcbXxBhWMGhmOUNcGuQ6/4Xzx4kU88sgjMJvNAICPP/4YaWlpw4bWERKMI0Mbucb3r60Mw2B2rn5gF5g4mHxDguP39HfmzJl47LHH8P3vfx8MwyAlJQVvv/02xGIam0luzpGGHmQkKpCkGtk/G2/m5Oqx5ZwJlR02zE+K798kyHAB9U089thjeOyxx8JcCokHLq8Px5ssWFaSyncpvGIYBj1uFkUZA8NU99d2YXIcrGdNAkfTt0lElTf3wun1YUaOju9SeOXw+rCvsgOnGnuQppVjT2UH+l0s32URAaFwJhF1qL4bMjGDW7IS+S5FMPINKrT0OtFPu6OQq1A4k4g6VN+N6dk6Wk/iKvkGFXwccOoS7Y5CrqBwJhHT1ONAU48Dt42jvtWrZeoUkIoZHGug3VHIFRTOJGK+qesCAMyncB5GIhIhR6/EtzTemVyFwplEzKG6buQnqZCZqOS7FMEZZ1CjxeJAs8XBdylEICicSUT0u70Dy2PSWfN1De6O8i0twE8uo3AmYefigL213fD6OEzJ1sXNXoHBSFJJkaqVo6yRLgqSARTOJOzsHhafl7dCLhGh0+qMm70Cg8EwDGbmJeFYUw+81DYEFM4kAnwch1pzP8YZVBCLGP9PiFOz8vSwuVica7PyXQoRAApnEnY1nf3od7MYH4d7BQZjWo4eIgY4Sv3OBBTOJAK+vTx+d3ycr0LnT4JSipI0LcoaqN+ZUDiTCDh6eRU6lYzWAPdndq4e59qtsDo9fJdCeEbhTMKq2+5GlclGZ80Bmpunh48DjjfR2XO8o3AmYXW4vhscgALqbw5IaZoWapkYZdTvHPconElYfVPXDYNahlStnO9SooJELMLMHB3KGnrAcTSkLp5ROJOw8bI+lDX0YFauHgxDQ+gCNTtXjzarC009NJU7nlE4k7A51dKLfjeLWXl6vkuJKnMutxcNqYtvQYXz/v37UVxcjObm5nDVQ2LIvuouyCUiTIvzXU+ClaVTIkunQBmtUhfXAg5nh8OBdevWQaejLxrxz8dx2F9jxtw8PS2sfxNm5+px4lIvPKyP71IITwIO5/Xr1+O+++6DWk1X3Yl/59r60GlzY2FhMt+lRKU5uXrYPSzOtNJU7ngVUDhfvHgRhw8fph24ScD2VZshETFYMM7AdylRaWauDlIxg69ru/guhfDE75QtjuPw0ksv4cUXX4RUKr3uYzQaOSSS0X91FYtF0OloEsKgWG8PjuOwv7YL88YbkJ2WgLZeJ1RK2bDHSMQiqJQyiETMsPsGj1/vsf6OjfX54XjNYB7LiBjotAOfCx2AeeOT8XVtN35x/6S4G+0S69+RQPgN57/85S8oKCjAjBkzRn2Mzea64WvodCpYLPbgq4tRsd4eVR02XOpx4JEZWbBY7HC6Wdgd7mGP8bI+2B1uqJSyYfcNHr/eY/0dG+vzw/GawT6/vqNv6Pa0rAQcqOrEoapOTErVjHjdWBbr35FBRqN21Pv8hvOePXtQUVGBffv2AQC6u7uxatUqvPHGG5gzZ07oqiQxY1+1GQyAOwqoSyMYDjeLg5UdQ7dZ1gcGwJ6L8RfOJIBwfvfdd4fdXrRoET744ANkZWWFrSgSvTiOw66LnZialYgk1chf8Ung1DIJsnQKHKrrwk9vz+e7HBJhNAmFhFRVRz8aexxYNsHIdykxoShFg/ouO238GoeCDue9e/fSWTMZ1Y7KDohFDBYVUTiHQlHKQHfGvmozz5WQSKMzZxIyPo7DjoudmJ6tAycWocfN0mauY6RTSlFgVGMvhXPcoXAmIXOmxYqOPhdStTLsq+wY+qHNXMfm9oJkVLT1oaWXujbiCYUzCZkdlR2QS0QoNNLIglC6s2hgluWuyk6eKyGRROFMQsLr47Cnyow5eXrIJfSxCqW0BAUmp2ux8yKFczyhbxEJiUN13ehxeLComC4EhsPSCSmo7uxHfVfsT8wgAyicSUhsrmiHQS3DrLwkvkuJSUuLksEA2HnVJBUS2yicyZiZ+934pq4L95SkQCyKrzUgIiVZI8f07ETsvNhJ21fFCQpnMmbbzpvAcsC9k9L4LiUmMQyDHjeL2wqS0dTjwLEWK1yUzzGPwpmMCcdx+LKiHVMyEpCXFN+riIWLw+vDvsoOcD4OIgb4oKwJdg/Ld1kkzCicyZicabWioduB++isOexUMjHyDSpcMPXBR10bMY/CmYzJ5goTlFIRltAojYgoSdPC6vTiQluf/weTqEbhTG6a3c1i18VOLC02QiWjfQIjodCogUTEYF8VjXmOdRTO5KbtruqE3cNSl0YEySUiFCSr8XVNF7w0LT6mUTiTm7a5oh25eiVuyUjgu5S4UpKmhcXhwYlLFr5LIWFE4UxuSkO3HeUtVtw3KS3u9rfj27hkFVRSMU1IiXEUzuSmbK4wQcwAK0pT+S4l7kjFIswfb8DeajNMDs/Q0qw09jm2+N2mihAXh2Hjar2sD1+dN2FefhKS1bQVFR/mjTdgV2UH/nS4YWgVwIUTUiCnC7MxI6Bw3rFjB373u9/B5XJBr9fjl7/8JYqKisJdGxEIu4fFvqt+ha7qsKGr3437J6fzWFV8m5KVCIVUhPPtNlqiNUb57dZobW3FSy+9hN/97nfYvn07li9fjueffz4StRGBOt1iRZJaivnjaJEjvkjEIkxI0aC60wYP6+O7HBIGfsNZIpFg3bp1yMzMBADMnTsX9fX1YS+MCFOf04tacz/umpiKPq9vqL+TtqSKvJI0LTwshxpzP9+lkDDw262RkpKClJQUAIDX68Vnn32GxYsXh70wIkxn26zgANxZbBzW1TFobiHNFIyUbL0SapkYF9r7MDFVy3c5JMQCHq2xceNGzJ8/H8ePH8ezzz4bzpqIQHEch9MtVuTqlchIVPJdTtwTMQwmpmpRY7bD5aWFkGJNwKM1Hn30UfzgBz/AV199hYceeghbt26FQqEAAGg0ckgko18lFotF0OloxbJB0dYejl4nVEoZ6jptsDg8WDIxBRKxCCrlyJEa1zt+o2MiETPsvmCfP9b3D/drBvNYhmGCfv7UXD2OX7Kg0eKCQi6FLlEx4vnRKNq+I+HgN5xra2thMpkwb948MAyDlStXYu3ataivr8fEiRMBADab64avodOpYLHQ9jqDoq09nG4WdocbR+u7oJCIkKdTwMv6YHe4Rzz2esdvdEyllA27L9jnj/X9w/2awTyW47ign29QiJGokKD8Ug+cLg8slti4OBht35GbZTSO3h3lt1uju7sbP//5z2EymQAAJ06cgMfjQXZ2dugqJIJnd7O4aOpHaboWUjHNXRIKhmEwMU2L+i47rA4P3+WQEPJ75jxz5kw89dRTePzxx+Hz+SCTyfD6669Do6GxlfHkXHsfWI7DlMxEvksh15iYqkFZQw++qe1C7rRMvsshIRJQn/Pq1auxevXqcNdCBGrgQmAv0hLkSNXK+S6HXCNVK0eSSor91WZ8n8I5ZtDvp8Svqg4bOm1uTKHV5wRpsGvjdHMvzH6u/5DoQeFM/Np2zgSJiEFJGo2lFaqSVA04AHuqzHyXQkKEwpnckMvrw4FqM4pTNFBIaVEdoUrWyJFnUGE37ZASMyicyQ0drO1Cv5vF5Aw6axa62wuSUd5iRUcfdW3EAgpnckNfnTfBoJYhNym+JwREgzsKDQBAZ88xgsKZjKrb7saRhh4sLjZCRLudCF62XoVCoxq7L1K/cyygcCaj2lnZCdbHYfEEWswoWiwtNuJsmxXtViffpZAxonAmo9p63oTiFA3yDWq+SyEBYBgGM/MH1tjefKGDtq+KcrRNFbmuWnM/Lphs+Oc7x/FdCgmQw+tDVXsf0rRybD7TBoNSCoC2r4pWdOZMrmvr+Q6IGWDZhBS+SyFBmpCqQZvVBQuttRHVKJzJCKyPw/YLJszNT4KBNnCNOhMuL7xfabLxXAkZCwpnMoyLAw7Ud6PD5sYdRUbaeioK6VVSpCfIccHUx3cpZAwonMkwdg+LD482QS4RweX2Yl9lBzw+SudoMzFVi3arCz32ketDk+hA4UyGcbhZXOywYWKqhtZtjmITUgeW9KWujehF3z4yzKG6LnhYDpPSaQW6aJaolCIjUYELFM5Ri8KZDLPzQgd0SimydLGxF108m5iqganPhRaLg+9SyE2gcCZD2qxOlDf3YnK6FgxN1456g10bB6ppOnc0onAmQ746N7BP5CRaVD8mJCikyExU4GsK56gUUDjv2bMH999/P+6++248/PDDqKqqCnddJMI4jsNX502YkpUI3eWZZST6TUzToq7Ljoau2N/JOtb4DWeTyYTnnnsO69atw7Zt27By5Ur827/9WyRqIxF0usWKZosTd9GMwJgyIUUDBsAuWkY06vgNZ4lEgnXr1qGgoAAAMH36dNTU1IS9MBJZW86ZoJKKcVuBge9SSAhpFRKUZiRg90UK52jjN5wNBgNuv/32odtff/01pkyZEtaiSGQ5PCx2V3VicVEylLQVVcy5oyAZdV121Jr7+S6FBCGoC4JHjhzBxo0bsWbNmnDVQ3iwr9qMfjeLlZNS+S6FhMGCAgMYADvp7DmqBLxk6O7du7F27Vps2LBhqItjkEYjh0Qy+hmXWCyCTkfbHA0SWnvsuGhGtl6JO0vSYepzQaUcvtiRRCwK6Fgwjx08JhIxw+4L9vljff9wv2Ywj2UYJizvn5GkxvwCA3ZUduBf7p4IkUj4wySF9h3hQ0DhfPjwYbz88st4//33MX78+BH322w33lBSp1PBYqGrxYOE1B5tVieO1HXhH+blwmp1wOlmYXcMX4/By/oCOhbMYwePqZSyYfcF+/yxvn+4XzOYx3IcF5b3d7o8WFZkxL/WdGFvRRtm5OhGPEZohPQdCSejcfSNk/12azgcDqxZswbr16+/bjCT6Lb1vAkcgHtKqEsjlt1ZYIBaJsaW8ya+SyEB8nvmvGfPHnR3d+PZZ58ddvyjjz5CcnJy2Aoj4cdxHLacM2FGdiIyEmm6dixTSMVYUmzEzsoO/HxRAVS0M4rg+Q3nlStXYuXKlZGohUTYqZZeNFuc+OGcHL5LIRFwb2kqvjjbjr3VnVhZmsZ3OcQPmr4dxz493QaNXIwlRbS7djy4JSMB2ToFNldQ10Y0oHCOU912N/ZUmXFPSSoUNLY5pjEMgx43C4vHhyUTUnCyuRfVNJ1b8Cic49RnZ03w+jgsLUlFj5sd+qEtqWKPw+vDvsoO7KvsgFYmhogBPilv4bss4geFcxzycRw+P9OKHL0StR22oS8ubUkV+9RyCSakarDzfAccHpbvcsgNUDjHobKGHrRbXZialch3KYQH07J06Hez2FnZwXcp5AYonOPQJ+Wt0CmlKE7R8F0K4UGWToE8gwqbytvAcfSbklBROMeZhm47vqnrxr2T0yCOgmm8JPQYhsG9k9NQ2WFDRVsf3+WQUVA4x5n/OdkCmZjBysk0zjWeLSlOQYJCgg+PN/NdChkFhXMcsTg82HLOhOUTU6BXjVwgh8QPpUyMVVPSsb/ajIZuGlYnRBTOceSzM21weX14eHoW36UQAXhwWiZkEhH+m86eBYnCOU64vT58Ut6K2bk6FCSr+S6HCECSSoaVpan46rwJZj8rS5LIo3COE5vPtaPT5sYjM7L5LoUIyOoZWWB9HP58kialCA2FcxzwsD786eglTE7XYlau8NfyJZGTpVNiabERn5S3ots+ci1owh8K5zjw5TkT2vtceHBGNiweH03TJsP8w9xcuLwD/4AT4aBwjnFe1oc/HW1CWoIcNoebpmkTAFcWQ+pxs0jQyLF0Qgr+eroVpj7qexYKCucYt/V8B9qtLtyWnwSGoUknZMDViyHtq+zAOIMKPg54v6yJ79LIZRTOMczpYbHhcAOKUzUoMNIIDTI6nVKKu0vT8EVFOyo6bMNWKnTRL1m8oHCOYR8db0anzY0nb8uns2bi16rpmRAxwK93XBx2Vm2n1et4EVA4ezwevPrqqyguLkZ7e3u4ayIhYO5344Njl7CwMBmTMhL4LodEAb1Khrl5Sajq6EcTzRrkXUDh/PTTT0OhoA1Ao8nvDzXAzXL4yYJ8vkshUWRWrg5auQR7qsy0Yh3PAgrnH//4x/jpT38a7lpIiJxpteKLs+14cGoGcvRKvsshUUQqFuHOQgPa+1y0Yh3PAgrnW2+9Ndx1kBDxsj68sqsKRo0M/2deLt/lkChUmqZFeoIc+6rNcFJ/M28koXgRjUYOiWT0TULFYhF0OlUo3iomhLM9NhyoRa3Zjg1/Nw2ZKQN9zY5eJ1TK4avQScSiEcdGOx7osZt5vkjEDLsv0u8f7tcM5rEMwwji/wkA3H9rJn7/dR3Kmiz47owc6BIj261JmRGicLb5WTRFp1PBYqELDIPC1R6N3Xa8vb8WiwqTMT1dM/QeTjcLu2P41Fwv6xtxbLTjgR67meerlLJh9yGNB0gAAA0lSURBVEX6/cP9msE8luM4Qfw/AQC9XIwpmQkoq+/GhRYLlFxkLyrHS2YYjdpR76OhdDHCy/rwr1sroZCI8Oyi8XyXQ2LAHQXJkEtEWH+gDj66OBhxFM4x4r+ONOKCyYafLy2CRCYZNomA1tEgN0MlE2NhQTIqWq34/CwNoY00v90aZrMZq1evHrr9yCOPQCwWY+PGjUhNTQ1rcSQwJ5st+NPRS7h/Uhpm5umx75pdlecWGnmqjES7KZkJaO1z4a0DdbgtPwkpWjnfJcUNv+GcnJyM7du3R6IWEgQXB9g9LLr73Viz5QLSExV4Yn4enSWTkGIYBv934Xg89edyvLanBr+9v4Rmm0YIdWtEKbuHxe7zJvzs0wpYHV7cPTEFZXVdtNocCblMnRJPzsvFgdoubLvQ4f8JJCQonKPYvmozLlkcuLskhX7dJGH18PQsTM1MwKu7a9BscfBdTlygcI5S286ZcKzJgunZiZiUTmtnkPCSiBj8asUESMQMXviqEh7Wx3dJMY/COQodbezBW/trkW9QYUkRXewjkZGWoMALdxXhfHsf1n9dz3c5MY/COcrUdPbjX748jxy9Et+9JQ0iEV2cIeF19a4pU3P1+M6UdPz5ZAs+KW/lu7SYFpIZgiQyGrvt+PGmM1DJxFh7bwnOtfTyXRKJAw6vD0eqO4duFxvVmJOvx3/srUGaVo4F4w08Vhe76Mw5SrT2OvH0J2fAccA7q26hC4CENyKGwZplxShO0eD5LRdQ1tDNd0kxicI5CjR22/HUx6fh8Pjw9qrJyDfE94IwhH9KqRivf3cSsvVK/PNn57CzkobYhRqFs8BdMPXhH/7nNJweH955YDKKUjR8l0QIAMCgluH335uCyRkJePGrSvyhrBEsjbMPGQpnATtQY8ZTfzkDhVSEdx+agompo69gRUgkDV4k9IoY/OreibizKBkbDjXiR5+cQbvVyXd5MYEuCAqMiwP6XF58+G0T/v+xZhSmqPHa/ZOQlUB9zEQ4rr1IODtHhxk5erxzoA4PbTyBx2fn4KFpmZBL6PzvZlE4C0xdVz/+9cvzaOxx4JaMBCybYIRGKUWPe/iOFLSGBhEShmGwdEIK5uXq8Pr+Orx9sB6fnmnDT2/Px8LCZFqP4yZQOAsE6+Pw+dk2vHmgDqwPWFGSglsyEsAwzIizFIBWmiPCwzAM1CoZXlwxASebLNjwTT3+ZfMF3JqViGfuHEfdckGicBaAk80W/Oe+OlzssGFqViLm5umRqJTyXRYhQbn2JOLBWzNQ3tKLsoYe/OCjU7htvAGPzM5GvkENlVQMOZ1M3xCFM4/Km3vx/tEmHGnoQapWjpfvmYAZ+UnYf7HT/5MJETiRiMG0bB0em5+Pd/bV4NuGHnxT24WSNC1+trQQk2jk0Q1ROEeYw8Ni98lm/HdZEyrarEhUSvHE3Fx8Z0o6FFIx9SWTmKOWS7BgvAHTs3X4trEHx5ss+OFHJ7G02Ii/m56FkjTq7rgeCucQG1wEf9gxD4uTjT34urYLR+p7YPewyNYrsaTYiFszEyAVi3CktgsA9SWT2KWSiXFnYTJm5ujQYnVh+3kTdlR2YnJ6Au4pTcGSIiN1512FwjnE+lxe/PVkM9p6nWi1unCpxwFz/8COxga1DMsmGvHgrFzoFWLqviBxSS2X4MkFGfjJbXn4sqIdX5xtx2921+C3e2sxKV2L6Tl6zBpnQFaCHDKJKG77pwMK5yNHjuC1116D3W5HRkYGfv3rXyMtLS3ctQmeh/WhvsuO6s5+VHf2o7KjD+fb++DwDKx1K5eIkJmowH23pOP2fD0mpmkhYhjodCrUd/TxXD0h/NLIJfi76Vl4eFomqjr6sfm8CfuqOvH+kUa8f6QRIgZI0cgxI0+PqRkJKE7RID9JBVmcjJ32G852ux3PPPMM3nvvPZSWluIPf/gDfvGLX2DDhg2RqI9XHMeh382i0+ZGq9WJ1t4rP009DtR324emq8rEDAqMGiydkAKfj0NGogJJKikYhsHCCSnQy8Q8/20IEY7BGYaDUvRKPDYvD+MMKthcXpgdXjR02tBqdWJvZSe2XN79WyxikJekRKFRg8JkNQpT1ChMVsOglsXcWGq/4VxWVobs7GyUlpYCAB566CG8/vrrsNls0Gii52or6+Ngd7Owub3oc3ov/5dFv9sLm8uLXocXXXY3uvqv+rF74PIO3/FBJmaQnqBAtl6J28YlodCoRqFRg2y9EhLRwAfu2t2vr/0gOnqddOGPxLUbjd3XyCVI0amQp1MAAO4oNqLP5kZVpw3Vnf2oMffj5CULtl+1n6FaJkaWXokcnRLZOgUydUoYNTIkKWXQq6TQq6SQiqPrjNtvODc0NCA7O3votlqthk6nQ1NTE0pKSsZcwN6qTjRbnGA5DhwH+K76rw+Az8fBxw2cxfouH3ezPri9Pri8PrhZH5ze4bddg3++/F8X6wtoQRadUooklRSJKikmpidAr5IiSSWDUStHslqGtAQ59GoZRAwDmUQMt/dK4PZdDvHrhe61H0SVUoYpWYljbjtC4oFYJEKiVo6ZWjlmjhtYO5rlgB0Vbejsc8Fkc6Pb7oaIYXDB1Ie9VZ3X/R6qZWKoZGIopYM/omF/lohFkIgYiBkGYhEz8OerfiQiBiKGweD5+eCJ+qxcPYrDMCyQ4Tjuhqn1zjvvoKWlBa+88srQscWLF+PVV1/FjBkzQl4QIYSQAFalU6lUcLlcw445nU6o1eqwFUUIIfHObziPGzcO9fVXNnPs7u5Gb28vcnNzw1oYIYTEM7/hPHv2bLS3t+P48eMAgA8//BALFy6ESkW7cRBCSLj47XMGgKNHj+Lll1+Gw+FATk4OfvOb38BoHDmTLZDx0N9++y1++9vfoq+vD0qlEs8//zxmzpwZur+RQAQzNryyshJ/8zd/gz/+8Y+YPXt2hCsNv0DaYunSpeA4DhLJwDXq1NRUbNy4kY9ywyqQtrDZbHjhhRdQXl4OmUyGZ599FsuWLeOp4vDy1x6nTp3CmjVrhj3n0qVL+PTTT1FcXBzpciOLC5H+/n5uzpw5XEVFBcdxHPfee+9xTz755LDHOBwObtasWdzZs2c5juO4Xbt2cfPmzeN8Pl+oyhCEQNpiEMuy3IMPPsjdfvvtXFlZWSTLjIhA22LWrFmcyWSKdHkRFWhbvPDCC9zatWs5n8/H1dTUcKtXr+Y8Hk+kyw27YL4ng8rLy7m//du/jbnMuJ6QhfOePXu4Bx54YOi2zWbjSktLub6+vqFjVquV27Vr17DHFBUVcRaLJVRlCEIgbTHoo48+4l566SVu9erVMRnOgbZFSUkJ53A4Il1eRAXSFi6Xi7v11ls5s9nMR4kRFcz3ZNADDzzAHTt2LBLl8S5ko7JvNB56kFarxZIlSwbP2LFp0ybMmDEDiYmxNeY3kLYAgM7OTnz44Yd45plnIl1ixATSFna7HSzLYs2aNVixYgW+//3v4+TJk3yUG1aBtEVDQwPkcjk+/fRTrFixAqtWrcLhw4f5KDfsAv2eDNq/fz/kcnncDOEN2cJHDocDcvnwfe7kcjnsdvuIx27fvh1r166FVqvF22+/HaoSBCPQtnjllVfw9NNPIyEhIZLlRVQgbeHz+bBq1So8+OCDmDx5MrZv344f/ehH2LlzZ0z9wx1IW1itVvT19UEul2Pr1q04ePAg/umf/gm7d++GTqeLdMlhFUxmAMB7772Hv//7v49EaYIQsjPnYMZDL1++HIcOHcJLL72ERx99FJ2dsbU6WyBtcfDgQVgsFtx3332RLi+iAmkLjUaDf//3f8fkyZMBDHw+UlJSUF5eHtFawy2QttBqtWBZFg8//DAAYMGCBUhPT8fp06cjWmskBJMZ7e3tqKqqwoIFCyJVHu9CFs6BjIdua2vD7t27h27PnTsXqampMffBC6Qtdu3ahfPnz2P+/PmYP38+Tp06hX/8x3/E559/zkfJYRNIW9jtdtTV1Y147uDIjVgRSFukp6dDJBKhv79/6JhYLIZIFF3rQgQimDkU+/fvx/z58yEWx88CYiH7Px7IeGiPx4PnnnsO1dXVAAb6nBobG1FQUBCqMgQhkLb41a9+haNHj+LQoUM4dOgQpk6divXr1+M73/kOX2WHRSBt0dXVhYceemgooA8dOgSz2YwpU6bwUnO4BNIWCQkJWLRoEd5//30AwOnTp9HS0jL0W0UsCWYORWVlJcaPHx/pEvkVyquLZWVl3L333sstWbKEe+KJJ7iOjg6uvb2du+eee4Yes3XrVm7lypXcsmXLuOXLl3N//etfQ1mCYATSFleL1dEaHBdYW2zZsoW7++67ubvuuot74IEHuBMnTvBYcfgE0hY9PT3cE088wS1cuJC79957uYMHD/JYcXgF+j158sknuT//+c88VcmPgCahEEIIiazY68gihJAYQOFMCCECROFMCCECROFMCCECROFMCCECROFMCCECROFMCCECROFMCCECROFMCCEC9L8hX9+civeC0AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAAD3CAYAAADBqZV6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxTdb438M852dOkSZd0b4HutEBZRURA9sqijqDiiKPoc6/KjOMdrzMP6n3GcRwd8RmecR/vlZFBmXFBcQGhIvuOskNLV1romq5pm2ZPzvNHoVJaSNomOSfJ9/169UV7ck7z4ZDz5eSX38JwHMeBEEKIoLB8ByCEENIXFWdCCBEgKs6EECJAVJwJIUSAqDgTQogAUXEmhBABEnvjlzQ1dXrj1wieSiWD0WjlO4bg0XnyDJ0nzwTzedLp1Nd9jO6cB0AsFvEdISDQefIMnSfPhOp5ouJMCCECRMWZEEIEiIozIYQIEBVnQggRICrOhBAiQFScCSFEgKg4E0KIAHlUnL/44gssWLAAt99+O1asWIHKykpf5yKEkJDmtjhXVFTgtddew7p167Bt2zbMmzcPzz33nD+yEeIXVg5oszl7fVlpCQrCM7fDtysqKjB8+HDExsYCAG6++WasWbPG58EI8ReT3YndxY29ts3MjoFMGpoj04gwuL1zzsvLw6VLl1BaWgqO47B9+3bccsst/shGCCEhy+2dc2xsLJ5++mncddddUKlUkMvl2LBhQ699VCpZSIx/F4lYaLVKvmMIXqCdJ3O7BUqFtNc2uUwCrUbu0+cNtPPEl1A9T26Lc1FREf72t79hx44dSEhIwNdff40nnngCW7ZsAcMwABC0M0ZdS6tVwmAw8R1D8ALtPFlsTpjMtt7brHYYDC6fPm+gnSe+BPN5GtKsdIcPH8a4ceOQkJAAAFiwYAHKy8vR1tbmvYSEEEJ6cVucR4wYgZMnT/YU471790Kn0yEiIsLn4QghJFS5bdaYNWsWCgsLcd9994FhGKhUKrz++us9TRqEEEK8z6OVUJ588kk8+eSTvs5CCCHkMhq+TQghAkTFmRBCBIiKMyGECBAVZ0IIESAqzoQQIkBUnAkhRICoOBNCiABRcSaEEAHyaBAKIcGkocOCveUtCFeIceuIKICl0a5EeKg4k6Bk5bon0b/aheYuvLevEqdq23u2iVkGU1MjMTFFC6mI3kgS4aDiTILStaubXGjuwpdnGqCSi/DE1OGYm6WDwWzHjtImfHKiFhdbTVg6NgESKtBEIKg4k6B3tq4D3xbpoQuT4vV78hCt6p5YXxUmxcPRYUiIUOIvO8rw5Zl6LMlLgIiaOYgAUHEmQa2yxYRvi/QYFqHA3XkJUCkkfdYLnJ6pQ2FtO7adb8SBCy2YkR7NU1pCfkLv4UjQaumy4csz9YgOk+LuvATIxNd/uY9N0iA3Xo2jVQa0dtmuux8h/kLFmQSlTosDn52sg4hlcM/YGxfmK2ZlREPEMvi+pAkcx/khJSHXR8WZBB2O4/B/d5Siw2LHkrx4aBQSj45TycSYlhaJCy0mHKls9XFKQm7MbZtzQUEBXn/99V7bKisrcfz4cahUKp8FI2SwNhyrwZHKNszJ0iFJqxjQsROStThd24H3D1ZhfqaOPhwkvHFbnPPz85Gfn9/z89atW7Ft2zYqzESQTte24539lbg1LQoTkzUDPl7EMrg1NRJfnW3A3vJmzMrU+SAlIe4NqFnDarXijTfewG9/+1tf5SFk0NpMNjy35TziNXL85+z0Qa9zmRWrQoJGjn/8UE1tz4Q3AyrOn3/+OcaPH4+UlBRf5SFkUFwch99vLYHBbMeri3IQJht8L1GWYXDv+ESc1xvxwyWDF1MS4jmPX8EulwsffPAB3nvvvT6PqVQyiMUirwYTIpGIhVar5DuG4Pn7PHVY7HhvTwWOXGzDM3MzkRIXDqvTCaVC2mdfsYjts72/bbNTo/CvYzX414k6zM9L9Eluej15JlTPk8fF+eTJk1AqlcjIyOjzmNFo9WooodJqlTAYTHzHEDx/n6dtJU34+8Eq5MapIeZc2Ha6FlMydDCZ+/ZXdjhdfbb3t83ldGLZuAS8ua8SR0r0yI5Vez03vZ48E8znSae7/uvK42aNPXv2YMaMGV4JRIi3XGjpwqvflSJOLcPtOTGDbmfuz12j46GQsPjsZJ3XfichnvK4OBcXFyMtLc2XWQgZEIPZjv/8qhAyCYslY+O9PmmRWi7GgpxYfFfcCIPJ7tXfTYg7Hr+aGxoaEB1Ncw4QYTDZnPiPTefQ2GnF7xdkI1zu2UCTgbpnbAJsTg5fna33ye8n5Ho8Ls6bN2/GtGnTfJmFEI/YHC787ptCnNd34pVFI5EbH+6z50qLDsPEZA2+OF0Ph4u61RH/oeHbJKBYHS48t+U8jl404Pl5mX6ZQe7ecYlo6LRif0WLz5+LkCuoOJOA0WVz4D++PIe9FS14ZmYa7hgV55fnnZYWhVi1DJ+dog8Gif9QcSYBwWC2Y+XGszhZbcAf8rNw33jf9D3uj5hlsDQvHscuGVDR3OW35yWhjYoz4Z2VA9pszl5f1quadxs7rfj3T0+jvMmI1XfkYmFurM8zMQzTK89t2TGQiBh8QnfPxE9oJRTCu2vX+wOAmdkxkElFuNRmxq8+P4MOiwNvLhmNCclav2QyO1w4XNbUa1t2rAoFRXo8NW0EVEMYHk6IJ+jOmQhWaaMR//bJKZhsTrx7zxi/FebrmZCshcXuwuZCPa85SGig4kwEqbCuA499dhpilsH7y8YiJ877w6cHKj5cjpw4NTaerIWLZqsjPkbFmQhOY6cVz39TBI1CgjVLRkOrlqHN5kSXq2/bdJvNCacf6+SdefGoNlhwpKrNf09KQhI1nBFBMVod2HiqDnKpCHeNjkNRXQeK6joAAFMydH3aga9s95dp6dH47/2V+OfxWoxM7J7MXykRQUYLphAvoztnIhh2pwsbT9bBbHfi9wtH+mxI9lA4OCAnTo0fLrbhixM12F3cCJPdyXcsEoSoOBPB2FfRgoZOK+4cHYfU6DC+41zX2EQNWAY4Ud3OdxQSxKg4E0Go77Dgx4sGjEsMR4ZO2OtTquViZMWocKauAzani+84JEhRcSa8czhd2FbUiDCpCLdlBMbMhxNTtLA6XCis7+Q7CglSVJwJ7748XQ99pxXzRsZALgmM5c4SNXLEqmU4Xm2gRWCJT1BxJrwy2Zz45HgNUqOUyIoRdnPG1RiGwYRkDZqMNpyp7eA7DglCHhVnvV6PFStWYMaMGVi4cCF+/PFHX+ciQai/OTT+ebIWnRYHbk2N5DvegOXEqSGXsPj6DE3ET7zPo37Oq1atwvTp07Fu3TocPnwYGzZswKRJk3ydjQSZa+fQcDhd+NcP1RiTqEGiVsFjssGRiFiMTdTg0IUWNHRYEBcu5zsSCSJu75zr6+tRWFiI5cuXAwCmTJmCN954w+fBSPA7W98Jo82Jeyb4b/pPbxuX1D0Q5YvTdPdMvMttcS4uLkZSUhLWrFmD+fPnY/ny5SgqKvJHNhLEXC4OR6pakaCRY8zlkXaBSKuQYPLwSHx1tgFWB3WrI97jtlmjo6MDpaWlWLlyJVatWoXPPvsMv/rVr7B9+3aIxd2Hq1QyiMWB8Sn7UIhELLRaJd8xBO9658ncboFSIQUAlOo7YTA7MD83DhKxqGf7FWIR69E2X+07kOPvnZiM32w8jYPV7bh7nOfvAuj15JlQPU9ui7NarUZUVBTmzJkDALjnnnuwevVqVFVVIT09HQBgNFp9m1IgtFolDAYT3zEE73rnyWJzwmS2AQB+qGyFQiLCMI0cDqerZ/sVnm7z1b4DOf6mFA1GRCrxj4OVmDlcC4bxbKINej15JpjPk053/dkW3TZrJCUloaurCy5X91s2hmHAsixYlnrhkcEx2ZwoazJiVLwaIjbwZwxiGAb3jEvAeb0R52hQCvEStxU2MzMTKSkp2LhxIwBg27ZtUKvVSElJ8Xk4EpwKGzrg4oC8xHC+o3gFwzC4JT0KSokIG07U9llmi5DB8Oj2980338Tnn3+O2bNnY926dXjzzTd72psJGQiO43CmtgPx4TLoVDK+43iF2eHC0QutyIlTY09pEzafrqOZ6siQeVRhk5KSeu6cCRkKfacVjUYb5mf7bw5mfxmfrMGxagNO1bZjcV4C33FIgKOGY+JX5+o7IWIYQSw75W1RYVKMiFLiZE07HDRbHRkiKs7EbziOQ2mjESOilAEzwdFATUjWwGh14uCFVr6jkABHxZn4TVlTF9otDmTFBs4ERwOVFh0GrUKCr8/U97veIX1QSDxFn+oRvzlQ3gKGAdIFvMrJULEMg/FJGuwqa8YnP1YjVt37Q8+Z2TGQSYPzXQPxLrpzJn7BcRwOVDRjWIQCyiAvTmMSwyEVszhRbeA7CglgVJyJX1xoMaHGYAmoOZsHSyER4da0KBQ1GGkZKzJoVJyJX+wuawYDIDMEijMAzBkZA5vThWK9ke8oJEBRcSZ+sausGTnxaqhkofExR258OCKUElolhQwaFWficzUGM8qaunBrWhTfUfyGYRjkJYSj2mBGa1ffCZQIcYeKM/G53WXNAICpIVScAWBUfDgYAGfq6O6ZDBwVZ+Jzu8uaMTJWFXLLOKnlYqRFh+FsXQdctEI3GSAqzsSn9J1WnK3vxMyMaL6j8GJ0ghpGmxMXW4NzPmLiO1SciU/tLe9u0gjV4pweHQaZmKV5nsmAUXEmPrWrrBkjopQYHhl6ywwB3ctaZceqUNpIfZ7JwFBxJj7TZrLhZE07ZoXoXfMVo+LUsDk5lDV28R2FBBAqzsRn9pa3wMUh5ItzcoQC4XIxChuo1wbxnEcjAnJzc5GcnNzz85gxY/Daa6/5LBQJfFYO2F7ajPhwOaI1crTZnHCGaIcFhmGQG6fGkYttaDPZECFV8B2JBAC3xbmrqwsMw6CgoMAfeUiQaDRacfxSGyalRGBPSRMAYEpG8K1+4qnceDUOV7Vhb1kzUicluz+AhDy3zRpGoxHh4cGxECfxn6NVrXBxQFZM8E4POhA6lQyxahl2Xv6PihB33Bbnjo4OOJ1OPP7448jPz8ejjz6KiooKf2QjAexAeQvUMjESNKE18ORGcuPUKNEbqc8z8YjbZg25XI78/HysWLECKSkp+PDDD7Fy5Up8++23PStwq1QyiMXBPUcvAIhELLTa0OwSNhBWpwvHLhkwNlmLMOVPk82LRSyUCmmf/fvb7uk2X+3ri+MnjIjE7rJm7K5sw3+kRtPryUOhep7cFufk5GS8+OKLPT8/9NBDeOutt1BVVYX09HQAgNFo9V1CAdFqlTAY6K7HnSO1HbA6XEiLVMBk/mnSH4fT1evnG233dJuv9vXF8WIAY5M1+PJkLR4an4CIiDB6PXkgmK87ne76Cx171KxRXV3d8zPDMHC5XD13zYRcq6CwARq5GMla6pVwrTlZMahrt9BkSMQtt8W5pKQEDz74IJqbu4fhfvbZZ4iLi+vVtY6QK0w2J3YVN2FaRjRYluE7juBMTYuETMxi2/lGvqMQgXN7+ztp0iQ8/PDDeOCBB8AwDGJiYvD2229DJAr+NmYycHsrmmG2OzErU4emDgvfcQRHKRVjRloUdpQ0wU7DuckNeNQ28fDDD+Phhx/2cRQSDArONyJBI0dOvBp7qTj3a/7IGGwvacLBihaMpa6G5Dpo+DbxmlaTDUer2rB4TDxYhpo0rmfK8AiEy8XYfLqO7yhEwKg4E6/ZUdIMJwcsHpPAdxRBk4hYzMqIxo7iRljsTr7jEIGi4ky8puB8I9KilciKu373INItf2QMTDYn9lW08B2FCBQVZ+IVF1tNOFvfgfzsGL6jBISxiRrEqmX4rpiGc5P+UXEmXvHlmQaIWAaLcmP5jhIQRCyDhaPjcaiyFR0WO99xiABRcSZDZnW4sKWwAdPTohCtkrk/gAAAFo+Jh8PFYVdpM99RiABRcSZDtrusGe0WB+4eE8d3lICSmxCOlAgFviumASmkLyrOZMg2nalHokaOm4ZF8B0loDAMg/nZOhyvbkdTiMxPQzxHxZkMSWWLCSdr2vEz6ts8KPOyY8AB+LpQjzabs+fLGqKrxpCf0OxFZEg+O1kLMctg8Sj6IHAwhkcqka4Lwzdn6hGpkPRsn5kdA5mUpkgIZXTnTAbNYLJjc6EeC3JiEKnsO/cx8cysTB3qO6xo7eo7RSkJXVScyaBtPFUHq8OF5RNphsKhmJHZvTp5UUMnz0mIkFBxJoNisTvx2ak63JoaiRFRobdKxWAxDNPTrlzfbkGbzYnIMBlSIhQobOgEx1FjM+lGbc5kULYU6mEw2/HgpCRYOcB01RwR5nYLnFRj+mV2uHC4rHtUoFIhhclsw5QMHXLi1Cg43wh9pxVx4bTuIqHiTAbB4eKw4VgNcuPUGJeogcHuxO6r+uoqFVLkJWl4TBh4smJU2F7ciKKGTirOBMAAmzX27NmDrKws1NTU+CoPCQDbivSobbfgkZtTwFD3Oa9QSkVIjQpDUYORmjYIgAEUZ7PZjDVr1kCr1foyDxEwKwc0WxxYe+QS0nVhGJWkQZvNSU0YXpITp0an1YFqAy1SQAZQnN966y3ccccdCAujlRtClcnuxNt7KlDXbsHYxHDsKWnC7uJG2F1Unb0hIyYMEpZBUT0t/ko8LM4lJSU4dOgQLVUV4pwuDgcvtCJOLUN6NP0n7W1SEYuMmDCcbzTS+oLE/QeCHMfhhRdewH/9139BIpH0u49KJYNYHPyjmUQiFlpt6HYb23SwEgazHT+/KRlhyp9mnxOLWCgVPw1CYVmmz7b+9rvRdl8c78/n8uR4lmWgVEh7bRufEomiBiPO1Rtx9/jEPseHolC97twW508//RTp6emYOHHidfcxhsikLVqtEgaDie8YvHC4OKw/fBFxahlSwmUwmX8azeZwunr9rFRI+2zrb78bbffF8f58Lk+Ov9KV7uptCWop5BIWBYX1mJVKE0kBwX3d6XTXXzXIbbPGzp07sXPnTkydOhVTp05FfX09li5diiNHjng1JBG2bUV61LVbcGtaJPXQ8CERyyA7RoXDla0w0/qCIc3tnfP777/f6+dZs2bhww8/RFJSks9CEWFxuDh8cLS7hwa1Nftebpwap2o7sL+iBfNo2a+QRcO3iVvbivSoMVjw4GTq1+wPyREKRIdJUXCeJuEPZQMuzrt27aK75hBy5a45O0aFm4dTG6g/MAyD2zKjcbiqDe1mWl8wVNGdM7mhK3fN/3bLMLpr9qOZmbru9QXLaH3BUEXFmVzX1XfN01Ij+Y4TUtJ1YRhG6wuGNCrOpF9WDvjibD1qDBbcf1MyDHYXDdP2o+71BWNworodjZ2h0VWV9EbFmfSr0+rA2oPd/ZrNFjsN0+bBvGwdOADflzTxHYXwgIoz6deBihYYzHbckkr9mvkyLFKJkbEqatoIUVScSR8cx2HjiVpEKCXI0FG/Zj5cWTFlWkY0zuuNOKs30qrcIYaKM+njRE07ShuNmDwsAizdNfPC7HBhd3EjpJfP/weHqrC7uLHXijMkuFFxJn1sOFYDjVyMUfHXH/dP/EMtF2NYhAJFtL5gyKHiTHqpbDHhwIVW3DEmHhIRvTyEICdOjVaTHXrqtRFS6OojsHLoWRH6w2M1kIgYLBgdz3cscllWrAosAxQ2dPIdhfgRLfBKYLq8QKvV4cR35/XIjlUhTEYvDaFQSERIiw7D+QYjXNS0ETLozpn0OFvXCbuTw/gkWidSaK6sL3iujpawChVUnAmA7u5zJ2raER8uQ4JGznccco10XRgkIga7aEBKyKDiTAAAl9rMaOmyYXwy3TULkVTEIlOnwv6KFlpfMERQcSYAgBPV7ZBLWIyMVfEdhVxHTpwanRYHjlS18R2F+AEVZwKD2Y7SJiPGxIdT9zkBGxGlRLhcTMO5Q4RHV+J3332HO++8E/n5+bj//vtRWlrq61zEj3aVNMHFAWMSw/mOQm5AxDKYnh6NveUttL5gCHBbnOvq6vDCCy/g3XffRUFBAfLz8/Hcc8/5IxvxA47jsL1Ij/hwGXQqGd9xiBu3ZUbD4nBhX3kL31GIj7ktzmKxGGvWrEFiYiIAYMqUKaisrPR5MOIfJY1GXGgxYUwC3TUHglEJ4YhRSVFATRtBz+1Ig5iYGMTEdK8A7HA48OWXX2L27Nk+D0b8Y/M5PSQiBiPjaB6NQMBenoT/XydqYTDboVVI+I5EfMTjYWDr16/Hu+++i5SUFLzzzju9HlOpZBCLRV4PJzQiEQutVsl3DK+xOlzYXtKE6Rk6RIUrej0mFrFQKqRut/W3nWWZIR0/1OcXwnN5cjzLMlAqpAM6Xi6TYMmkFHx0rAaHa9px/6SUPvsEm2C77jzlcXF+6KGH8Itf/ALffvstli1bhq1bt0Iu7x6sYDSGxoQsWq0SBoOJ7xhes6OkCQazHbMzo9FptvV6zOF0weTBtv62KxXSIR0/1OcXwnN5crxSIYXJbBvQ8VabAwpR90T8H/9QjZuHRUApEUEWxDO7Btt1dzWd7vrvWN22OVdUVODQoUMAuicAX7RoEbq6uqjdOQhsLmxAjEqKcTTwJGCYHS7sKWlCerQS5xs6sfFYNc3xHKTcFufW1lb87ne/g16vBwAcP34cdrsdycnJPg9HfKex04ojVW1YmBsLERvEt11BKjdeDZYBztBcG0HLbbPGpEmT8Pjjj2PFihVwuVyQSqX461//CpWKRpIFsq1Ferg4YFFuHN9RyCCEScVI14XhbH0nHE4XgOD/zCfUeNTmvHz5cixfvtzXWYifcByHzYV6jE0MR0qEAm02elsciPISNCht7MLRqjYsGhnDdxziZTRWN4RcmVT/4CUDLrWZMSs7Bm02J5w0RXBASo1SQiUVoaBIz3cU4gNUnEPIlUn1/3H4IiQsA7g47C5uhN1F1TkQsSyD0Qnh+PFiGxo6LHzHIV5GxTnE2JwunG8wIjtWBZmY/vkD3bgkDTgO+PJMPd9RiJfR1RliSvRG2JwuGq4dJDQKCSaPiMBXZxtonucgQ8U5xJyt64BWIUFyhML9ziQgLB4dj1aTHbvLmvmOQryIinMIqW+34GKbGaMT1GAY6tscLCakaJGklWPjqTq+oxAvouIcQr6/PJPZ6Hhq0ggmLMNgSV4CTtV2oLTRyHcc4iVUnEOEi+PwfXEjhkcqoKGZzILO4txYyMUsPj5Ry3cU4iVUnEPEjxcN0HdYMSZBw3cU4gMahQR3jo5DwflGNHaGxkRkwY6Kc4jYdKYe4XIxsmLD+I5CfGTZ+ES4OA6fnqS252BAxTkENHfZsLeiBfNGxkDM0j95sErSKjArIxqbztShy+bgOw4ZIrpSQ8Dmcw1wujgsoEmOgt4DE5NgtDrx9dkGvqOQIaLiHORcHIevzjZgQrIGSdS3OeiNig/HuCQN/nmsBjYHDUoJZFScg9wPF9tQ127B3WPi+Y5C/OTRm1PQaLTh63N09xzIqDgHuY9P1CJSKcFt6dF8RyE+wjAM2mzOnq+MODVy4tX4x9FLdPccwDyaz3nnzp148803YbPZoNVq8eKLLyIzM9PX2cgQXWjpwqHKNjx2yzBIxSy6aN7moGR2uHC4rKnXttHxanxa34nNhQ1YkpfAUzIyFG7vnPV6PVatWoU1a9Zg27ZtWLRoEX7/+9/7IxsZon8dq4VMzGIpXZwhZ0SkEiPj1Fh3tJomRApQbouzWCzGmjVrkJ6eDgCYMGECysvLfR6MDE1Llw3bzuuxKDcWWiWNCAw1DMPgwZuSoe+0YtNpmk40ELktzlFRUZg+fXrPz/v27UNeXp5PQ5Gh+/xUHWxODvePT+Q7CuHJxGERyEsMx/tHLqHWaEWbzQkrrasQMDxqc77i8OHDWL9+PdavX99ru0olg1gc/AtMikQstFol3zHc6jDbsfF0PWZnxyAv9acPAs3tFigV0j77i0Vsn+2ebutvO8syQzp+qM8vhOfy5HiWZaBUSH32d3WAwc2pUThdW4k39lzArKwYzMjUQauR99lXyALluvM2j4vzjh078NJLL+G9997raeK4wmgMjbH8Wq0SBoOJ7xhu/e1gFdrNdqyYmNQrr8XmhMls67O/w+nqs93Tbf1tVyqkQzp+qM8vhOfy5HilQgqT2ebTv2ukXIysGBUOljdjdJwKFqsdBkNgtUEHynU3GDqd+rqPedSV7tChQ3j55ZfxwQcfYPTo0V4LRryv1WTDx8drMCdTh6xYFd9xiADMSI+C3cVhf0Ur31HIALgtzmazGc8++yzeeustpKWl+SMTGYL1P1TD6nBhxS3DevV9pVW2Q1dUmBTjkzQ4VdOOC81dfMchHnLbrLFz5060trbimWee6bV9w4YNiI6mgQ1C0tBhween6rAwJxY6tQy7L0+uf8WUDB1PyQjfpqVFoaihE+/uu4C19+XRSjgBwG1xXrRoERYtWuSPLGSI1uyuAMsw+PdbhvEdhQiMQiLC9LQofFfchJ2lzZiTRf9RCx0N3w4S+ypasKe8Bf9ryjDEhQfWp/HEP8YmaZAaHYY39l6AxU6jRYWOinMQMNud+MuucqRGKfHABOrXTPrHMgxWTh+Bhk4rPvyxmu84xA0qzkHgvw9eRH2HFavmZEAson9Scn1jEjWYm6XDhz/WoL7DwncccgN0JQe4Hy624Z/Ha7AkLx7jkmh9QOLer6ePAAC8ufcCz0nIjVBxDmAGsx0vbCtBcoQCD00ZRt3miFsMw0Aml+C+CYnYUdqMXRUtNKRboAY0fJsIB8dxeHl7KQxmOxaPisXhipZej1O3OdKfK9OLxoRJoVVIsHp7KT58eCJiFTQ5ltDQnbNAWTn0GURy9R3OhmM12FPegkeodwYZBImIxfyROrSa7Pj0WA3fcUg/qDgLlMnuxO7ixl5fpsvdn45ebMPb+ysxOzMaS8bRXM1kcFKjwpATp8Inx2pQ1Rqcc1cEMirOAaau3YLnt5zH8Eglfj8/i0Z6kSGZnamDVMxi9Y4ycBw1PgsJFecAYrE78duvC+HkOPzlzlwopcE/TSvxLZVMjEenDsex6nZsLWp0fwDxGyrOAYLjOLyxuwJlTV14aUE2kiMUfEciQbAjr9AAAA2vSURBVGJBbixGx4fj9b0XYDDb+Y5DLqPiHCCOVbdjZ0kT/v2WYbg1NYrvOCSIsAyD5+ZmoNPqwFv7qO+zUFBxDgDVbWbsKm3ClBGReOTmFL7jkCDDMAyiNHIsGZuAb87psauihZa0EgAqzgJntDrw1Zl6aOQS/G5uBlj6AJB4mdnhwu7iRqRo5YhQSvBKQQm+O9fQ0zuI8IOKs4A5XRy+OtMAi8OFu/PiESajMUPEdyQiFgtzYtFucWBPeTPfcUIeFWcB21PejGqDGbfnxCBGLQPDMLS6CfGp5AgFJqZocby6HWdq2/mOE9I8Ks52ux2rV69GVlYWGhoafJ2JANhX3owfLhowPkmDUfHhAH56+3n1l91F1Zl414z0KGgVEqzZUQ4zNW3wxqPivHLlSsjlNETYX6paTFizowwJGjlmZ9FSYMS/pCIWC3NiUN9hwbsHqviOE7I8Ks6//OUv8dRTT/k6CwFgsjnxu2+KIBWx+NmYOIhZanki/pcSqcSdY+Lx6Yla7K9q63d+F+JbHl35Y8eO9XUOgu6BJi99V4qLbSY8l5+FcDnNFEb48/PJKdAoxPjj1mIUnGvoNb8L8T2vfPyvUskgFgf/UGKRiIVWq/TZ7193qAo7SpvwzNxMTEnXYW9pU6/HxSIWSoXU7TZf7evp8SzL8Pr8QnguT45nWQZKhVSwf1e1XIIl45PwwcEq7ChtxtLxiZDLJNBq/NvE6evrTqi8UpyNRqs3fo3gabVKGAy+mb3rZE07VhcU47b0KNw7OhYGqx0ms63XPg6ny6NtvtrX0+OVCimvzy+E5/LkeKVCCpPZJui/a4xSglvTIrG/ohXJWjluHh4Bg8HVZ19f8uV1xzedTn3dx6hBUwCajVY8u+U8ErUKvJBPM80RYbllRCRSIhTYfr4RVS3BWSSFiIozzxxOF1ZtPo8uqwOv3ZEDFQ00IQLDMgzuGBUHqZjFC1vO0+RIfuK2ODc3NyM/Px/5+fkAgAcffBD5+fnQ6/U+DxfsOI7D6p3lOF3Xgf8zPxNp0WF8RyKkX2q5GEvy4tHcZcWqzUVwOP3btBGK3N6mRUdHo6CgwB9ZQs4/fqjGV2cb8MjkZMzLjuE7DiE3lKhV4Dez0vHa92V4dUc5np+XQU1wPkTvoXny3flGvHugCvOzdXh86nC+4xDikTnZMWjptOLvRy5BKRXhN7elUoH2ESrOfmTlutcGPHShBS8VlGB0Qjj+9zz6AJAElsduGYYumxMfn6iFXMLiianD6TXsA1Sc/chkd2LtgUp8fqoOsWoZ5mZFw0HrtpEAwzAMnr4tFRa7E+uOVsNkc+LpmWk0na2XUXH2o0MXWvDF6XroVDLcNz4RMrGoZ6a5a9Fsc0TIGIbBs3MzoJCI8PGJWuiNNjwzNwNS0U99DJQSEWRUrweNirOfbDpTj9U7yhCrluHecYlQSLpHVJodLhwua+qz/5QMnb8jEjIgLMPgN7elIkwuxtpDF1HWaMTPxsRDLe8uKzOzYyCjRYgHjfo5+5jTxeHt/ZX48/dlmJASgZ9PTKJVs0nQYBgG905Iwl2j49BotOKDo5dwqZUGqngDFWcfMpjseGrTWaz/oRp3jY7Diwuze73tIyRYjIxT4+GbkiEXs/jXiVocrWoDR5+nDAk1a/jIj5fa8GJBKdpMNjw/NwN3jYnvt22ZkGARrZLh4cnJ2FKox66yZjg4Di/mZ9Go10Gi2zgvM9ud+MuucqzceBYyMYv3l43FXWPi+Y5FiFe4WypNJhbh7jHxmJkRjQMVLfj5h8dxsoaWuxoM+i/NSziOw66yZvy/3RVoNNqwbHwifnnrcMgl1L5Mgkd/H2Bf++E1wzC4eXgE7hqbgNXbS/HYp6dx74RE/GJyCjRyCfXg8BAVZy8orO/A2weqcOySARm6MLyyaCSyEzQw2Z0wX9WUQd3jSCgZoVPh/vGJ2FHahE+P12JPaTP+dEcOxsZdf5pM8hMqzkNQ0mjE/xy+iH3lLdAoJPjVjFQsHBUHEcug0+bEvpLGXvtT9zgSaqRiFgtyYpEeHYatRY1Y+ckprLgpBb+4KRkyMbWq3ggV5wHiOA7Hq9ux4VgNDla2QikVYVpqJCYNi4BMzGLf5dVLqBAT8pPMGBUSNXKcqe/E/xy+iILiRjw1IxXTUiNp6Pd1UHH2kNHqwDdHLmLD4YuobDVBq5DgianDMTc3Fj9WtvIdjxDBC5OJ8Vx+FpaOicdru8rxn18VIi8hHE/cOhzjkzRUpK9BxfkGnC4Op+vaUXC+EduKGmFxuJAVq8IzczIwIyMKMrGI2pEJGaDJwyPw6UMT8E2hHu8fuojHPzuDrBgVlo1PwOxMXc/o2VDnUXE+fPgwXnvtNZhMJiQkJODPf/4z4uLifJ2NFw4XhxPVBuwqa8busma0muyQiVnMz9Zh0dhEVOo7AQCHylsAUPMFIQNx9VwyM7NjcEt6FPaXtWDjyVq8WFCKV3eUY1pqFGakR2FisgbRKhnPifnjtjibTCY8/fTTWLt2LXJzc/H3v/8df/jDH/Dee+/5I5/P2RwulDV34VxdB47XtONEtQHtFgfkYhY3DY/ArWlRuGl4BJRSMRgx21OcCSED119XvLk5sZidrcPZug7sKWvG/rJm7Lj82U1KhAKjEjUYppEjQSOHTiVFjEoGnUoa9N1U3RbnI0eOIDk5Gbm5uQCAZcuW4a9//SuMRiNUKpXPAw6F08Why+ZAh8UBo9WBJqMNde0W1LZbUNduQU27GVWtZjhd3W0TCeEyTEuLwvS0KGQnhONwRQs4F4ejF7rblKdlx/L51yEkKF1dsEfHqZEbq4K+wwqxhEW53ogzte3Yeq6hz3FqmRjh8u6vK9+r5WKoZRJoLn9/7WPhMgnCZKKAmN7UbXGuqqpCcnJyz89hYWHQarW4dOkScnJyhhxgV2kTagwWuDgOHACOQ/f3V/5Edw8JFwe4uO7vbU5X95fDBauD++l7pwtdVgc6rA50Whww2Zzor0lYJmYRr5EjLlyGySOikBqtRFaMCrHh8p59qC2ZEH6wDIN4jRyzRsaC4zjIZRK0dVrQZLTCYHagocOCFqMVLV02dFq7r/MOiwN1HRZ0Wp0wWh09N1z9/35AJbuqaF/+UypmIWFZiEUMJCIWEpaBRMRALGIhYhhcqecMuptnrpT3ycMjkBXj/RtVhnMzO8k777yD2tpavPLKKz3bZs+ejdWrV2PixIleD0QIIcSDuTWUSiWsVmuvbRaLBWFhtFI0IYT4itvinJqaisrKyp6fW1tb0d7ejmHDhvk0GCGEhDK3xXny5MloaGjAsWPHAAAfffQRZs6cCaVS6fNwhBASqty2OQPA0aNH8fLLL8NsNiMlJQWvvvoqdLrg7d87kH7dxcXFuPvuu7Fu3TpMnjzZz0n548k5mjt3LjiOg1jc/blzbGws1q9fz0dc3nhynoxGI55//nmcOnUKUqkUzzzzDObPn89TYn64O08nT57Es88+2+uY6upqbNq0CVlZWf6O6x8c6aWrq4u7+eabuXPnznEcx3Fr167lHnvssX73dTqd3H333cdNnz6dO3LkiD9j8srTc3TTTTdxer3e3/EEw9Pz9Pzzz3MvvfQS53K5uPLycm758uWc3W73d1zeDOSau+LUqVPckiVLOJfL5Y+IvKBpoa7RX7/uAwcOwGg09tn3448/RnZ2NlJSUvwdk1eeniOj0Yjw8HA+IgqCJ+fJZrPh22+/xRNPPAGGYZCWloaPPvqo591GKBjINXfFyy+/jFWrVgX1fBxUnK9xo37dV2tqasJHH32Ep59+2t8ReefJOTKZTHA6nXj22WexYMECPPDAAzhx4gQfcXnjyXmqqqqCTCbDpk2bsGDBAixduhSHDh3iIy5vPL3mrtizZw9kMlnQd+Wl4nwNs9kMmaz3eH6ZTAaTqfeKwq+88gpWrlwZkneGnpwjl8uFpUuX4pFHHsHWrVvx4IMP4oknnkB7e+gsWeTJeero6EBnZydkMhm2bt2Kp556Cr/+9a9hMBj8HZc3nl5zV6xduxaPPvqoP6LxiorzNTzp171//34YDAbccccd/o4nCJ6cI5VKhT/96U8YPXo0ACA/Px8xMTE4deqUX7PyyZPzpFar4XQ6cf/99wMApk2bhvj4eJw+fdqvWfk0kLEUDQ0NKC0txbRp0/wVjzdUnK/hSb/u77//HkVFRZg6dSqmTp2KkydP4sknn8RXX33FR2S/8+QcmUwmXLhwoc+xodSW6sl5io+PB8uy6Orq6tkmEonAsqFzaQ5kLMWePXswdepUiETBPekRQMW5D0/6df/xj3/E0aNHcfDgQRw8eBDjxo3DW2+9hbvuuouv2H7lyTlqaWnBsmXLegr0wYMH0dzcjLy8PF4y88GT8xQeHo5Zs2bhgw8+AACcPn0atbW1Pe84QsFAxlIUFxcjLS3N3xH5wXd3ESE6cuQIt3jxYm7OnDncI488wjU2NnINDQ3cwoUL+91/+fLlIdWVjuM8O0dbtmzhbr/9dm7evHncPffcwx0/fpzHxPzw5Dy1tbVxjzzyCDdz5kxu8eLF3P79+3lMzA9Pr7nHHnuM+/jjj3lK6V8eDUIhhBDiX9SsQQghAkTFmRBCBIiKMyGECBAVZ0IIESAqzoQQIkBUnAkhRICoOBNCiABRcSaEEAGi4kwIIQL0/wFCDU5Ifk0WQAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -505,14 +529,14 @@ } ], "source": [ - "seaborn.distplot(trace_1['thetas'][:, 15, 0])" + "seaborn.distplot(trace_1['thetas'][:, 15, 0]);" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 33, "metadata": { - "scrolled": true + "scrolled": false }, "outputs": [ { @@ -548,483 +572,483 @@ " \n", " \n", " thetas__0_0\n", - " 0.299653\n", - " 0.063840\n", - " 0.000534\n", - " 0.176089\n", - " 0.423617\n", - " 19226.807333\n", + " 0.300100\n", + " 0.065270\n", + " 0.000467\n", + " 0.180909\n", + " 0.433704\n", + " 19108.941028\n", " 0.999785\n", " \n", " \n", " thetas__0_1\n", - " 0.600337\n", - " 0.069006\n", - " 0.000571\n", - " 0.460822\n", - " 0.729916\n", - " 18468.245681\n", - " 0.999809\n", + " 0.599518\n", + " 0.068916\n", + " 0.000470\n", + " 0.467480\n", + " 0.734045\n", + " 19312.240459\n", + " 0.999780\n", " \n", " \n", " thetas__0_2\n", - " 0.100010\n", - " 0.042210\n", - " 0.000300\n", - " 0.024209\n", - " 0.181230\n", - " 15983.247000\n", - " 0.999842\n", + " 0.100383\n", + " 0.041548\n", + " 0.000308\n", + " 0.030861\n", + " 0.185469\n", + " 16352.092254\n", + " 0.999790\n", " \n", " \n", " thetas__1_0\n", - " 0.490342\n", - " 0.070030\n", - " 0.000527\n", - " 0.352220\n", - " 0.622480\n", - " 15033.358733\n", - " 0.999812\n", + " 0.489750\n", + " 0.070271\n", + " 0.000530\n", + " 0.355435\n", + " 0.627806\n", + " 20015.427544\n", + " 0.999771\n", " \n", " \n", " thetas__1_1\n", - " 0.468789\n", - " 0.070418\n", - " 0.000516\n", - " 0.329812\n", - " 0.603250\n", - " 14397.420075\n", - " 0.999846\n", + " 0.469661\n", + " 0.070734\n", + " 0.000520\n", + " 0.329808\n", + " 0.602264\n", + " 18718.555274\n", + " 0.999752\n", " \n", " \n", " thetas__1_2\n", - " 0.040869\n", - " 0.027871\n", - " 0.000216\n", - " 0.000746\n", - " 0.095530\n", - " 13813.564556\n", - " 0.999929\n", + " 0.040589\n", + " 0.027460\n", + " 0.000211\n", + " 0.001529\n", + " 0.094604\n", + " 15234.164792\n", + " 0.999876\n", " \n", " \n", " thetas__2_0\n", - " 0.464064\n", - " 0.037702\n", - " 0.000243\n", - " 0.392602\n", - " 0.538467\n", - " 19458.166318\n", - " 0.999827\n", + " 0.464979\n", + " 0.037716\n", + " 0.000300\n", + " 0.395304\n", + " 0.542023\n", + " 17496.987976\n", + " 0.999860\n", " \n", " \n", " thetas__2_1\n", - " 0.412692\n", - " 0.036871\n", - " 0.000283\n", - " 0.340354\n", - " 0.485125\n", - " 18771.180462\n", - " 0.999881\n", + " 0.411825\n", + " 0.037102\n", + " 0.000292\n", + " 0.340670\n", + " 0.488188\n", + " 18113.640211\n", + " 0.999755\n", " \n", " \n", " thetas__2_2\n", - " 0.123243\n", - " 0.025265\n", - " 0.000194\n", - " 0.074236\n", - " 0.172532\n", - " 19247.971606\n", - " 1.000048\n", + " 0.123196\n", + " 0.024986\n", + " 0.000189\n", + " 0.075837\n", + " 0.172040\n", + " 17262.749166\n", + " 0.999939\n", " \n", " \n", " thetas__3_0\n", - " 0.458331\n", - " 0.058274\n", - " 0.000404\n", - " 0.350884\n", - " 0.573547\n", - " 21956.980693\n", - " 0.999798\n", + " 0.457686\n", + " 0.057135\n", + " 0.000413\n", + " 0.344913\n", + " 0.568706\n", + " 18097.163950\n", + " 1.000033\n", " \n", " \n", " thetas__3_1\n", - " 0.513887\n", - " 0.058365\n", - " 0.000421\n", - " 0.400916\n", - " 0.625856\n", - " 20763.790406\n", - " 0.999808\n", + " 0.514615\n", + " 0.057036\n", + " 0.000400\n", + " 0.405542\n", + " 0.630074\n", + " 17674.600231\n", + " 0.999944\n", " \n", " \n", " thetas__3_2\n", - " 0.027782\n", - " 0.018636\n", - " 0.000155\n", - " 0.000876\n", - " 0.064515\n", - " 14496.997795\n", - " 1.000732\n", + " 0.027699\n", + " 0.018819\n", + " 0.000145\n", + " 0.000691\n", + " 0.063681\n", + " 16384.522445\n", + " 0.999892\n", " \n", " \n", " thetas__4_0\n", - " 0.399457\n", - " 0.068020\n", - " 0.000426\n", - " 0.266600\n", - " 0.529972\n", - " 19987.478184\n", - " 0.999802\n", + " 0.399978\n", + " 0.070044\n", + " 0.000498\n", + " 0.260178\n", + " 0.530546\n", + " 18361.096943\n", + " 0.999810\n", " \n", " \n", " thetas__4_1\n", - " 0.480441\n", - " 0.070492\n", - " 0.000481\n", - " 0.342083\n", - " 0.620177\n", - " 19274.322698\n", - " 0.999810\n", + " 0.479881\n", + " 0.071956\n", + " 0.000532\n", + " 0.339022\n", + " 0.620830\n", + " 17177.579093\n", + " 0.999862\n", " \n", " \n", " thetas__4_2\n", - " 0.120102\n", - " 0.045973\n", - " 0.000342\n", - " 0.038873\n", - " 0.208613\n", - " 16807.535528\n", - " 0.999758\n", + " 0.120141\n", + " 0.045967\n", + " 0.000360\n", + " 0.037832\n", + " 0.209425\n", + " 17640.165756\n", + " 0.999860\n", " \n", " \n", " thetas__5_0\n", - " 0.442632\n", - " 0.051158\n", - " 0.000391\n", - " 0.346236\n", - " 0.547049\n", - " 18835.749177\n", - " 0.999964\n", + " 0.443571\n", + " 0.049668\n", + " 0.000334\n", + " 0.346751\n", + " 0.541180\n", + " 19588.905466\n", + " 0.999940\n", " \n", " \n", " thetas__5_1\n", - " 0.443866\n", - " 0.050986\n", - " 0.000394\n", - " 0.344361\n", - " 0.542416\n", - " 18516.609427\n", - " 0.999944\n", + " 0.442821\n", + " 0.050492\n", + " 0.000326\n", + " 0.344704\n", + " 0.540792\n", + " 18748.573671\n", + " 1.000005\n", " \n", " \n", " thetas__5_2\n", - " 0.113501\n", - " 0.031837\n", - " 0.000248\n", - " 0.054894\n", - " 0.177011\n", - " 18403.883543\n", - " 0.999763\n", + " 0.113607\n", + " 0.031311\n", + " 0.000226\n", + " 0.056660\n", + " 0.176451\n", + " 20231.072088\n", + " 1.000100\n", " \n", " \n", " thetas__6_0\n", - " 0.503893\n", - " 0.045648\n", - " 0.000363\n", - " 0.416098\n", - " 0.593584\n", - " 18822.631233\n", - " 0.999842\n", + " 0.504368\n", + " 0.045328\n", + " 0.000343\n", + " 0.420441\n", + " 0.596358\n", + " 18659.532260\n", + " 0.999806\n", " \n", " \n", " thetas__6_1\n", - " 0.386539\n", - " 0.044409\n", - " 0.000325\n", - " 0.297472\n", - " 0.470055\n", - " 18637.837019\n", - " 0.999820\n", + " 0.386565\n", + " 0.043753\n", + " 0.000340\n", + " 0.301637\n", + " 0.472456\n", + " 18711.068931\n", + " 0.999879\n", " \n", " \n", " thetas__6_2\n", - " 0.109568\n", - " 0.029372\n", - " 0.000212\n", - " 0.055798\n", - " 0.169069\n", - " 19242.299863\n", - " 0.999787\n", + " 0.109067\n", + " 0.028275\n", + " 0.000216\n", + " 0.057203\n", + " 0.166673\n", + " 17080.909989\n", + " 0.999959\n", " \n", " \n", " thetas__7_0\n", - " 0.546738\n", - " 0.040534\n", - " 0.000260\n", - " 0.466839\n", - " 0.625034\n", - " 20173.606252\n", - " 0.999806\n", + " 0.547484\n", + " 0.040931\n", + " 0.000299\n", + " 0.467123\n", + " 0.625951\n", + " 23763.418744\n", + " 0.999896\n", " \n", " \n", " thetas__7_1\n", - " 0.338108\n", - " 0.038778\n", - " 0.000260\n", - " 0.262366\n", - " 0.412310\n", - " 18502.545097\n", - " 0.999833\n", + " 0.337931\n", + " 0.039366\n", + " 0.000307\n", + " 0.263022\n", + " 0.415220\n", + " 20377.827972\n", + " 0.999904\n", " \n", " \n", " thetas__7_2\n", - " 0.115154\n", - " 0.025975\n", - " 0.000179\n", - " 0.067962\n", - " 0.168853\n", - " 21699.085193\n", - " 0.999798\n", + " 0.114585\n", + " 0.026082\n", + " 0.000183\n", + " 0.064167\n", + " 0.165460\n", + " 20377.368364\n", + " 0.999852\n", " \n", " \n", " thetas__8_0\n", - " 0.541549\n", - " 0.100485\n", - " 0.000804\n", - " 0.337228\n", - " 0.731867\n", - " 21756.221327\n", - " 0.999811\n", + " 0.541493\n", + " 0.099973\n", + " 0.000732\n", + " 0.337111\n", + " 0.724980\n", + " 21445.157893\n", + " 0.999806\n", " \n", " \n", " thetas__8_1\n", - " 0.290757\n", - " 0.090019\n", - " 0.000699\n", - " 0.127399\n", - " 0.474719\n", - " 16702.111324\n", - " 0.999843\n", + " 0.291853\n", + " 0.091661\n", + " 0.000722\n", + " 0.125231\n", + " 0.478377\n", + " 20336.085923\n", + " 0.999860\n", " \n", " \n", " thetas__8_2\n", - " 0.167694\n", - " 0.075138\n", - " 0.000628\n", - " 0.040590\n", - " 0.321044\n", - " 17292.538473\n", - " 0.999977\n", + " 0.166654\n", + " 0.075137\n", + " 0.000549\n", + " 0.037254\n", + " 0.315616\n", + " 17029.352945\n", + " 1.000004\n", " \n", " \n", " thetas__9_0\n", - " 0.465101\n", - " 0.050474\n", - " 0.000368\n", - " 0.367399\n", - " 0.562391\n", - " 18417.435051\n", - " 0.999771\n", + " 0.464073\n", + " 0.050759\n", + " 0.000396\n", + " 0.365872\n", + " 0.561156\n", + " 18145.928015\n", + " 0.999815\n", " \n", " \n", " thetas__9_1\n", - " 0.403843\n", - " 0.048088\n", - " 0.000332\n", - " 0.312779\n", - " 0.500643\n", - " 20102.952739\n", - " 0.999900\n", + " 0.404242\n", + " 0.049435\n", + " 0.000400\n", + " 0.312622\n", + " 0.504816\n", + " 17237.193074\n", + " 0.999826\n", " \n", " \n", " thetas__9_2\n", - " 0.131056\n", - " 0.033691\n", - " 0.000255\n", - " 0.070047\n", - " 0.198067\n", - " 16906.085964\n", - " 0.999889\n", + " 0.131685\n", + " 0.034063\n", + " 0.000244\n", + " 0.067031\n", + " 0.196808\n", + " 20803.257440\n", + " 0.999992\n", " \n", " \n", " thetas__10_0\n", - " 0.509483\n", - " 0.048419\n", - " 0.000370\n", - " 0.414436\n", - " 0.602676\n", - " 18239.457463\n", - " 0.999843\n", + " 0.509601\n", + " 0.051747\n", + " 0.000386\n", + " 0.407762\n", + " 0.610490\n", + " 18969.744012\n", + " 0.999860\n", " \n", " \n", " thetas__10_1\n", - " 0.402299\n", - " 0.048224\n", - " 0.000390\n", - " 0.303979\n", - " 0.492355\n", - " 17933.905733\n", - " 0.999860\n", + " 0.402177\n", + " 0.050463\n", + " 0.000381\n", + " 0.304228\n", + " 0.500716\n", + " 18673.382910\n", + " 0.999780\n", " \n", " \n", " thetas__10_2\n", - " 0.088219\n", - " 0.027850\n", - " 0.000209\n", - " 0.038264\n", - " 0.142583\n", - " 16701.621952\n", - " 0.999828\n", + " 0.088222\n", + " 0.028247\n", + " 0.000218\n", + " 0.038102\n", + " 0.144032\n", + " 17422.572626\n", + " 0.999855\n", " \n", " \n", " thetas__11_0\n", - " 0.551560\n", - " 0.036577\n", - " 0.000267\n", - " 0.482718\n", - " 0.627536\n", - " 19075.753671\n", - " 0.999804\n", + " 0.550716\n", + " 0.035650\n", + " 0.000258\n", + " 0.482424\n", + " 0.621472\n", + " 21810.593623\n", + " 0.999791\n", " \n", " \n", " thetas__11_1\n", - " 0.350830\n", - " 0.035199\n", - " 0.000255\n", - " 0.281403\n", - " 0.420081\n", - " 18337.153621\n", - " 0.999793\n", + " 0.351901\n", + " 0.034792\n", + " 0.000261\n", + " 0.280873\n", + " 0.418119\n", + " 19956.584699\n", + " 0.999789\n", " \n", " \n", " thetas__11_2\n", - " 0.097611\n", - " 0.021902\n", - " 0.000163\n", - " 0.056112\n", - " 0.140080\n", - " 15975.056272\n", - " 0.999787\n", + " 0.097383\n", + " 0.021453\n", + " 0.000172\n", + " 0.057790\n", + " 0.139950\n", + " 15238.961040\n", + " 0.999847\n", " \n", " \n", " thetas__12_0\n", - " 0.487553\n", - " 0.082854\n", - " 0.000546\n", - " 0.335342\n", - " 0.657384\n", - " 18946.751402\n", - " 0.999796\n", + " 0.486099\n", + " 0.079911\n", + " 0.000524\n", + " 0.334129\n", + " 0.644608\n", + " 18561.446431\n", + " 0.999863\n", " \n", " \n", " thetas__12_1\n", - " 0.458404\n", - " 0.081950\n", - " 0.000524\n", - " 0.301804\n", - " 0.617216\n", - " 17765.816253\n", - " 0.999796\n", + " 0.460108\n", + " 0.080625\n", + " 0.000605\n", + " 0.300507\n", + " 0.610745\n", + " 17272.738333\n", + " 1.000018\n", " \n", " \n", " thetas__12_2\n", - " 0.054042\n", - " 0.036801\n", - " 0.000269\n", - " 0.002726\n", - " 0.126433\n", - " 16322.152351\n", - " 0.999752\n", + " 0.053793\n", + " 0.036679\n", + " 0.000296\n", + " 0.001877\n", + " 0.125960\n", + " 14230.586334\n", + " 0.999914\n", " \n", " \n", " thetas__13_0\n", - " 0.524909\n", - " 0.055371\n", - " 0.000378\n", - " 0.416199\n", - " 0.631048\n", - " 21114.413565\n", - " 0.999861\n", + " 0.525405\n", + " 0.056555\n", + " 0.000460\n", + " 0.421515\n", + " 0.641929\n", + " 21817.783278\n", + " 0.999824\n", " \n", " \n", " thetas__13_1\n", - " 0.349478\n", - " 0.052214\n", - " 0.000429\n", - " 0.248569\n", - " 0.450790\n", - " 21404.231979\n", - " 0.999807\n", + " 0.349772\n", + " 0.053224\n", + " 0.000421\n", + " 0.241324\n", + " 0.451273\n", + " 18814.558488\n", + " 0.999777\n", " \n", " \n", " thetas__13_2\n", - " 0.125612\n", - " 0.037012\n", - " 0.000287\n", - " 0.059061\n", - " 0.199523\n", - " 17155.047936\n", - " 1.000053\n", + " 0.124823\n", + " 0.036787\n", + " 0.000313\n", + " 0.057240\n", + " 0.198229\n", + " 17761.975836\n", + " 0.999855\n", " \n", " \n", " thetas__14_0\n", - " 0.535991\n", - " 0.043761\n", - " 0.000362\n", - " 0.449082\n", - " 0.619943\n", - " 19147.629781\n", - " 0.999848\n", + " 0.535744\n", + " 0.045304\n", + " 0.000360\n", + " 0.445791\n", + " 0.622883\n", + " 19896.439516\n", + " 0.999857\n", " \n", " \n", " thetas__14_1\n", - " 0.369384\n", - " 0.042359\n", - " 0.000326\n", - " 0.285364\n", - " 0.450912\n", - " 18691.274239\n", - " 0.999761\n", + " 0.369577\n", + " 0.043753\n", + " 0.000306\n", + " 0.287700\n", + " 0.456371\n", + " 18576.380121\n", + " 0.999857\n", " \n", " \n", " thetas__14_2\n", - " 0.094625\n", - " 0.025174\n", - " 0.000201\n", - " 0.047936\n", - " 0.143532\n", - " 18401.157619\n", - " 0.999886\n", + " 0.094679\n", + " 0.026122\n", + " 0.000167\n", + " 0.045188\n", + " 0.145160\n", + " 19327.473357\n", + " 0.999832\n", " \n", " \n", " thetas__15_0\n", - " 0.545857\n", - " 0.054085\n", - " 0.000376\n", - " 0.444635\n", - " 0.653482\n", - " 19266.951987\n", - " 0.999766\n", + " 0.547136\n", + " 0.053493\n", + " 0.000374\n", + " 0.437479\n", + " 0.646866\n", + " 17525.614741\n", + " 0.999807\n", " \n", " \n", " thetas__15_1\n", - " 0.360848\n", - " 0.052028\n", - " 0.000336\n", - " 0.263611\n", - " 0.468789\n", - " 19861.024869\n", - " 0.999786\n", + " 0.360090\n", + " 0.051293\n", + " 0.000391\n", + " 0.266768\n", + " 0.465088\n", + " 16133.206175\n", + " 0.999847\n", " \n", " \n", " thetas__15_2\n", - " 0.093294\n", - " 0.031597\n", - " 0.000240\n", - " 0.034255\n", - " 0.153912\n", - " 17169.191302\n", - " 0.999770\n", + " 0.092774\n", + " 0.030986\n", + " 0.000256\n", + " 0.037164\n", + " 0.154385\n", + " 16927.317956\n", + " 1.000053\n", " \n", " \n", "\n", @@ -1032,107 +1056,107 @@ ], "text/plain": [ " mean sd mc_error hpd_2.5 hpd_97.5 n_eff \\\n", - "thetas__0_0 0.299653 0.063840 0.000534 0.176089 0.423617 19226.807333 \n", - "thetas__0_1 0.600337 0.069006 0.000571 0.460822 0.729916 18468.245681 \n", - "thetas__0_2 0.100010 0.042210 0.000300 0.024209 0.181230 15983.247000 \n", - "thetas__1_0 0.490342 0.070030 0.000527 0.352220 0.622480 15033.358733 \n", - "thetas__1_1 0.468789 0.070418 0.000516 0.329812 0.603250 14397.420075 \n", - "thetas__1_2 0.040869 0.027871 0.000216 0.000746 0.095530 13813.564556 \n", - "thetas__2_0 0.464064 0.037702 0.000243 0.392602 0.538467 19458.166318 \n", - "thetas__2_1 0.412692 0.036871 0.000283 0.340354 0.485125 18771.180462 \n", - "thetas__2_2 0.123243 0.025265 0.000194 0.074236 0.172532 19247.971606 \n", - "thetas__3_0 0.458331 0.058274 0.000404 0.350884 0.573547 21956.980693 \n", - "thetas__3_1 0.513887 0.058365 0.000421 0.400916 0.625856 20763.790406 \n", - "thetas__3_2 0.027782 0.018636 0.000155 0.000876 0.064515 14496.997795 \n", - "thetas__4_0 0.399457 0.068020 0.000426 0.266600 0.529972 19987.478184 \n", - "thetas__4_1 0.480441 0.070492 0.000481 0.342083 0.620177 19274.322698 \n", - "thetas__4_2 0.120102 0.045973 0.000342 0.038873 0.208613 16807.535528 \n", - "thetas__5_0 0.442632 0.051158 0.000391 0.346236 0.547049 18835.749177 \n", - "thetas__5_1 0.443866 0.050986 0.000394 0.344361 0.542416 18516.609427 \n", - "thetas__5_2 0.113501 0.031837 0.000248 0.054894 0.177011 18403.883543 \n", - "thetas__6_0 0.503893 0.045648 0.000363 0.416098 0.593584 18822.631233 \n", - "thetas__6_1 0.386539 0.044409 0.000325 0.297472 0.470055 18637.837019 \n", - "thetas__6_2 0.109568 0.029372 0.000212 0.055798 0.169069 19242.299863 \n", - "thetas__7_0 0.546738 0.040534 0.000260 0.466839 0.625034 20173.606252 \n", - "thetas__7_1 0.338108 0.038778 0.000260 0.262366 0.412310 18502.545097 \n", - "thetas__7_2 0.115154 0.025975 0.000179 0.067962 0.168853 21699.085193 \n", - "thetas__8_0 0.541549 0.100485 0.000804 0.337228 0.731867 21756.221327 \n", - "thetas__8_1 0.290757 0.090019 0.000699 0.127399 0.474719 16702.111324 \n", - "thetas__8_2 0.167694 0.075138 0.000628 0.040590 0.321044 17292.538473 \n", - "thetas__9_0 0.465101 0.050474 0.000368 0.367399 0.562391 18417.435051 \n", - "thetas__9_1 0.403843 0.048088 0.000332 0.312779 0.500643 20102.952739 \n", - "thetas__9_2 0.131056 0.033691 0.000255 0.070047 0.198067 16906.085964 \n", - "thetas__10_0 0.509483 0.048419 0.000370 0.414436 0.602676 18239.457463 \n", - "thetas__10_1 0.402299 0.048224 0.000390 0.303979 0.492355 17933.905733 \n", - "thetas__10_2 0.088219 0.027850 0.000209 0.038264 0.142583 16701.621952 \n", - "thetas__11_0 0.551560 0.036577 0.000267 0.482718 0.627536 19075.753671 \n", - "thetas__11_1 0.350830 0.035199 0.000255 0.281403 0.420081 18337.153621 \n", - "thetas__11_2 0.097611 0.021902 0.000163 0.056112 0.140080 15975.056272 \n", - "thetas__12_0 0.487553 0.082854 0.000546 0.335342 0.657384 18946.751402 \n", - "thetas__12_1 0.458404 0.081950 0.000524 0.301804 0.617216 17765.816253 \n", - "thetas__12_2 0.054042 0.036801 0.000269 0.002726 0.126433 16322.152351 \n", - "thetas__13_0 0.524909 0.055371 0.000378 0.416199 0.631048 21114.413565 \n", - "thetas__13_1 0.349478 0.052214 0.000429 0.248569 0.450790 21404.231979 \n", - "thetas__13_2 0.125612 0.037012 0.000287 0.059061 0.199523 17155.047936 \n", - "thetas__14_0 0.535991 0.043761 0.000362 0.449082 0.619943 19147.629781 \n", - "thetas__14_1 0.369384 0.042359 0.000326 0.285364 0.450912 18691.274239 \n", - "thetas__14_2 0.094625 0.025174 0.000201 0.047936 0.143532 18401.157619 \n", - "thetas__15_0 0.545857 0.054085 0.000376 0.444635 0.653482 19266.951987 \n", - "thetas__15_1 0.360848 0.052028 0.000336 0.263611 0.468789 19861.024869 \n", - "thetas__15_2 0.093294 0.031597 0.000240 0.034255 0.153912 17169.191302 \n", + "thetas__0_0 0.300100 0.065270 0.000467 0.180909 0.433704 19108.941028 \n", + "thetas__0_1 0.599518 0.068916 0.000470 0.467480 0.734045 19312.240459 \n", + "thetas__0_2 0.100383 0.041548 0.000308 0.030861 0.185469 16352.092254 \n", + "thetas__1_0 0.489750 0.070271 0.000530 0.355435 0.627806 20015.427544 \n", + "thetas__1_1 0.469661 0.070734 0.000520 0.329808 0.602264 18718.555274 \n", + "thetas__1_2 0.040589 0.027460 0.000211 0.001529 0.094604 15234.164792 \n", + "thetas__2_0 0.464979 0.037716 0.000300 0.395304 0.542023 17496.987976 \n", + "thetas__2_1 0.411825 0.037102 0.000292 0.340670 0.488188 18113.640211 \n", + "thetas__2_2 0.123196 0.024986 0.000189 0.075837 0.172040 17262.749166 \n", + "thetas__3_0 0.457686 0.057135 0.000413 0.344913 0.568706 18097.163950 \n", + "thetas__3_1 0.514615 0.057036 0.000400 0.405542 0.630074 17674.600231 \n", + "thetas__3_2 0.027699 0.018819 0.000145 0.000691 0.063681 16384.522445 \n", + "thetas__4_0 0.399978 0.070044 0.000498 0.260178 0.530546 18361.096943 \n", + "thetas__4_1 0.479881 0.071956 0.000532 0.339022 0.620830 17177.579093 \n", + "thetas__4_2 0.120141 0.045967 0.000360 0.037832 0.209425 17640.165756 \n", + "thetas__5_0 0.443571 0.049668 0.000334 0.346751 0.541180 19588.905466 \n", + "thetas__5_1 0.442821 0.050492 0.000326 0.344704 0.540792 18748.573671 \n", + "thetas__5_2 0.113607 0.031311 0.000226 0.056660 0.176451 20231.072088 \n", + "thetas__6_0 0.504368 0.045328 0.000343 0.420441 0.596358 18659.532260 \n", + "thetas__6_1 0.386565 0.043753 0.000340 0.301637 0.472456 18711.068931 \n", + "thetas__6_2 0.109067 0.028275 0.000216 0.057203 0.166673 17080.909989 \n", + "thetas__7_0 0.547484 0.040931 0.000299 0.467123 0.625951 23763.418744 \n", + "thetas__7_1 0.337931 0.039366 0.000307 0.263022 0.415220 20377.827972 \n", + "thetas__7_2 0.114585 0.026082 0.000183 0.064167 0.165460 20377.368364 \n", + "thetas__8_0 0.541493 0.099973 0.000732 0.337111 0.724980 21445.157893 \n", + "thetas__8_1 0.291853 0.091661 0.000722 0.125231 0.478377 20336.085923 \n", + "thetas__8_2 0.166654 0.075137 0.000549 0.037254 0.315616 17029.352945 \n", + "thetas__9_0 0.464073 0.050759 0.000396 0.365872 0.561156 18145.928015 \n", + "thetas__9_1 0.404242 0.049435 0.000400 0.312622 0.504816 17237.193074 \n", + "thetas__9_2 0.131685 0.034063 0.000244 0.067031 0.196808 20803.257440 \n", + "thetas__10_0 0.509601 0.051747 0.000386 0.407762 0.610490 18969.744012 \n", + "thetas__10_1 0.402177 0.050463 0.000381 0.304228 0.500716 18673.382910 \n", + "thetas__10_2 0.088222 0.028247 0.000218 0.038102 0.144032 17422.572626 \n", + "thetas__11_0 0.550716 0.035650 0.000258 0.482424 0.621472 21810.593623 \n", + "thetas__11_1 0.351901 0.034792 0.000261 0.280873 0.418119 19956.584699 \n", + "thetas__11_2 0.097383 0.021453 0.000172 0.057790 0.139950 15238.961040 \n", + "thetas__12_0 0.486099 0.079911 0.000524 0.334129 0.644608 18561.446431 \n", + "thetas__12_1 0.460108 0.080625 0.000605 0.300507 0.610745 17272.738333 \n", + "thetas__12_2 0.053793 0.036679 0.000296 0.001877 0.125960 14230.586334 \n", + "thetas__13_0 0.525405 0.056555 0.000460 0.421515 0.641929 21817.783278 \n", + "thetas__13_1 0.349772 0.053224 0.000421 0.241324 0.451273 18814.558488 \n", + "thetas__13_2 0.124823 0.036787 0.000313 0.057240 0.198229 17761.975836 \n", + "thetas__14_0 0.535744 0.045304 0.000360 0.445791 0.622883 19896.439516 \n", + "thetas__14_1 0.369577 0.043753 0.000306 0.287700 0.456371 18576.380121 \n", + "thetas__14_2 0.094679 0.026122 0.000167 0.045188 0.145160 19327.473357 \n", + "thetas__15_0 0.547136 0.053493 0.000374 0.437479 0.646866 17525.614741 \n", + "thetas__15_1 0.360090 0.051293 0.000391 0.266768 0.465088 16133.206175 \n", + "thetas__15_2 0.092774 0.030986 0.000256 0.037164 0.154385 16927.317956 \n", "\n", " Rhat \n", "thetas__0_0 0.999785 \n", - "thetas__0_1 0.999809 \n", - "thetas__0_2 0.999842 \n", - "thetas__1_0 0.999812 \n", - "thetas__1_1 0.999846 \n", - "thetas__1_2 0.999929 \n", - "thetas__2_0 0.999827 \n", - "thetas__2_1 0.999881 \n", - "thetas__2_2 1.000048 \n", - "thetas__3_0 0.999798 \n", - "thetas__3_1 0.999808 \n", - "thetas__3_2 1.000732 \n", - "thetas__4_0 0.999802 \n", - "thetas__4_1 0.999810 \n", - "thetas__4_2 0.999758 \n", - "thetas__5_0 0.999964 \n", - "thetas__5_1 0.999944 \n", - "thetas__5_2 0.999763 \n", - "thetas__6_0 0.999842 \n", - "thetas__6_1 0.999820 \n", - "thetas__6_2 0.999787 \n", - "thetas__7_0 0.999806 \n", - "thetas__7_1 0.999833 \n", - "thetas__7_2 0.999798 \n", - "thetas__8_0 0.999811 \n", - "thetas__8_1 0.999843 \n", - "thetas__8_2 0.999977 \n", - "thetas__9_0 0.999771 \n", - "thetas__9_1 0.999900 \n", - "thetas__9_2 0.999889 \n", - "thetas__10_0 0.999843 \n", - "thetas__10_1 0.999860 \n", - "thetas__10_2 0.999828 \n", - "thetas__11_0 0.999804 \n", - "thetas__11_1 0.999793 \n", - "thetas__11_2 0.999787 \n", - "thetas__12_0 0.999796 \n", - "thetas__12_1 0.999796 \n", - "thetas__12_2 0.999752 \n", - "thetas__13_0 0.999861 \n", - "thetas__13_1 0.999807 \n", - "thetas__13_2 1.000053 \n", - "thetas__14_0 0.999848 \n", - "thetas__14_1 0.999761 \n", - "thetas__14_2 0.999886 \n", - "thetas__15_0 0.999766 \n", - "thetas__15_1 0.999786 \n", - "thetas__15_2 0.999770 " + "thetas__0_1 0.999780 \n", + "thetas__0_2 0.999790 \n", + "thetas__1_0 0.999771 \n", + "thetas__1_1 0.999752 \n", + "thetas__1_2 0.999876 \n", + "thetas__2_0 0.999860 \n", + "thetas__2_1 0.999755 \n", + "thetas__2_2 0.999939 \n", + "thetas__3_0 1.000033 \n", + "thetas__3_1 0.999944 \n", + "thetas__3_2 0.999892 \n", + "thetas__4_0 0.999810 \n", + "thetas__4_1 0.999862 \n", + "thetas__4_2 0.999860 \n", + "thetas__5_0 0.999940 \n", + "thetas__5_1 1.000005 \n", + "thetas__5_2 1.000100 \n", + "thetas__6_0 0.999806 \n", + "thetas__6_1 0.999879 \n", + "thetas__6_2 0.999959 \n", + "thetas__7_0 0.999896 \n", + "thetas__7_1 0.999904 \n", + "thetas__7_2 0.999852 \n", + "thetas__8_0 0.999806 \n", + "thetas__8_1 0.999860 \n", + "thetas__8_2 1.000004 \n", + "thetas__9_0 0.999815 \n", + "thetas__9_1 0.999826 \n", + "thetas__9_2 0.999992 \n", + "thetas__10_0 0.999860 \n", + "thetas__10_1 0.999780 \n", + "thetas__10_2 0.999855 \n", + "thetas__11_0 0.999791 \n", + "thetas__11_1 0.999789 \n", + "thetas__11_2 0.999847 \n", + "thetas__12_0 0.999863 \n", + "thetas__12_1 1.000018 \n", + "thetas__12_2 0.999914 \n", + "thetas__13_0 0.999824 \n", + "thetas__13_1 0.999777 \n", + "thetas__13_2 0.999855 \n", + "thetas__14_0 0.999857 \n", + "thetas__14_1 0.999857 \n", + "thetas__14_2 0.999832 \n", + "thetas__15_0 0.999807 \n", + "thetas__15_1 0.999847 \n", + "thetas__15_2 1.000053 " ] }, - "execution_count": 16, + "execution_count": 33, "metadata": {}, "output_type": "execute_result" } @@ -1150,14 +1174,53 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 1000/1000 [00:01<00:00, 889.86it/s]\n" + " 0%| | 0/1000 [00:00 369\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 370\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0mvariables\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 500\u001b[0;31m \u001b[0mfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_compile_theano_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 501\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msize\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/memoize.py\u001b[0m in \u001b[0;36mmemoizer\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 31\u001b[0;31m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 32\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_compile_theano_function\u001b[0;34m(param, vars, givens)\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'ignore'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 431\u001b[0;31m allow_input_downcast=True)\n\u001b[0m\u001b[1;32m 432\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function.py\u001b[0m in \u001b[0;36mfunction\u001b[0;34m(inputs, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 317\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 318\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/pfunc.py\u001b[0m in \u001b[0;36mpfunc\u001b[0;34m(params, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mon_unused_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 486\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 487\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36morig_function\u001b[0;34m(inputs, outputs, mode, accept_inplace, name, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 1838\u001b[0m \u001b[0moutput_keys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_keys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1839\u001b[0;31m name=name)\n\u001b[0m\u001b[1;32m 1840\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchange_flags\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompute_test_value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"off\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, inputs, outputs, mode, accept_inplace, function_builder, profile, on_unused_input, fgraph, output_keys, name)\u001b[0m\n\u001b[1;32m 1486\u001b[0m fgraph, additional_outputs = std_fgraph(inputs, outputs,\n\u001b[0;32m-> 1487\u001b[0;31m accept_inplace)\n\u001b[0m\u001b[1;32m 1488\u001b[0m \u001b[0mfgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofile\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36mstd_fgraph\u001b[0;34m(input_specs, output_specs, accept_inplace)\u001b[0m\n\u001b[1;32m 180\u001b[0m fgraph = gof.fg.FunctionGraph(orig_inputs, orig_outputs,\n\u001b[0;32m--> 181\u001b[0;31m update_mapping=update_mapping)\n\u001b[0m\u001b[1;32m 182\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/fg.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, inputs, outputs, features, clone, update_mapping)\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;32min\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 175\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__import_r__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreason\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"init\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 176\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/fg.py\u001b[0m in \u001b[0;36m__import_r__\u001b[0;34m(self, variable, reason)\u001b[0m\n\u001b[1;32m 345\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mvariable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mowner\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mvariable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mowner\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_nodes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 346\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__import__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mowner\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreason\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreason\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 347\u001b[0m elif (variable.owner is None and\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/fg.py\u001b[0m in \u001b[0;36m__import__\u001b[0;34m(self, apply_node, check, reason)\u001b[0m\n\u001b[1;32m 390\u001b[0m % (node.inputs.index(r), str(node)))\n\u001b[0;32m--> 391\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mMissingInputError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror_msg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 392\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mMissingInputError\u001b[0m: Input 0 of the graph (indices start from 0), used to compute AdvancedSubtensor1(packed_L_cholesky-cov-packed__, TensorConstant{[0 2]}), was not provided and not given a value. Use the Theano flag exception_verbosity='high', for more information on this error.", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mmodel_non_hiera\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mppc_non_hiera\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample_posterior_predictive\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrace_1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msamples\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvars\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mthetas\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpost\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py\u001b[0m in \u001b[0;36msample_posterior_predictive\u001b[0;34m(trace, samples, model, vars, size, random_seed, progressbar)\u001b[0m\n\u001b[1;32m 1133\u001b[0m \u001b[0mparam\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mlen_trace\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1134\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1135\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1136\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1137\u001b[0m \u001b[0mppc_trace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 398\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgivens\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 400\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 401\u001b[0m \u001b[0mevaluated\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam_idx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdrawn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 402\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 475\u001b[0m \u001b[0mdist_tmp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdistshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 476\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 477\u001b[0;31m \u001b[0mdist_tmp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 478\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 479\u001b[0m \u001b[0;31m# reset shape to account for shape changes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/multivariate.py\u001b[0m in \u001b[0;36mrandom\u001b[0;34m(self, point, size)\u001b[0m\n\u001b[1;32m 626\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 628\u001b[0;31m \u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 629\u001b[0m samples = generate_samples(self._random, n, p,\n\u001b[1;32m 630\u001b[0m \u001b[0mdist_shape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 368\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtemp_givens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 369\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 370\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 371\u001b[0m \u001b[0mdrawn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 461\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 463\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 464\u001b[0m elif (hasattr(param, 'distribution') and\n\u001b[1;32m 465\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribution\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmethod_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/multivariate.py\u001b[0m in \u001b[0;36mrandom\u001b[0;34m(self, point, size)\u001b[0m\n\u001b[1;32m 442\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 443\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 444\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 445\u001b[0m samples = generate_samples(self._random,\n\u001b[1;32m 446\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 368\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtemp_givens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 369\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 370\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 371\u001b[0m \u001b[0mdrawn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 461\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 463\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 464\u001b[0m elif (hasattr(param, 'distribution') and\n\u001b[1;32m 465\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribution\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmethod_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/multivariate.py\u001b[0m in \u001b[0;36mrandom\u001b[0;34m(self, point, size)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrvs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cov_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'chol'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mmu\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmu\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchol_cov\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mchol\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Shapes for mu and chol don't match\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 374\u001b[0m \u001b[0;31m# the stack of nodes to try to draw from. We exclude the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;31m# nodes in the `params` list.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m stack.extend([node for node in named_nodes_parents[next_]\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnode\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[0mnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdrawn\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyError\u001b[0m: packed_L" ] } ], @@ -1168,7 +1231,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 37, "metadata": {}, "outputs": [ { @@ -1177,7 +1240,7 @@ "(1000, 16, 3)" ] }, - "execution_count": 18, + "execution_count": 37, "metadata": {}, "output_type": "execute_result" } @@ -1195,7 +1258,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -1207,7 +1270,7 @@ " 0.05711423])" ] }, - "execution_count": 19, + "execution_count": 38, "metadata": {}, "output_type": "execute_result" } @@ -1218,7 +1281,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 39, "metadata": {}, "outputs": [], "source": [ @@ -1231,28 +1294,28 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 40, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.36602273, -0.19682315, -0.36796852, ..., -0.48749388,\n", - " -0.32218869, -0.04764414],\n", - " [-0.02860091, 0.13603276, -0.15743739, ..., -0.17841541,\n", - " 0.26005232, 0.15633098],\n", - " [ 0.09419482, 0.08172248, 0.02700719, ..., 0.07112208,\n", - " 0.06369524, 0.01833077],\n", + "array([[-0.33787199, -0.37379882, -0.25882127, ..., -0.24333032,\n", + " -0.34828809, -0.2890644 ],\n", + " [ 0.10464792, -0.0332341 , 0.04314238, ..., -0.02677397,\n", + " 0.06811687, -0.02878468],\n", + " [ 0.14668186, -0.09759919, 0.24836487, ..., -0.05777017,\n", + " 0.13984376, -0.02823006],\n", " ...,\n", - " [ 0.2096655 , 0.12545752, 0.34367845, ..., 0.25501784,\n", - " 0.31038741, 0.20693177],\n", - " [ 0.24176366, 0.22392918, 0.20225605, ..., 0.16170903,\n", - " 0.09215016, 0.12158467],\n", - " [ 0.26952366, 0.11230593, 0.32890665, ..., 0.31401458,\n", - " 0.10214156, 0.15254369]])" + " [ 0.17630032, 0.2639916 , 0.08281504, ..., 0.12927367,\n", + " 0.12421466, 0.23584101],\n", + " [ 0.10903527, 0.16980981, 0.1529897 , ..., 0.24074752,\n", + " 0.14888268, 0.18884677],\n", + " [ 0.29177155, 0.00912029, 0.31554402, ..., 0.41702492,\n", + " 0.07311343, 0.33643738]])" ] }, - "execution_count": 21, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -1264,7 +1327,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -1273,12 +1336,12 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAFkCAYAAAANPR4aAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAf5klEQVR4nO3de3BU9f3/8VeySy5rCBFZoDRJBaJUUKAKKqKgbdKEJNY61ikgaJwwaIMU8YJYBrkTQPFSYEpbw8jFtlKrzEgkFKEKRVqwYp06QwrCVkYNY6KQXbOEXM7vj/7cut/EkN3zyV7C8zHjjOecz8nnve8ke17sOTknwbIsSwAAADAiMdoFAAAAdCeEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADDIGe0CvvLZZ95ol2BbWlqyfL7GaJcRV+hZ6OhZ6OhZeOhb6OhZ6OK1Z253z2/cxidXBjmdjmiXEHfoWejoWejoWXjoW+joWei6Y88IVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIGe0CwCArpSWnqoePRxyu3tGbE5/Y7N89f6IzQcgthCuAHRrqclOXTq3MqJzelYUyRfRGQHEEk4LAgAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAzq1E1Em5qa9PTTT2vDhg1666231L9/f61atUp79uwJjDl79qx69+6tV155JWjfd955R6WlpfrWt74VWDdlyhRNmTLF0EsAAACIHZ0KV2VlZbryyiuD1s2ZM0dz5swJLC9cuFCDBw9us6/X69WoUaNUUVFhs1QAAIDY16nTgjNmzNCsWbO+cfu///1vHTp0SJMmTWqzzev1qmfPyD3TCwAAIJo69cnVyJEjO9y+du1aTZs2TU5n2y/n9Xrl8Xg0efJk1dXV6ZprrtHjjz9O4AIAAN2S7Qc3f/TRR3r//fe1evXqdrdnZWVp/PjxKi0tVVJSkh577DEtX75c5eXlQePS0pLldDrslhNVDkeiMjJc0S4jrtCz0NGz+NAdvkf8rIWOnoWuO/bMdriqrKxUbm6uevTo0e72cePGady4cYHl6dOna9q0aW3G+XyNdkuJuowMl06fboh2GXGFnoWOnoXG7Y7Op+Td4XvEz1ro6Fno4rVnHb232L4Vw5tvvhkUnv6vmpoa1dXVBZYty2r39CEAAEB3YDtcVVdXt/tXgl95+eWXNW/ePJ07d04tLS3avHmzbr75ZrvTAgAAxKTzfoRUW1sbdE+qqVOnyuFwaOPGjUpOTpbf75fb7Q7aZ8uWLaqtrdWDDz6o6dOna9GiRSoqKlJiYqJGjhwZdAsHANGVlp6q1OTIfZrsb2yWr94fsfkAINLO+47ap08fVVVVfeP26urqNuu+HsaSkpK0bNmyMMsD0NVSk526dG5lxObzrCiSL2KzAUDk8fgbAAAAgwhXAAAABhGuAAAADOKeCAAi6mxTS9TuPQUAkUC4AhBRKT0cEb+AHgAiidOCAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGNSpcNXU1KSVK1dqyJAhqqmpkSS98847GjFihAoKCgL/bdmypd39KysrVVxcrPz8fM2cOVNer9fcKwAAAIghzs4MKisr05VXXhm0zuv1atSoUaqoqOhw308++URLlizRK6+8ogEDBmjx4sV69tlnNX/+/PCrBgAAiFGd+uRqxowZmjVrVtA6r9ernj17nnff3bt3a8yYMRowYIAkafLkydqxY0cYpQIAAMS+ToWrkSNHtlnn9Xrl8Xg0efJk5efn6xe/+EW7p/s8Ho+ys7MDy9nZ2aqrq9OZM2dslA0AABCbOnVasD1ZWVkaP368SktLlZSUpMcee0zLly9XeXl50Di/36/evXsHlpOSkpSQkCC/369evXoF1qelJcvpdIRbTkxwOBKVkeGKdhlxhZ6Fjp7Fh+7wPeJnLXT0LHTdsWdhh6tx48Zp3LhxgeXp06dr2rRpbca5XC6dO3cusNzY2CjLsuRyBTfS52sMt5SYkZHh0unTDdEuI67Qs9CZ7pnbff7T+whdd/i55vczdPQsdPHas47eO8O+FUNNTY3q6uoCy5Zlyelsm9UGDhyo48ePB5aPHj0qt9ut9PT0cKcGAACIWWGHq5dfflnz5s3TuXPn1NLSos2bN+vmm29uMy43N1cHDx7UiRMnJEmbN29WcXFx2AUDAADEsvOeFqytrdWUKVMCy1OnTpXD4VBFRYU+/fRTFRUVKTExUSNHjtScOXMkSbt27dKePXtUXl6ufv36acGCBZoxY4aam5s1dOhQzZw5s+teEQAAQBSdN1z16dNHVVVV7W5btmxZu+vz8vKUl5cXWC4sLFRhYWGYJQIAAMQPHn8DAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIPO++BmAEBozja1yO3uGbH5/I3N8tX7IzYfgI4RrgDAsJQeDl06tzJi83lWFMkXsdkAnA+nBQEAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGNSpcNXU1KSVK1dqyJAhqqmpCaxft26dJkyYoPz8fD344IPyer1t9q2pqdGwYcNUUFAQ+G/16tXmXgEAAEAMcXZmUFlZma688sqgdVVVVaqqqtIf//hHuVwuPfzww3r++ec1e/bsoHH19fXKzMxUVVWVuaoBAABiVKc+uZoxY4ZmzZoVtG7w4MEqLy9XWlqaEhMT9b3vfU9Hjx5ts6/X61V6erqZagEAAGJcpz65GjlyZJt1l112WdDy3r17NXr06DbjvF6vTp8+rZKSEn366acaMmSI5s2bp379+oVZMgAAQOwyckH7r371K9XV1Wnq1KlttvXu3Vu33HKLVq1apcrKSvXv31+PPvqoiWkBAABiTqc+uerI6tWrtX//flVUVMjlcrXZPnz4cA0fPjywXFZWpuuvv14NDQ1B49PSkuV0OuyWE1UOR6IyMtr2AN+MnoWOnuH/OtvUIre7Z5d87fa+7tmmFsX3u3XX4fczdN2xZ7bC1Zo1a/Tuu+9q06ZNSktLa3dMXV2dmpqa1L9/f0mSZVlKSEiQ0xk8tc/XaKeUmJCR4dLp0w3RLiOu0LPQme5ZVx2UETkpPRy6dG5lxObzrCjSZ5+1/etw8J4WjnjtWUfvnWGfFvzggw+0bds2rV+//huDlSTt27dPZWVl8vl8kqQXXnhBY8aMUVJSUrhTAwAAxKzzfnJVW1urKVOmBJanTp0qh8OhUaNGyev16s477wxs+/a3v62Kigrt2rVLe/bsUXl5uW677TYdO3ZMt99+uxITEzVo0CCVl5d3zasBAACIsvOGqz59+nzjPaqWLl3a7vq8vDzl5eVJkhISEvTII4/okUcesVEmAABAfLB9QTsAs9LSU5Wa3PGvJtdJAUDsIlwBMSY12Rnxi5MBAObw4GYAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABvH4G+A8OvOsPwAAvsIRAzgPnvUHAAgFpwUBAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCoU+GqqalJK1eu1JAhQ1RTUxNY/8ILL2jChAnKz8/XvHnzdO7cuXb3r6ysVHFxsfLz8zVz5kx5vV4z1QMAAMSYToWrsrIypaSkBK177733tGnTJr300kvasWOH6urqtGXLljb7fvLJJ1qyZIl+85vfaOfOnXK73Xr22WfNVA8AABBjOhWuZsyYoVmzZgWtq6qqUmFhodLT05WYmKhJkyZpx44dbfbdvXu3xowZowEDBkiSJk+e3O44AACA7qBT4WrkyJFt1nk8HmVnZweWs7KydPz48fOOy87OVl1dnc6cORNOvQAAADHNGe6Ofr9fSUlJgeWUlBT5/f52x/Xu3TuwnJSUpISEBPn9fvXq1SuwPi0tWU6nI9xyYoLDkaiMDFe0y4gr9AyIT/zeto/3tNB1x56FHa5SU1ODLmD3+/1yudo2x+VyBY1rbGyUZVltxvp8jeGWEjMyMlw6fboh2mXElXjomdvdM9olADEn1n9voyUe3tNiTbz2rKNjQ9i3Yhg0aFDQacBjx44pJyenzbiBAwcGjTt69KjcbrfS09PDnRoAACBmhR2uJkyYEPgrwebmZv3ud79TUVFRm3G5ubk6ePCgTpw4IUnavHmziouLw68YAAAghp33tGBtba2mTJkSWJ46daocDoc2btyo0tJSTZ48WZZl6YYbbtCkSZMkSbt27dKePXtUXl6ufv36acGCBZoxY4aam5s1dOhQzZw5s+teEQAAQBSdN1z16dNHVVVV7W67++67dffdd7dZn5eXp7y8vMByYWGhCgsLbZQJAAAQH3j8DQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgp52dq6qq9OyzzwatO3HihP7xj38oLS0tsG7YsGHKysoKLA8fPlyrVq2yMzUAAEBMshWuCgoKVFBQEFh+/fXXtWPHjqBg9eWXXyohIUFVVVV2pgIAAIgLtsLV1zU2Nuq5557Tb3/726D1Pp9P6enppqYBAACIacauuXr55Zd19dVXKzs7O2h9fX29WlpadP/996ugoEClpaX68MMPTU0LAAAQU4x8ctXa2qoNGzZo/fr1bbalpKSooKBA9957r7Kzs7Vp0yaVlZWpsrJSTuf/pk9LS5bT6TBRTtQ4HInKyHBFu4y4Qs+A+MTvbft4Twtdd+yZkXB1+PBhuVwuXXbZZW22ZWVladGiRYHle+65R2vWrJHH41FOTk5gvc/XaKKUqMrIcOn06YZolxFX4qFnbnfPaJcAxJxY/72Nlnh4T4s18dqzjo4NRk4Lvvnmmxo/fny72+rr63Xy5MnAckJCglpbW4M+tQIAAOgujISrI0eOaPDgwe1uq66u1tSpU1VbWytJ2rp1q/r37x90awYAAIDuwsjHRzU1NerTp09g+f3339dzzz2niooKjR49WiUlJbrrrruUkJCgvn37au3atXI44vv6KgAAgPYYCVevvfZa0PLw4cNVUVERWC4pKVFJSYmJqQAAAGIaj78BAAAwiHAFAABgEOEKAADAIO6HgLiSlp6q1GR+bIFoOtvUEtH7v/kbm+Wr90dsPsAujlKIK6nJTl06tzKic3pWFEV0PiDWpfRwRPT30LOiSL6IzQbYx2lBAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADHLa2XnYsGHKysoKLA8fPlyrVq0KGnPkyBEtXLhQX3zxhS6++GItXLhQ3/3ud+1MCwAAELPCDldffvmlEhISVFVV1eG42bNn6+GHH1Zubq6qqqr06KOP6rXXXgt3WgAAgJgW9mlBn8+n9PT0DsdUV1fL6/UqNzdXklRQUKC6ujp9+OGH4U4LAAAQ08IOV/X19WppadH999+vgoIClZaWtglNHo9HmZmZQeuysrJ0/PjxcKcFAACIaWGHq5SUFBUUFGju3Ll6/fXXddNNN6msrEzNzc2BMX6/X8nJyUH7JScnq6GhIfyKAQAAYljY11xlZWVp0aJFgeV77rlHa9askcfjUU5OjiTJ5XKpsbExaL+zZ8/qoosuavP10tKS5XQ6wi0nJjgcicrIcEW7jLhCzwB0Rry8T/CeFrru2LOww1V9fb3OnDkT+GvBhIQEtba2yun835ccNGiQPB6PWltblZiYqObmZnk8Hg0ePLjN1/P5GtusizcZGS6dPs2ncqEItWdud88urAZArIqX91aOA6GL1551dDwK+7RgdXW1pk6dqtraWknS1q1b1b9//6BbM+Tk5Mjtdmv79u2SpG3btikzM1MDBw4Md1oAAICYFvYnV6NHj1ZJSYnuuusuJSQkqG/fvlq7dq1qa2tVWloaCFRPPfWU5s+fr7Vr1+qSSy7Rk08+aax4RF9aeqpSk23dLo1PowAA3Yqto2JJSYlKSkrarP8qWEnSkCFDtHXrVjvTIIalJjt16dzKiM3nWVEUsbkAAAgHj78BAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADLJ390cAALrY2aaWiN5s2N/YLF+9P2LzofshXAEAYlpKD0fEb1bsi9hs6I44LQgAAGAQ4QoAAMAgwhUAAIBBXHMFAMDX2L2APtR9uYC++yFcAQDwNVxAD7s4LQgAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAg3hwczeTlp6q1GS+rQAARAtH4W4mNdkZ8ae5AwCA/+G0IAAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhk+68Fd+/erV/+8pc6d+6cMjIytGjRIl1++eVBY/Ly8mRZlpzO/07Xr18/bdy40e7UAAAAMcdWuDp16pTmzp2r3//+98rJydGLL76oJ554Qn/4wx+CxtXX1+u1115T3759bRULAAAQ62ydFnQ6nVq9erVycnIkSddcc42OHTvWZpzP51N6erqdqQAAAOKCrXB1ySWXaNy4cYHlvXv3asSIEUFjGhoa1NLSoscff1yFhYW666679O6779qZFgAAIGYZu0P7gQMHtHHjxjbXUrW2tuonP/mJfvrTn+qqq65SVVWVfvazn+nPf/6zevXqFRiXlpYsp9NhqpyocDgSlZHhinYZAIA4cyEfO7rjsdNIuHrjjTe0ZMkSrV+/PnCK8CtpaWlaunRpYLmgoEDr1q3Te++9p/HjxwfW+3yNJkqJqowMl06fbohqDW53z6jODwAIXbSPHdEUC8fOcHR0vLV9K4a3335by5Yt04YNG3TVVVe12d7Q0KDjx4+3Wf/VXw4CAAB0J7bCld/v1+OPP641a9Zo8ODB7Y6pq6vTxIkTAwFr//79qq2tbXNtFgAAQHdg6+Oj3bt36/PPP9cjjzwStL6iokL33Xeftm/frqysLC1YsEAPPPCAWlpa1KtXL61bt05paWm2CgcAAIhFtsJVcXGxiouL2922ffv2wP8XFRWpqKjIzlQAAABxgcffAAAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIO4TToAAFF0tqkl4o8u8zc2y1fvj+icFxLCFQAAUZTSw6FL51ZGdE7PiiL5IjrjhYXTggAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAM4vE3XSwtPVWpybQZAIALBUf9Lpaa7IzoM6M8K4oiNhcAAGiL04IAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABg0AX314JdfWsEt7tnl31tAAAQ+y64cMWtEQAAQFfitCAAAIBBhCsAAACDLrjTggAAXOjONrVE9Bphf2OzfPX+iM0XbYQrAAAuMCk9HBG//tgXsdmij9OCAAAABtkKVwcOHNDtt9+u/Px83XvvvaqpqWkz5siRI5o4caLy8/M1ceJEHTlyxM6UAAAAMS3scNXQ0KCHHnpIS5cu1c6dO3XjjTdq4cKFbcbNnj1b06ZN086dO1VSUqJHH33UTr0AAAAxLexrrv72t78pKytLw4YNkyRNnDhRzzzzjHw+n9LS0iRJ1dXV8nq9ys3NlSQVFBRo8eLF+vDDDzV48GAD5QMAgFh3vgvoTV9cH+0L6MMOVx6PR1lZWYHliy66SBkZGfroo480dOjQwJjMzMyg/bKysnT8+HHCFQAAF4gL7QL6BMuyrHB2XLdunT7++GMtX748sO4HP/iBVq5cqVGjRkmStm3bpldffVUbN24MjLn77rt1xx136LbbbrNZOgAAQOwJ+5orl8ulxsbGoHVnz57VRRddFNIYAACA7iTscDVo0CCdOHEisPz555/rzJkz+s53vhM0xuPxqLW1VZLU3Nwsj8fDKUEAANBthR2urrvuOtXU1Oidd96RJG3evFm33HKLXC5XYExOTo7cbre2b98u6b+nCTMzMzVw4ECbZQMAAMSmsMNVSkqKnnnmGS1evFh5eXl6//339cQTT+jUqVMqLi4OjHvqqae0ZcsW/fCHP9Sf/vQnPfnkk0YKjxRT9/LasmWLhgwZEomSY4Ldvh07dkx33nmnxo8frzvuuEPHjh2LZPlRYbdnv/71r1VQUKAJEybogQce0GeffRbJ8qOiMz2zLEsVFRUaNmxY4B+DX6msrFRxcbHy8/M1c+ZMeb3eSJUeNXZ7tnXrVhUVFamgoEClpaXt7t/d2O3ZVzgOhNa3uD4OWPhGX375pXX99ddb//rXvyzLsqznn3/euu+++9qMKygosHbt2mVZlmXt2LHDKi4uDtp+6tQp69Zbb7Uuv/zyri86BtjtW3Nzs5Wfn2/t3LnTsizLevXVV63ly5dHqProsNuzv/71r1ZeXp5VX19vWZZlPfnkk9bDDz8coeqjo7M9mz9/vjVv3jzrxhtvtA4dOhRY//HHH1vXXXed9fHHH1uWZVmLFi2yFi9eHJnio8Ruz/75z39aY8eOtU6dOmVZlmWtWLHCeuihhyJTfJTY7dlXOA6E1rd4Pw4Qrjqwe/du68477wws+3w+a9iwYZbX6w2sO3LkiDV27Nig/caMGWMdO3YssPzzn//cqqysvGB+qez27dChQ1ZRUVHE6o0Fdnu2YcMGa/bs2YH1+/bts370ox91feFR1JmeWZZlHT582LIsy7rllluC3rw3bdpkPfjgg4Hlo0ePWmPGjOniqqPLbs9OnjxpHTx4MLD8xhtv8HP2/31Tz77CcSC0vsX7cYBnC3ago3t5fX3MN93LS5L27t0rn8+nwsLCyBQdA+z27ciRIxowYIDmzp2r/Px8TZ8+XSdPnoxY/dFgt2fXXnutDh8+rJqaGrW0tGjXrl264YYbIlZ/NHSmZ5I0cuTIb9w/Ozs7sJydna26ujqdOXOmawqOAXZ7lpmZqdGjRweW9+7dqxEjRnRNsTHCbs8kjgNS6H2L9+MA4aoDfr9fycnJQeuSk5PV0NDQqTFnz57VypUrtWDBgojUGyvs9q2+vl6HDh3SpEmTtGPHDl1xxRWaM2dORGqPFrs9GzZsmH784x/r+9//vq699lodOnRI9913X0Rqj5bO9Ox8+yclJQWWk5KSlJCQIL8/end17mp2e/Z127Zt0759+zRz5kxT5cUkuz3jOPA/ofQt3o8DhKsO2L2X17p161RcXBz0r+MLgd2+9ezZU1dccYVGjBihxMRE3XvvvTp8+HBYB4B4Ybdnu3fv1ltvvaX9+/fr0KFDuvXWW7v9czzt3kfP5XLp3LlzgeXGxkZZlhX0F8/djal7D7744otat26dNm7cKLfbbbLEmGO3ZxwH/ieUvsX7cYBw1QG79/Las2ePNm/erLFjx2rs2LGSpLFjx+o///lPZF9IhNntW2ZmZtBfbTkcDklSYmL3/XG127P9+/frpptu0sUXX6zExEQVFhbq0KFDEX8dkdSZnnVk4MCBgdP3knT06FG53W6lp6cbrzVW2O2ZJL3yyit68cUXtWXLlqDTPt2V3Z5xHPivUPsW78eB+KgySuzey6uyslJvv/229u/fr/3790uS9u/fH9IbWTyy27exY8fqiy++0L59+yRJL730kq6++mqlpKRE/sVEiN2eDRw4UAcOHAic0vrLX/6iyy67LPIvJII607OO5Obm6uDBg4EDwObNm4NuI9Md2e3ZqVOn9PTTT+v5559Xv379urLUmGG3ZxwHwutbvB8Hwn624IXi73//u5YtWya/36/s7GytWLFCra2tKi0tDRzkqqurNX/+fJ0+fVqXXHKJli5d2u5d6IcMGaLq6upIv4SosNu3Dz74QHPmzNG5c+c0YMAALVmypNt/rG6nZ01NTSovL9e+ffuUmJgot9uthQsXKicnJ8qvqmt1pmfFxcVqbm7WyZMn1bdvXyUnJ2vVqlUaPny4Xn/9da1du1bNzc0aOnSoli1b1u0fz2WnZwcOHND69euDgpXT6Qzs113Z/Tn7Oo4Dne9bPB8HCFcAAAAGcVoQAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwKD/BwxXn5sGcEmRAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAbmklEQVR4nO3de5CVdf0H8A97VvfiQmuy4dCKqCijOIHlDSkdTUMumk05aQNOZqOTaF4qh/KaV9BQRyUvqYVikzqVzUhggoaKpDhRjTqgpJuXCUZUhJUFWXx+fzDuwk9dvu257u7r9RfPc55zvp/z4Zzvee/znPM8/bIsywIAgC5VlbsAAICeQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABNXFHuCtt9YVe4hua2ioidbWjeUuoyLoxRb60EkvOulFJ73opBedelMvmpr6f+ptfXpPU3V1rtwlVAy92EIfOulFJ73opBed9KJTX+lFnw5NAACphCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIUJ2y0aZNm+L666+Pu+++OxYuXBi77rprREQ899xzcdlll8W6deti9913j+uuuy4GDRpU1IIBIiIaBtRFXU3SFFaw8VrXtpVsPKDyJM04Z555Zuy///7brGttbY1zzz03brnllhg1alTccccdMWfOnPje975XlEIBtlZXUx1Dp84p2Xgt0yZEa8lGAypRUmiaMmVKjBo1Kn75y192rJs/f36MGDEiRo0aFRERp59+enEqBHqEUu/5ASi1pBnuo2C0teXLl8fOO+8cU6ZMiRUrVsR+++0XF198cXz2s58teJFA5SvHnh+AUur2n4Vr166Np556Ku67774YPHhwXHTRRXH11VfHL37xi222a2ioierqXN6FFkMuVxWNjfXlLqMi6MUW+tBJLz5OP7wutqYXnfpKL7odmvr37x+jR4+O3XffPSIiTjnllPj+97//se1aWzd2v7oia2ysjzVr1pe7jIqgF1voQ6f/tRdNTf2LWE1l8NrwHtmaXnTqTb3oai7r9ikHmpubY926dR3LuVwucrnK3KMEAJCvboemcePGxXPPPRfLly+PiIgHHnggRo8eXbDCAAAqyXYPz61evTomTZrUsTx58uTI5XIxa9asuOGGG+Kss86Kfv36xd577x1XXHFFUYsFACiX7YamgQMHxrx58z7xtkGDBsWjjz5a8KIAACqNy6gAACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgATVKRtt2rQprr/++rj77rtj4cKFseuuu25z+/Tp0+ORRx6Jxx57rChFApTbhk2bo6mpf0nHbNvYHq1r20o6JvDpkkLTmWeeGfvvv/8n3rZs2bKYP39+QYsCqDS1O+Ri6NQ5JR2zZdqEaC3piEBXkg7PTZkyJc4555yPrf/www/jsssui3PPPbfghQEAVJKk0DRq1KhPXP+73/0u9tlnnxg5cmRBiwIAqDRJh+c+yVtvvRWzZs2KBx54INatW/ep2zU01ER1da67wxRVLlcVjY315S6jIujFFvrQSS8qQ6X9H3hddNKLTn2lF90OTddcc01MmTIlPvOZz3QZmlpbN3Z3iKJrbKyPNWvWl7uMiqAXW+hDp/+1F6X+knRfUWmvR++RTnrRqTf1oqu5rNuh6fHHH49nnnkmpk+fHps3b4733nsvxowZE48//njsuOOO3X1YAICK1O3QtHTp0o5/v/HGG3HKKac45QAA0GttNzStXr06Jk2a1LE8efLkyOVyMWvWrBg0aFBRiwMAqBTbDU0DBw6MefPmdblNc3OzvUwAQK/mMioAAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmqy10AUBwNA+qiria/t3hTU/8CVQPQ8wlN0EvV1VTH0KlzSjZey7QJJRsLoBwcngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASJAUmjZt2hTTp0+P4cOHx8qVKzvWz5w5M8aNGxdjx46Nc889N9atW1e0QgEAyikpNJ155plRW1u7zbp58+bFvHnz4sEHH4y5c+dGv3794s477yxKkQAA5ZYUmqZMmRLnnHPONuv22muvuOaaa6KhoSGqqqrigAMOiJdffrkoRQIAlFvSBXtHjRr1sXV77733NstPPPFEHHTQQYWpCoDYsGlzNDX1L9l4bRvbo3VtW8nGg54mKTRtz6233hpvv/12TJ48uRAPB0BE1O6Qi6FT55RsvJZpE6K1ZKNBz5N3aJoxY0YsWrQo7rrrrqivr//Y7Q0NNVFdnct3mKLI5aqisfHjNfdFerGFPtDXbe/17z3SSS869ZVe5BWabr755vj73/8e99xzTzQ0NHziNq2tG/MZoqgaG+tjzZr15S6jIujFFr2pD6U8rEPvsb3Xf296j+RLLzr1pl50NXd2OzS98MIL8dBDD8VDDz30qYEJAKC32G5oWr16dUyaNKljefLkyZHL5eLAAw+MdevWxYknnthx2+c///m46667ilMpAEAZbTc0DRw4MObNm/eJt1155ZUFLwgAoBK5jAoAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkSApNmzZtiunTp8fw4cNj5cqVHet/85vfxLhx42Ls2LFx4YUXxgcffFC0QgEAyikpNJ155plRW1u7zbp//OMfcc8998T9998fc+fOjbfffjtmz55dlCIBAMotKTRNmTIlzjnnnG3WzZs3L8aPHx8DBgyIqqqqOPnkk2Pu3LlFKRIAoNySQtOoUaM+tq6lpSWGDBnSsbzbbrvFK6+8UrjKAAAqSHV379jW1hY77rhjx3JtbW20tbV9bLuGhpqors51d5iiyuWqorGxvtxlVAS92EIf6Ou29/r3HumkF536Si+6HZrq6uq2+eJ3W1tb1Nd/vGGtrRu7O0TRNTbWx5o168tdRkXQiy16Ux+amvqXuwR6mA2bNkftDtv/I7eqqjB/CLdtbI/WtR//Y7un6E3zRb56Uy+6mju7HZr23HPPbQ7HrVixIoYNG9bdhwOgzGp3yMXQqXNKNl7LtAnRWrLRIH/dPk/TuHHjOn41197eHr/97W9jwoQJhawNAKBibHdP0+rVq2PSpEkdy5MnT45cLhezZs2K0047Lb7zne9ElmVx2GGHxcknn1zUYgEAymW7oWngwIExb968T7ztlFNOiVNOOaXgRQEAVBqXUQEASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAE1eUuAPqKhgF1UVfjLQfQU5nBoUTqaqpj6NQ5JRuvZdqEko0F0Bc4PAcAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJ8g5Nv//972P8+PExbty4OPXUU+PVV18tRF0AABUlr9D073//O6699tr49a9/HXPnzo2vfe1r8bOf/axQtQEAVIy8Q9PQoUNj0KBBERFx6KGHxssvv1yQwgAAKkleoWnkyJHx2muvxUsvvRRZlsVf/vKXOOywwwpVGwBAxajO586DBg2K888/P0444YRoaGiI2tramD179jbbNDTURHV1Lq8iiyWXq4rGxvpyl1ER9GILfYDS6snvN/NFp77Si7xC04svvhi33nprzJ8/PwYPHhx/+tOf4gc/+EE8/PDD0a9fv4iIaG3dWJBCi6GxsT7WrFlf7jIqgl5sUcw+NDX1L8rjQk/Wk+cd82an3tSLrubqvA7PLV68OA444IAYPHhwRESMHz8+VqxYEe+++24+DwsAUHHyCk177LFHLF26tCMkLVy4MJqammLnnXcuSHEAAJUir8NzRx11VLzwwgvx7W9/O/r16xcNDQ1x4403dhyaAwDoLfIKTRERZ599dpx99tmFqAUAoGK5jAoAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQIK8zwgOAN2xYdPmLq8oX2htG9ujdW1bycaj9xGaACiL2h1yMXTqnJKN1zJtQrSWbDR6I4fnAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAAS5B2aVq1aFaeeemocccQRMWHChFiyZEkh6gIAqCh5h6apU6fG4YcfHgsXLoyLLrooZs+eXYi6AAAqSnU+d/7vf/8bL7zwQtxxxx0RETF69OgYPXp0QQoDAKgkee1pWrZsWTQ3N8eMGTNi7NixMWnSpHjxxRcLVRsAQMXIKzStXbs2XnrppTjwwAPjkUceieOPPz7OOuusaG9vL1R9AAAVIa/Dc/37949ddtkljj766IiIOPHEE2P69OnR0tISw4YNi4iIhoaaqK7O5V9pEeRyVdHYWF/uMiqCXmyhD9C7FfL9bb7o1Fd6kVdoam5ujvfffz8+/PDDqKqqin79+kVVVVVUVXXuwGpt3Zh3kcXS2Fgfa9asL3cZFUEvtihmH5qa+hflcYF0hXx/mzc79aZedDVX53V4bp999okhQ4bEgw8+GBERc+fOjf79+8eQIUPyeVgAgIqT156miIibbropzjvvvLjjjjtil112iZtuuimqq/N+WAAoqA2bNhd8j29Xj9e2sT1a17YVdDzKK+9009zc3LGnCQAqVe0OuRg6dU7JxmuZNiFaSzYapeAyKgAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkqC53AVAODQPqoq7mk1/+TU39S1wNAD2B0ESfVFdTHUOnzinpmC3TJpR0PAAKy+E5AIAEQhMAQAKhCQAgQUFC01//+tcYPnx4vPHGG4V4OACAipN3aGpra4sZM2ZEY2NjIeoBAKhIeYemm2++OY4//vjYaaedClEPAEBFyis0LV++PJ5++un47ne/W6ByAAAqU7dDU5Zlcemll8ZFF10UO+ywQyFrAgCoON0+ueX9998fw4YNiwMPPLDL7RoaaqK6OtfdYYoql6uKxsb6cpdREfQCoPD6yrzaVz5Duh2aFixYEM8//3w8/vjjERHxzjvvxLe+9a248cYb49BDD+3YrrV1Y/5VFkljY32sWbO+3GVUhL7WC5dKAUqhr8yrvekzpKvPh26Hpl/96lfbLB911FFxzz33RHNzc3cfEgCgYjm5JQBAgoJdsPexxx4r1EMBAFQce5oAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQIKCXbAX8tEwoC7qarwcAahcPqWoCHU11TF06pySjdcybULJxgKgd3B4DgAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkcMFePlHDgLqoq/HyAICP+FTkE9XVVMfQqXNKNl7LtAklGwsAusPhOQCABHmHpgULFsTXv/71GDduXJx88snx0ksvFaIuAICKkldoWrVqVUydOjVmzJgRc+fOjYkTJ8Yll1xSqNoAACpGXqGpuro6ZsyYEcOGDYuIiC996UuxYsWKghQGAFBJ8gpNu+yySxx++OEdy0888USMHDky76IAACpNwX49t3jx4pg1a1bMmjVrm/UNDTVRXZ0r1DAFlctVRWNjfbnLqAh6AVB4fWVe7SufIQUJTfPnz48rrrgibrvtto5DdR9pbd1YiCGKorGxPtasWV/uMirC/+9FU1P/MlYD0Dv0lc+Y3vR52tXnX96h6emnn46rrroq7r777thrr73yfTgA6BU2bNpc0j9A2za2R+vatpKN1xflFZra2tripz/9acycOVNgAoCt1O6QK/lJgltLNlrflFdoWrBgQbzzzjvx4x//eJv1s2fPjoEDB+ZVGABAJckrNE2cODEmTpxYqFoAACqWy6gAACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEuR1GRVKp2FAXdTVFPe/q5RX4waAnkZo6iHqaqpLfrVsAKCTw3MAAAmEJgCABEITAEACoQkAIIEvggNAL7Bh0+aS/wq6bWN7tK5tK+mY5SQ0AUAvULtDrqS/so7Y8kvr1pKOWF4OzwEAJBCaAAASCE0AAAl8pwkA6Jatv3xeii+hl/uL50ITANAtpf7yebm/eO7wHABAAqEJACBBrzk81zCgLupq/ven091jsOU+rgoAlFavCU11NdV96rgqAFBaDs8BACTIa0/T4sWL49prr43169fH4MGD45prroldd921ULVVtHJc4wcAKJ9uh6b169fH+eefH3feeWeMGDEi7rrrrrjsssvitttuK2R9FascP7MEAMqn24fn/va3v8Vuu+0WI0aMiIiIk046KZ566qlobfVNHwCg9+l2aGppaYnddtutY3mnnXaKxsbGeO211wpSGABAJemXZVnWnTvOnDkz3nzzzbj66qs71n31q1+N6dOnx4EHHliwAgEAKkG39zTV19fHxo0bt1m3YcOG2GmnnfIuCgCg0nQ7NO25557x6quvdiy/88478d5778Xuu+9ekMIAACpJt0PTIYccEitXroznnnsuIiLuvffeOPLII6O+vr5gxQEAVIpuh6ba2tq44YYb4vLLL49jjjkm/vWvf8Ull1xSyNq6bfHixfGNb3wjxo4dG6eeemqsXLnyY9ssW7YsTjrppBg7dmycdNJJsWzZso7bHnjggZgwYUIce+yxcdppp33i/XuCfPvwkdmzZ8fw4cNLUXLR5NuLFStWxIknnhhHHHFEfPOb34wVK1aUsvyCyrcXt99+exx77LExbty4OOuss+Ktt94qZfkFldKLLMvirrvuihEjRnT8kfiROXPmxMSJE2Ps2LFx9tlnx7p160pVesHl24u+NG921YeP9JV5s6te9KZ5s0PWy7z//vvZoYcemj3//PNZlmXZnXfemZ1xxhkf2+7YY4/NHn300SzLsmzu3LnZxIkTsyzLsn/+85/ZmDFjslWrVmVZlmXTpk3Lzj///BJVXzj59uEjq1atyo477rhsn332KX7RRZJvL9rb27OxY8dmjzzySJZlWfbHP/4xu/rqq0tUfWHl24unnnoqO+aYY7K1a9dmWZZl1113XfajH/2oRNUXVmovLr744uzCCy/MvvzlL2dLlizpWP/mm29mhxxySPbmm29mWZZlP//5z7PLL7+8NMUXWL696Gvz5qf14SN9ad78tF70pnlza70uNC1YsCA78cQTO5ZbW1uzESNGZOvWretYt2zZsmzMmDHb3G/06NHZihUrstdffz179tlnO9bPnz8/O/7444tfeIHl24eP/PCHP8zmzJnTo9/8+fZiyZIl2YQJE0pWbzHl24u77747O++88zrWP/nkkz3y/ZFlab3IsixbunRplmVZduSRR27zoXDPPfdk5557bsfyyy+/nI0ePbrIVRdHvr3oS/Nmln16Hz7SV+bNLPv0XvSmeXNrve7acynnj2ppaYnm5uZt7rfbbrvFK6+8Es3NzXHQQQd1rH/iiSdi5MiRxS+8wPLtQ8SW597a2hrjx48vTdFFkm8vli1bFoMHD46pU6fG2LFj4/TTT4/XX3+9ZPUXUr69OPjgg2Pp0qWxcuXK2Lx5czz66KNx2GGHlaz+Qko919yoUaM+9f5DhgzpWB4yZEi8/fbb8d577xWn4CLKtxd9ad6M+PQ+RPSteTPi03vRm+bNrfW60NTW1hY1NTXbrKupqYn169f/T9tERDz00EPx5JNPxtlnn128gosk3z5s2LAhpk+fHpdeemlJ6i2mfHuxdu3aWLJkSZx88skxd+7c2HfffeOCCy4oSe2Flm8vRowYESeccEIcddRRcfDBB8eSJUvijDPOKEnthZY6D3R1/x133LFjeccdd4x+/fpFW1tbQesshXx7sbXePm92pa/Nm13pTfPm1npdaEo5f1TKNvfdd1/MnDkzZs2aFU1NTcUtugjy7cPMmTNj4sSJ2/wl3VPl24v+/fvHvvvuGyNHjoyqqqo49dRTY+nSpd36QCm3fHuxYMGCWLhwYSxatCiWLFkSxx13XPzkJz8pSe2Flu+55urr6+ODDz7oWN64cWNkWdYjf0FcqPPu9YV5syt9bd7sSm+aN7fW60JTyvmj9txzz2hpaYkPP/wwIiLa29ujpaUl9tprr4iI+MMf/hD33XdfzJ49e5vdkz1Jvn147LHH4t57740xY8bEmDFjIiJizJgx8Z///Ke0T6QA8u1Fc3PzNr+KyuVyERFRVdXz3j759mLRokXxla98JXbeeeeoqqqK8ePHx5IlS0r+PAoh33PN7bHHHh2HsiMiXn755WhqaooBAwYUvNZiK8R59/rKvNmVvjZvdqU3zZtb69nVf4KU80cNGzYsmpqa4uGHH46ILbuTm5ubY4899ohVq1bF9ddfH3feeWcMGjSoLM+hEPLtw5w5c+Lpp5+ORYsWxaJFiyIiYtGiRT3y5KX59mLMmDHx7rvvxpNPPhkREffff3988YtfjNra2tI/mTzl24s99tgjFi9e3HEI6vHHH4+999679E+kAPI919zRRx8dzz77bMcHy7333hsTJ04sWr3FlG8v+tK82ZW+Nm92pTfNm1vr9rXnKtkzzzwTV111VbS1tcWQIUNi2rRp8eGHH8Zpp53W8UGwfPnyuPjii2PNmjWxyy67xJVXXhl77bVX3H777XHbbbdt88avrq7uuF9Pkk8f/r/hw4fH8uXLS/0UCibfXrzwwgtxwQUXxAcffBCDBw+OK664osfugs+nF5s2bYprrrkmnnzyyaiqqoqmpqa47LLLYtiwYWV+Vt2T0ouJEydGe3t7vP766/G5z30uampq4tprr40vfOEL8ec//zluueWWaG9vj/322y+uuuqqHnspqXx6sXjx4j41b3b1mthaX5g3u+pFb5o3P9IrQxMAQKH1usNzAADFIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBI8H/2mfa6CNfdygAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -1292,6 +1355,13 @@ "_, _, _ = plt.hist(res, bins=18, edgecolor='w', density=True)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "**¡Se pudo reproducir la figura!**" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1308,7 +1378,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 43, "metadata": {}, "outputs": [ { @@ -1327,60 +1397,61 @@ }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[0.6744186 0.48888889 0.46938776 0.52941176 0.54761905 0.5\n", - " 0.43269231 0.37984496 0.33333333 0.46428571 0.43956044 0.38787879\n", - " 0.48484848 0.39705882 0.40707965 0.39473684]\n" + "[ 15.07572093 23.66648889 88.29653061 32.68517647 20.94704762\n", + " 47.0275 65.67153846 89.73643411 14.47 51.16178571\n", + " 55.14501099 111.60316364 17.14475758 46.24016176 73.78419469\n", + " 49.9215 ]\n" ] } ], "source": [ - "alpha_1j = valores[:, 1] / (valores[:, 0] + valores[:, 1])\n", + "alpha_1j = valores[:, 0] / (valores[:, 0] + valores[:, 1]) * data.proportion.to_numpy() * participants\n", "print(alpha_1j)" ] }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 45, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[[ 31. 42.]\n", - " [ 23. 45.]\n", - " [ 78. 146.]\n", - " [ 37. 68.]\n", - " [ 25. 41.]\n", + "[[ 15. 42.]\n", + " [ 24. 45.]\n", + " [ 88. 146.]\n", + " [ 33. 68.]\n", + " [ 21. 41.]\n", " [ 47. 84.]\n", - " [ 50. 104.]\n", - " [ 55. 129.]\n", - " [ 7. 19.]\n", - " [ 44. 84.]\n", - " [ 43. 90.]\n", - " [ 71. 165.]\n", - " [ 16. 32.]\n", - " [ 30. 68.]\n", - " [ 51. 113.]\n", - " [ 33. 76.]]\n" + " [ 66. 104.]\n", + " [ 90. 129.]\n", + " [ 14. 19.]\n", + " [ 51. 84.]\n", + " [ 55. 90.]\n", + " [112. 165.]\n", + " [ 17. 32.]\n", + " [ 46. 68.]\n", + " [ 74. 113.]\n", + " [ 50. 76.]]\n" ] } ], "source": [ - "new_values = np.round(np.stack([alpha_1j * data.proportion.to_numpy() * participants, alpha_2j], axis=1))\n", + "new_values = np.round(np.stack([alpha_1j, alpha_2j], axis=1))\n", "print(new_values)" ] }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 46, "metadata": {}, "outputs": [], "source": [ @@ -1402,14 +1473,14 @@ " Sigma = pm.Deterministic('Sigma', L.dot(L.T))\n", "\n", " mu = pm.Normal('mu', 0., 10., shape=2, testval=new_values.mean(axis=0))\n", - " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=2)\n", + " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=(16, 2))\n", " \n", "# beta = pm.MvNormal('beta', mu=mu, cov=covariance, shape=2)\n", " \n", - " alpha1 = pm.invlogit(beta[0])\n", - " alpha2 = pm.invlogit(beta[1])\n", + " alpha = pm.invlogit(beta)\n", + "# alpha2 = pm.invlogit(beta[1])\n", " \n", - " alphas = pm.Dirichlet('alphas', a=tt.stack([alpha1, alpha2], axis=1), shape=(16, 2))\n", + " alphas = pm.Dirichlet('alphas', a=alpha, shape=(16, 2))\n", "# alphas = pm.Dirichlet('alphas', a=np.array([alpha1, alpha2]), shape=(16, 2))\n", "\n", " post = pm.Multinomial('post', n=np.sum(new_values, axis=1), p=alphas, observed=new_values)" @@ -1417,21 +1488,21 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 47, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "packed_L_cholesky-cov-packed__ -3.91\n", - "mu -47.78\n", - "beta -1.84\n", + "mu -52.35\n", + "beta -29.41\n", "alphas_stickbreaking__ -22.18\n", - "post -159.77\n", + "post -105.64\n", "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 59, + "execution_count": 47, "metadata": {}, "output_type": "execute_result" } @@ -1442,25 +1513,119 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 48, "metadata": {}, "outputs": [ { - "ename": "ImportError", - "evalue": "This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 157\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'graphviz'", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodel_to_graphviz\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel_hier\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmodel_to_graphviz\u001b[0;34m(model)\u001b[0m\n\u001b[1;32m 194\u001b[0m \"\"\"\n\u001b[1;32m 195\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodelcontext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 196\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mModelGraph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmake_graph\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/envs/py3.7/lib/python3.7/site-packages/pymc3/model_graph.py\u001b[0m in \u001b[0;36mmake_graph\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 157\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mgraphviz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 158\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mImportError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 159\u001b[0;31m raise ImportError('This function requires the python library graphviz, along with binaries. '\n\u001b[0m\u001b[1;32m 160\u001b[0m \u001b[0;34m'The easiest way to install all of this is by running\\n\\n'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 161\u001b[0m '\\tconda install -c conda-forge python-graphviz')\n", - "\u001b[0;31mImportError\u001b[0m: This function requires the python library graphviz, along with binaries. The easiest way to install all of this is by running\n\n\tconda install -c conda-forge python-graphviz" - ] + "data": { + "image/svg+xml": [ + "\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "%3\n", + "\n", + "\n", + "cluster3\n", + "\n", + "3\n", + "\n", + "\n", + "cluster2 x 2\n", + "\n", + "2 x 2\n", + "\n", + "\n", + "cluster2\n", + "\n", + "2\n", + "\n", + "\n", + "cluster16 x 2\n", + "\n", + "16 x 2\n", + "\n", + "\n", + "\n", + "packed_L\n", + "\n", + "packed_L ~ LKJCholeskyCov\n", + "\n", + "\n", + "\n", + "Sigma\n", + "\n", + "Sigma ~ Deterministic\n", + "\n", + "\n", + "\n", + "packed_L->Sigma\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "beta\n", + "\n", + "beta ~ MvNormal\n", + "\n", + "\n", + "\n", + "packed_L->beta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "mu\n", + "\n", + "mu ~ Normal\n", + "\n", + "\n", + "\n", + "mu->beta\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "alphas\n", + "\n", + "alphas ~ Dirichlet\n", + "\n", + "\n", + "\n", + "beta->alphas\n", + "\n", + "\n", + "\n", + "\n", + "\n", + "post\n", + "\n", + "post ~ Multinomial\n", + "\n", + "\n", + "\n", + "alphas->post\n", + "\n", + "\n", + "\n", + "\n", + "\n" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ @@ -1469,7 +1634,7 @@ }, { "cell_type": "code", - "execution_count": 85, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1477,620 +1642,74 @@ "output_type": "stream", "text": [ "Auto-assigning NUTS sampler...\n", - "Initializing NUTS using jitter+adapt_diag...\n", - "Multiprocess sampling (4 chains in 4 jobs)\n", - "NUTS: [alphas, beta, mu, packed_L]\n", - "Sampling 4 chains: 100%|██████████| 12000/12000 [23:40<00:00, 2.55draws/s]\n", - "There were 54 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 43 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 36 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 43 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "The gelman-rubin statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", - "The estimated number of effective samples is smaller than 200 for some parameters.\n" + "Initializing NUTS using adapt_diag...\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mmodel_hier\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtrace_2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdraws\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2_000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtune\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5_000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_accept\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.90\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'adapt_diag'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py\u001b[0m in \u001b[0;36msample\u001b[0;34m(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, nuts_kwargs, step_kwargs, progressbar, model, random_seed, live_plot, discard_tuned_samples, live_plot_kwargs, compute_convergence_checks, use_mmap, **kwargs)\u001b[0m\n\u001b[1;32m 393\u001b[0m start_, step = init_nuts(init=init, chains=chains, n_init=n_init,\n\u001b[1;32m 394\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_seed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrandom_seed\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 395\u001b[0;31m progressbar=progressbar, **args)\n\u001b[0m\u001b[1;32m 396\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstart_\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py\u001b[0m in \u001b[0;36minit_nuts\u001b[0;34m(init, chains, n_init, model, random_seed, progressbar, **kwargs)\u001b[0m\n\u001b[1;32m 1513\u001b[0m 'Unknown initializer: {}.'.format(init))\n\u001b[1;32m 1514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1515\u001b[0;31m \u001b[0mstep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mNUTS\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpotential\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpotential\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1516\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1517\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/hmc/nuts.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, vars, max_treedepth, early_max_treedepth, **kwargs)\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0;31m`\u001b[0m\u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mdesired\u001b[0m \u001b[0mnumber\u001b[0m \u001b[0mof\u001b[0m \u001b[0mtuning\u001b[0m \u001b[0msteps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \"\"\"\n\u001b[0;32m--> 154\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mNUTS\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 155\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax_treedepth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmax_treedepth\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/hmc/base_hmc.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, vars, scaling, step_scale, is_cov, model, blocked, potential, integrator, dtype, Emax, target_accept, gamma, k, t0, adapt_step_size, step_rand, **theano_kwargs)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m super(BaseHMC, self).__init__(\n\u001b[0;32m---> 75\u001b[0;31m \u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mblocked\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mblocked\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mtheano_kwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 76\u001b[0m )\n\u001b[1;32m 77\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/arraystep.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, vars, model, blocked, dtype, **theano_kwargs)\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 227\u001b[0m func = model.logp_dlogp_function(\n\u001b[0;32m--> 228\u001b[0;31m vars, dtype=dtype, **theano_kwargs)\n\u001b[0m\u001b[1;32m 229\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 230\u001b[0m \u001b[0;31m# handle edge case discovered in #2948\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36mlogp_dlogp_function\u001b[0;34m(self, grad_vars, **kwargs)\u001b[0m\n\u001b[1;32m 708\u001b[0m \u001b[0mvarnames\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgrad_vars\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 709\u001b[0m \u001b[0mextra_vars\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mvar\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfree_RVs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mvar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvarnames\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 710\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mValueGradFunction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogpt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad_vars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mextra_vars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 711\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 712\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, cost, grad_vars, extra_vars, dtype, casting, **kwargs)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m self._theano_function = theano.function(\n\u001b[0;32m--> 449\u001b[0;31m inputs, [self._cost_joined, grad], givens=givens, **kwargs)\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mset_extra_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mextra_vars\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function.py\u001b[0m in \u001b[0;36mfunction\u001b[0;34m(inputs, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)\u001b[0m\n\u001b[1;32m 315\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mon_unused_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 317\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 318\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/pfunc.py\u001b[0m in \u001b[0;36mpfunc\u001b[0;34m(params, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[0maccept_inplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maccept_inplace\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mon_unused_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 486\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 487\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36morig_function\u001b[0;34m(inputs, outputs, mode, accept_inplace, name, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 1839\u001b[0m name=name)\n\u001b[1;32m 1840\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchange_flags\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompute_test_value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"off\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1841\u001b[0;31m \u001b[0mfn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdefaults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1842\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1843\u001b[0m \u001b[0mt2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36mcreate\u001b[0;34m(self, input_storage, trustme, storage_map)\u001b[0m\n\u001b[1;32m 1713\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlimit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile_limit\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1714\u001b[0m _fn, _i, _o = self.linker.make_thunk(\n\u001b[0;32m-> 1715\u001b[0;31m input_storage=input_storage_lists, storage_map=storage_map)\n\u001b[0m\u001b[1;32m 1716\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1717\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlimit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlimit_orig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/link.py\u001b[0m in \u001b[0;36mmake_thunk\u001b[0;34m(self, input_storage, output_storage, storage_map)\u001b[0m\n\u001b[1;32m 697\u001b[0m return self.make_all(input_storage=input_storage,\n\u001b[1;32m 698\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_storage\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 699\u001b[0;31m storage_map=storage_map)[:3]\n\u001b[0m\u001b[1;32m 700\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 701\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmake_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/vm.py\u001b[0m in \u001b[0;36mmake_all\u001b[0;34m(self, profiler, input_storage, output_storage, storage_map)\u001b[0m\n\u001b[1;32m 1089\u001b[0m \u001b[0mcompute_map\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1090\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1091\u001b[0;31m impl=impl))\n\u001b[0m\u001b[1;32m 1092\u001b[0m \u001b[0mlinker_make_thunk_time\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mthunk_start\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1093\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthunks\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'lazy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/op.py\u001b[0m in \u001b[0;36mmake_thunk\u001b[0;34m(self, node, storage_map, compute_map, no_recycling, impl)\u001b[0m\n\u001b[1;32m 953\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 954\u001b[0m return self.make_c_thunk(node, storage_map, compute_map,\n\u001b[0;32m--> 955\u001b[0;31m no_recycling)\n\u001b[0m\u001b[1;32m 956\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mNotImplementedError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMethodNotDefined\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 957\u001b[0m \u001b[0;31m# We requested the c code, so don't catch the error.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/op.py\u001b[0m in \u001b[0;36mmake_c_thunk\u001b[0;34m(self, node, storage_map, compute_map, no_recycling)\u001b[0m\n\u001b[1;32m 856\u001b[0m \u001b[0m_logger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdebug\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Trying CLinker.make_thunk'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 857\u001b[0m outputs = cl.make_thunk(input_storage=node_input_storage,\n\u001b[0;32m--> 858\u001b[0;31m output_storage=node_output_storage)\n\u001b[0m\u001b[1;32m 859\u001b[0m \u001b[0mthunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnode_input_filters\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnode_output_filters\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 860\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36mmake_thunk\u001b[0;34m(self, input_storage, output_storage, storage_map, keep_lock)\u001b[0m\n\u001b[1;32m 1215\u001b[0m cthunk, module, in_storage, out_storage, error_storage = self.__compile__(\n\u001b[1;32m 1216\u001b[0m \u001b[0minput_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage_map\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1217\u001b[0;31m keep_lock=keep_lock)\n\u001b[0m\u001b[1;32m 1218\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1219\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_CThunk\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcthunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minit_tasks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtasks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merror_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36m__compile__\u001b[0;34m(self, input_storage, output_storage, storage_map, keep_lock)\u001b[0m\n\u001b[1;32m 1155\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1156\u001b[0m \u001b[0mstorage_map\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1157\u001b[0;31m keep_lock=keep_lock)\n\u001b[0m\u001b[1;32m 1158\u001b[0m return (thunk,\n\u001b[1;32m 1159\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36mcthunk_factory\u001b[0;34m(self, error_storage, in_storage, out_storage, storage_map, keep_lock)\u001b[0m\n\u001b[1;32m 1622\u001b[0m \u001b[0mnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_node\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage_map\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1623\u001b[0m module = get_module_cache().module_from_key(\n\u001b[0;32m-> 1624\u001b[0;31m key=key, lnk=self, keep_lock=keep_lock)\n\u001b[0m\u001b[1;32m 1625\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1626\u001b[0m \u001b[0mvars\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0morphans\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cmodule.py\u001b[0m in \u001b[0;36mmodule_from_key\u001b[0;34m(self, key, lnk, keep_lock)\u001b[0m\n\u001b[1;32m 1187\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1188\u001b[0m \u001b[0mlocation\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdlimport_workdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1189\u001b[0;31m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlnk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile_cmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlocation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1190\u001b[0m \u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__file__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1191\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlocation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36mcompile_cmodule\u001b[0;34m(self, location)\u001b[0m\n\u001b[1;32m 1525\u001b[0m \u001b[0mlib_dirs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlib_dirs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1526\u001b[0m \u001b[0mlibs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlibs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1527\u001b[0;31m preargs=preargs)\n\u001b[0m\u001b[1;32m 1528\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1529\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfgraph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cmodule.py\u001b[0m in \u001b[0;36mcompile_str\u001b[0;34m(module_name, src_code, location, include_dirs, lib_dirs, libs, preargs, py_module, hide_symbols)\u001b[0m\n\u001b[1;32m 2349\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2350\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2351\u001b[0;31m \u001b[0mp_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moutput_subprocess_Popen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcmd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2352\u001b[0m \u001b[0mcompile_stderr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdecode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp_out\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2353\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/misc/windows.py\u001b[0m in \u001b[0;36moutput_subprocess_Popen\u001b[0;34m(command, **params)\u001b[0m\n\u001b[1;32m 78\u001b[0m \u001b[0;31m# we need to use communicate to make sure we don't deadlock around\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 79\u001b[0m \u001b[0;31m# the stdout/stderr pipe.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 80\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcommunicate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 81\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreturncode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/subprocess.py\u001b[0m in \u001b[0;36mcommunicate\u001b[0;34m(self, input, timeout)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 863\u001b[0;31m \u001b[0mstdout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstderr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_communicate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mendtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 864\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 865\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_communication_started\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/subprocess.py\u001b[0m in \u001b[0;36m_communicate\u001b[0;34m(self, input, endtime, orig_timeout)\u001b[0m\n\u001b[1;32m 1532\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutExpired\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morig_timeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1533\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1534\u001b[0;31m \u001b[0mready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mselector\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mselect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1535\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_timeout\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mendtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morig_timeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1536\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;32m~/anaconda3/lib/python3.6/selectors.py\u001b[0m in \u001b[0;36mselect\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 374\u001b[0m \u001b[0mready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m \u001b[0mfd_event_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_poll\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpoll\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mInterruptedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mready\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mKeyboardInterrupt\u001b[0m: " ] } ], "source": [ "with model_hier:\n", - " trace_2 = pm.sample(draws=2_000, tune=1_000, target_accept=0.98)" + " trace_2 = pm.sample(draws=2_000, tune=5_000, target_accept=0.90, init='adapt_diag')" ] }, { "cell_type": "code", - "execution_count": 86, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAEoCAYAAAAt0dJ4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeZRcV33o++8Zap66eh7UUmuybMuSbHnABlsWNsGxg8EQ8GXIcB9JCC+Im4RA8rh4wXUIGSFc32gRwlq5l/cSmyGQEDAzGFm2bGw8SUbWZEnd6kk91Dyf8f1R1dXdUktqTdWDf5+1tFR1zj5n71NDV/1q7/3biuu6LkIIIYQQQgghFpy60A0QQgghhBBCCFElAZoQQgghhBBCLBISoAkhhBBCCCHEIiEBmhBCCCGEEEIsEhKgCSGEEEIIIcQiIQGaEEIIIYQQQiwSEqCJ17wNGzbwhS98YaGbIYQQQixK8jkpRGNJgCbEJXLXXXfxzDPPLHQzhBBCiEVJPieFmB8J0IS4BDKZDAMDAwvdDCGEEGJRks9JIeZPAjQhANu2+Yu/+AtuuukmrrvuOj7ykY9QKBTq+8fGxvjjP/5jtm3bxpYtW3j3u9/Niy++CMDQ0BA33XQTruvyW7/1W9xxxx0AZLNZHnjgAW6//XY2bdrEnXfeyc6dO3Fdd0GuUQghhLhQ8jkpRONIgCYE8PWvf51IJMLXvvY1PvOZz/DYY4/xuc99DgDDMPjt3/5tDh8+zGc/+1m+8Y1vsGrVKt7//vczODhIV1cXX/rSlwD4h3/4B77xjW8A8OlPf5onn3ySz3/+8/zwhz/kT//0T/nSl77EV7/61QW7TiGEEOJCyOekEI0jAZoQQE9PD3/4h3/I6tWrueeee7j33nv53ve+B8BPfvITjh8/zl/91V9x0003sX79ej796U8TCoV45JFH0DSNWCwGQCwWo7m5GYCPfvSjPPzww2zdupXu7m7uuusutmzZwp49exbsOoUQQogLIZ+TQjSOvtANEGIxuO6662bd37RpE1//+tdJp9Ps3buXWCzG5s2b6/u9Xi9bt27lwIEDZzynoij88z//M08++SSJRALHcahUKlx//fWX7TqEEEKIy0E+J4VoHAnQhABCodCs+4FAAIByuUw+nyebzZ724WQYBqtXr57zfK7r8ju/8zuk02k+/vGPc8UVV+DxePjv//2/X54LEEIIIS4j+ZwUonEkQBMCKJVKs+4Xi0UAgsEgkUiEpqYmvva1r512nK7P/RY6fPgwhw8f5jOf+Qz33HNPfXsul6sP8xBCCCGWCvmcFKJxZA6aEMDzzz8/6/5LL71EW1sb0WiUzZs3k8lk8Hg8rFq1qv4PoK2tbdZxU5mnTNMEoLOzs77v4MGDHD58WLJTCSGEWHLkc1KIxpEATQhgeHiYL3zhC/T39/Poo4/y3e9+l3vvvReAO++8k5UrV/KRj3yEF154gaGhIb75zW9y33338Z//+Z8ARKNRAPbs2cMrr7xCX18fkUiERx55hBMnTvDEE0/w8Y9/nDe+8Y2cOHFC1oIRQgixpMjnpBCNo7jyM4V4jduwYQN/9md/xvDwMN/5zncwTZM3v/nNPPjgg/j9fgBGR0f5m7/5G/bs2YNhGKxcuZL3vve9vOc976mf50/+5E/40Y9+RCQS4YknnuDxxx/nr//6rxkbG+PKK6/kk5/8JKVSiQ996EOoqsrTTz+9UJcshBBCzJt8TgrRWBKgCSGEEEIIIcQiIUMchRBCCCGEEGKRkABNCCGEEEIIIRYJCdCEEEIIIYQQYpGQAE0IIYQQQgghFgkJ0IQQQgghhBBikZAATYjz9OUvf5k777yTa665hrvvvptHH310oZskhBBCLCryWSnEhdMXugFCLCUPP/wwn/vc53jwwQe59tpr2b17Nx/72MeIxWLcdtttC908IYQQYsHJZ6UQF0fWQRNinlzXZfv27bz5zW/mE5/4RH37hz70ITKZDP/6r/+6gK0TQgghFp58Vgpx8WSIoxDzdOzYMU6ePMmtt946a/vrX/96nn/+ecrl8gK1TAghhFgc5LNSiIsnAZoQ8zQwMABAT0/PrO29vb04jsPg4OBCNEsIIYRYNOSzUoiLJwGaEPNUKBQACAQCs7YHg0EA8vl8w9skhBBCLCbyWSnExZMATQghhBBCCCEWCQnQhJinSCQCnP7r39T9qf1CCCHEa5V8Vgpx8SRAE2KeVq1aBXDa+Pn+/n48Hg8rV65ciGYJIYQQi4Z8Vgpx8SRAE2KeVq9eTW9vL7t37561/fHHH+fmm2/G6/UuUMuEEEKIxUE+K4W4eLJQtRDnYceOHTzwwANs2rSJrVu38uMf/5hnnnlG1nURQgghauSzUoiLIwGaEOfhvvvuo1Ao8MUvfpGxsTFWr17Nzp072bp160I3TQghhFgU5LNSiIujuK7rLnQjhBBCCCGEEELIHDQhhBBCCCGEWDQkQBNCCCGEEEKIReKsc9AmJnKXpJJw2Ec+X7kk51pM5LqWjuV4TSDXtZQsx2uCM19XW9trZ62jUslYFs/tcnmNLofrWA7XAHIdi41cx+Jyts/JhvSg6brWiGoaTq5r6ViO1wRyXUvJcrwmWL7XdT6Wy2Mg17F4LIdrALmOxUauY+mQIY5CCCGEEEIIsUhc9gBtIFnkHV98iucH05e7KiGEEEIIsVg4Nt6j30VLHFzolgixpFz2AC3k0zl4Mse/Pjd0uasSQgghhBCLhVlEsU305OGFbokQS8plD9BaQ17efm0P+0ayyJJrQgghhBCvDcr4/uoN15neaJuz7wshTtOQOWjr2sNkyxbpktmI6oQQQgghxELLDtdvqpl+ALxDT6BP7j/vUymVLEopgZofBfnBXyxzZ02zf6n0tQQBOJEqEQ96G1GlEEIIIYRYSLofqKZD94y9RCXWh2LkUZTzz8LnHXisfttq3YjdvP5StVKIRachPWh9LSEABtOlRlQnhBBCCCEWmmvPvl8b3qgYF7fO7oX0wAmxlDQkQOtpCgAwmln6i8oJIYQQQoh5cGzsaG/9ru/odwFQHAusi/zR3pZpM2L5akiA5tVVmgIeJgtGI6oTQgghhBALzXVw9QBW++bTdvmO/RAtfeyCT63Y8qO/WL4atlB1a8grAZoQQgghxGvBVKZGRcPV/XMW0cf3Xfj5JUATy9hlD9AG8yf4wE9/j2BkUAI0IYQQQojXALUwBoBi5HA139yFzidZyCllFUsCNLF8XfYAzaf5+OXkyyT932IyL28mIYQQQojlbipAcz1BUD1zlnEVZd7ncz3VfAZW8xXV8xfHL7KFQixelz1Aa8k4/MPDfq4+cJhEKS+LVQshhBBCLHvV73t2y1W42vQSS5W192DH1wK1ZCHzPZuq4wTbsFuvxvWEUEuJS9tcIRaRyx6gKYEAoYLDf/2xBfpJCoZ97oOEEEIIIcSSpWUGwN8EigIzAjQ0L1bL1QA44c55n09xHVCry/c6gWY4j+BOiKXmsgdoaqwJ7wd+m3gB1hYOkS5JWlQhhBBCiOVKKdSGH04NYVRO+bqpari+KDD/IY64Lu5UeVVHsUpok6/AqSOzjALYkvNALG0NyeLYddN2ANbmBshIgCaEEEIIsWxpuUEA3I7Z6fWdUEf9tosynelxvupz1qr/68nDKJX0rCK+/h/jHXjs/M4rxCKjN6IS/8o+DF1hZWaSdEm6pIUQQgghliM1N4KWrQZoBOJgVhPEVda/bXZBRWVqntqZKOV0tadNUavBXK0nzvE3MZXTUbFKuMRnH2eVL/YyhFhQDelBUzSNRHuQVak8mbL0oAkhhBBCLEee0WerNxQN1Bmp8RVlRg9Y7f5ZEscpRh7viV3oEy/XtkyXdaIrMXpeXy9XNyMw05JHLvgahFhoDVuoutDTTG+yInPQhBBCCCGWofrcM6Cy/t5zlT5rgKbmhqr/FyfBNqrrnqnTA7/cUDuuHkCpZOvbtMxA/bY+uV8SiYglq2EBmtvTRWvOJZVNn7uwEEIIIYRYUrzDTwFgdt147sJnGeKolJLoiYPV20YO78DPwLWxw92zyrm6D8WZTgiiJw/ieiPT5zGL53kFQiwODQvQPJ09ABTHpMtZCCGEEGJZmREMOZGeeR40d4DmHdw9675ilaqlfbHZBTXvdMZGs1jN9OgJTu93ZNSWWJoaFqAFe1YB4E4eb1SVQgghhBCiAc47MceMOWhKcaI6HNEqnXXY46z11AAUDcWprq+rmAUArPh6zM7rq/vPN0ukEItEQ7I4AkS61wDgSY02qkohhBBCCNEAai3dvbHy9nkeUU2zrxh5vEN7cMKdqPmTs1Lxz2S1bjxtm6uo9ZXUlKmeNM2LW0tOorj2OfJECrE4NawHLdazDoBwZrJRVQohhBBCiMtEKYyjGDkA1OwJXG8E1x8/x1FVrqqjWMXpZCD5k9X/C2P1Mlb79DpqdvP6ORqgTveS1YYzuqpnemFsx0ZLHJyV3VGIpaBhAVok2EIqBE3ZVKOqFEIIIYQQl4l3+Cm8/T9FSx9DLaexw13zPtb1x1Fss54M5FRm5w3Y55zLNr3YtWfspeomVa8HaJ7RX6AnDuI79oN5t0uIxaBhAZqiKKQjOrFCoVFVCiGEEEKIy8Gu1G/q4/uqN06dI3YWrh44ewHNA+o5zqcowCnzzFQdV9FmbXJ90Xm3S4jFoGFz0ADyYR9NmQpl08bv0c59gBBCCCGEWHTqc75msKOr5n28e0owZ/S9CaWcAsdCTxzA8UZnL2w9ZyOmhzg6wTZw7eoxqmdWMWdG6n0hloKGBmjFaJCe0STZsiUBmhBCCCHEEqUlDs26b8fXVXu95mtGEGV23YTrDeN6wwAYTavr+6z2zWcOsBR1Ouuj61IfGHZKOxTJ5iiWmIYNcQQwoxFiRZtMQSZrCiGEEEIsVVotuccFU6a/gjqR7jMWs5vW4AbbznQSFNdBKYxP957NxbUvoqFCNF5DAzQ3HkdzITuRaGS1QgghhBDiEnI1T3VYYY2a6T+/42tz0MzOGy68DbUhjt7hp1DLKVCnR2dV1r91RkFJti+WloYGaFprOwCZsYFGViuEEGKZOnToEG95y1u44447Zm1/9tlnuf/++9m6dSu/+qu/yle+8pVZ+x9++GHuvvtutm7dyv33389zzz1X32cYBg8++CDbt2/nda97HR/84AcZGxtDCFGlFsZQbHNWog+rfcv5nUTzULniPpzoigtvyCk9Zu7Mr7WKitH3pmqCEBniKJaYhgZowfZq+tX8SQnQhBBCXJzvfe97/O7v/i6rVs1OTDAxMcEHP/hB7rvvPp566in+8i//ks9+9rPs3r0bgF27dvH3f//3fPrTn+bpp5/mHe94B7//+7/P5GR1nc7Pf/7zvPjii/zLv/wLP/nJT4jH43z4wx9u+PUJcUFsE6zSZa3CM/w0AIpZrG9zQu2Xtc45nZrlUZn9tdb1hnF1vwRoYslpaIAW71oJgJkYbWS1QgghlqFCocDXvvY1brnlllnbv/3tb9PT08N73/te/H4/W7du5W1vextf/epXAfjKV77C29/+dm644QZ8Ph/vfve76erq4tFHH8W2bf7t3/6NP/iDP6C3t5dIJMLHPvYx9u3bx4EDBxbiMoWYP9fBd+z7+I7/5LIN61MLJ2fUZ2NHe2s7ziNByCXinpqUZI45aK6io8xYEkCIpaChAVpzZ+1XzvR4I6sVQgixDL3rXe+iu/v05AL79+9n48aNs7ZdffXVvPzyy/X9V1999Zz7BwYGyOVys/Y3NzfT2dlZP16IxUqpZKq9Ra4NjnnpK7ANPMM/r9+1Oq7D6riOypq7Tuu9agQn1Dl7g3p6cnI30IJiFlHz0jkglo6GptmPN3WT84KeSTWyWiGEEK8h6XSadevWzdrW1NREKpWq749GZy9cG4vFOHbsGOl0un7/1P1Tx59K0xSamoKXqvkLRtNUuY5F4oKvIZtCCfkACEQ84L3Ej4Ph1M/vrrqNQHhqWGN4zuKX/7kIopz01e+5sSicWl9wNUrxMLgTuE1rL6iW5fCaArmOpaShAVrEG2UwBP5cppHVCiGEeI1zXRflLIveuucYDna2423bJZ0uzrlvKWlqCsp1LBIXeg1qNo+nUB3OZ6SyuL5zLPR8npRKHm+hgtl1E44VhnO0sRHPhRK/Ae/QHgAqnSvmaJOKR4mjJCcxIhfWluXwmgK5jsWmre3MC6g3NoujopEJ6YTz+UZWK4QQ4jUkHo+f1tuVTqdpbm4+4/5MJkNzc3O9zFz74/H4ZWy1EBdPLU5M37Euw7yrqfXE1MYPZzyjGZkkz7RQtusJoxgFSbcvloyGv8OyIS/hoixULYQQ4vLYtGkTv/zlL2dte/nll9mypZoG/Jprrjlt/759+7j22mvp7e0lFovN2j82NsbJkye59tprL3/jhbhQZhEte6J+VzELl74OxwKqiTcWC3cec98cT6gaXF7m7JZCXCoND9AK4QCxwmWYuCqEEEIAb33rW5mYmODhhx+mUqnwzDPP8J3vfIff/M3fBOB973sf3/72t3nuueeoVCp8+ctfJpPJ8Ja3vAVN03j3u9/NP/7jPzI0NEQ2m+Vv//Zvufnmm1m/fv0CX5kQZ6aWEgDYTasBUKZ6uy4hpRagzVwQesHVAjTHf+YebtdbHUqmFmQ9Q7E0NPwnkFIkTLiSwDUMFK/33AcIIYQQc7jrrrsYGRnBcRwsy2LTpk0A/OAHP+Cf/umf+Lu/+zs+97nP0d3dzac+9SluvPFGAG699VY+/vGP88lPfpKxsTE2bNjAl770pXpikA9/+MMUi0V+4zd+g3K5zE033cTnP//5BbtOIealFpDZTWvQ0sfnPZxPKSVQrApO5PSMqKdxpoY4Lp4eNHQ/ZucNZ12HzfVVAzTP+F4qkR7Q5PunWNwa/g4zo9UPwNL4BMEVPY2uXgghxDLxwx/+8Iz7enp66uuezeX+++/n/vvvn3Ofx+PhgQce4IEHHrjoNgrRKEptzplbDz7mF6B5B58AoBJ+67lT5btTQxwXUQ8a4ERXnL2A5sOOrEDLDaEnD2G1bWpMw4S4QA0f4ug0tQKQHBludNVCCCGEEMuSWk5Wh/JNLRh9vgkxrHPnB1Bcp1bZ4grQ5sPqugFX1cE2FropQpxTwwM0T0sHAKnRgUZXLYQQQgix/DgWanECJ9gKTKXWP78ATZlPAo2p4GYRJQk5L3pgepimEItYw99hwdbqsMb82FCjqxZCCCGEWFYUI4+WPASug+Nvhqn1+qZ6u87B1Twotolilc8Z0qmVDK43vCR70ABcVUOpDdMUYjFreA9aU0d1nLCRONnoqoUQQgghlhXP0B607CAA7tSaYPNIPV+n+avnGf0FinGOdWrNIq4neCHNXBwUHZz5Ba5CLKSGB2jdzT3k/EAq0eiqhRBCCCGWDbUwNmtoohtsrd1S5j0HzZ3RG+bt/8mZC9omqpGtp6xfklQVxcwtdCuEOKeGB2grIi2kw6Bl0o2uWgghhBBieXAdPMNPz71LUVDmOQdNmedQSMWugOvi+Jrm3cTFRi2Mo1gVlEpmoZsixFk1fA5azBciE1QJ5+QXDCGEEEKIC6Hmp6eKmN034YS6ZheYZ+A17/XSzEL1huaZ33kXITu+Fi11FByZhyYWt4b3oCmKQjrkIZSfR7YgIYQQQggBtonv8LdQsycA8Iw+C4DrDeOEu6eTg0Dt9jyzOLo2TqC1flcpp+YsNtVb52q+82/7ImGHOqs3zncJAiEarOEBGkA26CeSl3UohBBCCCHmQ8tVE4FoqaNgV+rbjb43nV5YUecVhKiFkyhmESfUgbHi1uqh51gPzV3CQxwvdAkCIRptQQK0QjCE33Rwi8WFqF4IIYQQYmmpBU5qJYPv6PcBMDuvP0NhBbWUwHf4W2fsEQPQJg/geoLYTatBr2ZznGshZ330uequ+NrZPXVLTS275Xzn3QmxUBYkQCtGogA4qeRCVC+EEEIIseS5vuic2xWrjGJU5/qrhfG5D7bKqJUMdtMaUPXq0EWlGtidSstV1661Y6svTcMXylRw6djVoaJTvYxmEWWO6xZioSzIUvBGNA6AlZhA61mxEE0QQgghhFgy5ur1cX2xcx6nJw6g5YYw2zbhhtqnz1frKXNr66CheXD8zajlZDVwOaWnzNX91UWql7TqNenjL6HYBqbr4IQ68B3/EQBmzy04oY6FbKAQwAL1oLmxNgAKY0MLUb0QQgghxNJySoDm+M88F8xqvmLWfcXI4R1+anYhx6yeVvNOb9M8KEYeLXkIADU7hPfVRwGw4+sutOWLx9QQx1pwqphF9NTR+m7P8NNgG9UFuyXTo1hAC9KDpjdXU8HmxodoXogGCCGEEEIsJa4NgBPuwuzYetZ0906oE5KHcQItcw5ZhOkgZdZ5rGryES07iN1yJZ6Tz01XPzOQW6qU2f0SWn4EJ9Aya5vv6PcAsCM9WF03NqxpQsy0ID1ogeYeHAXyY6MLUb0QQgghxJKiWGVc3Y/Z/bpzrkXmBpqprH8bZvfN2NHe6R2OPX17aoijOh14OcHqCCdX95+eBXIZBGgus4dtKkYeLTMwZ1ktN9yIJgkxpwUJ0NrDbWSDYEyeYeKqEEIIIYSoUwtj53eAooDmweq8vp7tUUsdmd5dG+I4M/CyW67E9UYAFzU/Mut0rmepzz/jtB60mSrr7sXsuA6Y0Vs4M6AVooEWJEDri3WQDoGblIw5QgghhBBnVZt/dupwvPmaWohaTxyc3mgb9SCuTlFx/E0oVgWlttaa2XMLldVvXgYJQqhfqx1fh9l5w+x9qoYTW0XlivuwWq+ubptjyQEhGmFB5qCtjLawP6jSlskuRPVCCCGEEEuGWjgJgBPpubATeALV/xWtvkmxDVx1jqGSmg/FKqKP76vWGWgFVTu93FKk6lTWv62eobIS7qwGYacO56wN+1TsCu7UYydEAy1ID1pr2Ecy5COcKSxE9UIIIYQQS4ZSyQC15B8Xw7Wnh0o6Jmi+04ucOv9suQRnU2YuH6Dq4AmCNzSriDvVq+jKEEexMBYkQPNoKolwiEjOwDXNhWiCEEIIIcSSUE0Q4jvrHKp5n6u2gLViG9OByAzujF42Y+XtF13fkqRWB5gptayWQjTaggRoAKloHBVwxs9z0qsQQgghxGuIYpWmF5S+QEbP6wHQJ34JZgm1OIFaSp5Wzp2xvprrj19UnUtWLUj1jD67wA0Ry9KpQ2rnsGABWjFeTeVqjAwuVBOEEEIIIRY310UtjE/PI7vQ04Ta67e9g7vOXM4fp7LuXipX3HdR9S1pinLuMkJcAC31Kr4j/3nODKELFqDZLdV1ObJDry5UE4QQQgghFje7DIA7x3yx8zWVRn5q6J7Ru23ugstt3tl5mlpSwNUv/jEXos6uVHuwAcXMn7XoggVo/vY11cWqh44tVBOEEEKI1yTr6KsYz/58oZsh5kGtVDNeO8H2c5Sch1PmnLmB5os/53KkKDjhzoseVirETL6j35++Y589B8eCBWh9LatIhqEwdGKhmiCEEEK8JtnHj+JmMzi53EI3RZyDPvqLS3Yu1xM6dyEBgKt6phfzFuISU5yzr7G3YAHaVS2rmIwpuGMnF6oJQgghxGuaWyw2rK7hwhC7Rh+jYMoSO+fD9VWTdlx0in3A9cXqCTDqizGLuWleWahaXDq1xeaneEbOnoBmwQK0lU0hxsJ+gglZrFoIIYRoFCc3/bnrJBMNq/do7lVs1yJvSa/d+XFxgm2XbF5Ype9NmB3XYTdfcUnOt1y5mg/FsS5ZkGY7587cJ5YXpZRAKU6C61T/Pw/6ZWrTObWFfYxGo9x2cAy3UkbxyThfIYQQ4nIzn3m6ftsZHsQOh9F6V17WOh3XwawN6TmR76cjcPG9Qa8VailRDdAuFU8AJ7bq0p1vmXJ9MWBq3bimsxc+i2cGUqSL1aGSb1jTTNi3YF+9RYN5B58AwAl3oeZHz+vYBXuVaKrCZHMnKmNU+o/h3yBd7UIIIZau3bt3AbBt2/az7p+ybdt2du58iEce+f+IRKJ84hOfmnXse97zTn7xi59jWRa6rnPjjTfzla98g4985L+xf//LNDe30NXVzZo1a9m8eUv92Kl69u3by7FjR7nvvnfMOu/+Y0dRKxWuuqr6uWuPDNcDtN27d7Fv39562c2bt5x2HWe7vqljT23Piy8/j35l9SvH4IlBSmvLp7V327bt9XNs3rylfq4dO/6QnTsfqtezZ88TvOENt9Xbdupxb33rPXOed6aZ7TxTmTNd97me55mPx7nKTV3Xjh1/OOc+HYs3r6xw4MQkkc3mWc81s/3f+ta/s2bN2vp5d+/eBa7Lbbe8AcXrPWPbZj6Oc72eph77udo717H5fI7du58462N3pudp5jXMfJxm1jNl5mvlTPXMVd/Z9rmaF4Bnn9rFLXfdB1R7MHfufGjO99Vcj8W6q7egdE1/v81XLMI+fc7Har7O9j6beV1zPa5T742ZzvUaPHXfqc8RcNpjMVfd53rtnvp4nKldO3c+xAc+8H683sic9c38W3Gm6zr1mFOva+b2qb+3995736y/F1Pe8553kkwm6n+/d+58qP4++ZM3V38IUfOj/PBHPwAgcPXdVLQI2687ew/2gg1xBCh1rAUgceTFhWyGEEII8Zrg5HKolQpWJIJ+7VYA3Hwe155ekydUyLNyoB+PcWmGdiWcBCPBYQB8ih8XB8u1Lsm5lzud6uOUInbR5wqcGMDY/bNZz7U4s6llDVT3wh+vk6XZ9/uTRdx5LFIslq+KFgFFJec/+yiCy96DpmYH0f7jQ8RLOVA92OFO7FgfVvu19Kzow1EgcXgvPbzvcjdFCCGEeE0zn3kKAMfjRWttgyuvxjr4CpjT2epi6TQAHReRxOuo9SrmiMH2zjsYsYfq271KNc27i3xJnY9ehoFOLsWyyZ50Crq6cCvlS3C214BaD5rPTF/wKdIGdAGbe6L0J4tkShYvj8oczNcqCx2vonIiD6WjSfp64mcse9kDNNcThLarsPIZFLuMmh/FO/w0yr7/zaeAx+Pd2PufQymncP1nbqgQQgjxWqW365T6imSNS5NYy2yqfd7q1a8B1kP1o70AACAASURBVKEDmM5qontfJG1Ve21Ux8E7MY7Rdn7rb7k4FN1qpsajuaPotaAsokaJKtWeIAfnjMcvG5egp8RHtRdTvYjHy3Ucgv3HpzeUl2+AZh19Ffv4UbzZLEbrRc7bU6vvjaB5fskdpsx8+ruifjoiPna9mmAyX1m4+UWioVzdj2KVMbtvAn5AihitLkxW4FyvzssfoAVaeKH3/dx44431bZoCG9tV7ru+kys7FNYN5Gj+PzdgrL+X0jW/hdW5tV52vmO9Z7qQYxaj5XIdQrxWnM97Vt7f4nx4V1R/zX859dLZCxoF2nMvkwqsPsOJfFjhCHakNn+jFqA5E+NY4dOTdflHhjHjzbj6/L8uOIqDWptBMVgYwHJNokaMPm01aScFLHwPmqmYFD0FHNdBVS79bA+lnKIn+wsMLQS88YLPY1ANbjNE6LnAc7i5LHpmuhfIXcYBmn38KAD+4aGLD9AukoWKAlzTXX2vqYrCFW0h9o/mMC7zCN8jmUNknAwx9eKHxoqL4WLHVuGEuznAehw08vn5Hbkgc9BsF/aNOfzPJws827SOcFEh0f0WvMe+T/ybbyX2H7+O58SuS/LrkxBCCHE5TZQmyBgXPgzqXBTP9AC3sl2mFCqdsayeOYbXzhEyxucu4Dg4/ulATNE99dvW2NichwQmh9HtM9d5WhW14EtTptPC++xqnUrta8dCB2gZX5qsJ8N+62XGnTGGCoOX7uRWGc/JF1BcC5+VwamkMezKBZ1KxaXgbcfCc+7CZ+DOmEtoOTaV1MS8jutPFBlINm6dvEtiZrDtXHwvrTW1FMEFpNo3a6/1kGf6x42mQPV5LF/maYAnCgOcsPtlrudMrgNOg+dfuk593UEbHReFTO2lpKlnH7i8oElCwOWoXp0k97K1juR/fZ78rf8DLTNA03d+g6Z/+zW6M784bXE3IYQQYrF4fuw5nps8+6Kj580q8bp4ipAHfH3VZAVaoTYc0WueVtyw4ZejWYxS9edZ9UxfzCwLV5sOnJRYDH3DVbOKjHT3cLKzq36/JXWQztz8k3k5SvUz++qma1Bqs6c8TvWLqVq7X3bnH/BVy+sMO5F5/27ruC77kpA8Q1w0HSA6jNknOZQ5wKQzv8DlXPTJV2qp2avB6uP9/8kTY48zkO8/S3sdXkq8cFqgqGHjKBc52MlxcF0Xx3U4mjvCvtFnznmI5cCh8TwHx+b5c//5cF1c6/IEDkogMH37EiRDmZp6oxjzexws2+GHB8ZJVcB0q++zoHfGDxV69Wu3dZavtYnyJLZzfo9PzsyScao/EtkzkpoctV89r/M0nF3Bd/hb+M3kZa/KM/w0vqPfvez1zKQ4Nq46/f6d+ffruhVn791c4AANRvMhcn5IPfkYrjdMacvvkvzNPeS2/w1qJcMtJx7iV478P/gOfQPO8wUrhBBCXKjR0VE++MEP8rrXvY7bb7+dP//zP8c0Tw+O0iUTy547ckhXUqdt805OoJ4jUYOWHSKgOaxrnv6Y1lM6fs2P5TVP64FKVGA4XSaRrX6R1N3pX/y9Vg7r8AHMl/cBLq6u47jVL5OKosxaA63c3YPl8WD4fCi4GEaFcqEWTLkOyQqUzbN/8S1r1fJ+xcstba9njb4WjalfkavHDtmD2CcGcEvzC9ROOmEc18V259eTYVgOlgv9Z/hebagGQddmU2GMptqX5VF7BOc8fxB2LWtWDxUAioLtOhxQJklRgtpz9Wr2MCVrdo+Uv1QinM8xXh4jUZmkP3EIt1TCtW0sbZLjgSzOefReAtVgTJ1xHbbNmHuSQ7E0pbAXxbQYtUdOOy5VmCA5/Dym7bLv9JftJeMfGcbY9VPcS9DDdSrbrJCvBf+KffHfGV211nM5R8+L4lqndSAUa++N0VK1B01TwKvPeA/Xek1st/oaNN3a3xPXQR99jv7EPl5KvsBAfuC0+px0mmRpcs7X6AuTz3HCHqDoFjmcOVTfbrjTv1A4LvQnCrz0vZ9R/PnTFCvWJf1ebTsuzw+mGctVcNxqL+GuI5O8mIAXEvDz/iTWjMW60yWTgdFqT3+0PHzWcyuV7EWPqlOLE9Xn6wy92apj4rFO/4NRCpVwA+dft4Zdra+WDRTArv1A1RuClpD3rMcv+DzFYGaQF1e0sOWVYTKlFLFAHDQf5Y3vo3zVf+HYo3/LlePfJvaTP8J+9u8pXvd/U77yXaDLwtZCCCEunx07drB+/Xp+/OMfk8vl2LFjBw899BAf/ehHZ5UbHJjAUVWc4jBXBqrr5Bh2hVRpkv3JvayLX41utlKxIXrsCL5iHsfrm6tKnEIex6PjDJzA9TbDCj+6OohTNDDDHVTM6gd8KGjjWZOjQjXQy5jVpXRdoxoAeK0sGj48ik174gWYOE7ZF0PVPGSjYfqzDpXDk9x1VTUBiOeWN+DJTFIxHBitLqhqt+kolREKjoMPUCoZ+gtx9o6kCUaGWBtdR1APzWp/Qc+R9aTpSWtE+3+C1nYNUVcnQPVLc0SJ4rouPfv6qdgH8OROyWjnOngxSFTAdFU8ikO+bAI2qxmimSwBzSJgZIn0H8TtjFI+8i3GMkOzEo8MpYrVL3SKwk+PHSRXGaOj6MWMxzFcA0UxCTkVVtABpShRfSW28UsOJJ7i6vZbsBQHjzI9rNB1XYYLQ7T52zFds9ozWE4z9ORP8Bo2bXe/C1VRcV0XxSyStIuMeJvIVxJ0uA49wRUMF4foH3+Fq7pvqJ+3dXwMFcgXUziWTfPupzCbU+Sb2ognjpPscXiuMv3dtHJigJFfvETPW38Nj14NenMVE02pFrBdeNU6QqYtRdqT5sB4iqZcEtM1SXd0Ygd8lAYn2Bs08DT5MKwKHttF8fk5sX836tgQlKcTtunZNJ6hIXJdK7BP+YLsZDNYFZOEL4ztzP0F1snn8Y2M4OSyqJFo9bU5OQFtbbjFInYgSNGCwHQnE2qlTEk9e+AQTmdQJiZx21pJlCHj+GiysvQnDpEOayhuGa0W/LuOA7aN4vHgJCbxDRyn2FOd0ZcoT2K5Fh2BTiZK4ySdBK2VAG6ljOLzg6pRtuGJIxOsXdVEi5VFrfXM9WSeRR32U+66iaJVwDTLKEUfWBYBK0VzdpJYsQ3PwUdRVQtj5e2oZomAUybhwlhglEOWzp3unVilSYrpwwwWB/DgYq/urH65tyq4jop1YD+TQwcZNkZJNPfiutXXJI6DVS5A8iB+M8kx9yCeYvWrvU/xz3pPHEq7aIMpfBOT9Gc08uYuVnrHa8PwqkFkeXwCbzjEUXOQoBaY+ZBTMCwc0wLbJmgnmSBOXC9RtD2Mm0kGJpNM5m0m8wbjhWq+iRbLqf+UlC4aDCXy9LWGsScnOPy9x6lcuZawWsa2bZiRq9RxXVa5A3gUEyvTT3poFx2x9Vid0/ksXMeBchklGKxvyxhp8i6AFw2HeDmHVSoxYSr02A4eTcUsFdDmCI7aCq/gsQsMxW7GxOanIz+qPibhIsF2u/4mVBwLbANLUXlu8jmaIhWiVgXz8DMoq5vQsVBcF7f2tzlZgUjt2KxmEsTAp509OANQ3LMsyDAxcWlSgQ4MHJqVJGRKNBrlxhtv5pZrb+G9j36NJz90B/e9+69nlakurujwppUWwef+F57xl7CDHZSu+31KV78PvKHTztuoyfdNTUHS6cs3Pnuhkghc7utaCMvxmkCua7E523v21GtaLklCzvRctbVF5ii9dLz88svcf//97Nmzh+bmZgB+8IMf8MlPfpKf//znqOr0r+KP/PnvYZsWdimD4kToa13J4RUFmrMeiqkCrpahu+DnRMGHige/lqCiBfC3Rpjof5Hs6ASqrhO58gqua17HWHEMq5hn5MgJHvNUsCzoMFyuNNq47k1b+OLQq3TnhuktWDieMD5fFK19JX3rt9J85AWGckPkOgIMORW8Y5Nc2bWedkMjqxSYaA+zT/HhuNDRtZ6ocZyWoA9Ti2F4fCSOvYg5XiRu+bCsAO2qSiiRY6BHwdJstLRJGx5UFSw0Wrxx/J4w5bXt7D+ZRzn6JHrZoc3bTV93D0FdYTifoTQ+iie2irwRpJT+JflYgOb4CrzmOCf8LmHL4rqN2zh65CDW4aOYsbXkGCPRUWZttJdXkoM0lT1EM2X6MwZrgyZNgQhBPChNPgq5DCcrXlbrPlZf+XpSmSQHTmapeEexNq/Cc/AEgYKBrTdhBC28kwO0G14iTb2UfF6Ujbfz4qEf05McRQ2EGW724rFjtOZKhD0GiqKQ7Ogm7ji8mhvD0hU2Fgy8jgu6n1wkRtkI0OSWyMcrOG6M8cOTtFhjhLo62ehvJVUeZ8wJ4ot1MVHMszqb5eRQPzm9QltXL5moSyhZREUl4gvTP/IqJ1uCFCNXkMllWHXVBtaftNCcKFlrAretEyZHSbYEiU4k8edU0qbNiTaX46Mn6PEFWN/Vh69UxsknSa37FdZFu7CPPk3/xBHG2uNcZUK7dzU5O0EoUObw4Bipok2kvZtN4RUoqGQmBhl1EuSySV6sFOnrWM8d13TQW2miZKgcdcoU29sJp5IkXj5AdtUKIn2d9BpFugsmTx3Zy4rWPjT8ZCeTRHWdlX19vJI8yMmV3aRPDLIy5bChr4UT+SLhTIUJO8OzmUkizVdz2/Zf58kffR/VdLn2tq0UnvoZ2WSBeHMTNAeplHXyIyMY+jjXXLGWY+2t+F86RlSLsG7VSsomFEwDPaCh2jkODx/FdKCpqwPf2m7K2RKthXb6PaPYx48RsRR6OlcwokIoFic98hTrWtfhlgrEM3mODb7KqFWis7cNnxIArw+Po+Dx+ahkMwT0ThJKBnVgHKsJelrjRLxBWtesZsjKMHRwgOOaF/9ggmiHTqi5CzNr4nEKFONBFNelJV0mEutg0EzSVFaJ2jBpVjOjDrZ4GKtUaOrXaQv7iMdUrDadSSNHYKJEaMUVqGaJsYRL2edw+xVb2bf/IJHJY2jt3VSMIh67gA8PcTXMC2aK9kSKeO96fE4Qn1Oi4E1h2C4HEzopNcQNTRqWU0bRLMhNErHCZONNvJqcZDJcorUpSq8eI6KsxRcOYb/0BK4Cob41HB3JoDNBsW8lPifJmt5N9EzC0dFBChEfiWCS2IFxTjhl1O5errWDOJUcieGTDLZYrF6zEsVwcHGJpxz2j2RYtaEHfymJ7YAvtJFi5iRuUx7D46P/2DFaMwEM3UvQyRJdtYVKxCGq2BSLCVR/FL/byfGhQbq1Am19XXgKJsXsBEZbE+mxcXLFAr5oO2o4zguv/pJYepJYZzO+0FVU/GOsiIRot7z0V/I8nR5ixUiBzs4OOqLNpAYTjFYm8UcidPStxrJacLweXj1+kKQvSLs/QHNvJ33tzdxz/9yLaMMi6EEDuOVdv0XysX+n6Ts/4/FtP+X27jtnF1BUjNVvxuj7FTxDewg+/78I7/lzgs89RGXdvZSveAdW142gXIqVQoQQQrzW7d+/n66urnpwBrBx40YymQwnTpygr6+vvl0383S7MY6aBi6TjObLRA6CCfXUDpMYOG4eB8hbgAW+dBjXBsejg6biy+Y4YR+pn7fitbmuaOC6LuGMSjxSIpwo8obkOOWyBZqOV7HRKRDIHqd4cIIikHdNlJMmreUypuGSUk5ihsIAFFSVUG1dJ3/hKAYwmikBJXSvRs6AnO4woVe3FR0PrVoe/8wl0UIeHAdUbFLlSShPwkv9RAt5SmWHsOUlroNaKFEG1FQOp+jiVRM0kyDlgOPk0ctDOEDTeHVY0fEXHqdYyFPylgm4R9HKZdr7wd8yQW8ij46DhUq7W8AiRMG1KWATNnQKFuhmlknNjzH8NI7t4HfzxExQ9x8nX6jNzbNLeCpQMlXsih+3UMFfqBD/5VP05Ko9h04pT9cwQHVezNSgp7hRHRrVWTuXHQpX+wXNInqpSLj6tOLPQNFXG9KpaKjZLPm8F8NVcN1xyvlxIsAkkPJWe3ksq0CoNg3HwSFn5bFQaU2UKZYz+PIFtJeOkI7HgVpCmvFq6vzoRPWX+hErAQq0ToKTKhMMqPhi1fMnXR95O4Dj9RHRWoEjdIynIB5n3KiepzZ9EY9dRM+PUYm6pEsmSXsq8yb0lSo0pYeZPKExyXT6eU/mBKOpFHkzR3isSMSYIA1klOrQuryVATIk3RQJEzKT1Xa19Q+jpTIUgP6UTjKVqp+1rWATdI6Se/arxLMnqo/nwSxFJU3ZmyOnmFAbimno1Q6FbNnEijRR9JgY1gROekZPXG0kqlnrVFLLBub+fjQgxRgxIFmxyQHjxQw6YGYThBJpcsUD4CrkgbTmotsqRtbEG/KBVcJCwShXf6jKmSMYtddxjOpor5xRJHdwPwABy6UrOUGJMlrGj24l6l/Go2M5POgYWCQmhgnWmj0z0X/8RAp/uQwKaLYfpxLGN6QTLFSX4OgazhDEh5YZJaOW6M8nUAt5Ciqs1LNkDQMLqGBy0knhSU+S0kCvTFLvlqmNqg0YYwQA02ytvgZsyFsuWXKQyhHIZVmRg1gBvCGHCs9RmYC8Xn0xRVKv4nHyBDSIjg9iOS4T409Tn+2ZgHgC8kqFkFkhMDZEsva3KuktEcqBO5Sp98IlAV3NUE6qGLVh04XK3ur7OwvhUJhgyaLorb0eVPCV+6EM9QVK8mUMxvE5eRIOVEaqL4x8IQ/56bG9HrtILAtXFCwSuopquOjqMfQSmIbCMEU8QN94Bav2Os9ZBilvBdes/oDn5HIU/WEc08FyNKKlCk1+L/7RYVT17MMmF0WAduOaNv79tnex7YeP8I//7yfYfdeTvK3vbVzddM3sgoqC2Xsrmd5b0U8+T2Df/8F/6JsE9v8rdqSXytp7MHq3oTkVbHXu4SNCCCHEuaTTaaLR6KxtsVh1UncqlZoVoG1+2/+Ff99BmsM3kRw+QsZWsI0yPsVmhaYyFPMz4TdwQ534yxWaW/pYMXgY3CgrWkYoaSvxGqMUAzrZHj/x0SIlf5A1G25A9yTIui0EfH2sLo0Rz01wg7KZUT2NN7SWmJHC8Ucxmvw050Y5GfARiF2DNrCftK4QKxmoIZ1i1E80ciW+zii3VcbIq1EK5gl0RcUKrGI0P0FY9bMucBVjdpJyJYkWvYqNPesZe+4FxioJOnFZkZnEVFRKOBRa/ATLDhmvD+3kJIHWFZSAiNJHKKrjsQ3Cjo2vu5eA10eTT8NwNNZkBxhoCWLEw/gPjNHeqVEuG2g+E82w6TUVSnEDK10i3NyLr5Jm/ZXXktAt3MFJyk4Jf1sbulH98tPs7aWkBUlMDKEqSdyeLqKFEq2OTZsapBQI4Q4do6S4FD02/oxBqXsj7eN50nqcLi1BPKri5CJUekL053OsGJsgHOklRwXdUciXxmkO9mBooLgFUq6GrgYI+gLkQxpNrxyi1LWWrkqOZCjMMV8HNzZ34aYPE6+YBMomoVQKxd+B62bI2Rr5lW1sHB6i4A8QSlboaL6CQo+HSjzCyGg/qz1X0WquJODTGUqkyORymLpG64b1uK8M0hSNYra1oJULlItZWlqyWJToXPM6zJFxMjj0rmnF73oZ9/WghcNEAwH8cQ3fgIcBaxLv6qtYZWVJaS7+0TIRPYKdG6JZd+hatZphV0UrZfGX0kSSAQbyQ6ywNdxrXoeV6EctZ+jrWsVYdpzmRBNKyQXVhVgYYkFMXaHT8hEPxDk5cZSOng7K4Q680SjdWpTh4Re5cmU3k5Eo9kQR38Yr0Zwo4aJJy/hBml3weWN4bulGKZYJ6TZ6dwdR3YffsmnJZvCs6MZQPSScCBtXXUWHx89kWx/F1ADFVJJIqkC4u5dyKoE/2EboxjZ6400MnRwiOzlETzBCMJfCv3oLQ6MjZEpZVjbFcTrXUul/hciqVrq9PtJOB0ex0MyD+JMWga51XJ1zIBbAdg3cbILjWop4xqE95pAJawQCZSLx9ViFBK5TwW1eQVd+Eiszhq95AxsrZZKFHFawg7asTk53MdUoUX+Z8cIQ5bDKppb1pDw2RlOEwCtjjOUnKLsFnOwY3qYwq7VWQraHEc2H6inQojRjl/OsaIkRbNFQyyX8toHPo3Fjex/Djo2dKeI0tZMdPkaps5kVRQU33Imhj+FxveRbW4j4VtJ8eASrOERTi5dSKoPVdwMhr0Vu5BBhJYLf0VDVAJtjYfZnKqxws/jtLMc9KlbrKnpCKqzpZWV0Hc2ZIoNHDnMkO4we9lPQXIp5kw69hVWujR2AiVKGYKGEGwpiruijhThNXhOrYwupsVcIZ7N423qJKxqZWCua14Oq2nQOT5IOqfQVTSLxKAQgGOokp4OnEEDVy5RbeihqHjyD+7FDGh4rS3yySJOnjVAsQsKrMGJHCPqaCefTRL0OeqiLiPI0elSjHAyRjQSZSA/hlizCq9ZhOxrrOteiKREqUR/hUgVWQbaYZZ2/GZ/fJN+5kVeDBm0nN3B9pIkNKzYwluineI55bYsiQAO492N/wCuHXuD3vn+Ib2Z+xCdu/AFmKECv0kuX2k1xqEBXsJt2fwctvlbovJ5c5/XkjTze4z/Af+g/COz73wRf+ifuVXQSwfWE9CexWq7CarkKO76uviq8EEIIcb6mZgQop4zWWLvlTtKrbuH53btgZdtpw1a7a//v3r0LAlAuwqstN7Jt23Z27nyIRx75ApFIlE984lPccdv0se95zzv5xS9+jmVZ6LrOjTfezFe+8g3+x0f+G/v3H6K5eZKurm7WrOlg86otrL33j1hbq8da286RfXs5duwo9933DrbPaNP08NoP1bddS3W46re//T2O7zsJhIFBmjc3Q2QVbZFV2MBA65mH5e7evYsD+/YCGTav3FIvt2/3Lvbt28vmzdX5efuOTbC5ewvbbtgON8we7rt79y6e2reXze1bePnkXhiBHTv+kp07H6I6R6WNPXue4A1vWMnmzTcDcEXtuFcSg2zevJ233nsP6XSR3bt3kZlx3imVDti3by8Amzd3c4Rutm3bzvDuXeBCOATpNfV+qrr1teuZOtcbZj4Ot0/f7AI2TpXz9LHlzulyp65lVr0u2LFj9lCnm28O8hd/8VfAEJs3b2HfQD+bN2/hV6bq3HLaw8/u3bvQgcm8wbcee4w1a9ay7S3vAOBIrc3XbNsOsQ0cnBiliTjbNt46fYJrqufYdyLH5s1bWLFxOyvq1xvj+aG97NnzFG94w23suP5m4Ob6oatq5arP87X1517XbR577Ak23LSdDbyx3sZbt1b3r9lyQ/X8Dmx/+/TzZAf97H5pkDVr1rJjxwdmPU67d+9ioPZ6smLVXst9e6vP51tvf3PtPbCfJlrZdvc753ycJvIJfmXb3aftO5nZRUuwleunHuerNrN79y6uv+M22iyN9bXn7Nixo9y3agVdb98+6/jeGXVMveavv3V2GYDR3bt4Zd9egpu3sO2u0/cDrJlxu2XGAz24exe/3LcXiLC5fQs9M95nAFee8jrddnf1cS0C4bvvoeOUIemP7XyIfmDH75w+3G7n8w8BneyYMRRv9+5d+Hr7MIEffuvfAfDd9w7u+LXp6+jfvQsPsKH23htLlNm27Q5ar7mD1jmudfrx2s7WWvt37nyIV7HYseOPaqXeWN/+gQ+8H683Mut4gJ5t2/mPnQ9Vu71r3XQ7dnx4dmW3vKt+jBmHq2r19e/exdQZS74Wbqxt/8i3f8T+/S9z7733sblrE03hTbP+Br7nPe8kmUzwiU98ihvvqf5N37Pnher7pPa+3grsfOwhfsxJxkrVDqRt286+PuKiCdA8Pi+bvvgFRh58kP+y53He+ZTCq20KQx0DjLYc5sm9P6Pog4JPwVEhSoRmJUqLG6HZDhJ3OolWfh1/bhImhvA7OXzP/RsaDorioiqA348bDOOEYtihKHbtthKM4/FH8fhi+HxB/L4AuieA6vVi4cVQFEzHxXRsDMfBdF06mwJ4igHKhQr8/+zdd3wc1b3w/8/MbNWuuiXbkjtg425McWihJpQLgXATQ0gC997wCySBJEBIeS6BkNzchH5JHPjBTZ4UAgaHFAjFgCGAAwYXjLstd1myurZr+5znj5VWu9JKLrJWhe+bl1/szsyZOWdmVme/e86cg4bq/A9S3QA0TaPQ0vv5uCPhjqb6lBjePd0LlUo90KlMwATTRMPsXtb5T1O9l/VenuxcptKvwURzWHCEIun907l/zUymSpeeS8IEpdBU6uFOpemd3Uz11AOnupGxPPtf9zItNUeEpgM6StN6bdvXPrL2g5ZjeUZekgUYgWjGfozOY3funx7dY3t1lz2C9Ufb1TbrcVDVx/Ie6ywOtM4R1rRe8wr1tQ+V8+VhpznsfWen6Z2/3NuBgoQDIxA5unPS73Z9SF8zLfVP6/x/ep2WdV1VH9sUxFpRgB6o70xDd1rDiR6KpO81e9yXStqR0XklKx/0cS/1XJdrW607nzm37Wt/OhhHP9/SaFJWVobHkz2Unc/nS68TQgghBsuwCdAAdJebCffdT2JXDYHXX2Pc6rVU7dxP4aZcQ/p66f37FphAzAqaAsO0Y+k1GmlH57+GnHlQpLve9mKl+3mCSMYeTMDUwdS6/w8QUAqLUhnfF7X0665F40/1UjI19xEv6npR00eGBtHIfrw/t9H6lSrXr1GjwUi8XunfY3fkXl+e8fqyrhfbBy07R0zpFnyXP0V8wplDnZUhN2fOHJqammhubqayMjXS4caNGykvL2fixImHSC2EEEIcvX4DtGM1CldlZe8RHLvY7Zbex6k4mfGnnwzAG2+8QQC44IILeifuwxtvvAFHmGY4Gi3lEOLj4kg+s8Px862RGqr9SI30ERtzmTVrFgsWLOCBBx7ghz/8IV6vl8cee4wvfvGLvbo4Wq0GFRWFlJSkhnvu63x0re9SUVGI223HMHSsVoOSkoKstHZ7dhXdVV86nVasVgO73YLTacXttmel7TqO223H6bT22m9/+SwpKcDtT6N18gAAIABJREFUtvfatme++ypfV9qe+enKY1e+cuW36xx2re/aV9d5yjwPmfvrmS7X9ehZjsx89rVNX+U+1HXOPB+H2i6zjH2tyyxbf/vKzH/XfdFXnvvKW65jZV63rnPf372TmfaNN97o81r3zHfPa5BZhszz1PN+yjxXh3ONjnRdSUkBH364Lv23uq/P1aHOxZGs709/n7PMvOc6r12fjUyHcw/mul6QukY989HXsQ917/Y8H33ly+228/TTT3HHHXfkPF7m34r+jtvX+eqZruvvbc+/OV3sdkvW3+++Pie5/ub0p99h9oUQQoiPq6amJu655x7WrVtHQUEBl1xyCbfffjuGYRw6sRBCCHGUJEATQgghhBBCiGFCP/QmQgghhBBCCCHyQQI0IYQQQgghhBgmBjVAa2ho4KabbmLRokWcc845/PjHPyYejw/mIY+J+vp6brnlFhYtWsQnPvEJvvWtb9HU1EQ0GmXGjBnMnTs3698TTzyRTrt8+XKuuOIKTjrpJD7zmc/w+uuvD2FJsp1xxhnMmTMnK+933303AKtXr2bx4sUsXLiQiy++mKVLl2alfeqpp7jkkktYuHAhixcvZu3atUNRhCxr1qzpdS3mzp3LjBkzqK+vH3HXaseOHVx22WWcf/75WcsHcm1isRj33HMP5557LosWLeKmm26iqakpL+WBvsu0Zs0arrnmGhYuXMi5557LfffdRyKRAODtt9/mxBNP7HXtPvzwQyA1F9UvfvELLrzwQk455RSuu+46du7cmbcy9VWu3bt357znXnzxxfQ2I+1aPfroo73KM2fOnPQ2I+FaDZaRVL+NhjpttNRfI7neGi111Gipl0ZLPSR1Tx/UILrqqqvU9773PeXz+VRdXZ268sor1f333z+YhzwmLrvsMnX77berQCCgWltb1XXXXae++tWvqsbGRjV9+nTl8Xhyptu2bZuaM2eOev3111UkElErVqxQc+fOVTt27MhzCXKbPXu22rx5c6/lzc3N6qSTTlJPPfWUCofDat26dWrhwoXq7bffVkop9Y9//EMtXLhQrVmzRkUiEbV06VK1cOFC1dLSku8iHNLSpUvV1VdfPeKu1UsvvaTOOuss9fWvf12dd9556eUDvTY///nP1RVXXKFqa2uV3+9X3//+99XnP//5IS1TfX29WrBggfr973+vYrGY2r59uzrzzDPVr3/9a6WUUs8//7y67LLL+tzvH//4R3XOOeeo7du3q1AopB5++GF13nnnqUgkMuhlUqrvcq1du1addNJJfaYbidcql1tvvVU9+OCDSqnhf60G00iq30ZDnTaa66+RUG+NljpqtNRLo6Uekrqnb4PWgrZp0ya2bt3Kd7/7XYqKiqiurubGG29k2bJlmGavycmGDb/fz5w5c7jjjjtwu92Ul5ezePFi1qxZg8/nS01AXZh7aMxly5Zx5plncuGFF2K327ngggs4/fTT+dOf/pTnUvQWCoWIx+MUFRX1WvfCCy9QXV3Ntddei8PhYOHChVxxxRU888wzACxdupTPfvaznHLKKdjtdq655hrGjx+f9YvMcNDe3s4jjzzC3XffPeKuVSgU4tlnn+X000/PWj6Qa5NMJvnTn/7E17/+dSZOnEhhYSF33HEHGzduZNu2bUNWptbWVq666iquu+46rFYrM2bM4Pzzz2fNmjVA6jOY6z7tsnTpUq6//npmzJhBQUEB3/jGNwgEAqxcuXJQy9Olr3IdTr5H2rXqadWqVaxfv56vfe1rwPC/VoNlJNVvo6FOG83110ipt0ZLHTVa6qXRUg9J3dO3QQvQtmzZwvjx4ykr655udvbs2fh8PmprawfrsANWVFTEz372M8aOHZte1tDQwNixY/H5fFgsFr7zne9wxhlncP755/PQQw8Ri8WAVJlnz56dtb9Zs2axadOmvJYhF5/PB8BDDz3E2Wefzdlnn81dd91FMBg8ZL63bNnCrFmz+lw/XPzqV7/ivPPOY+bMmSPuWn3+85+nqqqq1/KBXJv9+/cTCASy1peVlTFu3Li8lLOvMs2bN48f/vCHWcsaGxvTnzmv10tbWxtf/vKXOfXUU7n88st5/vnnAYhEIuzatSurTFarlenTp+ft2vVVLp/PRyKR4Ktf/SqLFi3i4osv5re//S2qc6DckXitMiml+NnPfsa3vvUtnE4nMPyv1WAZSfXbaKjTRnP9NVLqrdFSR42Wemm01ENS9/St34mqB8Lr9faKbouLiwHweDxMmTJlsA59TO3Zs4fHHnuMH/3oR2iaxpw5c7j00ku577772L59O7fccgsAt912W59l9ng8Q5H1LIlEgvnz53P66adz7733UldXx6233srdd9+N1+vl+OOPz9q+pKQkne++yrVnz5685f9Qmpqa+Mtf/pL+gI7ka5VpINfG6/Wm3/dcP5zK+eKLL7JmzRr++te/AqkvlBMmTOC2227j+OOPZ8WKFdxxxx2MGTOG448/HqXUsCyT3W5n6tSp3HDDDZx00kmsWbOGb37zmxQUFHD11VeP+Gv12muvEQ6Hufzyy9PLRuq1GqiRXL+NxDpttNZfo6HeGq111Eitl0ZjPfRxrXvyOopjVwSvaVo+D3vUNm/ezJe+9CX+/d//ncsvv5xTTjmFZ555hk996lNYrVbmzp3LV7/6Vf7yl7/0u5/hUN5JkyaxbNkyFi9ejM1mY9q0adx222289NJL6euSSSnVb75zpRlKTz75JGeffTaTJk0CGNHX6lAGem0OlT6f/vznP3PXXXfxi1/8Iv2l9rrrruPXv/41s2bNwmazcemll/KpT32KP//5z33uZzjcj5dccglPPvkkp512GlarlTPOOIOrr76633tuJF2r3/zmN1x//fVZkzSP1Gs1GEZC/TZS67TRWn+N1nprpNdRI7leGo310Me17hm0AK2srKxXpNrVTSGzW8hwtXLlSq6//npuvvlmbr755j63q66upq2tjWQySWlpaa8ye73eYVveCRMmoJTKea0y852rXD6fb1iV65VXXuHCCy/sd5uReK0Olc/+rk3XNrnWl5aWDmKuD8+jjz7KAw88wK9//WvOPvvsfretrq6mubmZkpISdF0f9vdjl658w8i+VvX19WzcuPGQnzEYudfqSIzE+m201Wmjof4aDfXWaKujRmO9NJLroY9z3TNoAdqcOXNoampK3xQAGzdupLy8nIkTJw7WYY+JDRs2cOutt3Lvvfdy7bXXppe//fbbWcPdQqq7yPjx4zEMgzlz5rB58+as9Zs2bWL+/Pl5yXd/NmzYwP3335+1bPfu3VitVmbOnNlvvnOVa+PGjSxYsGBwM32Ytm/fTl1dHZ/85CfTy0bytco0d+7co742EydOpLi4OGt9U1MTjY2NQ37tnnzySZ555hmWLl3KwoULs9b9/ve/7zV09O7du5k4cSJ2u50TTjghqx95LBZj+/btQ16mF154odfD+nv27GHChAnAyL1WACtWrGD69OmMGzcua/lIvVYDNdLqt5Fep43G+mu01FujqY4aDfXSaKuHPtZ1z2AOEXn11VerO+64Q/n9flVbW6suvfRStWTJksE85IDF43H1L//yL+p3v/tdr3Uffvihmj17tnrppZdULBZTGzZsyBqGdefOnWrOnDnqtddeU9FoVL388stq3rx5at++ffkuRi+1tbVq3rx56re//a2KRqNq9+7d6tJLL1X33HOPamtrUyeffLL64x//qCKRiHr//ffVggUL1OrVq5VSSq1cuVItWLAgPSzrb3/7W7Vo0SLl9XqHuFQpzz33nDr55JOzlo3Ua/Xkk09mDTU70Gvz4IMPqssuu0wdOHBA+Xw+ddttt6nrrrtuSMt04MABtWDBgpxDZiul1OOPP67OOusstWXLFhWNRtULL7ygZs6cqTZs2KCUUuqZZ55RZ511ltqxY4cKhULq5z//ubroootULBbLS3m69CzXSy+9pBYsWKBWrVql4vF4+tq88sorSqmRea26fPe731Vf+9rXei0fKddqMIyU+m001Gmjsf4aqfXWaKmjRku9NFrqIal7etOUGrxOmU1NTdxzzz2sW7eOgoICLrnkEm6//fasfqTDzdq1a/niF7+IzWbrtW758uVs2LCBxx57jLq6OiorK/nXf/1XbrjhBnQ91Ri5YsUKlixZQm1tLVOmTOHb3/521i9kQ2nVqlU89NBD7Nq1i9LSUi6++GK+/e1vY7PZWLduHffffz81NTVUVVVxww03cOWVV6bTLlu2jN/97nc0NTUxY8YMvv/97zNv3rwhLE23xx9/nL/+9a8sX748a/nLL788Yq7VRRddxMGDBzFNk0Qikb7/li9fTmNj41Ffm3g8zr333suKFSuIRCKcdtpp/OhHP8pLM39fZbrxxhtZsmQJVqs1a/uqqipeffVVTNNkyZIl/O1vf8Pj8TB16lS++c1vcu6556a3ffTRR/nLX/6Cz+dj3rx53HXXXUyePHnQy9RfuZYvX85bb73FH/7wB5qbm6murubf/u3f+NznPpdOO9Ku1fLly6muruYrX/kK1dXV/PjHP85KN9yv1WAaKfXbaKnTRlv9NdLqrdFSR42Wemm01ENS9/RtUAM0IYQQQgghhBCHL6+jOAohhBBCCCGE6JsEaEIIIYQQQggxTEiAJoQQQgghhBDDhARoQgghhBBCCDFMSIAmhBBCCCGEEMOEBGhCCCGEEEIIMUxIgCaEEEIIIYQQw4QEaEIIIYQQQggxTEiAJoQQQgghhBDDhARoQgghhBBCCDFMSIAmhBBCCCGEEMOEBGjiY2/GjBk8+uijQ50NIYQQYliSelKI/JIATYhj5KKLLuKDDz4Y6mwIIYQQw5LUk0IcHgnQhDgGfD4f+/fvH+psCCGEEMOS1JNCHD4J0IQAkskk//Vf/8Vpp53GSSedxG233UYoFEqvb2pq4tZbb+WTn/wk8+fP55prrmH9+vUA1NXVcdppp6GU4rrrruP8888HwO/3c+edd3LOOecwd+5cLrjgApYsWYJSakjKKIQQQhwtqSeFyB8J0IQAli1bRmFhIc8++yw//elPefPNN3nwwQcBiMViXH/99dTU1PDAAw/w3HPPMXnyZP7jP/6DAwcOMH78eJ544gkAfvnLX/Lcc88B8JOf/IR//vOfPPzww7z66qt897vf5YknnuCZZ54ZsnIKIYQQR0PqSSHyRwI0IYDq6mq+9a1vMXXqVC699FIuv/xyXn75ZQBWrFjB3r17+dnPfsZpp53GCSecwE9+8hNcLhdPP/00hmFQXFwMQHFxMWVlZQB85zvf4amnnmLhwoVUVVVx0UUXMX/+fN59990hK6cQQghxNKSeFCJ/LEOdASGGg5NOOinr/dy5c1m2bBler5cNGzZQXFzMvHnz0uttNhsLFy5k27Ztfe5T0zR+85vf8M9//pO2tjZM0yQajXLyyScPWjmEEEKIwSD1pBD5IwGaEIDL5cp673Q6AYhEIgSDQfx+f6/KKRaLMXXq1Jz7U0rxla98Ba/Xyw9+8AOmT5+O1Wrl//yf/zM4BRBCCCEGkdSTQuSPBGhCAOFwOOt9R0cHAAUFBRQWFlJSUsKzzz7bK53FkvsjVFNTQ01NDT/96U+59NJL08sDgUC6m4cQQggxUkg9KUT+yDNoQgDr1q3Lev/RRx9RUVFBUVER8+bNw+fzYbVamTx5cvofQEVFRVa6rpGn4vE4AOPGjUuv2759OzU1NTI6lRBCiBFH6kkh8kcCNCGA+vp6Hn30Ufbt28eLL77ISy+9xOWXXw7ABRdcwKRJk7jtttv48MMPqaur489//jNXXnklzz//PABFRUUAvPvuu2zdupUpU6ZQWFjI008/TW1tLStXruQHP/gB5513HrW1tTIXjBBCiBFF6kkh8kdT8jOF+JibMWMG3/ve96ivr+fvf/878XicT3/609xzzz04HA4AGhoauPfee3n33XeJxWJMmjSJa6+9li984Qvp/dx+++289tprFBYWsnLlSt5++21+/vOf09TUxIknnshdd91FOBzmG9/4Brqus2rVqqEqshBCCHHYpJ4UIr8kQBNCCCGEEEKIYUK6OAohhBBCCCHEMCEBmhBCCCGEEEIMExKgCSGEEEIIIcQwIQGaEEIIIYQQQgwTEqAJcYRM0+QXv/gFJ554Ir/85S+HOjtCCCHEsCL1pBADk3t6dyFETu3t7XznO9+hrq4OXZffN4QQQohMUk8KMXDyyRHiCLzwwgsYhsFzzz2HYRhDnR0hhBBiWJF6UoiBkxY0IY7ABRdcwHXXXSe/CgohhBA5SD0pxMBJgCbEEZg4ceJQZ0EIIYQYtqSeFGLg5OcNIYQQQgghhBgmJEATQgghhBBCiGFCAjQhhBBCCCGEGCYkQBNCCCGEEEKIYUICNCGEEEIIIYQYJmQURyGOgNfrJR6Pp993dHTQ0tICQFlZmcz5IoQQ4mNN6kkhBk5TSqmhzoQQI8WXv/xlVq9enXPdG2+8wYQJE/KcIyGEEGL4kHpSiIGTAE0IIYQQQgghhgl5Bk0IIYQQQgghhgkJ0IQQQgghhBBimOh3kJCWlsAxOYjbbScYjB6TfeWT5Dt/RmKeQfKdTyMxz/DxzXdFReExzM3wFg7HRuQ17mmk3qs9jYZyjIYygJRjuJFyDC/91ZN5aUGzWEbmiD2S7/wZiXkGyXc+jcQ8g+T742C0nCspx/AxGsoAUo7hRsoxckgXRyGEEEIIIYQYJvISoAUicd6oaSFhyoCRQgghhBBCiBFAKYz2GoiF8nrYQQ/Q9rZ1cOH/rOT7f9/GsvX1g304IYQQQgghhBgwLeLB0roV+77X0WLHZmyOwzHoAZrbbvCZeeMB+GC/Z7APJ4QQQgghhBADp8z0y3wGaP2O4ngsVLjt/OelM2kPRPjnnvbBPpwQQgghhBBCDJhmxrrf5PFJrbwNElJd7KS9I04knszXIYUQQgghhBDi6JhDE7fkLUAbX2wHoNE/8uctEEIIIYQQQoxyqjtA0zua8nbYvAVole5UgNY0CiaWE0IIIYQQQoxuWsYzaIZvf96Om7cArbTACoAvHM/XIYUQQgghhBDi6KjsB8/yNVBI3gK0EmcqQPOGE/k6pBBCCCGEEEIcHZX9DJqleWP6tdG2DfvOFwblsHkL0Ioc0oImhBBCCCGEGCE6uzjGplwIgOkoTa+ytO1IrVfHfnjHvAVoFl2jyGHBKwGaEEIIIYQQYjhKhLE0re8MvkzQNJTNjdItaGaOnoC5lg1Q3gI0SHVzlABNCCGEEEIIMRzZ97yK4duPHmrsHCQkFS5pZgLDuweUiR442J1AHfsAbdAnqs5U7LDikQBNCCGEEEIIMdyZCZSRHS71fO5Mj/owTRNsrmN22Ly2oBU5LASjMkiIEEIIIYQQYpgzE6CnxtFIlM/MuYm1/n3s+14/pofNa4DmshmEYkMzI7cQQgghhBBCHA5L03qMQB1aLAhAsnBC3o6dlwDNjEQAcNulBU0IIYQQQggxDGVMTK0lezyWZdjylo1BD9CSB+vZe9aZBB++H5fNkABNCCGEEEIIMfxkBGhd4tWnp14Y1iPbVzJ21NkY9ABNrxyL67zziPztz4yJ+IglFbFE78ILIYQQQgghxJDJEaCZVnf6dbJk6mHtRvftw777ZbRY4KiyMegBmmaxUHrDDWCaVO/bCkAoJq1oQgghhBBCiPwz2msw2mt6r8gRoKFp6ZeJyvl97zQjrd7Rkkoa8R1V/vLyDJrt+BPQ3G4q9m0HkIFChBBCCCGEEEPC0roVS+vWHGtU70UZAVp/tHio+43eOTT/Uc6RlpcATTMMLHPmUbQ3FaDJc2hCCCGEEEKIYUXlCtCyw6XYhDNzJu0a7RFIB2iaOYwDNADLtOOwNx1EN5MEo9KCJoQQQgghhMgf3V+L7t3b53qts5ui6SzLXNpjJ9kTV6eZ3aM+Ks3oXHZ0MU8fRzj2jElT0BJxxnZ45Bk0IYQQQgghRF5ZGz/sf4POAE3ZiyHcnlrWowWt1/seaVPbdAV1OVrkDkPeWtCMyZMBmBRokhY0IYQQQgghxPDSFaBlzXnW8xm03M+kaVkDjOhZ+ztSeQzQpgAwIdgiz6AJIYQQQgghji1lQjI6kB2k/mfYuxcddgtaRmtZVwtarmfaDkPeAjS9sAhcLirCXhnFUQghhBBCCHFMWRrWYt/9ymFtq2yFORZ2taBlBmjZLWYqowUtMWYWyuLISptKkwqxNIZpC1pLuJlrX/kCS7b+D0blOMaGPdKCJoQQ4pjYsWMHl112Geeff37W8tWrV7N48WIWLlzIxRdfzNKlS7PWP/XUU1xyySUsXLiQxYsXs3bt2vS6WCzGPffcw7nnnsuiRYu46aabaGpqykt5hBBCHD0jeDD1IhHJWq5792J496RWlU0n6a7KvYOcXRx7yGhBS5ZNJzb106ljhBozN8ra35Ea9ADNYXEwxjmGv+xbhqfEYGzEJy1oQgghBuzll1/mhhtuYHLnM85dWlpauOmmm7jyyit57733+O///m8eeOAB3nnnHQDeeustHnroIX7yk5+watUqrrrqKm688UZaW1sBePjhh1m/fj1PPvkkK1asoLS0lFtuuSXv5RNCCHFkugIrrUeAZm3egKV5Y+qNpqVbxbRYAGv9KugaDr+rS2LXKIy59HokLRVO6eG2zJyk/neUozgOeoBWaC3if855hAmuSeywt1HR0S4taEIIIQYsFArx7LPPcvrpp2ctf+GFF6iurubaa6/F4XCwcOFCrrjiCp555hkAli5dymc/+1lOOeUU7HY711xzDePHj+fFF18kmUzypz/9ia9//etMnDiRwsJC7rjjDjZu3Mi2bduGophCCCEOV1frVr/zj3VHWJbGdeihJrSIt3NNZ4uXpmG6x2EWVPSbvk+dgZ6WCB9GpnvLyzNouqZzUfUl7LR7cEc7iAaDh04khBBC9OPzn/88VVW9u6ls2bKF2bNnZy2bNWsWmzZtSq+fNWtWzvX79+8nEAhkrS8rK2PcuHHp9EIIIYapzpYvLWNOshwboSWiaLEAeldgpjpburq6JGo68apPEM81KXVfg4Rk6QzQjnLAkrzNg/aJyjP5fdFjAFjbWvN1WCGEEB8zXq+X448/PmtZSUkJHo8nvb6oqChrfXFxMXv27MHr9abf91zflb4nw9AoKSk4VtkfMoahSzmGidFQBpByDDejvhyJCJotATY7ymVAxjaaq3vQD1XkRIt1QMYyAptQ1VNBc6C57DiLXeDo41wlren9OTuPoVVPB+/+1Hul0Hyh1P6tBgVHcc7zFqBNLZxGqMwFBHB4W/J1WCGEEAKlFJrWd7cUdYihkPtLn0wqvN6OAeVvOCgpKZByDBOjoQwg5RhuRns5rLVvoUdSLVbJ1mYSWmV6nT3U3ZKVCESxBMNZQ+CbDidxbwe6P4Q1FCXmj6AifYRJZjK9v2hnPoyIjiUUJeoJYa17Fz2caoxShkmsj3NeUZFjFMlO+RtmX9MpnXACAAVeaUETQggxOEpLS3u1dnm9XsrKyvpc7/P5KCsrS2+Ta31paekg5loIIcRAaPFQ95v+Rk/UtF7zkyl7cVY61V83xlw/1nVtn4ikgzMAzUwc1VxoeQvQACZMOgkAV0Ba0IQQQgyOuXPnsnnz5qxlmzZtYv78+QDMmTOn1/qNGzeyYMECJk6cSHFxcdb6pqYmGhsbWbBgweBnXgghxFFRtiKUvQhlsfcfoOVa1xVEqe5BQvrWd4BmhBp677ffAUtyy2uAduKYOXgLoDhyEPMoZ9YWQggh+vOZz3yGlpYWnnrqKaLRKB988AF///vf+fKXvwzAF7/4RV544QXWrl1LNBrld7/7HT6fj8suuwzDMLjmmmt47LHHqKurw+/3c9999/GJT3yCE044YYhLJoQQoi9aIoJpKyIVQB1hnNEZmGld6Y62BS3XsPr9DliSW96eQQOYWTKbHYVQFm2jI5bEbc/r4YUQQowiF110EQcPHsQ0TRKJBHPnzgVg+fLlPP7449x///08+OCDVFVVcffdd3PqqacCcNZZZ/GDH/yAu+66i6amJmbMmMETTzyRHhjklltuoaOjgy996UtEIhFOO+00Hn744SErpxBCiMOQjILFDmR3YdT9ddnb5Wok6mo5S687sjasri6Reqip1zotEUFZj2ygkLxGSMW2EvxFNsa0BwhGExKgCSGEOGqvvvpqn+uqq6vT857lsnjxYhYvXpxzndVq5c477+TOO+8ccB6FEELkgVJoZgKlWzpbs7onirY2ru25ca/k6ZazjGH2j/T4QNbzZ+l9J8JH2p6X3y6OAJHiYso6ogRjRzezthBCCCGEEEKkdT3npVuzBgHRor7ubdJBV64WtN7zoB3R4Qsqs94nKudhOsekdnUUk1XnPUBTZRUUh00CgUC+Dy2EEEIIIYQYbVQqQFOaAWipCaKTsexNuoKunF0cu1rQOgO1fgcJgWTxFJKlGfNt2lwoi6N7fdEk4hPOAMDSsrln8kPKe4Bmr5gIQHP99nwfWgghhBBCCDHKWA+uTr3QU49P6R0t2Pa9jpYxQEd6KH3D3jM5KIWlaT2W9prDOl5i7AISFXOyF2pGxmv9yLtJZsh7gFZSlRoFy9OwNd+HFkIIIYQQQowyeqRz7krdkm790pLxrCHuTfd4YhPOIlk8JcceTAzf/oFlIisgS+VBWZwom/uId5X3AG38pFS0GWnZne9DCyGEEEIIIUYppVtQmfOUZc1BpqEKxoBukCyZ1iNhP/OmHY3OIFE5iju7XR6ZvA+jWFY9hTCg2g/m+9BCCCGEEEKI0Uq3oGUEW1kTR6vuAQoTlfNIVM7DaNuB4d2dlebo5RqrUTuqfee9Bc1ZXkLM0LD5eg9DKYQQQgghhBBHRbdktZrpwcb0ay3e0WvzZPkMzIKK3AOHHKlcE1KrJFrsyAdGzHuApus67S4vQ/cZAAAgAElEQVQ7bn8Q81g3JwohhBBCCCE+lpRuyWopy17ZR9yh6aBMTEfJwA5upo4brzotvUgPNacO0fn/w5X3AA3A6yqkNJCkKdx46I2FEEIIIYQQ4lA0S1YgpqyujJV9tZJpWWkyA6wjO3bnc2c5RonUsp6FO7QhCdACrjLKArA/uG8oDi+EEEIIIYQYbXQLGLb0Wy0e6l7XXwsaJpqZJOmuwnRXHdWhzYKxqRe5hvHvMzjMbUgCtLB7HKVBqA3sHYrDCyGEEEIIIUYbTetzWPs+B+vo7OKImQD9yEdc7JIYt5DYhLNyH/8In3EbkgAtWjwOewIaWnYOxeGFEEIIIYQQo4RpL8Z0jwMgPnZh1rpEaWoO5j6fTdP0VAClkumJro+KpqeG8c+dwyPa1ZAEaPGScgB8B2UuNCGEEEIIIcTR01B0TQ6NxZF+jixeOZ9k2XSU1UWifGbOtErT0cwEWjKG0o7tDGTK4kzlbyQ8g0Z5KroMN9WjjsWwlkIIIYQQQoiPJ6WyJqg2XeOJTbkAs2QqGFZiUz+FcpTmTqtlTGw9gC6OucQmfbIzQ3203vVhSAI0Y0wlAE5fB55Y+1BkQQghhBBCCDEaaRrKVnh4m2a2bmnHNkCjswUt5xxp/RiSAM0+NhWgyUiOQgghhBBCiAHLbAk7EslYxj6OfWikLA70mD9jgXnIedGGJEArKirAZ3NSFlDsD+wbiiwIIYQQQgghRoWMZ9AG4miDvH4oezHEw+n3ltat2Orf6zfNkARoxU4r7Y5iyoMG+0P7hiILQgghhBBCiI+7jPEw1GC0oOnWrG6UWixwyDRDEqCVOKy0OoqpCFqolS6OQgghhBBilGoJN7OudQ3JvoZ5FwOn1ABavzIHLDz2LWjolpHxDFqx00Kbs5jSgEltcP9QZEEIIYQQQohBV99RhzfmYW9AppcaPAMYFT5zRPlBaEFDJdGSMfRgw2EnGZoWNKeVNkcx7lAMb0cLwfihm/qEEEIIIYQYaSy6FYC2SNsQ52QUU0f/DJrG4AZoWiICgNFec9hphiRAc1gNfK5iNAXFIRnJUQghhBBCjE7hRAgAU5lDnBORS3zMnPRr015y7A/QObeaHvFAPIweajp0kmOfi8MTKSoDUkPtSzdHIYQQQggx2iTNBIHOnmJJlTjE1uLoDeAZNJuL6PQriU6/EmyuY5stwHSUp1/r4ZbDSjNkAVqidAwAFSFDWtCEEEIIIcSoEzPjKBSGZpEWtEF1jIbZHwTJ0uMx3eMA0OKhw0ozZAGaKk8FaMdFS2QkRyGEEEIIMeooUkGZjkZcxfFE24c4R6OUGsAgIYNN00iUnpB6GQseVpIhC9AKKspI6AYTIi72BfcOVTaEEEIIIYQYFGZn4BBXqWHWN7R/NJTZGd0GYZLpY6ZzoBg96j+8zQczL/2pKHTS7CyhymfQGG7AHzu8DAshhBBCCDESdLWgFVmLAHkObfAM3y6OAEq3pF4kwqAZh9x+6AI0l406dwXFzWEAanzbhyorQgghhBBCHDOmMlnXuoaDoXoAphQel14XS0aHKlujkhbxoiXj3UHQcNQ5kqNmJlD6cA7QCu3UuSuxN7SgKSUBmhBCCCGEGJG0qB/Dsyv9fm9gD96Yh7qOAwAYGa0mocThDRQhukX/+Q6JXTtzrrPVvgWAGowh8o8VLSN41HQS5TP63Tw/AVrEj9bRgpbR77KrBU2PxZgVH88OCdCEEEIIIUApdH/d8B74QGSx1r+HpWUzmKkujAkznrVez+h+F06G85q3kcL0tJPY1XsyZ2WaEAmT3LcnZzplK0yl7xwpcVjKnABb00mWz+x380FvCzQ8u7E8cyFjOm9U015MovxEZlWcgZY6nyzsGMervm2DnRUhhBBiaCRj6B0tmIXVQ50TMRK0bMPa+BFxTccsrBrq3IgjYN/1ItHpV6Jp2W0gumYwp3Qemz0b8cd8VBXI34Ke4uvWAKCPHY9emAoSlGlitnTPHWZ62qGkICud0g2UqzI7CBpuNC317JlKHlY+Bz1ASxZNInn5rwh7W9HiHRi+/ViaP2Lchod5pFxnF+OY3RDkyZImmsNNVDrHDnaWhBBCiGPunXfeAuCTnzy31zpL8wZq1rxOm2sGYWt5erslSx7h6af/QGFhEf/5n3dnpf3CFz7HmjXvk0gksFgsnHrqJ1i69Dluu+2bbNmyibKycsaPr2LatOOYN29+Om1XPjZu3MCePbu58sqrsvbbXz7feectNm7ckH4/b978XtvkStczbc/8bNy4Ib2vrtc98/vJT56btW3Xvm6++VssWfJI+jjvvruSM888O72/nuk+85lLc+43U2Y++9qmr3L3d/56no9DbddVrptv/lbWci3czquvLaeWzUyZd1avc9bf8QD+9re/MG3acen99sxLX3nLPI+57qeuc98zv32lDQYDvPPOyn6P29d1yixD5nnqeT915a1rfX/lO5p177zzFueffzaQ6qK4ZMkjOT9XGDZIRNJp3t7+D8YcP4bpJ6a6shmawVjnOPb4d/PGutf5be2vuXTa5Zxzznm98tGf/j5nmXnPdV4vPeM0lGZHM7q7W/Z1D/a1ruc1Avr9G3M4n4OuMp2lTGbOnEX8g/dY9v4qAoVFfGX27KxtX/zvn3DxT3+MrbPVTCnF1pXvouJwwtUn8avfPJG1fa5y9cxjz3JlLu/6e3v55Vdm/b3o8oUvfI729rb03+8lSx7J+TlZsuQRZlLD1EnVJPQCpk+5sM/zAfno4mhYUXM+R2TOdYRPuonguT/Du/gVWv/9I/5/93VoNpi2eT0Am7b/YdCzI4QQQuRb19DK5aEdQ5wTMSJ0dpMzh/GodCKb0m3Z7zWFTncgZO0aZj2j9SRM/ro66pEw4dWrSdQMr79BiT27sba3oZnZk3gX+3xMqDvQa/ukJXuAjdhbb2Ktb8Zo9RN7952sbsGVTY3EOlvlhoOuz7M6jOkAhm6i6oIxvF95DVsrZ2KJTKbEhM01T1L04vXoXpkXTQghxOhh2osBiBuuIc6JGBE6AzQNeQZtpFDWjG53SqFQWc+d5QrQOlT+BgsxOjpSWQsG8nbMQ0k2NpDcswvngVrGtLX2u60xaQpaSSlGIonZ2Jixk9RnpeuTUurxpFc5IhGUpx2V6J7aQCmV9T6fzM6wSx1G+DWknTUnljrZWDSRRH0LJ5eeyQclY7EcfJ+ypRdQ8MH96aZiIYQQYiTr+vIWtRQNyfG1WBCto/8vQAOR2L8Pi1/mMz1cgUiCtbVekqr7C3yyqYn4xo9SAyKYSQAqGbxrNlo1B6Js9+V3fBWjdSuGvzb9XlNJQKFlBGhaZ6tJzOweYj+pknnLo/NAKn/K583bMQ9FxWLp187OANK64OSsbbTCIqynLsIyfQaawwFAsqbnQCKK+NgxABQGUn+HjIwgLLGrhmTtflQ8TmLLJmJvvXGsi3JYugK0w5lQOy8TBmzYsJ5TTz01a5ndbufMf/tPSooncbVSTNma5I3qEHerz3LncUFcax/BvuvvBM+7j3jVJ9J9OoGc/Z8Pt0+4EP0ZSfdRrv7Th/OcgujWV5/zI0kr51oclq5vi0M0Kp9t3woAotOvPOb7NltbSe7cgfPA/mO+72MpoRJYtLx87Tmkmrp2zHffxunzEytJPUuT2PQRAMrrgVgQACej+4dq3V+HbsYwe3QPHIitjQE6EtCYh96DiaSJxdCxtGcHDIaK0WHpIKqinFx+alYgFkl2X9MEQ9OSo2IxNNuxO+dHn5Hefw+1oiK0klIA/EXFWE8+Fc2S+txaZs4m4nRCIoEyTTRdB8OCphSJijL0seMBKPL5suasNusOYAJ6WxtmW2rAES0eR1mtg1u+HlRnpuK645DbDmkLWkHcz47SSQDMrtNBQY2rjcCnl+C9/Cm0ZJySv34O91s/wI5M6ieEEGJk0jq/oA15l7VjHCAm6+uIf7QOAG0Qug1ZiEMydugND6HVbGFbYgshFTwGuRoYZZpYPkj94FwU8GOJx1EZ10X52oYqa4NGDxxEi3R3PdMiHuw7/461cS1V/rXH9FiGnvoS3BCGV7c1E4nnbqWKDfC+agrDGzWtdMR6778ysD79usReSrljTPr9GZVnU6QXoyuDJBlpk/Gsc3SsJYq75wgzM7sTKoUj3DFox+1PcmfqebjgiTOpmzCR0HEnoNls2E45jdrJU/CWlqJZLCRNRSCSIK40/E4Xu1rDeJcvR0WjkExiVhShNB29rAyAEq+Hks6ujl3BHpAOzgDsLc1HnN+YihFVRx+PFBzBM4dDGqAVxj2EbE7aJp5A+Y49uLxu6typBwLjk86h/Qtv0DH/qzi2PsXN/F/OKGsfyuwKIYQQRy4WwvCm5u/RlHmIjQdZMvvLRcJMEEse5hcOpbC1tqS64HWl37Yl9cJI/cLtDhzb51tOZBe2va8NeD9+0wdAaADP/Oz272KPfzfhBATih94+l3jSJOLzE02kzqFKQtXBehIbP+reyHswK83YwMb060g8SZ135M2hZW1Yja32bUxl0ma2YTRvShX+KOmYTPC+hzOW3QX0rZ29A6Z3drdlBcAAPtPLyqa38MV8/R5HC2d/71RK4Vc2AtZS6jtjmmC09w8TERKpPBqTeq1zWpxMNqZgURaSqjutpW0bttq30WKD8COCUlj8vtTQ9c4CEls2kdi7B6UUhQE/lc3NJJsaD72fQWLaHZiGQdLt7rWu0R9hxY4W3tvbzj92trLbNZ5wPIknHCe28i1AoVw2TAz0seMIO51Z6a0nZ/fgw5JqNbO2H35MoSuFKxjgQHI/NYntNIYbjrSIaQGixPSCQ243pAGaoZKMd8L6ifNw1tdx3J5CAjY/NV2TVlsLCJ11F95/fYEOnPx4Vg0/PLEGN0P/C5gQQojRraGhgZtuuolFixZxzjnn8OMf/5h4/Mi/meuZLQd9tKAZmqKsYxemt5XoO//ADHbWczpoju6+Oh2JEOoQrXDWRBBLHxPhmslIVpCypuUDVja9nbWNwsw6hi3ux711EwV79+CoryO+6t3UvjqDsQPBA7w/1kdSJSlrP3Trj1JQGwRf+PDOpWYOvGVOQ8cSjZOMhVFKEbD6SWhHdi33BfewN7ibbT7Y2dfjdspEDzZg2/9mztbKVfs8rNrWHYBFVCqwNTN+zVee7HNoTQYxOltatjcF2dIQ6D538Q6stW9jxsO0RIZwXmszQbVvNUX0H6C3mM0cTNbRED+6liKVTKJ3dGBVqdav8o7uroVKkQ58S5SPhQVt6eXeHvdaq5lqSfH3E6AZ3j3YDryDPeohvnUrZijInr0NtCWdhC3dgUQk0ftHlxBxXHTg0Pruylaqgjhi3V/09a5n2BIDCMCVSSwZZYd3W1a3Sltba2rgklgUy9RpACR37yS5by/Wzr9pZp4DNBWPooWaMaYe1+c2SaWxoT77wxZVFnwz59EajJFIKjSXC5xWlGagWSy0VI6lrTzVYuktLUXTNKwnn4r1jLPQx43HMnsO2OwkOudZOxyTlEl5WxumP3VPbfFsOooSQ0hPsFVrZbfl0H97hnxGtymF8EzJbJSuc+GmGBbTwrN7ns7aJjF2AY/zZX6zbyKnl3m4mf+Lc/3jMoiIEEKIQXPzzTdTUlLC66+/ztNPP8369et55JFHDp0wQ1IlSex5m1htEyiV7urYta5Ea8ZtMakuiFMQa8ZY8xxbDqxmy/Y3ASiYX0DBnAJsk2yYVpNVze8SLurujmRLJCj0tmHxeVDJzoElAhsp83Z3sbLHuwcF2Lb37+xJ7CLW+QVX27SZknc3EF35NrF4hKRKUu+qw2NP/bpsC3sYt/5Vyn1bcXobQYHP10jk7VdQnhbMZIKGKW4SJW72lXSQ0OJY4nEw+24pbFMOGqMx3t/X/SXdFW3CtucVbIncX/BzBaUdfcVtUX+vbpEx02TMlj2M+XA5jftW4LV5aHWkvqSbyqQueCDdypZL0jQJRZNE4qngNWGGaP1wJe1tB4jt/Cv2mr+hBQ5i2fE81oMfoEX96CqOvamRjoMNxDvCJBsbCMeS6NEIKBPT5qBm3FQOFleSMFPl00pKCbc10hrKHshBxySkgjTuWo1j73ZCna1EtoPvo0c8ePZ+yIEQtESAXK20ysSS7LxvzARF4dpe2yXNBAl1dMGwFvWTSCZQZpjagMK27w0sB1dn7FthKkXEDOJuC9DSVE+iqR1/3UEaM390VwotFqNow3oKo1HskQjxzRvRTJMJtfuI/WMF7p07mFhbi97sI9zgJx4OEDMTWFWAkuBOtI7dzNTWMSG6g4rC1HNW8WT2/ZMkVfaoGenVuhZSISLJSLq7obP5IIm61A8TiTUfMMbXzmxbPeWhXTj3bKWx1Y9CEU+m9lkXb2c3HkrxY8fe61yZba3okRAVyosl3pzuapluXW/eRrSlGe9HHxGMBXvlry8FsRYm+N7ngG8ndR0H2JrYzI7ENlrCzdgjHgwzjn36dPTxVZhjKgGI7NxGQchHxAhjer3pY6lYCKP+fXT6aOU0zX4/4z0lFbSFuj+TyeYm1PsvYvhr0Y04OXqJElc6MQzcHbUUxxtYUGnh5InF2LUE9tJSTIeTaMLEqE5N5K607uH3g+4Ctk4txFOYGjVXLy1DL3BhnTMPo6ISYlGsXg9aPE5iZ01Wr4AuoXj3D1mWzkvgTGSMwBkNoJSio3ACSWdJz+Q57XWm/r61JzswD3Fdh/xp2Xmliveai9h34gJO2baekw8cx9v6m/z79P+PCa6J6e1MDJbWVbOyrYw7F/o4/r2f4Nz4G0KL7iA6/aohLIEQQojRZtOmTWzdupX//d//paioiKKiIm688UbuuusubrvtNnS9u6L++3O/ZKzHQkcsgMVZjNnhJ/zOm2gavHOCnTHvr6TaVkyoNYTT3I/lOIgW6ezY0kg0sYMzx2mUJUzU3kZiJSae9n00O22UTw6wKGFn88EwRce5UGMjaMEgE7VmJpaGOGgrYHwsymTvXkq3x4iUldM4zU6jN0zE4kAz25hZ0IY10kbUb8PmdNL84Vr8qpjtpe8wf5XCXrcbZS9iX+t2Nr7bwOrW/ViicYq9dVRF2ygs8LI/2U40CZM7FKYeo65uJwWajcC25zF0nbbS6VijLkKuOLqtFXdbC0XbQtQk9mIJtVKrWqmLG5Tu9jE2kaTMbKU12k7CW0n9gRZisRi29vU0VMxibNMujEgBRaE9zEpsw9XgYdW297Em9mFlGq1WJ2W2BKgWDu77iKjdIP7hTlo9rRjE2Rfdy1vvf0QoZLCl2c3kwjKiB9fgbzxIVdRHELAf2MNMPUZbWRHh1ka2mttp/dvbtIUS1NktmK4YZxpFRNzH05y0UNW0m78VRalwTKbI08jkrRsAxYZaB8WFLiJ6guqx0/Cv+hBH1VRMXQMtQuu+DioCQTa+amLVIlSU2GgsVYzxWvBEd1JyxuXMb/kHUex8WLufqjE26ooP4GjbiutdHTNmErLY6EiaxDritG99C5dWQFLphMc6qK15D1uFizFtHjzldVS3HyDZVkW8rI7p1hbGdMRprXkXV+VMxq15Ec2psXLcbEra3ydSu4Nxvi0kJkzAMmUyyWiA91Y+Sk2zD6vPQczXSLPPh7t+B+6aDXQk4li9TTjHVBHuSFL7wbsYHX6iURg3ZzZ1jW9ysDWMPe4hGHiZf7wT53jdTck8jebdW9nUHMNXEKbw4D6MoBPlD7AxHiFqxKmp1FBtr3D8Cwdw7W0kEW+jOW5lnnYAS3OEwHoH1vgWfLYO2jo8NIQjBLUkrQc9RJVJtGAt1cpPIuIj2l6ArTzCHksbZeY45sR3s9Yfw6xP8pYep1Ify5aG14m7HUSjVWyvf4s620pOKjyNNXtrcTS9T7vhY/VH+znbbxB0FNDaEqDN0YwjEScUK8audVAV30dlfSPJeDsFHVv5sNxBg9nOnJDJOiNM8kCIaSEHBaEPiZS40NExdq4iYqvEYlio3vgmoaCPYKGTV9f9Aq/lNM6OeejQPWzyfUTJjqcIW8ZT/VGUKkc5tmmzCFQ70RNO4rEYpQ01xAiRqBqPb/Ub7BkzBs2/FWUYaM31xAiTDLejaYqt216kbP8HaDYLByK1bKlrpMb0cmXCx/727XhsHkxMaho2kPzHQfb4Y9hsXuJWP8Xxndj9ZTTUrKXV0YK2z4NlbwjDU097vJmykgS7dY0DW15gZ6yFWNxLyCwjsP0DiixFqEWnEwhGWReqY992jU9XH0+FgvCGNTibt2JoOgdMP1vbA8RViP2hTRxoPw6Xo5L9ykmZdTc+T4iTKyopbd5GeMwsxhltHJ/4gHr/aup9bmxTrCgFB8IWqgMBvKaNpKMBrzVMUcxgX1sH/miCcDzJ+GKdYCxJVTxBW9JHwZY17PLuY0oyjn3vXtrGl7E/vJ1kewehsjYWMAkLEQrRiWkxtLZ27LZS8Hewf9UyvK4qHIaGq6CMtkiMA80HMZMKlwnxmIf3X3uFSNF4Js0Yzy7TzbSoRjSUZFciwh8/eIPbL/9sn3WQpvoJzVtajk1f8v37d+QcxfHzn/8Cn7niKu7b7mBCRzM/fP5nRF0F3HUDVIybzsOf+FV6voieozjeeuUpuFb9N9bmDSRKj2ez4wz2l57FGeddekzyDFBSUoDXOzQPTg7ESMz3cMnzkY7MN5T5HsgojsPlfB+JwchzPkZxHInnGgae74qKw+8+Mhw988wzPPHEE7z55pvpZQcOHODCCy/k1VdfZcqUKenly374BcykSTCUaglwu3o/RxEzXET9LWh0/1LrdrlpaWvF5/GgGzqVlWOz0u6pqyUQCYGpMNAochQwadJkDh6sJxKNYDEsWKxWrDYbTocjnbYrH+FIhHgsRlFRUdZ+e+YzUOGmsCWIbuj4/X7Cke7eKU5H7y5amftKWnSaTxwLgK+5hYptjZid6TLzE45E0vvqet0zv26Xm1AoREckjNPhSOejonwMLRmDGoRDIZwuV3p/bpc7fQx7gZMSd2Gv6xEMBSkwbbiUnRYjkN53z330J1d++9PfdokiB8bccXyweScoxTy9mI7yAuJOG+M3N6AbOk3Nzek89jxn/R0PwO/3Y7XZqOjs6hXuCJJUvctQ6HZndYvMvFY57ydfGGuxM71fAz3dGpUrLZoiGAxl7UuhUehyZR2zKy+BYO4ydF3/ivIxve6nrrx1rS932fB4Ui3AJaVleDpivcrY13XJXGcxNBJJRTAUxO12YVVW4iTwtzUSDYcYWzmW4tIyPKEYcbsFa+ezaEFHFbTVUOK1UugupLQ0NXCFrkFnQykeTzsN4TYShdoh76Ncecy8f/u6L3ve/wDhs08k0dlcVXLAi9MXpqWtlUChjWm23lOAZJ73nucIUtcI6PdvjLcjikXF+yxnw5zxtHvaCQSDFLrdlHWer/2d0wJMnjiJCaVOOsd+YePGDZw4aya+2iAldV6aT6igLeynzjqFsdVT2bhxQ9b+582b3+uYJQebMbftBKCsNDWIiM8TIJkxqmbX8u07thMMBqmsqMTd2S2ya11XfmLxONOmHUdZaSm1tbV4vR5KSkqZNKn7GcTa2lrGaq04HQ5aLeMpKy3lq3fen/OcwDBoQdM1+I9Fk7j3jRj/O+eTfGPT2zzwOxc/v2g9j5f8iptOvDk9d0Sm+IQz8X7uRWy7X6Jg/WMsaPgDs5uWkdD/SWTGv5IYexJoQ96DUwghxAjk9XopKsr+wlJcnJps2uPxZAVoALqhU+YuJkYiq3VNh9TXV4cbCopxhRowrCUQD4KWpLy8lKLKMZBIYNcNYs4KzKII5Z4k0yZPJWoz0DWdSCJMaVhjgn0syXEJTFOhaam5lTrmj8e9uTl9XLfbRaHLhi8YQZkKi2FBWWzErMU4om3MLZpKndlGUodAdRGRMW5UsYOSve243S4qXCWEOkdO1jWd9qlltJdNo6JpJ0rTSPpjGOE4esLEPnkSFluC+dYp+KrG4ovZ0b1+dE1H13WSdgOHo5iCiBNd09HQKCksoMBuJZqAmAYORzGWaOq8udwFOF0OdE2nwOVMn9vy8oyR2EqK0Q0ruqbQNA1N03G7XRS4nOkfdXUjtQxA11Ovy0snUOJLUEEZPlcID6FUPtGwGTYchSXESPTZ9WiMpYg2M4Tb7abcZUGzFdDuS30RTdoNjGgSp81CKKGhm3FchYWgKfQeT5MUum3E51SB08LEianuWSGbHSsGTs0gXuEmGSvBah1HkfKjxTsocBego1FqKyBhhVA49QU9YXESKSjD7a9Pl9fU7TidDjRdQzdSx3a53ZhKZd0jAIahp4OGruVd57FrW2PiGJyecOp6lJSAkdqv0nSUMtPlKygq44QxOt5okqiWxNQt6GYCt9uFrutEHOWUagZuzUHQlqRlQgmORp0KvYWwiqHpOtbxZdiDMdonl6KbSVyeMFpIUV5eistdRlCPYlYV4ojGsAUd6GYUSyJMobuApFIUOq1YrAZl5aWYdguG1UoRqXnnMssIMMFazsFkZzfbAgdRi8Jps6KUhm4mUIBhaLjdLvxTxxAtcVJ80M9kp44DC3GLwjAMigvs+MwkWB0kDRu63U7p8Z9ifOtudM3AkvEdtutOKCsrpZximvATsCRBAz1uEnGMwRHzUmUrgLiB1wzR0dkd2aH9v/bOPCyq6+7j3zsb+yJuKBqXtiCryOoGgxgfd2NN1MYYbBJfxMSYKE1j2rqgfWOMSxtf1Cd5tEaJ0dc2mlBRElcgiamKLQgKBnlSgoFBEEZBmWFmfu8fMNe5wyy4DNzpez7Pw6Oc7X7P73fu+XHmnjlXjlauDd5envD0cIeBAyTgOvlUIpHAV+IOqScHH84dTdx9eHp64J6fOwAOChcZDERo6+sBj2YN/Pr6wfCz3rjfrIdHXTM8FFK06QBvuMPQW8/fT0Y8vDwhJcDAAXJfTxgUcrjd00IikfCL0F6ePiAQSAL09vIc0XsAABmvSURBVHSFnhTwcpXjvtYAg8l25aYhveDuJoefRz/Ut3hDKpFCKmvfqmi8N/y8XeDq+uA4/NDQELi5uUEzWIb63u5QSOXo5SaFzmcIFAoZQsOC2+0l8YCedPB094JG/+DDRrnEBdqAvuival98ShRySAyE3n16Q29ot7W3rDc8XXxRr/0RP//5z2AwGKAZMgyDbmngKvXCXbqF+1IdpG06BAcHg0BwUbhAKpNi0OCBGDDAH1KZBDL5g22XgwYPhNTQF1Lo4ePuC5lB5FscAWB2xAB8duF75A6dAs8+fbG47FusOXgX//ruE/xv8lWMmZCOCr0f1H3Dobjf8GAy4Thohk+DZugUlOTuwbDGsxh67X/hVrIfBrc+0A5JhmZIMnT+0TB4+HfpxXAMBoPBYFjCuOHE/EPDX675BE1N95Cffw5yPHiqSkR8WSJCQYHwMI7ExCRkZn6AA5/uh7eXN37/+7WYaPJE9vnnn8PFi99Bp9NBJpMhNnY0Pj3wEXb85k2UlBajt18fDBgwEMNd/BERNVnwNL0VQHlxESorb2D27DmCJ73Gp78TzJ7++vq6Izv7OC6bfAIdETES/QH0JwD92v/wSXxWWM+03e9b9IAcCAsLQ1LSRD7d+HQfaP/EOSJkpEAvEUGpnCAoa/wkfNmyN5CZ+UGHHYFvLxRg3LgEvr3ExCTk5Z3FlSvFiIgYiVmzpqGpsQX5HfZOTFAivyAPdwDc6Wik+Eox3z8YDBiXlIz8/HOQApCi/TtTEk7o65Emeu8QIVE5waIdzO1s/pTddFwU5n3A99EUHx83/Pd/v4ca9EbEqHZbRIRHIEo5AaTXg5NKO7WZn5/X/mcOET7/4iiGD/8Zlr22HOA4vm9CmwNKZZJAk/lODIPBgIKCfHDDgKKiIt725nqNbZ4pLkLEqJFISlCC4zjIZHqcOVMguG4zgLHjEiGVcPw1jfeN0Wb9AXz++REMHz4Cy5Z3+F/Tbifz8WQgoORKx1hJewMGMuDrgnyB7U3vXeM1ghKTENTJhufAcVyn+2VucgJ0OilAhMwd21FZWYHZs5+1uoMiL+8cTtQ3IyJcuKOls50nC+759v4YwIGz+HDCqKe0494w3THTaVdN3lnc5ThMSFAiP+8sfCQSvDhrmmBnhEGvx45d/wPuBw7Pv7YcBOI/5ACAvMw/A+AE/jZeR0KEnC+OggD8cvZ8JHT4nIhQkH8OBA5JyiTk5Z2DDIS4jvtFZyDIJCZ9I0J+QR4qy4U7gNrveULKa8vb32FmsqMuNfVlKBReAk2D7wGJMUn8XAHcghTAKxbGqsFgQEFLPjgOnexnJK4jfeXK5SgtvYKZM/tBGj4SOg6YnJjCl3v++edw+3YD3vndaiQpk/kdf2PHjMfraW/y5Yy6IiJGwhv2d9+IYoEmk3BY9HPC5u8a8VevONTPScYvq77Fz08fRuSeQmDPArwt4aCXSADiILl+Eaq/HYLU8OBbhQMAtAIocw2AxEUGqUwHKfIgkZ2GVG4A56oAfPoAXn1A7r6ARy+Qe2+Quw/g6tX+wj6ZHJxCDs7VDZybO1r79YJOLwHn1v475+rKvyyPwWAwGP+5+Pn5obFReNKcWq3m87qC6R9Y1v7YAgTvU7XfZsen5dxD1ep+JBKp/UIm2LKPsFwX65v+bisPACSdd9tIJXb0PMYHvl3pq8UyHWnmizNjeb6Krb53bs6mJolEwpd7mC7b66NM+uR2OJm7SmJh91RXbW633AMjd63YI+iwpP+RMHWchTEOABKplJ9LOI6zMK/YGj+coAT/e/ujff5pYXvyg3Zk5g6zaRMO4MyfQT8+puP6YbBVx9xvnL05xA6iWW24y4Dw+ny0PDUa/6ofgrNcBCTJoXgapfhF63kY1D+A6zhdyCAB9JwEerhADzkMnAwGSCDXA146Dp5tgGebAm5aV7i3auHW2gZXtR4uVY2Q6W5Dauia0Syd56SXcdAp2n/0cknH/yXQydv/1Xf8Dq79jeEGGYfKGC9ovOQdp1AZbxjA2sDv6im51spJpRz0+q62ImzP+OhZCg4vuAyDv8TNdqUnhMRVDo9WG8eOOvzpZ3v7YTXt7+Hz+PabLtWyq1twiSfbh7Da9v3ZHue/BQCE1v6IfqhD39oyeJw/b7PuQ+kW4Fg/kA0bSVzkcNc84suHeITth9T+W/C7+3cX0FWMdTvVMeuDxEUGdwvvyRElUhfcD10IcuvaAuQ/mbCwMKhUKtTV1aFfv/YTz4qLi9G7d28MHjzYTm0Gg8FgMB4dmwu0J/Ul7379Yi2mu7nJ4evrjr59veDr6w4PNykifZvw+Vv/ZVJqFgBg8+bNOHfuHAAgKSkJq956S9DW6dOnAQATJ058IpoZ3Y/91/Y5nuqOcRT0EOOop3Sba715+jQu37uMqBFRGNEF/WKw98PiYb/IQ/FThw2NBD+E3411u1LnSet2JKZanf2gj8chJCQEkZGR2LJlC1avXo2mpibs2rULL7zwQqdPweVyKR/HAOt2M+Yb6dvXC56eLpBKJZDLpXw8NOLiIgzRLi4y9O3rBTc3OeRyKVxcZHBzk8PT00VQ13gdT08XQZw112FJp6+vOzw9XTqVNddtrX/GuuZ6jBqNuizpNdrQmG9sy2gnUzuYtmdez5I/zPthqtNaGWv9tudnU3vYK2faR2t5pn2z1ZapfuO4sKbZmjZL1zL1m9H2tsaOad3Tp09b9bW5bnMfmPbB1E7m48nUVl3x0cPm+fq64/LlQv7vS2v3lT1bPEy+LWzdZ6baLdnVeG+Y0pUxaMlfQLuPzHVYu7a9sWtuD2u6PD1d8OmnB/CWyTrA9Bqmc4Wt61qzl3k943xrPucYcXGRCeZva/eJpTnHFjZPcWQwGAwG4/8rKpUKGRkZKCwshLu7O6ZOnYr09HRILWwxYzAYDAbjScEWaAwGg8FgMBgMBoMhEtg59AwGg8FgMBgMBoMhEtgCjcFgMBgMBoPBYDBEgkMXaDU1NUhLS0N8fDyUSiXWr1+PtrbHPYXt8bl58yZef/11xMfHY/To0XjjjTegUqkAAOXl5UhJSUFMTAwmTpyIzMxMmO4Czc3NxTPPPINRo0Zh1qxZOHnyZLfrf/fddxEU9ODtHRcuXMC8efMQFRWFKVOm4ODBg4LyBw4cwNSpUxEVFYV58+bh0qVL3ap3z549SExMRGRkJBYsWICKigoA4rb1tWvXsGjRIsTGxmLMmDFYvnw5fvrpJwDisnd5eTlmzJiB5ORkQfrjaNRqtcjIyEBSUhLi4+ORlpbG3x+O1n3x4kX86le/QlRUFJKSkvD+++9Dp3twAqKtMUFE2L59O55++mnExMQgJSUF33//vcM1GzEYDJgzZw5efPFFQbpYbd3S0oI//OEPiImJQXR0NNLT09Hc3Mzn96StnQGxxjdLWIt5Go0GQUFBCA8PF/x89NFHfF0xxDwAGDt2LMLCwgQ6165dC0Bcc7I9Ll682Mne4eHhCAoKws2bN0XtD2eNN13th634k5eXhxEjRnTyzeXLlwH0zJxoqR83btywOIaOHTvGl3EGf+zcubNTH8LCwvgyYvTHE4ccyJw5c+jtt98mtVpN1dXVNHv2bNq8ebMjL9klZsyYQenp6XT37l2qr6+nlJQUSk1Npfv375NSqaRt27ZRc3MzXb9+nZRKJX366adERHTt2jUKCwujkydPUmtrK506dYrCw8OpvLy827RfvXqV4uLiKDAwkIiI6urqaNSoUXTgwAG6f/8+FRYWUlRUFOXl5RER0dmzZykqKoouXrxIra2tdPDgQYqKiqJbt251i96DBw/SpEmTqLy8nJqbm2nr1q2Unp4ualu3tbXRuHHjaPPmzaTRaOjOnTv0+uuv0/PPPy8qe+fk5ND48ePp1VdfpQkTJvDpj6vxvffeo2eeeYaqqqrozp07tGrVKpo7d67Ddd+8eZMiIyNp3759pNVqqaysjMaNG0e7d+8mIvtj4pNPPiGlUkllZWXU0tJCf/rTn2jChAnU2trqMM2m7N+/n6Kjo2nhwoV8mlhtTUS0YsUKWrJkCdXX11NdXR2lpaXR/v37iahnbe0siDW+WcJazKutraXAwEBqbGy0WE8MMc9IaGgolZSUdEoX05z8qBw8eJDmz58van84a7zpaj/sxZ8vvviCZsyYYbXd7p4TrfXj0qVLNGrUKKv1nMUfllixYgVt3bqViMTnD0fgsAVacXExjRgxghoaGvi0EydOUGxsLOn1ekdd1i5qtZpWrVpFtbW1fNqxY8do1KhRdOLECYqLi6O2tjY+b/fu3TRr1iwiIsrIyKAlS5YI2ktNTaU//vGP3aJdr9fT3LlzadeuXfwCbffu3Z0GaUZGBi1dupTXt2HDBkH+9OnTae/evd2iOTk5mY4dO9YpXcy2rqqqosDAQKqoqBDojYyMFJW9Dx8+TDdv3qSsrCzBxPY4GnU6HUVHR9OXX37J5zU0NFBQUBBdvXrVobqLiopo/fr1grKrV6/mx4G9MTF9+nT6y1/+wudptVqKiYmhkydPOkyzEZVKRWPGjKE///nPggWaWG1dXV1NISEhgnnQlJ60tTMg1vhmCVsxr7y8nIKCgkin01ms29Mxz0hzczMFBgZSVVVVpzwxzcmPQkNDA40ePZquXr0qan84a7zpaj/sxZ+srCxasGCB1Xa7e0601o8zZ86QUqm0Ws9Z/GHOt99+S0lJSXTv3j0iEp8/HIHDtjiWlpZiwIAB8PN78MLT0NBQqNVqVFVVOeqydvH29sbGjRvRv39/Pq2mpgb9+/dHaWkpAgMDIZM9ePdMSEgIrl+/Do1Gg9LSUoSGhgraCwkJwZUrV7pF+6FDh+Dq6ooZM2bwafY0lZaWIiQkxGq+I1GpVKiursa9e/cwc+ZMxMbGIi0tDbW1taK2dUBAAEaMGIFDhw6hubkZjY2NyMnJQXJysqjsPXfuXAwcOLBT+uNo/Pe//427d+8K8v38/ODv7//E+mBNd0REBFavXi1Iq62t5e9VW/1qbW1FRUWFQLdcLkdgYOAT0W1Ns5F3330XCxYs6PQCY7HaurCwEP3790dubi6USiXGjRuHDRs2QKPR8Lp7ytbOgFjjmyVsxTy1Wg2ZTIbf/OY3GDt2LJKTk7Ft2zZotVoA9ueS7kKtVgMAtm3bhoSEBCQkJGDNmjVobm4W1Zz8KOzYsQMTJkxAcHCwqP3hrPHGnEeNP01NTWhoaMCLL76I2NhYzJw5E1988QUA9MicaK0farUaOp0OqampiI+Px5QpU7B3717+6yPO4g9TiAgbN27EG2+8ATc3NwDi84cjcNgCrampCd7e3oI0Hx8fAEBjY6OjLvvQVFZWYteuXXj11Vctavb19YXBYIBarbbap+7oT319PXbs2IF169YJ0q1pNmqyprmpqcmheoH2yQ0Ajh07ho8++ggnTpyAVqvFypUrRW1riUSCzMxMnDlzBtHR0Rg9ejRqamqwdu1aUdvbyONoNOo03qum+d193x47dgwXL17ESy+9BMC67sbGRqjVahBRj+j++uuvce3aNaSmpnbKE6uta2trUV9fj8rKSuTk5GDPnj04ffo0du7caVN3T9taLDhLfLOEaczjOA5hYWGYNm0a8vLy8MEHHyA7OxuZmZkAbI+D7kSn02HkyJEYM2YMTp8+jX379qGoqMhp5mRrqFQqHDlyBGlpaQDgNP4w5T8l3phjHn+8vb0xaNAgvPPOO/jmm2+wdOlS/O53v8M333wjqjnRxcUFw4YNw+LFi/H1119jzZo12LFjBw4fPgzAOf3x1Vdf4f79+5g5cyaf5iz+eBy69RRH4wqe47juvKxVSkpKsHDhQrz00ksCx5vSFc3d0Z+NGzdi7ty5GD58uN2yRGRTE3XTq++M13nllVcwYMAA9OnTBytXrkRhYaHg4Afz8j1ta61Wi6VLl2Ly5Mm4dOkS8vPz0a9fP6Snp1ssLxZ72+JxNdqr/6T57LPPsGbNGmzfvh1Dhw61WbYnba/RaLB+/XqsW7cOCoWiS3XEYuu2tja8/fbb8PT0xIgRI5CSkoLjx4/brCP2cd6TiC2+WcI85sXExODQoUOYNGkS5HI5wsPDkZqaiiNHjthsp7v7+NRTT+Hw4cOYN28eFAoFhg8fjpUrVyInJ8fiuHOGORkAsrKykJCQgKeeegoAnMYf9nC2eGOOpfiTkpKC3bt3IyQkBAqFAtOmTcOkSZPw2WefWW2nJ8bZ1KlTkZWVhbi4OMjlcowdOxbz58+3OYbE7o89e/Zg0aJFkEqlfJqz+ONxcNgCzc/Pr9NK1bhNwXRbSE9RUFCARYsWYdmyZVi2bBkA65qlUil8fHzQq1evTvlNTU0O78/58+dx5coVLF26tFOePU2W8tVqdbf4oE+fPgDaP00zEhAQAAC4deuWKG0NtNv7hx9+wIoVK+Dl5YX+/ftj+fLlyM/Ph0QiEa29jTzOmDCWsZTfq1cvB6p+wM6dO7Flyxbs3r0bCQkJfLqtfvn6+lr0jaNtv2vXLkRERGDMmDEW88Vq6z59+kChUMDd3Z1PCwgIQF1dnVXdPW1rMSH2+GYJSzHPEgEBAWhoaIBer+/RedgegwYNAhFZ9IXY5mRrnDhxAk8//bTNMmL3h7PHG3OsxR9LGOdMsc+J9uZ2Mfvj5s2bKC4utnufAM7jj67isAVaWFgYVCoVPygAoLi4GL179+70PY3upqioCCtWrMCmTZuwYMECPj0sLAzl5eX8fm+gXXNwcDAUCgXCwsJQUlIiaOvKlSsYOXKkQ/VmZ2dDpVIhMTER8fHxmDNnDgAgPj4egYGBNjVZ0lxcXIzIyEiHagYAf39/+Pn54erVq3xadXU1AGDOnDmitDUA6PX6Tp+0GJ/4xcXFidbeRsLDwx9Z4+DBg+Hj4yPIV6lUqK2t7ZY+ZGVl4dChQzh48CCioqIEebbGhIuLC37xi18I9pdrtVqUlZU5VHd2djbOnj2L+Ph4xMfHY8OGDbh8+TLi4+NRU1MjWluHhISgtbUVlZWVfFp1dTX/XQAx2lpMiDm+WcJazMvLyxMc4Q60b4EcMGAApFJpj87DphQVFWHz5s2CtBs3bkAulyM4OFj0c7IlysrKUF1djcTERD7NWfxhijPHG3NsxZ99+/Z1eqXBjRs3MHjwYFHNidnZ2fjrX/8qSKusrMSgQYMAOJc/AODUqVMIDAyEv7+/IN1Z/PFYOPIEkvnz59Nbb71Fd+7coaqqKpo2bRplZmY68pJ2aWtro+nTp9PHH3/cKU+j0VBycjJt2bKFWlpa6Nq1azRu3Dg6evQoERF9//33FBYWRl999RVpNBo6fvw4RURE0A8//OBQzU1NTVRTU8P//POf/6TAwECqqamh6upqio6Opk8++YRaW1vpu+++o8jISLpw4QIRERUUFFBkZCR/pOrevXspPj6empqaHKrZyPbt20mpVFJFRQU1NTXRyy+/TKmpqaK1NRHR7du3KS4ujt5//31qaWmh27dv02uvvUbz58+nhoYG0dnb/PSjx9W4detWmjFjBv3444+kVqtp5cqVlJKS4nDdP/74I0VGRlo8SpvI/pg4dOgQjR8/nsrLy6mlpYXee+89mjx5Mmm1WodprqurE9ybe/fupXnz5lFNTQ3pdDrR2pqIaOHChfTyyy9TY2MjVVRUkFKp5I+UFoOtxY4Y45slbMW8y5cvU2hoKOXk5JBWq6WioiLB0eI9OQ+bUlVVRREREbR3717SaDR048YNmjZtGmVkZIhyTu4Kf/vb3yg6OlqQ5gz+cNZ4Y68f9uLPhx9+SOPHj6fS0lLSaDSUnZ1NwcHBVFRUREQ9Nyea9yMnJ4ciIyPp/Pnz1NbWxtv/xIkTROQ8/jDy29/+lj8R1BSx+uNJwhE5blOmSqVCRkYGCgsL4e7ujqlTpyI9PV2wj7S7uXTpEl544QWL3xfJzc1Fa2srNmzYgJKSEvj5+WHevHlYvHgxX+bUqVPIzMxEVVUVhg4dijfffFPwCVh3UF1djYkTJ6K8vBxA+4lsmzdvxvXr1zFw4EAsXrwYs2fP5ssfPnwYH3/8MVQqFYKCgrBq1SpERER0i9a2tjZs2rQJf//736HRaJCUlIR169bB19cXN27cEK2tS0pKsGnTJpSVlUEulyM2NhbvvPMO/P39RWPvyZMn46effoLBYIBOp+PHdG5uLmprax9Zo9Fnp06dQmtrK+Li4rBu3bontjXAmu4lS5YgMzMTcrlcUH7gwIH48ssvAdgfEzt37sSRI0egVqsRERGBNWvWYMiQIQ7TnJuby2/bBYAjR47g6NGjyMrK4tPEaOvc3FzIZDKsXbsW//jHP6BQKLBgwQIsW7aMn597ytbOghjjmyXsxbyioiLs2rUL1dXV6NevH5599lksXrwYEkn7BhsxxDygfev5tm3bUFFRgV69emHKlCl48803oVAoRDMnPwwffvghjh49itzcXEH68ePHRekPZ403Xe2HvfhjMBiQmZmJzz//HI2NjRg2bBiWL1+OpKQkvmx3zom2/HHu3Dns378fdXV1CAgIwK9//Ws899xzfF1n8Icxtr7yyisICAjA+vXrBfXE5g9H4NAFGoPBYDAYDAaDwWAwuk63nuLIYDAYDAaDwWAwGAzrsAUag8FgMBgMBoPBYIgEtkBjMBgMBoPBYDAYDJHAFmgMBoPBYDAYDAaDIRLYAo3BYDAYDAaDwWAwRAJboDEYDAaDwWAwGAyGSGALNAaDwWAwGAwGg8EQCWyBxmAwGAwGg8FgMBgigS3QGAwGg8FgMBgMBkMk/B98ATSHCqhWDQAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "pm.traceplot(trace_2, var_names=['beta']);" + "pm.traceplot(trace_2, varnames=['beta']);" ] }, { "cell_type": "code", - "execution_count": 87, + "execution_count": null, "metadata": { "scrolled": false }, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
meansdmc_errorhpd_2.5hpd_97.5n_effRhat
mu__06.0930698.234688e+000.180893-10.54432023.1778321487.3970631.003119
mu__16.8289618.101430e+000.207703-10.35708022.8687101295.9717571.002388
beta__071.4768292.364595e+0222.766323-0.432098518.18106920.7153611.118284
beta__145.5946811.622495e+0214.8151540.717871127.22729429.1928421.046725
packed_L__087.5525784.057062e+0229.0184800.067557420.37415637.6707671.061497
packed_L__115.3834839.962871e+019.395267-85.94382278.65219558.0907491.028396
packed_L__248.6186012.808802e+0219.6927480.048352150.11061962.1795351.021208
Sigma__0_0172262.9987381.954825e+0675746.2555710.004564176714.430813200.0897231.014189
Sigma__0_1925.7035791.274978e+04632.969995-1382.7334532487.531151275.1108131.009295
Sigma__1_0925.7035791.274978e+04632.969995-1382.7334532487.531151275.1108131.009295
Sigma__1_191419.9832021.737843e+0670796.6539210.00277236693.792554284.7670921.004790
alphas__0_00.4275725.778023e-020.0006120.3205020.5438548315.0284700.999864
alphas__0_10.5724285.778023e-020.0006120.4561460.6794988315.0284700.999864
alphas__1_00.3417995.614980e-020.0006710.2387110.4552609430.7816430.999975
alphas__1_10.6582015.614980e-020.0006710.5447400.7612899430.7816430.999975
alphas__2_00.3492233.115593e-020.0003040.2897700.4142789097.9897611.000082
alphas__2_10.6507773.115593e-020.0003040.5857220.7102309097.9897611.000082
alphas__3_00.3551284.650339e-020.0005240.2660520.4468799320.4631930.999780
alphas__3_10.6448724.650339e-020.0005240.5531210.7339489320.4631930.999780
alphas__4_00.3818245.855220e-020.0005650.2666390.49405111200.5843891.000243
alphas__4_10.6181765.855220e-020.0005650.5059490.73336111200.5843891.000243
alphas__5_00.3609644.152221e-020.0004160.2789410.4406608727.6254970.999790
alphas__5_10.6390364.152221e-020.0004160.5593400.7210598727.6254970.999790
alphas__6_00.3270353.733396e-020.0003640.2585750.4064559361.3174350.999833
alphas__6_10.6729653.733396e-020.0003640.5935450.7414259361.3174350.999833
alphas__7_00.3006703.371497e-020.0003160.2339520.36560910122.2054490.999875
alphas__7_10.6993303.371497e-020.0003160.6343910.76604810122.2054490.999875
alphas__8_00.2855078.330494e-020.0010260.1301990.4506436580.3776570.999851
alphas__8_10.7144938.330494e-020.0010260.5493570.8698016580.3776570.999851
alphas__9_00.3463994.092672e-020.0004510.2675630.4267959671.1808081.000124
alphas__9_10.6536014.092672e-020.0004510.5732050.7324379671.1808081.000124
alphas__10_00.3252353.991164e-020.0004890.2516420.4067667711.2429130.999759
alphas__10_10.6747653.991164e-020.0004890.5932340.7483587711.2429130.999759
alphas__11_00.3024792.893751e-020.0003250.2457470.3592238002.1122140.999828
alphas__11_10.6975212.893751e-020.0003250.6407770.7542538002.1122140.999828
alphas__12_00.3391006.608551e-020.0006060.2136110.47011710931.1141160.999913
alphas__12_10.6609006.608551e-020.0006060.5298830.78638910931.1141160.999913
alphas__13_00.3096794.608976e-020.0004040.2216240.39996511051.9032830.999854
alphas__13_10.6903214.608976e-020.0004040.6000350.77837611051.9032830.999854
alphas__14_00.3134343.605603e-020.0003780.2405040.3811748990.1911481.000523
alphas__14_10.6865663.605603e-020.0003780.6188260.7594968990.1911481.000523
alphas__15_00.3060254.460394e-020.0004350.2197310.39378311163.8899940.999909
alphas__15_10.6939754.460394e-020.0004350.6062170.78026911163.8899940.999909
\n", - "
" - ], - "text/plain": [ - " mean sd mc_error hpd_2.5 \\\n", - "mu__0 6.093069 8.234688e+00 0.180893 -10.544320 \n", - "mu__1 6.828961 8.101430e+00 0.207703 -10.357080 \n", - "beta__0 71.476829 2.364595e+02 22.766323 -0.432098 \n", - "beta__1 45.594681 1.622495e+02 14.815154 0.717871 \n", - "packed_L__0 87.552578 4.057062e+02 29.018480 0.067557 \n", - "packed_L__1 15.383483 9.962871e+01 9.395267 -85.943822 \n", - "packed_L__2 48.618601 2.808802e+02 19.692748 0.048352 \n", - "Sigma__0_0 172262.998738 1.954825e+06 75746.255571 0.004564 \n", - "Sigma__0_1 925.703579 1.274978e+04 632.969995 -1382.733453 \n", - "Sigma__1_0 925.703579 1.274978e+04 632.969995 -1382.733453 \n", - "Sigma__1_1 91419.983202 1.737843e+06 70796.653921 0.002772 \n", - "alphas__0_0 0.427572 5.778023e-02 0.000612 0.320502 \n", - "alphas__0_1 0.572428 5.778023e-02 0.000612 0.456146 \n", - "alphas__1_0 0.341799 5.614980e-02 0.000671 0.238711 \n", - "alphas__1_1 0.658201 5.614980e-02 0.000671 0.544740 \n", - "alphas__2_0 0.349223 3.115593e-02 0.000304 0.289770 \n", - "alphas__2_1 0.650777 3.115593e-02 0.000304 0.585722 \n", - "alphas__3_0 0.355128 4.650339e-02 0.000524 0.266052 \n", - "alphas__3_1 0.644872 4.650339e-02 0.000524 0.553121 \n", - "alphas__4_0 0.381824 5.855220e-02 0.000565 0.266639 \n", - "alphas__4_1 0.618176 5.855220e-02 0.000565 0.505949 \n", - "alphas__5_0 0.360964 4.152221e-02 0.000416 0.278941 \n", - "alphas__5_1 0.639036 4.152221e-02 0.000416 0.559340 \n", - "alphas__6_0 0.327035 3.733396e-02 0.000364 0.258575 \n", - "alphas__6_1 0.672965 3.733396e-02 0.000364 0.593545 \n", - "alphas__7_0 0.300670 3.371497e-02 0.000316 0.233952 \n", - "alphas__7_1 0.699330 3.371497e-02 0.000316 0.634391 \n", - "alphas__8_0 0.285507 8.330494e-02 0.001026 0.130199 \n", - "alphas__8_1 0.714493 8.330494e-02 0.001026 0.549357 \n", - "alphas__9_0 0.346399 4.092672e-02 0.000451 0.267563 \n", - "alphas__9_1 0.653601 4.092672e-02 0.000451 0.573205 \n", - "alphas__10_0 0.325235 3.991164e-02 0.000489 0.251642 \n", - "alphas__10_1 0.674765 3.991164e-02 0.000489 0.593234 \n", - "alphas__11_0 0.302479 2.893751e-02 0.000325 0.245747 \n", - "alphas__11_1 0.697521 2.893751e-02 0.000325 0.640777 \n", - "alphas__12_0 0.339100 6.608551e-02 0.000606 0.213611 \n", - "alphas__12_1 0.660900 6.608551e-02 0.000606 0.529883 \n", - "alphas__13_0 0.309679 4.608976e-02 0.000404 0.221624 \n", - "alphas__13_1 0.690321 4.608976e-02 0.000404 0.600035 \n", - "alphas__14_0 0.313434 3.605603e-02 0.000378 0.240504 \n", - "alphas__14_1 0.686566 3.605603e-02 0.000378 0.618826 \n", - "alphas__15_0 0.306025 4.460394e-02 0.000435 0.219731 \n", - "alphas__15_1 0.693975 4.460394e-02 0.000435 0.606217 \n", - "\n", - " hpd_97.5 n_eff Rhat \n", - "mu__0 23.177832 1487.397063 1.003119 \n", - "mu__1 22.868710 1295.971757 1.002388 \n", - "beta__0 518.181069 20.715361 1.118284 \n", - "beta__1 127.227294 29.192842 1.046725 \n", - "packed_L__0 420.374156 37.670767 1.061497 \n", - "packed_L__1 78.652195 58.090749 1.028396 \n", - "packed_L__2 150.110619 62.179535 1.021208 \n", - "Sigma__0_0 176714.430813 200.089723 1.014189 \n", - "Sigma__0_1 2487.531151 275.110813 1.009295 \n", - "Sigma__1_0 2487.531151 275.110813 1.009295 \n", - "Sigma__1_1 36693.792554 284.767092 1.004790 \n", - "alphas__0_0 0.543854 8315.028470 0.999864 \n", - "alphas__0_1 0.679498 8315.028470 0.999864 \n", - "alphas__1_0 0.455260 9430.781643 0.999975 \n", - "alphas__1_1 0.761289 9430.781643 0.999975 \n", - "alphas__2_0 0.414278 9097.989761 1.000082 \n", - "alphas__2_1 0.710230 9097.989761 1.000082 \n", - "alphas__3_0 0.446879 9320.463193 0.999780 \n", - "alphas__3_1 0.733948 9320.463193 0.999780 \n", - "alphas__4_0 0.494051 11200.584389 1.000243 \n", - "alphas__4_1 0.733361 11200.584389 1.000243 \n", - "alphas__5_0 0.440660 8727.625497 0.999790 \n", - "alphas__5_1 0.721059 8727.625497 0.999790 \n", - "alphas__6_0 0.406455 9361.317435 0.999833 \n", - "alphas__6_1 0.741425 9361.317435 0.999833 \n", - "alphas__7_0 0.365609 10122.205449 0.999875 \n", - "alphas__7_1 0.766048 10122.205449 0.999875 \n", - "alphas__8_0 0.450643 6580.377657 0.999851 \n", - "alphas__8_1 0.869801 6580.377657 0.999851 \n", - "alphas__9_0 0.426795 9671.180808 1.000124 \n", - "alphas__9_1 0.732437 9671.180808 1.000124 \n", - "alphas__10_0 0.406766 7711.242913 0.999759 \n", - "alphas__10_1 0.748358 7711.242913 0.999759 \n", - "alphas__11_0 0.359223 8002.112214 0.999828 \n", - "alphas__11_1 0.754253 8002.112214 0.999828 \n", - "alphas__12_0 0.470117 10931.114116 0.999913 \n", - "alphas__12_1 0.786389 10931.114116 0.999913 \n", - "alphas__13_0 0.399965 11051.903283 0.999854 \n", - "alphas__13_1 0.778376 11051.903283 0.999854 \n", - "alphas__14_0 0.381174 8990.191148 1.000523 \n", - "alphas__14_1 0.759496 8990.191148 1.000523 \n", - "alphas__15_0 0.393783 11163.889994 0.999909 \n", - "alphas__15_1 0.780269 11163.889994 0.999909 " - ] - }, - "execution_count": 87, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "pm.summary(trace_2)" + "pm.summary(trace_2, varnames=['alphas', 'mu'])" ] }, { "cell_type": "code", - "execution_count": 88, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2099,38 +1718,18 @@ }, { "cell_type": "code", - "execution_count": 89, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[172262.99873826, 925.7035785 ],\n", - " [ 925.7035785 , 91419.98320238]])" - ] - }, - "execution_count": 89, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "matrix_s" ] }, { "cell_type": "code", - "execution_count": 90, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "415.0457790873895 302.35737662968336\n" - ] - } - ], + "outputs": [], "source": [ "tau1, tau2 = np.sqrt(matrix_s[0, 0]), np.sqrt(matrix_s[1, 1])\n", "print(tau1, tau2)" @@ -2138,7 +1737,7 @@ }, { "cell_type": "code", - "execution_count": 91, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -2147,20 +1746,9 @@ }, { "cell_type": "code", - "execution_count": 92, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.007376585362288601" - ] - }, - "execution_count": 92, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "rho" ] @@ -2170,200 +1758,760 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "with model_hier:\n", + " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1000, vars=[alphas])" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "ppc_hier['alphas'].shape" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "valores[:, 0] / (valores[:, 0] + valores[:, 1])" + ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [] + "source": [ + "ppc_hier['alphas'][250, :, :]" + ] }, { "cell_type": "code", - "execution_count": 93, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 1000/1000 [00:00<00:00, 23062.73it/s]\n" - ] - } - ], + "outputs": [], "source": [ - "with model_hier:\n", - " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1000, vars=[alphas])" + "th1 = []\n", + "\n", + "for i in range(16):\n", + " result1 = 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] - ppc_hier['alphas'][:, i, 1] \n", + "# result1 = - 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] + ppc_hier['alphas'][:, i, 1] \n", + " th1.append(list(result1))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# print(th1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "th1 = np.asarray(th1)\n", + "th1.shape" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "res2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", + "res2[:15]" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "plt.figure(figsize=(10, 6))\n", + "_, _, _ = plt.hist(res2 , bins=20, edgecolor='w', density=True)" ] }, { "cell_type": "code", - "execution_count": 94, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext watermark" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "numpy 1.16.4\n", + "pymc3 3.6\n", + "pandas 0.24.2\n", + "arviz 0.4.1\n", + "seaborn 0.9.0\n", + "CPython 3.6.8\n", + "IPython 7.6.1\n", + "\n", + "theano 1.0.4\n", + "scipy 1.3.0\n", + "matplotlib 3.1.0\n", + "\n", + "compiler : GCC 7.3.0\n", + "system : Linux\n", + "release : 4.15.0-55-generic\n", + "machine : x86_64\n", + "processor : x86_64\n", + "CPU cores : 8\n", + "interpreter: 64bit\n" + ] + } + ], + "source": [ + "%watermark -iv -v -p theano,scipy,matplotlib -m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Intento con pystan" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [], + "source": [ + "import pystan" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [], + "source": [ + "modelo=\"\"\"\n", + "data {\n", + " int N;\n", + " int n;\n", + " int y_obs[N, n];\n", + " vector[n] alpha;\n", + "}\n", + "\n", + "parameters {\n", + " \n", + " simplex[n] theta[N];\n", + "}\n", + "\n", + "model {\n", + " \n", + " for (i in 1:N)\n", + " theta[i] ~ dirichlet(alpha);\n", + " \n", + " for (i in 1:N)\n", + " y_obs[i] ~ multinomial(theta[i]);\n", + "}\n", + "\n", + "\"\"\"" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_2a28c5090c429737936718a5aee45413 NOW.\n" + ] + } + ], + "source": [ + "stan_modelo = pystan.StanModel(model_code=modelo)" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "data = {'N': 16,\n", + " 'n': 3,\n", + " 'alpha': [1,1,1],\n", + " 'y_obs': valores.astype(int)}" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [], + "source": [ + "fit = stan_modelo.sampling(data=data)" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inference for Stan model: anon_model_2a28c5090c429737936718a5aee45413.\n", + "4 chains, each with iter=2000; warmup=1000; thin=1; \n", + "post-warmup draws per chain=1000, total post-warmup draws=4000.\n", + "\n", + " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", + "theta[1,1] 0.3007 0.0006 0.0643 0.1805 0.2566 0.2987 0.3413 0.4357 8933 0.9995\n", + "theta[2,1] 0.4902 0.0008 0.0726 0.3454 0.4426 0.4907 0.5382 0.6296 7457 0.9997\n", + "theta[3,1] 0.4648 0.0003 0.0379 0.3918 0.4387 0.4640 0.4902 0.5415 9417 0.9995\n", + "theta[4,1] 0.4587 0.0006 0.0566 0.3484 0.4198 0.4589 0.4974 0.5708 7798 0.9993\n", + "theta[5,1] 0.4011 0.0007 0.0690 0.2691 0.3541 0.3999 0.4479 0.5394 9671 0.9993\n", + "theta[6,1] 0.4424 0.0005 0.0510 0.3418 0.4083 0.4422 0.4758 0.5441 8823 0.9992\n", + "theta[7,1] 0.5041 0.0005 0.0467 0.4125 0.4723 0.5041 0.5361 0.5958 8730 0.9993\n", + "theta[8,1] 0.5474 0.0004 0.0412 0.4684 0.5191 0.5470 0.5772 0.6272 7904 0.9992\n", + "theta[9,1] 0.5420 0.0011 0.0984 0.3488 0.474 0.5443 0.6117 0.7277 7048 0.9994\n", + "theta[10,1] 0.4640 0.0005 0.0495 0.3675 0.4304 0.4641 0.4974 0.5617 8140 0.9994\n", + "theta[11,1] 0.5103 0.0006 0.0491 0.4110 0.4786 0.5098 0.5430 0.6038 6471 1.0000\n", + "theta[12,1] 0.5513 0.0004 0.0357 0.4815 0.5270 0.5506 0.5749 0.6215 7018 0.9993\n", + "theta[13,1] 0.4868 0.0008 0.0796 0.3304 0.4328 0.4865 0.5421 0.6381 8040 0.9992\n", + "theta[14,1] 0.5245 0.0006 0.0550 0.4146 0.4872 0.5255 0.5615 0.6307 7609 0.9998\n", + "theta[15,1] 0.5362 0.0004 0.0438 0.4496 0.5067 0.5373 0.5662 0.6197 9523 0.9996\n", + "theta[16,1] 0.5467 0.0005 0.0553 0.4364 0.5082 0.5471 0.5851 0.6519 8899 0.9997\n", + "theta[1,2] 0.5990 0.0008 0.0698 0.4569 0.5527 0.6008 0.6479 0.7298 7472 0.9993\n", + "theta[2,2] 0.4687 0.0008 0.0729 0.3284 0.4189 0.4679 0.5171 0.6174 7076 0.9997\n", + "theta[3,2] 0.4118 0.0004 0.0377 0.3386 0.3867 0.4115 0.4376 0.4858 8076 0.9997\n", + "theta[4,2] 0.5137 0.0006 0.0574 0.4014 0.4739 0.5140 0.5538 0.6282 7946 0.9994\n", + "theta[5,2] 0.4793 0.0007 0.0693 0.3462 0.4325 0.4794 0.5265 0.6144 8717 0.9993\n", + "theta[6,2] 0.4439 0.0005 0.0504 0.3453 0.4107 0.4431 0.4768 0.5447 8078 0.9993\n", + "theta[7,2] 0.3863 0.0004 0.0447 0.2973 0.3561 0.3854 0.4156 0.4760 8224 0.9993\n", + "theta[8,2] 0.3377 0.0004 0.0393 0.2636 0.3094 0.3373 0.3652 0.4153 7598 0.9993\n", + "theta[9,2] 0.2921 0.0010 0.0896 0.1357 0.2273 0.2865 0.3510 0.4831 7374 0.9993\n", + "theta[10,2] 0.4042 0.0005 0.0490 0.3086 0.3713 0.4038 0.4377 0.4997 7401 0.9997\n", + "theta[11,2] 0.4014 0.0006 0.0489 0.3059 0.3680 0.4007 0.4339 0.5005 6078 0.9996\n", + "theta[12,2] 0.3511 0.0004 0.0350 0.2808 0.3278 0.3510 0.3736 0.4225 7039 0.9996\n", + "theta[13,2] 0.4595 0.0009 0.0794 0.3089 0.4043 0.4587 0.5137 0.6184 7402 0.9993\n", + "theta[14,2] 0.3507 0.0006 0.0542 0.2478 0.3126 0.3489 0.3875 0.4623 8022 0.9994\n", + "theta[15,2] 0.3691 0.0004 0.0427 0.2854 0.3405 0.3685 0.3975 0.4549 7822 0.9995\n", + "theta[16,2] 0.3600 0.0005 0.0532 0.2594 0.3234 0.3589 0.3969 0.4663 8431 0.9996\n", + "theta[1,3] 0.1002 0.0004 0.0423 0.0333 0.0692 0.0952 0.1255 0.1975 7723 0.9993\n", + "theta[2,3] 0.0410 0.0003 0.0285 0.0051 0.0201 0.0347 0.0552 0.1128 6573 0.9999\n", + "theta[3,3] 0.1233 0.0002 0.0246 0.0793 0.1056 0.1223 0.1395 0.1750 8132 0.9999\n", + "theta[4,3] 0.0275 0.0002 0.0188 0.0032 0.0135 0.0236 0.0370 0.0749 6783 0.9997\n", + "theta[5,3] 0.1195 0.0005 0.0449 0.0459 0.0864 0.1152 0.1466 0.2226 8130 0.9995\n", + "theta[6,3] 0.1135 0.0003 0.0321 0.0577 0.0904 0.1112 0.1334 0.1824 7675 0.9992\n", + "theta[7,3] 0.1095 0.0003 0.0292 0.0603 0.0880 0.1073 0.1281 0.1701 7200 0.9994\n", + "theta[8,3] 0.1147 0.0003 0.0256 0.0689 0.0966 0.1132 0.1315 0.1691 7493 0.9994\n", + "theta[9,3] 0.1658 0.0009 0.0735 0.0503 0.1113 0.1582 0.2113 0.3322 6146 0.9995\n", + "theta[10,3] 0.1317 0.0004 0.0340 0.0724 0.1076 0.1297 0.1528 0.2042 7260 0.9997\n", + "theta[11,3] 0.0881 0.0003 0.0282 0.0409 0.0676 0.0855 0.1058 0.1517 7555 0.9993\n", + "theta[12,3] 0.0975 0.0002 0.0226 0.0583 0.0815 0.0959 0.1120 0.1456 6503 0.9997\n", + "theta[13,3] 0.0535 0.0004 0.0371 0.0060 0.0262 0.0458 0.0723 0.1464 6138 0.9994\n", + "theta[14,3] 0.1247 0.0004 0.0364 0.0619 0.0987 0.1217 0.148 0.2014 6789 0.9994\n", + "theta[15,3] 0.0946 0.0003 0.0266 0.0490 0.0754 0.0919 0.1113 0.1525 7251 0.9991\n", + "theta[16,3] 0.0932 0.0003 0.0315 0.0409 0.0706 0.0900 0.1123 0.1651 7889 0.9993\n", + "lp__ -1.4149e3 0.1127 4.2446-1.4241e3-1.4175e3-1.4145e3-1.4118e3-1.4076e3 1418 1.0038\n", + "\n", + "Samples were drawn using NUTS at Tue Jul 30 17:33:35 2019.\n", + "For each parameter, n_eff is a crude measure of effective sample size,\n", + "and Rhat is the potential scale reduction factor on split chains (at \n", + "convergence, Rhat=1).\n" + ] + } + ], + "source": [ + "print(fit.stansummary(digits_summary=5))" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "samples = fit.extract(permuted=True)['theta']" + ] + }, + { + "cell_type": "code", + "execution_count": 58, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(1000, 16, 2)" + "0.10019681127543548" ] }, - "execution_count": 94, + "execution_count": 58, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "ppc_hier['alphas'].shape" + "np.mean(samples[:, 0, 2])" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "diff3 = []\n", + "\n", + "for i in range(16):\n", + " result3 = samples[:, i, 0] - samples[:, i, 1]\n", + " diff3.append(list(result3))" ] }, { "cell_type": "code", - "execution_count": 95, + "execution_count": 60, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.3255814 , 0.51111111, 0.53061224, 0.47058824, 0.45238095,\n", - " 0.5 , 0.56730769, 0.62015504, 0.66666667, 0.53571429,\n", - " 0.56043956, 0.61212121, 0.51515152, 0.60294118, 0.59292035,\n", - " 0.60526316])" + "array([[-0.23383337, -0.37255542, -0.49125213, ..., -0.212366 ,\n", + " -0.14557615, -0.33563944],\n", + " [-0.17927392, 0.08572703, -0.10061323, ..., 0.1241279 ,\n", + " -0.20666601, 0.17206214],\n", + " [ 0.14737479, 0.02937957, 0.17731195, ..., 0.16176922,\n", + " 0.12154819, 0.06636315],\n", + " ...,\n", + " [ 0.27727583, 0.20092786, 0.15775507, ..., 0.13165871,\n", + " 0.06343824, -0.05371965],\n", + " [ 0.03499515, 0.14597643, 0.33526159, ..., 0.07464869,\n", + " 0.16823083, 0.21117046],\n", + " [ 0.26470757, 0.37250208, 0.15273906, ..., 0.21898664,\n", + " 0.14903927, 0.1957518 ]])" ] }, - "execution_count": 95, + "execution_count": 60, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "valores[:, 0] / (valores[:, 0] + valores[:, 1])" + "diff3 = np.asarray(diff3)\n", + "diff3" ] }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 61, + "metadata": {}, + "outputs": [], + "source": [ + "res2 = np.sum(diff3.T * proportion / np.sum(proportion), axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 155, "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcSElEQVR4nO3dfZBVdf0H8M/uvbAPLrQpGw2thEjRxKSUNko1mf6oBdmxYrLUAdKx6QE0zakZKjUzTTBJp9KIJEWxkp50RmJLjLQHepoenGxAyXYyCyawlV1ZNtDz+8Pp1grid+/D7r3s6zXDDPfce+73cz+c+71vzrn3nLosy7IAAOCQ6ke6AACAWiA0AQAkEJoAABIITQAACYQmAIAEQhMAQIJ8pQf45z97Kz1EVWhpaYi+voGRLqPm6NvQ6Vlx9G3o9Kw4+jZ01dSztrZxz3ufPU1lks/nRrqEmqRvQ6dnxdG3odOz4ujb0NVKz4QmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkyI90AQDFaBnfFE0NQ5vC2trGDXmc/oH90be7f8jrAYcfoQmoSU0N+ZiydH3Fx+leNi/6Kj4KUAscngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkSApN+/bti+XLl8f06dNj+/btheW/+c1vorOzM0455ZRYtGhR7Nixo2KFAgCMpKTQtHjx4mhsbBy0rK+vLy6++OK46qqr4v777483velNsX595a8DBQAwEpIu2LtkyZKYOXNm3HTTTYVlGzdujBkzZsTMmTMjIuL9739/ZSoEAKgCSXua/hOM/tfWrVvjxS9+cSxZsiQ6OjriIx/5SDzxxBNlLxAAoBok7Wk6mN27d8dPf/rTuOOOO2LSpElx6aWXxmc/+9m47rrrBj2upaUh8vlcyYVWu1yuPlpbm0e6jJqjb0OnZ8NvtPbbtlYcfRu6WulZ0aFp3LhxMWvWrHj5y18eERGLFi2K973vfQc8rq9voPjqakhra3P09OwZ6TJqjr4NnZ49q61t3LCNNVr7bVsrjr4NXTX17FBzS9Ghqb29Pbq7uwu3c7lc5HKH/x4l4IW1jG+KpoaipxeAqlT0rDZ37ty44YYbYuvWrTF9+vRYt25dzJo1q5y1ATWqqSEfU5ZW9te03cvmVfT5AZ7rBUPTzp07Y8GCBYXbCxcujFwuF2vWrInrr78+Lrjggqirq4tXvOIV8ZnPfKaixQIAjJQXDE0TJkyIrq6ug943ceLEuPfee8teFABAtXEZFQCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJMiPdAEA1WzvvqejrW1cRcfoH9gffbv7KzoGUDqhCeAQGsfkYsrS9RUdo3vZvOir6AhAOQhNMIq0jG+KpgZve4BimD1hFGlqyFd8r0nEs3tOAA43SV8E37dvXyxfvjymT58e27dvP+D+5cuXx2mnnVb24gAAqkVSaFq8eHE0NjYe9L4tW7bExo0by1oUAEC1SQpNS5YsiYsuuuiA5c8880xcccUVcfHFF5e9MACAapIUmmbOnHnQ5d/85jfjla98ZRx//PFlLQoAoNoU/UXwf/7zn7FmzZpYt25d9Pb2lrMmAICqU3Rouuaaa2LJkiXxohe96JChqaWlIfL5XLHD1Ixcrj5aW5tHuoyao29Dp2eHp2r8N7WtFUffhq5WelZ0aNq0aVP88pe/jOXLl8fTTz8dTz75ZLzxjW+MTZs2xdixYwuP6+sbKEuh1a61tTl6evaMdBk1R9+GrpSeVfrM1hSvGt8H3p/F0behq6aeHWqeLDo0/e53vyv8/W9/+1ssWrQofvSjHxX7dAAAVe0FQ9POnTtjwYIFhdsLFy6MXC4Xa9asiYkTJ1a0OACAavGCoWnChAnR1dV1yMe0t7fbywQAHNaSTjkAADDaCU0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABPmRLgBgtNu77+loaxtX0TH6B/ZH3+7+io4BhzuhCWCENY7JxZSl6ys6RveyedFX0RHg8OfwHABAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEiSFpn379sXy5ctj+vTpsX379sLyG2+8MebOnRsdHR1x8cUXR29vb8UKBQAYSUmhafHixdHY2DhoWVdXV3R1dcW3vvWt2LBhQ9TV1cXNN99ckSIBAEZaUmhasmRJXHTRRYOWHXvssXHNNddES0tL1NfXx2tf+9p45JFHKlIkAMBISzoj+MyZMw9Y9opXvGLQ7QceeCBe//rXl6cqAIAqU5Yvgn/5y1+OXbt2xcKFC8vxdAAAVafka8+tWLEifvazn8Xq1aujubn5gPtbWhoin8+VOkzVy+Xqo7X1wNfPoenb0OkZxRrqdmNbK46+DV2t9Kyk0PTFL34xfvvb38Ztt90WLS0tB31MX99AKUPUjNbW5ujp2TPSZdQcfRu6UnrW1jauzNVQS4a63Xh/Fkffhq6aenaoebLo0PTQQw/FXXfdFXfdddfzBiYAgMPFC4amnTt3xoIFCwq3Fy5cGLlcLk488cTo7e2NM888s3Dfy172sli9enVlKgUAGEEvGJomTJgQXV1dB73vqquuKntBAADVyGVUAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIEF+pAsAntUyvimaGtLekm1t4ypcDQDPJTRBlWhqyMeUpesrOkb3snkVfX6Aw5nDcwAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAgQVJo2rdvXyxfvjymT58e27dvLyy/9dZbY+7cudHR0RGf/OQn49///nfFCgUAGElJoWnx4sXR2Ng4aNnvf//7uO222+LOO++MDRs2xK5du2Lt2rUVKRIAYKQlhaYlS5bERRddNGhZV1dXnH766TF+/Pior6+Ps88+OzZs2FCRIgEARlpSaJo5c+YBy7q7u2Py5MmF20cffXQ8+uij5asMAKCK5Itdsb+/P8aOHVu43djYGP39/Qc8rqWlIfL5XLHD1Ixcrj5aW5tHuoyao28wfIb6XvP+LI6+DV2t9Kzo0NTU1DToi9/9/f3R3HzgC+7rGyh2iJrS2tocPT17RrqMmqNv/9XWNm6kS+AwN9T3mvdncfRt6KqpZ4eai4s+5cDUqVMHHY7btm1bTJs2rdinAwCoakWHprlz5xZ+Nbd///74+te/HvPmzStnbQAAVeMFD8/t3LkzFixYULi9cOHCyOVysWbNmjj//PPjnHPOiSzL4g1veEOcffbZFS0WAGCkvGBomjBhQnR1dR30vkWLFsWiRYvKXhQAQLVxGRUAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEuRHugAAKm/vvqejrW3ckNcb6jr9A/ujb3f/kMeBWiA0AYwCjWNyMWXp+oqP071sXvRVfBQYGQ7PAQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABKUHJq+853vxOmnnx5z586N8847L/7yl7+Uoy4AgKpSUmj685//HNdee23ccsstsWHDhnjb294Wn/jEJ8pVGwBA1Sg5NE2ZMiUmTpwYEREnn3xyPPLII2UpDACgmpQUmo4//vj461//Gg8//HBkWRY//OEP4w1veEO5agMAqBr5UlaeOHFiXHLJJfGOd7wjWlpaorGxMdauXTvoMS0tDZHP50oqshbkcvXR2to80mXUHH2Dw89of0+b14auVnpWUmj605/+FF/+8pdj48aNMWnSpLj77rvjQx/6UNxzzz1RV1cXERF9fQNlKbTatbY2R0/PnpEuo+bo23+1tY0b6RKgLEb7e9q8NnTV1LNDzcUlHZ7bvHlzvPa1r41JkyZFRMTpp58e27Zti3/961+lPC0AQNUpKTQdc8wx8bvf/a4Qku6///5oa2uLF7/4xWUpDgCgWpR0eO60006Lhx56KN7znvdEXV1dtLS0xA033FA4NAcAcLgoKTRFRFx44YVx4YUXlqMWAICq5TIqAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIkB/pAqAWtIxviqYGbxeA0cynACRoasjHlKXrKzpG97J5FX1+AErj8BwAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCg5NC0Y8eOOO+88+KUU06JefPmxa9//ety1AUAUFVKDk1Lly6NN7/5zXH//ffHpZdeGmvXri1HXQAAVSVfysr/+Mc/4qGHHopVq1ZFRMSsWbNi1qxZZSkMAKCalLSnacuWLdHe3h4rVqyIjo6OWLBgQfzpT38qV20AAFWjpD1Nu3fvjocffjgWL14cS5cujXXr1sUFF1wQP/zhDyOff/apW1oaIp/PlaXYapbL1Udra/NIl1Fz9A0OP6P9PW1eG7pa6VlJoWncuHFx1FFHxezZsyMi4swzz4zly5dHd3d3TJs2LSIi+voGSq+yBrS2NkdPz56RLqPm1Erf2trGjXQJUDNq4T1dSbUyr1WTaurZoeb7kg7Ptbe3x1NPPRXPPPNMRETU1dVFfX191Nc7kwEAcHgpKd288pWvjMmTJ8e3vvWtiIjYsGFDjBs3LiZPnlyW4gAAqkVJh+ciIr7whS/ERz7ykVi1alUcddRR8YUvfKHwfSYAgMNFyemmvb29sKcJAOBwZZcQAGWzd9/TFf/hRP/A/ujb3V/RMeBghCYAyqZxTC6mLF1f0TG6l82LvoqOAAfnZ24AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIEF+pAuAUrSMb4qmBpsxAJXn04aa1tSQjylL11d8nO5l8yo+BgDVzeE5AIAEQhMAQIKyhKYf//jHMX369Pjb3/5WjqcDAKg6JYem/v7+WLFiRbS2tpajHgCAqlRyaPriF78YZ5xxRhxxxBHlqAcAoCqVFJq2bt0aP//5z+Pcc88tUzkAANWp6NCUZVl86lOfiksvvTTGjBlTzpoAAKpO0edpuvPOO2PatGlx4oknHvJxLS0Nkc/nih2mZuRy9dHa2jzSZdQcfQOKUc3zhnlt6GqlZ0WHpvvuuy/++Mc/xqZNmyIi4oknnoh3vetdccMNN8TJJ59ceFxf30DpVdaA1tbm6OnZM9Jl1JxS+9bWNq6M1QC1oprnW58HQ1dNPTvU50rRoemrX/3qoNunnXZa3HbbbdHe3l7sUwIAVC0ntwQASFC2a8/96Ec/KtdTAQBUHXuaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAnKdhkVABgOe/c9fcgr0ZdD/8D+6NvdX9ExqD1CEwA1pXFMLqYsXV/RMbqXzYu+io5ALXJ4DgAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEztNExbSMb4qmhhfexCp9kjoAKAehiYppasgPywnoAGA4ODwHAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEJYem++67L97+9rfH3Llz4+yzz46HH364HHUBAFSVkkLTjh07YunSpbFixYrYsGFDdHZ2xuWXX16u2gAAqkZJoSmfz8eKFSti2rRpERFxwgknxLZt28pSGABANSkpNB111FHx5je/uXD7gQceiOOPP77kogAAqk3ZLqOyefPmWLNmTaxZs6ZcTwkAUDXKEpo2btwYn/nMZ2LlypWFQ3X/0dLSEPl8rhzDVLVcrj5aW5tHugwAyqTYOd3nwdDVSs9KDk0///nP4+qrr46vfe1rceyxxx5wf1/fQKlD1ITW1ubo6dkz0mVUlba2cSNdAkDRip3TfR4MXTX17FCfXSWFpv7+/vj4xz8eN95440EDEwDA4aKk0HTffffFE088ER/96EcHLV+7dm1MmDChpMIAAKpJSaGps7MzOjs7y1ULAEDVchkVAIAEQhMAQAKhCQAggdAEAJCgbGcEp7a0jG+Kpgb//ACQyqfmKNXUkI8pS9dXdIzuZfMq+vwAlbJ339MlnaA3dd3+gf3Rt7u/6HEYXkITADxH45hcxf9jGfHsfy77Kj4K5eI7TQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkcJ4mABghpZ5EM4UTaJaP0AQAI2Q4TqLpBJrl4/AcAEACoQkAIIHQBACQQGgCAEggNAEAJPDruSrTMr4pmhr8swBAtfHpXGWaGvIV//lpxLM/QQUA0jk8BwCQQGgCAEggNAEAJBCaAAASlPRF8M2bN8e1114be/bsiUmTJsU111wTL33pS8tV25AMx6/OXPQQAA5Ujs/glAsXj/TncNGvcM+ePXHJJZfEzTffHDNmzIjVq1fHFVdcEStXrixnfcmG41dnLnoIQK3Zu+/ppEBSquH65fdIfg4XHZp+8YtfxNFHHx0zZsyIiIizzjorrr/++ujr64uWlpayFVhNXmjDG46NEgCGonFMblh2KowGRYem7u7uOProowu3jzjiiGhtbY2//vWv8epXv7osxVUbGx4AjF51WZZlxax44403xuOPPx6f/exnC8v+7//+L5YvXx4nnnhi2QoEAKgGRf96rrm5OQYGBgYt27t3bxxxxBElFwUAUG2KDk1Tp06Nv/zlL4XbTzzxRDz55JPx8pe/vCyFAQBUk6JD00knnRTbt2+P3/zmNxERcfvtt8epp54azc3NZSsOAKBaFB2aGhsb4/rrr48rr7wy3vrWt8aDDz4Yl19+eTlrGzGbN2+Od77zndHR0RHnnXdebN++/YDHbNmyJc4666zo6OiIs846K7Zs2VK4b926dTFv3ryYM2dOnH/++YX177777jjhhBNizpw5hT/33nvvsL2uSiqlZ9u3b48ZM2YM6suKFSsiIiLLsrjuuuuio6Nj0PLDRSl9W7NmzaCezZ49O0466aSIiLjpppvipJNOGnT/gw8+OKyvrVJSepZlWaxevTpmzJhR+I/df6xfvz46Ozujo6MjLrzwwujt7S2sM9q3tUP1zbw2tJ6Z14rrW9XPaxmDPPXUU9nJJ5+c/fGPf8yyLMtuvvnm7AMf+MABj5szZ0527733ZlmWZRs2bMg6OzuzLMuyP/zhD9kb3/jGbMeOHVmWZdmyZcuySy65JMuyLLv99tuzyy67bDhexrAqtWdbt27N3va2tx30ue+5557szDPPzAYGBrK9e/dm8+fPz7q6uir0SoZXqX17rlWrVmXXXHNNlmXPbncrV66sUOUjJ7Vnl112WfbJT34ye9Ob3pT9+te/Lix//PHHs5NOOil7/PHHsyzLsk9/+tPZlVdemWWZbS3Lnr9v5rWh98y8Vlzfnqva5jWXUXmOg51/6qc//Wn09f33dFpbt26N3t7emD17dkREzJkzJ3bt2hV//vOf48gjj4zrr78+XvKSl0RExIknnhjbtm2LiIje3t4YN+7wO5dTqT3r7e2N8ePHH/S5u7q64p3vfGeMHTs2GhoaYv78+bFhw4bKv6hhUGrf/tfOnTvjG9/4RixevDgiRve2FhExf/78uOqqq2LMmDGDlt93330xa9asmDRpUkREnHPOOYXtabRvaxHP3zfz2tB7Zl4rrm//qxrnNaHpOQ51/qn/fUx7e/ug9Y4++uh49NFHo729PV7/+tcXlj/wwANx/PHHR0TE7t2747e//W28+93vjjlz5sSyZcvi3//+d4VfUeWV2rPe3t7o6emJc889Nzo6OuLDH/5w7Nixo7De5MmTC+tMnjw5Hn300Qq/ouFRat/+1+rVq2P+/PmFSXr37t2xcePGmD9/fpx++umxcuXKyIo7u0hVSelZRMTMmTOfd/3nbk+7du2KJ598ctRvaxHP3zfz2tB7Zl571lD79r+qcV4Tmp6jv78/GhoaBi1raGiIPXv2DOkxERF33XVX/OQnP4kLL7wwIiJe9apXxamnnhq33XZb3HnnnfHggw/GqlWrKvRKhk+pPTvyyCPj1FNPjWuvvTbWr18fL33pS+NjH/vYQddrbGyM/v7D4/p/5drWent74+67745zzjmnsOyEE06I2bNnx7p16+KWW26Ju+66K+6+++4KvZLhk/reO9T6Y8eOLdweO3Zs1NXVRX9//6jf1lKZ19J6Zl77r2K2tWqd1yp7hdsalHL+qZTH3HHHHXHrrbfGmjVroq2tLSIi3v72txfub2xsjHPPPTdWrVoVF1xwQSVeyrAptWfHHXdcHHfccYXlixcvjpNPPjn27NkTTU1Ng9br7+8/bH6hWa5tbdOmTXHcccfFkUceWVj23ve+t/D3iRMnxnve857YtGlTvOMd7yj3yxhWpZ4frrm5edBekIGBgciyLJqbm0f9tpbCvJbeM/PafxWzrVXrvGZP03OknH9q6tSp0d3dHc8880xEROzfvz+6u7vj2GOPjYiI7373u3HHHXfE2rVrB+2mfOyxxwq/1Il49tcD+Xzt59ZSe7Zr165Bv67Isizq6uoin8/H1KlTB+223rZtW0ybNm0YXlXllWNbi4j48Y9/HKeccsqg5962bdugiWs0bWuHcswxxwzanh555JFoa2uL8ePHj/pt7YWY14bWM/Pas4o9h2O1zmtC03OknH9q2rRp0dbWFvfcc09EPLu7ur29PY455pjYsWNHfP7zn4+bb745Jk6cOOi5b7rppvjc5z4XWZbFwMBAfOMb34i3vOUtw/baKqXUnv3kJz+JxYsXF74oeOutt8asWbNi7NixMXfu3Pj2t78de/bsiaeeeiq+853vxLx5h8f1+Urt239s2bJlUIiKiLjyyivj1ltvjYiIJ598Mr73ve+Nmm3tUGbPnh2/+tWvCpP67bffHp2dnRERo35bOxTz2tB7Zl4r7RyO1TqvFX3tucPZL3/5y7j66qujv78/Jk+eHMuWLYtnnnkmzj///MKH19atW+Oyyy6Lnp6eOOqoo+Kqq66KY489Nr7yla/EypUrB00s+Xw+7rnnnujp6YnLLrsstm7dGnV1dXHKKafERz/60UHfsahVpfQsy7JYsWJF/OAHP4j6+vqYOnVqXHHFFYUe/ue+urq66OzsLHyX4nBQSt/+43Wve118+9vfjqlTpxaWPfbYY3H55ZfH3//+96ivr48zzjgjPvjBD0ZdXd2wv8ZyS+lZZ2dn7N+/Px577LF4yUteEg0NDXHttdfGcccdF9///vfjS1/6Uuzfvz9e/epXx9VXX104dDDat7Xn69vmzZvNa0Ps2Wte8xrzWpHv0YjqndeEJgCABA7PAQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAk+H9Xl60I5tsDdwAAAABJRU5ErkJggg==\n", "text/plain": [ - "array([[0.34716292, 0.65283708],\n", - " [0.35770391, 0.64229609],\n", - " [0.28406868, 0.71593132],\n", - " [0.32453006, 0.67546994],\n", - " [0.4686527 , 0.5313473 ],\n", - " [0.33529416, 0.66470584],\n", - " [0.35546567, 0.64453433],\n", - " [0.28125523, 0.71874477],\n", - " [0.31280583, 0.68719417],\n", - " [0.32138581, 0.67861419],\n", - " [0.33186565, 0.66813435],\n", - " [0.29384942, 0.70615058],\n", - " [0.26703781, 0.73296219],\n", - " [0.34783915, 0.65216085],\n", - " [0.29775929, 0.70224071],\n", - " [0.27425 , 0.72575 ]])" + "
" ] }, - "execution_count": 96, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "ppc_hier['alphas'][250, :, :]" + "plt.figure(figsize=(10, 6))\n", + "_, _, _ = plt.hist(res2, bins=20, edgecolor='w', density=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ahora pystan con el modelo jerárquico" ] }, { "cell_type": "code", - "execution_count": 97, + "execution_count": 204, "metadata": {}, "outputs": [], "source": [ - "th1 = []\n", + "modelo2=\"\"\"\n", + "data {\n", + " int N;\n", + " int n;\n", + " int post[N, n];\n", + "}\n", "\n", - "for i in range(16):\n", - "# result1 = 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] - ppc_hier['alphas'][:, i, 1] \n", - " result1 = - 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] + ppc_hier['alphas'][:, i, 1] \n", - " th1.append(list(result1))" + "parameters {\n", + " vector[n] mu;\n", + " cholesky_factor_corr[n] L;\n", + " simplex[n] alphas[N];\n", + " vector[n] beta[N];\n", + " \n", + "}\n", + "\n", + "transformed parameters{\n", + " \n", + " vector[n] theta[N];\n", + " \n", + " for (i in 1:N)\n", + " theta[i] = inv_logit(beta[i]);\n", + " \n", + " \n", + "}\n", + "\n", + "model {\n", + "\n", + " L ~ lkj_corr_cholesky(3.0);\n", + " \n", + " mu ~ cauchy(0, 5);\n", + " \n", + " beta ~ multi_normal_cholesky(mu, L);\n", + " \n", + " \n", + " for (i in 1:N)\n", + " alphas[i] ~ dirichlet(theta[i]);\n", + " \n", + " for (i in 1:N)\n", + " post[i] ~ multinomial(alphas[i]);\n", + " \n", + "}\n", + "\n", + "generated quantities {\n", + "\n", + " corr_matrix[n] Sigma;\n", + " Sigma = multiply_lower_tri_self_transpose(L);\n", + " \n", + "}\n", + "\n", + "\n", + "\"\"\"" ] }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 205, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_958bb8552d6652a8814e6044bd42f4a8 NOW.\n" + ] + } + ], + "source": [ + "stan_modelo2 = pystan.StanModel(model_code=modelo2)" + ] + }, + { + "cell_type": "code", + "execution_count": 206, "metadata": {}, "outputs": [], "source": [ - "# print(th1" + "data2 = {'N': 16,\n", + " 'n': 2,\n", + " 'post': new_values.astype(int)}" ] }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 207, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:pystan:n_eff / iter below 0.001 indicates that the effective sample size has likely been overestimated\n", + "WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed\n", + "WARNING:pystan:Skipping check of divergent transitions (divergence)\n", + "WARNING:pystan:Skipping check of transitions ending prematurely due to maximum tree depth limit (treedepth)\n" + ] + } + ], + "source": [ + "fit2 = stan_modelo2.sampling(data=data2, algorithm='HMC', iter=4000, verbose=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 210, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inference for Stan model: anon_model_958bb8552d6652a8814e6044bd42f4a8.\n", + "4 chains, each with iter=4000; warmup=2000; thin=1; \n", + "post-warmup draws per chain=2000, total post-warmup draws=8000.\n", + "\n", + " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", + "mu[1] 2.2705e1 8.01884.6381e1 1.1962 3.6407 7.20241.7178e11.7396e2 33 1.1352\n", + "mu[2] 2.0993e1 4.87353.433e1 2.2160 4.9229 8.72791.931e11.4692e2 50 1.0651\n", + "L[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", + "L[2,1] -0.000 0.0056 0.3769 -0.709 -0.275 0.0006 0.2848 0.7012 4423 0.9999\n", + "L[1,2] 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 nan nan\n", + "L[2,2] 0.9210 0.0023 0.0976 0.6453 0.8878 0.9600 0.9904 0.9999 1741 1.0020\n", + "alphas[1,1] 0.2707 0.0002 0.0572 0.1649 0.2311 0.2686 0.3065 0.3915 39793 0.9996\n", + "alphas[2,1] 0.352 0.0006 0.0556 0.2468 0.3122 0.3519 0.3904 0.4620 8197 0.9998\n", + "alphas[3,1] 0.3770 0.0001 0.0308 0.3166 0.3565 0.3769 0.3975 0.4385 34281 0.9995\n", + "alphas[4,1] 0.3306 0.0005 0.0456 0.2474 0.2974 0.3295 0.3627 0.4174 7888 1.0011\n", + "alphas[5,1] 0.3426 0.0010 0.0577 0.2351 0.3024 0.3405 0.3821 0.4602 2831 1.0003\n", + "alphas[6,1] 0.3604 0.0002 0.0361 0.2878 0.3384 0.3600 0.3816 0.4350 19799 0.9995\n", + "alphas[7,1] 0.3890 0.0003 0.0362 0.3204 0.3638 0.3891 0.4134 0.4601 13714 0.9997\n", + "alphas[8,1] 0.4110 0.0005 0.0340 0.3451 0.3896 0.4106 0.4324 0.48 4225 1.0001\n", + "alphas[9,1] 0.4282 0.0004 0.0822 0.2730 0.3697 0.4263 0.4849 0.5934 33091 0.9995\n", + "alphas[10,1] 0.3791 0.0009 0.0393 0.3048 0.3516 0.3782 0.4053 0.4580 1595 1.0016\n", + "alphas[11,1] 0.3804 0.0003 0.0379 0.3069 0.3543 0.3802 0.4063 0.4566 9941 0.9996\n", + "alphas[12,1] 0.4053 0.0002 0.0291 0.3484 0.3852 0.4051 0.425 0.4637 22000 0.9997\n", + "alphas[13,1] 0.3529 0.0004 0.0701 0.2175 0.3060 0.3507 0.3983 0.4993 28748 0.9996\n", + "alphas[14,1] 0.4052 0.0002 0.0456 0.3173 0.3727 0.4055 0.4370 0.4955 33739 0.9995\n", + "alphas[15,1] 0.3970 0.0001 0.0325 0.3342 0.3747 0.3964 0.4189 0.4611 49240 0.9996\n", + "alphas[16,1] 0.3979 0.0004 0.0453 0.3108 0.3667 0.3974 0.4286 0.4883 11043 0.9997\n", + "alphas[1,2] 0.7292 0.0002 0.0572 0.6084 0.6934 0.7313 0.7688 0.8350 39793 0.9996\n", + "alphas[2,2] 0.648 0.0006 0.0556 0.5379 0.6095 0.6480 0.6877 0.7531 8197 0.9998\n", + "alphas[3,2] 0.6229 0.0001 0.0308 0.5614 0.6024 0.6230 0.6434 0.6833 34281 0.9995\n", + "alphas[4,2] 0.6693 0.0005 0.0456 0.5825 0.6372 0.6704 0.7025 0.7525 7888 1.0011\n", + "alphas[5,2] 0.6573 0.0010 0.0577 0.5397 0.6179 0.6594 0.6975 0.7648 2831 1.0003\n", + "alphas[6,2] 0.6395 0.0002 0.0361 0.5649 0.6183 0.6399 0.6615 0.7121 19799 0.9995\n", + "alphas[7,2] 0.6109 0.0003 0.0362 0.5398 0.5865 0.6108 0.6362 0.6796 13714 0.9997\n", + "alphas[8,2] 0.5889 0.0005 0.0340 0.52 0.5675 0.5893 0.6104 0.6548 4225 1.0001\n", + "alphas[9,2] 0.5717 0.0004 0.0822 0.4065 0.5150 0.5736 0.6302 0.7269 33091 0.9995\n", + "alphas[10,2] 0.6208 0.0009 0.0393 0.5419 0.5946 0.6217 0.6483 0.6951 1595 1.0016\n", + "alphas[11,2] 0.6195 0.0003 0.0379 0.5433 0.5937 0.6197 0.6456 0.6930 9941 0.9996\n", + "alphas[12,2] 0.5947 0.0002 0.0291 0.5362 0.575 0.5948 0.6147 0.6515 22000 0.9997\n", + "alphas[13,2] 0.6470 0.0004 0.0701 0.5006 0.6016 0.6493 0.6939 0.7824 28748 0.9996\n", + "alphas[14,2] 0.5948 0.0002 0.0456 0.5044 0.5629 0.5944 0.6272 0.6827 33739 0.9995\n", + "alphas[15,2] 0.6029 0.0001 0.0325 0.5388 0.5810 0.6035 0.6253 0.6657 49240 0.9996\n", + "alphas[16,2] 0.6020 0.0004 0.0453 0.5116 0.5713 0.6025 0.6333 0.6891 11043 0.9997\n", + "beta[1,1] 2.2713e1 8.01864.6367e1 0.7253 3.7020 7.29131.7041e11.7394e2 33 1.1354\n", + "beta[2,1] 2.2719e1 8.01924.6396e1 0.7869 3.6451 7.28721.7319e11.7264e2 33 1.1352\n", + "beta[3,1] 2.2694e1 8.02054.6386e1 0.7152 3.6263 7.24291.7117e11.7349e2 33 1.1352\n", + "beta[4,1] 2.2711e1 8.01274.6375e1 0.7990 3.7203 7.2744 1.72e11.7371e2 33 1.1350\n", + "beta[5,1] 2.2706e1 8.01994.6389e1 0.6911 3.6927 7.28541.7143e11.7308e2 33 1.1352\n", + "beta[6,1] 2.2696e1 8.01374.6386e1 0.7916 3.6592 7.29001.7171e11.7384e2 34 1.1350\n", + "beta[7,1] 2.2715e1 8.02274.6393e1 0.7666 3.7174 7.29451.7197e11.7365e2 33 1.1354\n", + "beta[8,1] 2.2714e1 8.01464.6374e1 0.7420 3.7158 7.28731.7187e11.7354e2 33 1.1352\n", + "beta[9,1] 2.2729e1 8.01774.6387e1 0.8191 3.6922 7.16941.7145e11.7301e2 33 1.1352\n", + "beta[10,1] 2.2718e1 8.01684.6386e1 0.8272 3.7168 7.22621.7146e11.744e2 33 1.1351\n", + "beta[11,1] 2.2725e1 8.01984.6402e1 0.8458 3.6746 7.2161.7197e11.7302e2 33 1.1351\n", + "beta[12,1] 2.2711e1 8.01864.638e1 0.6594 3.6695 7.27421.7207e11.7349e2 33 1.1352\n", + "beta[13,1] 2.2708e1 8.01604.637e1 0.6844 3.7449 7.25291.7199e11.7331e2 33 1.1352\n", + "beta[14,1] 2.2719e1 8.01824.6392e1 0.7666 3.6791 7.27351.7018e11.735e2 33 1.1352\n", + "beta[15,1] 2.2716e1 8.01634.6394e1 0.8257 3.6758 7.26291.7119e11.7331e2 33 1.1351\n", + "beta[16,1] 2.2715e1 8.01634.6387e1 0.7689 3.6845 7.22611.7126e11.731e2 33 1.1350\n", + "beta[1,2] 2.101e1 4.87323.4339e1 1.8136 4.9731 8.79371.943e11.4617e2 50 1.0649\n", + "beta[2,2] 2.1011e1 4.87093.4341e1 1.7563 5.0524 8.80251.9373e11.4657e2 50 1.0651\n", + "beta[3,2] 2.0995e1 4.87163.4329e1 1.6634 5.0308 8.7981.9455e11.4667e2 50 1.0649\n", + "beta[4,2] 2.1008e1 4.87323.4328e1 1.8091 5.0136 8.75131.9424e11.4693e2 50 1.0652\n", + "beta[5,2] 2.1034e1 4.86883.4318e1 1.8465 5.0907 8.73281.9448e11.4711e2 50 1.0650\n", + "beta[6,2] 2.1014e1 4.87743.4345e1 1.7678 5.0475 8.74091.9357e11.4671e2 50 1.0652\n", + "beta[7,2] 2.1019e1 4.87293.4342e1 1.8202 5.0471 8.77261.9426e11.4751e2 50 1.0650\n", + "beta[8,2] 2.1e1 4.87203.4343e1 1.7964 4.9918 8.78851.937e11.4724e2 50 1.0648\n", + "beta[9,2] 2.1003e1 4.87543.434e1 1.7889 4.9947 8.77091.9506e11.467e2 50 1.0651\n", + "beta[10,2] 2.1019e1 4.87453.4355e1 1.7801 5.0105 8.83531.9436e11.4755e2 50 1.0651\n", + "beta[11,2] 2.1011e1 4.88323.436e1 1.7745 4.9971 8.81831.9411e11.4697e2 50 1.0652\n", + "beta[12,2] 2.1e1 4.86893.4323e1 1.7969 5.0186 8.76581.9163e11.4668e2 50 1.0650\n", + "beta[13,2] 2.1024e1 4.86963.4322e1 1.7591 5.0657 8.77951.9546e11.4676e2 50 1.0645\n", + "beta[14,2] 2.1002e1 4.87323.4324e1 1.8039 4.9603 8.76831.9452e11.4686e2 50 1.0652\n", + "beta[15,2] 2.1013e1 4.87403.434e1 1.8079 4.9877 8.83411.9378e11.466e2 50 1.0654\n", + "beta[16,2] 2.1012e1 4.87293.4341e1 1.7040 5.0002 8.79891.9428e11.4713e2 50 1.0648\n", + "theta[1,1] 0.9628 0.0015 0.0904 0.6737 0.9759 0.9993 1.0 1.0 3549 1.0039\n", + "theta[2,1] 0.9627 0.0016 0.0897 0.6871 0.9745 0.9993 1.0 1.0 3053 1.0045\n", + "theta[3,1] 0.9631 0.0016 0.0900 0.6715 0.9740 0.9992 1.0 1.0 2994 1.0047\n", + "theta[4,1] 0.9642 0.0013 0.0869 0.6897 0.9763 0.9993 1.0 1.0 4015 1.0027\n", + "theta[5,1] 0.9629 0.0016 0.0884 0.6662 0.9757 0.9993 1.0 1.0 2989 1.0044\n", + "theta[6,1] 0.9628 0.0013 0.0896 0.6881 0.9749 0.9993 1.0 1.0 4184 1.0038\n", + "theta[7,1] 0.9633 0.0014 0.0885 0.6827 0.9762 0.9993 1.0 1.0 3702 1.0046\n", + "theta[8,1] 0.9629 0.0013 0.0904 0.6774 0.9762 0.9993 1.0 1.0 4262 1.0028\n", + "theta[9,1] 0.9652 0.0013 0.0832 0.6940 0.9756 0.9992 1.0 1.0 3682 1.0043\n", + "theta[10,1] 0.9645 0.0014 0.0858 0.6957 0.9762 0.9992 1.0 1.0 3582 1.0043\n", + "theta[11,1] 0.9650 0.0012 0.0827 0.6997 0.9752 0.9992 1.0 1.0 4558 1.0042\n", + "theta[12,1] 0.9627 0.0015 0.0897 0.6591 0.9751 0.9993 1.0 1.0 3395 1.0047\n", + "theta[13,1] 0.9627 0.0014 0.0899 0.6647 0.9769 0.9992 1.0 1.0 3858 1.0052\n", + "theta[14,1] 0.9632 0.0013 0.0893 0.6827 0.9753 0.9993 1.0 1.0 4132 1.0028\n", + "theta[15,1] 0.9643 0.0013 0.0858 0.6954 0.9753 0.9993 1.0 1.0 3811 1.0041\n", + "theta[16,1] 0.9638 0.0015 0.0868 0.6833 0.9755 0.9992 1.0 1.0 3231 1.0035\n", + "theta[1,2] 0.9855 0.0006 0.0429 0.8598 0.9931 0.9998 1.0 1.0 4995 1.0018\n", + "theta[2,2] 0.9848 0.0007 0.0458 0.8527 0.9936 0.9998 1.0 1.0 4314 1.0017\n", + "theta[3,2] 0.9846 0.0007 0.0454 0.8407 0.9935 0.9998 1.0 1.0 3969 1.0011\n", + "theta[4,2] 0.985 0.0006 0.0472 0.8592 0.9934 0.9998 1.0 1.0 5750 1.0013\n", + "theta[5,2] 0.9852 0.0007 0.0464 0.8637 0.9938 0.9998 1.0 1.0 4179 1.0008\n", + "theta[6,2] 0.9850 0.0006 0.0466 0.8541 0.9936 0.9998 1.0 1.0 5104 1.0019\n", + "theta[7,2] 0.9856 0.0006 0.0434 0.8606 0.9936 0.9998 1.0 1.0 4667 1.0007\n", + "theta[8,2] 0.9851 0.0006 0.0454 0.8577 0.9932 0.9998 1.0 1.0 4716 1.0008\n", + "theta[9,2] 0.9848 0.0006 0.0482 0.8567 0.9932 0.9998 1.0 1.0 5013 1.0013\n", + "theta[10,2] 0.9848 0.0006 0.0474 0.8557 0.9933 0.9998 1.0 1.0 5051 1.0013\n", + "theta[11,2] 0.9853 0.0006 0.0439 0.8550 0.9932 0.9998 1.0 1.0 4887 1.0009\n", + "theta[12,2] 0.9851 0.0006 0.0463 0.8577 0.9934 0.9998 1.0 1.0 5339 1.0006\n", + "theta[13,2] 0.9851 0.0006 0.0453 0.8531 0.9937 0.9998 1.0 1.0 5175 1.0003\n", + "theta[14,2] 0.9855 0.0006 0.0441 0.8586 0.9930 0.9998 1.0 1.0 4960 1.0016\n", + "theta[15,2] 0.9851 0.0006 0.0450 0.8591 0.9932 0.9998 1.0 1.0 4773 1.0011\n", + "theta[16,2] 0.9848 0.0007 0.0466 0.8460 0.9933 0.9998 1.0 1.0 4484 1.0013\n", + "Sigma[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", + "Sigma[2,1] -0.000 0.0056 0.3769 -0.709 -0.275 0.0006 0.2848 0.7012 4423 0.9999\n", + "Sigma[1,2] -0.000 0.0056 0.3769 -0.709 -0.275 0.0006 0.2848 0.7012 4423 0.9999\n", + "Sigma[2,2] 1.01.0388e-188.708e-17 1.0 1.0 1.0 1.0 1.0 7027 0.9995\n", + "lp__ -1.4472e3 0.2517 5.6630-1.4594e3-1.4508e3-1.4469e3-1.4434e3-1.437e3 506 1.0095\n", + "\n", + "Samples were drawn using HMC at Tue Jul 30 20:01:26 2019.\n", + "For each parameter, n_eff is a crude measure of effective sample size,\n", + "and Rhat is the potential scale reduction factor on split chains (at \n", + "convergence, Rhat=1).\n" + ] + } + ], + "source": [ + "print(fit2.stansummary(digits_summary=5))" + ] + }, + { + "cell_type": "code", + "execution_count": 211, + "metadata": {}, + "outputs": [], + "source": [ + "samples2 = fit2.extract(permuted=True)['alphas']" + ] + }, + { + "cell_type": "code", + "execution_count": 217, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(16, 1000)" + "0.6020207893922684" ] }, - "execution_count": 99, + "execution_count": 217, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "th1 = np.asarray(th1)\n", - "th1.shape" + "np.mean(samples2[:, 15, 1])" ] }, { "cell_type": "code", - "execution_count": 100, + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 218, + "metadata": {}, + "outputs": [], + "source": [ + "th5 = []\n", + "\n", + "for i in range(16):\n", + " result5 = 2 * samples2[:, i, 0] * samples2[:, i, 1] - samples2[:, i, 1] \n", + "# result1 = - 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] + ppc_hier['alphas'][:, i, 1] \n", + " th5.append(list(result5))" + ] + }, + { + "cell_type": "code", + "execution_count": 220, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.23662175, 0.23282416, 0.22871552, 0.25399912, 0.23206242,\n", - " 0.23172383, 0.28342552, 0.21808228, 0.25160088, 0.26640258,\n", - " 0.21603326, 0.22289922, 0.22426174, 0.23504322, 0.23136687])" + "(16, 8000)" ] }, - "execution_count": 100, + "execution_count": 220, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "res2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", - "res2[:15]" + "th5 = np.asarray(th5)\n", + "th5.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 221, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.15178621, -0.15164549, -0.11995138, -0.1770054 , -0.14536233,\n", + " -0.13756777, -0.14771482, -0.15834537, -0.15584203, -0.13804698,\n", + " -0.14927179, -0.12890647, -0.15400477, -0.12556515, -0.13719998])" + ] + }, + "execution_count": 221, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res5 = np.sum(th5.T * proportion / np.sum(proportion), axis=1)\n", + "res5[:15]" ] }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 224, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAXoElEQVR4nO3de2yV9f3A8Q9toS0W0gW7i7GMaSNRtkGC4hQHbouDUpy7kawMmaZGFy9zc8ogJk5lIGxhLl4Sl00nUF00ZpdEBkZZNrywDTfdoolOxroZsxLFSFs5FIrP74/fz/7sQPnSc07P4fB6JfvjXHqeT/nac947z3OeMyrLsiwAAHhPVaUeAADgaCCaAAASiCYAgASiCQAggWgCAEggmgAAEtQUewOvvtpb7E0wDA0NtdHX11/qMTgEa1PerE/5sjbl62ham6amce96m3eajlE1NdWlHoF3YW3Km/UpX9amfFXK2ogmAIAEogkAIIFoAgBIIJoAABIkfXpu8+bNcdttt8W+ffuisbExbrrppujp6YmOjo740Ic+NHi/RYsWxaJFi4o2LABAqRw2mnbu3BlLly6Nn//859HS0hL33Xdf3HDDDXHZZZfF6aefHnffffdIzAkAUFKH3T1XU1MTa9asiZaWloiImD59emzfvj16e3tj3Lh3P5cBAEAlOew7TRMmTIhZs2YNXt6yZUtMnTo1ent7o6urKxYuXBi7du2K6dOnx7Jly4QUAFCRjuhA8K1bt8batWtj2bJl0dzcHLNnz4677rorfv3rX8ebb74ZK1euLNacAAAlNSrLsizljo899lgsX7487rjjjvjYxz520O3PP/98XHLJJbF169Yh1+dy+yrmTKCVpLq6Kg4ceKvUY3AI1qa8WZ/yZW3K19G0NqNHv3uzJH167qmnnooVK1bEPffcEyeffHJERHR3d8fo0aNjwoQJERGRZVnU1Bz8cEfLd80caxobx8Ybb+wp9RgcgrUpb9anfFmb8nU0rU1e3z2Xy+Vi2bJlcfvttw8GU0TEQw89FNdff33s27cvDhw4EOvXr49zzz23IAMDAJSbw77TtHnz5nj99dfj2muvHXJ9Z2dn3HrrrdHW1hZVVVUxbdq0WLJkSdEGBQAopeRjmobr1Vd7i/nwDNPR9FbpscbalDfrU76sTfk6mtbmvXbPJR3TBFBuGsbXR31t8Z/Ccv0D0deTK/p2gPInmoCjUn1tTUxauqHo2+la1RZ9Rd8KcDQQTUDBjdS7QAAjybMaUHAj8S5Q16q2oj4+wH87ojOCAwAcq0QTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAECCmlIPAIychvH1UV/rzx5gODx7wjGkvrYmJi3dUPTtdK1qK/o2AEaa3XMAAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAECCpGjavHlzXHDBBdHa2hrt7e3x97//PSIi7r333mhtbY05c+bE9ddfH/v27SvqsAAApXLYaNq5c2csXbo01qxZExs3boz58+fHDTfcEM8++2ysW7cuHnjggdi4cWPs2rUrOjs7R2JmAIARd9hoqqmpiTVr1kRLS0tEREyfPj22b98emzZtinnz5sX48eOjqqoq2tvbY+PGjUUfGACgFA4bTRMmTIhZs2YNXt6yZUtMnTo1urq6YuLEiYPXNzc3x44dO4ozJQBAidUcyZ23bt0aa9eujbVr18by5ctjzJgxg7fV1dVFLpc76GcaGmqjpqY6/0kpqOrqqmhsHFvqMTgEa1N+3rke1qd8WZvyVSlrkxxNjz32WCxfvjzuuuuuaGlpifr6+iEHfudyuRg79uB/kL6+/sJMSkE1No6NN97YU+oxOIRirk1T07iiPG6le+d6+NspX9amfB1Na/Nez5NJ0fTUU0/FihUr4p577omTTz45IiJOOumkIbvjtm/fPnjcEwBApTnsMU25XC6WLVsWt99++2AwRUS0trYOfmpuYGAg7r///mhrayvqsAAApXLYd5o2b94cr7/+elx77bVDru/s7IyOjo5YuHBhZFkWZ599drS3txdtUACAUjpsNM2fPz/mz59/yNsWL14cixcvLvhQAADlxteoAAAkEE0AAAmO6DxNQPE0jK+P+tr//ZN0agCA8iOaoEzU19bEpKUbirqNrlU+4QowXHbPAQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACRwRnCA97B3/4GDvtam0F9zk+sfiL6eXEEfEyg80QTwHupGV4/I19v0FXULQCHYPQcAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkSIqm/fv3x+rVq2Py5MnR3d0dERFPP/10TJ06NebOnTv4v87OzqIOCwBQKjUpd7r88svjox/96JDrent74/TTT4+77767KIMBAJSTpHearrjiirj66quHXNfb2xvjxo0rylAAAOUm6Z2madOmHXRdb29vdHV1xcKFC2PXrl0xffr0WLZsmZACACpSUjQdSnNzc8yePTs6OjpizJgx8Z3vfCdWrlwZt9xyy5D7NTTURk1Ndd6DUljV1VXR2Di21GMA/8ffY/48r5WvSlmbYUfTrFmzYtasWYOXL7300rjkkksOul9fX/9wN0ERNTaOjTfe2FPqMXiHpibv0h7L/D3mz/Na+Tqa1ua9nouHHU3d3d0xevTomDBhQkREZFkWNTXDfjgoaw3j66O+1n/fAMeyYb8KPPTQQ/Hcc8/FbbfdFtXV1bF+/fo499xzCzgalI/62pqYtHRDUbfRtaqtqI8PQH4OG02vvfZaLFq0aPDyhRdeGNXV1XH33XfHf/7zn2hra4uqqqqYNm1aLFmypKjDAgCUymGj6fjjj49NmzYd8rYVK1YUfCAAgHLka1QAABKIJgCABKIJACCBaAIASCCaAAASiCYAgAROcQxQYnv3Hyj61+jk+geirydX1G1ApRNNACVWN7p6RM4431fULUDls3sOACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASFBT6gEAKL69+w9EU9O4om8n1z8QfT25om8HSkE0ARwD6kZXx6SlG4q+na5VbdFX9K1Aadg9BwCQQDQBACQQTQAACUQTAEACB4JzVGsYXx/1tf4zBqD4vNpwVKuvrRmxTwQBcGyzew4AIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEiRF0/79+2P16tUxefLk6O7uHrz+3nvvjdbW1pgzZ05cf/31sW/fvqINCgBQSknRdPnll0ddXd2Q65599tlYt25dPPDAA7Fx48bYtWtXdHZ2FmVIAIBSS4qmK664Iq6++uoh123atCnmzZsX48ePj6qqqmhvb4+NGzcWZUgAgFJLiqZp06YddF1XV1dMnDhx8HJzc3Ps2LGjcJMBAJSRmuH+YC6XizFjxgxerquri1wud9D9Ghpqo6ameriboUiqq6uisXFsqccAKlCpnls8r5WvSlmbYUdTfX39kAO/c7lcjB178D9IX1//cDdBETU2jo033thT6jHy1tQ0rtQjAP+lVM8tlfK8VomOprV5r9eVYZ9y4KSTThqyO2779u3R0tIy3IcDAChrw46m1tbWwU/NDQwMxP333x9tbW2FnA0AoGwcdvfca6+9FosWLRq8fOGFF0Z1dXWsXbs2Ojo6YuHChZFlWZx99tnR3t5e1GEBAErlsNF0/PHHx6ZNmw552+LFi2Px4sUFHwoAoNz4GhUAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASHPYLe2G4GsbXR32t/8QAqAxe0Sia+tqamLR0Q1G30bWqraiPDwBvs3sOACCBd5oAKJi9+w9EU9O4om4j1z8QfT25om4DDkU0AVAwdaOrR2S3fF9RtwCHZvccAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJKgp9QAAcCT27j8QTU3jDnnbu11/pHL9A9HXkyvIY1E5RBMAR5W60dUxaemGom6ja1Vb9BV1CxyN7J4DAEggmgAAEogmAIAEeR3TNGXKlGhubh68/PGPfzy+//3v5z0UAEC5GXY0vfnmmzFq1KjYtGlTIecBAChLw94919fXF+PHjy/kLAAAZWvY0dTT0xMHDhyIr3/96zF37tzo6OiIf/zjH4WcDQCgbAx791xdXV3MnTs3Lr744pg4cWKsW7cuLr/88tiwYUPU1Pz/wzY01EZNTXVBhqVwqqurorFxbKnHAChbniMLp1Jec4YdTc3NzXHTTTcNXv7a174Wt99+e3R1dUVLS8vg9X19/flNSFE0No6NN97YU9RtFOrMvAClUOznyGPJSLzmFMp7vXYNO5p6enpi9+7dg5+eGzVqVLz11ltD3mWifB0IUQMAR2LYhfPiiy/GddddFw899FAcf/zx8eCDD8YHP/jBIacgoHyN1NcQAEClGHY0nXHGGXHRRRfFV7/61Rg1alS8//3vjzvuuCOqqx2/BABUnrz2pV100UVx0UUXFWgUAIDy5WtUAAASiCYAgASiCQAggfMDlJmG8fVRX2tZAKDceHUuM/W1NUU/FUCE0wEAwJGyew4AIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggTOCA8B/2bv/QDQ1jSv6dnL9A9HXkyv6digM0QQA/6VudPWIfaVVX9G3QqHYPQcAkEA0AQAkEE0AAAkc0wQAJTISB5w72LxwRBMAlMhIHHDuYPPCsXsOACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACBBTakHAACKZ+/+A9HUNK6o28j1D0RfT66o2ygHogkAKljd6OqYtHRDUbfRtaot+oq6hfJg9xwAQALRBACQQDQBACRwTNMRaBhfH/W1/skA4FikAI5AfW3NiBxMBwCUH7vnAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABJUzBnBfcUJAFBMFVMZvuIEACgmu+cAABLkFU1bt26NL3zhCzFnzpy4+OKLo7u7u1BzAQCUlWFH0549e+Kaa66J733ve/HII4/EOeecEzfeeGMBRwMAKB/DPqbpD3/4QzQ3N8eUKVMiIuIrX/lK3HrrrdHX1xcNDQ0FGxAAKG979x+IpqZx73mfw92eItc/EH09ubwfZ7iGHU1dXV3R3Nw8ePm4446LxsbG+Pe//x2nnXZaQYYDAMpf3ejqon8YK+J/P5DVV/StvLtRWZZlw/nBO++8M1555ZVYuXLl4HWf+cxnYvXq1XH66acXbEAAgHIw7GOaxo4dG/39/UOu27t3bxx33HF5DwUAUG6GHU0nnXRS/POf/xy8/Prrr8fu3bvjwx/+cEEGAwAoJ8OOpjPPPDO6u7vj6aefjoiI9evXx6c+9akYO3ZswYYDACgXw46murq6uPXWW+Pmm2+O8847L/72t7/FDTfcUMjZGIaUc2f9+c9/jgULFkRra2t88YtfjG3btg3etmHDhpg/f37MmTMnrrrqqujt7R3J8Stavmvz4IMPRltbW8ydOzc6OjqcF62A8l2bt3V2dsbkyZNHYuRjSr7rs3379liwYEHMnj07vvSlL8X27dtHcvyKlu/a/PjHP465c+dGa2trXHnllfHqq6+O5PhHLqNivPnmm9knPvGJ7LnnnsuyLMt++tOfZpdddtmQ+/T392czZszItm7dmmVZlv3ud7/LzjnnnCzLsuyVV17JzjzzzOyVV17JsizLbrrppuzmm28ewd+gcuW7Nn/961+zmTNnZjt37syyLMtWrVqVXXPNNSP4G1SufNfmbTt37szOP//87JRTThmZwY8R+a7PwMBANmfOnOyRRx7JsizLfvnLX2YrV64cwd+gcuW7Nk888UR23nnnZT09PVmWZdkPfvCD7Nvf/vYI/gZHTjRVkM2bN2cLFiwYvNzX15dNmTIl6+3tHXLd208eWZZlvb292SmnnJLt3r07W7duXfbNb35z8LaXXnopO+uss0Zm+AqX79q8/PLL2Z/+9KfB2x577LHsc5/73MgMX+HyXZu3feMb38g2bNggmgos3/XZtm1b1tbWNqIzHyvyXZt77rkn+9a3vjV42+OPP172z2u+e66CvNe5s9553Wc/+9nBy1u2bIlJkybF+PHjo6urKyZOnDh428SJE2PXrl2xe/fukfkFKli+a3PiiSfGGWecMeS2qVOnjszwFS7ftXn7cl9fX8ybN2/kBj9G5Ls+L7zwQpxwwgmxdOnSmDNnTlx66aXx8ssvj+jvUKnyXZsZM2bEM888E93d3XHgwIF49NFH4+yzzx7R3+FIiaYKksvlora2dsh1tbW1sWfPnkPe/4UXXoiVK1fGzTffPPjzY8aMGbx9zJgxMWrUqMjlSnf21UqR79q8069+9at4/PHH46qrrirKrMeafNdm7969sXr16vjud79b9FmPRfmuT09PT2zbti3a29tj48aNceqpp8aSJUuKPvexIN+1mTJlSnz+85+PT3/60zFjxozYtm1bXHbZZUWfOx+iqYIcybmz/vKXv8Sll14aK1asiDPPPHPw5/ft2zd4n/7+/siyzCciCyDftXnbfffdF3feeWesXbs2mpqaijrzsSLftbnzzjtj/vz5Q96lpXDyXZ9x48bFqaeeGlOnTo2qqqq4+OKL45lnnnnXF3bS5bs2mzdvjt///vfx5JNPxrZt2+L888+P6667bkRmHy7RVEFSz531wgsvxNVXXx0//OEPY/bs2YPXf+QjH4kdO3YMXn7ppZeiqalpcBcEw5fv2kRE/OIXv4j77rsvOjs7h7wlTn7yXZvf/va3sX79+pg5c2bMnDkzIiJmzpwZ//rXv0bmF6hw+a7PiSeeOORTwNXV1RERUVXl5S9f+a7Nk08+GZ/85Cfjfe97X1RVVcW8efMO+anUslLqg6oonFwul5111lnZtm3bsizLsh/96EfZlVdeOeQ+b731VnbBBRdkjz766EE/393dnc2YMSPbsWNHlmVZtmTJkuyWW24p/uDHgEKszcyZMwc/2Ujh5Ls2/82B4IWV7/r09/dnM2fOzLZs2ZJlWZb95Cc/ydrb24s/+DEg37VZt25dtmDBgmzPnj1ZlmXZz372s+zLX/5y8QfPw7C/e47y9Mc//jFWrFgRuVwuJk6cGKtWrYq33norOjo64uGHH45nnnkmFi5ceND/E1izZk1MmTIlfvOb38Qdd9wRAwMDcdppp8WKFSt8NU6B5LM2TzzxRNx1113xgQ98YPD6mpqaePjhh0f616hI+f7dvNPkyZPjxRdfHMnxK16+6/P888/HkiVLYt++fXHCCSfE8uXL7U4tkHzW5pRTTolbbrklHn/88aiqqoqmpqa48cYbo6WlpUS/zeGJJgCABHbqAgAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACT4H769l+H9r7oKAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAYPUlEQVR4nO3de2zV9f348Rf0SFssrIvWqbEMtdMoi5LhZVOHl++US7t7TAZDpqvRRed0zrESMm8ERBckmbpAJkQuumjMLokdbJNtwhAnbrplS3Qy18yYQSYqbaUUyj6/P/bzxA6Et+V82p728fjvXDifV9+0n/Ps+Zx+zogsy7IAAOCgRg70AAAA5UA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJCjkvYF//7sj700MKjU1ldHZ2T3QYwxZ1jdf1jd/1jhf1jdfw2F96+rGvOdtXmkqsUKhYqBHGNKsb76sb/6scb6sb76G+/qKJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACBBYaAHAIaemrHVUV2Z7+6lq7snOtu7ct0GwLuJJqDkqisLMb6lNddttC1qjM5ctwDQm8NzAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQILCQA8A0Be79+6LuroxuW+nq7snOtu7ct8OMPiJJqAsVR1REeNbWnPfTtuixujMfStAOXB4DgAggWgCAEggmgAAEogmAIAESW8EX79+fXz/+9+PPXv2RG1tbdxxxx3R3t4ezc3NcdxxxxXvN2vWrJg1a1ZuwwIADJRDRtP27dujpaUlfvSjH0VDQ0M8/PDDceutt8a1114bZ511Vixfvrw/5gQAGFCHPDxXKBRi8eLF0dDQEBERkyZNiq1bt0ZHR0eMGZP/OVIAAAaDQ77SdNRRR8XkyZOLlzds2BBnnnlmdHR0RFtbW8ycOTN27NgRkyZNirlz5wopAGBIel9vBN+8eXOsXLky5s6dG/X19XHhhRfG0qVL42c/+1m8/fbbsXDhwrzmBAAYUMlnBH/yySdj/vz5sXTp0mhoaIiGhoZer0Bdc801cfXVV+/372pqKqNQqCjNtGWgomJk1NaOHugxhizrmy/re2ClXBNrnC/rm6/hvr5J0fT000/HggULYsWKFXHyySdHRMS2bdviiCOOiKOOOioiIrIsi0Jh/4fr7Owu4biDX23t6HjrrV0DPcaQZX3zVar17Y/PhOtPpfye8z2cL+ubr+Gwvgfbfx3y8FxXV1fMnTs37rvvvmIwRUQ8/vjjMW/evNizZ0/s27cvVq9eHRdddFFJBgYAGGwO+UrT+vXr44033ohbbrml1/Vr1qyJJUuWRGNjY4wcOTImTpwYc+bMyW1QAICBdMhoampqiqampgPetmDBgpIPBAAwGPkYFQCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABIc8gN7gaGjZmx1VFce/Me+rm5MP00DUF5EEwwj1ZWFGN/Smvt22hY15r4NgP7m8BwAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACQoDPQDAYLZ7776oqxtT0sf838fr6u6Jzvaukm4DKD3RBHAQVUdUxPiW1ly30baoMTpz3QJQCg7PAQAkEE0AAAlEEwBAgqRoWr9+fXz2s5+NadOmxYwZM+Jvf/tbREQ89NBDMW3atJgyZUrMmzcv9uzZk+uwAAAD5ZDRtH379mhpaYnFixfH2rVro6mpKW699dZ44YUXYtWqVfHoo4/G2rVrY8eOHbFmzZr+mBkAoN8dMpoKhUIsXrw4GhoaIiJi0qRJsXXr1li3bl1Mnz49xo4dGyNHjowZM2bE2rVrcx8YAGAgHDKajjrqqJg8eXLx8oYNG+LMM8+Mtra2GDduXPH6+vr6eOWVV/KZEgBggL2v8zRt3rw5Vq5cGStXroz58+fHqFGjirdVVVVFV9f+J2erqamMQqHi8CctExUVI6O2dvRAjzFkWV+GKt/XpWEfka/hvr7J0fTkk0/G/PnzY+nSpdHQ0BDV1dW93vjd1dUVo0fvv5Cdnd2lmbRM1NaOjrfe2jXQYwxZ1vfwlPrM1pSO7+vSsI/I13BY34PtJ5Oi6emnn44FCxbEihUr4uSTT46IiJNOOqnX4bitW7cW3/cEADDUHPI9TV1dXTF37ty47777isEUETFt2rTiX8319PTEI488Eo2NjbkOCwAwUA75StP69evjjTfeiFtuuaXX9WvWrInm5uaYOXNmZFkW5513XsyYMSO3QQEABtIho6mpqSmampoOeNvs2bNj9uzZJR8KAGCw8TEqAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACQoDPQDwXzVjq6O60o8kwGBlDw2DRHVlIca3tOa6jbZFjbk+PsBQ5vAcAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAkKKXfau3dv3HvvvbFixYp46qmn4thjj43nnnsumpub47jjjiveb9asWTFr1qzchgUYinbv3Rd1dWNy3UZXd090tnflug0Y6pKi6brrrouPfvSjva7r6OiIs846K5YvX57LYADDRdURFTG+pTXXbbQtaozOXLcAQ1/S4bnrr78+brzxxl7XdXR0xJgx+f5mBAAwWCS90jRx4sT9ruvo6Ii2traYOXNm7NixIyZNmhRz584VUgDAkJQUTQdSX18fF154YTQ3N8eoUaPiO9/5TixcuDDuuuuuXverqamMQqHisActFxUVI6O2dvRAjzFkWV/ou+Hws2Mfka/hvr59jqbJkyfH5MmTi5evueaauPrqq/e7X2dnd183UZZqa0fHW2/tGugxhqyhvL55vxEYhurPzrsN5X3EYDAc1vdg++I+n3Jg27ZtsWPHjuLlLMuiUOhzgwEADGp9jqbHH3885s2bF3v27Il9+/bF6tWr46KLLirhaAAAg8chXxp6/fXXe5176YorroiKiopYvnx5/Otf/4rGxsYYOXJkTJw4MebMmZPrsAAAA+WQ0XT00UfHunXrDnjbggULSj4QAMBg5GNUAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEhQGegAoBzVjq6O60o8LwHDmWQASVFcWYnxLa67baFvUmOvjA3B4HJ4DAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAESdG0d+/euPvuu+PUU0+Nbdu2Fa9/6KGHYtq0aTFlypSYN29e7NmzJ7dBAQAGUlI0XXfddVFVVdXruhdeeCFWrVoVjz76aKxduzZ27NgRa9asyWVIAICBVki50/XXXx8TJ06MH/zgB8Xr1q1bF9OnT4+xY8dGRMSMGTPi/vvvj69+9av5TApAn+3euy/q6sbkvp2u7p7obO/KfTswEJKiaeLEiftd19bWFpdccknxcn19fbzyyiulmwyAkqk6oiLGt7Tmvp22RY3RmftWYGD0+Y3gXV1dMWrUqOLlqqqq6Ory2wUAMDQlvdJ0INXV1b3e+N3V1RWjR4/e7341NZVRKFT0dTNlp6JiZNTW7r8OlIb1hcFvIH9G7SPyNdzXt8/RdNJJJ/U6HLd169ZoaGjY736dnd193URZqq0dHW+9tWugxxiyBmp9++O9IDBUDOQ+0D44X8NhfQ+2v+/z4blp06YV/2qup6cnHnnkkWhsbOzrwwEADGqHfKXp9ddfj1mzZhUvX3HFFVFRURErV66M5ubmmDlzZmRZFuedd17MmDEj12EBAAbKIaPp6KOPjnXr1h3wttmzZ8fs2bNLPhQAwGDjY1QAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASFAY6AHgcNSMrY7qSt/GAOTPsw1lrbqyEONbWnPfTtuixty3AcDg5vAcAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAgsLh/OMJEyZEfX198fIZZ5wR99xzz2EPBQAw2PQ5mt5+++0YMWJErFu3rpTzAAAMSn0+PNfZ2Rljx44t5SwAAINWn6Opvb099u3bF1/72tdi6tSp0dzcHH//+99LORsAwKDR58NzVVVVMXXq1Ljqqqti3LhxsWrVqrjuuuuitbU1CoXDeqsUAGVq9959UVc3JtdtdHX3RGd7V67bgAPpc93U19fHHXfcUbz8la98Je67775oa2uLhoaG4vU1NZVRKFQc3pRlpKJiZNTWjh7oMYYs6wuDW9URFTG+pTXXbbQtaozCe+wH7CPyNdzXt8/R1N7eHjt37iz+9dyIESPiP//5z36vMnV2dh/ehGWmtnZ0vPXWroEeY8j63/XN+zdaYHB6r/2sfXC+hsP6Hux5pc/vaXrppZfiiiuuiNdffz0iIh577LE49thje52CAABgqOjzK01nn312XHnllfHlL385RowYEcccc0zcf//9UVExfA7FAQDDx2G9Y/vKK6+MK6+8skSjAAAMXj5GBQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABL4ZF1yUzO2OqorS/8t5qNTABgIooncVFcW+uWDOwGgPzg8BwCQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJCgM9AAA8H7s3rsv6urGvOftB7stVVd3T3S2dx324zC0iCYAykrVERUxvqU11220LWqMzly3QDlyeA4AIIFXmoapmrHVUV3pvx8AUnnWHKaqKwv98vI2AAwVDs8BACQQTQAACUQTAEAC0QQAkEA0AQAk8Ndzg4xTAQAMvEOddbxUnHm8vHh2HmT641QAEU4HAHAw/XHW8QhnHi83Ds8BACQQTQAACUQTAEAC0QQAkOCwomnz5s3x+c9/PqZMmRJXXXVVbNu2rVRzAQAMKn3+67ldu3bFzTffHA8++GBMmDAhli9fHrfffnssXbq0lPMNKqmnA+iPP1MFAPpXn6PpmWeeifr6+pgwYUJERHzpS1+KJUuWRGdnZ9TU1JRswMGkP04H4FQAADA49Tma2traor6+vnj5yCOPjNra2vjnP/8Zp59+ekmGez+cFBKActMfJ9F0As3SGZFlWdaXf/jAAw/Ea6+9FgsXLixe93//939x9913x1lnnVWyAQEABoM+vxF89OjR0d3d3eu63bt3x5FHHnnYQwEADDZ9jqaTTjop/vGPfxQvv/HGG7Fz58748Ic/XJLBAAAGkz5H07nnnhvbtm2L5557LiIiVq9eHRdffHGMHj26ZMMBAAwWfY6mqqqqWLJkSdx5551x6aWXxp///Oe49dZbSznboJR6bqo//OEPcfnll8e0adPiC1/4QmzZsqV4W2trazQ1NcWUKVPihhtuiI6Ojv4avyykrnGWZbF8+fKYMGFCMd7fsWzZspg6dWpMmzYtvv71r8e///3v/hi9LJRifbdu3RqXX355XHjhhfHFL34xtm7d2h+jl4VSrO871qxZE6eeemqe45adUqzvY489Fo2NjTF16tRobm52jsF3KcX6DunnuIxkb7/9dvbxj388+8tf/pJlWZY9+OCD2bXXXrvf/bq7u7Nzzjkn27x5c5ZlWfbb3/42u+CCC7Isy7LXXnstO/fcc7PXXnsty7Isu+OOO7I777yzn76CwS91jbMsy7773e9m8+bNyy644IJsy5Ytxet/97vfZZdeemnW3t6eZVmWfe9738u+9a1v5T98GSjF+vb09GRTpkzJfvGLX2RZlmU/+clPsoULF+Y/fBkoxfq+Y/v27dmnP/3p7JRTTsl15nJSivX905/+lJ1//vnZ9u3bsyzLskWLFmU333xz/sOXgVKs71B/jhNN78P69euzyy+/vHi5s7MzmzBhQtbR0dHrfp2dncUnlCzLso6OjuyUU07Jdu7cma1atSq76aabire9/PLL2Sc+8Yn8hy8TqWucZVn2/PPPZ1mWZRdffHGvH9oVK1Zk3/zmN4uXN27cmH3mM5/JceryUYr13bJlS9bY2Jj/sGWoFOv7jm984xtZa2uraHqXUqzvq6++mj377LPFy08++aT9w/9XivUd6s9xPnvufTjYuane7cgjj4zLLruseHnDhg0xfvz4GDt2bLS1tcW4ceOKt40bNy527NgRO3fuzP8LKAOpaxwRMXHixAM+xjnnnBPPP/98bNu2Lfbt2xe/+tWv4rzzzstt5nJSivV98cUX4/jjj4+WlpaYMmVKXHPNNfHqq6/mNnM5KcX6Rvx3n9HZ2RnTp0/PZc5yVYr1PeGEE+Lss88uXt6wYUOceeaZpR+2DJVifYf6c5xoeh+6urqisrKy13WVlZWxa9eu9/w3L774YixcuDDuvPPO4mOMGjWqePuoUaNixIgR0dXlxGMRfVvj/zVhwoT43Oc+F5dcckmcc845sWXLlrj22mtLPWpZKsX6tre3x5YtW2LGjBmxdu3aOO2002LOnDmlHrUslWJ9d+/eHXfffXfcdtttpR6v7JVifd/tpz/9aWzcuDFuuOGGUoxX9kqxvkP9Oc4ptA/gl7/8ZXzve9/b7/oZM2a8r3NT/fGPf4ybbropFixYEOeee25E/Pf8Vnv27Cnep7u7O7IsG3Z/dViqNT6Q9evXx1NPPRWbNm2KD3zgA7Fs2bL49re/HT/84Q8Pe+5ykef6jhkzJk477bTib+dXXXVVLFu2LHbt2jVsvo/zXN8HHnggmpqaev22Ptzkub7vePjhh+Ohhx6KlStXRl1dXZ9nLUd5ru9Qf44TTQdw2WWX9Tq89o6nnnoqnnjiieLlg52b6sUXX4wbb7wxlixZ0usM6SeeeGI888wzxcsvv/xy1NXVxdixY0v8VQxupVjj97Jp06b45Cc/GR/84AcjImL69OmxbNmywx+6jOS5vieccEKvv4apqKiIiIiRI4fPC9d5ru+vf/3rePPNN2PNmjXF684///x45JFHhs158PJc34iIH//4x/Hwww/HmjVr4kMf+tBhz1tu8lzfof4cN3z2ciWQem6qLMuipaUlbrvttv0+UuZTn/pUPPvss8UTg65evTqampr65wsoA6U4/9eJJ54YmzdvLr4c/Jvf/CY+8pGP5DJvuSnF+p5//vnx5ptvxsaNGyMi4tFHH42PfexjUVVVlcvM5aQU69va2hpPP/10bNq0KTZt2hQR//1FYLgE08GUYn23b98e9957bzz44IPDMpgOphTrO9Sf4/r82XPD1e9///tYsGBBdHV1xbhx42LRokVRV1cX27dvj+bm5njiiSfi+eefj5kzZ+63k1u8eHFMmDAhfv7zn8f9998fPT09cfrpp8eCBQt8/My7pKxxRERTU1P09PTEq6++Gsccc0xUVlbGPffcE6eddlrcddddsXHjxhg5cmTU1dXF7bffHg0NDQP8lQ0Oh7u+Z5xxRvz1r3+NOXPmxJ49e+L444+P+fPnD+vDSe9WivV9t1NPPTVeeumlgfhSBqXDXd/NmzfH0qVLewVToVDo9QrLcFaK79+h/BwnmgAAEjg8BwCQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJDg/wH/4TPDxTHh5AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2374,7 +2522,7 @@ ], "source": [ "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(res2 , bins=20, edgecolor='w', density=True)" + "_, _, _ = plt.hist(res5 , bins=20, edgecolor='w', density=True)" ] }, { @@ -2396,26 +2544,69 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "%load_ext watermark" - ] + "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "%watermark -iv -v -p theano,scipy,matplotlib -m" - ] + "source": [] }, { - "cell_type": "markdown", + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 168, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 15., 42.],\n", + " [ 24., 45.],\n", + " [ 88., 146.],\n", + " [ 33., 68.],\n", + " [ 21., 41.],\n", + " [ 47., 84.],\n", + " [ 66., 104.]])" + ] + }, + "execution_count": 168, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "### Intento con pystan" + "new_values[:7,]" ] }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, { "cell_type": "code", "execution_count": null, From 54f5ee60a520df9d89696753a4a91fbfd378da43 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= Date: Tue, 10 Dec 2019 16:28:27 -0500 Subject: [PATCH 4/9] Con pystan y pymc3 --- BDA3/chap_08.ipynb | 3196 ++++++++++++++++++++++++++++---------------- 1 file changed, 2029 insertions(+), 1167 deletions(-) diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb index a4b2b91..3df4315 100644 --- a/BDA3/chap_08.ipynb +++ b/BDA3/chap_08.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -23,6 +23,7 @@ "import theano.tensor as tt\n", "import arviz\n", "import seaborn\n", + "import time\n", "\n", "import warnings\n", "warnings.simplefilter(action='ignore', category=FutureWarning)\n", @@ -42,7 +43,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 7, "metadata": {}, "outputs": [], "source": [ @@ -58,7 +59,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -259,7 +260,7 @@ "15 West IV 0.554 0.361 0.084 0.057" ] }, - "execution_count": 3, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" } @@ -278,7 +279,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -311,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -330,7 +331,27 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1444.106" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(proportion)" + ] + }, + { + "cell_type": "code", + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -349,7 +370,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -358,15 +379,15 @@ "1447.0" ] }, - "execution_count": 7, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "valores = data_obs[:, :] * proportion.reshape(16, -1)\n", - "valores = np.round(valores)\n", - "np.sum(valores) # Check if the sum is equal to 1447" + "values = data_obs[:, :] * proportion.reshape(16, -1)\n", + "values = np.round(values)\n", + "np.sum(values) # Check if the sum is equal to 1447" ] }, { @@ -378,19 +399,19 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 144, "metadata": {}, "outputs": [], "source": [ "with pm.Model() as model_non_hiera:\n", " \n", " thetas = pm.Dirichlet('thetas', a=np.ones_like(data_obs), shape=(16, 3))\n", - " post = pm.Multinomial('post', n=np.sum(valores, axis=1), p=thetas, observed=valores)" + " post = pm.Multinomial('post', n=np.sum(values, axis=1), p=thetas, observed=values)" ] }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -401,7 +422,7 @@ "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 9, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -412,7 +433,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -456,10 +477,10 @@ "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 10, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -470,7 +491,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -481,7 +502,7 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [thetas]\n", - "Sampling 4 chains: 100%|██████████| 16000/16000 [00:13<00:00, 1165.84draws/s]\n" + "Sampling 4 chains, 0 divergences: 100%|██████████| 16000/16000 [00:13<00:00, 1209.89draws/s]\n" ] } ], @@ -492,51 +513,29 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1gAAACICAYAAAD6SUoaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nOzdeaxk2X3Y9+9dan9r78vsW3HIIUXSXCSR2iJZcAQnhgMbSewoVmwZyII4gBEkdgAnSAwjzgI4RhwYghXADiMokcRYG0WKFEeaIYecvaene7q7ut++1r7d/az5o15v0zPDmWE/9nB4PsDDq7pbnVtVt+753fM753rWWhzHcRzHcRzHcZzvn3+vC+A4juM4juM4jvNh4QIsx3Ecx3Ecx3Gcu8QFWI7jOI7jOI7jOHeJC7Acx3Ecx3Ecx3HuEhdgOY7jOI7jOI7j3CUuwHIcx3Ecx3Ecx7lLXIDlOHdZs9n82wf//6zZbP4H73HdSrPZ/A8Pp2SO4ziOc5M7XznO4XABluPcRc1mMwD+l+9jE58C3AnLcRzHOVTufOU4h8dzNxp2nLun2Ww+Dfwc0AJqwK8DPw88DjwL/PVWq2WazeYXgP8NWAb6wF8DEuA1YAF4tdVq/VSz2fy3gX8EVIAI+FutVuu1ZrM5B3wJ+MjBvG8C/2mr1ZI/sJ11HMdxfmi585XjHB7XguU4d9ffBHSr1foIsA78LPBvAk1mJ7IvHJxsfgf4b1qt1mPAPwV+q9VqdYC/D3z34GQVAv8K+NutVusJ4PeA//Xgdf4GMG61Wk8CTwAK+NgPaB8dx3GcH37ufOU4h8QFWI5zuL7carWyVqsVA9eA+4CfBqatVusbAK1W6zeBx5rN5gO3rthqtRRwotVqPX8w6VvAIwePu8BPNJvNXwSCVqv1n7Rardd+APvjOI7jfDi585Xj3CXhvS6A43zITW95rIEAWALuazabV26ZVwDH32L9v9NsNv8Gs7SKKmABWq3WbzebzSPAPwQ+0mw2/2/g77ZareIQ9sFxHMf58HPnK8e5S1yA5Tg/eHvA5Var9Zk3z2g2mx+/5fFPAv818LlWq7XRbDb/PPAvrs9vtVq/Bvxas9k8C3yZWWfjf4HjOI7j3B3ufOU474NLEXScu0sCfrPZnH+HZV4ATjebzc8DNJvNR5rN5peazaZ3sP7CweMTzFIrtpvNZh34FaDRbDb9ZrP5D5rN5t8EaLVau8zy592INY7jOM675c5XjnNIXIDlOHfXPvBtYAv4ybdaoNVqZcBfAf73ZrN5GfjXwG+3Wi17sO4ZZlcNv3Hwfxv4OvBPgMnB8l8CfrnZbLYOUjfEwTTHcRzHeTfc+cpxDokbpt1xHMdxHMdxHOcucS1YjuM4juM4juM4d4kLsBzHcRzHcRzHce4SF2A5juM4juM4juPcJS7AchzHcRzHcRzHuUs+cPfB6vUiN+qG4zjOj7Djx+e9e12Gd+NunK/m5irE8Q/P/VZdeQ+XK+/hcuU9PD9MZYW7V963O1+5FizHcRzHuUfCMLjXRXhPXHkPlyvv4XLlPTw/TGWFwy+vC7Acx3Ecx3Ecx3HuEhdgOY7jOI7jOI7j3CU/MgHWn0xi/v3VHV5NsntdFMdxHMdxHOdDTF8eYTrpvS6Gc4/8SARY0lr+8X6fi1nBP97vY60bR8NxHMdxHMc5PHb4wzPog3N3/UgEWJezgo7SfKSIuZwLvv7tP73XRXIcx3Ec5y6YdDOUNPe6GI7jODf8SARYr6Y5AJ/92m8C8NUrl0nHw3tZJMdxHMf5wLHW/lBlechcM2mn9Deje10Ux7nhh+kYcg7Hj0SAdSkrOCYLHl2/xmkMm6ceZO2lb9/rYjmO4zjOB4rdjDBXxve6GO+aZVaRNfoHW6Ht5T2+23kOY+9ey1mWtdDa9RN3Phi01Wir73Uxfmj9SARY63HCw1ev8NOtbT6Xp+yefYTN8y/f62I5juM4zgeKzW5WqJQaMhp/Fa0/mB31lZ4ynT6NsfKOefaQA67W+BKpTpDmztd+P5SekhdrTKev3pXtOT9YNlPYD1ma6jP7T/PsvutS83596AMsYy0bheSB9i5qYZ7Hv/4VsnKF1fEIkX0wTxqO4ziOc68JsQuA0h/MlPoiX8diMPr29ECbK8zVMXZyeAMMXA/f7laAxUFLmOXDVUn/QbHG0t+MkPm9aXExGxFmdXJLgd79uloZ0om4+4V6l4x+67RgOzu6bjzX18ZvOyri3iRnlN6bfbCJ/ECmZH7oA6yeVORhyH3BLh/9pQ2+aJ4BYO/YGTorl+9x6RzHcRzn3ktkQiKT26bZ91JLfB+UNHRWJ2h1F4KKW4tazCrZJj68ipcwBVi41H/9ULZ/WGymMDvxXXlfCmVotaNDrdw+13mW3WTne5clVaQTwXA3+Z7LHpr3+Tb01iP6mxFG3zwOjLY/kLRXrQw7bwyZdN5Faqqybzsq4oW9Kd9udWffrfdRbmUUmXrvjR42lpitGDvI3/O6h+3DH2Dtzq7AffzIJpTrfGb5ClUt6Jy8n87KlXtcOsdxHMeZSWTC03vfeM8VDWslQrTfYb4lT965peX53nM833vuPb3umxkjmE6/hdY3K7mFyPmTi39AO9m/Y/mol1Ek6ntWim2qsFOBVoZJN7ulQm8P/ry3vgK/FVFcvtn61s06dLK3f5/eKzuV5LtjrNQkMqGX976frR389+5G0d6W2YiwkYTo+295u7g/5Wo3YpzdpVa8t5DrnCuTSzy99w3eGF04tNex1mDM+2vxfGFzxLnh+w/slNAHZZg9NxtTtl/ssvPGO7ccv9x7kb109129hnmbwWuMmk17ty1oO3KXp/e+ccd0YQqS4RQxTWnvbbyrbd3q5f4LfKf7PsZGuH5x5gOYnvmhD7A6+7Mf9TOqz+gv/DpSneCp6VX6Zx9muL12j0vnOI7jODPtbA+LpZN17pgXy4juLdPH7fRGxSxNL5Ck59A6fsvtTjoZ3dUpxfcIsu5wUCHzvkelX2SK0X6KlPtoE1MU67NyqYTu3jY2U2x33/58m32Pyp3ZjDC7CaO9hEk7JY+v74fF82YlfCuXZItL0SxTZVyMuDA6z8XR6/Sy7t0ZnEKo2X9leb73HK8Pz33fm1Ty+xtgxBb6HVuozmXnWSlWb9bmATsV2OKtU+sydXvLhlYGY2brqoP/b9deYbW5a61bFks7uzNIv8P7jE/T9DUm06ff17rjVNLL33Rs2Vm6p7Wz7/bOG0OiQf6uWmttprHj7x3sTeSYy+M37piepheYTp+5bdo3rvR4dWdyx7Lv1bViBcvNYC0uFJnUXJ20uBqvcDG/xMX2a+T63bUoXR+1NFGzAFVLw+r5Np1u/y2Xn3RuPf5v2sw22Yo33+deHY7wXhfgsPWGQ1g4QTXL4L7PkTz47/Lp5BL/6vRfpreziTUGz//Qx5mO4zg/sprN5j8BfpxZXfC/aLVaLx1MPwv8xi2LPgL8PaAA/ifgem7SN1qt1j86jLKN9hOEUVQapXdc7oXedwH4+dovkmeSS2sjHtorc/pTxzBmVgm2bzPi1/V+KXclFe8tdFamWGupLc2e76Rttsd7GJ2RTibUmb+tL4eVBjvM31NGlbU3U6a+V509nQr8QtMxPcZFxCN8mlcGLwEQy5jXR69xf+NBnlhsvpfdvCHLrpAk56nzxKw+/6byCC0oB+W3XlelVIManvfmSODOnYoGOaVqQPV7fDdu28p+OksDTAq+G7/Ax5af4kjl6I35Iz1ipEc8wcdvTDMHLYjBk8sMiyGxnPLA3EN0sw5feuUCn7/vCb740AMA7F4aUSr5nHp88cb6HjAqhiyUFwm8YFYOazFXJ3hLZbzTjRvLbr0+YO5IhdqxfUqlk4TBwtvvy9t80FYZ7FTgH6nesuz3fm9MN0NEGuZnZRRiF2MyqtXHELKDtRClu8zXzyIyRToWLJ2uf+8N36I9zVmolqgFPqLYRqoR8+YIRltGuwmj3YSzH10mCN+63rnzxpD5RN3cL2OxmcKrhbdNI5azlL1MYVMFoYdXnu1XWmxhc7Dz9rbvWT++80LGrWnARht23hjRWK6QjArMksUPb/+eGmPxb/kZeW7t9la2ws4CQ/Om36LhTkyeKM40l27f3voUCgMHXyclDa/nL2N3NP/Oib9027LRIGf1pR5Lp+s88ueO3zZvNVvFm1Z4YO7BO/bxXvnQRxbdePbD4ckGeB76C7/MU/2rFEGJ/do8Uf/OK4WO4zjOh0Oz2fwZ4PFWq/UTwK8C/+z6vFartdtqtX621Wr9LPALwBbw+8Ac8M+uzzus4ApgsJvQWZ2+7XxjDULffjV7c5ixPkjY2b/e98DDKJh0ixuVUlloov7tV5FHYkRr/F76Ht9ZaxWZorcZzSp5ty6ZKVgRZFKwGm0BkOVXkXJvNv+Wxe1eMuvLccuABMYaUvX2aVYvbFxmOr3ZQpdOBDK/daM3H/Z3Ezr7b51maaxmZXKV4i2usGuj3tWw1PlBC91b1ekzlfKtzp+xFW+85bzvdL/NWrR6s9jSoK+MsMWdwe/gxS7tZ/ex1pJml29LvXxbB/XhWCcIU7A6XQFmg3HsTC+T5esMVPdtVz83eJlr06sADJMhdhSzdfEceXQzNbPYiDArkxtvQK4yXh28fOO7db1VQvcjJpd2GOSz1ggh+mwMzrOyMybPV4ii524sb7ajWaBwC4sFbbGjglvH/rDtFNvJiKYjrk5u7+rx5rBVK0Nvd8I3d79Oe3+brHPzPUzS18nyazeeX+37fPPKDkJq2tcmTPaSG611xry7ywHnd6c8vzEELEkyZX8zJH2tf1sL4fVjYZrLg9S9m+sbbRnd0p9IbkWztE5t6G9FZJHEtMaY3QTTSWeps2sTzC2/Ied213hh5Rq2+9b9qmyhMbvJbQGs54ESszc5GsYoPSXqZ5hCM+lk7O9EpEIzHORsr2ekUr3ltt9OPCxYi66xE2/f3FdrWI/WUPbmtjwfpBVYa1FGsR6t3ijnb333/2OPTUT2zq896Wa3LfPmQD0Vmj++3GWYHO6gHB/6AGtoMpbklGLuUQD84yd5bHsAQP/EaQZb6/eyeI7jOM7h+nngdwFardYlYLnZbL7VZfNfAb7carViYP4HVbg7rtKb26ddGJ3nW51nsEah5OzcJY1BasV5fZ5EzIKOaSdk2ilupM+0r04Yrk4wt1y1fn1yjp10m1hGN15bXx6R7J4jTV6nN/F4abqCuD7s+UFcl4w10UGlb399QjwqGO4lt/WdslPBOJvyZxsRV9u3XPXPfLAw6s5Se9orE3r76Sx9LJ29jtWW11//Dt9pPf2WqXuDfMLF/DVe775wY1p/M6K79t7TzyyWwhSIXBMPbw+y/mD9af75C98hk28fZNlxAfnb56FlB4FbP78zxWkiJsQi4vzw3I3RB20swUKxn7M58BjGd34nlBpQFBskye1DuOcHg3iM91PSN42YaLUlHQmk7BNFz3Fx9Drne0/TMxN28ha9oofMNfvXxncGD5nGTgVKGShiRn2Pbqt7+0AIFsbFLJ1RHQSl+9keWhm+9nqbZ1YGiGiL58WzvNZ/BYAoeolrEVzqb9/2cnZYYGPFzspVrva+Sp5cQ18eYUcFdlgwiLoMxrf0nTtoyfzu1gtc2rxKoQvAUqSKOBaIW1pqR3sJve6QIpX8TvsPefbKKwymrTs+G4BeL2C8Ztl+Y4gd5NhuxjDv80fX/oiNC507KvaTbsb2xZstODcC0P0E08/JUg8rfURhsLdcTBimgj++3OW59SGX2+98g2w9PfhcDaRjQW/99osx1sL1j28ixhSyTzEwqCjk+Y0R+Zu+y+NM8rUXdpgOstlgMPb2bQHk+QpJtEa03aF/qcv+zga/8cxF/vDq7Du9NQ747vpotg72xjFrMeRv048tNxnPJF/nmfbNNMx2ts+62GBNzOrhw2JINxsQCw9tYC1aYS1ava3fZIfbBzyx1qIO+l9Zo1BqxKSd0r42S4fMVMr2hSH9rdnvpI0E/Z3Ze7g9OtyRxD/UKYLWWoaVEifEAH38ZnP4Ce8MizIiPnuCwfY6D3/mJ+9hKR3HcZxDdAp45ZbnnYNpb242+lXgFw8ezwG/1Gw2f4nZRfH/stVqnX/zhufmKoRh8L4LViQxnZWXOf7QJ1hcrDFvq5Q2CmpWsfRAHTXIiNM+jbkKabpLLidsTkc0GjVyOaU0Zxh5PU6VylQqkiAsEQ8ElcUqtVoZ0cupDgRzcxV6WYd6vUSlXmJxsc58uU42LdgdFDRUTHkxYHVNspd1OLoIn0yPYboh4VKN4QjCULJwX8AzW0NErvmZuTJYzdLScfq1GFkRbA/GrFZyGvVlGvUKSoVQsuzZPebNGd7Yu8SyOYqWOaen85Q9MMs1VC9lpPYpH62yMF8lDG9WTcaDNbr7U9pmj8TE/HT9z5OXJuSlhCoh9VqFSVVTrZcoRpJJFFGUE+YqNcKSj+f5LC3Vqe54eJUAGVSoyJB0ULDl73Ji8QiPHT2LtZadLcUkT9BhQH2iyC/0mfu5+/FvSdHLthLq0zkqCyFVU6ISlFhcrNEQFQAWFqo0sgpz1SpLS7NA0xqLyBUb46u05Q71UoOLySt87tTnqagqMlK0dyPemNa4SsEvf9FSPV7FTCWJtRi9RqNewfM0S0t1pJS8sX+FzY0OH7v/CUiqyIni1Il5ZK3MNFaM91K0sIh0DysbsFiiXLYQWALPo9YI0YkhtD6eB9VaSLlWoVGvIPpT0mLEbtxHasNc4FGvhpSDkHq9gqgUrHurfKt7nvvNJ0hPZshGTIN5sr5kOIg5dv8cpVKIbyRVApaW6mysSwo85oMSjfrs/VpaqiMijW5o1serZNkKZ0slWnafE9FJyp7HvlzBZgUP1P8SS0t1ioHAeD6qbcAaFuplbBiyOu3xSnvKA3WfM96Qjzz5EHONKtOsTKniodH8WdRmugV//YufQhx8ZouLFYSoUE5LhDqgVqvgjRS24tEzewR4mIrE+JL6fPVG+md/JaZU8ViZXuG4UuDfR71+AmljglfPEU8tSRzwYK3ExclVxpOEnzz9BXYHs4BwNb2CqZzkCTXCV5L2cw9TqddQpQAsVOoVfN+n3ihTXarRL8dgLPXG7PioyJBLvRA/i/mxM4IXB6/jmZRS6DOUNRZ9j4mGU8fr1BuzMheeT7UaMvHg/vkqyvOZ1nPKtYDFxRpRPUcpg29KeFZhZczl7nP0/XnOeEsEvgfSo1wtsbRUpzQQFL7AY4QoMryleSpeyOJinUbp5oWWsOYRJgHCFBgJR47XeXm6QaUSUi4HNOoVrib7/NHac/SSGl7m8fmqT12VmVuosDRXJwgs2uT41qO/EvPQJ44yauf0ezn7jTKn2SZZfp56/acAGHkdfuPCeYpByl+p/DiPLZ2YHb+Fnb0fnnfjGD0MH+4AK44Yzc9zQgzxzzx1Y7p59Gf4sckV9k7cz/i1l+5hCR3HcZxD9ubmBo83ZXc1m82fAK60Wq3rQdfTwAutVutPm83mTwFfAj7x5g3H8fd3n6V+b8DLw5gHzAucQ/DAyZQiV0w6MeP7U/TVEWkcIxbKpJ2YdljFRlvMl88glSYZC3bWx2RbHmFNEIs+5zeHVDcbPDqfsJzXSWNBZAy9pE9aligMu/0ub4y/yWPJj2EjgfE1RVWR5X1MXmYawWtbr1OKB5RTy14SsVZ6maOrcyTqIUwRMh6tIdWAo8N5nu5/nX7nJIGwqOOaoshIkpyiUEgJQzOmwglWRmuM03XmRMFD4RfIfY9kfdYKIgONKhTjUUJYmgU01krau+cZDD1USSBFRDJOuaBeIulnfKr8EOMk5sXxi5zJH+Xh6RM8nz6LLRSfLz7PKB3hC8GfvrTOi2tjnjoSkh6XFEIRx13+uHuOxuAB/v5P/0W0MhSDDOGV+NYbbX6hq8hyTX6uTeljR2apat0MHSVkRUyUGPJEsQxcfa3DsBwDHpvFV+gONwkan2VcnV0hH+zEJMOCltqkqChQCYPJiK9F3+DT3idYSCoUhWSQRmTBiFdWLvHR7FGm0wLlwXhDUj6l8KSPd22HP+h/m342QTYSRtsDPmV/AruXMrIaGwl2OhntIGZayagIxf52yO78LuaRDK0M2lqSuCAYROxsTOgs5Cy3G6hJzrX6GkfyBl+PnmHqZ+SiQGlBluboaUaRKkyhWO3vMB3kDMsj6Azos8bjlScZzSWsJC32O2W+IOsoNHkmePHcG1x5Y8jWFM7OHydJZwlU43GKiXJsIigKRVEonu9exiT30SkGICFLC4LQkKQFa+faVEYFQdWyn3VQSc7wtTb+2aMIoRBSM+jE9ILXuSyv8uPVL5KmBROxRVbMPo+ikIzHKUk6O36Tzd8F4NXxDlo1yLKHCIpZy+LuyojMV2S64P89/zQnT8zxFx76GXbGGXmUMZoOyELBfjFgPPQZbUNlZ5Nk0sPKEFO/nzyTXO1v4FV8WtWrxMlRdrpDeoyxxxLGk1X+nP9JCKcEqcWMZ7cA0CerrG4VlMseR05Vbxwr6UPzCKEZDiZMxwtcFJtspi8Tn8wplX0eUDWUNuS5pDOKqQSK1f4GJ2unyNMyea4Ya8PvXvtDTtTOspieQeSQC0F7fUo4JzHDEKMMVvmkfo4RDcZxTinLyFSJ8Sjl9We3SaKCntcjr0SENqTIFNqHySRFHvTfWpuuMopzlNK0VuA319f4qz//EK+uJtwvFJkWJElBmnSRwwWiXCB8xVdf3OTR6glGlZSd3Q7dOGG+lBGNE8IFWN8u0B3LXlKw21N49QV2vTH+JKJrDFP2We3vUs3muTy5xIPjU+hEUGSSqZ5QzJ9mPH73/RvfzvHjb53w8KEOsEy3S39+mQejPWoPffbG9PCjT/Hk+d/nO099in7n9+5hCR3HcZx3q9ls3gf8t8Byq9X6q81m898Dvttqtd5p+KhdZi1W150B3jxW918E/uT6k1ar9eItj7/VbDZPNJvNoNVq3dW7mKayIFZbiBxU8QTfXtmjtx1QrWY8Umg8a7HSsHp1i3ljoB4wDraYK51BKUNPhnR3YrwzhuO1gMviAuvFPPcFD7IqrnGa45xWT9JZmzIdrBIursPHP3djaOfd7j7lXo390mWGeczEnkIZw3q6Slbscsz3ubC5QMyIjz7koYRhM1vnvvhBdG0CJdAH/Sc6ps/SCOrFCPFgTp7fPmLZfrJL3H8QUw4JU4s6qmibPnV79MbACMZkFFmMHy5hLPSignTsIwsLpYNR2Xo5SZrNUutC6A1nKZBjNTqo0dyMndM8x/c8nrt2kU0x4mP2GJPIZ6uneTjs05EZQXubdrtHffFgwARpyKaSr3QinhSG6rjL/c0l6GSoccK5+I8pZJer0yOUCo9PHknIxgWDaURluUxmfPxBiI0n2DMGZUdst/u8OijYrWyzeLRCnm+TlTTV2lNc2+zz6cUzCNVGWU2SeEymMbacM/JGhKrC6kaJ9tDjFyoBUSWmE2/TMxFHWZzt70FKnBAabyq4Nkjwl/bI5ID+xDBXDBCBoJT7s3en8LC5YW8n4txkwk68yXHb4IvLD7Hba5PbGsvmNKJQ4Hl4WNpqj2O6hm/LGGNIktmh0FcjBuEyZVNDSYM1FmNm/XlSZumSRlu2dzpMJhoIkFaBLkNw0MfQCG6t5ia6oAbgQZpIhPDwYw+RaaZXZ0FG+8RV+qaDpEBoyfXhLmZ9iTSgudzWlE9OeaAKuZywGx3hlO8xkSlSSawEMwkJlhQJObkA4wlMLPHGBf5iBVloZoWBjY5ld5Lxk6ckb+xHTFe3qI42GZ/UNBKFrnlcKa5xNpuCBe8go3A8LDBSU44bXCt2WD4yj9IKSU40KVgqfEaJz/yywlSnzNnKbcfO+nSXfCq4fq0omgqGg4g4G2NECUGNvfEmc0Bx9ghQQxuQ/ZzXiiGvPjJmEPUIhY9/ajaaxLbcgViya3dYKE4SDTM2VMG2eonHvQqV5ARa+xhfkOoM7PLs0DIWrEUdvC+iMIxKN9Mk48mIBW8e3U3oL4SM85xNsUpHzFIKU1HGVi1Xd4Zc7u+yniv+2tlTJLsJtqTxkgCT52Q1wdaoga6UuPD6VY5Xj9PL68yXMqZa8d3+CzxSL/FJ+xleHyYoa9B1S9Avc6E9IZsPGYmcPJJUQ7D47E1yTgKeZyiKDabREJZ//C1/m++GD3WApXtd+rVlFrpTGsvHbkwPH3ucx353A/WJkFHFILKUcu3wmgkdx3Gcu+LXgX/KbKQ/gC7wL4Gfe4d1vg7898CvNZvNTwF7rVbrzR0fPgv8P9efNJvNfwBcarVaX242m08BvbsdXAF4NmbBjDgl2vTHC6xEdbTo86fli3wiuY/yYMokGfFGrFnwPE6GAVGeY+YtItdYa+jku4zzjCQ8yU7kkZkUw6yoAkGWKrBwcVimbpZ46pbXj6eSvEgZTBWb3pQ89yC3dHoho3qbo0uniYWAchUhtulvz6HlWZJhm0xMqTzUQEjF1rjERAjGqsuxog7Wok0Cuc9UBBAKBmkPOWlg5ytMTcIFc5kdJqhkm8/UP43wJWLa4yvP/hbx8U/SUMeRseFoWqIsZv2VPDy68TV2gzVO2bPYYsiFa/v4y8sU/qwyX4nWUP7BFeWDWGukbw59vt31yQsPOzerAFtr+MNXn+Hhjy/OFrfMBhJIFfnOG5RCybWLS6ypiyznC3yNCDvwKcptknxAMyjxlf5lJhgenRvBzklEIFmxm3yy1SMrX6A18JFmGVGEqGEBMsDOadqdiEGkOB4KEhVTGIG1Glko+r2MHW+fwA+o5EvslHps6WXOVAwR+xTFPIXwSLdizLwEa2lvRNgSdLSG1GDqgmFuuMQ1HqLMGaA3arCXHKWzEXE1LhNIi1CKXRETX5ugjmsowyCaIvEAD4zHulhju93BTj9J2k6onlZYQHoBJSyjvEpaCKTNKRJJkqcM5gMslmhUEPYTrJIQ+GA8gtUqSJ8vzz3NZifjPz/7BXblHuQR23sJT9ZPcm2rhkh9WARReOzuFDxqCoxqMxWDG7cP+OOt5zhRPYlhAYMm6o6ZKxVkecilwSq9I9uM/RioUyjFuWs9Jtn/xefEI3S0xyNLA3ZP7J/2xHsAACAASURBVAKzkensWKCsYivSdEqWmhFckrMh4rU05GoW1O+PpxidMBknGFVnba8gqY4x2sPoDG3n0ELTs4YBhpM5dKvzdLVhygZDhkRScp8J8JTPutgmqUZ8zHuShm1gtSUbTFjhEqOVBk/wWXppm1g0KPvX+8NpdvU2eX6KeV9x/LjPhcEyyRTSYpv5ygP4ymJjSTve5sJA43lHmGYZqt+hmjbYGcdsTQWRycEoejplnJxgU89hGhc5JuYRUs7uOmehZMcgC2SYIUSB8S31uIYsSXoMaGhJuvsq53o/hvI0vleQq9lnZXRGPFrj+RersAyZtnTbKftBB7VokYWHMTeHYc+URyojtElnA50Yj29kV6gEAQ8DOpNIoVGBZI2r3CeOz1poR4JicRbhKjlkY7tAZ/t4vQJV8+EUKH24g1x8qAOsqNcjf/gk9TSl0pi7Md2rVHlsNLvik5w5xqS9y/GHH79XxXQcx3HenaDVan212Wz+VwCtVuvpZrP5373TCq1W6zvNZvOVZrP5HWan6P+s2Wz+CjBptVr/+mCx08yCteu+BPzLZrP5d5idJ//W3d4RAM9mlFDEKkTFE6QoMZUJYVbwlRd+l0+oh7g68bBWkntlhqMQI3ySipjdWDOEXPsoGXJpGLCeD9BYhjvbqONjplLy8LCAyqyFaCpm/TCSVPLt85K5VFFRGl8dDK2toVTtcq3wmAsCJkODveUuWNrEGCPRMmMjW+Fh+1Ge3xwzl7b5XLHGs/597JZTgkJSHwQU7bN0iimnjoWgFNZaItkHv8aq3aCtBszr+1gp1rgWrOGPpyyLk7xcvEYQVWgufIT5qc+ofNDgqOGCeoW10YghR3mqvkKaF4QTxdxcwWC6zc7kMvdXTkIJPD0r+SiJUJ7BjgvMtMDzfGwDsGA09EaaU9OcTGYkwCvZd6gFJR7Pcnzf8JU3znF2SXOxOmFzssgZ3SMSFkXAlWKHkT2FH4zQpo/VxwkHNYIQxtVzVIsK2lpSk9CLFvHzPtV4gdBPKWSXinoUZS3P5ht0i4xUxWxmZc6mZ9lMy+hgjC76jPQU4+3zRe8kWzGIImAqasx7kteCF1FIPiU/zWtJSmEkOgm4oMpIHeP7IWmWc0yX6MQLaCNYTxV+EVKS4GlFoXNeHcVQV0R+zMD0OM0jzIYx8MgiSTnYRU6fwBaafi9DhArViFliNgy7KSRvDL9KRdXoeVOet0PG3oT781N0sjXUNMFUQ0zgE22UmTuiWRnuIAx8c3/Mmm1TNTGm8NnO95lED2OFpT7nYYxmf5CxoiMetz47Kz5X/Spn5xK63pgLb5Q5Ii5Tsaep6DLTQqJFTNQICYs+kyBDKY/USCI/YmuwzBk0mhLnZY/Fo+bGd6xddLjirbAZ1ZBxzomTOyTxlElaZunkMs+c/w6+9xFUFrBVzmaDlOicvN7C+D5GLzGRA0TeIK0kMB1REebGyJt705yQmwOsWE9iqltkngFr2fV3OCUeYG5Q8Jz3KhhLlivO21ep6Qq5mHIisKjQp7A+qUpQtkxUlBG9GqeB1MvJvRwzGbB00CJmTM6lTpePcYReZtkc9HkoXGWankWICioMKZcsIvZIZU6GTxlQaQra0C3t8SAxZa3xN1t0T1h2C4MpAipU8Rd8bAWkMuSFYa29w9nyIitFxl4xZf6YxlrBjmnTJ6aqZr9HFkvPdAiMoVCz1FFrDHiQFTHTrE1wZA5UhTiuYHwFBFhl+dbgGYQ4S0EfnXqcL61Stk9i7AIy14hCYwPD1WSL7TSjYpepTksIb8D83Mm7+nv+ZocaYDWbzf8Z+KmD1/kfgZeYnbgCYB/45Var9f0lsb+D/qQDPEVNmTvuOXHixCMcEWN6x88w3t9xAZbjOM4Hn2g2m/8GEDSbzZPAXwbeeiziW7Rarb/3pknn3zT/4296vgH87PdV0nch8D2M9om0x2aySl4sYJXGU5Le1PLlZI+x8tElZmP++h42l0T7CdcH22vLKrpTcGqpQBuFX/jopGBTWSr1MqI+YrN7jonWzCuDkhC3M0yq8KTBkz4iD1Dy5jlSk9ObNujWI2Bulu6U+diKQaoJkV/DCweM268zH5/l8f4eu0aws1yjGlY4afdYbwc0hj5RoDgiillakZIHI8BZRlnEuLzBXDlk359VRS5HdU4XlmmRUw4knXwPL8hQ3iz2LXSJvqxRBDmEmlx5WGPQheGh/otoLjKupcxlYy6HF+l5Iwbj0yQixZY1UaGZTjWqDkJJUAZjLdpaXtidsF7q0BB1UD6+VwUMU6UpChhNLIn2mdicwCTE1TNoHVKaWMKkx7Jfwqrj7CU5aUkTVEJSJfEnNewUdHnWqpjldUpmSNK2eNJHljKuZZeJRM50MusCOKx1mfY28HWM8Dxim6FzjzVV5pifUugKHnp2X7DQYyAS0gzKg5gLC8+T+WWO6lNkJgcTUvYhUwHXLjfQQmFDyLWlr/eo21lyXeYnvF4+z1w+R6RSVO7hlSeYkkCIOVaiMqdCQz0uKCRYYanFCxR5DbWsSWTBVdNlOw6ZVxXw6uzpiEqoQRkSJdC+IdcQxYKWP+KsWkbVPJLM0vbW2IyWmKtVOREOZ0O3G4tnDDuNR5hP12lkHQb2DMdNxkqeo0s+7ekSRRihshojv4ys7vKIeZD1yMMPCvR4l4m3jS2VEEZSt4D1KFSO1h6F9vAXZxcXQuURFmWkbLPrVxE6oVfeI0x6JDon9o+yZJaIdExnd4CfexD6YAS5n4Kd5RJaaxnHQzKOsN+YcDzJWfIrGG3R0pAGET7xjRZWG05R2RF6Cq70C5Y9TS3TzK2W2ZjvMa8XOBUN6dk+x8xxTnQjdHaUbz18PwQB2F3wCqBCMdakctbNNLc5vhUU2sNoRV5MKImErniEnhrTtwlHdYaXQaYn+HiUfMvUFLwwn5JZy5NBjopCQpWRL6UHrbyKwWhIoJboqAlL5UWGJqIqS+hAMUl8ni7W6AQabxwxNDme72OsISo8GsLDBAYdSYKSj8WABRF7KCvBA60TBoXFiJSFOsiDX/mubOCjMVJjNl5C5WdQYgHKkEoJ2mNkBiQMqRUHgb9WeOUxIw+MLlj2Gng9zYYew/u7Fd67cmgBVrPZ/DngqVar9RPNZvMocA74JvB/tFqt3z4Ivv4m8M8PqwyjYjakZMOr3DGv9HiTj/WusXbkIcZ723fMdxzHcT5wfhX4h8Ax4GvAC8B/dE9L9H3wrMcwV9hyn252As8aEILIlMiCOqksU7ECYz2EF0BhsZFlLxshUVAGiYcUknwaYUlYGpygwEOWFSWTs9kZ812ZYaSHqcHmSkZ1MsKoACuOAD5Gw3B4lKXMIGpgDoK39XieulGEXhkRh7MKfeYzCEcoMU86qXI63WfZgDazQQE8K/DiCOlbjPGwQcbuFI77grE/pVRYqFQZ0GdzfIJRsMuJ6gna1Qco9A77ah4T5ljPYC2kShLiIUyJaHKaCXN42QC5IOmTUhifng1o4lG2CUUachmPrcaLdKVP3UyQpgRGsptMGdkcMp/n9ocgAwgs/qhNuRaAB7JQWFOi8AKwCfFBJbjt7zPIj4ENUFZjDWgNRQGRmlA3x+iUp8yn97NVaxCpkM9uv8I4+1mUCGFOQABJnlNnRMtamslT7NshnZqkV4pn7as+GOWBGIFnMR5gDUp5WO3R62WYup59SEqSGsmFSkIi7mMjaFGYlJqxZCKh6iXkXgPhg01zKr0cs7RIyYzQ6S5xkTM0Am09hF+g0cRFjUqcEOXzPHh8iBRz7AQdlC2xUNQoRIa0lornMSrVqWjDQI6YRMt4qccpf4pl1ncwzXzCmuV83CYKtjHqSQgsI7pc84dMkp9BI0lkxr66hspzEmUpLYYsFnX2rcEYgRABI46SiyGRWaGjFsF6GA3SL6HRSGsIi5hhuM8Ru4yxHj5glQbho2VAYUBYCz4UImNQKEwgWJIe43UfJS2LsozyFb40WCWxJcsgqVL2xwRiEX91m9VanXJlSmgtBh9jFAbLihmj7TIeFg9LSkSUaE6Wj9IoB4ytR5RAGk5oSDX7sEPYF3uMJ1WGCw+QeGPmEaQq5/JcHVHv84lRncvjfXRQoS4zOlbzetXHMOsfh1+AVWAr+MKA8sCHyCaQV4k3L5ON5pgow2mbsDPuslPqY/wKKpygjQGvwPgRmdW0xSJpPcV6BsIxEx4EPLS2aN9DGHixssWRyjWQjyMoqBiYJJKSX9BJFxkGExZqE3IdkEqLwSPLA5AemQJlDTazxKrMxcYIKy3FxKPIDKKcogBf5RilKFIfOyoRAjYAtCUad3jB2yQvKpzgFIIETE6ea6b5hMBboKYUlBRjm9EIQmxQYLSho0fUZY14dNezvm9zmC1YzwLXOwqPgAazK4L/8cG03wP+LocZYNlZyDtXWb5jXvhEk488//t853OfYtp57rCK4DiO49w9JeB/OHh8fTTA738YqHvFA2UKjJVUlKKeK7LQkssSC2lGWNZIH6alBbxSneVckMgyR4QFD8ZeDpVTFCbkSNKH0GB8HxH69ALNiVRzLo2R4SwoSI3h1MYLbKqzmPI82kgkPikpsiiBEPglSerneKZM5Zb7I62P5rATiVcCoSGyJ6iokFxJMJaSVvieoZZLqomgOGbxNHilHE/nGF9ijUX7PpaUSaFRviGTVdarPUKlyLRH2VpCmaONx4iMZVUwFEsMrM+xYpHID5mWj1ASI7arU7biJsI02PQC6trSDu7Hw8PPFNrWsNaQG5+SNET1TZQ/T2gaJNKf3RDXWNASf9BHLy/O7u9UmqegimFMZDM8uUBUCFQ1pmKqoA2hEsiyT1FUUMZHW0umJSsa+rbKoNrg/0wf49/SGT1PIikhC4WnCwqvig4jCHMQcyTSEtkqgT8GH3azOaQFg0fuWYSI8BMfTYAKsllspS0owWZ1g0F+BN9GWDNPSkES5ngmp25zArlIvwKP9gYcnXhU5yqz71S0T2xCSlQIZRkTzir7ZTWhVMRUrUbnGULVGJqEE3IJ4U0Yl3cxHpR9RUFAaC1TNMLzwHqgzey+SL4Gv00a+/SKPllxnJqXUs4sQWnMftijpteY68NYGzLd5/T0JLoqeKBcZ5IeJ5AxiV8QxYv42iLKDeZiiKUgtBn4Zpa6Vp1DmgqfifYpZQHaz4AyWA9toY9PZMooy+xm1tZgkYwYkVkBMmJruEzZCMCSmwyVCYyZYCt2VtnXRwkLySMbewwrZTaWGyyrRYQFaz2M9XheWcIwQpgFEgsX56/Q5jHmckmjmmCogJ+Re2OWZUzDFyRigUJIct9itMJ6kigY4pd8jHmUqH4/0VTR8R7k4ck+i+NtVsqfpmLKGA2Bf/0YtWAMi3rEkQKm1QDfVMiLgGhaJ5FTCltgiy5eMEDoYwRY9rMzNApBVovxkeQHF1c8a7CexhqPblhmSXoIqVnTC5RsjvIMO8UCJ2evjNAemdLkozIiyynqKb0iRdgU4QusbNBtN/Bv/qQg8pjIP8351BCMjmLsEg/G81iqbB3popUGaxkJQ0MrFrwyXgD18YCoPGH37MeIWCb02yTVNiEw1IKxGXGfXqJiPBaoMPRzUr9KaOTsuAHiIMZws+vQYTi0Gw23Wi3darWu34XwV4E/Ahq3pAS2meW9H5phebZ7R+ZP3TEvfPRxHlvbRHshXT25Y77jOI7zgfNl4HcO/n4PuMgs7fyHkpYWo33AUlYegVGzVgyrsApKaorn5UgvxIqckZpybQ76FahaGMwFCC+h6nmMRYyxFnwLZjbSW6ElhY4xgETT83ooHXHabCAz6KsOI7/NJK2ibMa0vMZQ9NHGECtLpkFJMFIzURlFEiNyj2FpnklwlIrwkUqRW02ITxAIsAZt5yBtoLwRIQbPBBRqdqVfG42xmkF+hJqo4luf0IZINURW9zFmlqo4S0USbNgF2pUyeFOE0KBCAlvFL8p0soCyNFQQBEJj45jTnQnVpMQ0bWCNQUlFUl0k8pdYjatYpZF45CiU0XiFoCGOoYoaVhx05EdDEJPJMdpqlne3kLLKk2KPX1TnCKMyWtXxjUbjHYyuZoijk6yW91Geh7GWyAv4enyFUnyBaNqinnjUVJWxOkpXnOENBMYoJiZhXPbxvRoBPkobXqGEMrOWql5wmn79fqQp0bdtKialZiPKykeNHkfJEsKbfc4w+wppK8D4hKpGJWlQEZLcKHxjsLZMT4A2BUoIUIJaMQuMlBRYqfCtwuYFyP+fvTePtSy7zvt+ezjjHd9Yc8/dl4PFSaIoRQkcyDEMybITRI6TvxQ4QOI4FpAYkR0gAgTEiJ0AQmDABpxEQAIQFuB4SJzY1mAqTijJkkhJJiVSbPL1UNVVr6re/N6dzj3T3nvlj3OrurpJUR2y25So9wEHVe+ec/bed+9z713fXmt9K8YHTaFOmMmCh3HLg34P0S1aWlQI6LoTw3ACXjyhaRC1RJolsjAs1FV8EC76d5j17wPCvhvzMPo8vm2Z969zUj+LAawbULcxp03N3N2m5ZB27alpdUQrHhsKXnzjFZ46OEDZC5q4IZMajSHBgRMMGsRwxpLN1S3U4jqRQNqMiOsd8AknzYxl27JsKm64I3bDMQFF4uekzCA+pxFPLYITyJkzDhcsVMHL2zMa75Cmpa1aGuk8SrOQcOFWvNH08CHHRJ6pWKqgOWtjnLMEZ4hDTd2muFXM8+2YxKas3BF4R1CBKCQErRAV8arN8GXE1oMSWQQCAe+FWhoqqRHxIIFGB/rFVczCILMjJLQEamZlwwkLMlOinKLRFU7VWFOvRSs8OmiOuaAJNVI22CYBURwtn+Miu0IxepYrbY82CAKsIo24FIJGu0AbQLznnn2Bc+0IrgtL9M5Rs2TXOfJGiLyn0DM2XR+8QtDUZy3togsjfqSkEeqWIEIQRa1gaU4IdKIVSVWim5bZdJt4/Z3pTI0CTuuU1gm1lCjxuCC0AueqzwNzlSAz/Dq+uuWthaPfbbwjgjWZTL5hIjaZTP5tugThH+WttUe+qhbJu43zLCPyDbvjza86p9KUF6ade/BkPKRZFV91zSUucYlLXOL3D/b29j6+t7f33evjI8BLwCvf6nF9o5jPKm7dv2D3XsU8WSLZMbFeYamwVUVeKsauQonGNA1X532uLQJlVODNisjUSHaHKv8y1jlq51BBUMETdEzjXuVO/w61NDjlaZTl3LU0VYsPwowLRNXEJoLgUNMlw1VB8DW6rmidYtXActlwEqecZBucM2eVFDy1+BJm/grzuiG4Cqc1Bo+RGBVy2tCieoeM0pJS9bhtPsooK7E6IL6hDY5+kxF7RVVnLGtBTIvToQtxbC3JMmUZx9SRQrcJte4RBUUIsHlWcP98SK1aaqkIEhgfLbl+rtBB0ZYJL94+J56fgwRaJVB6tPfEYYmpHapuyZolrfcs3S7Ox5xbQWgI3uHUBa00NFIzXo3YXXS2hA15J2gWQAnY0KCdQvsIIxqjWhSBhdSIKthQr/LM6jXGTcLIjRERtIeFnrE/+CKL+AQRTZFdI8iYhZnxi1sHTNOu4GxHNoXaaELb4FrDLBmzVWVkpWa7tmz6hrk+J4ggEnCuAF93AgoqdF4GNN612DpCvBD5ElENZXqXxLZEsg6pQ/OvhTuMKkHXIzRgncG1hkp3GwJnXrBKY0TjFnlnqNMQe0uhgQDl6nk2ThK+841TZr2rKATBU+gGbMvroY9D+B75ApuqpE4GtFHKbzdb+LrGB48Lnk2fMQ5jBIdnTgiByrZsFwVJiKiLAUYUXnkEWHiNDwUVDTpq2FcnbDQJSEB7YZYPueht8MYQLjJ42MZIEKrI8Eo/8LneHWrXUrWOgcu51u6iREhUxYmtQSWINihfY9qKQb5kI1lSRrvM9TaF1nivaXRCmi0p83OO2opWzXHBEYJwku5ykl8BaXnQ3mQZJRwOriBKIwIpGbE02NASfMvHDs4wqkfjLQ0Nla6ZmYYTXdL4QAjChWji0KMxKSIeT8CFFbYp+MBizAtH0Kt6xJRkekqka5K4xOkW8BBa9uWCvjg26oQ0WK6trmJM1uVJISz0ggdJZy/HzYjoQhOqChsU1gWCb6ksXPQvoC2wrib2gWN7Suw1aZgyaHP6bcaGjBgES6QbNvWUNtogVgNMsChRIJ5Ay9ifsbs8Q0mJa2sqW6B0g5UW6wL96II0RMiaoAnCUk+J5FUSKVDKsUxGBG3Zmc9J6wtKPCd6+Z5+v79T4vTqZDL5m5PJ5BP/fxqfTCZ/Avhx4Af29vZmQDGZTNYVBbhBJ3TxniAUS84GI7aqKf3N7a95zdUrN9iuL3i4fYPpwf33ZByqOGbwz/4Cm5/8BMOf/08w539gbYFLXOISl/h9hb29vUPgw9/qcXyjKOc1eI/3PRo0ui245q5xvb3B+w4f8rEHr/PRYo+b6giAK7MZz51NMcBFz5LYhsacIWpFlGgcjqdOzrh5dh+tLISaZX6Hi+QYF69o8k3IU4hrKlUSQld49TQbUSTXyRJDOlBEzpPZOV7X1LrkxNTU2tLiKapzrHYU9j7nw1NaX9O/d0TvpMBEij4jdusdKp2wSjyihIXdwIomjgPjdAq2JPaCeI0SIaIlOE1kPSWKSikCMaNgO8OZgBZHZAWL5uN3T7hxNiVqcy6iHfCAD9RJj5D0QBJCAOs0O6eaqFkBGsGSuKfYbuCW89xqrnRESQK1aaB12KbpCqz6hv1oxiJesEwSWtOJQRixDNUuneq0Iw2a52RKFhwqKKxybIQ5RjyBgDMVYmrqqNuhP8o2WdkcVULFGQ0eGxRBab7PvcwH7CGBkoW1NFGOVV0YUwBaG5Oen7Hym4S2j5UWELZayw2XI3ZK1jqutnOe5YA+BV4FCBBEU+RbeNVDlS1VtSAgOONYmTlNUlLGWxif49hAiSfzNaUHJS1KNFocvdYSe2h9TEJKLjEqKK41IyIPeAVBo0Qz9yPEjdBocvpoNI1xyOADRPn70M5TWUuE54VwiihLHFpaPEudY7xmmWyg8BgvZGXgoL+Fk3Mebs0ok5KdZoeR62FUhccT1h6QuD2nVac0usG4hswtiCm5OT3mE7d/i610jo0VC2NY1TmBQKEV59ErvG6FRlXkruFKyInEggRSHN5EgJCritPhGxTpgkX2gL6usD5Hu5izqKVpSwZFAQRENzzPy9y0nVJer6lwKByBs/4Wx1nK3eEpHkdQGvGBiwiqyDAqA/26YpU+5HDjGOsDJgQWsUXRYmXFkoQghueLDTI0mUqoMAQCLY6e91wrpzw1a9mezkGEnClBKTwKpQo+JL/FJ+qCZxdXWabHBLPPKEAeIBNNpFqCaan0BQELIohApQtm4RgnDkcgKEWwNSoEnjm+w4f2v0zkzhDzkGm+IjRCVqbYJmakxmyS0mWyWZIwZh7F6GAxrcG4BJXMSG23cWPNjGm2z1nPoXWOt68h8RGT7HWe0g+I4zn99oJZL6OvFjytXuVGfYQKnddPCDx//4zvuHPIqC1o1Hsr0/5OCdb7gZ8D/txkMvmlyWTyVyeTyfu+3g2TyWQE/CTwQ3t7e4+qkP3fwA+v///DdEnK7wnCwX1O8w3Gqyn5xtbXvMa+NGFydpu7o6eYHT14DwbhGP3snyN54xdwVz7Cz5Sa//Zzn+Lo/ufe/b4ucYlLXOLbHJPJ5Dcmk8mvr4/fmEwmd+nCBP9AYjafU+PRWvBWE8I6QkaByUri3pzRaUHPV2vVwG6HNhDANmhn18FTAmqEDhanLT0qRnqOV4E0tMTRlJ3BjJ6pMdpj4hVGPFZ7FCVOwUY75Cmd8YJpkHSbLVOzo86IdUEdpWiEnvR5MXis6vKnAFpTU0eGuHbExkFWoxBiD1qEzdWQbLVFcPC+V4/ZPZ+iXJ/xLJCtzlHBgtdkISU3DcP4CI0nA0J0wiq9wzz5CvPBLpF2WO2xIQIRstYQt5rxqkK7EkTzjDpiOtxmQEOqLHHQJA52Y6E/2uCit0nDiL4fAw3Xa01QlhGbPF+NGbhzjLSICOdxyjRJMKFlQ1UoBONjLtKcWDRDb1j0hjytK542C3qsiKi7UE3Aa4OTiJiGEM9QMscHyyLe7IwvEUzbELuEJur2nnNp2Gq32WnH6KARBb3IYW1NLIek8YBYegjgxeDxzJN7qOiQq+0tPmKXfFjOuMacD3KCDoYbZ2dkPqPHBn1JkeGS89F9dMiJ64TMK+oIjMoo0+co0wkRwsCnvBAqQlA4WoKCLFiiEHCETnUOsCGiwTAIFu01iCMqKlzrcOsQykEb0/cJNqTEkcMowamIaZyjgCgYkiZw7WzKh+/O6Ldb7DbfQaQ2MUFhvAIRouDZah/Qs0uwipuH53z37S/Si9a1kwRoBRUGzNNrXPFn3JRDivicERdcKY5Bgw6BhBZpK3rtipHKiUqF1Q1tMKhHoXCJpY00V+KK713tsxuX5GrEC/WAi2uW6abHoFECgYK86dHRYUe/KjtPjBeiZYX2dB5mCcRuk7hJsM5zkZaIamnTORf5dexywFIPCRiqxlKlhzTWIWiKaIN5b8ysNyJygaerGZuSEFSfVpmO+CuhiRKsqsnbQM9ldDxbI04xXl3l2fIGo8RTRxGFLYlp2ZSSpPUoUcTBYaMSlRUMoxW9+ASrF7hoQBk/y1NNIG4qjjbvc9w/ItQWXRkE0MoSKUOvcRACT52csD2fUkWWWbLFzeU+1+u7KC9oOu9qULBZpDRmSaDBeNA+RimLDgmxu4LDQWnA9bjYuI5WQisFpe0jWhhcrNhZNWytNK0dsGDAC/ce8sGDeyTiiIIBZYiD4Tv8Oc+Wr7+n3+/viGDt7e01e3t7Pwf8ReCvAX8C+CeTyeRTk8nkg7/Lbf8+ndLT359MJp+eTCafXt/7H04mk18GNoFPfrNv4HeDfvBFjuMt+qslva8RIghgX3yJ5w/v8lrvaWYPXnvXx5C8StIa6AAAIABJREFU8n8SHf82i+//H/jUd/11/r7/Y7zcPM9fuX8E9fxd7+8Sl7jEJb7N8WeAf299/DDw4b29vf/oWzukbxzTpgIlaBNQUZdzYIMnGSwo8j4rm+OtxYjHCGil0RII4gAh8hq7rvV0llmipiM9WzJjx3yRKluReItFaEyCVR4rFis99DLiqtfk6QnDecFHXrvH5tkbnIeUDyzHBD1E+YiV7VGmGRGerFmSiSOqpgTt0cZRREddnSzRXDueYrzFK+gpy7++WPCd1RvEISJxDuUVG9OG5x7M2Fh0ORORs2yef4XYe7IQ0/dCT095yScMxKBoSIAEj0ajCN1chE6F0YQFt9QBkS7R0kIIfOTkdZRzPBWOeY6HKJ1hVEDRY8MqqqGlthE+egXUlH47p4oHbFCy6Zf0aYiCgB6hRPG0O+SKn6IQ9Oo624slURPzwvA+7+/t0UYZQkIjIxb2JifqCuLWeUOmR74sadDMkxNUAOMVuXIMV3PyYk62ekgsfbSAUpZFXFEne4h3pLolpkXr++wUd8hXJ8RRRkwgloQNGZD6AO0S/ClWDDoRVtEWgQwCbC9mGOnzcPM+ZXpISC/IYwViyJsMG1J0UtJXS6zx5FVBE0aYYDChBm+xWmhVhEIIKqCdwwSP14E8GBSBDZcT9FNUKsPpOXV6RKscWgKRNCiBwapEO4OIpYo2sb4jJ0JXSDqoOYfjI4wErO7R932iYNBBk6aBLCh2WxixRCvPcD5HC9jQeZmC1hwPc47G1yi0MNYzslAzTwzH+XPUxnDen+KlZehX/NHwFZ7OTvH5nOu9fXosCZGmjjWzfAdxGnGWa7LALAIJDktGLC1RUPTF0kNTmILGnqPDishplAooNEn9Iv2ZJT67Rey6MDtE0ycljyDzJaCwxtHXBVnQnA2e5YWDB3z49m1cBTwxR0Fb6igijRtMa/hwc59PuDdo9TbTbMgiT1BRy276NL20R+od3mzibA+FJSjYLa+S+TFJHTOoEnqrDAldHp3G4pXqVDy9orIWJaDEIUFR2T5bWAZui9RWYGOqqM8s26BKr3O1SrDiebo5JVHggyGRGqMakrhGxbA9POUW+9g2RbctH1/u8TQXaDxF+hrnw30G7ZBh4Xj28JC8rvEajqMzWnFoFeHTFitgmwjtYyqb0hDRss2NeZ/hYsbW/gm2FW5eeBIJJMGR2Ke4brfot3109d6WAn5Hra8l1/8D4PuATwF/YW9v73OTyeQl4O8C3/n2e/b29n4K+Kmv0dwf/8aH+85hjl7m+IUfYrc+wkTx17zGvvgSz/3c36H6WMLx4t0PEcy+9NO4jZeonv9TfPrv/TTvOz8B4OfzT/BbX/iHfOTjf2Dtgktc4hKX+FeGyWTyk/wuObuTyYS9vb2/8q94SO8K6voNEgsajaBojEbHDfeym3yMI2IlxNqR6Yrt1RwlKRpPJA1p2zKaL3ADx2A1Z54uML5T3RJA+YQNv2Q4TTm7lnMe3SAPcxRCGeeMkqugdzmMD9k9OCOXLQ4GYwqlGStY9q8wmHuurgy9gWaWe2xoKU1CHZ+glgAC1nSGRAg8czRjuplTJUNC/wxfJSy0Q7THeoMS0BJh24QNd86ZBlUbRBz9YkVjh8yHfagfInKDuL/CRhVtC7EoLAYjmpgco0f06oaLrRnH9gQdthmECwC2i8A86fKXDILGokKJwfKd8tv0N4/Zj3fJ755T62s4HVAiZNOCFwvP0YfAisYQ6IVt8lCTnldUOwmIcOtkny0CSXbMcvAAWzyFDVtAhBZLqz+P8YravsA0N2zst/TVCjUQVNxggsb7mMyXVLaP6HOuNoa4HuFtxcbiVXBDVGh4OhxyrTzkS6bASqCOYnTu2ZKGvngCqhNmKBxBPWAwc/hxhCdhESfYuqaNcvIQo/QMF7VUxpIqTa1LfHyNeZxRaMUnXrnN2TCjv5izvVpQ7eaUcURudvHRK7QhI/YeHzwfPX6dxpS8cv0lTBDy0qHqK9SbLVnzHAfRCU6BoIi8Jq9nJNEJSbUkOjll/9oOmdvimXPFlbLg+PoYK47V4BCnEloOGMiIOCupWsEERwCuVn2EPkLELGlpCXgUz9y7SxHX+I0YnRWcrxRZ7GnRRCHQGsOHXr/LPFbUdkHDnBe8IfcJPW051oaX5sd8oNX8+vh5FvEI03h2VvsskxKTWpyKeXWjYtFOmfhA5ApejoXQXCGp7pPGVSek4SOUCqQqIakU3mj2t4456k+hfh4llia7C3qf760rPh9plvTQwRIZhzEpG66gRZG0Xd0yABM3JHGD1Y6nZg95OLqJpSO3V2dT2twiOkGpQN9niK7YLQuuzlfMBylFnJP0ztgqltii5isbN/H+Onm5wKs+UVYQZRXBCMo22GbA+GLJ2U7GcXKP/a0eT08HfKL3JX6j/0H6ZUGNELURBsdAPLbJSULO9VqzmXsWJqNRNbVVvN/dY0uOoWc5i3IeRBkv3X+dD9Qzbj+Tcx5/EY1hlYAxh9w8HhC0R1Ur4uWcg60CkpZ02aNyFqtS+nVCNM+xzLtiZqIATxHdo4oaEqOweZ/cnGAAZwZEvsC6EUM/ek+/398pfftP6bxN/9ne3t5j4fi9vb1XJpPJ1yJR33KE6Wucx2PSr6Pgq4cjnr7oYtAP9Lurh6+LQ6LD36T47h/jX965zeD8BPvR7yF7/ct8+P5rfOrqio+0JUTZ793YJS5xiUv84cbXCwN8b7ch30MYPcXEb/72ZPTplbeQQctTboZWNWC5erZg96wB/QLWOIzyfNfRqyzVIV/crkELeXVKbHdIJAV1BiFiXNY43afRGYQeIZQc2jnbzZhdFpzQp9Ipg9Uxu7riTAn60SY7hmEZuFW0HNgV5ahFqdCpholGdf6GTs7bjAhRzVmv4Or5IaZJON7pcky+0l9Ry0OicgtBYUXImpodydDFgv1+hmdK0gq9YoHIEh88w+k5DFNAmLj7fOh4yu/k/xZBDNp4/EDYqeccaIMzcVfAWCuUcmyrYyrV5YkoAjZqieuWZw+O2MkecJEf8ZzMmbPgwFzviJ9WRFKxisaoIGjriIwDrXltWPHMrEBL1oVAxQWp8kTtDB0CoUoZrkpkrDEq0C/OCAQiP2CxccR5mnXhmMZD3LLbXpDlD7AzUHhAEdQ5Cx3YKLewcs7WckqdN9g2oILjJhdMdYICvvfeFzEbNSYp+B01RrBUOgGB8fmSk3FE0txCKyFPl9xwJxTRDgpwyrKKhjQhxcRnDNyzxG3D9sFDkG0Kc5fVCG7VQtQ0+E1PE+9zrZ3SBs9K3eR6eYwymp6fo0TQ6QGbiy9xZTEh1hu02jMc73Ci57TZiruDU7IyIy8XbKoZ189e4eHuNhIyevUFlVYkZwW3ti9YugZPxDQ/xYTAZrHFQXyH1npE3syZERSZXfHG7hGZbGP0HKUMADEVf1J9iVf8dbQEdOnIBwvS0LJrj4h0xUl4hkxZ+vGCQ3+T0SxmcPxlso2GuKd54fA1RtWLnI87YU4TIly4SmPuszJLdBixJTWxsUgbsVkkqPKco4GgjaaJNNrEeP+Ak1GBqmqc1sRxS5rWBH/EsC3wriGViCU9ggskukbbLvxSE/gj997gC8+niOqU4ZQSPnT6Cs8X9xlUDfmmEMrArbNjmuo+8933UylF1rQ8E/YZlHA777F9dZ/E9DhSV0iqlpVNaEzMteoU24DrNVSpoilTVOQAy/WTY/rLFf1+QTuoUc2ITbVE6h7DeMV+z2F9FyLaRnNm6T1ulTG+yQHW4csRjR4QpPN+91ULWFRco82CtHF4HzDOYmKFtk1XR00rpsOI8UwQ7Umbls0V0DN8Z/EFju7t8C+f7ZPTMDhX9FRFYWJAsVuecDgsOOjXbLHB3AyxBIyqEDOmJce2gfAeF/h4pzlYfxX4xCNyNZlM/taj0MC9vb3/+b0a3DeDmeuk1zft15/BZ/ItTPAcDsY05epd6z++8wsA1M//IJ/53K9TxCl/+mPfxeSl93N1dsb/2/8o8Ws/8671d4lLXOIS367Y29v75KMD+E3gzvp4CPwX39LBfTMoA43ujIKkcgQdQBRJC47ncLKLEs2NsuBpN0XpLpAqjtouvylMgc7Y7FclrbFdngca44Qg+WO3nwqOWs8ptWdmV1ykDwFImhptOj+A8w0IZAF+4P4XuLnUWC3EwXYCDlGXeaO7oEAQxU6pCWqLo7zPKq5ZJAuwnve3dzmNVqBAJWdEYljGYyprSaUjlU4Z2tijlEFEMHiUFrRWuKBYhCHaaTZOPPnUkK8W3bs1HkGho5YotCgLad3lchwPIvZ2Z0RJyTJytLEltp4P7FvSJmfZTGnKCl1OqWxMXxVs6QV1esjJ6JBcOb5nT7g+bdFBUcUFIBz3Z9zu7dOqBiUDev0FA85RCqq4E7BobEwcFMq2aOPZXB2htVBYQ2G2GKdnKBwf9a8yVAtQeh0aB9bcZh4tICiUaJR2xNkX0ChMOcY6iNSYeniKCQ/Y3Z9xt39Oq87IqmZtfHdPQyea34WifdTe5po9YZcCpRRb8xUGi1IelRVcX+zTrwq05NiwiZacGLg9qjkPnjZoOmF7IaHLc0raFvVIE16E1h6uJRUCW7MZOxczvFqRRi1NvkTrhr49I8KhEHqsVegkAoHbW0sejI+wPuDWT9dGccEiPiTULxOFVSdUoDpFTQFaDEoJqyzjLJ8TVN7NpMC1aZ94dZPIp5iFJylb8tWKZV5xPCowBP6Iu8N2mKGV4jh6yCx/g1r1abSiVTDNC0wkoD1KhHPjEDbxYYwmUKqSnBXPufvshnNSGiKVYpOCKF1RjDSLJGcZr7CtW6+yAt2SVbfZPTtm83xOXZ0horB1J0YftS3Gf4FlWnbqjdLlMho8vVAhAs8tD1jFBagHXHvjjKsHC64mr9P0j1jEh7zRm7FzdsbovCIoy+HwiKNoRpwv2VyOGDNnFArSJsa6rghwaDdomwG96YLeYsWNi2MGfoknYlIe8FzxgLyqWEUrpNql1Zp+cY/xYkHPLkmSUwZhxag85tbiFK0FEYUKFt0kEEBJhK1vQPE0QUPPX0AQvrQ144E9QBtHl77YURNNwA0VogNFtkLrmFu+5XhY4Xt3ePHsIRuhpIhqHgc4KDDKkhZQCxz0K2rTlV8Yzxdo3dUQzJcB++h77D3COyVY/yPwC0/8/b8Cf/vdH867h2ncffp3k+SrztUh8HfPZvw/84L8+Zd4brHPw/ENZkcP37X+owe/hu9f42E7RB0fsHjufVxLE55++lkUEJeeh3d/+V3r7xKXuMQlvt0xmUz+J7rfnn8A/GW6yIr/5Vs6qG8CumpojeE00fRnK9KmYK6F973+GoIwj+POW+QHOPM0kTg2Zc6L7gAUnPRqoFNtI0CVnXG6+RAB0mVNGxmUbQGFltDVdwLmtmSVnrN7esjH7/4OVf+ImhIRB66hLy35hbCtpsSqZVgUfODOPUQc0+yQK+czlAhIzA2VPBG72YU6CortsFzXlDKYIMTiOByvuDse4OO4E4xwAdO2aAakVGyFliQMMYyw0mP36ISbRxXoAV/Zajnpv8p1dYgWi5URgjAqChDhTA8JkWIWD3Bc4ZzA/c0lr44ztpYjbGixMqDhJqA4ihyyFuqIpcHLPhuc8YKfYiTjmcOYOFxHdayFxnh6s5KH0UO8ykAJ09hjQp8qbrjoz0l0Q67XJARNEhq0B6dGBJ3TP9N4d4+H8RynDEPdhWzmZsGtcICygch6MjViB0VfapRzRMcFUnVEXGM4y1qUBlrBese18oCNsFivgUEXTz1ekTokOEYoUrQICZq46bwEc9ND+7AWVoloIjCkjIIFUZyYC2y75GoVUD5DBSGu7rO5WHXPpfJ8x+mv8fzB62yFOX2pQBRKApFoRlW/ezaB52YP6VGCtoAlrUviqMHYBnS3ET5t9jkwA0rVOaXH8wWBBeNizqicr43nLtTUa81KjzAywMiYIuq8V4PZiny1opYM21jOe2OUhpEsqSMI9FF0ghn91YqkqFEClaoRhjiucuv4lEgFxrKgrxaMWFB3djloS0rDRbjP/egc03YpKF51xHD7/LNY333OFEKmp1gcThuMDzTRXWI5eUu882i65MrpGb2V4333brM9r1ikFjBEsWcjxGyiGYUlep2LedRvmScOr0bdd4CGbTPl6uIQYcVJ73z9iexyFVvlUUpIms4L2JOK8SrvBDAIVKZBlTnn+TEAKSuecwdkYZt+tUM+r7henKC1I5+t2Do/J68dUYDdtuCZYopHYRvPo0p2Zv0utRJirbrX22HX/0XBxnxOQBDjO0+jF5RokuAYSklfr4hHFTKuWfYLeq2mNCmtztAoEu/ozVbcG54hdPcaEbJQIyGiMDl1vORoeIyVhqyqsERo04lr2Pr3B8Gye3t7/+LRH3t7e5+H95j6fRNQ1ZTzXueivLr+9xGCCH/x7iF//eCU//zeIT/9wY/x4ukb3B4+zezh/rszABGig8/SXvtuPvWpn6Uxlo989jM0v/LL7O5exUYRNy5O+M3SoZr3Vof/Epe4xCW+jfDBvb29Pwp8eW9v708BnwA+8C0e0zeMk2iTJl/yoN8nSGd4qOhfcH5ln2N7woPBjGnqOLN9nGnZ5YL8UXFMgdZ0BMHKBpnbIinvUsQFQQVAoZXvdmvLAh2EOCh069CrhMGsoNdO6elTdDLl9a2Tx+0OjroIEKs8I1mifE0kDvwrpK2QNhodEhSGvCi72yRgWwPSGVimzaF99PuryK3DyhAtlsPxOYIQlKDXinuReAJ9jAQUFqtzytCunRIdVRtRsRsaUhGM9FE+QrdzJHgW6ZRXN9vHc+vaBpTgdeCZgyNMECJp15aLeWIVFMf9OcNiiXps9pqOKBDRmGZ9VYeodlTxam08JsTlup5mb0HWvAwIWegEOkbB8bGTV7q0EAAds3Vx3FVv9gpvxhjdJ8IxPpuhXefBtHjAkKxa+mdLkrIltF2eWC+U6KwlumGI27pr1vpOgEOEw3zM+KylN6s6Qni0zav2/Vg0I1kyCDUvnJRstSUvFEsMAW06SfmjwdFjR4CQIapPWjxge9nltuWLkqg9J+gxNlzhuD+lir/CZrUgACndeLbDgqvhgmenx1wJM7JQEUJCo1JaNabhWV64+xClao77x49XYp5069eoLtTy0fqAQYtDrdflEXZYPH5+erIi2jjHZCvysmJ0VmAZPm5j3BoMfWBIoMf4eMHWgwvik1O2igvisuH2uCKogNERG3pFLi1WOq9qNq8e96vx6CAMT5f0pl3/TgLKFaBgsFwQVys0KyyeXOouF612XC9P2Q1zNIpMuvmyTUC7lu2LhoghVlJAUScZ87yi13i07jxgO36BSPf8ahlxJ4cv7Z6jrccMK3qjM/qrgpCcEBg8nsF+s6IwJbWpHy0wxnlsAGVa7g+OeZifsilzUmmxKsK3O5Dd5Y30DgJYBVldY+uGfHGBkT4I5POS+dmAsug+C31KHnnsBjiiKEJJzMLUeATtAoOLgvF8xvW40z/IljUbiwWbiynXilM2yjl5ewqmxegGayNEgfbhq8iHXocixgSGsmLweLMBLIGdcMGz/iFXwzlXwznTpOSVnQNMU/Ne4p0SrM9OJpN/OJlM/tJkMvkvJ5PJPwV+/b0c2DcDe/9XOYk75cDrg+Fbzv3T6ZJXjo/40c/8Y/78L/1fvP7al9i+OON+dpWzw3dHSVAv7mOKI47uW2bzC27vXOff2PsS8//6L+M+86vcuH6Lp6YnfHbwQaJ7n35X+rzEJS5xiT8EsJPJZAgwmUx29vb29vkDXAdrYftU5lEOVpePG/eW2Kyg1Z1SoFPCQW/KG+NT1nvAtMrx+sYxjX677odg8dwdn6NQZNKRsUExZfP8M9x8eEjvHLKFQYLjJL2HkxudIaYFZR3aBfZHjyqrKLwK7G/e42A0JWksG25BKg4dNAqLdo6AcJJOQTStWrEaHpJHJySVJ5k7Jse3ed/5nESazqgUxeFwyTx902i1bWeO5NQoES6GxxyMTtEScK7EuRIrPWIn3N66S6tbMtH0qEmmS8xySVCDx+GLWgcCXQ2pvpRcCTN2ZLoWhX4cOAlArVtUuwSE25tT6mzahTYKFNGbqQMheEKz6kRGJDzRikKjWCYFyr2BXud+59RoHRDejKQxDBheVCBbCDGpBHToA0JWVIiEx+tsG8Us6Yx23WhwS9ABHXuEBKUDqSlRRgDNhpScZksktJ1sfuUATaEs8GauX0rL9ZMl2bLCrkPPrKzJ+iMCr+NuAgDjPdqHjvSIcDA64JoU9Ozx+ql7yyNIvCbZdt1njxL8kFZv0uis8zagSar7FOuitbLO2On+EIayJJMGJHQHgd5ySt5OOehPcUEIArHyWDpiihZsXnTe1UdrxpBAn1Y06XpeHxEPgGUcsI3DOk9tuveuJEHUmwIIii5Mrxv3m8/N438FJLSwLnSrvEOjcev3bwhruqFIVi24bbaCIaJFb1niJMVIoI6X7ISCkSwxutskaa2QVW8SAc1TBJ5GEFK/4CKa0wSNX5NJBQzaFTGOL289ZBnVjFgSieckvuBgcLsrRK08V08PGRQFAU9UOVQ1RxB2dExP91G+z1m2xPgAWJQSsqri4WDK6fCEvpTk0n2Gi3SOkcCTaLlKMEOmfUGrAVERc5yckpQtFS9hGdOk5295fiLviJqWpHa0xqOCx4hGS4ImIy7f3ESxhCfWIiUOj+NWn3j9TaIj6wlaJN2mkLe/DwjW3t7eX6ILE7R0Av///d7e3o+9lwP7ZpB8+R9xGHW1r25sbLzl3D/4ym/z737+F4nrJd/By1ybnnKaXANgvzj+qra+EURHnwfgn98JLCXGbH8A+dGfJP7oD7L4b36Ca8MRg7Lg870PkNz51Ffdv2jnvD5/DR/cuzKeS1ziEpf4NsHfBP4s8LeAL04mk33gS9/aIX3jaJ3GrUlSeGSgrYPsHr12kG6zv7FBHevOZhBgfkRjHEt7hY1QsiFzMqlRxAxkhdOdgTtwfZR0xr4mw8g2gYwQAiqUrOKa/eE5EBOPZ8QbBVHdUkUlRmmUAqc9SMDUCiRgW4fFk/rOMC7imr3tg3UfUCQVF8Nj7tkZQS2x5ZB+u+LW+T16lCRrg2yZvM24kT6gcL4hdlOqqCYPmoHvvGkezYXXfC45xYqnjRYk8qiNt+5ph/DI8BqigFXvoCu4++g8A7SYx/cFcWgCPkBpLa5/h8ONV3lj885b2vWhRQgMZc6VcAZrKvRm74J2F6TUiAiyzjvx9B6b5p2ASISpFoTQrg3U9HEo4kPzZm0erYSjflfSRZQ80Y9iFve5s7mDzVaYLUC/1ZxT8iYJcL5iLuXXlOG04olpGbAiXntsnsSBGfDA9EkWBSKBDVmgg+f17btoek+MCO5uPCBlSSDQn711fTsjfT0FIsTtgitPlKtZ0+KOzKxHavFsyJKRdGGgWjy75euE4PBBEBF6smLI6vEiGAKb/s12Za2BY3wg1gucdIWlS32Nhme5iK/AmhAL3RqrdkYAVrZ5y6P1ZCjsk6Puzcsn5nPMeW+BkhjtO0/TI2+cArRxaB8I4gl0YZ9RVtCjohfO8TqsvUUBQUjkzTl+BKc8rVMQ6vW4BsyjHM+YWNrHuXIAd/qHOPdoIyOgpKX1Ja9uHfFg8wGzzXvsbz4gAAsV8UDHzNchml/ZOnizT3Yez8AirhiEhghHLDUheNo1WZknJWdZF5lVa83x4IShvyAPBdHSkszmHKkz7hvDLG14mMePtzz6YfXYI9nNVwDR3Xy/zW0lRI/X9hGix1sT8jZ6pbHLAWDxKjzeEDHmnfqYvjG8o9Ynk8lN4INACgyA759MJj/xXg7sG4WqLkjv/TPuVVfprZaMN3cen/vy/h12790j8o4//fHv4wdmv4HcaBmuuofhgXl3oh7t6cu0Yvn0zsf4P+oP8Su/ecaf/aXX+fKtHyR+8YcY/WwnbhEqzcXh76x/VMGL52//1k/xJ/+3/44f+Uef5Ef++Z/ncHXw9bq6xCUucYk/TJgDn9zb2/vfgVv8Aa+D1fqKBkPwLRIa8EuSsCKmBQEfhGm8RQgtTptHDoW32BoRBqyjT8Hoa2zKRZKjxKClk2+GCB/qLgfhCQ+Yeps3bGkN5lGH4ojzkrT/ZuhNnK5IsgVn+Wx9zdr7RCDOOvJVY2Frik9inAhCQORtZr7rjOd0fS/SPi7CmwUhPDYi15cDCQ2bMsfS8HZoanyoCOu5UCimacFJf05pWmrbJbwHejiuPL4vkU6IIKxJ2UCt6K0NVbeecffoPQGBHCElmG7X+REuehHLJMGHljo01GGn84Y9cY1nC3zbkWo6IvFoLXQQnOkMYqW6nfjadHl0EQ6ICEScJuMuzKvfedii4bx7X+I5SM+78EsCXmKcNrxy8xbT/M2UiUfepSJ6wouoHEq/dY0aOnLrfU3jurXo+XNcqGklY8UWjc6RR1ri8Sn743MCikWarud047ERXRLR4hiEObqtGEtnfz3yjqEgqLdb053S4o3FCSf2wfrFCFmHehreSgr3h2fdbW+jlAsVc0+nlL6lMY5ARGVatBKs9kBMCC2artbc3fHpE+vAOvQWnCvWZPurBUy1WwAVp1sLtHqzRJAgHRExnYyH9zW1X+cvSkDoE7tHuVtd/lYnfb4i500Ct795lzubD/Ckb+m31i1fCyIOWXvQYjxa4KS3xCmFFocxRxg8h0mfV0Y7zK3mdD2vT1Kdbp7fJC6ObQC8b/DhrWS6Xatyr+KaiLb7vvEF3pUs1Zzf6bX89uYJF9l0LcQzQkiIcCRPfKb7lCjWcxg8aWgwPqw9kmMaF9abKdBqQxulCO5tLlVNE3rYZUUgp7Rvtm+ir1n5413DO6Vv/wS4BpwDZ08cv+8g6QYPhj/GPX+VwWpO0us/Pvczn/tFnjs94ENPXWHru781gFLRAAAgAElEQVSf5X/88/zIK/+Y37r5AnHb8Oroadq6+jqtvzPou5/l79V/jF9pn2Xc0/wNcnbymJ+wNcWz/yajl/fRSnFtdsbnoyuY6eu0oeW/+sUf55O/0qc8/gGa0z/Oa1/+d/jxz/61S0/WJS5xiUt0+DPAy5PJ5O8APwhrObLfA5PJ5G9MJpNfm0wmvzqZTD7+tnOfn0wmn37iuPF73fNuoZUW56NOXKKLM4J1WN80X4exrI2V9gmbM9by+Mc76IRoNMMMZtgncot8aAkERlJgQs4ozBjKo+nqDAuF4H2Dmf1/7L15sG3pWd73+4Y17bXHM92xb99udWtL3RpaEkIIhBEouEwIMw5UGdty2RXiKCEpVwDbAbugwImLio0dmyEVghkT7IANCMVhRgNIGCFaLSSdVre6+/Ydzj3jntfwTfljrXPOvS0hGqnbCHOeW7vO2cNa69trfevc9/2e533eJeI58dlTA0ONw1mDCo44L9DpaSAV9QpG6cFJoH6M7I4A6bbocdONUHnFRzf37zD6uiOwCRa8aWzMsUgZSESNxuJ8ecJmAHf9vtOdMk1PA09Bk1ystGk/1wRePnicq7F4nhru4WyNPjzZDB88IXgUHsuo3ZfAuookTOmKBXsqw8ous/QKu1GfhQp8tFfjheBa5yJH3fwkoVukgp0sYTfvYFV0lyAxhEAnnI75eNzHxORxeO2Fw7Zbxmt7MFiCCCfnuvYR1hucrwkt4ySUoxQK5ypm0YR5b4oQAeNTnNL4EFjquAlIlYF2Qfkw3z89p8MBN0d9rGvGqAj4YHFtIiiAuU5Ytiv/N0XEfidDSIlok4mdfMJKlhx2cw7yLku90aQKyrMUMbu6z6/fP+D3XyJwW89wOhdBhaq5XliODVmsd+wHiWjHEEIgBE8gxfkMGwKuvRuO2QsfHAQo1bxlpRwhBKrWxt2I0/vEe38iQzS2SVaDhErrE7mpbhOrW91pe1483hs8fZ5LrUyGOfN+ipQF83yBbxnp4At4zrVvjm/uygeWUYUTAuVW1Kq5NrE4nhkaJW07v+/u7+pce2/eybiF8NyXyKnYzwuur61TrS8Qgz0ySla6kbFapdpxKJ6bfnhvsbY62Z/zhmRRo+vmHgJYxgknVVLB458jGwQIMiCVI+AQvmnIHI0M0XByMscD8OTaeWZJlzRUdG0zztOxOBrbHksIgRujETe6OdbW3OpNiVupax1SnlZrLEKbtgpa10GQ5hPH9kLi+SZYB9vb239ve3v7X975eFFH9hmg2r7J7fVNRs6c0O5+PmO/EHgheP2Xfj0AcuMC3at/ky27x7nVIR8b3s/hC2B0Ifc+wvfLr0MLx3eFLm94xRb/y9e/kqlz/KisyV//jazt7XFxesBvdF7LwX94O9/z/n/Abz/Vx5eX+M43XOW/6wwRpscfbr+aX7v5K3/8Qc9whjOc4T9xbG9v/w1gDPww8CbgnePx+Kc/1Tbj8fiLgAe3t7ffCPwt4F98kv2++Y7HjeezzQsBFSxSghKhqdM4iWgCi6SpyVrGCyyB2/0ONwcDHr18maOkWfWXUcM4eG9w6pRdkp0F0fo+zpZo6VBugXMVTjq09MexNQKLaQNM9ZzYr0LxIdFnTwiiYIlaq26Z3skaaZ4bYKo2QTTeNoEuAmFB2pM0gwSDkp4oK5HS0XWHCMC2QTQC+rQGUDKgZJMASdFwEsaukEEwzcu7JHp7aK6pAcQWFTfj9K5JQpp2tJDWFuFPx+xceZKkHKet3ts2OHTUsgk4fRvQaqG51g08sX6RZdQBAUWkgIqunxO8ZRJSbiZrGB1jXcU0aiRr1hVIO38OixeI1w9YdODjUYc92QGxpBJVKycMqOHihCU7yjJqeZq4+ZahKINiT+ZMdYbKKvbTBU/nlmXaHPu2WrKoNbWvkf194uEE7z3aThs2JgSsCphQnRzLRMdMRpMkpMbwVDri8cHl5n0JZCXxqKkZkiKcMBpWSOoguY2i9o5nRxOsaFwmF3JJOZLIyJ5EoVIEvKvx3lIPauqNKcKXHMgUXQqSctUyVgEh7Mk1vyY6XFc9yrYlj/MG5yoWHBJo5rb1CufNiaudE6cSP+dLaltRu9PE4WDQ5fawYd1csBhnEHhKsSKEgPB31/BBI0FMqLFaU8YJCs8yWWFUjROBhYi4c7IuZHKcehGAvcGIWmlupp4dnVN5Q2CO9ooYgxIeKwcUocY/lwWG5ru2uzd2dZIsQlOPCP5kEcC1Y6izhoETbknAHROIlFrybDdhr9OltCWyTVY0uklpbCOBPWFg64ALlgrLXq/HQbeL9B5rS5wr8Qh2dR9zzDhmFbpTMseR6z7DaI1IS4I4XcAJgJOGZdxBxhYR370CtEwzFqnGUJ4sCEDDxB/kGtPet2VoEseFSnDOcTM/Ovms9y9uC8Xnm2D9+ng8ftt4PH7VeDx+6Pjxoo7s04RfLanf9ZvsDdfYuOPv/hO/8Yucm0zIRhlpetrcN/6qv8JXvvd3OG/22MtHfPgPH/3MBrC4zc+G17Pvu7x83fBar9FfeJEHNnO++lUX+Hlfcyu/ysZkzvpiyjvjR/iFX3gfg597kmT31XzZfRt85Zuu8F/+1ZfzZpvilmN+5A9+/RNlFWc4wxnO8OcQ29vbnka5VLWPzqfegrcA/67d9sPA6Ngoo0Xv09jmBcHIW4SXJ2YCiWvkLUfJkMP+gGub5zGqCSpDkPxBfoF6cgCLEpUvifozpK4IBIwQXB+NKHWEz+9WPRwXohtp2UexlBolPf6YfZIeFzzOemxwHMnGD84LSyFiYmrSypLZCtkGOjfzc8x1hrBly3AEaq25trlJqeNmRVtYZjqlXHWIjMO4CudNu0ot0L2C4XCfUkcsvKGI7zCDEB51l4QRgncnDF9H5gz1aY31QibMooy97oDpIEL3F3h/LI+SJ0nCMWMivT8xQ3hucYAP/tS/wLuG5WoD2EjE7HZzChuxl3TxwXJEzFylqOAowmnvTSsayZ/35kTKBB7XBoRxsAS7QnqLSptgrxCaYCuCq0+YoxtxjZWCm+sbHKYRN3vneDa6jWjrsnZthyMXU0iPzT26VxCUYS+fUuQHeCFIqkNG8xX4QC0jduIc68v2O3qsK/AtkxoI3B6tc2O4ccJoCODi7oqHnm2cBl0j+Gwvjsd7R08NyORxk9nAwkfUUnMrGp2wTE0yKDky3ePT0b4Ox8rARZSz19nEe8M0z1nFKcIFhInaTTxBOpTwSGARJ3y4u06tTgPmSTJv2a52/8GihWPS6XJrtAEIFrpip7tGoU6vmcFjtSDgqXGsxBIfLMl8xuWdCZsHC+67OSMyDu+b+ycrDPfempOUFaVt5pqMDUiDShYcyJRD1eUwab5zEQRHKmeWNUm7VZoyiTjq9albdu36aIvbo3VsW5MlRKDwNYUIpwsCIXAUOsyloMYBAREEItDc327VmmXQSOdomvbW0uHavzmhvf7On7JQR1lKCHBbZOzoAd47YpES64xIZng8tSuZyM5d1U7H12ZXdriuOhxzsqWM2cuHPNtrZIUosG2Su4wjbva7JKrZbwgB75raqzslnvGgSW4DjVvmQa/HwWANozXztIOn6ZCebkw4WkvZWWuM7o5L/4aLkivPznEn9WiCvP5EifELieebvn1p+/Pr73gtAF/ywg7nM4fs5Ojv/xcsopwL9Wmh47v3bhA7xete/shdnxdRxOe/6gt4h11gdMRjezu8OYQT5utPCvH+/5f/NXwDQ1HwDVWO+pwtRKc5zX/rjffyi4/t8FOu5OFhr1nMSFM+7/KTvPPmmK8q387X/s1/BEDajfhrX3SV97znQzzz7EN8dPoRXj78rMxpz3CGM5zhPwrG4/GPAH8B+ADwc8A/3t7enn/qrTgPvP+O57fb147/g1gfj8c/BVwFfgP4zuexDQDdboLWd1p+/8kg2pVhh0PgiWjqTyqd0DpeNw10feAwl9DZJlodMqgcQjeBl4ynyIXkWj9QI9kZ9dG55Mr0aUoRMZMJg1ZaY13FRA6Ydwf0XUmoDUmoSVmgbKCa9Hg27hOhiURA9p9BTSuEM1y6XrLvh1y/5wEiIViywmQpl8Ihvu11VOoOE5eQRTED1yGWigMVs9QdOp0DpI/xwXOn+EjIwO5oDRVbgtFszI7olQVeNiHTU+sXGRULBqvTliaqU7F+e48yySD1VHFCaWPqKAYCzybn2aymON8EUIN0QGEjKAfM1DP0KJr6pdDa2UuP8w1T54mQ4vi6QOUrgojZj3IWsaJbWMqgieY1wUDIofKSj/Uv8MjRDe4sACm1BSc4zAcM5/OTFW0pPXiP8IIgHSEYAhF5aTDx6bq3DxYfJDfCJkXeRytxlwGiJPCs3SLxFalKKbtr2BjuMTsYV2J8xGHvHHOV0TOuTaDgIB1RqRiXeFTwjGqPxTcJrIAQBLXWFGhWnRgZAleODnCEpnZMhBMJowAIEmstaEmsUkp9iB7MYNk48R32BmgHvaUlkRmRipvmtm1Ar2pDXpVM8wQZ/F0ugMdy0lmnS6QMHbs8SeyUEMjgKGWzrxqHDA2rOk8rJmKCUKcyMCHAKXWSLD87qLmdDJipnFdPn6aQUAiF9o4KzRRFjkJLhbYl1td07RwnIiLrmUcVmkBa1XjA1ZLepMRedES9FYmQrEJCYTWrKMLEMQUBVVRgYNXTPJ1fYas8wAXRMNnSE0IzB4zWHKUpg9UeAscyzdnaN4yKJbfWI2QlMWnKJI65WO/jvCFdPMTACObq2t11lQEsipnMWHRPSQZLwMpPLEMxCKxS7PWHbBYV2jiE0GgRczPP2Im79JcFPWkwWYSRmnneYYOaMgQKHEY4ktAsb1gtKUgpRcR+1iyMjGYlt3o5UpxYEeCDJauuEhB4d4QEOrIxwDm0FXWmyQAZLAi4PdpEeYVwjq4ZQSTQSQ11zq31dQaHjayzv6ophWKHjHPeEeMITjMc/nHrc58+nleCtb29/cUA4/E42t7e/uSVdJ9FeKKTg4F7Bs2Co9/f57bskGrHq1/x+Z/w+e5XfDXjH/s+fv38G7mWrXF75ybnL1z6tI792Ic/wr79cl6f3uBN5iLqNRsn723kMV/+inP84qO32Djah/UNLh3ucj0e8zu9L+ALJ7/Fv/uZ/4Nvedu3AjD+nC3e8O6U31q9hP/7I7/Kd73xLME6wxnO8OcavwC8bXt7+09SLPvc1bLjkpdj/H3gp4AC+Hnga5/HNgAsFp+Zza9zKbnqsgpQYkA6bnYvImRzOIvi3luHLH3M7Zf00N4gBNzI1plrRdpzvPTpa620x+NEjUlgXnVI3Yhrw0t4Ca83gY5MmZimwWmlY/Z0zKg+opLNKnpAMNV9Sh2jjKUErk4K+ssaIwOVSlioDsHfg1WCub1Gh5pK6NYuuYEPnonrMHL3ktcS0d1n87BgUFmKYWDRyemWK1QI6OCpkai0RsUW5wW1Uhx0YkZqwQfjl+M8TOOEV69Oy+1cJ7BIHaPDBeVlwW5vhKslVjSpW1MrlCOsxcuY272aUA4Jrof2A5a6IPEFtSvY031qFXHJHoEz1N1A3S2ZHIwQgRNXvf084/zBYVMz0tX0lxVZbZjnGoHHIrkuT2u+AWoCs26XIknQ1rIyGiMUl8wBx5bR2oum99KR4v6dI26MuhA3ckWtY46EhpAwjXPWaWRfDsGB7XHMuxyvB0sEKJC1pxYelZR4JVl1rtGdglGSZ0cbDMMEgGe6G4Dmkaqinz9J3C2o52lbcyRaLVlTWuFQVNFp3Y+lcZmMK0dcCOTajGBTdtR5VoMLpGFJvzacOyqYXOgyjYZs6prVHbeSjxSJiNnY2WmMJDoRD1/fZ6/OOXgghgAyNOxNQLATDRDDAfcePouTAt8SjUZKhIRVSFj4lI4UTHWXI+FZC4IEi5USjW4t7ZurI6IKSIllSk+vc11YFkJh0SxCSiwNu90BnSzgl55OVBLHloCgkoGZ0uShwGAReJRrxipswwgvQk4o7qfEUSvF5mROhOPWqI+tBCLWdHzFfugxlxFRcER2hVGSY2fDwywiXgQGuiTyGcIC1lHSQcvmVNpEQxFYu54y6zReetp7DIJl6EDsiJmz4zfZy9ZItUOrCi01QogmYW0yZWIlqEJg7hWD5YIilszTDnldIENEFASdsmZUF6S1xUiJk4pZ3kWEQOEtTugT9km2zFIzZwT7unvXnHVBNk2cZbNgcKdYSwSPJ1DqhNvJkKE/ZL83YIGi8CkDefo3oRMyumQos0mkIqahxwpFqqfHNwczlSJ9wARNjkbJmMnkVEr56WJz85OJIJ6/i+Cbx+Pxo8Bj7fPvHY/Hf/EzHtWLhMdvNHVUD15sdMLF77ybuPb4boTU0Sd8XqQpb3n8WUTwHHa7fPg//OqnfewfrsdEOB6JI/QbzlHVnpvbE1atZenXbyY4AofufkZHh3zJo7/Lq/7tNv/4nf8nn7e34vyjv8svvvc9ACgt+cuP3IvA8ZsftRj/WZ/bnuEMZzjDi4bt7e2f/xMmVwA3aNinY1wEdu7Y5w9ub2/P2sXDtwOv+uO2eaGQ1Ioqyphmj2DDa7FCUYSIwmnmIWbuYwwSIU/774QgMJFmTspgP0W45v+0qu4ydQlLo7FBcrvtBak83NrYYpImlFmPWgl8CIyKIb1qjW5h8YAxDzNY9lhmObNOhzqSGAlVFLGzts5c9FBGN7URQhB8oDAxu1HDUlgUUeXYOJphkdQyYhVlICArHZEJlFpz2Onx8fw8NeouNka0P/dFlyIT7KQ5MgQ2Zyu6q7KVQDWYZJusvOZG1KEKCk/ASoVVChk5AmClZjQ1hDLiSHY4ivtUKsIGQR00Ck+lNDcHGyziiGfVCE/C7vqIZ6PLzOMuhUhY6ZQy1acGHUIgkYi2niggTxiH09iw+e1meo6b0RaR7DDr9jDtmvZUxRwLtPJoREAjTIDgiOxpb59Y9sjMBv3iXiIfUaE5Cilzm2K8okQ0NWIBvJAQYLjaoPIpZYiwWUAmNYi7bEWARuInspogHPu9hHnUbZzrhKKnR6xNV8S1a9SrAW7rAZUcEckYgafQCSHAS59eMNpxiFqgsgWzOCIIzTLq8MCNPbamq8ZAAkk8WXBx/4D+siAtLSqkxCoHlba2FgFQbKzuRZuUGtuwXEGisAzlAiMzBmqT3f4Wi2SEFQqNI9GGBx5fcGFvyUoNiFSfSKakMkeHmIBAy4wkAZlUHJz31IMJIPFCMIn0ifmFD835mnZyKtVI1ZY6YS47mJBQcp5DnTOPUtT6ilWs2/MkkJFDo5p6M98hMTk6XKBWktofNwgOVFEEAWYmZ0+OAIEPjdT1IO+jvIYgGscNATejc8xDh1A2LObtaMBuNuD8bM4rb9ymq0uK5Qi3TJioDhWOQqdYrSlU1s62JrldxTE6WSJFRCZyQGCURitYN1vcM1V44Xhwb8Yrnt3j/mcOuDEYsUxiCIKAoGnf1yRmUmiO7fUrHx/f0mia2kntT5sDH/RP+4vJEJg4xdwJPppe4KOd+3B4hGrY64nPcF5wOx6wazrMogwXYOXiRqAaYOVjpsToWOCM5Jrfau4HwCOoVUIRKfY7fZyM6a0qfBBIqRGdT54YvVB4vjVY300jBzz2DP9nwHe9KCP6DOGM4QPPXgPgpf2GwXr0o4+RWsOljU/sJ3CMe177Jq4Ut5j1cx6/vkv9J+jw7IPnV278e77v976X33P3ca865M31Jk/Vnnf80w/y7p/8GL/0Tz7Ik+++hf3+7+VNNx/jly+/jok4YndznX/y1Zq3v6nP+uSAz9+5zvDW3+fxj/11Pv7UN3Pppe/gAXXIavIK3n3zfZ/ZyTnDGc5whj9/+GVaeft4PH4NcPNYVjgejzfG4/E7xuPx8crbFwEf+lTbvJAQ0rCygVCnrNIOM9WhsB0WNsO0AZeVAqkdQvnmp/CcP5pz/40jukeKZbif/WREqGMUksg4zu1OMUFzbNqwb2OuZT2O+pcY2fvpuT6ZT+jWkiLJCAh604TNZRNwWK1ZZDmxVdQ6wtguqk4YWEEWSvCeS7drNg6WLLKMymgOyTFeIUNTm1O4uJHBB5BIKpWyjDW1CCxFxIE4R10P8O0/vMdZwSJKqfUAJ0YoEZM6yaAKCO9OuI9+AbXTVFojVjGCQCQTEpkh2/5BQmhSkbJZlZhKI4LAKkmFYulTlmWXAz0kAKsoIwTHfHiFWKbEOkG3ieN00KMaaKSyRC5CeY2SCQJJ7VNK3/QyUqExOuiU5UktS0j6bBYBjyYbOMgLHIrgBAfRGv0ZZGVF12Y428MLSVCQVZYtP2jYGfoUOkFbQTKp0d4jHQgPXmlWUdYwdlFG5DVJ1aNYvI5DhsxCI3+KZIwWEcp7XvrsjN683xIWomGh6ppgHFko6egYLyUX9xdcvdkwXQGPEU2QHITAS8lTvUsc9tZwQnOgBtwuNxG3BH5asyp6TUIXTq3ShfSszeYo43jJzj6v+tgu9VRwI1iOOk2Q3wThaZNmlQOeXrtIZByR06wzpy9meKW5dPOAVz+V4O3LmHVyzk8KNg8LypCwNquJRIxtLe49oETGLEmZy+a5Fx4zfS1F+VKkcCA1u+FhECmrJIWQQBAYIegVBhf8CUdb8TCVuERgQBQF9twah1HnJIGVSJTQXO9d5WZ0ns58Qm81O3X9JMaK/Dg3OUWAIoqZJCmjcsjVHc1gWiKCo1Yxxut234JSx8TOkpc1WQ0BjcQjQhddL6llhJeKSafTSCyDR3pJIlKSWKClYmWH7FUd9l2fvdE6Xmk0iryy3HtkuDjfQ4iAlM1x89qz280RtSWWCZHQWCkQQqFl1C44QDCCh68f8IBcko88yyyhqWBszqFr+7WJAJO8TxDQXRXomwamiuWmRHdKpmmKQVLaGBMUNkhu9tZoygabfdigyGaWVz9xg9UqJp5PiSuYVHFbqwUL+lidNT4GAlZpxlIantwY8v7NuxTfLzieb4Jltre3D2iXZba3t3e5u/XDZw+EYPGShxgK2NCKUFV8uPW6f8N99/2RmyVf+EU8OH2GSaeLC5KnP/L+P/Kzd8IFx/f8wT/kf370u1m+T2GD4kExY2Ak7/jYD/Duh36GC9/g2Lqvzx/+3G+z/vFHeePBByh0ym9sXUUIxeKhN/LjX7jiXW8tSOaOK28v2N8/wNkZh9Mf5H/4gh9iLV7x04/+me2neYYznOEMLwjG43EyHo+vPt/Pb29v/zbw/vF4/Ns0DYrfNh6P3zoej79me3t7n6bu6nfG4/F7gD3gZz/ZNi/4FwG0LAnCI1WNimqMiFBEKBEjvSJRKboNcLq+QMQGGVk6tWFzskItQdgIT0LlM6TQbE0bxmJjUjR21sETBBRBsvQamyq25pL7dqdo58iqmsKf1iGcmy7JTYpoV6o9kJtL4DeRwjMKC/qrfXp1D0KgTDJmuk9e1BjVayyXK0d/sos0FSoohJAIGbOMc/JljfKSB/aHDHceoO16xdxkZPuGtXnJMuoxSXrN6n0AhKRXdTFBMY0jNm410qBGZtckBFZmXJidIzUZBMHtcosKSUDSKSvy4rjpa4RTGYuqj5QpEsnGfEVsNZM45sQWw1tkCNg28A/S0bE5nWNzhjY8NqbLuhkRiQwVdeivKvpFhcezOZlz/84+3XnJUZ0y6/ToiApcjPMxTnaIjwq2ngkQHsZklzGdERemmgu7M6ogWZCAgPWV5tyizz2HXS7sWtaPSgSBK7dnbc2SYFD28UickMy7m1SqmUuN0E+QV4a+vZdL14dcvRERedCxYVTs0J+u2JhLustN9gc54IlUjdCWWCUoFATfBuzQq3OCgCpq2LgaTXCS+/cS+ost5kW/vXQKndaI2DBPk7vYtKLsocyK3M0ppUbaDcpsiECwshkL0WG4VPRsD+UzlBd0p8tGVkqOQRG7AYmLW1v2lGnS5Z7bh3jhiGxNUtSU0lP1r3A4FGjn2dyrGEz2iGaaSKxYr5pk2qvzEDQbq4u8YpVwT7VPt2wWEkCxijt4EqSCXthiWF8lKEUsukzjNcJxc2cBk6pzkkAlzqFl2swko/AiwmlFRYwQMU7Ktq5NQjpkVMX0FiXKOPJphVJ5u1uJIiMIwUt2Drg8qYhZJ6kHuM6xK0tglaX0oi0GhUJ4hTYdrg0eoK41D1yfo4zHOklnUbMneqRRTifkSKFRQdFjwb31DqFdrIiIGExWZMuCnTRj4RRBgJcCpzN8EESimQfnjxZ0akdsDa6j2b/YIciASg1SWVJj6dslETVGNfLEpDZE3rM2WdFbWI6iNXplDSGQ1hu4uvEs6C0qsoVD+obVTJcbPHh7SuIE/aI16feS2uvGHt8HNgrF5akg97JJ5mwfyXmWwFHyiYq2FxLP1+TiqfF4/N3Axng8/gbga4APv3jD+vQhlOL61mVeHjXa0voPfp9p3qeIMq5efd0fuZ285wrjdz7Nr53/POZpwhOPvZeXvvoT67Wei5964sf4zVu/xncm38ZvlVtEVKxlO0xCzn+9/7X8rPgV/uEzf4fPvfdz+fpfukEQ8DN/6RrR/g47i0fwyQf54mrCJIn50Txn642v5GXvejf1P4dzP/QDKP00Tz753/Lfv+aH+Ecf/EZKV5Kq9I8d1xnOcIYz/KeG8Xj8jcB3tE9fMR6P/znwe9vb2z/+qbbb3t7+u8956dE73vs+4PuexzYvPNqALKJmIxQ80YlQTnHloIcRPW7nRxACykNWGuo0QYiGmdJCkVSGUDvUqqYbD4GUbtlnnswIwtK3C7p1zWE3RYcUzYTYCEZ1hEST1YZ8sWwC3jbWyCtFotZIQk0k97HeIaXEt31klLEIIkDQq/scuRQpFD7pNjIsoemviub95YL5oEQEz8LH6Cn0fMxGvYb0BcYKjubryFSRFlsMq5JZvGRBs4J7frVJvwpM0hnTTp/RIqZbWCojSSkZhDnOv5IjPcUXEXS+VmQAACAASURBVF7AernFbiR46dNPI0KGo8C3+kMtmpXt5vkGkdhAq5rITpqgOCi8ych0RadcEcyxAxtI2TiYiZNXmjRhrcy572iXRX/BM+mQXrEkriWRdggCOgzpHyzYWRugTSByGhlKHjl8GkuPKRFTMcT5QAaYzFLKFC/vZ+YSVF0gvCM4BQiCVHTrLtPU86qP38YGRQWoesXa0QSnS+b9HglzQps4S2mIMKwvV4gYyhDT38k4R0noW3K3RNcDlLqMl4JzezNKuihREWmIixQtUkoxhxAY1SN6poNRjahPCEliwLguSkUEAqPZOWSYIjFIAZlNyeQVSneTpoJLUYs+I7+PDI402mLZucrmogQMEgkh4ENM5DzCS/qTLTaXlpmOyQRclEfoVYdO3UEJEF4iZYSXXdbKGevTFcHG3NjqER3OGaQlHavxXhIbx2iyhyhnLNeaa/nS2wtKuWBnpOgIj7aOA9VFCU9cWWSIKGSTJIpMsYy7pMU6edWhk3Qw3pNXgpX1vMQERhPHVGeIIOkvS9bmK4ZF4Mb6EI0jloJBvc5edx+nLUsX0xFwce8m2jpqqxkWI7T0DM3T1PmQiD6ECqcNygmEBBUk+9lGa4cqEAgOk5cglk8RV2sYlyN3e9xzfQ9da/anglVquLQzYXd9nUTdg3USkx9g73BGXIVAEAJTe5JKwMKyEqe8jACWcczaqs9GskbwmvOlQnCd/rxmNuiS2nW6GwVaREgdGO0uuRTtc7iR8EzUBe/pG8eGi1HTKXLVRVmDDZDVlmFYa+66wU2Ud0Qu5vLiAkfJPt26QxpGKHdEbDWNM1DDmYogkMHTNTlBSJJQEAmP9hHCj5hSUp3Y7b84eL4M1n8FPA68G/g8mkLgb36xBvWZ4IaxPFMbvmLYTLXFe95FbDwql4j4j5YICiF4aV0ShOQjF67y9NRTFJ+6+O3G8jo/+cS/4k3VW3n9oxd4FxWX5JSN/oSbV9/BzsXf5Ov2vpTvqP4iT+7/Phf3n+G3Xx4x7dc8LCaUIaXIK24ePsjr5w+yjJb88j0jdu6/n4du7PKuH/1B8vw1XDr/3Vzu7fAlm0/y9iff84KerzOc4Qxn+DOEtwGvpWGaAL4N+G/+9IbzmSEN0LEDtG8slJNYsnFY01nOWDu6wYUZJKVBW8doViHRaCtIxToRG00tEILIavpLz6VDR6/wyCCJfUrummDpfLHOWjmkP1+RL+do5xEI0tohaazRjwVa/cqTOMNGqBAhkHIOVFOnRVDoskAKRWwDl/ctV1Y9LkxWbLJH7gqSumF+ZBte3LfSpL6R3Cs01jcslwoezJLeYoPOTcm9NyvW5zW56TQJkACEar8hLH1TB6W8wvlj6/kthqVE+AEiqulPbxGXC4blkKRO0fSRNMxBbAzSeRIruHrriN4qoj8p6C9ad0INIhjSom46ZgkHoUN35YmNICtKlPNsThcMVp5ROUAESRwcwlnSZcmDk2e5OFny8I5mvJ+xPg0osUZWxzgJV3ccw6LH5akndoKOW2KkxHpNUk5RdkmnHoB1WDxG9ckWK+67cYNL0xKFRgfXOP+VQ1J/CYHE+ohLt2asLQ6a/l1C8/CNKS+/fkSvvpdXHN3knNghEo08DoDWNn4wLSm9wpo+EsGan9JtG1KLEDO+NWK9GKGcJ20D2DRotvyUz72+RLRSt3OzmGCvnJh3rK3W6IT7UfIlbE0CnSojpWLteF0/aPIqR5s+QjuC7JMVd9roSxKVMAoFG8sV+apJuhJvSXwPxRQ9P2JUHAEC5SNEyMj8FRJO7fsJikl+AW81tpb0asdGEdO4lwtiB2ll0d6jQqBXJuTGolB06nPcdxBz7rZhWI/I6yGqniJcRakz0rqmN43pmCmYJV5KEpfQn66xdgTS2tZwQtFdWXJniOWQ9VWP87OSl+1OuVrPGJZ9ujWcmyVcOJyhvUMKhUSyvlgxWhRsVjUby5qEmjTUKKlQMkXiCShGO02NvkSgRIw2EYugwDeuipvVLj2/AATDRcKVGxPWlhnnZjnBNmYrV/Y9cbUkhIBeBGJbQQhYD+mqw5U9ibYe5RWp0awXI7LWgPDc0S0uT3p0/JD1MEFbz+aNc/SLLk5Iktrzho8Yrk4dAkkmPYlU3De/wEbV/O1JGBDMAOF7RGzQNV1Omyt41sSUnmvqyR65odmcLRFoIkZkq1k7b04XRbRTiBCQwRH7DMWxZDIgCXc1b38x8HwTrG9qP/teGnvcqH3tsw73xBHvevlVvmLUI4TAY9efRobAvaP4j9xmVXyEW7f+KRfHH+Kvhh9ha3iNADz1od/5lMf6vz7+E5jDN/A3DoY8hWOG4rycYt9X8Qe/sc475js81vsAn//0V/A9Ny4RW/iFz3N81aHkW8PPkosVj6/OQRGxzB5ioxzy5Ohx3vvK11AkCQ/90juY37rB+tZbWB49wl+6+mv8/GMfe4HP2BnOcIYz/JmB297erjn1E/jMbPz+lJGuAksriauiKRYPcPXWIeuzFcNixXjn5knDXdGaQty32wQSgUBCTRZKdBgigG5R0C1qeuWAftlDO0mniom8aYp2gMGyIq3bYEwoErFOLIbIkACtmcBqn2Fd0WVJJPM7fN9SpKdJvOomsrqwP2FguvQWhnuPZlw6OkL4wGi2IjclyuYEP0IETWZAI8lcihCN5AlS1lc9hosFUXDErWnHhaqgY5oGu0FAahOg6fEjAgQrgT4oT3++RuyrJvislkRWo8hPztvaIuHC3iH33XySi5Nm3FllkMFz70HM1Ynm8nTBlYMdzh8oNncuktiYQd3jvsOcC5Mp4/2ac8spQQYefvaA2Fiu3C4YHExIKofymvW5Q4RAjEeKJsltim0Eylu2ZobRokSjmqxEBkAi20RYhoT1icepHi4s6c1u0S1qAhDZAghsVfv0WDFYFsjQyBUrGd/V00uGhv0hBCJbsdG2+5EhwVuHME054bGiLdAYAuADwlqilYUQSMIVRou6kSiaQBpKcr/kkWsf5579A/o+EIW1dt8aWc8RwZCZJSOzIKJP8AvuvR0YTo7QxQHKCJLgiWjPDRLcBXAFveIIqWq6dspouk9iHZkrSahQLhCER+CJgsGbkuG0SfiQgdHcEYctpF2i7ITRzEGQJOE8r3uy4uJS0q8jNqqIew4Ng6K5B/LCce5ozuX9I5QtEMCFo6aOX9UV2lki1kiM5zhklrYAH0iqgk5pUb5JAVLTzK2BnyFc22QbiXaOC7MEFQISz6AwxEGRUINzDP2KS7uCy7OEq/unRMDQnBpCQBdQbZPlHBVSMiRpqJray7K5m4IAgsPNJ00/LCWJlEOvlnjbnK+t1YyOW0eSENUV9+xNubw/JTIefdwLrZ0cmZFosY6XHhEEo0LQq7t0TIccy4Uq0K+W5CwYVSWZg4hGWmidpPYxH+M8w+kKZSEzGcrmaNPj3CLn3LRCcByfa/CSEATKO7aKIXiPrktyV5B7RQ9DJDQ6SLr1sWfoKYQXbO17UlfyuvkttmZzpA8Ib5qroQOi7ZcWXuQE6/lKBF95x+8RDYv1IeBTyjL+tDBoG+O5jz3Okxe3qJXm9fdc+ITP7a6ucf3GP0KX70WImKg/5IvDr5L0anZeeZXtxy0Pvf4tn/QYe+Ue7/jYB/km3sjF6Uv59u77YfEg56Mjvuzce3moex1p4KDoUYi/y+Xym7m28d28LDvg2w+uc5ik/GX/W/xk8aW8PHmMqenzn88NP775JKr7X/D+N7yBv/Bb7+SZ7/kHvOJf/gij7K9Rx3+Hy1xjVs/oxy94z8sznOEMZ/hsx7vH4/FPAJfH4/G3A18JfPq2r3/K8FFCViwZVpYi75GuDDr0UDjitnkvACGhX29wcXqejj/Cy4qCFNlaiIu2oL/tHcrWZMHusMvVW1MiNnDxnKcvxegiapicyJIGS9EeIZIxioQoCCIsERXZtEKQggysT1qWR0BvWiNZYpLGgtk1PnpEVQBGxKwYFgrlPb2iZj5M8EjiMGJUZ2gyOuE4Rw50as/WckYtNeAYMeXC/OVcsDeJVjc4FANAkLiEYT1nGSXEdYoIXVyYQxLTn+5xYbnD2jxhpjNWeUnDasQkxPQnU2oiHI2bXOTPgXeMqgNAUMiYujQkxlLHa1T2iN5KM4toanbqJb1lTOwdVkoa+WNFECmbh5bEO1Kj8azRCQfEGIblEu8lyhyQ6T6fu+PoU7AIgY6PELq5ZhlD4lByhAcR6K4a6/qUiguLkmmaAYY4FEReo73Hx4KBWbHwCYn33MsCEdzJfAlAXAaMps0/BMrkaAYEV5waMviG4VC2iSfSoylOCbyTBCVO3B27yxWpTUF2yZ0j+AXep4BEyZgkFEhfUiOR1Zz12ZT+SlPKnBAMeW2oq3ZswTJkA08j4SNyNL3CDSrUJEEiQs3FSUxcS7TvABYR+s08lwFvOYmr12YrdkddUmPwOkG0bssdswUyRtolBMe6Keh6QZmcRtUBiMIG3TBHhIhlcKQ0LnPBGLAeIVRjBkIE8vSeHK320EtHagwJpplvaGTwqBOTtEASagYLQ4RDqh6CiuFixjljyUlY9VZk0RbCNqydqpftwkMgqQORGOI5BDIIsr3OMbFLUKI6uUYDew8JE7wXXNzdoVSBrOpiUo+y/uT+zb3F1pairT8SAWR5hFZDfNraggTfHA9QdFub/FODGVEsmHVjzs2ntMphKiJi63BC4l0EUqF9oLOq2CxL8nIAGMChTZ90NWQ406RVRS09RkOERWAIwRMLz/0TxTP+AOkd9+3dIKnOscxr7l3eIrILApJaKRSOpLYIAv1yDbXqUIgdOvSJMETenoxTu9AsgtSG6rOhBmt7e/tb73w+Ho8V8P+8KCN6AVG9+50s8h47wxEvufTqk9dDCPybj/8Y0eH/xn2J49/ffoAP7D3MN9/3lfxr8zgPJI/xxcP/j240ZTZ/K/3e+U/Y9zuu/SLxwZv5GrHGIpnyfu85J474e/W/YjPf52g7xxaK0YNL1jr/E0fib5O+5q/w1uqf8bejr+Y/e+276U8/iv3Al7HvYr7g1qO8Itvnx8l4gie5dOESH71ymZd98DFWv/terrzsTbznA1d4y+X38RMffBdv+5wv/495Ks9whjOc4U8d29vb3zEej99E0zKkAv7H7e3tTy01+CxGrGvWFxopa9ZvTBjYGZXcJKY+/VC4iA4Zke/TmzeJTuo15XET0ZO6+kCQrrWfavrgBNHUIWhf0JvsQsjQ1HRYEUIjvvEIUkqapseStXqJKjTCB3x8iWZ92ZK2zYqRgcxXaA9JMBg8EYZTV/uMXpURhEf7QDxfQMtWdFkBEbHROJqhdmwFMhDTBMalkFyoFHlpkKWFNDAo+6hgGVRLuqagpotsxxObBVdn4L2G4Bp3tcUUETwCTTfMWAEKjwE0FoHDnwh4mtAxDluUYZ/uqiI3FbHx+KDomRXxog8iASIQFSKoVmrUZjAn+wEtBggRGFRLDJoIC7ZA7EeE4EBETQPYcI5WNAlAFEx7MQWa5OT7KdcYS0RYzs+nCDyhvRTCleQMcDYQBU9Fwy7GpkCGnNT0GE2mjUytTaICAdVWkz14q4NLBDZt3unODUGNEOIiQ3apQ0DYgq3VrJmTsq3ykacJhPKGqGnO1E6PgPA0Nt7SNfMmGM7Pl+08AO+a+Z2FCioH7aJ4WhkUTQIYiXXOLTNs28dIW09cgbbHbYLvuI9M05sKARlNcl0YgdcBEexJ5VxkHCLI9ix7vDht3BzCsQQSpA+cOzKsakMhQcvLTXuE8CxBQIylYxZNgnqCLolc5/L0NnVsiOuWMaY+ua7HM6VTlbTO/nTmJUkyo0LRXy1AOoKXSAJdkZKImIAGyuPdnI75ZM/+pBedJJBUqxPhbyEkVaQZTCoiFFFQ2LZNtMLRK0oCAilKoLWpNyWwjgw18mTsLUMaJDkF+XIB8lhaHO5iUIV4JTgDumZjUmHyHqlfQwuB4zrSB7auTwheATHaGaattUDkS4xo5ql0NZeODhGExmSFQL6skXqOp6a5fwQKhzWS1BjykBFkSeokkQyAZaOcUmpNHiryomRjNaezgOubd/ete6HxfPtgde58AFeBl72oI3sBsPt770N5SDoe2T138vrPPfWvWe3+MPclnv/9g2/l33zwW3ji1lv4tvceUk0lP51+E+/Y+To6nQlPPfEtJ5arxwgh8G8//AR/fW2HfPogP9v7TWxxL98f/QBb6v9n773jLLmqe9/v2ntX1amTOk735KCRdGaEAiIIJZBEtMAYC/OMA3CFI7afDfYzOFxfnm3s6+cLPNnXGHyNE1nXRGGCTBBBBCWU0EjqkUaTNdPT0/H0CZX2vn9UndNnRmlQMGBmfT490326ateuXXtXr9/+rfVbRzk8czGdn3oPc//Pp/hfM3/Ivk6F0eA9nFY/QjR0EdsmRlnrO+6Sg4yoLru8U9nPWrZ1WpzWHmXn2G1srp7G3WefRddojl71PwhrHt7RlzJRnuWefXf+Rw/lSTtpJ+2kfd+s0Wj8eu+LvE7VMvl26LnFZz+UtpxBj3ZyNkUzVOyGD1hRAFRhERv3AVVoDboXxkNE6Lr4NuekHDCy1KHmFIGN8NIlfJeHmgXEZFETm7TxSKhwbK6xl1WL/BQIEgGb4MfzqIF4msBCkCQgoONW/x561isiDJag23O8fcBSbUV4Se9vqhAk2THnijjWzu+hstAhiFI8l59fkbyfytp+Vkbel4TSwA59QML4YgtBE7BSMk1hKamIQHXxSdH9ulqucDYt5cyjQpdq0sUnZixazIGFgMgEokb7Tm1Il5BuvuOvVmpXaResjGUBOnxrcFnuaPdy3SAEa4pCrDlY9VyGKkK08jYd9axN3RbnKIsoh3IroM6QEkRZ/3oj2TLjnSOM2JS6FdbMJkg02u9TDpYjNCU8GacSrShIokCR/+xnCTpZwmQdpHDIV8KxguJwR9iP0lX9ZzLWLEBrupx/Jhoo5YeIA9vbQBAQg7P5+JmBWmcah9iYUrd3bQi76cD49XoSMx4toUlZAbtFj9JW0VYxB60j6GZ5yGkOR/MDbYrNji2vl8TN/rU8UgJiyq5D2XUxNkUchMlAhLL02BCNH/fYRAeUQfLxF+fwrKZEVABBAEdtqU0lSvCzGBFHRdqUaONnRYJTDzxZ1w8t9V3Sh2wBMTrJQ4eDLAXJWeUKbcY7S6xdmgcFvlsBhNUoxifGI32YULmiDpsbwYrL2bsiG8o8BN4Wz6GYg4oMUSHi6ti4TRDn4K9S7B+UiCmlCpsNRnfbPKSVnpBMXpbB4TCut1ZH6UEWl668B3v9VeTvBS2l/jODBJRDZ5ZK71lJ/o6ZaAdsPDrKU2knmoO1Y+DrLnL26p1PVaeeDEun7uE+nT+B04dWFt2upfu5Zc97eEa1w2fufzk/9ayf45tvvJh3XLGBcnma25ZPIdIB3Ffnzv3PQ8xOjs5++Ji2dy7eS3R0Ay9oryMxXT4W7uT16ktcoHawUL4M70+vJrj0+QRqFXGtwWcODrF0KGDE+1s23dfgrNHbiBKf5v4ttEe+xZ6Oz7IL2Km28JOtfcxWDnL4wH78quaBDeOUDxwg/faXmJx8CVHqsS3cw4HmDCftpJ20k/YjYquO+xovvno//1Ba28udR68AVb1d5Twhi2I72KBwrErnGM3y3XwFVIiLXd2VvXHjEkIihmxGSITqObU41iwsEnaLECcBVFawJw9V0uqBCJ01CZIFFBY1cJjJt66La6Z9ENj7dzjqULUpCgpnM3dqqq3CsRYIXYpH2mdwelZbitHNFJdNgjKMLbeot7sEadK/1z44UitAq9+uzQGnL2vxpXoMw9cfW3oOWH5umQifhIDjFHofxkOquO6Ac0yfecsdUEt1gF3o9cwo6R9Tdp38uywPheoNrJdYfHxqrLB5vfvzWDnumL4MAkjnKFlHmCpqiUGj8ImpZ8uEzS5DixEh0QroK8ZeZIjaUszQYu8+pGgvl6oPyM9TKhv4/aB3a8CtA3QfbGkcCsFz+iHgO597uZMeWo/B5+cPbC4IlsHyyL0rqt7aGPhUZ5aABJWsbBZoMhSWkG6e61Qc71QIkjNx2lkUNs9NssfOQwBj8zwpKUCFyEj/9svtpL9GH82RFplAZCWlw0M/ZMWV4oxyNwJsPkfz4nGY7Fgw48W2P1xaZTycKTIq0karBEelGLGHzh2FRduV34nL8F3KyIC4W9V2UEBgIyrFhsKxG0ADdFreSN7PXuFtyfBdh6GkRTXqYly+/kw6OJcApRlaWmHtDWlfJOeYqdbLGVQr3+uslx0a9UFz4PIZuHKzx96/K9ZYaAOeSjshgDU1NbVl4OuUqampc6empv7hKe3ZE7TOJz/O3i2bOVqp8+zxFZT6v25/Jz8+3OW++a385Pm/wwu2TeAbxSWnbOFTV76M57jrAPhS/UxujC5kdnYdhw+/iySZ7rfx4btu4uXD09SPPINvBDdx0f11ftf8K3fZU8l+ZgV37vzSQe5e+0nOvB923DfB/HKNsdK7OGPnxdTvSnjLB3Yz7N2OQ9hjR/lI7ce5vJMnJt4zfoQNG8/gprOfTaIUS+/6b2zZEHH40Jk8a/IO/uXWb/xHDeWPhDnn8kJ0J+2knbQfOJuamvqTqampPwH+nFxoqQO0gJuAt30/+/ZELK06FA/vKAEopxFZT4kafpQyupgWORcPk53d93sdQcF4HdOWdUy2C+eo5/Sqh9+NFmXxCo3CSqHKNegtiGR9Byd3XlfAlTve6SqsYhNgRWwqQOORPMT5Uw6chMVPJXySXG6+swIAPNIBxyvfre+ZLpw7hQMZDAFa6Vdgj82OyP2v48Da8WPscjW4FRsBjs2Flj40XTn7e/mrIjIJamKAXTvWevep7cM8fwSDotqxlLtrcJLnnZtcE7HfmxUmcqVnK/e/YlYcQY+dUu4R+3S8hQO6M4pjWROA0A4Kjh0bXik4SnYlL+ZY8J33uzQwZY93YEvkIW3iHOVikyFnf1buWWQSkbH+8Sv9feiY5jBV+r8XGTruUJcX3u530SGUENmMZ0MGTTlFOcvv3XsY11s5R40WgRsAMEJ/C+XYYx9bncHgUGockYl+Yw7QxXr2SPExVK1G4dBZzFD0UOXs0HUJiucgKiveGXkb5hEmtyD9d4zCUmnlGzuec5SswY96DzFnPUUmH66Fh3z2vfhohgEU9tCmAIufPLpS+BO1Ew0RfOARvnY3Go0HntIePg6Lb/w2c1//CnFQ4uDoKk5ffQYAdxy9jYl0DxUT4Uq/yZlrh485bzgY4S8veS7GJiwO19hzoMauXc/G2pRDh/+mf9zNu1Jeaisgjs+Zz/Ob4a20KfH54UtwlXwyx/MR9x1ZYM7czMQSzLoxjny5QmZhQ/sT0D6Pu592JS+7bxPiHeVAEqLbsJit4VndLrsnruebRzJuPPtC9kyMkh50fPr2q6nMP4+y12Vx/tb/uAH9T2jOOR784meZ+uXXsOull/HAS57LjitezK1v/nUO3HbjSbB10k7aD6Z9GHgtK17TLwEf+r726AlY2UJdVpxI7bLjCJkCLEgv4VxRtsFx7keOrEQ2AzX6DI01GKtRDozN0DjKJIRW49sAzxbOojpOicvlV/UQUA5T7CX7A8eogfejuBMLhFFqHSJri/sAJ0O5nPvA/XpWU+qDmIKdIMsFAqQHGt0xvxcBrXr5J/nIBNYQPuwrvNemKsBKGVSQq+7x8O5Yz+FXgB44QmQIkYcLMTr2wqLcwCcP3Y43dgW49MFIMSjKCuUCkOR6dCv3rORYYMkAuPNtBmIGPl8Zsz4zcNw4PlL/j+/vw5lXPLMckA9c1z20tUFArd3K3DcFg6Qe5Tr5ObYPEiiEQfprgCx/MUge1FayglYbUfJoJHfveselgvT/XemvKeBOYDWBNZStV6wFh+qxN9TwnUbTC72Ulf+Kb/1jXO88NDIkRR/nkguCRh27ISBgjgOtAP7AulHOFeMphZJlcS/ycG8O8pwq6VDp9vLFegc83Fxw/fl5zNqXlfk3sEpw/c8cBo30GTwNmP76V/bY95BygnEKnEExiW/9YnWr/nzLG7Yo1Rv/gfN7fT3OVLFOKlZYHz21kWAnqiL4AfLCwl8l7/cl5MqC//2p6dbjN7u0yNJbfps955+PAyrVDjK6FYCr7/wgrxiZ4+7ZZ/LqSy552PPra85j+74vsjRiOZIFPNidZN+hMxH5DONjr2Yh28BmtcSq6fM4YO7ntXsO0lgzxzvSn2PMX1mge687wM7xmzljd/7ZxsMzXL/pWexccz8vP3Iv57S30znbp7n7ZxkKbuBQcjZevI+3Tr6JF7bezs3jbcL0Di69b4wHzno6p33xS9yxf4J7nnMavx3VOLP2AHsWD7J5aN1TPqb/2aw1fYgDb/lNNnZ2sn5thHtmQGrLdPYvEN10M51bbuO2C8/nzD/6c/yw/NgNfh/tvsUp7pr/Lr72ec6qCxgv/dBGS520k3Yitm5qauqiwQ8ajcbXv1+deaJWdZbhtMuSCmmrNFdJ64W+2FwtbMWOA0LkGThQgZ6Uuwzj3DIOweAjpIhVxIVEu3YZVhRO1uDEoFwT29tpdg5QBNY7JqxOEErWR9SKMzzoQAVOkTohVnmuROYGAVIPBOTwzDhdOFkKkTyfIyUvoBtanTuUzmLJfbhsoJ08lDIlKioi+1YTq9yJFKDcYz6EPnzqWcl6pFhSNVA42AqiJvL7lxahXUCAtjouB47C+VOD4C4HQylZ0ccBsHLMIypCN1WGEostHFK/qE3ksLgi/NIed6q2eX2jXjuh9UhxxCpBJHfeUnGsJNAMMC1YtBKsXfnUs5pcby1nHwPUoJQKPTh/IluLCouyhlRluahFz4l2eY6ZcSmZOJxlgPcSjB0Ed7LiXIvDV725kDvB0nPuZQPWTUMRDulEoUhX2pWVsdfWRZMXFwAAIABJREFUkaki1NZm1EiYUQ4lPkpl2IcBfP1PJAd3dhAO94CuOIJUYQU85+XrTspol4fPWtEr0W6DSGoAXIlYxArIQwMflSvj1CrEHaVshbbKn4zvDE7y+ZOKxeYjA+Thi2kxJw0ZxjHwPAWjcoVPJ3mPSiR4Vg+Iu/Su7wbJ3eNGJr8XpSxGHOlxzNkxcKp4DoFbAdgim7CiqNi9WJ2vSc9ZEr0REYdyD2XQtTjEWYwDh0bpdXnEpNQpu0WcFURlZC4X9XG9597HXFLcvyvebbb/TlJi++vFJyPUD13rT6adKMC6bGpq6v8d+PnqRqPxhqmpqdajndRoNM4kL0p81dTU1LsajcYGcrCmgUPAa6empp7UOiaqPoT/nn9g57e+yr7KMM/xWyCK2e5RTPIAZROxfvV/QSt5hAYMjfZhrhs+i9r6v2L3oR9nYvc2Nq/bw+Hp9/DR/T/LFWETc2SIm5Kr+eXRZW63p3C3nMav1R4EcnZkzz1z7Nr2Zf7vb2XEoeK+U86g9aIXwJbb2bl0CqfzRc7YV6F5aJlTJldxK4Y7KhuoZTHbvmjQP+PwS3dSveccFlfXaJXLvPqbX+D3nnk2N6oLuWz8S3zozuv4r8997ZM5fP/pbenu79L6w1/lGeceojyekKkSiW/wo0OotRnpBRXm9lap3vJ1pn7p59n67n+iPDTy2A0/gkXxATqdu8E5wnAbvr8Rkcem9x/NutEephe/zcd2XcdXDs/TMvOI7hCogDds/01esemVT6j9EzW98ACluz+M2fMV5qIWndI4yboL6Jz5OqpDa6kp9YTv9aSdtOPs5kaj8eypqambARqNxrnAzd/nPj1uk6yCosOKhzO4C9xjo/KfHWWgewwDgFqTMziEZAOfO6njZBjsIZQkeFbhVO64GpvQMbnTFTifjqz8Cc5zJx4K5GAlk+PhgnfK1uUyCDp37hUOT3IVEsRDZC3O5nvXngjOWTI5FgapQtsuh3kxmjLKKpJeHpJLqVvFjJrHMUKfF3L5znxASjzg0niSJ85nrDBb2mZkSpPn9+ROr0VQUqeUHUWpnP3oYFHOYu2KI6sG8s4g9yd77zfPKhJl0TYrQC+gXH/EtORj34NoASkoTSoWl+UsjJZlsh7gwOKpjMRNYvHxssNkapC1cAQYFGkBO459JtpZUtE4GUfc0byPBZAVFAkZHrmCZK4dWZwnth+UZyQj7T+enBWxxf0a8hDSFIu4rO+I+5LinIdlPO+ROIzNSMgBncEwqAF4/ExSvSBTKcC9OKxolNRxdPvPEXqsLETFffVy4Ho8o5acDTZYhA4pDiUrgE+Rc1b5880oOw9tHU3dy/XLx1mRZ/OIZBiEiuuwrLZgxUPsAkrIpfOPI5U8ZYlZEegwzuI7iGUleM2RK4Km4uXZgeLTg0mDgZy98fAlIynAQmihqfL7GLdCJIZ2L69QHF4xmkWgL8ICZYmxWtGkB/RTYnVsx5W1WFUwusWrQA2A2BwA9tg6hbKKDEeisr7oTm9tGgREUXMxy8Vcy9UGe+84259TK3Oix1QLucijHBPurFSKQ+XrUzSh1Xg2Y1k/8tZAYA2R6o1NwfAVNdWeSjtRgBU1Go3/QV5o2JHXwXrUnjUajQrwN8CXBz7+U+Bvp6amPlq09wvAe77nXj+KJUnCx2/8BnGacuOWM3hz9X4A/vWOj3LJyDx7l07hZRde/KhtNMolPhaM8NaDVd679l6yozVu3v10nrX5q+w//DR+ob2FyCzyrKXrKddi/ix6DePDiq0bTiUDFnbsZ8rsY05m2XwQDo1W2Xf++bjOjZS9Lu9bPp+3ssj4qm/wd+ddzp3rGgTXHeK26imk24e5df2pnL7nO8zO3sCp6QKy9wB3rRtjzdwir77xy9z2zNPxyv9Oc2FHLrV70ok9IVu+b4r4v/0S2y8+hA00n+LFfNduI+vmUrlb2M+59i62bdjF+Dph5J4WO379dWz9+48QVE5cztNZR3fPPSzf/U3cQsZCc5xDzTrz3X1k9iCVcY/NT1/PqedNYPyHUv2PZEkyy4GDf0qz+TUAXlSFF2wVbj1yDjPulcxUv8Ff73gH1lmu2Pyq73l8TtSku4C+6f/nE3MLfG7kIvauvohKu0WQptjlgPCbt6PtrXTCKuGGTfzE6kkuH65iTs7Tk/bE7VXAbzUajRa5bxECs41G43WAm5qamnjUs3/AzCvCuHoiyCW1lxZbit9N4kTjXIbGx6lxxLXAzQ20UDiW4ufOpFUoZxAJMGSkaBw1DA6xR1c2rAviw7MpEQ6rhBCVO9eSO6n9PtoUI5YMg89WlFtGs5KTHLBEKBktQpTTRUaLoATqmWZZ676TpnCFWx/jOUUbXQRGtRHJ60gZNUtKGy/nSUgocnkKNqaKpjXgaEvRpk+KtUJaOIzaZQTM0FIZWIUhJcERWId2KZFq5n1y6hgZgKpMU8ax7EbJAOMyatbQUeq4kKk8hMlXAmiUVUifQ1CIm8C3c1jJVgRLcm4OgwNSMqfw1V6sWEatYpZlLBWM5EVRPamDEzSWrJCppmAVey6qcBTjIJPx3AknByopICocoJByx7ZkLYKHUoI4iyalx+sdEz4m8zgnlOwoim7OLjmHVWrA4RWEoAAhrsjVKSM6wLk0h7Gux2SC0SFp1u6fm4+U7YecBraMlWHgwf7cTpTGsw4jNTxbQjiKpyyJzTcJPDKyQttO4fDIZc6N9B6XIJJfIxCPVsFSKTaB24uPxrcKX2UENqVtbR/M5pL2WR66W/B7geoSS0rsNOCBWgd2muNDLn2bEqmMhFz1sRf6aJSjwNQ4MaA2gSvqzGEx1iB6LeIOolSWbwa4XPkwB875bNX0cqkMVlXIKKHkwRx8YKllmi5CVwFSWkFqQJm4GD8/Z8qLccqFUoR2gbhzhtn1V5kSSwVLLIbU5TPGuDJKNwekXnpMlsYnwjqDFOMBHkraOfAoQgBzuGSKuRAXbK5DxOIG1pvHDIqjoCdJspX1r1Cofp5hmAM0cTi6aJeRSm+15CG21gH4JDJKiV08lXaiAOuV5HHvl5HPnnt57PDACHgp8HsDn10KvKH4/hrgd3iSAZYxhmc86wL+vNni1Gwvk+ufTeIy7pv5FhdtWmCu/Buox3D0zli3DZag0tX81kSNmxcr+Pu3EG+4hZes+SK1m97KffbLXFxf4ub4dHbLBsaqDyKTZwKw+/qd3DN5Pc/alVe+3r1tE0utJlvPaBNlHqfcMM+7L3kBb8w+yn9pf4ZrvrOfBxhn8WCVs/Ve9g+NcNM5LwZexN27d3DeHd+COGZ2/SrU/fdyzuIcM5ePcXZtDzfO7uT88caTOYT/qSyxjt1xTOvoUVa/5RfZftEhun7A51b9Bmr103jexGrWrl2P1pput8PRozN88r6bOG3/hzn7afdy3tG7uOWtb6Dx9vcj6tFzDZx12LvmiL/9AGrZo2WfxtfVQR7wDzK/6kZa4QypigmSCpN3bOPcWy7mslefxfCaxw5DjOPD7Hrg9XTjGT51/0vZfXQ7rzp1nHWrdnDOqk8g/DE3z7wEPXwpf3vPX7O1fipnjz79yRrGvumZHXz+q//MN+fWsXrfHBcsXcOFx+WrZWGFeGQVaX0Me/8dfHxjg49vP5t3bFrDuDnRV85JO2kPtampqfXf7z48meblsS9onRaqZzEeM+DGCCSjiyZA0SHAIyFwuZC1ZzOsp0iKwsCOPLTGYDCWPJxPFEoJ2BJWCVpUPyRHQ854yQhKjpCh0FiUWHwXM2dqJJ7PaKsJWHxnadNjgir9/iscw8ySqXVMumU6dhjfOpRK8XCk/RyNfDfaaB+bgpKY1JXJBDpylIotoyXAEICMknodxPr5powLsG4ZUYAVSqIQZ4CEzNp8lxyhyh4St5UeZwEgVhHSJbE+mQK0QmV5KJuvOmRylMCuygshyxE8EqzoYud/AeMNY6xPV63ts23KrYRxKkdRV0jwiKjYGdoqBDbiiYczw5TcLJ6N2Wjm2edWkbEWz+4n9AKaySKpyplEXIYhIqWEUxR1mbJjwrI8lwtclMlIdA8Ed/sAwrcpvioXTIGgcJTtPIomTbWhzzTlZlEsFkGKKyyWweLEAinDEmOJEUISQnyxWGsLsATKrUMpheYAWTH/EFswdTlbgPMpW4vWDq0Dsmy+34c8VNOhVA8srCYWNdDDHI4jGmQEJx5wNAdWyqKLfmtxZD3Q4UApi2cF2wuxdXl/lOsxeQ5lLQkluhhKxAyREZNR0vtpESJiUG41TnKgZ4owW+cK9lNZMheg0SgV4hDiQRYZoYKiYyEbZD7zaUiQGUSXMWqeDEdGmM9x56GdJZYymgTlYgJrsfoojtFjnmDFemhZg5FpPNUBF+AGVP6UytACAULZajLK6KIsg1EWZ/N3gU9GjAZn0Zji6a2EcPZAvedSRCkqThNbTeKNEiRhcc1cHTNnji0aiyEj0j7ldBqrRoltSF6dbgkYRjsLro2iRhULHGGZVYDgJC+cHoig6VKyCb60WQZ8bXHO4mHxbS/Py2DUKjybIaIQ5nEuRVHhISqKMo4vS4TeD0CI4NTUVLPRaNwOzE1NTV3daDTWTE1NLT7GOSmQNhrHOP+VgZDAw8Cax9PpRzMR4YPDq7lHlnn/3o9jh6/gq7uu44KhBea6I1z8jJ98zDYaa88kmL+fezdv4rfO+Hm+s/+9DDfLfGn3Bbz01C8S1fYTHLwWf8JyVfQq1qglhvQS8dBmDh98J7s769i14RZe/82U1Bg2XHEH6737STLL3bMNjp6/gQ9c+FrW3N3l56c/zYtndnD1+Km8M7qSjQfv53kzN/O066b51ZeexZ6Nz2fqlLN45tw0v/jut3O0qmnOHGHmixNse+kUb7t7Lx9/7umPCRp/1Gwxzfi7mXmumW/STmKu+pu3cdFzDpGEHv+if47Z2Qxm72THjjsZHh7hBS+4nNWr17Bq1STbt5/JwsIVfOlzb+fS9IOcF1zPbe/972z91T96xOu5hYjk8/toH5rlmonP8LVVu9jnH8AWUqplU2FTZTPDcch08yDfGNnBrfEX2Pevr+M1r3wFYxsemSFLsyUe2PNrtKJ5rv727/PT0WrOSau5lpqsgQ0/zgNrP8sFkx9gU2sTzdJa/r873sY/PveDhCZ8xHa/V2vuvI5/uP47DO1cYmvrIAQhlVO2o+tDmFKZcimkjOXQXd+h+eAeRufuRc66FLX3XnZ1Wvxy9hz++ZT1DJsTZ+1O2kkbtEaj8RPAlcAQAxFGU1NTz/9+9emJWCusMCH76bjNeQ0gcUy4JZpuVR56VOzgps5glcNYjW9T8uwdjSc2zxlxFmQZjyF04SAf0kNEqsbaqEUsZWqiC+CRUtEeURaBDlFYtAg4h4dDETC1fhuJlDhn9xQlm4eYaZvXYModPEclU3ja4ordc0tIIhM410E4TIYlE3CVEmGni6OSy3ebYSRZ6I9B6GKUhHmkH46K6dISgyfCuH8EG8/S0hHW1tGEaJdRc3tw+HhZQiZrCIkxpERVDzpCU1Wps0wiHmU6KF0mcjm7ZHFFbZ91iFP4apmu9ViQgPECrC7LMIYDOEnQZhhchO+6IBWQJHdGgVDmUDKN0RUMy9SIOexPoDMPRYtYBwQZJGozmRoGK6hCPXEy202EImEVViaZrx3ANDM8aRHLURxj4FKU5Nfy0oSqgZSc1cgcKOlSIsY5jZYMU1bQBa0UsWicE0ZGy6RzTZQIqazHqjlAYaWMsJxnYrkcZPkuJZKcl1qVWazyaFErArYcSmJCmSbm6YCHT4CxESEzIHUqfhlxAUuDIo/kkvBZXyJEKFmDUQ5PdUESPOZxjKNUhkIRKx+PNqkkYEvkdbc62KLorqMELBJY6EgNXxIcFuUHpGlC1QUIMctmM0iKEAFDLJsOJmkCNXL+RpGwiHYBFa+EpFHOqaoIA4y6PRyi2NMRyEQRoXE2F6ZwypCh8V2IuFYOMaQJUsMqi7YOozIyFD4PUsWRUqbNKkLJgAhxMZEyeA7EaiKXYFxEV3ys5Pl5mdTw3TwxebqCBlIMJdfCZ5bAWAKVEdvNLLkDOCZxapkSs6SMYZxDSZ1MaohNKFtLIg5PMpAQW1aEiaWZxQUzJnmIJsOUXAlPZtADqVqBTUjxSL2AIFkBL4YlQpcBKZoYbcZJlU8kPhRMoFNJPxfOIqTKI7A5hAukCW4ViCnCEy2+zFMnL6KtraMsh4lMQCWtoS39AhcpPs7XlLspnlsgweLLUZwL0dZSswrr2bwMtfEIswzxVhQrnwo7URXBtwNvBN5cfPSrjUbjfz6O6x3Lr59YPuX3bBdnR/ire/+CC9dvB+Azd32WxvB+Uv2TGP3YAxoYjzOX93DrhjOIb/gmr9f5pN47vQ2XhBzZ+jGeFu5mplXlW+5prFVLbJJFDn/5vYSfOZV06BAJGZv2KNTk2ciOXyZ0qymXlnlweT2fet4rGVucYfq2DqldxdDwItvjSwF4QDyCNOMFa77ACw/8K5v2vpm37P4HdtSG+J03/xmt4Y24So34EBz82mpOb3+HD88+Ktb9kbOblzu84r59XLtvP5fPHuAPv/BRtp/xIOVaxEd5GbcMN/j25jMYenCG8264gWT6MJ/8xEfYs2eFLh4eHuHsn/1zvn3q72NKlnPm/pHp27/5sNez023iD+3ky53reM3pv8/7Rq9jycZcql/KW8/6cz506cf4txd9gb+96L2847L38P6XX8Nfjv0aY67Mp099N39/zQdYmuk8bNvOOfbueyudzj5u+9Yf8KetrZztD6EvXI152Sb0eZNwNOWUG17A5N1/y6ha4vUje5m0h/mX+568Sgq7br+Wf/78jQzftQPd7XD6j13B8PMu57Bf5mA3Ye/CIvccPswdR+eYeOEVXPizVxJbj/mbv82pXsbW6X2MT32XPzhwBHtSofGkPX57O/Au4LeA3xz4+qE0f3gMJwrf5o5NgLBauTwMRxk0MSbLivCaCBMcQehiWMI4i3VCKnkmgXERFZap6/0kytBWJUDRUTHQpOyPAILT6zAkVP2sCG8DZBpfFlB0iPRaMl1FiSGlRIyPSJGzoRYxklFSMcPSJbAZoeR8RR6450B8VNAlDTRR2YBRhQpgC+1SxJUQEjJRGKcoq5SqS/CyGO2FxNpgJSPFYTOFLym+JFDwA77N0ER4tDCuSkYFO2JJJ0oofw7PLeIFi3mVJzF0ZR3KeaRU6VLKd+Ylz8vwrCVwEZ5KyMSQGo9Zb4S28hAX0qluBmUxLKNIVxzMoEJJUpRkiFh81SSr5vXKXLiF1phFSYd6cpSyO8yIN0sgbZT0ZApydsdiyaRChiX1emqFXawUdajIUCpnDTyVogQ8r07ZD1GSEMgcFUkJJEPIUAFYX7AqoJRF+FhuqTS4rXQaQoQVwUqIqFoRrgngWBqeIyppAqUouwzPZdR0l6paQ2S2sKjOwCmDFUfoqlSdLkL5Mow0KZMw4g6hXZlIhygTIEUopC/T1DnCiH2QcduhkrXQRZBjhQOEeh9K2ghLJGJw4vCtJRWTq1iK0PUNUS2iJAmiR0HGEPGJy2PUxCejQqTKrHVH8PBIlaFryiSjKdafBQHDLE7l80kVmWseCRU1x5DK15IjF4Vom1rOkI0mNCc0qUjeHwQhQsSCCJGq50BBPBBDSRbRKiEtg/Pzu8z5uGWMs4SqQ9nOU7FHiAt2raQztHE4r4UiZthPSfGp4/BcLnOQ6EouViFNhshrd0WUiGQoj8C0PuI8PFFYtQ4QEgWZVgRuEZ92Lnmvumg1z6RepOwUiRrD6iG8sVWUR0qYaohWGmUzlHU4GaGs87WvgZrME0uIxrLBHMFzWcFWFlDCRhzRVY6YOoKjzDxaHAv1Kou1Elo16Y64gp3qkHpBXlCahEytYUGX8SXEoPDQhLpN6Oe5gQ6DJ461NFnPHKn4xJLP4gifrja0ghKZKAI6BFlKZGKEU/DVMGVSqikkFZ8kMGSeT2v0B6AOFvCsqampVwNLAFNTU38MnPs4rtdqNBq9LfV15EIXT6qp1jS/8MWf5v9avp3u9p9h/+I+GpXDRKnPc8+88oTbOVMsdw2dRuu2T7P+J15H4gmn65TRfS9EqrcxXIv5FOfh45gwMS/dezlj97yQaHmSa4a/zov3JEgkpBOnc8b8+dQfOJ3MKXaOP4cIn5dfezX7R7ewx1yA781yZud/U5UOD7g6h5nkps6ZXN6cY95b5qJDn+XrN7+OLdP7+Msrf4NvPf1S/LEJ5u8f4oIDN/BXB49wfzd+7Jv6EbAvLDR5+w3f5mXfupZX3XIdo3fexFrvAc4KdnLATfJTXMsb439CRjL+8md/mU+84Re45LZbGJ6b59rPf5rp6ZUpKSJse9mvc+fwlZSqCePX/Apx51hdF3ukTfzR+3nP6P/m7avfR215HVce+UP+8bkf5I8u/wMu3XAZa8prj8mTExGe/ZzX8s5nv4Xt3Y18acsH+cePfZio/dBChwenr6bV/CozN/8ur2tvQm2uELx+O+aC1ehtI5iL1+D/0nb0+ZMMH6yw7TtXsXT4Gbx+okX76IeYWrjnCY/pd+/8Jp//+p1U9+7EGE3jsh9n6UtfYcPHP8ZP3HYHP7P3AK+xileu38zWDZu4/fZb+PYD+7nwF9/I1uEm03fexqrZgzx99w7279nF1XNLT7hPJ+1H1m4HvjU1NbVj8Ov73anHbfUJOmsUykAl1azGISqmVbUYtYyWNk5FBLJIKB20SRg3+xjWs/iymKvlOciIsc6ggirN8RFAIy5PMPfIKKtuLkUuilRKgE+FGSAjLhmyMEJlaR4kpWK0c2jnCCSl5rfAr+OzAAgugI4K6Og8y6ura+Ckr4BoJCMYOky74tMqhdTdEoFtE7guCEQVoemVsAgiintWj2Elz1PJ0GhSTBbjZympb8hsHcd6UhWSqIBE+XkmkkCiN4IK6FS7RNU6h9QYh0brbKCJX3g3kfLJBKysxRHkOUTSxUpA2UrBWFhW+QuIU2R1DxnxUPUxKvUqbRXQpEzqTJGNohG9D0hoF2HjmXhUVIwSSL08xAoHTg2TmZi2ycFT4HUQ6aDEA5H8GRUhgKn28cgIJCny4EDCDqgIqx3iJfj6ME4dIPFTNnkH2Rx02KQdGZMoDIKCQOjUDEKMCByWECuG0LUI3HyelSdgJN/7Nwa88Rg1OU/F+JSNT11SuoFPSwUkrkJFAjzjo0oKp3J5CM9m+LZLLCEZNTRjODLaw3VEhYgJiMXgG4VPC8+1mJC7GdFz6F7smVZ4Js+fGbNpHupVKL85yQgoUXagjc3DCL2eUHcHY44wOjaTlxPWCudpYtNBK4+kHmDXjCElQ1LJFfVKaZMwqTFKl7pdQinBUzElbRnyujRZR6w8YvJwP8IQqwPqtkxZlgj9CKUMmfXxaaIQdE+VUDJC1UJLh1iCXEgBL9fLdKCtx7w/xtGhYQTBL7XJAo1ygicW7WuSsmBUE62g6nVz+OXKJAVjl4cBz5OqSZxeC/hYqZGYXkZfDZElWt4kkT+G1pD6oEyE5ysiXcKJRlQMKs+P01LCH/JpeRltv0S7HBH6jrIveEXIcEUvEckarJTRCFU7h6h5KvoIVQ+MbxGExWoJi2ZB1WlJSIbGOYvO5ulUa2QSsDxcoTVUolUPKZmELO1SkoyyWsSjjWISTx2g4s3hmTaeSYjWhARehuhRFs0QablCy4wy4i2COsqyqhCLYXHIx6GwSrMYhrS9MFdK9So4qWDoEksJX1fxS3U6Q2toVseeqjd7vrZO8Div0Wj0S243Go1xOL7k+QnZl4CfAj5Y/H/t42jjUc2WRmg/+7eJNr8I51d517+/l1dvvJcjnecT+EMn3M6568/gfUuWXfWU8XKFclpic1JjdN+LsfwrDni/egUb1RKnpjWWRqZ4nwRMHrUcDqd5670xjhIfmZhn477PcOazbuObnZ/hlqGzecnXPknNZWy/6Bbef+RMfm//85kc+gqvWH6AD7ltxMFhPrnmxVypQrzs/Xyhpvij2Wk+fcdv8Dt7fo9/e94L6YrjRTs/x9IdIVfYj/HWymv5wNb1eajHj6jdsLjMv3/hs1wyc5AJWeQ56Y3wjQ7nXLiH5bRK/ZmvxY6t4TSb8tHmDt47s5t3jL+Ee37rTfzpZ/6JW5se1/7bx3n1a36RUmkltG79lW/jgf96A1vX3sO+9/wJS95r8FKHMgKp5e5gDwuyyDMPP49f2PYrbDt/C/JIKpUDNr7+Av7Yz/iDb/w1n1//AdZ8cA2v/qXL++cemN3B9OF34n/317lkcTv2jBqll5zykLbF05iL1qA21+Gze7jg3l/huqWNvGj71dyz6w1sPvsaAm/44brwmLZj51189fob8A/vwUsTTs9CNl91Fdpa7HAdGRtGHWqS3HIjXpJybrnCWRdcyPUOPvG1G7n8Ja9h0/V/zXWHHPXmEi8W4e9HxnnxUOVkPtZJezx2LbCn0WjshJUqpI8VIthoNK4iF2dywBt7KoTF7y4D/oJcDmCKvLbWueR5wvcXh313amrqSWfKtPiMrIo5MgtRWubghjMJJCBJLaNzMThFN7FUscS+EGc+LRkGFWBdDQFKzpFoR8mFpIEhHS8hc4XTXvLx41zsW8QR16rYZq6GF2dlAkk4ZTxlvjNBe7nMQX+cuopzBUAnBAJGbcHKAtalhGmCrfpEHYNT0A4cy5VRRjsJSWxIxKBVxkxYJbKL1KJVlFlA7CSJgrhqycII60qYRWHRrzJdr7B6rsnGJM/xMhITJgmZsjTXjBEfGKFViQgTQalh1FKdCgnVsMXsMniSEFc9lswIQVPTSTVRNpmDT3GknmYxrON1IHGGdOwQMmtIWYeTlE4tIMEQtDXWCdUkJvMtyi8hvsZJRuoMkQZPfDwXoE+tkX63i0NIXUpNfNaucSyVgjxnJwXjZUgmZATYLKDpCVUehB4BAAAgAElEQVSxqNQj1muBAyCWxOWgMbMbQS2TKA1iUfV9xKX1ZH4JPWuY1xP4aZYn9Mss2nbxPYenEyQbw4ngezPMpSM4LyIjBRbJvCpxrQT+BnTXolyMVh41s8zM0DCR0WyJNlAv7cVZg1XrEBG0yoVJPGdpjgzhj3WozEyTRA00joB5nFO0GMVD48goM8Oc2ULqBZi4RWhSkqSKuEWkCi6OiVReSsQoj1BrnMmoZRDqJZaGmtiFBCVHiNQYUgowC1BKfcpGo0wbUS0ypYl8i5NJBIMhxqt0oWsIh2dxuooeb5PNrGOzCVAuZU5pomqIaEFmYwxtHAGd7ExSs0Ao0yzIODZrUkkXKQ15dKPT0MYnHjZ4rTZKYqwnkGWISsBXGNvFS5YJlSWp1EltGfEUJa/CUAa7dYkFKdMqrSpq3i0Ti49T+XwTZ3FDw1Ra0K1XKLVBu1zcBnF4roPDYF1ewSwLh1mOy5ScD8zm4asoIjxMJtiyYtkrYeMhMplH+YLXBb8ENlWUcDg7gvJPR+mEzjio8jKuFLNqvEM9WqKbCi7tEri1JEbwswQYIXYJys4iXsb02Baq6RwtF7AQllBVh2utiPK7gr1zCBgvF9VQgm8DbMmji4Mlg3I6VwQMDSqdwPcdqJy9Xq4GKCDyDZL64Jc4FNYJWinOJbRGqjivSxSHuHIZFiEdg92V9eisjvFjtu61SDBE0/eQJEZJmcBPEBWgjpd+fJLtRD2cd5IrCG5sNBqfB7YDb3q0ExqNxjOL8zYDSaPReBXw88C/NBqNXwX2Au97nP1+ZNM+naf/CgAL3UVG5H6UWJ57zm98T808Z+1G9MIubj+1wTPv/i53D5/NZdMduuLYdKDL/lqd/d1VPE/v4rbVdfamX+AVw5qrBKoprN5jOFIpccnZ57D+H67i3tEyH7Avo3HoMOfceztLz7yU4cpNnLNxhn0Lr+D01q28Sb2bq/mf3Kd91qaaytgqnjd+Cde4G3jNoWG21O/n9679O8SlfPqSH6MsXS6NP8vGe7/L/ZPf4UPDNV43/vgc6R92u78T8Yl//zdOmXmQ89NbeBHf4N6bTmXDKQ8iHsSv+RzZ8CnHnPNa4Gn77uB30yq/dsWb+LOv/D33tkt8/pqPUznnxdx6YJEHjrZoTMe8buQv6GRvY73/Ma5pP4MpvYWhGLbpNluiSf7g4C/iNOglg5vtIqtOLPdpfOJi/ujCJd5001/xkfF3s/WTa3n2Tz2d3UfnuO/+N7Nt92uZPHIe8VkVqi865VEVI9W6Cv7Pn07yqd28cP+P8ZnltWx91lXcPvUqntH4CJ63ip1Hlrn+7hnu2LvAdCumnWaICGNlj6etr3PZGROcu34IJcLeBw/wqS9+jXShw5aleUYCy5qhA4y8vMWQ16ZqHuxfO3NCZMt0W5buff/G879R4vDpZ/OVVouLt7+Mn/Y+wicPncvQfXdycVjlr8ZG+bP1P1SCbyftB8P+EHgN30P0Q6PRuAQ4bWpq6oJGo3EG8M/AcwYO+XvyUiQHGo3GR4EfA1rAx6amph7179wTtarv022P4zzBVUZwXoJF44YqyMIizjp8o9BWYYzHku+h4zqoLhk+3ZKPVYWsQzelG2qM1yUhQ7RBXEqnVslrKq3vEHYjWk2hI2UsIQpYKm0liqZR4uEEOuJjJMrD1gKDpIpIDVE30/hkNMWjPVyh1NzFzo1Px0qFyvIiumvRzTZIh1QqeHY9mR2hGx5EFTlL2l8EM0RYHcJbmgWzxLCswga5dHTNLqFNRjw8hEurlFxEVqniTIpSBnEZojQLdjOk+wjEEpUUlbrGtUuMqYSmrWHIw+9UUbrVjvjopImXtYnNCJ3JALvkkaaGxPcJVIJq5aWEe5oSmR1FiRD6KYHr0BmbRE9bStIiUytp86WywqSaVqZRI5aRo/M0nULJML4Ryjqgk/SqIxmkXMaFZViAKAtpmjo1l+K0gBicCCork6Qh1RGP5U5Ism4cszTOTDBOqHZTTh2LRzN8LyVyq+mMB7TjEt3RMSTLqDbJM7XEEWmLrVXwVETUUXgiVNSDLPkhplSig6UUh7hkPdo18WQRIcEoQ0SdubEJSsYyVvMpzwUc1cOAYcgus0yln5PnUEQqJQmPEHZC4tihyHBqkiw7zPC4Iz40RM0EzCUhqBKRGWNsjU9p9zJLaj0qcHSrHtRDonQYFXmE2sPLEpQzeDohUwonllQbummNIR3DxmX8yYzb57agQliflWhnKbHyWLRVjG0x5vkk5TKWGCuCeJosHcE5iEsBnZGQdlojbJ2B396JzyjK1yx2fZzxcJKhlCWqlJCmj9JdrF/GETKsl1GxJinVUZGHbxRd3yc7zaIPLBC2hqjXN1DJ5lherLEoZ5KZOl09h69KpBJiVYSVOp5rkbhc+jwQSF0KKiFJn4HPLhbx8SRFVJlQLF41QDc7pKKJpRC8UQpXHyFtt/BdRLS2QierEj7YQbOaNmOk2kNUN687JSUcKUop4pKiEy2TdmtkAr5oAi8iiaFLDaUcQZwR1SuUmx1U5P8f9t483JKrrvf+rLVq3POZh56nnAydkcwDJICAiIrIqBBARPB6Hd9XvcKrgqgXFfF5UVT0XmSGEC5zgAAZSEhMICFDp7uz050ez+k+Q5+z55rXWvePfSKDaFDIBb18++mn965+alXt2rWr6rd+3wGBJA8DUBFIidQSKR3ySZdUTVITOWtCsEYd7Tqkzizas9Q9w1RrnlyHJGGVMGrhKIm2kNbKRIGlLGMK30MlEmxA19lJZlsgSmj/5DDPyhuw4jZASEyQIxyBESVOLzbh2ojIU5jqLtAObvkYstBoLemJJ5b59Z0WWEeAJwNnMTTpbzabzW8vGllHs9m8l6Fr4LfiR/4N+/dd4fU3fIqXbbuX1eh8zgu3/pvWrTiKuc48t05ezCu+8mGOp5eywWzgpHMLpwvNF+UFSAwbZIeVqub06hFW9j6fQxvfzS/M9yg6ISc3Ndj6Dx/DPjnnel5CKhyuuvn91KtnU149m3d+5bXsLTV5dm2F17dfy0T5zfxC/gk+bHdz1qDDg4NlfvKKn+Gm1m38ufsi/iD6FPUN8/zah95FMhLy+XOuZsPEYTZ//CBX3vV5Pl4b5ZrLL2OT/8QK937QkBjD227/EnMrJ7jI3sfT5b0sn/VnVO/6Y2qbE07t/iXstxRXj+GCzefyvskBv3XPXj42+xoue3SRZC0k33uIHQjOFIKqlOx1C+5aupqfnXmIi+2beL/9SxqlBf5u8/9gPJng3M5P8KPuLnY+3MLsXUPsrONcOYMce/xG75bpZ/NbZx7g9x7+CH/dfju/c/PvcVf8Vzxn+Wcpr51F52zFxI/s/I7s+EXZxX3hTopPH+HHD53D++/8Pc64+L/zN198K7cc/jHm4yH1xBcJoRrgSYPQioV2iX2tAdc9tMhU6LJ7tsw9h04yk5d4xuLtbC63+elND7FGlT1mOwt2nMV8BMcqtno5O9xFgsE8U+Eio0/KKM6VTBzpMHXLHr529GycCy7hWvc23n3iKnY9eAc3jU5xYPw57AqeWA70D/GfDvcBt66bKH2neBrwcYBms7lvbm5uZG5urtZsNh/jqj7pG16vAGN85/T57wpetcyx/mVsKK9RDmv0xQqoYeBrVneRKejB0NnLSEVRleSFj5umCJtilGRZVKlJiTtmEKGL7W+DcYMqLMIN0F6FxAHXSwn8gKju4GZdZA4aTSFC0I+Z7Ah06NKSFUq6j3U8KAoKJ0CaoeObkB5ZeZZsqgfCBSPIvQrkCkyCUYq8tpVSdwJSyyKbmZAujjD4QlLggpR4jiIWDjXtI1WGdl1klmFsGVUJsaaMQ0FYKlO2daybEJiM3AqctmZgBakIycpAZxuOE5GakEC4WJGuu4MLrJQ4KIznIfISwg9RSZvcc8gDF0cKwrqm0pfY3MWvenQjjbE1hMwIPNCFoetYfDoo1UKbcfLApVAaa8FiOCZPwwm7uK5hwi2h+hYhNEo4WCegcAJEXFCEAnyXA9su4PhRRW5nqZkFCAQlx7Li1KmbEGOG5tNtQvpCM1NKAJe4PIUQA+Kaz9SJkyRqjKgsWXInUEg2+KvowVA3Z4TBKxzavsNAj+D4MU6u6NFgsR5SNVVqJqQjRvFsn1HnEQqnoLAeNWmxocfmUgujHZQQiErAKT1B5tcpxYv0bZVKv0eOwRFfTzXTEhZlAysFWzgB7ELRBOHjColyZ9DAiYkaZbufQEasic2YrIpWBbZoYHUFI3M8MjJRgIU8iwlNidgxrGwqMdKSOJPjSKeCIw5wKPTxDGwuXKL+FCDppx1CHZNMziBcj9T4mLolVSHljiV3FadmAhSGMK7glMsUoyVs3sLaBJspwMG3PoXQOHUX02edKmkBRawrFCIndgNUEK4bm4CUEq/Wp0hGcFQIxsEIhRGSQmVoWdAKG/TzEWbsEpgQwwBXKmJPEQpDmFsyIejWq2TxToIipWozqBtsL6FXnqAoK0R3gJOVCSmTix4SS1pu0Men5sQYo1lRDTKbUjEenlwF2UPTQCYVdBGgwy5SSSb0JKdKPjoy5EoSiGFgubWgc4GREu0MzUgMAutAYBPMqKJIPdy8wCiHQlqQYHSAFZJUeCQGqqFHJjVTukVvokbPKeMIl7DXB9dgFeSBS4hGpTXSGohKRMfZiC18stI00igkNaQ5jisdRp02hQNdJ8RoDw+Fmw+py0YqpBhB+wOckovoGYy05PH0E3p9/7d0sJ7RbDa/8kTuzPcK1lo+sqfJjNpDyU04a9f/++8a52wrua6yi2O9v+e59V2oeDNVdRuF9Xhv+6eYGz1A2XRpFC3OHivxPucIAstzHsmJCenXpqicuI8HL97AbVzNrocfoNzv82ebziMhhf4c9Of4GHARAc/Rl/Krzif4XHoh1u1w/fgI/2V1nG2V7eyfvYPPP/Q6fmz6tYiHBG+57y1cOz7BR6d+ll+/6g9xv9Ti6XfdyJ9WfN524cX/V2VjvXXPPnYefIhRucYzuZfuiz/D8d96Hec/qU1HTGKv/Je//9WFPvf/r0f4iRWAjIocJXY79NUa2/Uk0nj0tKUbKwiu5J2ty5jx9vHzEzfz/slH8GXBa3c8SsN5KwAHswrOgZ9m46ErUAfb3D3qkD1pnKvPmCRw/+V29KU7foUXru7ng/JBPnXgg7w2fQ5Wexy8uMeZV175b/o+hStxfnwrxaeOsP3QRt54y5+wisIJjuNPfRWnuhfp9gBF/PWQFErGRS39KIPBbu6fX+TVzo1MLh5hkRpzrPB3W15IccaFPNpZ5J6Th1hs+bj93YS2zJSI+clztvDMi+aYf+gmyvvez4Yd91PfFjH+cIdDH5nk0CU7eOnsl3nnsSu55rZP8D92zPEn5+7+jj/XD/FDMLxnNefm5h7gmymCL/xX1pkG7v2G90vryx7TFHcB5ubmZhhOAP7u+r9XrjM2ysDvN5vNW76HnwOAwh1BSIfCjBJKQ9bdTHXqAFBBl11MWZA5AV5rOOseOiHW0ZCCFGCUAeWRmhyCr1u3CTHUXwkkYt3QISKnL3KyEY/E+ojMG7q0odfJPAIsZEFIIRRCCdwwQGcxuQgQytCjTE9VQGjSmkvkjyO0QC4NsEZgRcGS12A+UexO+oi0wPc3oGiBHe6fIMBKSTw5Rs91KQ1GUDbELS3hOC66qnDdMjp10EkDJRQICTrAkZIcRTEt8JfsUHsmQxAWqTKs3gAiBSxKaYqgiiz5CBlQNBSZrDBVWSVJPRAW5ZdQLug8xHU80BGpUhT5lqEJhPEYHpav/8nkZrLuJEVgyZXAxGZopS7rmNSHkQyb+dj1RDCsoD8xSjDo48bDzCGBBVvHlqapJi65cvDNCqvCZ0WOMGpnmTV9TlkXMCBzXAHCuvR7G6hVj2GEYHHkEpSXsC0z5MYnZY0JOU8sziSplRl4gkZaIXUjcumS1yT+WkphXYxysFqv201YchEyGGtQrNbIypZE+wxlewKMwBqPeHOd/pESXqHIRqrUjaGcZKTFNhyOISoJ0o1IyjUyU8KJE5CSiBL99Eo2ikfACAwltCNB9rFWoasuDCRIiZIe1miM51Pu93FljFQORWGHxb7NCESIkR7LxSgdEbA1kyTtLYS2oB6PYCtrWL6ebxbXy/RKNQKt6Ko6Tq0CwmNQ9imERyBWcaUlMBWsUcRYcreOpoY0CZ4IKJJkqDU0ilwplsqjNJwSoQKTxeR2GO1biKFKDATK6aOtRniTWCr03V1Yt0cRuIAGWZAVw2BfKxVKW4rQhUJgx0fRyQqqkyOEQfkObu5RyVOkNORVSa9cRxpJ6oAshYzkHsJNcPwBhZWsmgZGONRkjLWC5XqDjh7jtGQBVyYUIwk6rZLbEjJooYsya9EZqEIj1QkWG3VWx0Y4b+EEerSC1+4h9fCU9IxPq1RDRBJfKCx9Gp7LKgEpkp5MiNVQ92n1JL4dEDoBGs1EOiAwOUINLV+kY7B62At1hSGaDlEDEMIFofAaKxQY7KDM0Gx1eHwFkrBWwTEGKQVJXaHwSSoljBEkyTS+G5HWfEIxDLCm8FBKg8hR8gfApp0hXeLA+k3tn3pqj3NT+77h2g/cSbt7gjdc/kWy7FKq1TP/XeM8ZbTBdcAjG6a5ohtSOEvsYC/77VkcziZ48cSXmPaW6Z/aRnLS5Z6Ju7iyY7HHQyLXYXxpmVuffClvFq9C5oZn3XUDR0d2cO72+3nN5a9gsplhv7bCg2QkG2+mP/+LNLzX8t+dd/PX+sWUTxW88vZ3ctnMLu4Ob+TB0iKX8xKc4NN0jvq8++jrecrou/jA6a/ieXvfRfnkEbZ85ct8ZLTGC3ac8T09pj+ouHFlFXPvHUhh+Dn7cXrP/xAn9xxjV+V+nMCQP/fv4ds4RxaZ5tYPNlk72McVgh3ljNLmY3xqcoovB1P8xP37OGpP0pnay66txzm3P0Z2/Dyi+TPo5eMsLJzNpQtwicw5HEYsugMmaycZKR8gDw5y39Z5aoMnsWlwFttv2sveW99OeNZ2zrz0x6E88c8/iLW8SL6ch7p/xY0bPs1TD29lt34PF+zpYQ/XySuT9Ms7GDTOwo7uwg1DSo0xgkr12x6XRBve2OtwEzFbcDmr8VX0tg9xgZ7l8od/nfF8lHmr2E/OKTWgtOEuqlP3s3HDxwicD/3TODqVlJMWS9UtnF9LMfZmzq8NeG65RZavIrjxm7bbPOJQGj8f9YL/whqn4978BsbVTVQ2Jyx+pc6h8izPOrvJZ49vZ/OH/5aHdvwpuyuPnwP2Q/wQ6/j/v82yx5uG/NbZiX/mYDs3NzcJfAr4pWazubp+r/uDZrP5ybm5udOAL87Nze1sNpvfxCmpVHyc7yJ2YKrs0REgHIckC5BZiTxpIHUd6QzDS7OyR6pdspIHGHKV4znQc0sYYXBch8BIhB3StBAVtLEIR2GEwfWGuTQiL+MGa3haDXOWXA8jDSaqIWzEcmUCLRykGcqtXQnGrbAiFV2vyljhYnAQfoQoLdHxl9FK46yHshblANmL6LoVIMakAzzpguvguw5YRZGUwHWQGIyz7puYlclKCrfWI0trWApyo9Zzh9azlB77uqxPWPGJPUGmwdoUt15DiHRoXV5zcfMcN8pwVU46smGdzjd82C4RYKyLE9YITIByfDKRgVGYiouIMvqdnGLQQVVmyHuWvhsgywLrKLJaGekN98kKkBQM/K2QjiLTEDfsE3Vj9tc24c1McN7Jw3RmtyEKg/U9lI3IwwAXgU7rZL5LORX0zSS9isP46iq5KzG6AvQQIkcIMHZ4D3OQ1NMKsiYRxsNkAbYoI/15HBXjxWUeKe+kHPqUkwQpBA0MiZFDTY9a7zK5Hp5VFHEL4ddxBFjjEVWnSL0qRb/PifRsZj2JFQqjhuYPJlJI42KkHtqQy4J4MoBY4vcE7mhMXmnR7+2g8FxUvE50khYhFS1mCFlAYhmEAVWd4ilIVGWoPXsMxUY20AdPIS2EJUmrV+CENUxsCPDZ3DmLQ1Kh0Lg2JY8qTNsAiSVLhx3ZEJdUCrSBxaJCtQgZc3tY5Q0znozANwayOlolYCRaGLQocJAIC9LzGVaawwJAWMGjkzMsBBvY1onZqvoIMdQ4OsZHmfVUJuOvUy19TJ4hA0A5FLUAqRQjxQh91VnPcFJYoYCcuDYGKqDQPiYMEJ0cK8CTIXU1SqFbaKEpkDh4wzwuFEXJI6U8DGcb+pBgtE9eDEhVCWsDtHQphGQwUcN3wQsiZBsUajiHkWwgbzTw4gQpdxF7HiCIRrdR04LepEc1HZCXJkFJwrQCvoOQGXk6ybJZNyHxHITrk0mBZxVICKtVXGNQ0lIxw2iAYt2d1EFihAXpkuZl4rw6PCe/IRMtlznIglCl5NrB4OMw7FBZR+D0x1Eio2ZgyXOHs29Sko7XhpouoxFGkS37FCUHV0lcJWg0nrjnj3+1wJqbm3trs9n8DeAt64uuAL69V/UPCIwxeJV38sunPYwwLrt3v+nfPdaTNm9lZN8B/nH0Ip42vw0n/yRBOeVj5gIAZkzElukmfzZ/Ja1jLunkF/n57iLx8jiHxyb4y3NewqGt28hHalz8tc/hFTmDc7byl896JqIyBbOgt9S47FNHyOefThKustp/AZeW38Ot4l4SsQPTupQvdlNqO27ja5tu5J7mL3DR9Mfoz/ssnizz1+U/5GfO+TO++qyrecp1tzJ6ZD97v1zjiqlZZivfuanHf0SczHI+d+tN7Ij7/CyfpHju35OO7ca+88mMXBSxOP0c1OyTiOOIlZVl+v0e1lrW1jQnvjR0eZwNBXefA3+9dYqGnMaNEn7n/oSJfDc3evcxJQumw3nC6TOYufA8gpOnsfgnr+a08w7xRa6i33kVeVpmy6CGbM9yTJ3PrUHOcXc9lNDpImoVtnrP5drDd3H5vgsptl1Det6ryTdeQWd1hfZH3kSSLnNs9OVc5PxXDvIGfnfzB/nF5Sdx2olbOHUoZj5rEZsHgQe/6RhUxibZfN7FbL/oCkY3bsUYw5FjXX7lYw+wZAT+6O28rr+bs9rX8JnDY+y4+K3sDR7mvQ9diulkbCkt8exz38fU6GEG0QjL8+ewsZ/j6gELSZui4jA/MsPOICMs1lAyxHHHCYKdOM4oUlZZWLib5YWvUM8bWN9Dj+8lzb7Kang2G3/sTbD885S+8Otseeoi5b0pJ79QZ/Yyy8m1VT5z3T+w+1X/Nn3kD/F/Ne4AnsmQxgfgAb8DXPevrLPANxdhswxzGAGYm5urAZ8F/r9ms/l5gGazuR/Yv/76kbm5uUWGzreHv3Hgfj/lu0E6yEm1x0Edsl0ZPKuxaYm2LiGVwC0CHCFIHUPeWUY1xlGlgOXJMRaqo1RXDH4UIzR4mSULDUaHiJIPucCKHMc46w9cCr+AzBZEKkBai7QJq3qMUTNGEfRIfQ8HMH5ILjLyNKU/VqEwikF0OoE0eHiMZDMsisNEAspmXYUjJXm1jLU8Zq2GWHeLy+tVgk6PxPMZRpYOIZUBDG2VMJqXcRC0sgYtK5gyGQ0Zka9HlioyPIbXVU8skzo5joyxwg7zdQoPpSxWJjhqgJUhrisYzUZZlR0QxfDh04L0PVx8TAHuer2d10K+KjfgDGImGYr0bdwjIyUYGaVQlu5YnYlogOca3KqiEJZE1rClsaENdhGi7ClSq2j5dVacURp6mD1mXZdowwSqUIBAymHxpEsOi6UKsp6gpyQ2K0hqIT1nav0oDY0CEuOyko0xYyVWSPKiihRyPcNqmH1mLLSCGh1T5szWCmteFWX0erqtwFGSaKKOkRKRtSmyARpDGE4ihR1Sq0yGLyPqKiIKZlBCYBBoIzCRRRZtcBpII4bhzQgKYWmPb0WOFNg8pFeEHJmuUSpJti0sktV83HVzpohZXNVhjREGeYmQ7dwxsx0vHnBW3IFcY62LS4LjKbLpMq7WOMEwMDtpOPT8SRYzFyiQWKTVSCyOEzNSP4ZpbcVbd83M1NCZ0qoCYw3O+jcuDOTW0tEOdZuidIgpSuAMsLJA4iIyn1QZUI8xPSy2KBH7HkqEeHZowS7WCy8BDI3Lh2lSWmmkk+AApSIkL1yUH+JQ4BqHQIbYddfEYWvIUiCREuL2RmqNVRyV0bZVlosJqmKAkAJrDDkOgoIhUdFirCRLOwjdg6BCJiXWRDjxGm0/xFs3lZIoKlmdRA1YzmpMiIicAORwnMhzsJ5EFWA8j6xc4nC5Tq+fMtkvEKMVhEyQgzEa2TjCSRn4PaJBafibF1CyFUKpyUwO0qKNRFGAynELBQJa8Rgaw1YBy8EaZTyqY9tZDlMK44H017P3htl1ADb3cLU/LNAxeAji/uj6PIxGCI0nDYEVaJFTyGGRI+I+EgekhKJgeWCwYYNJd0C7HX1X13CAiYlvP9H9eB2s8wCazeaXAObm5n6/2Wz+8Xe9N08g8uwEv7r9XkxRZtOGv8D3v0234DtEqdZgZmWV3L8AaQwNfy+ZqXJDcSFlN6d3chvZ5j08Y8tdXNfpsHVQZef8EvMartv+o/RrHvXdBpEvcuU9/0g8sYErNniIytfv9Wp7ncorTueRf9jH1ngK1At4ML2TX/I+z9/Zl/LsxlH+cVBn5dQ1LEx9hhtLxzln/Gw4coDlgy4bTp/m2rUP857RF3LalgUmD+5jw+H9vPszH+W3n/9ypPw/IiX4P47CWt58y82ctnyc3Wo/U894PdmGy9n/9rdw+dw8UR7yyK6f46Hr38/y8vBZqh2WWfXO5JJHQnzANBa4232E0oM9XvLVCFnkTJsRXOrscTo4fsJqd5xbVp7H2LjmMj6D+/CA11+0ixcIeGVxA88rX8x9dideGc4rJBetGl488GnbJZbNcY6WKxx0pzjSDvgDzuHN/vt55rGv8Mrjr+fWDZdxy+jFNM+9lpnFeWaWH2Wstcwz2psJ01CPj7oAACAASURBVA5LxQGOe7tI/ZC4UUG4HmNpwqZijTHTws36LKzmHLvhoxy74aPE1ToLkzv5tH8BMYrq7Ed4uT2DM86/hOJgjwsO7mbPF96ITn1eGClqm7/K9IXvxWiPha++jNbRS6iQcMg4RP2bMPlhvNrLkH7Ixx2HYjrhz19wMV73FM7eTxMs3kY4uI/dNsZa6Ig2IKkfyVmc9Gnu2MOB5vPZsuWt5C+7jfKtr2NCfARvssC5U3PigvOZuv9Obm8+javmTv++nk8/xH8YfBjoMdT3fhK4BnjD46zzeeCNwDvm5ubOB040m83eN/z/nwN/0Ww2P/vYgrm5uZ8DKs1m821zc3PTwBTDQu17ivFymTsJCAFjBK7QLOmQnnVZS7axO1yiJFJ6ccywatFI6VH4JXAkoawgbUxBH4CSGSCQRATrZg1y/e/QUltajREFj4zUwUoameVEpUxpSWPVgPnx2jpVUGAcn8xpgfXAOGipsHpIcUuspLN2JpPl9jBLxwy7a26lgpuWwaYYYYbid5VQlCr0Sg4asNKgjMGVMSoLSJ2Ynoro25w6DrmwiMLF2JgEBylTEhSuzSjWKzPHGChrgtFTJJUaNnFZyrfy0NQIu1ciECCFpiJBSENgfPqyj11/0LNCYoRACkNoByBg0BsbFmoCDIbYevjrBZ0ycGx0HCMtG7wh9dIVPlpFFFiWioCqSPBqbbAarMTaHrEbMSJd0u5GBv4AL+8SyBDhKDQZDmb44O/kFFgKKVBCoB1Fx04Troc8CyydZBiOm2hLpANKfQc/61NkfQLf0vFC3PViyxMpQVjgOJY8lTiFD3KAEAG5JykKOSSHiwIpJNLt4nsdct2gYxSjUmMrAtfJMXhoqaE3hk4fRecRq/WNbEn7CGtBahxtsHmJ1JRRaPqBB1h61YDlqUkckTFt+2DlsEvqDxClHtZYcutglKLfKJHG85gsQ3qjeE5GknTQVlB2a8Ou53qnpW8lRmjWc7jpWUOhXRyvwOiASuMYndUZ8iLhkclZ6smAMK1gyTB5jBOWsVjaRjGwLkINqAqN1Gad3adxCkNiXVwjMI6HdiWuLsiZHFLbpBrGBRjNMVul4kZsFftZELuIHA8rBGNmaFYhbEKoXUpW0XFjAm0pFTEpFoRBkFNu9OhlPq08pCEHWDukr+WTIUuDUYzwiErg9ZYIxRq9QYT1J6g6Bany0canpVJWwwp4PkvVOk4U00CxXB1DewHhcR9XOVhZsFKUKQqfMhlWaiQGLw15tC5J1Si71pYwJQcpHUxREImIotuhKDlIPQnWRRuFeszVWLugimFglrWkeQnht4dasP4ixub4lVGE8Mjx0MYZBp87MYfHp0jyClcsd9GqxHxco2QCUlFQqhdstsNriU4a4GYIXFxpKPIIXQR4wZC+a4BCGBwShB3qrEThIaIuBSBrY0O6sbVYA9J+XSLxRODxCqxvR634gYbnb2DXzuvwvBmUqn3X44Wpz5VdSSFPEar7uF1PsWRrnGNPUhQB98WXctnkl7hb+PzUIcvxhQlSpUjHuvzCln38vv+r/OQdH0BIyb4zz+OV5z7zn21D1H0Wn7WRRz+3l6fpBvvMr7GL3+Cp4mbeKV/Cx17+47ztY/CJ4hZu2/opsvyn+G35J2zSXW7fV+Nn9EPcOXIe11/zXH673cWemmfkSJXrb/4EL3r6T33Xx+AHEe+480tsOdIkdCKueerzybY/k9WVZU5rvgt/TvMh9Rwevv126iOjjExtZHl+iS1HY7bZ/ZAcxMSHiU4pJr6lAF1mheX114/5AIYLYIDP+iM8UH2Yw70f5a3uM/gx/7d4Y+09PG/XtTxrJeZXjl1IXrV8lEcYaZ2GrRnKk7dw9ZpCjSbcXns693Sn+WTrQj7FhQTHMi6+/x5evXz9kO8vJVnog/DpVgSLjTanz+fMLHbJ5SLRunnJWqFxuwkb12IuGrS+4Ud5HHiIn1E3sFpTZGOTrFUP8fFHb8YU23GNQg1mGQ9iRs6+Ac74OMurO3jHPS/iZa0uLyp+CZnnHG1fytFokfHqmZSiRU4U49TcUZIjFd7ylzfxxuA3GQkidCboLQT0jo/SWi1xYGYb+7bt5Mu7d9Man2Q07uGUIsKjj3CGWObqK97MBbOXUL31d9jxrBWecs/DfGliM/vf+3Yue8Nf4PzQtv2HeHyMNJvN583Nzd3abDZ/eW5urgH8LfDef2mFZrN559zc3L1zc3N3Mvwp/9Lc3NwrgA5wI3AtsGtubu7n11f5AHA98P5191sf+MVvpQd+LyCl4ehGh4k1wfZ+jBOskdoALTOEkLg6hDwgtyfwZEFdLNOXE+ikjpEhuQMHZxpMtGEyHwxna7EYFSOLMr52QffInJSxlkfYaNGxElfmSOOSeAKRWrRjMTrFUKDWZ/hVntMjpxDDcN5EROiiT2hnSLVl0rYZjyJansXaBkoYCuEipSDIQhAFylq8XoeGk7KsQcsQEToIqQlZJaSKEVVOjkzhiYzJU93hg7/O0NEKtlzDKMtA5IzKhKLwsNJgjMSOWUTJoI2mSGuslEOwlkfr02w9cRJjc4TWgMZisNaQtVeY0cvoUok2IzhagwIpE453JwjyVRLH5ZQv6MqQzXmBiyHVap3uZFhlnJleDUcO8Ig4kY9AHrOWnaQ+1cOHYS0sLIqIsqPp2o20tIczSNgklxG1EbykB9Qww9YBRhiMkFgpOFkNyWSN7acECEOtV6WU9kn0KstBSMeOUwkidrRjhAPWGk7W60gkdXkS8JBmqBmywuBnJUTQw0QrGOCE2oSjfVy/hKdc6qKNiLvkfpls+AmwxiU2Dv66Y6LUPlIrVhojdCoebSwjuSa0dXK1wp6NU3j1jK2tBQoHyLqoImc1dhCMMFtuD6cIrOFk6OATYYVDh6F2D2EoogwpNaLk0isKRB5hrKTwQhQFEoOyDMO3gZIEl4y1PMTgUyoysIK28aj1jhNrD1mr0vdDwm6H1MTkRZuyrjEIRvBEhsahno1hwhW01SyXfGo6wacgpozNKoS6jQlc4sBHuw7ZWAn6CVZ3yfqL2EwxUupzrFJnxamwElQRsmAsbgB9kBmujTDSYp0YN3PwDDywYRPL0mVLv8AIxb6padppg3NPLbImBEFaxavGFJ5A5rCoFeNOAD7YIkEULSpK49gQK1yOTIzTtlBzU5SISR0HgSVC4qHBFAipOJT7OO6QnLhkypQcGO9NU80zRJijXcvRwRRpBYRryM0qCJeVaoVyq8PWkSWifIoibaCcGBVnuFFBXoWCAtcaTlmHLPHZKE8gbYG2EqtzXGVZzWqsbIgI2yXiVCKGZTzaeETpOMfGp5npFqRKs6bWWA43si1dRnXKpGEDWTpFywuYx2Pb/EmcLSM8FimnASkLrJVEQJqNkBenKDkDChUh12mHVnt0+zPf60v6N+Hxnmjs47z/gYMQgjCc+56MZa2lu6K4Mi3ol+5CFJq/qJ8Oq4ItskXseixkFzCX3cELGjk/ni2z58QOlmsV/qj2Pl607Z3sTB5m1559RNNb2L2pTFAa/bbbuvK0cZ5/R4kt7n1csHIebytewG+77+eq6D6+sniEX3vF8wluXuHDznu5fXyRV25oMHWyxRb3PvTL385rjv4Gvzv2x3z0kqt47q2fRi8e5dTeEvu3PswZO/9zdQe++rUbWTl4nDGT88KrLsHsegbWWubf8ms8bVebZmsz0lY4e/UwpWNfpOtLzGhjeAODYTdeSSppgaMLlLZUZY0zaxcRmVPc7SyggxHG4y5JnDK6ukLmwnI1o5a2uFzcy75d5/C56GJeYT/H2x78MNlPv447djU5/a4qr+ifxRfGDqHXZkhPXcq7z/gbcpWTlio8O7uK+saNfMjTxCdibitfzoPbLubVfJFdvVvw7i0x3uljheX3Xqr46FVt/p8bxnFp0HLKLJdLdClIvDXmR2ukfokirOOmivl4lJF8jXNb+xiLcjJ7Hv3K1ajMZ7JzgK0iZXJ6js7M9aQn7iD9whibjrT5m2TIAG7hAz4VHuIsAG4DbmMOOE1CrzLJmY1z+dD47zCzfT/J2CoPnHY6X6vvZl9txz9x6Gv9DpVexENyOyNRH1MR3C7H+btDC8w6l/Cy59zIS2/8Wc6/9CgLB0Z4tG34Xx/6B1700ld/P06nH+I/Fvy5ubktQLGujToOPO4Fv9ls/rdvWfTAN475L6z27H/fLn7nSIoBVkAvhCjqoAfL2LCO8UJ0AsuxR1+VSLWLW5UIT+P2T1ETExxI67TDAbGIWalJ9jDN2f2T1IqIMfqkJiChghCGB+rjXNBZIxqMsGjL+EWJsukR25hI5bjFgMyu4kU+UpWGwa3FGsuBpB2M4nciGlHBo1u3MBW3UIUiUTPI4gRFXiGyUBaG3D2FK0I8UaVEBI5GpBJBDZmniLiKa8/Aqe9nXzbLwPchHmC0g5YphhhhQOkMazN6eRu/5JIRkAoFBLjEOAaKbAI3XMN2u2jGwPYwokvuDa3Hc8dSaiUc2DRBOcrwog6eGhANYmouWJ2S90bIRyIyaSgKTeR5HJ2YxaHAKDjv1BIn8nE6OKhcY/IyB1WFNC3YXlojl3BofIzpI0fRIqEgw0dSWINrM8LcoX1qgsMNxWKlwqS3xkXRPkjmWSkaWLkK7iwCGCQ1Or6LU48ZFRZfxCRZjdPMQVaFpELGKZGzUK9RWEE3KLFaNkxkPXJhkNrgFQVBNUPKhHoxxbHU0FVLuKpENZV0kx6OSAhKY2Q5HJuaQjgh6WrGVLTCo5USE6wbD2DpWzmMADCC0bxMHI9hygIYGjO4xsM1LoEb8lg7KRMKsKjcIHDJozb9+jidvI6fHeHo5DY2Vx6llRQ09TZqxoIbIY2Dk2siFdBpn8IrSaaMxkGAHWr4wOClfXRJ49qcWdNGYDnohcQipSoCHKFJRYpBE4tht7VETqwExydnaMy3mekOaLljDIzEtz6SFB1FHJJ91irjbLIetSTC5oJHB9NsDNewkWLN8Zj0LTrPkHkPmayCC4Xv0qtVEBRkCqQ7oK0DTuoGU0UfnwJZXsJJSyi3Q1nXOdhoIOxQZ6h9Q54IGkWfvq1CYnB0RqQdWhRk1uIDenCCnu1TcQuEFAgDHe3T1h6jagCmipAg8gGo0jAcwUJqFB4FxriY6AiHNkwjahPMrR7FCEmWWWJTIrA5aZ4xyMG1IR3lUyPBihQU9CtV5sUk2+whfNnmuOOyVB1j88EV6oMep8oVqt4q0+IYJ/LTSJUhibpIoWjpGm6/g6hOgOpRlCytwGCODDWZVmgi12DyCsIKVio+ntboQqO14oA3xYRto2SDTK6yXDkDsRxRLcDpdrANFyULpAYrUhLrs5aFlNEkTshABcxkDgRHGGuc5MT8NqzzxLoYP16BdeHc3NxjzoECmFt/LwDbbDYvfkL37vuMI2sxl4hTlHWNRN1Cb+Cxx7mMcQVjIiIzDg/4dfptxS9PFhyYaVCNYtJZw6e3PI81d4Tnfuk9WNdjz2kX8Ee7r/4Xt6Wk4CUXbODNXznE38mMA+lT2KPu5NniFj7+pSdjt+3k1df8Al+55U4WJ2/gXVufxm8e/yiVUsb+z3+e5uYLeQV/z99u+hXO3bif6QMPkq3M84WbPseW2c2USv85jAT697yP6w7Dtn6Hp55zOpXdzwDg1g+8kyevPcCRR8YpVjXbvJt5YPM0R2YbgEJ5p+OVxpgttRlz76Z21rOQmy8mSvex9OjHOXf+tUQm5cvRZ8mWYxjE3F7fxs2bryCiwozf4ar2Pq6+/1Z6nsIxX2NVSD43eiaXTRzhwC3v4coXvo38zJzW56/j6Q9fSLMesb+9jacfehPN6SZn/eMexlvvo17fyMcmfpoPbg64vuyxdrTPn/WexWj5Cl47+gnaUxHHNm6k7k9xxP0E73hGwJh3LV59idl8GYHliDiHZKlg9shhNi4eRSMp6iWS8XEeVK9mZnUaaxQzsmDz6u34xz+HWmsRVSHoCQIcBiVYnqxzYnQL7UqDqFwicz1i32e1XCMXCmEM9U6XidVTbFs4zs5jN7H12BdYeXSEz132FG6avYTJbI1Xz1/PBb197B6ZQZ7zYn7/4feS3tXla+JVbMkW+PMn/U/u2ng+d3ev5k+Kc3jHldfxm/v/mpeJD/M/D11O/6u3ceSyp7B1x2nf3xPsh/hBx+8CFwJvYqibqgFv/77u0XeBXA+pWstBzrH0BJ6p0M9aZH6djSamgiUyAcIYjlYmOOFEeJ5hxgxn82OVDYX4SQ9ByL7xKa5YPEBAxNjgAG13lofGSqSdhDUnYkI7IA0102J79jDGrHGsaLDWO8XabECmInxjkRREQuIbiatzjLB0VInIdzgZGKZOLqDSCoVUiNijWtSw7gJ9Z5VmbQ6HKiNrVaQ1lBmQpuBbnw4BJcAtfI6NjCKsZSxu4UQRiZNRi5dJ9CyxLSgowAzo5g0eqcwyVu4iC5fdR9sEQqPI6BYxsVQsjIyQmhRlDDpLyJw6jhG4ss9AGNZKgl2DIwT1PjJNiDKPQXQCE+fs2zKBW0zQmXTBiR+Tj1FptPB0l+7KJjomYC1z2JF3OOmMILIeyw4sV0JyUTAIPMbaBi9NMaaMIGctr/CwN0U6GtJ3XIJsBeNbekYx3umRJRPIUIM7nMztZxlh2sfKkMhU8Z2cRnUPYXSIstmMdFgPa83IcPC04VBtgqlTj0BaYsq2wQqUGyPLIFAUvZSKbJOHltsmZvGrPq6OGO2sYVMXN/cY4JNVd6KjFLfoc9KBUyMTuFiqbY0qNIX1sEIzSDx8XdDXgkeVYqLo07A9EiFQtsDNHXpiGksx9Ca0khNTMyRhmb12nHOPLiOdHGPgzLzNMeOzi3/kcHcrx5wtlFXCIMjRiYvf61LCsK+xmUo8yyZ9COMsUUhBKTmKAmRZ4Y8uEfenyU2NvZMj7DKLBLEml5q4cDEWHJFiXYu0Bl0ex0lXOWEFY3YVIQRZEdLuGA5O+xRFwawUDJRHz3FIRcFad4rR1X2MeBpdnkYkEX5mSHyHTDh0ymX8imXUtnCKhO6ghHFSBDFHvRlKQYMNusujbRD9iIFwWWEGZVrgSGb0cc7IH+Z4cQl+alHxCp1Jj6kooZeMUk/XyESZkl2jHHRp5Qm4HrnTYU3vxArLmLtC125AmAxhDSLtEhQ1BkEDhMHmGuFbjBEINDqOMe2Evp8zkQ+YsA/Q8sfAbiVHcEz6GK3wg1W89VJBCEtdhKjEo1hM2bclxsm7HJ2oMMsATMGI6ZD1e2hxlPmJDcTBLI4UNJb6KGPRrVUIK2BcAtuhYtu0BtOMeS4HR8psWx7qWrUwJDLHGokLpCj2TU8w2znKZD8hHimoWIPBYtqrOHWPsg+VjqaV7iQTDhv0KRzrcmhqDCEGBC1DWI1RpsBT3XUzmScOj1dgnf2Ebv0HHLccOMVPWBfkPDvT/XxwZDu6dRqXTZWhDZ4ucNq3cqjwGTnZZXmHz/icoXq25G82vogLO3czdnCFaHYb41urjJT+dcric86a5p13b+Xw+D6ev3wmv5m/hk97r+Pi9IN033cWtRft5jcv+G/88h2vYfn0IyR7HCYOd/nzScFrfuxVnDj6Kq4o3cb7n/JTvG51GXvqBPglPvzp63n5C679gbduT/o5g3ZK3MnIEo0pDDobcuAdR+Kd+DIfGBi29VaYHtnI7GnXMDhwlMW/ejNn33cvLVtm0CjxhUvPxo1OgZSY2pmUuIYJH87efgOz5+4iP+ujWARLy+8gOfEuTl99A7lwiV44xos3v4VBe40//eRdfGaljA0U+dmj2Cynd2KSD81u40f2WC555BGOjpbZyxhHuxU2xqvs+eAf8uyn/jTjP/oKDtX/gl33XMWJRszWUyU2Ligi2+Os2Q1UXvmTzO95B7+4579yre7w2e7NfOiMS1lq1fmjc17KyExOadJw9YN3sWVhhI+eO8+2hdv5lfc+gF9EqP/N3nnHV3qVd/57zltvlXSlqzrSaDRF02fscTcGGwy2gVRaaCGQDQmkEFKWhPRNCBuygU1CCgmEmmxiupPYGNtgsMHjOr1omqRRG9V7devbzjn7x9WMxyFk2WRNsrt+Ph99Pu/VW85zntOe55TfT0Q4GYG7+Wremb2Or6y7gT3hAbavnMVZjZH2CkFuL0FnhH3hSQoTR0iv1gFB0q+ZHSxwIHUjQTpD0VQYlBNUy2VO5Hs5tHkvk/0b1jg+QGiNHzXxwwA/CsnXa+w7eYKbDz7O6+/9Iq+/94tMDA/zxK497O/cQ5NT3Pz3b+H9m+/gl25JI89/mPHpH+c3D7+L99Z+i5u2fo1oaoA/y/0EvzL6dj7XczO/I3+Pr5wc5Cuf+FNe98vvxfe/M5Lm5+T/PxkbG3vg4vXo6OgtwMLY2Fjw76jSv0mmyg2qooGFzXRHD+vnq63tbPEKjmmdd0JC5EkCbaMThx57HidwiXWICBJw8ghjI7TGhD6NRhMpqiQ6YkNjjHF9I7bwkTriTH49vrVCfm0vikoUvk6wBSgZkUbQJTspmxquCYm1A80WOIAUoMQat5OOAYEXV7BFlQlp2Dw5Q3kww4JO0ZNOMLKFdiERqCSmJjI03ZCUmCZeKmFyiqxq4kVl2lyB0h6LCKzqPAvd7VS0oR9oaIPFeZoBuImLUEsEcYzxJUpKGsZlIU6RlTHStHgRz/VuY2h2kgFnjILJMRPbKKeKaxcIapKwlCZEMpw5wrloC8sM48UBsRSkabJRTzKnMjRwmWjfTkU4dMZLGNHEihROPM1qTXGhvQhRFTdq4IYJM14/fUkNERsibTGbaaOTCD9cRthJKxg2CpTBxAnC0xjV2tiZbpawRAv+LRUaqrGH1jVEFBE7CssWiEjQNIJUs4YiA07Mwd4tbGOZXcFJDrGZVAKSEIOkbhscrVCmTpxUwKSoOj5pMYkTB3imC2VkywFPr8NbnSBISeYLeVKhRiUNOqo1Ftx+UikbiyppYxE3lpBSY9cmWS26hE4V19ZI7bAxPEc6WuJRfyuOyiKROOEKka6w2Gbo9MYJtIsdB+TDKvW8w0A0y3ldZHWwiaugtrKeXFhhLN/FXDoHnT7rTzQxdkhfVCNihZPJOtr8FDoRSK9BQ7chkxpLbpr10QyLUS9CGqTQNJSPp+s4xHhOnpyVkNFn6crOopw2FufbWZICgjoqDmmYJge7dpJgk2+uUBTzLXwUI7GjGunQI0xslrMpylmHcpKhO5kGBJoYWytQEaEbM5fqoZCxoTyHiCCOFRUZ0fAa4EVIfHrCSVRcJ1VfQch1XGjvQBARhitkV5vIeohuK5DLL1LvhqVGhlS5wWK2i5rMsn5mFhMts6n9LNNxkXQtoNzhktVlFjo6QDUxxjDX7tIjXaQVESeG820dNNMeaEEmqWCJGpGB2LTOJwZGIcIIEFg6xtZNhOvRtlzkTHiWVDhLlPIJPMGZ7hTDpQWODA5RNLM0VIrFMI2xoNsKONubpb96gbbV+hpyIji6SRQEuCrCjZoEto9BYyUR2XCOpiVxRRPQ+DpBihJuWCJyDVKHIBXSqSEsmNcpaqR43tI4KauIyOZZxzQTmQqx7Ocm9QSpQopGHOOLgO7UJKvVzc9q//4vBlhjY2OTz2rq/8HlnmPneW2jn4z1cRIkf9jxSsyKw9YezWIZSr5NkjzF5moHe8rn+Krjs/JmxafiH0YjuP5r9yHSFid6tvNzu276X6aXdi1+8nnDfOBrF/hjHKQq8FfRHbzV+0cmK49Q+x+w9bU7edOGH+Oj4kM8tHczL37wBG9cfoCf/LtRdvS9lLfs/EvOJaN8/I7v523/cCdm/jxNz+eBxx/h1mtu+C5Y7TuXKEiYOV5i7lSZhYlVovq/vAM1sQtkO8/jRG2oY4Ocuvv3GDp/HzkB7RvrlPpHeTC6ArdxHJ0qogpXkGvspNeBLVvupvtlbyfODmCMYmb2vawsfwb/8V8n3eim/vICG4aGibTmTfcdZXIxi+rx2VU8znXfVDwwfCdWeAUj4QgX0meY3reLnZNzDJ+e5shQNyfPe1iri/x5+X50+wEeTO3iWvkwxfGjuP51eN7VdHcNs+ttN3Dvl+4ic2gHKwf/G4V9b+P7c7dwNniUBzaNEyy9iPJcFysNh3/cdTNvVldyk7iXh/rv594Xv5k3vfUtsBSw+rmz/HBwlvOqQLbzIC+t38hy9ELC5DBB9CRu6S76pwJ2Ts0jLJvZG9uwb19korGNo0f2ce3YQbaMj9M7UuLJG17L+654Kav5dgqNFd4y+znOeut4NLudTKNBtlElV1ula2We7uULdC9Mc/fAVjqHXscNUw8wdP4xhicmODcywpN79/LpwdtJh3V+aPEB8r15/lH8KUtTP87Pzfwev2F/gNym87x/7Bd4bP4F/NrGn+E1N3yQH7M+gn1snrv/9uPccNWrWL3QJGgkRKFCKYOdsrBdi3S7S74rRb47RbrN/S7V1Ofk31tGR0dfRAvl75bR0VGLFnDFOkCOjo7+9NjY2Jf+fTX810mlWUYkCi+O6RFLVG2LxfYBulenaTYhX2uwtL6L+UIntpLExiGnV2m3lrHYgqMV8ytZAlIUvDpGxRzq6sGSnXhxheJMmXSzTNProup6rDoC1RHSnpSImpoocUnFdSJXoW2bUtROp52QloZEt5zzpkxYr6cZzkwyrouEpkwjdPDjBEtqkqBKiRSzMsskPXQqFxOWQEhs5eLpgBiFsGsU25uUw4hmWwfpSLEYuOhEkhhBm1djLDNE2cng2yuU2zvoX14gyOTIE1BOPCITI7wmEEKgiElQ0qDDiIbnYicBjrIILejTCRUpSCU1dupFuqwSTZnjVNJHtV2RMxHT7e1sDOaoiW6ktrCihM32OQqmyhwusWVhRTaecNBGMys1KXuJDhYR+LgmwVMJgetRS2eoOVnO5jtpLPgooUBbGNM6+CfQGKlR/E70GAAAIABJREFUWkBVY5kAKRfxpYOttuFKG2HH5INlvGaIZdktjMwkwUSrWJ1NSslGykkaXyu6qCKlj8CQlysIozA6JAzBsm3G86sYA8kFi1JfB1JEGOMAFue7BiiICA04SR2sFHOpDH32Mt2WptQsYpQmzKU40tlBLXJZtRQjKOquh0ODdEcJJSrUmx4pv87G8BiT7nYkkDYVUkED1zTQeBg3RdW2aaY1OVtBorG0akHySwtQhFbEbKpI2jRYNgVqwscxCmNCZBxQFoJMtJmMfRIRttDp5r0sS36eagOMk6EQr5JnmWUvj5CG2GqNEUKmaOR8DBFV3yMwGo+AOZ2nK0zwkhWE7qBkXHQsaYYWqx11ukObTfn92LMuc5kOlNMk1ssYsw6gBYqhNJYGo0OMG+AnZYxsgX3MyQHipsOG6AyhXUHGOVKqSV3WqRXz5JQhb6rUUx5hppeh6AL9VolzmU7qQZ75tOHKYIyml+d0XMXLVzmV3sqylaZQXmTFbUMnkrPF9fSJKTrNCrO6gIwljQBqbR6+buImDSLpg1VjqQBZ3cDgEPouGI1MagjVBNtFyQRP2ZScmDgAZYHdVPhRQIdYxdedPNJXhIUS0igsFSBUEyFdFtNtWFpTyfVTiR2sKG4BeSBR2FTaUvRXFpikj9VQEqqYY+1ZIh0xryGIDL6wSdcm2S2OUI0znHXXo2WCNoacLLFcLLCqbUStgSWg6jnMFHuJZILUFo3QwtIRmVhBoY72HWQzRGoNKsRRMUe6R4lljt5a81nt3587Vf5tZHy5we31OpIUOb7Mo5mdzDT2kREN2moLzEqLg7llkAk/Xx3nSNxN8UOSh39pM3fbN7Nv8mH82YBgcIjyYCfrU9/ZUuRLt3fz6YNDjPmneGN5mN8wr+Zl5jGy3gepV3dw/sMHCNt3s93fwUeuPc7zT1hsOz7Bdd3zPDS3l49FLq/f/Ne8P/8O9l9/BfsefAQ9c46xbz7IxsFhNvT1P7uG+w5kZabKk/efpHROg5Z4lqIobTp8ScpWiMwigVuhZofUZUIqCnB1ky/ZWVKJzfMjl+KxD2AvTxL17WFk78OErsu904OI5DjS24Pn3YJoCGzA6j5D4fvejfGd1lmtmd+iVLqL1cd/gdHqBsLndVAcXc/Jaok3f/EoyTzY/U0+UPsgi9/4Kb66/m5W8lV6N+6i+uQipm8TmfFjnMzbKH8bt586zHixnXPGkK4dp9k/xLXJWfrnJljoXcf1/lZoCGaWsrzvv9/NjtKjbNv/TZTtcDD1UXbbP8LP1q/n5dO7+LTZzyP9FwguvILKMYf37Rlmu/taCivLfKb3Tob/VjJ4to2fTkcsMcDV4gDfN7GdZdlGRzxNfvohOkoLLGUcznV38LVt68ls0Wx6/hiTs9s5cvZ6jmwaobSnnevvPMifDL2Wj+x7DW4U8NpH7+S19fv4VPrlbB7q4Ob2LD1bt5CSkpSU+FKQFpK0URz6zDe558Qkd46+mhv7v4eh8c8wcu4phqam2LhrF2c3beSz7S+iUbF5Vfsh7rI+SnniDfzy+bfyrswnYPQUtfEjXHf8/TyWfj1/WHgTha2LuBca/MH930QYC4kghSJnBIXEpi9KU4xdClpgI0hlHYobcvRsytO3pR0/+618Z8/J/zPyHuD1a9c/SGtr4DagHfgC8H9lgKWTgEbFYrs+y/pkhfH2LdhasZzrZSknOVuUxCLBDhISaWPjIEVEIDXCaGylWa/nCJUPvQlZSxLOShQua9RJuCi61AIz6U4UEb5WKBNQ14IUCTYJlazX4pkxhjkMvWFIXzLHrLOOvKrSZ+apuRaWVcFP1Ul1xzjKoC3FoJxmnizjm7Oo2EVoQ1sgqRMjTQO7oTi8bpjYNezTY7SnV5jw+siQxjErbLUnaARpprz1ZHSBXDJOVpRYcNu50NbNumCeFSvPquNipOGp4jp2nT6HYzVZdovU7RR2FBJJIFAoLDYFY0x2ethOG7HSZP0QbcU81D7MbJJlJDxBrduhc1mhhcHVASE2RggMClIBNgkpXSMxIImpK8k2s8KguUBHuka10dfiEws1tbRNxe/Dp041klRCgy1jjLFJLIW0mjhNhXASlrMpnGyDcuyxxZvAqEkyziKHzAbSsoO0dvHFcXrFIg3hMVfopU2s0M0Fvu5tRgF9eo4r8ieJEx8Cl3oWXKnAxASAMTEZq8oFOYzfo9kdj3PYG8bIFsJhRyzotbPMCY1tKgjtoY3BMQkaiRsmaCEJXAejbbKqieOVqK4LaToxGEVWJbg6QNseUqSwTZMtjRaLgbZtSiaLjCOKVh3lgREOc8XtdEaPYMmY6fYMQckiw9Mw3JvCCSwEU2Y97VQIGlkWkzSJq5nKFcilimTlFEG6yFlvGMfYWHZC4li0q3aGa6fRbomvyt2kjYWbN8gkIW0VUE5CWtfAeCz6Ps5ig7H1Q3QkZ+m0GpQbKRIDFoqFXBbqAVGhSsWukYRZptraCGUbzYygMxIYqRFakkQOdaMJ3BDPW6A7CjjfzKNsRahdtsfnkdph2c9jwpBGJs2J3j5AsJ1TxIEksC1yUYwB3HSF0C8im5rVtgFKySR1N0V1uUZJDpIgkEoT2RkC4+CZVpAnRIyjG1gyxBVNlk0niYatSRWNJnHc1v0gJEj7LTAZLUhQOJGiZjzSRuN5OYRyGBDj5JILlFQWO/ap+Gk2RufIJHMc4wpM90ZS8RzdqkSg06SR1FM2UjRxk36McEEo0AYrVtzCY5zSXVQcw2y3C80EN4loGAiFS13ZZHSAcuaxjMGIGE/WQMcIYpSAbfEUVWFx2Owl5a7QSZ2pziKx0GhjESib8+3daAPr1VGkXaYniNjf3IStNEIkzGR6sZQmFoJY6Ge1f38uwPo28jcHTvJ2ncMTB7CdGg9aW5HLhi3+DPMXVpnNFliUj9IeZrghPs/vqzdwx9zX+NvwzXRai7xBf4LZ9iJP+rv4yWuv/7bpaGMYW6jx6ESJw9MXqDdPUtAlPl3dzLux2IDiXdGP8Snvd6l5f0Nv8228cQl+UL6Fdwy/j995WYnf/mjCbx7/JB+65mf47PJWztX6eenmo3xx6AVcu3sJ/7HjyKmz3P+5z/KGm1+Dv6kT4f3ryTH/NWKM4dTxRzjxQIlosRtbaDY4NgOegY4yld4Ea30X/uAmCrmrMMYQJJrV6UmG/uEV/FrPO+gplZkJe/Hu/gg6CXjk6n3c0rsfnIBPTV2JShYQxQ1s867jXF3gC4FyAmZmNjH/+4cZuapIx5Yvs9q4izMHfpyXlXeS7Ggjd80QHz9/nD96YBW5YthSPMifzN/DN8zrOLXlcxwtPMZu3Y248CjWehumeqlv3UZX7hBtwSRH9+TY8/givadrHFrfgzN1hiwwvnEX3fU8j2QneKHfDSsZtlT62HlkFjJdfG7Ter7pvJTbh77EqyZvY7Se4ef79vDEgQYf2fEnTJdfg/sUnNqSxe96J271I/xJ8gW22DfyPONxR+0Ytt1G0ztFWzUmrljU8y+i0u0RZVw8B+LG49RPzXJk4mrs1LUMZLKMjE9yg/N13vXK9/DVgR1snjjKa+65k1vTNzBxyy/zI3u30NFRIJPJfpttpTY3vf4Wig/P8dGvjnNXm89to29mru8GNp36GFc9+SSbps7zjauvobaapewPs63dZ3LTX7DS9PmvF0YonL+N+coGlGl1QY5doZxqxy+k6KudZjGviLVmVaUpJTkmTYEDKQOpEIEiZ6/SJUJ6piXrT+cY+Hw7xf4c/TsKDO0ukGl/dg+vPiffdWmOjY2dXbu+A/jU2NiYBlZGR0fjf0e9/k3Srg2RBh1ZOFaGDWKFZdOFMDHrmOeA2sB6sUCeJrNJN6Gn8JWiGXvUI5cRP0+/OISxJYsMEBtN3U4hkiYjepnlfI4uWca2I5qWJFVTND2bGBA6JgEc4QIB2xlnxS2zqLbSyTI9ZpmUTpgwvXgqoIJNzq+xK5gkxkMiqBuJwKJTLFPOOlhxClPz6NWLBE6GckaQOJpIQGe0grItHJGjjKDXaNKqRsPLIjHkLA8hbRzbYCnDHv8Mhzu3UJhdJS9WWYrWkXUE8zLgSN8weAHaD+mvlxiND/OYHCHSHuv0PFmaJHaV5cSiLmw6hGbZ72Kh6rFOzLHJmqNWTyMF2E6IIcJxmlyodSKdGGMnjEYzuI5FEgEYbnBO0SuaLNdtltJpzuQGIdGEa6skroE2naYRC4aYZ1jPc0huIa1q7NXjzFjdVGQbUgvOdvTzoLySW2yLDgI8UcezVrlCneI0WxnyDImykaIFPl31sghZZJNaYFoPMSDmEcLgOE0IXRLVggvvs+cZp5Mrq6doSodOKvSxSoqQQlynqQ1d9IFQlHxDTtmM6JM4co6D1g6MlNiJxiahzW5QMn0UVBaDzVDjEFoCicFDUoxrKNfGjiUGTaItyo0UHXYIGNpVlW3mHFP00qYM+YJC17ux6wZlRxg8prt8ekRMSiVIaeFIB6ES9sRjpGybWauPMCmzrAtM+TnWSYugxT9AVjUJaVtbwStgxTFNDSpJ4UnNaj5Hwdakwjqxm2CvcVklxkYXVtBtPst+gWY8i3AsFgvdmDggER5GCFAxgYnJeQlxR0gT3bJ5JMnHFVzh0EinubJ5miWRoikEtcBDRglYiiDxuFqcwsLBEw4rJuTEhnV0hiFGwoDtkEoyaB0CggY2Ngm2UEgCbhJlxkwHNb+Lkoo5ncmi7AxdSZP2sMJqJo8XQiapkVJNhGytE1U9h9XuAiq2ETpGGQXCwqIFW46RNAw0Gw4Zt0HsKAJjkzGSQFh4mTo9zTIeFbSMGQgXyHgJx/JDpOsa3dTEVgvNcas4izGCAIUFrPcXOCk3s2AgqyNcFFK20enUKDdsimKVJZHl2vgYM1YHG/Q8WjmYUNMpmyyZQQQhQghkC8SdxGhScYKyBZHU5E0GY7pIqWk6zQLTdNNrFkkTckZvYK69g5SqYFFjKc6jpcBVMQZBaATZaJWmGqCNNqb7nguwvutijKF8uELatJM2dxFpj3u0QkSa2kiB6uwyS3WN1TnJq5YEy3Sw49BZ7nzpyzid2chbFj9K9/AyJdnOgVMD9Kpv3cp0Yr7KvU9Nsjp1lPVJQFfQxgubbUTRFhLdCn4mfMlPex38FDu5R1/P7eJu/iG6hiTeg922xPfNv5i/6bqPr1zV4IWPL/G9qXdzz8tHkHOv4yvH2+lPzfLenbfxRzNnODFVw5o4zNe/3M7N9+1GbmxDbu9Absgj5LN3NiuMlnnq2Oco7XeozW7HFUW2+ZKuzgRnZxud+4YRKZt/bl3NDev0fvqV/Mbm/0TfQoktQyO87sMfIrQ1D+3ayo7sMdqdKh87fy1JYji382pu1XXG59LkLMENWXDJsuQHnNARpx5JEPu3k+56Ny+JNpP0p0ndup5fOnY/9z+SQVZjXjP8BV667mHOp2OWG/+d+5ZdRn3N6wtTaLOAJWyaHe0cO3Qd1fpWRnZ/GT9V4/Tzclz5xQodjwSMZTs509PB5pkD9F2/hD+YUG947Py8xTnrpziy5ycIh77AlM6xd+wROr92gcX1H6C4/mfJzha4aeUoNz44y6Htf8BHnTdx9NRu5KpkZec72b40w+6mi2y4nIEWJilg2QFOewPfreE5TVwSchh0dh8Ve5jV6pNE0ddxkpeAezXf5GpuWILrWQGVJm/fxtjyNO33nOL4U2c4n1lBpX2KfQMM9K2jp6ePgYFBXPfpurz1eX38mGvx5/ed4c5MxA+IzRzb99v0T3+C4fGD3HbP3ezfMcyxbc9nuXIFS+b5hKb1/pyIuTo3zrUjX6XYNHR+Y5nV3et417afZybI83OnvsQr3/jLVOJVZhuznK9Oc2JxhjOLdaZLhqVylnONHs4Zj0d8EOkyaXWGwuGIoSd8bsqOsvfKIQZ3dOCmnuvm/h8Qf3R0VAI+8DLg9y679+yeVH4WRQuJYxp06ArKs7F0ExDkqJOWTa7iNJZWdJiQtA6YS4pkRYZAuFwvJjgW72MAC0tqmqJ15im2WiShGZ3GSmWBgKp22aYn0ThUKy6JZVFJ0nQ6CbadwbPmKKpVUjphIA5ILBdjuaRlyKg5QxOLSDsEodPa4mYJlGUTxyliYVgiT6FeZQNjKJOmjQYH8kPsUmeopdLkRD/rzBz1JI8RUJA+UdQAabBNBiECQksjpCaFBAFaWsTKouL4KEtjZIybZGgLA6x0DretzNbGKbSysFKafLrO8mqGflNqESkDkbKoKwuhDUjJVfExhA01q4DWCb5rs4xDyfW5OjzJZmuBgh1DAlrCimpD6BY3kmdiVoWgKX1sCxqOgxMGWHZMOq7TQYIb28zTTh8rCOAa/wRChghlMcgFFkUOX6eYwWO7nEdqD2m3dlr0m4Q4gpxdYVU7tMs0WS1YDG0ECjvb4n3qUzESm6ZK4bsJOClUKGhqiWs5mNhDaUFTe7SJZivvFkihWZddYCZM45LBSWLa1CLohKrQrE8OEwkXj4DdnMYRec7KPqRWKF/hBpLVyGJ7PMGyvYcONK5IYVokIxhaQFoN5aC0pF+2CLA72kuMmAWoupxwbTw7TTOqEEiBSDUhlGAJevUqFhIhbFyTYCuXLfoEeSlJ9HksbZAmTVnYOEmKwbBMIsusOllCk2dndJKlNVfGNyF7rOMou4OJeJilxMaXgrZEE9qAbpAmASHWtnA6ZLqqvKh8nplohMAq0IxXCZLWMnDZZLmg2+izSkgFffYF8CJOpffgRwKZROSTGG0EkbFp0xUWWIexASHAgFI2I3KRrFfjgr2dTDJNwwJXepQSByENlpbkzAxR3WHRDtkQnKBuLIzQkJIIFKkoYFSdZ0kVGLM3UjWSXfYUiZFE2qGolrkgu0iZgOuSo3TIOkeczZiUxgoyCKGpRj7a2OSNgxvEJEIikdiOwaNOKqmgZQsYMjE2pcQHo0EYDGCbhKwo49sZIkDEYNwQ247xjIVUTRaSdqSqY2MIpIUtPBQa1T5CmoNsUBeQUuBYLuuYxzYOvdQ4n+7DDpZaNtM20rLYFUxiCQPGwzWGuoaiEiR45KUkp+stwuYoInRdaqqddWIGEEgDaRNSJoOxwbYSNoeTTOhebJ5dntjnPI9/Rj575CS/IC2kKpHyDnAy9SLmVT9SaGr5DpiFFXcCYeB1jWme0regwxofu+2VbJ4+Sd9Xz1G6IcfoyFl+QN3Fj/21zcfedDUdUvLQ/vNMnzhFbjVFf5iln41Ai/ssa0EqD6mCh1fIMRmWuXY25FqV8O7ozdzgHuG69J/zxdX/SrjUC/TyQzNX02ir8OQVkxSq53nn+DJf3vTX1Mu3cujobsz1Ln940/fysw98gKPz3UzPf5MvbCxyxzh4p8qQd7CuLGLt6kS4/+dWtRbLpzly5i+xjnWzdPZ5aGMx4gmGduTpunEdsvtpVEOtNHGoMdogLYG0JRKF8/4f4K+3vJDMYkzOz3Dlhz9E0GjwyIZecvYiGzIlPjmxjxCHx265nZ9ob+PMg0VSUjA1eI5PbdjBxtpJtpQjrhANJkY+TXDwjexu7CA08Eh4gbv2f40nj2zHCmLeuvdjXNN2mKMrOzkxneIh/wj5oI9h67UctGIia56lYJFls0RpeJm9E0N87dBrKHV6MLlIVP0Gr779MNFRQfepOofX9zD11V78YsKu8XmKZwPki/+cY/Ln8Esv4o0veA/F0RIdF2KihmBB/zJneC2z113HOfsU80ISW4/T5TxI06lTmEo41gEnrouxtMLSBic2eErgyDSx5WBpm/Yky0Zpkek4yrpajq3z6+hrXuDRmRRz9X9ko/039Ha3k8S7aESbKCe9rDrbmOrYxnkEJNBRapAszhCMz3BCPMZRT2E8n0JvH+t37mPrzr1kszk2XdPNu3pSvO/vjvOJbMSrG4KF9W/iE1s388rH9/O8I+Nk5yw+eMUP0pNvMCSnyfkxk6qHxyobKcT3sGfoDGFvL9XPVnj/8n/h1698J+/Z8woan/lj3vi9P8629u1sa9/ObYPPrGOrYYVHps/y2NQ8J2frTK/kmArbmELyjWod5+H9FB9K2Jcf4Ja9g1yzuxvP+e6u3D4n/8fkk8CTtCDVvzQ2NjY2OjrqAX9Bi0/g/0pZPDvPzfooQrSG4mXtMK+6cKVHoquAwZFpIsvFNTb9eoHQtluEu1KygwMkFjhuwEw9wyY1hUwCNB4l7WNbGmFcDBEN4xHjI2ULlUtJl3JiU82sMujWMMHFiTaFTY1Vz8KK3BY58dqhdCs2rOosQtu4WGC5SJ0wyDwpk6yRG2u07ZBCYQsH0PTqcwSmxT8jDGwMTqNEK4jRBqQALQQVoeinSWKncUSDLbVZEumBiNhuxtAqRVFqOpII2agSagulbVJWyEg4SyFqEmibQLi4IkFgcEioGws7ac1WX0QJlNKmaiRSQk4bEAJHWKxqj5QVUg1bY5RNQJtqYCxDYtbAf4Skw15mczJHrDM0EdhWSH8YUEhmqAgHpA8iwMbBT8U0jKCtuQhWK3jsYwVkwqqWpDEsaQcXGydZoGpSJMJB0+JK0waqzXZsBNutc4BLpDK4ZhVtINISbdlERrK5NkUgPKS06CRASR9lIowxpMIGg/occ9Z21umTKAMV4RHrVlCrtI9rp7CTKhrIxnPMMsCyFAw6LrH2MCi2cJqcWkUZQ1XZ+CJCiZZhAy2JTKpF5CwdUioh1BmaykbEdQzQ0D4N6dCpV1v2xGJnOItwDCAItYVAom2N5UboJEHEaaRQLU42k0JYEmk0w9EsVlxD8/TkXx6B4yV0WDMoEjrxCSOXWdPGopFslIJA50BYaAlJLNlUn6ZOlj4WOUI/ZVxEVKFkCkjL4/mcwAAzcieOTLGaeAT1hBWTxhYaQ0xiSaR02UCF8yICKTECAhsc5aKlwZIZ8qoFElNWDjkrxnIDhDCoME05yTNMCWEJVhMfIQXaSPZwDjsJyTkBRkraqdOnFzghRmiIDNp4KKnoTKpU7CzbONNakZRpdtinOe/1sCE+j5NYLCiXkmijabVjnBpu1ALmVzJhW3OMOdnVaisCBAJLOHTVmiwaD9+CIXMUWxgSIdBmrU1ZCmNJtoSn6aCNr1vXEFoOUiT4/gwysRDGoleMI4WNNBFSWOCFiNBGCIlHnabOsEGeJVEOkEGaFKthjk6/jpvW1FVIdzKPlC5oyRAzREKCtBg1s5zSO4gxICSWaI33+8QZpOWtkTorGonLKZUip57dM1jCmP9Y1FaLi9V/V4W0MfzuB+/nF6MiOfFJ2ry/43fkW/lIuI8r/SwyPcvWyhxfHPoKe5tV/nJ+jiNzg/zn63+B8YFBbjx4P1cceJSOGyPmu/Jc03uAg+duZvnQqxiIHaA1W9VpCzpdQ0efoDDah7e+HdHT6jQul3u/+EFGzlzPG0yV19sP8tvOh3ncXEuQ/n7aFndwmhLHVJ1UZEgnva1IDTDeKlWvyQOd/Ry9pp2XzT7EK45+lBPn+gnau4hvkvQtr2d36QoGg44WMeDuLtLX9iLS//q4+/j0Acan/pyeyQHmxm6lmTh0u4LtV3ZSHRRML5YorZYpV6vUag2SUKHVtxb5kHOMjuIxnmjcRnulwsvv/TIkIY+O9LE02M8t8iD75wdQjseDr3gLv9rRx5E7S9gIJgZneOWr76Av7wOwVHmKiYn/RFQaZtsTv4IvNKe2foQP5ffw2IFd2DrhPT1/iq5LfrX8VorZ4wQDf0dvYx03Blv4dNd9APhWii6/SJffRZfXxeqFAsVJ8KOA9MRJRjPzXBeeo2ewyufPXEn32YCyA2d6OtBSMCIHGMluopI5z+Ho5Wh3llMjf8LBbEzJfqYN2pIsbuxjxQaZZKiJIsvGwZIWYU+adSsL7Dt5GDo3MNPuUbFrazxfgsCp0fRKl7ZSXBKRpVBPMTgTMVQXvCE9yXanNcBFOkdFb6cU3sSFZC/LSZaVxNBcU0vqMnE0RhKdxqgFlJciUyyy8erns+v5L+b+c/v5b/fPUGsOcDHZXq141fjXefHxL2EwHFtXZGXjeqbWbSEVxcxbefY3Btm2/ku8afODxKKD2sEXUT13ho9e9WrOrR/lByYe5F3bbyIz8p3Bt5eaTb588AAPnjnLyVpMPerGJC30TgvNrvYst+7u5QWjXfSu1Y/n5D+eFIu5b1lWX+O/ahsbGzt82f9+FPjo2nbB77r8W8erj/3Rb+Haq1ieICsNpTCDsGJi7WKLGKMk0tIY3eqTtW4i5beibFpe4xJJpQ7TaBMjhfOM+wBRaON6CQAq9AGBtCNcOybRLWdQhR7SiUFqdOShjcYyAi0scGoIAUQZWJv91UYhhXUpDRX6WIAnNYGWLSLdNRG6xfGi1/7Vcqc1lhcwlt9MX3WOTKO1YlRsW6IS+iRGoo1GYKOji2229Y4BUBbSDtBGoI3AaIFIsmv2SpDSvqTb02mu2UVZqLWtY8rEOHEa7cYok6zZU1CPuhEYcl4JgSFuutiOxlgJOVtRi1y0trDtqOWQCkWz4WILF8tvtuihLqvNfmJTX9vVclEvk9jMqn56WfqWshUahBMh7AQSC6W8S/nXRmOiLNJpIqTBKAuxlh9jxJrT7gOamu2TtyoIIBW7NLXEeC0yYh09s061mYRVcdEPWLP12nOxDinaAj9ToRT7xLELdoIAZOtYNSq8OIFqsN3mpTHBGIGbuFSTBEd6l+qtDn1AIr0GAgibNrZcs5HbaNUg03L4CXxMKlj7nsaxQ1SUI0la6HjCTpgXnfSY5bX6+O0pasbTXQwn50gCD8ePkAh0lEUheIztyHSV69XJS/ohExYo0q1LSCdASI2KWgTMpFq6q2YaF03kRFi2foYOwgoxyoHL2oREI7zg6efc2hqa5MU2Kol12No+6TYQCFIIKk1A2Dgu6KR1vlyZBFu6GKNb7VaulaFbI+coPCOJA49V7bbK1Q0/e29PAAAgAElEQVQxIkGGGZSWiFSDjB1Trbe1dFvL48W6dLlOeStq8bcpG732btaOsKViud4G2uagPcKV1lE8oQljF31ZvRdaX0IrvmgfaYdgJL6OaJgMQoORIN0mWSfEtWJKYQYT+sylcvTpRWi23r3YpxwVmzHCsMdpDRMCUAqkBSZ2kU6LL/5xdQUmSvjA23/k29aP71T+ufEKnguwvkU+vv8YL9u/QjZx6XN/mAV3gNe7NzBeegl3ZMrIeAbtxDw89Le8d36ZXdXN/GXqBj58/Wu49fAj7H3iHnJdVRbaX4JQVzI68BkKm7/C0vQVfOPgj/DyFGzaliG9dTNyIIew/+UlypXmApXPfIFPLWzjLjR3Jv+Fq7Nj3FX4Rforw/TU1/FYPeZvhv+Q2x+eZsdsPwv9m/nG+hewxWkQVnp5cGeGh3ekuO2pKtcc/RJB4xAqvYnu7e2k04ukjEtHaTsdlc04lmapf5xgZ8S6oU1k0xux7a5/EeLdGMMj504zNfXHDK94BEubCZ0qqcwyqjDJhcwEwgrxpMETBvvbfCo2EBpBpCEwDvlghPxsyOjHZ7ASOHh9kZPriuyYXOFCJU1GGv7sjtfw4tIYW8duASM4MXiC21/+YvaugXnMVY9y7tyPQDPL+id+jc44y8RVv8+vB69g/OgAnqV544qkQ/mcS5U5Mng/ix37KTR7eO/iTzD/fR69+T6Kfg8ZO4MQglqS8BuPP8j4YoPbH/574v4RYtenu7tKdT7mHdHfoRyLL5x/PlftP0hsScbWdTHTliG2NYc2Vqi29XHr2R8lsgKO9jxESqXpDNN0UmbUt9gV3II0LsoY7LWF5qdWzvAbmTQ116e+rwcvfY5dE19i79IIqYFFdnc+RVwbIt19HK0tTtz/nxnrsHlypMxSdomO5knyjZMsy+alAb8QuQwLl12J5ntXZtkSVQAImzka1REW/duZ0dcwH1ssrwXCrlUn5iiN0mEm3A6Oto0y6W/ACAtHhCTa4yVRyO5mO20WDPV+Dvu+x+hYqDLTnuX4YDdq4wCLmSEclTCWFAk7lvjRPZ/ECJfV6Geof+oe7t37Ar551QvZuXqa3y+Ps+5lb/vfaMlgIsXYoSf4zLn7+VoyTz3sR1e3o5J2ALYXM3zP7j5uHS3SnnoOIOM/kny7Aes/mvxbx6tPvP+XcNtDjJCYxEYr92mnG2DNYdaJg1EWSrecJiETjJZcdNTkZQGEDtM806dvOcjQco7k2rWA1jeMAEsjuOhAPR1gXXpuTTfpNtccLYOKfaRMEJbCGAGiBb6sQg/4X68UW14Doy107FzSD0DHbgt3bM0RurwiqDCNtCOwkqd1+yfPmDUbQMsBF0J+2wDLJHYrcFm7YxLnst9racYuRttYXhMw6DUdhPXM557xzlr6l6d7+fdYC5gvv58vQWmNr1JaMQiNTry139ElvVrf1pfKUccu1pqtLpdnBFgiQbrxpZxftM/FetMKIOCS4y9Uy/lObLSRrbJYC7CUTrD+SdD6rflfC5gu0xvWymYt/xfvXR5gXfxmHLhYtsEo55KOl8pMS4R8ej5FGYXUa2dupboUCFxK71KA1drihhGXIsFW4KjRUfqyNpJu1S8lkV6IwFzKz9OTCGmkHSCsVoCFuXyCIYWQqvV3sW1oiVY2ltvEKAedOAjrIkQ/z/ju5Xa9PN2LuWrV+dZZKpTVsmHioNU/HcOefsO6zIbJmr4Xg9lLaa0FH4LLAp61AOsZX9WyVYbIFoiFEc+wDYBRFjpxkG54qV+4WBbSDluTAObiCtm3tpd/GhQ/3e9c1EUS4eAQr5Wv4vI+55/aSxuNEBY6sbHs+FJ+Q2Xzo2/7bf6t8lyA9R3ISiPi3r/6Cj8Y9pKWX6Hgvp/7U7/C202VpHw1tr3CD1kTHC3WmMzex9cnpvh6/nrefMV7eMETD7Fj4giZpVlSxdsxyXZcYRhyJflt/0h98+eZrK7jz46+ihdfBW/f+xp86zubQf/04d/khoev47VNj25R4gv6F3Fdw917/webj5YpNIt8o1Hn48Pv5j0fD2nLRDzeuZMjP9jBC/of5UMnruJkz0+w0pPm1Y+dZtvpx2jUTiK9bTip2xDimUGeADwBjl/FLp7E6pwmW8wxOLKJQte1eN4QsYo5s/I1Dpz/e9zoEINC4vuVZww62giqUZpA+UQqRax9Qu2TaLs1G7a2tNyqggZHJrgywLUi8ladtlKT/j+NEQqWfzahTIrp+/sImw6jG2epXmOzWh1BPvE6VOJzZvA4jxvJcuQSoWl3Il6y7jGu6Bhn57EfJb26ifu3/hW/23gZ8WSO7lSZv0rex1Pih+hcvY5D1jSf3fHHpOIc7zz9DvQ1G7j2pkFSl20re3hlmV89M8mepx5i39H9dKaaDLRr7um5g0wUkAiXETXOHfZn+LLO8pV8hqAheMcXNTJxeWhnD07ooq0Ujn8DjrMDISTDcpktmTZ8KwOAIkYjMUZyNJml/Ym7Kc4/zmxfB792/ZuZ1X0km3OYgQqvO/1+trn9fCp3jh8uLFK0bH7tzG9R6x6gUsjS2ajwU7Of5PbxE3zx/DUE+iRHt+4hEEdoeAtc6EyI1zodKTvYWY+5uVrm+xrzdBuFUoIp3c+ydSurtZcwGaZprJ39mrIUY26TujzEYHyEbn+Fo+nrOWaGeVG1jSubHWCg247JTH+ewbGHCW2bw4OdNDrzLG0fJQlTBMZhwnf5oSv/Cs9KOLj0PeTuHmesZ5h7X/wKHBR/cOQvuOalv4jp2vi/3baDuTIPHb6Xz1fu5phdRlV2IkrXEag2bCF4webO/8nee8dZdl11vt+9T7w5Va6u6tzV3VK3uhUstawsS7IswFkEY5sxwXgYYIAxY4YPYOLDzPvMEIyHZ4NhJDC2ccBYtizZkpWlltRBUufqUF053br53hP3fn/c6uoWxmMY85j3+Vjrr/s595yz8z7rt9dav8W9e4fYO5z7/32+uO8F+V4BWA/+yc9STV/0GIh9F8PpKssXABaGgliuAi0bHZuvBmFriKGrxlwAWIYZoKILCpwHqFUFzl8trVt1HZtgxMBFgCQt/6KuDehYoiL3WxQdfclJfC5o0bISBEGCrvKlQBur5awezkSKwLxQpw4aTaamaOZWPS8QoMQl4E5wqaIY+/YqsJCrd6vVTFuXtEh036GCrhIobR8h4rU79OpbhVao2L4EACguqIKrDpHd+5VEhS5yDWC5SCP6FiB2qcSdJMgLCuNqMrPV8uPQgdU4a8Npkww90sonaGUop9KsAWItutYRqUHE3xZgXeyni2MK3dgiIbpWLaVEFzRfCrA0SLe9dv/aZNISpHqV8q2BnN+i7iSIQ7cLkP6Rgn6pXLB2XVS6u32gV+un1oCEQF/oU9tfA0c6MsGMkIGBsuMLNaTo17sU7P+4vIut+Jbr3bZ2+0uIi/de7DcNsaQvXGHRzRP7JtKJXt2rkQVGeNGKE1hIK0YItTaea0r9BdSw2rq1+mmJEBFaWatmSd21yAqNtPw1oHHhPUJ31+aFQ5dXbzSaTNjBV0kCB/gWgKVeBRhfBX5Wx+Yfj9+rD0mSGLFCu8G3AKwLcul7Yz+5tj4uXbEX+xkMrQjCBDlRoWV2XUgv/Bf7CS4FgpcCPJTs7k+iu967rZevAm2GCoilDTJam5sXxNIxoTAAgYoMiqpCzc4AEEYG7/nJP/gn2/cvkdcA1j9DfucLL/KL5xV4DYZSH6Iq2vy6+CkeDMcQImadDrjdPstjA0/z+niCu70RfmLnb1Ao1/jRrzyBp88hzWHs3htwzYDtPR5Hiib7brkLJ3qBian/gqcEHz/6g1Ryp/mVfT/MdX3fOTdVLajx5FM/xtLhX+BjGv5952v8Qu5+ymqYl974eXoffZne1gAPW8/ySvM+3v81Rc+uOg+oayj85Did2OIjswWW+n6DOJ3jykMvcPfkIwQLLcINO3jne/8TfivGa4Z0GiH1hRaNc1VUPaYedy1LXVGYuVnM0jnSvccoDBzDcNr4XpawMkqrNsTx9gAvBCUW/DyNIEvadcknTBKWgWtKHNPAMSWOKbFNiSkFhhQYQmBUp0me+wpLqsD6yOOWR7+JjGM+feOdFI1FzKUKOavDLX1neHzLZRQH8pSffjOhn2bk5v9GonRurc9CZSDQmEBq4RqS1c18yqzw6codUDXZnT7H71cfpPAD/w1zxxCT5w/x8y9/iDCWvPPIfyThF9F2m9O5Gukd23n7Nev4UmWOz52f483f+AzF6jLbczWmS3dz3H09Pc0zlPOvMJucoW6fZjrdBSybg4C99RHS03vY9/RRCvUJjm67jcVMh060SMbqwUzcSFtuYCS/wND2x6ikz/OHZ+8gWNrBnypB0kzQOfg/Gc9NcPCmvfgreZ6JRzkb9aF6LKIdBoOV/8p7c7MsJK/jb4L34LlpBlcW+OnZz/DelS9jhyF/P3MD59rQ6hkhGOjhvFsjsTTP1vMtxtd5HNi+TGC/ejMteoqbF332yQ7Xxy2SseBZdRlfD28i8q9m1M+jVDeAupOZ5vmhb3C08NLa88kgy+vPvY3NK3upOUvMJj7L2x4/yWAl5rHLbR7a45AT6ymxnWxoUHZ89u3+BgVnhReO7iXzYkgrleShu+/ldGY9v3z2k7wvlSC49T+D8S9nCtRBzNlXXuLvz32Br9vP0IkKmMs34TV3EWiTLT1J7t07zN07+nBfi9f6PybfKwDrix/7FYJEB4Wg5FdpmwnaRoJ06NO0HEBgqwu5gl6tuOpVZCXWEFb3l46MVWVckAxCmjqzqmzFqwDO54Ky2wVPqyBuDWDZq1aiSyoaG6jI6brqRG0SUZvlRAEtDNDd0nu9ChpYEH1IM+q+M7SRpo9EEQuD7IqmXnz1gV5hxaNS7K7lCwBLSE0mbBFIC9+wuMR+gUZxAfxcCrC0uOS6BhWZ6NgkY9ZpG12XqJzfQCCxdEzdSuEZNheVwlfvfQJjrY/dMMazjLVaxLHRBVmX3L+m5GuxaqmxMGxv9R/zooubAKH1qkILmaiNq0NUM8WKm0AnAlKRT9u0UaJbplICV/uE0uxaIY0IzAtWvEsB3KUQEop+lRiDqp3qBrqtVjL2k7hhRJgOuBSWiEtm1YXsXX1etXtNQMVMEBjOGjC5aA18dU9cOjNBI7WiEDZYsbOAJAocTNsnEfu0DQflO13AKET3xDU2KERVLB2zYmeIpEkq8khGHktungvQPhH5dAwXLS6UeqHc1TFdfZ/yHUzHXxthQ3fnjRKCXr+KEhJTxbQNm1BKfOmiRbeVycgjFXssOfkLo3+hVQgEhmfgCxvTaaKRuHG4Oq/AVN30Cqz1Q4zSFq728f7RvL54mNC91uNVaKzO0Qtr/BK4Rr9XBQQtw8byJcIKWHGyKC/RtbCa8cV5aIWXztDV+Ru/6hpr/QfatxEolKMRxK+C7wJwYx+3KankrDVAJp0OmbBFw0q9qh0XxI0DPMMmE7VIhiELiW5/9nkV5s0+DDO8CMyUgQq6LrZcHE1AUfJrVOxc12UZTbLZDdNopBIYZoClIhpWAoGix6ujDEnZynbrowW9wQrLTh4tBIk44q0//od8t/IawPoO8vzECuZXXmCHlyclnqLk/Heey36An1UNlpbfBMA7jbM4dpkvr/8iH19Y4V1X/i1xbPHTD0zj1F8h9l9k+EaTs8u3ElBhMZfjP9x4Db3rrwCg3Zrg2NGfx3Qn+Yczb+Thms0PXd3LT+/8aUz5v457evj8/aw/+SgffOU9NEXI/Wd/lz07zjCVvoP2mz9K4/79DARFPpH9FLu/+RhjC5oN15d5ytyI9bYyS427+OREhWNb3kfk9pB5ZZ53nv4SpaVp7B17uPcDH0TKi5v0TL3M/hNfobB4gpKxQpuAdm2I9tI2Osub0cpGo5EyJFIm9awitauXLVsLDBYS5BMWGddE/jOtAcHp5zj3Pz/Ic53NmJlBbn7yKRTw5HVXEzbLiChkLFfm9vwpHjp5OaPv/SGOPrKNVgyvDAW8/4e3s9D6CuWVz1BUs5iSrm++14N2KzxX380nXn4PKoSbd+zn3p4vMNvpo+wVqAVZpp2jTPsxdx/5eX4wMcKSpznbESxHmtAO+fw+k8zSKW559mtYSFLpm/CNy5nNHWd28GucT89QthRoKPlFbqxHfF/d4VrjAC82386B5rsYMRTrj9+HnH0Rf2QPxzeuZ65zGh14JO1RIvcWVvJ1PufAjXMG737lc+Q789g3/CxObjPP2+O8JCbZZp5me3Ocj5bu4YnKFUSWSbQzTSY3TtW9mny1zC+f/CT74q8zaUlOSZdzszsYnjE4OdLk2cvLa3tfys8xupDnyuMCJQUnt26gEA4TyJC5xCLzuQmaianuyZCGwY7FzZ06N4cN9nZ8YtYz1fkBxjvXMhckUUDKiBHOWZ5wx3kim6RXzPA6s82GyXdg+QU6iXMMTv8VV76yzGxR8tF7JGeGBVvqW9hZ2Ylpemzf8zUKrsfD48MMPJHGSsTsv+0evjl0I3cuP80fnP4E7h2/Rbj+1n/pUl+T1myZh1/+B77YfpApewFduRrKt9CKc+Rdk3v3DvOOPYMUkq8lNP63lu8VgPXxz/wxfa0ToDSpyENqRZd7SlB2MqQiD0PE1M0UkTC68UzKQopuugJLx4SYCCQIgRJccAkgGQekog6+n4aEj6NbzJsDYEXdPHNKr6qimoQZkuj4rFhpDB0TS9k1nAkBQuFEijgyiVxBNmzh6A5LdgGNiQBK3gpSG0ihmBO9Xdcguu6HmaiDG7dQwoJmEplpo7SgbqXJqQZRy6KWc9fsRrmwQcdIkIuaGFoQSqhYedSqcUsLhRF3LVi5sAbKpO6kUFIhVkkoejtV4sBBxRZmst1lRBNdbwhTSaSWhIYmWGWsW3ZyqwBNILSmz19hwekFNCW/hkDSNF080+ka2LRe0yEveKQV/RplN98FnFqjhSYbNqg6adAmctWSl4w8MmEHJaBpJXHjEAuNVDFlikSOIhU1aZrJ1cARUFLR166y7Oa7AEIDKLTUXWOIkGRDj7ZhEwkDgSAVtnF0ew2wrji5tbQYoZ+k2G7TKHTrLjUkog4tywUhVtukKfptbNUlL4mMiFAY1MwcCIkTR/iyaxmQq/BUEqExVsdytXO0wo0jMqrGgtXTpQsXgrzfxtYxy3aOOLKQVogSAjcKKURNAC7op7FwEDqiZDZYjLNUnAyWDujx2iwkCigBqbBB27wYS6YxkIASXXfAnqDOopvFUNDvVwmFJJYGhvCQWkIsgRiBJjIFK2ZxzWom0RgaOoZFze4eBhhK48SaZOxTtbMERozUkkLYomJ2LTA9XnVVme/Co35vmUjbGFKvArZV8LA2j2LAJB12SCpvDRB60qVpuWTCNnUruXqgsdJto1YIBJGULLtZlOesWljjLkjU3XkNkIp96paFZQiiWCKV7oL+i7eszocYIbt0N93nL2Qq6+4xQ50KWksWE/nuMUfgYNg+6bBNw05iqohs0GbFyQGCXFjHjkPaZgJHRdhasWhnUULQ51dYdAoINEoIbKUIRfcgwXRaa/F7XYnp8av4MkHTTKLpHsS4fgRWtx986VCzktixRyFqEUuTFSuDQpKKWqRDj7aZoGWnaVk5fvxdv/qdtunvKN/ue2V8+MMf/q5f/q8p7Xbw4X/rMr0w5vOfe5Z72n0E9WP0Zf6KSgR/rd/Ifm8EHWe4TCu2ylPMp5sI+xQv9v86p9MjvP2ZDhuXFvG8RyhsrVLrz/NXmRRvTA8RLi/zzOwCW0oFMrkilp2nf+DNLM9OsL33YUYsg785sJtHlv6e168bI21lvm0dN+Z28eXyJ7kuSvNIYx3ni1u46fR+hrLHif2Q9Nt+lCPPTHBbsJu/3n6M3UerdFZs9m6YYTlOovvP8Lax36P+2ANM9qZoja7nFXsb2Vqd0uTLHD11iv3hNE+f+CvOz3wcs/Mx+uynSObHmTd8yl6JYns9I81NeF4KT3fVAENqtDZJ+BKnPI/ZnqQ3m6DUW3gVYPt20iwvcfgLn+Spz3+WSb9A2i5w09PP0ki4PLVrC7pZwXdT3Fo6z609J3nh6AjZN76NU/uvoBnD4eEW229+jsn536YneJwkTap+gbxfoPT075M/fxe/UN3Mo2dvAkvwnwuf5Y50nQUnhaZBf2qeXaVx9qY73JzzSK8/wMHiS4z3TmL1RzimwX07Xa488ABXHt0P9ijzo1s4tPVZntrwWY72H6Ds1Njrd/jhyQ4/eOwKEvFtqHiE+cat9OqYXakH6BPzTLU6vNxrEIqI/vMn0a0lzuy+ksiyiVvzaO8wrueyr7WBu165n2Rnnid37+KrY1n6AoNd0Xo2Z2YYtmf4i90uT5tP867qJo5aGZiK8b0+ss5BBjq/w2PJeT6bS/NwOkWlUmTX6TSLRcHMpjRXhzfx1uy7eO+6D/DOwR9g78kv4JZsJqI+Nk5OsyJsnjEv55x/Ga3aVewo38K6donNi2UIajzZZ/HlbIq/zGV53g6Iki+yI/F5rrdexhUlVqISzaCPkc5Wvq89QinYxanaEL2dvyPfv4jZ2k3bvYO4v4eh+RPcfjBi15k8sqkQzgptu4fW/A5yxRl2DCyyv+CROZnHXDzKbN8iR0p3cd/ArfjH/5j0859ANF0sUUTaCYT1z6ddtTNJdmzZy5vH3s7V4nIazePMFj+LTJ0m7GR4/pzBpw9MMV/usL4n9Vqc1r+hpFLOb/6frsM/R77b79WBM89itSawNfQZdTztooVNbEh0qEkREgsLV8coIUF3k+0KoSmFFaRUtGUKLUymjVF61Qr5sE0i8khHIQOJFr6pLypMpiAQVheISMiHLTzTIJ/QyHaMZzo841zOkC5TcH2apoMtY4bjGo4bIkwQISipaZsJpO4q1/mo03VpExJkjE3IklUiG3lk4w62UtgKpBUyzQaKuo6lPIQE7QR0ZJqkHVFs15A6wiEGITG0wIzaxNIkkjZCXnBOlJRMDxkGSGkiHIOM2yJyLaQX4xJ1DTbaRjgBUiqk7CqcFqugQAn0qktUw04hRcyUMcCIWkJoaBtJTB0zrGu0hEssTEJTdHP0aImtI/qDDi2zmzcpGfkEhkssuhY1Uwe4KiDpGpiBIBkp+qMyg8YKHZVYbYUGIZCYGEIglYlnGaSjDoG0sNCrFNqaZOQTSxOFiUYiiXCIyEUtMsLD0QJJgE6ahJFJIWoRGRAZBkjNNP04MkQjyegmbhRjpjQHjcsYoEIxbCCSkHFjOpGFFooV1UNTpDhvDjNmncWPLSwVoR2bAdmgoJqUZQpTC7QUXe/CVZAbyy7oFwIcFRPi8FRyF9vlHJu9eQLVPRhwdIzMaDxl4qqAjbJKRvg0lY02VpkmhYGpJAkzIAolytAkdRsnVjQtm0wyJBU2aRoppND0ezVaRpK04xMrg1gYJOKQepymP6xwzhjFFxZb5Sw9VpOq7gLLLtIRaAPmoyGGoiWEUGhD4sQGpopJWz5OCrLCRwSghYEbQcs0AUkqVnTMLpFFMurQNkxsrSh5dTTQm6jSjlPYcUjHdFBCkA08QsMCoYmkxIoUpozJOCFBZGArRSL2MIXA0iH5sE1dZbGNNlpIDKBktamYCaSI0Ibo2teEwIxXsSOSjaJMv7GE56ZJWBo/NHHjkFTcJYwJTYnQ3ee6Lnyy6zIvuocXQggMowuCDa0REoQlScVNHBVi6y5pfzrqYJiAEiRjj20sUFdJTKAtHQygZbloYZBQHh3DRRATS5OsjsA2MAOFZYRoYSBW3V2TkYcUGkNHCCS+NClGHbAUSgrqRh7fTPC8dRmDqkwy7K6ZJglSukNSd4iRaClR6Sw5BGO7bv5utnDg23+vXgNYwF8+fpp3zwZEcpaSeYiU/TRfzdzORxPLhLXXkdKK/2uHyZnGHDPuFKb9AZ4Y3ckdhxvc+/B9VNInCWiz/o5Z/mT6R/iJa3O8dd8PszRzgvZKg/1TU6xog7GBAaS06Ru8k8jLkpZf4dr+ozwzfgefPDyOk6iyu2/DP1lHIQRDxVsQrQ9yevE2jsZ5ciTZsnSCHvUcTWViXn0H+18s83oxyH3bDnPdoRg/shhLVaj1mJxaeIw3Xvtr9D7wDeayHVbWb+LcwCbCimJ08gAl70V2X/4SgTY4U97IzMItpFZ+lvzEnYycv4LFhQ2ca7loK+aysRzXrEuzORJsMARpCVFsUl5IMvlyhxNPTTBx5iRoQbaYxfhHZB7NlSVe+Pz9PPupj7MyfZ5iISLdzHDdwQMcGx3g2GAB4ogz2/fyY8Yh9uROcnJiGLX7P3D89G6aSjG+80vs3Pnn7DQPkwWenLmeWMPO1ij9B/4TUwrelVyh2ujB6YOPL3+J19/1awy97h1sXfdW1g28lT88/xxfXGqSOvEWFv0CS0LRYzfYUjhOobCfzPAjbBUPs5Kb4qWNbZ7afJZTvcfwzTI3tjv80LTg/Ye2MbLwfqrBu5mV15Ds9GPaLeqpWc7WBVlviW25Izj1ab58+6/xtU1bKcRNxsZPM7KwyNTIepbT+yjWGkTxOFF4nPnBm3j+qhto95uk4zZfVAons8zO2jVMWEk+K16gnbqe5y67FW+khz51HG8uQThXpJG4gXv9g7w9WmBPJ8vAi33U+4vI/p3szV/JT7zj/WzbtIlSX5ZUMcP00F185UTE09YYFZHlsspRxhqnCHo9xi77NN9fjPnJuTupZC9jeMHmfQ/McuW4j6UHOJsr8kQu5EuZNH+b95jLPUt/9otssc/gxj0s+CWcQHKlyrLOvQZZDwhajyAL89TkNcz03EpOzTI6c571KwFxW0K7xXZnjpdXbqBUmGNXX4PD+TEGjwXsnpvASx5gLnsF+3t/gAcyNl+s38eDU5/nm0ee4uWDzzNz5Ajh5ByZpoUZ22DL/yWZjBCC/tIwt43dyVs2vo2+jkU7eoZ64VghPMkAACAASURBVFEiJMdmM3z20BzPHjvDoOEw1PftEjC/Jv9a8r0CsA4en+SI8ujRVXotn3qYIpbQFg4nxCADegktHHrNmBIB/aqJ79jkPJ9ZZ5CS06Sis8yIITYZATv1OFmzTlN32fHSpktGdn348nbMQ/IykiLCRZGMA1zRpJiCWLhsDVdo2w7nVY4+t01KxLSdPL5oYYgSNi45USUIIgIDBu2AZpxEoFgnKuR0hCU1HZHAQKLtYUrBMgYKR8QMiw6WCkg6KQo0qONiSUUowNQC1zXYqBao6QQCk5zZZsBoIJ0WXmSCsGkZFlPFdaRVRN4IUFGbwLDpo8qgrlN1M5Q680QqwSajSdHskEr6IBU5u07kpUFKQgwCKwHSQBqa8fw29qc2UYnzXM0pokiQjkOGxQzLVommzmIIRWyYFCKfQhxRjXoQps3ZngFqvk0q0WKdWUfZggU7z7Zomji22MQcSrdoxiYlEZMlJCs0dW0TCNDCoWQqIjeHjkPcOMSwXNrSpmb00dEWSTySUYChNYHp4kubBHVKUZWs5SO0hYeD1gIjZeCaig3a46Qepc9YJOFWaNo9lOwIS0gKok3eXWZ97NFIDFIMlhky29iyQyRNnDBGmDCt1xFjIwyT7fY4vrJAgyuSDIgKrgzYIFoMiAatlE0jtrFjSSS7gMu1ujFgBR0xn1jHmF1hi1ehVzXRps0sJZI6JG00cOOAIaOGJRVLsodIQ10WCEyJoxUGmoLps2zlKRgrRMpiWqRIODGGo9ioF8iICFuHnNKD9Ec1zJQgaYNtxpgigRZ5MsJkoxmh84rheAlte0wwQEskyIUBAsnBxC4ikSISsMuaph4X0cKgYCvmi+vZ1pljqN3Asm1sKejoLpj0DIuUiomEwaQcoapNeqMKRQKIYV6nKKU0QjkUaSEisFWEUh6OFdHr+GREm8PqckJps90u04pSmEpSt9pInUAhOSs3UYvybE+eJhIJIqPEkLVIzTGoRwnmKJAQISJSlGSFipkBBMOiiRYWU+4A8+YojmoxJ4poJ0sprhNLj3QiJowsUnGIZ6RIxB5amkTCIm8GiFSCfuEhQ5dBZ56M9KnpAhLNOtsjF/qEscEZcxOluMmS7KE3EWIGEGmbsjvCWTlIv1rCVRFSd0GjFoJsGNNxBtB2nhZZsqbBhOhh0hoiY/jYagWJQVM4ZJRPn2wRaZckIZ4MOSEuQ5ZSLIYFBvUSW40FzjLEWWOYq+wT+HGSWAhMDesNHx+bzbtv+66/A68BrG8jpxeb5B9/iaEwSzT7KIM9n2MqKvLTxTzNuR8BBL+/dxMrz3+RlYRNy3oLj+wa5paJJh/881/m6JBNQzfpv3KZ8+ZWnrPP8Kt7fwbXTLBtx16Ye4HFasDy3DT3VVus6+ll0HXI5neTSe/Dq3+dG4e/yUprkM8e3MhXxw9y+UAPfenUt9Q1bWVYMAcoOJ/h2dmrWEjmWDddoy9aoKf9BE1D4+Vfx4lzglSywtHCNFtfMSDtsDmoEo3EnJx5ErltnjcXH6RPLHI4cTWzWzYxRx8bj51h8twObr/xj7kqfw+9p/pInxdMVTTnPYlyfXbd1c91P3gZfVf0Yu0oYr6uD2d7geJgkpJtMhqF9GqJ0Ab1FYeZEx1OPjXDmUNHmVmawJAhJx75Mk/f/z8oz06xoafGtnSD/MGQ4vICT4+tp5qw8HIlzt/5dn791KfYWDjGfHUz1eLvcmhxgI4McPd9jNdteRpTJfnK2Tt4cHYHbxx+kWum7qZw+u18zKzzERSxdhgbWeKjK6fZ9nO/itXT7ddW2OJDz/8sJ2qnuO3kj3N79fUM+VchT13P/Nlr+XzUx3PLyzzQUjweSM4IsJyQvamIe3Ihb0+YjKkxlLGP085VLMaD2CpmndFgXzaL5Z/jhBtCMsUL/dcwNnWEjYNLXPXyQ9z4rl/hvh1XshhH7D76ChsmF9k2O8XOqZdIRCYLpRQqOEOyvoySvTy68evMDDzLM9kXqZp17irfyuXRjTy0cR+95hS/VP8dfvTsM2xvZzmYlQQLeQ6Ht3DUGmP0uRXSvW32vukoI+tOMGEe51D9Fc4tZXnwmRq//dA4nz6yyLjK46emqQ6fopRxMMIEO6fPYCyNsFgK2JKb58qF3Rwc284/7NrE5dNV7nxugjsOttm+dDcpfTN2lGXa8fhmTvNQvs7+vv3I0gPYibM0oyydVolI9DOa2ssGVcTyj9GxFpnpuZNKdic91VNsWFwk1wqY7Fi4qobXXIdZ6LBr6DhzuQ3I43DbQpkPVR5nIn8147krMBI3ss2fJtBHOJyZ4sXkKzwsnuHTjS/x1fMP8ewrT3H80AEWTpxEzzZJtxwMJcExviUtgmO47Fh3GffsvId7+u4kU17Ek4/TcBeYa/Tz1TNN/u7gYZYnT7E9XcDNJV8DW/8fyPcKwFqammZcLTJvJ8g6CSrJQaqhxUmjyHChyqBcoSyHWScb2EJzONPPHm8WI2HSSuewzAKn/EHawJjbwNYVfGHRdmzOuxmWzSJVswdhdzhRGCZneUSWZsCskY3apBM1ZlK9pH2TDD46TlNNdTicH6NqOAypDvM4dAyXpJkmNEpUnQa4bRZS/Sy4WUpWh4zlUrEGmLCGSUcNXFtiJ5JYlk3FbVGy5tGmSS2pqCaK9IoWlhswYW1DxG2SVoN6NoPUDovCImVUyBua5zP9nMn00Eym2O77LBc20jaXSUvY6peJkjHC8ohtxbHMIDWjTDVhMsgAAZIsbbRl0bFKNO0MfiCJhcQzI6ykx6AZIiyPppvFSneoJxx2Nw6QNCOGhYfQDer2BppximTcxHRhg6iDETFNieVknry5SMppsuC6xKLECZnGIKRElSHZPWlfyLi0tCRpaJLSJNAtzGRA1lZkTHDRLCYKYGRYtEqYSUknmWSr7JBTLYrBCgkzxBRNGgygtWQ0OU1P7DFr5ahnJISCFd3LTH4QS0W0RJJqocOKVcUhZsocpCd2MXEITIM+4dEUQ9iGhW1LqrKPqu0RRTH9sY9hekzFQziGg0Ay4B6kbdskdUxB2My4/aSlT2Ta+JbGFBq0ieWAtkDaAQnLw40tLDtFIq1xpESgSUYtlG3R0FlSVp2OE2PSoWDAlDNMW+YhENRSBZr5DMdViREjxHDAtiIiawEXyctyhM3WNMVYYBgOdVlkxXQ5wCibdZle2aJhpVHCwCOPLUAms3Rch5prcSyb4WyqSDktCGwo+xuYdDaRcwSRCBlITRFGUE+uJ7YstJ1nKhXSlh4pHdC0hzlvFuioNkfMMTK6wqBZJW816bgpjsQFqmqIq+0FcGK8hKYoJEmpWExuIhnXaCqPkl3BSMcspErM2i6uU2fI1lhCcCxd4pQYYqNdxjR8Zq1e8gkD4QoyokzGUMy5Q5xOZcnrFpboMJlOkTY0A2EN24xYTvfg2gZunAPRwNAJTKWJhU/K8KnmfFKdgIwd0St9aokezoSbCOIsm41ZFg2Xp7K7WSc1kemgrSxZ6aPtCGSGA2o76+Q8GB3aoo8gFpTTfTwtB1FWgZINWaOMYbexhM9iIcNpVWI4XMTERiI5Yw3Rrxo0UmmUjHEMWDQMalGOjtZE/R5O5KFjjyNGkXlrANWTwTWzpPVpsF2W7Tyu3eJcPMAOMUFeKg6YI3imw3rnPI04B1pTS/QQm70shza79tz4XX8Hvt336ns6BsuPFH/zyW/wrkYfM8ZX2M2TOOYpvr+wl6ML7wftsMOI+aWeHM+Wn+dcqZ8Hr9jNtfOT/PL/+L9Jl8t8be8YtVSWHW89w30v/ABbr53iw1f+3sVCtKbzpZ/nr+cH8GKX5zZdxsDoRn59bDM50yCKKkxMfIh2Zz+H5nfy/xx7F2GU4vJ1Hr9+xz42FnPfUu+zT/47/svM93Fmppc3GPO86ZVP8Ibec2RHPI72vJXDiz9FfeU4z2/8OHc/3GDntGDD7TGJnnle3pFhMsrzghpAtDP0HA345k3v4LnCHrJLZd7y6Kdw2w1SfdfQ09mDFxs46To7bhlky9XbkcZ3dsHSjYD2RJ3yqfP4Ux71psN82M2+DeDSQrhTDGYfI3Fgjvz5CkdG+ljIJlGWzfyWy7n+zu/nlvvfR6l/kmpwJS/7H+JIWyKdOiM3/RErZsRjE7cy7ltcNvol3h3tYPDkj3A8SPEhu049MFElm/fpx7j3ijvovfKqtfotdRb55Wffz1RnidvG382GxmYmMmeYzZ5mIX+MslsBwA4Fe5oR18cxY9VNSG4gsnM0s9MEuQmc4gR2emntvaJRItPYxmLH4QmjzlUPznJk860I16Tluvz4wv3syE0zu5jn7/p+DmdygB0n/4Hecjdfw8ubM7x09c04JKkE4wxOeVhhgHJGmRpJUU+YnB+4gv70Bn7rlRAMj8qWPyJoDLLHrpCZ+TpzwRDvLt7OeOcNiJYFGYE9+Az7rG8wFG5h0Rvk0OJuVrwiUsTkkufoZA+STJ3hjtLredOGNxF/4z7S7RP8g38t9twsqXaThaF13DE4yI6V2ziwLeYjxZBbX3yKOx//Jn1LS6xks8xe8U6M5OXMhHXO5adYzL/EfO4EC243mV82Egw31lOqXMVwbRvbogE2OQZmNM9M0GRJlyhN7mfD5IMYkc9sIcOpgSLWaJLsdSv09E8xt7CBuSd6Ge7MsGu4zskb/oA/CWxOZgvsqR7nF8//BZ25Fvuz11BORiwYZZacRepOeS1YQmhBwS/R7/ezLh5ggzvK1t4tbB0dIzvYh3BfHQ8ZdCLGD87xyPGneSJcYjocIQ6LCKPFUHKKNw1kedsVr6c0uu41sPWvJN8rMViPPP41TnovYmpFrwcWNo93MgREjKVnUKaJ4Tts8moM6DJPub04TpJC7FCVMVpECKVX/eY0bUOS9CWxaBFJgWfZuDFgmiBMfNoYSpEWBltbE6yYaY64eXKBJkOKmq9pyQiVShJqTRGfVuBgRTGXCYuOEbPg+GhiIixq2iRLm5yq48leXD8i6vRQSviYkUbrgON47GGCFSfDglXC9g02+j6+laZiCexomslki4QsEIV5IjSva47j+DaHsz34Vtf1aqufoSEl47LJWGSzw59m2Woxnhjqsm4T0LaXiXUvRb8HM5Dsa53BsxzmnBFqTowRaazKDHm7g7YVCd8hFDGH8yMETkQ7stjZPEMpbDHLDsqWh+2YVMMiRtQiIU1u887TMDUHnPUElkVaRaAjpqVNhMZ0Wgy3TEbaM2g7IqEFT+VH0FqysVlhxGsjteBQYQgn6rCuVaXl9qO0yZLZoukYmNgYSrLTt2jVWkQph+HoFG0r4oC/j0wyxHUauJFiyZQgQzJBm2LYj5aKZmgRaZ9KLmAl7uCoNAlhYRGRVQmEkhQiDxeXmgNpP0YrxfFsmZ5qhpyActYjaKc47w1g2G322S+hY4nbgWVjC+0sCAlu1GSsNUPVCGgaW7GjBh2ajGcGyCkPXyZQKsKUJi4mJa/FULBAKpZ4cRFfLFMz4JiznkFZwZG9EJm0QolhCFqpACOOsBRYWtOOmxTiCoZWHDdGcQ3FzlCiDUWLDCeNFg3PYZc/w5DToGKXGG21OOVsI6BDv5lAS81pt4GvBIbQmEhMP8L3k5SjQXKpJRKWjzJaWD4k20kUikpS0HEi1nlVNvoN5uUAVZHluJfHQzKQWWRPOyISJiuWpBxFpP0kd6izrLg+h61hYqEJY5MBaRGJiBoBmWiJUeFxMrmVugyJhcJWAksKhDaIjIBk5JJrt6hqge/amJ7NLu8YSSTH3T0sJutkMan6BoGlSDoespaiEC3QkgMgXYqhYNpskjcEwrawvTIyMpnNmuxqTWBrSUzIqcQGGjrBUCBJ6Bqnk70o7TAQLCEtE0M4rPM7FIMJ5m2XttzI5s4xmtKjIQfI4VB2evlaK0WP3aY/0SHdNvBlRJToxnZJERH5DkEnRUIFhPkmuY5Fw/VJeIluInMUbS3RCMr5ECtu0hNWmcUiaxSIpcIMOthaEZkJDFwQ0IwD+lSEJW0OtfoB+H75LKGGE4kBIsOmx3OoNV0+8J4PfrefgddILv4p+bPPPc57JpO0sifpm/oCPX3P85fOdfxm/QNIEaJUgp9qOyR1k1e2zPHg5a9je+0sv/V7f0DS83hpfT/ldIK/e8uP4RYUH/uL32TlvR9i+7VveXVBcYD94M/w5fMOp9nIfLbI0Q07+MjunWzNZdE6ZmHhz1hc+gQdb4g/PXEtx5duAC3Zub7CL920h919m171vnNfeQM/Nfthai3J24xltqz8MfcmZyllPI73FZgdk8QIPnXO5if/DFIiybbbAtzkJMc39HD2a7fxhY1XcO/V68k//xDjo21+e8v7aBpJdp44xI3Pf52qvQlju+amG1/P69a//jsScfxTEnTaHH34qyw+d4ScOYpyNtH0DKqiS1EvlE8czxFHM5gJ0JeFXDlis/ubf0GmsMJ8/CYeje6iUhkl1X+U1tg3OL50A+VUhJf8W94j17Nz6k2Uyzv4A7PF4Qi0Iymsb/Eb009z7b/7FUzHhVZEOFXmyWNf54/M++kYHoO1zdQTZepuN7mjHUP/ikPfisvVQchdYh2xfAO1aIz5QDAfaiLAjAPs9imq6hjamcIZLbBnqAcjP0Uzew7hdpP3xkqy7KepeEmsRomgmWWsNsUd4WGWVoZYekwQR5rDW4qsqwgGlsrMDA7w/BVXoVwTQwtkrYNZmQA0k+sv5+vX3czW3Gl+svEA2w79OAm/RNq+nyxfoHwsyWF1I8ddixfXT/Ds8I1Ei9dDIIh7HZRrYC616TFPc83Qfu4aepms3aERmZxsZ4kTm9nQew9X991ENDnD5OMfoeY5PBVuZOj8OFYUoIZGuVveSXNdi4dv2MPz48d588Nf5ZpDB3F9n+mBEkd+5Me47Yq76LxylqWjk0x6HaZ6z7FSeJHTmXmWVkOZEmGKgfpmRpobuNrbxr5oFK18ltse+sw3KU49itAxs/kUZ/ryFN/gUdw5h+elGH/5KsT5DrcXX+Iz2bcj9t7Fl4OY+XSOq2tH+LGJL5A4Os3ZcD0ju6+jOLabaX+KM+WzzLSXWaRG2SpTSywRy4t0y6kgQ1/Qz6AeZL27gc29mxnbvIOhvnUAVOfajB9c4O/PHOGQ6LAc9XYD2J05BlJnua0vwx3br2ds4xUY8jUWwv9d+dcGWGNjY/8duI4uNcHPnzx58oVL/nsD8Ht0I8y/evLkyd/+Ts9ckO/2e/XS09/gifp+HBHjaR+JoBabLHV6Gc3MoAClwVYSZSg0JlILkkISoohEhB3FuLGF0oq60+U2U0IhDI2OJZEW2HSVG4XCWc0jlNDQ1AKpu4HrBgYQoCV0wgwJYzUJrDZAa4xVumZLCkzlEBIRihCpNVp245IMZdATORgIZo0WphYEMl4l8OpG8rsdGycyaSd8ItnNPKy16gbkrzK3ubEHoUDGEt+20EYCU2s8PPzIIicVhXiFgWCF8cwAbZ1ACTAVxKszxwlNRsMuw7MyLE6n2wglGGzGjPhztO2QGadIS2bwTLnGYKa1JtXxQQjaCWeNv8xXBiYxvaGm5tCNUdGClO6SHlR1RKAgYfsUlcW2xnkaUnM8NbrGIdDnNdjUrDOdKDGTcUAJXJXEkIowaCCVpu1eJNUxEMy01rPJOolU0HZNhAmdOElax0Rc3Ls6UuMoA0tBppMgJqaR8giVJAhtsk5ELFfTcWhBMbDoCEUsLdJxTFV4RKaBExrYkUUz4aPQNPwUjhngrObCMlUSCwFGgJAhgY7ZUZ9AIWhYu3BUhRk7omWkuiQq+iJR/QV2wrH2NC05SMlLYOqzLDoOk+4IGDHDgYWlBJOWhxVLfCuiFadJGF3iCwEk/W6qgbqVAAnrQ5dEJJlzGzQtRYTCjLvujCJeJYEQBo4EV0kkBnXpE2iHkuxgaJPa6kh7QYGk3UALD60vpg8IZJfB0tQmhtKMhh2WjCwigrYdoI0u60l/I0tETGTEtJIddAy2FtjCpCoUsRGSiByyoQatWXG6BBJK6K6rrPRpK+cCTciaJOnqTKFo0o67OZyuap8hLQJeym0l0goDiakNQsNDIfFDCy82GQ4lQmhcbdFKBbTxMITEEt0YtQALTUwyDnCUT9XKIKTGVC4RMW6njYFFK9EFPUlcrDii15/ifLKEJxwKUQNDKapGlh7t0pKatvDX6m/oLnOpJaxV+hFQSpHquJxp7sAoniRt1QBN2OqjlybYbTxpIjDxDA8tu+l8osjCxMQTIcYFak40NhYxGnXJugiDLEqE5Iw6ydhj5RKug+XOAL/31p/7jvv0d5LXANaqhCrkyfnHeH7/Ij8zsQWdKKPm/pitfUc4r67ibu8/MhbFvGxZ7AhM3hUYPHT5SR7adj193iQf/53fpmo4eAacHijSe2WFk7su4y8S/57rqi/xp899hMSbf5d4y+2rQZOrEgekH/klTo6f5AFuxxcWxwY28OahYe6+7loA6vUnmJr+DeK4zszSPj5+ZjvT9ctAKHp7JnnHnn5+aOfNhKHkxIt/zivRMb585B5mgwxvsxe55/r/yvYzKwwveZxXaZ7wf4jFxk5eKn2UX/yiRy2dYvsbAvrM85weHUac/hCxShPEBcaDNme1w+OXp3lxs40ZhVx36AnGjh/i5QGH8uYZ3jCyj7u2fj9bstu+40l94HV48tGvMvnoVzG8Not9I4z6il3HjtGzvMxE/zCn1+1CWyNY9ga0zK8964oGJWuCjp2g0hlBK4Ng4DhncjG9YyHH65/nLdEQuxdvYHnhav5cdnhCxWhDokds3hs8zLtLd5Aye6nNLPFSdYaXzAme63mWcnL2IoNeZLM9iNm0HKNnekhWk/SkbcYyNxGxl8VQsxQpFAIz9uhZOozyTzKTWsbLFQgGi2SHtmDVGyzaCxxPjTMvOuCWWedGjNiKQUszZEiKVrSWQ2Nw1mPH6SYt0+Tx4g6mjREazQSbD82x6aUZjDjmzMZN/297Zx4lx3Xd56/23rune6ZnxQy2QQEgCYAkIFLcBNGUJVn28ZEtxT5e4kU6dmLZiZ3EdhJHUWwlUeJYdhRZdqw4lrzKSSwzUixrsSlKJEVqIUUSIJaHwTb70tPT+1J7/qgGOISxkBYwGNj1ndPAdNWr7l/dfvWq7nv33cfS3j5ODo5xMnsPb3jmGbTWCcBDK3qMTtg81CghOz9Ax7+fbnKKp1ufZf68w3xqO/PZ+xDpRYLhT2G334i3uh88CW8whjq6yt7mMUZK42j6EqMDR7hj4ARJrY3jy5xpZSkFeQp9BxiqDZE49jhH/ElOOWl2TR1Bcx20/C4OJLZz5gGV5o4HefYrX+Vtj32WvSdOIvs+M1uGmD58F4fe9i7GR8aw2k0Wn/oSK9+YZdmuszR8nLncWU7FYLm3zonq6Yy1xtjTnuSe7iS3VQsEJx8nmHkKybOpZvPM7VRJ/oMVjLTN8tJ2zk/dznhrjtVkhj/rfys7BpIciekspguMdpf4wem/ZPuRY5xdNejfsZs9h9/C+P5DSLKCZS2yunic0wsnOL+6xHyzwwodVrUq5dgKttq5WCc1z6DfGmTYH2E8tpWdxd2MxLbSnFX59PQZnnMs6n4G8FES50mlTnJXWuL12/dzYOvr2JreFo1uvQaup4NlmuYbgJ8XQnynaZp7gY8JIe5Zt/848GZgHngKeDcwcLVjLvCt3q9mnv0rPnJuhoxeRdPrZOUm8+0RKl4f21KnCZOFh4Ovlhen6aXI6asokoxLuEir6vvEnYCT1g7GsueRggAlkHGlgITcoeWHzkeg1rEDjZRnEJcs1jpD5PUyMqBLFmXiqMjE1BYvVA4ykpghobRAgtnWBJrkMhSfB0D3wV4XzHBh8VdV8oh7KVacLHFjCbWXAszttX0x2QYffC+GL4cT4i98joyP30u+0Uu4F36JHj7U+pLLmfouUri4csBw6hxSENCw81TcLNsS0wD4UriIqS/JJHEYbKeYj1ms+n0sdwfZHZ8i5XWxFJ+OYlDpDDEQWyYAPCnM6qZ5Dir+xXTbChKuFGBIDq6vX8ypBqAjQwC25KMGMn4gE3NztH2VimTTZ6ytM1RAn+VSMXSQgzDJfCBRao/Sn5gnAGbqJn2xEgmjihLA2YbJsDFHVq6CooDsIxp72JESobZAwpHDNbw6boqU0kTzwUfGu7CGkRT+E8fFChQCXyGQPVTfQ1U9un54njWnj6xWuSjXR0YPAlwpoOklSCnh+kKr3RH6YwuklXA0zvUDOoGBL6koeNTcLMvdUVJqncHYwivrfG0PgWSjqTbj+gKu4qIGHq6s4ssuid7iyq7s4QKrVpGqnWd75mSY7ABQHQ/dc2nHdFJKl8CHueZ2BtMz2H7Yg5eUO6gBdFFAgoqbo2rlGUnMQQBz7XGyeoVhfQU5UPBlj6aXYL6xjy3pY+h+k44cDxODBKBJHpVuP4beACCBgRM4OFJo46XuKMOxeZK2iubouKrLkpwirtaRJffi7+ASoAcKaU+lIVv4koQqeThBmJI/JXdo+HECKcCx49ScfoaSM+hBjLX2OIXUMSw3RsfVyGtVNHzqUop6t59Ur7M4IVvIgUQzCBftznRi+J7GSu121tJNPBy2pU8RyB4K4XVoSDYLnXHadoqY1kYlIBVbWffLhWGghuQg+dDEIJBkZjrjWL5OIugwmppF9n0C6fKRTnagU+4OMBZfIoZGG4uAgOnaXuJGhbH4DEutcZpOnomsIC63kPDxULB8nUAOI1DO1XewNX365Q9+Oct8L+F9ELYnUnhtqoSD/AHh+m5TTRNdtvH9LB96x/dfVutrIXKwejw2/wW+9vkX+Se1N6DoswT2rzOhT9P0DvAfqr/AgGPwv1M2NcXnvX1T/K+JJF8beh0DjbN8/EPvY0YZAMfibLGPxITNjjed4yNHf4LjY6fo5H+CEavEx4//EpNGjM7dP4W1jKg9HAAAIABJREFU422g9LrsgwDj1J/jPf1hPtvdyyl/Bx1Vx8lqvHkiwZ07D+Llhlhc+g0q1b9AwqC8ejtPrvZT9VP0GXUmc2fZlp0hpoaLUS51i/yPr76H83YfptzAHfwDPnjiJAeGyrSWdc6c3c9zQw/zjeKf81N/0WIlp5J/0OVAYoHlfIJa+5+TqN6DFfgs62VSfaexVx/lQ3f9MH9VuA/d7nL3kWfYJo5zKpNnaqzM1lyTR8YP8eC2h9me3vGKB8e5eoPHvviX2E99AaPTIibHGK+2GJ9fQHUczg0WODOUx8XH02O0h7bQ2qVjd0r8aMlF7jrMuncwa+/H9+J/4/eTJZ+Y7ONJKmdkj2nZp6YEVIs6Zu4Y/3AeTspwLH6W04lzLCVncBXn4vF9tsH3VGUO1leoL/dzql7EC2SyxgjpxBtoycN0evck1a1RXH6BgfJLlLVpHjuQZG40TTPlUzHKdNWXF7NTfJVsZ4BCd5ABu0C/k6S/pDE0L9G/NsdA5Xmkvgbz+4os35FnQprnvsWz6K7HwnCMmbE4nbiCX1EwPh0n/6yD7Aec3zXMiwcn0Sab5I/fRmNawrOfJ/DbxBWHPq9DO38/D6bfhC6pfFqy+D0cmkoLPX6Wya6GkjnBqf4XofwdtCt34vsqfp+ONxpjhzbLvSsWiWCMNWeKVO45dvWfYks6vCm2XZ3TrT4adobtZY+Xuvcw34qx6/QREt02XqpIv5GkcUfA6APv4oUvPM5dX3qcnefOo7kus8PDvHRoN8r2Yb6tfxcD++5F7svjri2z/Fef59iLUyznK3jZOWYNleNxj5XESpjdK5AYbo+wt7mV/dNdzG8eI1dpQjxL+44k9bfM4A7A8vJ25uZuI95yOC/188XCASYyFnZS4YWBHSiBy0Ol53jw2NdJv3iObv8QO974Vibvf5hYKvOK+uW6a3S7Z2k1zzI7M8v0YoP5psWi32FZq7ASW6Ldu8ECGE6CAWuIwWCQuLODpcYYU50YzSAG+CjJKbTMi2SS09yWnOTg+CHuHLyL7ZmdKFI0wnUlrrOD9SvAjBDid3vvTwEHhRB10zS3A38ghHigt++XgDqhg3XZY9Z/9rd6v2otTvH+Lz+NJck8WDmKE08wXO3w6eFxFN8niA+yNXmcrptEsVNMzi7QzNnMdvJMFbdyj/EcjuKAJXOmvZOt0gJarsBarYhFA0NZpWPHyWab9GllKqU0hUELzYN2fYz+5irnM/0UjHkkS8EyAixDZWamgOLpdNJ5NMmnGTMYr6yRL5RQ5BbNpsSAsUpDKTDXHMNQm4yklgl8WCxPsqzr7M4IkpJL000zU92Bq3XYmj1JxRojr64x19xGNmjjSR7xdIlRq0k77jPb2Um/vsTI6hqfTdzPztRx9iwv0ekqnEzeS4Y2cd+imbXIGC1Wm9uY9woUUkuknBZj8WW+WZlgV/oMKc9DKeU5qm+nHlPJOV0qhsrO1HG8ah5HMkh6PlquhKQbtB0fFw+lrbCdJc7Gi8x2JhiNLRDX6iw2J2h3+lDVDlqsTaU7wA6phL4yS3U4z6C8Rqqc4mRmF0HQRfd9WjooQYPt/ilsxcCTYUUq8vrKPMdio8zbW3BjOkltDa8TAyfGFqmC0Vdmzk4yPKcymDzNzGiMgCSenWLGGSGrLrHDn6GtFHHVGmmvxkL3dozMEprs0GkXSMWqaFKHb1gPsFuaZSI4zao9SFUqskU+iSz5VOJ91NUMpUqG8c4cZXWYQt8MWAYNLUaaOo16DlW2SBk2RrzL+dZWtsZPsstucjrYhR5rUaGLEbjIis5ac5yc5XI2niKtN3GDANlz6LT62D6/yEvZPoZSa+xMTtMNkix3i8wpO9CDFlvUY8RkhZpTYMXrw2i7TPizGHGP1XiOhlXEMhw6jsZoUGc0PcOcO4zacKhndPrkFZKBjbEa0GSCigFlOc5Oa4ajsf2oQYAbuEwwS0XtZzQ1jd9W8AINggSr7QGQJSb6XqSLzqBTpaXHcHyN2dZdZJUlAtUn1fLw/Rirg00WV4vY8gBpGkwqS3h2Crm/yWxjgNetTVFMn+eldJEFe5Rlf5iDqRPoXodmkGK+u4u7uudYTXfoaAFpWWF3eZpzwQh1p4+0pZMePcoq/czWTfakj1CS82QbGjU9iWZ7ZFttmokceXkBo6VQiaVpaHkaVJF0n4xep1sfZcZXUWWJhK9gewYJySJWWKRt90FgM7HWwlfiCKNIWveoaB63yy8y54/StXTGOwqdVIpYd5F2rk2nU2CBIo6kMOKsorop3ux9kr/OHiKv17FbWRxVYaRqowcLCMMkp3bIuiWqCRUl8DinbCfV1hluVlDTHVb0HSx6SYqxaWSlSdJtklA6NIIcdj0HcoJFWWMoeZYY4PsaMh5UNIYDjxPpfnZ3TlFJxyh1C7y+Mc1C5nXIVFnu6qhSB6EXcdHYk5ngnz7yrc/B+nvvYPnLbawnFugs1UlYAQPxdxOjRBBI1L3v4jOVf8hM4PG/82usuVmKkxbzW8fwJY09C0d43yd+g2Y7QymuUU7HiW912fWmKf5UvJOvxZ7kkdF7GDm9jd8dvwMrFuPXj/wq39N8DDc+ROfQT9Pd8/2ghkO8eA7a/NMsimf4xKyB3PGxFJUzQyMMZkpsj9VIyXMU1GOk9RryhdXNA3B8laqVZbE1yLlmAa/ts5jah7UwyslGCoAhfZG3a3/Kz9rPI/sBa2dSTHUP8LmRNm9/cpGuLvHY4RTmyDz3WB0UJU9z7RFi8vegBHE8pUNDP4mQlvhTcydPFu9C9j12nD/JxOlTzLWKlFJpjMQ59GSFg315hvQtVKdmKJ58nuFKjYG2zWC1iWHbVJNxxJYh1mIqBKFj5Yz00dxRYTRu8aA7z+TyeazmIE9572Sm8hCu7PJkzOPgyFn2dhQyrWG6VhbhB8wFProH6QBSvozEK+t2W6vT1KvYWpOuXmIxsYIsNXhruUWy6jPflLA9FwkVxbgN2diPrPQTyBaed55C6RjmuSMkuiWe2S3x5/fLzA6E35Gw0wxZRXa6g2y1h0kpLug2sertaLOC7NwUar1Jqt0i2S4hEeAoKueGx1meGGZ5eAhX1tHcBLpW4jDPcJAjyFLAktbHmYEB5vJZCDqMP10m9SyopV4vcH9AaZvJmcT30XHbOM5zBNYcEgEVo0AxtZc3J/dhqAb1kadZG/tr5hOwtfIwX5uK8ejA56noDdLLb6bauo2OmyaQwc8b+AWdIWWJu6pr7PMGqEoadekomb5j7MifYTAR9ox5vkylleF49yCnF7YxNnWaYnkJX1awCsOkjTo79+1juhqn8KXHmTw3TbzbpWsYvDRp8uyd+2j3xzEra+y0NXakCuRGhvl6q8ynXjrPsG5xQJ2nrkociRmcTtZYSU1fdJL7OlkmVpNsn22yc77JVltGNzvYu10quWFma9sor46jujFaSj/zAzmstMWJwihL8X5insWhpSPsP/ESW06eY2xolLG3fx/5/XdzNXy/g23PY1XnWJ1eZGqhxLlmjdmgyryxzHJ8AVvtXrxOjcYkUu0gjfZOLD8J+GjGPFLmBGryFAmjws7YJPsG97FvcD97+24jrWWuquHvE9fZwfoo8BkhxKd6758E3iWEOGWa5n2EI1Vv7+17F7AD6L/SMes/u9OxA1X9FhzlIGBx5hjd6RoTd96O1JzBTW7BKh9nzuun6aUZGtMRlTpb6ysM58ZQJShnC3Qsj1KrTuLcV5hLjXJnXkOSdbr9u3hpscSh/jRLZ46iJxzGE4PIi2dRxg8SdBbwEsMEtovmLDLtpGn0D7Kl3sFIdPHjCaZnjpOyM3QyIwwlHDLZLC9NL7M9mUKSLbxWDTndz3LHZ7B7kro2TiZR4bw8iOZYqItl+keGOTczRTk7wh1948Try7TaFaYTfYy4bV60fNACpPwId9hrDKgG8VgXq7ZMUymAY7DY7nKUNN/eXqARyzDSl6Wq67idZYaGRqkEHq12gKpnsaw2Kckn0Zih1Jch123SrJQYLwzSUcY4d/QY/SMZBvbciVWfpTOzho1EYet2ZsQxXPUFfO02qnoWmg7bOqss22sIbwv7btvJsfIKw6eepji2k7irUw7qxGMGCWMLhcEitW4XLZ8hp8WZXWpQCCy0fIrTTY+1F6aIG8sE2gByvowRTDKR6qDNT3NeKXLE8zloBHTrNXZsncTbspXVVoWBtTZdPU6l+U06c4sc1xRu2/kwOzJZzjzxMfKZMVpbb2dM60JqjJnZE1h0GQkCWt08eHM0JBnG76UmSfTbq6QsGz2ZwZBiBFaXU1KTU06C1yeyZOeeY9FXSaUTPF2dJ50eZ0dqBF1yMNQqw3qK2UabdsthPJUhUexDlQLs8god3+KkImFmt+F++fMoe2/Dy+SxAgmjM8uTbpHRU0+x/Y5vw0jEWXz0t8necxgpU+DczBry6CDOQon+fIGM5LBSn2dgfB/xyjTlhRmc5hqNbB9BcR+jhRidSp14/zDa2nFW9AHKiQFaXhm/vICpqjiLTXbetpN5smi2xfGlZzAn7kNrOyhLL5DccifNtsexE19h770Ps1qepT+/ncbCPNLoNp5ZPMED/RlGCjs5Mf88zYaPWbyNJ90uCcXnjbksquxxZKGG+OZJ0oUkI4NFJr0THE+M4fdPMuJKJAKPVMqiszDHU/OnqKQyPDT6IIXG0zw3LbMcz/COew9xfrFGQelg1BvYus9ZMcW5QGKvniCntOgqCiRHiElnSGSG6dRjlFIJUvOnSIzsRFptocVbNM+XSN71Ouz+YRKShN5cwJYNHBsWxTfYsmsnjY7BudkF7jAnieXSlM89g5cbZSAxiP3Cc7zYaGHt2c/evjRT8y9Qb5bZMfkA47lBpKNHUQyL47KEXQ/oT3ZZqVfxxvczEWhkKmdYO7NCcO+DqKeext1yBxMjW/DLs0jtFcpdnVw+x6mvPYuRMVib3M9go0zeckjtvZOphWO0qy2KySJl3aBRmSKp9VOQNOyWRXa4iFpb4XR3CSO/g7VSnREdJgppJB8q3QZBZwW9uIPq9ElGi8NoIybzQZxCexbL0ijXG0wlszwyMYF6HSJLNE3ZHA7WteLab4SD9fTnzjP/3CwZR8fyAwqqyhsyX0Ciw4pziA+6aZ5Nz1B1C3hemmCXijoks61cZ8/SEQ4/8RUsy2Uxl0IG+u5pMHZgnj+f+i6e4hxbB+A37/socTXB8VPH+aXlOqf7BviRr3ySn1v9A4ZyVRw1Q23P21kcf4iVZIamNU21MUu1NodXa+KW87QrRUAmlSrTV5jDTfmsqTHano8RuIzpAXnVR6GKoi+jKS/HmfqBxFxtjMfPP8xz5T20vARbpGXeq/4Jj8jPIksBXT9J1UkilVvIZZkXUhr/c1+MSg4OdboccGx22AaxYDeK+zbizdvxJY/nkyUeHdX4yvAgTSOJbnfZsnAeZbXDYiuP3VXJujV21qfZuzzPeHOJjF+lkdNoGFovvh7UfpW+PasM7VpGlzyKJYuhGZnVtQOc7L6BOesAgRSgpkoMpqsU3QJd3+CLeokn4susyCUkrYwUX0PRSkhSF9lXSFt9bG1tZUtriIF2Ac3O4NlZJC+B4seQLhkpCHwLJA9fAUeqgrNIvjrLxNIy8W6TjtrghW02x3b2kU6abLEHGfIKDLVkRmsd9FoTpzNDs36WoF7B6LRRfe/i53diKSrZPKv9WUpDA6zl81QVha6xzAOeS7zUpZTusjK4jaqbZ6i2ygGOM6HMsc2bRe0FoCwGA5xghHJbQ16D9HKH/pUGsYbPwvD9nJ94C5ZmIHWexXePYPsWEJBKexSGdHKFLEYiTVV1qeoNqlqDOcfmBCUqOPjluwlqd7DqjmI74cN9IEOQ1pCTXTLSKmPtVfY0G+TUNN1UGzU7zVBulvHMAjHVYjEY4rnVg7RPxRk9fY5kt4UvSdT7ByCtkwocCrN1xudWGCmtovg+lq6zODzE9NAIU+PbmB0bJem2GVpdpn+txvF0guPeEMUA7pXOstdtUdUDjsUlTiVbLCeWaMZeDrtJWHGGaimKVZWiFVBUbPpkhUDKsKxuoy1nifsGa7kRpvv7OJ3PMpcMk8dk7Qa3rQgmZ89TWO1SzA6z/cBdDNx+G32pGIp87cbXb7Sx5xZYmD/LqfIsZ7rLTCsrLBgLLMeWse0h3MYe3NYu/O5Y7ygX1VhCis8gx5aQ9RJ52WMyNsy+4l3cOXYn2/u3k9ASf5sm75bnOjtY/wP4i3XO0lPAjwkhpkzTvB/4F+scrHcD24DilY5Z/9nX436VyyWoVtvXLrhJiPTeWCK9N5ZI743jVtIK10/vphjBulYsPFx/B2t65hc587RGZ+FO9DkPtVnmRH6MYjxOLahTV0scTUkc9yY5IJ+gL3WaMXsUALVZxpifQfY9ZDmgsHON4j1lalKWT0y9mVOxZzk0Nsx773w/WT1Lea5Co1bmt5c/wLPJB1lJPgiBT86pkaVOWq6TkFok5CZJmmSpMsI8aauK1VRYrhdZa47SlgZxlSTbVhdRAx9bUWjpCSzNwPAD0q5P1pbIYZNU2/iGhWrU0RJrGKkSWmaB6fYgR1f3cHR1L616hgflo9ynHWOPNM0Wf5WM/HKlalsKQtL5WtLgG0mDNhJ3Nx12Wy6jOZ2MvBPZvgevcYAn0gaf6+vw/MgAjWT4UB7rtBkoLZOo1VGbXbRGF6nr4TkSigyxmEssbRGTXWKOSszWURwdzy2AUyQWyCiyTTs1w+ni86wk5uioNTylcXHeEkAQyCj0MWCl2FLX6W9kyTZyJBs5JAcCr07g1wn8KgQvz5+RlQFkbQBViqM5ATFHR5ZyOHoey8jhXRhZvJTAR/EdVM9CcduobgfF7aJ6XRTPwpd8HFXC0hU6MZVm0qCSSdFMGDRVjZYqYek2it5CSflYmRgrSh8rQZ6OpyNZAUrHYrQ9x/baIsOdDoWgzShLjAWLjLDEBPMkehNFK36K09YgK/Uicr2AYhtY5KnGTerxrfjeGoF9ksA6hUutdw5gSDK6LKFroGkBSW0JXXNQdQ9J9fFlmN6e5qw3hmjvYbY1QauVIfAkHEnDk1XQQUt0ScaqZNVV8m6ZIX+Vfq1MOtkknbLRjATzjSFqc0mM2S758ipyEMZb2rqOl9JJehZ9tSb5UotE28FwPVTfx02q2CmDbipOM5WkkUizZuQ4ow0glEEWgwL9QYs7pHPcHqwy4Lep6S6zcY/zhsNirEktVqGrtV7xE8btBCkrQdqKkbEMUo5OwokhBWlaeoFmskgpN8JiroitxbA1GWSf4W6VHZ1FilaZjNUg5nTRJRkSGRK5IXLJPMl0mmwqQz6ZJh2LoykqoIYOfSAR1Gzc1RZzq+c4uXqcM93zTLlrzNtJ1pwsHbuI1x2B3iT5sLJ2kLUKklZF1mooSgNdbhOTu8TlgLQkkVVUUppOWk+SjWfJxHKkEzkmC7sp5AokjCS6YqBK6i077+s6O1j/DlgUQvxO7/1ZYL8QomGa5lbgE0KI1/f2vQ8oE45gXfaY9Z8dOVibn0jvjSXSe2O5lfTeSlrh756DdcVY+AtlrreDVa9/mUbrGEeOPkdnJYHaiLOo+9y/9t2cqSs4na9yf/5zqLJNy4nzzNBezsmjZGfmiHVbxFIdcuOrGBMuStKj5eh0XQNNAUNxiSkWhtLBULqo67KRAUwxyRHupBQMUPX7qPsZbGJYUpyWksCSr/BgD8h+wE8+foZ0p44jO3iKja9Y+LKNLzsXU05fio+Mq8goMZtxw2YgVkHSbF6ws3y9Ns7Jyk68QCFJh73yeQ6pJ7lbnmIfZxkg/Bm6gUZLNVA1F1cJV/SWAlCCANmH6f4BFrMDlKRRzijbENoEQhtiSRvEk17ONCgHHmm3TsatkfBa6IGF7lvogY0aOEiAKyu0lBQzjTHqdi+7SxAAfrh6eG8Cpup5qK6HJK2bzyity7IjgST53Hvmy+yeO8N4qU3K8UnYPmoQ9MwV9D6bMO2r66A5NrLn4ysxHC2NraWw9TSOlsLWk3RjabpGCltP4GhxPDWGLxsEaDhKDN0F+W9RYwMCHMDtTXr1JR9wCQIXVXJQ8JAlH0kGQ3ZISG2StEjTxJC6SOEUZiTJC8MQ/Rinu/fhenrv8318ugRBE/wuQWBDYAE+nn2MwCtdTd5F3LjKEw++kYXWELVmGq8Fkvc3T1hSAxTVR1E9VMVDln3k3oTSV5x3ALIUsG37AomETdxv8+3Nz6D7YYaqIIDAl5B8elUgeLmqB4AUlmnPJqi92Bf+lnJAUVHJprM0smlKKY81pc2K1qWseVQ1h7ph0TBatPUWwRWuHdlXMNwEmq+j+Bqqp6L6KpqvovoKii/TW7MVOQA5CHp/S+iexj2z+/H9ARxJQw580paNHFyYrQ9S4BMQ4MsSiT6LzIBNW/NYDCRKgcJZT2HBjlMONFq+hu0nCfwrtBGShaR0QHaQJA8kFyQPqff/xe9EQpYcMoXHMNR2mAErUC7+LxFmkZMllcO1t7K7eweSLF3Mz3PBQRsqGBTzxoWNr0xv1ZtAjwTyeAp567ce6nidHaz7gF8WQrzJNM07gQ9fmHPV238MeBswBzwD/CChg3XFYy4QOVibn0jvjSXSe2O5lfTeSlrh756DdcVY+A0TERERERHx9wrTNP8T8BBhMqn3AHcCNSHEo6ZpPgT8517RTwohfu1yxwghXtx45RERERERtyKvfWGjb41Lvbx1yRUjIiIiIiKuP0KIf3nJphfX7XsCeP2rOCYiIiIiIuJVcflk9TeOeWBo3fsRYGmDNURERERERERERERERNwQNtrB+gLwDoBeXPvCpZOGIyIiIiIiIiIiIiIiblVuRpr2KK49IiIiIiIiIiIiIuLvJJtuoeHXytXW1TJN8xHgPwIe8JdCiPffHJWbl2vY743ABwjtJ4B3CyH8myJ0k3Ktdd16ZT4AvF4IcXiD5d0SXKMObgE+AejAN4UQ/+jmqNy8XMN+7wF+iPAaflYI8bM3R2XE5Xg17cfNwDTNXwUeJJyn/QHgjYTz1Jq9Iv9FCPEZ0zR/EPhZwg7T3xFC/N5N0Ho38CngdG/TUeBXgT8EFGAR+GEhhLVJ9L4L+OF1mw4CjwN9wIVUxP9cCPGcaZo/D7yTsH78shDiLzdQ5+2Edv0NIcRv9triV2VT0zQ14OPABGHb82NCiLM3Qe/HAA1wgB8SQiyZprlI+DxzgW8jjOa62Xo/zKu8xjaJff8PMNDbnQe+CvwrQtu+1NteEkK80zTNLPAnQLZ3fj8ghFjjBnKZNuwbbHD93egQwetKb12tyd4aJu8GfvOSIv8N+F7gfuCtvbW3Inq8Cvt9FHiHEOJ+IA28ZYMlbmpehf3o1bmHNlrbrcKrsOEHgQ8KIV4HeKZpjm+0xs3M1exnmmYG+HngwV6K8b2mad57c5RGXMqraT9uBr2Otdt7ut4C/FcgRdjBdrj3+oxpmkng3wKPAIeBXzBNM38TJKeAP1un7WeAXwE+IoR4EDgP/Phm0SuE+J8XtALvA36/dw7fue4cnjNNcxvw/cADwHcCHzJNU9kIjT1bfRh4bN3m12LTHwCqvXbnPxM+4G603n8PfFQI8QbgUeCfmaYpEU5NObzu5W0Sva/lGrvpeoUQ71xXj58Ffrd3Dk+tO4d39or/LPClnt5PA794g/Verg3b8Pp7SztYhD0P/xdACHEc6Os9VGCa5nZgTQgx2xt1+UyvfMTLXNF+Pe4WQsz1/i4BhQ3Wt9m5lv0gdBB+aaOF3UJc7RqWCXugPt3b/x4hxMzNErpJuVodtHuvlGmaKpAAbmivYcRr4tW0HzeDJwhHTQAqQBLIXabcPcA3hBA1IUQHeJKwM3OjSV9m22F67QZhr/sjbB696/m3wPu5/Dm8EfisEMIWQpQIHwo3qpPYAr4DWFi37TCv3qbfRujUAHye0EncaL0/BXyy9/eF55ck4QjGpWwGvZerA5vZvgCYpmkCOSHE17n8OcAr9V6oOzeSy7Vhh9ng+nurO1hDhBfOBZZ5OUvhpfuWgOEN0nWrcDX7cWEBaNM0h4E3ARsWnnCLcFX7mab5o8CXCW+MEZfnajYcAGrAr5im+WXTND/Q64GMeJkr2k8I0QV+GThLWAe/Gq05uKm4avtxsxBCeEKIVu/tuwnb/TjwPtM0v2Sa5h/1enk3yz02BTxgmuZnTdN8otd7nRRCWJfo2ix6ATBN8xAwK4RYIjyHj5im+aRpmr9lmmaMm6hXCOH2HjjX81psenF7b4TIN01T30i9QoiWEMLrjfq9hzBELQUUTdP8M9M0nzZN85/0it90vT1tr/Ya2wx6L/BPCUe3IDyH3aZpfso0za+Ypvl9ve3rz+OG1+MrtGEbXn9vdQfrautqRWtuXZtr2sg0zSLw/wgTkpQ3StgtwhXt12scf4xwBCviylzrGh4Dfg94mHBx2O/YOGm3BFergxngXwO7gO3AvaZp7t9YeRFXYVPfo0zT/G7gXcBPA78D/GIvHOgEoeO+WfS/CPyKEOKthA9Tv0847+ZSXZtF7wXeTTjPA8IQpH9BGE6uEjoEm03v+u++lk03hfaec/WHwBeFEI8BbeC9wA8C3w78aG8O32bQ+1qusc2gl57T8YAQ4vHeplnCULy3914f6HXQr9e7YVovacM2vP7e6g7W1dbVunTfKOHEtoiXueq6ZL0HtM8C7xVCfGGDtd0KXM1+DxOOwDxJONR8V29Ce8QruZoNV4EZIcSZXi/SY8BtG6xvs3M1++0BzgohVoUQNmFdvHuD9UVcmU27LqRpmm8mDG1+ay985tF1o5+PAvvYJPdYIcQJIcSFMOJThDbMmaYZv0TXptC7jsPA0wBCiN8XQiwKIQLCsNFNY991tF6DTS9u7yUMkIQQzgZqvcDHgCkhxC9DGJXTmwNnCSGawF9zia1vlt7XeI3ddL093gAgVb7kAAADCElEQVR8/cIbIcS8EOJPhBC+EGKFcG7Wbl55HhtSjy9tw7gJ9fdWd7CuuK6WEOI8kDFNc2tv/sF39spHvMy11iX7IGHGmM/eDHG3AFerf38mhNgrhLiXsCfnm0KIn7t5UjctV7OhC5w1TXOyV/ZuXpn9KeLq1/B5YI9pmvFeaOVBYOqmqIy4HJtyXchexq//Qph0Ya237dPrEswcJswS9jXgkGmaOdM0U4RzF568CXp//EKol2maQ8Ag4YP19/aKfC/wuc2it6dzBGgKIWzTNBXTNB9bN//uMKF9vwi8zTRNvVd+FDh+M/T2+GtevU2/wMtzYL6LMEvihtLLDmcLId63btsdpmn+vmmaUu+58AHg2CbR+1qusZuut8chwhFkIHRqzHAppguJMQ4Ap3il3gt154ZxuTaMm1B//y6kaX/FulqEYUQ1IcSjpmk+RJgBBOCTQohfu0kyNy1Xsh/hxL4K8My64n8ihPjohovcxFyt/q0rsxX4uIjStF+Wa1zDO4H/DsQIb4T/WERLBbyCa9jvJwlDVV3gaSHEL9w8pRGXculvJzbBupCmaf4E8O8IH4wu8HvAzwCt3uvHhBArpmm+gzBTZQB8WAjxxxssF9M0+4A/Jpz/YRCGVj0P/AFhuzHd0+tsBr09zXcD/74X1ohpmj8E/ByhbeeBdwkh2qZp/gxhOFsA/JtemNtG6fsgsJUwxfl8T8fHeRU27YXm/S4wSZgg4UeFELMbrLcIdIF6r9hxIcRPmab564SOlQ/8PyHEf9gken+L0I7XvMY2id7vIbzWnhJC/K9eOZ2wc2MbYajrbwshPtZzXv6IMNFIlTBlfu0G6r1cG/YjhDbbsPp7yztYERERERERERERERERm4VbPUQwIiIiIiIiIiIiIiJi0xA5WBEREREREREREREREdeJyMGKiIiIiIiIiIiIiIi4TkQOVkRERERERERERERExHUicrAiIiIiIiIiIiIiIiKuE5GDFRERERERERERERERcZ2IHKyIiIiIiIiIiIiIiIjrxP8H8VnRkIOwkc0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeYwc53n4+W9V9TX3cIbDm6JIyaJlWZblX+zYlhXHMZz8AuS3SBAsHC9gJCsF3mRhrAHDizXW2sAIsPAGCeJ4lSAI4hjZDbI+4shOfMSSJeswJVG8z5nh3Fffd1dV1/Ue+0cPh7ckO6SGlt6PQJFT3VP9VnV11/vU87xvWVprjWEYhmEYhmEYhrHp7M1ugGEYhmEYhmEYhtFjAjTDMAzDMAzDMIzbhAnQDMMwDMMwDMMwbhMmQDMMwzAMwzAMw7hNmADNMAzDMAzDMAzjNmECNMMwDMMwDMMwjNuECdAMY90TTzzBwYMHaTQam90UwzAMw3jDmPOfYdxeTIBmvKX93d/9HZ///Odv6jpPnjzJr/3ar93UdRqGYRjGzWTOf4Zx+zIBmvGWdvr06V+IdRqGYRjGzWTOf4Zx+zIBmvGW9clPfpJnnnmG73znOxw8eHBjebFY5Pd///d517vexUMPPcQ3v/nNK37vmWee4eMf/zjvec97eP/7389jjz2G67oAPP7443zpS18in89z8OBBHn/8cQCOHj3KJz/5SX75l3+ZBx98kI9//OMcOXJkY51aax5//HE++tGPcv/99/OhD32IL3zhC3ie9wbsCcMwDOOtxJz/DOP2ZgI04y3r8ccfZ9++ffzmb/4mhw4dIkkSAP7iL/6CRx99lH/7t3/jAx/4AF/84hfJ5/MAvPLKK3z605/m4MGDfPvb3+Yv//IvOXz4MJ/97GcBeOSRR/jt3/5tduzYwaFDh3jkkUdwXZdPfepT7Ny5k2984xsbJ8Q//uM/pl6vA/Ctb32Lr33tazz22GM8+eSTfPnLX+bYsWN86Utf2pydYxiGYbxpmfOfYdzeUpvdAMPYLKOjo9i2TS6XY2JignQ6DcDv/u7v8iu/8isA/OEf/iHf+973OH/+PLt37+bv//7vufvuu/niF7+IbdscOHCAL3zhC/zRH/0RMzMz3HPPPWSzWRzHYWJiAoAkSXjiiSeYmJhgcHAQgE996lN885vf5NSpU3z0ox9ldnaW3bt385GPfASAXbt28dWvfnXjpGkYhmEYN4s5/xnG7c1k0AzjKu985zs3/j02NgaA7/sAnDlzhg9+8IPY9qWPznvf+14sy2Jqauq660un0xSLRT7zmc/w8MMP8+CDD/Jbv/VbALTbbQA+/OEPMzc3t3FCrNVq7N27lwMHDtySbTQMwzCMq5nzn2HcHkyAZhhXyeVyG/+2LAvo1cgDeJ7HP//zP/Pggw9u/Hn44YfRWlOr1a67vjNnzvDoo4+SyWT48pe/zHe+8x3+8R//8YrnPPzww/zDP/wDjuPw2GOP8aEPfYhHH310o7TEMAzDMG41c/4zjNuDKXE0jJ/B0NAQv/Ebv8Gjjz56zWMjIyPX/Z0f/vCHOI7DX/3VX5HNZgGYnJy85nkPPfQQDz30EFEU8cILL/ClL32Jz372s9cM0jYMwzCMN5o5/xnGG8cEaMZb3sWrg6/H/fffz+rqKvv27dtYJqVkaWmJ0dHR664zSRJGR0c3Tk4A//7v/37F8w4dOsSOHTu4++67yWazfOxjHyOfz/OVr3zl594uwzAMw3g15vxnGLcnU+JovKWNjIwwOTnJ1NTUDUs0LvfII49w+PBhvvKVrzA/P8+FCxd47LHH+L3f+z0ajcbGOqvVKseOHWN1dZV3vetdVKtVvv3tb7O6usrf/u3f0mq1SKfTnD17llarxRNPPMFnPvMZDh8+TLFY5MyZM3zve9/jfe97363eBYZhGMZbkDn/Gcbty2TQjLe0Rx55hD/5kz/hE5/4BJ/+9Kdf8/kf/OAH+eu//mv+5m/+hq9+9av09/fzwAMP8E//9E8bA6p/53d+h6eeeoo/+IM/4BOf+ASf//znOXXqFH/+53+O1ppf//Vf54tf/CLDw8N8/etfp6+vjz/90z/lz/7sz/jc5z5Hq9VibGyMhx56iM997nO3ehcYhmEYb0Hm/GcYty9L/yz5bcMwDMMwDMMwDOOWMSWOhmEYhmEYhmEYtwkToBmGYRiGYRiGYdwmTIBmGIZhGIZhGIZxmzABmmEYhmEYhmEYxm3CBGiGYRiGYRiGYRi3iVedZr9adW/aCw0OZvG86Katz+gx+/XWMfv21jD79db4Rd2vExNDm92E6wqC+Bdyf17PL+qxcSNvpu0x23J7ejNtC7y5tufNtC2vdv57wzJoqZTzRr3UW4rZr7eO2be3htmvt4bZrzfXm2l/vpm2Bd5c22O25fb0ZtoWeHNtz5tpW16NKXE0DMMwDMMwDMO4TdweAZoIN7sFhmEYhmEYxnUIJQil6asZxhtl0wO0oWc+y9a/fzuZ+R9udlMMwzAMwzCMqxyrHeHF8gub3QzDeMvY1ADNbi+Rm/4WlhIMvvinoMRmNscwDMMwbqlKUOaZwlMIc74zfoH4wtvsJhjGW8qmBmjZ+R8A4H3oizjuGunCK5vZHMMwDMO4pZa8RQBqYXWTW2IYhmHcrjY1QEsXjyNGDxC8439Ap3JkFn60mc0xDMMwjDfE+dbZzW6CYdw8IgTx5pj6/HagtUYsL6GV2uymbA6ten/ewjYvQNOab7VP86ERxT/OPEOy471kCoc3rTmGYRiGcbMorajehlmyU/UTXGhN3fT1aq1ZbnRRWgNQ6OZZ81dv+uu8WSitiOSbJ6DJLvwI68L3N7sZbxoqv4acvYBcWtzspmyK7Oy/k1l6erObsak2LUBrtJb4ukrxK8cF3z3zOO72X8KpT2OFzc1qkmEYhmHcFHOdGc40TtKKNu+cpoVAzM1ccRW+HtVY6978wCnfDpkueyzUuwBMtc5zoX3zA8FbyalP4TTn35DXmmqd51D5edRlWQItBHJ15donywTbK74h7fp5lZMOSmv8xMdLbu54tVInZLLk3tR13u60WB+jKt66Y1WtpHvNsmY33oSWbI5NC9C+e/IJ/tdvav7HpxX/+xMtvuaChSZdPLpZTTIMwzCMmyIQAQCJ3rwOlpidQS4tIoo3r3MvS0VktXLta8le5kyu/32R+gUqU0rVL5CqXll6erJ+nGcLN/9KfiNqABDLSx1OMT2JuDCFajaueG66fKI3Rj/2b3o7boZaWOVMuMZcWOFw9UVeqb50U9d/Ot9htRlcszyWMYHoYndWsb3CTX3N24ZlbXYLfm7nmmd5pvDUTVvfWivgyHKLharHc7M1Vjq9CZcu/wy9mWxeiePLz7OjBamPPMSBElSOnkE7WTNRiGEYhvELT9MLVK7uXmmtr33yf0I3ljd+MFq/b9VNHMcizp1BnD55zfIbbVUlKN9wXbZbIL1686dul9UK0dNPorvXXoFHSWz39XfmG1EdRW//Ka2ZKrtEovezkIqKG/1c72naTgOQqMs6l0kvmO9GvQxUeu1FMnPfx4p7P1ubGOy/mkQlAATrf98qUl25n1+qHOKlyiHSpeOkC0du6WvfCuLCFNGh6x//iVC942z9C2S2fYGZ9vQb2LrXprXuZeiT67/v5eDnvzCklUK6XZ6arjBX7V2YuPhdN1f1iYTieHEZAE+8ObOrmxag7Z+t0R7SjPwf/xfl8RwfOD1HOH4/6dKxzWqSYRiGYVxhrRUg5M8f4FgXe1ix/7pL+E/n2xxfbb3m85anF3lhtkIruH4HSdWuHAOntQalQd7ajvTrlS4dxQ4acJODVrWeMVRuB7myjI4u3WA5VT1LungEK6j/zOutuBErjYDpcq9DOFP1ObnaxFs7c8PbBAmpOFfskFx1DNlWr/sl1GUBtgVrus7LzSO4SQe7W8W6ibdjiGREO37t4+p6pkoes9XrZ/Csay5D3Boz1StLJ+XrCFhP1o/ftjOmytUVCK/NDAIcX2kyXe5tbyQU3585y2Tj9hqPpirlXoZ+5sJNX3eyVCKaXMQKAuZrNzruerTWaK2R5dJNb8drSrqkVg+RnfnuTV/1pgRoLbfLPSuC8n4bK52l8v4HOFhIOC52kqqdN/dDMwzDMDZdK0g4X3Q5V/zPX6HNLv2YzMrzVyxbawW44bXnu1Inoua9etmOajapXphD5vMEyatk0S5f78nnGH36R6Qrp193u1+NTpKN8W0XM4Y/b19da33TJ83QXR8xM01y5tL2Wkmvs/d6Ap8blU5djCfdSJBqrFArnsCtHL/uc5ebAflWyGL9Otm8q1kWLb2eLRCv4/k/oyPVwxyrHSEQXfzkZyuXjIUiuDpbqxXZme9it5cAcMOYdnDr+m+x+NkulCitaER1Tjeuzfje7uRlFy06Ye+CSs2L0EoRHXoB1Xh9FxgqbsTkcvWGWa5XE7/8IvHJ6x/XwKUPwn8iQy+VuG4GWvm9wNWSNz6eLr8wED/zFOLs6dcM0hbdeYLLPltaqf/UTJmZ1RfIXm8Geq1Bvb7v5RvZlABt6uiLZBNQewYB2PPr/w0bmJ11sUSI05zbjGYZhmEYxoaLHYfoquyH0przxc5Gqdt1f/cGRX+XLz9fdHlpsTfeqO7/jOMolERpQIorYqInpyrMXXXFWUURyvfIzx2j5eav6fxbfuXnyqrFz/+E5PhRdBii1fVLOl8fzVxnhkPl51+1JBK44QQU1y01vFgSd53Oqb5OS6WWxJeVHAr9GvtEw8iZI7zy0k/4x7V/B+BM4xRnGqd6U4SLa7MjVuwyW2rSuV7Wc2O80evPKN5ojJ/WmlInvGJZrHoB8EuVQxyuvvjq6202iZ5+EtVp4yUe1fZp0vOnr+zorwe5TnsBgEI7ZLnx8weWev1z9XovOFy33a+Rjb06k3krKa2QWlILqxwpneXJqQrhz7BtaeFDeR5Zq20skysrJEdfIT7Sm/Xcit0rkxoyIVU+tbHs5FqbhSOnCY6+vhLQ9OpPycz1ZuPUvoeu1654vN2NiEN347OWKIEbt69cR+EVsrPfe83XyvtrPLX2E74/mSffuuqzcp2xdxcXXfqc9xZc8V0b9Y7xq8thAUIZsuDOc6p+KWCPn3+W+PmfvGZbtRAoKTe+81OVM6ye/xqL/lrvCUpeWQmw+lP0hX/Z+NFuL/3MWftNCdDqp3sDSMcP7AFg/wMfoTps0TfXG3icqpzZjGYZhmEYxoaNK7RXnevLbsSJ0jLfmLp2/Ihqt4iPHdm4qmxZFk5rAW40PifxWG34HFtpUZyeu+4EHNelr2yWFbU3Oi7zV5WixTMzJC+/uJGhuiJTlQSo5Z8STv0z8c+RwVL1GvGh5xFLC9d9vNDNv6711MJeR/Bs88bZvXZrjunv/jULP/gmlaC8kQUqdkJOrrVZWZ9IQiF7gcvFDpNl4YYCcXmn7TodwIXO/Osa5yOV4smpClNlFx17+InDxX5/NaxQDSukisfILjx5RadSa01m6RnCueeYrfoodVXAsF72+Joln0kAsU8zavBs8WmaUeOap6w0A07nO6xd3fG9zKvNiKcqZbRIkNUqnaRNf8slkV3cevOadd6sEsdGN2GtFXK20NlYdnnQnS28QnqtF1hKfW2gM19q8vRUifLSWdCaTtzZGNcHkG8H/GSmtpGRej1SlTNk5n9wxTIrqJOd+e5rliyfrB/nueIznG6c5Fy19/m4vBxZJwItbhCwac2oN4e1cAI5dW5jsWr13msd9j6rmaVnSOcv3aLKac7itJdwWleWQ8rWlUHU9Sy5i8w2z2MpwULdp9m9cj8l9UXyh7/O94/8JbOtKTS9sXEXLn5mYh+ntdCbcfQ678/VKmGZMIbowiSrhy5tQ6EdIl5PVuv6X8/M13yevlC9Yca1K32OrjQ4X+yAFCCvbauYuUD0/LMbP8fPPcP80y/w3GwN2W2QWfgRc2sXmFlYD/bWt1cojVSaxfKLzHVmNn4/XT5FZvWnV77Ia0ygtCkBWmbhAp0+uPOOtwOQctLMHdjCgUIH6QyQrt6c8gvDMAzD+Hl0VubXOwAaHV7ZuWnHDYrdNfyo1/nT3e7G9OhiegqrtsxAqVcJYsUeqcqZazpMAFHoE+bP0S1N40eCZGqS5NSJ193Gi91iyy2SWX4Wa33yixtN/KZQG72ZSCjOFzvkWy5T5TazrSVON0697tfurcQllT8KIkS1WhuvLZXemNWxGTdIpLqio211a1jd2hU/32hog1xd6U34oRQy/yKp5gpdt8Hk6rOcWuplraKk19G5mHk51TjFVOs8FzdWac1Liw1OrbU3gh/rOp2jSIXXLLsePxYUo1laoUfDT5DqUhsuci7OKrj+emdPPM/hl3qzQWYSF41mpurxkwsVihczXZcl0GQ+T3LuTC87cNUbml18kuzSj2mu38KhFV8bKCTrweiNslENP+HIcmsjyyaVoHTZpA5umDD/0gncI0c22gRwOO9x/gYlv/ryf/wny7ugF8w8e3aBVOLjyADLK2H7JZzGDOKyjK8fCyZLLmLyXxkrPEM8/SLhM9/h6Ll/Q0xPwnoQ1Kg2GTn1Cq73+rN8+sIxZOXKLJKzfssDe/0YFstLKLdzze9efF/sdpHh5cPXlAKK6UnE1PmNz07eX0Osfw6sy/bfXHCpq65rJbRSKN9Fr2eL7OCy9mmNRlMPG7hJB60VFeaJxJWZ57y/RiivPN7n3VlWkl4AOFP2mK4VUVojFudRrRap8gkUilgqVv0l5jrzSCWx0Mx35sisPndlgkUkOJ21G15wsC0bBXS6ce8WE9MnCF98irOFDvlWh7X2LL64dLHJids4MiRev6ix3OiyXA+uWf/Fz5OsTOLUr73gEgtN0XVZa4UordFRp3fR4zJyZQmSGLTG6vbGMLqVXgYsVTqJFXWQzSZ6/TisB4rVs1M8+eNjvLjYQFzngpx0u5w9/QOeWeuVRL5WteCmBGij1QqFcRgd3rexLLz3IEORYjXZT6py9lV+2zAMwzBurZOn/wMLsP0yTu08eKWN8qRzrZPUxALBegIiPnaE/PTLNNc7StnuFEOd3gxjFzuq1voJ21/vKFlCsFis02z6nF+qMVfvctUM9RS7BeR1ApeLk5b4kcCNBCJyEZUmdGvXPHep3mWq2CEVFdjjncGJ22gteeZClaVGwEojQGtNIiXhdcY9bYzPSAKcxuwVj9lhnU4k6bpNlNZ0pc9yI+DkWpvJkosdtLBqU/z4QpGj+Uv398qsHSKzdmijY5XJv4TTurazIpSmfP4w55vnLt0Xap1cOI1c7GUWNrJUcYyQCUquj2vREApJIjVoRTNI0FKgtKa+vD79t4zgOvdbejVd2aGZFKnLWUKri5Ca1sVslFbYMqEVJLzkLbDqr99XTUm6cXJFmZOMuuws/piFwnpZ52UljnJ+tndVXnNFB1QrRXRhGdUNrwnMnNIJUhe+A0DKgonWCbhOlidueqSWi4iFObrHn8WK2ky3pzjfPNvLOgFNv9f594Mrs2xXH6NaaXS+BpdlAp3OMtm57xGL6DVLVl9Noxuzu/As96x+kzuWe51a2yuQqk1iu5cys8VOhJAaK2hhxx2ss1MEx4+iymWElpTXg2W9tMBauUknf+M2WWETy81Dp/c78VKReG7t6o1ef3KvCy1nL5C88jKq2bj+eKblU2TcIltK108+JMdeoR23mW5P8vzqk6hmg/HqeqCjJa7sHReDpTL66JOohSlUIU9y5soLKivNAKEUxXbE96ammfz+1/ALpwnjQ5xv/BBZ6W13ohKm25Mcn3+6V8ba7B0jF4NDFUSoxeM0kyLVoIKcnyM59gpaKzpJZ+Niy/NLM6w1e/tgyVsAGbOYf44g/zJ+LEm1F7H9ElZ4bYYXwMam1LJYjRw8CRz9D+y5I1gygaCAFXVwSwsbt53YUjrEntqlcbx+JGmHCVQvfe9dfng6zXns2hRhIntl2J6L1nBqrY1c/16ebk1yMv8yeuGZS+sILwWuTmOazNqL6HaVdL1CWngkhTX8M0VQmnpc4RlR4UQjxenpPGP10yR+b38qBdPlXjmoTgTdF08RvvgC2WLvO8B6jYqF1Ks+eotMNHwm79aowZ0by3Z/8Nfg6y8zXclyR3a694X0C3z/B8MwDOMXm2UBIkQngjNLZU7FFT7+wDsIRIDQl51c45gptUqqfpyHGV5fqLDDFgxeHCdhbYyPqYU1dhye4Y7iLpKoRVeWGdweo2SJZM2HPe+hK9tMNmbpJAkH7/xvG51BNxS8tNjgXbmYshtR8yxkKSReLGBJDdt+C+uyc2c7FPQJFys+BVaIgyKOEoqNDo6TRmZihoFce4ngwnNY47+Ezgz12pwkxM//BOdtB+ljETtqg7AhlWXRnWeLCGkHCW4zpJEts9BJeNvIQaSv6V+cgWYHPTrImjPJYuTy7p07yTiZjbbZfhE1sN4PuOweX6rTxrYFzy6HJKVFtg/YCCStJKDqxajyFGyzSNY7w8l61OC+8G3WDuzGOXOeKJ3FjxIulH2GxRR37J6i2vdewtJp8nenWKbN/Z0ldpR6ndzont8milpY9mt3izwRIFRMpEMSHW9kviKhSC3NsJUmK/F+lp0O8cAKW7jU17HiDjAOQDZpgt1HX1AE9oFWJKJLtFLHaXZxwhVieS+J6DIIIGNoLCNbHloq8qMjpOxL19knp85hdTze9jZFRvkMhBUGqzHs3bvxnEgowhfPEwtJeuteVGWK9B2aaGQbAGJ9ZsRrR8NpXBmylD/Kgbs/jNYaC42stUiWq2TGI8Kxvt772q0iB7Zyon6MTtLh4R2/unFbAbQmV59EjN4NmQGc8mnU0G50/1ZyL/6/3HVhjfp/979wbKWFpRVjF5bIhWv0KUl48G4YHGE1bjBdPwr9Y7QDccW4rqG4gh/G+JGN1prAm4HSHMXtH6Bw7lsE4gBrbpN715/fipo8t3qSD0+8l6FKkX51nnTlFNaB9yOie3oXaZSPriyhYgdnz15AozptVJ9LO5ewVvW5c8CG40dx9t5B6uC9XC0dt1ArR/iGVeIP/stvMeRfmb26WLIppqdInBTZZhmHiJxYY0DeA6TIeZ3eWE8RsVarseP0j9lyoIsc3I0bCibzLTrnXyY7mEBmACtKGKjPQx+EMkKcOYX9qx+lFBQ43zzLO9YscO4jOX6E2gfu46nlF/mAsoiKK/R5I0SXHQ9oTS2s4CYdWtJnYL16QKn1/2lNnHiEcZsLEdhJG5smetzZ2MZEJfiJx2h2C6rTxp+apKO29G5wHgum3A7bnT7GF49gxxF2lNC/vIJMBoFexZ21/h0qlMbCIuMH6HPnIDOClpLk5UOcHQWrP8XHcm0WkgGeDY7yjunneEcU0nlgD41ujoodcufIIArJmWQbomTx8EGwog7RoZcBqARVlhfO89GRA8iFeba0y4zMN5g7n2ciY+EkknJ/wo5ugCIiikMycZ5s+WmsnEc9zuI2AsYHMuxotsgkK1jJINbFstbXKGV+wwM05XYYCiTBqEIN7thYft+9v0pp6P8kzHexd/jYbh41vOeNbp5hGIZh9Epb1rupA+enqKaWqL7rPpaafaz6K9iJoNx6kfKky6jKAdD0KzQUbNOQtOtMzC5Re1+aITveCNugd3+gbNQAdjFWK1PesgsraRL5dUg76xOASJzOGkkc4DdnqGVy7Mrtoh0KLJXQnl/EURHD3QKqPk5HpRgQimxpjWyngb7no7TW+1aZUgEGYsiB7SfYlQZil4elR2lHAi+SbF9okaRL2PvPIPc9BEBy8ji6sIgK61jv3IaWiotd9wV3nrGgwBbd+/ni1fdIRmTtLJaStOs14iGLyApwbDbuJ9ab7l9hxT4MrLdxqUI2GiPYvY3g6acYiM+zc/d9zArFxWKf+eoape4IERFD4xqR6gUEF6fhbid15HIdZEIxALHWJgfIVgXh+OS6p2BME3R9yCi028vq6bhXynTWXwbL4r7198lNXM43zzKRPsC3T5zirsEJIM0r5VfQ6SI2dxLR2+5YOZwrtombHRaIWIhiRkcVaSVI1ifncHyfwOqyohSwdWNfXMxIpMsnKVSO0xgexdLDCDdmtjEJjs29cidp+QLKCwiVJlkusTK6lYFWh137Mixt78P2PPLFSQrP/m8Mb/3vGQDU+vt1oeJxvuSyf6wfJTVBIhlcD3BFrUm6LWBHbuMYta31zqOMQfTa3+lmeWd9kb7sXvQ7tsPqNNptUHZjmtkYZ2x9Up12wOyh4xz9wCjWgEO/SuEsrNAeHSTfzfI/jWnSYZNk90Pkpv8FbIfOwf+Z0uwJqp6k8PTzbN23m3DHXnI6RV/HIxy0SAUFznl18vYOTscRb899kAtlj/F2xPahDNZ6OKkjj744ALWdlOqi/Rzzs0/jSo+uLHOuNsme1iB7BvYy27nAYrOBOP0t3ud5pFWVHbsShlttkvOvkAEyskD45D8jdv7SeoBmUVuZoa8EPzmQYWcUEaYcBvv7UF4vQ14rVFCJwEo5G9nFQmGRHX5CPnqOwSBNNogY7Mte/MLZ2PcXL+Q468fWoKwD2zcCoSh28RNBs9vHtqUCUCC++5MsVAoov8Q+ZcPW/t5H9apxWvFzz1BunYO3SZS+FDwdLp2gGTVZShzQw+iL/0lFK+wSVJbIynmU3kaQSKbLHiNaoEXE0NkS/UmTVK5XqplITTC1jJVtYfWPbbzG6fpJ2lGTj+z+GMnZMywsF6gOZlGhw3RUIczVGfB2kK5WyDQ6WDJkOKzS3amZr/mMXbaPVpq9rLcj5aWtW9/PpeY57gvrMDhO176XdnCOdtujlOpihw2GkzS73OMw8hsbvxorC9vNE+cP0XV96N/ND+oxoTPI+/ot0JoUATp/HsI+vMsKEJXrk/JWidRWPC3ItudY8yWqv/f9ZGlNsrDW+w3RZXV1mUbpXxnSTbbc9xA38oYHaP58b6CkHpaogUsB2kh2hJ/u6eeeFQ/+C6QaF4hNgGYYhmFsAtGY43D1BbpqvYcjY/YWJwlKBaxdEZlaB5WEPHnkX/hE+n7YmmZ14Rin7b3c2bXoeBETQY0z579F8cD9/Nf19aqLs4RGovwAACAASURBVB3GYmNMSk42KUUBq1TYqfbghAFxqktMiIXFkeYpRCfh2MJ5+t79Me6eu4AsdMnKIapOh1WvzVQ8zoTfR399GkdL5utdzrmalfQ0H7BjuonET8VYGxNlXApAu35EqhSRyXqoOEBWztBIZ2nOPMve+RVcZ4J/WT3Jf13K0Z87SCY8x5adE/R6NxZYFpbd6+wpFN3zh/GtgHri44sMVkpvdBTX/FWyFw6zXQyg7BDZypPZv5tUtUNfsMZRuYPU6XM8lC0xtGWYwe4aOjdBqjZFfWUJT4+QSfoZ5MqSR60USmsqQZlM3ELpMYIoIqcVfiQJQ0Gj7rHV6pIOG4SqQWHL3bTWTnNXI0ssT9LXSEhFlzqB1aAMMmGuMMMv58sEegtHdr6bkp5hyFa9rNa6dpjlaOU4E2HClFWjbClGYo9+f5Y+LdlLmqH5BZbS81T25ogzw+xyZxiyh2j2vxOnMYsSXdYrMxFJTFINSC00yFohql+juxHWljGIE1QQMb5aIusHiKM/RNx3ghGnyMm0yzaRZrn0Y+5v9pPKpVC+x/Sxp5FbFSjVG9emIZYSX1gc/ukcqb2jNIbuppgKGNsGltV7P/tbs6iVXvYrJRV2rUWusMKZeh/ZH/8993oNLHsfiVA49Mb2hcsVYIKtq0sU33Yn3r/+B1uzNh79xPfcjTvQx5h3tpdhBiItCE8dQ2lJKCTZbocDZ39KRd3JMT3GnbbFhIoQ0mWA7MY+X2mGlL0IqRWJ1Jce0QpHxYgkxlUOO+c6tBamCIQkookb2ix38tTDGlknS0p2oZ2nslDE6law3CzBsSYN7iC1tU1WtxhOX3qvy3GbY9SZLU1zLIj4XW+RgwPv3ng8CiIqP/oG/kDEbLbBR2ZrdEcVjpLsWC7gBRnCygIyvYcH7CqZbg6fX7r03dNxsT0f1dcLAnKqw3gnIGwvgLJRWmCh0Vwqpyx/57s0hsbYITWxSrC0JrdQwJdpnD0KnQMiF33hMG6qSyXV5mD2wY3vo1o3QCobpTVeJDiXnUM4AWPhHVRKZ9gaFNk9ptF27zUzskvSWUJHEf1Wm2ytid4zvv7NoknXKjSHEwbUKIvuErtSGdyoQbp8Aie3lyS+WIHQ+2JQ6zOmXpyR8fL6uVaQMFf1uTcUdGUAGhIle9lrenHZmXyHfcNp1nP/OGFEYocwCLlKHqtcwN/ZT9DscmC1grUzZr69QjqIAad3QS7u8JI/z6DrM5bdQ2B3iZEEElK6NwuqJ31inaKPLEPLLtzbe/1tKo8nCvgo2nGWI817sPuyPLQXuDiBkmUhREJfVGPh7FPcmeljFzf2hgdo9Zk5BoHUiEZnR694rLl/D2NTM8SBjdO4AHd+9I1unmEYhmGQ9meQrbsoFWsc0DAiVhifa7C8/f30pZbYXu2SVBStOxN+rGZw5F14cULNLbBPJmxTeVbVFsKLHX4LvFhwvt0mSksy9RbK641FUGjQEqU1C+0EtGYpOEPAKrn0FmAby8UGhTjDA40q1bCGDAuQfpBqX40Zy2aHHmN1rUOf2wE7oV6vMiJm2SKX6Ngj1EJJx2FjTJMT1Ejo0tA+e8TFsjbNmdo08tknaB4cZ7RTBhwuqBprZZejXj97ZgV796eJy6tEYcIWMr0uVdDASnoZmEPhSXK5JsMbna1eMOjUpmgu/pCkU2Ci7y4KhTUivcbb7vwd0IpUdYEwfQf1QCJUzMDLR0kP9tOprZFqzqEsjUThRJJMEBIM5S7NKKg1qlIhsTs4CkIV8rblpxnRFpXLensNL0ZHZda2hJSqR3hHu8GWzij29/8/djRauFsyRJUiJzvPwcAOvGoZ5Bacbos4PUpUyNMea5NJSbaIyyeP0fiBZIcIGKpWqI4IdF8/jgy4t3WKUN2PlgrpKHIiINOtUovT5OOYzJjCcvPUdcCsnMCLM5y022xVFpYXQ3+C016m2zdIVvc6sZYWNMM01bgf2woYLOfxdl6aCCKqr+JUtxK1azSdXRzp/oiBzn4682mGkjZdYdOqlWmIIl53EndthOU7BnEin/u2Qba1RCSaCCyecSex0PQR0ac1MgxoFuYZv3oiEK1J+QW06NISmkYgKTcFOz1B7JbpbLmTKAxR+SJaVhAD27FkwgvxGlZzZD2nCLm4STau0O2G1PUOxrEYRRCpFCQOQllISxEmglw5j22lcPPzZLb2Y12qoCXfdlEZZ32Svl4uUaOR0mKpZjMxHLFtIM0Wd5aRTpERvUqcC7Hqo0RhiBaCQs7jYHqVbHoUwS8hlOBE/RiLXszQapm3dRzSuopbXaV/yyi62UAX5pkoHcMbzrA6MIAfhqS8hL64hWYCqzxL0HA5u+8AO5TDnaLJqbWXaNg+w4C3OI1TbxHsyTJvdRHiGOPtYQpK4SYSIXqZtMsnJU0XVrkzU6czFvNDZ459UQqEJAo0Y4su+l1Z7LBBMd/g+J4KXTWOUi6F/E9pZ+4nmQC/O0BLW7SChCDXASxKUReiLnGjAXcM4+g6ZB3GwiWCsIDFOE6rjaVTlwK0i4dF4FL3VgnO/D945YQRsZX6HsG/tJ/gPa2DuMqi2o0ZUanLZsTobZvuvVlEMqIVN9gOuEmbelhnoTnFatAgFoptKUkoFBqbcqvDUDYGG3LdLqods7S/RH93hVTUxm9phiON9Hzc0SoX6kX2tyvg7CSez7NSn4ED4HgBjCZU00VU2+dQX5dfQdEUCRU9xrCO10s/dW/sbSxwI0nGDzm13ecdbUFfdwctDfc89X+zlt7D2CBU6hFB1ultlwooBCHXFsNe8oYHaJ35aXI29A/3XTPGbOi+d8MPZ1jyJrijcfPvTG4YhmEYr8dadxB79qck3S3U2j5ZGTCKT8sPSJwuE40Oa4zQpwQREbnlaeSoQ5J06VglmioEtpCoFDNhhQ/rUapRl+1zVWrOGqmWR0jvCnCoHYSSlPQgDVvQrD+PM5Aw1pxka9dh5W3baYUSpRz2PP0KsV8iHB/YKPiZD0JE0qQ/HsTzJVFfhdb5J/hV2QsglAVtZRNLmwy9GC30mjTCAttdF+30ZimLrBTlus82QHldLl6gF6qXcbGUxZpTpdjS1Pt3s8trYKkRhlsLyOU2fU5CM3MX0pI07ArDQpMDBsMiQXoHmaWnaU69Qq3pYo2lmHTaeES0/AKJdBgqtBlvzyN0TOh56KEUTiSQThqFxhHrk4p0QkbLVZyUz5PH/gbbH2N3ehypNVa7RWCnEbZCl+ro7WNIxMasakkYkAoq+CmLwek8fqnOqXGfO2SNRFh4gUN+6kl0boFicYp2y2ZwQCM7HepyjtGkSF9fm0zSJtPKgbZY7/njuKs45QKebtHngRjro8/N4/oBne4deDXJfQN1doxEDAeKU5mttHSCH19gWx2eqx8jtHeitM1i0kdBZXGAgtVlIatYcxfZa0e8T0osUSCK9hGJLrNacVdrgXkZMDSqQY9haYnQFt/LeuyvHSMlAxLvPCNrWxBhjcjKoNNV+v0SnTAmygia8TK2/yA6jkm9/K+kohI/tcepJhOkI8kWq8GETrMSFBmV/YBGaEg1q4yrBhNDTQq2QxR4LNTbnJgIEPEckcjiaIkbhTQbLeK1o/ipmCf7NePBEomIqTZ9ZJxhoFklTNrQpxlouNyx3k/sEtGJMqT8DPNl2G2fobRrAKUTBhsrKEA1QuwdY+iLfUspyWiB5QWkRQsxZJHTNujeLJZCCbrNJukwIVPrwECTQRUgvT46ShCQJadDslYCIkJXX0I270Ariyj2yCVp+qIIKwNBFKKVIhUuEz7fm+AjFcQwMACiQ6oWAxZCBDRUEzc7QMZr0xxNc1e3yM6TZ5ncdj/D9LNMhWE7oa4Cqk6btDfBgB0AWYSWKKUJtUMpTvGO9e8ADaA0FcujTshg/gT9pYj+wV0oW9ONA5rdFeZzbXydoqssOu1J/KQPK3U3Uvf3vgNkBrRmolkioA+GFTqO0Rakwy7ZqIudkVQsGNC92UJDqch4l90/UMQ4KoUQAXq2QWdbitxSgM7tI+wKhuJBXsztppBLQwpiFdJJJIv9OT6UmmVEhhTtEbaQQOIj8kUWV/LcmZ8jlYpI+lYYqCUMt332hosko7upx/3sbE6TH/dws4PsiOs42kJMTuENRFjdgIaUKKdJus/GjlIwALYIwIGG9CkHNWw3RW6tjpPMwDaFHQn6lxqUOppI21haYymF57sEOUGsJZ4WbBeSZtIiCLo0HMUWq0NT5TjZX2G84POTviw4glilsMIIbVnI17gn3xseoMnVBcqjMNE3ds1jB9/3UZT1LVbbg+yvmwDNMAzD2BxDJZ/CYB9bZRtrqEBZw52tmIwMuHOujS0UncwY/ckAe8MlLmAzlAXbcVCxwokT0AKpJL5b5sduilOpAgeKfdxVXERpSUCbDBZCS4TWuDJhVMPe87N0B2MYarEWQOvJHxHc9QCWtnDCiEw3JhUJgp0R5CBWirTdIkuKEEAkIEKiRDFkByTqUn2WBiwlCKKEZkmRs2CwvAixYj4zQcEfZRvLLEQ1LCnQDNGJBftXOwzHirbTByImJzzaSYuK02R7uJu66sNpeawOtBBIbCXpipD3/GiF1vvGaQ0Mc6IzR1JvMGBBLbFpxhI7rXmxUmWn28dd651n0BRjiR3nCDNpIltSS1wyocTSGo1FWnaxVZa9k+coBEM00nczEjZxVIxNgkOGlEzwu2XmnRTVvjT7gn5Sto/KrJcRdnv3ss51mwz4LgPZLMuWw+L8YfbvCjlc24YjIjJxnU4rwrI0IpVDywQdx4yXqiRRGvot+oRPYEmWHY+VXB+hHTCYZFGtZartXUw5WXZbA9wVdZGRZJQ8dy0krNyhsWSN6uEFMmmJTAnuWK0x0vLoJBaz/jhWLs+2dBakpOjXsHSWUiywRMyOQgOZktSTHF187mx0CfU82XSOAnex5lQpe03GhE/ZCsm0ysw4d9OxcshsgYFBn6H1JKSNInvkFSrdKgXVYGk0ZsHS1EsJjk6xW3XI2TnQCtEJyRFyJOuTkDAumzi1Bt74IPusBluIuCvfz9mRmMjZSS6xGLc8dNykJSxySZeBlTmKqo4YzjArJ2gkDh9sLpLy8rAf0mHMoBUgAKHS1J0QKVvgRUzomJQ6QqW5g9RKiXjXBGQvdWmVVozEy6TSNTrWEP1Y3OG06AsqBJUCzYEUmVyX8XCJrhTUUgG7169IWEkIdoqujkgri0SnIPRYtepMLB9npdXF1gJII1WCS28H2u4Sjeo5Yj9mMF0jZ/UDW1DrGer+jsBq1WgNSiyZI5IxFdej6zbx3BTbdIVq9u2MAKGVcHEYYEcPshI6pOxLtzc4lx5n1rLY383ydrsLGvbNnSPbdim8WzBUjUgFirHBJgXSrEVdOt0VRiyILMmIaqH0pf3lBgk7KnWGnGHSWtGf6pKSgpiY9Hopc4cuJFmylo/oRkRJP6ITUo0zDKRirPWbvA+VXVydRqPJdBLcrTbTOc0e38PPgggVxYxFZPtkogQbTS52WXEUhbTPQLzMrL0Ly+nHCSSuTmMvT4Oo4egM0dwymWSAbNxkKMyTVFq09C62asGsaKLSOWwZg52lmo16ZZNSYasQ7aRZzHWpJREfWfoBLXpZf0/FYFkMTpfJ1F1CptHDGbpkqYs+ksRjZP2SmC0UWJoZy6WSdBkVExxV+xADRbrpmK4Eie5dAFArHBt4gAllcT+9agKn2SETS+bkdn79Vc5Bb/g0+33lIoVxi53926557O5t7yQ/bpFUFanW3GvexM0wDMMwbgVbamIJOWLODUSsDnSxtcROZtleCkj8NJale503JajqrcQyi4VEdWN0LNkRl9Bac4fnUV/zybVcUtUiSlskSURKhTR1glAKOwop6yG0Vjg6Ip34OEGMUhJHalYiSVX0EUpBaGlsqehvXZy+WtOv17gjnMFSkp2qSCZqEgYeW5MCW5lHyAhLKZoqSycSBE2PkXKDQqePis6h3ARHCNL1Jqdsm0XRoKA7PDEoWbFigiTFabkPX4Hw26SFR8nZyaK9jZbj0E0kUSLBPY2FwlIx75oM8AKBN1XhTDnPubUKHZmww+6yW5ZxrYhQx4yEec5qm38buJN+d46MaBM4EtFqISJYGPA41J2nmolppBvk6j6pMKFsxZwLxpljD5GU1ESERw5La4ZxkSrE1VFv/6iIAVFBB3X85FJZ5HangxUmJPTuyaSw6bZaRKUGQWJhScn++QX29y+wPbuCJULSUcL+JUUmDBAIdtge2zsOS7Us1dQAD6mI+1VEOkhw4348NYhOIsJsh5mtgp2qw7bExQlahG7I+aIkasVMrHUZ0D5jfgPtCIqpIYKmQOYH8UXEvd4cd7aniYIWFdmHDCTpQJCOQs707aWo70ChUc0ISysCHIJUSIMWb4+bPOB5nEvdjWsNElp9BMR00iETqQAbxe7iEifrTR6/8ANODgVgxzhWi1yzRiddoTPgMuzU2dpYY+TkT5mIZrG8BIlFppuQNGJUGJGKBQkSqRRSuiwNBXStXG8SD61xgxDfjxkSHo5WOEIwJBpY6tKMgXUn5ES2QT7XRVsgpUNDusyIAhVdZTCQJMJma9NFdxOyK2Vavk+32uY0e8g7GdIkCA3LIzECRZ+V4CB5MD7Dby79iP3PnuDCYj/ZRu946KQgsqBiDyCwGbZcIssmII0feMRRk5PzazT8XmCTtSIGZI1AxWTjNl67DFGHUwzwsrULqSNiXWZyTBA6kkDGJJbCEQq0QGuw45DVvKIV9eGEgspiTBgJ2soj6iQEOgUa8ukGaykfoXq3ifAdRT2Vwyt4rKwIClLiaZu036SdigktSTYdsT3XYjZ9F8edfo6NNnDtCIlGqhhL9LbbAlLtJkMdn4lSAx3H2GgGrC4jwVovLBGCmVTc65evj8vdP9NlvLJGZNkkUYDdWCEtI+ZzgtWsuzHGVQDneDfzejupRkDV6uDr8733Wka8TZ9jdPAUibBwLA9LtUgT0S9DRnwXZEIQLuPGAbGQCMsiF9UZ8TrYWjDYzjParuAEbTpxQp+9hrIFgUqR0wmOTCCO0UqCVnhWDEoiLcWwden+Z0qD8iLyzhDf1PuodvtoiTQn3AmOTlRZGI3I+b3vE0uC09WkpKYTDVNIwUx6Nw0mUFoRCYHfjekKGwuBVIpEJxu3/3BEr0Ty1byhGTQtJSP1JoX98LGBaycASdtp1nYN8Y45F5IQ2y+hBl9tCJ1hGIZh3AJKU5UpJkQbhWKMAK+ZIiuroCVNewCtNdmWpmCNsJaZQMkh9unefa80INsxYapFSkqGXZuR2Cfd9jk1/h5G7CrbhEWKBAuBpSSekyOxPO6Lz5C3s1T7bDKqd1+tEdmgPxGUrAqTQwe4N+zy3tzztMUwS1GWodVeSdvwQJshq8sd9QUq2Sx7dUKfJQn9FbJBgJsZgaLmnuo5Tg6Nklg5mvYQWR0xXqvhZmyeP9BmyPPoW0xxZusAUozwntoMzbSmuKWfu+OLAY6FQlPVHRI9SFP0kSgbS3gMeD7bqjHHtr8dT42RavvUZI4MkELSsXwg9f+z92YxtmX5mddvDXs8U5wY75j35lhZ6apyY9xtu0vYSEDbaqlbLV76CQn1IyChFhJPvIDECzwgIWGJUtMgIZD6gUGCh5KltsE0dtsu21XlSmdm5XTvjRvzmc/Z0xp52JGZ5cYuJFSVwnR8UkgnIrbOXnvttfb+f+v/X99HiJCdbVF+j0omdLol84ofjCuSACcbgwgw310y1Ctu2ONE1lRzy/ffaLnIEiaNB6nwXU+wfBZZFY6HlcDYjomq+UW7Yzq65OLFhEo5gvMUdUMtBpxmh0zkC3AQRcTGji44Tj665kwrfHD4vMIGRyIMop1y1FpGlWE9zNlv1ohNZOAr3HQHLnI/tDxrRyycZD9oou+oigUDmdBGxYBerGPuS7qm5U9syjQOmZkTWg55dTsjzRvSNmGwc8T7LYqW0NT8SXNJ0Wky2WcsziaCWFj2mpKAIzYNeq05rySOwOP6Ux4vax5tDTNj2AwlkQ6E5yhZc5RWzGxN8r7huYLR8oZsbRkGz3q/4zpLiNGxdwNbmZCHNQdUEKHZGLZKoHVgFRVcRw5uPLWIRC8QHhbhHj8UKV9zp3i/4odiwbIz/My1oxkqfBJZd9fQFreTL/Jbkw03uWOM45UmwACU7TPNmYmEINHO0pgxvhWQeD5JZmyqFbn8Ku9OHjINz2i4oVISE2pU49F4HosrrkPBn0xbsmqPbFNhreP9oUTEFN+8ylBseZB/iMktnySGpQuUuxny5TknZcdatTRastcZcuPIJ2v+oL6P2B6y05BnlmvlMWJF1IHrVPF6bXHBMFlJfGa4HEVU4/FFJJqAWm6Y13Pc7JRmIHi/1Ag092KkbBzXpWa3uWYveASWrTZ0ziCTNS9iQi4LgvaYkBIc5NqQ5JZgJFXIKfSGueiwIkESkT5C8JyrOXpToXEsR2vekw859JFxrLhqLhFWMo8bdOuZRMlX/Jb3fCSk8DBpWVWOJOm4/mGDuj/mWntGBIgBg2RrPQseMksq/or/HgsmrNMbHnDJrHuNQi65SSD3O3Zyxzrm5HrFw2wLeV8/vO1ynPI89zPu37xPXqQcrlbUWrOTKUM7R0lJVnsm45YiduxiQoonSIdKanwccHDd8lptOXOSg7gkzwUvo2OZNvyP6QVv7VY0+i1G1Y5vvPiQ9x4XTGSK8h271DFa73qD7c6jlcCjWCto6gWLqaMk/WwbHc4rtmGExOGjx0XLadHxcfE6v6xX8P/g5f6lZtDC1SWJD9xMYTh8/OceU7/6lEkdaRuJWn36ZTbvDne4wx3ucAcAnAtcdiULl+CIpM5xnTvWyY515vpFZB8RBsLWYpDUXtM1e9gYqZVjV7eoReR9RvgQEdYig2MrEp4PDij9c95avUAIj0MQRcSXK14O1n3JnEvBRx66S7750QeIxhMkpMJyqacc6zm/4J7xq89fcDCr0J1FBIdqPcPLOeknM+JVwqezRzRWIIOg2Hhka3k52rLav6EeXmOjY5VZLlXBTa3wXvPGVe/TNN5afIh4U/AiP6HrJD56sndrxA6k7cUXyqqm3rTM6owu7Eg7iFLgg2TUbBHmE6bPVszbgrkULJVFEdgIyYv2AtINZrjBSc+kq5HBg3c855BXfMVf//Q9oouossbKyG8Nfp5Plm8z3O4Y7nY8lR/zs5trXput2IxaZkXL//mw5gcTA4MGQWDIjsI1yAYIkV2+YZ0X1Enkd/aOOCs168xhpGfhLQbFo/mWvVmfecnYEmxk6A1P4o5X9BZCINkYxpsG7RyPQ40nkkbLyW7FaO0ZLCGrHCYxpLKXN79qpj2Jdwmbep8f5if8cfYWHsF43aK7Fl2e86g8Y5YKjr5v4dyS3njmtaHFYXGsC8882eNlMsZLg8L36oznnnr7ATsz4zUz5/hTz6MrwwkXrEcLZpOaKlmwFg6HonISgeQoXdN5jxSe6wFY5ZHW8eTCoDc5L5lwmu4wLnw+T9JQsdSOZ+qQZTygYogJKS4kZG1ABI9ynvO8YdvWCCFpFYitZ7SI5DbgQ0RWnmf6EL1bs8FwmQRiDAxMi/CRN292qNohokcQuGdq3hYzsmjQeOq0o3Mt2yD5gXqIiIEgI4vC45DchAPelV8hrR2EBSuZkl7PeCY8F1ohosdHxSwJfPfA8buTKWfe8H6esJEJn6SB4fqSnz97lwUN5xNLYjruuRWh/phXzn6Hcrm9LX8MBGHxvqWJGTdZwsW4F4lRISC84iydcnMwZJjM8C7QRIsPLeN6h9EOFTz7F2tOXsx45bxmtBOo1jIZbHha9yqIJR3DdsO+eQ7RsysNnQRvMxoFK53R6OILmX0VgYCIgYOLDn91xsXp78H5d/kFecFjteIfp4GtmXDFfd7lVaryJcv9ltw1SO+4H2sOw5Z39xXvjjJya5E7i/We6mJHvEzY+ow/Gk35/jSwsJpSOBpyRqIlDx371uGt4Rtnpzx4tu6tj4moEDkVgbqZkX7cMN7skMGjjGe2WDEXOxbZlnSzIASHCNAGTSehFoaksnz1vZr0JTgMLZJdVzKcB/KdJxDQHjITuNfNmJo1Tz74gLmZcWlbQrWhlYHUWDLT8PrNBZE12gRqBujGcZLfsDhasEk0lSwoVo7gu34+SwCBINKJIR9zH4+gjYrfPZ7wBwc5rYTLZMqNzvlx+FIJmn/xHAAzCcQfMan+Uex//a8C8HxToNY/XYIWnaP+r/8B1bd+/c84h9/hDne4wx3++cZF4bhILDtb4sStQIUPdAK2mSeKgCFhE0e0YUAlMoaxpaRjIwqkC+RtwmGacuUPuRh4GiExLsd6GEZD2e44HzY8GxkEUAiLcedsQsQIT6Mig2ee8SVcN0+o5yPe12+wJcFlWySQV57yMpDtPKOrOZPZKdIb8s6ya/b4ZLPPXI2JYsBBsIzalstRy6Plc8btlky1dNqwP+w4LGbskIT1E5L5CcpZkugYVDue7+VUw2sK5xmyIwkLhPOoTrCJBVnTsksb2vacp89nvFaDu3/M17oZX1MvOLoqyK9H2KC4lvvciJyHcssyyxC+YB0jA2t5lM+Y7N2QRAsh8rC44StxgWgV2zhhUwa+98hgUcQAP3O64p2zU1rWiBiZJB1HqiZoh1GBs0yje51MdFZz73BGJxXGe9Ki4rONPi2alTQ00qDCDhsjWyAO1qRPlxwlDcfJGhEdXibsYxllFY2ETYxsleNkc8W5vc+lNqhF4BfPP+HRc8elOkR5w6RrEAFu/CHLsEelx/w1ccG423JTOFZ5y2A7w2Y3eN3QJo7twHA5bWmi5/6i5Vof8256n3f3Wja6YTXwdAKa8prrkeFZnnEuD1ikEaO3FG1DagZsxYAQFWW3ZZVGKpkS2hJVScRKUGcVw/GCfb2kSS21jkQHWWLRW1bP0QAAIABJREFUWtGFHBcUJmlpMMjo+Lg6ZtsNCbblgzLyYmhwQqBkRKl4myPshdP36pqJWjCpd1RkxNhr0OxlDrHqqMWSvGoRMeJ9xDYWExQdnnTbkC8coyTwZr0jtZ7GlQyagO0G5NogRGAjUqKxjOdX2PKHPC8cyuW4kDCT93lgdhypCiclVkQWicCO5/zO8Bv8QP88pkmQNwIrWmwaaWVC0I7xJymzsMeNLoi2ZhaOkes9Euc5Hbb8wb0SKVsot3yQ3CNGT7ySJFcC5zq0DDxPH2FESp1FWh15NjqmdUPGoeJ5MqBSjuxW8TUi8AhyseZKOvJly0nV8svhnO+c/Ay/c/wOqfS8clVhdxWydbS2pVINY9XxlqsRBK7zgBJb/o78QySB0dJweB1wEvauDMehRupeQKeyArXr0LVjHVsaGVBtpHOCV2TN3yzmHF50DNYtKkSCi9zoYz7NX0eqFpt1KNvyA3efd93P85v5r/Cn6RvcyGPKpWVa1UgCHydv4dqEb9Q7vrLyZJ1Dxn5+HogaFwQzrRhdtrS7nIvdPk0EYSs+HTkCkeuyJl/NON7OGaodv5+8xg+KR5yKCd52tDiih8n2nHST82TVmxKknUcGS5AeJyJ6F0i2hnxT8fTFFW/Wc+67hkYkdAo6f8TRQvDm+go2h9zYR3SJYZl4upHl4tGOt7YrZuYQ0ZV0SrDV8EH8GiB4IFek3lHQcv/jBYO1wErPLibYqPholP15r57P8aUSNPPsWf9h4gmDkz/3mHf+6r9KEHC5KX7qGbT6H36L+h9+i+a//W/Y/of/wedmkXe4wx3ucId/vvHH+Wusu1exyRabBDy9L1Tnxsz0AfPSMcpajvSG15jxRr1gEiMDb8hWHccfQlJDuom8VHtsnUFua9bhmHHbMqJmsu5YFg3TraXR8PrNBa9d1MQaKuVJbEC7wFk+ZpBe9PLTHibqGeLgIzQOFyONBBEiaah5/ugl82FLqhvaccsqt1gJWejLKKeq4uGqIbeeNzY33BeX7JINL0XJSFQ85YYnpzXJNuFcHbIJe1R+zHZcoco1j+oXsI683NtyPu1FCzZkGOFRxmHycw6aFY/nLdtMMYxrDmctry46RFJwnd5jKcfYqHmpQARo0gGFdBxfB0olyEwgEQFpPEd+RtLAuTkhBIEnJyssZ6lm7o8IItJmlnv5RxSyQ4tAuQSL5OP0BG8SJtYyj5rvDUvmcsAsnfAyeUjshhSryLgNHHaG5STDRE1qPaat8LJDlzWZiVzYjO/veZ5O32NCy6e55zxLmA0d//vTlJdDOB2n3CQFYTlENz0tFAHGSctfCZ8wjob3CrhxHWXTcJRZZIgcxw2p9eSVYNNNecqaJ3qDFuBTh0odueyPlQY2acPV0DM7mLOYrpm4HdO6xRUbXqQH/F7yTeowZOAaTPcmdXOf4CVNKDg0LV+Np7hsy9+qnrMXDHUInMwcs8yzzV5g8w0uRp4PJfOQM6okxhzRhZKXQ8/psODapHwc7rGU93igVuy0xvvA8dKwn3eUg471UeQQi8laVscdqbdkzlELTa1SblTkejPg00zTqBZpHbNBy2yyxhDwtmMVdiz3HJ3M+VC+xuS04N6ZYa4iwkGRX3N0sGQyXlNgMWZIIwWDxtJ2mrwd4runjCtLsbYs1ntcVnt8kknScoaSUIQbiuNPySoHVlDKHU/inEd+xaSzOJcy2VmcSPA+cJVOiUQMgg/2pxyUFWlqaVXCJ3LKQgz5MJ+wuxny9pnjadXwSxfXzIYgZaTJI0FAbh2ZM/z2/YYVM2LVshmtuEfFsVyjZL8nbyp3nIgdA9FRlyXLdEibC66mhg8PHaHzJN2CSgmCgMx7MulpVSRcw8H5hiYG9KrGBU+H4E+HJ3x32nsSuOhIzQq9deRrT6IMqbSki45hd0WO4+NS8PxIIpvAdNFRbOGh33KSbEE4Xg4tVWnZNSnvzK/4FfkeRiTcyCPs8hFPZgu+evGS4Y3lWt1jpS1l3VFuPVEIHl00aLaEKvL6C0+jJK0STHXFqF1TB4lYHbFuX2U6l+TbjkGy4Z5YgPIQI6PzLa03dCrioyQ+k7y5mnFARZYGpA8chg5ZWNpJyzL3bFVFSFY8LJa8cgNqV+Cl4Cvlc17PrrgejJh2O4xUqBBI8x3P9CMqmfEwr2kGgZoJm3CEjQlY3VsgaMVEbZikHWkbuT9v2FvDkYqMmxq2AZUtf+w76EslaLsPP2RTwDh1+B8xqf5RPJi+xsVUUq9S1PrZT60tYbuh+Uf/Penf+DU++jv/Juaf/DbXv/1Pfmrnu8Md7nCHO/zlwf7cEwmkLpDEgI8JtUroYsk63KMrWgb1ilR6jlTFa5sVw50gax1714aNTLjSQ7ro+eaLK15bB/ZWGhElGQYZauzQs00ilzmUbctJ2JJnhrkccW4C3jgEAYoaYuRXN3/E4fqKabVlpxxb4VkbuM4hiTWLScejheVcjXieTACJIaWTgTWOPywn/Narmie+YoJhalum3YZjd41wGYei5jhsOLYrkk6yUVNslGRL1cdAWrBLPUjJZNSg046IYGUzrA2otGLIljqTtKmnHiyIrWG0aBmEjid6zivJjkcfbXl02mCsJgmBIR0/u5jxC5sz1u0DxL7CFYJtWrDIBtyYYzYoQmJJvWPdDMHsyPyKjZ6ipWAWRpxmh+yspt2WVFLwLJ8yFxPGJiBig/TwT/U7fG/ykHN9n8l5SbHw7BvLPSI2T3j34JikGVCuYRNOKPxDfDPlaifoVoE/2ZtgY4lDMNew2m9ZFSBE4KhdcLSqWMWSJWOCVyTOYJs1SeMotaeOA8orx2i15unNFWNnUXHNO5eX7DUNMTfsJYZCWWom9C55fRC7KRTJyvNwUaHLljLpsKnjG9kpU9mwEQOuB1P22w4ZIhPTkkWPCrCWQ2ZyykZNKCM88DvGrWUSLXM5Ikkcz0aOTreYJKKanMNZwmCZcbhT7IUOJwNnHHGa7LO9HrC2JffKhvl+zoV+i7YVTHc1czdllgzZ1xWPNpKvcUFUIGVHaTtilxPalN8bTvhfRj/LWXOMUYGdlOy0ZKcdTkImI8p3vJc84o/UV5m7iDANiJquqkh8hxiMeHf4gMNyzXWccKWO6FzJ4dLw6KzjwHkG7TGUKYJIWrXIlaecRarE8HS3olA3rDPLy3TCn+avM0o9D88MB5eedqcodpYOiRfw7VcmXOUltZakRcrj4YZgBf/zeIILDm231DFjMVixKVvKJmc8dwzDmiAtV2947mWWNAQy16G9RwgoNwZft7y6u0E0HrVxUPSmzI5IJ/q9m+hAQPLpSDJMO5yC6yJBKIPMd6Qx4oEHoULGgA+KWiac2JTjzYhtBhfTHKcUm6TkOusY1i1l40mdoGPIMHbQetLa89XmkunCU1WS76ev8FvHGistk7Xn6U3NVDZMkpbUCf60nTCZdbxq5hiR4obntGmFixYj+5Gc1Y5jO2MnG8a7FQ0DdhQcmIpcdshG4q1kl0mqe1vWw5b72Qt+dfU9HrSCV+aGtzvLCAXRkvmagdrRWsUGTdp6EhNxMeVPxBtknWGwbElrWOWBy7KgEWP22kCV7TEdCN45mZHLwNfcnDo/4vHwkqqssVIjiJQzgxaeQdcibhIm7ZZ70qDsBBFG7MZL2ukLMuux2ZZGr7k/u+Frpy+otMYHRaJBSccisxw3DW0S+aXz2Y99B32pBM19+gmnh3Di/+IMmhCC63sThnMQy09+am3pfuPbYAz/w+u/wt8PbzPLx3zwX3yLXed+aue8wx3ucIc7/OWA8FukOmWTOF79NHJ0FtnJISpKXFojrcV4y9PqHISkjIEsWPCR84HmfFByPTTMCsercUaththRwaZIscrRaiisZ9IEil1gb7dGqQZNQKpIR+B64lglEhUjEYnwkZO2RsZIhmfpIu1ySJEqusPA7kDAscPGAd5kyA6y6Nnb1HQqIAIsBoo9EUit5wBLXjh2aoggUsWSZ+KYKg10WcRLT507tF/y6vWa3NRslaDKC1Z+xFtnO2pZ8y8sP2L6aEY7siA9Wz0kiMDheYMbVVC2TMWCVgbKXc0ugfHSE1A8FDU/U684qRoanVO5Ib9b3uf9/BVmowm2rPEqstAFrQscO4PXAgjctxWTtMKojDqcsFAjzvQh9TgjazUu5ERXEmu4CffQpzkPZnOkEEgZCCIQlEcJR5X0dtqOgptc8HsPAs/vtbispB1JaqmRRnFA5JubDTJojBnzpttSSsd2WPHGZsnrmwuOfC9sghPE0RUXQ8F6OiKonLIBKyRnOmeeNljVEtSKqC0haVHCslaR8xQysSNvPE/OHSSBlpRKZ3SJYGaPefO04itxQQAKbTGJIrOO+2HGMHQc6g1/zX/I6WBNoz1SBboEMhd4MqtRW0lYDjkvNKfpAdolSAJOKKokh5DyxhIebGsmsmagKga6oVOKw7MNb1+fcpCumct9NonDkNOkBUuxRysVQQSMjphyx8W0IUkgFx2EAAKukylfT2YkwiEtVEp+ZimH8pGDpeews0jVC+hsk5pj6ZkkhkljGb+07M8MnchohaYTCUZqhDJMqEnwdM2Ae1dbRBNptaNOV2zSFhcCk3yNLGuEM3z9k4p5OGKTDHkhexE7K2EuJU2kN5JXHcjIsuhYqSlCpcRYUOUWKQIfDz3Vw4844X02icUkEa8U0mvuzx1Hm8BKj1ileyTS8q/Y79NpjRea6HO0hzcuKqLwhOA4XFq+suj4033HJ1PJXCvmmaUjoHxkgOdg3DLMG+65De/IGftYLpLA267muHNkncdETeI7cgTCjSiqIWtxwEaV+MSytzacLDUrpUhC5GG7YzLv99kuUs/3RhrnMzqZcTUZ4q41eqbIrCX1HbUW+LDH+/4dzGCJSjdM1gumtmXo13jd0qQ1tVSYKHhc1xzdRM5TR1CelowVY1Q0XATF/tYjiEgReHYoGKQVN6MlLrEMlUFKSzVqeG8qOB3tIWTDjRwwm6zZ6sBDayidwziFCZGDWUO2E5zmT6lVgo+avWVCEJEq0ewnDal3xNkIWUVe3FsTVMM2MZTRMFUbHi7XPNhsWOQpejjjxu1jQ4GOCa8XF4x0hZORECV//aMb3tpcUqodq9RRJyUxCwykp3CSVmgm+YZQp3/h+we+RIIWY0S9fMbLQ8ExGfyYzXHmlVc4WkOzeAH/rFP9Twjdb3wb++ob/PpFwr/71S33vvmAdy4+4B/9T//HT+V8d7jDHe5wh788GJiKn3lRs1EtgkiMARkCg2jZEzWt0kQg1C3MDTkd+9sWte2lpSUgCKhbOecQE5QIJKM5pBuONyBcyqgr+PThmsuRYVeuEC5Q0NGljoF2KCsRNhARhCAoREUZHHkHP+AVVongcpgxzwtQkbYekuGwMuBE4NjWvO6ukSKineCdl/CJu4/wsjdZBhIRSKVlLRMigT48UuRqwbRbcb/aIEXkldkaqwROSMrb7VvarFhrzXf2oVQzJr4jiZEmjKh0gReSOgskIXBTGLJbcQlTWjIXydqAdOCCIgbLI7nAFGuytEFOO7osJWrLs9GWR2eGxy8CLiQ8yJZMKoklEocz2tAyCDXHyQZvPK/OAm8sbhhRsUhTHCl1vcfYbDhIWt5Ql0xkwyqJPB8azoYJiIggMh8YqtwzSBtIJOtygkRgQkEaA4NNRwiaJHpGeJ76ljfjgsfdnIO65WRrSR3E4Cmkoc1aBqJDpzumwRCARsG1nLKycLzeMBCOJ2pNIftMldGOZObIl5FO5Lwo4VxNCCIwkTX3Nx0EONgGnIIoAo+2W3LVULYt4naP14OZ5XBmsDJwkzYI4Rkt4aBtacWICz1ABkiUwdkp2lvA08Uhwg/IfF82R+z9wBJrUdGzSBKmbse7+x3XieObH89IrEcDV3nN96YVb513vPkcEJFStlxzQNb1QhAgkCJBKkcuLFPXMPEbWhWYJC33G8vYBPZsgbSwX77HwfgFNXu4kBAiLOIEsWsx5Zo/ygcYIRBRksqKfXakwaG3jiM55231Cc8HgUZ46syTusiNGpDOI49vGgKR/dAQEEgpECLcCmsIkA5FZGQtQln2ijOstqA8o51ncDZksPQsdCRJdojU8jidY2WklimdzOkYE2NGpwacDhLMsAJgmwRanxOlIFGBkWpJ0sAo8ZRbxWPVYeSQWpd8t5zybLSmXcHR1vFri5c87jpiECxljrclxkseLgLP3T2W9gGpicgYeOOsL5lMfWTqO6QP7ATQCHwiIFMYWSLirTi+k3QKcC0PTzWOhDRE9mPHTSowWuBl5CofMk8LnAQrFE/FAqFbDpoN/9rLF/yNZxUj05G6BhMCGznBioIuZFQMWA4ER2LFIWuGs5xiq1hmAiLkWEapYTdoMDKySSyq9bw3qbgZBBbJgJWNvL4951+8fo9B9ORNwltLw7gyeCybwiFVRzqOdKo34/ZS0GrFdSZYxYz3SNkXKTfqgEW6h00tMnqyGHgzGBCKPe0YjyOprqhJOV09JDGO0BZkTjBNlkxVS9mV3JcNlUxYJC2F2vFUbZjlvc7F0wWcT2veNi95mF7/2HfQlyaz76+vSZqGl0eSbySTH3vs8Ts/B9/+Hh9Vmqe7c8L4z1d8/H+LsFnj3nuX3/ulv83fyr/Hv/PiP8WPIx+pe/zct/8zFn/7m+yXP57Z3uEOd7jDHf7/CxEie40lcw2T2qNtREqISUAISAXIYJnnDpOAdI77cU6+C6zLPhMggLLzbLKUBEmXdBgUMSrUNmE2useuMJwIixQRLwAih2eBwQDe3xtQiRytoFAVLi8I3qKD4OiyV6C+TDO8dARpmVjYl47GGWoUikiQgYuhQwdBjALnc2oZSJOEKAJRgBUJ76dDJIZGLKl1xr1uS+ehEFdMhCRVlo20WBlxLqIagfcw7Axz0XA4T9jvVpwdZRx5TyBB4PE6IcgObT1CKzShv05b8sYlKNFRpJG1tmxTSyEThA/4rO/nZxheJo4nyxWJAxUMj80FSbJHdmM5HXSU1pJcNBx2iptUQfRkJvDVxQ49ajlNJpzMLY2CNGt44q4ZiYAElmngIi/otEGhqGVkLUoUS74xu+L+Tcb5Y4MSChBEq0hjoHGKmPREfGQCnRcY7dAxImIfYAokSjV8RV+SiT3q1DJykYBAIdgq0I1gKlqIOY9swwBLHjwGzUqNGYeOQ1VxFvfIo2ZoNOSavPbgJTFKQoRh7bh/HZiPNQfVEjOwdCLHIlFeEOkzQlaAChEZBDIqNBYvIcFT2o43Lzxh2DKwDikiafDEW0erMhrqKEiD4ebQsBcDQcDe2pGGyHHdEbwG6xnsIqMqEpKIF4pBdJxc9rYA+7qlcTlfebZmmGvqoQMhOEqWRJlyoDRvpoHv5ppmOyIIR6PhZBUorGebRkLUNBKus8h5kfDkueLhYMepGlEW8z4DEwKOwAkrEI4mFIQoCCh2asKDbUFndmTGk6Udroik2nKsGjyKGKH2I1yaMabi0VVgPN5xcSzIYsvTFxXKRYKEkQykS8uLJ4KyDagsMqGDoChwZKknVYoYJFoYHrBilWdsBoKvflrjY4FD0qmU84FgnuZ0ItCYAkUEK0hX8M7NhkGS8GS4Ir3xpKni00HKXCqm1pI0A974uECEQCc0V1nJOtEUsUNJwyQNfPNTwy8Mlrz3dI/hteJaThgnVa8kGwUECF6zzWz/LBSw1GOSLjDoPDsp6UJKQKG7wEWmyaRHW8ta7BGVZhAMm9jPi2PRYRHsZERZgXKWkPf5ocdxzV6smMXIcCvoREnUHY0vUaImrSXhcI3eaY6io9Qd0xeeeiDBJnSpYNxZ4mSJdJJVsoeMG3QXGHUNunBEGZEJPNms0QNA9vP24zLl8ccOZIIJAUlAJpbJlSHfRnzm2SfwLJsyqjv2b7bsGcWlUIjkdpEhgCYwDIG3ww3HVx0v85QkachCxyBCm3WUBCSO+9eR9f0t0dafrY/9hfjSMmjdRx8B8PIQTvLDH3vsmz/3LwNwuc1+KkqO9g+/AzHy7eSE/1j/V7iDr7L6t75P+s4RT56f8+Fv/nc/8XPe4Q53uMMd/hJBeoZUDNYaGXsluiDAi97OuBNpb9pKX7IWRP+5Vr1cNPSBTRodGQYd+2DHqUCgz3h0ZcWgVDzwDYfe4qJiJ9PbkkaBbwd9oCj6gL9NG5zuV4CFFxQriY0aE3JCSAhommpMaiLiVrZahl5Hz4ueMEYBhXSUJViZkjWO1AY6EWlFJHGeV5IrhrJjLA1EwbY01GmGFwpHvx8tMZFE2du+CgShKZtI5gIj48hdQImAEYqXasI66bNouL4dFQKjFDjNu/mQSgWkiARvmV4bMudQopcDp4uM1qH33ZIFUUhOBwKRLRlRkUiLFxEjA4l0KAKWnMI5jheevRvHrjPMM8/pIONrLzfsN2sOfUMMksenHUXXG8gOOsuwNozmOYeblnm6hXUNQqFFYF6uWSY90YhAugPVJaQG1qklw6Gjv82gglWSXNSMVAMx4mOCtJLdrQCEjxlJhDRZkWwsJ+dbopMENFJYLBCCYuwCRjnaZENuPSmBRPbqn48vah7ddEgCE2MJ4yVBBhACbSOZdT2Ruw0IdYjIGNGhz8yqCMIF9lcRZRT35kNGogUiCQHpFJn1ZN4TgHHwaOVYZxETNaN1pAuefWspcCSt4+GZ7TOSQeKF4rX5FmEDXojePy8ICukweFRVcn/XMZUtT6qWLgyZJSNeu/DsbTpS6yicYb/xpCGiPlPeVJFOZTQ+w7oU2SruqWuk7nDSEYl00bFKDRWOwlt0DFgZkCHy9Q8rLkcZBZ490xPSo2LG6WBFJwQuJByu0l6cxQtaKRktDHu7La93m88fFSKCEf089STslEbdBu5J9AQhOR3mZCryeLNBSqilximPFC2lcUgfsf00Z6sFIYL0UAmNcAIR4WTmyXxkWrY0CGod2coRtU7JhGeXOgwlEYmVEREjH5U5u6Tfy6qcvB2PnqINlMYwS0eMst1nV9Irbs77MdEmjiAkaz0iCMXB1jKeW4zIqNQQEEzXHakHGQRGLWi1QIqAlwHZa6fSaUmqWoaqxo7WVElvGK195JHb4kNAxkhiQQpBqSNlGjGytwqbLmC/9diYss5SdO6xJCirWGnHTRZReILQ6ETwcpiz0ClHzY69teWDieLDSUqVWba5Q4Z+/Cjf79fryNjJIW2+Y5Df8HBliAJkhGvlEbribLrjYmTZqSHfSd7gbLyjkRodIkoGUjypD6S+v24ZPJpI1jjGu2syaYjaIom8uluzyjyXxY+vEPzSMmjtd/+YIASfnAgOyv+7+bSsrhj95r+HWn5E/rW/x4epoFklqNWn2Me//BNti/3D38dlBb+4/wNsWPCtN/91Fh/9A37t3/h7HP37/wk/+4//c/jVvwtJ+RM97x3ucIc73OEvB/Z0jZMRXTuIEKTAStDBMTASQeRYVRCglQVDG4gpbFOPv1377PNogYEJhAh4epVB57DFlirxXI86QHEQW1xUVLqgiTlWeKRTSBwRyJwn3GYy+jCq99pJfMQrCVGylSUh8+gIkojG9+IeQiBEJCqBkQlZ8LRJgkdy78oSpKVNBNoF7sU1rCOzLJAhmaqaFNeXYHWeVPftIUaQtyWSBIIPRNmfV/ayFp8vAccIKkCIvdebiH1wrWPEioTUhs/7XXeGwnget57nr6cgIi5qlA0ECQRwsoAY6fAkPxLjzErfB1YINJ4DaSCAERIvBJq+5OxGCeSZ5wyDdJDEyHjl2I4VU+d4etGRB0clIRBwZOTURASvXG7x4vZ6EExmKSPRMRAGK6AR2RdlnCqggAdnHR8fr0H0PknhliA4KSBKRITUBWa5BzzK0t/DW9IfhISgiLKXSBdRcuRrOikwMcVqSyoEh6LCenm7iCD7cUskCRHpHaiepQ86T631beliRMWIspF9YzEipxQWj2Kgmp6EeoeqevF36TxvLJakacdaKoxUBPr9jUgIKnweAAM4MmQMHM8skV5CHkCkAnCEoNGJQwTHOgko73FEVkFyHBPKzpPpCtkFUCkvBxZ1yzQbHVAIXn9eEREUwdMJjxYeSezbZTtSAis0IgYy0Q+YxPVtLBNLHVIM4FQkisCgNhAkMkRyZWhFSuCzrLhg0HiE9L31Bn0gH6LEicjbL3d47Xi6sNAnozBSEiN4qShah3KBEAVaevZvoNVZ3zMRjARFzi4OGJiKWqQoESgqT6cVUxoezBzPRwafgdWacqP6RiCItwsxtQrUpbn97L94aqi+byJwsrREPF4BUfWFzU6QWUijQALh9tmhbWT/pkNoSeuL/tpCQi1bcttfZylatplhG0H3q1AkPqBCf9dHukEDRgQyAAHzwhEtqNtxIWPEiowUQ6V6ilLUEUuK8hEZHCT0nmREyl0gItFCsK8rfBScDXOuQuRAG1weaGSBywRLBKWQZCHgnea1lzWXuUPFEbn3dCrQqo7Cu34RDRg4j6MGBkQiLokYteLppaN9Ehg1nnLn8TJSp4oYJYXv50NA8eaLigGOcHt9RDhYWmL8LC/9F+NLI2jNd77D88MBMa0ZDh7S/Og/Y2T0G/82yfX3sUdfZ/S7/xFXR6+TLhrs7KOfeFvMH/w+7997g785+N/4u4+ecHP5G2Qq53/1Db/+YI/0hzfEf/pfUvxLf/8nfu473OEOd7jD//eRS4cREh37VeSdHACCSTAgYeJ6ifjPnItS4dgSseKL4FTQc5QYQd1m2w5DQycFQsbbgBW0iyS2XwWOQhBFQN2umkcZIPQCFv+sEcxV6ZBB9AGH0MTb8NcJUETGor0NLD+jdD2ZAqjVZ2cXn1mBIaK4JVdfIP2R3w7UDhEiUUSCEBhxG/aF/suVu/38IwjIPmiM/c+PlvUo19sXDHa3XwBstbsNxASvfdxy+ihDxj671VMBSVEHHtYeGeXtXiGUXv/YAAAgAElEQVSBiPHPfHcm+gyVEH2fhNu2SiKrvA+/Oqk/b+905RntIsuRRRH7srIIiN6YWsi+8YmBxN5mSCN0UhL5YjG3lV+EVbV2JBaCjOxdN+wBi6kiCb4/rxb9GOojYQR9sOlv+8aKiFV9ICeCR4aIl4JUWIh9edVnZEjctjdx8YtxB/jbm7vKLPLzv0YK51GuJ3Gf9UG/nCA+P+azMaPoMxlRwPGNo9cV7Nn30U1PvCQ9Ac/jnx2pIsDR7Isx1LcgMFYNrYxYAjJALYeQAsGRRMG9i0BMbufQLVH1PiMgkaInnnUSiaEnRgK479bszyBqPidP8faKPlvcGMg++0kUfcZWRgayoaeOilQ4Hlx4jIKBiygJI9ERfmSuD+YlafLFQI9Ae7sAMAktoRMIIW7nXsQhieK2l3yCJ/Z9qiKfydLp23Z6IWkoUA4aUQCQ3pLKzPte1VHyOYFITfh83CsCrYoUfAEZeoIetfh8nEQEEsHJokMKUKbPVsUokbdEcWAsUUhkjAQReXBhsFGBl4jYlx9HQMfw+Vg4DhVR9M8zESNeS1T0CNHfhXD7bBF88SyI9A+Gz+7PbZ6fIHRfNSBznNC396e/z43M+b/Ye/MgW7L6vvNzllzufm/dWl+9pV93P3qHpgEDAgkNApnRSHhkCcmSDAobRoDM4Bjbo7FA9jiwIxSSCI2xIpBtEaPNEA4sNEIbSC0JgwQCCWh679fb21/tVXfPm5lnmT/y1vZevd7Vgpn6RlRUVS4nzzl5Tub3e36//P0UEusLkS8cRCLHIxHSkXpFrhyXgxDli8+VcvRuABrnUA5sUPR+Lj2ZtCgPCrvTS5mQ9EV1x/UcoBsKZgdFvr/Z1Zwo2x4VECeGPJCIiVUNL6j6FC8l0rtibsrJPRRyp8xr4UVxcTSnH2b8ta9x/7GQo8bga4v79ofn/pTw8pcZfNsH6f7PnyS97s3Yes7COlxee+QFrYtbX8ddvsR6XfFLbUFPKT76uo/xqTf9Pne1X8lvvXxI1guofu5XwexPXu28548fWeVn/uBhfv5PH+dy9zC59SEOcYhD/H8SArTw5K7MWEQ7edCY5MvcJoDbWIst3XC/y4qdEI/iPVysvyvjKZNQ1cUyZWXkOLKcTcJyOMQeInL8YoYHMlkIPys8RhbE0FMIMSjInWSXKBTbirqo3bXbgkhPiKYXxeu/cNv0SF+QJXdN0uB3ygFPNrGeeTxOOMqicHecWzOIiWjYrpWjsAJZeXXZckI1txMab4tF6TzKQHPLoPLttskJzWNS/sSV00+sB3vaL/aUBcV3V9tuqkbs76ttEaON42Vbm3gEY1kiELYQKKYg2XqXpQMQ5m5frwu/n3Ipdi0s23WZWduNFK2Mn7Rz+57K/b3vd39t973DYYUnn9C3S9ktnA2v33OE36mT31PaTsl+W9A5eionytwkaAf72rJ3POXCIYQjE7uJdbdLrgwnVr6JSBZ7FPo26Z7eyHeO9wCyIO0Z0W4NvYeJuLOTAB0i14Wr5p7rFfUR2Mm0snL7vu4KVX3F3PQTws1k/AgcgbAo3M49ApheswjniLbd1Ca7FK7IM5i5nTG2LdK3746e3EMxOX67Llf2v3RFDjQji2A8DkVbj7m+1J8sILh98+CKhgDQCwordrFA5HeeA3vv93Y9twV3cEWfbJdvUORC73tGOOG5XLWEmSfKi/Hm8QSyeKYYWfSjpLjf22JROU+Qu8l8LMa3kEU/68mzzVFMEumLZ5Ewbk8/bYt7MXkuUDx3d+a3wwtPJkIqIqUs831tMsIVzwRR9IRFkgmJEcUi0YLq7rNZbbv8KlOMGQcEuZu0TFJ4cO8uOHgBg8BSlwlTckS4R5xtI8i36+0xwmO9Q1g/yYnoCcx2b+2d1QfjRRFoo4//BlSqfO5lsGgsrrqwb3/p/l/DVhcZ3/qjIBX97/w55psZ1TGc3bz4gtYlf/hBAPTRs3yxXOKdN72XlzRuJlYxP33nv+art8cMI8noEU/05Gd3znPe839+5jQf/INH+NqFLr/7wDI//vF7OL+VXOtShzjEIQ5xiG9hCFcQMUPIthzZ/0rdlQSZ3CUmO3uv9f51rnABZJfgbmObmAi3/+W/LUSu5m1Xb3sKbncV7ITMbIuEvbjSErJN7ncJb4GSyHfOiNL9loVtbJOng66xTa2hILDbAtUDja7lyHJ+QCPEjrC6cudBbVVmQqx3et4jr24y2/25bRWQuMJVzgh0zoRgTa7y1Avg+0RRkDvCPWLooJp6tkPLXL1f7dDgoo+8Y2J6g5Gs7NybbQj8DgG9FtIDOkDs/L6iPOGuopPSHTQed2u+M1oOOMhcsXHbwrp97t4ydoT0Pso6GbeFbQ+YCEkOmhEFDrzd+64I153PAE+QOTLhyCfWu72ib/9SwHYbCwK+O0f2Y3sBpmjr/r3NoIgSuXere4radsKDvl166sEonqK8K8+2wjNWbt9WM1kgyoXbsalfNUbclXXY22f7Ia3bEbXXwkBWnvLZtr0IVYj2/WNuLxQOIQ9IoTU5QbpioWRbXAnvd3rLiEJcSVe4bdsrxu1T9fp2/zhckVriWeJFEWi1f/UhHvsPH2d5ZsRibrDV3W/QxGid4MKfMzr5Vs6c/hKfv3A3m1qzeNd3AdDZGoF74XKTmYcexErJX96wyYKI+XvX/eDOvqmozf906m382cugdzFGfPk3dvb9t3su89mHV/mJ157gD979aj7+9rvw3vNv/+g03j/1xDjEIQ5xiEN8a2GvMNq3hu8PIiIHw+GvSRafe4226/XMyr2mHPB7/7iS3O+1ABwkCa/F/J9PW3fp+MEU99lc60pqf7UUmgSrOxDbYnzvudJ53A5leqbtfLrjxAHH+D37nrqcp5akXCGIn/142b/94LHwzQd/xe8r/96Lp1Gwz/ha34q48tkkrhJcV+La1vVnjwMthDzVOJs8FQ64ZUY+fc0OeqoEuTtwYeqFxnPttRdFoIkg4BtbW1hlWDQGt0egRWc+y/CS5sy//QNq7/7fOfK/fJCP/Kcf4OuveB0Ao45G9i+9YHXJH3qA9WaFv66F/P0jb5mEzt3FW49/P3e/XIEXjP7iEUSyQZJbPvbl8/yd403e+eqjuEdPc4yEf/LtJ/nGpR5fOrv1gtXvEIc4xCEO8c2Ca79aLZInwlOMxZU5PT2p9ge6830zELoXTjB+6+CgFmcKsmt+hf9c+uiFOGfHtneANe35YVv6+heQ9j219eBvEi/kosf//+bDQRD+6S3C3ww4SIpduUXaXUvmNzeeuo4vWpj9+5bPAHDEa3xU39nuv/GnnPviFJfqhs//g5cSz53gff9tyN2//fN0aopgS5Gc/fILUgdvLdnDD7E+n6C85803/8RVx8yW5jh58+v40i0BW4+V0fd9mj95cIn6ygV+4vYmvX/6k3Te9Q42f/Ct/N21B5muhPzXr71wAvIQhzjEIQ7x7LC0tMR73vMeXv3qV/OGN7yBD33oQ+R5ftVxn//857n55pu544479v18/etff9bXHMkKqYxY1XMH7rdXvV2/FQjDwfibJdt/+/Bi9+64vwFaVDUvGtV6SngkmQyx4oWPD7dXTl75+/mWdyV6ss6T4Q3fwjNqL3Zboa9hVqrl6mmE9XPvibIfXXOf5emu+2zw3Oqonq2By3vaW5b64IW1jKm/hafgi/LUOL0y4BsrRTTGI2F7d4f3bH3mfjIl+OUfO8kv5v+QH77tvTxx4ibe9YcZS62AI+vw2OlPvyD1MGeeRCYjetLwKtrUo+aBx73xyJv4rdc7nBEMP/4Jbv2X7+Q//dmHWXzfj2Luv5fK+/8Z+qZbGP27f80753O+fG6Lc5vXHuSHOMQhDnGIvzm8733vo9lscvfdd/OJT3yCe+65h4985CNXHdftdjl16hT333//vp+77rrrqmOHlWfrzvb8cS1Sei1qoJ8u0yng5H63oIPcE9W+uI1/u7TXy4PblPjgGZfRraurtj1dTwnx3AXF3usFuac82hv042CaFV+l4J9dvwtgIKs4sf9Mt6f/Gvn+fti+908nQmO/GwBN4V5Qq9vTwnuitLCTBD478JBLwTHGsvQUrrZPUfwV17rS0mKvauv+a5SV4Uj09Hyv01Cs2SqGq8fildAU7ZwO0wP7uppvC+prtzf2yTO2HG011b5nQsUNDzzOyIBMhk9b3vPBdFq07aB2K7f/28QrcdDmIlCPKHJBuoP646Dn35VfFh9wjBMEVzxvl+ee6TPpuT1TX5RZ99j6gFZzjcDDiT050PyDf87onOT3XyV4cPXNvOa6GX78ddfzwTveTq9cpTSwHNmARwZnwabPux7DX/w5AF77ALzrt8GnB5f52tnXsTwd8vCpiP59XcbO8firvguyDIKA8LWvo/6zH0ZUqrzhM7+G8J7PPrz6vOt3iEMc4hCHeHa4//77eeihh/ipn/op6vU6i4uLvPvd7+aTn/wk7ooPs3u9HvV6/Rol7cfldsilI89cFDxTWCQDHz39gbAdAwLt5Q5lqOa7r+3Z5GBLyKC6e0wuC3e+ayEpSeql8U5i5b3kpDfl6bnSboQ3URx1EE3cS0HyYPf6Xuyvz/Y2DwSYIhH1HhgpyMLdK1gknYba87/GTkJmlyciZ6/g6KgWS5UWqzNF3wQYFhPFfCVBi2e+qq5wRD7lIEJXtle3R3tBNZc0u5bqaE9eN4roJCuzAeeP7pJdlV7pGnuteuxeq6kzGrog8wJHIstYUYRdh4Lk2j33Or6G5a5b06xN744dhZhEKi2OV347AigovyfqJI54T5Kk3BcXawcpkXzqpLuw/z7tJbt7Fxrme4KpridMHcPG/jI1176G1ZLqfMp8fVc8TYdjjgizcwcVgofj27kQHAdgZsPS6u6WOSwX8yzwe63v+8n1QpRQVtuBSeRudNcr0K8qrg6jMUl14QWBl0gcw4pE75kD4TUWXdqp3iceK/3Gzv+bU5rQOtpblsro6cXAZlPtm1MCqLohsR9f0XboljznZ0bkE5ft6kTM7X0KCOEYleW+eXswrt4fWYFF0nNXPxMrdkjV7IrHVqaYopg3FkUqivm0/XzZLn3sAnKvmNm0NPpF36pJt1wZ6mZQlWgnitQMk69S++Xdvtk7NmcTzeIooNtQnLnu6vo2r3jQjmNJHmsC/9yk1osi0L73tnleev2AU8Yia0d3tme/+1/xeD532xS3Nl7Bz33fLbz7ddfxU3/vTn7hpT/K8c0c7WB95AjP/snzqkP21b/C3H8fAB/7bkH90VWGv/R/HXhsWVd42dSr+LVvD/AWnlg4yvGlJ5CLRxFKMvqZnyRe+Rzlf/xOxEP380Nymc8+snoYLOQQhzjEIV5kPPjggywsLDA1NbWz7bbbbqPb7XL+/Pl9x3Y6HTY2Nnj729/Oq171Kr7v+76PT3/6YA+Nni+ThZLL8wGrMwFptJulByB3gqGLCgvDnnf+1Kh4cbtJ7pxYGiK3+6q95BsMXYnBqM1CEhBbSUBGLjVGaLbTl8pJLENlPc1RQtMUxHNbqg3LEuU9i6OAKN+/yr3ZvLYLm0fgpdhZsU7KkvaeCH1mQiasFPSqitRrBII8kBglEAiU308eBjq8ahVeTlqy1tYYJQgwE8HDTj8aJxjYiZASHhV4EAW5FRTiciuM2GppLs8W/ZrJAKkFpUqJjbmCrCU+2Il+2eUYaxzFqKJFgcyYF31KyjCtd8lnHuwRoi7m/NGQi8d3CdbGYlLkpUMgryB1zSwhmliZmrlCac30WO9YrASe+kRIOV+Q2VFZIqJ8xzq1bqqEV1iIBNBxJWIrmB4X/dJpKuqTcqfDlJkwndzHQqyXrdwZX6mW5NGuxBbA2rTm/PyuGHQI1tohg2pRpsYiPDwZneJCeB2BN6zpoAgX73dDoHspmB5L5vdEM/RGEmeORpRxNB6B98yPHJEf7xDhyF+djqggvWJnDG2T82amKOWCipFFbrRaEah/23oau9GERBdla1tEV2wNEzo1iYwcSVPsLKw0dc50uDvm0swx8CF9VS+SmXtBOIlRL3E4DQMXFm2eRGVUvrDmpcF+t2UvIBcaI4J91h8vJwJ+chMGLiJnrxgq6r9hqgiKeQwQTO5hJZM7/b290JF6TWQlY787rzMZUB42mU9C5oc1pIXYpdTyhLq9toVPIkAIerXttCG7+wJvd8Lcb6MXW5yAXMOlIwFrC8X9015QT4PJIpGgX5P4QDI91jvjdS9yEZDKaGcBaHv+GSXZspUitxr7E01I73bmNRTWMVsuxko3PQKdNlIWYndUlihbjAmHJ/Eh3guirCgzckW/b5ceeFM8ByslWqni+lKfY/URo0Dvm+1VUm4urTO1Z6o6JF4Wef+Y9NZWU1HesyBSy4Jiga0c4gUEXpJrSSeqYq96olzrXr0IWEtW+euVv+KlyQjbOAmA957+X97L/ddJLprX8oE3vwStiup8982zHPnO1/PAbCHm8p4jfuRTz6sO49/5FF4H9Kqee+9QDO68ifGnf5tf/JW/z68++itkV1jovr18K2fnUsRCzquXHia8eIbmm04xe8sy6RMrqN/4F8wP/iOyPcX3P/BHXOyMeWCp/7zqeIhDHOIQh3h26HQ6V1nFGo0GAFtb+wM41et1jh49yk//9E/zxS9+kfe+97184AMf4Itf/OJV5VpRuP4No4CVdogJ1MRhrSAN2lvGWrExrejWFa4SMpdoRlmJ4z2N94JGnHM0Toj3hHjOlECYKkEecjlrTSxiAiNDUIrQp5T8iOm8iwmhueWI+h4bSMpWISekII0lRgu2bBmfR5OkuLB03OOVR8kc7QXWBjTGu8SumYSAZ5sOMXEJuqW6RkXlbJOz0I1ZNyXiLMDkFi0mDMXKIq/XDlEW9GzA+iystyfuSqKgQnnsGdbAKUfUK9HMDbNJQCNThE7SC/UOHTRCkwuNJifGYyQYLTkzHyPx5JFhbbbgCNeFA24IB6xT3HdPIWQWkoDITvonEkzZiOOZJG2E+FJxXSjqee5owLCZFlZDB0p4hNwO+y+wCh6aK9FpVZkb7fbfVi1gHKid1XbXCJkxEcIV91F7qOqc6VJKReUkKqJiM0DglGDQdJTyHKMUAkdaLSw4JStIKwG9eIqpVKO8QAhPLfPEJuAi0zgt2GpLLs9EdG2Jy76C9pLASM4HJ7h3/hhn62V6LiLxIQEOJySduMQj15c4EQ1p6oLrVM2IlsswcUpFJHjpGckysU9YqyusKgTUqKHwcmLZjAR5aXeRYLqT0+i6ncWEIxtwbKOPxJG4QiQJsbuAMYoFDdujmhVWuG2SOqRYYNBe4EVBTBUOp2B1QdOraDZthZ72RWJlPNlErESppzo2zPV7aARWCfJQEfjt5M7bAkwgbTHuExfSSiSpCwitRSUVhi5gIy0z9BEJAeWxZ3rTIo3HyaJeTu5W+vzxiKW5kPUZi5cQeEdsJeVxSGusuK4f4iSMtaJjy3ivUF5QUrvjECCpCMZ7jKkySjBK4LQnD4u5FJKwOVPisaNl8qBY+libreG0xHpNTzbJJt8VVnPHkaHj2KgQCHY7X6EofqTKGPmQs2byiY+AnlFI5ymPIZU5jUxSTsOdc7fvVRYIBrXC4nRsEFAyCi8VVhR50U4kAhcqtNZEMiAPJUiJVQLD3kUjwUo7JA8leQiVTE8WbzxDylwMjmEnadW12xVBAkHJjZlJNFEyScchCwtcvyJJ3cTebDXNNCFJox2Xx2MDjXaCkrQIYTHKceFEiRoCMfFQ6Jc153yL05WjOBQVCydJaXuYZUDJjpDeUZMpamKQaacBGkenqbF+16VZWRhMaaqMWJkNwHv6hJzX13MpOE7FSFr5wS68O2PhKfe+QPjDi79HKDXf3x9gm9cBYM+dhU7Ol28WvHr6jdw4Xdl3zv/6HdfzX+54G1ZCeUswPPdniGTzOV3f9ftkf/EFjHecnxG0Es173/gY52cFP/CpZX7/nv+bf/P1D2InE9r3O7zsP/8KAPe+JEQljuZrx7yv9Se887vmyWdaLF98KSpdZeolPRqPPcCtvUt85tDN8RCHOMQh/tax7c0gxP51yne84x187GMf49ZbbyUMQ77ne76HN7/5zXzqU1cvAFrEvtxT2nkCW/wtgV48sUDZiFkFS415HtWzgMDFgvkkJKSwWChZrBuv2woVm+5E6KsYQzetkWUlGlmE3HGrK1z/pvQW1TzHacn8hiW1dbyXpKrMsB0RlQtSo63k2EZMYAVeZ/TjEKMFq6pOLy1TTT1JVLj5mCDCeMUTwR1cCI+hEJRlgCpBeyola7QYuYCuh4thwFZUI3OavteYYZskqeysug9FmZ6s4rxgHDr6VckTlZAnpg3Ww72tFl0l6VcCukGNyFYZ1svoPET6ItLlMIDQwOnwZk4HtyBxBDrHhDCMQsayYK8RPR6fdnTLAhNIStayphoMfIQch8xQojT0zKz2wHmySPHV2QWerLbo1hRxpAg8zI8lToWcGnhm8hHtDMBjo8IBbyuvovEI4cizMovDMRWbUyKlVxestRTSCSSe2EkMCus0j9ZncEJQyxVSwqhaiIKBr5KYaW5fr+EFVAbQ7FgCUyTwjeWQrXKIkCEhFZQrT8aYoGUV02PJGT9D4ltFmuU4ZXkqmsQfFIx14Up3tjVFnzbhcMhQhgxdSCMxaCkg7FK3MQ08c+EIEMRklP2YQFoCkWJiUeSDwrM6rSiXMkrKcEtPob0gFxEJVZBgwon1a4/pOFcemYRFPjBhGW278frCWpKFkiePxig8W7rCmIAs1ggpyVyDwAuiTBDmoKWlJYY4CUrknIkX2dAzBIFjds1w4+oG2oCQliS2NLwnwhLLFK8dQT5CCEs9kygsTlqkF0TO4gVkaC4mMyQuIPGalD5JuU/J9As3TC12kxAbhZWFFdAo6Jclmy3FRVlDhYZK2OFSKFEelo40KbmQGdVBO8EgDOirgLrZ4gY35uV6SNlK5odjorQQaTPDnAqFyLAIBl4zvW45JQYcqw8Y+pCx15hQkCoYiTKX3CImVOSBYBgFeAq3VYCKndwWEaJ9hSV9nL6sAXDhaMjaHJzPawgcVhdtagwE1XVFnFj0GAYhVNIAIQ0GgcBNrEUC7SSzBoxQrC7O8ej1DR6tVejEMYH2aAFKOkoi4/xixFdnbuV0dAoQlEd2klxb0C8pNBn5RLiGBoaNmHtnb2BTN1nJW5hA7rhS9mSEcoJpu0mQSdzEnNnIHbXuFPcGN9A3MXm/gUOijGF22GO+n3CqM6RuE2oqZzFOqJcGDGPHRlhhCkcsDKEN6FQVXzr2EpbtMZ6cmuFkpc+CHlJOBcrllPyYGhsshCOOqT7KO0oGWpNvCFfyCpEfI5i4pYeSbhjTTjWbseNM25J7SZRXmRkoWuk3gUB7+43/iD+65Z9ya5bvWNDyL/0ZAE8cLfHDL73tqnPalZBXvuk19KuaY2vwm+U20ZOfeU7Xz77yJbAW6Sx/fb3gsYZnzrepndJUUsvP/2GDv1r5Iv/P2d/CJwnJz72V6v2GyiDid04VwvG3RcRdY8irs/zaK/vkT15i/eQHaB1dQYSSf7z8Zf700TXMM8yPc4hDHOIQh3j+mJqauspS1u12d/Y9HRYXF1ldvXpxrT4OuIkhC7JH4HOM9ySBY1SSJFOSsVI4FGo0S2aP8KC4hW8cn6Ezp5meHtKKhtSkAQTOQ6Ylj09V8IFlSI2ubCIlDIlQSYWjjLghHlCSBplD1FXkFO46s2FKLTQ4QpYGC1TqEVN5iUY0htjS1Z4wsZhRyFrYouwE2oQ4X7iKjRGcbxm61WHhtrbVQqUBK3KGNVvHm5AGcIM1tLKIzGv6kUDmVcQkjcBW1TLwZbyXVETGjMm5ENzA+eAkoR0Bjqbt8uh8wJaP6aoSS7Uyl4MGEkGvFdGLSjw5niUcG3qh59xCzoVWiXSzxsnVjR03pxtHnlCM8NKQywiBpzPh+08sBvQmQTkyYrquhHCS24eXiMaevq/gfERAipSCe7geFxuaskeYW8qpZz05gql4jg4sU32QrkjO2xSKB2brbNQVqQ7AK5qpph1vUneCoDkmCwIyGaO8Q2M4w0lWzSxr4yaPpfNIq9iKoK8gSBw2L7Oe18mJKPkB2lqUt0y7VSQGD6z5kC2hkWS4zGOEo1MpvqvyZYe2AZvBLM5LpsYlwFOVm1TNGGUtzeGQNAQrPUJbyiLh5qWcxmjEkdEArwKqwTozaVZYDIWgYt2+6JXjUkHA87DYMqcz5uOEYS0iUYVotEj+2s+zEIe8Qg6xQiOl4GzNcSmXeJngvWBhlKOdoakzSpXCYnFZVOnGku4RC1JgBHRaAQpIVYNgc46NpIFHoiVo77iQtsmt5ny8wPmZOTptCw4iDPVRgplLcK2MAI8Sgp7yDIMx8xuKI2lhMRmogFQrLpwUrE3pHddXBwxCxSiUhGXD6ZsEG+0R09kKnpSSMuReMsxCek6QBoJIWpKSoIQmESFGFsFlzs8N6RzzzOqAufqIdjBgyU4xpIrOFUEmmNVDynbAdH+DNBUkeczFRsxs0qOUiiJaobLUrWWkPY9HAlPOWA4Up2cW2aiECKl5mJez5G6i5TYZVweAAeExWiFlEVHDxIKl+WlkpU0qGpyLTvLYiYhMKbyJGPjr6JcNTWOohgYhoZwWbtkKx1QnBeFZ9lWMEDgE3RjOx5L1mkFqRz8u0YmqjIKABxYiIpGhagbd7DBz/DJTcxnfMDey6grBVB7HzHYUjb4h9CnjkiH0GSu2idUC6SGNBZGIaCQBTjqeCJvMDB2ZU3zpZJsVKsyGY+LpDOkFxmtaYshZd4ShnWaoaqSmhZEeKRztgaCaSWYTRzlNaUUZ6+2QNhlrUyBtBEJQ8f3CkuoVOosJrSYSnmhNkAORMaS5RmUQDSTOQ+wteeBp2DGzccid62U8YJXBG0EsoWQDbhYpYlynOlKnLYEAACAASURBVDDMdixOC0blEgw8te43QZh9KSTNzTN4qbGN6wDIvvg5Lk9BFl3PK48dHE3xR+86ymplhuNrnvtoED35h8/p+slv/BoAg0DzR3fWifKA31h+gFuOblB9xZjGk5v8q98V/JdHfoXVX/6XuOUNrBc4ZXmwnRG2cm48q/hEK2JttMK9L28xigSdL9xH8p0/Q/O6Hree/gp+c4N7LnaeUx0PcYhDHOIQzx633347Kysr+0TWfffdR7vd5tixY/uO/fVf/3XuvvvufdueeOKJq44DuK7jeDICrXrIaI016XBDKOkh362XKU8NcK7EbXqFI7qD9Yrc1mgbg/QwJVOqmSB2niw05NKwMZNzftpg0DSSHOcgokOuoNnvU0o8KnJUE4FIJeUNzfTY70SzM8TINOSxKctyZMhDSWwNeRLickcpEbQwvHk4pDbMibOChDsFeSxJQkdsBxzrrZDkGjn25EKxpqYoS01DjBlQIpeOi1PQr/WokCPLCYn2PHykjMRSjVMuLRr6XtHRMZemQhaN5WV5h6SsyAUMShY7sWBaA3eJJe5rnELkIZHxNIaGs7OOpVpEaaypGAnCM+VypskQwjOKPRkRY5XjgxxtQXqBco4czRm3yGqwSJxpgoFDum3rpEe6jDsHT1LLO4SkdCWkBkr9jJWgyldjzfIwRnQdS1M5W8qTSUleNpxrxxB5lsswVR4RhTk13acnyzgd8OV6m/WgxGw2JBExI8qU85TA5WRG0Q0E55WkvemobJQY5GXSrsAIw2oTOlExjurKckplGOno5CF/Xg+4OD1E4dGJR4+gMvYczTeojw2pCGk4waXxIv1YslWLWOj0mBqOGOSaFV+lMnIkWR0jJVoZTowlU+OQyCUE3tGVDTbMItFwEScgtg5nFRu1DZZnE1oStnyJXEHgYJMGoZdo52h0U9azIzQ8hFZglMUDG4FGCgNxytAL+kJRH4bEgacSGvoELNUU/SAjizx1M6ac5rQzuHgiJGqOKdeHiDzgTDYPOOLQMNfrc9bM007rhLJKWhKMhWZRDrl1uIHDIZ1BBpIGEU/GihUZ8Yh+OaPmxBVXwF1hj5uspaxLCKepDQIGZctWI8OoHCUEWyHYUFAyjkqYEdVyVODIZEAiJfcvlGi2MtJY4GXIEM20H7PoUy62JNeFazREinIGYSWjjQCdzDKdJmStMZFLyZViSU7hbQ5eseSaxJvF95aRFcg4Is40eZxTGkApiblYPsZD8ghn8mMc91ts1qpcrjew1Yw4WMIoR1lmTJNTj3JqQUaZDK8lo0qJQV2Rh5KvxUd4MoqxaZlytIGLQlolwbRKyXxIJDyZK3IAa1ckcm8Oc7zzJKFkEBVurrlztCtDZitdEinJpYA8oOF6HIlX+cqiYphoOC/ITRsvEpLyKo/Gx7kYzhPkQBJxpFcmzGPqY0uYKQKbEghFFsDFsMQgUGyEIbZboXK5xamO5vpOD5drulqhc4VFMbM5pjpOmepJAi9Zj5tcaoVsVQVSeGwmUNJBZrHew8gTzmU06wY5muYyM2QLOaMpiRAGW9oi0ENme2XCXGKHAcpbfLeM7gToDMQgxpmI16z2uNRa4LPzR7hnccRSo8wgtlQHFplLGuMamSlz2QcEeUCUCnrVPk4H9KKI3tMED3nRYqeKy1/HtG8FHePTlPThx/nG9YIbZ96IukZY3WY5YHzzK5nuQeIty8tfRoyfnQAyX/sL7JknGEeCf/a2V+HCIf9+/RyXa7ey9m2/yVcfO8W5O05w28OGn/lYjy91/pL+42W+eLviZe234aVna9FwbMnxz5dPcOt4wKrf4nN3CPIv/HdGi99L7XWnENbyw+c+z92n116I7jrEIQ5xiEM8A9x6663ceeedfPjDH6bf73PhwgV++Zd/mR/7sR9DCMFb3vIWvvKVrwCQpikf+tCHeOihh8iyjN/7vd/jC1/4Aj/yIz9yVbmZElRyT0bxfdK06xPbnGbfEBqFcHUu1aqMtSAUhqN0yZ2CLEDgqZk+ARmBE2w1JFnTEYd9HpuNeHhuHosgC4bcfeM0a7MReVWQlENGM4CWxAamBwE9VcFQfKs1NepzTK0yVpZU5ozLikFZ0BhZukpSzz1/py8JrWaxZzm21cehebRyimqgmK0bpkWHrJYxb9a5qbtCPLYEIscpyVhHLPbWWKqVWJuyhD6naZaZW/EcX4LpfsYYzVqYI0XGqDlmU0ec3BhRX4XqsiYmB+EYxWO0gzQLqW31uL6zzrddeJyF8Qbzqsti2GM9gCROsUKQIVmvaAYlQVDyJLOG2ZplpSRZlS1aNmfB9/BWEVjDuWSW3Fbo6GnWGnNE84J6lKC9Zd3VeCI9yZfzO0jL55hSnSLoSFlxYabGxfIs1lYIUsW50jxbeo72IKU+CslNmwFllLdYG2BDRa+qaIQ53kOZDKUlJhQcjxIW9Ca3R+fR3iAyzQU9Q1c2cTZgteZwAsp5hlyC9SBCS4uJLHWgWjb0wpDmyDLdH7OpNS/ZXGaUOMIkIU1rrMctklKAsBodxEQepkaLbLljVJIc6zVWSvq6hMpC6kOPNr4whwhB5DTHTc5NdoyPYaNSI7NVvh7cRL9kObZqOZIabr2YcMulLdYaGiMhj8aUkzHlcY8GcMdKRs2MaCddltMmj5dmyInoxY409nihsQJC55k2hno+xFrBX82U+av6Cc62Q0JSpIe+tzhj6I5PsLha49FWlT8+ejObpRgvPUZ6pnNDqTRiXm1SNoo4jcgkVG2Gd5KSt6QIUiWQIZDHWGXxwpGIiHai8OsSUke0Ca1kq/geMFdoD0YU6i3XgqTuONJzOOGpjaG3mBMYjxYOqzzLTYkIAzbCOY6ajAW1zFvsaW50GxzPLdMdj3GSVFiEzDGioNahkUQeRtMgQsFSdJSH3PXYYUg9UbRXWpSWIkahol8K6JbrrMWChsqQ0iBNwI29Ad9x7kF6WyFPxiV6sUGVR6yxgPKeuhjy8ugspjSmJ4oAPiIThMOcS34aU/JEZFS7MKSKReBCQy8UnKtWyXVAt6Uol3PK2pARcF4tkHtFvRNx41LOclvTqSs8nrGV3Nc8wenWcZTLCYNV4izmf9jMqHoo+ZzLgzqXg4C5HgQm4eTqmHic4ITCiZi+r9GSxYLOfdGNrIlFjm5JdLfMKzYusv3FbqxSYpVxXXqB28TDbEYNLiYzVJM1HIIZl9Mq5wTWoHLFzNBRNSO8EBjtcKoI5uFzSZjBKqDWDX6syFyDS/4EK7QxPqQ8cmTakpT6ZFGfU2KNYVDaeR904xomluSxZ0STLbsAFzwjq4mCDbS3tIZjZkeGNa3ZtCElPWBhuEkWbmKlIpUxYaPLbatnOSfaXJx56nfbiyPQbIa4/DXM7MsAyO+/F5k7Hjgp+KE73vKUp972htcDoJKMP7alZxfNMU/o/MI/xwNfnz1B7+g3eH0/457R6/mB0ffyfV95gvtv/3bqq46H3vRa2onn2z9XuDss/t1/wGvu7SCt5BtHNcILvuOWf8LPrjje2oG77yqiaz38yV8ifevPUjmS8r1nvsSfP7yEsS9sgrxDHOIQhzjEtfGRj3yEwWDAm970Jt7xjnfwhje8gfe85z0AnDlzhtGoiGr2rne9i7e97W28733v49WvfjW/+qu/ykc/+lFe+tKXXlXmZjmjYXLazvGyNMMEEonnYlWTrWmqKymqdIlzzS02Ik8Vg1Al8mDiNjaU6C1gHNBYbRKsz+BdjBq1MTLkfKPFKLQIU+Zmk7EhWzgt2HA1NoI6WSR5vH0U4YvVbOcF87KHjsYo5wkdHB8NUTZjqVbFSciVRuPpK8kgL5FaxaVak8XKJvPOUhsFdMwin7xzhmrrLMeCDTbLjn5jDW0NNhVcLM8SeE0qNLkv8/WZKQYqZqRCVK65Z3Ge1VIEyhFbyyvOb+KGC8ymjmoC5XzEkXKX1sR9rxMpOrFgJZSURzkyNGRxEdb6Jecl892My7Uaq+Uy/fqAM8cEpcAypw0X3Ax6HKLyEC88zTzntmQVNsrITcddl1YIDKRpxECEPBwcp54PaKYDokEdM445uW5YVopYJHSlZKs2pO0eZ9XP0AxS4pLh5LrhjgtjpgcXcWLA0fUBlaHlUluQxDHDWo08hMB7jFVEKid2gl5L4GtjkkBhpWQsKzQaCZHISWWIKjkemZ5jrAp3U+UFuZCcchlZDLPNHFm2qJLmfKtBZexp5kOq+YiBUKiyxRIwDMtcbNYZRTUyG1BlSK0PzVFGLiyjMMflDeJRzKnLHhcOUN4wlpJLJUGDBCEE4zyguZbwevEkK6pOfERSaeRsljzTSYoSnnNtQSnoo4YxxoWkK4p4y1Ot5QTk6DBlJuuQe8/laonLQeHqlvgSl9UJGpWcjSOOU+k6C0sJy1qzVJvjBjLUoIFBoI2nG5aYiweEocarTS40hhxrrzM9NWTVl3k8DNloQKx6OCkJMktps0xUHuOBXCmioaHaUZhMUR9tETiFk46buw+ynE2xHjbJTIzG0rpf8Xh0PYHIUHlGLiOGos5YBjR7ihkc0x0oOcfxjseakLGYpmQs9QSaJickJxIZIQbvFJlwVHIolwwbUtGwfYQ3mKFCWc8N8TL6xCoqhTxyaOl4abjCVDUrItN4TacSEi1L5jd6HB+sMgpzbAg1HOdFi2NiSCnLiH1KJWtSFQNkGlDqOcbaE1S7dOSItUDSCyc+q5sK1bXU/Yg73DLz/VWOdbsELiNXMNZDvJeYxBCtC06QIKVHVBzDIGJDl3kknCYkZ0alTFlLmk4hkxLX9YrgLcJYjl1eRw0VNyyPSBLFUFtqzjMWhQtyOZfklDBeIY1HqJSaVfTCgEslw+cXIwSGkSyxrma5pbfO/KjPSjNgqRlwYjUjTDwCw3w+5tbpS9QY01XzaBxzuoPSjq1GSlA+S7/ax08CaCqKiLAuABF6ooqhZHLKucEbScXnTLOKlpaZrRS1CeCRMsVKSdCzOxFDtXLEKqdWT6hEOeuR4cnaiMpsSDvss7g+4IZHDTN+yCCWNMpD0mqXR5vrJMog84CeriKdZsH3OeLXuUlvMI6fWoK98OnkD0DlL38WkQ3IrnsTAPnXvoqVkMyWuGW2/ZTnTt9+K1vA7IbnnKgQPvEHpDf/4DO67vgT/xtcKhwevnKyBm6FO5bv4tvkI3xn/iif9bfzn6d+iE/feT3/x/yIz/6Pq2z2z/Djn3Pc8B8+znd/9wp3j4/z2eNlXkcOd3+G5Pv/Df/uC+/jR+dfxyOLZ6je/cec+Yf/iOu/6y6Gv/kQ3/n4f+erF+7gNdc9/bcPhzjEIQ5xiOePubk5PvrRjx647/Tp0zt/Syl5//vfz/vf//6nLXOtIrldZVjggqqROI31BuUcKwEIZ1EyJw082cDTZpVXugHaGgIyLohp+jLjxo2UUh2iQDC9EnLDcJ3TUc7p1gn6dKlax6OR5yUpOB9z2s+zoHukTcUTsxlRYrjFFBmXrPSA5diyYHNOc8lV2BSzpKHlobkac3nAbeYcpXxIVg1xoya9sMRKKKmzAp0y590cR5c3EX5AGgh6keGSNoyN47w8ShyOGEYRwoVM94pQ68OSYlgWZGPYqjq2Ik0to7BEEOGJGWQBUhlm7IDNSomjPQcSIpFxvO/oCoGUmtlwHeM9VeG4sWeobKVErCJlm2NiREXAcl6llmxw6vKYcdglmXdseE1FG2a6jsYgJDcjSnJMe3PIwniDraBEXzqMchzd9IzrgjQMOB5kTGeGTtBiOZJYp7hlvcP9pQrj6jTzW5uMJKAtyTjk1LDPjDXUY8nL1xOqpRQTWDYaZaZXUyIhSGQd4SVnogYjZZnCMzXTYz2fJRRjhBd4pxnIkLpPmM576FKOSRtIm7MWKBbXHelJzaW0QmQyVkUTSLAovPeEGKZ1F6dGrNGgbUZoZxkjiKN1bKXPpp3BM0D4Md+hThOFmpV5D+UhNpA8GB7ja3HEbOkS8ynIoUdGORdiz3dcfpSTm3kRPZSAkreU5IB40zCcFgxsm75LaJmEUanJhmxwvlFBVxJal3tUVM6DpRMkokLfZYxFgqhlGAvLZYmvSqZTTZjUaQWbBLnk1MaY6zuKzbFECk374hapzvi2XHC+XcfEIZnRtPyAKIEjy4LpXsJ6o8/1a/fSW5BsRZJoLEilpNoLyZQikYK+12QyQVp4vHyEubUOTghSH/CEipivZpyTFVoza7z+Yh85yrjc9gxlRJmQoY9oiC1mI1heb7OpFVkGW3qazXiVWZexHjnOExFZybk4prSacnLVELZAC0GWNjD9jOWgRiPM0cIQRglbJUX2ZIDMcpyMWY+bLGQbxHJItWzwXgOeVi+hZGJGYR3rDEYWwXBCGxCT0hZDblCnuTcPsFpyuRQx0zGstsDkRWIDkQsqJUMtGzM2Gh9EhOEmMRGtkUd4S2oqaJFSGeWsRx7rHIH3WAQpilwIvJVsVOtUwgG3n++yOhyz0Q6pVDzBMCUYCDaJWB9KKpWM36of5frKRZazBRbNkNQJWq5D4CcRO+N1xmSQjdEqgMSxFsXMDDrMjFN0ZLkUWULnkMqyNmXobhqSskJ4y8KmQwUeFVh8qYqepDEZaEW3OkKZKoGz5PgisbXVPNQ4zjFzgWqc4nPPpm5QFRY1TImlIA0kU/k642FIL25gUkcQZUjpcVYgjOdSeY6k1Kcd9AmkY+wCOgqsF6w2msz1ErLE01eODE0qI2Lh8MKhM0/P5LTGGRVlKYuc8DFLiAIhaD1NzIoXxYJmZl+GfcMHyE68EYDuX36BxxbghtoNT3uunJ3FhpLjax41EDyx/CXInz6Lu+xf4pE/+SqjSXqYJ0+d4V9cmOUn9R9yTKxzsrfGT/bu5vfKP8kxscwHN2dYXqnx5EsifuHHAO+59wsnUGtNTrc9omTJ/uJuqje9maX6y/n5pQe5544pjq45Pvw77+bzb3orYcPwI2f+lLsfOYzmeIhDHOIQ38rIFfRkTJcqS6LGpXiWy+VZSrlkbCSRMLxEXkbhaC7lzF4qglAcTy/jJKyXYT0ssSJiSi7niB8SpdBILXWzzvHBJV6ztsSN8UWm5IBcerpjz+WwCh6UU/SjEYQZHsHFmuRM1ZAEntLYoDKLX4uojTICMso6pxV0GHclZ+UxcgKSoE6QexAZo9CR6JRelLPoBsQGlmsGXBnnJReU5Bv1nDRIecnKJm98PEN5CJ2lF5SJfUZsc5LYIrSn6ytYlSF0n1FlwFBGZAQooXACluMGFZdwV7aGCOtU10MaDIjVEBVkJD5EmJDYGWyY0BIjvBPgPdOyx/JGFaPH1NKMblZBZYJ2Fzqx4/4FSyhyjucXCcIlOv8ve+cdb+lV1vvvKu/77nr6zJk+mfRCEkggCCQSghikiaA0EbmiInIRuChVpQmBiAVQKQKK1IAXg7kJLZQUSIX0OpnJ9DNnTj+7vWWV+8fa+5wzfRIgIMwvn89kZu/V235+63nW8ww22GTrNCNDo96iP/dEhaLZ3yZuK/TWOo28H2k9kfGsL+Y4yU2xveoxOpDfTEpGOzCYOpzQ7OEYVmQZJpWUO5JWYzmm0JTbHrI+RscL7inHTFenqLoWnWiA0WiOiVJG5DxDTU9Kwrr0QU4o78SMNLCihPASQ0zD18hsQieNiZznuGyeJ07uQkjB/DJoDlvmleeBkqFVnubYyg1IPJP0MxSPgZQIDKPM0y86xL5FWY5z57KEVXsceVwgCxhyTVzhmfT9NHyVhrZ0jOU4PU67UcYj6BDinjnnac0NIDyk0hEVIfZaRyc0nSayLYbJQzQpAcp3/ZG6oLlJkga5VKimZkttOTtqQwzmDdbZGarWMDprMKlAaMdg1Gaq2mK2lDEyr9B2CCMirIIMTcV5+qcEk1HMCXOb0bpNKQ0hELIoo1mfAl/CuArGKkYrKdrAwI6ENa2dtOuTZGWNsJJUwp6S5JSJaajO0ejvkKkK0kI1tRTes2GzxZQ9O0YMHe2YiRxWgvAF66cKVm93DOw23KuG2OFWYz3krT7mfI21Wwdxu/uYiyyzVCmImKpIxqJBvq5Po28iYndRIfOKOM3xQtAYbqL1JCbpsLFqGZND7GytQOeBaLWkZkc5RToDQlKXKatmPbpTEKt5JlTMQEtjtAADJeNxQEtFNGU/WrTZ7hxWepSDyHh+Zc80547NU2jLqtzTQdCWUMqyENDeaAySxGco2cCV50ljh2pKlpkOq8U8CZbRnQ1qjZSVfp4nsQs30KEkC7bK5Swfy5FWIpRlfbSHIdFimWozqJu0hWBcJkjr6G86qj6DWoe6bDIXRxgnmIkcz5q9n+PEFOCZLQs6UcIskpaIyLXCyJzZgUnGah02qTJS0nVxL7BCo62kGfXhhacRV8iFpLCapC0wKPZ0agztEkgnqcgppIfEW1Y/6DnzQUeWTCOMDeEDpGe2VCeTMVZI9uh+tCzoKzI8cN+ACk5UXBW0pJp2ibL3LN/use0QAxLhkcKjuxYRhXYU4ufgDVp24nNx5/45CIFrt9CbH+Su9YILuhq1fbF7PuWKu8e5etMUncLhVixjwx7P+LKYq/KYeNt3D1vnvd98B6u2SHb39TOXJGxgmJdzHXdmT2Lq2hPY8rUhHvz6cuS3qnw8uojTO5u4qvY8Vt91LHcs1+x4nKM2n/KWsfsBmF/uIHeYjz6X8vlvYq2YhYENGAnn3JHyV/d+gK8+sY/KbErjuqsojpo5HsVRHMVR/I+F84oZ+slEBAhU12WbijxREX6A1+5JOW3TPNZojHREnXFa/W4hWloeSR4cCl4QhfEMt3JqZPTbJkOdBnVyls1mxA1oo5m3HnSHxBtM7Nmwq8BbiUPQEACCQipc4Vm1o4PxAu0tMs4YcG1KLmdnChudZXc5ZmooJSZjvNZmVmjmXIKNciLhQEHi4Ky5GZyHjS5iZFvOfHmGwahNknsUFjwIF+FNzEDWou7aqLka/btKjKZNllV3EOuUybLovrcaYrCpiUWBxuCR1BNNWo7YPlxgUonzmpats6xhAE8eOaQFbRwFBmkceIkTFvAMtjPOfcAzMqZxUhDPhNhT9fpuisjiJEiZ4SMotGRZNoZWnsfEu1k3lyHbGt2KQmBj71A4qqlBGM+8VhghyHyZ1NSw2lKROSdOz3Bi22B9h9m5EvGMCbGmBAzmk9y33qDnLSMzhnntEMLRJ1OMCiZWfc3gkVLJlHZiMCqjKjKk8LSVpi1LlFPIVYjBNFrMEDlDSSl83I9TngktcHPh2cXIbE6rndLRwQOhKDSlTjegtPNEtsmeWod2VGa6UkVKR+4FEQXklsnJOjOyhAQiI5gowYQcYKsbxDpJyeSUrEEA9dxjfXBm09QO6aeZSBqkpQ4rOy2M9Bgh0d6gneCUTRmlDLyVWCGRzSqpj5gcyDAoaq6BkhlKWJz2xMoihKdQnkJoIhynNifpn2hQbqVIB5GBqYoks1XW2p1UdYe81EemFbOJxSBJlSYOodfZnVSInSNux1REjhOOxLWRWKQP0fZkbY5q6pBRTh5Z2mWYr2gKPFIoatKTiYimCDHcpIO8NodWOZHxxB3Bil2GsamCuFUhMjDvKgyRo1PJjjgjtTEGEFHKeOyYFhKT1+lQJXURWni0sNRpI6XBmrBOhPfsqWRQT8kBJwQr9+TMlHL6+3LOtFuY1oY063Bc835UYRlJDU1KNGxCUghaqp+peJC2KlMI0GqSXE0SOUPdFQg8sdcMtCQjnQ7KeqJcYqSgJeOuB01HhYx17RkGyxPBzE+E2I9D48Eh0VgMmdGstZPE8xnVLEcXUJl3JLlDG4cysLN/Fq8bSEKfV/oGc3WoUID3tGUNqSxTJU3hLA5Jx8ckbQk2oSYt08M5O1fBThGzJykQFGwcyOhXbYSHqURQq6Sc6HaSS00lGWeZnqNWahMnObuHM+6pSFrdINlGSlJRQnrBiXIz2yqWLZVwRtcKRzl3rPdztGJLRyYo78KedQnb9ABeAdITG4eRsHlA0hAVOkJQkh20C+uxkBEdykwlghE5h1ImBK7GY3FYAclheMIj5iSkh+zWW5Des2Wt57QTnrnf95+5aTvP+9RNvP1r9/GGS+/ieZ+6iRtPOo91E57NKx3NbRWiTV8/dCU2Y+M1t+EkDNgSd6yp8cbmFh7cvAz139vwXlJ/3f9m2bkR+XRE49p+/k29n0gYttUvpGb7+dfHCUwVdm2qE7kSDywXeCtQd20nvuVfmR45h9f4q9l43BCPuzPjj078E756hqRVgpfc9xVu3HrUm+NRHMVRHMX/VJzQmiMrBAMPaipNH8IXe49B4I1A4am1DcoIJqOcluqg8ybFfInChzcYGocS4UdY2hAEORawvDbOsXoXUnjKHUuBIPcOVXhObk7TpzOq2mCLOpmssLkisT7CIWhHFoHHeSi8xAqPB5S0ZMojEAxPZzQTcEKyvr2HRz04xdCYJLVVVhYNpPPoAqR3VFOL8FDaE1E42Q0ACxUBG6ZS1k236adDnCb4uMWjJuZYNm3wApalLYSEWpSjcGwvK6SD2JQgl6zMQ8ytmdgzXoHZqMRYqcomUWfWRZSloCxhRGe0ogLpPKKp+GFWw7gSAhj086wTM8QSUhkzJwfAS6yAVDkSaXBSEitLJW6Rxw4nLbm0DE/OMq8ETZ9wU91ie3G7vGf17pwkdUwkNoScLmIsish7pPe0vGWyJLk/EUx1BFFHEptgklS3HVa0DcmcZXDMYyc6pNFuaq6Jk5DrEPhXEFzlZ1ojDDjhSVJJRyaMxUP8sFKlb84TSUcsHFp4LJqk7ZB5gl8iv3lgtpmzSxjKc5blNFmrp0FCrjSltEXsHXPRMFpLZBWa/Q0sjmU7I0Srw65SIMT1rMnmOuwpF8xIj/Ee232+FGWOoUlP5jSF0ewsR8zHBtENbQ6wM6lzT71MREHic6QH6SWR8zxQDwHHh6IGUeFZrBXJZwAAIABJREFUvUuivEX4cG3RlpK2LmEl+EKgjSPOHAOTbRwOh8d7hRdQSwVJ7piJijB2GAoVPP0BIByF9Nzbn7AdyW43hPGSqsyR3jOvLR0V2pwryFXOsqngckeJglpuyWQNIosVnrhZo9wGVXikC3H6YgylbiBtgGrT4QvHvCsBglbkUQaMkyzfVtAqpeys5oihSWI7znDboC3gJBpDqi1GGxqqSiE0s0kVsRDtC6T19MI3ljJPYjxCGRqmoDbVYWDOIj0Mz0+QdMCahFlZx4WY8xglMApybdjQGqeUmuCBkxCg3KE4b2oXJ++axQPzso+WimhHINBUc1AOMl3HO01/2xAVET1ffs6Bc5JcFzSkZ9YLVoxZ1u1KWT5hKBWuS1AECXkI7kyIryeARBbEkUEIyEVEXASNku1qk5z0SFfQl3lKWJyQGBHRFhWMc3hrWbWtINIWC/iOxAuLjnOMclSTWZRwWCVoVSxTpTrTqs6WygAIKETwVKl8TJ0WsuOZjQQz2tEUgaCtnTCMlw0TCewQhrttQaEsu8qW6dgxOOtYu90yH0n6WgVSeAZlh0YS9kJOgkMQ5QLhBM6GGINehHUyrUQwwzwMBXtE3qAtxbbvXkufgr7lESqu7/Xd53+4gw9d/SDnHD/DuRPfpv/OjeSdjC39Cbeet4y2muGUBzx3nnwVG2wBKjpgHffc+q+cehc8sG6Qk7eMM/GkU1j24AOM3ThIdNZjSN71btKy5pvHnMXp7jXUftAi2x7xHysv4jn6IpL5E2gOzpGe0GDtrWUGp+H6lRGPwbNlRx/Hbv8+pbNfSW3yRvYsO5tTNk6jN27hved9hO9c9fs884ZpPnf97Tzp2PN/+gN6FAcNSnsUR3EUR/FwMTpRoHB4IViz0zKStUMA2HaVpsqR3qGFQTkLQOJSBII5mWBlDSdbCAdGwHwUNA3LRHCXPzI9T6eUYEjDD7UTGBnc868Zz7FISt4zJNtE3iGNxMuuakY6JL4bqBhmKhnaKbxwNDWAQnYFaeGhInOEF9QbDmkybOyITLihl16gsKgCclfGA7oIb1G8iEkyjdY5FQqkDEG3BzseLwlmQabACUGpMGSyQoHHW4cQgtW7Cjye3csjSns6C57ZcuHIpEBggBgU1HyLhm6wfo9koCOZGypQ7RgtYEC08LMCIxSZSBidytBYttXCeT+oOsy5BCO67vVxNCspc8N7KHbk3N1XZU2r26cDzLPv5gIYLxukjYiFCcIfktKUpqMFLV0gCWPgpEDnwdOmiwXOwbLxNkaqQGRcoBoCQUW1aWmNF4bBWUu540kFNOOMtJUwlFvySHTF19AiLzx4gTRBhMvxKOFxCJLdGZHpMjdpAIkX0NdwTHef9JdFgRGKss6YFXGI1yccAgceVk9kNOs6BA0WgrZMwC+OTt+soBNZ5mNoK73XyBlrSHWo32moyQzjPcHQC9Ku9qmXQ2NJckXU1RY0VJ2uD4lQBoSA1IVlrGoocCzrGKbsAMIXeKEoRLGwnnOSLvnt1RC0Mz5XJJ0IZReD/zaUo6EAG5H4jDOnJ5l2feQojo+nmVAOYTXWQWQd07USqcowOLSFVillFRnWRmHNOw8OYuM5Y2oa8DQjG4h4aCGpCuOweoeh7Vuc1AnEaKrs6SsCaWyGacB1teJNqtQJcyFMCIS+KLt7nAgaQG3Dvk9EQV+UkvkE5cK44CVGwZ6Kw0pLITxDmcXvCd9rQCDJnGR5IwTe7i25QsQ0VMxk4mnaCmVZULGWPFekMiJy6cKMDoxLOsJRyS27kwq5C440hA/mw3TDXIAgKlwI/A3o7vz3UgzOGuoNiy0srVIGAgYQxMbRiVqcsDWj5CSdbhxGgGZbcs+yOoNTFhs8gWB9jTVjHVCekkqDNlTL8Ha2lqHoLTYRSDjhnZrFocfmGNEhcPZMFFq6zs/hW6GvM4khElBuOMYrYYZbCqIs9KSRdxhpBBLZ61tBRCE0XjiUA20kuZAYHNKEdVIgQDvassqh8IgTtPRH1zG2WvC4gWP3+vze8QYfvPYOTl39n7zkC3dw0k7olBV5SXPu3U0AbtguuOJxgmObcOKu6yjW/uoB6/jRd7/ChSm4U3+d1o6v8qtTO9h10wCbj63woWfuZOz7zw4JvWDl2SXeOGZw99U45fjtvNR9g8t3P5Wauo2PPK7En98Kf3Fpi398rgQs9Xl4b9THW279d3z/yVyw7F5yAa2rrmT9r7+J237tifgbruXk7/0L+Qt+lVg/4krKXyp8detX+OwD/07hCn73uJfx2xtedJSoHcVRHMWPjaWniDJQk+nCN2OlGPBoZ/YR+j2dqCBvh1vVXilNvbcpSy5DftH7WBBIlScI0YQfe0mIM5XJCHALdfiFchwSQSLMQp5Q3GKrNEGCi4xbQgICpA3plo8JOt0b+HI7kFK8p192iIUjRBcLWkPpoVsdCoPqaqV6Ja/bkTM1qBc+W7knCNeFSBbHdt/H8SG+LknuSWUZPRsy99JJPC0ZgiXXWkFQsqJLQnEMyE5XQA79NQqOK1phjETMdKwYmTb4wHsOCbHX3z2ZFPTGvvdr7qSnJaqkQlHH0hNKJxOzkNcuuR1PdZjHUu7oiHIQ4KM5pmfD51HhiKVdSD8b2+6weKQFpyQhttviDIOnoy1igY4HjLSDU4ZcxuAl/fOBajoEGcEbqAD654OQK/w+cwG0RQXnHZOl3hgvkseGglSE9g3oDkG3vCig5iLer7w1Y/k+I7s3JkpmgSBGZMyUIekkJLFl1sZUKfBAfd4u7I7emu/V64EN28L7rkWaIPEejIjJRQJ4aqqJEg7jJApPJA2F8UvIyqJYXKEgPEQLa3FpD/ReZGSxJUt3Q0Vke4+rDmmdA6sFTvR2qme8bLBOdk2qPbJL4rwQNKMwhxqLR1AWBXgoCM5FVu4uEInCQ5cgLra0u01CIGxgLlp6Fgk8wcx0Igmfj6gGPkQLCflwOJl0S/R0RHA9P1FNl5xEYQUIs7gvwbN8ypIltlcVXoCQgdDhQry1dqnNYNQIAefxlHyO6fYrlWVst2YjNIWodsnR4sh7fPDY2LVQEN1vrJAkFCQUC711wocT1cN0VCAtJIvbDgdE3rJwm4THeBkuEYRHOMmSrUBfI+zfQriFOe+t/94qDJpBsddcNKLu/j6MrPqIsoftm3ewcs8Yd60XPHb0SQufO+9595U3sWLFh3jdl+7k+HEY/pVZznxBi8e86mT6L/oz/t+Gx3LmZsErvunZ2qjQeeCyA9bRzucZvrtJsyKIc8ON69czcMM8960S/O3vxJy6/DH8rxP/iLPKL6M+dRbWtXjv0xOchy23DPC26POA4tjbnsBNIxGtVYZyp4/dg+FQvnXlcVw+9x7OaX2YF8y+mhujU9gxMsjj70i58Qef5elP/ituOklwxqYtXH/f2CM0sr+c+OKmz/LBuz7A2uo6Tuw/iY/c+2G+uPmzP+tmHcVRHMUvAGRXFBR+byHWL/y3t2jGkn+r1C38GB8IkSuIXX7wBEBbLsbgsVJjhV6ot4epxFIhpyIOXNaAahMJu9iXJbktfqFfHVlZEGr3aqfoSS/7CqIHwuL3QzNmv/T+sPn3bt+BSz6UmN/73pEIw4rxYiHnbGyptnqP9w+R2UNdZhROUvRsxg7QxqJbSKyXSGuHQN5NPzDTI17QiPcm7bvLxQFLER6UWUwbSFpIqXzQCwbzMUelZThxpgGwcKsf5z0K0NNehH/bQw5EIO9LV30PxV4ErEfg/KHHdZ8y9k+69ycCaEXBIciQ7hxwXPb9rCcQCxZXa+EEZp+ESjiE98x3SU8QroPQPjhryJZcJMCi6R2A8xLj9hWbH9qFsBdBY9j1qwJA4YJmyyG6RHJJ6T7EhTtsudmipulQe20+tgf9LuQ9MhzJfgZPki2uP6v2TzEQBQVMvwwXC9JbYh9Y2NJLjl59teaB2h/mQB7wVF7amgNDALmT5PvNbbfd3f87wB2gin1/I/bOLynEga39DodHVIN29Wcu5UJgbINhePWvLtx4XXn/LibKH+RPvzXNmknHqhceQ3T2b5O3xom3fZdVm7/GnzyqzLtOeAkX3HQNr7qiyeezq/m9J1uE3HvGr7jmQ5y7CcbOOYFi44949OQWJvsE957i+MIzLieSEblx/Mc3fsCn5r/If1jPceOeb54lufCHJbJHzXNx6WP86fCfUjfXcdmphhdfOcfaPTUmhhoM2SZP3nk76cAWzrkjZ3jPNOsbMwAse+vHMMdeSfGoEZJ7J5j86mfgtDc/kkP8S4O7Zu7gE/d9lPNXPpW3PfodCATvufXtfPL+j/PYkXM4of+kn3UTj+IojuKXFKZ7c38wSPYWMpQ3OAhOOfaBF0EAsAe4Tz2ciBQdoLwDYfHOe39h0++V4kCCyL5EDJaaOe0tmB+4xc2eqU/3a8Gi6fqBajmUSDyiWvukPHg5S9FLKXEHzbFv3qVanANjf+LRQ3F4RnNEEN4vaF1HJxbb4wR4tVSreuTC96Gwt9Ac0NP2PBT4g/4jIGidY+iaTh4JSVv6Ycjz0FollnBmq5b2K/y5L9k7OA6csDfnZh+isrhnDpy7rRYbdrBLjJ9P9Gah2+YDNH3f3XakOMw9y35nxHx0ZGfhTxa+S/gP3NqDkboeHhEN2mQz4z1X3MOy269lbBBOqRns0IlAOIT/9Y5/4NRd45x7p6f2vGdSvPrLtH/ljTSf+ndMv+wG5n/9I0Ra8rdDn8ScP8jWkYRnXOm54ZOv36+uqeu/jXaw5vl/gsq3Uck8+Xkpx++pEcnAYq/eNMWvFd9l05YGy+fggts8A+vDpvn2/cv4teQWzlX3s8q9hGtPDDvprNtWsXFUsnpuD6//4f/lLd/+Ieduu4OB/pxPn/prXHzWi7nq5AQzN8OTvjHHdA2Ovf1rZMbt18aj+PHgvOPDd/0DG4pBXjd/Huaaq/G7d/Pa0/6C/qiPj9zz4f1+3I/iKI7iKB4+evfyR5bWOQ5J0PaHJ/KLGp+lsPLAN88PF/v34gD9Oqj0fCAKd5BsP0XsK9AeGD9vpu6Has/B1tfh8kDss+7a2R+P1HzsbbL6sx/3Q/X7cELx0jLsjykhH/lI/KzG7Mj1ZT/51bT06uDA/T+yGpfmPfhlSuMABO3IT3VxkL8/HBx5/kdEg/a9B6b4zjdu4IV7NvPlcwXPrB0HMlR9xaabmC59n/d+x6BGRym9+m17Z1YR2QnPZme8icE7PsbTT7+JLeeNcteNkhM+cz3jJ17O6JODN8iZdI51m1q0aoKNP/gKjx6zbDu3w5nbDd9fuXqhyMvv3Mlvq68yJhTn3e1hVU6tGGDHSJuTNwu+cPoAF8Wf4CUT/8xpG87lgRVX8ZRt2/j88wy7z7ac3MkpZZq/Pz5hMmkA38Olo9y9+0m4s4/lgosvozw7zsDONnfddj9nnX3yIzHMvzS49odf4Dn/dhfn3O/J+Ut6xj0bV5/M4597Ll/PL+OWqR9y1shjf6btPBJ479k602GuU3DscJV66RF/FnpQTKWT3D93H1oqTh44lXrU97Nu0lEcxc8E4aXGvj+sh7vXFwf4+5HoMY5c67N3GrmgSTl0un3r+knjx9fV/GRFQXFwrcMSbcveOQ7chv0/P3xfj8wIspf2QOvs8K04eEqxoL34eb2yfGir5chTH86M8qHgoczhwbB0FsJOXXo2HFkbDl//QxnN3muth9erH2+XH2p3/SRG++G3xkux8N5Q4roa433n6qH2ft++HRkeEWnwN/1uLrjrM7RLkjtPt7xu1VPJCMLpl+55L+dvtAxOSMpvfRUiOrCtZv2U05i5pM7Fj17NO6KtZI+P2H5NjdH3vAd7/Jmo1Wv4yk2XcOEWmDxjlOO/di0PrFY8bdUc2y5dxooLwpu36XbOyPbLGNsq2LZccP5dnhWntJBXazYNrcfI7TQ3Vtnz2Al+p/UFvvCj01l3/FU869qUzbKPW1Z0+JKqsCEveN/kNJ/vq7FB9XFFPsvYMVfzsV338dS/fiul17w2HI5f/Rc4+0OPxDD/UqDxjcs4/n0fxGrJ1gufz4fTlcRxxG9k23jMjV/npR95gM6vl3i//ic+c8EnifWPf/U8nxbcO96kkRkGyhEbhisMVfZ/CP1QccOWGT549WY2TgSTHCng109ezmvO28DyenKY3D95TDQzPnfTDsZu+QHHjv8X1XQXszW4Z61gyzFlXnT87/G7x/0+8jDBFY/iKH7REPuUTJT3+fQnJ0BYLVBd+ynHvm4fjgzBRHIpFoUIiwzxjA6BIxU5ghmg7xqeHTn8fkRpscbD1f3jUr4DiUbCL6Uvi2j6hH4R3sMcyKz04bToUKTOSgEyzH9oj6SIBLo4nDnbgb8r+w5tUcUBiQ9eROkSv6WeDw+NnruFvR1KHNnlwuHRcyyz6Ohl/5J7fi0f2joLM+1kME/ct2U9gdsjsQj0EZgAH5i8H3gsDreiPQKnISrEgmfGvUtb/JvXEvETs8BaJD1L10EYD4HVcq93jnu1Y0n6pb3qtbrnIGb/tRIQ3Bgt9bp5ZNj3zIp9Ti7ifUb2YJo3ufDudt+5Wnp2Gd1z7Q9R3vW66jRtYRC+55cz/PlQiazyYp93nnsTzyPZTY8IQfNpBzM6yMUXTPBs28SuPReAa3ZexXa1h7feJJErlpM87ekHb+gppwIQTTR466rf5aLO57j2KRnDX4Xdb3kNqz5xCa0bL6NUQO6hlMOKs5o8KGuQK459fPDc+IPNU5xcuZwz7hHMnBHstLNlMdObR3n/82f5xw/Dk+72vP/sEf5JX8F/qxOQXVn8vDvq3CxeiuvfQrb2Kv5kxTLeMj3DGpPyyl0Zr3QX8KOzNvGK3X/L31z4eJZ//QZGbr3ppzu4v+BoZobvbJzkzrF5Tr/uCp7wrc+zcR3Mv/gF3LjR8ZRjU17yhGNJlp+Pyf+Q8b98K6/++o+4pHUvL9zzRS6+8Dc5YVntYdV97+4Gn/rC91h+1RWcOvUgo3mL2aTG55adyJbHP41nPeUMzj9++GF5jfy3G7bxL9duYd1gmbc9YQXH7LiX3Q9s4wffyvnzO47jDS89nzNX9z+sdj9UeO/5z9vG+PL/u57X3voJThqfBKAVa8q5QQIzyx2ff9zHeOdT7+evz343Sv78aPqO4ih+Ouj5Qju0TmOpmO+kWOJpbxGxE+T7PPRv+oRa18ub8OHnOhACQceHi8qSNN03RnRbsj+cFKRSk5iDC5tyH3LmESTekS85u5wUGCnozwTaCdraYsRSUWixn4t+8paOw8EFjtjndES5+8Zu/970hDjwLEsjJkoFRSSRPjjI6LV/KWEKLu8XBUhBePt3OCLqCTECFt8b7a23Sl1Ev+rsN16yGwfML7RBoLwgcQVt9dDOQ7EgIIoFMzrFkpERS4h69w0i9NZXN033pn8pNJa07HDpolipCE4OHLLrBXBJv6REuH3HK+RdSvg9Yr89IAjkUjnfXQ1LR/Hgq8FoSVSEUnsrdukqswhKHtolSylztHxlYZ/0IH0Iiq783s5OEp9jhaYjNdK57vvN0JbIWwQCK9hvhSgEba9JRNHdgWJhpHpEoV2VlFsOLx0lmzNFP9WDOOc52CWL661aD7H35FJgkURd74wHM9492PkjcXRKmlK690uu1EeUxMHMXnuEq0eawp+Rl12HKSx8L/ELHhWjEGWZQoRA7zmaxVdSoZzx0ajrnGdpfYDTCOGCR1nACL9wKdXwCX0i7fZ/f1PCHoXVGDq6RGy68SjF3in3pkJhry7vKLzVjNf2nycBSBfCT2Td3NoLKk4yVxJoG7xMah+cBTkp9to9jbyPejy/pJ0eJwV4ujH/xD67bd/6D69Re0SkrKvWNfjI86ZQqebZM4MUy07HesvH77iYMycKhncISq/4TYQ+eHPkylUU1Spn7WjwpcfdxdtvexkXVT/OW39jNX/4XzuZ/PhHWPXgBLNVWHfrbq47pcIfV3fxzYkBlsegVq4BYOe91yJ2OrYvE5z1gKdYbphoDnDnm15M3z3/TCUFI+HcmwV/f/4A75y8nK3fX0+zvoUNE+M8aepjrJ4Obcq0YNuyfqZW54jVOe+4+2ZeVXsuO0+4hn96TMJffwuqM5bdd93CitMe80gM9S8MtjW28B93XMd37p+hObue52y/lyfceAk3niS49akZ/7D17/mDGJgBrgh5XHkZfc95MrsGzuGFV9+IMJ/j5ZPreMNTjuN5Z6464rqd93zhus20P/FR/nDj1XilyE96FHLZyfSPjXHiA9/FPnAVl9z4FC698Hd45zNPY6By5F56Pnn9Vj76/a084/gB/s/uaynecQl0OqwBekaZt934Ze5+/es49dyfrpmmdZ6LvrUR973/5EM3XkpHwuXnO563fIq1I6fw7rnfYvK+Fq+auJFXX/4A99/ybT79e44/eNb7f6rtOoqj+FlD4Mh8RFnkaF+AKBH5IHYZ4Zi3MV5LjksNk4mhiGQISLvkR7kn1Oz9SkLSLGq0Ik8/nSCYCMu4rtHvMiLncUiMl5Qw9MQPJ6GeQ0MHA6neTbCTAi+gZHMKpcnRxBgKJMYrpLIk1qKEw0kwUoOBihGLAX8JAW69CPHN+gpB7BQ749B6mVZpR55cWIZVG4VDedElEmARjK8WrNq5SBJ7N8ixzym5jExUQ7TuLoYLx0QSAjr3xEKNZ34ohnYBwuGERMpQien6KuwJvtp58m5sNkUQiML4CnASJQusVBgl0N4y3FZMxyHQuMazfXXM+p09wXARuVokgaJblhPBe6JXHqNDTT2Np3VglewK9ns7tPAIpl2FEdnGAdtXxzgJx28rMMIhZYFjMSRBD5oCS4zRkrL1C+ZwEomXHqMEyu5/cTA1pLAVwejWFqmq4iQIFxheYgVeBs1Nr30DuWJO709oI19gRYxFYr1Ae4GTnsh7XFeIT51CK4f2klx6vHCUM00rct2YaAKjQxBnJwPBcxK6W4LEZeRK49ELjlmWdxTjCYCjGUdU0jZtF1FV2cIIRRjwMV54IiewapHURBR4DxK914WClQIvC6SL2eOqrHQpmYROpChnwTlPW5RojliEgvp4TESG1ZBnCRXV6RJC0SXJllwJqt3l7EVYY66rneu1xy/8uag/yr1Ce0+yhFg6L/aT1UtG0ZYhtEK9UAtvqHrrq14oZquORGRUoxyXC9oihKIwJobIdIli93Kju2Y8PaIIszVJreEokJS9C5cBInigtd3LALlAHhfhJMQ2xxCHFS9CmfM1yfC0QBuPdpDGgt1DMavHLN5LpPD05ZLJxIRxlJAWEaqIyGPLQNeT40Cu2FURVEygOE4KCgkagfSQlkJAdQcMdxJmyjnzrkQJR5Wc2DXoqCrKQH/RZsYpPIpMAt1+0h1H4SF2bkGrm7sYKbJwELoQnsCKcCGiLewalWwYF+S5RkWCqUFNqeMpZ4ZUSXSxt3OmzGt05LAylKVMr+b9L872xSNiq2S95dT6ev551y6iE38bhOBb269gl5/l929WICXJbzzrkGUIIXAnnc4xuwRb7C5Oivv5mP1Nnj0wxbfPFPgvfY6z7ndMDiushNJJFeZdwtzmCq2hGCEExjrE7Gd54o/g1mMF6ydgxao2xUA/Pxj/KE/ZFOq68fhhzr3bc31RwVS2susJG0hWVzl9i+ffnlKn2S9IV63j7pETsK7GsTfHbLpshFpUcIX6FG8eL7jfb+MbvxLM1Ip/+8BPe4h/YdAsGvzVzW/j5de8hO/OfAiWfYbHlv+GP775i+xea/nwcwQjM2fzsvyNfPrUTzPzO5cz+5zP0zz3neRrzyPZ+jWOXXkpe86o8oLrJvnjPZdz0ZUP8Inrth5R/cZ53v9/b2Ld+97Mb228irufuIZ3/cUq/uolDT792wkT7381Q1/8CpWnXMBL7/sWz/nCxbzy33/A7vn08IUDV943wUe/v5UXjTped+n7KT777yRPOo/+f/44Q5d/i4HPfRn+1yvZML+L4be+mq0f/Th+vxvOnwys87z9a/dSuuZzvPL6/2JXP3zkD6pMn7uWK1evI20+wPvtO3nRqT/i5Y9+Gbe/5M9Y1yzzjL/9Lrf9y9t+au06iqP4eYDA4x1ML0/pmUf15CgvYKov4rYVg6SJpBNpvIDlqWJZJ+gdJA4hHFIYEhdikHkBRhZsq/bRiiXKC4YKzfhKHW5olVgQoFpaU8QS72UQ8CRkEpTtle+puhYrszaOnLLNiW3KjIzolCTOSzo+Yql5klOgVQftDVXXBmC+rsAJYpsTOYmyEu/D7bpB0XAldJ4EIUwKch00W5FfKoQoWkIzPRTIhkfgvSRygpIz1Luu3tc0YyIXNE8mUlgtsEt0R9ODgtag49bVI5goaPKMEqQlgZFhTiKfL4zv2IqY3bYe6pQyCOII2i5hpqbx0iOF45g8p1oEapfrQH6zSDGQKWRXf+dkMPVqLbkozqSkE8dIHzRdRSwYNBGxLaPiFnXXXFgtIYaSoN+mC1o8gUAbRceUcBI6NU3JK5wCqyVa5GjvKPzi+0GjoeRSjA4hx4VfNPcTAqpOI6wicoGmWy+xSJo+IUskmVP0p0G74aVgrl/jEcQ2EHbnNAWKttYkXrKqfYDLRWW7WruucZoQODReSLQP65a0gmwH6xTtBU4J9rCMVHdjtnlABMK6qdzPNzasxHU1bgCJM2Rx0NoqkdMcKqg6zfJmFYFnvFJmPI6ZT2KKKGhYS75D4jJKPiVynuWdEH458obBos3O4zSp0MQutCnyEi+joK3pjm+PnCgfyIr10EokQlgiD0Wk0OTkkQztXSJER1gi1127aon2WS+G3egRih7pzLTCiDBHJdfGI1jZ1DgH83kF3dVAqm7LegRPdsvt6ZUcgl2rImZsiTxRUAlkLPEpMTnSeyq+Hc4q74gQRDZo56wSSxwN9QwOw7x6AS0ULDnbtAfpwtwYIai5BnXTXGg/a2jGAAAgAElEQVSXB0qFo+QKFDacCcQYk7CTPoT3aO+Zr0tm+qIFDbAHaoVCALFoY7SgKNlwMC0gxBubIvQv85ppV8LqxfGeHFX0SE6BxDpJgWKuKCOLAuHDOGonKLmcxMFALunLQj6LxKCoZCXAU7UZo5kmb9eZdyVGOyH4uxRQysoYGc5fEwkGjaDkNNpLxtcqmlVF3tWgeyHYqevh/FZR92xZjEsXtOXd89jvr5XeF48IQXtWvIaP3vItTqFE57SXktqUT979YR7VyRjdVCY65wmo0dHDltP36DPomxWozHHqs8/i1i0bWNka4s4nOib7oJLC+p2W60+p8cLobu6Rg6yaAN/fx9jF7+dLb3kPfmonK2bpRjyHygpDczjmFuV44sac754Np+2YAjyv+rrlLSMjPLd0GZ0Lnk+pACXbdHCMP/05PGb3/Vy54Td444tP45pTJVN319l8xXLOnmvw5qkpvvx4Q64hvn0jD9Gl1y8l5vI5LrrkZZzxqW/zrx+CS95nuOR9hnd/sUBUHW95foSbOZsvNp/DY2cvZdN1H+bv7r2XydEz6Zz5ChpP+xBTL/8R7ce/gbNP28ZNJwueec13eFPndj72g6189uYdh6zfOM/ffOkGLvzUOzm+sZ0PPE/yj7/WZnjFCaytrefGiev48xv/jL/c8QHyN/0ZtTf/FWdMP8jrv/Fh3vD5G5ntHNikoIf79zR559fv4zfUNC//4ntxExPU3/d31N/+N0RnPBrZ149et56RP3gFlU9fwk3rHkP1c59g6i1vxGfZIct+OPjQ1Ztp/ehKfu+6KxivC973QsEdg4KdA2u5Zf0T+dMTz+Hj/X1ckH+Hr1ffwmc7hk/9wd9y32kDrP7Ct9jzhj/BNZuHr+gojuJ/ILxVCCsxcQhGrV24hTZKkMdBTLFSsHtwGOEFBoEwEZWiJ657kI5UBCHSIUBKvLZ4U2V4pgzzVbJKwjGdmHruFwRxazSJbLBDVpjw/WTEeBd0NLEzRN6hHJStoWZT2iZGeYPEMZpmZEkwAXN0tRa9PhHEMyk8RhZo3WFqSJFHinUthXSg/SJB8cD2oRKya2ZpIsnmFSHekiBoFOb6FRP1ErmQzPUpnAQrFRYZBDXnWdP0DMzXiV3PfG7vFymdUhBFGpHGKYERNXaNJmxeUSfzigJJT9GT+phpW6fwmq26jyKyTEdlEGBkIGFTScxNtUHuqfQzmw9ikyxo5hC0pUb5AueDNslpj5R2wdzQIXFeYITExGHEqgOOdLiF8QJrNTODgZhIDHk9Q2Jp14CplWhvKfmgCRDekcWa1MfEtrwggnspGE7LtFcLlucRNi9TcxokbD1GMB9FlKxlKJVI6dAehAxBczOvKOU1Oj5mwtbCLbwXzLkye0yN0u46tlNFU4QLgeUdbj+xBiqmUijKRpDHghSPUeAVDJiINa2IoktmjAZU0C54ITBKYaSkLSOcElSNpC/1pHmNxAZBs2Il8zJhUlSYHtJsWV+iUQ9kzgF5FOa4ZApc4UHC+Kgmi4KmtWEgUpYshpPmMtY229y2IeL+wUFiJ4hw6O6lgNWBWFesoVJk1FxOa8SghcD6xffhwkOaxBReLgR972l7IjrM+Yg8E4xn/Rinwuy4peZ/4L3EICkimFihAUe1kFREg4pvL6xnFy0G65ZOojzkXlMISS4iRluSyHqk9STeIltlnA1mmgKouhaR8yGYerf9FZ9Stxk1k4ULk9gzFw/wYH4inUgjgFIRYtANZ57YeSLARx6FouzKrPJNBk3EfFHHdo0Mcy2pFhWiOCGPQHuLEIbYOSIHqYlQ3jFYRBQqEAUJFF5SlATLMrXQb6UsiGACaZXAYCmZnLIRrG0mrJ6rognarpaK6OiYKaoYL8EX1MQsRiyeB1ULaVEmLpKFc2awSBdIqhWCzIag3B2viOM5JJ6ZSkJsMmKfL1ykWS1oSsWqlqYvV5RMuFyyQnDLqAJTQiiLxlISDqcGGLMDKAQrUsWqVONkQr+PaLkY5Synp2PUjKFWGASgfU7Xopg5F5MJSRH3tJdh4Pa2oBAIBPVCsK516DAdj4wGrbYad86rmHvuJfjqcr606XNMuSavuF0RNVqUnv2cIyonedTpABw/5tlU3M1vqXt5e+f3eX1jio8+QzI+CJGFHccsJxGGG2o1hppQHp/FX/FVivrdnHy7ZPsIrJmEtOK5e/A0Xi3OJS48GyuKUzZB5KD/1DYnboez74B/GU7w+S147XnMJsf3TtM03DgAr91QZo2MufK8VXzwOZIs1cx9I2Fr+vs8NU/5+tkC2fHk11/6UxvfXwTknSbXvfnFvP5jOzn3Xs/a4XkGnzBMcuwo3go+9oyYlu4jG7+Qi6/6BE/7TpMXf20Xz3/H33HZG5/Op264mI7pQFyl/bjXk7/gMjpP9dx8vODJ3/wMfyR38OGrN3PDlhCzDu+Itl9D7eq/pP+/X0LfZS9ly2dfxUu/9iZWdCZ434s057zgtVxywaW869Hv4r3H/iFfOfEveM3IBdw+eTOvuOqF3Hz8FH3vvojjZnfwsis/wTsuvwt3ECI+2Wry2m//E2f7i/nj/34ve5jjH/5olP9asZVm0dgv/YpVyzj+AxfzyTN/E35wNbN/8Tpcu3WAkh8eLr19jP++eSOvu+0/yITg718U89JfeTNffdrX+MDjP8S7zr6If37yZznnt77JR09/NkpM81/JX7N6x5d5x2n/m09dWIIf3crcq/8IO7HnJ9auoziKnxfkuQJr0UaQx0A3plRbxYBHYam0apSMJnEFwsTMJWWmB8pUM41DolxO2bdIpWRFGlEmPF8f66sTFxEDnSlmXYm6lWgnkd5ipMdIWN1yRFbTlDH9xlNyjv5C09CaohJudAUhFteG5jQr5y3HTUZIP4CSQSvlvGRclmm4hHGqjFMFHGmkg6WPkCResnt5jEwkazplpIzIk/BGJIuDZkkJS900yUyZ6aifVk0hvCByFqlqODXCMtthKFNsXxMzPqqYooJwFqstDaeZyOrc117Dbl/GqdBPhyB2GT7uBKIhBFWb87jmFI0IUmUxuWY6r6KRzFcVWIitoGkTGjJGSE9TaKzxLC9mSTD0ZTm5Vuyo99NUfbRGIK0KhA66UEVBn51lWdEidkHT5ZwnR+G8xLtAcL93zAgjfVXWmjnyMviuKsDLIAF65ZkagZm6YogyHaEJL53cgqll6jXbhmrcM7wa6Rbf1WgjOWuuRGOkgvYx0gcdSkk0sbGlblNWpyngcUowbSsUaJK8jLCKjoowKDaviWlXPV4IpnyVkbk6pp7gXEqVFtJ7nBCgBDWToJ2jWYvYPlwD7zAR1K1ESIVDYaXkwXUa7aBpYhKXMmDmmfJVLBJX9ox2BLFPAUGRLGdYValbSVtEpCiyWCCTAq0EXngSVVArNJUiJ/YZscvJkUyqlRS2j+tX9dFMEjoqQlEQdwwjrUkkHqsCiyzrlLxs0F1R3iDxdUOnpNg9HDMbx+yU/dzfP8iMDXH1+jNFWlJIkVFxjroxxBj6jKckC4baTfqKJl4IrJfM2YSRoomsCqyN8AjuHhlgzPUh8XSqArOySa40qZNEzrG2VSCtZs9qhR+I2T5SAe+QHmbLMXtGEyZGYhJAtgQr28HsVqRVBudrOARFRNA2esi8pGbaDNpJYh8cmahYkg53OH1iDhfXUZHAVSyJgaj75ilyUDURx6cNaqKJdWW8lNQ7glKqubN/lBlbomFGiLMyfTZn2EWsaXuqJhCFsk9JpWLelrpXTL6r7QoB0TMpmFitKBmNwhC7nJVZm/5CETuBUAWaHJlX6fv/7L13mF1Xee//Wbvvffo50zQajUbFkiXZWO42NrHB9G66CTVOqIEbUkhCS+ACCXCB0AKhJhSH4jiEksAFE1PccMOyJKuPpOn19N3XWr8/jkLu/ZHw3DRuch9/n2f+PGvvWWfvs9a73vf9fnoOKrUpqhhlaMAgNUwiy0I66Zl+0YxIGShhsVJzWasb1GOToXyNQqYRBignxU+hkFpYWtE3BgFzNTNxctDFgNkNHn1bgJHjZTmbu5IdnS5GFA4q6aRDmDv0q1UcpclMg6Zvc2t1B4vDBcxyzpr0aUuPIFMcqG6gJE1yaVLK16CcEiqTUFmDjLaK6DuDg4DEhczQKAF+FuLRYlm7eCpDuZqiiLH0oEzUUmAM6iWRZ37zf55+IQGaDoZQj3wT+fC5rMQrfPH4Z3lMP8Q9MYGo1XEe/oj/o3GsPeegDIOLTioOLNzKrl97NZftO8g98RXsqoUECeyfFDzNX2AhKbO/fSbrsMHkYc88TVidZ89p2DcJu2c0zkjKhgMrXFnbz66FQYnJcAe2XbnKccck9eCl31Ec7Pv01Q9Re4e4/Kji5r0W+vQPsPacA3f8iCnrcuadGH/C4D3PMCjFsOf2u5hefBnHz5VIQ7DwiQ/9B87wf22pVovp65/JBXetcvjcgD1Pnaf6mhehnv67pCeWOXmewfe2CrzutXzypddw4d/8NbUbv4712mfBZM5j78256i038qeffRHNZNAgKId28/jHf4HPPllwdEJzye0f4VLzBG/45gG6x35E7YuPofq16/Ae/DIiadNaXeTi1t9y+SXHqTxrjd++9Dn86vI8ozc+laGP76B+w9WMfuPFvOyuP+em06fZGnZ4y/GP87nF36b69HO4cOkQe7/2GW78ycLP/H+HWgd5wS3P46LZr/J7X10iHq1y6xufTnPY4+OH/5Tr/v6Z/PmRT9LL/vds1NljZc7/9V/j3RdeR/aT++i87jXoMPw3z/ehpS7vuvkY75x5D4UlwVce5/Gea/+aq0efzI+Od/ifX/gSR15/PUvPezTeM5/LNW+7n+a3N7G86vJ71l9yg/gwN489hnc+x6A/e5q1174K1Vz/N9/XQ3pI/5lkJAojlSS2xalJg5LoYVsJuTBpyIRiauB3yyhM0IKO9jguNoChGY97CD0I4hJf0ZAdXJ0RiZRFUaFdSjHtLn0f7vGHOSnHCMwSG0KHogqp0Ga8Z2DlNUqhSyWFkcjGk9ARPvsKQ2BozpYJvtJUMmjaDrNmidw1MZTC0oOeidO1Iotigq5w8LMWfmAwZPt0ii5mEJApk6YskFRBWYONZW7bJIbNsmPR9UzmaiVC5SNNk3ZcA2lSTEM62sOXVXLLxM6hislCEHBHvUG9rdBhxnLusoxL5kDqCFTQxjVChAjJlcTUGTtXEixpUoxddrZ6bJRNMqHRbodlu8hqUGDOr7Ey7PKTrQ3qoj3oqdHQ6Jeo53X8ts9kX7IzihhJMoLUotYcQ5o2U22JtAcZzbLukToG28OQltTUUgOpBF6u6QzFPLjBZ20so1Vz6ZgOrtBngkcoZwmOzsFKGc0F68NQin1qaZ1SaoAJTVw69mBzP9U18FPJvDtFN9yAIQ0MrSirDmXVZjryaCsXhEmuLBaHbZQWjMeKHV2JKTVSCWJlorQgUAnGIPnEbVuGOTBRpK9dVmoWyzWX7es2e6MFSiqkLyzW8EhcccbOQaGtQRbXJEcJwS11h6PSQ6UWcT7YDp7c5OLqmLLsUUzbZLYiHc3puja5MPCqXYbNDjJzWCt79IRL0e6zZPoUjJha0sRLI85Zjziv3yQyDCLDpZJFeDKlq216RYv1wOVy516mp6rIasJSMUBrTVHFiCSnmIOjFcUsZ8OqC7nA8KHalRgqRxqC2LaI6zHSyViJCjyoR2gaAX3pMhaalM+U0wnAEpq6BicvUE9semXB/LDJ3JhJ70zwvSKL9Hoe9TzHIcE0UvzuEE5SJj/To7RNZgzJlOE4QyCoygifHhU7wTJtyv0qI7mH0oJm4IPokRZTTDcnLKR0GsGgD08LcmVRjk1ObdPEdY2fRVg6pJHngKLvC2aDEe72tzPe9agWFc2qx0rdpoCFqQbfa1bUKEORWAamyhjrJCwmDQxDEZdNThQaLFUHGSkdVkmigHlZwkRSznNy6WJhI81BeeZyxWVz2sHQmnJmkDka7Jzch0CCtAZ9exYZUUNTzmI83SeRisyGZRzmVYnTUZ25oEjPNmmLAloJTCtGiEEWvl8yEAz6LOO6okhEWa/jmn1K9gLtIYGoRhSkjb9exY9hU9TlgtU+Xg6GSujlDvOyjgKE2aWpLFypqWlNagmUndFOHYxOTlNWwDyT2RICw5Q4UYOKFPQNKOQ9aqpJFLhIW2DKiDUhOCIapNImV5CkgsrmJstDASejGkd1ja5rkbqClaJJ2/ZQGDha4okY14hJLIGVCpwcOhWLDh7KFCxZ3s9fg/79l7V/Xkor3r3v7SiV8fxZQeP0PN7jn/hzzUH+VxlBgWzHHs4/AYf6p6js3MtZ9Rk+nTyCaw8ran04sKnBxcZxjrVdgt7gpGVsV5OPnf1iRo5G5Aa0SoJGF0YbEfv6KfujwzTW4LLDmvLDushVm89tq3F0dNDU9zt/JXlvUMfdMkulD4U0Z0Uv0X70U5HTJ3jmRRdwaRKyaAoq4zGfebTBWcdmeW6SE3Wu5Z6dYJ7s0V06/h85vf8lpbodFl/9UkoLTW56YpGn7zlGfOXrae95Ja23v4W8InnjNSZDXMQXrr2e7cMFhGVhjo5SffbrKb/nq8gnFAncnF+58TiLH7+G4hcfzbHPnsvnvvUMhK140wssfvMlmv1nfRxj0xv51bs/wEEd0Xn0B1i9fh9/d9Fn+cItWzl20whfykbZaAnOv/XdGLf9CdopEe39NTqP/hOa197E+nXfI7juR7z/ik/x7MqF3FBw+O2p+3DOzXny9O0c+PyXWe39YznifWv38NrbXsnjb+3x376mKGzbyO7feh6vbpzNJ8afy2d2/BYXBlN89tinecF3n8xN334OzleeSONT5zL0sW08766n85pLDvHZix9L9uBBOm/5fXT+T6fFo0xybKXPgYUOrfCfLreMM8mb//YQzwpvZOonPb62dxPu5R/j978yzZ+95R3s/M2nccHH3kv9jn340RrWSERpc5dqqUV7X4GZeyqckz3I7d1PsT46zDueZZItzDP36lf9u2b4HtJD+r8tO7fJDA+EzWIQkGPSL2kMLdFZQJ6WMaQ1MHJwC7StMp3AwA/m6A2lbIk6NGLY2DFIOh550mfdEbgipmE9yDZvhoVhl3JusaIrrFaHEbUy/WGHYq4xJJwaG8UIBKPlFtg2p7I6Oi2i1MBGvORK1IREFzSkgsm4SehaSK1JLM3pkQKOUESBTWi7TDYNrmivszs6RZ6UaItREmOQkyiJBQQwn9VYbxU5ljUIHc2q7ZPaOeWshywkVGRIOe+hHMFy1RuUbSqDWHYInXVadkKkbSzhsV4VrFcMpCUITYtT9TIzIzapJZDSReoYi5xOYuK1a9TCKvvVdjzHZ6JncrK3lwdrm9myIhhbd7CRmCJnKovRpsBUcHzDEM1anaQ4yCaYQJCZ7Jwv0tElhNKslkwmrCUqtPGyPn1lcutIgVbRIM8H5VKxYdIlxndnmLEt9hdrlDsjtHSBdtUgt6BZkxhaokxFb5Nip1BM94ZoZUUQsFitMh00OOJXqScuSgv8vs/mXpdCBmk0eqYEMqUsu/ipwpOSjuHRKfgYhsVaXMI3TVaVTzP36VaqLA9ZmEGTvNrFEDAjaxT1EniCOVXieDbJeqOMa8BIuclw3sRUORY5WpwxsUAS6D5eVGTZ8fDzNlHJwiVlWK6hTM3imEUhVwzHFqWCYmYoY6GcU5aKTiVnruixagVkrkmz4rEw4lItrLNKGVOZ1HSH3cs9LlzuMNKPORCOs5BM0rNrZLlicVIQFXwSe2Bc8rAw5THpDFv7BuU4IJMuDb2CCHK8QDHV1Jzf7JHnmtGWTyCHqZ0p5QUwRMbGNqzmAdNVH8ioqBamlHRVjci16PkOAs1izaFlOuSmjWHlFMMR+tRxLJuTIz7LxSG6gY3ILdpeykhmsiG2ccanMWrz9IqC3BZclHapSEWqTLqpw6p0eGA8wFMpyhCEtklS18xvtDANiZ9LiqpPwW8TYxI5JrFrYBQztBbUk5w9UYJV9KhmmjXbomuaWEowU4UlN0MLSZIrjsoyHcNFIEjSIlWryJppkfoG/VGBUDCLQ64lo1GX0Twm9hzudjahlOBYw+dUtQHKYN0bBAe2gtFWCbIGhmHTkj5rtSKlaJCFL+SCeqrIDUGsHFLlIEoJyjEIMZC2pi81C3GVRTGMHxfY2IuJpEvP8tB2jiEkTV3g0HCNXt1GWC66ZFJ0JbowTNWUjEcttJWzVjA5MunxQKOI67bxspR8OMMeDfGFIHYLeKJNJVlHlRT3TnjUVjeQGAKMgetmy7MQQUa/atArmxSCNYpmj12tac5rh5giQ2iDK+M7OD+5n27B5FSpPHhHVEQTg9wQJKbghOczrwNM06BETsVSNKXHRDaNpRSmUjQd6ArNTN3jdMNBahBKUUtdNDA/YrO1azKUOmxNLQ4VNrHfHeJQ5edjoH5hXtntpM0HDvwJ96zexR+srXHqxMXsVkdwn/y0f9E4lYdfjvPpB1iPY8K0i3/967niK+/iwdkxtjkdahtdMm0yHVpMdDS5BU/cUeaC2f38+kFYGBVnaqElvY11fnz9s4gPf4Nn3xqSNiQTozG3PDDEE1cippah65k0upIXfQO+8gR4ydkRlx4pcNeYzVDV5mGui/3dv2Xj5ify3cLfcNPRHn+wx+T20zaXfPMLBE97HStTU3gPnuTmj1zPU956M6b4t7O5/l+QznNab/pdjNk53v8Mhw/aR+lf8Fqmd76MI7/5Knb1Yt75yx7D5Sk+8Uvvwrd+lj1WHp4kvO7DDBevo2auc0+hyDu8HvPlEo42OCep8rjTLc5a7FBpCpKeRVvFHARu/f6n2V8+zh3Vs9k8ejF3bh3lZeU7seJ1ZH0n1vphVGGM/iW/Deb/fm1RnuCVox9i98L3eM/9b+elT4j58HLEq+75Ip+58Vx+5yXXcKJznDfe+Vu8/O9SrvqJpDwZsuG8H2Pc+eOfjnPRmb+Djs1HalU+HKR8IhBcVNrMNrvKaBoxsnobz90VckKdw7Y7b6f3rrdTedWLcBbuwFjez8rKAqutFkuRyZoucVKPsV9NEQ7t5dkXTfH4XSMYZ+y0P/TDE4Qr06xFKS940S+RFtcRi29HuwEPnjPGzWMv4fki5PlPewS90XO5f6HDdw8tsnTsHp4qfsAj7R/wx+kQr5QtPrG2j2snxvnQUyZ43VenOfnGN7Hlfe/7V2EHHtJD+s+mnlvBkTlDSZ95IVmckiQYpC2Xtdyj7fr0syqenqHqr0O8FUcnaEfRKcHaMIzNuiyXNnDCsNiVzFGVGZYUbOkKhkWMazRYckukskYpFgzFHaSxjhiQQhFoeiUL3fEpBRm0bYzMIkhNuo1hrOIccVYiMkx8IRCO4uL1Q3zr7AbzjTIkLn4ecl60n0PBFKPSxgYsKTg+FnBITOAYyxRIqOQaI28x3pMsUqcAOBKKKqUSCWa3GKyMZNQ7MxhCo0yopwGJbTDZPc2CZ7PqD7I+9URSLyxxZESRKYtOwWK64tAqKPqFOjtXJJ5n4IQpy8LCc0z67hg/DkbYUlhi1VAE+jBWthczqfDIle9zb2k7zsoGzs0OMVToE/mbGW85bPIOsCW3UORE2iLXDuQC6bpMJV3WA5tVUWR3toibuHRxWLMaxHSxRIqtDebHDSI0WS7wjD7jEfREjyDrUk3bpAWDCQwyN2NlQ4+2SiDJWUkDciyWlcWWuYhL/CPcbo+Ta4Pps0J2HFpHxDnLVZuNywq76eBVYgwpMPoeQQXWDcH00DYOiVWumb+P82LJnZvrXBDkqI5LIXPIvCZJ2WAzAyPMTDoU8xySgMWgx9i6S1xOsbWgmwdIywND00gEtdCmkOdoaeCJhLxk4TsKIy3w4oWTNDsOa6Hglp2j2M4su5I2e9qDzN9QarFayalEMVXlMN/IeETf4FvxFsbSHo9vn0BbNqlhc6hRY6K7wngXZA1MFePlcKw+TKC69JXLauYzZMFqXsCVCje06fo2O0OXgnRpezaq5zBlZGwLFX3ZYyWZpJov4joxvg9ZCcZjwbJpoywJsz4TDZvTY8PUzHWC1GI0m2M528pw0cAWAa0titm1EXargSuoMNTg2Y5zRMmmljfIDUWh67FhdYVoymB5QxchDIquYmFLRmL5FBOTVBhoy2I1GeH8dJXTww6ZMNnSyciSVVZDwRRd5ismhqXYaUj8WcFSNsxatYUd2BSkhx3FEGZIW2IYGolJWUnGV3yalkHR6WBLgSkStqfHkcKgo3wSJQhQHI02UoiL1P01moEDVkY8V8QY6lNeEeyKp5E1h/Qf3D/cdZqBzXgU0/cH+2BT2tRUxKwYOKmuVA2kt8bWfkiMiZCQCAs7N1n2XHLDYEUWOW9kiWDJRLUFi60SAoFhxRTCs/CSRUzVRgiNISSBHBxYL5UDlj2HnhszXRjivHSeasfHdyxMDM6d9Uk29ZCm4GRFEHdMWqtVRspNOtUuWzs582kRy8ropyaWqZGewtYJuS/p2EVqfRBCMy0L1OwcxKCMWpR9ZD/Flwl4EqTNJqAh24CJcgf9e0v1ItppobTidmecVHQp5gndimaqk6MNkFqghEnZDxllAdOE+wsbKSQ5Pc9ktZjiOCFbj9ks43B6ImdJluiNaKSpOWKW2WTdx9GRMokq/9w16BcSoN2y8D3edt+bAPjlxOXytsv8TBvrvL1Yk5v/RWO5l1xG/OmPs+cUnJj5Fkf0wzn35CLb5uGeHQYvFgc4traBoWlJ4Gi6dZsX7vgVvB9/jiCBlVwxuQK5q/EufQZlt86zbo+p9WDTpS0Wf1jj3osFv6HWKD884fTROuFPPM47qZm5O2DhwjUe90OL11xicf7Bz3LpnhHi736bR33qS9x3x1/x3rEyH5hf5fprxtm+oHjhDz/H9Ze/iks3vJXdd4V84s438fJL33gXBuEAACAASURBVPnQJhbof+j9qHvv4eNPMnhRaQlr07UcPvs1fOR9X+B1hx7g+xcJTm8t8dHL3oNv/f8hsYDWePs/y9m3vo2v1AL+tLyZjqHYcXyEZxypc95CyPa109hKAt7ASckzmPQTWhZsXVrh6uhGrjctvrHtMv5i+Enc2XwMD9/o8PKrdnPl+l/i3fLfMaI12k/6NPwT93DVhkexrXwWf3jPG/j1Zx/jQ5/Mee6Nf8DdV27no0dey2/eGLL3KHgP30Lw6l+nWZkEw0bkISLtIdIemBZjdom3ljZyMJ7j5vnvcPfKnfw4miHTGTRKQAlndIl3FVIenv8FwQ2fBKBHgFQVyqbH5kBSkes4Z9yWwq7Ht797IR+872lc98SnMXfvfWTf/DxPE4cxRcjQKUFk2+SmZmFUc2z0IOkQfDKc4qt3bOC9j9vFVduHuGr7EGv9HXz5J1fxKz85wAudT3Hdlhl+Y6HLa1ot/scuwd/N7uDJd9/KqT/7BFOveNl/4FPzkB7SL0aZbRKaAaVOwlQQsjXKKcs2+5JRVGhDVdC1HSJPsSRLNIVPQadEamBIYEugpHCNjHVnFCnncYQmlyaZLpHoFmOxy3baHLDrSG0y3l8lkSaZGDSSTxinKVXnSNIE19Y4qSJxfFayAmk1ImQ/HUcT5jZ5oJGrBcp5jDQMuoGF0ysgrBjp5XjFhKCc4hVy1iMH24wZ6fU4WihT0ws0A5PGUgc7z4lkiY5dxennGGWLpCCoY7FB9OmUzlibr2XEwkS4UAkjPGnS7xk0+h5ROsKcamKqiByD1LWRjsvGUCLjGaKpjKxdYaZuMtzMSXyTlijiWE1WDJNlhnhCdIB7TVBS4GaKrf15bh7egts2WW05tNMyWhgYeY22sBhjCT83WHQcnMgiC0y0YzIsF6nmXYJMUOwppj0TaQzhxH2Qiql8FaPpEirJPY5F2YDUT7mktcRxNYEnM2IlKBMR5yazWg4ss1ODWA/KBc9bn2NKrZFPKLak8GB1ks16kXJqUpIdHLvGiNtjv5tznurQiA2kaVNX6yxpD4kFWuOrhKAPGzslZCXhFA2aUZndnRbBmOKsvMsBywBpMx4rTkmPUsslUwa1MKUUm2TSYp461aRN0dB4sUskJJI2LVGgmPaoqSpx2EB35wlsxYFxl45qICNNo6/Y7K5yzBOU56HnakbWNaMqoik2gOpjBG1W/QKWq5nuT9KxBJtYZq9cwsjBiQXaMphzC9SMaZbdMUwhaBckZsVCzGu0FKz0A8qFVUzbx9QjdAOJlZmodGDA8LC1GNR9rHoGGAM/xe64ZnWxiqp4FMIQJ0+wsxRX1fHaI2jRxJag4wGMumqtAxnHhUMoDPqOz7obsO64iE6F893ZQWZarTMVzTAsu8wgWHcEu2mj0z5KNegQYQhB37BYKfscj87l7O7dzI3m5LZgZythEZgJhgi7MY7OKWiLsT4cbo3TCSwKsk/b7nLYtdm6mqMszUpmY4Y5KjDBlqSygjaXSW0oZIK5mkmYKdxIsJxX0C6YMifLDDI0TtthYqzH3tWU6a7NAyMma0OCTT2FTUpEjS3hMRrtZdxUIXSV3B4Y5HS6FvOFGmlHQVEz6yg6jklVaDITypHgPnuCKOjQbqQs4P60BzAcBtWCQg4iMWgODZpi+w1NbTVhVUDXshlWEqNaYzXahtEyuatiU0lhIlIU+yaHygkjQlDSCe6Kg9A5QSTQPYPLFhxEzeXENkVRxJgb4JRncLDrM+opxoOcs3rrHDNyLFmhGmlCB2ZGTbwQhg2Dfm6TVSzCoiLKTE5XEpw0I8t9nEBwX+BQTDSy0UJnNUaTLj8UDqFlM5QnGDql1hG4DBw42wWTyBNoqQlKEQ0rADnMzJBDoadIdEocSM60AdO1HeLY58fhBs6KTzM2uc69dYNQCKIzRij/nH4hAdre+vm8/sLfZfv8SS6/7T28f/EZPH7tDrxXvOJfPJZ19i7SoMBFR0P2nfoe9y9nvGwZvAxmN1aoiln2zVbZvDRgcFiX7OWZG5/D4QN/xkpNcHCH5ryDGnc45WjjUv7utnfxgbsV/raQhUWPRcui2mhw08I5fL89yb0Te/jz/e9juSp58l2arzRqvHpjEzvzmSvN8l0UV/QlYz/4Ejs5m69UjqEesPmIM8+bH7uJ371xmZec+hYf3fLLvOW2z7N+89/z5dqneO7OX/0PmOn/Okpu+R7xTV/h6xcbONtSrhC7mL/ij3jT5+/mbbd9mlZV86mrHd5+/tvZEPwsw0ykPYq3/C5HTv8db9s0SauZ8MhbfbYvJpTTBSr9BXyvRPD0p7Kycht3BSN8rHwVYTqJEPBc8fc8I/gy79UlHnlnzrOP/IgnTd/FTGWMYtTH+mTC3Y5NrXY+Bfbj7Hsu8sUfwJzc8jP3MlHYxEeu+CQfOvBe3vuUr/H7X0nx/vhFPM4J6VsGN770IqYe+0SqjskWx2XEG/1nA/RdXpVd1T3AoCS4lbZoJU3WuyfYcPPvs3fDKp3Y4obVR/LJ0pPIylt4zaXj6E6b20+s0+ysUspXmdILbJZLXBzdwSMOv5X5z72fyb7gZQw4fzDgCMH/4g5p28Rlj3n3JOvB+7jj+5+nueURnPPoq6nvvYBXXjHFCy+a4PN372HbA5/knRu/w9W9mD1xyteuPszuxVE23/Bpuo+4gtKePf/GJ+QhPaT/uzq9qUShA76hcHMb0fXxVE7oeiTKxUDRsGYJYgkUMVUXy13AWzOxxiXzBYGxZrFoFFmvChbHUiprBk6i6Rcc1kdN8rxFz6xjJJp63iat9WgWy4hVwUylTlH0KZltEly6lDiyqYyX5iBs+maLe6mxnPvMNwTnzOZIXxHaJlt7HpFlUheL1FWLmmVQaS7iVDNOmh7z7sDC+uLwIEIOUfXWWMHHV2CIQa+SFD79vEGxrZnLI3YnCRuXC5z2THyry7iyWDBTKsYSrpJsSByiFIT0yV2TIBzYueeGYL3sMGquMNpvM5ObIDIckdPJigSkXNS0CGshXmxwbmc/6+MWnqOptn3ahmLBLCEyhVFYJmxbnNYBe9cOEVmC4+alVKozDHttmsCMcthaCNluzRKpAk2jSdfSNNqKFpqerRkyjuM2U/LYgmSQpZgWJSpRRrUPo7ZB0BOcKNgc6Gym5yVErouVwYZVhTccU5GSlXqIs9YmEBlrwuIev0K/CherfdipZD2epFlyuChcInA1QzpF9W28nkGMYDb1GQ5DDG1gupJ+bpIpzbxbYKOO2Bmd5idM4fQSNteXqdgZzaEi0+EYlzX3Me/kSM9CYRKsuvQTyboMOBI0uHitw7o5xHxaJDPX8EgZT/r0hxwmQo/F2CXNDZbsCh3LIZAZm9c6nLcac3RDgVVXM+VILogkLc9nJJqhbazhzgfgWfRdGyES+gWHNJOcFx2nZGmadQfRDJBaMV5dpu9qVkUdRyW4eU7ZSbhjajP2msHVJ1coFhKKMmfGUoSZxUheIEmga+cIw6CgNZ2yxZIMQNiMGJq4mmO7CalSKFNg5oJKp0RJFhHmLCAIHZdCtceYmCWJBTgm6xWX0NxEyhrltI2jcx5ojdMsBDRoUldrdKWLa4S0M5fWqk+xJOlUE06qAhtVm9g0KGfrXJ7+gFPWRk5kinFvFaUMmqaPNCssJ13OX1oittqs9kvMBVWSQJGPB5xwAjY1TTY1VxDZIp2axm8rbBmgxnLW+gZebJNXBq6Tbi4GbEOt0AZU0wSHhK39eU5XSqS2Q2oUaecdDJUNGIoYdE2Bj0HHKtG1qpw7d5ojYwErVc0xu4KqHOWK+9v0Ow6dQHOsUcLWqxT7gn6giTxNrd9hIp2hUyswTsQJP2OoG3DYKCNNGHFDQDNfLFIhZpM4iu2CV0pYsipo02Z+7ixi5WDaRXJfscV8kBIOE6FgSQnuZJKLJjpUeiFHVm0KicQsSSb6mqruUHIz6m0ILcFd9jBRajBfSwjLKZctg8oFxwwY6Uh8JSj1NHMNC0sLSrnBmvIJtUUkLaqyT55YdLXDed0m2jBYNByqscXmLGBOWdyTbkGX4HhxM0IESLPF1u4s5U6JrNKk7Qsm+xnTpkEldUhtE1cpzpmtE+VQs1LaW1MsYow8QKQGjSykrz2yVCAyj1hbbJEZ3bD1c9egX0iAVnUqXBdsQdz529yhdrFjOUeUyrhXX/MvHkuYJuIRj+KSm7/Ox5ePsfHwCp1g4N54YS1kPqtzwjW4/zy45n6Ft3ELd/71uzhvCQ6e5XB6MuEJt4K12eIND7yN637cG8DztiYsf6fGPU8a5/mv/CKLH30Xl930TU4N/y0/2rKJRx6b4cgGn6d9J+Lmp7o870TE9yYKXLg8Rc8/jnHDZ3jEq1/Ct7PD3DRc5lfW13h5dYnvnzPEk/ffwa1Xns2J2ijPv3WRX3vYp6gVxnnsxBP/A2b7P7/kyjKdd7+TE6MO3/ilnBs7Fu1nfYoP3jbPc275BE6U8NZnW1z/sNdywdDPgppFuEL56y/gk/ksXy6MUVpOadbhq1f9g4HG4LH205BK/jWGhnPOPrDGOx94gBsfW2TrnXt4oH4Orxp6F2/zP8QXnrrOD4/bvPobKTtWTyGqGmoCKUySCLJOgHF6Ef7nc8l3n0v52c/Df+SjEOY/lqq6pstr9/wWf2rY/E75JuZrKZllMbaumVy5m+RjdyOA7/oQbhxi4pwrecLmx3JWP0TOnkS1IzKjhi4MI1wXc3wjxoZx6m6d4bBJ+Zb/jtlb4Zb643jNwmM4K1zlVw9/DkbqhAsm26wF3mSdpu52Mc681WHbZubHNaJOhSOTcO9V8Mhym2vok/QMKE/QveANZHkFubSIWlrEXV+jsLbCyvxRjIUlygdvpPPNGzFGRvFf8GIKT3k6r7hiiub5b+GGWyb4Rukv2B2n9B2TW59wmk2fK7DwpjdS/OIXEe7Pb4B9SA/pP7N2sJ9KojnAKC03wu97kDo8ODlMtSXxRBcDyWxWJzccpjdKzl/XzAceJ4ZMjFBzWcthqVzGtiJMy2B+qMhldLh8QVOzJU69jzb6REpjxSmB2adXlByzA+y1LgVzDQEsJgHb+yskxa0klsOm+DiZ0SHGhFzhCgMnB2FIFisu1WCJs5ttKquCdNTAlgbrymE5sKjKmEjZZ9zE4NrVaVq5zcHRBnXVIQsMpr0aC06dxXKJqrGCBir0seI+x6wJxhOXZioZ1fPUSZhTAUKAJw2qqovIV6nKFm6iOT3s4RYsxo+3CYyIiY6LZVnM4jC57BM4cLwwxAZngRmvz2wxp57BMdenW4S54ip3L0+yMWrS6DvE6RA/cUs8PN/PZhFytGwxmw6xrXyIDgbVRY+T3gRaRPQKq4wsCsYcQVbW6BBmh0AkCX6qWW5oVBN6ysCLFRkDVpEbCwpti6JWNM0ikW1hixRTg5sJgj7ocko9cbDXM9x0YKefn8FoWwpKicXhYpWlisM1yX0I4JTwWTFsWr5NWwbMiYxGv8Vju7fzwKZVjmx08cwMcoeD5hAX6UNcsniQXtFmISvj2x0sI2bEPI3MXBJVwUsTpGFgS+g6mhVpccobYaw+g859qkkfly6NngJXIGxNJiK2JLP0LMGiL6n0FFP2SRpul1TYxFJjoCkri8OhRUkLTjYE5IODxboZ0Tuzzp6dHaabShZ0QGhnrNVdqv2c8XJM7GmO4jFqHWHvMYlvKuLNsEX66KbLet+j1bUoCoOCvcoaG7DDnDQxCfsOIjcGJg+eQ5oZLHgw2hL0c4uqD91AoH0TA4F9xhHPdPqkjmDMmGFz2CcppsxJh61ti9AeQpsGvdxmRIXsKkk6oUFqOBhSUkhTVuwG7Uggiwr6JjP5FqS5giG6NE1Y1c4Zch4MJy22rgyxxRCEucV6YrBNn6bntqhFPRI/Y8Yo0fZ9SsMdKionVUucFwr6fpV4uIdSmn+ozdGuQEuDtgkpJiPTNea3KVQesy59RrIlNoYaS/lIoZFiAPCYMQqozGUTfcwI1uqCUw2XTZMZflNQiC2k7bO1rZDVOVbtYWLDYUl7VFCYRsbZ0SzrwsCXghNFPeCAOTFmLJmztnNxL2PIEFhpzt32GAEGUSGmYqyiewZCSmyRU0kShAmT8QymXWbRnGJYJByzQTsaoVM8ZfN9sYV6Mk8xzjCEIjNgbkgQmzaXrgkmuy1ODY/iopjMprm1UCATFjYKLzd+esitgKnsJA+KCZLAZLksmB0rYbSW0C3BfKnBnC5wsTxEEmgQAt9UlFNI+AemJPgScjdBpQIDidAOM6URKs0+w2oFKyuyoG2KWuCQY+eae80p8rVRhh0DQ1rYGZRikKlDoHJ0YjInC4ypNud0j5JjcDQeYUO0gmUamPnPN337hQRo5W++FOvUzSwZo/xR/8X88ZGP4D33OoT3r9vADT3lybS//XXC6TEunz1KtQ8HN5u8UEzzo7ndFIZbfGq3yeUPCqx778V0T5HYsHEuId1lAxkPjhhsXra4ar/G3ZpybDrAcmDn8/4bhucx/ro/IL7sGkbf9gZGmjOA4NhYSrVvs/E7BfZc2eQvSj6nLyjwsK+BiizGb/swl+7awMe3Ca74ZonLyy2+ee42eieO8PJDX+Rde1/Bx/7+T3jJvSnvMd9Bza1z8fBl/65z/Z9dWim673gradTng9fBb3b7WE/8Evc2HVrf+DoXzRzii79ksv38a3jG1HN+5vNG+xTp16/jOU7OqVKZ3IKCnfOMMGZ3mjAsJQawZJrc77l8z/fZH9j0divGzRFeFO/gjj0/4p033sl3dm3n09Vn8qLm3/KNXTO8+YUeb74ByAXLF6XknoGwFEWzjeqBe9qh+OA+wrc+wPzHxvFf9wY2XnEJ98wt8vG7fsyD8+tsXbK5eP4SzlmdYbKzRiGNzyzZP50B/JFZrG/fQNb/Eoste0CG/CekDJNwcgqzvMrEVMbRKz7Ct774XT5z5P3U3BSZm8jZ5Z9+foUSK5Twt/fxCzmr+8qslgWffqbN7eVH87q7HmDzTMbs1SkTFRNDnsa797WkU48i3PlIWhedQ2qY5FmPTUmb6bWD/MbSD9gynfCSO9epve/dpF/9AsW3v5/apile/cRXsG1/mf9x6kNMpIqvDxV4/FVNhr+dc+SP3sXOP/yDf/8H6CE9pF+QBAopLLTQhBI6pmRLmvJL5kF6qcWcNWB3HhWbGc2WGF2qcdHCUZoFl8NGgZoREuUOoWVhSInOQWNhm5qGGeO4OZUoZ6S4yqw9QzcwSVMDS2RktsGo7KOMCDcRSGFhxIKd1mGaVhWlI0SuOGBXSI0M4WeEjqaYCpaLHkc9k00rOYYhCRI5YH5h0vVChjoD8+zRlQQlBKupTy+3MRLoSYtu2WKyN40nMzrlCWwzxnKWmIs9tGFhG5LFXoOubFFby+gZLkndYoCcVjTMEF8u0qkYmAj6ls302oVEfpPJ/BRtHyx3EZVauIAvJIfdIcLcwmIfwE/RwGuupm949D1FJy9xyvJIhuqctWiA7QAhFTsmSx1myz6b1hI2Bm1udiaZLSkCU9KQ4ArNmi6yNlXgpG8ytTS4gvQEi06RhTjBSRWVAQObsFikKAY8pdwyyb2INU8xFQ0AyC7gepriuoVMBW6iWA8GQF5bCQphzqY5zXzYZ8jKMD1JYmpyK0PlgjurW5j1q5j2cXRksaO9NABBG4L8DPS21orwOhIRGpyuVRhCEUmLs/KjqKzCAWc3XiSoJQZrJUXiaEaznGJRUrZ7rOsyjUTTlx6uBUlDgyVZSgqsWQmbZExswla/i9Xqs9YssLjRRmWK0ErouiYd0+JkReJkChQ4P303oKraDOcR86mLLw1CbRMqGxwQ/QGvLPYkUgBoyjGYqYscNtllNzmlqwNUAdDKXXQeMqVPEPkmhtJYscVSQTDjC9ZNh1IOfdPheBwwL30qtqKQGywFcJaIGLd/wuGkzoIvODJpcvkMuDrHlgPA9+Z0njvYSE/Y3B1toiyrnFVsYxRMNsaLXNKfY2tTMZ0nWOEAWzAeSbqVAkfjGr71APM1i28UTDYvDw4kbKfFBIKtap6mbdLPHGq6iZNpIgF5YpHYmo3NNkPlJkEQ4iSayCnhOzYKKPUklP7xdyc2LXy6nEx9qtJl/JiLlSQcngKv0OPRMycoS4MH5SYSs4RIJYWeZKVhMbJm4ueazR0HbQt6gKcyankfAiglgr3LMZt7J/jBho2UOy20gJmhgHM6fQwlKPRz5mqClU2CQhP6KwY95XIiG6PfGiXK4ZL+fmadXeBkjDFPB00sXSrzDrvCDgAjUQvL7dIsFTFkgW35EVa7VZrd7WeqEDTzk7NsWFmhkSvCuqAZDPhhNDXmeILQihwIM5uWWabWyqm3JIuT4DBgmgGUdJfxfJ6Vuk9uarq+yXy7wPTwBLcWtnHO2lH6dYmnLHwzZ8TvcrRfxdM2o1qyvWkhKwrjDCPvYWtrRH6Ck2cUZY8cm6QmObfQQnQFhtKUOhZeRdDJapzd0ozL/ZxS2zBkytAMRBWXuOwjpGDrgmYoC7m/MUJq5hSXPLobBFtWfz7f9hcSoN02/DxuObGZv44v54PR3YDGu/ZZ/+rxrHPPo1Xz0a3NbFw8TCmG/qhFqk38/X3cq0OuzeCGRxb5tW8fY6cJD55lUi2FnDUrUJamPx9w1WwLZWqsyZzCLQVuu6LB0zdf/dPreJdfyfjnbuLY77+WucUuj9q/xEcfv5NXfusgi/dXuGxbxMnxo/zVnkt55oE76dxe5ewNDt+pZOyreWyZ9Xjzxh/y2Wufx5Vf+Hsu2/5XfPhhT+cVt3+dO3Yn/OE9v8dHr/xzJotT/+Y5/q+i+MYvkd9zF597nMkWP+bq899NXN/Fxz76Hd6y7ysc2wgHr9rAn+x9809PSLTWqIV55KHb+e7pd/CRikfsmDxhLeZFSYttusjCxJP5gdzBDcsw0/apkLNTzPAq635E6QH+ohbwwYevsy18gJffK7njYQbX7DvG7VddxNsmA56aaJxKxDuf5/Omv1ToH5Z524siYs8CGoOb3wHiUZqHP6h58ffmcH/v17ll+xQfm3gKjzt1N2+YuZdCnqCApUKFfRvqLFcV3VJK5va5YqHPrpMQLbtoU3N61OK+nYLTw4r1EvQ9gdDgZjDW1EytwM7pRbae7LO2D6KbP8wvqxZWpMlik3TIoV0OGD//Cpw9F6LTlMLSN1j+0b1E9xe4a4fgQ1ftgoVH8YcHbuL8/fP86FyLy/9mmAeFoleFbsGke/s+5ssPsFATHBuHo+OC1BYIrRmyNQd2GLz8bMX1+3Oe8O0Z2i9+NtWXPwvjOa/n8ec8n0y0eP+pz1PJNG/YU+VzJ7rUb/4mnSc8+v9j772jbcvqOt/PnCvvvPfJ4Z5zc75VtwKVqQAFFAISGxAQBLQfPET6+dBW24CiPMNDbANtgxJFgkUQJFSiArdyulU353DyOTvvvfbKc74/Tul7Y3Sbng7QHnz/XXvMucdv/Nb65d+X0tXX/6BU7Yf4If5F6MgStkhwkoxSnNAwhhlYAWU6WNiEqsSIAyvpFDYps+ECxSCipYfQcQY6IvAE2lQkbo/qsiIprTuu9+b2MWr6vDR6lkorxXYjXNfASTMeZBhhGphaEw0sLJESAfOeYuBGDEd1VskjMygGGcVmzEpRI8T6qnBLBqTaZNwakAYO3dSmHucIDJchY42OsIiF4tSoYn8SMxandFOb0dWUga1p5zQb13x6Roj05ukPncZrmaxqg2pqsJhOsrG/QobGSDWpKcgNMoLc/ys7T8QktmCmZ1LtJzxWiTBJWTSnaHl1rJxi15ok0BKtoTBQtIsJjtIYWiMMiHEQiYVthgCYWcaeiy0e2lRkbniEXCuBFLB8UizKHY3npLRlgcAz+NsuclNB0UgYGFVkLMkLG2SIZp3UeM7WKCVwEygNTB7akqNCyFgdPBWQTzOOuet5MAcDRwkuGh5+DHKQZ9hIqMiYrAPD9YxkMmVKBQhslFa4aYYjMh4tu8wZBpFvE0QTTFjL+HaKDiRtW2EIcKRCI9mZnmCoIXGlouVaHB2ZxdNj2NEzrIQ5EBBKh83+PH3Ho1eNiFOTic4aGJqciDFTzXhaZ61b5kRJsClnUCVjVYFOoWUUOJjfR96MuUUfJJdkNNLNnJ3wMAuHAEHLdNHaByEY75vkEwMpJEKu86YtDMAzYoSArrZYZ5QDI1WgNT1H084pqsF6dUtqwXAEI+ZpCkme8ZLCFwaWEdHJHPI6ZkKGnCnncZ2AuZpJOZVEWlOM1s9oaxsEHIxG2NyGQWENO8lIhcAmZOeqQdMRxFZGptZXqofZEMvmGCAIlMGQTIh0Di3WWxarOqZZHCYfnKXYTEk1bAgUg+IQmaUphiWEytF0oFmMmBUCMoWXwnR4kWqQ0cNCqQy0YLPw8XsOocrBsMKLE4b6AUEOfJHHAYoy4HgtRyAipnWMEYQEOYdznstsLKgmiiHZQUcjpDpH1zS4NrjAsBvj9mD78hx2rcUW0WPlmGJ+xKVds3Hk+nyfFnBQ72DSDKgO9cmrmL50CIJxiCPq4zM8NLvGlmaPycEAJ4LU0NiRIucLjrgFUqXpFzSJoelnLpc4ixzNJshnGk8oSiJif9bG7LqcrxQYJSUTHiumohxmFHzB9vxpJILhyKCuC1zI7WAxrjGkFikOIDUjjMjEJiYTDntlh9FqTKI0rO/5QEnJNgLaPQ8TybUXJX3TwHBCpNC4IlknrsbFJsBNXO5SV1Hr+Qznl9DSpJolNE2DvFynivaMFDJNrS+pNGL6lkNcSDBFxiaxTCc4zXijx6hzkbWiQd/RXG2FxBpEKLESyeZVzeFahkSgzJj97UMoDRdKQzRVnilZ54bllPG2h1aS1WpIJx+wdznC6trP1WH/fnxfArTqzpvJGfv4A7qMvf83cF/+SoyJ/3Gu6J8KISWdl7yM0foRfHd9pub5WuZR4QAAIABJREFUE2s8EmynX+zx+VKNX19Y5F17c5x72mS8IfE9j3O7UvZ/W2MMZTyxw+BtX9Y0t8J8c32jy86f+Pn/YTZIDg+z7U8/y3d/+ZdxD6ww2j7Nx6/dx3sfOMRrHtT89xsjOi96J/d1e9w8d5SNd/TY++OKv7zMZN/nSuydXGWXvMDypbO86bELvPe1G3h6ZTu/8sAx3vWSiA899av88Q2fwJTft4WaPzCkZ07T/9M/5vBmi4cvSfmLiTeRbHkpdx5Z5Cfu/hMUKR97hc0Hr/8jbMMhPX2S8Bt/TXTgAY4Vlvj0SyVnRj321lN+OawzGrn8Ze/lvN56BX7PBRS1dIGr5s+zpbtIY9dmuqsGauVa3nXJKqu1c3yiqviF6x1qq7NUVhZ595Ev8J4Nr+OvNlzkdYMMqxrw4de6/MKXfH7li+McfX2PRd2BBPyly3nEvpzHh+ZZesuDXP9UwCseO8/vrf0hwWSRYMrnuztMvrlT0sz7gE8xMHjDw/DCRyOMxCCYUPzFDRUe2NsjsEwYzKCTApuXNC98rMfmug+XFIiuCHh881k+fwtsnpe8/681U/0mTiWhsavMb079OM3KEh/45tcJvvddiu/5eYxjn+fkF5+lsuDyuRtdvjjzepyWw+7MZ3VplKcnUnacqQMKtGSgIcg05T7MLoAXP5dVNiT16Spnd0xweLvHM0OrdON5/nyfy+d2mPzMAwmXf/R2Rk8/inj/p3jFnv+dlXCFv1y5C6nhd64o8/7FgPjX34/+0h2Iwj+8qeiH+CH+LaLkr1eaTKEZbidUVA+3rxA9qLoDhqI6F5nEMxMkGkNBKBWh9JjuhQwpTZgz6BVidiz3mWgrbBUReRahFMTaJhPgJhl7C0epDRxMrdBCku8qWq5mVbssJ4KtUUwvhjif0nMhFyTEocZ+jnFDphKVpWgN8+UUN0spGSk4gvNxnvPWJvbmF8lSSWxlRBq0MBi468SuEk3bTtGOxhok5Po2VdVgZcghbwhMK2WhJuj7eWTbY16OML1ax4ozOnYFM4gRXgpCIIT+u56BtqzRtyWW2aXtKRIDihmUVhUz8zEnXBc7gZ3tsxRVgtNKGJcBzmzAt3M1jHQFR0ncJGUmbNGIn6vhCAiHBShBXD5BIbMoLitU5pI+Z0vl+s8QQCuxsG3BQLlsWkmYbCoSR2LY66TTMx0DI9Gczc3QtFI2ORcYLcXs6p2i7Q3T6EsSoakFBl6UsWEVuqGLaUhqVowUGqk1xYEiY52UthublJM2mVllyIqYl1tYlQbKjtgwtEqqNVu0T5f1KtLlSUQhM7koioz1fYbD9LknAmVCnDksxgWEBjOUrOZHmKZP3uwzzSIF3WdTlNLJFSkNImrdAIlmYLucL7uctjdRig3y6hjDdcGjxZ1IFIIIrQUGCoEmMQ0MNJW25ry1iYaoM5I18foSx1h31mOp8B2opIKZXoQRw4mSZCSLeLbgMqEVbqQwMPBiqAwEK8UM29ZcmgaEmJj5GOkLZnOaIDUgDSjLGC9TeL5GOJCZghVTUvIVTgQTKyG5lo0uKSypWClqHENwtmKxwV8nVQ4NzUotY96o4dYdogBiWeaEuY1d0WFaZhVXhSSxQZU+K7kqqTBRhrG+Mt5VKAlTXsBhOUsqJKYVsW8xwxEJFwoeoBltpGjAjg0MnZBpg+F6SqsgkDY4MiNUMLA02kyYy6fYBoTKJnASUiQnjd3k8xFbgkeohQELcZ5KeRFVSqnIjJ1RnzN+yBF3H9sjk21+gkZSX3SQKWzUDQy1/r6dGkmx4hzd8BKmo3lGWSKNJR1HcLnVIBN9KkbEQm+CllHG1DH9gku+36TF+ndH6HUdKPUVTUdyrJyHzEJHUDUD5uQGLrgb2R0eImekOCLmvGlSn0pIAsGFoT7Oskk2EJQQhGLdLwOwRIqhFV2jjJdGeFmKlyg0Gb3IIRoI+sUaUiRATM0JWLM1ZqxpU0Tp8O/eBwNwUs2iylEyIxyRMGF28JWLm2ZsailaQjNRbrAW1NibrDIWxHRdG2VJBApXpPQzh7HVjIEZo7KU5VKfUTNgvB8wmoQUZcSYkfDsiEOaakg0tgBfS4hMKkBF+kAeQ68nAySK7V6TpiH4VnINu8Uhdus6ibYpmwN2h236ORu3b+GL/09W63+C70tUMFX2+E83zHDxJ3+K1LbJveOn/sVnln707Wz/vddSCuDspOCVRp+vni7T2FLg9OQqa18o8Z7KgI/fVuRDn4kpL4zw9atCXrkWceL6UfYcapJYYG5NGL3X5uieUW7Zccv/9C5hGLzgQx/i/je+kZc/eY6PvtLhwG6b656BS7dEjOy5n72//1/pvuM/MN1oc8XFIp/eEfDQRpOJIwVu2HeAE6/5IIOjf8p7Hn2YD77kZXzkK3V+dfs5fnbLaT598uO8c+e7/8Uy+bcMHUV0f+NX8E3NH7xC815rC8Ur30+qNPMf/zOeV1/iT15m8OPX/xwjh+dof/LXSI8cYqlq8t9u8zi+0abkG/z0fMZ/TBa5y7+cP1i+kQ2dZT7Q+DgbumsUkgAlJakwEJbErJ9AJj5mGqJOC7Zpl+tEhtCKTu4MF0YMTolhfu3ZexnVFs/P5ggmruTXxy7wsZfavPtbS6T338ybPvzrHGo/wzfP3c9Nd/w1lWcu46vbfpGjm5c5P/FJ3nzPgNKpHtbVMXpTwlVZgRu7mt1HusSP5WAg0DMRH7lumIc3BeTSgDd0Mt7RW6Cmz7FoGtw+WeBL2wo87wi85XuL7LKbXJlavHstITyexzAVhat8fnvqbdwbX8YHHvwE56pD/Oat1/C6Y4/hffLFbLwvZnTV5A9fuIE7Sm9n39llnrd6gkvWTrO5u4ShFXNDgs/fIjk8PkSvdyPN+HI0DhYpVyQnuLn1NLsaF6itthi7s861d4JyBfXJHN/bVOTbuwb87q0p1WtKvOmeVV71Cz+C8Ztf4R2X/xor35vjnt4xHtwEu68Y5UUPNOn+yk9Q/shXftDq90P8EP9sWKKMsNYgWZ/H0aWI0+WMrSsZWQlm4hXm7ElCK2S+UOeKNSiY6+vxa1YfJ4M4rKCBfJIhMkkQDXOwOEyGQVubLAxsVCgodDVT/Ta9kqJvJlhJRqMIk22DnBKUOwldWzIZxqxsSDBWTPr9adp2mZqxyEVzlNloiQm9zLBM6D/H7ZWh8HRMJNa3hVlKI+wUHYFGYWSKsozZ3B7wTK6AFoqin6G0IrUSphsSvwyRsMGIODLsMzNQOFlMIhWdkqYji1jKZLJxkbXh9SoKz4Vo560ZMnuFUjshrUYMk+J1BozYKa7ZYbgq2SECFsICrgpwYthT9ulLQSZruFadNC1jZSllO2Q8ixEKDJWtcx6Zmpl6SEV36TkWpZ4iNHIE2Dg+FMOQTAoOV0wWrBpD/Rrj4UmE0GwfxOii5mxSeq5NXJOK9SqNKzTCUnQcTb/YJEfGiDtgxnPIGxkyshmd0zSqiqy8ri8DyyETGgNFs28TxCblpIutG/SzdXloAT0noh93WHFdcpEBmEQ4zERdnEjR6iUcndKU6hovFWTSIEpKGLKDRcZUEvGEW6ZdXWLQVDy/fZwzOQhdm65p4VspkfCpFxMOlLbRNaYQpkKoGgXRIzLhrL2dlAwhQAlNbLJeqnguo1/wFV4EFRVwrLqVDc0LqF6KOzRPVHU5kN9J1TjJjjDBeK4t1PX6BGjytmCpAqOGoGzHbAlsij2LrgGW0GgFj4v95FhjoznHOXcGmdisjqzSqUsKPQcklOqSK0RIf0zQ6RSJwhw+PpuzlH3zPR7dkzIoLKP6NsqwSFEIpfF6KbuCiP5MzLFhi8TUHA5mEGmOtlHjZv8eVuUES5UG58wek3N5HhuRzHR9ztpjrJV8Tk9AoVMhkhYCTSYVnYIGS7DN9xmRJgqTC6MpF4smVwYug8wkcDSJhJYDw74BQrNQToncLqO5ECkUA5WwXItYEPvoGqNMGydwciF6YFKba7F7UGRhpwBDkVZTzGBA6jj0zBJtWaKmfFw3I1eNWC0qzmJy0V0Pgo4VppjuZgSZAaaigyJ1UppEnC7BVFtjNmNKymA0DIg8xfn8JF7bReg6baPM6FCDmX6EZQkOjG0jM1YYXoXqSsjxyQqxlZIIhWa9HbCPiW1Lhq2UeVuzWlLMrmUMRI6GOYymhWMEzDoDhnXKs0L/3diHZyiMOCbSJVQHGIN8mFJpJTSn1pMGiRBckJuodpsMNRo4acrKqEGKSaAtwkSyPd+hX+zR7QsmxABhDUiERWxATYcY6bpuSy1IhYFJQp6YY3ov/fIcQzrAM9f/k2FFjDRShkREbNq0zSqhaWKmHf72DYkyi4KZsttaAUdyMdiy3m4pNWUZM8AlFSYSqBuj+IZPXocUlGS4oemYGQ+NjVNrVv9BG/R9CdCCr95O61N/RtZsUvjV30AODf+Lz3xkacCm1ZDRDqztUpxQ02w8sUT0c28l0p+ismyQu7uE97qYA/sk1x5epHzqUoT5FEsTDW56UHDgCtADg+dHsOenfuEfvE8IwfS7fobyr/4fjNaf4bNbXs/Wpc9x6x0m3yl9kVe/6H3EH/wtuv/pPdzy7QH3bk75m6ssrvt4kfzmiOmTv8fjt7yBS+/8Jjft+RYffOEr+dV7Na8anufzZz/LdeM3/t32vv8V4X/so6izZ/jT10n2WA4vfNEnQAjuu/NRfvTpv+GhHVDZtInpD36K7slFlmqS//bjJscnQeqI2cUd/NG5J7EWNI+ubmVDb5mf5UsANIpQH4Je8lzLzyBDZpAmMc18gVZuhHwQEOVbHN7gMCF8dnYzRtoWl6zVUQLOdMdZ+8UvInZfx/tXD/ER+U6+3Ba89qH7eOC3/oRb3/NWNn37DzidCh4e7fPx+3+LL8/ewjc2/RJPvuxefvHAd9nxYI4f7QzY8DxJfX4rwX3HkJWEL73Y5Us78+TigB9/JOaq00UueJv47fJLeLa2lZZXYqTf4VLrHOH0d1l+5Qqdx8tMnDQBQX4sZPFGeFP+DfjuEl75bv5wZ0bLnkcri8dzM7zurvOMrAl+9+Yb6Aebuf2+38bLYrTQKCShJfnki0zu25UnWX4F002P2+QhLrPuZ69YYotoYLkKihCO2wRbHMKOJG6apF2bsbk+rz3r89rvavxxxXe2w9eu13zaKPP2D7+NV7/v4/yf13+UubtezemszWef12XnUpkNT8yjvvb7yFf97A9U/36IH+Kfi0wYWFIwKjrUgdQwsUTGigerNUF1AHviM6zqJQprIZF2aE4JdobLHHTBimA6KzO5kGIlsGxZ9HJlMC0SAT6C0qpizaqy7JWZFqcYCIdFUaUi6lTMmA2Owm86hMJmIG2QMW0jwrEUbVUl341p2yNooJX3uKySsc2QnFBifVlFSxNbYwxKznMVJY2daGaigAVPsfGoRtgGsXQo+JJuIcfGtIW0ITVgpGMwlQiynKSRKZQLG9US+4NlTtuKSIKZtREM03IVC0XNVMskpwRTUZ8LI/OcdwQTQcSsbBCLjEGcYTkZKzmDpAhxlGPI6bG5XCe7YGIoyZIlMXqSchKyd6nDbC8mdVKcTLBxpc2YY4AwkWjiTHC8ZrAzTJGDFKFj2t6A4SDD8xN6hkCmEplILpR6DK0qPJHhhBBpUGhSQzAcR5SslMSAlpUjtAIUGcN1xUQY0Zk0GNg1Jpw1Mp2AFtRaCUEh48LECGv+DMsj8+yyWzRzk5woTXJJeIhQwHzTJalBKmw2rQ6YDlKObbSZ8wQTdomq4aO0oNyPKdmgDIOGJ9FJnvPGLMqoc3I0Yl8n4llrA8fcIZJ8i+5Eh97JMoVOh3xgMucJnHwXQQM/s4mslL4hKTzXejiwILAzSlHEmmURK4mnBC07hyk0Velj65RVR7GWk7grOdCCXKTo6SrKtPCkT2DGlBKXxUJEsmrixil9ZeIFMBYnaFtw0Zmmo0NyuguJoONViM2EtjFAxjZdMYZ25ymokI7yCEyLUkcQCo84chF+xmBzRCuVWL7NoQ2KsKK5KhxQMjPwVrCUpJPLSDyT5XASs93CHaRUWtCzAsySoDMdcpk8Qy/LOJ0fYjgMGIRlAqeDEWekhs9IOI8VDtCJQ33CR0o4acyiEzCeS+r2cpKFsqRsFEkMRcnTZJUBkYCFvIE3b6Fkikb87S4Vlm2NQYbrBLg6hVjQFCamNWCp5OMEMZtzdXSsiBLFkq5wxNuGkRyikyo6FMkb/XU+L6Hp2+DGNhemp9iSnmO5HHI4D+mSIsVgX7fO1b05ThdcbggaTBgZD+VynLISDK1ZLDrkvAAzsAC4dDVhsp/RyuVZTYfoF4q0dIaUq3hJRlEEDCKBUCky0zhBhFkJuDM3xZtbqwgTXJXR0xrpG6zaM5j2RapRSt5pI6TiopJE45rj2TClQZuh3EXKfQ8hIkIlqAQKLTSmG7L/XIdaMUErRZRBJBV2BKtDA3pphxnlkFU79CbBuFBmci0g25BQMUMO5lwaZsxVIdTjBJN1qgZlPhcOCsGM26Nl2s8xTEJiQGArOhi4QgOSvlGkK9fwnR4iqGIkmk3zEaeqeULRwhYZAkhTAy/W1MSAZ9yYqQByMsWVChuf1URQDTtURYJvFgiUg5V2ERnYar0Srcudf9AGGR/4wAc+8Pc9HAzif5mFew5qbRVTpbjvfi/OjTf/q5z5nb/5KBPzxxnrwJYr69wZXsnUuRXOve0WFk4+ym1PaFqmZst5zZ/cZvCSZxX7V3zqNxbQR0NKgWT52oTtD5qsVipsf99/+UfvrG7cwPHv3MG+cy26MyYnNnpcc7hNmiZM3PQa3I3bUL0u4tlD1FyLb22F4S6MPWtS29xjbEax+lTIpeczvnnTPC3/Cl52ts/Tmwc8Un+Ml86+5p/d6ui6FmGY/P8V4/cF8ROP4f/+7/K9/XDgCsHv3Pgp3PwYURjxzB+/k69fFWMieM1XmySDHn/4asGnX2DRLCouf3aG/3xPwmsfvkh6ziLoOQxXu1S3DBi5pMvoZV2GN/uEWxVLl0TcfY3FZ641OTEqMJVi40rIiN8jZwSsjk3xlV1beWR/j6tH69w063Ngb8aTrsv+k30G37wTLQT21bdy7dQLeTj+Cu2e4JpHj3Dg6EN0B6fZ8WhIbtDi1DVbeeOh+7n19JM8MLODv974AmrWs2w5JFlci9mx+Qj+TMrbX1Lg0JDk5Y9nvOqxjLmSyZ17Uk7sWCM/eZxtztNMRWfQfcWRaDeXhYtsvztkbFEiEDx7ecr7Xu3xtWGHrHgW11nAFCl9M8NZ3cPO1RleeeAQ2+fhj66+lUsu+vxv89+gsyvgdLHGeCPm5ITDB9+iaA2XeUeny8/r7/Kz4h5uNY6xXa6w6qTcWfD4TLnE79Uq3F7xOOHU6OVeQpa7itx8C7p9jJEy7o5pZDtg19GE257S3HAy4IIX8lcn7kBUJ/ix/e/izgtfJhSKw1WDW88kZE88g3vrTVBYT8z8e9DZf4/49yrXfP4f5oL5QeHuO77OpL1CvxIjDIM6Y0wakOHjiRQ3VrQLCSLVbDN73Du8lxV3mH3pIscdgchg5OIYXS/FEl0WcjUcmZDzDI7mDITMuHluAW04nMuV0ZnJdNilUzFwg5DRhkm+7dJ3Ao5NKMpGQiosnEHKhrrC7OXpuhaphIELQz3FdK7DWjUl1GAkY1T9HqYM6ZWrjGdNqqLOcs5hTRWxdcTEmsTLNM1KQojGsmEyiXASSYAgLqR4IqPakTgBdIbh5iMDSn7AilFk1c2BTDCSAsODNofze0jKgqpnYGYwcFO6Tp69IsCxQvTagFw/xiiFoDSOZRMLzZHuTjaZS3i+wnYVF0oljqUTOIUG0g65NmuTCU3LgkWnSM+p4eTmaOUSlgxJzkgpaM3YQNHMwaAUg5sS9yz66TRToY/rQ7NmUav38ARMKEHDsFiTkmIoGCJi0a1yrgSzDBgJBqRrLiIVyFyCzgywHUq9BDdK0LGgYCTIQsq8nmTVcAidCOkqam2X07ICwsUzGwgBD02O4MUw2ergCYlBSObGDOkST9mTTKml9WUjDlwoS/JdULJM3kgI3JDTQw7dYpuuKBKmBTrFmOF+xnDHJAVKaQoOKEPjdgWL7iamvFVOuVVM6WMqF1QZ07zIgl3GVQJDa4ZUyr5kjjVTMFIK2DJYoZ8pzuVrhGqIOCuzqbXKXGGUooxZzgnOlDRXzdXZuOJCP4+bxQwMiacyNrQT8qnCLxQRlom7orCbeVrFFMuMyeULnNczJInFbmcOB+imBaTvY0aC2kBCYiArIRdGEySS4prNuSlFyRowlqYIoWnYBn2dx10pkXcHGMrggp1S6mpCauiCRKQp4WhELRZMRRHzRpnYdCmpjH5hhbFBiJE4+MpG2D5DPQhGewQFG50NoxLwVMrYqk8+6qK0RWBnbDljUjR7PLRRE0oYioexYwE6RklFzlbkAkFDGuiphNgqYKmUluty2vO4ZNBh+0KA120zqkJKUZdj4RBH7f0slVyK1gJaCiZXPZ7x8kRqhL6XY3iwxlowhfYNqrk2gS/oOLBXx5Q8i0ozphIbTJltholIbYtjeQNpxZg6I8El61s0yxGGaXNduoCOJaZlcE5swHEyKqJPkJkc93YwnFuh0MtwMo/tfpcFd5RuLgMZsnuQEAqbw/kcq/mYkfkSS2ICCjku76zQt12E45MNFHbJYG4wix228FUEiY2pNNuX17C1QOAwEALfMCl7MSYpLcqUmuCFCaeGY+xY0O/VcMyQheEUbxAzNbAZsTNKqykXauvt6D3bxp1TeG2Tmh8QYlDTA8bSLiUjwcky4sChloQ0khKhkeKmMbVQcKbo0HKGKPRjIgl2KvBkwLKZYyG/lQVvlKI7T60OXV0lFjaDoZjHqxk75TLZwMRAMyjElHoKey1hWtc5WdhC1ypArk7m51DK5Oy4x/W6xZUvePvfa4O+LwGaObuR4Vf8CMnQ2L/KeX6csnr7BxlpREQubNkW8cSRaXQp5L7dKTueucC+0yAzmB8VZAWL+7fBbXMDljY12POIzTPPr3JShlz3rGDtLe9lwyX/ePVKCEFSHady510cnV3lsfQnmCw+zP5nJQ+Fd7LtmjdjXXY58SMPM36oxbFNKU9vNHjRQwLlSIa9c7Rqo9hn1j+sX3iBZvfjJV6im9w+GpBEba4cu+GfJYt/C06Z7C1gX7wP59yd2Ge+hXPhHsylxzFaZ9ArF2j82u/S8CJ+57WSN9X+I225n/vnH+XDD/80z8z0+Mk7Fdceh8OXa373NUP4RswrHvT4mW8oXnCiQSUesLbRovHmX+TgW7fywZnD+EO7qH5LMHe0ymMzL+NF7kF21PZwxSu/xY+JEpvPfouHnRxfvEXwzKxEpnDJ6Q63HVnk6gsG85NvoPrWT7JtaJo9na/x51c6RAPJxJ1P0DlwH7mbX84LZl7MHclfwZrJnjMdOsE0J3YYbP7QR7js1rdT797DxPwCtz19msbEKZ6uvIizGxpcfSjk1EqJHZvavDrw6S453LXbZHHcoCQTJjd4/Oaed/Piwiw3ypQXpce4Iv80RAe57Y4uQmrcWPC5myWffr5Dv3c1s2c38kvONby45vBzpw7yaOP17G4tc/Ohg+w/B39x6Y1cZj3DE1ed5iPXjTDxzCzXnV7i7v2ST7wy45d7DX69vcj+sIdXl3TPeTSPFPjawnX8dPn9DBaGeJob2GxeIEPzeDnhsfJZgsIhToxt4+SmV7CxtQbHTmNMbKL1M2/lGfkYs37M1jOCa49H5O69lwdO3M11V76FhwdP0SmlLJubuOp4C+P4nZgvfQsI+W9CZ/9XxL9Xuf5bDdA+cf+XmM8bmEKykz6GrJKYLpPeIgflJJEVE1sw4msaRZOzuRJSWUxHMUc9CSqi0iqBG2GrhL7lkjM61Aoh580yXgR76k0Cw+aoN0PHHKKsBxyoFUncNmeiF7JozOB5p/AtASaMRgl5oTFUDiuQLBYLDLt9ZqqrzPaaVKyQZl5yxnIYDlxkMKBlGlwsj7AtHlClQd/TLGMxvJIhOnkm3QFWJWItsRmoMokDSSZoiTKHi3uwiSkkipyp6FddLjvbB6mZsyr0HANTZrScIgKLOHMZ1HJsWVpiKM4Ysvo0rAxLeBTNED8QGAO4OCIZ7mWMmSlraoRFXaYIyIFFzkpZKjqsWS4DL2AoStnST6i7kkBDX1SQhRqe1hQyB7EasqGtqRdhUwhOLmGukjGXM0hDjdMZwzN9XJmCq8nXU/JmSlcWOJDbxSUXFqkFKW5Jc3CiyPGyy5YsIGeFRH6FRrKBUm4N6UvOlQWxmSJ8TaWvSHIKYUkumEP0TIei7jLRSSn7ghNspm17TMmzOJbi7EgBT4Tsa7VQ0mSok1GKI1xpECqTw+4mnKyFmaQsFAxyfYMsl7FclkRRnvM1lzEipJ2RRAXWvDxuaLGl5TOc+JiJpu8ZDFxFiwlW7ElmjRbVKGAqbCP7FcqpYvfyAk9O5zBExuXmCnuzFkUV4+QShtZiqr2YdlnTyEuMzggbu0sYTofKIMNXHlO9Osujkl3NDoQFRKxJDQ1mhJFqMqE5MiUwMhMj9tkYBJwa0ZSyAaUsY8UZpzzQ6AB2FFYomhEraRmzHiAig7wS1I0qWbHBYlVRtCy0P4QcaVPtJXRNj1PlCl2ziBYSNRDYWUC7EBN0LVpmjYQiQzKkbXo4HUGxqXETyWlvA9qwEWafXcvzWJnCUA45O8I0QlrSoFTrUPQsIi/lfCEmEiEFX5AZPXJWTK3tsnUuYLmQcnZ8fcJqOshhhxrPigkxiEtVKLUYjWKWHBslDIbnDVaGIXFCdjQjssBBRhkTDZ9IwuNjwyx5DpGdUpar5FONE2s8ndKwXHrFDKfvkKY51uwKm/QiJzwLY+DgOYqxOCVKTNzQxUhgxB4QmBbzJUjNFEtnxKpEK9MoM2HKTdju91DoYuxpAAAgAElEQVRSYPckc+Y4e7N5hJFxypxisRKTOl1GogQZhUxYLS4wjhOlKKvJvnrEYXOW87kKN2QX8ToOc1YVx4wZ78UMLIOmE5KMR1SiiLFWylweVkqawiBFCIsN/QaWkZG4koEwSAzJmOMT1ysEYZnEhLoXMX0xxU0yImycJMFumQjHZQhFYV4TRoITU5rRNbB6iiVdxQvy5HQbmYWsDQd4SQwqR5gVsJuaSOYY0gMiJ8LQKRKDuWqGXwmYamakqcmz+c1MxAG+leEFElMr8l6PleYsjkpoGWWOj9s4lUVGkphxC87kLBbKGcvaZmbQI3QjzudHCUw4MlzBC2zKso8aySiHDle98K1/rw36vgRo8K/rPDx4poFx9yfZdRH622MOVi7jeQ+eYf6ma/nrwpP82BMBlaaFnWoevTrP+5oL/OHeAm8sDVh+Ko8TC+68vsDzDwwgc9n+Gx/Ctox//GKgvGmWE3fdwd7THfLVBsvT25m5OI9cGyBbyxSuegH2NdcT3fEtrjoy4AvXSYohbHjK5NymCfbXTtHu5pk+I5if6HL7/u3c9u2AsakmX9BnuXzoMsZyE/9kWfygnDLZuYB38GPk7/nP6AMfYe7E3Rw7/xRPrZzhwMoZ7l08zLcvPI74wgGqayEffKPBtLD4G/0E32t8kWf697BnbsBvfDGlPIDfe/0UT4+GvOG7Ee+4K2PncszQqE/psi4fvXWSne/6OhfG5/ivp/6Et83v4dbPnGbeqdF+84t5rfFnpOOX03nFZ3FPfhXrq79M8+4hNizDAztzHJ5NOboDju/RLHqSXWcSNh08xvEHv8Aj05ezNDnOOw89ztolMX+xIc+lTzUIvnI75459nrRhcuGKhMq8wZjvM/aLH2XT9n3YpkHOG8FMvo0MU648H3HroZOsFT2++LxRbj7WZm6uRGE44UcqPZ7qvZ4XnN/Jy+84wWN5xR2jHa657nfobn0Z/90zOPbdc7zsPsHpjZqpFcHXboBHt1zJxcX34Mg6v/TYHWy56zAnzkR8vf1i9kV3Mb1c55oT8NVL9vP1W4/wvS0+yfLz+C93NHjehUX+6npB/eqQDwc5doxeTbD15cS730i29SYOzYzylZEBF/Nz7G/M8UD1Zbx04RGW1m4hX0jZdnGR/WuKByZMDtdWGc0/ysXaJM+OvYSdZw+Ru/N+Ctf/KO+5scfRvQE3ihRfZ+w5EjJ6z+NUsyrHRgLOb+gy05hg5GiTojiIVQTnwj2IM3fhnP0O9tnvYC08hLX8JEbzFCLuo50SmD/kUPvn4ocB2r8uPvWd+9hYD7CdhMlwQE+XCF2JMEPipkkjV6TulJkMQ84XNYt2DjfLsydcQvcFkZXS9jxGIoWNpFMKGBZ9mm6NBmWGGjAV9Ll/qsZcqUY+SagXelhhDy8OWbY3UB4EbOY8XUdQ0orZTkLHcRkgGCZh1SsxUm7Rs6HSSahaMaEHa4GibPU47toMpEYlgi1aUTCahKaBt6wpLhbxkgzH1fg5g+WwgtMuMzKxzFCQcVGNsliscbFYAqqMqVUGpmSkDpEhyQopvrSQhoVnxmgr4ERhB1IZbF1dwDETkkrEfE7hWxY7OzFRmLEqhjhTG2aj36YmwVclVlWVSElGWcO2TDp5OGkNk1l9ymHGNj+hZ1r0pCKUBVplD6sRMd5swECQkxFOYJBzDYp2hGGk5KyE/EKeebfMmG4zm+8x3A6J0gTThI5lkW9KxoweptKcL2jqExqBYq9q0xMjPMV2tnCeSCX0XQBJvrO+6bKYZBQzgeVIzhULDBUE7cCmmgbUoxLHxmAsEYyxANIi52vioma4HbHJixhKE7x5m7aZkWQuWUmQdiJKnZRmTVPxbZoFyVJJM9A2GxoxBdFmMvXZ4zdolj3KKqI0CCD1yLRBp5Tw+LTGlzn6ahM7aLFabpPz6sSDcYo6Yzxss1wR9FyFbSTsGoR4WUSvC/kYUJrlgs2i6yF0HiOLmDTabE37uGlAsdriimyVLHDoZC4qzWNoA4w+ylL4Fvg5iGKwrZipZsapqmS5JNjWTkiLOcbjAT4OG60GThJwJhlGLDt4XZO8CknKIWcqBtJNsIWk6WoGbomNiwO2ipSeZzLAQirNkpuRejGLZUGqwDdtDk9UyMiB2WWP2aFlF3nS2ELJTHBMQaXrk6kemRPjJQ4rzhC29qEwIMtZ1Miws5SUlL6M6NoZpg6prlWJoiFEauDnIo5NWIjUYCy22E6HIdFnXhXJPBfTy3D8jFP5Eoe8ScJwI3VjjEQMURxkpKFLmOWZCnpMZBE7qz0ulCyWbINa1sNWGSMBNI0KaZKnlr+ItCIYFMEQ6DDEdyKcECY7FhN+H89K6UVDRMJjuOJjiYgzpkniahytqLHOMRcKieMIRsM+S7ZJB0lL5blFncKwBny9toXlcoQw6uxcVOySXQpknLKmWMlLxqij9SSraYWC02Fnfw3fq7CgyjRzJlODgHLsY/QTaj2HpeosF0UF226QWBmj2mdr1MRKBAYJiRPQNmwyTDYkAWls0xYGZ4YTylmC6ORJnAxbKnIE5AzJlPTJmevk5/3UIkMzuibJ+7Do5RhmQM/osTCSMGspTGHQ9wssOYrEipnzLGwl8E2NYRjEXkC7ICj1E0oRNGWBvihja4kp+hiRxUgQIT2XuWgSN80whOb0RIhj99kyiCn4Bj6wZrnUjJTxJKOTV5x1RlHCQFopG5dTNvXr1Kc1m85r9rzqHX+vDfp3GaB9+RsfZ2juMDN12HBpm6+nl3D5qTn8d76RO4Pv8RMPpCSJSauoOT81QylbY7MC2U2ZfdJmeVhzdUkjzxY4M30pe1/zsn/y3UII5PgM+W9/h0ObmxzyX8zzxh9l6qjBA9XjbPvux8g3nqa8XVDSF7m+F3J+Z8Yli4pCI+DoyBCXzi7RWChw6TF48IpFHh65kTfe1eTo3oADa9/jto3/AUta/6T/8/1wyrTWqMUF4kceIvzin9L88w/R+MvP0vn2MTpPKLrHC4jjHqUTDuPHDDYflew+IrniiGCoA1+4SZCNWfzUZ0IObZJ08pqffSTiDd8RzI+afOQlJV75SIMfe0BR6RuUNwZsvrHO0uaM9+7cyPte9Ak6cpEPPv0rvO3UNC/+4gkODm+l8raruK35RyRT19J52WdwT9xO/JUPcPb+EToefPhVec5Nxby8M+DdBzPe9NMPsXH3NTww9w3mxwU7T2fMHniUg/4cHxsf4ScP9rlmQ5vfuazA7EXF1FmT8UWTtcFWLtxUZ/qUIPvuN7GvuBS7Mkz7l9+G0Yvxz9lEscHHXiq5+7KU5kiX07t2ccXhVeKzLmcqed5TuJ8vu7vYXS5w0/lzuO48x8//Bf/X2c9x3aee5qZnFQ9do7n8kODoLsW9m1/PkcELqKQ+g1yPh646jtHbzLalmNrEUwSR5KbDmi9fvo2vv/gksTC49sx+3vPQY0wvhtz+QljbF/Oi6/9vNjz/N4m3vZx06lqy4d3o8X2MbXkBV1/+ZkYvuY4np+c4b36LI/JHuKZ/gksO9jg4exUzrdP8zJcVjBh8b9zimUqdscqTLI5uxLR3MHXnndzkT3L7XpvPblA8vzHE6EyTNQsufSbi+Uc1CzWD7+wPeelRyA5d4M/yd/OV1Sd5uH6Yx/8f9t47zq6rvPf+rrXr6edM1WiKerFkSy4qlm0QNm70XgIJpiRwIeG+aby5JOHeBAIhCblJbl4HSGgJmIRuirFxlxt23GRJVrH6zGj6zOm777XeP0ayiiUMie+9IR9+n8+Uc/baz7Pas/bzW2vt9cwe4MDcYeZmnsIYf5Dew3eQ3fdNMts/g33kTozGUbRTRGV7Qfzk42h/gV8QtBcad33tO+SkT39tlvGOmGNZi+62IE5r7M3bnDcCBgkZFZGdBatt08oVSdIOaiWfJdU2RC6Z2CAwEhqVNvXOgLqbQdcK5P2UjqTJ/lKJlu2SCRVhpoFWmkIc4zSKgERlKtQKFkviORalMc8IlziySe2UTDlkv7GCtizSV5/icG9Iy4WBfYJGmCNNYxZOp3imS6cpMM2AvfYS9nvL6Z+NyOiATDYmNeAoeSqmz6H+kI66phUVONpr0sq32SzHqaiYHcFGetJhMGLMGEJT4imXztgna4ccLiylLUwur+7BsULmSoJIKcqRz5rUwwoTJnWe6Q6LrGozXlHYYZbptIRjK1YZR3ERpIlGOj5pM6UUJqyJPTLZmBltsC7TpirLZJsBtmgTJA4Zy6NpZXEdgWnBjpKmagvqjVWMdcVkdYMBETIbKyaygqmcpFgzmTD7qZVTliQ1Jpz5ILcrJ2KW+BFNWWQiLlNJJ2hbKVJJsj54hiIwNb60sGSZkeIC7KzGEIIJehlsTTBjmRQ9QVegMN0GShpoDbvdNbTjhSyxZyjUQ+K2CQKqmTx1J0P3bB1LabSqQLuDuY42sSGZ5HyStICZHcOwBcpJmbY7IFWsblcRtTxKmVS72+SKAcdkP4VagbXNMcYKYIsYEXRiOwndxgizLlTaPpaEXi+L6XgY7RTLE0glqdkCEcD+/BBx0skS/xiNbErqxESdHuUoZVaZHM4vZTFtxmUPbenQLWYIbGhom86aQpiaRHXg2gm9GZ/uVDJmdNM32SI0UoqFEC1jjrRN8nM2iTA5WqgwV9KEHS1IBbFtIgKHi6t1CrMgClBuKiZFnlSYjJsluqI6C8cs/BxMdIQEqkIzn+IkU+QMhTIrTCdFZKiouTH9UZtaYY56VmL6ZUbNRVRzEflilbKV0D0jOeomNCJN5vgBNdkAYimxoww1J8DNtRiuwKoj80dHDHkeWV+xJ5shTEP6xyTDdoa7B8q0VTcq6CLOjlMLl6HTHDoSaOlhmx7oLPmOFoecLOOOQiY5CqpJJRCMWIsY9OoUfI+0aLAqaVE3BV4kyKR1pNbkZMKCOCIyJaOmINGKRdkWiRuxyzIRlkYCncxvZS7IlEm9lO4oZF8h5IhTZPVISH+2yYxt8kSxgjJjUmUyHa9jTXuYXF0yY1SYzptguFRiGDF7yTDJTDFgIFXUVI5pUUIpk2HVzaLZKUa7HHQIc3QykIwxW4BlhAwSEbVNRKoZLzrMmg65WNHn1sjEFgeyJocrJbxoEY4HVafEYL5B0YjoascU2yldaYjUkinT4WCXoticP9TFc2wSOyQxYs63fRabAU1hUjUkGTOmjUGIYKaUUEg1Hi5Vu0Cj6DGThc62IE5dWiJDIZ6gSQ9CxSyxpklzJo1Cgzaa7kBjt1oMqTZCQRhAELuEUqPdGCNRyJpgX8VlOpMnrz0KrYAcDYptQdOEDa8+96GJP3cETWvN0a//dwr1kEII1QsW4O2vU/JDHn9JN8809vKmuwV2onngEtgUhewpK95uVDn0cAeRAZWmoDIeUH6Jz5HL38uqlcvPqa8ZN3hy9nF+NHoLd+74Z7Z//0bGf3wzMnBZMxIzYBxj19JL6J0+SueYZE8gyd47S2N7g9aYgxyzWXFE4BZSiuWQziTAk9A95OEdyLJyWPD9rWMws5a3Pj3HN9cEeLX9bB647v9ovZ4JHcfEjz+K/89fofnnHyf48peI7ruH9tGjHDNiDncY7BzK8K9DPTy0aJAnVp7PyMatpFuvp+Plr6Z46WbCRx9mf5/iey81+DXnl/iTS0eoZSP+/rYWSx9x2LamQGDE/Mq2gKxnIxcrzn/xKOU+n3vDPO9f2c1vVidYt/3v+UDjQa592uQ1N0/zWO9qLnlrJ5smv0S0+GoaL/8c9q6bGLv5z5i7t4PZAvz1qxxm+0J+66k2G293GPrwp2kf/hb79nwOo9Vm0/2Cg+cn6CxcslOz+ljEX2ws0nNQ8t78DF/cYNPyTZZOaVKpwY85sCFlxR6YeOA2io/+DdGsIjngsLdP8JdvyLF6Msvvfb2Nn5G85V1/jnfZ5bQfupvevZp7yp38145tdBcPIJZEfKUzz9cch9/+RsrqEc33Xq64aptkuk/zyXW/w6zu4f8VN/E2eSvJZB/X3Wdy/YFnGNlYZTR1uPZJzZ1rF7No43beOeXSW82yddsBumbh4Y0p3z/fZHDU5W25IUS+gM50npXkdLndvKTvpVw1uIWocD8/SCwKRicfeOBWHi9fgb9ghNfcnjLU0CxZupK73SZPdMwS9h1E51ax9MljXLrT4551Lrcu9Vixs4M1s02ijQl6SnL1E5qyr/nSFXmu3B6xeTpm/TabC58wWLtdsvgpSeUpm2RXjuEDBfYfLrNnooPJER97z6MUdnyFzNHvIFUbVRpC2/kXvK//Z8EvCNoLi6e/87dMdnosnguodikCkWHVoQgz8FDlhFzNotBWICJkMH/QQiNXJB9rSvk5emc8mkmeHmICK6GRS8nIECe1GTii6fI9RNcMzdTCN21qrsTGJ0RSjGPqBZvBoIoTOeRKMwyOhHTXwG47jDkFDGEwWsiyrtXCEbDbNqA8R2ylVI0OjuRKmIGg4IFvZehSCaXJhMkum1nXYGAswsuk+IZP6MxvcZruLkKmRl87oiQSdnflkEbKgApoulmelIsZDI9S0AEiFdTjHsZWJnSLKlVbsju7iJ7mNKu8Kew0YXefgaE0DppOqZlrS47aBWZLFrERMWctoBSDFxdY1K5TqvnM5TMMuwN0BSltp8XAsCaxK8i8IjetcdsGsgELvAa1Ykinn1Box8zmHVSmk8TIMu626JyQFCcs6pmAxGkhnITuUSAVjBYN9lR6mbWWkclm2Ogf4pjrYjY0Ty6F7naFbCjYYSwhzwhmEpEaUGzPnyrn2yYydihikOYhb8e4puJpUSZMHTKRR2xY9DZiKNZRej7u2Gi2n+Vpk1o5IO+3MOYkhtJMFXPUyNLp1TGMDJ2xg06gaMyycizlUHGQSBfImyPMOL00RJmG6WB4inUzIWYT3CQmKvm0yymJLrJiVDEQVxkrxwwdi/DoRFqCscIcs4WYjE6w2inSG8Szs3Q0ZzEDiRKSmgPlJGE4n2PVeIDQDqbbJpYmibbQVonDYgm9OU2x2SCQGplolok56o5JGLkk0sZJJYICpBLTCBDaZRbBYNygz2yT5iQ2IcOtHG7LoGUVqFZaxJmYjFL0zJkYWeic1dhVi7adY0QMccjux2gLfDQTHZpNx3wKUYAOshzNLcRzsijt0BFOUowySNNmKinhhD79002mXJOUiFKuSWKYzIgs5zvjZN0WHZGFk9gcyEqits3KqZB8JaCjrTATWBzEOF5EV7FFnNHkZyR2IuifSwnzkn/tMgFFaTbDv/Zk8NyUlllAGTHG8bGgq2lSDJrkIh/fNShJQasrYtJ0GbVMnMjBFJLB6ZhZu0JH5JFYAWFWko8M3CBl1jBRdo2sAlWIqUSayJE0e0KSNKF/LsIvKry6Se+EZrxXMpRETAgTK1LkpvtQ2TwTdsyE6KBWiehQRcbdHiK3Qd70aJGjP6hiBh4Lo4g4djnU04EQmu5QE5kmoz1HCTIea+KQAWeW3ZWAsU4fpw3ZKAI3JUWSb0g6aRJUQgoJlBKNlwhmHMFEEWQMfkdAxolxQ5eDtsNM3iUlg0mNUlOSlFzK1AniEmU/xDYTpunCK2ToUG2aymDAiejNN6nlE/KhopJNmLYWMpGW6LAisqbHXOiyr0dzoEth+R0cMxfR6gzocOZoIVk9G9MbK4YzLuXQo88Pmc4IOmgi7BBlQ9ryMEVMoSophzFRYEBs0qgkyHxCS2Up1CHQJiIwmSpWELKNkC38rM+CuqDpGGz+CQTt5y741j8+fBfZVp1VxyBaHLHNvJTr99/O7r4iDwzfxdUTEUIZKGB2oMy6ikO+PcXjIwWGJjVffX0nB+0qf/A1E+eBhFdZHyKYWorbs/JZHSOtYbZN3M0DI3eTfXo/6w4pLj6sGZyZv56YmlYhodyGx8uTDA9vYfB8j+a9ebatk/xgbT9dQZNK2KKzmbJwTjIwbOGFJ2MeNLpDei6oo58o8+57PD535RgbvtLJ7/x4lL/c8mMuPPo9Xrzo1f+HaxfSyQmCm7+N/4OboVYjsgRPLNU8tUlS74E5dxH7/Muw0tVcOjjEZUsqXLqoQlf+pJOlk4Tar/8qoYj59KskL1vyfv54+svk2m2++M02DGe467wKl+2vIpXg4MXLuGbJkzhWi9rhDA94ef7g5S5X7RL8fV8HfzJosmlPzFt+ELOreynXXPUMfVOjeBe+j/aW3yf+18/wyJ2fZuieMpMVwf98rWSwrHnNwwFW02Z0QDD5Pz5IqQGLGuAkkiOLHNZsh1tfKun3Yzqbgv/2rZBbL3G4XS7kwyMzfO2KmC8uKPCOu2p0NTPIAz4/3irYelfKjkyJhZMJ//JSm2FnMZ/d+TgLFzf5zuBG3nbPMf45835uGMrDS+a4c1cXHcMxv1dazKULptgjM9zj5HjLvZKYhL/7Jc17viEJ8vCH63+XRbPP8MaRW+iLQ8btAr9y7HYMrbjv9QHVcZfXPKa5b9kAU0NHGR2/hN2FA1z9oyq5EKYqmruX5Gi6Bq+/PebYbV9g5OrPEw4lrOzZSN/iV5IsuRrMzGntPpRfzH+78MO8e9UkNz7xfW7KXckHfnwL+5IBHrugyoYdES13Hx8JO3jk+gF+lNnFg5sPc81Awlu+Y/C3nwn4yNtdPv6KFh/7biertjUobHBo+z5bd2rWHm3w5Wsc3nqXYOErVuKteh0IQRx5NOqTzM6NMTs3RlybpjjXxBnWeF6OYXLoe33S8heo9H4Gd/0azJf9KvHSl4L86bYl/wK/wL8FpvDp8DWe1cOMGZIIQShTlMrQEUd0tRLMKKVeTDEaJmiouwGTSSe9psYQGkckVHSEb6SUSegaAzeMqdohXjags+xx8ajHZu8gewfLzLQjav4Ao85C+owx+qIWXe2QaTNBaQ1oukyfxc08+5dmmYo76S0dQ8Q5DlR6yFjjLDsgyWsfOwf5Oc2s3YnUoPwmVqzpnosRuQla5TxTWZcFqSQLFDqqZG1B05JULYdOQgpmlVhAo1KFJENnbQ9SCGpOjsV+yCiC2Ao52ukQhAk2w6yOZ7GtFJlK8jVo5iEwoZXGNMW8y9GSBpP5IS6qzVKPihRFSqaqmFQL6K7WydmK1LCxE4Ens3R5goN9nQzIBocdk0YagRNQikMyvsOoNcT2zHKulYdJdUx+1sJtQ91us3oyweoKMHMQCoe2ELSFTWBYxNmQ1PfYY9skwqFhWOg4YSyfsKRmkmqQIaAsQplnzlWYqkqcFoksgRMnjGifrGFio2m5KZNehULUICcDgkJMZU6xwvJ4ItdLK+7FN6dRQcTRjKCQh3YGGrZAVmbJ1EIkCQEhi6KYTDUh1CmXNfZwd/cQ3Q2fbrvKIdmNJxOkqXgyu5IV5n5iU1Nou8xFEdlA0xm28LMJgxMxJorB+CCTajEH7D4s5ojMkBVjCrvSZo6A5Z6gbWTmT/4VEbbW9IctFtgG9cQhRZJiUAxi7IzEUyV6/CoNp02UKlarkFgLlFTUjQIZM8aQYEUKhCJTlYwMprhTPnOWYsjTqEQzngeFz1SHy3xgW5+CF2CFUCAijSQyVjSUBSoiCSQlr8mMmWWm3MQIHZaJgElDEVoubipJQkV/2KKiLXINgetHqIwgshKSWDFGD9eOjXDM0IRWm1xmjHYaU2Z+e2g5jVGxwdLpGK0hUA5SS1JpYumIipEQA8WmQSxs2tJh1s7gSYes0SbjBTzR2Umx1WJNW/HjJSE5K6amCpS9kO7mBJV2SugoCjJGS8lcW1IUMYVyTF6G9HsB/WlCzWujTgQ01qC1wGmlLCy0aZkJroK2dJixTGbtDFXTwQ1c6nIExiBnaxwjRWnJ4bSCVCHFWYPy1CzjuTZWI0fJaNKdrRFGXRTnplnkQ9sWZIWgx4+oWRlGKm1Sr86i8TYjC12M/CQXNlvkj6RUkpSpRSlmauGbCqUMkkKbqYZF2UgROqVAA09k0DJBigCRTekZg5IF7ZkibpgykgVflTiaUaTaoOGaLDanSZoRdjZgwaTGydvoVDJWMAlNi1woEAoKLYUMDKhoxgqCCSPLasOjbjj4kUW2FtMspzSKWTwRMVwoMyP7yWXzeLlJukSAERv0OCGrdIRwDLbrGFMqCmZC1gxoJSm97RQjhlk/5lCul7VOQlumKOkRYpCrwkjOwpUxSZqjaRnkRcxl8hjHSOmy2oTKgSREp/ocT595/FytoGmtueWmj5HzZlg7AoU1MY/LAhftmWJvn81d6zze9WREZcxgx2Lw8ou5+MI1LB1+mOEHu6jlNOG1C9jmNpgqC9bvFCQzglz7G3jLr+XO2Qf55CMfY+ePPsvi7z/KW78zy1U7FCsmNL35CHeF5tjlF7Hv1Tdw7FW/hdj/MMsONFgVjHDfqk0MNY+wbL/k9gsXoidexK7M5dy+eCu3LTuf71y0gDsuNNm+wudgf8q4aTI359Lvhiw+YNAoNblrcw+vv8UnWOjz9eAhNt56iMzINLrVRBQKCPe57+W8ULPmyYH9tP7qL2h96k+Jdmzn8cGQL18lueuqFAZyjIhrqOZ/k81LX8P7Nl/G77xkDdes6mZlT56sfTrP9//pC0S338aNr5DkhzZwe+uHLJtu84mbYsJpi6PdDhuOttjXn2XZ9Xk2dT5GUl7M0dsMnqll+PDrHX593xJe98M53FChUfzX7ykOdg6w+SW7WSinEYCfG2TX/vv4/sPfZtPtDsc6DT71JsVrxiLe9iXN4FGT3glBsQaJYVGrLGDuvIuQL76OoSuuY2z/I6zYn3DXNQX2dYcMppI1e6D/mOZ/rSryzvNeh8MTfHalw5Z9CVZs4TZN9pwvWLc75am1Fj9Yupih5CAzTYuVVoi5app/7OllJuPx6R6fL3dn+NfzYNs6yf5ezT25LLuyNqkBO5Zptq0zGCka3LURnlwnWVu6l+4Fu9g3pCiMZLjgSMT+fsXka5ocO5bjdQ/CvX3uX5cAACAASURBVMsX8tWXTdBlLyLVB3nT90BL+PhbJQ9vArMYUxABd650uWiPS9+emGROMTk7w737t/HAvs8RTG+jSzrY5aVwPPYPQM7Kc+XQxay56CLuYJqXjD5CxzMG+5daXLIrZdt5PqU9Lr9x/xSmkNyzTPLdDbByRvOWexOeXJvn5vU+l8w4VHaGlDdt4OD6hZQOjHHJbsX9FwuMQ5P0veNdmJuuxFm7juLFl7Hg8utYcvUbWf7Kd9D3hncx9arLueOSMtt6mhwuNlGRIHfEItxVo/7Du/Du+RxyZi/2sjXglv7d/f8/A36xgvbCYvsPb8RwUua6NHFqUWqEZCNJKjVTuRxrZlvkrISR3pRcKKibOQ51ZVg93KAYNzEISKSJFJpAGlimgRWZBHEHnuvjighbRhRqWRJp0OyOWDIxS3/UwI0D+pstLDSVVOPJhEQm1F1BwzKJLRtbtPDyEc18QhFB6lYxtUm5pvGZJ4xFPLJGSqwtcoZPPgFtGEwUfbJxiC1TnDQgDjvJS4WRFbStkGJdY2tBkAvIEeJlTERi0zGiKcoQgSaTShqOz2N9fbgmKNnGSyus9GrYsU1WhRwpC/yMRmFR1RLdtCnLBFFKGPKaLKp5LJqKOeh0kokSnDQhZ8QEmZR6TqNnMyhtEtkBmBb5mqRmQpS4WGaMiKz598PoYKmchXaV4W6NFUdYkSCMHPLCJxMKik1QsYXKCoq+wbF8FldGdPtz9MRNfNMGw2RFu8VMxWUwMJg0FWWvSlvmsbXGsRIq0mNcDFBxqzRNiUwBP2JPlyAXJXRE0K+niDDxcw3aFBlqR6hSwmGrTEqbpbUaThQTpILJnMu0U6BTNsm3NbEhcFJB0zYw0zyz2ZhASlwvZNBLKTVTdCalqS1ECgPVCYKcxMhHpFKR6AyDsz4LVcCkG2FIwIoIhYFOTUpTMQUvIgi7IcgQdUW0rATTj1DaJJUFmnaMfXzVb7FuUtEBnpkihMCUihnX4rGKZv2hGoYZIjTkzYiRosaXOcLIomwG8zGjjBjPUTRNze4FFfrnPLJRSmxojFRRtRKslkY4mjQoEDkhvbJFJQnRQlDLuqjAxHdNrLZDWzq4bkBvPSKbePQ1NUXfJLASDFPQUUtY35yh32uSSAuhUqoZTVNU6Nc1nDTF9TR2aFKhgRMZKEOCIXCbFu6UQ0tHOI2UnEhxpSYFYuGgE5sFcUwTg/GiwPYkM7ITQzr0xgo7iNGRohKElERATdpUtCLIaZY4VQqtiOXHGthak0iQIiZrx6QSjDik2BYUa4qRwmqWhxOs8FrYKsR3BDHQzGvcuk8tm+A5KRkZMyGLODolTRNCR7F0RDPnauqWRqXzIYdSU5Ody+LMWkS2Qb5h0TIhl8R0+iFhlyY2HHpnEhpGTIrGiqG7HeIYMZlYIxQkhsCwNHaoWdTwSHSE46ekqaSj7tPIKiadHIaQrK62sJMIQ2osFE07QRouoWljq4C9mQWUqjaJ0HjSIMKm7GrswECmCkNqZDFhsBmjQ0VOSPKxJGN46MhiNDcfCDsXm7hxyljWppWXtGSWuBCSRAa9dZgsOcwpAxmlkPgMeDE6UYStMuO5PGuCI1gZn65GglYO+WyTNBFMyU5CAV2pT9GTBO786ZK91YSqLYmcCGHZLIhTpNC0RJaWymCrlEhYdNY0QplImWKiqWccLCtAWoJCrCn4IYnfz4Y3v/2czyChtT4nhZuebr5gD7tyOUut5v27ZHzt/pto3fl5uibabDioePS1V2DtfYALnxZ8/Y0J31/i8tUvBjBp87VXw5sLy1ikHuPh3RWGtiueWK2581J4w62C//HLFlfvK3HDLTM4XTHycsX9B2wu2CdxY422NeV+n+wijd50Jax/M8nA5afN2vv7nqb5q+/i0GLFE4UX88GBWxi/rcSdF0mya1/M5m/cQyAEY1tzfD7fx9FiD1u2L2C0y+FIb0KSO4blHuLj3x1n+RH4szcabJQFNv/A5w/fFVNOFR/5rMCcj0GIMTiEef467C2XYW3egszm/t31mhw8QP0f/j/0gw/hO/CjiwQPrYcLjZhiYxXTxTexbO0Wti7rpDNnn1tQGiL9WdKnH6P1yf/OjsVw36U57sorrj8Y8cvft6gZElulOLHm4SsKvLd3H2S7mFz7G4x+9CaMuMVvv9vkHZf+Lq9a/AbGxvdw49d+jQ9+J2K83M0VL96NNFL+RixiNN9LWU7jjQe8+zbNSKfBV98Q87Z7FG1lMtuRper04Gx5N+su3sJ5CwqYhjwty7Unn8L77V9jzwDowYRFO2zu3FzitQ/OYbQFP9ooEAuyXOIc4y+6ynzgO4KhSc22JUPkC9Ns3OHz6MVw8IKAPQWH4YxB25RIpVk5l7JuOmFZXdHX0JRaGjcEIxIQC3QsURpiOR8zJZKCpiN4Ykgwm5W8+UGFlcDI5oBFS9rcfKyTN90Dzwx0MzRYY9tKl5GpFu/8kSayIMiaNEqK6XLK3i7J0U7BRAXcjGL1tMVFT2su2BFjp4J6CaKsIAoU032C/LJ+Vm69gcqGVyGMk/17vDXNk9/7CNc/cC9zO4tMdgt6pzXfeLFgtGsp77llGOPSQf7l4h6e4RFW7RK86T7FJ97mcqgn4ZPflizZH1F69Qa+teVSln7h8yzd73OkF4ILUq74/fvAyj1vH/UTn6dmn+Ke/dsInryf1c9Mc+leTSGA0NV4y3N0Xfcmyq98L8L86d7d/M+IF2KM/b+B7u7C/+0snBU3/tomclHKeI9LZg4sFWNqgRAKhaYnamNozZHBlM4Jk6aZ5/7eBVw5XCPK+Zg6IhIuGrAjRb1kkPU01aiAEBE9sk0mDSj5ZbQUPLYiZfFISISFQszHLFPgpgLPSlH61F3KgsTSCC3ng7B2lTia9cj4iu7ZFPR83GFLxyhhUYuKVOwq2dhCamjaESkGHNfT7VuMLHKJdULHTAMz1VTSlLqpmM1ZHO0vYkeKviMaR8QYKASaEJvJPoPQkZT8WfKzRQw0C1qSbKo4mIdEwPgCiw4/pGcuJBQOwwM2Q6MRqSnobhuMGmVqZsKqZkrRCNjTL8g1EwJhUIgTNBppGSysw0g2RWoJIkEjiaKIXFqkpAS1bIhGY9MmFjYeDnntoZXGFilz0QJstzkfE0yZmNogQZA3PGLDQEuBQmPFGi9n8lhxAStHmxTxKMmIRAgcHaBx8W2FjCWmliRWglYGSkmkSLGVYNJwaRs2lk64qBEx0ZVhijLF2RayWMMhIG4k7OocoJq3WCZqLJyMkVqdths9pzzaMsuUyNGb+JgyJRGCumuxq9jB5qkZTgQGN1EIFApJv2dxLBuTWgpXB6jEnY8JlUBVZcnoFEeGjA856ETRPz4fw6s7MJhyUzriFsP5MgsDTaxTQqmIbImbCDSamrYp6AhHQaAtpOOTiPl36nzfomSE6Gd7K0RSMjZgsGQ4piOeH6c0UHcMRGqghMROTdoGSBQdsU9oCY52FeieiY8HCRZoLUgNWOBJ5pyQVJjPlj+2JToUJ2NVIZFa0chb2K0s/SqgZaUMywzFMKFbztA08tRyFtpRFOsKLcAiIgpdHJHg6nmi2TYzkApsrdEIUjHvmMXaxEWxqGXhaZNjhQCTBISgjYVDylynQXddEcQGdeViKVAY5MwmGZGQmpJUghPNB4Ce67DoqSuGGk3qjiJJ89QsC5MYJUEhCE2JRUoYO2RFSFZ7OKmgbjok0gAjJRMlZFRM1coh1Hww9tCROKECBNqUmIkmRTHRY5H1FcVmihbgmRZ2rBCmwkw0JikJJo2CQa5tsKApmc4FAISYOMTUBj2aqszCyRgj0Vg6IRYnJ/AtLVEG5GKfhutiRAIDn1Q7ODoCJyGKcyRCk0pJIA362zBmS3JGwqK6SdZuMYZDzTnRuzTF2KBlxSjmfby5hSaFWZ9KO2GiV2L7WbJthYEPCHzbwogFR50SPbGHmyZoARKYXOZjtwUdExk0GiUlpVBStebrwCIilA5mEhMLl4qWVPyIqm0wJyWmUMwVJZXWyclShcRSggl7IXH3JP3jEWYMVVXid7961zmfQT83BC1WCf/y/7yM2Uqd1z8IcijioWt/iQu+8i3menv5h+tS2vYcf/c3irYJN71hGX86YKOevpcDt/Wya7Eg3tAi2pVn017Jty+q8J2ra7zsUcUNdyucYoLcIjAORXQu9LAuuZRw7VsJz7Id7FQ8/ZH30rltO8qW7Lx2JZfvfYL2gSxf+NCFvLvyKuQnPopMFKObY35rS55XPFjghvuqFNe3+bvkcvKiTZSUuGxiNz1Nj//1Rni/l+A9meGDb1dc4CW88kjAeccUuUmXaMZGhCnKNEkvuJjuN74OY/MVCOdnm4VOZ6aZvvGTGHfdj2fDDzcKjp2fsCjsJtDXs/Ci1/KSVQvRQNMLSRqjiNoIRmMYq3aU7OQRMrUJ7HYDw/MQQUwaSXQq0ELzjc0G/9Cf5/0Pxmy9XzJacRiohox1CnhRm6vdOmH+fIZXvJOxv/4nuian+OO3mWx96X/hLctvINUpN/7jDbzpS89QLeW57CUHie0SX59yGFWSR9Y6rH864u33Kg73CHZdGyP8NTxVyLHpwWm2HJ1C/O0/smjNsrOW3z96gBu//W4Gdue4eu8s/3S1YLTnCrZe8XYOfOc3eP1OTWEi5VgHPLmpwJXeBH9yUZZX3Cm54mnNzv5+okKDS/Y2uetSQaw1a6dSuucETkMizrCqxJKEjk1smoSWTWhZxMJAa4FW0Mgm3HlhnU0HQq7coWl2K5ZtnGNOSr4SdvDWO2BPVxeTq0wm145TeVRy7ZMa2RshLrRoNjLEkwpnVONGJweGwIaDC+DQAsFILyQlm4heCocGWDoa0e8fY6A5QTHQhBYEQ2Vmli9jZzhG7/gElxzU9Kxsk6mEDD/cQZhR5FuS2y4W3LOpk/d9LaU3qnPH636dqrif3tbjbL7D4O9eYbJrseYT3zBYdiii/NpL+KuXLMH41i7e8OherASe2qK45oY/wFz52p/pEJAJf5wfHbiLiW3fZdXOYTbs17gxNIowt34hK97xe5RWb/mZ7OE/A35B0F5YfOZdGwAIMgYyBEudCG86b9y2joiETbU3oTJpAZrQMnDilNQU80eOGwItBGaiaBQMis2UUJs4Yj6IqqUjNC6mEniWQmgFWpBiYJBiaEF6fDDRx8nUPOadVCOd/1SMJQ0rPUsp5u+ZD1OsUee4roHZDpPOuQQDRYokl0gSwycUDtNdJt0zyXPuPYHDi2zOO1InEC5KCno9A1MLxjNnX9FNTIGZzJfFTSWBoZ6VaClJJJ+b0zPTntSvkSh6PZepTPxsfc07lMZ8yTW4BATi9F0opj4RVFjPB7WV8zKFmpcRaAtfW5Slj6l5VrY8ToLOBck80TsBR0lCqQjyFu5xx00AOdVmjE5SJBV5dtvNag9PZDmRS3GcqigE2zsrXDw7iz6u8YRcDXSFJjNOgjbmybqh5tv1VKRIbDQppz+wNBJXz7f9SYkQW5JMNH+Uvj4jvTylxOr459NxIueQUz7q+EREKA1O1P+pMufb5idvAbNIiLHOuPOENo5bq0RJjaFO6kgsiRmfzF+jaJIY0FFNnr07Zp4AnSrr5N8TlnhSb79n0TSg7szbkDpuefOp1fG7BaDwtINE4YqT9pGaEiNRp302E0VGe4TCJTn+RtKJdtYIhNCnZOGElc9/oaTAUGfmEkJH4IT6rDq9rCTrzX9OpcRQJ6+dGBd+Eto5iZGCG5wYJ89s1ZOwz2LnWd3GE6dP2hpa4GNgi/T45xN2eNL+z0Qrb5BvnW08PBWCWAospZ61nxN/WwVJvnm8HkyBkZypR5Ae128J6G8JRnIpkTYxxbwdGGfYI0BeWbTkSfuPtMEHv/TIuXP480LQvvjNP4Mn7scT07zlPs2+rcuZqxxky82aHb/8Tj614Cu884DHVTfbPHgB5Bev4E2Z+9m2bZBSLWbqyjJ3dM7ynpsMti1aQUUcopFX3PhKyasfV7z1bnCchHBrgdKvfR63++yO/ZmIZ6aYfOurMHtCdsnFvOzCpxn+YYUDvaD/4hO8SPbT+vANCDfiT9bbPLXQ4FNfyDIQVUmHYkZG84wuTdj8lMC35wfSb7w25TfrLe6eKfPx6wz645hjloWpYZ0Xs/VoyPJDksIhB7et8WyXfRe8iPY1r2Jo/WrWLijimGc3JO37HP3sH5Pceh/PdBa5Y32eyT4XT3Wj3CwFew5Dz5EN63TXPbrrER31lEodOmrQVYNSU5zVTCMD7KGAf7lOcI+Z5UPfg+XDKWMli4X1mB+vkVy+bpIFMwbTDxcZVd20F1gsPTTFp18uWWXavJ6VGOdfzEPNIyz59D00izZbXjLM7kKBO/fmCLTNt7ZqfvmehOsegwNDmtHlZSqizTOrm7A9y5se1Dzz7t/hsne95ax1cODRH/Kn+z7G9Q8prtyp2d/Ry+LGJP/9BsHVBzT5MegiZVGiaM9YFFqw60KwBmxuXuLT97TFO+5WjOW6eHqwm+v27OHuzYKlezoZzS1gJlvCySXYZkwpbaMChW4JckGMm4S4SUQrGzFbFEyUDA4tUTTdJh+4JaW3DuU1TdSLLyK1A27aMcrr7oF9fQuobrB5vPsw19xmsHJsPv6K78BMj8DtDFhYCegtJuzPn8/uWgeFfYdYOJuSCE2xHmMeH698Gw4uEIwtgLmOEnuy65hsn0clnqY/OMh51YNkaKMEmHZKuUdRWFXCGhtj+tEyg7OKYluwZwA+90qHC3Z08M6Hxnlg2Qq+dvGbebf/FZY+fIgvXmbxyGrBx74uWX4kpvyaNfzBeoPZxxxu2LGH80bbHOrXLL62m4Wv/CRJz7qfyuZOhZ943Ln3DqZ++CVWPjXGecMaJeDwYkm4+TwueuvvU+hc8TPL/XnELwjaC4sTBO35ELjyFIfkbDi3k3KuNKc63D8pvRYCoZ/r3L4w+ElST51QeS5pKcbGOQjjz67p+e8ELY7/d1Z35gxH7n9PZf2Hx9mL/dN8e+qn/x2Vd26Z587HT3f/T5uylZPkPPWcidWfRUOvbzKZOXMS4z8ejk9BoP/d7fjTjA/PvX5izDob5gn3uY7GOFXmC98P/z0Ss6nEM9Qp4/ZJac9XS+/74mPnztPPA0Gb9Rrs+dVreXyt5IK9KStnUp7+4IcIb/0UG3YKbr1yKTdtHOaL322R2ZPhprcW+Ihb5+DjMcYOm+9tFmy9QHD0Ts2SMRMjFaROTHFlm50Xpny0r8Ir6v28/cvT2H6L2hV9dPzeNyjnf7pYTLu/8An6v/5NYs9g91WLuLL9FJMPV/jRi/K8/qO3kAtqqL94AyN2m/etyXLRngK/dWuNznVN7m12snwk4qGtmhfdKwgtgZVqdl4b8JqGx1+WK9y9xuQD532Q/eE0T809yZHmIWKdILRm7VHNdU8qLtkPZgq7Fxb57ur1VM+/jI0Dq7h4YTfT8RG2T+1m78gjzKpJwkwbaTbpaEJXA7rrmp4a9M1p+muanqqm4J2+otHOGdQ7HGpdOerdBRo9eVolFy9r0HQ1unmM1049zTe6MlgHHd51h0AmmsjWuInm9ivhho4pbhGD/HMpxm708K5nNGsen+SHGwR+VnDdY4r88S6ihSYqK2RHjFVK8BoGH7uswrGumD/8XszKA5Kp80ycCzbBXY/w5PUtHglzfOibij2Di5BX9WG9+HfZvGIQccrqzLe//3G+EvyA3745ZfUw3L5+CfZFi3nRD+5FDrY4ti5i/ZjGnDWo1mxmqjZjJYvVRxSzHZr2BXluW9lkvG3yoW8rZGJxy9JNvPjoTh7aEnDJeJ6hmWnSqjy+pQCGu2H/QsGRbslIN7zoUMqWJ2HPgOSmq2DzPnjTAwojm5LZHHPHusVcbbr84P7DvPQRwZ6L19O+cIRdE3O8+U6wUmhk4Jn1WTJjHh1NGJgFedyS6wWIu2OKnRG5isG+Yo7UanMfJlseMFlaS/EtQbEmMI7ncboI470Gxzq6eDy3kV35JWTsYcpyLx0cwtQphuLZnzXDipfu0LQd+JtXGzQyXbztyXFyXo4v97+FNO/yx9s/x5fWaO5ZJ/ijr0lWDkdkr+/i44slxp4O+mck1x/Yg5XC1CUBl153DcHWj4L9/Nsez4ZYJdx51z+hfvTPrHq6TrkF9SzsXWNibd3E5Vd/iFy+/98k++cBvyBoLyw+866NzO8VnJ84O/1BeW7HFk5fDzixfnUqoXp+Sc8H8axkJTinw3My9alz6ydx+qoczG/yOXWF6ic57891wgQC/ezXpxDOU8bgs+X1bJrOXVdnEAYxT9Dmt3Xq58g4TacQJ5r0eM7PcP9fQL/vZ6M1J1cyz5TBGfc+K0uIcxDS58/Pvz3t2R3PM9M/535x/Nc5CPSZvfPU2hCn/D6ths5QMt9fTlw6O/04lx2cCz+JTDwfzk1Rzu2+n70X/LTann9cEc9+f5b6PJHfZ+vxVJt5rl2dluanzKM+vvL109XpGZNWp7TvKTk5C4k/ee1n0XDqKumpks/Wjs/XL85lP88Zj4D/8vNO0L74l+/hkvt3c+emlHfcCsPreylemUV+9jBHert5dMUM91wk+PKNiknTgKsybKwe4ci2Lh5eLVi4wGBnMeDV3zV5cGAZGxdv57yuNs/0XkXfq/+EWxs7+NTOP+X8ZCEf+vIc9niNqYv6yHzkqyzpfv5jvVWasuOGa1hGlampDEOvbDH8pEPpgGD7r1zG1e/9a4Q/S+bLr+PzUYN/WJLh41/Ms7o+R2VZmy85C3jN0Rr/8xUFbvhmSGgZdDZTWi9usdJPef+qEk5fhj+/7oeYVo5Up0z5k4y0h5lu7ODwyENUJw8z9JTP5qfmSdd0EW6/WHLXmhJ1Big3TdaNNrl+/1H6axG5NggtTiuHUc5iLOjGGFiEWHoexsBijIFBZH8/MnsOp1kr7IduZOypv+KvrE6uvUewdgSmSxU661XGOmHPNQFv9FL2T6+h/lsf5uED02z5wV+x9KFZnlom+czrLsBTBqFuUPaqLJ9usnQyYek4LB/TbF8m+PTLbQbmUj76rRC3ZuBfLBHv+BUG+i/nxw//Pn/XrPLJLyomnW66vSqzgwHG8pR9fS+jdPn7uGxlL3/0zfcwwmH+6GsxC1XK0SsEK/wWxbYiqlt4MzbtORuZztdLNQeHewXjHSbCVmzemVJpaYLVCd+8tItHM01+/QeK1cPwWM9Kpt0SwdLHWXVQsb9fsGdAUO0yGclbJFbIZTMh77lZEvuCf3zfeYxVn+HXb1EsntTkh3zuv3iQTDjCYDFg31MVLt4Lj125ntbCx8k/YrLhAIQZRUYoamXBvi7JJTsEH3vplbx87y5MZxrfFjiRYHBW0VOfb6LQ0jR7FXQp/M4co7HBpfd7HOkS9LUUrS5FIATZmqSjMV/2VMJkp8nRjm52ZtdBZHHe3FE2TO0jk548PEjbGhEJbr1E8P2NWX7ze21WjMF9/ev57Pmv4gOjNzNVfJpvXS75yL8IVh+LMdcFDCcu9XYHw2IBHQyz8XCbsV5N/1aL3rd85t+0mnYq6m2Ph7/6lxQfuJOlR3wMBXsHYPT8DMuvfAUXbXg/hv0fkxj8W/ELgvbC4iRBm38YP9cJeH6CpsU8ezixNfLMB/vZZrPPlH76KH3y2rO0T3DcgfpJpPF0SqIlzL9Cc8o9x8nLT9Z8tvydrlM964yDZP59nfkVLv3s98/dIHaWMp6lrk532eflKTlffsH8M02fqPfjuhD6pDN5BkE7kYcTm9HUqdVxmr7T6cfJzXqnl+L08syT3WdTyVMSnKXgZ64PnPr/c8nPSSJ8dkf51NyfIPHPuQRivn1OEthTZZ7Rj8/QJc5W/uN6BGfQfHHGNIDWz6lRdbyd5lch9Glyn+N2i5ME49m8Hnfgxf/P3ntH2XVdZ56/c256OVTOhUyAAAiABJijmBUpUdGWLFse2W3L6rF71Jbl6bHlbo3dtmWrvcayWlawFSyREkWRNGmRIinmAAIEQORYqITKVS/fd+M588crBIqSp92jNa1Z7f1XrVr33Xvy+b59zv72T+2Pn/imC0vJj7f2G0nB68nU2TJoIZD6/Ji+wB1x7n/n+ouz9Xx9WS583xuKrH+ctL5+zdDi7Hw7XwKxPPfOf+FCsvHjVPXcR849dXZM6AvHztkaiNZcW55tryvuhaf6AOrcPD4/ZqU+/+03OonOfuV8CX+yg+cCd815r8WFJTnXCj/N2fOT+73199k44J9O0JZX7h8b2wJ9QX+d/+WF8+DC9vw3f7frDXW/oK4/3wTt0KnXSP3GR/nWmx1WjAbcukcx8gefYeGFT3LlEzZTmRSf/ojPTYseH/gHi1PXRdySWeTokz3M5TS7L5Lc1TfH7OMdaJVk89XT7IsuIr1rBl8YNP78K1yxfiN7Fnbzh3s+RSIS/PH3oXi0THllnqX/8DUuX9f3/1jOqaMvk/3MR/HHE5zZkOfmTUd5aOcQa8YivN/9OENv+xDCKyPufScfMVwSVYtPfzugfXON0kiSb27NcWNU4dM7HD79oEkjVKyeibAur5HyJb90dY5bi938L3d8H4RAa41eXKQ2cZCXn/0BjfFjFGszrHFqWALUjI09bREZml0XSR7aITnVCzrKUSj1cm29g/flhulauwXZP4zR3fMvjmMzFo+RfOp3+X7pOAsHcty8T9OwHCjmyc7O8fRmQcdlFTaMtsEuTerbj/Ly+Dxt936Egec9TgxK2v/ib9jQcymnq6d48iu/z42PTHG8O8fCDoel+TRPbKvgJuf5hZ2Cu54NQYLlhIR1m6UMHBkSzPUrwg5NtwdDq6/BPDZJ7pkJ8lVYysIrlzq8cAncsFDhA6eamFLjl2xqMw5hpSUqEUsY6ZYcH9Ac6xcsJZMcdq7h13a/zE2H6zx1XQ9+bJEvT3D9QUWY0MxcA1/YyOcxtgAAIABJREFULLjooORDTykCafPgyuuY3XCEFy+aJV/poNK2SHeo+P1DVboeT/PoVsn919u848WIt+6MseyY2tY85Umbjuo8tes9/JfTpGsJDt/aDgsTXPqqbMlko2kmYaYAL+0Q/Mr34en1g5zoSNITz+KToSGK1HWRmnSQ1iKdwSzDtTKrZ1wG51sLeCQ1S11QLdpUrSSHEkm2nEqAhuk1klzyDGbNJ7MgGJ6B1DIf8xzBmbYi4+kByoUcs3GWQCW4ubSLjeOTzBXg/3qrwencatrrDglVYcG/hNXjWa6tf4ev3gq/9bBg+8kIc5XHc8Uklx2Eo10pHls3xK+9dIS0BxPbQnbceDvqpk8i88V/6ZLxBhs7Mc7IN/+Mvj2v0l6OcW3Yux7CzW1ce8MH6Vn3HjB+PpUE/yX2rwTtZ2tfXL7iaCCI0eiz4EWfB/Rnt/Wz2OAsONVolJDEUmDE50Fja9Nehq7ngM+FYKsVWyQvAKivB1U/DgJboEdJWmqCaKzl2KsL45UADK2JRIvQxCZY5/wsr6ch54HRsrMGeS6eYvnMDr0MBVtcTFEumBRLcaseZwGLbsUiGSi0OEugXg+DLiQOHZ6Fa8U0DUU9LUm5+hw4TKomaPBkAiVbQkxyudWUAKkVWshlp6NGnSPGy+VeJo0XnrC04vzO0oifTNCUEFi+Q2R7r4N+hlbE4p+Lxznb8ufhlRKCzsBiwQ4uAGgt8qS15seThlwI9BXigvECZZXEMmNSOrigvBf6/AUGGqkFodCvI3OClniGQpCNBU0zeh15OwswI+S5UXS2XVpvVq8bJ2fbSp/9gBbEpiAyBLavzhEP9eME5RxYbZU4Eq24NaEFoSXIB3Wa4nxqogutq2kxn4yRBNg6wJUp9DmCwuviPH1LYC3HO2rdekKiW6c5+oKyv74m50nBWSIiWuNJaLC1DwgC4SwTgLOk43ynnb3Roi+ov0ATagNLxMuD8uwsPn8t7sJe1Ms+hgiJpTUGmvjHyZWAWLTmhLUcs6oRSBSmkhhERNIgXO5ksTwvASILrHCZiojXEzoEyJ8Qw7ao0rTLxrl+vXBG11OSVFP9BILWitmKltvU1urc3FAIDA1aqAuIZqssBq0caq221wjdejYSF3TcGxwVF0b8tb4SmwKpWoJqdrDsIBAaLYzldgvxcDDE+fXg7KsPtRXYsFQGIc4TS9EaSxKFkhKhzq4xuhWrep7mIpfjGGMMTMS5fgCBF9v8ztee56fZz7XMvtKKPZ/6BYqVkJNrYt72LEyt6mDbpT71R8bwDIvxfp+nLjH4t8/7pCuCizbUGX+2HVfAN280+G13iVdnc6weley9uA9rT0T7Jg//iqsovjjO/KuPEl1zGxu713N9z03sKe/jaysmWUGW1furZF66jyeLF7Fu1euvyv24ZTsGeLUyyUDlGInjETOd7WxYN8neWo7ux3bCyhXYazbCxe9m3Z7v8q2eiJVnbAqnBdlLG3TvkzzTk4acYNcd69nBMKfCGXoOWlj5kFsnIv50KKDvpe+h//ofqX/+vxD9wzdQP3icvsOjdM/VSIUKIkFaKzoLAemeJpap6R4zuHkvvH1/zMqGZqJzkZ0D49zvjPBgrcZklKUv108haf+zdTxnYZP0K5/l2DO/yz0nIy571GHdGTi+8mK6vSqiXubrd8C2NQHOeDfFpz3Kv/G7PFUNWHHfRxl4MWJ0wKD/c1+lFlnc/+XfIvU3X+OKPYssFmJmb3Qx+nfw3dWHyLg1/vQ+xfbXFGaXTfqL93DmyjsZyUj82jRrJkK2HIONBwXpKcGJhTO8lKuy50pF+YqY3hV1Lo+qvOuAR98hi9qJNI2JFNWyzf4ukye2Se67VvLVNyWZajfYPBZhzl/K6fg2bpw4xsbpiGzgcfFImfXjFRKh5p7rBbk6rHlNcPnJiJHtBl/fLrhoOuKG06fpXMhQVluZGxrlYwtLfPxxxeRkij9/T0v77Hfvj9gyojFXavau2UTPrhnaowq1NYr0i0lOdQ2h+8us2VVh1ZhgdIXmr94s+catDk9f3MHI+pgPPRAR2jb7fvUv2XLj3Qxe/T7WX/9utr/pbQz2e1z14Ne45dAsI4N1Xrk8Q7Q4gLar7F9tcbpfkmwoVo4q+md8Nk81iDM1Sp0hiWrM2iMRp5KXUNpSoLzhDIeHNYeHBNNpSWelySVnZrl4apztMyfZ2BjBCjSlYkCvq7jpVYVDialLDDZXbS466OMEip3tV/LBXaN88S0RoSFYv99gVRjy7XfErDgVk25b4k+uX093LWDLwYhTJ0bwDv9X4s9/m+ozT9McHUO6TaTjIDKZ/7ZxumyF9jwrb3ozxfd/hBN9q1mYP87GY1XW7Gsy88JOnt//VZaWfsRguojIDcE/C7x+fu1fZfZ/trbzkS9jxWCJluJhaMplrzFoowXAzo7CMKmY67TJ1dQyMNC4fTVKqTQpVyM1hEi82KaiE9SxGW4aYNawlE1gtgBGoE20bJGpc8Bj+RuxlkihLtj6xTkv75E1SXoWm6R0E1uHqEgzS4GEiACJsgxEvFwycxlgxBLzgkD2yBS4SUkmEKR1HUFMYFg0YgeVjMn7IWWRxBZRCzhJCQKqeUklbdK/pGgaAlfaOMugxIhVazqJ8/UQwKsDRZTQxAlBe7NGKGwq9Q7afItm0mdywKbUBg03TU8QYWtvGVQLIlNiKImlYxztE6iQ9tCnZidJxK2TjFiePYURJJXbAkmmJhn7zOsc9cihgUPRTVExBLYZIRV40iBQJpMrLKRUlLwMc946MCqkZdAimlojlSQWLdVEQ0uUACduiVEAKFNQIYspFEIobB2QDpK43UkM1yM2DDAgUgY536BqCDzSVLWNI6JlgK0xdYQSkrpl4cc2KTwCbdFUKY715eiv1UGIlriJFlg6XvbuSyQt4gqSSLbixoUpMXWIJy0CZdEZCFxTtQQgZMsReC6KRkkiZSFMMFWLqFWDLKYZE0qBY7hYKkHBl9TNlihCLm7gC4uJIZtaxiBX0USmoJoxCVKKpNdqH5uWAqdEY6AYHXBI11piN6FUODImHYVIQjzbZmyFTbqu0RKKvkEqFvhOhBX7KC0JhUlLDAS82KSukyTMEKFhbNAmX2bZ8aGIghRL0mIynaYj9GgBesl0n4Xta0ylyYcGC9JBmooEDSJLEMcGUmhMIhwd4hgeAQnq2iGJIoFGaYOYlpLn2ffGyyeCYpkAVVSChAwxdIwSZ2l5y+WhpMBRPoFlYRIh0efFQaRGao0ZG4SixQgz1PATAjctkEpiaUFotdYaqSCjAwwiAsdAL3OP8WGTfE1BbOOb4pz4kU1AMrIJpQIBni1ppiRdQZOKdDAERMqkLlrrtVvkXH+etVrCQqVibK9FYLQQy84Ag6jioJOghGSoniCwQmIB+aZNIFtzW2HgnOVeQpON6/jSAdEiZitdk0xgUbVjtHneYeEqC0dEy2uyJqc9AssmMgVNaTI1aLYEUIwqBdenShJLxIS2BCGY6w4xmzaGholBiyjnkq6YeFhMZov0hA18s+XgsRT4ZouURZbA1Bah0Cjdan8DzjnzBC1SXY0d/CxYVoRnGJixwNSwKLPc8I4P/dQ96OeaoN3795/muh8e5nt3Q/8orJ4E8/f+mGPPf441e00O9rXxhXdGoGM++E+C4uU1yi9lcEOTv3inyZ0ll04rpP3FNE+v7+CGg9M8e9m13H5ZkhXzj7N7+92sefYoR3c/RHjlLaxqG+SOgTdjGjZfyu1huk2z47WQlbsf5UeL0+Q3XE4m8dNlvAe2volju79HYcbFmwZ7yKK5rs70okP24acw163HXLGWjk13o179Bv+4QnHrq5DJBhBL7IqGwOL5jhm2XPYuAlFkb2KElQdMHBlz3WTEH20NWV+f5kjWYPSiGG+jR+dWn9U3r6TthitZiCrIEz7N0wle6Ejx0JV3wS99mrUDAmt+jp5DdW7Zq3jn/ohNJZ+SOcHL9jM8MnEf9+8/wLFZk7zZRlfWQf4EEGyPPsmJx36Jbx49QOGpFFcchLFChoWLtrDhyGtM5EO+fbdii93NiJ/iih+UObNpOz8YWMtVP/w9Bl4VHFmXYPx9H2P6659lxVe+xZpJn95FnzPt8Pi72zm8YQOP+Tt524sGn3zAJ1fTZG7eRPrzD2Lmi3RmFMWpP+NTmxqsPCNpL8Ho1XdAMs2m2Rluc+tcN+PTc1jivJJCH03hzjqMJg2e3yj57tUO917XyUJvivFBn7pQfPYbPlccdMDr4PKZk9w59ipbZmaJEjX2rlH8YLvkvpvg6GUxF/evIH7Ph9iVmafreJWrX9YMuxFff6vB8XbJdcerXH9qnI75dThzbTywssGutYJfe1Rx6z5NKq04unYIeSagPRynPByiXZPqfBeLPSk2jE9TnNEcXSF4aDuULvX499Uyt+xSHOyJuPHFiA2T4H3iP3Ln7VeyqiNNfyFJR8Ym65hYxS52Z5aQo8e58rBABz6P3Voine3j9qcqdGqHv32Pz2OXOjg5i5m8wvYV68dChpaaJFSEI+fxaiGVhX6MZD/rkgvYizHlTs0T18CTmwxOdwqMKGZ4vkmxBloJvKLFhhnF9l1VnlxTZ+iOVaxfeo47XtlPsp5j40iSJy8LeG2V5tL9kkuPwN7rQkZygk4Z8Z3tcCK9hitHF8iO2Jxa5ZNoTGG/cJjwR0/gffceSvd8k1NPPceRw2OMlZtUExkcxyJh/fOJq6UQ9K5dxdBb34e8633sEwbm5Cm2HA5o21Vi994nOXL4S2TdA+QLK9Cpzn/RevU/2v6VoP1s7YWHv0wcWiRtxVLeZCLjsG4pIjIVWmqMZbnttG5wptei4ZikLBNmCqSTJexkQFNl6a0bKLPGsY6I/qUImzqelcRws/QV5yHKUupOU2pmaOqYgqwQSJPIMrBijaq2UXZsHKtKR9MkNBSm8phsK0DNQiaaTBTbCc2AznpAtROiWFBRecxAU9YF5kSeFX6Vogfduk7NFsx7GeJsTDZymU5m6YlNjnelSXgKEQOBIDQDnulZRdgR0y4ipr0idhySEIrQUiwOScZSkmQUsW7OYtExmejKMFypYsdNcpFP0vQIsBnQMZoGNcvheCaHQRI772ElAgwvT+i30SuXyOZ8MBymExKjlGGtV2dlHCKziu6lgFGnQA5FOtZo6WNrsELBYDqgHrek8mMJ2ojZUyhQTcYMuy4b4pAZP4UZK6YTWaCIzGaoJjuZ7/LJ1SEUBn6o6JI21ZRmxOrFk+1k4zlyVo1E7LKgcjS8In7s0GU0CTFQQtOhLVKOSdGFitTUVJI+L6SoAuJSmt2FS2iTLhnXp25K0l4a7SYIXZuKKSh1mhhoMrGP6xjYXoRJTCxMxmUOg4jOqIaSBg0jxWyXZpU2kE0f1zIxYihHKSwrQkjJibYCVsLHbEq0GeJEAYbZSUpUOCNT7Otrp9fRNBxNqhkTIBmoW6xoNqhZPihoGAksYupxgkBYlGSKvHDx04I+KyDpG6AtQqlxVBXLUnjSpJmXaK0plmOkTjDfncZKm0x3aJKeJB8rylmbpBeTylWZyynaSxEdvs2cI8jpACkVQggsEeO3C7oXNegEtUKRtoZHw45wwoh8YJMph1hNgWvmsMIUuQDGswkyrs9Cu81cIUleZcmmFE0/y6l0L93ZMbyuBsVSQGAL6kkHo+hTzjh0VQXTCfAIqKYkLw+2Id2AXt9nQyWiEMXMZzSL2TQ0Jav9gIxrQTJJoHxKXQrXShI1LTAUsTTAETTdNK4wSQkfRwWYyia2BYN1Gy1iZrsNFpOaHj/AjkJ0UuNEkjldJCMihgKDbM1koWgjUCTiJqYRMtejyVUMkpGmL2pSFymiAGxisGNCKTHjFhFrdDZJVtI0hY1QkkQcEwtNUTaI01lqGLiWZF4nme+TIB3scoJTdhozsJBxktGuNnKFUfKlFgmt2zZpJTjRl2GpECDLCZxIUdAVImHR2XSQzRAvpzjTkcVwCswUfdrKLlGQQxoeUmmW4jQ99iKBaaLQGEZIwktSNSRFHSMNk2o+Q1RPMqCbZHxJ2S9gNVOUJORlkyRNErHgTD5FLvIxtaJWTGIoaPOapDzQsUds2HjSwk8YuIUGs5kis+0GydiloOqEIsXJbCfNlIOjfZymwtKaNfUasz39nNISO7SxGl3EiRLpyMNEEJuSpZRD0ashsEBo3NhmV7GHRL7GmFMkrX1WlSxUnGX7u3/hp+5BP7cE7dDJVxn+s//CZI9G92qufVpwalUXW7tOs/jDeXzT4M/e7ZHK5HjboRrXxC71Y2lqocVn3i+5SdR5v1tj8oU25vOS6bYEg0tNin/wlxS2vIXE0ftYw3Fe2XAbG587zolXHmRk3Q7WdPdySdtWbu2/g335Eg+0nWb7YVhx+DjB2Ld5VbczMLwOQ76RvAghyF71dmb3fZ/sREgwAcMrI3ZvUKhpk8TDT2BtugRzcBXrB2/jmal7MauC9uMWhat9Uq+ZOKHirhc1Kx96mYEDJ3hq9RA7N9W55IAkU4fLpmL+85scPjDcxx23fIz1b/4kuwofZN/jz8F3d5E77HG8R3LonTew+Tf+jrdcfxur+tsxt16LfdcHSdx1N0ZnAWOpRPvhKtccVLxrp+LycR+iSU7qp3hq6V5e2vskx0fK1FQXhXSClDfDkSd+nb/f/W0ST0luelkSa5uZjEU6kWHliRM8vk1w8NaYsHkdh4qT/OZ9ixxsu4int2zh7U/9NT0nJDsvTmA04epHnmdgpkFtZYq2SZdj/YJv/coKdifL5I5N8X98x+Cqoz6Jrojc730K68O/30qSOfMq9Yd/gY+lYn75IYNLT0XU3307a3rmCWdfIywp1BkHf86hFprsXiV56NIif3/FWl7rGSCQCZKqzLWlRYZHPe54zuS9L0YkAoGlQiptNV7aAA9dKXnwTZqRLRFzK2Jucrt4z70NeiYk0UU9vOPaT7Np29t4eEOJl/QJLj0Cb3kOpgYVX7zdINeA647O0Vspk7QGueV5ny4VMra+ncfWwMMbK3z32piLpyXtRzMsWW0MVhfJ1Zs8vUUysSFm+15YMyN4pejwzY4kL21IMXxS8a6XNK7pkHnmh0w8fi8slTESSfaU9vDKlz6J8VdfYNMTJ7E9mBpQbD0uWDcOf3dlg+o2zZbTAauPDTB68RIPD2neH/Sw8mCZygrFvu2SSiHC9GDDhM/6+QorRxeolSzOZNpYyrXROW/ztmc9OmuKg1sVD95i8vwqQTUB+bIiX4FkINgxGtN9cJTTA1mM976JSu0QFx+vs+1ogjOdim/cLLjklGDzPklPMuI7myKuX1TsWbPAE+s3km+GbDsUEDVNXr1a8cXrDEZ6JKEZ0jc9y4qDB+h64XGSD3yL0Uce4rEfvcYPD07z/GLMVFMRKU0+aWEZbzwRsxMOK7bvoO89H2bpqhvYX5th6NQUaw6Du+sMu/fdz+zRe+jOZTA61v3/4lTtXwnaz9Ze/O7fkKFJLQWn05qeMMeQ62MGBkoY1KUBkUm3rjLVneKIUUQE7ZSMAmZmiSgVUtYFeuuaho6ZS0CXF7FqKaauOiklJJf1jHMi08se2c2sk2aqf5Ye22XNQsiYLjArOnHzfYz1e2Sy86wru+RLMbpmc0xsYcVik7XCZbqoOJGwGLZD1iGohBZGM0RGkpFcD+nYpWDGDDWX6DB8ZCEmqsR4HU2WemFXoZ9aswfTmEEWXOyqQ7Pey2xXk/F0H0Uihl2T553LuHh+nryxgFKCmkqgDcXAkiZo5FmKu3itN8PVc2fojARxp+ZUl2Sd9kgZIZO+wZRZYLwtSSqCumnTVqswWd1EECcIhaJfztMp6kwmDMatJJcslOhy6tiG4nQ1i1AxvbGNwMcViihKETg2haTPUtGjWEuy2GUzk68zYXUjlc/Kpke/9DmZFbiGwlExCTeLmxEMMEPZrNJR97Fil5qh6bQMehoOp701XBQeoaO5RFNJPG3Q0BkUDm2RB7KAapd4RgLHMDic6GVC5XE8hWsarHI9TEtCEDCZKtIrPArNgH63iqVMFuIMebFEkPA42tmOHWrc2MDx0miarFoIcGObY702pztS5ItVwrRHPdPKO7bZXWI0H+AmbZyGxIsMxnIJnu9Zi2ys5PZgH0d7LJJlRW+uSVtSEy3lMGqKtkqS1e44tfwAXaUmzTT4mSz5ep25bISHoE6WhrYJpCAQkkgYFDN1ioYkqAuGc2Xm2yVaCxLNkFCAqRVzhTRr6z6DM3WkSKOyglgY1JsdmFGavobi6KBNs10x1AxoNpIklxTlOEXZskipJqu0S8kwaaoUszmHWirkdKadZClHIe9yJGviWj4dC5oo0lgqpj0OCDMOvpVjrC2kZJrkTQ1GTG+1ScK0GKVAQ6RJMcuSCTPNDQyka+RkhYLjklEOTsOmlqpyuNdkMtmF9HNomaCzXKPs9RLEBsr2OdKRwnKhO1OiJDKcUAPMd80R+QK3fhHztsWh9ixxG+hcyHguR6psMBg36SzF2NKhM2rl6FOG4HSX5kA+TTahKCLpMJrUkjYVL0NKBCTMJI2cxViig2RJ4+gq84aNk/boqUQMuTHTnRF7nTYGZizsNkGtEGIlGqSDgNkErDB9ak4Xr+Zy9DdcpIgpRHVEUSNSDdpKgrJpcbQtx2rZoLeeQi9qpIrwVQcHuzexmgqNzByVHrBdiwOd/QylLaI4jRVHTGRSRE2bVY0aiWaeKCUpRQUWkjHTKYthrUnJWYRrUqz6hJmAKOdSWIroiRQLFIlMRbIBSdLEzTSNXJbe7DxZWSJYUqwwXHp0GddO0lZfxFQGSI+kjpFJqAmH/ukQx4uY6Mkgq+2UshEYAcmkZrwvQ2QqLqUCUUCxkSOwNGWzRnscETo2o+Eakp7Aqebpr3t0xU3y3Qo3BS91xajQoRF0s0afRujWaW+IyXhfiuHFKu1+AtdSRNRZLEis0CfdjDiY7YZKG0HG49q3f/Cn7kE/lwSt6tc5+YlfpKekOPg+i+6XFMWyoOvd7+f03u/Re8ziy9f2sP2Wd/HK0i4+82Kd4EyShm/ynz5g0J6J+DcveJw5mQXP4J7tg2w+HXJo81re9P4PgZUiGLqR5JF7WGcc48D661n94ijlvf/E1xNdXDq0mrZkjut7bmTt6qv5zuA4XYdn6DwS44z+iMbx+xgxu+nqX/2GUybLShBsv5Xyzh+QWggJRkzWrgp4blNMasxEPPIY6rJLyQyvZ50a5OHqU+w4ImiM2xgx5Btwpgse3iH5xk0Cf1WZ2exmntmwyCUnoXtacN1IzB9uqjM5sZfT332aNV/7CitPLDLWKxh/3xVc/x/uYdNlb6aQemNiaZFMYm7cgvPWd5N8/wextmxFZrPkJkps3l/nln2am1+NaZtfYqG+l/H5f2Du1Jd5ZO89GE9VeOtTkkzTZC7tkPd92vwY02/wt28W6DVtvKBuZ679Gf70OzXubbuN5hC8+fnHSJUlz2yBqw5GSCImtwuclEHH0YCnL5Z8+QMdRAuzfPRh+NAzEQUCstsEzp89gNzQymmVOHwPi098jN9Opfj3/xTSqwLqSUlu1ymifTOIRTjRJXl8Uxtf3b6Fx4e30tDd5P0yv7rzDG86McuO8SWuOaxYe9Kgdx4muxTPbpJ8/2rBczfFzGyISfd47BBN3n5S8daXFHPa4G83K6657MMM/3AftZlFflj5Jz574AGOlE9wZGXAoxuL2ImIq/YqbtmreeAawSPbDVbPKC46WSGZCjm4JcMXbhH4l1zM7dV+PvR3iziLeTq9Ko5u8NAVkmfu7uH9l1/FddWduN0JnMWYS07AK1dYZKYUH3tYcXoFFG6vMNaucRdjii/sJ3z4IVKPPMvgiRrSiShvyxC8772s+9hniYb6yT32IjccFDy4VvDEdsWtmWk27O6nNhjyxf4GK9Z1s3KvYnB/jJ9W/PB2hb3RxegNmSuC9OHiMY+No3VWTXnMFUxOdhVpNnrY9mqOu91F0utqPNLfzmOXWZzsiyESDEwK1h4OKDxzAo2idEmSRnedG17Q9C3Cn9+VpM2N2bTf4I7RmG9sg5xQrBXTPHJxitk1d9Ixe4ytBwTbJgXdV13P8dvX86NtEQ9s9nhtQFPOQNFtcMXYKJcdf4VtLz1M6uV/5MhLL/PN58e4f8TlUCXGDWKyjknaeb2Mb66znTVvuoPi+3+FE719TC2Msu5Ele7DAQs/eoHjL3yF+vQ+2i66HPHfqTD5/4X9K0H72dqx+76Etk1kLMm7UNfdDLtLZFSAHUumVB6znmPQXGR/W5Kg0UGynmVteIxMI2JOOgw3kyS9iJoOSCmHVBNCbXC8OITrJNlqnsEhZL87TMOWdEbT+JgMnjEo1hXNjMOMlSdddVhTmmdGOJSkQcEVjLZ34lkO2eYsrhT0VxXDsYsVhjQCi0rS4EyXIt+0mcl00Jf0yaTLTNkOs1GCQg0sK6bhQEoLOiohPW4VnfTxk1mmRA/90QJH8z14kU1cyxLoFN2VMqFdJ+dJbCkwlcKKJBgeU04v/Y0yvgFORuGHJrmmgSMEs75DqmLgJjSW5dPjl3DMOnYiYPXCAhPZPEXPI5+oEJmSUpDgjNXFqmZMIWwwVk3TdAxi26YuoMNrYvqSeiKBkIqiE7BSBMyluzAtQbmh6HIjUr6H2TDIZBSTWWhok0JskKFBDKS9RdrxQUbkgaQvGJRVKk4eL4jIMw+GQqqYqW5JxbEpJ9vZWh6nzXRJ1mHc78G2qpySnbi2Ta8+g01AOiUIAp9yQTCe6EVEFRyWKDgBxzN5xp1OZLKMITVeOIxnNegsG7TXQvJhgKEEqUhxYCiD0glk6NEuAoQrCJQi78WMWyZx2iA724HpGywWEiSUor0ZcZE8Q4qIM3aKlTpGxE2qJRtlxXSoRRaTNgPmAqlUA6w0dZmmu1rGM2A0n8Go9eHhTimCAAAgAElEQVRZFv1embpp4Rs5LjHnyVBnQqUoWgptOSgMxFJMZGvIaUJPsblUZyFIk0XhZgVLbgfUJKNymBPpTgrOSboijzY3ptlIkAogH/g4CZ+2kqTp2cwaBgt2Fql8Ni2FbIgXMY2QSZHjmOxC2WUKdUEqAC9hUi1I0k6TSauP4qJPl16kX7i4dkRv2ccxNOOil0jbXNSYIh0IBqIqK2WNtkiT9sCNOhmhi0K9RkesGK572NYCmxZrdJUkiJgwE7GQEpxuC8AKKFQzLJqa9mieog+ZwKQa9GArCzMxz8awwmDTYM5vo1gRtHmLlESGUKSphAnmRZZ85FLucInKfXTUK3R7Ic1cjBnFLHjt5KVCpSxCS3As7MaMBV1xiSPdSdY2FRtLAXVsjlEkqQNShs+UlWcikydl1OkPBKqewmwaiGbI0VwemY1JWxVm02AsZXEbCVzDYMIYppTMscUdJ6cE2fkagxWXhQ4DZExV2fSXl2g0Blkyk6RljTF3PVaosNwkxKBSi2RcyaHMWiYTeQLDotCIsBIlVjTK5EOFOQdJHzJGRNaOmbET5IoRQaWTpSgPXoqJ9hyV7izr9QhF0STSkoXQoT1q4qYFE8IEJahnFb5lIAKDRSuFih3aahFODEUzYpUuMRcr7EBiVBNc6lcY9CLKzRSFBhRMn4KrmdeSLjNiddhksd6BFToMqTHaKnWKqokoxpSCAn7cACtkyCszn9OYUpPIeFSLASntogzN4GLMmc6YkaJJRxSiDEUiCNg4UyNnV0gIj+3v+OhP3YN+7kRCIhXxtT96F+/40QyH3yLorLp0Ppfkuc0DvN06xPSBPCd6Lcb/3S9yYvd3WFsp844nJG5s8h/fZ5AoCt7xI5/LFiKasw5/8Y4sv/BMna6q5pm3Xcf7/91nz8WvGOURso/9JtbCQfbX1iN+UGW8U/And9zOhy7/KG/fNIC5fFK2f3YXR7/yf3L1E1MkQmh0RYjBHAu3/SYX33r3G65X/XDPMVb/wa+TqzRQKZi9q8mMUAz+YwY7Ejx12+Xc9vwxUgtllICjg/DSeslrazUD2qS7ksCIbV5YK/nsVZ/n8ZNjPHDyM3z46So37de4Sc3n75D0WSG5mqB9eAN3vO/L2OZ/W2qAn2TxwjzRa/sIX9tLc8+LHChMsme1ZOtewdbTGs+UnBxMwIoKw4dtsrOafSsFj92isby3MNpRo2Y8z396MMVXi+/iQ/MPsPJ0lcl2ONUPCR/UxZI1uRXox0/SNSX5zHsdZoqSd+z0eNNrGsPQdGyoITduIf61byAsG/waift/h5OvvsjCbIrOaYHjt/rldBccHUyyu2s9I5m1rJ+oc9PpEXq904wM+Kyegd6lVnLD0IDj/XBoSDI3EJMqRvTVLNaPRKw8ptFLJmhBOd0S4pgtCqo5jZOOSDqSmpOlb0SweV+d0z3wyi15Hs63s3Ypz5/s38mTK7Icsn3WTWjWjgrm8oK/udNg3bTiIz9SdC6BmY5hyKa+KEnMhTTSmvuvMNhzseY9hwLe2QfluMxLe3q49ETE3J0xn1tvMnBM8Bv/pKkmBZ/8iKCeEKyPA35xxueYaTFSttlyCnac0DghNPNF5E230fXWt2Cuu4joyGEWf++3EeUK/3iVyXevUfxitcGHp5p8v7uHz3fE3NVQ/OKJywgf242wFTuvjPnrHTY7vJC3VlyujBXTS3BmMUk869A7DYllPjDRZnGsq0g9n6MQGgydLLNnlcn+i4sMlGdZM11m/VhI31Lr+ek2mOuE3jnNV68r0O7V+OUnFXFS88DtJvevE2xr+mS0omPok5hP3svVO8/QvwiN3jTd/+sf4lx9A+WgxOjCXkann2N07gD+6Az5yYh1E7BuSpNc9jGVs5LRrjyH2lZztP9GujdsZttggUsHCgwUEm+IafPdBk/f/1WMZx/golM1kgE0HU1lOE3qqrcx+K6PYLX9vxcw+Vna/8wiIdPT0/zRH/0Re/fuJZFIcPPNN/OpT30Ky3rjlfRHH32UL3zhC4yPjzM4OMjHP/5xbr311jc898WPXH4u/F0LTUM4rFmoY+RDyliULZuEH2NHMbW0yTFrE5bQbPYPEmiJb2hSMmJgKWAWi3rOxrNaEWRhnCcf1ViXreGGBqfcNuaTKVR6nsGSwPZbcT+hJTkhe+gy6nTJMlEkiAOTpiOZMAepm2k2egdAmMSYWARIoUAJfLMVmJ6MNIedTay2FtiojjPqZjg1nGDFWNASK0C1lBCR6FCghGLe7GbO6GZYH2B3Zy9SWWS9IpEW7FjYT3s1pJmReM6y2IAwEWo5NP6s0MQ5sYPzYgJOpDgwFGNGkAxka08IbfqiiFhAPUqyITuH1DDrJtmZuJR0M2BdcBypYty0XFZqPCukwjmhAEMo1iTqnHL6caMkZn2W0GyJItmRwFbgmREIScZvCRZoAYbQRAi6rCYLfgINrE7VUUIw0siixHmRlBOdIQrBujMmPeUAI+Uxb6eJhUBIKFtpbO3jaIVBRNmwyCwnAnYtSIQaS7VyUcYCQmlgxZKsH+ILByEDDKUoVhVmBAttrSubk3lNpJMM1z1iWmIYSdXENWEsbxMZMDxnYwhBkNLYdQNXpGmXiygNUscMpT2mYptyYGPpVvygkpoh0yVpRJxwCywYHWydngChGevO4Wsbg4ic5yJci1LGIWt7IH08LFJKkzEjlAbXNQgMhZQSS7WEHmIliIUkYUcsqRSNjOSEuhSIWR+8xiWJOU4EeRLL67RalmG3w1Y+S8/UeNIhpTRJ5eFZmhSacpjEFIJQA7FgVaVOpSAJhIFQUDeTpMMm2gDT0BDHKGVg2Zox2YetfKx0hWI9ItQGaSMiIWPabQ8fmwNuH8VwidgEIcAkJNA2ZtAac6EtiUXMWHtMuwfZ2Mb2FLGGgoJFw8b0NcqMaRhp1iUXSWqfmVo3kw5kYxcjkjQrXQyKKUoFC60UmBeoOwqFaYUYnkEtaMMt5qiSIEuTKVUErdjgHSE0LLqtKj2ySUnanPKLmLEgoT1CCVUzSULFpOLWZu1oj0A4HHdWYUjJ6uZxjKgV0xqZgljYuCKBRpOPqhhKExoGAo1vtq51m/FZAZnXi/4ccjYBmr5ggqKqAIKGTOAZkgo95HWZtnipJVSiDKxQUayFLBUMYqMlWlLQEX5oEWDiaJ9SUmArRb8MyFshvjIY99KssqtgwWylQMPUsBy3m4kbNGWCqplmzXQdKWOmOhzS2qUh0mhaMWudlksmMFmKW/WILcGygDdHOgukjSbDM+dFeIiXBVdsEykEi3ZIhE3OM5jrACswuNKfxUSxt00S12z6FyVBDI2MRAA2GmITrfU5zPHrX33lp+5rP1cEzY8i/uq/fpgPf+cEs2tjutZ5xI+lOd1lsCFwKTkGiVmTr9y5nvc+c5Qf3B7y4QcNGlLy6fcbtKfyFMeW+NjOkHDe4gt3GtxuNLnErnBgdycrx+GJq7q56Q++RHemp/XROCBx5F5Su/+K2VNlFp9vYykN//ntnSxl3szHtt3F7ev7kMvKifvGnuXQPX/BxTtnGFpovcJtN5jcdAO5d36Yiy9df+5U7a/u38k7/uYTpH2fMC148Z0NNtUVyUfT1BKCP3lPhmxN4bd5DPgWOw7Blel5Tk2tYu2RBU4NagYvCbhn2GRX5g5y+4vM9o6ytvkqH3giZmgBRrrh5W2aqw4p5vszFG+/i203/gaJ/06iprXm+VMPsef7f8kVu5qsmYZGwmSh0Eb3wgwZWxF6Br4p+IebBFNDQ5Smr8Ze8TAL0uX2p6/Aw+Hu409hB/DDHTDVBqtWZtlRvJyTLzzJRS/Cod4E378qx1tem+eqo62J1b66Tm6lR+OaPyTcdCczTz5M7dnvkRqdJ1NvlW8+B0eGJSM9nZxecTMitZrusSe57OBe+peaSC3orGhMBZGEk70wPghhb0iyLcaIM6w7Khk66hIoxV9/wODFvM2vHhAU9q0m1AaxhGK4SE+jQtH1zilDVZPw4JWSuRz824cVpbzm2C0WyoG5xYDL9khWzUAjn8D54K8yJk4RP/w4L63UPLZdsO0UfOg56JmPMZMxrPa4f7uBteoK3vraiwwbFb5f6qZvp0F3HLHvfQm+lIl4748E1x3UGMmYuClpJE2+fr3D01t90Aa9KuC9QQehKXkimqV9zOD6Q4otI62cZaX2Hvzrb2XwtpsR3/sWwRM/5EzR5st3RkQ9Ef/bpMsaN+DvhhLst23+d38b4qkAffQYUQaeuTzi77c5pDVcW5ZcU8hxnbKxZ/ZzuGpzZjGJmrHpnz6v+DhVsDjR3sai3U4lW2Q9JUoLScY7LAb0BBtm5hiaCrFiCCUc67F49CqbDz/eoNiAF65M8/c7wEt43N5w2Vy8jBnnrZSf+wtueTmkuwyN4XZ6Pv4H2Jdf+TqCFYR1JiefYmTqRRZPHoKRBQqTEWsmIb+8BNUTMNdhMFPMMVUcprnqRoa2XsvW4XZWtade977pxTM8e+8fkzqwhw2nYwqNliLXYk+O+PI7WfnmO0mtX4+Q/2OvQf7PTNDuvvtu1q5dy+///u9Tq9X4rd/6La655ho+8YlPvO65o0eP8p73vIfPfe5zXHfddTz//PP8zu/8Dvfddx/r1q173bNf/+VNSBSBYZMIk5StFpmxEC1A3zSYtkMMQ9LfsBhJG8TCpNMLaNoBkRkQaQsnPq93t5SFtNdybJg6IhKt09wziRRm1qdrIW6pFmqXOLYpxWlcyyYlfPLSAyDftJjDRhCxe3WO4bBC91xEh2eykGglyk2pOnUjgzR9rEBwqtDL4KLFoJrlcIfBUptBuhHTv+CTMA28KEIh8ZVBRaVoMxoAlPOSpYQmSjo4sUUkQlaNe6RCCM00igaxgIpKkhcuhmmwlBH0lWu4ywp8FyawBji6Euy6R7FuU2xKKpFNMczQLypMJGKKIYikx+lUkmxFo6VEaE0jKzCqBk1t00UJVyTxtYUpYtAaQ8CADlnqSTAettNfmkIJsGMT34iXVSxbYgxatwDmhUqJxAFaWjhKsCKzRCOUTEX5C0RZwM+6qIpFgwKljMUmfwIjEgQ6QShMMpGBZ8akQoNUDIeTBXrMcaIoSV07KEMRhSZj3TYbS1ViAXaosWJoxA6OHaINaAQ2ShmQicgFLWCdjiTJSLKQiIhMcISHGUQ0ZIqmDVlf8n+3995hdlT3wf9n6u137/Ze1FZtJa1WZUFISCKAqAH8YrAJwT/s/DB23J3E2HkgxnaMiWMn2OBgXmJwAEvgADZBBkyzTJMlAeq9bm939/Yy7bx/XGmlRTSFohWez/PcB3TmzOy3nJlzvjPnfI8iYLBEoWTERtZy2KYXpEIwl5N8OJLARwrL8WFLY2cS5IWCR7I5MiJ1JJmso+GXTCQEsuXQWadT22viOH4GKg0aozJ5UZBPsQuBqC1LNMRVttU7hBPiaKZOCYaLFfxJsG0vAZHGUAQDdog6UvhFBoFEWvURyWtsa5IQKuimSVmXhEe26K7QqOq3iQofjjgqf60SK/ztwwkvLEkrZFski4NyePNjqZBQ5XDyhq4GBS0vU9VfkD/rlahOyMR0ezQD45HMkz6RRhUySdkHQLRUxT9UuK+9ksm2hjBtnSOoWT9VTpxDPgUNExO1kDRIVjADGvQWMxDIM8HJcrBKQu/S0ZQsQSnD/glFlIxYhFIOI8UKxSMFXwghcez7w4ihMKQX/BMigWQLdk4sBsehobOQGGXQCVEqpVAkQV7SyXhVItkMmjDRMclIfnJhDyJu45OsQlZUR5BQPOhyIXNrwDbISBKpYonQCGiSjaWCYh370uUoNUaaQamM3iIVkRKUyyksTUI3bCy5kChEEfbovRQPy0g2hNMOaeHBg8lIFZT3OSRDClWJLKaiYh1ukn7TR48uEZazgES1J4MtJEQizKD36MyRoJMavamF6cVWBTlZIyhSpKTCtlkDdoiAbNCUdxhR8wCYsoMkF9rUCzVVVEhRggIaurNMzuQ4FJZQLEHUDhJtVAiZHgKJBGbAJBuQGJHCBHIODSKLOpgnJQJEDI24bpEOyATSDm9EFRafuee148qPMC4CNCfZz9YdG/jNptu4+tcx8AnCcx3MF2XiHonXm4pZLnejbvTzX4uLWbFlhN3TbU57VSbuk/julToT5UZq4tu5/AkVKS5x97kyFZUBLro/yf5WwbmzLV7eIFO1TWFNi8K+z1zKNTOvocpXXRDCyuHd+RDyk7dz4GkH25B5YJnME3OC+JzZXDbpHK6euRyv6i0EasOvseZPv0R9eR3zdzlM7itcZqA4yP7pZzIyYyHa4G429pp8+dVHUBwbIcOfFliEyk1mPuElFoDvXqFil5UwZdjHpf/dQUUcdp1tIA3U0rxpEEWAf2KGzFSZf2nSKdvto5clzKzcRW3Pfia9plERg84yODjJZm6HQzKvMjCvnuKL/5qW2ReiK8dPdXwjpmPy1OsPEn3k/3La61lKk5AsUsmcexm12pOkNw3g3etB5GX+OFPit4t9pIb+kms71/HMaXswDzVRfWAGl3b8gapYnh11sO50h0Q4QiRQg94/xMwNcYJDHv7QEmbRgT6aexzymkRgQp54TRE9I/VohklJdyfhRGGgkfLCtkboqdEZ8pZDehKlbYvIbnqBmpEd1PUlaBy00O3Cw/RAFURrHDyVBpFiB1sUs8nrY4eW4tznVObtyeHoMn9Y3MRdTROwbJ2GRJJJ6U6aYoPUDOeoGzy6h5gAttf4eHyhwsYpOeqiDlfu81MdyrOrJEnskJczXy/sPRcLKgRzFrGAh2RlCeEGHyURkPZ1EuvKs3KBxpoWiVkH4eMvKzR3GUiKINSQhQlZ9g2EqdgpEz0jx69m6hTt9HDZywJ/TmDLoBTZlDdkSHd4yI3oJMMKDy4M8WxbEhsNj6NxWaCatsBEXhp4mQ35BNP2yCzd5jCts6BPR1UjTuMU6vZuQo0OsnGCzCNnQFNxlqVdQaYm0qydmMfUApztv5bsb9fi7NmFqUm8OkPwRIuCWW7TNhIhHyrmktrJzMCD1v0nrMGtbEt76In6EH0eKgcgUhjnYUvQURyiO1RO1inClFU214Qo0oZY3NfFpK4RfBnBC9ODVGbSTD0kWNcMv1tYxZZiH0XeDq5OpTi79hPcF0shb3qec9c6lCYhVRWg/JrP4T//Y0iq+samXfCjbTHYv46uTU+S3LoJ6cAQwQGTqiHQ7cMyyjASlhgp8pIqKcOpm0rp9NNontNGqK4GJIk/daxh4zO349ndyYz9gkmH7/ucVyM5ZTbh0xdTsfh01KYJJ5Rp8v3gzzVA27JlC1dccQUvvfQSJSUlQOEr2U033cTatWuRjwmcv/Od79DT08Odd945WvbZz36WhoYG/vEf/3HMdR++YiFDARvhD6Flg5jSAAeKQnSFwkyji4XDWZ6qDuLNaSzcLyHZFn+omkzOK8grMU7r7SWDig+bSQnBvmqIRXJE4hJaojCAS0sBUo6PA+WllAWiyHmbcJ+M106RDqgMejxEsln6i0tY1J1FtQWaI+Hk89iqxDNNLcyng5aOAWzVpjMUoiyWJ6tbbCwLUpx28AiZCf4k2b4IILGzqpLB8AhDkk6FmiQUj1BqJQgpWYajMnGC7Kgr5uxMHFuG7U41cskhavISOWWI4g4fFVmNzcFG5iU7EMjsMcvxanliNSHigSjn7O1CcVReKSmj2Imysaya2aaFJyuh+4co68rT59WRLRWPGqQ3FKRUMqjqi2MJnYTlIVucYk+ZYGIyCZbG7kgjRsahKt9PJigQyRJKEh72VutMNvpQjCLK0mm2zI4iGcWU5RTUlJ9MthIlG0XVYgSlHLKwcbI6ts9GRhB3fBiSypREgu5wIyFvnrJcDyNY+FSLASOI5FXw+LwkimNkYz68MY3dDSHqtUE85PGnbbr0chYfzBMhTdIIIoCNpWU06Xup6RX0hqvYH7Ho1xyiSjnLerrwOmlUI8wQMknVV8gyqIfZWa0RSgXwhHpZfqCXvFyEbhf6o5hiEK0LMmAnkR0bx/YgyTYlts3UQT8762W8cpSk0Ah3+fHLFl4yRCscZAE1vRKDaOyqLGLYV8RkRsjjULInQFAbwhEhKv2QCph0jgSYkE/g6Cm6K8spFjq6YSNMlQpvD0m5inWhDG3RLCQNJMcha+nYmRoydTGKExnsgEUiqKD3BLFrR+j3l9B4MHc4aJMw4pVUqEnqGcCQJPaVlKJ4PewqylJh5vBgMDQYwhI+lLIMMztTDDpBoodfQsuOhCzblFlpRHGK4qSM5HgpVmV6IhnsFGiGQ8Qjsae8GE+vgQeDziaZtBNm0qEMmiMxEK7l9MH9xEWQTtVH2mNRLuUwwj7q7X4M4aEnq2FYOgcbNOyoj4Z0gnS1Q69WhJMNc+G+vZQrGQ4EYCCiMuT1ML0vS0r2s90/ncmDSWrtKLvrqumNDOLrVajJxTFK4WBxGfOieUZEhj2hIEv2D2HqFkILM5CtY665k7zspdsoJ1M7QFkiw1A9mKYX2dbpteqoGxzCJ6XwZXzoUhrVn2ZHU5CMo9Lcn6Yka5JWZXZWFpM2axjxmSzo6SfjaEzLR9lYGsGXUCmVDbxY7BNB9jT5mNyTYn48yXN19Zw2HGPIY5PMyxRbEsKTAUeiWhTRnytmuDQFww6mJ0+sSGOCt5+8VUZRog+vJcCWiPnCxCq8JFSDkhGbTf5yBDJlhoInMkxVSsWfHEbKqUTyCiPlGkZ3MXF/kippBFtSiYsAE706lirT6+8jMijQhUG8VMFSYPZBwYZqlb5QhNauQWJlAp+kMpLw4ckLtkUqWZQzKB1I0IOPkeohyiwbhTKeqiihTCQwJJWGgTT1pomnOEk+BlvqimnOq9iWTnfJCGZGJqxaxJQiGlMaoVickJ0kavvp9E1lGn3kvWDFYgw65aA6NFg9VKd1grbFgoc3v2XfdlIDtETO5LqVr/F96xp+roW49iGZYslBSUngSBwql1i5OMzXB/uRX/KwYYrKT8/18vENGS5ZW+jw/u0vZnKm46cp+yKzng7gS1n8/DwZaUIx/99/DtFXJBG75V84u3oy4f+5mgOvDGFv8vPaRInbLtO4etbnuHLiJ5GPJAGwDbR19xL/6d1kOiEWkfjNPJV1Ux2iYQ/NwblcNOEsFlWeQUQvZvtQD6v3PE5078NU7o8zb49gemchBfNIUKa73Mv+ojKW7uwgJARyXiLnFbzUInHmVlBMwdPtsLJdpUTSuHRtmkWvKDyyRGJ/s0rLZpMzN0E4D/7KPL0NOg80SgxMWszCvgrOSjyGFY2R3hmgckAip8HuyVDvyVK5X2W3T6d7QSOBsy9kytSlNAQaxwwc98X38swzv6Di2T/Qvr0Q6AzVaSgrPkaV9SLa6zvJ7fVjZRR21cEDyxT2hc9k2UiY/2M/wF12E5HOWs45uItJAzl6iuH1dps5uwR1BwqD5aEQHCgNkZc9VA0rDHrKGA568Et5anN91A2O4M8X3i7E/bCzXqKvGjJlKvmsh6V/lNhZ1kg2YDAx0cfUvsTo1LWOchisdfBU5SkpBscpoVtXeKkow5+CEjXDEheu9XLGjgy65bBhUoC9tQ4ViTz1Aw6Ng4xey5EEyQgkSx2GSh26whK7izRSmsTyAY1qr0Jf+Qi9QypNu1Tm7it8qRvxy+TCJq+eZbJETzMjZSGPKMQP+Ih3+JEsib3VEr9eLLG5UcZvQtIrUx+1uWCdwtJtBqoN3lIDvTHPwTII7dDRunRSihfhydPd4MUzqZWGkhlIq39BcVGa3LBOPqZhewUvTguwujXPgQoVkauhWQ3w8eZ2StL9/GnwFTbFoszYKbNkm0PDYGET0Wg4SDhn4jHy7K2WeHaOhNlk0JwJEemvRi4aoKgaZpdej71mE7k//gHZNIn7YcMUif46h9KIQlKqxygp5cIps5kaaUYb2oF68AVyg1vYalnsT/rJDOuEByUm9UI4W7C3JUNXJEy3v4zucIiOUp2mTIrl+/diBm3KegpTpn7fJvHcHD89eg2ymuWv8ntozlXysr8Gbd8eFr9mUz8E6aBEbv40Gv/6a3ib57zzQ0kIUsN76HrtN0R3vkauoxd5OEcoJqgeBo91tKqhwkhEJVUSwqqpwzdhGrlQnM3xDcQGh5nUKTHrkKAsUaif9/vIzZhD8ZJlFJ3Wjlxd84EHbH+uAdqqVau46667eO6550bLOjs7Ofvss3nqqadoamoaLb/yyitZvHgxX/ziF0fLbrvtNl555RVWrVo15rr33PL3RA4N0zN/EfMSCfrTm3k+pCIsh6JgNzX+IHtDdczeoVGZ20dxUQbF9PFYbjKvT1Sp8nu4yDuT8KbVhPtS9PoFqSowY2m67SbqcoOUdzrsq5jIlkbB/NwWZtbMIL4xTl9YJt9ajdV/AFVMY0tZmLN2RgnLUaqdQQZFPUUlPjZaOabVFlE7tJtDpkpfySKig+vRIwtJeQcolffh2ZOlSc2ieXU0u5RnYyVsieQIWp2M2DKSM5HG1E7OVw1GasoYCVQznJxALLabCU0RXsxGiBhZFhg7mGEIth3spbtqIuFAmgXru9D9Kj1Ni3g9IKPOmEiZ/BqJHUk6RIC64igxrxe5X6LfLOMStZbYjleQA/0crNCpqyknUVRGfJ9CcSTP5O5htsaCtBaBVlNPDpXXcxsZUSQa/Cto3PAcsn+QJ+tk+sNnUpkc4ZPWABk9iHcIuiojPGHuRFYs2qT5FNVOYnO6iOz+bSjdL1GVzTHSUERsShtO7w6W7OliuK2G9bKX0w4eIGEHMMpbOX3jHyAU5E8zG6g5tAutrIipldV0ZP280HEIq8ZDf8lkanrWUOqFCtFCJOPHDqeIdO4lJxnotkH2k//Iq1seonZwLw2DDciNdaxPHiQRrKfSiqJ0RrHKFrEt5CGQPsTkAzvITtAgUk3DoEa+3PZOaw4AACAASURBVMKIJ5m+r4NdZVPYXHcaV8tdjARL2GH+CWM4yk6tisaYRpkYZFo2SqMEuwyNPo/EljofjfkGpk6fw/aOgxgDhyhJqXikEfJTptDkmUco+ju2JlQi1FDtKSNoD/K87aO/zKLN30jD5hfQo3vZ2FRFtGk2TaaXmWKQoqDD66Ewqwd6qRpWiYVlSjLDKOGZxHITOXfwJeyDm8gWS6RKbYyiOiYEIxx04nQdjFMdTRPMWPgqyqgf1slWhciFainKDTJi7cMsqaNEVTmgetlmpNnnrWFF/xbqtmXRinS2lpcQ7OonWj6HSP92ysprMSq7KE1k6WQZclU59bHHecmXZKIRpmLYRg1KjGRNDhUVoxaXUtozQKeiUKbkSNVV4otGmDC0n70Tz2Oy8JPJPIonYxLLBqkryxC1FhLv2E110EN/ZQ3bjC7KrJ0M27C09DSaZ11I8s7v8bovx6GlE5g5PJPenn30loepS/qo7uinJ+IQD0bo02L0+HTOyDpooRxFcgu7sh1s89kYRUkuEFOoefEFwhUSe5QZNKW7UTDIVrTyhC9Fxj9AtVnMxMYAGa2JxO/2UtzVQX1phJF5zQz1dCCJBHa1SUgLEzBUKtbvI1rnZ2VFPfJIFaWlfZRENc6yfETKIGOG2CoPU1a0gIToZEPsT2RCQVrNcpycRe9IgHKzi+b5ZxN98R52l06hNJ1hciZH/5LrKN35CpKq05/fBf2DpH0RZjbV85jksDD+HPWygxYPo9ulDHt95KUhummgJ67i88jU+oMkrSwzqx12sYX53jCTS2fzdGk5HbtfRd/dQ3lWIil5kWM2NdV11ARNXqoNE3eSKLEOAlaAOeUzGHwtg+3sYcTrp8weYJonww5PHbY9QKyqiAmpGvJJg76yLHrFUvZ3PcrsVAmGnWPfvFbKUhsJxNopSg5hV3VRta+HvZ56AqFKqtUSXh3qZteUIS4oa6RNquC3W7aRD9XTlMxRPPwCnU4dyealRDw6UlCQ+dMGdLOI0uIMqkdCGfIQV3u5/J9/+ZZ920kJ0Azb4Imu/6E73cuLh17mos4tXNqdxVtkE3YcOg+G+Pf6UjZMhM/ssZj/vEHML/GH2U1ctuEAvpTE0GSZf5j+FS5PvEjl0Fam7jfxGga3X6TglAT52/viRMMSr37101y77PqCsrkY4Sf+hvQLm+ndEKE/ovDz8wXWzPl8v/07FHtKRuUVVh5W3kLq0dXkBwsDq0OlIXZNKiVbolFkGxSl44RiSUJRi5IomCocmmWxewKowwq1B2WaO8Ff+IJKVznEiwTFCZ2aAZPhACSC0NQPlgq7GuDVJhmnyOH0LgN5QOXfL9CIByWmdtss3CmxZJtDSHLIFuvkEha9YZBKSqmtzRKU+jnY4aNqr4rHhM5yiWS1wpRsCn+vQq+ksXWCyt7pZQwH/Uzc08vC7VkahsBUHcwWlUjbVLwHtsPBLMkOL8KW2V0r8+AS2Flezv/Zp7JC3sNd+mQCUZtzdgwwYUAwWAQdc23KWmYy9GoM3yGDpF5Oh6cEWTh4RYra3CBNw8NE0kdHvj0lsKtOYqBKYJSApPhQ+2tQ4ypViREaozFqogaKOFp/sNZGqzQJFkkYmp+9AZXNfoONfglLlqlIOCzbodK23WJCXyHwM5WjX0oATF2QizgQltDqgnSX5ni0wsDpU5ner+DVoUz1kCg1SUoZjAGVpoMyLR0C3RKYJQ7B4jxFJQa+qjwezSE1pNPV78fo9OHNQE6Dl2ZIPNsqk/bLtHWYtOyFUEzlj0119M7sYlckgGanOWuLw7LNUD9U2NQ1UJnHU2XRU6HTk5Wp3KgQSErEiyUykyrR/JUEXt1IeSiPLSTygzrCkUgGYf1Eic1NMrtDk4hq1Uwscjh/0gSqFdg7sJZDh/ZTvdPmjO2FgMIBDK0w7cqWYEe9xOaJ4FQ6ZH0VeDLlCCVA28RG2qVpJJ/7A/aGV9CNgkE7y2GoxiFd6mdXSS35MpWzGyqZ3XghoeJm1Nh+lL7XiW5+mM1WP92ORjKuoQ6pVA1K1A8Kyo551OQ0md6IH1NSabJiaCOFHUA3TZT440yZjRNVDLuMEsvhbKuHVKYWkRxh5rYcsw8UXo70VsPItDL8805j5vwL8VXOANX3rp5Vdi7GQPeLdO16geiB3ZgDQ2ixPL64IBKTqIiBdkxbymswXCQTjSgMhiWSOnhzFlN6bWoHC2tfLL+G09SAt7WN0Bl/gTqtBUl/5y/bJ8Kfa4B255138uSTT/Kb3/xmtCyRSLBgwQJWrVrF3LlzR8tXrFjBVVddxac+9anRsnvvvZeVK1fy1FNPjbluzrCwbQddPbq+OJGK4hgmnlDR6DQan+rDSQwjk4VgFTgmHDPFXJgmwnEwbIHH5yGdNzEdB02W8WXT2KEiNBkws0iqjrDFe24bpu2gytLR9dbY2JYFqgfHtjGFgcexEaqPjFWY9ufTVbDNQsZSWeHI0MByBIbl4FFlVEVGmCaWDCKfR0VG8nqPm94rhCBrZvFphXtOgsIG1raNZVpomgyyCkYS9FBhqqGZAVkB1YuTyyF7vYf/voV6eOqRsCycXBbN7yNlG/hU35gXH0IIDNtCVw7vHXV4aYIkSdiWjWHZaJqCIsskcnn8OGi+wlTM1EA3OV0l4C9DHRlAKSlF1nSE4xSmmBkp8ISx7EL6d1kC08phS4U2cATLyKMoMhYCTdHpSw3gV4OEvX5wrILeR2QdiuIrL8VBwnZsbGGjy1ph4ZNjFdbVKNrh9TVH9XSEg+VYZAyDgMeDJmukMwn8ql6oq3mQEGQdA69ydI2tsG2QC9sAy8dkphWGgTBN5MBbJEFK9WP6ipElhZwp8OvK6DUtx8IWhe2TPZqOcMBxBLKTxzRNHFQ8Hn10jRCyykgmgyZlCWohLElCQQbHQXqTNaNYOUzLRvMGEELgpFLYioTuD4761skVpv/KHh1sE6HopPIWASeNLAG+CCKfxhYOackhrAUL7dy2kSQHjtj8GBRFxraPmZaWjYEvgpNOgOpB9ngOt0kDkU0iB0sKUyjzeSRFGZ3NIYQorAO0LYQQyMfc28l8hqB+tA3bdmF/OCHZqJJKOjmMlMrgr6hGGAay339MO7cx7DwhT8FnyWwekc8SCgSOs2PCSBDxFuHkUqD5sQ5vQO2IwrPijYmzRt1upFBldXTmWDxr4tNkPFqhfipnohlZdL//TWevCNtCEhYWOooikbMyeGUPkqIijDzYWWzZj6IqOKaFyGdRgiEkWSaZHcar+dC0gs6mbaLKKpZj4dU9WKY1+tyxDz+jvJo8tq07JjlHQclm0MIhbEegqsdvx+M4AsM2yBrg1VQ8mgSOjawctqNjYeXyZNAIejXkw7kpDNtAk7XCmlvHgsOz1QzbYCQ1QkmgDO1N/t5RAwk0/c1tDycpQOtIHeKzf7yGkgGFBUPlTKjYRK3hpSqv8ytvI0+Wj4BkM7U7xzcetrEUOFDiZW5nDr3I5OU5s7jT85ecMbiGyckDLDowQMIPP7lUZloXXPkHh+0NCtEv/wOXLbxsrCC2iXfHKpzV/5fB51OYaZXdNbBmrs7EJZ/l420XIyW6GNm7leED20j27MYc6kFO5tCTDr64TDgujQYMWb0QeI0US+RKwoQa5tMyeSnlk6ehlgbpOLiWbS/9DmnXbsp7U9T0Omg22EAqKFOUchgJQG9EpiKuU5bKjYqa8QoyIRnDK/PiRIet9TKdZRDO+qjvFcw5mKY2oZBR/MRUL0V5h7KIQ7g0TSyTQTug0NBXaEjd5RI9lSppv0xDn8nETgs9aONUm0hBDa9pIYYhM+jBMWQMTeLlZp3V7RbRkJcpwzojqgc9m6F9f5LlmwXBHMSLHawZeUxfgD1DpagZm6Jslop4npLE0ZUHDtBXDAeqJUbKHXLFMlm/ji/jJdivUjGYpzKWpWLEHh38ZnU4WA3JShu92CYQtpA8FpuCHp4LeRlUFYIZwcRBh9Y+mNil0thpE8gefag6ssAoshEhUCQVx+thqFxjR5NCjy+Oss/LjGEFTzhHvNghrgmsnI0aVajuk6gfcvArDnKxhVWrIDX4yakJzBEDM65hjGj4+jQqhwqb0RoqvD5R4vWJMoYumBK1OT+bpsZnILw2jiWDItFRKrHF9LA5OYlwJMvOcomdmp/K1ABn7rBYsBtqhguNTAlaBCvyWBFI64Iu2cMhM8CA7cdSNGxFpcbKMT8+TEnSID+sIYyC5TMeOFgh0xUuZdBTRNav4K0wqJkYotQjEL0d5PfEKd0rmNhbmFme9I39ynWoAjoqJdJhhUQgSNRfQjw4kWWBZhp2b0PasZbKgTz64bh7qAh6qyT6yz30VGmYZRKTw2XMrDqdqbWnkw2W8Mx936Ckex9lmsFIhcMBXSWR1hFxlfBwIWhrGIRgDkCgBWwsU0YYMrYs2N0Ef2xW2NooEQ2phNMhKlNQbQomHUoxY0+e2sNrRLvKoKdWkCsHqSJASWk1zeWzqW5YgFw6CSdUVxgEvQNSLkaybzv7D65lsHMzZn8v0kgSPWHiiwtCcZnSGKjH9Ok5rWCPWFgiEZLJ+BQMXUHICoqiUqyHqSmdxOQZZxKYsxg5XPSOcrwVboB2NECLx+MsXLiQBx98kNbW1tHytwrQVq1axZNPPjnmuqZpn5L2fDNO1bbxVnyU9HF1GZ98lHSBj5Y+HyVd3q7/+9ADNHPzJnL/8xu+1Pgsh0ospvdZ3LgrwRfnVTDsFwjZpiKu8s3VGWoPyeTDgkhxBj0osb5sKneGLmbenj0sjL1G42AU1YE/tUBXi8O5q8Fny+xefgZtX/o+fq9G3s6Ts7PYB14g17GZVDxONpEkn0rhxGKIeAIpa6LnBL4MeNMQSkuo9lj5cxoMFEsMR2RixYLBYoepcpophkUi5iHW66V6+OjAFgpBSdrnJa37yKk6nYFytoUbKZPjNJkHqR/so3yosOD3yOC2o0Th1eoGNH+GktwQJSM29YMQyB+9biwkE4uAUZRHC9roHlCcIHnLg2XpkFcwLcFQWMEJedAsm2LLpEyYBH05/NsyOD3HJzQYLFLZXquydobB5gkSCJ1w1mFqp8n0LsHcfYKKeCHoEfUG5UU5rLhGsqvwpQ0KUxRjIUhEBLkiBzMkEH4HRRIUxSWKO2WCPQrB3Ni3VcNBGCwXpEsEdsRCCVlYAZtBW2ev7UHNyJSkoCIhqE5AcVImEhf48kdHw4JCgJTVIO2FrF8Qi2hEi8LYXgtVN9DUPKpqoZo2mgVKDoKGoDrtUJF38CoCxwumD745KYielqmIQWWsoHvtkKAixmjgmVdhX5XKwXKdjCaoSmaZOAQH9UaMQIypg3EqR47Wl1QHT5GF4rORAceS6PH6eTE4l0gkTaSigzVFATZ5dHQ7ypxDBnP3CaZ3gT9/+FZVHTxhCzXkkA/KpDwqWVXGEQ6aYaOaNn7FRJEcRgydbMxDaFgeTeBRaM8SQ0U6Ub+fYU+YlBIgr/rJeH2Yio4lqThCZVZmN/VaL1pCQU2AyEJxOoXu2CR8EA9KJAMySZ9KWlPwKiYlcYeafpvw4fVnGQ/srZYYLBWkIpALSQiPjKYBugYoqFmHiVmTqWaaUM6kXxLs9aj06Sp5W4WchJ4ofG2eErfwpeTRIDQdFOytLmyx0FcskfJBf5lKU1+AmV0mE3vy1AyYoxknk95CFsmRCBCw8asOqiohKyoaCna5guz1o3vDhEOVyKFy8BcjB8twIg2o4Up0PYSueNBkHV3WkQyDxOAh4r17iB7cSKZnPyI6iBpL4UmYBBMORfFCNrkj2BKMhCAWgFhAIhmAjB9MXcJRZWxVwVE1hKaD14fiDeHxhdF9YTzeInRvEV5/MR5fBL83SGVZKQ4e/F4fmqKjySqqpKHLGrKkfOhr4t4t7zVAe+ihh7jjjjtYs2bNaFlHRwfnnHMOTz/9NA0NDaPln/jEJzjttNP4yle+Mlr27//+76xbt45f/epXY67rBmjjl4+SPq4u45OPki7w0dLno6TLuArQcv/zGzL/dQ/d1Tq9NT4mrO/HNzLCw0tkiptTLMjnmLpBJTFSwtbSal5vnMwOvYxBU3DZxr3UG7soS+WolQycaot4lU1uSCMW8yIkGccpZEXymg5eE7wG6CYcH44cJatDPACJgEwyIJP2KGQ1BceBonSe6phNRQwCRiGLYF8pmH7BHLJUYhO1QvzBmAXCJigGCVqDbG0spPCtGYbq4cKalmMSzdARLKErUorkCGShUC6GCefi6JbAa1joRiHD1Nb6MNvbHEZCeTwpk1BUor4fJvSL0UQWAGkP5PXCVDVHgXQAHr1AxtBkHCSQbJBMVqQzTE9avDgcpkPWyOkwUCTRWwJpr0TjgGD2foe2fYJpXQJFFAZ1jiqQiy20iIWsKGSzOo5VSB2qCAePk0dGIAmwMgpGSj2cDKqQujQZgIwPsj5IhwWS5qBKDroQTAtkCJqAKaE4h30lge63UAMOSIU8Wrc0hlkb8lIch2tWg8coZIeSD8doa1oKqe1HM/gctk04Izhvg4RsBaiSYkhHmryQQByuJwo/x5ZGg81jyWkKAwE/AwE/Kd2DQKY8lWLK0BAeBI4myEkSjiTRWww5XaLPU8uzjS101iaoz+2laThO24Fypg9HCSaySMe0B9VnI2sOkgKSXJgKMuLx8eoUD2urveyNmPjMLFN6HSb0FfYQq4sKSt/hFpVkgaQKhAIoErYsYcsyjioxOD9AqkgnL6nkUbGFQlEKwkbusAkLdkqGHQxPIXW2hCCFzvMhB93bPfp3BOAcTq4tDrtgBJkrO/OcEbVQTQdpRCG+PThGPkMtJILJa4VfTgdbBaE6hPwWxV4LDzCoehh2ZAzbQSgCWxWYaJQNQ/WwTTAho2QYzS715Nk2K+dpZA9PgZAcQcOARPMhDxP6ZGriJlVxg3DGGfPFC+DR0yVWLitMS/jycIy/iSdGj+2wavnb+P+PioUmTNTDvyO2QRyxUyHNdMSUUAWkHD+RTJZFI3twHBth2wjHQQinsFieQls+8v/V6SjluTgnStwP139BwVbGBmOSEKgCNEATAk2AYntQ/cXoviCqrKHKKrIkIyMjS4WpIjKF/yqSgoSEJMnISKiyxl9NuoYpRVNPWMY38l4DtO3bt/Oxj32MP/7xj1RUVADw+OOP8/3vf5+XXnppTGD6ve99j4MHD3L33XePln3mM5+hubmZb3zjG2Ou6wZo45ePkj6uLuOTj5Iu8NHS56Oky/86QHNxcXFxcRnvfOITn6ChoYEbb7yRWCzG9ddfzwUXXMDf/u3fct5553HzzTfT3t7O3r17ueyyy/jxj3/M0qVLefbZZ7nhhht47LHHaGxsPNlquLi4uLi4AG6A5uLi4uJyitPf38/NN9/Mq6++it/v5/zzz+frX/86iqIwdepU7rzzTpYvXw7AM888w+23305HRwdNTU185Stf4cwzzzzJGri4uLi4uBzFDdBcXFxcXFxcXFxcXFzGCW+3NMvFxcXFxcXFxcXFxcXlQ8QN0FxcXFxcXFxcXFxcXMYJ71uA1tvby/XXX097eztLly7lO9/5DqZpvmndJ598kksuuYS5c+fyl3/5lzz99NPvlxgfOU7Erk8//TSXXnopc+fO5ZxzzhmTqcxlLCdi1yOk02mWLl3KDTfc8CFJeWpyIrYdGhriS1/6EnPnzqW9vZ3vfve7GIbxpnX/3DkRuz7wwAOsWLGC1tZWzjnnHO68807c2ezvjv/Ns+Fk0d3dzRe/+EXa29s57bTT+PKXv0x/fz/5fJ6pU6cya9asMb+77rpr9Nzx1g8vWrSIlpaWMfL+0z/9EwDr1q3jiiuuoK2tjfPOO4+VK1eOOfeBBx7g/PPPp62tjSuuuIINGzacDBVGWb9+/XG2nzVrFlOnTqW7u/uU8M2uXbu46KKLOOuss8aUvxdfGIbBzTffzLJly2hvb+f666+nv7//pOmyfv16PvGJT9DW1sayZcv4l3/5FyyrsOfRmjVrmDZt2nF+eu2114DCZtE/+clPOPvss5k/fz7XXHMNe/bsOSm67Nu3703b1OOPPz5aZzz65a30+dnPfnacLi0tLaN1xqtv3nfE+8THPvYx8Y1vfEPE43HR1dUlLr30UvHDH/7wuHo7duwQLS0t4umnnxa5XE4888wzYtasWWLXrl3vlygfKd6tXTdt2iRaWlrEE088IUzTFOvXrxdz5swRTzzxxEmQevzzbu16LLfccouYN2+e+MY3vvEhSXlq8m5t6ziOuPLKK8WNN94o4vG46OjoEFdddZV46qmnToLU4593a9fnn39ezJkzR7z22mvCtm2xY8cOsXDhQvHQQw+dBKlPPf43z4aTxUUXXSS+/vWvi2QyKYaGhsQ111wjrrvuOtHX1yeam5vFyMjIm543HvvhmTNniq1btx5XPjAwIObOnSseeOABkc1mxauvvira2trEmjVrhBCF9t7W1ibWr18vcrmcWLlypWhraxODg4Mftgpvy8qVK8WVV155Svhm9erVYvHixeLzn/+8WL58+Wj5e/XFD37wA3HJJZeIjo4OkUgkxA033CA+/vGPnxRduru7RWtrq/jlL38pDMMQO3fuFGeccYa4++67hRBC/Pa3vxUXXXTRW173/vvvF0uXLhU7d+4U6XRa/Nu//ZtYvny5yOVyH7ouGzZsEHPnzn3L88ajX95Onzfjq1/9qvjRj34khBifvvkgeF8CtM2bN4tp06aJaDQ6WvbEE0+IBQsWCNu2x9S9+eabxWc/+9kxZdddd5343ve+936I8pHiROy6Zs0a8dOf/nRM2ac//Wnx3e9+90OR9VTiROx6hB07dogzzjhD/PM//7MboL0NJ2LbdevWiQULFohsNvthi3nKcSJ2ve2228Tll18+puy6664T3/nOdz4UWU9l/jfPhpNFPB4XN9xwg+jr6xste/zxx8XcuXPFrl27xNSpU4VlWW967njrh1OplGhubhYdHR3HHbv77ruPG4zdfPPN4nOf+5wQoiD3G/u5Cy+8UNxzzz0fmLwnSjQaFaeddprYvn37KeGbhx56SHR3d4v77rtvzMD5vfjCsiwxb968MS/gotGomDp1qti+ffuHrsumTZuOeybeeOONo7a/7777xFVXXfWW173wwgvFL37xi9F/G4Yh5s+fL55++un3WYOjvJUuzz33nFi6dOlbnjce/SLEW+vzRl5++WWxbNkykclkhBDj0zcfBO/LFMdt27ZRXV1NSUnJaNnMmTOJx+N0dHQcV3fmzJljymbMmMGWLVveD1E+UpyIXc8880y+8IUvjP5bCEF/f//oxq0uRzkRu0LBlt/+9rf5+te/Tij03jbV/ahzIrbdsGEDzc3N3HHHHSxatIhly5Zx++234zjOGy/7Z8+JPgv27t3L2rVrMQyD7du3s3nz5tE08y5vzYk+G04m4XCYW265hcrKytGy3t5eKisricfjqKrK3/3d37Fo0SLOOussfvzjH49OHx5v/XA8XtiU/cc//jFLlixhyZIl3HTTTaRSqXeUddu2bcyYMeMtj48H7rjjDpYvX8706dNPCd98/OMfp6am5rjy9+KLQ4cOkUwmxxwvKSmhqqrqA9XtrXSZPXs2N95445iyvr6+0fspFosRjUb567/+axYsWMDFF1/Mb3/7WwByuRx79+4do4umaTQ3N58UXeLxOJZlcd1119He3s55553HPffcMzqtfTz65e30ORYhBLfccgtf/vKX8fl8wPj0zQfB+xKgxWIxwuHwmLKioiIARkZG3lXdN9ZzOTG7vpG77rqLWCzGFVdc8YHJd6pyonZ98MEH0TSNyy677EOR71TmRGzb19fHli1b8Pl8PPvss9x6663ce++9PPzwwx+avKcKJ2LX1tZWvvWtb/GZz3yGWbNm8bGPfYyrr76axYsXf2jynqq8l2fuyWb//v38x3/8B5///OeRJImWlhYuuOAC1qxZw2233cZjjz3G7bffDoy/ftiyLObMmcPpp5/Os88+yy9/+Us2bdrEP/3TP72prJFIZFTWt9IlFot9aPK/Hf39/TzyyCNcf/31AKecb47lvfjiiD+O3E/HHh8Puj3++OOsX7+ea6+9Fii8AKmrq+Ob3/wmL730Ep/73Of41re+xUsvvUQ8HkcIMW508Xg8TJgwgb/5m7/hxRdf5KabbuKOO+7goYceAk5tv/z+978nm81y8cUXj5adSr55L3xgWRyPRO6SJL2r+u+23p8778aud9xxB7/4xS+46667iEQiH5ZopzRvZddoNMpPf/pTvv3tb58EqT4avJVthRAEg0E+//nP4/P5aG9v55JLLmH16tUnQ8xTjrey69q1a/nXf/1X7r77bjZv3sz999/P/fffz+9+97uTIeYpz4n2ZSeDrVu3cvXVV3Pttddy8cUXM3/+fFatWsU555yDpmnMmjWL6667jkceeeRtr3OydGxoaOChhx7iiiuuQNd1Jk6cyNe+9jVWr179pslthBBvK+ubnXOyuO+++1iyZAkNDQ0Ap5xv3on36ot3Ov/D4OGHH+amm27iJz/5CU1NTQBcc8013H333cyYMQNd17ngggs455xz3vYF4slqd+effz733XcfCxcuRNM0Fi1axJVXXvm2bepU8AvAf/7nf/KpT30KRVFGy04l37wX3pcAraSk5LjI9MiUhWOnigAUFxe/6Ve1N9ZzOTG7QqEB3njjjTz66KP86le/Ou6TtkuBE7HrD37wAy6//HImTZr0ocl3KnMiti0vLz/uLVdtbS0DAwMfrJCnICdi15UrV3LWWWdx+umn4/F4mD9/PhdffDGPPvrohybvqcqJPnPHAy+88AKf+tSn+MIXvjBmmvsbqa2tJRqNYtv2KdEP19XVIYR4U58cK+ub6RKPx8eNLk888QRnn33229Y5VXzzTrK9nS+O1Hmz48XFxR+g8irw2gAABbdJREFU1G/Pz372s9EXWkuWLHnbukf6p0gkgizL47rdHduXnop+gUKW2s2bN7/j/QOnlm/eLe9LgNbS0kJ/f/+YgdXmzZspLS2lvr7+uLpbt24dU7ZlyxbmzJnzfojykeJE7AqFYGLjxo2sWrXKDSjehhOx62OPPcbKlStpb2+nvb2du+++m9WrV9Pe3v5hi31KcCK2nTFjBl1dXSSTydGyrq6ud5yT/ufIidjVcZzj1vHZtv2hyHmqc6LP3JPNpk2b+OpXv8qtt97KVVddNVq+Zs2aMWnboTAFsrq6GkVRxl0/vGnTJn74wx+OKdu3bx+apjF9+vS3lfXNdNm8eTOtra0frNDvgp07d9LV1cWZZ545Wnaq+eZYZs2a9b/2RX19PUVFRWOO9/f309fXd9J8dd9997Fq1SpWrlxJW1vbmGO//OUvj9veYN++fdTX1+PxeJgyZcqYNU2GYbBz586Tostjjz3Gr3/96zFl+/fvp66uDjj1/HKEZ555hubmZqqqqsaUn0q+eU+8X9lGrrzySvH3f//3IpFIiI6ODnHBBReI22+/XQghxIoVK8TatWuFEELs2bNHtLS0iN///vcin8+L3/3ud2L27Nni4MGD75coHynerV1fe+010dbWJnp7e0+muKcM79auvb29Y37f//73xZe+9CXXzm/Du7WtZVni7LPPFjfccINIJpOjbdjdGuLNebd2feSRR8TcuXPFunXrhGmaYvPmzeK0004TDz744MkU/5Th7ew8njBNU1x44YXi3nvvPe7Ya6+9JmbOnClWr14tDMMQmzZtGpNCfLz1wx0dHWL27NninnvuEfl8Xuzbt09ccMEF4uabbxbRaFTMmzdP3H///SKXy4m1a9eK1tZWsW7dOiGEEC+88IJobW0dTSF+zz33iPb2dhGLxU6KLsfy3//932LevHljyk4l37wxu9579cWPfvQjcdFFF4nOzk4Rj8fF1772NXHNNdecFF06OztFa2vrm27tIIQQP//5z8XixYvFtm3bRD6fF4899piYPn262LRpkxBCiFWrVonFixeLXbt2iXQ6LX7wgx+IFStWCMMwPnRdVq9eLVpbW8Urr7wiTNMc9cORvnQ8++XN9DnCP/zDP4xmCD2W8eyb95P3LUDr6+sTn/vc58TChQvFsmXLxK233jqaRra5uVk899xzo3Wffvppcckll4i5c+eKyy67bHQPDZfjebd2/eY3vymmTZsmWlpaxvyuvfbakyn+uOVE2uux/OQnP3HT7L8DJ2LbvXv3ir/6q78Ss2bNEmeccYb4r//6r5Ml9rjnROx67733ihUrVojW1lZx7rnnip///OfCcZyTJfopxdvZeTyxfv160dzcfNwzv6WlRXR1dYnVq1eLiy66aEwbOHargPHWD7/88svi8ssvF62trWL58uXi1ltvFfl8XghR2OfpyiuvFHPnzhUXXnihePTRR8ec++CDD4rzzz9ftLW1iU9+8pOjA7WTzZ133ilWrFhxXPl49825554rWlpaxIwZM8a0sa6urvfkC8MwxHe/+12xdOlS0d7eLr74xS+O2dLiw9Tlpz/9qZg6depx9865554rhBDCtm1x2223ieXLl4vW1lZx2WWXieeff37Mte+44w7xF3/xF2L+/Pni05/+9AceRL+dX+6//35x7rnnitbWVnHhhReKX//612POHW9+eSd9hChsFXXjjTced9549M0HgSTEKbhyzsXFxcXFxcXFxcXF5SPIB5bF0cXFxcXFxcXFxcXFxeXEcAM0FxcXFxcXFxcXFxeXcYIboLm4uLi4uLi4uLi4uIwT3ADNxcXFxcXFxcXFxcVlnOAGaC4uLi4uLi4uLi4uLuMEN0BzcXFxcXFxcXFxcXEZJ7gBmouLi4uLi4uLi4uLyzjBDdBcXFxcXFxcXFxcXFzGCW6A5uLi4uLi4uLi4uLiMk74f+OOLpkrwK87AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, - "metadata": { - "needs_background": "light" - }, - "output_type": "display_data" - } - ], - "source": [ - "pm.traceplot(trace_1, varnames=['thetas']);" - ] - }, - { - "cell_type": "code", - "execution_count": 32, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWcAAAD3CAYAAADBqZV6AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3deXxTdb438M852dOkSZd0b4HutEBZRURA9sqijqDiiKPoc6/KjOMdrzMP6n3GcRwd8RmecR/vlZFBmXFBcQGhIvuOskNLV1romq5pm2ZPzvNHoVJaSNomOSfJ9/169UV7ck7z4ZDz5eSX38JwHMeBEEKIoLB8ByCEENIXFWdCCBEgKs6EECJAVJwJIUSAqDgTQogAUXEmhBABEnvjlzQ1dXrj1wieSiWD0WjlO4bg0XnyDJ0nzwTzedLp1Nd9jO6cB0AsFvEdISDQefIMnSfPhOp5ouJMCCECRMWZEEIEiIozIYQIEBVnQggRICrOhBAiQFScCSFEgKg4E0KIAHlUnL/44gssWLAAt99+O1asWIHKykpf5yKEkJDmtjhXVFTgtddew7p167Bt2zbMmzcPzz33nD+yEeIXVg5oszl7fVlpCQrCM7fDtysqKjB8+HDExsYCAG6++WasWbPG58EI8ReT3YndxY29ts3MjoFMGpoj04gwuL1zzsvLw6VLl1BaWgqO47B9+3bccsst/shGCCEhy+2dc2xsLJ5++mncddddUKlUkMvl2LBhQ699VCpZSIx/F4lYaLVKvmMIXqCdJ3O7BUqFtNc2uUwCrUbu0+cNtPPEl1A9T26Lc1FREf72t79hx44dSEhIwNdff40nnngCW7ZsAcMwABC0M0ZdS6tVwmAw8R1D8ALtPFlsTpjMtt7brHYYDC6fPm+gnSe+BPN5GtKsdIcPH8a4ceOQkJAAAFiwYAHKy8vR1tbmvYSEEEJ6cVucR4wYgZMnT/YU471790Kn0yEiIsLn4QghJFS5bdaYNWsWCgsLcd9994FhGKhUKrz++us9TRqEEEK8z6OVUJ588kk8+eSTvs5CCCHkMhq+TQghAkTFmRBCBIiKMyGECBAVZ0IIESAqzoQQIkBUnAkhRICoOBNCiABRcSaEEAHyaBAKIcGkocOCveUtCFeIceuIKICl0a5EeKg4k6Bk5bon0b/aheYuvLevEqdq23u2iVkGU1MjMTFFC6mI3kgS4aDiTILStaubXGjuwpdnGqCSi/DE1OGYm6WDwWzHjtImfHKiFhdbTVg6NgESKtBEIKg4k6B3tq4D3xbpoQuT4vV78hCt6p5YXxUmxcPRYUiIUOIvO8rw5Zl6LMlLgIiaOYgAUHEmQa2yxYRvi/QYFqHA3XkJUCkkfdYLnJ6pQ2FtO7adb8SBCy2YkR7NU1pCfkLv4UjQaumy4csz9YgOk+LuvATIxNd/uY9N0iA3Xo2jVQa0dtmuux8h/kLFmQSlTosDn52sg4hlcM/YGxfmK2ZlREPEMvi+pAkcx/khJSHXR8WZBB2O4/B/d5Siw2LHkrx4aBQSj45TycSYlhaJCy0mHKls9XFKQm7MbZtzQUEBXn/99V7bKisrcfz4cahUKp8FI2SwNhyrwZHKNszJ0iFJqxjQsROStThd24H3D1ZhfqaOPhwkvHFbnPPz85Gfn9/z89atW7Ft2zYqzESQTte24539lbg1LQoTkzUDPl7EMrg1NRJfnW3A3vJmzMrU+SAlIe4NqFnDarXijTfewG9/+1tf5SFk0NpMNjy35TziNXL85+z0Qa9zmRWrQoJGjn/8UE1tz4Q3AyrOn3/+OcaPH4+UlBRf5SFkUFwch99vLYHBbMeri3IQJht8L1GWYXDv+ESc1xvxwyWDF1MS4jmPX8EulwsffPAB3nvvvT6PqVQyiMUirwYTIpGIhVar5DuG4Pn7PHVY7HhvTwWOXGzDM3MzkRIXDqvTCaVC2mdfsYjts72/bbNTo/CvYzX414k6zM9L9Eluej15JlTPk8fF+eTJk1AqlcjIyOjzmNFo9WooodJqlTAYTHzHEDx/n6dtJU34+8Eq5MapIeZc2Ha6FlMydDCZ+/ZXdjhdfbb3t83ldGLZuAS8ua8SR0r0yI5Vez03vZ48E8znSae7/uvK42aNPXv2YMaMGV4JRIi3XGjpwqvflSJOLcPtOTGDbmfuz12j46GQsPjsZJ3XfichnvK4OBcXFyMtLc2XWQgZEIPZjv/8qhAyCYslY+O9PmmRWi7GgpxYfFfcCIPJ7tXfTYg7Hr+aGxoaEB1Ncw4QYTDZnPiPTefQ2GnF7xdkI1zu2UCTgbpnbAJsTg5fna33ye8n5Ho8Ls6bN2/GtGnTfJmFEI/YHC787ptCnNd34pVFI5EbH+6z50qLDsPEZA2+OF0Ph4u61RH/oeHbJKBYHS48t+U8jl404Pl5mX6ZQe7ecYlo6LRif0WLz5+LkCuoOJOA0WVz4D++PIe9FS14ZmYa7hgV55fnnZYWhVi1DJ+dog8Gif9QcSYBwWC2Y+XGszhZbcAf8rNw33jf9D3uj5hlsDQvHscuGVDR3OW35yWhjYoz4Z2VA9pszl5f1quadxs7rfj3T0+jvMmI1XfkYmFurM8zMQzTK89t2TGQiBh8QnfPxE9oJRTCu2vX+wOAmdkxkElFuNRmxq8+P4MOiwNvLhmNCclav2QyO1w4XNbUa1t2rAoFRXo8NW0EVEMYHk6IJ+jOmQhWaaMR//bJKZhsTrx7zxi/FebrmZCshcXuwuZCPa85SGig4kwEqbCuA499dhpilsH7y8YiJ877w6cHKj5cjpw4NTaerIWLZqsjPkbFmQhOY6cVz39TBI1CgjVLRkOrlqHN5kSXq2/bdJvNCacf6+SdefGoNlhwpKrNf09KQhI1nBFBMVod2HiqDnKpCHeNjkNRXQeK6joAAFMydH3aga9s95dp6dH47/2V+OfxWoxM7J7MXykRQUYLphAvoztnIhh2pwsbT9bBbHfi9wtH+mxI9lA4OCAnTo0fLrbhixM12F3cCJPdyXcsEoSoOBPB2FfRgoZOK+4cHYfU6DC+41zX2EQNWAY4Ud3OdxQSxKg4E0Go77Dgx4sGjEsMR4ZO2OtTquViZMWocKauAzani+84JEhRcSa8czhd2FbUiDCpCLdlBMbMhxNTtLA6XCis7+Q7CglSVJwJ7748XQ99pxXzRsZALgmM5c4SNXLEqmU4Xm2gRWCJT1BxJrwy2Zz45HgNUqOUyIoRdnPG1RiGwYRkDZqMNpyp7eA7DglCHhVnvV6PFStWYMaMGVi4cCF+/PFHX+ciQai/OTT+ebIWnRYHbk2N5DvegOXEqSGXsPj6DE3ET7zPo37Oq1atwvTp07Fu3TocPnwYGzZswKRJk3ydjQSZa+fQcDhd+NcP1RiTqEGiVsFjssGRiFiMTdTg0IUWNHRYEBcu5zsSCSJu75zr6+tRWFiI5cuXAwCmTJmCN954w+fBSPA7W98Jo82Jeyb4b/pPbxuX1D0Q5YvTdPdMvMttcS4uLkZSUhLWrFmD+fPnY/ny5SgqKvJHNhLEXC4OR6pakaCRY8zlkXaBSKuQYPLwSHx1tgFWB3WrI97jtlmjo6MDpaWlWLlyJVatWoXPPvsMv/rVr7B9+3aIxd2Hq1QyiMWB8Sn7UIhELLRaJd8xBO9658ncboFSIQUAlOo7YTA7MD83DhKxqGf7FWIR69E2X+07kOPvnZiM32w8jYPV7bh7nOfvAuj15JlQPU9ui7NarUZUVBTmzJkDALjnnnuwevVqVFVVIT09HQBgNFp9m1IgtFolDAYT3zEE73rnyWJzwmS2AQB+qGyFQiLCMI0cDqerZ/sVnm7z1b4DOf6mFA1GRCrxj4OVmDlcC4bxbKINej15JpjPk053/dkW3TZrJCUloaurCy5X91s2hmHAsixYlnrhkcEx2ZwoazJiVLwaIjbwZwxiGAb3jEvAeb0R52hQCvEStxU2MzMTKSkp2LhxIwBg27ZtUKvVSElJ8Xk4EpwKGzrg4oC8xHC+o3gFwzC4JT0KSokIG07U9llmi5DB8Oj2980338Tnn3+O2bNnY926dXjzzTd72psJGQiO43CmtgPx4TLoVDK+43iF2eHC0QutyIlTY09pEzafrqOZ6siQeVRhk5KSeu6cCRkKfacVjUYb5mf7bw5mfxmfrMGxagNO1bZjcV4C33FIgKOGY+JX5+o7IWIYQSw75W1RYVKMiFLiZE07HDRbHRkiKs7EbziOQ2mjESOilAEzwdFATUjWwGh14uCFVr6jkABHxZn4TVlTF9otDmTFBs4ERwOVFh0GrUKCr8/U97veIX1QSDxFn+oRvzlQ3gKGAdIFvMrJULEMg/FJGuwqa8YnP1YjVt37Q8+Z2TGQSYPzXQPxLrpzJn7BcRwOVDRjWIQCyiAvTmMSwyEVszhRbeA7CglgVJyJX1xoMaHGYAmoOZsHSyER4da0KBQ1GGkZKzJoVJyJX+wuawYDIDMEijMAzBkZA5vThWK9ke8oJEBRcSZ+sausGTnxaqhkofExR258OCKUElolhQwaFWficzUGM8qaunBrWhTfUfyGYRjkJYSj2mBGa1ffCZQIcYeKM/G53WXNAICpIVScAWBUfDgYAGfq6O6ZDBwVZ+Jzu8uaMTJWFXLLOKnlYqRFh+FsXQdctEI3GSAqzsSn9J1WnK3vxMyMaL6j8GJ0ghpGmxMXW4NzPmLiO1SciU/tLe9u0gjV4pweHQaZmKV5nsmAUXEmPrWrrBkjopQYHhl6ywwB3ctaZceqUNpIfZ7JwFBxJj7TZrLhZE07ZoXoXfMVo+LUsDk5lDV28R2FBBAqzsRn9pa3wMUh5ItzcoQC4XIxChuo1wbxnEcjAnJzc5GcnNzz85gxY/Daa6/5LBQJfFYO2F7ajPhwOaI1crTZnHCGaIcFhmGQG6fGkYttaDPZECFV8B2JBAC3xbmrqwsMw6CgoMAfeUiQaDRacfxSGyalRGBPSRMAYEpG8K1+4qnceDUOV7Vhb1kzUicluz+AhDy3zRpGoxHh4cGxECfxn6NVrXBxQFZM8E4POhA6lQyxahl2Xv6PihB33Bbnjo4OOJ1OPP7448jPz8ejjz6KiooKf2QjAexAeQvUMjESNKE18ORGcuPUKNEbqc8z8YjbZg25XI78/HysWLECKSkp+PDDD7Fy5Up8++23PStwq1QyiMXBPUcvAIhELLTa0OwSNhBWpwvHLhkwNlmLMOVPk82LRSyUCmmf/fvb7uk2X+3ri+MnjIjE7rJm7K5sw3+kRtPryUOhep7cFufk5GS8+OKLPT8/9NBDeOutt1BVVYX09HQAgNFo9V1CAdFqlTAY6K7HnSO1HbA6XEiLVMBk/mnSH4fT1evnG233dJuv9vXF8WIAY5M1+PJkLR4an4CIiDB6PXkgmK87ne76Cx171KxRXV3d8zPDMHC5XD13zYRcq6CwARq5GMla6pVwrTlZMahrt9BkSMQtt8W5pKQEDz74IJqbu4fhfvbZZ4iLi+vVtY6QK0w2J3YVN2FaRjRYluE7juBMTYuETMxi2/lGvqMQgXN7+ztp0iQ8/PDDeOCBB8AwDGJiYvD2229DJAr+NmYycHsrmmG2OzErU4emDgvfcQRHKRVjRloUdpQ0wU7DuckNeNQ28fDDD+Phhx/2cRQSDArONyJBI0dOvBp7qTj3a/7IGGwvacLBihaMpa6G5Dpo+DbxmlaTDUer2rB4TDxYhpo0rmfK8AiEy8XYfLqO7yhEwKg4E6/ZUdIMJwcsHpPAdxRBk4hYzMqIxo7iRljsTr7jEIGi4ky8puB8I9KilciKu373INItf2QMTDYn9lW08B2FCBQVZ+IVF1tNOFvfgfzsGL6jBISxiRrEqmX4rpiGc5P+UXEmXvHlmQaIWAaLcmP5jhIQRCyDhaPjcaiyFR0WO99xiABRcSZDZnW4sKWwAdPTohCtkrk/gAAAFo+Jh8PFYVdpM99RiABRcSZDtrusGe0WB+4eE8d3lICSmxCOlAgFviumASmkLyrOZMg2nalHokaOm4ZF8B0loDAMg/nZOhyvbkdTiMxPQzxHxZkMSWWLCSdr2vEz6ts8KPOyY8AB+LpQjzabs+fLGqKrxpCf0OxFZEg+O1kLMctg8Sj6IHAwhkcqka4Lwzdn6hGpkPRsn5kdA5mUpkgIZXTnTAbNYLJjc6EeC3JiEKnsO/cx8cysTB3qO6xo7eo7RSkJXVScyaBtPFUHq8OF5RNphsKhmJHZvTp5UUMnz0mIkFBxJoNisTvx2ak63JoaiRFRobdKxWAxDNPTrlzfbkGbzYnIMBlSIhQobOgEx1FjM+lGbc5kULYU6mEw2/HgpCRYOcB01RwR5nYLnFRj+mV2uHC4rHtUoFIhhclsw5QMHXLi1Cg43wh9pxVx4bTuIqHiTAbB4eKw4VgNcuPUGJeogcHuxO6r+uoqFVLkJWl4TBh4smJU2F7ciKKGTirOBMAAmzX27NmDrKws1NTU+CoPCQDbivSobbfgkZtTwFD3Oa9QSkVIjQpDUYORmjYIgAEUZ7PZjDVr1kCr1foyDxEwKwc0WxxYe+QS0nVhGJWkQZvNSU0YXpITp0an1YFqAy1SQAZQnN966y3ccccdCAujlRtClcnuxNt7KlDXbsHYxHDsKWnC7uJG2F1Unb0hIyYMEpZBUT0t/ko8LM4lJSU4dOgQLVUV4pwuDgcvtCJOLUN6NP0n7W1SEYuMmDCcbzTS+oLE/QeCHMfhhRdewH/9139BIpH0u49KJYNYHPyjmUQiFlpt6HYb23SwEgazHT+/KRlhyp9mnxOLWCgVPw1CYVmmz7b+9rvRdl8c78/n8uR4lmWgVEh7bRufEomiBiPO1Rtx9/jEPseHolC97twW508//RTp6emYOHHidfcxhsikLVqtEgaDie8YvHC4OKw/fBFxahlSwmUwmX8azeZwunr9rFRI+2zrb78bbffF8f58Lk+Ov9KV7uptCWop5BIWBYX1mJVKE0kBwX3d6XTXXzXIbbPGzp07sXPnTkydOhVTp05FfX09li5diiNHjng1JBG2bUV61LVbcGtaJPXQ8CERyyA7RoXDla0w0/qCIc3tnfP777/f6+dZs2bhww8/RFJSks9CEWFxuDh8cLS7hwa1Nftebpwap2o7sL+iBfNo2a+QRcO3iVvbivSoMVjw4GTq1+wPyREKRIdJUXCeJuEPZQMuzrt27aK75hBy5a45O0aFm4dTG6g/MAyD2zKjcbiqDe1mWl8wVNGdM7mhK3fN/3bLMLpr9qOZmbru9QXLaH3BUEXFmVzX1XfN01Ij+Y4TUtJ1YRhG6wuGNCrOpF9WDvjibD1qDBbcf1MyDHYXDdP2o+71BWNworodjZ2h0VWV9EbFmfSr0+rA2oPd/ZrNFjsN0+bBvGwdOADflzTxHYXwgIoz6deBihYYzHbckkr9mvkyLFKJkbEqatoIUVScSR8cx2HjiVpEKCXI0FG/Zj5cWTFlWkY0zuuNOKs30qrcIYaKM+njRE07ShuNmDwsAizdNfPC7HBhd3EjpJfP/weHqrC7uLHXijMkuFFxJn1sOFYDjVyMUfHXH/dP/EMtF2NYhAJFtL5gyKHiTHqpbDHhwIVW3DEmHhIRvTyEICdOjVaTHXrqtRFS6OojsHLoWRH6w2M1kIgYLBgdz3cscllWrAosAxQ2dPIdhfgRLfBKYLq8QKvV4cR35/XIjlUhTEYvDaFQSERIiw7D+QYjXNS0ETLozpn0OFvXCbuTw/gkWidSaK6sL3iujpawChVUnAmA7u5zJ2raER8uQ4JGznccco10XRgkIga7aEBKyKDiTAAAl9rMaOmyYXwy3TULkVTEIlOnwv6KFlpfMERQcSYAgBPV7ZBLWIyMVfEdhVxHTpwanRYHjlS18R2F+AEVZwKD2Y7SJiPGxIdT9zkBGxGlRLhcTMO5Q4RHV+J3332HO++8E/n5+bj//vtRWlrq61zEj3aVNMHFAWMSw/mOQm5AxDKYnh6NveUttL5gCHBbnOvq6vDCCy/g3XffRUFBAfLz8/Hcc8/5IxvxA47jsL1Ij/hwGXQqGd9xiBu3ZUbD4nBhX3kL31GIj7ktzmKxGGvWrEFiYiIAYMqUKaisrPR5MOIfJY1GXGgxYUwC3TUHglEJ4YhRSVFATRtBz+1Ig5iYGMTEdK8A7HA48OWXX2L27Nk+D0b8Y/M5PSQiBiPjaB6NQMBenoT/XydqYTDboVVI+I5EfMTjYWDr16/Hu+++i5SUFLzzzju9HlOpZBCLRV4PJzQiEQutVsl3DK+xOlzYXtKE6Rk6RIUrej0mFrFQKqRut/W3nWWZIR0/1OcXwnN5cjzLMlAqpAM6Xi6TYMmkFHx0rAaHa9px/6SUPvsEm2C77jzlcXF+6KGH8Itf/ALffvstli1bhq1bt0Iu7x6sYDSGxoQsWq0SBoOJ7xhes6OkCQazHbMzo9FptvV6zOF0weTBtv62KxXSIR0/1OcXwnN5crxSIYXJbBvQ8VabAwpR90T8H/9QjZuHRUApEUEWxDO7Btt1dzWd7vrvWN22OVdUVODQoUMAuicAX7RoEbq6uqjdOQhsLmxAjEqKcTTwJGCYHS7sKWlCerQS5xs6sfFYNc3xHKTcFufW1lb87ne/g16vBwAcP34cdrsdycnJPg9HfKex04ojVW1YmBsLERvEt11BKjdeDZYBztBcG0HLbbPGpEmT8Pjjj2PFihVwuVyQSqX461//CpWKRpIFsq1Ferg4YFFuHN9RyCCEScVI14XhbH0nHE4XgOD/zCfUeNTmvHz5cixfvtzXWYifcByHzYV6jE0MR0qEAm02elsciPISNCht7MLRqjYsGhnDdxziZTRWN4RcmVT/4CUDLrWZMSs7Bm02J5w0RXBASo1SQiUVoaBIz3cU4gNUnEPIlUn1/3H4IiQsA7g47C5uhN1F1TkQsSyD0Qnh+PFiGxo6LHzHIV5GxTnE2JwunG8wIjtWBZmY/vkD3bgkDTgO+PJMPd9RiJfR1RliSvRG2JwuGq4dJDQKCSaPiMBXZxtonucgQ8U5xJyt64BWIUFyhML9ziQgLB4dj1aTHbvLmvmOQryIinMIqW+34GKbGaMT1GAY6tscLCakaJGklWPjqTq+oxAvouIcQr6/PJPZ6Hhq0ggmLMNgSV4CTtV2oLTRyHcc4iVUnEOEi+PwfXEjhkcqoKGZzILO4txYyMUsPj5Ry3cU4iVUnEPEjxcN0HdYMSZBw3cU4gMahQR3jo5DwflGNHaGxkRkwY6Kc4jYdKYe4XIxsmLD+I5CfGTZ+ES4OA6fnqS252BAxTkENHfZsLeiBfNGxkDM0j95sErSKjArIxqbztShy+bgOw4ZIrpSQ8Dmcw1wujgsoEmOgt4DE5NgtDrx9dkGvqOQIaLiHORcHIevzjZgQrIGSdS3OeiNig/HuCQN/nmsBjYHDUoJZFScg9wPF9tQ127B3WPi+Y5C/OTRm1PQaLTh63N09xzIqDgHuY9P1CJSKcFt6dF8RyE+wjAM2mzOnq+MODVy4tX4x9FLdPccwDyaz3nnzp148803YbPZoNVq8eKLLyIzM9PX2cgQXWjpwqHKNjx2yzBIxSy6aN7moGR2uHC4rKnXttHxanxa34nNhQ1YkpfAUzIyFG7vnPV6PVatWoU1a9Zg27ZtWLRoEX7/+9/7IxsZon8dq4VMzGIpXZwhZ0SkEiPj1Fh3tJomRApQbouzWCzGmjVrkJ6eDgCYMGECysvLfR6MDE1Llw3bzuuxKDcWWiWNCAw1DMPgwZuSoe+0YtNpmk40ELktzlFRUZg+fXrPz/v27UNeXp5PQ5Gh+/xUHWxODvePT+Q7CuHJxGERyEsMx/tHLqHWaEWbzQkrrasQMDxqc77i8OHDWL9+PdavX99ru0olg1gc/AtMikQstFol3zHc6jDbsfF0PWZnxyAv9acPAs3tFigV0j77i0Vsn+2ebutvO8syQzp+qM8vhOfy5HiWZaBUSH32d3WAwc2pUThdW4k39lzArKwYzMjUQauR99lXyALluvM2j4vzjh078NJLL+G9997raeK4wmgMjbH8Wq0SBoOJ7xhu/e1gFdrNdqyYmNQrr8XmhMls67O/w+nqs93Tbf1tVyqkQzp+qM8vhOfy5HilQgqT2ebTv2ukXIysGBUOljdjdJwKFqsdBkNgtUEHynU3GDqd+rqPedSV7tChQ3j55ZfxwQcfYPTo0V4LRryv1WTDx8drMCdTh6xYFd9xiADMSI+C3cVhf0Ur31HIALgtzmazGc8++yzeeustpKWl+SMTGYL1P1TD6nBhxS3DevV9pVW2Q1dUmBTjkzQ4VdOOC81dfMchHnLbrLFz5060trbimWee6bV9w4YNiI6mgQ1C0tBhween6rAwJxY6tQy7L0+uf8WUDB1PyQjfpqVFoaihE+/uu4C19+XRSjgBwG1xXrRoERYtWuSPLGSI1uyuAMsw+PdbhvEdhQiMQiLC9LQofFfchJ2lzZiTRf9RCx0N3w4S+ypasKe8Bf9ryjDEhQfWp/HEP8YmaZAaHYY39l6AxU6jRYWOinMQMNud+MuucqRGKfHABOrXTPrHMgxWTh+Bhk4rPvyxmu84xA0qzkHgvw9eRH2HFavmZEAson9Scn1jEjWYm6XDhz/WoL7DwncccgN0JQe4Hy624Z/Ha7AkLx7jkmh9QOLer6ePAAC8ufcCz0nIjVBxDmAGsx0vbCtBcoQCD00ZRt3miFsMw0Aml+C+CYnYUdqMXRUtNKRboAY0fJsIB8dxeHl7KQxmOxaPisXhipZej1O3OdKfK9OLxoRJoVVIsHp7KT58eCJiFTQ5ltDQnbNAWTn0GURy9R3OhmM12FPegkeodwYZBImIxfyROrSa7Pj0WA3fcUg/qDgLlMnuxO7ixl5fpsvdn45ebMPb+ysxOzMaS8bRXM1kcFKjwpATp8Inx2pQ1Rqcc1cEMirOAaau3YLnt5zH8Eglfj8/i0Z6kSGZnamDVMxi9Y4ycBw1PgsJFecAYrE78duvC+HkOPzlzlwopcE/TSvxLZVMjEenDsex6nZsLWp0fwDxGyrOAYLjOLyxuwJlTV14aUE2kiMUfEciQbAjr9AAAA2vSURBVGJBbixGx4fj9b0XYDDb+Y5DLqPiHCCOVbdjZ0kT/v2WYbg1NYrvOCSIsAyD5+ZmoNPqwFv7qO+zUFBxDgDVbWbsKm3ClBGReOTmFL7jkCDDMAyiNHIsGZuAb87psauihZa0EgAqzgJntDrw1Zl6aOQS/G5uBlj6AJB4mdnhwu7iRqRo5YhQSvBKQQm+O9fQ0zuI8IOKs4A5XRy+OtMAi8OFu/PiESajMUPEdyQiFgtzYtFucWBPeTPfcUIeFWcB21PejGqDGbfnxCBGLQPDMLS6CfGp5AgFJqZocby6HWdq2/mOE9I8Ks52ux2rV69GVlYWGhoafJ2JANhX3owfLhowPkmDUfHhAH56+3n1l91F1Zl414z0KGgVEqzZUQ4zNW3wxqPivHLlSsjlNETYX6paTFizowwJGjlmZ9FSYMS/pCIWC3NiUN9hwbsHqviOE7I8Ks6//OUv8dRTT/k6CwFgsjnxu2+KIBWx+NmYOIhZanki/pcSqcSdY+Lx6Yla7K9q63d+F+JbHl35Y8eO9XUOgu6BJi99V4qLbSY8l5+FcDnNFEb48/PJKdAoxPjj1mIUnGvoNb8L8T2vfPyvUskgFgf/UGKRiIVWq/TZ7193qAo7SpvwzNxMTEnXYW9pU6/HxSIWSoXU7TZf7evp8SzL8Pr8QnguT45nWQZKhVSwf1e1XIIl45PwwcEq7ChtxtLxiZDLJNBq/NvE6evrTqi8UpyNRqs3fo3gabVKGAy+mb3rZE07VhcU47b0KNw7OhYGqx0ms63XPg6ny6NtvtrX0+OVCimvzy+E5/LkeKVCCpPZJui/a4xSglvTIrG/ohXJWjluHh4Bg8HVZ19f8uV1xzedTn3dx6hBUwCajVY8u+U8ErUKvJBPM80RYbllRCRSIhTYfr4RVS3BWSSFiIozzxxOF1ZtPo8uqwOv3ZEDFQ00IQLDMgzuGBUHqZjFC1vO0+RIfuK2ODc3NyM/Px/5+fkAgAcffBD5+fnQ6/U+DxfsOI7D6p3lOF3Xgf8zPxNp0WF8RyKkX2q5GEvy4tHcZcWqzUVwOP3btBGK3N6mRUdHo6CgwB9ZQs4/fqjGV2cb8MjkZMzLjuE7DiE3lKhV4Dez0vHa92V4dUc5np+XQU1wPkTvoXny3flGvHugCvOzdXh86nC+4xDikTnZMWjptOLvRy5BKRXhN7elUoH2ESrOfmTlutcGPHShBS8VlGB0Qjj+9zz6AJAElsduGYYumxMfn6iFXMLiianD6TXsA1Sc/chkd2LtgUp8fqoOsWoZ5mZFw0HrtpEAwzAMnr4tFRa7E+uOVsNkc+LpmWk0na2XUXH2o0MXWvDF6XroVDLcNz4RMrGoZ6a5a9Fsc0TIGIbBs3MzoJCI8PGJWuiNNjwzNwNS0U99DJQSEWRUrweNirOfbDpTj9U7yhCrluHecYlQSLpHVJodLhwua+qz/5QMnb8jEjIgLMPgN7elIkwuxtpDF1HWaMTPxsRDLe8uKzOzYyCjRYgHjfo5+5jTxeHt/ZX48/dlmJASgZ9PTKJVs0nQYBgG905Iwl2j49BotOKDo5dwqZUGqngDFWcfMpjseGrTWaz/oRp3jY7Diwuze73tIyRYjIxT4+GbkiEXs/jXiVocrWoDR5+nDAk1a/jIj5fa8GJBKdpMNjw/NwN3jYnvt22ZkGARrZLh4cnJ2FKox66yZjg4Di/mZ9Go10Gi2zgvM9ud+MuucqzceBYyMYv3l43FXWPi+Y5FiFe4WypNJhbh7jHxmJkRjQMVLfj5h8dxsoaWuxoM+i/NSziOw66yZvy/3RVoNNqwbHwifnnrcMgl1L5Mgkd/H2Bf++E1wzC4eXgE7hqbgNXbS/HYp6dx74RE/GJyCjRyCfXg8BAVZy8orO/A2weqcOySARm6MLyyaCSyEzQw2Z0wX9WUQd3jSCgZoVPh/vGJ2FHahE+P12JPaTP+dEcOxsZdf5pM8hMqzkNQ0mjE/xy+iH3lLdAoJPjVjFQsHBUHEcug0+bEvpLGXvtT9zgSaqRiFgtyYpEeHYatRY1Y+ckprLgpBb+4KRkyMbWq3ggV5wHiOA7Hq9ux4VgNDla2QikVYVpqJCYNi4BMzGLf5dVLqBAT8pPMGBUSNXKcqe/E/xy+iILiRjw1IxXTUiNp6Pd1UHH2kNHqwDdHLmLD4YuobDVBq5DgianDMTc3Fj9WtvIdjxDBC5OJ8Vx+FpaOicdru8rxn18VIi8hHE/cOhzjkzRUpK9BxfkGnC4Op+vaUXC+EduKGmFxuJAVq8IzczIwIyMKMrGI2pEJGaDJwyPw6UMT8E2hHu8fuojHPzuDrBgVlo1PwOxMXc/o2VDnUXE+fPgwXnvtNZhMJiQkJODPf/4z4uLifJ2NFw4XhxPVBuwqa8busma0muyQiVnMz9Zh0dhEVOo7AQCHylsAUPMFIQNx9VwyM7NjcEt6FPaXtWDjyVq8WFCKV3eUY1pqFGakR2FisgbRKhnPifnjtjibTCY8/fTTWLt2LXJzc/H3v/8df/jDH/Dee+/5I5/P2RwulDV34VxdB47XtONEtQHtFgfkYhY3DY/ArWlRuGl4BJRSMRgx21OcCSED119XvLk5sZidrcPZug7sKWvG/rJm7Lj82U1KhAKjEjUYppEjQSOHTiVFjEoGnUoa9N1U3RbnI0eOIDk5Gbm5uQCAZcuW4a9//SuMRiNUKpXPAw6F08Why+ZAh8UBo9WBJqMNde0W1LZbUNduQU27GVWtZjhd3W0TCeEyTEuLwvS0KGQnhONwRQs4F4ejF7rblKdlx/L51yEkKF1dsEfHqZEbq4K+wwqxhEW53ogzte3Yeq6hz3FqmRjh8u6vK9+r5WKoZRJoLn9/7WPhMgnCZKKAmN7UbXGuqqpCcnJyz89hYWHQarW4dOkScnJyhhxgV2kTagwWuDgOHACOQ/f3V/5Edw8JFwe4uO7vbU5X95fDBauD++l7pwtdVgc6rA50Whww2Zzor0lYJmYRr5EjLlyGySOikBqtRFaMCrHh8p59qC2ZEH6wDIN4jRyzRsaC4zjIZRK0dVrQZLTCYHagocOCFqMVLV02dFq7r/MOiwN1HRZ0Wp0wWh09N1z9/35AJbuqaF/+UypmIWFZiEUMJCIWEpaBRMRALGIhYhhcqecMuptnrpT3ycMjkBXj/RtVhnMzO8k777yD2tpavPLKKz3bZs+ejdWrV2PixIleD0QIIcSDuTWUSiWsVmuvbRaLBWFhtFI0IYT4itvinJqaisrKyp6fW1tb0d7ejmHDhvk0GCGEhDK3xXny5MloaGjAsWPHAAAfffQRZs6cCaVS6fNwhBASqty2OQPA0aNH8fLLL8NsNiMlJQWvvvoqdLrg7d87kH7dxcXFuPvuu7Fu3TpMnjzZz0n548k5mjt3LjiOg1jc/blzbGws1q9fz0dc3nhynoxGI55//nmcOnUKUqkUzzzzDObPn89TYn64O08nT57Es88+2+uY6upqbNq0CVlZWf6O6x8c6aWrq4u7+eabuXPnznEcx3Fr167lHnvssX73dTqd3H333cdNnz6dO3LkiD9j8srTc3TTTTdxer3e3/EEw9Pz9Pzzz3MvvfQS53K5uPLycm758uWc3W73d1zeDOSau+LUqVPckiVLOJfL5Y+IvKBpoa7RX7/uAwcOwGg09tn3448/RnZ2NlJSUvwdk1eeniOj0Yjw8HA+IgqCJ+fJZrPh22+/xRNPPAGGYZCWloaPPvqo591GKBjINXfFyy+/jFWrVgX1fBxUnK9xo37dV2tqasJHH32Ep59+2t8ReefJOTKZTHA6nXj22WexYMECPPDAAzhx4gQfcXnjyXmqqqqCTCbDpk2bsGDBAixduhSHDh3iIy5vPL3mrtizZw9kMlnQd+Wl4nwNs9kMmaz3eH6ZTAaTqfeKwq+88gpWrlwZkneGnpwjl8uFpUuX4pFHHsHWrVvx4IMP4oknnkB7e+gsWeTJeero6EBnZydkMhm2bt2Kp556Cr/+9a9hMBj8HZc3nl5zV6xduxaPPvqoP6LxiorzNTzp171//34YDAbccccd/o4nCJ6cI5VKhT/96U8YPXo0ACA/Px8xMTE4deqUX7PyyZPzpFar4XQ6cf/99wMApk2bhvj4eJw+fdqvWfk0kLEUDQ0NKC0txbRp0/wVjzdUnK/hSb/u77//HkVFRZg6dSqmTp2KkydP4sknn8RXX33FR2S/8+QcmUwmXLhwoc+xodSW6sl5io+PB8uy6Orq6tkmEonAsqFzaQ5kLMWePXswdepUiETBPekRQMW5D0/6df/xj3/E0aNHcfDgQRw8eBDjxo3DW2+9hbvuuouv2H7lyTlqaWnBsmXLegr0wYMH0dzcjLy8PF4y88GT8xQeHo5Zs2bhgw8+AACcPn0atbW1Pe84QsFAxlIUFxcjLS3N3xH5wXd3ESE6cuQIt3jxYm7OnDncI488wjU2NnINDQ3cwoUL+91/+fLlIdWVjuM8O0dbtmzhbr/9dm7evHncPffcwx0/fpzHxPzw5Dy1tbVxjzzyCDdz5kxu8eLF3P79+3lMzA9Pr7nHHnuM+/jjj3lK6V8eDUIhhBDiX9SsQQghAkTFmRBCBIiKMyGECBAVZ0IIESAqzoQQIkBUnAkhRICoOBNCiABRcSaEEAGi4kwIIQL0/wFCDU5Ifk0WQAAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, "metadata": {}, "output_type": "display_data" } ], "source": [ - "seaborn.distplot(trace_1['thetas'][:, 15, 0]);" + "pm.traceplot(trace_1, var_names=['thetas']);" ] }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 14, "metadata": { - "scrolled": false + "scrolled": true }, "outputs": [ { @@ -562,607 +561,803 @@ " \n", " mean\n", " sd\n", - " mc_error\n", - " hpd_2.5\n", - " hpd_97.5\n", - " n_eff\n", - " Rhat\n", + " hpd_3%\n", + " hpd_97%\n", + " mcse_mean\n", + " mcse_sd\n", + " ess_mean\n", + " ess_sd\n", + " ess_bulk\n", + " ess_tail\n", + " r_hat\n", " \n", " \n", " \n", " \n", - " thetas__0_0\n", - " 0.300100\n", - " 0.065270\n", - " 0.000467\n", - " 0.180909\n", - " 0.433704\n", - " 19108.941028\n", - " 0.999785\n", - " \n", - " \n", - " thetas__0_1\n", - " 0.599518\n", - " 0.068916\n", - " 0.000470\n", - " 0.467480\n", - " 0.734045\n", - " 19312.240459\n", - " 0.999780\n", - " \n", - " \n", - " thetas__0_2\n", - " 0.100383\n", - " 0.041548\n", - " 0.000308\n", - " 0.030861\n", - " 0.185469\n", - " 16352.092254\n", - " 0.999790\n", - " \n", - " \n", - " thetas__1_0\n", - " 0.489750\n", - " 0.070271\n", - " 0.000530\n", - " 0.355435\n", - " 0.627806\n", - " 20015.427544\n", - " 0.999771\n", - " \n", - " \n", - " thetas__1_1\n", - " 0.469661\n", - " 0.070734\n", - " 0.000520\n", - " 0.329808\n", - " 0.602264\n", - " 18718.555274\n", - " 0.999752\n", - " \n", - " \n", - " thetas__1_2\n", - " 0.040589\n", - " 0.027460\n", - " 0.000211\n", - " 0.001529\n", - " 0.094604\n", - " 15234.164792\n", - " 0.999876\n", - " \n", - " \n", - " thetas__2_0\n", - " 0.464979\n", - " 0.037716\n", - " 0.000300\n", - " 0.395304\n", - " 0.542023\n", - " 17496.987976\n", - " 0.999860\n", - " \n", - " \n", - " thetas__2_1\n", - " 0.411825\n", - " 0.037102\n", - " 0.000292\n", - " 0.340670\n", - " 0.488188\n", - " 18113.640211\n", - " 0.999755\n", - " \n", - " \n", - " thetas__2_2\n", - " 0.123196\n", - " 0.024986\n", - " 0.000189\n", - " 0.075837\n", - " 0.172040\n", - " 17262.749166\n", - " 0.999939\n", - " \n", - " \n", - " thetas__3_0\n", - " 0.457686\n", - " 0.057135\n", - " 0.000413\n", - " 0.344913\n", - " 0.568706\n", - " 18097.163950\n", - " 1.000033\n", - " \n", - " \n", - " thetas__3_1\n", - " 0.514615\n", - " 0.057036\n", - " 0.000400\n", - " 0.405542\n", - " 0.630074\n", - " 17674.600231\n", - " 0.999944\n", - " \n", - " \n", - " thetas__3_2\n", - " 0.027699\n", - " 0.018819\n", - " 0.000145\n", - " 0.000691\n", - " 0.063681\n", - " 16384.522445\n", - " 0.999892\n", - " \n", - " \n", - " thetas__4_0\n", - " 0.399978\n", - " 0.070044\n", - " 0.000498\n", - " 0.260178\n", - " 0.530546\n", - " 18361.096943\n", - " 0.999810\n", - " \n", - " \n", - " thetas__4_1\n", - " 0.479881\n", - " 0.071956\n", - " 0.000532\n", - " 0.339022\n", - " 0.620830\n", - " 17177.579093\n", - " 0.999862\n", - " \n", - " \n", - " thetas__4_2\n", - " 0.120141\n", - " 0.045967\n", - " 0.000360\n", - " 0.037832\n", - " 0.209425\n", - " 17640.165756\n", - " 0.999860\n", - " \n", - " \n", - " thetas__5_0\n", - " 0.443571\n", - " 0.049668\n", - " 0.000334\n", - " 0.346751\n", - " 0.541180\n", - " 19588.905466\n", - " 0.999940\n", - " \n", - " \n", - " thetas__5_1\n", - " 0.442821\n", - " 0.050492\n", - " 0.000326\n", - " 0.344704\n", - " 0.540792\n", - " 18748.573671\n", - " 1.000005\n", - " \n", - " \n", - " thetas__5_2\n", - " 0.113607\n", - " 0.031311\n", - " 0.000226\n", - " 0.056660\n", - " 0.176451\n", - " 20231.072088\n", - " 1.000100\n", - " \n", - " \n", - " thetas__6_0\n", - " 0.504368\n", - " 0.045328\n", - " 0.000343\n", - " 0.420441\n", - " 0.596358\n", - " 18659.532260\n", - " 0.999806\n", - " \n", - " \n", - " thetas__6_1\n", - " 0.386565\n", - " 0.043753\n", - " 0.000340\n", - " 0.301637\n", - " 0.472456\n", - " 18711.068931\n", - " 0.999879\n", - " \n", - " \n", - " thetas__6_2\n", - " 0.109067\n", - " 0.028275\n", - " 0.000216\n", - " 0.057203\n", - " 0.166673\n", - " 17080.909989\n", - " 0.999959\n", - " \n", - " \n", - " thetas__7_0\n", - " 0.547484\n", - " 0.040931\n", - " 0.000299\n", - " 0.467123\n", - " 0.625951\n", - " 23763.418744\n", - " 0.999896\n", - " \n", - " \n", - " thetas__7_1\n", - " 0.337931\n", - " 0.039366\n", - " 0.000307\n", - " 0.263022\n", - " 0.415220\n", - " 20377.827972\n", - " 0.999904\n", - " \n", - " \n", - " thetas__7_2\n", - " 0.114585\n", - " 0.026082\n", - " 0.000183\n", - " 0.064167\n", - " 0.165460\n", - " 20377.368364\n", - " 0.999852\n", - " \n", - " \n", - " thetas__8_0\n", - " 0.541493\n", - " 0.099973\n", - " 0.000732\n", - " 0.337111\n", - " 0.724980\n", - " 21445.157893\n", - " 0.999806\n", - " \n", - " \n", - " thetas__8_1\n", - " 0.291853\n", - " 0.091661\n", - " 0.000722\n", - " 0.125231\n", - " 0.478377\n", - " 20336.085923\n", - " 0.999860\n", - " \n", - " \n", - " thetas__8_2\n", - " 0.166654\n", - " 0.075137\n", - " 0.000549\n", - " 0.037254\n", - " 0.315616\n", - " 17029.352945\n", - " 1.000004\n", - " \n", - " \n", - " thetas__9_0\n", - " 0.464073\n", - " 0.050759\n", - " 0.000396\n", - " 0.365872\n", - " 0.561156\n", - " 18145.928015\n", - " 0.999815\n", - " \n", - " \n", - " thetas__9_1\n", - " 0.404242\n", - " 0.049435\n", - " 0.000400\n", - " 0.312622\n", - " 0.504816\n", - " 17237.193074\n", - " 0.999826\n", - " \n", - " \n", - " thetas__9_2\n", - " 0.131685\n", - " 0.034063\n", - " 0.000244\n", - " 0.067031\n", - " 0.196808\n", - " 20803.257440\n", - " 0.999992\n", - " \n", - " \n", - " thetas__10_0\n", - " 0.509601\n", - " 0.051747\n", - " 0.000386\n", - " 0.407762\n", - " 0.610490\n", - " 18969.744012\n", - " 0.999860\n", - " \n", - " \n", - " thetas__10_1\n", - " 0.402177\n", - " 0.050463\n", - " 0.000381\n", - " 0.304228\n", - " 0.500716\n", - " 18673.382910\n", - " 0.999780\n", - " \n", - " \n", - " thetas__10_2\n", - " 0.088222\n", - " 0.028247\n", - " 0.000218\n", - " 0.038102\n", - " 0.144032\n", - " 17422.572626\n", - " 0.999855\n", - " \n", - " \n", - " thetas__11_0\n", - " 0.550716\n", - " 0.035650\n", - " 0.000258\n", - " 0.482424\n", - " 0.621472\n", - " 21810.593623\n", - " 0.999791\n", - " \n", - " \n", - " thetas__11_1\n", - " 0.351901\n", - " 0.034792\n", - " 0.000261\n", - " 0.280873\n", - " 0.418119\n", - " 19956.584699\n", - " 0.999789\n", - " \n", - " \n", - " thetas__11_2\n", - " 0.097383\n", - " 0.021453\n", - " 0.000172\n", - " 0.057790\n", - " 0.139950\n", - " 15238.961040\n", - " 0.999847\n", - " \n", - " \n", - " thetas__12_0\n", - " 0.486099\n", - " 0.079911\n", - " 0.000524\n", - " 0.334129\n", - " 0.644608\n", - " 18561.446431\n", - " 0.999863\n", - " \n", - " \n", - " thetas__12_1\n", - " 0.460108\n", - " 0.080625\n", - " 0.000605\n", - " 0.300507\n", - " 0.610745\n", - " 17272.738333\n", - " 1.000018\n", - " \n", - " \n", - " thetas__12_2\n", - " 0.053793\n", - " 0.036679\n", - " 0.000296\n", - " 0.001877\n", - " 0.125960\n", - " 14230.586334\n", - " 0.999914\n", - " \n", - " \n", - " thetas__13_0\n", - " 0.525405\n", - " 0.056555\n", - " 0.000460\n", - " 0.421515\n", - " 0.641929\n", - " 21817.783278\n", - " 0.999824\n", - " \n", - " \n", - " thetas__13_1\n", - " 0.349772\n", - " 0.053224\n", - " 0.000421\n", - " 0.241324\n", - " 0.451273\n", - " 18814.558488\n", - " 0.999777\n", - " \n", - " \n", - " thetas__13_2\n", - " 0.124823\n", - " 0.036787\n", - " 0.000313\n", - " 0.057240\n", - " 0.198229\n", - " 17761.975836\n", - " 0.999855\n", - " \n", - " \n", - " thetas__14_0\n", - " 0.535744\n", - " 0.045304\n", - " 0.000360\n", - " 0.445791\n", - " 0.622883\n", - " 19896.439516\n", - " 0.999857\n", - " \n", - " \n", - " thetas__14_1\n", - " 0.369577\n", - " 0.043753\n", - " 0.000306\n", - " 0.287700\n", - " 0.456371\n", - " 18576.380121\n", - " 0.999857\n", - " \n", - " \n", - " thetas__14_2\n", - " 0.094679\n", - " 0.026122\n", - " 0.000167\n", - " 0.045188\n", - " 0.145160\n", - " 19327.473357\n", - " 0.999832\n", - " \n", - " \n", - " thetas__15_0\n", - " 0.547136\n", - " 0.053493\n", - " 0.000374\n", - " 0.437479\n", - " 0.646866\n", - " 17525.614741\n", - " 0.999807\n", - " \n", - " \n", - " thetas__15_1\n", - " 0.360090\n", - " 0.051293\n", - " 0.000391\n", - " 0.266768\n", - " 0.465088\n", - " 16133.206175\n", - " 0.999847\n", - " \n", - " \n", - " thetas__15_2\n", - " 0.092774\n", - " 0.030986\n", - " 0.000256\n", - " 0.037164\n", - " 0.154385\n", - " 16927.317956\n", - " 1.000053\n", + " thetas[0,0]\n", + " 0.300\n", + " 0.064\n", + " 0.184\n", + " 0.421\n", + " 0.000\n", + " 0.000\n", + " 19180.0\n", + " 16774.0\n", + " 19307.0\n", + " 6091.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[0,1]\n", + " 0.600\n", + " 0.068\n", + " 0.476\n", + " 0.731\n", + " 0.000\n", + " 0.000\n", + " 20053.0\n", + " 19440.0\n", + " 20049.0\n", + " 5982.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[0,2]\n", + " 0.100\n", + " 0.042\n", + " 0.030\n", + " 0.177\n", + " 0.000\n", + " 0.000\n", + " 17561.0\n", + " 12188.0\n", + " 18066.0\n", + " 6011.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[1,0]\n", + " 0.489\n", + " 0.072\n", + " 0.354\n", + " 0.623\n", + " 0.000\n", + " 0.000\n", + " 23445.0\n", + " 22381.0\n", + " 23545.0\n", + " 5592.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[1,1]\n", + " 0.470\n", + " 0.072\n", + " 0.338\n", + " 0.606\n", + " 0.000\n", + " 0.000\n", + " 21942.0\n", + " 20049.0\n", + " 22004.0\n", + " 6000.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[1,2]\n", + " 0.041\n", + " 0.028\n", + " 0.001\n", + " 0.091\n", + " 0.000\n", + " 0.000\n", + " 16066.0\n", + " 9055.0\n", + " 16361.0\n", + " 5270.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[2,0]\n", + " 0.465\n", + " 0.039\n", + " 0.390\n", + " 0.537\n", + " 0.000\n", + " 0.000\n", + " 17977.0\n", + " 17356.0\n", + " 17922.0\n", + " 6509.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[2,1]\n", + " 0.412\n", + " 0.038\n", + " 0.339\n", + " 0.483\n", + " 0.000\n", + " 0.000\n", + " 19789.0\n", + " 19706.0\n", + " 19714.0\n", + " 6207.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[2,2]\n", + " 0.124\n", + " 0.025\n", + " 0.077\n", + " 0.170\n", + " 0.000\n", + " 0.000\n", + " 18393.0\n", + " 15598.0\n", + " 18954.0\n", + " 6378.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[3,0]\n", + " 0.458\n", + " 0.058\n", + " 0.351\n", + " 0.564\n", + " 0.000\n", + " 0.000\n", + " 18586.0\n", + " 18308.0\n", + " 18494.0\n", + " 6064.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[3,1]\n", + " 0.514\n", + " 0.058\n", + " 0.404\n", + " 0.618\n", + " 0.000\n", + " 0.000\n", + " 17792.0\n", + " 17346.0\n", + " 17741.0\n", + " 6274.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[3,2]\n", + " 0.028\n", + " 0.019\n", + " 0.001\n", + " 0.063\n", + " 0.000\n", + " 0.000\n", + " 15207.0\n", + " 8697.0\n", + " 14342.0\n", + " 4827.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[4,0]\n", + " 0.400\n", + " 0.069\n", + " 0.273\n", + " 0.526\n", + " 0.001\n", + " 0.000\n", + " 17587.0\n", + " 16104.0\n", + " 17596.0\n", + " 5743.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[4,1]\n", + " 0.479\n", + " 0.070\n", + " 0.343\n", + " 0.605\n", + " 0.001\n", + " 0.000\n", + " 17138.0\n", + " 16507.0\n", + " 16999.0\n", + " 5744.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[4,2]\n", + " 0.121\n", + " 0.046\n", + " 0.042\n", + " 0.207\n", + " 0.000\n", + " 0.000\n", + " 16258.0\n", + " 10874.0\n", + " 17055.0\n", + " 5202.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[5,0]\n", + " 0.444\n", + " 0.049\n", + " 0.357\n", + " 0.538\n", + " 0.000\n", + " 0.000\n", + " 19997.0\n", + " 19373.0\n", + " 20145.0\n", + " 6618.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[5,1]\n", + " 0.443\n", + " 0.050\n", + " 0.353\n", + " 0.535\n", + " 0.000\n", + " 0.000\n", + " 19661.0\n", + " 18811.0\n", + " 19757.0\n", + " 5753.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[5,2]\n", + " 0.113\n", + " 0.032\n", + " 0.056\n", + " 0.172\n", + " 0.000\n", + " 0.000\n", + " 17878.0\n", + " 13674.0\n", + " 18556.0\n", + " 6129.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[6,0]\n", + " 0.504\n", + " 0.046\n", + " 0.417\n", + " 0.588\n", + " 0.000\n", + " 0.000\n", + " 18608.0\n", + " 18161.0\n", + " 18563.0\n", + " 5560.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[6,1]\n", + " 0.386\n", + " 0.044\n", + " 0.303\n", + " 0.470\n", + " 0.000\n", + " 0.000\n", + " 18768.0\n", + " 17850.0\n", + " 18836.0\n", + " 6087.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[6,2]\n", + " 0.109\n", + " 0.029\n", + " 0.059\n", + " 0.164\n", + " 0.000\n", + " 0.000\n", + " 17497.0\n", + " 14364.0\n", + " 17453.0\n", + " 6184.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[7,0]\n", + " 0.547\n", + " 0.040\n", + " 0.474\n", + " 0.622\n", + " 0.000\n", + " 0.000\n", + " 21412.0\n", + " 21150.0\n", + " 21496.0\n", + " 6089.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[7,1]\n", + " 0.338\n", + " 0.037\n", + " 0.272\n", + " 0.411\n", + " 0.000\n", + " 0.000\n", + " 20017.0\n", + " 19100.0\n", + " 20019.0\n", + " 6150.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[7,2]\n", + " 0.115\n", + " 0.026\n", + " 0.066\n", + " 0.162\n", + " 0.000\n", + " 0.000\n", + " 18083.0\n", + " 13995.0\n", + " 19176.0\n", + " 5880.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[8,0]\n", + " 0.541\n", + " 0.099\n", + " 0.354\n", + " 0.721\n", + " 0.001\n", + " 0.001\n", + " 18432.0\n", + " 17240.0\n", + " 18477.0\n", + " 5688.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[8,1]\n", + " 0.292\n", + " 0.091\n", + " 0.124\n", + " 0.459\n", + " 0.001\n", + " 0.001\n", + " 15864.0\n", + " 12321.0\n", + " 16280.0\n", + " 6097.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[8,2]\n", + " 0.166\n", + " 0.075\n", + " 0.038\n", + " 0.303\n", + " 0.001\n", + " 0.000\n", + " 17670.0\n", + " 11698.0\n", + " 18854.0\n", + " 6062.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[9,0]\n", + " 0.465\n", + " 0.051\n", + " 0.368\n", + " 0.559\n", + " 0.000\n", + " 0.000\n", + " 20497.0\n", + " 19551.0\n", + " 20480.0\n", + " 6329.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[9,1]\n", + " 0.404\n", + " 0.050\n", + " 0.312\n", + " 0.498\n", + " 0.000\n", + " 0.000\n", + " 19111.0\n", + " 18156.0\n", + " 19119.0\n", + " 6302.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[9,2]\n", + " 0.131\n", + " 0.034\n", + " 0.070\n", + " 0.193\n", + " 0.000\n", + " 0.000\n", + " 19145.0\n", + " 15501.0\n", + " 19268.0\n", + " 6074.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[10,0]\n", + " 0.510\n", + " 0.049\n", + " 0.418\n", + " 0.602\n", + " 0.000\n", + " 0.000\n", + " 20163.0\n", + " 20075.0\n", + " 20236.0\n", + " 6517.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[10,1]\n", + " 0.402\n", + " 0.048\n", + " 0.312\n", + " 0.493\n", + " 0.000\n", + " 0.000\n", + " 19256.0\n", + " 18108.0\n", + " 19475.0\n", + " 5811.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[10,2]\n", + " 0.088\n", + " 0.028\n", + " 0.039\n", + " 0.139\n", + " 0.000\n", + " 0.000\n", + " 18553.0\n", + " 13591.0\n", + " 18557.0\n", + " 5653.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[11,0]\n", + " 0.551\n", + " 0.036\n", + " 0.485\n", + " 0.622\n", + " 0.000\n", + " 0.000\n", + " 21649.0\n", + " 21249.0\n", + " 21682.0\n", + " 4983.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[11,1]\n", + " 0.352\n", + " 0.035\n", + " 0.286\n", + " 0.416\n", + " 0.000\n", + " 0.000\n", + " 21122.0\n", + " 20302.0\n", + " 21213.0\n", + " 5661.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[11,2]\n", + " 0.097\n", + " 0.021\n", + " 0.059\n", + " 0.137\n", + " 0.000\n", + " 0.000\n", + " 19694.0\n", + " 16202.0\n", + " 19883.0\n", + " 5604.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[12,0]\n", + " 0.487\n", + " 0.081\n", + " 0.339\n", + " 0.641\n", + " 0.001\n", + " 0.000\n", + " 23686.0\n", + " 20712.0\n", + " 23796.0\n", + " 5543.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[12,1]\n", + " 0.458\n", + " 0.082\n", + " 0.309\n", + " 0.613\n", + " 0.001\n", + " 0.000\n", + " 21239.0\n", + " 19865.0\n", + " 21176.0\n", + " 5179.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[12,2]\n", + " 0.054\n", + " 0.038\n", + " 0.001\n", + " 0.123\n", + " 0.000\n", + " 0.000\n", + " 14476.0\n", + " 7769.0\n", + " 15893.0\n", + " 4800.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[13,0]\n", + " 0.525\n", + " 0.055\n", + " 0.421\n", + " 0.628\n", + " 0.000\n", + " 0.000\n", + " 20132.0\n", + " 19957.0\n", + " 20205.0\n", + " 5866.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[13,1]\n", + " 0.350\n", + " 0.054\n", + " 0.251\n", + " 0.451\n", + " 0.000\n", + " 0.000\n", + " 19828.0\n", + " 18962.0\n", + " 19560.0\n", + " 5958.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[13,2]\n", + " 0.125\n", + " 0.037\n", + " 0.053\n", + " 0.190\n", + " 0.000\n", + " 0.000\n", + " 17053.0\n", + " 13104.0\n", + " 17165.0\n", + " 5432.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[14,0]\n", + " 0.535\n", + " 0.045\n", + " 0.449\n", + " 0.616\n", + " 0.000\n", + " 0.000\n", + " 24100.0\n", + " 23358.0\n", + " 24144.0\n", + " 5356.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[14,1]\n", + " 0.370\n", + " 0.043\n", + " 0.289\n", + " 0.451\n", + " 0.000\n", + " 0.000\n", + " 20433.0\n", + " 19480.0\n", + " 20438.0\n", + " 5930.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[14,2]\n", + " 0.095\n", + " 0.026\n", + " 0.049\n", + " 0.145\n", + " 0.000\n", + " 0.000\n", + " 20369.0\n", + " 15173.0\n", + " 20674.0\n", + " 5779.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[15,0]\n", + " 0.546\n", + " 0.053\n", + " 0.444\n", + " 0.643\n", + " 0.000\n", + " 0.000\n", + " 18238.0\n", + " 17553.0\n", + " 18133.0\n", + " 6414.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[15,1]\n", + " 0.360\n", + " 0.050\n", + " 0.271\n", + " 0.456\n", + " 0.000\n", + " 0.000\n", + " 19066.0\n", + " 18464.0\n", + " 18837.0\n", + " 6181.0\n", + " 1.0\n", + " \n", + " \n", + " thetas[15,2]\n", + " 0.093\n", + " 0.031\n", + " 0.038\n", + " 0.150\n", + " 0.000\n", + " 0.000\n", + " 18422.0\n", + " 13482.0\n", + " 18941.0\n", + " 5777.0\n", + " 1.0\n", " \n", " \n", "\n", "" ], "text/plain": [ - " mean sd mc_error hpd_2.5 hpd_97.5 n_eff \\\n", - "thetas__0_0 0.300100 0.065270 0.000467 0.180909 0.433704 19108.941028 \n", - "thetas__0_1 0.599518 0.068916 0.000470 0.467480 0.734045 19312.240459 \n", - "thetas__0_2 0.100383 0.041548 0.000308 0.030861 0.185469 16352.092254 \n", - "thetas__1_0 0.489750 0.070271 0.000530 0.355435 0.627806 20015.427544 \n", - "thetas__1_1 0.469661 0.070734 0.000520 0.329808 0.602264 18718.555274 \n", - "thetas__1_2 0.040589 0.027460 0.000211 0.001529 0.094604 15234.164792 \n", - "thetas__2_0 0.464979 0.037716 0.000300 0.395304 0.542023 17496.987976 \n", - "thetas__2_1 0.411825 0.037102 0.000292 0.340670 0.488188 18113.640211 \n", - "thetas__2_2 0.123196 0.024986 0.000189 0.075837 0.172040 17262.749166 \n", - "thetas__3_0 0.457686 0.057135 0.000413 0.344913 0.568706 18097.163950 \n", - "thetas__3_1 0.514615 0.057036 0.000400 0.405542 0.630074 17674.600231 \n", - "thetas__3_2 0.027699 0.018819 0.000145 0.000691 0.063681 16384.522445 \n", - "thetas__4_0 0.399978 0.070044 0.000498 0.260178 0.530546 18361.096943 \n", - "thetas__4_1 0.479881 0.071956 0.000532 0.339022 0.620830 17177.579093 \n", - "thetas__4_2 0.120141 0.045967 0.000360 0.037832 0.209425 17640.165756 \n", - "thetas__5_0 0.443571 0.049668 0.000334 0.346751 0.541180 19588.905466 \n", - "thetas__5_1 0.442821 0.050492 0.000326 0.344704 0.540792 18748.573671 \n", - "thetas__5_2 0.113607 0.031311 0.000226 0.056660 0.176451 20231.072088 \n", - "thetas__6_0 0.504368 0.045328 0.000343 0.420441 0.596358 18659.532260 \n", - "thetas__6_1 0.386565 0.043753 0.000340 0.301637 0.472456 18711.068931 \n", - "thetas__6_2 0.109067 0.028275 0.000216 0.057203 0.166673 17080.909989 \n", - "thetas__7_0 0.547484 0.040931 0.000299 0.467123 0.625951 23763.418744 \n", - "thetas__7_1 0.337931 0.039366 0.000307 0.263022 0.415220 20377.827972 \n", - "thetas__7_2 0.114585 0.026082 0.000183 0.064167 0.165460 20377.368364 \n", - "thetas__8_0 0.541493 0.099973 0.000732 0.337111 0.724980 21445.157893 \n", - "thetas__8_1 0.291853 0.091661 0.000722 0.125231 0.478377 20336.085923 \n", - "thetas__8_2 0.166654 0.075137 0.000549 0.037254 0.315616 17029.352945 \n", - "thetas__9_0 0.464073 0.050759 0.000396 0.365872 0.561156 18145.928015 \n", - "thetas__9_1 0.404242 0.049435 0.000400 0.312622 0.504816 17237.193074 \n", - "thetas__9_2 0.131685 0.034063 0.000244 0.067031 0.196808 20803.257440 \n", - "thetas__10_0 0.509601 0.051747 0.000386 0.407762 0.610490 18969.744012 \n", - "thetas__10_1 0.402177 0.050463 0.000381 0.304228 0.500716 18673.382910 \n", - "thetas__10_2 0.088222 0.028247 0.000218 0.038102 0.144032 17422.572626 \n", - "thetas__11_0 0.550716 0.035650 0.000258 0.482424 0.621472 21810.593623 \n", - "thetas__11_1 0.351901 0.034792 0.000261 0.280873 0.418119 19956.584699 \n", - "thetas__11_2 0.097383 0.021453 0.000172 0.057790 0.139950 15238.961040 \n", - "thetas__12_0 0.486099 0.079911 0.000524 0.334129 0.644608 18561.446431 \n", - "thetas__12_1 0.460108 0.080625 0.000605 0.300507 0.610745 17272.738333 \n", - "thetas__12_2 0.053793 0.036679 0.000296 0.001877 0.125960 14230.586334 \n", - "thetas__13_0 0.525405 0.056555 0.000460 0.421515 0.641929 21817.783278 \n", - "thetas__13_1 0.349772 0.053224 0.000421 0.241324 0.451273 18814.558488 \n", - "thetas__13_2 0.124823 0.036787 0.000313 0.057240 0.198229 17761.975836 \n", - "thetas__14_0 0.535744 0.045304 0.000360 0.445791 0.622883 19896.439516 \n", - "thetas__14_1 0.369577 0.043753 0.000306 0.287700 0.456371 18576.380121 \n", - "thetas__14_2 0.094679 0.026122 0.000167 0.045188 0.145160 19327.473357 \n", - "thetas__15_0 0.547136 0.053493 0.000374 0.437479 0.646866 17525.614741 \n", - "thetas__15_1 0.360090 0.051293 0.000391 0.266768 0.465088 16133.206175 \n", - "thetas__15_2 0.092774 0.030986 0.000256 0.037164 0.154385 16927.317956 \n", + " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", + "thetas[0,0] 0.300 0.064 0.184 0.421 0.000 0.000 19180.0 \n", + "thetas[0,1] 0.600 0.068 0.476 0.731 0.000 0.000 20053.0 \n", + "thetas[0,2] 0.100 0.042 0.030 0.177 0.000 0.000 17561.0 \n", + "thetas[1,0] 0.489 0.072 0.354 0.623 0.000 0.000 23445.0 \n", + "thetas[1,1] 0.470 0.072 0.338 0.606 0.000 0.000 21942.0 \n", + "thetas[1,2] 0.041 0.028 0.001 0.091 0.000 0.000 16066.0 \n", + "thetas[2,0] 0.465 0.039 0.390 0.537 0.000 0.000 17977.0 \n", + "thetas[2,1] 0.412 0.038 0.339 0.483 0.000 0.000 19789.0 \n", + "thetas[2,2] 0.124 0.025 0.077 0.170 0.000 0.000 18393.0 \n", + "thetas[3,0] 0.458 0.058 0.351 0.564 0.000 0.000 18586.0 \n", + "thetas[3,1] 0.514 0.058 0.404 0.618 0.000 0.000 17792.0 \n", + "thetas[3,2] 0.028 0.019 0.001 0.063 0.000 0.000 15207.0 \n", + "thetas[4,0] 0.400 0.069 0.273 0.526 0.001 0.000 17587.0 \n", + "thetas[4,1] 0.479 0.070 0.343 0.605 0.001 0.000 17138.0 \n", + "thetas[4,2] 0.121 0.046 0.042 0.207 0.000 0.000 16258.0 \n", + "thetas[5,0] 0.444 0.049 0.357 0.538 0.000 0.000 19997.0 \n", + "thetas[5,1] 0.443 0.050 0.353 0.535 0.000 0.000 19661.0 \n", + "thetas[5,2] 0.113 0.032 0.056 0.172 0.000 0.000 17878.0 \n", + "thetas[6,0] 0.504 0.046 0.417 0.588 0.000 0.000 18608.0 \n", + "thetas[6,1] 0.386 0.044 0.303 0.470 0.000 0.000 18768.0 \n", + "thetas[6,2] 0.109 0.029 0.059 0.164 0.000 0.000 17497.0 \n", + "thetas[7,0] 0.547 0.040 0.474 0.622 0.000 0.000 21412.0 \n", + "thetas[7,1] 0.338 0.037 0.272 0.411 0.000 0.000 20017.0 \n", + "thetas[7,2] 0.115 0.026 0.066 0.162 0.000 0.000 18083.0 \n", + "thetas[8,0] 0.541 0.099 0.354 0.721 0.001 0.001 18432.0 \n", + "thetas[8,1] 0.292 0.091 0.124 0.459 0.001 0.001 15864.0 \n", + "thetas[8,2] 0.166 0.075 0.038 0.303 0.001 0.000 17670.0 \n", + "thetas[9,0] 0.465 0.051 0.368 0.559 0.000 0.000 20497.0 \n", + "thetas[9,1] 0.404 0.050 0.312 0.498 0.000 0.000 19111.0 \n", + "thetas[9,2] 0.131 0.034 0.070 0.193 0.000 0.000 19145.0 \n", + "thetas[10,0] 0.510 0.049 0.418 0.602 0.000 0.000 20163.0 \n", + "thetas[10,1] 0.402 0.048 0.312 0.493 0.000 0.000 19256.0 \n", + "thetas[10,2] 0.088 0.028 0.039 0.139 0.000 0.000 18553.0 \n", + "thetas[11,0] 0.551 0.036 0.485 0.622 0.000 0.000 21649.0 \n", + "thetas[11,1] 0.352 0.035 0.286 0.416 0.000 0.000 21122.0 \n", + "thetas[11,2] 0.097 0.021 0.059 0.137 0.000 0.000 19694.0 \n", + "thetas[12,0] 0.487 0.081 0.339 0.641 0.001 0.000 23686.0 \n", + "thetas[12,1] 0.458 0.082 0.309 0.613 0.001 0.000 21239.0 \n", + "thetas[12,2] 0.054 0.038 0.001 0.123 0.000 0.000 14476.0 \n", + "thetas[13,0] 0.525 0.055 0.421 0.628 0.000 0.000 20132.0 \n", + "thetas[13,1] 0.350 0.054 0.251 0.451 0.000 0.000 19828.0 \n", + "thetas[13,2] 0.125 0.037 0.053 0.190 0.000 0.000 17053.0 \n", + "thetas[14,0] 0.535 0.045 0.449 0.616 0.000 0.000 24100.0 \n", + "thetas[14,1] 0.370 0.043 0.289 0.451 0.000 0.000 20433.0 \n", + "thetas[14,2] 0.095 0.026 0.049 0.145 0.000 0.000 20369.0 \n", + "thetas[15,0] 0.546 0.053 0.444 0.643 0.000 0.000 18238.0 \n", + "thetas[15,1] 0.360 0.050 0.271 0.456 0.000 0.000 19066.0 \n", + "thetas[15,2] 0.093 0.031 0.038 0.150 0.000 0.000 18422.0 \n", "\n", - " Rhat \n", - "thetas__0_0 0.999785 \n", - "thetas__0_1 0.999780 \n", - "thetas__0_2 0.999790 \n", - "thetas__1_0 0.999771 \n", - "thetas__1_1 0.999752 \n", - "thetas__1_2 0.999876 \n", - "thetas__2_0 0.999860 \n", - "thetas__2_1 0.999755 \n", - "thetas__2_2 0.999939 \n", - "thetas__3_0 1.000033 \n", - "thetas__3_1 0.999944 \n", - "thetas__3_2 0.999892 \n", - "thetas__4_0 0.999810 \n", - "thetas__4_1 0.999862 \n", - "thetas__4_2 0.999860 \n", - "thetas__5_0 0.999940 \n", - "thetas__5_1 1.000005 \n", - "thetas__5_2 1.000100 \n", - "thetas__6_0 0.999806 \n", - "thetas__6_1 0.999879 \n", - "thetas__6_2 0.999959 \n", - "thetas__7_0 0.999896 \n", - "thetas__7_1 0.999904 \n", - "thetas__7_2 0.999852 \n", - "thetas__8_0 0.999806 \n", - "thetas__8_1 0.999860 \n", - "thetas__8_2 1.000004 \n", - "thetas__9_0 0.999815 \n", - "thetas__9_1 0.999826 \n", - "thetas__9_2 0.999992 \n", - "thetas__10_0 0.999860 \n", - "thetas__10_1 0.999780 \n", - "thetas__10_2 0.999855 \n", - "thetas__11_0 0.999791 \n", - "thetas__11_1 0.999789 \n", - "thetas__11_2 0.999847 \n", - "thetas__12_0 0.999863 \n", - "thetas__12_1 1.000018 \n", - "thetas__12_2 0.999914 \n", - "thetas__13_0 0.999824 \n", - "thetas__13_1 0.999777 \n", - "thetas__13_2 0.999855 \n", - "thetas__14_0 0.999857 \n", - "thetas__14_1 0.999857 \n", - "thetas__14_2 0.999832 \n", - "thetas__15_0 0.999807 \n", - "thetas__15_1 0.999847 \n", - "thetas__15_2 1.000053 " + " ess_sd ess_bulk ess_tail r_hat \n", + "thetas[0,0] 16774.0 19307.0 6091.0 1.0 \n", + "thetas[0,1] 19440.0 20049.0 5982.0 1.0 \n", + "thetas[0,2] 12188.0 18066.0 6011.0 1.0 \n", + "thetas[1,0] 22381.0 23545.0 5592.0 1.0 \n", + "thetas[1,1] 20049.0 22004.0 6000.0 1.0 \n", + "thetas[1,2] 9055.0 16361.0 5270.0 1.0 \n", + "thetas[2,0] 17356.0 17922.0 6509.0 1.0 \n", + "thetas[2,1] 19706.0 19714.0 6207.0 1.0 \n", + "thetas[2,2] 15598.0 18954.0 6378.0 1.0 \n", + "thetas[3,0] 18308.0 18494.0 6064.0 1.0 \n", + "thetas[3,1] 17346.0 17741.0 6274.0 1.0 \n", + "thetas[3,2] 8697.0 14342.0 4827.0 1.0 \n", + "thetas[4,0] 16104.0 17596.0 5743.0 1.0 \n", + "thetas[4,1] 16507.0 16999.0 5744.0 1.0 \n", + "thetas[4,2] 10874.0 17055.0 5202.0 1.0 \n", + "thetas[5,0] 19373.0 20145.0 6618.0 1.0 \n", + "thetas[5,1] 18811.0 19757.0 5753.0 1.0 \n", + "thetas[5,2] 13674.0 18556.0 6129.0 1.0 \n", + "thetas[6,0] 18161.0 18563.0 5560.0 1.0 \n", + "thetas[6,1] 17850.0 18836.0 6087.0 1.0 \n", + "thetas[6,2] 14364.0 17453.0 6184.0 1.0 \n", + "thetas[7,0] 21150.0 21496.0 6089.0 1.0 \n", + "thetas[7,1] 19100.0 20019.0 6150.0 1.0 \n", + "thetas[7,2] 13995.0 19176.0 5880.0 1.0 \n", + "thetas[8,0] 17240.0 18477.0 5688.0 1.0 \n", + "thetas[8,1] 12321.0 16280.0 6097.0 1.0 \n", + "thetas[8,2] 11698.0 18854.0 6062.0 1.0 \n", + "thetas[9,0] 19551.0 20480.0 6329.0 1.0 \n", + "thetas[9,1] 18156.0 19119.0 6302.0 1.0 \n", + "thetas[9,2] 15501.0 19268.0 6074.0 1.0 \n", + "thetas[10,0] 20075.0 20236.0 6517.0 1.0 \n", + "thetas[10,1] 18108.0 19475.0 5811.0 1.0 \n", + "thetas[10,2] 13591.0 18557.0 5653.0 1.0 \n", + "thetas[11,0] 21249.0 21682.0 4983.0 1.0 \n", + "thetas[11,1] 20302.0 21213.0 5661.0 1.0 \n", + "thetas[11,2] 16202.0 19883.0 5604.0 1.0 \n", + "thetas[12,0] 20712.0 23796.0 5543.0 1.0 \n", + "thetas[12,1] 19865.0 21176.0 5179.0 1.0 \n", + "thetas[12,2] 7769.0 15893.0 4800.0 1.0 \n", + "thetas[13,0] 19957.0 20205.0 5866.0 1.0 \n", + "thetas[13,1] 18962.0 19560.0 5958.0 1.0 \n", + "thetas[13,2] 13104.0 17165.0 5432.0 1.0 \n", + "thetas[14,0] 23358.0 24144.0 5356.0 1.0 \n", + "thetas[14,1] 19480.0 20438.0 5930.0 1.0 \n", + "thetas[14,2] 15173.0 20674.0 5779.0 1.0 \n", + "thetas[15,0] 17553.0 18133.0 6414.0 1.0 \n", + "thetas[15,1] 18464.0 18837.0 6181.0 1.0 \n", + "thetas[15,2] 13482.0 18941.0 5777.0 1.0 " ] }, - "execution_count": 33, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pm.summary(trace_1)" + "arviz.summary(trace_1)" ] }, { @@ -1174,73 +1369,34 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 25, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - " 0%| | 0/1000 [00:00 369\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 370\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 499\u001b[0m \u001b[0mvariables\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 500\u001b[0;31m \u001b[0mfunc\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_compile_theano_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariables\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 501\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0msize\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/memoize.py\u001b[0m in \u001b[0;36mmemoizer\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 30\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mkey\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mcache\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 31\u001b[0;31m \u001b[0mcache\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 32\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_compile_theano_function\u001b[0;34m(param, vars, givens)\u001b[0m\n\u001b[1;32m 430\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'ignore'\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 431\u001b[0;31m allow_input_downcast=True)\n\u001b[0m\u001b[1;32m 432\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function.py\u001b[0m in \u001b[0;36mfunction\u001b[0;34m(inputs, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 317\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 318\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/pfunc.py\u001b[0m in \u001b[0;36mpfunc\u001b[0;34m(params, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mon_unused_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 486\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 487\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36morig_function\u001b[0;34m(inputs, outputs, mode, accept_inplace, name, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 1838\u001b[0m \u001b[0moutput_keys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_keys\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1839\u001b[0;31m name=name)\n\u001b[0m\u001b[1;32m 1840\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchange_flags\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompute_test_value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"off\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, inputs, outputs, mode, accept_inplace, function_builder, profile, on_unused_input, fgraph, output_keys, name)\u001b[0m\n\u001b[1;32m 1486\u001b[0m fgraph, additional_outputs = std_fgraph(inputs, outputs,\n\u001b[0;32m-> 1487\u001b[0;31m accept_inplace)\n\u001b[0m\u001b[1;32m 1488\u001b[0m \u001b[0mfgraph\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprofile\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36mstd_fgraph\u001b[0;34m(input_specs, output_specs, accept_inplace)\u001b[0m\n\u001b[1;32m 180\u001b[0m fgraph = gof.fg.FunctionGraph(orig_inputs, orig_outputs,\n\u001b[0;32m--> 181\u001b[0;31m update_mapping=update_mapping)\n\u001b[0m\u001b[1;32m 182\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/fg.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, inputs, outputs, features, clone, update_mapping)\u001b[0m\n\u001b[1;32m 174\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;32min\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 175\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__import_r__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreason\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"init\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 176\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput\u001b[0m \u001b[0;32min\u001b[0m \u001b[0menumerate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moutputs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/fg.py\u001b[0m in \u001b[0;36m__import_r__\u001b[0;34m(self, variable, reason)\u001b[0m\n\u001b[1;32m 345\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mvariable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mowner\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mvariable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mowner\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply_nodes\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 346\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__import__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvariable\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mowner\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mreason\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mreason\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 347\u001b[0m elif (variable.owner is None and\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/fg.py\u001b[0m in \u001b[0;36m__import__\u001b[0;34m(self, apply_node, check, reason)\u001b[0m\n\u001b[1;32m 390\u001b[0m % (node.inputs.index(r), str(node)))\n\u001b[0;32m--> 391\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mMissingInputError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0merror_msg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvariable\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 392\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mMissingInputError\u001b[0m: Input 0 of the graph (indices start from 0), used to compute AdvancedSubtensor1(packed_L_cholesky-cov-packed__, TensorConstant{[0 2]}), was not provided and not given a value. Use the Theano flag exception_verbosity='high', for more information on this error.", - "\nDuring handling of the above exception, another exception occurred:\n", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mmodel_non_hiera\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mppc_non_hiera\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample_posterior_predictive\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrace_1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msamples\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvars\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mthetas\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpost\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py\u001b[0m in \u001b[0;36msample_posterior_predictive\u001b[0;34m(trace, samples, model, vars, size, random_seed, progressbar)\u001b[0m\n\u001b[1;32m 1133\u001b[0m \u001b[0mparam\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtrace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0midx\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mlen_trace\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1134\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1135\u001b[0;31m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1136\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mv\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1137\u001b[0m \u001b[0mppc_trace\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 398\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 399\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgivens\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 400\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 401\u001b[0m \u001b[0mevaluated\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam_idx\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdrawn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 402\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 475\u001b[0m \u001b[0mdist_tmp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdistshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 476\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 477\u001b[0;31m \u001b[0mdist_tmp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 478\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mValueError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 479\u001b[0m \u001b[0;31m# reset shape to account for shape changes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/multivariate.py\u001b[0m in \u001b[0;36mrandom\u001b[0;34m(self, point, size)\u001b[0m\n\u001b[1;32m 626\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 627\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 628\u001b[0;31m \u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 629\u001b[0m samples = generate_samples(self._random, n, p,\n\u001b[1;32m 630\u001b[0m \u001b[0mdist_shape\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 368\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtemp_givens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 369\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 370\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 371\u001b[0m \u001b[0mdrawn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 461\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 463\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 464\u001b[0m elif (hasattr(param, 'distribution') and\n\u001b[1;32m 465\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribution\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmethod_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/multivariate.py\u001b[0m in \u001b[0;36mrandom\u001b[0;34m(self, point, size)\u001b[0m\n\u001b[1;32m 442\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 443\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 444\u001b[0;31m \u001b[0ma\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 445\u001b[0m samples = generate_samples(self._random,\n\u001b[1;32m 446\u001b[0m \u001b[0ma\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 367\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 368\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtemp_givens\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 369\u001b[0;31m size=size)\n\u001b[0m\u001b[1;32m 370\u001b[0m \u001b[0mgivens\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 371\u001b[0m \u001b[0mdrawn\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnext_\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mvalue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36m_draw_value\u001b[0;34m(param, point, givens, size)\u001b[0m\n\u001b[1;32m 461\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 462\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 463\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 464\u001b[0m elif (hasattr(param, 'distribution') and\n\u001b[1;32m 465\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mparam\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdistribution\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'random'\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 41\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 42\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__call__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 43\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mgetattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmethod_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 44\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/multivariate.py\u001b[0m in \u001b[0;36mrandom\u001b[0;34m(self, point, size)\u001b[0m\n\u001b[1;32m 248\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mdist\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrvs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_cov_type\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m'chol'\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 250\u001b[0;31m \u001b[0mmu\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mchol\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdraw_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmu\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchol_cov\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoint\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpoint\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 251\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmu\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mchol\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Shapes for mu and chol don't match\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/distributions/distribution.py\u001b[0m in \u001b[0;36mdraw_values\u001b[0;34m(params, point, size)\u001b[0m\n\u001b[1;32m 374\u001b[0m \u001b[0;31m# the stack of nodes to try to draw from. We exclude the\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;31m# nodes in the `params` list.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m stack.extend([node for node in named_nodes_parents[next_]\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mnode\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[0mnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdrawn\u001b[0m \u001b[0;32mand\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyError\u001b[0m: packed_L" + "100%|██████████| 10000/10000 [00:15<00:00, 666.41it/s]\n" ] } ], "source": [ "with model_non_hiera:\n", - " ppc_non_hiera = pm.sample_posterior_predictive(trace_1, samples=1000, vars=[thetas, post])" + " ppc_non_hiera = pm.sample_posterior_predictive(trace_1, samples=10_000, vars=[thetas, post])" ] }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(1000, 16, 3)" + "(10000, 16, 3)" ] }, - "execution_count": 37, + "execution_count": 26, "metadata": {}, "output_type": "execute_result" } @@ -1258,7 +1414,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 27, "metadata": {}, "outputs": [ { @@ -1270,7 +1426,7 @@ " 0.05711423])" ] }, - "execution_count": 38, + "execution_count": 27, "metadata": {}, "output_type": "execute_result" } @@ -1281,7 +1437,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 28, "metadata": {}, "outputs": [], "source": [ @@ -1294,28 +1450,28 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.33787199, -0.37379882, -0.25882127, ..., -0.24333032,\n", - " -0.34828809, -0.2890644 ],\n", - " [ 0.10464792, -0.0332341 , 0.04314238, ..., -0.02677397,\n", - " 0.06811687, -0.02878468],\n", - " [ 0.14668186, -0.09759919, 0.24836487, ..., -0.05777017,\n", - " 0.13984376, -0.02823006],\n", + "array([[-0.38269827, -0.2111439 , -0.03313074, ..., -0.40320236,\n", + " -0.28429534, -0.29398797],\n", + " [-0.16225691, 0.10415002, -0.00290161, ..., -0.05570792,\n", + " 0.08606434, -0.09591687],\n", + " [-0.05859063, 0.1490945 , 0.07752748, ..., 0.03058629,\n", + " 0.08686482, 0.02734735],\n", " ...,\n", - " [ 0.17630032, 0.2639916 , 0.08281504, ..., 0.12927367,\n", - " 0.12421466, 0.23584101],\n", - " [ 0.10903527, 0.16980981, 0.1529897 , ..., 0.24074752,\n", - " 0.14888268, 0.18884677],\n", - " [ 0.29177155, 0.00912029, 0.31554402, ..., 0.41702492,\n", - " 0.07311343, 0.33643738]])" + " [ 0.23776605, 0.17184184, 0.15313478, ..., 0.3966856 ,\n", + " 0.12764284, 0.20320234],\n", + " [ 0.18947771, 0.05270173, 0.1134665 , ..., 0.08172745,\n", + " 0.18431356, 0.15733717],\n", + " [ 0.30797976, 0.04437883, 0.06218116, ..., 0.1295049 ,\n", + " 0.21549409, 0.14776103]])" ] }, - "execution_count": 40, + "execution_count": 29, "metadata": {}, "output_type": "execute_result" } @@ -1327,21 +1483,21 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ - "res = np.sum(diff.T * proportion / np.sum(proportion), axis=1)" + "result = np.sum(diff.T * proportion / np.sum(proportion), axis=1)" ] }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 31, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAbmklEQVR4nO3de5CVdf0H8A97VvfiQmuy4dCKqCijOIHlDSkdTUMumk05aQNOZqOTaF4qh/KaV9BQRyUvqYVikzqVzUhggoaKpDhRjTqgpJuXCUZUhJUFWXx+fzDuwk9dvu257u7r9RfPc55zvp/z4Zzvee/znPM8/bIsywIAgC5VlbsAAICeQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABNXFHuCtt9YVe4hua2ioidbWjeUuoyLoxRb60EkvOulFJ73opBedelMvmpr6f+ptfXpPU3V1rtwlVAy92EIfOulFJ73opBed9KJTX+lFnw5NAACphCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIUJ2y0aZNm+L666+Pu+++OxYuXBi77rprREQ899xzcdlll8W6deti9913j+uuuy4GDRpU1IIBIiIaBtRFXU3SFFaw8VrXtpVsPKDyJM04Z555Zuy///7brGttbY1zzz03brnllhg1alTccccdMWfOnPje975XlEIBtlZXUx1Dp84p2Xgt0yZEa8lGAypRUmiaMmVKjBo1Kn75y192rJs/f36MGDEiRo0aFRERp59+enEqBHqEUu/5ASi1pBnuo2C0teXLl8fOO+8cU6ZMiRUrVsR+++0XF198cXz2s58teJFA5SvHnh+AUur2n4Vr166Np556Ku67774YPHhwXHTRRXH11VfHL37xi222a2ioierqXN6FFkMuVxWNjfXlLqMi6MUW+tBJLz5OP7wutqYXnfpKL7odmvr37x+jR4+O3XffPSIiTjnllPj+97//se1aWzd2v7oia2ysjzVr1pe7jIqgF1voQ6f/tRdNTf2LWE1l8NrwHtmaXnTqTb3oai7r9ikHmpubY926dR3LuVwucrnK3KMEAJCvboemcePGxXPPPRfLly+PiIgHHnggRo8eXbDCAAAqyXYPz61evTomTZrUsTx58uTI5XIxa9asuOGGG+Kss86Kfv36xd577x1XXHFFUYsFACiX7YamgQMHxrx58z7xtkGDBsWjjz5a8KIAACqNy6gAACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgATVKRtt2rQprr/++rj77rtj4cKFseuuu25z+/Tp0+ORRx6Jxx57rChFApTbhk2bo6mpf0nHbNvYHq1r20o6JvDpkkLTmWeeGfvvv/8n3rZs2bKYP39+QYsCqDS1O+Ri6NQ5JR2zZdqEaC3piEBXkg7PTZkyJc4555yPrf/www/jsssui3PPPbfghQEAVJKk0DRq1KhPXP+73/0u9tlnnxg5cmRBiwIAqDRJh+c+yVtvvRWzZs2KBx54INatW/ep2zU01ER1da67wxRVLlcVjY315S6jIujFFvrQSS8qQ6X9H3hddNKLTn2lF90OTddcc01MmTIlPvOZz3QZmlpbN3Z3iKJrbKyPNWvWl7uMiqAXW+hDp/+1F6X+knRfUWmvR++RTnrRqTf1oqu5rNuh6fHHH49nnnkmpk+fHps3b4733nsvxowZE48//njsuOOO3X1YAICK1O3QtHTp0o5/v/HGG3HKKac45QAA0GttNzStXr06Jk2a1LE8efLkyOVyMWvWrBg0aFBRiwMAqBTbDU0DBw6MefPmdblNc3OzvUwAQK/mMioAAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmqy10AUBwNA+qiria/t3hTU/8CVQPQ8wlN0EvV1VTH0KlzSjZey7QJJRsLoBwcngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASJAUmjZt2hTTp0+P4cOHx8qVKzvWz5w5M8aNGxdjx46Nc889N9atW1e0QgEAyikpNJ155plRW1u7zbp58+bFvHnz4sEHH4y5c+dGv3794s477yxKkQAA5ZYUmqZMmRLnnHPONuv22muvuOaaa6KhoSGqqqrigAMOiJdffrkoRQIAlFvSBXtHjRr1sXV77733NstPPPFEHHTQQYWpCoDYsGlzNDX1L9l4bRvbo3VtW8nGg54mKTRtz6233hpvv/12TJ48uRAPB0BE1O6Qi6FT55RsvJZpE6K1ZKNBz5N3aJoxY0YsWrQo7rrrrqivr//Y7Q0NNVFdnct3mKLI5aqisfHjNfdFerGFPtDXbe/17z3SSS869ZVe5BWabr755vj73/8e99xzTzQ0NHziNq2tG/MZoqgaG+tjzZr15S6jIujFFr2pD6U8rEPvsb3Xf296j+RLLzr1pl50NXd2OzS98MIL8dBDD8VDDz30qYEJAKC32G5oWr16dUyaNKljefLkyZHL5eLAAw+MdevWxYknnthx2+c///m46667ilMpAEAZbTc0DRw4MObNm/eJt1155ZUFLwgAoBK5jAoAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkSApNmzZtiunTp8fw4cNj5cqVHet/85vfxLhx42Ls2LFx4YUXxgcffFC0QgEAyikpNJ155plRW1u7zbp//OMfcc8998T9998fc+fOjbfffjtmz55dlCIBAMotKTRNmTIlzjnnnG3WzZs3L8aPHx8DBgyIqqqqOPnkk2Pu3LlFKRIAoNySQtOoUaM+tq6lpSWGDBnSsbzbbrvFK6+8UrjKAAAqSHV379jW1hY77rhjx3JtbW20tbV9bLuGhpqors51d5iiyuWqorGxvtxlVAS92EIf6Ou29/r3HumkF536Si+6HZrq6uq2+eJ3W1tb1Nd/vGGtrRu7O0TRNTbWx5o168tdRkXQiy16Ux+amvqXuwR6mA2bNkftDtv/I7eqqjB/CLdtbI/WtR//Y7un6E3zRb56Uy+6mju7HZr23HPPbQ7HrVixIoYNG9bdhwOgzGp3yMXQqXNKNl7LtAnRWrLRIH/dPk/TuHHjOn41197eHr/97W9jwoQJhawNAKBibHdP0+rVq2PSpEkdy5MnT45cLhezZs2K0047Lb7zne9ElmVx2GGHxcknn1zUYgEAymW7oWngwIExb968T7ztlFNOiVNOOaXgRQEAVBqXUQEASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAE1eUuAPqKhgF1UVfjLQfQU5nBoUTqaqpj6NQ5JRuvZdqEko0F0Bc4PAcAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJ8g5Nv//972P8+PExbty4OPXUU+PVV18tRF0AABUlr9D073//O6699tr49a9/HXPnzo2vfe1r8bOf/axQtQEAVIy8Q9PQoUNj0KBBERFx6KGHxssvv1yQwgAAKkleoWnkyJHx2muvxUsvvRRZlsVf/vKXOOywwwpVGwBAxajO586DBg2K888/P0444YRoaGiI2tramD179jbbNDTURHV1Lq8iiyWXq4rGxvpyl1ER9GILfYDS6snvN/NFp77Si7xC04svvhi33nprzJ8/PwYPHhx/+tOf4gc/+EE8/PDD0a9fv4iIaG3dWJBCi6GxsT7WrFlf7jIqgl5sUcw+NDX1L8rjQk/Wk+cd82an3tSLrubqvA7PLV68OA444IAYPHhwRESMHz8+VqxYEe+++24+DwsAUHHyCk177LFHLF26tCMkLVy4MJqammLnnXcuSHEAAJUir8NzRx11VLzwwgvx7W9/O/r16xcNDQ1x4403dhyaAwDoLfIKTRERZ599dpx99tmFqAUAoGK5jAoAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQIK8zwgOAN2xYdPmLq8oX2htG9ujdW1bycaj9xGaACiL2h1yMXTqnJKN1zJtQrSWbDR6I4fnAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAAS5B2aVq1aFaeeemocccQRMWHChFiyZEkh6gIAqCh5h6apU6fG4YcfHgsXLoyLLrooZs+eXYi6AAAqSnU+d/7vf/8bL7zwQtxxxx0RETF69OgYPXp0QQoDAKgkee1pWrZsWTQ3N8eMGTNi7NixMWnSpHjxxRcLVRsAQMXIKzStXbs2XnrppTjwwAPjkUceieOPPz7OOuusaG9vL1R9AAAVIa/Dc/37949ddtkljj766IiIOPHEE2P69OnR0tISw4YNi4iIhoaaqK7O5V9pEeRyVdHYWF/uMiqCXmyhD9C7FfL9bb7o1Fd6kVdoam5ujvfffz8+/PDDqKqqin79+kVVVVVUVXXuwGpt3Zh3kcXS2Fgfa9asL3cZFUEvtihmH5qa+hflcYF0hXx/mzc79aZedDVX53V4bp999okhQ4bEgw8+GBERc+fOjf79+8eQIUPyeVgAgIqT156miIibbropzjvvvLjjjjtil112iZtuuimqq/N+WAAoqA2bNhd8j29Xj9e2sT1a17YVdDzKK+9009zc3LGnCQAqVe0OuRg6dU7JxmuZNiFaSzYapeAyKgAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkqC53AVAODQPqoq7mk1/+TU39S1wNAD2B0ESfVFdTHUOnzinpmC3TJpR0PAAKy+E5AIAEQhMAQAKhCQAgQUFC01//+tcYPnx4vPHGG4V4OACAipN3aGpra4sZM2ZEY2NjIeoBAKhIeYemm2++OY4//vjYaaedClEPAEBFyis0LV++PJ5++un47ne/W6ByAAAqU7dDU5Zlcemll8ZFF10UO+ywQyFrAgCoON0+ueX9998fw4YNiwMPPLDL7RoaaqK6OtfdYYoql6uKxsb6cpdREfQCoPD6yrzaVz5Duh2aFixYEM8//3w8/vjjERHxzjvvxLe+9a248cYb49BDD+3YrrV1Y/5VFkljY32sWbO+3GVUhL7WC5dKAUqhr8yrvekzpKvPh26Hpl/96lfbLB911FFxzz33RHNzc3cfEgCgYjm5JQBAgoJdsPexxx4r1EMBAFQce5oAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQIKCXbAX8tEwoC7qarwcAahcPqWoCHU11TF06pySjdcybULJxgKgd3B4DgAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkcMFePlHDgLqoq/HyAICP+FTkE9XVVMfQqXNKNl7LtAklGwsAusPhOQCABHmHpgULFsTXv/71GDduXJx88snx0ksvFaIuAICKkldoWrVqVUydOjVmzJgRc+fOjYkTJ8Yll1xSqNoAACpGXqGpuro6ZsyYEcOGDYuIiC996UuxYsWKghQGAFBJ8gpNu+yySxx++OEdy0888USMHDky76IAACpNwX49t3jx4pg1a1bMmjVrm/UNDTVRXZ0r1DAFlctVRWNjfbnLqAh6AVB4fWVe7SufIQUJTfPnz48rrrgibrvtto5DdR9pbd1YiCGKorGxPtasWV/uMirC/+9FU1P/MlYD0Dv0lc+Y3vR52tXnX96h6emnn46rrroq7r777thrr73yfTgA6BU2bNpc0j9A2za2R+vatpKN1xflFZra2tripz/9acycOVNgAoCt1O6QK/lJgltLNlrflFdoWrBgQbzzzjvx4x//eJv1s2fPjoEDB+ZVGABAJckrNE2cODEmTpxYqFoAACqWy6gAACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEuR1GRVKp2FAXdTVFPe/q5RX4waAnkZo6iHqaqpLfrVsAKCTw3MAAAmEJgCABEITAEACoQkAIIEvggNAL7Bh0+aS/wq6bWN7tK5tK+mY5SQ0AUAvULtDrqS/so7Y8kvr1pKOWF4OzwEAJBCaAAASCE0AAAl8pwkA6Jatv3xeii+hl/uL50ITANAtpf7yebm/eO7wHABAAqEJACBBrzk81zCgLupq/ven091jsOU+rgoAlFavCU11NdV96rgqAFBaDs8BACTIa0/T4sWL49prr43169fH4MGD45prroldd921ULVVtHJc4wcAKJ9uh6b169fH+eefH3feeWeMGDEi7rrrrrjsssvitttuK2R9FascP7MEAMqn24fn/va3v8Vuu+0WI0aMiIiIk046KZ566qlobfVNHwCg9+l2aGppaYnddtutY3mnnXaKxsbGeO211wpSGABAJemXZVnWnTvOnDkz3nzzzbj66qs71n31q1+N6dOnx4EHHliwAgEAKkG39zTV19fHxo0bt1m3YcOG2GmnnfIuCgCg0nQ7NO25557x6quvdiy/88478d5778Xuu+9ekMIAACpJt0PTIYccEitXroznnnsuIiLuvffeOPLII6O+vr5gxQEAVIpuh6ba2tq44YYb4vLLL49jjjkm/vWvf8Ull1xSyNq6bfHixfGNb3wjxo4dG6eeemqsXLnyY9ssW7YsTjrppBg7dmycdNJJsWzZso7bHnjggZgwYUIce+yxcdppp33i/XuCfPvwkdmzZ8fw4cNLUXLR5NuLFStWxIknnhhHHHFEfPOb34wVK1aUsvyCyrcXt99+exx77LExbty4OOuss+Ktt94qZfkFldKLLMvirrvuihEjRnT8kfiROXPmxMSJE2Ps2LFx9tlnx7p160pVesHl24u+NG921YeP9JV5s6te9KZ5s0PWy7z//vvZoYcemj3//PNZlmXZnXfemZ1xxhkf2+7YY4/NHn300SzLsmzu3LnZxIkTsyzLsn/+85/ZmDFjslWrVmVZlmXTpk3Lzj///BJVXzj59uEjq1atyo477rhsn332KX7RRZJvL9rb27OxY8dmjzzySJZlWfbHP/4xu/rqq0tUfWHl24unnnoqO+aYY7K1a9dmWZZl1113XfajH/2oRNUXVmovLr744uzCCy/MvvzlL2dLlizpWP/mm29mhxxySPbmm29mWZZlP//5z7PLL7+8NMUXWL696Gvz5qf14SN9ad78tF70pnlza70uNC1YsCA78cQTO5ZbW1uzESNGZOvWretYt2zZsmzMmDHb3G/06NHZihUrstdffz179tlnO9bPnz8/O/7444tfeIHl24eP/PCHP8zmzJnTo9/8+fZiyZIl2YQJE0pWbzHl24u77747O++88zrWP/nkkz3y/ZFlab3IsixbunRplmVZduSRR27zoXDPPfdk5557bsfyyy+/nI0ePbrIVRdHvr3oS/Nmln16Hz7SV+bNLPv0XvSmeXNrve7acynnj2ppaYnm5uZt7rfbbrvFK6+8Es3NzXHQQQd1rH/iiSdi5MiRxS+8wPLtQ8SW597a2hrjx48vTdFFkm8vli1bFoMHD46pU6fG2LFj4/TTT4/XX3+9ZPUXUr69OPjgg2Pp0qWxcuXK2Lx5czz66KNx2GGHlaz+Qko919yoUaM+9f5DhgzpWB4yZEi8/fbb8d577xWn4CLKtxd9ad6M+PQ+RPSteTPi03vRm+bNrfW60NTW1hY1NTXbrKupqYn169f/T9tERDz00EPx5JNPxtlnn128gosk3z5s2LAhpk+fHpdeemlJ6i2mfHuxdu3aWLJkSZx88skxd+7c2HfffeOCCy4oSe2Flm8vRowYESeccEIcddRRcfDBB8eSJUvijDPOKEnthZY6D3R1/x133LFjeccdd4x+/fpFW1tbQesshXx7sbXePm92pa/Nm13pTfPm1npdaEo5f1TKNvfdd1/MnDkzZs2aFU1NTcUtugjy7cPMmTNj4sSJ2/wl3VPl24v+/fvHvvvuGyNHjoyqqqo49dRTY+nSpd36QCm3fHuxYMGCWLhwYSxatCiWLFkSxx13XPzkJz8pSe2Flu+55urr6+ODDz7oWN64cWNkWdYjf0FcqPPu9YV5syt9bd7sSm+aN7fW60JTyvmj9txzz2hpaYkPP/wwIiLa29ujpaUl9tprr4iI+MMf/hD33XdfzJ49e5vdkz1Jvn147LHH4t57740xY8bEmDFjIiJizJgx8Z///Ke0T6QA8u1Fc3PzNr+KyuVyERFRVdXz3j759mLRokXxla98JXbeeeeoqqqK8ePHx5IlS0r+PAoh33PN7bHHHh2HsiMiXn755WhqaooBAwYUvNZiK8R59/rKvNmVvjZvdqU3zZtb69nVf4KU80cNGzYsmpqa4uGHH46ILbuTm5ubY4899ohVq1bF9ddfH3feeWcMGjSoLM+hEPLtw5w5c+Lpp5+ORYsWxaJFiyIiYtGiRT3y5KX59mLMmDHx7rvvxpNPPhkREffff3988YtfjNra2tI/mTzl24s99tgjFi9e3HEI6vHHH4+999679E+kAPI919zRRx8dzz77bMcHy7333hsTJ04sWr3FlG8v+tK82ZW+Nm92pTfNm1vr9rXnKtkzzzwTV111VbS1tcWQIUNi2rRp8eGHH8Zpp53W8UGwfPnyuPjii2PNmjWxyy67xJVXXhl77bVX3H777XHbbbdt88avrq7uuF9Pkk8f/r/hw4fH8uXLS/0UCibfXrzwwgtxwQUXxAcffBCDBw+OK664osfugs+nF5s2bYprrrkmnnzyyaiqqoqmpqa47LLLYtiwYWV+Vt2T0ouJEydGe3t7vP766/G5z30uampq4tprr40vfOEL8ec//zluueWWaG9vj/322y+uuuqqHnspqXx6sXjx4j41b3b1mthaX5g3u+pFb5o3P9IrQxMAQKH1usNzAADFIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBI8H/2mfa6CNfdygAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAFkCAYAAADFUfTMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARUklEQVR4nO3dbWidZxnA8SvtadP0JUglm0hbu7oPYrGKnbbDwSyUJTNBXWBa+sXJPijFqYhCQepLXTVMO7/IqGXDzjqGY+oKjZtM2diEqtOJww8p1hksk1attEnW09hstx929bi4raZ7ek7efj8Q7Dk5uc9z5cnd//Kk57SVUkoAABALpvsJAADMFMIIACAJIwCAJIwAAJIwAgBIwggAINUuduc//jHaqufRsHx5e4yNjbd83ZnEDF5iDmZwgTmYwQXmYAYXvNocurpWVP68M+4nRrXawul+CtPODF5iDmZwgTmYwQXmYAYXNGsOMy6MAACmizACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEi16X4CwPyzvLMjOtovbfvp6lrxuterj0/E2Ej9dT8emD+EEdByHe21WLtzsGXrDQ/0xljLVgNmM5fSAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASLXpfgLA9Fve2REd7bYDADshEB3ttVi7c7Bl6w0P9LZsLYBL4VIaAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkGrT/QQAmu3c+Reiq2tFS9esj0/E2Ei9pWsC1QkjYM5bsmhhrN052NI1hwd6Y6ylKwKXg0tpAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBAKTadD8B4JWWd3ZER/tL355dXSum+dkAzB/CCGagjvZarN052LL1hgd6W7YWwEzmUhoAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJBq0/0EAOaic+dfiK6uFZf1c17s89XHJ2JspH5Z14P5SBgBNMGSRQtj7c7Blq03PNAbYy1bDeYul9IAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAINWm+wnAbLC8syM62n27AMx1dnqYgo72WqzdOdiy9YYHelu2FgD/5VIaAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJBq0/0EAKju3PkXoqtrRcvWq49PxNhIvWXrQasII4A5YMmihbF252DL1hse6I2xlq0GreNSGgBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQatP9BOBSLe/siI52py4Al5+/XZh1OtprsXbnYEvXHB7obel6AEwPl9IAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBItel+AgDMPufOvxBdXStatl59fCLGRuotW4/5SxgBcMmWLFoYa3cOtmy94YHeGGvZasxnLqUBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkLwlCJUt7+yIjvbmnEqtfC8mABBGVNbRXmv5eyYBQDO4lAYAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJC88jUAM9658y803iKoFW8VVB+fiLGRetPXYeYRRgDMeEsWLWz5Ww+NtWw1ZhKX0gAAkjACAEjCCAAg+R2jOWh5Z0d0tPvSAsCl8rfnHNTRXmv5LykCwFzgUhoAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkr2MEAP/j3PkXoqtrRcvWq49PxNhIvWXr8dqEUQu8nleibuU3JACTLVm0sOUvlDvWstW4GGHUAl6JGgBmh3kZRt5LDICZ5FIv3V2Oqwou3726tlJKme4nAQAwE/hXaQAASRgBACRhBACQmhZGR44ciZtuuim6u7vj4x//eJw4ceIVHzM0NBTbtm2L7u7u2LZtWwwNDTXuGxwcjL6+vuju7o7bbrstRkdHIyKilBLf+ta3oru7O3p6emLv3r3NOoTKqs7ggQceiN7e3ujp6Ylbb7218fhDhw7Fxo0bo6enp/G/Rx99tGXHdamqzOHEiROxfv36Scd64Ws+m86FiGpzuPfeeyfNYOvWrbFp06aIiLjrrrti06ZNk+5/5plnWnpsUzWVGZRS4p577on169fHb3/720n3zYV9IaL6HObC3lBlBvNtX3itOcynfeF3v/td3HzzzXHjjTdGf39/PPXUU437Lvu+UJrg+eefL5s3by5//OMfSyml3H333eUTn/jEKz6up6enPProo6WUUh5++OHS19dXSinlueeeK5s2bSrPPfdcKaWUr371q2X37t2llFIOHz5cbr755jI+Pl7OnTtX+vv7yyOPPNKMw6ik6gz+8Ic/lPe9733l5MmTpZRSBgYGyuc+97lSSikHDx4su3btasVhVFZ1DkePHi033HDDq37u2XIulFJ9Dv9r//795Rvf+EYp5aVzY9++fU165pfPVGewa9eu8sUvfrFcd9115amnnmrcPhf2hVKqz2Eu7A1VZzDf9oXXmsP/mqv7wvj4eHnve99bjhw5Ukop5fHHHy/XXXddKaU5+0JTfmL0q1/9KlavXh3r16+PiIht27bFL3/5yxgb++/LVx09ejRGR0dj69atERHR09MTp06dij//+c/xi1/8Iq699tp485vfHBER27dvj4cffjgiIh555JG46aabYvHixdHe3h79/f2N+2aSqjNYuXJlfPvb344rrrgiIiKuueaaOHbsWEREjI6OxooVs+MFIKvOYXR0NDo7O1/1c8+WcyGi+hxe7p///Gfcf//9sWPHjoiYPefDVGYQEdHf3x+33357LFq0aNLtc2FfiKg+h7mwN1SdwXzaFyJeew4vN5f3hfPnz8fXvva12Lx5c0REbNy4Mf7+97/HyMhIU/aFpoTR8PBwrF69uvHnZcuWxRve8Ib461//OuljVq1aNelxq1evjmeffTaGh4djzZo1jdvXrFkTp06dijNnzrzqfc8++2wzDqOSqjNYtWpVvOc972nc/sQTT8Q73/nOiIgYGRmJp59+Oj7ykY9ET09PDAwMxL///e8mH9HrU3UOo6Ojcfr06bjllluiu7s7Pv3pT8fJkycbj5sN50JE9Tm83D333BP9/f2NvxhGRkbi5z//efT398cHPvCB2LdvX5QZ+CocU5lBRMS73vWu13z8bN8XIqrPYS7sDVVnMJ/2hYjXnsPLzeV9YdmyZXHDDTc0/vzEE0/E2rVro7Ozsyn7QlPCqF6vR3t7+6Tb2tvb4+zZs1P6mHq9HosXL27cvnjx4mhra4t6vf6Kxy1ZsiTq9Zn3AlVVZ/ByDz30UDz55JNx2223RUTE2972ttiyZUt8//vfjx/+8IfxzDPPxP79+5t0JNVUncPKlStjy5Ytcccdd8Tg4GC86U1vii984Quv+riZei5EXL7zYXR0NA4dOhTbt29v3LZx48bYunVrPPDAA/G9730vHnrooTh06FCTjuT1m+r5frHHz/Z9IaL6HF5utu4NVWcwn/aFqZhP+8LQ0FB8/etfj927dzcef7n3haa8/PPSpUtjfHx80m3nzp2LZcuWTeljli5dOum/csbHx6OUEkuXLo2Ojo5Jj6vX67F06dJmHEYlVWdwwX333RcHDhyIe++9N7q6uiIi4kMf+lDj/iVLlsQtt9wS+/fvj0996lPNOJRKqs5hw4YNsWHDhsbtO3bsiM2bN8fZs2dnzbkQcfnOh8ceeyw2bNgQK1eubNz2sY99rPH/r7zyyvjoRz8ajz32WHz4wx++3IdRyVSO7/89frbvCxHV53DBbN4bqs5gPu0LUzFf9oWnn346PvvZz8aePXsav2TejH2hKT8xWrduXfzlL39p/Plf//pXnDlzJt7ylrdM+pjh4eF48cUXIyJiYmIihoeH461vfWtcddVVk37c9ac//Sm6urqis7Mz1q1bN+m+Y8eOxdVXX92Mw6ik6gwiIn784x/HfffdFz/4wQ8m/ajx+PHjjd+6j3jpN+9rtZn5FidV53Dq1KlJ/0KhlBJtbW1Rq9VmzbkQcXnOh4iIxx9/PK6//vpJn/vYsWOTvvln6vkwlRlczFzYFyKqzyFi9u8NVWcwn/aFqZgP+8LQ0FB85jOfiTvvvHPSsTZjX2hKGG3atClOnDjR+GeFBw8ejC1btkwqtauvvjq6urri8OHDEfHSj4RXrVoVV111VWzdujV+85vfNIZ18ODB6Ovri4iIG2+8MR588ME4e/ZsPP/88/GjH/0oentn3pumVp3ByZMn484774y77747rrzyykmf+6677opvfvObUUqJ8fHxuP/+++P9739/y47tUlSdw5NPPhk7duxo/CLegQMH4tprr43FixfPmnMhovocLhgaGpoUShERu3fvjgMHDkRExJkzZ+InP/nJjDwfpjKDi5kL+0JE9TnMhb2h6gzm074wFXN9XyilxM6dO+PLX/5yXHPNNZMe34x9oWnvlfbrX/869uzZE/V6PdasWRMDAwPx4osvxq233trY+I8ePRq7du2K06dPxxvf+Ma4/fbbG1/cn/70p/Gd73wnJiYm4u1vf3vs2bOn8aO1vXv3xs9+9rNoa2uLvr6+xvX1mabKDL773e/Gvn37Jm18tVotDh8+HKdPn45du3bF0aNHo62tLa6//vr4/Oc/P+k660xSZQ6llMbXe8GCBbFu3br4yle+0pjLbDkXIqp/T0REvPvd744HH3ww1q1b17jt+PHj8aUvfSn+9re/xYIFC+KDH/xgfPKTn4y2traWH+P/M5UZ9PX1xcTERBw/fjyuuOKKaG9vjzvuuCM2bNgwJ/aFiGpzOHLkyJzYG6rM4B3veMe82hcu9j0RMff3hd///vexffv2V/wUae/evbF+/frLvi94E1kAgOQtQQAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAANJ/AARa06B7yBBGAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1352,14 +1508,15 @@ ], "source": [ "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(res, bins=18, edgecolor='w', density=True)" + "_, _, _ = plt.hist(result, bins=18, edgecolor='w', density=True)\n", + "plt.yticks([]);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "**¡Se pudo reproducir la figura!**" + "The figure is almost the same!" ] }, { @@ -1378,7 +1535,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1391,13 +1548,13 @@ } ], "source": [ - "alpha_2j = np.round((1 - data['other'].to_numpy()) * data.proportion.to_numpy() * participants)\n", + "alpha_2j = np.round((1 - data['other'].to_numpy()) * data.proportion.to_numpy() * participants) #Not a probability as you may see\n", "print(alpha_2j)" ] }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1412,13 +1569,13 @@ } ], "source": [ - "alpha_1j = valores[:, 0] / (valores[:, 0] + valores[:, 1]) * data.proportion.to_numpy() * participants\n", + "alpha_1j = values[:, 0] / (values[:, 0] + values[:, 1]) * data.proportion.to_numpy() * participants #Not a probability as you may see\n", "print(alpha_1j)" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1451,58 +1608,45 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 121, "metadata": {}, "outputs": [], "source": [ "with pm.Model() as model_hier:\n", " \n", - "# # rho = pm.Uniform('rho', lower=0, upper=1)\n", - "# rho = pm.Normal('rho', mu=-0.5, sd=.2)\n", - "# # mu = pm.Uniform('mu', lower=0, upper=50, shape=(2,))\n", - "# mu = pm.HalfNormal('mu', sd=4, shape=(2,))\n", - "# # mu2 = pm.HalfNormal('mu2', sd=1.4)\n", - "# # tau = pm.Uniform('tau', lower=-2, upper=3, shape=(2,))\n", - "# tau = pm.Beta('tau', alpha=2, beta=2, shape=(2,))\n", - " \n", - "# covariance = tt.stack([[tau[0]**2, rho * tau[0] * tau[1]], [rho * tau[0] * tau[1], tau[1]**2]], axis=1)\n", - "# # print(covariance)\n", - " packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist=pm.HalfCauchy.dist(5))\n", + " packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist=pm.HalfCauchy.dist(10))\n", "\n", " L = pm.expand_packed_triangular(2, packed_L)\n", " Sigma = pm.Deterministic('Sigma', L.dot(L.T))\n", "\n", - " mu = pm.Normal('mu', 0., 10., shape=2, testval=new_values.mean(axis=0))\n", + " mu = pm.Normal('mu', 0, 20, shape=2)\n", + "# mu = pm.Normal('mu', 0., 10., shape=2, testval=new_values.mean(axis=0))\n", " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=(16, 2))\n", " \n", - "# beta = pm.MvNormal('beta', mu=mu, cov=covariance, shape=2)\n", - " \n", " alpha = pm.invlogit(beta)\n", - "# alpha2 = pm.invlogit(beta[1])\n", " \n", " alphas = pm.Dirichlet('alphas', a=alpha, shape=(16, 2))\n", - "# alphas = pm.Dirichlet('alphas', a=np.array([alpha1, alpha2]), shape=(16, 2))\n", "\n", " post = pm.Multinomial('post', n=np.sum(new_values, axis=1), p=alphas, observed=new_values)" ] }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 122, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "packed_L_cholesky-cov-packed__ -3.91\n", - "mu -52.35\n", + "packed_L_cholesky-cov-packed__ -5.24\n", + "mu -7.83\n", "beta -29.41\n", - "alphas_stickbreaking__ -22.18\n", + "alphas_stickbreaking__ -29.41\n", "post -105.64\n", "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 47, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -1513,7 +1657,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -1569,13 +1713,13 @@ "\n", "\n", "\n", - "\n", + "\n", "beta\n", "\n", "beta ~ MvNormal\n", "\n", "\n", - "\n", + "\n", "packed_L->beta\n", "\n", "\n", @@ -1587,25 +1731,19 @@ "mu ~ Normal\n", "\n", "\n", - "\n", + "\n", "mu->beta\n", "\n", "\n", "\n", "\n", - "\n", + "\n", "alphas\n", "\n", "alphas ~ Dirichlet\n", "\n", - "\n", - "\n", - "beta->alphas\n", - "\n", - "\n", - "\n", "\n", - "\n", + "\n", "post\n", "\n", "post ~ Multinomial\n", @@ -1616,14 +1754,20 @@ "\n", "\n", "\n", + "\n", + "\n", + "beta->alphas\n", + "\n", + "\n", + "\n", "\n", "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 48, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -1634,7 +1778,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 124, "metadata": {}, "outputs": [ { @@ -1642,74 +1786,673 @@ "output_type": "stream", "text": [ "Auto-assigning NUTS sampler...\n", - "Initializing NUTS using adapt_diag...\n" - ] - }, - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mmodel_hier\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mtrace_2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdraws\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m2_000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtune\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m5_000\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtarget_accept\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0.90\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minit\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'adapt_diag'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py\u001b[0m in \u001b[0;36msample\u001b[0;34m(draws, step, init, n_init, start, trace, chain_idx, chains, cores, tune, nuts_kwargs, step_kwargs, progressbar, model, random_seed, live_plot, discard_tuned_samples, live_plot_kwargs, compute_convergence_checks, use_mmap, **kwargs)\u001b[0m\n\u001b[1;32m 393\u001b[0m start_, step = init_nuts(init=init, chains=chains, n_init=n_init,\n\u001b[1;32m 394\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_seed\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mrandom_seed\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 395\u001b[0;31m progressbar=progressbar, **args)\n\u001b[0m\u001b[1;32m 396\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 397\u001b[0m \u001b[0mstart\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstart_\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py\u001b[0m in \u001b[0;36minit_nuts\u001b[0;34m(init, chains, n_init, model, random_seed, progressbar, **kwargs)\u001b[0m\n\u001b[1;32m 1513\u001b[0m 'Unknown initializer: {}.'.format(init))\n\u001b[1;32m 1514\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1515\u001b[0;31m \u001b[0mstep\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mNUTS\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpotential\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mpotential\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1516\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1517\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstep\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/hmc/nuts.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, vars, max_treedepth, early_max_treedepth, **kwargs)\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0;31m`\u001b[0m\u001b[0mpm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msample\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0mto\u001b[0m \u001b[0mthe\u001b[0m \u001b[0mdesired\u001b[0m \u001b[0mnumber\u001b[0m \u001b[0mof\u001b[0m \u001b[0mtuning\u001b[0m \u001b[0msteps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 153\u001b[0m \"\"\"\n\u001b[0;32m--> 154\u001b[0;31m \u001b[0msuper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mNUTS\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 155\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 156\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax_treedepth\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmax_treedepth\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/hmc/base_hmc.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, vars, scaling, step_scale, is_cov, model, blocked, potential, integrator, dtype, Emax, target_accept, gamma, k, t0, adapt_step_size, step_rand, **theano_kwargs)\u001b[0m\n\u001b[1;32m 73\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 74\u001b[0m super(BaseHMC, self).__init__(\n\u001b[0;32m---> 75\u001b[0;31m \u001b[0mvars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mblocked\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mblocked\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmodel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mtheano_kwargs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 76\u001b[0m )\n\u001b[1;32m 77\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/step_methods/arraystep.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, vars, model, blocked, dtype, **theano_kwargs)\u001b[0m\n\u001b[1;32m 226\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 227\u001b[0m func = model.logp_dlogp_function(\n\u001b[0;32m--> 228\u001b[0;31m vars, dtype=dtype, **theano_kwargs)\n\u001b[0m\u001b[1;32m 229\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 230\u001b[0m \u001b[0;31m# handle edge case discovered in #2948\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36mlogp_dlogp_function\u001b[0;34m(self, grad_vars, **kwargs)\u001b[0m\n\u001b[1;32m 708\u001b[0m \u001b[0mvarnames\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mvar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mgrad_vars\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 709\u001b[0m \u001b[0mextra_vars\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mvar\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mvar\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfree_RVs\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mvar\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mname\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mvarnames\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 710\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mValueGradFunction\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlogpt\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgrad_vars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mextra_vars\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 711\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 712\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mproperty\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/pymc3/model.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, cost, grad_vars, extra_vars, dtype, casting, **kwargs)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 448\u001b[0m self._theano_function = theano.function(\n\u001b[0;32m--> 449\u001b[0;31m inputs, [self._cost_joined, grad], givens=givens, **kwargs)\n\u001b[0m\u001b[1;32m 450\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 451\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mset_extra_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mextra_vars\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function.py\u001b[0m in \u001b[0;36mfunction\u001b[0;34m(inputs, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input)\u001b[0m\n\u001b[1;32m 315\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mon_unused_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 316\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 317\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 318\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/pfunc.py\u001b[0m in \u001b[0;36mpfunc\u001b[0;34m(params, outputs, mode, updates, givens, no_default_updates, accept_inplace, name, rebuild_strict, allow_input_downcast, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 484\u001b[0m \u001b[0maccept_inplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maccept_inplace\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 485\u001b[0m \u001b[0mprofile\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mprofile\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mon_unused_input\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mon_unused_input\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 486\u001b[0;31m output_keys=output_keys)\n\u001b[0m\u001b[1;32m 487\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 488\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36morig_function\u001b[0;34m(inputs, outputs, mode, accept_inplace, name, profile, on_unused_input, output_keys)\u001b[0m\n\u001b[1;32m 1839\u001b[0m name=name)\n\u001b[1;32m 1840\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchange_flags\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompute_test_value\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"off\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1841\u001b[0;31m \u001b[0mfn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcreate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdefaults\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1842\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1843\u001b[0m \u001b[0mt2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/compile/function_module.py\u001b[0m in \u001b[0;36mcreate\u001b[0;34m(self, input_storage, trustme, storage_map)\u001b[0m\n\u001b[1;32m 1713\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlimit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile_limit\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1714\u001b[0m _fn, _i, _o = self.linker.make_thunk(\n\u001b[0;32m-> 1715\u001b[0;31m input_storage=input_storage_lists, storage_map=storage_map)\n\u001b[0m\u001b[1;32m 1716\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1717\u001b[0m \u001b[0mtheano\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconfig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtraceback\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlimit\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlimit_orig\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/link.py\u001b[0m in \u001b[0;36mmake_thunk\u001b[0;34m(self, input_storage, output_storage, storage_map)\u001b[0m\n\u001b[1;32m 697\u001b[0m return self.make_all(input_storage=input_storage,\n\u001b[1;32m 698\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moutput_storage\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 699\u001b[0;31m storage_map=storage_map)[:3]\n\u001b[0m\u001b[1;32m 700\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 701\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmake_all\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minput_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/vm.py\u001b[0m in \u001b[0;36mmake_all\u001b[0;34m(self, profiler, input_storage, output_storage, storage_map)\u001b[0m\n\u001b[1;32m 1089\u001b[0m \u001b[0mcompute_map\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1090\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1091\u001b[0;31m impl=impl))\n\u001b[0m\u001b[1;32m 1092\u001b[0m \u001b[0mlinker_make_thunk_time\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtime\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtime\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mthunk_start\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1093\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mthunks\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'lazy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/op.py\u001b[0m in \u001b[0;36mmake_thunk\u001b[0;34m(self, node, storage_map, compute_map, no_recycling, impl)\u001b[0m\n\u001b[1;32m 953\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 954\u001b[0m return self.make_c_thunk(node, storage_map, compute_map,\n\u001b[0;32m--> 955\u001b[0;31m no_recycling)\n\u001b[0m\u001b[1;32m 956\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mNotImplementedError\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mutils\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMethodNotDefined\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 957\u001b[0m \u001b[0;31m# We requested the c code, so don't catch the error.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/op.py\u001b[0m in \u001b[0;36mmake_c_thunk\u001b[0;34m(self, node, storage_map, compute_map, no_recycling)\u001b[0m\n\u001b[1;32m 856\u001b[0m \u001b[0m_logger\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdebug\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Trying CLinker.make_thunk'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 857\u001b[0m outputs = cl.make_thunk(input_storage=node_input_storage,\n\u001b[0;32m--> 858\u001b[0;31m output_storage=node_output_storage)\n\u001b[0m\u001b[1;32m 859\u001b[0m \u001b[0mthunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnode_input_filters\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnode_output_filters\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 860\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36mmake_thunk\u001b[0;34m(self, input_storage, output_storage, storage_map, keep_lock)\u001b[0m\n\u001b[1;32m 1215\u001b[0m cthunk, module, in_storage, out_storage, error_storage = self.__compile__(\n\u001b[1;32m 1216\u001b[0m \u001b[0minput_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage_map\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1217\u001b[0;31m keep_lock=keep_lock)\n\u001b[0m\u001b[1;32m 1218\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1219\u001b[0m \u001b[0mres\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_CThunk\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcthunk\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minit_tasks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtasks\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merror_storage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36m__compile__\u001b[0;34m(self, input_storage, output_storage, storage_map, keep_lock)\u001b[0m\n\u001b[1;32m 1155\u001b[0m \u001b[0moutput_storage\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1156\u001b[0m \u001b[0mstorage_map\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1157\u001b[0;31m keep_lock=keep_lock)\n\u001b[0m\u001b[1;32m 1158\u001b[0m return (thunk,\n\u001b[1;32m 1159\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36mcthunk_factory\u001b[0;34m(self, error_storage, in_storage, out_storage, storage_map, keep_lock)\u001b[0m\n\u001b[1;32m 1622\u001b[0m \u001b[0mnode\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mop\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprepare_node\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstorage_map\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'c'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1623\u001b[0m module = get_module_cache().module_from_key(\n\u001b[0;32m-> 1624\u001b[0;31m key=key, lnk=self, keep_lock=keep_lock)\n\u001b[0m\u001b[1;32m 1625\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1626\u001b[0m \u001b[0mvars\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minputs\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0moutputs\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0morphans\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cmodule.py\u001b[0m in \u001b[0;36mmodule_from_key\u001b[0;34m(self, key, lnk, keep_lock)\u001b[0m\n\u001b[1;32m 1187\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1188\u001b[0m \u001b[0mlocation\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdlimport_workdir\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdirname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1189\u001b[0;31m \u001b[0mmodule\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlnk\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcompile_cmodule\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlocation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1190\u001b[0m \u001b[0mname\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodule\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__file__\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1191\u001b[0m \u001b[0;32massert\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstartswith\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlocation\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cc.py\u001b[0m in \u001b[0;36mcompile_cmodule\u001b[0;34m(self, location)\u001b[0m\n\u001b[1;32m 1525\u001b[0m \u001b[0mlib_dirs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlib_dirs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1526\u001b[0m \u001b[0mlibs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlibs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1527\u001b[0;31m preargs=preargs)\n\u001b[0m\u001b[1;32m 1528\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1529\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfgraph\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/gof/cmodule.py\u001b[0m in \u001b[0;36mcompile_str\u001b[0;34m(module_name, src_code, location, include_dirs, lib_dirs, libs, preargs, py_module, hide_symbols)\u001b[0m\n\u001b[1;32m 2349\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2350\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2351\u001b[0;31m \u001b[0mp_out\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0moutput_subprocess_Popen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcmd\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2352\u001b[0m \u001b[0mcompile_stderr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdecode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mp_out\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2353\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/site-packages/theano/misc/windows.py\u001b[0m in \u001b[0;36moutput_subprocess_Popen\u001b[0;34m(command, **params)\u001b[0m\n\u001b[1;32m 78\u001b[0m \u001b[0;31m# we need to use communicate to make sure we don't deadlock around\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 79\u001b[0m \u001b[0;31m# the stdout/stderr pipe.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 80\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcommunicate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 81\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mout\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreturncode\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/subprocess.py\u001b[0m in \u001b[0;36mcommunicate\u001b[0;34m(self, input, timeout)\u001b[0m\n\u001b[1;32m 861\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 862\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 863\u001b[0;31m \u001b[0mstdout\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstderr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_communicate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mendtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 864\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 865\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_communication_started\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/subprocess.py\u001b[0m in \u001b[0;36m_communicate\u001b[0;34m(self, input, endtime, orig_timeout)\u001b[0m\n\u001b[1;32m 1532\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTimeoutExpired\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morig_timeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1533\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1534\u001b[0;31m \u001b[0mready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mselector\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mselect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1535\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_check_timeout\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mendtime\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0morig_timeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1536\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;32m~/anaconda3/lib/python3.6/selectors.py\u001b[0m in \u001b[0;36mselect\u001b[0;34m(self, timeout)\u001b[0m\n\u001b[1;32m 374\u001b[0m \u001b[0mready\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 375\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 376\u001b[0;31m \u001b[0mfd_event_list\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_poll\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpoll\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtimeout\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 377\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mInterruptedError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 378\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mready\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " + "INFO:pymc3:Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "INFO:pymc3:Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [alphas, beta, mu, packed_L]\n", + "INFO:pymc3:NUTS: [alphas, beta, mu, packed_L]\n", + "Sampling 4 chains, 1,506 divergences: 100%|██████████| 28000/28000 [12:42<00:00, 15.20draws/s] \n", + "There were 145 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "ERROR:pymc3:There were 145 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 440 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "ERROR:pymc3:There were 440 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "The acceptance probability does not match the target. It is 0.600283428310378, but should be close to 0.8. Try to increase the number of tuning steps.\n", + "WARNING:pymc3:The acceptance probability does not match the target. It is 0.600283428310378, but should be close to 0.8. Try to increase the number of tuning steps.\n", + "There were 183 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "ERROR:pymc3:There were 183 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 738 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "ERROR:pymc3:There were 738 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "The acceptance probability does not match the target. It is 0.5630559896817272, but should be close to 0.8. Try to increase the number of tuning steps.\n", + "WARNING:pymc3:The acceptance probability does not match the target. It is 0.5630559896817272, but should be close to 0.8. Try to increase the number of tuning steps.\n", + "The rhat statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", + "INFO:pymc3:The rhat statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", + "The estimated number of effective samples is smaller than 200 for some parameters.\n", + "ERROR:pymc3:The estimated number of effective samples is smaller than 200 for some parameters.\n" ] } ], "source": [ "with model_hier:\n", - " trace_2 = pm.sample(draws=2_000, tune=5_000, target_accept=0.90, init='adapt_diag')" + " trace_2 = pm.sample(draws=2_000, tune=5_000)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 126, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAEoCAYAAAAt0dJ4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZAkV33o+28utXdVr9PdMz37jEYjtCIW4xfwZBDPgC92xIv7iIBr+z3HxWG/MMSD4GJsbLCNrXDYvgQ2xtgYwnHB5iFfTIDxu8ZXIKFtpEGj0ezd0+v03l3VtVdmVu7nvD+qp2das0jIknrEnM8/M52VWXkyKyvz/M7vnFOalFKiKIqiKIqiKIqibDl9qwugKIqiKIqiKIqidKgATVEURVEURVEU5QahAjRFURRFURRFUZQbhArQFEVRFEVRFEVRbhAqQFMURVEURVEURblBqABNURRFURRFURTlBqECNEW5zK233spf//Vfv+j1f/u3f5v3vve9r2CJFEVRFOXVp56HirJ1VICmKIqiKIqiKIpyg1ABmqIoiqIoiqIoyg1CBWjKTWVlZYWPfvSjvPWtb+Wuu+7i3e9+Nw8++OBV1/3CF77AW97yFo4fP8573/te7rjjDt71rnfx8MMPX7Hu0aNHN9Z5z3vew8mTJzdea7VafOpTn+K+++7jzjvv5P777+ev/uqvkFJu2v79738/9957L/feey+/+Iu/yIkTJ17+E6AoiqIoqOehotzIVICm3FQ+/vGPMzc3x5e//GX+7d/+jV/5lV/hM5/5DE888cRV17dtm7/4i7/g93//9/n2t7/NgQMH+NjHPka9Xt9Yp9Fo8Pd///f86Z/+Kd/85jcxTZNPfOITG6//0R/9EUeOHOHP//zPeeihh/jEJz7Bl7/8Zf7xH/8RgGazyW/8xm9w9913853vfId/+qd/Yv/+/fzar/0a7Xb7lT0hiqIoyk1JPQ8V5QYmFeUmsrS0JEul0qZlb3/72+Uf//EfSymlPHTokPziF78opZTyL//yL+WhQ4fkkSNHNtYtFovy1ltvlQ8++KCUUsrf+q3fkocPH5bFYnFjna997Wvy0KFDsl6vb2yztLS0aZ+/9Eu/JD/0oQ9JKaUcHR2Vhw4dkqdPn9543fd9+dxzz0nf91+uQ1cURVGUDep5qCg3LnOrA0RFeTUFQcDnP/95jh8/TqPRQEqJ67o0m81rbnP33Xdv/H9oaIj+/n4WFhY2lg0MDDA0NLTxd19fHwCO49DT04Omafzd3/0dR44coVqtIoTA933e8IY3AHDw4EFGRkb46Ec/ygc+8AHe+ta3cvjwYe69996X+/AVRVEUBVDPQ0W5kakATblp2LbNL//yL1MoFPj0pz/N7t27MU2TD37wg9fcRtM0urq6Ni3LZrNYlrXxdzqdvmIbACklUko++MEP0mg0+OQnP8mhQ4dIJBL8zu/8zsb6yWSSBx98kK985St8/etf57Of/SwjIyP85m/+Ju95z3tejkNXFEVRlA3qeagoNzY1Bk25aRw7doxyucynP/1p3v72t3PgwAH27NlDo9G45jZSSjzP27TMcRwKhcKL2ufk5CSTk5N85CMf4ed+7uc4ePAge/bs2fRAg05L5Kc+9Skef/xxvvvd73LnnXfysY99jOnp6R//QBVFURTlOtTzUFFubCpAU24aYRgCMDw8vLHshz/8IZZlbZpB6vmOHz++8f/V1VWq1Sr79u17yfscHx9ncnJyY5/z8/M8+uijG68fPnyYP/zDP0QIwczMzIvaj6IoiqK8WOp5qCg3NtXFUblp3H777ZimyVe/+lV+9Vd/lXPnzvHVr36Ve++9l6mpKYrF4hXbGIbB3/7t35JOp+nu7uZzn/scuVyOn/3Zn31R+9y3bx/5fJ5vfOMb7N69m/n5eT73uc/x9re/ndHRUebn51lYWODDH/4wn/zkJ7nvvvuQUvLNb36TVCrFXXfd9XKfBkVRFOUmp56HinJjUwGactPYuXMnf/AHf8AXv/hFvvvd7/L617+ez372s5w9e5bf/d3f5UMf+tBVt/vIRz7CAw88wPT0NCMjI3z5y19+0V06crkcf/Znf8af/Mmf8PM///McPnyYBx54ANd1+dCHPsT73/9+jh49ymc+8xm+9rWv8V//638lkUhw66238qUvfYnt27e/nKdAURRFUdTzUFFucJq8Xi5bUW5iX/jCF/ibv/kbxsbGtrooiqIoirJl1PNQUV5dagyaoiiKoiiKoijKDUIFaIqiKIqiKIqiKDcI1cVRURRFURRFURTlBqEyaIqiKIqiKIqiKDcIFaApiqIoiqIoiqLcIK47zX65bF3v5ZesqyuFbfuvyHu/Ul6LZYbXZrlVmV89r8VyqzK/el6pcm/bln/Z3/OV5rrBa/IzvJrX6vV4NT8px/KTchygjuVGpY7lxnO9Z+GWZNBM09iK3f67vBbLDK/Ncqsyv3pei+VWZX71vFbL/Ur4SToX6lhuPD8pxwHqWG5U6lheW1QXR0VRFEVRFEVRlBuECtCUG4JwbKQQW12Mm5aw7a0ugqIoymtGJCLs8JUZBqIoiqICNGXLBc8+Q+0X3k3rt/8L6lcfXn32F/6c2s/dj/cv/7zVRVEURdkkiATnSxbiBns2nKw+xzPlo1tdDEVRfkKpAE3Zcu2vfAmCgPDoU4Qnn9vq4txUwtVVvG/9d5AS5yt/gwzDrS6SotxcQhdi9b27lvE1m4WaS8m6sSYEaIVNANWoeAOTYUhcXtvqYihbyAmirS7CS6YCNGVLxeU1ovOjZP/zr0E6TfD4o1tdpJtK+8gREILs//1hZKNOeO7MVhdJUW4qqdmHSC68uve9UISUvfILrxh56NbKK1+g67jRAyDJFpRPSvzzDyKr46/+vn9M8eoKMtqaSnJ49jTR6ZNI39uS/b/SYiGZqTg0XNXAczWNdsiRmRoLdXeri/KSqABN2VLhc8cBSL7tfyXx+jcQHj+2xSW6ubjPHUfr6yf9v/9HMIyNz0NRlFePFrZf1f2drZzlTO0kbnT9ikti9TiJ1WMQXarglr0yj6x8nyAOXulivmKcwMXyX3z5pZQsOYvEMt5YpqEBIOSrP3ZayJhn2rOcW3wIo3r+Vd//iyXqNaLRs0STE1uyf+muX9/xS/uMNL/5smW3ZRQhgyuvOSkl8cL8Swpiy7bPdNnhxGLj5SjiTxx7PXt2vvjaHCuqAjRlS0XnR9EyWYx9B0jcdjvx4gKi/epWVm5WUkq848dJ3H0PejaHsWs38fTkVhdLUV6zNL9FcuZ7aO3Kq7K/6MIM8coyAEHsc6T4OHb4whP+OOvrXB5wXI22HsBplwVjC/Zc5z2i1+7EQv/t3Pf45tjm8WNSCOK10lXXL7lFzlRHmbMubCz7sQM0EZOcewTNuX6XuyAOCMX1g4JTtZMANGMXs7o1wc9F7ci55jnYCDqCS91ThdVC1GuvWHmklBv71S4ue16Wc8Ge37iOryc5/yja/BEA/EcfIZqeesnlCp58nOCJKzPlorxGNDlO6dzTOKHzY71nJDrHFd/YSeatE/kkotdmcAYqQFO2WDQ5jnHoEJphYBy6tdN1Y+LG77bxk0CslYhKJRJ33QOAefCWf9cDSFFudppXR4sD1sonaPj1F97g+RVbKdG8F98aHl+YJjp7EuKQil/BFz6LzvwLbnexIih5geBCW68ivMLZsqWGixdeP1i8Xk9HrV1Gc19cpV9KSRhLWtHmLp7BhQtEZ05ddczSdMViomRjBZcyidr6ubm88h8vLhA9r5EriAMutGYgsNECi0Tx2euW78nSYzxRvH6X17rXOdbUUoPYvnaDpoyvf05/HJpXJ3nhf266FoLY5+jaU0w2r/HMvsqHFj5zlPC565+DlyJeWSZeWiQ6P0bw2CP4jz6CdNtXLcdUa4Kp1otsjLx4XcUR8VwnQE8sPUVy9vtXXV1IefVuufGlDFk0M01w8Rysz149W5/kmfLTV2zWaIcsNdyNYGzTW64vS+jaFa+9FLLdRjQuu//EIcn5H3YyiS+DIPrxM5mNdkj0EjOgubVnGak8deV9dot5YYzlvXDGVAVoypaRUhLPzWHu3Q+AecshAPzzKkB7NcQXZgAwD90KgHHwFkSpiLBaW1ksRblhtSNnU9ZJSMFTpSdYczuZFxkG+FOLjLYu8Fz1RVRCxeaHtFGbILnwGFhXz+Rcjbl2muTsQ+itBbTox5tIIxYvVIGXz/v3Rb6vjF/UFPR6a4m4PMnoqsWJpZdWCbRDm9UL/0Jj9l9f1PpXGzM2XXE4NlUkbi5D+8r7X9PrZLTmay6L6+NZ9Ktk0KKJ87RnxjddI+PNMWbtGepBJ2DX4rAzMcx1BJF84UqplCRLLfzRWbR2+YogRIYhwaMPE83OXPMtRK268fM2otFAVK+d+TWr59EiD927FAiH69dv/XmNEVcEKJqG9P0rAsbR+llmrWuX78cRjZ0jGh9DrK6PmbwsIEJCxfb5/vjaC55XKSV+JK7bIqC3y1ftlrxm+fxgvMyZlc41dL7Y4isnfnhFVjuenUE+P4so5RXXZhgLnpmvM7pq8chEGWthadN4uosxm7YenwXxv28ineDpJwmPP7Pxt+6W0fwW5uXdaKW4MhMsInR79brvXbF9Hp2qULFffBkjIXlmvs6p5ZdWJzH8TrBpxlszBjGIBKNFC9vvXIs/mCjzzFydx6erPD1box1c//6rAjRly8hGHWlbGLv3AKBvG0Tr7sEfv3H71P8kiebnADD27AXAPHALAPHM9BaVSFFuXLGIObr2FGP1cxvLpltTeLHHdyafZr7WJppfJK61SJZfuEIRrywjGpsrtrrfIFwuEzz+2FXHq1xT4GNUx9fHI12/Nf3yVuwX6uL4/ADyipelIJYxC/b8pkr5ROM8z5SPXrPCqDdmSc78K4nicRKVc1eU62q0axzWkeUnmfRLnHYX1wsVozdfOIt4uZlqmaX2CeLWAmbpyomSNE0DKam1A8YujmdZL9DlWUghBVOtCc7XR7FDi0hEl87xZefacK5fmS3NzzJ/4nvXXkFGGzFzO4gpnX2YVvkkUkoWK1PUn3mUeGke4hCxsoIf+1d0mxStJuGJ48TrvSbC4890ZlEWEUhBNDGO9/QTVL2LQdv6B7CeIQrqdR6ZLHN26hRT9XMbn//p2kkemv+f+A8/RDzbyTiFcUDw5GNEZ05vKkN9+gxz5bHrnouXhZRMVRykBHu9Uly2A2arm4MsISXfHy/z2FSF8CVkbWaqncx0sdW57s9XithxbVOG8fkZ1k0X9mXx2VLD3Qj0ALQoxD9zmvD0qY1l8fo51zSNJWeRJ0svrotz0V3lhys/wLtK4CKk3LhmpZTEUnDxsxetJti1Tia4fNn3ZPUYpelneXZ6+Zr7bLide0njRWSOLmr5DYSMKdrNTT0SmkGDhxd+sGkcrB8JnluoEwSXrnOpmwBoL3Sfu8zzG+H+PRpuyFLd5eR645MQkrJjM2Y/gRu38KLr78d8WUqhKC9BvNB5iF4M0DRNwzx4C8H0NKmtLNhNIp67gNHXh97dA4Bx4CAA0ewFEvfcu5VFU5QbjliviNf86saydtSpkLWDmPGSzc71ypb+AlM7235E/ZkTDKZjMgcu30lMXG1CuoAMArRk8hqFiTFqEwgRU44sdjRtgqxgoWrj9pW4red1V92s4gQ8t9CA3hCTFx4/pV2cIOEq2YSSW+RE9TgD6W1UvDIpI8VQZhi4NAV9KCKSxpV388Ta5op6X2sMp++Ozh9xCEbiim1ezGSONb/KYHMJozFLYGaQucEr3weJJqJOVkdKNE2j6C+gyxgnDsg7LUTbQc/mCJ59Bi2bQ0/q7D15HjkcIW/pNGRdyqBdKtjF/9f8KiWvSE+yF/1iN9HLD2D9vLeDiDlnnJ253fSQ3Xh5lzNPFGUhDrAjHU2DbMLAL50kkslN569iBzTKZdprU+yS5yj7JdaAu6eewZQxRfFmnpp+jL6cyf0j7yBwbfR0GiMIsYIWeauFIQSRiFhuL5E99iBOkGFvkGescoHSTpef2fE2EpcFEu7CIpNHniW9axjbm4G1HHODLfb1dVPxymQznetWWi1W2yuUwmkOaztJV8vrp0LiPfowXfMzBIP9sP/6n6sVdt7nUPfhjWWxkGgaiJmpjbrEtUnsqE41aFKyOud5tekxGdvs688ipOTUcpPthfTGFj9OgBaLCE3TuUovRPQwQrtsQpp4bhaAlmwTTDzDwGIDKSUzZQd/mwsjnfVGVzdnoLUg6MRvUSeANiujLNf6AZMg9lh2lgCIRAhxwPnKc7SWj/CWw7+CzG7b9F6j9bMAPLP2NPdtfweas4ZM9wIwZ8+ysvoI9+/4WU41R2nZE7wjP8Lp5SbLR49xX5dLaj8gIrR2mYpusDr3fWbbt9Pw5ji8q598Kr1pf88u1Kk5F+8lL3w+jxQfpyfZy2p7lWUviRVXSZUL3Df8TpKmzpw9S6RHNMMmfVovElioe0SlUZzyMsnX/0fQTeR6DkqXm+/HVSfgzNocB7Yl2d21d9NrR9eeIp8o8OZtbwE69zkhBduzOzat50ZtAhHQney55nFcvB/YfsCsNUMgElhRp8GjHhaB3dc9DypAU7bM8wM0AGPnLoJHH96qIt1U4vk5kgcu1Q71gW2QTCFWrt0Kpig3K89uIiuLWL4N29+BuXKMbmuaan5gYx0JRLEgVbJxAC2w8EOH4/Y0dzaW6cvuINz1Nk7Nlkm2PAqGRmH9MWyWz6EFl1XKpESrzRG1ArTdB6gUj3I2boKR4HUh7HUqtJtzFMMWwego1p2dWm5jbZxi/37QkwxmhlmzfIbXK57T5U7ruuPFdCc1YmKKLQ9N0xhxJzAaFyju/DlySZOkqW/K+gCcrp6ksd5Vb83rdHG62LK9udVZQ/NbGMtPw677WLJiejIJulLmpvEssZAIKSm0F3B7DmFUJzCr5/H3vxvMS5U8M2qjhzrzNcFwIU3KvLLzTywk/zw2yn/q1ukGNBltqgsKKTrBkpQMtEY7C52fga4hhJDUjRZ13Wfb0jJRfITUO9+FbDZoFCs0do+QAnLlMmM7nmRP47ZOVo1OBa4rcXB9HxI/7HRVM1oOLcOlp28nAMHl2QoRUbJ8Tp2bJEqfxw5H2fWOX750LFrnmqjMnWG85hMl+xkeHqH19IMkKw7ynh2sNn3S61lHc3qeVEHD7/VAADJCk4JYSGbrLsdmDXb1GrzNneLZY98h+qnbeP18ncW1Mbq7DHbP5JipjVMtjbOcG+anxiLE6+5juWUxXbJ4U59H4qnn0AcTLHYv4KxlCSJBullDS2q0fI9TyxV2dec7XwLf4WL1smYvoWd0/NQAaTqfqbQtxORZ0u4yYbdBYvlp6gNvxvajjWsV4EJrhln7UhfIvV37SRqd4O/hiTJJU+d/mZ993nUg8MOYbNK4tFBKlheP0D05z+Rb/hPPi1dw/JiyFVC2LgVSbm2RXiCI4dGZZW71GvSnL1XGhRcgrBZaV56Hn/h7unaNgPamTe+bbNbZfW6STKkO+cui0MDmRPAczPUxZBkMpocAaHkhlh+QT11qmNFkzE97T3K+1duJ8Q0D3Sli1GcYdMrMpW9j0v4ROxIRPYke9Oo4KbtE2epkJnVnjTi7rTO+zF9l8ZH/hrlzH9FAP1EcYlTHMavjiNwQPtCO7E5jQhxS8+sY69+i6bLD0VJMNhS8C9Aij+TSU5zW9iAtn1pUp5VMMlUf5d7hN2w6DxvB2YvkC5+SV0QCdty5v0xXHIRV4Z23bmOm7DDQ3+mG+ujKY4Qi5nDubXS5q4iMhMiHpInUjI1zeLnjCw3G7DOIZGFTgHYxC2yFlzKX5+qdTKGGxnB2O9DJQB5bO0ou0cX9O372msdxcdzguPMUSavA9Hr3aU3G5NrzGO4+oP+a26sATdky8cICJJPoQ8Mby4yduxCtFqLZ2MjsKC+/zvi/WbL/4T9sLNM0DWPHjo1Z4RRFueT0d76MOT+KdXiIsaUZDi4+TCaZhFzfRqvwhZqL26gjezoZoOTcI0w4q4yZ29nWnmBA62STtIlON24RR7inZsnccwt6bQp/dBbR9kC3MWrjMHYMWbOYD9/MUutHmOleot4DrK2MsXvtAnorAHTWbB/XDtCkJOmuMb7wEHHPXux2gZmygxsK9vVnaboR7fhSgDRWP0e4MgTJLnanL9BwQ75ydIHXDXXx3js692UhJcfma/Ruy1EJr/3baWuWT1YL6ckk0DUdszaJlt3PzMQp/r/FBLdv7+Z/u2s/yflLE2BcniWQaBh2596jxT7ysgBtZ+UJUkGS09l3ULJ83rynd+O1ROTjSbD8CExYszy6M3B5V89IRDxe/CH78wfZlbvUap1Yehq/+6eI4oC63uREoswB2bOR7fIin4VGG31HxGR2heE4Bnaw0l4mY3QyMXP2BcIgRSGxjWqtTcny6PZtuk9Pga7BO3bixz7PLv8AqRfwZUSX248ldpGfOIOnL2AmYqzlP2f8Tf8HkZT4RufYw8oYfv083eYgpjNCrt4gJIEmJHroYwcR27TO5acFnWtGjz0iISC3a/28dj7DKIap8Xns6jI9z9QQLYkR1vEjj8TMY9iVCYSQJNwAW/qcXbGQdCZTeeTUHG8LI0ozYzR29dDj97CtcZq2noNB0PyAucYRQrEX3V4BdxWi14Fuotur6DZEg0OQ7CESMe7MOLl2GS2wma80eXOrxFOtzpiswr99G3nH3Uz37GRNzqCvx+K6s0bgt9FSJrrWCUxXmx4TzQjPbnN4KIcXtQiWZ6gYw9w2mMFoLRAP3QNSUih2MhcL9aMc3tYJiNpxi3Lb4GjpGIjbSOmXspir0yfZMWRwpKjz7dUJbi/X+b/2FFhtr7AX8E5PUV0wqb3xLtoTS2hLZTI//cbO51a9QKsWkjp/jJDnZX/9FmZtEj3ZIEISyz5W3WW09er4oys/5Bf2vXtjdU3G1KVNzqki5fpnKgRSSEwZE0oPGQuc1QX6+tpo9hJBPYS+zd/P4OknaTfHqFaXyFdcrLfei9mYQk+0EEKgmZd1p4wjUtP/A92Z21jmeT7ImHI7QkoDTdOQUYzn1EnRSQprkU91/geEyS4SfbfyYgkpqPpVtqW3XfFaGAuE1ICYttnkr0/8iEC4BGae23IwsbBA3l1kaP89JDSDiu0ysN44IzSdemDgrpwlMdgi3PEWgjggEsH6fjfvS6tPsXP5OO1sP9XgIb6/9jipwXvoTvYw2jhLX6oPgeRM9SQXWjPc2X/3dY9rvHmOkh8z1F4hbsZ4gUk6Kcm7i3SFguzqUTh8+JrbqwBN2TLx0gLGjhE041JLl75r9/priypAewV1xv/ZJPfu3bRc3zGiAjRFuQpNRmSky+2zE8ip32HpYJau9DZM4ywHzxQp5DNYXTEN2SIT9WI0HUbn6nzHc/GGi5SiNnfQaRwx2jZaENB2PQa8CWYavSxHTd5gu7irNZLDMUYJ/DCgbntULzwNvWDMF4nyu6hONnjWqbMnldson9z0v85fTc9izHqSanCQdHI/Sb9KU1QwYx83MMnJNuW1GgnN5Fx2hb50AYClZmcSi1DGnGoUaRgHWFlt0XUpWUgQSTS902WwbAVUfJtSrc67bhvcmILeDkLKQcxacY1tcQnu3HdZKSWtUOecleHugkskBEEkEGHMasNlZKi7c94v+wz8SHBiqcldOwqkE53nhiydpeIEnF4boHs72GnJbKSzb+UZVobeQSGXxYs7XVFLbnFTgFaslcgvnSXVmgQTygKOexVev97iPm1NsOJ5DJxtM2tA0SiRi/djli7Q7dho2f0kZyrMpF3Mgz9Nt98ZG2ZURtGdEjI71Jk1UgSYXoO1KKAdtwg0wcjwvYDEC5o4toWdg0ppEfzz6H6IyGicSt7BKU3ndUkHw1slKwNCEqTCNvudRaL1s9OWPo4bIWkTxpJ2EOMmI/xYEmkW0DmXsVMmEbfpPldCJPLQryGrVSLhYoYxoDEwU0VqXQDU9DpWFHKmNU+rpfPGROfSyqz/yLkW2ww0WnhWSGZpCe8NMbpTYry9yj6nlz79UpBddEv05nYy3hwl662RkZJ6lGQm6OO7sw2MvSHppoVYWaayVqf4zvexGgeM9CbRRYjWXODR2cexs9vZPrhCYO1nqZHCa8EdOiw1l2HmDE7cpq8nJKolMQ0JMqZq+wSxIAVol0VLTlznR8s14tAlVTwKg28GM0/OXSYROYRNnWpV0PJy1DzJhcYSpdWAXGSREZLnLjzOfH+bISAOOkFB19Q51laPcGRaw48lSEmluUzSaXKwCwJ5WRbust8h1CPBttkljK69FFuXsq2x8Bn1l5FxxFCQI7E8ib82R9xeRB68m1hGmJU1GpUiWjXm7oZLKwatYCJNY9MYt+p6l+zUao3+f/seZr6Op3WyW+k7DwCdho/di8fQk31ILWLBsXj27AI7zz7KtBgkicP/u1rm3u4R9p6r0B90URn2kQj0OESiEdmrRIVdCCnJJS7do5y4wbPVZ7H0YV7ffynLNtOaYsGZ597+N9KbuhRZSgmlRpIw1tizzedC+yS6phNHdUy9c68yvAX82KXVatCrm4Sycw3GqW4kGuftNGbsoNtFAJ668E9csGIwLgXjF5mVUTwvIBOVqNtlhp0yKfcJcoVbEEJwurWMFzqca46z2q5yV+Egy9Y8YTtHzltlqKeA6NpOonSSWuwR1KaRls92Z4lgzqIo7mJnv48uIkBj0i+y44pSXFae67ymKK+ouFREH958eRo7Oy1E8eIiidvv3Ipi3RQuBmGJXbu4vPOBsWOE6OSJjbEZiqJ09PjLpLQ6mhfjmeuVLBlTsQySLZe8sYCf6bQAN92IwdOTzDV8uoMGrUhjvNfmHUjsR79PdnYMwwvwd4IpFnh6ephJuQ3dqjGWybPDCRmZfZQFt5dbvW6CiQpmr4FbcRBTKzS79lNNxAxq8fo4iysHdnih4Jx1nGV/gpiYo2srdFXHGcJk1apTo0CuP8VZfw3hb6O/NUV/AWrsQcpOV54Jr8hcWOXZ6hSZpMYbeiVRLKm7IXXHIyakK5XA8gJ2rA81++FUhe5enXYYM9tsI5mRp5kAACAASURBVAudQGrZge9879u876COoWksN31KgcCRLqebaUa2x5xbtUiEDqx9n1b3ByikExu/xQYaVSfAiwQTM1Pcs2cbMtOPROIFMUiNdrPN6uoKzXZA1mxSd0fR0h5GZphs4zlmUgPsyJ+kf7VCY2cPRb1Gnn0k/ICcZVEU3ZyNtpNtTnCL/07CSHayH06VLq/GzA6Nn6o9x77mKt2NGk7XClMcJGuVCA52xilqCCqOTz4KaBRnWFs9TE167JGS5lyFHfUJONgkUT9LU7OZZoZdcZZFt0m9+gjb/RIDz0wgekOKd91GuZ1jtX+A/tLD9AmHSJrk7CJOHKEDrtQZFzm6TQcZQnp9zNujiRUcGZOyExhdh0lEPkEQMip3MSDGaUZtHD1F9/Q0zbZDn18m2WdSvbyCrHWuKyEF7bYP5QqpPWfQxEE8AlLNM9zu+TxrbKMYZTk5t4IhYkIRseKu0Je7fHCZZKxx9rK/JF4sQdOYDCtk3dO80THQ/BaansaPYmbWTBAa8eI8A9USK9m9sHCCQ6sWulVDN7ZR1SxCNIylRRKLZQLdRUv3U5KCke5OV8FTS51ucsnQItuuEcWdDFpCS7HUWoGJ73GwnmBZu0Bh8H3sbZ7FXFjFin2aVjdDFJAI3NgjtTSJ098LRCRjh3zzPKyPmpdSYtTW8LWQSaPMNrPA64IGadfH0xNoud2YUY2o7VEKq2jZLoaNztc3bXeCp8y5C4w5Syzo8wTC4V1r46Rmj3E+sQczmUXLBUjNRQQBemmNeGQnxBFZv0nWheWGQS2uM/BoiHXHEGe6TlJZO8mu8gKz8RLFtMUbGxEpuwlGEtbjJ/v0JEFhZ6drbCzwrConwwYtXG6trHTK6LeJEz6ZCzUm02320ksSh1lZYylYYJi9jEW9HO7RmVo7ghcIbsu/DYBIBFxon4BEhUE/wZKziIbGSG4nTuRQ9aq4sUvgFjfdx8K4Uw+JBbREkXwckXdXSAbdrNoNSmGnLnNQCiZllVibY3tjhEzXASzhdSYyEgIhOz95YbTm6bVcyj13M1N1eFNfyPiaxT0j3XT5FnXLYbHnFmSuTeil2BcK3FKnTLsji6pXJbJWyMcOg0snaRfP0rBy+MY20r06czWHu7dvo9g6x6AbkW277GgvM2emIAFBpFNrGZiZFmZ0/a6fKkBTtoxYK5F43e2blhnbd4CuEy8tblGpbg4XpyJO7LwyQJNuG9looPX2Xn1jRbkJpaIGroypx1l6RRNdJkFELLa7gCFeHy8QOg0agDB0tPVJRQwtpmWnsLSA0cQJWtUCvj1Ht7kDKTWEBLPlkmlbnO22qEWC/UGdXnuJibbBBbEeoKxPppcRHk64ymrK44whSDS7KDgB2rETGLcP4QqTSMDkmk134zkyehuZ3I/lRcTSYVDrXj+eJovNXtwwjeVmsUOP83qFIFUhKwPgVgIZE8uYirhATsRI2c3k+ji2hJZCSonldboLrfiTxDKm6ixyWzaF7cectxtEcgYLg0Yzy4qd4PahVaJwkJrTYEo0qYkuuvSAhL+EFldJCBsJWI0ZerMmy26JfulC7GPFa9RdwdLEOQ62u0jveCv50Qu8bm2NoXgJaV5gX9RiNT7AhVyTHrFKK38ImVphojvEC1c4HnuIyGHkpI22cwB3u4vph0hN25iCPRYRX3nqa5j+Cn16F1FzCqFX2b4myPttlqwsJVPSVavTMJskslmWnFOM2CfQ9TR2oBNEMVKCO79IayCPLDdYC7sZiiVyeZVEXwlX85ASinqK/qgFrk/f4jxmECKqJfSlObZZK+gjexhqLzMSL7Aod5JuCYQbcVLupyqyTDBCd8pmJFHhDrebeiLgXMJmJCwwEfbQWAzo7V1i0skTAE2ZwdUbzJohh6IEVadO1myjxQZV+pBIXFkhHdQxgiSZyjKNxAIr0iU5XmZ1KOR1skS/3sCi0z01GTVonnqMwr4IEQvM0OH4yiSmLvCFR2JihrXB3Qz3d7JzsZRoUhIR4oQ2+08dZZst0d0qTa23M0mH4+KiMTK7AqLJUvAs/VqnEbeoW5xPTEDYRTLlcV/ThliQcnyCxXmSB29lpeGRL7hEXQEp4ZEO6+yarFOSBnr/IHrCw4ka5EOLlkyz6/Qs5+85SrbpcrDewkmbiHaDwcAnLzxEX5L0Sp2nKJExLHqabmesqIzRRYyMI/TIIdQ7GdgUNWpxmkjLkdD6uSu0QBZYWJ6lPFBDZmLeGC5hGSNkhEOoJQlnVtgx8W1ayUWah3vpn5vENiDjuKTMMl5jmWeiGjttg8xMkaHdVdqmxfBsBWMAMHoxWy5mO6DnR/O0QsGtpQlsrcBSoTMroy4FkRchYnOjMXbcLxJbPloqR7keYftpou7O92FazKNFSdLSJkmSptegt5VgLNMiJ1pAmiBs0Ww7iFyKxxYqjNzexVTFwXQ7gecp6yHq4SoFrRM0//PctxjMDPEz2+9nyVnkaLEz6+tAepCx+hh78rtIUNi4/y6WU4SJFCQXqcdl+jybR+YuzSRpuaPYUZVEJPj63BGyDQOzOcGcyGM5GZ6tSqr5x0gAgYywozrQy4/mamiaxkKzysDKU3SFGoXKMu1qg9GkRYnd3K7pFMI6TTLMJUzmDR3XzNPIbyeLoOKnyckEj1XO4up9mMY+TuXvoqZ59GklRpxFeqI6JKDUNCj4GQrJ6//UBqgATdki0vOQzSb64NCm5Voyibl9+8seoEkpCZ4+gjGyE3Pvvhfe4AYhmg2CYz8i9bafQUunX3iDF+liBs3csQP8S63v+o6R9deX0FWAptygVldX+cxnPsPJkydJp9Pcf//9fPKTnySR2Dz736c+9Sm++93vblomhODee+/lH/7hH/jGN77BH/3RH2Gamx+FDz/8MENDm+9N+bBMXZMkGwHbqNCqRJRySVgfz6/HDkFpnCR52qaGROCFMbEUFEQNzSrRLnswcC+GDGlLCUInEhIRRQgEK2ZIXfdItR2kbTOe0blflNFkmguJJMN+zI5WhRI5EkaEoxsYRsiOiSKF9Qk3nP4cF9L9xJlufBlhhG0sV2fVP8MuUWXQ6F4/EZJWRVL0UhyKyiQim1RQJSeK6AmPp0fPkCkt0NSSeNIlKV1iWUBKiUSj6YdkL5ugUUiYc0+R1DPE0sQLYmpeF67UaYuAtSBFQo95st5grh6RMQOyifVZzkSbsneBTHuaXc4iK6ltiONfpbn/TVgrFbzlMYqxQBcupp+k4U/TWMqg7YBMeZG0FlA2C+hGTD1RYKp7H/n8sww1JUOtk6Q8Sbs7gyY9HKFhiJCEJ3F9jwvVMaYdHT2ICBJp/FgQC41w+QyuEaJL2BG0SePTF0Wkqmk0HGa7IGM3SWTnWUk0MR5/li4Xkm5EzsuSL1o42wvsnjpDbrWbaspmRxTjAudNl9gaQ4okNinqcpB8FNAjXbT1yUSa/hrVxgRJKRlaOUVN1EhJwXGxlzdVxrFTBsWkT8MHJKxFIxSMFifivXQlzlOK+lg2DFrxMEKTzMYNltMVDiRn6CsGNIgoLINebBKTxDBctFyn29f5bB3bf5Rk0yFdsgnbLugBri4oWl3keiVZrYFvumgXs0dI2qUabW2NZj6gENbRY0Ep7GbNqZIQSTJewGQtYr8Pw+EyKbK0jDLJuk2yLYARKnaAGTUwm1XyK2UyaUlmZYFSoQGZHjyjDaSYMJbRZcyaXmSWEkNyJ8NtwW7XJ9SsjZkyE2vPcIs4TStYIcahRRf5+WVMy2L7QJHpMOKs2Mt9svPTB3ede4IgjphlPwf9EEt4ZKVGLm6RsDw0U9BaqJNZsehq6bzx7GnqiW58I8e2J7+EcGyMVISfNKnGCXqRnJW3cDdNNKeIq7nUwjZaJGgZNWqhoOAbHAjGifQ0shGStxfZ023BtMQ2Up2xpY4PeQ9H+AxWJsnWJaahs226RH+2STlKEq3/6EOgxSRcDyl0cpNl6IYu2QLZRUt3KSYa7AoNwkjQFC49RpYYsBprbM+bmH6FNWOkM2mGBroM8EODNAJdd6gmfSwz5O6oTSxj0lFMGHVhhynSsWTRL9NY7fwcg5SChhtRDVbRNWitN+gIBEV3lRPlUzxbOk3TiyjbPk2nxorlEYZrJIVB28ugaZBKCKJYoxJY2GFAX/UE+aiLiyPnuqqPk4sd5lJ7WInrZJ0Shz2b7hgsmWbeijGDmErT57SVgESVXK6HRlTE1JJ87fz3eGdrkZwxwJSbQiPJYbNE2RsiSNpkknW62hIvKJIOq+iaQWQtYqe70EOXQJM0pUEsXU5Kn5ITgWZiJ3sQSMIYvEDDS55H1zvnoOGqDJpyAxJrnR9i1QeHr3gtsXMX4cUfm3yZuP/9G7S/+Hm0ri56v/5N9P6BF95oi0kpaf2X/4doYpzgvrdTeOBPX7b3jleW0fr60TMZ8C/9Fowx3OnaJIpFUF1MlRvUhz/8YW655RZ+8IMfYFkWH/7wh/n85z/Pxz/+8U3rPfDAAzzwwAMbf0sp+cAHPsB73/teAJrNJvfddx9f+tKXXnCfibABMou+XmlJiJBQahQuLDApB1h0p9lOi7vkKlNuTD2ZpRL71BOCHr1GXnOomjrVQOOA3mbMNEnEKfaJiJJhUUlJ3NiiYUgMLyRIRLTMLGdlnp+qj2LnujmX6WWXFbOtvEY618beL1nMaNziQjrwkbGg2syy4DZpUmWXdCm6Wcx2TINJ0sKjLfNkDJ/h1QrTWkhGy5NxAwq6T0/NZ0CsEeglvMUnMOM6A+lusvk+Im0GP1rBcUr0tXYhAo1G/wI7RD9JCpzXhzG7HWRikdJchsHlMj2Wz4zQMLQ8kevRKyz6ZtqEURothkNamxwLzMQH2GMJbnFKJBEcpIqbHmRg5SlOiB4m2ml8fZj9PXmm4xZONsuYXqcezXDLcIFE5OL5Kbq8ACdMM7h6iluKYxgIYnQSkUGWECKfkqiwv9QmX4ood2fIry4T5RsUaib7aNHqH2Gl6UIOGmYbVw+4tVJH03VqgwbS09A1QZzTaUY5duHQs+SioVOwQoSWILXkIxMR5WSSQT/B7mCWY0i2ey7zWh/F0GYxMceuII+phdTJsSaTZFtzLKQ9bkUnh4A4xiNFYXYBe8gm0gP2hvO4mk7seuxdrHG+ZxhSvUTSpBYPMOQGOGaKQIKre2gyAN0klhqe1sRA4EmBjHykMDG9GLQQMp1xUNITtIMyWhziRzGOm0KXCUwp8DBpyzJLmkkya/H6WFJMCkLR+U5IKdHiCNnujINLEIKEVthLVgjSusZ8UKCrvcyAodOlt7n40+FSsp5zlgzbz5I9W+Ysd1NzQrp0By/wMe0qINGNDIZXJ6dJzLRJPmhypr+XoOVRWMl1zp2UJOrLJPs98ksNfKOA6TnYRoYBc5RCOcJtv4Gal6CVTlCXWfqI0PQmsUixHLkcrDcwdZO94SLdekQt6MFISoQU9EmLbs3A93VS6SZOnGWxtUK/liMdVmnJAbp0i4guJDoRMedlleeMKnu8GD2MCaSkFbTIWsskAVN41NtpdDugnXfRhMTToXvWpSvSaXWlaadT5GcqJCwP74BGDg2fFCOahx9oLOsxxb4qeSegr1kgO1WBW2PIJ8hIm4pRRUgTTyQI44DReI5ePwtRQBQnoLmA0xNimzmEyJH0AnZaSxSDDBi7QFQZmXdo9aVo6zEy2SLZ9oEhpAwBA42YeH0GjiNLpwnDXizToDvbySwGEcxXNIZ7JJMVm3q787txfhTjxJ36SNvXsNoGS+4MmuyiP2+T1tM0vCSRyLAQVynEHkkMhv0KDS2DLkLGrTQtzSZ0x0i3W6T1eVzzDk5ZLdZmiww1BvCigNhKYaR9otK3aGS2IwnRpKBNTCXZg20IAtEFusmSSJAwdUjuoB22ibUWSREy1FzEF4PMZO5kWpMcqtbJB03KmTRWlCYhQwbsGZ4wGiTtXiK3gd4f4ukWS/ZuItHkelSApmyJ+GKA9rxWaoDEzp14jzzysu1LRhHu17+KPrANUSnj/eu/kP0///PL9v6vlPDkc0QT42h9/QSPP0o0O4O578ALb/giiNUVjB1XDk+9mNGMy2svy34U5eV29uxZxsbG+MpXvkKhUKBQKPDrv/7r/N7v/R4f+9jH0PUrp2C/6Fvf+hZhGPK+970PgFarRaFQuOb6lwuCEIcUNml2A9VWloea+7ADnZqWYSbKMxJaEAr8VJUTPRmsVA4nEbJDSBJhhB81eEr3qad2k409VuUyi8s2vVqFmW0mrozoMVtIKflBv06KWbzKfuJlj2Suj+UDvRTNKq4edCrDXoid6yErPJIypGelSVNPkXM92rdb0LQJ/H7MeJ7+rEs2dknZi2wzQ0oiIqO3eJ1uEegDxJqGbSRJZadomxFee5hklKRudLqkeaJNKfRptg2ycUSsS2xs5n2DwXKafKbOqj9BnF5iMcywrx4xJoeJcUgkejF1jaRIEje7yOVSyKROT7JKECXJaYLzGmTyO9hrVHFFAjNsMNfWKMpuWvotDMo6fd4C3V4/etthV3KWA+EiXipJsu1S8GwqWprRXIV9muBgAFpC0sp30dY03IykHnYxp28np13gkAzR1wJGEznmEt3choeBoJ20cDQXO0wSIUjpEAuDZiJFJaFzt21RzaUJ0ejTLUyRYtXfzt70HGFCYET9FDSbFc2ngc52I01KtBleNMg5LtGOPmRWUjUqCB1SModDksF4hb3lJWp5k5R0iUghgwgv3eLYwCI/HTlILcJIlCFMY7YFAsnO8ipGJsmFbRBGGbADQl0j7PXIOTZR2CAOkhhZD2l2Ks3RxZ928CJELHETSbJJk0AzKFclea1NnpBSPoElCuiayYgIidHY2W7gRg6VhETzQDclVSMm61fIhC69dolnk3eyKufoNSpYmqClSWTcRY+u02SMLu0CtkiBkPiawETjeLyPyVaWX4jGGIhXSLkNhsMUbWlTqFpUenVIS/a7S3TJNvkww0R/Fl3kSLYjtNDDJEJqJqbt8aN4kntsh4KsQX+SZKyTaHkU3Cbjd7okpUZPCzRd0uc2KbQcVvsEA2YV2+8jLAqmjFXaWkDVhC6ZYyLXJEJA0Bn1mdNcpjOSogm7nJAfdb2RvfESdrZMkRz72jGu4SKlpJSoY5hNJlMp3IGYpOYBBjMiZrsXMJCusxQMYTQlQWiyKneS0luMhDa+B7rwmRYmfUGLhCaJdFhOSPKaAAT/Y+AQb5qtscMpUnlTiHADwjigkRbsWw4QhxOYMiAlYxzRw3JQIHZs0l01DoYzrMZ5kuu/xSelQHdDuj2bULSRlk1fKMlUqhhBTNbxyVddwpEMR3fHtGUnE6SbqxzyYnRhsDbU+Q3CJX8SN9DIrs/JEQtYqkLNSpBItPCDcapWFjPdxI0CAuEQCh+bOpaXAS3C12Zp+d14QRexbrBdtNnmWEyQoT/Ks90UiLaDJ8BKVolp8f+z9yYxtmXXmd63m9PeLuJG8yJe32RDJpONTRWLEi0LAmRItoESUBIKBggQBuwBhwI00YQDaeCJJQjUQJoIEAQDVgEeGILggaqkgi0VVabEpNhlx9e/F33E7U+/Ow/uy6SoTFICkl3B75vds89ZJ+IG4p679lrr/00bwCWUytBEc04RFLYgd2MCkHRTtuaHXKsm3Hcaegna1RgNVbTBo3bBw3SD3H4EQsvB+IgttcdDMaWOVjgpeWJ3iFeS6/LbQCBCctE6RodfYe+ZSfaJ6JC2wLoZPT/HdDOqYLABpu13BFTej+cJ2nN+LPjTdYKmdt8/QQvz2btmoR8U8/evERYL+v/L/0r9v/9vdP/xr/6zSNC6//hXkCRs/MEfMvsf/jXd//0ffmAJmjs6IvroeyViRb+PyPJ3K5zPec5PGq+//jr7+/uMx98RM/jIRz7CYrHgyZMn3PxHyqTvUNc1v/u7v8vv/d7vvZvEzedzHjx4wK/+6q/y6NEjbty4wa/92q/xsz/7s++5Pkw6ggGD5mvxTZYu5Y59xN9yh1Z6jlYRf8s+/2V7ykW2QjwT7jCrjNsLuJwEekXD7OYhX9oa8NHzmGoxoqkiXBYwXrGzbBnlnoOeptCeYOEkm9MYw6gpQRi+tdUxMJYN78GtW2Ws8CipuChT6mGJtEua0x3SxZRtYWjiOVnUMTQlmVRExDweSnrREVGzwVv+DudscqQVdyPFQHV8bZCQ2R3kxoinrWBlPKeuQfe2OY2vEgJEgwdMw5Anux+mlz9lHht8FKhxJAPF4CgGYj4q3+QWlr+Nf5qH/T6X4pbL7UOSPKKtcqzq4ZzlqBV8NHE8moMzmlM3YqkcuZrSOk/enSLDFreimL6P2KseM2luYmxNRsPTXPKEWzyOYvY2v8YdbzlxG8zcgNofYYRm4XvsTUqSwrEcp3R1QSsTDIoUQ6pPOJUr3PFt+m6bi1uGWsSAx6KZqCHatHQEMIF4BTJR3OsbfJ3wQrmCQYeedvx8c8Ty9h4HjFm2EZf8KZFp6VDs+RWXfMLX9AYvyEM+3DzGnXse3hFsKY0KEUpWzHszUhwTm/F6npNZSZ+cO/WSlarYtksGJ55X1SP+Xfxf8+1kgBYSFb7NoDLcfHqXi3yDRz1BknqCkrQoOiJWUmOSPjar6GuL0p4NcQ/TdCQpjG1g5AzIJdfNioyWcVuxuYopsoyimCK84TxP+JnzGZkreG3T8hH7OhcixauWLyeKNJkzbHrUsqNUhlpaQqsRZQ2uxGhFu0rYW57DYgl98KZDZa+z88SxXdQ83BgQFfCoL/jpxw3xhiIZpKQruH4Og9kZHoO2YJTDmoaGjlxUSOFYhj5ybpFtQWZrVirlXO5z5/CbxPqc2DV0uma6bdictTzw8Hf9BKdX3KpjQoAD1i2+VUjY9Yrr4ZBSBFRhWR7ENJcKHm2VkJbYRR9VtGy4C4reKR86f0o+bjHbIJEIEYgbR/50RFMC1yApBNrMOUmG7HaGjcmcbqn5hnqZa9tn9NwZjVD0NXRCAY5WBLw0RMGy8Al7ouBAxLygF5Q9KMhwzz6LNu+16OH63DJ2nMjLvDI/Zfm0o7w8Z5w7mpDwhqzZeHjC9S7m8UsOqzxOerajC+x5xiTXaNuiaosVAuEDCsctf8gN6zlIrr37uWl8ResErhJ4r+mc5+nxMSbEZOmc6fxlGiZEUjPpTvHB0vqKlD5n1QTQID2OhoDBeM0tu8JIS05NIx3LULNlwDZb7LaBo6HAYnmju8ZxdoRzDhscwnsW6gz8mIqOt+ctp81tui7h2BhaG9GmOaWPaDtNmsGyjHHRGaNmiQDOuwmBhEg43tx4hV1TIQg8PYtwwXCo4ZqoGA93kWKTE7tAz1fsB4tzFb86/zqvJwPOxZiE7Ps+6773VuNznvND5N0Wx53d96zpq2tjT3/0g2lzNF/5W9Ca+FP/kuiT/wL79lv4sviBxP5hYv7+NaJXP4a6fAX9oVfo/u5vfyBxg7X4s9N3583+IUII5O6l5wnac35imc/n76l6jUbruarZbPY9r/uTP/kT7ty5w0/91E+9e2x7e5vLly/zO7/zO/z1X/81v/zLv8znP/957t27957rOxchqpbzeMSxyjmXCZ2EXTkHvaQjMJF9jtsNdg49w2pK0sClY8+T9hZvdy+xGXWkLDFpxUE0JLGWUiRY7Wiilr2p4MqJYRIHUgIxMJEJw7zjqi7J1JK7mx1FagnKMpiXPNUxrw/2uJ+N6dJzLvotG2LOlbMF0TJl2DRcncy5clGyt+go2wUXE09+2BAvC46jgrZ3lzPlEDaA9zgjuV9FfNMqLh/fI29qRGioS0Hw38bwJbx5i2jVEDcdzcwx6QpqaTDaYyNFXBlU1yGD55p9zDVOEcJx2MUUhycMp4cMjx+j50uWZxWnFyvmK8fm/DWuubsICYf5FnvZnEFasZOdYrb6XNk548rwlM1r+6h8gMtgtrVJ1U9JVInzCkRgUo24YAluBbQc1dc56XbwRrLUA0qd8qI85GJngZMW7wRb4px/3b5JbmESrSi9ovOBNl5XjyLnyIWhjDxRF1AOLIq9bEYaBUIQHAxa5smSInKM65bhwRzvLcNQ05M1Lm1RqmbsPcLDSKww0Zz0tGFJyo2nHYXLeCpHXDs65daDigf1ZQo/pPY9pgx4XV6CGsa25nJb8GHxhJFr6WuDRRPT0YYEFQKJrdgvjuhQmGJI5QLnoU8pNC4EpHecjCvezuGpHyNsQMiAFIGsCXx8cg6iopQtRdyx0h3d6U2OT1/k8ULzQCh+9vGETNRoa2h9RSPmbLPgjXCHByrl7nCTu/2IE3nGxnIGBJba4ICdWUNvWbK3uCAEWMgeCHDLgPSBiHVbXN54XilOuFHPSI5aKt8nrz3Bak79FUoREwiMZEmPhv3zOcms4O9iyVJBLB2T2HGadbBsKLoIEcUo4dE4eqEGF8hLC0Fwg2NmW1NkrJCAdx1TYTnQMYXy2FnKsexTEvhWPObNZMjr/R6LKmBXBmkdMoD3go1VA1Kgq5R+4fCNpRWBjcKSLAYc1mMKkfOYhG8Oe9yPt7jf7vJVXuJUjolcRycVSEdWt/z74Sf5v3Y+TS0UQQgcig+3F+yqgixpSOMZCy0Y+YbIdXjr+Ho+ZylrsmfWg0aCms+wraNqM7ITz7acM5QLpAg4YSnSJXdWF9AYtGtoyJnKIQ96tzgY7NMaSecUT9xVdvwpna/XLZ+hY2cyJT5eYWcN3VwyW3YsZjVVZ0E6rJ/TngT8VCJKT2gXlO6Coo0oGs3RNME4tfZdx1HVKSszA+ExQaGcQ0iBEBaEIA4OBOSiQwiwIWIpFLXv0ckGGVq0CGz6BR8tz8gKSdzEPDY7LPSUpT3htN3kreI6k0LjfYzzAhs/xMuKZSvQWuJpaeot6ibnbvuU2cZ13uI23/Iv8GVZ8jBZ8lre47V0yYM+nOox3mnAcNmvOOuu8LFmxkfNQ66W6i5PiAAAIABJREFUr3/fZ93zCtpzfiy4s1PEeIyI4/esRVffEao4RL/w4ge+l3njdfSLLyOSlOjjn6D+Y4998w3in/rUB479wyI0De7+PeL/8X8CQL/6UZo//T8J1iL0B/u39acn4P1aMfN9kLu7zxO05/xnRXjmbfS9rCG89/zRH/0Rv/Vbv/Vdx3/913/9u15/7nOf48/+7M/40z/90/esBWHR7RJUxVyPaa1glh/TWqjTmmWv5GMPy7VBqpbcvltSjByNW7+eqG3SheOFJyv+7voG+7O3GQRPKyKEBZTFC0kkPJX0eCGIbaBAcW8QA5YX7AWLxmEk2Njg2xRTO6ZRn042jOQUJSyx9Fw1S94a7XI0ikHGbGmNIxBEYN4M0Oczdk4tkS7Ziw1dpFBUJNEIIQIuWPDHnExqbk0m7CqPUB2xnuPEBgebKctOslW09CYPaIoTymFgmFf0vSXUOZP8IVN6vM2CTscMm9eJyjEXIWISBC/G51x1LRMFx+YaQQa+GfZIlCHkEXvlE0ZuSqEyArAsCsZqRmovmFZ9Wh8zCscs25wz5dm0CTfEihPRRzpL6Rts0zIQB3zEpRwvttgXc97cHrDIerzYP6CNAdExdIZdsWDuxszLAV4XLAaaHbOijluMV+wVFaBAGWIkDoERksh6fNCkskF7Tyk9e2lH1hikMyTzlr2qRUYOayweRW4iEu8QCDyWlXYsI0EqY6QL1EFx6DZow5zrhy32GnRINJ6s7jgpdqiNJTWHaAzXZiVR6tmMKrbUnJVraJ1CyJLYSoal4tq8Ji9aVtpiFESxYyACmbbIUpBOHY/1HmP1GOECTsUMF47L3SmZKNB4Um+hidloAyuVkp/G7LmGPLRIY9mWDZcfaWTkON7ZYBECG75hFXIuffMhjDrmMSycwGRXuHaxJCgPqxltqljpwCQWzJ0kPw5sLgPBB4QXhMgjXAAf2J+XpJVgJhOwGZXoUKJBOsPhQNJ18I3hDlH0FBO3fLp5yipK6Sy0EqSDPJwT+RqrQBBoHWw9VlgMR+mKV+ctotWMrGDZOoKoUAKiix3O4xUpFekkxowijrYn5M0WTbKJcXt0KKrEMpdLzvQct7yGSgyiucB7Q4InF5aP+VOmTeCuyHkiOkzmmCcLem2OYURtHLqbkK6APixWCS0RNoEDNviQn8AyxWWCIqu5T4fw0CkotEfaljmwceo5AxoRQAYWSrNSgaNccgWJCpacjkeJgTBAW6iUwy0k3jv2pi1LZfFSMFy1BJGwrDp6hcH3IARL5GOEtZTzAx7Nx5TdZZabC9q0AjugDVPiRiHrTbRsmYmM2loy6ZCdQZ9XBHqIqME3kqZOCThCusKLGG81Vrbga7ytUcHQ8wEpCoSL0N7TdxOCXyJ9j0pO8d7hvcN5KIqYF8yUG23LoYyQVpL6FQduSa0WmBAorcXIDicWWApCdAAhoVztcpTexQVPIGBMyqSZcDZzvP40QxBokgXGepQPOAun7QRpxyx8zDgIRm5FTc7U7HDLP+Ub9vubeT9P0J7zY8GfnrxveyOsRULgO1LwH4RgLfatN0j/+38FgH7hJQDsvbs/0Qmae/IYQni3pTF65VWa/+Pf4u7fQ7/8vZ3n/1mxnyk4qvepoME6Qevuv7eC8Jzn/CQwHo/fUylbLBbvrr0fX/nKVyiKgs985jP/ZPwrV65wdvbeGczQdaz0gFJlyOBJWkGsHCG6YLMds1QxtethhOU80+yeNnxz5yZRv+NlNwUk/jRmd9Ai9iU9d0qlUw7YQrkF3oxpVYf2KzoV2LeWqTPE0lDqiF4b2FituFE6glw7blk0faOotaRVfWw8pOsHYhdYjBve2rjFli3pqwkHg03GYkbRalxYovcMJ0VC2jiGhcGLjtwbPjafYlGk4RyvG3LfkaYtC5khhEW5TVy7w8uLJSiLNAZpS1JvGBpDv5bkUrNZNyydoIslujKkjeEOX0O1Ef1VSqIr3th2ZCJh7iS668iHFV56Tn2Pxbxl6GuQNRvdMadRx9Jb8IGZ8LxVbvHz/ojUa+4mOUd03DSC272CT3FIaxOi3BPTMQkDtPQ8HUmatOVTb63omcDfvOiJZnBLTNmPGhZK0MYxttHkbUMRa4aHHZZAo2Ax0GwZj3QB7QLLOPB43HHnacR2ITGqRWqDCJK+6ohUIG8NyngiHK3M6Z8F9MDSRJpWB/qhxRBxmjnwgVoDTtI2HryEIAhBcBY7RFDsnjeMZ6doOyDpoJIpPSxeSprYE/kVdBYjAjfmHW1aERuIXY4XngpL4gV7vkYFSyNG2CimkWI9WOUDSAje00SBgCfGkvgKS0raeHbEEbdDYNaPCAIMMRGWLK5JRERHBJVAhJYXJg0naY+01mwsOqrEwMhyzhCRel4OBQsRU8eWh5d63DousRaMitguY6yJaYNmGW8y4Jy09JxEGwjp8URsVoZGJzgpwAd85CgihTUJke3wQhAR8BcBgaDnLXMBLoC9KPCdxKmI4CAyjsb2kEg29YzSQSc9ISScRDETexvpDOOVoqRPbCyt0kSdZadYstnN2L4xQ1kwRUXfNWRFyer2I/rNBhO3ZNh5ZGKQzqPtulLZ6cC3KahlitYCQ8oyiogpuTcuGU8lVxvLWRRRVCkm0ZTKEhtFTcz4wlCMFBepJ7ca6TqED0wTWKhAr/XszxrKOEKEwLE05PExe23CgU5pRcyO94hgeS1LmCnYbT1VHJii6VXb9FQHrK0RUtvggTwsSZVEeYtWhiQknEeBC5Xyn5KAzjNqqQhBEpRASYg8lCECqShDn4oNuviCPgkTO2RIRVMPWXT7iPgC4VIEAREsiA7T9rnja0aypGVCRmDDehLjSJ1lEB8j3AAoOMoXJBjGXcTQ5RyKATWCUlYcSssvijNUmHC/zbB+QBc6ZmJBywlBeKy3+ADBppTNDvHGVwk8a7d0EWU54OvFXcruBgljSDwBR+lmzOohiV1BaWhDzlYQXMiEl33DsdLUcYdwq+/7LHqeoD3nx4I/O0PduPG+a3I0QvR67yYSHwT36AE0Dfojr65jb24it7Zx9779gWP/MLGPHgKgnlkC6Gd+ceaNb33gBO2dxFe+j0gIrIVCwmxKMAbxj2TLn/OcHzevvvoqp6ennJ2dsbu7bpH+xje+wdbWFteuXXvfa/7iL/6CT3/608T/qGL/xS9+kc985jPf1fZ4//59fvEXf/E9MTrv+dLODpFMUTKlig+pdYNymkv6jFlziaydc75V423gtfEVTgcd/6I55ePxEUfFNstmxEB5hF9PhXRKU6QVIUhikdBE23hzTNc5NmVg7AtO1BQBRNKyWXVkPqISEqs8QcCleYMUOdejc+J0SdOPubelCShuruZc9UucqCiNIxGKFZJp0pJEmjJXqADBKWyI6HeOzBYIl3LieiwTwWG2ZKX7PJZDpK6g2yGrMlIRoWRDySWqsI3ML3Byiyw39Bnz33ztgKtnBqRlxwpiUVFHilVqWWQNvinJ6o6H+mWM01ypXiepKh7uGc77jtqWtDrCKAc0pCbQaMVpYrAWbky/zltOEwVJ3VX0fcJKNuzFSwaq5UzEzKMx1kHnA50SPI52cL0ZaEOlFI2HiJYrqxgbIha2z7CRDGeWcVnyrb0YNd0nZBUQUaiYVlaosG4Rkz4wWlg6EXOm9qjjnJebe2jWCn1BWY5Fn5HpSIzD9yuOZJ9bB4a/vxkx7QU224y+rxEEgpCYIFkljlVwhC4Q2YD1DisEqYfR3NMLNRvS0mkoRJ9BV5MIRzk8YVgazCqnKK6TVY+QPuCl58Z0QRcrerallQbdSYQDhadMIJMpsXBEwqG9IAIiC1awzmbKPhECYUHGjvUk1dokXVpBiudxD+KVXM9fes2oLZjLACEDAqXOqYUnto4UyyUm3MyWvG7H7Ospiai5bD39ImaRDhjQIoXjreQmPvWIFlCwShOEX89fBm0w2ZS0USSyY9yvSOOUpUtR3oMIPGaXvIKmaRHWkc0StoqWN3sZUvYZmxUTMUBxgRRwf6NmiEF4xcGWJ5QlYSEwIUFX+doUWtu116EKbJXdupIaVuwdTZBpw6Iq2KBlXFpePqjxwjGuGy5R0QmHXggmVwJGRCx1RlkvKN2QEWvfsM0lkDWI2FHpmIOkZqINKvHM0paz0YKlXDFYGGyuEcYTUlAO0tbRaeh5ECaw0xqSzNP3jloIBqJhKWIiYTG+49HQ0TQ71K7johqySlKkvMArxZG6jUy3SeoD+tazIQvevmIwFjZnkr1DWG0vOd8QTLXBuowOT02DUm+D8ARREmyPTkhknGD0I3y7g7N9Ag5DS6k9Ki4pZUczv0GIVgjlEQhA4KWHoPEikGDxwnM5lOA1251m6GFJ4Cj2DMQK4WKmStFKx3XfMbBQVS9zplbk6X1kWPJmd40tfUGhDMFrajugIsbHFu9ZV20JOA+Bgso4wOCsA6+o/YpUGKwb4FgQW4tQLQRF154yWvbphMGphkYLTvIDtruSG8bgMDhhv++z7vkM2nN+5IQQ1jNQl94rsQ/P5qAuX8H9AGbQzOvfAtYVqHdQt+/gHj/6wLF/mLhHD0Ap1LXrAMj9y4jNMfaNb33w2EeHoDVye+d919XuJQgBf3H+ge/1nOf8oHnllVf4xCc+wW//9m+zWq14+vQpf/AHf8BnP/tZhBD80i/9El/+8pe/65o33niDq89mW/8h0+mU3/zN3+TJkye0bcsf/uEf8uTJE37lV37lPecWC420loscNiczts5OqVRL5Az9Vc2mWe+6ahfweEzo85I95qaZonxgqCtaCVfKlk8+nbKMBlTpBj3tGUcNifV4FELA3oklqUEEj5CBoKGLHHf7EEeWXBoanxME7BcFH+YQLwK1Fpg4AIKX2hX/s/8bPs1j7rgVm84hzIhF6FH6HBciouARXtMoxZm7xaG6ymKkOd+IScZzdvsVcdzicEjRgahxPmIVxVzEu5ynG6y0wOopXVAEAp2TGCLOrjacbAfYqXjtBc1XP+S5e6tHvZtjd/rMLg9586bkaK9iNq6ot6Y0+YpiaVnNEyglm6eO8allNDGMjhwvPRLMTl7GntxGBYGVgACfBspUs9Qj/GrBQ1PyX5lv88pZwehx4MrygsfJko+rv+cjTcGldEmSdFw/1lydBXYnAQloH57typ+xXbS8fD4hRBcIJFqCEIFZarm3FSiVRHnoVZ7EdFzoHbSDTkSslOLbcY+/7G9z0Ycb2Ywk7bgQCcoHjNPkC8Nw6diaOvpynaAtwybWx0gLjfa4uCSzHYlp6YTAB42wgjp4ahkwBIKKmYsedIGRqteJnGjptx2WHq1MIUicUOA0zma0QdGKhEgGVG7ofMzbWxFWeeIUdBQhhUQ6QSQ8vsuYhH3wlmmc8nbyEsfxBoaYWntkJJCqYyI3iVcCbQK1NpwMZywSR24MIPjK+BOEkJFUAW08fd2iMSjVIoQnbxtqepzFGwC0xHgRkYmW0dIBAiUDIgpYqRECOh3wCIIAqyU+gNWKiz70m5ZUemoEDaDHhuFeQ9TERJHHNg2SgFSeRktmucBJx2TgOBkEesEjApzmlkQ6tilA1yDX83EygAiQmMBqs8DsP2YVl/Qajw+SQe0YVA5lJUmVYbUhlo6gYH7JM/AWDwhliFcRNkAVKaSXlL0GbEtaRnRK4Qm0ImIkKzyCibxOI/aRLrCINdPUoXxAS0g7zzwGZT036Mi9J7KBqIPIgLIQWxBA7S+4u204ShwTq7FBIDvFedTj/pamjD1WBk56ASeglRFWehb9hicjgfaWS9OWvFvP+j3KGh5FkmByvH3mnSBqPB3eZljrsNbh5BRrNN5kBNPDGY0PDYQaL1YE4QjCYIMEJIh1Qo6s8T7C+hyPRBLohKKgz9RtU9gtqpCyMtsEm6L82uRgJiKCd5wJwXlk2LMQBcFIluQehNUY16NQJYGjtdykyVB2LS4iQ4EuPbZSSCNJWksWnpK0T4n8ASqckjQFYnkFUaX0loa4XrfeO2mx0oIwKF1RRzXnMqBN4PvxPEF7zo+cUBSEunqPSfU/RF2+gj/+AVTQ7t9D9HrfJYihLl/BHX7w2D9M3KOHqGvX3503E0KgX/4Q9t7dDx776BC5t49Q6n3X3/m7PJ9De85PKl/84hcpioJf+IVf4HOf+xw/93M/x+c//3kAHj58SFVV33X++fk5Ozvv3ZD4jd/4DT71qU/x2c9+lp/5mZ/hL//yL/njP/5j9vf333PuLAy5duAZL0ritsaLwJ1Jw0tuTl5JrtQFPVpkcOhg6dWWTzw641JRIAApYJYFnBAknUV5gQiQK8fNrOZyWaPxRAhy58hqkCHgEHQKhAqo2QBvcrQTxC2MFoZLTcFeuSJzJZ0UWCHp2cBl2xJTImXJdii5HhYEVXIWt8ySmtonlM1NYi/4mLug5w01ER0ScAxp6AUDylEnCwIdAYt/poYWmh5KnKFCiay3CKuPIK1CGUVSrTjKI55sSVZ9yUgEEhHjRMQihpmWTDNFJiPyqEL2K6rdhOXllNlwwKG4w8RfAqGwSUShFEErmlhCvmKVR2SDEd3OkKO9mJMrgm/diXmwuctfjbc5yQxKdqRxx242ZxQKPvqk5N+cPOK/PT7jctLyaNtwlOTUYQhCIIMnNp78LFsbiIuInis4uFwhpGS/XYH0TKMBRsEs84ggSRrPy5zwafUQ5SBYzZcvbfEfdm9yJau41lswx/IwGtHMdmlFwteH1+lCyqhquDNfcHXZMj5znKp9nqjbKAfea9qsQWDIO0fcCiph8ThSaZhFllluQTm8tHQuQsspVbJkMzniM8cHOAWRc0gvmPbWhtIlWzRRhwstV+OCjw8POdI3OZO3WCSBcVSQCMeZHlPoAR5wKKxYJ+AzvYGUhpqM2HR8Y7zLwaWUbhDzMLmMa3KkAysb6jBkkm0wyUac9EbUsWSW7JJay01ZUhY7TF0fROB4w1BSIR20Sq/rJnL9BXagK1Y6ppEJHsnRIEFmBiNgGcVUKgIHUWexInCWpjzYSTnekTQRWAQ4iLuAkprrecVeWpOvarJ2tm4h1RkPo2t4ArH1KAcOCUGirCD1HocgSY/pNqaAoFE9YuXYUjU9bTA6sGKTyEVExGgDeeu5NFM8uFZwlgl8J3g4lLRp4Hrp+dLgFrNE0riYraIlb8FqixeBD51OmSYaqzzUEbefRigJsVhX4NuwwSLKkBqEgEU0YKL6PNzMafuBV3s1qfEcacl9ERE8KAMvqoo91RID10TDJ8OCxDku8pbbas41loi4oyPnohcolcOJ9aaBlB6jLJdWHXhBnKXsqRIdOlLRcZIvWSVLBmLOuBGMrCMxPSKTEAWDpER7iXagbIpUc3zwqOYSo1AyMI4N6xipc5RTbIWCq7ZjV14wVKf01ASNx9g+k26PVcjQomMSl9QCgku43nksULtNbHeJWdJQ6gprBpgQswwDlsrRp0R4wXU/ZVdOuMIMG9Y+bgKD8BJvcwQWj8CYMS708UQYGeNiKHoFZuOQLpszkxtUYUxtrzOV15j29ziJNvDCsoxbggjvqm5qZWij95+ZfofnLY7P+ZHjT08AULvvVXB8B7V/he4/fYngPeL7+Br9U7hHD1E3bn2XeIC8cpWwWuJXS+Tgn+eB9KPGPXqIuvPCdx3TN29Rf/UrBOe+Z3L1z8EfH31PgRD4jrKmOzvleYPjc34SuXTpEr//+7//vmtvv/32e479+Z//+fuem2UZX/jCF/jCF77wT97TtoHMWz7+9JgnY4XHc2vWcKmC040eSliEFAQviIJnw1wwaBQh02yUBZXO8M923jerlqZvuDqbk292SA992SIbhW8iup5AqMBg6tlMLAMluB5Zjq3hkBuc623+u9k3GFx0rNIAwqO851Beo/QtMQvu2Q8DUzLWw+8VkthLvAhEwdK1Az7pj7DBs6Nr9nxNIftoHFLAO/IVKynwwaG7CBt6KO9RviOkZ4h4ArrDlh8C3awrGapA2ZoJ+0Rdn1e7Fbs+4sOc82/lNkM55aqY8pgNLhOz75fcFTFLnZGqgnKYgZEUMuZMSw7cywgv0Jtvc8R6hmaJ5+vkHIbL5GLGQD/GCUs5rDAu4kpkOKwSWuWZ+gwXYm6mZ4ySjgPfI28CI98x1w3axBxll9mwcxCeTsAihp4PRM7T84YXjyt6yhKPEhY+5i45Rf0id5ZPkWJFlHXkvmERWxp5h0Is0NJTMKBmxOVwiC4lBKhkj1XW4XxGUvUY5C0vPT7BoEmdoYgyHIpCDdAO0rZlc9UyFbASnnavZmMl+Xf659m0E356dQ9lHGUsMJ0lVhPSmeSlYsnJfsG9bgzBMa5aglgL5uTGsT3vsHrAYqzxQGo6hrphPy8oMs9XRQ+CYjWA/rTllqo5dSkx6+SpERppHTfOO9qNljMx5MppyWZT4weWpRlw67Hg6Q2HVesKbJcVNJ1kGDfcSA2LckG3SsmzhoORQetAlUluZwVNJalsirawLWv+ptewHTqck2zKkoUy3E8/wazXMFD3GRTbTMMeMzwrndJqxUUvY8dK5iLl7nDM9dWEu2KfDyVvkwdHIo8Bx5weBr82b5Zw7dQDmmYkeZTtkBh4Zb4AF2gSSx1DoyPiXh+jNvB2Rm8lOOuPmIk92uYI8hUnI0NqBjgJW4WjXwZkAyJei/UID2dxTE7Oef8R206QtxA7y6itiI2g13pMoknbQGg0LlVYJCIErFCc9zyXCkETBf6fW4JhuUmmSu5EDiECUSOYxZI39gTX5p5+vf48G+qOVRsYScfOscQeOV6/nbNJQT+UHJFwEV7g+lGHViti6ziPx6QSri3PyWrDRN/m7a0FmZ8wuvCIfcPIe1wIDNVTNm2Pw2jBi0aylJYorIg6Q/A1rc85jx4jEKySJ+TBsu8qnO1zrb5gVtdY2XDaE3hdstvFTOOCEk3uDU/8Fe7ZF9iQK27o14gCVNmUG23NcfFhEtXDRgmN2YeNJwy1oSdb/DpXp4tL2qqH1S3X1Tmn6hJHmcEmAuV3sN0uXrf0pCXE5yz9iLq7iYjfBh2wQUMEBIXzDmsuEeiQyQWh26S2u2Aj4v59cpujxRIlPF7AlVBjXMfDf+K77fMK2nN+5Lwrsf99Kmjy8mXoOvzk4gPdyz5++O4c1zuoK89UIg8PPlDsHxbBGNzhAerGP/q5b95avycfUDzFHR1+T4EQ+I55+PMK2nOe8x1qEVPkkkI7lOiIcQgP9wY9piloAjO1zRv5q9RkbNU1pd9ER5LIOYw3sBZQwyO5vFqhXUuvc6g68Ame8KmnB+xfNCgPskoRIVCLliqVeBsjRMRptMs02mUqh2TKETxYLwlRzO2s4Fj1KZRBPJvesMry1YHjIHW0QtJ0e+vqTNxxv1/TKoPmHTlziX9mfOuEp5KCzmcYoXC6JbgM53s4EXBRg9MGVIVXHmSHiKdYFZiOHF5YlE/ZdR0ieOYM2LaOD9uKLSP5aTNh30hSp9k3gat1j5tVyq1GcdlIbrUJ43qX7brHz5tTPt1U/Fyz4GNNh/WaDoVwEU/lBudRYNe3GCFoNaDXXlgqKA5GY442c1ZbglU/cH8cc97XbGU1AzpqBRfRiKf6BrHqmOeWo3FF2y9RwjNeOXpFYLMw9GeBy7MKx3VkOSAiJwqWOnJ0acP5hmUeSZZqiBRgyQDBIHZ4BLVIcGjGS8OV84aPXjT0FoZMeBIV2NEFEOhIuYguc5DcomcsRklaF5P4gFKe19TH2VYFWQRV29BfGFwjyGoPzYDaDNEykHhH0es46vcZtiWtiLi/scvxzlptspYZZ/GIfun42MU5/d6UIuvx1d4V+ouUyJd0IWU7M9xILkjjQBQ6Wu0ok8Ckp2Frynja4JctaduxuTQMzg2uyIiNZ6etuCQn3FFP2JYGCDzq7VLLBKfNWoCkczjpAXhr37GMA6k2NL7PYTKmzRp61AgHJgjSzrB7Zvjk0yPyRuCC5sHmNk/6I94aKawOOOmoE89HF4YXZh27ekHcB2Hg6+oFitgzaAuUt6hgKcUQb/rMyXhmG8aXr3jmwxWJKfi7GykqGJSHLgq8mM3wUU4hBlgfYVFEHQgHk7zFE+EFPOjt8ii/CV7Rq2HUeTLtSaKAtevKbVANOq5560rMMtZk1uOJWWYxy1xzuFPjcWyuSka5JwTPpmhBCJQPTBLPNFlvQq/yjkkiqKN1Bd4IQWC9dp4KvrGtqaXgrNDYsiNIgW4kpexzeHKNtlxvIjkRoXzEpq3IVxmfqCZ8e3iNfz96FVf2WYkhNqScZoZFBMJoPmQqbvqKUjkOegu+PlxyJHPe1hGnImJiNrDzHnLZwlLhrKNiLaVfSk83T8lOYwZHluRig/b8KvJ0n3iqOWkHmColMi1VB73K0VVjRo0hqxWbF4E7T1Z8bDqHZsjVZce/PC65cdFyqbasCOy1E3SwBDwLu0MpIoJqSFxGF3pMVMJSJaj4jD4tymu8XBvYp8ESdSPidoseJXG9RbK4yZWuo09FLpfE0RylKhI9J6Mk5A/Q1AQcUyl5tYIt19AhsLbHXPnv+8x5nqA950eOeydB+x4zaPAdhUH/AYRC/GpJmE5RN27+o9jPfNZ+Qtsc/cX5Mxn8726zeuf3sB9gfs4XBWG5RH6/ClreQ/T7+PdRsnvOc/7/ysFgxFF/QBE5Ulqkt7QqYNXa1yfuAnES2Cktc3+TSgxJZUfqO5yEOhLUpLQixcQlZ9sVh/tLJr0OX4K0FbtqTq+WqLzgKBXELiBDx93+iHaQcW+UEFAsU0GIDUEEnAyc5kMWmx33RjXbySlNXPHNYcVce8615FEsEC4masf4dsyquU2kaiBQaUsnwIn1PI0k0MkAIXDevMCku0FNjDFXMe0NvBvgRPLsXQkgLFI2CL0CH+PbPZzp08UVd6K7BCF4WTxlREXA8yRss82CbTFlIlLOwogOTQiwQUGfChWatSZCAAAgAElEQVQCGY7UKUJQgMT7jJ6X9H3EpXKX28UGPbcWEADHRjAkTtJzMYRA5XsY1ycIgQRGocO4nAuGVBk0GWznS+aZZW82R3lLv2qxqmKZGRb9jjIK6MbjfeA01yzNkL1VyS1TsWEdlcx40rvM/WyLTkLBmLvDLbSB26sS4h61H1DKHg6JQ/Jm/DJplZNXiswICiE4SwKx8RznFVF+n51sSaNGLPQWWWc4G7ecZIYtDHWSsFR9wnrUkKQxPMk3+VbeJ20tV84iZrmiijz/73bO1zb+Cw6jV7Ay5fBqx3LnGBF1CG3wWUU9PqXVUCYVb8YRj5SFdu2n1i8dx+kOJ9zAzRQfqeZoHFZ33G5O8cMapTVXdcVUtLS9JU3kMSoghWOzbRg2AWzK5mrKS9NjEgounXgWPuE8tqyEZdBCqT2+2mTKJn+/qXja9zyIdnnaHzMalnxKXjA+Ffx/7L13sCZZWt75OybdZ6+vW756prunG8ZhBhhAWC0Sg5vArEK7K0XASqy0WhakkELaVUCspECrRbsrQgok3DIgzMIAghFOBoQZmBkQTI+f7mpTVV3m1vWfT3fOefeP/K4p24aFaNB9/ijzZX6ZJ0+ezO99zvOe512+5bkZNSnG2husD+zaS+y3UpbcJjkOLTlDu8qt+AyZE7LK8GKWcLkb2E7h6dUJLyYxL3QfZWDP8pnxLdZPXWPd32IzE253DWaa8sYXHCo0a0HjjuVMcoMyLNIONZfNoyjlSIoxp4YJI92jkjbni5xM1fSLiotxwa2l1/F059OZ6CVqrSCCc1c0dl8TBgmfLrt8Wes5Bukik0xxq32RXbvOVnKWfXsKo2ZIMuPaqiMLDrZbRK0p7WjCWqhZHgmXbnkWJx5E4alJco/UlonVRAj7iaLying3YmErptozRMozyxpnRgDfL/DpBlcNnPZjbGuJN5iCJ1s7LISKihitFKujKWnpiCtInEdLs35TsczALSCiGJXLSKkZS5dSwZAe2SBw/vqYbFBTqBGbuoMerZLMZiyOahZGnuA9L9qz/NrSkzzVfx030mU27Wn2OAeUeFWBeJRXxLWQlZ5H8oI3TodcYkI7qfhQ6xF8LOwkfcpYcbo15ZZepwxdUjWmm9dQVbT8BDVOoFKM8PSKCjdYIHIOKVPKMsPKiCiM8EWElIsoZ8hmCdFoFVvHLJeBxdpTTZ4g8wEbFBpB4UHPyGRGpxgSl2MemQZyKZlqzyeTiL36PJuH79H74yTF8QR/7Aibm2AMemn5gfscEDR/6ybRWz7tVZ3HX70KgL2boJ1tCJq/ef1VHfePGmG7IUZ3F/E+UNT81Rfg8/7Mqzv2XH17mIIGnBSrPsEJ7sIjboSJHY/LGFsFrtcKrQUi6BWe5UHgVDJk2Tmeq3vMdI8LrU3wMSjQIRCKLgZHaMGNtRlfPBlwYViT9yPGqTDtwyiJuW0Vg+4qq5t7nMlTnl8w3M49WhK24lU+X3+CFXLqrkdHFS1VMDMFCQGtLSMjOB14puVoFWfYKE5xwb5A7tb4PH2LAuFpE/Ni+QYuyjaR3mMQungshWvzOX6TR33Or/jzjGLDuF5GpxuEcQ9UjdC4I4joxqWNgNSLhKSLMjOCz9AU7EcVH2/FDLXijUVNXRmW5y51z8pFng4XOaNGGDxaeXp6SkqFKNijy6YssEuXT5WrjRmIKAxNYeESTc/Bct4hqMeooxfZkyVCuUar/QlO2YSsXCCWkmtZzZuqgJKEkXTZTDfIKiFUgfXxlFk6pO8co3bJ1KSMwzpO3WDYdeSx55Ory6jEMY0VK4MeRdmlo0ueOzNlsw0bYZWOLhjYLs6lfMbWDqd9waRtKKZTnlpZoq0jqqJFZwS232GHlFPTAdbnmCrBa0NWjdm3Ke1txWfKizzbOcOoU+KjioluUWPwKjCMFZ1aCC4QqZqrfaHUnj1Zoi8pXnl2W4pdu8BSNWZ9ktKtNFYAhP22ULYdOnGkG4ZoyZMgmDIin1hS5xgrGLQCVdCEUlPt9xnaDh97rMNk8QbZZEZZRXgVc6tV4uuSJNsltZ6xUjgdyOMcpE1cFcSlw6kCnRRoDaEUCIo91eFKT+OlZHHLsGoD+tGSzSyw62oGy1NuW8faIOd99s0UqXCh/BCbURebeyQZULYUIzlPbDVWOZJUcao9JJ8u0JopXCtlLylYcB4xgdxAXkU8OthkGPWpWz1e9+KIrdpzJkz50FpMUsHabkRvZ5mLtyb4U0KkPMtxhbERu0u3uexrLm7ldCshhIw0OG5nNboo6VcbGA+rndu0h6uIMcwy4YXM0i0h3dF8sJfyxHSXF3pthlEfX8Vo76lUi1h5gjFEXlHEgRrIdoVMaj72RI9HJluc3t/j1MSRlJr124I8qrm4P+XcfmCFjKlE7FjLTAWk9JQSE9Ka3AaMVizbgvYtMF7w3ZLzlaF9zbJ9sc2L/YKFStB4zoQhUSmMdSALjtokLNf7XCi3+eg0ME6WmWTneHR0m3HoUmWL4DVdO0AkYWm8TSdotlY1sySw3W3hpjGdUGClRwTUknCtfZ48Kgn1hFAtodoOX6wxW3werIBfIDJjbtdrxIli4ISno4jzfpG+HjOygX1xTH3FZjLE1F2C3mVouoiuyVJNpkvW7QzxQ9qdhKtZjDJTapkxizTtSrGrFtCta8ShYLHcZ6pWoQAxE9r7fVq+pNKQRIbOWLBtRS0Qq5J4VrE8FFaLEdPuBFGeFjUta6hFI8FiMKQzwb3EGpITgnaCP3aErU30yupD11Hp9dOg1B/KydFfu9Oq/gAqy1BLy69Zo5AD5epugqa7XfTKKn5uwf9q4DcOaqA9WEE7OLc/UdBOcIJDbLY9mUxpI4x9lyrUJHaKlZrUKQSIqsAkLRh0OqhCsxwnJL6xSN9dGOEWA+3tmKuLDuKKdB/qoCnKFjdTzdlohEhJ5AHt2QyKyltqSWiPoG+npGsf5szVAZXTDE0HqxydvGRHKWoTmNhA7VukAZxE2KBRopiGJZwIpfU43+H5WJOokrPjNUq1z3l7g5YxfFCv8Oluj0SmrMYv8GmS8svuTZy2NxB7iw1rAE8mBedKjQmaj/gO6ApfnELHO6j0GtoLGuGDXMAyQ2V7kD7NTdclhKb/bovmYpjQCk2tLR0CXZXTJWcoLWJqWuSIKRE9ZQhcjYfscYORGLKqogqLSDBcNwml8kSA9zG5WwRTM4g8uQnsWM1qBSKKQlLecGWCmip2ao+OhpQrU4ZxDGkHF1K0jxDjWBxr9lsWozJKNDfTFdo7nrxbsexGvJCtsiPSWH7HA6JkgtmryEVjXElUa0YO9toQVcKTo+dRylHrQOYct1LHZvsUO65Hd7AHNuIW53DRlN31DXalgwmgyjUmapsqdezIjAtjhc+noGp6dsIIw7ldz05byPSYaGrZSg0t7SmMMIg9hY2hTihEkesBJlgmVojUmFQ5JM9ANDPdIdKemVY8cXvA6r7n6X6fhVxxuzOlpUdstTUKzaVbFW0VsLHD1BqFYtoLeFuQCNg4R5EQO0+iStp4gk8at8vIY0NgmJ3lDJdJKk/mMj53o+AT1vJJLzy6VTI5D7d7p1jcGlB7Q+LWmWhD2RmTugylLKHzAsWexhaKR7cdl9cDLgo8tWy56PZ4QVqgYCWZMJKKxZFnJ+qhJWJrsoJd2KVTBTSwlgZSW+B0xFs2RqAMrdzTGjhadodWFRicURAJQQVCJ+eJ3cC+gWfPtXh0S1FkUBWBqxf3WJ48zal9h0r1fH1nk762VHnS2YxFWiyTs2cSlM/YjheIk+tc2lOofI2pghAKnICLUjJXcHq/oJcHHr3tGcZQS4sL2zVrzOgZh4jG5Z6RWmTYUcxcm7bfxVjBTmGaWKqoYG3fs9dq1pu2p0JmAoVktFWJpeC5TPH6lQFSxlxwE27EMdo5+i5nMYW9tIWYGJPs8rw/w4xxoxSqGEOJFsfU9igzy8aCRacbNKrddUbG44t1bCdB3CLajIEaEYPONvD5WUTTTPgoB3i0z5gFR+kz/oz9JJqaF/Qq68kQ1ASjBiwyZi+cZiuxpFLjTNPfeVywqHM6yjNUhu3ugIDGqC6jtIM1molRlNSNVb5R5JEgFRR1C50OmWQZ2SQjoqJaGXIjipjNYnS8jRJNaWKmvTbbizNilTDNCnoaWoWwLzFa1ujJkLXc4KTz0N+cE4J2gj92+K1N9Noa9vYfIEkfv/joPfuoKGpUnD9EiqO/dhXiuCF7d8GcPfeaXYPm5/b2dxM0aMjmH4qg3TqogXZ/BU1Nt7B7l9GrK7hnnn7V5znBCf60QWgco12AG6bLvnWcYoYKgtMJL/TbJLOMPBuxLENcEFIciOKT3Uugr6NjT97OObMfaO8adk2XXHtqoDsMBCCyjqnpg4pxKqbQGgKIBLQIj++McHHOwARKYhLvSApDOgosTjtce9IRSYueV8RisaEhfHVY4NnuiMekpueaGf9TMuZN7HC9PeKmsvQcpNqwr1p8lJTbOsGHkothm3Nhn8CUmVuibUrOhQlaamKvOaNus6cMddVHt5/Huy6LPuf01DIszrJmd1iwDmU9L9qaWzg8sMRz3CKnnoci42qJx/RNjLrCTPpM6FMqw1UzZV9pjATGWBJxnNUbbCXLSLHEk+o2TxPomSEz1lFuAUOgRhNJTSTCvl9hlYI3uxHXTRedV0ShZNwWIm+It1KG52M6E08aB7yKEEpAobWjr2aMpI1TCcrPeCwMGc1mrExz6GmoEt4aX+F53Ucj8zpKoAmsDHIqU7HRge40ISlrztZTppGi0h6Lxqc7LFAyw7JgB8zqBZ68PaYXalpeuOgHWBOIaigizyh02V4Y8Lp9uMSI67QY2pjEBU5VNbfVKtYLnbIkTm9zbTGwlWZ8+rUB/TChShKGIaMS4bzapoufj3TFAlNmkjCuMhSWvDNGVGDS1qxIxOqool+1maTSZJiGJh03ywWnFNoqeqrEazgtA/I4om9zrHhWfKDQHUoNtdREWjgX7bNNSqYdp8IQtWlYTYWL6RapLYlmmvZwiiQ1TPuMiRgtTVGVJdMVb3+hYKftQCAEzW5kMBI4F+3RvpWyGddUp2q805wzM1ZcjQkBryxeWSqjCRKRqBqiiNVNjesXRBPNWZkyU5bcGvrjmpbUiNbMipQ69oj23MialDhBODXOqbQBoxgaePLKjMFkn5U8Z5g2PeyMoBD6lOxlMUPJeWyoeP/yIovxc3zORsR/vthj3Au0S8Prb3SJihZby2BSz+fdvk6FJdUOpxTDlsDMcXbfkXY9/UIIiSfomhtndwix5bGb+wyNoVN6YvEUtWKSwY3EUhvQGFQAEU1RtVkZF3TGgvGBYqFCb1n6IefGmU16G1MkaEZ4ls0QM/NUnYK2GnDRaz5qV9gP6+jIonWORBZRgnjdLAIMjXSkk00kGEQSlCkaNV4iwEKI0PEeoTqIg+YPlCooTUFcd4jIyZWnq2ZsWc0Ui4TGNOm82eKMT9lULdZkigD7cc0aWzgVsL5RjUs0lSRUvkshTVU2UKA8ngihhegIiQdIsocvTjNd3gTlMalD3COQ7uGVAgSRDhKnlHGGsjVKJ5z3E9pYtklYVlN6ZoZEKzjzcJO6E4J2gj82XJtc5WP7H+GzNm/RXjMs/uzXICjGf/a7Kd9wb90hc+bsH6pYtbt6FXPh4n2VOnPq1GGNtNcawtYmKmuh2u17tplLj1D80r991e6WYeMWqtO9r3ul3f4Y/Z/7enQ9odj7FMrBgH/3/M9zbun1vHHxTa/qWk5wgj8t0ABKeLGlCHpKVbcIElHoNkZHTKKYYbtAq0ArlBTxhCAll9sdLu4N6S8LKSlJK7BUTmgZR2Uy5kuJ5itBFLEWosqCD+QqocYyS2qGqkVUB1ZUTgBiEUQpStNikBmK4FHAbr3OIgO6riYRTz/UKD2k1nDOj1DAZjwlLhY4xZiNKJDWDmXAq5rMNetucDHWeMTCI36XoBwqJLw17FEbB14xCCkronib+QP2k4rUWZ4rNaGecVoqzpaOFf9xulIR6mUeCUOWidAR1CHiNl3a1jOymoGp2CBgxDDFs1xN2WKNdck5IwnrvqKjS65Jxuul5BQ1v9vep5P+PgNneaTM8W6Xj9aBWpe8kBnOzxJGRtMPnt048OL4DJWJsfWAWmsiKygRotph9JhoL6Y/9VxdrBAxtKuAx5JRkamSVHnGaQ/rIm61SlpTzaW9nM6mY7YaoGN5XdhnOQTGOqErgtcKkUCwHkWgtDWCZSssQrJFVkNLTTFGqFF0yamywGpcklpLS2o8jRnE6d2a7jgw6Fe88fp1Pt6vKI2hV1h0SzVrn0LJVHXJKji7VXFqvAkBlmaBW/1mjHSCw+kEpwWkyR6r5SAFsjG6aEvJSgFtu0+lFaXWjFVMbiMubnlOTyZs6JhKx4hKyHxNcBE7HYeoCHRTpapTBx7dGFOJxaNJSujHE24njiQPpAiLtyeM1gQxGqtrpnVK4kpapsCpQLW3RB4JwUJioKUr9p0iKDi3V5InmjOzGVYClTJonfLYlZy0Ema2se03XmFqQfz8SYsa1UgRqG1FxztIasRHOBSxkYa0ILSVo0Q15jgKjPes7U/ZaqdYESQEgg5IsCxNaqz2WF+A1k0JB+2IXECJoOe11Ziv+dy3bQQ4O5vBUuDi9gwJlgu7NRrNsG1ZrgtORQVplDKMPLEYFkJOpioG66EhJq0cQ0J3Jqig8CHhcs8j7UClHVbBWVPhAgwS8ASSAkqj0TS29CYECpOhxmFel1ERNMgs4sWO49HqebaTxvWzjiO89jxy3TPDsYtlnMxgGviiWcGVeoaxQ+Iyoky2udFZY5Q5atfDF2fR0QhEo3RTfVzponkHikKkMTXphYq380F22aAONY6ITOVMokBLb7NnKxSQ+JqlusNOFCiVRZinQquKlIQ1mTVtDooYKFjEKEeEJiEwI6bGsuf7eNvY+AsKCRbluhAiTPsaINjselN6IRogvoMGEhxKQmNSJBEISN1lnT28zVkKnlK6ZDRGUb7OqPWUnqse+ptzQtBO8IqRv/v/pf7oh+l8699Gr6y8rO/81u3f4B899e2E4PiJTU/WH1M8/rXo8U06v/n3qc5/AdK6s06RPnOG+gPvf9Xt9NeuYI8VqL7j2KtrhJ1tROQOC/7XAsL2Fnpt7b7tMpcegTwnbG1i7qMMvhT8rZv3NwgJnu6v/S0k7jB9y18hfeH7gEV+5P3/B5tLim98/K/ylx79xpd1DslzJv/sn6KXlmj91b/+hyoJcIITvFbQhJswlRbaeYz16LL53GghRtCUEBr3xCzOmQGVEio9YGlPE9VNYdo4MlTzIhb+2GM+0W06YcqF0ZCBy7AIBlje98xN7lDz2q+CwqiAAIPUoUWhRDjjR7S0ozIKh3DdaJZ0wSkmaGmC0zY1n6mv44JhajyJArQQgEsMmBpDYjXaeLxR1KbmaX2KLEAaFLlx7NJCVMXNOmEleEyYsmxnXFAlbXWb4JfZdWucYQYiGBHw0FEVrtRUOuIUBZGL6CnNOSJKMbyBKVf1Ct2QM5IWbzB7WBXRDoaehxYahTBWy6RhRlCBmYoRFG1q3qw/yVW3yAJDNpISHQQTIFWeKnhataK3WQJQYchE4TEoa+nlFWjhUjEmzSt8osH3sRQAGBWo45KQFCQ+AIpTbopS0N6BWawpu0KKx1ASVYGgNFoEWzXkw7cKVn3JjSSmpyCSgFcHBF2IlQcBpwNJqJhJ2qRLBqE7DqgAX3T7On2xXKhLxFomeQevKgKaHiWFipBEuLgDxXycxT7wWVf2GKeWvq4BDseUrjRyqKCBRwgaWroZZzZAGmpqbciCkIhiEkFSCJWCoGCkuvSyKbGBmW6s+AOQlc1JxhJjxdMzJeOsQHlN5JqyBhBYGDn6doY4w27URWOo53XQKtUUV1ZGOB2NcUpY1o4d30VQJKUgB305t6yIXSBoKGkjAVpjYWXXsVgKNxYMM224lG1S1ykbNmddHKVPqJj/XoliavsgQxRCZ+YBIaobdqWDcP5qjteNsY5WATn4zVYwjdokyqMFaivcbi/TDvtor5C5r+LY2KNeF8Wbbu0yjlNGVqOdEPDE3rFkZxA0WgVy5ehXNczHTK1tIywpIY2ElgooawnBUKuETKbEBFLTTOhajiaDCAalHKAY6RZeG1IRkiJQKuY0BZzTRMAw8qzuNfcz1zGRTJmqNrYWFvZL+vM5Y42DaEChINIjmBlOjxtH7sJaquQaAc3NxZSZjahVTi4WULRlhtElZ/UOvdwTBC5tlFSuSa3uSI3vOlwnJqk8tdWMrdAvEoJK8Dqg1YGwK3hdNe65QFCaOjRPp8Gj59NjsXiCAhPvE+HJ5wWwEwHjYyrR1IS5F6ZglCcLHhsagqgP6k1L81ZBK7riWfY5o2hKHTICitXdijODkkgEmPLl1cOzlE4I2gleEeqPfYTpv/hnAExCoPed3/WS39krd/mnH/nHPN5/gm89/U2Y8K2EtrD3+d9BUgxZ+okvIv3wD5O//e/c8T1z+gzl7g5SFKg0fUXtlKIg3N7AfvlX3ne7XjsFdY0MBqjFxVd07D9qhO2t+6Y3wpHhib965VURtLBxC3Ppdfd8Hl37dezuJxh+yXdTvuFr2f9PPw7Ad5z5n/i5pWf54cs/yGcsv41PWbw/4T2O2bt+gPJXfhEAc+l1pH/+Ha+4nSc4wWsNAY0iYEKjXPXsDKmaH3ebCy5E1EaAZtJHSxNBtSpHrT1J3qxTm8aOoBpraX3g530Muc7waIwHhXDKjOhuxg0zA6I6IBpq1QSSiobkBSU4JfSloFK6qXkFVEqxxhiBYyE4CII3gguKYQSx9/MQRJhEnml0tHeLGiWwozIq2xAkALShijXjWENYZIeUrh5xNrIsFIFuXDT1ghTE1FRE5JLgg0EUiILyWBhiEMaqi5Om/Y/LDZoeBW1hgxWCMKetcLFs8Vw7p2ULZiYiEpj0dzhLQ4QDgg4wVpqh6rDRLShC4K07gleWsW6jqpqp7bLChAOuvFwU7OkW3nea+20MUKOCsGwakxOKQzf2w7/PblVcTxpC1ArujvuqCMTKk6oaBcTKoZRvbpI+YulKZF4gAfZ9m1JZEDBSETlBBaHSiknUHL9S8Tz9VojmIXWs84NBSykW0Qo37+eOrzGA9dKYvQDtKej6wPK7UYnU4eiSuU+mZoGKJ/Y9Vd3B6wMy1BRTBxhF7WNq8OGFN+0ThVdHk3Wt2ZHF+DQKKKWYCyd4ZZiaNlDf0YeaQMCwnzTfVSogYqiDARRGByqT0sY3Cggc/rmy2/RXHjXHAHBaWAwTqjBjYtoomjRjEGaqhWoPDs+dVPdaogcaBVLRkPcFk5Oq+rDnDgJ6R4RLC875ww+b9h3rLEGxWBXNDvrg2ZPD4wQl1FrwCLVu3kZgGEUt4npKFaVEVjMOPVrzNnTGQjaCrbMHbW9O7omY6haxlBhxhLmhu1JCmB//+E0UhFqDFUV/1LStVgGDIqqbUWScMO4ZtpcNIxszjWIcmkiBDZ7F/abe41JVkBRC5AKPT6BItvBaMexaVvdqInd04lpptmizo7oMWhFOK86VE16/N4C9o+erGTfCWXIQhYvmVxoUa7Ym0TVJJfTQdOIKb9Xxi8OjeFKNWPKNs62neT9dX86orKKDu6M/FmY1a8MKpUo8igpLjSGjwszHRKUMPW/pJZqOGFbKmrpu6qxsLVsEYUcebrN/QtBO8IpQ/NIvoFptkq/4Koqf+Sn89hbmAWTiAD/w9L+iCiV/783fzunnNxgATy1ZLt/6Zd75WxXJRkzyu9/H7G3fhrJHtjYH66T8xi3sI/eSiofBv3itmbW9dOm+2/VKo9aF7S30a46gbRN9xtvuu+3QyfHaVficz31Fx5UQ8Bu3iN/++fdsi97zv+G8ZvdnP8THv/kMH14OfB3w6OYu3/YFf4cP7T3Fd3/8/+T7Pu9dD1UcxTmKX/h54i/5s/jnnqX4pX97QtBO8KcChqMfUyVC0IpaJ0S+WRsRK8eRDiLsSUYnNAqKUYGZ8WReMY48BsWm75GpmkU9u+M8fh4s6XAwzy20VXnHPiqAV4fz4PNzNuoUxKxv1qRFk76nBPYWDa18rmR0muBj2gJtPE5pCO35EY4/23eSxwxHTU1NzEFdJUKCRhBpgs0BGSMUA1nns6kO6/goaYjDiFbzweGGg9NomIeJet7PNfZwN43g0Ewkg3lamqDRSrFQR2wnjV341Hriu1rvDXNSByhFaRS++TYg5KZNS1Uk6iDga66tCT8haIWe93V4iWQL3bDC+T2SeduPxo1ByFRNaTTZPIietjSd6Z2Bmsyjfjl2PyIJh8esVWP6cYDCHhubx87X1QUj30xuSlC0TM2Sn2EOqdm83fXDA8UjKLrj5ryeB6fYHydpvZF/4H4HmMzb73RAiblzGNI8AwfH22jVmPn9V8fH7FzG0FqjcIeTCKkUFOFogrfQoYkNgrAXl/RzQ6SbFD952ZWnjnpvPjRoqfqw7z2aSIXDe290aBxID6+r+YfjXhs/OWz5wWPSfCJzAlup5pgHPRBQ1FGzHCIpD7bdeR1rNw/+fzCO1ZzUm3nfzt85NGpuHnmiu7LvBKFWctdnR9DAzdMRYX77PqxOgVJYAaUDsiyH41kpoVM4Tg8KuqWjV1S0Ck8hEc8vZIxMRBDNzFh2OzFOaypj0AhFFTi1MwKBPFPYY4+t0DyDJjTjRXlFUgayeVprnRriOiCH3K7pU4+mrysiFaiVRoImqzyP3cibY3Ks7fOrrjGMMyiOWeU7Yux8uwecbZGpGu26ODtikFpmKxoxR+d/GE4I2gleEeoPfZDo0z6d9Cu+muKnf5L6d9+P+cqveeD+t2cb/Mdb/56vvfj1nO9cIHzsXwPw7Os/hX/3yXfzZT82wJzqcO70Lvo/fi/y5d8CgJQF1W/9BgDT73ivRKAAACAASURBVP0eev/4u15Rqpy7NndwvKvY8wEOFKqwvQWPv+FlH/ePGuI9YXcHvbp63+16cRHV77+qWmj5u38CqoryA+8j/Ya/gJkXCg+Xn6JlrrL7XJfyw/+B33zjJs+eP8/XsQWXP0DL/s980+PfzHd95Dv5ve0P8Nlrb3/gOeqPfhiZTEi+9Mtwp8+S/+SPEaYTdPvhbkUnOMFrHS2vmR0rLJrO7gxWFg5UizkqMYxDjMy/s594QnUUKAmaIA/+gTYvHdfOj3QEFYQLN+tD1Wnc0/RGgeW9o4Nl+UF04vAGykSzv2DBBlCaOro3bDgITSL8XDGQO7ZZaWb2BYWSCIUj02Oc7qLDPOksNHP+oo6C2qOjHCMIoSHDMxKUNPuLKIbSQatwuKcQKJTHq6Pvyj0kc05yDlUL2FIddBgetj4oxcIdJLlJMzTKYxACiraqjh3/wdBBOHerhgdMYpl5W0t91Oa7ydlxuGPXksqDB8QgOVJc7kaEn9dgM8S8zEF1eKQ7j3dAEB8GNe+z+8GqlyKCitIKR3zz3lYcHFkTWNQzNn0Ppecq1rwEw93tuRuPXGvu57DM2KhbRGr8Eu16OO7XK8fPm87HT6lTKpLmOZlPbBxHFeyRmhoAPTcaQrhfzzkl9yqWHBG0oEzjrQGH6uS9d+bgbXGs7XKk/j0cR1cZNIg+OkNQjfZXoxHVEMnjD3+RWnbWG9fQdlVhfaCMNKVtaImej5W5OHaYnp1Hltvr0bHJi4e1UeFRRL5ZC/iM6fOY1Pfs5TBsKMMjMuKyOsUmHTpFTae8dywd6NuTxDBJ7THiBglNGmzzHgSjY2Kl6fqUQMGAhD7FsV57eP+eELQTvGyE3R3CjevYr3on5nWvR6+uUX3gfaQPIWg/c/WnUMA3PPIXmw+e/yAAj7ztG3nsZ/8BVAH9v7wL/2vvJP7kz1F++bcgzjH6jv+V+n2/DUD9vvdSvOffkH3tN7zstvprV0FrzLnz992u1xqC5rdfW1byYX8PvH9giiOAuXAJ/+LVV3Rcd/kZZt/zz5tzbNxk+C1/jf73fD8sXMT85v+D0iD//f+N/M1/yNL7PsIXffNfx7S/H3nxMojwpWe+jB+6/P381JUffzhB+8D7wFqiz3wbKk3Jf/xHcE9/kvgBiuAJTvAnBd3KMMtertJwPOw5+hE+UD1yieZbHkzQ7hdYvlxM2ppb6xFKweaqENfzWV3dBE2dqWdctEid59xseke6WZkoyuTY2edNnKicShkW8XjVBICRD6zkJbEXKqvY7CXUCtaybTKxlDpQHcyrzQ+YyOGCq7kCIM36jypgXeCKbVPbGmUdQRK0NLqEUh7m6X+p14znphta5FD8a4LV+/Vbs4MCjPjDNSOJqlGkh33dklmT2gas2smhggFHQa++b6h8hKiWeaB6L9RLfPc4dnyrSZeaEx4lDx4PD1L2DsaXJWB0k2Jp5ysY/+hwQD+O/g9g1dF9Oo7jBOOg25xu0g+PY3Mt4tRWkx6q5eiaV82EvZDRVhWpasaERx8q3g99jpRQmXAYCDvMPQTv5eL4vdXAMCSHkzaLuqC5j3o+fmQ+8s2x7x/9efyoioCZp3bG/s7tzef3JkofkiY0uW7RCjMehKDMPURRBYGHjLcDVMcLLc8nUxTzVNQDV8M5db5j7Itq0lPn1ztN5qSsSRo9dvUQzRlmPS8BbeToCb/PcOJgRN1UPdZl0kyymOa9t0R+z37QPB+PyD4A60yo0eRpREgd8bzdlkAxn+iYETHFzp8l5i1r6FuHihaOBAch4JXiNMN5X6u7Hr0TBe0E/z+h/siHAYje8laUUkSf/XaqX/9VxPv7qlulL/kPN36FL1z/ElazNfA1cuMFVJTymY/+V+y/+L+TtxwLK+vM/EVa+gWKumLr2/8hv7v5O/zs3z1L6/oWf+X9XU7/2I+Qfs3XvmwVzV+9ij5zFhXH992uF5dAa8Lc0v61goMaaA9LGzUXL1G99zdf0XFnP/ou8m7CD31BzdW3rvDF/2mHr/ybf4OFf/2jJDu/h8tiwus/j9HpPm+6ssfj578Kvfpv8KOrmL1nYPkJ3nnh6/jBy9/L9cmLnO9cuO95qv/8u0Rvfgu61cY+1iiT/tnLcELQTvAnHC+R3XaIgGYQUiosVgUUR6qZRzMKKU7MSwb6LyeGTr2mMHcex9bCxumIwwBEKar42BonYNQ3XF1oEeNwZU1cNc5yi4OADoHW7Cj0adZEwQIOrzwdArU06UaWQG00U2vp1I5LuzMUgX4inCk960VJlRlUHRAR6kjNgziFGMFpjZFGMcnGjbIXU1NjES3kLRisNIqDraEzLvGqIZqJ0bScMEwEkwqaQFqCU4q4CkT1PFksKGxoUiRLZXl0eme6aEtXh/1ixYGCUsy8CLdQicEowYnCi2blYA3a/aSLg157gNIUPeCeHySrHaAUe6hgHBCGsr6T9R0//YOUvYBm0cyoxVKInafhHfV7I2a89ECTOeG5V2u5E7FUJFIy0R3uVTI5XKv2ICRO0a9rpibi+OUOFg1FckBhFGdnllxDrTU7SaCvi7uuWx1SHyVy/4d3LujUx9TMg4C7to2ByatB5jW5aYjTTBJaqiKXCAFaqiISRyIlCpjqI6dmdbgCFEyokTkZQEMkFU7ZO+hLJI2L5ZHlyB2XdrinV5ZcZ2gCsVR3qMy1stS6i7qL4Vv34Lt857iDSmyT3i0HW4/9rRzQSGuCnk+iNOmaR6+nMB/7zWdamveKuWukxTiUClg5rhbfX+uHZm1rQ5yO+sfcs+br+NU0+yTiOc/okNgLCqXnpQGOSf8KiMwU8Y0Tb6kiEvFzvVPhlSYoT0w1ly8VHk09V7LVA1TR4zghaCd42XDPPA3GYB9/AoDoLZ9G+YvvwV+9gn39vbXM3nv7N5i4MV9x4aub/Tc/SDn2mJUluL3JZ3yicdga/NfvZLzYZuFUxuiv/SU+VFzlu/4by9k0cGtd+CdfPuL7f22A+73fJnr7F76stvprV7B3Fag+DmUtennlkBC9VhB25kWq5+mH94O5eAn5xfcQBgP0wsJLH3M0IL36K/xfX9Pid84qHrPCD3+Rx/7qTb7iv/tv6aQTtgfrlD//5+h7Tw9o/97Hqc5eov7odaKb78MvP8GfO/cOfujZH+BXbvwC3/zE37jnPDKb4Z9/jvgvf1NzDYuL6NU13LOXX11nnOAEryGYB8gUs5Y5NBAwTnA+atZ2zK23FRp3MKMvav7TDD0/ZGq6cDj3ej88gAXMEdcJg7QirT3d2jCOjtQhxZ3r0xI9RSGUoQmex6HFsh5RxIYibgjjuHvk8XYuz7iRNTP/RhRPmQUcikIygjoKta3KmUofvGBwtMyEsxZWr0J77EhqRdAKE4CiWbsXBUeMYzpfMaaBIJaqZRnpHh1VkkxLWoPA4ijHWUtcOjSBWoEzCus1kXjaukT2HFYEHZogyGlBi6LrDPuRBwV5iBjqDHWg5BzvYQVJKFEIKTN21DplsHPFToilCZgBJpLQuWtNoGh13/Q/bzVmHugXqSYr/F0KwcFaIAXH9q3n9CIEUPOUt7DfhGsLtWEw98M3CF4JooQ60mgB40JDwubH0EETKUek3WFIK9rg8EROSII+TLkUNLGU1KpReHdCm16cYxwQINL+8Lj3w2pZM47u7QdB450l0iVB68PJiTrWJFXA4Bplk7jRW4IidRojjbV9kcphip6WJuBOQsOwyjqlNIASYjyZqYlCE8SLOlLQDu5RHR0YW8xJihFKsfRDoDSNi4doDp3+HgQtinBg3CON9lOhiIIiN+BEM5KUIRk4Q7AerQPp3BH07l5SQCJCGZrrd/O0zZ5MiamoaHGz06TnOQyxNCPS3/+1BEArzCh0ipvfz1Il97xRykiTljJXvu40EvJWYeZk7UDtriJNVB+lH45Cwopxh9ekgNuqS0uawtLiNMG4Y1sFJNB4zGrMsfYoadbziliU0KyPpZlc0SiMcgTUnX0f9JxkK0YkdCkP302bqsNpGR+e+4jic0AJUQRinVOFDDCIClxhhRTPDMNIpayqfSKl2VZtWtR0qElwrJgddsNyk0YJjYsvwifUKYrQQdkBHZ3zltA4gUZljzJ2pOLnjp8Pn7B45YWUTvBfLPy1K5hzF1BR87BHn/KpALhP3L+e2C9f/wXOtM7ylqVPa/a/+X7qmaFYPcfob38bOgi//ibF9b/852Fpnd1nOgw3b/Hdf3GFBenwk888xd/97Zqbffj1LxTW/uB/ILrxOy/ZTnEOf+P6A9efHUCvrjVr0F5DOCCMByYm98Ohk+PLSHM0u8+w+NNfxeALRrz3vOLrnxLe/czv80Td511fani2W7F/uY0PLcLXv5N3f37z8hr/g7/POFumnkXY602fL6crvH3tc/n3N34Zd5dDGcwJfAiH4wLAPPoY7rkTgnaCP/nYLfskQdOvLUWqD3/ub56xeK2olGbTtilCQuJyFJqgwFuhFn2oHkS1pV+XpFTH5mgDbdcEvpVEWFFEojACqeS0pElRSpkR4RClqCNNFRmCCLXVLFURQ9+YcLRKR1wHtAMvppkFVoJVNYlqbO+RQFHFLE5SokpIKiHLA9FM0cqF1aFwdicjKhS6VPSnBf2ppzP1LA8Di6Oa1VHJ4tjTn1a0nCcOQhRGGK/YX4F4peLa6VOM1joM19oM1zqM1ztMT6XMlmOma212VxfJFxIG/TYusQxCjxApetmMRNcoUSSlw6OpWhHlUhtpp1SdiLIbExLLtK2oI8Wkq9hZsVw/G/PixYTdMxGfONPm1hnN9bOWT6z3eHq9y9aKwc4DYDGCizSJlCxWgVEUU5BQzbUrhyZXpvm/galqSOVxvwRn7gy0Dgw0yrlyGVB4c+dMPUC3bsbFwVqzRBo1L58X8r280qUOhrExZLmwE9qURYfaxyiBWbdRCQY+QeZpf02gfdS4ScuyX/XZrxPq2lHmlmHIGhKi1WHa3EHQ2vUVCsWeb1HFikoZKqvZ1W32dMIoZOz5NqnkZK6844qWqkCvvlfRQRSpqwmi5yqcRvRRYF5nB66TDZ3q6IKOrzk1a/qhTjSVsmyuRYR5P86CZafusakX2Jce45AwDglCQ6JLbXDHHEedUbS8wx06+AlKB6ypGIWMG512s+9c0QmKuRH7nWGyt42NvzmWFliJxnjBztc3RThqZZhGlsoKkXhsqCEErDgicRjc4f49b5vzmkDk1OFkUCSelgRiJ1gJyJysj0OCqCbVM5aCykNL5cRURGaGxRG0QuExbkrHj0mkQJsSrxuyMggZChiueDphTFP97cGajhGhjptrPygnMAwZoBhLStsZkqAJolGhSZs0BCLlUKLmPRnQwWAOnS4bTTBE+9SoxqDDDglAEbrUYnHz0ezQVBgiatL5elaAWjv2pMs1tcCG6nGcgBU+o1/PjViUsKNa7Kg25XyS4TC1Vs2LUwOX1RJjlXCbBUYqwYhmRMxAZ1igImJHtXiBNf5An+J5tcTz5ZM8Uz7B02qFK2qZkhhCgg2aCo8oh8FTYImCJqdJ3X4pnBC0E7xsuKtX7nBF1OcvoLo96k98/J59b0yv86G9D/KOc1+FVppntiY899Svkk9jnr4xIFy/BsB7v3iNd791ysIP/ijVl2b8j9/wWQz1Pt95+ypP86l8ePglPHlN+Bfdc2z4lIX3/AXav/OP4D4E4QD+1k1w7oEOjoftX10lbL/GUhy3tyCKUA9RxswBQXuYUYgI6cd+lIWffgd5vsPf6ryZrID2s2/iZ/gy/tWtjyMCf++LV9n/ugV6//xf8t6vuMR73q4RrfFVzZXf/zDioHjmfbz/SlPD5B3nvpr9ap/3b91LlOs5UbdPHhE0+9jj+GtXkbK8Z/8TnOBPEoauw7m8IvWaDy4v4+cLjWolbIQuU4nIHIholBdKq0ApthZiXuj0OTNqsz5N6eeaOqnYXG7q/rhJj4VKk3hIpKCsE2SuDhiETmjUhcjOqBMIBKwEeu4gjbFxLktCjcewHVoMfAtdRKQltHKPLYXOxLE4LhsylQtLE0cvH3B6UlAMVw9NSa6qJjCRyBGFDCcGKx4tASsV7VARKU0c1djIkSnHsp+xludcGFd86mDA8kBhK6hzSzsvmRUJpg70iwkhh6qM8MFS14bKGa76dXKbkqcxrq9xiUF1FMVizHMrZ9k93eeF9dPMFlLq2OASg8siqm7E7pmI3TOKm49E7J5TzFaESVczyxTTjmGvl7DfjSnaEYNOm2EWcXsxwQIh8mgTeOF0DAi9OhB53VjSh4hePaKOKqoYpolh3E0xAtN2M7NfiZ2vK/JUicZbhU8b975INEorJh3DtDUPWI/7qgOZa5KwdnyHoMCKpxZLGWuCLJIO1ueKl2eSaAprmPmYbNZiddYcczQna0XIEAUuaoxUUi90fMJuZxEvlrQU6ipmGjJwQvz/sffmwZpmdZ3n5yzP+u7v3bfcl6qsrKJWCgWloUtFFHBpncZRQFsHEVxaDW03usUejFFjOjCGGR1FARWXVmiRTUCBgoJiqSpqyawlMyv3u9/77u+znnPmjzcrpSigmdBomIn8Rrz/PPfcZ494zu98v7/v1wqkFMRGo3iqsAOEJTKGwExszgESAgLnGHmKUSAnhYtXIpxEGIVygtiNrzBhVwKOJ9NxcArcpAAunWTXRMCkYPLsZBFiq+44V4vYyJuTkGqZI69I/pQT6ELSLWoMqworodTQNRE5HmMdMIgmhdhYRJyXLbZkBaMEGA9VSEJriZxBODBXZr2p0/jCXDXxWY9jhCwIhQHprkrpvjAOwxBgrY++UkA9Ncd2CKJskru2Pe2T5CHIFExIWIJ0Bl1OJKVPPf3IQOAyYjdmruxjPEtNpSyGKY1qxrwe0NJjUq2uOHAIllNJ2yhiE9CzEVaDUwVlaUmFh28L1uZA2pxAjDB6UoRrzxJ4GTWXIuUIbVIaZRcnLZmfopwhMk8VKYI0lFdkfE8JbSW1ap26ivALj9IToBTmimdh4jxWaSGvPHthNZlOGeExNj5yHKFTELnAlorCTbIVc2VJpKVQllJICiQZmlIISutPokLE5P4+JSX0HMzkEwt/KUpsUaWX70Gmk0Vt7QSBkURGIRD4FCgMu/hsiwqFU2RXir1UqCss3UQyCoBweM5RczkVZ4mspWYnjF+BJHUBmfPBeujiigLAgWcLUjwGsoS8gXIWaSWalMhOWNMUdYWJlMyn4TPcNr8Y1wq0a/iq4PIcu3r5anEAIIRAH7uB8ksUaO+7+HdIobhr6UW85d7z/Ls//QwHk0cRGVw3WqcX1RnqgKmV57N14l4e+I038oPxzzJu389zy5BvRHPgVW/nX7/oudz1oCXzR3yr/xreXn4L8ed/n/r7fwzMM914YJIRBl/ewfEpfF0yaFcy0L6Slb2cmwc/+PJOjs5R+dQbqX3sl/hEcZQXlv+Jy/Ud7vq85aabbuIFP/57NFrX8SPjAlt7lFfqH+Ijv/fXjP/b3zBb3cfp5jKdqM7R7iUAonHC773rffznDz7Bs1p3MBVM896L737GYctHTyAXl54mu1R794MxmLXVf9Z9uYZr+FpD1LpYV1J1fR6bClkNahO5l8hI0YycnuRQaUGpPFJVBaeoZD10v4rfG+K5EZ0wZ6QkF+Y9PHyECYhLxUzRJzKTSbrIS3KnSPot8iv9G1aBcpNeD2UU5orRiHYQmwLpQFtB4is63gyX4yrGu8IQIVGiZNoYEs8x8Dw6XpVeK+E90zM82FgkiQRtIsZiGUXMUuUCLpIUfojQHpuVCr2aJKs4ZGDJA8V2FNCJPVQkUIHG01VGtYjdtuVSzUPWSs7pObpRlaQSYCuSyM8YByFJFHA5nmZQqXC+Ns84jpjzu3ja4HxJESiy2EeEcK8+ymZQQXsFha8ZRwE2lnh+idGQS3HFdXHCU4ZX+C/PeIhsihEhSuY44TH0PYy2yPqY2DimcosMRhS5pjSaWhJQOIXnSiomIxbjiTypUJhyMtnP/MnU6Sk2yQpBtwWDrEWQley0FIWSGOlxeqXJmZUAq0CKicQTYCkx6GKSYTb2JDPZRNbVK0JcWUUXDUJTp9ZrIIA8gPPtiJ3piHU1x3o2xVZaJbZdIn/Ajo2uvKigXMF03uXcfESvc5BMT4ql2iBAFRG+0cx0AxZH/sRh0zlWZwNwk4LEdwWenRQma9To2BiFYbrI2KlEbNcq7OqYPQNo5im+LSf9exZKKSmloJSC0PgkeTxhKKzFd9DsxjgsZWiYLQRpNE1mBRdmHKo0rAbTICAiJQ8VI99DOFjoK6x1lAi0dMTCoMMcVE4SdymkJBM+mQ0Y+oqR8LBOUCqBlJZ6AZ4rJ1JHBOdqNXbreiIRZdL/FpFRIaFdCCpG4JUJsR1hEAwjzVYzIpGTSXnuiytSTUuaCc7GLc4t++SRpO/7FL5DUZBfsSsJy0mWYIm4KksMDRzog5toU/FtxoVKi7ycp6PaBP0qKvNIheBUpYlvoCYF07mingeUSErl6FYUm7LCBTvDatAmsBO7eychMo5BBJSgjKDfdPi2oJ3nhGqA1Bnry5ak7hjFPsOmx+aiRImUtunRNiO2xTxboyZpK+LcQgtdKgo3eccrQRffCHTa4PHRFJ00Zu5yixsuJezdSbjxQsFif8hs33Dr2YQ7z3TZuxoy38mZ7RV4wzb1JGexk7JvJ+HWix32bqXs6wxY2imYGeSsrPusbJfM93KuXxuw2IUwkYSp5cD6mPqWpr7tIceSODX4xhKVJQv9kLhQNEyHhXST1lASJ4JmIhC5JMwNQWapJJYodZAoGn1oD0paw5w4M0TliGbX4fWmCMqEOC1pbi0w27VMD6CWpTSTgvY4o5KXzPQ1jcRSyTPms02aZUqv9PDyHvHY0l9fxnYdi90OyRc5AX8xrhVo1/BVwVy6CNY+o+jRx27AnD2DHY+ubittyd9feh+3Tz2H3/r7LX7vnvO8al8PbzxhvXSW0mjVuTSzl9Ofivi5v5C8Xt+EbH8KVMZPb5xlfMtrOJtW+K3Thjsfc0TG47B9H68vf5jXF68iOPchqnf/6jPO0xUF+acm7I5cXv6K1yRnZnHjEXY0/GfenX85mK2tr+jgCCCUQs7NUTz4eeyg/4y/hyf/jPiB/4s/t3fxyvwX2JN+DCEszz1p+ZNNxf1rY8bP+UX+3fYlGoWl1n4vv16/g5s/0OcbPuxxanofU8UYrhiyFGPFT+1b5W8fXuc1//UE3zT7Ij67dS8byfrTjluePPE0eSOAWpo8A3Pp4j/ntlzDNXzNUW2scVpVWctDfByrQcDmckIa5Wib48REqjiTxMiwAtKSCc2enZJaOaYsJWfsNL3AZ74nUOMpdpdzzhySuNyjnkO7MBxKd/DzlHGqsEZjpQUlsbGi1AqnBBkeUhUkGkDQzLIv+JgrtNVUiwhfOgpfoKjR1JpKCMKHk3KZvpiiDBzaKYQNWMv2cDE9iCsjtFOExuDZlIVxBekkpfUZ2QpbVOjkHgNTI0XSEwGrrsp6dphzqsk53WTb82iUHl1dwShFoTQ9KkjPYQNDEsBFr0JPBhNZnjQYafHkmK4I6LuATGgGMsQXJUZOwrnPyBkCOeZBt595sUkgx4DBiEnLfSzGFEgq1lEpNRqBsD6YkMA5dF5FyolRRlhNWUkE9RI28woPL4WMhoreuInGErqU1sghzaR/rmH6zJhVanLAtqgwtBE6d2AUW+0Ar4TAOjZMhWF1YgZwb7iCQ1DLPJq5ppIGOOdTs2NqdozDIYVEqox2pvGtQ+JoDGK0Bd00nNrb4vx8zCN7Kqy1Qx5uTJHHkxX5YFhBOuiVGijInaR0klIJas6y5Ty2RYWRp8i1wtoamZ4YT+ykDVplQst0aSUKpxyfmplmpwpnpkKMnPAnmWc425onYoCH5dxMwENLTXa8CM8J9g5KYpsydIpeFpAbydq85OShmLmxhcTjZNikH/js6QRc19/i1t0dFj2PC80m66pBJiUtk+KpjFHukTtN4hTbtYCtOUnh20nUQpLhdEpVdpD1SX+kcCW9uiGXHoX00BZ2mvCP++YYlnWMdJQeE8YQKL2JjFHFHYbapxMEgEC6CWcnsZTOIxvMsDxSE0bFwuZUzE7D54GFOUCQBJPeUikzrHWM8wisj2cEpRZU84xupcKZ2ZihrFEvBqx0BIujHCkg9aD0JEZW8K0kKDUbZYUz2RKraYvt/mG2ynlS67G5YuhMK4wVeKTMlLuIwie3it2mpOIKYpswZYc444ELEALqxuBZR1ZxHBwaOkrw+IwgKwUElkZhrrJ6spKQ1wpuKXY5pIYUgYdnHKVVOFvBOEFUeJxP9nHJTHHetify17kKN/W7ZIHH3g0fNYyYGsJsP0cP5khljSLdS5E32NF7ESJmT3+DRr/GvifnufN0yXWXDLU8xbMlSaDJfUepBMGwQa3ToDkCbR1BaaglhqP9VaKsxM8dxUgTFo762HLgUpVaXjI7gOVNxd6NgsUtRTyCalJQHxumhh6HOiVBmVPJHDrTZNsN1tMm/aKCwSM3NWQJlbSksdVgbqdkbieglRgaac5Mx+f6C5q5rmPvYINDnTUWByXtJGNp1KeRjWmlKft7Q/ZvFqysW1pdx7N6Zzi+M8Zduo2PdZ7DZlH/it+cawXaNXxVeEpOp7+AQQPwbrgRnKN89OTVbZ/c/ASdfJdHTx3jE0/u8HMvOMjr9m9QjK940tQbsLHG/tuu5zWf+DBvP/oSNqsh/sy9fNNWxtHUcPHAD/CTf/0wa9UZPKG5I1lgd3aT1wRrvN18K+/Q30V08s/wLn78n85xa5Puj/wg2Xv+FoDuD/5PjN78JtIPfoDsYx8hu/sj2J3tq+Ofyhr7epI52q1N1BdkoLksJfvE3aTvfw/pB97L+E/eSvfHXom9eAHz2Ek63//d5A/cd3W87F+i+vH/yIP+bfxy5OnK/wAAIABJREFU/iq+bVZRqd7PfFll/wZk88v87LtOcCJ+NmE4zw9vDiiaF3HNi7zhud/Py+45xS3H5xFFjr7pWQCk5QwvCE/x2y89xvndMe/51F4A3n/xPVePa7Y2sVub6GPHn3Y9amUSc2CvFWjX8C+ItbU1fvzHf5w777yT5z//+bzhDW+gKJ7JqH/sYx/juuuu48Ybb3za7/77J3Efzjl+93d/l7vuuovbb7+dV7ziFZw6depLHlNXDKbRYzRbMCNGrE7V6LQcOVU0GaHuEzhLm0kQcChGOCexniBXgq1KhE4j9q1rpDfFsUsx1jmmsx4zlS1sTbBdaxJVM3wc9WLInnSNBEXsSvZLn3P+DI8tVHmw2uCEnubBxhS9UY29/QLrBLJoE5URPRGgTJVyvJfKuMl0ElI10DZwOCvw0hnEaIbDw5CWFUylFZpFjbo34HZ5jueJR6nJgrngAtfZAbHxKfGRThIiIBJEeogIOhTKMpI1nJyiqPYo44IsVtzrrfCg2s+x8BxCWC7T4kEvZhA4+krxgNzHtqiyLWLOyQafVAe4T8+z5J9jJrjIZ/QcXQ0P6RYXPA+hDNV4jXvDOtX4PJeCJqkf4aTgCTGFQSIpKZGsJJoDWYawMCoraCtYznMi61ClP3GLs2BsyCBqo40iDRWdqqQ0igdWpiil5FS7zkBW8FOf8kq67MI4ZWFUwQiFkwoyn4u6zup0BtU+g1jTp8n9yw3G8UQc52OYG8VUC5+LUzU+cbTBYwcDTl5XZ3t+hSCb5nB2gRvTjNzMshtUqRRjhmWVRAW0zIADvS5z7jw1dqiqbQLf0IsVZ2sx8z1LxXbpOB85btCmoFNxNN0mO3FILUspXEzXa0x6DYuUbqWOKiVapXilB0rgScm5BYiM4eJMzGajwun5OjeWD0EtZXU5oZSSCgMuzcVkFcVw3qczrxhZn0EWsG4CNlxMw2oCl0767wCZV9iqVXDaEZdQLSUnwzZ5GnB4U3P9BrTTdWrlJsNdhxyMeShdxGFoGYFOFcIZAgqGynLJCk6LWc7MVLF6EnEusITGMqw76uElpsshdZHRXxwxbhh2Fx2BkwTWIYUlkd4/md6bcGLlbiRO9KkE69RICDFIUVI62HERj8VTrC3BpemJ3NUgqGSGsWiiS5/ru7vcnm9yoDvm0K5HpTPPWmWB/RuWvf0d6oVFOYeVsDNfsr0QM1ZVzpkG3TggVjvcsPsopYhIgmDCYvWhMQjAGCxDnCuYjrbZjBSbStGfC5lPNEJMZIdJqCGS1AvL3mHJN24V1OsF+7qGWgImgNQIMiO5sVtw80aJLSSIkoUw44ahwK9XST3JoAzZki16geTewTJ5UsfYnFw7OlrxQDiLWElI6nBhNqTFDGcX57jnWJNTy4pH5w5wurWPs82jXDwUcv/xNh+9foUnFpucmj7M6alp8tCyU5/n8lKVC8szrDaabMYLrE9Jhk3F2vI6W8vn2Zwec3qpzmDaYxQLTnt1dmoVgmCHQ/oUL+IJvrW/wYHMp2IqPCFn2NEReQjdusAoyXg4h3IBg+EiY+kRloaeWwEaKGVp5l2qeUEniBhrjUSgXUapS6xnmLKXmcovsxnVKOOS3WCai40au7WAfsVnJ47IVUR7NE9Z1ZjZgKQW0vE0BZaa36Eb1cl1g9L7yj6N1wq0a/iqYFYvAyCXns5K6euPATxN5vhXp98JZYNx7zBv/r6b+Le3LuFfuod0OAkrrra2wRiWL76d1IZ8eM9ziJf+jFQXvC7dpXc25Ofe+Rj9tOS/fN+z0Hv2cesFj15FcOP233NousKvD7+LQbxC9Z43gHM4axn8+q9iNzeRC4uo/Qfxjt1A8l//guFvvJ7Br/4ig1/5RXZf/r3k938O+Ccr+68XmaNz7qrEESZFT+dV/zODX/p5hm98A8P/9dcZ/9//J85Y9B13AiDbbQa/9h8m+WlA5TO/g3OOV/dfRSPy+aniBCf2CJ4zWkIoxa+88gXEvuJn3nWCrSc9fqDo084dtbm/4FzlEB/ZcxtHP/fWyb7SzwKQrE4MXv7VoTZv/YFbqOtZytEh/tu5d2Ou6PTLRyfPX38RgybrDUStfo1Bu4Z/Ubzuda+j2WzyoQ99iHe84x088MADvOlNb3rGuF6vx+HDh3n44Yef9rv11lsBeMc73sE73/lO3vzmN3P33Xdz66238upXv5rsS/RMCg1xAfOFoEBRhhYlJY2kjhACV/h06oKKTHE55A6EKEhNFZzECkkzTahkBhME7GRTdPttgrUayRT0ZwJWbRVvrHG+IATKqs9WrJkvcyo2pddf4dO1BU7uC7i4NM36nGKq3MbDkgmfsWpSLT0qFkRwmaPFJl07g9AWKQ2p9KigUCIkDX3mxYh9apXnike5XZ9ACsus2mK/GyGEI5YpK3KHb8o2kSIHWaJNTOQkM/QJ5S6xGVHtLtPMNYFMiP1NfByj9ChWFYzjCxgEhYBV1aQrl6mJBou6ATaiTsay7AMV6i6kcA0yV2NZJsyKlFxG9O0M2krqAw1ynYYYMxI+9SBlpsyIS0HDdSfPCUfbCK63G0zrS0gch8ceR7jMfnmZqssRDo4OCs6sLLK1UEVFE6bj3CLYeJ2V5DShGdKPJcPYMLurqZVjQGCSgCU2ScIlusEiiVnE5B6pbxk0JLWdCv2sylbFR0c7XJABR8YDOqbGRlLHpCm7WvO5imLga6z2mClBNiy1RkYatimq8LnqUQZplV3XoiM85rOcBVMyq54gUh2c76i6glaRsTCwzCQ5nztU41MHBBfQXPA85roly70RSXY9td4UpQjY2xtwx6kdmrsJldEIbIWHwnl2yzpVl3Nzb5IVZ7RgO6whRlN4whHGCs+ztOQGLbmFU4LNpZhe7BOYKbaCCucadXYrmg4h1UzgU9Is+2inkSKgaPnYJYlXQmO0TVRKqqXlYNexHnt0fY8qO6RxhhSCbgX8MGJJdClKD4ljfV+O2Vty374qn9yzn1EQEJQBwgmcznhi3gc85sSIm1hjLhcc81P2BDukymfb1Sk8TdVCQ20hgPPVBptty34hCctJqLEho1tRXD4g6V2X4OVDBvkMCMO5WpM00DSTiKnCEqgh2/WAne4UayLB6Zy6hjl9norJWSw3KDyNZyYS0uG85cz1hostWCrXceMEkOzUPR7bY+lVBBJDWxf4sWS2gLjwGQaCkbYUXkJDJmTRgLWKT6o80naVs3MRXRdxfqbKuKWI3cQQ5Izz2Ck8mr7g5jXL9tQktKyHZm446blaOd+guj1DRViq5PR8xSAUDKRHoT1E6TGXpdRHCqdKpBhTaMv+8iK9QcxGNkVWSYnCMTVvQBvHnCtZUj7zsscReZ5bwl0OssFhdjhkE4KaxbRK1g/ExM1JIdRCs39wA8tZk/log6X6o9zsdTheGlas4nq5i4oHWOqkfoPNlTEXFzRmbw+50uX8YpMT1SU+M1Pjgfl5LrZq9CMP4Wk2q1M80F7iba2beSg8jJY+MpSI9iUW9AV2y0W6FU0namBsi9Jr0K22uDAb0a1LjNegH8ecn/XoTA0ZzNQZxzP0ahUGjQp5ENKp1UnrkvhQlfaNx7Erc2wtTCN1lYq1eC5lKd1gquhzZ+crZ+5dK9Cu4auCXVtF1OrYtVWKRx7CXQkxlPUGas/eq06On109y4nefXjjO/mjl9/GbStN1ObD+Bc+yujKHF3tP4pFsOFu4w+PvwQtdxGVM9w5zqnhuG+7ysLJj/K/vfR6rpuroQ8c4Fmf7yIdfJbT/OZ3XkeGz+/mL0PvPIp38W7yuz9K+eDniV/307huF++226n/5u8w9YGP0PyTv6T5x39G481/gJqdZ/Drv4YdDa8WQl8vDJrr9SDPr1rsD3/rjdidbWq/+Tu0/vJdtP7yXbT/7oO0/uhPiL5jEl0Q/y8/gRsOGb/tj5CDywRPvJP3hd/BOlP87AsOcXLzM5RacNNZh9q3n/mpGm/6nuPkSY/PnoJLTvPKTp/UH+LV7+dtN76EjY02ZS2i8BcmmUCbBTLvEz70x+ybinnLy29mzn0z/XKbP33kw8CVAl1r9KEjV6/HXDhP/sB9yKVlzOVL/+Nv6DX8/xIPP/wwJ0+e5Bd+4Reo1+ssLS3x6le/mr/6q7/C2qe7kPX7fer1Ly8j+fM//3Ne+cpXcvToUeI45rWvfS2DwYCPf/zjzxjrZzn7NiStkWMxh+kcWknA7LBBrius15rsjg7xSDpPltXwxZCUgCKJkE5yqV4ntAM8l/Cg2c/Yxdx4waOVKrr1gN1ajcROsRt7eJ6k0BKhK8wMZmk5qIkxNxdP0BRbCDmJp3VOUzE5o1RxvpjBotmoLPCS8Rme3U/wSo/re5uENmdNKB7M9jAupjlmN1Eu5YIvScIuB2oPMiU3aXhnaY1TylGFx8qQsCiIywKXlzTNFrHpUO/tIejuZ2rT5/B6k5XVQ/hlE1lK9vQ0U0NLs+fw8pBCgpKaphjgO4lSz6ZNgC8Md9SHzKsxbZdxU9ll2ZRMKc1cnlPLFTqb4nJ5C3kyRysRzOUJ8wPHN5yb4sxoL8M0JMkVbTNmtlhlE8VYWEpp6GufyLdcrsbYWsZKdAGjHfvjx7jNf5Lbhl3iRHNvsp+H3BLSlXRchQdXNE/uN0SM8MzEYU6WmrlRh7DMELLEWcNaUaHjQjLtsVupUg6WeeEO7OlPjCdS7ZASorBDKw+plxG14QCTCwqhQIHRmocCxZlogB8bdsOYXhJy0+hxlrI+86MO00kXUdRo7bQIRUHdgpM+O1OKvqeJtcFJqKSOWmJp6AHdikYYxaGRZV9/zM3dc3SrNVIvoBdVkQj8HI5vniEtFd2yydnGCuHOHEs7dQ4Pfdp9QbDTIhpJOlWffjNkpxZw1CbMpBaPkjEefadBWqSAM602I38a5xT9SLM+WsRLUqLSR5RLyCDGRg7TgKznMXXJsC/N6HkKmgV7ywVEXEVoTSZCVmsRRTjkg/4sZ7OC67a7pCrGaYG1AUFZI1M+qgyYKgRCTRZVNiohtvTZn0FrIcdrOBp5xNzA4lOy2ZiiJ5eZkRVu7I45sDtmudfnedtjVuci1veFdKcVQ+OxVvjEwzZ+WRKVJWMXkDvFwJX4xYhmsUO9LPEd1OKHmS9PkThJb8nxYGOWHeVxbLTFsSygYhRjJXnyOsNuVXN8WHL7lmJjM+ASHhW69NogAsGJgzHXm7Mc7a/S7JRsl96kaNSSJoYn5n12+oKZjkQIiXFjGklCWmoSX3MynKIiUmqqJK8biKGSKmQoaQaWRVMSWEemJGQSlUnOyUXCPMQJQVcF7IiQwncYWaC1YaQ8SutjnMRzCTU26Sxc5vrxLnFqOLpzhnqwyk3hQ+yrnuMbyh7PZZu7gjNcL89zS3iKG+yII8WYY7bPLXLMvNtlyY55XrrDzdzP3uA8+1SPmxjQKCVRWcXZffRkG0FEezxHZDUrDJjXm8zKbebVecLwPIU3IlOWXVVh5PsMIkHmTxxUF3JBKTQpHomnobJDXNmk7Tz2qQGysU3c3mWmEjD09zKIKvT1FCO/RTfYw8WpOsPpHuHUPGu1OS412qw1qtSWfSr1NjawFL6mHs6QyibWW2T5eIHXaNBTKYNA4zcSLh+E00cqPLp/htVDlviG0TO+M1+Iazlo1/BVwayvQRDQ/ZEfBCD8/pdT/cl/D4A+dpz805+iM855/cffjqjCb7/gVay0ImT/Es13v3zisNSvgjScuX/I2dkjFBuKUweWCabfD8ATvuLFK4vwbwHeQ7J2kcT/Xp697wCVD3+Qw2aJB5fWebUZcmSmwtu27uDnmzNED/8xW+/1kMsreLc9G5eMr5qZiDB8Wh5a9Zd+jd6P/wjp3/0t0Xd/L/BP2WNfazzF5MmZWYpHT1Lc+0ni1/wkwfO++Rlj1d6JzJCiIPjWbyd977uZvrUE5/itzvOph5pvv36WN737PNoKDn92FX37c3lw9wH+4tyfwuFP8ytHABaoGwNW4rU+Tbd/C+/e8w0c6K+x5/QWs35ImaSYQlC95w2YmeM0Fu/k91/yA3zfP/wlb33sr3n+4jfRfORh9OGjiCAAIPvHDzF4w+vBGOT0DOUVhu8aruGfixMnTrCwsEC73b667YYbbqDX63HhwgX2fYF7a7fbZWdnhx/6oR/iscceY35+nh/90R/lZS97GWmacvr0aY4dO3Z1vOd5HDlyhIcffpi77rrracc91jHY0iGyjO9IBrzfNlBKERYKYo0spzkoLvNY4yiVxFLINYyIeXi+wXKyyaPTs9yyeYFeUCP1Qi5UpujUA/ayyt7xOkVlTFBk+H1JWQ1YFJr3t29kfneNip8RhCVHwjmqapfMGxFnMYG3ydCDvDoJUf7w4i3cqJ7gjvxJEiLGwS5n8wZvieZJanWeX1rkoM2KzFgajxANx9B5RFsFtYogMxFWCAaVhEfiSZ7bSzPBrtGISodSVtnN6hQWhs3DSJWSuAyv36M/WKAmjyIrl8AUCGc5nyzxvfll/tHW8Z1hrpyYVyyPL+MubfAPzedQFx1uHVzmQLJKoSW1WsKFaI6Pi+ewt9xhz7hLz5/DFzlFM6Lvz5KU13Ei7xO0Q1btPJl9K6nImCstuVWsuQUSLpILuDlY56ZsjYelxpMlqSq53vUJcGAVhYVjgz6XPEUpFYcGEbormNnVXGxEnJpt8c3yMgKH8gwesOVirJFoDIXwsQLiK4FOnjPMFKuU0lLKHhsK5sUWqq6ReZXdRpOGS3BeydA/wzcOqixOe3SLmHY+pIojKiemEtuhohQ+z9pIEJHm0XpBGgmsEhyxEh0oMqEISsfSDgwGS0gruW7nErYJA6VpyDVK7zBGKxaG24RFgbSO3NcEbYPwHRUx4Iw6RK5WqXKOC43r6Q5n6IWb5MLHeAFRMaSJo5PWSPwBWdjj3MBRqiaX6lNcavhQzrM2n5EUS2RZSFhIWi7lhTxEZ2qGHb9OUBisUWhXcs7fw+OxR7qwzL8ye6nlPv5gzJocMpQ5nYUniYWk0fVwZpIl2KDEw6FMjj+eJfIusmDG3D11C8PKAC1yShTKZYSeRVQhwzFtC75ta0gwnTDV3iZwY3alIepn6FGDoumxXhmwT5TsigrW0+zvljRGu/QCx9JGxkf2gPWHXC59wlGFPf11VqcVZehh/RFWay40FM4GhM5HkSKEwneTIPiylNwdx0SF4F93CwZC8Ei7wuzlEbvzIJPrEN4661MhUdJn5swOOYa1NOSSqnL9dIA/nRHtlASpfzWmY1SPSE4nuCikySYesxzOM5pX2uuLhqHR16SqINSau+yYfg8+bUPOqIha7qgzYqPeJteKKbXDA+0pdgNNUHhc9hosVHewu7NMbXQwcU4ZwJGdkAOVHs5maCz9wHC/aPOEruPbgLA6zcH4Jax7n+dxs0gz6tGXFYZFxmywh4vDAwS2T+mdJtMJ2yLDqD1sRTdzOhdIldIKPAbyBEmmke42pD/koL3IIbdN3xc4BJ7XZVVIrksUa6IGLr8SSVDQMIbj5YhdXSUoGlg1JJdwXK1zwA5RyIlbJAVLweOkdcUD/aOo8QG8cAMj/ImTp0rRQlOpdkkH+3FWo1TBKAOSowRxQitM6OzOoDwBDBBCcKR+hAudAqfvI8CS28VJeDqT6ISvhGsM2jV8VTAXzuO2t/Cf/0KC73wZ6V/9Ofl9EwmcvuE4rrPL77/zHpLwXq6r38ZNc/vAFNQ/+BNQJhQjBcnEyakrPG7ePs3x3XMcK5/Eb38cIWB/WXB4/Vm8/JMNvv9uQyfZ4jc+/3recu6PATh+csTpBeifOcFPffN+cjzeJ74JHvk45cMPEn7nS7Hnnpyc04GDX/I6vBuOo298Ftl73o0IQkS9/nUTVn21QJueIXvv30IYEr7su7/kWLWyF5SifPI04Uu/C9KU4gN/w5O1Z3PBzfLS4/PY8YiHZsZc16sSbHf50MX38e/vfS2ne4/zkic8XvsBCC+/iDuTDKRFxedZmXucg/017th4jF2/gssmzei9rTmcDql98CcQyQ6tKOLbV74DET/Kr733HsrHTqKP3zi5jsGA4W+9EX39MaIf/lHs9hZucwP3JXqEruEa/t+i2+0+gxVrNBoAdDqdp22v1+ssLy/zS7/0S9xzzz285jWv4Zd/+Ze555576PV6OOeu/u8X7uuL9wOAkQQWjJvYjselz6rWbOTzHB4OmClSKm7MudocZ9uzbFc1m9MjUh3wmf0NOnFEVgEtE3yXs1adZidu4ssBC64kw2MmHeAQmIEmTktGgUdrPEaNJVI5KnGILh1KZvjBOereZbJAEEuDFI7cKVKpME5QJcEPS0Ztj3GkyJTPOT9i229wlC0OjR5FODuxiMYhTEhoNZ+s7iHxPIxneaISk0YRTnsI7fD8EqsURklyOVnRl9phq4aBHzJs1clbFWy7iRCCzMTozZKBCVlkm9ogx27XYOTAljzJAjuqSR5GKGtZSjpsp9N8Jnwuu36dpXDEddEm1tOUymM9nENIMMrDRFMUB74TtXgzDRERuIBNrTloN7lVn6JUHoeNj5YBbVPihKGrQ0onmEQ5S+rGMm0sB8U2NTukkQrqucT5MevtiNVahaHvM/ICtCvI4xxhHV0/RKU5y1sdokxgRYGVggYZ7VGfPBjSVh08YWnFZ6iTQU1yYWnyrvlGgZAIYVmxQ8ARSEPVFCQy4nBynrXKNNthk1J4aCOwGahc0otBliW71RqSgnaqcZ6ehGIPFzGuxkYc8lhb4vevGKVLSzMf0ciG5GKyLh+YgtQPaNsubdPlUjTPOW8Rg+aiWKQbVxFiSCmHBKrP0fEkq2xDN9mILYk3JsoHPOL2c8LtnwT/KoWlgpYjWmYwyQcDKmoSJH5ZLhBKO0ngZmLq3gs9skAS+RpfK5SnmM9Cposq1gPjZVgjSBH0YkspYaksmB9JChVj0kUqhaDr1+jGE2fTMI0ppEXKSV5WjQwdGFo646g9S8sk7E0STk6H+EaQUOdee4y8lMzbjJYoGIWC3bYmcIbDiaVlDaNwkgNWehmbcUkgHRVjsTgCK3h8RXGm5aFHGiQIlVPNE1aSIbkU6BKsFJQCTOrRKUMkknoiuP2cR71oUliFFD22XIzC0XSWeg5db4qBrl0NnRM4jC8ZVxQHxjGxSVjojRh6grZeZ09uoZiwY8tjkELg8kkcgRAgSkFoIDWSnlO07Q5SFgSuwAjwdJ9zbcW5OTgftHB6zK5uMPBjTi4FbNUFc2OJtlAhZbpYR6gSKyQ7usKq32QYTiEqU1TqDeK4QCiNDiKI1lDREOs0iaixFsZsaY9Sabqk9FyV0kkopsBGKDkxmJOmjkNhpMSiJgWqmPQ4OsAJgfZjDoo18ryOQNKwoJ0jNFUW85i4jEizORTguYnt/TlPc9HXHPZ3iYKcIOxgRUE9mkRRuCtOukpKPBlfCUF0ZC6hLGuAw9OWdqNAS4HWgsDXxEFAM66jhUICCkHociYm3ZN9fyVcK9C+TlGePUP69+8nv++zuPLLZ379j4CzFru+BlpT/fn/QPVnfh45O8f4rW8BrhiFAN0Tf4f0evzgke8HIP7s/463cT/lzHG2zk+ML7pRHe0Mp/ZMzCR++nN/gLKGuzoev72a8dju9/BdGzv8m3sc/8c9+/ixD1g+cXSi09335BAnBfef/Ufu3NemFij+sHc7vSd9EILg215MeXrS4K8OHvqy1xPc9a2Y82cpzz45sdrf/vqQOJorBZqYnib72Efxv/F5yEr1S44VQTCRlp4+hb7hRtTiHP1Hc942uhMB/MhzVtg9/RBn5wVHTkx6Mz50q+S77oXffUeVH3jXiJd0+9jdO3jx+gr/aW0AwF2PvY3bNx7jwakDLA03eXTvTQCsPxSCCpBJh9o//Cw4x8sP/xsQDrn1t5BlV9+D9N3vxI1GVH/2F4l/+McmbKZzmMtf+z40s7FB9uG/J7vn47gk+VqfzjX8C+EpyfUXx1O84hWv4A//8A85duwYvu/z4he/mG/5lm/hb/7mb/67+/pi5J5h15tMQnNhKdSAZqFo+Tv841Sbi1XLDm2etXmGw7urLPcy5rY1i4Mt9l+uML/tUemBTENS53Pz5hMc2zpHdRhxQUYMiLlQbZFWSkRzzKYXcGRni37NI204ykwyXO/S9QVj1yRJj7CRXU+cOZJCYa2g5UZ4zoHWbHt1zhQthlaykuZMmyELhaFlO3xM7+HemdswUiGk43KtgfHH9L2CY/k6FKALyZ3DLn4/Q2YppvBI04jQ5oSmoFYUBGkKYx/T94izkmh3Hb2zg9vdxCGohjtXrMwVJ9x+hh4MWiVFHBDNVHiWd44FsUPqw267QXepymJtlRdmH2KfWeOcrfNJsR9lCjxX0BpuIgpD0+zimXPIR/4Lg1NvYZxnCJuxUBY8JBd5pNhH1SQ8qTIuG8cpHZI5j9iNqcsS6SZZ3SMnWPUUd4ujXNLLbFUt55o5W2GPyiBhpdtnT7fH7GgE1mOmpym0j85rOFGjU2nQjTS5qqIyQ5oJssDDlTOcdovsErGdHOESU7hNx8HTPZwQ7HoOrMWUAY9QZdfUGZaakdQEdsSpaA8H+pdYHG4T2jGdSJDXSgJlme8LKkozPeqBkaTkWFPilw6mT+HJXabHKTdsW7xaibQespSshU0enDkwyY5iYoxRTUb0qbIlZ7i18yjPTh9HuYJvHj7CoZ1N4qyKdgF7M8d6NFFH7Jeb7E8cIl1krbnEC72H+Hb9aVQpqI3GzIy2KbRlJGN8YcgErOZtRlmF5eIS/VJdnaA27ID9nV2W+mN6g5TROMWMEjKboccj6gMfW8yQNQq0drR7EbqENRFyri7w3QBTXaXnwcH+JdqjFBwMwwLtFLkxGCfo4JOONWcIeUAf5/5gifviFrdcTlG2ZD67xPPcg4RC8HmvxgUREpVQ6RVII7mnoXh8yiMeRzgTESTvG3dbAAAgAElEQVRV9vUdHSvoFx44yKVjbtdwpFOwWB3iLBRlyNCPuOQ38a3DKlgsDe3S0QwyWjqFouRSQ3LPXsPlymUClSKFZNoUDHTEutbkWBbLVfakq8gCSicxUmAFSAOXwjHKV6y1KnRFi4fKmzgVC2S7IKkZPt+SlDhsxWEQdJQgiw0jDXvJuY6UDeZR2eTZKKdgvMjNl0v2rwkOp7uUwzlWsnXiPGH/Zo5XOs43CtaQdIuI3FURZUTV5NyRbnFrcpk9/SeZGz6Mt/UYtVGX+SynnWyyMGrR6EFTdlnhSW4er3NDPqBaJiw7yXX2SQ6Ky1T0eYztYV2OL0d4coemS5g2OYIC5yQ4R81O5MiFgzIf8hD7IRiDcKwLxXntcT4Y80Rlm65QeMEmQwFD4bDC0raWhcKwNm6zPayTDRcR0rE7yilKEGJidWOsJS0SnNXgPKqqThz2kTIhLXNWdzRZacjLkiwv6SdDzncvUtjsSnyFpeMqV5nPwl3LQfv/FNx4TP8//grdV7yc4X/+j/R/5rV0X/lyikce+pqdU3nyBDiHd9sdyGYTEQSEL/seys/fj1m9jN2zj1T7HB89xHJlD3dMP5szFz7AxUf+gOGR74PueXaemKzaNe+8k339df5s8dn8wfMPsme94BWfafA7nSd5JzciheVX9/4YYSvHfuKjvGh0hDe+8PfZaCukBb9w3L/2KQC+/dgcJ+xeupdqRHtC1PQM5ZlTyIXFL1vYAPjf+DwAivs+i5yZxXyd9KDZrU1QCtft4rod/G947lccrw8dwZw5hRCC6o1tku2Aj+7u5fBMhVrgcd/j/w977x2vW1Xe+37HGLO8862rl712b3TcgDRRL4poCB4NJjcm8ZNu1BAOek1i2jGKejRGY44NjuZYMBqxa9TYUIEoiPS9qRt2X3v19fbZ5xjj/PEuthCQmNxEvPfw+2e9a9ZR5xzPfJ7n9/s6ANZRFBJ+/efezCtf8Hb8gw+BhVsnjqPlBFzj7uAXkxYvWtnKJd/Lufm4Ku8641cp65xTNqyFkbUzdKtFdNorac5ex4O730/DHeJZk8/mlP5gbPa2HoctCpLPfhr36Wfh7NiJEAL/ohcCkH79a/9pbfevwaYp/Xf/Da2X/gK9K15P70//kOZLLyH7wY1PWpmewr8PIyMjj/FwdTqdY/v+NczMzLC0tMTQ0BBSyse91uNd5/5Rj64HixWPa8s+cyWL8fqYoM3O+T4j4TIH3WFGi4SSXCIVAcpqpvst/MSwrb1CLKqIwme06FBPQ2pRl9HVDqkzoIuXUiBcQ2gLOjbi+Ogww94iSeRyKB/iZn+YKN2ILUbIUESmgmegHBl8NOs7q4wv9/hEcBrXV0aYM1McZR2nJ/Dr3R7bTJewssic59H3PRxhGdWWmojIEGQCUkIapsf/lXQ5McvwtCHVFeJ8HK0VftZh2MzT0PeRm8O4bRfRG6FiY6LKQxT0QMRYCVudZfZOdqg7XQLV554A2uU6P6jv4Pqx7bgiwpEFt/tb+WL9HFq1GvOlYRyVcrG8lp1qL6mr6aoS95lNNLMavXyVmnqAZ8u7OT6+hxfGN+AVfYa0pY/PsM3ZyAIZkpI2HEymuFmfxIjJCZNxVvIK15ZGCbWLrwrqpGS1nNzPmOwaujahVc5pNhK0HzOerhA5DlYIVq1HjM/T/FnCmkO/IvGMpqKXWVGCVVeRWY++rJNbh0xXcGxBnrrcqY9nX7CFsVZC15SJshInhVO07Drk4YL1YZeqzoi0RyoFR2qTGDEQxL57PfSFZERLGplmqq2pYYhyS4Ylk5blqqTkdKDS5u4Jl1VXILTkoNjBaL/PWNTDMYZceVipEFpgmhKTSVbNCE5tDiP6LIqE1dIRehNzSCxBbsjXNEcPWxfrx6Ako7nhdC+mWxksXsfjJSaivWxf6jGcNKnUjtL3oe2UudGbIVxyCHMXmYNUlliBQ5dtcZ/zb28ylx5gKV4g6nVw+hFDRYy/tJMgH4FKTlRW5F5KRzooYfCKEnnQolNyeahaYV24Qj3LkBbKBXSUR6et6C8P1MqOll1uHa5wtxsjZwvaORyoCO6cqnPTDp/QjTmx51BekKw7ZBDCkNYFR4ZcCgmHqx6+NZBMcryJcaoRR4aHSQPLcCsny6dJRMB4aNmQp0zbLiVSCpsTiphMWQJHc9Z8yk4n5ssbJXc2NMeZFq622LRExR4icvusm8/ozNVYVg1iV1CvRIz4GZ0VRWfOx80KnCCnXxJoBeWeRlcaCEdQmApWpGTWoykUcaFQfUFUs4TSISnn3F7xeKDhktdzRusZflnjOhY3stgEmsUwz+z3WR8aJrsF5ThjoplSCTM6foNUVBBGcsR3WDKSxDi0nDrVTLI5zJmJfYZsShAVHJi/C9132JE9xPHpKsfHPU7OV9gaz7LZzjMim1RsRsO41LWPm68QZItUbY91Zo7Nxe08N1ziwvwgZ7nXsTVfYkgX7M53cjTaRYjHUrqFjalEiJyT8w6BBas9bD5EIn1mVUBgIbA5wgTIIuD+bBt7xRAHZRljBdZYDucbWAwnKAof685hVQjuCtZCkQ0T6y5JXAfVQzirLHdzLAbtHaEgplkcQNX2YJxFslzhSZ/FZJE+K4wmFZxug2qY4aYFQ30JnSd2vjxloP0MwaYJnT+8nOz671D+nVcw9PFPU7viv2PznM5/fdWTtphMvjoQJfYvuPDYNv8FPw9CkHz9q3zpvhX2joyxfaHLOfXT+esPv4Q/vfEK/u91E1yeHcQutVDJIKTBdw2Lxw1z+9QMN526xI3HKZ5/fYvZ9ihnfmsfz4k/zp3+dpiBIpJUL38t2ydOYey40zhlf8FLbzAsOiH5fffyO2dvYKa3jO5CfXwZihj94F6c7TuesD5qaho5OUV+1x3IsfGfnRy0pSXk6CjFnrsAcHed/oTHq+07MEtLmG6HRmMgzn3iwiF+46wB0+aeg9/jRTdpnn9LgZme4Nz1z8U/71m4k1VUSfP+6Zdwsb6ZF3/nezT7Ff7LZ2ZJHcHfPc+wPNLj+u27cNfEqgWwck+Nf1i4l+dvnOGyg5/gzR+8iOm+x9b5lJVywEf2ZxR7dmNWlim9+CXHyumtjZv0u9f+RzfZTwQbRXT+6NUkn/0UpRddwtBHPk79b9+HHB2l+6d/SPrP1z8p5XoK/z6cfPLJLC4usvSI0OTdu3czOjrKhjVZh4dx9dVX861vfetR2/bt28eGDRvwff8Yw+PDyLKM+++/n127dj3mvlZK9k9Yln1B5OR0lU/bM+xrdDAipZGH7Mru4aTSLCU/wlpFlYRGqUvhGKbiHillLIJN3iJj3iqHNvY4NFkw3orZ3GzSkEsM6RyZGbCQ6IRVL2TOV2hcZv0hhPZxMoUtDMpkhCJASkHdhpSIGdJL7HaHuVeN48sET0u0lRjrsF0sscm0WDRDeNplJCqzkG3m2vhiHtI7WDXTFE4Jx0kYtYNwpUS6lIQgtkPIYoS23yH2InqiTr/SpjO5m7S2D+NausIjFiX6jiX3l4h1wGgiie1AVHdE3MaqbZJbzS39BotUmafCvbbGqkw4QsGyW9B2I24QI0R2Aes06XgZS57H4miX/aMthpxVCk+RqxL75QgLcoyqFZSNRVqJbw0t4+KFAUVcp1NUSXSJ2XgT9+pNLHoBK0MFM26bkSIlM4KtSYftRw1b944y62whkSVk4aFyl6P1EVp+FWElnhxock3oZabbbbY3ZymGunxvVLBUN2hZUNESkfj0owkKZbh7xDBe6zLjr1L4JfwiYyrJGS0U05nHrDtGuZXhSc2e8jaOeOMUApqlOtbtYLw+iRDMuiCMoBQKSpkh1RJrJM0KHBiT2E6VLQcdhmRKOxA8OOZzz3gNYyMKJ6NWhGQSZsc8vrdtF6oqKLlNXtC8mVpjnpVGxL31AqMkyisoqpp6kmAj2NwMOeC5rKgqaTHQp6vnhnoIhdbsXG6yodWiXCSUCsOw1yMnwCkiKnqOXPTxuxaWJcFISnOiwpHAQWlDaDxod5hopmRW4tqMSj/DzwXnJUtU7SSzpQZekRCElkTnULSpJDFWZURugTUOBslkz6K8HqtOTiv0aArBPZWCxUCRGpeZXpOaXOKok3BfMMFKxSUo4K7aOPlCQaVToArNuE6ZMhlNkaGKgfi8K3I8cjQ+WpVIHY+249IqK9J4PZHczEyekjQdRntdGrnL7Y2N3F6ukcgCx1hqTYm7LCgSWKpqGC4zU80pKLF+AcZXfJ5+X87BYAO76zOEZUXNaDAWKyA2ip1HwKkF5CWDKDSOq2hbwRApVZNxpp5jn63QzB2cVDASGdJqgegbDuPSlxJtBF5q6JUtvbKlqo6Sjy1QcgqGbIK0FqXBGB8MVMgIfQPKYpH05ARDzWFuqW6jOyrZv26GhXQLN2Zncle0k2/Jab6qxvhOcQJ36K18PTubb8opbvCnudaZ5utiinvMFu5iiutKI3xfn8EhvZ57zCjfVmX2uw4LbkFkCw66CXcEirtLBYddj0N6mgUPOkrT623BD+vY/hBBVEImKWNhxM7VnKGowNcFscixJifQEdU4Z/OKod72iEjpZ4pk6URW509ipZ8x2Z1lprfEWLxMPZ5nffMIm1qL1NoOcqHD8YtHOf1Ii5NmEypHmtjWMqU+lPsxJjQ04i5+d5n2TX1a+/YyFjmMNw0LKyXkvMPIgqTRBLlYY+7o0BO+654iCfkZQv9v30Fx925qb3ob/nMuAAa6Y+7Tz6Lzmsvo/sWf0Hjnu3FPe+KF+38krLVkNw4YzZwTfkShriYncU9/OtlXPs3F8f+ifF6Tr7ZqPP2tn2XrAhhleej3zuWuMGPl7hoCkK5m2P9HbjjhbDbVbqLpr3L1yc/h5P03sveHG/jOltN56U3/xFnbP8zsugnG7m7T3v0lRr/4GpybQ5SBi2+xXHSrYPXAa5l611f4+d4gpLE2HfK57/0Zp84e5tvHpeT7/p5f3PxSPOU9br3cp51GdsvN+C++BNtqYYsC4Ty508GsLCPHJgaG49Q0amr6xx57w/x32aOv5aXAF//pdbxC7Ccqb+XcxXu58LgJ7Pc/z8/f0GOiDUgL/SWyl59F+AevwCxGlDZonh/ezJn3/YAflJ/Bd4+M8Hvtr3DVGc+mU7uRofyHRCcHBPk/Yw56ZKFL50iZ4SN9fu1pP8/F7/wCbksTe1/ji88WvGDTHK+57xfJD2wEx8E96+xjZVUTkyAlZu4oen4ONb3uP78x12C1pvvGv6DYcxe1N7wZ/3kvOLbPef8H6b7mMnpv/kucD/09asPGn1q5nsK/HyeeeCK7du3ine98J69//etpt9tcddVVvOxlL0MIwc/93M9xxRVXcPbZZ5OmKW9605uYmZlh+/btfOMb3+CGG27gmmuuAeBlL3sZ73vf+zj//PNZv349733ve5mYmOC88x7rvbaFxWhFTw6EbKstqI4kLHuKXPpYF/pFmflilMLPsHIQimSlxkqBl+Us1AJSL2c87pCUJY1aiJAp2WKZepSxZbgHWGwuSISkGsO6NGPZ8wl8n4ngICM9FzFfBT+hQLAaDJESMm1X2BLeR6cGnigYTavslYpS5SC2PwZWgtXsLvkU2QpGOzzkO+ioRtO3pGKCDVnBkfg4HC/mWfYwq2aUw2aK2WDw/DXCYp1V4kJTICmiTWjrgtekyIYodIluOoFfnmWTs48ZU6OXbMWxggDNZJYxKRc5wiS+nSUQAgsIY9hqF/FkH2ksVTJGbURuPSZFn1PYRyAGYrUj/TGWqbDVHkELByNzQicnLCoM00ZY2OdpXD1FbkoM0eRIOcWaaQ7bcQqaGCFYCRRn7r+fo36N722IGY0KTjhoOFyuYG0ZrXrsWGlzYKjO8nifSu4gAF3vs8/ZxnhvltxVJPWEKZUy1HWYWLAcGhVMBCtMtCV3BBvZWF6kKat4pBhP0RCwpbXKJm1YLSKWPUOiYvq6Qt5JmeAw0tTx1BL3jhl6MiSXHnvLk/iySaqncdOCelKQuS6ipJgdlvQ8l9MW2mxMDZ6UDCUJ35ms0U0qeKU7yKSk1qtzaLhCxbf4aY/Mc/FtnzEdcdAI5kSVfVVYF0kqUc7GZJl7J0vsbY4SkjGy7BJO1pFGsiHtMLOvh6kamqrHdCaZihWyV9CnzVJQRluHjBK5A6mbsH7Z4kSGzJNktQouBZ2Sy60NzSZCHCNYcYbxZYRvmkxHBUmmWVECr9LHIKktlPB6KeeqNif07+EHlCiGM6wIqK1OUi1SkmrIYb2FO3PFRvUA+kid1bhOpdxHO/Eg/FBIcl0BMmpFCt2QZdcSSIM0DmExhp/N0ViA1NbxNjoMuT2WbJWnLS0wX6vR9HOQkKgG65sh+cgSSTaNbSV03JS+naRwEkLjoQpN5EqcQuNEkpkDkknXoa8rVPwEXxqqSU59ZSM9JyQTDn5mSYxgz7Si5YeMLoDxFYVTIYwDZuY1Q2KFWLu4fVjfN4yMddhyOMR3C2IlkVgqJU01gtvKgvtmJOfvthhpqSrN/cMO25c1S5sSIuVyJAlYLNWpdTPKkcVTXZaLLp6bEXljdPyYyU4JlUl8bUitZMiPGdN9dhyFiupTEi6inqDzDSRmnsLx6VkH3atSNSFBCk5RMLQ8jydWmZrrsH94ltaoovA72NJdaFMhaa9n0UYI1yeqdvFsRNzzafQNY8Q4NqfRrLAqFSZuEIeSbbUlrDtHlOX4xmdT0GHV1RQKRuIWO3u72ezOcX9dkCHpCI8gNvQDg69adLRDrByME+MUObJIGV9xwXXIRrrErqCaVvGth+54VINZ6t11KBnQkTGjcUYnH+FoIlifHAXfsK4PvtMldhsIXWHBGyOWfVYmHz+c/mE8ZaD9jCC78XukX/0ywa//1jHj7GHIeoPGu95L57JX0n39nzD0ob9HTU79VMpV3Hs3tjlg4FPTjzAYrKU+ucLqbV3mugGHJxwWj3qcvWDZc9p2xh5qMXr1Pay/aDNx18Nr5Gx67grSs7xYfIerJybZkMAH9nyJ4nSP+s0R18/s4rXP/mPeGHyM88S9rJ5cQdzyDyzf0aA0mbH+nBaJhOt/MMWW3asUVz2TcxeGOVCfYltlgfJ930TYKovrynzugau4c/V23vL0v8aV7mPq5e46jfSbX0NKBdZiVld+am3642CWlpCbNpPfdSfeIwycf4kP7/0gH3/ooxw/MgPA2MFbEDW4fWoHZx6+l7l/+l2qH72NeuhTPL/NyUMRy/fUWL2nRvlt76d8QkIwkvP84Tv489MupRVVef/1f4ueULzO+wbhQsBtU7fwkniBiayAiyyLe+p07q8y2euz8pFDyLbLtU87jXMO3sv5t8V8+JcDzulNsvP+OcoTCsd0MVQAEFIip6Ywc3Ok37mW8st+46fSngDhle8hv+n7VF77ukcZZwCyXKH2399O+zd+hf473kb93Vc+JofpKfxs4t3vfjdXXHEFz3ve8yiXy1x00UW86lWvAuDAgQNEUQTAy1/+cpIk4bLLLqPVarFlyxauvPJKTj11kFv50pe+lNXVVS699FI6nQ6nnnoqH/jAB3Ddxz4z+r0q9ZbEFbCoPE6MYyrNMvF4gqWBzRSagr5j0ORkdphA9EltQS1NGI1D+o2C/VWPctHh1p0pOxdgVmwgzg5SESlpHtHMGliRkpTKLOkaI7aFKaC3krBR5Oi0BAiEzrFaEroxBycVU7HCOBGFFPg2Y7HcZaNtEknJUr2LZzTKQks5SLdFoGDFSxFFRpwVaHcZmVWZd1yGGKXHUTp6nLZQSGuQIgdRIIWgrCEtAhA5ZTLqYhXrF1TDMi4F1hTM2CU26pQ7i5PAgXWiyYYiIaNC1QrOEkfYZ9dTI2UdIZtZ4aSszZ12G01b5Qw5y4N2hk02pMkYddnFKcqcQosjtsyoSIllDq7DDt1GYdC4eBhWPIMxBRMpuLIAmRMJSW4kWuXYHHIgdWOqpiALFDNzmrJjUG7G9qUeSoNvMsqqQ0wNrRUFAzY9UTqK7BdgFY7KmOzGCOXSZoRa2qKXaSZXJCv1HiqAQsKDjZiaskw3FYERNEKD0jlpvUPTqzLvjrLsrRLrGNIxesrDKQrqYcKyK0kFtFnHOjtGqnsktkvVpAzlCWnZJxEj1GSfTinHKySjsaKpxhgLYyKvwlDSZDzWHArKpI7LWJjSDxTWDrNazsH6NOKUMxdhviaZbKUsVyUnHslolkbZ3g1BWSqjllUabJwfRFfovqHuCDxZUPM1QmkO5lD0C0LPQ2UGV2o8EQINYuFypOZxMCi4oHWIB9Q0nUrBdRWfC/ZPktBgsrxEnvlsKa1yqHApbI6VFsdxyE2AIwRBWsZ6ERM9yVLZDuSwJcSeYLyd0y08inKfxLiI2KOcFqgYVidAA7mRVG2MZwVGWrTSeGiUMPjaw01h2XVIEFghSK0LRrKju0rQVcyk8Vq+lsVKg5QxXpGzELh04ypYxaFqhpcvsaEd8+BUiRoBpVITyJEFlDNBvZdQVGImSzkqrnPEFRyqbaKsO4xGEe1aHVd1SVwoXIecMQrl0NINPLGEbEOllzEbuAS5wUHjkJNJQ9OVNGuC9ohgawKRlEhjCbUkEALlFSwGkmJUUCskoaxxVGsOlRL0csowGpecUdPGz+C8xgFuNONMhDEqD3BFQS3s0F4YpVSR2FLMcili67LgjLRN0z2MHwckokxgutQjjxI9olLOkckc3+2T2xJLVR9roL6qmcgXWPZAF1COM1Ivo9IaIu6VsX6LjatLFLiIumJcxoz3c5b9zexTJe6azDihqhFkzJo+G1fnqcg+LQNBbhFWsDLWppYZtKvxjIMjcsrOKr1skkQqrKhQ0SEeMVAgrYfSAlcYMi2J9DjWrTOeLpLkhpIqcHKLsIY4tZQyTV8mxJUOsQGdaRKtKDsWYyWEhlOjuxnyF9nbfuI8+KcMtJ8B2Cyj/553oTZtofzbv/e4x8ihIepv/Wvar/gtev/tT2i8/+8Q3uN7h/4jkX7jayAlNBoIv3Rse+nuj+HLH7DKJF8Jx/luPeOq2w03bjiJt2z6TS7ZdJQ3LL6BM+N97G9PMLqri+Nbvlg8gzfOWLSa5ZOLi0zvyjlYriPtebzy1i8jRiz3+Rs5T90FCJbvqFOdiZk6r8vKgRrT2zocuSBi/TUB6T+HTM9pPnvCGTRMwvPlCgeAV13yPjZFN/Kuu9/O++/9H7zm5D9+TL2cUwchTKbXHfxdXnryDbTlJdRJJ2FbTZxTnva4x3x/8Z/5+EMf5aL1L+S1J7+Ozkd/keepDl36fG36dJ65fw8jX7yJ5kKNb19g+KORiOb+AP90w3SlxfwtQ9hC0Nge8YBZT9VEvOmWD1GqlAlf7LCue4R3ZB0uNut46dQGznjwYj7gv5exnX3a91fZfniWs467n883fokPb7yA7wWn8MYffJSVuTLvnfF4V1cxtCOi9u3X0nnRJ0AMoqjVhk2Y1eZP1UBLb7iO5NOfpPSLv0xwyS897jFqfILK719O/x1vJf3qP1J64Yt/KmV7Cv/vMDk5yZVXXvm4+x544IFjv6WUXH755Vx++eU/9lqXXnopl1566b96T7EyykZvlr6sYOIaJ3RnCbqS1UaFQg5ow42VtJ2MPDN4MqFMzuxog4XMx23DOhWS93IWhxxG05ja4jgbwzbGt7QkZNKh6VaoepKqk+L5FmWgEJZUgbJiwLBmLMY4SANaCLpemalUHEs+FybHzcAaSYDFIcVYy6qVDGWaU8Q8DxSCislwk5CjImLCbZJVOkh8YmvomYC4CFiodKhRUCMCDNJqHKeEcvq4SDybUtIe1naomYhy0sVqjW8KhqOQkk1xjKYqInydUhBQETmBzBkTXayQCGMRDqzIBsYqKjJHYpigxR47REBBSResFx1CETBs+8zZcUpkYDNKGIRVhFSQGBKhUNKQyBzrtimJiNQqcq8zSPBH0uvWiTxLbmCChOM7CUFQUC03MawnlAHtwEFbByMFfRWQO1XqYZehIqEqciLXR1FQTXLaQxLlxmxxusyvVAmM5mQzz768QipyMmmR1qCMIcNj0S8xFBcIwMsUe+sp9VSAgP7wIuXeFN2uz45+E1ck2MggdMamTkqRV6jZlKNlQSNx8B1AOnhopDBIK1l1XE4tuuzzWjS66cA4H4ooGYEwhpHaCh08PG3QKsZLDSd0O0gD69opS5TRQlKmwAlDcjwEKefsa2OKHiPViI4nWSx5GOlQsm2qfk4iJNNLBkhZrAvSqmBn2CctLHONjNlqg+GywXY1YQbjwRJxbvGjEjp3qAcx0locbVm30oPQML9eYQVUfA9HG2JTQUVgShKDQ6MXUM5zfEdjlaWcCE6Ml3Ckg5sCArquwU0FKh9oY42sBKSqoFqAkZAri5GgrUvkFNihNpGWeNaSS8GWo31SL8M4GRKLYwZzTdsyypNs9FY5TAG4DPcKFmuKyZamVGRIIFYVjJ+DkgQWSgY0miiIUBIKYag6OWeX9lGSkkj3qLkSpTKCo5LjnRAlDLm1tFRA6IWUpKFUWA56JUakxjOSGj1KeUzoQSYkSKi1BT0fRoxm1z6FpywmF3QcD8go9wS1lsd6mXDEL7OQOGyLu0Sui5QCVy6h5BDNUs54cpSykxCYlI4pEcwW7G9UII9oT6cMy4SjcpSjXoVUpQx1FEamdL2EoxSUM0274lJ4htnhiIgAL/Dw+gMD03oVQnxy5dOqRRTK4tQNxgSYIGKv12A0hX6Q4kiBnCizahXDQtAaCulbHyktHQI6JRchNaGn6FqfxULhCMPhsiKVCk+kuNbSKGfUix4lBIdwSY1Dikvse8h6QaLLrMiIxK1gixKy1OaQtJSUTyTHsKXxwTM2KLFcLlPkwwgnpKsmMOUmO7IMYz32R5uRIw5Vdx+nRD0Wq6XHe9Ucw1MG2s8A4s99GnN0lvrfvAfxOF9uH4bauAYOZngAACAASURBVInqn7+B3l+8juhDH6Dy+//1P7VctihIv/ttRL2BXT9DVIQEqozM+1R++E6am5/OoXrMqYeOkIthvKLJ17efw+dKb+X+2rk0Sgl7rxuILg9vjPiufhq/4NzIncUIty03mDzs40xlzKRd9uy4jpH7PF71/X+ksSniaHcUuWLpbSoT7CpQvs/IZkV/scxvTnS46owyF91cQiB47pYW1+uncZ78JO6Gk1Fj47yQF3Oof5DPH/w0P7f+Yo4fOvFRdVPrN0CphGkPCAKebLFqE/axUcgaKTLO1seyUEZFyN/seRvb6zt49Ul/hJIOzkmn4Itr+Gd9EjPrBUIZVg5UmR+B50y3KCIHd6xONV+idfwM98oNnPjDg+z72jTPmNnDafMPkMcK5zlNNoU9pAAVl3jOrZbrn57xhuBDzOlRxkst4jGfZJ/H5Ikdtm67j8+PL/FOTuJwdYILb7V8P1kB4O4zX8b5s++ntOdqklN/m6gIMTNTcIdF770ffeTwf3o4oV5eov/2t6B2Hk/lD179hMf6L3wRyTe+SviBK/Ge+zxkufKfWran8P9NxPkwrdJAWPT8zhEqNkUIg28dhkVEIHIiWcbLNa4OKVIH7RiE8dgV7iWpQEaAzmqMZEs0DhR0nZRoKOKozBlKh0hln1Q6VJXCwWLLMRiJwKByB+MMWNZyZRAqRuoAw2ABWSDJpWUsSzH2MI52yKQgVQqtLCEuxmhSfJQ1uKTobJpzkpQNwf3Y1GIpGNcLDKsu3e7kwOByEiSGYZNjjCKyLsZKqqlF2RwpDJERaBQtDF5qqeSSEVFgMocpr0WRSzyhCW1AKlw8cko6Z4QemXU40+4lTxU9p4I1FqUKTC4ITMKk02Krnacpqggl8GyOMhaDGHh0tEZ5ErTFruXH5FZiEDimQNmQQGfkOiCwCQ2dUjcGFSsiaUmVQEZVhOpjlaHvGkomo8AhUh6RDZAGEDlCFkQOTK4l94+pPiDQGoZXwJEhzaKMi0FYidGGkw50sEYQlQf9xJoZ3XMMrjcg3whMjrGDPSNuiE4lxm2RVTUhERaJn2mCrMBNHXxvCceNmCgpnNwnygPW+QO2XmnAIGm7ZUqrIc66fYiuC8KQ+zlap+SuYtGxGDImQkUhJGPNHC0k0go6KiBcCyZokGBVSmY8QkciDTjaUo5zVvyAVDlIYUlEGS0ipNEoaxAIjARfagqj0GLgSSx7fSRgtKTravwoJ6jAabMp1oN1ehUhLYX0sAiQhswVLA2njFqLxCIzSSwFJneoJwVu7CJEykx6COXnlOIM4YODRghLgUMqoSIUck2DasqGLKZ1lFEYadDSkBRVQkeQKYsjAOUTY/HQGGB9sR+9Ru/u5pZMCQQWXxn8NGHjHASkRF6OyuoUQiJlgQJSV+HKHIVF2IEXL1KSpuuzITEY42CEg7eQkrgaowQdD2pWM+Jo6m7EqvRpKsNKOaeaFyhjcLVgOMuoBxm+0mxuQ+xIKBSCnAKBbyBVAqPAWEWsSnTxqOUFZA71dkwqJVoanFyw6UhGLgISQAlLw0bUlMYc0bhy8PxxAauhJ+tYAcOlZbYpCIVkcXiZBdcHq1gNXIzxBsaUBU0d60QgXYS1KNvD4BL5LpFvaDse5II8DxBuDkKDXwA5QiqWpOKQHyHdfDDORxKkXWLFKqxrScygbH1ZoGSIKSyhHaYjfBLPUFjIrKFCTo5CyIxcCXIGH7tipYiNwlqFFBqJS89PgRDXOlhZUARtMuth3RxdCKyUgIsRisLPQYQIK0lkGZkZRuwswgZIJRjzF7BCcUjWcN3sCd85TxloTzJMp0189Ydwzz0P76xz/tXj/WefT/6iS4g/+XG8c897QiIJPT/H6se+SvjgPuT4BP4Fz8c58aSfOIwru/1WbLvFZ873+NLZe8m+eSF1t8HbsjrPTlq8p/oyKjvez9n31jg7rHOk5vDau69heazOL3Q/zlw0jF6Q+EM5d3g7eH3n1/nr6Qd5XbPFN2cnGZ/pkWx/Ee20yRlHvoe+QLL3tjFaB8r45ZzS6QW/OvN62qLBa+PPcLnzBZIooCos1eMi7A/LoOAZ1e/zrWIrAI1thto3LsVduIXX+HW+O+Rz1X3v4d3n/s9H1U0ohbNtO2Z+ftAPTzLV/sMG4sO6Y+oR4toP4/MHPkM7a/OermXqY+dgqtPY6hClIOG2fAdvCT7EyoTCzsM952heXaS0jwYMbVnkH+2z+H86r4AJ+Oj5f8XGPQt09wWkDcGmc1YZGk+Zq84QbbmYxl0f5Ff6IzxnucWEjXjz8kWsH014ycx1LN/V4PDeUc4+YTcfXngBb3joY3xt7EyefvB+bh87hbnhPfy3+Fy+u3433g/+ilc2v8me6BAcB6e4htd/CqJrv07tt1/xk7dNq0ny9X9CP/gAlAK8F16EPWHXjx3HVmv6b3kDNs+pv+HNT/jRAwYhmJVLXz0QMP/MNZR/83d/4rI9hf9zsKM0z2yQ4RvFloXsR3pERlAX6SA/SaVI4YHjYLFIAxPNgsDJ6AQaLHT8EE/7lLMMqQyBzLFAx9No4TPs9tGDzCwsglB5CGvJjIebDog7tBAYq3GsQQBWGGLHoSYTPFmQ+y6xFGgEEgsCMinRwkUbRWolq36ZqgiZ8yyJ0jiIQXmdHgWC2HU4Wg4RjqFA0JUOufVIrYsyORE+YEFlhKJMqiRCalbcIabcDkOhRDULwFL1Y0Rh0QakYykXCW6h8VUOWCp5grYKLRUqBeFDv/DJOy4Tuo0FyiTgQlz1EdoiNHhFjm9SZlZzSoWlcCSxp6mUNNaRVBPBTrdLqdD0paQr+hRKMKQLYgSqAKxk43KKRrIUOFhVDDx6FISqhl+AZ3K0NLhdfYxazfKj54+xErf4kbYXSHJhKKUD7yCAkAJ4tDBtpgYGx6gahORm0lu7hgER4kuDEeAXgkAYKqJgykuY8yQ9aXFzgxKDME4pB+NLFBKJIRMSjWbr0T59x0d7kjEycgyRLFMIi5sPPLN2rdx2rV5aDJTivMIiHIufG2JyprIUgyKVDrEo4zgZUg40onIcciHpuZaBZvfD/lywwhKqKiWREIhBn6vCknsDr++GZSjQTPht3FyzIhqD3C5HY7EIa2nIiPHlHKcYtPC026dtNfOmisVghaRme4wWIVpKWKO1LxxDJgZeMyQo/aP+y62DZySSjDMWV8kdUIUF6WAQKCwKMzgXqJo+phAUElwjBnJYgMSQOx6GHEdbHNfgaEGuEhLpgFRYmYIYzGmDJFWQyIAch4MlgZ8VdPISqaNwdUEqBMIKhkRI6gzaqetojDU4pqCiUoSBWFYp+xKBoC8rjC6l5MJDG0lFJxgpSYsShRiQqAgkVoIQCo3BSQJiCblwURa0eGTPiWPjMcoSUnfwv5cPxnFJpoTGY1SGVKzAEKCEwVjwjYcjUoTNyNTgY5ZdI4CxRiIsWAYfn9AOhdWAwbWGHAkyZDB1BqUxa78yZYnXaPUHI81lvZyjI0usUMYKyDE8nN2VCQUUjNiUk+wSLhp3oNqHi35Y0gy91pklo2kJicVBrOlxhMLBtwNNPSlyJIJCZHgqpNAjg7tJywxdPK054PiYooZQFqk0UValQUKJYvCxjYK+kx9r3x+Hpwy0JxnxJz+BjaJ/kzes8gevJrvtFnpvvYKhj3zicSnl0+9eS+8tV4DRqHUzZDd+n+Qz1+Cd/1yqf/inyKEnZo9ppU32fPqv2OzBDccVXBSeyOSZFzC7fDtn3PYZvhOs45p4N6ftjNgtf40/v+Xj9I4vkx1y6BPgkTMu2nSYorou4c36RbzA/yB/OTHEl2ZjfmHmPva5Oxne+RLmb3k708AfrR9l91SJ9x1aZXsjJG66fOKBt/Bx50I+uPOFDNPj1zZ/m07o8Quqx5IIEEYQixqXqS/RtQGl0j7cuRXymXMp9xf4veV7ebtJuG/1Lk4YfXTYoLN9B+m3rwXXPSYS/WTh4fvbbhc5MYGs1R61Py5iPvvQR3h2FHNKUSbbfAGqvZ+6HjB7nm4fpJEtcodZxyRwykSPzAq8mYK7zFZel/0Ov9z+Lhf98CZ2bj3C5AV98kzwy+O7WGxIvjI7h4hWCad2MXf0Qk7lWxDDO0aGmK3cyL37Xs6vrPsO3AVeP6dlKzxP3c5XWmdywabdRAddOmzmW8ct0a5/iMvzKf5nHvJLi7OccfrLKQ4d4BbvWu5fD42vXI1+0dPZNfrEZDfWWpLPforw766COEZOTGLjmLkvfxH/+RdR/bPXPy6xS/LZT5HffhvVP/1vqI2bfqL2d086Ge+Zzya+5hOULvklZL3xr5/0FP6PgnYHXpN0bSH8MLbtz2Dtq7hLSupouiYAs7boFeDaQW7LwEMBqfQwpnJs+WORaDFY9Dy8PNLHFibusfd4viYyjLVIC5WsICwNFp0rfoEvDJaB18yuGWcPmwTGKnIbYKwCoExKhYzMSwait4Ob4+rBGU03x1AMhLGNwFcC1xYI0jXjxKAspI5AC8FEL8WlwBU+G6Rl84Kh36swRZPBEs9ixY/KI8hxxGCJ5RiJQmMy2OiGiL4gzx0KRxAPe6SepNbLcTONSVKsAGUHosGJKwkrDiosMFLiFFDvGaQx+Fox4mqsGLTZpIzRQjCaaoQZtLRB4uY5oayhTIcgg6oNyYSPxiCxKGlQa+1TtwkI1q452OgWj072l//CEBNYKv3HEgL0HY0ENAphLANfC1RlRteU2NiLsVKAtbRGHSZaER1fIuVgYanSAgtUZUHCwNnAWp1+5KuDsopBgLYeShhKckBH/3AZ1qqGwtB0BhEEQyqmb3xKVgOCURtjhR0E8QmNRqFlmUdOhqNlsfbh7EeLewApNNYtjhk9D58jB2SlRNTweIQ3QUPqGFr+YM6VI4sJNNXw0e1aUinrVUwmB54sBzMwiIVFGrNmD8tj94qkg5c9oh8M2MJjJFhlMIvlWn8NcsvkIxb6x+qyZnAXj+BAV8JSCAM4oKFA4WCo6kGobio9hJQ4wqBx0IPZhlm7n8FiUORWUSgQYtB+hZAsywoV2yeXkmouyFyoyxhhxFoZBu2cmYFOXSp8BIMxVwiHXP4ojE5ajaTAIAnW0g8mlg2Z8Adz4QnshYe9huYR4soVkZHgojCEjiCVgxrVRExOjRwHK3ysWKOTF8DD7SQKsBIXQNeOjZa8GEUCUsUPd9GxZ5myBViPWHWPlcEVBYUwDNmYIeJj/SWwjIsOPac4tsUg1oykR45aQWYqPDxONtsuVTQKM5APIGC9WcWzgiM0qJBRIadEQaVokWiJ8ecHfbn2PEhw6DkJViRM6wyFoMDBkymF1NTI/8UT4vHxlIH2JMK0msSf/zT+BRfibNn6E58nymVqf/FGOpe9gujK91L94z971P7s1h/Su+L1OCeezMy73klYamDCPsnnPk30kf9F+6EHafyPK1GTk497/evnv8P77noH77xrldaubfzt3+1j/rJL+Ob+4zlj7w2UjOWNya/ibfw8d8xfwoVpH4nldet+H3O85Dr5WjSS+UUfEPSny9QOrvClC1JSpZhzJDtyzZfKLW65/mo+1r8PBLxtscPXaiHHNyJ0Kjh02zaGJpZ4wYFbeNb03Xx95+9w4eqtdJwKx+mjJKMp0XKJzy2V+PWJZfaaGcZHMpq/deux3Kfn3fkB3j/7Eb5w51s54YJPPaqeavtO7Je+gPgZEKs2a5ThZnkZtfmxY+GW3e+ha3N+degsWs+9EuTgRZ584VXUj36b57p3cKcIGFkBlOFZImJfNspx3iof8n+bP3O+zMzNDzFe7dA8MEWpPktjU8JfJvewbtEyUjJgEj52/V/xpUqNTwGREHy2UiFqKF5+0xf48gnP4OzqHtptn2mWGZYh9521jTeZ3+Xq4C08++hu/vKZv4uqvIPrlrfzBf1MLl6+mT+4dQtnjJ/On33yOsILz2L8azfxun+8jDPP+RV+d+cr8ZT/mPpaY+j/9SAvzD33PCqXvQZn4yZsnmM/+wmaV14JnkftT/7iUefpo7OEf3cV7jOeif/z/+Xf1Afll7+K9m+/jPgfPk7lVX/wbzr3Kfz/Hz+Ob0v8C2FrXxRUZEpGGaUVWmmcNeNLYajIjJ72/jd7bx5uSVXd/X/23jWcU2e689C3Z5pu5klQnBkFFU00GBUVI0STqHlFMWocY4wviWiiaDQajb4RRFFBERBpRSPzPA9N09Pt233n6Yw17b1/f9S5Q0ND1JDk+SWs57lP96lTtatq71111nd/v2stGrKA32YTflebDqKMBQIimZ0jVSIDH1Ls03Js80+4zghpLF2zKV5sEBYK+zjACcuX/oyokwpBC5d0weltO8XGhu1irgCGDh8QkpkORVRQiMQgtSXxVfvaQDu5Noi1WCGoTEeoJKs/pT2JLkAr7xIFTsYwVlycJAOeRgi0kiijiZXLcCkEMvbJAk5icVPAWrRU2XWmGkc2aVaLEC3dl25f9QJYi4VHRYRoESGFJbFZ3ErLOqRW4i84m7/BsKl0XzesZV1yInnyfuh9yDXFAlgX7WtUBIUmzEIos35e7kwL22Z+WLo0iUEjaaKIjUeKoixb5DE4qUY8AUTtz4oigjRrLxH7q8q0bydUVYHANvfblmyD8eXHLPSPBSLhkYqsplukLIm0i4sVKhGI9vQ1ZDGZNTcDT0YutAsLPKBBLNaQsotM9wIobDOa7efWMTabg8uOd9KM2Xw6s8u+T8UCe2qot1kmKSxF0cITmkSFmTQTi7WghUJZ/aQ24wxZoYVss0ugrSIWHgboaTlU3ey4BcbHPs0YhjKPwJI3TRQmY6vIQFyMhwBcE5OlFnny+O47p/btv2wbdKlM9o1Ymk0looy5EgarMiCW7ZLNzGxPCUhSHBYnvzBgMwbYb2+Ti2cCY31gX1ngQt8vLAos7408yT6juNBjS2PdZoytt7iHRVKyEQZBQEIXrexIK1gt5sFm74ma8JFpN4lwCFGEeDhoKjZk0FYZRIDWWXKl9rkSt0HRJvvMnaezZwHaf6O1vnMxRBH5P/rj3/pY9/AjyP/hG2l99xL8U09blDqaRp3apz6BWrWa8mc/jzvQC3NNZKFIcPY5uEcfS/Uv3sP8n/8JHV/9JrKzc7HNuWiWix7+e341+gtetWcFhXCaeNOpfFKdyJ3DFdbtfZALnOvY3H8yM/7VmKRMXDuGU/f8E1bAyoPXcNL41zNNtkiZ2d5N0df8OP8CRP8viBxYPaZ4dLRMvr/Gu+eneMuKhzm7PMAH7/LZIPfyGtXEAlduOZjNq0/mtoGDmd7UZvtG4Vou4gx5E38Vf5OOQxpM3+rjb/MY7uthlZgkb2KmG2OYYpbKXR31J7x69BouC4d59/TDlLuXYtGElwEDW50neXzr7ziKz4yl27cBoHftQPb2Yq1dkvDpiOuHf0S/IznwhIsWwRmAO3YnNVugSMjlM528UYM9KMSVcKs8mrdEr2Uy6uBKDoDngWdijpgb5mWP38hbVm/m6CgmEQ6jj6/gwuMst5YMF+99nFBI7o9zHLZVcMdBlitfMs/pd6yjNBQy/VgRnQrmnBJ/4lzF9eokyrmQ3pmdWJ0nnjoRv+9n3Lz6jfz+I7fw8ur3eP/esyif+mHOKc5wmrqdt+5azyf7v8sdk7fxgSM+sk+MoLWWxhc+R3T1leTPfhvBuX+CkO0XvOvS+WfvpFVt0rr4W3gveBH+i1+aHWcM9b/7NMJxKL7/Q791RkbngA34p7yM1g++S/51r0d29/xHhvRZ+x9mT15Lf2oLREwdH7KIk2XfWHwSlDKMa+9pnXwrxJPA3290nQo2bI/ZvtZHO1BoaHKhRRmLlllh23LN0B9nMUsVm6IlJK4g8gXVkiT2lrlF7cvfKgJC4TAjcosMjTSG/laIl1oavmKi6KMF9OX3kCSK1fMuwgrwFa4VKCtwlyELRwi0sBgscY+DBPK0aEgfJRKU8SgmmfsspMEKF4nENYK60qRKYBYd1SVBlnYhdbP/2yc4bSMFnyNnacvwBC3jUVaZtDyU+cW2tBBoJEZkgKkoon8PzywemzhLksd9xuY3aYCMoXKFpml9jMmkeeZpqtbKJTpvH1NYWtZdPKtmwfFf2Pc3m1/it5j7ociyjD65jf1u3sdiZWm2nWWx7JQd8xovWZK6jQVtkALUTZ6azeGS0qvqAPuAq6cDMMJIPL3kBus2w7cchPymls0z22bDJHkR47UpTbUANNFo4aBRT+oLuwwgGamWALsVxDJb7F5uWtA+4/6uZcl8E+LYFCueyGuCY1MCspqNVbmk2klcgZv8+33g2nSJ1d/f+Y2HsLLNmmX3skBfLSOgl+TidmmhJGrfm0smt01s9i6NFmHL/sZ16Zp7bKPN2C5tr+LTQWu/+y/8fxafbaIb05ZAZvGHAiksKQIt5CLTnV2wwGkz7RLYI0ooLCWTIIkxaNbYkJzI4g+Xz81/723wbKHq/yYz01O0rvg+/imn4axZ+zu1EZzzDuTgIPULL8BG2ZJg6zvfxs5MU/zwJ/ab7MA9/AjKn/siZnqa6sc+iE0StNX8bOSnvOVXZ/Fvo78iV3sFq67vouoGvGV+LXf3Hshz+nJ8b/WVbMk5fCrYhSci9MTpSGNYPzfMnFvkwT2zvF79iiRxGUXhzylygwl6925+eVSmI//j21t09qzlb9Yew5zw+freOeamTuWs1a+j1pVd798kb+a9Gz/K5pXHsnFuN+/beRmfvvOr/LXzTU7f2MU15ni+zemUBiJaBcGhuyyf9xzyIltZmXr4+n3u+ZSjP0QqBDfee+HituThh6j//d9lH7TB7NhO9Otf/k7j8B81MzNNeOXl2QdrSe64jda3vr74ffTgv3KzCyf1vRjpLLFN8cwuBswYg2KazSrgqC0O2lF0HNrikXgVf6XPYX13gTcU7uELez/PB++4mJfvupVthR7+73P/iNdGn6ZpfVJP8u61p3N947V8bThhTRpzXs8K7ut4M+dva4ARTHQK5ov3smuwF2Hh9rEuyrrGBrmXw6O7+XX30QjgiNb1xNMn4jRWcV3rUi5deTCvNT/jvYclIODzySpu6T2IgZvGUHvPZaQ6y7tufjv/cP/nqSc1AMIrryC8/Pvk3/AmCm//s0VwttyCc9+BWruOxpcvwqZt6dlVPya55y4K73oPqrfvdxqL4Jx3QJrS/M63f6fjn7X/uTaRT/f5HHtP//O6IDNa+OEXQH8rcy4clscrPXNmpVi8rvU7IzZsi1gxmtI1q6nMG7pmNb1TGj+yBCrGlhP2DrhsW+8zvMpjeJXPXIdDM1A0A0krkLTykjAvaeQVtZxD3Xdp+oqGr6jlXR7vKvFwX5ldlQIt5ZAowZQdwBhJMVF0xQ7dsUM5UQRa4lqx+CcAx0q8ZX+9NqSoHfJpnsBIclZQspaCdsjbDOghoJgqKomLWnR/9++sin2c9WxVfaHjY+sgrF6UmiVt5y+1kgldZkKXmNSlLCbmN7SpbucpPav9sRRa7X8WlGWUSSXbh+inWXByFkHvE/exWAQxDrFxiIzTFnj959mTuafsfKkVaPvkc+/rImfZEX0t2qBzyYKmecJxgpZ1adnMhY9xmNIFWtbdR2K6P4BWL2ZZIZGGnFlYblhiLn83WzqPBTyx1NakLjCpCyircW2MaxNcuy+TagEpn3h+24YnWeuJeuK3+x/Lhft3bILL0yeiEHbpHbXYrhDtv6c9FMkyFtCyTDYscGwWv+dglvp1AXWLjKkS1uKlmnVTDQ6cqDM4FyEtSGuzQtnWYqxAL2PgRPuapXk66A1loqydpqRjTlOqZ1l2c6EhFxr8UONHBj8yqAgeTvqppx5zOo+TWg6YrHPQnjrr97TYsKfJ+j0tNu5pcvCeOkeMzLN+soGjU6SxGCNIjcSabP4KI6jjUZcKQYsZE6BSizC/3fx6lkH7b7LmJf8KSULw1nN+5zZEPk/x/X9J9fz/Q/Pb3yL3+6+l9b3v4J/yMtyDD3nK49xDD6P0lx+l9smP8cg/fIiPHTXMbLoH3VqJmvpjjq6s5AWj72PzqmNZpZqcE3+f0+bvYDOGf+jvpks3eM9ILx9oHcmZyXdxNVx86Mt4nfwVJdFCu3Dt3HqOT0IeWtHD9YdMUGmAEzk8tPL5PLribTywY4I3hhN8z/sUV8bfoYlPxWvy98mZfEO/AmU1m2Z2UQyGOXx8OwMjU6ydm6ShXsM5jUv5nH4B7+q7krHje+i6Zgp/xOH+lQMcFo0xfv/P6Hrumxfvd+3A89koAq6tPsgroyrGetQ+9XFkZxcYA76PGdlN/cK/xT3mOGTxyTF9/5nW+NLnIYoQPb3YqUnc419A85tfx33Oc3EPP4IbH7+ENC84cdPb9jnu5l9fzevIXqZf66jwNztTxgZdDnMj/ik8iQv2fB33VZ/lRdedR3OLwwHuJA92G5631+W2VYfwiLOWtyfv4+vu57hEfZskUuSJeW/yTq7ffTyzq7r47vqDOP7xL6Ct5qrnCQrjKa/1DLN7B/BWTROmDmepX/Dug/6ck7bfyklzN/BQ5QQ2jbyUnqGv8XdFuK+7zEe2vY2XBuu5NDydX695Ds8fe4hX10v829RfMub+kJ9wGT8duYpzc6/g5C9egXvc8wieJi5TOA6FP3031Q+dT/iTH+GfcDKNr3wJ95jn4P8HUuWrlavwT3sF4Y8uJ//GN6N6en/ntp61/1lmkIuOjxWCdmo/IMugOKMD+lRtcf+KDCkKzZjNY6xgMFQou9CWIBARbnuFfX/8R+qA2/bhNPIpncclfiiL7xrty+JsclHm5GAz0JALM/6mGWTOjpYZkyKsICdrhGbpvbfvSvsCzLSE7dXyBdfoidwVgBQpQ8wT2TwasCLLqOgTk6AA2d59KRot8wQNBjBCYixURIuqzS/2TaeoMW47F2Vatj0eFotrBIk05LVDS+l9+lLYTJZlJCAEAA5tVQAAIABJREFUJRO3WbF2K9YwpQt0qSYOC8zM8ruHyLq4QrfLHDw1s6AdQa2kKNf2P1amDS7LiVqUqiWuQOn9t7kc6rSEwz7azGXWHTrU3SdL5rKIo3YrElrSobjIMz49f5Z9v+9eVopFqeDT2VO1/fQuNUibZZHcd14t/xdcK0hF9gy1rJttXZT0iieAYEEinlyOaLLHwY8sAyai102YtRkT++/1yVPd7ALz88S7XdghxgUDrkj2ibUTKqW17LnL5l8W85fdxlIb+8P8rpXEwuKSLrI6GfO+736tgiXXXP7MLgeTctnnZfTW8s9tUwiWP11i2QyRJvvTMgNpHbZFjEPOaBy5NDelsfiJprca01NLskyUGHybyW7jGUlVeQgLMyrHeDFP6EjGizmksHQ0IjbsibECIl/gtGWYS1JWgdMGitYKEiR++7n2xBxd9skSY02Klg0KFnqYw4p5DBA6iqSdoMW03/WONRSjlDRSrKtqYrz2Ak8mlXXb7zGNRMiInJojiA0DNqZXwvyApRX8Zgs+zwK0/wbT42OEP/oh/stf+RsnMXgq8557PP6pp9P6zr9i52Yz0Pf2P3vaY4w13HKoy9yxJV7wkxsY8HoQg+dy7uGv5IQDe/nxp7+EpxNKR3XyS+9P2RG4nD/Qz32epNQYojryKj5OFyudOc7b/itqFLl19RCX5f6V3dKhL4GenWUQLb5yVJPhkscZmzdxb+dhfL10OGyfRYmEqDTKKcGJDPpbsTImQjEpH+HYrqtp7HGZpZsHxWlsPuKVrF+zh9c0biDY+hOc1iDvve173Pra9Ty3tJdxp8Rpd0d8+mjJ9/bAkeFtVOOUnLc0vV+24jS+tOcK9j56CaUbIszIbsoXfYXWpReTPrYFrMXOzRJefhnB2b87aP5tLd2+jWjzzxAdnchCAT01SemDH2XunedSu+Cv6b3wg1xLlbXOIAeUN+5zbGnkeqyAKzu7Of4eB0HK7JF9tOwoL3zgPtbNh3zuF1fTVxvimxtO46ahw4mlS75jhIH8LWzc5PNA9U5eptcTkOAYxXSyktkWePUJ7tqtQPQzad7HHzx2E96KR7i8Z57XDaSs3TvHDenBVIJtnBzfRX/hYR7tXM0LduzA23Qln2y9gYGRD5HruovNvTdxVy7HBydm+DvnS2wrH8js3TlW37aZj1z4WUq5Y/jnu27mzplLOOAb36WqBPe/+QhOtzE5nrpOiPuCF+EcfiStS79NsuVRbKtJ4by/+A8Xmw7eeg7Rz66hdfH/o3je+/9DbT1r/3NsfwIyTzep+gVSqzK/qu2uKCsJ0CAgkQprBbLtKPeGLmM5Q1FGyP24rDnbIhR5aCdbaNgsgL8olpxzK8HTmaO6YI6V1EwmZ2sWFPXiQqSHQEtLo6gWHUkBYLN4sg6bEtiY8En3ty8j0MAj0bks75qTBSYJFWJMDmksCssq5ilSo0QNZSvtVe4lYV8XNSLjoo0klm7mTC4DnonMUgoKm8XzZMBQIJBIYxhkmjE621dniIVhwouyvpAW10DdukiRohbigqzF1wprNamAwaaHg8QhwlpDXoTM0Yu2sh0rmI20r1s0XQ8/XbygDJjvZyYsbA09gW2jcO0IVGr3AfYaSdN6FElpWJ+CiPBj8yRJmSDTo3kiJdEOVkIqJNqRqNRQTBW5VDCVy1jd5cDfkiVcAaiaXOY2WoG0llgotvqdbLTTOMYidRuABg5uqJcyTj7pDpcidsb6XFZPNJDWLJMz7nvcckhVLSvK1fRJ7bXyknwr65ee0GEyp58ALPb/Hu9tOcy7goZroM3CCsAaMuyfJhh3Cdpasv5bkC2WkgUgA4XYwwpDPfUpuvUnAbylsXviuC99zu5VULceLeOSW4hBtQpvQdfZnuKxkXjLgNdyCfMCbDYLCxbtRCGyzYIqKzJ20ap20n8QNmOodBwh/ICmp3CtJh/HaJHL5o0UzHVbBppi8SyOTXCEv8iuicX5KfAtlEOXebkEJCVZinzB0gLFEzFc6ggO2BnRyksmAsmm/AyRK3FNi2Ko6Z51kMa2pb9tVlUJpjsd5l3FRDFgYCamHMfkRIw0sKEVsi6sModPS3hYoKsd4xj7CmENkS8xKusjYQXWQuq2l62MYM51cfyEUt0whUPiu8RKtBe8sudMI3lIlOk0EQ4pCYpYKqpFZ/H+EqHat2txjaavFiKMuzhPIhzyxO3eyp63vrRJMx9ihWG25ePPWlbsTUn9bEEgp58egj0L0P4brPmtbwAQ/A6xZ/uz4J1/TnTDrwivvhLvRS9BrRja737WWm6ZuIl/eexrbK89jvv8HtZtlXxks6b7Y4eQ3ngF93z+AZ73+EO0Ch5vLX6fL5o1fGulJbCaTxSP46vTf8g2dzcmKqOZZdv4GsKOiE0bLmLDWJX7HI9v6t/n9aM3UO23bNHPh0dP4burS3g6QagG5Z7rUJX7SVQCqYIEVusmj+c2ghjh0doNiApQga7k+wy1Ksw4L+Rz6R9SiRr88x2fpbvSYtgLWZXMc+XG53LSw/cyH+a5I9/Nca1pvn7dZs4+4+WL937CprfxlZEruPHByznx8ib+K1+Nd/RzSG69meT2WwFwDj2c8MdXkD/r7P1mB/zPsNZll0Iuh01irDHI/gFkTw/F8z9E9f3vYfq7/8hdh+Q4d/Wr9wEeP314nNdyDymCLxVdPru9yN6C5NTKQ9zldHJMbhtT20pEe+c5u+PDFFfvYlX/Nwj93VQDwxQw1RRYxzJv+znETjMrWoznduJVHgeg1OxndvbFpLNHcMnG30eMvArVcQ+/2nAZLxw2fH/qxbx7aAcKeEPnV3lg/QYOvUOyu14CBWO2n2LjZfzjyWdw0V3v5/0rivx4R46PrhpCrH2I52+9j1v+4nyO3dDPJw45mLnH1uJNPMynzxjivrFv8q3pH/GmA97Mq9a8hpx6MlATQpB/3Ruoffwvia++kvwb3vRbJdt5KlMrhvBffgbhT35E/qy3oPr2n0znWfvfZaqdGkM7GSM0nwQUaaKRxK5EI3ASiRBZIoAFByuVimKYJ8ppvNAgtULoCEeCeUL8hmdjHGuQNqUe5CjHmZM9cqDg2O0xAkviSZzUoKxux39YHJsxYQrBblFmBfM4aVb7Kmcs9zjdVIjoI4vRiXHYZTpZzTwSS5AKxpRDXqRME7AuTulJJHtzCU2lCcmxXsxibR1pFC00c+SppoKuJGJAR8Rei5xIcWxMIbFEVhHFgoJcAidKG3yRkiWxd6gbn4pokghB3dEkRiDNDLHK04wUD5o1HO7sRGIwVlCxDSZkxyKn92i5CVpQFznychZpXJK5Dcz27mKlbVBMHRKZ4glNUTToqfUzZT0my5KVU4aybVBTPuV4lsTLZWm3EewolOmbq5JXc6SUWSCNhIDJtIQFCuUGxcZSIgsQjPT7WC8DRzPk6SVzJjO5mCXSWaKRinEQLR+RSzHqCdI9scAoQkFGFG1KSygmpUeqMuZzWuTZFCWMYyjZOuDjWEFLZIxBQ+dxDSRtVgmbZfBLlYdBZByNEpm80kIrEIhU4MbZnHVNloQkFmKJG5CaCRnwWD5gpTeDF0o8YmLh41qLJMaNDShNUwUIkTmuph12pADHZtxkTkvqy7IBqnaA1AKXU04bVEzIqC0uHm+BpJ2BtJIoGq5px0JahKezwdEWT8dYfIygXfMss5EVLiv3JqBUOz0F1JMCNXzq7ix9YooQgTJ5YiEJbINafSW2PIuwltkOh845DQsjLgWtgiLf0FniDytJjSSWkgJk9eBkSiJdPBtRmfeZ6dcUtc1CsgS4dtnYC8Oj3WU2TlSJlYs02cJGIpfAprICISQJEs9qFJpy0mAKhY1DYjy6nDrauKAEYcEy35HFnu7LiUNgWrAM6CkMTgpCSozcF5IqqxHWQVp4fHWONXtCXJMV8W56LATEAZBvGfpaKVr6VGSEwdLCZ68uUM07zFVcQtcSOi5z+Rwm6UL60wgLj/ZmiwwmLbBKjdKrI/JJjiCapZDWMFYRYxkOfFzXo+XEaAR5QlYlKXuVx7x0Ue17tFYxQYl+MUuUl4xIH2Gy+mfuYjETSJFMyhwzJsCqeBGkW6twRIQWDtaqpSddwnxXCibAt6ad6RSqIitDIm0G1hzHUvcklUQiAkWrmGPVbBNXWxwsJf30haqfjUH7Lza9e5jop1eRe/VrUAODz0ibqqcX73nPhzTFOeyI/e4z2tzLB+44j4/e9QF2z8/T2vN6jgkuYPW73odXnaX2F++hccm36Nv2CKWkRb4Rc+e1XdwoDC9pai6fSXH638/O+EZM3MOm0jyEDUrTszy8vsFr6nVaQjAXrWa23omZF/xg8Hii8dfQ0Yx4xZ4rOdn8FZUD/xbbeScHJw3KqcOpYZVPze2l23i86qDTODY4G5sWsNrj6AeHOPF+w2xuluqB17Ch7+Oc3LyUYtTgogPP5IikyrxQrF2TZWB82/ghXNCVrbIcs+PLRMuCtLtyPRzn9eHdMg9Ygrdl4FitWw86e7jcY4/DTIwT33LTMzIu/57ZMCT+5S/wXnIiNBrYZjO7HsB97vE4Rx5Nc/MjeInlxNVnLB1nLTf96koKIuJHlQ4OdA8jPzHH8NpByqJJp5zhshWnEiqXQyfv4tDS3yIO+gpzlZ1sHEl59Q0uxBWsFXRGZ/B/jnorQd/hvL06xSfmx3BTOCpWdLt7yA/9gN61n+bs8U9SiWdI54/mi8F7sQJeMX4n3wvP5B7H5w9qdR49cBwBTO+2nFDZCQiaYox7xg/gW52n8Ocz89yySvKV+0YIhwtI4NjRh2nceivNL1+E9/NrkGvWcsqJF5KO/BnV+R6+8ugXeeu/vYFbJ27ebx+6L3oJOA64Lvk/eubqlwVvPQeMWVxMedaetewHX9CpGxg8SCVGgWdCYi1pGYGjs9qMFkHcLNMZKjoTqBV6mOlKmHV9Yi1opWDa7ye15EPiteU323tL7B1wEFiMyGRwwkmwInOcHZut5Fqbyea6G1lsqlGCyNGMuT6pcnGtZEXLkmqXKVlgWFYwEqRxGZdljBQMRf6iPAwLszaPQ4pvE2KjsnTjkUsxjggiIDaU04RVusrReoINTNKdKmLhUo8HuEsNcpO3jtgRqKDGY3KI0PHAEeT8kB1Bjr0ly2wQMVqK2FFp8XBnyK5ixGyhyq5ywkRxnoc6QnZ2zXBtqcCOUsRIMWZrSTBcTHgk7yNzM1gJe1QZnBaJTNkqOtkaDNAj6+StQ7f2CZBoZWhJh7JTJc1FjPa7SNtOoiGg6SkSGzLa5WOQ7CkUmA8cIqWQqrnIVDaMTxDmKNeLdEQuWMtut8SjPWV2rnJJAphVPnMiR4xA+wpl2vFUCrRRFGslIlOgrx0K11LZeRybSciaJpPkmVaRKmUwloKI0BLG+7IV/RtWDnBvbh339PZDCN3uFNiMbZknY7XcVHDvulKWkAKo+Q6bD+nDSMEMWdKJhVT7Vmmc5dJFKcBKwiilYR0aUjIn/Hb8miBEMNCEakEttuGJiFwIcSRwbAxttrblSmY7FGUVUpQRKZI4LJEzLi1X4VlBveIy3uMwFwdgoWRCFEmWVMZC0SSYdrK/PXGJ0bjMGEtJLVJHkDpZkhuJwbMxo30eoCjrBkpFGM+yY63PTF9b8mhSppMKs7pMqVWijo/bltspLFJoKmZi8Rm07QXS2JMYR5FKh5mejN1OhQS9kHYGsOCYFE9nLLCTuBR0Ay0UZllZzkAbcjZjxlMlGS+VKOqYDXMNtKuwwkekFUZFmar2qaV5OhOHputSddt1CCNBgsBpuSRGMWsdlElwZIhvY+YTl6nUoaoloc32dY0ltYLUsdg2iC3rFo5JkRhaRUXqghTtJBt5KCaC3sgldrKIvaJuARLPrWOkYM9QwO41OSYGXG5f28F9vV3c3+/zWGcHW3vz3HxAN/euqjA8NMdYl2WuBKgYVIhJgzZ7KbDWxZoCu81K7jMbGI8OYrjYzb09ndzX08UjfTlS38UaRS7Jkub3JgopU4xbXwRL2RpZxh5nksPsnenLJjk1n02B9jmbIotbzKULgKldr07FaK+KFRptHawQGJ3HWJfEBsTSUBMOUyJgSuSZEAXmRMC0LbNXFnjIKbBLdKJUAylSYl+wd8BlbmULt7PEj/ufOhQJngVo/+XW+MbXwHUJ3vJHz2i7ZnYGlCL82TVYva8WffOeazn3hjfzwPQD2KnfJ9pxPh974Rv4uH0c/ZlPITyHXcV+3vCyj0POhTWr+NZZgyQ65q8uSfnELbP4z/0AX7xtNzbtRArJZ9J/YKV/Ob423LdecWQUcY8u8P7oPF4//ksAbux+AR3Fn1HddBU3nHwztx2S8urxBmfN17gvOha3lXJtscDbBvu5qiT4l61f467wm0i3gVAxdx+6h/uHOjnrV5JPjk8hZMzm527nc3+ouK13FTfq53Of73FK5W62daxg7W0z7A06uMvP8WJxHxf/+t59+uE0/4U87wGIjj8A1T8AsA/jIvv6kb19hFf9+Bkdm6ey+KYbsM0G7jHPAcDOz+G0U+wLISi+6XV4TTj7voAVwRIret2jE/ypvpgU+FIl4KyRAwHYuHonY0oRRB18Jf9yvne6z6WveJzJ3lneNlLnwzfE2KTEj1+ose48QhrmclfxhYc/w8/n7+F9/b18uK8HieXBxlpWJA7/d3yKoVqLK05okR72ZQq9P6RejHm4cw2Do1Ncok/iATNEp9GUukPmA1gtbuEPJv6FtQPbMa1VfOO2x5g/6j2cW024+JIWZ13b5IGhlNYxh+K5Du86+Xw+c+wbEb7ADO/i+Re+j0sPOZC18Xk0d76DRujw4Tvfz2cfuIBY7xuDkdx8I6QpJAm23njGxkYNDJJ7zZlEV1+5mGHzWfvfbRaLEYK+WFFuBRTSEGVjHCKUbrC6NktPQ1OOBJOUmaJEy8mxMokJVJO9jmLK1IiaCXs6XUYqHlYsZVfLzNDQigJ1PKvI2ZDAxhQjl440JfIlw06ZVEiStsPYETfoCat4uZBmV0K3O0MTl6ZQ1B3FcK5MqErk0jKuDkBAZ+pjc1W2y24C64LwyaHABsw5eXAMuBrlpGgUt3lDNDyflme5N+jmLq+LyJHUPYeGJ7iGF3FP6xTutodTlx00XNiek4y7ivudAfb4KY3CKLeUBbuDiD1+wmguZsKzNKQirx0q2uHwWHJcoumIyyTpCnpiD2HKJI4h8ltM+oaaF7E7J7gtX2G3WUW1eSiBzrPLKzLmFhBIGjZgZezgiAgHzawSbEgbVGSdeWVBiAwMxxJPCwKjsW6RKBDsWF1gNq8QxpCqrEhxy+SYshUmTYlc7JAqiSDAsYbHVhSolgOGhEMNh910UBcuJb3ATgikI2nqEhYHRSav8kREpREQOZJpmSdtdZJGkrr1EdUupk2FB4v9zIocsRJoKZktO2zd4BEFitYKD0cZhNRs9QoYa6lpn5rj4qoavpfJzR7pGWB7ZYCa51CMNRbBtO+Si+r4WuCQUsNDSY1oSzytglkZMFYR7PYCWlEHaVSk0MghErhvwOWalWXqJYFrDeU0JJKCsKgZaAikNWAk1kLDUzxS7sgYZmtpFiw6UeQiH42khsd0roAVWVbQZuzjmoSGI5iNyiS4mP4qadHS3ZS4GqS25G2Cl8C2njw7i0Xu6e3ESIlnU1ybMFN2GRnMoT3LmiYoAfnULi6I5JNlcZNktfzqiYu0GchKY4cIRYRkxuRIjIsyAjeVCBRjPQFNlcWfeiaTFgpgZ3+eVLhE0iP1JDMVRSocmu2QC4PMGFUEiVT0hwnlRLG1UEYIyUPdK9lSWceW3l682EUYw+6ST0O7OJFBJA7j+YB58kzrAn0TlhXzFr/lEUtJIxDEPgilOaBq6J12CZI88/k8Y6ZIzfUoJZJcKtGeoK+lcWyWuEhLiSdC8qWIWqdD7GeySuVrAhVwe2kTw9VV2QsrNnQlDluG8uxZI1AyZXUc0GN7eVwNMloqs7dSZKTXMBVUMKoFpCBSpJMtlNu0iE26EDLE6CADt0IjRIogIRUujzLEFtHHXlFm1HHYKwoUoxxua4ggCRholbEmR9Ot02kilDAokVKzeXbRRYTDDtHBTtHBnPCYJocSCYl1aZGj3o5Q8zF0OhP4ooVeFGYbrGpiRYqub8TEneh4gDQcIE06QdVAhmjrYRZoUQxChQhvklgKYiHYK/NYUup4aCQtHGJdRMunT+DyLED7L7TkwfuJf3Ed+T984zOawluPj5Pefx/eS0/EbHuc6LqfZtut5nN3fZYL7vtrPL2GmcfOY53zMi4+6xhe8ovv0PjMp8kPKSqnV/nACe/i94ZvpqM6x3ePm+HnqydxzwwoDkaM3dnBY9+/jpHW3aT1gziz70HeWeolLe3hnPMUdx0IZ64c4E8O6CLa9Dm2z4WMdkiqx/4jetUvybs7OWeyyj9+NWXobo9LOsq45Yc5JA45f3KOd27LmMT1xfXkVR4lFJuKx4DxGO2f5ysvgws7evmju2LedL3mnrXgbPoS949rekyKj6a6Okd59w7OdF/NJ3s6UcLQ8+BXGasuRVYccWMNI+D6I2cXt6k169qxHmCmJvFOOInkjtswzWfO2X8qC6/7KbK3D9nRLnWQposMGsBE/hHuXSc48ZZ48XqaseaKX/yCo+U2LiuVGOg+En39g+yu9PL8ylbGlOIH88dw8Iq/4eojQp6z1fKR76f8uhLwVy/1ufOQBghY5R1Hl9cFwAGlDOC9cuAVnL8j5PfqdXLBbu4I4Ju6i099y/CPd8xx4F6L6L6HYN1XuPfQMby5lKHBT3PhKjh27WpuLwb86bsdbj845cMH53hf/VqEalBPG1z7y82M3NKL3OuTP1JzyZkuFxy1BRGGXPDoxfxy5XP48ekns+aUKWRaw//oe/mi/zjnHnUiU1veiVs7hWt2/4Tzbn0Xk812UW9jaP7L15CD2fyJfv6zZ3R8greegwgKNL580TPa7rP2/08rJJK8zmpvrXJGKJtqVpNJKhCWjjgmEE280KFlfEh9jM3iZIZas5RaHpX5gFIrIHJz7BxM6TchG8M5Vjkh04MJnpUQu0jbwpoIB5NVCVJgpMBJFTv6OtF+J4Mth4Pn63QZSdN1iXOWuCPEQaBye5lwLEJGWSwclpy/m6HIY1WoMMKQMxph8tzABjaFkoEoTzXpxjOWNck8R9o95KIS03QRiTyPqG4eTI4iSgZphgdwtxhk2Mmxw9fEbamldKcRIkaqmBiPqXyMDXYi/QlSp4WX5ukP8xzfMGysF1G1AxhqdLGm5XNAKFlnp4l0idl4NX5Sxia9mHAFq+sVDmrkObYuWRcJRNxJGA/SFQUgBLtkGd9oSLIC83l/jEgYlJUkKAQCtx1lt0MGFOQsM/0psWfJRZK666M7IsrxPFK2SJXEtVkNJa1ShFGoVJIqiZ9a6oUuhs0QD3V0obXEpDAsFI+GG2m1BjIeRWWp8Y0Q7OnN00hKFOb7SFTAfEeJ7Z0dJNKnEuWQJATaoalcQFB3PBytiG2RxAqmSdjieqjUUrRNOpoeaFg5U6avAWMUGKVIaASpCZjzCpSdOYwUKKsoVztZNyMZaDa4a12eB1Z6SKPpYo68bTFp+pghvyhTm7V5IguOjAg9ix8F9NVdeus5qq5PqhRraykylCSyXdZAQl215XhNmBB5pk3Abt1LNa0wkxaopgGjFJBCk1cxeZ3gaJhvWNAtqsJnd66D6gGWnSstu4MutgadxL5ldWoZ1SuZ9CpUVBVZLaOaATr12D5gGS12IAwYz1CQWW29x5N+BkUTPRCQ6ByeteyKu9npFohcSTGpUomrdJk6noww2sVEht09BjWfJxWKYVWkiYfQkuHegLt6BxmVFVqBg2sclHFY2WyQyBSpHWLrIHWCiEO6dMpYd8DjHavY1htk0lwBXipxtGAq9ZG4pOU8OzqLODrFxiWGc72U5xRBQ1HQ81R7Rml2TLJibgLVTLmna1VWAgKIfZtJE63DYwPlDIRIhdEOudShe66D3GSFEW+QxHGIHKj6kjinKGmD7xuGGu2i3iLjjrS01Csu04MFxvs8ums5ikmNCT+gMNfDfFgGbXGtRNfyTCW9zDQPZLzZxxajyCctKnqMrqhKKbT0tqr0z0nysYQFlsr4kBZQUZEgTcjFWVkRIUKEiLE6D0meLPKtLUbUeazJ4WIpOpOMkZVgclOPjS1BRyqRVhLqAmOmh0kR4GIIhUuMS77Vy3zah2MFQhiMzearL2sEYoJckuKlBmksTirxdUIpjijGIblE4iWKQmhYPQVrRjronC2wojFKrhXgRT652FIyM/TNW9ZNhWyYDFkxF5JvSkQs6dXzaGMgzJEPG5RaT19/91mA9l9k1hgaF/09sruH4E1vfUbaFFEVf+uV8LXzAOg9aBx3VQ/Nb32dJA654N6/5pItF+PWX8zoo2fz9uOO5KtnHEDpbz9KeNmldBwUsfJF03ys4yNoIXjTzuuY79NcviHkb6qaF8w/ztALZygMhBQ3388rt8zQJ8cYrv+aavdutg0KDhmBv5iq8sGJBuH4yxmYXMehw5p713lE0y9lxYMncOElIVeJF/PQkOTIrfDuqTm+euMMX5qdYGr4VB53z+E1K36PnfWdfOqoT3Oidzhb6nczVJfIqAjawZsZZOMDDptGLKc8mpBLLd9/wV6uSTvY5jgcsz5jy7yr55n2i9ye83mLvI5/uuYGrLXoPSPo6zbzyDF5rgqm0G0mRuRyyBVDWSbH0b34J5wESUJy83+uzNE06iS334p/8qmYyYnF7Wr9EkD7xd7N/ODFArceEf7w+wB88d+28efmYiIEX+6scFL9VAZHtsKaCA0MpwE/3vQw20uG1wy3OGq7ZeNuQddwEZPmEdrl4L1D7InvIB9ZvnDcZ4hMxFCwkld1vIWrpt/F+0fqbH54hE+OT3HCg4ZEwUdeWD/wAAAgAElEQVQ2bOLsB3zOuWKIcPzl3Lc2e8ke/nAfeva5nDZV4iNTM7x42GVXH+BV+WRnndPUD7FphfVXfYfmzoTeo+ZZc9A4Xx2fYqoXHjgQ1g0/xln65/yTOI3bN53J+pduJVjj0vr8hbzxtsv45zOPJqifQTjyZrbOb+Oczecw1holvn4zevs2ul4ygL8iT3rFNwjuvAhn8oFnZIxkpYP8W88hue0W4nac4rP2v9d847BLdTAuPRoKtGNwjcAKRTWXyciSvMQaj8FpSXc9pBgaHCOR1uLFRfzII1GwaspSms6zo8dhrE8xj+CgWorbcinWclgFBR2yxolwVYhPk/kBwUhfHjl+IPeU1mM8gx8nTGtN6mS6KRl7BEYulpKWQiOcJp43jUdCSzjsEF2MKZ91ScyQnWfIe5iaW2enHmTKdHOwHeVRr8T9qptRetkhupHuDA1boGFK2LgHaV2EkMy6MVOuQqga0qkhvWmE1JAGGAQpghemExycNDmhoak3N+InJbpp0SNqFIlIUDTIMUYHkXBp4mJElt6kLJqLVbta+GhcvKRMKaxwUNQktA7SnSLnTTBo4gzQipSiSemR0wzokEKSozfy6WsrS0oipS+NmeoX7NwIw10uVpeIJlcxsB3UWAtfVIn9GGkFTU+yYXqegmkykMABeoRSaR6DpGOuTDEyrJz36G9qcmGAbHYTpQVcY+jKFQisz7rEsq7ZRDoRt/duYqfsYI/pJJYOHSbl5Kkxjgy3MdVtmO2t0pffw67yCoj6WT1dJ3U0BWeGQDbojgwdrTxN49Mq5JlWASYq4usmE70ReVsnsR6p0KxsRrRklglTWYkUloKu0xtPUYolQkJUVkS2QGQluqOK47co2gbWCrxUsL2vk71DAesbYxRocPzeGqHuo5golIzZujpPo0cwJz1mnByJUQQtSamVw0ofoR2avkvigxUKi4MD5ExCkBocDZWkxbR0McqS5Ca5qVAgsRkLKY3P6iqUdINUKqTRTOUa9Mq9yDig6bmoNIc7ux4n0RijeKDLYSIN8OOESmoY0xnrbIzAJIoWirFuRexIpv0AvyNizi8yUioykfOYMm4maaPFLQf6NIOY+bJDoyjZVS4yt0IzEa2nFCsEMB92sr1SZkt/mQ3jeVwgaPh4ruLQiU7G5YHMFsBYi0wMWEMqweZS6MzR7ImJ3Ty1XErDF+RpkosdHGuolap0tDS5VBAWHayXUkgtW1aW2N3fwQNDHliJ9evMlTVjxYBoITavQzOgR+nUo/S62+mOm9jQkkhNQdRR2jDba7A2i+8b65BMedAvZmmlRby4zAE1GJvuI4wkofIohICBCVFipFkhcDRrzCj5sMAKZsl7M0gkHk1aKkfddWm4HkOzTdbOTbBhFLrmFd58P72jgwzW5uhsJnTFk/Qko0grMUkFq4sInUOIBIcmrq3h0ESpWbrsJIU4ZkdzDRNJiaPjnXS0BCYuELZWEjc24ccd9DWKdLQ6cHVWlDsfWXTTYyzxEKllw3SJvijBMSm5WDM4DV4MfpgjV+8giKBv2qfU8MmlMcX5CitqVUq2jnagp9rFQfUIKTR+GqC0i9QOedOk0ihQaUm6m5ZyFXKJoBgKVoWzBKpB6kGYU0/8mdnHnk0S8p9ktaTK7vowtaSGsYbuG+6j65GH4QPnk/gOyxO/GmtJtcVYi7GQcyXyaTLRiXCW4J5/In//NxFpk6k7+/H7PQrxg/SvnWLXjd189Mev547CJNHE6ZTT0/nM6zdxGDWq7zwXvXsXA8fOUT66i6sbR/Pz6hBfmPgXaAq+dIbLSSOCl6d7sAL23trJnx19Pu+48we89a5rObT7l3x+Y4RjLB++LOWEQo3ew+p8Nnkdz7FdqN3PxdOPcnP5VaQzm/jYz/+Oz7yhi4ne+7j1IMELH7GccYNHOmPZctMgr7S3ALdgLlWc2Akd9fN4R2Q47uAcX3hlTC5pceQWwVuuHwbj8r3junno4CkqIXRNlfl/awQPtARfNJPc0b2SNVvu5sCh4/nIAQ2u3j3Oqya+zBX3H8qpP/lnUA75V53IZOs6Htn2Qw7beBaQyRzjqSn06CjOYUf8f+y9Z7RkV3Wu/aywU+U6dfLpeLpbObdyFpKIJhhsY8A2BpGvDJhky4AtEYxNMDldk40Bk0GggBIoAI0i3Wo6p9Ph5FO5ase1vh8lEy6+vnfYeHz+xsf7r0btvWuPWmuvseeacz4vYqhGdPddeFc9/r9sfiQ/2QJpinvRJcRbfgxSgjHotesBsGnMrek8a1bXcC44nv4XP8+W066g9eiNXO5u5SOVEuNhkX03buNS4JzVe3lftcI/lYvkOjmKPYdvrBFM5gRrjuZ55U0NvtCT7K8F7Jw+zJO3ujz3lkWUfD2vrGZMUMNb+H3eChxkBK+ScOFkyNJOy4MbJI3KIm+70uP6Lx1kuLeOR+NXsVR4O6ftzvFQ9Vy2i9N5t3cdz2iHPHzjKG97IcwUGtTTLq986F+Y2LXMlvWncPyh/eTXHWJMdLhhT8bfXzLEu/bASxp7+NHIqbzxyLl8Z3wrq8/bzUKuTP3rX2HNzCH+6U1v4X0PVLhxbxmz9lO84p4X847PrjBZTqip2xEbpli8J0R/7x/Il99JMnwK/TNfRrTxqb9i7P1r45AZUmNxpEBJ8WsESPn0p2G/9iVWPvD3HH7X64ilIVABFbfKmsJatPztEvr/Fy3EAal0mSdHqg2JinGSQVampzWzo4pmc4QjhVHIt9m0MM/h/ihj5RbSDiD4OX8Zpykxicf4CswUhxnPWky1QhLrkW+BytpkHcVQ2sV4gv0li8wSJvsaEzZpmAWOpWMctkVGwjbFxKXhu4ieRzEnOGQcJpIWvdDnrDgi9paYUF2s1Ux7j3CnOROre1RNzIhaQgsLRlARHeZUlUwZ6lbRVAUWIgch+mhdJ+oeh5QJJhsEg3ZQk4ZNXTABQi8idR2ERQcL2H6FfFhlXRxTtTkWhCDP4O0uQjMpljlP7iC1PiEufTwWzRB94YOVDIk2rkjJcAYZF+IBeMLCnPQpKpemNjScDOW0UImiIpfxgqNUjGEkS0CEWMoUUlhRHgXZpaCWcfsOVkckfQeRFujpGonySTIP4RgCNU8uluT7UA8cxrp91qcxR2oucV4SBxlLvRzntOZZHa5Qq7ZoaIdhe4SGneDhVcNkSZ+NScjCaInT0t3sYRWB7LPW7sHvLzMUNSgYjbYZyod+KCnGZbJUU1dLLAYeTeGTkmdoRTOUaCR9SmlEJQ2JhYdkQPPc1Ooyn1csjfdI3AJeJFnVE2zsrDDLCLtqa6ksJNiwCJ6g3PLQ/RBJiXxJ4fQMZAptoDokOJh4MA+lvmQ0aePiE68JScwKpThPbWEVe90KUu+iYJo4TUk+cem3h7HpPLgJGIGbahInRYiAeiWH0wwwPZdlv0k5F2K7MJL0GGr3OTTms7KmTSJ8Jo3k+GVBoxvQjSHIK3a7BVbLPYAhxqWQGBoyI2hVKTohJXMIEQ9KB3Ndj8zXeKJP6EOOJms6o5TTlCyWTHYc1iZd6rZPKlIaUcz+6jiRjJAyY91yi17eZfu0wHGb1MsZResRuw59EuZij82dFSY9RbNaw0YL+AgiGyBknkQEHKuWkdkxHu2vQqsQz0aUunBCL+Ph1RJVzTh1d8ptI6ewqb3AsDxE5BXJZYpq1MPNLLmkR6Q0HcehFBlsDuojPhubPZrFIg3XZ7lymFrLcGRYIYRlvuwxO6a4otnlkoUOxgYMhZoFV6B0TJA6DGnLSqbpZy66kDAsBLmVPEtVn+7qLmelGRubKQ86a1jFCkdyJVYl8wRG0CgW2bAS0/Zc5grDJG6fXBSyNvwpfjUhV2hTkjHzUpOYMlYY2l7A9pEKGxe6jPR6+HaJfNQnsRGNnMV1FUEaMd7pUkwlXqdJrFyMSWj6GW7iIlyNlRHGjylHPZKwSpAZ1oUxjjBkVlFcFpwRHOFhZwSVOeh+j6KriLx5QixpPE7oxSwon54ZI2WI6WwWL9UcFkXa5RzNIEGwQByfSegv0w8GlMukE0JaIvQTPN3AxKBVh0VfQRQhM49YCyJX01c+i+UAxxE4xmfY9LGZpIQlpywFG2K8lCHn36/U+u3bxW9QnaTDdw9/m9uO3sz+9i/6VvzI8r5PZuyZgDfJ92FvfT/KlCArk8Vl4qiESaqYaAQTjWHTCjlHU/I1qyo+U5WA40bynDsKJ878E7ltn0YkPaJNT6NdfSLRl95K/lWvZuX3nk02+1PevPYG9ubnSOefzEtP+SN+f9MQ9rabaHzy49isT3pVg4NrcyS9Hn8dPofTiwlr7zjKzlUOR6ZS3n1wgcwVfL3xJH42NElWKqIv0Hi3R3yvNsiD/9XuNqccyLHylBI12+UusYHt2am8YflDdFzNI6UzOMN5L+/5g4wDY3U8UaS7sQjM0NrponMp5XU9jlRdflT5YzY8cDcblo/9vBfjzB0hnz6UI04TvNjSyMHb/0DzJ91TEN+4k09eBIdGW9j+KD/15vnDyXGum57nuPtb7G49j6Q7w1fzEc/r3s8bb/xHwu/dQu7Zz+Os8/4Q/85b+P7MjT8P0NS6abjvHrJjRxFS4l1yGeH3bsZGEcLzfm2cfxOKf3QfolBEn3Ia4be/Ca6LrA4hggCAXfu/yjGteOHY5eSveSqNFz2fPR/9GG855SaOiDwfL9UItl3Dc+a/Trsq+PR0mZsLeWR3hE6+Tpr1ef4dGRdWTud9Vx7g938seMHthlh1kX6A7g7oYmQZ6xag64V864SruPzkNifsuJ32jE/9Z0UUoE4+GcQuEqG44bmKM2d+QNeewQOTG7jswE5msz+m4Kyw1axnTWGBQiR4x20RL32aYmcp5tqdP8EMSbacfgL762fw4/k5/nDtrVykF7ion3HfSZJzf3yIl77tBP7qRyv8df0SXubvpn9+Qr4Uk2x5gOwlz+cNb7qeS9Y/nnfeo6iPfII/f0aej3Qvo/i8N2PafbjvKcxVX8XQxUME2z5D6bZrSX/yHppnvIIf567k4dkeh+p9jjT6zLUiunFKbCKkt4B0lpHuCspbxvXqSKeDlS0y0efsiwxv+Jrhvo++lm+f/4uig0DlOL12Jr+37tmcWdv8n8b7/1b/vTUetfCSBMd3WbGWjBQvA51BQYG1UIwbuHmHNeEuFCWMtKyQZ8S2KSV6gLOWgiDSqDRHpe3hDfeJaxEHxDgiJxhJ5mgZyQQhiVTUOg5TcZtc1qeSDAip5X6fashg51wIVsVNFpoeC7lJIq8IosNkNNgILCSS0zqKnxZgnoAgOIASMbK9hpzqUkslg43cx8hlCBw7gFBPuTvAFWQ2B2KJ2Gsik1FkqgZYayMHGHPjYOIaNvDR/hyuEfhxkcNmhE12mVg4rGWeWLisFfMs2DLHGMIhJSdCQjtgqoVC0BGDvo0VKZBunyiOaOBSdSJCNG3RJJMHaYgGJsujRErRwEFZIJYw8L6SOLIPMsSJRkFAiGJEhkylMbVuypwrWInylGLLXDGgEMf0ZZ58lDHczqjUwboh3bwk9SQu4OiYpvTYKwxK9ekoRSVNmOjF9PwA3wk5aaXJ3omYORXQaffJy+6ATvmYYW/NNPjZmEM98igswYRrCVoDoLGXeiSySj9r4WY9prIWmZIUQ8FwnLKoXabikDXZUfY600gD/bLPaLuPLwyPakVjuMVpBwZgktVhyimdIwTxQVTmsW6hi9sdRrp10kzjZBq3nyNzBCrJsTlOkTKmQ8ghP2O2oCmlLcZtHccTHEkKOMkgu9lWedYs+YQ5aCioKZ+44eOnkOUkUsKim2fFdTEqpheNsUdrgjTBy9cZNh2KPY8kg6OllGKiUSqmGqVctJwhjeQEs4+4qVjpDfHTySGOq63gGk051KROyMFykXpJUuIYucYmlt0pTui3qBuffLZCMUuZMw47C0WOb/UoJoK5VHByO2TSCBZ1DMpyUNQwdYelYJyz29vIBFg3wzoKI6GvXcbmYK9ajyrMkUkQcY+eo4i1y9GcpmybtHXAnD/EWFcRa01DeFy0ci97vTL14TqZgiWp6FYMngN2OGFZO7STSXR8kPFexnC8QIAkyGICG1Js51k1Kxlr9Jj3cyA69JMCR0weT64w5AnmxjWJGqAXvVTjZBLPGFwLxsgBgEZZ0mpGiiEfGfqpRKcu0WO+c05oUO4UJ5glDqki7bBBQ/f5WW+EgukRppYsS4k9l17OxbNdBIMeTSsEqYoRemCXlBMZRQXKNEiyAlXTIHY10WRKixQ/HcIEXWZFk3zmEfrQlYpqCrXuYU6reyxnmkU5Ts5t0svX6afT4NXJhMV40JGSutDsdPJUVAG3L5jVBY5L67hpiMHQFjlmjcd01mDWc6nrIr1cyLj0yJwY3++RueDJhL6TUBGzOKKKsApHJYThEJ5jwWmTyR6ZyJF5DfoyJksFWdAj1Aqc/XTbJw9op8KijI8xikQYlBYYKwidFsU4T2p9jk/bxO5BRqN/G+r3r/ptgPYbkLWW78/ewYd3vJ+VaJmT/Ule1U7Z2K1TsRL74xJeB5LL27xpGealww43YMaLWckv0c/vJf0lFxqNT1GuJjDrWemuYvlAjhN3fJ8T1Z3kRMQjhcvpXfwqNp24mf4nPgZS4l1xJdvn2lx373forJ5jZP8pvP+B7+LffBOd2fTngNVIwwOHK3xlnWSfei6p1bx471vw2n3++emKtzWWafgFXmGv4aH8Zl6x6Ra+xWtIcoI/fu4ke0csj/9xnuaxE6j7B1mbX+FH9nh2pycQOAc5/8hB7hk/m7/Jf4hvTS6w33V4+0Id06mz4c7HQBfCkptI8CcUZ48v4m/5Ik5L8I3jr+CRP5gnf2yWv3KfjZ5fRqURNx67kZMPWg5NpLwv3sW3Jo/j+E9u58bNmi9euAhG0hSKd56V4533Wy45tpVvFl7A301+ibO6j/CSR79GW+QQVz0BPzfKpTbHndEMLzMpWupB35e12KVFbJLgXnwp4be+TvLIQwM65m96vhhD/OMf4px3AUJrsrlZgF/pP7tz5kY8Y7ng+D8ly/LMVSd45s7bqR7X4M/HVyH2v5TU+Jy8cpA7LjTcks9R6Cg6hUXO2A8vvTnl5BND3nruEDuyR5nbadk/Lri8ciGj+Qnk2Bhfy37Ed4MdPOng73L1d77Ms+Z/yHEbD7B4qo89IPAqMVHDYfOte3lVljA9dIwP1nwemnb4h/nr+WHlGQTJbs5KvsoW9Vy+wtm8VXyF3SdOoA86yH2/h17/L3z4KYo/i1p81PkAt4+eyWuSl/PZ+Cze5P4Tb7AP8upzxrhwh8X880vIbX4iN9av4M7hXTxp9y6etNMwmRnMwjytV76cEz3Nl1d3+Wj1Ar77uB1co/fxqt2LPPWkNTibzyG86wf0X/YNljY9h30/+irTuz/O9A9ez+l2mHvME9lRORG/tMxw7SgBh+jY2V/CZIMnKhRMkdHIsj4O2Zg2GK5m9Fbned7dimcNh2T5NvNK88DYMHc1tvO6n7ySM2ub+cvT3sxIMPobny+/1X8P5UVGN4a04GCMIFN9Qg9GkxjP5kmFxDd91kcHSAUseVVq2QoiVbSKAVZIkAMPs9B1WMjlcPAZchQFDYumRGPcxSTLaBtj3YREaBr5HEONPlImxClsSnfT1j5a1elahVXm55hy3V9mY22R0EpG1QJ50yG1ivWRoqMsseqiVUJqPYIswybDzOuQIQShkIBBmEFwpo1+rHsrxbHQkRrp9DCpRRqN7dWQzhFsUkFZM8CkJ0WUrFNNM4wM0e48CyJBJ4YeGUecPnMyx4jtMic9aqLLqtSyR0isblOUEWGiORan5LOYYVMncz22Zy5LokhX+SxSQSKYSBSx7DNh5yGTzCmBNopcaDFaUg4FK75lujVLKgZo9bJjWZv2KRh4xOapa5+alUyHMwRZn9C65GPL2rkAkaYkbkw9p1gc0cQ9j/ZEyvZ4ipI9QrcETmsRYoGbOqjIY6qbo2jqHDUCISwluUwiciRJhsTi24i+hUR7RFLw06mYsTCi11f0O5qlLI8VFoeQVdE+jHGo5zSVCLS0dLRE9B02ZQc4FhfwbUgRh3ZVENg+zYoiySxxMeVwL8fRtIybuDiZYKZcJhcbanGTXC+gH3QZzxoMhy36pUkeDEY5bnaJNaLJ+qzBPKN4rQC/1GOxM8QD6SiOXQRVwEsV5TgiT8pef5jU71LtCeaG8vhBgcDp4eom80OjtF0Hm+bY71VYFTfxZUS530V7GStZgHViUq3JhEQZOG4mwJZjWn1NKi2FLKIvPcRjHnzaZkQEtKoZXRVTsCvITLG2NcuYWeLEXocjeQ838ymFhv1rwao+7bky440lhmouq8wRnEyRUkLRw7MpnjA43hI5mTLvC3KR4eRFSRcHlcF02GWHtiSZxI8Ey4nPeDpHSSxRFwlLnsU4KUZaHOshVIKfpAx3I+qmxTFHEnmQJpZGrKhJg8ZiEMhEU2gErG5laCNYyTsYIRnqRuwe9ymEGoQk9dWgV10bYiHxrSVVUOtDIixe7DDcDFBDFicd0O+1MAghqPQsI12LmxhkAAXf0MoU1kKvmmHCmOMr21BKYIzEAYzMOFjLU0liZK/K2c3dDBOzbaiN34joO8tMtRxKxnI4MOzSOfYqizaKieYkI2HAoUKLAMgyD+OE9FH0pEecKYhLGJFirEshcQlyXYRj2K/GWPJDYtPCIPFkjoJzmLZOsVKTjwVNkbBW7CRQXaRISALFSs7hJ3YIsgUO23Uc8lJytCAIqCYus7pC0a6QIvFJcK3FiYt0gh4uKet6AY8GeRZEiUwnKH8JmQbYLKNvCyh/Eav62CwH/jKZ36CBSxrnyXCxmYbQITEBjorI2TFSEZIQMYTgoCc4LhuQT61MccSvm2b/sn4boP0nZazhIzs+wNcPfpnjSsfxD2mNzTtup1M9mU/mXsxdPxW8Y+f/5P7Nj4fHv4CLvD1MLN2Hd+B7qMVdA5LPxGYW1zyNveUJ9ts+B3uH2dPaza7uHcT5DPLwpSzjfjtNn3N4ZP44erfUmbzvJ3zwppspnLGZj+9o8/ldn6My9B1euG0jj791GzLJiAa9yuycFvSmQ9YfgQv2BdjmiTx4fsSrxesxD0kemZbkhxM+Kips9RwE3+YDS5/maZ0eN4rj+ZtajbhwhJGGwwvvatIutvnapVfzLvlp3p09BStjzjGfIYghWt/gU6vnaAmH67YkBCVYc0uAYIWR81vM/bhKa59PetWfMfuDL+IcXsK5yPD9dY+jeaxNf/S9fH5di2tPej0Aj3tbxI6V7/Gy76Z86OmzvDb/eD540T387r1DnP+o4aNPctm5TjBSyNg9Kbhq4U6+fNzjeNF8mS/2T+Q5R3dRXduh/vIXoq5/O1cObeZ7zft4+NhdnLPq6l+QHK3FLMzjnLkZfJ/4h/f+lwRo6c4d2PoK7gUXDT4fOQxR9PP7SE3KHeEhLrU53GbKzEv+gI25GTr1gHt2r+dMvZpDWcYZcwMoxm0nK8aSlI6Q/Pk3Ms7faRk7vcld51zG7dndXLLNcuIRaE+vZ/rN7wXgkeWH+PSWj3N+9dn848zJPOFp9+J89yA77x5BffDjyO+8jrTRpXpch96K5aLvCNRFKW84KPj7kzNeO17jj9N7iR9UXDn7ENtOPp1v9a7kjd432X/cBNM7j/HmB77Mo4cMn71a8ZJoLc9cgTf2tnFj/hVcMznKDVrz+Xici7sh95yS56LtKfeu+xxfcI7yxX1P4Tl37UfVQg5eHHHYU2x6yGG8ntLd6/GnPMTvLE3y0XOP8O74zdy649W86aIrcN73d3zqs7fw6WaRWOQYHf59NpYfoWF2MqPuBu6mCYyoEqcWN7CpdDEb3RHWJAlr6wcpH/o+ur4VgGTsLDqb/ogd+fO5ZyTl8ne9hm13n8gXLn8mfzP+Y/565mv8hQ7457Oey8cXbuMl9/0pbz7jLZw1fPZvfM78Vv/vK3BCFvLDHF47yYlHOiRei+0jBY4JhWol9BOP1FpSBH0nYylXplH0me50CB2XLJXoZNCP1g5chNU08wH1NKCsWiymBYzMCFRIbAdY6F5RknmWZNmyN3JxSXGdFWo2Y66QZ9lzyKzD0HKP2FXk6NHBoSsUFbHIqixlThbpiwEK3OKijSKzLr7XoGFz5ESXn4kaR7M8CAMCYuPhYohwGM36NJQD2iBkgpWG2FFghjDxNMQBSq1gpMKqCCs13WCcteEMgfKZNw5LTspO7dA2LXwLR5Jh8rJFT2f8wKlgU4c1ok6haRhutWgry0TaYU1fMOnPUNcp5dCjmAi2DAkKqaAi53BziwRNw3xNE2iX2ryH786jpaYWpvhdxVwiiN2IbaaAcQwxChEZdOxSSF1iz1A1bZAghaRg+oR6YHQbak2K4Egx4Fg+x2GpmDBHaIuYmj5GFjAIxntFdlXG8CQMJctsbCu01bgiwTctXCvIFUNmTJVSNsd0o0Yv30OJjPme4pENFTbuDIm0Jm/bP8e8CwYZnPmyCzJkJNH4dZf90mGtOAyJIaKEEpBLU8qmQL1bJPAbHIzL9Po+vokwP8cNCDzRJ3I0nbxHGjTRqR74RlmJyRTb2+MUkmXGZURXuYzUBfvR9FKPUZuSqYGPXawcjJEkQYd1oWV1VOf+YC0ZYFKFVZaw0sDIEdxMUIxSvF6Ap+u04hzbWgmZl+OkYI5lVWCq6eBlFscaltplJClWWBJH0HZcpnqAp1EkhHGOvlRMxEsUwhyp8lE6Q8gQP4wpxQluqphodPFGDUv5jFXREulwylp5kG7q48qURAyjqJNTK3g2oGzbSAQLNYmjUtbUNRXbRFuI3AJGSJCKYl/hmAzTWKLtCbpxkcjpEdBhfbqHopNho02MdxoU0xVCN0AmPvVKSJZCIQIZCLqu4ILmLA0shz1DojWxsGA8EpXY+t4AACAASURBVOswX4pwjAVt6ecsXjXC9gZZboPAsSlr6xaLBgtPOtjEyVbYU4pZijUrsUM/sEyFGZP1jGWpiCU0EpeFLKCA4GjmYGogEkU5EezSHonIUSRijB00ClXkyioEliCNacs8C37M3JhgsjfLpjCmaXw6k5qu0KQipS1dlphirzdYc3pCkjGCxkfpLlmawwpF2h/HGIWSHn1/lroaQ+mUMB7GISLRIJIKRbFIontEaRlo0xYuBdVgldNBiz42USjjkgunOFaaJw3m0LFDQTl4oksl9siSCuYxK4o8EU5cwjWDwHevmSSO82RphpeCoyIQCi16JKaAMcNoQgp6N5FxMJnEzVJ8acgw9JMArZbQNqOfjCBlm5KoM5q4zDsFYncWmwz8DR0Le1WOprbUft2//Vf02wDtP6HMZvztI9dz1+wdPGv17/IX+35CcPRH3DH2Yl4+cyl5Af9z5/tgfIInvuONj5WvbaDLE+le8hb00nbcA7fiHvgeU1vezRRw2S9dPwF2lid4eOJUfloa5me9GY5070JN3UVFOKyaWUNuaY73rb6Yg3d9gb+c+Tbn7AGd7SJ7LGW2POYwftoizxjqgdTceMZruG7POv5Cf4YXO+9j5qEK3SjHbRdJnnHGG/nnA48SHetxfHOIDyfDvM4T2GAG1/shAlgqx/zwRNgtnsi5pd10rMfNyWU4az7PM26P6GvFl84+QKIkk8twvy3wzNskyzLHKZcdpVTp09iTJ1x2CO+4Fbl3mdmnb+CC3H18Wb+B5zT+kl7tUr556Gs8ZfVTWV/cwPjTnoVz7a1ELjzuEcOdZ3yPWyjytCcsou8d5q+/lPCDUwQ7Lk5Y3iC54B440f9Hvh49jZv9NzE7UWH87CbZgqb5N9dx2t++noK5hx8c+ArnrLoatWbtgORoLdnsMdTUKtyzzyX+4b3YV78OIcTAusDa/7CBtU1TkBIh5cBnTUrc8y7A9npQXwEeK7UEHj58K3UJjw/OZv5/vIxibpHJS5vseLjAJWsPstucxO7SPH9++EH2T1ku1l2OPVrked9PKCSWsXMa9CZT3qm3M74ML7s5Y7kIm68alHSmJuWD2/+BqjPK1p+s5rvFd7Ax2cVnfqfGOTcVcd76XrJ+H7DUju8w4rZ58AfT5O4T/Oh0h027M/adDZ9dDdUNirN3gb76y0QHr+VWcxZP0g/y8rNfxRt/9DluO24wEYXb5KuldfyL/hOK3TFG93qY0jL7C4us27SR6cp22L6FrTuqvGLzTTy59CBvvOoFpKtP4b3uR3nS8n1Ej4efHBvGe8Cl2IfqoWO8+QDMl3fyzdPfwTWFP+WTUiG2fIrqU6HLUXrAfl3klOr5PEGWOO3YQ5xy9KcMZzPAo786RlKTTF5A+5TnE69/PKY4yPhuAjadAP3OKzj3g+9lvr3Ic6Mnc17xXP5Rv59rfvwxzrv8rfzV4i1c98DrePvmd3L2yLn/oXnyW/3faXZ2lhtuuIGHH34Y3/e58sorue6663Ac59eOve222/jwhz/MoUOHGB4e5tnPfjYvetHAB/ELX/gCb33rW9H/y3N9++23Mzb2qwblRRszO2mx2mFlqMpcbplmISELPaJaSioD1i/0yKRBorFuzH1Ta7DzC5xKAwMM9y1zSrGU9yh1IixllIl4tFtieVRRbRn6VpIqQackIAYsuJnBSwS2HFHswLLSKJ0icWmmebYWq5SyHvksxDMZidY86Fcee/mW7BN5DouMmgkZj6GNi5AWKzu0jUsqQMqInBUoLNZKVvBpSomDwY9LWOkjZIrAQ0iJcOoIXDLpgZeg/RksEuFYYltk7bJg7aIh1YZGwaL8hMgmhH6GFjGFdoibJXRtkSzxKffnAYsUEcNDj1L3JGl7YJScOg5SGUKbkfkptXYTwph8X+MbwVgXECGB3ct0L6VXyTEjJA1g3q8ROYYjNcOd5gRauQbP3XqMMQQ9b5HAgrA5jFCEyiWa7CDnXBInoqnLrDuUw80tEEqNtIJSLMinYDVILLGrmaHGvCmRkyFSpWzohDgiI041y7bE6fk2tpuwuryHlsmzKp5nT8kwO5QnyuUpOG3ComQ62Y1VhsgFJ4uhPUbi1ul5hsyx+IlECEnOGsqpIIkc+krj2gxXWXqmhGsUB5I1bFud45x98yAHUIpar0+kXQJahOkkEs1Mu0CrPcn68i5EqKiGgkXfxRWCsmmTEZAKF0dFKCvRVjLWX6TpTzFmmvR9l9MX+6goIMvgVG8HqQ9pKCgmPrVEEHfaxKRUIpjot3C9BaKcpKnybBKL+NJAqin1HRo1j6QZUUl79LRCWQYm0UmeRAv8LMIqGOv3iUVK13Ep2B59JYFBllRbwWjY5fQZwXDT0vpXE2UJYEgTy2Lo0rA+vbKPE/vkMsG47TKczKNsgYQB0MGQkiERStCVilQKouZaaHVArQw80tC0pMa2CuSshxIRXSFAtWkHkkKiaBViai2HDcYilGBD3RBnMFuUTCwNxsNW69R1QLnfRxmDkypmhnOUki6hzSGdjLkqDHUGfXYePfLyMC4xMrGgB2CYogmZasTInuRw5qKUYFymSGVY0oO1pWEcWkLiAYsqTz0VnGUUtdAl1AFNHTDeDykEFqdTwM0khVjhpQIrY4JU0hYeMpUsxS4L+QKxkqRojq/XqEuXY45COQlGSKSqY62DEBZH5LE6whgX7XRIkzKO28AJjqEeqzJAGBKbQ4oeVli6OsNkFbA+JtNYGaNlRF5LdKax1qWcKoqygSN7tHRGFvoIr4nRLXLdHCbTOLpHmRBfhsRo6iIgUYoDqowRlpaUaJsjVRpjvEEpq9vFpC5CKPBjlGiDdTDWIbUuXhoQdyexpowf7AF/P8iQvO3j9aoMRQmpE1AOLcuuxDWSVaGDj8T8qkf9r+m3Adp/Qp/Z/Qnumr2DF216CS/fcRvOsZ/wDu/VfPzQufzRuOF5X38PLM2jTzwZ02qiHusvAkAI0pFTSEdOoXfua5Hto+iVXcjuHADGLZHVTmC8Ms2ThORJj53WilvsaGzn4SP3svErN2GAF2/9JkH2i1A80rDntBqrUsmFGx5FexkdG/CC+I3s3DvBp713slnsYq9zMenyLr565jQHVi7hNd92Ec40Kr+fI6MPk+UO46lBCtZaCBKfxy0PMTM2xU3l83mL/BzfzC5itHIn2tnFqv0ej6yHWDuI1hr87jGe+lALgOqVx8jlQrbvmGT16SscvbMKh3bhP/uPOel/XMu7v38NL991F9/wr+dP9r+M9qaAD25/L+8574PoU08nG5nENOZ4+g8th0Ytf3dGgfPnm6y/eoE9t65ifbPIWZ9tkl7ZxMgSV+7dw6cu/ipvm3kGN1z8db7av5hnT93D7CllVj75bR73hJQ75A5emcW4noccn8DMHsPMHsNmGWp6A/G9d9N82QvJjh7FNhsAyOER9Kmn4V31BNwLL/7fBmw2ConuvJ3orjtIf7b9F+dPTGDbbeTIKNnRI6B/AbD41wzaHQe/QinLWLvFIbCHmLqoyVJUQp1m2Z1N8sFajlPDbzC1ApzXwd6Y55IQTGUVa896BK8c82e19aQ65RXfyWjmYLQl8c67EIBvHvoaBzr7mVx4Gl9y3s5ItsKrRoc58ezrqJw/ResvXgNA7aQOK3GBfL/P6Zft554fjnP11oR3Pkvit0fo+Sn3nbzChbsNv7evxbfWfJ5vHL6Mp6st1CbafPK0JzFV28Px9S67qgtI/yg6f5B4BI4ajeito989jm//pIITX8aWC4d5zr4H2DdjGFoT8fHy+3hB/TouSl/O29w8z5Pf45KpJZrC5Z6R3yG7/wE2HE4Za8JL7z7Ei8QNRNLlql2HWb7sOKbP/jPOHD2XdcX1SPHYDvJmsHGXxuJWZOcoIulh3RJZeR1p7XjQv/SM/vJ4Zhmm2QCteerNn+DC5/8P/lqdxIVL1/Hd6j9wyvffzIev/iCvnP0qb3rwDfz9Oe/l9NqZ/xeryG/1H9G1117Lpk2buO2222i321x77bW8//3v53Wve92vHLd161Ze85rX8K53vYurrrqKRx55hBe96EWsWrWKJz7xiTSbTS677DI+9rGP/R9/0x1NGe0qMplifZdqOgpRnUwC1mUhmCQVR1FkhDphqNeim5Y4pBOmbMxyViJnIo5Wyuwar3D57llkb466yOHYLj1cJm0TaeHIasWEsvSlJrUCmwlkqhjvWh7AxVpLzaZY67JzrMzGAw6RcKgkXZJYke8aQq34J+ccxkwXrVaY110m5Ty51CXFElhDU/jk0hCvpxjiIMP9CDKDtYK92TBVt07Zy9hftigrkELhmTaVZkbZzqJESGJH6dpxMl+S6Ii8iajaJYK6Rw9BxzisXUzxcXBUTGogkjBqM1xpSbVLFOfxO6sY9VqMTNWpGEFYd2g7inouohq7tKsJXRST+jCOL2gv56mkfbqeJAs1+V6MqwzNoSGG6bBXDlEq7cVLC3QpsboveMCdwIoW9aiENpKdmyTFpYyKlkzNCxzdQ0WTzPslgmCBvWNlNizGGBsSGwdrBKVYAoJOARItaJYcpuZgKplBOBmejHBJOCNsMZQa9hvNPoapmpDRNCUWmo6MyIoBAQ6Jn7GcFthoQ1wRkwpBLlP0IpfIeiRKk2jwbRshEqyboRJFnOXBRnhpl6IYGDHX0yIlEZMZifFSPNkC4yGAtucigdjNyGcRnu1jEQRphkRQ60tSI0hCyGRMrCF1BlAW6yZUzRIpHn43YyxdIG8ERvSJrUSbDCkVtcywbwiK8wqdSvykQD6xrOR9qghOaO/lqAdxoMmM4EBUYUiFRKmDbwWpUmjZYki06KhhHJMiMDhZSuqCTUEYSxRrCFIs4EYuCQ7YhDhRGARJonCEYKnkkxlF0RiGCFlecumGiu7GHioq42YONh4YFudMRhZqjNWsX7IoNyUWEjeD45sei0bTtgG4ilQLjJRkVpBaQaIkXuQS99dhho/SzLcRK4ZeoFkWip6vwFiSvk+YZTSqCbqn6ZUzJgFpMnzdIx87BFlCU+WRxkWKgEa5RaUVUUwVS1LQMIOAaTSu4+gIJSRjPUnf18w7KZHQ1IuaqbbBCsGsoxmOBVWZEWlJIqAj9KC0EhgWVU6f6VAWCcNOi8AxdB+bI+tbMcd0nywTjIQhDpK+zVHoOQhpOLWRUV8vmCt69B3DVChxbYwUGVqHKMokoofNyig8lFNHCx/iCTIrSZRBmgypU5T0USZA0yHNyqTWgEwfy+5aMBpjQViFsAP/vswGxEjGRIirYqo0qcoVOlbje4dpKg+JpSUchkWGVJYhkTIVOjykUtbKZWqhh85ZImnxVI+SKKLMJNZdQrgdbFRGCoU1NfBB4ZNlklRZpN2Ech3ScBVKlohyx8icZTAOPc/BEw7ZY8+fsg65qIqbOKzIJlYMSJD/ntT1119//f/uy17v3zdR+4/K9x3C8N+vvfzvpv/1nu+Z+wEf+Nl7ePKq3+G1x/bh77+ZN5uX8nVzKe+5sMblH/hLqK+g1q7DzB4juvM2vCc8GeH5/+b1rVciq6wnHTmVdORUsqHjsMHQzz26YNDrJu9/kMpnvsbxn7iVieV4YIunDHsm4TvnCL50meafz7may89/Fo/jcyiZst1O88z4BvK2y985/8i5cicRLncnk7xl0xO5e9Uwycg2cmPfQdd+hC7sYUQt0pOgkhyZTPGN4PZjB5nA5wPZH/J0+0Ou9h7iM61LeHTj3bxoq2bTrpgvXeKwnyuYOLCZ196+k2KUoq8IObnU5PVjw7x/usZN6iKe1dpNVHeYKRUYuuKJnLzmSv6ieR/ntBe4xv6Q78dnsU1tZW1hHatmumQ3fQu3HxE5cO/JVZYqEVv8PM9st6lMdIg2rqW0sIzZWSYYj1m/T3DjeX12DTWY7BcZkYaZVo1TVh1GLC2yaleN/TpiWJQYjTyShx7ALC6Szhyi/+lPkNy/ZfCfZwb3ksvwLr4UfcaZyEKR5OEHib77beIf3IlaP42amPz5/LDWEt9xG63rXkt0y01gDO55F+Bdchn6tDMGWbp9e7HdDtF3vkV0683wGP7ZueQy+p06X/vpZ/ijnxmmH/oZay5bIQwdvuZcyvl6K08bOx1R2cprbk8YblrmqLGqGdG9eoLTi9vIDcV8rlTkG1UPg8PVD6SMN0BZS3Tf3fROWMf1h95NOZzgK0s3U3QNLxgtUdzwdF5ywivY2Uwpfu+raM+w/4wKz5m6jG+vWeHquMeGiS77Zse44hHLFud5zKkTaQwv8eStDUYSzU2ndfFWClwiF5g2x3hr+fn8jv8AN3S3sNULOOoqwOKkLlOmR00t0Snvx61uwa08xJEhl5vXnsWW4CzKWcp6Ocsz5d08xMncmp7JVjPN1fJB3KJhupby3Svext+euIud69oYCZUuFKMM11jOvH+J9Xdup9yIUeMTyOrQLx425WJKq8mGTyIdPZ2sdgKmMA7y17Mv/6rue99F+C9fwDlrM2Z2ltwjW3jm1WfSWnM8Nxw4nie421h74Oucd+Hfc09zG7cc+Q6XTlxB0Sn9m+vH/1f0X3Xf+fx/HL6zbds2PvKRj/CpT32KSqVCqVSiUqnwoQ99iGuuueZXYC27du1i9erVPPe5z0VKyeTkJPfffz/9fp9LL72UO++8E2MMV1999f/xd5vf/QC5RkS9UCTFw5Ij1R1iDYfkOJU0ZF0zZTQxoBKm2n1WcpOYniY2AUlOcXa0k91emX1jNdYudUhVjskwxpKwr+Iz2l6iInpQdmk7XebTIX6areb41jzKKPqjeVp9g1VQshaTORyslKgtSjKjMCImTF0qvRgdavYMjdI2Gh9Dp9CiQpfRxKXaqyDaijWzbcoNQ7ktKHUNI1FMLPUggyd8SmmLyS4UGoLRVp9VjQ5T4Sy1MMLHkDdthvqSkZZDpdNktNdgVbjEZDeimhhmJ4rM18rIYosVz6PjF0ntFEFSYURrThyJOS5YweZyPFA6icKIYFovIkUO8pPkrWQ6A8QwypapJYKNcZGJOGU2OonL5RybTJ/Id1kIJMVCiUWvyGGdp5BlFNUsSTZEJFyCLEbVLaV+Qq2V4BtIhtqo0OFIPs+Gdp+SaKKHPOZVgb1ljUUSlHpUO20SoamIHiOhAJlhHIHJBK7jUula+oUGY3GXgojQMsY1UEwGkIaj5TJOaIikQmLZeoJPySiG4jyzygGhWV1vY61FS0uQatzYoy3y9P2YTBuCapdUSEJf002reKFDM9KM2Bb5NEOKPruc01F2nHxxmbA4R5QZSl0HnQn2DFcphRm+ivGzItrpDMjRvQKmElLrdwkinwWtCFQLR0GiNEhNy/FQbohxBMUsoZvWcKSh60QgIEAgLVT6iuXx/4e9N4+2rCjvvz9Vez77zOfc+d6+PdweoIGGRpqWSUARnGcimmgcSJxiMARjjAMYo8SYqL84RBFURMWIIgZFxAEBQaAZGroZep7u7TvfM++56v3j+pqXEP1p1vtH/vC71lnrnKrau87atapqf+t5nu/Tw2xZ+BoerY0wLwWQke+6rO5MEngZphsSqBxJVIEsJpOSme4wuzyfaq9JMd8jclKm0gqd2GYkmWPBkdgiQSpYP9/hcMmjJw106pDoHHa2rJRYmxc0bEFqmES2gyy1WOk1Oc7s0EsylrRJpz+jVfApBQPkgxmUl9GfNmlZgnJkUI4duo4kNTPygYkdFulpg7l6imV1cVs5pAwYyuYByeOVMiKV6LSE3a85moNHcwPUnJB83OX21UW83jClfMzuqibrCFpljeFoVixI0ihHukKjehIZZoRGDm1qugWPkmpT6AlGtKRacAmaJUJdodjzWNFdZJyEXGqxUHSIVYpLzEIdag2FozUiNXARZC5M2uZyVsSkgEpdWjpHVjBYPRtSMZcY6+ux209IpaI0bdCRirposDqeohykKOHQFAXsjkG5bVMxlzg0Itjt9FMgpZRalBOTtrBYYAAn2UBgTi1b3bWLqzu4mcbp9WOJJoYISLMKObNFQU5TylJKUR7TWCRWzjIZUxLMLlrlEEIhjZjVeoa8iNgp62gJbUNRygy6uoSP4hGnQKaLJFLhaoNQFwkpkRbaTIh51nc89jDEhqyHqzV7PYPYTNkUd1i08szLGpkIMZ2l5Xgz5WJSpFw5TKpAqzxCWxQ8KJsriIIRHFlAOftQIkSKHFW3QOZYSJ3Hj0KGYgMj7qNPKaTIGKVLJxnm9LNf9Rv3nD9Y0P4HONg5wJXb/571pWO4TNfxnvwsn0pfzrbq87nuRRtw3/020k4HOTJK+eprSffsofn2i+n+6yco/N3l/6M+k4cepPtvnyZ9bAf6V5LsAD88q8TXzsxIdULO9AmSgGe3b+bcR6/HEDE36lP5dOc8TjgeVhy9mcedGT5lncTjlod2pxHyO7jAoLJ4RitgS9xgIkn4m746mwKLhwo9BPDnqoTZGuA6+znMGSVe7tzFwayfBye2MZYmVPdpOq7k/oENlAs/5l+uTbBScJ/TY0W5xSXJn3FLo4xT+xlHxu7jzc8t8tFvR4zcezdfef9HOeHP3sLbt/4zf5q8ic8sdPnq/I94W3c14U0fovl4hPDzGHnF4FjEtXv38MfuKnZXunymWuIS0WRU7yJdD+nPbPZWRlkZz/Cx+5pc8kyPD48ovjCzi89m7yC3lHDK8btQ2+Hd3y7Atz9B4//znNXMDM55z8V+xhZ6112L8DwK737vU8ZCpynxHT+j+4XP0brk7eTeeDGlv3g7OgrpfOyjRD+6BXP9BvJ/+wGsk095ygtjePNNJL+4k+KnPoteWqJ3/dfInngMgPZly/nsPgR4tZixsxeJQouLzXfzCfsfuWBwHamzn+dNwbrdgrBiM3i4y+DJbYblLtx6xE7b4l+qZcgEV+9eZHx1QuTapGOnEz3yJNnb38lFmwTnrziMLpV47UgOXVzJmyb+is98/XZe/NUPgNL86Gy4emMG5i+Zap3Iq9Pjuc68mlOftZ/dtw7ysbs+xxWvc9jhDPDkkMm6AykvXor4/sR93PvwBC8r38u64DBXd17GC9R2/kKN8UtmUJmHEBm1NOPUMOIV0x3uMX3uKfdzb2kXi6VHOQxcnub5+3ALJ8Rdzky+yFF1ERlDXNS4lH9zPkd+aT+vbb6Rn45U2LOhj+0TLSxpUVwI+dTnFQqJ3W4Tfu9Gwu9+G+c5zyX35rdgDI/83nMvvvcewu9+G/ePXkP+HZcQ3HwT3X/8B6J/uZJ3fePbHD+0mT+99V1813ofw7e+k4+86Cre+sBf8b5t7+bTp32BnOn/3n3+Ab8ZO3fuZGhoiGr1P0n3xo0baTabHDp0iJUrV/66/KyzzuKss8769W+tNTMzM5x66qkANBoN9u3bxytf+UoOHDjA+Pg4l1xyCWeeeebT+pXSRpsWtjIJTIW2BTlZIImKhAVBoZESFzJkL6acRswMVenXSySJwLFsPNVD9afs9j2UpdhX3MhotsRQfIDdjosjW9gqIjUlKEEgBYFlYCUJK7oxPdNlySzy2FiHtUdSJBnCjFkoaPw0oRa3cESDFjUk4Lc9Ttu9hxkvR9cucEy7xQiCQi6l17XJNxpYUjFT8okdh8SSrMgMHsn5eDrmSNJHaEryjTkOigJLlkYIG8cOUDKm6Q6DBU67iDO7gmYBdKFH3jfJKYu1Sy6uKuD3+ugzF4lcmwfjc8lVHEqFJivlE+SMDk0EMwxRICRNJMN2k6rssluOsEcOMiZmmJdDFOlQdwxMqRhSLdYPTiF6Aq1MqpZFX5pD6YAnGKUpPEasg6SuSdKz8EXI7rhOart4kWAqV2BVO+V5h3rcWjJY0CX2JCWON/YyHvTYZWgyKTASi7gMxlGJn4C2DHKJZM4y6EpJLVaU2jazAyZNX1I67JBkBqbTZSGVDGaKlu+CWLayeFmPuRUFJJJEgqMhk8siI6vaFgedGJ+YAiaHPInVzTBRIDLqicGMBbFn0aiWGG8uEOQC3G5IovMoI4JM0JY2vjYIdZ6c1SLXqaAF9CwbREhYgHqoltMZqJR+nbAUpSAgtQ1yavm7NsWvrBeC+YJPvtPFRJE4kiPuMEupw4nq58TCxELSxKMX55nRCbWypqAEpraZKZpUgkWCfI75wTxLRsBoIvFVlzR2mXULCDIKScramRy1uEDBniMWCe16m4pIEC2FrQLQgk7BwNERKQaxrTla9Cm3oRAoJBpHwWCQcLCgKCaSAIi0Rde26SQ2obJwVEobSdQ/hBtNYpKhDUHs2sisTZJU6SYV5ouLDLQUhtlldSh5UJoEZp7mYJMNh0KkaSNkhjQFPSvPrtER+jODorOP1BxBxA5RtcTEofX4KAr2AnNSITNJJASpFHSUA6lkfWrxmDQIVIqfBfhRhdjyWLtUIEog6M9wdcb63DwHgpXoVOHkYzwR0qs6CEswumBga9gjQAvJQKBY0BIv0xwe9lALGVpCDoNWVqMnMypZD0cnNKVBhMXZLYNbCprEU9gCfC8lsjWivexJpYGjpSKGSBjvVQitNlIYJBi0pGBVlmHYAeVYMZMe5R5T0NUmSmdIy0BZJo5nkGWSoo7waCNSjUThmimB148yeuS7Ke1eFS0USkg0OYRUWFaXefJMmzBtlvEUrGSWIBbE2qClR3HkIkJ4rGyvZSG/m4Z08dwQ35FYqUZIi0EUh2WNQ3qCvPsgXZlgCkVd92Nnw8SyhxTLKrVYPXx7iao9RJBMI7GQRopjKzYUBwg7FpDRRCKEoGA5+K7CoZ/UyDMQPkbJgFxaRUsoiQAoo40/5EH7/xWdpMMHHngPruHw4dE/ovr9i7ktO5k7Bt7Av738eIzbf0zn8cfAMCj+w8cQjou18Ti8P/5Tgq9cvewa93sIT+gkofeFzxFcfx2iXAbDYMErsas0wskzO7hua49YaY4pb+SM/jPZv+97HDYjXjtmwvvwqQAAIABJREFUclQOEBtHgWuZBe4bAfDRaYAZmpz4uMdJW1/Aeae8gT6zgHfjyzAbR3lt/0qOLJzKoaG7cRKXkhHyx1OP8bPcKXw3PpOzkofZlNvHl8OTmS/McfF0j7X7fJ4cHkOXn+D9N6Q4iWbkjEXy9YQrqiVWPfQzVhdeQjR/HkfLksP9P+YvXjvJB7+Z8vK7bqJ9349o9o/xMbtObypibzjIpfT+8zl02mRIeNxjGo+P39mk6QmOVn22eRZF2+Jm8RyeY9zOyiMzpK5k1XaL16/r8qVyH28ZTLjMuopXy7/nxsV/5oRN+zkynnGV38dlx78P4+Bhgi99EVmtUnjP+wHIDh+i96UvohoNZLn86/8iTBPn3POwt55O5+MfpffFzzO1YztJq0P62A5yb/wzvD/50//W/TH+xZ3IgUGsk5Zl2eNt95HtegJr8yl4r/0Trvnlh6kEh3iruUAcmbzavZLn+lfz+vowbStkw/wEl91/H/OqgL2QoIHrF85hIpxjQj7OAyrPh36cMTYr8NIcC/9vx0ceBJbdu89/SMNDRSYNeGstIldMmZm5iFe3Z8lszcdfbnLvGknS2oQxvZW8s8TLHryLi19g87VFj2OefZQDP6rznhtC3vmmIzy08TxOPHgrx+2CH5yquX5M8LI2PN+7l0+oC/mU80qumL+GF1pj/MAJiJXB4+kw9xv9rHLv4mXdFuee9HGi1c9j/5GHuOOTb+Nnx8Dh+hIP+022Cwl8kzsBhuAcXaOSZdSzlGpqcWrlRLziSv7j0HdYqCR850zB8++zuHXoJF60/27k4BDRnT8n/sVd+H/9N7jnXfC7z78opPOxj2CMr8K/+K0AuC94MfHtPyW59x7aV7yP5372iwwUzuFdN13K1Z3LWfGTK/jg2R/i3dv+mo898hE+eNKHf+f+/oD/OxqNBsVi8SllpVIJgKWlpacQtP+KL3zhCzQaDS688EIA6vU63W6XSy+9lP7+fr71rW/xlre8hZtuuomJiYmnXqwNDOnjJym2WKTtWhixSUiOQmsIP9pDs+SijC6BlBxYXabTNYgjk4G4g6EjOqbFvqEiZiqx7BJx2sNUGqRAKBdLRSgNlhJEQEda9CUppSDDMS3ut+pYokMukRiZjSxHjGrJmt4Ufqg5bHuQSZqZzUyuwtrGIoGIqHQd3BzkkOQDm74sYpfjMDeiSHSe/eEaTg/nMa1FtFh23HBFhpOVGMwrfub10SJBaIuca1IIyuTCCgXrCPNGH9LPkxu06DrQsR0yWcA0E9yjY6RWnpqaIswAp4J2LFYmixRSTWRVaCgPy/LRsYkDFIXJkaQGSUwoB2mYCYaUzKkqfUaH3XIMrCK27FGOD3LYHMLIAsqZzTbbY1HlEAgsN6Bf5lCWw6zRz6JvEBFyQAxw0S9+yabFhM54DjN0EL4kMwwaRpEBr03ZmacwuwI3FEz1DXByr0vH1Ez7LqsbKbnYpOkvS29YxEhtQJqAdilGGscwOBoaBIZCFU3CksdUr8jGLCKXmaAFidmllZVQmEhtYojl2LambSIyk5xWWFVFOy+ZG9SsSGDZMQ2UaVCrLdJomLQ9G6Pl06ukBLZBN3U4FA+QmvsQliaVNrE0yWyHJ8cKbHLa1GZSRJrSTAxSbSJCG88I8PvaVDs9gkgAAoOUwyM2oVsjdSKy+S5dUly7QWOoirGUsDQQ83C4imMmNYOuSxA5zNU1wz2LY+Ue5rI+JE1W9gw6qwfYH7dZe3iavsjCiaa5adUQoW9gmuMMBwH5sIefaZyS4O6ySbsD/SIisyBNbGI7JcsZLJZN9lds4tRgPJikpBIMMrqGg5tCUMqzbrZLsaUoOjZHdT9e3MI0LSwZktgaIhOtXXI0yJBYUrAwKvGOGqhejTmrzWxfxglzkpKXw1IlotRFOmDbFiOBzc6xFqPpIuniBFOuQ9VqY/ghZgvMTFBIHSxpsFIdYkAdZkfBodowQCumkcznVzPoejxXP4xORmksRUzaZXJWTEnNU5aKA+4AvtPE0xkUDI5rHiTtpFRyLTDAcrvEyqedlNiQRsRGRjHWoH+1PsmUuuNxgB6+CtBaUEljeiWPVZ0OtsqIhcGCqtDTNgkxiXCwlaBXTSkuSmYrLn5bk+uGmJbJYHuGfEkTuwZltUQoKpgiIXVteqUhOiNrsDOBdaSNHRtou0XeqRBJQSYsssyjas0ya0yQWA7KdVDFEk4myVKJXZRkCOLMIqWIMME1HKS0MKXAlBIpILaWZ6E0UlQqaIkCWvR+FXa4bLE2pYUyJJYTcjjup+0XOCJgPEvoj3vY2TBds4MjAmpOBzMVSO3iUCAMN6JkA7/vEAWzHyGOYpgB0ggYzm3EtTUnr+nyyIEcvl5BaM5iSAlaULALLIUZltC4WvCE6GOLsYOSucgecyN1M+S34Q8E7feA0oort3+Iyd4k/3zCFYx+/1IOZnW+OfwePvmSE3B0xuKnPg5A7h2XYK75zw0+9/o3Ev3oFnpXfQ5ry9bfKWeSWlqk9TeXkj6+E+u0M0ju+yWT1REu2/IG/vUX/8AHXyuJDY1v5nm8sZPHGzspp5o1JCR6FSXXZnK2jhGXieJhzNRljVrkDPdmnv2tSYKJMTZe9m5QGc4tbyQ/+yiX1od5eOFVbOz7GqctKr5WhbcutGgd8ybe98DJlOI2L8nfQ5hZXLdmjg1RzMB2ByuDav80X/9xA2ufT9/xbeTEOrZn+1iVpNyypU0tdy+9qQPgFphub2UmfSbvec2P2LK3yXN3d/Gbe5iLLXpjNhOHYpwYGpsC5DEh+/UK7u+dRDjlM7Ewyab5w/Sdego8eRvpURvVheeLnxJ6FvQyvjd2Ci/ffS9/9vgcB9Zu4Gc1k3+uaU7M/yOvmH8dN898mZNrk/yo2uSG0cOs913WA2pmGp2mCNPEPu0MetdcRfzLu3EveP7TxkfkcuTf/yHk+KrldAdCkH/f5bjnP70tgA5D4vvvxX3hS349/umhg2ilOLLCY264w/2jR7nh4AJpbPBa6zKmRr7J960mk6ZNderZfKF7DTO7+tnet4YT5/ai8oKzpp9AhgEBeVYVBFHfCFG1zWxg8kR1jF2bT6Fg7uJ0cR8rsinUzhzOEy6pBGWatLsHMWoJP9mk+MZmi4YYJ5w8jbz7BH21q7DzBX7w0h7HhiE/tRRbS30MbV1k8hdVrr4+4mfP/QnChFX32rz8mA7/Xj/Cg41RXmXcwVXRC/mKPpfTNq7hrbNf5FY75dxej4pu8O1shL91T2ck/Tkbb3sH6uXfZfXYZnLjL+b5X/kuX/vjlLW6wr3pqfxUrkFbLYQ9j13YjZ/P47f2kBpdbp65nXgOBBJbWtxwWkS5FXJwdB2fqY7ytge/hX3yKegwpPOhD5Bufwj/kst+J8GX8HvfRc3OUPw/n/t1TjwhBIX3X8HSq19OuuNRop/cxonPeS6117yaf/rmFO+d/RwbHj6Wi9e/lc8/8Wn+ff83+PPKm/+vff0B/3NovZwq4betq5/5zGe49tpr+dKXvkT5Vwcul1566VPavO51r+M//uM/uOmmm55W5+VjwpxLrhMzlswyldXYmY5zkCESy8YxDdbGR1gtAh6ueGjbR8WC1lgP0ZrkRA6x0HDx0wFyXcFEssBMXlBa6GCnBezU4skRh5prcGbH4LG8QJLimYrF1GEOn0SVOHXRJVURoEgLJQpCMRwFOGlGJx1Bt2yeqOfIBjNauYDDsk5sDpErL9IMBM9TdXKEhHmTXFzFTB0aOk9ZHiQ0wTElniE50bUpJi0WS6O4EcSpZLAUEQfjlAqrQcQE+QNkePTpFLdX56jcS4agqjP6MotALI/Jg+5pLHV7aGmywWxhFPuZxibnNhHtJr7lMyJL5MOQTnELS4s2ZnOJId1kfzRImxJrxVFySYdEC+axyYvHcGWCl2iMLKSpc7jYlLyjuGmBAQMKIs9swcdNNWO5gzSSHPNUiHMCOgZHxQB9LbDLJoZMmNN1ttlrWGEsYPoVTPcoA47CV4oeoKUkw8AgJXEEqQNIxWO9IfrlLFhgJUVKmUGiQh6rVDDKfbiAkIowccgiF6UEB21Nf+TSywqYiU97ZInKUoN9qx027VpCqIQn82tolBNGjS415iig6FFka5KSSpPQLLBPaZQzjopmSV1JWffQZkxXKjQwXexj0S2TMw6BG+Cg8EUKMiOS4EjFisU8E34Xncs4FBfRqo0SipZv8og3QEE52MrESTzKaI6MHWKjcYSTmwnVWPBA3iLEBlNQ832WggFatBgxZ1gn8mRLgkomGVY1dhsCxCyWYRFZiulynoKQ9Lw840GAI5eVRPElZuaQCJOMhMAxeWhgBSNxRDw+iW0ndHMuEWD32iRpAaKUEAuBplNwSUPBqNUmEMviKr5ts6LlsrMEdTK6UUpoO0jlkIgM2w9QroEwoK0qjLWnacs2CBNDSMZkAPRIhMFwfo6RqMVMJpA6ZUwcoGPVKTgWiWmQWiZKSpKcSeAPsqRmKbg2kW9hWBqTlF5VsmFhN5t7OUypqdgBlTimL5umWXYpeG0qWjDfiyjGAVG+SGb12NTbR9ZJOSwFkmURlN1OjbUqpJP45Hp58nqWhuEvqxFqGNI5psuwkAso71tOoGHZLh3foZxFzFUtIumSaocyipJwCUSeQ5agbiyQKIdMgZXPWNPdj5lmmJaDLTOKdJkWE/SbPRyZIA0To+RjAH7PgEDie3lqBcVSR2LGNeZ7GnckT63dphUlmE6ZkpsnUSGWMnAkZDGkwTLV8k0bT9QJmEMamsiwUdLAkyVysk1XOiBgzsojxAymkbLO6rDLjIhiF8vUpKZCmEUWvDw5o0tRNhjsTjFlDDJcchkL7yX1bR41N7O7GSJkhm+UiDUM+F1MS+KIEqndxXMUJzklBrtPILRmbR4sFXG4bVI1p+gXg6h4mqOqwaLTIwxqhJZLs5Bwj1yDaaxlxvrtrv5/IGi/B7625yvcPXsXb1//Dtbf9nGMuMmXh/8PH3rpqViGpPPJf0G3WpjHHof3igufcq2wLHJ/+mY6H/0Q8Z0/xznr7N/aVzY1SfPSd6LmZvEv+Wt6V3+B+fIgl5zyZp4/+D3ef5FmvrT8MrLGrFKdrvGW7g7GVcgDJ3+S++RxfP6eJ0hTj5Jo8WZ5G8+SD9N05/jxkSLFACrPWIGOOxR//E7cAz/h49U6OxZfyqecf+O5R1u8amSIcWVw5st+xPu/cAeL2qdmt3mxuJtv+3VmbHjDkS6bn/Cw+iK25BY4cmcVUU3YNZ3nnbUGkV0DoJhl9E3vpxRbTPmjPMv+MQdMwfz8qezoD9l2zEMArJu0ePf1HZby8ImLDPYPFYACEAB3w0a4C3BijW3fQ7ZpI6n5OCd1IiaShLurz+C9n93BKQuPcLDQj35U85Gx2/jjmbexb+A+9jkzuGNf5aXeWXxz8qf8LTO89+FPc4Xn81UBu0Y0zzxyGHPlKoy165G1OvHdd/63BA1AN5aIfvh9hOui45jwxhuwTz8Lmc8/rW287T6IIuwzll2utNY8HD3J8cB1+g72bvs535ieJUbyOnkRuyZupESHSWmTHb6IT5qfpLczj0olmDGJpbnitaO8gCNM6oDvlPI40UqM4hJR0CWyBbDzVx/4AQD9sA7WTGkuuSmjvBDx6T/J8Wg9xVM23dlzIDfNM2pfoZOMUuuUYHKBzlDKI67DHX4OgEsfrHNGPSKZcXjRXS3c4xP0QyVe8GjCzadpbhiIuHJhkXPsh7k1eQYf3FbmW2+/hVduewfXiye5YXKRt2W38GV5Cn9XOY6rlh6hevOf0H3JN3EueD7xd29kYpvFnedYvH/hh7wvy7g6fh5faT+beP58mmV4y9nrGb7779jc+iHXGSewvb/II6WAGTXHF59nsGHy6xyuXc6XheIN227AedkrsTadSPC1a1ELCxQu//BvjAmFZetZ77qvYG0+Gfukk59SJ0tlCv/4CVpvv5jOx/4B+6yzGat4vPA1l/K9r+/hxbu+yOnFT/L44Dlc9cRn2TyyibXOxt865/+A3w3VapWlpaWnlDWbzV/X/VdorfnABz7APffcw9e//nXWrFnzW+8/MjLC7Ozs08qV75FPIowO9GctbF/zkDyeseYSU1kffTnFCW6EHaT0Ry6PZMv+QI6RsVC32UaFWk1SEzU2LU2jhIvvxzjjJkFoYnqarmlwyCxQibqM9GDaNhnv1Kmb+9lXzIGCNU1No+fSyS+LeRgqJdE2popwaopQlmkMFmmOzuOGVeJ5QSkrkUXgKIdm1yUyPY5rR9xh9tEwXSpRl4rRZTg4TJxsYMHWHNOaxs8aHJ6L6S/lqWmDU0TG4e4h+lohkdYsVhOOTecoNi1m7BJlUUZ5HdYEFmvnQ7arFK1CFowa05HPQDrDameaaatME0iNORA9JDnqjmBjdpBeq8sqTISjGQ1nKEmX7RTp0sdCpY92YBJoqJsejxVOQJgBubbPUqfImlBiKxjMZqm1Q4RIGbGmWWfArdKioDpU4wbK9EicgJLRJTVK1JMuDssJe0vdOmO5PEF1hgW7hZ85WDoGbPJZj7JOaBseOR2jsPD8LmPNWSqBz+o4JDAsAuXS7Ut5dLzKiV3JqLnAdM1BNQxiz8YhoCNzlA3JuJrnCT3Gw9Za1o8tsDbTlLAIdEaoyhSbJYbNWRxbckI3pBO5KCAEcqlFO+vjibEJpoujlMUSq46GZP4cs8phupwwE4+jhIPnzS2r4mmNS0ysMhydMRQGCMtD2hAmNoG3ksjYTQ9FWwgyAUtZhV2yzXrmOWiWWfQ6DMQRSV0Q2DYjIuXo4BjlrMwKHuEJr8q5nQa5MMfxmcHjcQGtNSLWVKMapfAoiWXheynFzMOSXTb4h/DdUaSsQzwLRp4ZeSbGUJuieghQ9KkG/UoS9PtEsY2jTNqeYnJIIIpV1u6fITJNXGmywugnl02zkFVJFGgUOidoe0USYuqpYH12kG8M11kwPc5qLVAnJZdOslhzsaRkc0vyuFXCETFCCkZjaDgxmdbk6ZIog0KqmauYxMJhRC4xHlvMtQbY67cIpCCN+3GVR8EaIbH34GsLI1EkRkosJa0Vmu5igUCFzOZ8gkKRcgAzZsx8oUA132XT3oM0Zzw61SqOkRKnJo5K0WhySiAyh5VqkXE3JjRsirJDkOYY7PjkTYUoKrJM0atKJg2HqkjxU5Pj9JPgS2KrH5EZHExL1ESTEe0wva7OPtPGbDeWk9JrmLWHKFS6ZEuCtGCTFUxGI80B10RnsE+vIHJtfAOiaFm4zkxrOCJFigUkGbV8xsk1n19M7aNkVqiUDI60Y1IjoG6tJkqhreZxRYE+e5hmdwq0hWmBZaRkOuIRUWPAbxJGNgMSLGViuwaW3aFjLmsB2MKnIntUUocpDUJJlFLkkgpNFWNhUCuuoGJOo5wOTcsmQ6JShaV65B0FUlB2FjGNgIGkR9FaR2bP04qPksaCle37EWaO6dw4lpdQ7DU51u7gWzadJMCLWhR1j4AUhUTLAtucVSRkDKUulv7tFrQ/iIT8jrh/4R6ufPAjPGf4fM7dvovjWj/nuoH38OqXvwbLkCQH9tH9yN+D41C+5jqk83RmbKxaTfSTH5HueAT3JS//jae92eQRGm+7GIIexSs/TvDlq+m1u7xzy8WsfuY2tlm/oJsTrPRGeENzNfGeVXw4+QGprHLV2qv4yCMGd+9vgrnIKwo/5Bv6k5xp7GB/7HPZqMM7b1LMjUB57EEq91+N23iSa4oFVjX7uVz/kLEs5iPWBu6pKP5i6M+Z/eeb+ExxMxL4cHINxzoHuaI/z+ok5R2PhLT2+8wcKwjvzyE1EBjcutlhdO0WXrPhTbzzhMs4+0s/5fk3t7ioNsuW0VP5ysFX8uLectDkxpbJppZHyZ3kvj64dXOBwyMnsbeicI2IixqK7R5sivJcdLDBih2SwUWodGHNiScjpxO2F7qUUUCTKcfkrB0RP5g4kRMmD4MpeNbQNr6/+GZi/zAYAdI/xA3FlaxJeryxvYS58nyK22eZKWTsGTFYt/qZCCFIDx4g+cUdeH/0WsR/8RdW7TbNd70DdXSKkS9+EU7eSvit60keeRjn3POeZqEJvn4t6ugU+b96N0JKHj94Dz859H1O3gv1P3s7r917CwNpygXVZzM5+gCI5QU8OPx63mt9nXNmF5i6v8q9A8dyyvQebtsiOXSsS1Mt8cOiz4rI57g1z6B8YIbjd3Y5fr/mjHbI8Z5mu23wzCDgxGgNu+wmWbSWJzes5fqzFziSjzmraXLKoRMYDvOM9PpQzS2MWlu4Qj/A1u90eNYOwevf9lVeuP4NHJsMMNedYdX9bSITsiWL/SWbYltRigS58YDrS3le3OxxVvAkXzBfRMfw6H7nBl696XxuCe/kl1GNNSguSvbw4t4C93gFhsIm+Ue/Rm//d9nvCY572OC7J8Qk3YzTzTZnyJ28yrmTG4s2C60+bnm8zUO5rei+4/iTxjfpbzkszmzlBaN1Ho6OMlNSiMJdPGm+goqSjN/xfbxXvRrrxM2/GqftOOc+5zda0sIbbyC+/acU/vaDGENDT5/PA4Nk83NkO3eQ7tmFe975FBwTd+Jc5nfeyqojN+Ktvownsif5wYGbOWfoOfjW04n7/2b8bxQJEUJwzTXXcOGFF+L7y/F9d955Jw888ADvete7nrauXnnlldx///1cd911jI6OPqXuU5/6FKZpMjw8/Ouyz3zmM2zevJktW56aKiH+5VU0EhN6UBJd0gGXwRLMWwOY3ZDzzf0EQpNZBlP5CVa5Y3htgakyMquNJwNWRmVWFVawZmonDXOEsVyRTcZBdtjjBLKE9rso7bM5CDkuavBzcSprZJNaucfufpPVus3qRouZXI3QC9H9PhGaib0RQsD82j7SskNwfA3l1RnUmsSVBKWNLFUmMQoGa4c2MTu4fNp80ChzRBapKs2YnMV1u/zSOAslV+E4Gs/u0qoW2OX5ZG6ezWMTzJkCURhmyarhVC2KpTEYLDFf7aMwkMcvjjGx/ngacRdfe3SdPo6aJvPaJbIUuaF5FiyPzI5IHJOeKDApypRqZSrpAdABkZC03D6s2kqm0hArPEKiUrq6j/k4Ja+WGE4q7Bcj9KdH0JZmzqxgeS5josCi3kDVO0KWGJgqw5UG+wyw44gBZVDu9SglBr2xEiMyx14Hit2InmUh7H5GPVg0e6hfuRQOLnTx0yV0LkWqEkVDseQpulGe1KkQWRk6dchHLkIIEkyK2sdyS2ht07U8pgpQLxWRKqXrRDhqiHI6BMzRzerUtcQdtBhqN3GaFm3lsrc6Rk7CCTHIwhIiURzMNlKVXbp5mMxK7K2tpmkWSYyIuj2DbdUx3AYztoFWDmm4kcw0cNxZtIwY0B1WzqdkhqJjWhRCcLTENyJ03iCuFJmqQtfIMGNNt6opJEWUiBhsd2gWauAPcXJviYLo0BYGi6qOSIfIyzxBJUQXlzipGyGUpqt84qRNXoc4XoUZdwyvk7HBmCTWkkdqFUwRsz4LOcmwsZoh3WyAg+Pn8CR5LDuHn06RuBHz5UGC/CjjtdU8YiaEtklLCipuG7vZT2Wpw8pWhPAsqiNrcZwc1apF6vk0yBNbmiW/TD3N0ScU0dBadkcpbUuyOutSzyQ5bWFkNlglNjgFDhtVqkri6oSqV2alzLHoxvS12+R6FjnToV/maIs8Fdr0CYcOKQtOkZLS1DKTGfpYYSieJbpkymDsgOBQPiMtG5yS5SlQQmUJvgzJtbrk04RCbp5CLsM2HWwDWtpnrJqjYHVI50KcNKXmS4R0ySwodlKCkTq9vjpt1WOikyHJIXMe1rgEQ7DL8WjIiPGFjFWqh9nnYtrrEMYQM9qjl5kURYfIha5ZYLaSo1MwqSces+0qPb9IviSZLsU0+3KslynDWcqsb3BY9WEnK0g9l8TzsX51mLsydxw5tZbAeAzbXPZ02DQ0wlIyS8kTDLjjzMeHSXRI3RlAaodI9XCkR8Uuc2Q+R14MU/NdTCshE7NEOiXvCYaMZcuYEoK6cBASOvoYukJgeatYny2gM5v5aDXHeoM4dY+hJGI2gTRfolBeSWxa9HJjtLMmq3pTZGaZyahEn1ripHg3fmgwnE5zvJ7mJFcQZHM0onlyWcDpbomkOkAvK9GzCqhkAWW6HFrzAg5aoxwtrAKzTDmaw05X8Kh1DGm+g5NFDFsONbfLGZvO/4173R8I2u+AI93DXHr3X7Iiv5JnHRrnRfPXcEf1Qp554d9hSIEOQxpvfj30euQ/+GGs9Rv+2/sIKRH5PNFN38FctwFzxfjT2qj5eZp/+VaIQkqf/jzxT39CfNcdfPCU12OdvoP9yU/RAl5x0Gfs6LGoluCt5vf4V+MNXBa9kfumU7S7i/LA9/m8+33e3L6HAIc5s5931QR/uSfgjP4G6zY06FOKaVNx0DJ5fi9gRDS4tlTg8s6r2NO3m5HY5cIP3cMHNryMhlNgIj3Mh3Nf5ie5HF+vFPmX6TmiO2soL6W1aJIJg2ZN4XcExy7lOOmU19EZ2Mo9P9/Bj/fANc84n0/mX8nPlgZ4jvEQZ/Iwb5G3sHXyccZub3LSXoPThxo8kJfsrh5FZmvpZhlHDIszoza/9FLO3fQ+zv3mwwwdFpz3UMRZtTavOO9v2P/Y7dxRFPQnEcH4Vs5++ADjrQbbquuoHWixZrDNmvrj3DH3BtLCLpAJwuhym19gdRBzwczDPLjoMDQPV5z4JIvRAp20Q9WuIG77KdZJJz9FYEKHIa13X0K2exfFj36c8hmnkQ6MYKwYJ/zmN0iffALnnOf8mtTpLKPzTx/F2rKVhVM3cM/MXXzssSt55vaIkUUIBn/ExjjiwtJxzFUmkZkFRkYwdSFvdrfx1u42dtw5TC/LkRR8BoI57t26mcn8Hh5zHVZF8E8b/5bnuWOsuvJmxmYNTt2j2Pi/BIcQAAAgAElEQVTnf80/xTspqZATp0/mhvpeRHsrKhcyU3qUiTTkbZOKC76q2bjvCC+u38v5xYfIi4B9PY8PBy/h+okzecxZy579DbL+VaysTLB5f5vske0YaB4a95jYmzE7rrEO2ZxabXPToEcoJBeoJeJFuN85lseKo5xx7aeoOHD7moD9u5/J11cmVHTC83otbK2YNQXDKmJdOSC/ImTLtOZjx7ucFgwxpKYpqoA3pY9weGSS/c40C0s1bp8f4UbnpYxlh3iZuJMvT53L25caHIiXmC9oZPkX3Ge9kK1z03g/+yH5d1yCdexGwm9dT/rYDpxznv00kqajkPYH3ot5zDHk3nDxb1wbrGeeTnjjDWR7diHHV2KuXoPvOiTjZ+M+dj3ugdvxj72ce1u38fDiQ5w3fAGG/O2Bwf+b8L+RoPX19XHXXXexc+dOtm7dyuzsLJdffjmveMUr2LJlCxdccAFr165ldHSUhx56iCuvvJLrr7+e/v7+p93rlltu4frrr+eMM87AdV2+/OUvc9ttt/GRj3yEQqHwlLYL9/w7rSijqzzKqks4XMHOVdjhrcJaaLAp52BoyS5Vo+OVqXnLLo4dHXDQyuOKmBONKtrtozMdMYJPvZwxwGH26mF6SZmq28NSOSZ0QN7tcciBdVFCKMvkVY68Mim4AVP9I8zWA0qGxVCziBvEJDmbbl+OcCSPqNaxnHHc8CiJ0aFWHafq9DORaupGkbYZ0fU8jrpDNGOJNFyGmUUWezzubaK/WOeFL3wTmbmfA6Zkr3Ao+ROsWd1HUxeh6OLWbax8jTSXI/UcfE9hCoFj5FhRLdBqTbNT9bFQrtCKFV3hEdkWp6xu0dAldD6g40v2WiXaOUF3zGPRT2jmYHetxuG+MXrHb+RoMQ/WIoWaYq/VR0s4jKgWm+pV1tc3YMxvw2z2aAcuIvEYSAOmvVVMDxlIH8rlCeJ+hyfzNqnnUKqPEaQRxcSkWMuTjowRxEUWKh2mCi7jssj6isX+rImlJSNxFTtNOOQH2I7CK7iYnk3bDhmNY5RTpjW4kpmSoGjbxJ7P9HH9FMKU2DSJ8i67xo5hKO2iVZXx+CgdX7HWOgtPSJayKczM5QTRRtRMVjSbiBZkosS+8jCZBn3iGCvCWcbabXaJtUzIGSLLYb/ZR5DV6OHi2TOM2FMMpQ5SLtHKpZSUjQrHCLGo5I9Siav4aZfVDU1sCwJfktMuOUPiWAlR0abhlikaebJ8DkuY9Op1rF4eTcRou0m+0E+lYnFss02RNgkG+2UFlfRRxoNqh66bcEInZSH10NIm0E3MFCy3Rn8+Y3XYoq4SjiQe+ytlhBEyHkNdFPB7AQvlCfaf/lKasweo5wwGFxuEJZj1qth2iQnX4rCWTJsWHTQFE87e7zM2F5AjQJsGxtAQ2nQQTp3dK89AdA/Sji0yYdK0R9gzehJevU6zL0exuYeRJMRTBh2zxiI+K/HIWwb7Es0RxmhTYLwcgyGZNgN0msduWMyvqtNMK9gSBtadhbE4zyE3T2z1qClFIRU0KVA3MjYbTVaJUSbbbQ6WUrKCwYmqQuasRIRLJIZPmPrkzDoLnklczjGqTJI8zHo1VhddUt3miF/ELA5iJGUWrDJLTo5mJEnyZeqyhNdMyYcWUmmCFRV8dzmef7eXw8g8jplJsDMNJZNRf4K6VWBBdcD28SrDeDIGOcaRXEgiFH5ch26eSEuqrsnRfIe8shiXBol22FmvMx+5GKofywHXshkdLtOJUtYWj2Og4HA02Y5mWdxubXWEVjaDELC2MoJlKo50ZlhTHqHPL7EYLjFU9JE6BzpH3jExhUMqOpSdKZCLHF88Ft8Yo5fOkUiLjfSRmT6Op9FuSqVyDNKMOBiNEkd5Tu6vsHLNGNV0kmbSRBcM/h/23jvKrrL6/3+denufO3Ont8xkJpPeCJBCCb2JSvlgQREbCqIIIkXFglKUr6IUAUUBRQSBSA8QSCCkkpCeyUwyvd2Zub2e9v3jhhRF1N93/b6fz1pf32vdte497TnnOc/e93nvvZ+9vUqIRt+pBNR6xgo9NKY7cYte0gU7kpXHKw+S1qqZbs+gKjKiQ2aCIvv1FGnZRqThrBIHyOi0mx56hAwxZxVOXznJIpiigijKHJPowaHI7HFPBVEnULRR5chS6RWY3XbqP/yv+w9B+yfIaBmu2/A1CmaRxRMn8eWRO+nzzKHqvx5AFCUsXSdx3dcxu7uQZ83B/ZWrPvR6UkMThZUvYezZhe2cjxxl7S15ZL6CGR3D99O7IZ8jdcePeaFhEe+eMcqY8A6iBZ9b4WWT90JOkrYyQpCr9SvZqNXjdG5HrvkjF6gv8uDEDprzaUYtP2VCikcryvlKfJilahokGaNpMVkjR0UhjWwJPKDM4Ppqkddyp3JW19tsmgpXPFXktcgprK6ZgywY/Db5fcq9Ga6JhFiSzdGxrxU6Mwx7RMqS8MqxrczZE2d3oJ6kqBJYuYLBN99io2EQrkrxaf8mrhZ/zzXy05wkbSWSG2d0nZ/JPW4EAUTFx5unzeb6/vdwmRab3XEQdVL5KRiFAF51jLfi61CkU5mzayc5FQ4kckwv/pmTPNUcyKRZ55Zx5XsYdDmZvzPH6rbF1E/0ERuyc2zVELXeEVZFL8H07cZrgabbWRkEmwmLh8DRJ/HMMQJ7MvtYM/oGz+Xe4pyNFu9mdrKtWcIm2fEJLlI3fQv93c14vvdDbIuXHRrTcmMzYlmY/BN/xOjrRVlyAvvT3by75lEir2zk/rnj3Jn6A2+PraZAkfPfFrGrIhVNCS6pqGfMVSQy7iXtyVIYPYMr8918RnuF/ndDyIMiT7ScyPL9G+icLfD47FGiikRLQeeWTAUNNlj/x3spPyCgmCJ9bQu4IbCRmDrBBcPl/NZnQyg2I3g2oorjXDc5yYKiiIsz8W/pRlJMYl1urJzF9Io+zlQ38CX5Oc60baPclabLEJhc9Q4ND/4C++Z19Hoq8Bcy7JnRgV6YJDxioUgmezJu2msS3B/08bGJLEvNvTxqO5Y8bjZXtvPVV19jzUwBuzxMb2YJr1RFeVpuRiiUMd8cxQYUAlMQkKhwT3BhMsP9YYFluQLbjCZqhXFOzcc52dhDV2QTE64ouXQ5K7UlvGIt5OPSajZbUwh1NdGY7qa7wkQIbuRt9zLO2N2JtWcXriuuQqqsJP+nP6B37SuRNFE8JIv5Z56iuOq1f+g9ex+CICC3tFB4+UWKa95EWbAIqbwcu8tPLjid2u7fkzuwE8eMr7Bq7GkSWoJjy4//P9ZL/7fwP5GgASxZsoSVK1dy22238dxzz7F8+XKuuuoqRFHkBz/4AaeddhqNjY3cfffdbN++nccee4x777330GfTpk2cd955LFq0iN7eXu644w7uu+8+kskkd955Jy0tLX/XZv/mlylkUkiKRdoTRKzy47K52K6HsY/HaLULZCpnkooNginjdrnJF0ziRo5BuxN/SOGY1pmYKRfFoUlUyYXiFQjTx3ZXHYm8StAWRzPs2C0nXm8BeyKIAx95LKSDy95TkpuMLUBaijNFtCMWVUR/gOS0Ogan+DHcKnXlZUQNJyIC4yK4lHKagmXYklFcgp20mC8lIwmCkUuT1EJMUybwuWQ22Y9HtdWyvKOZsfGtZMwig5oPp1RNY5lIRjPQDQtFsGFiHOofu+imyTEPu+SmzGthJvvxCxYRfzWJmEyZojDNZXJJg4djynwENYFePUdGV4iIfpoqFtJk6ATEAGExyIy5F9PsrwPNR32uQEuoil7PYgxHFVPcGu0tZdgWnkNXehe9BZUBoRxR9VKtJXHkFRons1SnUgimF4/lpS85iJZWCOQ0XCkL3evEVxagPXAMPdkREvIkGhJB3UeVU0CZeRpq/yBu3Y5VLJCWMgz67TSFVDyGwmwljTtQQ7/aQliswrbwItSRKBm7g2y1gj9TpGiY9LQcQzLgotqRxkg7qMiNMkV0EvIuZrAYI2f2UGvkqRQE8j6ZULqIHC8gqVUMVx/HqCyhNDbSnNpDeS5BWMhDpRPLKKKmVQJCgAOWk7C9k0rLpNY0EXSBmDfN1LyNoKmiSBJ1qpM5BQ/RnI3ydAa3YDBYpVBFJYqeQ1Y1dIdIXPFRZjoJuZYzLsbpr48gMoXAZJYp8Um8dR5c7gr0uIHLijMuS/SJXnQtTHP7VIJVOdJkCWSqqbC1oguT+Owugo5yCAQocyvYJxMELIWhos5YqBGp0ode2UbzeIKglmfCUc7E1Nn0yhnUqgD2bByfXmDEV4Wv6KfWruPNhTmAScisYK4QpiNdxJlPoVsaUmUloteHJIKrYQFdvqkMJuPYsnF0VSK5aCHjbi+Su4MkSYLjW3EVJbQyPwdmLuU4f5DA2DhBl8KI5mZSF7EUmcqqCHq5RLiuGmfOImMJDLZWY2UCWI4AxdkXoUezTFrjpOUcTkR8ukCDMIJTtKgNhjEUP+p4lu3OBG5HGQ3SVDTZQ7dWxqQYRjNtULOQXbUexhoamZ6cQDPzTFoeKhxhAmqRuLMVv+xGExQ6F51Dl9eGUBzDCvoJaAoFLYvTMMlHvKTm1iDFc6TwMWzTEU2BhqgdN3mUkErA3gBAEQPT5qSoesgGfLhMhW41i4ZBYzaInjIZNf34VBdBPUmZZqfOXYtuaez1iaQsJ0HRjt1lZ26oAXeFRLqo45fqEAUBu+hiUhvA71Co8URwyE7K7eUsrz6dZDFO0ogyM9SBx+bAaROockWocDvpGjMQRfC7dGQ1gU/QiFgyjeFpTBCmkOsGwBe+iEGhgM3IUOeupSJwPNlcJ/lsANGAjzW7kML1aMlOhKKF4G5FEmXq3VMwLZFzWxYxM3OAoVwGm8uGEjJ50+mlzOehWrYhiCphVSIjy0wW80jAEslLwDTI6h7cohsbUZyazgk2P6otg1JI40sPU5YfIykG2K004pI92PJZgvYMAZfEzNZ/XOLlP2vQPgSGZfCjrd+lL9PHkvxH+cbwT0k4G/Bc/AiWpGBZFuk7foy+eSNIMp4bv/tPrynIMs5PfYb0bT9CW/8O6qJS8WCrkCf57Wswenvw3n4XcmMTo5/+L8adAV4+r4e4NI5gWXz05TbembqAJmmYG/TL0ZBpsW9ksPItwkqU650zOabuM9i2P4wxvJUoPhQ5wwVjPYQMyE3K2PwFxP43ido9/DQU5snM+YiVL6GnOjipbz1/PdZg1n6LXfbj+EPbcgCOtf+W6eVjvCU7GJJlvtVboLhuFJwGleMS9y9pZ8GwjmSYuOdbVMtjeIfyzNzTTcfqHhzhAoEOgcLcNu7K7iPYV8fCN5JYhTyROXHUgEb/6wIXbqtl5DOPcNyzV3Du4CDfClWy27eVnlwt9tGLKXp2s7LtTY5fJRP1yDTsz9M5J0JbYQM/NGRkKchLHjtGW4EDW+D8Hc/zk9mf5LsbfsuuNeWcsGwXT8g/5eMD3yBZ+zCBQo5kroX7gvso1OY5YwdM31/Ju62T5Acuo7wiRmfzS9Rt7ueLi0oJYK59XmH+jjxDX/goTYsX8bdTzeJpJ7G5sJX1XS/x3vOnEFMKXPayUaqXNGU6wVwDUfF1RENgytgIyZYcn6yspGi4mLLPy/7WfoqTx/K95G5muzZT3OLC2qeyYupSTh59j5TH4u6lAklZpK1Q5Ft9Am2RHGz6Ne5tNYz4IJLQuW9ukRF7nPaBE7hHDmJzvIGgdnJaOsvVsRhbG87k+AU3MXrBBTgjeaqPj9G/M0R8r5voeBkrlmRYMrOFYzJw/LptTNu1Gy0to/o0HIt1woEs+ssSU7sGuee4E7jmlZUIBtQMWcS7VCr9OveXebhJinHLxG18w/MjRhxBrlr2TS5Yexe/OQ3OWP86z7qOZyy0jtvMGTxsVHKhsI7LM6OoVgo9L2KXRW4ZG2Wr3cF0ennHaGehuZ/apbfyQKKPP/a/woMN27Bnp+AcOZHv65+mgkmOr9tBV+xylvT+jjUNOpmWv/LzZS1ct/Jdcn9+HOdFl2Dl82R+djvpH/8A943fRRBFrEKB3GO/R549F2XO3H8q0+qCRSgLj0HbuIHEtVfjv/s+5OYp2KYsYzJ3G4tXX0ts1SPsnX0Of+17mnb/NE6vOevfU0b/wVGoqKjgnnvu+cB9e/fuPfT91ltv5dZbb/2H13E4HNx8883cfPPN/7TNrFyGIAygolMQDpZOEGU6QpNYjDIinwii89DxpqxgoZNVPbiqoEIVqXHXEZw/lx0DwEQUQ5CQRAHD5UYJuDkpWsH+lESNT6fMX09RDeAaFejxFbFXyOQ7x8jW1yJO2GnOO2lVHfTbJXRTQqyKgBnFrpTqDXZUekhn5tM98jqSIOOQ7VSIZSQlFVHJkVLKaPZITApRfK4iTtFBu6ecgFEDcikrZkh20S3EabPPImdVI4k9NIdcFA2TvgmNmoALWRDZF00RVKpQJTuzq1sZ1bfjUkWqVB+arYydjBN0yZwxrZKA3AdYtJZ7GO6z4xJlbJKAQ3VQ5nCQ1/MkXI0EHG7sioRdKQAgCxKqqGBXYOqsM5CCrpKxsSJI1BA5EItguDtQpQzeXJJ5vhBbkgtocuYQXQHaJwzijlqOD0/npV1PEA+6qFVcYELRYYOCgCgKeIUCEUcz86YvZfPu9QzE8vgCc+izNEyXwFBFPeGyCYRBExQvlZKdXE7CI5fhtdeTy+8j5JZRZRGnoNLQWoNbS0DMQaWcQPHZGGtrxxuYgf+dKMOWQEiTaHaXsys4i3HnVlzJAyi109AbWkjEBCotkxFnDZJokbU8iB4JTYviFzI0CllsZg9yFmxKafw5TIkLslMY14okbDa6qsIYLpmawTFSuQmCQpYy0YOUlxHdbqqopC9hMaG+P35LhmNDsoMoojvciEIZnqCX9Ix6KuLVyEKaSctPgQwiFgUlSFnHSWSinSCAJKlUOL1MREEVJMxQkBpHmLhWWj8qIiJKIoIFNmzYK2YwYJ9FeONK/IqCXZERFZnKsEhhQRvSuEEk3YpRSGCqOnZUGhzLcKSjTNV0jLCJMjxANugiEKksrRnz2dBlEflgjcu0vYqhqU20RkKMDCWxsPArESRfPRWZAv31HUxxLkBOv47WVIM6EcVwuNkTqqIhM4IsWGQDYdqdTjy6zholc5SOEEQBEQmHoSKbEg49gCJl8VgZbFYchJJXPthQz1RFQJcdFDi6DIuysI1c1XK8xTimpbHTNRdv12+JSwH0gh/T5WeKFEKSBuleeBw5RzN6736iZeWEPG7UvIXL76XgtZGcW830xlPo6jBoXN9DR3wDSS0LpDG8LiTRPNRuvTdC0dnIjnQXIbfFLKfODtHNvkyBKilCSknSp3uxhCy5unJku4PAuEq3OQPYTkgK4/NVYpcSLKq0sVux0R62MzsQZO2BSSK2ZmLaCDY1BcDyqtMQEBAFkTJHmEXlxzE7NI+gPcQbw68BoBvWofvzOg1MQ8cjTMFm7sOy+/lE83Hcv2YlpmXiU8KUSbVMyEnOqp2JVNNKVJvNc+MZFGeGaieUBaazmhVYsg1ZVGkuc3F8XZCBRJ6gy4ZV1kEqmUUPVlLtNPhodCcecRJd9GKggM1BuBgjgIBNy4MgUrC5ceTcSIbGkso5jOhOwrYc4Vgfak4npeXJyU5SYinzcMij4SON418IpPkPQfsHsCyLe3ffzbroWmaklvCT6K8w7EHECx/HtPmwDIPMXbdTeOGvADg/+zmkyqp/ctUSbKedSfbhh8g+/CDKMceCYZD67o3o297D870foi44hqGf/AR1ZIj7LpMYcZYWaM7fdwHbG91ss5rZZLRxorKWXZUbGXJFOTV8ClfOvha34kZdfRO24Q2s0BdyrrwBXT/4ogWQPTZi3Q7+EnDx8/l28qPnYI+swMhX4JK6keQCRUXAZtj5ffvZWJaI6lvL7RNrKdoFbqoO8pl4komNLpo1C6Eg8eJcJ9f6NpFa68RTn+O0yt3ooo98soDSoJGxGijERYbeiCJsSbLc8COnR+mbGsR2xa+4YfUm7nA+ir95mPjTf6W9Vif/yQ1se/sH3Lf7D6x1qPw4ZJGs7keMLWDX2Ff56sf7uOL1DYTsnezboNK/+HhOkd7mxsEEtmqdZz1unjtR5yt/LLIouo17l3yUK1Y/xcCqEP6lce6Xf8/VscuJBe8nGB8l1n8SzzW8zhnoXD20h0un+ji3eiNdExfyVjDF18aeZOG7l7J0fAvzd+zhTyfbeSq0AvHV55kemMGCyvnk8xpbJ99ld2wnptPEOd1BeMCNVzyBk3teYndzA5v3fITplfuZ9Ee5/b0Usu7gsWYHxWwT7d0u9s7ajpGazscmXMx2rKdsg8rEbg/bp1YzoAY4NzbKg+cKRO0S0wpFbuxVaLNHYWKUOw6cwHmZTrqC5fz4jPnsNuqgdxm9kaexuwapL+p8Z3gCmximeP5fWSS7SVxxMYJVpGJhirv4OKMf/QzHed5F+V/38vHnRYS1MXrSKdAcSBVlOByDOMsLOGuqCYdE4m1p5G0Gv0n8iS+cOp8bn90Pikn72za+Hk7yjeYgn46mOcs9xs8rfsn+4W8y5CnnL9UN1EYPsGmqSHt6LZ3pJmTfdobGl/CAbSorPEP86hWJigZw+uOIwNx8DgFQFIOUoeDceDfJC5/jo4uuY85kF7esu5Fe90N0TDZjH1/MX8ylhHwJrOxnqUutos+9j03zOnkxoXLqfb9EXbgIx/kfx0omyD54P4LPh+vKr5N/fgXmeBT3Td/7l/WF66tfJ37pJaBrJL72ZXx3/Qq5pRVm/BfxwiTnrP8x0laN4bZ27tpxBw3uRtr80/49pfQf/Lcio5QxbkUwIgqibqeeBJbsQPGG6JlqQ/HOwJs8UMok6FZJLmznuGiWgYl9FHx1TNc7AZBq68hFahC9Qaa4NXKp2VwwvYVYIYM/laY8GUO2B7DXzcTXN0rGkyDe1kRKGUEOhbDXzKDy9TeI6AYi73t9j1x3d/h7k6udnNeFU/Zyam0dq/MdRIuDOPwTTFUFBD3PbLcfRZBYUOYlq0s4kj4qPCWzU70aQnHZ2OkuJ2fz876T2S6KTK/yUjQLSIJMa9hNOgl2RaI24GAkaqJIItMrvbyXNihTdVp9Iu3T5kJnHwAem0yVPYtmCTQ4i4yKIi1hF3h1UlUd2JTSDMYUSpNry7IIu1U8donqMn+pFgAgSDaCLoXyQhI5LDJDUalUnNgdQeY1LAdRIqtnSIypuCQXSngBmbFSyqQp/lqsScj6PGSLbhpiw0yTBcocpTp5kiDjlN1kKmrRJrfhNiHmaWcyZFFoEkmrLuRYmsl0NW5AQMBCwK0oWI4gqt1H2B0knylNSp3tjfQbYUx3BFcojB0bbcpM3N4EIdWB6mphxJvHWuBmmuhntqMfZ2oPkZhBxN6EJQ6BKZByBFGFSfLYCQAVkou0lKHc5iChFyhoJo2ChzobbFbqQBSwVAVDdhEWUmhBB7JYSr4ldczEVZgk3qNRKB72iAKoZmmK6Ffc1HgUBJ8bI1CPkdBRETGCx7A21It9OEGdL09buZtNEwrV9iBNngbg8CxUFERq3LVoqVJ5mFKixlJ7Z4fq6bU1kXdnQFIRPS5kUWB2g4nPIYIjgCK4CAfCSAsWozpHGR0LY4wUcKQTgI69oo7knAz2ZAZdcVHvV8EskfvFU8I81y1gijKWIB4SEcPSaQ75SHiXMlLrI+iYAoLIQNlSqsS1+KaUE5lwIIzIiNkRQo4AsdoQnmQMUYS8qxGjsh16d5TGoiCQnjoLadtejlXqGc3nSQgqdk8FVa46CjYBK5dBkkdQFBUEqVRYDMj6PaSDfuTaMCfXhVnTXRK2nOAh3dCAd1yhqDZguHXkqgaUSRNBkpEEGVxuxJQNZ3mECjGLM+ViXZsAkkhI8eEPd1BwZpldqGdHfj+FmgBEFBR5CJIgSCLq7A6KPSIIIhlXGEP2UVMcICS7qK2cyiZ9lOSYieVw01pjY6qzDCE9gFVUmCZG6FfDZASBOk8KWTJYGF501FgSBYkOz1I87jgtwQDuI9ZjVzgiRPNjuBU3knB4zAgCeB0GqbyEJEKNPI2cmSDlaUcT7QgIVCpNqFoSSxDwWFBGLUqgBRMQsJAEC+uI+yirO4V9fXEwEzgUCVkSaQgeNEyoHqqCbgRhEikv0ytYZB1eXPVzkAQJw12HnI/hmdzCeGaYieq5nFB5MrkiiHoGy26jQrajJweoqzmOZ3vfYSSZoyO2DcHugwwokoVdtfAZTubYI3wYBOv9/MQfgGg09aEn/3+F3+8kHs/+8wP/G/G7fQ/xu30P0ZZu5NGxtRS8dWgf+xOmK4JVLJL64XcprnoN7HbE8goCv3n0UBrufwW5Z54i89Pb8Nz2M4pvvE7hxedwfeM6HOd/nPjKZ9C+fys/+5jA+lYJDBs1PZfSWaxHxOIj0hq6AvvpKusiqIZZXHk8plHgeEPhxP4tuAbeOtTO+4ow1u1ico+LYkpi1xQH3ztfJDd6DvbKZxFND/ZCjs+9luZX50ict7fIfunzvK1PQ1BH+Ib8U640B7nNF2C928ZNL2s4dtgwBYsd9QIPLryQh9Y9RnZIxf/I44iRWtK3/YjCS88jTW3D2LsHobYeQRAw+3oO3VtXBMaOn4Y+95v8eOMk99asZuqjT6FlJeo+IqGdei2JmmWsfeV6pkdX8bTXxRMeN37DYtFkCGd8GuN6kNBIgs6yNpbb1/A55WXimpf/FZF5yuvmuhcM5r5n8c0lX+UC20PMX5XHYdfwLYtznf9LdAt5YrUv452sIDl+Mve/8jv21grsXV5gi03hxYERpIPinZx0MrzKyx8al/O7aadRW9OJ7NtA3OpGt0rhwJLpwaHNIjs5i0S8GhF4PPd9FgZKkzND9XKTV2GHKrN0q8DZr4tcddEC3JNe9s19CyFbhS+xlCezP0Vb6yY9ZGeoVeLmxs/zy9ceIhop8ttdCcQAACAASURBVK1PSHQUNX48AnXWKFlL5bL8tczp3sVAdTmqS6Bc6ac/tJu3vBpO0+LL8Tg1RS/yvG/TPnUZjk0/J/HQX0h0OwgvMTi/4jv4wnV8umk7nc/cw0l7FAIThUPvSohUYo0MI5SFsWKTSE3N+O78OYLdQfzC05HFJN8++VLq00/w2ZcMTBEEH/zhwgI7XQpP9o8wmHWzvPoMimPn4yHF7db3uW6axHnvmOyqtrM34kJUYxSiJ6G4d7JwcJRr/6wjySaemjzlC5KIknloSmoBhs3PjrZzeVUFzVeLpiv8pfcxTMPk9OEp9KQWsoF2vGTw+XYTr3wKMLniBYOlo27Kf/s4ljtM5u67yP/5cRyXfo7C8ysQq6rw/fLX/1I5jPeRuv1WCs+vQPD6wDDw3v4zlOkzAfDufQTbq9/mdaGFbzc4kRWTuxb9kkbPh2cU/O/G/1+6Ohz2/POD/odhw1P3s3n7y+yzCwztCnJx0wTNi2bzVFxkU8842n4v7QPvsKjcTp8+zrN2mS9UT8XbUMmT0ShT+t9Cjdq4Z80ojTUzmWYTafXB0hOasPwu2tumoY8n0PpG0N0NbBFlKsY2UeOq4f7hEfYOr2A4K9E0+wQumttKw/YNTA6l2DQ6jpVTUZbMY0hKMDE2yGA0w7YDo4xv1pAq29D7tiKZGlLjMSBZfO17Z/OL276PMWmAMh9REDlXWoslSDzv+Sha3xYKg3u4sF1EVhTeGHHSP5HFNVM4NKG0dAtBFrAMC0ESyPXqFMfyCJaJZ6aH41sV3PtTbB1xMF5zEoXRbrI927h4+mG7sByoAkNHcod4ptfBsca7+O3w4j6dxEH1Y6tu45QWB1psmDXFVozYEOZEL5qmIQgC97zyC5574BZEm5N3RuqYFx+mXBtiTb/JcBo0TStlb2t2Yowb2AQbZ39uOqqiUtWdZeOED21OMyH/AIsMjfDaYVbuibNetTE3k8FZ1cKOjmZmOwcIm2HWhBRa/DJT6ltoamtmz+7d7Hl5H6KhcH5VDTF3huEpAWq370dXJLbYVMINYSb792Bbt5l8IYe7ag7nff0+nr3xOnJCDw3hEJ888wLiM09hc2IN7/75QbR9aXwOGT1okRrVGcl5Ob0yRW11A8mZlfTH81TtHUPszxPTUjiqvbSEK+keH2V4aBD3QIxsLs9qvYXNs5sQs5OcPpKhdU6IpplNTOuL0mcm6LfV0CIIHBjbScGw6G0N0bJ5nJhRj1YGoyfOIjDgom3dU+jV0DVtKr7RWjoycTQfPB/cTSyTQhIXU9mv8cb+P/GFj5+K+cwkezr3EohMIgfdbHtrGMV0ccstP0Lf14k4sou+YozRtnKWH3siv9wb4A9PPoVr04uMWRaav5yGZQFOWV5KoiBaGpefeCWf/uQnmJycoBCZzkQswbED76HYXbiFImVlZXidCpNiiJlVXpqrgnQOJQiefAojib1I8RTbfH7KwhavbevmwFuThLMDLDz/RELhJUxrm35obNYl1jM7aNCVt/OLPg+LJrdwdlULaxWZ+sR6GnU7ee808scez5uP3cWW7p1sSdTiDVUQLi/np1dcwpN33snugU1MdO6iMFhAFCU8ThszwyZ7GwRGMgKNcgUzZ8xiZd8QbxtZMjsOwGAa6ucDEPZ5+Hx7hkQKojtjlFVH8M1pxT62mT6hiif35ZBq4px2YivWSJyGvkGa3BW8VNjL+HiUyY15dowLzDIM7vvel3lp8yvsGUvyql1kapWfYyZLIezRRAZbogylXuF5M0bdvhFsx9WyeG47M+UZ3LK2iJ6TmKaNcNnJDvr6SoaWF4VG2pRtbI/62R5NEii+y/aXRphIHw6Nd7YvPfRdi/aijfd+qK71HVPy4COKqJWth7ZnOlUkeRJXXYgvXf4xfvqlmwgeO4WwTWf3a0nOmhXGIxZ4fl03ySKc2hHAU1ZBd8ZNz5Y1jGZFZFnG2bYUT4dGcWgv2XdLXtBcLofXZlK/0MNI3kTbmcY200PaFLD0ktJLrE8cuj9Hs4Ncd+7QtvchSRKWZWGaJra6apSyRiLNBVIjBxAjrQiCSJW9QIOeR93bx+Z0hD179nxgP4gfuPX/YViWxSNdv+V3+x5iXsrNn6Jvkiqfj+Pzr2C6IpiTEyS/+TWKq15DLC8HQcD7w5/8W+QMSsVupdo6Uj/4DoUXn8N52edxnnU64srvkv3ZD/nlOSLrWyWUVCPpzhvpLtZwvr6Gq6z7eLlxPV3hLk6vOpUTC3mO2/QAN679NWe/cze2gbcYEpw8aK+nAIyKEqtjfjb0+NCXfxwefoifXVhJbuwc7JV/xaU5semT3PBUmhWLJAIFi5m2Ct7W20Eocqz7Cb6iDbLLtPEHn5PvvFbEscNGUYIRv8DWxeV8bnQ3mT4F18fOAWQSV32ZwkvP47zs87i/fi1yewdWfy9mXw/KcYvx/+lpXF+9mrBaxnFP7WLxzZdx/47f8/g6D/su/BSCAAPPGdifvobKFRdz+uyLMS/aTMJ5FmcnCwRNnRfLY6xrfJNTwg9zU+Oj/NFzE2fKG9lhNpKWVK4bS3HdeIzHTrBIuwWu3/woT5Z/jexykbQpM/lykBu6H8fuTDNzSzup0AiO0HrWhzto74cX3E4+mUghYWHY/IzvcuHxZ6k8aRLfmZtom/pj4p7fMW7uppCtoDB2Gumua0ntvZ5AbzMf0V7lPv932eG6nIWBTmL7nJimiFhMckEqRVKSCY2ITDrsFAph9s1di5rzMWfQzbdHXib9sp/UsI398/ysPOdSrtn4IpKgc8c5Imdkstw3PInPTNFtRhimnN/a7+Bb05/me6EHqK54nCcb3mONV2NOvsDxSS/paffQ8ak3mKsPEHjkeNKP/JlEtwP/XIXLgjew/MBObnr+ZmZc+0vOX2tS1jAD9w3fwfOTOxE8HqyRYRAElFmzcX3tGoz+PuJfvAy9qxPnV75OIaZyY/9K0qF5vDRPQDTBisMnVjgoaCIPun3UedL8fHgDkmsPKTzcJ1/KmfEMzy8Q+PxrGTqiE5RTiy38OlpmGuur6njrgSuxX/1t9iU9vNIb4YAiowGPOny8QTNxPcns937PNzf+no+tvp3ybXfzw6ZP0+qfzos1u+mtfoVfjN7FdOEA/Yn5GJ3XImoB7jlL5qXaDKlvn4Jz229wffkr2E49g9zvHsIcj+L60pX/FjkDcH3lKsSq6pJFxOkkcdWXyb/4HADiMV8kduq9HC8McH9fH1qhyDXrv8aBVPe/1cZ/8N+H6WdfSrS1g7zgRrF09lmtTEZmH3WMrGUIoh/6vZ8GdM98wpqbzp4g25MlYtqTT5cOsCwsfynEqVi3DLG2GUEuWZA1yclAw0lI534OSyxj91qRoWEBh+FgRt1y4p5m0rYSwbfn0gRsYAkCPYUgqf1uins0zEyM/N63sIo5AIzEMBiHx7Ue0yl0b6RwYCOv9VhsGymSfueP6CP7jnouIxPDKmTI7j2CrP+NeFhGEczDHph1Awarewz2DSaIb36B7EEvw5O7DvePHhvCSE8CYFoC6wd0RtIWycLR13591MOrB0xy+9ajje0/ap/+/n1oefTECFp8BADxb+4vfyCPmTXBgoSuUjBFNsd8mEKJdPrTXjoOvp/cEWZrITUGgoAnraLqMkrOQzhfwft2+Wa5BUUXkSwDrwJ1QQeCAP0ddQy11pRWDgoi4XwFqgZqwUIwZKp9DraXVbE5KHKgpgpl6VkE3KVzHUKpjzZHHawZaufF4So6R3KkQm5MmwSySNCl4LeXvItFWcISRIxAM3klQMxwHHwpFoJpgl6A/AgjaJQHIoSPPQt1+YUYgRrcooeJ8hk4nFMRFScuy4YsO3ELpQl22OWmrsxG0eeiIdJEu9iM07KRcVQR87VhYSEjU25NQcIio0sUAy2UTGkCfRmZoaIX7QjnnFRfjxlqxvCX4wjUo1ctotUL6tge9psGacuEbBz7gJ2AGMQpuDAFBeEI74qUHsMY60IqZjGTUUqltQUSWR0lPYqBRP5gqC4CxJvqiEfC+GwzD9+IISKYAqFCEAERu3J4SlwzfRkAM0MW3z5pHqdFGkvtHrwH+/QmHMtPJ+DyMO30M5iQvPB+PUYEREWhr7kNXRSYFA6HEmqmwLujIgfGTLI6SCmJCiGCdXC8ar3xo8Zt0RLpM8rZko3wvnVEP+iZTJl20AWsnIRfKSeLkx25CpI2L2lDfv/RAXg7lyO7+DzG5AreUktbJ4oKqydKpUn6M+qhNi1BYNOoTEo/wphiFkEvUpaLHnV/6kEvqGBaaBZsea/wd/L7f4SD+kqPj2IkYmS27UYb6SXkLPVBekcfnZt6QVSQBQszl0Q72N2yAJKlM5wyGEodFmqr+L4eO9o/Fc/BgZxAxhCIJkwG30piHQyzTL6bPHRcckuS1Hv/3IFlJHTMnMjEmIpmlsqiWAYM5VXejnr4894PP/8/IY5HwDB17t75M1b0P8OpqSK3ju9luOMrqEuvA4cHbeNakjd/GyuZQPAHMOMJPN+/FbnxX7CCa1mk1ACClkHQsmDq2FrKyb7eh62lilDrGPLvFvLqJjsPnROiqyFDcWIJjC3jY+Jazty5lh02i1+fmeQkAnxdmoZ//cP4DY2i6sYKzKE78R5XhyP02ERaC3nWUM67djvUA3PBLr2K0r2WyUQEe+RpAnqQKeOjXPmixvNTFfrKBY4ZDXJt/hpAoFFdze8T68kIIt+MhLjnz0VsB+xkVdBF2HpmnkzsWOauf5qcz8bWQpApn7kEZBnb2edSfHsN2d88gODxYr/4Exh9vWhr3yKdTOK54Ts0X3QJK9/+Nb3P/IYTdu/i+q5t5Lco5BvqUHv6OPB6BVWn5PC98FmmVh7DDcfdQKf6TXasf5Dy3HMUZIGbwiF+4gtyZp/ETCtAk5TESwanqPGplManUilGz5aw9Uzyrb334zztNNa7NjLv7WEc62V+MLEFxVbPPWoNG6Z38fDy2TQ/EeHG7n4uFNO86HYjji6jbttGjKJExewko3qUIpV4kksYTx7DbCPKqfJWFohv0GLrxSkUwYCYpeAwNBJ9DnYPe/Ft9fH65RJXJga4aWISsb+Bm09bxOTU13HknNz+WJr+jmaa334PTRF54vRaLpsVYHDleywO72Ts5AIr4kWcB/8ENExMJPqtcrakHLxakeedCJhAQ16iVwrT1PBVLp+5BPe+J3H+YQlCYpShXVNI7c5iqxDYNFDNj9+9HRGLfZWw9fwWTv/EbTgD5WR/82tyf3wUMVyO6+pr0ffsIv/csxRfW4nc3oExPEjiq1+Ej15EpjaEe1MU2b2YylkJdoz7aOuzsEYN7njY5Obz3Swx8pzu6OUHE09xg/Nq3jOmM5b8GHb3C/z6DIkf/FFn++k7ecVVxaa6VWipVu7ufJTH3CqTXxQoqasqwrrO9EKRVRUaklnLHeNjLCn4qfaW8YXx7Yiv3cwJ/kb2Vszie84d/GYK/ORPv2HTSdN4zTmPVfuvwVn1GA+fsoeBTX7+66XbmLf11yhzzmLsDROzKCLsW4dcdjBJkiCWjDOuchD/scoUXW68P/gJiSu/BIKA1NhE+tbvo+/dg/f669BbziETbKFuxRd5fKibT0Vq+erbX+SHC25jTmjeP7zuf/A/B6ZooyjYgSJp3Gh2/wceN+ZToFCSU1EQ8RX97Mg5Du23xg8gC+UUfYcT0Fj2AByRqAahlAXs/Vp9GU2EASjLl6MEpjDqnY1D7CScUehxmEQkASegZqCoS/ABOb70iX5Ehxef/WB2WcvC0gtgSUzqEM0cPWEpmiWpez/ORo/r6Ckd2SOT68mhBBT0pI6jwVEiP+9DLE193r+epR+esekmFHSwHSFKb4650S2LVB7e6Dk6zO5IWHrhqGQ+f4vMtl6GvCLVLpHUh+Q4O5D3YMeO30qUCJQhYhcl7JbIiE1hnWHgBLbrGk5TR9ZyjHrtjAUrUKI27F71EEETP8DOLSBgiiIRqZIxSjX1rCMYrYGAU5UI5cfIxRT81RVHnW8cnK0XijrqxH4YOIDo8ZITj2PuJVfxRtcfcVkjh0hozO9Fawwwb+oc8uMHEEyRaE5CL1joE13onZ3IhkTa24Zj2jJag9MwzXE6yheyfWCArM+HV/ChOJoJuyrZHhmmom+cBocbLeBAnBDJ+N1YThuqYMNXbieS09lRVoEck3CoKh1Oga7Bgw9w5DsaF6FcwsxZcDCSTFBt2M6/iNxbj6H7/JjuSkRhL4J5mLwDCLpIjVSLbunkrTzyEfpXTo9hJYZZr+v4RJFjDvX9B6M1dDwxR5bgcB8Df7NPEUzqPDCv1s/b+0sGA1E5LK9Bp53Ch+j+1roFqPlH/m67oShsjPjo79ZZfMR2CwHn7gIbTZ2GtgYUQUHScpiJwcPCdgR2m3XkrCg1loVsmmRx0pMtp08JAgnMIQeeg2uc8igcoJ6x/d0Q62XP5BHtSjZ6tHLyZjeIIGUkDEtk1XgZk+kJpthBzZbWYwI4ozIVlgsBCBZGcXXuQq4pEboCKvtopsw0CEgaatakOKKjDf19xEVhYCeyL4LkCf3DPjwSuf05zKKJa5qHYlRC8pqYmRiF/h5EUcRMJ0sRziZowxqFQgHJr7NuwkOTNkru4DCShIOE1jx6VBQHdpArhChmcn/Xtp7SKUQP66vUlhIRs7QjCZ5FZmfm7879W1gHDVbFURF9MIORsqN4TdQqjYIuYFofbgT+D0E7iIn8OLdsvJ4dqV1cFk9wTrqc6Pm/xVY1g8LrK+l54F70gYGS4jFNBLcb709+itIx/YMvaOqofW+iHngFdeAtpOTRLt3JvS6yW3x467NUzdlE//ZtXJ9Zxq6T4+iuMaTRk5gfq6TWXM95L79BsTyDfWmON0cFgrl+iuJOVjnshMovpnbDDsrLNpPS6+gpNoOti067DZtpcuHeAlMz07Au/SS/736E3nQvircksRVCnLK4yf3HKbzTLoLm4NXY1YBEiH5esB4G0eJXqQq+/xsLV05mwgPeDPzlIypf1TKMbVuBURDI2N1MeeZhUnY37nyOwnMrkJqm4Pr6tdhOPxPR6cKyLAqvvkzmZ3cQ++wncH35SpaffznrpnRwzdZbaOnVWLytnml7+gkaIlbOYmCFjn3GsVQZXQSeOo/ZTWfw8KLr6bQu44nXb8SX2cCTXidPTDF5RhvHqc/ivIrPkdm0kx6rkiZhhGOl95hf18kycSfs38kMm8RnzzyWz2/aTXB7Aj24l2/uynOvt4pVdVu54ZNtfGOXi3gkxp1+Lyn/u8xFZNnuCOfGc3zD1PmT2cJJti20yX9ClvVDoaQAecnDHrkdR34YlzFEz3tBbrmsHVHby0BQYFrRQfOYh0vOnkO6/nWCcSe3P5EDn5sFq9/BKje49fQq7i++h3RA4AstpWKGecHHC9pCVpuzSOBkSoODjUoec+xxeptLRXGrdZ1TYzYmOq7kgbkfx9HzEq4/n4o02UUsPY3oajdmqqRAC6MWDm+Sl08K8kJLnGXzPsEX2q7A7NxL/NpvYhzYj+2sc3FdeTWiyw2nno7zs5eTf/Zp8k8/iRWPY0kSwlOPoysOEASu2vIUY75aNi+LU/6sgDMv4NYEfviIycvzQ4SrxrjYs5P9uT/zoHwpw5kTsGcGSUe28+1LZNoHXTgj49hwgacTy4JE3sUV7VdRsXo7w9teYcUygVUuJ4IFguVkZfYsTuFJUjuS7K68lFXh1zgxPc68vX/lr8A+V4i9JxksfH0n2hwdqkxiQ4vYY3h4df5GNo3MZbke5abeX+M7V6DvjSDxnz9A7ZZJ3JHDitqS7Wjls9Bql5FvOQ/T9/dlMuQpLfh+9WuS116N0bkXsaKC/FNP0Pv2aly33Io6bTp8+hWsVXfyeNdDfDkS5tr1V/H5qVdwYdMl/7bX7j/4vwdZkBEQ8BUCjDEKQIWztIbAJ+Yx8xn0g+9Pl4VDBO2DYbFFgKLPz8lHbhYk1KZqjHwAs/jhf8+a5MIByJaAIZbWa9jsLkTzQ0JSDY1i71YU8ZLSb/MfHwoc5fX4W5gFk+y+UltaTMMqHn7ewmABR7MDs/DBDazcr1PhElhQXSKKYwWFD2SU/wK8kvfwDwMOJKA/ZaL/k2eDwzrblvZgd0q45BgxTTm0f8w0CQAhQaAv4CZsPxwp8z5BE46gBAJiqW6aWEVQPLpounkEkdOtw9+lvITI0RkD3jXLyAx2oTqcR23P4QDFieGpRkyXPIUeoYBPy9IQPJ9w+wJ8o+Os25lgfzFOQzwLRpHivmKJ6B/RVYKntAaoGDw4aZYlnIaTpLeJgpBiJCITbmhlWfWprO5+46hes5xO6k4/gf3dA9Q6FxMdGcR5sFSJMChS66hlR2AfQ4qCNy1gT3kY0w0GjiAfcm0tyYUdmDaFfwZZkHELH1xDMmlZJA3jEEH7YAg4ZTs5ScQq5dDBrSWwhnZCoNQpfhXcNpkKj42JbBGH8u+XQxGsowVGOPhej5SNzbrOPFlGMCFVNIlJpX6T9OwRnh3QerciOjzgLSWqKh4sz5JSVZxA2rRhMw4TjGqphgPGfgraQTnKK2zde+TM5DDM/SY4QA38feSXoimIY6XxqeQkGvCTB1SzwFYji+gp/e/pB+mDZElki9OozrxDtmccrL8XPCM1gWhz/8sErRgtPUNifRLnVAltwiLbeTiUsNBXoMHRgJE0kA+OOyM+zBgmI6nDjFR83+P4t0TI0DATiaNI1/vI7s5iGIffo1W0+JCVYB8KyygxRSMziZkv9YuRktDGLYpj1geS8SPx/zxBsyyL1cOvcdfWH1E089w0niQS+iyei65GECWK698hfdedWPEYQjCEMm8+tuOXoi478YML3BpFHNsfxvHe/2bvvMOsKs7H/znl9rK9s8sCS+9LF6SDDRWNilFDEs2XGFsSjSWJJRpNjMbEFmOMmhhssRsLKoJgAeltKQsLbO93d+/eftr8/ljK0gSMgua3n+e5z+45Z+acd8qZM+/MO+/8HSVch2XzoncbT7zfhZhJhQi7j8jS9QTX/RtPkZOUIU1c3zqbd9OGoBa9gSyHMWvOJxIawZj485xf9SnJk2J4k3UmhiT0buNZlzGAn7S8y1lbkpn32RtkDQuxhAFc2y0F3DsBiQGJBDtsdl7p7aDIL9O64280xesBhe7RvpwaWcNKw82nPVTCLgnJVInsvg6EHQ8hPrH9ChFQ+Kwkk3MbZNRUi0q3SmbA4sVzunObbSVb1hTgqkoggJS2Ds9MdiXB2vwiIlMv4Mw5s/Z4FOtAkiScM07HNqyY8B/uIfLgH0l88B6jrr+Rv536DHf77uDhbiWknDkA34qB3NS0hqwt24hvqmDXJhtKSm/8OSvwLj+dwafOpvcZd1O77SNOW3c7dztS6VUFnw7YyDPtG0nr62BCsBU92o8Hgt9hq9Wb3lYll7e9z4iMGv5uLeO8Sf25IqeWAR91DBP/fFuQrFqZF8eU8sDwDJ5o+BF31Szk6ewwnw2y092mEVjuo2BSC9fKr2OkDkbL/SGRvHG4+5xKqHYXtvpV2OpWMbh6GYrURNNWL/GeGu3u7RgS3N4Y5C/tV7AjvwySP6VfjYubdkRIEzG03TG0gTF+Oc3Po40VqJKN8jovbzlH8W/XTJrwM8K1mPykD2hLNnlpjwlKjl3Qs1Yw09VOL70XQy59GXfd5zifPQttSxl1DRlEqrsjEh2mE4oPXi84hU8GWVT3XIvP7ucXg+9nrHsI0QcfIP7Gq8ipafjv+zP2cQe6hJd9ftyXfZ/Y7Dm8+o/X6bnybQbX7SYpEUMAeouC+5Mw10yt49czp3LWgm0ETZmsngqnrzLZ7c5A9Gvnlz0/oEbLZ4E8jXjtpTjkRynPrKYuBVLDMhObI9hUF297PJi2ME9se4I+fYrYne4iJhsUx+KUOJ0Yaoz3C7cQrzqPh7Nfp7DhRfJWpvHdC1O4zDGDq1L60GP7a/RO3o51HuTUtpHbWMM/MuYQrz8fT8KgLXsdL4b78nr0XO4yPuCMiSVUflpA9fIcUn/9Yxw9cpAj9SgtO7DVr8az4j48K+5Dy59EtPgq9G4H5pHasxcp8/9N7OUXiC94p6NZqK+n/corcM7+Du7L5+Gf/msi/WZxz4LreTo5wN9K/8LnNUu5aeRvyHEfm7OhLk4skiQxyDaEjcaGfQpatiuHQqUnetSgUlQQUBUiGV5CqoYU+uLtCRKShCEd2Ak0knpg00KouePg81XHJFfYtFNpyuR4BhKiAWg6apy9CPOLOwh7Lx+te9K5AwqgN+vozfoRI4Y1CGuC+rCBqgooBDPUfLSnHPZsP08/ksoiB8zafKFydpjb+PQ2PGYK7f4kymMHz6/sn/1KluM44m1AweEVNAn6pwwiJO/v+NrNjv9lsb+sA8aBitfBKHqYusY2undPOUIIaU+/W8Kyq6wMZ5GrdigaTtmFkFSiQJMQbDcOXw8lhxPH9NMwPl4CQKj/wAM6jJrDiZ6y//nmHgVTdFI0RxWkYDalE23cb/4lRSQK3AUs9/uJSfI+nXCTYXBwaoZ2G4/tC2amvjIkGJLrpzYYp7IJ0DtM39CiHKC1AsO6JX3pxzjDdZCRR47cMesyOMnFshoLrVIDtcOEsP2LbtAZPYalx/cdKnqElQj6uz303Jcsse8/p+QkM55FWISP4d57fgcVSEhW6GwTsFexMaX9SnRCqLS4i6js5L+6hRSWNXlJtG8/4iONtnpUfwbGHhPkY8LqeJG1psoD31sLchyHbn9jHdSG2OQjKGgnCCvaRrxiIyLWjqoq6A07kYWJEL1BWFjxLy6rb6SC9vGeBmPixMlfeP1gJk6czPXXd+xD9qc/PXzIfR599CF27drJ7NnnA/DiB89TnreZeHdB/4TGuVVebn1OsLvyHga6/8yNmalMzJewUhIkXzyZ2/71Cptf/5xVf3kI6zCN/LQeSHfZUAAAIABJREFUCo+c4aR/hsKiXQaPrtJ4Z3s7uvUy8DIS8JuiVC5QMnDm6Dw/cDh/t25E7rYZZ+Z8PHGJtIrTmUYll2pPkZXcDsmwKSzxz4VxFm4RnOpeRclNFaQYEhfX7iBrWIKntYE80N2OZK9CAuYE2vl1exvPfuRly/WX8PLG/2DP7I4RmsGM9gR3B16h6pN0ztAFf7gINnWXCVfOwzJTSBLtLIn/nJbVfkLVLhwesA9rp7zGS1azxWeFNnrLPmLlDlxlCQSCoGLx5qkKK/srDJAj/CCyjKFtS9nwyB/4YHMrCzbUs6La3GcXvJez/X5uNAxSr5jLK8E2PmhuRp6chOv7LlpGb2FecBiTC0fyu5rF1G3yQmuElhYHrVucsHQJzvT3qbZilEU1HjqzhY9akrj8QYvbLrNRlu7mbY+O6a/ElvkUp8RlKqODud1+NrqRTZ/QTq4yX+WxQSmMywoy9y2Z+Joo/zcgxJCPnfxmTDuR/Pf4RctIflVdybCM7Tzf10d2iZ0LG+3EPQkKf/cZEf0zAFatWsWoUeP2pe39y9xMyrNRXu7hunl2Cgydm+o1fmo7n2CPj5DVCGevtXFLvJz6tckYpsLGGXEeHOblV1UmbzaM5GXlbGrTPDh8Gyny/gPF3USpKrFDgBHNxm2FuOPlILpDIm9KM+WfOPh06zpy3h+GL+Ik0WoDUhHCQEjgzorTPtDihz3PJJG8CklJMDF5Ik9+7wn+JX2XtIwMkhWFF9vaeLh0G6FzzzigvGwyFOconDamiJn9fPzEtpv3Zjq42etDDSj8+F2Tnk0SjiaT6g2pnDmonk3pqQxrbKGxziRteBtt9UkE1ibRXubm3sHPEUpN41NlKMHa/yM5/0EUqZWbXjLJbrVRPiiZqX0TXOs7G8NXSkm4lNYVDfylx5mco7/C534HV2akY4l2Fuet45K62fwj7U0m2Oo4bV0284tXI363lI/WNdPoiXDZKAc/GiRzmmMn0/XfszpexNNtZ2JWt7CyuBQjv4Gf1VzCHRGNe0e9RuFHtdTd8SA3N1fzfvP+kcp8v8RlQ2xcN+YjsquW8u4OnevfT1AaOLRX6FLhO0UO7rnmMrb+53X6r/4X9R+8wCPVYZ4NNGMIi+tmD+P6U1r4q7WR7y+6kIzdOVwx9EpUSeWNN16jZ89eXHPNTw9p+zpf+/jjJWzcuIEhQ4Ye0B4ejqO1r10cHz7Zhyr2jOJKMobbTladh/LqOOR/cVzzoNFt4clE80w/rufX6T52ahqjFXfHmhpxHEvLjzLLtLe/frjv3VdBRKdjmm77cjC/3H57siTz+mYDVT36TMyRsFsJnB4JIdsIH0ZhsCdakUQ6bnR00SGnEIcqaOG+/bAVj4SSTfvO+fUkitQ+VFglJIC2hHyAuePBZLtycESdRxdakoj2zUSL6VBxmPtJEiWmSeJYR/+VL54xqiWbAlcuCdt+BcapOlEkhWz5i73RHYDDCYkOxSPVkXqUwMfOKiEocLqwC0GmodOSmkq+vDdNEnZVpjDNTeVX8KxmTz/07EO3YJGFSWasCpfUsezFo4KrNXTIe7bKMNASiX2eSKFD/7BCB7+QAql6PRnd3JjhWmJYB8SR9pbtV2R5sd3hIJSaBvV1ALTpdlrdRURtacCGfeGi9kxM6g6W9AvvLYwEsV2rj1MiQXTrx8cZZz+bAjIDfBIx8+S527CibfssY8y2OlAUtLIA8Xi8awbtcIStEIviH1I6rgSXsLiyOU7Jqnyu+M9qegmT54emc/owgTendf+Sk7Z3eOqcDpvkxojFy1sMnlyrsb7eIt8v8cBMJxcOtFHWYnHW81He3dExtWlXYEZPhTOLVM5S0jB2+anNSuba4muI2Q28ef8AVz1jmjRuCGn0d3bs7dNiqbza4Ob2D1pw1ilcmpzOs5k+np0u05IE121qoHdvjZ/LY1hYFAArhCTDzO1Rfm1rY2e1xOUf1/KHeWlI6sVEd4/mdPljppatpXZjKgoW95/vYGNPk3jt+ViJfMbFSri39G/UVySjq/DBODjb20JgeQppcYkGPyzLP4/7y5+ifm1HI70iGuHq6hoS5RLpM9Opn5HK0pwskoIms2NwbXGEXxV7CGuCpeUGC3eZLNptsLnR4q32dj4Kh7kmLZ1LU1KY5fPzr/WtfOdXv+Hixy8nbcZ6PhsI53cfwr0DN5C+xWL95y4G2dwIEyJNdgqFk0JAe00wKcUkZpe543mdW78fpDJVQgQHkmUFqbNXEUzfiDN9I0kxB02h/vwiMYukSjuLCp9h3dwYD70dJbDFx+CMBPPrmvjVzDx2pq3gD+4sZjaM5enIYv44OY1x//HTb3IzN0x2ctfCOAczpafCzF4qDet8PDdR5UfRIFmt3fhZWi6h5EW4E35+83aCkVqEmu2p2JIMHjlX4pMcL4U1E7jRGobVswyP8zl8vnqQoF2zSG/z4jb7U+MK43KWcftzCQqaBe6COPFXkhgcURiMF6oFUUBBos0wKPeGmXyGxsOZubydZAflM8LrQjS+0cD8m67mjLQCihwO1sai/F91A9sSHWZ9fgeckq8yoUBhQr7C6DwVlw0q1CYe8cgs9mWh22TiO6M0vl/HW6vauSwphV9lZRHe5qS3qOa5AZeR1f4WmZpJdGMSvUe2M3+ElymfqeifpfLb1Kd5pf8k/po+m2Dtj/AUPsptlxn88R8xepU0sTGQxlmjW3kjeCmoIQb0fZ0eo6by4G0vc8MZce7f1cqNPVMxdYNN3dYyM3AGL1kf8jOzjk+Dubw328WDLXk0xXReWNZK0XtBLpiaxNV97BQnlTFGfQjdrrBkRwr35ls0Fj5GtG0UP274GX3HlPGHlfN5MLOA5rFNvNQY5j+lOhVBwe8/1fjTco2rRtm5Y5KDTT9ReWSlxm+WJAhpMCpX5vLhdr47yEaSU4KmlykYB9BGAfBoq8qN27O4d3WUx9/cSN7abH5zsZvV+S18WFTLQ6E/MNl5GkL6mnrGXXwttGo2AqRSF1OQrIZjiPHfdawivftQVlYGjQ0kSUmYSh5loTKCtH1hPKeyRwE4SvXaawAR77w06BhMB4+bL6mc7cWw4HheFTkYQYmkAfvNpuIuN+1DhhJf9tkh4W2RBG69BaeVQ/Cga50VNMvpQk5NO+S6S3KhYWdbm4PtjRbFhUeWbWDKYNwhz5EDAH2S+7K7YQ2m14FQTkzn00Ih7DhQEVMkhck50/h4x5LDxjncxIX9lAlH7Zh+GWJAXJaJA+2KQpbPj9hr5XSQHEVqH0oDR/HQsAeR2bEditpvAFJSEqxbS9yWiuUvOC75duk6XlWAqhIG2swO87z4npnfRLMLbeehZr7SF6o+e/Lxq5qFlKRDlL2IPfOrufdJYGuLwg7bkWahv/n8f6WgRZUoFf1q+XPkPgQGF4XCFFRm8ZsXWxlobWPBaD9jB2u40mJE4vDURot/l8QoabR4Z9GnfOe0CYztpjC7n40rhtu4epSdmnaLDI+EYcGti+P8cZlGklPi8uE2zu6jMr2niguZss8zMSoU3i8o5qMRgxiS8zil/lacluCnzW3Mbo+zxp7Mb5NSWNSuUP1BgKlVGvf58+hZ4CBomjziC/H5qBTOaQkxxW0w0z+RurRyzDYLNVlm6jqD+3zNmBb8s62AuXf246/VQfTgBPJZywWL3yGvzSSiKvz8B+m0ZQRINE6nqDKV63Y9QGFVHTHsrB9i8cJ4hbtXREgsTkF3Sjw1A4LN53JL3RsEdviQZEG5FudvzQEMIbCigsY3Gml6t4nkscnEpqbyTKGLf2rdyYrkM7ktygVZG3iwzx6XrhGLpRUmS8oNnitt4uXyNq5JT+eq9HTEjbczu9zg5Q9Ksc3MxJqmMK9bBv3SDb47OMQjbwSRy3Smeb30c+7paMgWIiJhi0vYgAeeTLArW2J33mbWdHOwKWU442NlnCJV8rormYrUdbjU9WiWRCRaSMge4NwLI1z6cTfOWVmG2m7x5IpdPNivG2/mh3i3exNbW8dwd9s21g+xyKt28qsxEi/5vJS+HdhXx7xDvTx5lh0tIliGmx+nBngkMYZPu9djKTsoaMnkqXVb0BpdtDR62dI9k/vOjRJzmsRbRrE9Yys2Z8c2CR4N5rQFCcgqr8kD0QwboxrXc3adxilbBL44gIRe7sBmE5h0fIeCpsXScJjlpsapl6TR0NvFvZ50TCC0IUrTK7sZ32bjgbRsnA8/jARcX1vDB6EQkwoVLu/tYHJ3leIcGUWW0E3B8kgSt/j6sipJJ+RuwTIE7SuDBBYGiO3eP7u0OBxigMvObH8yLaVero+8xq3952KmPsvcVRK9VyRxblGMBy6xU1CmcNnHCrM+W87UtHX8s+dMFsjfg+7/5MofJ3HTy4KRlQH6vLOE5sk1fOK7nF3aLK7a/B9uOrUPzfFdnO6MEPzUzT2nOjEDOi1pJZzuGsEfa3bxp2iAeTlZXDmsnSs/lvlFRiY/Tc9gaUmYa1YE2TnFxZTpfibGNaaFDF5vquGB1BReS1lFhm8lyS29ucF5JT9b9jK9dkj8cpCHh04LsrnZ5N0dBgvKDB5dqfHsRp27pzr42Vg7Vwy30Z6A/CSZqC54ebPOvzbqPDD/PSZMmUGvNJVzB6fw3Z4J+o8J88RgmVu3ZPHYBoOHXwly6in9+V2/rTyXqvGW/BrqKR7kdhuGZRywQL6Lbya6kKkjC4NjMDP6CjDdHrQ9Mx+SJJEmpR+gMByJzD2dLutgs4aDqAgKBrsOVNCiO6PYM+2YoS9YoPYNx1YaxJ9ae8zhZU0mqSkFj2e/4nQ4E8ejURGxo1mHDuodL93c+ewGejrSWQDAsaflRBKXOpSPsG2/h0DpKDN1Xy17nNQcVEYuyYVqHL09TfSZjSvZDW1RlG5HmQ4/Cjt0HVUIvI4DZ0djskxowCACyz47ui3xQSh7ZnOJH7Ph5P9ndGTo0UwJv6n8z3/xhRCsb9rIU1tfYHPBJ8hYnBMOc16byq6qblg7K1k63iK7IIHNbdHQCre+p/F0iUATCtFox0dIKHYqgoKKoMG/NxtcOEDl0TOd5Pk7GiBLCM7vb2PuUBtFqTKyJFEdtHirJJNeFW48mk7TcBfamGU0+dcTliVOa4vzg00ab6cXcUrfFtQanT7/jHFpo8Ip7mzkDInV0ShP19WxWA8x6JpeZJkmQ0M2puUPwbDvxltpEi5QGVTu4xZ3BYoCa6U03jllGGGtB3rraKbXvc/PVyxEU+w8WTyc9yYE8CiVTPxkABdsW0F283tIioXSPcEvZ7jwmjI3v6pja/CwukDw+CwZ6YN+PBxYgKNVw+7TqQ1CnuLgHwXdiVoWa6JRlkejrI5FKf2kjdaPW3H1cpE2LQ0xwuClFIkX9X7IFR76bivhdLOVGQUKFwyw8eiZsKzK4NmNTczfFuCfs87jp5EI/2el8frSIPPf2UpkUhacmcEdOSop80z6BRz84h1ILNvCFI+HKV4vg33J1CVlkPCp2EQCn9bG5HUJpq8xgNVUp4OV4eJv/hbWZGfzgaLjCJqs61FBjVtC6Ck8O7mCD7v34Y9vltG0PpmftDQyZgTcljeU8tTdfM+XxkRHEiNLttBLjjM/z841f+7Ls+WPMuq3PZmrWfSUW6gs9dE+LJXL03IJe3ZjxnI5I9DMLau2EdjqR1gSf5lYxJJTKhGGDywTZ+oy+lWDE5MBago/a9pKeb2HspjCxIYycvasfdVUaExzUZOVjB534onFkNvqWNrWykfhMCWpqZxySR88fZv4p0PGZjho+RzaX9/OmZqLH6TkUZBnp1LTSMybxxW33sD3htl4eISH3mkKCUPwebXJr9eYfJbdk+aBBSg9a5HkBhINBq3vNNP2aRtG0CBXtTHJ52OEy80pHjc97B126a2mToZPwqhRuL31OW7PG8Mvz1jOpRtlzl3j4toGk/enGcy92s5ji8Ikbze4atV/+MFmB+/36MvicWXcO8dG/o7x3PjBVn714Q42ZP+JX4/+GfXSZH5ZqHF6KJM/JT7lOwXNrN9ZzNu9m3A3CGLeGn7a08fMxlzOC1Xw5vQkfr9pN/o2g/OTkjjHn8R0n4/GTTqLVkd4ZajKg+f4yTPSuXNZgumZrTzU18OWzDJ6JG+lJssidbEfqQS2Vqai9KnhZ2MT3DTeQUQTbA9YSFKHGViSUybJCZsbTS57Lcb6ho4OsOFIJqJDSaNF82Y7D3wW4ZRsnXsnORkxMswfBsm0lEVYuaucDS0DuG68nZj8GQ8lm6zL+pyz3zuX6TnnMsDKwyN/8eh6F98udMVDTD2xo7y5jlxCq0LI0hfPvmxqFOwK7V+LBh3ezBI1X6Uf7W8HsnX4vDoeBe2rQpIVpvS4EMubTWzJ0yf8+cdKQpZZqSj7B1JPMHpqGlC2fybtG4qwfTnzXLulIVWv57g1u/9PMCOtqEKg1R95bdw3mW92rf0vaI6EeaNlLVtYjraqBrspMycU5tKKMKHmweQ4d1OcuwlyQNdhY63CH1bpvLoljiR3bGZ3uIGeARky9013cFYfG6XNJn9bHWdqD5Vx+QrFOfsj6BEZaUsywypsaL4EL862+E8PDYGXoXUqcz+MktC8/G6yTva2Om58y2CIaUeWkqi2aTweCPBme5AqXWdKD4W5V+WzONlBUVsSj2ZYZMbjNKky4XyJU8MaP7DvIFtorFWTuDRlAErtSNR4Hvd8/heyIy08M2AGHwyzUxz9kBve1xm9w0KxNmHzGrgGJfhgmODvaUn8cKnG2I0ymmrjr+Mslo1WuPTVDE6r2YJqM3HmazyyMcIfG5vxyjKj3W7GuT2Mdbu5KbNjVFazLLYlEpSE4pS8GKL0+WYaB7nxneHH2bOB0qJUthnp/G63hX1zA6dKGlekyzx2lov26YJYXweXLS5nipzMRcnJXJqSzLrSKJ+UlFHZz8fgibkIp50rTldJm3oqnjikEabKG6LSvYs1Lhslqo2cVomhNTB2pyCnUSKnVaA02wiQTCFx5nkEVeluztgSRgkpfDaknheLu1NXWMHPL3Py6NNRglUuelfDf3pu4JmhObxY4GNpXi3LUwq5trqdy1LKGRN3szi0mssrVX6c0shmyct14/vTmFqPMCy61/bg9yWbcG1VaY76kVSLv0/2sXRMOVYsjz6BZmaui1AQM4j5PRQ1SXgam9itdbhe7onAsAmCaVCbDYt7S2zJ0Qj4Gxio6YyIGfSIepgYKWKQ4qbFYdCqmlhtXrLL2gkuqmau8HBqcj5uSWVjLMafamqIpUZ53fsJldd7sasSbzTAT7eolHg8uAamY8/sGJ2TEi20rxaIBbvp3gBTnU4Ge7MYku4ifc+HL2ZZrIpGeaG1jWXRCLs0jQluD8+MyMCKqNy9fQXrg9k8fGYjawrgmkUK33kDBhfo/Pp0H8PGRrluTQx3eYLzNm/gvM0SZdkqnwxazq+/U0xuxQy+u3klL777W24fdzk74xfyXrcXSVf78utIKT9zriMYTWV5pgu7JTG42UUYNzu0wfjMnXS/uht9X6zkwaVNPNjUxCSvl3P8Scz2+PlumUzL/QmWpUR4fJyLHq2p3P6QxoqRgpfHuvhLjoHz4ihXr9YZ/bFAXpdGMB4irW8Ejx2G73nvI5rgha0a1e2Cq0bZ+fxHHv7wmcbvPz18Z3Zxucmo3WEmFCjcNdHNpIFhZg0Kc1q0hop3cghmjeIBzxbqe0V4LEPinbp/8o6lkqYNZ6xj9NdiadbFiafBN/Togb4ODu/g7RCOxRvi14mViKIAwvhyXh6/bo6m5H5dmKm9T8pzjxfzJHqmTWRlU1nQneQTOmt3YpG6lLMjY2jESj/90l4YTzb/MwqaYcHKihbK8tIIZ9Zx4eJzkOxx+jUqXLE9Sv8Kk0iDm3jCjo0aqgt78nFzJm9W1fNWaSOK3UY4bB3xm+WI1PDE2U4uH2YjosOScoNBmTK3TXJSFbS48zN4PjyCcT0zOaOtmsHlASwJ3hgv8cY4G1h2iks8/ODjZvxRk7pkBX9rjFtflgGFrXGdxyPNbBRhEk6Dbpky80b6mDoghcX5dv6dqjA9pDFaL+dll4dKl4olSTgti5HROEMTGpWKnd+1nobcMoOplWsY0fgRL/Q7BbtrN1NqP+apVxK4NcBpkdIrilagUpql8YTbx4S1Mn9db2C3FBYPhBeGC6ZUqzz1ONgTDfh6xIibCjeuDPJSsGN9Q9iyWBwOszjcMX2cqaoMdboY7HQy2OXkHL+fS/Z4gTJbBJX/rKNMCGp75FPfL4WaglbipxmELJNXNYOV7Rq9MSmsWsQ/fpKOpFvYaSNZTdBfsuhwDB3CMkqpSKhstdvZ7rSz03IRDctk7oTcFhdzGwTZrSbqHgN4gUTYobCyl0RllomueOjZZmdURQvdayJYRkfjfc5ywTnLKthY5OK+09N4Y3Sc85YLSgqdDNgFF5QFuSCplSWFGSzto/FwD5O/GUP5Tmucp55tJThEYU7eMLb7AhQ0NXHu0kxmlTeQVLcdhJPaLAWvblKRKbNwqJPTVjr53pIK7EIgBEhCBRJgt9id5WNjrkqjN4I/ajFiu4PugTj9A9B/M4BJXBHUpylUZahsTLVoTm7F6QvQzR5jnEjQT9PJyzVQvifTYaEfI2TYSDYVJqkeDNVDXdNyyuwuyl0OageppKoq/SwnakMGeYsc5JRU072phr4OB2n2/H1OD3YmEnwSibAxHmNTLMb2RIIDd7CBT6MRLlxt8WxxNt4Cg+GlDfx9vsyCIRK/vNhi2jrBBesV/vSEwdreDn4x0smZA9sZ06SQVh3BXu6m6EMb35dWU1KwliUDi9jinMNpO9YzqyrCK9GzWCLX0CezmQu1AJe2RdkuqzS47KzOCpKjNzMtGkOEZV5I8uC5qCfLThFsr46xbEcriwMNvBoR5JtuimUvUyQvs94XWGhUeSX6bbF4aGWcz3v4eHGCiz+NaiW1v8XcDy3Glfip3JHM8l65vGplIjWU8ONuO7hooA2HKrG+ziRhCW6f5OD7Q21Q/gZOtWNfqYP5rMrirFcNhvXK5rtDPIz0G6g9+uPctBsjZidtpZ170jX0rChv9fbx756reUdahTUhkx3tPvxrN+M7+nrjLrr4VqI3V2JG2rBi3ywzrkw56+iBujj5dG1d0sW3lG+tgpYwoSoCZeEYpfpuQspmHE13U+CJ0G+7YGyVSfc6CzmqAHbiKUlUZKdQIsn0mXMJht/PG2+8xudtATQTXId5hip3OPi4epSdQR99n/7DbNSGBFKSn+oeefwp0Y0aw0EfKcjQzBaeCNeTvbaOuA0WFMssGmIjNWjn2tcsxuwOgyuKy6ljyzbxO3VaMhIEPAKHT2KoD4q9goDNT6OqUC2rlGLnVx4HAZeMNyrYEbFRKidjRAQeJ7Q7BOe1RLksHKTF9HNDw3X0DNXQL3sB27rLFCoN3LzuOZKiEHMI6K6RlpugMsvPOlNhR8DJsCVO7qoFXbL4ZJDMO4MFw+slHn1NwhG1cGcmaC3y0bpO5+eldayMHXmPnUbDYGE4xMJwh4tZGehhtzMm1cGoDBuDclVmptnwpVZid+7GG47jih84KhoUbup1N5tVL5VuN42WQiJuYEUNlEgCT1QnKWaR1SbIaYHT9i1/EggEIZdEYzJ8NkBmt1tQVx/hwlo7RQkYVQZYLp6bbPGfjHYsPYUBu3P5zaclJDtixGQ7RoNMUWWUW1+P8cGAdGpS2uheF+fOi2xMqlaZVhpi8sZmJm+QMBRYUxDljWFZLB/noW9LI+d82MjASoE3LoBaVK9B5SCFZwY4mLMkgV/A+wNz+MVbDRQ2WdgsgZQKHmccPa7wQp9ePD8WFGcd9pjJ2cu9nLm2Hbcep02y+Jc/jFrooUio5AQhsw1G7bBwaHtNbSTATYvXzcpUaEySaHcrRN12LLcdXHY8HshDo8CMkZ8IM10K4Y0EodO+i6ZVRTTLQcyj0NZqUN4SZWWzycpmjcUNcZoOp2kchrWxGNNXVPNYzxxyx3nJqg4wa62TM0rgvZEqN8wxmbpL5rSVFiN3QEOyj9f6SaQWOug3QKGoNUKkGgorXQyp2I6ubGdDoYMl3fsy0L8ac3sazwevJiv9JSayjZ8FFO7JllE0GRFX+NjwoZiCNAElyRI/KZQYmGKjz6Bkhss+ck2DXMMg14gjonHaozJ6RNA7JuHT7VhxhSnxBFPeg/aEnVcHpPLv8RrvjNA5e7XOlC3VTKOa0lyFtZ7hvBRNpdrpZXRGKxfYK2hO1OFSIbPkEcp/6uWJtQYLai3aDuPDoTGm8EZ9Diuk3A5Ps7NMVj8/n2JFYRgW1pYtnFVicZZsEk2zWJdXx8ru9by9bTFttmx03yBWVdTQz5VNL6+CJQRyV+eki/8BvmnKGUCWks3E3Ml8XLbkZIvSRRdd/A/yrVDQ2iIa2+sq2FG3nvrmEiL1paixAK5IhKKgyaQA5AUEmW0Cec+siZriJFaQTlOvYfS9eC5K90I+/8vD7N5VRh+PilNvJcsWZkCKTncJUrwWqiWTm+ogI9dDeq6LpFRBrepiecLDWzEXclSQGouT3qyREwhzY/NW0vd8N3QFynJsbO9jkOZOcJqmMb3SIuSTiY4TlE6xCCMTSygkNBkz4cSMe9ETCkoMXC1gM6DNA+t7SJT06ORNRwgMBeyWTGpbGsnhZAYTpZejjSqjB7coOdT742SkvE9avJnhnye4tBkMBRq6m7gKIvh8OpVtLip3++i+DIbrLoYDdX6Ll0+R2ZWjMGmbzP0vG8i6wJGiUT80jdL6TJa8vYW/NweIHmaI3u+AdLdEtlemIEmme7aH3CwXWakKqT5BkkvHVAVRSSYmJDaYEo2Gk4DpIq7ZEGEJW8zEHTfxxE18cRNfXOCPRBkeiuI5yDrMkiDkgqAb6vwK9S4JVQeXbpGesPDHwB+DojrBJMCSPLS5oVEFXwxGW/VLAAAgAElEQVTGlcUYVwbtLtjaLcSaom1cf7aCT/hIigsqUyXqvXs7tW2U9xTc/qzEYzubCeWZhPNAb3dSE3IQDKukNEW48z+7sO9ZL694DbzZGkq6TnsatPsEecLi1xvc6E1OHp4ts7xvE8tGyICMS4fubRZYPhqdFrmtNcxbLDN8t0l6u4FMAkOGmA38usx1Qf8eb7d7Fz8LEnaJGrdEWFUQqoRQBYpikRS2KGgU+OIGYAD7let2F7T4YLXbTsiVTrtTJexUiTlVdJeCZAenRyfJHye9IESKqjFEWIy17PxKuInGFJraFeoDJlX1cXY2RNjVKmgIWzRHBaFOenetofOd7ZXMbghy8dD+JI+3UbSzhrOW2TlzBWztofDXc8AXgelrLc5eIZCFE02FNZkelLwEBROCKDrU1nnou1MwcudGIg5Y00dha2oyT/jyeTZazJBAK3c01RM07Wyx3DQ5Y7QmBQi5Yjh0iYQN1qY7WG/ZGbJL0KtekBEUuBISYRfEXBKmEySPhdOp47QbOBwGLpuJT44xxWzlzIiEJwzRQpV1PWzEmjwUVErM+bwFmRYMGWrToDxF4vOUXOr8DoKqA4fbIndqlB/Zo7gSMg2NgtrqOC31UaJxidSUOL7kNtxOO0mxCgzZQXuynW3d+zD56huwIhHWP/sMKbs34q3YyfhNQcav76ircXs1lek1VGV8QH2qRJXLzu+3JyGS8/Gl96Vn+gD65g2kILNr1L+LLrrooosuvumcEAVNMzViZgzNNFhX3YJklwiGosStOPFoG4Wfv4m7fSe6aaBbJnFdR2gm775koSQENg28ERgbgqSDJnBMGQy/ipLkxzuiLwvKKmh2u/jB/81l24d/J2hsoeq5X5IwVWLxPDJTq1i67AHshoXbJhg+OBWbmYQ3buJJmHhj4K0WeMvAG4NBCYDEnl8HCVWmyeug3q9SlZUg5o3T6JfB0lE1iUTQQWvCgasBvHGBPwrpUXAlYEuek+qkJHSbIOK2aPcZVGem0+hzEFXcmKGBSFICd20jbl0hJWRjlFbGIGcZAbtK1NaK6W0moJs0aBa2YDsjmnfRq07sy5vWLJOWYRpOxSKz3IFtiR8DyJZASobSfImAH8J2yGlVOGO9wLvMAtnElmOyo0cmJXYZLVKDlSWRdXYyd0gpKJKEDNgsUCxQDAnZANmQkHVQDbDrEo5agaMCVL3De7JDB78O8gH6XXzPbz/tqqBdsXBkplEdbqTJEhiqjGIoJMkyqXbwIMC0IcV82GWZcn8OlheELFGfHqPVbxC3CwxVQlPtxGUfTkXDUCAhS+gyZLXEmbA9gDsmmLRGYtIaCYSMJCSEYoJsdNh1C7CQqfFZGGUSno0WrgQoQC86nHUE0iHU1yDPG0FyCtoTdsKVNlyrXYCEG4jboN2t0J7q4PRlCjNWAAiEJKFqTrAUBBayEEgIwi7YkqnyyulFxG02nJbAZhlIAnRTJdWqwGEZSJZAtSA74CIz6EAzVRxxk57BelRLkBkJIKkmIbdEmynRGIW4ZIBqkDAEnnaFXs5sEjubSDZNPOaR1ni4sHARt0PcDg0OSNhAV8GnShQ5oWdPgaWApQqECkIRWDIYUsc7akpgINhBM0LAqoGZ9OnvYFB5HQPLNQaUyWg2QWmuzIIRAqchkxoSpAcFGescKIYDE8h1mBi9YoTcglirg3HbBBM3BTClADtzoDpDYnOyheKSyHDIdFMkPBFwtMMybSC73Hk0eSxidp2dFLI9z4ABmwCLnHgzue3t+MMKvrBKtFmlV3UTvRs6tO+YvWNwoNEN7W6JiKMjP3SbxaY+gq29BUlRCXvYjSuq0K1BZ9jOBHbz4LruIOx0kO6BApefaKpE1CERsyvE7XHiooZFy/6JZpPxO/Iwqyt557YLQVWwJAkjA8IDzmDJ8nUU+tOY1i0DbdMqChqb6LnVQNVEp/ergYS6mlYvtLig1gmaAyyHxHtvysiqgqKoqIqNupzh1AyfhFN14lTt2GQbPTKT6eH3oMoqGY4MlC5Pkl100UUXXXTxtXNCvraXLrmAQKL5sNdOLbGY/dah5lIWEHeC5pDRnSqmz4lWmEIiJ58W04WWmk/mhx/gqqlGaTOgrYVoxXIm7Ykf+vkdFB10z/Ec3pOLKUHEoRJyOAg7bLQ6bFR5VUJOlYhDosUHLclxYp527npOx2FYdGuL0W2fmdL+RcKaAlGbStRmJ2pzELE5qfd5aUvzsaFXGHPgVv5VtxvnntmoCiuTSdqtsN9TO56ef0R2NBMFzlhkcvbKjrBF7Hdn3oGEKUObT8bm1JFlCxGTSWlQiLT4aPbYCbkVPOkxUiMG/hjktEJO635NSfcLrBQHLd2c6BGZjJo2CmtaKATotFP8YfNNBk2VSKgSCUUiJktEhKBdCKKmQdTQiRo6MdMialhEDZOobhFJGER1i6Bp0mKaBAyDdicU/qYXqt+Gw5nggb/Yye684YzFnj6uhBODpEQrLxdNZtngIbxhvw1kg3Hdu2F0MumKVc3FCA/oiNtpm53MxvX0ql2AJckIScJCwpL2mAc62rEkDQuw5I59XEwJdvoUwg4nmmxHMWS6B2L0aUiQUw/Uq8Tp2BfOtufX5FXYmuMh7JSxWxoe3cClxXFrFh4NEB0KqzAEkukC0aGwCWScmoQ74qC9bRJN7kO9uzmyX8OesnLf8aRojN81NFEj0hifeIS/LvojhaH6jouajE0DH5CvAKhgqSwYLvH4TAVop319gsoHK7FLEimKQqqikKqoJCsKHpuM167gsyt4dQVvQsETlXErNpyqikOW8UoSLsAhBHZTYDMFNkNC+cI1UR0vj4lMS4YPK1XBG43Rvz3BwCqBbB3YJiRUaE2VaFZSkAMSqVUaGeE4ChaKyyTuErgNH2NKE3jie+vAgfcYwEZ+f2EJZQV7XD+3aiTqZ0N8CABJUhWPOW7uqPZp0KzITJnZjeIPppIdEyQZIZISIZK0CEmtUbJ1DZeh4dINnEbn1av7R5G2d4O/nSXhanfhC3nwhxwkRSSSohbJMR1/XCO5zSBP13FrJm5NRz1A7G1HyL9dfLfT0+ydrjRNnkpo4GCGZqQQKd+AVrUDqbkJTyiCP5JAbTFwxQWuhAmYQIdi3ltZwk8yPyHk7mQWWbP/39PyzuTmobceQZ4uuuiiiy666OKr4gsVtIwM31fykCUXf/TFAe4/8HDRokUATJs27bDBFy1ahA1oHV1Ma6fz06ZNY968eQA88cQTh9zn/vvvZ8eOHcyZMweAf//733z88cdUVVbhdrsJhUJomoa8z4ujQjR64JTd68eQ3qPx8gFH7cCsI4a9ec/vf54IbL9xvwI99VjilG6DdzqvHzx4C9GbDhtt/p7fN57P3z+mYCXAX4C9denMY4lUCjx/4ClNCBoMgwbDoPOM8dfOse0X+tVwd+eDEuDJfUcVHM5BUBsllHz555UCi/YfyrJMbm4uLS0txONxhBBIkoTT6SQ/P59evXqRl5d3QBvVu3dvbrzxRmB/23jwtUWLFrF27VqKi4sBcALdpk0D5hwi0qJFi4gDxYdpX5d9+ZT+z2OzKSQnu/F6HbhcNrxeBxkZvgPOORzqIf/vve5wdHxuZVnadz+Xy0Zyshs49Hvb+bzX60DZsyFx5+cC+5518PHe5xyOcePGfYU5c3IZM2YMynF66bPZlH3lAewrz+Rk9768UxQZSer463Co+8J0Dru3HFyuDjfpnc/tpXMdsNkUFEXG5bKRkeE7oJ6sXbtmX1/F5bLtey6AosjYbMq+su/MXpkOlsdmU5BlCWnPoKUsS/vqSed7dJa18z0PTs/edOzlcPfYm8Yf/vCHXHDBBTgc6r56vjcvj9SvTE52Y7Mph5W38zP33hPYF3ZvHnUu08753jnNnd8TWZb25evB+dKZw6X14LB7y/LgtqGzTHvT1Zm9aXQ41H3pOThde++9Ny/3lvne63vl6lw/O99vLzNmzOC8887bF6ezbHvfic515+B2pXObtbeOdE7Hwc/7Ojn11FP/q/gnUtYviyS+rf4nu+iiiy666KKLLrrooosu/sc4ORt4dNFFF1100UUXXXTRRRdddHEIXQpaF1100UUXXXTRRRdddNHFN4QuBa2LLrrooosuuuiiiy666OIbwteioNXV1XHllVcyZswYJk2axF133YWu60cM/9xzzzFkyBAeeeSRr0OcY+J4ZF64cCGzZ89m+PDhzJgxgyeffPKw4b5ujkfmp556iunTpzNs2DBmzpzJ008/fYKl3c/x1g+ASCTCpEmTuOWWW06QlAdyrDIvXbqUfv36MXjw4AN+a9eu/cbKDNDc3Mx1113H8OHDGTNmDL/97W/RtCO53f96OVa5b7311kPyeeDAgXzve9/7xsoMHe3daaedxrBhw5gxYwaPP/44J2sp8PHIPX/+fE4//XSGDh3Keeedx/r160+wtCeHL9NenSxqamq49tprGTNmDGPHjuWnP/0pDQ0NJBIJ+vbte8j78sQTT+yL+95773HuuecyfPhwzjnnHBYuXHjS0nHKKacwaNCgA2S94447AFi5ciUXXXQRxcXFnH766bzwwgsHxH3uuec444wzKC4u5qKLLmL16tUnIwkArFq16pA8Hzx4MH379qWmpuZbUSalpaXMmjWLqVMPdN3135SDpmnceeedTJ48mTFjxnDllVfS0NBw0tKyatUqLr74YoqLi5k8eTL33XcfhmEAR/+mCyF4+OGHmT59OiNHjmTu3Lns2LHjhKdj586dh61Pb7/99r4w35Yyeeyxxw5Jx6BBg/aF+SaWydeC+Bo4//zzxc033yyCwaCorq4Ws2fPFvfff/9hw1599dXisssuE9OnTxcPP/zw1yHOMXGsMm/YsEEMGjRILFiwQOi6LlatWiWGDh0qFixY8I2V+aWXXhITJkwQW7duFaZpipUrV4rBgweLhQsXnnCZhTi++rGX3//+92LEiBHi5ptvPkFSHsixyvzmm2+KWbNmnQQJD+VYZbYsS8yZM0fcdtttIhgMisrKSnHJJZeI999//yRI/eXqhxD70/Hiiy+eACkP5Fhl/uijj8TQoUPF2rVrhWmaYuvWrWL06NHipZdeOuEyC3Hscr/++uti2LBhYsWKFSKRSIhXX31VjB49WgSDwZMg9Ynly9bHk8GsWbPEDTfcIEKhkGhubhZz584V8+bNE/X19aJPnz6itbX1sPG2bt0qBg0aJBYuXCji8bj48MMPxeDBg0VpaekJTkEHAwcOFCUlJYecb2xsFMOHDxfPPfeciMViYs2aNaK4uFgsXbpUCNHxfhUXF4tVq1aJeDwuXnjhBVFcXCyamppOdBKOyAsvvCDmzJnzrSiTd955R0yYMEFcddVVYsqUKfvO/7flcO+994pzzz1XVFZWivb2dnHLLbeICy+88KSkpaamRgwbNkw888wzQtM0sW3bNjF+/Hjx5JNPCiGO/k1/9tlnxaRJk8S2bdtEJBIRf/7zn8WUKVNEPB4/oelYvXq1GD58+BHjfZvK5HD8/Oc/Fw888IAQ4ptXJl8XX7mCtnHjRtGvXz8RCAT2nVuwYIEYNWqUME3zkPCPPPKIMAxDnHfeeSdNQTsemZcuXSoeeeSRA85dfvnl4re//e0JkXUvxyPzqlWrxMqVKw84N3v27EPScSI43vohRMeHavz48eKee+45KQra8cg8f/58cckll5xoEQ/heGReuXKlGDVqlIjFYidazEP4MvVjLy+99JI4//zzjxruq+Z4ZH7ooYfEBRdccMC5efPmibvuuuuEyNqZ45H72muvPeTdu+SSS06aYnmi+G/q44kmGAyKW265RdTX1+879/bbb4vhw4eL0tJS0bdvX2EYxmHj3nnnneLHP/7xAefmzZsn7r777q9V5sMRDodFnz59RGVl5SHXnnzyyUM6Znfeeaf4yU9+IoTokPngb/FZZ50l/vGPf3xt8h4PgUBAjB07VmzZsuVbUSYvvfSSqKmpEfPnzz+gA/3flINhGGLEiBEHDAAGAgHRt29fsWXLlhOelg0bNhzS/t5222378v5o3/SzzjpLPP300/uONU0TI0eO/NoGwI+UjsWLF4tJkyYdMd63qUwOZtmyZWLy5MkiGo0KIb55ZfJ18ZWbOG7evJmcnBxSU1P3nRs4cCDBYJDKyspDwl9zzTXHvYfJV83xyDxx4kSuueaafcdCCBoaGsjMzDxh8sLxyTxy5EhGjRoFdExjv/vuu1RVVR0yzX8i+H/snXecXFXZ+L/3Tt+eBBIghSaBhCCd0EIJXUAQkSKiUmwgL7b3tb2Aoq+KBX6gCCpoEJTeO5hAqAkJhGxITzbZZHudPnPr+f0xfXZm+87swvl+PpDZmXvPee657XnOecpQrw8hBD/72c/4/ve/T3X16NTlGypDkdnv99Pd3c3ll1/OkUceybnnnsvTTz9dapGHJPPKlSuZPXs2d955J8ceeywnnXQSf/rTn7DtvgXkx5qhXh8pYrEYt912Gz/+8Y9R1dKG1g71+bFlyxaWLVuGruusW7eO+vp6Tj755JLKDEMf6/y6MTU1Naxfv37M5Swnw70ey0FNTQ2//vWvmTZtWvq71tZWpk2bRiAQwOl08oMf/IBjjz2WhQsXcuutt6bdmNeuXcuBBx6Y097cuXNZs2ZNSY8BIBBI1LO89dZbWbBgAQsWLODGG28kHA4PKOfatWuZO3du0d/LzZ133snJJ5/MnDlzJsQ5+cIXvsAee+zR5/uRnIfGxkZCoVDO75MnT2a33XYb02Mrdiyf/vSnueGGG3K+a2trS99H/b3T4/E4W7ZsyTkWl8vF7Nmzx+xYih1HIBDANE2+/vWvM3/+fM4880z+8Y9/pN3nJ9I5yUYIwa9//Wuuv/56fL5E1dvxdk7GilHXZPx+PzU1NTnf1dbWAtDb21tol7IzEpn/+te/4vf7ueiii8ZMvkIMR+ZbbrmFT3/60/zyl7/kN7/5TZ+btRQMVe6HH34Yl8vF5z73uZLIV4ihyFxTU8OMGTP48Y9/zNtvv823vvUtfvKTn/D222+XTF4YmsxtbW2sWbMGn8/H4sWLueWWW1i0aBGPP/54yeRNMdx78cEHH2TffffliCOOGFP5CjEUmQ855BB+8pOfcNVVV3HQQQdxwQUX8KUvfYnjjz++ZPKmGIrcJ598Mi+99BIrVqxA13Vee+013n//ffx+f8nkLQcT8X2WoqGhgbvuuotrrrkGRVGYN28en/nMZ1i6dCm33347zzzzDH/605+A4sdZjmM0TZODDz6YY445hsWLF3PfffexevVqbrrppoJy1tXVpeUsdhzj4Tptb2/niSee4Jvf/CbAhDon+YzkPKTOReo+yv59PBzbc889x4oVK7jiiiuA/t/pgUAAIcS4OBaPx8Pee+/N1VdfzVtvvcWNN97InXfeySOPPAJM3HPyyiuvEIvFOPfcc9PfTZRzMlJKMtWcsuAnQuXuFIOR+c477+Tvf/87f/3rX6mrqyuVaEUZSOYf/vCH1NfXc/PNN/PTn/6UJUuWlFK8ohSTu7u7mz/+8Y/87Gc/K4NU/VNM5i9/+cvcc889zJ07F7fbzWc+8xlOO+20shg7+RSTWQhBVVUV11xzDT6fj/nz53Peeefx/PPPl0PMPgx0Xdu2zT/+8Q+uvPLKUorVL8VkXrZsGb///e+55557qK+v54EHHuCBBx7ghRdeKIeYfSgm9/nnn8/XvvY1fvjDH3Lcccfx6quvcvbZZ+N0OsshZlmZCO+zjz76iC996UtcccUVnHvuuRxxxBE89NBDnHbaabhcLg466CC+/vWv88QTT/TbTjmOcdasWTzyyCNcdNFFuN1u9tlnH773ve/x/PPPF0ymI4ToV85C+5SD+++/nwULFjBr1iyACXVOBsNIz8NA+5eCxx9/nBtvvJE77riDvfbaCxjeO70c19xZZ53F/fffz1FHHYXL5eLYY4/l4osv7vd6mgjn5N577+UrX/lKjqfdRDknI2XUDbTJkyf3sVJTLgvZbiLjiaHKLITghhtu4Mknn+Tf//53WVaihjvObrebU089lTPOOIN//etfYypjIYYi929+8xsuvPBC9t1335LJV4iRXtPTp0+no6NjTGQrxlBk3nXXXfvMNpVDZhjeWK9cuZJwOMxxxx035vIVYigyP/jggyxcuJBjjjkGj8fDEUccwbnnnsuTTz5ZMnlTDEVuRVG45pprWLJkCStWrOBXv/oV3d3d7LbbbiWTtxxMxPfZm2++yVe+8hW+/e1v57jj5zN9+nS6u7uxLItJkyb1OU6/3z9ujnHGjBkIIQqej2w5Cx1HIBAYF8fx4osvcuqpp/a7zUQ5JwPJ1t95SG1T6PdJkyaNodT98+c//zk9ebZgwYJ+t029H+vq6lBVddxec9nv8Yl4Tpqbm6mvrx/wvoGJc06GwqgbaPPmzaO9vT1Huauvr2fKlCnMnDlztLsbFYYq829+8xs+/PBDHnroobIZD0OR+frrr+fuu+/O+U5RFFwuV0lkzWYocj/zzDM8+OCDzJ8/n/nz53PPPffw/PPPM3/+/HEr83333dcnFfLWrVtLfu0PRea5c+fS1NREKBRKf9fU1DSgb/hYMJznx3/+8x+OPvpo3G53qcTMYSgy27bdJ7bPsqySyJnPUOTetm0b//nPf9J/67rOihUrOPzww0smbzmYaO+z1atX893vfpdbbrmFL37xi+nvly5dmpO+HRIukLvvvjsOh4N58+bx0Ucf5fy+Zs0aDj744JLInc3q1av53e9+l/Pd1q1bcblczJkzp185Cx1HfX09hxxyyNgKPQAbNmygqamJE044If3dRDon+Rx00EHDPg8zZ86ktrY25/f29nba2trKdp7uv/9+HnroIR588EEOO+ywnN/6e6d7PB7222+/nNgmXdfZsGFDyY/lmWee4dFHH835rqGhgRkzZgAT75xA4t0+e/bsPhOBE+WcjJRRN9Dmzp3LIYccwu9//3tCoRA7d+7krrvu4rLLLkNRFM4880yWL18+2t2OiKHIvGrVKh577DH+9re/scsuu0wImY888kgWLVrEqlWrsCyL999/n+eff55TTjllXMu9dOlSnnnmGZ5++mmefvppLrnkEhYuXFjypBtDkVnTNG6++WbWrVuHrus8++yzvPHGG1x66aXjVuaTTjqJadOm8atf/YpwOMyqVat4+umnufDCC0sq81DlTrFu3br0S6gcDEXmhQsX8uqrr7JixQpM02TNmjW88MILnHbaaeNa7o6ODr73ve+xatUqdF3n5ptvZpdddilL7FwpGWiMxhOmafLTn/6U6667rs+Mc01NDXfccQcvvPAChmFQX1/Pvffey2WXXQbAJZdcwvLly3n11VfRdZ0XX3yRlStXcskll5T8OCZPnswDDzzAokWL0HWdhoYGbr/9di666CIuuOACOjs7+de//oWmaSxfvpxnn302Xfvwsssu45lnnmHlypVomsaiRYsIBAKcc845JT+ObNauXUt1dXVOKMREOif5fPaznx32eXA4HFxyySXcddddNDU1EQwG+e1vf8vRRx/NfvvtV/JjaWpq4tZbb+Wuu+5KuzVmM9A7/bLLLuP+++9n06ZNRKNRbrvtNqZOnVpyjw6n08mvfvUrli1bhmmavPXWWzz++OPp62kinZMUxd7tE+WcjJixSA3Z1tYmvvWtb4mjjjpKnHTSSeKWW25Jp5KdPXu2WLJkiRAikd573rx5Yt68eWL//fcXc+bMEfPmzRNXXHHFWIg1KjL/+Mc/FgcccEBa7tR/41lm27bFPffcI0488URx0EEHidNPP13cc889wrbtkss8FLnzueOOO8pWB22wMluWJW6//XZx8skni0MOOUR87nOfE6+99tq4llkIIbZs2SIuu+wycdBBB4njjjtO/POf/yyLzEIM/fo4/fTTxV/+8pdyiJpmKDIvWrRInHHGGeKQQw5Jyz4R7sV7771XHHfcceLggw8WV155pWhqaiqLzKWmvzEaT6xYsULMnj27z7tp3rx5oqmpSTz//PPinHPOybnusksFvPrqq+K8884Thx56qPjc5z6XrmlVDt555x1x4YUXikMOOUScfPLJ4pZbbhGapgkhEvWeLr74YnHooYeKs88+Wzz55JM5+z788MPirLPOEocddpi49NJLxerVq8txCDncfffd4owzzujz/Xg/J6effrqYN2+emDt3bs611dTUNKLzoOu6+MUvfiFOPPFEMX/+fHHdddfllLIo5bH88Y9/FPvvv3+fe+b0008XQgzunX7nnXeKU045RRxxxBHiyiuvFNu3by/5cTQ1NYkHHnhAnH766eKQQw4RZ599tnj00Udz9p0o5yT1brnyyivFDTfc0Ge/8XZOxgpFiAkYOSeRSCQSiUQikUgkH0NKWzBIIpFIJBKJRCKRSCRFkQaaRCKRSCQSiUQikYwTpIEmkUgkEolEIpFIJOMEaaBJJBKJRCKRSCQSyThBGmgSiUQikUgkEolEMk6QBppEIpFIJBKJRCKRjBOkgSaRSCQSiUQikUgk4wRpoEkkEolEIpFIJBLJOEEaaBKJRCKRSCQSiUQyTpAGmkQikUgkEolEIpGME6SBJpFIJBKJRCKRSCTjBGmgSSQSiUQikUgkEsk4QRpoEolEIpFIJBKJRDJOkAaaRCKRSCQSiUQikYwTpIEmkfTDwoULue2227j11ls56qijOOqoo/jjH/9IKBTi+uuv59BDD2XhwoU8++yzAFx++eV89atfzWnjr3/9K/vvv38ZpJdIJBKJZHSQ70OJpHRIA00iGYAXXngBl8vFI488wsUXX8yf/vQnrr32Wk499VSeeuopjjjiCG688UYikUi5RZVIJBKJZMyQ70OJpDRIA00iGQCv18t1113HXnvtxZVXXgnAnnvuybnnnsuee+7Jl7/8ZaLRKDt27CX8sxAAACAASURBVCizpBKJRCKRjB3yfSiRlAZpoEkkAzB79uz057q6OgAOOOCA9He1tbUAhEKh0gomkUgkEkkJke9DiaQ0SANNIhkAr9eb/qwoCgA+n6/Pd0KI0gomkUgkEkkJke9DiaQ0SANNIhll8l9M0hdfIpFIJJ9E5PtQIhke0kCTSEaRqqoqgsFgznf19fVlkkYikUgkkvIg34cSyfCRBppEMooceOCBrF+/nhdffJHGxkbuuusuWltbyy2WRCKRSCQlRb4PJZLhIw00iWQU+epXv8oZZ5zBDTfcwBe+8AV6enq46qqryi2WRCKRSCQlRb4PJZLhowgZySmRSCQSiUQikUgk4wK5giaRSCQSiUQikUgk4wRpoEkkEolEIpFIJBLJOEEaaBKJRCKRSCQSiUQyTpAGmkQikUgkEolEIpGME5z9/djZGRpR41VVHsJhbURtlIuJLDtMbPml7OVhIssOE1v+T5rsu+5aPUbSjB2xmD5hz1E+E/l6y+fjciwfl+MAeSzjFXks44/+3oVjuoLmdDrGsvkxZSLLDhNbfil7eZjIssPEll/KPv75OB2nPJbxx8flOEAey3hFHsvEQro4SiQSiUQikUgkEsk4QRpoEolEIpFIJBKJRDJO6DcGTTL22F1dxP/zMlbDVjB01Okz8Cw4Eef+c8otmkQikUgkkgmCGmrG0bsZY8YCUD/+LmASyccZaaCVCaFpRP5yJ/GnHgfDQJk8BcXjxn5tMbH7/o7z0wdT9d8/wbnX3uUWVSKRSCQSyTjH0bsZNe5HMcIIT225xZFIJCNAGmhlwGpvJ/jjH2Bt3ojn3POpuOzLOKbPAMAOhdBefoHoonvwX3U5Vd//Ed7PnFNmiSUSiUQikYxnFMtIfBCivIJIJJIRIw20EmP39hL83rexu7uo/s0f8By3IOd3tboa34UX4zn5FEK//BnhX9+MCIfwXXRpeQSWSCQSiUQikUgkJUMmCSkhQtcJ/vB7WG1t1Nxyax/jLBt1yi7U3HIr7hMXEvnjbcRfeqGEkkokEolEIpmYyBU0iWSiIw20EhL9292Y69dSfePNuA4+dMDtFbeb6p/9EtehhxP+7f9hfFRfAiklEolEIpFIJN0RHd20yy2G5BOINNBKhP7+CmIPPYD3/M/jOfHkQe+nOJ1U/+LXqLtOJfSz/8WOhMdQSolEIpFIJBMaGYM2aryztYvljb3lFkPyCUQaaCVAGAaRP9yCOmMmlddeP+T91do6qm+8Gbuzg8gdt42BhBKJRCKRSCYsQqAYkdQfBTfpjHfi16SxMVSiulWyvpZv7+WNrd0l608yfpEGWgmIPf4I1s4dVP3X91C83mG14TrwIHxf+graC8+iL393lCWUSCQSiUQyUVFiXZk/iqyg1fes4v3uFSWSSDIc/DGDWAkNQsn4pSQGmrVzB/r7K7B27ihFd+MK2+8ntugeXEcfh/uY40bUVsVXrkKdMZPI7X9AGMYoSSiRSCQSiWRio2Q+ChkzJZFMdEpioPVe+SWC37mW3i9eSPCmn2J3dw2808eE2CP/RkSjVF7z7RG3pbjdVF3/faydO4g9+tAoSCeRSCQSiWTCozrSH93N7+Bse7+MwkgkkpFSEgNt0n0PUnvH3fi+fAX6228QuP5a7N6eUnRdVuxQkPjjj+I+aSHOvfcdlTbdRx+L69jjif3z79jBwKi0KZFIJBKJZCKj5PzlCO4skxwSiWQ0KImB5thjOq5DD6Pya9+i9ne3Y7W1EPzv73zs3fTijz2MiEao+PKVo9pu5TeuRUSjxP59/6i2K5FIJBKJZAKiFFDnpKvjmCBMsyT6q7AshGmOeT+S8UnJk4S4Dj2M6htvxty4gdgD95W6+5IhNI3YE4/hOvZ4nJ/ab1Tbdu6zL57TziT22MPYXZ8cd1GJRCKR5GEZYMTKLYVkHOLo3Zr+vK07ij/28Z4UH21EkWQr+puvoy9dMuZ96+++jf764jHtRzJ+KUsWR88JJ+M59XSi//w75ratA+8wAdFe+w/C34vvC5eMSfsVV34NTJPYw/8ek/YlEolEMv7xNLyEZ9vL5RZDUnb6GhNqtCP9eVNHmB090pAfLna2sWaNfZZFWwDx8Xu+hK6jr3wPOxTM+b4z1kFnrKPIXhmaI020x9rGSryPBWVLs195/Q9QvF6if72rXCKMGUII4o89jGOvvXEdfuSY9OGYPgPPyacQf+ZJ7LAsXi2RSCSfSIRMyS2hYGp9xdIAsOzyFa4WQmDaE99Nzy7xGI73UuN2MIDw92Ju2ZzzfX3vh9T3fjjg/hsC6/iot36sxPtYUDYDTa2rw3fxZehvvYGxYV25xBgTzHUfYW7cgPfzF6EoysA7DBPfpZcjohHiTz8xZn1IJBKJRCIZHYq5zY0JdsJ4L6ey/1FvPUvbxtYdcKzIHjerxINY0utkOCTlUyis4457+ScAZS1U7f3CxSg1NUTv/Vs5xRh1tBeeA68Xz+lnjmk/ztn74zr8yEQyEl0f074kEolEIpEMn5ZoM0taX6U7Phax4wUU4uQEcTmV5Y54+7D2c/RugeQK4Hig1KuQE92+iZiRcosw4SmrgaZWVuG76FKMZW9jNm4vpyijhtDiaEtexXPiyagVlWPen++Ll2N3daK9KmMQJBKJ5JOMYRsfC3eyQoQ1MzcOaJBYtuDl9R20BOJjINXARHSTl9d3sKM3RkBPlMaJWX1ji8bGiEoZaLnfpuQYLaz29lHV4ZRYN87Oj3B2jB8XuJBW2vtqwthnRZzENKs891u50C0N3Sq8ULKs4x3W+4fuKVhWAw3A+9nPgctF/MnHyi3KqKC/9SYiHMZz5tkl6c915Hwcn9qP2EMPIGyZUlcikUg+qbzR9tqEdSfrj4hu8nZDD1s6hz4rr5mJ9+KWrvLM6G/sSMSIr28LpXVZOy/9fVS3eG5NK63BsVFq85X9lmjTqLZvrvkQa/PGUWtPSSq6yggnGyxhsbjlFbaFGoa1f7ZhG4wPPQNmRDeHPTGQbbCLeHz8laUaYEJBtz9ZXl1vti/luZ1PFUx8EjHDw7rnym6gqZMm41l4KtqLz2NHJ/6SaPyl51GnTsN12BEl6U9RFHyXXo61fRvGu2+XpE+JRCKRSEpFTE/EUm3rjg67jXK5jGXH6KQ+9zHQjMzxdYaH6dZX8ABF8qfc3/L7LwVDWiFMyicUx4j61JMukqNhkA5n/vudbb2saQkOvGEBskdLf2vpmKf1Hw2yryvrE5a8KKgHaIrsHNXEJ2U30AC8F1yEiEbQXnmp3KKMCKurE+O9ZXjOOAtFLd3Qehaeijp1KrHHHylZnxKJRCIpM2NkdUSMCDvC28ek7eGgZ2VoGKqbYyZP1+iO1Y5wY1GXpuKyJIRpiuzI+T4V3xSKm3ywM0BXZJRWH5JjlX/ko33VdEd0QvH+V7tEfq9mHDXQ2O8+ygglNUVCJpfqHlE7UED+QTCSzI/jPgYtJV9WIrxso+zj6mpdjJARGvU2x4WB5pwzF8c++6K99Hy5RRkR2isvgW2XzL0xheJ04j3nfIwVy7Gadpa0b4lEIpGUiTFaCfmgeyWbg5vGzSx4zMjIMVTFdah5lO1QcMBwgagZYXNwI6t7Vg3YXiHFXrNzV8nyE1CkVgwh4VqXctMcqKdi3/UxakdZ+2/yx2kYYHUzfxxcre/hal8FZoFaXyn5Rqjkpwxop+Ic1v6iyOf0dwWuEyEE4VGIVxtOvOVQMGyDTYGNxEcpVsywDd5oey3993h5dpQKr8Nb8PterafoPu2h/lfLx4WBpigKnrPOwVz7EeaO/mdUxitCCLSXnsd54Dycs/Ysef+ec88Dh4P400+WvG+JRCKRlIPCSlzMHL4rIICdVK4se3woWfEcAy1xzLppD8ltbjCbingcY/m7mBvWD6qt6CAy1bkdGTWrmLxmPyst727r5fXNw8z6mFpBy2t+LMv/DBbFTBoGBY3h0Zl4SBkfPmfFiNsqeOoKyL6pI8LbDT1E9fFx7xSjR+tmZ6Rx2PF5+c+eYF7iGUt8slbQihmkfr236D4fNvWfrGdcGGgA3tPOAIcD7cWJuYpmblyPta0Bz1nnlKV/xy674j7+ROIvPovQxk9qWolEIpEMDTscRpgmwupfyTMsnXajb4zLSGev1WTsz3hRsmJGRhG2RWLF6bXNXaxvDw+471C8zISZOF7hL65UAYghGBB1PheQ8AQr5iZXaLWkyR/LWYkZMM17PzFo+ajK2Kt+3fEuFre8knZ162ucKsn/F5Axte0IV5FSiSrcw3VxHKj/AgZaZyShf410BSze36qpZYBRYOVxCKTiIQczyVCQ1PEljf3sZ45TcX7iVtCKxXW6Vc+w2xw3Bpo6ZRdcRx6N9upLE7LAnb74VXA68Sw8tWwyeM+/ABEIoL22uGwySCQSiWT4CCEwlr2N/vpi9Nf+g4gXd0Fa3fMh9fEmtmqdOYqWMsRXu2UL2rIyCKYU+PGiZGW7ONpCpFecBnIRymZQWoWaXFkaQAex07Fdg9NVLGESt2LFt877wRKCta0h3m7IuEf9Z2MngdjgMvkJIbB6M9fDWLrLFXMHbUzGMMaTJQX6jFWRVTyrqxP97TeStV1HJncq1bs6CiuGKUly9NMCSnkqXrJtmBk5XY6ErGvW7+jzW6pv98438GwbWWklkXZ/Hdw9rmhBlLg/W5ic37OzNlrCoiXaTMQY28R/bcF4v6vPpSQ9njZs6Oxb+08dhrk1bgw0AM8pp2K3t2GuW1tuUYaEEALt9SW4jpyPWl1TNjlchx+JY+Ys4k99PEoWSCQSySeOLBc+3bSxA8XdYAJGQmFq0Dt5tz2TxXcoKzy2ECxr7GV1cxB/NGEAuNXEqk92sdm2YLzkk6cN3RGWbOokbtppxXWopBQnfVBxXMl9BjjO1PgOZjyEgMZYPVujK9LZBPOTVth5hkjaAMxr39+PgaZkFXU2W7uIb96J1e1Py5C3NWqkfXRiGIsYaPlulMVW0PKNMGXr+6h2FHPThj6/DUksYdM8muUECq3q2Zlra9n2noQrbvL3tW2hrF0HfxzOpEts5doC8Y3JsVb0ISakMGI4O9fkyJ66LwYrmbtxCe4dr2e+EAJhWen0/0aWgZZqe1nnyDOLf9RTz+utfTNY9kR0VjcH2dieGAvDsgcZqzk22LYgolm0BuO8uP1NupLZWFOTXI5hZCQdVwaa+7gTwOlEf338pxPNxtywHrutFc9Jp5RVDkVR8J53Aebaj9A2bCirLMUw1tQT+r+f0/uVS/F/++vEHn9k/NX3kEgkkjIS1S3Wt4cTLnx6P6tEOYpf5nNLtGXQfW3uiBBOZuBLKVY+ZyWQSbLQEoizujlIY+/I3KoAMKKgD25mfXNHhKhuYVo2PndCwRnqhHn2EA24qpFOTtG/ojeYNPVtsVYWt7yCYevE7YwrpmKauK1c4yX/mFJ/2yLXeOsvdszVuiL9WegmKApCT7xbhQBTZN6zStyPq/ldHN2joCcMaMz2/dTf/u7QRpx6cgViBAZk9jka7rxCwbvLzm438bklGCcQM9neE81aaRtmn/3tN4TwlWyj0NX2Po7erRDLSlgx0rkWITA3b8JYnTAkDTtxfe1RMZ3K5POjEKG4OaT4vPZ4W0FX65QxFkg+u17f0j38WM1RoDdm0B3R6U5mYE0Nb2pcHGpfA01V+590GlcGmlpdjeuI+WivL55Qbo7664vB4cB9/IJyi4LnrLPB7SHw8MPlFiUHYdtE//E3Atdcjf7m66i77Y6Ixoj8v9/jv/JLWJ0d5RZRIpFIhoWwLPRl72AH/ANvPGBjgrZgRhHLjinWLa34uzHr652RwSfbCmXFOTlT5WGy+rBsQUhLzpJbI5+h9mx7Bc/2Vwe9fSrmLJVsQzftgeOxipAdy1YQ0edDkc0GdnHcGU6cg9QqZ4ra5euoWpZXKynfxdHKrKANp/5WAiXdsI1gU+RdQmZ34pek0qjoA8fwDUiR61EZdP7MflwfR6AHDict/uAa7ruClumzsMhDK5uQaMDr7Kuei9jgkv/4tV6WtL6aySCYMnCyznf6Gh6Jrp01uW4LG7fqYU7dgcypm1d0l3e29fDGlpEbUm2BxGRRKG5iCzGikgajQdzMNTodSeMr4/rZ937ITiBUiHFloAF4Tj4Fu611wCxK44W0e+PhR6LW1JZbHNSaWjynnEbo+eewI6Pw8B0lInfcSvTvf8Nz5meY/OQL1N5yK3X3/pPqX/8eu6ODwHXfxOro67crkUgk4x0RCiHCIcxNG4e+rxB0xnInqJzZ7nxJDT1mxnizfSnbw9uydh6WuDkUWpTJVm43tIdYtq0XGzEqsTyDYVNHOD0bLoSgN2bgSPa9vLGXZduLp67OJ1efHmSijQGUPd3SiZnRQRkBm0Mf5XfSZ698ubb1JFYYbYamQMezdURFTR+PLaBT207Q7EwXb4a+CTocXetQw4nV166IzvaeKLYQqOEWPJueAms4CcgSffTmZ7NLnk/FiICZtbKZdiW0cAS2j4ob5nCMNUf3ehQt416cviSy3QR7ugv0lfsvkKhtN8QC5AVTvgzyWuhJGma9WmLMleQYKs0rs9rPTDKEjSK6ohA4erckkpJkSSWEoCvagUCkV3UFGROk1p3Qhad6pxVs1hQjr/PX5M+s5i/d0k0wXtwTSwhBQ3dkVCaYipG6h7v0RKmr1PPKtHPHLl+u/hh3Bpr7+AXgcCRWpSYA1uZN2C3NeE5aWG5R0njP/zwiFkN7+cVyiwJA7MnHiD/+CN6LLqXqJzeh+HxAsrzC8SdQc+sdiJ4eQj/733QWLYlEIhkNjj32WObNm8dBBx2U/u+mm24C4L333uOiiy7isMMO48wzz+TBBx8cXiep3BJDWEGr7/mQ97tWsDOyg/reD2mLtSYbyTOEki/xVMKDHi1bKbSLfB4eyxoTCl228tbkjydc7eyM0jFYTFvkpMgfLNu6o2kXJgG0BrX0jDSAYQ1e4c5WzgcRMZb8p/8tV/d8SENoK5AwnIdO3sqLKPzrxo5wzlntb/QbwypL2twEdQWzrQezvTtRR8w2sW2BhZVoWYBrx1KcXWtR4rmGrrNnE66W99jYHub9HX42tod5dUMnXRveSPRfyDV1kCtoH/XmrhqK5O+ulvfwNLyU2EcLpg0yNdaLI9SCGhpeHNmIVoaEjbN7I64dbxX8LYUdSsQ/ZR9pqt/83vvNypizfz8/5i+nFtk4dc2nb9cC26XkjJhhlne+02eSCECNduDs/AhnZz0i7kdteR8l7mdnpJHmFa/klfMQOS64XoevaNyVJUY3rKWhK8K2nuL3YXfUYHNHhA925sbzCiFo8sdGxWMv1YRm594jdj/xqgNdEePOQFNranEdcRTaaxPDzVFLuTcuOKncoqRxzpmLZ+5c4k89XvYxNLdsJnL7H3AdcxyV1/xXQR9614EHUfmDH2GuWU3s/n+UQUqJRPJxJRgM8vDDD7NmzZr0fz//+c/p7Ozkm9/8Jueffz7vvPMOv/rVr/j973/PG2+8MfROhrGy1BnvwK/3pms16UVWJ4SwcbZ/SNXW3BI0HbH2XBU4T3kbTJwU5IqechPKX3FIzQ4PFDORz+rmAEu3dA8pi2D+tqk/h50kpHCYXv8bDzB22Rkz1/v7T2pW6B0ciBts7EisWnSGNbb35LmuZS3kDfYd7tdVArYfvy4wu/zYwYSMrp1vYQuBw9aYFd6Ot+ND1GhXMnFEX9ktW/SRpzOUXPEocJ0bA5SCGIoK4m5cAo6UUj+4c9FPzwBolpaOpUwzUAHstNBZxn2B1VXF5crdTTeIRuN0hjVC8eFNNvc7XH0Gs/DWmUmcwolYEt/kfhc0CiQjSia4UGyTDa1+6v1OrGALETOKIxwlnvXMSoxP5vpQUPokv8n0nTmnAb3/WmCDYbDejf6YQSBmYNomi1teYcnWbaxtDdEcGHmx7qKe5/3cABNuBQ3Ac9JC7NYWrGG4i5QSIQTaa4txHXo4al1ducVJoygKtRdfjLWtAbP+w7LJIUyT8G9+gVJTS/VPb0JxFM9i4z39TDynnUn0vr+jNwy3cKJEIpFkiEQiGIZBTU3f7LrPPPMM06dP54tf/CJer5fDDjuM8847j4ceemjoHY2m658QWNnGli1o7VxFKGnIpVYm1vSuJlvxUrXc1ZCMa81wZEj80xnroFPfkU5l7RyigdYVTijGQ0mHH9FyFf6UEuNzOcDSUWKZ+BXLFkOKRxvQ1c3uq4T3144t7HQSgMEQT8bA9UQM2j9MuD6mDLXBUtDwFoI4EZrsJjbpbcnwMxNXcAOuba8yaf0/2T2yE4elo+hF4piKa5hZn/v2/frmLuysJA5rW/2s3N4NCsTN4oqvqhVRzD3exL8p42eEk8xbgptY1ZNx7VP92/Bsea7/RDXp4+x7vYvs5CN5Cc48y9/EePMNWoLakK75giIU+rLPClph4zVlbKVXMQsUnM83DgqW1MjaxFCcAKxtC6ezvKaSdwghEu6OeQbaYM7dyq7lfQ3oQZCKl0313R/Zj63eqEHMStwDG7oTXgtDjWl9eX0HyxtzXXbzZUj9lbpfC/UwUL/j0kBzLzgxUbR6nNfzshq2YjftxD2O3BtTVJ15FkpVFfGnHi+bDPHHH8HcuIGq7/4AtXZgA7byuu+geL10/e53JZBOIpF83AkkU9TfeuutLFiwgAULFnDjjTcSDodZu3YtBx54YM72c+fOZc2aNcPoafgGWqE9TVsQ320GAMK2WK+1siK2s++GQjDdNYn9PbvhcefGQJuDLDJdKAlFStnYEtpEp74d0058M9RYntSqV31z32LaxTDzBEr1WBvewtTmlxJxSckVEMsWvL6ps28jtplWXvvJ6dCXAisnRTZMbm7n1H/K9COIGX1d3TaljTGBt3UnwjAKGr22AC2ZdCBbftM2eWzTYl7Zmh+jL9JKaCQpj2KbKJbOK1Y76/wf4LDCuM0gIvm7HTcwe7MMqGKGpmVgNzXQFulOrLxl8cbWbtq1bbRqmxHC5o2t3SibXsS58t/EV63AiIUpOJYFDIbsYwHSWnXBQtaDoNhejkhCKVeLxV1l7W1nTbxkLo3sCyoZ25W1nTLAip8/arC8sZcVO3rTGf8KyV1odcVqac7buP+xyciVJVPRGn7Fn2FquDV97g1DTxhzQmCmzqNpJmPQssZBUXL6aA7E6InmZjhModsDG7Mxw+Ll9R34owb+qEFvsi1bgD/W/7NOzZLLEiK/xvawrrBUSZIUQ03mY1r2gPbruDTQ1No6XIcdgbZ0Sdld9PojtuRVhKLwtymr+PY7X+Pb73ydn33wE55ufDwdpFku1IoKPGeejfb6Euze0stiB/xEF92La/4xuAdZfkCdNBnfV68m+tab6MvfHWMJJRLJxx3TNDn44IM55phjWLx4Mffddx+rV6/mpptuwu/391lZq6uro7e3t0hr/TCIFTSrswPtPy8nC/D2gxCYlsD2eLG9PkS2VVFA+bOFzSz3ZPatmJXfzKCwCsWnFHNNGuLr2DlAlrKC8hTIjAdQFdxElZZKv55RjqJ6X+XMs+U5XC3L+jY+oPyDPMCU912R7Td2hKnfaZESrejilJYbW5fd/IaOxArPHjXe9PeGMNnZrbChs5NNHWFaos2J2KEs97JUzItCMsW+bwpNFdPodNXQ4puKnjTkYxu7iO/ITrteWMP09HTS2dvClob1OLtzDcOYbhE0ErFLFgYx3cJhG6ht3cSbN0GkyCpVAaM281vqQzIL5TB1wJFlcexn3+zrs19Dsy89UZ361kS9wZ6Iwcod/pxkF4mu0xcXdl5afdFHl7MRplm0WHj6ysqW0zbAiKHmFZF2KIXu1UKxazY7IztQYz2okTYArMZtIETOY1Ah10D7qCXEisbCMboFV+/ySBmzzYEYGzpCNPtjuJ3KoNync+RSsq+N5D0zCnaGnR9Rll6MT62g5fZhDGLVzjliqcYI9wknEfnDLVjbG3DuvW+5xenDso63qXzxfrpnwmvx99mnel9UVDYGNvBG2+v8ef0fOX36mVwx+2tM9kwpi4ze8y4g/tjDxJ97horLv1rSvqOL7kVEI1ReWzjurBi+z1+E/tRjRO/9K66jjh7SvhKJRJLNrFmzeOSRR9J/77PPPnzve9/jG9/4Bsccc0yf7YUQRZ85DodCXV1Fwd9sp02kwgNAdZFtohvbsSo8+FQTZ10dlf7k9tU+Km031dVe6morsDUHDpcDb4Ubt89NRYULd9yFME08Pg9VFV6EV6OywgO6xYHKdCocHiorHFQannR/NbUeqt2FZXE4VOpcEQh3UFk5DT3rmP1qB5ojTGWFhwhuPB4ngXgzDTGLBdUnFB2DQkyqiaAkiyun9lMqEzL6irQTUxQqKjNKq64q1FS6qazw4HK7qHLEERVODGei2LOqqn1kSvQRQNRVEFPiVFQmtq2s8vQrvxFuw7/5Ixy7TOt3O1+FG4/pxO1xM6tujz7bah0R3B4HHo8HHwK3V0dNzYe73ThdNh6PkxqvSl2NjzgKqqpSUekmqpmEYwYeTyIkYOrkCrSkEu+rcOHxuHA7XPQaNoH2VVhVPvabdhZerwdnzIHDpbJOq2JvpRfVpeKaMpNg2CDm8uCLddAdM3C5HTjdDvB4qErJbigolR5My6aCTCFtt8+J6VRwupxU7L5PznmrqHTjCTtxuhw4XIm/3V4nuJx4ndV4XCqKz02lx4PbkTX2mpm+DtJjWleR6N/rxHQ7UUwHHq8TV40XhnDNxc04lrDwKD4qQx48ESderytz/QW8gAdR44PqIu0mx8IhnKgkzkvq2rEUg2jyXndWuPHVVeC3BBUhDYfLgdOpps9d6roDqKnxsbEthOJyUOFycNLsqby+oY2IyH2ueH1uXELgNOM4Gnfi3vdTOKqr079XJ8cJwFfrI/TKEhy77oJ7731wTJqE4nCkny21NZXUYGqI3AAAIABJREFU1VSg+ByAA1VVqKt2omxejBFtp2nXvROGuaJSU1PR95pXfCjBRFuuZNp/l8uRuBftKKpDwaNoVFV6qKwSYBjpNqqiXrzOzDnPHgthuhLPryQV1S7qfIXPRepYfJUeKio1qqt9hO0YiqJQXeXFdhg5413ovlU9BhWVkeSY+Agp22iIbsLnnU9FpZuKSu+QnmupY8nex+l04Eze4x6Pk5paH3WVbiqibkzdg8uRK5sjbuSMSSHGr4F2/AlE/nAL+ptLx5WBZgmLP637f6x8/zFu67RQr/48j53yg3S2GiEEjeHtPNn4GC81PcfrrYv5xgHXcvbM80pubDj32hvXoYcTf+ZJfF+8vN8YsNHEam8j/tTjeM7+7JDPneJyMemqq+m8+ecY7y3DPb+vEiWRSCTDZcaMGQghmDx5cp/VMr/fz+TJkwvuZ1kCvz+KogVwdG/E3P2IRCpzwA5HMaKJ2W7LXzjGR4/qiKjGqm3LmaofQCS5fUiJoe38kFjrDvxzv4wdjxOJGZiaiR2M0NYRQvcYaJZFZ28zLruKzdo2IlENRY+j6ApRoxetfROx2t2xfQl3cn8giuUq/Iqvq6sgtjZRi6yiZgHNkcwM9vtNmbjlWFxH0xT8sW4cSiWBYBz/EJJ1tHRFEokGFAf+5Lh4Ionj1oqMU08gRjTL9cshbLAsYjEdw7CY3FNP46RDsJyJOJiKSne67RTZfbyxPpOdLuh24PfnJnZIYTXtxLn879g9LQSjNkpvJOedbdqCrrBGnc9FOKKzvd3C36ET3jXMnq7c/tu7I0TjGrG4TixuoMUNVMUBKARjFZhGBE018bf3ElOqiUb0hHEW0VndkusOGgzH0+PR7TTQNANUlZg/RPW69VhTavFPjhCPaZiGRSiuMMm0adNVJsc0wt492eRfh2nYaMKBrlsYDgtTtxAilBk7I4YnomHagmhWGnQ7ZqCYAlM3iXQ2o1dnjjUa0dF0A9Ow0BWTaETHthVUBKYJ8agGMR2XpWE51HRfSjyEO5K7OqT5o3giGlZMx9ZNVNNCiRvEgzEsx+DqfwEsbnkFgGOnLiAS1dB0k7hqpPt2hWKoUQ0jGMO2irSbHIsYNrbXJhrRCang90exA5H0va4Eo2j+KKFg4hx1+GOYpo0VDGN6fDnXcTAYIxzR0E2bg/aoQdu0GVZtIvCp2fgnJVZJbSEIJdPx+0JRdMvE7A3icGQUecsfxRMKAQpabwQtqiE2bUVpbEbdfTquA+dlni2uOH47mr4fKio9BPwR3BGNWNxAdLWyS/cmWnY7mLAjjp/c8VCDUVwRDcMGI5mF0mdrhLo7qTPaiZsVaLE4ImoQ8sSImXp6nKMRDUMV+N1RLFvkjEXM0nF5M+e/1x/GpRUubp06lpWtCRfLkNtBJKpj24JYVCMaNdGScauBYLzPswCSxbGT/a/c0kXcV09M03DFdKIuHX8git87eP041dbLq5uZv+ckLFug6SZmMo2/ppkEAlFUwyQciRMxNFyKnZatK6wR1a2cMSnEuHRxBHDssivOufPQ31xablHS6JbOzz/4X55ufJyr2g8ERWHO2VflpBJVFIW9qvfmu/P+m3sXPMABtXO59aPf8uvVNw8zHe/I8J5/AXZbK0YJXQZj/74fhKDiK1cOa/+a885DnTqN6H1/H2XJJBLJJ4nVq1fzu7yY1q1bt+JyuZgzZw4ffZRbo2rNmjUcfPDB/bbpbPsAR7glXSOpK6Knkz/0R0rZ98e7WOvPjXNTjGi6eHDK3UaJRbHaWtm4JZFmXCBojbbQFe/Mdf23dJxd6xL7ZKVN79drJyd5Q+6GnWEtUT9JFAh8TzYaN6wB0+fbQqBGWnG2r2KSt99NcwjnJQlRhIIQCdekeZOhyjlAUdp+YoD6HZIN68Cy6TYVNsfAzIv3WdcWYnVzkKVbutnUEUMzQRU2zua1vL42kdjK4W9ADSdinGzbzsqhl+2mKgjWVRK1Q7y37ZWBU44LELaNHYuyvTupfCqgaIlzqMb1nCMTSsK5zC0iWIEwm7s1Wv0pSQoUP87Pmpn12RYWUSuQSdtu5hpViqHjzHbDE4Iad6KvHjOQKR1BbnKNfrMoZocBCtHv+eyfAhkY8whrZuHaWKm6YZaRcWfNZH3IbBbP3EfOYMZ9TylaegCm13nZo9aLtWkDCmCHEwZ5RDcJFsj8KIRIyG/GUUKJa9LZXo+zfXUmztK0CBthrGioYL+Fjk0gqA4nXBSdll7weaFGE5Mb73dnJnp8dphKPYrAgZqKcxV2Tk201NFmkun0787Xxz2wH3LzUuZGKMaKPJPyn2OpRESpb4db+D4Vh2bm7e9SMg+8Qi6O7+8M8EHTwNkrx62BBuA+4UTMDeux2stfwNgWNr+t/z/eal/KNXOu5+CPojg/fTDqLrsU3WdG5UxuOeo2rtjvayxueYVvv/M1doZ3lFBqcC84CWXyFGIlShZid3URf+5pPGeejWPabsNqQ3G78V36Jcw1qzHW9Z/CWCKRSIoxefJkHnjgARYtWoSu6zQ0NHD77bdz0UUXccEFF9DZ2cm//vUvNE1j+fLlPPvss1x++eX9N5qlhLQF47y/w89bRWIrsrFTq3V5ykq+Z0U65iwWA0UhZGTqnikIbGHjTGZRU20TNZ61Cpid1KAfpUfZmJWyP0+e9V07aIk20R7Pfe8KIJpUgJZu6Wbpltwivd0RnVVZSodti0xSCWvwKcd7ozqTKhLHN6POSyoZnIKCQ1VSkUlFSRmrhRhMTHvcBrcdYktka04B35ieOHZbCLrCieOptCLUaB3s3vEWQgvh7KjH1bIcgCpXVZatkfkU1LqxVZU2pR1VN/pM3LpUBcvWaY6vp9lYRmu8EWtHI9bWLQh/svAwaiabowBX+wdYqbTyVTNRfLUIdyWGp464lXWKlcTY2b7J6X2LlRZQdI2W2Aa6rC1Fx6q2/j2mbW5M7C5AESYOJfFH2IpAVoa97JFX+s3al5IjkZZmrGLQBPB2Qw8rd/a9d3PU/uTEiWkVGKdYNB3/5YhlYrpqeorrrEreZzu5EvzW1h4Wb2nAsDVcDiV19Gzs1dnWE8Md2UKgu42X1zaTXwZQM+NsDzfQEm3BsA1Uy6Ai2lP4ehd540vCqE8/L4xYehtHMKGv9ugZU8FhhMGyEsIryfaSTWUfm6qomZpweWIUm/jJpznStwZedm23xH6ZffXB1kdMJwdJHGe+gTUYgnEjnakzldhokq8Cr1qFQ3EWTfaiRLtwG8FBRUiObwNtwUkA6G+VfxXtno13s6T1Va7e/5uc7zgaq2ELnkEkv1AVlcv3u4JbjryNbq2ba965mpWd7xXfQdg4erfgbngJ3+p7qHzr59S89HVqn/kidU98jrqHz2TSg6dQ9+g51D51MTUvXEXVa/+N74M/4254CUfPppzZKcXlwnvueRjL3sFqbRmNoeiX2MP/AtMcccyb56yzUSoqiT82jJTXEolEAsycOZO7776b559/nvnz53P11Vdz4okn8qMf/YjJkyfzl7/8hWeffZZjjjmGX/ziF9x0000ceeSRg25/dTI7YaFEG32w+s8Yka/IKsIipsToEVnKnhA4VVc6W9rRVsJtDpKZyhQHPkdFctPBKR0iTzG3SRgiIT2AaUH2AsOOforBftAUoCOkpWejLQGWlVBi4ubgFSBLgNOhcNoBuzJ3t2pSKn4ql4bhqiVbKatw57pxOnqLGxR+vZug3n9GSQGY2OzQWlnbm7XSmexfN+10Yg8VK33enC0rctpRFQcIiFoRBIKA0UHcCmNbNrZDJWB14OzyY2fVETtw92oOmFZFPFnsNiZ6aYtvQ0Qj+PVeAtGEUawoYFkZRVsNt6VHpFcDVBcoKv66o3JlShobwpnlxlsowYRtUffhMnzbN5LMZo5w9HWXVZKye10OQOA2wzjSOyTabYrsRLe0nOtMKVTzL2WoZl8qlpH3xeiRKhwdLJABcEdvjNU9zuStmujfn4yl7HP/Fhi/2u7WPt+lW0pbGEryms6YNTvia9gSXYHToSJQMAXotk0obuKYVE17XGXSijeJJxPIpAxJPVmCwxAGQgh27d7ELt2bcBRaqczKbuoyUmMu2B7eRtQI4dn2Mq7W93DteD1vpT1z+Gok8xwQgUAiUQmZRDUJ2QbvCl2sZuPWUN97WQG6wxpxMzElMSUrlrEtNMR6ZsrA15Zpm+iWTlswt+3GnhhtIY13t/cQN2yciptKt5M96rw5BmjqsyUsgnoQd9Nb7NH9zqDmHcZtDBqAc9aeOPbcC/3Npfg+f1HZ5HizbSkPNTzAuTPP59J9Lid2/yIA3CeePOg2jtj1KO4+/u/878r/4Ucrv891c7/DeXt+Howo7uZ3cTW/g7NjNc7Oj3LSvwqnD6t6OsJdg+30YvqqweHCacVRzShqcCeutpWoscxspu2uhlnH4Js6H33G8XjPOZ/YA/cRf+JRKq+9ftTGJR/b7yf21ON4Tj0Dx/QZI2pLrazCc/a5xJ94lIpr/gvHLruOkpQSieSTxDHHHMOjjz5a8LfDDz98GHXPUtOvg1ccs40lV3cA7452wp/+FMLl7FMrKuW+pwqBhZW1KJaYLU6sINkoKFTV7YeIJJ790xyV7FWxO5U1s6nv/XDwWezyCsw6FCdgYAqLhnaV7kBKARJDckUSQhCNG2iGTXt4CIpTcrVMzVJkBQLh9CGEwFIdOTq7adnEDQuvy4ESLZByH/C5HYTNXlb31KO5qjhlj9OL9g1gqAqoak74QvYmucpnMYM7Uaa3OboNj5hB2OohbHaDKTBVG3dMQ1QJnG0tMCkRqz2jzkdDdzRtJCuoVHudHFlp8mQohK4pUJ2IMbQRWDYYSfdaWwhUYaKZBp2hGLVCsCqSG29nq26wQYnkuiUm+sr48ilJ48/nDxCrS622pa57G2P9etQpU5LHmal/Na17Gc7JvuzFGdSYhu3fidjngCxB+hoOSvI+EEpu4gQl0gFTDuizfX+4W7sIUaAsRRb9ucmu64jgjKnMrqHP/ZFaCVem7ILo7gLbzskS6FQVTFtQW8B1NacllwswsS0LO5yl82GzJfoeczAT3pRJMe1wNG0wWr1RmFaZ/tGyLXCAI7my7jLiSVmcfZ5TorcHq70VUQ1OYWMLgat9NcYuc6hnBScCargNEDjCLVh1++SOG+DdsA2l1wCS94eu5VwHmWMZ5CRRse3yZNfsKH49wk6/jcOlJozMrFvUshOlLGZOduJUHbiS45H/qM55pNJ/+Y032l6jLRSnyjyIo2buxm7JrKo+l4OIYfHm1p705JHDkcpemenTFil3SsGKrmWckr4uBh6bcW2gQWIVLfbg/djBAGpN7cA7jDKt0RZ+W/9/7F87h2vnfgdFUdBeX4xz3qdx7Dp1SG3t5tudO465m/9b+WNuX/sHWuv/yo+aNuOydYTDg7nLXLQDPo+/9kDWWTP4MFTDB10OmoNxenqNHP9kp6owtdrDPlMqOGSfWk6Y7uRTjjacga24WlfibX2Xqi2JYFlz0n5oB88i9vQT+L5yFWpV1aiOUYrYow+CpuH70ldGpT3f5y9KZKF86gkqr/7GqLQpkUgkI6JQsqeBjDU7NWst8DR3IbwuHJEYZl017fE2stXo1EqDmlTnhADdtCAWw5FM+iEQCRci1U16BU1R+FTFLLpSSgmg6GGUWDd27Z5ZsuQVgs4/PFIFYO0+istgsuabtqAzrGFYGfe2QUxUZ8kj+qh5tgDF5aM1GKc9rMCuNj63A49DRbdslm7p5ow5U3F15sb2pWJfptd6WdK8oeiqYsE4rJwaWCLt4qibdmoLVJGpZRSIG0xxZLeRqbeUGocZjT3AJDrMJqaRiNtJyXjAbomSD7XeXLXMpUCdM7GNuyeIVelDqa5EIGgPacTiNo3hxNUyKd5IwLRQcWHaAkPkjqTurKHbNwulN8t4KVj7LeX6lqnrlT6HwsZuacJuacrZVlN03rea8FizcAKKraPoYbw7gjhtDbHP/gX6zJAy0EzPVBy0gp28rguttvWHaVHR0EysxYDDdy+6Wb+3bE5x7qRJrvlRQgbW9oaEUeZIntX0Sc5tcI8N78P0IhMBAEriTouHwsTefRvLNxOScyGW0Gi1d/ApMiudzqmTsbe3JAxoNXeSKHX9KopKjutitqWcxKj/ADvcQpfbhaqoKMJCQaBG2sEzKb2do2czqH1NBNsWGIEwPapBpZ0wVjRTo0cLUuvK1LtVFCVhOPaRoC/F7sv8CaGt0ZUEVQ8wN9NP3tNiW3eUtzvfZe/JVZy0e2Evt9QEiKmEkvIVl1AgsGzB1uhK9o0fz241fUN3QkndXC3glJhfQsAwcz0l+mMCGGgnEntgEfo7b+M98zMl7VsIwR/W/AaBzU2H/hK3w43VtBNr8yYqv/2doTVmxvFse4WaDY/y551Lub2uhkV10LjvPG7Y71q2OQ/jzR0R3tnWw/r2xGyKqgTZe0oF+0yp5MhZbiZXuKhwO7BsgT9m0haMs7kzwlsNPfwJmFbt4ZTZh/KFQ85m3vlTCDZtxd24BO/Gx5m263K2fTAVbrkE57duxNzjqP7lHSJ2KET88Udwn3gyzr33GXiHQeCYPgP3sccTf/oJKi7/KorHM/BOEolEUhKGYnVkXsq2x4WwbVzdQYTDgZ3lohcxIlhJt7Fqp0JXUsHSegM4o37qDD9MPZrG8PaMDDlR85lAfSFsXK3LUPQwWtUe4HCBsHFvfwXsHqAyR7YUiRW0lHKU5aojoNI9sIW2qslPIGYSN6x0seWhkEoIkkJJBU4pGbc0W4DPpaIqCnqOS1yuMp9aJXEoClUeB5G82sRC1xGaViDDsQBFJWAk4pM2dUTQkn1v743lBNuklMuG7ihTpuYadfGk65mZzIpYHYiBaxJ20tIVCGwloSjOmrI7sZDVNyYxuZrlVGxMoeLqDmBX1YGwE1njnAK/oSSNaRWnrZFR7RSsnTtQPJnzIFQnSktW3FXKYBci4ZGjhaDqyOTeCootEsOR9qjMTDZkUDCUxMpApxVkdyFQbBs17kcxvQhV5G1fyEBLus2ljl8LIAwnYhA1slLolp52u1RF4VVOs7MHVQti91v9SPT5v6N3C2qzDvhQA9twK43E2auAgSYwRRxhG2SvBZqWIFUrzNG1DmfXOhR1P6IxjaW6A2FH0gaaU00EXrbooE/dBX3/A3HUrcUm5TqZmyojNamjqInVm5xi2TmVzk0UYSeSt9gzsFXYv/pTLAttxGlpTGtfDbVzEm1pQYQvY7ClsBE0qt1UO2wUYQGCxu0rYffZRLOyYpq2SdAIJA2U/t0di8XLFq2PJlIrh5naa6ptkopfDGtmv7XVHMkpMSN5Xw40v5YyAtf0ruTAqeckZRN4HAqaJZLPJTuxkpZ8DttCsLYtRHdEo7Yi83yx0kZ1/33CBDDQnAfMQd11KvpbS0tuoL3U9DwfdK/ku/P+h90qEjMx2tIlALhPWjioNhQtgG/Nffjq70WNdWNV7UH8sGu5dN8L6GpcwQfNd/Dvt3/G3N6pnEaUL7gFyu67oe5xOJUHfgbXrvsP2EdH0g/2za09PLyqhQffb2bhAVO56ODdOOzAy4gfeBnqwm14Gq4j+F47n9r1AoyZ84ke/l8YM08oPCM8ROJPPIKIRIadubEY3gsvRn/7TbQlr+I965xRbVsikUhGh8GtoIEAVaE13MK0SDXV9V0Ip5PoLDCFzbLOt3GEKqgAfC4lsYJhCyzTIrV21rffjLLm6N2KklwtE4iM+5oZRThqwdJQtBBKuBFq52a2y8KjVACFM4wVixVJHGKinUAypsdOdq9QJItbsv5Sn68L/J29UqEkP6uKgm7ZpIOkAOGdhJLMTAdgR3vwaZ1osTAoJkKInJAhfcVyiEVxHXNcXu+Jfys270Tb8hrdM3Mze6a2arca8RJiGtNSkhHVE+5mQgjaYomse71GbkySnSxVIBCY2DSGt7G8rZdPVx6RaMURQKTi9mJRwM2c2W7WbDRRLYuYFUOotenxUEmqpk4PNe0hoCJn3F1xA2pSRiEYpoUVCKHUubIyDiZWUYQt0kYYippR9vMNtOSftT4Xhpm5ilRVYaOjC7/TQMEBRhjLs2veakg/94tIyKnYBlZnL2KPrLhHIXC1vItVty925bQ+u9rYCYOSXLWmNWDxyoYOTj9gKsam7Sh6kPjeFkVV4Ly4smqvkxgZVzg17kdRd0n41Nk22QaIEBASO3EKqMlqY2NHGKcjoeo7ezZh6CEUH6CqiRXirD5TMY5ddhTV68WqrgVTw6v3YIjpBeydpGD591O2jyRgtLYACQ8qxRYIFVyqE0Uz8NlhFHeed1VyV5eVSYBi2iK9nNri0piFQG1tB2ZjZBUgDxrJLLfxTupc/XubBY0QKzvf49Aph+EosGoHWauEZManyR+jzpcY5cmh9SjCRojjCz5DsnE7vGCAM2lCD5RlsmA2VsBCI2A3E9I/hWmbieudxLB/sDOAEDaNkQifrkheCaaR8UoYhIU2rpOEACiqivv4E9CXv4vQhhgAOAI6ox38ef0dHDz5UM6e+dn099ri/+Ccc+CAGQqVWDeV7/ySyffNp3L5bzGmHkzTGfez6LCn+FbbOfzPv1/jrHfu5+WmJn4c2Ml812r22sVin2lT/j977x1l2VWd+/7W2nufWLmqc6u7lQMKSCIIBBIZY5soggFjLs5gjLExGBuejXHE1/fZGCeM373YYHIQYAwWiKQEKEvdLXVO1V3x1Mk7r7XuH2vvE6q7JWGQHxqjvjGkrjq149rhzG/Nb36Ts/Vhzt31v9j8qWcz/oVX487f+ZD7Wj9a5MWXbOIvX/I4vviLT+INV23jrqN1fuWT9/Ebn7uffUsd9MSZFH/lXaS+YLH4GpzmESa+9FomPn8d7sLdP9RYGd8n+NTHKVz9dNxzzvuhtrUa3pVPxDnzLIJPf/IRF72vYQ1rWMOjhzxDNSiDephVeo57tr7HYHoBmUhT3EaASmwG4oHlOUTcJohSwCCMGXYnO4X8ahAys/9XWnNwJSRM1VCWxBIjgRrdQqgTjvgHh89FcMraK7BuZY/kPTxR8XoSPyHMSYENQHHfF0+5rl1noCZORVSSeo8A5n5zUgiCgfYG3TjFOMN+/n4KG+p3cmz24z3ziuPNgFsOZe0IAjvjrw7s7+0bclJoKCyuoMPgtJfXAdoMG6ccree/G0pOufd5tR0icbNslI1ltLHVhAB+YoPgZrJCYkLAUC4Ax6xLoqqUKE8XEWm/pgVAhA2EyAJnYxhdaiOMoSLtaOUouJJ1IzYgrde7pHER3e5aR74BGECqrE5GCGReEyntPZGqmND07ecHg1f36By60aYugl4QL7TKqvEGnpnVaVLoE7/GfO9nHUSo+cWBZRSyu9hzylwNYzR9OXH/83aoT4qHd82d3pJeDGRfVKNp2ymoEA0IfwkRNaxrjVH97FVvHFb/0IfSA3Va2tgAPB+HgckPLyPwbWENbYSwjorlpM665v29nelmI1vVIMMY2fXtu6VHonU/22Q0ymgKwQErxcvHKU0Zv/8EU3v2Q7I6xs6u/aDBi79I0UTZIQg0hlSfvlWEI5yTJcSrfl8I5mgmDZrJQ1nP92+4nOQo0+ekYtXEwUPDLtVKm0NS5NOhd4my37VRKKNY0XvpmnkeaN2GyTNoA9BoHEf0+yR356lH9t3Ta1HwEPixJ2hgZY6EIfHtD+F++COEMYY/v+PPSHTM2y55JzK7A9KjR1D79lB8zul1xSoN0Hd+gLGPPo3yPf9Ec8sz+LdLPsKru2/jmi86/OMNt/P6E+/ho+57eXLlBO0nvo3d132Wt1z6XJ47HvLOMx/HsVd9ldrrv0/nqnfirOxh8rMvZuSbb0fEndPuN8f60SJvvHoH3/ntZ/CWa85k51yb1/7rXbznKw/SetwVOGedQ/PWY9R+9mba1/4ZTuMgk595IaM3vBnZOtnS9JEguP6zmFaL8uve8F9a/6EghKB03StR+/aQ7rz/4VdYwxrWsIb/DvwgE0ZZRKEHfhZJ/wu6cqCGc8gaXDiA9JcQjQN0ZAehE1KTBeSrZsSHA92cwNjfm2FCPUiZbYS94E8YDbnkSDjsDE+wEM4S6IFgdWDzq/Nl+hR1aTkSpXsOjlvGS2CsHEqyKjBfBT9W/f5e2QEMxjkb6ndwdveOnrGEsAeCFP3muf1ND28/zp0OpcHNop26n7Cyql+UXlxti26IEs1KN2F3Yxd6ILshMxt5x6RMRH1TkjzgUsaQapOdu80GFIOYbQeXbWAcL1FQdapJk8mVAyiTDnGVQVOBsmf/sKRbiLiG688i0mE3UJGGSGywatwSWghK0mbmYoYln85Q7ZIAITCD5D2D0AqpE0b9I8jcvCOTDO6t7+a7+kHSjLTYFaAtLcHUNWuikdib1q6b2eoPE/Xh8FN2TkDcRi7sQwb9fn5xGrOzfj9pGlmXamB1S4AcduIjFyZmcrdO3CNRj3iSN7sGqtklOXKEkSPfZ3PnPkzs4zSP2ONzpD0ObWhHDx9sG61WGZMYlgd5TXZdhRB4jq0lyxVzxgBycNLEXgvn5n/Bja2hR+nIPO7+I6c4R/v7t7t7+Y6yGd2yW+mNEyqlkEbIZoLTOc6pkD+RnjC05w4NtUmYp/WQrMgVj1yo54pTN5G3x9DfSaSzWNisrlcdaIcwvPIQ8veUMYbFYOHhX+WrfKEOBXczGz4AaELdAqR9hkV/WbtbhcTKxkXcZaW5lzl/nsQkwMNLd3/sJY4A3uVXIkZGiG/6NsWnXfOo7++mhW/zzdlv8ssX/Bpbq2f0Po9vvAGEoPCs5wD24u6q38/3lm7l/vp9HG3uo5GngrdM4ugNJMlRzOI/UXU38NJzQ57TuJXNccTypW/DXP6r4JZZB/zN+iv5yP4P89ED/8K9tbt504Vv4elX/BrhJf+Dyu1/RfmRnmnpAAAgAElEQVTeD1GYvZXmT/wTat3jHvYcSp7D6554Bi++ZCMf/t4xPnH3cb59oMYfPvWnuOij7ye54y7EVa8jOu+llO/6eyr3fJDiwa/gX/nr+Fe8EZxHVu9lopDgE/+G98Qn4z3u4h94rB8JSs/9Cfx/+ADh5z+Nd8mlj8o+1rCGNazhB4EN+lZNreZ/CwJEubxqWbtg7pAnVjOd0AY9Xha3ejpGGoE2BiNsqCYAYYStofGqCE5xDLJf35R/JEzeJSvXHQpwvMymYtWxDxHA4c+V0aeNxXYvdCg6kgs2jCBF38kslySecqCAO4818GPFpvESRVeenFyJmriOhLiDNLrnYumeyrHkNDP1VhbVX95KDref5kzsduZaARvCFLG8SLjhdrz1VwLgSkmchlxSXsbTgk5kr2fkTWBoE8SKXfNtTCFhamIUACftN6tt6wZpoUBng4EGqFUz6cYYqkVFNxY9UvmgPorrKoSDJapGc7C7n2kVUzD2iiVOCWTB1jBKwT7ZYNaZhUzGFaXiFOUMAsIAUygN9f6SOqWQtvGiiKkjh4auWj2yBGw2OEq9eQfFkUkCd5ya22GjKNIRCVFhGmPme9k+JXKCpHuyyWaUMuL2SaMMVhA6tXf5wJgcMnUWgjnWLe5imzh9x3OjNVpp3JaNwRpxA6M2slJrMpLF/WGUcHoKMDAq2fOqogSSgGJkCYFO4178LYSwWSijOboSUVp172ngRHsnm6oXopeX0IuL9p0wk8llDSRG9CSmOsqJsKFacPHjBBAUWg0S4P5WKRPQmSES4IVHwEzmB8XgM2YndVJIA1Kt0I06YKWhvfdPTtBPxXnzeqnsvnEltLsBI0YQZ8cwl9SZwt7n60t92enG8ibmg7mTairzI9tVv5+Z0jo2lDcOfNo/CLXK6XOw6XVLz1LmIgzDbUAAHljsUJrgIaEGCHuoQ9KHqXOUPdWE/T3SVnYs3YAo7GBMXtCYn2teE6hIlOGB+YDz0gcwiY/B3sPioZq1Z3hMEDThuhSe8jTiW76DSVOE++gddqhC/n73+zl34jxeseNVvc+NMURfvwHv8Vdgpib54pHP89nDn+RY9yhSSC4yJZ7dXqSsqnwrvpwDYoaZUcX6CUVBLrDcvYMbhOaG6RFgBJY+zfS3v8nW6hlsqW5la3UbW6tn8Evn/SpfPPp53nP3uzhr9BxeeMZLuPSS11Dc9HjGbnkv7heuw7/mvahtz8QRDgVZoOpWT/MQwFjJ4y3XnsWLLtnIX9y4n985vIl/HZkk+ed/YuOTnwKFEfyr3kH4uJ+leusfU/3+X1Lcdz2da/+MZMtTHn68vvQFTH3lR157NghRqVB8wU8TXv9Zqm9+K3LqIat717CGNazhUUSuL0phINxrpjDuQnroIOrAPrwnPxU5OpotO5iW0sP/5jAGUsVkyUblZ3ghVtxuJTgmS57NzN9JUwpEaRLWbTnp6AqZTbmVHQ33pMLkhf0Ck8sYBwJLZRIi41PNZ+hX1bSo3oH04ceKkmuXj7JoqZ+osZmubqIIEkX5FMrJwdlse7bDok1jbBZOBks4KkSIKsaAu+o7T+cDdIptgxha/rQ9mpJ+oJZm2co0CJEnDpHMXIwSEU6aMnl8Fnlevh3DXfoI54oz0DobIwHNIEEgKMgSschreAx+tUDqSdKCRBlDO24gygMO1UIwUtaUigm+srQpRtFJuwgq+WZoJUuU0jYFAb6OSI0kilOKBYdO1MYxxt5jjg0Xk8Tr1aqJvG5KQHLPXSBdSk/rG4e5qY/KshmOSUmNoR6k1FXXSmaB2fC4vS6pj8x700mXmvZZ8GuUAKfXY8yQpoZEaxwJ7TDhcC1gfVWyeez0pAsgzcidTAPw7LLmFL3H4pu/jQralFu232s36XLPnM1wVhsNvOoy30lTnp3J8QYJ+yCMMb1srTGAX8OZLKGAQvMACSVLhHRkl1s10TIocZy4+2bU2ROYus0ImiAYkoRWHUM3XUVE4hhPxYyJFB8PGfjobodWbJgc2LZudmgwwjgeK+FK703Uk77GPtKvUd73H8jOAohVJMQYW++ldK+lRaIEJ5ohm8dL/R3ZrQHgCoPC9l6UvYkhjYgSzhu7gDNGtvU2v6mymflgzo7naulfRohq4fIwQRt6F62+xvZvBUfiGzuelWSZ+v7dwLlDSyptBp79YSiTcCI4iutmEyZxi/uWbudKp0Rp81OYT+ocbB3gSeuusm0K+qd/0uSVIwUi8zDK33mD75ZUJ3RUHYGkESZ92TcCV0UPm9F9TBA0sDLH6GtfJbn/XgqXX/mo7ecTBz7KYrjAnzztT4eKFdW+vaijR1j8qafyJzf9LLPdo1wwfhG/s+HFPPeuf2MqnuX9yUv5bOk6XnDJVt574Xp2jHuU7/kg1ds/jXGKLD3lHRw84ynM+sc53j3GbPcYs/4xbl24iUZ8cjf7g+39vH/3X/Y/mPaAKdj/1/a/DCWnxExxHTPldWyrbufM0bO5NH4cG+UZlF37Qt8xVeHvXn4JNzy4xOfmnssv3P4pPve/r+enX/9iiq5Ej26m/fy/J7zgFYx+511MXP8KggteRffqd2NKJzv5AJgoIvjYR3Avuxzvsst/NBfgNCi99OXWcv/fv0Dl5x49MriGNaxhDY8ETv0AkPdnMkQ571rOZG9p1hRYawiz2XFA6tNk0OKUidt20j7PuuBKQAttZ9jjhLjbhGo/kLe25AOz5VphtMKTHhJJrMN+L7EBgpbXoCFdchvuoiuZLHvcvPhtAtXuFbvLVbVoWg9n0BpBwg379tARB1DmXJyMHOYZNKXBlVbqdtvhOs866+RWOfnkYj4cxn64einclq3FkjpmJJjFdWwGTKqI8e4htD45LshNTaQYkPdl249VxM16N5eJMxkVNtvZPrIMWS5p0VdsVQpXShKNbSAc+4yemEYstxmZhqhizzfGIIyy5CfbTaJs816BxAztOztPYQO+WMVDAWze5gBha1iM0SQ6xQiBEKYn6wp0vbfOXLqMYj3V/ct4sSImpIwNBMedFBKDlCkyk5uJtg+eN5zdHMhyekl7oPBGYQz4keHm1iGcKVtnflCucA4gTN9JT2Do6ghjXBI5gSlKRNREadh5TDIj2lzamkOF8wiTEoUpDBC0UxGvWtphtnuMc7NMT3J8iWR2EXl2gvAG8mFxDMYQbZyhOL+MkoJ6EIIxbDmywoi/C3/HuT23yE3jRfb7UMpS1t+e+wZblzRbFxVUrb197rgnpUQxwMWki9s4gNtagegpuPP3Qzo6PIw5ooARx9BRWdVWL8liuLSqua013BdLL8yjOicYc6CsK+xIm9Tn9pOYPtlVzQ51abhzMmSbGUHmdiRCWBml0Uh/geL8nYioTWgUBkU37fbIEVpz7uh50Fi0mXpgPhwh6cRMV72eKdGD4Ty7g5hNQExin+sBLZ9rJFKpXilQjpyonCrnnh/D6sTC8LLDZOhUZGZb625bg1Y8l3FP0UwcYt3AA46s+LA1X92uW4/nmA334ssuReX29iH8Gn5bUQnOZ1d7JwB3LH+Pq9Zb8yC56h2VH52DtH3PjK0b7ElSs2UacY1msoBWvt2G6W9D6OShlKHAY4mgXfVUKJWIb/zao0bQ5v05PnHwozxz03O4cv2VNBp9Xbz/ta+gpeDthU8xwXbee+kfcv5tn+WixQ/wgN7Gn02+h6ue9HQ+d84MrhS483cx+ul34tZ2E539k3Se/kfI6gbOAc4ZP9mZsZO0qUd1/LRLN+0SqIBEx9y/ch93LH+PY92jAIzJMtd1fLb6deZnzmfxjKuJTUo7aVMLl7nxxA100y7ssl+uF4xfwGVTV/D46Su4bOpynn/hep78njdRf/WNbPjCv/EatvDu55/P5VvtF2ey/Zms/MyNVO94P+V7/pHi4a/Rufr/ITr/5Sd9aYbXfxa9tMjIu9/zqFyPQbjbtuM94UmEX/gc5df83KOaRV3DGtawhtPBFMcgWEYXRmGgdKoXzzaHJ9vib3ytvy7GshbH/pajrUPGdBHQQ0xFCY2rDVP7lijrkGBDdThJZAwiM5dI9+zDVGqIM5+DFBJl1NAsd778IEHLPxICrjhjgk8d3ZMRGevmtrqvjzbDBfUrfsxycoxIJ6SEOJmcTq6qltdGZ/ViJ4ck+aJ6gCgMrq2FRKB6q5okYl37ARz1eGZGClQXv4toL2LCc8AYTGGEZP1lFGZv6df8CDFM0ID5YJ7UKI5T4wJhI7nFZCC/YaBQWwRHYjmmpnz8MGLhMMU0RstyLyDTsoCrArQ2vfKu1CiMsW0PcolqIakTFV1y2SFCnnS+vZ+NoZuuMBcssb48bbNVA+WGnijZpY1hIXKoOFAKbLCfOyZqY0h0SKHrw0wREAitLQUVDEniRNgnfIMGBoWkQSLHMcYGoGnar7UDkIPauOz4ZpZ8Rusx7QvHMUDX2HttoR2h545D8yBT3jEqUsH6q/vrZ5Jd4bqQ2GNbbizSDDbQdexEcTpvG7OjVNbsuY9Ua1TbEjCdKoxOOTvoP4+Vw3tP6bwQpD6pSakdeZCt5fORsd2GOrqAG4wghH0eQp0idGKfC0eAipCd44BBhisnbxiQcUxhiID3fykNHIsBTDa2vvKZQLO5KKCUMl/cxYifDi+b/bwiIsaFZyuaxKosT2LP437dJBQeQRrQTJoYYyjg2QzRQF9EjYPutNDBCShrMHA0XmFEgSMMI549hq7seUHa4VTmJLKVn6cyim/OfZ1GsoEpb7P9rNeIfXgdM5A10xiS1OA5toVEfl6DRK1UkLb9hTFUHE0jkazonZTMSK8txiD2rdSY9buUyhJHCqrSIP0lwiQiUoLB2sZuat+rY94YK9TyAxyy7x/kpLL3PEF+dTaOw31tqCQtRJaxMwN/f7jat8dMlCvKZQpXX0P0rRupvvW3H5UA/R8e+ABSSH71gjcPfb7sL9L8yqfZfyY876JX8aToSh73xbezTR/nM5VXMvW83+NdW2cAkO3jVG/7M0r7rkdVNtB8wYeIz3rBw+57xBtlxBs96fO80d5isMB3F2/lgcYuvtnYzXXHmrzl0J18fWE371w3TZSl613hUXYqOFKitWF/ax+7G7v4+MGP4AiHLZWtXD79BF78cy/igr/9P1x26G5++ZMh1122iTc//UxGii54ZbpPeSfheS9h9FvvZOzG3yR+8FN0rv1z1OTZAGi/i/+RD+M98ckUrnjCDzXujxSll76c9rveQXzrTRSveeZ/yz7XsIY1rGE1tIE9jdUBySqc4tvXJAlx7EO/PM32tUyt+1rVrB/KZNiaDA3KMKkk80EDEdagOsOkU2Wp7SMWF9hSyTeW2oBfSB5c7HAxmf4mDyryDBoC02tonfXZkoKCK3FEVqtkoK2XSJnCpWJnfxm2pB5s2jxYP+IMlMJEWvajyVOYOwg7Pd6XOjI8F6jwECLtbV0DMqixafFmtl/8UlxRZncrD+BygWQ2451nKxly46cWz7KnYQmJy8lSz8FQyu7T9LYjTEIxDFCyikAwWzmb84Q11cjXSXSIQbMYzveCUJkZb0hjyAlaqiGMBrKgUYQ3OwvFjGTlDnwoBA5CGIROAENJ5CFyNm4D3cDz9nPCCHs9B8ZAJiktJ0brApnOyx5fZ643/ranlLFEO+f2wiFINLOLbc45ukxJxmgy85U8g5ZdvAk/RWGQqW0JnF92t5eQtde8Iz2GChZyA51iAR0ItFaQphTnllGbswxV7+TsP50opRkmzGAdNJc7y2ybLKOUAaXwBvtwqQgkiKjB+Nx3GHMvYCY8RHerjbOka58JEccYx5AenWc0LiPPnQZjOBAtUQ0ctuMghM0e5uOz0PApd9K+IQn5mBgmPcNK2r+pddcSJ8cYOnFKO0xZP+qilxZJdMxKd5GpNMQUDLNnlElNiCdtFl7o1MpWtcFrxahRB2dx2Y7zapKUPfcrJkbjUmokmLLBSIGMMuOW3HjI9UArzMIRpFgmnRzB2WQzczP+CcbHx3vvuI7UjAmZ5/yQIyCVfYbziZCcsOXW+/PR/h5B02gW2xEbR6u9Wl4hxFAGrRbWeWChzVS1wOaxUu/9MvgG2TBSZLYRMF6SVFNNy10EU2JP/SDbx/tNvvOtNgONJiLV1uMFoxCxNQxqJAW2nMJZcfB9pKHXfBtgJbFy2kHSOHgFCp5m21QZFloYnJ7E0QDFtM3pvS8tHjMEDaD4nOcR33gDyR3ftxm1HyHuXL6dmxa+xS+c9yusK/d7NhzrHOUfPvOr/FYzYfzVL2fHffCs5dcTiDK3PumDXPPEFyCEwFnaRXn3xyg98AkAule+hfbj34j2qjjG9KUm/0WsL2/gRdtfyou2vxSAIA04dtcHePbtH+A/WgW+dMXraTiCUAXEOka4hk7gk+iEbtrhuH+c5XCJo90jHO0e4UtVw/vWCX7mvn+l/sZX8/mdETcdqPHO55zL08+2r0w1fQGNl32O0u6PU73tT5n8xHPxr/w1/Ct+jfCTH8c0G1R+6Y0/1Hn9ICg89WnI9RsIP/eZNYK2hjWs4f8nGI50JEfTtN/o6BRuYqdEmp40a+y0jwGQaIVQMeXle3B0CWEkxujcrRyNbRpsMle9GafMPUeW2BpJNpRs2NJW4CWKRMcshcvorPOtMNo2IZ6/0xogCGFd4TI+0z8iW6Uk0wineRgn3o5PwFhW42FWyTKXu303NzPgSiaFGJoNHzRJWY31te9hujXUjp/Jh3K4Bi0bsYVW1Pt7O0pxhUYIQd47O0zNyaS4bd0ZT3J0p+9GmRM064Zn0ZBNtDEERuBiSOgHboFsUwbcbogqVnI7AAQ6czo0pDoiMT6+6maZLrsMwDoxygk0RkAnBIwmn+xPdu+kePQIxU2a0aV5YmGzMnpygsjUcYVEpW3KB2bpjNj0rVSaQidAVPu9qsajRZCw5fAcS2dPYIBROUmqOr1GzoyWSLSmEcRMjg62VAahFZvHSixrj2bHQ0sXg6QVJBTCFt5yi0nT4cSkZJ2RjKo6ypG0dJdqN8Y1ghRDsZPiV8FkhC+OE5TRfFseJpErhKUtvGLdxVSWdvauzOAFa2gfLTwqQQ2Vbug1ch5c9Pb7DhFXx7jWGLpxvwefMgZjUgpGU8zcVpz2CZg0SH8FJwmYCvaggfKxW6BS7jUQl2mAkqJHBtw9B5CjAXo6Ix8m679n+hMUSZJArCgmdYST+5fC2KEH8dZNMD22jlpiH7Zoz9HsjjA0fYUyhkQbSFM0hpnZVlbrBYlnJ0s6iWEKIO5CGdRKSCWNMDOGWEvCRDNbm2dHdxaMYdHE7A4Oc51rSVFYX2H9QsTSWJ2p9VP9/nc9swoHtOkRwLzo1QBRqjnR8dk6KTEIRp0yMmsv4TkBY2qZ+aUV7p0tcO0505Q8p2c4O0heYh1QkGUwmjDRHGsEaHYxUZhkS3Vr7z2hjWbnyn0ArHRjNo0VBzJodgJoY1nQbSnGSx6esNc8drsYUyTWmoCB9gz0a1QlRVINRWMQ4RJjhRFasUdqNMJo4tQQKc1oMbNkGXynmMFekIKiK7Jb1U4K2adf9CbEehJrowCZTXLZe2jKP8D81AU8FB5TBK3wpKsQI6NEN97wIyVoqU75291/zabKZl5x5s/0Pj/YOsDbv/8Wfua+DspzSZbu4w3etzg8egWlF/8dj4uW8e76O4oHv4K3eC+pKPDd6jP5O17JvXeM0r6l319MAEVXMl0t9P+reExXC0xWPCbLHhMVj4myx3jJo+hKK5V0JKnSBIkiSDR+oggTRTdStMffwLoLNvGMPb/Pi27+33xo6/uY1TN0opRAGZp+TJgoHClwpWTGEVSLgrSwj4ZzB//27Lv5vU802XHrR7n3KodYbeAd33wKz3zgJ/ntZ53LVKUAQhI+7rVEZz6PkZv/kOrtf4V77+epfVpQuOYZeBde9CO7Dg8H4bqUXvwy/A/9A+mRw7jbd/y37XsNa1jDGgAwhkCJk8jAI8qgGVtTVAsVE44CDO2OJmuPhegu4JYSJloJunIG20WT2B2x1MdkBC3/0g/rbOkcstvFZuL2d2HlUI1mNcVLu8TRIhTHQcV4i/dlB2EJmsntrzO+Zg09LEHLW7rYf8d7+1jd0SxWg6KdYYImzLAky+7r5AxaIakTDQyXVAEj9YOw/km4yztxVNjPAObHYUBmzLWYGZQ8uNBhbEQzNSA1ku1jQwQ0SBQF18ERfSLoZjqlwpWXwve/m+3DbrulDC1jcPQKYA1ZfNWmaKAcNQlkNZsRt258eXNuhEATM+bOIHUFz6vgyRoVUcTBBWJs1kAiMf0BUvaeCEWLibBBQYRQKmCKLtoY6sVjhNWElqdwm63emEwfOk7z4mHrOhcQGlhp41TKdEPorAi2ZwTNdwytULBSD5gcHUE1su0lCTIJcaR1r3PSAOlWkMo6kBbqCxjATTVNTzGV1CiSEKkCHROwcTEgdSo4wkUrQdOUmEgDRJqgFhdpJxH5zIBBkgyyZwNalNEFl8RxUUkTTEopbQ857RnhgDHoZoPq7ntwNm/L3PyynI7JsqfhEl6c4gxYvSuV9N0QM3SaS3iFdT0NqVDWACifdnGCGlTdgeS2xgQh2nfwanuBGYQxeMrHS1p4wid2RrJ7zOAuHKc6MUMtnxQZyJKXUMRxjDH9JtGFIMVkZNHXMStBzFgck5y1Du/gEkJITKoBhyjoUKGKnyhMybC/eZhzgMMmZCJuETozTIkCy7El8CcIKOug534YPng8G1MJWqHxTtlKY9k02crAPSYkUguEsD3mZutNvMpGgkRR8hy+va/GguoieLC3SpQRtEG5otbQiOtsqW7tSXOPdA4P7dsYOODf0VvHAMLYySEpBCMFgXQEwgjASjMLAy6vYaK4P+t7JxAEiaKqI4w2aFJq1Ij0RoxKeHDBLnfpljHaSWvoOLSxMtrxqE4Bl1i3qFEAk1JJ2hTiIl4Y4TRPMGFmaFZj0Io8N2jQrFQ2Md41JMqcNHG0Go8pgiYKBQrXPoP4m9/A/HaIKD60+88jxReOfJYjnUP80ZXvo5DZy8+2jvCO7/86XqK5eqemsCHmZd63CEZ3sKWU4nz6ecgsNXrAOZt/TV7P59XVuGKS89aP8BNby0yUXTxHkmaOMkGiqHVjan7C4RWfu47FNMOHt9p8aGznyeKdfEj/L37xwBt5u/duFkrnMDlSZPNYiZInUdr2ZUmUoRUm1Fs7qPtbOBz/NLdu/iAvv+kgN2/fwvKmE5Q3f57b9Jd52Zd38PwtP8kbr3weE8UJTGUd7ef9LeGFryT883dgAsX6C+aJm4fR4zt+yHN45Ci98MX4H/5nws9/hpG3/vZ/237XsIY1rMEik3UNkg0zLL3JP8sRaojilEIQkChNKqEVpaiwjclK0qyhhGb0WAcT0KubcoSlPgaJUClpRoQKjcMIMwZCoo1hsR3RJEUYQzNIKMU1yCyd3ZoNktpRCkFEuSp6fZXyYKkTxRjtgEzRSceepzB4Uvda9vQISAY90HjXWqjbz6UEmbnlVR1NnJOvuN+IVvjLFPdeD7EPlNDGsG+pw1TjfiqFNt5shAxWMJihOqdRV9PVLp6AlD75MkgakWGq3Jc4HmwLNkr73Su0YbETU3IlG0aLNshzHDC5JEsiJiZsNjRo0EnrRNr2GFtOGrjGSk6NBsfEgEPFE6wvg2nZwFBpmY2TldUFYYl2mPL00WuQhRoi2dNvay2gGzXRSUg4oHUyxlDXS5TLHQjzcxMgHDwpGfcUyyLCG1ZkstJosn7gozz4S1G4wkNnGR2RKpRTZM6LKa8YlEnoJB2KiZX3JUcXGOk+AJvPxBiVuVnaG2DDgwvMTY73nOjAgDDs83yqbdi80Bno1yUIA8FStUqiS5SaHRqFGfYt+UQVjeN3oGq4v/UAT/eXrGmN0YBEORMYEdo9ZLuJVIh2y+jyNCJsgDGYIMCR4HTapGVNnm5OtYGki8hukMFnc84XbBmopQwLEyy2jyCn06wmkJ55Sj7EMvEhq8PDlTgjDuniCmrRyXrypUx6iijL0gxWIhkpkRrKDgjj2t58+c7TiJnGEnqlRjR6wVCG0GQy426a0AkTvCQlqRTwCrbxc5oPv4aKalKnajepbFYvl7ZGaYBAUFnQJLKEX7UujH1FbDZDk+3PZoEFutnB2aApGZ/eU5vqjGoIJrSkjW20fjwpEydez0ny/hMtBAI/VuxZarNjqpKNx3CTdYDZRsB01WZwc/lgpMKh98zgz2VnlHJ6jGpklQeyO8dLNj3Agqjw/UWBowMqKkCbPj/YNZ/3EBZ23ya/SoaWaRHgs6ha7G7vZTWMjqkmISPBcSqJhqPfYXvnIGFUYt5d4KwwZXtQJ9VdxrSL1AKfCUbDWaorCyy1D9NkDOWOUhupopMp6DbRBgrOQzO0xxRBAyg+5/lEX/4S8W23UnzGs37o7dXDGt/e+Xe8Q0zzvD034Nz+IRqtw/xaNSSVgg99t4EKxtl8Vh3jFPHcAqo0ycHCeXxkfhtf7Z7LyNRGfvqKjfx/Z0+zfap8Wsv7UyFRmkaQUPcT6kFCw09ohimJ0vY/bfCkoFJwKHkOFc+hXHCoeg4jJZfRostI8akkrWuY/vLP8X+iP6D1zH+mesnTh0xOToVOlHL8wFbc33gD77l1nA++8DfZ1fo+SWEvbnUPX2v8NTd8/f2UzRbOGbmMp258As8ubEM84FJ9wjZG/NvgY88kuOR/4D/hLad1e/xRQk5OUXzGs4m++mWqv/wmRKXy8CutYQ1rWMOPAEvBIhu1xhPmpL+dYtK5h1uaDuMH9nCB18Z4Vt42aCvfC+mMQaXSEgEJSImTTXWbNEQYiZ9lpkaEa0vXnRJaR6SZXFFjaAQJJ1c0w6Fln2oYsGFslEFqgzDcdHCZWttl42iH8WCJyGgM0xjRn0TUxmbMmmFCO0w5Y7KMQOI6YijocoToEbRzqhHfP0lOBecxQaYAACAASURBVE7zMGllBrd9nGj0bGYbAYvtmPVZ09ecnAkEA9Ek6wopWzxNsb7XCg+TvrSvFC4hpA04lbFmF+0oZSmNcX17PGHaN9BwRsYwbYNMm0hfIKTba9yc6j5rWlYVNmmNNn3/OmEsqSsVDOtGi4i2JWj9q4rN/BlrY75prEgzcdCdyG7BaEId02wehU3WufPu5TuINRQ7w9/dRljHuB2FGeblwsDNZq9hJ42p7Ns5lMZ1gFFHM+XEzGZ2MQbYVHaJ3VGUC4KA5fgITqfK9PpzOZE06MR1Kv5xiq2+NNWQB/UGgWFLWuKEbONQIkHgO5rpZd/2eyv0w8qCn+JSIsWhsFQnli6xVCiV4kYJxkC3dRSnaWt5VGVzRhbs+i2pEfigRwjbx3AZxYgy0tgOfulOmxUWWrHcjmkl1swhSFJr0GJvbZLMs8A4LkudhKpOel4hiTsKgbLEPCMpTrdLWhzrDXP+eWQ0tXbE9tIIQrg2S2cMO9PdeKrB5izLmmegcgMLgNLcLMycjbeyF3SMMpLa0rdwdYOI8yjXFkmqBq0NynNAp7Tw0VlmbZNcwZBZ0kvBQS/CiSoUOwlFrYFqb6LICVZsg3ggMqp3P6aihPbygqoB46D8XjIQM+Cq2VhmndtgIS+aNTqjZFDREiE0CRLPGKaESwTUg4QjKz5homn6DlQU3cjQCSWhmzI2wDpyN0c/zhw6s2duPujLjQ3wwEK/sXwnabEuPkrYbZO66ykkPqOmy6IsIxDMJCeYUCskentvnTBrnyFNwkhwHCEbpGaUzaUJApGZ4xjBMf8E88EC67xtjHQCXH0f3tIdTMRQixp4xuFgrUvXHUUQ92rmDKCkg3YKKOlCDI6K0WkARjOmEpsdFH3ZrDaGruob85wKjzmC5j3+CsTkFNHXb/ivEzRjcOfvpLzro5QOfpmPZ0432ttLY3w7b5pwWaLIq0+cQWHfLuKKIfmVf2H5jKuZbYb88Q17ufNYkws3jPCu523n6jOnfiBSNnQ+jmTdSJF1I4+sMfTpoGcupHHdFxj/0usY//fXoZP3wZmvOFl8P4CRosv5F51F8MY34/zV/+QvnHlKr/8NVvyQj+36Jp878DVS49PxWtzPf7Lz4Jf5oBF4b5pkY2UbF088h+c2d3PtPf/M1IOfIrjslwgu/XnrcvYoovSylxN97auE//Elyi9/1cOvsIY1rGENPyROdI5zX/0e0ljZAHLI8MKwEEvWeQN1Vxj2LnbYkCg0DjJNMK62DWOlIDUJoR4Mh0CrGF/FLLuaDdOjLMwdYTrKZ5/t/1JjcAGPvCG1tdZeZj2YhCQdLj1f3Yra1qA5w98NxtiAFoHUik7s0IwcTDHLjmEbXWsM862Iwyv2O7NYWSDUncwYoH/uVnakqYO1hs8DmSSANATXnvVCK6AVpTijueEIaOnSN/nI4/WBcxBZgX8aDDnQyWAJM2Dq14oF0qQkcWhrdlR/GyqrjYm1QWOoTLQhHnYElFk9kwEKokV3+QhbT6yAb6VVVVnNsmHWSl8YhdKD4jmBbB6llBh0VVP1XLqDXQuEnclPdcTgx/VkmUpzBUrl3rbyLBICxt0yIkmpmA6524xKIpRbsb25gKqw5hxjLtTzscsu97gnUAhi4QIBSgdAlUR61JI2RQbqbLIAulg+hw4BGENZeYzrmKPlAumUi17Kgt8sA5zn1vKphyTVSCUQaYMT1YPgFhlVtiH1cu0YTqFOLqOVraPAaHZvCpbd/vWN09BuWxuMVqR33o6OIkuWVcrRVoNIW7I+4W5kiRoiS6qlUpI6gqI2/Zqi3IBFekg0XhqiUDSiBmLhCONLlb4lOlYTe69qsU7HnJd4HOu6OEHM+e0OK1GDkm6wyazHYHAcaQ0gtMb4XUQRdH2eRW+OCxtbKcSz7Eo8FtV+quEIgUgpNmo010lSkxKMeIy0EzpFG8gLoxiTCVvLCYtoltIuidE4ZNYZpp/aNsag4w6xMQgdEeVVkmkEcYByp5FxiyMyouEfxktWrCOj52A0LIktGKxhjB8r2mpgggaNFJrYSHAKCO2js/fIhuY9HB3bxr7FLnuXukiZUO+4VAqaAwsOyy2P1I9Yv+3kd1KOQGXumSbtLZG7zPaOIa/XNAlz/gnGlJ+9vyQVz0WGPh1gsWm38MVdRwgTiW8WaevdlLIsnqscdCpxCjY7HUuBCpbZ0j3CBAtMyQ04iT1WB4fUKdEcPZODhcs4JA2RkaTVPTSSDrPuKJvHy6SjRbR2SOQoK+6ZuJUY/MPskNOkosoJ/F4NWssEzIY7gdOb7J26U9+PMYTrUnzms4lvuwXd7Tz8CoPQKcUHP83Ep17A5OdegnvwK3ynIPjiBT9B7XW3sfgLO3nrjvPZT8KVJy7jTfVbCeaLFF/0KtJtT+M/Hljktf96F3sWO/zuc8/lw6+9nKedNf1fJmc/auiRzTRe9jmSLU/B+cpvMfYfb0D4Sw+7Xukl1+E98cl0/ub/JT10kKlKiTc/8QXc8Mq/4Nef+DyqlQZGldl44FLO2XM2npnmmLqHrzY+zNvM93nCjrO4evp8fmXvN/nYJ1/J3C1/AuHJfd1+VHAfdwnuxZcSfPJjPVvaNaxhDWt4NHHg9s8jgxUiHdsah7SLl/a/g+bi4e+BNFUcqvkcWO5nQ7pJl2aQYISgmSwR6L7xhQHCqAmJoiUT/tM9jBYQpzkNsMFmXqfR+/IWsK/tskdPEOg2B5bvAGVJxKJu9mpN+otryBwcG50Gzvw8hWP76XYXcNIUYTRh4mIQmdypTw4B9i/1M1aLsTU7SFXuOJntQ5C551lsHbVzwfLEHbg9QwhYaIUEiV0vzQLM1Cn3rfez88vzUgVX4ErRzyBl+zh7XRURrgweAZG2xfnF7glbXyNgpuJRdATGGDqx4sFmygJF5NR0f5tW38a6pf532DpToxovUWwHvcXcQZKbkcg0k8VtqyaceeyBXirF6Dwss6hSxNExEoeCY+jq5d7fEtOhELd7JRT50Ivs/8LAjK4xKtu4RllXQz+EOOkt3MvwDmRHKllWruHXkBLmHXtfycy8oJ12eolKU2v0erBNGA9XliguzuF22syoCkY4CGMwjiQZKYCUeFlNUC/FCMSpIklNJrsDTEohaSJ1aLPGrQ5N3RN9gslURWHKYjvGsdQXT3gkOdEIlyEMMY06es4SCRlHQzI4hyJjzjgyM+9xZL9SsiUadEl7kb7OGnJP1Q9hhOSu2h0s6UWMkCyqTHqnFE6akmqDNClzqkUNWDFFlg8vcfadR6m0AtykZQP63DI0u5dKEtqiS2oSllQbQYJo+IzOJb2xSgYe1Iy70zhzXf+8Yts365BpcK/TxjcxYHAMiLhNMV5BYDNw+ZYirYiNspkeZe8PoTSogNhxaCifOGsHYScBDFq4vXu8EaS9iRMwdJTV3HaNS4yHR4IROuPi/Qtgy3rsz4P1bBp9yobyYIlzNzk5pl+9pMo+6UZWeBmYENCkQExIMUs7qcQhTBQH/Ns5Ee+moQ9QKSncYoJrCnaCS2RCx+I4Jk2Yqu0BA1VngpXRM+iuv4TW5Nl0Nz2N+uj5tFSBKCOsgVtBuUXa7jgxmsTE+QUndUt0R8+iM7GD2tQ5dEubKYxdnI2HXSYx6cNyh8ccQQMrcySOiL/1jUe8jnf8ViY/+XzGbvxNhE5oXfun/PyFV/O+redyyTV/jR47gw/u+Xvurt3JM+a38I/R9dRqF9l090+/gr/8xn7+4Ct7OH99lY//3JW87NJNP7Qz46MBUxyn+cKPop77JxSO3cTUJ55Dcc9nOJW9cQ4hJaPv+gNEuUL793+3R3xd6fLKc17G55//OV4981P80b/fzS/d+iBxPMELx97H28/9Z5498VY2y2cQiBL3jNf50EyL1za/zHNuuI5XX/8a/ujmv+CmE7fRSdqn3f8PCiEElZ99PXp+jujrN/zItruGNaxhDadDs9vFaRzsScU2N+9i89J3kId2Y2IbnLaMz7fU/QQm7qvcBkKMvUFmqiFl1lPMSgMNkBiFnwpMlrlZ9KKMnFjpT4CLEyQ9IuMg+r13MmKgTIoTLOO0ZzHGsGJaAwHWAIRAdwOSE0vIVhNvaYHOvluoLC9RPraI0w1x2wmy3qXabFFudXAbbaitoGvLOIH9jshjsoVOSNvM9jcPtPyw93M+GAeW++QO6Q5nxrIflSz2CvzDbCxExhw2jpZw5MBaeYbHlRitiRdWSOaWMSqzVjeaUCl7viph1DNMlAuYMKC7WIPAp53ZjS91LFlWGjqxYuPiQL0cYNC4RD0b8WlR7p1damzAX+tE1LoJ62cPsm65SSmTVVrnuV5XOkqiyAY5gSsEEon06jj1No4fcrRoZU9ShYiMREjpWgMEAV43YeOJVkbWFevcxO5A97NePf6KJXajnYDth04wWWuzd7lLW0WogaZqBliIV6xkLzX4dNkTz6NMCq4cMJTRVHRInBpCA9IYwo1jyKLHiIwpSpO5A2Z1fZk0MnZHGCkVCbWDMCmlpAlGkhacXnuF/FjmmhFL3YQo1Rhhm2kLIUhzc5yoBY6DMBGk9poJpRjeCkjh2mMxhvFCyvbpMmBY0DF7dYSoN7P7rdC/+bIJEWMURkjirKaQtItb67D+WISjYxI0oeMggFrX3qMTdZ/pQjZhnBnPLGxdjy+6lKV9jotxjMrPI8l7gdG7R7wkZSSz4NcCjByQzIYhyhg6IqaXUzbgmnwLdruL4QK1AQP342mDWjYRBFBd6RMJW1SqSGVWUbhKOpsbcuSITcJIRmhXtEs0KMLz7bOd98cbzID1k5Yq6004TLvsJ/1JHk8W0MYQJie/u86uXAFAOat48xyFiDsstO5mJF6g6Ao8x2bxl7NnOlBNJLYx9WS5i0CS20wKq1VGARXh4SFoTV3LHd2t3NruYApVOgMTcUdXfFJ1cki9uvm2lML2TBOCxfGzCIrT/fHAoB6Bu/tjTuII4F58Cc72Mwm/dD2ln3rRQy+sIkZu+SPK938YNbaN5k98kPisn+SGE1/l7qMP8vZLfo8Rb4SvH/9PPnP4k1zVGOH9wc2EF7+Ozo3341z5JN5xZ4tbD9V5zZVb+PVrzrIzeD/OEBL9pDfSnL6K0W/8FmNffyvp3f+Ef/mvEp3zU+CcLKeU0zOMvuePab3tLbTf+/uM/en/tAXUQFEWec2/70cXDbtfdSnXmpvoLtzC7Qcv5JzxZ/Gzj38l27efy3Kg+MbR+7j96C0ciHYx7y6x0Lqeb95zPQDjzmYumbqYJ254PFdMP4HNlS3/teyjMRQv2cHIpeuQX/4r3ItG0OPb0WNngHhMzjmsYQ1r+DFHL3OyeA/GuxxSHzG7ixmxyLHO44m6Afsqi+BCg26v3n/IVEMUbb2WtIGrSUs0WWHCFWijMbKAEAkpLqrqATFSgzGaBDeTLCVUsATNzQxEMFZoJ4DKbBO5dZwwPEZQ8onHYoYCImOI52pEh74HQLpuhnDyIry5O5ArEanjgjLWpEBrSkFIudOk2AnBd1Fuh3I9QHsF/Ok5jOeRKBeJwJT6+8ltvAUQRzFpZ45jh2uc582jgv2oKEEmTYhidBr3E1jGMF62oUmYGkQQUGz6tMMqabKMCFIbSC/EJNW7aE/EKK0hCIjnV0jcAF3aiRIJSZJSELaSrbKyi+kwJi6fi16Yo+56PUlnkKTMNwIK0G9wO+Q4aQh1h6JuIcUkAsE2PYHvOKzMNmiqDqp0KbW2QuqY0WCZWdlCplNsLp6FGzUZDBvyH/NM14YxiXffHpTSvb8GWyZwjvoIBVLHNiQ3MHa8gWt8jkYjaKVxpaGAxkeAVhQdp5dlzVFMbAbPi1OUgMBIqlLSkQmqsYJ2BEen27iEXDQXUULT0hqFId0xTsIEZs4eV1G36W44C+MfoBWWSUfsWLlS4GLJTZu+PDOplimEDsoporW0Nu6ZcYfIzMt6qYLeTZATPAspJKGOaaiAjvIZl0WKnV3IoA3VTayGNpbASJPVCkoYKbnMZxmi2Ai8Y4eI111I4lYZy2z4YyUwYRvDCJHu4mElhh6aWEAx0AgH9hNQli6ICKUhSg1lElY4Riw29I7cCEmdOnubKeUqjNU7lDoBBsGkXqYDpDruUZNzjs0zio+ZyShLxgJErvMz4EWaUpBiPIPRMToTyOZK4lbzQQ6bsDcWCzpkw6JLlB+T8jniagSuvceNQgsPxwicdgAeOOsnYLmGMIZi1rNPAEpritIBBQJJxzgIkbBdFNCdDjPNe2l564ARkjQnaqLX/qCtVuioGRpJ3wK/KKsUTIX7DztcuaP//qj7MQudiMmyx1ipT1VEpmPO+/5NlSJoHqJqAorKJzKKQhrgOCl3zPabh4usKk+TS3IHJ8+sz6IGErdCyakS+BG7Fhe4ctsox5oNjtQDtk+WWU5mCf0i46V8zexeFvlETj4hY1tNCER2fe21zHUFGj3Um/FUeEwSNCEEpRe+mO7f/jXpgf24Z59zyuVkZ46xr/wi3uK9+Jf9It0n/45twpx0+dCD/8D54xfy/K0/yd7GHt53759ybiD5+/puWk/+HRRXopdu5CNPfAW3Harzu889l5ddevKL4McZavp8Gi//EsW911O5828Y+/pb0N95N/GOZ5NsfjJq/Ez0yCZUZQNISfGC7Yz9/KtofehjhO/+eWaeux63eRBn7v+y997Rkh3lufevasdOp/vkM1GjOAqAhBBg2QQHQCCECQaTMRj4nMDh+vN1YF2b5XSxfbGNDQ7X4YLJwUlCZOzPFpJtJEQQKEzOZ07s3DtV+P6o3X3OCJDtZWOWuPOuNWtG6t29a1dVV7/heZ/nyyzsHsJuuGT1zLY7nIXR38MyaAR+vJeX7r2el194PcWuF5Mby913fIBPnb6PO/2YjbjPP2a385k1V/WaixZ53PzjuHbuOq6dvY5W9PVJRsRwlfDE3xMd/zTBqduRWRfGDP+3vAQAE0+T73sKyVUvQy095hs0q+ftvJ23/1vNEdpp8Eq9pVFGxxzlpJpnTrdYGaRUW05by46GeENQD0rtJ1pihKXpz5HgkTuqDwB8CVoI5kI4XCabpDD4GAoiIjzaRoPOXUBkwWXTnWPv6YQZDxqrNe5qaOJhgqjl+KfvRPUKKoMqvumSh1XslMBr1jGNKUyjjmiHFM0KSTWkOspRBkzYoOOFjLJFqNVYmt6LRw1137Hx40AyIiz10PzaJpctWcTZHK+7ibe2iZcOaaT3cVA3iZMRzElslmN6ffQGaJFgzp6lf+r/w7vu2xiHmqbbJT1yEi8x2KKOLQSmP0ImDuplIp/eqTOc6XYYiQDbLylFAh+z2SZZOUqvn3JNZY1D+Q48z3lUe9NlTmab4C8ikGzINf5qvc+OrEZLD4Hw3Mpe+aDGagpTCh1b6J7ZZKoS0eykyFGfM3sH1PKCat5FjkqZAgE+IdYoJAIpHQFKNfKwJfJVYhhmilX6zFKjXFJM4IGv8LIudE9Bo+4qpRJEoQmSAj3oUexq0FwfkBHjpSnK0wztkFDUYWEBmZxAGOcmCqVLuKigS8iqnwANzHCIMQ2GViP1ViRprGEqDmj3tsSeBYKK2sTTAVYFDPuSSrvAUyWxjYDdZppDtMnxkCYoK1qGdAyDxJJR4CmfyvoQO6cQgb+91ILoDRlWCqgIBBJtNUfvuRerJM1wGrDIRmWr+CXA0xk1hq43Ubh+NYCBzdC2KPeWs8yfYXXxiYisR1BWbI+tSdQoYFri6NGNYpAbKn7BBKhs2SYowZYqOGCThIN7JPvWe+DNAsKxtlpNajSzgWHes4xMiizGCnow8DeZUvNE1gXcxXgTYLnA7OBecRCXL9mqTplRhBUZVlYgkJBbKv0+XnGu12+wFP2EXISEKEBzOtDMA0IpsIZmPMPIJsiyGndSxVxkLMpqMpsz7nUcJAV+OYNDOUNo2hgvJjIhKo6pJ8tEo9PAE0rJDiiUoL+Nrfz46Mv08iFGgNKCZlyj5s1wtg33ndE8eZdb/3GiRD1YmmPc89ao0NCWUBmWiy5hGJdbx0WqnrUlnNLNmLYFWAU+JR2/RVtDlitsCKlWWFugRIS1Ak/4tNMcbSwbw4J5+SgsB8lsB8sUENAK5ukFA/r5FhzaWmirZTzpEmtCuO9eMDiFyDdB7XQFb/uQFBHAwzRAA4huuJHhH7+N9Ja/+Zp06177EM2bX4rIunSf8afkFz198tqfHvgjNrMNfvkxb6KX9/jpO36apsr5w9UVht/zexSXP4/uf3sd7fo0Hwwv4FefeTlPu3zhq+7xsDAhyfY/j+yy5xCc+gzxgb8mPP73xAf++uu+Jbi8wcZn7iPs3EPrsU1Ghy168TEE3/tyTG0JG7ewCE4MjvKRQ+9ltHkPuwvL/mHBYx74W6YOOLHuvHUp33XBk3nCdz0HkWyw+aVb+dTRvdzsXcl9VcXZ6iE+ln6aj5y6BYHgkTNX84TFJ3PjZTdQpYXsHiM6/FGiox8jOPs5AHRtkeyip6MWrkbV99D71V/Hm6ox9eoXEJ75F8IjHye+/4Pku5/A4Im/gp659L9kms/beTtv39p2cLRCK8uQcYze1jhv7VjjZqx241wrdfAAUysDDhYBtcEAi3XEIAXU+hleME1oNYX96j4LKYzLvAoHh0sxCOEh8TBYvP4ppL80uZvTy3X9MQ07ZN4s45ODLhCH7iGPHGyqOchRfhUWGniPehT+2Xudt2mVgxjZsahqOQ4ESIH1JEa4yp+MqmRLu92947OobhvKAC1eX2bnVAd1FqKTpxBpjp9u4lWbqPoUZmoWFg3+zsvRqz5n4mkqgxwTRkT5kPrdd1D12qiFAXYwwBiQjQbtpcczmx7ErzewJ09gCsWalHTW76fWTakMNzghr4S5KvGVe1EbdeyqZFGchVFKuLnGXm8nVodMbXQ5MQ3CFEgZILFkSjMqhkQqIRZjcW+XY5d20kqEERJhLbN2iDQGhkOwHkIIjuQHuXpUJxAWXUJeq8UGM9kpqO4iKOF6M9WQs/4WU6HEcqq3yRPSY8wVtUkAYfwaOuhCZkBnCBW4tfYhSzThICchLp12TUNqCiDQW3Qt1vfxcz0pUAXdwYTU4XTYYA/lgwHVo2v0l7YgWuNNuZyHnOwVLJaf4So1BdIKWp2M2vIAWZTw0FqIl7gJK+y4a05jPEO50Sg8Vz4TCPo2ZiOJyNfaRDvnt/bdWpus0+b0dIKsB0QIpAaRaIzvlXAy6YTfz96PN7vIMM8IaRNKhWcyjDaEnREiNFhfctfavzBDdRIEWgSBVnjVFrZtyRRgDLJQEEUkdsgZf43FoomyTqx8O4F+LjQCi7e+DrFEWEj9Okl5NtRDwUYJvVz3OtRqTaqZI9lwE2QQgZtvHQvY1n4lACug0Jq07+EazSy6KJBSomyAFRJlC6TNJhVIYzXor/b6E5OzYJr0GW4FlxZEGVzaIKAYFqSyoK9TMuGjrOWst42+RsAFcpaBzCfz1zAhPSnBShgzZZaPJ4RPy19iOOrjl7BMZQu6I4926jMSAVXRgmAKLUqI9iQAffCJuGW5UgRqgIgaZDsfAfcfIbMFYsw0WdJw+FbSS/PJ96yr1thZ1RjlmiSnrWKY5hSeJvMMiSg4qIdIX5ObgmFm6SQZy70Ml/rZmguLQdkMX/g0/GnSImW1q+gOh1w2N0VhEqQQbGabDtdgDZXeASQd0t4yQrjk2qnNh2Zaf9gGaLLVcnTrH72V6mt/GFnbEvnzVz5P88OvAOHRfe6HUPOPmLz2lfY93Hz8r3juvudzSeNSfuDjryazG7xttU34zLdT7H0S7XvvR9/5WW656kbe9JxH8qSLZ78Zj/ifa0JS7HkSxZ4nuR/y3nG8/mnkcBk5XAVrsGEdU9uB//xF4r+4hfbNt9C+N8Hb/x20fu0PMfG5unO75q/itRfexOHeIT5w9D380ZlPYs0c+4cLPHqzxhPbmzyu+xdUv/inWBkS77iOl1yzxMv7X2Lt+L18sHc9H1z5cc76fRrTBzgtvswfbL6FP7jvLVyhJU/rbvKswZBo+gqGj/t/yfY9FT135TlpB3HTJv03/wbiJZcSPvWlUIyofOXdVO/6Xabf/zSG3/azJNf80L+eqjhv5+28nbeHsDQZkNoBQtbxwoRBpigyl5ENSup7MyYeYIstLreCqQP3kkYG4znFM12KK1c2e6RhhonlpKcEnPMayRChNBbX8GBxECdRKIw/pj8HUfTppQVxMXR+XzVA1qcQjSGq0yMNG8iWj/AEqilRYY34sstI5xfgrIPPSZ0TqbLnykIzaBAUBYiwzONrTidHudQ6GvFxNj81oGpNUr+O0Jo+FxI+YT92NCQb5Ji1NXRrgcGOR5JmLVj7PMY6Cnh8n1qYYIKAdhgzVz1LP76WKO9ik5I4Ymkn0vrYOIJcYBq7obqCMSFWWbw4QlGl1j9DXW5ytHo1zdY1jGYb3J+nNJfXMcXQVXDaQ1p5BEis1QijkSXGyFroejX8oEWgNMIKAh1SUXWSYEAXjdQWhY+0ipqoOaionAPresY8PQLqyLxgRIGXK8L+OjVqTCcHqAwdYZeauYBpLyNlvVxzW86w4QvBGrZouQpaWGdz8QKqw2UGFZgRIFSCb9w6VU0BvsIXlszaspcKJ04tt5z8eJDTKkZQjyYBhkZgpHcO/lYbRbiN6MZBsgye8Im9bS7zNuhqdVQQeQGDWozIBYgc3zowWcWOSK3AotCeAaExMmR5rmBu1SLxGKkFYq9HmmkimHxnhNIUuEBPVwMW84i+7pfbU2CMBiOwRUFkBkSb6yjfY01miNhzQxwM8TyDpwrUVITMciwV99wl83zj8//E6PrvpF9ZwMsz/M0OKslRMmKl6OIDRmjaesjAeBTGaVlboB8ULGJosElFBihRwffcGmQqI2eV2J+hjkJNtUAKhFGczDZZLNfBAFJnzMU9jGlN5vjyTo2jQYdeJeZ1tgAAIABJREFUVGW3jZGUgfNKm5UL6swek3hBQZFpQm1B+oTTCoZsV6SY3MNLDJ4VpeSfGDd9IUrR8lzC+tCSNwQdzwVgxgBKYrd1xHgIgvaI1iAFKfCtcOMSUBDjwSRJBVDzp6nhkFHd4ixD0yMrK3wC8GXAxqhgsV7CD0WGMgplFdZCRcxh7BYV/UBtcsfZz7KoRth0kyKoYqSHL7wJkZAB6jYgUj2OdE9TnyqhkHXFTKWg3xWEKPapDhs2ZsMLiExGoLf69LpqhU7Scr1i2mXQxHjeMPQ4gBBVYu8CPFHg22mykujn+LoHgWG6GnCgm+KEsc/SywoGUuJZiS2F6iUPWqwH2cM2QAOIv/9FZJ/8GNmHb6byQgdz85fvpHXzSzHVeTrPehemdeHk+sIUvPmeNzEfL/ADl7yWn/roz3NWHuINmwkX3vQe1NK1DHPFP7/5D3mkF/LE172Kx34rBGcPNiEwzX0PKTDtX3MWPnyryyjVatg8Q8RfWxj84qlL+Pmrf5HX7v8RPnH6o3z05K28p36M9+ITDJ/AI9pTPLkY8bS1w+w+fQcAu4GfDP+Gn+RvKIxEbhr8tuGE7/PJWp1PTs3wlpkWvz8zzXXzV3Hj7qu5fvYyggcFWvEzbiJ559sZ/fHbCK69DhFUSa55Lellz6XxDz9P/Y5fJVi+k95T3wpB5WuM/rydt/N23v51C4RjKxRAkG2QFWZSmZBYel4XvdRk1L2PnUdXqDcvB29qGwnAVilmZdcs8yfNxFHq5QG1QNKw+VaGX0C16LnKiZRYI50Ar4VNNYTA9dr4wmA6fWAOAFUNoVqjYod0qhVsdQo5HUJjF5w4hLDGkZOUZ2mcnKXJvZj0JJH18EWEj6EqfXpA4BuSfJOCLh21zDyLCAEFA9pJMekPsZ5HKof8U/cuHj//baiZFkbnmFaAkGOnzJIbqOicZNhF5M6hNcZQzMwx2Psorq9PEfQPY/0Y2glyVGxBDsdEG2O/phJRNOYpzCrThSKPJHd3a6BHWAt9kZEtSLSaQi3sJRd1MBaxcRiJYzDUuHWoHNukE7QI0yMINDtYp0WHQ9ZBC6c3XV+PBYKS+jz3WsCGq4KUg5LasGH7+LkCZdAYfAS+zkn3tBhddjn++j2T+ZfCIrThjJdNpABU7Kplyq+St6aIBXhGI7MOXmoIRQVlCxoUGKvJgiZIyY68wYbv4FaelSz3UmqArzViMIA4nDAE2sKgQgnWuv5HLDP39hFjaK3KsD4EwmNXtUEPp6MVLXfJym6EVpHQjKYZhZIAmFcekZas+xCIjGapGwegpMJqQSJVOT6BV5JwqMBJ85hhjn+qg55ruf8W4OFR86sTuCII1vsnaHg1arZGRXcxZWAkRfkds05Q2TOGMFf4QmIapqzMSDpzNZRsOJHpLMUCWQ7CKGqMSIoYfB+jLT7KhaphBEmCNWCN6w/TNscKQUhBQkCQOXIO9w6LlIoQKKTHBJxoNSkapCC0AoUmMDnZNmddIJDaUOxYgjPukVLP8uWwjxXODxMWChFgrMbDoyIzmmaDznAv85HrTwXHeiiwYJhUT8eL4pWSEUXgofS4b06AcH1T4TAhiV0yaLeYBZtCNwUPrOP/dJBbbZGlxuHWOXeujStJWyDNLdPGUDDCk3Xeffgd7K7toRUs0BBTDGnjixBlc1IzILRzrl9MGKKzn6cUuXDnsrD4VmKFdWy0+jh1GzFX99nougAskAa/RAl4tmCH6lGjzUJcpQeMzAhhoMO9GAzdtFGO34VT416yqlfHl64/UmxNKZ6EuUbIvtmAT667ZEpkFYXVdBPFNFAY1+Prqqlf3x7WjArB5VfiX/1okg+9H6sU3uYBmre+El1fov28vz4nOAN435F3cWxwlNdd+dP8r4+8hXvlHTx3oHjqje9HL11LWmje+K7PcM3Bz5I/7Zk89hEXfJOe7JtnNssYvu0tDH75F/Ef+SiqP/rjFF+4m86rX4F64L6HfO9cPM9LLn4Ff/Hk9/F71/8xz7/wBczNJdy9+25+58L7efp8i29vPJufiF/MXy7+GGf2v4b0ihdiL3gStPayZqb4aPJ0fn/tzfzzwV9lR/eNPK75fRzpHeKNn38D3/93z+YP7/s9Tg+3sYVFEdXX/BDq/vvI//7TW89RnaP39P/N4AlvJDz6CVq3vATxDaT+P2/n7bx9a5sUrm9gpARnhit8MVxBbfuB7fhtVK1Ob+8cyajDseUN7s4iotSxm225l1CthiWJRvl/wzpFAakebl2EwKNw/mYgMPUKrvZk8QuDHmWOZW2Y0LMjVq1mZGMclEgxF/pUorJfxQBC0qMgJXdC2du8KK/oumw+FlmMYTfu2XzPQXrciMrMv4F14+jytxM9DcwpRmrEerZOmZyfOIqUs9DP4cuHj3Koa8ly5zT5UkyKObW1z+GvfcX1oVkHsxRj2KUQCIQjloCJU3hEtjlcXWZ3//MAVJNlrNHcFyZk0rqqih/QkxnKF1wy2ssl2SVI63EmtWQmp6/anE1P0NEJVYZINELAIhs08pT6ICdQQyQGqYdUsvWJ44uU9EVOiuLYpFvJUeIH1nMQKSHQ1YCo2uTbK5dwpXVRTpwUXH7PMuHaJumwjzcaTghWAIrKIra2RG24itcfgXVOoRSOlc4Yg5U+Mk/xkZN5lEJu84PFZA9Ogl3psba7QqJHtPM2Nu2d009Vy9pgNAESf7CKMDm2FLyWwnUiRUY6+JZXZY7WliyDBRUG2G19YBZN0qwxJrPZnZalGWsppPt3cbY9IWfxkMycVSwcUvj5kKoWZdgDwcY6SWd7P7x7wZtsRdeXOb8xIpxA0ywDO8AiSSkY6pHrEexuMiwsy11Fw3aIyIlt6kYsA+ZYRdotQocgKQj6LpzyxWAbqBnkOIi0JbHH9i/9+IVtzIhjB7xihkjUZD7Gl64NXFJAo9n0FF2pseU9HIunezbpFhbfJhS5oJtHkwSANpAFsZNFEKC8cFJlE6VMkapsI+HYGikg0HmTLJymH+1EZDkyz8tAV4AfY6UAKxAliqCd5fTNSRcsbzMhZAmjLqGv24I4B4DNEAIGJdW+tmpy3mBh30wVdwJtVcpmZUwsXY+jsZalqRhRmZ48h5gwK47PL0sjLJiv9HDkHoILyjPTej7rSUwvcwySJa9leXuLNuqcAK0S+Cw0YjzhCJ/GQxUIuolgUPS2zalF4yCxFmirHspkJOqhpcIe1gEaQOWFL8GcXUZ9/P00b3kZ1ovoPuvd2Nq5PWPHB8d416F38KSl7+Zzt93Jnf6HeURu+dGnvR8zux+lDb/w4fu45LZb8bE88sd/6Jv0RN8cs9aS3fYPdF79cpL3vZv4Od9H87ffSvXFL6P5tj8BY+j8yGv+TdpjQggeMf1IfuSK1/PO7/wAf/bEd/Ejl7+e63ZcRDp/L3+343Z+qXIrT23fx1M2m/zPpVdx7PmfQv7Ax3n5Y3dxW/VneKP/dor1jE/+83V0D/4sT6r9d66Yupq/OvZBXvEPL+QX7voZ7lr7LNZaoqc9A+/iSxj+8VuxWbp9ICRXv4beDX+Iv/JFWn/9fcjB8jd4Js/beTtv35JWIlxODD2OGueEJ1IRUiCtYt4cQ6qyNwnLSmIwCOaWjwGQhZH7EMrGcWsnzobFo6l6GO2qOVoXpKXDM2EGG2dqLcw+MKL3mUOotQ5meROhDSMyTtUXsQg6ekhsHeRxRfXGhTq+JLvczbqjehZbTvvQjMiNQluByF3WdxwkeDql5IpElC5D4LvKS6J7GKNIdY+R7qBwQeNIjViaikpnfnwX99da6u5tLfh2/FviXt+1fhtCbeliGWsREieuDSC8cyBUY4d3RWQE0l0TFl0Wul+ikh5095cC3yRoY3hAn+agWcYrLB4QEML6GeoHT6PQZEaw4XkkVChETCAlWMH8akqYuWDZwxD7ElsJUCJ2aygEvrQ8EG5gVtbISwf/krSObyW5dGLj11X28dj564lkQFxS1welfll9WSF1wb5jbRZPb9MGkz42aiKq86Q2JlXb6dm3NK9apnbudrUPojo51/PGCFlqX2mE1YS9vut1LC/JjKB/qY+PW2tfu0pTxTj9t1QohBRk1imUJXlAN4tKX9WSihAVRwhrMQZW/TVUFG6t7bZiTqEMpjuYeO2eV1KZGEuUW7y8x1ikYBwEig0Hg1sNLmSNCxDbf/utRRnXe7cVB1iMdUG3tpoV5Rj+qvd/icrxE6S5om62kritfJVAqMmEFbKCFRJjtwPTRFmhGs+be6UhGi4gQqNRIARZKQxm84zcFpOlKKxGSIjNWbxt9COFtpPPE2wlQkwZ+Iky0BNmq1/VAp4158AcjYopvNgJfAtQMiAXVbQ/MwkG9cYGfpJRHIe8pP83F+zECANWYoSHRXLQG9Hz3LxbGWxVY7FIDK1qwEmzTt+eYs/sg/3ELTjx1spvBfQWg8DiS59u3nHSFbhzwmAR0iVnbAk3zPQ4gHNhTyQ8hJRc6O9gfGpG2oAAz6YumWNcRTfytxJrUkhCGWFsiUgwjZJcREzmPzV9VoqjZCrFGjc/O6cqhL4oyVDOLRkqDb1xgGYt9cGRbeeWoB4ZBrrNQHV5KHvYB2jhdzyRYP9FzH7ljYisR/emdzq69W2W65xf+8IvUfEqLDxQ467wvdSs4I1Pfjte60KMtfzKJw7w5XuP8Zzj/0T8tBsIdu/+Jj3Rf51ZY1BHjzB677vovPxF9H/hZ8Bapn7rd6n/9M8iQneYBldeRevP3klw3eMYvvV36bzqpeR3ffbfdA8hBBc2LuIFF72Y33r873DL0z7Obz/+rTx/30tYmvLpxR/lL9fewHM+9Qyef/v/5HeaF7H8yg/y/Mdfziejn+UdwZt4FEe49a4Z/v72G3m0+Q1uWHoJD3Tu5b/f+ZP84G0v5eZTf4t8/eswy8uM3vmOrxpDfslNdJ/1TmT/dBmknfkaIz1v5+28nbevbx6grJiI5wK0wz6xTdi/9mWiImHQ+RzrPefA5To95/2jwmxlWeX4M8eBB+TGQV80hqVki259q2FEgHU6U3KsNaUM/lqf+urIwQcrIVYIMl24jLZwUBpjYTPRk48bsz+OP707OkSOc3i0tdQzi9JjGJCj6Z9orgGRJ1A2IzV9eqpDYvpkxlX/nKOjMdZOqmeCrb+Xk4ANtQ1uLrYc2yjfRCQlNbbOGaaa2JcItipo22ULwG7LksMyAzazk2gvwAQ1lFdxQZrOuJd1rBCMyFxwai1hmrFnZYOo1CtDwKZfYyjqJFQ5Fe4jwUHKPKWR4xqOBDwfbSUYgxHSVU+spaBgxgxpUApBb3Y41XPzVvMjqu2DRL2jk1mx3pY+mtQg0cSJRlhLrZfS3hwhACVChmWPmOtlFKSFoZ+6sc/o+nhGykdxfT16a4sxv9Fntj10gYbwyawCXdBRMcY4R3hUaAZUWFM+hec5QV9rkabANxlgyW1WVgQgNQP3+lZtjkiKiZPrlXtG5QaspdYvsBaSUscKYVEW1HpnEnx5UrC8MyKtV9ATh9w95xhYbI3lUC8mUW5PrGVzjGi6FIgFoUbMiC7CFgxmInTglUQfULceWBdUecMhYX9AgKEqXEXKWotUOVWGqBKe2M1zCgIygrKXy2A8sQUhxJJUQ6QURDJgUdQY6A1S3SM3iWMltAbTaTu6EevId1TkoWXBvFglxJ0ZG4OcTGsslnRpN9IUCAH70wrWWtqqQkFQhjRuS7ZknUhU2GUCWrrCvNdgxqsgCgNaky7VJ9/f1KuxmUqU0mBBZQV+lpPYGFl+748nmjSwE9IgheWsl9P2S5kEGTmYqIBascHVwQZ7pmPiQNCIPKQ0VIKtEEOO160MnraHNMZaTLk2EsFGusFqepbN/OTkmmtnHsdCdCHj81BZW2oLCrQ1DG1BiEdFepOwTZt1gs5Rar1D1NLTyLyHlJLrZy9gTH/fq+6mGtSxxu1Hr+z8GlfQnI6kh8AhE8YVNF+665Kt1rWJxYHl7o07AbiqeeU5wfsGa3hiDLa1X/3mbfaw7kEDt992PXlE2ElYm349Yv6qr7rm/xz8Ew71DvL07mNZDj7Ail/hd657MzPT+wH4/X88ykfuXeWtg7vwjKb6ytf8Vz/Gf9isUtjhADscYvOcLJIUmz2nPp9n2CzDdjuYTgezvoY6dAB96BC2FBf0r7iK+ht+iegpNyD8r94WstVi6jd+m/z22xj+/u/Q+6nXEXz7E6i+4lUEVz3y3zzO0Au5ZvZarpm9lh+76kfpZl1uPnw7Hzv2Gc5k9/C+E2/jfSdgyp/j+uuez7ePBvzWgd9gUET8n/pr+avDVzK4/5FcufRYHnfJEQ7nH+ctX/lf/Klf53t+8CKeevM72P/UG/Av2HfOfYvd30H32e+jefOLaf7NC+k+90OY2uLXHuR5O2/n7bw9yLpRAz1aw9ByAZoF6fUppKa+mVPTFYYzTTLn+yPkFqwGBEWtRjwa4DL5skRybcvvW5BG052OQZnSl7LkJgfpeA0CK/ATg7QO7rUqdnMx63gll7+RW1lppaFfKHLrArQTRYeRKejlFe44MURM9ck2TxBmCqSkJwqEhceZC6mnKWeDLoE/RAjB3FSGQrF32kNlzsH2PUAzIXbY/hzKKJQ2eGWAFkyqJY4P7f7wEVytPwv03WhL2FZUdCdeSVYyIRZlk76r+AlqoU9abNG1b+9nOSn73Nf7Z5qJYRAsYkXpFtoCKTzWG1dQzTecI24N+458hZ7to4nPWYuxzV1c5/iRFl0dUDVDGmKAxOJHAWQab2gQyQZ4kuohj2RfNKkLRCLHswJlwaROdDyLLiI+/jnnnI378kqoqzEGaSRVkTKMQ/Z9cZlOCnkUoHcsspkU1IIYG0eoOCboJdRVQH9CQ+7mYShqNBiQCQ0CUqUnzuj4Omktxg8xyjnKoQ1IjaSqJYlXIzceicjxresBG1dTfTXC2pzcSlIZEhuDRWLtVlgIDmoY+xJrJfOxYroYYEWVme6IPWcHZFLQCRo4gWCBGZd8yvtITyCMR05AT3s0jI/BVaSHeYB26RJSUWeYa/bXBe3UQwyH2AgOFzCdDTHWUjeWY62QYscOmiuHAQe7DNf7nJR3My9nkTiR6LCEWhq2EiRSTOrek3kwgBE+eq5FvtYhK6GGRei5c8FKItVlR+GQXEPdJRKuR7SykqIXJSGgYx8tyzAr8DBRjMy3PH6LJdl7MTZvQFdQNU4v0QXGARE5eVzBJAZfeAhhuOjoCaSUnLm0yf6mYLCxQbipMXtnJgGatq5qmaeOgGNMRz8tBsRyE0yVQ2nKguc7Qe1YkMrtMGNn83ENL9pkFA5IRit8fngYGWg8YSYabmOTZfAbeIJMnfttc1Uyd66M9d7WRuuktoIxCUkR0wgaqGya7mCDeVzl1g1HcLfp01CaIGjQqCew6VbJMzkzkTeprgvhbuaXQZwKauThDFonGJuWp8nWyKTO6K6fYpetcMwMaMWGs12NNAWhJ5HJBn4Z2PlFD6ks1GbQxlVpAWIZUmiLX559I52TyJKl5quPnHPsYR+gVT/7Ziq9u1ldvpz2p/+B1o0/dg6j493rd/GBI+/hUcMd7LGf4k+qTX7qip/kqsXrAXjnnSd5112neOW+kIs/8imip9+It3vP17vdN8VsnqNPnkAfP4o+exaz4v7olbPYdhszHEB6brb2obqtRLWGd9HFRDc8A/+y/QSPfTze4tK/Og4hBNETnkT42MeTvP89JO97N90ffjXBtY+h8rJXElz3uH+38HQzavLyK2/k5VfeSGdU8I7Pf4Fbj36GDf9+PpHfwcflCLE0xTXBLDes/gG3hDmfXnod7+pfy4c+s5PI/0GuvbiDqNzOrUu3c8tr4LpPvZYX3vSrPHrh3PGoxWvo3vROmre8lObfvpDOcz6Irc4/xOjO23k7b+fNmX/qFEXNMjIZaRlQJOTkwiO2FpmMqPWrZPEW7Awgs4KiPoWS2sGQjOBkGtEcGqajEM9qmtkKBYCF3kyITTWLokpR5GjrkRuD1I6drtLWrCtBYkCnEi2n2LQpBQFCSIxwlZNMuaz7UFlSqzmtO7RNikeF5ZHgi/et0hpV2Sk2OJlViTzXIxHbCGGdkzidr7JWmyHyIrROub/3JUy+TGwfTRwI2OI0mZjB0ssy1vrJpCeoHsLFlSpL3YJuAtrorUoIoIwu3ZetmUvbp4Ed7GrF1Koxoe8qWbXQw9Z2U/TOMmQb/BGo+1uCsB21CUKWEMnCZcSFYBTNg+iCNUi7TS5h2zOcbvpcvp4TVnxkw4eOc9yskBD6iBjs0BAcPU0+pfGkQAkfa53zOpjzER1NYCUSxZgiQt37ANo7jrnkYtjsTLLoY7ia1LBUSI5KO4Gp+YWmMJZMWerWYgMfPI1nUhq5oK+2iRkDxpOs7I1pDZ0MQ1GJ8frBpEIxtmJqBpmJyXtT49MUmsLzKKwP5GWNTICxpPhECHw7BKZRwl0zDpGlNZgyGVAtNsBzzngoLFowgfWCRGQWGTr/dETEUM6zGfTI+mukVMl1SoFiFMxSzdsMjY+HZDMN2VQVdluJXwILpRAls6Jlc76FuiLGrJ5i7qwmVQGzNmS3kKyYLUpzYWBUDPE766zNCTrRJtMdCaXEggWs9EgjjzTt0ah75+yQTAQYKRnsmUcEESsiZWEzRQNSup4wL1P4fsHmTIXIunk01iJxDK/WizChxlcueE6mquSNaVRRQHJub9JCPUB0HbHKhcM6K6QlyY1AxQFS10AahowFtw1z97eRl9agJM0Y96kB+MIFkmk4D5xB564OKIH5vEvjYIdgWpDFAVGWletUoEQFbGcC9/bK71cPxef9ISOTk9mESG5VjMZWqXQoigE7qnNEOmRtW+WpMAZdkmjM1d17x5DAfj5goTqNEILNvofAktiMXWGFVdWjAaRoaliyvIOoLuIJO+l9nArOHYmVAZeFcxzkxOTMscJVicfXhV5EYDJk0cUXgKhSyTcJeqtUlSRmkx3pEbxhwkJaJ1Ej+mTgC4fQynvYmkNMZDrBGLsN0it4gA0Kmsh/JUJ7WAdo4eFbqd31FpIrXoT6zldifuTVJG//M2o/9hMA9PIev/6FX2amCHnJ8B5+bmGOG3c9k5v2vQCAW7+ywu/941Gectk8L/vcuykQVF/12m/a89gsRZ84gTp2BH3sKPpo+feZ00w6rgFRryMXlpCLi8j9VyAbDUS1hqjX3d9RRG26waiwEIaIMESEEaLZRLZaiOhrszH+W01EEdVXvIr4+d9PevPfkL7v3fT+2+vxL7+CyoteRvjk7/qaVbh/zVrVgJ/4jsfyczc8kQ/9y3He/bkTHO4fpN46wOHZe3nTdA0xXePa9M95bfRHzFz1Sv5OPp1PHPTopjdSjZ/ErrnPcM/0bdz5uZ9iX/1CnrfvBTxl19OJS5FSteM6eje9g+YtL6f1ty9yQVpl5j80H+ftvJ23b32b3kgpQgPSYvoZVMsmfQvWQEHBzjN9NudwgZgQREWGQZCSkFvlsrYIVBBw4NKdXPWVL1BVOdgtCvTCuB/2JNfEZaab2DXXZ9bHKwrkUHBCQ311BYRggOtxsriK1q6phG5awuEQHOx7pFXLvfYCHkmPcS1LjxnXxv0snFsRsxb2+LvJw0VGSZdED2knBXPsxi+jL58KdeYZcAyAB1YGnPHaLNkRHbNVV6lHPrlxgY4xBi0kSTTHjFqFbBNba7EkN6CEvqXJEFmFqdin3oyQVKAkBalGAbIS0OuskVYaEzfHGIh0AmwTMAbGMgVOf6gUtLaWyGw5wqbM8EsBgcyoioLZaJYVuUFHdMBCQwnySgXBuEdMoLUly11G3NOW0BcYKZjPHUOLVIpLjv0DYs9O5wiW7wuUCxiqqosWrp0gNj6xKUCIEhJmsFK4vSHEJGgL1ZCduc/Qim1ZeBeondw9j6hU6Vx6LVccHKDkCCMNGw9ymI3nYWsRoKjaERlg8LFeiK9dQKIQmKxAxTF9G1AXglhGNOMQBknZg2TpZ5qZcq01Eh9Ff7pKq6toBFP4tkJidFmFchWs7aPphgtUhvdgbEHPjjhtT5H5Ammc5qqx7tkL7Z2zP025fbPCQWqzcCtIFggWbYVIJzSyDu22YlYZkoGhsyuiMCkzPUVhc0ZS4ftwLB/gA4Et0F6MHctnNF0lSZZzfcbOURMxeD555GPH8gSiIPYlvjJUuznNZoezrZD5NpN1EjrjSOCz34/J2dZrWB4kzepe4F6aqsau8HIAgthFs9aLqIz0pOKMhTyoUvVqJKJPMt4fcZ1+DrYbkZmcaiCI/Rod4aQedmcR3uFNsr1zaGVIc0WAh1cook3Nxuyl9LIOOtTEJiEapEwdXyFb0uR+A1Ot4xUlbFFsr51CPTlDaGawU49ECMjtgIAqyjvNkNNIMU/kiW3vgKQwIBKO9A8zkDmFHeEzBwgykzjIqQBREuMAeL6r3G7aHG0tp/MOFeGzAEgZYvBZ8D2Kfoeq10ZYi6osIOI60yKeIBSkVeRakCgDJbttOxk5yQABuR+jRR3yroPEGoUXCDw01ouYjQOODSRaBgSM5VaA0Qa+JxDVEppbJpKmZY22P0UozORZvp49bAM0b+M+pj71UxSL1zJ48q8ReBHRTc8m+eD7iJ72DMQlF/M/7nwD3WydX99c45cWFrm8uZ8ff8TPIITg9iOb/MrHH+Cxe1v8jwsKRr/5CSo/8IP/pkrSf9SstZjlM6gDD6AOPoA+chh17CjmzOkJgxGeh7d7D95FFxN+91Pw912Id8GFyB07kfX6Q98AqLeqqM5Di+D9R01Wa1Rf9FIqz3sB2cc+wui976T/xjcg5+aJn/M84u99LnL63x/8RL7kmVctcuOVC9x96lLe87mrue0rGwSVVa646Cgrzc/ypvg0Qn+IRycf4PXXfCfx7A9z90nFPx6eYX30PYSNL3Bm/g5+e/Cb/NGoPVYLAAAgAElEQVR9f8ANu2/kWXufzb7GhRQ7v43uM99O88OvoHnzi+k++33YePobMEPn7bydt28ZE460oLY6IlofsrEvKvs/tqo2FgHG0KNg4Hept09graaQFmvHznnJEGY0Sm9VP/xcgeeqSdliExU2ERo8nSH8AFVYchXT6vWYympOp9da1jyDnfyUC7QxBNIRkTSpMiQiLXKOj1oosVHCwxwl+bjnZ6tTxJxTEVPGkWnsna5yKgFfSiohrA4foFa+KWJ28plj0ygqYciylPhewtgRmQ01o9wRG2gZoq1HLA2JljT7Bwhnt4vBllUXxFeX6UqbqXhk6fFzevvS3KCtZVVsEKGZgEyFq25oDY8Jemg/Zq38nJFfoxAhoKiEmqisUDSCBnGtSa1z3GXBrU8ZK4GARnoGUy3vLaDeTdzdpBPKBYjaCUbGDNvLBI1LJhcn2qKtwDOaRSw+kgUV4JXkCJMVKWGr20kBLaDK2CzHUbl7FM7HByq+R1i/gFAew+JTFzmBp1gu87y6VsEKHzyPzh5YOpGTYMlt1QWCMmRU8wnSAt0ZMIxiTu9cpGEtdrmNFRKrYhAFqdUYM+6pCkhnq3g+1FpN5roDcq9JIfrEUiBMRqQzqsOCYHpILhfQoUc3U4TDgqYWDH2DkD4RDXJTBWzZTQfDQjPSmraNqWmDTFMsdTYGuZsLY93+FxV0keLjEw9z4mWFXy+I04CAkL5vsE2fRj8nSgpCmSOISuIe8NGs7GoytbJBEYVYoVHYyTYcETOvR0jRJLcOEulhUCimVRM5XKHwquzOVzhZqYKYcmunM6yFDQraZQ/TZE2t62nDQn+uxcrFe4g95+t999K1tDtn2BxWsNmK20Lln1iErjdTSIywKA1h+cmGKtK2QQTsnvt2VpaPAFDt5qTWEp5cp2skJm6SIAhFDy9VxLVpsmRIFcuqrTO12kZ7Ei9zyaMwCrHGx5MSHTWRomCEnsyP0AnL2UGs3c+6uQeApTIBslo8QNNfKLNBW9/lmtciNX08EZAZaHo7GSKoshNrPKQQFAwR20CIudUcMEMnlQGkVuHpHBm3yPMaDa/NUrpJN8yoJTFXzlxEWJ+BYbccq6VtNxgUgjx3eomeydHCka0UAkbhDGfNHlQoqNZmyYbHkIFELTwKgIRZhupeFBITgGWKTBuM6RMNBlxWVZwGNmyPvp2iVhjqQYrjR31oe1gGaCJt0/zIazBhg94z/jd4rixd+6EfJb/9Nvq/8ov8yQ9fyz3dz/HTm5v81uIe6lGDX37Mmwi9kHvO9Pi5W+7l0vk6v3nTZWSv+38QM7NUX/KK//SxWmPQR4+gHrgfdegA6sAD6EMHsMOSTtnz8Pbsxb/0Mryn3uACsX0X4e3ZiwiC//TxfCNMhCHx9z6H6KbvpfjnO0j+8gOM/vSPGb3jz4m++ynEz3oO/qOu+XfDH4UQPGZPi8fsaXGinfDuu05xy1cW0ebxXH9pwcVzn+FLG5/mLd3b8Dq3cW39En78mS9ivngUn/mTr/BPp57P8cWcYuYO/kr9JX99/AMs+Pu5Yfez+P5LnwE3/jnNW19F8+aX0n32e7FR8xs0Q+ftvJ23h7tVDIgSuqQRFPmIWECuDFPboHnCWkbWkMkRkhWstuC3qIY5YqRKp0QwZn4LRYTIMqwxCGGwnkDGsKd3grVZj0qi6C34hGsN1q1kRp1FlIFVYRVhSTM9mK+zJ15nXg4p9LgXSHBSzPBlG7MpFeiN8Si3OYYw7uUa/zMXEeuVC5lOTxJYQ+BJPJPSHxXMTTUozDKx75JvwuQIGyEw1NPTiGyeS/ZWmMk8rr5qhr1nbidYW+XM3HcQCD1xtzW+g8aVPwvtYis7Dq5IICc/GRaEIN/3PYh8gCh7ZxqRz1QkGUda9UCSjQztIiWMe3iyykhCRsFYt0kD6XDE7hasCB9lfUa+0zpqVjwMms70NMNMO02wKEaHAXKUEZqqc4p3teBAh0hDzQZo4TO07tmkNSghqAiFwcPPC3IEa+uC2lJCNXZPuZpUaNiYyDgijkwExLkgacbMiQpnyrkYs21m1onelstHaAUFkJNQNYrIrNG1DkxpfY/14iSXYKgGHhUbkzKg6RV0dQDSY3/zKmYGd1DXBru3yezh0xgf1vyMug5RkcdlRYS0GlsoLpEX8W2eBdHBKEvLaxAynKyPGAM2PYmNPFqyRl0UVNUmxXpC3B1ShIKw3GfT6328WUMBDIqCeSDQEVU/IIzqrGQBFklXzlIXMQ05YFBuhTN6hkU8Mlvqn5URnEaglMGYBGMNGkFDxghZ4AtD1oxZDhoI64hopAgIk4zFbp9TuxOWJlVAS1oLKBaqmGHOQiQ4UdXUz1pahdu3K94Su4Ugs6YMGiwhPmkSkAqfCIhEQYMBBqfzJvMBqS1onrHkYot1UwC+SZB6RCZG6EaNohITWkMlW2NDrFL4BaYyS6pb2GEPdN+dIuWXxAY+VhhCOc4gGMeCWiaBIj+kNxsR5+4cG9qAngmZZ0RbBgyqI/YPHDRwYddF6BMpZ+0xkmjAo9sF6dwU4zJ7LfTYIUGkAvwq4OH3CoosRygziSyGZnXyjOMetEoQkpr+1l6eTIIg9qYwto0nfEQpex0yjTE5vaJDFOSo3A3CAheF83yRg5NTw4TV8qMkFsVJz1ANYwLZZOfJVS4RmqW2JVk9yNyJNoHfJawN0LUp/LRLvT8g8dYRweexwy6rNYmoLFOxHpkZUE0WWOqPqNk+U8m9AOwR++geOwwyxfcUM5Uem0lCULG0RgOi9fuRs4JARQxsjVaeULcppsioDc9tTXqwPfwCNJ0z9bEfRg6W6Tz3g5jaVsVL/v/svXe4ZVd55vlba+28T7rn5lB1bwWVKihnhAJIIBHaYwS07Q5uP562TffQNsbGw4PdDu32ND0GG5wZGh4HTGN7jG0wQsZGIFAqSQhllaTK8eZw8o5rzR/73HNLDI2Npz2N3PXVc5+quvuEvddee+/vXd/7vW+1Rvmnf47me97F1B8f565Xdfnc2B7atPnwNb/MiDfK8dUu7/7zZxktOfza2y5BfvpT5C+9QPkX348Igv/Pu2eyjOyF50mfepL0qSfInnka024VGz0Pa/dFuHe8EWv3HtSePVg7diFc91t/6CskhJQ4N96Ec+NNZKdOEn36T4jvuZv4C/cgZ7bhvfHNuG94M2rs2xfn2D7k877XX8QPv2o7n/r6OT791DkefOm1XL/9LfzS1EMcn/8Ef5W9wAee+SUcYXH766/hw7/+OSI8jr7n/TwcxTyy+jcsOA/yiRMf5A+O/ibD5hr+yY5/w48f+20qn/1+mt/9SYxT/gcYmQtxIS7EKz2GjcXpLCPr06qm5ru0JiAWhgo9sv69Y8eRxS26ou+QCQfXkYxxjiy10JuVJ0sQOzZTkU+WwLFaThQ6g14iIUArwdKsQ1RWDLUc8iSlYcpUEP0/RfUrUx5D/jC+aCCNxuQ5wlgoWXxQW5aI0pV+qUyQiYIStpnYnK+yaIDIGUKLHiCQJkMKQRAVK/fzehojLMLu8/ixjx/5KG2ThRlDtovsrWIvL3J1/WJkWEMgGHYzeq2X+qqVCoEmRw5A6masxZJgsC55Hg1qU/baKWOcErK3MnhPvjnaBkx5EtHrYQw4lsGYJmdJMcQoJFKKQiEBaERx//3FCVESZF/xMg594lAjhSJUZeykRw64RjGV19k+4rO6miI2DBXtkQmblpakMikU2qTEc0Ocbr8XRhrQkPUpjpvKijXt4eQCV7dYADw3pIJEKW8A0DJLFr1GFIp7I7iEGYRa08FwdZzh2QG93hkUFiN2iV5WUCRbNKkDjnHYqSfpiTUe79PqpkrDTCroaYuKX8PoDdbokuHQUMXYFP5Uxc56tsJXhkQW9MdN4ZdvZGmtlGcJ0zOYvgiKm6xTWUv6Z1oRSANK4HQz5JgkqYSIdVGImhhB7EqCPs1VUNgBkIIvbBoy48RUld6Cg244aGMP/LZEv8JljEac5wenpMSyFJZJaI+F6LiwslC6oLMJIMjWieQQJu2bx6PRRpPKhOaog2lGNKerlBaW8LWLVhYp1kChcvN6RUp0MEzmNqDX2JqXotjDKMsxSpMkPh27RKYjcm3QlkucJ+TZBomsoURx/EF0ll1rz7Lkn8PWMbpvah4nOaXAojk9xHBXIqa3oa0lovUuSQiO7sOfXCCUD2hsZdO6/GK8x15CJrpwWNSaRRnQ1YpASVquhqESX1/7Gl3j03ZiVAwOHqsi6R/H5tVpChAlBTLV+PMxTnwOq9XizGyPeBRm6y6rC8XrpZDslaM4yudstjD4FM+SlD2L5XYh/JPoLkZoml1BdWOD4fVVxmnz5LRPxXPodorrXWR50VvXpy0XJ7uvuCoK5VcrhvLZBkFi0cy6jJY13swuVPICfkuxLh3sKGNopY1IY4Sw6JV97CTFBrxIkBPhiAhMjBPFOJ0mgcqQSUoyWsdyJmivhgROhUR26fk2DSunAdSTEqIbsyfp8FzsUy377D52grLTgQwCZwvAfrN4ZQE0Yyh95X04Zx+kefuHySau/obNho8lDUrXCt74mOG3bpjjxXyFX7jqP7GnejELzYgf/fQzWEry62+7lMrCaTZ+97/g3Hob7mtv/3vvVr68RPrIwyQHHyb92iOD6piancN57e3Yl12Btf8AanoGodTf8mn/OMLaPkvp3T9F+G/+HfFXvkR091/S/S8fofux/wv72uvx3vRdODfd8m2D05GSy4/esoMfvH4bn35qnv/6+BnedeoAl419iPeX70fM/x73eJK/qjzOE29P+MVPNrj4/3gHUz//k/zM7T/Favtd/MXhh/jy4udZzB/jD3TMp2Z28vbOCS755Ft4Zu7XODA3xeVTFUruK+vyuBAX4kL8w4UTZZRaCXFsEyiJJ1JKJzKSUkED3EwUjSj6vnLbwgjIHUVVx5SzJusMIXWCEAJHQCcIUJHANZKNYaeQMX+ZKF+/siVE4QOkXy5AUpAli8rFkOVzZWmKVuMl0kxi6QjLcum5dXRaUL+Q0JURvhMz3n2cDRMzph2W+/LxjhGF/Lo9xAR1xrMlTONpvIaH1e8hCqMFcuWSyaLfoqUjPGPhmw629KiLFnJjHuQwdrOQybbjNXwsyqKLoVpUGXPwFFRsxUpflPFcTzFTKo5QG7DXD2NJm7w6O+h1KQ58axTyPi1tNg2JZR3B/GCMYiFx+v5xWlqDVXsjBHa+hjQp+H0VNgmZKsDApoy68nyyfOuZLQGZpxj8LVrl+QhFgxCG1B9CSINSFvo8huYmpTTbpLuK4v0lLLYnDm5W+E2VhFeUOTAEnRj18BHynSMYllBGEFDI7NtC4NoWxipsCwKR4cuczLKZLJc4uQtKh9uI1QxEjmLreyPdo+rG9BAoIUmnQ/yGpIFHKmzQZ0lWGyS5wcjCaLtwEjCkecxm+ljgmRz6NNdM9uXKLUHoKjpLTVLA4GILFzvP6Jsa0ClpcttlQc+z7nRZ9QRK+FRFIREq++bAldPrJHZGKgxr3gYjMhiIzGSOB3lCw1oj8OqsJ+cYZRIlXYJNL8H++Gd5jk+PRBs8rRhKXIxr0cIHBLrwiOif0T5tWSgibUidIVI6tIVDJj1iu42RFbbqOaCcAMsk1CeaVKMeWxi2T1NFkGTQUj4yykAV946O8iHrUYsW8RONEjYm2mByYx4v2cBXHXJhkxtDbtKij1JKVndWGX62U1wbSrI67uOYlCAqZrqDwhM2ZdtFTW8nNU9j+lRtxZYQTWApRA7ZkMWaHZP0VlHtMpTBMzaZLOB1qkJE/+zFWT6YA5sH2klSLGDo7Brd0irxUIwbxcSug9vusv34adJywEYtxV3vMb3RYmlyHK/mY6MI15vE9JAYwnaT4XNnig/2oXHvUaZsRX1xiXLSwF6JUKUTSNGAMQsr0jhRgnV2hVov5yINQaeNl2fkgc1GzcMZcwnK66jZUZQOiB2fSHuc6wTYSU7sZSyWL8XKu5hezJKTIGWFUbmXnm6i6lM8vXaOGSdjx75LQUos7zLOtQ9TdhVGtchCl/lGcQ2s10tE4UWIs19DLgl2ry2ikCxsC7BJWJPn3dO+SbyiMlD/id/GP/THdK55F/Het79sWzvO+M+f/zyH1PuxbjGs7hrmq9VV/lX7am4eu4WFZsQ7/uRpOknGR77ncqYdw8bPvQ9RKlH6iZ/6tvbDZBnpM0+RHnyI5ODD5MeOACDHxnBuez3OdTdgX37F36v/6h9bCN/He8Ob8d7wZvKzZ4juuZv4ns/R+oWfQZQruK+7A+/N34Xas/fbokCWXIsfuG4b33fVNHc/t8AnvnaGu569jktrV/DL7t2858Sf8Uipyr3/6z5u+f0TVH76/XzgLR9h6I7v5vUX3ckPX/VBojziS6e/yudO/RV/oh7lU9Ueo8138Mn7byJuXc6O8h6umq5x+XSFK2eqjJb+cVQ6L8SFuBDffriNmJEoxnIcpO9hjEVqwOv00YUQ2MbCIOjVqsSxxhMw6sNU8zjbBWhaLOWb6ZruQ6tClnxvb4QX/UVy4RIHU7Q2lre+XAqMFH21v/NW7dmiAY6WPGq+RasBUaoRqli1rlc1emVLZl1K0PkKzfwksY5oyQSMg2NFeFoAHtvqIVEDAmPRAezWCcbigh655A4zHK1RkSnNXGDMNoZMm9H4DFd5q2i3CjHIxgmEPzzYT0t38W1J2bPBaBIjcYXEdySW0GTm5ff/TdGSvDTRBwDndWycD9A2j8vAeqv436YCXC4UOy2fQEc8YddwTQJZTHduO6XDj2K0jyVybCsn1hlS9SlSBl7cP8Fdr3o1zsl7+udKYFsWm7qPQ4FNl4RgrUvTtTBIRN8IF2WhdFbQE/uy4QCl5Ch4AUhJx5ugKpfY3BgaSdbNwHUKE2uTDI7RSaFjVxFmCSEEHX+KEk0CemSWS3TxDuTaEURumM2GWdcCt+az2k3RlkKwZbgM9P2zDL0kA2xkbw1b5JREnXMmpiczVJyTOAqDjcagEERGIh2LWFgE0iHXffCZdTBuAHGGQTBbmWPZCynbGY28VZwl28ERPpb0SCj6fbafWaKZVUhWNyjj09w2xNA5zZiqcMROICsWuzMt6DViHBmi0VRFdzA/AGKRYERBrZP9vkVbWgyZCBXayE0fvb70uUw0qbYp5S7tZJJetoqtEwTFAsjJuVIBN0VxXTedYWLlIiPJMnUMxfedsTaoYWiWHLpxTm/3NP6ptCjHOhKyPniTgrJTzJHCIFzRVBGV/lkxQpBIC4uMehYhRIaSPcLcpVat0UgKSqYSemuhQhSsJaQire/FtFfIN/21hCAVNibNqPklHEui11bxxwPyTW+y/nQo6wTLAVfHJApSA21bgsnJbRvRTTDC0HEm6boBO3SXXm5YaqeUEouS5bFJ1FvZN0b1VJdwPcU7u4izuAyNohpbD2xywO/0mF1fo5vkuLLKttPzVJcV5bSoDprFZQTg5iGJgMNzu5jpLFOVdiHgo0ApQbfugpGUlzUqjQk2MnzXQ9gJw1qzmOZkvqQxXCMaqdCIVhBCILvLYDTrIgHhkzsWGYKFytUEKgPpYns+66pH1WnQ6m41y20OfezafV4tRVX+vHjZOlK5wlfLlzA9pBnpnqS93iRxXDqhZsgIKuVvNPN+ebxiAJp7+DOUHn4/0UXfTfe697xs25GVDh/87N10679KKuH28Vv5U+dB3rS0jTd//BGOPvpe3rP7LTQz+M23X8ae0ZDWf/hZ8tOnqHzoN5H14b/1+/NzZ0kePUj66EHSx79W+IdZFvZll+P+2x/FueFG1I6d33af1f9MoaZnCH/oHQQ/+EOkX/8a8ef/kujuzxL9+Z+idu7Ge9M/wb3jjVD7u1NNXUvy1sun+O5LJ/nS4RV+95FTvPHYXby6fBP/2foj/v3SgzS+axtHHqzxr//vVb5w9A/43177CWaG9/C66Tu5ber1vGnuDtppi4NPfYgvn/wLVofvR43cz6qu87mFfXz6pf3k3TmmqyFXTFe4YrrKFTNVZof8C+f7QlyI/0miagWcoQt97ydySYaN00/6LGVwc806kOoCgklpkDrBlR4WOTYZuk9fUmkHAXRGy3jKITZuoeYnBO2s8OmJyi5uXJABkRKVazIUy7rKsJ/TSlKqQDQy2gdrgkk5xLxeR+kUYTRuYJELjREFN7PokTLk/aS1bBQ9k2CZnKpuM+10yEiRqIGRqgB84dCUkloeF9UUt8prZY2zJqbTk8TKI/dHEW4Z7VYxUY72R1DRBoGjoKdxlBzIrRsUQhQEwykv5VTPIbT6VUigkQpcaTD+CCKLviHzKfbdpDnxcotwtYctLbIgxpgMgyqE7oyggltQ3oRi7+ozRFnOCW+UEhFtBVq46L7CZpHYF9Uo5ZawbHdw/EJsAYLAMqTn+ZjJvEiMFRLsACMLIicDgNaHE5vJ3MoSY0MVPFuR5ekgWd7skbOF5KLSHl7KG4XgiizTMUUiL4Qg90voSgkaEZZnoUMP41vIXo4vHSy7SrO/50pYINIBPPOrc3iiChiiVBOlOSmGCJsXGSHKF0BoOhWXDMlxdjCFwVg+7ekdhN0FXOMgZYk1XeyvBRjfgXirp8a3SoiRlJlzPRZZLahwwkJj9eX7iygvNUgQtPKQc2YX/5QNbGGBjhAUx5xmArKii3BKBYx5MT0bHNOjGYwg2yvk0iI1gjAvzp8lBNIYhKvITU5icuy+cp4whhN6lAO6S2pyjCm82CSGTAm0LcFkW4sEGFIBIXnRddenLGYqIxMGx9IcevVlDLkWtb5FRSps7POKqxXfhrEQs9aj5FiFiqglaWcpsUmJrQDhSCyxg+ZEnebwMGNqjMn0RUiKq6KTzzOQAOmbNCMk2g5pOTNkYgWEQDsVOnEhE6KSHCMVavssu70WMngJmq3NjkEqIsVVhm7/uKSRtAx4pofje5ieZE142I11ptwxBBDnGheDFIqLrXEOcYQUcK2MzriHO1HDH57jZGJITy9jKUVPQCP08YThJBYbiWZPHLBieVRXVlBpD2kynhmv40WaGcrkToAIxzhbdYmDECHAGffZWH+RcDKgk5YorzvknR65LWluq9C96i0EK0/T6S6w2tO4uUUvyXBRg3xNZD26fQEhAGkMqXSJLR+hDUOBQ+AalqOCppqZzZpvsfyzWS0GsKRgdsin5tlkVpdevDW3JRZD7hB5tc7yFSHzzx8lrdXZIxfw6Z2vBfRN4xUB0Jyjd1P+mx8jmbqe1m2/MrhRa2P4o6+f5Z4H7qWy7bdZsiV3jd/OHy99idun7uDdb/hZzpY+y08cEjQ2Ovxy73F2H9V0/+Ipknv/muAd78S56ppv+p352hrxQ4+Sfu1R0kcPkp8+BYCcnMR9/R3Y170K+5prkUH4Td9/If7bIZTCufZ6nGuvJ2y1iO/9a+LP/yWd3/wwnd/5DaKbb0a++jU4N93yd1KsBFBS8PqLR3ndnhG+enSNjx88yc3zP8pbwtv5OfuTXHXtM8zX93Ln11vceqrMZ+/o8tHmb/DRF36LK4av4nVTd3Lz5T/Bm+rXkt/7Lu4rD/HX27fxmPUYauhBXFHGzi/lgYWLufvQTjA2Nd9m33iJfRNl9o+X2Dteplr1/4FH70JciAvxPyK0kOQCIpHjAHackvXtR0GglEBoSNJCuEMIgYpPEaoym8TEkAQfB5knCFM8flNvDMM5rMwhoaguNeOUUPis2TZVK2CFHIQg7MVE2Pi4rAYh291VdB4SOCNkwTh5JYTFrwHFs18ZXVDSlAva9HvW9KDCBFDGQfeTBV8Xnke2iRn2QsajlNbm60TAuhKYfrO/UQqtFfVoAyeVrGuJ6QmS7jpNo3lpTbNjYwN7bR2kYK5kI43VpwFqcmEBGikgCWcIe2cRJzfonIrpjMyg1tdJQwfd6WGcBNIck2UFvStJydd7xKc2SC2NbPWwtEKnz7PdF3hdj+BcA51LSk4X02szxDKWSPA2uphsA4xBmojm2ByyE0GeUIoXca3tjDrb6Kg6qn+s9AElCIbMGpLy+Qomfel+QOfUVMCu0k4sjpKdj+oAvWkU3O3hhGU4j/4I4NiSHkVuMxNsox1PoIRNM1tGECFM3zkpzTBWsW9u4LBnPODgNbthpUNy01WFV1p/Dsg9V8KRhxBAb24Sp+0iMo+NvAHABBvEOhx8f9vYrJU9bL9DPalwHMiMRpQmSegiMslaalPtV2IyA5noW/f0iw2NXgII9MwY1vz8YAikUKR9gJH0rwnbMqSZoK1CjBgmN51iS5+eGJoyPWLsblSI0QgwJinovXkP7bj0ZnbgRydYwWGUCl369hR9Dt9m7TU1eZ80zMAcu5d3SByFijVWZvoWA5CZuADZGBKhyY0Y+Falrk1WCSk5bU4EK4CHEg6Z0EzrMyBgkXF2ME/a76eLdcyOaoknRQPRv6ja0y6NnuHwdA070YytCLw0ZK0yStep4DoTPOwusL8vyJ307RhapWFqahUlCtqkCEOOJ5KezAk1oGxs4RKYhJaOQUjU9AyycQTLsQsAel4IA9nwEI3WOcrCR0tJZlpYsoTMTdGvBpR6BqUZeLABZCsNlC5oq166Tgfwh32yuQl6yx3iMCQxGZHWdDJDYis63Q69XsrGSB2/u8Ky1EweX+dcuUwnyFmvljHOLJ7tUNczSMdDiMISQ0ib0M/BDmgEFuneCst9/BSUA0qWBGn1FTkNUkhq1Veznp5j82IUaedlx99w+roI5vzO160O3dREjFfTgaH3Jp0dYLzsctu261nKDnG2C73+ZPcdCJWFrSRTwTQnnDOsjoxQ1svF+BkN4lu3PH3HAzTvuT+k9JWfIZu4iuabfx/6ZpULzYj/8FcvEp89yMT2j/GEa/HWiTv4k8UvcsPojbz3sn/PmY2YH1ufolFN+YB8kV3330vrS38OgAhDkkcfJn3mKYHTKsIAACAASURBVITnIxwbEJh2i+z4MVbO9rmvrot95TV4b/2n2NfdUKgrXqia/HcLWS7jv+Vt+G95G9nxo8Sf/xzJl79Idt99YNvY116P+5rbcF51E7JW+1s/TwjBrbuHuWVXnYdOrPPxh8tcO38xPxJ8hR/b96dUa13mn/H5nv96krfv2sFj37WXP+o+zwee+U/82nMf5Mbxm3nrLT/L/3LwN7jrmS+ydNMv8EB9kgcWv8rDSw+hxx9ieNJjm3s5dnQZSyu7efSR9c2+c0ZKDnvHSuzrA7aLRkPGyy7ywpy5EBfiFR3jnuC5FDJRyGlvhkFwyi3obKGT4yYthPRQsoavu1ioAX3Pw2WUBqNZIeKRqhBLxIzaI5zJk8Jwt38vqXk7KGUtEt1lDYMjiz4ZS0i0FFRqkI0eoB3lsCIwlW3ocgvRy8Eyhez7Sg/X65BkCQaNlekCtCmN1+xS3+jSKVcQpX7PV180oVm+iHpvhXJHI3IDuLSdaWKzzpI3CcAlozs4vGyYPfwMblPjBQ5WomikhZfUmTSisfE841GbceFhrRdjMBzHTOYptsopOxlJEGN6KwQby2Bb6PEJdKKRzR40e0TqGMY6B0B+SqLnn0c1z0JeUAA7YxYvTQpGFm3cdsZcJyLLWwSuZN2xQYLIDPuPvYhl6X7vjMF0wDY5ridRsU8v7aKQhPEStp4q+gRXnucic5xjQiOEQhjI5/qMm/Pv6UJgNHjtCFkJmfQn2NBHgMJEedMzLreKZH1TGkVbISJZH8yjgbKdAYEciEWc/3spBCYtAHtSC2EkYCk6x9iQT17zOec65+8W2fjM1lx1bba5muXWKmtpMaauSIk3K3hSkLs+gpiyVaKkK6BslkiZBjayCLsH2PJlxz+qJsHEVOwK9dIONhafBqAZzjHmHSb3ArJSDZkUVR/t2uSODQIsuQUALjqbog2sxVuJq2dK5KKJm5hCKEWDLVJ6OGTCYmV0jFr2dSYth1MSni9dzrztsVudIc0M9nkI2NGrJNQAgaNsGlMhUc/HtGD8XBcPQVuHAxrxdFSiEbRYciROM+rrgEKvElKpVnFl1l/sMH2PvZws9LE6PXIUqbGJfRe3U5hMj+cJvboiaIGRktwxtAIbhCB1FZmjIC3Mxj27UOS0na3WijX/Gp5ttslKFly0AzjGwoERHptKeHa16KSLhQVG4BKyFGu6GsZ3jhX6B9JCiEkQzQH8qGV24YHn2tCCrtxShrQQjM630cIraMq5pp7ZKFWhM76XtLXBQrQ8AOAlLBwjCaXNRt+7rNw9hdef41qHSCmR6RoVbZjTEetWSFQOOHdgisXUReRreEkTm3WyvrrqRjdhaKDfZvCsnCgYJqrsweqcg7S5eXn057GNk3YJshxLhsT+NloqHfTPifTlFlSFUTVEmcbqH7svK8BSkbsZ8F1N2TaUXcl4dQvgCiG4ZGyS+xYOFf/v/75sldhT24MSAikkzd7m9S0GCxmvWJl9kbQJH/ol/Of+kHj7a2ne+RFwQtJc86nHz/Lxg6d4lXiMbPaTPOHavH7sFj69+EUuH76Sn7vqlzi0UKg1SiH47e+5nAMTN9HbXqfzgfcjp2dQO3Zimg308jJEPUyagjGIMMTafRHl7/tesp0XY1287x+NyuJ3elg7dmG9811U3/deVh5+jPjL95Lc9yXaDz0AQmDtO4B9/Q0419+ItXfftxRcEULw6h11bpwb4tFTG3z8YJ1Pnrme94x+ln/+2ntonQ5ZPrTI9R8+zo07drLxhn/GPRd3+eLqV7hv/l7mxsr82irsvO+9vHn2Nl7z2l8mvuxneGr1CR5Y/AoPLt7PqnkEa8Ti5j1Xszu4AS++lLNNh6dObfDQ8bWBl6RrSbYP+cwOBczWfaarHqMlh9GSy2jJoexaF0D/hbgQ3+HhWBKZQUpGR/fICYEYC0Uq8kE1RKDBpAQqKJJRDKEqQb5BXvDumLBtVjBkygciaiJnQaq+sauFLVxKqsaK8glNzBXGJ0s9Oo5Llri4OIWgQT9qnkNiDPrsWeyTG4S6g41mOSgz3j1Odz0mFE0wKdN0GLIX6SZNFKDW2lwlMvJSQjmXWP4iqnuWCId0QTDcaxKs9xhvNlGmx1Cft7WtKtjoGpqmykK1QjK0zND+OZZ6hULbetKgbjKWki5rseQaOQSpZnvms9wMWG/0MFKjbIm2S2gRkJUDvFddQ7yxytmpffiNJUKrQ1fEjEY23VARj1mcc9rYQhIGPkf8DrQEx7ZN4Z5aoKtyEk/RKztk4QRtX1M/J2i3ffKqRbLRRW106NYCojhDSIXVT6s8YePbilrnGFHqI5snqagUq+bRii1i18coh28MYcA2HhaKsnQQzeZgW2hLkkSgwxor2qORlhDDl4M+gXF8aK+hmk2MLOTvAWTeIzvvkSCFKiqgg9/1qaBKkQiDzjoIAdY3PEa0May2NZVtO3Hbp87b8nLpxUBktIyF9D2Ie0CCEoVgyfkeoefSBjO+ggxyz8NkEqE1sk/5soSFLZ1BpSEJCqCryqMYKcA4CARGgtGSUI0h1LkBC1QKSZILmpFkSyZSkkuPqF/PijLNrB3wDBmLgeTxoeNcsl6ojfayFs5m/2HoQOO8IxaCONXEUiME2EYBMTKskcQCIsAYyv3KtmM0niVpAl1Rw2sUVZeoVlQb6944sl+F3ATXQggi4eOTkkqnn5AX++NKBycT7Ehd5l2HPLTQdhtl1xGiUKBcHS8jzAxRpcRs2WXfcImFtYKVIzD4skbW7/haiqsEOsf2LLoiI9YSH0iNhYwiiBK0BUlqaKzHnF7vsd6o0/VC6sEUhiMIoJTbdH0byOm5IwgkeX9BIeykuI5Fo+cQ0sOLEwSCugxpux6JO4FuLRf3tT7uOGCqTHkz3JO0KXdOkSWFb54THsDkbbQQmKigFI9Mz7C6osm0Ik/bdJRPnKRM9CpYtEj9CqOhwmovQmJhnDIVN+tTPsHYIcYbhs5ZHCGYdYZYo6iyUcxePOHQ6y+oJcMHoH0M7b3cUinNt9CSNoZRZ5ZYF+Nsq6KXEIo1iR2VWebKmzNTbm0ADGagKFn36uwpX8pSK0UbQZYX79h8UMj+rPlW8R0H0GR7Hvfo3fhPfATZWaR7xTvovOp9GKF46Ngav3rfUU6t93jvxAM85H+aZ1yXW8du4gvLX+VVYzfx81f+Rw6eaPPTnzvEaMnh1996KTM1j+4nf5/uR34L+9rrqbz/g38r6KrVAjb+gY2eL8Q3DyEl9oFLsQ9cinnnu8heOER68EGSgw/T+72P0/vdjyGqVZxrr8e+9gbsK65ETk59U5AjhOD62SGunx3i8dOzfPzgNB87fRvv2/6n3DH9MM3TZdZOr1L+nU/wvUHIv7zzDRy5ZTefV0/zz8QD3KVq/PipL+N/4kYWLvleLrv2fVwzeh0/duAnObTxHPcvfIX7F+7j8dVHkEiuGruK733NzVw7fBNrzYCjq11OrnU5td7jhaUWXzq8jH75sxHXktQDm7JrUfas4u/+v0uuRaX/76pnU/Mtqn5BrwwddQHYXYgL8f9TCAGTGZxS0PVtrK5CEYPrkNig8h7CxFjUCYSLwR5QrERfXl0AGIMlBFd7dZ63ywjWSHNN2SpgQoa1+UoMgqBaQ7QkPRkyqsdJU8GpoSEsJ8XKFGWrglaSTOfI1hYwUBQKd83hEosixWiL1HbwVBevkaMzQWukTLTQA8tmti5Y7zogFdp2yYRPHA4TuedQExZptUbPjJO4o6yn80yMTrDe1GwYj5Oijgoyyk6bzC5YLiaKybvrJDrhWavHjOMzEgRs2A6tcpVjlYDMPopbEXR0idKKi++EIAqD7Miu0R4uczR4iA1iYmOojgzTyk+jPA8v6dJzNfV+35OybNbmKqygKKk6qWwQGpsZL8TzM87USthWTq/kMNJcQWBIfZu1bsa2rIvSEaI2AZ0eie9wTZQi8v6KuxKcm6mhz0sJ8uoOvNkVOLGBSnNsN2AsqeDGKXJlmUQGFEikeH20ewcn3Gshz1Bt2BlQVCeT4jsSSlhuDeJ1hE5ehqGMMbi9GNXLkIgBY2OwWm9XaKbnoZHB+8ASNqs33k546G/ALPbnVRFZn5E0Zdocqm5DuqOY+Ra5lEgj6OmtNf5ExwgB7cmAc2qE2fouFnunmHi+X0Hpf2g7znCsEh1vArc/78ftaZpSoXQXG4UxRb9eGlRw8nMoaUB7KDw0AikEI2qMNl0Qm6ImW8+6ShiA3cEuuVh2h9VkHpFm+GVvMDb0+zah6JOLax7OUkwgU3paMdEdZ7VzBs/fIBUpmaPIY0OufawswhYST0qsOCFVHoJeIVDi5xihsKTAEhap59L1wkGyreKUjggG169DQj1apa5TtJ/jmTF0kIPSdKpTxInEoUtMSuZW6fqVzbPHue4ZhFB03TJOnuEbbzAGjU6Hl9KQy8eaVIwZ+OVJDardIBEjRGlON8lRqea+IyusxSWWUsnlkcBCMB4PMebFnL7lBpaax+HRwwPKNkDQzkitkNiOqPgOU0ISd4ouLGPZNC69htH7nyVJC4GWzTMk0OyJYzayJpHlsxHs5KLSjejOwaKqZq0zVx3nksmbeKHxGOSaRDjoNEFaXgHiMXjRIjP+KL20RZJkkLS4Y0eZL7eAfj+m6C9qzOLhSZu50g42Gqe3LgIhyft02c0FEADbCHqbCx3n1bKkUIw6s8zHRxhyhliI08E2bXKkUNTcoodTDu7rfXaAO8JCq1gI8SwPW1qkecKL89nW6wbTWKNeCT1osj1P7c/uQkQbyLTgmSZT19O883dIJq7hq0dW+b1HT/PcQovZmssf7bubX43v5UXH5YbRG/jy8gO8buoO3nPpz/CJx87x0YdOcvFYiQ+/9RKGHEnnV/5Pos/8Gc5tr6P80z9/oSL2CgohBPa+/dj79hP84A+jGxukjz1CcvAhkkcOEn/xrwGQo2PYl1+BdcVV2JdfiZqd+3+Bl03T66fOzvLxg3v5wMnnePfcZ3nT7APE6x4rC2N0/vIzbP/zjH+37wA//oYf4Znrh/jVpS9w+6HPcf1Tn2D52U/x1dnrcC77Ia6cuJUDQ5fyjr3v5GjrMPcvfIUHl7/Cbz7/IeBD7Ksd4OaJ1/A9u25lOtwFFKa2S+2Y5XbC8uDvhLVuQjvOaMcZpzd6tKKMdpzTTfP/5thYUjBWcpiq+UxXPKaqxc+OesCO4QDH+tsK6BfiQlyIv3sIQpFiYRP3HyHSKQMdQCB1hkLimKIvzQJUnmCsrdSyqBwYbHKmiDmKh2u6RSItJVJY5EYOqDC+rUgsSVzeg1i2kEgcY9MNQh69eCeXHD5EBZe6b7G7bjO6CtGwz+kKyDhjafski94ox32JkxZ7sU00eWm8RDvy0WSMuTWUFExPGpImZPYoKzuvwQhF3CnTWDiNPV5FpjlJNkzkjrEWtYinRrlm76X81UuHYaNIYjKzRf2M3QqX2pOk3RZPmhb3pvP4SDRVTjtrLPuGIdHhybTDCbNGXa1j7BEeOffXrLUFmYzJyQicPuiUFrnJMRiUHRC4w7SzFm1/iOHOarFdbwFiV/oIDSXpFhqGpjiHkfILwQpjoG97FQcp41HAWGU7p3a36OQBsk9LNU4JV9hY0sY+7/gwgvpQyIlTkth3cCrjBBsb2BtrMCXJ8cAPICqohGfm3oxVqpK9cAhKFUyWQaMxuE9r1JY65Xm0PAEEqsrokeew8xQ7M+QOtINt0HkRBLjKZaV+GYmUeMojyrfEOjZpkuYbFgYBYqtCVm1BS4ClyEvVQgGwEiDpvgwULfUWGXMKhcLMtYv1fyFB2Jv2eoCgGWUkt/0AnVTw6uGCpidNji9LOMzT2jdL/akWFQum6jmry7KoaAmfmZpHtOIQWgIjw8JUnBQQmzqMKKnIEcQ1l2ykjG+bQdJbtVNG5QrJcUnmWpiuhTUxzLJMaOWCUAo8MuapU7bHcHaMMr14mkUsBJK28ZDGhzzHcs6XMiminPls2CGT5RKBLRGJIHNstGVRuMMZkGbQ0iD7YEf2bSw0hlQGYJpFX5glsTOJF1RYyUt48pv03AuJM3Qxu/xZzrgzsHCiOHcU4v5LSYLXS7e0GXwPiNixbQR3LUe0JBkw34xxXYXrKBqJJpQ2JdshmAixq0NMhDYLHAYknZJLVW7J8CflCujmVt+ZNhilMLaDkRKBJMr1QDpDGBgzkkp1hIacYZ93MaQOw/Z2IrNBV0LJVYz6Re/XlLuXjXiNFU7jWJJ2MI3qLrKjuoCMp5EIjB0i0g6y2adLin6f5XmLXztLu3ArF/Ho4mNb899kA4Dm2YM9ZL+pcnBTXdW1WD9fB4RNFqIhy80AKDWyRXaPhOws7+JY68h5392vONpbmhTbg92DinczOt8cpfhsO+tiqW+t9P4dAdC0WyPa972IuIEuTZPMvJpFbxdfeGGZz3zhcY6vdpmuevzsbdNcO/+L/ER2iKbrsbtyEQ+tHOS7Z9/Gv5x7Jz/55y9w8OQ6d+4d5adfvwcv7tB838+THnwQ/59/P8E73lnIkl6IV2zIag33dXfivu5OjNbkJ46TPvUE6ZNPkHz98QFgE9Uq1v5LsPdfgrX/ANa+A8hyUZe+fLrKr7/tUp5bmOPjD1/CB48/z78duoe3Dt+P3JWwtrGfxuFlog/9Chc5Lpfc+hqsN/4eD3nPMvHkR3nbsYdoHX+YeypVjs3dyu5db+O60Vfxg3t+mHdf9y6ePvN8v7L2FT76wm/x0Rd+i13li7h54lZunngNc9UdzNT+bmIiWa5pxznNOKMZpWz0Nn8y1rspi62Ic42I+4+tstbdWulRUrBzOGDPaMiesRL7xsvsnyjjXgBtF+JC/P3CGCwDvojJshgIkNLGCAtIil4nBLFlcfLiSaY3AkbaWdEr5RW0sBN2mzTRjLdfohaNsc0Eg+QyRTCahyyUAgwaIQS1wKZrMkI85nfto5JmZCcLufvA1RhRGBIrKRk78gwizRC2RDsK4wqMKVaiAweyFCbLOY4/SXujgxZ64Mtlq5zttf1YvXOsO/WBEEjXn6LjTzECJN4YvWSLGiSlZLY6giNPAClD9ixwYmu8hKA2fjUza2dQ+TpHdYtUZ6RSMWFVCNOI2ECoci4205SNJrUnOO3tYZFl6C2yr5pgyZBt9jASuHrXv+KEu51aOMnE6mEe6BxBZg1GvITnpDMwVQbTp8wVVYzRksuuYBupWCFve2gpKFkKmRhyJRmmwoSyUMJBSMH02DT7Z95I7Prolz7DdeFFZGIawZNbSKefvUZVD2MpxkYkpZ5GdQpz5EhUsB2LLXBuDVb7DQrTbkGWYukMjV2IkGwKsBiw119ktNElduvEVoUNDI4lsfqr/QZJwxmiSooQkqu3vZFe3uPrK1972bRVwgahSMbGaI2XKT9zBK//HAhkhZEqZDUJbcjLJaKbr2Fy/llEZ5UNNUbmFT1Vgx0bjLBgjiFisY5AkCkP1c+vjLK4aqJEyc1pAeXuaYatM4wOOzwZgGUswOBJn7o9Rduk9FKNkhLHUed9x6bIhyG3A6T08W3J8+kaDRJyasB5z1IBpfUVPFGnbuVYs0PYc9Oki8tkyiaVGl9LfKlJ7QqrE3NMN7qMRsP0pI8VdQgpVP1CmSGNwBEKhAP0kAiqlQp1r4SR1pZOjKFf9dFM+gm2yDmUVmlSAtMkNYZIJ8Sy0hdUaVLyR2lVRxmeHKXXOwfrEdl51gqDkZYKT9o40iIdHiN1Hew46Y+KwZVDnFjt4gBtQrY5o1T2VNgebOfwWqd/f1BcPlXhsrk6X32uSuswpE6VJBUDsRtHuYROQCvpoaXAczRjZYe1ZnFNKakQpnh9nhvQmhvmhlhXYlBBXTdpweBzApwdb0CsPsp2ATKWJClMenOci14aAD/P8thfuoUoyymrUY72fRMRDq1ghl7gQwRjVpnjYQ3VOgf5KuNWmXZl+8vm+aYjJIDyhrf60YxBm7yg2g4W7QVKOrDZk/YNUvk132YxlmhjBnRdgO11h8BV1JyhwXd+Y2wypCp2hbTvSP+NQG4zrrZfAQAN26d59Y/z4lKbJ840OHjfGo+degRtYP9Emf/4pr28YWSV5778g/xIkGDZAb5T5mjrCO++5H9nTN/K9//hkzR6Ke97/UXcdekE2dNPsvGLP4deXSH8yffiv+Vt/6OP8kL8dw4hJdbOXVg7d+Hf9XaMMegzpwvA9vRTZM8/R/fhBwevV7NzWPsOYO0/gL3/APt3XcSv3nUJLy7O8YmvXcqvHP4e3ibv5V9PfJHdYyu0O8M0VudoP3Q/8d98geGJSeSdP8TSTZOkp/+Yu049gP3UZzj8/Of5fKnM0vabuOqS7+PS0tX8i90/wL/Y/QMsdOe5f7GgQf7+4Y/ze4c/xky4nVsmXsPN47eyp/qt/d8sJakFklpg87IH0TeJKM0524g4ttrlpaU2Ly23eeTkBnc/X7jV20pwYKLMlTNVrpiucvl0hdD5zrgFXIgL8R0f/aZ3kRtMmqKFLlbBUYXEtJLYRjCi11mztjEzrIlOFYmWVJtNDArQyLUW0q4RnMdjyzSMpy6HypeRmkNsH/I52yiUyCyhSEanaacZur2MEjnWII81JJmGPEdrCVKw5I4wiqHlz9DMTlP2wdJN9pWHaAmDrbboPSuqRiOc5LuERSgd1voA4OptVU43mlgdD9CIcASTbu1vaNtIIfCKAg2BrLItnCXOI5aigkpnCxslBFdadca1T5ec7dVLWMpLLCUJy5UD3BS8yEITgjRl3tlJqfRqZtx1bh97BoEglA6+LPq+YuWyZ/bO4rPXjvHa0sX4tPj6xiKZUOepUwoybVgsTwMRrpLsro+Q62FOtI+RWx4ybWHFhmrjNMGBG7BlTl4tc7M/xtDUTeiwSMKMV0ONX0XY2VoA6w87UPRdgcCxDL5lGOjxb0rsD3JC9TLlRyj6osg0sSkocY5lEZdDvG5CkhVVsEq+QRyvsaJ7GGerAgCQKwWkoFyc/o+SFlpvJfqqn+Z1d+0glyeLz/QslBI4wh3QtIadjFUhEVIReA6LyT60M0dWybcAWj8uH5IcGJak0cUsv9imA6wGO7CUy97xEvW942TxJq2sWMBQUmCHPhfXxjjKC+RGYOshEtFCia3KpPaHkb1iEUKGDiQZkQjwlU0k+85hskh1G2YZ2F7YD1CMuasVu6w1xkxEOxZUjCkqP0IwmTpMpg7oYZaqJaRbIpq6CBEJ0uwFhsU606JBV3ZR0mLO6dC2yiQGyj4MlxxUxeVZISj7LjIR+KqMkWW8PKPUPktV5CSyKLF3jc+GMYzbisgJOGschOVu0V5tF19ZWNIGokEiDwzAhEEx69S3FgQqIc5KRsmp0RKStWSabpoy2Z8TlpFMmiq+YzHpCpZbMH/pPu4cL7FvssILZz3KVZf5nkWvXMUa2eqprHo2qY7ZtCQ8H/RYFIA0Hi1EgoTOCR3FKpBJn1z2yGUhJpLVdoNXYyKYZKE3P/j8+v/D3nvH2XVcd57fuvHl1DkA3chEIBghAswiJctKFiVL8o5sjz+2d+SRTY+TtJ+P17Y88nr8mXHalS0tx/I6rO3VSLYCbXlkUhIpEWAACRA5ZzQ6p5fTDVX7x33v9etGAwRoBcrqHz79wXv31a1bVbdu3XPqnPM7UZOJukAIhWzLZWhoGihFSlvPvMoH1xWCqpHCT68nJn2ojSEjHVjVI1iaQXd8kHI1mOe2COITXeUTAhLhLjpEhEEtgYZP0W/Mp+bmhh3H1gVSs4jaxhLrsiIRNtgWznD+nGxtEkQsnXgoeJZCut0o2bTYLzzXzRg0QzeI28F91YXG6k7FpRygZGtJMKqzXA9CqeUM3wFmZorX+umGsFwcl+tLPndgjGzFpeL6TBXrTBfrXMlVqbrBDVudDvOWTV28fXM3w5kI+snP8zeHf4+/SERJ6lEKfpXeSC+/sPE3+OcDIb5+eobV6TC/987NbMzYVP72r6j+v3+J1tdP/Ld/F3Pzlm9L27+f8P3c/m9n22WxiHfqBN6JY7gnjuOdOI7KBSZyLAtj46ZAadu8hdraTTydM/nnY+P0zb/EB/Vv8Vb9AJrvMzW7hspoGufcVLCTftsdRH7oYWJ9WeTFfyQ5cxwNOGuafDMWY2pgJ2vXvZd7ex4gZgaWu7naLC9M7WHP5Lc4OH8AqXy6Qz080PswD/Y+zJb0tgVa528j5soOxyYKHBwtcGgsz6mpIr4KrGy39SfYNZzm3jUZdmzoIp+vvnaFb1CszPnvDV5P27u64q9d6A2Gsd/8JS6MPMdF3WM8biKyMTZ2raZQmqBmzIPvYDgSPzzIvp4Q3RMF+kUNzbDoc0KE52Y5H7UQvqQarZCaD1HuXE9vIkpauDjpXqpenm903MlbEicZrEaZdE4S7u3h7AHFHz+fJyp8PrBxAL0zwelhmw1nr5C/mKOelbx7160AnL/yLC/3CtRokW+6Np6hiHZ7rKOMOTFLLm2y6/Z7OXfxEpphU5rp4VhR4ydGv0pnTy/7ixmenkhRObUbYQoeeVcKoXwOjHtUpYECohuilE9mKR4tkrr/HvQYOOOnQfloUY1QfxArE/nqJO/eYBK3oSsiGClIRgsKI96NHu/gfxxzeV/mHAA71qY4Uuvjn8eTaL7Do/qBq+7B5455aJqGruv86KYgyP7X//RzfPpTP8tEbA1ddp1cWuDldLSoZO94iEdGT7BKeYwUQNMNKltuYZcuGHTLzIVsJg0DNzOIZW5mayecOvACX9l7jryKkc3O855MB5nufurDm3lz5wiinsfq7qDL6mNVOMnR4xe4nC8yRYlHI5JoPIbsyHDhTBitS6d3+gh1M8FfD7yDl48eZrhWIzmwiv/4UJLTL7/M8OQYJlGSmV56hjuI9Lgce24fR0aLWB0DGE6Fs9UYs9s81vQM8J6uJMWxCCCYV3OU7FNcnosxg9CV2AAAIABJREFU/OCv8eCDD/PEs3/KK/v2MnrlCnk9TfVcoPyZ6jyrb+vkbQ+/hU2bb+Fsts7OydNEx0+3xvcbobdzJVzAnzyCVwzTk9mOMZyidvgUxWKRW4azpGWJdbF+tj3yk8ipo5w5P8Lo0XHm+lYjj1/k5MF9/MLnPsvnP/8lXnhhD+/2Jkh39/JyfhTbK/Kb//l3OPzNf8L2HCZ630s+e5mqV2U+l+PKq5PIWpG+iOKYV2D7+n5uC/dwuWDiR3NkIhmOTeUIi8PUzE4uWfCqViBUy9GvR9iWjWFIgecM8P7hOcKRCKWoYjrpUMj0M3ylTKVSYcZP8OX5OzkyfoXb3Sy3D6winRljsDxLhxsit8VjOix5k9vBfsMjq3pImj5bT5WZiKc4Oxxj/Y47MCf2c3KqiK3rnL1wAt+f5MFZAyHSRNftYj53ij3uNLNXiqyZnEH3dAqeSSKjM1ess6dXMZBaxUMPvJmnzuyjMFfCmdHRNR1n/BQAHVqcj2xczdhskX8sbya+9jaSiSSJymXCVp4j7hRl3+CtwzHqc/PcUqoTy3dy6cwpIrOj1FfF+dt4gpmnXmXv3r38H3/9m6SOXMBNDtNrpuj1TvKlZJxStchDSkePhXgxbXD3SInOsEMmtYEplSYyeono6SkyW/vo6erhq8YmkknYPH4ItzLHyViVsWKZ+/Uqf7/3Cs+cdwivC2N1WnjFHpTqxZk4i9nlkdyh4867zD01h5HsCWIsB27BHtiMX5hET/Vg93rUx09THwucRyPro9hC8ivhlxhLh1n3gY/ziU98gl2DOmtSki7H48WX6nzroiI6bPG+22NIN4UI1/jHchdSSapf3c97b7HQNA0nFKIwZGP7cCByK64ZAwVKSma/egzlXSJ1X4rw2gepXkqj3FdwZ4INjsKrBRJ3JVC+orA/cMFO3hN4F8S2DqGFUkx+8QLu1Chm5xCaXSY6LAlvfjfd4Rzr5SUG7QrlI+M8d2WQU6dOLfvO+a5vn1ddn384NM58xSVkaPTEbbrjNncMJrltIMkdAwk6Y43kkLUspa/9Cr9R2s+RRBRbsyj4Fd4++B4ytcf43784g+uX+PC9Q/zk3YOIvc+T/b//BDl6BfuH30H0Vz62kqfsBxxaPN7KuQbB7oacnMA7cRz35HG8k8ep/dOX4R8+B8BbEgl+ePNWqms3ciT2Uzzuf5jB4h7e1rWXHT0HcG/RuDLSR+XyKbw/OEjOsqnvfJDIo79IOjFGz+Un+V8nj6Jl/4XRU1/jW9EYY/130b/+/dzb+zA/MvRefmTovRScAi9O72HP5HP808iX+eKlz5O2Mtzf+xAP9DzE7R13YmjfnsezI2rx0PpOHlrfCUDF8Tk6UWBfg23y089f4tPPX6I7brNzKMWbN3TyptXplRi2FaygDcI0aVBvIAXYQmJqGlURRTDfKBVYvEzhN2gNFFITHF7tk7DByAsMwJA+Y8UQse4gRiff0UO8GWie9Foh6xcjg6wKxfAoglMBywzqbyRQnu5KY1/MLWpn2BH0zIcpFArIsEA5oKSLquURY3W0dEBv7kqI+hpn6gl8VWSyBOWQouiBN3upVZ9SoElF5VARtkYDIcY1mt1tQNJMHr3II0DBZFlSdKArojNaaPK5N+JlaqWF8W3sqCtAqxcgsnj8T84sjuM4Py8pOgKlWVRHHbgFdA+iI1XyiYVYnr1jPn5UNixFilcrUe4I1wIWTOVysSfEoAsVgtgdlFrGcanRVaUR1koUWE1HdwIz1YNxcRQtrzDbwoWVWrB0eV0mF/W1KAHm3HmIDhD2PVStTtivEvarSGPBO6LpbiUV1KsVyr7GU26MR/J1ejpi5FKb0ccCIgKr+Y4Qsu3ajV398xquEQyiN3YUIyqBTqJWGmUY9CYE9fEq7RJS1ewAiriWST0cxkumab4GAr6QZh6oIDZPEwI3nGRsKMp9sRnOihpL0Zwiz8/HeCRZxNAMIutMfC2EkYWM2cdYZh6zsHgeS7+C4VYRYdVG6a9hSIUyFijKlZunqsNsCBLCJx1ymawH6bCdSARFmSkjSZ8IM7cmTWlyGm3Wp2xaoBsoR6Irn6iKAbOELI1elWa145DK3I9T2o+vbLqUBpSRSGTTbAxETYMhrYuL/iH8NnuHsaaXkZKg+JLP/vM+xwyXBxwdc+FUlNeMn1OtwapfCmGEFiyKji8YqSc5lhdggKaCcQjimBb4FOpKw0PnRHWA+6m36lNOBTkz3yqnlxOcDEvKI5NsHZ6nai7M9uY0kghwNUQIogZYPpSMCHOaRgbIrR9gfi5NSmRbdEZKgBA2kmprziysD023YIEsFaheDuFMB9YvLx9Y22XHIKpeCZYRKSifyuIXdT6wKthQt9LBJqA16zK8ZJoJqZg8V+elkeA6rgtzdZ+kFGjuwqZz1YW5qqIrCk5FoibqxDwB65u9gNoVcGYuIXQPd87F6svjzEiEmF5035xpp9WHRWg8v0oGg+nOXsZIGkACoTfoSBrDUXkNkrfvuoKWCJn803+45/qFlIRTf89fHf0jPhs18EPBJFwT28iA/36e2hMjX5tk13Cajz2ynr65K5Q/+ou4B/ajD60h8fv/J9au+74LvVnB9xuEEOh9/eh9/diPvhUA5Xn4ly7gnTiBe+IY3skTGPte5k4puVMItLXryW94C/+Q+XeQGWNd4hW2bjqBPy+YuxCn8NI3ULu/zoVwjGcG7+TkqvewoWuKt6jn+WD+NFb+WeZOf4tvRiK8GN7IxdBbSRv3EDc2kDY28bbwT5EXR5nw9/HUlX/hKyNfJmrE2dn1AI/0v5m7OndgLUPt/HoRsfQWs+XjD6xhplRn76Us+8cKPHNmhn86NkXU0rl/bYZHNnZx73C6Lbh2BSv4wYRmmZCIEcmC8oKEzwpJXYQItZUrpSMYmsuUSGJ1elTiMTSlyKY1MgUNA58cMFuxMXWDbGcvKRPWag4V3eOkpegNbaLuFDGtNNvDUca082jTp6n1b8GJ2fQPDRJ2C+RT4Fl99DgLO7BSgOlrCN+lPhvHyLiogiCacyDrMesKpNA5Xg5TnsqgR8CdyqKAYoNrQDVyjClPITxFdKqG76gWCUDlYsNiqljK2I5oUJPJaqCYQSAYLSkV5IZrc3Nq9zPKViX7c5KoCZu7NCaKisNTixW0feOyoQwqpBM4Nz5TinGfDDx/zlRtEBKxZJ/JQaNcN8EQaEriGAIcsHHxhNlgh1vo1ytKMRSOokWTzCTqxLNzgeCkaZj9nSRsQcgvowAHk4iACkmgSlFP0S99ClaQe6tdWFyr1cg5BQzlUVUNohArjdfTz8nqBY7M1bC0GFEpYe4ieo8JrMbXQ637oAsjiH9qS5zbdLsKwvEaHZE+qgyhkTCD2ioUkqi1zJqu6QiC3G2OGSasR7h11RDfnJxnIg9DokqaMkIzUPF+3J47mCjnCE2/HAjfy2R2asip+Eqwe8LG7b0bOfEcnl+nNxFjtlKhdyCNdeUSF2CRUG+4JcKaT1S5FAjUkv7CCFON0B1bh+GYou6DoUnSZjDR1puB65ilO7gSilqYvsZEkCGT0aEu6ifM1nUyokqUJJ1umLAymdHSCDtBn91FtmcXXqFEJQ61skLmK8gF/2JSZpiItDGlS65xDUNa+OkkXiXPWL4HWZ3Fa3caUKBqEm/OQ/UoBBqGU0ZWPZSjofwIoqk5VxTjboK6LKHVi0TdHBkRIixLoBkLTr160B+9jSb6tOdxzpTI/MKzY9dsZs5IwnoRz0wAAuFqrXYBSBXk9dMVpEWEA0PdxMfnqAtBwQ/j2Gtpxm81AvCCNkioKoOhpKA7KkjVXVTY4vKlKkYGUJL6ZB1hC+pX6ovmSe3iAbRQDD0SWKKS7iz3J84CXYvKnZ6VnMv7/HJkHbVzNRiMMl6C+WlJ3Q8a4kw4fK0meWdHgROzLtyzEK92cFLxQwFnG/sOu3TFLfx1wXnVszrO1CT4LsoP1r/iK69QPFYkcUdiUTuqF5f3Nmq5qbYRvKlGokFZDaz/rQHzJNfDGyIAZbwyxsnscXzlMTP+Ii9PPcdJzcOPBRNuOLydcOURDr/axz5P8dC6JD+5Y5CtzhzVJ/6A3FP/E5FIEP2VjxH6kfcijDdEt1bwfQJhGBjrN2Ks30joRx4DQFUquKdP4h0+hHv4IPFvPcW2WoPOeWiYsVt/FjVkYt0yxmDxEJyZIHqpxo+eew7O7saL2kyt38CfbXgMLe1yq/tN3lE+wvtLByiLg7wQDvOsNcxu7z5minfg1vuB94B4B0b0DG7iGN+oP8szE18FGSLi3kqXuJvV9u10x2KkIyYxyyBi6YQtnaipY5tag/ut5UCOUoognjcIdvUa/0sJnlKt41Hb4G1berhnVZKxXI0TU0VevDjP06dmsA2Ne9dkeGRDJ/evzRCzV56vFfwAQhP4MRNnOsoFw6c/riM1DSsRJ1uxKQ046A6s9qN01Cq8ku8gsq7CfCiFLFlYTpXigIfpWTgXFdRd9lXWcU9kiHEjwU75Kv1Whh9acz9Dg+t5fs9z9ALp9Xcy982/BMCX4IVM0vEwHXMdoGCEZ9HkggZUiwj0WhFVnEF6XYCLLCjMqsQFCp6gmOnDcS7jzVfxZqt4U0UIgyznELEOZKXBnKggeaGKoRaEDenKhVgOV+HOj6BZC8Hufi0o6867zJcV/3LW4+0bDE7NSp675PPQsI4s53g6P4xfXHCvE41rKAVIn3PzgfBypaAoO9eMxGgpdkpBWeqMFg3qcZOCaYCsXWUNEwJyDQa4stKoG6ApwQxpirpAauaiULEaUNZ1LGVynlV0OOOsaavPH8ggz11GaYosCeLRYUp0AJepajGmS5349kLqhCYsDTylc3A2xbruQNbxQ32469/GrPc1fCVo8gjq0kc0hDlPD9HcrvOGulFTYlHO7G4tYMZbROmtAjZBIQNSGb+RKjuldwAjVLQYmvJb9QgUWiMf2JvXDfPSkePAFJNampwWY2PDcmdk1rC+eJ7qaGD9Wk5BG7d1jEQETeQpOBoyMcjMwJuo2QnuvhJhQDc4ZItWnGEj0oXZmoYvJZYOfWadQqNPUbdCxQJLwlxExxBgaBA2FoRd0ysDUUBRxmbI60VZKUqijiCLaG4GKNXYYwjenCnfRhkCjBBSGGjdPSiqeHEdeyCJvDSPm1+w9D0Y3YAZM8iveQufOfAMWBUKtkFfxSSc6oGGpVP54AmY1CWrAFwVWM8k2BM2m80tvHB+D9XDZyGykHcOQGUXPpvZy2hsxRCStMyR8isc9CugJfCFybq5LmYr02AF2p1fV0yN1vFKVysCzXG+Ug1jVS1ERePsRpP+kI4rBDVPx6gFmwaObWL6gUI15qfRjD6gQScfUThVkFqQC26iZlHzBI+saSixs2Xu6qrw9LRHLT+JBjiXa60wTaUWdPLKqeeJ3fFO1oaKbM3M4kxnIdnFq/MhRsujJOwQ4696WLbB71nd+Dmf8WJgQTtyQaI3afQleHMeX5h0kVLSCchakMcuV4eCA8ezgroPoyVoUh8pfzFrdvlkGVm7vhLVDr/qI+vzaJqFV5xrHZd1iZf1KL7yDYz+BGKTju0prNxVO1eL8IaQtP6vg7/H/vzB1nclDEy3n6izg9nJrRx1kyRCBu/c0sX/srWTvmMvU//9T5E78CpYNqEP/jsiP/UzaPHEda6yghXcOEQkgnXHXVh33AWAcl28M6dwDzUYI7/5LKpcxgEq/QOY2x4k9MMhBqNZnNOHqJycxTx2hIHDxxC6IrQqSv6WXbgbMzjWFPdOH+GHKidwOcGrYZujA0NUVr2dns4fJiRvJ1d9H7OVKmeKB7lQ28usdYDLYh+XfQtvbBNuYRte+RaQ3/mUEb5U7D4/xzfPzqIJWN8Z5c0bOnlsex+d0W+fZW8FK3gjQ0/EoKhR7TbwdY/ZmIl/yy3Ypy4ihcGEHiKd9SknoqhKmDsj0xQAHw2FRkVapPU6M06NzWN1xutFNsyeYm3PXRQ9iFYshOsynOlaHHRuB7vcwRfJNJ2onttY757lXAFydpiehsBZGV7L/MQrmM4EZ+dBhQKhqjQ3ycSEy+kphXU3hExJ5eRp/GInqFUox4UwKKeKN3oUvAVBe7QIw7FAoCu/UkApRezWGHpYR/kK5eRxZxdcFesj9YXNdSBfhxev+AzENSZKiqNTEk1UmJt+HoBvXBC8Za3ecnGULLjpAcxXr6OctQYJPKeGrHkcLkXQJiKEVjkor06oPXuzUkhHMBPVuFwLcWpIojTBy9V1DNg2qtHwpWqGauyKZ0mRUIstTyoR4aXIAHE3H9wnMwQIcp19zPasYqDSpPxeLOjVYrdzLneCqJoJfo2G0bq7QdO4lEhyWSnWNpquA3unIzhqI1bH/WSSPkL6pHpc5qdAeguiXI/eS3qqg3HGF/W7OYc0oQWU9QLQA9vvrNHHbGR9o5WBWtiLw+YkaEKwLakzNleiag2gu/MYbaQea9M257SG8rhMDPUpz6YjalN2RWtcK5GOxjgHR+7u3cVR7QpCXcaVcGne4dJcmYOdAzy0sQs9JJDVacJEcRH4KPavjlHzHWQRSgXFLTFJ1jWJGR5Cgid1KloH++UqZOROurv7KBdeJM1lOtQqArVAYiuJj4amfGQ8ikrHUFbgGmpsvRWOXwLggZ6HeXFbkck2X1ZdaGhCYJsR6tIggaRq6WTjq4hb1oJRuJGcrdaydAb3on6xjqGbREUMa9bGn/FRfVX8yjz+VB1Zl8Tiy8fraigMJLgKbOjy7qbAMVx/ZlE5d95fauQO7pUSPD+XwVWNjd2KIO+bFPpCyKKLj2DKCbFeMxlIGYgGVf1UJEFfe/2pEKN2FL9aZ75u8sJYjHvUWSaKigMTPps6NdZnNN7WPQvdV6scSkHZhXxNUfMUg12zZGIOblWxZ0SS9dIgfTSnyOxM/qo8sqNFcL02LW8ZOJNnkX7Qfqng6QuKcLi5piqcqQjGKlD+4k0Uv9C41zegKRWPFlF1RXxzHF+OgO8t+r16toqm1TldKzC4aQjb5Y2VB23vs19hOPstPnvhBfYMuOiGYL72AMXZ9yHMR0AJlB8HaSOUpFOr0Fe4wtjev2TD3AXWR6MIz6UkBKOeyxeyOf4+nyN39DD8zsfp6Ohgbm5BazVNE9cNFlxd1/F9n0gkQqVSaf3e/H/Tps2MjFwim80ipWTfvn3s2LEDgEQiQaFQ4PsBzX4eOHCAhx9++LrtFkJgWVbD5AqGYdDd3cPQ0Br27dtLvV7n/vsf4uTJ49TrNdLpDBcvXsBv22UQQmAYBkNDw+zceR8TE+P09fXz2c/+DVLe+M5DO9rHXtM0YrFYq10nTx5namoyEBIax8+dO9tqS8v/vvFZ13UefvhR5ufn2Lr1ViYmgpfWRz7yOA8++DAAn/rUJwHYvv02jhw5zPbtt7Xa8uCDD7N797d48skvsXbtOrZvv40nX92P2LwNbeQy/dl53lSpsO75F6lXyuSBuqbjDW9BvSlGSBZJOWWqF6apPnWO3FOgGZJQxqYyIGCVYJOos3P8DIyfYdT4FEeNML7WRV/mDn70wcc5cCTFoaO9HM0eRq73uWwdxxg8ii4MetUwtXM6draXwoRHOpOhp6ePk6dOcMstW3jXO9/FyRPH0ATcvnULlqxw7tirHN2/h7BwOXP0FWxVZ9cdt/KWB9/Epz/9KZRmYsdSeKEOJh2Leb2DMWsNWvcmRLSDMzNlzsyU+bMXL2Fr0BeB29OKn/qhezh/+GWWc6tujvXu3d+66njzWLNMe7n2Y0vRvG+PP/5L15tOV+FGrncj11+u3ub8uZnzVvD9gfC991J96mVUdkEZuU1fy3NcRHgZrhRdzmcrqPggaf8sPgJdq+MIAxPwlUZnyaReq2O6gXeLoRyEgIQJSwX4ZaEUdWyEGWqcA45ucDQc4eGeXrxEgtO1TiZnHU7MT1F3j6MnE3jTdQ5NgOdBxwITPbI0iXQNVHaMs1KxLnm1nHN4Gg6Ny8Abp+HSWD5eRljBg+5mXfTIgmBeH6tj9y3eOBrJK0bywXvj+JJYstlKcMXLeZ+CpeNKbbHr42vAifRyZl4yOjGD50lU1QA9iLeVjsdEWbE1FZR1paJ2ZIQLwx3ErTixcpHLZDA9CwHURRiEhrPk8s20AzqKklzYlHL772Fq1KCgTyKVBziEzSh44Fk21UwnFwpruTVWZ65S4nB7pZqNbLg2zpFCrbmHHsNAmCYV0+QyEDYt4rJGDgi7Og4WSjPo6OtGFksM3fYor+4/walcieHrjtLy0utU+k3o4wHxgRVK0KGgplXJAnGpEW5IiBkzTLrWRybdRQYPIRZimmgI7mWrh7GBEIcOHVx0jbG8x8FCF/mJ3aQTi5UNvemsqQcXyrtVLmg2A3OBdabq69SMFKYBKSdKpyY4Xg0hL7okQnmIF6kWfOZHfI7KMJEeiyEXepHM1lLMxrYylTVJCwsQFM0kIc0ip68l5pxEFabRDIWFR1XrRKY9SvEhIEeH3YXQdXRhYGsWpm7iJWOoRApUsPGhzAh49YDcq0F9qHs6WTvJkGgwIIoF5WFSl2yQcCwmUTmJn/Wvol73Rg5hmiZ+00XuGnxKF9xOLOFRGgvj6z6htVBEp7tSCfLvAZd8j2WipFpw1eKtCKUHtkSlL8wXP54IWDMbZcejyUUKGkLgmTqiAtIXzDomL1yRXM76SAX7xyWzFUXYWF4biZiwPqMRswIrpicUY/UoZybDjBVVEIqqFKUjwbqrvY5UWUp6LKFqbPtR4ZdNvMtpYHbBJ/cmISvBeeXTZYzUtVUr16flQl31rlkM+C4raMnaFbZOfoEPpA1qeoyKo6gUX+ZiqcLEFYfpS0W6kzG6/TKPdMS4zdQJXxlhsJQlFLKp+B4vK8XRrh7+9uB+ypXvT9azFXz/QwnBqGVxxDS5smETj73nvfw/v/uf+f2f/WmO/f0X2VKtEXr5EkJKSoAXjpDLhIkkoxSmRonMK+LTIcRBgDjzaYfEmiqhbpeH4hUi+kWoXITPfomMpnG/IVCdAiurgeNzJGSzvyPNc9YZxtZrwGkG6x47qg531n1+Y3OFPu3LhL/535BuHU15aCPBAvJWoLXC9jZ79BycfI7PPAJQBQo0XRiamK7q0LEJf+gBvnQlxhdmVzGqurhUElwqCZ78i33YmmBNHLYkFRuT0GmzrMK2ghV8v0HfdA8zz3SS8wTYVVBgi2bch45VF9SrDlURobORVvcCfSR1iY3LmNSJ1nT6C1AXfoNCZAFeqB/TPQ/adazSDcVlqVDnCkW9N3ioFYImkbMqO5SPzUKZFumQV1qQCoQAb+o8uq5zeApMoRjJXy3IOIs9fwLLWcOyVR+v4865xLfHW7/dLPaN+ZQvKwqDgReMX8m9xhltEBoHJxSp4YbCOFVBTYyhRfvAcSi6AftjxNJA6Bj2LJTSXMmE4XSYSmaYdMogLarMGJs4WupioqwRaSMp0d0KAkVS1Bh1EiQYREu+ibWxPlyjQUgiLdJmmpAZRvg1MjZEknDG6KJv421oRwL1TJPBYDbFzJKmERcmskHdLVILLm5VTeNwOMLCHWvEsty+g7WZMMI0mVaD1NT564/RNYRTqdu4WpSSnsDXQwyFwPAzZLmEKRfPQ11pWFoUc4l9UfjBJrgUOlLXqS5Z8AVge2XwF8yqt2fupObX0LgU9EgTFDdv5cxX/pGR6Vku1MvYdmhRPT23rmeDrvH03md4NR9iQzmHXspTL0rcKRflKgzLomIoLld1tqIxGRmmOD9LGjB08DWD4+GNdHqRIIZ0foSQ4RIeytCRDDETuw3b0Ni2/T50OyBuebD/EcrlQCG7p2sX4qzGSe84AO7Qo61nzXRMEnmLkBGiFA1cSUM6aF4Vf+YCbraGtj7CczGJZmtky1cTqtwMIpUZ9qthPH8SUc4HY+TmW256I6bF+SUue68FoQShYhxVqAJ1hCeI2h0M6gmmnWD9iLjBpn+HWJC/Y65FEYWsC5zLBxktq0WWrku5ZYJV23B4ShI2oOiAnS0Q2Xwb1cql1nrnl+eveW71aJW6W7/m7wDurIuRuYa6Iz3k/Bgy5oCmI+vlq4q0pxfx8tfXqsonyohrKKPN8726wKgInj7vkxm8dl3fVQVtJraFL2/7K/7sv3+aPc9+g//U2cUGw2GH2I0tBN2GwWDVJiYENNIDzITCPOW6vOh5THZ0kisVGQqFrmfNXMEKvvsQgilNQz74IE+/coDwY+9DOA7hsStsjcYYffF51MUL2BPT9NYksLDj7FsWc3mNuYMWYcBQCt2WWDEPvUsiux38uI8WkviGBEuwRdW5c26Sn5eKUV3nxUiIF8MhvpoI8SVNg544w47LXbU62+uSTQ6sc11C13hRV30dkexj9+GLjBYkWS9ETYsyNluiVHNZk9a4azjO/ZkqXaf+gl+QHh+xBHPRTRwP3c0XanfzYm2A+YrLqTycygcLVFhXbEhALjPJjtWp78KNWMEKbg4TExN84hOf4ODBg4RCIR599FF+/dd/veVh0YShW1R77yZx9BVSbpZUshvjli1w7CnCfpjEjEk1V6PIAoNgfP5+7h9I8rX8PlyKFPwQJa/MszOKN8Wgri+8gsW978EZH8cIL6EvbEcjxqJU9xZlRRTy2oKYn/MDL4mGXF34VoENP7+hceJCOQXsHQvWB/1mOIFkQAjSXlHxQPG6QspSnM8qwMeYPIdfzqKc15/uw511gVGqxyvYq+v4xWBsal7Qr6VCT1PZjQoHhCBXvXoHXVM+XdVRbLEOENQIXbXzpERgbRC2DbVaYOFcZhwz06fpTNno/f1cicex8jlUppduQF89fN28mJYI+hINWw1W0RvF4nU/akQpe2U2dsUYt6DkC+xGW/u1AWbKMy33w3ZIYTAX3sBoaiNrmzUbgSLl6hEgf0Ot6QgFFk43PI2qlBGGibJow/0UAAAgAElEQVSsYEzbBORmC6Qdwkul0SyLOd3AFYKEklQA/XwVd0xBN0xKm+68pAy8GL+DsLbwLN3W14Wev4I21YsCYm4OcuOMdvfgmibylo2kBjfS1xHH7lyIqdy1rrOVRiRmxjGE0ch9B0IzaLLQxLMJUlUduoL71xnqQgCR3CTKqeBXfGpnaoTvDOOP+dTP1zH+lXwJmvKhYVHqs30sv0iTa/D1cDBbUzaiSwOp42ctDOEidIO0lmZfPMWcGCPqF7izA46MLShFq12N+KjFoYKOcm7ecOJJqDjBcuRMnUPYEdyZS6Ak1fP7UM61lVnlqhYJx7UgL9Son5PEDYNOw0DTdWxNw2ssdDI3hhPNYDh1pPKoGiY+inorvlVhjtSRjkLlXBKahqMUteXkKR/k9cg/PEhN6Jz3w8xWFNdLVf3dj0ETGhKBLQR3hcPEdA1XKRylGPdczlkWectGW7MWa+utnB69wrPPfh2AnpWt+BV8H0FZFpU16wg/+DAT3T2B+9ut2/n/Pv1JiufO8sitt7Fr/XqsbJbJI4dJOnVsETCb+XWdal2HOeBUmGYEQVNs8YFiVDCVUox1wMVuQa5Hw04JVNjGdVzGQ1FGk2G+2HBBEQjSZoKYa8FsiaQL9cvjdFTr7Ood4N54L5HkFd69StBhKTQCl4Kqa3B8FkbqgsvpBxF3v4NjR15FXtzD7f4VHp7/Ox7m73A7t3EwvZlvsIvnij1cKEHVFxzJwpGnzwAQ1gVDMbg1pdiyoq+t4A2Axx9/nA0bNvD1r3+dYrHI448/zic/+Uk++tGPXlW20x7kYvoixqUyatVW9MFVpLa9nVGOoo9cRiDo1MqtXeyoUGSMTnrcCNOTOiVb8M9TPeTqExxP6qxqM9No0Rjaho3XbasoTAKwrivK+ExbDuSb2LJUNcWdiTuRFYkzdT0HqJuDrEu8YrDWKFct2nW+UXjZ8dcudENQuFNzuFMBqcn1EC6Mkgq7GGKQLWnYW8tet/y1UDZMitu2E37Hu+C/f+qa5S66NVKmh7n1VoqWjWNabNYqrHvfOzCi188PGBMuO4fTJMM3qJyVsxBKXeUyenfnPTiyTkRC1QYVSlNpVCmEWFY50xpzbE18sRwmE6uYiW6lbiaBiavOux6MTbfgTyYRqeVfBl5D5nMygRhr7byXS7YN5RKJnKJSrjPdFqPoCo2joTBrnTodSdiYgtpoib4wrEl30xO/nydPvsosYMhAwSgIwUT/AF2mycZNQzfU7rX6em5Jbmkl+W5iohZiNeBgMRAdZIuxjefdPa3fVU3hz0jk/M1ZttqRrM+QEklyQEdtHHHxIHRvoNPwaQ9oyd/ULksA4TRSU9cNVK6ASEVaY18xTS7oOluXnHOMW4iYZaazWTqmRrjVsnA1Dd0wkSi6GkqoBlx2XErSxxCBDpDRDWL64tlWlQp/6iQVKXFDITQB6VgUAxEkohcCTBPt8BHutm1MXccXGroAXdPQCUhzpAJpmiilsBAoJVs5FDVNwzRM/BbjYpn61GmsSBIpJE442HRobpYopaDp2R65toeDInDBVCogX2sbWXxNEGlcu3h8mpoS7IxEuLZt8HtIEpKXkh8buXzV8fXrNxA3TbYmU6y1VggIVvBvDEJQ0A1OSklvRycbH3oEgCcmJoI4uS3bCPk+m7t72NLXy9aeXi7sf4XixYuI2Wm6pMIslwgpRaqsSJVh0xgES0Ow6PvCo2JBIeYz32FwtlNxpl9xsQfm4znmhYDORnv6Aneal/D5Y8ZgR9sLSiqEVBgSrGFFWCjCfA371acJSYXWZ2DpMTrUdjY7HnfLImtzX+Q/qS/w70ODjKzawQHzPs7Uepg1OzgxWSRX9RYsbJfhvx1/nqQpWB1RVLumWdcVpTf+nSc+WcEKAI4ePcqJEyf48z//cxKJBIlEgp/7uZ/j4x//OL/6q7+6bLxDMZ5gKhpdsCBYFn7bTnhCOJzJRxmfqXFPf2AN6HBTmJNVnkutI+8FQmxBiJv2/xXVHGv1LOs7o4wDW1JwrjbZdDi5YViaRflY+XXFc1wLxUMBvf31LEBvRBheBashrBvaUq7Fm4AQuOn0a1q2JoCh0IL9c84wGB8aoisZwXuNmBTgxpUzQM1dxvPOX+XiaGhGy+V1LPEm1A3k3MyIKv0RSC+zPAfK2c1DRCIYa9dd83dPCArbti9r0p2v6VhVSWGJd5ujaZwKhbnP0AnpgVLbFwnITmJmnMEoxEwYka9/c8IWNgPRq33Txmsh9pb6WNsgw9CXIU3xJ16/cgZgyxoZrUqOYK5qbgXGDmNEPoiv60xFotSGhqmNXrnpugWC9KzNxPkp5kvzhDsSyFD4Nc+qRGJkcVG1Ev2GgYfAFx4FX1KREh1BWBMMWSaweP5edByimkZ3Yw0tyyBlRkTT0BDoAupSMem7CAS6ppEyDHDqmEIgAYeAkRoCKUgRKISe7+NJSU1Kqr6PpeuUhaCuaYSVwnUbm9cCHC+PGe3GrdVxSmXCmsBorI/tpEWi8Re0b8EC31z2dE0LyIiUapXVhCBqmHgiyINZL1RwHOe6xCbwBmFxXMEKVtCAENQMg3wqRXnDJkIPPsxsIsmRI4e5cOE8a9eu44UX9mAoxV//8Z9w8OtPc/iZr9NZqxLLZukRgqSUhOo1YnWfgTmfW88svoRv6FQ0yEZ0zlNmIqZwhjMY67rYP3mGYkKjnNHxozpKFzgGuJrG1Z7ZENj0qjzdfGknF15ahtqHrV5Bj4AUAmONSUYaIEMoP4znh5B+mJwbJiejHH75OZQfRskwurSJ62H+x9wz9MVS9EbTdMbCdERMMhGLTNTEUwJD3Pwu/QpW0MTx48fp6+sjk1lwNNm6dSv5fJ6RkRGGh4dfV70+GtJzF9G1A0QKl1GTF/4VLV4MWwdTXZ+q+QcFlSMVXNe9Kj7vBxtqUezXsiVuQDkD0IWi57Vk9e8ErmEJOpm3iVfgSvHmqtMEZL6je4Dfm/knQyHGBlcx5zi8PnU5gOmaGOUsh30Px77xgRqxbA45darVKp7r4rsuS1VRSwjSus6852Frgfdc/VrkHdeApmmEBMgdO3ipVsMwDOr1QEvXl8wV1w1o9pVSSCnRpcQwDHQRMIq6bQnCq8VZBODnZ/CVpOKDaBCGqJtoo67rres1IYTA8H00V2u1sVaroZTiej4TKwraClbwfQhPCPT+ASpr1nK8M0jkOKEb9PX1t5S4+3fdx8/96Ac4+uUvEBofp19K5OQ43uQk4UqZeM5nNSbkCJKBPF/iJ9p2t+rKoyAlOd+nqCREI6zespn06kFGc3OMl/PEezpBVIACVtihUJ2irlUomVDTAV1D0yS+oaiYMGObTNllpi1BwdTQBJiNtW/pxnsdOA2cdoEcqLkwyo+gvGjwf0cE/DD//LnfJW4k6YhkSBgJusJpuiPpQKmLRkiFTdIRk2TIRF8qMa/gBxq5XI5EYnF6lmQyEG+y2ewiBU3XBY888gA7d95FvV7Htm1SqciiY67rEovFFn2ORCLs3HkXH/rQBwGo1QJHZdM0CYXCpNOBFTsWWxx79sgjD7SOf/jDP8P73/8eADKZjtZ1Ae64Yxuu69Ld3b3oe61Wxfd9lFIIIRax3G7atImXXnqpda1FrjwsZsTVNK0l5LxR0N6+zZs389JLLy061o5Fu99CoGkatm2jt8X/maaJbdtEIhG2bdtErVZF0zR8P4jfsyy7VaZ57yORCLFYcB/uuGMbAOl0mlgswp3/8T9AvY6WSrFz512tOfBjP/Y+fN8nGo2RSkX4xCc+3pon8XgM1WAC/MQnPk65XMKyAgHZcerouk4ymSKVWjxPPvzhn6Fer7eu3WxPrVbFdd1F9zQUCtPd3b1orjXnUTt27gzSy7T3sdmPJparo9nHNWvW8OEP/wwf+tAH8X2PUCjMr/3aL6Hr+lXtb69j8+a/CSwLS9rbfs1Pf/pP8RsU5o7jtPpnGEZrvIKyC89esx/tbb3jjm189KO/jGmaJJOpRWXaoevaoja3P5ftaN7L5jxpPqPbtm2iUim3nsOm1dr3fYQQRCJRuru72bZtE9VqpVWuvV/RaAzXdVtj2ZyHAOVy4Hs3OLhq0dr0oQ99kGp1IR7M9302btzYmlvAovHyfQ9dNzBNszV32se/Oaeaa1ZzjjTRvF5zrfhOrheaprFp0yb27NmDEKKlDC213i/XjuZa2HRFbOI7vcY129b8v9nmn/iJn7jmOSsK2gpW8G8UStMwBgYpbr+d4vbb2dxGIf/kk1/C8H0OP/0/GQLefet27hkY4PyLL9Jj6CR0A1sIunSdLl3HUQrpScxT59BPn2O14zCkFHB2mSu/lmtyIzWo5iMMgTQ13JCFTCcpRi1yYYMxv8S87VOIQNZ2yIc9SmGXYqhEIVzBDQsQPggPR/OZIwjXwwOKjT9A+TbKbyh0fgRNRdCljanCfPrL+0lYCVJWAjdXJaGHKZw+TWckwmitRMyAvBM4kmhCEOy5qeCfCj41fRTi5koOxn8raBdo2+H7imef3bPImv3447/E7t0LxyYmxrnvvgcWfW6m73jhhSAW5eTJgAGup6eXrVtv5bHH3gdcndJh9+49reOf+cxf8tnP/g0AH/rQv29dF+DJJ7/ExMQ4H/nI44u+nzx5nFwu21IyDMPAa/jQ7d69m127drWExeaubjOFSjNdC9ASBj3PuyEhpikAAa871cr10IwjcV0XIQSvvPIK9957byutzlK3zeYuevO8cDjMunUbyGQ6WmWaG1vbt9/GE098ipMnjxOJRMhm50mnMwwNrWmVad77ZjqN3bv38OSTXwLgscfeFxx7aX+r7mbqjSNHDvOVrzxJsVhg5877+OM//hN++7d/pzVPfvmXH8fzgvvw27/9O+zd+wJDQ0FK7MuXLxKPJ3j3ux+7Kq3IZz7zl1y4cH7h2o32HD9+lKmpSer1gGDBtkNs3rx1UYoZWJhn7TjSYJxs7+NyKWiW1tHs49/93d/w+c9/iRde2NNKcfMv//IV0ukML7746rL3dffuPfyX//IJRkYuXdXe9mv+wi/8IvPzQTqlkZFLrVRKzVQ8TbQ/e+2pT9qfm2ef/To9Pb28+92PXTM9SioVaZGEtJ+/tGzzXjbnSfMZfeKJT7Fv3148z8MwDGKxIM4wl8tiGAY7duzkIx95nCee+BSHDr3aUvLa+9VMYdQcy+Y8BNi79wUA/ut//aOrPG0OHVoY61KpxN69e/mjP/pk65z28ZqfnyOT6aCvr781d9rHvzmnmmtWc4400bxetRood832f7uhaRqhUIg9e/bwwAMP3JwFrbEONteB9jZWq9XWetVc+5ZuXN0IrmlBM4zWGgRtFrSN17ahrShoK1jBDyg8Xee853GiXie2apgd/9uv8p7t2wEY7OhgczpDrJCnDxiyLDbFE6yxLPRqBXGdBUvqOtK0UKaB0nWUphEOhRDSxa2XMKhjmXVMy0MYDdpoVyDzeRIzGr2OxgZHuypp5KJraALH0qhaOhXbpBjSKIahGIKarajagrIJVQuqZoWqWcExFZ4ukbof/NXAEzCtgRQwI+DsfpDKQHhhNDfE35/5KzTfQEgdXQo0qdCUQlc+hvLRlUT3JeuNLjaV06zLZwlNn2f6yHOEhI+9YRXW6m50JDoSDRmYCoURuBZpJmgGIhHFrPgozQyY+jSz7Xe9cdxY5ncDhA5LcgCu4MaQyWTIZheTQuTz+dZvK1jBClawghV8L7CioK1gBSu4ClXgIjBdq1GvB+41m7p6+I1f/y0euP9BXvjaU5w/sJ+tg6vQyyX0cpn1g6u4dPIEmlNHq9fRHAfNcRC+TyyRQHketfk5hOdRkRJR84gYArdcxA7VsCMudsbBjLpYUQ/dkgsRub7AczT8euOv+dkR+HUdPyfwpzSkp6Hkv1ZB8QkcLG8GV7OXOcDTmyN86m3dKGWANEHpCAQLoXONHbqr4haaxwOGvgV1WKGUgTPzNqTbwXL4Rfur/HL0a1crekIPPqsg47BQcoHdrfm59ZtqfW4er239cSo7fuUmx+WNjW3btjE1NcX09HTLlefIkSN0dHSwatWq73HrVrCCFaxgBT+ouK6C1tV1fcrXG0F7HU0/Xtu+9mV1XcM0dcJhk1jMJhw20RpxI6apo+vaNc//1+wcm6a+6PwdO3a87rreCHj44Ydf13lLx9e2DTQtcFnR9Wszfum6RjhsYtsG4ZtgmVoOy419s13akhii67WpCds2WnOq2bdUKtKam7GY3ToWi9mL/M27uuKkUpHWfGx+XlpvKhXBNHXe9a538fa3v33ZOprnN/vRPG9pXc02NdvYPLfZhmYf2tvWrKO9TCxmt8o0yzf7ufQehcMmH/jAB1rfl7vfphnED3T3JEn0d6Imu7FuXyDdHXr0Uc4988yy9+BNjz4KwDNLfr/90Udbxx5tlGkv135sKf7gD/4AgI997GPXLLMcbuR6N3L95eo9cOAAd955Z+u8zcDP31Trvh1453ek1mjjbzl8O94V3wts2bKF22+/nT/8wz/kt37rt8jlcjzxxBP8+I//+FXvk+b8b38Wlz6fzeeu/XPz9+Zz2/4+a18Dlo5h+/FYzG49j0uf6+a1ln5fula2Y9euXf/aoXvD4J577rnKtem1YJr6ovdc+/reHDtd11rrYPva2l526RrcfqyJ9jnQlGHCYZOurviieXLgwKutdSMcNhe9i5tyUfPet6PZpqXtMU299e6GYN4158lyctnSOpf2Z7l349I6mn386Z/+ad7//vcveq81x/Jaa0XzHbpce9uv2awTFst8S2WX9nFv73P7c6JpojWuS8elHcv1dWnZdvmn/RldKq8ufS6bfbRt46o4pWa/mnUvlY2bvzfbtVROWLqGvfWtb+W9731v65z2tjWfifa5s3RdaV+zmnOkvR/fTe+NBx74/9u786AmzjcO4F8PsHVaD2oFRa3aabgChnAqIoc6yuExWsBai7UyCNYT2qqdEUU7RUXp1Ik6OlikaGGoR6UgqNQWraUjYBsEBAVrEeQQJFEQEsDn9wdDaiSBn0DI7sz7meEP3t0kz7PPu/vuG5bdrv87+Sr4cKXJIOLSf/4yDMMwzACqqalBZGQk8vLyMHz4cHh5eSE8PPyVT/oZhmEYpr+wCRrDMAzDMAzDMAxH9N9TKhmGYRiGYRiGYZg+YRM0hmEYhmEYhmEYjtDJBK2qqgohISFwcnKCm5sbdu3apbNnIvSHkpIS+Pr6wtPTU639xo0b8Pf3h1gsxvz585GYmKinCLWrrKzE+vXr4eTkBGdnZ2zcuBE1NTUAOvIKDAyEvb09Zs+eDYlEwqmHjf79999YsWIFxGIxXFxcEBYWhkePHgHgx7bv9PXXX8PMzEz1O9djnzFjBoRCIaytrVU/O3bsAMD92DsdP34cs2bNgkgkwvLly1FaWgqA230+JydHbZt3/piZmaGyspLTsQPA7du3sXLlSjg4OGD69OnYsGEDHj58CIA//aY3+DSeaRsPFAoFzMzMuvS9Y8eOqV6bkZGBRYsWwdbWFgsXLsTly5f1lkdfjlGnTp2Cl5cXxGIx/P39kZubq+kjBkRP+zwfatLb86Pu6qBUKhEZGQl3d3c4OTkhJCREdd6ij1xycnKwbNkyiMViuLu7Y9++fapnBmZlZcHc3LxLnW7evAmg4xlZBw8exJw5c2Bvb4/AwEDcvavp+aC6zaOsrExjf0pNTVWtw5eaHD58uEseQqFQtQ4Xa6ITpANLliyhLVu2kFwup4qKClq8eDFFR0fr4qP6LC0tjWbOnElr164lDw8PVXttbS3Z2trSqVOnqLm5mfLy8kgsFlNWVpYeo+3K19eXwsPD6enTp1RXV0eBgYEUHBxMzc3N5ObmRjExMdTY2Eh37twhNzc3+uGHH/QdMhERyWQysrW1pRMnTpBSqaS6ujpasWIFhYaG8mbbExEVFRWRo6MjCQQCIuJHv7GysqKCgoIu7XyInYgoMTGR5s6dSyUlJdTY2EgHDhyg8PBwzvd5TRITEykgIIDzsbe2tpKLiwtFR0eTQqGgJ0+e0Pr16+mDDz7gTb/pLT6NZ9rGg+rqahIIBNTQ0KDxdbdv3yahUEiXL1+mlpYWyszMJGtrayopKRngDDr09hj166+/klgsppycHGppaaHExEQSi8X06NGjgU5Bq859ng816e35UU912LNnDy1atIjKy8vpyZMntHXrVvLz89NLLpWVlSQSiSg+Pp6USiUVFxeTi4sLxcbGEhHR+fPnydfXV+v7njx5ktzc3Ki4uJiamprom2++IQ8PD2ppaRnQPHJzc8nW1lbr6/hUE002b95MBw4cICLu1URX+n2Clp+fT+bm5lRfX69qS09PJwcHB2pvb+/vj+uz5ORkqqyspISEBLUOEhsb26UDREZGUmho6ECHqJVcLqetW7dSdXW1qi01NZVsbW0pPT2dHB0dqbW1VbUsNjaWFi5cqI9Qu6itraXTp0+rtcXHx5OHhwcvtj0RUXt7O/n5+dGRI0dUEzSux97Y2EgCgYDKy8u7LON67J08PT0pNTW1SzvX+/zL6uvrydnZmYqKijgfe3l5OQkEAiotLVW1paenk0gk4k2/6Q0+jWfdjQclJSVkZmZGbW1tGl8bGRlJa9asUWsLDg6mr776Sqcxa9KXY1RwcDDt3r1bbbmPjw/FxcXpLN5X8eI+z4ea9Pb8qLs6tLW1kZ2dHV28eFG1rL6+nszMzKioqGjAc5FKpbRr1y61dbdv367a9gkJCbR8+XKt7+vj40Pfffed6nelUkn29vZ0+fLlfs6gg7Y8rly5Qm5ublpfx6eavOyPP/4gd3d3evbsGRFxrya60u+XOBYWFmLcuHEwMjJStVlZWUEul6O8vLy/P67P/Pz8MH78+C7thYWFsLKyUmuztLTErVu3Biq0Ho0YMQJRUVEwNjZWtVVVVcHY2BiFhYUQCAQYOvS/51xYWlrizp07UChe9SG8/e/tt9/G0qVLAXT8ObqsrAznzp2Dj48PL7Y9ACQlJeG1116Dr6+vqo3rscvlcgBATEwMXF1d4erqioiICDQ2NnI+dqDjlugVFRV49uwZFixYAAcHB4SEhKC6uprzff5lhw4dgoeHBywsLDgfu6mpKczNzZGUlITGxkY0NDQgLS0Nnp6evOg3vcWn8ay78UAul2Po0KH47LPPMGPGDHh6eiImJgZKpRIAt45bfTlGFRYWwtLSUutyfXtxn+dDTXp7ftRdHf799188ffpUbbmRkRFMTEx0mpu2XGxsbLB9+3a1turqatV+JJPJUF9fj48++ggODg5YsGABzp8/DwBoaWlBaWmpWi4GBgYQCAQ6y0VbHnK5HG1tbQgODoaTkxPmz5+PuLg41WXyfKrJi4gIUVFR2LhxI15//XUA3KuJrvT7BE0mk2HEiBFqbSNHjgQANDQ09PfH6YymPEaNGsXpHO7du4cjR45g7dq1WuN//vy5agDkguLiYgiFQvj6+sLa2hqbNm3ixbavq6vDoUOHsHPnTrV2rsfe1taGadOmYfr06fjll18QHx8PqVSKHTt2cD52oGPgBIDU1FQcO3YM6enpUCqVCAsL402fBzommmfPnkVISAgA7f2GK7EPHjwYEokEV65cgZ2dHZydnVFVVcWbftNbfB7PXhwPBg0aBKFQCG9vb2RlZeHbb79FSkoKJBIJAO156iPHvhyjtOUhk8kGLH5tXt7n+VSTl/WlDp216NyPXlzOhdxSU1ORk5ODVatWAej44mPChAnYtm0brl+/jtDQUHz55Ze4fv065HI5iIgTuQwbNgxTpkxBUFAQfv/9d0RERODQoUNITk4GwN+aXLp0Cc3NzViwYIGqjS816asBuYtj5wyeD0/u7g4RcTaHgoICrFixAqtWrVLryC/iYh3Mzc1RUFCA1NRU/PPPPwgLC9O4Hte2fVRUFPz8/DB16tQe1+VS7JMmTUJycjL8/f1haGiIqVOnIiwsDGlpaRpvSMGl2IH/+vDq1asxbtw4jBkzBmFhYcjLy1P9U7em9bmUAwAkJCTA1dUVkyZN0roOl2JXKpUIDQ3FvHnzkJubi6tXr2Ls2LEIDw/XuD7X+k1/4lJdtHl5PLC3t0dSUhLmzp0LAwMDWFtbIzg4GGfPnu32ffSRY38fozS9Rh9e3uf5VJP/R1/rwIVjxpkzZxAREYGDBw9i8uTJAIDAwEDExsbC0tIShoaG8Pb2xty5c3HmzBmt76OPPufl5YWEhAQ4OjrCwMAAM2bMQEBAQLf9iQ81OX78OFauXIkhQ4ao2vhSk77q9wmakZFRl1lq5zfAL14mwnWjR4/ukodMJuNkDteuXcPKlSuxbt06rFu3DoD2OgwZMqTLNwv6NmjQILz77rsICwtDRkYG2tvbOb3ts7OzcevWLYSGhnZZxqd+02nChAkgIo19hmuxjxkzBkDHt7WdTE1NAQCPHj3iTZ9PT0/HnDlzVL9zfX/Nzs7G/fv3sXnzZrz55pswNjbGhg0bcPXqVQwePJjz/aa3+DieaRoPNDE1NUV9fT3a29s5f9z6f49RmvKQy+WcyOPlfV4TvtSkp9i6q0PnOpqWjx49WodRd+/w4cPYv38/YmNj4erq2u26pqamqK2txahRozQe/7jS5zrjBPhZk8rKSuTn5/e43wD8qcmr6PcJmlAoRE1NjapTAEB+fj7eeustTJw4sb8/Tmesra1RUFCg1nbr1i1MmzZNTxFpJpVKsXnzZuzduxfLly9XtQuFQpSUlKiuZwc66mBhYQFDQ0N9hKomPT0dS5YsUWsbPLijO7q5uXF626ekpKCmpgazZs2Ck5OTKg8nJycIBAJOxy6VShEdHa3WVlZWBgMDA1hYWHA6dgAwMTGBkZERioqKVG0VFRUAgCVLlnC6z3cqLi5GRUUFZs2apWrj+v7a3t7e5RvIzr9YOjo6cr7f9KNgsrsAAAT8SURBVBbfxjNt40FWVpba7duBjksgx40bhyFDhkAoFHKmhn05RmnKIz8/HyKRSLdB90DTPs+nmrysp/Oj7uowceJEjBw5Um15TU0Nqqur9VanhIQEJCUlITExEWKxWG1ZfHx8l8cblJWVYeLEiRg2bBjee+89tf9tUiqVKC4uHvBcUlJS8OOPP6q13bt3DxMmTADAv5oAQGZmJgQCAUxMTNTa+VKTPtPFnUcCAgLo888/pydPnlB5eTl5e3uTRCLRxUf1m5fvIlNfX092dnZ08uRJamlpoT///JNEIhHduHFDj1Gqa21tJR8fHzpx4kSXZQqFgjw9PWn//v3U1NREt2/fJhcXFzp37pweIu2qurqaxGIxSSQSam5uprq6Olq9ejUtW7aM89teJpNRVVWV6uevv/4igUBAVVVVVFFRwenYy8vLycbGhuLi4kihUFBZWRl5e3tTZGQk57d7p4MHD5KbmxuVlpaSTCajTz75hIKDgznf5zudPn2a7Ozs1Nq4Hvvjx4/J0dGR9u3bR01NTfT48WP69NNPKSAggDf9prf4Mp51Nx7cvHmTrKysKC0tjZRKJUmlUrVbid+9e5eEQiFdunSJFAoFXbhwgWxsbOj+/fsDnUafjlHXrl0jkUikupV4XFwcOTk5kUwmG/A8XqRpn+dTTV71/KinOhw4cIB8fX3pwYMHJJfLKSwsjAIDA/WSy4MHD0gkEml8rAMR0dGjR2nmzJlUWFhICoWCUlJSyMLCgqRSKRERJSUl0cyZM6mkpISamppoz549NG/ePFIqlQOaR1paGolEIsrOzqbW1lZVDdLT04mIXzXp9MUXX2i8GzBXa9LfBhH1/4WZNTU1iIyMRF5eHoYPHw4vLy+Eh4erXUPKFfPmzcPDhw/x/PlztLW1qb6tzsjIQHV1NaKjo3Hnzh2MHz8eQUFBWLx4sZ4j/k9ubi4+/PBDjd+wZ2RkoKWlBbt370ZBQQGMjIzg7++PoKAgPUSqmVQqRVRUFIqKivDGG2/A2dkZW7ZsgbGxMfLy8ji97V9UUVGB2bNno6SkBAA4H3t2djZiYmJQWlqK0aNHY/78+di0aRMMDQ05HzsAtLa2Yu/evfj555+hUCjg7u6OnTt3YtSoUSgrK+N0nweAo0eP4ty5c8jIyFBr53rsBQUF2Lt3L4qLi2FgYAAHBwds27YNJiYmvOg3vcWX8ayn8UAqleLIkSOoqKjA2LFjsXTpUgQFBamuXMjMzIREIkF5eTkmT56MTZs2qf3FZyD15RiVnJyMEydOoKamBmZmZti6dStsbGz0kkcnbfv8hQsXOF2TvpwfdVeHzmN4ZmYmWlpa4OjoiJ07d+r0EjRtuaxZswYSiQQGBgZq648fPx4XL17E8+fPIZFI8NNPP6GhoQFTpkzBhg0b4O7urlr38OHDOHv2LORyOWxsbBAREYF33nlnQPPIyMjAb7/9hu+//x61tbUwNTXFxx9/jPfff1/1Wr7UJCMjA6ampli9ejVMTU2xa9cutddxrSa6opMJGsMwDMMwDMMwDPPqBuQujgzDMAzDMAzDMEzP2ASNYRiGYRiGYRiGI9gEjWEYhmEYhmEYhiPYBI1hGIZhGIZhGIYj2ASNYRiGYRiGYRiGI9gEjWEYhmEYhmEYhiPYBI1hGIZhGIZhGIYj2ASNYRiGYRiGYRiGI9gEjWEYhmEYhmEYhiP+B3NZTLIkZR9wAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "pm.traceplot(trace_2, varnames=['beta']);" + "pm.traceplot(trace_2, var_names=['alphas', 'mu']);" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 127, "metadata": { - "scrolled": false + "scrolled": true }, - "outputs": [], + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
meansdhpd_3%hpd_97%mcse_meanmcse_sdess_meaness_sdess_bulkess_tailr_hat
alphas[0,0]0.2710.0560.1680.3810.0020.0011023.0917.01048.0706.01.02
alphas[0,1]0.7290.0560.6190.8320.0020.0011023.01023.01048.0706.01.02
alphas[1,0]0.3580.0570.2540.4600.0040.003235.0235.0258.02014.01.02
alphas[1,1]0.6420.0570.5400.7460.0040.003235.0234.0258.02014.01.02
alphas[2,0]0.3770.0300.3190.4330.0020.001279.0279.0321.02005.01.02
alphas[2,1]0.6230.0300.5670.6810.0020.001279.0269.0321.02005.01.02
alphas[3,0]0.3240.0490.2190.4050.0050.003110.0110.0122.050.01.03
alphas[3,1]0.6760.0490.5950.7810.0050.003110.0101.0122.054.01.03
alphas[4,0]0.3410.0580.2220.4430.0030.002330.0330.0311.0211.01.02
alphas[4,1]0.6590.0580.5570.7780.0030.002330.0301.0311.0211.01.02
alphas[5,0]0.3620.0410.2830.4350.0020.002329.0311.0346.0775.01.02
alphas[5,1]0.6380.0410.5650.7170.0020.002329.0329.0346.0775.01.02
alphas[6,0]0.3900.0340.3260.4540.0010.001856.0856.0836.01408.01.02
alphas[6,1]0.6100.0340.5460.6740.0010.001856.0814.0836.01706.01.02
alphas[7,0]0.4150.0340.3490.4700.0020.002203.0198.0211.02492.01.02
alphas[7,1]0.5850.0340.5300.6510.0020.002203.0203.0211.02492.01.02
alphas[8,0]0.4280.0790.2680.5760.0030.002825.0825.0783.01792.01.02
alphas[8,1]0.5720.0790.4240.7320.0030.002825.0743.0783.01792.01.02
alphas[9,0]0.3830.0430.3070.4630.0040.003119.0115.0123.0210.01.03
alphas[9,1]0.6170.0430.5370.6930.0040.003119.0119.0123.0210.01.03
alphas[10,0]0.3830.0420.3010.4570.0040.003109.0105.0107.0133.01.04
alphas[10,1]0.6170.0420.5430.6990.0040.003109.0109.0107.0133.01.04
alphas[11,0]0.4040.0290.3570.4690.0010.001398.0370.0429.0187.01.02
alphas[11,1]0.5960.0290.5310.6430.0010.001398.0398.0429.0187.01.02
alphas[12,0]0.3470.0680.2330.4890.0040.003288.0288.0280.0230.01.02
alphas[12,1]0.6530.0680.5110.7670.0040.003288.0274.0280.0230.01.02
alphas[13,0]0.4050.0470.3190.4940.0050.003101.098.0106.0173.01.03
alphas[13,1]0.5950.0470.5060.6810.0050.003101.0101.0106.0173.01.03
alphas[14,0]0.4030.0370.3290.4630.0030.002129.0124.0129.0224.01.02
alphas[14,1]0.5970.0370.5370.6710.0030.002129.0129.0129.0224.01.02
alphas[15,0]0.3980.0410.3240.4770.0010.0011076.01076.01099.02714.01.00
alphas[15,1]0.6020.0410.5230.6760.0010.0011076.01072.01099.02714.01.00
mu[0]22.10612.3811.75644.1451.1790.836110.0110.064.012.01.05
mu[1]23.33512.0954.22746.6190.8630.611196.0196.0208.0308.01.02
\n", + "
" + ], + "text/plain": [ + " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", + "alphas[0,0] 0.271 0.056 0.168 0.381 0.002 0.001 1023.0 \n", + "alphas[0,1] 0.729 0.056 0.619 0.832 0.002 0.001 1023.0 \n", + "alphas[1,0] 0.358 0.057 0.254 0.460 0.004 0.003 235.0 \n", + "alphas[1,1] 0.642 0.057 0.540 0.746 0.004 0.003 235.0 \n", + "alphas[2,0] 0.377 0.030 0.319 0.433 0.002 0.001 279.0 \n", + "alphas[2,1] 0.623 0.030 0.567 0.681 0.002 0.001 279.0 \n", + "alphas[3,0] 0.324 0.049 0.219 0.405 0.005 0.003 110.0 \n", + "alphas[3,1] 0.676 0.049 0.595 0.781 0.005 0.003 110.0 \n", + "alphas[4,0] 0.341 0.058 0.222 0.443 0.003 0.002 330.0 \n", + "alphas[4,1] 0.659 0.058 0.557 0.778 0.003 0.002 330.0 \n", + "alphas[5,0] 0.362 0.041 0.283 0.435 0.002 0.002 329.0 \n", + "alphas[5,1] 0.638 0.041 0.565 0.717 0.002 0.002 329.0 \n", + "alphas[6,0] 0.390 0.034 0.326 0.454 0.001 0.001 856.0 \n", + "alphas[6,1] 0.610 0.034 0.546 0.674 0.001 0.001 856.0 \n", + "alphas[7,0] 0.415 0.034 0.349 0.470 0.002 0.002 203.0 \n", + "alphas[7,1] 0.585 0.034 0.530 0.651 0.002 0.002 203.0 \n", + "alphas[8,0] 0.428 0.079 0.268 0.576 0.003 0.002 825.0 \n", + "alphas[8,1] 0.572 0.079 0.424 0.732 0.003 0.002 825.0 \n", + "alphas[9,0] 0.383 0.043 0.307 0.463 0.004 0.003 119.0 \n", + "alphas[9,1] 0.617 0.043 0.537 0.693 0.004 0.003 119.0 \n", + "alphas[10,0] 0.383 0.042 0.301 0.457 0.004 0.003 109.0 \n", + "alphas[10,1] 0.617 0.042 0.543 0.699 0.004 0.003 109.0 \n", + "alphas[11,0] 0.404 0.029 0.357 0.469 0.001 0.001 398.0 \n", + "alphas[11,1] 0.596 0.029 0.531 0.643 0.001 0.001 398.0 \n", + "alphas[12,0] 0.347 0.068 0.233 0.489 0.004 0.003 288.0 \n", + "alphas[12,1] 0.653 0.068 0.511 0.767 0.004 0.003 288.0 \n", + "alphas[13,0] 0.405 0.047 0.319 0.494 0.005 0.003 101.0 \n", + "alphas[13,1] 0.595 0.047 0.506 0.681 0.005 0.003 101.0 \n", + "alphas[14,0] 0.403 0.037 0.329 0.463 0.003 0.002 129.0 \n", + "alphas[14,1] 0.597 0.037 0.537 0.671 0.003 0.002 129.0 \n", + "alphas[15,0] 0.398 0.041 0.324 0.477 0.001 0.001 1076.0 \n", + "alphas[15,1] 0.602 0.041 0.523 0.676 0.001 0.001 1076.0 \n", + "mu[0] 22.106 12.381 1.756 44.145 1.179 0.836 110.0 \n", + "mu[1] 23.335 12.095 4.227 46.619 0.863 0.611 196.0 \n", + "\n", + " ess_sd ess_bulk ess_tail r_hat \n", + "alphas[0,0] 917.0 1048.0 706.0 1.02 \n", + "alphas[0,1] 1023.0 1048.0 706.0 1.02 \n", + "alphas[1,0] 235.0 258.0 2014.0 1.02 \n", + "alphas[1,1] 234.0 258.0 2014.0 1.02 \n", + "alphas[2,0] 279.0 321.0 2005.0 1.02 \n", + "alphas[2,1] 269.0 321.0 2005.0 1.02 \n", + "alphas[3,0] 110.0 122.0 50.0 1.03 \n", + "alphas[3,1] 101.0 122.0 54.0 1.03 \n", + "alphas[4,0] 330.0 311.0 211.0 1.02 \n", + "alphas[4,1] 301.0 311.0 211.0 1.02 \n", + "alphas[5,0] 311.0 346.0 775.0 1.02 \n", + "alphas[5,1] 329.0 346.0 775.0 1.02 \n", + "alphas[6,0] 856.0 836.0 1408.0 1.02 \n", + "alphas[6,1] 814.0 836.0 1706.0 1.02 \n", + "alphas[7,0] 198.0 211.0 2492.0 1.02 \n", + "alphas[7,1] 203.0 211.0 2492.0 1.02 \n", + "alphas[8,0] 825.0 783.0 1792.0 1.02 \n", + "alphas[8,1] 743.0 783.0 1792.0 1.02 \n", + "alphas[9,0] 115.0 123.0 210.0 1.03 \n", + "alphas[9,1] 119.0 123.0 210.0 1.03 \n", + "alphas[10,0] 105.0 107.0 133.0 1.04 \n", + "alphas[10,1] 109.0 107.0 133.0 1.04 \n", + "alphas[11,0] 370.0 429.0 187.0 1.02 \n", + "alphas[11,1] 398.0 429.0 187.0 1.02 \n", + "alphas[12,0] 288.0 280.0 230.0 1.02 \n", + "alphas[12,1] 274.0 280.0 230.0 1.02 \n", + "alphas[13,0] 98.0 106.0 173.0 1.03 \n", + "alphas[13,1] 101.0 106.0 173.0 1.03 \n", + "alphas[14,0] 124.0 129.0 224.0 1.02 \n", + "alphas[14,1] 129.0 129.0 224.0 1.02 \n", + "alphas[15,0] 1076.0 1099.0 2714.0 1.00 \n", + "alphas[15,1] 1072.0 1099.0 2714.0 1.00 \n", + "mu[0] 110.0 64.0 12.0 1.05 \n", + "mu[1] 196.0 208.0 308.0 1.02 " + ] + }, + "execution_count": 127, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "pm.summary(trace_2, varnames=['alphas', 'mu'])" + "arviz.summary(trace_2, var_names=['alphas', 'mu'])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you want to check the covariance matrix" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 128, "metadata": {}, "outputs": [], "source": [ @@ -1718,26 +2461,60 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 129, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[74.97363898, 1.08725705],\n", + " [ 1.08725705, 73.79522574]])" + ] + }, + "execution_count": 129, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "matrix_s" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "From that, you get $\\tau_1$ and $\\tau_2$" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 130, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "8.658731949850676 8.590414759458374\n" + ] + } + ], "source": [ "tau1, tau2 = np.sqrt(matrix_s[0, 0]), np.sqrt(matrix_s[1, 1])\n", "print(tau1, tau2)" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "And then $\\rho$" + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 142, "metadata": {}, "outputs": [], "source": [ @@ -1746,53 +2523,146 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 143, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0.014617187099617469" + ] + }, + "execution_count": 143, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "rho" ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Now, the goal is to reproduce the figure 8.1 (b)." + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 157, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/rosgori/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py:1247: UserWarning: samples parameter is smaller than nchains times ndraws, some draws and/or chains may not be represented in the returned posterior predictive sample\n", + " \"samples parameter is smaller than nchains times ndraws, some draws \"\n", + "100%|██████████| 1000/1000 [00:00<00:00, 13577.93it/s]\n" + ] + } + ], "source": [ "with model_hier:\n", - " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1000, vars=[alphas])" + " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1_000, vars=[alphas])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 158, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(1000, 16, 2)" + ] + }, + "execution_count": 158, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "ppc_hier['alphas'].shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 159, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.3255814 , 0.51111111, 0.53061224, 0.47058824, 0.45238095,\n", + " 0.5 , 0.56730769, 0.62015504, 0.66666667, 0.53571429,\n", + " 0.56043956, 0.61212121, 0.51515152, 0.60294118, 0.59292035,\n", + " 0.60526316])" + ] + }, + "execution_count": 159, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "valores[:, 0] / (valores[:, 0] + valores[:, 1])" + "values[:, 0] / (values[:, 0] + values[:, 1])" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 170, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.24697548, 0.75302452],\n", + " [0.42467736, 0.57532264],\n", + " [0.42166306, 0.57833694],\n", + " [0.44448191, 0.55551809],\n", + " [0.42100179, 0.57899821],\n", + " [0.37360006, 0.62639994],\n", + " [0.37927549, 0.62072451],\n", + " [0.44419996, 0.55580004],\n", + " [0.36517739, 0.63482261],\n", + " [0.44141308, 0.55858692],\n", + " [0.394294 , 0.605706 ],\n", + " [0.3967169 , 0.6032831 ],\n", + " [0.40965493, 0.59034507],\n", + " [0.38298484, 0.61701516],\n", + " [0.44275081, 0.55724919],\n", + " [0.38240091, 0.61759909]])" + ] + }, + "execution_count": 170, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "ppc_hier['alphas'][250, :, :]" + "ppc_hier['alphas'][10, :, :]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Remember that from \n", + "\n", + "\\begin{align}\n", + " \\alpha_{1j} &= \\dfrac{\\theta_{1j}}{\\theta_{1j} + \\theta_{2j}} \\\\\n", + " \\alpha_{2j} &= 1 - \\theta_{3j}\n", + "\\end{align}\n", + "\n", + "you can get $\\theta_{1j}$ and $\\theta_{2j}$" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 171, "metadata": {}, "outputs": [], "source": [ @@ -1806,83 +2676,149 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 172, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "(16, 1000)" + ] + }, + "execution_count": 172, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# print(th1" + "th1 = np.asarray(th1)\n", + "th1.shape" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 173, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.14882845, -0.16713849, -0.12572338, -0.16234816, -0.15933411,\n", + " -0.15933411, -0.14183207, -0.15078374, -0.11327207, -0.12033916,\n", + " -0.11516225, -0.18994582, -0.15237905, -0.16838453, -0.13914512])" + ] + }, + "execution_count": 173, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "th1 = np.asarray(th1)\n", - "th1.shape" + "result2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", + "result2[:15]" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 174, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAFkCAYAAADIT4SLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPyElEQVR4nO3dW4xdY9jA8Uc7tbt7GFwMSVNViUOqCSK0aEUILabEIb3gTiTcOAuZRKRUyiC4IdEocSgJF7joEOdDVTFoJCQVEhONpI0gbUenU9O834XPfObTUtO95rCf3+9uH6z1bs90r//sNbPmgFJKCQCARCaM9gIAAEaaAAIA0hFAAEA6AggASEcAAQDpCCAAIJ2Wf3rwp5+2j9Q6RsS0abXo7e0f7WUQZjGWmMXYYRZjh1mMHf9lFm1t0/d5u6k+AWppmTjaS+B/mcXYYRZjh1mMHWYxdlQ1i1QBBAAQIYAAgIQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIp2W0FwDkM621HvVa9W8/ff0D0butr/L9AOOPAAJGXL3WErM7uirfT09ne/RWvhdgPHIKDABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0mkZ7QUAY8u01nrUa94agObmXQ4Yol5ridkdXZXuo6ezvdLtA/wbp8AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAd1wGCcaLKCxS2tU2vZLsAY5UAgnFiJC5QGOEihUAOToEBAOkIIAAgHQEEAKTjZ4CAprXz992V/4B3X/9A9G7rq3QfQOMJIKBpTZ40cUT+sn1vpXsAquAUGACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6bSM9gIA+GfTWutRr1X/dt3XPxC92/oq3w+MBQIIYIyr11pidkdX5fvp6WyP3sr3AmODU2AAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASMefwgDYDzt/3x1tbdMbtr1GbgvYOwEEsB8mT5pY+d/p6ulsr3T7kJFTYABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApNMy2guAZjCttR71mn9OAOOFd2xogHqtJWZ3dFW6j57O9kq3D5CJU2AAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgnZbRXgBUbVprPeo1X+oA/B9HBZpevdYSszu6Kt1HT2d7pdsHoLGcAgMA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIp2W0FwDA2LDz993R1ja98n1MnjSx0n309Q9E77a+SvfB+CeAAIiIiMmTJsbsjq5K99HT2T4i++itdA80A6fAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKTjQoiMmmmt9ajXfAkCMPIcfRg19VpL5VeEjfjjqrAA8FdOgQEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACCdltFeAGPTtNZ61Gu+PABoTo5w7FG91hKzO7oq3UdPZ3ul2weAvXEKDABIRwABAOkIIAAgHQEEAKQjgACAdPwWGABNZefvu6Otbfp+b+ffttHXPxC92/r2ez+MDgEEQFOZPGli5ZfxiPjjUh69le+FqjgFBgCkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdF0Ich6a11qNeMzqA0dSoK07/E1ebro6j6DhUr7VUfpXTns72SrcPMN6NxBWnXW26Ok6BAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIJ2W0V5AM5nWWo96zf9SABjrHK0bqF5ridkdXZXvp6ezvfJ9AEAzcwoMAEgnzSdA01rrMWnSxGhrmz7aSwGAfbLz992VH7f6+geid1tfpfsYi9IE0EicnnJqCoBGmjxp4ogcu3or3cPYNCYCyA8PA8DoGIlPmSLG3idNY6I6fDoDAKNjJD5lihh7nzQdUEopo70IAICR5LfAAIB0BBAAkI4AAgDSaboAWr9+fVxyySWxePHiuPLKK2Pz5s17fN7nn38eS5cujfPPPz8uvfTS6O7uHnysq6srlixZEosXL47rrrsutm/fPlLLbyr7OotSSjzxxBMxd+7c+Oyzz4Y8tnLlyjjvvPPi/PPPj2uvvTZ++umnkVh6U2nEHL777rtYunRpnHnmmXHZZZfFd999NxJLbzqNmMWfVq9eHccee2yVy21qjZjFiy++GO3t7XHeeefFVVddtddt8M8aMYthHbdLE/ntt9/KqaeeWr766qtSSimrVq0q11xzzd+e19/fX+bNm1fWr19fSinlvffeKwsXLiyllPLjjz+W+fPnlx9//LGUUspdd91Vli9fPkKvoHns6yxKKeWOO+4ot99+e1m4cGHp7u4evP/DDz8s5557btm2bVsppZQHHnig3HLLLdUvvok0Yg4DAwNl8eLF5fXXXy+llPLyyy+Xe+65p/rFN5lGzOJPW7ZsKRdeeGE55phjKl1zs2rELL788suyYMGCsmXLllJKKZ2dneXmm2+ufvFNphGzGO5xu6kC6O233y5Lly4dvN3b21vmzp1btm/fPuR5vb29g2/mpZSyffv2cswxx5StW7eWZ555ptx4442Dj3377bfltNNOq37xTWZfZ1FKKRs2bCillHLWWWcN+aJ+8skny0033TR4e+3ateWiiy6qcNXNpxFz6O7uLu3t7dUvtsk1YhZ/uv7660tXV5cAGqZGzGLTpk3l008/Hbz91ltveX8ahkbMYrjH7aY6BdbT0xOHH3744O2pU6fGwQcfHD/88MOQ502dOjUWLVo0ePuDDz6I2bNnR2tra/T09MSsWbMGH5s1a1b8/PPPsXXr1upfQBPZ11lERJx44ol73Ma8efNiw4YNsXnz5ti9e3e8+eabcfrpp1e25mbUiDls3LgxZsyYER0dHbF48eK4+uqrY9OmTZWtuVk1YhYRf7xf9fb2xgUXXFDJOjNoxCxmzpwZp5xyyuDtDz74IE444YTGL7bJNWIWwz1uN1UA9fX1Ra1WG3JfrVaLHTt27PW/2bhxY9xzzz2xfPnywW0ceOCBg48feOCBccABB0Rf39i5euV4MJxZ/H9z586Niy++OM4+++yYN29edHd3xzXXXNPopTa1Rsxh27Zt0d3dHZdffnm89tprMWfOnLjtttsavdSm14hZ7Ny5M+67775YtmxZo5eXSiNm8VevvPJKrF27Nq677rpGLC+VRsxiuMftMXEl6P/qjTfeiAceeOBv919++eXR398/5L6dO3fG1KlT97idL774Im688cZYsWJFzJ8/PyIipkyZErt27Rp8Tn9/f5RSYsqUKQ18Bc2jUbPYk7fffjvef//9WLduXRx00EGxcuXKuPXWW+Pxxx/f73U3myrnMH369JgzZ87gd7dXXnllrFy5Mnbs2OHfxR5UOYtHH300lixZMuS7Xfauyln86bnnnounnnoqnn766Whraxv2WptdlbMY7nF7XAbQokWLhpzC+tP7778fa9asGbz9yy+/xNatW+OII47423M3btwYN9xwQzz88MNx8sknD95/5JFHxscffzx4+9tvv422trZobW1t8KtoDo2Yxd6sW7cuzjjjjDjkkEMiIuKCCy6IlStX7v+im1CVc5g5c+aQ36iYOHFiRERMmNBUHyA3TJWzeOedd+LXX3+N1atXD963YMGCeP755//TdrKochYRES+99FI899xzsXr16jjssMP2e73NrMpZDPe43VTvYPPnz4/NmzcP/nrcs88+G2edddbfKrCUEh0dHbFs2bIh8RMRcc4558Snn34a33///eA2lixZMjIvoIns6yz+yZFHHhnr168f/Bjz3XffjaOPPrqS9TarRsxhwYIF8euvv8batWsjIuKFF16Ik046KSZPnlzJmptVI2bR1dUVH330Uaxbty7WrVsXEX98oyB+/ptGzGLLli3x0EMPxapVq8TPfmjELIZ73G66vwX2ySefxIoVK6Kvry9mzZoVnZ2d0dbWFlu2bImrrroq1qxZExs2bIgrrrjib28aDz74YMydOzdeffXVeOSRR2JgYCCOO+64WLFixbA+Gs1uX2YREbFkyZIYGBiITZs2xaGHHhq1Wi3uv//+mDNnTtx7772xdu3amDBhQrS1tcWdd94ZRx111Ci/svFlf+dw/PHHx9dffx233XZb7Nq1K2bMmBF333230zDD0IhZ/NWxxx4b33zzzWi8lHFvf2exfv36eOyxx4bET0tLy5BPM9g3jfh3MZzjdtMFEADAv2mqU2AAAPtCAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABI538A6+crHOY8nk0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "res2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", - "res2[:15]" + "plt.figure(figsize=(10, 6))\n", + "_, _, _ = plt.hist(result2 , bins=20, edgecolor='w', density=True)\n", + "plt.yticks([]);" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As you can see, the figure is quite similar, except that there is a minus sing. The next step would be the model checking, but it would be pointless (you could do it) and the results would not be right." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 181, "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPoElEQVR4nO3dX2jV9f/A8Vduus0/oy5OgZRpVGKDiiitVoRRWU6jP3hRdyLoTf+jGETYH7RV5FVBQQWlXtRFddGKKPtnNmqVBAWGUZYESlQ4T50tZ5/fhTTym/2cnn0299rjcfc529n7PV9z57nz2fnsuKIoigAASGzSWG8AAKBsggcASE/wAADpCR4AID3BAwCkJ3gAgPQaD/cOP/+8d9gfbPr0pqhWB+raECPDLI4dZnHsMItjh1kcO7LNolKZccjbR/QZnsbGhpH8cNTBLI4dZnHsMItjh1kcOybKLJzSAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCk1zjWGwCOLdNbW6KlqfxvDbWBwaj21UpfByBC8AD/o6WpMWZ3dpe+zo6ujqiWvgrAAU5pAQDpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeo1jvQFgYurftz8qlRmlrlEbGIxqX63UNYDxQfAAY6J5ckPM7uwudY0dXR1RLXUFYLxwSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANJzHR4grUNd3HCkL3bo4oYwPggeIC0XNwT+5pQWAJCe4AEA0hM8AEB6focHxpHprS3R0uS/LcCR8p0TxpGWpsZR+SVcgGyc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AIL3Gsd4AlG16a0u0NJX/pV4bGIxqX630dQA4coKH9FqaGmN2Z3fp6+zo6ohq6asAcDSc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAev60BIyQ/n37o1KZcci3/dftAIwOwQMjpHlyQ+l/s2tHV0epHx8gK6e0AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIr3GsNwAwnvXv2x+VyozS16kNDEa1r1b6OpCV4AGoQ/Pkhpjd2V36Oju6OqJa+iqQl1NaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AIL3Gsd4AAIfXv29/VCozSl2jNjAY1b5aqWvAWBE8AONA8+SGmN3ZXeoaO7o6olrqCjB2nNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASK9xrDfAsWt6a0u0NJX7JdK/b380T24odQ0AEDz8p5amxpjd2V3qGju6OkZlDQAmNqe0AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKTnwoMARMSBK59XKjNKX6c2MFj6GvC/BA8AERHRPLmh9CufRxy4+vm+fftLXwf+ySktACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNc41hsAYGLp37c/mic3RKUyo7Q1agODUe2rlfbxGX8EDwCjqnlyQ8zu7C51jR1dHVEtdQXGG6e0AID0BA8AkJ7gAQDSEzwAQHqCBwBIz6u0xqHprS3R0nT40ZX5kk8AGE8EzzjU0tRY+ks6Iw68rBMAMnBKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6Ljw4woZ7FWQAytO/b3/pV5uvDQxGta9W6hqMHI/MI2w0roLsCsgA/7/myQ2j8r24WuoKjCSntACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJBe41hvAADGo/59+6NSmVH6OrWBwaj21UpfJzvBAwBHoXlyQ8zu7C59nR1dHVEtfZX8nNICANKbMM/wTG9tiZamCfPpApDEaJw6m97akv602YQpgJamxlF76hEARsponDqbCKfNjong8ewLAIyd0XgWaax/+fqYqIzRePbFMy8AcGgT4Vmk44qiKMZwfQCA0nmVFgCQnuABANITPABAesMKnp6enrj++utj0aJFsXz58ti1a9e/3qcoinjuueeira0tPvvss4Pe1t3dHUuWLIlFixbFrbfeGnv37h2Z3U9A9c7i5Zdfjo6Ojrj66qtjxYoVh7w/w1PvLP62YcOGmDt3btnbTa3eWXz77bexbNmyuOyyy+LGG2+Mb7/9drS2nk69s3jmmWfi6quvjmuuuSZuueWW+Pnnn0dr66kMZw6ff/55LFu2LK655pq44YYbore3d+htKR+3i8P4/fffiwsvvLD46quviqIoimeffbZYtWrVv97v/vvvL+67777ikksuKXp7e4du/+mnn4oFCxYUP/30U1EURfHggw8WDz300OGW5RDqncWXX35ZtLe3F7t37y6Koii6urqKu+66a3Q2n0y9s/jb7t27i6VLlxZnnnlm6XvOqt5ZDA4OFosWLSreeuutoiiK4tVXXy3Wrl07OptPpt5ZfPTRR8WVV15Z9PX1FUVRFI8//nhx9913j87mExnOHAYGBor58+cXPT09RVEUxfvvv19ccsklRVHkfdw+bPBs2rSpWLZs2dBxtVot2trair179x70flu3bi2KoigWLlx40Bfwiy++WNxxxx1Dx9u3by8uuuiiujc+EdU7i507dxaffvrp0PE777xTXHvttSXvOqd6Z/G32267reju7hY8dah3Fr29vUVHR8fobDa5emfx/PPPF3feeefQ8ebNm32POgrDmUO1Wh2K/KIoir179xZnnnlmsWfPnrSP24c9pbVjx4445ZRTho6nTZsWxx9/fPz4448Hvd+55577n/efNWvW0PGsWbPil19+iT179hztk1ITVr2zOPnkk+OCCy4YOv7www/jnHPOKWezydU7i4gD//7VajUWL15c2j4ngnpnsW3btpg5c2Z0dnbGokWLYuXKlbFz585S95xVvbOYP39+bN26NXbt2hX79++Pt99+Oy6++OJS95zRcOYwbdq0uOqqq4aOP/zww5g9e3a0tramfdw+bPDUarVoamo66Lampqb4448/hrVArVaLKVOmDB1PmTIljjvuuKjVcv/NjjLUO4t/eu2112Lz5s1x6623jtT2JpR6Z9Hf3x+PPvporF69uoztTSj1zqKvry96e3vjpptuijfffDPmzZsX9957bxlbTa/eWbS1tcV1110Xl19+ecyfPz96e3tj1apVZWw1tSOdw7Zt22Lt2rXx0EMPDd0/4+P2YYNn6tSpMTAwcNBt/f39MW3atGEtMHXq1Pjzzz+HjgcGBqIoipg6deoRbpV6Z/G3jRs3xlNPPRUvvPBCVCqVkdzihFHvLJ566qlYsmTJQT9FcXTqncWMGTNi3rx5cc4558SkSZNi+fLlsXXr1qP6QWKiq3cWmzZtig8++CC2bNkSvb29sXTp0rjnnnvK2GpqRzKHL774IlauXBlr1qyJBQsWDN0/4+P2YYPntNNOi++//37o+Ndff409e/bEqaeeOqwF5syZE999993Q8fbt26NSqURra+tRbHdiq3cWERGvvPJKbNy4MTZs2HDQU54cmXpn8e6778b69eujvb092tvbIyKivb09fvjhh1L2m1m9szj55JMPegVKQ0NDRERMmuSqHUeq3lls2bIlLr300jjhhBNi0qRJsXjx4oNeOcTwDHcO27Zti9tvvz3WrVsXl1122dDtWR+3D/s/esGCBbFr166hlw6uX78+Fi5cOOzSu+KKK+LTTz8d+sdfv359LFmypI4tT1z1zmL37t2xbt26ePbZZ+Okk04qc6vp1TuL7u7u+Pjjj2PLli2xZcuWiDjwzf5I4pUD6p1Fe3t7/Pbbb7F58+aIiHjppZfivPPOi+bm5tL2nFW9s5gzZ0709PQMnTp577334owzzihtv1kNZw5FUURnZ2esXr06zj///IPun/Vxe1h/S+uTTz6JNWvWRK1Wi1mzZkVXV1f89ddfsWLFinj99dcjImLJkiUxODgYO3fujBNPPDGamprisccei7PPPjveeOONePLJJ2NwcDDOOuusWLNmzRGfhuGAembR09MTTz/99EGx09jYOHQ/jky9/y/+ae7cufHNN9+MxaeRQr2z+Prrr+Pee++NP//8M2bOnBkPP/yw041HqZ5ZzJs3Lx555JHYvHlzTJo0KSqVSjzwwANx+umnj/FnNf4cbg5bt26Nm2+++V8/ZD3xxBPR1taW8nHbHw8FANJzkhoASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEjv/wD+Zf+eruYNNwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(res2 , bins=20, edgecolor='w', density=True)" + "_, _, _ = plt.hist(-result2 , bins=20, edgecolor='w', density=True) # With a minus\n", + "plt.yticks([]);" ] }, { - "cell_type": "code", - "execution_count": null, + "cell_type": "markdown", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "Why? I don't know, nevertheless, it is really weird." + ] }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 117, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The watermark extension is already loaded. To reload it, use:\n", + " %reload_ext watermark\n" + ] + } + ], "source": [ "%load_ext watermark" ] }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 118, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "numpy 1.16.4\n", - "pymc3 3.6\n", - "pandas 0.24.2\n", - "arviz 0.4.1\n", + "numpy 1.17.4\n", + "pymc3 3.8\n", + "pandas 0.25.3\n", + "arviz 0.5.1\n", "seaborn 0.9.0\n", - "CPython 3.6.8\n", + "pystan 2.19.0.0\n", + "CPython 3.6.9\n", "IPython 7.6.1\n", "\n", "theano 1.0.4\n", - "scipy 1.3.0\n", - "matplotlib 3.1.0\n", + "scipy 1.3.1\n", + "matplotlib 3.1.1\n", "\n", "compiler : GCC 7.3.0\n", "system : Linux\n", - "release : 4.15.0-55-generic\n", + "release : 4.15.0-72-generic\n", "machine : x86_64\n", "processor : x86_64\n", "CPU cores : 8\n", @@ -1898,21 +2834,37 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Intento con pystan" + "## **With pystan**" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This section is to reproduce the figure 8.1 (a) and the figure 8.1 (b) with Stan." ] }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 3, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "2.19.0.0\n" + ] + } + ], "source": [ - "import pystan" + "import pystan\n", + "print(pystan.__version__)" ] }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 64, "metadata": {}, "outputs": [], "source": [ @@ -1943,7 +2895,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -1960,11 +2912,11 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 176, "metadata": {}, "outputs": [], "source": [ - "data = {'N': 16,\n", + "data2 = {'N': 16,\n", " 'n': 3,\n", " 'alpha': [1,1,1],\n", " 'y_obs': valores.astype(int)}" @@ -1972,16 +2924,16 @@ }, { "cell_type": "code", - "execution_count": 55, + "execution_count": 177, "metadata": {}, "outputs": [], "source": [ - "fit = stan_modelo.sampling(data=data)" + "fit = stan_modelo.sampling(data=data2)" ] }, { "cell_type": "code", - "execution_count": 56, + "execution_count": 178, "metadata": { "scrolled": true }, @@ -1995,57 +2947,57 @@ "post-warmup draws per chain=1000, total post-warmup draws=4000.\n", "\n", " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "theta[1,1] 0.3007 0.0006 0.0643 0.1805 0.2566 0.2987 0.3413 0.4357 8933 0.9995\n", - "theta[2,1] 0.4902 0.0008 0.0726 0.3454 0.4426 0.4907 0.5382 0.6296 7457 0.9997\n", - "theta[3,1] 0.4648 0.0003 0.0379 0.3918 0.4387 0.4640 0.4902 0.5415 9417 0.9995\n", - "theta[4,1] 0.4587 0.0006 0.0566 0.3484 0.4198 0.4589 0.4974 0.5708 7798 0.9993\n", - "theta[5,1] 0.4011 0.0007 0.0690 0.2691 0.3541 0.3999 0.4479 0.5394 9671 0.9993\n", - "theta[6,1] 0.4424 0.0005 0.0510 0.3418 0.4083 0.4422 0.4758 0.5441 8823 0.9992\n", - "theta[7,1] 0.5041 0.0005 0.0467 0.4125 0.4723 0.5041 0.5361 0.5958 8730 0.9993\n", - "theta[8,1] 0.5474 0.0004 0.0412 0.4684 0.5191 0.5470 0.5772 0.6272 7904 0.9992\n", - "theta[9,1] 0.5420 0.0011 0.0984 0.3488 0.474 0.5443 0.6117 0.7277 7048 0.9994\n", - "theta[10,1] 0.4640 0.0005 0.0495 0.3675 0.4304 0.4641 0.4974 0.5617 8140 0.9994\n", - "theta[11,1] 0.5103 0.0006 0.0491 0.4110 0.4786 0.5098 0.5430 0.6038 6471 1.0000\n", - "theta[12,1] 0.5513 0.0004 0.0357 0.4815 0.5270 0.5506 0.5749 0.6215 7018 0.9993\n", - "theta[13,1] 0.4868 0.0008 0.0796 0.3304 0.4328 0.4865 0.5421 0.6381 8040 0.9992\n", - "theta[14,1] 0.5245 0.0006 0.0550 0.4146 0.4872 0.5255 0.5615 0.6307 7609 0.9998\n", - "theta[15,1] 0.5362 0.0004 0.0438 0.4496 0.5067 0.5373 0.5662 0.6197 9523 0.9996\n", - "theta[16,1] 0.5467 0.0005 0.0553 0.4364 0.5082 0.5471 0.5851 0.6519 8899 0.9997\n", - "theta[1,2] 0.5990 0.0008 0.0698 0.4569 0.5527 0.6008 0.6479 0.7298 7472 0.9993\n", - "theta[2,2] 0.4687 0.0008 0.0729 0.3284 0.4189 0.4679 0.5171 0.6174 7076 0.9997\n", - "theta[3,2] 0.4118 0.0004 0.0377 0.3386 0.3867 0.4115 0.4376 0.4858 8076 0.9997\n", - "theta[4,2] 0.5137 0.0006 0.0574 0.4014 0.4739 0.5140 0.5538 0.6282 7946 0.9994\n", - "theta[5,2] 0.4793 0.0007 0.0693 0.3462 0.4325 0.4794 0.5265 0.6144 8717 0.9993\n", - "theta[6,2] 0.4439 0.0005 0.0504 0.3453 0.4107 0.4431 0.4768 0.5447 8078 0.9993\n", - "theta[7,2] 0.3863 0.0004 0.0447 0.2973 0.3561 0.3854 0.4156 0.4760 8224 0.9993\n", - "theta[8,2] 0.3377 0.0004 0.0393 0.2636 0.3094 0.3373 0.3652 0.4153 7598 0.9993\n", - "theta[9,2] 0.2921 0.0010 0.0896 0.1357 0.2273 0.2865 0.3510 0.4831 7374 0.9993\n", - "theta[10,2] 0.4042 0.0005 0.0490 0.3086 0.3713 0.4038 0.4377 0.4997 7401 0.9997\n", - "theta[11,2] 0.4014 0.0006 0.0489 0.3059 0.3680 0.4007 0.4339 0.5005 6078 0.9996\n", - "theta[12,2] 0.3511 0.0004 0.0350 0.2808 0.3278 0.3510 0.3736 0.4225 7039 0.9996\n", - "theta[13,2] 0.4595 0.0009 0.0794 0.3089 0.4043 0.4587 0.5137 0.6184 7402 0.9993\n", - "theta[14,2] 0.3507 0.0006 0.0542 0.2478 0.3126 0.3489 0.3875 0.4623 8022 0.9994\n", - "theta[15,2] 0.3691 0.0004 0.0427 0.2854 0.3405 0.3685 0.3975 0.4549 7822 0.9995\n", - "theta[16,2] 0.3600 0.0005 0.0532 0.2594 0.3234 0.3589 0.3969 0.4663 8431 0.9996\n", - "theta[1,3] 0.1002 0.0004 0.0423 0.0333 0.0692 0.0952 0.1255 0.1975 7723 0.9993\n", - "theta[2,3] 0.0410 0.0003 0.0285 0.0051 0.0201 0.0347 0.0552 0.1128 6573 0.9999\n", - "theta[3,3] 0.1233 0.0002 0.0246 0.0793 0.1056 0.1223 0.1395 0.1750 8132 0.9999\n", - "theta[4,3] 0.0275 0.0002 0.0188 0.0032 0.0135 0.0236 0.0370 0.0749 6783 0.9997\n", - "theta[5,3] 0.1195 0.0005 0.0449 0.0459 0.0864 0.1152 0.1466 0.2226 8130 0.9995\n", - "theta[6,3] 0.1135 0.0003 0.0321 0.0577 0.0904 0.1112 0.1334 0.1824 7675 0.9992\n", - "theta[7,3] 0.1095 0.0003 0.0292 0.0603 0.0880 0.1073 0.1281 0.1701 7200 0.9994\n", - "theta[8,3] 0.1147 0.0003 0.0256 0.0689 0.0966 0.1132 0.1315 0.1691 7493 0.9994\n", - "theta[9,3] 0.1658 0.0009 0.0735 0.0503 0.1113 0.1582 0.2113 0.3322 6146 0.9995\n", - "theta[10,3] 0.1317 0.0004 0.0340 0.0724 0.1076 0.1297 0.1528 0.2042 7260 0.9997\n", - "theta[11,3] 0.0881 0.0003 0.0282 0.0409 0.0676 0.0855 0.1058 0.1517 7555 0.9993\n", - "theta[12,3] 0.0975 0.0002 0.0226 0.0583 0.0815 0.0959 0.1120 0.1456 6503 0.9997\n", - "theta[13,3] 0.0535 0.0004 0.0371 0.0060 0.0262 0.0458 0.0723 0.1464 6138 0.9994\n", - "theta[14,3] 0.1247 0.0004 0.0364 0.0619 0.0987 0.1217 0.148 0.2014 6789 0.9994\n", - "theta[15,3] 0.0946 0.0003 0.0266 0.0490 0.0754 0.0919 0.1113 0.1525 7251 0.9991\n", - "theta[16,3] 0.0932 0.0003 0.0315 0.0409 0.0706 0.0900 0.1123 0.1651 7889 0.9993\n", - "lp__ -1.4149e3 0.1127 4.2446-1.4241e3-1.4175e3-1.4145e3-1.4118e3-1.4076e3 1418 1.0038\n", + "theta[1,1] 0.2991 0.0006 0.0648 0.1829 0.2522 0.2966 0.3427 0.4330 9140 0.9992\n", + "theta[2,1] 0.4897 0.0009 0.0695 0.3542 0.442 0.4900 0.5370 0.6221 5691 0.9992\n", + "theta[3,1] 0.4648 0.0004 0.0381 0.3924 0.4391 0.4640 0.4908 0.5395 8183 0.9991\n", + "theta[4,1] 0.4578 0.0006 0.0575 0.3446 0.4187 0.4574 0.4980 0.5702 7824 0.9995\n", + "theta[5,1] 0.4008 0.0008 0.0673 0.2730 0.3544 0.3998 0.4459 0.5341 7071 0.9996\n", + "theta[6,1] 0.4436 0.0006 0.0506 0.3463 0.4091 0.4438 0.4779 0.5423 6712 0.9992\n", + "theta[7,1] 0.5051 0.0005 0.0445 0.4156 0.4745 0.5061 0.5356 0.5891 7149 0.9995\n", + "theta[8,1] 0.5469 0.0004 0.0410 0.4673 0.5185 0.5464 0.5753 0.6270 7593 0.9993\n", + "theta[9,1] 0.5398 0.0011 0.0966 0.3465 0.4742 0.5425 0.6061 0.7266 7080 0.9997\n", + "theta[10,1] 0.4642 0.0005 0.0487 0.3709 0.4305 0.4641 0.4968 0.5605 6911 0.9994\n", + "theta[11,1] 0.5105 0.0005 0.0494 0.4135 0.4764 0.5113 0.5440 0.6046 7443 0.9994\n", + "theta[12,1] 0.5517 0.0004 0.0369 0.4764 0.5279 0.5525 0.5760 0.6232 7365 0.9990\n", + "theta[13,1] 0.4875 0.0009 0.0820 0.3276 0.4314 0.4880 0.5431 0.6477 8165 0.9997\n", + "theta[14,1] 0.5253 0.0006 0.0555 0.4165 0.4872 0.5252 0.5632 0.6319 7278 1.0000\n", + "theta[15,1] 0.5356 0.0005 0.0447 0.4460 0.5057 0.5359 0.5664 0.6221 7475 0.9997\n", + "theta[16,1] 0.5472 0.0005 0.0527 0.4434 0.5116 0.5479 0.5826 0.6524 9245 0.9991\n", + "theta[1,2] 0.6003 0.0007 0.0677 0.4625 0.5548 0.6006 0.6473 0.7276 8988 0.9991\n", + "theta[2,2] 0.4699 0.0008 0.0696 0.3344 0.4218 0.4686 0.5177 0.6061 6244 0.9992\n", + "theta[3,2] 0.4111 0.0004 0.0377 0.3392 0.3850 0.4113 0.437 0.4855 7224 0.9992\n", + "theta[4,2] 0.5139 0.0006 0.0578 0.4025 0.4736 0.5128 0.5536 0.6274 8235 0.9994\n", + "theta[5,2] 0.4792 0.0008 0.0690 0.3463 0.4324 0.4779 0.5249 0.6140 7355 0.9994\n", + "theta[6,2] 0.4425 0.0006 0.0502 0.3478 0.408 0.4416 0.4764 0.5423 7003 0.9993\n", + "theta[7,2] 0.3858 0.0005 0.0438 0.3022 0.3561 0.3844 0.4139 0.4761 7283 0.9998\n", + "theta[8,2] 0.3381 0.0004 0.0391 0.2630 0.3110 0.3374 0.3644 0.4151 8666 0.9995\n", + "theta[9,2] 0.2926 0.0011 0.0915 0.1321 0.2252 0.2855 0.3532 0.4864 6311 0.9998\n", + "theta[10,2] 0.4041 0.0005 0.0488 0.3073 0.3699 0.4037 0.4367 0.5015 7187 0.9994\n", + "theta[11,2] 0.4016 0.0005 0.0493 0.3088 0.3678 0.4007 0.4342 0.5031 7216 0.9997\n", + "theta[12,2] 0.351 0.0003 0.0353 0.2844 0.3272 0.3504 0.3745 0.4219 8114 0.9991\n", + "theta[13,2] 0.458 0.0009 0.0828 0.3007 0.4000 0.4561 0.5148 0.6215 7876 1.0002\n", + "theta[14,2] 0.3491 0.0006 0.0538 0.2496 0.3107 0.3481 0.3852 0.4595 6858 0.9994\n", + "theta[15,2] 0.3694 0.0005 0.0434 0.2889 0.3377 0.3688 0.3998 0.4543 6889 0.9997\n", + "theta[16,2] 0.3602 0.0005 0.0507 0.2640 0.3246 0.3592 0.3942 0.4628 9029 0.9994\n", + "theta[1,3] 0.1004 0.0004 0.0426 0.0338 0.0690 0.0951 0.1263 0.1986 7610 0.9992\n", + "theta[2,3] 0.0403 0.0003 0.0277 0.0051 0.0193 0.0339 0.0546 0.1108 6664 0.9992\n", + "theta[3,3] 0.1239 0.0003 0.0258 0.0775 0.1048 0.1224 0.1415 0.1778 7460 0.9995\n", + "theta[4,3] 0.0282 0.0002 0.0201 0.0035 0.0130 0.0237 0.0385 0.0795 7269 1.0001\n", + "theta[5,3] 0.1199 0.0005 0.0453 0.0476 0.0873 0.1146 0.1463 0.2256 7672 0.9995\n", + "theta[6,3] 0.1138 0.0003 0.0323 0.0577 0.0909 0.1107 0.1340 0.1851 7348 0.9997\n", + "theta[7,3] 0.1090 0.0003 0.0286 0.0597 0.0889 0.1066 0.1263 0.1730 8172 1.0\n", + "theta[8,3] 0.1149 0.0003 0.0265 0.0676 0.0962 0.1129 0.1318 0.1723 7691 0.9993\n", + "theta[9,3] 0.1674 0.0009 0.0753 0.0476 0.1101 0.1594 0.2143 0.3385 6826 1.0004\n", + "theta[10,3] 0.1316 0.0003 0.0327 0.0747 0.1082 0.1290 0.1530 0.2004 7045 0.9994\n", + "theta[11,3] 0.0878 0.0003 0.0268 0.0426 0.0684 0.0851 0.1043 0.1490 8129 0.9994\n", + "theta[12,3] 0.0972 0.0002 0.0219 0.0581 0.0817 0.0958 0.1109 0.1449 8508 0.9996\n", + "theta[13,3] 0.0544 0.0004 0.0363 0.0071 0.0273 0.0475 0.0724 0.1435 6322 0.9996\n", + "theta[14,3] 0.1254 0.0004 0.0363 0.0615 0.0999 0.1225 0.1478 0.2084 8258 0.9998\n", + "theta[15,3] 0.0948 0.0003 0.026 0.0506 0.0763 0.0926 0.1110 0.1524 6993 0.9995\n", + "theta[16,3] 0.0924 0.0003 0.0305 0.0424 0.0706 0.0890 0.1112 0.1597 6543 0.9993\n", + "lp__ -1.4147e3 0.1016 4.1023-1.4236e3-1.4173e3-1.4143e3-1.4117e3-1.4076e3 1628 1.0021\n", "\n", - "Samples were drawn using NUTS at Tue Jul 30 17:33:35 2019.\n", + "Samples were drawn using NUTS at Mon Dec 9 22:34:31 2019.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -2058,7 +3010,7 @@ }, { "cell_type": "code", - "execution_count": 57, + "execution_count": 179, "metadata": {}, "outputs": [], "source": [ @@ -2067,16 +3019,16 @@ }, { "cell_type": "code", - "execution_count": 58, + "execution_count": 183, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.10019681127543548" + "0.10047556624303831" ] }, - "execution_count": 58, + "execution_count": 183, "metadata": {}, "output_type": "execute_result" } @@ -2087,7 +3039,7 @@ }, { "cell_type": "code", - "execution_count": 59, + "execution_count": 184, "metadata": {}, "outputs": [], "source": [ @@ -2100,28 +3052,28 @@ }, { "cell_type": "code", - "execution_count": 60, + "execution_count": 185, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.23383337, -0.37255542, -0.49125213, ..., -0.212366 ,\n", - " -0.14557615, -0.33563944],\n", - " [-0.17927392, 0.08572703, -0.10061323, ..., 0.1241279 ,\n", - " -0.20666601, 0.17206214],\n", - " [ 0.14737479, 0.02937957, 0.17731195, ..., 0.16176922,\n", - " 0.12154819, 0.06636315],\n", + "array([[-0.26316683, -0.46907552, -0.18810958, ..., 0.01134663,\n", + " -0.02195103, -0.4870123 ],\n", + " [ 0.04889463, 0.39351895, -0.1193489 , ..., -0.08524156,\n", + " 0.11291295, -0.03893748],\n", + " [-0.10991316, 0.13760039, 0.14554263, ..., 0.10282834,\n", + " 0.02578634, 0.01062272],\n", " ...,\n", - " [ 0.27727583, 0.20092786, 0.15775507, ..., 0.13165871,\n", - " 0.06343824, -0.05371965],\n", - " [ 0.03499515, 0.14597643, 0.33526159, ..., 0.07464869,\n", - " 0.16823083, 0.21117046],\n", - " [ 0.26470757, 0.37250208, 0.15273906, ..., 0.21898664,\n", - " 0.14903927, 0.1957518 ]])" + " [ 0.09066012, 0.06472593, 0.07636403, ..., 0.19946736,\n", + " 0.07081995, 0.20796647],\n", + " [ 0.23329006, 0.29721636, 0.13941577, ..., 0.20717848,\n", + " 0.12005161, 0.24211568],\n", + " [ 0.09777631, 0.23095916, 0.05175801, ..., 0.30393431,\n", + " 0.07606157, 0.15274686]])" ] }, - "execution_count": 60, + "execution_count": 185, "metadata": {}, "output_type": "execute_result" } @@ -2133,7 +3085,7 @@ }, { "cell_type": "code", - "execution_count": 61, + "execution_count": 186, "metadata": {}, "outputs": [], "source": [ @@ -2142,12 +3094,12 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": 187, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcSElEQVR4nO3dfZBVdf0H8M/uvbAPLrQpGw2thEjRxKSUNko1mf6oBdmxYrLUAdKx6QE0zakZKjUzTTBJp9KIJEWxkp50RmJLjLQHepoenGxAyXYyCyawlV1ZNtDz+8Pp1grid+/D7r3s6zXDDPfce+73cz+c+71vzrn3nLosy7IAAOCQ6ke6AACAWiA0AQAkEJoAABIITQAACYQmAIAEQhMAQIJ8pQf45z97Kz1EVWhpaYi+voGRLqPm6NvQ6Vlx9G3o9Kw4+jZ01dSztrZxz3ufPU1lks/nRrqEmqRvQ6dnxdG3odOz4ujb0NVKz4QmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkyI90AQDFaBnfFE0NQ5vC2trGDXmc/oH90be7f8jrAYcfoQmoSU0N+ZiydH3Fx+leNi/6Kj4KUAscngMASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkSApN+/bti+XLl8f06dNj+/btheW/+c1vorOzM0455ZRYtGhR7Nixo2KFAgCMpKTQtHjx4mhsbBy0rK+vLy6++OK46qqr4v777483velNsX595a8DBQAwEpIu2LtkyZKYOXNm3HTTTYVlGzdujBkzZsTMmTMjIuL9739/ZSoEAKgCSXua/hOM/tfWrVvjxS9+cSxZsiQ6OjriIx/5SDzxxBNlLxAAoBok7Wk6mN27d8dPf/rTuOOOO2LSpElx6aWXxmc/+9m47rrrBj2upaUh8vlcyYVWu1yuPlpbm0e6jJqjb0OnZ8NvtPbbtlYcfRu6WulZ0aFp3LhxMWvWrHj5y18eERGLFi2K973vfQc8rq9voPjqakhra3P09OwZ6TJqjr4NnZ49q61t3LCNNVr7bVsrjr4NXTX17FBzS9Ghqb29Pbq7uwu3c7lc5HKH/x4l4IW1jG+KpoaipxeAqlT0rDZ37ty44YYbYuvWrTF9+vRYt25dzJo1q5y1ATWqqSEfU5ZW9te03cvmVfT5AZ7rBUPTzp07Y8GCBYXbCxcujFwuF2vWrInrr78+Lrjggqirq4tXvOIV8ZnPfKaixQIAjJQXDE0TJkyIrq6ug943ceLEuPfee8teFABAtXEZFQCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJMiPdAEA1WzvvqejrW1cRcfoH9gffbv7KzoGUDqhCeAQGsfkYsrS9RUdo3vZvOir6AhAOQhNMIq0jG+KpgZve4BimD1hFGlqyFd8r0nEs3tOAA43SV8E37dvXyxfvjymT58e27dvP+D+5cuXx2mnnVb24gAAqkVSaFq8eHE0NjYe9L4tW7bExo0by1oUAEC1SQpNS5YsiYsuuuiA5c8880xcccUVcfHFF5e9MACAapIUmmbOnHnQ5d/85jfjla98ZRx//PFlLQoAoNoU/UXwf/7zn7FmzZpYt25d9Pb2lrMmAICqU3Rouuaaa2LJkiXxohe96JChqaWlIfL5XLHD1Ixcrj5aW5tHuoyao29Dp2eHp2r8N7WtFUffhq5WelZ0aNq0aVP88pe/jOXLl8fTTz8dTz75ZLzxjW+MTZs2xdixYwuP6+sbKEuh1a61tTl6evaMdBk1R9+GrpSeVfrM1hSvGt8H3p/F0behq6aeHWqeLDo0/e53vyv8/W9/+1ssWrQofvSjHxX7dAAAVe0FQ9POnTtjwYIFhdsLFy6MXC4Xa9asiYkTJ1a0OACAavGCoWnChAnR1dV1yMe0t7fbywQAHNaSTjkAADDaCU0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABPmRLgBgtNu77+loaxtX0TH6B/ZH3+7+io4BhzuhCWCENY7JxZSl6ys6RveyedFX0RHg8OfwHABAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEiSFpn379sXy5ctj+vTpsX379sLyG2+8MebOnRsdHR1x8cUXR29vb8UKBQAYSUmhafHixdHY2DhoWVdXV3R1dcW3vvWt2LBhQ9TV1cXNN99ckSIBAEZaUmhasmRJXHTRRYOWHXvssXHNNddES0tL1NfXx2tf+9p45JFHKlIkAMBISzoj+MyZMw9Y9opXvGLQ7QceeCBe//rXl6cqAIAqU5Yvgn/5y1+OXbt2xcKFC8vxdAAAVafka8+tWLEifvazn8Xq1aujubn5gPtbWhoin8+VOkzVy+Xqo7X1wNfPoenb0OkZxRrqdmNbK46+DV2t9Kyk0PTFL34xfvvb38Ztt90WLS0tB31MX99AKUPUjNbW5ujp2TPSZdQcfRu6UnrW1jauzNVQS4a63Xh/Fkffhq6aenaoebLo0PTQQw/FXXfdFXfdddfzBiYAgMPFC4amnTt3xoIFCwq3Fy5cGLlcLk488cTo7e2NM888s3Dfy172sli9enVlKgUAGEEvGJomTJgQXV1dB73vqquuKntBAADVyGVUAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIEF+pAsAntUyvimaGtLekm1t4ypcDQDPJTRBlWhqyMeUpesrOkb3snkVfX6Aw5nDcwAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAgQVJo2rdvXyxfvjymT58e27dvLyy/9dZbY+7cudHR0RGf/OQn49///nfFCgUAGElJoWnx4sXR2Ng4aNnvf//7uO222+LOO++MDRs2xK5du2Lt2rUVKRIAYKQlhaYlS5bERRddNGhZV1dXnH766TF+/Pior6+Ps88+OzZs2FCRIgEARlpSaJo5c+YBy7q7u2Py5MmF20cffXQ8+uij5asMAKCK5Itdsb+/P8aOHVu43djYGP39/Qc8rqWlIfL5XLHD1Ixcrj5aW5tHuoyao28wfIb6XvP+LI6+DV2t9Kzo0NTU1DToi9/9/f3R3HzgC+7rGyh2iJrS2tocPT17RrqMmqNv/9XWNm6kS+AwN9T3mvdncfRt6KqpZ4eai4s+5cDUqVMHHY7btm1bTJs2rdinAwCoakWHprlz5xZ+Nbd///74+te/HvPmzStnbQAAVeMFD8/t3LkzFixYULi9cOHCyOVysWbNmjj//PPjnHPOiSzL4g1veEOcffbZFS0WAGCkvGBomjBhQnR1dR30vkWLFsWiRYvKXhQAQLVxGRUAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEuRHugAAKm/vvqejrW3ckNcb6jr9A/ujb3f/kMeBWiA0AYwCjWNyMWXp+oqP071sXvRVfBQYGQ7PAQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABKUHJq+853vxOmnnx5z586N8847L/7yl7+Uoy4AgKpSUmj685//HNdee23ccsstsWHDhnjb294Wn/jEJ8pVGwBA1Sg5NE2ZMiUmTpwYEREnn3xyPPLII2UpDACgmpQUmo4//vj461//Gg8//HBkWRY//OEP4w1veEO5agMAqBr5UlaeOHFiXHLJJfGOd7wjWlpaorGxMdauXTvoMS0tDZHP50oqshbkcvXR2to80mXUHH2Dw89of0+b14auVnpWUmj605/+FF/+8pdj48aNMWnSpLj77rvjQx/6UNxzzz1RV1cXERF9fQNlKbTatbY2R0/PnpEuo+bo23+1tY0b6RKgLEb7e9q8NnTV1LNDzcUlHZ7bvHlzvPa1r41JkyZFRMTpp58e27Zti3/961+lPC0AQNUpKTQdc8wx8bvf/a4Qku6///5oa2uLF7/4xWUpDgCgWpR0eO60006Lhx56KN7znvdEXV1dtLS0xA033FA4NAcAcLgoKTRFRFx44YVx4YUXlqMWAICq5TIqAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIIDQBACQQmgAAEghNAAAJhCYAgARCEwBAAqEJACCB0AQAkEBoAgBIkB/pAqAWtIxviqYGbxeA0cynACRoasjHlKXrKzpG97J5FX1+AErj8BwAQAKhCQAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJCg5NC0Y8eOOO+88+KUU06JefPmxa9//ety1AUAUFVKDk1Lly6NN7/5zXH//ffHpZdeGmvXri1HXQAAVSVfysr/+Mc/4qGHHopVq1ZFRMSsWbNi1qxZZSkMAKCalLSnacuWLdHe3h4rVqyIjo6OWLBgQfzpT38qV20AAFWjpD1Nu3fvjocffjgWL14cS5cujXXr1sUFF1wQP/zhDyOff/apW1oaIp/PlaXYapbL1Udra/NIl1Fz9A0OP6P9PW1eG7pa6VlJoWncuHFx1FFHxezZsyMi4swzz4zly5dHd3d3TJs2LSIi+voGSq+yBrS2NkdPz56RLqPm1Erf2trGjXQJUDNq4T1dSbUyr1WTaurZoeb7kg7Ptbe3x1NPPRXPPPNMRETU1dVFfX191Nc7kwEAcHgpKd288pWvjMmTJ8e3vvWtiIjYsGFDjBs3LiZPnlyW4gAAqkVJh+ciIr7whS/ERz7ykVi1alUcddRR8YUvfKHwfSYAgMNFyemmvb29sKcJAOBwZZcQAGWzd9/TFf/hRP/A/ujb3V/RMeBghCYAyqZxTC6mLF1f0TG6l82LvoqOAAfnZ24AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAmEJgCABEITAEACoQkAIEF+pAuAUrSMb4qmBpsxAJXn04aa1tSQjylL11d8nO5l8yo+BgDVzeE5AIAEQhMAQIKyhKYf//jHMX369Pjb3/5WjqcDAKg6JYem/v7+WLFiRbS2tpajHgCAqlRyaPriF78YZ5xxRhxxxBHlqAcAoCqVFJq2bt0aP//5z+Pcc88tUzkAANWp6NCUZVl86lOfiksvvTTGjBlTzpoAAKpO0edpuvPOO2PatGlx4oknHvJxLS0Nkc/nih2mZuRy9dHa2jzSZdQcfQOKUc3zhnlt6GqlZ0WHpvvuuy/++Mc/xqZNmyIi4oknnoh3vetdccMNN8TJJ59ceFxf30DpVdaA1tbm6OnZM9Jl1JxS+9bWNq6M1QC1oprnW58HQ1dNPTvU50rRoemrX/3qoNunnXZa3HbbbdHe3l7sUwIAVC0ntwQASFC2a8/96Ec/KtdTAQBUHXuaAAASCE0AAAmEJgCABEITAEACoQkAIIHQBACQQGgCAEggNAEAJBCaAAASCE0AAAnKdhkVABgOe/c9fcgr0ZdD/8D+6NvdX9ExqD1CEwA1pXFMLqYsXV/RMbqXzYu+io5ALXJ4DgAggdAEAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEztNExbSMb4qmhhfexCp9kjoAKAehiYppasgPywnoAGA4ODwHAJBAaAIASCA0AQAkEJoAABIITQAACYQmAIAEJYem++67L97+9rfH3Llz4+yzz46HH364HHUBAFSVkkLTjh07YunSpbFixYrYsGFDdHZ2xuWXX16u2gAAqkZJoSmfz8eKFSti2rRpERFxwgknxLZt28pSGABANSkpNB111FHx5je/uXD7gQceiOOPP77kogAAqk3ZLqOyefPmWLNmTaxZs6ZcTwkAUDXKEpo2btwYn/nMZ2LlypWFQ3X/0dLSEPl8rhzDVLVcrj5aW5tHugwAyqTYOd3nwdDVSs9KDk0///nP4+qrr46vfe1rceyxxx5wf1/fQKlD1ITW1ubo6dkz0mVUlba2cSNdAkDRip3TfR4MXTX17FCfXSWFpv7+/vj4xz8eN95440EDEwDA4aKk0HTffffFE088ER/96EcHLV+7dm1MmDChpMIAAKpJSaGps7MzOjs7y1ULAEDVchkVAIAEQhMAQAKhCQAggdAEAJCgbGcEp7a0jG+Kpgb//ACQyqfmKNXUkI8pS9dXdIzuZfMq+vwAlbJ339MlnaA3dd3+gf3Rt7u/6HEYXkITADxH45hcxf9jGfHsfy77Kj4K5eI7TQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAkcJ4mABghpZ5EM4UTaJaP0AQAI2Q4TqLpBJrl4/AcAEACoQkAIIHQBACQQGgCAEggNAEAJPDruSrTMr4pmhr8swBAtfHpXGWaGvIV//lpxLM/QQUA0jk8BwCQQGgCAEggNAEAJBCaAAASlPRF8M2bN8e1114be/bsiUmTJsU111wTL33pS8tV25AMx6/OXPQQAA5Ujs/glAsXj/TncNGvcM+ePXHJJZfEzTffHDNmzIjVq1fHFVdcEStXrixnfcmG41dnLnoIQK3Zu+/ppEBSquH65fdIfg4XHZp+8YtfxNFHHx0zZsyIiIizzjorrr/++ujr64uWlpayFVhNXmjDG46NEgCGonFMblh2KowGRYem7u7uOProowu3jzjiiGhtbY2//vWv8epXv7osxVUbGx4AjF51WZZlxax44403xuOPPx6f/exnC8v+7//+L5YvXx4nnnhi2QoEAKgGRf96rrm5OQYGBgYt27t3bxxxxBElFwUAUG2KDk1Tp06Nv/zlL4XbTzzxRDz55JPx8pe/vCyFAQBUk6JD00knnRTbt2+P3/zmNxERcfvtt8epp54azc3NZSsOAKBaFB2aGhsb4/rrr48rr7wy3vrWt8aDDz4Yl19+eTlrGzGbN2+Od77zndHR0RHnnXdebN++/YDHbNmyJc4666zo6OiIs846K7Zs2VK4b926dTFv3ryYM2dOnH/++YX177777jjhhBNizpw5hT/33nvvsL2uSiqlZ9u3b48ZM2YM6suKFSsiIiLLsrjuuuuio6Nj0PLDRSl9W7NmzaCezZ49O0466aSIiLjpppvipJNOGnT/gw8+OKyvrVJSepZlWaxevTpmzJhR+I/df6xfvz46Ozujo6MjLrzwwujt7S2sM9q3tUP1zbw2tJ6Z14rrW9XPaxmDPPXUU9nJJ5+c/fGPf8yyLMtuvvnm7AMf+MABj5szZ0527733ZlmWZRs2bMg6OzuzLMuyP/zhD9kb3/jGbMeOHVmWZdmyZcuySy65JMuyLLv99tuzyy67bDhexrAqtWdbt27N3va2tx30ue+5557szDPPzAYGBrK9e/dm8+fPz7q6uir0SoZXqX17rlWrVmXXXHNNlmXPbncrV66sUOUjJ7Vnl112WfbJT34ye9Ob3pT9+te/Lix//PHHs5NOOil7/PHHsyzLsk9/+tPZlVdemWWZbS3Lnr9v5rWh98y8Vlzfnqva5jWXUXmOg51/6qc//Wn09f33dFpbt26N3t7emD17dkREzJkzJ3bt2hV//vOf48gjj4zrr78+XvKSl0RExIknnhjbtm2LiIje3t4YN+7wO5dTqT3r7e2N8ePHH/S5u7q64p3vfGeMHTs2GhoaYv78+bFhw4bKv6hhUGrf/tfOnTvjG9/4RixevDgiRve2FhExf/78uOqqq2LMmDGDlt93330xa9asmDRpUkREnHPOOYXtabRvaxHP3zfz2tB7Zl4rrm//qxrnNaHpOQ51/qn/fUx7e/ug9Y4++uh49NFHo729PV7/+tcXlj/wwANx/PHHR0TE7t2747e//W28+93vjjlz5sSyZcvi3//+d4VfUeWV2rPe3t7o6emJc889Nzo6OuLDH/5w7Nixo7De5MmTC+tMnjw5Hn300Qq/ouFRat/+1+rVq2P+/PmFSXr37t2xcePGmD9/fpx++umxcuXKyIo7u0hVSelZRMTMmTOfd/3nbk+7du2KJ598ctRvaxHP3zfz2tB7Zl571lD79r+qcV4Tmp6jv78/GhoaBi1raGiIPXv2DOkxERF33XVX/OQnP4kLL7wwIiJe9apXxamnnhq33XZb3HnnnfHggw/GqlWrKvRKhk+pPTvyyCPj1FNPjWuvvTbWr18fL33pS+NjH/vYQddrbGyM/v7D4/p/5drWent74+67745zzjmnsOyEE06I2bNnx7p16+KWW26Ju+66K+6+++4KvZLhk/reO9T6Y8eOLdweO3Zs1NXVRX9//6jf1lKZ19J6Zl77r2K2tWqd1yp7hdsalHL+qZTH3HHHHXHrrbfGmjVroq2tLSIi3v72txfub2xsjHPPPTdWrVoVF1xwQSVeyrAptWfHHXdcHHfccYXlixcvjpNPPjn27NkTTU1Ng9br7+8/bH6hWa5tbdOmTXHcccfFkUceWVj23ve+t/D3iRMnxnve857YtGlTvOMd7yj3yxhWpZ4frrm5edBekIGBgciyLJqbm0f9tpbCvJbeM/PafxWzrVXrvGZP03OknH9q6tSp0d3dHc8880xEROzfvz+6u7vj2GOPjYiI7373u3HHHXfE2rVrB+2mfOyxxwq/1Il49tcD+Xzt59ZSe7Zr165Bv67Isizq6uoin8/H1KlTB+223rZtW0ybNm0YXlXllWNbi4j48Y9/HKeccsqg5962bdugiWs0bWuHcswxxwzanh555JFoa2uL8ePHj/pt7YWY14bWM/Pas4o9h2O1zmtC03OknH9q2rRp0dbWFvfcc09EPLu7ur29PY455pjYsWNHfP7zn4+bb745Jk6cOOi5b7rppvjc5z4XWZbFwMBAfOMb34i3vOUtw/baKqXUnv3kJz+JxYsXF74oeOutt8asWbNi7NixMXfu3Pj2t78de/bsiaeeeiq+853vxLx5h8f1+Urt239s2bJlUIiKiLjyyivj1ltvjYiIJ598Mr73ve+Nmm3tUGbPnh2/+tWvCpP67bffHp2dnRERo35bOxTz2tB7Zl4r7RyO1TqvFX3tucPZL3/5y7j66qujv78/Jk+eHMuWLYtnnnkmzj///MKH19atW+Oyyy6Lnp6eOOqoo+Kqq66KY489Nr7yla/EypUrB00s+Xw+7rnnnujp6YnLLrsstm7dGnV1dXHKKafERz/60UHfsahVpfQsy7JYsWJF/OAHP4j6+vqYOnVqXHHFFYUe/ue+urq66OzsLHyX4nBQSt/+43Wve118+9vfjqlTpxaWPfbYY3H55ZfH3//+96ivr48zzjgjPvjBD0ZdXd2wv8ZyS+lZZ2dn7N+/Px577LF4yUteEg0NDXHttdfGcccdF9///vfjS1/6Uuzfvz9e/epXx9VXX104dDDat7Xn69vmzZvNa0Ps2Wte8xrzWpHv0YjqndeEJgCABA7PAQAkEJoAABIITQAACYQmAIAEQhMAQAKhCQAggdAEAJBAaAIASCA0AQAk+H9Xl60I5tsDdwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQ60lEQVR4nO3dX2id9f3A8U/a056kNkE6joq0tVYvxGIdU6niQAvFxCX4J+As3szhxUbRXYwNCtIx/SkGndvNkFoUq1Vk4r9CMxUdigr+2RhMvGhZ1bDiaNk62iT2JDb1+V2IR4/rn3QnT9J88npBwZ5/3+f5+vR73pzn/GkriqIIAIDE5s30BgAAlE3wAADpCR4AID3BAwCkJ3gAgPQEDwCQXuV4V/7rXyPTtR0zavHiaoyOjs/0ZpzSzNGJmaMTM0cnZo6Oz/yc2Fyeo1qt85jXeYUnIiqV+TO9Cac8c3Ri5ujEzNGJmaPjMz8nZo6OTvAAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANKrzPQGAKeWxV0d0VEtb2mo1TqjPj4Ro8P10sYA+DbBAzTpqFZixcbBUscYGuiN0VJHAGjmlBYAkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6fksLmHZjh49ErdZZ+jh+pBT4iuCBWaLsXzGfTu0L5pf+A6URfqQU+FqO1RPmgOn4FfOILyMBIBvv4QEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6lZneAICyjB0+ErVaZ6lj1McnYnS4XuoYQOsED5BW+4L5sWLjYKljDA30xmipIwBTwSktACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqVmd4AyGBxV0csWDA/arXOmd4UAI5C8MAU6KhWYsXGwVLHGBroLfXxATJzSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC9ykxvAMBsNnb4SNRqnVP6mN9+vPr4RIwO16d0DJhrBA9AC9oXzI8VGwdLHWNooDdGSx0B8nNKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC9ykxvAJRtcVdHdFQd6gBzmWcB0uuoVmLFxsFSxxga6C318QFojVNaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJBeZaY3AIDjGzt8JGq1ztLHqY9PxOhwvfRxYCYIHoBTXPuC+bFi42Dp4wwN9MZo6aPAzHBKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6vniQGbO4qyM6qg5BAMrn2YYZ01GtTNu3xwIwtzmlBQCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9CozvQEAnBrGDh+JWq2z1DHq4xMxOlwvdQw4GsEDQEREtC+YHys2DpY6xtBAb4yWOgIcnVNaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSq8z0BnBqWtzVER3V5sOjVuucoa0BgNYIHo6qo1qJFRsHSx1jaKC31McHgK84pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkV5npDQBg7hg7fCRqtc6WHuNE96+PT8TocL2lMchH8AAwbdoXzI8VGwdLHWNooDdGSx2B2cgpLQAgPcEDAKQneACA9AQPAJCe4AEA0vMprVlocVdHdFT9rwOAyfKsOQt1VCvT8rFOAMjCKS0AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS82vpAKQydvhI1GqdpY9TH5+I0eF66eMwNQQPAKm0L5gfKzYOlj7O0EBvjJY+ClPFKS0AID3BAwCkJ3gAgPQEDwCQnjctT6HFXR3RUTWlAHCq8ew8hTqqlWn7ZAAAMHlOaQEA6QkeACA9wQMApCd4AID0vGkZAP4H0/GbXX6va+oIHgD4H0zHb3b5va6pc0oEz3R8f41KBmC2+V9fRTqZ+8yV58dTInim4/trVDIAs810vIq08/96Sj81FzHzYdVWFEUxY6MDAEwDn9ICANITPABAeoIHAEgvXfC88847ceONN0Z3d3f8+Mc/jr179/7XbXbu3Bnr16+P7u7uWL9+fezcubNx3TPPPBO9vb3R09MTt912W+P+27dvj0suuSR6enoaf1599dVp26+p0sr87N27N1atWtU0Bw8++GBERBRFEb/5zW+iu7u76fLZqJU5evzxx5vmZ926dbFmzZqIiHjooYdizZo1Tdd/8MEH07pvU2Uyc1QURTz66KOxatWq+Mtf/tJ03eDgYPT19UV3d3fccccdMTIy0rjPXDqOjjdH2deiiNbmyHr0tWPN0VxZjyatSOSzzz4rLr/88uLDDz8siqIoHnnkkeInP/nJf92up6enePXVV4uiKIqXXnqp6OvrK4qiKP72t78VV155ZbFv376iKIpiYGCg+PnPf14URVFs27at2LRp03TsRmlanZ9du3YV11xzzVEfe8eOHcVNN91UjI+PF2NjY0V/f3/x8ssvl7Qn5Wl1jr5ty5YtxX333VcUxZfH0+bNm0va8ukz2TnatGlTceeddxbf//73iz//+c+Nyz/99NNizZo1xaeffloURVHcddddxd13310Uxdw7jo41R9nXoqJofY6sR1871hx9W8b16GSkeoXn3XffjWXLlsWqVasiImL9+vXx9ttvx+jo1x9I37VrV4yMjMS6desiIqKnpyf2798fH330USxZsiR+97vfxRlnnBEREZdeemns3r07IiJGRkais7P8j+2VqdX5GRkZia6urqM+9ssvvxw33nhjLFy4MKrVavT398dLL71U/k5NsVbn6Jv+/e9/x9NPPx0bNmyIiBzHUMTk5igior+/P+65555YsGBB0+V/+tOf4oorroizzz47IiJuueWWxrEyl46jiGPPUfa1KKL1ObIefe1Yc/RNWdejk5EqeIaGhmLZsmWNv5922mlx+umnxz/+8Y+m2yxdurTpfsuWLYuPP/44li5dGpdddlnj8jfffDMuvvjiiIgYHh6Ov/71r/HDH/4wenp6YmBgID7//POS92hqtTo/IyMjceDAgbj11luju7s7fvazn8W+ffsa91u+fHnjPsuXL4+PP/645D2aeq3O0Tc9+uij0d/f31iUh4eH47XXXov+/v74wQ9+EJs3b45iFn4rxGTmKCLiu9/97jHv/+1jZf/+/XHw4ME5dRxFHHuOsq9FEa3PkfXoa8eao2/Kuh6djFTBU6/Xo1qtNl1WrVbj0KFDJ3WbiIgXX3wx3nrrrbjjjjsiIuKCCy6ItWvXxhNPPBF/+MMf4oMPPogtW7aUtCflaHV+lixZEmvXro37778/BgcH46yzzopf/vKXR71fe3t71Ouz75s7p+oYGhkZie3bt8ctt9zSuOySSy6JdevWxTPPPBOPPfZYvPjii7F9+/aS9qQ8k/03dLz7L1y4sPH3hQsXRltbW9Tr9Tl1HE1WxrUoovU5sh5NXub16GScEt+0PFUWLVoU4+PjTZeNjY3FaaeddlK3eeqpp2Lr1q3x+OOPR61Wi4iI66+/vnF9e3t73HrrrbFly5a4/fbby9iVUrQ6P6tXr47Vq1c3Lt+wYUNcfvnlcejQoejo6Gi6X71ej0WLFpW0J+WZqmPo9ddfj9WrV8eSJUsal/3oRz9q/PeZZ54ZN998c7z++utxww03TPVulGoy+3+i+3/zFYnx8fEoiiIWLVo0p46jyci6FkW0PkfWo8nLvB6djFSv8KxcuTI++eSTxt//85//xMGDB+Occ85pus3Q0FB88cUXERExMTERQ0NDcd5550VExPPPPx9PPfVUPPnkk00vJe7Zs6fxSZKIL98VX6nMrl5sdX7279/f9AmBoiiira0tKpVKrFy5sukl4927d8f5558/DXs1tabiGIqIeOONN+Kqq65qeuzdu3c3LV6z8RiKmNwcHc+5557bdKz8/e9/j1qtFl1dXXPqODqRzGtRROtzZD2avMzr0clIFTxr1qyJvXv3Nj6Wt23btli7dm1T2Z9//vlRq9Vix44dEfHly8VLly6Nc889N/bt2xe//e1v45FHHokzzzyz6bEfeuiheOCBB6IoihgfH4+nn346rr766mnbt6nQ6vy89dZbsWHDhsYb5rZu3RpXXHFFLFy4MK699tp49tln49ChQ/HZZ5/Fc889F729vdO/ky1qdY6+snPnzqYAioi4++67Y+vWrRERcfDgwXjhhRdm3TEUMbk5Op5169bF+++/31jIt23bFn19fRERc+o4Op7sa1FE63NkPZq8zOvRyUj3W1rvvfde3HvvvVGv12P58uUxMDAQX3zxRdx2222NJ6hdu3bFpk2b4sCBA/Gd73wn7rnnnjjvvPPi4Ycfjs2bNzctMJVKJXbs2BEHDhyITZs2xa5du6KtrS2uuuqq+MUvftH0XoTZoJX5KYoiHnzwwXjllVdi3rx5sXLlyvj1r3/dmK+vrmtra4u+vr7Gew5mm1bm6Cvf+9734tlnn42VK1c2LtuzZ0/86le/in/+858xb968uO666+KnP/1ptLW1Tfs+tmoyc9TX1xcTExOxZ8+eOOOMM6Jarcb9998fq1evjj/+8Y/x+9//PiYmJuLCCy+Me++9t/Ey/Vw6jo41R++88076tSiitTm66KKLrEeT+LcWkX89mqx0wQMA8G2pTmkBAByN4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQ3v8DD4IY3dm/5eAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -2158,19 +3110,28 @@ ], "source": [ "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(res2, bins=20, edgecolor='w', density=True)" + "_, _, _ = plt.hist(res2, bins=20, edgecolor='w', density=True)\n", + "plt.yticks([]);\n", + "# plt.savefig('model_non_hier.png', dpi=120)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this, the figure 8.1 (a) is very similiar to this one." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "## Ahora pystan con el modelo jerárquico" + "### **Pystan with the hierarchical model**" ] }, { "cell_type": "code", - "execution_count": 204, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ @@ -2203,7 +3164,7 @@ "\n", " L ~ lkj_corr_cholesky(3.0);\n", " \n", - " mu ~ cauchy(0, 5);\n", + " mu ~ uniform(-5, 5);\n", " \n", " beta ~ multi_normal_cholesky(mu, L);\n", " \n", @@ -2229,14 +3190,14 @@ }, { "cell_type": "code", - "execution_count": 205, + "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_958bb8552d6652a8814e6044bd42f4a8 NOW.\n" + "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_ffbf49915be317bed47428f1a01cfff8 NOW.\n" ] } ], @@ -2246,18 +3207,18 @@ }, { "cell_type": "code", - "execution_count": 206, + "execution_count": 18, "metadata": {}, "outputs": [], "source": [ - "data2 = {'N': 16,\n", + "data3 = {'N': 16,\n", " 'n': 2,\n", " 'post': new_values.astype(int)}" ] }, { "cell_type": "code", - "execution_count": 207, + "execution_count": 96, "metadata": {}, "outputs": [ { @@ -2266,18 +3227,18 @@ "text": [ "WARNING:pystan:n_eff / iter below 0.001 indicates that the effective sample size has likely been overestimated\n", "WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed\n", - "WARNING:pystan:Skipping check of divergent transitions (divergence)\n", - "WARNING:pystan:Skipping check of transitions ending prematurely due to maximum tree depth limit (treedepth)\n" + "WARNING:pystan:4639 of 10000 iterations ended with a divergence (46.4 %).\n", + "WARNING:pystan:Try running with adapt_delta larger than 0.9 to remove the divergences.\n" ] } ], "source": [ - "fit2 = stan_modelo2.sampling(data=data2, algorithm='HMC', iter=4000, verbose=True)" + "fit2 = stan_modelo2.sampling(data=data3, iter=5000, verbose=True, control={'adapt_delta':0.90})" ] }, { "cell_type": "code", - "execution_count": 210, + "execution_count": 97, "metadata": { "scrolled": true }, @@ -2286,120 +3247,120 @@ "name": "stdout", "output_type": "stream", "text": [ - "Inference for Stan model: anon_model_958bb8552d6652a8814e6044bd42f4a8.\n", - "4 chains, each with iter=4000; warmup=2000; thin=1; \n", - "post-warmup draws per chain=2000, total post-warmup draws=8000.\n", + "Inference for Stan model: anon_model_ffbf49915be317bed47428f1a01cfff8.\n", + "4 chains, each with iter=5000; warmup=2500; thin=1; \n", + "post-warmup draws per chain=2500, total post-warmup draws=10000.\n", "\n", " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "mu[1] 2.2705e1 8.01884.6381e1 1.1962 3.6407 7.20241.7178e11.7396e2 33 1.1352\n", - "mu[2] 2.0993e1 4.87353.433e1 2.2160 4.9229 8.72791.931e11.4692e2 50 1.0651\n", + "mu[1] 3.2259 0.0658 1.1490 0.8594 2.3988 3.3432 4.1962 4.9292 304 1.0180\n", + "mu[2] 3.6858 0.0391 0.9187 1.6463 3.0634 3.8291 4.4515 4.9458 550 1.0108\n", "L[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "L[2,1] -0.000 0.0056 0.3769 -0.709 -0.275 0.0006 0.2848 0.7012 4423 0.9999\n", + "L[2,1] 0.0011 0.0131 0.3742 -0.695 -0.276-7.2306e-7 0.2743 0.7092 811 1.0027\n", "L[1,2] 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 nan nan\n", - "L[2,2] 0.9210 0.0023 0.0976 0.6453 0.8878 0.9600 0.9904 0.9999 1741 1.0020\n", - "alphas[1,1] 0.2707 0.0002 0.0572 0.1649 0.2311 0.2686 0.3065 0.3915 39793 0.9996\n", - "alphas[2,1] 0.352 0.0006 0.0556 0.2468 0.3122 0.3519 0.3904 0.4620 8197 0.9998\n", - "alphas[3,1] 0.3770 0.0001 0.0308 0.3166 0.3565 0.3769 0.3975 0.4385 34281 0.9995\n", - "alphas[4,1] 0.3306 0.0005 0.0456 0.2474 0.2974 0.3295 0.3627 0.4174 7888 1.0011\n", - "alphas[5,1] 0.3426 0.0010 0.0577 0.2351 0.3024 0.3405 0.3821 0.4602 2831 1.0003\n", - "alphas[6,1] 0.3604 0.0002 0.0361 0.2878 0.3384 0.3600 0.3816 0.4350 19799 0.9995\n", - "alphas[7,1] 0.3890 0.0003 0.0362 0.3204 0.3638 0.3891 0.4134 0.4601 13714 0.9997\n", - "alphas[8,1] 0.4110 0.0005 0.0340 0.3451 0.3896 0.4106 0.4324 0.48 4225 1.0001\n", - "alphas[9,1] 0.4282 0.0004 0.0822 0.2730 0.3697 0.4263 0.4849 0.5934 33091 0.9995\n", - "alphas[10,1] 0.3791 0.0009 0.0393 0.3048 0.3516 0.3782 0.4053 0.4580 1595 1.0016\n", - "alphas[11,1] 0.3804 0.0003 0.0379 0.3069 0.3543 0.3802 0.4063 0.4566 9941 0.9996\n", - "alphas[12,1] 0.4053 0.0002 0.0291 0.3484 0.3852 0.4051 0.425 0.4637 22000 0.9997\n", - "alphas[13,1] 0.3529 0.0004 0.0701 0.2175 0.3060 0.3507 0.3983 0.4993 28748 0.9996\n", - "alphas[14,1] 0.4052 0.0002 0.0456 0.3173 0.3727 0.4055 0.4370 0.4955 33739 0.9995\n", - "alphas[15,1] 0.3970 0.0001 0.0325 0.3342 0.3747 0.3964 0.4189 0.4611 49240 0.9996\n", - "alphas[16,1] 0.3979 0.0004 0.0453 0.3108 0.3667 0.3974 0.4286 0.4883 11043 0.9997\n", - "alphas[1,2] 0.7292 0.0002 0.0572 0.6084 0.6934 0.7313 0.7688 0.8350 39793 0.9996\n", - "alphas[2,2] 0.648 0.0006 0.0556 0.5379 0.6095 0.6480 0.6877 0.7531 8197 0.9998\n", - "alphas[3,2] 0.6229 0.0001 0.0308 0.5614 0.6024 0.6230 0.6434 0.6833 34281 0.9995\n", - "alphas[4,2] 0.6693 0.0005 0.0456 0.5825 0.6372 0.6704 0.7025 0.7525 7888 1.0011\n", - "alphas[5,2] 0.6573 0.0010 0.0577 0.5397 0.6179 0.6594 0.6975 0.7648 2831 1.0003\n", - "alphas[6,2] 0.6395 0.0002 0.0361 0.5649 0.6183 0.6399 0.6615 0.7121 19799 0.9995\n", - "alphas[7,2] 0.6109 0.0003 0.0362 0.5398 0.5865 0.6108 0.6362 0.6796 13714 0.9997\n", - "alphas[8,2] 0.5889 0.0005 0.0340 0.52 0.5675 0.5893 0.6104 0.6548 4225 1.0001\n", - "alphas[9,2] 0.5717 0.0004 0.0822 0.4065 0.5150 0.5736 0.6302 0.7269 33091 0.9995\n", - "alphas[10,2] 0.6208 0.0009 0.0393 0.5419 0.5946 0.6217 0.6483 0.6951 1595 1.0016\n", - "alphas[11,2] 0.6195 0.0003 0.0379 0.5433 0.5937 0.6197 0.6456 0.6930 9941 0.9996\n", - "alphas[12,2] 0.5947 0.0002 0.0291 0.5362 0.575 0.5948 0.6147 0.6515 22000 0.9997\n", - "alphas[13,2] 0.6470 0.0004 0.0701 0.5006 0.6016 0.6493 0.6939 0.7824 28748 0.9996\n", - "alphas[14,2] 0.5948 0.0002 0.0456 0.5044 0.5629 0.5944 0.6272 0.6827 33739 0.9995\n", - "alphas[15,2] 0.6029 0.0001 0.0325 0.5388 0.5810 0.6035 0.6253 0.6657 49240 0.9996\n", - "alphas[16,2] 0.6020 0.0004 0.0453 0.5116 0.5713 0.6025 0.6333 0.6891 11043 0.9997\n", - "beta[1,1] 2.2713e1 8.01864.6367e1 0.7253 3.7020 7.29131.7041e11.7394e2 33 1.1354\n", - "beta[2,1] 2.2719e1 8.01924.6396e1 0.7869 3.6451 7.28721.7319e11.7264e2 33 1.1352\n", - "beta[3,1] 2.2694e1 8.02054.6386e1 0.7152 3.6263 7.24291.7117e11.7349e2 33 1.1352\n", - "beta[4,1] 2.2711e1 8.01274.6375e1 0.7990 3.7203 7.2744 1.72e11.7371e2 33 1.1350\n", - "beta[5,1] 2.2706e1 8.01994.6389e1 0.6911 3.6927 7.28541.7143e11.7308e2 33 1.1352\n", - "beta[6,1] 2.2696e1 8.01374.6386e1 0.7916 3.6592 7.29001.7171e11.7384e2 34 1.1350\n", - "beta[7,1] 2.2715e1 8.02274.6393e1 0.7666 3.7174 7.29451.7197e11.7365e2 33 1.1354\n", - "beta[8,1] 2.2714e1 8.01464.6374e1 0.7420 3.7158 7.28731.7187e11.7354e2 33 1.1352\n", - "beta[9,1] 2.2729e1 8.01774.6387e1 0.8191 3.6922 7.16941.7145e11.7301e2 33 1.1352\n", - "beta[10,1] 2.2718e1 8.01684.6386e1 0.8272 3.7168 7.22621.7146e11.744e2 33 1.1351\n", - "beta[11,1] 2.2725e1 8.01984.6402e1 0.8458 3.6746 7.2161.7197e11.7302e2 33 1.1351\n", - "beta[12,1] 2.2711e1 8.01864.638e1 0.6594 3.6695 7.27421.7207e11.7349e2 33 1.1352\n", - "beta[13,1] 2.2708e1 8.01604.637e1 0.6844 3.7449 7.25291.7199e11.7331e2 33 1.1352\n", - "beta[14,1] 2.2719e1 8.01824.6392e1 0.7666 3.6791 7.27351.7018e11.735e2 33 1.1352\n", - "beta[15,1] 2.2716e1 8.01634.6394e1 0.8257 3.6758 7.26291.7119e11.7331e2 33 1.1351\n", - "beta[16,1] 2.2715e1 8.01634.6387e1 0.7689 3.6845 7.22611.7126e11.731e2 33 1.1350\n", - "beta[1,2] 2.101e1 4.87323.4339e1 1.8136 4.9731 8.79371.943e11.4617e2 50 1.0649\n", - "beta[2,2] 2.1011e1 4.87093.4341e1 1.7563 5.0524 8.80251.9373e11.4657e2 50 1.0651\n", - "beta[3,2] 2.0995e1 4.87163.4329e1 1.6634 5.0308 8.7981.9455e11.4667e2 50 1.0649\n", - "beta[4,2] 2.1008e1 4.87323.4328e1 1.8091 5.0136 8.75131.9424e11.4693e2 50 1.0652\n", - "beta[5,2] 2.1034e1 4.86883.4318e1 1.8465 5.0907 8.73281.9448e11.4711e2 50 1.0650\n", - "beta[6,2] 2.1014e1 4.87743.4345e1 1.7678 5.0475 8.74091.9357e11.4671e2 50 1.0652\n", - "beta[7,2] 2.1019e1 4.87293.4342e1 1.8202 5.0471 8.77261.9426e11.4751e2 50 1.0650\n", - "beta[8,2] 2.1e1 4.87203.4343e1 1.7964 4.9918 8.78851.937e11.4724e2 50 1.0648\n", - "beta[9,2] 2.1003e1 4.87543.434e1 1.7889 4.9947 8.77091.9506e11.467e2 50 1.0651\n", - "beta[10,2] 2.1019e1 4.87453.4355e1 1.7801 5.0105 8.83531.9436e11.4755e2 50 1.0651\n", - "beta[11,2] 2.1011e1 4.88323.436e1 1.7745 4.9971 8.81831.9411e11.4697e2 50 1.0652\n", - "beta[12,2] 2.1e1 4.86893.4323e1 1.7969 5.0186 8.76581.9163e11.4668e2 50 1.0650\n", - "beta[13,2] 2.1024e1 4.86963.4322e1 1.7591 5.0657 8.77951.9546e11.4676e2 50 1.0645\n", - "beta[14,2] 2.1002e1 4.87323.4324e1 1.8039 4.9603 8.76831.9452e11.4686e2 50 1.0652\n", - "beta[15,2] 2.1013e1 4.87403.434e1 1.8079 4.9877 8.83411.9378e11.466e2 50 1.0654\n", - "beta[16,2] 2.1012e1 4.87293.4341e1 1.7040 5.0002 8.79891.9428e11.4713e2 50 1.0648\n", - "theta[1,1] 0.9628 0.0015 0.0904 0.6737 0.9759 0.9993 1.0 1.0 3549 1.0039\n", - "theta[2,1] 0.9627 0.0016 0.0897 0.6871 0.9745 0.9993 1.0 1.0 3053 1.0045\n", - "theta[3,1] 0.9631 0.0016 0.0900 0.6715 0.9740 0.9992 1.0 1.0 2994 1.0047\n", - "theta[4,1] 0.9642 0.0013 0.0869 0.6897 0.9763 0.9993 1.0 1.0 4015 1.0027\n", - "theta[5,1] 0.9629 0.0016 0.0884 0.6662 0.9757 0.9993 1.0 1.0 2989 1.0044\n", - "theta[6,1] 0.9628 0.0013 0.0896 0.6881 0.9749 0.9993 1.0 1.0 4184 1.0038\n", - "theta[7,1] 0.9633 0.0014 0.0885 0.6827 0.9762 0.9993 1.0 1.0 3702 1.0046\n", - "theta[8,1] 0.9629 0.0013 0.0904 0.6774 0.9762 0.9993 1.0 1.0 4262 1.0028\n", - "theta[9,1] 0.9652 0.0013 0.0832 0.6940 0.9756 0.9992 1.0 1.0 3682 1.0043\n", - "theta[10,1] 0.9645 0.0014 0.0858 0.6957 0.9762 0.9992 1.0 1.0 3582 1.0043\n", - "theta[11,1] 0.9650 0.0012 0.0827 0.6997 0.9752 0.9992 1.0 1.0 4558 1.0042\n", - "theta[12,1] 0.9627 0.0015 0.0897 0.6591 0.9751 0.9993 1.0 1.0 3395 1.0047\n", - "theta[13,1] 0.9627 0.0014 0.0899 0.6647 0.9769 0.9992 1.0 1.0 3858 1.0052\n", - "theta[14,1] 0.9632 0.0013 0.0893 0.6827 0.9753 0.9993 1.0 1.0 4132 1.0028\n", - "theta[15,1] 0.9643 0.0013 0.0858 0.6954 0.9753 0.9993 1.0 1.0 3811 1.0041\n", - "theta[16,1] 0.9638 0.0015 0.0868 0.6833 0.9755 0.9992 1.0 1.0 3231 1.0035\n", - "theta[1,2] 0.9855 0.0006 0.0429 0.8598 0.9931 0.9998 1.0 1.0 4995 1.0018\n", - "theta[2,2] 0.9848 0.0007 0.0458 0.8527 0.9936 0.9998 1.0 1.0 4314 1.0017\n", - "theta[3,2] 0.9846 0.0007 0.0454 0.8407 0.9935 0.9998 1.0 1.0 3969 1.0011\n", - "theta[4,2] 0.985 0.0006 0.0472 0.8592 0.9934 0.9998 1.0 1.0 5750 1.0013\n", - "theta[5,2] 0.9852 0.0007 0.0464 0.8637 0.9938 0.9998 1.0 1.0 4179 1.0008\n", - "theta[6,2] 0.9850 0.0006 0.0466 0.8541 0.9936 0.9998 1.0 1.0 5104 1.0019\n", - "theta[7,2] 0.9856 0.0006 0.0434 0.8606 0.9936 0.9998 1.0 1.0 4667 1.0007\n", - "theta[8,2] 0.9851 0.0006 0.0454 0.8577 0.9932 0.9998 1.0 1.0 4716 1.0008\n", - "theta[9,2] 0.9848 0.0006 0.0482 0.8567 0.9932 0.9998 1.0 1.0 5013 1.0013\n", - "theta[10,2] 0.9848 0.0006 0.0474 0.8557 0.9933 0.9998 1.0 1.0 5051 1.0013\n", - "theta[11,2] 0.9853 0.0006 0.0439 0.8550 0.9932 0.9998 1.0 1.0 4887 1.0009\n", - "theta[12,2] 0.9851 0.0006 0.0463 0.8577 0.9934 0.9998 1.0 1.0 5339 1.0006\n", - "theta[13,2] 0.9851 0.0006 0.0453 0.8531 0.9937 0.9998 1.0 1.0 5175 1.0003\n", - "theta[14,2] 0.9855 0.0006 0.0441 0.8586 0.9930 0.9998 1.0 1.0 4960 1.0016\n", - "theta[15,2] 0.9851 0.0006 0.0450 0.8591 0.9932 0.9998 1.0 1.0 4773 1.0011\n", - "theta[16,2] 0.9848 0.0007 0.0466 0.8460 0.9933 0.9998 1.0 1.0 4484 1.0013\n", + "L[2,2] 0.9223 0.0023 0.0961 0.6484 0.8880 0.9611 0.9906 0.9999 1734 1.0008\n", + "alphas[1,1] 0.2702 0.0010 0.0557 0.1717 0.2288 0.2675 0.3085 0.3838 2606 1.0017\n", + "alphas[2,1] 0.3501 0.0015 0.0570 0.2415 0.3110 0.3493 0.3885 0.4636 1332 1.0010\n", + "alphas[3,1] 0.3774 0.0008 0.0319 0.3161 0.3555 0.3767 0.3986 0.4413 1418 1.0060\n", + "alphas[4,1] 0.3287 0.0011 0.0473 0.2418 0.2961 0.3278 0.3599 0.4240 1720 1.0005\n", + "alphas[5,1] 0.3426 0.0013 0.0602 0.2302 0.3009 0.3404 0.3820 0.4663 2047 1.0003\n", + "alphas[6,1] 0.3608 0.0011 0.0417 0.2815 0.3327 0.3607 0.3890 0.4432 1447 1.004\n", + "alphas[7,1] 0.3901 0.0008 0.0359 0.3204 0.3662 0.3893 0.4141 0.462 1862 1.0014\n", + "alphas[8,1] 0.4125 0.0007 0.0326 0.3497 0.3903 0.4119 0.4347 0.4776 1798 1.0003\n", + "alphas[9,1] 0.4255 0.0020 0.0828 0.2732 0.3661 0.4238 0.4810 0.5925 1693 1.0040\n", + "alphas[10,1] 0.3788 0.0010 0.0420 0.2972 0.3500 0.3787 0.4072 0.4618 1569 1.0028\n", + "alphas[11,1] 0.3816 0.0008 0.0396 0.3068 0.3545 0.3807 0.4073 0.4633 2058 1.0024\n", + "alphas[12,1] 0.4040 0.0007 0.0298 0.3475 0.3831 0.4042 0.4246 0.4623 1447 1.0021\n", + "alphas[13,1] 0.3545 0.0017 0.0667 0.2266 0.3082 0.3537 0.4 0.4828 1515 1.0009\n", + "alphas[14,1] 0.4046 0.0012 0.0455 0.3184 0.3735 0.4043 0.4344 0.4956 1420 1.0020\n", + "alphas[15,1] 0.3975 0.0008 0.0354 0.3276 0.3730 0.3978 0.4217 0.4675 1929 1.0013\n", + "alphas[16,1] 0.3981 0.0009 0.0428 0.3169 0.3681 0.3981 0.4267 0.4834 2284 1.0009\n", + "alphas[1,2] 0.7297 0.0010 0.0557 0.6161 0.6914 0.7324 0.7711 0.8282 2606 1.0017\n", + "alphas[2,2] 0.6498 0.0015 0.0570 0.5363 0.6114 0.6506 0.6889 0.7584 1332 1.0010\n", + "alphas[3,2] 0.6225 0.0008 0.0319 0.5586 0.6013 0.6232 0.6444 0.6838 1418 1.0060\n", + "alphas[4,2] 0.6712 0.0011 0.0473 0.5759 0.6400 0.6721 0.7038 0.7581 1720 1.0005\n", + "alphas[5,2] 0.6573 0.0013 0.0602 0.5336 0.6179 0.6595 0.6990 0.7697 2047 1.0003\n", + "alphas[6,2] 0.6391 0.0011 0.0417 0.5567 0.6109 0.6392 0.6672 0.7184 1447 1.004\n", + "alphas[7,2] 0.6098 0.0008 0.0359 0.538 0.5858 0.6106 0.6337 0.6795 1862 1.0014\n", + "alphas[8,2] 0.5874 0.0007 0.0326 0.5223 0.5652 0.5880 0.6096 0.6502 1798 1.0003\n", + "alphas[9,2] 0.5744 0.0020 0.0828 0.4074 0.5189 0.5761 0.6338 0.7267 1693 1.0040\n", + "alphas[10,2] 0.6211 0.0010 0.0420 0.5381 0.5927 0.6212 0.6499 0.7027 1569 1.0028\n", + "alphas[11,2] 0.6183 0.0008 0.0396 0.5366 0.5926 0.6192 0.6454 0.6931 2058 1.0024\n", + "alphas[12,2] 0.5959 0.0007 0.0298 0.5376 0.5753 0.5957 0.6168 0.6524 1447 1.0021\n", + "alphas[13,2] 0.6454 0.0017 0.0667 0.5171 0.6 0.6462 0.6917 0.7733 1515 1.0009\n", + "alphas[14,2] 0.5953 0.0012 0.0455 0.5043 0.5655 0.5956 0.6264 0.6815 1420 1.0020\n", + "alphas[15,2] 0.6025 0.0008 0.0354 0.5324 0.5782 0.6022 0.6269 0.6723 1929 1.0013\n", + "alphas[16,2] 0.6018 0.0009 0.0428 0.5165 0.5732 0.6018 0.6318 0.6830 2284 1.0009\n", + "beta[1,1] 3.2385 0.0748 1.5245 0.1976 2.1875 3.2682 4.3030 6.0969 415 1.0106\n", + "beta[2,1] 3.2424 0.0671 1.4828 0.2796 2.2277 3.3400 4.2798 6.0665 488 1.0081\n", + "beta[3,1] 3.2193 0.0715 1.5054 0.3086 2.1666 3.2379 4.3053 6.0204 442 1.0121\n", + "beta[4,1] 3.2158 0.0741 1.4952 0.2303 2.1715 3.2817 4.3043 5.8683 407 1.0165\n", + "beta[5,1] 3.2630 0.0736 1.5009 0.2441 2.2089 3.3462 4.3340 5.9145 415 1.0104\n", + "beta[6,1] 3.2364 0.0742 1.4918 0.2866 2.1650 3.3170 4.3175 6.0066 404 1.0133\n", + "beta[7,1] 3.2557 0.0758 1.5133 0.1784 2.2249 3.2905 4.3612 5.9828 398 1.0165\n", + "beta[8,1] 3.2259 0.0653 1.4759 0.2202 2.2272 3.3057 4.2915 5.8631 510 1.0079\n", + "beta[9,1] 3.2515 0.0725 1.4962 0.3307 2.1790 3.2903 4.3106 6.1601 426 1.0151\n", + "beta[10,1] 3.2630 0.0714 1.4988 0.2828 2.2214 3.3281 4.3479 6.0415 440 1.0109\n", + "beta[11,1] 3.2481 0.0788 1.5204 0.2189 2.1967 3.2726 4.2991 6.2250 372 1.0116\n", + "beta[12,1] 3.2038 0.0631 1.4347 0.3324 2.2056 3.2803 4.2518 5.7939 517 1.0095\n", + "beta[13,1] 3.2848 0.0773 1.5243 0.2597 2.2250 3.3338 4.3469 6.1231 388 1.0127\n", + "beta[14,1] 3.2543 0.0719 1.5079 0.2189 2.2136 3.3343 4.3590 5.9097 439 1.0108\n", + "beta[15,1] 3.2748 0.0724 1.4954 0.2882 2.2349 3.3356 4.3488 6.0593 426 1.0126\n", + "beta[16,1] 3.2567 0.0709 1.4820 0.29 2.2149 3.3237 4.3454 5.9015 437 1.0117\n", + "beta[1,2] 3.6959 0.0496 1.3556 0.9896 2.7872 3.7237 4.6293 6.2557 745 1.0091\n", + "beta[2,2] 3.7305 0.0503 1.3469 1.0297 2.8071 3.7577 4.6702 6.3048 715 1.0071\n", + "beta[3,2] 3.7056 0.0469 1.3463 0.9312 2.8040 3.7658 4.6293 6.1879 823 1.0064\n", + "beta[4,2] 3.7454 0.0486 1.3594 0.9555 2.8574 3.7743 4.6674 6.3774 782 1.0077\n", + "beta[5,2] 3.7376 0.0440 1.2952 1.1086 2.8742 3.7829 4.6209 6.2013 866 1.0044\n", + "beta[6,2] 3.6970 0.0411 1.2830 1.0644 2.8460 3.7418 4.6000 6.0731 971 1.0036\n", + "beta[7,2] 3.6969 0.0449 1.3325 1.0120 2.7962 3.7554 4.6147 6.2151 877 1.0066\n", + "beta[8,2] 3.7044 0.0550 1.3353 1.0408 2.8144 3.7322 4.6363 6.2081 589 1.0109\n", + "beta[9,2] 3.7076 0.0451 1.3320 0.9188 2.8136 3.7422 4.6428 6.2170 870 1.0032\n", + "beta[10,2] 3.7225 0.0435 1.3169 1.0416 2.8177 3.7791 4.6516 6.1815 915 1.0072\n", + "beta[11,2] 3.7049 0.0435 1.3081 1.0128 2.8256 3.7525 4.6298 6.0571 904 1.0077\n", + "beta[12,2] 3.7134 0.0562 1.3591 1.0266 2.7855 3.7597 4.6871 6.1724 583 1.0095\n", + "beta[13,2] 3.7047 0.0434 1.3035 1.0626 2.8680 3.7051 4.6143 6.1418 900 1.0116\n", + "beta[14,2] 3.7283 0.0473 1.3262 1.0170 2.8390 3.7899 4.6422 6.1933 786 1.0061\n", + "beta[15,2] 3.7097 0.0444 1.3188 1.0377 2.8356 3.7572 4.6128 6.1742 879 1.0065\n", + "beta[16,2] 3.7203 0.0474 1.3363 1.0278 2.8194 3.7491 4.6733 6.1851 792 1.0057\n", + "theta[1,1] 0.9162 0.0042 0.1169 0.5492 0.8991 0.9633 0.9866 0.9977 762 1.0038\n", + "theta[2,1] 0.9186 0.0041 0.1143 0.5694 0.9027 0.9657 0.9863 0.9976 746 1.0033\n", + "theta[3,1] 0.9164 0.0040 0.115 0.5765 0.8972 0.9622 0.9866 0.9975 815 1.0055\n", + "theta[4,1] 0.9158 0.0043 0.1177 0.5573 0.8976 0.9638 0.9866 0.9971 720 1.0061\n", + "theta[5,1] 0.9183 0.0042 0.1158 0.5607 0.9010 0.9659 0.9870 0.9973 738 1.0048\n", + "theta[6,1] 0.9175 0.0041 0.1137 0.5711 0.8970 0.9650 0.9868 0.9975 736 1.0058\n", + "theta[7,1] 0.9178 0.0043 0.1168 0.5444 0.9024 0.9641 0.9874 0.9974 729 1.0062\n", + "theta[8,1] 0.9176 0.0044 0.1182 0.5548 0.9026 0.9646 0.9865 0.9971 701 1.0047\n", + "theta[9,1] 0.9193 0.0037 0.1098 0.5819 0.8983 0.9641 0.9867 0.9978 860 1.0037\n", + "theta[10,1] 0.9188 0.0043 0.1144 0.5702 0.9021 0.9653 0.9872 0.9976 704 1.0047\n", + "theta[11,1] 0.9177 0.0043 0.1145 0.5545 0.8999 0.9634 0.9866 0.9980 711 1.0053\n", + "theta[12,1] 0.9186 0.0039 0.1116 0.5823 0.9007 0.9637 0.9859 0.9969 791 1.0039\n", + "theta[13,1] 0.9193 0.0043 0.1153 0.5645 0.9024 0.9655 0.9872 0.9978 694 1.0049\n", + "theta[14,1] 0.9173 0.0044 0.1187 0.5545 0.9014 0.9655 0.9873 0.9972 707 1.0038\n", + "theta[15,1] 0.9197 0.0041 0.1130 0.5715 0.9033 0.9656 0.9872 0.9976 729 1.0058\n", + "theta[16,1] 0.9194 0.0041 0.1131 0.572 0.9015 0.9652 0.9872 0.9972 733 1.0038\n", + "theta[1,2] 0.9494 0.0020 0.0740 0.7290 0.9419 0.9764 0.9903 0.9980 1261 1.0046\n", + "theta[2,2] 0.9510 0.0019 0.0723 0.7368 0.9430 0.9772 0.9907 0.9981 1391 1.0027\n", + "theta[3,2] 0.9494 0.0022 0.0761 0.7173 0.9428 0.9773 0.9903 0.9979 1174 1.0039\n", + "theta[4,2] 0.9510 0.0020 0.0742 0.7222 0.9457 0.9775 0.9906 0.9983 1364 1.0029\n", + "theta[5,2] 0.9532 0.0018 0.0687 0.7518 0.9465 0.9777 0.9902 0.9979 1421 1.0031\n", + "theta[6,2] 0.9516 0.0018 0.0710 0.7435 0.9451 0.9768 0.9900 0.9977 1522 1.0015\n", + "theta[7,2] 0.9499 0.0020 0.0735 0.7334 0.9424 0.9771 0.9901 0.998 1342 1.0035\n", + "theta[8,2] 0.9502 0.0022 0.0731 0.7390 0.9434 0.9766 0.9904 0.9979 1093 1.0041\n", + "theta[9,2] 0.9502 0.0018 0.0744 0.7148 0.9434 0.9768 0.9904 0.9980 1552 1.0018\n", + "theta[10,2] 0.9516 0.0019 0.0717 0.7391 0.9436 0.9776 0.9905 0.9979 1414 1.0040\n", + "theta[11,2] 0.9510 0.0020 0.0733 0.7335 0.9440 0.9770 0.9903 0.9976 1334 1.0039\n", + "theta[12,2] 0.9496 0.0021 0.0732 0.7362 0.9418 0.9772 0.9908 0.9979 1184 1.0033\n", + "theta[13,2] 0.9515 0.0018 0.0708 0.7431 0.9462 0.9759 0.9901 0.9978 1404 1.0037\n", + "theta[14,2] 0.9513 0.0019 0.0727 0.7344 0.9447 0.9779 0.9904 0.9979 1446 1.0012\n", + "theta[15,2] 0.9510 0.0020 0.0728 0.7384 0.9445 0.9771 0.9901 0.9979 1302 1.0027\n", + "theta[16,2] 0.951 0.0019 0.0708 0.7364 0.9437 0.977 0.9907 0.9979 1396 1.0032\n", "Sigma[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "Sigma[2,1] -0.000 0.0056 0.3769 -0.709 -0.275 0.0006 0.2848 0.7012 4423 0.9999\n", - "Sigma[1,2] -0.000 0.0056 0.3769 -0.709 -0.275 0.0006 0.2848 0.7012 4423 0.9999\n", - "Sigma[2,2] 1.01.0388e-188.708e-17 1.0 1.0 1.0 1.0 1.0 7027 0.9995\n", - "lp__ -1.4472e3 0.2517 5.6630-1.4594e3-1.4508e3-1.4469e3-1.4434e3-1.437e3 506 1.0095\n", + "Sigma[2,1] 0.0011 0.0131 0.3742 -0.695 -0.276-7.2306e-7 0.2743 0.7092 811 1.0027\n", + "Sigma[1,2] 0.0011 0.0131 0.3742 -0.695 -0.276-7.2306e-7 0.2743 0.7092 811 1.0027\n", + "Sigma[2,2] 1.09.8562e-198.8112e-17 1.0 1.0 1.0 1.0 1.0 7992 0.9996\n", + "lp__ -1.4439e3 0.1163 4.9815-1.4544e3-1.4472e3-1.4436e3-1.4404e3-1.435e3 1832 1.0022\n", "\n", - "Samples were drawn using HMC at Tue Jul 30 20:01:26 2019.\n", + "Samples were drawn using NUTS at Tue Dec 10 16:22:40 2019.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -2412,7 +3373,7 @@ }, { "cell_type": "code", - "execution_count": 211, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -2421,48 +3382,21 @@ }, { "cell_type": "code", - "execution_count": 217, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.6020207893922684" - ] - }, - "execution_count": 217, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.mean(samples2[:, 15, 1])" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 218, + "execution_count": 99, "metadata": {}, "outputs": [], "source": [ "th5 = []\n", "\n", "for i in range(16):\n", - " result5 = 2 * samples2[:, i, 0] * samples2[:, i, 1] - samples2[:, i, 1] \n", + " res5 = 2 * samples2[:, i, 0] * samples2[:, i, 1] - samples2[:, i, 1] \n", "# result1 = - 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] + ppc_hier['alphas'][:, i, 1] \n", " th5.append(list(result5))" ] }, { "cell_type": "code", - "execution_count": 220, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -2471,7 +3405,7 @@ "(16, 8000)" ] }, - "execution_count": 220, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -2483,35 +3417,43 @@ }, { "cell_type": "code", - "execution_count": 221, + "execution_count": 101, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(8000,)\n" + ] + }, { "data": { "text/plain": [ - "array([-0.15178621, -0.15164549, -0.11995138, -0.1770054 , -0.14536233,\n", - " -0.13756777, -0.14771482, -0.15834537, -0.15584203, -0.13804698,\n", - " -0.14927179, -0.12890647, -0.15400477, -0.12556515, -0.13719998])" + "array([-0.11965072, -0.11812914, -0.164097 , -0.16740873, -0.18001722,\n", + " -0.16055835, -0.07397384, -0.12309058, -0.06696517, -0.18929071,\n", + " -0.11754521, -0.09852861, -0.20565993, -0.10907691, -0.16215137])" ] }, - "execution_count": 221, + "execution_count": 101, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "res5 = np.sum(th5.T * proportion / np.sum(proportion), axis=1)\n", - "res5[:15]" + "result5 = np.sum(th5.T * proportion / np.sum(proportion), axis=1)\n", + "print(result5.shape)\n", + "result5[:15]" ] }, { "cell_type": "code", - "execution_count": 224, + "execution_count": 102, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAFkCAYAAAA9sQ87AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAYPUlEQVR4nO3de2zV9f348Rf0SFssrIvWqbEMtdMoi5LhZVOHl++US7t7TAZDpqvRRed0zrESMm8ERBckmbpAJkQuumjMLokdbJNtwhAnbrplS3Qy18yYQSYqbaUUyj6/P/bzxA6Et+V82p728fjvXDifV9+0n/Ps+Zx+zogsy7IAAOCgRg70AAAA5UA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJCjkvYF//7sj700MKjU1ldHZ2T3QYwxZ1jdf1jd/1jhf1jdfw2F96+rGvOdtXmkqsUKhYqBHGNKsb76sb/6scb6sb76G+/qKJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACBBYaAHAIaemrHVUV2Z7+6lq7snOtu7ct0GwLuJJqDkqisLMb6lNddttC1qjM5ctwDQm8NzAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQILCQA8A0Be79+6LuroxuW+nq7snOtu7ct8OMPiJJqAsVR1REeNbWnPfTtuixujMfStAOXB4DgAggWgCAEggmgAAEogmAIAESW8EX79+fXz/+9+PPXv2RG1tbdxxxx3R3t4ezc3NcdxxxxXvN2vWrJg1a1ZuwwIADJRDRtP27dujpaUlfvSjH0VDQ0M8/PDDceutt8a1114bZ511Vixfvrw/5gQAGFCHPDxXKBRi8eLF0dDQEBERkyZNiq1bt0ZHR0eMGZP/OVIAAAaDQ77SdNRRR8XkyZOLlzds2BBnnnlmdHR0RFtbW8ycOTN27NgRkyZNirlz5wopAGBIel9vBN+8eXOsXLky5s6dG/X19XHhhRfG0qVL42c/+1m8/fbbsXDhwrzmBAAYUMlnBH/yySdj/vz5sXTp0mhoaIiGhoZer0Bdc801cfXVV+/372pqKqNQqCjNtGWgomJk1NaOHugxhizrmy/re2ClXBNrnC/rm6/hvr5J0fT000/HggULYsWKFXHyySdHRMS2bdviiCOOiKOOOioiIrIsi0Jh/4fr7Owu4biDX23t6HjrrV0DPcaQZX3zVar17Y/PhOtPpfye8z2cL+ubr+Gwvgfbfx3y8FxXV1fMnTs37rvvvmIwRUQ8/vjjMW/evNizZ0/s27cvVq9eHRdddFFJBgYAGGwO+UrT+vXr44033ohbbrml1/Vr1qyJJUuWRGNjY4wcOTImTpwYc+bMyW1QAICBdMhoampqiqampgPetmDBgpIPBAAwGPkYFQCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABIc8gN7gaGjZmx1VFce/Me+rm5MP00DUF5EEwwj1ZWFGN/Smvt22hY15r4NgP7m8BwAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACQoDPQDAYLZ7776oqxtT0sf838fr6u6Jzvaukm4DKD3RBHAQVUdUxPiW1ly30baoMTpz3QJQCg7PAQAkEE0AAAlEEwBAgqRoWr9+fXz2s5+NadOmxYwZM+Jvf/tbREQ89NBDMW3atJgyZUrMmzcv9uzZk+uwAAAD5ZDRtH379mhpaYnFixfH2rVro6mpKW699dZ44YUXYtWqVfHoo4/G2rVrY8eOHbFmzZr+mBkAoN8dMpoKhUIsXrw4GhoaIiJi0qRJsXXr1li3bl1Mnz49xo4dGyNHjowZM2bE2rVrcx8YAGAgHDKajjrqqJg8eXLx8oYNG+LMM8+Mtra2GDduXPH6+vr6eOWVV/KZEgBggL2v8zRt3rw5Vq5cGStXroz58+fHqFGjirdVVVVFV9f+J2erqamMQqHi8CctExUVI6O2dvRAjzFkWV+GKt/XpWEfka/hvr7J0fTkk0/G/PnzY+nSpdHQ0BDV1dW93vjd1dUVo0fvv5Cdnd2lmbRM1NaOjrfe2jXQYwxZ1vfwlPrM1pSO7+vSsI/I13BY34PtJ5Oi6emnn44FCxbEihUr4uSTT46IiJNOOqnX4bitW7cW3/cEADDUHPI9TV1dXTF37ty47777isEUETFt2rTiX8319PTEI488Eo2NjbkOCwAwUA75StP69evjjTfeiFtuuaXX9WvWrInm5uaYOXNmZFkW5513XsyYMSO3QQEABtIho6mpqSmampoOeNvs2bNj9uzZJR8KAGCw8TEqAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACQoDPQDwXzVjq6O60o8kwGBlDw2DRHVlIca3tOa6jbZFjbk+PsBQ5vAcAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAkKKXfau3dv3HvvvbFixYp46qmn4thjj43nnnsumpub47jjjiveb9asWTFr1qzchgUYinbv3Rd1dWNy3UZXd090tnflug0Y6pKi6brrrouPfvSjva7r6OiIs846K5YvX57LYADDRdURFTG+pTXXbbQtaozOXLcAQ1/S4bnrr78+brzxxl7XdXR0xJgx+f5mBAAwWCS90jRx4sT9ruvo6Ii2traYOXNm7NixIyZNmhRz584VUgDAkJQUTQdSX18fF154YTQ3N8eoUaPiO9/5TixcuDDuuuuuXverqamMQqHisActFxUVI6O2dvRAjzFkWV/ou+Hws2Mfka/hvr59jqbJkyfH5MmTi5evueaauPrqq/e7X2dnd183UZZqa0fHW2/tGugxhqyhvL55vxEYhurPzrsN5X3EYDAc1vdg++I+n3Jg27ZtsWPHjuLlLMuiUOhzgwEADGp9jqbHH3885s2bF3v27Il9+/bF6tWr46KLLirhaAAAg8chXxp6/fXXe5176YorroiKiopYvnx5/Otf/4rGxsYYOXJkTJw4MebMmZPrsAAAA+WQ0XT00UfHunXrDnjbggULSj4QAMBg5GNUAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEhQGegAoBzVjq6O60o8LwHDmWQASVFcWYnxLa67baFvUmOvjA3B4HJ4DAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAESdG0d+/euPvuu+PUU0+Nbdu2Fa9/6KGHYtq0aTFlypSYN29e7NmzJ7dBAQAGUlI0XXfddVFVVdXruhdeeCFWrVoVjz76aKxduzZ27NgRa9asyWVIAICBVki50/XXXx8TJ06MH/zgB8Xr1q1bF9OnT4+xY8dGRMSMGTPi/vvvj69+9av5TApAn+3euy/q6sbkvp2u7p7obO/KfTswEJKiaeLEiftd19bWFpdccknxcn19fbzyyiulmwyAkqk6oiLGt7Tmvp22RY3RmftWYGD0+Y3gXV1dMWrUqOLlqqqq6Ory2wUAMDQlvdJ0INXV1b3e+N3V1RWjR4/e7341NZVRKFT0dTNlp6JiZNTW7r8OlIb1hcFvIH9G7SPyNdzXt8/RdNJJJ/U6HLd169ZoaGjY736dnd193URZqq0dHW+9tWugxxiyBmp9++O9IDBUDOQ+0D44X8NhfQ+2v+/z4blp06YV/2qup6cnHnnkkWhsbOzrwwEADGqHfKXp9ddfj1mzZhUvX3HFFVFRURErV66M5ubmmDlzZmRZFuedd17MmDEj12EBAAbKIaPp6KOPjnXr1h3wttmzZ8fs2bNLPhQAwGDjY1QAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASCCaAAASiCYAgASiCQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABKIJgCABKIJACCBaAIASFAY6AHgcNSMrY7qSt/GAOTPsw1lrbqyEONbWnPfTtuixty3AcDg5vAcAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAgsLh/OMJEyZEfX198fIZZ5wR99xzz2EPBQAw2PQ5mt5+++0YMWJErFu3rpTzAAAMSn0+PNfZ2Rljx44t5SwAAINWn6Opvb099u3bF1/72tdi6tSp0dzcHH//+99LORsAwKDR58NzVVVVMXXq1Ljqqqti3LhxsWrVqrjuuuuitbU1CoXDeqsUAGVq9959UVc3JtdtdHX3RGd7V67bgAPpc93U19fHHXfcUbz8la98Je67775oa2uLhoaG4vU1NZVRKFQc3pRlpKJiZNTWjh7oMYYs6wuDW9URFTG+pTXXbbQtaozCe+wH7CPyNdzXt8/R1N7eHjt37iz+9dyIESPiP//5z36vMnV2dh/ehGWmtnZ0vPXWroEeY8j63/XN+zdaYHB6r/2sfXC+hsP6Hux5pc/vaXrppZfiiiuuiNdffz0iIh577LE49thje52CAABgqOjzK01nn312XHnllfHlL385RowYEcccc0zcf//9UVExfA7FAQDDx2G9Y/vKK6+MK6+8skSjAAAMXj5GBQAggWgCAEggmgAAEogmAIAEogkAIIFoAgBIIJoAABL4ZF1yUzO2OqorS/8t5qNTABgIooncVFcW+uWDOwGgPzg8BwCQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJBBNAAAJRBMAQALRBACQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJBANAEAJCgM9AAA8H7s3rsv6urGvOftB7stVVd3T3S2dx324zC0iCYAykrVERUxvqU11220LWqMzly3QDlyeA4AIIFXmoapmrHVUV3pvx8AUnnWHKaqKwv98vI2AAwVDs8BACQQTQAACUQTAEAC0QQAkEA0AQAk8Ndzg4xTAQAMvEOddbxUnHm8vHh2HmT641QAEU4HAHAw/XHW8QhnHi83Ds8BACQQTQAACUQTAEAC0QQAkOCwomnz5s3x+c9/PqZMmRJXXXVVbNu2rVRzAQAMKn3+67ldu3bFzTffHA8++GBMmDAhli9fHrfffnssXbq0lPMNKqmnA+iPP1MFAPpXn6PpmWeeifr6+pgwYUJERHzpS1+KJUuWRGdnZ9TU1JRswMGkP04H4FQAADA49Tma2traor6+vnj5yCOPjNra2vjnP/8Zp59+ekmGez+cFBKActMfJ9F0As3SGZFlWdaXf/jAAw/Ea6+9FgsXLixe93//939x9913x1lnnVWyAQEABoM+vxF89OjR0d3d3eu63bt3x5FHHnnYQwEADDZ9jqaTTjop/vGPfxQvv/HGG7Fz58748Ic/XJLBAAAGkz5H07nnnhvbtm2L5557LiIiVq9eHRdffHGMHj26ZMMBAAwWfY6mqqqqWLJkSdx5551x6aWXxp///Oe49dZbSznboJR6bqo//OEPcfnll8e0adPiC1/4QmzZsqV4W2trazQ1NcWUKVPihhtuiI6Ojv4avyykrnGWZbF8+fKYMGFCMd7fsWzZspg6dWpMmzYtvv71r8e///3v/hi9LJRifbdu3RqXX355XHjhhfHFL34xtm7d2h+jl4VSrO871qxZE6eeemqe45adUqzvY489Fo2NjTF16tRobm52jsF3KcX6DunnuIxkb7/9dvbxj388+8tf/pJlWZY9+OCD2bXXXrvf/bq7u7Nzzjkn27x5c5ZlWfbb3/42u+CCC7Isy7LXXnstO/fcc7PXXnsty7Isu+OOO7I777yzn76CwS91jbMsy7773e9m8+bNyy644IJsy5Ytxet/97vfZZdeemnW3t6eZVmWfe9738u+9a1v5T98GSjF+vb09GRTpkzJfvGLX2RZlmU/+clPsoULF+Y/fBkoxfq+Y/v27dmnP/3p7JRTTsl15nJSivX905/+lJ1//vnZ9u3bsyzLskWLFmU333xz/sOXgVKs71B/jhNN78P69euzyy+/vHi5s7MzmzBhQtbR0dHrfp2dncUnlCzLso6OjuyUU07Jdu7cma1atSq76aabire9/PLL2Sc+8Yn8hy8TqWucZVn2/PPPZ1mWZRdffHGvH9oVK1Zk3/zmN4uXN27cmH3mM5/JceryUYr13bJlS9bY2Jj/sGWoFOv7jm984xtZa2uraHqXUqzvq6++mj377LPFy08++aT9w/9XivUd6s9xPnvufTjYuane7cgjj4zLLruseHnDhg0xfvz4GDt2bLS1tcW4ceOKt40bNy527NgRO3fuzP8LKAOpaxwRMXHixAM+xjnnnBPPP/98bNu2Lfbt2xe/+tWv4rzzzstt5nJSivV98cUX4/jjj4+WlpaYMmVKXHPNNfHqq6/mNnM5KcX6Rvx3n9HZ2RnTp0/PZc5yVYr1PeGEE+Lss88uXt6wYUOceeaZpR+2DJVifYf6c5xoeh+6urqisrKy13WVlZWxa9eu9/w3L774YixcuDDuvPPO4mOMGjWqePuoUaNixIgR0dXlxGMRfVvj/zVhwoT43Oc+F5dcckmcc845sWXLlrj22mtLPWpZKsX6tre3x5YtW2LGjBmxdu3aOO2002LOnDmlHrUslWJ9d+/eHXfffXfcdtttpR6v7JVifd/tpz/9aWzcuDFuuOGGUoxX9kqxvkP9Oc4ptA/gl7/8ZXzve9/b7/oZM2a8r3NT/fGPf4ybbropFixYEOeee25E/Pf8Vnv27Cnep7u7O7IsG3Z/dViqNT6Q9evXx1NPPRWbNm2KD3zgA7Fs2bL49re/HT/84Q8Pe+5ykef6jhkzJk477bTib+dXXXVVLFu2LHbt2jVsvo/zXN8HHnggmpqaev22Ptzkub7vePjhh+Ohhx6KlStXRl1dXZ9nLUd5ru9Qf44TTQdw2WWX9Tq89o6nnnoqnnjiieLlg52b6sUXX4wbb7wxlixZ0usM6SeeeGI888wzxcsvv/xy1NXVxdixY0v8VQxupVjj97Jp06b45Cc/GR/84AcjImL69OmxbNmywx+6jOS5vieccEKvv4apqKiIiIiRI4fPC9d5ru+vf/3rePPNN2PNmjXF684///x45JFHhs158PJc34iIH//4x/Hwww/HmjVr4kMf+tBhz1tu8lzfof4cN3z2ciWQem6qLMuipaUlbrvttv0+UuZTn/pUPPvss8UTg65evTqampr65wsoA6U4/9eJJ54YmzdvLr4c/Jvf/CY+8pGP5DJvuSnF+p5//vnx5ptvxsaNGyMi4tFHH42PfexjUVVVlcvM5aQU69va2hpPP/10bNq0KTZt2hQR//1FYLgE08GUYn23b98e9957bzz44IPDMpgOphTrO9Sf4/r82XPD1e9///tYsGBBdHV1xbhx42LRokVRV1cX27dvj+bm5njiiSfi+eefj5kzZ+63k1u8eHFMmDAhfv7zn8f9998fPT09cfrpp8eCBQt8/My7pKxxRERTU1P09PTEq6++Gsccc0xUVlbGPffcE6eddlrcddddsXHjxhg5cmTU1dXF7bffHg0NDQP8lQ0Oh7u+Z5xxRvz1r3+NOXPmxJ49e+L444+P+fPnD+vDSe9WivV9t1NPPTVeeumlgfhSBqXDXd/NmzfH0qVLewVToVDo9QrLcFaK79+h/BwnmgAAEjg8BwCQQDQBACQQTQAACUQTAEAC0QQAkEA0AQAkEE0AAAlEEwBAAtEEAJDg/wH/4TPDxTHh5AAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAFkCAYAAADv4QVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQBklEQVR4nO3d32uW9f/A8Zc5nfPHimDUQZmVRCREgWiWBwnqjNmBkWBHn+qkEPpxEgwiQqGQIvoHCqIOOikIav0k6MeBkWZIBoZRK5BWHwp1d92uqe/vgd9G+8zN+7Xt2o/7fjygg627+7r26rXtya7tuheUUkoAANCwS2b7BAAA5hsBBQCQJKAAAJIEFABAkoACAEgSUAAASW1VPfF//zsYy5e3R602VNUh5h3zGMtMxjKTscxkLDMZy0xGM4+xJppJV9eK1HNV+hOotraFVT79vGMeY5nJWGYylpmMZSZjmclo5jHWdM7EJTwAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAElts30CAHPN8s6O6Giv9stjfehM1E7VKz0GUB0BBfA/OtrbYlVvX6XH6N/XE7VKjwBUySU8AIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAICkttk+AYBWdHr4bHR1rZjSczTy39eHzkTtVH1KxwHGElAAs2DJooWxqrev8uP07+uJWuVHgdbjEh4AQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAktxIE5hXlnd2REe7L13A7PJVCJhXOtrbKr+Dd/++nkqfH5j/XMIDAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEhqm+0TAJrD8s6O6Giv7ktKV9eKyp67mZ0ePlv57OpDZ6J2ql7pMWCuEVDAtOhob4tVvX2VH6d/X0/lx2gmSxYtrPz/S/++nqhVegSYe1zCAwBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgKS22T4BoHrLOzuio92nO8B08RUVWkBHe1us6u2r9Bj9+3oqfX6AucQlPACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIMl9oACYktPDZ6Ora0Xlx6kPnYnaqXrlx4FGCCgApmTJooWV36g14vzNWmuVHwUa4xIeAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJLaZvsEoNUt7+yIjvbRn4pdXStm6WwAaISAglnW0d4Wq3r7Kj1G/76eSp8foNW4hAcAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJDfSBGBeOD189qJ36Z/qXfzrQ2eidqo+peegNQgoAOaFJYsWzshd+2uVHoFm4RIeAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACS1zfYJAMBccXr4bHR1raj0GPWhM1E7Va/0GFRPQAHA/1uyaGGs6u2r9Bj9+3qiVukRmAku4QEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIchsDAJhBM3GvqX+OQ3UEFADMoJm411TE+ftNDVZ+lNblEh4AQJKAAgBIElAAAEkCCgAgSUABACT5KzwYx/LOjuho9ykCwFi+O8A4OtrbZuxPjQGYX1zCAwBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJLXN9gnAZCzv7IiOdusLwOzwHYh5qaO9LVb19lV6jP59PZU+PwDzl0t4AABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACDJS7kAQBM6PXw2urpWVHqM+tCZqJ2qV3qMuUpAAUATWrJo4Yy8Zmit0iPMXS7hAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASe4DxbRb3tkRHe2Nr1bVN3oDgOkmoJh2He1tM3LzNgCYLS7hAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkOS18FpI9kV+AYAL8920hczEi/xGeKFfAJqfS3gAAEkCCgAgSUABACQJKACAJL9EPkf4CzkAmD98x54jZuIv5Px1HABMD5fwAACS/ATqIqb70lpX14ppey4AmE2nh89W/n2tPnQmaqfqlR5jMgTURbj5JABc2JJFC2fk109qlR5hcuZ1QPnFawBgNiwopZTZPgkAgPnEL5EDACQJKACAJAEFAJA0pYDav39/7NixI7q7u+OBBx6IgYGBCz7uyy+/jJ07d8a2bdtix44dceDAgYiIGBgYiDVr1sS2bdtG/nnhhRemckqzbqoziYjo6+uL7du3R3d3dzzyyCMxODg4U6c/7Rqdx1dffRU7d+6Mu+66K+655x47EuPPJKK5diSi8ZmUUuLll1+ONWvWxMGDB0fe38p7Mt5MIlp3T44ePRq7du2K7u7u2LVrVxw9ejQimmdPGpnDeDOIaL69iJjaTCa9F2WS/vzzz3LbbbeVI0eOlFJKeemll8pDDz005nH1er2sW7eufPPNN6WUUj766KNy++23l3PnzpXvvvuubN26dbKnMOdMx0yOHz9e1q9fX44fP15KKWXPnj1l7969M/dBTKNG5zE0NFTWrVtX9u/fX0op5ZNPPikbN24spZSW3ZGJZtJMO1JK4zMppZSnnnqqPPnkk2Xjxo3lwIEDI+9v1T0pZfyZtPKebNu2rXz00UellFLee++9sn379lJKc+xJo3MYbwbNthelTH0mk92LSQfUxx9/XHbu3Dnydq1WK2vWrCmDg4OjHnfq1KmRE/7ncTfccEM5ceJEOXjwYLn33nsnewpzznTM5NVXXy2PP/74yL87duxY2bBhQ/UnX4FG51Gr1coHH3ww8vbg4GC54YYbysmTJ1t2RyaaSTPtSCmNz6SUUr7++utSSimbNm0aFQutuieljD+TVt2To0ePljvuuGPU+zZs2FC+//77ptiTRuYw0QyabS9KmfpMJrsXk76E19/fH1dfffXI28uWLYvLLrssfv7551GPW7FiRWzevPmfn3bFG2+8EWvXro1LL700BgcH48SJE3H//fdHd3d3PProo/Hrr79O9pRm3XTMpL+/P1auXDny2JUrV8bvv/8eJ0+enJkPYho1Oo9ly5bF1q1bR97+7LPPYtWqVdHZ2dmyOzLRTJppRyIan0lExC233HLB52jVPYkYfyatuif9/f1x1VVXjXrf1VdfHT/88ENT7Ekjc5hoBs22FxFTn8lk92LSAVWv16O9vX3U+9rb2+Ovv/664OPff//92LhxY7z++uuxZ8+eiIi4/PLLY9OmTfHcc89FX19fXHnllfHEE09M9pRm3XTMpF6vx+LFi0ces3jx4liwYEHU63PvNvYXk51HxPlr1M8++2zs3bs3IuxIxNiZNNOORExuJv/Lnlz4OVpxTyZ6XDPsSSNzmOgxzbYXEVOfyWT34qK38f7www/j+eefH/P+++67L4aGhka97/Tp07Fs2bILPs8/v5i1f//++M9//hNvvfVW3HzzzXHzzTePPGb37t1x2223xV9//RVLly696MnPlipnsnTp0vj7779HHjM0NBSllJaYx6FDh+Lxxx+PZ555JtavXx8R0fI7cqGZzMcdiZi+mVxIq+/JhbTqnixdunTcx83XPfm3iT6+Rh4zX/diIlOdyWT34qIBtXXr1lGXEv7x6aefxjvvvDPy9h9//BEnT56Ma665ZtTjfvnll/j2229HLllt2LAhrrjiijh8+HDceuutMTw8HFdeeWVEnL+ctWDBgmhrm9svz1LlTK699tr44osvRh577Nix6Orqis7Ozoo+mqmb6jwizv+U5bHHHosXX3wx1q5dO/L+33//vSV3JGL8mczHHYmYnpmMp5X3ZDytuifXXXdd9Pf3x7lz5+KSSy6JM2fORH9/f1x//fXzdk/+7brrrou333575O0LzWGiGfz666/zci8mMtWZTHYvJn0Jb/369TEwMDDyZ7OvvfZabNq0aUytDQ8PR29vbxw7diwizl+H/Omnn2L16tXx+eefx+7du6NWO/8yga+88kps2LBh1I8X55PpmMnmzZvjyy+/jB9//HHkObZv3z6zH8g0aXQepZTo7e2Np59+elQoRETL7shEM2mmHYlofCYTadU9mUir7snq1aujq6trJLbeeuutuOqqq+Laa69tij1pZA4TzaDZ9iJi6jOZ9F6kf+38X7744oty9913l82bN5cHH3yw/Pbbb6WUUgYGBkpPT8/I4959992yffv20t3dXbZt21befPPNUkop586dK88//3zZvHlz2bp1a3n44YfLwMDAVE5p1k11JqWU0tfXV+66666yZcuW8thjj5VarTbjH8d0aWQehw4dKjfeeGPp7u4e9c+RI0dadkcmmkkpzbUjpTT+edPT01O6u7vLTTfdVO68887S3d1dDh8+3LJ7Usr4Mymldffk6NGjZefOnWXLli1l165d5fvvvy+lNM/3nAvNodEZlNJ8e1HK1GYy2b3wYsIAAEleygUAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACDp/wD+kxbw2FjFUwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2522,97 +3464,17 @@ ], "source": [ "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(res5 , bins=20, edgecolor='w', density=True)" + "_, _, _ = plt.hist(result5 , bins=20, edgecolor='w', density=True)\n", + "plt.yticks([]);\n", + "# plt.savefig('model_hier.png', dpi=120)" ] }, { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 168, + "cell_type": "markdown", "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 15., 42.],\n", - " [ 24., 45.],\n", - " [ 88., 146.],\n", - " [ 33., 68.],\n", - " [ 21., 41.],\n", - " [ 47., 84.],\n", - " [ 66., 104.]])" - ] - }, - "execution_count": 168, - "metadata": {}, - "output_type": "execute_result" - } - ], "source": [ - "new_values[:7,]" + "Again, very similar to the figure 8.1 (b), except for the a minus sign. Why? It is not clear at the moment." ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -2631,9 +3493,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.8" + "version": "3.6.9" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 181c5804c6275a8b8b7360f2c7b529a82a7e1854 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= Date: Tue, 10 Dec 2019 16:32:22 -0500 Subject: [PATCH 5/9] =?UTF-8?q?Correcci=C3=B3n?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- BDA3/chap_08.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb index 3df4315..e507165 100644 --- a/BDA3/chap_08.ipynb +++ b/BDA3/chap_08.ipynb @@ -3473,7 +3473,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Again, very similar to the figure 8.1 (b), except for the a minus sign. Why? It is not clear at the moment." + "Again, very similar to the figure 8.1 (b), except for a minus sign. Why? It is not clear at the moment." ] } ], From ecdb08d32ed794c19e830acb507dfa9affe7829d Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= Date: Tue, 10 Dec 2019 16:55:41 -0500 Subject: [PATCH 6/9] Added the CBS survey --- BDA3/data/cbs_survey.txt | 20 ++++++++++++++++++++ 1 file changed, 20 insertions(+) create mode 100644 BDA3/data/cbs_survey.txt diff --git a/BDA3/data/cbs_survey.txt b/BDA3/data/cbs_survey.txt new file mode 100644 index 0000000..1e85349 --- /dev/null +++ b/BDA3/data/cbs_survey.txt @@ -0,0 +1,20 @@ +Results of a CBS News survey of 1447 adults in the United States, +divided into 16 strata. Table 7.2 from Bayesian Data Analysis. + +region density bush dukakis other proportion +Northeast I 0.298 0.617 0.085 0.032 +Northeast II 0.500 0.478 0.022 0.032 +Northeast III 0.467 0.413 0.120 0.115 +Northeast IV 0.464 0.522 0.014 0.048 +Midwest I 0.404 0.489 0.106 0.032 +Midwest II 0.447 0.447 0.106 0.065 +Midwest III 0.509 0.388 0.103 0.080 +Midwest IV 0.552 0.338 0.110 0.100 +South I 0.571 0.286 0.143 0.015 +South II 0.469 0.406 0.125 0.066 +South III 0.515 0.404 0.081 0.068 +South IV 0.555 0.352 0.093 0.126 +West I 0.500 0.471 0.029 0.023 +West II 0.532 0.351 0.117 0.053 +West III 0.540 0.371 0.089 0.086 +West IV 0.554 0.361 0.084 0.057 From 82f3ebf4a021b8a3020c06badd97c3fa3fa0bce4 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= <33338133+rosgori@users.noreply.github.com> Date: Sun, 29 Mar 2020 16:24:19 -0500 Subject: [PATCH 7/9] Improving the hierarchical model The hierarchical model in pymc3 was changed and improved, the results are similar --- BDA3/chap_08.ipynb | 3319 +++++++++++++++++++++++++------------------- 1 file changed, 1890 insertions(+), 1429 deletions(-) diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb index e507165..9b1709c 100644 --- a/BDA3/chap_08.ipynb +++ b/BDA3/chap_08.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 421, "metadata": {}, "outputs": [], "source": [ @@ -24,6 +24,8 @@ "import arviz\n", "import seaborn\n", "import time\n", + "from scipy.special import expit as logistic\n", + "from scipy.special import logit\n", "\n", "import warnings\n", "warnings.simplefilter(action='ignore', category=FutureWarning)\n", @@ -34,6 +36,15 @@ "%config Inline.figure_formats = ['retina']" ] }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# arviz.style.use('arviz-darkgrid')" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -43,7 +54,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -59,7 +70,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -260,7 +271,7 @@ "15 West IV 0.554 0.361 0.084 0.057" ] }, - "execution_count": 8, + "execution_count": 6, "metadata": {}, "output_type": "execute_result" } @@ -270,6 +281,15 @@ "data" ] }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "#data.density" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -279,7 +299,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -312,7 +332,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -331,7 +351,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -340,7 +360,7 @@ "1444.106" ] }, - "execution_count": 11, + "execution_count": 10, "metadata": {}, "output_type": "execute_result" } @@ -351,7 +371,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -370,7 +390,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -379,7 +399,7 @@ "1447.0" ] }, - "execution_count": 14, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -390,6 +410,41 @@ "np.sum(values) # Check if the sum is equal to 1447" ] }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 14., 29., 4.],\n", + " [ 23., 22., 1.],\n", + " [ 78., 69., 20.],\n", + " [ 32., 36., 1.],\n", + " [ 19., 23., 5.],\n", + " [ 42., 42., 10.],\n", + " [ 59., 45., 12.],\n", + " [ 80., 49., 16.],\n", + " [ 12., 6., 3.],\n", + " [ 45., 39., 12.],\n", + " [ 51., 40., 8.],\n", + " [101., 64., 17.],\n", + " [ 17., 16., 1.],\n", + " [ 41., 27., 9.],\n", + " [ 67., 46., 11.],\n", + " [ 46., 30., 7.]])" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "values" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -399,7 +454,7 @@ }, { "cell_type": "code", - "execution_count": 144, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -411,7 +466,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -422,7 +477,7 @@ "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 11, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -433,7 +488,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -455,18 +510,18 @@ "\n", "16 x 3\n", "\n", - "\n", - "\n", - "thetas\n", - "\n", - "thetas ~ Dirichlet\n", - "\n", "\n", - "\n", + "\n", "post\n", "\n", "post ~ Multinomial\n", "\n", + "\n", + "\n", + "thetas\n", + "\n", + "thetas ~ Dirichlet\n", + "\n", "\n", "\n", "thetas->post\n", @@ -477,10 +532,10 @@ "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 12, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -491,7 +546,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -502,7 +557,7 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [thetas]\n", - "Sampling 4 chains, 0 divergences: 100%|██████████| 16000/16000 [00:13<00:00, 1209.89draws/s]\n" + "Sampling 4 chains, 0 divergences: 100%|██████████| 16000/16000 [00:12<00:00, 1261.82draws/s]\n" ] } ], @@ -513,12 +568,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeYwc53n4+W9V9TX3cIbDm6JIyaJlWZblX+zYlhXHMZz8AuS3SBAsHC9gJCsF3mRhrAHDizXW2sAIsPAGCeJ4lSAI4hjZDbI+4shOfMSSJeswJVG8z5nh3Fffd1dV1/Ue+0cPh7ckO6SGlt6PQJFT3VP9VnV11/vU87xvWVprjWEYhmEYhmEYhrHp7M1ugGEYhmEYhmEYhtFjAjTDMAzDMAzDMIzbhAnQDMMwDMMwDMMwbhMmQDMMwzAMwzAMw7hNmADNMAzDMAzDMAzjNmECNMMwDMMwDMMwjNuECdAMY90TTzzBwYMHaTQam90UwzAMw3jDmPOfYdxeTIBmvKX93d/9HZ///Odv6jpPnjzJr/3ar93UdRqGYRjGzWTOf4Zx+zIBmvGWdvr06V+IdRqGYRjGzWTOf4Zx+zIBmvGW9clPfpJnnnmG73znOxw8eHBjebFY5Pd///d517vexUMPPcQ3v/nNK37vmWee4eMf/zjvec97eP/7389jjz2G67oAPP7443zpS18in89z8OBBHn/8cQCOHj3KJz/5SX75l3+ZBx98kI9//OMcOXJkY51aax5//HE++tGPcv/99/OhD32IL3zhC3ie9wbsCcMwDOOtxJz/DOP2ZgI04y3r8ccfZ9++ffzmb/4mhw4dIkkSAP7iL/6CRx99lH/7t3/jAx/4AF/84hfJ5/MAvPLKK3z605/m4MGDfPvb3+Yv//IvOXz4MJ/97GcBeOSRR/jt3/5tduzYwaFDh3jkkUdwXZdPfepT7Ny5k2984xsbJ8Q//uM/pl6vA/Ctb32Lr33tazz22GM8+eSTfPnLX+bYsWN86Utf2pydYxiGYbxpmfOfYdzeUpvdAMPYLKOjo9i2TS6XY2JignQ6DcDv/u7v8iu/8isA/OEf/iHf+973OH/+PLt37+bv//7vufvuu/niF7+IbdscOHCAL3zhC/zRH/0RMzMz3HPPPWSzWRzHYWJiAoAkSXjiiSeYmJhgcHAQgE996lN885vf5NSpU3z0ox9ldnaW3bt385GPfASAXbt28dWvfnXjpGkYhmEYN4s5/xnG7c1k0AzjKu985zs3/j02NgaA7/sAnDlzhg9+8IPY9qWPznvf+14sy2Jqauq660un0xSLRT7zmc/w8MMP8+CDD/Jbv/VbALTbbQA+/OEPMzc3t3FCrNVq7N27lwMHDtySbTQMwzCMq5nzn2HcHkyAZhhXyeVyG/+2LAvo1cgDeJ7HP//zP/Pggw9u/Hn44YfRWlOr1a67vjNnzvDoo4+SyWT48pe/zHe+8x3+8R//8YrnPPzww/zDP/wDjuPw2GOP8aEPfYhHH310o7TEMAzDMG41c/4zjNuDKXE0jJ/B0NAQv/Ebv8Gjjz56zWMjIyPX/Z0f/vCHOI7DX/3VX5HNZgGYnJy85nkPPfQQDz30EFEU8cILL/ClL32Jz372s9cM0jYMwzCMN5o5/xnGG8cEaMZb3sWrg6/H/fffz+rqKvv27dtYJqVkaWmJ0dHR664zSRJGR0c3Tk4A//7v/37F8w4dOsSOHTu4++67yWazfOxjHyOfz/OVr3zl594uwzAMw3g15vxnGLcnU+JovKWNjIwwOTnJ1NTUDUs0LvfII49w+PBhvvKVrzA/P8+FCxd47LHH+L3f+z0ajcbGOqvVKseOHWN1dZV3vetdVKtVvv3tb7O6usrf/u3f0mq1SKfTnD17llarxRNPPMFnPvMZDh8+TLFY5MyZM3zve9/jfe97363eBYZhGMZbkDn/Gcbty2TQjLe0Rx55hD/5kz/hE5/4BJ/+9Kdf8/kf/OAH+eu//mv+5m/+hq9+9av09/fzwAMP8E//9E8bA6p/53d+h6eeeoo/+IM/4BOf+ASf//znOXXqFH/+53+O1ppf//Vf54tf/CLDw8N8/etfp6+vjz/90z/lz/7sz/jc5z5Hq9VibGyMhx56iM997nO3ehcYhmEYb0Hm/GcYty9L/yz5bcMwDMMwDMMwDOOWMSWOhmEYhmEYhmEYtwkToBmGYRiGYRiGYdwmTIBmGIZhGIZhGIZxmzABmmEYhmEYhmEYxm3CBGiGYRiGYRiGYRi3iVedZr9adW/aCw0OZvG86Katz+gx+/XWMfv21jD79db4Rd2vExNDm92E6wqC+Bdyf17PL+qxcSNvpu0x23J7ejNtC7y5tufNtC2vdv57wzJoqZTzRr3UW4rZr7eO2be3htmvt4bZrzfXm2l/vpm2Bd5c22O25fb0ZtoWeHNtz5tpW16NKXE0DMMwDMMwDMO4TdweAZoIN7sFhmEYhmEYxnUIJQil6asZxhtl0wO0oWc+y9a/fzuZ+R9udlMMwzAMwzCMqxyrHeHF8gub3QzDeMvY1ADNbi+Rm/4WlhIMvvinoMRmNscwDMMwbqlKUOaZwlMIc74zfoH4wtvsJhjGW8qmBmjZ+R8A4H3oizjuGunCK5vZHMMwDMO4pZa8RQBqYXWTW2IYhmHcrjY1QEsXjyNGDxC8439Ap3JkFn60mc0xDMMwjDfE+dbZzW6CYdw8IgTx5pj6/HagtUYsL6GV2uymbA6ten/ewjYvQNOab7VP86ERxT/OPEOy471kCoc3rTmGYRiGcbMorajehlmyU/UTXGhN3fT1aq1ZbnRRWgNQ6OZZ81dv+uu8WSitiOSbJ6DJLvwI68L3N7sZbxoqv4acvYBcWtzspmyK7Oy/k1l6erObsak2LUBrtJb4ukrxK8cF3z3zOO72X8KpT2OFzc1qkmEYhmHcFHOdGc40TtKKNu+cpoVAzM1ccRW+HtVY6978wCnfDpkueyzUuwBMtc5zoX3zA8FbyalP4TTn35DXmmqd51D5edRlWQItBHJ15donywTbK74h7fp5lZMOSmv8xMdLbu54tVInZLLk3tR13u60WB+jKt66Y1WtpHvNsmY33oSWbI5NC9C+e/IJ/tdvav7HpxX/+xMtvuaChSZdPLpZTTIMwzCMmyIQAQCJ3rwOlpidQS4tIoo3r3MvS0VktXLta8le5kyu/32R+gUqU0rVL5CqXll6erJ+nGcLN/9KfiNqABDLSx1OMT2JuDCFajaueG66fKI3Rj/2b3o7boZaWOVMuMZcWOFw9UVeqb50U9d/Ot9htRlcszyWMYHoYndWsb3CTX3N24ZlbXYLfm7nmmd5pvDUTVvfWivgyHKLharHc7M1Vjq9CZcu/wy9mWxeiePLz7OjBamPPMSBElSOnkE7WTNRiGEYhvELT9MLVK7uXmmtr33yf0I3ljd+MFq/b9VNHMcizp1BnD55zfIbbVUlKN9wXbZbIL1686dul9UK0dNPorvXXoFHSWz39XfmG1EdRW//Ka2ZKrtEovezkIqKG/1c72naTgOQqMs6l0kvmO9GvQxUeu1FMnPfx4p7P1ubGOy/mkQlAATrf98qUl25n1+qHOKlyiHSpeOkC0du6WvfCuLCFNGh6x//iVC942z9C2S2fYGZ9vQb2LrXprXuZeiT67/v5eDnvzCklUK6XZ6arjBX7V2YuPhdN1f1iYTieHEZAE+8ObOrmxag7Z+t0R7SjPwf/xfl8RwfOD1HOH4/6dKxzWqSYRiGYVxhrRUg5M8f4FgXe1ix/7pL+E/n2xxfbb3m85anF3lhtkIruH4HSdWuHAOntQalQd7ajvTrlS4dxQ4acJODVrWeMVRuB7myjI4u3WA5VT1LungEK6j/zOutuBErjYDpcq9DOFP1ObnaxFs7c8PbBAmpOFfskFx1DNlWr/sl1GUBtgVrus7LzSO4SQe7W8W6ibdjiGREO37t4+p6pkoes9XrZ/Csay5D3Boz1StLJ+XrCFhP1o/ftjOmytUVCK/NDAIcX2kyXe5tbyQU3585y2Tj9hqPpirlXoZ+5sJNX3eyVCKaXMQKAuZrNzruerTWaK2R5dJNb8drSrqkVg+RnfnuTV/1pgRoLbfLPSuC8n4bK52l8v4HOFhIOC52kqqdN/dDMwzDMDZdK0g4X3Q5V/zPX6HNLv2YzMrzVyxbawW44bXnu1Inoua9etmOajapXphD5vMEyatk0S5f78nnGH36R6Qrp193u1+NTpKN8W0XM4Y/b19da33TJ83QXR8xM01y5tL2Wkmvs/d6Ap8blU5djCfdSJBqrFArnsCtHL/uc5ebAflWyGL9Otm8q1kWLb2eLRCv4/k/oyPVwxyrHSEQXfzkZyuXjIUiuDpbqxXZme9it5cAcMOYdnDr+m+x+NkulCitaER1Tjeuzfje7uRlFy06Ye+CSs2L0EoRHXoB1Xh9FxgqbsTkcvWGWa5XE7/8IvHJ6x/XwKUPwn8iQy+VuG4GWvm9wNWSNz6eLr8wED/zFOLs6dcM0hbdeYLLPltaqf/UTJmZ1RfIXm8Geq1Bvb7v5RvZlABt6uiLZBNQewYB2PPr/w0bmJ11sUSI05zbjGYZhmEYxoaLHYfoquyH0przxc5Gqdt1f/cGRX+XLz9fdHlpsTfeqO7/jOMolERpQIorYqInpyrMXXXFWUURyvfIzx2j5eav6fxbfuXnyqrFz/+E5PhRdBii1fVLOl8fzVxnhkPl51+1JBK44QQU1y01vFgSd53Oqb5OS6WWxJeVHAr9GvtEw8iZI7zy0k/4x7V/B+BM4xRnGqd6U4SLa7MjVuwyW2rSuV7Wc2O80evPKN5ojJ/WmlInvGJZrHoB8EuVQxyuvvjq6202iZ5+EtVp4yUe1fZp0vOnr+zorwe5TnsBgEI7ZLnx8weWev1z9XovOFy33a+Rjb06k3krKa2QWlILqxwpneXJqQrhz7BtaeFDeR5Zq20skysrJEdfIT7Sm/Xcit0rkxoyIVU+tbHs5FqbhSOnCY6+vhLQ9OpPycz1ZuPUvoeu1654vN2NiEN347OWKIEbt69cR+EVsrPfe83XyvtrPLX2E74/mSffuuqzcp2xdxcXXfqc9xZc8V0b9Y7xq8thAUIZsuDOc6p+KWCPn3+W+PmfvGZbtRAoKTe+81OVM6ye/xqL/lrvCUpeWQmw+lP0hX/Z+NFuL/3MWftNCdDqp3sDSMcP7AFg/wMfoTps0TfXG3icqpzZjGYZhmEYxoaNK7RXnevLbsSJ0jLfmLp2/Ihqt4iPHdm4qmxZFk5rAW40PifxWG34HFtpUZyeu+4EHNelr2yWFbU3Oi7zV5WixTMzJC+/uJGhuiJTlQSo5Z8STv0z8c+RwVL1GvGh5xFLC9d9vNDNv6711MJeR/Bs88bZvXZrjunv/jULP/gmlaC8kQUqdkJOrrVZWZ9IQiF7gcvFDpNl4YYCcXmn7TodwIXO/Osa5yOV4smpClNlFx17+InDxX5/NaxQDSukisfILjx5RadSa01m6RnCueeYrfoodVXAsF72+Joln0kAsU8zavBs8WmaUeOap6w0A07nO6xd3fG9zKvNiKcqZbRIkNUqnaRNf8slkV3cevOadd6sEsdGN2GtFXK20NlYdnnQnS28QnqtF1hKfW2gM19q8vRUifLSWdCaTtzZGNcHkG8H/GSmtpGRej1SlTNk5n9wxTIrqJOd+e5rliyfrB/nueIznG6c5Fy19/m4vBxZJwItbhCwac2oN4e1cAI5dW5jsWr13msd9j6rmaVnSOcv3aLKac7itJdwWleWQ8rWlUHU9Sy5i8w2z2MpwULdp9m9cj8l9UXyh7/O94/8JbOtKTS9sXEXLn5mYh+ntdCbcfQ678/VKmGZMIbowiSrhy5tQ6EdIl5PVuv6X8/M13yevlC9Yca1K32OrjQ4X+yAFCCvbauYuUD0/LMbP8fPPcP80y/w3GwN2W2QWfgRc2sXmFlYD/bWt1cojVSaxfKLzHVmNn4/XT5FZvWnV77Ia0ygtCkBWmbhAp0+uPOOtwOQctLMHdjCgUIH6QyQrt6c8gvDMAzD+Hl0VubXOwAaHV7ZuWnHDYrdNfyo1/nT3e7G9OhiegqrtsxAqVcJYsUeqcqZazpMAFHoE+bP0S1N40eCZGqS5NSJ193Gi91iyy2SWX4Wa33yixtN/KZQG72ZSCjOFzvkWy5T5TazrSVON0697tfurcQllT8KIkS1WhuvLZXemNWxGTdIpLqio211a1jd2hU/32hog1xd6U34oRQy/yKp5gpdt8Hk6rOcWuplraKk19G5mHk51TjFVOs8FzdWac1Liw1OrbU3gh/rOp2jSIXXLLsePxYUo1laoUfDT5DqUhsuci7OKrj+emdPPM/hl3qzQWYSF41mpurxkwsVihczXZcl0GQ+T3LuTC87cNUbml18kuzSj2mu38KhFV8bKCTrweiNslENP+HIcmsjyyaVoHTZpA5umDD/0gncI0c22gRwOO9x/gYlv/ryf/wny7ugF8w8e3aBVOLjyADLK2H7JZzGDOKyjK8fCyZLLmLyXxkrPEM8/SLhM9/h6Ll/Q0xPwnoQ1Kg2GTn1Cq73+rN8+sIxZOXKLJKzfssDe/0YFstLKLdzze9efF/sdpHh5cPXlAKK6UnE1PmNz07eX0Osfw6sy/bfXHCpq65rJbRSKN9Fr2eL7OCy9mmNRlMPG7hJB60VFeaJxJWZ57y/RiivPN7n3VlWkl4AOFP2mK4VUVojFudRrRap8gkUilgqVv0l5jrzSCWx0Mx35sisPndlgkUkOJ21G15wsC0bBXS6ce8WE9MnCF98irOFDvlWh7X2LL64dLHJids4MiRev6ix3OiyXA+uWf/Fz5OsTOLUr73gEgtN0XVZa4UordFRp3fR4zJyZQmSGLTG6vbGMLqVXgYsVTqJFXWQzSZ6/TisB4rVs1M8+eNjvLjYQFzngpx0u5w9/QOeWeuVRL5WteCmBGij1QqFcRgd3rexLLz3IEORYjXZT6py9lV+2zAMwzBurZOn/wMLsP0yTu08eKWN8qRzrZPUxALBegIiPnaE/PTLNNc7StnuFEOd3gxjFzuq1voJ21/vKFlCsFis02z6nF+qMVfvctUM9RS7BeR1ApeLk5b4kcCNBCJyEZUmdGvXPHep3mWq2CEVFdjjncGJ22gteeZClaVGwEojQGtNIiXhdcY9bYzPSAKcxuwVj9lhnU4k6bpNlNZ0pc9yI+DkWpvJkosdtLBqU/z4QpGj+Uv398qsHSKzdmijY5XJv4TTurazIpSmfP4w55vnLt0Xap1cOI1c7GUWNrJUcYyQCUquj2vREApJIjVoRTNI0FKgtKa+vD79t4zgOvdbejVd2aGZFKnLWUKri5Ca1sVslFbYMqEVJLzkLbDqr99XTUm6cXJFmZOMuuws/piFwnpZ52UljnJ+tndVXnNFB1QrRXRhGdUNrwnMnNIJUhe+A0DKgonWCbhOlidueqSWi4iFObrHn8WK2ky3pzjfPNvLOgFNv9f594Mrs2xXH6NaaXS+BpdlAp3OMtm57xGL6DVLVl9Noxuzu/As96x+kzuWe51a2yuQqk1iu5cys8VOhJAaK2hhxx2ss1MEx4+iymWElpTXg2W9tMBauUknf+M2WWETy81Dp/c78VKReG7t6o1ef3KvCy1nL5C88jKq2bj+eKblU2TcIltK108+JMdeoR23mW5P8vzqk6hmg/HqeqCjJa7sHReDpTL66JOohSlUIU9y5soLKivNAKEUxXbE96ammfz+1/ALpwnjQ5xv/BBZ6W13ohKm25Mcn3+6V8ba7B0jF4NDFUSoxeM0kyLVoIKcnyM59gpaKzpJZ+Niy/NLM6w1e/tgyVsAGbOYf44g/zJ+LEm1F7H9ElZ4bYYXwMam1LJYjRw8CRz9D+y5I1gygaCAFXVwSwsbt53YUjrEntqlcbx+JGmHCVQvfe9dfng6zXns2hRhIntl2J6L1nBqrY1c/16ebk1yMv8yeuGZS+sILwWuTmOazNqL6HaVdL1CWngkhTX8M0VQmnpc4RlR4UQjxenpPGP10yR+b38qBdPlXjmoTgTdF08RvvgC2WLvO8B6jYqF1Ks+eotMNHwm79aowZ0by3Z/8Nfg6y8zXclyR3a694X0C3z/B8MwDOMXm2UBIkQngjNLZU7FFT7+wDsIRIDQl51c45gptUqqfpyHGV5fqLDDFgxeHCdhbYyPqYU1dhye4Y7iLpKoRVeWGdweo2SJZM2HPe+hK9tMNmbpJAkH7/xvG51BNxS8tNjgXbmYshtR8yxkKSReLGBJDdt+C+uyc2c7FPQJFys+BVaIgyKOEoqNDo6TRmZihoFce4ngwnNY47+Ezgz12pwkxM//BOdtB+ljETtqg7AhlWXRnWeLCGkHCW4zpJEts9BJeNvIQaSv6V+cgWYHPTrImjPJYuTy7p07yTiZjbbZfhE1sN4PuOweX6rTxrYFzy6HJKVFtg/YCCStJKDqxajyFGyzSNY7w8l61OC+8G3WDuzGOXOeKJ3FjxIulH2GxRR37J6i2vdewtJp8nenWKbN/Z0ldpR6ndzont8milpY9mt3izwRIFRMpEMSHW9kviKhSC3NsJUmK/F+lp0O8cAKW7jU17HiDjAOQDZpgt1HX1AE9oFWJKJLtFLHaXZxwhVieS+J6DIIIGNoLCNbHloq8qMjpOxL19knp85hdTze9jZFRvkMhBUGqzHs3bvxnEgowhfPEwtJeuteVGWK9B2aaGQbAGJ9ZsRrR8NpXBmylD/Kgbs/jNYaC42stUiWq2TGI8Kxvt772q0iB7Zyon6MTtLh4R2/unFbAbQmV59EjN4NmQGc8mnU0G50/1ZyL/6/3HVhjfp/979wbKWFpRVjF5bIhWv0KUl48G4YHGE1bjBdPwr9Y7QDccW4rqG4gh/G+JGN1prAm4HSHMXtH6Bw7lsE4gBrbpN715/fipo8t3qSD0+8l6FKkX51nnTlFNaB9yOie3oXaZSPriyhYgdnz15AozptVJ9LO5ewVvW5c8CG40dx9t5B6uC9XC0dt1ArR/iGVeIP/stvMeRfmb26WLIppqdInBTZZhmHiJxYY0DeA6TIeZ3eWE8RsVarseP0j9lyoIsc3I0bCibzLTrnXyY7mEBmACtKGKjPQx+EMkKcOYX9qx+lFBQ43zzLO9YscO4jOX6E2gfu46nlF/mAsoiKK/R5I0SXHQ9oTS2s4CYdWtJnYL16QKn1/2lNnHiEcZsLEdhJG5smetzZ2MZEJfiJx2h2C6rTxp+apKO29G5wHgum3A7bnT7GF49gxxF2lNC/vIJMBoFexZ21/h0qlMbCIuMH6HPnIDOClpLk5UOcHQWrP8XHcm0WkgGeDY7yjunneEcU0nlgD41ujoodcufIIArJmWQbomTx8EGwog7RoZcBqARVlhfO89GRA8iFeba0y4zMN5g7n2ciY+EkknJ/wo5ugCIiikMycZ5s+WmsnEc9zuI2AsYHMuxotsgkK1jJINbFstbXKGV+wwM05XYYCiTBqEIN7thYft+9v0pp6P8kzHexd/jYbh41vOeNbp5hGIZh9Epb1rupA+enqKaWqL7rPpaafaz6K9iJoNx6kfKky6jKAdD0KzQUbNOQtOtMzC5Re1+aITveCNugd3+gbNQAdjFWK1PesgsraRL5dUg76xOASJzOGkkc4DdnqGVy7Mrtoh0KLJXQnl/EURHD3QKqPk5HpRgQimxpjWyngb7no7TW+1aZUgEGYsiB7SfYlQZil4elR2lHAi+SbF9okaRL2PvPIPc9BEBy8ji6sIgK61jv3IaWiotd9wV3nrGgwBbd+/ni1fdIRmTtLJaStOs14iGLyApwbDbuJ9ab7l9hxT4MrLdxqUI2GiPYvY3g6acYiM+zc/d9zArFxWKf+eoape4IERFD4xqR6gUEF6fhbid15HIdZEIxALHWJgfIVgXh+OS6p2BME3R9yCi028vq6bhXynTWXwbL4r7198lNXM43zzKRPsC3T5zirsEJIM0r5VfQ6SI2dxLR2+5YOZwrtombHRaIWIhiRkcVaSVI1ifncHyfwOqyohSwdWNfXMxIpMsnKVSO0xgexdLDCDdmtjEJjs29cidp+QLKCwiVJlkusTK6lYFWh137Mixt78P2PPLFSQrP/m8Mb/3vGQDU+vt1oeJxvuSyf6wfJTVBIhlcD3BFrUm6LWBHbuMYta31zqOMQfTa3+lmeWd9kb7sXvQ7tsPqNNptUHZjmtkYZ2x9Up12wOyh4xz9wCjWgEO/SuEsrNAeHSTfzfI/jWnSYZNk90Pkpv8FbIfOwf+Z0uwJqp6k8PTzbN23m3DHXnI6RV/HIxy0SAUFznl18vYOTscRb899kAtlj/F2xPahDNZ6OKkjj744ALWdlOqi/Rzzs0/jSo+uLHOuNsme1iB7BvYy27nAYrOBOP0t3ud5pFWVHbsShlttkvOvkAEyskD45D8jdv7SeoBmUVuZoa8EPzmQYWcUEaYcBvv7UF4vQ14rVFCJwEo5G9nFQmGRHX5CPnqOwSBNNogY7Mte/MLZ2PcXL+Q468fWoKwD2zcCoSh28RNBs9vHtqUCUCC++5MsVAoov8Q+ZcPW/t5H9apxWvFzz1BunYO3SZS+FDwdLp2gGTVZShzQw+iL/0lFK+wSVJbIynmU3kaQSKbLHiNaoEXE0NkS/UmTVK5XqplITTC1jJVtYfWPbbzG6fpJ2lGTj+z+GMnZMywsF6gOZlGhw3RUIczVGfB2kK5WyDQ6WDJkOKzS3amZr/mMXbaPVpq9rLcj5aWtW9/PpeY57gvrMDhO176XdnCOdtujlOpihw2GkzS73OMw8hsbvxorC9vNE+cP0XV96N/ND+oxoTPI+/ot0JoUATp/HsI+vMsKEJXrk/JWidRWPC3ItudY8yWqv/f9ZGlNsrDW+w3RZXV1mUbpXxnSTbbc9xA38oYHaP58b6CkHpaogUsB2kh2hJ/u6eeeFQ/+C6QaF4hNgGYYhmFsAtGY43D1BbpqvYcjY/YWJwlKBaxdEZlaB5WEPHnkX/hE+n7YmmZ14Rin7b3c2bXoeBETQY0z579F8cD9/Nf19aqLs4RGovwAACAASURBVB3GYmNMSk42KUUBq1TYqfbghAFxqktMiIXFkeYpRCfh2MJ5+t79Me6eu4AsdMnKIapOh1WvzVQ8zoTfR399GkdL5utdzrmalfQ0H7BjuonET8VYGxNlXApAu35EqhSRyXqoOEBWztBIZ2nOPMve+RVcZ4J/WT3Jf13K0Z87SCY8x5adE/R6NxZYFpbd6+wpFN3zh/GtgHri44sMVkpvdBTX/FWyFw6zXQyg7BDZypPZv5tUtUNfsMZRuYPU6XM8lC0xtGWYwe4aOjdBqjZFfWUJT4+QSfoZ5MqSR60USmsqQZlM3ELpMYIoIqcVfiQJQ0Gj7rHV6pIOG4SqQWHL3bTWTnNXI0ssT9LXSEhFlzqB1aAMMmGuMMMv58sEegtHdr6bkp5hyFa9rNa6dpjlaOU4E2HClFWjbClGYo9+f5Y+LdlLmqH5BZbS81T25ogzw+xyZxiyh2j2vxOnMYsSXdYrMxFJTFINSC00yFohql+juxHWljGIE1QQMb5aIusHiKM/RNx3ghGnyMm0yzaRZrn0Y+5v9pPKpVC+x/Sxp5FbFSjVG9emIZYSX1gc/ukcqb2jNIbuppgKGNsGltV7P/tbs6iVXvYrJRV2rUWusMKZeh/ZH/8993oNLHsfiVA49Mb2hcsVYIKtq0sU33Yn3r/+B1uzNh79xPfcjTvQx5h3tpdhBiItCE8dQ2lJKCTZbocDZ39KRd3JMT3GnbbFhIoQ0mWA7MY+X2mGlL0IqRWJ1Jce0QpHxYgkxlUOO+c6tBamCIQkookb2ix38tTDGlknS0p2oZ2nslDE6law3CzBsSYN7iC1tU1WtxhOX3qvy3GbY9SZLU1zLIj4XW+RgwPv3ng8CiIqP/oG/kDEbLbBR2ZrdEcVjpLsWC7gBRnCygIyvYcH7CqZbg6fX7r03dNxsT0f1dcLAnKqw3gnIGwvgLJRWmCh0Vwqpyx/57s0hsbYITWxSrC0JrdQwJdpnD0KnQMiF33hMG6qSyXV5mD2wY3vo1o3QCobpTVeJDiXnUM4AWPhHVRKZ9gaFNk9ptF27zUzskvSWUJHEf1Wm2ytid4zvv7NoknXKjSHEwbUKIvuErtSGdyoQbp8Aie3lyS+WIHQ+2JQ6zOmXpyR8fL6uVaQMFf1uTcUdGUAGhIle9lrenHZmXyHfcNp1nP/OGFEYocwCLlKHqtcwN/ZT9DscmC1grUzZr69QjqIAad3QS7u8JI/z6DrM5bdQ2B3iZEEElK6NwuqJ31inaKPLEPLLtzbe/1tKo8nCvgo2nGWI817sPuyPLQXuDiBkmUhREJfVGPh7FPcmeljFzf2hgdo9Zk5BoHUiEZnR694rLl/D2NTM8SBjdO4AHd+9I1unmEYhmGQ9meQrbsoFWsc0DAiVhifa7C8/f30pZbYXu2SVBStOxN+rGZw5F14cULNLbBPJmxTeVbVFsKLHX4LvFhwvt0mSksy9RbK641FUGjQEqU1C+0EtGYpOEPAKrn0FmAby8UGhTjDA40q1bCGDAuQfpBqX40Zy2aHHmN1rUOf2wE7oV6vMiJm2SKX6Ngj1EJJx2FjTJMT1Ejo0tA+e8TFsjbNmdo08tknaB4cZ7RTBhwuqBprZZejXj97ZgV796eJy6tEYcIWMr0uVdDASnoZmEPhSXK5JsMbna1eMOjUpmgu/pCkU2Ci7y4KhTUivcbb7vwd0IpUdYEwfQf1QCJUzMDLR0kP9tOprZFqzqEsjUThRJJMEBIM5S7NKKg1qlIhsTs4CkIV8rblpxnRFpXLensNL0ZHZda2hJSqR3hHu8GWzij29/8/djRauFsyRJUiJzvPwcAOvGoZ5Bacbos4PUpUyNMea5NJSbaIyyeP0fiBZIcIGKpWqI4IdF8/jgy4t3WKUN2PlgrpKHIiINOtUovT5OOYzJjCcvPUdcCsnMCLM5y022xVFpYXQ3+C016m2zdIVvc6sZYWNMM01bgf2woYLOfxdl6aCCKqr+JUtxK1azSdXRzp/oiBzn4682mGkjZdYdOqlWmIIl53EndthOU7BnEin/u2Qba1RCSaCCyecSex0PQR0ac1MgxoFuYZv3oiEK1J+QW06NISmkYgKTcFOz1B7JbpbLmTKAxR+SJaVhAD27FkwgvxGlZzZD2nCLm4STau0O2G1PUOxrEYRRCpFCQOQllISxEmglw5j22lcPPzZLb2Y12qoCXfdlEZZ32Svl4uUaOR0mKpZjMxHLFtIM0Wd5aRTpERvUqcC7Hqo0RhiBaCQs7jYHqVbHoUwS8hlOBE/RiLXszQapm3dRzSuopbXaV/yyi62UAX5pkoHcMbzrA6MIAfhqS8hL64hWYCqzxL0HA5u+8AO5TDnaLJqbWXaNg+w4C3OI1TbxHsyTJvdRHiGOPtYQpK4SYSIXqZtMsnJU0XVrkzU6czFvNDZ459UQqEJAo0Y4su+l1Z7LBBMd/g+J4KXTWOUi6F/E9pZ+4nmQC/O0BLW7SChCDXASxKUReiLnGjAXcM4+g6ZB3GwiWCsIDFOE6rjaVTlwK0i4dF4FL3VgnO/D945YQRsZX6HsG/tJ/gPa2DuMqi2o0ZUanLZsTobZvuvVlEMqIVN9gOuEmbelhnoTnFatAgFoptKUkoFBqbcqvDUDYGG3LdLqods7S/RH93hVTUxm9phiON9Hzc0SoX6kX2tyvg7CSez7NSn4ED4HgBjCZU00VU2+dQX5dfQdEUCRU9xrCO10s/dW/sbSxwI0nGDzm13ecdbUFfdwctDfc89X+zlt7D2CBU6hFB1ultlwooBCHXFsNe8oYHaJ35aXI29A/3XTPGbOi+d8MPZ1jyJrijcfPvTG4YhmEYr8dadxB79qck3S3U2j5ZGTCKT8sPSJwuE40Oa4zQpwQREbnlaeSoQ5J06VglmioEtpCoFDNhhQ/rUapRl+1zVWrOGqmWR0jvCnCoHYSSlPQgDVvQrD+PM5Aw1pxka9dh5W3baYUSpRz2PP0KsV8iHB/YKPiZD0JE0qQ/HsTzJVFfhdb5J/hV2QsglAVtZRNLmwy9GC30mjTCAttdF+30ZimLrBTlus82QHldLl6gF6qXcbGUxZpTpdjS1Pt3s8trYKkRhlsLyOU2fU5CM3MX0pI07ArDQpMDBsMiQXoHmaWnaU69Qq3pYo2lmHTaeES0/AKJdBgqtBlvzyN0TOh56KEUTiSQThqFxhHrk4p0QkbLVZyUz5PH/gbbH2N3ehypNVa7RWCnEbZCl+ro7WNIxMasakkYkAoq+CmLwek8fqnOqXGfO2SNRFh4gUN+6kl0boFicYp2y2ZwQCM7HepyjtGkSF9fm0zSJtPKgbZY7/njuKs45QKebtHngRjro8/N4/oBne4deDXJfQN1doxEDAeKU5mttHSCH19gWx2eqx8jtHeitM1i0kdBZXGAgtVlIatYcxfZa0e8T0osUSCK9hGJLrNacVdrgXkZMDSqQY9haYnQFt/LeuyvHSMlAxLvPCNrWxBhjcjKoNNV+v0SnTAmygia8TK2/yA6jkm9/K+kohI/tcepJhOkI8kWq8GETrMSFBmV/YBGaEg1q4yrBhNDTQq2QxR4LNTbnJgIEPEckcjiaIkbhTQbLeK1o/ipmCf7NePBEomIqTZ9ZJxhoFklTNrQpxlouNyx3k/sEtGJMqT8DPNl2G2fobRrAKUTBhsrKEA1QuwdY+iLfUspyWiB5QWkRQsxZJHTNujeLJZCCbrNJukwIVPrwECTQRUgvT46ShCQJadDslYCIkJXX0I270Ariyj2yCVp+qIIKwNBFKKVIhUuEz7fm+AjFcQwMACiQ6oWAxZCBDRUEzc7QMZr0xxNc1e3yM6TZ5ncdj/D9LNMhWE7oa4Cqk6btDfBgB0AWYSWKKUJtUMpTvGO9e8ADaA0FcujTshg/gT9pYj+wV0oW9ONA5rdFeZzbXydoqssOu1J/KQPK3U3Uvf3vgNkBrRmolkioA+GFTqO0Rakwy7ZqIudkVQsGNC92UJDqch4l90/UMQ4KoUQAXq2QWdbitxSgM7tI+wKhuJBXsztppBLQwpiFdJJJIv9OT6UmmVEhhTtEbaQQOIj8kUWV/LcmZ8jlYpI+lYYqCUMt332hosko7upx/3sbE6TH/dws4PsiOs42kJMTuENRFjdgIaUKKdJus/GjlIwALYIwIGG9CkHNWw3RW6tjpPMwDaFHQn6lxqUOppI21haYymF57sEOUGsJZ4WbBeSZtIiCLo0HMUWq0NT5TjZX2G84POTviw4glilsMIIbVnI17gn3xseoMnVBcqjMNE3ds1jB9/3UZT1LVbbg+yvmwDNMAzD2BxDJZ/CYB9bZRtrqEBZw52tmIwMuHOujS0UncwY/ckAe8MlLmAzlAXbcVCxwokT0AKpJL5b5sduilOpAgeKfdxVXERpSUCbDBZCS4TWuDJhVMPe87N0B2MYarEWQOvJHxHc9QCWtnDCiEw3JhUJgp0R5CBWirTdIkuKEEAkIEKiRDFkByTqUn2WBiwlCKKEZkmRs2CwvAixYj4zQcEfZRvLLEQ1LCnQDNGJBftXOwzHirbTByImJzzaSYuK02R7uJu66sNpeawOtBBIbCXpipD3/GiF1vvGaQ0Mc6IzR1JvMGBBLbFpxhI7rXmxUmWn28dd651n0BRjiR3nCDNpIltSS1wyocTSGo1FWnaxVZa9k+coBEM00nczEjZxVIxNgkOGlEzwu2XmnRTVvjT7gn5Sto/KrJcRdnv3ss51mwz4LgPZLMuWw+L8YfbvCjlc24YjIjJxnU4rwrI0IpVDywQdx4yXqiRRGvot+oRPYEmWHY+VXB+hHTCYZFGtZartXUw5WXZbA9wVdZGRZJQ8dy0krNyhsWSN6uEFMmmJTAnuWK0x0vLoJBaz/jhWLs+2dBakpOjXsHSWUiywRMyOQgOZktSTHF187mx0CfU82XSOAnex5lQpe03GhE/ZCsm0ysw4d9OxcshsgYFBn6H1JKSNInvkFSrdKgXVYGk0ZsHS1EsJjk6xW3XI2TnQCtEJyRFyJOuTkDAumzi1Bt74IPusBluIuCvfz9mRmMjZSS6xGLc8dNykJSxySZeBlTmKqo4YzjArJ2gkDh9sLpLy8rAf0mHMoBUgAKHS1J0QKVvgRUzomJQ6QqW5g9RKiXjXBGQvdWmVVozEy6TSNTrWEP1Y3OG06AsqBJUCzYEUmVyX8XCJrhTUUgG7169IWEkIdoqujkgri0SnIPRYtepMLB9npdXF1gJII1WCS28H2u4Sjeo5Yj9mMF0jZ/UDW1DrGer+jsBq1WgNSiyZI5IxFdej6zbx3BTbdIVq9u2MAKGVcHEYYEcPshI6pOxLtzc4lx5n1rLY383ydrsLGvbNnSPbdim8WzBUjUgFirHBJgXSrEVdOt0VRiyILMmIaqH0pf3lBgk7KnWGnGHSWtGf6pKSgpiY9Hopc4cuJFmylo/oRkRJP6ITUo0zDKRirPWbvA+VXVydRqPJdBLcrTbTOc0e38PPgggVxYxFZPtkogQbTS52WXEUhbTPQLzMrL0Ly+nHCSSuTmMvT4Oo4egM0dwymWSAbNxkKMyTVFq09C62asGsaKLSOWwZg52lmo16ZZNSYasQ7aRZzHWpJREfWfoBLXpZf0/FYFkMTpfJ1F1CptHDGbpkqYs+ksRjZP2SmC0UWJoZy6WSdBkVExxV+xADRbrpmK4Eie5dAFArHBt4gAllcT+9agKn2SETS+bkdn79Vc5Bb/g0+33lIoVxi53926557O5t7yQ/bpFUFanW3GvexM0wDMMwbgVbamIJOWLODUSsDnSxtcROZtleCkj8NJale503JajqrcQyi4VEdWN0LNkRl9Bac4fnUV/zybVcUtUiSlskSURKhTR1glAKOwop6yG0Vjg6Ip34OEGMUhJHalYiSVX0EUpBaGlsqehvXZy+WtOv17gjnMFSkp2qSCZqEgYeW5MCW5lHyAhLKZoqSycSBE2PkXKDQqePis6h3ARHCNL1Jqdsm0XRoKA7PDEoWbFigiTFabkPX4Hw26SFR8nZyaK9jZbj0E0kUSLBPY2FwlIx75oM8AKBN1XhTDnPubUKHZmww+6yW5ZxrYhQx4yEec5qm38buJN+d46MaBM4EtFqISJYGPA41J2nmolppBvk6j6pMKFsxZwLxpljD5GU1ESERw5La4ZxkSrE1VFv/6iIAVFBB3X85FJZ5HangxUmJPTuyaSw6bZaRKUGQWJhScn++QX29y+wPbuCJULSUcL+JUUmDBAIdtge2zsOS7Us1dQAD6mI+1VEOkhw4348NYhOIsJsh5mtgp2qw7bExQlahG7I+aIkasVMrHUZ0D5jfgPtCIqpIYKmQOYH8UXEvd4cd7aniYIWFdmHDCTpQJCOQs707aWo70ChUc0ISysCHIJUSIMWb4+bPOB5nEvdjWsNElp9BMR00iETqQAbxe7iEifrTR6/8ANODgVgxzhWi1yzRiddoTPgMuzU2dpYY+TkT5mIZrG8BIlFppuQNGJUGJGKBQkSqRRSuiwNBXStXG8SD61xgxDfjxkSHo5WOEIwJBpY6tKMgXUn5ES2QT7XRVsgpUNDusyIAhVdZTCQJMJma9NFdxOyK2Vavk+32uY0e8g7GdIkCA3LIzECRZ+V4CB5MD7Dby79iP3PnuDCYj/ZRu946KQgsqBiDyCwGbZcIssmII0feMRRk5PzazT8XmCTtSIGZI1AxWTjNl67DFGHUwzwsrULqSNiXWZyTBA6kkDGJJbCEQq0QGuw45DVvKIV9eGEgspiTBgJ2soj6iQEOgUa8ukGaykfoXq3ifAdRT2Vwyt4rKwIClLiaZu036SdigktSTYdsT3XYjZ9F8edfo6NNnDtCIlGqhhL9LbbAlLtJkMdn4lSAx3H2GgGrC4jwVovLBGCmVTc65evj8vdP9NlvLJGZNkkUYDdWCEtI+ZzgtWsuzHGVQDneDfzejupRkDV6uDr8733Wka8TZ9jdPAUibBwLA9LtUgT0S9DRnwXZEIQLuPGAbGQCMsiF9UZ8TrYWjDYzjParuAEbTpxQp+9hrIFgUqR0wmOTCCO0UqCVnhWDEoiLcWwden+Z0qD8iLyzhDf1PuodvtoiTQn3AmOTlRZGI3I+b3vE0uC09WkpKYTDVNIwUx6Nw0mUFoRCYHfjekKGwuBVIpEJxu3/3BEr0Ty1byhGTQtJSP1JoX98LGBaycASdtp1nYN8Y45F5IQ2y+hBl9tCJ1hGIZh3AJKU5UpJkQbhWKMAK+ZIiuroCVNewCtNdmWpmCNsJaZQMkh9unefa80INsxYapFSkqGXZuR2Cfd9jk1/h5G7CrbhEWKBAuBpSSekyOxPO6Lz5C3s1T7bDKqd1+tEdmgPxGUrAqTQwe4N+zy3tzztMUwS1GWodVeSdvwQJshq8sd9QUq2Sx7dUKfJQn9FbJBgJsZgaLmnuo5Tg6Nklg5mvYQWR0xXqvhZmyeP9BmyPPoW0xxZusAUozwntoMzbSmuKWfu+OLAY6FQlPVHRI9SFP0kSgbS3gMeD7bqjHHtr8dT42RavvUZI4MkELSsXwg9f+z92YxtmX5mddvDXs8U5wY75j35lhZ6apyY9xtu0vYSEDbaqlbLV76CQn1IyChFhJPvIDECzwgIWGJUtMgIZD6gUGCh5KltsE0dtsu21XlSmdm5XTvjRvzmc/Z0xp52JGZ5cYuJFSVwnR8UkgnIrbOXnvttfb+f+v/X99HiJCdbVF+j0omdLol84ofjCuSACcbgwgw310y1Ctu2ONE1lRzy/ffaLnIEiaNB6nwXU+wfBZZFY6HlcDYjomq+UW7Yzq65OLFhEo5gvMUdUMtBpxmh0zkC3AQRcTGji44Tj665kwrfHD4vMIGRyIMop1y1FpGlWE9zNlv1ohNZOAr3HQHLnI/tDxrRyycZD9oou+oigUDmdBGxYBerGPuS7qm5U9syjQOmZkTWg55dTsjzRvSNmGwc8T7LYqW0NT8SXNJ0Wky2WcsziaCWFj2mpKAIzYNeq05rySOwOP6Ux4vax5tDTNj2AwlkQ6E5yhZc5RWzGxN8r7huYLR8oZsbRkGz3q/4zpLiNGxdwNbmZCHNQdUEKHZGLZKoHVgFRVcRw5uPLWIRC8QHhbhHj8UKV9zp3i/4odiwbIz/My1oxkqfBJZd9fQFreTL/Jbkw03uWOM45UmwACU7TPNmYmEINHO0pgxvhWQeD5JZmyqFbn8Ku9OHjINz2i4oVISE2pU49F4HosrrkPBn0xbsmqPbFNhreP9oUTEFN+8ylBseZB/iMktnySGpQuUuxny5TknZcdatTRastcZcuPIJ2v+oL6P2B6y05BnlmvlMWJF1IHrVPF6bXHBMFlJfGa4HEVU4/FFJJqAWm6Y13Pc7JRmIHi/1Ag092KkbBzXpWa3uWYveASWrTZ0ziCTNS9iQi4LgvaYkBIc5NqQ5JZgJFXIKfSGueiwIkESkT5C8JyrOXpToXEsR2vekw859JFxrLhqLhFWMo8bdOuZRMlX/Jb3fCSk8DBpWVWOJOm4/mGDuj/mWntGBIgBg2RrPQseMksq/or/HgsmrNMbHnDJrHuNQi65SSD3O3Zyxzrm5HrFw2wLeV8/vO1ynPI89zPu37xPXqQcrlbUWrOTKUM7R0lJVnsm45YiduxiQoonSIdKanwccHDd8lptOXOSg7gkzwUvo2OZNvyP6QVv7VY0+i1G1Y5vvPiQ9x4XTGSK8h271DFa73qD7c6jlcCjWCto6gWLqaMk/WwbHc4rtmGExOGjx0XLadHxcfE6v6xX8P/g5f6lZtDC1SWJD9xMYTh8/OceU7/6lEkdaRuJWn36ZTbvDne4wx3ucAcAnAtcdiULl+CIpM5xnTvWyY515vpFZB8RBsLWYpDUXtM1e9gYqZVjV7eoReR9RvgQEdYig2MrEp4PDij9c95avUAIj0MQRcSXK14O1n3JnEvBRx66S7750QeIxhMkpMJyqacc6zm/4J7xq89fcDCr0J1FBIdqPcPLOeknM+JVwqezRzRWIIOg2Hhka3k52rLav6EeXmOjY5VZLlXBTa3wXvPGVe/TNN5afIh4U/AiP6HrJD56sndrxA6k7cUXyqqm3rTM6owu7Eg7iFLgg2TUbBHmE6bPVszbgrkULJVFEdgIyYv2AtINZrjBSc+kq5HBg3c855BXfMVf//Q9oouossbKyG8Nfp5Plm8z3O4Y7nY8lR/zs5trXput2IxaZkXL//mw5gcTA4MGQWDIjsI1yAYIkV2+YZ0X1Enkd/aOOCs168xhpGfhLQbFo/mWvVmfecnYEmxk6A1P4o5X9BZCINkYxpsG7RyPQ40nkkbLyW7FaO0ZLCGrHCYxpLKXN79qpj2Jdwmbep8f5if8cfYWHsF43aK7Fl2e86g8Y5YKjr5v4dyS3njmtaHFYXGsC8882eNlMsZLg8L36oznnnr7ATsz4zUz5/hTz6MrwwkXrEcLZpOaKlmwFg6HonISgeQoXdN5jxSe6wFY5ZHW8eTCoDc5L5lwmu4wLnw+T9JQsdSOZ+qQZTygYogJKS4kZG1ABI9ynvO8YdvWCCFpFYitZ7SI5DbgQ0RWnmf6EL1bs8FwmQRiDAxMi/CRN292qNohokcQuGdq3hYzsmjQeOq0o3Mt2yD5gXqIiIEgI4vC45DchAPelV8hrR2EBSuZkl7PeCY8F1ohosdHxSwJfPfA8buTKWfe8H6esJEJn6SB4fqSnz97lwUN5xNLYjruuRWh/phXzn6Hcrm9LX8MBGHxvqWJGTdZwsW4F4lRISC84iydcnMwZJjM8C7QRIsPLeN6h9EOFTz7F2tOXsx45bxmtBOo1jIZbHha9yqIJR3DdsO+eQ7RsysNnQRvMxoFK53R6OILmX0VgYCIgYOLDn91xsXp78H5d/kFecFjteIfp4GtmXDFfd7lVaryJcv9ltw1SO+4H2sOw5Z39xXvjjJya5E7i/We6mJHvEzY+ow/Gk35/jSwsJpSOBpyRqIlDx371uGt4Rtnpzx4tu6tj4moEDkVgbqZkX7cMN7skMGjjGe2WDEXOxbZlnSzIASHCNAGTSehFoaksnz1vZr0JTgMLZJdVzKcB/KdJxDQHjITuNfNmJo1Tz74gLmZcWlbQrWhlYHUWDLT8PrNBZE12gRqBujGcZLfsDhasEk0lSwoVo7gu34+SwCBINKJIR9zH4+gjYrfPZ7wBwc5rYTLZMqNzvlx+FIJmn/xHAAzCcQfMan+Uex//a8C8HxToNY/XYIWnaP+r/8B1bd+/c84h9/hDne4wx3++cZF4bhILDtb4sStQIUPdAK2mSeKgCFhE0e0YUAlMoaxpaRjIwqkC+RtwmGacuUPuRh4GiExLsd6GEZD2e44HzY8GxkEUAiLcedsQsQIT6Mig2ee8SVcN0+o5yPe12+wJcFlWySQV57yMpDtPKOrOZPZKdIb8s6ya/b4ZLPPXI2JYsBBsIzalstRy6Plc8btlky1dNqwP+w4LGbskIT1E5L5CcpZkugYVDue7+VUw2sK5xmyIwkLhPOoTrCJBVnTsksb2vacp89nvFaDu3/M17oZX1MvOLoqyK9H2KC4lvvciJyHcssyyxC+YB0jA2t5lM+Y7N2QRAsh8rC44StxgWgV2zhhUwa+98hgUcQAP3O64p2zU1rWiBiZJB1HqiZoh1GBs0yje51MdFZz73BGJxXGe9Ki4rONPi2alTQ00qDCDhsjWyAO1qRPlxwlDcfJGhEdXibsYxllFY2ETYxsleNkc8W5vc+lNqhF4BfPP+HRc8elOkR5w6RrEAFu/CHLsEelx/w1ccG423JTOFZ5y2A7w2Y3eN3QJo7twHA5bWmi5/6i5Vof8256n3f3Wja6YTXwdAKa8prrkeFZnnEuD1ikEaO3FG1DagZsxYAQFWW3ZZVGKpkS2hJVScRKUGcVw/GCfb2kSS21jkQHWWLRW1bP0QAAIABJREFUWtGFHBcUJmlpMMjo+Lg6ZtsNCbblgzLyYmhwQqBkRKl4myPshdP36pqJWjCpd1RkxNhr0OxlDrHqqMWSvGoRMeJ9xDYWExQdnnTbkC8coyTwZr0jtZ7GlQyagO0G5NogRGAjUqKxjOdX2PKHPC8cyuW4kDCT93lgdhypCiclVkQWicCO5/zO8Bv8QP88pkmQNwIrWmwaaWVC0I7xJymzsMeNLoi2ZhaOkes9Euc5Hbb8wb0SKVsot3yQ3CNGT7ySJFcC5zq0DDxPH2FESp1FWh15NjqmdUPGoeJ5MqBSjuxW8TUi8AhyseZKOvJly0nV8svhnO+c/Ay/c/wOqfS8clVhdxWydbS2pVINY9XxlqsRBK7zgBJb/o78QySB0dJweB1wEvauDMehRupeQKeyArXr0LVjHVsaGVBtpHOCV2TN3yzmHF50DNYtKkSCi9zoYz7NX0eqFpt1KNvyA3efd93P85v5r/Cn6RvcyGPKpWVa1UgCHydv4dqEb9Q7vrLyZJ1Dxn5+HogaFwQzrRhdtrS7nIvdPk0EYSs+HTkCkeuyJl/NON7OGaodv5+8xg+KR5yKCd52tDiih8n2nHST82TVmxKknUcGS5AeJyJ6F0i2hnxT8fTFFW/Wc+67hkYkdAo6f8TRQvDm+go2h9zYR3SJYZl4upHl4tGOt7YrZuYQ0ZV0SrDV8EH8GiB4IFek3lHQcv/jBYO1wErPLibYqPholP15r57P8aUSNPPsWf9h4gmDkz/3mHf+6r9KEHC5KX7qGbT6H36L+h9+i+a//W/Y/of/wedmkXe4wx3ucId/vvHH+Wusu1exyRabBDy9L1Tnxsz0AfPSMcpajvSG15jxRr1gEiMDb8hWHccfQlJDuom8VHtsnUFua9bhmHHbMqJmsu5YFg3TraXR8PrNBa9d1MQaKuVJbEC7wFk+ZpBe9PLTHibqGeLgIzQOFyONBBEiaah5/ugl82FLqhvaccsqt1gJWejLKKeq4uGqIbeeNzY33BeX7JINL0XJSFQ85YYnpzXJNuFcHbIJe1R+zHZcoco1j+oXsI683NtyPu1FCzZkGOFRxmHycw6aFY/nLdtMMYxrDmctry46RFJwnd5jKcfYqHmpQARo0gGFdBxfB0olyEwgEQFpPEd+RtLAuTkhBIEnJyssZ6lm7o8IItJmlnv5RxSyQ4tAuQSL5OP0BG8SJtYyj5rvDUvmcsAsnfAyeUjshhSryLgNHHaG5STDRE1qPaat8LJDlzWZiVzYjO/veZ5O32NCy6e55zxLmA0d//vTlJdDOB2n3CQFYTlENz0tFAHGSctfCZ8wjob3CrhxHWXTcJRZZIgcxw2p9eSVYNNNecqaJ3qDFuBTh0odueyPlQY2acPV0DM7mLOYrpm4HdO6xRUbXqQH/F7yTeowZOAaTPcmdXOf4CVNKDg0LV+Np7hsy9+qnrMXDHUInMwcs8yzzV5g8w0uRp4PJfOQM6okxhzRhZKXQ8/psODapHwc7rGU93igVuy0xvvA8dKwn3eUg471UeQQi8laVscdqbdkzlELTa1SblTkejPg00zTqBZpHbNBy2yyxhDwtmMVdiz3HJ3M+VC+xuS04N6ZYa4iwkGRX3N0sGQyXlNgMWZIIwWDxtJ2mrwd4runjCtLsbYs1ntcVnt8kknScoaSUIQbiuNPySoHVlDKHU/inEd+xaSzOJcy2VmcSPA+cJVOiUQMgg/2pxyUFWlqaVXCJ3LKQgz5MJ+wuxny9pnjadXwSxfXzIYgZaTJI0FAbh2ZM/z2/YYVM2LVshmtuEfFsVyjZL8nbyp3nIgdA9FRlyXLdEibC66mhg8PHaHzJN2CSgmCgMx7MulpVSRcw8H5hiYG9KrGBU+H4E+HJ3x32nsSuOhIzQq9deRrT6IMqbSki45hd0WO4+NS8PxIIpvAdNFRbOGh33KSbEE4Xg4tVWnZNSnvzK/4FfkeRiTcyCPs8hFPZgu+evGS4Y3lWt1jpS1l3VFuPVEIHl00aLaEKvL6C0+jJK0STHXFqF1TB4lYHbFuX2U6l+TbjkGy4Z5YgPIQI6PzLa03dCrioyQ+k7y5mnFARZYGpA8chg5ZWNpJyzL3bFVFSFY8LJa8cgNqV+Cl4Cvlc17PrrgejJh2O4xUqBBI8x3P9CMqmfEwr2kGgZoJm3CEjQlY3VsgaMVEbZikHWkbuT9v2FvDkYqMmxq2AZUtf+w76EslaLsPP2RTwDh1+B8xqf5RPJi+xsVUUq9S1PrZT60tYbuh+Uf/Penf+DU++jv/Juaf/DbXv/1Pfmrnu8Md7nCHO/zlwf7cEwmkLpDEgI8JtUroYsk63KMrWgb1ilR6jlTFa5sVw50gax1714aNTLjSQ7ro+eaLK15bB/ZWGhElGQYZauzQs00ilzmUbctJ2JJnhrkccW4C3jgEAYoaYuRXN3/E4fqKabVlpxxb4VkbuM4hiTWLScejheVcjXieTACJIaWTgTWOPywn/Narmie+YoJhalum3YZjd41wGYei5jhsOLYrkk6yUVNslGRL1cdAWrBLPUjJZNSg046IYGUzrA2otGLIljqTtKmnHiyIrWG0aBmEjid6zivJjkcfbXl02mCsJgmBIR0/u5jxC5sz1u0DxL7CFYJtWrDIBtyYYzYoQmJJvWPdDMHsyPyKjZ6ipWAWRpxmh+yspt2WVFLwLJ8yFxPGJiBig/TwT/U7fG/ykHN9n8l5SbHw7BvLPSI2T3j34JikGVCuYRNOKPxDfDPlaifoVoE/2ZtgY4lDMNew2m9ZFSBE4KhdcLSqWMWSJWOCVyTOYJs1SeMotaeOA8orx2i15unNFWNnUXHNO5eX7DUNMTfsJYZCWWom9C55fRC7KRTJyvNwUaHLljLpsKnjG9kpU9mwEQOuB1P22w4ZIhPTkkWPCrCWQ2ZyykZNKCM88DvGrWUSLXM5Ikkcz0aOTreYJKKanMNZwmCZcbhT7IUOJwNnHHGa7LO9HrC2JffKhvl+zoV+i7YVTHc1czdllgzZ1xWPNpKvcUFUIGVHaTtilxPalN8bTvhfRj/LWXOMUYGdlOy0ZKcdTkImI8p3vJc84o/UV5m7iDANiJquqkh8hxiMeHf4gMNyzXWccKWO6FzJ4dLw6KzjwHkG7TGUKYJIWrXIlaecRarE8HS3olA3rDPLy3TCn+avM0o9D88MB5eedqcodpYOiRfw7VcmXOUltZakRcrj4YZgBf/zeIILDm231DFjMVixKVvKJmc8dwzDmiAtV2947mWWNAQy16G9RwgoNwZft7y6u0E0HrVxUPSmzI5IJ/q9m+hAQPLpSDJMO5yC6yJBKIPMd6Qx4oEHoULGgA+KWiac2JTjzYhtBhfTHKcUm6TkOusY1i1l40mdoGPIMHbQetLa89XmkunCU1WS76ev8FvHGistk7Xn6U3NVDZMkpbUCf60nTCZdbxq5hiR4obntGmFixYj+5Gc1Y5jO2MnG8a7FQ0DdhQcmIpcdshG4q1kl0mqe1vWw5b72Qt+dfU9HrSCV+aGtzvLCAXRkvmagdrRWsUGTdp6EhNxMeVPxBtknWGwbElrWOWBy7KgEWP22kCV7TEdCN45mZHLwNfcnDo/4vHwkqqssVIjiJQzgxaeQdcibhIm7ZZ70qDsBBFG7MZL2ukLMuux2ZZGr7k/u+Frpy+otMYHRaJBSccisxw3DW0S+aXz2Y99B32pBM19+gmnh3Di/+IMmhCC63sThnMQy09+am3pfuPbYAz/w+u/wt8PbzPLx3zwX3yLXed+aue8wx3ucIc7/OWA8FukOmWTOF79NHJ0FtnJISpKXFojrcV4y9PqHISkjIEsWPCR84HmfFByPTTMCsercUaththRwaZIscrRaiisZ9IEil1gb7dGqQZNQKpIR+B64lglEhUjEYnwkZO2RsZIhmfpIu1ySJEqusPA7kDAscPGAd5kyA6y6Nnb1HQqIAIsBoo9EUit5wBLXjh2aoggUsWSZ+KYKg10WcRLT507tF/y6vWa3NRslaDKC1Z+xFtnO2pZ8y8sP2L6aEY7siA9Wz0kiMDheYMbVVC2TMWCVgbKXc0ugfHSE1A8FDU/U684qRoanVO5Ib9b3uf9/BVmowm2rPEqstAFrQscO4PXAgjctxWTtMKojDqcsFAjzvQh9TgjazUu5ERXEmu4CffQpzkPZnOkEEgZCCIQlEcJR5X0dtqOgptc8HsPAs/vtbispB1JaqmRRnFA5JubDTJojBnzpttSSsd2WPHGZsnrmwuOfC9sghPE0RUXQ8F6OiKonLIBKyRnOmeeNljVEtSKqC0haVHCslaR8xQysSNvPE/OHSSBlpRKZ3SJYGaPefO04itxQQAKbTGJIrOO+2HGMHQc6g1/zX/I6WBNoz1SBboEMhd4MqtRW0lYDjkvNKfpAdolSAJOKKokh5DyxhIebGsmsmagKga6oVOKw7MNb1+fcpCumct9NonDkNOkBUuxRysVQQSMjphyx8W0IUkgFx2EAAKukylfT2YkwiEtVEp+ZimH8pGDpeews0jVC+hsk5pj6ZkkhkljGb+07M8MnchohaYTCUZqhDJMqEnwdM2Ae1dbRBNptaNOV2zSFhcCk3yNLGuEM3z9k4p5OGKTDHkhexE7K2EuJU2kN5JXHcjIsuhYqSlCpcRYUOUWKQIfDz3Vw4844X02icUkEa8U0mvuzx1Hm8BKj1ileyTS8q/Y79NpjRea6HO0hzcuKqLwhOA4XFq+suj4033HJ1PJXCvmmaUjoHxkgOdg3DLMG+65De/IGftYLpLA267muHNkncdETeI7cgTCjSiqIWtxwEaV+MSytzacLDUrpUhC5GG7YzLv99kuUs/3RhrnMzqZcTUZ4q41eqbIrCX1HbUW+LDH+/4dzGCJSjdM1gumtmXo13jd0qQ1tVSYKHhc1xzdRM5TR1CelowVY1Q0XATF/tYjiEgReHYoGKQVN6MlLrEMlUFKSzVqeG8qOB3tIWTDjRwwm6zZ6sBDayidwziFCZGDWUO2E5zmT6lVgo+avWVCEJEq0ewnDal3xNkIWUVe3FsTVMM2MZTRMFUbHi7XPNhsWOQpejjjxu1jQ4GOCa8XF4x0hZORECV//aMb3tpcUqodq9RRJyUxCwykp3CSVmgm+YZQp3/h+we+RIIWY0S9fMbLQ8ExGfyYzXHmlVc4WkOzeAH/rFP9Twjdb3wb++ob/PpFwr/71S33vvmAdy4+4B/9T//HT+V8d7jDHe5wh788GJiKn3lRs1EtgkiMARkCg2jZEzWt0kQg1C3MDTkd+9sWte2lpSUgCKhbOecQE5QIJKM5pBuONyBcyqgr+PThmsuRYVeuEC5Q0NGljoF2KCsRNhARhCAoREUZHHkHP+AVVongcpgxzwtQkbYekuGwMuBE4NjWvO6ukSKineCdl/CJu4/wsjdZBhIRSKVlLRMigT48UuRqwbRbcb/aIEXkldkaqwROSMrb7VvarFhrzXf2oVQzJr4jiZEmjKh0gReSOgskIXBTGLJbcQlTWjIXydqAdOCCIgbLI7nAFGuytEFOO7osJWrLs9GWR2eGxy8CLiQ8yJZMKoklEocz2tAyCDXHyQZvPK/OAm8sbhhRsUhTHCl1vcfYbDhIWt5Ql0xkwyqJPB8azoYJiIggMh8YqtwzSBtIJOtygkRgQkEaA4NNRwiaJHpGeJ76ljfjgsfdnIO65WRrSR3E4Cmkoc1aBqJDpzumwRCARsG1nLKycLzeMBCOJ2pNIftMldGOZObIl5FO5Lwo4VxNCCIwkTX3Nx0EONgGnIIoAo+2W3LVULYt4naP14OZ5XBmsDJwkzYI4Rkt4aBtacWICz1ABkiUwdkp2lvA08Uhwg/IfF82R+z9wBJrUdGzSBKmbse7+x3XieObH89IrEcDV3nN96YVb513vPkcEJFStlxzQNb1QhAgkCJBKkcuLFPXMPEbWhWYJC33G8vYBPZsgbSwX77HwfgFNXu4kBAiLOIEsWsx5Zo/ygcYIRBRksqKfXakwaG3jiM55231Cc8HgUZ46syTusiNGpDOI49vGgKR/dAQEEgpECLcCmsIkA5FZGQtQln2ijOstqA8o51ncDZksPQsdCRJdojU8jidY2WklimdzOkYE2NGpwacDhLMsAJgmwRanxOlIFGBkWpJ0sAo8ZRbxWPVYeSQWpd8t5zybLSmXcHR1vFri5c87jpiECxljrclxkseLgLP3T2W9gGpicgYeOOsL5lMfWTqO6QP7ATQCHwiIFMYWSLirTi+k3QKcC0PTzWOhDRE9mPHTSowWuBl5CofMk8LnAQrFE/FAqFbDpoN/9rLF/yNZxUj05G6BhMCGznBioIuZFQMWA4ER2LFIWuGs5xiq1hmAiLkWEapYTdoMDKySSyq9bw3qbgZBBbJgJWNvL4951+8fo9B9ORNwltLw7gyeCybwiFVRzqOdKo34/ZS0GrFdSZYxYz3SNkXKTfqgEW6h00tMnqyGHgzGBCKPe0YjyOprqhJOV09JDGO0BZkTjBNlkxVS9mV3JcNlUxYJC2F2vFUbZjlvc7F0wWcT2veNi95mF7/2HfQlyaz76+vSZqGl0eSbySTH3vs8Ts/B9/+Hh9Vmqe7c8L4z1d8/H+LsFnj3nuX3/ulv83fyr/Hv/PiP8WPIx+pe/zct/8zFn/7m+yXP57Z3uEOd7jDHf7/CxEie40lcw2T2qNtREqISUAISAXIYJnnDpOAdI77cU6+C6zLPhMggLLzbLKUBEmXdBgUMSrUNmE2useuMJwIixQRLwAih2eBwQDe3xtQiRytoFAVLi8I3qKD4OiyV6C+TDO8dARpmVjYl47GGWoUikiQgYuhQwdBjALnc2oZSJOEKAJRgBUJ76dDJIZGLKl1xr1uS+ehEFdMhCRVlo20WBlxLqIagfcw7Axz0XA4T9jvVpwdZRx5TyBB4PE6IcgObT1CKzShv05b8sYlKNFRpJG1tmxTSyEThA/4rO/nZxheJo4nyxWJAxUMj80FSbJHdmM5HXSU1pJcNBx2iptUQfRkJvDVxQ49ajlNJpzMLY2CNGt44q4ZiYAElmngIi/otEGhqGVkLUoUS74xu+L+Tcb5Y4MSChBEq0hjoHGKmPREfGQCnRcY7dAxImIfYAokSjV8RV+SiT3q1DJykYBAIdgq0I1gKlqIOY9swwBLHjwGzUqNGYeOQ1VxFvfIo2ZoNOSavPbgJTFKQoRh7bh/HZiPNQfVEjOwdCLHIlFeEOkzQlaAChEZBDIqNBYvIcFT2o43Lzxh2DKwDikiafDEW0erMhrqKEiD4ebQsBcDQcDe2pGGyHHdEbwG6xnsIqMqEpKIF4pBdJxc9rYA+7qlcTlfebZmmGvqoQMhOEqWRJlyoDRvpoHv5ppmOyIIR6PhZBUorGebRkLUNBKus8h5kfDkueLhYMepGlEW8z4DEwKOwAkrEI4mFIQoCCh2asKDbUFndmTGk6Udroik2nKsGjyKGKH2I1yaMabi0VVgPN5xcSzIYsvTFxXKRYKEkQykS8uLJ4KyDagsMqGDoChwZKknVYoYJFoYHrBilWdsBoKvflrjY4FD0qmU84FgnuZ0ItCYAkUEK0hX8M7NhkGS8GS4Ir3xpKni00HKXCqm1pI0A974uECEQCc0V1nJOtEUsUNJwyQNfPNTwy8Mlrz3dI/hteJaThgnVa8kGwUECF6zzWz/LBSw1GOSLjDoPDsp6UJKQKG7wEWmyaRHW8ta7BGVZhAMm9jPi2PRYRHsZERZgXKWkPf5ocdxzV6smMXIcCvoREnUHY0vUaImrSXhcI3eaY6io9Qd0xeeeiDBJnSpYNxZ4mSJdJJVsoeMG3QXGHUNunBEGZEJPNms0QNA9vP24zLl8ccOZIIJAUlAJpbJlSHfRnzm2SfwLJsyqjv2b7bsGcWlUIjkdpEhgCYwDIG3ww3HVx0v85QkachCxyBCm3WUBCSO+9eR9f0t0dafrY/9hfjSMmjdRx8B8PIQTvLDH3vsmz/3LwNwuc1+KkqO9g+/AzHy7eSE/1j/V7iDr7L6t75P+s4RT56f8+Fv/nc/8XPe4Q53uMMd/hJBeoZUDNYaGXsluiDAi97OuBNpb9pKX7IWRP+5Vr1cNPSBTRodGQYd+2DHqUCgz3h0ZcWgVDzwDYfe4qJiJ9PbkkaBbwd9oCj6gL9NG5zuV4CFFxQriY0aE3JCSAhommpMaiLiVrZahl5Hz4ueMEYBhXSUJViZkjWO1AY6EWlFJHGeV5IrhrJjLA1EwbY01GmGFwpHvx8tMZFE2du+CgShKZtI5gIj48hdQImAEYqXasI66bNouL4dFQKjFDjNu/mQSgWkiARvmV4bMudQopcDp4uM1qH33ZIFUUhOBwKRLRlRkUiLFxEjA4l0KAKWnMI5jheevRvHrjPMM8/pIONrLzfsN2sOfUMMksenHUXXG8gOOsuwNozmOYeblnm6hXUNQqFFYF6uWSY90YhAugPVJaQG1qklw6Gjv82gglWSXNSMVAMx4mOCtJLdrQCEjxlJhDRZkWwsJ+dbopMENFJYLBCCYuwCRjnaZENuPSmBRPbqn48vah7ddEgCE2MJ4yVBBhACbSOZdT2Ruw0IdYjIGNGhz8yqCMIF9lcRZRT35kNGogUiCQHpFJn1ZN4TgHHwaOVYZxETNaN1pAuefWspcCSt4+GZ7TOSQeKF4rX5FmEDXojePy8ICukweFRVcn/XMZUtT6qWLgyZJSNeu/DsbTpS6yicYb/xpCGiPlPeVJFOZTQ+w7oU2SruqWuk7nDSEYl00bFKDRWOwlt0DFgZkCHy9Q8rLkcZBZ490xPSo2LG6WBFJwQuJByu0l6cxQtaKRktDHu7La93m88fFSKCEf089STslEbdBu5J9AQhOR3mZCryeLNBSqilximPFC2lcUgfsf00Z6sFIYL0UAmNcAIR4WTmyXxkWrY0CGod2coRtU7JhGeXOgwlEYmVEREjH5U5u6Tfy6qcvB2PnqINlMYwS0eMst1nV9Irbs77MdEmjiAkaz0iCMXB1jKeW4zIqNQQEEzXHakHGQRGLWi1QIqAlwHZa6fSaUmqWoaqxo7WVElvGK195JHb4kNAxkhiQQpBqSNlGjGytwqbLmC/9diYss5SdO6xJCirWGnHTRZReILQ6ETwcpiz0ClHzY69teWDieLDSUqVWba5Q4Z+/Cjf79fryNjJIW2+Y5Df8HBliAJkhGvlEbribLrjYmTZqSHfSd7gbLyjkRodIkoGUjypD6S+v24ZPJpI1jjGu2syaYjaIom8uluzyjyXxY+vEPzSMmjtd/+YIASfnAgOyv+7+bSsrhj95r+HWn5E/rW/x4epoFklqNWn2Me//BNti/3D38dlBb+4/wNsWPCtN/91Fh/9A37t3/h7HP37/wk/+4//c/jVvwtJ+RM97x3ucIc73OEvB/Z0jZMRXTuIEKTAStDBMTASQeRYVRCglQVDG4gpbFOPv1377PNogYEJhAh4epVB57DFlirxXI86QHEQW1xUVLqgiTlWeKRTSBwRyJwn3GYy+jCq99pJfMQrCVGylSUh8+gIkojG9+IeQiBEJCqBkQlZ8LRJgkdy78oSpKVNBNoF7sU1rCOzLJAhmaqaFNeXYHWeVPftIUaQtyWSBIIPRNmfV/ayFp8vAccIKkCIvdebiH1wrWPEioTUhs/7XXeGwnget57nr6cgIi5qlA0ECQRwsoAY6fAkPxLjzErfB1YINJ4DaSCAERIvBJq+5OxGCeSZ5wyDdJDEyHjl2I4VU+d4etGRB0clIRBwZOTURASvXG7x4vZ6EExmKSPRMRAGK6AR2RdlnCqggAdnHR8fr0H0PknhliA4KSBKRITUBWa5BzzK0t/DW9IfhISgiLKXSBdRcuRrOikwMcVqSyoEh6LCenm7iCD7cUskCRHpHaiepQ86T631beliRMWIspF9YzEipxQWj2Kgmp6EeoeqevF36TxvLJakacdaKoxUBPr9jUgIKnweAAM4MmQMHM8skV5CHkCkAnCEoNGJQwTHOgko73FEVkFyHBPKzpPpCtkFUCkvBxZ1yzQbHVAIXn9eEREUwdMJjxYeSezbZTtSAis0IgYy0Q+YxPVtLBNLHVIM4FQkisCgNhAkMkRyZWhFSuCzrLhg0HiE9L31Bn0gH6LEicjbL3d47Xi6sNAnozBSEiN4qShah3KBEAVaevZvoNVZ3zMRjARFzi4OGJiKWqQoESgqT6cVUxoezBzPRwafgdWacqP6RiCItwsxtQrUpbn97L94aqi+byJwsrREPF4BUfWFzU6QWUijQALh9tmhbWT/pkNoSeuL/tpCQi1bcttfZylatplhG0H3q1AkPqBCf9dHukEDRgQyAAHzwhEtqNtxIWPEiowUQ6V6ilLUEUuK8hEZHCT0nmREyl0gItFCsK8rfBScDXOuQuRAG1weaGSBywRLBKWQZCHgnea1lzWXuUPFEbn3dCrQqo7Cu34RDRg4j6MGBkQiLokYteLppaN9Ehg1nnLn8TJSp4oYJYXv50NA8eaLigGOcHt9RDhYWmL8LC/9F+NLI2jNd77D88MBMa0ZDh7S/Og/Y2T0G/82yfX3sUdfZ/S7/xFXR6+TLhrs7KOfeFvMH/w+7997g785+N/4u4+ecHP5G2Qq53/1Db/+YI/0hzfEf/pfUvxLf/8nfu473OEOd7jD//eRS4cREh37VeSdHACCSTAgYeJ6ifjPnItS4dgSseKL4FTQc5QYQd1m2w5DQycFQsbbgBW0iyS2XwWOQhBFQN2umkcZIPQCFv+sEcxV6ZBB9AGH0MTb8NcJUETGor0NLD+jdD2ZAqjVZ2cXn1mBIaK4JVdfIP2R3w7UDhEiUUSCEBhxG/aF/suVu/38IwjIPmiM/c+PlvUo19sXDHa3XwBstbsNxASvfdxy+ihDxj671VMBSVEHHtYeGeXtXiGUXv/YAAAgAElEQVSBiPHPfHcm+gyVEH2fhNu2SiKrvA+/Oqk/b+905RntIsuRRRH7srIIiN6YWsi+8YmBxN5mSCN0UhL5YjG3lV+EVbV2JBaCjOxdN+wBi6kiCb4/rxb9GOojYQR9sOlv+8aKiFV9ICeCR4aIl4JUWIh9edVnZEjctjdx8YtxB/jbm7vKLPLzv0YK51GuJ3Gf9UG/nCA+P+azMaPoMxlRwPGNo9cV7Nn30U1PvCQ9Ac/jnx2pIsDR7Isx1LcgMFYNrYxYAjJALYeQAsGRRMG9i0BMbufQLVH1PiMgkaInnnUSiaEnRgK479bszyBqPidP8faKPlvcGMg++0kUfcZWRgayoaeOilQ4Hlx4jIKBiygJI9ERfmSuD+YlafLFQI9Ae7sAMAktoRMIIW7nXsQhieK2l3yCJ/Z9qiKfydLp23Z6IWkoUA4aUQCQ3pLKzPte1VHyOYFITfh83CsCrYoUfAEZeoIetfh8nEQEEsHJokMKUKbPVsUokbdEcWAsUUhkjAQReXBhsFGBl4jYlx9HQMfw+Vg4DhVR9M8zESNeS1T0CNHfhXD7bBF88SyI9A+Gz+7PbZ6fIHRfNSBznNC396e/z43M+b/Ye/MgW7L6vvNzllzufm/dWl+9pV93P3qHpgEDAgkNApnRSHhkCcmSDAobRoDM4Bjbo7FA9jiwIxSSCI2xIpBtEaPNEA4sNEIbSC0JgwQCCWh679fb21/tVXfPm5lnmT/y1vZevd7Vgpn6RlRUVS4nzzl5Tub3e36//P0UEusLkS8cRCLHIxHSkXpFrhyXgxDli8+VcvRuABrnUA5sUPR+Lj2ZtCgPCrvTS5mQ9EV1x/UcoBsKZgdFvr/Z1Zwo2x4VECeGPJCIiVUNL6j6FC8l0rtibsrJPRRyp8xr4UVxcTSnH2b8ta9x/7GQo8bga4v79ofn/pTw8pcZfNsH6f7PnyS97s3Yes7COlxee+QFrYtbX8ddvsR6XfFLbUFPKT76uo/xqTf9Pne1X8lvvXxI1guofu5XwexPXu28548fWeVn/uBhfv5PH+dy9zC59SEOcYhD/H8SArTw5K7MWEQ7edCY5MvcJoDbWIst3XC/y4qdEI/iPVysvyvjKZNQ1cUyZWXkOLKcTcJyOMQeInL8YoYHMlkIPys8RhbE0FMIMSjInWSXKBTbirqo3bXbgkhPiKYXxeu/cNv0SF+QJXdN0uB3ygFPNrGeeTxOOMqicHecWzOIiWjYrpWjsAJZeXXZckI1txMab4tF6TzKQHPLoPLttskJzWNS/sSV00+sB3vaL/aUBcV3V9tuqkbs76ttEaON42Vbm3gEY1kiELYQKKYg2XqXpQMQ5m5frwu/n3Ipdi0s23WZWduNFK2Mn7Rz+57K/b3vd39t973DYYUnn9C3S9ktnA2v33OE36mT31PaTsl+W9A5eionytwkaAf72rJ3POXCIYQjE7uJdbdLrgwnVr6JSBZ7FPo26Z7eyHeO9wCyIO0Z0W4NvYeJuLOTAB0i14Wr5p7rFfUR2Mm0snL7vu4KVX3F3PQTws1k/AgcgbAo3M49ApheswjniLbd1Ca7FK7IM5i5nTG2LdK3746e3EMxOX67Llf2v3RFDjQji2A8DkVbj7m+1J8sILh98+CKhgDQCwordrFA5HeeA3vv93Y9twV3cEWfbJdvUORC73tGOOG5XLWEmSfKi/Hm8QSyeKYYWfSjpLjf22JROU+Qu8l8LMa3kEU/68mzzVFMEumLZ5Ewbk8/bYt7MXkuUDx3d+a3wwtPJkIqIqUs831tMsIVzwRR9IRFkgmJEcUi0YLq7rNZbbv8KlOMGQcEuZu0TFJ4cO8uOHgBg8BSlwlTckS4R5xtI8i36+0xwmO9Q1g/yYnoCcx2b+2d1QfjRRFoo4//BlSqfO5lsGgsrrqwb3/p/l/DVhcZ3/qjIBX97/w55psZ1TGc3bz4gtYlf/hBAPTRs3yxXOKdN72XlzRuJlYxP33nv+art8cMI8noEU/05Gd3znPe839+5jQf/INH+NqFLr/7wDI//vF7OL+VXOtShzjEIQ5xiG9hCFcQMUPIthzZ/0rdlQSZ3CUmO3uv9f51rnABZJfgbmObmAi3/+W/LUSu5m1Xb3sKbncV7ITMbIuEvbjSErJN7ncJb4GSyHfOiNL9loVtbJOng66xTa2hILDbAtUDja7lyHJ+QCPEjrC6cudBbVVmQqx3et4jr24y2/25bRWQuMJVzgh0zoRgTa7y1Avg+0RRkDvCPWLooJp6tkPLXL1f7dDgoo+8Y2J6g5Gs7NybbQj8DgG9FtIDOkDs/L6iPOGuopPSHTQed2u+M1oOOMhcsXHbwrp97t4ydoT0Pso6GbeFbQ+YCEkOmhEFDrzd+64I153PAE+QOTLhyCfWu72ib/9SwHYbCwK+O0f2Y3sBpmjr/r3NoIgSuXere4radsKDvl166sEonqK8K8+2wjNWbt9WM1kgyoXbsalfNUbclXXY22f7Ia3bEbXXwkBWnvLZtr0IVYj2/WNuLxQOIQ9IoTU5QbpioWRbXAnvd3rLiEJcSVe4bdsrxu1T9fp2/zhckVriWeJFEWi1f/UhHvsPH2d5ZsRibrDV3W/QxGid4MKfMzr5Vs6c/hKfv3A3m1qzeNd3AdDZGoF74XKTmYcexErJX96wyYKI+XvX/eDOvqmozf906m382cugdzFGfPk3dvb9t3su89mHV/mJ157gD979aj7+9rvw3vNv/+g03j/1xDjEIQ5xiEN8a2GvMNq3hu8PIiIHw+GvSRafe4226/XMyr2mHPB7/7iS3O+1ABwkCa/F/J9PW3fp+MEU99lc60pqf7UUmgSrOxDbYnzvudJ53A5leqbtfLrjxAHH+D37nrqcp5akXCGIn/142b/94LHwzQd/xe8r/96Lp1Gwz/ha34q48tkkrhJcV+La1vVnjwMthDzVOJs8FQ64ZUY+fc0OeqoEuTtwYeqFxnPttRdFoIkg4BtbW1hlWDQGt0egRWc+y/CS5sy//QNq7/7fOfK/fJCP/Kcf4OuveB0Ao45G9i+9YHXJH3qA9WaFv66F/P0jb5mEzt3FW49/P3e/XIEXjP7iEUSyQZJbPvbl8/yd403e+eqjuEdPc4yEf/LtJ/nGpR5fOrv1gtXvEIc4xCEO8c2Ca79aLZInwlOMxZU5PT2p9ge6830zELoXTjB+6+CgFmcKsmt+hf9c+uiFOGfHtneANe35YVv6+heQ9j219eBvEi/kosf//+bDQRD+6S3C3ww4SIpduUXaXUvmNzeeuo4vWpj9+5bPAHDEa3xU39nuv/GnnPviFJfqhs//g5cSz53gff9tyN2//fN0aopgS5Gc/fILUgdvLdnDD7E+n6C85803/8RVx8yW5jh58+v40i0BW4+V0fd9mj95cIn6ygV+4vYmvX/6k3Te9Q42f/Ct/N21B5muhPzXr71wAvIQhzjEIQ7x7LC0tMR73vMeXv3qV/OGN7yBD33oQ+R5ftVxn//857n55pu544479v18/etff9bXHMkKqYxY1XMH7rdXvV2/FQjDwfibJdt/+/Bi9+64vwFaVDUvGtV6SngkmQyx4oWPD7dXTl75+/mWdyV6ss6T4Q3fwjNqL3Zboa9hVqrl6mmE9XPvibIfXXOf5emu+2zw3Oqonq2By3vaW5b64IW1jKm/hafgi/LUOL0y4BsrRTTGI2F7d4f3bH3mfjIl+OUfO8kv5v+QH77tvTxx4ibe9YcZS62AI+vw2OlPvyD1MGeeRCYjetLwKtrUo+aBx73xyJv4rdc7nBEMP/4Jbv2X7+Q//dmHWXzfj2Luv5fK+/8Z+qZbGP27f80753O+fG6Lc5vXHuSHOMQhDnGIvzm8733vo9lscvfdd/OJT3yCe+65h4985CNXHdftdjl16hT333//vp+77rrrqmOHlWfrzvb8cS1Sei1qoJ8u0yng5H63oIPcE9W+uI1/u7TXy4PblPjgGZfRraurtj1dTwnx3AXF3usFuac82hv042CaFV+l4J9dvwtgIKs4sf9Mt6f/Gvn+fti+908nQmO/GwBN4V5Qq9vTwnuitLCTBD478JBLwTHGsvQUrrZPUfwV17rS0mKvauv+a5SV4Uj09Hyv01Cs2SqGq8fildAU7ZwO0wP7uppvC+prtzf2yTO2HG011b5nQsUNDzzOyIBMhk9b3vPBdFq07aB2K7f/28QrcdDmIlCPKHJBuoP646Dn35VfFh9wjBMEVzxvl+ee6TPpuT1TX5RZ99j6gFZzjcDDiT050PyDf87onOT3XyV4cPXNvOa6GX78ddfzwTveTq9cpTSwHNmARwZnwabPux7DX/w5AF77ALzrt8GnB5f52tnXsTwd8vCpiP59XcbO8firvguyDIKA8LWvo/6zH0ZUqrzhM7+G8J7PPrz6vOt3iEMc4hCHeHa4//77eeihh/ipn/op6vU6i4uLvPvd7+aTn/wk7ooPs3u9HvV6/Rol7cfldsilI89cFDxTWCQDHz39gbAdAwLt5Q5lqOa7r+3Z5GBLyKC6e0wuC3e+ayEpSeql8U5i5b3kpDfl6bnSboQ3URx1EE3cS0HyYPf6Xuyvz/Y2DwSYIhH1HhgpyMLdK1gknYba87/GTkJmlyciZ6/g6KgWS5UWqzNF3wQYFhPFfCVBi2e+qq5wRD7lIEJXtle3R3tBNZc0u5bqaE9eN4roJCuzAeeP7pJdlV7pGnuteuxeq6kzGrog8wJHIstYUYRdh4Lk2j33Or6G5a5b06xN744dhZhEKi2OV347AigovyfqJI54T5Kk3BcXawcpkXzqpLuw/z7tJbt7Fxrme4KpridMHcPG/jI1176G1ZLqfMp8fVc8TYdjjgizcwcVgofj27kQHAdgZsPS6u6WOSwX8yzwe63v+8n1QpRQVtuBSeRudNcr0K8qrg6jMUl14QWBl0gcw4pE75kD4TUWXdqp3iceK/3Gzv+bU5rQOtpblsro6cXAZlPtm1MCqLohsR9f0XboljznZ0bkE5ft6kTM7X0KCOEYleW+eXswrt4fWYFF0nNXPxMrdkjV7IrHVqaYopg3FkUqivm0/XzZLn3sAnKvmNm0NPpF36pJt1wZ6mZQlWgnitQMk69S++Xdvtk7NmcTzeIooNtQnLnu6vo2r3jQjmNJHmsC/9yk1osi0L73tnleev2AU8Yia0d3tme/+1/xeD532xS3Nl7Bz33fLbz7ddfxU3/vTn7hpT/K8c0c7WB95AjP/snzqkP21b/C3H8fAB/7bkH90VWGv/R/HXhsWVd42dSr+LVvD/AWnlg4yvGlJ5CLRxFKMvqZnyRe+Rzlf/xOxEP380Nymc8+snoYLOQQhzjEIV5kPPjggywsLDA1NbWz7bbbbqPb7XL+/Pl9x3Y6HTY2Nnj729/Oq171Kr7v+76PT3/6YA+Nni+ThZLL8wGrMwFptJulByB3gqGLCgvDnnf+1Kh4cbtJ7pxYGiK3+6q95BsMXYnBqM1CEhBbSUBGLjVGaLbTl8pJLENlPc1RQtMUxHNbqg3LEuU9i6OAKN+/yr3ZvLYLm0fgpdhZsU7KkvaeCH1mQiasFPSqitRrBII8kBglEAiU308eBjq8ahVeTlqy1tYYJQgwE8HDTj8aJxjYiZASHhV4EAW5FRTiciuM2GppLs8W/ZrJAKkFpUqJjbmCrCU+2Il+2eUYaxzFqKJFgcyYF31KyjCtd8lnHuwRoi7m/NGQi8d3CdbGYlLkpUMgryB1zSwhmliZmrlCac30WO9YrASe+kRIOV+Q2VFZIqJ8xzq1bqqEV1iIBNBxJWIrmB4X/dJpKuqTcqfDlJkwndzHQqyXrdwZX6mW5NGuxBbA2rTm/PyuGHQI1tohg2pRpsYiPDwZneJCeB2BN6zpoAgX73dDoHspmB5L5vdEM/RGEmeORpRxNB6B98yPHJEf7xDhyF+djqggvWJnDG2T82amKOWCipFFbrRaEah/23oau9GERBdla1tEV2wNEzo1iYwcSVPsLKw0dc50uDvm0swx8CF9VS+SmXtBOIlRL3E4DQMXFm2eRGVUvrDmpcF+t2UvIBcaI4J91h8vJwJ+chMGLiJnrxgq6r9hqgiKeQwQTO5hJZM7/b290JF6TWQlY787rzMZUB42mU9C5oc1pIXYpdTyhLq9toVPIkAIerXttCG7+wJvd8Lcb6MXW5yAXMOlIwFrC8X9015QT4PJIpGgX5P4QDI91jvjdS9yEZDKaGcBaHv+GSXZspUitxr7E01I73bmNRTWMVsuxko3PQKdNlIWYndUlihbjAmHJ/Eh3guirCgzckW/b5ceeFM8ByslWqni+lKfY/URo0Dvm+1VUm4urTO1Z6o6JF4Wef+Y9NZWU1HesyBSy4Jiga0c4gUEXpJrSSeqYq96olzrXr0IWEtW+euVv+KlyQjbOAmA957+X97L/ddJLprX8oE3vwStiup8982zHPnO1/PAbCHm8p4jfuRTz6sO49/5FF4H9Kqee+9QDO68ifGnf5tf/JW/z68++itkV1jovr18K2fnUsRCzquXHia8eIbmm04xe8sy6RMrqN/4F8wP/iOyPcX3P/BHXOyMeWCp/7zqeIhDHOIQh3h26HQ6V1nFGo0GAFtb+wM41et1jh49yk//9E/zxS9+kfe+97184AMf4Itf/OJV5VpRuP4No4CVdogJ1MRhrSAN2lvGWrExrejWFa4SMpdoRlmJ4z2N94JGnHM0Toj3hHjOlECYKkEecjlrTSxiAiNDUIrQp5T8iOm8iwmhueWI+h4bSMpWISekII0lRgu2bBmfR5OkuLB03OOVR8kc7QXWBjTGu8SumYSAZ5sOMXEJuqW6RkXlbJOz0I1ZNyXiLMDkFi0mDMXKIq/XDlEW9GzA+iystyfuSqKgQnnsGdbAKUfUK9HMDbNJQCNThE7SC/UOHTRCkwuNJifGYyQYLTkzHyPx5JFhbbbgCNeFA24IB6xT3HdPIWQWkoDITvonEkzZiOOZJG2E+FJxXSjqee5owLCZFlZDB0p4hNwO+y+wCh6aK9FpVZkb7fbfVi1gHKid1XbXCJkxEcIV91F7qOqc6VJKReUkKqJiM0DglGDQdJTyHKMUAkdaLSw4JStIKwG9eIqpVKO8QAhPLfPEJuAi0zgt2GpLLs9EdG2Jy76C9pLASM4HJ7h3/hhn62V6LiLxIQEOJySduMQj15c4EQ1p6oLrVM2IlsswcUpFJHjpGckysU9YqyusKgTUqKHwcmLZjAR5aXeRYLqT0+i6ncWEIxtwbKOPxJG4QiQJsbuAMYoFDdujmhVWuG2SOqRYYNBe4EVBTBUOp2B1QdOraDZthZ72RWJlPNlErESppzo2zPV7aARWCfJQEfjt5M7bAkwgbTHuExfSSiSpCwitRSUVhi5gIy0z9BEJAeWxZ3rTIo3HyaJeTu5W+vzxiKW5kPUZi5cQeEdsJeVxSGusuK4f4iSMtaJjy3ivUF5QUrvjECCpCMZ7jKkySjBK4LQnD4u5FJKwOVPisaNl8qBY+libreG0xHpNTzbJJt8VVnPHkaHj2KgQCHY7X6EofqTKGPmQs2byiY+AnlFI5ymPIZU5jUxSTsOdc7fvVRYIBrXC4nRsEFAyCi8VVhR50U4kAhcqtNZEMiAPJUiJVQLD3kUjwUo7JA8leQiVTE8WbzxDylwMjmEnadW12xVBAkHJjZlJNFEyScchCwtcvyJJ3cTebDXNNCFJox2Xx2MDjXaCkrQIYTHKceFEiRoCMfFQ6Jc153yL05WjOBQVCydJaXuYZUDJjpDeUZMpamKQaacBGkenqbF+16VZWRhMaaqMWJkNwHv6hJzX13MpOE7FSFr5wS68O2PhKfe+QPjDi79HKDXf3x9gm9cBYM+dhU7Ol28WvHr6jdw4Xdl3zv/6HdfzX+54G1ZCeUswPPdniGTzOV3f9ftkf/EFjHecnxG0Es173/gY52cFP/CpZX7/nv+bf/P1D2InE9r3O7zsP/8KAPe+JEQljuZrx7yv9Se887vmyWdaLF98KSpdZeolPRqPPcCtvUt85tDN8RCHOMQh/tax7c0gxP51yne84x187GMf49ZbbyUMQ77ne76HN7/5zXzqU1cvAFrEvtxT2nkCW/wtgV48sUDZiFkFS415HtWzgMDFgvkkJKSwWChZrBuv2woVm+5E6KsYQzetkWUlGlmE3HGrK1z/pvQW1TzHacn8hiW1dbyXpKrMsB0RlQtSo63k2EZMYAVeZ/TjEKMFq6pOLy1TTT1JVLj5mCDCeMUTwR1cCI+hEJRlgCpBeyola7QYuYCuh4thwFZUI3OavteYYZskqeysug9FmZ6s4rxgHDr6VckTlZAnpg3Ww72tFl0l6VcCukGNyFYZ1svoPET6ItLlMIDQwOnwZk4HtyBxBDrHhDCMQsayYK8RPR6fdnTLAhNIStayphoMfIQch8xQojT0zKz2wHmySPHV2QWerLbo1hRxpAg8zI8lToWcGnhm8hHtDMBjo8IBbyuvovEI4cizMovDMRWbUyKlVxestRTSCSSe2EkMCus0j9ZncEJQyxVSwqhaiIKBr5KYaW5fr+EFVAbQ7FgCUyTwjeWQrXKIkCEhFZQrT8aYoGUV02PJGT9D4ltFmuU4ZXkqmsQfFIx14Up3tjVFnzbhcMhQhgxdSCMxaCkg7FK3MQ08c+EIEMRklP2YQFoCkWJiUeSDwrM6rSiXMkrKcEtPob0gFxEJVZBgwon1a4/pOFcemYRFPjBhGW278frCWpKFkiePxig8W7rCmIAs1ggpyVyDwAuiTBDmoKWlJYY4CUrknIkX2dAzBIFjds1w4+oG2oCQliS2NLwnwhLLFK8dQT5CCEs9kygsTlqkF0TO4gVkaC4mMyQuIPGalD5JuU/J9As3TC12kxAbhZWFFdAo6Jclmy3FRVlDhYZK2OFSKFEelo40KbmQGdVBO8EgDOirgLrZ4gY35uV6SNlK5odjorQQaTPDnAqFyLAIBl4zvW45JQYcqw8Y+pCx15hQkCoYiTKX3CImVOSBYBgFeAq3VYCKndwWEaJ9hSV9nL6sAXDhaMjaHJzPawgcVhdtagwE1XVFnFj0GAYhVNIAIQ0GgcBNrEUC7SSzBoxQrC7O8ej1DR6tVejEMYH2aAFKOkoi4/xixFdnbuV0dAoQlEd2klxb0C8pNBn5RLiGBoaNmHtnb2BTN1nJW5hA7rhS9mSEcoJpu0mQSdzEnNnIHbXuFPcGN9A3MXm/gUOijGF22GO+n3CqM6RuE2oqZzFOqJcGDGPHRlhhCkcsDKEN6FQVXzr2EpbtMZ6cmuFkpc+CHlJOBcrllPyYGhsshCOOqT7KO0oGWpNvCFfyCpEfI5i4pYeSbhjTTjWbseNM25J7SZRXmRkoWuk3gUB7+43/iD+65Z9ya5bvWNDyL/0ZAE8cLfHDL73tqnPalZBXvuk19KuaY2vwm+U20ZOfeU7Xz77yJbAW6Sx/fb3gsYZnzrepndJUUsvP/2GDv1r5Iv/P2d/CJwnJz72V6v2GyiDid04VwvG3RcRdY8irs/zaK/vkT15i/eQHaB1dQYSSf7z8Zf700TXMM8yPc4hDHOIQh3j+mJqauspS1u12d/Y9HRYXF1ldvXpxrT4OuIkhC7JH4HOM9ySBY1SSJFOSsVI4FGo0S2aP8KC4hW8cn6Ezp5meHtKKhtSkAQTOQ6Ylj09V8IFlSI2ubCIlDIlQSYWjjLghHlCSBplD1FXkFO46s2FKLTQ4QpYGC1TqEVN5iUY0htjS1Z4wsZhRyFrYouwE2oQ4X7iKjRGcbxm61WHhtrbVQqUBK3KGNVvHm5AGcIM1tLKIzGv6kUDmVcQkjcBW1TLwZbyXVETGjMm5ENzA+eAkoR0Bjqbt8uh8wJaP6aoSS7Uyl4MGEkGvFdGLSjw5niUcG3qh59xCzoVWiXSzxsnVjR03pxtHnlCM8NKQywiBpzPh+08sBvQmQTkyYrquhHCS24eXiMaevq/gfERAipSCe7geFxuaskeYW8qpZz05gql4jg4sU32QrkjO2xSKB2brbNQVqQ7AK5qpph1vUneCoDkmCwIyGaO8Q2M4w0lWzSxr4yaPpfNIq9iKoK8gSBw2L7Oe18mJKPkB2lqUt0y7VSQGD6z5kC2hkWS4zGOEo1MpvqvyZYe2AZvBLM5LpsYlwFOVm1TNGGUtzeGQNAQrPUJbyiLh5qWcxmjEkdEArwKqwTozaVZYDIWgYt2+6JXjUkHA87DYMqcz5uOEYS0iUYVotEj+2s+zEIe8Qg6xQiOl4GzNcSmXeJngvWBhlKOdoakzSpXCYnFZVOnGku4RC1JgBHRaAQpIVYNgc46NpIFHoiVo77iQtsmt5ny8wPmZOTptCw4iDPVRgplLcK2MAI8Sgp7yDIMx8xuKI2lhMRmogFQrLpwUrE3pHddXBwxCxSiUhGXD6ZsEG+0R09kKnpSSMuReMsxCek6QBoJIWpKSoIQmESFGFsFlzs8N6RzzzOqAufqIdjBgyU4xpIrOFUEmmNVDynbAdH+DNBUkeczFRsxs0qOUiiJaobLUrWWkPY9HAlPOWA4Up2cW2aiECKl5mJez5G6i5TYZVweAAeExWiFlEVHDxIKl+WlkpU0qGpyLTvLYiYhMKbyJGPjr6JcNTWOohgYhoZwWbtkKx1QnBeFZ9lWMEDgE3RjOx5L1mkFqRz8u0YmqjIKABxYiIpGhagbd7DBz/DJTcxnfMDey6grBVB7HzHYUjb4h9CnjkiH0GSu2idUC6SGNBZGIaCQBTjqeCJvMDB2ZU3zpZJsVKsyGY+LpDOkFxmtaYshZd4ShnWaoaqSmhZEeKRztgaCaSWYTRzlNaUUZ6+2QNhlrUyBtBEJQ8f3CkuoVOosJrSYSnmhNkAORMaS5RmUQDSTOQ+wteeBp2DGzccid62U8YJXBG0EsoWQDbhYpYlynOlKnLYEAACAASURBVDDMdixOC0blEgw8te43QZh9KSTNzTN4qbGN6wDIvvg5Lk9BFl3PK48dHE3xR+86ymplhuNrnvtoED35h8/p+slv/BoAg0DzR3fWifKA31h+gFuOblB9xZjGk5v8q98V/JdHfoXVX/6XuOUNrBc4ZXmwnRG2cm48q/hEK2JttMK9L28xigSdL9xH8p0/Q/O6Hree/gp+c4N7LnaeUx0PcYhDHOIQzx633347Kysr+0TWfffdR7vd5tixY/uO/fVf/3XuvvvufdueeOKJq44DuK7jeDICrXrIaI016XBDKOkh362XKU8NcK7EbXqFI7qD9Yrc1mgbg/QwJVOqmSB2niw05NKwMZNzftpg0DSSHOcgokOuoNnvU0o8KnJUE4FIJeUNzfTY70SzM8TINOSxKctyZMhDSWwNeRLickcpEbQwvHk4pDbMibOChDsFeSxJQkdsBxzrrZDkGjn25EKxpqYoS01DjBlQIpeOi1PQr/WokCPLCYn2PHykjMRSjVMuLRr6XtHRMZemQhaN5WV5h6SsyAUMShY7sWBaA3eJJe5rnELkIZHxNIaGs7OOpVpEaaypGAnCM+VypskQwjOKPRkRY5XjgxxtQXqBco4czRm3yGqwSJxpgoFDum3rpEe6jDsHT1LLO4SkdCWkBkr9jJWgyldjzfIwRnQdS1M5W8qTSUleNpxrxxB5lsswVR4RhTk13acnyzgd8OV6m/WgxGw2JBExI8qU85TA5WRG0Q0E55WkvemobJQY5GXSrsAIw2oTOlExjurKckplGOno5CF/Xg+4OD1E4dGJR4+gMvYczTeojw2pCGk4waXxIv1YslWLWOj0mBqOGOSaFV+lMnIkWR0jJVoZTowlU+OQyCUE3tGVDTbMItFwEScgtg5nFRu1DZZnE1oStnyJXEHgYJMGoZdo52h0U9azIzQ8hFZglMUDG4FGCgNxytAL+kJRH4bEgacSGvoELNUU/SAjizx1M6ac5rQzuHgiJGqOKdeHiDzgTDYPOOLQMNfrc9bM007rhLJKWhKMhWZRDrl1uIHDIZ1BBpIGEU/GihUZ8Yh+OaPmxBVXwF1hj5uspaxLCKepDQIGZctWI8OoHCUEWyHYUFAyjkqYEdVyVODIZEAiJfcvlGi2MtJY4GXIEM20H7PoUy62JNeFazREinIGYSWjjQCdzDKdJmStMZFLyZViSU7hbQ5eseSaxJvF95aRFcg4Is40eZxTGkApiblYPsZD8ghn8mMc91ts1qpcrjew1Yw4WMIoR1lmTJNTj3JqQUaZDK8lo0qJQV2Rh5KvxUd4MoqxaZlytIGLQlolwbRKyXxIJDyZK3IAa1ckcm8Oc7zzJKFkEBVurrlztCtDZitdEinJpYA8oOF6HIlX+cqiYphoOC/ITRsvEpLyKo/Gx7kYzhPkQBJxpFcmzGPqY0uYKQKbEghFFsDFsMQgUGyEIbZboXK5xamO5vpOD5drulqhc4VFMbM5pjpOmepJAi9Zj5tcaoVsVQVSeGwmUNJBZrHew8gTzmU06wY5muYyM2QLOaMpiRAGW9oi0ENme2XCXGKHAcpbfLeM7gToDMQgxpmI16z2uNRa4LPzR7hnccRSo8wgtlQHFplLGuMamSlz2QcEeUCUCnrVPk4H9KKI3tMED3nRYqeKy1/HtG8FHePTlPThx/nG9YIbZ96IukZY3WY5YHzzK5nuQeIty8tfRoyfnQAyX/sL7JknGEeCf/a2V+HCIf9+/RyXa7ey9m2/yVcfO8W5O05w28OGn/lYjy91/pL+42W+eLviZe234aVna9FwbMnxz5dPcOt4wKrf4nN3CPIv/HdGi99L7XWnENbyw+c+z92n116I7jrEIQ5xiEM8A9x6663ceeedfPjDH6bf73PhwgV++Zd/mR/7sR9DCMFb3vIWvvKVrwCQpikf+tCHeOihh8iyjN/7vd/jC1/4Aj/yIz9yVbmZElRyT0bxfdK06xPbnGbfEBqFcHUu1aqMtSAUhqN0yZ2CLEDgqZk+ARmBE2w1JFnTEYd9HpuNeHhuHosgC4bcfeM0a7MReVWQlENGM4CWxAamBwE9VcFQfKs1NepzTK0yVpZU5ozLikFZ0BhZukpSzz1/py8JrWaxZzm21cehebRyimqgmK0bpkWHrJYxb9a5qbtCPLYEIscpyVhHLPbWWKqVWJuyhD6naZaZW/EcX4LpfsYYzVqYI0XGqDlmU0ec3BhRX4XqsiYmB+EYxWO0gzQLqW31uL6zzrddeJyF8Qbzqsti2GM9gCROsUKQIVmvaAYlQVDyJLOG2ZplpSRZlS1aNmfB9/BWEVjDuWSW3Fbo6GnWGnNE84J6lKC9Zd3VeCI9yZfzO0jL55hSnSLoSFlxYabGxfIs1lYIUsW50jxbeo72IKU+CslNmwFllLdYG2BDRa+qaIQ53kOZDKUlJhQcjxIW9Ca3R+fR3iAyzQU9Q1c2cTZgteZwAsp5hlyC9SBCS4uJLHWgWjb0wpDmyDLdH7OpNS/ZXGaUOMIkIU1rrMctklKAsBodxEQepkaLbLljVJIc6zVWSvq6hMpC6kOPNr4whwhB5DTHTc5NdoyPYaNSI7NVvh7cRL9kObZqOZIabr2YcMulLdYaGiMhj8aUkzHlcY8GcMdKRs2MaCddltMmj5dmyInoxY409nihsQJC55k2hno+xFrBX82U+av6Cc62Q0JSpIe+tzhj6I5PsLha49FWlT8+ejObpRgvPUZ6pnNDqTRiXm1SNoo4jcgkVG2Gd5KSt6QIUiWQIZDHWGXxwpGIiHai8OsSUke0Ca1kq/geMFdoD0YU6i3XgqTuONJzOOGpjaG3mBMYjxYOqzzLTYkIAzbCOY6ajAW1zFvsaW50GxzPLdMdj3GSVFiEzDGioNahkUQeRtMgQsFSdJSH3PXYYUg9UbRXWpSWIkahol8K6JbrrMWChsqQ0iBNwI29Ad9x7kF6WyFPxiV6sUGVR6yxgPKeuhjy8ugspjSmJ4oAPiIThMOcS34aU/JEZFS7MKSKReBCQy8UnKtWyXVAt6Uol3PK2pARcF4tkHtFvRNx41LOclvTqSs8nrGV3Nc8wenWcZTLCYNV4izmf9jMqHoo+ZzLgzqXg4C5HgQm4eTqmHic4ITCiZi+r9GSxYLOfdGNrIlFjm5JdLfMKzYusv3FbqxSYpVxXXqB28TDbEYNLiYzVJM1HIIZl9Mq5wTWoHLFzNBRNSO8EBjtcKoI5uFzSZjBKqDWDX6syFyDS/4EK7QxPqQ8cmTakpT6ZFGfU2KNYVDaeR904xomluSxZ0STLbsAFzwjq4mCDbS3tIZjZkeGNa3ZtCElPWBhuEkWbmKlIpUxYaPLbatnOSfaXJx56nfbiyPQbIa4/DXM7MsAyO+/F5k7Hjgp+KE73vKUp972htcDoJKMP7alZxfNMU/o/MI/xwNfnz1B7+g3eH0/457R6/mB0ffyfV95gvtv/3bqq46H3vRa2onn2z9XuDss/t1/wGvu7SCt5BtHNcILvuOWf8LPrjje2oG77yqiaz38yV8ifevPUjmS8r1nvsSfP7yEsS9sgrxDHOIQhzjEtfGRj3yEwWDAm970Jt7xjnfwhje8gfe85z0AnDlzhtGoiGr2rne9i7e97W28733v49WvfjW/+qu/ykc/+lFe+tKXXlXmZjmjYXLazvGyNMMEEonnYlWTrWmqKymqdIlzzS02Ik8Vg1Al8mDiNjaU6C1gHNBYbRKsz+BdjBq1MTLkfKPFKLQIU+Zmk7EhWzgt2HA1NoI6WSR5vH0U4YvVbOcF87KHjsYo5wkdHB8NUTZjqVbFSciVRuPpK8kgL5FaxaVak8XKJvPOUhsFdMwin7xzhmrrLMeCDTbLjn5jDW0NNhVcLM8SeE0qNLkv8/WZKQYqZqRCVK65Z3Ge1VIEyhFbyyvOb+KGC8ymjmoC5XzEkXKX1sR9rxMpOrFgJZSURzkyNGRxEdb6Jecl892My7Uaq+Uy/fqAM8cEpcAypw0X3Ax6HKLyEC88zTzntmQVNsrITcddl1YIDKRpxECEPBwcp54PaKYDokEdM445uW5YVopYJHSlZKs2pO0eZ9XP0AxS4pLh5LrhjgtjpgcXcWLA0fUBlaHlUluQxDHDWo08hMB7jFVEKid2gl5L4GtjkkBhpWQsKzQaCZHISWWIKjkemZ5jrAp3U+UFuZCcchlZDLPNHFm2qJLmfKtBZexp5kOq+YiBUKiyxRIwDMtcbNYZRTUyG1BlSK0PzVFGLiyjMMflDeJRzKnLHhcOUN4wlpJLJUGDBCEE4zyguZbwevEkK6pOfERSaeRsljzTSYoSnnNtQSnoo4YxxoWkK4p4y1Ot5QTk6DBlJuuQe8/laonLQeHqlvgSl9UJGpWcjSOOU+k6C0sJy1qzVJvjBjLUoIFBoI2nG5aYiweEocarTS40hhxrrzM9NWTVl3k8DNloQKx6OCkJMktps0xUHuOBXCmioaHaUZhMUR9tETiFk46buw+ynE2xHjbJTIzG0rpf8Xh0PYHIUHlGLiOGos5YBjR7ihkc0x0oOcfxjseakLGYpmQs9QSaJickJxIZIQbvFJlwVHIolwwbUtGwfYQ3mKFCWc8N8TL6xCoqhTxyaOl4abjCVDUrItN4TacSEi1L5jd6HB+sMgpzbAg1HOdFi2NiSCnLiH1KJWtSFQNkGlDqOcbaE1S7dOSItUDSCyc+q5sK1bXU/Yg73DLz/VWOdbsELiNXMNZDvJeYxBCtC06QIKVHVBzDIGJDl3kknCYkZ0alTFlLmk4hkxLX9YrgLcJYjl1eRw0VNyyPSBLFUFtqzjMWhQtyOZfklDBeIY1HqJSaVfTCgEslw+cXIwSGkSyxrma5pbfO/KjPSjNgqRlwYjUjTDwCw3w+5tbpS9QY01XzaBxzuoPSjq1GSlA+S7/ax08CaCqKiLAuABF6ooqhZHLKucEbScXnTLOKlpaZrRS1CeCRMsVKSdCzOxFDtXLEKqdWT6hEOeuR4cnaiMpsSDvss7g+4IZHDTN+yCCWNMpD0mqXR5vrJMog84CeriKdZsH3OeLXuUlvMI6fWoK98OnkD0DlL38WkQ3IrnsTAPnXvoqVkMyWuGW2/ZTnTt9+K1vA7IbnnKgQPvEHpDf/4DO67vgT/xtcKhwevnKyBm6FO5bv4tvkI3xn/iif9bfzn6d+iE/feT3/x/yIz/6Pq2z2z/Djn3Pc8B8+znd/9wp3j4/z2eNlXkcOd3+G5Pv/Df/uC+/jR+dfxyOLZ6je/cec+Yf/iOu/6y6Gv/kQ3/n4f+erF+7gNdc9/bcPhzjEIQ5xiOePubk5PvrRjx647/Tp0zt/Syl5//vfz/vf//6nLXOtIrldZVjggqqROI31BuUcKwEIZ1EyJw082cDTZpVXugHaGgIyLohp+jLjxo2UUh2iQDC9EnLDcJ3TUc7p1gn6dKlax6OR5yUpOB9z2s+zoHukTcUTsxlRYrjFFBmXrPSA5diyYHNOc8lV2BSzpKHlobkac3nAbeYcpXxIVg1xoya9sMRKKKmzAp0y590cR5c3EX5AGgh6keGSNoyN47w8ShyOGEYRwoVM94pQ68OSYlgWZGPYqjq2Ik0to7BEEOGJGWQBUhlm7IDNSomjPQcSIpFxvO/oCoGUmtlwHeM9VeG4sWeobKVErCJlm2NiREXAcl6llmxw6vKYcdglmXdseE1FG2a6jsYgJDcjSnJMe3PIwniDraBEXzqMchzd9IzrgjQMOB5kTGeGTtBiOZJYp7hlvcP9pQrj6jTzW5uMJKAtyTjk1LDPjDXUY8nL1xOqpRQTWDYaZaZXUyIhSGQd4SVnogYjZZnCMzXTYz2fJRRjhBd4pxnIkLpPmM576FKOSRtIm7MWKBbXHelJzaW0QmQyVkUTSLAovPeEGKZ1F6dGrNGgbUZoZxkjiKN1bKXPpp3BM0D4Md+hThOFmpV5D+UhNpA8GB7ja3HEbOkS8ynIoUdGORdiz3dcfpSTm3kRPZSAkreU5IB40zCcFgxsm75LaJmEUanJhmxwvlFBVxJal3tUVM6DpRMkokLfZYxFgqhlGAvLZYmvSqZTTZjUaQWbBLnk1MaY6zuKzbFECk374hapzvi2XHC+XcfEIZnRtPyAKIEjy4LpXsJ6o8/1a/fSW5BsRZJoLEilpNoLyZQikYK+12QyQVp4vHyEubUOTghSH/CEipivZpyTFVoza7z+Yh85yrjc9gxlRJmQoY9oiC1mI1heb7OpFVkGW3qazXiVWZexHjnOExFZybk4prSacnLVELZAC0GWNjD9jOWgRiPM0cIQRglbJUX2ZIDMcpyMWY+bLGQbxHJItWzwXgOeVi+hZGJGYR3rDEYWwXBCGxCT0hZDblCnuTcPsFpyuRQx0zGstsDkRWIDkQsqJUMtGzM2Gh9EhOEmMRGtkUd4S2oqaJFSGeWsRx7rHIH3WAQpilwIvJVsVOtUwgG3n++yOhyz0Q6pVDzBMCUYCDaJWB9KKpWM36of5frKRZazBRbNkNQJWq5D4CcRO+N1xmSQjdEqgMSxFsXMDDrMjFN0ZLkUWULnkMqyNmXobhqSskJ4y8KmQwUeFVh8qYqepDEZaEW3OkKZKoGz5PgisbXVPNQ4zjFzgWqc4nPPpm5QFRY1TImlIA0kU/k642FIL25gUkcQZUjpcVYgjOdSeY6k1Kcd9AmkY+wCOgqsF6w2msz1ErLE01eODE0qI2Lh8MKhM0/P5LTGGRVlKYuc8DFLiAIhaD1NzIoXxYJmZl+GfcMHyE68EYDuX36BxxbghtoNT3uunJ3FhpLjax41EDyx/CXInz6Lu+xf4pE/+SqjSXqYJ0+d4V9cmOUn9R9yTKxzsrfGT/bu5vfKP8kxscwHN2dYXqnx5EsifuHHAO+59wsnUGtNTrc9omTJ/uJuqje9maX6y/n5pQe5544pjq45Pvw77+bzb3orYcPwI2f+lLsfOYzmeIhDHOIQ38rIFfRkTJcqS6LGpXiWy+VZSrlkbCSRMLxEXkbhaC7lzF4qglAcTy/jJKyXYT0ssSJiSi7niB8SpdBILXWzzvHBJV6ztsSN8UWm5IBcerpjz+WwCh6UU/SjEYQZHsHFmuRM1ZAEntLYoDKLX4uojTICMso6pxV0GHclZ+UxcgKSoE6QexAZo9CR6JRelLPoBsQGlmsGXBnnJReU5Bv1nDRIecnKJm98PEN5CJ2lF5SJfUZsc5LYIrSn6ytYlSF0n1FlwFBGZAQooXACluMGFZdwV7aGCOtU10MaDIjVEBVkJD5EmJDYGWyY0BIjvBPgPdOyx/JGFaPH1NKMblZBZYJ2Fzqx4/4FSyhyjucXCcIlOv8ve+cdb+lV1vvvKu/77nr6zJk+mfRCEkggCCQSghikiaA0EbmiInIRuChVpQmBiAVQKQKK1IAXg7kJLZQUSIX0OpnJ9DNnTj+7vWWV+8fa+5wzfRIgIMwvn89kZu/V235+63nW8ww22GTrNCNDo96iP/dEhaLZ3yZuK/TWOo28H2k9kfGsL+Y4yU2xveoxOpDfTEpGOzCYOpzQ7OEYVmQZJpWUO5JWYzmm0JTbHrI+RscL7inHTFenqLoWnWiA0WiOiVJG5DxDTU9Kwrr0QU4o78SMNLCihPASQ0zD18hsQieNiZznuGyeJ07uQkjB/DJoDlvmleeBkqFVnubYyg1IPJP0MxSPgZQIDKPM0y86xL5FWY5z57KEVXsceVwgCxhyTVzhmfT9NHyVhrZ0jOU4PU67UcYj6BDinjnnac0NIDyk0hEVIfZaRyc0nSayLYbJQzQpAcp3/ZG6oLlJkga5VKimZkttOTtqQwzmDdbZGarWMDprMKlAaMdg1Gaq2mK2lDEyr9B2CCMirIIMTcV5+qcEk1HMCXOb0bpNKQ0hELIoo1mfAl/CuArGKkYrKdrAwI6ENa2dtOuTZGWNsJJUwp6S5JSJaajO0ejvkKkK0kI1tRTes2GzxZQ9O0YMHe2YiRxWgvAF66cKVm93DOw23KuG2OFWYz3krT7mfI21Wwdxu/uYiyyzVCmImKpIxqJBvq5Po28iYndRIfOKOM3xQtAYbqL1JCbpsLFqGZND7GytQOeBaLWkZkc5RToDQlKXKatmPbpTEKt5JlTMQEtjtAADJeNxQEtFNGU/WrTZ7hxWepSDyHh+Zc80547NU2jLqtzTQdCWUMqyENDeaAySxGco2cCV50ljh2pKlpkOq8U8CZbRnQ1qjZSVfp4nsQs30KEkC7bK5Swfy5FWIpRlfbSHIdFimWozqJu0hWBcJkjr6G86qj6DWoe6bDIXRxgnmIkcz5q9n+PEFOCZLQs6UcIskpaIyLXCyJzZgUnGah02qTJS0nVxL7BCo62kGfXhhacRV8iFpLCapC0wKPZ0agztEkgnqcgppIfEW1Y/6DnzQUeWTCOMDeEDpGe2VCeTMVZI9uh+tCzoKzI8cN+ACk5UXBW0pJp2ibL3LN/use0QAxLhkcKjuxYRhXYU4ufgDVp24nNx5/45CIFrt9CbH+Su9YILuhq1fbF7PuWKu8e5etMUncLhVixjwx7P+LKYq/KYeNt3D1vnvd98B6u2SHb39TOXJGxgmJdzHXdmT2Lq2hPY8rUhHvz6cuS3qnw8uojTO5u4qvY8Vt91LHcs1+x4nKM2n/KWsfsBmF/uIHeYjz6X8vlvYq2YhYENGAnn3JHyV/d+gK8+sY/KbErjuqsojpo5HsVRHMVR/I+F84oZ+slEBAhU12WbijxREX6A1+5JOW3TPNZojHREnXFa/W4hWloeSR4cCl4QhfEMt3JqZPTbJkOdBnVyls1mxA1oo5m3HnSHxBtM7Nmwq8BbiUPQEACCQipc4Vm1o4PxAu0tMs4YcG1KLmdnChudZXc5ZmooJSZjvNZmVmjmXIKNciLhQEHi4Ky5GZyHjS5iZFvOfHmGwahNknsUFjwIF+FNzEDWou7aqLka/btKjKZNllV3EOuUybLovrcaYrCpiUWBxuCR1BNNWo7YPlxgUonzmpats6xhAE8eOaQFbRwFBmkceIkTFvAMtjPOfcAzMqZxUhDPhNhT9fpuisjiJEiZ4SMotGRZNoZWnsfEu1k3lyHbGt2KQmBj71A4qqlBGM+8VhghyHyZ1NSw2lKROSdOz3Bi22B9h9m5EvGMCbGmBAzmk9y33qDnLSMzhnntEMLRJ1OMCiZWfc3gkVLJlHZiMCqjKjKk8LSVpi1LlFPIVYjBNFrMEDlDSSl83I9TngktcHPh2cXIbE6rndLRwQOhKDSlTjegtPNEtsmeWod2VGa6UkVKR+4FEQXklsnJOjOyhAQiI5gowYQcYKsbxDpJyeSUrEEA9dxjfXBm09QO6aeZSBqkpQ4rOy2M9Bgh0d6gneCUTRmlDLyVWCGRzSqpj5gcyDAoaq6BkhlKWJz2xMoihKdQnkJoIhynNifpn2hQbqVIB5GBqYoks1XW2p1UdYe81EemFbOJxSBJlSYOodfZnVSInSNux1REjhOOxLWRWKQP0fZkbY5q6pBRTh5Z2mWYr2gKPFIoatKTiYimCDHcpIO8NodWOZHxxB3Bil2GsamCuFUhMjDvKgyRo1PJjjgjtTEGEFHKeOyYFhKT1+lQJXURWni0sNRpI6XBmrBOhPfsqWRQT8kBJwQr9+TMlHL6+3LOtFuY1oY063Bc835UYRlJDU1KNGxCUghaqp+peJC2KlMI0GqSXE0SOUPdFQg8sdcMtCQjnQ7KeqJcYqSgJeOuB01HhYx17RkGyxPBzE+E2I9D48Eh0VgMmdGstZPE8xnVLEcXUJl3JLlDG4cysLN/Fq8bSEKfV/oGc3WoUID3tGUNqSxTJU3hLA5Jx8ckbQk2oSYt08M5O1fBThGzJykQFGwcyOhXbYSHqURQq6Sc6HaSS00lGWeZnqNWahMnObuHM+6pSFrdINlGSlJRQnrBiXIz2yqWLZVwRtcKRzl3rPdztGJLRyYo78KedQnb9ABeAdITG4eRsHlA0hAVOkJQkh20C+uxkBEdykwlghE5h1ImBK7GY3FYAclheMIj5iSkh+zWW5Des2Wt57QTnrnf95+5aTvP+9RNvP1r9/GGS+/ieZ+6iRtPOo91E57NKx3NbRWiTV8/dCU2Y+M1t+EkDNgSd6yp8cbmFh7cvAz139vwXlJ/3f9m2bkR+XRE49p+/k29n0gYttUvpGb7+dfHCUwVdm2qE7kSDywXeCtQd20nvuVfmR45h9f4q9l43BCPuzPjj078E756hqRVgpfc9xVu3HrUm+NRHMVRHMX/VJzQmiMrBAMPaipNH8IXe49B4I1A4am1DcoIJqOcluqg8ybFfInChzcYGocS4UdY2hAEORawvDbOsXoXUnjKHUuBIPcOVXhObk7TpzOq2mCLOpmssLkisT7CIWhHFoHHeSi8xAqPB5S0ZMojEAxPZzQTcEKyvr2HRz04xdCYJLVVVhYNpPPoAqR3VFOL8FDaE1E42Q0ACxUBG6ZS1k236adDnCb4uMWjJuZYNm3wApalLYSEWpSjcGwvK6SD2JQgl6zMQ8ytmdgzXoHZqMRYqcomUWfWRZSloCxhRGe0ogLpPKKp+GFWw7gSAhj086wTM8QSUhkzJwfAS6yAVDkSaXBSEitLJW6Rxw4nLbm0DE/OMq8ETZ9wU91ie3G7vGf17pwkdUwkNoScLmIsish7pPe0vGWyJLk/EUx1BFFHEptgklS3HVa0DcmcZXDMYyc6pNFuaq6Jk5DrEPhXEFzlZ1ojDDjhSVJJRyaMxUP8sFKlb84TSUcsHFp4LJqk7ZB5gl8iv3lgtpmzSxjKc5blNFmrp0FCrjSltEXsHXPRMFpLZBWa/Q0sjmU7I0Srw65SIMT1rMnmOuwpF8xIj/Ee232+FGWOoUlP5jSF0ewsR8zHBtENbQ6wM6lzT71MREHic6QH6SWR8zxQDwHHh6IGUeFZrBXJZwAAIABJREFUvUuivEX4cG3RlpK2LmEl+EKgjSPOHAOTbRwOh8d7hRdQSwVJ7piJijB2GAoVPP0BIByF9Nzbn7AdyW43hPGSqsyR3jOvLR0V2pwryFXOsqngckeJglpuyWQNIosVnrhZo9wGVXikC3H6YgylbiBtgGrT4QvHvCsBglbkUQaMkyzfVtAqpeys5oihSWI7znDboC3gJBpDqi1GGxqqSiE0s0kVsRDtC6T19MI3ljJPYjxCGRqmoDbVYWDOIj0Mz0+QdMCahFlZx4WY8xglMApybdjQGqeUmuCBkxCg3KE4b2oXJ++axQPzso+WimhHINBUc1AOMl3HO01/2xAVET1ffs6Bc5JcFzSkZ9YLVoxZ1u1KWT5hKBWuS1AECXkI7kyIryeARBbEkUEIyEVEXASNku1qk5z0SFfQl3lKWJyQGBHRFhWMc3hrWbWtINIWC/iOxAuLjnOMclSTWZRwWCVoVSxTpTrTqs6WygAIKETwVKl8TJ0WsuOZjQQz2tEUgaCtnTCMlw0TCewQhrttQaEsu8qW6dgxOOtYu90yH0n6WgVSeAZlh0YS9kJOgkMQ5QLhBM6GGINehHUyrUQwwzwMBXtE3qAtxbbvXkufgr7lESqu7/Xd53+4gw9d/SDnHD/DuRPfpv/OjeSdjC39Cbeet4y2muGUBzx3nnwVG2wBKjpgHffc+q+cehc8sG6Qk7eMM/GkU1j24AOM3ThIdNZjSN71btKy5pvHnMXp7jXUftAi2x7xHysv4jn6IpL5E2gOzpGe0GDtrWUGp+H6lRGPwbNlRx/Hbv8+pbNfSW3yRvYsO5tTNk6jN27hved9hO9c9fs884ZpPnf97Tzp2PN/+gN6FAcNSnsUR3EUR/FwMTpRoHB4IViz0zKStUMA2HaVpsqR3qGFQTkLQOJSBII5mWBlDSdbCAdGwHwUNA3LRHCXPzI9T6eUYEjDD7UTGBnc868Zz7FISt4zJNtE3iGNxMuuakY6JL4bqBhmKhnaKbxwNDWAQnYFaeGhInOEF9QbDmkybOyITLihl16gsKgCclfGA7oIb1G8iEkyjdY5FQqkDEG3BzseLwlmQabACUGpMGSyQoHHW4cQgtW7Cjye3csjSns6C57ZcuHIpEBggBgU1HyLhm6wfo9koCOZGypQ7RgtYEC08LMCIxSZSBidytBYttXCeT+oOsy5BCO67vVxNCspc8N7KHbk3N1XZU2r26cDzLPv5gIYLxukjYiFCcIfktKUpqMFLV0gCWPgpEDnwdOmiwXOwbLxNkaqQGRcoBoCQUW1aWmNF4bBWUu540kFNOOMtJUwlFvySHTF19AiLzx4gTRBhMvxKOFxCJLdGZHpMjdpAIkX0NdwTHef9JdFgRGKss6YFXGI1yccAgceVk9kNOs6BA0WgrZMwC+OTt+soBNZ5mNoK73XyBlrSHWo32moyQzjPcHQC9Ku9qmXQ2NJckXU1RY0VJ2uD4lQBoSA1IVlrGoocCzrGKbsAMIXeKEoRLGwnnOSLvnt1RC0Mz5XJJ0IZReD/zaUo6EAG5H4jDOnJ5l2feQojo+nmVAOYTXWQWQd07USqcowOLSFVillFRnWRmHNOw8OYuM5Y2oa8DQjG4h4aCGpCuOweoeh7Vuc1AnEaKrs6SsCaWyGacB1teJNqtQJcyFMCIS+KLt7nAgaQG3Dvk9EQV+UkvkE5cK44CVGwZ6Kw0pLITxDmcXvCd9rQCDJnGR5IwTe7i25QsQ0VMxk4mnaCmVZULGWPFekMiJy6cKMDoxLOsJRyS27kwq5C440hA/mw3TDXIAgKlwI/A3o7vz3UgzOGuoNiy0srVIGAgYQxMbRiVqcsDWj5CSdbhxGgGZbcs+yOoNTFhs8gWB9jTVjHVCekkqDNlTL8Ha2lqHoLTYRSDjhnZrFocfmGNEhcPZMFFq6zs/hW6GvM4khElBuOMYrYYZbCqIs9KSRdxhpBBLZ61tBRCE0XjiUA20kuZAYHNKEdVIgQDvassqh8IgTtPRH1zG2WvC4gWP3+vze8QYfvPYOTl39n7zkC3dw0k7olBV5SXPu3U0AbtguuOJxgmObcOKu6yjW/uoB6/jRd7/ChSm4U3+d1o6v8qtTO9h10wCbj63woWfuZOz7zw4JvWDl2SXeOGZw99U45fjtvNR9g8t3P5Wauo2PPK7En98Kf3Fpi398rgQs9Xl4b9THW279d3z/yVyw7F5yAa2rrmT9r7+J237tifgbruXk7/0L+Qt+lVg/4krKXyp8detX+OwD/07hCn73uJfx2xtedJSoHcVRHMWPjaWniDJQk+nCN2OlGPBoZ/YR+j2dqCBvh1vVXilNvbcpSy5DftH7WBBIlScI0YQfe0mIM5XJCHALdfiFchwSQSLMQp5Q3GKrNEGCi4xbQgICpA3plo8JOt0b+HI7kFK8p192iIUjRBcLWkPpoVsdCoPqaqV6Ja/bkTM1qBc+W7knCNeFSBbHdt/H8SG+LknuSWUZPRsy99JJPC0ZgiXXWkFQsqJLQnEMyE5XQA79NQqOK1phjETMdKwYmTb4wHsOCbHX3z2ZFPTGvvdr7qSnJaqkQlHH0hNKJxOzkNcuuR1PdZjHUu7oiHIQ4KM5pmfD51HhiKVdSD8b2+6weKQFpyQhttviDIOnoy1igY4HjLSDU4ZcxuAl/fOBajoEGcEbqAD654OQK/w+cwG0RQXnHZOl3hgvkseGglSE9g3oDkG3vCig5iLer7w1Y/k+I7s3JkpmgSBGZMyUIekkJLFl1sZUKfBAfd4u7I7emu/V64EN28L7rkWaIPEejIjJRQJ4aqqJEg7jJApPJA2F8UvIyqJYXKEgPEQLa3FpD/ReZGSxJUt3Q0Vke4+rDmmdA6sFTvR2qme8bLBOdk2qPbJL4rwQNKMwhxqLR1AWBXgoCM5FVu4uEInCQ5cgLra0u01CIGxgLlp6Fgk8wcx0Igmfj6gGPkQLCflwOJl0S/R0RHA9P1FNl5xEYQUIs7gvwbN8ypIltlcVXoCQgdDhQry1dqnNYNQIAefxlHyO6fYrlWVst2YjNIWodsnR4sh7fPDY2LVQEN1vrJAkFCQUC711wocT1cN0VCAtJIvbDgdE3rJwm4THeBkuEYRHOMmSrUBfI+zfQriFOe+t/94qDJpBsddcNKLu/j6MrPqIsoftm3ewcs8Yd60XPHb0SQufO+9595U3sWLFh3jdl+7k+HEY/pVZznxBi8e86mT6L/oz/t+Gx3LmZsErvunZ2qjQeeCyA9bRzucZvrtJsyKIc8ON69czcMM8960S/O3vxJy6/DH8rxP/iLPKL6M+dRbWtXjv0xOchy23DPC26POA4tjbnsBNIxGtVYZyp4/dg+FQvnXlcVw+9x7OaX2YF8y+mhujU9gxMsjj70i58Qef5elP/ituOklwxqYtXH/f2CM0sr+c+OKmz/LBuz7A2uo6Tuw/iY/c+2G+uPmzP+tmHcVRHMUvAGRXFBR+byHWL/y3t2jGkn+r1C38GB8IkSuIXX7wBEBbLsbgsVJjhV6ot4epxFIhpyIOXNaAahMJu9iXJbktfqFfHVlZEGr3aqfoSS/7CqIHwuL3QzNmv/T+sPn3bt+BSz6UmN/73pEIw4rxYiHnbGyptnqP9w+R2UNdZhROUvRsxg7QxqJbSKyXSGuHQN5NPzDTI17QiPcm7bvLxQFLER6UWUwbSFpIqXzQCwbzMUelZThxpgGwcKsf5z0K0NNehH/bQw5EIO9LV30PxV4ErEfg/KHHdZ8y9k+69ycCaEXBIciQ7hxwXPb9rCcQCxZXa+EEZp+ESjiE98x3SU8QroPQPjhryJZcJMCi6R2A8xLj9hWbH9qFsBdBY9j1qwJA4YJmyyG6RHJJ6T7EhTtsudmipulQe20+tgf9LuQ9MhzJfgZPki2uP6v2TzEQBQVMvwwXC9JbYh9Y2NJLjl59teaB2h/mQB7wVF7amgNDALmT5PvNbbfd3f87wB2gin1/I/bOLynEga39DodHVIN29Wcu5UJgbINhePWvLtx4XXn/LibKH+RPvzXNmknHqhceQ3T2b5O3xom3fZdVm7/GnzyqzLtOeAkX3HQNr7qiyeezq/m9J1uE3HvGr7jmQ5y7CcbOOYFi44949OQWJvsE957i+MIzLieSEblx/Mc3fsCn5r/If1jPceOeb54lufCHJbJHzXNx6WP86fCfUjfXcdmphhdfOcfaPTUmhhoM2SZP3nk76cAWzrkjZ3jPNOsbMwAse+vHMMdeSfGoEZJ7J5j86mfgtDc/kkP8S4O7Zu7gE/d9lPNXPpW3PfodCATvufXtfPL+j/PYkXM4of+kn3UTj+IojuKXFKZ7c38wSPYWMpQ3OAhOOfaBF0EAsAe4Tz2ciBQdoLwDYfHOe39h0++V4kCCyL5EDJaaOe0tmB+4xc2eqU/3a8Gi6fqBajmUSDyiWvukPHg5S9FLKXEHzbFv3qVanANjf+LRQ3F4RnNEEN4vaF1HJxbb4wR4tVSreuTC96Gwt9Ac0NP2PBT4g/4jIGidY+iaTh4JSVv6Ycjz0FollnBmq5b2K/y5L9k7OA6csDfnZh+isrhnDpy7rRYbdrBLjJ9P9Gah2+YDNH3f3XakOMw9y35nxHx0ZGfhTxa+S/gP3NqDkboeHhEN2mQz4z1X3MOy269lbBBOqRns0IlAOIT/9Y5/4NRd45x7p6f2vGdSvPrLtH/ljTSf+ndMv+wG5n/9I0Ra8rdDn8ScP8jWkYRnXOm54ZOv36+uqeu/jXaw5vl/gsq3Uck8+Xkpx++pEcnAYq/eNMWvFd9l05YGy+fggts8A+vDpvn2/cv4teQWzlX3s8q9hGtPDDvprNtWsXFUsnpuD6//4f/lLd/+Ieduu4OB/pxPn/prXHzWi7nq5AQzN8OTvjHHdA2Ovf1rZMbt18aj+PHgvOPDd/0DG4pBXjd/Huaaq/G7d/Pa0/6C/qiPj9zz4f1+3I/iKI7iKB4+evfyR5bWOQ5J0PaHJ/KLGp+lsPLAN88PF/v34gD9Oqj0fCAKd5BsP0XsK9AeGD9vpu6Has/B1tfh8kDss+7a2R+P1HzsbbL6sx/3Q/X7cELx0jLsjykhH/lI/KzG7Mj1ZT/51bT06uDA/T+yGpfmPfhlSuMABO3IT3VxkL8/HBx5/kdEg/a9B6b4zjdu4IV7NvPlcwXPrB0HMlR9xaabmC59n/d+x6BGRym9+m17Z1YR2QnPZme8icE7PsbTT7+JLeeNcteNkhM+cz3jJ17O6JODN8iZdI51m1q0aoKNP/gKjx6zbDu3w5nbDd9fuXqhyMvv3Mlvq68yJhTn3e1hVU6tGGDHSJuTNwu+cPoAF8Wf4CUT/8xpG87lgRVX8ZRt2/j88wy7z7ac3MkpZZq/Pz5hMmkA38Olo9y9+0m4s4/lgosvozw7zsDONnfddj9nnX3yIzHMvzS49odf4Dn/dhfn3O/J+Ut6xj0bV5/M4597Ll/PL+OWqR9y1shjf6btPBJ479k602GuU3DscJV66RF/FnpQTKWT3D93H1oqTh44lXrU97Nu0lEcxc8E4aXGvj+sh7vXFwf4+5HoMY5c67N3GrmgSTl0un3r+knjx9fV/GRFQXFwrcMSbcveOQ7chv0/P3xfj8wIspf2QOvs8K04eEqxoL34eb2yfGir5chTH86M8qHgoczhwbB0FsJOXXo2HFkbDl//QxnN3muth9erH2+XH2p3/SRG++G3xkux8N5Q4roa433n6qH2ft++HRkeEWnwN/1uLrjrM7RLkjtPt7xu1VPJCMLpl+55L+dvtAxOSMpvfRUiOrCtZv2U05i5pM7Fj17NO6KtZI+P2H5NjdH3vAd7/Jmo1Wv4yk2XcOEWmDxjlOO/di0PrFY8bdUc2y5dxooLwpu36XbOyPbLGNsq2LZccP5dnhWntJBXazYNrcfI7TQ3Vtnz2Al+p/UFvvCj01l3/FU869qUzbKPW1Z0+JKqsCEveN/kNJ/vq7FB9XFFPsvYMVfzsV338dS/fiul17w2HI5f/Rc4+0OPxDD/UqDxjcs4/n0fxGrJ1gufz4fTlcRxxG9k23jMjV/npR95gM6vl3i//ic+c8EnifWPf/U8nxbcO96kkRkGyhEbhisMVfZ/CP1QccOWGT549WY2TgSTHCng109ezmvO28DyenKY3D95TDQzPnfTDsZu+QHHjv8X1XQXszW4Z61gyzFlXnT87/G7x/0+8jDBFY/iKH7REPuUTJT3+fQnJ0BYLVBd+ynHvm4fjgzBRHIpFoUIiwzxjA6BIxU5ghmg7xqeHTn8fkRpscbD1f3jUr4DiUbCL6Uvi2j6hH4R3sMcyKz04bToUKTOSgEyzH9oj6SIBLo4nDnbgb8r+w5tUcUBiQ9eROkSv6WeDw+NnruFvR1KHNnlwuHRcyyz6Ohl/5J7fi0f2joLM+1kME/ct2U9gdsjsQj0EZgAH5i8H3gsDreiPQKnISrEgmfGvUtb/JvXEvETs8BaJD1L10EYD4HVcq93jnu1Y0n6pb3qtbrnIGb/tRIQ3Bgt9bp5ZNj3zIp9Ti7ifUb2YJo3ufDudt+5Wnp2Gd1z7Q9R3vW66jRtYRC+55cz/PlQiazyYp93nnsTzyPZTY8IQfNpBzM6yMUXTPBs28SuPReAa3ZexXa1h7feJJErlpM87ekHb+gppwIQTTR466rf5aLO57j2KRnDX4Xdb3kNqz5xCa0bL6NUQO6hlMOKs5o8KGuQK459fPDc+IPNU5xcuZwz7hHMnBHstLNlMdObR3n/82f5xw/Dk+72vP/sEf5JX8F/qxOQXVn8vDvq3CxeiuvfQrb2Kv5kxTLeMj3DGpPyyl0Zr3QX8KOzNvGK3X/L31z4eJZ//QZGbr3ppzu4v+BoZobvbJzkzrF5Tr/uCp7wrc+zcR3Mv/gF3LjR8ZRjU17yhGNJlp+Pyf+Q8b98K6/++o+4pHUvL9zzRS6+8Dc5YVntYdV97+4Gn/rC91h+1RWcOvUgo3mL2aTG55adyJbHP41nPeUMzj9++GF5jfy3G7bxL9duYd1gmbc9YQXH7LiX3Q9s4wffyvnzO47jDS89nzNX9z+sdj9UeO/5z9vG+PL/u57X3voJThqfBKAVa8q5QQIzyx2ff9zHeOdT7+evz343Sv78aPqO4ih+Ouj5Qju0TmOpmO+kWOJpbxGxE+T7PPRv+oRa18ub8OHnOhACQceHi8qSNN03RnRbsj+cFKRSk5iDC5tyH3LmESTekS85u5wUGCnozwTaCdraYsRSUWixn4t+8paOw8EFjtjndES5+8Zu/970hDjwLEsjJkoFRSSRPjjI6LV/KWEKLu8XBUhBePt3OCLqCTECFt8b7a23Sl1Ev+rsN16yGwfML7RBoLwgcQVt9dDOQ7EgIIoFMzrFkpERS4h69w0i9NZXN033pn8pNJa07HDpolipCE4OHLLrBXBJv6REuH3HK+RdSvg9Yr89IAjkUjnfXQ1LR/Hgq8FoSVSEUnsrdukqswhKHtolSylztHxlYZ/0IH0Iiq783s5OEp9jhaYjNdK57vvN0JbIWwQCK9hvhSgEba9JRNHdgWJhpHpEoV2VlFsOLx0lmzNFP9WDOOc52CWL661aD7H35FJgkURd74wHM9492PkjcXRKmlK690uu1EeUxMHMXnuEq0eawp+Rl12HKSx8L/ELHhWjEGWZQoRA7zmaxVdSoZzx0ajrnGdpfYDTCOGCR1nACL9wKdXwCX0i7fZ/f1PCHoXVGDq6RGy68SjF3in3pkJhry7vKLzVjNf2nycBSBfCT2Td3NoLKk4yVxJoG7xMah+cBTkp9to9jbyPejy/pJ0eJwV4ujH/xD67bd/6D69Re0SkrKvWNfjI86ZQqebZM4MUy07HesvH77iYMycKhncISq/4TYQ+eHPkylUU1Spn7WjwpcfdxdtvexkXVT/OW39jNX/4XzuZ/PhHWPXgBLNVWHfrbq47pcIfV3fxzYkBlsegVq4BYOe91yJ2OrYvE5z1gKdYbphoDnDnm15M3z3/TCUFI+HcmwV/f/4A75y8nK3fX0+zvoUNE+M8aepjrJ4Obcq0YNuyfqZW54jVOe+4+2ZeVXsuO0+4hn96TMJffwuqM5bdd93CitMe80gM9S8MtjW28B93XMd37p+hObue52y/lyfceAk3niS49akZ/7D17/mDGJgBrgh5XHkZfc95MrsGzuGFV9+IMJ/j5ZPreMNTjuN5Z6464rqd93zhus20P/FR/nDj1XilyE96FHLZyfSPjXHiA9/FPnAVl9z4FC698Hd45zNPY6By5F56Pnn9Vj76/a084/gB/s/uaynecQl0OqwBekaZt934Ze5+/es49dyfrpmmdZ6LvrUR973/5EM3XkpHwuXnO563fIq1I6fw7rnfYvK+Fq+auJFXX/4A99/ybT79e44/eNb7f6rtOoqj+FlD4Mh8RFnkaF+AKBH5IHYZ4Zi3MV5LjksNk4mhiGQISLvkR7kn1Oz9SkLSLGq0Ik8/nSCYCMu4rtHvMiLncUiMl5Qw9MQPJ6GeQ0MHA6neTbCTAi+gZHMKpcnRxBgKJMYrpLIk1qKEw0kwUoOBihGLAX8JAW69CPHN+gpB7BQ749B6mVZpR55cWIZVG4VDedElEmARjK8WrNq5SBJ7N8ixzym5jExUQ7TuLoYLx0QSAjr3xEKNZ34ohnYBwuGERMpQien6KuwJvtp58m5sNkUQiML4CnASJQusVBgl0N4y3FZMxyHQuMazfXXM+p09wXARuVokgaJblhPBe6JXHqNDTT2Np3VglewK9ns7tPAIpl2FEdnGAdtXxzgJx28rMMIhZYFjMSRBD5oCS4zRkrL1C+ZwEomXHqMEyu5/cTA1pLAVwejWFqmq4iQIFxheYgVeBs1Nr30DuWJO709oI19gRYxFYr1Ae4GTnsh7XFeIT51CK4f2klx6vHCUM00rct2YaAKjQxBnJwPBcxK6W4LEZeRK49ELjlmWdxTjCYCjGUdU0jZtF1FV2cIIRRjwMV54IiewapHURBR4DxK914WClQIvC6SL2eOqrHQpmYROpChnwTlPW5RojliEgvp4TESG1ZBnCRXV6RJC0SXJllwJqt3l7EVYY66rneu1xy/8uag/yr1Ce0+yhFg6L/aT1UtG0ZYhtEK9UAtvqHrrq14oZquORGRUoxyXC9oihKIwJobIdIli93Kju2Y8PaIIszVJreEokJS9C5cBInigtd3LALlAHhfhJMQ2xxCHFS9CmfM1yfC0QBuPdpDGgt1DMavHLN5LpPD05ZLJxIRxlJAWEaqIyGPLQNeT40Cu2FURVEygOE4KCgkagfSQlkJAdQcMdxJmyjnzrkQJR5Wc2DXoqCrKQH/RZsYpPIpMAt1+0h1H4SF2bkGrm7sYKbJwELoQnsCKcCGiLewalWwYF+S5RkWCqUFNqeMpZ4ZUSXSxt3OmzGt05LAylKVMr+b9L872xSNiq2S95dT6ev551y6iE38bhOBb269gl5/l929WICXJbzzrkGUIIXAnnc4xuwRb7C5Oivv5mP1Nnj0wxbfPFPgvfY6z7ndMDiushNJJFeZdwtzmCq2hGCEExjrE7Gd54o/g1mMF6ydgxao2xUA/Pxj/KE/ZFOq68fhhzr3bc31RwVS2susJG0hWVzl9i+ffnlKn2S9IV63j7pETsK7GsTfHbLpshFpUcIX6FG8eL7jfb+MbvxLM1Ip/+8BPe4h/YdAsGvzVzW/j5de8hO/OfAiWfYbHlv+GP775i+xea/nwcwQjM2fzsvyNfPrUTzPzO5cz+5zP0zz3neRrzyPZ+jWOXXkpe86o8oLrJvnjPZdz0ZUP8Inrth5R/cZ53v9/b2Ld+97Mb228irufuIZ3/cUq/uolDT792wkT7381Q1/8CpWnXMBL7/sWz/nCxbzy33/A7vn08IUDV943wUe/v5UXjTped+n7KT777yRPOo/+f/44Q5d/i4HPfRn+1yvZML+L4be+mq0f/Th+vxvOnwys87z9a/dSuuZzvPL6/2JXP3zkD6pMn7uWK1evI20+wPvtO3nRqT/i5Y9+Gbe/5M9Y1yzzjL/9Lrf9y9t+au06iqP4eYDA4x1ML0/pmUf15CgvYKov4rYVg6SJpBNpvIDlqWJZJ+gdJA4hHFIYEhdikHkBRhZsq/bRiiXKC4YKzfhKHW5olVgQoFpaU8QS72UQ8CRkEpTtle+puhYrszaOnLLNiW3KjIzolCTOSzo+Yql5klOgVQftDVXXBmC+rsAJYpsTOYmyEu/D7bpB0XAldJ4EIUwKch00W5FfKoQoWkIzPRTIhkfgvSRygpIz1Luu3tc0YyIXNE8mUlgtsEt0R9ODgtag49bVI5goaPKMEqQlgZFhTiKfL4zv2IqY3bYe6pQyCOII2i5hpqbx0iOF45g8p1oEapfrQH6zSDGQKWRXf+dkMPVqLbkozqSkE8dIHzRdRSwYNBGxLaPiFnXXXFgtIYaSoN+mC1o8gUAbRceUcBI6NU3JK5wCqyVa5GjvKPzi+0GjoeRSjA4hx4VfNPcTAqpOI6wicoGmWy+xSJo+IUskmVP0p0G74aVgrl/jEcQ2EHbnNAWKttYkXrKqfYDLRWW7WruucZoQODReSLQP65a0gmwH6xTtBU4J9rCMVHdjtnlABMK6qdzPNzasxHU1bgCJM2Rx0NoqkdMcKqg6zfJmFYFnvFJmPI6ZT2KKKGhYS75D4jJKPiVynuWdEH458obBos3O4zSp0MQutCnyEi+joK3pjm+PnCgfyIr10EokQlgiD0Wk0OTkkQztXSJER1gi1127aon2WS+G3egRih7pzLTCiDBHJdfGI1jZ1DgH83kF3dVAqm7LegRPdsvt6ZUcgl2rImZsiTxRUAlkLPEpMTnSeyq+Hc4q74gQRDZo56wSSxwN9QwOw7x6AS0ULDnbtAfpwtwYIai5BnXTXGg/a2jGAAAgAElEQVSXB0qFo+QKFDacCcQYk7CTPoT3aO+Zr0tm+qIFDbAHaoVCALFoY7SgKNlwMC0gxBubIvQv85ppV8LqxfGeHFX0SE6BxDpJgWKuKCOLAuHDOGonKLmcxMFALunLQj6LxKCoZCXAU7UZo5kmb9eZdyVGOyH4uxRQysoYGc5fEwkGjaDkNNpLxtcqmlVF3tWgeyHYqevh/FZR92xZjEsXtOXd89jvr5XeF48IQXtWvIaP3vItTqFE57SXktqUT979YR7VyRjdVCY65wmo0dHDltP36DPomxWozHHqs8/i1i0bWNka4s4nOib7oJLC+p2W60+p8cLobu6Rg6yaAN/fx9jF7+dLb3kPfmonK2bpRjyHygpDczjmFuV44sac754Np+2YAjyv+rrlLSMjPLd0GZ0Lnk+pACXbdHCMP/05PGb3/Vy54Td444tP45pTJVN319l8xXLOnmvw5qkpvvx4Q64hvn0jD9Gl1y8l5vI5LrrkZZzxqW/zrx+CS95nuOR9hnd/sUBUHW95foSbOZsvNp/DY2cvZdN1H+bv7r2XydEz6Zz5ChpP+xBTL/8R7ce/gbNP28ZNJwueec13eFPndj72g6189uYdh6zfOM/ffOkGLvzUOzm+sZ0PPE/yj7/WZnjFCaytrefGiev48xv/jL/c8QHyN/0ZtTf/FWdMP8jrv/Fh3vD5G5ntHNikoIf79zR559fv4zfUNC//4ntxExPU3/d31N/+N0RnPBrZ149et56RP3gFlU9fwk3rHkP1c59g6i1vxGfZIct+OPjQ1Ztp/ehKfu+6KxivC973QsEdg4KdA2u5Zf0T+dMTz+Hj/X1ckH+Hr1ffwmc7hk/9wd9y32kDrP7Ct9jzhj/BNZuHr+gojuJ/ILxVCCsxcQhGrV24hTZKkMdBTLFSsHtwGOEFBoEwEZWiJ657kI5UBCHSIUBKvLZ4U2V4pgzzVbJKwjGdmHruFwRxazSJbLBDVpjw/WTEeBd0NLEzRN6hHJStoWZT2iZGeYPEMZpmZEkwAXN0tRa9PhHEMyk8RhZo3WFqSJFHinUthXSg/SJB8cD2oRKya2ZpIsnmFSHekiBoFOb6FRP1ErmQzPUpnAQrFRYZBDXnWdP0DMzXiV3PfG7vFymdUhBFGpHGKYERNXaNJmxeUSfzigJJT9GT+phpW6fwmq26jyKyTEdlEGBkIGFTScxNtUHuqfQzmw9ikyxo5hC0pUb5AueDNslpj5R2wdzQIXFeYITExGHEqgOOdLiF8QJrNTODgZhIDHk9Q2Jp14CplWhvKfmgCRDekcWa1MfEtrwggnspGE7LtFcLlucRNi9TcxokbD1GMB9FlKxlKJVI6dAehAxBczOvKOU1Oj5mwtbCLbwXzLkye0yN0u46tlNFU4QLgeUdbj+xBiqmUijKRpDHghSPUeAVDJiINa2IoktmjAZU0C54ITBKYaSkLSOcElSNpC/1pHmNxAZBs2Il8zJhUlSYHtJsWV+iUQ9kzgF5FOa4ZApc4UHC+Kgmi4KmtWEgUpYshpPmMtY229y2IeL+wUFiJ4hw6O6lgNWBWFesoVJk1FxOa8SghcD6xffhwkOaxBReLgR972l7IjrM+Yg8E4xn/Rinwuy4peZ/4L3EICkimFihAUe1kFREg4pvL6xnFy0G65ZOojzkXlMISS4iRluSyHqk9STeIltlnA1mmgKouhaR8yGYerf9FZ9Stxk1k4ULk9gzFw/wYH4inUgjgFIRYtANZ57YeSLARx6FouzKrPJNBk3EfFHHdo0Mcy2pFhWiOCGPQHuLEIbYOSIHqYlQ3jFYRBQqEAUJFF5SlATLMrXQb6UsiGACaZXAYCmZnLIRrG0mrJ6rognarpaK6OiYKaoYL8EX1MQsRiyeB1ULaVEmLpKFc2awSBdIqhWCzIag3B2viOM5JJ6ZSkJsMmKfL1ykWS1oSsWqlqYvV5RMuFyyQnDLqAJTQiiLxlISDqcGGLMDKAQrUsWqVONkQr+PaLkY5Synp2PUjKFWGASgfU7Xopg5F5MJSRH3tJdh4Pa2oBAIBPVCsK516DAdj4wGrbYad86rmHvuJfjqcr606XNMuSavuF0RNVqUnv2cIyonedTpABw/5tlU3M1vqXt5e+f3eX1jio8+QzI+CJGFHccsJxGGG2o1hppQHp/FX/FVivrdnHy7ZPsIrJmEtOK5e/A0Xi3OJS48GyuKUzZB5KD/1DYnboez74B/GU7w+S147XnMJsf3TtM03DgAr91QZo2MufK8VXzwOZIs1cx9I2Fr+vs8NU/5+tkC2fHk11/6UxvfXwTknSbXvfnFvP5jOzn3Xs/a4XkGnzBMcuwo3go+9oyYlu4jG7+Qi6/6BE/7TpMXf20Xz3/H33HZG5/Op264mI7pQFyl/bjXk7/gMjpP9dx8vODJ3/wMfyR38OGrN3PDlhCzDu+Itl9D7eq/pP+/X0LfZS9ly2dfxUu/9iZWdCZ434s057zgtVxywaW869Hv4r3H/iFfOfEveM3IBdw+eTOvuOqF3Hz8FH3vvojjZnfwsis/wTsuvwt3ECI+2Wry2m//E2f7i/nj/34ve5jjH/5olP9asZVm0dgv/YpVyzj+AxfzyTN/E35wNbN/8Tpcu3WAkh8eLr19jP++eSOvu+0/yITg718U89JfeTNffdrX+MDjP8S7zr6If37yZznnt77JR09/NkpM81/JX7N6x5d5x2n/m09dWIIf3crcq/8IO7HnJ9auoziKnxfkuQJr0UaQx0A3plRbxYBHYam0apSMJnEFwsTMJWWmB8pUM41DolxO2bdIpWRFGlEmPF8f66sTFxEDnSlmXYm6lWgnkd5ipMdIWN1yRFbTlDH9xlNyjv5C09CaohJudAUhFteG5jQr5y3HTUZIP4CSQSvlvGRclmm4hHGqjFMFHGmkg6WPkCResnt5jEwkazplpIzIk/BGJIuDZkkJS900yUyZ6aifVk0hvCByFqlqODXCMtthKFNsXxMzPqqYooJwFqstDaeZyOrc117Dbl/GqdBPhyB2GT7uBKIhBFWb87jmFI0IUmUxuWY6r6KRzFcVWIitoGkTGjJGSE9TaKzxLC9mSTD0ZTm5Vuyo99NUfbRGIK0KhA66UEVBn51lWdEidkHT5ZwnR+G8xLtAcL93zAgjfVXWmjnyMviuKsDLIAF65ZkagZm6YogyHaEJL53cgqll6jXbhmrcM7wa6Rbf1WgjOWuuRGOkgvYx0gcdSkk0sbGlblNWpyngcUowbSsUaJK8jLCKjoowKDaviWlXPV4IpnyVkbk6pp7gXEqVFtJ7nBCgBDWToJ2jWYvYPlwD7zAR1K1ESIVDYaXkwXUa7aBpYhKXMmDmmfJVLBJX9ox2BLFPAUGRLGdYValbSVtEpCiyWCCTAq0EXngSVVArNJUiJ/YZscvJkUyqlRS2j+tX9dFMEjoqQlEQdwwjrUkkHqsCiyzrlLxs0F1R3iDxdUOnpNg9HDMbx+yU/dzfP8iMDXH1+jNFWlJIkVFxjroxxBj6jKckC4baTfqKJl4IrJfM2YSRoomsCqyN8AjuHhlgzPUh8XSqArOySa40qZNEzrG2VSCtZs9qhR+I2T5SAe+QHmbLMXtGEyZGYhJAtgQr28HsVqRVBudrOARFRNA2esi8pGbaDNpJYh8cmahYkg53OH1iDhfXUZHAVSyJgaj75ilyUDURx6cNaqKJdWW8lNQ7glKqubN/lBlbomFGiLMyfTZn2EWsaXuqJhCFsk9JpWLelrpXTL6r7QoB0TMpmFitKBmNwhC7nJVZm/5CETuBUAWaHJlX6fv/7L13mF1Xee//Wbvvffo50zQajUbFkiXZWO42NrHB9G66CTVOqIEbUkhCS+ACCXCB0AKhJhSH4jiEksAFE1PccMOyJKuPpOn19N3XWr8/jkLu/ZHw3DRuch9/n2f+PGvvWWfvs9a73vf9fnoOKrUpqhhlaMAgNUwiy0I66Zl+0YxIGShhsVJzWasb1GOToXyNQqYRBignxU+hkFpYWtE3BgFzNTNxctDFgNkNHn1bgJHjZTmbu5IdnS5GFA4q6aRDmDv0q1UcpclMg6Zvc2t1B4vDBcxyzpr0aUuPIFMcqG6gJE1yaVLK16CcEiqTUFmDjLaK6DuDg4DEhczQKAF+FuLRYlm7eCpDuZqiiLH0oEzUUmAM6iWRZ37zf55+IQGaDoZQj3wT+fC5rMQrfPH4Z3lMP8Q9MYGo1XEe/oj/o3GsPeegDIOLTioOLNzKrl97NZftO8g98RXsqoUECeyfFDzNX2AhKbO/fSbrsMHkYc88TVidZ89p2DcJu2c0zkjKhgMrXFnbz66FQYnJcAe2XbnKccck9eCl31Ec7Pv01Q9Re4e4/Kji5r0W+vQPsPacA3f8iCnrcuadGH/C4D3PMCjFsOf2u5hefBnHz5VIQ7DwiQ/9B87wf22pVovp65/JBXetcvjcgD1Pnaf6mhehnv67pCeWOXmewfe2CrzutXzypddw4d/8NbUbv4712mfBZM5j78256i038qeffRHNZNAgKId28/jHf4HPPllwdEJzye0f4VLzBG/45gG6x35E7YuPofq16/Ae/DIiadNaXeTi1t9y+SXHqTxrjd++9Dn86vI8ozc+laGP76B+w9WMfuPFvOyuP+em06fZGnZ4y/GP87nF36b69HO4cOkQe7/2GW78ycLP/H+HWgd5wS3P46LZr/J7X10iHq1y6xufTnPY4+OH/5Tr/v6Z/PmRT9LL/vds1NljZc7/9V/j3RdeR/aT++i87jXoMPw3z/ehpS7vuvkY75x5D4UlwVce5/Gea/+aq0efzI+Od/ifX/gSR15/PUvPezTeM5/LNW+7n+a3N7G86vJ71l9yg/gwN489hnc+x6A/e5q1174K1Vz/N9/XQ3pI/5lkJAojlSS2xalJg5LoYVsJuTBpyIRiauB3yyhM0IKO9jguNoChGY97CD0I4hJf0ZAdXJ0RiZRFUaFdSjHtLn0f7vGHOSnHCMwSG0KHogqp0Ga8Z2DlNUqhSyWFkcjGk9ARPvsKQ2BozpYJvtJUMmjaDrNmidw1MZTC0oOeidO1Iotigq5w8LMWfmAwZPt0ii5mEJApk6YskFRBWYONZW7bJIbNsmPR9UzmaiVC5SNNk3ZcA2lSTEM62sOXVXLLxM6hislCEHBHvUG9rdBhxnLusoxL5kDqCFTQxjVChAjJlcTUGTtXEixpUoxddrZ6bJRNMqHRbodlu8hqUGDOr7Ey7PKTrQ3qoj3oqdHQ6Jeo53X8ts9kX7IzihhJMoLUotYcQ5o2U22JtAcZzbLukToG28OQltTUUgOpBF6u6QzFPLjBZ20so1Vz6ZgOrtBngkcoZwmOzsFKGc0F68NQin1qaZ1SaoAJTVw69mBzP9U18FPJvDtFN9yAIQ0MrSirDmXVZjryaCsXhEmuLBaHbZQWjMeKHV2JKTVSCWJlorQgUAnGIPnEbVuGOTBRpK9dVmoWyzWX7es2e6MFSiqkLyzW8EhcccbOQaGtQRbXJEcJwS11h6PSQ6UWcT7YDp7c5OLqmLLsUUzbZLYiHc3puja5MPCqXYbNDjJzWCt79IRL0e6zZPoUjJha0sRLI85Zjziv3yQyDCLDpZJFeDKlq216RYv1wOVy516mp6rIasJSMUBrTVHFiCSnmIOjFcUsZ8OqC7nA8KHalRgqRxqC2LaI6zHSyViJCjyoR2gaAX3pMhaalM+U0wnAEpq6BicvUE9semXB/LDJ3JhJ70zwvSKL9Hoe9TzHIcE0UvzuEE5SJj/To7RNZgzJlOE4QyCoygifHhU7wTJtyv0qI7mH0oJm4IPokRZTTDcnLKR0GsGgD08LcmVRjk1ObdPEdY2fRVg6pJHngKLvC2aDEe72tzPe9agWFc2qx0rdpoCFqQbfa1bUKEORWAamyhjrJCwmDQxDEZdNThQaLFUHGSkdVkmigHlZwkRSznNy6WJhI81BeeZyxWVz2sHQmnJmkDka7Jzch0CCtAZ9exYZUUNTzmI83SeRisyGZRzmVYnTUZ25oEjPNmmLAloJTCtGiEEWvl8yEAz6LOO6okhEWa/jmn1K9gLtIYGoRhSkjb9exY9hU9TlgtU+Xg6GSujlDvOyjgKE2aWpLFypqWlNagmUndFOHYxOTlNWwDyT2RICw5Q4UYOKFPQNKOQ9aqpJFLhIW2DKiDUhOCIapNImV5CkgsrmJstDASejGkd1ja5rkbqClaJJ2/ZQGDha4okY14hJLIGVCpwcOhWLDh7KFCxZ3s9fg/79l7V/Xkor3r3v7SiV8fxZQeP0PN7jn/hzzUH+VxlBgWzHHs4/AYf6p6js3MtZ9Rk+nTyCaw8ran04sKnBxcZxjrVdgt7gpGVsV5OPnf1iRo5G5Aa0SoJGF0YbEfv6KfujwzTW4LLDmvLDushVm89tq3F0dNDU9zt/JXlvUMfdMkulD4U0Z0Uv0X70U5HTJ3jmRRdwaRKyaAoq4zGfebTBWcdmeW6SE3Wu5Z6dYJ7s0V06/h85vf8lpbodFl/9UkoLTW56YpGn7zlGfOXrae95Ja23v4W8InnjNSZDXMQXrr2e7cMFhGVhjo5SffbrKb/nq8gnFAncnF+58TiLH7+G4hcfzbHPnsvnvvUMhK140wssfvMlmv1nfRxj0xv51bs/wEEd0Xn0B1i9fh9/d9Fn+cItWzl20whfykbZaAnOv/XdGLf9CdopEe39NTqP/hOa197E+nXfI7juR7z/ik/x7MqF3FBw+O2p+3DOzXny9O0c+PyXWe39YznifWv38NrbXsnjb+3x376mKGzbyO7feh6vbpzNJ8afy2d2/BYXBlN89tinecF3n8xN334OzleeSONT5zL0sW08766n85pLDvHZix9L9uBBOm/5fXT+T6fFo0xybKXPgYUOrfCfLreMM8mb//YQzwpvZOonPb62dxPu5R/j978yzZ+95R3s/M2nccHH3kv9jn340RrWSERpc5dqqUV7X4GZeyqckz3I7d1PsT46zDueZZItzDP36lf9u2b4HtJD+r8tO7fJDA+EzWIQkGPSL2kMLdFZQJ6WMaQ1MHJwC7StMp3AwA/m6A2lbIk6NGLY2DFIOh550mfdEbgipmE9yDZvhoVhl3JusaIrrFaHEbUy/WGHYq4xJJwaG8UIBKPlFtg2p7I6Oi2i1MBGvORK1IREFzSkgsm4SehaSK1JLM3pkQKOUESBTWi7TDYNrmivszs6RZ6UaItREmOQkyiJBQQwn9VYbxU5ljUIHc2q7ZPaOeWshywkVGRIOe+hHMFy1RuUbSqDWHYInXVadkKkbSzhsV4VrFcMpCUITYtT9TIzIzapJZDSReoYi5xOYuK1a9TCKvvVdjzHZ6JncrK3lwdrm9myIhhbd7CRmCJnKovRpsBUcHzDEM1anaQ4yCaYQJCZ7Jwv0tElhNKslkwmrCUqtPGyPn1lcutIgVbRIM8H5VKxYdIlxndnmLEt9hdrlDsjtHSBdtUgt6BZkxhaokxFb5Nip1BM94ZoZUUQsFitMh00OOJXqScuSgv8vs/mXpdCBmk0eqYEMqUsu/ipwpOSjuHRKfgYhsVaXMI3TVaVTzP36VaqLA9ZmEGTvNrFEDAjaxT1EniCOVXieDbJeqOMa8BIuclw3sRUORY5WpwxsUAS6D5eVGTZ8fDzNlHJwiVlWK6hTM3imEUhVwzHFqWCYmYoY6GcU5aKTiVnruixagVkrkmz4rEw4lItrLNKGVOZ1HSH3cs9LlzuMNKPORCOs5BM0rNrZLlicVIQFXwSe2Bc8rAw5THpDFv7BuU4IJMuDb2CCHK8QDHV1Jzf7JHnmtGWTyCHqZ0p5QUwRMbGNqzmAdNVH8ioqBamlHRVjci16PkOAs1izaFlOuSmjWHlFMMR+tRxLJuTIz7LxSG6gY3ILdpeykhmsiG2ccanMWrz9IqC3BZclHapSEWqTLqpw6p0eGA8wFMpyhCEtklS18xvtDANiZ9LiqpPwW8TYxI5JrFrYBQztBbUk5w9UYJV9KhmmjXbomuaWEowU4UlN0MLSZIrjsoyHcNFIEjSIlWryJppkfoG/VGBUDCLQ64lo1GX0Twm9hzudjahlOBYw+dUtQHKYN0bBAe2gtFWCbIGhmHTkj5rtSKlaJCFL+SCeqrIDUGsHFLlIEoJyjEIMZC2pi81C3GVRTGMHxfY2IuJpEvP8tB2jiEkTV3g0HCNXt1GWC66ZFJ0JbowTNWUjEcttJWzVjA5MunxQKOI67bxspR8OMMeDfGFIHYLeKJNJVlHlRT3TnjUVjeQGAKMgetmy7MQQUa/atArmxSCNYpmj12tac5rh5giQ2iDK+M7OD+5n27B5FSpPHhHVEQTg9wQJKbghOczrwNM06BETsVSNKXHRDaNpRSmUjQd6ArNTN3jdMNBahBKUUtdNDA/YrO1azKUOmxNLQ4VNrHfHeJQ5edjoH5hXtntpM0HDvwJ96zexR+srXHqxMXsVkdwn/y0f9E4lYdfjvPpB1iPY8K0i3/967niK+/iwdkxtjkdahtdMm0yHVpMdDS5BU/cUeaC2f38+kFYGBVnaqElvY11fnz9s4gPf4Nn3xqSNiQTozG3PDDEE1cippah65k0upIXfQO+8gR4ydkRlx4pcNeYzVDV5mGui/3dv2Xj5ify3cLfcNPRHn+wx+T20zaXfPMLBE97HStTU3gPnuTmj1zPU956M6b4t7O5/l+QznNab/pdjNk53v8Mhw/aR+lf8Fqmd76MI7/5Knb1Yt75yx7D5Sk+8Uvvwrd+lj1WHp4kvO7DDBevo2auc0+hyDu8HvPlEo42OCep8rjTLc5a7FBpCpKeRVvFHARu/f6n2V8+zh3Vs9k8ejF3bh3lZeU7seJ1ZH0n1vphVGGM/iW/Deb/fm1RnuCVox9i98L3eM/9b+elT4j58HLEq+75Ip+58Vx+5yXXcKJznDfe+Vu8/O9SrvqJpDwZsuG8H2Pc+eOfjnPRmb+Djs1HalU+HKR8IhBcVNrMNrvKaBoxsnobz90VckKdw7Y7b6f3rrdTedWLcBbuwFjez8rKAqutFkuRyZoucVKPsV9NEQ7t5dkXTfH4XSMYZ+y0P/TDE4Qr06xFKS940S+RFtcRi29HuwEPnjPGzWMv4fki5PlPewS90XO5f6HDdw8tsnTsHp4qfsAj7R/wx+kQr5QtPrG2j2snxvnQUyZ43VenOfnGN7Hlfe/7V2EHHtJD+s+mnlvBkTlDSZ95IVmckiQYpC2Xtdyj7fr0syqenqHqr0O8FUcnaEfRKcHaMIzNuiyXNnDCsNiVzFGVGZYUbOkKhkWMazRYckukskYpFgzFHaSxjhiQQhFoeiUL3fEpBRm0bYzMIkhNuo1hrOIccVYiMkx8IRCO4uL1Q3zr7AbzjTIkLn4ecl60n0PBFKPSxgYsKTg+FnBITOAYyxRIqOQaI28x3pMsUqcAOBKKKqUSCWa3GKyMZNQ7MxhCo0yopwGJbTDZPc2CZ7PqD7I+9URSLyxxZESRKYtOwWK64tAqKPqFOjtXJJ5n4IQpy8LCc0z67hg/DkbYUlhi1VAE+jBWthczqfDIle9zb2k7zsoGzs0OMVToE/mbGW85bPIOsCW3UORE2iLXDuQC6bpMJV3WA5tVUWR3toibuHRxWLMaxHSxRIqtDebHDSI0WS7wjD7jEfREjyDrUk3bpAWDCQwyN2NlQ4+2SiDJWUkDciyWlcWWuYhL/CPcbo+Ta4Pps0J2HFpHxDnLVZuNywq76eBVYgwpMPoeQQXWDcH00DYOiVWumb+P82LJnZvrXBDkqI5LIXPIvCZJ2WAzAyPMTDoU8xySgMWgx9i6S1xOsbWgmwdIywND00gEtdCmkOdoaeCJhLxk4TsKIy3w4oWTNDsOa6Hglp2j2M4su5I2e9qDzN9QarFayalEMVXlMN/IeETf4FvxFsbSHo9vn0BbNqlhc6hRY6K7wngXZA1MFePlcKw+TKC69JXLauYzZMFqXsCVCje06fo2O0OXgnRpezaq5zBlZGwLFX3ZYyWZpJov4joxvg9ZCcZjwbJpoywJsz4TDZvTY8PUzHWC1GI0m2M528pw0cAWAa0titm1EXargSuoMNTg2Y5zRMmmljfIDUWh67FhdYVoymB5QxchDIquYmFLRmL5FBOTVBhoy2I1GeH8dJXTww6ZMNnSyciSVVZDwRRd5ismhqXYaUj8WcFSNsxatYUd2BSkhx3FEGZIW2IYGolJWUnGV3yalkHR6WBLgSkStqfHkcKgo3wSJQhQHI02UoiL1P01moEDVkY8V8QY6lNeEeyKp5E1h/Qf3D/cdZqBzXgU0/cH+2BT2tRUxKwYOKmuVA2kt8bWfkiMiZCQCAs7N1n2XHLDYEUWOW9kiWDJRLUFi60SAoFhxRTCs/CSRUzVRgiNISSBHBxYL5UDlj2HnhszXRjivHSeasfHdyxMDM6d9Uk29ZCm4GRFEHdMWqtVRspNOtUuWzs582kRy8ropyaWqZGewtYJuS/p2EVqfRBCMy0L1OwcxKCMWpR9ZD/Flwl4EqTNJqAh24CJcgf9e0v1ItppobTidmecVHQp5gndimaqk6MNkFqghEnZDxllAdOE+wsbKSQ5Pc9ktZjiOCFbj9ks43B6ImdJluiNaKSpOWKW2WTdx9GRMokq/9w16BcSoN2y8D3edt+bAPjlxOXytsv8TBvrvL1Yk5v/RWO5l1xG/OmPs+cUnJj5Fkf0wzn35CLb5uGeHQYvFgc4traBoWlJ4Gi6dZsX7vgVvB9/jiCBlVwxuQK5q/EufQZlt86zbo+p9WDTpS0Wf1jj3osFv6HWKD884fTROuFPPM47qZm5O2DhwjUe90OL11xicf7Bz3LpnhHi736bR33qS9x3x1/x3rEyH5hf5fprxtm+oHjhDz/H9Ze/iks3vJXdd4V84s438fJL33gXBuEAACAASURBVPnQJhbof+j9qHvv4eNPMnhRaQlr07UcPvs1fOR9X+B1hx7g+xcJTm8t8dHL3oNv/f8hsYDWePs/y9m3vo2v1AL+tLyZjqHYcXyEZxypc95CyPa109hKAt7ASckzmPQTWhZsXVrh6uhGrjctvrHtMv5i+Enc2XwMD9/o8PKrdnPl+l/i3fLfMaI12k/6NPwT93DVhkexrXwWf3jPG/j1Zx/jQ5/Mee6Nf8DdV27no0dey2/eGLL3KHgP30Lw6l+nWZkEw0bkISLtIdIemBZjdom3ljZyMJ7j5vnvcPfKnfw4miHTGTRKQAlndIl3FVIenv8FwQ2fBKBHgFQVyqbH5kBSkes4Z9yWwq7Ht797IR+872lc98SnMXfvfWTf/DxPE4cxRcjQKUFk2+SmZmFUc2z0IOkQfDKc4qt3bOC9j9vFVduHuGr7EGv9HXz5J1fxKz85wAudT3Hdlhl+Y6HLa1ot/scuwd/N7uDJd9/KqT/7BFOveNl/4FPzkB7SL0aZbRKaAaVOwlQQsjXKKcs2+5JRVGhDVdC1HSJPsSRLNIVPQadEamBIYEugpHCNjHVnFCnncYQmlyaZLpHoFmOxy3baHLDrSG0y3l8lkSaZGDSSTxinKVXnSNIE19Y4qSJxfFayAmk1ImQ/HUcT5jZ5oJGrBcp5jDQMuoGF0ysgrBjp5XjFhKCc4hVy1iMH24wZ6fU4WihT0ws0A5PGUgc7z4lkiY5dxennGGWLpCCoY7FB9OmUzlibr2XEwkS4UAkjPGnS7xk0+h5ROsKcamKqiByD1LWRjsvGUCLjGaKpjKxdYaZuMtzMSXyTlijiWE1WDJNlhnhCdIB7TVBS4GaKrf15bh7egts2WW05tNMyWhgYeY22sBhjCT83WHQcnMgiC0y0YzIsF6nmXYJMUOwppj0TaQzhxH2Qiql8FaPpEirJPY5F2YDUT7mktcRxNYEnM2IlKBMR5yazWg4ss1ODWA/KBc9bn2NKrZFPKLak8GB1ks16kXJqUpIdHLvGiNtjv5tznurQiA2kaVNX6yxpD4kFWuOrhKAPGzslZCXhFA2aUZndnRbBmOKsvMsBywBpMx4rTkmPUsslUwa1MKUUm2TSYp461aRN0dB4sUskJJI2LVGgmPaoqSpx2EB35wlsxYFxl45qICNNo6/Y7K5yzBOU56HnakbWNaMqoik2gOpjBG1W/QKWq5nuT9KxBJtYZq9cwsjBiQXaMphzC9SMaZbdMUwhaBckZsVCzGu0FKz0A8qFVUzbx9QjdAOJlZmodGDA8LC1GNR9rHoGGAM/xe64ZnWxiqp4FMIQJ0+wsxRX1fHaI2jRxJag4wGMumqtAxnHhUMoDPqOz7obsO64iE6F893ZQWZarTMVzTAsu8wgWHcEu2mj0z5KNegQYQhB37BYKfscj87l7O7dzI3m5LZgZythEZgJhgi7MY7OKWiLsT4cbo3TCSwKsk/b7nLYtdm6mqMszUpmY4Y5KjDBlqSygjaXSW0oZIK5mkmYKdxIsJxX0C6YMifLDDI0TtthYqzH3tWU6a7NAyMma0OCTT2FTUpEjS3hMRrtZdxUIXSV3B4Y5HS6FvOFGmlHQVEz6yg6jklVaDITypHgPnuCKOjQbqQs4P60BzAcBtWCQg4iMWgODZpi+w1NbTVhVUDXshlWEqNaYzXahtEyuatiU0lhIlIU+yaHygkjQlDSCe6Kg9A5QSTQPYPLFhxEzeXENkVRxJgb4JRncLDrM+opxoOcs3rrHDNyLFmhGmlCB2ZGTbwQhg2Dfm6TVSzCoiLKTE5XEpw0I8t9nEBwX+BQTDSy0UJnNUaTLj8UDqFlM5QnGDql1hG4DBw42wWTyBNoqQlKEQ0rADnMzJBDoadIdEocSM60AdO1HeLY58fhBs6KTzM2uc69dYNQCKIzRij/nH4hAdre+vm8/sLfZfv8SS6/7T28f/EZPH7tDrxXvOJfPJZ19i7SoMBFR0P2nfoe9y9nvGwZvAxmN1aoiln2zVbZvDRgcFiX7OWZG5/D4QN/xkpNcHCH5ryDGnc45WjjUv7utnfxgbsV/raQhUWPRcui2mhw08I5fL89yb0Te/jz/e9juSp58l2arzRqvHpjEzvzmSvN8l0UV/QlYz/4Ejs5m69UjqEesPmIM8+bH7uJ371xmZec+hYf3fLLvOW2z7N+89/z5dqneO7OX/0PmOn/Okpu+R7xTV/h6xcbONtSrhC7mL/ij3jT5+/mbbd9mlZV86mrHd5+/tvZEPwsw0ykPYq3/C5HTv8db9s0SauZ8MhbfbYvJpTTBSr9BXyvRPD0p7Kycht3BSN8rHwVYTqJEPBc8fc8I/gy79UlHnlnzrOP/IgnTd/FTGWMYtTH+mTC3Y5NrXY+Bfbj7Hsu8sUfwJzc8jP3MlHYxEeu+CQfOvBe3vuUr/H7X0nx/vhFPM4J6VsGN770IqYe+0SqjskWx2XEG/1nA/RdXpVd1T3AoCS4lbZoJU3WuyfYcPPvs3fDKp3Y4obVR/LJ0pPIylt4zaXj6E6b20+s0+ysUspXmdILbJZLXBzdwSMOv5X5z72fyb7gZQw4fzDgCMH/4g5p28Rlj3n3JOvB+7jj+5+nueURnPPoq6nvvYBXXjHFCy+a4PN372HbA5/knRu/w9W9mD1xyteuPszuxVE23/Bpuo+4gtKePf/GJ+QhPaT/uzq9qUShA76hcHMb0fXxVE7oeiTKxUDRsGYJYgkUMVUXy13AWzOxxiXzBYGxZrFoFFmvChbHUiprBk6i6Rcc1kdN8rxFz6xjJJp63iat9WgWy4hVwUylTlH0KZltEly6lDiyqYyX5iBs+maLe6mxnPvMNwTnzOZIXxHaJlt7HpFlUheL1FWLmmVQaS7iVDNOmh7z7sDC+uLwIEIOUfXWWMHHV2CIQa+SFD79vEGxrZnLI3YnCRuXC5z2THyry7iyWDBTKsYSrpJsSByiFIT0yV2TIBzYueeGYL3sMGquMNpvM5ObIDIckdPJigSkXNS0CGshXmxwbmc/6+MWnqOptn3ahmLBLCEyhVFYJmxbnNYBe9cOEVmC4+alVKozDHttmsCMcthaCNluzRKpAk2jSdfSNNqKFpqerRkyjuM2U/LYgmSQpZgWJSpRRrUPo7ZB0BOcKNgc6Gym5yVErouVwYZVhTccU5GSlXqIs9YmEBlrwuIev0K/CherfdipZD2epFlyuChcInA1QzpF9W28nkGMYDb1GQ5DDG1gupJ+bpIpzbxbYKOO2Bmd5idM4fQSNteXqdgZzaEi0+EYlzX3Me/kSM9CYRKsuvQTyboMOBI0uHitw7o5xHxaJDPX8EgZT/r0hxwmQo/F2CXNDZbsCh3LIZAZm9c6nLcac3RDgVVXM+VILogkLc9nJJqhbazhzgfgWfRdGyES+gWHNJOcFx2nZGmadQfRDJBaMV5dpu9qVkUdRyW4eU7ZSbhjajP2msHVJ1coFhKKMmfGUoSZxUheIEmga+cIw6CgNZ2yxZIMQNiMGJq4mmO7CalSKFNg5oJKp0RJFhHmLCAIHZdCtceYmCWJBTgm6xWX0NxEyhrltI2jcx5ojdMsBDRoUldrdKWLa4S0M5fWqk+xJOlUE06qAhtVm9g0KGfrXJ7+gFPWRk5kinFvFaUMmqaPNCssJ13OX1oittqs9kvMBVWSQJGPB5xwAjY1TTY1VxDZIp2axm8rbBmgxnLW+gZebJNXBq6Tbi4GbEOt0AZU0wSHhK39eU5XSqS2Q2oUaecdDJUNGIoYdE2Bj0HHKtG1qpw7d5ojYwErVc0xu4KqHOWK+9v0Ow6dQHOsUcLWqxT7gn6giTxNrd9hIp2hUyswTsQJP2OoG3DYKCNNGHFDQDNfLFIhZpM4iu2CV0pYsipo02Z+7ixi5WDaRXJfscV8kBIOE6FgSQnuZJKLJjpUeiFHVm0KicQsSSb6mqruUHIz6m0ILcFd9jBRajBfSwjLKZctg8oFxwwY6Uh8JSj1NHMNC0sLSrnBmvIJtUUkLaqyT55YdLXDed0m2jBYNByqscXmLGBOWdyTbkGX4HhxM0IESLPF1u4s5U6JrNKk7Qsm+xnTpkEldUhtE1cpzpmtE+VQs1LaW1MsYow8QKQGjSykrz2yVCAyj1hbbJEZ3bD1c9egX0iAVnUqXBdsQdz529yhdrFjOUeUyrhXX/MvHkuYJuIRj+KSm7/Ox5ePsfHwCp1g4N54YS1kPqtzwjW4/zy45n6Ft3ELd/71uzhvCQ6e5XB6MuEJt4K12eIND7yN637cG8DztiYsf6fGPU8a5/mv/CKLH30Xl930TU4N/y0/2rKJRx6b4cgGn6d9J+Lmp7o870TE9yYKXLg8Rc8/jnHDZ3jEq1/Ct7PD3DRc5lfW13h5dYnvnzPEk/ffwa1Xns2J2ijPv3WRX3vYp6gVxnnsxBP/A2b7P7/kyjKdd7+TE6MO3/ilnBs7Fu1nfYoP3jbPc275BE6U8NZnW1z/sNdywdDPgppFuEL56y/gk/ksXy6MUVpOadbhq1f9g4HG4LH205BK/jWGhnPOPrDGOx94gBsfW2TrnXt4oH4Orxp6F2/zP8QXnrrOD4/bvPobKTtWTyGqGmoCKUySCLJOgHF6Ef7nc8l3n0v52c/Df+SjEOY/lqq6pstr9/wWf2rY/E75JuZrKZllMbaumVy5m+RjdyOA7/oQbhxi4pwrecLmx3JWP0TOnkS1IzKjhi4MI1wXc3wjxoZx6m6d4bBJ+Zb/jtlb4Zb643jNwmM4K1zlVw9/DkbqhAsm26wF3mSdpu52Mc681WHbZubHNaJOhSOTcO9V8Mhym2vok/QMKE/QveANZHkFubSIWlrEXV+jsLbCyvxRjIUlygdvpPPNGzFGRvFf8GIKT3k6r7hiiub5b+GGWyb4Rukv2B2n9B2TW59wmk2fK7DwpjdS/OIXEe7Pb4B9SA/pP7N2sJ9KojnAKC03wu97kDo8ODlMtSXxRBcDyWxWJzccpjdKzl/XzAceJ4ZMjFBzWcthqVzGtiJMy2B+qMhldLh8QVOzJU69jzb6REpjxSmB2adXlByzA+y1LgVzDQEsJgHb+yskxa0klsOm+DiZ0SHGhFzhCgMnB2FIFisu1WCJs5ttKquCdNTAlgbrymE5sKjKmEjZZ9zE4NrVaVq5zcHRBnXVIQsMpr0aC06dxXKJqrGCBir0seI+x6wJxhOXZioZ1fPUSZhTAUKAJw2qqovIV6nKFm6iOT3s4RYsxo+3CYyIiY6LZVnM4jC57BM4cLwwxAZngRmvz2wxp57BMdenW4S54ip3L0+yMWrS6DvE6RA/cUs8PN/PZhFytGwxmw6xrXyIDgbVRY+T3gRaRPQKq4wsCsYcQVbW6BBmh0AkCX6qWW5oVBN6ysCLFRkDVpEbCwpti6JWNM0ikW1hixRTg5sJgj7ocko9cbDXM9x0YKefn8FoWwpKicXhYpWlisM1yX0I4JTwWTFsWr5NWwbMiYxGv8Vju7fzwKZVjmx08cwMcoeD5hAX6UNcsniQXtFmISvj2x0sI2bEPI3MXBJVwUsTpGFgS+g6mhVpccobYaw+g859qkkfly6NngJXIGxNJiK2JLP0LMGiL6n0FFP2SRpul1TYxFJjoCkri8OhRUkLTjYE5IODxboZ0Tuzzp6dHaabShZ0QGhnrNVdqv2c8XJM7GmO4jFqHWHvMYlvKuLNsEX66KbLet+j1bUoCoOCvcoaG7DDnDQxCfsOIjcGJg+eQ5oZLHgw2hL0c4uqD91AoH0TA4F9xhHPdPqkjmDMmGFz2CcppsxJh61ti9AeQpsGvdxmRIXsKkk6oUFqOBhSUkhTVuwG7Uggiwr6JjP5FqS5giG6NE1Y1c4Zch4MJy22rgyxxRCEucV6YrBNn6bntqhFPRI/Y8Yo0fZ9SsMdKionVUucFwr6fpV4uIdSmn+ozdGuQEuDtgkpJiPTNea3KVQesy59RrIlNoYaS/lIoZFiAPCYMQqozGUTfcwI1uqCUw2XTZMZflNQiC2k7bO1rZDVOVbtYWLDYUl7VFCYRsbZ0SzrwsCXghNFPeCAOTFmLJmztnNxL2PIEFhpzt32GAEGUSGmYqyiewZCSmyRU0kShAmT8QymXWbRnGJYJByzQTsaoVM8ZfN9sYV6Mk8xzjCEIjNgbkgQmzaXrgkmuy1ODY/iopjMprm1UCATFjYKLzd+esitgKnsJA+KCZLAZLksmB0rYbSW0C3BfKnBnC5wsTxEEmgQAt9UlFNI+AemJPgScjdBpQIDidAOM6URKs0+w2oFKyuyoG2KWuCQY+eae80p8rVRhh0DQ1rYGZRikKlDoHJ0YjInC4ypNud0j5JjcDQeYUO0gmUamPnPN337hQRo5W++FOvUzSwZo/xR/8X88ZGP4D33OoT3r9vADT3lybS//XXC6TEunz1KtQ8HN5u8UEzzo7ndFIZbfGq3yeUPCqx778V0T5HYsHEuId1lAxkPjhhsXra4ar/G3ZpybDrAcmDn8/4bhucx/ro/IL7sGkbf9gZGmjOA4NhYSrVvs/E7BfZc2eQvSj6nLyjwsK+BiizGb/swl+7awMe3Ca74ZonLyy2+ee42eieO8PJDX+Rde1/Bx/7+T3jJvSnvMd9Bza1z8fBl/65z/Z9dWim673gradTng9fBb3b7WE/8Evc2HVrf+DoXzRzii79ksv38a3jG1HN+5vNG+xTp16/jOU7OqVKZ3IKCnfOMMGZ3mjAsJQawZJrc77l8z/fZH9j0divGzRFeFO/gjj0/4p033sl3dm3n09Vn8qLm3/KNXTO8+YUeb74ByAXLF6XknoGwFEWzjeqBe9qh+OA+wrc+wPzHxvFf9wY2XnEJ98wt8vG7fsyD8+tsXbK5eP4SzlmdYbKzRiGNzyzZP50B/JFZrG/fQNb/Eoste0CG/CekDJNwcgqzvMrEVMbRKz7Ct774XT5z5P3U3BSZm8jZ5Z9+foUSK5Twt/fxCzmr+8qslgWffqbN7eVH87q7HmDzTMbs1SkTFRNDnsa797WkU48i3PlIWhedQ2qY5FmPTUmb6bWD/MbSD9gynfCSO9epve/dpF/9AsW3v5/apile/cRXsG1/mf9x6kNMpIqvDxV4/FVNhr+dc+SP3sXOP/yDf/8H6CE9pF+QBAopLLTQhBI6pmRLmvJL5kF6qcWcNWB3HhWbGc2WGF2qcdHCUZoFl8NGgZoREuUOoWVhSInOQWNhm5qGGeO4OZUoZ6S4yqw9QzcwSVMDS2RktsGo7KOMCDcRSGFhxIKd1mGaVhWlI0SuOGBXSI0M4WeEjqaYCpaLHkc9k00rOYYhCRI5YH5h0vVChjoD8+zRlQQlBKupTy+3MRLoSYtu2WKyN40nMzrlCWwzxnKWmIs9tGFhG5LFXoOubFFby+gZLkndYoCcVjTMEF8u0qkYmAj6ls302oVEfpPJ/BRtHyx3EZVauIAvJIfdIcLcwmIfwE/RwGuupm949D1FJy9xyvJIhuqctWiA7QAhFTsmSx1myz6b1hI2Bm1udiaZLSkCU9KQ4ArNmi6yNlXgpG8ytTS4gvQEi06RhTjBSRWVAQObsFikKAY8pdwyyb2INU8xFQ0AyC7gepriuoVMBW6iWA8GQF5bCQphzqY5zXzYZ8jKMD1JYmpyK0PlgjurW5j1q5j2cXRksaO9NABBG4L8DPS21orwOhIRGpyuVRhCEUmLs/KjqKzCAWc3XiSoJQZrJUXiaEaznGJRUrZ7rOsyjUTTlx6uBUlDgyVZSgqsWQmbZExswla/i9Xqs9YssLjRRmWK0ErouiYd0+JkReJkChQ4P303oKraDOcR86mLLw1CbRMqGxwQ/QGvLPYkUgBoyjGYqYscNtllNzmlqwNUAdDKXXQeMqVPEPkmhtJYscVSQTDjC9ZNh1IOfdPheBwwL30qtqKQGywFcJaIGLd/wuGkzoIvODJpcvkMuDrHlgPA9+Z0njvYSE/Y3B1toiyrnFVsYxRMNsaLXNKfY2tTMZ0nWOEAWzAeSbqVAkfjGr71APM1i28UTDYvDw4kbKfFBIKtap6mbdLPHGq6iZNpIgF5YpHYmo3NNkPlJkEQ4iSayCnhOzYKKPUklP7xdyc2LXy6nEx9qtJl/JiLlSQcngKv0OPRMycoS4MH5SYSs4RIJYWeZKVhMbJm4ueazR0HbQt6gKcyankfAiglgr3LMZt7J/jBho2UOy20gJmhgHM6fQwlKPRz5mqClU2CQhP6KwY95XIiG6PfGiXK4ZL+fmadXeBkjDFPB00sXSrzDrvCDgAjUQvL7dIsFTFkgW35EVa7VZrd7WeqEDTzk7NsWFmhkSvCuqAZDPhhNDXmeILQihwIM5uWWabWyqm3JIuT4DBgmgGUdJfxfJ6Vuk9uarq+yXy7wPTwBLcWtnHO2lH6dYmnLHwzZ8TvcrRfxdM2o1qyvWkhKwrjDCPvYWtrRH6Ck2cUZY8cm6QmObfQQnQFhtKUOhZeRdDJapzd0ozL/ZxS2zBkytAMRBWXuOwjpGDrgmYoC7m/MUJq5hSXPLobBFtWfz7f9hcSoN02/DxuObGZv44v54PR3YDGu/ZZ/+rxrHPPo1Xz0a3NbFw8TCmG/qhFqk38/X3cq0OuzeCGRxb5tW8fY6cJD55lUi2FnDUrUJamPx9w1WwLZWqsyZzCLQVuu6LB0zdf/dPreJdfyfjnbuLY77+WucUuj9q/xEcfv5NXfusgi/dXuGxbxMnxo/zVnkt55oE76dxe5ewNDt+pZOyreWyZ9Xjzxh/y2Wufx5Vf+Hsu2/5XfPhhT+cVt3+dO3Yn/OE9v8dHr/xzJotT/+Y5/q+i+MYvkd9zF597nMkWP+bq899NXN/Fxz76Hd6y7ysc2wgHr9rAn+x9809PSLTWqIV55KHb+e7pd/CRikfsmDxhLeZFSYttusjCxJP5gdzBDcsw0/apkLNTzPAq635E6QH+ohbwwYevsy18gJffK7njYQbX7DvG7VddxNsmA56aaJxKxDuf5/Omv1ToH5Z524siYs8CGoOb3wHiUZqHP6h58ffmcH/v17ll+xQfm3gKjzt1N2+YuZdCnqCApUKFfRvqLFcV3VJK5va5YqHPrpMQLbtoU3N61OK+nYLTw4r1EvQ9gdDgZjDW1EytwM7pRbae7LO2D6KbP8wvqxZWpMlik3TIoV0OGD//Cpw9F6LTlMLSN1j+0b1E9xe4a4fgQ1ftgoVH8YcHbuL8/fP86FyLy/9mmAeFoleFbsGke/s+5ssPsFATHBuHo+OC1BYIrRmyNQd2GLz8bMX1+3Oe8O0Z2i9+NtWXPwvjOa/n8ec8n0y0eP+pz1PJNG/YU+VzJ7rUb/4mnSc8+v9j772jbcvqOt/PnCvvvPfJ4Z5zc75VtwKVqQAFFAISGxAQBLQfPET6+dBW24CiPMNDbANtgxJFgkUQJFSiArdyulU353DyOTvvvfbKc74/Tul7Y3Sbng7QHnz/XXvMucdv/Nb65d+X0tXX/6BU7Yf4If5F6MgStkhwkoxSnNAwhhlYAWU6WNiEqsSIAyvpFDYps+ECxSCipYfQcQY6IvAE2lQkbo/qsiIprTuu9+b2MWr6vDR6lkorxXYjXNfASTMeZBhhGphaEw0sLJESAfOeYuBGDEd1VskjMygGGcVmzEpRI8T6qnBLBqTaZNwakAYO3dSmHucIDJchY42OsIiF4tSoYn8SMxandFOb0dWUga1p5zQb13x6Roj05ukPncZrmaxqg2pqsJhOsrG/QobGSDWpKcgNMoLc/ys7T8QktmCmZ1LtJzxWiTBJWTSnaHl1rJxi15ok0BKtoTBQtIsJjtIYWiMMiHEQiYVthgCYWcaeiy0e2lRkbniEXCuBFLB8UizKHY3npLRlgcAz+NsuclNB0UgYGFVkLMkLG2SIZp3UeM7WKCVwEygNTB7akqNCyFgdPBWQTzOOuet5MAcDRwkuGh5+DHKQZ9hIqMiYrAPD9YxkMmVKBQhslFa4aYYjMh4tu8wZBpFvE0QTTFjL+HaKDiRtW2EIcKRCI9mZnmCoIXGlouVaHB2ZxdNj2NEzrIQ5EBBKh83+PH3Ho1eNiFOTic4aGJqciDFTzXhaZ61b5kRJsClnUCVjVYFOoWUUOJjfR96MuUUfJJdkNNLNnJ3wMAuHAEHLdNHaByEY75vkEwMpJEKu86YtDMAzYoSArrZYZ5QDI1WgNT1H084pqsF6dUtqwXAEI+ZpCkme8ZLCFwaWEdHJHPI6ZkKGnCnncZ2AuZpJOZVEWlOM1s9oaxsEHIxG2NyGQWENO8lIhcAmZOeqQdMRxFZGptZXqofZEMvmGCAIlMGQTIh0Di3WWxarOqZZHCYfnKXYTEk1bAgUg+IQmaUphiWEytF0oFmMmBUCMoWXwnR4kWqQ0cNCqQy0YLPw8XsOocrBsMKLE4b6AUEOfJHHAYoy4HgtRyAipnWMEYQEOYdznstsLKgmiiHZQUcjpDpH1zS4NrjAsBvj9mD78hx2rcUW0WPlmGJ+xKVds3Hk+nyfFnBQ72DSDKgO9cmrmL50CIJxiCPq4zM8NLvGlmaPycEAJ4LU0NiRIucLjrgFUqXpFzSJoelnLpc4ixzNJshnGk8oSiJif9bG7LqcrxQYJSUTHiumohxmFHzB9vxpJILhyKCuC1zI7WAxrjGkFikOIDUjjMjEJiYTDntlh9FqTKI0rO/5QEnJNgLaPQ8TybUXJX3TwHBCpNC4IlknrsbFJsBNXO5SV1Hr+Qznl9DSpJolNE2DvFynivaMFDJNrS+pNGL6lkNcSDBFxiaxTCc4zXijx6hzkbWiQd/RXG2FxBpEKLESyeZVzeFahkSgzJj97UMoDRdKQzRVnilZ54bllPG2h1aS1WpIJx+wdznC6trP1WH/fnxfArTqzpvJGfv4A7qMvf83cF/+SoyJ/3Gu6J8KISWdl7yM0foRfHd9pub5WuZR4QAAIABJREFUE2s8EmynX+zx+VKNX19Y5F17c5x72mS8IfE9j3O7UvZ/W2MMZTyxw+BtX9Y0t8J8c32jy86f+Pn/YTZIDg+z7U8/y3d/+ZdxD6ww2j7Nx6/dx3sfOMRrHtT89xsjOi96J/d1e9w8d5SNd/TY++OKv7zMZN/nSuydXGWXvMDypbO86bELvPe1G3h6ZTu/8sAx3vWSiA899av88Q2fwJTft4WaPzCkZ07T/9M/5vBmi4cvSfmLiTeRbHkpdx5Z5Cfu/hMUKR97hc0Hr/8jbMMhPX2S8Bt/TXTgAY4Vlvj0SyVnRj321lN+OawzGrn8Ze/lvN56BX7PBRS1dIGr5s+zpbtIY9dmuqsGauVa3nXJKqu1c3yiqviF6x1qq7NUVhZ595Ev8J4Nr+OvNlzkdYMMqxrw4de6/MKXfH7li+McfX2PRd2BBPyly3nEvpzHh+ZZesuDXP9UwCseO8/vrf0hwWSRYMrnuztMvrlT0sz7gE8xMHjDw/DCRyOMxCCYUPzFDRUe2NsjsEwYzKCTApuXNC98rMfmug+XFIiuCHh881k+fwtsnpe8/681U/0mTiWhsavMb079OM3KEh/45tcJvvddiu/5eYxjn+fkF5+lsuDyuRtdvjjzepyWw+7MZ3VplKcnUnacqQMKtGSgIcg05T7MLoAXP5dVNiT16Spnd0xweLvHM0OrdON5/nyfy+d2mPzMAwmXf/R2Rk8/inj/p3jFnv+dlXCFv1y5C6nhd64o8/7FgPjX34/+0h2Iwj+8qeiH+CH+LaLkr1eaTKEZbidUVA+3rxA9qLoDhqI6F5nEMxMkGkNBKBWh9JjuhQwpTZgz6BVidiz3mWgrbBUReRahFMTaJhPgJhl7C0epDRxMrdBCku8qWq5mVbssJ4KtUUwvhjif0nMhFyTEocZ+jnFDphKVpWgN8+UUN0spGSk4gvNxnvPWJvbmF8lSSWxlRBq0MBi468SuEk3bTtGOxhok5Po2VdVgZcghbwhMK2WhJuj7eWTbY16OML1ax4ozOnYFM4gRXgpCIIT+u56BtqzRtyWW2aXtKRIDihmUVhUz8zEnXBc7gZ3tsxRVgtNKGJcBzmzAt3M1jHQFR0ncJGUmbNGIn6vhCAiHBShBXD5BIbMoLitU5pI+Z0vl+s8QQCuxsG3BQLlsWkmYbCoSR2LY66TTMx0DI9Gczc3QtFI2ORcYLcXs6p2i7Q3T6EsSoakFBl6UsWEVuqGLaUhqVowUGqk1xYEiY52UthublJM2mVllyIqYl1tYlQbKjtgwtEqqNVu0T5f1KtLlSUQhM7koioz1fYbD9LknAmVCnDksxgWEBjOUrOZHmKZP3uwzzSIF3WdTlNLJFSkNImrdAIlmYLucL7uctjdRig3y6hjDdcGjxZ1IFIIIrQUGCoEmMQ0MNJW25ry1iYaoM5I18foSx1h31mOp8B2opIKZXoQRw4mSZCSLeLbgMqEVbqQwMPBiqAwEK8UM29ZcmgaEmJj5GOkLZnOaIDUgDSjLGC9TeL5GOJCZghVTUvIVTgQTKyG5lo0uKSypWClqHENwtmKxwV8nVQ4NzUotY96o4dYdogBiWeaEuY1d0WFaZhVXhSSxQZU+K7kqqTBRhrG+Mt5VKAlTXsBhOUsqJKYVsW8xwxEJFwoeoBltpGjAjg0MnZBpg+F6SqsgkDY4MiNUMLA02kyYy6fYBoTKJnASUiQnjd3k8xFbgkeohQELcZ5KeRFVSqnIjJ1RnzN+yBF3H9sjk21+gkZSX3SQKWzUDQy1/r6dGkmx4hzd8BKmo3lGWSKNJR1HcLnVIBN9KkbEQm+CllHG1DH9gku+36TF+ndH6HUdKPUVTUdyrJyHzEJHUDUD5uQGLrgb2R0eImekOCLmvGlSn0pIAsGFoT7Oskk2EJQQhGLdLwOwRIqhFV2jjJdGeFmKlyg0Gb3IIRoI+sUaUiRATM0JWLM1ZqxpU0Tp8O/eBwNwUs2iylEyIxyRMGF28JWLm2ZsailaQjNRbrAW1NibrDIWxHRdG2VJBApXpPQzh7HVjIEZo7KU5VKfUTNgvB8wmoQUZcSYkfDsiEOaakg0tgBfS4hMKkBF+kAeQ68nAySK7V6TpiH4VnINu8Uhdus6ibYpmwN2h236ORu3b+GL/09W63+C70tUMFX2+E83zHDxJ3+K1LbJveOn/sVnln707Wz/vddSCuDspOCVRp+vni7T2FLg9OQqa18o8Z7KgI/fVuRDn4kpL4zw9atCXrkWceL6UfYcapJYYG5NGL3X5uieUW7Zccv/9C5hGLzgQx/i/je+kZc/eY6PvtLhwG6b656BS7dEjOy5n72//1/pvuM/MN1oc8XFIp/eEfDQRpOJIwVu2HeAE6/5IIOjf8p7Hn2YD77kZXzkK3V+dfs5fnbLaT598uO8c+e7/8Uy+bcMHUV0f+NX8E3NH7xC815rC8Ur30+qNPMf/zOeV1/iT15m8OPX/xwjh+dof/LXSI8cYqlq8t9u8zi+0abkG/z0fMZ/TBa5y7+cP1i+kQ2dZT7Q+DgbumsUkgAlJakwEJbErJ9AJj5mGqJOC7Zpl+tEhtCKTu4MF0YMTolhfu3ZexnVFs/P5ggmruTXxy7wsZfavPtbS6T338ybPvzrHGo/wzfP3c9Nd/w1lWcu46vbfpGjm5c5P/FJ3nzPgNKpHtbVMXpTwlVZgRu7mt1HusSP5WAg0DMRH7lumIc3BeTSgDd0Mt7RW6Cmz7FoGtw+WeBL2wo87wi85XuL7LKbXJlavHstITyexzAVhat8fnvqbdwbX8YHHvwE56pD/Oat1/C6Y4/hffLFbLwvZnTV5A9fuIE7Sm9n39llnrd6gkvWTrO5u4ShFXNDgs/fIjk8PkSvdyPN+HI0DhYpVyQnuLn1NLsaF6itthi7s861d4JyBfXJHN/bVOTbuwb87q0p1WtKvOmeVV71Cz+C8Ztf4R2X/xor35vjnt4xHtwEu68Y5UUPNOn+yk9Q/shXftDq90P8EP9sWKKMsNYgWZ/H0aWI0+WMrSsZWQlm4hXm7ElCK2S+UOeKNSiY6+vxa1YfJ4M4rKCBfJIhMkkQDXOwOEyGQVubLAxsVCgodDVT/Ta9kqJvJlhJRqMIk22DnBKUOwldWzIZxqxsSDBWTPr9adp2mZqxyEVzlNloiQm9zLBM6D/H7ZWh8HRMJNa3hVlKI+wUHYFGYWSKsozZ3B7wTK6AFoqin6G0IrUSphsSvwyRsMGIODLsMzNQOFlMIhWdkqYji1jKZLJxkbXh9SoKz4Vo560ZMnuFUjshrUYMk+J1BozYKa7ZYbgq2SECFsICrgpwYthT9ulLQSZruFadNC1jZSllO2Q8ixEKDJWtcx6Zmpl6SEV36TkWpZ4iNHIE2Dg+FMOQTAoOV0wWrBpD/Rrj4UmE0GwfxOii5mxSeq5NXJOK9SqNKzTCUnQcTb/YJEfGiDtgxnPIGxkyshmd0zSqiqy8ri8DyyETGgNFs28TxCblpIutG/SzdXloAT0noh93WHFdcpEBmEQ4zERdnEjR6iUcndKU6hovFWTSIEpKGLKDRcZUEvGEW6ZdXWLQVDy/fZwzOQhdm65p4VspkfCpFxMOlLbRNaYQpkKoGgXRIzLhrL2dlAwhQAlNbLJeqnguo1/wFV4EFRVwrLqVDc0LqF6KOzRPVHU5kN9J1TjJjjDBeK4t1PX6BGjytmCpAqOGoGzHbAlsij2LrgGW0GgFj4v95FhjoznHOXcGmdisjqzSqUsKPQcklOqSK0RIf0zQ6RSJwhw+PpuzlH3zPR7dkzIoLKP6NsqwSFEIpfF6KbuCiP5MzLFhi8TUHA5mEGmOtlHjZv8eVuUES5UG58wek3N5HhuRzHR9ztpjrJV8Tk9AoVMhkhYCTSYVnYIGS7DN9xmRJgqTC6MpF4smVwYug8wkcDSJhJYDw74BQrNQToncLqO5ECkUA5WwXItYEPvoGqNMGydwciF6YFKba7F7UGRhpwBDkVZTzGBA6jj0zBJtWaKmfFw3I1eNWC0qzmJy0V0Pgo4VppjuZgSZAaaigyJ1UppEnC7BVFtjNmNKymA0DIg8xfn8JF7bReg6baPM6FCDmX6EZQkOjG0jM1YYXoXqSsjxyQqxlZIIhWa9HbCPiW1Lhq2UeVuzWlLMrmUMRI6GOYymhWMEzDoDhnXKs0L/3diHZyiMOCbSJVQHGIN8mFJpJTSn1pMGiRBckJuodpsMNRo4acrKqEGKSaAtwkSyPd+hX+zR7QsmxABhDUiERWxATYcY6bpuSy1IhYFJQp6YY3ov/fIcQzrAM9f/k2FFjDRShkREbNq0zSqhaWKmHf72DYkyi4KZsttaAUdyMdiy3m4pNWUZM8AlFSYSqBuj+IZPXocUlGS4oemYGQ+NjVNrVv9BG/R9CdCCr95O61N/RtZsUvjV30AODf+Lz3xkacCm1ZDRDqztUpxQ02w8sUT0c28l0p+ismyQu7uE97qYA/sk1x5epHzqUoT5FEsTDW56UHDgCtADg+dHsOenfuEfvE8IwfS7fobyr/4fjNaf4bNbXs/Wpc9x6x0m3yl9kVe/6H3EH/wtuv/pPdzy7QH3bk75m6ssrvt4kfzmiOmTv8fjt7yBS+/8Jjft+RYffOEr+dV7Na8anufzZz/LdeM3/t32vv8V4X/so6izZ/jT10n2WA4vfNEnQAjuu/NRfvTpv+GhHVDZtInpD36K7slFlmqS//bjJscnQeqI2cUd/NG5J7EWNI+ubmVDb5mf5UsANIpQH4Je8lzLzyBDZpAmMc18gVZuhHwQEOVbHN7gMCF8dnYzRtoWl6zVUQLOdMdZ+8UvInZfx/tXD/ER+U6+3Ba89qH7eOC3/oRb3/NWNn37DzidCh4e7fPx+3+LL8/ewjc2/RJPvuxefvHAd9nxYI4f7QzY8DxJfX4rwX3HkJWEL73Y5Us78+TigB9/JOaq00UueJv47fJLeLa2lZZXYqTf4VLrHOH0d1l+5Qqdx8tMnDQBQX4sZPFGeFP+DfjuEl75bv5wZ0bLnkcri8dzM7zurvOMrAl+9+Yb6Aebuf2+38bLYrTQKCShJfnki0zu25UnWX4F002P2+QhLrPuZ69YYotoYLkKihCO2wRbHMKOJG6apF2bsbk+rz3r89rvavxxxXe2w9eu13zaKPP2D7+NV7/v4/yf13+UubtezemszWef12XnUpkNT8yjvvb7yFf97A9U/36IH+Kfi0wYWFIwKjrUgdQwsUTGigerNUF1AHviM6zqJQprIZF2aE4JdobLHHTBimA6KzO5kGIlsGxZ9HJlMC0SAT6C0qpizaqy7JWZFqcYCIdFUaUi6lTMmA2Owm86hMJmIG2QMW0jwrEUbVUl341p2yNooJX3uKySsc2QnFBifVlFSxNbYwxKznMVJY2daGaigAVPsfGoRtgGsXQo+JJuIcfGtIW0ITVgpGMwlQiynKSRKZQLG9US+4NlTtuKSIKZtREM03IVC0XNVMskpwRTUZ8LI/OcdwQTQcSsbBCLjEGcYTkZKzmDpAhxlGPI6bG5XCe7YGIoyZIlMXqSchKyd6nDbC8mdVKcTLBxpc2YY4AwkWjiTHC8ZrAzTJGDFKFj2t6A4SDD8xN6hkCmEplILpR6DK0qPJHhhBBpUGhSQzAcR5SslMSAlpUjtAIUGcN1xUQY0Zk0GNg1Jpw1Mp2AFtRaCUEh48LECGv+DMsj8+yyWzRzk5woTXJJeIhQwHzTJalBKmw2rQ6YDlKObbSZ8wQTdomq4aO0oNyPKdmgDIOGJ9FJnvPGLMqoc3I0Yl8n4llrA8fcIZJ8i+5Eh97JMoVOh3xgMucJnHwXQQM/s4mslL4hKTzXejiwILAzSlHEmmURK4mnBC07hyk0Velj65RVR7GWk7grOdCCXKTo6SrKtPCkT2DGlBKXxUJEsmrixil9ZeIFMBYnaFtw0Zmmo0NyuguJoONViM2EtjFAxjZdMYZ25ymokI7yCEyLUkcQCo84chF+xmBzRCuVWL7NoQ2KsKK5KhxQMjPwVrCUpJPLSDyT5XASs93CHaRUWtCzAsySoDMdcpk8Qy/LOJ0fYjgMGIRlAqeDEWekhs9IOI8VDtCJQ33CR0o4acyiEzCeS+r2cpKFsqRsFEkMRcnTZJUBkYCFvIE3b6Fkikb87S4Vlm2NQYbrBLg6hVjQFCamNWCp5OMEMZtzdXSsiBLFkq5wxNuGkRyikyo6FMkb/XU+L6Hp2+DGNhemp9iSnmO5HHI4D+mSIsVgX7fO1b05ThdcbggaTBgZD+VynLISDK1ZLDrkvAAzsAC4dDVhsp/RyuVZTYfoF4q0dIaUq3hJRlEEDCKBUCky0zhBhFkJuDM3xZtbqwgTXJXR0xrpG6zaM5j2RapRSt5pI6TiopJE45rj2TClQZuh3EXKfQ8hIkIlqAQKLTSmG7L/XIdaMUErRZRBJBV2BKtDA3pphxnlkFU79CbBuFBmci0g25BQMUMO5lwaZsxVIdTjBJN1qgZlPhcOCsGM26Nl2s8xTEJiQGArOhi4QgOSvlGkK9fwnR4iqGIkmk3zEaeqeULRwhYZAkhTAy/W1MSAZ9yYqQByMsWVChuf1URQDTtURYJvFgiUg5V2ERnYar0Srcudf9AGGR/4wAc+8Pc9HAzif5mFew5qbRVTpbjvfi/OjTf/q5z5nb/5KBPzxxnrwJYr69wZXsnUuRXOve0WFk4+ym1PaFqmZst5zZ/cZvCSZxX7V3zqNxbQR0NKgWT52oTtD5qsVipsf99/+UfvrG7cwPHv3MG+cy26MyYnNnpcc7hNmiZM3PQa3I3bUL0u4tlD1FyLb22F4S6MPWtS29xjbEax+lTIpeczvnnTPC3/Cl52ts/Tmwc8Un+Ml86+5p/d6ui6FmGY/P8V4/cF8ROP4f/+7/K9/XDgCsHv3Pgp3PwYURjxzB+/k69fFWMieM1XmySDHn/4asGnX2DRLCouf3aG/3xPwmsfvkh6ziLoOQxXu1S3DBi5pMvoZV2GN/uEWxVLl0TcfY3FZ641OTEqMJVi40rIiN8jZwSsjk3xlV1beWR/j6tH69w063Ngb8aTrsv+k30G37wTLQT21bdy7dQLeTj+Cu2e4JpHj3Dg6EN0B6fZ8WhIbtDi1DVbeeOh+7n19JM8MLODv974AmrWs2w5JFlci9mx+Qj+TMrbX1Lg0JDk5Y9nvOqxjLmSyZ17Uk7sWCM/eZxtztNMRWfQfcWRaDeXhYtsvztkbFEiEDx7ecr7Xu3xtWGHrHgW11nAFCl9M8NZ3cPO1RleeeAQ2+fhj66+lUsu+vxv89+gsyvgdLHGeCPm5ITDB9+iaA2XeUeny8/r7/Kz4h5uNY6xXa6w6qTcWfD4TLnE79Uq3F7xOOHU6OVeQpa7itx8C7p9jJEy7o5pZDtg19GE257S3HAy4IIX8lcn7kBUJ/ix/e/izgtfJhSKw1WDW88kZE88g3vrTVBYT8z8e9DZf4/49yrXfP4f5oL5QeHuO77OpL1CvxIjDIM6Y0wakOHjiRQ3VrQLCSLVbDN73Du8lxV3mH3pIscdgchg5OIYXS/FEl0WcjUcmZDzDI7mDITMuHluAW04nMuV0ZnJdNilUzFwg5DRhkm+7dJ3Ao5NKMpGQiosnEHKhrrC7OXpuhaphIELQz3FdK7DWjUl1GAkY1T9HqYM6ZWrjGdNqqLOcs5hTRWxdcTEmsTLNM1KQojGsmEyiXASSYAgLqR4IqPakTgBdIbh5iMDSn7AilFk1c2BTDCSAsODNofze0jKgqpnYGYwcFO6Tp69IsCxQvTagFw/xiiFoDSOZRMLzZHuTjaZS3i+wnYVF0oljqUTOIUG0g65NmuTCU3LgkWnSM+p4eTmaOUSlgxJzkgpaM3YQNHMwaAUg5sS9yz66TRToY/rQ7NmUav38ARMKEHDsFiTkmIoGCJi0a1yrgSzDBgJBqRrLiIVyFyCzgywHUq9BDdK0LGgYCTIQsq8nmTVcAidCOkqam2X07ICwsUzGwgBD02O4MUw2ergCYlBSObGDOkST9mTTKml9WUjDlwoS/JdULJM3kgI3JDTQw7dYpuuKBKmBTrFmOF+xnDHJAVKaQoOKEPjdgWL7iamvFVOuVVM6WMqF1QZ07zIgl3GVQJDa4ZUyr5kjjVTMFIK2DJYoZ8pzuVrhGqIOCuzqbXKXGGUooxZzgnOlDRXzdXZuOJCP4+bxQwMiacyNrQT8qnCLxQRlom7orCbeVrFFMuMyeULnNczJInFbmcOB+imBaTvY0aC2kBCYiArIRdGEySS4prNuSlFyRowlqYIoWnYBn2dx10pkXcHGMrggp1S6mpCauiCRKQp4WhELRZMRRHzRpnYdCmpjH5hhbFBiJE4+MpG2D5DPQhGewQFG50NoxLwVMrYqk8+6qK0RWBnbDljUjR7PLRRE0oYioexYwE6RklFzlbkAkFDGuiphNgqYKmUluty2vO4ZNBh+0KA120zqkJKUZdj4RBH7f0slVyK1gJaCiZXPZ7x8kRqhL6XY3iwxlowhfYNqrk2gS/oOLBXx5Q8i0ozphIbTJltholIbYtjeQNpxZg6I8El61s0yxGGaXNduoCOJaZlcE5swHEyKqJPkJkc93YwnFuh0MtwMo/tfpcFd5RuLgMZsnuQEAqbw/kcq/mYkfkSS2ICCjku76zQt12E45MNFHbJYG4wix228FUEiY2pNNuX17C1QOAwEALfMCl7MSYpLcqUmuCFCaeGY+xY0O/VcMyQheEUbxAzNbAZsTNKqykXauvt6D3bxp1TeG2Tmh8QYlDTA8bSLiUjwcky4sChloQ0khKhkeKmMbVQcKbo0HKGKPRjIgl2KvBkwLKZYyG/lQVvlKI7T60OXV0lFjaDoZjHqxk75TLZwMRAMyjElHoKey1hWtc5WdhC1ypArk7m51DK5Oy4x/W6xZUvePvfa4O+LwGaObuR4Vf8CMnQ2L/KeX6csnr7BxlpREQubNkW8cSRaXQp5L7dKTueucC+0yAzmB8VZAWL+7fBbXMDljY12POIzTPPr3JShlz3rGDtLe9lwyX/ePVKCEFSHady510cnV3lsfQnmCw+zP5nJQ+Fd7LtmjdjXXY58SMPM36oxbFNKU9vNHjRQwLlSIa9c7Rqo9hn1j+sX3iBZvfjJV6im9w+GpBEba4cu+GfJYt/C06Z7C1gX7wP59yd2Ge+hXPhHsylxzFaZ9ArF2j82u/S8CJ+57WSN9X+I225n/vnH+XDD/80z8z0+Mk7Fdceh8OXa373NUP4RswrHvT4mW8oXnCiQSUesLbRovHmX+TgW7fywZnD+EO7qH5LMHe0ymMzL+NF7kF21PZwxSu/xY+JEpvPfouHnRxfvEXwzKxEpnDJ6Q63HVnk6gsG85NvoPrWT7JtaJo9na/x51c6RAPJxJ1P0DlwH7mbX84LZl7MHclfwZrJnjMdOsE0J3YYbP7QR7js1rdT797DxPwCtz19msbEKZ6uvIizGxpcfSjk1EqJHZvavDrw6S453LXbZHHcoCQTJjd4/Oaed/Piwiw3ypQXpce4Iv80RAe57Y4uQmrcWPC5myWffr5Dv3c1s2c38kvONby45vBzpw7yaOP17G4tc/Ohg+w/B39x6Y1cZj3DE1ed5iPXjTDxzCzXnV7i7v2ST7wy45d7DX69vcj+sIdXl3TPeTSPFPjawnX8dPn9DBaGeJob2GxeIEPzeDnhsfJZgsIhToxt4+SmV7CxtQbHTmNMbKL1M2/lGfkYs37M1jOCa49H5O69lwdO3M11V76FhwdP0SmlLJubuOp4C+P4nZgvfQsI+W9CZ/9XxL9Xuf5bDdA+cf+XmM8bmEKykz6GrJKYLpPeIgflJJEVE1sw4msaRZOzuRJSWUxHMUc9CSqi0iqBG2GrhL7lkjM61Aoh580yXgR76k0Cw+aoN0PHHKKsBxyoFUncNmeiF7JozOB5p/AtASaMRgl5oTFUDiuQLBYLDLt9ZqqrzPaaVKyQZl5yxnIYDlxkMKBlGlwsj7AtHlClQd/TLGMxvJIhOnkm3QFWJWItsRmoMokDSSZoiTKHi3uwiSkkipyp6FddLjvbB6mZsyr0HANTZrScIgKLOHMZ1HJsWVpiKM4Ysvo0rAxLeBTNED8QGAO4OCIZ7mWMmSlraoRFXaYIyIFFzkpZKjqsWS4DL2AoStnST6i7kkBDX1SQhRqe1hQyB7EasqGtqRdhUwhOLmGukjGXM0hDjdMZwzN9XJmCq8nXU/JmSlcWOJDbxSUXFqkFKW5Jc3CiyPGyy5YsIGeFRH6FRrKBUm4N6UvOlQWxmSJ8TaWvSHIKYUkumEP0TIei7jLRSSn7ghNspm17TMmzOJbi7EgBT4Tsa7VQ0mSok1GKI1xpECqTw+4mnKyFmaQsFAxyfYMsl7FclkRRnvM1lzEipJ2RRAXWvDxuaLGl5TOc+JiJpu8ZDFxFiwlW7ElmjRbVKGAqbCP7FcqpYvfyAk9O5zBExuXmCnuzFkUV4+QShtZiqr2YdlnTyEuMzggbu0sYTofKIMNXHlO9Osujkl3NDoQFRKxJDQ1mhJFqMqE5MiUwMhMj9tkYBJwa0ZSyAaUsY8UZpzzQ6AB2FFYomhEraRmzHiAig7wS1I0qWbHBYlVRtCy0P4QcaVPtJXRNj1PlCl2ziBYSNRDYWUC7EBN0LVpmjYQiQzKkbXo4HUGxqXETyWlvA9qwEWafXcvzWJnCUA45O8I0QlrSoFTrUPQsIi/lfCEmEiEFX5AZPXJWTK3tsnUuYLmQcnZ8fcJqOshhhxrPigkxiEtVKLUYjWKWHBslDIbnDVaGIXFCdjQjssBBRhkTDZ9IwuNjwyx5DpGdUpar5FONE2s8ndKwXHrFDKfvkKY51uwKm/QiJzwLY+DgOYqxOCVKTNzQxUhgxB4QmBbzJUjNFEtnxKpEK9MoM2HKTdju91DoYuxpAAAgAElEQVRSYPckc+Y4e7N5hJFxypxisRKTOl1GogQZhUxYLS4wjhOlKKvJvnrEYXOW87kKN2QX8ToOc1YVx4wZ78UMLIOmE5KMR1SiiLFWylweVkqawiBFCIsN/QaWkZG4koEwSAzJmOMT1ysEYZnEhLoXMX0xxU0yImycJMFumQjHZQhFYV4TRoITU5rRNbB6iiVdxQvy5HQbmYWsDQd4SQwqR5gVsJuaSOYY0gMiJ8LQKRKDuWqGXwmYamakqcmz+c1MxAG+leEFElMr8l6PleYsjkpoGWWOj9s4lUVGkphxC87kLBbKGcvaZmbQI3QjzudHCUw4MlzBC2zKso8aySiHDle98K1/rw36vgRo8K/rPDx4poFx9yfZdRH622MOVi7jeQ+eYf6ma/nrwpP82BMBlaaFnWoevTrP+5oL/OHeAm8sDVh+Ko8TC+68vsDzDwwgc9n+Gx/Ctox//GKgvGmWE3fdwd7THfLVBsvT25m5OI9cGyBbyxSuegH2NdcT3fEtrjoy4AvXSYohbHjK5NymCfbXTtHu5pk+I5if6HL7/u3c9u2AsakmX9BnuXzoMsZyE/9kWfygnDLZuYB38GPk7/nP6AMfYe7E3Rw7/xRPrZzhwMoZ7l08zLcvPI74wgGqayEffKPBtLD4G/0E32t8kWf697BnbsBvfDGlPIDfe/0UT4+GvOG7Ee+4K2PncszQqE/psi4fvXWSne/6OhfG5/ivp/6Et83v4dbPnGbeqdF+84t5rfFnpOOX03nFZ3FPfhXrq79M8+4hNizDAztzHJ5NOboDju/RLHqSXWcSNh08xvEHv8Aj05ezNDnOOw89ztolMX+xIc+lTzUIvnI75459nrRhcuGKhMq8wZjvM/aLH2XT9n3YpkHOG8FMvo0MU648H3HroZOsFT2++LxRbj7WZm6uRGE44UcqPZ7qvZ4XnN/Jy+84wWN5xR2jHa657nfobn0Z/90zOPbdc7zsPsHpjZqpFcHXboBHt1zJxcX34Mg6v/TYHWy56zAnzkR8vf1i9kV3Mb1c55oT8NVL9vP1W4/wvS0+yfLz+C93NHjehUX+6npB/eqQDwc5doxeTbD15cS730i29SYOzYzylZEBF/Nz7G/M8UD1Zbx04RGW1m4hX0jZdnGR/WuKByZMDtdWGc0/ysXaJM+OvYSdZw+Ru/N+Ctf/KO+5scfRvQE3ihRfZ+w5EjJ6z+NUsyrHRgLOb+gy05hg5GiTojiIVQTnwj2IM3fhnP0O9tnvYC08hLX8JEbzFCLuo50SmD/kUPvn4ocB2r8uPvWd+9hYD7CdhMlwQE+XCF2JMEPipkkjV6TulJkMQ84XNYt2DjfLsydcQvcFkZXS9jxGIoWNpFMKGBZ9mm6NBmWGGjAV9Ll/qsZcqUY+SagXelhhDy8OWbY3UB4EbOY8XUdQ0orZTkLHcRkgGCZh1SsxUm7Rs6HSSahaMaEHa4GibPU47toMpEYlgi1aUTCahKaBt6wpLhbxkgzH1fg5g+WwgtMuMzKxzFCQcVGNsliscbFYAqqMqVUGpmSkDpEhyQopvrSQhoVnxmgr4ERhB1IZbF1dwDETkkrEfE7hWxY7OzFRmLEqhjhTG2aj36YmwVclVlWVSElGWcO2TDp5OGkNk1l9ymHGNj+hZ1r0pCKUBVplD6sRMd5swECQkxFOYJBzDYp2hGGk5KyE/EKeebfMmG4zm+8x3A6J0gTThI5lkW9KxoweptKcL2jqExqBYq9q0xMjPMV2tnCeSCX0XQBJvrO+6bKYZBQzgeVIzhULDBUE7cCmmgbUoxLHxmAsEYyxANIi52vioma4HbHJixhKE7x5m7aZkWQuWUmQdiJKnZRmTVPxbZoFyVJJM9A2GxoxBdFmMvXZ4zdolj3KKqI0CCD1yLRBp5Tw+LTGlzn6ahM7aLFabpPz6sSDcYo6Yzxss1wR9FyFbSTsGoR4WUSvC/kYUJrlgs2i6yF0HiOLmDTabE37uGlAsdriimyVLHDoZC4qzWNoA4w+ylL4Fvg5iGKwrZipZsapqmS5JNjWTkiLOcbjAT4OG60GThJwJhlGLDt4XZO8CknKIWcqBtJNsIWk6WoGbomNiwO2ipSeZzLAQirNkpuRejGLZUGqwDdtDk9UyMiB2WWP2aFlF3nS2ELJTHBMQaXrk6kemRPjJQ4rzhC29qEwIMtZ1Miws5SUlL6M6NoZpg6prlWJoiFEauDnIo5NWIjUYCy22E6HIdFnXhXJPBfTy3D8jFP5Eoe8ScJwI3VjjEQMURxkpKFLmOWZCnpMZBE7qz0ulCyWbINa1sNWGSMBNI0KaZKnlr+ItCIYFMEQ6DDEdyKcECY7FhN+H89K6UVDRMJjuOJjiYgzpkniahytqLHOMRcKieMIRsM+S7ZJB0lL5blFncKwBny9toXlcoQw6uxcVOySXQpknLKmWMlLxqij9SSraYWC02Fnfw3fq7CgyjRzJlODgHLsY/QTaj2HpeosF0UF226QWBmj2mdr1MRKBAYJiRPQNmwyTDYkAWls0xYGZ4YTylmC6ORJnAxbKnIE5AzJlPTJmevk5/3UIkMzuibJ+7Do5RhmQM/osTCSMGspTGHQ9wssOYrEipnzLGwl8E2NYRjEXkC7ICj1E0oRNGWBvihja4kp+hiRxUgQIT2XuWgSN80whOb0RIhj99kyiCn4Bj6wZrnUjJTxJKOTV5x1RlHCQFopG5dTNvXr1Kc1m85r9rzqHX+vDfp3GaB9+RsfZ2juMDN12HBpm6+nl3D5qTn8d76RO4Pv8RMPpCSJSauoOT81QylbY7MC2U2ZfdJmeVhzdUkjzxY4M30pe1/zsn/y3UII5PgM+W9/h0ObmxzyX8zzxh9l6qjBA9XjbPvux8g3nqa8XVDSF7m+F3J+Z8Yli4pCI+DoyBCXzi7RWChw6TF48IpFHh65kTfe1eTo3oADa9/jto3/AUta/6T/8/1wyrTWqMUF4kceIvzin9L88w/R+MvP0vn2MTpPKLrHC4jjHqUTDuPHDDYflew+IrniiGCoA1+4SZCNWfzUZ0IObZJ08pqffSTiDd8RzI+afOQlJV75SIMfe0BR6RuUNwZsvrHO0uaM9+7cyPte9Ak6cpEPPv0rvO3UNC/+4gkODm+l8raruK35RyRT19J52WdwT9xO/JUPcPb+EToefPhVec5Nxby8M+DdBzPe9NMPsXH3NTww9w3mxwU7T2fMHniUg/4cHxsf4ScP9rlmQ5vfuazA7EXF1FmT8UWTtcFWLtxUZ/qUIPvuN7GvuBS7Mkz7l9+G0Yvxz9lEscHHXiq5+7KU5kiX07t2ccXhVeKzLmcqed5TuJ8vu7vYXS5w0/lzuO48x8//Bf/X2c9x3aee5qZnFQ9do7n8kODoLsW9m1/PkcELqKQ+g1yPh646jtHbzLalmNrEUwSR5KbDmi9fvo2vv/gksTC49sx+3vPQY0wvhtz+QljbF/Oi6/9vNjz/N4m3vZx06lqy4d3o8X2MbXkBV1/+ZkYvuY4np+c4b36LI/JHuKZ/gksO9jg4exUzrdP8zJcVjBh8b9zimUqdscqTLI5uxLR3MHXnndzkT3L7XpvPblA8vzHE6EyTNQsufSbi+Uc1CzWD7+wPeelRyA5d4M/yd/OV1Sd5uH6Yx/8f9t47zq6rvPf+rrXr6edM1WiKerFkSy4qlm0QNm70XgIJpiRwIeG+aby5JOHeBAIhCblJbl4HSGgJmIRuirFxlxt23GRJVrH6zGj6zOm777XeP0ayiiUMie+9IR9+n8+Uc/baz7Pas/bzW2vt9cwe4MDcYeZmnsIYf5Dew3eQ3fdNMts/g33kTozGUbRTRGV7Qfzk42h/gV8QtBcad33tO+SkT39tlvGOmGNZi+62IE5r7M3bnDcCBgkZFZGdBatt08oVSdIOaiWfJdU2RC6Z2CAwEhqVNvXOgLqbQdcK5P2UjqTJ/lKJlu2SCRVhpoFWmkIc4zSKgERlKtQKFkviORalMc8IlziySe2UTDlkv7GCtizSV5/icG9Iy4WBfYJGmCNNYxZOp3imS6cpMM2AvfYS9nvL6Z+NyOiATDYmNeAoeSqmz6H+kI66phUVONpr0sq32SzHqaiYHcFGetJhMGLMGEJT4imXztgna4ccLiylLUwur+7BsULmSoJIKcqRz5rUwwoTJnWe6Q6LrGozXlHYYZbptIRjK1YZR3ERpIlGOj5pM6UUJqyJPTLZmBltsC7TpirLZJsBtmgTJA4Zy6NpZXEdgWnBjpKmagvqjVWMdcVkdYMBETIbKyaygqmcpFgzmTD7qZVTliQ1Jpz5ILcrJ2KW+BFNWWQiLlNJJ2hbKVJJsj54hiIwNb60sGSZkeIC7KzGEIIJehlsTTBjmRQ9QVegMN0GShpoDbvdNbTjhSyxZyjUQ+K2CQKqmTx1J0P3bB1LabSqQLuDuY42sSGZ5HyStICZHcOwBcpJmbY7IFWsblcRtTxKmVS72+SKAcdkP4VagbXNMcYKYIsYEXRiOwndxgizLlTaPpaEXi+L6XgY7RTLE0glqdkCEcD+/BBx0skS/xiNbErqxESdHuUoZVaZHM4vZTFtxmUPbenQLWYIbGhom86aQpiaRHXg2gm9GZ/uVDJmdNM32SI0UoqFEC1jjrRN8nM2iTA5WqgwV9KEHS1IBbFtIgKHi6t1CrMgClBuKiZFnlSYjJsluqI6C8cs/BxMdIQEqkIzn+IkU+QMhTIrTCdFZKiouTH9UZtaYY56VmL6ZUbNRVRzEflilbKV0D0jOeomNCJN5vgBNdkAYimxoww1J8DNtRiuwKoj80dHDHkeWV+xJ5shTEP6xyTDdoa7B8q0VTcq6CLOjlMLl6HTHDoSaOlhmx7oLPmOFoecLOOOQiY5CqpJJRCMWIsY9OoUfI+0aLAqaVE3BV4kyKR1pNbkZMKCOCIyJaOmINGKRdkWiRuxyzIRlkYCncxvZS7IlEm9lO4oZF8h5IhTZPVISH+2yYxt8kSxgjJjUmUyHa9jTXuYXF0yY1SYzptguFRiGDF7yTDJTDFgIFXUVI5pUUIpk2HVzaLZKUa7HHQIc3QykIwxW4BlhAwSEbVNRKoZLzrMmg65WNHn1sjEFgeyJocrJbxoEY4HVafEYL5B0YjoascU2yldaYjUkinT4WCXoticP9TFc2wSOyQxYs63fRabAU1hUjUkGTOmjUGIYKaUUEg1Hi5Vu0Cj6DGThc62IE5dWiJDIZ6gSQ9CxSyxpklzJo1Cgzaa7kBjt1oMqTZCQRhAELuEUqPdGCNRyJpgX8VlOpMnrz0KrYAcDYptQdOEDa8+96GJP3cETWvN0a//dwr1kEII1QsW4O2vU/JDHn9JN8809vKmuwV2onngEtgUhewpK95uVDn0cAeRAZWmoDIeUH6Jz5HL38uqlcvPqa8ZN3hy9nF+NHoLd+74Z7Z//0bGf3wzMnBZMxIzYBxj19JL6J0+SueYZE8gyd47S2N7g9aYgxyzWXFE4BZSiuWQziTAk9A95OEdyLJyWPD9rWMws5a3Pj3HN9cEeLX9bB647v9ovZ4JHcfEjz+K/89fofnnHyf48peI7ruH9tGjHDNiDncY7BzK8K9DPTy0aJAnVp7PyMatpFuvp+Plr6Z46WbCRx9mf5/iey81+DXnl/iTS0eoZSP+/rYWSx9x2LamQGDE/Mq2gKxnIxcrzn/xKOU+n3vDPO9f2c1vVidYt/3v+UDjQa592uQ1N0/zWO9qLnlrJ5smv0S0+GoaL/8c9q6bGLv5z5i7t4PZAvz1qxxm+0J+66k2G293GPrwp2kf/hb79nwOo9Vm0/2Cg+cn6CxcslOz+ljEX2ws0nNQ8t78DF/cYNPyTZZOaVKpwY85sCFlxR6YeOA2io/+DdGsIjngsLdP8JdvyLF6Msvvfb2Nn5G85V1/jnfZ5bQfupvevZp7yp38145tdBcPIJZEfKUzz9cch9/+RsrqEc33Xq64aptkuk/zyXW/w6zu4f8VN/E2eSvJZB/X3Wdy/YFnGNlYZTR1uPZJzZ1rF7No43beOeXSW82yddsBumbh4Y0p3z/fZHDU5W25IUS+gM50npXkdLndvKTvpVw1uIWocD8/SCwKRicfeOBWHi9fgb9ghNfcnjLU0CxZupK73SZPdMwS9h1E51ax9MljXLrT4551Lrcu9Vixs4M1s02ijQl6SnL1E5qyr/nSFXmu3B6xeTpm/TabC58wWLtdsvgpSeUpm2RXjuEDBfYfLrNnooPJER97z6MUdnyFzNHvIFUbVRpC2/kXvK//Z8EvCNoLi6e/87dMdnosnguodikCkWHVoQgz8FDlhFzNotBWICJkMH/QQiNXJB9rSvk5emc8mkmeHmICK6GRS8nIECe1GTii6fI9RNcMzdTCN21qrsTGJ0RSjGPqBZvBoIoTOeRKMwyOhHTXwG47jDkFDGEwWsiyrtXCEbDbNqA8R2ylVI0OjuRKmIGg4IFvZehSCaXJhMkum1nXYGAswsuk+IZP6MxvcZruLkKmRl87oiQSdnflkEbKgApoulmelIsZDI9S0AEiFdTjHsZWJnSLKlVbsju7iJ7mNKu8Kew0YXefgaE0DppOqZlrS47aBWZLFrERMWctoBSDFxdY1K5TqvnM5TMMuwN0BSltp8XAsCaxK8i8IjetcdsGsgELvAa1Ykinn1Box8zmHVSmk8TIMu626JyQFCcs6pmAxGkhnITuUSAVjBYN9lR6mbWWkclm2Ogf4pjrYjY0Ty6F7naFbCjYYSwhzwhmEpEaUGzPnyrn2yYydihikOYhb8e4puJpUSZMHTKRR2xY9DZiKNZRej7u2Gi2n+Vpk1o5IO+3MOYkhtJMFXPUyNLp1TGMDJ2xg06gaMyycizlUHGQSBfImyPMOL00RJmG6WB4inUzIWYT3CQmKvm0yymJLrJiVDEQVxkrxwwdi/DoRFqCscIcs4WYjE6w2inSG8Szs3Q0ZzEDiRKSmgPlJGE4n2PVeIDQDqbbJpYmibbQVonDYgm9OU2x2SCQGplolok56o5JGLkk0sZJJYICpBLTCBDaZRbBYNygz2yT5iQ2IcOtHG7LoGUVqFZaxJmYjFL0zJkYWeic1dhVi7adY0QMccjux2gLfDQTHZpNx3wKUYAOshzNLcRzsijt0BFOUowySNNmKinhhD79002mXJOUiFKuSWKYzIgs5zvjZN0WHZGFk9gcyEqits3KqZB8JaCjrTATWBzEOF5EV7FFnNHkZyR2IuifSwnzkn/tMgFFaTbDv/Zk8NyUlllAGTHG8bGgq2lSDJrkIh/fNShJQasrYtJ0GbVMnMjBFJLB6ZhZu0JH5JFYAWFWko8M3CBl1jBRdo2sAlWIqUSayJE0e0KSNKF/LsIvKry6Se+EZrxXMpRETAgTK1LkpvtQ2TwTdsyE6KBWiehQRcbdHiK3Qd70aJGjP6hiBh4Lo4g4djnU04EQmu5QE5kmoz1HCTIea+KQAWeW3ZWAsU4fpw3ZKAI3JUWSb0g6aRJUQgoJlBKNlwhmHMFEEWQMfkdAxolxQ5eDtsNM3iUlg0mNUlOSlFzK1AniEmU/xDYTpunCK2ToUG2aymDAiejNN6nlE/KhopJNmLYWMpGW6LAisqbHXOiyr0dzoEth+R0cMxfR6gzocOZoIVk9G9MbK4YzLuXQo88Pmc4IOmgi7BBlQ9ryMEVMoSophzFRYEBs0qgkyHxCS2Up1CHQJiIwmSpWELKNkC38rM+CuqDpGGz+CQTt5y741j8+fBfZVp1VxyBaHLHNvJTr99/O7r4iDwzfxdUTEUIZKGB2oMy6ikO+PcXjIwWGJjVffX0nB+0qf/A1E+eBhFdZHyKYWorbs/JZHSOtYbZN3M0DI3eTfXo/6w4pLj6sGZyZv56YmlYhodyGx8uTDA9vYfB8j+a9ebatk/xgbT9dQZNK2KKzmbJwTjIwbOGFJ2MeNLpDei6oo58o8+57PD535RgbvtLJ7/x4lL/c8mMuPPo9Xrzo1f+HaxfSyQmCm7+N/4OboVYjsgRPLNU8tUlS74E5dxH7/Muw0tVcOjjEZUsqXLqoQlf+pJOlk4Tar/8qoYj59KskL1vyfv54+svk2m2++M02DGe467wKl+2vIpXg4MXLuGbJkzhWi9rhDA94ef7g5S5X7RL8fV8HfzJosmlPzFt+ELOreynXXPUMfVOjeBe+j/aW3yf+18/wyJ2fZuieMpMVwf98rWSwrHnNwwFW02Z0QDD5Pz5IqQGLGuAkkiOLHNZsh1tfKun3Yzqbgv/2rZBbL3G4XS7kwyMzfO2KmC8uKPCOu2p0NTPIAz4/3irYelfKjkyJhZMJ//JSm2FnMZ/d+TgLFzf5zuBG3nbPMf45835uGMrDS+a4c1cXHcMxv1dazKULptgjM9zj5HjLvZKYhL/7Jc17viEJ8vCH63+XRbPP8MaRW+iLQ8btAr9y7HYMrbjv9QHVcZfXPKa5b9kAU0NHGR2/hN2FA1z9oyq5EKYqmruX5Gi6Bq+/PebYbV9g5OrPEw4lrOzZSN/iV5IsuRrMzGntPpRfzH+78MO8e9UkNz7xfW7KXckHfnwL+5IBHrugyoYdES13Hx8JO3jk+gF+lNnFg5sPc81Awlu+Y/C3nwn4yNtdPv6KFh/7biertjUobHBo+z5bd2rWHm3w5Wsc3nqXYOErVuKteh0IQRx5NOqTzM6NMTs3RlybpjjXxBnWeF6OYXLoe33S8heo9H4Gd/0azJf9KvHSl4L86bYl/wK/wL8FpvDp8DWe1cOMGZIIQShTlMrQEUd0tRLMKKVeTDEaJmiouwGTSSe9psYQGkckVHSEb6SUSegaAzeMqdohXjags+xx8ajHZu8gewfLzLQjav4Ao85C+owx+qIWXe2QaTNBaQ1oukyfxc08+5dmmYo76S0dQ8Q5DlR6yFjjLDsgyWsfOwf5Oc2s3YnUoPwmVqzpnosRuQla5TxTWZcFqSQLFDqqZG1B05JULYdOQgpmlVhAo1KFJENnbQ9SCGpOjsV+yCiC2Ao52ukQhAk2w6yOZ7GtFJlK8jVo5iEwoZXGNMW8y9GSBpP5IS6qzVKPihRFSqaqmFQL6K7WydmK1LCxE4Ens3R5goN9nQzIBocdk0YagRNQikMyvsOoNcT2zHKulYdJdUx+1sJtQ91us3oyweoKMHMQCoe2ELSFTWBYxNmQ1PfYY9skwqFhWOg4YSyfsKRmkmqQIaAsQplnzlWYqkqcFoksgRMnjGifrGFio2m5KZNehULUICcDgkJMZU6xwvJ4ItdLK+7FN6dRQcTRjKCQh3YGGrZAVmbJ1EIkCQEhi6KYTDUh1CmXNfZwd/cQ3Q2fbrvKIdmNJxOkqXgyu5IV5n5iU1Nou8xFEdlA0xm28LMJgxMxJorB+CCTajEH7D4s5ojMkBVjCrvSZo6A5Z6gbWTmT/4VEbbW9IctFtgG9cQhRZJiUAxi7IzEUyV6/CoNp02UKlarkFgLlFTUjQIZM8aQYEUKhCJTlYwMprhTPnOWYsjTqEQzngeFz1SHy3xgW5+CF2CFUCAijSQyVjSUBSoiCSQlr8mMmWWm3MQIHZaJgElDEVoubipJQkV/2KKiLXINgetHqIwgshKSWDFGD9eOjXDM0IRWm1xmjHYaU2Z+e2g5jVGxwdLpGK0hUA5SS1JpYumIipEQA8WmQSxs2tJh1s7gSYes0SbjBTzR2Umx1WJNW/HjJSE5K6amCpS9kO7mBJV2SugoCjJGS8lcW1IUMYVyTF6G9HsB/WlCzWujTgQ01qC1wGmlLCy0aZkJroK2dJixTGbtDFXTwQ1c6nIExiBnaxwjRWnJ4bSCVCHFWYPy1CzjuTZWI0fJaNKdrRFGXRTnplnkQ9sWZIWgx4+oWRlGKm1Sr86i8TYjC12M/CQXNlvkj6RUkpSpRSlmauGbCqUMkkKbqYZF2UgROqVAA09k0DJBigCRTekZg5IF7ZkibpgykgVflTiaUaTaoOGaLDanSZoRdjZgwaTGydvoVDJWMAlNi1woEAoKLYUMDKhoxgqCCSPLasOjbjj4kUW2FtMspzSKWTwRMVwoMyP7yWXzeLlJukSAERv0OCGrdIRwDLbrGFMqCmZC1gxoJSm97RQjhlk/5lCul7VOQlumKOkRYpCrwkjOwpUxSZqjaRnkRcxl8hjHSOmy2oTKgSREp/ocT595/FytoGmtueWmj5HzZlg7AoU1MY/LAhftmWJvn81d6zze9WREZcxgx2Lw8ou5+MI1LB1+mOEHu6jlNOG1C9jmNpgqC9bvFCQzglz7G3jLr+XO2Qf55CMfY+ePPsvi7z/KW78zy1U7FCsmNL35CHeF5tjlF7Hv1Tdw7FW/hdj/MMsONFgVjHDfqk0MNY+wbL/k9gsXoidexK7M5dy+eCu3LTuf71y0gDsuNNm+wudgf8q4aTI359Lvhiw+YNAoNblrcw+vv8UnWOjz9eAhNt56iMzINLrVRBQKCPe57+W8ULPmyYH9tP7qL2h96k+Jdmzn8cGQL18lueuqFAZyjIhrqOZ/k81LX8P7Nl/G77xkDdes6mZlT56sfTrP9//pC0S338aNr5DkhzZwe+uHLJtu84mbYsJpi6PdDhuOttjXn2XZ9Xk2dT5GUl7M0dsMnqll+PDrHX593xJe98M53FChUfzX7ykOdg6w+SW7WSinEYCfG2TX/vv4/sPfZtPtDsc6DT71JsVrxiLe9iXN4FGT3glBsQaJYVGrLGDuvIuQL76OoSuuY2z/I6zYn3DXNQX2dYcMppI1e6D/mOZ/rSryzvNeh8MTfHalw5Z9CVZs4TZN9pwvWLc75am1Fj9Yupih5CAzTYuVVoi5app/7OllJuPx6R6fL3dn+NfzYNs6yf5ezT25LLuyNqkBO5Zptq0zGCka3LURnlwnWVu6l+4Fu9g3pCiMZLjgSMT+fsXka5ocO5bjdQ/CvX3uX5cAACAASURBVMsX8tWXTdBlLyLVB3nT90BL+PhbJQ9vArMYUxABd650uWiPS9+emGROMTk7w737t/HAvs8RTG+jSzrY5aVwPPYPQM7Kc+XQxay56CLuYJqXjD5CxzMG+5daXLIrZdt5PqU9Lr9x/xSmkNyzTPLdDbByRvOWexOeXJvn5vU+l8w4VHaGlDdt4OD6hZQOjHHJbsX9FwuMQ5P0veNdmJuuxFm7juLFl7Hg8utYcvUbWf7Kd9D3hncx9arLueOSMtt6mhwuNlGRIHfEItxVo/7Du/Du+RxyZi/2sjXglv7d/f8/A36xgvbCYvsPb8RwUua6NHFqUWqEZCNJKjVTuRxrZlvkrISR3pRcKKibOQ51ZVg93KAYNzEISKSJFJpAGlimgRWZBHEHnuvjighbRhRqWRJp0OyOWDIxS3/UwI0D+pstLDSVVOPJhEQm1F1BwzKJLRtbtPDyEc18QhFB6lYxtUm5pvGZJ4xFPLJGSqwtcoZPPgFtGEwUfbJxiC1TnDQgDjvJS4WRFbStkGJdY2tBkAvIEeJlTERi0zGiKcoQgSaTShqOz2N9fbgmKNnGSyus9GrYsU1WhRwpC/yMRmFR1RLdtCnLBFFKGPKaLKp5LJqKOeh0kokSnDQhZ8QEmZR6TqNnMyhtEtkBmBb5mqRmQpS4WGaMiKz598PoYKmchXaV4W6NFUdYkSCMHPLCJxMKik1QsYXKCoq+wbF8FldGdPtz9MRNfNMGw2RFu8VMxWUwMJg0FWWvSlvmsbXGsRIq0mNcDFBxqzRNiUwBP2JPlyAXJXRE0K+niDDxcw3aFBlqR6hSwmGrTEqbpbUaThQTpILJnMu0U6BTNsm3NbEhcFJB0zYw0zyz2ZhASlwvZNBLKTVTdCalqS1ECgPVCYKcxMhHpFKR6AyDsz4LVcCkG2FIwIoIhYFOTUpTMQUvIgi7IcgQdUW0rATTj1DaJJUFmnaMfXzVb7FuUtEBnpkihMCUihnX4rGKZv2hGoYZIjTkzYiRosaXOcLIomwG8zGjjBjPUTRNze4FFfrnPLJRSmxojFRRtRKslkY4mjQoEDkhvbJFJQnRQlDLuqjAxHdNrLZDWzq4bkBvPSKbePQ1NUXfJLASDFPQUUtY35yh32uSSAuhUqoZTVNU6Nc1nDTF9TR2aFKhgRMZKEOCIXCbFu6UQ0tHOI2UnEhxpSYFYuGgE5sFcUwTg/GiwPYkM7ITQzr0xgo7iNGRohKElERATdpUtCLIaZY4VQqtiOXHGthak0iQIiZrx6QSjDik2BYUa4qRwmqWhxOs8FrYKsR3BDHQzGvcuk8tm+A5KRkZMyGLODolTRNCR7F0RDPnauqWRqXzIYdSU5Ody+LMWkS2Qb5h0TIhl8R0+iFhlyY2HHpnEhpGTIrGiqG7HeIYMZlYIxQkhsCwNHaoWdTwSHSE46ekqaSj7tPIKiadHIaQrK62sJMIQ2osFE07QRouoWljq4C9mQWUqjaJ0HjSIMKm7GrswECmCkNqZDFhsBmjQ0VOSPKxJGN46MhiNDcfCDsXm7hxyljWppWXtGSWuBCSRAa9dZgsOcwpAxmlkPgMeDE6UYStMuO5PGuCI1gZn65GglYO+WyTNBFMyU5CAV2pT9GTBO786ZK91YSqLYmcCGHZLIhTpNC0RJaWymCrlEhYdNY0QplImWKiqWccLCtAWoJCrCn4IYnfz4Y3v/2czyChtT4nhZuebr5gD7tyOUut5v27ZHzt/pto3fl5uibabDioePS1V2DtfYALnxZ8/Y0J31/i8tUvBjBp87VXw5sLy1ikHuPh3RWGtiueWK2581J4w62C//HLFlfvK3HDLTM4XTHycsX9B2wu2CdxY422NeV+n+wijd50Jax/M8nA5afN2vv7nqb5q+/i0GLFE4UX88GBWxi/rcSdF0mya1/M5m/cQyAEY1tzfD7fx9FiD1u2L2C0y+FIb0KSO4blHuLj3x1n+RH4szcabJQFNv/A5w/fFVNOFR/5rMCcj0GIMTiEef467C2XYW3egszm/t31mhw8QP0f/j/0gw/hO/CjiwQPrYcLjZhiYxXTxTexbO0Wti7rpDNnn1tQGiL9WdKnH6P1yf/OjsVw36U57sorrj8Y8cvft6gZElulOLHm4SsKvLd3H2S7mFz7G4x+9CaMuMVvv9vkHZf+Lq9a/AbGxvdw49d+jQ9+J2K83M0VL96NNFL+RixiNN9LWU7jjQe8+zbNSKfBV98Q87Z7FG1lMtuRper04Gx5N+su3sJ5CwqYhjwty7Unn8L77V9jzwDowYRFO2zu3FzitQ/OYbQFP9ooEAuyXOIc4y+6ynzgO4KhSc22JUPkC9Ns3OHz6MVw8IKAPQWH4YxB25RIpVk5l7JuOmFZXdHX0JRaGjcEIxIQC3QsURpiOR8zJZKCpiN4Ykgwm5W8+UGFlcDI5oBFS9rcfKyTN90Dzwx0MzRYY9tKl5GpFu/8kSayIMiaNEqK6XLK3i7J0U7BRAXcjGL1tMVFT2su2BFjp4J6CaKsIAoU032C/LJ+Vm69gcqGVyGMk/17vDXNk9/7CNc/cC9zO4tMdgt6pzXfeLFgtGsp77llGOPSQf7l4h6e4RFW7RK86T7FJ97mcqgn4ZPflizZH1F69Qa+teVSln7h8yzd73OkF4ILUq74/fvAyj1vH/UTn6dmn+Ke/dsInryf1c9Mc+leTSGA0NV4y3N0Xfcmyq98L8L86d7d/M+IF2KM/b+B7u7C/+0snBU3/tomclHKeI9LZg4sFWNqgRAKhaYnamNozZHBlM4Jk6aZ5/7eBVw5XCPK+Zg6IhIuGrAjRb1kkPU01aiAEBE9sk0mDSj5ZbQUPLYiZfFISISFQszHLFPgpgLPSlH61F3KgsTSCC3ng7B2lTia9cj4iu7ZFPR83GFLxyhhUYuKVOwq2dhCamjaESkGHNfT7VuMLHKJdULHTAMz1VTSlLqpmM1ZHO0vYkeKviMaR8QYKASaEJvJPoPQkZT8WfKzRQw0C1qSbKo4mIdEwPgCiw4/pGcuJBQOwwM2Q6MRqSnobhuMGmVqZsKqZkrRCNjTL8g1EwJhUIgTNBppGSysw0g2RWoJIkEjiaKIXFqkpAS1bIhGY9MmFjYeDnntoZXGFilz0QJstzkfE0yZmNogQZA3PGLDQEuBQmPFGi9n8lhxAStHmxTxKMmIRAgcHaBx8W2FjCWmliRWglYGSkmkSLGVYNJwaRs2lk64qBEx0ZVhijLF2RayWMMhIG4k7OocoJq3WCZqLJyMkVqdths9pzzaMsuUyNGb+JgyJRGCumuxq9jB5qkZTgQGN1EIFApJv2dxLBuTWgpXB6jEnY8JlUBVZcnoFEeGjA856ETRPz4fw6s7MJhyUzriFsP5MgsDTaxTQqmIbImbCDSamrYp6AhHQaAtpOOTiPl36nzfomSE6Gd7K0RSMjZgsGQ4piOeH6c0UHcMRGqghMROTdoGSBQdsU9oCY52FeieiY8HCRZoLUgNWOBJ5pyQVJjPlj+2JToUJ2NVIZFa0chb2K0s/SqgZaUMywzFMKFbztA08tRyFtpRFOsKLcAiIgpdHJHg6nmi2TYzkApsrdEIUjHvmMXaxEWxqGXhaZNjhQCTBISgjYVDylynQXddEcQGdeViKVAY5MwmGZGQmpJUghPNB4Ce67DoqSuGGk3qjiJJ89QsC5MYJUEhCE2JRUoYO2RFSFZ7OKmgbjok0gAjJRMlZFRM1coh1Hww9tCROKECBNqUmIkmRTHRY5H1FcVmihbgmRZ2rBCmwkw0JikJJo2CQa5tsKApmc4FAISYOMTUBj2aqszCyRgj0Vg6IRYnJ/AtLVEG5GKfhutiRAIDn1Q7ODoCJyGKcyRCk0pJIA362zBmS3JGwqK6SdZuMYZDzTnRuzTF2KBlxSjmfby5hSaFWZ9KO2GiV2L7WbJthYEPCHzbwogFR50SPbGHmyZoARKYXOZjtwUdExk0GiUlpVBStebrwCIilA5mEhMLl4qWVPyIqm0wJyWmUMwVJZXWyclShcRSggl7IXH3JP3jEWYMVVXid7961zmfQT83BC1WCf/y/7yM2Uqd1z8IcijioWt/iQu+8i3menv5h+tS2vYcf/c3irYJN71hGX86YKOevpcDt/Wya7Eg3tAi2pVn017Jty+q8J2ra7zsUcUNdyucYoLcIjAORXQu9LAuuZRw7VsJz7Id7FQ8/ZH30rltO8qW7Lx2JZfvfYL2gSxf+NCFvLvyKuQnPopMFKObY35rS55XPFjghvuqFNe3+bvkcvKiTZSUuGxiNz1Nj//1Rni/l+A9meGDb1dc4CW88kjAeccUuUmXaMZGhCnKNEkvuJjuN74OY/MVCOdnm4VOZ6aZvvGTGHfdj2fDDzcKjp2fsCjsJtDXs/Ci1/KSVQvRQNMLSRqjiNoIRmMYq3aU7OQRMrUJ7HYDw/MQQUwaSXQq0ELzjc0G/9Cf5/0Pxmy9XzJacRiohox1CnhRm6vdOmH+fIZXvJOxv/4nuian+OO3mWx96X/hLctvINUpN/7jDbzpS89QLeW57CUHie0SX59yGFWSR9Y6rH864u33Kg73CHZdGyP8NTxVyLHpwWm2HJ1C/O0/smjNsrOW3z96gBu//W4Gdue4eu8s/3S1YLTnCrZe8XYOfOc3eP1OTWEi5VgHPLmpwJXeBH9yUZZX3Cm54mnNzv5+okKDS/Y2uetSQaw1a6dSuucETkMizrCqxJKEjk1smoSWTWhZxMJAa4FW0Mgm3HlhnU0HQq7coWl2K5ZtnGNOSr4SdvDWO2BPVxeTq0wm145TeVRy7ZMa2RshLrRoNjLEkwpnVONGJweGwIaDC+DQAsFILyQlm4heCocGWDoa0e8fY6A5QTHQhBYEQ2Vmli9jZzhG7/gElxzU9Kxsk6mEDD/cQZhR5FuS2y4W3LOpk/d9LaU3qnPH636dqrif3tbjbL7D4O9eYbJrseYT3zBYdiii/NpL+KuXLMH41i7e8OherASe2qK45oY/wFz52p/pEJAJf5wfHbiLiW3fZdXOYTbs17gxNIowt34hK97xe5RWb/mZ7OE/A35B0F5YfOZdGwAIMgYyBEudCG86b9y2joiETbU3oTJpAZrQMnDilNQU80eOGwItBGaiaBQMis2UUJs4Yj6IqqUjNC6mEniWQmgFWpBiYJBiaEF6fDDRx8nUPOadVCOd/1SMJQ0rPUsp5u+ZD1OsUee4roHZDpPOuQQDRYokl0gSwycUDtNdJt0zyXPuPYHDi2zOO1InEC5KCno9A1MLxjNnX9FNTIGZzJfFTSWBoZ6VaClJJJ+b0zPTntSvkSh6PZepTPxsfc07lMZ8yTW4BATi9F0opj4RVFjPB7WV8zKFmpcRaAtfW5Slj6l5VrY8ToLOBck80TsBR0lCqQjyFu5xx00AOdVmjE5SJBV5dtvNag9PZDmRS3GcqigE2zsrXDw7iz6u8YRcDXSFJjNOgjbmybqh5tv1VKRIbDQppz+wNBJXz7f9SYkQW5JMNH+Uvj4jvTylxOr459NxIueQUz7q+EREKA1O1P+pMufb5idvAbNIiLHOuPOENo5bq0RJjaFO6kgsiRmfzF+jaJIY0FFNnr07Zp4AnSrr5N8TlnhSb79n0TSg7szbkDpuefOp1fG7BaDwtINE4YqT9pGaEiNRp302E0VGe4TCJTn+RtKJdtYIhNCnZOGElc9/oaTAUGfmEkJH4IT6rDq9rCTrzX9OpcRQJ6+dGBd+Eto5iZGCG5wYJ89s1ZOwz2LnWd3GE6dP2hpa4GNgi/T45xN2eNL+z0Qrb5BvnW08PBWCWAospZ61nxN/WwVJvnm8HkyBkZypR5Ae128J6G8JRnIpkTYxxbwdGGfYI0BeWbTkSfuPtMEHv/TIuXP480LQvvjNP4Mn7scT07zlPs2+rcuZqxxky82aHb/8Tj614Cu884DHVTfbPHgB5Bev4E2Z+9m2bZBSLWbqyjJ3dM7ynpsMti1aQUUcopFX3PhKyasfV7z1bnCchHBrgdKvfR63++yO/ZmIZ6aYfOurMHtCdsnFvOzCpxn+YYUDvaD/4hO8SPbT+vANCDfiT9bbPLXQ4FNfyDIQVUmHYkZG84wuTdj8lMC35wfSb7w25TfrLe6eKfPx6wz645hjloWpYZ0Xs/VoyPJDksIhB7et8WyXfRe8iPY1r2Jo/WrWLijimGc3JO37HP3sH5Pceh/PdBa5Y32eyT4XT3Wj3CwFew5Dz5EN63TXPbrrER31lEodOmrQVYNSU5zVTCMD7KGAf7lOcI+Z5UPfg+XDKWMli4X1mB+vkVy+bpIFMwbTDxcZVd20F1gsPTTFp18uWWXavJ6VGOdfzEPNIyz59D00izZbXjLM7kKBO/fmCLTNt7ZqfvmehOsegwNDmtHlZSqizTOrm7A9y5se1Dzz7t/hsne95ax1cODRH/Kn+z7G9Q8prtyp2d/Ry+LGJP/9BsHVBzT5MegiZVGiaM9YFFqw60KwBmxuXuLT97TFO+5WjOW6eHqwm+v27OHuzYKlezoZzS1gJlvCySXYZkwpbaMChW4JckGMm4S4SUQrGzFbFEyUDA4tUTTdJh+4JaW3DuU1TdSLLyK1A27aMcrr7oF9fQuobrB5vPsw19xmsHJsPv6K78BMj8DtDFhYCegtJuzPn8/uWgeFfYdYOJuSCE2xHmMeH698Gw4uEIwtgLmOEnuy65hsn0clnqY/OMh51YNkaKMEmHZKuUdRWFXCGhtj+tEyg7OKYluwZwA+90qHC3Z08M6Hxnlg2Qq+dvGbebf/FZY+fIgvXmbxyGrBx74uWX4kpvyaNfzBeoPZxxxu2LGH80bbHOrXLL62m4Wv/CRJz7qfyuZOhZ943Ln3DqZ++CVWPjXGecMaJeDwYkm4+TwueuvvU+hc8TPL/XnELwjaC4sTBO35ELjyFIfkbDi3k3KuNKc63D8pvRYCoZ/r3L4w+ElST51QeS5pKcbGOQjjz67p+e8ELY7/d1Z35gxH7n9PZf2Hx9mL/dN8e+qn/x2Vd26Z587HT3f/T5uylZPkPPWcidWfRUOvbzKZOXMS4z8ejk9BoP/d7fjTjA/PvX5izDob5gn3uY7GOFXmC98P/z0Ss6nEM9Qp4/ZJac9XS+/74mPnztPPA0Gb9Rrs+dVreXyt5IK9KStnUp7+4IcIb/0UG3YKbr1yKTdtHOaL322R2ZPhprcW+Ihb5+DjMcYOm+9tFmy9QHD0Ts2SMRMjFaROTHFlm50Xpny0r8Ir6v28/cvT2H6L2hV9dPzeNyjnf7pYTLu/8An6v/5NYs9g91WLuLL9FJMPV/jRi/K8/qO3kAtqqL94AyN2m/etyXLRngK/dWuNznVN7m12snwk4qGtmhfdKwgtgZVqdl4b8JqGx1+WK9y9xuQD532Q/eE0T809yZHmIWKdILRm7VHNdU8qLtkPZgq7Fxb57ur1VM+/jI0Dq7h4YTfT8RG2T+1m78gjzKpJwkwbaTbpaEJXA7rrmp4a9M1p+muanqqm4J2+otHOGdQ7HGpdOerdBRo9eVolFy9r0HQ1unmM1049zTe6MlgHHd51h0AmmsjWuInm9ivhho4pbhGD/HMpxm708K5nNGsen+SHGwR+VnDdY4r88S6ihSYqK2RHjFVK8BoGH7uswrGumD/8XszKA5Kp80ycCzbBXY/w5PUtHglzfOibij2Di5BX9WG9+HfZvGIQccrqzLe//3G+EvyA3745ZfUw3L5+CfZFi3nRD+5FDrY4ti5i/ZjGnDWo1mxmqjZjJYvVRxSzHZr2BXluW9lkvG3yoW8rZGJxy9JNvPjoTh7aEnDJeJ6hmWnSqjy+pQCGu2H/QsGRbslIN7zoUMqWJ2HPgOSmq2DzPnjTAwojm5LZHHPHusVcbbr84P7DvPQRwZ6L19O+cIRdE3O8+U6wUmhk4Jn1WTJjHh1NGJgFedyS6wWIu2OKnRG5isG+Yo7UanMfJlseMFlaS/EtQbEmMI7ncboI470Gxzq6eDy3kV35JWTsYcpyLx0cwtQphuLZnzXDipfu0LQd+JtXGzQyXbztyXFyXo4v97+FNO/yx9s/x5fWaO5ZJ/ijr0lWDkdkr+/i44slxp4O+mck1x/Yg5XC1CUBl153DcHWj4L9/Nsez4ZYJdx51z+hfvTPrHq6TrkF9SzsXWNibd3E5Vd/iFy+/98k++cBvyBoLyw+866NzO8VnJ84O/1BeW7HFk5fDzixfnUqoXp+Sc8H8axkJTinw3My9alz6ydx+qoczG/yOXWF6ic57891wgQC/ezXpxDOU8bgs+X1bJrOXVdnEAYxT9Dmt3Xq58g4TacQJ5r0eM7PcP9fQL/vZ6M1J1cyz5TBGfc+K0uIcxDS58/Pvz3t2R3PM9M/535x/Nc5CPSZvfPU2hCn/D6ths5QMt9fTlw6O/04lx2cCz+JTDwfzk1Rzu2+n70X/LTann9cEc9+f5b6PJHfZ+vxVJt5rl2dluanzKM+vvL109XpGZNWp7TvKTk5C4k/ee1n0XDqKumpks/Wjs/XL85lP88Zj4D/8vNO0L74l+/hkvt3c+emlHfcCsPreylemUV+9jBHert5dMUM91wk+PKNiknTgKsybKwe4ci2Lh5eLVi4wGBnMeDV3zV5cGAZGxdv57yuNs/0XkXfq/+EWxs7+NTOP+X8ZCEf+vIc9niNqYv6yHzkqyzpfv5jvVWasuOGa1hGlampDEOvbDH8pEPpgGD7r1zG1e/9a4Q/S+bLr+PzUYN/WJLh41/Ms7o+R2VZmy85C3jN0Rr/8xUFbvhmSGgZdDZTWi9usdJPef+qEk5fhj+/7oeYVo5Up0z5k4y0h5lu7ODwyENUJw8z9JTP5qfmSdd0EW6/WHLXmhJ1Big3TdaNNrl+/1H6axG5NggtTiuHUc5iLOjGGFiEWHoexsBijIFBZH8/MnsOp1kr7IduZOypv+KvrE6uvUewdgSmSxU661XGOmHPNQFv9FL2T6+h/lsf5uED02z5wV+x9KFZnlom+czrLsBTBqFuUPaqLJ9usnQyYek4LB/TbF8m+PTLbQbmUj76rRC3ZuBfLBHv+BUG+i/nxw//Pn/XrPLJLyomnW66vSqzgwHG8pR9fS+jdPn7uGxlL3/0zfcwwmH+6GsxC1XK0SsEK/wWxbYiqlt4MzbtORuZztdLNQeHewXjHSbCVmzemVJpaYLVCd+8tItHM01+/QeK1cPwWM9Kpt0SwdLHWXVQsb9fsGdAUO0yGclbJFbIZTMh77lZEvuCf3zfeYxVn+HXb1EsntTkh3zuv3iQTDjCYDFg31MVLt4Lj125ntbCx8k/YrLhAIQZRUYoamXBvi7JJTsEH3vplbx87y5MZxrfFjiRYHBW0VOfb6LQ0jR7FXQp/M4co7HBpfd7HOkS9LUUrS5FIATZmqSjMV/2VMJkp8nRjm52ZtdBZHHe3FE2TO0jk548PEjbGhEJbr1E8P2NWX7ze21WjMF9/ev57Pmv4gOjNzNVfJpvXS75yL8IVh+LMdcFDCcu9XYHw2IBHQyz8XCbsV5N/1aL3rd85t+0mnYq6m2Ph7/6lxQfuJOlR3wMBXsHYPT8DMuvfAUXbXg/hv0fkxj8W/ELgvbC4iRBm38YP9cJeH6CpsU8ezixNfLMB/vZZrPPlH76KH3y2rO0T3DcgfpJpPF0SqIlzL9Cc8o9x8nLT9Z8tvydrlM964yDZP59nfkVLv3s98/dIHaWMp6lrk532eflKTlffsH8M02fqPfjuhD6pDN5BkE7kYcTm9HUqdVxmr7T6cfJzXqnl+L08syT3WdTyVMSnKXgZ64PnPr/c8nPSSJ8dkf51NyfIPHPuQRivn1OEthTZZ7Rj8/QJc5W/uN6BGfQfHHGNIDWz6lRdbyd5lch9Glyn+N2i5ME49m8Hnfgxf/P3ntH2XVdZ56/c256OVTOhUyAAAiABJijmBUpUdGWLFse2W3L6rF71Jbl6bHlbo3dtmWrvcayWlawFSyREkWRNGmRIinmAAIEQORYqITKVS/fd+M588crBIqSp92jNa1Z7f1XrVr33Xvy+b59zv72T+2Pn/imC0vJj7f2G0nB68nU2TJoIZD6/Ji+wB1x7n/n+ouz9Xx9WS583xuKrH+ctL5+zdDi7Hw7XwKxPPfOf+FCsvHjVPXcR849dXZM6AvHztkaiNZcW55tryvuhaf6AOrcPD4/ZqU+/+03OonOfuV8CX+yg+cCd815r8WFJTnXCj/N2fOT+73199k44J9O0JZX7h8b2wJ9QX+d/+WF8+DC9vw3f7frDXW/oK4/3wTt0KnXSP3GR/nWmx1WjAbcukcx8gefYeGFT3LlEzZTmRSf/ojPTYseH/gHi1PXRdySWeTokz3M5TS7L5Lc1TfH7OMdaJVk89XT7IsuIr1rBl8YNP78K1yxfiN7Fnbzh3s+RSIS/PH3oXi0THllnqX/8DUuX9f3/1jOqaMvk/3MR/HHE5zZkOfmTUd5aOcQa8YivN/9OENv+xDCKyPufScfMVwSVYtPfzugfXON0kiSb27NcWNU4dM7HD79oEkjVKyeibAur5HyJb90dY5bi938L3d8H4RAa41eXKQ2cZCXn/0BjfFjFGszrHFqWALUjI09bREZml0XSR7aITnVCzrKUSj1cm29g/flhulauwXZP4zR3fMvjmMzFo+RfOp3+X7pOAsHcty8T9OwHCjmyc7O8fRmQcdlFTaMtsEuTerbj/Ly+Dxt936Egec9TgxK2v/ib9jQcymnq6d48iu/z42PTHG8O8fCDoel+TRPbKvgJuf5hZ2Cu54NQYLlhIR1m6UMHBkSzPUrwg5NtwdDq6/BPDZJ7pkJ8lVYysIrlzq8cAncsFDhA6eamFLjl2xqMw5hpSUqEUsY6ZYcH9Ac6xcsJZMcdq7h13a/zE2H6zx1XQ9+bJEvT3D9QUWY0MxcA1/YyOcxtgAAIABJREFULLjooORDTykCafPgyuuY3XCEFy+aJV/poNK2SHeo+P1DVboeT/PoVsn919u848WIt+6MseyY2tY85Umbjuo8tes9/JfTpGsJDt/aDgsTXPqqbMlko2kmYaYAL+0Q/Mr34en1g5zoSNITz+KToSGK1HWRmnSQ1iKdwSzDtTKrZ1wG51sLeCQ1S11QLdpUrSSHEkm2nEqAhuk1klzyDGbNJ7MgGJ6B1DIf8xzBmbYi4+kByoUcs3GWQCW4ubSLjeOTzBXg/3qrwencatrrDglVYcG/hNXjWa6tf4ev3gq/9bBg+8kIc5XHc8Uklx2Eo10pHls3xK+9dIS0BxPbQnbceDvqpk8i88V/6ZLxBhs7Mc7IN/+Mvj2v0l6OcW3Yux7CzW1ce8MH6Vn3HjB+PpUE/yX2rwTtZ2tfXL7iaCCI0eiz4EWfB/Rnt/Wz2OAsONVolJDEUmDE50Fja9Nehq7ngM+FYKsVWyQvAKivB1U/DgJboEdJWmqCaKzl2KsL45UADK2JRIvQxCZY5/wsr6ch54HRsrMGeS6eYvnMDr0MBVtcTFEumBRLcaseZwGLbsUiGSi0OEugXg+DLiQOHZ6Fa8U0DUU9LUm5+hw4TKomaPBkAiVbQkxyudWUAKkVWshlp6NGnSPGy+VeJo0XnrC04vzO0oifTNCUEFi+Q2R7r4N+hlbE4p+Lxznb8ufhlRKCzsBiwQ4uAGgt8qS15seThlwI9BXigvECZZXEMmNSOrigvBf6/AUGGqkFodCvI3OClniGQpCNBU0zeh15OwswI+S5UXS2XVpvVq8bJ2fbSp/9gBbEpiAyBLavzhEP9eME5RxYbZU4Eq24NaEFoSXIB3Wa4nxqogutq2kxn4yRBNg6wJUp9DmCwuviPH1LYC3HO2rdekKiW6c5+oKyv74m50nBWSIiWuNJaLC1DwgC4SwTgLOk43ynnb3Roi+ov0ATagNLxMuD8uwsPn8t7sJe1Ms+hgiJpTUGmvjHyZWAWLTmhLUcs6oRSBSmkhhERNIgXO5ksTwvASILrHCZiojXEzoEyJ8Qw7ao0rTLxrl+vXBG11OSVFP9BILWitmKltvU1urc3FAIDA1aqAuIZqssBq0caq221wjdejYSF3TcGxwVF0b8tb4SmwKpWoJqdrDsIBAaLYzldgvxcDDE+fXg7KsPtRXYsFQGIc4TS9EaSxKFkhKhzq4xuhWrep7mIpfjGGMMTMS5fgCBF9v8ztee56fZz7XMvtKKPZ/6BYqVkJNrYt72LEyt6mDbpT71R8bwDIvxfp+nLjH4t8/7pCuCizbUGX+2HVfAN280+G13iVdnc6weley9uA9rT0T7Jg//iqsovjjO/KuPEl1zGxu713N9z03sKe/jaysmWUGW1furZF66jyeLF7Fu1euvyv24ZTsGeLUyyUDlGInjETOd7WxYN8neWo7ux3bCyhXYazbCxe9m3Z7v8q2eiJVnbAqnBdlLG3TvkzzTk4acYNcd69nBMKfCGXoOWlj5kFsnIv50KKDvpe+h//ofqX/+vxD9wzdQP3icvsOjdM/VSIUKIkFaKzoLAemeJpap6R4zuHkvvH1/zMqGZqJzkZ0D49zvjPBgrcZklKUv108haf+zdTxnYZP0K5/l2DO/yz0nIy571GHdGTi+8mK6vSqiXubrd8C2NQHOeDfFpz3Kv/G7PFUNWHHfRxl4MWJ0wKD/c1+lFlnc/+XfIvU3X+OKPYssFmJmb3Qx+nfw3dWHyLg1/vQ+xfbXFGaXTfqL93DmyjsZyUj82jRrJkK2HIONBwXpKcGJhTO8lKuy50pF+YqY3hV1Lo+qvOuAR98hi9qJNI2JFNWyzf4ukye2Se67VvLVNyWZajfYPBZhzl/K6fg2bpw4xsbpiGzgcfFImfXjFRKh5p7rBbk6rHlNcPnJiJHtBl/fLrhoOuKG06fpXMhQVluZGxrlYwtLfPxxxeRkij9/T0v77Hfvj9gyojFXavau2UTPrhnaowq1NYr0i0lOdQ2h+8us2VVh1ZhgdIXmr94s+catDk9f3MHI+pgPPRAR2jb7fvUv2XLj3Qxe/T7WX/9utr/pbQz2e1z14Ne45dAsI4N1Xrk8Q7Q4gLar7F9tcbpfkmwoVo4q+md8Nk81iDM1Sp0hiWrM2iMRp5KXUNpSoLzhDIeHNYeHBNNpSWelySVnZrl4apztMyfZ2BjBCjSlYkCvq7jpVYVDialLDDZXbS466OMEip3tV/LBXaN88S0RoSFYv99gVRjy7XfErDgVk25b4k+uX093LWDLwYhTJ0bwDv9X4s9/m+ozT9McHUO6TaTjIDKZ/7ZxumyF9jwrb3ozxfd/hBN9q1mYP87GY1XW7Gsy88JOnt//VZaWfsRguojIDcE/C7x+fu1fZfZ/trbzkS9jxWCJluJhaMplrzFoowXAzo7CMKmY67TJ1dQyMNC4fTVKqTQpVyM1hEi82KaiE9SxGW4aYNawlE1gtgBGoE20bJGpc8Bj+RuxlkihLtj6xTkv75E1SXoWm6R0E1uHqEgzS4GEiACJsgxEvFwycxlgxBLzgkD2yBS4SUkmEKR1HUFMYFg0YgeVjMn7IWWRxBZRCzhJCQKqeUklbdK/pGgaAlfaOMugxIhVazqJ8/UQwKsDRZTQxAlBe7NGKGwq9Q7afItm0mdywKbUBg03TU8QYWtvGVQLIlNiKImlYxztE6iQ9tCnZidJxK2TjFiePYURJJXbAkmmJhn7zOsc9cihgUPRTVExBLYZIRV40iBQJpMrLKRUlLwMc946MCqkZdAimlojlSQWLdVEQ0uUACduiVEAKFNQIYspFEIobB2QDpK43UkM1yM2DDAgUgY536BqCDzSVLWNI6JlgK0xdYQSkrpl4cc2KTwCbdFUKY715eiv1UGIlriJFlg6XvbuSyQt4gqSSLbixoUpMXWIJy0CZdEZCFxTtQQgZMsReC6KRkkiZSFMMFWLqFWDLKYZE0qBY7hYKkHBl9TNlihCLm7gC4uJIZtaxiBX0USmoJoxCVKKpNdqH5uWAqdEY6AYHXBI11piN6FUODImHYVIQjzbZmyFTbqu0RKKvkEqFvhOhBX7KC0JhUlLDAS82KSukyTMEKFhbNAmX2bZ8aGIghRL0mIynaYj9GgBesl0n4Xta0ylyYcGC9JBmooEDSJLEMcGUmhMIhwd4hgeAQnq2iGJIoFGaYOYlpLn2ffGyyeCYpkAVVSChAwxdIwSZ2l5y+WhpMBRPoFlYRIh0efFQaRGao0ZG4SixQgz1PATAjctkEpiaUFotdYaqSCjAwwiAsdAL3OP8WGTfE1BbOOb4pz4kU1AMrIJpQIBni1ppiRdQZOKdDAERMqkLlrrtVvkXH+etVrCQqVibK9FYLQQy84Ag6jioJOghGSoniCwQmIB+aZNIFtzW2HgnOVeQpON6/jSAdEiZitdk0xgUbVjtHneYeEqC0dEy2uyJqc9AssmMgVNaTI1aLYEUIwqBdenShJLxIS2BCGY6w4xmzaGholBiyjnkq6YeFhMZov0hA18s+XgsRT4ZouURZbA1Bah0Cjdan8DzjnzBC1SXY0d/CxYVoRnGJixwNSwKLPc8I4P/dQ96OeaoN3795/muh8e5nt3Q/8orJ4E8/f+mGPPf441e00O9rXxhXdGoGM++E+C4uU1yi9lcEOTv3inyZ0ll04rpP3FNE+v7+CGg9M8e9m13H5ZkhXzj7N7+92sefYoR3c/RHjlLaxqG+SOgTdjGjZfyu1huk2z47WQlbsf5UeL0+Q3XE4m8dNlvAe2volju79HYcbFmwZ7yKK5rs70okP24acw163HXLGWjk13o179Bv+4QnHrq5DJBhBL7IqGwOL5jhm2XPYuAlFkb2KElQdMHBlz3WTEH20NWV+f5kjWYPSiGG+jR+dWn9U3r6TthitZiCrIEz7N0wle6Ejx0JV3wS99mrUDAmt+jp5DdW7Zq3jn/ohNJZ+SOcHL9jM8MnEf9+8/wLFZk7zZRlfWQf4EEGyPPsmJx36Jbx49QOGpFFcchLFChoWLtrDhyGtM5EO+fbdii93NiJ/iih+UObNpOz8YWMtVP/w9Bl4VHFmXYPx9H2P6659lxVe+xZpJn95FnzPt8Pi72zm8YQOP+Tt524sGn3zAJ1fTZG7eRPrzD2Lmi3RmFMWpP+NTmxqsPCNpL8Ho1XdAMs2m2Rluc+tcN+PTc1jivJJCH03hzjqMJg2e3yj57tUO917XyUJvivFBn7pQfPYbPlccdMDr4PKZk9w59ipbZmaJEjX2rlH8YLvkvpvg6GUxF/evIH7Ph9iVmafreJWrX9YMuxFff6vB8XbJdcerXH9qnI75dThzbTywssGutYJfe1Rx6z5NKq04unYIeSagPRynPByiXZPqfBeLPSk2jE9TnNEcXSF4aDuULvX499Uyt+xSHOyJuPHFiA2T4H3iP3Ln7VeyqiNNfyFJR8Ym65hYxS52Z5aQo8e58rBABz6P3Voine3j9qcqdGqHv32Pz2OXOjg5i5m8wvYV68dChpaaJFSEI+fxaiGVhX6MZD/rkgvYizHlTs0T18CTmwxOdwqMKGZ4vkmxBloJvKLFhhnF9l1VnlxTZ+iOVaxfeo47XtlPsp5j40iSJy8LeG2V5tL9kkuPwN7rQkZygk4Z8Z3tcCK9hitHF8iO2Jxa5ZNoTGG/cJjwR0/gffceSvd8k1NPPceRw2OMlZtUExkcxyJh/fOJq6UQ9K5dxdBb34e8633sEwbm5Cm2HA5o21Vi994nOXL4S2TdA+QLK9Cpzn/RevU/2v6VoP1s7YWHv0wcWiRtxVLeZCLjsG4pIjIVWmqMZbnttG5wptei4ZikLBNmCqSTJexkQFNl6a0bKLPGsY6I/qUImzqelcRws/QV5yHKUupOU2pmaOqYgqwQSJPIMrBijaq2UXZsHKtKR9MkNBSm8phsK0DNQiaaTBTbCc2AznpAtROiWFBRecxAU9YF5kSeFX6Vogfduk7NFsx7GeJsTDZymU5m6YlNjnelSXgKEQOBIDQDnulZRdgR0y4ipr0idhySEIrQUiwOScZSkmQUsW7OYtExmejKMFypYsdNcpFP0vQIsBnQMZoGNcvheCaHQRI772ElAgwvT+i30SuXyOZ8MBymExKjlGGtV2dlHCKziu6lgFGnQA5FOtZo6WNrsELBYDqgHrek8mMJ2ojZUyhQTcYMuy4b4pAZP4UZK6YTWaCIzGaoJjuZ7/LJ1SEUBn6o6JI21ZRmxOrFk+1k4zlyVo1E7LKgcjS8In7s0GU0CTFQQtOhLVKOSdGFitTUVJI+L6SoAuJSmt2FS2iTLhnXp25K0l4a7SYIXZuKKSh1mhhoMrGP6xjYXoRJTCxMxmUOg4jOqIaSBg0jxWyXZpU2kE0f1zIxYihHKSwrQkjJibYCVsLHbEq0GeJEAYbZSUpUOCNT7Otrp9fRNBxNqhkTIBmoW6xoNqhZPihoGAksYupxgkBYlGSKvHDx04I+KyDpG6AtQqlxVBXLUnjSpJmXaK0plmOkTjDfncZKm0x3aJKeJB8rylmbpBeTylWZyynaSxEdvs2cI8jpACkVQggsEeO3C7oXNegEtUKRtoZHw45wwoh8YJMph1hNgWvmsMIUuQDGswkyrs9Cu81cIUleZcmmFE0/y6l0L93ZMbyuBsVSQGAL6kkHo+hTzjh0VQXTCfAIqKYkLw+2Id2AXt9nQyWiEMXMZzSL2TQ0Jav9gIxrQTJJoHxKXQrXShI1LTAUsTTAETTdNK4wSQkfRwWYyia2BYN1Gy1iZrsNFpOaHj/AjkJ0UuNEkjldJCMihgKDbM1koWgjUCTiJqYRMtejyVUMkpGmL2pSFymiAGxisGNCKTHjFhFrdDZJVtI0hY1QkkQcEwtNUTaI01lqGLiWZF4nme+TIB3scoJTdhozsJBxktGuNnKFUfKlFgmt2zZpJTjRl2GpECDLCZxIUdAVImHR2XSQzRAvpzjTkcVwCswUfdrKLlGQQxoeUmmW4jQ99iKBaaLQGEZIwktSNSRFHSMNk2o+Q1RPMqCbZHxJ2S9gNVOUJORlkyRNErHgTD5FLvIxtaJWTGIoaPOapDzQsUds2HjSwk8YuIUGs5kis+0GydiloOqEIsXJbCfNlIOjfZymwtKaNfUasz39nNISO7SxGl3EiRLpyMNEEJuSpZRD0ashsEBo3NhmV7GHRL7GmFMkrX1WlSxUnGX7u3/hp+5BP7cE7dDJVxn+s//CZI9G92qufVpwalUXW7tOs/jDeXzT4M/e7ZHK5HjboRrXxC71Y2lqocVn3i+5SdR5v1tj8oU25vOS6bYEg0tNin/wlxS2vIXE0ftYw3Fe2XAbG587zolXHmRk3Q7WdPdySdtWbu2/g335Eg+0nWb7YVhx+DjB2Ld5VbczMLwOQ76RvAghyF71dmb3fZ/sREgwAcMrI3ZvUKhpk8TDT2BtugRzcBXrB2/jmal7MauC9uMWhat9Uq+ZOKHirhc1Kx96mYEDJ3hq9RA7N9W55IAkU4fLpmL+85scPjDcxx23fIz1b/4kuwofZN/jz8F3d5E77HG8R3LonTew+Tf+jrdcfxur+tsxt16LfdcHSdx1N0ZnAWOpRPvhKtccVLxrp+LycR+iSU7qp3hq6V5e2vskx0fK1FQXhXSClDfDkSd+nb/f/W0ST0luelkSa5uZjEU6kWHliRM8vk1w8NaYsHkdh4qT/OZ9ixxsu4int2zh7U/9NT0nJDsvTmA04epHnmdgpkFtZYq2SZdj/YJv/coKdifL5I5N8X98x+Cqoz6Jrojc730K68O/30qSOfMq9Yd/gY+lYn75IYNLT0XU3307a3rmCWdfIywp1BkHf86hFprsXiV56NIif3/FWl7rGSCQCZKqzLWlRYZHPe54zuS9L0YkAoGlQiptNV7aAA9dKXnwTZqRLRFzK2Jucrt4z70NeiYk0UU9vOPaT7Np29t4eEOJl/QJLj0Cb3kOpgYVX7zdINeA647O0Vspk7QGueV5ny4VMra+ncfWwMMbK3z32piLpyXtRzMsWW0MVhfJ1Zs8vUUysSFm+15YMyN4pejwzY4kL21IMXxS8a6XNK7pkHnmh0w8fi8slTESSfaU9vDKlz6J8VdfYNMTJ7E9mBpQbD0uWDcOf3dlg+o2zZbTAauPDTB68RIPD2neH/Sw8mCZygrFvu2SSiHC9GDDhM/6+QorRxeolSzOZNpYyrXROW/ztmc9OmuKg1sVD95i8vwqQTUB+bIiX4FkINgxGtN9cJTTA1mM976JSu0QFx+vs+1ogjOdim/cLLjklGDzPklPMuI7myKuX1TsWbPAE+s3km+GbDsUEDVNXr1a8cXrDEZ6JKEZ0jc9y4qDB+h64XGSD3yL0Uce4rEfvcYPD07z/GLMVFMRKU0+aWEZbzwRsxMOK7bvoO89H2bpqhvYX5th6NQUaw6Du+sMu/fdz+zRe+jOZTA61v3/4lTtXwnaz9Ze/O7fkKFJLQWn05qeMMeQ62MGBkoY1KUBkUm3rjLVneKIUUQE7ZSMAmZmiSgVUtYFeuuaho6ZS0CXF7FqKaauOiklJJf1jHMi08se2c2sk2aqf5Ye22XNQsiYLjArOnHzfYz1e2Sy86wru+RLMbpmc0xsYcVik7XCZbqoOJGwGLZD1iGohBZGM0RGkpFcD+nYpWDGDDWX6DB8ZCEmqsR4HU2WemFXoZ9aswfTmEEWXOyqQ7Pey2xXk/F0H0Uihl2T553LuHh+nryxgFKCmkqgDcXAkiZo5FmKu3itN8PVc2fojARxp+ZUl2Sd9kgZIZO+wZRZYLwtSSqCumnTVqswWd1EECcIhaJfztMp6kwmDMatJJcslOhy6tiG4nQ1i1AxvbGNwMcViihKETg2haTPUtGjWEuy2GUzk68zYXUjlc/Kpke/9DmZFbiGwlExCTeLmxEMMEPZrNJR97Fil5qh6bQMehoOp701XBQeoaO5RFNJPG3Q0BkUDm2RB7KAapd4RgLHMDic6GVC5XE8hWsarHI9TEtCEDCZKtIrPArNgH63iqVMFuIMebFEkPA42tmOHWrc2MDx0miarFoIcGObY702pztS5ItVwrRHPdPKO7bZXWI0H+AmbZyGxIsMxnIJnu9Zi2ys5PZgH0d7LJJlRW+uSVtSEy3lMGqKtkqS1e44tfwAXaUmzTT4mSz5ep25bISHoE6WhrYJpCAQkkgYFDN1ioYkqAuGc2Xm2yVaCxLNkFCAqRVzhTRr6z6DM3WkSKOyglgY1JsdmFGavobi6KBNs10x1AxoNpIklxTlOEXZskipJqu0S8kwaaoUszmHWirkdKadZClHIe9yJGviWj4dC5oo0lgqpj0OCDMOvpVjrC2kZJrkTQ1GTG+1ScK0GKVAQ6RJMcuSCTPNDQyka+RkhYLjklEOTsOmlqpyuNdkMtmF9HNomaCzXKPs9RLEBsr2OdKRwnKhO1OiJDKcUAPMd80R+QK3fhHztsWh9ixxG+hcyHguR6psMBg36SzF2NKhM2rl6FOG4HSX5kA+TTahKCLpMJrUkjYVL0NKBCTMJI2cxViig2RJ4+gq84aNk/boqUQMuTHTnRF7nTYGZizsNkGtEGIlGqSDgNkErDB9ak4Xr+Zy9DdcpIgpRHVEUSNSDdpKgrJpcbQtx2rZoLeeQi9qpIrwVQcHuzexmgqNzByVHrBdiwOd/QylLaI4jRVHTGRSRE2bVY0aiWaeKCUpRQUWkjHTKYthrUnJWYRrUqz6hJmAKOdSWIroiRQLFIlMRbIBSdLEzTSNXJbe7DxZWSJYUqwwXHp0GddO0lZfxFQGSI+kjpFJqAmH/ukQx4uY6Mkgq+2UshEYAcmkZrwvQ2QqLqUCUUCxkSOwNGWzRnscETo2o+Eakp7Aqebpr3t0xU3y3Qo3BS91xajQoRF0s0afRujWaW+IyXhfiuHFKu1+AtdSRNRZLEis0CfdjDiY7YZKG0HG49q3f/Cn7kE/lwSt6tc5+YlfpKekOPg+i+6XFMWyoOvd7+f03u/Re8ziy9f2sP2Wd/HK0i4+82Kd4EyShm/ynz5g0J6J+DcveJw5mQXP4J7tg2w+HXJo81re9P4PgZUiGLqR5JF7WGcc48D661n94ijlvf/E1xNdXDq0mrZkjut7bmTt6qv5zuA4XYdn6DwS44z+iMbx+xgxu+nqX/2GUybLShBsv5Xyzh+QWggJRkzWrgp4blNMasxEPPIY6rJLyQyvZ50a5OHqU+w4ImiM2xgx5Btwpgse3iH5xk0Cf1WZ2exmntmwyCUnoXtacN1IzB9uqjM5sZfT332aNV/7CitPLDLWKxh/3xVc/x/uYdNlb6aQemNiaZFMYm7cgvPWd5N8/wextmxFZrPkJkps3l/nln2am1+NaZtfYqG+l/H5f2Du1Jd5ZO89GE9VeOtTkkzTZC7tkPd92vwY02/wt28W6DVtvKBuZ679Gf70OzXubbuN5hC8+fnHSJUlz2yBqw5GSCImtwuclEHH0YCnL5Z8+QMdRAuzfPRh+NAzEQUCstsEzp89gNzQymmVOHwPi098jN9Opfj3/xTSqwLqSUlu1ymifTOIRTjRJXl8Uxtf3b6Fx4e30tDd5P0yv7rzDG86McuO8SWuOaxYe9Kgdx4muxTPbpJ8/2rBczfFzGyISfd47BBN3n5S8daXFHPa4G83K6657MMM/3AftZlFflj5Jz574AGOlE9wZGXAoxuL2ImIq/YqbtmreeAawSPbDVbPKC46WSGZCjm4JcMXbhH4l1zM7dV+PvR3iziLeTq9Ko5u8NAVkmfu7uH9l1/FddWduN0JnMWYS07AK1dYZKYUH3tYcXoFFG6vMNaucRdjii/sJ3z4IVKPPMvgiRrSiShvyxC8772s+9hniYb6yT32IjccFDy4VvDEdsWtmWk27O6nNhjyxf4GK9Z1s3KvYnB/jJ9W/PB2hb3RxegNmSuC9OHiMY+No3VWTXnMFUxOdhVpNnrY9mqOu91F0utqPNLfzmOXWZzsiyESDEwK1h4OKDxzAo2idEmSRnedG17Q9C3Cn9+VpM2N2bTf4I7RmG9sg5xQrBXTPHJxitk1d9Ixe4ytBwTbJgXdV13P8dvX86NtEQ9s9nhtQFPOQNFtcMXYKJcdf4VtLz1M6uV/5MhLL/PN58e4f8TlUCXGDWKyjknaeb2Mb66znTVvuoPi+3+FE719TC2Msu5Ele7DAQs/eoHjL3yF+vQ+2i66HPHfqTD5/4X9K0H72dqx+76Etk1kLMm7UNfdDLtLZFSAHUumVB6znmPQXGR/W5Kg0UGynmVteIxMI2JOOgw3kyS9iJoOSCmHVBNCbXC8OITrJNlqnsEhZL87TMOWdEbT+JgMnjEo1hXNjMOMlSdddVhTmmdGOJSkQcEVjLZ34lkO2eYsrhT0VxXDsYsVhjQCi0rS4EyXIt+0mcl00Jf0yaTLTNkOs1GCQg0sK6bhQEoLOiohPW4VnfTxk1mmRA/90QJH8z14kU1cyxLoFN2VMqFdJ+dJbCkwlcKKJBgeU04v/Y0yvgFORuGHJrmmgSMEs75DqmLgJjSW5dPjl3DMOnYiYPXCAhPZPEXPI5+oEJmSUpDgjNXFqmZMIWwwVk3TdAxi26YuoMNrYvqSeiKBkIqiE7BSBMyluzAtQbmh6HIjUr6H2TDIZBSTWWhok0JskKFBDKS9RdrxQUbkgaQvGJRVKk4eL4jIMw+GQqqYqW5JxbEpJ9vZWh6nzXRJ1mHc78G2qpySnbi2Ta8+g01AOiUIAp9yQTCe6EVEFRyWKDgBxzN5xp1OZLKMITVeOIxnNegsG7TXQvJhgKEEqUhxYCiD0glk6NEuAoQrCJQi78WMWyZx2iA724HpGywWEiSUor0ZcZE8Q4qIM3aKlTpGxE2qJRtlxXSoRRaTNgPmAqlUA6w0dZmmu1rGM2A0n8Go9eHhTimCAAAgAElEQVRZFv1embpp4Rs5LjHnyVBnQqUoWgptOSgMxFJMZGvIaUJPsblUZyFIk0XhZgVLbgfUJKNymBPpTgrOSboijzY3ptlIkAogH/g4CZ+2kqTp2cwaBgt2Fql8Ni2FbIgXMY2QSZHjmOxC2WUKdUEqAC9hUi1I0k6TSauP4qJPl16kX7i4dkRv2ccxNOOil0jbXNSYIh0IBqIqK2WNtkiT9sCNOhmhi0K9RkesGK572NYCmxZrdJUkiJgwE7GQEpxuC8AKKFQzLJqa9mieog+ZwKQa9GArCzMxz8awwmDTYM5vo1gRtHmLlESGUKSphAnmRZZ85FLucInKfXTUK3R7Ic1cjBnFLHjt5KVCpSxCS3As7MaMBV1xiSPdSdY2FRtLAXVsjlEkqQNShs+UlWcikydl1OkPBKqewmwaiGbI0VwemY1JWxVm02AsZXEbCVzDYMIYppTMscUdJ6cE2fkagxWXhQ4DZExV2fSXl2g0Blkyk6RljTF3PVaosNwkxKBSi2RcyaHMWiYTeQLDotCIsBIlVjTK5EOFOQdJHzJGRNaOmbET5IoRQaWTpSgPXoqJ9hyV7izr9QhF0STSkoXQoT1q4qYFE8IEJahnFb5lIAKDRSuFih3aahFODEUzYpUuMRcr7EBiVBNc6lcY9CLKzRSFBhRMn4KrmdeSLjNiddhksd6BFToMqTHaKnWKqokoxpSCAn7cACtkyCszn9OYUpPIeFSLASntogzN4GLMmc6YkaJJRxSiDEUiCNg4UyNnV0gIj+3v+OhP3YN+7kRCIhXxtT96F+/40QyH3yLorLp0Ppfkuc0DvN06xPSBPCd6Lcb/3S9yYvd3WFsp844nJG5s8h/fZ5AoCt7xI5/LFiKasw5/8Y4sv/BMna6q5pm3Xcf7/91nz8WvGOURso/9JtbCQfbX1iN+UGW8U/And9zOhy7/KG/fNIC5fFK2f3YXR7/yf3L1E1MkQmh0RYjBHAu3/SYX33r3G65X/XDPMVb/wa+TqzRQKZi9q8mMUAz+YwY7Ejx12+Xc9vwxUgtllICjg/DSeslrazUD2qS7ksCIbV5YK/nsVZ/n8ZNjPHDyM3z46So37de4Sc3n75D0WSG5mqB9eAN3vO/L2OZ/W2qAn2TxwjzRa/sIX9tLc8+LHChMsme1ZOtewdbTGs+UnBxMwIoKw4dtsrOafSsFj92isby3MNpRo2Y8z396MMVXi+/iQ/MPsPJ0lcl2ONUPCR/UxZI1uRXox0/SNSX5zHsdZoqSd+z0eNNrGsPQdGyoITduIf61byAsG/waift/h5OvvsjCbIrOaYHjt/rldBccHUyyu2s9I5m1rJ+oc9PpEXq904wM+Kyegd6lVnLD0IDj/XBoSDI3EJMqRvTVLNaPRKw8ptFLJmhBOd0S4pgtCqo5jZOOSDqSmpOlb0SweV+d0z3wyi15Hs63s3Ypz5/s38mTK7Icsn3WTWjWjgrm8oK/udNg3bTiIz9SdC6BmY5hyKa+KEnMhTTSmvuvMNhzseY9hwLe2QfluMxLe3q49ETE3J0xn1tvMnBM8Bv/pKkmBZ/8iKCeEKyPA35xxueYaTFSttlyCnac0DghNPNF5E230fXWt2Cuu4joyGEWf++3EeUK/3iVyXevUfxitcGHp5p8v7uHz3fE3NVQ/OKJywgf242wFTuvjPnrHTY7vJC3VlyujBXTS3BmMUk869A7DYllPjDRZnGsq0g9n6MQGgydLLNnlcn+i4sMlGdZM11m/VhI31Lr+ek2mOuE3jnNV68r0O7V+OUnFXFS88DtJvevE2xr+mS0omPok5hP3svVO8/QvwiN3jTd/+sf4lx9A+WgxOjCXkann2N07gD+6Az5yYh1E7BuSpNc9jGVs5LRrjyH2lZztP9GujdsZttggUsHCgwUEm+IafPdBk/f/1WMZx/golM1kgE0HU1lOE3qqrcx+K6PYLX9vxcw+Vna/8wiIdPT0/zRH/0Re/fuJZFIcPPNN/OpT30Ky3rjlfRHH32UL3zhC4yPjzM4OMjHP/5xbr311jc898WPXH4u/F0LTUM4rFmoY+RDyliULZuEH2NHMbW0yTFrE5bQbPYPEmiJb2hSMmJgKWAWi3rOxrNaEWRhnCcf1ViXreGGBqfcNuaTKVR6nsGSwPZbcT+hJTkhe+gy6nTJMlEkiAOTpiOZMAepm2k2egdAmMSYWARIoUAJfLMVmJ6MNIedTay2FtiojjPqZjg1nGDFWNASK0C1lBCR6FCghGLe7GbO6GZYH2B3Zy9SWWS9IpEW7FjYT3s1pJmReM6y2IAwEWo5NP6s0MQ5sYPzYgJOpDgwFGNGkAxka08IbfqiiFhAPUqyITuH1DDrJtmZuJR0M2BdcBypYty0XFZqPCukwjmhAEMo1iTqnHL6caMkZn2W0GyJItmRwFbgmREIScZvCRZoAYbQRAi6rCYLfgINrE7VUUIw0siixHmRlBOdIQrBujMmPeUAI+Uxb6eJhUBIKFtpbO3jaIVBRNmwyCwnAnYtSIQaS7VyUcYCQmlgxZKsH+ILByEDDKUoVhVmBAttrSubk3lNpJMM1z1iWmIYSdXENWEsbxMZMDxnYwhBkNLYdQNXpGmXiygNUscMpT2mYptyYGPpVvygkpoh0yVpRJxwCywYHWydngChGevO4Wsbg4ic5yJci1LGIWt7IH08LFJKkzEjlAbXNQgMhZQSS7WEHmIliIUkYUcsqRSNjOSEuhSIWR+8xiWJOU4EeRLL67RalmG3w1Y+S8/UeNIhpTRJ5eFZmhSacpjEFIJQA7FgVaVOpSAJhIFQUDeTpMMm2gDT0BDHKGVg2Zox2YetfKx0hWI9ItQGaSMiIWPabQ8fmwNuH8VwidgEIcAkJNA2ZtAac6EtiUXMWHtMuwfZ2Mb2FLGGgoJFw8b0NcqMaRhp1iUXSWqfmVo3kw5kYxcjkjQrXQyKKUoFC60UmBeoOwqFaYUYnkEtaMMt5qiSIEuTKVUErdjgHSE0LLqtKj2ySUnanPKLmLEgoT1CCVUzSULFpOLWZu1oj0A4HHdWYUjJ6uZxjKgV0xqZgljYuCKBRpOPqhhKExoGAo1vtq51m/FZAZnXi/4ccjYBmr5ggqKqAIKGTOAZkgo95HWZtnipJVSiDKxQUayFLBUMYqMlWlLQEX5oEWDiaJ9SUmArRb8MyFshvjIY99KssqtgwWylQMPUsBy3m4kbNGWCqplmzXQdKWOmOhzS2qUh0mhaMWudlksmMFmKW/WILcGygDdHOgukjSbDM+dFeIiXBVdsEykEi3ZIhE3OM5jrACswuNKfxUSxt00S12z6FyVBDI2MRAA2GmITrfU5zPHrX33lp+5rP1cEzY8i/uq/fpgPf+cEs2tjutZ5xI+lOd1lsCFwKTkGiVmTr9y5nvc+c5Qf3B7y4QcNGlLy6fcbtKfyFMeW+NjOkHDe4gt3GtxuNLnErnBgdycrx+GJq7q56Q++RHemp/XROCBx5F5Su/+K2VNlFp9vYykN//ntnSxl3szHtt3F7ev7kMvKifvGnuXQPX/BxTtnGFpovcJtN5jcdAO5d36Yiy9df+5U7a/u38k7/uYTpH2fMC148Z0NNtUVyUfT1BKCP3lPhmxN4bd5DPgWOw7Blel5Tk2tYu2RBU4NagYvCbhn2GRX5g5y+4vM9o6ytvkqH3giZmgBRrrh5W2aqw4p5vszFG+/i203/gaJ/06iprXm+VMPsef7f8kVu5qsmYZGwmSh0Eb3wgwZWxF6Br4p+IebBFNDQ5Smr8Ze8TAL0uX2p6/Aw+Hu409hB/DDHTDVBqtWZtlRvJyTLzzJRS/Cod4E378qx1tem+eqo62J1b66Tm6lR+OaPyTcdCczTz5M7dnvkRqdJ1NvlW8+B0eGJSM9nZxecTMitZrusSe57OBe+peaSC3orGhMBZGEk70wPghhb0iyLcaIM6w7Khk66hIoxV9/wODFvM2vHhAU9q0m1AaxhGK4SE+jQtH1zilDVZPw4JWSuRz824cVpbzm2C0WyoG5xYDL9khWzUAjn8D54K8yJk4RP/w4L63UPLZdsO0UfOg56JmPMZMxrPa4f7uBteoK3vraiwwbFb5f6qZvp0F3HLHvfQm+lIl4748E1x3UGMmYuClpJE2+fr3D01t90Aa9KuC9QQehKXkimqV9zOD6Q4otI62cZaX2Hvzrb2XwtpsR3/sWwRM/5EzR5st3RkQ9Ef/bpMsaN+DvhhLst23+d38b4qkAffQYUQaeuTzi77c5pDVcW5ZcU8hxnbKxZ/ZzuGpzZjGJmrHpnz6v+DhVsDjR3sai3U4lW2Q9JUoLScY7LAb0BBtm5hiaCrFiCCUc67F49CqbDz/eoNiAF65M8/c7wEt43N5w2Vy8jBnnrZSf+wtueTmkuwyN4XZ6Pv4H2Jdf+TqCFYR1JiefYmTqRRZPHoKRBQqTEWsmIb+8BNUTMNdhMFPMMVUcprnqRoa2XsvW4XZWtade977pxTM8e+8fkzqwhw2nYwqNliLXYk+O+PI7WfnmO0mtX4+Q/2OvQf7PTNDuvvtu1q5dy+///u9Tq9X4rd/6La655ho+8YlPvO65o0eP8p73vIfPfe5zXHfddTz//PP8zu/8Dvfddx/r1q173bNf/+VNSBSBYZMIk5StFpmxEC1A3zSYtkMMQ9LfsBhJG8TCpNMLaNoBkRkQaQsnPq93t5SFtNdybJg6IhKt09wziRRm1qdrIW6pFmqXOLYpxWlcyyYlfPLSAyDftJjDRhCxe3WO4bBC91xEh2eykGglyk2pOnUjgzR9rEBwqtDL4KLFoJrlcIfBUptBuhHTv+CTMA28KEIh8ZVBRaVoMxoAlPOSpYQmSjo4sUUkQlaNe6RCCM00igaxgIpKkhcuhmmwlBH0lWu4ywp8FyawBji6Euy6R7FuU2xKKpFNMczQLypMJGKKIYikx+lUkmxFo6VEaE0jKzCqBk1t00UJVyTxtYUpYtAaQ8CADlnqSTAettNfmkIJsGMT34iXVSxbYgxatwDmhUqJxAFaWjhKsCKzRCOUTEX5C0RZwM+6qIpFgwKljMUmfwIjEgQ6QShMMpGBZ8akQoNUDIeTBXrMcaIoSV07KEMRhSZj3TYbS1ViAXaosWJoxA6OHaINaAQ2ShmQicgFLWCdjiTJSLKQiIhMcISHGUQ0ZIqmDVlf8n+3995hdlT3wf9n6u137/Ze1FZtJa1WZUFISCKAqAH8YrAJwT/s/DB23J3E2HkgxnaMiWMn2OBgXmJwAEvgADZBBkyzTJMlAeq9bm939/Yy7bx/XGmlRTSFohWez/PcB3TmzOy3nJlzvjPnfI8iYLBEoWTERtZy2KYXpEIwl5N8OJLARwrL8WFLY2cS5IWCR7I5MiJ1JJmso+GXTCQEsuXQWadT22viOH4GKg0aozJ5UZBPsQuBqC1LNMRVttU7hBPiaKZOCYaLFfxJsG0vAZHGUAQDdog6UvhFBoFEWvURyWtsa5IQKuimSVmXhEe26K7QqOq3iQofjjgqf60SK/ztwwkvLEkrZFski4NyePNjqZBQ5XDyhq4GBS0vU9VfkD/rlahOyMR0ezQD45HMkz6RRhUySdkHQLRUxT9UuK+9ksm2hjBtnSOoWT9VTpxDPgUNExO1kDRIVjADGvQWMxDIM8HJcrBKQu/S0ZQsQSnD/glFlIxYhFIOI8UKxSMFXwghcez7w4ihMKQX/BMigWQLdk4sBsehobOQGGXQCVEqpVAkQV7SyXhVItkMmjDRMclIfnJhDyJu45OsQlZUR5BQPOhyIXNrwDbISBKpYonQCGiSjaWCYh370uUoNUaaQamM3iIVkRKUyyksTUI3bCy5kChEEfbovRQPy0g2hNMOaeHBg8lIFZT3OSRDClWJLKaiYh1ukn7TR48uEZazgES1J4MtJEQizKD36MyRoJMavamF6cVWBTlZIyhSpKTCtlkDdoiAbNCUdxhR8wCYsoMkF9rUCzVVVEhRggIaurNMzuQ4FJZQLEHUDhJtVAiZHgKJBGbAJBuQGJHCBHIODSKLOpgnJQJEDI24bpEOyATSDm9EFRafuee148qPMC4CNCfZz9YdG/jNptu4+tcx8AnCcx3MF2XiHonXm4pZLnejbvTzX4uLWbFlhN3TbU57VSbuk/julToT5UZq4tu5/AkVKS5x97kyFZUBLro/yf5WwbmzLV7eIFO1TWFNi8K+z1zKNTOvocpXXRDCyuHd+RDyk7dz4GkH25B5YJnME3OC+JzZXDbpHK6euRyv6i0EasOvseZPv0R9eR3zdzlM7itcZqA4yP7pZzIyYyHa4G429pp8+dVHUBwbIcOfFliEyk1mPuElFoDvXqFil5UwZdjHpf/dQUUcdp1tIA3U0rxpEEWAf2KGzFSZf2nSKdvto5clzKzcRW3Pfia9plERg84yODjJZm6HQzKvMjCvnuKL/5qW2ReiK8dPdXwjpmPy1OsPEn3k/3La61lKk5AsUsmcexm12pOkNw3g3etB5GX+OFPit4t9pIb+kms71/HMaXswDzVRfWAGl3b8gapYnh11sO50h0Q4QiRQg94/xMwNcYJDHv7QEmbRgT6aexzymkRgQp54TRE9I/VohklJdyfhRGGgkfLCtkboqdEZ8pZDehKlbYvIbnqBmpEd1PUlaBy00O3Cw/RAFURrHDyVBpFiB1sUs8nrY4eW4tznVObtyeHoMn9Y3MRdTROwbJ2GRJJJ6U6aYoPUDOeoGzy6h5gAttf4eHyhwsYpOeqiDlfu81MdyrOrJEnskJczXy/sPRcLKgRzFrGAh2RlCeEGHyURkPZ1EuvKs3KBxpoWiVkH4eMvKzR3GUiKINSQhQlZ9g2EqdgpEz0jx69m6hTt9HDZywJ/TmDLoBTZlDdkSHd4yI3oJMMKDy4M8WxbEhsNj6NxWaCatsBEXhp4mQ35BNP2yCzd5jCts6BPR1UjTuMU6vZuQo0OsnGCzCNnQFNxlqVdQaYm0qydmMfUApztv5bsb9fi7NmFqUm8OkPwRIuCWW7TNhIhHyrmktrJzMCD1v0nrMGtbEt76In6EH0eKgcgUhjnYUvQURyiO1RO1inClFU214Qo0oZY3NfFpK4RfBnBC9ODVGbSTD0kWNcMv1tYxZZiH0XeDq5OpTi79hPcF0shb3qec9c6lCYhVRWg/JrP4T//Y0iq+samXfCjbTHYv46uTU+S3LoJ6cAQwQGTqiHQ7cMyyjASlhgp8pIqKcOpm0rp9NNontNGqK4GJIk/daxh4zO349ndyYz9gkmH7/ucVyM5ZTbh0xdTsfh01KYJJ5Rp8v3gzzVA27JlC1dccQUvvfQSJSUlQOEr2U033cTatWuRjwmcv/Od79DT08Odd945WvbZz36WhoYG/vEf/3HMdR++YiFDARvhD6Flg5jSAAeKQnSFwkyji4XDWZ6qDuLNaSzcLyHZFn+omkzOK8grMU7r7SWDig+bSQnBvmqIRXJE4hJaojCAS0sBUo6PA+WllAWiyHmbcJ+M106RDqgMejxEsln6i0tY1J1FtQWaI+Hk89iqxDNNLcyng5aOAWzVpjMUoiyWJ6tbbCwLUpx28AiZCf4k2b4IILGzqpLB8AhDkk6FmiQUj1BqJQgpWYajMnGC7Kgr5uxMHFuG7U41cskhavISOWWI4g4fFVmNzcFG5iU7EMjsMcvxanliNSHigSjn7O1CcVReKSmj2Imysaya2aaFJyuh+4co68rT59WRLRWPGqQ3FKRUMqjqi2MJnYTlIVucYk+ZYGIyCZbG7kgjRsahKt9PJigQyRJKEh72VutMNvpQjCLK0mm2zI4iGcWU5RTUlJ9MthIlG0XVYgSlHLKwcbI6ts9GRhB3fBiSypREgu5wIyFvnrJcDyNY+FSLASOI5FXw+LwkimNkYz68MY3dDSHqtUE85PGnbbr0chYfzBMhTdIIIoCNpWU06Xup6RX0hqvYH7Ho1xyiSjnLerrwOmlUI8wQMknVV8gyqIfZWa0RSgXwhHpZfqCXvFyEbhf6o5hiEK0LMmAnkR0bx/YgyTYlts3UQT8762W8cpSk0Ah3+fHLFl4yRCscZAE1vRKDaOyqLGLYV8RkRsjjULInQFAbwhEhKv2QCph0jgSYkE/g6Cm6K8spFjq6YSNMlQpvD0m5inWhDG3RLCQNJMcha+nYmRoydTGKExnsgEUiqKD3BLFrR+j3l9B4MHc4aJMw4pVUqEnqGcCQJPaVlKJ4PewqylJh5vBgMDQYwhI+lLIMMztTDDpBoodfQsuOhCzblFlpRHGK4qSM5HgpVmV6IhnsFGiGQ8Qjsae8GE+vgQeDziaZtBNm0qEMmiMxEK7l9MH9xEWQTtVH2mNRLuUwwj7q7X4M4aEnq2FYOgcbNOyoj4Z0gnS1Q69WhJMNc+G+vZQrGQ4EYCCiMuT1ML0vS0r2s90/ncmDSWrtKLvrqumNDOLrVajJxTFK4WBxGfOieUZEhj2hIEv2D2HqFkILM5CtY665k7zspdsoJ1M7QFkiw1A9mKYX2dbpteqoGxzCJ6XwZXzoUhrVn2ZHU5CMo9Lcn6Yka5JWZXZWFpM2axjxmSzo6SfjaEzLR9lYGsGXUCmVDbxY7BNB9jT5mNyTYn48yXN19Zw2HGPIY5PMyxRbEsKTAUeiWhTRnytmuDQFww6mJ0+sSGOCt5+8VUZRog+vJcCWiPnCxCq8JFSDkhGbTf5yBDJlhoInMkxVSsWfHEbKqUTyCiPlGkZ3MXF/kippBFtSiYsAE706lirT6+8jMijQhUG8VMFSYPZBwYZqlb5QhNauQWJlAp+kMpLw4ckLtkUqWZQzKB1I0IOPkeohyiwbhTKeqiihTCQwJJWGgTT1pomnOEk+BlvqimnOq9iWTnfJCGZGJqxaxJQiGlMaoVickJ0kavvp9E1lGn3kvWDFYgw65aA6NFg9VKd1grbFgoc3v2XfdlIDtETO5LqVr/F96xp+roW49iGZYslBSUngSBwql1i5OMzXB/uRX/KwYYrKT8/18vENGS5ZW+jw/u0vZnKm46cp+yKzng7gS1n8/DwZaUIx/99/DtFXJBG75V84u3oy4f+5mgOvDGFv8vPaRInbLtO4etbnuHLiJ5GPJAGwDbR19xL/6d1kOiEWkfjNPJV1Ux2iYQ/NwblcNOEsFlWeQUQvZvtQD6v3PE5078NU7o8zb49gemchBfNIUKa73Mv+ojKW7uwgJARyXiLnFbzUInHmVlBMwdPtsLJdpUTSuHRtmkWvKDyyRGJ/s0rLZpMzN0E4D/7KPL0NOg80SgxMWszCvgrOSjyGFY2R3hmgckAip8HuyVDvyVK5X2W3T6d7QSOBsy9kytSlNAQaxwwc98X38swzv6Di2T/Qvr0Q6AzVaSgrPkaV9SLa6zvJ7fVjZRR21cEDyxT2hc9k2UiY/2M/wF12E5HOWs45uItJAzl6iuH1dps5uwR1BwqD5aEQHCgNkZc9VA0rDHrKGA568Et5anN91A2O4M8X3i7E/bCzXqKvGjJlKvmsh6V/lNhZ1kg2YDAx0cfUvsTo1LWOchisdfBU5SkpBscpoVtXeKkow5+CEjXDEheu9XLGjgy65bBhUoC9tQ4ViTz1Aw6Ng4xey5EEyQgkSx2GSh26whK7izRSmsTyAY1qr0Jf+Qi9QypNu1Tm7it8qRvxy+TCJq+eZbJETzMjZSGPKMQP+Ih3+JEsib3VEr9eLLG5UcZvQtIrUx+1uWCdwtJtBqoN3lIDvTHPwTII7dDRunRSihfhydPd4MUzqZWGkhlIq39BcVGa3LBOPqZhewUvTguwujXPgQoVkauhWQ3w8eZ2StL9/GnwFTbFoszYKbNkm0PDYGET0Wg4SDhn4jHy7K2WeHaOhNlk0JwJEemvRi4aoKgaZpdej71mE7k//gHZNIn7YcMUif46h9KIQlKqxygp5cIps5kaaUYb2oF68AVyg1vYalnsT/rJDOuEByUm9UI4W7C3JUNXJEy3v4zucIiOUp2mTIrl+/diBm3KegpTpn7fJvHcHD89eg2ymuWv8ntozlXysr8Gbd8eFr9mUz8E6aBEbv40Gv/6a3ib57zzQ0kIUsN76HrtN0R3vkauoxd5OEcoJqgeBo91tKqhwkhEJVUSwqqpwzdhGrlQnM3xDcQGh5nUKTHrkKAsUaif9/vIzZhD8ZJlFJ3Wjlxd84EHbH+uAdqqVau46667eO6550bLOjs7Ofvss3nqqadoamoaLb/yyitZvHgxX/ziF0fLbrvtNl555RVWrVo15rr33PL3RA4N0zN/EfMSCfrTm3k+pCIsh6JgNzX+IHtDdczeoVGZ20dxUQbF9PFYbjKvT1Sp8nu4yDuT8KbVhPtS9PoFqSowY2m67SbqcoOUdzrsq5jIlkbB/NwWZtbMIL4xTl9YJt9ajdV/AFVMY0tZmLN2RgnLUaqdQQZFPUUlPjZaOabVFlE7tJtDpkpfySKig+vRIwtJeQcolffh2ZOlSc2ieXU0u5RnYyVsieQIWp2M2DKSM5HG1E7OVw1GasoYCVQznJxALLabCU0RXsxGiBhZFhg7mGEIth3spbtqIuFAmgXru9D9Kj1Ni3g9IKPOmEiZ/BqJHUk6RIC64igxrxe5X6LfLOMStZbYjleQA/0crNCpqyknUVRGfJ9CcSTP5O5htsaCtBaBVlNPDpXXcxsZUSQa/Cto3PAcsn+QJ+tk+sNnUpkc4ZPWABk9iHcIuiojPGHuRFYs2qT5FNVOYnO6iOz+bSjdL1GVzTHSUERsShtO7w6W7OliuK2G9bKX0w4eIGEHMMpbOX3jHyAU5E8zG6g5tAutrIipldV0ZP280HEIq8ZDf8lkanrWUOqFCtFCJOPHDqeIdO4lJxnotkH2k//Iq1seonZwLw2DDciNdaxPHiQRrKfSiqJ0RrHKFrEt5CGQPsTkAzvITtAgUk3DoEa+3PZOaw4AACAASURBVMKIJ5m+r4NdZVPYXHcaV8tdjARL2GH+CWM4yk6tisaYRpkYZFo2SqMEuwyNPo/EljofjfkGpk6fw/aOgxgDhyhJqXikEfJTptDkmUco+ju2JlQi1FDtKSNoD/K87aO/zKLN30jD5hfQo3vZ2FRFtGk2TaaXmWKQoqDD66Ewqwd6qRpWiYVlSjLDKOGZxHITOXfwJeyDm8gWS6RKbYyiOiYEIxx04nQdjFMdTRPMWPgqyqgf1slWhciFainKDTJi7cMsqaNEVTmgetlmpNnnrWFF/xbqtmXRinS2lpcQ7OonWj6HSP92ysprMSq7KE1k6WQZclU59bHHecmXZKIRpmLYRg1KjGRNDhUVoxaXUtozQKeiUKbkSNVV4otGmDC0n70Tz2Oy8JPJPIonYxLLBqkryxC1FhLv2E110EN/ZQ3bjC7KrJ0M27C09DSaZ11I8s7v8bovx6GlE5g5PJPenn30loepS/qo7uinJ+IQD0bo02L0+HTOyDpooRxFcgu7sh1s89kYRUkuEFOoefEFwhUSe5QZNKW7UTDIVrTyhC9Fxj9AtVnMxMYAGa2JxO/2UtzVQX1phJF5zQz1dCCJBHa1SUgLEzBUKtbvI1rnZ2VFPfJIFaWlfZRENc6yfETKIGOG2CoPU1a0gIToZEPsT2RCQVrNcpycRe9IgHKzi+b5ZxN98R52l06hNJ1hciZH/5LrKN35CpKq05/fBf2DpH0RZjbV85jksDD+HPWygxYPo9ulDHt95KUhummgJ67i88jU+oMkrSwzqx12sYX53jCTS2fzdGk5HbtfRd/dQ3lWIil5kWM2NdV11ARNXqoNE3eSKLEOAlaAOeUzGHwtg+3sYcTrp8weYJonww5PHbY9QKyqiAmpGvJJg76yLHrFUvZ3PcrsVAmGnWPfvFbKUhsJxNopSg5hV3VRta+HvZ56AqFKqtUSXh3qZteUIS4oa6RNquC3W7aRD9XTlMxRPPwCnU4dyealRDw6UlCQ+dMGdLOI0uIMqkdCGfIQV3u5/J9/+ZZ920kJ0Azb4Imu/6E73cuLh17mos4tXNqdxVtkE3YcOg+G+Pf6UjZMhM/ssZj/vEHML/GH2U1ctuEAvpTE0GSZf5j+FS5PvEjl0Fam7jfxGga3X6TglAT52/viRMMSr37101y77PqCsrkY4Sf+hvQLm+ndEKE/ovDz8wXWzPl8v/07FHtKRuUVVh5W3kLq0dXkBwsDq0OlIXZNKiVbolFkGxSl44RiSUJRi5IomCocmmWxewKowwq1B2WaO8Ff+IJKVznEiwTFCZ2aAZPhACSC0NQPlgq7GuDVJhmnyOH0LgN5QOXfL9CIByWmdtss3CmxZJtDSHLIFuvkEha9YZBKSqmtzRKU+jnY4aNqr4rHhM5yiWS1wpRsCn+vQq+ksXWCyt7pZQwH/Uzc08vC7VkahsBUHcwWlUjbVLwHtsPBLMkOL8KW2V0r8+AS2Flezv/Zp7JC3sNd+mQCUZtzdgwwYUAwWAQdc23KWmYy9GoM3yGDpF5Oh6cEWTh4RYra3CBNw8NE0kdHvj0lsKtOYqBKYJSApPhQ+2tQ4ypViREaozFqogaKOFp/sNZGqzQJFkkYmp+9AZXNfoONfglLlqlIOCzbodK23WJCXyHwM5WjX0oATF2QizgQltDqgnSX5ni0wsDpU5ner+DVoUz1kCg1SUoZjAGVpoMyLR0C3RKYJQ7B4jxFJQa+qjwezSE1pNPV78fo9OHNQE6Dl2ZIPNsqk/bLtHWYtOyFUEzlj0119M7sYlckgGanOWuLw7LNUD9U2NQ1UJnHU2XRU6HTk5Wp3KgQSErEiyUykyrR/JUEXt1IeSiPLSTygzrCkUgGYf1Eic1NMrtDk4hq1Uwscjh/0gSqFdg7sJZDh/ZTvdPmjO2FgMIBDK0w7cqWYEe9xOaJ4FQ6ZH0VeDLlCCVA28RG2qVpJJ/7A/aGV9CNgkE7y2GoxiFd6mdXSS35MpWzGyqZ3XghoeJm1Nh+lL7XiW5+mM1WP92ORjKuoQ6pVA1K1A8Kyo551OQ0md6IH1NSabJiaCOFHUA3TZT440yZjRNVDLuMEsvhbKuHVKYWkRxh5rYcsw8UXo70VsPItDL8805j5vwL8VXOANX3rp5Vdi7GQPeLdO16geiB3ZgDQ2ixPL64IBKTqIiBdkxbymswXCQTjSgMhiWSOnhzFlN6bWoHC2tfLL+G09SAt7WN0Bl/gTqtBUl/5y/bJ8Kfa4B255138uSTT/Kb3/xmtCyRSLBgwQJWrVrF3LlzR8tXrFjBVVddxac+9anRsnvvvZeVK1fy1FNPjbluzrCwbQddPbq+OJGK4hgmnlDR6DQan+rDSQwjk4VgFTgmHDPFXJgmwnEwbIHH5yGdNzEdB02W8WXT2KEiNBkws0iqjrDFe24bpu2gytLR9dbY2JYFqgfHtjGFgcexEaqPjFWY9ufTVbDNQsZSWeHI0MByBIbl4FFlVEVGmCaWDCKfR0VG8nqPm94rhCBrZvFphXtOgsIG1raNZVpomgyyCkYS9FBhqqGZAVkB1YuTyyF7vYf/voV6eOqRsCycXBbN7yNlG/hU35gXH0IIDNtCVw7vHXV4aYIkSdiWjWHZaJqCIsskcnn8OGi+wlTM1EA3OV0l4C9DHRlAKSlF1nSE4xSmmBkp8ISx7EL6d1kC08phS4U2cATLyKMoMhYCTdHpSw3gV4OEvX5wrILeR2QdiuIrL8VBwnZsbGGjy1ph4ZNjFdbVKNrh9TVH9XSEg+VYZAyDgMeDJmukMwn8ql6oq3mQEGQdA69ydI2tsG2QC9sAy8dkphWGgTBN5MBbJEFK9WP6ipElhZwp8OvK6DUtx8IWhe2TPZqOcMBxBLKTxzRNHFQ8Hn10jRCyykgmgyZlCWohLElCQQbHQXqTNaNYOUzLRvMGEELgpFLYioTuD4761skVpv/KHh1sE6HopPIWASeNLAG+CCKfxhYOackhrAUL7dy2kSQHjtj8GBRFxraPmZaWjYEvgpNOgOpB9ngOt0kDkU0iB0sKUyjzeSRFGZ3NIYQorAO0LYQQyMfc28l8hqB+tA3bdmF/OCHZqJJKOjmMlMrgr6hGGAay339MO7cx7DwhT8FnyWwekc8SCgSOs2PCSBDxFuHkUqD5sQ5vQO2IwrPijYmzRt1upFBldXTmWDxr4tNkPFqhfipnohlZdL//TWevCNtCEhYWOooikbMyeGUPkqIijDzYWWzZj6IqOKaFyGdRgiEkWSaZHcar+dC0gs6mbaLKKpZj4dU9WKY1+tyxDz+jvJo8tq07JjlHQclm0MIhbEegqsdvx+M4AsM2yBrg1VQ8mgSOjawctqNjYeXyZNAIejXkw7kpDNtAk7XCmlvHgsOz1QzbYCQ1QkmgDO1N/t5RAwk0/c1tDycpQOtIHeKzf7yGkgGFBUPlTKjYRK3hpSqv8ytvI0+Wj4BkM7U7xzcetrEUOFDiZW5nDr3I5OU5s7jT85ecMbiGyckDLDowQMIPP7lUZloXXPkHh+0NCtEv/wOXLbxsrCC2iXfHKpzV/5fB51OYaZXdNbBmrs7EJZ/l420XIyW6GNm7leED20j27MYc6kFO5tCTDr64TDgujQYMWb0QeI0US+RKwoQa5tMyeSnlk6ehlgbpOLiWbS/9DmnXbsp7U9T0Omg22EAqKFOUchgJQG9EpiKuU5bKjYqa8QoyIRnDK/PiRIet9TKdZRDO+qjvFcw5mKY2oZBR/MRUL0V5h7KIQ7g0TSyTQTug0NBXaEjd5RI9lSppv0xDn8nETgs9aONUm0hBDa9pIYYhM+jBMWQMTeLlZp3V7RbRkJcpwzojqgc9m6F9f5LlmwXBHMSLHawZeUxfgD1DpagZm6Jslop4npLE0ZUHDtBXDAeqJUbKHXLFMlm/ji/jJdivUjGYpzKWpWLEHh38ZnU4WA3JShu92CYQtpA8FpuCHp4LeRlUFYIZwcRBh9Y+mNil0thpE8gefag6ssAoshEhUCQVx+thqFxjR5NCjy+Oss/LjGEFTzhHvNghrgmsnI0aVajuk6gfcvArDnKxhVWrIDX4yakJzBEDM65hjGj4+jQqhwqb0RoqvD5R4vWJMoYumBK1OT+bpsZnILw2jiWDItFRKrHF9LA5OYlwJMvOcomdmp/K1ABn7rBYsBtqhguNTAlaBCvyWBFI64Iu2cMhM8CA7cdSNGxFpcbKMT8+TEnSID+sIYyC5TMeOFgh0xUuZdBTRNav4K0wqJkYotQjEL0d5PfEKd0rmNhbmFme9I39ynWoAjoqJdJhhUQgSNRfQjw4kWWBZhp2b0PasZbKgTz64bh7qAh6qyT6yz30VGmYZRKTw2XMrDqdqbWnkw2W8Mx936Ckex9lmsFIhcMBXSWR1hFxlfBwIWhrGIRgDkCgBWwsU0YYMrYs2N0Ef2xW2NooEQ2phNMhKlNQbQomHUoxY0+e2sNrRLvKoKdWkCsHqSJASWk1zeWzqW5YgFw6CSdUVxgEvQNSLkaybzv7D65lsHMzZn8v0kgSPWHiiwtCcZnSGKjH9Ok5rWCPWFgiEZLJ+BQMXUHICoqiUqyHqSmdxOQZZxKYsxg5XPSOcrwVboB2NECLx+MsXLiQBx98kNbW1tHytwrQVq1axZNPPjnmuqZpn5L2fDNO1bbxVnyU9HF1GZ98lHSBj5Y+HyVd3q7/+9ADNHPzJnL/8xu+1Pgsh0ospvdZ3LgrwRfnVTDsFwjZpiKu8s3VGWoPyeTDgkhxBj0osb5sKneGLmbenj0sjL1G42AU1YE/tUBXi8O5q8Fny+xefgZtX/o+fq9G3s6Ts7PYB14g17GZVDxONpEkn0rhxGKIeAIpa6LnBL4MeNMQSkuo9lj5cxoMFEsMR2RixYLBYoepcpophkUi5iHW66V6+OjAFgpBSdrnJa37yKk6nYFytoUbKZPjNJkHqR/so3yosOD3yOC2o0Th1eoGNH+GktwQJSM29YMQyB+9biwkE4uAUZRHC9roHlCcIHnLg2XpkFcwLcFQWMEJedAsm2LLpEyYBH05/NsyOD3HJzQYLFLZXquydobB5gkSCJ1w1mFqp8n0LsHcfYKKeCHoEfUG5UU5rLhGsqvwpQ0KUxRjIUhEBLkiBzMkEH4HRRIUxSWKO2WCPQrB3Ni3VcNBGCwXpEsEdsRCCVlYAZtBW2ev7UHNyJSkoCIhqE5AcVImEhf48kdHw4JCgJTVIO2FrF8Qi2hEi8LYXgtVN9DUPKpqoZo2mgVKDoKGoDrtUJF38CoCxwumD745KYielqmIQWWsoHvtkKAixmjgmVdhX5XKwXKdjCaoSmaZOAQH9UaMQIypg3EqR47Wl1QHT5GF4rORAceS6PH6eTE4l0gkTaSigzVFATZ5dHQ7ypxDBnP3CaZ3gT9/+FZVHTxhCzXkkA/KpDwqWVXGEQ6aYaOaNn7FRJEcRgydbMxDaFgeTeBRaM8SQ0U6Ub+fYU+YlBIgr/rJeH2Yio4lqThCZVZmN/VaL1pCQU2AyEJxOoXu2CR8EA9KJAMySZ9KWlPwKiYlcYeafpvw4fVnGQ/srZYYLBWkIpALSQiPjKYBugYoqFmHiVmTqWaaUM6kXxLs9aj06Sp5W4WchJ4ofG2eErfwpeTRIDQdFOytLmyx0FcskfJBf5lKU1+AmV0mE3vy1AyYoxknk95CFsmRCBCw8asOqiohKyoaCna5guz1o3vDhEOVyKFy8BcjB8twIg2o4Up0PYSueNBkHV3WkQyDxOAh4r17iB7cSKZnPyI6iBpL4UmYBBMORfFCNrkj2BKMhCAWgFhAIhmAjB9MXcJRZWxVwVE1hKaD14fiDeHxhdF9YTzeInRvEV5/MR5fBL83SGVZKQ4e/F4fmqKjySqqpKHLGrKkfOhr4t4t7zVAe+ihh7jjjjtYs2bNaFlHRwfnnHMOTz/9NA0NDaPln/jEJzjttNP4yle+Mlr27//+76xbt45f/epXY67rBmjjl4+SPq4u45OPki7w0dLno6TLuArQcv/zGzL/dQ/d1Tq9NT4mrO/HNzLCw0tkiptTLMjnmLpBJTFSwtbSal5vnMwOvYxBU3DZxr3UG7soS+WolQycaot4lU1uSCMW8yIkGccpZEXymg5eE7wG6CYcH44cJatDPACJgEwyIJP2KGQ1BceBonSe6phNRQwCRiGLYF8pmH7BHLJUYhO1QvzBmAXCJigGCVqDbG0spPCtGYbq4cKalmMSzdARLKErUorkCGShUC6GCefi6JbAa1joRiHD1Nb6MNvbHEZCeTwpk1BUor4fJvSL0UQWAGkP5PXCVDVHgXQAHr1AxtBkHCSQbJBMVqQzTE9avDgcpkPWyOkwUCTRWwJpr0TjgGD2foe2fYJpXQJFFAZ1jiqQiy20iIWsKGSzOo5VSB2qCAePk0dGIAmwMgpGSj2cDKqQujQZgIwPsj5IhwWS5qBKDroQTAtkCJqAKaE4h30lge63UAMOSIU8Wrc0hlkb8lIch2tWg8coZIeSD8doa1oKqe1HM/gctk04Izhvg4RsBaiSYkhHmryQQByuJwo/x5ZGg81jyWkKAwE/AwE/Kd2DQKY8lWLK0BAeBI4myEkSjiTRWww5XaLPU8uzjS101iaoz+2laThO24Fypg9HCSaySMe0B9VnI2sOkgKSXJgKMuLx8eoUD2urveyNmPjMLFN6HSb0FfYQq4sKSt/hFpVkgaQKhAIoErYsYcsyjioxOD9AqkgnL6nkUbGFQlEKwkbusAkLdkqGHQxPIXW2hCCFzvMhB93bPfp3BOAcTq4tDrtgBJkrO/OcEbVQTQdpRCG+PThGPkMtJILJa4VfTgdbBaE6hPwWxV4LDzCoehh2ZAzbQSgCWxWYaJQNQ/WwTTAho2QYzS715Nk2K+dpZA9PgZAcQcOARPMhDxP6ZGriJlVxg3DGGfPFC+DR0yVWLitMS/jycIy/iSdGj+2wavnb+P+PioUmTNTDvyO2QRyxUyHNdMSUUAWkHD+RTJZFI3twHBth2wjHQQinsFieQls+8v/V6SjluTgnStwP139BwVbGBmOSEKgCNEATAk2AYntQ/cXoviCqrKHKKrIkIyMjS4WpIjKF/yqSgoSEJMnISKiyxl9NuoYpRVNPWMY38l4DtO3bt/Oxj32MP/7xj1RUVADw+OOP8/3vf5+XXnppTGD6ve99j4MHD3L33XePln3mM5+hubmZb3zjG2Ou6wZo45ePkj6uLuOTj5Iu8NHS56Oky/86QHNxcXFxcRnvfOITn6ChoYEbb7yRWCzG9ddfzwUXXMDf/u3fct5553HzzTfT3t7O3r17ueyyy/jxj3/M0qVLefbZZ7nhhht47LHHaGxsPNlquLi4uLi4AG6A5uLi4uJyitPf38/NN9/Mq6++it/v5/zzz+frX/86iqIwdepU7rzzTpYvXw7AM888w+23305HRwdNTU185Stf4cwzzzzJGri4uLi4uBzFDdBcXFxcXFxcXFxcXFzGCW+3NMvFxcXFxcXFxcXFxcXlQ8QN0FxcXFxcXFxcXFxcXMYJ71uA1tvby/XXX097eztLly7lO9/5DqZpvmndJ598kksuuYS5c+fyl3/5lzz99NPvlxgfOU7Erk8//TSXXnopc+fO5ZxzzhmTqcxlLCdi1yOk02mWLl3KDTfc8CFJeWpyIrYdGhriS1/6EnPnzqW9vZ3vfve7GIbxpnX/3DkRuz7wwAOsWLGC1tZWzjnnHO68807c2ezvjv/Ns+Fk0d3dzRe/+EXa29s57bTT+PKXv0x/fz/5fJ6pU6cya9asMb+77rpr9Nzx1g8vWrSIlpaWMfL+0z/9EwDr1q3jiiuuoK2tjfPOO4+VK1eOOfeBBx7g/PPPp62tjSuuuIINGzacDBVGWb9+/XG2nzVrFlOnTqW7u/uU8M2uXbu46KKLOOuss8aUvxdfGIbBzTffzLJly2hvb+f666+nv7//pOmyfv16PvGJT9DW1sayZcv4l3/5FyyrsOfRmjVrmDZt2nF+eu2114DCZtE/+clPOPvss5k/fz7XXHMNe/bsOSm67Nu3703b1OOPPz5aZzz65a30+dnPfnacLi0tLaN1xqtv3nfE+8THPvYx8Y1vfEPE43HR1dUlLr30UvHDH/7wuHo7duwQLS0t4umnnxa5XE4888wzYtasWWLXrl3vlygfKd6tXTdt2iRaWlrEE088IUzTFOvXrxdz5swRTzzxxEmQevzzbu16LLfccouYN2+e+MY3vvEhSXlq8m5t6ziOuPLKK8WNN94o4vG46OjoEFdddZV46qmnToLU4593a9fnn39ezJkzR7z22mvCtm2xY8cOsXDhQvHQQw+dBKlPPf43z4aTxUUXXSS+/vWvi2QyKYaGhsQ111wjrrvuOtHX1yeam5vFyMjIm543HvvhmTNniq1btx5XPjAwIObOnSseeOABkc1mxauvvira2trEmjVrhBCF9t7W1ibWr18vcrmcWLlypWhraxODg4Mftgpvy8qVK8WVV155Svhm9erVYvHixeLzn/+8WL58+Wj5e/XFD37wA3HJJZeIjo4OkUgkxA033CA+/vGPnxRduru7RWtrq/jlL38pDMMQO3fuFGeccYa4++67hRBC/Pa3vxUXXXTRW173/vvvF0uXLhU7d+4U6XRa/Nu//ZtYvny5yOVyH7ouGzZsEHPnzn3L88ajX95Onzfjq1/9qvjRj34khBifvvkgeF8CtM2bN4tp06aJaDQ6WvbEE0+IBQsWCNu2x9S9+eabxWc/+9kxZdddd5343ve+936I8pHiROy6Zs0a8dOf/nRM2ac//Wnx3e9+90OR9VTiROx6hB07dogzzjhD/PM//7MboL0NJ2LbdevWiQULFohsNvthi3nKcSJ2ve2228Tll18+puy6664T3/nOdz4UWU9l/jfPhpNFPB4XN9xwg+jr6xste/zxx8XcuXPFrl27xNSpU4VlWW967njrh1OplGhubhYdHR3HHbv77ruPG4zdfPPN4nOf+5wQoiD3G/u5Cy+8UNxzzz0fmLwnSjQaFaeddprYvn37KeGbhx56SHR3d4v77rtvzMD5vfjCsiwxb968MS/gotGomDp1qti+ffuHrsumTZuOeybeeOONo7a/7777xFVXXfWW173wwgvFL37xi9F/G4Yh5s+fL55++un3WYOjvJUuzz33nFi6dOlbnjce/SLEW+vzRl5++WWxbNkykclkhBDj0zcfBO/LFMdt27ZRXV1NSUnJaNnMmTOJx+N0dHQcV3fmzJljymbMmMGWLVveD1E+UpyIXc8880y+8IUvjP5bCEF/f//oxq0uRzkRu0LBlt/+9rf5+te/Tij03jbV/ahzIrbdsGEDzc3N3HHHHSxatIhly5Zx++234zjOGy/7Z8+JPgv27t3L2rVrMQyD7du3s3nz5tE08y5vzYk+G04m4XCYW265hcrKytGy3t5eKisricfjqKrK3/3d37Fo0SLOOussfvzjH49OHx5v/XA8XtiU/cc//jFLlixhyZIl3HTTTaRSqXeUddu2bcyYMeMtj48H7rjjDpYvX8706dNPCd98/OMfp6am5rjy9+KLQ4cOkUwmxxwvKSmhqqrqA9XtrXSZPXs2N95445iyvr6+0fspFosRjUb567/+axYsWMDFF1/Mb3/7WwByuRx79+4do4umaTQ3N58UXeLxOJZlcd1119He3s55553HPffcMzqtfTz65e30ORYhBLfccgtf/vKX8fl8wPj0zQfB+xKgxWIxwuHwmLKioiIARkZG3lXdN9ZzOTG7vpG77rqLWCzGFVdc8YHJd6pyonZ98MEH0TSNyy677EOR71TmRGzb19fHli1b8Pl8PPvss9x6663ce++9PPzwwx+avKcKJ2LX1tZWvvWtb/GZz3yGWbNm8bGPfYyrr76axYsXf2jynqq8l2fuyWb//v38x3/8B5///OeRJImWlhYuuOAC1qxZw2233cZjjz3G7bffDoy/ftiyLObMmcPpp5/Os88+yy9/+Us2bdrEP/3TP72prJFIZFTWt9IlFot9aPK/Hf39/TzyyCNcf/31AKecb47lvfjiiD+O3E/HHh8Puj3++OOsX7+ea6+9Fii8AKmrq+Ob3/wmL730Ep/73Of41re+xUsvvUQ8HkcIMW508Xg8TJgwgb/5m7/hxRdf5KabbuKOO+7goYceAk5tv/z+978nm81y8cUXj5adSr55L3xgWRyPRO6SJL2r+u+23p8778aud9xxB7/4xS+46667iEQiH5ZopzRvZddoNMpPf/pTvv3tb58EqT4avJVthRAEg0E+//nP4/P5aG9v55JLLmH16tUnQ8xTjrey69q1a/nXf/1X7r77bjZv3sz999/P/fffz+9+97uTIeYpz4n2ZSeDrVu3cvXVV3Pttddy8cUXM3/+fFatWsU555yDpmnMmjWL6667jkceeeRtr3OydGxoaOChhx7iiiuuQNd1Jk6cyNe+9jVWr179pslthBBvK+ubnXOyuO+++1iyZAkNDQ0Ap5xv3on36ot3Ov/D4OGHH+amm27iJz/5CU1NTQBcc8013H333cyYMQNd17ngggs455xz3vYF4slqd+effz733XcfCxcuRNM0Fi1axJVXXvm2bepU8AvAf/7nf/KpT30KRVFGy04l37wX3pcAraSk5LjI9MiUhWOnigAUFxe/6Ve1N9ZzOTG7QqEB3njjjTz66KP86le/Ou6TtkuBE7HrD37wAy6//HImTZr0ocl3KnMiti0vLz/uLVdtbS0DAwMfrJCnICdi15UrV3LWWWdx+umn4/F4mD9/PhdffDGPPvrohybvqcqJPnPHAy+88AKf+tSn+MIXvjBmmvsbqa2tJRqNYtv2KdEP19XVIYR4U58cK+ub6RKPx8eNLk888QRnn33229Y5VXzzTrK9nS+O1Hmz48XFxR+g8irw2gAABbdJREFU1G/Pz372s9EXWkuWLHnbukf6p0gkgizL47rdHduXnop+gUKW2s2bN7/j/QOnlm/eLe9LgNbS0kJ/f/+YgdXmzZspLS2lvr7+uLpbt24dU7ZlyxbmzJnzfojykeJE7AqFYGLjxo2sWrXKDSjehhOx62OPPcbKlStpb2+nvb2du+++m9WrV9Pe3v5hi31KcCK2nTFjBl1dXSSTydGyrq6ud5yT/ufIidjVcZzj1vHZtv2hyHmqc6LP3JPNpk2b+OpXv8qtt97KVVddNVq+Zs2aMWnboTAFsrq6GkVRxl0/vGnTJn74wx+OKdu3bx+apjF9+vS3lfXNdNm8eTOtra0frNDvgp07d9LV1cWZZ545Wnaq+eZYZs2a9b/2RX19PUVFRWOO9/f309fXd9J8dd9997Fq1SpWrlxJW1vbmGO//OUvj9veYN++fdTX1+PxeJgyZcqYNU2GYbBz586Tostjjz3Gr3/96zFl+/fvp66uDjj1/HKEZ555hubmZqqqqsaUn0q+eU+8X9lGrrzySvH3f//3IpFIiI6ODnHBBReI22+/XQghxIoVK8TatWuFEELs2bNHtLS0iN///vcin8+L3/3ud2L27Nni4MGD75coHynerV1fe+010dbWJnp7e0+muKcM79auvb29Y37f//73xZe+9CXXzm/Du7WtZVni7LPPFjfccINIJpOjbdjdGuLNebd2feSRR8TcuXPFunXrhGmaYvPmzeK0004TDz744MkU/5Th7ew8njBNU1x44YXi3nvvPe7Ya6+9JmbOnClWr14tDMMQmzZtGpNCfLz1wx0dHWL27NninnvuEfl8Xuzbt09ccMEF4uabbxbRaFTMmzdP3H///SKXy4m1a9eK1tZWsW7dOiGEEC+88IJobW0dTSF+zz33iPb2dhGLxU6KLsfy3//932LevHljyk4l37wxu9579cWPfvQjcdFFF4nOzk4Rj8fF1772NXHNNdecFF06OztFa2vrm27tIIQQP//5z8XixYvFtm3bRD6fF4899piYPn262LRpkxBCiFWrVonFixeLXbt2iXQ6LX7wgx+IFStWCMMwPnRdVq9eLVpbW8Urr7wiTNMc9cORvnQ8++XN9DnCP/zDP4xmCD2W8eyb95P3LUDr6+sTn/vc58TChQvFsmXLxK233jqaRra5uVk899xzo3Wffvppcckll4i5c+eKyy67bHQPDZfjebd2/eY3vymmTZsmWlpaxvyuvfbakyn+uOVE2uux/OQnP3HT7L8DJ2LbvXv3ir/6q78Ss2bNEmeccYb4r//6r5Ml9rjnROx67733ihUrVojW1lZx7rnnip///OfCcZyTJfopxdvZeTyxfv160dzcfNwzv6WlRXR1dYnVq1eLiy66aEwbOHargPHWD7/88svi8ssvF62trWL58uXi1ltvFfl8XghR2OfpyiuvFHPnzhUXXnihePTRR8ec++CDD4rzzz9ftLW1iU9+8pOjA7WTzZ133ilWrFhxXPl49825554rWlpaxIwZM8a0sa6urvfkC8MwxHe/+12xdOlS0d7eLr74xS+O2dLiw9Tlpz/9qZg6depx9865554rhBDCtm1x2223ieXLl4vW1lZx2WWXieeff37Mte+44w7xF3/xF2L+/Pni05/+9AceRL+dX+6//35x7rnnitbWVnHhhReKX//612POHW9+eSd9hChsFXXjjTced9549M0HgSTEKbhyzsXFxcXFxcXFxcXF5SPIB5bF0cXFxcXFxcXFxcXFxeXEcAM0FxcXFxcXFxcXFxeXcYIboLm4uLi4uLi4uLi4uIwT3ADNxcXFxcXFxcXFxcVlnOAGaC4uLi4uLi4uLi4uLuMEN0BzcXFxcXFxcXFxcXEZJ7gBmouLi4uLi4uLi4uLyzjBDdBcXFxcXFxcXFxcXFzGCW6A5uLi4uLi4uLi4uLiMk74f+OOLpkrwK87AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZAk2V3g+e/zK87MiMysrLv6PnXBih7BtMZgZ5Etw2WInbEdGWYIM2b+A2zBDDMM2EGGwWI2Nms7/7C7AxiztqyxAmZHaEBISIJBZ0vqu6rrrsrMyjMi4/Yj/Pb39g/PyqzsrOqubnV3Vkvv80dZZUS4x3MPD4/389/vPRdKKYWmaZqmaZqmaZp26IzDboCmaZqmaZqmaZpW0gGapmmapmmapmnaPUIHaJqmaZqmaZqmafcIHaBpmqZpmqZpmqbdI3SApmmapmmapmmado/QAZqmaZqmaZqmado9QgdomnYHn/rUpwB4/PHH8TzvTS2raZqmae8G+jdP0+4dOkDTtNsoioJ//+///Tu+rKZpmqa90/RvnqbdW6zDboCm3Yt+7dd+jeFwyM/+7M8C8Bd/8Rc888wzbGxs8Mu//Mv82I/9GK7r8lu/9VuMRiPyPOfDH/4wv/iLv7hv2T/6oz/ib/7mb/izP/szqtUqaZry27/92zzxxBN8/vOf54//+I+pVCrEccyv//qv88EPfvCQt1zTNE37bqN/8zTtHqM0TTtgfX1dfd/3fZ9SSqnHHntM/fVf/7VSSqkvfelL6qd+6qeUUkp94hOfUH/yJ3+ilFKqKAr1L//lv1TPPffcvmWVUupP/uRPVL/fV0op9Rd/8Rfql37pl5RSSv3kT/6keuWVV5RSSi0tLanPfvaz78zGaZqmadot9G+ept1bdAZN0+7C008/DcCJEyd2a/O/9a1vce7cOb7whS8AMJ1OuXHjBsePH9+37NzcHL/8y78MgOu6tNttAD760Y/yq7/6q/zIj/wITz/9ND/6oz/6Tm2Opmmapt2R/s3TtMOlAzRNuwuWdfCrUq1W+bVf+zW+//u/f9/jGxsbu//f3t7mt37rt/jMZz7DyZMn+exnP8snP/lJAH7+53+ej370ozzzzDP8/u//Pl/4whf4N//m37y9G6JpmqZpr0P/5mna4dKThGjabRiGQZZlSCnv+JqnnnqKz3zmMwBIKfnt3/5tOp3OvmWHwyHVapXjx4+Tpimf+9znSNOUoij4t//23+I4Dj/xEz/Bb/7mb/Liiy++U5unaZqmabv0b56m3Vt0Bk3TbmNxcZEHH3yQn/7pn77ja37pl36JT3ziE3zsYx8jyzKefvppjh8/Tp7nu8v+4R/+IU899RT//J//c44ePcq//tf/ml/5lV/hP/7H/8ixY8f4+Mc/zszMDEmS8Cu/8ivv4BZqmqZpWkn/5mnavUUopdRhN0LTNE3TNE3TNE3TJY6apmmapmmapmn3DB2gaZqmaZqmaZqm3SN0gKZpmqZpmqZpmnaP0AGapmmapmmapmnaPUIHaJqmaZqmaZqmafeI15xmv9/337I3ajYrBEHylq1P26P37dtH79u3j963b493835dXJw51PePovRdu+9u5918LNzOd9L2fCdtC3xnbc930raA3p572Wv95r1jGTTLMt+pt/quo/ft20fv27eP3rdvD71f37zvtH2nt+fe9Z20LfCdtT3fSdsCenverXSJo6ZpmqZpmqZp2j1CB2iapmmapmmapmn3CB2gaZqmadq7gD+MmU6+M8ZeaJqm3Wvc7Yg8LQ67GcA9EKBZ2y9hDi5S/9a/O+ymaJqmadq9TR12AzRN074zudshwejeuAh2qAGaiMe0//JfIIqU+kv/AZF4h9kcTdM0TbtnVZs2lcZrTr6saZqmfQc41ADN3vom+cIT5Me+l3z+cezNZw6zOZqmaZp2z9q+7tJfDQ67GZqmadrb7JADtOdQziyVa/+F7MwP4qx9+TCbo2mapmn3LFkosig/7GZomqa9ZWShkIWkyCRePzrUtswu1qi3nUNtw02HWitheDewui/Q7J8n+CefIDv19GE2R9M0TXsX+73f+z3Onj2LEILf+I3f4AMf+MDuc3/6p3/KX/3VX2EYBu973/v4zd/8zUNs6X5FLjEMgTDEYTdFO0RpnCOEwK58d9znSdMAutddZKFYfGCGyEuZXay96XUVmSSeZjTalTe1fOt4DSHevvOwUgq3G9E6Vnvd8/2hZtDMyQ2U3UA2Fml869+BzKG4NwbnaZqmae8ezz77LKurq/z5n/85v/u7v8vv/M7v7D4XBAF//Md/zJ/+6Z/yyU9+kqWlJV5++eW3vU2ykHc1I9jmxTHjrenb3p53Sm/ZI4vvjZnQ3k26V106VyeH3QxNe0flSYHMJZW6xbGHW9/WuibbIcO1N18Gvv7KCHc7/Lba8JoUxNPsruZ6OrQATYQDrPFV8iPvxfTWEYlH+y//B6zeucNqkqZpmvYu9Y1vfIOPfOQjADzyyCN4nkcQlD/Utm1j2zZhGJLnOVEU0Wp9ex2BuzFYC9i6fHcd7qJ4Y9MzmsMrUKRvpllvK1koDFOATga+YTNHqswcefPZgzejyCTyDRx7460p0/HtL6QrpVg7N0QW8q1qnnYPCUYxRf72fbahm7J2bvhtrePbPe0cf7RFc6EKlNv77bbnAFGeI1Gv/507tBLH6st/AID/I/87za/8z1i9V0Dm2L1z5Cf+0WE1S9M0TXsXGgwGvPe97939e2FhgX6/T7PZpFKp8Au/8At85CMfoVqt8uM//uM8+OCDB9ZhmoJ2u/6WtSmoJRiF8brrDE+kNOcqzLZfu3M+qJcBZ7tdR4wmqIaA6p3XbZqv/95vtdBLIRMsHGmWgdot0ijHcswDj9+tN7I9SioQvK3lSt+O221L2EtAvLXH4Ou5/nyP2ozNqcfn7ur17kZE1bYPtNE0DdqtOsP6lNmZGpazv0yzyCRSqndF+ebrHWfLL/d54P1H3vRxHE8zilzSaL25Mrw36q06D3ibEfVFh9rMWztG6+Z57djJWRzDfN223ro9o86U2SM1LLvMN4lMIGPe0PaOtgJmF+tYtsGUhErDxrIN0klOvV55/XVFE8Ty36PO/ADMnITXOOcoqYgXMubmGq9b4nhoAZo5uYGyaqhKi/g9P0Nr6WdRpo05vnZYTdI0TdPepdSrrkgqpXY750EQ8Ad/8Af87d/+Lc1mk5/7uZ/j8uXLPPHEE/uWKQrFZPLWlbcoW2GOz+F2HkfVFu74ukHHJ04zpLW3DUqW/7/1RzzJMoQhmExCRO0RVGRCfOf2ttv1t3R7Xo8sFP1VnyTM6KxNaMzt74BuL7nMnWzg1Pa6HmmU7/v7tbyR7dm8NMaumhx9cPbuN+B2lEREI1T9yG2fHqz5zCxUqTTsN7Ta221LGKcYpvG2fGZW5zlUpU0x/+j+9wwTkiyjMbm7YKF1uryI8Oo23tyeMEyYTMIDAVowion8lMX73/jnsXFhxLFHWu9YcPd6x5mlBkzcOsabHDO6fn6Ekor7PnDnc8KdJGHO9nX3DS37VpwHkjBnMgyxmgZJ8e1PVDSdJKRhztzJBmFYZmRdP0JUxeu29dbt2bg2oh3Ud8ethWFKIQqiZ/9f0jM/iKrN71t2tBGQhDknHmvvPra94VGY5cWDtXNDZo/WaB+v4wfx7vF8U+Xqp0ke+mdgVXcfM7we9jSBy18mPf1hVH3xjm1XUuFOIipjG8MULC7O3PG1h1biaLkrFO1HAMhOfIjBx59D5Ic7e4umaZr27nTs2DEGg8Hu371ejyNHyk710tISZ86cYX5+HsdxeOqppzh//vzb3qY8KYhGPsVw646vuRmIFdnemK0ilyy/2Ge0uX9c2tGHZll8oPxBd9a/ikj9t6SdSikiPzsQ5L4RGxdGZHFO5KY05itUm/sDlmCckEbFvoAziwu619w32+jy1jzq9iVXRSbfknFwhr+Bs/G1Oz4fTlKCO5T83clgzWd75Z2976vIpojs9mNzlNr55y4+/+61CW739h1okYwh378vJt2QyM+QUuF247trrMz33RfXtI3XSkq8NYrkjsfSqzW9s4jszY0ZVUrtfuffjCw+nFlcb54b7uY7dTfnkjyVpNH+dSXTjM1LY+TO/nFWvgj56x8zItk7h8hCkkzLfWQkB8vLQy/btw3mZJk8yd/Q8SVeq7T8dbZbGALTMuAuRqEdXoA2ukI+c2qnFSZmsEZRO0J27IOH1SRN0zTtXerDH/4wn//85wG4ePEiR48epdlsAnDq1CmWlpaI4xilFOfPn+eBBx5429uUZ2WHb2v1YHZv7dyQPJNMtssLk24vInTLzu32kodhCFrH9pc8Rl5KujPNfj73KBTZbd9XScW4E75+RzCLIItQEvor3m7HBsDqn3/9MW63TOolC0WeFuSpZDpKDgwGGW0EuNvhvvFJdtXkzPv2X+G+azLHmPbu2MbmQpXm/P6s0O06x1Kq3Q7h/hdLxNaLZOlbP+bGsk3sysHuVzhJCYZ3GcS8Shrnrzm5garOoayDJbSVhs3MQgVn9b/u3YtWSezNb9y2s1nxr1HtfOW272GvfgVzdHVnVr5yv3m9CLcbksUFWXJ3AbPhb+Ks/tfdv5sL1TuWgyXDAUV2+8/obt8PoLL0Oczh5dd9nZKSbrdCkd/5u9W/4RP5e8dlkcvd/eEP7iLgCAeI0dIbDuQiPzswRqy37LF6/tsfRxXevAhxm0gmjXK2l/cC6v6KR+Tf4dykFFlSELopyXT/a6pNm8ZCde+i1ewZEILx1pTu9YMXcozJCsJbx+48v3surLcrnHxy7uabHVjm1d91q3cOFfvko21EGtx2E0XYx5is7PxhoMxXZcvfQHQni3L776b0+nACNCVB2ERP/U+7D5n+FgJB/aX/AxGPD6VZmqZp2rvTBz/4Qd773vfysY99jN/5nd/hE5/4BJ/61Kf44he/yJEjR/hX/+pf8fGPf5yf+Zmf4cknn+Spp546sI47DYDP1y8QDd/47HrtY3VENIRXVYcIIXBqFoZxy2+72vvxzpOyM3trwARlBywYJiBzlNO4Y9mdLBT+zfsJpVPEtLfveRXlFJfGVG58gcqNL3Lzam4a7r2fOb6O6W+UV6ez23T8i5TK0ufK2Zcpt2N3fJnMicevyhApDnSys7hg89Ld/d57/Qhv20OEfUhfP3sRThLcneBXKYU/iBlvhQcmbdk4P2Lj/OjgCrKI/pVttpb2OpEi9Xe3980S8Zi5+Zz5k80Dz1kVc+fq+o43UFUkhMC079ylMycrmJOlA4+3T9SptRxE6mOE/fJBmWNMt/d3PJUEJTnWHjDbuHOQIaUinKSsnx9R5JLRzuykSpYB/K0Behrlt521UrwqaxIMY+ROQJSnBcktx+nw+RcYLW0eWEca53Su7K1bhAOQ+b4JUTYvjfet6/WyYkmYk6eSozM9rDtU5Vr9V4g3VwhGyU5mOqW37DHeKr9DuXf780ieSeIgQ6Q+du8s3Rev0Vt5Yxny/oqH1yuPmTwtWD03ZPXc8LYZXsNbL79LdykYleu4XTmyMASV+v7HrVuOxUk3xOtHpFHOpBvu+1xuJQuF34v2MlymAxjlsX3r90IpUJLs+guY023SB34YdoKmOMjuOItjkckDz6VpeYx3Xlkn6XXLt+1fALkX3NvdF7F7Z8t15JJ4cvfZ09BLGaz5O81W+MMI0xJ3Va1wKGPQ7I2vg0r3pQnTh38Ur75I+9P/Amt0hezkDxxG0zRN07R3qV/91V/d9/etY8w+9rGP8bGPfew1l195ecDCw40DVzeD0MEfxRTrAxYfmMGumISTlPaJcvC4Uoo0KvZ3UpQkjxOMxMW2y85a6KagII0Ljj9aziJ5M2OSRjmRlzFYCzAMQexn+MN43ziuozvljagMu/McaaWFqs4h/QFG1IejT5bPC3azb9b4GqZ7g+Sxj+5M+y+xKybGQ7MkV6FSkRj+JqgqVsWkyOVeZ6hIcFb/Adk4evA+pTfLwZQkXLqEubWG33qaOMw4WV9i8kKI+tAP0WwZqHino6nYl+0YrPt3PYPgpBOSdkPOJH+JnL2P5MH/Hij7E9mZH9ztoN20u950ijRqjLemnHn/PHMn9wb8m6NrkDrgHAyWEAIp9x8H1vbLFK0HkLNn9h4sUkQcAXvrEImH1TtLMXOa1JzHmtmbMdRZ+zKbm1W8J/5bZhYBYe62vTFX2bstQ5FSWf5bkod/EszX6arlMVz/GrHrMH88Ijv5IVR1J4tQJKAUxczpA+NxoAxkEYIZIF94vHxw97NVu0Gavf4VRJFxY9mhWZPMPnaHpuTgDWJmRZkJuRlYKakIhjHudsTcyQZKKrauTG4/jutV378ik4idCTl6Kz55UuwfgxX7ZYfa2BujNh0lDNcDnOkK9x0fIbKQaf1RtkbHd5fN4pwkyKjULfz6+5BWiyp3tn1xk3pwmXa0AXEAlYPjh8zxEsa0CTyIkor+ik9zvoJhGVQu/RlOp4Aj/+zAcmmY43ddWuLrFM0TZMNLyNYIHp6FIqGy9DmSxz56YDmlFO52xMxsgTG8imq/n3TJpTvNy889kyRB2de2ui+SL74fTBu7+wKyeZzsNuOl4iDDqVsYhsAItnaClfruRzMdJ9RnFJXVvyd9+MfLz3nn+2Z1nscYS+CDDNYCKnVrN2gs21uuo9F2CF/10efemNHamKPHUmiexOqdI1uvQKtFnsndc5M492dUvQlurw/G+whe/AqzH/mnYDoIylLJcWRhVAuqt8x9czN7djM4SqOc/kYVFkC2HyStz8JoiihiUAcvxEwnCf2VWYww5r5918b2b4hIfczhFfITT2HZxm65d5FJ3G7EzJHqgWVu51AyaJWLnwSgaN237/Hay38IMsfqvHgYzdI0TdO+y2VxsVuauMvvofIctxshBHj9GK+/1+lIo4LtV5Xg2J3niM5+mWLmDDU7JYsLhmsBaVyQhllZ4pgWVHZ+vJUqSxizpEBKxezRGkcf2j+hwmA9YNINy45I7BKsd8jTgrXzLp3lvUyPYQjSqOD68z2CcQqUweHy84NyzJdUuK98iY0NiyQxcLZfQMRlFmnz4hgG18usmVJEkcGNy2WwuK88yHQg9cg2r+G5BqicsLtN5KYE4xwpBXkqketnCV/5BuTxTonhLfs6KjAdg3Bzk8rVT+8+LuLJ7ceeqHw3g+XslOMZYa/MNBVpWbIJuNsRTsNGhAOql/8TZhFw9KFZ0qhgcMsVdGtwATPolO8ZDvZdNcewCEOD5GYzZIHdeRbDXdt9yXhrihquki2f3Sv3VIrK1U9j+OvYvbOsffMqkVtmUW52DFutjLl5qCz/7b6J0SIvJQ1zDH+LytX/grX1LPbaXqnfrdkeigRzcLH8KPwNqp1v4PVj3EGGEQ1R4wQ1SXDWv0Zl+W8RqY+IJ4ReuhsEGtNt8rSg6pdtMIJuWSp2S/C9uzviCSKb0jpzhNri3gQLBz4iJZlXV6kyYdqbgJIopfD65fFzM3FQFAphCOxqGVRZnef3MjrCQEnJjZcGhF7K7LHavkwzgIoTkovlMWuOrt52PKZSZcZKZCGy2ia32jttKLN5o80QudOgadEmSg7OTuhujnG3y4yJSMpAcOi1kcWdyyeFKna7307dYjpJiLwUVZkjO7WXfChvcVDu42AUk0xTkAWmt8EwPYOKy3PKa415yjOJ2w3ZfGmNxA0QWYEKbsn6CnZv3WB6a4jExVn5ItGpH7xjIqR73d29cGRvPYvdfWHf+obrAWmoKOb2ovSbt17I+lsY8RjDMgjHIf7a5s5ygmrTxqmXn7dhvirjW6RYa1+nbXUobry0e8stZTjEo5jOlQn9GzuZqLn7D5TrVq79NeR75+U4NskTxcbFEflOqeurM/jCEAihECis3lns5S+CUuTth8CwDwwTy8Npmd1Tt//sRdjfyTQrsCqINMDovgyxC3mEc+0z5VjMfoQQ6nXHPB5KgGZNlgCBqu0vzxAyRZlV7M63DqNZmqZp2ne5ztUJvaVbyvOUxMEHVaCUwtl8BjvfXxLn1ExOvWf/NOUicalWCwx/A2N8bbdjKgQYlkHreB3DMrArJlJKClF2cIpUMtqYMumGTLoh7naI2wsJJyFxZxN/2ys723lEvn6eIpOMeope38LbnrJ2bog3jImDDAQUo02szgsEw2gvOxPlrF3YIvU8stbDFAWgYLDq41QUlc2vYg0uInY6Io6jSKbZq8bECKzxEsHmNq5foUgKlNuDyRbkEVkmUFIRejmjkVNefHVMRBEj4jGhWwajkZvi1G2Us5eNcNa+hDW+xmgjYDrZK88SvUvgzKBMpwzglMLqX6B66c+pP/u/Mfz6l8jdIe52SDhJEKmL6a9jbF+it+wxHSdEbrr/Pl07PX9n42v7gqXhZoznWSSxREpA5RTN0xjR3kQ0/iDGj2p4W+O9e7gqCUWCsTOexZ/A5uVx+Xns7L5ms6C5UGYk5C0ZDKdqUm9VMKIBRjTADLZwNp7ZfX772oRo7GO4q4g8Ro3WyqDXrmNU62SZwcCdRVZayG6I7ISkp/4x6QM/jJG4mN4agxv+7jgoe/MbLHAFKQuuXKljJG45kYi4c9ew291kc3t/dsGcLKO2L5Blgu0tB9e1yZOc6YXnEeGAzlW3DMYcE5GHVK5+muF6gNy5B5uSCnN0jXB7iJIKw99EZAFeP+LaM9tsXBjtlR/v9LGttW+BX5bHdrfrJK+q4jNIQeakziL5kfdgxBPMyTLj5W2mZ79OMEqYP72XLY8uv8B05fqB7Z2efxZv6QYAJ99/jKMnJccfm8Oo33n2vZvHVDBMcOpWWWIoBBQZ9tZe/3bz0ni3jDH2M1AKkbiknleWJt+SxSkK8G8zPnE6ThhuTDFFjmnIcv/s7KM8laidGyMDKMNC2XWCUUznm6/sjau6hbc5xO9O6K/4ZTlfbOzt90IxvFmSLEDkZdmmUorpJCEYx3Q6ZcZfSYUIB2WWeuf1oZ8iRBmUJ9P8QPZ8a6vCNHJQCorW/RRYSKlozFVw6hbSH0CeIMdbrK1WkVYDhCA/8RQYJqJId8vCTVNh5AH96yO2d87nN8e8hW4Z8Ba53M2SK7uBOVlCSklj9OLuxZ6SKi/efPP/oQinmOMl/HN/x8rzXycYJwy2EpQC013FiEcgBMqs4tz4O+TFv8fb7JMFZVmnsVMOKkZLOCtfOLD/b3UoAZrpraHsxoE0dnb6nyBrCyj7NuUGmqZpmvY2S6OCIpNEfkqRl+V/eeCBVcGqmMRuyEJ9sK/EKouLA2ObzPE1hJIIoFbb62gFw4hoHHFk9HkMlbLyQp9pOGU02T8eJEsKpNvD7Yb4w4RkNN4ZR7SC1X8FY9ol7nYYrgdlp9rdJupukmeS8UbAwn1NhBAYfgcRjxheWtkb29G0efjkAKsxi2ouonyHilfO5DhZH8JwhWlcJbs0QfYikqJKHOyf6Ww68pm2P0i9muJ1PKZZDaqztP2EmXpKpSLxBzGteYPTpyOiQJYTA1x/CWfty6jhajmWbDpApsluBiRLCgplMJ626S6VY2rWXupQdK4CUFTnkTcnGNshwiEiHjNtfS9JUQY+aZijrAZF4zjCKMd3zZ2oc/zRFkruZaOqOxfiDW8dw1vf275hyNxchuWY9HoO462QYtKjcuML5LfMEFnb7GEWJmJ3bJrC9NYwB5cAkLIs+QOwdoKtlZUaS+c80vt+CGU3mHYHOEt/QxoVRH6KiMcY/ibKmUFWymyVEWxhjq/hvfB1xPV/QERDNlYEXi/GiIbkUYzrWqg0JhsPibwyYhEyJ09zIucUxczpcvbLqglFSid5jK1ei/FSB9e1KQrKQNl0ysxkFiL8rXIMo9zp3E4sUi/FXvsSKvLJr1zG6r7ENz69xspKDQUou04ub3bsy0xJc75CkcSQRYhwUP6dS6bjBBlFiCxgsBEST3NE4pJ3r5FHMVJK0rDAMA2ypGDmSLUs+621y/JQQNYWyGVZBlrkZSlcfv1ZTG8NagvI2mJZsbYZ4GRdjCNn6N/wywzoLRcdjGkfEU+IhhG9r+zNvCqlYP3cgMSPcIcSvzPC2HqZ21FFBomPCDp4gxi/HzEdpzjTlbIMOQvL/akkVud5ZHbrRBkKM9hCRGOMPMKY7l0M8DyLyZWlA5PiWEaCZWQU4z6pNc+k68FOpshyDIQhyJICY7KC4a2Vx0MuEImPv7JCfPnZchsLhdeP8C+fJ9teJwoyJtddrl+YIQwNUGDkEmsYg8zK43GygtePdiZBKcspdzOkmQRjrzRXScVozcf0NzEtg+6Sy9blMe7N8sciRUxWyUWdoFhE2U221i38i2cp/DF5nGF1XsBZ/Xvw1mnVJ2UMoSRW57nd4xPK7GwQmLhXlxBBp6yKSAtGV9YRMiXyMqbjpAwixU6gVltAJgn28AJVw929OHWTCDqoPAEKDG+NzosXSaIclWWsX4nwPJMst/A2BLLr7473HLhtHNvH7W2X+0EpnJqFbD9Ax/jQbY+h3ePxNZ99OxQpIg3I5w8WMGeLH8CM+pjDS+94szRN07TvboYpkLlESsnK5TGTTogR9hFeF3bu/WPbimiq6N2cJr3IkNnBaZoNv8M0UMjmcfxkvsyoZCFttYyYrHLjRo0sLK+8JkM4IY6Wq8slqpA0Zg0WBl+BPGLxtE3rxEx5KxpVkJ16mqL9ELVKRvtEA7PeAEAYJjLNMKI+o+efY/zKS4BC5DH25AqmYyCiEVbnPL1uExm5WHEfDEVhCJyaSZLXWMk+zPZkgTwuSCuPIVv305hewNjaG34wXJty8VsBqTfFqgicikHDv4pppPi+iWVJnJpFZJ1kOHRwnALDFHiewdZWhcGFFazxVQx/k2Bjc3fGtc6VCdNrl8mXnyWL8vIKfNgnC4KyvDHYwo+LMvIRAlDY3edR/gBzfL3sPE5Wyo7sTidLFuVV8ywtKHJF6KWMVkdl1iYr950x3S6Dkh2V4cv4xv3IcRcpwR8kbK7bKMMuZ8Y7u9N5NiyEAlmdA1lQuf4ZDG+dLDO4/M0RIvUw8wDhb+5OwnHqVMyZMynOjb9DDK4wWumjsow0yknDHO9a2bmTVg0jLnM9rVgAACAASURBVN/H3nq2nBghE6g4wAgHBIFJkRVM0/KeXEUhyHNBfOMq0WZZihldeYHhF/4zwcVzWL2XYbhE4odUlj5LvLXO5PoyuedztL6Ov+2XGYgixXDXkFe/zOYzr2D3z5XlfUC1FlJxphjxBPvl/4S89E3M0VWitFq+fyZoOh7VajnuzWrOInPJpBMi3W2c1X8oMy+Ry2AtYHxjRPK1r5IHPqoo6FydMFgPWbtRhXDE8fssjj/WQnUu0rk4oM0KC2eaKLuOsnbK5aIBFStFxBMGN3w2L45R1VaZsHTXqL30f2JMO2RFhIymFPY8+WibNEh2A+2q7FMdPIc1uEDhJpg7ta25M8/ULRCTG0xeeokbq3WCnou9/LkD5w8R9gmWl0m3t1DDVap1g3pwiXgwwp9IZPNEOQ5QyTJIbXHgXoGyOoe6JYNpTFawN59BSghufBVr7avl8Xn105ijq1gbz6JG6/Smx3A3J4g8RbgdYi/Gu3AOKRVH75spLxq4q7vfGYBB32a8NkZJxWRzxPYrN5DODHlWloCK7YhaZjKZWGRxgcglRaGwts9i984ycL6PjQsj4iAjCxOs/gVg56ssQNlN8tn7d7fFqQpq8TK1/jfIUwnTIZONsvTXHFxGJgmtRojb9bFf/r+Rk23w+5gvfA3cDlhVpFXHi9v0guMkO6WcypnZCdbLW0V4az2KQiDNapkNFmCKjJn0KiKPSaOc4XoAqsAyJW4/Q9x4keTcNQbrEaGXELp7pcAA5rRLW63gWAXkCSL1ynP/1a/gdqZMpxZD+SDuyEAaVeLGw6TDHnkOrJ+nmIwIAgOlIOxHODe+Qrh+48AxdKt3PEAzJ8sgzHLWlVfJj7y3LIMYX31VelHTNE3T3l55WhB5GUGUs+xF1GYdzMFFVCER2ZRpf0Icw3TgkexcEXVW/45GeJETjzR2xwTdJPIItXmN5Ooy9Wf+F4Ir59m87GLkASdOxFi1ckqCOA/oTtdA5kwHLoxvEC9dYW3zFFg1vOe+Srx8uRzb4a5hdZ7DmG6TFDW8Xkj7WAVZbRMuXWZ65WXolNkgO+2V41eymDixsUTCgryEMbiBlxhAgWHZqMTEHm4xvXyWmdqUMzNXODI7gWoTs97AyEMyz0f1r+7MhFeWm1VrgvXxGfx+wrArwYSKGSNyg/HYIfYj+psJcWyQJAayUAiZMTubE4aSZDQkSQyirS5FnlEEASpNKKRB1cmwbYXZP48lMmxLgWGx0fwezq3MkGzWytJMDIxkwnLwvRRRROZ6TMYKVILII0TQJUsVXi8iTwr6Kx6t4HlOtzco2g/slpGp2jzS3ptApCgE+XADsogwNAnGCfnCE+Tzj2OaYnea9XrRoJbOltmCm2NKrCqRbDIJGohoTLUuUHaDTqfCcGhjmgrThGhrC7N/iQeerGAYcOTG/4U5uMAkLMcemsEWRrRTTitMjEqF+fkMY/4UcvYMSpX3l9tcyhG2jeNIpFnDcXIqRll+1uN95PWTnJhZBSnJh13ya8+SPPZRROpjuWuoaEK3W8PbDijcHjLyyAuDerzC0RMFyIxCGnQ2JGraJxps77RJoIocIp9Kda9stLvdYBo5VKqKLDeREuIkIa9Vy0yHMOh/7csoKZFZjgL64zayu47MFdF2D8eMySZ9opWLqM4VxHAZsoDB+atsfPk5RDCEvCiDgcRDKoGz9iUaZhkEF6KOyjPUZEAx9wiyfpy1KCE3aqSX/gHl9xEU5IN1rM7zKKvGtCjLlIveddRgGef6Zwk2usRFncQLSQsTIUweWljBZidDGY8R0RiUwvA2GPsz+MkME7/O+Kufw958BpuISM0hwgHW9lkYXC/LlVsfYuOZs2TPfwqUpGH7iMRFITDNHDP3ygtEUVlWqGReznKuJN4kwFp/hmwaouw6ln8DI3Wp1iWTtSHBMCTPy6tGg42A7NTT5Cc/hDm8QsXOMN0beF2XZjMniXKC7gTl97EGF5nNl2i0HAguMM0ixmNn9/Ye01FYlvwKQSNbxaoYRG5GpW6gAKEg2artBL4KEXsM1gLExgsUneu40xqxdQwzc6lUYdyNGF24QlS9Dz+bwx2L8iJEZaYsh5YpjhlRLzZQMsfuPEvv6hbDbYUQEhAkzYfpbNnYW88igi75YJk8V2VCKBojpwGDC+tsdz2i1CjLK6XCXPkyxbhTtrN9HEwT20xwxlcYXN/GO/vs7n39ZH0R7ApFWjCNKshKCycfkyQCQxTkOeWYsyRnuuaydWmA24+RSjAdemw8f43eSz0MVSAGI4KrG1ivk4x6x2dxtIaXQUnM8fLBJ50GRfsRzPFV7K1nye7/oXe6eZqmadp3qcl2SJ6lqBE8Ol8rAxFVMJVtCm9EOkgYGyGtJx6Anau31vZZotZTbG4NeXhhm+LIewCQM6cRQUyRGqi8wB9L8iQjmXmMWtsivO8YdSxENKYW+czkPubKl5gLYsJ8BhULptMANf8A7qDCifhq2eEwHZyVL2J6G8i8Rp7keFsTjHiCVRlhxBZWXGPhoYxebiLdba5O30OQNZjp3sBjm/rJnPfPnsOd+0GsqIMUQHMBy99kevkc7vGcabqI0d/GVFcRR+dZWq/TPH6BmTNXUNYMFJBXj1JpmKhoTFFR+K7EVDO0kCSOxPJWIXbJMjCdGGQFOdwimZ0hmM7QaJ2hYkakuc3aqoG8+C3UpAPHBP1eRhYuoY7NcfyBKtvdHnQ3uL8BovdhBrmN79V5bzNHWVX63Rp59TTteMB4exNjsk7jsSdZHr2PYyfBthTZtZdpHj9BfP0Knm9zf/MidWUxHhkUwVU2VuosPFCUdwIKe8w5gkw18P0ZEpljFB0sdYnq0Ry7ajLemrJQTBFWgogniOoc5DEiC9nst5lGFWZaEmvly1Ragnj2QYpC0O/bOEGAEZ7hWJqy/cwF7j/tU7EzLG8V20xBprvTiYedMRV/CzURuJbFrP8CZr3N6YdMBkqxdtHj4Ydi8lwiUp8wbTAIE/LuEosnFgj9CWvBImfMPpn1BNaDj2N1XwQE0pmhqBrkRYuZ+2ya7ktce76OE9zHgw/6LF+LeOJ7LIzhKsn0MaQvsSmPfenMoqTBIKzjd8ekdRPTKLMsTu9FFlqwmb0Ha6ZNXIyY+tdRpoM1eJHZah1/GBIgiGKDznWJrbaxT06YsSbk0w41MSQZz5AGKcc+YEIqaIt1ZhoKJc4gihwlJWCWwXHik3cvcOR9/5RoKUEOJ2RGCO8xAJMTacSmmRAbxyiKgKl7BYwtwrCBffRJFqbXMMI+xdoyIm9h9S9RV4vEqiBJTFpVKKpzrLoPshgsM758jVZ8AUcEiJlFrOFFZpNlfPEwuJvEtBnHMUkC9tLnsbPzCNmm8FwSs4F17cuM1taQ2Qbi2Any7ZfhPgOn1aIoLOJxgLn892zG78WqKcICiGzwzvHijSk/8OgWZtdHOT9DmlcQSjIepDSaPshyHJZlG4jUxTn/OfzL50nOVKmffpDqpbNM4gdwQ0Hc8akOrxMNElr1MW6wgLHlMy9MiixnbRwwZyXMtlLqqk8YC4S3gRP3mFyz8eeOYRiSdAYoBEboYmVuebPxaIKR1TGLDqjjeH3Jyfhb1IsHKQoDVT/CNMoItoao3EFW25j1oyg1AiWR1XmCLCW05pjLexiJS897DMOeYhcTkDnF2jmq8yMIbYzIIhivUc0eYGrA8dY6YXCGzsqYG0sBs63LVE9/D0opNlYNHKOCLMBnnlm7yVzDo1ITnHjyCNc7PVDF7tiyooAwtjBVQbUQqFhRnQkxMoNmM4dpjKF8pKzi9F7kxMkJ0+AIreoQ1TyD0Ztgbr+EEQiimaMUR4695u/ROx6g5UfeC8gDNeS7z88/VgZoG1/VAZqmaZr2jpFS4Q9eoXX/I1wLZzkt2rC2hT2GSM5jSgcr3+JL8Sn+USQxh1eQzZMIVdBYqJMfLX/41TBGeBtYzhMoe4b+tEa0blDMFjTia5g9Se/CP/Dw99Qw/DqmaNCIJMl0BleBMApq0ZDCbqGynIojmalMmfgKkQYos4pC4TjQPhozvp5RYFOv5QSiS5A+Qmf5GF7aoHXkFSyjYGE+JYwNQu8Mo3SZ3vQJmvmAY8YVhDhFbhyhOSuZxhKv+h6MbIvCbqOSEHN8larzJNGJH6I5HTJ8+ZtYtdPknoslfWzhYKQJ2dhjogqsuEVQmLRnDcLQJui6tBvPw+yH8IIa/UszZccn7FEAdbUOzkPkhYA8pQhHRJMe5tHHMEfPsfbyDLg+FTOjPxhxPhzyZMNGShslDEQes3xUckqcp7a6gjGQZM4MxoIFecjUnyJkytY3vwJzDnMLAVVzAW+i6LqSSXyO6UTQPm0xvL5FEkoqacBkWMemi2w1kJmkcLsIJ6JYeo7M+l6KXJELCYnHX72U8MNnnqPuLZHFKdVsk6Yxg8EcMktRokatVnb0HUfhDJ5Hhj3y2MFun0CoIX7QQAmTMmIuC5xEGnDhP7/I98xe58yTFuvBY8jWw3x+eIKZcx2aZyKUsAjCBHdwnWPVKqZqUcRTSCos2AGJf4NaZYw5HpKtH2GQJ5w5+U2M6QLIWSyVsihW6F8TOP/4/YRJzjSo4TNDNzV4QilMo0DkEQ2xRGI2gNP0vBadrQ5mbUjNgIqSTLMT1GoK33MI+i7IjHiaEaUCR9kYeVkaPHUFTg65lHi9MXmaIxVU+xfw4iab46eI6zWOz3h44wZTt0p++Ryyfp1++wFOLs4g4kk582TuEA8j2v3zbPV+mNnpN2gU6xh2C8uMsfrLyMDk7OAEdWceJzRot3P6A5/NXo2gmKe58XX8SYPZx6FScylsAQIa1ZBx7AIxhoyoJB2CWBHmpxC+xfIr28xWpnzv/UuIaEgYWfjJLPUoZuZom9RtMH+koJVMyuCv+QRup02eejz+uEE6bLCSHaWBQZrZTNUiSdwmFLPUsmVEFkIlZCotVGEQbkpid4NEGiTGIpvZQ2CU90Y0bJN2cgVrIBHz2U7JaUEtXGISB1xcs3j0kTmyzgpplOOpnEnepLs25sFRQhrmFAtHyY0qjipIA5NKYdOkSR75dLxLVKNjKAri6piVrXmSJKE6q4g315HhWWTlCcgTrHQIshyTtlDZgqyOVanQGnRQqgf1B4mLBnOVEb4UmO4qDXsM8csM+vMURwuU3cCYDFFWBWXV2TK+n7mKpOrE3Ohb1NJ5mvfleNkJjhZDskxguKtYSYSo2EhH0pvMM3vSwLp2GctQYDgIFOPlLubIY87owxzkvVU2vDMUozZHs4DpMGRhLiLKI4x4nWEnJQhqGEWKzGIyWRAOMk7NxpjSxJ1UaAGkHfK8jspzbiwJEmUQRindiUvbqlCvzBE3Z4h7n6ae3Q/cOc55xwM0uXNTguTRn7rt88F/979iDS6+bupP0zRN095qeTJhtLaOdeRx1p5fI9k6g5F0MOQSpvEoYxzScJN65zyVWgPlzNJa/g+o99s46x7xfT+BWFkmGMV0JzmNNMJM20h1g8lgheooxzwpsHoh1gfuw8ggEeCqKScrFpXpkNiewVcz5GmDmUGHfmRAPMMxcZV6PYfhBCMdkMv3cenvVsqyp1Sxkbbo9n1OVCKEUccqPKzcJWSRwbBC3RwTFaeoppAXCcqcwzRypvE89mREEPcRUjE7fYl6NcarvAc/sIlSBWaIJSHlCHEksaPLKOMB4r5LHs5iVRLSsCC2y+Fh7gja8dcwmIMCepMalWqIzGIsa4DlZaTtNnnrDLNpD5VMIa8QpDXmk5wHWxFL+RR5ZZXBsffTNBvMmgNyVWVqQmGkXHarpP4Zvt96Hr86w1Lc4tEMlFUBw2I6NYi6Ef3tbxJaNtPxPHlQ8MEjKzTmbdKNIXY4xo5ihNNkGC8yd/UCEpMK4JgZNgkq7BCODEaVReKZ+zHsGuQgYpcwHBAl2+Qv9cmuXcf/wPt4xf0fWcyfJ0sTiAOmxSz1SpNWbpIoyDKBzEDl5fTxJ45HfOPvxjwoq9RaktzziPwWzbZCRENacoNK/yKj2imOHOtS8a/xA6cf4oaTEWx0UcrGsQRVpxyTNdhMyaIKcWeb67X3MIke44nFv4JC0rJ7KNEqJ6IIJUZmYEyrTN37yJsDjBc3GC33caw5jrs3sNQjYFUR4QARz3HJm2O1dponJahgQBGmZE6VqpVRUQEibxNNHep5m3h1g7yeEMmMWEwxqhYChQKiQIJVJgmlu4VQFbI8JFiPicUiSgb43hqOsqnVCryJS5w1WJ08QuDF1NRlkijBVDHKaiM3cgo5R62aY8oQGYxhnDCxTS6P2xzNjpHmGXUzJe4PiC0HQxjY2ZTCN/nK9FHOWD5haDATT3HCCdKZ51rnfiynz/1PFCyoZUzXIq3FeNM28/UqtckIY3aASATGtEfYO0VjZoIh5kjXLxMzh1ukmNXjPDxrYkQDbOsUcQCT7CjeZIvajM3WmoE5buJYI2rtIYYb0pMzXLIfZP2xa0wim5Y3yyhapagskhuSzqZFnsQoNcXMp4hKRpLWEXGI4W8hTAPT7xCEPc4sXqBqNQhjC3dg4PgR0owxsyrtLCDwqsi6RKoJaTwi23ieRLZRwPHWBkGzTew3mExdTi0ICimxlY/RaDMdRThSIguDNBMYGKQpBG5B4Vr4ruCU2uJqdpwHioxTqUFaTDlxPCDxqqRRBdNq4gd1ZlIPEQUUbgs/dJGFoGrmWOPrpP6QjUnGYJIQByvUTyhEPCYJZ+h1h5youWTFfWSFJM8LDAKwq8grLxIGFZTIULIgcX0ce0IyntClgt2cYi8sko+2CAKbpO7gbY2Z9iwap6flLULSjPXJe5iqKnPOBMuJEXmG6syQZSaeK2hVwchs7F4HFXRRloOReXSi46gsLMd2Tq7xjeYj/Jhs49h3vuE7HEKANvf//SRgIl81xf5NyrDIjn4AM9i67fOapmma9rbIQmoqJBMNFpsOjelZUllhmh5nrBxcMnzjFKtGk4Ed0ysWONHxSMeP03/W5eRpieeNiDcucTrNGfrz1KomdrWCkBXmrQTbaBAPInyaXP9WCqJKJQupIwmFRaUKoZEiK22c2KHOAj3W2fZHzBsh4XhIfuw0x60eKouxHMGkb4MsmLEVUgoMGTOqwWqjxYKoIesOxAJRuY9mJIiKEMtaJ05niTAYDh0yexEzOU8/aLMZNThjNamka0gkWa1FMhU43eeJxkeQ0wmGESLzmJmkyrxRIZETICNTgsTIsWRMmsZUKgH9MTjmgGhlRBEnxDMf5MzmNzHjFFMmhMIg6FWwvFVyQ7BsPEY0XaE5s4UyqnjxDLP2NXAgv/wcDxw5jq3uJ48MVsMz/DeLNaKpjWmauMk8A2zmbQnCRkmH6TDEqVwnz6bUmwaTocDtmyzaDpiQVxbJghHEIdn6GJMWUTWlaXpIDFJVYIqUMJnQXVth/j1P0h21GMTbLMqUIrd4OjpLq1hjMHiMWjGgEBb9pGBjYY5/5HbpT0K2t5s0ZgcU4gTKL5C5zf0bX2bj2sOoXPL/s3dnofZt+4HXv2PMfq61dr//+9+c/tx7bn9vTiql0aSkDNcHMfoiWIoRJAiC4Ese40MgCSGCAQmCKCKCIKQI9aKllIWVVLrb5HanP/9z/t1u1957tbOfo/fhH0sk8QQk9yLU//O2mGMxBvNl8GP+ms2QMwuKmBnbaIIvXqJMD7m5eJl7dp+L1T2OjEOKFavLPySvcgb5FWyTo5RBO4cQMcaCM4F2lHTvvIOtG97Z/Wnyfs68v8+hPCRZvAv8HYhTXJjx4c4z/oU3BPlFzt0oYhViWj3DI+gfvkuU7+JFitYZfrckuvkRd/IJ505AcsS23qUUz5veCKuZ2IBQMTKpkMkuufHEA0TL94iKW+7OLrmu3iL2DmNjhFMgIpJ4SqIU3j+fPVZkGmct3WJJNezSZZ7cNNzqEd1l7MUZ1UJxf/cp7vXPE1U9s7IhUEPIGI1kfbZhVuywGwqcaii/8Tabh2d01cAs91z0u/zxyUP+7WXBzWnBoL5CUFckV3/GGL9CKTJWtx2jPGbd56z7CUEI1v/bf4/vFcd7e6jbj7moX8VN3qZ2lmRbE2UlsVQIo8i4QagW8OBHRpPw9HvfoR8sB3nMoC6RfgSv8D6lmH9Kks0I5X3OHwuSvOIwOqBI30B1Pc8ORu6InFTXSHWFiCecqWP0Ys49O0N2V8S7J+j5GaFc8a4uyeSMoWqJm1tCrQhTwyc1RO6WN4qW9e05W9MzmGMmW0Ne7LPRA5+sCnZuP6RMGlK7Q73ZxZXp82Yn44ZExEydxo0lm8ZyKGNu3j1jcx3hjEfODpDlHnKtCfGUEJeELmZ1NSLTgUTXqEFAgK7p2MQTIvcpfXvCDI3zz2OGYT1y2R2QJ4okVlTtmk8WgkP9Luqkp+5T5usDRLZCZjVOFIxi5KZ6yF72Np1t2FEV2U6FDIKUlFU/56C5RYkpkfOkoYJkxs78n9JfFYgHh4BApgkFS9aDYusyDo3ANDXSZkxCRrL9FI41bbWkl8fcQYMTJJHh+FgyaRO2q5LSWfrliu+2Ma/oe7z+GdfRTzxA697+jyl/8N8Q8t2/8rlwmvTqW4jxLw8dfOGFF1544YUfl1txRl2dk6Wv8fRmy/1DjfECQmBUKT6tac6uMdFPczv/POfTA6bufSaZIBMt22WJqN9hHCXXtSCYp5jZMd6NuJAwth154tGN4gY4MNf48nVktk8epoh2ytP+lmjyPMUuINDDHOlukAy4KCdGcnwXWCds2hnRbvc8LS6KyPUFWTRgQ8EzMlb6nP9l8hLHyX2+oAasS4Ap+17yyfA1liHFhpSxXrMjWgb5gNFpZJwyDgbrp0RpIEoHlE1Yize5PcuRQ4TMDfLyIUzfJgqeEEbWkwanj9CXH5CMhyx9ycHBLtr2qGAIJmJPFMxcROJ7fLsgmvREYo1sX6evLtFlxkHqMK0mHx+yCFNU2/JxdIe3U8f/Pn2ZMTT8PePAg3OSR9UbCHeK148RDw6YyUDctuyZC0wn2faBqaoZ+hUi3WNaDAxK8eH1Gxhp6YcVnbPc3N3hZ+cNeMn1zQ5pnJHt5hgXP69Li2JacZe9Zos+e8jD/SNISk5WER+UX2Vmrpj5C67UW5SRJ0Q5fZKwywFhHFnWl6zVnIM7DZ085Whyh9t6wl4meNrXLJViE0VcTCq+1rzMql7xZnGPUllstk8QCXF/xjJ7gyebKdrscXeyJRaS83kOTiG8IBnWePcSiYHUzLB+5EdlID3f41gc484snIAPgoSBtn6ZHTdy+WGLFS2ZmzCOEr/qUKHnqtnjFXuGGw8Im2vulB2ontubAsMuydCzZ9akM4EZYmLR83Q6YX+SkAwrIEeOBmEF7w4npGrCnsoRticYh/eeVHSMRmGqnIgDumgHOVbsZRs2Q8LtbYyjxUURZfY649VDvOzZ5AnvzJ7yxZUn+Hfpll+BusPbY/pIs8k7Qr+LTuHGWvJuzubbP2TfxqRW0JsZAwmzbcfNVvL6bINnh6dRyytm4EcHE77WS+6qJaMeKdQhEWtG7TFDitaOYqV4p/iXCdrgx4YuTCmLGSdlhdc9o8/JxT4+KfDxPuo2J/WBNZ6jnWO0mtKrBSkViIz5ekRl+5BEbIcJZquJDjVb4ViKnCLNwdeM3tL2KTYM7O6lCF1T5jVe73CrBPNK8ZosearPeMpXeX17ifz+e9j4gKPwOYL37DWKZTzBrpfPO6ybDun3qKRjbWqk88zcHrrbkKtbTJJTTBqq8IChl9wgsWh+ykqW65ZWf0xsJ4jbXZzZw0jNTv+I2D0jFg+YqghhR4rRMu8ETRpIZElOB8bgN0/QeU9YPh8I/WE3Zyr2mRSCIpqx9Q2h26BszuX2GB8GtCmp6xRTD2w7SzIYiApEck0frVgHGKcp25Mv8ebmCq0NUQqjDggRMbqSVK2QYQ8XHXC9fJVRd9y5W3H1bI0pN5xtXqd2JyhfU3PNHT9BuoByjoiUd20B5+8SxxPsENNkx6T1mmszpXZLEpni2GcSFdSjoBnWYD47zvmJBmhi3JBefRf+Iv3grxKyHap/439g/+//64hxS8j/3yfWv/DCCy+88MLflNPLP8CMW2RXcdz9gNPlNTN5lz/dPWJHWdLR41zBoR/IdOAoWjJ79pDb8avYrMJO54zrHWQ8Y9vFjMpw1TbEIiUbShoTWIkZZaTph5a5bWj9itSMtOlL3PcFudDoNmbwCVnwNMtP6YtdennE07ggkznZ9cje0GMUbC5asB1RcUA/piibIeIpe6JmNJeMlUEmDcrcYZYOOJGz9BInNFksWZ/ekg773LaacrLLNE4Ivn0+H8hHxKZh2BpkCNyeO8gT7pQVl5sTYrHltr0kz19izHKquGU6ePIuparXbMSaafQaQtRYI0jzGSa5RYsl3ew+Tx/k/CtC0fQnOC/BOTaqgSolT9/gYnPKPV8g0guMVTRqB+1ScuFo656T4pib9lO+18a4mUfsP2BJQm23mL6mNQc0omAbT5mJPSIxUumcxG5JonsoXbOu5yQhpS13ONUZP+9vSIQjsgOTyDETR3ThCX3rCeWUy/U9ku0KpSe8fXrNSaVpYkFie654i4snd3lr9xGDmxFpy9+6rpFxYNtP6XTMo/wOWb9EaMM37IQPmi9wHBUM/Sn7RcKtyXAqMOvusK/OUVKQxw2RG/DK4pOMTkQ8mhxzkxf83JXlj0922Yt6vtys0dcdCM+2P2PcPUSajtj3RM0NcQm742PU5AH/c/gGT7d7fC3OwWm26gofEtJ4ZFQBmb6MjCaI1S2XaiT4hGgcuIimYCZ85+MtD3YMuY348xDxkt7wlhrJ+y06ybmaOqKoIzdTvtPBS/k1L0cJjY4w/lW83WECKJ1g0l2O7RW3Yp8gZwg/IrKIoCXfXZxwXOwgWOC7DT65RzI61u2IiQRdMSGNCmI34dlDgTePzLBVswAAIABJREFUqY53UANU6cAzYfhSN4HpA1JZs7tzn+tRAfvEfkHQHvwcM3Xc5IKNvc/EVyh1iNc9l+mHHJkjPq8qVHOH1FeUWcLG5KDOmMqKzj+gbe5wKGaM/TNUcsvF8T2KG4Nlh2vludj2TIYMjq/I/RTHfYJOWfUXrJOvY5sa7TXeWP4g+yl+Tv2QoBw+v49rRxZpTpffYeI8DwaFLXZY1VtEL2mkRfaeXFY0mylZbLgWI43WtF1MLwJfTOfU08Ce0nTC4H2OtZLYbZhuFqyHa2SZYHTH+a5gp5EMxYS039K27xO7PWK5iwqOSfuIrTtA0nMV7+PwJLuacRC8QqDRmp2+/Yu01TWtmLBZNOik5lJtWEcS7yGRliBzeiGQpExIENO3mNRXqJsj+tGjTYFNPbFu8J2kNdeEaMTbjp1sl7YvUAqy7QY/kzj7PEE5eMtoBP2gGW1DVgi4/ZTOO4z0zERKg2CblkyqC87dDJnusgiXiGiXvHecnk1Rk4aHacEf7bzMQSeoJgVBaGyIsCbDMfIkLrjKCl5u7jOd9SxtoFOHvGRXtDW0yYS7ZYsxFdH3v0d8722SdcQyv/+Z99FPNEDLHv1D0tN/AjL6zHXR5vkMkPTRP0R99d//sZ5p8fRTdk7ukZUvhmO/8MILL/zzzFJSzY5JyoiXtivSaUqwI9nYkwwjmdWsxIrRvkpjd7g8X/P+YsLgj+h3d1nkj/jC2KMGz9hZEpmRFzOGMuJm6qkvWg6DJ87uoAfHTTlBuAlx7ylMxigFran5+P6rvLnZ44f7JW9dPsF5iYxHPpQSesU07PBU/12GxNLYK5L+ik9f+zu82e5QNjvMCocZ12ByJvUanZ8gTE/PBOMHYjokEZmSqLYgCga8RFCSm31qqbnymiMPiRDI2CCtox4Vk/6SXtyhadd0MmF9d5e3L88JRYYPEmchCTGDb4iSGBNSOisAQY7E2ggrG0yW07spIVS05oBH+3/Og43FCU+78KzyjLOio8odB61HB4XfabiyO3xu65k3C3x0RGw1k0SzVi2hXtCVh4x+IDOBKxTLSeB2eoh0EUlXo4H3rr6OzY/obU85beg7T6oVX7x4hk5LrCsZXYvsAk92ajJ3SBY8o+6Yxxk/yj+HyiJMEBzyITvrS161JxjfkwpDm34ekW4YZMb7x7u03nBSBXJh2dMJw3qkneU8WT4gijXv5Xu8xkgzvkwVWoLcMoQLzsPXmakjVLRLMJqBDefDFQezCXX2GtfRB9zYI6yZIbBsty1WGbLJPi6zWAwTa8B7mqYgHj3ztmZ57yW2kzuMtuW97IjPj446rZFScKd8FSEEvr7Edh1GS7Z2Ra2niONdTOMYteds4Rm3NZiE6/3P00Qxn+YPCZHjK9VIHwznfcd0+ZQ3ZcNFPif1JQdrwcl0Rd0d0YyP6a1hllv+dPa3Oe7PuUk1T+WWu/oBPt3FipGzbceX9lcsI4cMgT8+mHC0tkxDSsqEN8KEMDXctJptyBkXV0RRRu8z8jgQ/C43zpJbQTVecGf/HsvYUQww6CXezQCJlI5221BnBXmAVbvDq/mrjHHBe8uYu6MncmuUOMJSE4UIowOZ2vLRnQPeWC7ZCZ5tnFAhWfd3SFOJsTUjhn8sv8o3KsW53cW6FCU8GCgyy9QnVLoHZ0lkzCdvfg3ZXfNFP2CCZ/AR95enGFFQhwmy0WTymCT6kD6d0o3H9JnkcZGzV2asupzY1Piupk8Nf+ZO+PKQo8wpaZwwyF2kjKnLiNbkHFrDo23OzEJ/L+IgiTiUKWtyWi+IZULqAkYPnCpPPZUUxhANl+xOSz7craG8y+yjT9iPU56Jgno64Xh+jkwt50lOHI0kcsL15pqXIslW7PHqZM4/2r3PQe35ah3Ruo7gHOrmEdODN1m1C4ZwzNYfUI1LKu8ph5ZJsUPnSiKXsJhAEDGXQ4qrTzEYhBTU/QZXzpEpJIkBBfOwQWUVRXWfNtZs/BlvGKjNPlb2mMQSJRmZGBB2xnVX8p77GeJ6i2oW6N2XCFJybu6SBYdwB0zwjFlGlt2n7StUv2L0S44rQ+RapnuOj0/ukz/bELeBn76qWGaa1uWfeR/9ROeg/V+NP+zBFz9zXbL8AJDEi3d/bGfxfzF09OL9H/D7/9l/wh/8t7/Dsx98+y9atr7wwgsvvPDPm13lKauKqFnR+ZrFbUrqT4iHntH1tLGhizqG9oJNV1OHjKURjGOFFJ6x2fBJ/5gmONpRMKotkyBJm5bGprhgwIETgTG6y6l5BeUClS7I63Oa6iM6K7DW8b17MRsJnz64j8Kh5D5epGzjGe+Y+5yP93kmO75/5whX9bC6RPqPiLpv8yftipvtij4asbLD6JhbvcPDOOHD3YKleZnB36cVAScmWOdY6Zrv5IEgPAhH2i+Is4g/eXDISMbMCuZu5ExmuDFgHUwpud9PufI950j0ONK1z2jGml4rYmKCd/iQIH1EYzrssMKMS44Xc/7F8zNu6jvPB1CLAr+zw3V+g8LRjB3BW+ZmzZPsktHm/EloGZVj3vZcxZLH8YLbvGE7KBIEmd7wYHPNa9oRBVjbOXJcsS1SPilX3BQrqnRF3QwMpqc1JXUXoY2jVwseP5jwOCv41r09VH3GemjI2oixqrHz9/BdhSIlkjO+cPaQHx49JFFbcue4TAs2bUI5rNAmIpUtY9KTbx5zZ6tJ9ZYw9vSxYNv1zFOLyRqufc5lKZirI8Z+yTpa4ULO4+KY03yCTgRRGFjFXyC2FUoKSFJiDwTBo7LnRkrO0wmDgEvbsDEV2j1/B6kM1LkEv4s1U6pxhNNTTtqBzclL1DNo3ApHwGhD19ecDZ9wqZ7QtCPLfIfKjqhqYPhwifGKPpFYVVNvFFvX413L5zrFeRYzpDnBXKLqJ1xND2nWa07HCm81g2rYdh2pbdC9oxluiYeOuSu5ngQeiscYu4DM4JAoUzG9fUY2rvhknXEWFJfxE4Rq6b1hxPIJ3+G7uw851RGtfQnlc66jgYtQM1QrsqZhG1sMlpvqY7qh4Zl/mSdpifcW6xWpNUjxOm16wncfSD6tP8Z3LX+/+nluxAJvK0IWuA03/CD9hJv4kkgHtuywkYbEFXx53hIpix1rhLaY1pHZipGMIGAqUt47XvPteMqByzkSmmBaokhQCAHBMroVSluGQRLHE/L0mFsfsclqBkpWwtHYBskEiaCTjof5Lr2e4r1jxhQ7KdlouI4dZRcR4sCxt+xqzTAuMNo+79xJSikiHuk519mMD8tDtq5HeYfEcppJ3lk9Za1qJq7gKjJ8MCnpXUdvMxIzo5U72GC4MQ30huLqMc4OWO85iwLXcsQRo/sS2yckoyeXBe1YMaYVKsAHm2NaO0NYST08Q6iaaVri5BfxIcJ6gx01su2Y84xerDhzA7fNDeOmxo2PsZOcIYXHek0Teay3DGPCo/0jlDog7QIXeoMSijvqgOPrmD966YT3dzzJpmZVb0GN1NYT6xFRt2y5S5QdkIYnfJI/Q9sIETIyo6gmJZssJQQwjGR9T7a8YtmumZsTlNjjarZPFRJUvEPfBuKrFq1ueJSu+Oi1e8x3Z6Aff+Z99BP9gpbM/xy8wdz9W5+5zh5+8fmQOt3+2M7yh//df8kbf/vnefvf/Hu89fPf5Nn3v8WH/+R/5eDl19g5vvtj2/eFF1544YX/f1q3W0ZpKLuK2MTcqiVy6jgLKbnUdPsHqDEjFRlxpvno5AG6+RKvza8o9JT6aOBZWbBPyhuVxQNdGzEl5e5iw8L0JDTsipJ5EOzbHh87XDZjKWPiKKZLHE8OX+LB6opJ3xDbFq8NyVDRZFO2xRH7/pBTd0vooI8NICj7cz4qJa/aQ6S1JKHmlVXPShbE3Zpu+gpPdxLuqoFURKTC8TR1TDjmZ3TPPM5pgmctViS+gUpB0qJ0yic7B7y6nXMbNK87y+1ez+N8xpfXW/K14am+YtqlLHYMh07wQRqx3YvZbxe49JY4KCIsV17ziozxesn370yIdu/yxesRU2aMauQyCdCPrKYt3TAhiIzSWF7TD6jCAjF2JMYQCckNt5jmiqJb0ISCQWtwhn8wnbA3jZl1WyILCYKyGbFxDEi8MPxJXvJs8iFfbvYo6jXnhzmvLiz55TWmTIl9QHtL57cM3Q0zk5IDva5ha5CTtzjbTdlXLY4tq1jhWdEcbHijTXDtJSezLcv8VXZXF1T0SCIq0XFRvspk44n1jOAnCHuGDkdgDUV6yGoyUMqSb91/lVt/BlcbZuNDVuuamj1W945R2yl2covUI0bMyJFgUjSO870Jy8iBWbMYzjjsS3x5hyFyTKOeVtwyTwz5+og3hxtCq1naBisDrh3x1PixQnpP1ezjy0Afx9z1uzy6l9JYj5YRz/Y9DwbDWGwQ44+wK8lLriMWc1yQTG3BZjigmpVIveIqS7F9z2xygF8MCHtBJqdk/ZyyXRAf7RKNir5s6YPiFX8PRYxxDqPXbLMUHUYIE/auPmHwHTYNqCxnkyf8YZny1VuLDw7TWwgSScQQBfQEkhDh3IjFElSFnZWcl0vKGm6Smtu9BxTVjGsMx1ZzUt1ij2aI1SMWh5+jy/Z4Sa3oojXlWtDOPo/Wl9h0ZEwOSUPKQT9CJGj8irxRDPqILQVdkGjfEq8d16lH2EecqB0QEWt7wWYn56XI0cUt29MJ8viSzE/R6wvS3QNiPJFRGDHhMluwPvgq7Ri4r1tO90eSVrHT7PNorwTbM1tcwmRF5TRGFJSRY1pvuS1zYnvEJJPYrqDZvoObJER6YJ0l5MWaaMzABwIRD+9O+NpNh5IbIjWhjDMyBIndIMMbtH5g6lqMUAy9pAglIYropCZYi9QtVXuBTSbsr+fk+1Mu+0f4RPHddMq9/oJkrHld32F/fc56JjnMdomHESUDf7R7iLEPeb3p2AkxdaZIxpooeHyIqJOaOpkR9Veso4zLvEQUA9YIJlIjuzVLtyRWDn/9HsPxF7iRt9RSsUjgWN9ispRW54i9gvtDT5tk3IwLin6fWtRE+oJ5dsCbtmeVlvSJYCYS9vsObbbMm4Sn2ZZO1JzP7qD7hAk9jV7xj18NfOnWYLwjHVZ0MuV0LyOXgibLKLPtZ95HP7kAbdgQbT4BD8J+dmtJe/BF8Jbs7A/5cYRoqm+5+ugd/qV/7z8CYLJ/yFe++Yt85Zu/SAiBvtpQ7u7/GHZ+4YUXXnjhx+W3fuu3eOeddxBC8Ku/+qt8/etf/2fP5vM5v/Irv4Ixhi9/+cv8+q//+l/6vxlLgu8oTEehM85Lyft5ghVbdpqGrHboNKWk5OODYzYhIYqOaOMKs3yESEYKN0I0x4eIEBTDuOBPv/R5Dp48ZeJ6QjrjWnYsU8+BloxmxZPjPd5abGhmM25cg7c1u9WK3nVETtHFEbe7E7K25mS8Ij46IOgBGQaKfIsXgvf2bpnqQ46C5Lg1DFHg0eEJiV6DrFjt/ohV/jM8nXxAtvcyLzXgFx8yaRyD3cMS2GlXPA4dF4cL3p5DkwYe7hZ8pRqRgBcN81XNtTshF5pHkWXYS+j1AUUecz117M0ty2SXIYOis4xhIHGGm2lg0i5wUYccO9JUosc18fqMavoFNrKjm00xU8kdnZGpAWSKkp61PsV1HZO+pt95hdwOpJ2CsUHYgMtyvExgbNnfLCltTEsFueSuP2DaVnhhwXvy3nGkPZ29S1TPqfIMaQLPdjum7RmX8ks0t99jtmM4VJIm7VkVA1lp2ekkN0nB3vIh29yyKSy1MxSkdFHHdOyp0gkHNuW6/SpqknF6uEe03eLVgIxL7naKzlv2e8vj8n2OO4kNx9hoZJtEXM1WvNxOuFuvqMeBaojYhDUzqfDDNbfmAQtOSNpLpuoGnXWY+E3S6oqqTIiEZJUXz78MqQqperb5nIuD+8ibLVmY0qcJOjrB2jN8KnlphNh7pBk4n61Z7tfcX02YjRAXAWV22YqAxbFb1TSzAuc9JgDWsSj2GNyIbC2ES3qOacUapy7xQdPttuw0hqwr6aKYmbdEaYdVHVb0XN99hYus5wSB7CrGIqLpl6yyChFXJFYwGXJUHDEMLeOuJ18P7FGQtpr72xum5Sm9TDD1nHHmccIjYo9wEq8kMvGsiohkbEmsYZE9wnFJIe7TFUuK7k8Rw1tIN3KefsxB/BbeHzLVW7I6p7eXnE9HZn1GGAdud86ICo8XJWkck1pNOS7IiwNgZNKM1G5GMi6RyS1FaJlVmsWBpJpF2P49yPdwPuag8txkLXb0fNRDtn7G8o1/lfPjmG9cXZEPkn5YslO1qKzlk1cUeYgZNivUYUkUbRGMlO2CXV+wTD2FqnHeUM9mBO0wQTOpO2wwVOxxEP0UNVscB3x6csGdqxtcEFhGlvJTXjJv0DnBRB7QjBf4fAu9pBcxXh4yZinr4YJpyMhsgRaBVBZIRi53pyzza/pE8+bY01jBpyfHvGwdRXlErDsy3zG6iip/RrCKm51PMftfwZ0t2DOa79hLPip+lvvRHhmCxjfkFjLlESEwpCPC9Uir8cUB9TRDRzdIIQmTfW5PJLtzw6M7u3zpYgne48YLLvZSZmdzjq8+JBk65NAzusecumveHg65loZYGEqxRMkSTM69+ZJ4LejKCdu0Y7IytD2A4lk/R5ieqe24uv8ypR4YhxuED/TphErOyV3g/aOeaRtIdIRs32daP+U2/uwQ7CeW4iie/iH24AsILP3P/Kefudbtv4kwA/w1gdz/V1cfvsvhy69T7PzlBiRXH77D//Ff/+eEEH4se7/wwgsvvPA377vf/S6np6f83u/9Hr/5m7/Jb/zGb/w/nv/2b/82v/zLv8zv//7vE0URV1d/eZRLMvZEXrFOljw72qeKluzXKxK1Rtot0diQDgO+W0LYMusqhiRCJQoZDGULiU3ZCXtEIaBdR7MDHR1CtwigDwPvyU/ZFudoUeECbONz5uEZtVth7Yr7T/8Rsluh8gyCY1vMaNIEHXqE7xj1BUN4xKLIKaolfVDk7YAaap7sRcRRQcSAV+doBuSoiFSgypbcO/2Il04/oc0EsU3R6chNUtMkC7z3PC4btt05Zzsr3tv7hJ3r9+mX51zZW5wcsF4jxhZBQh5qXt5W7FRL0mZLz8ggB0KwBOfoUssyu2aeVyTDiuA1W7HGoPG2JxtH3jnJWaeBZ/eOCZFgMhjWkaeaTYjdgPGWNqrp85rKDRy0PYIAIeAigYlAjY7UDGjpQG+wvsKiiDV8Whq00NhI4J1Cu4o/n16yLC9okwm453VNOg5c7Y9EmzNs8DSJ4kcnV7RRoBERy1ixjS0ei0Nzp23J6nNsWDHEHY4t48EBdVxyJbZ8NK6JNmfkauTy8B5n+zO08GxcR2QdizLh9bMFor3BeUEtc6r+mmSwvLu/4vvFI+b7MT98RfLR3ZYf3WmxdmTWNYjxKUV9wZD17G1bXjv9pxysvodUcyb1nNkwkFqHykp0lGKN584nT/HOY8TItLngzs0T1OQAnSY0cc0q1TSxo/Yr4tEjtKMLineL73NTbBmGG/bWGhEERV8xRiM9Bu8kL12sGPIEqTumw4pl2eP6LUmjUdmMbLAUW8UoFSbPWaUpsYyxrkUlkod3j2HYYqVEhRbfbniSfMAmnFGVgTGJGPH44GAc6O0SKyPauGdRLOjiBjfecp3eEuktk3FACoeOA4lRJFZyKTSD0AggkgVbqagmKTIENjvw4NoxGywymuFFwqf7F1zvfoBVZ1yLdwnC0UeW+R1LlXUcd2tm3QpHC2pBGBdcTiQ2eOJkyv6gELoi6t6lSxRHziN8h2x/RN5+SjANUnesk4anac26yBhSy8N7FcL2UF2RLJ/xg6N9rM/IlaVPJa1oma6fIO3I6D1HN9fM6pqApkks3355D+0VqTY48fzLe7CWiW6J3chYTLlJA3+y39LHklu5orPPUFKzN2Y0aU+XbdHjNUaveDJ7iNUrMmXQzrCkY5FqPs3meGtRTuPHgan2RM0NwfXM2oaTxcjdumAMHWPuGZKcNo945+SaxSTiapog9S03RUYjNmSDQVvL4+MZF3uetVDMmi2RB+06TouRm0lElY2MkcP7gBUCYQU+GJyMifyMqRVEwTD6mEbmCDfShREdD5TNkj426DRCiZ5IKyJvsWJEJFtCBC6O+XjyiE9mc9ZJgRItRmasM4EdL4jVAH1LFXrWsuI8XdLaLbNec//ZDzi7e0SICkYZUXQ9DC2trJG2AV8TfM8gp0SufF6D+Bl+YgGa/PZ/hbnzDQKCkM4+e3Gc46d3EV4h6/O/8bN0myV33/rKP/v97Aff4nv/4H8E4O5bX6bfrFidPfkb3/eFF1544YUfj29961t885vfBOBzn/scdV3Tts9zMLz3fP/73+cXfuEXAPi1X/s17t//yx20zidb6rxHxTHSKvADvThFyy3FqEj7DbHqCKrCqzXpOKcevs/gVwxuTWQcdVYx6ks6NiyyiqU9ZbJ4iv+LlsoueCIfmA2aNtG0mSTI57ViUb8EMRBbjZYWMa7ZJhWivwHV4iT0kxmz3pBEDXc350Rjj3OBOwvDUd3h4y2P9izXE8j6NaVPmDQ19zaKyN0gVEPWnrIoMmbCkKYv89FsyW3pCLqBoBhTmO+UtHiEGcg2Z1TmjCE2LHYGFtMZzyYZ1nS0fgt+JG4uGESNikZE2BLpCzQaKwZUCmMMwq0RzgGeYtiyzhzCKHz1CTsXH+BMw5h4ZnX/PBVtGOlMixUpbTxyGwSLvV0kDmsqVASRC8SRxhBQETRRTOU0OhJUGQS9wTFi7ep5fZ0LpNpihKctLVHo2ewECIbpoBkiBcNIFByzFqwbiFVg2kq802B6jLQMGA7XltjEeD8Q3EDtNwxCYr1iLjStXOL8Y1T/Q6R6wjZZg+k4O9oDH4jHiFgvkfWfY3E01BxUIPuIdHtBWS9x/Yqiq8m1wUmN8nP65JQ2j0lNxHxfIoWg0M8DgCZzRN2cdKhJhp5VEdEVz4MO4VKEM3RxgnI9O9tb9rdznB+Ro6ItUtoiQVpYzFrmBy15N5D0PYiE68mWLrrBJhmpTdmkETYOdNHAfG+CiQVd5tjKFWOqSNRIFJ7XB/ZZwuLgkDGZEuuepVSYbEI3UUyGBd5bcCNYRVYrhqCpIwMUdEnHkEu2mcZEgWCWCO+oQ0ebZeALGrFG+QVXR4c4KYnsSK4GjHRcZd/mz8QPMaGhTkZW2ZajTWA6FKhY4ozCCUMVX6HDY7JesZjEbMuEEBzeapS5oBwd0xuLNI5eFqjIEQ8Vvb9gG3fETmPVlllfcZM5rvMnzKcVynRceUPsA5nTCDcQhSmt21K0Gh06Bv0RKgYCSG94PFFYvaVYPqSLW+JxRA4VIUAIDZgGr1bEWpMqxcN8zXn+hHT1I5wdEL7HSk1me6Q3NEnPcjZi9Q1N4jgtP6aLt1gypn3EpGvR6Yo+tngnIAjaWLHwl9RJi7cVJmwJsUWYGyLzjC6HAxfjpyXpMNJMZhjTEVdXhGDpyxrpPYO/xUWa77x5zia+IrEDu80j6nCF8xvWkxgTJ0TCEzMyL9Y0maUvCrpkSx21VLnHoxlisBJsHLPdi6j2IDI92ju0MOhQEY1rknbOOpuihMIIQxASvGOyaihFhlBzYj1gg2dTajI/obM9ctxw1JbcWZWc5qc0rDlYdhixIR97rFc454m6FU5tGX1FF3W0SWA9nbBT35AMNYkeKdRAlQccnjFL2M48qRmJ2qe4sEU685l32k8sQAs/9R8Q8udpg1F1+teut0fPA6jyO//F3/hZvvqv/Vv81C/+OwTv8c5x53Nf5tW3fxYAISWv/8zP8fR7f/o3vu8LL7zwwgs/Hsvlkv39/zs1/fDwkMViAcB6vWY6nfK7v/u7/NIv/RK/8zu/81dmSWx2BMUYiMeGtn+IdB25cngaImfp5Qq8pk4HUHNm9QVmssd2lhOiBGEtJ6tArC1KQGwDk8Zi9TNGaVDCEPRIaXK6ckKXNChRs7+qwUc4r5DaUAwjwq2R+oxIbQihZ6de42RMrgw7xgARJstwsWE77VGxY0wNmevp/BLQeBHYJCNNVPHp4TnJ9hmp9eA9tH9Mb6/ZDu+Tdo5ZVXG1X1IOnpNVjBYNe1dPKduKLtZsJh4hPIf1Gms+ZuCMq0nGtsjQsaZJe07mjlgpDJogPCpNkENLNm6RElQCOMMmHhkTz1iUeBm4LTYcbZ8PKpY64IQmH9b4oIlNxLbwHM2+SN56rL5AuIDHkOgGIR3VJMGHgPcWYR0+jnASNCOWNbGxBG/Q0uOlZb9x7LYJe/VAn+XkvQNgjHocI8KsCW7ESYn0FmggOAKByBn6MGeVx4xJwIqY2Ae6wmGFoy1zxjilTWKc8GzLlFx5pFXE44A0I4dNx36nWWULusIQuwqdpBgpcSFipxZ44bi3GHjrmUaOPUOqafMBFY84GYh0j/AWC0jVYAUMmcdJR5UYlntHz0tKnGWMFcE2jLLDxQmJ8QS3pBEbFhNPVXhiEjLr0ZEAD/kY8FJRuJjIx6g4I7EjThoiU1EOlshF1K6nGAZ0uEZ6ibQeQ0Kbl4BEWs1iP0HgOKwqJsMavCLqb1BhQAtLHX/ArDkltgYVOVQS0NKTag8hIALkShFwgMUKR5dZrDAcrgf6uEOFLb0caRLLdmKQSByCIKAcLIviGhkEAEYtuT3oUTRczHJ2u0BsDNKsISi8hKz3ZHVHalOkj6mSWxaFx0XueeML2+OkIPERzm2okhuUWDPEHfOJwekFIizopzGjvEGlLc45djpPrgTbtMGKQIgSRlETRo3wltg5xsTT6/fw/poICN6zLT2JNWTaky+fkDaPqaKAlQITSZqoRirDye2cbLgh1QonHH2WYcKACwHrDdu0x4Y1+9WWyGr2qpZSG8qhR0tDZgSlCkR6yd7miqLWxF7QFoIhNaxzhwweKSfEeJaFpheatOvQUcW2fo0bAAAgAElEQVT1pGeVeZyesyxbuklJbkciRu6d18TG4Pyazs7ReYGRlmn3FC07vBkYfU8yGioxcHRzTmQCy6Ql6wY8hiACIYwE4RijgdQEVKhIug3FAE3SY0NF2jzi3uIj7t/W5FqgYxABlnGP04pJu8QKjY0TTJTi1AY1zhFOo5OEkQEtBy5nmmm7IbGGMZMkZsBIsHGEyRJi40mtIATDkKQk208xDMROYeMIl1j6aMQFx34tCTIw7bYQWpK/JkvwJ1aD5n/6PyT+n/5d/Oz/ZO9dY23Lsvq+3xxzzvXYj/O673vr3ltdVd1d3dUvOoDdbohBARLS2JKNE/UHCyf5QBQUQSKhKCKRW1YkK3H8IQghkwgnJORhxQTFsSGG2GDAhoAx3UBXV7+rurqe93Ge+7HWmq98GGvvc4vutCW6aBrpDOnqnrPP3mvNNdeYa4//+P/HmLdIl97+Zd+TQuCTv/oLDKsl73rfD3LjhV8i7dx9c8eRM5/8J/+Qp//sd/H8b/86n/utX+Pwi88Th579m7dp5nu86zv/HF/8vd9+U897YRd2YRd2YX909gcBVykFY8z259dff53v/d7v5Qd/8Af5/u//fn7lV36Fb/u2b3vDZ3aWgkuwrBMmJCgZGNg7tZSsAbrEFdNTA6nQmMzk7FXma8vKRgYTkeIwwynJFIbKAiukXxItnNWOFaecSqTuK6JEBgtBAlYyxQzYlCnAWlZU0WBToq8PIVhS3qPjjFf8lGTBxWMkG+posFZIRNrujFJNqIrH5cJ0uaaUDLnliS+ekBAm657L9x/QLnvIiVA1DC7jz57HpAXJR6IYomRKfA2TMybWuHSfvnYEsUyXlqunZzhfOM0dloKPhlQyvlsRvaXknsyAwTCJLeuyZC2BYhxZYH70BU4nhZIXVMYyP3mISRlTerJMKSXhk+B7Q2giLhqu3V8STaGJESmFTgLT5QLIDL5C8ookDcEmsok0PWQLpmQKKinqKkM2K5bOEk2P7xPLiWWoGvLaYLMlSk8zJEQmLOtENxF2zhIUWPh7DLUwyIJMIgHTZeZk7mHxCuvSUvdL+qpnsoosG8FEmA4gw31qW/NQAt4FSrHsnA00aY2lQooh5o6d0woXE7F0rKUgpSHIEp8nSLE0/ZrpMmPDfUzepQ4Kzqo+07WO2w/vsbIFSZl21bF2mWQddtUzWfdEV9G5U+wAPhTWbc9Ze8T0rKbtINrEzknP2iXWs0K1WuOXa3wqGDmiEMimY900ND3IcEySSC8eOxwx6yHaAE3D7gIyFheXhN1rRC8MdBRWRJ8QPD7qehs8RFeougEplmUNswRBDHsrSDjmq0TwgbNWtC18K+RsOJxmDk4GiggFCK5AgeiEK0eQS6CURNu9SHW2Q7uKuPwKSE/bR0IU7h841j6TOKHqoQoL5meJWYo0/T2SV6Y2uim7q54gMEii6XoO6wq3vseRSTQT3TpjiAOmJJZ+zUnraFeCKZFUAlV0dG7NdClkY0hicUNgKQvcOjNZCo1tOGsSPidOJhaDpQqZFDt6t8vOySknUyGaSEyndLlgR2CabIZ+IFoLFOrQs5hk3HBKsJZAplkds7ZTeldRx4QvGR8KAwEbRVmeDDYKawk0y2MO5y2zo5cYfKKTxJmLVPTk/gtEKuZhTTaJx17sCQhJKkzx+KHBxkKQnt6uWNdT2m5J2wNGSKUH6TBFaIKh6o+J5T7ZGDo5IpFZNj2TziJxhV8PGNNQSNT9GffaE3ZWgSCJo1nmSl/jIiQjlHBGby0SYVHtsvKWJghdVRHFE+2K1WyXvgrY9ZJgYHrqIXVEk3Cxoh6CqgBjYFXtsKwKTSes7cA0FvaOXmFVG4JPlJLH5y4MTtg/Hah7yCazbjI5W2z8OmHQAMz6kFx/+Y2nH37xef7+f/mf8pl/9kucvPYKP/dTP83q8X8d9/pHIa7ftDEsHrzO7/78z2DEMtk94MHzn+GZ7/gexDqOXnmJq0+8nZ1rN3nf9/zbb9o5L+zCLuzCLuyP1q5du8aDBw+2v9+7d4/Lly8DsL+/z40bN7hz5w7WWj7wgQ/wmc985kuO0fSBIuBDJlgPCDZn6pAoJlGFRM4J2x9BSZDX1CEhKVJKGQFAgLxCigCBLi9o+jRmfnsSNXUUql73p1q2PW5IJIFCpveJxQQwicFt5ICZLA6TOyAQ4hGTLmLDgCmBtSRcTMzWCVMSDK/TyxEmZVwYKETa1UNcjMxWBZN62tVDfCj4JKwrIVFouhUu9rgElw4LwQjRJVzqqbsV0UTOWsN03eGGB6xc5qFfkcks6sSqHghmwMSICxGXItkkTBa6fEoWQzYw2EKmI5cFpoBPFVUoVEMHRaj6DHlNV1mCQEhLpp3HlMR0OdCuOqQUIGOA3g50XojSkUzBDgGKNhOIFqKrsVmDVgCKzn2ipzBQKOydZtplQPpjqr6nCQWbIJaO2aowP0tEyUSBzMCVlz/L/lmhGEMUcFmYrjNRes58h4mnzFcRQai6MyZdZrBrSj5jYMXOYsGDnUy0AiWqFLQc0gYgFyRFfIpIydy6J+yeLMjGE2Wg7TqSFdquo+l6bDqiiCAFki24EFnlQ0LpKXmByzX1oJ8jdxQDpQhNb5n0AZMjKS8ICCZHztpMsEIskUJh5/QU4pplrQDKSMO6FooBSYkkEZcc2QBkKD3BBrIBiQskrqj6wOAdp36JyYFsDIsWJMOdVwNVWFJKou4yVZ+QYnAR6n4g2syyDvROkzDZJOohU8UBm4XZMiJp4MpRIcqCZihAwRRLkkAVCvOVwSdd24f1kt3jHpMF0hmTXrddMjli04JVnZisC/X6lCARFwdcMlQh0a7A5ISkJRINNlVMl4IfEpSe03pNLytWteVkavHdirUPDHQ03YDJhWw6TBYKAclQRZAsFBI+53GdCsV4QjxkskrUA5Sy5qRJZCMUIrY/JJqOujtjtnhIu1qTzUDvBUj4GMmuByKZgSyFSZcxOdL0hklvOJ5apNQUExhc0j3EsBgcpkQ6m7m3NyWajmrIRJuoQk+mx0U91nQdkZQIAp01nPglp80aO6wINtO7Qiodrl+QAEpi/6RjfrZAcgUYkoF29RBKYNkEemtZuUNdg2JYVpGmC/hgiZIZvOAD0J9gYyCVE2Vmi75/dvKAk2khWmFdm5GJTcxXhXrdMV8WchmUjcsntF0ilhNMXOKSw+eKuisko1uPrKtIlszgG4ITYklU654gBgMUA30l+gzLKmN3KZFMxKRItBXBZUAoJRBtZl1/5Rq0r2mbfWw9ZiS/1F74F7/B4uF9XFVx7amnmeZDqhf+HrZqkOXr5N3H35QhHL/2MrvXH+Pe5z/Nb/ydn+SZ7/jzfPwX/y++5ft+gGa2wz/6W/8VL3/iY+xcvc6VJ97GWz/w7W/KeS/swi7swi7sj84++MEP8mM/9mN8+MMf5hOf+ARXr15lNpsB4Jzj9u3bvPDCCzz++OM8++yzfOhDH/qSYwyyZlnDpC+sXUEkI9HgSiYbIVkDFIIT6tAzXyYGD0OVqKLDJgvAurXQ92TAlkoPngcyQnIWSYYkGmzunWowarIBAZssgiHagk+ZwRXqAFBohkTJhmQ6KIXgBZ+EwfYUDDZDlIwxlsGqVKvQQYbe9lzqMoOL4Aw+egqFroLpOuBjIUlHnaCOAlhKt2ZdJ0wu9C4y7RykniKFrs4EGVi6Qp3BJ9hdJCJQHJo9JuMDZLskkEEKetUJMKyqyO7qGJMHkhWqEMkOigVTBoKx1Nnghoh3mSIanNkRDBsg2IwUKCRsirgsGAJVQLPdAuSEKQEfIYngY8El8FHwybH2ESi0Q8IAySZsEYoo85ZJFKtSOx8GbK91bJdOoIoWm4WuNmRjWTYJSqAaAlXWWrcqCmGUWBmEul+SKTSVYEOiOBhsos6Jqres/YARwUcAoaBAriaTy0CTDKUM+FSQThicox4iNkOhsK4C4MlSMAKuf1XlgSUSnEoYowz4Qe9RAapYk1HGsQA2C31tMEkz+b0L7Cyhd5DLEXXSWM7kQBQFS6ZAJlIHyCZQDZAlEZxRvxp6lv19IgGKYbaG02lFw4BPGYQRuGR0KWVsDtgkNCiw76pEHQ3ZGKrBYtOAlQLG0ruC5ETvE5IEWzIGQ5KITUAxSDHsn0JXneBCxGAJouerouH2K8p2t0PGFGHwlrM6M1vBqhZ8TvhQ0bvC4BImR7IxZElMVz3ZwGwttL0Co2gSzWCokpAlE6zBR+h9pMRCMkIGotM1EeloIlRDxI779ZqSKcZRDMzXmWIMgweXerJJ9N6QrKcJWbscssSgTHG9ykgKiLUYba9D2yf6aoCcuHJc6P0JVUhItgQPwawJJuGSkDxM1wPJDBg0aWHzwLq2NCFx0mR2luozTbBjwiozSYZsO8hCdh0uHOJyYL6IFCMj42uQDJ1PtAMMPlGvO+oAyQxkMeqfJrO3gMEKyWVcFtZeWHvPfB2J9EiCnYXhrIlMu4yNA8Gu2BkywUIVhMEVMFCwmDLA2GzIxUQxmWhUtpvE4dB766PBFkOwkc4X2q5DciL4AazHBWX5S8kk0xEqwcUC6NidPlqY5QHJEB3YOIxr8+sFoMUe9+BZTr/rx9/wcimFV577PT75q7/ArXe+l/d96C/x6//rT/Ktf+UH+MRP/iLv3n/wpoEzgJNXX2Lvxi0+8Y//ATlFXvy9f847vv3f5M57vwmAq295G2cP7/Hkn/6zPP/P/+kFQLuwC7uwC/sTYO9///t55pln+PCHP4wxho985CP87M/+LPP5nO/8zu/kR37kR/jIRz5C3/e89a1v3TYMedSuHGsNTpRC4QyXMrYIG7GJS4ViYBADJJIYmjGoL0QN6MlUAwwWXMpE0cA1SaH3CcsKQ8ZmoQ66h1kyYAUkG4RCX0Wq6CgIPjECw8jaO9ouQRpIPuBiwWiMrSYgOVMk48ZmHAC2CNcfqnQQDDYnZishC/iYiVYDN5cNhUIyICVgCtgkGEQDaPrxGoV6iFASs1HgYrIgVgM1yigFMiCC1vWMs2hyAmuBxMHJis7rvmY2Z3pvFdRmPZ4H9IgFg6GJThszpDC+Op4bMCURJRE5Z9Y2f5PUA5CNAJllUziaReZrIUkczyK4qMeMzhJLGoGLMkWDy7ioLNXeSSZ4RvlUwVCo+oyXNI40kPEUCdhiSNbodaPyNrKC0CpkMILLBZsyZpywto9EqyDe5kxyeq4smbb3JJ9VFpvVP20MZFGABhqMZhMYnCApI0UYPVYltBaSRLKBagwuXeyZB4OM8xqstjRPkkkCVYhApooKIwqZ/eYWc9nj+f45ZOtvQikK9EDIZaAKQhEFgvNlYHBgCxgSQQpzVY5iEIrReUimUGVDlESSguSASzBfWxRURjprSUaoQqav1Etc1HpCBUMRkws2q79h1LfLxq3QekyLAlJIuKTrMI36Mh8DO0u9tqaHrjakesCHAZM0hJai8l6bM65kraHzYIpFYlDW1SkQMwVsMdRB1262YEvGRaM+mC0lD4gRkuhzwhaBokDD6oYX1EHnj2LwMRGdjluZw0w2aCIirIhWSAI2Zwarc18NWhPqU9b580ITCj4ZDs4gGcgyrvsyUOGwxjKUjnWdxwQITNYwuKTPlLXew2hBisOmQjYDkjLVsMZsJr5kkghJVkzWsr33VejpXWJwHpcKLo+ruChox0DvChOBui9QegZxFLFQEqZE5kuDywZTDDuLIyArgJKCLbD0YMpSXw9CtBnJIMXQe33G+9TTO3AZitG1W0VdGVoHmTGpx+ZMtKOfABIHDJZFA9Neryq6Mq5BvfcuQbAGwWDT1wlAMy//NqY/xgynb3j96OUv8Es/8V9TcuKJb/5WXvvsc5ScmF+5TrzxVszqZZqP/0907/q+N2Ucl+4+yaU7T/Cb//v/wP6tO4T1mvf8G39h+/f3fegv8Y9/4m/QTOe89pnniMOAq6o35dwXdmEXdmEX9kdnP/zDP/yG359++untz3fv3uWnfuqnvuLnkyhfYTKEnJDMtm4pCvisQb6PGmzbrWZOzYxshCHhkv5NMhgMNllCydicyAJmrJlTMASdz7S9BrKDs9g0sjhmA22glA7JmSwFm41K2gwIeVuwkAVcVgYJBIMiOJuNZqzHoECKjrUYweaCISt7IToegHVlxvHnUX65qYpICi6QESQpKAwCRhjBnAYkaw/N9r0FNpKg8TigQFaKSrw2Z7BZP5PGVtQaTxfsCAI2My/Zkk3aznU2GaulR+M8MzJsOk4pynBsgGVvFYA0iXGede5MRtk39IdqLBc5qy1VSNhkRhlrJssGxOfx2goGZVaSUVAz3h1MdiTJrCsNAMmZXLL+bBToRyfYxOh/guRMG9nWVlVDYLA6D1H0sxuwGq3Of3Cicjagd/oeU/SNBZ1vZeg0mJeCyk+dAjxTFJwZGJk5/Xsxm3mGk+4eSzkim0zwFTYFfFYZaDHKqmJku4Ywsj2eGc/bDDpveo8zxoyJCi3fwWbIVgg2UUTvw+beN0NiVSekaGDdpM3603nzIVNEXylb/mhcD1FlxcaYrb8HLdVSgIHOAyjbU4DBF6pgAEMFFNGj5qzrcQMiqmj0/qaEBVwxuD5TRLajK0CyyvIxJkCSKUiJIOM6Tp6CJkoKgo9Z579s0hbKHEuB6brTdTjKYG1WhlJ9OCDFkk2hSgrM6gx10PVeRr8ZcqZKyuQp2WTGZwTcqu7i8HwqPqsMl5jx3oKPiSRCFOiqQh0KUnoFWGL1npRM2T6PhLxdF5tnQ9ZEVYZiBkyxm0VDNmUrAa8HQ7AGbMHHrAAwG4oU2sHwaOWWiZFgNckVrPrj3lJTFWyeKuV87VRxzJzgcVmTQFXQe7EZZ1dZ2kH0PqGAq4ygf/CJKhSmnT6Ts6lGaSlgLNEn6gjFJDIG+y/Zzetrtw/ac/8nRbzKHB+xT/7q/0MpmTvv/Sbuvu+bufrE09x5zzfym3/nb7PPQ0qB/PBzb9o4bj79bl746P9Lt1wgRvjWf+c/ROy5I1y6+yT1dM5z/+TnoWRefvajb9q5L+zCLuzCLuzr14I1MDaTaLaB4MiejUGqZJU4FjKS9Ys+bRK9KNvUVfaRo2ZUkJfHDLIGn8ko17MJDutgRpZBmHV5G5BE2YDEgWbIZGE8ViGJ1WBN9NygAc5gRQvjR8AY7Di6nHHZqFxTzDj2PAaAheAij8YMzVDIJpPHYLoOyvooOFMJT7Sa2c9jQO4TbBLf0UIbGNmIzEbgyBiUDt7SBJ2DYDdUYKY2FTfbp5T9GrPueYy9Ol8YXN4GqFHOg244P/cWCIzyR2Cc/zeGPVKEZgRfnT/PaCerYDxYGa9TX99ZZepgFFBx/v4w0le9g8FnoJBEg9BiNNA3KAAHmPTKQti0ydRvxm2ogrIfG/+JAoPf+EEik3Fpc43aYEKDXgW7gx1ZCjsCujgmCkoeGdDRt2ze+uBmruug488GumpsWOMhWvUTycpObWSlucTxcxGXy8jEgk9mZDah2wD7krEpk43Oj9aZRfXBR2jgPCYJkui5bEr4pL43uDyuN31/2xtc0n9l9IO1V58oUsZ6LWXhypbH1ftrc0aKsmrJ6Jy6vAFncB7Ia5CexRDtOUBMovJX9e+yfR2gHRSgZUHB27iOlUnNBJuQEh8BWgoAo+g5NckROE+CQPBWQTbn/4pAN/qGAqGwZZ6SwLp2WlNWijK047X1LozPGwXiPkKVNs+KTbYnjOtJay01MSSjrxUkBZKkMcmj8zntVD68ueY8jl7r2sw2UeIS471he+9dVjBVRbNNLOlaKdisbHYT0OTVNtGkzy5NlkCwiWB1PUabcCNo90m2gHZj6q1j8gsYnEpVM0Hv1Ti/G4s20Qzj37YPStn+XAeVmG/WuJSoz8Q8JhBU2YtNhTpmTWB8Bfva7YP27M8QL72D4S3f9YbXv/A7vwHAW77pWwC4dPtx3vPdf5FhveSzryqSf3D45jUJ+fm/+Vc5fvmLvOVf+QDf/u//MNP9S2/4uzGGt/6Zb2d9esLVJ9/O8ujhm3buC7uwC7uwC/v6NZUFbqRwbIMHg2Vw+poG0GULBOA8o52NBjxtr0XswDagK0Y3Qy5mE5xtPz3+ry+UkTHyyVCMjM0DRnD4SLTQ+/Ngr7zhCCqZakfQYRizvGhwEKxKoGzWd2+ARrSaBtaC+PNrM+P4zIYtMpsxm3GcGlRtrqcg43tle96N9O7RANaQqUIYs+7n781aIkWbahqZjeeSsR5Fu7v5eA7ENuc1I0DZsGewCTbHuimjAWsyefs6hhEsqDUj61jQmrHO6/3MBqIom7mZx8GP0kp0/qo0yrSiqKQPBasKUja1Xgp2GWvKNNDV6zLFEGS8kjy+fxxbcOCSbM8XxyC6d3mUBKofbDLyVTIjcNtc2/nMbwJ5lxhB3rmvb/6vRlBtx/H78b0b29zPK+4Gt+unkHzOgp2bAiKblTXe2Ial29wD9R3ZJhh6m89ZCQPrquj+YHq3qTYyU3tAW+1wPCvj2PLIdEATFBz2W1Ar2zFv2Lzqkfo+KTyyHkfWxCjTsbkuyRqAu6TyZWUSN+txw/aegy29f+dz2o/XvGGs/FivGqwCpM15lYk7XwvnDG2mlMS6FvpH8z8w1qieM4fbJEU5354gWH2x96NS4BHW1WZGIJNxyZJGOWqWjbQyY0pWpopM7zMu6TpSOWp+xNdkZJTO52YDjAqFLFbZOrdZF5vn7GYe9bzBnkvLz+1LJYHZyLiWGP3a4FPe+vcmObQZ37rSOdg8E3Q9bBi887UHuuajsJW7Rtmso/Nn7iaZsT1/Pn82ZaOqgkeTXqaMkuN/CXvGl7n6PzIrV9+FMYI9PO+clccCSErh5jve84bXX3r2d3lt1RKk5cpLfx9ZvvZVj2FYr3jwwmd4+MXPE7oVD19a8H//6O+zPO7f8L6n/vS3cfbgHjeffg8vfuy3vurzXtiFXdiFXdjXv2kgvmF09LW110D9PJgYs/8j63EO1PJWJhZsGVmmjRxMmxM0wYxdC8/P2VV5G/BvalR6r2fSphLn9VQbyZkCAaudw9x5EALnEjTNAMsWmGQz1r/8gRhnEzC7MVA2BdrhHFzWYfOBzOCEwTF2H3t0Ps7tUSYM2ALVDfBRnkG2gaQUQz3kLfiQApWpWJcF63wKZpTalfPQ940mPBpob6yMc5nNJqgXbJY3AuMCp1Pt9LiR723G7gNMBrbgswkFU4Qkej0+aqCu92pzPW+8dpARdI18o3kUEGXNtlNYNAko1FEZy2g1MDRF568ZdFzKC+lcBJsRhM6/8ZqjHbsrjrqraMeumW9U445g/xxYSdZ/60p9vwnqK2sPPguVqbf+oswlvFJe5fn+00B+JIjV+qveq18B57VEqASuCQo4g300KTGClBGcbXxVigGjzFVXwfFcawNnssNuno6sBdtrOJ8LlUPqmtQA/dEpyEaTHFnOw+Bo2frCpmaocA42Fo3OmddyNt1rbwuWMuv63AGTOQcgoIDQlnO2fbPufNrUv50DAYCuVp/NhhE06DHaPlMl2V7zoytiC3Ld5h6P12SgLZ7Ba9MKm5WtGt9FNsK6KgxO50oyW8Y4WtmytcXoWqmCsnYbBtflc4CbjfrCBuRt53Z7j7TO743skSFY6H1RkF0UAG6uLgpblv7RewU6xz7lN8z1lns2ykpufgZ9tlXBKKu8Te6ob1Rxw7Bu1Ah5ZAY396QQrXbCLJvvinzu570HjGylyUlkTIDBskm6tpw+Iwen/vyV7GsC0PwXfhnz4q/TPf1vkdtzxurswT1SDBzceRJfN+eDso6/8Nd+lIfDjKqsSDFwdrL4qsexeHgf6zy+mfC+D30fv/bTn+HqE3P6ZeTZX3qZe89rfVw9nbFz+RrP/85vcO/zn2J1ckR8/vOU9ZvH5F3YhV3YhV3Y15f1lX6hRsnbQNFloQ4Fn1SqVowweKEYy6pWpmXz5R+sFshH2URtKmtTedX5F/+mXgOgGTZ1P5sssqUKZht4RzkPpNLYhCNI4XRWWNcaOdm8AQqMcjghi2ylOEnY1sttgpLjmR43i3YWG5yct6HfSI7S+XGD1YYiTYC2h2UD69pwNtVgLcl4HWPgtZFWVkHbbEfZBOGjJNHA4W5DHgeURmYuiZBKpDVTEA9joN5VGhwWA6fTR2SU43EfDd42Yy6GsTX2Rv441v5I4XiadBPj3o7gVMevLOOjMrbNvKik02ad095pkHg4z6yrzKrWwDSKMgBlk503Re+H0YA72JGRGxtlSDkH+s2gwF6lqJt5T5xOZHyPcDYpdJX6o4vaITKPEkqVT2W6SkF0MeqPm/PonJzX7z0q6ZQSqAftprfxg8EpULvkr3OzfWLrP8mMzKs4JqZl8HqPvKmYl1bb4we2Y+7due+XEZh0XlmOrobDnUdDeRmBKfRjAHs9X2aaG5rhnNk5sz1r078hgB4cYwLh3IezGX3cbu6rAJbgEk1ftvV0STYNHM7nabsaRLsm1iFzuJOIAutaOJ4lgtcGHAZlHDdy1kfZ7jIer/Pnryd5NKGQ6b36xLoafTtrYuLeAbR9QbIQfc1ufZ0kafR3TXYctI9xMtMGRr0/P25XW4ITBOFadYcmunHNwNFcpYDRZqRkJr3ddhsd3PhMcYlkM8vWjuANFm1RSWPRdZNF6x0391frAQX7hoyAEJzovnSoT5gCWTyD96iEUkii55ExMZFG1i/ZDXg9n1P3iJR6w2pvZL6gzGuSwmZ7zE3eaCOvjeOxNwmTaCF42SaYlNk/B5brSlUNzVC2iaRo2cpisxlZ2ZKJ43PkjckwQzuoj9iyaT70B6jQP2BfE4AWbv+rxP/403Tv/iuU9mD7+id/5RcBuP7Wp7/kM810xv7T30wqwqwKfP73P/5Vj2Px8B7iPDff8V4+9euHXH9qB+ctr3zqmOVRz2/+3c8Rx2zh2771O3B1izjPpziOdtQAACAASURBVH/tH3H2X3yEfHRI6TtSv+L4+Bd4+PDvEsL9r3pcF3ZhF3ZhF/bHb1Ucg8daA3OVoShztCMH2GIp4qiCboJr03m2XU2z6E3QfaQGrxnTTRZ/w65sG1kYDa71i1y/jldjlr6K0HuDy+cMlksWlfsJTZeZdmbLmqwb2Qaj2eSxyYaaLUIUYVWfB6DNMDY6GZmTvlIZYzYa4AY7snqbBhjGcjLVvy8m7VhPZWg6oQlaC1fF82DcjExDtJCsJT9S672qNwxf4v6eZ71lCzLJGtIoempKjQJTIXgheotN0HQaJAW7kWjKFmCBNj8wmJENFTBT1rUhi8EgLGt45YrWnyzapMGxaNt9Uyw26x54CuYyi1YYvBkDYOFwt7BsCmcTBWs+bqSkMtaTWaLI2ADGEiysqk3Nlwb0r122vH5JWNcysq5mK2NVvykK5C1MO2VTgzMsZjO62jF4oau0u6RsGnqMzK/JWsMW3GYmzVZS2TvtFrjxgyzCsoHgtWZrXbttkCso+LbFbps2DK5sg9pr5gpXmztEKwzOctPd4Ub9+JYJUlYyj01i1B+Tc/S+sGoN9/YbqlDTdurXev/0fSeT8wDX+gneNCPIVeb4Sj5g311j1WyCbGGozJaV6zzbpjZlBEzqYzKuEUsddW6kmDHJYeARAKmfV0DnxovaXSibt6oTgqUORveEY+Nzur9VEjidCmet+uqDPc+yPWfxfFJA8kTzTpK32GypgtAEfe4Usbx22bKsFeRnyRzkKW52wLItuCy6rpznIO2S7Ez9wZetRJtSaHtl+0I6hRyJDqIXZitLsgr415UCtShaCzv4wvFUoIwNPnKhiuNzanw+2DERYxMUa7nlb5PGvxXyVpJczDlLGqUQrUooBy+jT4/zEUepZ1FWct2YrT8nK3SN5WyStvek95vnrhtZY2WD9TXBGIvLduurvYcier0AJ1OzrevU5iSyBXpHs4IxQl8L3ciKmqJyc5Wklm0TnFWtx7T1nN677dxr51THsGW4tdFJsirfPJnBxMz4Sva1kTiKxbz2e+z83L/3hpfvv/Bpmvku159655d8xBjDwe23sMxTXEk89tyPftXDaG/fIgwdv7z8Zzy4f4jc6rjzwTnHr6548MUF67PIL//t58i58MQ3fytHLz3PdDrj9U8/i/vL3839k/+Zsx//m7z4E9/Fq6/9Nzw8/Bk++akPcXT8C1/12C7swi7swi7sj9dOJ0JfaSF8sBpYD5VwNItcddfZ8busmjTKowwPDiowwqrWr9Jlo62hBzfWZWVtxjE4+4ikTLZsXLTaMlyyBnN5lEWdTd0IgM6laZ0/l/VkO9nWaUSrLeqP50JXjzVDo/zOjGDgZJo53HOcTS1Dpe37N/UUdX2gLIBhHI9wOrVEB8fTzLpOJGspRmgHw+CF+5d26H3irNH23iYnsjEczRPr1tJVBuMrHqueGIFB3naV1EDWjnVqjoMzRztWGfRVSxVV4nicH7JkgcqftNOk5EwzFKa91lipNNRTjCeJBtFJFOAkUalRVzl8jHRVemSfOFhVjoe7QhandXIF+koBtsEQnIxSLWWqbCosm4Y07mV1u36SO/E6TTCjXMwyOL33XWU5m8Dz1wsns7HDZBlBv6kZKvAhUA1apxWdZTkp47gz0TqSKFAq0mi9IbBqoK9rTnZ2NKB2Ql8JZ+05+1msY93C7vytTMucUM/ovSc43ah5Zz1uCyGeWqZ0Fayawv09w2uXMr/1LstiotSVZEHKCNicZ795gmQdy4ml8/CZ5h4fM88RLaO8r9I9/RAWLQSva+lsovf+bKL+aopl0juoZ9DMWDWRYDN7/jJPVc9oEFu57XqZmznXqjuExhOs7vtlEFwSdheWwYMguDzlbrqFtQ1VEupgMdRka4mibJm2wBdevTIh2URw2rrxeCas68zJ3BF8oRk7OJ5NLff3HYNL3NsXTHI0QZj0ltcPhJvuOlO3R+fHJh7o1hTFKOPWDNqyf77ShhW9NwxO5YR10DEla1k3KlvtK/0dLJeOLdPOYfO4zrHMeqOBf+UIbkIYmcZ1NTLz1nA6VVCqtZoGg8GVmmg1udT0ev+bwVIFp90YxXO3ehJjPbPO4oqlq/0oCzbndVUCi0nFy1cKR/PCUAn7ZZfazjlt9RmYrPrHgz0hOE+0hsW0Yqh138YqWdpeWehNjeCL1zKvXcqczHQtZqKyWg6iLQpAa4tBH4IGS7QydrtkrJXTpIsdm5F0FWDMuC4sT1RvR7IhWIeh2nbpXExg2ShD7pPgc6sbk3eZh7tFQafAssm4om39V42nr+BoHuk9PM5jrKfCciKAoRhDVzmWraf3nr4SjnYsGcPLVxuKgZ3Jza/4ffS1q0F77JtYfvA/P/+9FA6/+AKro4dcefJtX/Yz7/7OP8/yqb9ILvDx1+uvqmHH7zz4bf67/+M/g5w5uPtBppMpH3/+U/wnH/shvunDd/iuH3iGD/7lpzh9fc2n/umrVO2EZr5L/eCInX/xUcL/+PdwH1vz4Bs+Dt/xXq5f/48oZaBpnuaVV/76BZN2YRd2YRf2J9yawXCpm5FczcHkDt5PyEZGaZBQ2V3qQbt9He6cd0L0Yzn14a5jVQuxmlG7fS7JNR4e7FJM5nj3gFVjR5DlOZ0YFnVCijIh1QBSHBiPy1N6V2OyITrHvX1PEUMWS3CGk6kjWctQja24jWfwcDa1JIGu1iCicjNcNSPaObZMKbKjwYaB5UQ4mhsO6hs0MiV6oa8s60Y7TB7NhdNpRSqWVy61LFuoQoGSuXw00LVzinju7Q3UQdv47y4sPtZAobZTrGupBw2ZBq+p8iza1GLXHtC0V7Ep0FWerq4xBo5nFb0ztM0BXlr6yrOcCMtm0/K7UEQI1pCM5XSSOJ1Zsr1E8J6zCQSntUVZYKkbchFtw/39hjvzZyjiONzXjZ5dUhBeDATRALSrPcFq85KTmWXdCr13BBc0cM8ydqVuKBjWNUQnPNj3rNqW5A84nrdcP3QsJ46uqVm2lirVLBvH2UQZrOla6+IwhmwbDFrn0tXn9UxZIr/xHs/9XWUBmj7SN1eRrIDu3iXhdK6gMLgGyQr4L6cpM7/P4Cp8VD/tPdiitWRtKFyf3oUC+2fKJtUDVKHh9UuRJMJL1/foXc3gHbY4gukxKBhbtnClb7lurrKYak2PRdgxe+wuM1W0VMEydXvsuauA2UoXVy2cThPfcHaNm82THO4K0cEiL7hX7mMyHM/s2DzDILlgsmHegSsVZ7MJq8YSKksTeqZ2xt3maXoP8+qAHbeP5IyhkKopgqevlAFN1lOlXQ7OGiRbqmgYnNZB7iwtp/M50Tm6ymCnV3icuyxmM16+4nHBcjzPHM7hxesTfLHM3Ix+d6YgMRcW05rBqxwuiRB84eEOvHRtnyxCFQp9pYzy2dTzXHqWB5OOVQ3rRkH4shXOJolsIsEbolNfXlXjPoFJt04I9Zxl5fiof5lY6f57UPDJU8isa2HZWla1JxmhiZZVDc9fj5xMw8jURq5UN3jMXKfJNbZqWTVwNLectZlVresrOkNXFSyWJIEmzshiOZy3PGw9NhftlGgs4EAg+IreC0NVY9kZ2dvNs1YBSLGO02nidOYodo97+9qxcfCOLC1nE2XjqxBAdog2jTJdZe27yjE4q/VeybBr93hs+jYWE20YgrHcrp/idvMkfS2smkh0hoe7kehqMJo8K1KTnOfBXuL1/ci60udM7xraXhMw7QAnk0J0sGwdk+ktbLEMleXl4QUmS60pXVcGQ4WLmegaknMUI8yX4Erh1oOea0fwQnrxK34ffc0AGqtD0u5bzn89PgRgdvkq9eTL03ylFH71E4GjtMOt3cIXf++3/9Cnf//lb+T256Ga/Tmu/daf4rVPn9IyYd/t899+8sdxlWXv2oTH33+Z537lVbrTjne+/89A32GfuMbOT/4k9tkHzP/a55n/1c/R/G7F3u53M528h2tX/wOWy4t2/Bd2YRd2YX+S7XqYc8c/Tu+Fib9JNbnMx59wZGuYR891cxXvZ6ynU17deztnsylJMqvJVKUtpmCLYbr2XKluslff5P6lG2AmnMznZLGctionsqUQXYMAy7Ym+EJXFxrXclA/RqahmApfPA27YHYAy9l0n3vzPaTMebh7FaiI1o37rhnWtaWzFS4YblSPcbV5nDYEbFzSN1Ot2Sm699M0VEQiR9NqrIGrWNaWwRdevxQ4mlmW9YSA0MQpQ+V4/vaEj73zLk2xVGbKldNGGzkgvHhzwmI2ZT25DKhkcDmpSeIRhMrsYIzKgCZ2ztW+YTlxrFtlZZYTRztkzmoDxlFcw6r1FHuVLJZitVW3TYbBO1a1ZT/Oeca8i6tpn+vmCvcu17S9o46OZB1FCod7B9zbdyPI9RzPa9bNHm/z76GfeG1oYYU2OCR7bKphOuHlW9ewOVAPYJOBUnEydfTNdbpiGPKgjBDw0pVMth6XC7G+jJSWzllKmrKaWIoJ3JtHusYR/R6xusSqhdcvW/C3eHj5XfSNzsPp3PDpuxWvXRYOp0JpLtPXFWc7tyluHyNTPvfYnNcPapaTGYtpS9MHGn+NK+4uu3GPm+ESnRgW88uwe4fL/g63uUvwjuAagnhePXsNyY4gUIfEpHdIaXjpmnA8h8V0hy/canBo95u1jXR1JpuWhzOhNTPc/BYns2uczGuiB7zleCoYGoZ6zn59g8fiFQzKwizbCT56lvPLhGqqUj8753hnRmTgLJ9QTGZnlRicEJoZfTVutG11rL1LCB47NnWIXhgqONtVMHkt3yLXE86mluv2Gvvs4mJLKZbVVCi2MHhllHpf01cNJ9PI6Ux4Jr0N6xynE+HMdtw3J1RxynwtTHqVw/U+kZ1j0tXE3DOTOV1TEaqGeshMOjidTlhMGwZvmXWZXBJdPdG27caQxNLXjre7dzMfPMiE+VqBQlcLRSzLVoP7vlJg63LFUO9wOm0IVc1LN27TtxVvM3fZ6a5hiqerHNHPAZXt9VUmtvsgcNJGPndnRvSOxbTiZGb55N2Kh1f2SU2tmypj6OuKyXDAYBuOZoVCpA66YfYktwRnef3KTUpzlbm9yamPfCE+P9aVtTzYr3jxeoMre6wnuyynUwodxhSih2UtLCcWM27FrLLujM+Z4/3LvL5fONrdpQqB47nwwmMHfOKpOeQVkv0oYzTjZu6ek6njcCp89rpXebH1LCe7RDdhVWVS7UAcwVnuPKzYX2RsaVnXmVU7Y90Ir+0mTqcVWVruXW54+apw2tT6zG0FZI5kYTWruGZv0U1n3Okvsa4cyWSuTZ/EmRnBT1k2ytRHZ1hMLPWQGLxwNhXWXpUNwcFb/Zcnpzb2tQFopeB++nuQ1evbl/rFKbff/Y1cfeLt/78fM8bwpz70IXZb+MbZJ3j1o7/6hzr933rux/iHL/0cpn8S8U8g1vDYd1ek+55/7dl/l19+4Zd44ex5XGUJYmhmni/+b/+A/Puf5cGs4eX7D/ns3/jrTH7ohzj+kSuUB4cs//sfpZSA99dpmnfw4OH/wjC8+oca34Vd2IVd2IX98duyga6yRGexiO5j5Kc83KmZuDkrN3B04zLPPXnA/f3HSeZUu8jVNfcveUzO1HHCerqHKUKRipPdluO9OVeXjrv5MY4mV/CpItQH1MMU5y9DqdldWVwsXMsHTKpdjuc3wMDtyRM8FW+A0Zbq83XHvYMrnM5uMbRXGNxlEM/1Q4CINXske5ej6g4BlevNpjc53p1wNhWOdyyLScsk7tKEjmm0xLriwX5FsZZk4OG84Xj3Ovcv1by6bzDlEiezAV9aTJmzmApPyju4ZZ/meL5HsJYkM+5duUKWyFV/wCVzleQc0cGlBVzhBrfat3A6ESQZQlpzuHObxfQaZzPLgz3PYrqHD4WmNLwqh7w2Gbh/UDNUliYIpZpwZ/YM1lZIESaDYdbeYjE/4Gp7g2t5j8dOMl1rtfGDtYhc4r3pNlePBwRLMZHjecGbx/h0/ZC333NcOUuEyvLqgdYg9XXhav0kb+sfYz2pWE489RBp+kKSSNOtuZqu49s9ZLrL525fJ1ZT1rXj/mXP0Myo0pRkJqz8wKJ13DhOXF0a6nyFOlimfQAcu8tCHSx1aekbqOLAnQcTuullqmg4a6ZkDLPe0cSOaljx6o2avlZfuHw6I/kZkwHMsOQzlzJnbaJ3haGsOTg65ordZdpe5nJumEaIrmHPXOED7bdQjEo/7+1OcCXjjMeUiibusLtYAANRPOKnXLbXaNkhugl9dZmX/DEfq55nMV2wmB3gmFFlTxu1bq2rKvq6JXiV7k77yFOvnDDtPX5YaY1T0RqtoRL25IAn3Vux1Uz3uRKP83N2zR57sssNucHN6ils8QzOQylUOfO5644XD7QebKiE1kyYmB2qUDHPU2aTa5y0u0zNPm/nLdhqTikRI/CFWzdINnHjuKJITVUgNhWLWUUTI9PYcDxvScbz2u4eyDXeHbVvwvGVd9EyoTL7nO5MKGLoN9svlEwzTMA4dpaZJxaWp/ItMJmHuypHttlR2V0OJ/tIqZj2PTvLjJg5JtVE5iCXqbKwdi2CwcVArPew2XPt4SnLnevE6Vu4t/d2TiaexaxCyoTjWcVLly/h7JOYPKWvHNfmT4CfsGwasruFKzW9K3zuwFO6BdeGKRZLXxVevwSLZpfX9j3Lid82KDKmpS775PoSM3+d/dIyZ87B/Ckum6tIhtVcMO4a5fJl3la/U/drNC2nU2FdCU0PPmRcKsw68MVjqXFxgk8T6jRlOTGc7TW8h2+gq1c8dmy5mg44mVfsmn266Q7F1lRxYLCZIi3Z3mRNYcWaV65d43T3Dq9dbXl+csx9OaYZ4HbzVpZtTcpzkpvjUuHhvuHqmZClIlQ7BD9jFiYcrJYU23C2+xYGL5xODXXaYWb3/j/23jTWti2r7/vNZs3V7745+/T33HP7+9p6r+q9qqLKBMqAHazEdlxECbITOR3pRBQnwYoSFCUYiZCQKJ3cSC6F2CY4FQcjE7CAgKGAKgxU/6rqvvfuve+2597T7H41c82ZD4fQyFUFjqkike7v29prrjWksdfW2GOuMf6DWg8ojKdRjlUiGdFjkuzwYJxxb5xRB+eVCjYcYYMUq81vDofXeAy6gVNOvmo8+vokaEJg/7WP4dKN3/roEx/9YZ689QW6W7tf9dL00mvYdIO56HPvrdsUi/k/lmnvPXvZPj/+pY9i4vfjkZQXnvBz/u/x0Ws/hI8sf+Yz/yF/96d+hvlZyQ88fIyMFbPP3uboU1/A2Abdm/CZt9/h6F/9c7iOYPYnJf6tBzR377Bc/ipvvf0vU1UPeXr8N/9fuecZz3jGM57xh4+VDdp6qkBQRx2Gts3GFBa9KyybBSMx4eBpzI3HIY1ccuGhJS88vWVFewHvedyiW8eQtJkKz8KuubjcJSgL6jhhL3uBzXiPaTuktXaoRnLAJmW0hfAWrwcsTIJ2HpV1QIQIH5DKLod1n0YlPJ68QKMVpRfoqkI1nm+LvpVrbpe7uxmH4Q0QM2pleGQsszwjTMY0QYYiIiRkP3mO0/51pAzQTYOQho0pVDrBKsPKeFZhSvtkB13uswwnzFpDhPQoPcb4MYqMRqc83trnJO9RhX1u3J3ycHuL2GygrcU7S60rpHOctUdUUUadT2ikIcgGtOqUs3AOvkE3mq4bcim6TMfldIMeqQx5OtgkbBy10bSzPSKRQJRR6JCJ2aIMM5JKoRqPRDNkwkSNcaImrzz7toUQCUU8QTIAAqRLUC7iar3BttoHoVhFCk1EyxwiO9cwtSCfV+w+iQjUBmWgiRtP5gyzpMdTpXirF0HcYm86xzRwMsxJbIf+7Ji74/fghaEUBknIyiTsRC+w22xzZmJub45ZJx2KtMvpcI/+qqa11gQ+QvsARIcylBA2QMCTnqJXdhnNS6TzICJWYcBJOyZoPJXxVK7ElXN21B4dNWQoNxEiRTY1ymusVkjnyUWEyEZY7VjGCVHl2DxpcMpx1mqTFhVWlaxiQ3umMHWArC0PjGXQukpsUpwdY6JdrtWHHLcFqlkSSoEUCic0dZAiRZ86HJ0nVEpiKofwgkeTi9yd7OM8VCZgkabcWL3M89zAuoptcxGpwOmAebsDtqByJe0mptNkSBKOxSkPwwXCW1o+JvUtqijmNDK0RIt9O+CS2EP6CKtjKmU4628waYYM1VU21jEXgiu8MN1Gd67SUz2qJKNsBJWo2Huy5MapZiw3UB5slLMnNtChRGiBtJ5gfd7/eaoL2mWbRocYkbCONHvxZVr5daQeY3XE2rTpndVslR02jz0PJwfc3U6507OcdgokUGuDEDFWK4oo4V6/xSAYsB/dRDWSB6MOThnWoaEyKev2mE41wQYprSZF1gZtYRp06M0Ec3UFbwNE3XAaS/SqJnQdJFvE9fmGQ7yGC0cFbdmiJTuM9SazNOPBaMCjfMi1+5IXFpPzcr/YoETKcafmxu1bnAmYISlEi06TMpITpPBopynZJT+KmaxTbNIirGq2jx3R5DrepAgVEOVbLFua48EAZJtZ5wrTvEtYKRKboGtYBp5s3eHKbIuL6w61b7MR7JO7EKsDwgbO0hewOiCWfawRrMLzzZukcgxPVvSbFgPboVYBqxjWcciD4fPMes8R5GOk6uNo0WoMZx3B3uMjiqhmbdoo9nBRhg0UolF4WYIXKJfhpGDaa7HILzDzS+Ja4f0+3aXCe4OpHWFVE1aWrcdrOnPL9eA6E78DXnFWf3Vl+K9fiaP53WWMZw/ewVYlve39r3qZF5rHRwtyMWNrYLj/mV/7fZv03vO4eEQgAuLPtgDB0pxx+8Yn+IXpT/Py6CX+y+6/y8b7DPZ2xD/4yBt8+K5gdn/B29lr7Jc1g+sBT6iYtx0fy54j/quGyZ//CGp7h/i/vc3+/g9xcOGvAIqnT/8XrP3HSyCf8YxnPOMZ/99gXHfo1AH9hUI7e64AJgVBZX9LRjsOulyzW3g/opQJ4/ACB8EVWvOQG7M+eTyiX5SYRqNkTuQk4XTCC0c9kDHb1ZCrT1ZkqzWhc0DKMrpEN9xkpLeIGTGxGTUdYq/JVIuh7BAmEz51kPHm1h6Bbbjf32Kn3mGgR2gUUdRDqC6zvMdZKwa1YLAKSStDanOK1iWc7POkr1Be0QTJuaqhC+ifrshWBblLiKsON955SmfeJp3ucfAowNgOSXOIzUO6to8q93gwPOC0v8vrd2O2V4pHg3288Ihiza92I6b2hIfLN6jzfQSKsArQss2yPWRtNGa1ZPv4jJZ9D/2ixTINmYUJ0sEwmOC8o/YF8zxHeo3xLb4YaypvGaoxk2ADo8akK0vuY1KREhMwaYZcFtcZ6gk3uEpPbXNLrZgG1xA4JArdDBg/OSMvDUaElEnIJNxnXPXYiq8Qmza18hxnCcKvePdyyLbtcU1c4b3r5xk0ewwJ6K8002SLg/i93N7Z5MXqAjeb61RJm5vBDu+03o9fPwcEJE1AYBNCGeDT6yxG/zSLrEvPXAIVkVcFmcvwKBye2ikmp5LnbnmGJyFD8yKIAOsV2geIMqaROaveTWa9CR0zZtx/L1vxe8lsSuQ1BCOmgwtoEZHaiKhRCKXp5Bexo+d5Uk/x0hCQIkUXVEQT7fPy7QClDQ+HF9j022wHI5ZJznTyEl44tDsAt8XpqMOjQQ8vUh5sDJHKYCykIoQ4Z562MF6BDNkQ20CKV5IH2yNMIakDg8KRLTq803qOh0Zx3NKsY8/hw4I/5r+RC9Uem3qXzAzOFf2cJdSK3EXkGEJbQV0SNp73LLe5eiRx3mGEIVCGnjD0Z2t6q4IjUk7VeY/elhizHexyrY7Zm0l21C4v1zcwHraba1wR13iilrg4pBNe55XmVZ73r9M0IStvcS6gvVgg8ezZi8Rqwqp7E+NzNqseMpxg2vscbbUpI40xHcL0kJHZJKssTesmSxdyoRlSxl1GpyVB45Gqh6bBRm2CSrL/cAnOUgWW0ekMLQzHG9cIG4cwGU3SInANeSXozTy9Rcr9/ZzRWck33TuikBHbapeNVUNoHWV6gIhvIJ1nFSdEdpOyGVBHMaV2lLbkydYhgbpCYTpce1zS9Qku7DBkwtDHELR42ot56SzlUt2nCAskDislYRPiTQ9HgFqtOK7vQ+3I5xXKS+5kU+ZpwiyP2RAd7hwc8GA84WHnFU6719iYBpy2HWGxpHNW8pZ7C2cusIwijhJDXLXPBVCcw6ghaR2j3QnSDcGXGNdnMtPE1QFZVdIVGxw0++RqDEKycerZLA1h2cHFbbbp897jEVVqSG3KeBEyWEZ0VhJdRlDMWY7HvH3xm8jWLaJSUaqYoAiwCvpVwzQ8T5rfjNa8034FF46x0nKTa/RXNReSK8QuxNiSM1NQSI9VEZfVwVeNR1+/BO134JqGarXEVuXv+QZNKsXmzgjpK4b2Lb7wCz/9+7bzYHWf7/6l7+IHP/393HzyQRCGXtTnL9z8i/xX7/nv+OTJb7Cb7yEuLvjMc1/k4YfOOPznd9l9+//EyYDim/4M4dUWajZHlZ7Vn/u3WDyo4WfeIP+e/wRWK1xRkGUvs7//3wANDx/+wD+hd57xjGc84xl/GDwfvUJLj7iwHjJc1+z4TaTZI6u6DPSIyq3ozyrGJ2smJ4C/iAxHqDInK1rIoMOu2iZGcUntcOha7ExPaLWvg4nxrmRUCq4kr5FHG+y2buBkQa/2tNWYkRwwoUXsDdfskB1zkUy0zv/wBi16ZyH6bI5pLOOyYKOOGOoRSpz3br1vfh2fblEHAc/LQzbosz8L0c7QdpYX7UU+9OslcTBibCMulgPyQmDqPrPui5y1hlxrDsmaCe3Vdab5BGUDvvFoTn/+NqNywKPJRYpGY4l59bOf5YGIKXXEg/4e0cKRTj074hL9zvPs5y/yWnONsehxKFIuqW30ek4plk/nLQAAIABJREFUUyq1QU7Khx6vCRebTI6usmoSRnKXlJhVuWLwZMV4dko02Mf7kgt1SuwTRmqXqPLEdUN3tsLPHqOjFtr0aVvDSHS5GF4jkx06bpvr9YgnYpOwNARW8sKdE67eO+VWc5+FK8it4fCkxUFwlY5sgwjpnymiMqe3tuSlpVUL2quKvgvoNksCDy8dR9wo9tG+RdcdoOlRtsf4eMTWbAqqYn9+m3cV17igXiIkxLsAK9rsPHiCKxwr46Gw9MqGbjrBUkMNl29bMrHJNheoRcJ+ITlONyhVQ1rMOI1GCOuY3H/Ma/fGPBe8Ql+O+MUk5M2W54vuHmdUBMIzX93hbX1Mx4zYCQ/I1IRhlZMlhxzEH+SV/I8QWk9oHelDTf9MUsQh3/Ckz+XZhDYj+lYwbmKES0nWJYmr2b0/41b1kPys4fJqm2F4EY3hNfEyr1dXSMoVvdmMzqKgo1q0W7s4UfPSW4957+cL2r857E/ICePHnyZYz9hpNlA6Z7gOEdKwX6c0MiGzAWOxQVlMeX69R+YjBnUbnKFuDpmr3xwMLSRNmNIXXbaaPqJaUjhPu9niBTbpupx7g33QEuvWhKTcrDaJC0FR1zw1IdtLzZNBREaXrh/is22cS/miMWyIPrXa4NqDmi2xBUB/dszNt77IlYeP2RR9dsSIQQmzOOVCecjhukW7BimhJVLeN90jnAMioiwWfPsvNKSVxQWOTLYw4jnSeY+mukotErSXvDAbc0NdJyxBuEPM+Jvo2poHnR5WB0ThgC3f5drU0CoO6K4dG3XIwaOH9ERCe9kw8Bmjaco7wRar9jWoIbCWiTfs1QPi2hFizhUGlzVBNUM4SVpr0qJC1ivWgaF/VtF5pJmt5szcgivHEaHV5GvFMm3z/HSDK6uKdqCYiCFab2OqhNAP2Ft16NddOvYisevw/NuP2ZlaLpyuGT19SutxxLecXeGVe57d6F38sepDbJtrvH/aYnepGFrDTrDLaB0iwoQmVPRqwWgO7YXn0PborqF7dMzl4Brvmm+Ru5S4lMTluRprK73AXiV4/zSmXxkiYXjfcc6F+09oN9tkVciVB4a47tEEfd53ss1rZzHXFx0O7p/yQC645DOElwzLLntPEzZWGqMS4qMpV5oXuZS+l1vJEtOE1FFMkWha7et09T5NI5CN4z5fvS1Kf23D3ZfnS7/0s3jvCPM2Udb6PdeX41cIjn6Dudnh6e0vUZfF7xps/ZXYSrfZzy5STr9E6MYIAd/6bzyPiTSXo6v80Gv/A//mx/4VvjD9PP/pq3+BQGp+6j/+S3zb3Z9k1dnh7cFVtsafRAbbCGd4eTvlb776p/iu/+m/Z/S3/jfIcupf/Tjh+z9AHF1EyhbT2c+y8wfhpGc84xnPeMbXlcxKvHNcZQfUiEgWvDZr0z87QWHoB31M+SZRZXn+7m0sEZ1VQRl32I32iJ0jthVZ1MecFFgl0E1Db12yqmrGxhMQMNYbRDbhTA44bVW8thKMZktc/wAjY8riBKlCFuEmERE9cvbnFe+5K/nkITzsjzmOe+izOQOdg4d8rbnxWPFm55hZmtBe1XRUihQxUhpeeFggzIr945Kn2xu01SlnYUlnAVtPZpypKW9u7JH5mN17PebdGe0wpatieiKjxQHbUnLj6ZqZs2zOa9qrgivumJYe8oHf+AR7T07plTlEc/ZtD0/G0XyNK0pUEyDqFf/M44jPlBVuOGFWrTib3sIN9lj392maYxQlgdfsFV1s8ByD25qiVTI6LdkvVizXx2SmRVDHbDrDQy8IncCVFbciweUmI3UhuslZeviMiRGN5dUmpyvbbK1jlrIH5W0uiwERjstcZ9QMebQyHHcNu36AcDOiSmPo0K8TFvOCLOxjQs0GAzarhKUr6R0fcalUfMh4ArtiePSYTtwjSiJedBt0/RV25p5SZnRExlQY3izbvPfeZ7h4fId720NevfslWqrgVrjkwlnFg6HnPe4y4/Itfi77LK16g5vFVe6qkl1xwF3XIa8k6847mKpFU25Sc4fH9pg/vtxkUsX0ZMMX04Z5p81zX5pytzzFh5sETqCRHGvHzmLNltdkhOzpA7Qv+KfeWXDpccHdA8+NaUXUBCBCus7ROr7Hc9OYL1Rn5AhuNindIOXx9G1urB8hx1dQMiAwAyayxSUzJuQOjRS0ywbJJtHsEQtfMwwuEXmJXq1Z7x2w/84tOlazPlsQByGdlSWqalo6JVzNsEKQBh16doNk6YgCgbcaaQNi/5S228QqT75aYjNH4D0IRaMiGt9ww1yk6zo07hjhFN4a+nrMmfOsZEiscq7VI5bLBSGW7alDFQEdPeS5s4pe3KNjJWLhOTIa23jU8gzjAlxdIoKEzYePuWj2uB+WeBTrteDiPENUjlndIMo2Vsy42zxi6+477PsWQlgadUoc7hNWn2UctJFNh/LRWzzdaNOsYxJvmfqYJuhQNXB5Ctsr+HwpSHsC4Rp6TnAg94jLKU/vzsA1PFq+RTfdZBxs0IkUny4+R1Kc0B92iVxOW49Ijt7A9wSrek5Oh3xVc/nOEZ/tXuaP/NopVBkSw0T0qFdz9nXGL+5E5CdHnFnLzrIgMT0SJ8nMANwJD9Qet0xARz7hsrRkxYJFW/JSc4nF45zHo006x1/ARpr9WcalOzn3zt7BlG/z8c2MDS6SuQ4m7HJUpmychJhqjRPwSjPGqPN+38G8Yiu4SiwiJtR8slqwEx2wrm9x83TNINXIWpOvlmjX8HaUcNLcx5urXLz/Nrnuc1HuopoZZnYP4UewUpy6PneGbcoy5NrDir2u50JVcJC9zGk44W/7O+y6hNAGrIIegTxi3DzHe48qBuYJI1vwxZ1tDisomhW7csDpOuAw26FnB0TrJ8zNPseL8qvGI/W93/u93/uVTq5W1R9Y4IuigKKoAXh86w2Obr3B8MJlDl59/+95rVcx4Rc+ynDU5pP3De2NLXpbe1/1mtvzt/mfb/11Pnb0D/iG6Z+gfTRECM8L3/rbSpIt0+Jy+yo/9JkfYOlO+Ok7H+OVX/xJMtHj1v4fpVwniGCKMSuWqxZvrSSXv/mbWf7qP2Q0fYw7ekz5936c+Dv+BYRUZNnrHJ/8DbLsvRgz/idz2D8Gv9O3z/iD5Zlvv3Y88+3Xhv8/+zVNwz9U+1/48f+L2Bkqb2niBFlVOBFiioahTHGiwZVTKJd8PjSUteCyj2iCkF1SKjeljiNOQ9ip+wQ645F8Srdsk3ro+hTRWHo+wNoSaSKU8xzN79GrLEsdc6Qk4cljUhVwsVRsFJ6zwJCjyETJ/rLALyv+9IMVpi6Z6D5KSerFfTpygAKuLtuMXE5UO7K65mz5JkXSJfIaP71LnG1w+a3P0XbmXLWwstTCc40ui/IpfrWgtZoTuoibssuGhagAF+aMZ2d8tmh4zcZMioIZkJuMWLRRi7d5qjrM8za7VUBQVewVEQ0Ny3hCTwTEtaNfSO5pyWXVRawXrETEgTfc7XZ5/awhdIpydhe7eoKTDRuFgtJT65yO6eNVSN6E9Ik54YxcdCBI6SznTHyC8w1BtaaqPZtWUGQDklpx4ek9+iqlvdb4ZsVlc51IZ+Agr+Afxg07KsWKBnV2gpWKLSt4o5rhfcGWDSHpMlUtBrZEiQ56LdisHVcf1YwfPKTjUwplIevzyAkmhQPT0J7O2LCQI3nHhPyph49omhOiMmanfwMZeLbo0RMDFoHjurpMWC5IFilNNeQbxUUeMaUpH0Mw5OKdp2ydrnnh0RmuiblRaZbpmEPXIlgcsVKSZHWfC0+njGdL9oIDWjLDiopTkTHGkJQFHZGgXcXUPiUSAZOmR3t+xI7e4zg7ZKS6dKsFdbHktLfJ/sJxhqOtUnZVG0nD9tFTYh+SpruoYoGqwSgJcUx7vaRupjRlQRLtEZ3eJ12v6Ea77ERj2uQE9z/NzkqybUOGwZCmqUhPj0iSPRoULS8ROuWMOXfrRwRmh4nIoa54ah/zTqfPjuhjCs9oVjBtTxhWEukb4nCA8+CEYR7mpOUZvaLG+JihlyBb4BZ0STmViiUN46pmcrrkVnVCP9+he3JGpzjfZNHWIAs40kf4JGeztHQKQaa6BLKHFoJIaGw8plgt+IazGmkFp6bLptlgmzZzseL/mDzPiw/f4kqwwSNRc7VsMVB9NuJLbJ3OWJ28wZ3eNi/UsEOGNBnj2hA7SS0kg8WSzZMZh0VNaGvadLm6EmQkxLMT+jolzLYpBQzMiKw5L5nrnD7kdrzBB1Yhr5z10E/f5JO7O7xrOaQrIupmRXj/i5xEG/yJz/4yh8EmZZQRR236YkjcCK48cRwHC55Xz7Fn+hipOV6+zXG6wQ2bsBYtcqXZbaYIU3P6cE5vfsZhFZKHfUzYZacyxDKE9RGTs5o3GsU66/CBY8nE9ClFTTsYsKAmDkImyxlPgoJOehnlSjLrmIaSSARsMED6EFWtkF4yJqLAs84GpIunREGEDIZ0dI+BlayMZtk5IG0qNklJTh7QKAjCmMCkrMtH3Jy2aM6eIkzOVrqHrEvM+ph1s8CFXYRPGM6ecjBNaT2+z/XwkMI11LVlXK65O07YXQo+W77FbjBkdfo2PVIClbBeLXlkJNvtA1740KtfMR79oZQ4Ht+5RXtji/7O/pc9X1X3OT39uyyWnwSgGT+PpKEtpggpufNrv/x72vA4PvHkV5BSceX4FbyvSHszvPe8885tfviH/xof+chf5uXBK+wtX+fX3voV6l+Y0ZtK5GrJvfdlODz3PvXPIfN3w2rK6J1P8G3XxvyNF76d1Ud/lOS7/h38aok7eQpAklwFJHff+Yt/UK56xjOe8Yxn/D75vu/7Pj784Q/zHd/xHXzqU5/6smt+8Ad/kO/8zu/8sucy0cMLRVHPyVYlae3xzZpsXaKb83lebdGjG26SOMNwtWLL5wSNIdFthskhXddHAaE0NLZC3j1hr2oY6gzrob0q0SqhQdIqG7ori+peJpY5FyrPlfmMsL3JRiVpWYtaHWOrith6toJd2gVcZcRIdkgqQWgtqnIUzsHilMncc2HdInSenhkSyIBWtEm18Gw8mTGZwuaZY0tuot1vDgHu3qSavIetYIOXzGUG3nP50T1Gdz/H8Ol9Mp2ypTtcefAW2VqRRj0WQtERCTfqiO0yYRz06daGsRqyNQ1JfYCUEapxZLRoBwlpoyiqMz4TNOzWnnh5yrYV9B28errkgydLlFeA4UJ0yECN8POEAUM6RclOFdATOWp9xqQOiXWHwBuqeoHXOQfJpfMxtU1NIFPCsIcHtpzh5dPHKOfQTtLSbSZ1wtrBmhK9nKMay/ueLJCrgtPljNZ6wYtVwK7f5JVgn4mPsVqTVAXt5RG+XJEsz8hXC3Rl0fGQROQEtiatQD15xPOLFVs6o72SDAqLbhriquCPTlc0SDbDLV5rX2dnVTJe1Owsa9phn5f9BQYVRCvJUm/wctFBWUvLKoKm4vD2LS5N5zy/StleBbzyhY8RTk+om4aHwjIXniIIqV3EOuyw7G7yZP0YhycXOS8uBa3CkQQZa7vAF2smK0l3tiYQAbWvGYpdBrWhX4GxEDvJ/kKTNAZDwqiRZOEG65VF0SanS1QV5ESE1QJZFHSmUxICspUk9CGrekmXLv2lZ7ReIasaVRZsnp3SEzF5ax8TZnRKR966jNcB2pbnz5AISdclZrnk0Cpwmkz1GDEkX05ITho2jhfEBGw2ERpNqvtIBLmL6K8LLqwLRlVATyb0ZEhOTCY0WR2gbcO+U7SKisnC0hEdDmYVG2tL1AiSJsRUBZ3FMYfzMwbzlFReQ1tNLDM2rKFHzCi7wji6imxSbpycENcFg3CLtshIVzO0UwxWOXsnJ6wbwZeefJoXqg3qoEMr3CVsJF4HdBr4luM526pL4AP6PqNBsC6mjE4ectrUPFaO0aOnZGdT1HKK9Q5hEu71t2lMihWG1myFqkGj2bdtVNDnn/3iAy7efUTQWOJ6yIfeaRHbBiMjNlwbWTdcObrPNA4plWYnOqRvM3xxhpw9pr1cslMfADWZCBkuKzabFuMndxkWfa4dPWB4fEJY1oQzgTND3lVtYbykhSFYO+rGImpHt8qYtoZsLx5zrUxpJXssyxl69oSWhe2qobKWzAwYzRa0i4qubJPpLq+ue2ysz0tv+y7idX3AxXCbOOiyqbocmZDMDMiahMhrjuIWqXVcW6e8eLJgUmuEA6xgI9xh2GSERUU0DWmJlItVweGd3yCylq6MyXSHwHvKx59G1A2DKmI4nVEtc1iXdG1IVhQEdcN7ZxvkhOyrLdprQ7ByEA5xIiZwHukzZCO+ajz7upc4Oue4/7lPYpL0ywqEnJz8He4/+C/wvgEcSfI8k8m/T1+FVGePGF38EA8+/ylsVaLNl99tdf5cKej+6h1uBC+xfgLgGN3wfOQjf5mmabh+/Sa7uxeo65r3TvdZVAPead9GNYL8w3+azeznWfKNJF7yvz64zgf9rzB/esS//iO/zn/9b/9xZP1J6p/++wQvvoz93OdRHzx/Y2bMLlV172vmv2c84xnPeMY/ysc//nHu3LnDj/zIj3Dr1i2+53u+hx/90R/9XWtu3brFJz7xCYIg+LL3SEWMVRrjFpz4mBaOg3feIAkHiNiQiQhCDTg2F7cYry0Gy1bSR3mFr0qixZqDGpTRpDrnON7DCknsJB0VUVgLHoRMiGqPKdfcNB0y0SKQMUophBXgHUaFrHTEduUIncd5D/GYm7MSEyS45TGJGVCFETEtUjR1tUQ0klaxQoTgbUEgE3ZWNft6BKN38dRE1E3NSTxguA4wFm6ezhi19hHNEmcmxO2bSFcTNo7AS1KV0MQ7bAQtvn1aULsabI0WAbKxhLaim19CqpxosSRG47RCS0PTVOSLFYmOGbo2HwDSOqT2FbexHEYTzHrKaD4lliMqD5npY60k1YqzeklWSyIpKOsFu3oD5yqqak0rHCCKhu3Kgy/QdUlqRtR+jSimGBki5jPawqDDTRIVUYuafKnJ8hRKjy0l0jg2VIorLC/5Nl4ExLZGO08n7hO4ywTSENg1g9oQITlpVsQqRUkF61Ocq2mZbWbrI4zZZIEkrmvSRhMkQ7QMCIKIoQhoVyvC9h6ZaOHsKfNaQ9ImWB4jgwB0QRKk9B/8Oj0VonbHXKxjTmhxu3OZK+sT4vKImatIupcRYYvRyRPGeYQTLUqb0EQ9emvNgUtZ5AlCapwLcN6SVwVhVaLKAlmt8ULSiiYkjWIZ5LTXFr24i9UZSgrCuId2FaIpWYg1o8USH47YCEao9S1a3Q7KNkgPOkiY1yv6K00UDwhix1yUbEa7NMHx+RDfqE2MphEBWzZnVT+GfAfvoVun1FGIJSFsHNgFMzlnHG3yruM7hO0Iw7kYiGrGzB78OuPuu+ks1zidkc+nSCExViClZo5hHUgyZ9EodGXx3gKayFWUKkWrBqkC9hYNvWQP19TosMupTqibmjaeQ5mxTCcIXTB59EXezO+SzWtMHuIEtMIUo2JKIUi9pfESbXJkteLVkzU0M8LOBYJ0yIefnvBk+oQbw5tkMmWlE6L1FB9bqCuuDL8BTJtApazEEXntqITkoFI8mN5m3ZpwZFfo2jLwjrw8QakUqSRXyopcZaRmwHS8QQRYV7OUgu7RPYp8j7Kan/tPGTLnqYWFpiGKBhwsrvNw4eiKMb6omFnoKGiakthpjgPN1VJR2hVEDuEcUdAljBISW+NFwM3pKQ+rM3qjS7xn/QgbaHKd4Z1j03oe+JKckHnjyU/PGLiYoKoJZU0qI0pCRGMJl3N6Tc1x6KkChWos+ILIKYxsoV3MqYWBV4ClxhOqGNWs2W1ShLXE0QBRrdlerklki2kDUV3wKAroIjHTd6hMCycDxmuNqVPyMILuZZ6uP0FarlBIpPdk8S4Tv8Svz0iCPlDxwnyK7AhcU9MN2zhgUDTYpSX2GTGWl9RFZJ3Q2JJVY7k8mzOX8VeNaV//N2jeMdy/RDE9+0cEQparz3Dv/n+OlB2Ggz/L5uQ/wtolb775Z3m8PcaoNS8dxrjG8umf/Dtf0cTPP/pZ/oNPfDdGGl5ffwtC1rjmFldeeoXr15/j/e//IK+//gE2N7f5ax+/z9vDD/Bz7S+xI/f4K39ywF8199gzP8Hw4BeRCF7SPRY6A++4cPobLBcz/vZz30rxUz+BaLVZ/KX/DL8+l8vcGH8XYHn46H/8WnrxGc94xjOe8Tv4pV/6Jb75m78ZgMPDQ2azGYvF4net+f7v/36++7u/+yveQwgNTYULEvqzpzRNhUbj4x5aKkS9RgmNtJb2as6AkDBskfvzQauNP9+F7jRtGueI0LxvMae7mhMtTxGuJtQRuAbXWGqpqW2Nmx8RRD2UDHGNxXtPX0VoL2jHE2RjkTrEBTE7jSAPUgIVshuPCFWMtNA2fZblgky2SeoS2dTnpZoypG8N+6aPUQG1DNmSGbJYsfdkTtZ4YiR9ryibirop6HUu4F3NQIX0OhcQzuLcuZJlXBYc2oae8ygdEicDjOkytmB0j61wwjjsE5k2ue4CEAdtUpMjhCIyXdrJGBm1MVGP50bvoecV2loOVoqgqojqGu8qgmoO5ZQMhQC00OS6iy+mxCqmK0OS0zUbZGROEHiJMj2sL3EyJSVgIAwTJ1BSEfuI0EsaGaDVee9eS3eQ0qCCjKJeE9iasC7xpot2Hik1TmowXcTsEcKBKeYIPFu6hY67CJ3QNA0OhTQpw3BMjmHj9AnDckVSVlip0dpQuBq5PqGJWgQ+pKrX+KjDVu86UdQnT3cZxBfIZYoOMibdq/Q7l3BSY2xDfxrwvqNTRnGfkD7Z4oimqUjiDTbDMZ3akp89oRGeq09nHM5OUM4Ri4jMKlTZEMqY3CmE1OggwWQj4qCFlDFeSHrhFqHP0A4GQYdIZ9T1mm4tIUjZLRq6TiC8Y13MWERtIiFxSDApgU4YpGOErbDeYVSCQBLamjho0xrcwAuBdzXSSyyetLWD9x4tDEGQUq3OaFlBXtWkpk8SZDTVGqI+0nmqxuE9JKbFc9GrqNITNoIsHII4T/6tXaOFJpCS9eoRq8YirCX3jrxpcK7CA2ldEBJQVxVmcUpTF3hAVTW6WIEQGOcRtiKWCdHymKhccfD4NqEIUGiczkFF1E2BLGa01ks6MiJQMWHTEAlDlk3wtqCrW2yJkN1kmyjqQ1XhqyWq8Zi6IHUQmDaRThC2JAgSdJAQC40Qgu5qxg0X8ZxskzpJbD2NrdFC4csV/aqmFY5pq5yRSNAyJCQkLguyZI+0qMjCDgMnGMiIvJgTryukP5+b2A96PF9LJu0DMtMjaRzGC7KgSxJ0mViPaaAfDjA+JCkrWJ+SO4VtCkzT4KOMC9k+KuoQmpzceub1mqerx6yrBaPC0akMncWC3nrJJNqkn44ZOEFYleggpcGhXE3SOAIfky8qkmqNrAqMzgiIkY1goyjRSLRXpOUa2xSUKLamR2TRAC80GkVrvUbpjETGGFsTrE5wrkLHIzxQmza+qamcJ1Exk2DI1vAVWk7hnadeHaOEwaQT2rqNwhPZin73IqgQlCEPcvplgfMNiUq4muyQmS5OBmgZggiYrp9Q6pCrxVePaV/3BO2Nn/8pHn7h0wDkg9/u0/LecufOv4eUEVIqjk/+FovFLxMEAwaD7+Rzu2t+4fUufkuDEHzxF3/mK9p4bfg+qqbkXzz8l9h4ekgt7nO2ecbJcsne3gFvvvkl3njjs/zET/wY/vav8Cu3n/Lnj1+kFAvadY+HG0doVXH59TcQAsYLj2hvU6uILzQD/vqP/X3O8j7q2779XJZHa9Y/9r8D0G5/E6BZr379a+rHZzzjGc94xm/z9OlTut3ubx33+32ePHnyW8cf/ehHefe7383W1tZXvEe1OkILTSQiUpORegiCHIVCOof0gK1QQhESEgYRUghCFMIJEtMm0DEZEaEt0U3FMJsglKaVTwiEPl+LwPkGAK1jtsIuxnuMMLR8QKhT6sUTFBJnl2ipwHuUrUBAHXdASKRz4C26seQyxsgApCYRBqkMLdOnHfZpz2bUxQLjFZ1kiHQNQdQmLpckpk1iUpq4R90052WJdYUxOWVxgmpKQpXgfUOgQ0IVkKO4WhRokxPoGK1DJGDLJaqYE6PRyuB+8x+GUhoFzOo162oKQKgMjS3w3pE7Txz3yU2XWBpC75A6QamQpmnYkSNa4YAs6hPJECkURb3EqZB22CX3Aa4pCLzHlCXCKYy1hCohkAGBByMUuqkJREi7LJkMbpA5D+WcyHlaOidNhwzKJUGxoCNjOvGYUEbkIqAlNZgWQTIgiQdkTiCQyHKOaypk0kfGQ1AGr9vEtqZlWjghMB6SqkQIjXCevte0CdHVipY4/76M0Egn0SpGywCcI1YReboBQuM9SFsTmzYtFUM5x/iGweg1eq1dnC0IncU2NTrIGaxXpCqDsEUjNSEShCSUEZGK8F4QIdFCEkhDLjuExHRre25LBsQyAlsSekFLpcQWtC3ZdBIt9fmGezFlWJT4xhJ5jyrmlKvj88TTO0RVgG+YuOR88Dse4TxyNaPyDtXUpF4RefBNjZOgwhZ5uoEXgqYpaRqL+c0EPMWQeEVqG1LTJUk3SMIW21VFnG8RSoV2nswlhEGOd5ainHKh0UwaSEyOEoa4KpEevG+oqwW4mkRI2lEfpWPQEZsbr7ChEnrrOWHd4L0g9pIkGRIXFRPZQcVDAp2Quv/nWY+RKiK3NWOZomxJGLbJ0jEGQSA0cRCTJgO28j0EATqI6aYTmsDg6oK6ac5/7wgCHWMaiNHgPXVVoGWCevApAhXTSbfpti6gVIStF4RBjjQZVmioCuK6IrQVQnhi08KEHXo6Zdh48nSMXs8JZUhHxoRodNOQRn0uuACTb1OYiNSWBCLEekdtCwIfEOmUVJ73xAVRn6wJyYKcCE0bxWA+JZkcBY3BAAAgAElEQVQ/pr8uGRPQNm2ydJMN0WN7XbLRhKQE4FNMukmCYCgitDIoZTCrKbJaEpmcblUR1hJTCCSaMEgQBOfPs44JAOMc2jUEQhNh2FY5nWJNIA3SWxp5Ls2vdUTiBV0Mh3SIpEGkfaIgJbOWNJ2w3zlESk2gIzoqxjQ1eWOJoi6pjLlu+2zqDrEXqKhN0tnH2TVxXaLXZyiTYbwgaBxtaxHe83+z9+ZRv11lnefn2cM55ze8033vkDtkDiEhIUEIKBVRsQqlBAQVFS1LsLCx7LVqdddqV3Vpl2WXdrdlWaVWsSy0nEqwqtTCaCQiSANhhgASJSMZbnJzb+70zr/hDHvqP/Z53ySNDCqEAvKsdde672/Yv7OHs8/zfb7f59luvon1HWW5yNguc6EM8TF81mfaky5xDJ0jxcjyRZci6jF8uL7++3h/jksu/nUWFp5D152kLB+rhxi7dTa3buFMfCPP/sHn8onf2eLcA/dy8PKnP6H9LrS8/dSfopTmTx/6E779+NV0VSRpw+23f4zz589RVRUxRpq2xW+d5uXmFIOlA3wqvo2TSzsUdcmHP/JylhcPMLBgS8Ml+5/PgzunuXjBcMvWBXz/1nEWfvA13PlPfpRitMChm29i+L3fj4jmwIEfYnPzZlIKiOgnbWyfsqfsKXvKvlotpfRpf4tkjf/W1hY33XQTv/Vbv8XZs2c/YxvDahUX6szXKE2KHi0GTSIhiLak6BBdctXy0zAIMbRE0VgSvpuiizEWEKWJwbNsF9lOEYJDdIGqljMoSWDrCaYYo0RlwCaCFGMWQ4sa7ocENoIxhiT5eemCZ+g9026Cjfm6VAqkns0KSpCiQinBuQnWDBiW+zDa5j4gkDxTN2Vw6DmoGJCYWDFlrnrXbuKBolhkSQpELKSA1gVED6IoEogp8qliu6XNiwXKxWPEYkDyDUYXSOgQYKiG0NUYVRGKRXYzL5SozFKaQWbIEnhRCKCSMKj2sU8guo7x+BgkhUoePdgHUUjdjEpXaFWiVImQEFOhlAURopvhKChIKKAwJUoUZblMjB5tShSRwfAgqAINmPEFpOjw3YyAoJQmhg6jC8ZLFxJCS1EuoILHT8+gtQE7IrqGariKUharNIWr2SKw0M2hWmbeblFKiUkekYjTliCa4DtS6MBWiB5iJKCIoC06JYrN45jFI6joGTUTQjFEuZaoCly7QzFYwQ5WIUWs0tiUUIUmpEj0joGyGJODAiF0lGJIwRHcjJEdE5UmxoAxQ3w7QZeLlAuXEJRCFwtE3xFDRzc+QNVO85ocHaRptlHNDsujY7RNh1KGQllCDJjFY8RuQmmGGFNhokEBogzOdUgVKYsxxlSId4RqiSLl9ZDaGSElkh5glcWVyxAzu6NNRWFHzGLLCCESkBCoRGC4iooeXSxA6BDRKBKSEoeSxau86lIMDHyL62pUtYpBQFlEZdlzWa1kwB0VtlohpcAoJgprUcQsjTQV+48+l9TsMGxatI5EX1OIICbhkqfpGZREQoWW4GY5yFOMcL5FiyJGj1EFSD5HrBCLDy1DIjrlYwO64FEiOGUYpgRLx4ijA3hfM5QBVoHRQ6wmj6coCC0meoJvkME+Br4lClAuMZ6tEUigDEppFssVFApdjEE00VRoKVhcvZKEsDLc3weIctBESodCiG0OkEg7I0WHHa4CglEG2zPS4jtqKTF2AV0Jyyhc7NDlkJg6CjEsrlyOJVEMLSl2aAFVLlLqkq5eR5uKleEqZ7ceRqmKQMIER2ELdEpIrPExUtkRXQjE0KClhNBiqyVCTCg0VfJEbYlAdA1FtYJNARchuYaJKIbFECuaLkXaZhuGFrTB5QcKCRCE0gwwyiCDQ6y3DbreZrB0jNju0HUzbLlE8p6kBKInpsDqoWdi7QjrO67Yfy0qemL47MW8nvQqjvVkG+9alg4d4di1z957/+ET/wwRS11/kuWlv/dpVRCL6nI21n+XUQ1+vEl9dsTK4a9h5cgTi9rft/Mp/s9P/ASHh0d5+s5zGa0NmS4/AClx+MgxXvjCb+H5z38BV155Nf/be6d8rD7ADYstZyfnueJEw5n9mhvP3ciR6+9ngevY2txEzRbpWtBb74eN04Qrnsm7h2PekOCtL3ghCviaD72X2176nRwcVAztYc6v/QZbW+9kdfW795yEL5Z9OVdt+9va2okpvguUo786p+Rva1/NY/vFtqfG9otjX87j+rep4njnnXciIlx77bUAvOENb+C1r30tRVFw6623cuutt3LLLbfwlre8hfvvv5/19XVe8IIXPKGNR//oNoIEtA+AkACiQ5RBFxUpOJSyxOApRRG7CcqOKCSzE0kUSlQGZ65FiwYBiQFjh6iUcCmggyfGjnK4nxiyA6yLEURPCg1GlyilUSiUNj2sSihtMKJRKebrELBmgOgCUSq/rg02KQRB6zJDS5W/hwCiMAjSTdHaZhZIWRIRXA0I5WAFEUGbCjFFds5CS2yn+cBuU6J0iVaG0APHgoTWhhgjxg5AZXATQocoQ6ErkggxeLQZkGLA2iEq+b0xULogJI9KCR8zw6HdHG1LxJT59dQivsMAphijU5ZaQu4eonHJoUXlfusC6ecmmYoUuj1w5pUBpYm7gJwMEkxK1NFhgwcBrQsi2ZFTohFlUQLKjhnaEYWtIEVcO8MUI0wMSIpUMSLaYsoFVEoYpfApoFLEVCtUxYgQuzyeymCAJBpEEUUhArZcwNghiMLqglJXSHCU1QKDhSO0ocVqixKVHVYSwddo3xG6aZ/Pn/L7ypB8A8FTFWOCFhIKEUGJRmlL9C2hnWCLMUk0xlQoXaC7OVoZMCVWFJUdou2QSGa8SBFlRySVZcLKDPDNJqIUMXlwLVpZJIYs1w0dhanQ2tLM11hcvgRE0MqitCW5Gm3Kft0X+T0SpMBQl1hTISnl1yQzTQSHtkMIXWbvyO0ZZdnauJ/R4lG06NzfYoASQ+jXQoyBFPJcIIIonf+JwpoBbbuF6BKJAaKnqpYJSjMaHKAox5nxFdXL6QSrDaoPXqTQoosxorOfopUhIPjo+3sgEX2LFkHZAdE1lIPlfN/7GlLAk1Cis5ROBFOMKXUOOJAipIDSRb4/tYWUUD3gQNnMeEaPLRYwusSRsNpSDvdjzbBfGzWiS7QolDIE36BNhbYVkZTl3WKg3YHQUQxWwZS5byllUiI4YorYchHpgzlG8m+LaApt0bpAi8EEj+7mmGJAUgWS8t6hlCFFjykXKIqctzYqFrAoBuUSYgokSb7hg0PrPH+KhNEVKbq9AJuklPehGBGRLGMX8ES0Mlm6nSJKdM6n1Tbfd3aU177NYEyLxndTRHQeq96tH4oFUt6LTJUDWZCBZj8fIpoQA6RAAho3xxQjrB2y+pJrPuMz7Ull0O7/8Hv4yO/+BvsvvfIJZfI3Nm7GudNccfl/AwLGLH/ad6vqEp5+apl7jm3TnX4Gbqdi/fzNHGufhS0fS7Tb6XZyAjZw5SPP4+zSx4HEgW7Gi170bXuf8yGyXXu+8cqD/J0P3cKZ7W3ufcYzuHZzh0eHp3CfupDDZgNzWAj3O9S8IparLLpttpYKuouWCXXg5atDXvTRD+BF+N37HuRnNw7yb46tIigWxs/5ooOzr1aLIaK0Yu3EhPFKyXi14rY3P8j1L76QwWLxpb68p+wpe8qeZLvxxht5/etfz6te9SruuusuDh48yHg8BuDFL34xL37xiwE4efIkP/7jP85P/MSnV9sNIpRmAfM44YOLLj/IQ8BgMuOjCoSEGaxiiKQUM/DQBpDM5ilI2pC6OVGZfIguksGcKbBqAUjZmVImgwtlMMqQgORalCnwroae+SH6DP6UQUdPUS6DCApBUsLHiHQdmBKje0YJBSnho0P3LEECitFBom9JGZ5kx0LlvTOGLjuTwWUWQjQhCWJKxA5Jkn8PQKUEJFL0gGBFZWibIJBlgNoMiAApEYgYyeAtpQCqRGlB9VdixIBW+XXfoWURUQXed4DGYGndlCgOKcYok89Eja5G6YLU5/mllPbmRZkClRKql5WmHowZX+N9hxKFUvExxYtoFosFJCWibzJAjx6pFh5bKz7n5CltEGXADrFK9/MfUMogYohKoWJgUC4QfINFEDuC4PCxwxYLuHaSHd3eoVNAjCE7lLogxMxaKFNB7JBygaQsCbDFArvBBN/NEKXRZkDwLdXShXm2E5AiURQUCzmIQEKFDHhAsUtrii4wdkgMLgMUrYCUQROgUiQhQMzAQxcQA8lU2QF1Na6bQLlIWS2DwHy6znB8mJQCuloixbDn0AfXMK72QcrrMPbXZopBnr8UkOjRfSDAlov9GhaUCOgCQz7zTPTus1+wxTD778GhtOWCQ9cBOo+H6Bw8IYMl5xqUJLTNvuSuk73rvcUUKasVQuhy4MQsEKNnODrUB0FAiRDFoJNHBJQqkJT6mEiWg/pmC2UqlKmwyqDtmK7dobQ9exUdGhgsHkWUJolC2xHRNwxVRRIIboYx/dgASgzRzVA6s8akhARHUApiQCTlYA6CVobO11g7YGgGiPTrws2RYgRmQPIdUef7hXIxj3TK4CbEBu1b7OggKca9HCkfA7YYAZKrM2pDTAFtSpJvULrMjJ0Z5EHt946IkJQheAc4lKmIfQAjz43N9x4+740LhxFRee30qgZjR3kHSxGRgohkkAU5Bam/N2LsCBhKrXvg1Ae9ABcDZTnMwC6aLHHtV5mGfm8DU4zyft3ve4FI8DVB6b4/oE2VP680xKyKSCmi+jWglGVcLef10M34bPak5qCZoiAB6yceYN+Fj51HdvrMv0epMQnHcHjtZ/z+qrqGC9Yi9uDHed4/+HrMobdz98f/xd77KSXecPd/QKM5MTvBZHaGpBzVw/dy5MATGblfvPUBfEx88PgmKx/+CNd98pMcPHCQBbfAqeFpiqbi+mc9h1e96tUUtsCpwKlj34SNHTvVDK8UmsgtaxP+p3/6k7z0F3+T6++9k9fsX+JHHj7HR80rWN94M/P5XV/wcfxqN9cG/uyX76SrPVd9/WGOXbMPgAuetkQ5sp8mdfpysOTzhpR2ui/L63/KnrIvtT372c/mmmuu4VWvehU/8zM/w0/91E9x00038Y53vOPzbqMyw/6xnZ3s6DtstZIdh67ZAzI9t4YWIQIBUKYkuFn/bbLkLmWnLymTnaX+eylFtMpshfTgbPe+T/37YvLzEm0zG7T7pmh0itlhleyAQMqgSWm0LvAp5/p4N8/tSc4peryJMki5gLYLiLa9M5kBCb2DY3TBrpuqlUHbEaRICh7nZnjf7vWJ3plCmb0+SmjRxShHsvuWqmLcg1Wyk+Lme/0WUpaQIn2BDovqGTxM0TMbhmp0gKJaQlyz5zwpO8iAwlR7rF52jD3Rtxl09myi6q9RlMUWI7QdIKIILhf7Sv14x57RSH3/Hm/alBhbQe/MG8lAVFLs2TjBhxZcTfRNlkuaAdoOMzjVFl1ksGH6a4/Sr7sUM/gAgptneawyeX50idoF7MFhlYVdsGEHvYPoUHYXuDY9w+KJvskszd44Az1Tl1LAtRNEQMoFKEYoZfDdHN/lOSL6HugJIgqN5MISojHFCBGVmYHRob2DopUYBoPVnr1QpNhh7AA73J9liMWYYrj6GBhqp4R2gvddbk8Ve2uqXzX4dieDil7GLJJBpDYDQvSZ3UgQoyf17GrUJZAIviW6muBqYr90ra0e55Sztx4BYqJvfzeIYTNoVKYPBARSigTf7vUhpd2wR25H6TLfT8UCSld9LledWcRigZhivrYUScpkcLZ3JdIDlwjRZ3CGQAr9/IEuRojovaAJohHvkJDTbFI/Z4nde5oMHJDM3JULRNF7Mm5FIgnoFLKEGVAxYrGZLVUFypR716j39iEgJawu0f3/pWf8lBnk0Ug5mBOiyzlk1SKmGGOKcQ9kelBWjPfuOVGGEB2eRBtdBnb9Tp1SyioHkTyn3YwQXD8vaW9fNXZMZTLTnYct9QBXUw735/1nd+yjx8dAEJUDH6IIKaJ02f82PRGk0YN9DAare2MaROW9MOaA3O7+pHWZ95l+1ERUD2o/sz1pDNq9H3wvGycfxpYV7Xy6J02MsSbGlgP7X01T38toeN1nbCMuHuHqT2yw8Q1XsOl+mTO3HeXQc2+laR6iqi7BxY6tbpOjo2NcOHsas9FDFMqwXFU8//t++Altvfv+dY4tVxyanKZwHZv79nH4yFGqxVtID34tk4U548UFjDVsXb/Mzv1bXNYM+P7LPs5r7/lRTj5wEXeNv56f7L6Jr/36i7nqj/4773vWDZw/v8WPHFjhyngjnPsDTj36r3naFW/8oo7tV5vZUnPDyy+hGBjqiUMEqrHlkq/ZT0qJ973pPq554RFWLxx/qS/1c1qae/zbTsDIYL/1ItzbTwBgv+1i5Isk23zKnrKvVPuxH/uxJ/x91VVXfdpnjh07xpve9Ka/8vspedAFsa2zM7mXt+Ix5ah/MGc2yiibH9Ki0WT2zRQLPSDKrBWhA20pUyL2LE5MITNe0Ds52dFABN87nbugIPXR4Jz/kAHYHlslhjY0lH1hkJjSnhOURVaJVIzx0SOkPcbgsb5GkqszI9bDoxgz27AH+kKHmJKUEqGdkLTFmrJnCB7nXKS458SSIoksHVSi9pxV3fdnD9ABKIMtDMHNM2gtRkRRqH7MYwy95GwXoEYQnXPEXL0HduAxtkMAH9os2xRB2WHfZtoN3H96frjkioTKDoGEIuFTzEVYlCYlT9JFno8U8ZAZNWX2clMQQwodSSukZ6sU9JIplSP+0UHPvmZJl8/Otqj8mR6A7wLuGDwRhbEDgvRgqJ87EYUyZT/20ncjtyHKklLMEXttevmoRZv+dVH9Z3rSBQExFNVyXgPEvH5TwhRDQugguiwjs4M9hkOUIYhGjHoswCCCJkLvfOZ1We5dn6gS7+b9vOZ1uguodb8GZI+RpV+TGVwlIPoW07NoPQ7rQyI5EGHEZHBMRJOZjoSgos+gsr+WhBAlhw10CrmNHjSk4BFd9EA09yu4Gna/36+dIAq1CxDtIOe99veyip6AQkvPwIjK96mbY+2AZIY43+bx0gV+vk4xWNldoJnZVMWexDpGT9zdj1LIwHy37z2z/th6VnneXN7HYn8fZmYnB4aiHWQAZgf596KDmAMhEZX/JpFULlCT+9UHPki4dmdPtqkeF1RW2uwFOHavL6SEpI6kbL8HZuVAio6oLKGXpBql+zmVvXWh+/nTPbsvksd47xdFAEMUlYNhKQAakZyvq5TJ+62kvc+nFPJ9o/qAvuSAS0QIkplGvbffZMmzKEPYu6csThmEgE2P47l6yW1wNcoO8vNhN2DVr6FocsBBIXvg9zPZk8ag3fuh93L8Yx/ANXMWDx1G2zzYJx75SbQaccEFr2N19bs/axvza16NAJct/gQxTBkeimwfX+D4g/8cgEKXXDS+BBHFseO5hP8BFRgsLeHax+pZ3nt2wva8Y9Z6XnTvn+UXX/ePueaalouP3ksqA2ou7D90gNp57lj4MDd278bM9yFU+UEXIy/Z+m1umf0Y1dv/X37gwkOEumbLe37l/Caf4HreIS/jnfF5X/jB/Cq2v3j7CT7y5gf50O8/QHCRh29f409+4S95y8/fztt/+Q7uv+0cz3jhEVaODL/gTNTjozFfkPbmHve798FQY745V5azr7gUtNC98V7SzJEmHSl+Yfvx+Viczwhnzzzpv/uUPWVfSpvVm/k/dpAlfr18KUensyTHR49W2VlPfVTaKZMT7wHIzj492EtkB0ynHHtVfQ6MJzubQspnd5KZFF2MsgPYR5ljcARRRJHMDiB4XYEoKlPtgTZNPuvIu7qXreUiA0ZUzrXx7RM7qzTKDvvfz9fuldkDCFEUSWliN83RepvzpIKoPrK8yxDk/K3gW0IKmcUiF2cIPbOBtgRReBFCirnCHMBupFoZdLlAkMxuZTCaz5vbG9OYegbG5Xyy4PC93C4hBF/joyf4FqUHvVOY9piGXYaQ2PVsXspj3E0zoAouj0XfN6MM0udKoQukBww+uuyQK0tw8x5wCihBm2IPnEmKeKUzoOznVymL9H2SFHJOC2mPAfJ90YBElpCKthht8LHLTJwIMcbs7In0eWq7TnvCd5kBAwhJiMoSlc3SSNF4UVlKJ4oQ2p452+UEEj50YCoCEH1D1DbL7HTRlxGvIOb+5cy2zLJIdBlIkIjtBN9N8Cnszd1ugZvQg0ptR3sMThdclg4+7tmaRHJOWPQkEXzM46Jgj/2EXeWm3/s7+uznxR48e1MRQ8/y9qBqd7346HPOZtoFo5kVy8C3yPdA2uV1s6Od4u78qD2wvwv0JUW86Hx/uBrX9yv1Tnrsx3m3OJ6QsLbKhXRSxAxW8L3DnvqqrbEvFuOjB6Vy/pxvcj4pORC0y5znOY+4PiCT10Qk9f0kJVwv4RRt9pj+1CtgfTdDTJHvYz/PTJIyfZ6mAjF43+7tI7pazlLZlDLQ3L0PkVz4BqHx7R6ITbogiSEq3ctlhagLYgoYnXPkRJkcQOjvQ/r9LpF6MP0YKAcIoQ9wKNlj5aOySL+2jLZo6QFlcMReho2YDM4Q6NeaAMm3ec3R31v9a7vrSvWqheBadAwQAsHX+RpTzPORssyxT5DL1xS6XjJsMGJQria1088pcXzSioQsrS5z30c+AMCRq6/noutuIMaGR07+BKI0ZXkpVXnJZ2+kWmL48ddjY2Jj9J2w8E7W71pi9cgN7D/8DfzoB17L3Vt38uzyOdgzCR2GmEfuoN7e5MLrbmC4nKVwr/u9v8DHREXHj3w4H2R60c/8HKdO/TTenyOsfjPnTm/y0Ts+xPxTH+bVD7yDO6cvx40t5+YFj2xNOHDlNSxO7qNRQ76Dd3K2vIbrb7qZG47fx3ue9TzubVq8Osjb3VVcle7g4vFlX7Cx/LRh+TIuCvD5WEopH4qa4M53naaZdHzjq5/OqXu2OHnXJitHR+yca5hvdZx7cIdTd24yWCq44x2nGC0XDJf/5oUHNjfXuPXWd/H+97+LD33o/VxyyWUYY3n/+28FYHFx6W+cZ+jf8ygytphvvQjmHv+nD6Ou3oeslKT1BlFC+OQGdAF1aPg37sPnaykluve/F33RxcT33UzzS/8X+6r3U7/5v9B98n7Mc7+e1HWI/sJUJv1KX7dfKvtyHte/TZGQL4Q98ocfpKgWIQTwDSHmyHokosRkZkFpUuxwpiSmgHc1UWeZWQxZsogIabeKHNmRim62x8SEmCO7AsQQss/QszrBNyAat8se7eY37DpjQNQmF5fYi2iTJVaiSHaIS3HPKVDaZmdH2z0wEcQ8ziHOTn6Wz1l0dESlsxOqDUkMThlsD45UigQRmr5EetIWSfQySSEpTb2bRyI5TygBThcooG85O/naYhKEGHKBEV/n/T7kvonOkiRPIAp9vliWB1pboUg0gBWh60tooy1eaUzWiuJ6qaUnQc8atbPz2HLcO6A6j6M2hG4Kpszl3fsqeMZkeZpXefxcvU7sWVNtSrpdJsA1GdD1c5RE5XHwbQ7s6QJFIojBa0PQpmdhs/ws6CLnwpGlbjmnSbI0M4ExZQa4JGJoQVfoXqboVZalKV3t5XD56EAXhJDXE24OfSEFUaoveGMyCJfMHoVujtiqL2IRaU1J8F2+Rm1zPl4KxP5YhdSvmwxUpZeI2czkpkjwDbEYEndZQcDPzpNsH+hGEJ2rCYaUc5piyJJQEZVzhSTLZn2KiNIoEXw3wcVAJylXUu2Lc4g2hBQye6k0SSlUv97rIsvLQl+Qhhiyk74bUNgNOkRHDD5XbFUq9zfFXBTGDIii8DozO0FrVMyOf+rvaacV29OzWF2gq8XMJkXf51xGki4JAm3Ia1n3lTyV0hnkASJCFzpQJt9fYuiUwqL2WMvkZqgebKuecYy+zpVie7kfJJIdI0S8yiyt6YvGBDEoMnsUe5ZNKQPa7uXTpugxsBd80krvBVAyG2dw8/Pg27y/6AzAtC7y2rAVrShMdIR6M8uQ++ItbYp4URTk/LGgLdHXewVhUkrMtaXoPx+ixydPFwKiyyzbFo0XIfW/36RA8i3Oz1Ep75Pet6CLvjjMY76LSL8vi0YIdK4mmhJRFtfv0yCk5BHT31e+xUuCYoSkx3IgCW2WA+eEQ3bz2+gLuKheOql2GcIeiFo7+KxFQp40Bu0dv/rved53v4YLrryG/RdnsLK2/mYADh74kc8qbXy8hdFhyoffyeXP/IdsfuoAx15wjji7nJOnfpZHpg9wbHSMZ6zlDh+94CJcU+O7lsWDhwGIMXJyq0EJPKO+j2o+Z/ySlyEiNO19WHuYV9zwj9ha3WKpHXNqS+MvvZAmLjHSFRPzfE5NR/zxwyv84/LfcjwcYiieq7Z/hUNXH+PrbvsAr9u3wCzCQ1zAhTzMz24s030JWJCvBHvjfb/J97zr5bzkrS/in7/xpzmzdQ4nHSfv3uSe951mvtUyXin52ldexvO/5zK+7nsuww40t/3BcbbOzAnhb8d63X33XYxGY170opfwXd/1fXzyk7fjvUdrxbve9XZ+53d+g3vv/evnGaaUMC88ihwZEc/NiWfmpLmn+4278TcfR104Rl+3H/2io6hr95G2WtLOFy5g8lda19L+4e9R/e4P4X/r/6E7tcFD//fH2Hzr/bgTjzD79f/I1ve9jPZDH/jiXsdT9pR9iWxaLSOAc/OeBQm5Ep1vgcQ8OkJwOBEmrsZDlsCQ5VumzzXplCGici5EH8GOpsKnRE1Ea5vfNyW1EjrVV2cj4WbrdETi46SAQWk6XeD6gv+NMiRdMPcNro/calNm5ywFlNK40KCLETUwD21f0nk3wy4ym54ldDs4NyP4Bt9OqX1Dk3LRk7bbgXZKKxBNkRmV0GXmSBckO8DpzGZ0yeNcje8muY1qiWAHObS542kAACAASURBVNoMzJRmQuqln5G2/17wLa2fsd1u0bqaUIyz858Cs2bCLPm+oIcQ/DxH5H3OqQqSndVCGTpdZEkRmaUJ8/UMblRmD3MBj6zaSaGDckzoKy0qXdD5JjNWdsBcBBUcjTJYbTNTFD0uNLhulvPv+kyUBOgYcNFnNiB0Oe8mJaLK0igfPcGW6BRx3ZTQS7dczzLSA5VIljDGGPIY77JO5QJiKzqfHfZWF1Au0IYG51s6EehZToBOF3idWY8ggtEDQsqVE32KPYuZaG0O+gWgSYFgKoJvmM3WSL7N8s6YMCRSDNDlA5tjOSJ1cyRlJsmJRuwQH1p25ZqQ0CqDBxc6WleDb0lK0RSDXGChz/ejl8AmU+ZAgR2h7RCXEr5njhMKrTQpOObTs4gdopSl1BVeNHUMdGT5mYuBZCs6wPk2gx5fU/QVSnMu0BBdLKCUohc3EkXw3RTfy1pjCjhXE5XBiTBL+QywFB0JxawYsqMLkrIZ/NsBXila39LYQe53cOjgCSEwja7PNQOFYIMjhg4XOpIIbfB0RJJvaJodEjmv0YWWabeNDx0+dtSxY6YgmJKgNFFpQkrEPtggPesVgZaYC4uIwemCWWjxMeCCY4933GXtUqBx8wyEiMx9S6N6eaSyOSi0y3yTSD4f5h3tiLlSdCkSu1nPopHPmOvmtMUQlKFptonRM5+ew2mD1hblaroUmdUb+HbC1BTUAttulseIDB7rFDLjj2BjPgvSK8u2ycEjrcssNVYqH5WhS7Qp8nEGfc5dAEJ0OIEdP8/HUPR7bBccVhe5SIrSqBgw0RPb7cx8h7z/e1v1+bSJHaXy+LeTPdYN0TlHztd7rHHsGV/na7yv6RK0vqWzGex/NnvSctB+8N/+Cvd85COsPXQ/133rKwBYW/sdQLGy8nKM+fzyhdJgFZmdRrRm8sA1LBz9C2bTN+A25nzjWHPK7ePRR0+ytH49X/eKZ/Cn7/sdqoVFikHejN5617kczesczzt/Nwkov+nv5rZTYDy+EQFeN72Dd3KMBPyr4sW87GBk42xEWOAfXf6XzJdm/NGxF/C2v7wBqzUOxbNW38X58T5edfPv84JX/zCvfehRTsglHIprnHSOy8qnqgt+vvbI9AS3nf8Q927dzTcfeRHP3vhmTt1R03nHye1TTN5d8/yXXsWFz9yHUk9ksIrK8IH/ej/N1PG+N93LcKnked95KfsvWvgMv/ZESynxwQ++l2uvvZ6v/dqv49d+7T9x992fpGkyzX327Gkuv/xKLrvsCi655DLW1tbY2FhnPB5TFJ+bAYjna/w7T2K/9wrYavG3nc2bwHX7UUdHYAS0ItYe92t3YV5xKenUDBkY9LP2/7XH8nNez/YW9R/8Pmo8QI5/lFN/rpDhPuTiiygvvhT/4P348xPS8bcTz20y+Rf/O93LXkHa2WHhJ//VU5VKn7KvGJNuAuU4F38wFa2bMYuGA2aAJyeLEzyGxE70lKbCE9CmwsUuOxRATWKgIJqS2s0pgBJFEM3xouKqrmMWapypMOWY2E7AzynsED1YRitL081JdkQbWgqlUUS62OYy0iJ4XZJszGeHRUdSBS402OAzoIuRKnpaN0enSFuMUCLolIhKg9KIHeGDQ/cMQaqW2D73SQ6OjuJ1wUAXKF/j6aPFopmJwqVIYyoOp4AKAaNsX/jA0xarBCJzU1HGDtvsoLRlsxgxanaIriYVQxxC3U3oUqQZrjBWJSKKabPJGEUsR8y6CbUdUtohbjZhvnOScrCPMNyHCYGud5Lavk9lDEhoMcNVYvTYFOmSJ0aVj0WIAW0swSck+jynffReu3zGl1aGecoy1sblCp5J6VyoQTskRTZshQSPna8j1dKehMz7BjNYIYiiU5pWa6BkEDocCluMaQWctuh2yiR5xjGSVEEi9TJ6DyH18lhFip66XqfdOsnCoWtxpiQUI7QyzLoJKXlGvVbNucwAOjHUVlEoi1cpt6cMQRXo0GYGLQWC6JwPlhJSWIiehYXDRHIxDQltzrtptvFLR2m0ZdBsMy2GrCRoYy/Pm50nRU9RLtJMzhIHy6RmG0dCDfbRakOVsrB0RxsWlWHmakoRkquptSGYEUv9yeY+OLTSdErhY2QQO5IpicEzGB3Ai8IrwewygSmwpStGJ2/HHng6rW/RSuPNgKLdwYqimZ1Dl8soUzCLHoiMlcX7BqVMX+ZeUSvFSBU55ys4OlNSQ66M6po8LrrEt9sUqiD0gRhjBqwRqUg4bejMKDM33Zxk8mHJMxIjwPkGbwpKO8znEAKCYovIMEZcanDO0ZmCKLnq4G7BHt1N2C4XCM05ZOUSihCoxLMpkZQCS25GsANK0YivqX3NSJdAxNoxzs1JpmRzdpaD5TI+NFAt45XBpcAwtDS+RlXLaN/RiKM0g7xWCFkmaAdsD5YYx4gmsdVssWwKKjPmrBKWemnntilIShOUoSlHpGaLpqiIvmWgC9JgmTA9B2Iw1RJzU+Bcw5LK+X+hnVBoy7wvYqTbCWPJOYPnd6XF0VOKJrXbnK3X2L9wNB9OD2wkzwUqF8upU86t9BGkWobomYlCR4/vphTDgyQi4huS0nSxr8bpG2rA2v6sxr4iZtmfj9i121TlEvgWbwzrKXLYVPm8tRSZastiW5O6Gj1czUWAlMJ0M+b6s0OwJ03iOBoP+OOf/ym6+YznvvIHEZU4c+aX0XqBQXU5VfV5SgDbbYpHbsXtuwp1+Doe/XPH+LJ7WI+aI2XHaP1lxCmUYZnFwVlO3/tJnvHCb+OCKzOr9mM3/yVIyzfIffz9295HWdf88XceY33zJgbhXhaWXsrhd/4cl67/OWdkyDkOcwWJZ1z7PNYenjJcHvC+hzTHmxEve82P4jYeZv/mx7mBOxlQUx4s2LrlTi58zWu5uCp5184O0zTgmfETXLZwxV5lpi+kfTlLmv7/NnMzfumOn+cX7vg5IpEVu4r92GG6j445Pr6Dsh1xaulezt14O99xw0v57ft+nVIPOFAd2GtjtFJy5d85SDPzTNazXrqZOI5evYKozz3+H/7w+zl+/H7W1s7z7ne/k9XV/VxyyeUcPHgB4/GYGAMnTjzE9vYWV155Nc61bG5u8Pa338Lq6n6Wl1c+Y9spJfzNx0lrDUkr4sfOgYuZy557iAnZVyH7K0QJ8VxNvHsD8/cvQh8Zk3z8vPrw17Fw/hyzX/g5uve8B3P1dSz+0n9ClpYxh48w/if/FEJArayAT8Tz51ALC/iPf4w43aH8pr+LVNUTDp3/fO0rad3+j2RfzuP6pZY43vMntzMWS9fnN81NyazeYKxLjLbEFImSSKJxtsr5SK4mlIuUKUI7ycBOCUEZrG9pTInz8yxhtBXbpmToapAs+8O3FEiftxBp6k2wudw0doTRuVS765P7IbEZPTtFQTs7w0AVOFOSmi2SKIypmFqLQyPdlE2l8OWYWbmABJ9BpylpuylGFzR+ms870gUfSh1DYBgjtSkJMdCEFoox1jfMtWFkSmYCM1My7g9zlhSZkgj1JmvlkHkxZtHXaDcHUUxFMVHCSuiwviXZikkxYBo6iujwMYNeJ/kwZTG5pLvpJYQ0W8xFgdJ0boYeruTDsptNGl2gQoexQ1wx2JOYaqAD8kECOccq6BLRlqgLQr2Bq5bw2uAQbIyEZotNbUAUbQy42RlMuUhX5VLnqp2w2W5xXCK6m1I3W7iFCyhSyGwBEV0u0IowLUdsA6mbYZTJhTK6OdsC2gxxBJwSrOuY+xqGK9lxi4k6RbQp2Oom1L5la3aO9XKELBwGIucRnLGY6Tk6ErocUYphFiPRFMyrMc43iJsyMSVnux1WQkcbPW641DN7DicZqCkSXXRZRqcLRGlmtmKn3aIm4QWSHbLhZlnWakpod9jRmjNhRutmKF0yKBZoq0VaN8WGjo3kiQsHib6jiIG2GvNIc4aDUtLYIUXs6KJnUowQW1H6jhgdEj3zYojSZQZ+2tKKEKLDIExJOKWyUxwdk3qT2hS0OKKusMoifX5RgWJqSu6cnWalZ6p3wpzTGlYxTIV8uLfSTFPgxOQkI1XQasNkehatFHXsqFSJqhbYHCzRKGHeTajQaIGpr9nuGevQbjKvt1gcrFKaki46nK+hP6uuI+dQPRJapJ1SlmOaHmQ2WuGItMHRRE9RLjEwBZICbWjRdsi83eYBo1CmwruGAAxSPrdvqyhZTrnyIP1RGWGwRFC2P+8vsC2KuhjwqJ9wqFxkJzpaEnhHYwy+GrDWTFkpx+gYCH7OvBwyq8ZY78E3tCKY2GHCDrWqaLst5tGTTMXmYIFJOaLRJSoJtSko5mvUKfCoVhhtWLELTARi8pjoeEgiYzvilNYMQt6DYvT40FIoyxlJbMzXqSRhxaJshdOWxk3ZKBIqGTZtiZtvEJXJFRxdzSPjVQ4En4PIXc3GxgNMilHOMbYVSmk0QgodMy3sDPeRYmRj5xQM9tGJUCnLWjnieGpZCZ4pkWAHGKBrJ7jYEssFxA5oU87jrVLMkmFtcXaANxWFn9P1gPUOOsrgKcyAw/8jSBzPPXg/rmk4eMXVaFuwuflWIHD06E+xuPjNn3c77VWvBEBNHuHwVc/k7H3H2bj7KAerlhJhdmIb71sWL7Ac/+j7UNrwrJd+NzM346f//F9yerrFldUDHI6bjDc2uO+o4rcf+m2Yvo06Kv77e36R6uR7WDPL/OpzvoVOPFs7W5QHO2JIDJYKitEz8Wiidzz/W36AV4ef5PXhlTySDqAWtrng+vPM3/z7/L2lMW+7JPAD8kb+j62n8XOn175Io/uVYevNGv/Lh3+UbbfND1zxGhrXUL37Ui545CqKkeai6dXcceW7ePj627jxwhvZ7ra4+eE/5J995H/lZz7xL5m6yV5b2mhu+PZLeME/vJKjT19m/eSUt/ybTzBZrz/rNRw/fj933vmXHDt2EQ899CDf/u0v56qrruHs2TOICEeOHOPpT7+G6657NkVR8Ja33IRSmmuuuY5nP/u5vPWtf8SnPnXPX9l26gLhI2dJW22Wddy3hf6mI9jvfRr22y9DP2s/aeZwb34A96Z7CX+xjvmWC8Eq3H++l7je0P3nez6j1LGu7+H0mf/AiRM/zqOn/x07k/d/Tnln8+53sv0jP4TMNln6pX+HufFFqNX9lN/4QqqXvRyAwXe8ktHr/meWfv4X2fd7f0j5jS9ADBRLis0f+gdsfNfLiNPpZ/2dp+wp+3KwM+Szg5p6DZUSI9+iikGO5APzepOum7GZPGd9zTk8W/svphDJuTDlIluSmNkslalDy9tCQ3BTfDEilCPmxJzXg9Dpgg2lqSXhkqNJka1QE/rS3TMySzQvhrRKs64MkxRoYgdKc//4ADNTMtUGrQzKDpgmz1a7w2SwyLbKjvwjzPlonDGJHaPo2Alz1tttmJ3FxJq5eNbCnI1SMRfH2TN/zl3tedabNZxviKagMyWTwQpzFNtKsd1LDV3oSCmwHefcM3mYGD0rQFcOaJXFx8B5pXDKsJ1qHt55kEmoqbxjAcGHjjI6KiKtqRj2B1K74HCiGdkBO8Zwkg4/P0d0O3RuAkSCshg7oDUD5qGj25WApYBTho3YEQWoFnDG5opuwTGPDTMSU1MwJ7AZG7xv+bPkeHBxmfv8NsPgGIrCKIMhS81u33yAsyLURO4cVLxtUFJEl89BqpaYCTilqG2FRzCiuS84gqmQGJnV69zdbbMWszQxxMSsGNAN8nfFzWlm5yijx2lD3U05IcLZpQvZXjgAxYgudAQCGyJsR8eGm9Bog0+gx6vUvTx2rSxp3ByVIk4L82qBZCrqFGl8R60t2wLzbkoUzaPa0LoJgtDN1jCuxtmSMUKhK4oU2FQF2+MDrIWaLWMZKo0XzXG/zZopmNsBDRFLAlPx8OolnNca32zh2218DCyZBVwMbMdcfGXaTZlpwywGPLBWjEi6wCfYKkrO6nxEhUHYVJq63YEUmClF1ZfV3zEFv5mmbIWOThtUkRVZMQXQBp0CHmF7+ULElBxvNih1RTNfRynFTr3BPHjW8HTJ8UCzzvraPXRG01hNay07xZB1JWzOThFSYNMUbBDpUmDmNlkwFToJD4+WcKsXEZRmp91iu1ljk4ZZMUDpkmmzSbNxH8tdTYqOuZthTMXc9BJcge2iYG4s82rIuilo2ykTU3C6HHBcJTbJjPdMJerYMfcNtw+WuZNcWKQthgSlaFOga7ZojWVmCx40ni61nJbAeLTKlhJOpoaHkmODgCFRJM+Z0rLup2xIYl1rYoJp7KglMqMjkXJRSl1ilKItDPN2wmz7YaLWmXH2M2o3wyK05ZgHBhUf7s4zV441PHXseMiWnE4THhiW3N+eZUag1iUdAasLQjGm1YauKBgkn2XLxQAVHSWJRimSFk6NFjmugW6DRTvC2AFnp6fZSC3gIUbOKzhTVLjZOdbDhLPR0c030EC0FUVKubJjjCwWC1mqW28w3XqIot5gxeQzF71vaUPHfcrQpEAtkaQ1jda4sqJNuRJoUw7QhWGLHc4KTFJgGjomKHbEsGOHe8VvPpM9aQza+974H0kJLv6a53HwsqfzwIOvJaWOA/t/kKI48Lkb2DU7YnD7r9Jd8RLUsedw9JpnsXjo67h/+62k2WHWz1+KxIJnXnojGyc+iCjF+NBh0lLFrfc0nDi3DJ3mhY98ggu2t7ji9f+FVz7zh2k2f5PhIy2vfnSTj6w8jZde/6/ZKY/h5jdxQX0BDz/8AEcWn07oIs1swGDhEY5ecx3D8Rir/z/23jtc0qO+8/1U1Rs79+kT50ye0cxoRjmgYCGBQAKDQdhkBzAOsKzXxutll/V1Wofda1+Mvb5eYMEBB5KxZYLBgMEiKMeRNDmenEPHt/tNVbV/HN314gA2uw+27sP333O6uqu6nqe63t/v+/lK/mhmiKfc6wmXm1y98yLO1ANkt/4rQn+Mh9bu5ySHeGqg+f6hKv43UW34eno2PzH//9TLurz9kZ+g4Q8jkDyweh+v2P1KrqvdwOrZCM9zOfj6CocP72VvZT8fufDHfGbuU/zAJW/iJy77d/z51J9w3/JXefGOl/7PMfsf/EN46mG87ipD+8eYm85pL/fZffXwP9iW9/TTR4miLs3mJsVikdtuex612jCHDh1h587djI1NMDo6zuTkdq644momJ3dwzz1/xYkTT3H77S8mCEIefvg+Dh06gut+LSbfLkTkX13agn7sreLctQc1UUIUXUTJRQ6HqH1V1DUjiIKDOd1E37eE3FvdquQ/vYH78j3IoeBrxs3zTWbnfpbV1ffhezsIwkswps/a2h/Qan2GYvEqHGfo78xVt9v0fvrtiKEG1f/w4/Te/0eYU48zpD9Hef5upMoJTnyQ8pf/I8HJD+MtPICtjaNe/AOEV+yhvvkhkpGbyE+dRZRLOJdf+U9qd/z/w779l6hn87r+c1fQPv3Rz3I4qKOUw6wbguPTthrfLxEIRa5c8mxAbBKOp20cR1HQmlB65FmfVG/5NjZkTtXZgiPcKzLU5ikmhw7gWENPbGX9ODrDOh5WJ8x2F4gGTVShQah8HMdFJ10W/IB11yFQPp24sxUy6xX5IjkV5dBwXAIvxEj1jG/OsuwaZm1MXZVQEpTImQ0qNL2AoSzfeppdGuWhaIGRwjCOV+Zpx9KTDl0nYLW/yniaoEOPjfI2MrY8cG2TkUmFUS49YWnqNtuyGE/5GCFpo1lZP01erDFwHRw3wFiLa3PSPKHjBFQKEuOUEMJBOwFJf53E9AmURz2okToeedInUYKuVyQxGR0dY70MnCpq4xxG5wxKw3TSHjLr44S1rTY0NyAzGVP9aWphla7wOO9AVfwNgdEiSG2GMT10bmhKxWa6RN2t4/Y3mWqewR07TB1FTQa0bUbZqzzzk9SykWzgeVVONnbQC3yOKclzjc+y56OFoOMFeF6JpkwxSKS1rCdtyn6JcpawWR7joqeoGk037zBwQ9w84zQx2i9isYSdZZRfIvcLLGY9TiVdKsUxUidkSDi0bcpHbY6SEtWZpaQc0uoYjtUkwqGTdMj9kI5K8Y1k4BaI8w3GVZGe41M0CQVj6Iics76LUxzBjdYwjkfFJjheBWtz+m6BlTxikHTIvICBcplzXFy1VVHwjcG1mtymRCtPMShNUnZDjsoYF0n/mercmDFYKfGERPplVtMu3WidpL4dzwtZCKtIpZgXmtE8IXrGU+d6Bazjs6QcJpIufQFrOiFoLXA+75LUJulGK2TRBlOdae6fuISb4ohzQlN1PHxjcJS75aHMB6y0LzJc2YHMYv4ydLnUChrSJxlsMl3fRVE6NIMy67pH1SliS6PgKByvj7Gw7FUppD1Sk7OgYx4xfa7LB8gsY9b1kDqmbzS9MmTSQyUpJWkpWkHbq6BlhnDLRGmLKVcykD71rIfrV+jrjKIbkBjDdHeJWalIHJfEL1GQkjztsmYSSkGVKOtQDerMJT1OuQ77onUiJZkNyly0PXY1pxFhAzVokyuHvvToK8W8FNQReDpjxfWZFqtkRtHMW/ilScomRdgY4RY4gyJxFKq3TsFxKStFbnN6JmPgCdacKl3H4uoOLaPB9MjSlGDkMNKHNZExI30eUpLLpE8/a6J9wT3lAidkwvX5Vq5b1ymSd08zWxxjpzY8LQS5UNR7c/TzhE0nwFUe8yZG9JYou4UteJNX2OpksDFBvIEKh5n2Nfd6A3ZTI3EV64N1OqVRtueaBEEkIUsj4tYUfnUHyhhaFurK42x3nhWlsEGZYh4xyGPyoMp6f5mONSxLhedXaBhLJygTZX3mXYclqWkHRejMMZSnnHZyUr/GkPDoOS7OYI0V00EYl0rcpuzX6CpFff08PoIP55u89BU3/4Pn0besgnbFHS8lam6w/chV9HpPYkyP4cYbkCr8xi/+W8rGrqH01Z9H9hapjW9nWs/xu13F0uJW5o2bVtlxeUjUXKcbt3n3id/k7Q//BF894wA5z/fOcNnZ0yT1Ir/X/RQn1z5LOcq4dboD1vLaI/+Nic4oxZbEqxfJyEjTlHx0gc5ajF9QNBcSnvjkRwB4zTWT9KzDIDNcNrpAPAgojUWUPvI6BIJX1xS/Zd+KRPOz86vfDiL+WzLW8CtP/ifqXoPT7ZNcN/wcXt17K1c2b+X8Q2vEfpc7f+wIneIaU90L3Dn5nRysXcrVjWv5i9lP8JZ7f5CCU2S+N8PS3X9A6zN/DsDg43+GWJihNP0E5V97C5ddblm72OJLv3Pi73wGay2tVpP5+RkGgz6vfvX38brXvZEgCP7O//6vmpiY5DWv+X48z+ev//pzTExM8qIXvZwvf/kLGPM3GRe2nZCf2oRE43zfAdyX7UE6fz8NUTgSdbCO9+r9uN+9F7vc36q6+Yr8K4voqTZmeSs4NI4vcu7896JkgUMHP8Pk5M8wMvz9bJv4KQ4d/BTV6gs5f+GNtNv3fO2a93oc/3ev5xOXtvntlw449a7/jCgd5WdeMc/bvbO82404uf4o7spRSHvI/gZy8xxq9RjkKaXBg9gXvZXR4UcRtRr9//5uNl/5cmye/31T+ra+rWeFjOnSi5bpOoqTXsCy5zIbr9BJ2kSDDTIdg+MQOS5ni1UeL/nMhDmDPEW4Ph0bbwEzTEyGYcZ1ORaEdMMhErEFsAgcQSfYqoilaPK8D1Ix39jDsl8gkoJe2uEMPeZ1gpQeroF1L+SUX6Tt+QhfIUTEnO2xog2usdTSPibukruWXjEkd1wUGU2vSCwShjGct4ZNv4pRLtlwBckiG8oyXwnQJqHXO8f99R18vjHKqJ4idTo0HYee8miFVT4u+qTxGhc6Uxh/iJmioev4rCmPrheQ+gV0HhGZjIg2c45gzg7o+Vvo8IZooU3CEjnHpSJ2izihw5Jj2EjnWSVnJe/hK4eIlNW0w1K8gfZcStJwYXKYLwfQ7MzycZWz6hkymzNvNY7Y8g6NOmWmbUauBBEuHQzaJMwpRcsL6SiHJSfmjNRs6hZBISTVKbNK8NCOw3RMTq8gmZYRi/ECRqit6mnSJumtINhqCZzP+ywrl9kgJHA8pgo+a65g02Y0jcYzydZ7ewW+6EqmRMKiK8l9wVLeJcrarHohm6Vh1oMiOk/RgeGctGyg6ekBfWlIwyEyCbFMiNG0/SKe8pgUDoVwiKfLVTpWM/DLaCcgCoYQdkDXbvmF2tEqYbxOEq8hkhY9BT1rEG6RonIY2IyBtxWhkDo+UdYmMgna8UiCMmfr2+mWx7k/DJkiZVVolIVVN6SjMwZpk/nxgzxUKRNlXWywVQXy3YBq2seXkjRv0ulvck53WfQNTw6PEiiXdbYAN4u6z3kpWbWGdR2TtufJhKSHZtNaNJZN1yewluXqNv5kbJy+EvTzNkUvRJTG2S4GtEd2sFyu0ilUOVUoM2W6KOXQH2wwSDosuC6DsMqCF9JzVxmQMu+4HCPDAH1r6BTKrIucXtph1ZOQFAhSTY7FcwvEhTK9yjBJZRSp1xnoFNfGnF4/xmLrNNtFTKJyEjcEx2UQeKj2MbRO6emEjUKB6VqN491ZNvsbJI7HhuvSHmyQ6JiFco1F3+OBQp0ZPcA1hop06Od91vIBJRwuGM2w1RzqraCVoWUyymQUlKBXGGHNNmmlHVIEjxVDOhICmxHpHouewxqa0GmhA82DlWF6JmYrJmwrv3Cov44fVEmKFdaap1gXqyxWAqJigQuhz1TaZG75XoyJ8MOtFuylyiTTfgFpc0Kr0VaTS8X92Qpnih6rrkEmA9BVrJB0vBIbJmXYMRTQeChOpxtYYWjHPbpJm4VCjYWggETQcivMVuscq41zNiyQOCEbRY9KOaQvNFZmDDkLdAolcCDSg63W0LCI55dxdE7khgyATEd8LDCs5mtIKcnqu7k/KLFpBiwrj7OkZAJaaYczJma9tpNVX7EYevSUhxKSxA5wC0V2uwofh1XXZVk58fntuwAAIABJREFUTCnLnKNYJKenBHXfkGRtUpPRt5qe1kSey6ISvMj7uw/O/1d9Sy5oxhjWpi9Q37aD2sQOVlbfjZQVxsff8o3R+n+P8qGDWOVivQrR5hr3HP0z+plHpz2Gp0OKg3Gejn6XLEkQcU6nBt20h05rjIg+QaoptrqkvTb3LH2Bh2bu5shTMRbB9x96J+QOS0WXFxwTHHnsTh4cfZBEZJyfO4Z1U7LEIt1LGN5zCQCekuweKnBCj/GZPT/De5uvJe8LwvbDFB7+daq1F1EShipt7un1+chG5//wCj+79bGpjzDbneapzSc4UruCu3Z9N2u1Gc49vISJJN/1xucQlFxuHruFV+55LQA/fvjf8uZDP8Zv3/Q+YjPAxgN+6E826P3eeznxp79FNHOO8FWvxRZLW6ShXQeovv9nueXYr3Lph9/K0n/6FZ48eYpPNjt8stnhz598gg996PfpdDrceed3USgU/9HVoEqlyqte9b0MBn3uvvvDbG6us23bdj7xiY9hjMFsxqR/fAZ7vIm8YQw18o9H5sttRdzX7Ude0cAu9bHLEebpTWw/I0lmuXDxh2k0XseOHb+MUl8LQRHCZXT0h9m16zeYm/95mq3P/s+//frvfg//10uazE2k7D26xIFbBePfsZM33Pj/8Nwd38VmeYI/Hp5gcPVbmX3BO2m//EPglSg8/XvUP3I7wYkPUnjivXgTVXa8/WaCN/9r7MYa2cUL/+i5fVvf1r80PTGyi0WRM68XCG3MvXaFGV/RKTWIlcRKGHgB54ICy15MIIpsEwHWZkQ6Yt5GPCET1t0eoMmEQAlNtH0vvnTIlWJKdrjQW2AgJV3lkCYdLtqIeVcwahJS3ULrlLlig6LvEzN4Jk1H8LAjOW1j6tZSFBWmrOAevYpnIlK/wMLgPB0Scjwec5r0nIiiGVBRGiMiHnYTHqkO0VcOz3dCciXwlCBGIMshWTDCkG0xmq4gdEIoDJuO4ILe4Em7jhKG3PcpFCa32o0o0fUKGL+IkDlRoUxJSBrW0s4lswLOBmVip4Q0GUKHxIWAiw607Fbr5JJs4pmMOE6IUfg2Yz1Zw+Z95uONLTQ6KZt5l7XuJkZ4DLJlcPo86vmsKsVo0mHWxLSVJA0DhMmYMwkXdMrRZJPMhSVfUjA5OmkzLR2WqyPcU6nQ6S+TkvP40E46QZ2OzYlMm3EMi1mb9eZ5UgSxE2CzLq40SJ2wB0lZSJqDDYo6J8ASC805s0hX9siFYCPvsdg8xzARs8Uyc1KS4lB0AmbTDjF9NoxmM+0hbY4vNyiWq1hpmPEUA6BuM0qmS8UYelbT1zH7pGBVxxiTcMb0yaxgzaYoa/CUpGRcqkZywcS0ZURW2U5SHqXFVotVrlwEOR4O02aLDlkVMZmj6CtFSwqsHdC1G2y6Ak9YdlnLuPAILEzZlDUbU1AuI06ZbmMXgoyKWyTKSrSTHgs2Z7ncYDleQgwu4ChFD03L9xgiYRnNkhngmJR6nlCwgkB5hEGJ0yOTHJVtoryLT07qeLTyhEQ6lNMuL01yAiSrxRqJTRhyQo6YnAkRMwREecbRrMNX8phl3Se3MQGaunTInqEBCglaJEwn69znaB5rneFU2mYpqDGoDpFXh2kNZrngtNGOizIRJ7IOTZPQsApJRp8SqY5J/JD9Q2N4NcO60rgE9FwoODO07SZO0qSU9MFkeGmTSnKCS5Iufp7S7C2Q2YjZ0jCZTvGkR1emrFvDuhmQ2ZQk7QI5LZmzalIGQtDNuqw6Lmme0fILhCZntyjT8oqsOSnrjmAl6bCZDFC6x7xN2cj7+FmbYZNzUbk85PQYyQe0bULLpDRsTEHnbNYmCGXCFytlzgUBBaoECMpGsz3XlLwiTnkST2+QeJrNYhWhNV57EZNbQpGxUz3GmJT4yuPpXDOl17klG1An5VHfYcV1KAFZ0qMlBJtpF1cIpITPjOxHTBxixMkZEXCJ66KwfNXZxKicTdujK3NO6cdY7S4yoiVh4iJ1lSURI52ApVKVeSFYVRlGSpaLFeYqYyAlF9rnWJSCA6pEmqekOmXBSdnQU6wrGHPLKJ1Qyvps1kaxxKzZHqkxdNHoPKZs4YhqoZ11Hm6ErFaqoBymTM5AwHYgLUMaOHQCj/lSjcWkRzMo0guHkINlWhuPfd3z6FtyQVs8+SSn7/sSz3nNmzAmo98/ibUpvejJb2q8fMctyHgTm0VUxyeZ2hmzq78LLITdXfhuSqF3N9LLGPiG/RNHeFXjtwFFiZzn9xIEsO3OV/GBqz/GjQ/dSimLudt5I18Zvo79KzleNuCK65tc9YZRWn6b08NnAUvTPYfJQbl7OXXP59mYmwbg3962d8v46eygv5FipYPJITz6XhqLS4Dgv9if5FJP866VDdayb1caAE40j/HH536fVtbEkS67SrtZOt3h6oUX0l5MuOOthxna/ncJnyW3TMkt4SmPD932p/zixxTb1SgfeS743ZjOm36A+C//gvzB+1Ajo1Tf8H3oPUdoVvbgSHD++lNse8sPsu0n38onjz7F+3oZf3X4ev701pfxU5nL22aW+H9XNnig1UP/Iyqenufzile8hsnJndx771a1qt+P+NznPoVd6UNiEMMB7k3j/+Q1EkLgXje2FWadGMxUB+MOmJ55G8ON1zIy/EaSZJZW+wssr7yH+flfZHr6Jzl//g2021+iXLqBxtCrOT/zS/zxqV+jf/9X+K4v9fjAHxn+w30xP75jgP8jn8IeejXPmXg+d1z3c/z47R/k56/+ZeLDr+PnN+/hF5c+wdJ3/ymbP/gY0Y3vwAZDWLeEs3mGwsk/ovy8K5HDI3Te8iY67/y//8lz/La+rX8JEl4dpKLg+GBalNMBujDKVJ4QJRGDfgvH5oTGckRWiaxiznhE8RJpGjHcXsJsnmcnKW2T0BArXM8ZNsw6F/JNhB5Q9ReRQYHIK7FkU9b9CovlMZZFjEHTqmxnZWgXG67DBSHpAnO6SwpUjKAgXJZsl4HNqdutYNi+7fCY7BKNeUjtktiMaXeRTe9pQmMYyko8R6/xQu84WglyE9EVmgUVkCqXfh7Rk4aCKuBXJRdHD+DlRboiJ3Z9EgmbwiETkioGx3NpINkuHBppFxGtE1ufSm7xhEOkM7I0JrESH0NsDR1AGkE174EqIoVD3y+wOFSliN5C2+s+Xt6lrwqMKUXB5NSTHrmOSGhTjJYoZTGxW2etuB2hAgIkJ4MCAkHP5JxxB8hsldF8jQoJUXeJ850V0FsES1d5NO0AB0tDumwr1NlMmlib4ONyxqaMivsYCx+m2wgIgzLzUoKwLFWGmalW6JDi2wxpMtqBJXMkbSM4ZzrcojZIzTwFE1H3yhwbP0CoV4jzdXrk1I3EsZKyUvRkQiVPmJOShpS0bBW/O4sfnSU1y1xIz7DsOvjGYZiMRRPhCcWwydmrY/IwoyQ1GzbHR9LBMKv7tHXOGSAqN6goTQvBebPlpeqZDp1oiU2rWTWa82iEV8YXllk94GJnBpO1mcs2cbJFhokZ2B432C7X6j4IhzUsXRJik2y1j9qMXXnKvOkghSUOi0w5iqPWcL6gSYdGWHM8+splMRuQ5W2UNYxIFwfBMTxOW0NsEhZlxkSQURCWovCpaoOrfJI85rij+MtSlWMkGJvjSUlr4SjdteMI4RNqy36dAYa9QjDshjzpFrlYH+f4/sswFiLY8vgJiW99xqXL8wgYdioEwuF4usQibbY5MBxvUEo3abk55XyDbtLi6bRP32aMkZEQc8HR5Bia8SJucRgt5zlDn1W9ggSGnQZJaYi+H9JVks97Zc45+yk3xhCFgKxUY8UPqQkIMSyn66S6RYikg6BrIgQw319mXWYok7BXKLpeyOOBS6T6jHuKCoJduo+XbjKTJeTGEBVKrOULpMKwamJQAQkJvonI+z3CzDKJj4PirG9JVci6saQ5ZHlAMRccckdxjCKQGb7KGS90GbaKQkkSi3km5QkKQUxPOZwolGgDwng4ts2C7mAwjJmLXJIY1jyPkIBN3edk3iRKNpitX8u8yXjK6ZH6RUrW4ya3xKYTcVK0iDD0RJ894RBj+Sxlm+EImNYddLuEyQXWaKrZgJnM0LSaFRmxPLKLqitYcVNiKelLyZAbsFYeQQmHOpa+7xG5Wx7F0ObM5ZZ7TZNlL0TKlHjXjQgFi0Iyqj028g5aSprCckb06SU+a/EQggG+7ZLmmhmRsiT6zGfLGGcJ352n61XoeAG6WMcKRdqcobB2hrnJA1/3PPqWeNAqoxPc+IpXIv0SGxt3k2dL7N37O4TBXoRwv/EAf0u6vJPCY/+V4NSfMLjmx/jgmQ9w6eqlBDrEWIGza5Hx0Seo7eswftPbec1lP8gfPjzPfHPAdxSXufWpR6DTQbz+zXz5k01u9N9DQMSv1H+B6TGPbini5pObPB59hO+76nuZmVnmlHOUK5IryEQfN6khtUPcPUt76Tz7b7yVbbWADz++wMW1LkeH9rMtktipEiPD83irT9A5fBc6Porv7eKBfDvnkpSX1f5x2PdvpGer56SfR7z9kZ/AFS79vM97bv5dDkc38Mjd03TWBxTrPodvm/y61EJrLYETkj59lMKFea6adTi6PaUSGRJfMvpvf5bwNa+ns2sfv3XVVcz19/PA1S+hmFSoN89Sba7zgq9+kYXhMR46fDV9oKk1q8mA/SsPcnHqYf5LOsxNJ3+HPQ/8HN7sl1CdGXRlJ9b72u9PSsmBA4dYWVni+NNPMFkssnD8KPL4MqPhJN4bDiHcb/6ZiJwoYvs5ZqnHfOk/I+Mi2w/+IhsbH2F27h2k6RJpMo+lgPRvpj84Sa16E0pVeWrq7byvOcpq9yiHPnuKNdPmE3clvPu6kOTIK3n//Cf49bUvcM/SF/jw+T/i07OfZKm/gK8CXr7ze7hn6Qt8eu4T3DL+PNzRKxlc/iaQDu7cvWRj15Jc+yP4d72awd1/gj7+NGLHTtx9+7/ufJ6t+/Zfup7N6/rP7UH78uef4mDcZkWtEcgikSqwX/o8KhwKNkdUR+h6ghMShqylKgpchsJL+yyyQXvjNKu1UQ57e+ngk4slkCs0bIlxGjSEIs2WeJoxtquAzPSJ/DKzjtxqUepNkZfKlCVMZX0WhCUXKX1j6QhJzlZocMMmGOGS6jZVG9PQMVUhGGKUYeGRZfOMVjqcZxvbGadhFCkzpCJmgTpl3UcwYBsVQlngrOgxLl1i45CmIdZ6XGsDprwIK+sYa5l1LFULe0yf08JnQjgUTcJatEk/T/HJyfurdExEL9zGPukzqyy5SfGFQ24Ve6THdDLFmaLC1UWGpKIdLLK3cx43chGlBoWky3p5lBEhiPpNRrA41QZjVOluPoJVZYqeJasVGclLHBAOm8qwjmEfoChQ1SUC1aItpgi97ZQLo8zamENOhcj1eTyfZ8YKRpVgNx06m8vY0GFYd9DK43pxlNDmuPlByB2+7CrW0haJI9julTBYdtLnhPCoukWuFJZVa9k0ba5iA9cYNnPLCpYNYajlBs/m1ByXKgEybnOwt05aHGMEzZqJqNuEgmsRm7P4ymepNM5M3qdTmGBS95iQLgVcKkKwwyg2lEOYr1JJltHhXqSFjgBjYMgkLLk550RKMbqAlBa0x97eOtsLozwUFtmjPBrCw7EDwnQF0h4nTYKfdokGq7T8Au3CHsqiyJh0GBVbkIN1WSA2OW3TooLEzweUrIPjGoTjIgk40p2nq/us+5JrbIu6G/IXxV1UlEeSt7f8aaqAlw84ng/wrOC8q2g6ikhq9oocjftMbIVLwwkQrkOUzrEQjtKjz3VOEaubBLaDLOwiKJVoaElRDOg5KzyWSwo2w1cBIzJCiD7Tssp1RuFnG8yLMgdUiQtSMOUW2ZcMKJbWKGmfXDiMypQpd5j93jgF6SJtxko4zIJXYUhYrM3Y3tvAqCrSCWmWB4zoEiL3CE1MJ+0T2gBrQTgFpiSEuWUz7mA8hwklsME4G4UaRsTsTVM2dc6Ck1IQPlqVyE2fSTIqg5izSRfqO9krFaEZMO95mErCRJayXdSYlh6zAnoqo+MN6KlRQuXhej4HVIO+XmJcpKAj5nQfmXbArVLD2yIdZpvsiBP6foWWEBTJGdCjJQU7hctq6FDIwA5yGsKho5rYYA0hGizLncSqxqJMGMGSAWWxSEuPUM83qLgzaFFhh/Y5LDxSvcFpIQh0xA5rOZivU3MC9ucDRmSFaZlii7OsyIRuGlNXgmFVIYlWwd1LLBM8PGLHYdItsiIccqFoCYfDVCh7KU2d4ucSlcOlskBqY4SwNJMuu7KYi5VJdiRNhoMRzrseA73EYXeDo2KUBb1GxwywqkRuc1wlCawhFAbjBdjBFlX2sKgyKsDTGeuqyM68zVmZ0zFN0nSevXIPHg6+HqWTdAmEZF35DIqGTMKMmOXFL3vZP3gefcs8aADGDFhceie5bmLRSPlP958BoBysW9pKWbcWB4dKWgGg1NnLp80XuHhhEtezHJp0yLThoZkWDjkjpo2dnkLu3UertJsbSh9guzjJA/LNjF47yivqFd44sYvXv6TGUvkCHz/zce5sv55c5ny28TmqtRpm1wxIH+XtZ+XiLOceWkYKwR0Hh+kbSUP2mV5z8JfWMAnIaJlR90awDjd6ywjg4d6AE4P4/9ziPgv1/tPvYVdpD928xwu3vYg95X0c+/w8OjM4nuLgd4wj1ddeznJtiDONtZZf+vRxHv2hf8V9P/MrDL7yFbxrrqdw6RXcPlvlo89TfP4/3kl2wzX8t/nHuf3MNJ/p9fnkTSX2rmniV7yc+577Lj53x5sRwE9+9AO8+yP/nfv2DPGVpd/k+IMv5t+c+g1uHTzIz7m/z7sq38Ev7ftRlre/ALV5FtWeAaORndmv+XxSSl5w2wsonXuKpcfupZpY1mmS3zbKifv/kqOf/hhZ8s1/784LJlm//TOkzgpx+QLWJmy0TxDrMQwhb/vCK3nt3S/mVR9u8ObP/hDLK+/jE0/9Cr+2VOfKxgu4Na7zY7cs8M674IlSSFs5PJgssKO0kzsnv5OfvOzfs7u0h27e4RMzd/NTD/0b3nr/D3HH5IvZUdjJZ2Y/9cxEFYMrf5jWa/4SpzfH0B/eQO2v3sTQh+/e8uj88i+QnT3zTc/z2/q2/jk0aftsy89Q5gSTeJScCp70GAJKpQmQCkckrCtAKHITsaE3eagY0k2nqfrDjFcuwRMeT5geF+15hkhwyvOcT9ax1uAkdepC8YjN0NZQfea9iyYgdYtsihY91cRXAZ5jqKgWl5qUhoW91mBthBEuEYam6dO1XWIb0zQpgQjB5DRNyObGPkQuqBhDVXp49Lhc9zmoS2w3HjvyISTgWkHVhAzpIn0TMVafpSFSRGWcojPGms2pygL7c41jIbY5d9icHSbBmgExfRpuSNkNEAhWd1yJ6wRIobjN5BRtQpGcXWYdAbQZEPsZrjCECJQOEYmDJ10KStOtNViwA0ASWoEioJIFWBmytv12RlQZ+UyY9QbgCRh2cyqOJDIZq3mfISdj0ilyu2yhHQ8lLVcaA7pHn5y6rFPQEXEmWY0izNA24vg8wyrgSucpfBFjGWHCn2NK9ag5Eq9YpVDdyRAGi+CcXWMPferOAhvuY5y3TYwQSLtCxWraKsYXDmXhM24sQvpY46AxzGcdpq1m0qTUrKUEJMbg2E2k18V4Fs/EDDnD3JFF7PMEofAYFgaTrhMby6XWUFIlAhUw0DEzZERoMr1OSWl22YSr7YBd3jiH1Cieq5gvefTyiISUTDiUrGE879DKNrH9x8hZILcGoVysWeI5eqtt0qGLJcezioZQDLEVX9CWGsoTjKAZSw09fJpWULIBxWKF3VbiizGMrrHPbGX2NUwf11oWrUWqkAlp2WEM48ZyJOwwXJ5nQEZPTxEl5ymJlK3YZUkimgib0rQZuYlwnE2SsEaxNIZnHRzh4oiAYu5zPR4F3UfbmMhqxkyZjJwAQ1GVuETVUMql74fM2QGnenOc1KClBCvwrIunikgEWMMcLsfIGUrajJASIYllyIjNCaVHUeSUlQYzybIaYUQ8k2MHIAWXyoDtJuUOkzIiXfa5o+wIyjSJWEMgpMOJQoFESgpIqkJTkYJz+TJTcp1WpUgt71J3JRVyzOACgatJXMlA96nlfW6wOVercOsCFc2T5C2klQysBVFEWxdPFDkkLLe4E5SNTyoCXLdEQ+QMKsMURU5VKsK8h1aCNCwgvSIDYVmnR6wGKNFklIArVXMr7kJqPCHpopkzA4qmi0YzIT0u9Xbi6xINA6nJeUpozgmBcYbY4+4kdMus1+pUTI60Mcdkl9DmHMp2oXSVfbKGm4MUCsepcVqvMW37zNoIaRVaKaoyQCGp5jFPioSKs05NaDZkn2wowBOS1IIrHCYLLnZkJzUhGPOHifMNWnkbIwzCplyfx7xO+BzWAy6xMGkSOgYS4RFpTU9kTCWrFNhC8HcQrFOik2cUEFxrNrhJR+TOMN0EbFTFxdLzHLTvI4jJdUjXCzkYXvN1z6NvGcXR8+DkqR8hy5axNqFWewmeO/pNj6daF3BXnuA3VYflxRbb+uM4WUixv4t65yiXXtKkv+6Tqs/x6Mrz+NKFHrudDj99cBzz5Xs4/h3vYHkh5vniF0kcl3fc8Q7+OlX89HiDu4aqbCtuQwjBn81/lIcKn2Mi2MZatsrO1Z0YrZHGw7OT5PGjrFwsETU9rr1xgr84vsJwKDmQzLP33FkGapLKWI/y+c9hlUvLO8568AJmdMhjUczrG9VvPNlvoGfjE/OjG4/z/tPv4bqR5/C2I2/npTtfzvK5NucfXmPn5XUO3DzOnqv/hu5prUUIwc9/9jS9JOfSsTIjv/MbjJ9/msb0aX7zljdRPvUkjIyy/V3/lYmrbuXdp36bD8w/wtPt85TKN/AL2xr86p4Jtm0vce6zs6RumyDbxcFXX4199EGGpy4iestsDDU5duQH2PXC38DWFzjWd9ntLbHdeZQ/oEHpwIsYHr4Cb+M0tT+7C5yAfOwqpp54iObCLKN7D7Dziuu5uBnTNTGF3ZMUD0zi5jnrT59i6Z5HKecVPOsjHInw/35YyN+W1jEXp36Ejv4yxu2j2yP8xUNH+NUntzNR38a1u6/imu0Vfvy263jLzeO86kibSukyNqKQhzbmOLM8xVNiFWVhv8y5bTTkZ697D9+9703cPPZcbh67hfFwgju2v5jX7v0+bhm/leneFLPRLI+sPsjF7gV+9NC/RluNK7ew3rYwTHzJXYTH/xCneY7s0pchrn0e6V99lvz0ScK7vucfnM+zcd8+G/RsXtd/7gra6b86gR6aJw8DiukuloVHEclAWGKRcXne5yIbrFjJCB6OUOyyMTWTU9Q5Q6lmpDSEkIoZYRg3T3IZkvPmAG1bYhcCX4QY4TJnNdYOyISkIDKabp/DtowyZbROeA4+U1IhlEHnPiEuLSEoSY+GyWgIF6QLMmSXFRSkR25yXKFYRpM6RUJd5jJ8ItNnp7eCtjnD7CElZcXd8kIf3z7CbV1Lzwq6UiELXby4yl4c5pXhpFC4xlIVLitCcKmyNKyHIEdKh5JXRkpLl4yT1XGuUjGONbjaoargZL5KamFchhSFZFmvM6i4rCQFhnAYJB575QjW9Thn5hnoLsKps0+5xFGTYbVJHo7RtZo15eKmPYqOZVBq4OUuB6VPL8+ZM4ZRFMV8gwKWlID1NGRB+uyzMI7FlS49IVlyLHEec51T57A7QkUoSk6NE8JyRG+w01vHsUNEpsmsv4e91icmpUfGDuGQqALlXLIpCnjFFSaCFWYG42ANV4k2PTtBTkokqlhrOYzBEZsUHU0oGkRKo4sNRlQRaXPmhMRzFZ4sY1wHpTwq1FjqnYHCPkaVoEiBtm5xbmSISl9QlimbWQslJZfIgFCEjEqPRrZKUQYImVESOTvFKArBtPQoYqgLj2U3xBcGx1jarqYgNNt6U4w7Y7RzSwWIAkXo7WBcKHbIFbA+ndwiyUmF4KzQXJMNGJIOQlgCJRkn4KSJOeiGFK1hh3QwSlIQIVMYIgtVO2BYBszisFsaDjglLkiXilJorSllgrK1NPICBVGkLn2KwgeToMyAVBZZocs2ARMWovUWtjJCJbBk+YCdboeC7TPh7ORJm7Hh1EhEgWGdsiQkQ8kaLSlZFYKDMmDOGlaE4PIs5WBwka4cIxBlrqbMmk0Zs1so94Yo0FFFisKjrBRtp8WefkqvYJiqb6OaLNCQdVomIJMZ48QUHIUUPtqmlGURz0/wwnMk+Qg7nRrWGDzHY8Em7NKCRaFITMxzTMoJt04iDBPpLIluExXG2a7qyIJPIFwWrGRHlpD2V1AadrkNMhuTmB7rjqSVaC5TljXHpy0Ewmqq7ijL+SKeSAjwWZc+JeFTRZGZZRpyCISkbgZgEvquQImQPfg0XXDyARVapPkSo3IEV8zRT7dxMR+lL72tgDebUREOB8Q8x8wEQ1Yi1Vl8UaVuimy3liE7oCZL7MbH+JoLjZBaP6GIi5Q+E9kmD4wbpkSdy1NJWVscJM1slY43zEAN8KyDlgFV3WFdOhC2sf1ValawzYywYUqkXoFh32fXYAtWhHCRuoV0a5wWLpN5j1hEXCpLJDblcrnGel6m6LmYAC6hSpKtU3Cq7MChG1/AFoax0QpVN2DEqbCAZhEYlwWGbcoJp0zV9lF5hmsMnvSpWU3VSkalzwGpWM66bOvNUQ+KHHzJjf/gefQtuaBF0ZM8fewlZNkSgb+fxtBrqNdf/L81pgmHCU59lHe6fXa3jlDQRcLuMImMKa6epjs7TmlylbChmW8u89DiIV5YWefA/fcgV9aYKV3JTTs/TyN/mocOT/Lb/uupKcnRQcKr6hWEEFwxdBXXD9/Ap2Y/TifrgIQg96knNRKnSRDtBH2RyrChtTLGxEjAUifhyU7OdYfqik9KAAAgAElEQVRqsL6M8keR820qo+tQ2s1yLaKq53iQW2lpwyvqFUrqf6+Q+Wz7QTbIB/z7R95GL+uSm4wfuORNCCG474PnMNqy+5phVi922X64Tq4NH3p8nnd96QJ3XT7OTbuHuHxbhf7730vw1S8gi0X8K6/izp9+Gwt7ruf90QT+es56O8Rv1Wj0pzlUn+S9V9xOoFcYChrMLJ3l9NIjeCVQiUfRPsVlu+6ltVLAPHUBd26Nif3H8B9/J5WzT3D1zONcf/ErHJ69yJ0rZ2lMfZj+7Ptoimmyy36E2uO/T+/hj/KVBy6y+/pbWT53gsUvPsIt8TXsZIxD/Z24pzqUZhQ77H7GCruJZzdxVzS9h2e599j97K7tYGmwxpNPPsZgMKBYLH0Npt9aw8WpH6Xff4pi8TkEzvt5x5f20e1afu67r+TFV9yAkXuIzQjTzZjH5yLuXV7i92b/kFfu+ymqpZTjza9wYN7yxo2Q516ZMu5JAq9M4O9CygAh/mYf6ixlKBzhRdu+k5tGbuZ46xhWwKdm/5wvLX2RJzeOcvu2O7ZAKm6R+OCrCE7/KcHJD2Mvfz5Jzyc/9hTed34XIgz/XuDKs23fPlv0bF7Xf+4LWvSFh/FKPUBQ1ZcwjaGMpB34nC1ZrksMiegzrYpMWsNVecxOd4MJZ4aurTGSCGRlG4HyWNIZO70VSkg2ZY1SXmC3LGHIGEdxwKZ46QUcWWbdsxRrkhfExxjkBdJ0hYYzRFH4jFqLkxsqwuUSkzNiNUtWk0mfuoVcaOp5j4pTp6jK9HSPOZtRcGKELLDfemA1vuoghaavMyIjGZAwTIvrs2mSfIIYh1UyGFTRwmEvko5K6FnYT8ABYGBTdgoXx9otihkenlUoIfEBz+YYmRDI/8Hem0dZnlV1vp8z/MY73xtxY8jIyIich8rKGrKKGqgqSgrUplBQQEBERNr2PUtQX9s22o0TKi574YAsUHyIiDIJKIIixVBYQxZVWZWV81CZERnzHHHn4Tec8/5IpbVVWpc+1IbPf/eedc+699z9++3f3mef7xYUdAYpBVG8yYp1mFBZXBJq8SaLOZ/NfoF5BIMYdrgByskgHJeqLLNXzZBV08h2hiRt4ed2kxEaX8esZQYg6BGLLDZ1mERwMe9wRlnKccp+mcNKS1xdxsaXyPdCBnUGqxw8HJZMh2UsmbTPDXqAPJqu6dAwbYYUjKIoOTP00xBXZGmKMmUb0pOKSLiUTZ9NXaBKiuN2qIgmg17KQmcHblpjr9HUzABV9yKhdDlkhyCNsN4iY7S5lBbxdMLKSJW9rRghYNYqlgdDSjJiIO2TuD6CAs8ISc4bZjCpU9JlIsflSk4z2pT0zBZt26akiwQiYFO6lIVDkLQRQvOU47GA4pDIsCX6XBGWqkkoCMWidCkIwWUs58oZVK7AxGYD64+y5pbIOwWMhFSX6NseJZEixRBdCwUhaWKxAm5AYW2fjF4msYq+l2EgbuBJBysNsU0RShPgMS8Eo9Jn1Fq2hKCMYZtzCj+13OxcYFNGzNoit+sUkWqGKRMIHyk0gfKvNR43fSIhyUaXKetdSBkwFA4QaE1aaOBmGuQjiye7pHaMMG3TkZoBm5ARKYqA61QeY/p0SdkuHS7amLqwDLXmGS9eZdOOEbtldlrBomlSFQ7GxrgqZEMqXCFppV16qsOEytIcnEClkI3nGJZFrMgyW4bB4TmKYYOklsdi8GVAQ/apqxp77B5SYbDIaz32ZJcxGzCDxQK3u9tYxxCkNXbhUHQKVIm4QQ+zmr32f5brc0yNj1JsbrDPnbiWrMGSkrAZSObSgMNOkWVHUBAOpf4FhkQRH0HLNgisz6TwiBWQdCnjkdc5UhthEXRtxIAwLJIja9Y5nTF4ScyYnCanJEla5S/LAWtyB7u7CanQLJAwKH18EbNbrHLJbmMQTVfP4tuQvClR0AVaAmrCZaeUWBExnfdoZ0scaiuK1mC4zPrgELsTQdir4xvFbDGDq7O4xsFmV3BTl3rUYrvSrLmKcrjKdeledooMIR5FW2fa8cGX7O4Y1mwfJXxGRcSE0+YKGbZFNWIJBam5MlJmI9xJI4EMXQIHqmmRVtJiRCpKKNbSNRYzJUx9g5FglDE3IJd26XgrdFzFjsQjJ/r0kjrr0mObv42KcMkID2ET8jLAYnhWazwZMeRU2PGtN/6D/kh/DXweYXiEA/t/jXp9hYXFX2Ky/O3/7DmTgYNYLAu2y5FuiVOTp3j+4nOR6iKp7xO1m8SNEjDH3vwjTORuJh9vYs5eQqQxaa7M7s4HibXgQ0M/QGglPzY8wD358G89TO4p7OO/3fCzvPWZn8HYhIuDl5hsTiKEpJ27Sti/nubql7nzta/lyU/McJu1bG3z+UxrO743wLb6Em05QTs3TmnpNAf6Cew7y4fH1njd0hCnO12GC/8yZ9H+vfA7F99NP+3znMHbef2+HwBgdapBc72H1ILBHTkmbxrk1GKDt372Er6W/MTzd2MtbLQj5rY6VB99nIx1aX/Lz7O0eZLhD13iaMNwRHrUZjsw22HAv57ReDuVuRxb505weWSG8LDHww9/kUM3HaJ1+im2qwucmbuPyr5PMfiyBdzzsPJ0AfEuKL/QotMm/cDHCIkXJzjpIlZobFcx/vhf0vMf4ZnqKMVNwzanSumkS1iqMmbKCGsoigKtuMF6ssZUdJ7rsjdywsxTz1ju7MPnnBMcLRxg6dOneMy9xPZDezh16mm+8IW/oFgsMzq6jYGByyj9JeL4Ern8y3HC+6iWhnjt/jb3n2vx6OfnuD++yGqzj5KCxFi0t4w//h5EmuP1j70cZVMOrjyX3sBRfv+Gm6l311nfhDvSpzla+w2+aehuVp7oMnHzHQT5In/4Y9/Lq9/+PurLC5z+3Xfzjv/+25y+9Ahps8PPb/06T28c52NXP8LL/kpV02aq1L7jE5T/8B78s39A/sd/m40vP0b9P30fwctfSfiq1/xrmtw3+DrhF3/xFzl58iRCCH7yJ3+S66+//itjjz/+OG9/+9uRUjI5Ockv/MIvIP+XnpSXdYY7Oy51E4KxuNJFCk2qNBnpokyP3c4MZ6TENyWyKkMspnG1IHE8WqEiQHGpFNBSLstxhZ3dNuP5ZeiWEAISY/Adl8DUOJTZoGkOYIlZlIr1/AyqOYpnNBkZcVAusGoGEUmPPxso8fJ6QlaG1KRBW0udPqEQzFUGyTYEodT04iae0uxUVxm2Ka4cQCJppwVcucaA0yWJx8iQpW89zgYhI4nHYBKzP6rhb19GrkyiybE9rbBOzAQOIzbmlLGkOsYXWWwS4UuXXhrhCE0kEkakZl0oJJYTwzlG2zHjUYk1NBu6Sd7mSbVk2NTImhxWVEAIrE3RyqMkCni4hOociu1Excq1s0oCNqMtPO2xw4QYhlmnjxQSJR0qNmXIKrQ09E2EFpJt6TqRbrGsi6zYTUZtEe2cY58VLNgqEklFGBpJjRSDIz12qSFc0UUIgZIexgr2p4ZISIxSyDSmLDQtJDm9xa3U8IMlWnaMgg0J0xSp5/FkjlRV6aUF5kk4qDyW7CizOFwnEprah/6juKoKZox7heWLjkM+SRgUHepoCuoq9wnDNqCmLV3TQShNIlIqLlhyJL0e2/2rtJPDrIqEJK0xnnZxnCzSQozFGkPXddFln9JiF2tTrks7eDpgUUgMEEmBSq7iiS3K2UnSdCfVxGPIyZImPTZFQsUKekmbojfIuOlSStp4IkvgFPHEGbAJDWZw9FEywkUh6dmY2EuwsUVYQSIkHSHYpWaxwjAhYiJhcbHsYYUgU6ebSXHW9kJqrzVsxxKbiBRDKgWu8CmrAfaaPkp6oBRat4mDWYR0UW2BTUooJCFwp01xreSsAxdDj7ubEUOqQ4UCWHCEYCBtMjSwyi5nkbaBeSRaaHYJzcmBkOvW+wj1KNM8hzGrsLaOAKQSlHpbVNMAJ80hpIcv4WAjpuxb+jbG11nitIcBtkwfI0tYaXGtg5UCbVJusnmUkOw2CXNJnSu5Cve2DanIcZEafpKw3ctiAGEFGZlDq5Bst8/ubEIQbbJmUzIyz7DMsWHbGC9B+zVujFLCxFLfsUaw3KIkikjbJVQZfOkhrEIpD+uCTSARgsvlHM1Ol/29hGrWUhCXyOudLOQLjNYdtpsyjkzZpvpM+SGmtkEOn6z0cGzKTSJACcU9roObehhrGdcL1JNhuqRcVj7DFspSsCpdAuHhSEFqDedzluf1+zzbXqMcTbKbbbTYYiUX4IQOt610OKtjvLTDhEkpuANIfJp0cIREO4p+3COnMmx3Uy5nfOrL66wGAbHvUd7cQtkOeQYxgXdNtAdQ0qWvUgb8VVQnC2lEahN85eEqjW8ddjjDXBGGjJRMKB8HxYLUXFaKntriFjnMoMmSY4i86F4rhzaCpiuQPYOxCZE0CBT5YIyM+OrHvL4mAZoQgkLhFq5MvZpC4fk4zj+hMfU/hBNyJsgx0B5CW8nw8igSDdEScfdajyhf3kfKx7B0+NEbfofLD91H2K3Rzo9x470+nLOc3ZvjKXuIprnWmb2g/m652d0j9/KB4kHefuaXeWLtcS5WL3Jg/SD9YIUgPITqPEFlO+y9c4gLjy0z1ejRAz69/XYOnfwgTi7P0pMZhl/7fzHyxP+gm41YKDzI0ex/5MfnVnlLaviO8j+/1PHfA2c2T/Fns38KwvJjh3+Cij8AwOnPzaNcSWEooN9L+ciTc/zB8XnecPs4vqP43S/P8fR8nTumj/PdcUKuLelM3k6xKxh1biBuGr6Ygc+biP/auWbWO2NBVpU5kT2DsJJ7Vm4gurDMyzKSkbNvxMQBM86N2K7k5NQb+eYj7+TKdxXIiytED2suHttG4b/dSzT4PN6+2OfmtI8YPsL60+/lXjPNpdJV9mzNcWR2DutJikMbOCvvZGnmZraSITq5PuKWEleuzjCzMIdbKfDl/CaNluHw7gMUl0MKF65ydXmd9tgRvEhx+eRZGqKD1g69XpezZ0/+1crdgHWfw+eTG9lddfgvL4x599Qa+ycrfGx6nQ1S7t1dYaTgU6w+yQdnfwvEbST2BLGzg2rzWxlsX+Uvh8dYWewRhkV01nD+6jiLssKv9cZ51fyD7K9tko0jRg/dwGd+7ecQgJ8r8Nh7fxOEJLIR45kcZVXgfSfeSTfp8j17XgeAKe2ie/h1BKffT3jqnXS/+zV03vv/0nnPu3BvuwM9ufNrb3Df4OuGJ554gpmZGT784Q9z+fJl3vzmN/PRj370K+NvectbeP/738/w8DBvfOMbefjhh7nnnnv+1hw7kTw4dAems8WR1Q7jNmBU+2hpyXsSJRXnc1m2koDrE4kSkqYaITINsIJ8ISSjz+IlN4BnOGzW8JOQ7NIhNkXM2YKkoTI8pybQBDgyJDCS0NdIG7Oo9mPxKQhNKFboU0PKYaz2wHOwMgIEGSek0uvTFVnmPYXMpATNGCMTqt4wRSko8yyxgUg8jZBVCnqLBBdrQnraskmdotxiMyiiU4/TGZcjiz7ZxMGmGq1cAix9EjwhSYVFCEWIRRiLL30sAoMBm6IAiYsSfWSqSIXlot9jLOtTbVxmeehm0tRFzfapyjZZnWM6LXNUP0PF9mnZO7HW0Es7dDKawAr8GJRcJjZVBnTEhgnYLX3WZAepDIN6haYZJd8TvFQ+SmKuY0Cfo5feTVdoNhigFQYEiUs/6TEsYwIxzbjoMxNPImyEFg6RjVnIh9RzMXdutvCEh6sXmU+2YW0e/BouDiZxcaTPESHolk+w3ApxGlny6TiWPhqLdDO0c6vsbiS0xQZKVJAI8soBUoomQyQMVS3wdYxJNRKJFoop32V3sw0yyzqKWbvCFHCj9vHNAhFltChwqqTYcgU7r3ZJTQUhNUYqAmMJdEjTdpmMHaywxCKi6UBWagKvju4NU9UBLdnh5tiC7OKQRWoPIXdwvayzbM/jOSNAihEw4lygnmSR8podnBoM2bvRwlhFQR9nM9qNEKvsNgkbaUQsIUUgsHgoPFxyps+YSBhxnmaOHH0RIYsz+I0JMIIQCd0ivaiItuLaqTNxzaoSUjQKJ0mYdBJiPUhBtZEktGSOojxHLmmyEYySEWskcp1GupeMylMLXPLdhKV8SF9Ivjw8z50bM3SjW3Gky3NMwieHqqTNMi0ydCSMCH3N9zkB1Ujgqwwj0uc5osaWHON6M0zd1NCJYSx+kqXkBjI6xtgYCWyFGbKOgx9ZPOkhAZ8NDumrJHaY1CqwYLCkwmLNFsgiw8KQYrhS0GSjlHwkmPSGqacr7PCmmJOSTTVJKTEMu0McSEH0ewjpUJR5+kkfKX2GjeJWuhSDiLbt4SZltPJJhYPWHkWnQNxPyKgM41Ih0iVs4oHrsOXUSEWG0GlRThM21AhtYUmEQQjNUOqhZYojWxgsDpqCzpOzFkHEkDUYq5FaEogGGXmJASw51aUhUhzpcDcWYa5VRBrtIaQim0yT0eso/yBRP0uqHdpDF+lO3UZgAgqxIdu5lpTRIsKqAoMqByYln32CUX2Bjj6I1++hlIMWDit5j43QI9Br1HMFCnGJUI7Stpp9To21oTn06mGqfYVQW+xILtDXhqyWaJlHJGAwuNqnF11rxWWtQWFwbYoSgm1IVlSKMlmktfQF1NI642qUxFpqyjCbjTgcp+T0SdrmCEeTTXqpwXH/rkL53+Rr1Act5tjjdxAEBxjf/ov/YvNOVSY4WN8FCMKoihsq7njVN+ME1/pM7Tx6D5+Z/zFA4qoek/oSVjn09t3EkWe/j9gL2BwIOZIpUdWK1a8ifV8NhviRg/8ZgLPhWTb1JlorWoWr6GA7QaFCZyvijpft4pXdaxfks94ILTfAnZoivXgB07VYIdl5ZY0RfRvHWl1Cee1G9PVAlPZ528m3UvAKPKd6x1eCs34nYWvpWlA9en2Zn37sCp+7uMYdE2Xe89gsD15Y49YdRd43WuNHTnyE8cw4hdseYHTPS8gm0NJwxrU85RrWXzDC4kt38Mhzynz0aIFflX3m27vY3ZyArQifHvn2Tlqt38TqGxiYfJSBPQ+xGY9zdtvryO/8EcKf/TzeN92HvtIhfttl8rm7eMv+F/Bt172YnFvhYxPfxytGf4p3t36a88lRpvVriZSkKD5NTn+SvZmfI+9eIZ8WmH/6KeR6nawzSCs1NNY3CXqSy2cv8rGtx6gNTbA5NMjFeImt/goHOwUm0kFKfoZKucHQ8Ay7dj9OPO7z+40bWeiAs3SS3/rQRzg8kuWH5tfZdAQ/hMfPP3eCi1GPT3dH6coB4vQRxv1X8/IrkzQzZV5bX+PooQl0xUP1G9QNjK9e5dZjD/ED730r3qVTTD/5KMevTiOHx7DGYNKUqNNidfpZZk8+wcrpk9x9epC71/Zyx9oEpz/9cU4t/89eHu0734L18mSe+nWKR1zkzt2oyV20fvmtWPP1Yunf4F+DY8eOcd999wGwe/duGo0GrVbrK+Mf//jHGR6+1uaiXC6ztbX1d+ZwRMSN7afYZRdwVI69KkNGCCpGkCVFAIHq49Fi1grq+UXmy5Zups1WdRKn8CQZ9wqxo+j4WfoiR4y61hbECII4JZcKFipPguzjyATHfYJLOR8hHG6yD3FAHyevS0ghaUlBX6TUA8OYW4NwEykUReExV8xT8c8wKLokNqJne8TbzpD4KVq4tNMxUlEgKwU+1x44tZS4eh3sNcGHEbvCveunmc1oni0HdMMy7eUqFg1SYtM6d9qIkjUYk3Cf8pjUF5EyJSIBC0kaY7FoIRDWIJDk3SKbmQ0W8zm8/Fmybg436pKJDEVdYY+9xH/wPkqkYN4cop4cRluwbooUgo1AspTZRAhNwk7yTpd6ZY7pUg+LJZWL+KJP1pnjqeGAzcx5umGfRlbRtwdIbcpGMEdWrTCV90ilJiFmzqvSthn22Dp3+xmK7ikc7SGRbBQLRJlLeGqaSLRYdxMyagCrXCKvzS63w4v0WXR4lUhKAmEZdCw5hnFtyIja5K7sE9ey6kGBVPU5KKe5wTbJyCYV/SzzeYMQIIUlVgUSUwKTIuw1+UVPxGiy9OQmHbHBePZ2DqDw8dGkaJGikYx0EsYabfIqh7E+rvW4zRj2WIsrfQyW3SLLhdEsVwsebjZD1izhy6to6ZCYiJAMJbXFmJ0nUgXiwaM0gwHa8vlU9Q6WM9d2dTzhIoVLIBwClUEIhRQCi+B4NaAZnmfE+wJxYZ1G4HN21NAI+xih6JgaxqyBgf2ZZ+mVZ3C1oe5eKz1TQtPX15LiRkGU6bLL8xgkh4OikbZACWJp6RETiYgtp8X0wCCtoEOiV9lUMRdKPj2t0EIjlMVXFxAkoFPOVzQ9mZKRlu2qRySrpGqQBMuSWmbRX+Wu1TZZsUZGdKjbLKsWUgUVmWNvM0KJJoaU/fIhdqrHcWSDxMbM5jWPj5b4k/0TNEgRIiGUAWvZAhvetQDElR55naUddnFki9BuoRAgJUJqtGpQci6ipIPULr5TwJEeq6FLrK/J0mfdEqFeZkxeRjhNPBHhS58LgwOkRUFWrqGFxpMB1hpcNGM2ohheppTbxJcBWrk4OmSm6LMSeiQYEmIqEnZ4s2SE5XLO4Vh5kZpboyA28dQsCxmXhVyA8XIEKqSo+4TakJqYFEtJgEWS2DbbRYKDwtoOSrpkmUbYhAHpE6kMxg3IyxrrZootawGBBRzTwLcJKRkarkTJLmWVR0rFRbeNtSkH633GewqEwNExWkFCn8T1uN6fwXVbFGURR3pYY2mmDawAKXokskbPKhCGsrvBoHcM4Rk8NEZAK2nScALW3TyplfhyjdRG4KUMuEP0hEQIhy2VIgpFtsb2kmJJZYomwRFdemrjr5yIj8pOEjoFPCdPwc8wKp9FKZdNp8DnhlyM0LjyWZDdr+rTviYBmhCS/ft+hbFtb0GIf5wgwj+G3/Ml+WiQRMTsXL0Tayxjh2/CDTIgBE986uN84lyJD515GVrHFJ57mtVt13Pd/RYRt7gyUeB3xJv4dFPQMoZX/G92sYYzozx36B6EECyGC8QmJlE9WrLCI7/3Dm79zh2MHSpz69ERro8VrhBsuXlEEiMPH2brtCDafhdGwPhnHuD+bMo+3+O3Vzd52+Lav9i6/Fvlw1N/yFp/FWMN//2Gn/3K+8c+fJnicMhN9+9g19FBYmCp3iM2htsnivzWdx1h+EvPMHgxj3/LDyHLk1yueKiXTvIzk4rX7ICfmlT8WQ4Oez6po/iDS2v8/vF5ngrh90LLy2yLn2SehljBMESiNU39Bmz3g4TtF6NdxfQjN1LIPw/HqZL7mV9AX3eY6OJF2h/8AEoIrLX0pi6Qm5kn24cT49v5pfIDPLD3FcwNfS9GSWKd0nc1E+HbqIXv5QyGS8qyqbsgBMZReOUcd996L9904/O5ac+t3HLgudy+8zZ2+wMU+po7ezv5D6uHOdo3+APrvG/+FXxi+ihHthX4tj1Z0vwon2psZ2Z1k9cNzfMdkzXWc5IXHv9VTotfZn3lN9DJItXg1cxl9vKF7beQ7bd55fX3s3Zmg59cXuX1H38HP/77P89tpx/BiyMe33E7tWyJWmmQHvDMiSd5+jU/QuWFL8XLZBk/cgu3vuL13P39P8qBe76FXqfJyNmIHZtZPv8bv8SHf/O/cu7znyY1gsa3vgeQZB9/G5nXfA/ppQuITBabpv9apvcNvg5YX1+nVCp95XWlUmFt7X/eV7PZa9nK1dVVHnvssb+zewbg4FBpJAjdYNOTCGsx1pKPY26orXJleINiotgn1rjOWyMOG3RlTF9LtoKQRT1KIx3mXDHHfM5FyRpaCrR1QCZ0HEXN81mVOxGqg8ZDiwTfag501mjpkMgPQLkgBGuhop5rkkiDIzrgNwHLTFZyJSs4W07p2HWuDFQ5PlJgJnSZL2h85XBqqMBA8EkcsU5PS2JhMAKEsQx6OUIR0DI7OVY6TLVrGW5HZFKLO3YVEzp8aThDIz+AJ3w85RPIAEiBGN+mGMdDYuiGIa7jYwUgQAiI3XXuq/8pXXcDK6GZ9XBtQmjBlw5VUSe1Pq63xYJbQ0kPR9XJpQZXBljpUe4PIYCCXiVSHYxqMeDUSNIeWioyNmaHWkKi2BevkhVrnM+F9MixpS1Rz6FtA3J6k4uVDK72OJUfJHIchH+evlPDkCJdl5SEoUizvZ2iUHiqg5IxtexlnLSF16vixVkq6izruS6XSz59smh3iX6Y0PQNRd3FsQLr+mRkRLcyRaLXETbBU1cZceZYYoS+7ZPKlK7MI4XCoolshBAa3/QwWoDsIeUGjtR4EjKEWOGBlWC69KixNwko6yxF9xJaNJDpOk29wWyyxOnxMbZUgpYeszmfUt8wyAyhXqCon8Vx+ijVxtXTjNlpEtsDdZmKmqHII/SU4UpOYZWPsBZpDI54hqp+Fld0yJuEQOQ4Eh9jwC4RqDpDUZ8Jc4URZuiEHXK6T8mvs1mcYzW3Qez3cPQqIlgml+tzQNUQFk4WJS0NtrDC4OAV4mCFmutwoeiwNDDAlmP4YvXa9ZNx8/gyYT1oUw8UXdHi1HARJXqUoivUpWFRFLgYThBLl5Jzmm3pFTx6HIxOk3FDXAxatej7Eee9BWacReLCM4zaEGE9kAH81S5x2+9weXiWkjoPWOqyhOc9S8V/kIxUbOYD+lrTF5BlDKUsAoFrI3Z0LmIFpHKdq9k5pgtF+n6EkglK1Sg6TzCov8BcRrIZhiib4hmFKzxOFzTzWcFCIaQtOiwWsiy5WZZVykh6kRGeYdmd5bLuU9JLKLlAkiZI4SCEZCHjMFXwkbZJ3tYBy5DYYq3yNEo8itBlhElISTGiixBNjAvSJKyGLlNFTT/08QkByWi3wbb+Bi0T0ScGBdaVHOxPcaR9AoCCa8l4J+lrh0B4eCwTeSs03Dzr+Ranyj4PTlRwRYsd7iyudGhpSU/CmMv/umoAACAASURBVD3NPj6LW3qUan+NwFj6VoM1dHNFUIKrWZflUAMJWnRwRJtSxmVQrCCNRCLBxhiZomRAIDM42qeUP8fJTAEp4bxjiU2bdbfHbLmI0Sm9wMOTPqs5TSCalOMO2oIMu3SqZ1AGwlQR4LI4Mk4/FzCYK5N4AX1AS5dLZZ+5Sop0NKUgx3ZdwioHH5CmTSITUpsS2wyT9YjHtpVpVl207HxVn/Y1KnFUVKv3U6t99S/zT2GuOUu9da00YMwuk0SK7KgPQNLvgbU8sx7DkEVsDWEt4IH7yjb5qQ9hnZDz1ZAvcRuOgNdUiv8osY43X//fuf/BF3CxeJE99T1kogE6pRobC/OkSYJUmuufv43Fq4tE7ZTH976CQwuXsFPT5C9eoPX+36H8wTtxu20eOPujvGDHr+MAn220+YmRgb9XTOH/BBY7C/z+5d8lsQkvHn8JSl4zvaibsDbTYvu9Q/znL1zEPeUzs9Xhzfft4fGZLaKlNulMk0OtBOEF6ME9bNxSJbyujCiHXJpSxHmPWqhwjq1yo+MykQuw1vLQd/p86cyznJu/SqCavC/9Zl5kM4zIRd5wvcsL+/uxl+ocSROKWnCh3qfbjAlyzrWy3Hf8Fq0H/iO9334X0TMnOD++g9u7t3C3DHngxi5PD4Ssjo1S9j1+O3yAH9z9fcQnX8uBjSnW/JDD/ac4c/DbOFU+yJTShNZwutOnE2RI5V/J7xayCK5l2kqjg9w9s8ldnZ9iIBvyyeZdfO7pN3CLSXjji4ZZ6Ab85sPTHBga4ocPbFC/epL1hs8flweZPeozvHiaWCxghcDm3sTlwmF2LM9yz5NfZufWGu/91jdwy2ffSavXRGOInAz5W57PhepeTp1scH7iIPFYlaK3yf3jg3yp2eXPjc+dB27lm7s1WqefYmj3fg5/80vot1uEQ1VOLDxOZlWxNnuZp2dXOP/Qn3P7q3+APYdeTXD2A4xceiO9e+4nefIJen/0Yfz7vx2Z+/o6c/kNvjbY/6Wh/F8rv/5NNjY2+MEf/EHe8pa3/K1g7q8J0zqPDu1jLD2L6Aj6StFzFQ9XPQ70p/BkncW8S74Vg5hnyc8z1GuQmCESm1C2W8zlY54uReQjj66WRE5KN/ssgUmYye9hOu9y/9oSjgWtBVKt0g+6pKyzIrZT6CkuFkIq9ZiJbp/pMGI6s8mYnsMOW2Rtkp5ysUCoNYPCpR0/y147TVPWcMUOpBWMmTm6MkdRNbgS9tmVeAwnZ5FasKUnqVlJhhobfpHQWtZ9yS7nj4naReZkESEEgdlitjrFzvX9tBzJlldjNRNS2dSsjZ5A2DlOx0fJrCryosiZyiDXee8lrPmkyWXuTd5PwBGsWsTIGptBTFlu0sGn43pMqFMM9FKKTsix4hjlKMJr+nS1oSuWqDoz5NU0s+oQVzMlWslhJmSDqbzPehriRArXrFNhmba99nCbcx7nYqFKaitsE8u4eopqs4LvFRmwq7gmZYkSdW+NYjxOmiRcKYYcH8qTbUpSBJEj0aLO7nbCko1pVy5Td7fYs7JGYNZ4utjixtoavcSwGXZYyBd4wcoFQpWSpmClJBtH+MLS0j55vUYHwW3+Ci7b6GpFQT5LvbLOSMNh1txDz1Fs708hZAMtXVwjiFWdjMkTOwle3OfEwBDZeJrpbJU5N8ud8306ToLV54k6G2xkQ2YHbmQ1dHhwokxHCQJrkc0eWjr0XCinTyPUFkIIrvoRhbRDxnbxZISHCwICOcWBpE9RC5rxc67ZgmwSqGdZVYokdHk4PMyt8SJzdoAsA9S1h4o7uLLDorPKjnAGp1cl9udpuT4z/gi31pYAS0+EdAsNnB5o0cMIiIMFXDPCcnw9nx+HRGp2dFKyqaWpBcuFNQY2LD3qVMQqWk6RlzXGPMmu2jzCjzlfjLihtYqyV2l7MVsW0nSTdtalkEpIDRtBwp+MDfLS2VM0iXksM87OeIt8rCnRZ596jCaTSCZwxCqj7glivQOVJAyoJlfJ01EuTiRYyrnsShTDyR+wVi6yt9di3QyjAIeEbDpDx52gGyTkY4lvJD1/hWxkULRxWOdgv0MdA3qdFf8uYmORQnCp6FPzU27pwpcHBQPtHF63RkIei6TpXku46KZHu2TI1s/SJ08rGmMhmyd2FL1og0I0gqt83KSBFiUilWPFcyk6BZqlBqZ8lqGVqzjRGF8Ym6Rl4Z7ao4z0hrhUCSmkG0i9ypazm4l4hZL/DKvJ89hy2nhel0zSYdT9LO1kEOtOkTjbiOoVZrQk1TVWc4tM9DaReOyLj/PIsMfNzS5DcoqlIEdHDnE1nGCyfpxiHJH3JYlNWQv7mEDRTATPlR5roYuTxIx1IvyojtIOtcEO29ZqdKwFqcAmNEvPcMHdz55+hCv6tHujpG6N7bLNjcaitM+WrjCVdbjTzmPq16EKj3Jbw+NI9zQeKS25g4uFYYZFn4dGAzQudy+1SBKHoFNn3Bznk5M3cWRLMd4QpAgajiKtnkJ0bsBjnUDGxGKCWJ7H2B6pTEmCq0SqyYRdZzr4JrY1v/oO2tdMZv9fWlnsrc+8hercILlU8XJ9mkuNe7j9u3YS5h2e/uQHkVrz2OgL2cLnqJxnYrmJU9lg1+YVCo0uy7e/lo/qA1zgAAjFr2wfIpD/+wDNUQ5zrRmmW9Mkbky1UwJhMSbLkdufg1QapSRGwMXlJldTwdH2ZQbXlpGVYdTwOK3bn8dG91F2zsxy0+Fv42BlnE/XW2SV5HDg/ZODtH8Lqm31bsxKs08xcPjshVX+6OQiD1/Z5PhcDU9KfvPST7PcW+LF21/CfzrwwFc+d+LPZ9habPNR2WW61+f+Q0NIIfjM2VV+QAV894bBnFvBlTnS5gX8//ICCrtKlEKXX13e4IRrUL4mtZa337mLeys5HGk5Ol5kpHeOwon/Qb+ved51D/JUvJ/17gAtIXho0efAWI7tq31ExcdVgj3A5bObDB4dRAiBkJKBF7+I2oc+iJm+wog8gFPZw0x8nlu2x6ixSW7NZ/l23+X4sb9k7vSXeULcQZDts7c9xcVdAfmVqzidOS65Fe4e38el9XXqXkCYJhRcl4O+x6+ND/OZehOU4O7hx9leOk4QRjy5uo+l1jg+Hp+9uMnDC5vc9dwJvu/GbTy+LPm4M8TJw/sJmp8iV3sPfbmBEZp65f8m9HbypSdew20feIpqbZEH9z+fu2YfQ9aWmM7tZWbPC/hEcBtfbueZXo4ZzTbZpq6yciUkWYy569AE2kouCcnl/ABfGBijd+gozz14PWWtSJOYpN3B24qI6w3OTNYZWFHgKGaPH2Mrdz079Cy6v0n6LT9M508fJD7xFDbq4956TVb234Ld/p/Iv+d1/eeoOJ49exYhBNdddx0A73rXu/j+7/9+XNcFoNVq8frXv543velN3H333X/vHPMPfoqWPEPsSZL2PrKsk0iHL475TLTnuJoNcUVCrrOEQ0wrLNJ0ezRliaYeZNieIJPUqNsst/WfRliomyw6t472pvhc4TbuWj/HhDmOjn1aVhC5Xc4GBxB6ngO9L+FgOOO5bOsZtjI9ul6LliPJO3WE6zPQqJFNOjh6gRwx+aTMw5VRxhsGnbmC463Rr+2ikVmikvRQ6hKqv4/VZA8ldZmal9C1XZblPnLeArvjJ1kLFKHd4Gj7Kbb8BNO7id2NFotBzIHWOg2dYanQIrQ+K7kOW06WdiFhthrjdBQ7O5sMOl/mU0PXs998HmuLrAaWup+y4O7Gj1IiCyW7iEOPKDXkJLTCSQ50fJJ0F5ngz1kKQ+ZVmSH5DKFYp5qu02ICxxiaYZ1CtM6itxM3miaSfcbNOl09zJC9TNNVrDpVWq4i9rYoJVMEpo10oRaGDKZdlrLzTPSmSN0FOo6hp4bZZf6Cz40cZF/yDB2vT77XItUdtpwc2UQQWEWrMI0v5nGSlAXHYUMf5qboUerGpe6W2NI5/PgiWm7QUaN0tcT2wfQ8TpQnORj9OVa3mA8Ufb/BQuDRc7bIm3naXpMtV9D2u+zvHCewDuuySU86yMoSc71Rzjk5dvTrzIcuKncRp1umWu9QTg3dzBJbukArjsBtMyC7HCvtBtlkT3IKFVU5mb9IrGbJpjUSDy4P9ZCiy7STpZ3kWPOvYy1rMVbSHDQs2N30HEOlC1PFdZykRZUZjLNKrBw2PMmJ4hgvqP8xW8IjZzfouhGRSlj2CkROhPFjdHCVwd4G626eRXErUeqREZukCoTsYkXCmh9gE0Uj22UwXcVlkwvBCBtuwKLuM9SNWcnlcfQZBjpTNE2b+dIgfrpGKy7QzOVpJ4YyDZpulX7k49kZavERrNwg8dbZynSRApoe5OQyRqaI2NB1mlzwO+ztbLCNS3g2JlUpOZsjyZxC6yts+ZYrWcNMmGNnu0tD9siZlEdLLgNiisF0g929s2TTmJbv8eDALVgEB9JjOGxwJlNmst1iOtjFtvQZ3OAyEsVqkGCSYRZygnVng57qszJmMNkWrWSAvgAv1fTlCn1luTE6TWhrNNzt5GPLivB4enCU/fYMfT/lbGYQ61+kzSQH+COM02Nv/xyqX6aV7iMqnmNGDyDSkA01zHoYsJlfxzZ7dJI+ZRqcyw+xRZv7OqcJkgHWPMFy0GCgv4ygRF/57EjOcSLjshS02G4XUKZIPl1hLbdOIJpUkw0ue4dpO9N4to52YwrRFonpU3cGCdUcGdPifK5A3jYZairmAsWouYSrHI4VDlCIm0y5mrFogXzcYqQecinnsuE5jHKCnLxCEnt0cnVG2iHTA3XqThO3b5krRnhpyoR5guFono1yxFitS5SM8pz0DwjVAlKu8VT2ELLfobDp4HlXCdQ6jugzGCnitMDV3DbGzWmuumW21wKOD7jMaIftnQUqag6/2yVttrk6UKcue4yIaUbJ0en2Kdpz5Owa1hq6/kOcDwNmMjdihcP++It4JqXpb3EuV+KO2w79gz7ta7KD9i9NParx1MaTvKT7Eop+j/nVaw65MBRSX1kEwCtUmLIFlLBcx2EmPvUJ1rcLHCNIlGCh0OBP2t9GhOJ1lQIl/Y8vvfx/Dr+ZY6uPYgcFm2trVLsTdMImH/rZH+HVP/9OpJS85PAw73lshq6E40PPZdfcFZbHx3D+5BPkf/2dLCz/CjvmWtx67CeIX/SnlJXk11Y2uDMbsNP/15Wa/scyt9Xhtx6b4am5OhvtiGLgoJVgvRXxN3PZH7n4F/jbTgOKDz54I5/6y8cYL/rsywecPbvBfM7SX7e87MZt/NBdOzlxepUDjTXEch+bpvQvfArvVfeQue97vjLnQ402H9qsY4CfHa2ipeCuXAaA4rGf44jpkTnzh1SAzoEuz7qv5V5iapMfYH3+RWSdgLeeX2IgK3llp8tzE0nfasY6CZff/UU+evgL2KxmrBbwwpteh/vIu4lOfwRTXGHPj/44erDKEeD4hXM89KXPMywlj00eoB7meEa8iTfseT4vf/Ln6PoN7lw8S90r86rKC7lX7eSjH/kAI4UCr3rV677yez6/bwfnl99Hd+X3+JXjD3Db9joPrx6gKi2LxvJKa7m/q/joZ/6YNxRuxN4yRGZbheuXO0zX5ojzfYzw6Qev4uVn1vjh1i8z+3CBbL3D47c/j71XP490XXa94ofZtW0fm52I0kKDp+frLDV61OMyt+3QHKl8iA9f+k4+8ekHWekO8dJbxnikErCcpDzV7vHKK/O8qlLgxw7fzPbDNwPQrG/wpZM/zKPhKnc9I1BWMHX8MT40dBcvvq3IwLEHaB65nfjSHL2PfZTwVa9BVgb+/zbPb/B1xp133sk73vEOXvnKV3Lu3Dmq1epXyhoB3va2t/G93/u9f29p41/TVqNgr7DkhaQ5n01/i0GzxIAZYFtyjuLWODNZB0dIBu0aS7aC7NS5xXyQ9/x/7L15sCXXXef5OSfXe/Nu7963b1Wv9tJSKlllCctIwnbYbhvMGBqbzUQDQdOecUNPY3oCaAIPDATtmZ6FpWeYadONgXGDMZYsbLzKtiTLtmQtJakW1V716u3v3nf3XM8yfxTQQQzQNO2ZCAPf/CczMjIz4pyTcX7f8/2d37f6XnpBTqTLXG0tcmrjeRaKHc76JxjqDOHXuRrBfeM2Gyag0JpSodnvrOMXN/CcHmCIxB6T+ixPN5scMX22wgXkaMzIhLT9EuPIRbtttDdkKk5ZKx0itoZXwpA7LEwlu7wYhgS2QpVn6QeCZyZ85Oh5lLvHSpHSkSGFe4EvhbdTzixvjB9jNZjDcVLqzjZ/NPsUy8LjUukoxdhlpbdG1Q4InIhU+jilGxyNL1HkI86Nljjjj3GkZrc8RGcQmDHTSY9B4LMaOuzUfJy+4sXSMvfH56jKHk0zoqm/zE7Z51xtnjeNNmhqj/POa5mzLqMs5XwpYt2N2fPvYNZeYLO8H525zGCoqoSIhJ2yJCskiQO9oE/DaAphAR8jx+Q4+JWX2fMHHBjmhLQZuiFldtlnHueKvBvPaXMzmOC+3otsC4M2C8zQxsg2ffc6E/kmhWPJZJmSaHO1OsVWAXGvSUdPcbF2nunAEqkaq2UX40A52CIoYMKeQTmGHb/MlhtRBR4aPMJaMMN0ts3YnWRQzpktdlCexagRWvjs2ZCSUkS6y5GBoSsFE+I8mekzVTzN2N7NpHeFRG3SZwolb5VsUU7O7ePnqakO1nMpp09xrLhIGvbpOh414zGWDrkzJvFKBGOFVSNqSZcw72GLLS61JDPJmNC9ilRHGeQOODljGaEJuO4f56j3ZSK7x2Iao5xpShm4Too1ilbRpl2CFinX8xoTeoOD3h8yTZubLBFJww2WaQTXUKqN63URaU6oOiRC8ZrR4zw8/QbCeExLfYWZUcLVcIphc4P6KOOh4Q027ASKCqlySCwk7pBQ36Dl5IyEy155HZyAebnO0ApSZ5JeyWWp6JLZgEQk3PRcUtfj4mQDNx1zZOCxVq0Qpwk9f5Lb1JCWuIiyi2zaBheqgqPpLmU5wreLVPWQI8VpQrPDjp0i9feI6l/F7zZYCzymU0niFIwch1QoBHDZncFWesykVbzqC/Tc20EVzOpV1vJjBLbgVP8cn56f4WxlP2+MrzKjKtTkDS76iySiQJBScnvcHRcM3AhlY1LbpO/1GAmFI6rUs4JEBPgixLEZM+Ntek6LnnQ43Qyp5DFvy75Cl4hrXsgk6+zLn6eX7mfNnWIuSIjdiNxJyKRkubjGQF5jT/jgDqgKwa4zz21qi8JJ6TlHcPJtck/g6z0yK8iJyPHZEg1SY3BtgUdKzzfEUvBCvcmEU2d5fBrppKxWQxQZ55oltMxYSG6wIxusTV1Eh5O8Et3JQW1YSF20kxGaHKRPmpXpqhWy8pCyHTEMHToEiKJFlPfpUqWsL7NVSvEdw4aapO9YIrnLrL+DFj6eHVAqUs6oO2nIhPnxi1SdmzyYfIJV8f1cmoLJXs5icpWl/DqrTpNJPULpAcfNNi8HDcb2LE/PvZUT3SWaow2aeodNt0KcV2iaL3I0FzjCZ5DN4NNlqfQy8I6/dD76hlTQ/sPl3+Ha9hUODQ+xNDvPYG0fjlAcf8Mhrp1+mt0rFyjueTvP9yUrdJjPBxw59ySLaUqzVWJtxrJd3uZFTmDdOd6/NEP411DP/hSe9NhX2c8jqx/BnfVYurSA9iD3XZZnZqi0pvBdSTcuuLAz4vLEDPvKIyYvncO/cZPsttdgyy8xfXMVkOysv8DN5TdzNSs4WQ45/J9J0P7/WjEfZYrPX9rl5z55gQ89t8ZvfnWVq3sxSxMh7zw5z+X2mOlKwMnFOt962ww/fN8yP/7QAk/G/xPfuf+7+aGDP8HJuQUslr04Z+ZGypccRc6tFD+lLQc2E459rYNINFblpC/+LkZfp/Jj/wzh3lpP6CnNP7m+Qc1xuD8q8d/MNG+1mUpAuJi1P6b20n/ACsEzt9/O+ew9fMtD/5g8zXj1yjH61c8wLn+KtPw47b1lnkhKPKpz7ijBovaoFSXu3T5KqW958NJdVMuLdGdX6O19DWd1lfNvOMJUdYmPPfYZrp05TYJgs95E+RPcc+NlVvptfnfxIZ5v3c63bz7Gbsvhjetfwxus0kw32PP3s76xxubmOsvLK3iehysEcfthUGcJjc8nX3mAFPAnA37I13xHUgIEo8WjPHF3hdkbqzg7n2bL+Q2QLpH7o8ynVd5yVRNkKTs7IdekT2+6xWDcYXL/Ib79Z/9nVg7sZ1+zzLGZKg8dmuR7XrXAd9w5y92Ldb7n1AnO7Xh814F/xeXefjZHM1xYS+DaiIleQXW6xJ6w1KXgLfUKLyYZU65DGJZ529Lb2YnG2KMzrO9epdaDIkkoL9/BQvvTRMsu3bNAnmHb6/jf8kaij/8I2kr8a5+m8sTPElx6lNKLH6D04r8jvPhR/Oufw22fR2Q9THkK3L+6JO3f4xb+ripoc3NzXL58mV/91V/liSee4H3vex9PPPEEa2trzM/P8973vpdut8vDDz/Mww8/TFEUf6a2/SmSz7+fXT9lVrQ5690P7hnWGlu8Ze8VukpxvjZLpqGaJ/ilPvvVOXLjst+sccW7g6m4TV6ktOIdJvMurlY4UuHaAX6e0rMtTqbPM1lsYwuDkCmuOybI+jRVh2m1RahLnPcWiFAkpkoRRzTEFkedKxinQRL7lM0G82wxac6zW4rYP77C/vgKh81LZM6A8949LJhLzOsNYicmI2J/cYHczambITe8RUZORJlNKnmPqgiIZUFTxayJBV4IF3FLcI95jK6J2PQiSnHKunCIvA5naofYlz/DYnyZdtpi7ATsNqocHt5k3qySUbCa30EgEowj6CRVvDxmWnQo2QGOyQlFgm8Ex7JtNkKHXOUI7XPTOUzFu0EjG9CxFWJXMj9K8Cq7vOLdg816LKkX6DlVJtwRL5TuoCE6aDFgrniRssxx8xap08XVGZO2z/7sJp5N2Eqn2HMidgLBstojLALWZYhDyrCec7R/gRgfk86z6F3BTQJeKtdo+EPCIkFJg2/HxCJif/4yW727GbseZf86s+M2Y2m5OrHIXLpJuRjQdupYJ6Mhtsgc6JsaiIhJvcPYUSTaolxBCUXRnyMuxXQcjTQFSriE4Rivv0BkO+joBq7fpZztkOAx9OAO/SQvBwdQdHFtSt8LKaUVpkYJfbcCMsdVCS1WCekzoS3aKVESHWaTNaQWtG0NioKaHnJVz1A429ylnmey6LJTHGS3mKZke1TdDmNvTCAvc1VELKqLLOQ77JgGWrRoF/toOte5kd1O1b9E7o1pKsueKSNdD1fEONmA1OQoNcu0vYAjBpjEZWRLDEzIslnngrtCw2wztBV2fZ9XJaeZEWtcdw0V3cdVgsDJSaxFizEHvXXKsU8mFIE7ApkzV2zx1bljRPmAA8VlNJp12+SA8wpTXGcy7TCtN9mkhZuHfJO+RDsvU9c7TLNFKkJm0y28UocSfSbVHju2QeEMyYiJjGYkfXChoIxrunQ92PMFcVCilexxz+hrZE5EM+ugnQFXSpMcS19hIFL6niQyFs/d46xdpl5sEXkjtLRAwm8vvZb9400Wxn0qgy7Gi3F8QccKSm7CjD3PnvAoiTHNbISXJRxUV8lcRSlNMeGQstyhqhMusEhZbFNzznM5cMicFmv+DofzcxzOr9JRIdIYwiBHWpBjy4q9RtX28eWYdVmhNCghQ0Mhc7QqmLe79J0WB/JVLlcLlL/FlNri/PjNdH1BFj7HhIoJREzkdDC6wGjNOHQJnBEHiiuYkc9mVGO76jM7vowUMZVSh5XxJomwOCojUAmRk6JtlZ3KkGY8YF9yjdRIerLKqA77Oi6brmSERxoGNGxCNR+TWJdmcpHZfJs1M4dv93CdnJIY0qbJtrPMMfsYS9kaESmFAI+CNK+Q+T1STzPttMkkOOEFdtU8vjOknrTJZcaGrBKZDjV3yI7fZSa/SakI2fDmaeSbTNlVevURfTRBYWgVGulBUttCxAGd8hQzrHLw/r/cduwbTkFLVMKHr32IQ6NDALzuH3w3H3v2NLPBZZAOnetXAHh0o4Ki4FVym/nLXwajmD44gkSwfehucnWDiAEfOrBI4z9DPftTfPPsQ9T9BpeTy5ycPgG5j/ErPPrZ3+aujW/h3te8ke+5fYbodJsP5BmLzf3M3IxZn9zF++Afsv+XP8CVlVdz4OaI+zc+y69OfxsLk6/ifeu7XExz/tvZ1te13f6mWO8nfP5im4+f3eZq59YeQkfAm45N84HvOcnNbsKByYh+UrAzyjmxUONLV/Z4+KVNPvLiJnuVD+BVOuwkG/zWmREPHgp458kF/tkfvsxlYW5tKgdmawE/PpQc3umTA9vpBvXPv5/yj76b6J3f++fSPn96bZuW4zAwhoXA+7N7tc/8UwpSomuPszlX4/LhRZ748us48cAS7//iL7BWWuPqlSvc1riDXHYgP8rhqSpd8yy9nVfzCyLml+SAO80Me3rIPe3jCCm5MHqef3XywzRWXN73wZzzv/u/ka9/gEt3H0WEc4wqs+xFVY5unmO3NsGzx+7hF1cWeG3lCN1DtzHxyLczDiXp/J1MPPcBvn3yNXxo4l52Nzs88Tuv4PMFBpNn+L+23kYgj7MxmuPBrZf4wZc/xkzSu+Wfcuh1/OY7fpDHZhyWxwXXlgy13c8hUOxvG37pg79MuakZPxjymZsHKeIEgWWvUuL1P/BuFk/e+5f28WQlYLJyKzC+79D9ROL9/Fj4Y/zRlQd55Mq3UmhFumtwH1snOFDh8QNw6uxV9gc+v7Zvlnnfw5EO//jof827vvgOhqfGnB71+eHua/jSxz/Fs943846F5wnmj5JdS7BXX6L+yHcjNp4m2ngBNXk7Qmfo6gLCDXG6l4jv+RmczWdwBjcpX/8c7mfeg64tUSy8huzQ21BTJ7Bh4/+rYf/3+AbFT/7kT/6562PHdeegQQAAIABJREFUjv3Z+ZkzZ/6Tzxs5Ys/OY1TC1KBLp+kx0hGJ6DLGoZnfJBYRu36A75VJxBRdVWekAiJnlVFeoqQVkU3x5AiXDEVGPJqmGm1zV+8V5uwWfWvoi4RZFIPRPFiHnDpB8ArW6UIywaS4gccGFacMjqSra3RicOwes2KLptlGknIieYoz7hG0EJBDQ4+YqD7HrnLYtg6+homux5p+I+HsF+mP54nChNC9Ts+r4BlFWxtSndHWLbKiwXE94s7G00CBGZW5GrpcCRap2TVOjZ6mZbpsViUH4pxMOAxNg1r/In0/ZOQISqlhT5bYpzJq4wGVogIYUnlr4UagWHcnuWlXqPmnsfkevkmpMGYhPcuye51dZ4INIkKToYwhLRQH7Gc4W7qTThEhTErHdZnq7OJ5e4xdwRG1y5VwgbEc4tsEzyYkaUBSD/BMRltGTBvL8ewcuYkoREoicqbyjAPbV1jNDmDyChWrGIgK14MaODmj3Od0fpQD/hp9L+dk+iViWWAQTOUDTgzPcdUeJlAOvkmY4DolPWKES5gPCMSIqskJRELsF2yEPjJJ0CZk2mxy3XXIpeFIvMqGqeOLmFRGTJltzk9ophOJiiTTeYHjDFjTM1gSzhYnUc6QVNY5LE/TN8cYS82U6kDq86rsea6IJXbtHJ71mWaHDblArTPNjh8gRYEVgpY6jzSG2JnEzZYxYou+V6VUJFTsDtuBg0rnSWQb4c/gmR1a8Sa7XpVRXkYJwwH/CTQeK85XuEqVyWKdzfISTqYIe2XySsKoKDMolihcl1Qt0RSXsHEJVYpxhCXQI2a9Z9gY76ey3eUe1rnh1qmIPrdlN5nMBmyJeVbzEyhvD9cfEhUFW9kUxtYg8ElNykrmU73eoOVcYigruCKn7K+T65toU1BWIet2mkxIDmYXKXtrBGaZoePRFTVGuosWlnm1ykhKumaSPh4WnyKfwpIT6QFlNWBBb5BnEZOioKQLCHa4a7BGvxwxciW1vE+56DJpX2AnUjiFwWpLasdcosVkto2vJDeyb6Iqr5BVJQ/1nsAdGtreARJTpqw2WNar4AS0aZLjUKfN2C4z9ATzRQ8bKqzw2ec/y04xSy+fIXAlG9RRpWvM2z77slWsHGP7HmVjKFKJZwoUPo6OEYXHRG5whIsJB/gmp5V6uCaCFIRNyUxIO59irxqTKoXSYwrtkesQWdoks5aGGNCx80zLPolMsKKMR06aSfY5PZzMsOZFhGZAnVXwRjRsmyBpcz47zkJxk7XwTgpXEpDhhRd4/Widm/ESGMFAh6R5iSndwfE3iCKPdhEyFmUyJHEWcDObZqgqzLJGUjI4VlJJMky1YFeVuHPweaQosykdtKwSmiGxddh2IsrCJRU5W3IeR8Qkus7KhqZaXmVgFXk6R1l69KlSshlV7dFKA0Iygn6bOJ3geu6Bvws2JdIJIzVLzxxgKdhiLASVdI16eP2vnI++4RS0053n+fT6H3P/1v2EpZC7T9zH+Se2WPa+xr7oDF/96kXS4ZAvlG/DSod/+cDdND7628zsG1Kbj0kOv43r0UVifE7xHC1XEEWv+iu/abXFdlL0jSHmQg/9Ugcr4PDuPJ/lcaYak5T7Ia6qorXh9Rt3IM70KG2MORxbHsTFDxaYnDiMzno0lWB0bZKBu0wzv4SJVnjr9h/x3OzruCjKfHOlxD3RX18t+HqvmCttMNay1k/53g8+x5V2zPYwo+I7/MTrDnJysc4/vGueibLPO37rWb7/1CLGwmov4bvvXuCuhToPHGzxtpOSP976t7jS4Z/f+d+x1fNxpOTL17uc3x4RGXj7RI3XNEv8SOJwOLE842tKjctEH3k/Ay/kp/a9Fe0HHGhFuI7k070hv9Xuo4B7KyX+5dwtE1ccD3P5Q1SvPYlyHV44Occfrd/F45Xn+GTvE6RpwkAOWK7s493Hf4xP3HwUGewy8p9iopoQMcdOv8rXAslaZnlIVHGARCTUpuYRxye458RbOev2edMfr9LaG/DIyZucmb5CK044upuzc/gOvnbgDhq+z/Ws4K2NKk40R3LkO+HK7xGsPgbFELm7ymL/Mv6XbzDf+wjdN13jl8+9m7EqE2cVfvz0w3zL5ku04i6ONfz+iTfwvh/8Hna9gl98OeWL1SeQo9/AsZa3PD1NZGqkjX3MHbjJF9eWCeKUxHOJCotqLnD0mWcIvvlB4n/zq2AMzvI+sie+AMYiGo0/R36nKwGNygJe+Cqm5a9zYuplvrp5Cm1dHCHQnYzZocYuRmwUiuOhz2ODMefSjBM+3LdzlUeTi7zGDXkkeoXv8D12tn1e7s2ysnQZb9PiyJhQXsMrKbIj34luHcPdPYMcb+GMt1Czp9BTt1N5+l/jtV9GZj2s42MdD2/3LOG5D1F+4f8guPgwauZuTGXu6zb2/zbg76qC9vXA5778FQwJgTOmkStKcsztyWV6RY1Ml2kUGXNynVhrWnkHF01lHNOgxycb0xxrw4gG9co2Qo3IpWE0PopB4HoDdm2d4+oGWit2RQshcjzbJTQZRnvUnQ7CGlbNASZEHwKF1rBp5tDaIbcOFsGureDIHC0VPpq2nUCKMYV28ImZjA1BktPWDoUj0PkscTFPzb+KLKoIbTBezKqdJ7QxKq9TSM28GqCMQy4KnKBLmBWMtIcQmmAc4Mk9Zswavttnod9BpSW6xRyRHnOcF+gLj6bNWcuXQQuW7U0CZ8SmnUQaw1iH+CZjQW6R2TIqDykVQ4aBRliPdTVPM4+pyjX2bBnP3vIbmpGX6CWzZMNJvFwRsYfQiqruEihJljcoUDiiILR9nnZnqRqLzhtUi5R1NUeeNMCOqZke0k1Yd6awRlHKfTJr2S2WMGlEqhtoX1MXm2QGApFS6BBjJb5JcHODcAyeTdhLjjIqxZR1l55pYXSFBe8MZZFR0W2EyemJGlaPuZQdJ7AuJdFns6iTFBWUqlDLhzTkOntFgzm2uGwWGYqQWJSZNhtMFwPa+NwnH2NLr5DENQYiQEtFJAr6tkonn0P7I/qUaMtpCiEQRjPnXWdsQ5QKibRiR1QpSYEeLzCrbyLdHrqATPjkeQ2LADI8UxCZMVvJETpOgCNSlr1zJKJBbloYxkzoEbnxyU1I4gZc7z/I0eBprqR3o7WPH3QI4yla7g6jpM6aDsGWECoksjEpkpGfUhe7tHUNpcos602mdI+OqjM2dYyROG6B7yRMmD18oylMwCifQuGw6Nwk1BmbaokMj7rN8VUfoz2itIT0OxRW4kqNb3J6o0NU1ICxLoOwYBVOFrGo99jR09ScbXaZ4YZexsXgZLMEosul9F58a/EZ0sn305AdjDFURcw023TS42zqfYiiQq4hN4IF1tn161BIHJ3RMEN2xQwxgsWig1+MSYoaGoeSEWwxTcWJOZhfoxErtsdHiL2CqukQMOIwl7meHySwhhmxzaraR5yVWVI3ENIyjo8gtUEVNbZNk6HxCcWA3EQEokdd7HJdLJFJH5W5NM2QzEb0/JCSLhBosrxBaiISB+bFHpW8g5OnpKbFmApCjBiaFqVc45S2aWUxmZOhdZMbepleMcWEaNN0N+jrBspYClfhGB8rNJt2ksAohDC0dYvUCQiTMfNqi0W7TSlTvKL3U3EKduM5qvmQffoKnaBGvncEo7qMvCp2PE3qW6bL1ymbDtHY0k9miF1Bc+QiU5/ceOSUcK0lkxpPaZSqIN0RDGc4HDwL1qFeDBhTB23wrKKt56hkYybETQ6Z6xRZmX42xQwbbBczJEUFV4yo6oSxG9AyV1kpbrJjpxnoCXLhYZJZrBhivQ6ZDSmyJtpEzLKLVoIMF0coXFJWHvz+v3Q++oYjaF/ceIwzOy9xZHCE++5/LXq3xPq5Ht86+a9xuhd46oqLEj7PNO9hUQ5oZBc5dvYFDjywhRCCwbf/Hl/unaFmtwnJydJzYM3/i6RZY9Ff2aL47Br68XXMSx3spT52fYztpNjVITO7FZ4Nz/KSc5Y7N++iCGOwktgMaNka42REnRItLWgZB+GGhJVFRDhBpTxBdbRAqt5AnLyBpvtxvu36w5yP3kEvV4idhP0TJYT7n069/HoHZO/92FkcIfj42W3Ob4+4Z7HOPUt1Ti1P8K5XL/HK9oj5Rkgr8vmBU0uUfZdK4HLP0i1Fo+w7VAPBP3/6PSQ65qdO/hynpu7l6Rs9fv/5dc79CTl710SD2ycC3rZWMFHAZ5uS2lP/hpnPf4ybtRne/aaf4o6VGf7g9CYf+MoqH73W5mOh5s1BwLFqmV9YmEYKQe1TP0qx/ikmLj6GciQfuXORn981XDQbCEegrEKEkqXKEj92/Cc4UDvESvUAwkquj6+yLzrOaO8ErmOZSnf5KhU+YnMWbMHJf3If8fMb3H51gS9lz9EfTbAbKQ7fbHPfRcnx3n6S+gJfnH+S1mQHN73KOXmcvTjhpZc7zJ4fU5mZ4cyFV+HXnmSnP8tlscglMcNwocHOQ5rffOFHuFtus0KH79z5CjM64XS4yB/c/gY+8Za384lvfQNhoWn2Uj687yzO6PcpKZdjezPcttriyCYsTFzm+b15lJLkrsuhzS5zM9/ExcUqZycabD36CPNPPoHe3MA6LtnHP0bywX9H+vBH0BvryNbkn9sXVgrnqFVOQfJ7PLD4LIFb5eLeFCAhUxzoabqjnM96mm68x5lxwmPXX+Dt5z/AQ0rxG0HO/iLno82Uf+pfYWtvlvPDaWwLKjcMg6slKv/gTUgRI8fb6OYR1NSd5PtfT3zfv0BXF0lP/BDxff+C9Mh34K9+gfj+n2X04C8SXPoYSAcZ7+J2zoNwqDz182RHv+tWje+/4/h7gvY3x9nPP0pmyrjKIShKzKZb7NgmHTNJ2W1TsxuENiVTEaQtgjxkoCYopEIYS15U8Elx9IDYlJnzNuknB8lUlbpcx+QOg2KOQO6xag7S0TMM1QyxKxmLkIpN2FFzDKTPjNmkkmk29AES67MgtujqCXxbMNBV5sU2ni0YqTJdVaNaGMbFLFUzZi9fYsO2QPssOdfpJvtJilk8RsSqSWAySt4Oe6pJZssUto6VA+piyKZugSoTawc3q6OUh2fH9IoJHJnQtRUSK0hMmTFVemYKJWDC3SY1VWzWYFw0yRzIpSAQCd1slsgOMCZEqBJVOaZtphkUs5SNT8dWGKlZ2rQoK4ckn2ao67hOjIOi6B9nX/AshS0x0hFWWAQZsanQyCwVHaNECm5BVzcoJRXKtosvu0yKK2S2jqM9tMyRGBp2QFvUqOVjwiKkb+vsqhZSZhjr0xI9qs42O2qefjFDX4Z4FCghyPNZptMBYzPJOlMEwykyLFKMcJEs6FVaaoNL+hjrZp7Cgm88BmoWiWVbLTA2Ch+LQuDmETWnw46aInI6rJoFEunjAk1nh5pOuJHehlQext9lhwkSU8ZFUHH6DCkztiUWzEW6TFMvNFO2TV+UyTE4NictWvRFDWM9prKUzDTxvC2SeBkphpRNxp5t0KOBQ46vQpw8ZFfX0H6fsQ2p6wQlBKHW7Io6VktCq9kpDoHy8VWACFOGeYs+VQ5xjnG+QCefJChdp1NME9vyrX5wCnIhqadlRFEnsx7SOoxtRN3tsJauMFANHCGYsDlz7jVEWmczP0aiGsSqQSDGTDoblEnpZ0sMpEeQCSKd4IuESEtUOCDRPpEZgopQOiQUXbbNNEXhM1K3TMQnbMxacZgJmTBp1hkmx2iZBCsEHTVPoiYYFw10XsVIi2N8VpljxuzS0zNI47JlWkQiZq7yMomKqBgLpqCTV5CJz6DYTydeZmAi5lnnqjnChlmhkvu4co+OaOIVARP0KByHzmiFmuoSi5CSHlKXXW5kJwjEEIOgUyyidciuncSVY7LxMZRRzDjX6AlIKBPKhCSeRTojfD1i1dzBnF3HyRW+p6nkgMwIdYKrMzr5BCll5nSPUrCJkw/omgnGNBC6QkqVQI+ZNGNyIVjLbqeaOnSyo6yLSYz1kSpg2rnKqlnCwVAbthiqBsN8CaxhYCbx8xJdXWU+HWCKgAZtBjJCWUOqqxS4ZFmTWDcY6hoFkCYrCPo02WXHTIEwrDjn8DPN6uheNuwkdV0wn20zsiW6ZpYSigkR48gRATkqn2ZJddmzdVLdomumGOhJDsiL1Ow2Sk8yzKtIXabrCjyhyOMFhpTJiwZBoShwSR0FsgD7J1zB0aS6hi8yMu0jFUjjEso9XJuhVAXPhMi8gSlcjJcxMNMoabjjob88xfEbiqA9sfUFfuOVX2dlbz9Vp8p3vfn7+NrD1wDLq8PfZr3v8kp/lo7f4Ez1Nn5gX8bsxReZv3iByeMjbuSz8E3v5N3tQ9Toc8zLEMInjl9CmyHl4FXo023UY2voL21g18cQSJgIYFgg72jiftdB0Aa5UMG5o8Xt+17FI52PcWp7Hqc4gHFz2n6f3zr2KJ+YfZI3/lffR/uOBu84vUa1/yKzlz5D201g0KaYPUiRgu8MqPMxXIYcG1/nf5h/iMdtwdu/2CZcqKBP70IrRHh/cSrmf2nbWmv51Cs7/Punb3Jqqc7jl9v8/vMbnN8ZcWQq4te+6wR3zNV49XID15HcMVejUfIAcORfHBC/7/mf5pX+OZajfXzv/vdQKMPvPbeOKwVOrPjppMS3NUKWd3PEShXvOw6w/PKj1B7/DML3Wfq1X+fknQe5uDNmvl7izSdn+cyMi8k1a9cGbD6zzUYv4Y7pkODiv6d27UvknuB/PDjFB5ISKIe7zElu37uddx78Xn7mtf89b116G5OlKVzpslI9yJXhJa4Nr3Bi8nZ+7u630HumzTOmxqutyyqWr0roGsP9uQ9jw4m9/axV6+zWfY4mKaWdXZqjglOvfw+Oe5Cd9R4X9JOUxH4sZSr9y+xtPsXVZ7+Ce+Epni1O8ZJ/G9fZx66cpOc0GLYX6YqAxbhLK8i5GS3zldadeAsB7dvmee7oISbHQ5JSiensq6jx7/BLw59gx+zguSW+r/hujkwdYCMZs52mtKjx6o7LVnOaTx0/wOuefYGN+WkGjQZuHNO4cgX1hccwmxvIpWX8Bx7E5jnx//5r5E8+jmg0cPftB8D356hUThEPHuHYxPMcmgp5cfsg1lg2Rym2mxJt9tibrdCRLq7O+LeL7+TOsMnbS3XujQ7zZdPlI/WQH37X/4K7scaVdspmvUw9Mzj5LPZHf4X84LeS738DxeJrUdN33SqXK11wAhACGzZI7/xH6IlDeFvP4XQvEN/7E8h8iLfzIt7G04giwfoR/s0v4XYuoFrHb73n7yD+nqD9zfH0575Ix9YpcCnFLZQzpiMmKHDIbQmrInQ2wYA6wjrUveus21lck+NocYusGB8HxVBNIrWiWxykT4VQZKQmwBMWKUf0zAxYQWGqGCcDLekXK4xMkwyXstul7HTo2BoJFZCQW59YV5EqYkzE0PrMsMMNluhn+xgSsWMWGAiPxLpIGZOrBn01SywERuZklOh7glhCQkhAjCw8jDR0sgNkVGjYESPPsquWGdsyE+wwpIF2cgQCrIuyPnnRomuaaOshZEGvmGVUTDK2IQPpYxG4IiVHkBJSqBrKBEjrkZgqqS0RmYK2qOJYizHQzCx9USOXFsjo2EkKG5Fmiyhh6MkQF4U2ZTJbYlfUGOgWSb6PefcMW/GdxKaGK2IKFRFkE2zKFl1RxRiH1JZwignaxRKuyOiYKQZmEuVoMhNQZozWPltmmr5p0BV1HAxKCFId4FlNO99Hnk+SOBJrXbR10E7OyNaIrYfNy+zISQZqAg9FqCClwpx3jTgvYQWIosKIAF9FaHyGUqKNxybzWOMjgLJWjOIjbMuATLhY5THCReGTC4HN6tTsgLaYoM0MiZ1AFj59z+Cg6ZkWiarhyQGZkNRthw21QqRiIncNV8aMVYuxmiYXoHEo25wwKyELh6GooN2csfSZKWKqYodE10ipkKkaoSqBFoyoUpcdmnKTy/oYsfBx85CxLjG0VfrxQUaOR2EjPO3hyZyxaTDCw8tdCmnICHFkji3qmNEKQ9chk5JMV4iNw81iBeUoSjIlMwFaGhCGK9kJOtTRQiCsQ8CYWJToUcUVPWIb4KYVdsUkBZJcVbBC0baToCWeKhFLTUN2KBuXM8UpCiCgh7IeuQhIVYNEWmJ8tI4IrCKRgoCc7ew4Y3yGpow1PkMTIoxiJ19Aa8h7p7jozdGjwkB6YD1qaUBf+AxlGVHU6NFg4IRkQiKzFjqHgaoTMSaxJYyw9JJjpDYi0JYNM0NWNDHCoKygLnpk2SxDWyL1CnJdQlkfIzTjbB/CKny3xyA+TKglVsaECl7M7iMXkKsWW2YBIwSGgFoRgrvN9fQuYjOHsSXqWcBAGiKGhFqx5UyRqzrCSvaKRbSbI9AUwLCYpRAOgRiTp8vgJAghSKXEzSUULn3RoGpGxHgkukFgLbumyaaYJsenMBUKPFLrU00VuXEZSZ/COBSmRm48GnHAMJviujNJIQ2eShE6YltOkDoWn4KBnkALSHQNbSIiO2ZLVIltmVAO6eomA9VkTcww1tM4FrCSkQda1bBpkx3msNbF6gAhc1LHooQEE6AAX4fEuk5JjMmFh7CWnBJal6jIIUM9TWpCeo5DLgIca5A2pyRijr/ubwlB+78vfZCL/Vd4YPsBfHzuved+Xv7sGpVmyMGjOV89L2mngperx1BRg+Os8kB/nQMrp3Ejw2cGD6BuC/idZAWXgB869jPsdR+mEryG/s6nyF+8SHjpALgS9+0HMFsx9HPkXIQ8OYl7ZwtZ8XBWasjlKnKqxERjis+vf5abyQWOtd9MGm0DGid3Wa+s8+Frv8eTO59m3nkTH82qPDCdM/3ko7D5Es/V93HJVrkQByzf1qOUdZlOz9ELFrjmr/D9N3LMdgzne5iv7aBf2MX2M+RsGeH/x+Dzv6Rtr7TH/PTHz/PH57a5b1+DR1/e4svXu9w2W+W3vu9u3vXqJRwpKPsO7l/DJw7g8c3P87tXPsgPHfkR7iu/h5/5+Cvc2Es4tz2kJR3+13HA0dBF+BJR8fDfcRh9/SKjX/p5xOQUE498Em96hoVGiTccmeLew01+dtBjbA3OWOOe7ZIWhh/Ifg1/9Vc4uHuRM8erfHB2gj/K6jzkvI79a/v4qbe/j33N/dx99BTyLygCc/vEnXxu4zO81HmBj978A36+83pOiogPy5QTrSq9Uc7zO0OeWdZsDc7R9Ft807DCTG2SL82V2X99DXfc43RUxj9/EcIpjg0PcGxnD6G6TMUKIVzmNzfAZHjGUh7HePUxFZtRsYrcVAGXFTfgsJnnpG3CzCSP3HWUTrXB3GhErxRy+41PsmU/jMDyoryAcgzvXftHnN54hDO90+ykQ2a9RR5cfBfVxfvZP3mKw2IOVZri/m2LjKbYnV/kzP45js0vYq9dxaYJ6sXT6Iuv4B47jnv0GHJyCvfAQYoXX0BOz+D7c9SKGnvJkyzYV5hYT7ioFrifl7nOPKYQlFaHzMyXWS03mQsjnigfoj31IG8//jY+u/4JYh3zibVHecdbf5qDlx/m8rjCWj1is9tm38lX4zaaf+3xampLZEf+Ibp5BG/9KbJj72D4xl/B23yG8un/E2/jGbzt5ymd+R1M0EA3j4L46xcA+tuAvydof3M89YXPUuChkfi6QDkpsaiQi1u+YyNbQxZVBk5IYqts6yUy4THWk4z0FBJNIkpYExJLl6FaIMPHEQUNscNYT9CjzlA3McIhEz6eVfhyjDUeYxmSSo9Uugz0FF07RWIqxLJMIGIS1aSwJXwEY1EiNjWqccRN9uEo91bpeCExgPqTQH5MQLWQDDxJKjxcI4mJUDInsVUEoFSTjDK5owFJ3/HJTBmBy9hGDKmRqyo4GVIbQpnRLvaxa2dRpoKxHhV6dJhkLEMS6SEt+FajpaajlshNGWVKGOvjyhRPRcQ2ZGQqjB0fISy3DodYeijrE8sQRYAQiqrJ2ZMVtBS4VoOwKFysKaFsCMIwcGAga2jr45KiiwpFeoDUyxlTIqWEBbQJ6FPD1wJXWDqOT2IDCnw85VHYkNRPKfARxkWZiLrYI5YlQvrsmWVy4TFyXMDg65SBF5CYGg094JI4SkKJhAq5juiZBWJTY5VpEuEjrYu2IbEIKYQlxSezJQa2SYYH3PJjG2b7MCYi9zKwAqUjxqKCtRKFh1ARfdukkBochTQSgwBHUSCxVpLjUtgKxoSMbY3clhmLEJHV2TSL7DHLyIYYAeAQE9F1yvREBYNEuzkWSapbjG2Nm6wwFgGpKOGi6dLEs4JhMc9GdoSRrSCcjFw1UEWDtlPDOiMMDtaUkCZAY0jwUMLDmoDCMSTSpcAhzeZIhUviabT1cbQPxiEhBONR5DNoaxmIKiklxpTJpAfcIgCimGBIxEB63CFeZlcvsy4WyeytfzYjohCgrYsxVQopscanr6Zp00BbFyWg61QY2yau8RgKD4MkES6ulbhGMHYEcdEiFx5BEbEnQgSSgZ1g28zTsZPEqsWmF+AZiZWK1EagS6Aj+u6fEG0kKRFCCCQWowO2nJDUcYhsjhaCQgpiW77lpYVDIkKUDdC4WOmgTERaTJK4DgPdIsPj/2HvzcPsOqpz79+qqr33mbpPj1KrNQ8ty5Y84XmQwZaxMRCGwIVwQ0IIIfdCEiDThRC4+SCEIQRCEsgTMgAJhCGAGZyAAQ9gY+NBtmVbkjXPQ0vq+XSfae+q+v6ofbrlG8jgPN8T8l3KjyV19+m9a1hV+33Xu9baxhqm7CDOJTS0I1ENxtwSUp8wLlWO2nPIRDDKktoSM7YfBXjROG844fupS4J3hpbrZlonWBSzEpP6MrP0khLhXAJo5oyi7UtYEqp+lglToe0jxCU43aYtBaZdDw0SJnQFyMhchZZo6r6Kyoo0Tcqcq6C8xitP5oq0FXgfoWyROeOpuyq4IlY87fZiWrpNW2LaPkbZmHLgvzh3AAAgAElEQVQ8yhxdWAxWKdpKcAKZT0AsbSkxoQq0fRHtU+p2gKbrYope+plmLhtkOh1CR9OIU0xmS2mIwmRFagrmooymRGS2G2cTrALtLXNSZs5XKFKjZQfIxIXXNTnLFAO0jUdshFE1dKYZVyVSp7h0y00/8nn0X4agna6P8sHt72PJ3DDL68u5bssNlOhh932nuOZVI6SVVdz3vZ1Y2nx76CZuqZ5gsFzg2bUvU+qZYUwt48FTg/zVqvMY1/38Se/D9MsVjI1+jrnsQfr2v5C54Scon9yIrsWYSwYDKbtyCL2+J5Ci5Id75LcsuYm/OvUpNh1ZTrtiQXkqrsJMPMPPXvBa9s3soZbcR+3MpYy2DVv23U+9XKLsjjO74jlkacquExdw7tK9JI3jbJ64j6+ueiGfWdtHrWK4tOahnQHgRxvYx8awT4xD2aAGis9obp33fPTeg7zn23t57vpBJupt7twzznBPgb9+1cW84uKllOIfPt5GbZramVPMnBll5tQJJk8cYeLYISaPH6XVbXj7fW+merqbR/Zv4d59NV6+tsCuE5Nc5RPeOW0oK0GWlJGfWY2c34t4x8wbX4/PUiq//XbidSPz92o6x+sOnuBQO6Mgwr0XreGcpeOcaXyE1zfuZ2NtgiwSvja4mfVrPohqd1Pa6Vg9uJb9+/Zw5ZWb0fqHj8Mowzmnhvj23F2kKmM2arKpu8xr//uNfPfoJD3TGUMt4YmpFo+7Hjav7mNoPKVc12xqL2Pf6lWY49tZvusRFp0+yvHzNlJONUtOnqKaeYpZi5JTTPX0c6o8x/LSehYV17IuPZdhu4ZFbgXDvp91lCginFIpn9kwwJdGhshwJO0GL3rqUTaeepSt3bchQJ/to6LLbN69lv213bRro0DKs/svYKS5DBrjjJd68SoiFiEq9VEsL2XY97HWLeZ8GeFxN0W/VcQrN+LOHAU8bnyMbPcu2g/9AFubofnFz9HTvZPuu95MdcfXqUTrOVmdYcXyA6xIM+5Mr+dNzzmH7x+cpO01c4cbXFUtc6joaXiPRri6UqDHaMQLx+pH+aejt3HDDf+Lq499nl1TAzRiw8GHvs/IDbegzb+jXlEexthedRPZ4CbENqnc926mX/ApzPRhzMQesE3i4/dTeOrzuMoSbM+6/2vCH39C0J55u+fbDyPKkvmElCINbUhdmUwJIh5jI1oU0WS0KSGugCA4WwYXBzAh0FIKL3kFJBeB18y6Pua0oa0UXhRWwKFIfZHMlchcGa2bWB+AkDiF9zENFUhFxTkaSsLn0RTULG1XIc6KzKiYTASvAB9hxeNdgcyXyHyRmo4RG2O8pSEJTjy4IpnyWCJS0Th0yNeQALpakuBcglMOL4qmxFhXIPVdNFyRpg8AHi9YZWnaPloqQlyEE9AArkDN9ZD6BEuEtgbtFUZlNNIBMgkveW0pTUZE5gtkomkpCcDKF7BiSH0Br1PqUsQ4j0JhCd+3osIaCFgcTSo4JVjbxRxVpo0my/ufkpC5MqmthHVAM6cMLUpY0VgMkYOGEcSWcd4E4iOW1Ee0KeBtmTmqNCUiFUWxHeG0JvMJTsGsdJG5EqloxEWIC/nk9QgsBofBO02LBC/hhTRaNWhIROoTnApKkMXgxZMqDzhsTiDb2uOVgDMYLKmCTHsUYQ5L1tFQikzC1w6DcwWs1zhirEggGyrB+QTnFS0JhLilIjLRRB7aYjDtMqkJQLMuhpav0NQgOLSHpsS0ifBOMR0ZWgqyqIUFJO1ismABISNGSUomgUBmIoBCIWRolBesGGKapLYPcTFzJuwl44Sm6LAuktAkJtUZbYloSMgx8j7GiANAXILgaWhN6grMukW0RaNxxDbszUwpJFgoTjTWFairAj4EeOJF4VUaFBwFTYmCUiqCQ9NShJdrqwjlYlIvtIyjrTTVzNOkSKp8cBzg8SSkroxTLrdTsKZJ21UwXpMS4xAchjSr0jQe5xKiLGJalWiLCXPmDR6NF0iJ0QiZ+ODodRoRT6rbtEQxS+580VmwRclouCpNScjQpKJoUyDNemn4vG8YWr5Iw7Tx4rDeMEcfLaVxZKRKhf9thYYRrNc0xZCqjJQE8TkZkogMjVYZrt1DI06Zdb1YFCiPUxbjFW1inElxtkgqEalSiIto2j4sGp0lIPlc+wJNDYn3tEWRoRDxZErTUIFAt1VMjW5i56hTQluNF4PL91Nmy9QkwamU1BeoUwYvtI1HO0PJWeZ8hVkjNFXErOuhocNrx8GjsMxqFXI1XYRXFpHgCpt1A4Hsi6Xtu7AktJWEvZTvdSVpUPMkoanBugrX3Lj5Rz6PxHvvf9QPz5yp/QcedU9vPT0lpqbqz/j3X3HnixlrneGWI7dQtEV+9Vd+i4e/dpCDW8d4wW9ewF1/vYPJQx9iTiX83Yqf5VeWneB6M8MFJ96HaOGxNe/g/tJy3tO3nmX+MF+bOQf/0BjNyhGOXPFeJNOsPvVRCuePMFfdQVfX5f+uF0a//eHf4sCBY7zg4M9TK+2lX2dMJprbl97OxoHzeXziMSaP30B06ll86NBtrNj5MJlSmA++nyd3zTK2v49qtcGLn7OXZNvHmbSeK674AkOFIreOLEdPtXF7prDbx6GZhbr0WqEvGsDUUvw1Q0g5+hf72JytMX3qONv3HuH+HQdp1Ot0a8v0bB3tLesHSqyoxsTFEnOT49TOnMI5S5QUcNbSNbCYdrPO+KH9eB8Ow0JXN0ob6tOTCILFkSnLd4c2M6pW40SjveN1PubFph+P8MTUHoqFGtNLG+j9+xl5eBu2WKT2hjcwctNPMXHsEOXefnS5i7ccHuWxeoMerXjfIss/7PsLLtz7LX5pcoIIyDS8a+gKvjR1Men4Zl5W3EHk2xQKJdYuX8ZNNz3/h86F957Ttz5I6QB8p+dB/nLJrbRVypvO+w0G+p7HHxw/w3V3nqBnZpzvJYr9VFDAC6nxBgaoUADgAGco3fkhyrVJjg8Pc3jjZQxWRphsHmXd4/fSu/a5fGtFF9dmGyGtsdXs46r2RTykTjJd3MsN1YeQsQYNtYJ3XnQzT3VvYHMK167o59Kjk0xN7efdzQ+QupQ+eqk2i1z9gzI+De+Is5Uq6cBifFIG0fROTNJXXMrFvZfzudU9rD1U40iv4URB+JU9bYrWovFoFDk2wDcn0ZevYOYv3wpjJ0PydGYpLmohlS7aLU3/+Q1mrzuPPd07cGmVQuX5rF35Zr5/dJI/+d4BTsy0wsUixZIbhjkunorSPKuUcHNPFzsOf5QHz/yAyfYEX1r2Onrv+gif2zWC9UJlYBHrb3oRay69hrhU/jfvuae1tAFRkeSpLxAfuJ3Gpb9G6f73E5/4AeiY5roXMbvlw/9XkLT/6Fn7n9kGB7v+U+//wbe9B2faWAxxWiAzbYxTtJXDA4KQ+BYpCVY8WjxgkSzGKQ/KgpcQwuYUqBTnIozTCA4vFnSKR+HQKCx4A5Ih2LAzncmVJIidI8vDaQwOB4iL8nt4jBWsUijJcF7hVFCWQl89HoUQgJdy4MQHlUV5jAOnMpwowq7waKsAjZMAwgWFyQxCm0wHYOV9hMcj4gKAtp5UKUJJXofygNeAp+iEpoBIBmi0A69Ak5JiEG8QUjIFBedpiMaLQ4kDfCBICMorkkyTRg3wCu0VqXahiIQP97bKosTincIrKGSCw5MZh3aCUxbrA9DSTuN0irEOfAIqxSqHdxGFTNOIMhCPdgrbIVGS5UU0ABfhxBOFxyDaajJtsdqhsHgX4cWF+fegELxYlAenwPmg6kfeIi5CmxptX8ATbKfTtAMFAbwri3I69NMLygsKMB7aAi4/2xQh9M84T6QapGi8j/HKITYmFQE8iKdIHZt1zb9DDZUCES7ocJi0iNd1nHKIi7EC2ktuQ+2guHhFqkC8IuiJHhGP9QqUQ3xwREBYV+dNsK18foLlCdpBohq0XTnfC4pMOrsuO+voFrRzpGLmv85HhMISpwlegj043cbYGIfDi8eKYLzDK4vP75s4T0qws5iUVIFzEV45Yp/ifFjLTIJyhtfhftLGiyKxiqZ2+cg1kbc4b8gUGAeR02QiON3Cex16q4L4Yb1BeRX2u3iMt6isiDdNvDi0NbR0GGP406ElJfMxyguCxymHtlGwafFkJlw7sWDFk0ogohEpymuwMU63crIZbNOJB69QPpxhHoWyBsRiBZTvWKEP51y+aiq3w0zCv70KGyJ8H7x4vDcYaQGKzCUgaTjdJD8nVIb1hqIVrHJkuc2IWKIsoakd4lXYF+KIvAs2J4oojTAeWnGGy61MOY1gyZTH+M6aeyyCeIPTbcR7LCbscQ82n1/jISGj7RKsaYVxOI3KCsH+JKNhLIo0P+MEpbIAmXyEFodSDaw3WJ8s7Ecf+uSUm7dW7wyRM/z2+9/6wx9G/BchaHefuJPf3/ZONpTO47wdG5grzPHW1/0eX3//Y7QaGVe/ai3f//R9NKc/T1NF3LHyhdxSPcmbW59Cpsfg3CuZeMnnuWXHDkZ9gT9/7CSXjXWFCS8a7GsK7N//ary3rB/5IsePv5sVK95PFC36N/fxZP0EP3/nK/j5h3+HRvUYWdSgu6+L0mCFz6i/Y3FxMUdqJ6gfeButhufL33gH9a4u5ror6LddxeThPZzc+t9RlLl6xd2cP/cnfHvzn/KL6kIuLRf469VLgUAs/Mk62ZPj+KcmwYcDzPzUStzpBpJo9LMGAZg+dYLR3ds5uXs7Y4f306xNU+ob5FjTkMQRc1EXJ1sRG5r7SNI5vLXz41EmQmlNUqrQqtfoX7EWbSJG9+5k8ci5tGZnaNZm6B4aplWrYdM2k36GB/xqTkVLuVyf4RvmWfR5yzt9gXMo4CViV+MM+6c+S9Zugfc8d/tBtPPsHx7g4LLF2LSNMobqomG2rz6P9PA+br/uRTzH/BOPjt7BzW3L/zN6JBwUWjj0vA/A4MvRSvjg525j0dxBTulFdNsp7paLedvNG3j2uqe/FNk7x66/+TJLJobQKkEpxZ9eeit31e+lqAYx+tc4b/QwS6bHaWRlDreGWe8a3B6VGaPCdXKMl6kyF9qVCMLpbJTCHX+EatVBFNH652MG16N71yBKk0bCjiJ8dnaO5zrNkcVPckflcT5y6CW8deVHuCJawp39b+RQpcKmyQO8sZ6w+XnP5mOf+TD/2Hcbrxl5HY3HZ6mxj757T+FsRkE7rjw3ZjgdZVe8mX2HphgbHKQVx51RUiqV6OnuI64O89fFMhdOFjh/2jI3u4db5oZJiFBOUKLJnMMC9bSNmz3BaRtxzCe0Cnn4ofdosUgkZGl4qLaBT/e1WdtV5LHpOayHq5uaklPsvqDCvnUlBPi53m7iqc9y9fDNfGb3n3Fs7igfuvzPWPaxt3HfI5Mc6e+ma+kKGnM1LnrBy1l/7Y3/LufI0xfXI+0ZfFKleutP46My8dF7ASGrroC4m6kXfgqKPx6vsfj/ov2EoD3z9r53vAucximP+EBwtBeskANKj3IRSBbgQAfrYnEEL30HKOcsCUUAbNqFb1rl0V4QNFaleK9CaFOAu/k1F+xfeQK4xgdS51QARSpEVSg8eIPykOUASWQB5FhvMB6yTqSvB/GB9HjJ8Ap8fj/lJQBX5VAuABCRDEsAYuBxAZUjEobY6av4DrnIBw4o7/HKo50nk4VIhnnwJqCsximL7gDV/ArGKzKddSgR2mkycQEsisXn99dOAuGV/DfF5bQ071PnXS450gmYPxAU7xVaUrzXOBGUD+sQlsAjganiCWAvEwUSYC05dBKvELG5GubBmbPmIdAG5QM5FvH5XHf65EMflc/tRJ01r2p+TZwEYOfFgwfjNJkKz2vBI17n4C8wwIX7h0+Y3FmQoUPxQpUTHzdPOQMx9joH6PkaOoO2GqtD5T07/2lBxFFwGU3ReNEoF/qnfAjn806FOfQLpDOMZQHgzzcJLgs6TgWnURDyzLzKP9mxK9/pQf6vfD3m/yZfI0GczPfYdfqQE1jvJSivZ41pwUgkt3GLdoFoOpc7wJXF5QPS+XZ1+Z/hPoqz9wDigtMlJ/hhHRfuigv25vKzwouEM0ECOQznj52fc4UL5CLfANIhRdYgYslEgnnn/4U57NieCueY75w1HukQM4Kd+fnzJ8yH+GDDyNNWDOUVLn9VUhiuy006ECLXucS8Q0gH4q+CM8mLnG2iCD4owj4KzqyzzsPOdZXkjjKn5tdTxM07oTpmIrh8T9hwtnoNHpRyeX+CiYR9EMipiMM4hyWaJ8wdchXOGY3V6bz1BceRO+v89P/MAaw8wVZU6FiwuTB34j1eLL/z3nfyo9p/CYL2M3e9lEZWZ8XECs4ZP4dXvOrV9FUGufX3H6V7UYG5yTZab2X65HcZjQcZXlPl2pFFrP6nj9O3ZoraK77MJ816Pjx6ht4W3HbPNKlrU3rOOtSaKrq/QJqOsf/A/6BYXEdkhhkcfA3t9oF/tQT/2e2h0w/wyEfvpldfRuYUvRdNcGLsJNc9dwufGf9bdkxup1h7AXv3n8uf3/UhVvoG7VaTB66/nvUv2UXamOb4999FuXaElw28HWcifnPkN/nioi18ZPlitlQrT7ufTx127xTy2BjZmTp0xfham5Y0aTRr/GDsNkrLF9G7ZDknetez7/476Bvfh7iMpirgy72cs2Y5vt0gLpZp1mYYWn8e515/C/vuv5tl5z+LroHFnNj1JIvXbkBpjfce9UNCBjPreOXnv8SJ8TKbhvrZM2q52WveZAtERnE6deypZVzycyNU13TT/NqtNL97F/bRreg/eD92eClP3HkbU8ePUJ+ZxGUZVhTKhYdQK7Jsrh7lmsFjZEZ49KJuWPKrrFvxP+f78IV/+Hvm6nVaXnHX9ADHfB+Z82xYVOGDLz6Poe4CrbFp7v6LD5FOzHD9klehkpjCL5/PiazOK7f9OZcfGGNZY5CijRAf4XzwRnkP32hvou0Uc2hGmjX+19bPsfbqtyAqws6ewk0dprX9H0iufBPRucuQuIf4lpXcfccj3H4g5bvasaqnxPhcSncS8fpr+vmEO8luNwR43nHkHbzx0H3MVAxbr3ktv7v/Xpq2yYuWvpjVd8wyeXAPAL0DMT8z9CiPVW/myFSRi7/xEPvXj1B99hbKc8PsOXmMUaZp2YxmoYmTdAFI2i7idjeZmsXG0wy5Ks9qnE+fjvE+HJKph7IWUg9H2+HQPZ15zrTawWMetcPhqDLi4V4+MdEg1kJNwXhmubGuGckiGv0RX724xFwMkSiaBcXL4we48/DfkLo2X9rl6N47ycOnlrFneIDuJcuYHT/Dqouv5Jqf+5/8R5u0pvE6Rk/sp+erL6d+/mso7P4KKp2lteZ5NDf8N7KlV/2H7/Pj1n5C0J55e9/b3xvAPzoQiLOAlkB4qtugFHQIT1CmcsCiMjoPb8GiPQHU50C9A2S0UyF0MAf6Kg8N0k7hdRYA3zxpCuA+kCyf3zNXHvJ93cFbELiHz5WHjmLzNCSEh9zDPQ+i8o/8s+8BAXhK3s9ABObHgwt978BU8Xiv5y+oWFB25m/SgcVO5YB1gax17iX5wER8CPfM5w2vntY35SSQaTfPZ+bnWOWKAp1165CqBQaEyMLkeZj/mfILBECR4ZSfD+fkLGCp8s9mujNeH3SGHIiFfgSlK5vnAXIW1whrj/K4eRvJ+9UZi1dPH1sOWpVbUF4Qn19OBdUvB+1Pa3kIYADpZxGIsxFgZw382STD52DczzsLziaZ3oPugPWOg+Fso/Kdr/M+dXKCvX8aqddeY1VG7nIIu2geP+f2Mp9O7OctSTnJQ+tchw90Lj8P/JUP86RtRKZdPrQOeDdnkYy8vzlB+z8Bd9hbue10Ji4nop056tiF6yxzxzjnHQMLv+875L1jF2c15cgdQ52lcYjP94ay2Fyl7sy38p1166zFWROYW3NHsezYUZhzmyuibsHZIi4nQfl1vAq/LzLvqMqDmOf7BgvEKZyFnXMifCJynlSFvR+whlrY814WxuEIY1BZfk5JIMgdwja/TgvOkv/jdJuPDurM9dnsUnl5mgoY+i0oBCvuaecD0unPPz8ryfcDnciFTv/y85WzHHVKXAjvJFfQQogFoPjd9/wuP6r92Oeg/d3eT3Lf6Xu4Yei5DO1ehBXLluuex+HHxzmxa4pCt8E78P4+WrUpdnady/t7v8Dw8TtxTY/0L2F29a/z6MPHua8/4qca32XZ7hr3nvky1YvW0rd2FQBal6hWn8Po6MeYnXuQ8fHPMTX1DURiyuUL/019XVRczN8c/RPWnHk2Sh5nsjlDpb+HQ/v388Yb3kxPsZd7Jz5NY/wa/mnV1fT1djE8cZBFx0+wte8qFi99lMENj9K1+Fd4/KmlnBvfwY3j9/PxlT/Pt2bmuLZSYlG0kKsjWlCDRQoXdrF34klmDh2jy1eJfEQkCesqF1KaK6AmYPTo3cSn99NQBXb3nM9FW27hpa98Oasuupy1l21m9SVXsfaK61i87ly0MQyuHiEpBULYNbAYpXVIePwhxTaO107z4k/ewdhUmQuWljk+pulOHe+jREww7PsmU2SwyMYtS5j9wB/Q/NpXcMePEV/7bHpe+3pKff2svuRqzr3+Fv5w5FnctvFK7nvWs3Fds1SmD3N1ZYzr+w/hNDgt3HN0LeOPd3H8qSdoZxkN73nyiUd5yYtfzrVXXUNvbz+b1/Sx5/QshyYazLZSDu3ZA1/+NhuTK1hfvRS5ajEHbhzizfv2M/Gtr7Fmsswy3YdqZOEAcqC1YXhuHUtmzuFlUiQd3cq+ymLOxEW+svIyzneOpbqAKnShq8uIVlxF+6kvkh65F/Vbv8CfP/B9/nR3m0P5ph09r4fmui4aK8vcBZzyXZxfTHh7z3EemN3OFY3DpA3P69qngIzfW/4LtG7bRf3YcfpXrGGxGuWlg48Ql6uYTW+gsHsO2buLo30Xc2BqOXrJMvZNH6I8t4xifSUz5cOUG8vRrS6QDGfq2GgWZ9qgPLOqxd7kCLv8GcZaBpzQ7xoYHUFziu6Zg/SXulleiDgnEdb6GktGH6Vc/R7msscoFA5w3dAqjqRd3NTdxba5BgdiR7cT1tRg08EWTgt7hiJS8eyb+C6L0p+ilT3MP/Z10Vu4mvN372P4xAzjQ4M02g2qi4epT02QNhuU+wafuZpmCqAifGmQ1siLSNe9EF07FipBTh2kuPPvSfbdRrroInxl6Jnd48ew/SQH7Zm3h+66kzRXUjw6PGQlhGMB4BWaoIIFiOFAspCzgoQQO3LghDpLZZOgTpAXAlABWPqcJHixIEFJEWdyMOACmM2BQfAYL3i+gzK0ACJ858fiUWIDOBWbQ5Cg0vl58NAhRQsKA5KHEnWw5AJMztU0FZSejvs5/NJ8HlWYA/W0UDTxHaLbgeiCzrNtEJcDvuws0OoAnY8dyD3pKgdLC/3N1RaBeYUsb6EEv8rDovxZfXU5TpM8XCmfMAFEcrJ21vpIAMRWhWIbOUvESyBcnXs6FQiAzkl23iPyBcgVEQlh5YDvgMD8I15kYY18WJMFAK/neT3kYD+/bpi/XLGa/x54ZVGSQYco5zZBJ69RdUhLbmNITpR9rtCo8NJzyecpB8hCrvTltuxzZ4TKv9+xSzoA1OdAP7ehMO8d1uLmGZjKbd9JCE9TefiucsHegrnmYcPY0Hc6hD7Mlw+MGnsW9+3Yv/EOK+H9gZ280HCtDrDPwbIs2Dtnz3OwqvnxiVOYfD9Ibmth7+URSLJAZLTXuaLoQWxOTgVFhifkZy+QthA6GkgYefGJhf2jnMwTH9dRo+eJfE50nQIdHLKh4IcsjCmfN5wOe1tAVK5Q5/cJ9nr2vlbzthb+HYjSvFOgE3row/7pKMlWgkUpH+iTCHnIb+5YEMnDmGVhT82fSw6f38fke6rj5AnXDAokKLQz+bXnt1PuFDprrxDsyiuLoCCPPHja2Sbk4eGdtZZ5Tuc7cyILZ6KIzZ1q4fxyuTLdOZefBlmkEx3Bwj5D0LntXnfDdfyo9mNP0H77oTdjlGGZX07hVMLM4CzXbbyerV87RHM2pVXLSCoZk0e+xaTpoTG0lquT3VSySeIuy2TPHzD6hHC4rKglLX6p692MN9YxeeIoR7c/wvCGCyn19AKgdYVq9blMT3+LSuVyRMVMz3ybJFlHkqz4V4GiFs2ypes4/NA2VFamWbEoA+2szfj4GM+/5EVsWXYjPxj7FpPTiznVFl6y+16Us8xKifHqefT1H6Jn8QoO7jmPiWw5K9VD9GYtDpQW87dz8AsDPRgRbNrm8GMPcP/f/yX3f/5TjB56iiNTO1CXDdByTcppGeUErQv0RYu4O67S03c9Kzdt4Zff+FOcM7KaqFDERPEPVcT+re34dIP9Uwe48+QdlBZ/i+W15/C/azE/09dFsWExt6zkm09M0Mo8179yKa13v41s72783Czdf/xRkufejMrzjo7Wz/AXO/+Uh07dhcVSirr42BXXctNSw7lnvky9olEiHLnuTYwdWcPonh1Mjx7n2OMPc+DBezGnjnHw2GHOvegyVvXEbBju5Zo1/fSWIpZu30n10W+xqecaapFnx9JJbj+5lYPbHmLoxGEKWUoxy/DNNlYcD/c9TKUd8ZptLTYUVrKkXKWAsFkVeHbUzQEljAHf1PDk8gLPuXgJ0UyKmAJ68Hzssb1s/fKn+XR5FdVCjdl2F6Uk5oUXLeEpLG1CovClxZhPrl3Guq6VbFn5EnanNd6RHWXOxbz0gX6m7z+GpsXQ+os5t28ptdp6Hmz8MgcOjdD9tx/CPLWNVJfYv+rnULqLmTNNono/xhTB1libruZiKTO0ocDKC87h8lPDzNhpaqo+DyOAUCK6NM6R5BhPJdNstxO0GjNUJUGbCK0L4WEal4m7hui161k0cT5u1e2UeYzNG09x7XNeRqmQcP3IAJ89McappREPpE2KDVD93sQAACAASURBVMuvDvayWznGyhcwWVlMlEVIcy8P9BxhtBhx4eEiKw8cYHzTZk7u3cqZA3s5tWcnB7fex8DKtRS7e56xjXZK9QNkSy6lte6FuNIg8fEfgG1TevKTJAe+QTp4wf8viNpPCNozb/fcfRfexyhF8MjrdgAvXiPKIl4wea5SJ2fMiAU8rpNghcvBWngYK2dAW7SEiobKh4e5Ui4HGoLJgVMi9byAgsdLAGsKhxZL5D1WBxUriBIBQEXeYZWaBxfiQsidIs+1kkBwxIOWUMDHCaF4SdRGcCirg0rhO6DRorzC6EYI/1NBgRCRhRwx5enkYXQQybz3Ogc0Xjph8zmQzX8YkYKLAqCSMCaFx6g2KEG8XwDlEsL/PApRGd5rjIeIPD/mLI+0xs6DN5Gg6AWFszM/ASiJStG4UNpfB1DpvA6gLl8TTQCaBo+TECbolISQSDpEIr9/1KYDvzqhiEpCvm9YKgmvBjB2PpQNAmnQ2NyWOkQnEAshqJEBt3aITphXjccBUd4HLz7PGww2EXJ8OiRXEBflhLxDgkMIqRVFJHkeong0uTqiQv+07yiaIfRR+wCWvYCWNCcsBoUn9hDbKC+oE0jXPEkQmQf0kQ8BqPMqXj5GCEUUvITy6B0u1yFRHcJjvAcfcsQW3MXC2cB64SvJQw6ZdyQICqNaQdno2FhONCJphXwlRXCo5KqcJgv2medEWu3wKp0nfVqlAfyLR3JFTkmW21ZnDfT85tBe4XSGzsmCR+eh1RkFspDTJx1ngMOZUKFTqzRUw1QLm0zE5k6C8H1ROTn3BsHmRDudv14o+uNzsmgw+dkQyGauaUsWFDAJqQ0LZK9Dziza69zREcJAXU7KrOiceGckahZrwpnUOQUkD0+2HYdEvmAGi9ehv0aaIW/Wm7y6pcvvJfk8B7I7r6iqhXlW+f42TkCC8mfPckYJZsFWAFQ274CZd63lNqmxwQZUnkdm0gUpzRsUFi0Op9LcdbbguIhcBKqN83G+7+icDhivcj6h2LzlRxcJ+bEmaH/x1J/x5OQTvOvi97L3B09RtEV+7VW/hXjFo/94BADRMHJlk317dnCwvIrfffE5rDzyRZTPaPqLONx+Ga++psIdizU3RZ/jwkqFC5/z+1T6Bji87WGO79zG+mu3oHRQprTuoqfnJiYmvkKrdZC+vlcyOvrHzNS+R7X7epQq/ot9XlIe5jNzf8vw6GYKzW5m4mOUymXOnDlNsVhizdJ1vHzD1Ryob2O7O0j/ZJGRqZMMnj7N0YsvxMtpHA9w0eb/wbatFZpLruWFp97La098lTuHX8T3JuZIP/khHvnKZzhzcB9z42co9/YysGqEK17xC9TGTjO+bj3vacA3opQzbeFCibiSXs6NCqy0glpWIf36IXAeKZkfWZ3yX2tHJhu85rP3cf/pe6hPj/Di+vN563SRHq2IrUed388D+2aYOtngvI1C5ePvAKWxB/ejly6n8oZfRZXKHJ87xm889mH+sLaKXc0GadcW4uI6Xhvv5OYffIDenZ9jrqIxDk7e/G561ryR1ZdezZorriOuVJmdnqJdmwY8fuI027/zdXbe9U9k7RbVckL/9x9hVasH1zPIo/FRtkWHOd0cpyXCsZ5FVOsJ1amlpMk4RjS9LuHnJq5ig1pHpXcTkS6jRbAoJtst+mLPiy7vZ+TiFTxweIpj001OFTTn3bQC03ao0ymyeBMrBi/kefse59PVdfz+Cy/k129cy++NTdDKnV4xcCyzLI8N5xQTTswd5y17Pkb1WImbHlyMacWs7ztF35YpnBzi+ORGJqfPo9ye4IJtH8P58HAv/PTLURdcxrKNfWy4doiLblnBpi3LWHVJH11HT9HTLtI7WaIwPspI+kuszfrYlD6fjd3TPL50I3cvGmJ4ehyd5yCuGVlDLZ1ktFBnZ3mWJ+MJGgf3MTXXIFlRIp46hagSOhqg5+R1VMYvoXB4GZPb/x732AyfOOaZ04rZtuUFFw/xyOQs3zo0QevYLGt7ikyUNT1yjDPVLfS3d3NgcI4nNqzjkl2WrnEYG/pp0uY+2vVxmrVZ9t7/XZJSFwOr1jwjO31a0wm+NEg2fDntpVdTv+w3cOUlFHZ/ieLOz2JGH6G1/qfhX3HG/Di3nxC0Z97u+e73iPDEzpAYi0QzQCjzHelZjA7ExfsYp1Mia0IsUgcVIuGBLaBVivYaLVCujOOdwRKIUFVmsaZNlhetQFkS00SrFs6VQClEZygVEvtFMoZkilldABxaMjRgnMGIkEVpSDo3TZRuY0UTEaovenFoH7zN6CyQEqXRyqNVG2sTvM7wIiH7QqWAxouEF0XbUij+IIQ+4SmIxesU62IiJ6BTRIccKCMObBRyTYxH5zlrWllEB4JaUdNkxKAhUp4IR+oKeJOR5Tl6DsGYRu6xFyJxeG+QqIVWGVZnIcFfck+6V8RRHe8KKLHEPs8bSeoICqUcRjXR4kNYnMno0jM4pfJCKYJyBqVSIBRIiPCIqSNRiiHFiyUuzUKrG+VCqKuXNk5bVBbyhUSCgqWjuUAivMlVpiyAYpWCDyBRlEXrBl674IVHiMwMlgQPlFUbJArkSKfgDCJtnAIjnuUtRUtnuCic3cpFRICLUhQqzx80iLIQtYhVUH/FK8rRDMZYsGUy3cbkmNUphxYhsQWcCoUNNEIiTfB5oRBJcYRXIxR1PYRWesKLerXD2ITYC05leJMSOYVTKVoy0Bnl8jguK+JFUXIgUQZOUzAzpBJjdIqyZbwEsOsElGnhcaGEiSgwFlOYQrI4V6MMMQZnWsF2bIKqHkWlRSLdROtAu3UWI/EssZrFEaG9IlYWb+pU1RSmoxyZDKUUymqM17S1nwf9Vjm0zlAuopgJ7aSFICRSR0QTeUGbGjqvWhlIW8jgi2yMiedITYpxofS7Bqy2CBrxnjieBp8ENUw5PEFtjm1MFE+RqUDDlS2G/W3qaB+DCueOVe3gElEZkSfkpYnFiUKLIDpFO4VgiEwdyRIMIedPi0JLO5BA5TEoIl2nRIrPX+dgdIqzESZX1ZQP6nBwGAg6rmHwlPUUTitK3pN4lxNmISIQxcS0SHVQuKrWkkVNjLQoqjkyXyR2AqaJmJCfic4CYRSHSJvIZCGc2MWgMpSNAgkyWXCBiENchFJpHnIazlJMI+RXSgamjXcKjcqdUnUUIbQ6cTFxPEvqI/AGo4LjRHJ7195g4ilUXMO7UggDjuqYLKGYFmibNmJsyFP1Bq/TkGurQq6hUXDN9f8FFbQ9U7v5yPY/4spFV1HNqmT72jSTJtdddgMPf/UQ06MNRMOFN6/g0Ue+ycz0NFYZXlZ6GDN9GBHHWPtd9HMPJ1dVeFL38CY+xOpl7yRJltK3bCUHt97P3MQYo3t3svyCSzF5gQWtK/T0vIAsG2Ny8iuUihupN3YwMflVyqULieMl/2Lfly9azgO776NvppvIDdD2daISHDiwl9Wr11IuV4j9YrRdxK39wtJTdQZbNZLjkzxeuIrJyR5Wr5tm9fnXsPXuFqWBiMXtx3jZsVv5w0XP5a4VF3LlrkdIG3UGVq5l5PKrWXPl9Wxr97Jo/SbuOdHm+wcmGG1YRiuKS186wtC6HphNEQdu2xhMt/FHZ7FbT2O3nsbX2mA9UjaI+edhjGc35z0fvGs/779jF1n5foyk/Pr05bwqLaIFpCsifvUGtu2d5si2CfrlDCPfeR96w7lkjzyMXrOOrg98iCdae/nth97Mx489zoGe19GjMl5RVWy3g/xdX4tXPvRBTO0wu1Zr9o50wSXvomfJq+f78eTO7ew+fowzaMzy1ay64FKGV65mcNU6tDbs3/k42w8c4OjcCXaXZzipJ6mrNmmcsHNoJTsWXcz127pJ2g2a3Qe4cXYl6x7fyrlzXQxUL6DLVYhJmFN15NDDnLJHeUSP0Pf8EQavXs2awQqvvnQZP33hMH/6vQP87cPH+MLpMZ6gzXCUsYgKxf5zeHUbdvbAW9p1pp3n2UT85ilF6Ylprt7ZpHj/OI/cu4+PH/0tVhxQPGtvL4VogO6kzFDxNNc39tNalRKNPEKxcj8jdz5CYWgINVej+oEPU3nJS1myvoeBFRXKvQk6CusX+zr9+jsc2fcDSvpcolYX4+2bKa5qkBY2YRrDXLZ2FdfUK9y5dA1TWY2exiyTE+PokXOxE6fp6u7CxIYT3Sknux2726eId+ymcejrtCYfJYk0rqxRUqRUv4Bhs5gXO8NFFm6JhE+frNHTU+AVFy1l52iN5pkm/vgcPWsvZC4aoCyzNJs7qJdq7Fw6zVW7jrHx2CP0/NIfM3HSkzUOgLeMHuxl1/czju3cT6OmSVsZcdFgfsSrIP4tzXUtg7hM1rsOrxP07EmiM49TfPwTmDOPkw1swhd6n/H1/7PaTwjaM2/33f8NPIZCzx6iwiyJcWRZHB6myQxxZQzjU1LtKHhHkkyTxFMYHKrQIM0K6LhOqTiDySIUjpKu07/uHuqtSqjAqFPKPSdQWSi1nugGXmUUVBNfmiHWHqscxeqJUCzBgo7q6MpJGulg8BSbFFWYZmn1KUTK2KiJFvBxAw+YZC5464szdPsmXU6x2NdpKk3B1MniDFWcREkL7xKqXeNkWREVNYkkpRqPgZljkTlDRkRBtzCxpVA4hRJHafAQ2BjbLtMTncYUT4dqktpi4mlUXtVSVIaOWiifq3O5EreyuANdmKFlDOXyFINdO2lkVYqFOcgSUJ7EzBCXJsjafSTaEiWt3FPuAxCKa0ROYV2ByCYYsURdJyBoQJjeE8Q+Q0RjXAmb1FBRg6prkegMF1tKMoeNwOdkuFo4Tdk6Yp3iyjMYn5EUJlDd4xTjGTKXUOw9BM1+jMlQneILJsN4iJ1Ci6encpJmMaVAE8EHhcXHiGnjoxZKLCKWSv8hrCsRi8bl4XBGz6EkxipHtHg/lVZvIMfK0qUdqWkBGmPmSMwUaTG8mFjrBk4UsU7RphHIoURB7dQppjxBXDpD1qxSLk1RGt5JVJrDZwU0nqI0GVA1JGrQihyxaSOEiobl4hxV3WQWgyjHksoumiSUTYuVchrRlh6nIJlixnUTAb2F0zSMJzJtVNIgtYqKahKrFk0txHqWlijKUZOo7xCtRh9KHNXFB9C+QGaLpLqFUh4dNUE5tGlgVIa1JYxyJP2HabcruFwZVlErqGfiSbQjKo2hWhWSqEZUnqNYnEJMC1WaQhXaZM1qULkLDTIFpXiKuDJNlAqua45C3KBHTZKZFpkWuovj+HYJh6HYdYbYzBCLJy3UKbqUbjNLywhlaVDRNQr9e1DtEiIxztSJ0vBuweKKbZSMQ3mHzmK0dmQ6Q4miqFvE5eNkEmGSWv5+u5iChyiewukMKcwGpSmZw2YJheIkuBJOHFo74tIU3ibEIqAk5Ms6RaQ9SWkSXx6lqqZJC02M93THLXTXSdKsh8QlRDqQ3CSpUaqewGWabl3DxzXi/qN0GUcpa1OSjLTQwliFjVpYrYiiDB/NUjGTdCVjpF11htQYymakpTptSTA2wkUNCnEdr1OS0jgD3TuYtj2kvkCpMEaWDiJYipVjWK3ARSTxNIPFUVo2ItMRZaOJ4louTCoUmgSDi2cQkxIDkQMxLbwJBFkrjzctIt2ilEzjNIipodFQmEXjKShwYil0jxL3HqNVHyRSDh3XSF1MpOfys0xIqsfQ5WlsVgokvTSDtzFx8RRJNEfqk078AMqkRKpN4rrwKqXa/wSXXvmKH/k8+rEkaN57/vejb2U2m+XDV3yMD+54L4vGF7Hh6o30NZax7ZtHAbjh9RsYWldm6+f/CkS4tLyUZc0NVPR3mG68iK8+/0p+oHbwiZ5ruNI+yOZoO0uHf2c+VHHtldex655vMzt2msHVI1QXD8/3QUTT3b2ZSuVypqZvx7lZQDE9fSf9ff8NpX50SfvB4mKGVw9wYmsTkxbpS5ax5ZVXsWvXTp56ajvnnbeJdYur9BaL3PZYxuTSLjbv3kbP9DST1SqTyQBZ/XaOfv8QU8e/wd5jE9T1IOsLR/nlE7fytb4bmb74Zt7ys69hw+YbWX7+hUTFLu7eO8YnHjzC1iPTlGPNm69bw++/4FyGqkVUXwG9sQ990QD60kVBIWhkoWR/5vHjTdzuKexDp6GocJGCiRbSHT9tbN579pye5b3f2UOmx+iZW8tHmhdzSZyEktMjVaKXrSX1nge+eADBcd3rLyCOPK1//DpSKtH+6B/x+p2/zlcOf5FxvZaZwbewVDdYWejj3lY3n8weZfN3foHUz6FbM7QSQ/fFf0lP3y3z/di9+ykefvg+4rjAkiXLuPCiS9h0yZV0LVvJPY8/TrtYZaZQwSdFJC5iJk8RnTlGcuYE9ZZn057dXHQ6ZbAnY61J6KHEBllDdfElJJVlpEcewM2d4VOlv+bd532NOzad5Bd/8QMceWyCI09M0KpnLF5XRWtFKdYcGp9j75lpUjQnyfim99zYlaCtInGedaOevtFR1u4Szn+0xtzBOQZmHOWm54me20lrt3LBgQpDMyUGVq3j5t/+3yS1+7mc+zE4hs60qEea6hc8TtVJj0+wc6nnkeetZW3XCFHHHtMGuJTK93+P7m+9gfjYfQyV91PhVu4aj1lW3ER7ehUMxKhV3fgHTtO9toctR1MGFq/kO8NV+k8dZ2ZqkjQPD2jVZ0E8JtY4B8eWFTm6YiO14XUU9+7g+OiDtJZ/k7HL/gEnLZK5YZb4CoOZ4aUu4rxZy8jxGtddN8SummV0oklt/zSDxYgT1cVYvQjVfBRbibj9AmH56SaXTT/Cpt97D+defwuzExNMHrmHrLWHuTP3MfH/svfmUZJd5YHn7963xnuxZkSulZm1q0olqbQLkJAQEhgQBgM2YETjFWg8wNiD24yhwXZ7gOP2GNxeMMZY9ukGsVgGs9jYCLFJQvtSUqlKtS+ZlXtGZuxvvffOH1GIQwMe2zN98Dn291+ejIx3I+O9d+/37vf9fuc6nHva5+i9qxz+5iLzBzforEW0VyKEJXB9C/lPlKoDYHvkW55DfOkvkNX3QRbhnb2LwlO3I9IuzsL9qMp2jPejBVj8U+PfE7R/eTz24JfQyiMcO0moAnIpzsuZfcpTh6iMH0Nrn2BkjoLbxk6KWM6AwE5wRlbJ+6P4xWWkG6HcmJHGWca3PoTw82HvitUHaVPbchzP6xKnFRyhCMJVpLQoN84yOXaMqD9BWDtHYGckyse3u/hej4Hw8L0+Ba9NwYvxyk0qU0cQTgSig8lL1KYPUkhKzMw+TqG4RheHsg6p6j4DS+I7feTEUXw3IlEFhHEZK7WxvD5+4wgeFsLvkPsZ041T5Di4lQVyYKR+BpMXGZ04TCwVXnGJ7XIe46TIapcsqVAqLOFpjXYkuR0xUj+BTl18u4UIeggrIRc2QjqkusTkzJMM/BSZlSk4KX5pFcvtoa3h4tLzBziFHmHpHFIYKGzgFDogJG5lGfKQohfhBi2sUpOqPcBxuwRBC1Fp4vkddG+KoLSCU1zFkTlWdQXjDpgKTrCZTuPbCqN9XKNoeGcwvkvqDyg5XcqVBRw/olBdpN+foF6ZJ7MzSsLCSQrgdvGq63gqw3c2KBbaOKNzJMpnwllAeAN8r42vDH5lFcfO0FaMa0fUJo4jnDaT1TV6aQHHiWlUnmIgfRy3z7atDyFMgCsV5dIq5e33oQcNrOIalvGpllvgpeikTLVxhCQvEAYdHCdFGEFY2MTxWsi8hAhXseyUndseoVzskwqNZ3XJjMR1ErZP3sfAT4j6o8hgk2p5DdvvI/IQBwc9foQoDSlom5HyCar+MrLgMlGYI6aKEmUqWx5j0J0By1C/8C48P8Jg4YdN/KBFIFvUrA6Z4+IU+kivi29JtJNCZhgvn4IgwqudxHf6aO0glUd59AQ6D/ALbapjRzHRJNrpM1Y/RcHvk6ce0skpVxYxuYfjxljugKIzIFU2TmWFsLJCNQ9pTD1JqgSOcLBNiu/1qTTmyTObah5jdIgTGrQTE1oaO9fgGqSt8O2Eok4wQY+R0gqprXDDNoXyMkHsknmCYOwEFW+DyuQJqsU+PRUwO/0gQdBERj6WBH/8BGHjOG55laQ/NiyBC4fqoMnxU4yNn6Y+eo4UjVIejnYolpoov41PQlhbJVPecMfcTnC9AZ6TU6osUK7MM7rlcbaOzOP5GTq3sP0uvpWh7ITpxnFkVsbxIpST4GJTLG5Q2nUfdiYICxtgK7xwGdfNkV4PhaQxMoewFeXJE0MCdJoRVk7RsRyE8bDcPlL5TM0+jB2uEScVquEG5amjTMpFImx6jkfBNjhuRCFYpxC0qI/M4ZdamMk5LL9D1h+j7i1jTAUpexTrpxmrLRFYgrIbUw0WGCgL6RimyivMzD6I2w7IRBGnOke9soqxYxxLYRuXMa/Lhq0wUuErjwCJVVqkPHYUv7xKHFWoj50gk4ZCoUOcVLBsTbl2nKC2SL28ghWXENpnrHyOOC9QHH8Ky4mQYQuv0ANtI52YUtgEY+FJTcFKqFZOYko9lJEUy6tU/QS7sEaOhXZSZmcOsvfiN/7Q+ehfHcUxVjG/cPfrWY6WePOe/43ScpETB46SuTn/8VW/ylf++Cl0bnALFq949xXcddc3OPOFT7AnXOIlU2s4MkInKUev+XN+qjHDTN7mMAH3P/Ea+i9+J6ONW7/neINOiy/89jvwiiVGt1/AvptuoT6z/XteY4yh07mbpeXfJ03nmRh/O44zQaVyI1L6P/SzvO8L72P3w88HLIr7OyxsHEOZjHK5wmtf+zNYlsWP/9mD5Erz0lNf5gUH7+bURI1mKQCGFTOjO/ZQn92LsC/k2VcOKH/pVnIEb9r7mzxYuZY/qzV4111Dut9qL0EbePnF47zj+bt+qGj6fw49yDHtBHV4A3O0BbEaFuJaAnlRDdNKEI0CK9uLvOfbp3npfovfvWsZWzv8cinlld5WWI+xnjeFdeUoWaz46kcOUZo/wCXFowQvejHd334vj/3kZXxk/AA9V7O9tJu1ymtZsHbxxkaNSwKPXzuzwN8s/RkXHv8MuRcisj6nd0/iX/9X+N62Z8a7sDDPl7/8eWzbIY5jnv/8F/Lww/czGPTRWmNp0AaqOmBGj/Dl2W18dUuB551cYOLEA1zY6vCs8Z9g1R4wThUfF2EMSW+Z3sbTVEo7keEoVrHI+LuezSee/jS//9TvYgmbP7rmTzn65wlJP2f7lQ2erEJ3ecA/zK+yKQRTmeTcsEwd3fCQMwF/ef9pdjmT5JuniZwi0fg04Y9vI69FnH7obo58/nMYDNp2+OYLf5qLTh3ibbf+POOH/hDnyOfo5jYV3WTx3hpx5JBt2LRfnvP1ZwvujMfo5RGXeBP86eYAd+UJhOWi/RHEYBWckP5zfp149yvpdfq0//JR6mKcgerh2QG270Kssa4ZQx1tIS8Z4a7JjINf+SJuniGM5sz0Tn5iyyT5ZhOlFFEvJUkHNDfWMJmLg82VTg0jHmJ16yLTk4eRqcvUPa/g0OokjF/EVQz7TbTJSMZLfGDQ495+hCw61G+cYrX5d4StT4Gc4C1fXODGwym6HjD637+ELFZYnzvNw3/9cdbOHENaPhgHJ3wFfmkMIaC2JWDpWAfLEajUYHuSxmyJsOZSHi1Qmwopj/q4hX+aEFv0lql+4TVYrVMgHdA56fYXE1/4GtKtN4H8l+/c/a+Of6c4/svjM594Ac1ug8BtMWlHbAhBsbCMzspspCUmqkusr2+jUF5iENVRqU3N6WEXIza7Y/SX91GonkSKYc/a1MgRLNvCGE2OohdVWO/OMDZ+nDIxJxavAamYnDjMoNNAGIVf7HDm9HUU6qepKo+VjVkcf5VacYnV3iwWhlJhjUEyQjVYoVE7w0prK1ni00sqTE+copt5hKUVTFxhI6rQcFJEClmwQkE6aKBgRRxduoqCllQax+kJj8BrMohHwOkRbc6ye3SetfWxIaJd2pQqZ5FpiCMs+jpCuuCcG0OMrGIFglhV0IOEWpSxHJZZ7zUYr58gW54mSwNGZ46QWIrk3A6CsMtqPs6OySN0jWS9uZPAiggSH69xko32NGGhSdLaQ6c1Qzj2EFE8hrJifLdDsz9OELbxjM1I8RxRUiHwWyhlg5CUgyU2M5dUVUk7DaSAQW6R5wVGx47i2QnCyuieu4JSfYk0F4RZwljSpFsuod2EflKlmRYZLZ9FKoizUeziElrbuMawevqFOF4ba+YRFk9ez2RpgZnCHD13wPzGxfhWQlifw9MWYdtHF9tkjuDk3GUUMs2WnU/QlRYBJTrtEkHexXWbLJgt9LpTzE48CfEYneZeRFxiZOeXafbG6bUnmaysUgzaDJyEwdJF9KwB7c0dTI0+Td6bQLk9ym6f+fYElpNRrp3EDzfxVIGigHbqUvaadKMGyeYe6hOHGWSauYWrscJFptwOjtAsLj9r6IQaO4xSDoXIY8qao2GvcyK9kUL1DFhdTFrHSEVvUCbCpj5yGku7tFt1ZCGm4kZ02h7FcIXNtWcTBiukhTZ+Z5amlWJMwlR1EYVH4Dfp9EaIMPQWLqMwMU+rPYqwIyrBOqbfIBWK2bGjmLzM2fYoSVbggi2PEsdlVqI6Mh9KoNvtccr1E4w25vG0g03OemuCRJUZJAUSAdPVI4RZituq8tRgP9u23k8vqlGprTLS7jBnTxCno2iTE3otbGnhOYqVQZnQ7xD4bbTKyLVD2pumVl1GColDjtYJQmoSExAtXcFGrijMPE6au8iNiymUTqL8ActLFzLq96mPnAXtYixY2xxjbW0WT8LM7m+QpB5O5hEUBixsbEenIVJGFPwBJTvFFNfw0pzUURQpEffHyZ0NlBPhqwFRVmbE6TKIK/hBh0waFld3MhK0cYttUpFhhCDSNoVkKDLv5QFZVKBW6tDsTDJRPY7l9PDjnMj4nOlejJ3bJGmRsYkjZMUmqlel2Zhr2gAAIABJREFUt7Kd8aBJbfw4Xley1N1K166wpXESKTKs2EU7LlgJOg/p+m0slWIrCzcWrEY7WW+PURk7znhlCU8J0C5xVGahN04+aLBn9gEcYWh3Z2jGI/ijTzEmB2RZkadXLqEcrDJhOxxa2k69dJpiugXpDmiGS3jSUC/PsdHchrYUfqlF1prAylwi5WJZfUqlLnV/nSS36KxcSVhaZmkwQjB6GC+3WdvcTs1roe2U1fYsod0HXcCye9RVhNGG9YokU4JQK6qNRRLl0lzYT25pZrYc4KU/8dQPnY/+VSVouc55auNJ3vHQ27hu7AZ+ddf/ySduvw2Nprltg5vWfp6Vkx0ALr9llu0Nl2/++R+h1TFeNfttnLCGFa1y8s5pPvgnX2Q9z3m0P+Avjr6F65eOsPH6b0J11/cdN40GPPK5j3PywbvZfe3NPOu1P/8DgSDGaJZXPsL6+scxJkdKn927Po3nTf/Az9NPu/zVf/5dAu+lpIUWM892OHX2GI7jYozmxiuuZPHMaZ6+9xvIXhNhDLbS2Cha49PMPuskuy75NXZO34AQAq003/rIA9xcfhcj3ZP8ydTr+ODMm3nTt/t8Me0yOl3kt168l5naP94n9/8Wxhj0mQ6mmWDWI9qHN1g3mk8Rcy+KLoZXAG+TIR42FB2cl29HjgcYY7j/9iMsH1rl+W+5iM7Df4P/hx9DSXjL220q9Rnevu8/cWe2lc+1uvyHkTItZXhi7Sx/e+id1DonWBn1iR1NvuPllC7+3e/ZrVxaWuDzn78Dz/OIouH5ZFk2Sg2bbX0l2ZdtYaea4Omqz8e3B7Rczc445j0HNayfwR7ZiZDDRt512jy9+jWWescJRYFMCFITI4XLajDGyC1vYLEvuOWalF998O1Y0ua3Gr/PuS8qhCWYMxlfKGZUzlO8XqB9PnV9mf76APtkDwFc0Aj4o+Im9lcfwd35YyAEUSHic+1PwvI60rbxaxPMeyGPvfhV/OaxD7L/6jcS3Pk2LNtFpQOO5NNUD6/Qf9JD+prKL2Uc2iVJ8PjjZRgkFi/MBHc6mn1JzPvlLPG+1+Nc8JPfk0yoPGfh499gpFllPZpnNJghNTGuKeBcO4U50MS+eZrBrMen//5LbK6v4hjF6bEZRvdcxH/au5u1hXmefvopTp06gcTCpDbKGmBlIQ6Cyy7+Am1rCA/Yev8Cfz3/Mh7ddTOv1RZXYVNEE8rhTsmy0NwuM77dsFjfJ3Fbf4qdnsItvpz63F/zx/89pv4/PgkTuwE48Ld/xcmHv02/uUpQG+Xyl/0s2y7fzxNfWaQ6WaB5rs+Zx5oYbSiUHJCQxQohBVmkcAOL6kRIqeFRmwqfSdysH1LWay0/Tvlrv4LsLpDN3ICz8G2E0QwufSPRJT+HCcf/P11r/yvi3xO0f3n8ze3X0lYBo7pDI1wjcYbFBssb23H8DnVvE5NaGFuTJgGWERTcHpklIZcoaeNbA3Lpsba2lenwKGkQYkceiA16IqSfVhj3Vsg9jVIOKRJpGXylhvQz4bF09hrqUwdwLUWSepxa2UvgdtgyOk8aC1y/D3mAZWKsIKbZmcS1EiYHTToNi1QFxDLBiy2WoklmR04zEJICGmkcpMiwU4Oyh1iJQVagqUaYdJso42LJPrYBY7kInSAkpHmIoI9ta1JKKDkg7xtmspSe7YAtgDJadjA4CMtF5V0SApxEkSsfUUiwRMxmayul6iIb6Thj7mCIDbcMiegTKoOU4vwiNSXTLlEu8VC4MsU1moEqcHr1EkqFDSaq81h2wurmNsbCJYTISBwPKRIGAhxVAKVpdSbJLI3JbSqN0whpCDUY7YLIkTrHMpKucfHwCdUmxlgoa+iJlELSbu3DmjyIURAKaC1dheM3USOn2NzYxqjbohi0cPuGjlMg1x7FQoeB8bBMhCdBJJLc1sRxhZLXJZM2SoRIBlSiPrEraaV1Nja3MDN5mDwroZOANBohqJ/CImGltY2Cn1JzlvFiQRxkLHWncW2ol85hlCQzZVwrZZBBX/qUnB5OmuIaA3L4vSsH7AxiXca2YrBThIbM2PgqBwyt9j66vVFKEwfoxiMEbkLNisAa0OrsxK6s4FgxcXM7QTBHZmlix2BbMa4qoHOBLy20tkjjDBH0cTMHIXI60SjCHfbkOV4bRwuEmyJwESQkiccgGsGv9ji3cCHSbePbCQJDODJPRRm67RnWlYPlxcyWF7AyxXI2gi0dHCsldzqoqMCojDCOg9srEnkDVrq78NwOcbjImJXhpYbckWS9EjEucV6gWm3iDgYYz7DW2wqZxfjoaZQZugj70iFUin4GqVEUCprW+nbGRtaxjUJJgTTRsCc1hViP0HMTlNunmNjY0sUzCR0KzK3uZKq0QChzKEQY49PdHGFtUGOqfIpieZPV9jRFp0/JUZxrTzJWOX0ecuHgSImdC5Y6Y9Sr81iOizGGdKhoxiVF5BLlGKx8yNkwriZJg+GOq8zRWtC3BFKAFQ+rZpI0IEgjNCViHwp2i0xpMg1VrenLMpyH+Nh2Qoamm4SYjTGkbzE6coygryBzWJdTBKVVrDhFeRZSlzC5RHnQlzEuMVYO0tJ0umPY/oBARNjkYAmEgjQVrOgxstxnW+UsRkDc3knmDbD8FUKjsWKLVVEk9Np4KmSxM0G/X6VqW7hS49QPIo3CdnPizKM1qFDWLnFuU6ssstHeggDGRlZB9EGAGpTxxIAUTeJASeshEAfBelRnIx5jV+MQQjA8PzTItEwkXZajImP+Opmf4ScSnz5tRvDtmJtedeiHzkf/ahK0zWSDt377jWymm0ghuf3Zd/BXd9xOnES4vsf4+nXkA4PR4BYsXlR3Sdod/n7+D3jdtsdxp66lvPF1Vg7Vueflv8N/nr2Agdbsled4l3oHV83tpHTucbo3/lfSPa/6gWP4xp/9HvNPPoblOkxccDE3v+XXvu81xmjSdIFu90GWlj+EMTFhcAWzs/8Vx/l++e3ixhk+/IkPs3/1pzCVHv5Ih3Z0lr5OEVlCMHcMaTQbXoO1xiX80pdvQwAPXrmTpV0XY4yNt7PAG1/8VowxLJ/r8Xi7R+Nr7+Il9l30rIBX7/sQNzwwydaix55rJ9h2WeP7xvEvCWOG1K4//NYpPv/kEr1UMYvgF9DcRPm7VKmqCzNF5J4K3/r0Qbbd/ccsXlhgIT/KDQeGCOXP/uJe3vzTH+XpBN67sMpypnjfllE+t9llZulePnjw3dh5TG7Bo1fOMLb3g5RK12KMIYoG3HnnlzHGsLg4/8z4pqa20Gw2UZmi7pW4eK3OVmuaxegMn7lwC2blMG9ZqRG4VYQbnidJWXRFxBFOY058nT2HD+HMzCJvfCuL504zr0+yunFySDsy33WdCCRYNSK/QO5PU1VXkwsLD8HDbs7dYUZlr8fLLpzmE/0EB/iZ3OVz951jM8oQwJ7+Eu8vSnobHbZVL8UYTUe1WN3R5cKXvYTo3BOU7/0VyAaU8gH3NJ7Fze3HmT/6bJqXPBfvLz5GfzTk8utO4LiKTsnh2I4inZJFspDxl1mJI4585nupuBX+94t+levGb2Cud4YdpV3PPHjQywPO3fsQ3rGUuf4RLh65DrXFI3VzwnmwX7INubvCY08+xgP33UMzKDLSa9PzQ7Ze93xeuXsXDrC4eI6gEPKtb3yTpdWz508csIWm1jjN9m2Pce70ftyvx3xo++vIbJcEyatXT/CmYBqvNM53AAtz0vCeXU+wZt2GQWLZP8Yvf/Ygn7txlg+KjPprfg/kcAfszGMPcu//+DA6z5C2zWU//houfsHL0Nqwca5HZy2mv5mQJYqlY22idopWhkLZoTYVsni0Rbnh099MULmhOOJRnQoY3VZiZCqkMhFgO98V6rhnvkrw6B9jrR9BGIWREiyP3rX/GeOWyGZvxLjf6yn8UcW/5QTtAx/4AE888QRCCN797nezf//+Z35333338aEPfQjLsrjhhht461vf+n1/f+/tFxM5OaHIwD4vnpWQJj6eSJGWRlmSsKPI/OGCwVhD1LqVC9R555iyBMYCKwdUdejYcTYhkygc6psxnbpAW0Pqs7Jh2OE/nGPcnkHiYWyHTPY5u7yfcmmFamUNf6BJwiFo7zsONm1D2Da4PUFrEpQFXgS2gn5BYGxBX0ItUuSOwO8P6YbJdwpAcot+FBJWuuRJCel1h4CABPLAwko0mRtgpwOUAwkBXhbjxxrlC0qbhkFZDkXSCrRtIygCHTBDhLW2zgtxDSy2tjNaOUtqC9y0hCe7ZM4QYuDFwwb63JXYfYsocLBNRDDQpJ7AyiB2LI4uXcWIv8oeeYp+YJN6AlvnOLEm9YfuNOUAapiskVqoQOE2JakyuCUNyiIOLWyTYeQQxpgbC5HbuCLBaEniuPg6Jju/+Z64YOcGLIE1ZF6wISGwIRgY7Az8SLDZ4DvQSIwZvrcAckCIYQmonUHuDhd04vz5JlMwsUPXVCiW10nTCr5s4+SQ22AlkoFfHPY42ptYWpN4oLREZyHltIvUQwKk8jS2lizYMJrkuEaQBAKMRBiNnWmUK9G2RGuNkZKeA8VYYRuBHRsy6ZHlHrLUodCFuCKwY4nbA1VQDEILK4fKOvTqGmVBfN4G4QiJBPz+UK/stQV5WTEoCezUkOQ+tpLktovjtM7zdr5LXpTooePOWAx0EZsBzd40k8EZtGNwM0PmCBIHMiOpZENRvMkMyhteT1lq2LKY05y1EJnEjYuYniQKXZJCQup2qaBx4uF3IYzE6CEB83zujgDiVoVMOhSr61iZREhInOEY/a5BZoZBVZ4HenoYkZH5UN5QSA29isBgEQkP48RYUQnba2OnDDHstsKLwCibODQIqSm2DL2ahZ2BQSMjjzjMsKSm360xIlvkhaEHMLdDgo4iCVKk0SgHpJLI7DyRM4Hc06TBEMBqJwwfCMnzKgnr/P0uAxwotTWZJ3CS8/BJHBIXWqHGOf//KWTmmTWF0M+Y7lAM703G8bB0gpUZcg+EkkglcFKFkYI4BK87Suo79Kwujt2lsqlxMuiXBcq2sLTmOywmO5HYmaKnimyqEab8OZKieOY+bZ+v7BeZIQuGKyEr8dhMStjk+J7BFhluHGMsRRKKZ65PPzLklgUoljd3gKWZKs7jRTmJJ7EyiSpoCj1DUhAoe3hMN5GkbcNy0WGsnA6Lz/LhmlFmPpiQlkwZDCqUa2t4WU5pU9EteShd4IbXP/pD57MfeYL2gQP/hSsbV2Nh8d8O/d+U0hJvn/wVDh94ik29gZM5BN4Wauf2smd7iSMnutRtuLbs8NTGAzzefpDXzh5kZ2GdleNbWFia4E2//SF2ew539yLeYT7AjeUalx44h9U8gky7bLzu6+jK1h84zpMP3cv9t38UrXJGprdx4U0vZcdV136f/ytJ5jl+4qfxvZ0MohM4Tp1a9Rbq9VfjOMMEKUtimnOnuPuTH6HXcgjD15DIPqL9BYpTRVbKY2ijueSSyxnduZ+zbcUX//Jz/Ob9f0Fm2Tz56iKnxc3Dm1Mx4unpMzz95M+Sa5gVFq/gEG/z3k/PKvDWC36DnU/uYGrTYmQ6pFB0ufLlW/HCH94r949FpjS/+MnHuXFXg088co5eFvEf3A6/kMwiLYkVuLCjguhmmNMd2sZwYP4k+576GFljLzpMKR1/DON71H7n95GXX8FckvKtzoC/a/eYcC1Obs7xyVP/F7uWniC3h+6PU5fcTLbzA6RZxv3330O7vUmWZRSLJbrdzjM3g0v2Xo1qu8jBgMsWAxxhI5Asp4usBAUuUCUKxgat0CriUHKQUzWLlhyw/9GH2HnqFM4llxLc+mY4GpJ1UvTOMqUf38b9n36ahaePkUWLqHwRky0AMeAAgg27yGe2vIKSktziVHlkt89TW120FNQswa9MjvLyaglLCIwxHFhoc/u3DtA49ikmm20ymbNb7uKq4rORlWmEtJFlw1j6NszUBGblIL+0992syipecYQ3/P3X2fW1O/EaPjwv5j6u4DV8GZ9hj2hUrHNsV4l2zacw/m4+t/gw9y5/i3bWAoZoVyksfvmiXyWwA0pOmatHnzVMeO97lMp9CqVzMpNQsIpYjktuMgo3bce6tMH6+hpf/do/0NxoMrBsgixhMyzzquuuZ+vWnRRdB2MMa2urPH34EEePPo3KFJochMa2B4RBm+nWHEeTyzi4XGOuMslaocJsf51fnz/E7sY+8vIEHSfgiZEj/MHkX5wXuzqE+TZScZxp/3pecenbeKUTocozrJ85QZbG3H3bH5JGfaRtc/VP/Qy7r70Z+QN8fUk/o70aEVQ92isDjt+/wsa5PnmqsRyJzvV3PbYGgorDyHSR8phPY7ZEdbxAqfs4hcc/ijv3DXShTrznp5CDVbyTX2Zw5dvJxi8jn7wKrB9dL9W/1QTtoYce4rbbbuOjH/0oJ06c4F3vehd33HHHM7+/5ZZbuO222xgfH+fWW2/lfe97H7t2fW9FxdFPX0XHa6Fzhd81RCULJ4OkoHFTiczBj22MUih3SD6UysOYhGJfklo2USVFahgEEj/S2MkUMhdElVUslZGEktElWJsUSGUwZkh99PKh5NUZgJ9C5mpy30OqDL8zZGdkLggp0IkhLQ29ZbkDRkNjSZMQYNyYqKYptG2UbUgKIO3hcaSWGGVTb6YkxiF3NFFNYZ+XHgthCNZtOmMaGQuMp3BzyUjLolnOkMoglU3uGoxRCMsnszP2HrNZnvboiz55AbyuS+5WMd4q2lgoR+H1QSaCvCTJLAVS4vcNpZULSCpHaY1YeJHCEsPEcXJZsNawQIOnBIVE0/E0sW1j5YLe5gTj3mkqmyXaEym5UkihiJ3hQsrAEHUtzktvlQUiJWhJwlZGWnBJKoZMgnL1UHBsJF5fY2cS10CvKDAKgkTQKw0XpcMFuyZ3wOvbYBzSMMPvpvQKHvUVa0glLBjKqzYrdQmFhMQDkYWUul200CjbBnK0a5M6Aj8xKA3S5NixTXd06L7y2gJtaeKKxk5gZODQZxp0Shws4RiJE6fk2sa2clLPxxkoCrmkVxMktsLvQ1YYkucSCZbI8QeCkQVNb0TQq9hMzOWszQoS1yAyiUwNtgYvHZ5fraokzHJSx0IJmFowpKHFZsFQyjTFviBybAa+IiloLKNQlkBkNiMrmtgXeEYxKEuEHibydl5gUBy677xeTFqwicIcW4FyodAShGtDyH0/0FCDVFpUexlKpPhdh9RR9Ko2QaaxYps8UOQockuiCg6FxOBv5LTGHawko9SDXEG/EOAMJMlYByuD0UWH5ijYUqNtQ21e05yySF2BrTRuDtoMFQ6OgdgbCsq1BdVN8GPJyugwuQh6BqkM/Ypk+pSgP2JYK7sYN8XPh/h+PxFsVHNKyxJHCDbGFX4scdqCHEFeMpQ7PqqYkEtJKsDYKUpIhBK4HYMrczLHxkhNaTMgcjP6dYWV6yEoFBuEiztIEEaRekMUfmNJkrvQHIVi0ybzDXEFhDLIyAMTUewOUfDGGLSfUYgtehVQloZsmMzYqcGPIAkE2tVDeE9mQNj4ObRrGisdahZyBwo9QAoqqzaZk9OuG4KOoj1uY6UCQU6xI7GUol2ykC6ITJG5Fk4KxT4MCpIsMKAUdiLPu3E1Tm6TCk0jCcl0n14Ilhri/O1Ek5UtrAiUo4ZwTKHJzRCoauU2MjU4Nmgp6QoH7eQ4IqeyYpEEIJ2hOoVYIC2LyMkI+lDtwVwyweJUk8lKjpMYCj2NI8oMChF+L2cQShLLRjsaN1XMHs+Zny6QeD7Pff2BHzqn/UgTtIX+Of7y2Mc40HyUjXSDqlvjVas/SSksccI+wenNk8x2t3HT4NnsMXW+2s7JgZvqLqfTRbZkv8GxdoNXzh4ibpWY/0rI7/3+x3ggLNNUmhc6p/i59NfZtfN2Am87Iukw8onnIlTGxuvvQZe3/MCxaqV44suf5cjdXyGLBnhhkate9QZm9l+FWwieeV0cn2Jp6YMMosP43g76g0cBQd66kLP3GrqLQ/GlsB28MCTPr8NydhE7PcZ3VyhPKQ4cvn84cUrJBRdcyB1nHaYOH+TKM49xxeox7nn1LjqFXSRJkZiEQ2GXs5bPy3bdyFuuuh7baA5/+894/uHfwQBfit/CWvoSVK6xXYsdVzRACC55wQ8uw/yf4+8OLXOuFfPw2U2eXO4Seopd7gbv741T1iHGEjg3T2NdVGc1WeHRxUd56u8Wuf7RVbaf/Qfa47uor59FOAHBtb+McEvg+PRtuHuLw1qY0q4+xutan2TP2aNIIThXK/LI4GaCnS9hbnGD9fXVZ24MrushpSSOIwBK1hi7q3uZiX2KqwN86aLNEO8sviNvNBqddjlx+tMcuHA7sWOjdEbQ7/Nct0j5+pfRkzU2jnVpn2xTloJ1IehnQ5StVsNLwi5YnKtKjrT6WE7CXLpJ6sCaUyebLjLZnmfpqn0YYVFINdcdOMIlBz+LpVPcICSsNbBcl+biGfIkJfY1B3cndAmYXdHc9Ljm0k6T4Mb3IAs1hADLWWOk+hFWRn6M5Y/cwcByGdvc4JGbLubW8Xv4+uyPM+1N8aUzPlend3O9eJTcl9hpghZwantIa2Y/W7a9nzZF7jr3Fe5auJP5wVl8q0CiYi6vX8Uv7vmP/Pbj72FHaRcv4AYufaCBl1jDp4dG08ta+HaId8kk7s0zGFtw6NATPPDQfUQIukJiOS537rqUarHE/zFa5rnj488k0Hme01qKeOixbzG3eBKlM4QcosAtFEkq6doBj/en8CxFX/g8b/EIL557lMXJ5+Dv3cIj5WN8bbRLVz+AFCFGWGjp8raFcT5/9Zt592iJS6yU46dWSXodjtz9VdJoAMbQ2LaTa37qZymP/ePEVYA0ykmjHCEFJx9eY+Ncj41zfbQ21GdCmnP94VPG7PxTw5LD+KzDlHuILZufpZYdQhRKyMEqQiUYO6D/nHeRV3YMkzU3/Cdde/9/xb/VBO0P/uAPmJqa4tWvfjUAL3rRi/jsZz9LsVhkfn6ed77znXzqU58C4CMf+QjFYpE3vOEN3/Me+V3vZ3ntK6zJLqWlOkmlh7I8crmO63p4acB4PosZrNCsPYs0f4RKvgM9dSlm8wyZU0CJhyimHs10ASePSHONRYEs3EI51jQbEdtXbNbcTYznEesBiISKrJE0NTpNmBEOmUpwJvagTIhMWmw6x4gLIXZhivJSmzMjbfxI46ZbaY5fjmxCaL6FTUZ/rY5rJfhZm/6YQhQ6+O40VisirxQpzg93FzrugNRepuBM0XcU5Y0lGpO30Nl8mKqps8IxhHEoJbswluBEr8CuXTvZaC/R9xbxVZOk4HJBZxLtZsz1JEKcAZXSLRSpBz5+qrGcEqvZPjTHKTo5sVQIc5qR/iRhs0OnUmIh7NDouwTeKMtehz32hcwVTxImRYpphTQ+Qt/by8raEcLKGOXaKJXjj2LMJLkfoa94E8tPfIy8n1OtOXTc04xtlqjUL2W9mGL6LeTmMfq1bdSWl+mUJ2goWJ5sELZOIfwxsmiEIAtw26dolSOMF5KcU5ipIgUUzXCVQmbROJOTBznVYIYoyvC2XMG5E18lnSwxZV+PPPkV+pMt6h2w9QhZeYR1a4ks30IgFmhHClPdRi9ts7NxAXbpMjYf/QpqTCLVSYQOUIOM4o5riBYXSXVGbEdYYpNqGhHmO9Cxw9rkJZSb91Ny1tB9gckD1pwttLXmorBDvxrSUydxeg6l6uWsO+foahuxeJadsYulE1qNAmG/SKerqE8GLFe7pK02od2gHHWJKgVsexsb80ewrQKq0EdPv4ZEbacyErOx8OdcuDhAGpsMm9hv0tx2A7pzCMvqo3XGaGcbG8vncG2LfuP52N5BRN5FjmzHbw4o61XyxEfXfOb1PEJewPjIFtrrx2mcXmRV1Vmf3seW4mEanQFd61JE/wRCSGy7zXJ5C0JoqoGkO3cW6bRRBZvSznfgHf4i8fIabmMcB8Vg0CItb+L2HDxdY22mRHmjQ8AIG1WNF1jYskx47AnS2ixxrQChjWmehLiD2wrY3KoRqU1lM2KjYRihzmL/eeThNyhk+wg2n0BMCjyxk/rCIrYfcFCnSFtQCj02SwG1tE+WnWP2eJdOeAHpeJOBB3JlgKM90lmP2Y0SSXk/onExc2e+RGjWyOQu0sLThK2Y7tIUlWIHYyfYZgvKEbSLCXKwjBq16AtD2WoQ6iqicxaRD9DZBLZ/Cf2NZeT4IlmtQ3EgScf3E6wcxaleTnUzZlAeJz31APbmBqZewe0O6JR3ozbmSKxNokadirwcZ+2bdOU4vreIbns4foFOzUZ6GbbeSWSaFPs9hLWOKAd4qkDZvhS5eoj1ribfGuKoMxjLYUn3KIkSO+Mp1iZn8Pxx5o98iVogwBmHrEU/9VFVid2ax7bKDLRH4K7iOmOkHYvtCDq5pH3hi8k738TrueSyiS3adB0XEdVBr4Ozid3LkIziOxfRtM8yYmJKwTRzos/A0ajIpq4HBEmE1H1sJsmSBC8YkBdncBaXWS6+hEZ2ko3yMUyhhehlTKS7MPveQvPBv8CNV/Gu/DHWRYS99HWK+TVs6T9FrzrNRtxi7y98/ofOaT+yBO0LZz/HNxe/xsHNJxAIfmLrT/Kzyy/ny8F9LDw5h9Yaxzi8KrqOhgl5IFasJYatFZu88QjXtj+EyRWj3oAz8ZWkf7uAvOJa7nnv+/ithTX2yjO8U/06u3b8OcXw0uFBdU7t49dj9RYwTkD7FX9FPrb/h4wYVJbx2N9+huP33EWeJghpcf3Pv42otcH2q59LnmYcu+ertDfvwx55muJ0E4HBYJA2ZJ0aYelyKo2tNEZ/jr/5jV8jTQ3YV2N5F9OvrfPCV17J8eMHOHb8CKVSmTiJsW2HTFR40e0foRDHfGH/tWTPCpGDIkpZZCLnxMQp3v1jv8lStMRNu27g8UfZSTpiAAAgAElEQVTv5JKvvYkg75MJmzPbXsN9R24lSzRZogirHl5gM7Wnyt4bJjEapDVcTM9tRvzJvadphC5fOLhEnA9PievG5vmN9R0E2kej6ey2uGffYdbSNe48+xV2zV3Ds04/h/2HPk4YLWJdfRnOgw+CbeNcdCnyF9/DB+M+e042uSl7lO74A0TJGWaXOtipzR3cAtLQ18NFmeu47Ni6i9WNFVqtTTzXw80l7bzPVrWFfckMFekRmO+W8SmT852f8s4Cq4MTHKxlLFSGPVBSDx1F5Wg3djQFWjyzQ/KdsG3B6M4yjmdRmwqIRxz+y72nWOolWBKE6XHV5ALfKl0xLJkYK8L5niUR9RhZ+wxvePhGPFXAGI0tDpN1HsCo4XZ3amscJYm8nENbO1xzrE5WGuOz1RfynNMHGBu0eMXCE4SX/wzO+MWobB29fAzdWSI7/VU+8Yqf5OMveBUvrBR5vB/zmZ3TRFrz9b/7GzpLc+yoCm6Uf8/UxlEyR2JnmuaIy+aua5E7X0el9hIGecSjzYd5YPXbPLz2IN20Q2YyHOlQ80ZoRk2u7e6nYhe58eld7PUvQyBppauspHPse9lPYF8xSpZlPPLIAzz11BOooEjW2aRVKNIKSnz9omt4qY545ewMl5RLeOd3sbTWPP3gGY4dfgy/eB+rg4De4LviaWMgMg5rKqBiJSz2Aq5bOoXlGx6o7GPuok+jLJuW1cE4O3DSY4zp7RybejMTagRV9PlvVodZt879X/kkAAuHn8BohV+qcOHzX8ye574QN/jnJ0rGGM4d2iTPFGunu5x9somUEqPNM4k8gBCKqrNK0SxSCzYZLSwwkd1P0e2gJ/ejylvpXfeb4Ff+2WP458a/1QTtve99L8973vN4wQteAMCtt97K+9//frZv385jjz3Gbbfdxoc//GEA7rjjDubn53nHO97xPe+hO8uk3WV0OEWuXRAJZmOZ5WP3MDUzhTN5OZYsQB5DdQYTtel1exSqDWx3uGuq22eRgxbUtmHsgF57iWj9ONXGFtzSDLk02LmC5kkY30e3u0rUPUhj4gaSxeN4EzsRvTXSzipefRZKw4cMWbqOUAq73wYgL9XZXFuhEE5SrA+rNtKkiTCKfislWjnD1PQofTzS5GnKchJrc45867WIqEXuNmg31xDt+6jvex15bxUZr2ON7ACvDCqju3QEp3uWQeJSu+AaYiXxXUlns0NQL6Eyg+v7yDwHy8UISX99jnz1GLpWxeQnqNsXgFako/vJ9SauUshglP7qMVxvFJIuvUgh5Ca1yiypyukkG4yWJ4nFAHf1NHLqKpTJcIvjRIvHcEe30+kcIBR18Bq0508ysvtS+ptNtBGUZI+UCNsZQYajsH4M7RbJjn8LLriWhZOn2bL1QrxiGWP7iOZx/p/27jxMqvJO9Pj3rLV39VLVKw3dNJuIIBEXBEUFXGJMhpgETTqP49W4QXBcBtHxERIn4oK5M8E8idcthpiricOMZPQSr0+E6AhEFpGWrdmappveu/btLO/9o6CVQBpMGLubez7/9NNV3VW/3+89p+q857znfe1AGNlVBGYWEBjpOGrPblL+OrJmgmDJcDLJLlItWwmWT0QLliFlo0hdjYjwWZi2QFEV0HyYu/9AztyPEhyF21WWb0PNQzKewuvVEDv+EzF6JmkriU8PIrmLIdYKVg5T9SMkDbVnB1LZ2WRzFrrXTzLeAZaBlNiPJ1CDLAm64hIlBSpST2N+Bt+q88ipQcxsBq9bAcvAVn2I2EEUVwDD7UYIibbG9QyrGIvctQuCw8C2ME0LtXgYOcVGS6UxOveSCY7GV1KEnE3T3fAeetVE3OFh6O78fe6mkaKj4VXKqi7GUrwI1YvLipLz+lFzBjmRwkq0ovjH07rmNcqnzEL1FqIqAgsDPIXIkS7kwipS7QfwJ/aQCZ1DRqgEw1XEuzrRonsw9GI85SNRzASSrJI42IAnUIjwhpAUlVgsTkFpiERiD4mmLKW5Bqg5Hy00ARFtpXXHx5SfOx1F95BJpUgnG3FFUuhV41F9hZi9rahFVVh2vu11K4clZEj3gr8UoWhgWVjZJLaQkUUCWfOCLdO2r4HSkSNRvRUkI71EO9oIuLK43DZqyVkoHTsRug+Cw/P7iDBJJSPoLh1V0pA6d2KXTULOxRG6h5bdWykLulE8XuRgzZF7yCXsTAxZ92AYNplEOy6RQEODYDVSsg07UI3dtYesC4TqweUuIpttw2NpKAXl9PT+iSIzTNpViTdYiJnNkMtFkFrfRQ1NQg6OQMmmwBv6dB3Q7kbiiSxuTUIoGroCpjuEuu9txLjrkCSJbFczeENI2S4soaMXV2HlokSjTbg8FWSSnRQV12B27UQvHoHkLkRWXJDsIm2qeHQBiQ7MTCcZ31n4fDqSoudvZ5BV0uk2kEw8nmpEogMjl4ZsGsPIonhlbCuJyz0C0y2h62FEKkJbUzOV48/FMCJI6SSSN0QisoGgVoPwV9Lb3kKwLAx71yKXTcL2hbFyCbRUO1JRHWa8k5yeIZuJ4HGNQNNddLVtpWzYxXD4o/x6hgVVEG0m6x+BK9uBoSnYQkKXNSTFg/CGSEZ68RUUIKkaQliQ7kHyhKCjAREYRrqrlWDdX+6DDFgH7b/a/0h7uo0a30jGNQ9DWtPGy/q7GJJJl7uDokwxPrfG2M4rMEvcdB1MUlLtZXv2P3mQnxPPqoTcaZoTYZJvaqz4+rf57ZVfJSMs7ne9yTmZX1AQuJyamv95bMLJDuRUJ0X/9jUQJkL1kh15FelJt2GVjDvhArVCCBrXrWXLqv9NNhE77nlZ1fAUBBk97TKqz6uioGgy8fgHtB5+DGHnsOz8F6ptKqQ6ddKHbqdr/xggv+MZSoaeiXvJpnTckTYkwJBUrNYk45r2UqyncR2O8MKXr2KsHkE1fYDAUNM0hBroLUgyvmgCJa4QZR2C7+3+ObptkFACuGzB1tTX2Ja4ipzw93XMkpLN70M27gKdHZ0JfAJGeFTSaZslyJSi4kIlLWf59/AaXi16C0vKT1saSlcxsek8zm4ZRSB2kNrOP+KLHEQqKECoGvtuuYPHq6uojW5knP8jypsSJLoqceVMOghhoaJjoMsuvGYAr62Tlg2+kjuPg3I3BgYhO4AbD/rR9dc/s5UKBIZlsKOrEUyIFKhELT+RwsPYqoGlpvOzUAoFb6oab6oKWVJQFJliTSJgCryKoOyaERTIEvYIH6/s7OT1ra2U+DRiVgTb3UthJsaO8onkLBW/EidWmT9Q0iSJKwI+7iorolRSWPn+NrZv/ClV3VEKUlp+RkYZZCGRdpnsrUyzd2SaErWQSw+U4juUxWV0kzJUOqVCNgfPxZWC+za/ToGkoAy7ENf4r6EoOjksMlKMpoIeVvlT7HZ5aSsbTkGojLEyLCry8uv310LLQa5mLVW+GMOTjSR9Gqoh0HMm7aUuEqUjUUbfjK/s75BlD/vie1nX/j5r2v7Agfg+/GqAs4vPYUfkE9xZjUdT9xI+6EKzVYSUvy9mS2QtyvAiJk6/BtfYMLt372T9+vdJp1MIIOL1k9LdlMV6aCouxz+8lli4gqtDRVxdWACAadh0t+wjldtA08E36Y27SaUKSaYKiWd8uD6z+1lAIgMpTyNbhu3CnfMgyyo9nm5MtQr0yZRZY7DoZFJ2BhKCVLGLK1rTFGc6iHZ8SHvTDkwjBwg8wSJqzruYs2deizf4t61vZuQsupoSZOI5Dm3vxciY+Es8NG/rQsbCMD4dYqlgIGOi6RYBdxK/dYBhtTL+qlJcIyehVIw+4aREf63/XztoDz/8MJdddllfB+3GG29k6dKl1NTUsGnTJl588cVjOmiHDh3innvuOeY1DMMasrU7kaG8LZzImZTPmZQLnFn5nEm5gJPPYNbfd96AddCyL++AuJkfDGzDQb/KDmkbv/O+xYToBKZOuZSp7Rv5jy0TSRsuXFKc5oL/y8XKdmZrHyFJEk1t5bzCTF786rfz44kx+a54npm8g893PiNr/9dfPPDxvfcD9KZ3UOItIExs28YqrGNX0d+xvyVBNGGQ7OnEyBnYQmCmj8aeH39q2xayqmIbBoqm4ykIYhkGYy+9inDtKGKuEoZXleJWZT7a/zt89m/IZHYjbCN/9t300Nt4OT27rkbYKraWQuQ89BbuJOWN4RH5mazGn3UODR9u45zdW8AW+BJJDqse3pl4AX5NociVwatmiXo7+UQ/SIenh6zqZQZnM79tA+FcD4VmDBUbA5VVYgbRbAXvU85ucS73SF5ahWCMJKhBxkf+nrU/eRv4t6I/MmHUBazq/C2+eDHjuy5icmMZ5e2fUNa9BXc6f8UwU1zCxnse4KPOPYS6uvD4o9gJD4blBiR0kcNEw5byV7p8qodQsJTCnIfJUh2JSBpPzkb9zJWxzzq6gcqSRJoc7UQ4rPQSsL18rB0gJ5mY5K+4mpJBIcWM89VSV12D7nMhtyShLYXIWgDsLVR5VTGwQm7W9iaQIj2U+jppqptAwbZWomMqMEJHrpJJ+QhGajbV7gA3FxdQfmgPh7ZvJRLvpH33dkQ8jTjSgzw0UmJbcTvVXW56i4PURC+hvWAfo3vHcEm2lTGuLYS1fbhFL6nDLnoP+El3uzAyEptLx7KhagLX7F9HSTpCUaAafdRstPB4JFnGEjaSJNFhRmjK7CaWbubDMh8mNrXtzQgEKZeXkVovMwr3MFJuRsLG0BQENrohSHoVMi4Nw19MavRXcFXOQfKPZXdsF1u6NvJ++1qaEgcwbAO37GGWcgln7Q9R11lGlasW+chd7wYGCVeWiDtC2Tnj2B5p4kBnExnTIJtKYkkypqygWQbd/iDx4XX8ITwcTZIY4dIYoavcPCxMsOUlEp0Bktl/R/XuwTAVDjSfQ0eugMb28YyUYkiAJVkcCBzAbboozBTyQeVHxPVeBCaWUoqhj8UjPAQsLynvRNoCNZwTFfxwW4YPzI8pb9tNR3w/tshvA6riori6huGTL6R01FiKqqpR1L/ufs0TyaZMDnzUSaKtFxKdtB+CTEbBEioCGZn8rKM2KiCQsFEki2Aggy+o4CqtpKimBH+JC3+RG5dXRZJPrRM3lL+8/pYO2vLlywmHw9xwww0AzJw5kzfeeAO/38+hQ4e47777eO211wB45plnKCwspL6+/pjXcDpog9uZlM+ZlAucWfmcSbmAk89gNig7aNbBOOabTXS6enlD/SMdZhRfzo8kSZwXnE6wtJzm97vIGS4KlWa+XvQQbiWJJSSakiFe8F3NKxfXk9N1XGS5XX6NGUqCTLKd4qJv4vdegLsgiMvrp3HdGnoOHcDIpDEyaYoqq0nHojR/vJFcKoFtmeSPxD8thS6ZyLJguDdKSUCisCjIyNFVGL4q7PLJtIgR7Fi7muZtm9FcbnxFJcQ62zDS6SOvItg68lr88VasVIK4qwi3rhLx2BSX9HJJwTpKy3qQVejdN5X4wdkgmQjDh5kpxMYgWbYRzRMhnvnM0CwBMhaV3c24O7PsGV1EQbYbTcjsDI5lY3Iso5QummUvulGOrBmMNkzuRSWXn0MILxXk55JyH3nJ/DDALnU1m7M7KOipQY0JSOUo7j2AJxPBm44jHzm4NWUZS1XpCoVoHl7N4coKDF0n3xkDXQhUZAKiiLOtQH4VdVFI0Pbhk1xI5O8vE0DWFmQEKJJE3LLYRTcBScWQssQx6JWipNUkQs1gy3ZfGWRJwkYgC4kCyUuZXUyNGcKnFZI0oMqWiKnQ7ZKpSZr8oURjo2xS1Wvwm/E+cp1pRpsm2+pcaIaBpIAiLJJuH65smpquw0zqaKIsm6FcVsgke0hHe8jGYgjARmApAs2S2FeV4IMJPYRiKr0+k0LZYmw2Cz3jEIkApakLCOcm9V0FlGyDcPc2ooEa/LFG2kSSg14/71WMI+lxc/X4UvZ1p4g0t7DoT7+irKcVb2A46oiL0comIumeI9srbDWTVMgKQUljtxlFsRIcSu2jI7GL0d4ShnlaqPG3U6x3IUntNLirqFNacWctkEAzIadA1O9GNwWdxaUkfWFchkRTuI4es4v2bIIdIkdRNkZt41SmRKeh1+wh0HEB5DRUOb+YuSUsInYXB/U4e+XDpDQLQ9if2bMkkrqLuMtD1O2lPVhC3O2hx1NAiS/HJGkLe5WLmSd+hTf3PkKoqCLCtsPn8N6BGbhs8FkWOjb7Cj/BcB8m4e4hq2QBHSGZ5Kf7BVCxlRAKFaS9daR9l+KyZKraGrn84914MjH0TAI5Hccmv10rqATdpXiDRRR4wggFCsurqBgxHlHtxR0uRLFVJI/yN13xkhLtyPvXEtu9C6Org1hC55PYZWREAAmBIbyI405U2MjY6J78RADYJmWlGYpGFIOnmKJKL4quofm9VIwoobc3eVqvyn1R/pYO2ubNm1m+fDkvvfQS27dv59FHH+275wzg2muv5dlnn6W8vJy5c+eybNkyamuPXfPS6aANbmdSPmdSLnBm5XMm5QJOPoPZoOygAeyK7OC+P32fymQlZZRzcd2lXDXhy/zw1QZCuxPEJEGVsobC6GZ8pEhbKq1ymI/Hnc+6L81gQjrOwsmTKD64h0w8wifv/CfRthbyKQkKK6uxTYtYRytCCGRVQ1YVsOz82lMFhQjLIhOPUnv+dELVI0ge3MaU8+pQd/4HettGNCMGIj+O2xAyWBky6OygjjEcpFcqpNUIMFluxBQypi2hY5EyFWwhYwqFjpyfaM5FqR7HpVikTB23YhLL6bQcWdSxR6mm9Nwm/FU9tPzXI7gKDyLnNHy9k7GxiWs9xNUovXoXQs6C9Gl3UjpyBFxgF2BLBhkphywkLElgC5uwCJCScghhoQhBkABlhpuIHcHMRbGNNEnZAtukIBHHcGlI2AhLRkgSrlyOYCKK7BMEqtLUuXoolg8jpPz8zqpk0parB/saqvT5xMVYOlz5xUL/j+9/kJYSXJBdQ1bSSMk6uz0h1vvPZnR6O9W5ZmwpfwVhrf989LSJnsugJiIUpJNYskRC95EQGiCwhYQkCfxaioTsRY+kCaW6aK6qJdjZRXm8jZTXjzedQBKCjNtLIB7F1DSaquoYtX87hmrSE/QyqrkDwdHZtPPVtKX8FLRSvgJIQNxjEvMaVPZ4yOg2PYEcnYVZegtyJL0m1T2Cu97xo5oWql6Au7stP248l9/eBZD0VRL3V9NTNI6MN0ypS+GAuwIjP9USAvoOySXEkfbNz+5W4E1iWjlcHTuwMylq968jJKuoobFIniKUojqUohEgbCTNc2SbkOjbtUX+9dLxw6TjLRSUjKEz2oRhZSkO1tCiZBjhiRLEQpXasUQQEHjV98nZtaD0kgxGMMyzkWnCyBl4zPFIagNIGiJXR1Lsp8tdShkWimgnrarkbJ29eytxFWVIpYowAkGQFYQsY0gWTVIHQpGPvSFQCBD52ZIsSSDL+RMSiplCyC5syUXUktluV3LILsFERrMznN/SyLnGLnaMjtFckgDZR0tBJ6ZsHJkj2EYcGVIsZDcCDdnuJRQJk/QMJxQTTNvaiytnI/PZUzVHSdiygiwsJCGQVTey5sVlClTVS0ak0SyQNA/FWjFul5/WdCseS8rPIqe7uHzE14kHLXqMKCPdVXSIKEHNh3dMKVLIjRTpQnM1YfeYENtKsqOXaFeWgNJFJBnkYGIMsuamLTGMrPAd2WKOdn8/81PK11E+skyAbQhkRcLlVckkDTS3gsunkU0a1H4pjEAw8kth/MUudq9r/7Rjd+SlkCTcPpXhE0vobU1iZC1Kaws4vDtCsjdH6cgABeG/be3Fo/7WafaXLVvGxo0bkSSJxYsXs337dgKBALNnz+bDDz9k2bJlAFx55ZXccsstx/2/00Eb3M6kfM6kXODMyudMygWcfAazv7qD5nA4HA6Hw+FwOByOL87xiwU5HA6Hw+FwOBwOh2NAOB00h8PhcDgcDofD4RgknA6aw+FwOBwOh8PhcAwS6ul+wccee4ytW7ciSRIPPfQQEyd+ugjbBx98wI9//GMUReHSSy9l3rx5p/vtz2j91Xb9+vX8+Mc/RpZlamtr+dGPfoQsO/3vU9VfbY96+umn+eijj1ixYsUARDh09Vfbw4cPc++992IYBuPHj+eHP/zhAEY69PRX21deeYVVq1YhyzITJkzgn/7pnwYw0sHvVD4DBqMnn3ySTZs2YZomt99+Oxs2bGDLli34fPnZf2+55RYuu+wyVq1axcsvv4wsy8ydO5dvfOMbAxz58RoaGrjrrrsYMWIEAGPGjOHWW29l4cKFWJZFOBzmqaeeQtf1QZ/Pb3/7W1atWtX3e0NDAxdeeCHRaBRVzR96PfDAA0yYMIHnn3+e1atXI0kS8+fPZ8aMGQMV9nF2797NXXfdxd///d9TX1/P4cOHT7k9DMNg0aJFtLa2oigKS5cupbq6etDl8+CDD2KaJqqq8tRTTxEOh5k+ffoxs7z+4he/wLbtQZ/Po48+esr7/2Brnz/PZcGCBfT29gIQiUQ499xzuffee7n66qsZM2YMAEVFRfzkJz8hHo9z3333EY/H8Xq9PP300xQWFg5YLqeFOI02bNggbrvtNiGEEI2NjeIb3/jGMc9fc801orW1VViWJebOnSsaGxtP59uf0U5W29mzZ4vDhw8LIYT4/ve/L9asWfOFxzhUnay2Rx+fO3euqK+v/6LDG9JOVtsFCxaIt99+WwghxJIlS0RLS8sXHuNQ1V9t4/G4uPzyy4VhGEIIIW6++WaxZcuWAYlzKDiVz4DBaN26deLWW28VQgjR09MjZsyYIRYtWiS2b99+zN8lk0lx5ZVXilgsJtLptLjqqqtEb2/vQITcrw0bNoh//ud/PuaxRYsWibfeeksIIcQTTzwhXnnllSGTz1EbNmwQS5YsEfX19SIajR7z3MGDB8WcOXNENpsV3d3dYvbs2cI0zQGK9FjJZFLU19eLhx9+WKxYsUII8fnaY+XKlWLJkiVCCCHWrFkj7r777gHLRYgT57Nw4ULx5ptvCiGE+NWvfiWeeOIJYdu2mDNnznH/PxTy+Tz7/2DK50S5fNaiRYvE1q1bxaFDh8Sdd9553PPLly8Xzz33nBAi345PPvnkf3vM/91O6yWWdevWMWvWLABGjRpFLBYjkUgA0NzcTDAYpKKiAlmWmTFjBuvWrTudb39G66+2ACtXrqS8vByA4uLivrMOjpM7WW0BHn/8ce65556BCG9I66+2tm2zadMmrrjiCgAWL15MZWXlgMU61PRXW03T0DSNVCqFaZqk02mCweBAhjuoncpnwGB0/vnn86//+q8ABINB0uk0sVjsuL/bunUr55xzDoFAALfbzZQpU9i8efMXHe5JJZPJ4x7bsGEDM2fOBPKLj69bt27I5HPUT3/6U+66666/mN8ll1yCrusUFxdTVVXFnj17BiDK4+m6znPPPUdpaWnfY5+nPdatW8fs2bMBmD59Ops2bRqQPI46UT6LFy/mqquuAvJXYyKRCKlUCsuyjvv/oZDPibaxodA+J8rlqH379hGPx5k4ceIJ84Nj22bWrFlnRP/itHbQurq6KCoq6vu9pKSEzs5OADo7OykuLu57LhQK9T3nOLn+agvg9/sB6Ojo4IMPPhhUQyQGu5PVduXKlVxwwQVUVVUNRHhDWn+17enpwe/385Of/IT6+nqefvrpT9duc5xUf7V1uVzMmzePWbNmccUVV3Duuecetyiz41Mn+wwYrBRFwev1AvkhdZdeeimZTIZnnnmG7373u9x///1EIhG6urqGxPdvKpVi06ZN3HrrrXznO99h/fr1pNNpdF0HIBwO09nZOWTyAfj444+pqKggHA6TSqX4wQ9+wLe//W2WLFlCNpsd1Lmoqorb7T7msc/THp99XFEUZFkml8t9cQn8mRPl4/V6URQFy7L49a9/zXXXXUcqlaK7u5sFCxZwww038Mtf/hJgSOSTTCZPef8fTPmcKJejfvnLX1JfXw/kPyP27dvHnXfeyQ033MBbb70FHNs2oVCIjo6OLybw/0an9R60Pz+4EkL0LXp6ogOvvgVRHSfVX22P6u7u5o477uCRRx455mDD0b/+ahuJRFi5ciUvvfQS7e3tAxHekHayz4T29nauv/56FixYwG233cbatWu57LLLBiDSoae/2iYSCZ599llWr16N3+/npptuYufOnYwbN24gQh30TuXzdTB75513eP3113nxxRdZv349o0aNora2lp/97GcsX76cSZMmHfP3gzW/cePGMW/ePGbOnMn+/fu5+eabMU2z7/mj7TSU2uv1119nzpw5ANx+++1MmzaNcDjMI488wiuvvDKkcoFjj9tO1h5DJTfLsli4cCEXXXQRU6dOJZFIcPfdd/O1r30NwzCor6/nS1/60pDI54Ybbjjl/X8o5JPL5di0aRNLliwBoKKignnz5nHttdfS29vLt771LaZMmXJMLoMxj7/Gab2CVlZWRldXV9/vHR0dhEKhEz7X3t5OOBw+nW9/RuuvtpA/IPve977H3XffzfTp0wcixCGrv9quX7+enp4evvOd7zB//nw++eQTHnvssYEKdcjpr7ZFRUVUVFQwfPhwFEVh6tSpNDY2DlSoQ05/td27dy/V1dUUFxej6zpTpkyhoaFhoEId9E72+TqYvffee/z85z/nueeeIxAIMHv27L6rpbNnz2bXrl0nzG8wfv/W1dX1DZ+rra0lFAoRi8XIZDJA/rihtLR0yOQD+SGBkydPBmDOnDmUlpYiSRKzZs06YdsM9mMjj8dzyu1RVlbWdzXQMAyEEGiaNiBx9+fBBx9kxIgRzJ8/H8iPSPrmN7+Jruv4fD6mTp3a11aDPZ/Ps/8PhXw+/PDDYyZsKisr47rrrkOWZUpKSpgwYQL79u07JpfBvg+dqtPaQZs2bRq///3vAdi+fTulpaV9Q++GDRtGIpHg0D2Bn6IAAAOqSURBVKFDmKbJu+++y7Rp007n25/R+qst5O+Ruummm5yhjX+F/mp79dVX89Zbb/Gb3/yGZ555hrPPPpuHHnpoIMMdUvqrraqqVFdXc+DAAQA++eQTZxje59Bfbauqqti7dy+ZTAYhBA0NDdTU1AxgtIPbyT5fB6t4PM6TTz7Js88+2zdj2R133EFrayuQ7xyMHj2aSZMmsW3bNmKxGMlkks2bNzNlypSBDP2EXn/99b7hZJ2dnXR3d/P1r3+9r23efvttLrnkkiGTT3t7Oz6fD13XsSyLm266qe/exqNtc9FFF7FmzRpyuRzt7e10dHQwatSoAY78L7v44otPuT2mTZvG6tWrAXj33Xe58MILBzL0E1q1ahWaprFgwYK+x3bt2sUDDzyAEALTNNm8eTOjR48eEvl8nv1/KOSzbdu2Y0Z+vPfeeyxbtgzID3fcuXMntbW1x+RydLsc6iRxmm/6WLZsGRs3bkSSJBYvXsz27dv7zup9+OGHfYW98sorueWWW07nW5/x/lJtp0+fzvnnn993lg7gK1/5CnPnzh3AaIeW/rbbow4dOsSDDz7oTLP/OfVX26amJhYvXkw2m2X06NEsWbLEWR7ic+ivtq+++iorV65EURQmT57MwoULBzrcQe3PazkUhoO+9tprLF++/JgTG9dffz0rVqzA6/Xi8XhYunQpJSUlrF69mhdeeAFJkqivr+erX/3qAEZ+YtFolPvvv59UKkUul2P+/PmcddZZPPDAA2SzWSorK1m6dCmapg2JfBoaGviXf/kXnn/+eQDeeOMNXn75ZTweD2VlZfzoRz/C4/GwYsUKfve73yFJEv/wD//A1KlTBzjyvIaGBp544glaWlpQVZWysjKWLVvGokWLTqk9LMvi4Ycf5sCBA+i6zuOPP05FRcWgyqe7uxuXy9V3Qqauro4lS5awdOlSNm3ahCzLXH755dx5551DIp8bb7yRF1544ZT2/8GUz4lyWb58OcuXL+e8887jy1/+MpAf8vjggw/S0tKCaZrceOONXH/99SSTSf7xH/+RSCRCQUEBTz31FIFAYEByOV1OewfN4XA4HA6Hw+FwOBx/HedUtcPhcDgcDofD4XAMEk4HzeFwOBwOh8PhcDgGCaeD5nA4HA6Hw+FwOByDhNNBczgcDofD4XA4HI5BwumgORwOh8PhcDgcDscg4XTQHA6Hw+FwOBwOh2OQcDpoDofD4XA4HA6HwzFIOB00h8PhcDgcDofD4Rgk/h96lwBJwg+xnwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -533,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 19, "metadata": { "scrolled": true }, @@ -577,70 +632,70 @@ " thetas[0,0]\n", " 0.300\n", " 0.064\n", - " 0.184\n", - " 0.421\n", + " 0.187\n", + " 0.423\n", " 0.000\n", " 0.000\n", - " 19180.0\n", - " 16774.0\n", - " 19307.0\n", - " 6091.0\n", + " 20339.0\n", + " 17763.0\n", + " 20322.0\n", + " 6069.0\n", " 1.0\n", " \n", " \n", " thetas[0,1]\n", " 0.600\n", - " 0.068\n", - " 0.476\n", - " 0.731\n", + " 0.069\n", + " 0.470\n", + " 0.727\n", " 0.000\n", " 0.000\n", - " 20053.0\n", - " 19440.0\n", - " 20049.0\n", - " 5982.0\n", + " 19390.0\n", + " 19180.0\n", + " 19552.0\n", + " 6245.0\n", " 1.0\n", " \n", " \n", " thetas[0,2]\n", " 0.100\n", - " 0.042\n", - " 0.030\n", - " 0.177\n", + " 0.043\n", + " 0.029\n", + " 0.180\n", " 0.000\n", " 0.000\n", - " 17561.0\n", - " 12188.0\n", - " 18066.0\n", - " 6011.0\n", + " 18595.0\n", + " 12076.0\n", + " 18709.0\n", + " 5858.0\n", " 1.0\n", " \n", " \n", " thetas[1,0]\n", - " 0.489\n", - " 0.072\n", - " 0.354\n", - " 0.623\n", - " 0.000\n", + " 0.490\n", + " 0.070\n", + " 0.362\n", + " 0.622\n", + " 0.001\n", " 0.000\n", - " 23445.0\n", - " 22381.0\n", - " 23545.0\n", - " 5592.0\n", + " 19511.0\n", + " 18547.0\n", + " 19485.0\n", + " 5735.0\n", " 1.0\n", " \n", " \n", " thetas[1,1]\n", - " 0.470\n", - " 0.072\n", - " 0.338\n", - " 0.606\n", - " 0.000\n", + " 0.469\n", + " 0.070\n", + " 0.333\n", + " 0.591\n", + " 0.001\n", " 0.000\n", - " 21942.0\n", - " 20049.0\n", - " 22004.0\n", - " 6000.0\n", + " 19212.0\n", + " 18708.0\n", + " 19202.0\n", + " 5792.0\n", " 1.0\n", " \n", " \n", @@ -648,601 +703,601 @@ " 0.041\n", " 0.028\n", " 0.001\n", - " 0.091\n", + " 0.090\n", " 0.000\n", " 0.000\n", - " 16066.0\n", - " 9055.0\n", - " 16361.0\n", - " 5270.0\n", + " 13816.0\n", + " 8597.0\n", + " 14282.0\n", + " 5384.0\n", " 1.0\n", " \n", " \n", " thetas[2,0]\n", " 0.465\n", - " 0.039\n", - " 0.390\n", - " 0.537\n", + " 0.038\n", + " 0.395\n", + " 0.538\n", " 0.000\n", " 0.000\n", - " 17977.0\n", - " 17356.0\n", - " 17922.0\n", - " 6509.0\n", + " 20807.0\n", + " 20050.0\n", + " 20958.0\n", + " 5981.0\n", " 1.0\n", " \n", " \n", " thetas[2,1]\n", - " 0.412\n", - " 0.038\n", - " 0.339\n", - " 0.483\n", + " 0.411\n", + " 0.037\n", + " 0.343\n", + " 0.484\n", " 0.000\n", " 0.000\n", - " 19789.0\n", - " 19706.0\n", - " 19714.0\n", - " 6207.0\n", + " 19349.0\n", + " 19002.0\n", + " 19357.0\n", + " 6140.0\n", " 1.0\n", " \n", " \n", " thetas[2,2]\n", " 0.124\n", - " 0.025\n", - " 0.077\n", - " 0.170\n", + " 0.026\n", + " 0.078\n", + " 0.172\n", " 0.000\n", " 0.000\n", - " 18393.0\n", - " 15598.0\n", - " 18954.0\n", - " 6378.0\n", + " 19153.0\n", + " 15896.0\n", + " 19292.0\n", + " 6033.0\n", " 1.0\n", " \n", " \n", " thetas[3,0]\n", " 0.458\n", - " 0.058\n", - " 0.351\n", - " 0.564\n", + " 0.059\n", + " 0.349\n", + " 0.566\n", " 0.000\n", " 0.000\n", - " 18586.0\n", - " 18308.0\n", - " 18494.0\n", - " 6064.0\n", + " 20735.0\n", + " 20200.0\n", + " 20643.0\n", + " 5127.0\n", " 1.0\n", " \n", " \n", " thetas[3,1]\n", " 0.514\n", " 0.058\n", - " 0.404\n", - " 0.618\n", + " 0.408\n", + " 0.624\n", " 0.000\n", " 0.000\n", - " 17792.0\n", - " 17346.0\n", - " 17741.0\n", - " 6274.0\n", + " 20660.0\n", + " 20058.0\n", + " 20471.0\n", + " 5836.0\n", " 1.0\n", " \n", " \n", " thetas[3,2]\n", " 0.028\n", - " 0.019\n", + " 0.020\n", " 0.001\n", - " 0.063\n", + " 0.064\n", " 0.000\n", " 0.000\n", - " 15207.0\n", - " 8697.0\n", - " 14342.0\n", - " 4827.0\n", + " 16074.0\n", + " 8880.0\n", + " 17187.0\n", + " 5629.0\n", " 1.0\n", " \n", " \n", " thetas[4,0]\n", " 0.400\n", - " 0.069\n", - " 0.273\n", - " 0.526\n", - " 0.001\n", + " 0.068\n", + " 0.269\n", + " 0.527\n", + " 0.000\n", " 0.000\n", - " 17587.0\n", - " 16104.0\n", - " 17596.0\n", - " 5743.0\n", + " 19289.0\n", + " 17810.0\n", + " 19171.0\n", + " 5725.0\n", " 1.0\n", " \n", " \n", " thetas[4,1]\n", - " 0.479\n", - " 0.070\n", - " 0.343\n", - " 0.605\n", - " 0.001\n", + " 0.480\n", + " 0.069\n", + " 0.348\n", + " 0.604\n", " 0.000\n", - " 17138.0\n", - " 16507.0\n", - " 16999.0\n", - " 5744.0\n", + " 0.000\n", + " 19313.0\n", + " 18659.0\n", + " 19046.0\n", + " 5533.0\n", " 1.0\n", " \n", " \n", " thetas[4,2]\n", - " 0.121\n", + " 0.120\n", " 0.046\n", - " 0.042\n", - " 0.207\n", + " 0.040\n", + " 0.206\n", " 0.000\n", " 0.000\n", - " 16258.0\n", - " 10874.0\n", - " 17055.0\n", - " 5202.0\n", + " 17300.0\n", + " 11240.0\n", + " 18923.0\n", + " 5570.0\n", " 1.0\n", " \n", " \n", " thetas[5,0]\n", " 0.444\n", - " 0.049\n", - " 0.357\n", + " 0.050\n", + " 0.354\n", " 0.538\n", " 0.000\n", " 0.000\n", - " 19997.0\n", - " 19373.0\n", - " 20145.0\n", - " 6618.0\n", + " 19699.0\n", + " 19109.0\n", + " 19641.0\n", + " 5723.0\n", " 1.0\n", " \n", " \n", " thetas[5,1]\n", " 0.443\n", - " 0.050\n", - " 0.353\n", - " 0.535\n", + " 0.051\n", + " 0.346\n", + " 0.536\n", " 0.000\n", " 0.000\n", - " 19661.0\n", - " 18811.0\n", - " 19757.0\n", - " 5753.0\n", + " 19750.0\n", + " 18989.0\n", + " 19720.0\n", + " 5892.0\n", " 1.0\n", " \n", " \n", " thetas[5,2]\n", " 0.113\n", - " 0.032\n", - " 0.056\n", - " 0.172\n", + " 0.031\n", + " 0.060\n", + " 0.175\n", " 0.000\n", " 0.000\n", - " 17878.0\n", - " 13674.0\n", - " 18556.0\n", - " 6129.0\n", + " 18568.0\n", + " 14734.0\n", + " 18817.0\n", + " 5704.0\n", " 1.0\n", " \n", " \n", " thetas[6,0]\n", " 0.504\n", - " 0.046\n", - " 0.417\n", - " 0.588\n", + " 0.045\n", + " 0.421\n", + " 0.592\n", " 0.000\n", " 0.000\n", - " 18608.0\n", - " 18161.0\n", - " 18563.0\n", - " 5560.0\n", + " 15921.0\n", + " 15025.0\n", + " 15801.0\n", + " 5305.0\n", " 1.0\n", " \n", " \n", " thetas[6,1]\n", - " 0.386\n", - " 0.044\n", - " 0.303\n", - " 0.470\n", + " 0.387\n", + " 0.045\n", + " 0.305\n", + " 0.471\n", " 0.000\n", " 0.000\n", - " 18768.0\n", - " 17850.0\n", - " 18836.0\n", - " 6087.0\n", + " 17919.0\n", + " 17298.0\n", + " 17932.0\n", + " 5535.0\n", " 1.0\n", " \n", " \n", " thetas[6,2]\n", " 0.109\n", " 0.029\n", - " 0.059\n", - " 0.164\n", + " 0.057\n", + " 0.163\n", " 0.000\n", " 0.000\n", - " 17497.0\n", - " 14364.0\n", - " 17453.0\n", - " 6184.0\n", + " 19968.0\n", + " 15599.0\n", + " 20069.0\n", + " 5625.0\n", " 1.0\n", " \n", " \n", " thetas[7,0]\n", " 0.547\n", - " 0.040\n", - " 0.474\n", - " 0.622\n", + " 0.041\n", + " 0.467\n", + " 0.621\n", " 0.000\n", " 0.000\n", - " 21412.0\n", - " 21150.0\n", - " 21496.0\n", - " 6089.0\n", + " 17353.0\n", + " 16819.0\n", + " 17435.0\n", + " 5160.0\n", " 1.0\n", " \n", " \n", " thetas[7,1]\n", " 0.338\n", - " 0.037\n", - " 0.272\n", - " 0.411\n", + " 0.039\n", + " 0.266\n", + " 0.412\n", " 0.000\n", " 0.000\n", - " 20017.0\n", - " 19100.0\n", - " 20019.0\n", - " 6150.0\n", + " 18694.0\n", + " 17352.0\n", + " 19000.0\n", + " 5645.0\n", " 1.0\n", " \n", " \n", " thetas[7,2]\n", " 0.115\n", " 0.026\n", - " 0.066\n", - " 0.162\n", + " 0.069\n", + " 0.166\n", " 0.000\n", " 0.000\n", - " 18083.0\n", - " 13995.0\n", - " 19176.0\n", - " 5880.0\n", + " 19354.0\n", + " 16324.0\n", + " 19387.0\n", + " 5943.0\n", " 1.0\n", " \n", " \n", " thetas[8,0]\n", - " 0.541\n", - " 0.099\n", - " 0.354\n", - " 0.721\n", + " 0.542\n", + " 0.102\n", + " 0.351\n", + " 0.737\n", " 0.001\n", " 0.001\n", - " 18432.0\n", - " 17240.0\n", - " 18477.0\n", - " 5688.0\n", + " 18059.0\n", + " 17100.0\n", + " 18191.0\n", + " 5359.0\n", " 1.0\n", " \n", " \n", " thetas[8,1]\n", - " 0.292\n", - " 0.091\n", - " 0.124\n", - " 0.459\n", + " 0.291\n", + " 0.092\n", + " 0.125\n", + " 0.466\n", " 0.001\n", " 0.001\n", - " 15864.0\n", - " 12321.0\n", - " 16280.0\n", - " 6097.0\n", + " 17529.0\n", + " 12773.0\n", + " 18116.0\n", + " 5361.0\n", " 1.0\n", " \n", " \n", " thetas[8,2]\n", - " 0.166\n", - " 0.075\n", - " 0.038\n", - " 0.303\n", + " 0.167\n", + " 0.076\n", + " 0.034\n", + " 0.305\n", " 0.001\n", - " 0.000\n", - " 17670.0\n", - " 11698.0\n", - " 18854.0\n", - " 6062.0\n", + " 0.001\n", + " 15880.0\n", + " 9583.0\n", + " 17401.0\n", + " 5565.0\n", " 1.0\n", " \n", " \n", " thetas[9,0]\n", " 0.465\n", - " 0.051\n", - " 0.368\n", - " 0.559\n", + " 0.050\n", + " 0.372\n", + " 0.558\n", " 0.000\n", " 0.000\n", - " 20497.0\n", - " 19551.0\n", - " 20480.0\n", - " 6329.0\n", + " 21250.0\n", + " 21134.0\n", + " 21235.0\n", + " 5933.0\n", " 1.0\n", " \n", " \n", " thetas[9,1]\n", " 0.404\n", " 0.050\n", - " 0.312\n", - " 0.498\n", + " 0.310\n", + " 0.496\n", " 0.000\n", " 0.000\n", - " 19111.0\n", - " 18156.0\n", - " 19119.0\n", - " 6302.0\n", + " 19513.0\n", + " 17659.0\n", + " 19842.0\n", + " 5706.0\n", " 1.0\n", " \n", " \n", " thetas[9,2]\n", " 0.131\n", - " 0.034\n", + " 0.033\n", " 0.070\n", - " 0.193\n", + " 0.190\n", " 0.000\n", " 0.000\n", - " 19145.0\n", - " 15501.0\n", - " 19268.0\n", - " 6074.0\n", + " 20408.0\n", + " 16101.0\n", + " 20676.0\n", + " 5468.0\n", " 1.0\n", " \n", " \n", " thetas[10,0]\n", - " 0.510\n", + " 0.509\n", " 0.049\n", - " 0.418\n", - " 0.602\n", + " 0.413\n", + " 0.598\n", " 0.000\n", " 0.000\n", - " 20163.0\n", - " 20075.0\n", - " 20236.0\n", - " 6517.0\n", + " 17902.0\n", + " 17320.0\n", + " 17983.0\n", + " 5648.0\n", " 1.0\n", " \n", " \n", " thetas[10,1]\n", " 0.402\n", " 0.048\n", - " 0.312\n", - " 0.493\n", + " 0.319\n", + " 0.495\n", " 0.000\n", " 0.000\n", - " 19256.0\n", - " 18108.0\n", - " 19475.0\n", - " 5811.0\n", + " 17150.0\n", + " 16781.0\n", + " 16879.0\n", + " 6083.0\n", " 1.0\n", " \n", " \n", " thetas[10,2]\n", " 0.088\n", " 0.028\n", - " 0.039\n", - " 0.139\n", + " 0.038\n", + " 0.138\n", " 0.000\n", " 0.000\n", - " 18553.0\n", - " 13591.0\n", - " 18557.0\n", - " 5653.0\n", + " 18132.0\n", + " 13925.0\n", + " 18017.0\n", + " 5951.0\n", " 1.0\n", " \n", " \n", " thetas[11,0]\n", " 0.551\n", - " 0.036\n", - " 0.485\n", - " 0.622\n", + " 0.037\n", + " 0.486\n", + " 0.623\n", " 0.000\n", " 0.000\n", - " 21649.0\n", - " 21249.0\n", - " 21682.0\n", - " 4983.0\n", + " 19232.0\n", + " 19113.0\n", + " 19204.0\n", + " 5712.0\n", " 1.0\n", " \n", " \n", " thetas[11,1]\n", - " 0.352\n", + " 0.351\n", " 0.035\n", - " 0.286\n", - " 0.416\n", + " 0.284\n", + " 0.413\n", " 0.000\n", " 0.000\n", - " 21122.0\n", - " 20302.0\n", - " 21213.0\n", - " 5661.0\n", + " 18706.0\n", + " 17851.0\n", + " 18777.0\n", + " 6028.0\n", " 1.0\n", " \n", " \n", " thetas[11,2]\n", " 0.097\n", " 0.021\n", - " 0.059\n", - " 0.137\n", + " 0.060\n", + " 0.138\n", " 0.000\n", " 0.000\n", - " 19694.0\n", - " 16202.0\n", - " 19883.0\n", - " 5604.0\n", + " 18493.0\n", + " 15312.0\n", + " 18919.0\n", + " 5995.0\n", " 1.0\n", " \n", " \n", " thetas[12,0]\n", " 0.487\n", - " 0.081\n", + " 0.082\n", " 0.339\n", - " 0.641\n", + " 0.647\n", " 0.001\n", " 0.000\n", - " 23686.0\n", - " 20712.0\n", - " 23796.0\n", - " 5543.0\n", + " 22491.0\n", + " 20669.0\n", + " 22470.0\n", + " 5516.0\n", " 1.0\n", " \n", " \n", " thetas[12,1]\n", - " 0.458\n", + " 0.459\n", " 0.082\n", - " 0.309\n", - " 0.613\n", + " 0.305\n", + " 0.610\n", " 0.001\n", " 0.000\n", - " 21239.0\n", - " 19865.0\n", - " 21176.0\n", - " 5179.0\n", + " 20397.0\n", + " 18550.0\n", + " 20367.0\n", + " 6181.0\n", " 1.0\n", " \n", " \n", " thetas[12,2]\n", " 0.054\n", - " 0.038\n", - " 0.001\n", - " 0.123\n", + " 0.037\n", + " 0.002\n", + " 0.121\n", " 0.000\n", " 0.000\n", - " 14476.0\n", - " 7769.0\n", - " 15893.0\n", - " 4800.0\n", + " 16547.0\n", + " 9079.0\n", + " 17300.0\n", + " 5684.0\n", " 1.0\n", " \n", " \n", " thetas[13,0]\n", - " 0.525\n", + " 0.524\n", " 0.055\n", - " 0.421\n", - " 0.628\n", + " 0.424\n", + " 0.630\n", " 0.000\n", " 0.000\n", - " 20132.0\n", - " 19957.0\n", - " 20205.0\n", - " 5866.0\n", + " 17157.0\n", + " 16845.0\n", + " 17150.0\n", + " 5982.0\n", " 1.0\n", " \n", " \n", " thetas[13,1]\n", " 0.350\n", - " 0.054\n", - " 0.251\n", - " 0.451\n", + " 0.053\n", + " 0.256\n", + " 0.454\n", " 0.000\n", " 0.000\n", - " 19828.0\n", - " 18962.0\n", - " 19560.0\n", - " 5958.0\n", + " 18818.0\n", + " 16504.0\n", + " 19076.0\n", + " 5748.0\n", " 1.0\n", " \n", " \n", " thetas[13,2]\n", " 0.125\n", " 0.037\n", - " 0.053\n", - " 0.190\n", + " 0.061\n", + " 0.195\n", " 0.000\n", " 0.000\n", - " 17053.0\n", - " 13104.0\n", - " 17165.0\n", - " 5432.0\n", + " 18228.0\n", + " 12811.0\n", + " 19014.0\n", + " 5243.0\n", " 1.0\n", " \n", " \n", " thetas[14,0]\n", - " 0.535\n", - " 0.045\n", - " 0.449\n", - " 0.616\n", + " 0.536\n", + " 0.044\n", + " 0.454\n", + " 0.619\n", " 0.000\n", " 0.000\n", - " 24100.0\n", - " 23358.0\n", - " 24144.0\n", - " 5356.0\n", + " 18884.0\n", + " 18702.0\n", + " 18899.0\n", + " 6359.0\n", " 1.0\n", " \n", " \n", " thetas[14,1]\n", " 0.370\n", " 0.043\n", - " 0.289\n", - " 0.451\n", + " 0.293\n", + " 0.452\n", " 0.000\n", " 0.000\n", - " 20433.0\n", - " 19480.0\n", - " 20438.0\n", - " 5930.0\n", + " 19833.0\n", + " 18709.0\n", + " 19859.0\n", + " 6530.0\n", " 1.0\n", " \n", " \n", " thetas[14,2]\n", - " 0.095\n", - " 0.026\n", + " 0.094\n", + " 0.025\n", " 0.049\n", - " 0.145\n", + " 0.142\n", " 0.000\n", " 0.000\n", - " 20369.0\n", - " 15173.0\n", - " 20674.0\n", - " 5779.0\n", + " 18242.0\n", + " 14272.0\n", + " 19906.0\n", + " 6134.0\n", " 1.0\n", " \n", " \n", " thetas[15,0]\n", - " 0.546\n", - " 0.053\n", - " 0.444\n", - " 0.643\n", + " 0.547\n", + " 0.054\n", + " 0.449\n", + " 0.650\n", " 0.000\n", " 0.000\n", - " 18238.0\n", - " 17553.0\n", - " 18133.0\n", - " 6414.0\n", + " 19939.0\n", + " 19867.0\n", + " 20079.0\n", + " 5596.0\n", " 1.0\n", " \n", " \n", " thetas[15,1]\n", " 0.360\n", - " 0.050\n", - " 0.271\n", - " 0.456\n", + " 0.052\n", + " 0.268\n", + " 0.459\n", " 0.000\n", " 0.000\n", - " 19066.0\n", - " 18464.0\n", - " 18837.0\n", - " 6181.0\n", + " 18711.0\n", + " 17012.0\n", + " 18923.0\n", + " 5642.0\n", " 1.0\n", " \n", " \n", " thetas[15,2]\n", " 0.093\n", " 0.031\n", - " 0.038\n", - " 0.150\n", + " 0.039\n", + " 0.152\n", " 0.000\n", " 0.000\n", - " 18422.0\n", - " 13482.0\n", - " 18941.0\n", - " 5777.0\n", + " 19422.0\n", + " 13374.0\n", + " 20231.0\n", + " 5770.0\n", " 1.0\n", " \n", " \n", @@ -1251,107 +1306,107 @@ ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", - "thetas[0,0] 0.300 0.064 0.184 0.421 0.000 0.000 19180.0 \n", - "thetas[0,1] 0.600 0.068 0.476 0.731 0.000 0.000 20053.0 \n", - "thetas[0,2] 0.100 0.042 0.030 0.177 0.000 0.000 17561.0 \n", - "thetas[1,0] 0.489 0.072 0.354 0.623 0.000 0.000 23445.0 \n", - "thetas[1,1] 0.470 0.072 0.338 0.606 0.000 0.000 21942.0 \n", - "thetas[1,2] 0.041 0.028 0.001 0.091 0.000 0.000 16066.0 \n", - "thetas[2,0] 0.465 0.039 0.390 0.537 0.000 0.000 17977.0 \n", - "thetas[2,1] 0.412 0.038 0.339 0.483 0.000 0.000 19789.0 \n", - "thetas[2,2] 0.124 0.025 0.077 0.170 0.000 0.000 18393.0 \n", - "thetas[3,0] 0.458 0.058 0.351 0.564 0.000 0.000 18586.0 \n", - "thetas[3,1] 0.514 0.058 0.404 0.618 0.000 0.000 17792.0 \n", - "thetas[3,2] 0.028 0.019 0.001 0.063 0.000 0.000 15207.0 \n", - "thetas[4,0] 0.400 0.069 0.273 0.526 0.001 0.000 17587.0 \n", - "thetas[4,1] 0.479 0.070 0.343 0.605 0.001 0.000 17138.0 \n", - "thetas[4,2] 0.121 0.046 0.042 0.207 0.000 0.000 16258.0 \n", - "thetas[5,0] 0.444 0.049 0.357 0.538 0.000 0.000 19997.0 \n", - "thetas[5,1] 0.443 0.050 0.353 0.535 0.000 0.000 19661.0 \n", - "thetas[5,2] 0.113 0.032 0.056 0.172 0.000 0.000 17878.0 \n", - "thetas[6,0] 0.504 0.046 0.417 0.588 0.000 0.000 18608.0 \n", - "thetas[6,1] 0.386 0.044 0.303 0.470 0.000 0.000 18768.0 \n", - "thetas[6,2] 0.109 0.029 0.059 0.164 0.000 0.000 17497.0 \n", - "thetas[7,0] 0.547 0.040 0.474 0.622 0.000 0.000 21412.0 \n", - "thetas[7,1] 0.338 0.037 0.272 0.411 0.000 0.000 20017.0 \n", - "thetas[7,2] 0.115 0.026 0.066 0.162 0.000 0.000 18083.0 \n", - "thetas[8,0] 0.541 0.099 0.354 0.721 0.001 0.001 18432.0 \n", - "thetas[8,1] 0.292 0.091 0.124 0.459 0.001 0.001 15864.0 \n", - "thetas[8,2] 0.166 0.075 0.038 0.303 0.001 0.000 17670.0 \n", - "thetas[9,0] 0.465 0.051 0.368 0.559 0.000 0.000 20497.0 \n", - "thetas[9,1] 0.404 0.050 0.312 0.498 0.000 0.000 19111.0 \n", - "thetas[9,2] 0.131 0.034 0.070 0.193 0.000 0.000 19145.0 \n", - "thetas[10,0] 0.510 0.049 0.418 0.602 0.000 0.000 20163.0 \n", - "thetas[10,1] 0.402 0.048 0.312 0.493 0.000 0.000 19256.0 \n", - "thetas[10,2] 0.088 0.028 0.039 0.139 0.000 0.000 18553.0 \n", - "thetas[11,0] 0.551 0.036 0.485 0.622 0.000 0.000 21649.0 \n", - "thetas[11,1] 0.352 0.035 0.286 0.416 0.000 0.000 21122.0 \n", - "thetas[11,2] 0.097 0.021 0.059 0.137 0.000 0.000 19694.0 \n", - "thetas[12,0] 0.487 0.081 0.339 0.641 0.001 0.000 23686.0 \n", - "thetas[12,1] 0.458 0.082 0.309 0.613 0.001 0.000 21239.0 \n", - "thetas[12,2] 0.054 0.038 0.001 0.123 0.000 0.000 14476.0 \n", - "thetas[13,0] 0.525 0.055 0.421 0.628 0.000 0.000 20132.0 \n", - "thetas[13,1] 0.350 0.054 0.251 0.451 0.000 0.000 19828.0 \n", - "thetas[13,2] 0.125 0.037 0.053 0.190 0.000 0.000 17053.0 \n", - "thetas[14,0] 0.535 0.045 0.449 0.616 0.000 0.000 24100.0 \n", - "thetas[14,1] 0.370 0.043 0.289 0.451 0.000 0.000 20433.0 \n", - "thetas[14,2] 0.095 0.026 0.049 0.145 0.000 0.000 20369.0 \n", - "thetas[15,0] 0.546 0.053 0.444 0.643 0.000 0.000 18238.0 \n", - "thetas[15,1] 0.360 0.050 0.271 0.456 0.000 0.000 19066.0 \n", - "thetas[15,2] 0.093 0.031 0.038 0.150 0.000 0.000 18422.0 \n", + "thetas[0,0] 0.300 0.064 0.187 0.423 0.000 0.000 20339.0 \n", + "thetas[0,1] 0.600 0.069 0.470 0.727 0.000 0.000 19390.0 \n", + "thetas[0,2] 0.100 0.043 0.029 0.180 0.000 0.000 18595.0 \n", + "thetas[1,0] 0.490 0.070 0.362 0.622 0.001 0.000 19511.0 \n", + "thetas[1,1] 0.469 0.070 0.333 0.591 0.001 0.000 19212.0 \n", + "thetas[1,2] 0.041 0.028 0.001 0.090 0.000 0.000 13816.0 \n", + "thetas[2,0] 0.465 0.038 0.395 0.538 0.000 0.000 20807.0 \n", + "thetas[2,1] 0.411 0.037 0.343 0.484 0.000 0.000 19349.0 \n", + "thetas[2,2] 0.124 0.026 0.078 0.172 0.000 0.000 19153.0 \n", + "thetas[3,0] 0.458 0.059 0.349 0.566 0.000 0.000 20735.0 \n", + "thetas[3,1] 0.514 0.058 0.408 0.624 0.000 0.000 20660.0 \n", + "thetas[3,2] 0.028 0.020 0.001 0.064 0.000 0.000 16074.0 \n", + "thetas[4,0] 0.400 0.068 0.269 0.527 0.000 0.000 19289.0 \n", + "thetas[4,1] 0.480 0.069 0.348 0.604 0.000 0.000 19313.0 \n", + "thetas[4,2] 0.120 0.046 0.040 0.206 0.000 0.000 17300.0 \n", + "thetas[5,0] 0.444 0.050 0.354 0.538 0.000 0.000 19699.0 \n", + "thetas[5,1] 0.443 0.051 0.346 0.536 0.000 0.000 19750.0 \n", + "thetas[5,2] 0.113 0.031 0.060 0.175 0.000 0.000 18568.0 \n", + "thetas[6,0] 0.504 0.045 0.421 0.592 0.000 0.000 15921.0 \n", + "thetas[6,1] 0.387 0.045 0.305 0.471 0.000 0.000 17919.0 \n", + "thetas[6,2] 0.109 0.029 0.057 0.163 0.000 0.000 19968.0 \n", + "thetas[7,0] 0.547 0.041 0.467 0.621 0.000 0.000 17353.0 \n", + "thetas[7,1] 0.338 0.039 0.266 0.412 0.000 0.000 18694.0 \n", + "thetas[7,2] 0.115 0.026 0.069 0.166 0.000 0.000 19354.0 \n", + "thetas[8,0] 0.542 0.102 0.351 0.737 0.001 0.001 18059.0 \n", + "thetas[8,1] 0.291 0.092 0.125 0.466 0.001 0.001 17529.0 \n", + "thetas[8,2] 0.167 0.076 0.034 0.305 0.001 0.001 15880.0 \n", + "thetas[9,0] 0.465 0.050 0.372 0.558 0.000 0.000 21250.0 \n", + "thetas[9,1] 0.404 0.050 0.310 0.496 0.000 0.000 19513.0 \n", + "thetas[9,2] 0.131 0.033 0.070 0.190 0.000 0.000 20408.0 \n", + "thetas[10,0] 0.509 0.049 0.413 0.598 0.000 0.000 17902.0 \n", + "thetas[10,1] 0.402 0.048 0.319 0.495 0.000 0.000 17150.0 \n", + "thetas[10,2] 0.088 0.028 0.038 0.138 0.000 0.000 18132.0 \n", + "thetas[11,0] 0.551 0.037 0.486 0.623 0.000 0.000 19232.0 \n", + "thetas[11,1] 0.351 0.035 0.284 0.413 0.000 0.000 18706.0 \n", + "thetas[11,2] 0.097 0.021 0.060 0.138 0.000 0.000 18493.0 \n", + "thetas[12,0] 0.487 0.082 0.339 0.647 0.001 0.000 22491.0 \n", + "thetas[12,1] 0.459 0.082 0.305 0.610 0.001 0.000 20397.0 \n", + "thetas[12,2] 0.054 0.037 0.002 0.121 0.000 0.000 16547.0 \n", + "thetas[13,0] 0.524 0.055 0.424 0.630 0.000 0.000 17157.0 \n", + "thetas[13,1] 0.350 0.053 0.256 0.454 0.000 0.000 18818.0 \n", + "thetas[13,2] 0.125 0.037 0.061 0.195 0.000 0.000 18228.0 \n", + "thetas[14,0] 0.536 0.044 0.454 0.619 0.000 0.000 18884.0 \n", + "thetas[14,1] 0.370 0.043 0.293 0.452 0.000 0.000 19833.0 \n", + "thetas[14,2] 0.094 0.025 0.049 0.142 0.000 0.000 18242.0 \n", + "thetas[15,0] 0.547 0.054 0.449 0.650 0.000 0.000 19939.0 \n", + "thetas[15,1] 0.360 0.052 0.268 0.459 0.000 0.000 18711.0 \n", + "thetas[15,2] 0.093 0.031 0.039 0.152 0.000 0.000 19422.0 \n", "\n", " ess_sd ess_bulk ess_tail r_hat \n", - "thetas[0,0] 16774.0 19307.0 6091.0 1.0 \n", - "thetas[0,1] 19440.0 20049.0 5982.0 1.0 \n", - "thetas[0,2] 12188.0 18066.0 6011.0 1.0 \n", - "thetas[1,0] 22381.0 23545.0 5592.0 1.0 \n", - "thetas[1,1] 20049.0 22004.0 6000.0 1.0 \n", - "thetas[1,2] 9055.0 16361.0 5270.0 1.0 \n", - "thetas[2,0] 17356.0 17922.0 6509.0 1.0 \n", - "thetas[2,1] 19706.0 19714.0 6207.0 1.0 \n", - "thetas[2,2] 15598.0 18954.0 6378.0 1.0 \n", - "thetas[3,0] 18308.0 18494.0 6064.0 1.0 \n", - "thetas[3,1] 17346.0 17741.0 6274.0 1.0 \n", - "thetas[3,2] 8697.0 14342.0 4827.0 1.0 \n", - "thetas[4,0] 16104.0 17596.0 5743.0 1.0 \n", - "thetas[4,1] 16507.0 16999.0 5744.0 1.0 \n", - "thetas[4,2] 10874.0 17055.0 5202.0 1.0 \n", - "thetas[5,0] 19373.0 20145.0 6618.0 1.0 \n", - "thetas[5,1] 18811.0 19757.0 5753.0 1.0 \n", - "thetas[5,2] 13674.0 18556.0 6129.0 1.0 \n", - "thetas[6,0] 18161.0 18563.0 5560.0 1.0 \n", - "thetas[6,1] 17850.0 18836.0 6087.0 1.0 \n", - "thetas[6,2] 14364.0 17453.0 6184.0 1.0 \n", - "thetas[7,0] 21150.0 21496.0 6089.0 1.0 \n", - "thetas[7,1] 19100.0 20019.0 6150.0 1.0 \n", - "thetas[7,2] 13995.0 19176.0 5880.0 1.0 \n", - "thetas[8,0] 17240.0 18477.0 5688.0 1.0 \n", - "thetas[8,1] 12321.0 16280.0 6097.0 1.0 \n", - "thetas[8,2] 11698.0 18854.0 6062.0 1.0 \n", - "thetas[9,0] 19551.0 20480.0 6329.0 1.0 \n", - "thetas[9,1] 18156.0 19119.0 6302.0 1.0 \n", - "thetas[9,2] 15501.0 19268.0 6074.0 1.0 \n", - "thetas[10,0] 20075.0 20236.0 6517.0 1.0 \n", - "thetas[10,1] 18108.0 19475.0 5811.0 1.0 \n", - "thetas[10,2] 13591.0 18557.0 5653.0 1.0 \n", - "thetas[11,0] 21249.0 21682.0 4983.0 1.0 \n", - "thetas[11,1] 20302.0 21213.0 5661.0 1.0 \n", - "thetas[11,2] 16202.0 19883.0 5604.0 1.0 \n", - "thetas[12,0] 20712.0 23796.0 5543.0 1.0 \n", - "thetas[12,1] 19865.0 21176.0 5179.0 1.0 \n", - "thetas[12,2] 7769.0 15893.0 4800.0 1.0 \n", - "thetas[13,0] 19957.0 20205.0 5866.0 1.0 \n", - "thetas[13,1] 18962.0 19560.0 5958.0 1.0 \n", - "thetas[13,2] 13104.0 17165.0 5432.0 1.0 \n", - "thetas[14,0] 23358.0 24144.0 5356.0 1.0 \n", - "thetas[14,1] 19480.0 20438.0 5930.0 1.0 \n", - "thetas[14,2] 15173.0 20674.0 5779.0 1.0 \n", - "thetas[15,0] 17553.0 18133.0 6414.0 1.0 \n", - "thetas[15,1] 18464.0 18837.0 6181.0 1.0 \n", - "thetas[15,2] 13482.0 18941.0 5777.0 1.0 " + "thetas[0,0] 17763.0 20322.0 6069.0 1.0 \n", + "thetas[0,1] 19180.0 19552.0 6245.0 1.0 \n", + "thetas[0,2] 12076.0 18709.0 5858.0 1.0 \n", + "thetas[1,0] 18547.0 19485.0 5735.0 1.0 \n", + "thetas[1,1] 18708.0 19202.0 5792.0 1.0 \n", + "thetas[1,2] 8597.0 14282.0 5384.0 1.0 \n", + "thetas[2,0] 20050.0 20958.0 5981.0 1.0 \n", + "thetas[2,1] 19002.0 19357.0 6140.0 1.0 \n", + "thetas[2,2] 15896.0 19292.0 6033.0 1.0 \n", + "thetas[3,0] 20200.0 20643.0 5127.0 1.0 \n", + "thetas[3,1] 20058.0 20471.0 5836.0 1.0 \n", + "thetas[3,2] 8880.0 17187.0 5629.0 1.0 \n", + "thetas[4,0] 17810.0 19171.0 5725.0 1.0 \n", + "thetas[4,1] 18659.0 19046.0 5533.0 1.0 \n", + "thetas[4,2] 11240.0 18923.0 5570.0 1.0 \n", + "thetas[5,0] 19109.0 19641.0 5723.0 1.0 \n", + "thetas[5,1] 18989.0 19720.0 5892.0 1.0 \n", + "thetas[5,2] 14734.0 18817.0 5704.0 1.0 \n", + "thetas[6,0] 15025.0 15801.0 5305.0 1.0 \n", + "thetas[6,1] 17298.0 17932.0 5535.0 1.0 \n", + "thetas[6,2] 15599.0 20069.0 5625.0 1.0 \n", + "thetas[7,0] 16819.0 17435.0 5160.0 1.0 \n", + "thetas[7,1] 17352.0 19000.0 5645.0 1.0 \n", + "thetas[7,2] 16324.0 19387.0 5943.0 1.0 \n", + "thetas[8,0] 17100.0 18191.0 5359.0 1.0 \n", + "thetas[8,1] 12773.0 18116.0 5361.0 1.0 \n", + "thetas[8,2] 9583.0 17401.0 5565.0 1.0 \n", + "thetas[9,0] 21134.0 21235.0 5933.0 1.0 \n", + "thetas[9,1] 17659.0 19842.0 5706.0 1.0 \n", + "thetas[9,2] 16101.0 20676.0 5468.0 1.0 \n", + "thetas[10,0] 17320.0 17983.0 5648.0 1.0 \n", + "thetas[10,1] 16781.0 16879.0 6083.0 1.0 \n", + "thetas[10,2] 13925.0 18017.0 5951.0 1.0 \n", + "thetas[11,0] 19113.0 19204.0 5712.0 1.0 \n", + "thetas[11,1] 17851.0 18777.0 6028.0 1.0 \n", + "thetas[11,2] 15312.0 18919.0 5995.0 1.0 \n", + "thetas[12,0] 20669.0 22470.0 5516.0 1.0 \n", + "thetas[12,1] 18550.0 20367.0 6181.0 1.0 \n", + "thetas[12,2] 9079.0 17300.0 5684.0 1.0 \n", + "thetas[13,0] 16845.0 17150.0 5982.0 1.0 \n", + "thetas[13,1] 16504.0 19076.0 5748.0 1.0 \n", + "thetas[13,2] 12811.0 19014.0 5243.0 1.0 \n", + "thetas[14,0] 18702.0 18899.0 6359.0 1.0 \n", + "thetas[14,1] 18709.0 19859.0 6530.0 1.0 \n", + "thetas[14,2] 14272.0 19906.0 6134.0 1.0 \n", + "thetas[15,0] 19867.0 20079.0 5596.0 1.0 \n", + "thetas[15,1] 17012.0 18923.0 5642.0 1.0 \n", + "thetas[15,2] 13374.0 20231.0 5770.0 1.0 " ] }, - "execution_count": 14, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1369,14 +1424,14 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 10000/10000 [00:15<00:00, 666.41it/s]\n" + "100%|██████████| 10000/10000 [00:16<00:00, 624.90it/s]\n" ] } ], @@ -1387,7 +1442,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -1396,7 +1451,7 @@ "(10000, 16, 3)" ] }, - "execution_count": 26, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1414,7 +1469,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1426,7 +1481,7 @@ " 0.05711423])" ] }, - "execution_count": 27, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1437,7 +1492,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1450,28 +1505,28 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.38269827, -0.2111439 , -0.03313074, ..., -0.40320236,\n", - " -0.28429534, -0.29398797],\n", - " [-0.16225691, 0.10415002, -0.00290161, ..., -0.05570792,\n", - " 0.08606434, -0.09591687],\n", - " [-0.05859063, 0.1490945 , 0.07752748, ..., 0.03058629,\n", - " 0.08686482, 0.02734735],\n", + "array([[-0.37152868, -0.39270884, -0.27711763, ..., -0.38311389,\n", + " -0.16197354, -0.0759135 ],\n", + " [-0.09074752, 0.1115859 , 0.00146911, ..., 0.01069888,\n", + " 0.02267581, 0.07319762],\n", + " [-0.06447657, 0.13304329, 0.04881421, ..., -0.05086837,\n", + " 0.17782086, 0.1470372 ],\n", " ...,\n", - " [ 0.23776605, 0.17184184, 0.15313478, ..., 0.3966856 ,\n", - " 0.12764284, 0.20320234],\n", - " [ 0.18947771, 0.05270173, 0.1134665 , ..., 0.08172745,\n", - " 0.18431356, 0.15733717],\n", - " [ 0.30797976, 0.04437883, 0.06218116, ..., 0.1295049 ,\n", - " 0.21549409, 0.14776103]])" + " [ 0.22232482, 0.04534385, 0.12250542, ..., 0.21818491,\n", + " 0.12880619, 0.17687064],\n", + " [ 0.23422029, 0.29562229, -0.01020674, ..., 0.10753941,\n", + " 0.21011965, 0.22453465],\n", + " [ 0.12189831, 0.05450111, 0.13657609, ..., 0.22938518,\n", + " 0.18281768, 0.21130112]])" ] }, - "execution_count": 29, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1483,7 +1538,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1492,12 +1547,12 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAFkCAYAAADFUfTMAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAARUklEQVR4nO3dbWidZxnA8SvtadP0JUglm0hbu7oPYrGKnbbDwSyUJTNBXWBa+sXJPijFqYhCQepLXTVMO7/IqGXDzjqGY+oKjZtM2diEqtOJww8p1hksk1attEnW09hstx929bi4raZ7ek7efj8Q7Dk5uc9z5cnd//Kk57SVUkoAABALpvsJAADMFMIIACAJIwCAJIwAAJIwAgBIwggAINUuduc//jHaqufRsHx5e4yNjbd83ZnEDF5iDmZwgTmYwQXmYAYXvNocurpWVP68M+4nRrXawul+CtPODF5iDmZwgTmYwQXmYAYXNGsOMy6MAACmizACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEi16X4CwPyzvLMjOtovbfvp6lrxuterj0/E2Ej9dT8emD+EEdByHe21WLtzsGXrDQ/0xljLVgNmM5fSAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASLXpfgLA9Fve2REd7bYDADshEB3ttVi7c7Bl6w0P9LZsLYBL4VIaAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkGrT/QQAmu3c+Reiq2tFS9esj0/E2Ei9pWsC1QkjYM5bsmhhrN052NI1hwd6Y6ylKwKXg0tpAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBAKTadD8B4JWWd3ZER/tL355dXSum+dkAzB/CCGagjvZarN052LL1hgd6W7YWwEzmUhoAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJBq0/0EAOaic+dfiK6uFZf1c17s89XHJ2JspH5Z14P5SBgBNMGSRQtj7c7Blq03PNAbYy1bDeYul9IAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAINWm+wnAbLC8syM62n27AMx1dnqYgo72WqzdOdiy9YYHelu2FgD/5VIaAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJBq0/0EAKju3PkXoqtrRcvWq49PxNhIvWXrQasII4A5YMmihbF252DL1hse6I2xlq0GreNSGgBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkIQRAEASRgAASRgBACRhBACQatP9BOBSLe/siI52py4Al5+/XZh1OtprsXbnYEvXHB7obel6AEwPl9IAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBIwggAIAkjAIAkjAAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAAJIwAgBItel+AgDMPufOvxBdXStatl59fCLGRuotW4/5SxgBcMmWLFoYa3cOtmy94YHeGGvZasxnLqUBACRhBACQhBEAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkYQQAkLwlCJUt7+yIjvbmnEqtfC8mABBGVNbRXmv5eyYBQDO4lAYAkIQRAEASRgAASRgBACRhBACQhBEAQBJGAABJGAEAJGEEAJC88jUAM9658y803iKoFW8VVB+fiLGRetPXYeYRRgDMeEsWLWz5Ww+NtWw1ZhKX0gAAkjACAEjCCAAg+R2jOWh5Z0d0tPvSAsCl8rfnHNTRXmv5LykCwFzgUhoAQBJGAABJGAEAJGEEAJCEEQBAEkYAAEkYAQAkr2MEAP/j3PkXoqtrRcvWq49PxNhIvWXr8dqEUQu8nleibuU3JACTLVm0sOUvlDvWstW4GGHUAl6JGgBmh3kZRt5LDICZ5FIv3V2Oqwou3726tlJKme4nAQAwE/hXaQAASRgBACRhBACQmhZGR44ciZtuuim6u7vj4x//eJw4ceIVHzM0NBTbtm2L7u7u2LZtWwwNDTXuGxwcjL6+vuju7o7bbrstRkdHIyKilBLf+ta3oru7O3p6emLv3r3NOoTKqs7ggQceiN7e3ujp6Ylbb7218fhDhw7Fxo0bo6enp/G/Rx99tGXHdamqzOHEiROxfv36Scd64Ws+m86FiGpzuPfeeyfNYOvWrbFp06aIiLjrrrti06ZNk+5/5plnWnpsUzWVGZRS4p577on169fHb3/720n3zYV9IaL6HObC3lBlBvNtX3itOcynfeF3v/td3HzzzXHjjTdGf39/PPXUU437Lvu+UJrg+eefL5s3by5//OMfSyml3H333eUTn/jEKz6up6enPProo6WUUh5++OHS19dXSinlueeeK5s2bSrPPfdcKaWUr371q2X37t2llFIOHz5cbr755jI+Pl7OnTtX+vv7yyOPPNKMw6ik6gz+8Ic/lPe9733l5MmTpZRSBgYGyuc+97lSSikHDx4su3btasVhVFZ1DkePHi033HDDq37u2XIulFJ9Dv9r//795Rvf+EYp5aVzY9++fU165pfPVGewa9eu8sUvfrFcd9115amnnmrcPhf2hVKqz2Eu7A1VZzDf9oXXmsP/mqv7wvj4eHnve99bjhw5Ukop5fHHHy/XXXddKaU5+0JTfmL0q1/9KlavXh3r16+PiIht27bFL3/5yxgb++/LVx09ejRGR0dj69atERHR09MTp06dij//+c/xi1/8Iq699tp485vfHBER27dvj4cffjgiIh555JG46aabYvHixdHe3h79/f2N+2aSqjNYuXJlfPvb344rrrgiIiKuueaaOHbsWEREjI6OxooVs+MFIKvOYXR0NDo7O1/1c8+WcyGi+hxe7p///Gfcf//9sWPHjoiYPefDVGYQEdHf3x+33357LFq0aNLtc2FfiKg+h7mwN1SdwXzaFyJeew4vN5f3hfPnz8fXvva12Lx5c0REbNy4Mf7+97/HyMhIU/aFpoTR8PBwrF69uvHnZcuWxRve8Ib461//OuljVq1aNelxq1evjmeffTaGh4djzZo1jdvXrFkTp06dijNnzrzqfc8++2wzDqOSqjNYtWpVvOc972nc/sQTT8Q73/nOiIgYGRmJp59+Oj7ykY9ET09PDAwMxL///e8mH9HrU3UOo6Ojcfr06bjllluiu7s7Pv3pT8fJkycbj5sN50JE9Tm83D333BP9/f2NvxhGRkbi5z//efT398cHPvCB2LdvX5QZ+CocU5lBRMS73vWu13z8bN8XIqrPYS7sDVVnMJ/2hYjXnsPLzeV9YdmyZXHDDTc0/vzEE0/E2rVro7Ozsyn7QlPCqF6vR3t7+6Tb2tvb4+zZs1P6mHq9HosXL27cvnjx4mhra4t6vf6Kxy1ZsiTq9Zn3AlVVZ/ByDz30UDz55JNx2223RUTE2972ttiyZUt8//vfjx/+8IfxzDPPxP79+5t0JNVUncPKlStjy5Ytcccdd8Tg4GC86U1vii984Quv+riZei5EXL7zYXR0NA4dOhTbt29v3LZx48bYunVrPPDAA/G9730vHnrooTh06FCTjuT1m+r5frHHz/Z9IaL6HF5utu4NVWcwn/aFqZhP+8LQ0FB8/etfj927dzcef7n3haa8/PPSpUtjfHx80m3nzp2LZcuWTeljli5dOum/csbHx6OUEkuXLo2Ojo5Jj6vX67F06dJmHEYlVWdwwX333RcHDhyIe++9N7q6uiIi4kMf+lDj/iVLlsQtt9wS+/fvj0996lPNOJRKqs5hw4YNsWHDhsbtO3bsiM2bN8fZs2dnzbkQcfnOh8ceeyw2bNgQK1eubNz2sY99rPH/r7zyyvjoRz8ajz32WHz4wx++3IdRyVSO7/89frbvCxHV53DBbN4bqs5gPu0LUzFf9oWnn346PvvZz8aePXsav2TejH2hKT8xWrduXfzlL39p/Plf//pXnDlzJt7ylrdM+pjh4eF48cUXIyJiYmIihoeH461vfWtcddVVk37c9ac//Sm6urqis7Mz1q1bN+m+Y8eOxdVXX92Mw6ik6gwiIn784x/HfffdFz/4wQ8m/ajx+PHjjd+6j3jpN+9rtZn5FidV53Dq1KlJ/0KhlBJtbW1Rq9VmzbkQcXnOh4iIxx9/PK6//vpJn/vYsWOTvvln6vkwlRlczFzYFyKqzyFi9u8NVWcwn/aFqZgP+8LQ0FB85jOfiTvvvHPSsTZjX2hKGG3atClOnDjR+GeFBw8ejC1btkwqtauvvjq6urri8OHDEfHSj4RXrVoVV111VWzdujV+85vfNIZ18ODB6Ovri4iIG2+8MR588ME4e/ZsPP/88/GjH/0oentn3pumVp3ByZMn484774y77747rrzyykmf+6677opvfvObUUqJ8fHxuP/+++P9739/y47tUlSdw5NPPhk7duxo/CLegQMH4tprr43FixfPmnMhovocLhgaGpoUShERu3fvjgMHDkRExJkzZ+InP/nJjDwfpjKDi5kL+0JE9TnMhb2h6gzm074wFXN9XyilxM6dO+PLX/5yXHPNNZMe34x9oWnvlfbrX/869uzZE/V6PdasWRMDAwPx4osvxq233trY+I8ePRq7du2K06dPxxvf+Ma4/fbbG1/cn/70p/Gd73wnJiYm4u1vf3vs2bOn8aO1vXv3xs9+9rNoa2uLvr6+xvX1mabKDL773e/Gvn37Jm18tVotDh8+HKdPn45du3bF0aNHo62tLa6//vr4/Oc/P+k660xSZQ6llMbXe8GCBbFu3br4yle+0pjLbDkXIqp/T0REvPvd744HH3ww1q1b17jt+PHj8aUvfSn+9re/xYIFC+KDH/xgfPKTn4y2traWH+P/M5UZ9PX1xcTERBw/fjyuuOKKaG9vjzvuuCM2bNgwJ/aFiGpzOHLkyJzYG6rM4B3veMe82hcu9j0RMff3hd///vexffv2V/wUae/evbF+/frLvi94E1kAgOQtQQAAkjACAEjCCAAgCSMAgCSMAACSMAIASMIIACAJIwCAJIwAANJ/AARa06B7yBBGAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAARbUlEQVR4nO3db2jcdx3A8U+6tGn6J4zKbSJt7eoeDItV7LQdDmahLJkJ6gLT0ieb7IFSnIooFKT+6VYN084nMmrZsLOO4Zi6QrNNpmxsg6rTicMHKdYZLJNWrbRJ1mtstq8PRs+dXWqW613az71eMFjv3+93n/7y7bv3u951lFJKAAAkNm+udwAAoNkEDwCQnuABANITPABAeoIHAEhP8AAA6XWe78p//GP8gm9wyZKumJiYvOCPe6kxBzOIMIMIM4gwg7PMwQwiGptBpbJ02uta/gpPZ+dlrd7kRckczCDCDCLMIMIMzjIHM4ho3gyc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNc51zsAtJ8lPd3R3fXf5adSWdrU7VUnp2JirNrUbQAXN8EDtFx3V2es2jbcsu2NDvXHRMu2BlyMnNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApOefpQPnfC4OQDZWOGBOPhcHoJWc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIr3OudwA415Ke7uju8uMJcKFYUeEi1N3VGau2Dbdse6ND/S3bFsBccEoLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHo+eBBI7/SZV6NSWdrSbVYnp2JirNrSbQLTEzxAegvnX9bST66OeP3TqydaukXgfJzSAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9DrnegfgUrCkpzu6u5rz41KpLG3K4wLwX4IHZqC7qzNWbRtu2fZGh/pbti2AduCUFgCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6XXO9Q4AZHT6zKtRqSyd8e3fym3fTHVyKibGqg09BmQmeACaYOH8y2LVtuGWbW90qD8mWrY1uPQ4pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqdc70D8FYt6emO7i6HLgAz508NLjndXZ2xattwS7c5OtTf0u0BcGE5pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpdc71DgDQuNNnXo1KZWnLtlednIqJsWrLtgeNEjwACSycf1ms2jbcsu2NDvXHRMu2Bo1zSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS65zrHeDSt6SnO7q7ZncoVSpLL/DeAMC5BA8N6+7qjFXbhlu2vdGh/pZtC4AcnNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0fA4PAG/Z6TOvNuWDQ6d7zOrkVEyMVS/49mgfggeAt2zh/Mta/oGjEy3bGhk5pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQ653oHuPCW9HRHd5ffWgA4y5+KCXV3dcaqbcMt297oUH/LtgW0p9NnXo1KZWnLtlednIqJsWrLtkfzCR4ALnoL51/W8r/ITbRsa7SC9/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASM8HD7bAdF/10MpPDQWAdiZ4WsBXPQDA3HJKCwBIT/AAAOk5pQUA/8O3s+fTlsEz3ZuIASCi9d/OPnJnXy2wWhVa7RZZHaWUMtc7AQDQTN7DAwCkJ3gAgPQEDwCQXkPBc/Dgwbj55pujt7c3PvWpT8XRo0fPuc3IyEhs3rw5ent7Y/PmzTEyMlK7bnh4OAYGBqK3tzfuuOOOGB8fj4iIUkp85zvfid7e3ujr64tdu3Y1sptN1egMHn744ejv74++vr64/fbba/ffv39/rFu3Lvr6+mr/Pfnkky17Xm9FIzM4evRorFmzpu55nv39bpfj4IEHHqh7/ps2bYr169dHRMS9994b69evr7v+xRdfbOlzm6mZzKCUEvfff3+sWbMmfvvb39Zdl2E9iGh8Du2yJkw3g3ZaE6abQTutCb/73e/illtuiZtuuikGBwfj+eefr113wdeEMkuvvPJK2bBhQ/njH/9YSinlvvvuK5/+9KfPuV1fX1958sknSymlPP7442VgYKCUUsrLL79c1q9fX15++eVSSinf+MY3yo4dO0oppRw4cKDccsstZXJyspw+fboMDg6WJ554Yra72jSNzuAPf/hD+dCHPlSOHTtWSillaGiofPGLXyyllLJv376yffv2VjyNhjQ6g0OHDpUbb7zxTR+7XY6D/7Vnz57yrW99q5Ty+jGxe/fuJu35hTPTGWzfvr185StfKddff315/vnna5dnWA9KaXwO7bQmTDeDdloTppvB/8q6JkxOTpYPfvCD5eDBg6WUUp5++uly/fXXl1KasybM+hWeX/3qV7FixYpYs2ZNRERs3rw5nnvuuZiYmKjd5tChQzE+Ph6bNm2KiIi+vr44fvx4/PnPf45f/vKXcd1118U73vGOiIjYsmVLPP744xER8cQTT8TNN98cCxYsiK6urhgcHKxddzFpdAbLli2L7373u3HFFVdERMS1114bhw8fjoiI8fHxWLr04v+urUZnMD4+Hj09PW/62O1yHLzRP//5z3jooYdi69atEZHrOIiIGBwcjLvuuivmz59fd3mG9SCi8Tm0y5oQMf0M2mVNiJh+Bm+UeU04c+ZM3HnnnbFhw4aIiFi3bl38/e9/j7GxsaasCbMOntHR0VixYkXt14sXL47LL788/vrXv9bdZvny5XX3W7FiRbz00ksxOjoaK1eurF2+cuXKOH78eJw8efJNr3vppZdmu6tN0+gMli9fHh/4wAdqlz/zzDPx3ve+NyIixsbG4oUXXohPfOIT0dfXF0NDQ/Hvf/+7yc/orWt0BuPj43HixIm47bbbore3Nz73uc/FsWPHavdrh+Pgje6///4YHBysLfhjY2Pxi1/8IgYHB+MjH/lI7N69O8pF+EkSM5lBRMT73ve+ae9/qa8HEY3PoV3WhIjpZ9Aua0LE9DN4o8xrwuLFi+PGG2+s/fqZZ56JVatWRU9PT1PWhFkHT7Vaja6urrrLurq64tSpUzO6TbVajQULFtQuX7BgQXR0dES1Wj3nfgsXLoxq9eL7cKRGZ/BGjz76aDz77LNxxx13RETENddcExs3bowf/vCH8eMf/zhefPHF2LNnT5Oeyew1OoNly5bFxo0b4+67747h4eF4+9vfHl/+8pff9H7Zj4Px8fHYv39/bNmypXbZunXrYtOmTfHwww/HD37wg3j00Udj//79TXomszfT4/x897/U14OIxufwRpnXhPNplzVhJtppTRgZGYlvfvObsWPHjtr9L/SaMOuPG160aFFMTk7WXXb69OlYvHjxjG6zaNGiur+dTE5ORiklFi1aFN3d3XX3q1arsWjRotnuatM0OoOzHnzwwdi7d2888MADUalUIiLiYx/7WO36hQsXxm233RZ79uyJz372s814KrPW6AzWrl0ba9eurV2+devW2LBhQ5w6dartjoOnnnoq1q5dG8uWLatdduutt9b+/8orr4xPfvKT8dRTT8XHP/7xC/00GjKT5/f/7n+prwcRjc/hrOxrwvm0y5owE+2yJrzwwgvxhS98IXbu3Fl7c3Yz1oRZv8KzevXq+Mtf/lL79b/+9a84efJkvPOd76y7zejoaLz22msRETE1NRWjo6Pxrne9K6666qq6l6D+9Kc/RaVSiZ6enli9enXddYcPH46rr756trvaNI3OICLipz/9aTz44IPxox/9qO7lvyNHjtTekR7x+rvSOzsvvq/DaHQGx48fr3vnfiklOjo6orOzs62Og4iIp59+Om644Ya6xz58+HDdD/alfBycT4b1IKLxOUS0x5pwPu2yJsxEO6wJIyMj8fnPfz7uueeeuufajDVh1sGzfv36OHr0aO2f0u3bty82btxYV1lXX311VCqVOHDgQES8/hLt8uXL46qrropNmzbFb37zm9pA9u3bFwMDAxERcdNNN8UjjzwSp06dildeeSV+8pOfRH9//2x3tWkancGxY8finnvuifvuuy+uvPLKuse+995749vf/naUUmJycjIeeuih+PCHP9yy5zZTjc7g2Wefja1bt9beyLZ379647rrrYsGCBW1zHJw1MjJSF0ARETt27Ii9e/dGRMTJkyfjZz/72SV7HJxPhvUgovE5tMuacD7tsibMRPY1oZQS27Zti6997Wtx7bXX1t2/GWtCQ9+l9etf/zp27twZ1Wo1Vq5cGUNDQ/Haa6/F7bffXlvYDx06FNu3b48TJ07E2972trjrrrtqv4GPPfZYfO9734upqal497vfHTt37qy93LVr1674+c9/Hh0dHTEwMFA7j32xaWQG3//+92P37t11C1tnZ2ccOHAgTpw4Edu3b49Dhw5FR0dH3HDDDfGlL32p7pzmxaKRGZRSar/X8+bNi9WrV8fXv/712kza4Tg46/3vf3888sgjsXr16tplR44cia9+9avxt7/9LebNmxcf/ehH4zOf+Ux0dHS0/Dn+PzOZwcDAQExNTcWRI0fiiiuuiK6urrj77rtj7dq1KdaDiMbmcPDgwbZZE6abwXve8562WRPO9/MQkX9N+P3vfx9btmw551WfXbt2xZo1ay74muDLQwGA9Hy1BACQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkN5/ANnMp9I5M/AUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1512,6 +1567,26 @@ "plt.yticks([]);" ] }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.09751035970690071" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.mean(result)" + ] + }, { "cell_type": "markdown", "metadata": {}, @@ -1535,11 +1610,46 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 28, "metadata": {}, "outputs": [ { - "name": "stdout", + "data": { + "text/plain": [ + "array([[ 14., 29., 4.],\n", + " [ 23., 22., 1.],\n", + " [ 78., 69., 20.],\n", + " [ 32., 36., 1.],\n", + " [ 19., 23., 5.],\n", + " [ 42., 42., 10.],\n", + " [ 59., 45., 12.],\n", + " [ 80., 49., 16.],\n", + " [ 12., 6., 3.],\n", + " [ 45., 39., 12.],\n", + " [ 51., 40., 8.],\n", + " [101., 64., 17.],\n", + " [ 17., 16., 1.],\n", + " [ 41., 27., 9.],\n", + " [ 67., 46., 11.],\n", + " [ 46., 30., 7.]])" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "values" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", "output_type": "stream", "text": [ "[ 42. 45. 146. 68. 41. 84. 104. 129. 19. 84. 90. 165. 32. 68.\n", @@ -1548,13 +1658,13 @@ } ], "source": [ - "alpha_2j = np.round((1 - data['other'].to_numpy()) * data.proportion.to_numpy() * participants) #Not a probability as you may see\n", + "alpha_2j = np.round((1 - data['other'].to_numpy()) * proportion) #Not a probability as you may see\n", "print(alpha_2j)" ] }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 30, "metadata": {}, "outputs": [ { @@ -1569,13 +1679,13 @@ } ], "source": [ - "alpha_1j = values[:, 0] / (values[:, 0] + values[:, 1]) * data.proportion.to_numpy() * participants #Not a probability as you may see\n", + "alpha_1j = values[:, 0] / (values[:, 0] + values[:, 1]) * proportion #Not a probability as you may see\n", "print(alpha_1j)" ] }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -1608,45 +1718,91 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 32, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 4., 1., 19., 1., 4., 9., 11., 15., 2., 11., 7., 16., 0.,\n", + " 8., 10., 6.])" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.round((data.other.to_numpy() * proportion * (values[:, 0] + values[:, 1]) - values[:, 0]) / (values[:, 0] + values[:, 1]))" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([ 57., 69., 234., 101., 62., 131., 170., 219., 33., 135., 145.,\n", + " 277., 49., 114., 187., 126.])" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.sum(new_values, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 554, "metadata": {}, "outputs": [], "source": [ "with pm.Model() as model_hier:\n", " \n", - " packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist=pm.HalfCauchy.dist(10))\n", - "\n", + " packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist=pm.Exponential.dist(5))\n", " L = pm.expand_packed_triangular(2, packed_L)\n", " Sigma = pm.Deterministic('Sigma', L.dot(L.T))\n", "\n", - " mu = pm.Normal('mu', 0, 20, shape=2)\n", + " mu = pm.Normal('mu', mu=0, sigma=0.01, shape=2)\n", "# mu = pm.Normal('mu', 0., 10., shape=2, testval=new_values.mean(axis=0))\n", - " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=(16, 2))\n", + " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=(16, 2)) # testval=new_values.mean(axis=0)\n", " \n", " alpha = pm.invlogit(beta)\n", " \n", - " alphas = pm.Dirichlet('alphas', a=alpha, shape=(16, 2))\n", + "# alphas = pm.Dirichlet('alphas', a=alpha, shape=(16, 2))\n", "\n", - " post = pm.Multinomial('post', n=np.sum(new_values, axis=1), p=alphas, observed=new_values)" + " post = pm.Multinomial('post', n=np.sum(new_values, axis=1), p=alpha, observed=new_values)" ] }, { "cell_type": "code", - "execution_count": 122, - "metadata": {}, + "execution_count": 555, + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true, + "source_hidden": true + } + }, "outputs": [ { "data": { "text/plain": [ - "packed_L_cholesky-cov-packed__ -5.24\n", - "mu -7.83\n", + "packed_L_cholesky-cov-packed__ -6.49\n", + "mu 7.37\n", "beta -29.41\n", - "alphas_stickbreaking__ -29.41\n", "post -105.64\n", "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 122, + "execution_count": 555, "metadata": {}, "output_type": "execute_result" } @@ -1657,8 +1813,14 @@ }, { "cell_type": "code", - "execution_count": 123, - "metadata": {}, + "execution_count": 556, + "metadata": { + "collapsed": true, + "jupyter": { + "outputs_hidden": true, + "source_hidden": true + } + }, "outputs": [ { "data": { @@ -1669,105 +1831,93 @@ "\n", "\n", - "\n", - "\n", + "\n", + "\n", "%3\n", - "\n", + "\n", "\n", "cluster3\n", - "\n", - "3\n", + "\n", + "3\n", "\n", "\n", "cluster2 x 2\n", - "\n", - "2 x 2\n", + "\n", + "2 x 2\n", "\n", "\n", "cluster2\n", - "\n", - "2\n", + "\n", + "2\n", "\n", "\n", "cluster16 x 2\n", - "\n", + "\n", "16 x 2\n", "\n", "\n", "\n", "packed_L\n", - "\n", - "packed_L ~ LKJCholeskyCov\n", + "\n", + "packed_L ~ LKJCholeskyCov\n", "\n", "\n", "\n", "Sigma\n", - "\n", - "Sigma ~ Deterministic\n", + "\n", + "Sigma ~ Deterministic\n", "\n", "\n", "\n", "packed_L->Sigma\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", - "\n", + "\n", "beta\n", - "\n", - "beta ~ MvNormal\n", + "\n", + "beta ~ MvNormal\n", "\n", "\n", - "\n", + "\n", "packed_L->beta\n", - "\n", - "\n", + "\n", + "\n", "\n", "\n", "\n", "mu\n", - "\n", - "mu ~ Normal\n", + "\n", + "mu ~ Normal\n", "\n", "\n", - "\n", + "\n", "mu->beta\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "alphas\n", - "\n", - "alphas ~ Dirichlet\n", + "\n", + "\n", "\n", "\n", - "\n", + "\n", "post\n", "\n", "post ~ Multinomial\n", "\n", - "\n", - "\n", - "alphas->post\n", - "\n", - "\n", - "\n", - "\n", + "\n", "\n", - "beta->alphas\n", - "\n", - "\n", + "beta->post\n", + "\n", + "\n", "\n", "\n", "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 123, + "execution_count": 556, "metadata": {}, "output_type": "execute_result" } @@ -1778,56 +1928,47 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 557, + "metadata": {}, + "outputs": [], + "source": [ + "with model_hier:\n", + " prior_sample = pm.sample_prior_predictive(samples=1000)" + ] + }, + { + "cell_type": "code", + "execution_count": 558, "metadata": {}, "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Auto-assigning NUTS sampler...\n", - "INFO:pymc3:Auto-assigning NUTS sampler...\n", - "Initializing NUTS using jitter+adapt_diag...\n", - "INFO:pymc3:Initializing NUTS using jitter+adapt_diag...\n", - "Multiprocess sampling (4 chains in 4 jobs)\n", - "INFO:pymc3:Multiprocess sampling (4 chains in 4 jobs)\n", - "NUTS: [alphas, beta, mu, packed_L]\n", - "INFO:pymc3:NUTS: [alphas, beta, mu, packed_L]\n", - "Sampling 4 chains, 1,506 divergences: 100%|██████████| 28000/28000 [12:42<00:00, 15.20draws/s] \n", - "There were 145 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "ERROR:pymc3:There were 145 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 440 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "ERROR:pymc3:There were 440 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "The acceptance probability does not match the target. It is 0.600283428310378, but should be close to 0.8. Try to increase the number of tuning steps.\n", - "WARNING:pymc3:The acceptance probability does not match the target. It is 0.600283428310378, but should be close to 0.8. Try to increase the number of tuning steps.\n", - "There were 183 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "ERROR:pymc3:There were 183 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 738 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "ERROR:pymc3:There were 738 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "The acceptance probability does not match the target. It is 0.5630559896817272, but should be close to 0.8. Try to increase the number of tuning steps.\n", - "WARNING:pymc3:The acceptance probability does not match the target. It is 0.5630559896817272, but should be close to 0.8. Try to increase the number of tuning steps.\n", - "The rhat statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", - "INFO:pymc3:The rhat statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", - "The estimated number of effective samples is smaller than 200 for some parameters.\n", - "ERROR:pymc3:The estimated number of effective samples is smaller than 200 for some parameters.\n" - ] + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAFkCAYAAADrIqivAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdWYxlV33o/++ez9lnqFNzz+3u9gBtNzZT4JL/n8gJBBSRCCIULAWk5E9eGCQEhAceEhCKlAEUpKsg8QC51yL6P0QKsYIfCPrfWHGwcS4OF9Omsd12z0ONp+pMe957/R92neqq7qrqqjo1nOr6fSRb7uNz9t616vT+7fVba/2WppRSCCGEEKKv6Lt9AUIIIYS4kwRoIYQQog9JgBZCCCH6kARoIYQQog9JgBZCCCH6kARoIYQQog+ZvR4gjmP+9m//lr//+7/n3//93zlw4MAd73n/+9+PUgrTzE83Pj7Ok08+ecf7pqdbvV4OAOWyQ7sdbsmx9htpu82Ttts8abvNk7bbvH5ou9HRyqr/r+cA/elPf5pHHnlkzfc0m01+8IMfMDY21uvp1sU0jR05z71I2m7zpO02T9pu86TtNq/f267nFPdnPvMZPve5z635nna7TbVa7fVUQgghxL7Rc4B+7LHH1vz/nueRpilf/vKX+Z3f+R3+8A//kJ/97Ge9nlYIIYS4p/Wc4r6bLMv46Ec/ysc+9jHOnDnDD3/4Qz71qU/xox/9iIGBgWXvLZedLUk5GIZOreb2fJz9SNpu86TtNk/abvOk7Tav39tO26pa3A899NCqk8Ru97u/+7v86Z/+Kb/xG7+x7PWtmiRWq7nMz3tbcqz9Rtpu86TtNk/abvOk7TavH9purUli277MyvM8Lly4cMfr3RndQgghhLjTtgfo2dlZnnjiicUg/dxzzzEzM8Ojjz663acWQggh9qyeurEzMzN8/OMfX/zzJz7xCQzD4Mknn+STn/wkTz/9NEePHuUrX/kKn/3sZ0nTlIGBAb71rW9RLpd7vnghhBDiXrVlY9BbQcagd5+03eZJ222etN3mSdttXj+03a6OQQshhBBi4yRACyGEEH1IplILIZhsBpybbDHnJQy6JqfHK4xXC7t9WULsa9KDFmKfm2wGPHuhjh9nDJUs/Djj2Qt1JpvBbl+aEPuaBGgh9rlzky1KtkHZMdE1jbJjUrINzk1uzaRNIcTmSIAWYp+b8xJce3mJXdc2mPOSXboiIQRIgBZi3xt0TbwoXfaaF6UMujJFRYjdJAFaiH3u9HiFTpTSDhMypWiHCZ0o5fT46uszhRDbTwK0EPvceLXAe08OUbR06p2YoqXz3pNDMotbiF0mOSwhBOPVggRkIfqM9KCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiS7WQkh+tpkM+DcZIs5L2HQNTk9XpGdt8S+ID1oIUTfmmwGPHuhjh9nDJUs/Djj2Qt1JpvBbl+aENtOArQQom+dm2xRsg3KjomuaZQdk5JtcG6ytduXJsS2kwAthOhbc16CaxvLXnNtgzkv2aUrEmLnSIAWQvStQdfEi9Jlr3lRyqAr02fEvU8CtBCib50er9CJUtphQqYU7TChE6WcHq/s9qUJse0kQAsh+tZ4tcB7Tw5RtHTqnZiipfPek0Myi1vsC5InEkL0tfFqQQKy2JekBy2EEEL0IelBCyF2TbcISYiGg5IiJEIsIT1oIcSuWFqEZLjsSBESIW4jAVoIsSukCIkQa5MALYTYFVKERIi1SYAWQuwKKUIixNokQAshdoUUIRFibRKghRC7YmkRktl2KEVIhLiN5JKEELumW4SkVnOZn/d2+3KE6CvSgxZCCCH6kARoIYQQog9JgBZCCCH6UM8BOo5j/vqv/5qHHnqIiYmJFd/zyiuv8MQTT/CBD3yAJ554gldeeaXX0wohhBD3tJ4D9Kc//WkKhbVnXX7+85/nT/7kT/jXf/1X/uiP/ogvfelLvZ5WCCG2zWQz4Jnz03z/pZs8c35ayo+KXdFzgP7MZz7D5z73uVX//6uvvkqr1eJ973sfAB/84AeZnZ3ljTfe6PXUQgix5ZbWCB8qWVIjXOyanpdZPfbYY2v+/0uXLnHkyJFlrx09epQLFy5w6tSpZa+Xyw6mubz032YYhk6t5vZ8nP1I2m7zpO02r5/a7n/faDJWcykX8ttjBWgHCZfbEQ8dG9rdi1tBP7XdXtPvbbft66B938dxnGWvOY6D59255rHdDrfknLKmcvOk7TZvv7ddd+vIOS9h0DU3tHVkP7XdtekOQyWLTudWGVKlFNcacd9c41L91HZ7TT+03ejo6pXztn0Wt+u6hOHywBsEAaVSabtPLYTYIfdSWlhqhIt+se0B+uTJk1y6dIksywBIkoRLly7dkd4WQuxd99LWkVIjXPSLbQ/Q999/P6Ojozz99NMAPPXUUxw5coQTJ05s96mFEDvkXto6cmmN8HonlhrhYtf0lLOZmZnh4x//+OKfP/GJT2AYBk8++SSf/OQnF4PyN77xDf7sz/6Mv/u7v2N4eJivf/3rvV21EKKvdNPCZefWLWUvp4W7NcKF2E2aUkrt9kV0TU9vTTqsHwb+9yppu83bz23XHYMu2QaubeBFKZ0oXXfPcz+3Xa+k7TavH9puVyeJCSHufZIWFmLr7c38kxCi70haWIitJT1oIYQQog9JgBZCCCH6kARoIYQQog9JgBZCCCH6kARoIYQQog9JgBZCCCH6kCyzEkL0tBOVEGJ7SIAWYp9bWgVsqGThRSnPXqjvSKGR7oNBiIaDkgcDIZaQFLcQ+9xu7US1dIvK4bKzp7eoFGI7SA9aiH1uzksYKlnLXnNtg3onBrYv/b3Sg0H3delFCyE9aCH2ve5OVEt1d6Ja2ssdKllb2su9l7aoFGI7SIAWYp87PV6hE6W0w4RMKdphQidKOT1e2db091oPBkIISXELse91d6I6N9mi3okZdE3efmSA8WqB5y7OrZn+3qzJZsC8F/Efb9TJlGJkoEBB1xl0LT50erynYwtxr5AALYRYdSeqbi+3Oz4Mvfdyu2nzJM1wbYP5IOFa3edwtSC9ZyGWkL8NQohVnR6v8OyFOpD3nL0opROlHK8VeOb89KYmjnXT5hdmQ4ZLDodrLkrXUWnCwWpRJokJsUDGoIUQq+qmv4uWTr0TU7R0To+VODfV2fTEse7ksE6Y4Jj5LcixdNphKpPEhFhCetBCiDXdnv5+5vz04sQxYEPLoyabAdcbHi/fTGiFCUmaMVRyCOOMsmNsKn0uVdDEvUp60EKIdZlsBjxzfpp/e22GCzMd5r1o8f+tp+fbHXseLTmYukbB1Lg463Oj4eNFCcOuvTh7fCPXtF3LwITYbdKDFkLc1dJyoOMVm1aY8PJEm0cOlKm59rp6vreWbDm4tsHVeZ84VfhxwsNDNcaLG+/9Ll0GBhvrzQvR7yRACyHuamkgPDbo8suJNhqKK3M+pqHTiVLefmRgzWMsrVhWc21qrs3DB6vUOzH/z3tPMT/vbfi67lYFTYi9TFLcQoi7Wlr1q+baPHygTMUxmGyFFC19XRtrbEdhEil2Iu5lEqCFEHd1eyCsuTYnR8r85oMjPP7A6LrSyWtVLNus7TimEP1CArQQ4q62IhB2l2yFccJPLtZ56XoDU+vtulZaBrYT22QKsRMkDySEuKu1yoHC+pc6zbRDzk20SRUMuSZhks+6rg4UKfZwbRKQxb1IArQQYl1WC4RLZ3gPlSy8KOXZC/U7erKTzYCnXp5A1zUGixZhnHGx7nNiqMjZ6w1+7VB1J38cIfqeBGghRE/Wu9Tp+YuzXJ0LsA2NeT9htGRRMHVmOiG1TrTisYXYz2QMWgjRk/Xs6zzZDHjxapOipWMaOkmacXk+IM4y6l7CUMne6csWou9JgBZC9GQ9S53OTbYYck2GXZs4zUADS4Mrcz6GBmcOr72GWoj9SAK0EKIn65nhPecl3D9SwjB0xssOhq4RxBlBnPHhMwc4OLDZKWJC3LtkDFoI0ZO7zfCGvJftxxkPHyhzdd7HMnXGyzYnh0s8fEh6z0KsRAK0EKJnd1vq1N1XumQbPHywuriv9HtODO3gVQqxt0iAFkJsq8lmwPMXZ/nFtSbzQUytaPG2I1Xee3JY1i8LsQYJ0EKIbTPZDHj63CRX53wGSxaDrkUzTKn7spmFEHcjAVoIsW3y6mIxAwWLgpUvxdI0jXkv5vmLdWquxZyXcGS0xPGyva4e9Xqrlq3XVh9PiK0is7iFEHeYbAY8c36a7790k2fOTzPZDDZ1nDkvIc4yHPPWrcaxdBp+wovXGvhxxlDJwo/ykp93O0+3atni5+L1fW6njifEVpIALYRYZiuD1qBrYuk6YZItvhbGGc0oZrBoUXZMdE2jXDAp2QbnJltrHm9p1TJd0yg76/vcTh1PiK0kKW4hxDLrLd25HqfHK1yY9bg656NQoKAZpujo3D/iLnuvaxvUO7fGpldKPc95CUMla83PbcRWH0+IrSQ9aCHEMusp3ble49UCHzo9zqOHKoRJRphmPHqowv99chDbXH6OpdXHVuvFa2R3rVq2EeupgibEbpFvoRBimW7Q6vacYWNBa6We70cePXzHe569UAfy4N8O8upjbz+SFy1ZrRcfxvn66e7nuuupu5/bqO767K06nhBbSXrQQohl1lO6czXrHb/uVh8rWjr1TkzR1pdtT7laL16hLf+cpd+xreVG3HEdPR5PiK0kPWghxDLrKd25mo2MX3erj002Ay63I567OLfY416rF3+3qmWb+XklIIt+1HOA/slPfsLf/M3f4Hkehw4d4i//8i85cODAsve8//3vRymFaeanGx8f58knn+z11EKIbbLZoLXRSVfdHvdYzWWoZOFFKc9eqHN6rMS5qQ4AcZLy+kyHupfwjqNVJpuBBFSxL/QUoD3P4wtf+ALf+c53ePjhh/nud7/LV7/6Vb797W8ve1+z2eQHP/gBY2NjPV2sEKK/3W38+vbx6XkvznvcBZNOJ833ia57nL3ewLV1ZloR80HC8SGXdx4bwDYNnr1QlzS02Bd6GoN+4YUXOHr0KA8//DAATzzxBD/+8Y9pt9vL3tdut6lWq72cSgixgq0qKLJV1hq/Xml8+sVrDeIkn/Q170W8PNEmiFNuNAMUGkGqODjgYBq6rFMW+05PPehLly5x9OjRxT+XSiVqtRpXrlzh9OnTQN7LTtOUL3/5y7z66qsMDg7yxS9+kbe97W13HK9cdjBvW3qxGYahU6u5d3+juIO03ebtdNvdbPj89EabSsHi6FgBL0z56Y02vzVQ3PD+yjcbPmevN6h3IoZKNmcOD2xqj+ZazaU6UFw81kityOMLx/rRuQnGai7lQn7bqQAH5wKutiOOH9CYChJqZZvLsx2GKwUODLrcbEcoTWeg5DAdJBwerVB0bWbboXxPF8jf2c3r97brKUD7vo/jOMtecxwHz/MW/5xlGR/96Ef52Mc+xpkzZ/jhD3/Ipz71KX70ox8xMLB8KUO7HfZyOYtqNZf5ee/ubxR3kLbbvJ1uuxfOT6NnGVqq4XspGqBnKT/8+fXFGtfrqS3d7dmWbAPXNpiZ93l6qs3psRJTnWjDNaqLwK8dWpIxU4r5eY9r0x2GShadzq11x0cqFj+90qDhxUw3fNIk48J0h6Giyas3MrQ0pd7OOFR1mGkkdIZC2mFC0dLle7pA/s5uXj+03ejo6qsjekpxu65LGC4PqkEQUCqVFv9cLpf5i7/4C86cOQPABz/4QcbGxvj5z3/ey6mF2PdWWooUJ+nyGtfrKNO5UrnLJE156uzEpsp9rpZ2X6koiG0aPDhS5NXJJq9MtDh7s0XVMSg7FnGqaIf5uHTDjynZ+oaWfAmx1/UUoE+ePMnFixcX/1yv12k0Ghw/fnzxNc/zuHDhwh2f7c7oFkJszkoB7/WZzvIa1+sYs10p0M92YlLFhmtUr7UOeqXx6ZvNgAR4aLzK6fEylYKFUtAKYuI0wzJ1hlyDTCnKjrVt65T7bSxfCOgxQL/rXe9iYmKCF198EYDvfe97PP7447jurZz+7OwsTzzxxGKQfu6555iZmeHRRx/t5dRC7HsrBby6l6xY43qtMp0rBfq6FzN0W+Ww9ZT7XGvziZWKggwVLUqWyevTLS7M+pRsnaJlgK7hWAajFZsB1+FP3n2cP3rXMR5/YHRbgrPsaCX6UU/d2EKhwDe/+U2+9rWv4fs+x44d46/+6q+YnJzkk5/8JE8//TRHjx7lK1/5Cp/97GdJ05SBgQG+9a1vUS6Xt+pnEGJfWqmgyDuOVtescb2SlcpdGjqMlJbPL1lPuc+7rYNeWpzk3GSL5y7WCeKUYyNlaq6JH2dousZB1+a3HhqjHSaEcbLw3rlt2a95KzcHEWIraUoptdsX0TU9vTVLJ/ph4H+vkrbbvH5ou9snfHVrS98tLXz7+uSxks25qc6Gj/PM+Wn8OFu2Dro7qevxB0bvuMZnzk/RDlOKjsWArTPrJcRpStk2efzBUW42A0BxsFrc0HVsxPdfuslQyULXtMXXMqWod2J+/9GDW3KO7dQP37u9qh/abq1JYjIQLMQ9ZLNlOleqHDZSdjZ8nPVsPrG0x+paFkGc9xE6UcZ42eZmM0AptZgCd6zt7d32ujmIENtFvoFC3GO2qrb0Zo6zngeEpWnwsYqNZWj4mWK6GXBsyOXkiMuBaoHHHxjl+y/dXHHTjK3cr1l2tBL9SgK0EGJL3S2wd3uss+2QVyfbXG34lB2LgyWTME746eU2YxWby3WfVhgTJQ6HareKpmx177aXzUGE2E4SoIUQO+r0eIXv/uQyP73WwNI1CoZG04+ZbgW8KVWUCxYKjRuNgJGSxUs3mwAcGChsW+92q7IOK+2FLYFebJYEaCHElthIcLow28ExNOI0oxGlhHFG0dK43gx5z3CZgmUQxClxpnjLwQrTnRDbNPq6d7t08tvSnblkYw+xWT2tgxZCCNjYWuJzky3CRJFlKl9XrcA0NJIMJlshTT+vTuhYOu0w5eBAkcMDLr//6MFtWQe9VdZaAy7EZkgPWgixad1e8wuX5rAMnQdHS+iauTgj+vmL9Tvqgl+u+yQqo+7HWIaGrmtEsUKRYZs6r9d9xqouYZxRdow9M6N6o3th9ytJ0/cP6UELITZlaa9ZA3QNXp5oM+9FwOp1wSeaPsNFiyBK6UQJ7SAhiFP8SKGpjKtzPi9cmuX16Ta2oe2Z2tsrVWTbKw8XXVJVrb/snW+OEKKvLE3pVgomUaIomhpX5gNqrr2sLjjcWsM80w4JEijaOu0wQ6FQCiwN4gxMHeJUYZsaU+2I99y3PbW3t7qXeC8s15Kqav1FetBCiE1ZusnG0VqRIMlQStEK41XrgkdJyo1mSJyl6JqOrmsYGjgGaKZGwTI4NVLinccGOTVa4a1Hakx1oi297qW9RENT/OzqPP/92Yv880vXe+oprlRrfK9NEFtp45T11GAX20N60EKITVlagavm2jx8oMz56TYoKFr6HXXB572In19vUrRMdE2haVCyNIIEMgVkipGiyXyQ8OKVOeJM0Q6rHCgX4YGtu+5uLzFJM85NdiiYOsMlizdmfRLV26zrrVqutVs2W1VNxq23hwRoIfa5zd5cb0/pmoZOzbUYKuaTwjQ0zk+1iDOIs4zJRohj6jw0VuJy3aNoG8SJjmFkDJYcWn7MtJdgGzrVokXB1Hh92qMVJEw2gy274Xcnc/3yZh6cC5ax0PNPlu28tR9tJk0vy8u2j6S4hdjHepkUdHtKN4xTQMOxTIZKFkGScqnu4UcJmoIwTbENjYPVAu0oxTEMkizFjzJmmiF+HDPvJ7TCmIlmgBclZAoKprmlS5W6vcR2mOJY+S0wTDJKjrnv07mbSdPL8rLtIz1oIfaxXicFLU3pPnN+etnGFrNewlilQLVgcrRWpO5HTLQjptqzNPyYzkLvLM0gjDMWw6JSZFm+DCtVMFw0tzRodnuJpg5BlKJpGn6ScWrE3XOzrrfDRtP098rysn50T34TbzZ8Xjg/LeMhQtzFRm6ud0uF336sTphQLZhMtSKaQcqAYzHXibg0F2AbOp0wJVZ5Gi9b+IwG+Ak4psJUGq0w4Y1Zj/ec3PyuuCtd93tPDvG8Bi9eazBYtDg9XsI09D0367ofyG5g2+eea8HJZsBPb7TRs0zGQ8Ses12TbVY77npvrusZZ7z9WCXHpBnE+ElCrWhRsCxuNAIsUyOMUxIFBoC2MEkMUAv/RCkkWR62TU2j6W9uJvda1/2RRw/xnhNDi+1StPS+LSPaz+6F5WX96p4L0OcmW1QKFlqab74u6/jEXrFdk23WOu56b64rpcIbfsT/+M/LKPK/a4erDrGCg9UCUZLvVvX6TAdb1xhxbQCiTHFyuMS5iSaGDoYGGhpxqsjIg7O25LyWruE6Jq/Penf8TOt5kLlbCn+vz7ruB7Ib2Pa55wL0nJdwdKyA792q6CPjIWIv2K4iEWsd9/EHRtd1c53zEnRN8YtZj06YjwdPNX3qQcqZgxVQcKEeMFg0mcbntRmfIdfk/Q+O8LNrTX412eHN4yXuH3GJE8VLqUJlEAIay9PXOnmxEl3TMHSNiq0z59/6+7vaA8fpsRJTnWhZ0Jbx0Z0hDzrb454L0IOuiRemy57CZTxE7AXbFUzudtz13Fw1Mn5+vcVAwaLimLw+3ebKfMB42aZo5X+3NE2jGSRcnfewdIPJdkgzSDk44FAwdQxd4/6REv92foYoVnQfoW8fXVaApvLNMmxdoxVmjFVurae+/YEjSTNemWjxr7+a4k3jZe4fcRdno5uakvFRsWfdc9/S0+OVhTHoVMZDxJ6yXZNttua4GovJZw2CJC/Paeq3VmomWcblOY8wzhgomui6hh9F2IaDaWjM+wlzfsJUM0DTuDMyL7B0KBdMDF2jWjCxjLyQSDet/W+vzTBesTk2mFcp++VEm7oXYusahqbxs6sNSo5BmChsA0YrDgerxS25H0hBDrGT7rkAPV4t8FsDRV54bUrGQ8SW2Kmb8nZNttmK4yo03nq4wrVGQCtIKDs64BBnt6LszWaArml0ooQozSg7JkXLoBUmDBQtyo7B8aEiGRqOpZNFGelt59EB08jHqo9VbAZLDiXLQEPjOz+5TKogiBOmWtAKMwwNCqZOmCjKRZM0y5juRLRDnVOjJWY7MaAx3Qy40cq3sXzTWHnVn3Ot37UU5BA7TVNKbX79whabnt6ahe21msv8vHf3N4o7SNstt/SmvDS4rXRT3oq22+lZ3Ov1zPlp/Dhb7IXPexHPXZhlqhNTKxoEseLGvI9r65i6ToaGBiilKFoGB6vOQgdc47+uztHyE1IF8Qp3H9cC17KoFEyOD7kcrNi8MetxpFZkoGhRb0dcmvMZLJrcaARUiyaNIOHEYJFUQZTkgf++QRfL1Bl2TS7MeLz1aG3Z7/D2Meuxks25qc6qv+vb2wCgHeazvx9/YLSn308v5O/s5vVD242Orr5T2z3XgxZiK+307j7bNdmm1+OuVNbz0IBDkmZ4scLUNQq2jlL5mmYvTAiSjDCJMXSdVhhzsFrkYNXGNnSi7Nba59v5MThGlpcNdS1+OdGm4hgMFCw0NIbLDl6UcGnOI0wUY6bB4KDFZCeCDKpFE0OxWHzkypxPqlj2O2z6MU+9PMFbj9QWe8NPvTzBqeESZcdZfB/c+l3LhDOx0yRAC7GGvXZT3q4e+EpLaY4NujwwVl0MZE+fvZkvh0pTwiQlAzKlo2cQp1CyDa7NB4TJ7Ynt5TTyVHe30MlY2SHJMuqdiFaUEiQpTT/GMnQePVwhVRpFU6doGbw63Sb18zT2m8fL1Fybn19vMnTbePtMJyTNlgftNMtfP1QrLr5v6e9aCnKInSbfLCHWsJduyhsdI91oML+9F/79l24u35pQg5GSxUQrwjZ1mkGKUooEjSHXpB0lTHdiKo5FGKe0VnnGsQ1A1zhcdThzaAClFK9Pd7g05+NaeSC+HiQo4FC1wEDR4sp8gJnqnBgqcd+wy8FqAdc2aIcJhg4jJWfZOepewpC7/MFryLWoe8svaunvWgpyiJ0mm2UIsYbT4xU6UUo7TMiUoh0m+fjl+OrjRrtlrU0LJpsBz5yf5vsv3eSZ89P88kZj05tkdHUfXrqKloGu6diGRtm2cCwNK69EwkQ75Nq8n/eONY10YYx6JY6pUy1YBIni7I0G1+dDJlshg0WTom3QilJsU+fUsEsjvHX+OFGMVWzefay2bLOHDz9yAMPQl/0ODQ2Gb8uMDJcsDI1Vf9f3wn7PYm/pv26AEH1kL1VJWi0df2nGY6YTL+tZP3V2gpMj7qrjretxe4+yUrCY9yPiJKPhJ8RphmPplC2DTpgw34kxDZ0kywjXyHKnmQKVcXXeJ0gybEOjVjTx4pSRksOxwSIDBZMrcwHX5jwmGj7zQUIQp2i4vHBljg+dPsB4tbCYJegECRNNn4pjcXyoyHtPDvHsxTrnpz2GXIvhkoVpGHz4zAGmOtGqv2spyCF2kgRoIe5ir9yUV0vHt6KYsaqzfLxVwWwn5nDt1uc3OrZ++8PLqGtyfV5j0LXIOhGGrhHGGY6uE6cZUQZhlmHc5bgaink/Ic4UqVKMlSw03eCAa1FaSKlfb4SkC+PSnTjF0DRcy6Dux7SjhOeLdd5zYmgx5X/fwk5VnShdnK19arjETCek7sU0/JgPnznAw4cGeHjdLSDE9pIALcQ9YrUx0opjLR8rBoZcc83x1vW6fbtJ2zL42bUmDT/BMQ0KRkYjiAlihbGwKYZjwlq7R3ZisNOUcsFCKZhoxZTMhChO0HWdMwerWIaGH0MrTChaBoOujWXkDwINP+b5i3WuNXzmvIThksXRWpHaQj3wf3t9hlMjZcqOszghrB0mTHUiCc6ir0iAFuIesVo6/txk646e9UjJoREktMNkQxOelk4s01A0/YgbrXynKS9KeWDEpWRp+HFKnCksA7w43wjDBHQt36lqLRkQZ3nQNA0NpQZXvG8AACAASURBVKAdghXEnBou0whivDjDtXRaQT5e3H1IsE2ddggX6x6VQp66nuvE/GqyzbBrMVp2uDzrcebQ8p+zn2fmi/1LArQQ95DV0vG396wNI588tdZ46+2zvJcW8jA0xfMX55hsh5waKVGyDM7Pt3h1qoVtaDimThwlzHvZ4npnpUDTIVltAfQSGRClikwprIVx63wts0Gq8tnbjqnjWDp1L2Y0iCk7JnGmmA8iKo6JY+r88kaTGT/G0jV0FAXLwE8ybjZ8DtfcxfP168x8sb/JN1KIPWq9y6TWmui2Wkp3pSVbSyeWnZ3tEKcZVcekHeaTtzRNY6YdoWng2iamtrwYiYLVq5PcprsvdJyBIkPXoGQZBKkiCxMOD+Sp6fFKgSTzaYYJuqFhomFqGkcHHTphwuxCcDZ1jevNiAHX5rHDVS7MegwUbeIk5fWZDtfnA8YqNpfrPseHilJjW/QFCdBCLNhLGyFsdM3zRie6rVRBbenEsnaYkpCX8QzilE4Y0wxTTF0jzhSdKCFO1eL+zmrJPxuhyHvcJjBQtAjilEzXUSjCOGO4ZONaOp045VClgGVoFG0dUzeoOBaDRYsoyQgSRcnWqdgmD4xVsAyPME558VoDW9dwbQOFxo1GQMHUmenEsoRK7DoJ0EKwNzZCWPoAcb3hMVpyelomtZaVlmx1J5bNexGznZCpZoTKMizTYKIZMO/FxGkGaBQsnTTNB5u7QbkbrDdKX/hXGGfcP2zTidOFDTsM3nmsRidKmOlEHB5wGXRNTODJF69hGSFhkmEbOuWCwdFagUzl6ezjQ3kP/NdPDHFh1iNOMgoLDxuzXsSJ4dK2lXMVYr0kQAvBztfc3qjbHyBevpnQCvItVbuzk7dyotNKS7YcU+dKvcNrU22SLGOuE9KJs3y8OVXoGoBCKUU7VCTJnf3lzezMowEG4MUZ1xoBRwYLHBssULQMXpvuMOfHHKrYvDbVZKYT48cpZdtA0yFKNGY7EQ+NlzE0DV1Ti5Phnrs4x1DJohMmVBZ+Tmdh4tlOTxrbS9kbsXMkQAtB/9fcvv0BYqhk0wpirs77iwH6bhOdNhIEli7ZipOUX9xo8dp0G5VleEm+OQZoOIZOlGRkCizbQAPSNCNOFQm3dpFe59DzyjRIFBgG+fjwgSpnbzTwY8XhmsORis1/XJojTjI0pdCN/DoODTg8crBKO4i52QqZbIYcrBY4OZw/JnQfQkqOSbjQgw7jjLJj7Oiksb2QvRG7Q0p9CsGdZSuhv2b2znnJsrXMx2oF1MKY8HpKkHaDgB9nGJriZ1fn+e/PXuSfX7q+YnnP7sSyME7531cbzHZCHhwpkSqwDI3DAwVsy6BasHAXHhriJCOMU8JEYelg6jDsGptKay+laSzsZmUyXi1wqFZksORwuObwzuND/Gq6Q5wqDE1nPkjwooRmEDPRDLjZ9HljtsNUO+TXjg/wW28axbFMnr1QZ6xk04lShl0TP06Z9yP8OGXYtXe0nOtaJVrF/tYfdx8hdlm/b4Rwe8q55tqcGC4ys8YyqaW6QSBJM85NdiiYOsMlizdmfRK1cm9tvFqg5lr8+okhzt5oUimY6DMddKVoBgm6phEmGX6U71xV0DU6kSIFVJL3mjNA1yHtoQudZmAZ+cS0X9xo8spkmzBJOVDJr3eyGWLp0IkSlKZhGTppmnBtPuTNB6rEWUa5YDLjpRzw48WMw1QnWpzdHsaKVpRv5OGY+SPFcxfntjzdvFIWo9+zN2L3SIAWgv6vub3SA4RpGPzBY4fXvMZuQPi312YYr9h4UUrBNChYBkopWmGy2Ftb6Tjd4FF28vTviGtxfT6g3okI4oxgIb2tke+/nJKn5QwdbA3CWPUUnCEP8vOdlJGqTskyQNe42QyI04x5L8I0NFphQpYqNGDOz68NBa9Ot9GBhw9WsXSdK/MBNddeDIBLf+Y5z0Ijo+7ne1d323mr0s2rpbJNTe2ZHdPEzpJvwB4lk0q2Xj/X3N7MA8TSgDBecWiFCRdmPR4YLVHAIEwySo65Zm9NI+PFK/O0gphZL8bSwYsSwiTDMvIlUGG6sIQqu7WkKszyiV16mtfe3swSq6UioN6JOVxNKNoWlUJ+6zo/3eb+4eLCw4tG0dQIU0WS5Q8Kl2c7OGa+WcehgSKDrgVUudnwmelE/M8XrnC94XNqpMSBgQIvXpmnHaaMlhx0zdzSyYKrTUQM4zxbA/2TvZH7S3+QAL0HyaSS/amXtczHBou8PNGmYOZrfY8P6vhJxqmFTSQ0FM+cn152QwbyzSfCFFPTyDLFr2byAiWDC2UzW2HCjXkfP1Ho5EExVreWVCX0FpiXClL4r2st7hsq8ubxMimKKFWcGKnw0o0WYZLixYo4U4sPCnEGDnn6+1Ld42ZTZ7oVMtWOGK3Y+AuB8WYz5N331UgzRdUxlk2+W2+6+W5BbbVUdhBnvPfkYN9kb+T+0j8kQO9B/b4kSKxPL72U9Xx2aUCouTaPHChjaBm/nGhzpFbk9HgJ09C52fQBDcdafkP2gph5L8YLY641Ayw93+0iVQo/zsPug6Ml/Dgla0fEWd5z7Wa019gPY9MyYM6PuTrnc99wiXffN8jjD4zSDhN+fn2e81MeCxPM8weFLB+7Vgp0PUXXYKYdMl4pMNOOSDKFaxnEacYLl+c5ViuAptFesh/mRCNguhPy/ZduLnt4ub0M6gtX5pnzYuIsw9J1Lsx6fOj0+OLvZbXdxgZds6+yN3J/6R89z+L+yU9+wkc+8hE+8IEP8Md//MdMTEzc8Z5XXnmFJ554gg984AM88cQTvPLKK72edl+7fUYv5E/ic2ttEbRJk82AZ85P8/2XbvLM+ekVZ/zuRbv9cy2dVT1UsvDjjGcv1Nd1Hev97O0z02uuzbFBl9PjZRp+xP/32jQvXJxluhXiWvqyWcRpmvEfF+fQ0EDXqNgmjYWNKVQKQZzw+kyHS3Wfsq1TtA3SDO6yD8aWmPMTXp9pM+eFjJXshd9fSDtMibOFMXENDG2hEpnKr8syNOI037zjRjMgSvNtKpNMcbMZ8MZMhxevzHP2ZosoScmU4sa8z0s3m4yU7MW2fvrcJE+fm1jW/v/vz67x2mQLQ9MYcCwMTePqnM/zF2cXr/v0eIVOlNIOk3XNvN8tO3l/EWvrqQfteR5f+MIX+M53vsPDDz/Md7/7Xb761a/y7W9/e9n7Pv/5z/PFL36R973vffzwhz/kS1/6Ej/4wQ96uvD9bK0n8a10r6a6+uHn6qWXcrfPdnvXl2f9ZeOrr002+c8rDaqOQTvM09o34gyVZXTClJKdH+fqvM8rky3aQcxsJ+TGfEAriGmF+diztpDuTpOMV6faQL5L1ValstfDT+BK3ePv//MKdS+m7kV4UYrK8lnjkG/OsVSw0OvXgChRTLZiynYKSpEojVrRJMkyZlshQZQQpxmubfCWg5XFjTXKjsmcF6OheGC0svha3YsXJ98B+SQ8FK9MdRbP3+8TEbt26v4i7q6nHvQLL7zA0aNHefjhvOT+E088wY9//GPa7fbie1599VVarRbve9/7APjgBz/I7Owsb7zxRi+n3td26kn8Xl2f2Q8/Vy+9lLU+u7R3fd+Iy8kRlzdmO5y93uClGy0OVwtkmaIRJLTCDMfQiTO42Yr42dV5fnp1jjdmOlyZ85n3I567OMtE02fej+lEGXEGpq4RJXk6O174J812NkAr4EYr4tXJFtfnfVpBkqfayfecVtxZHCVb8k93jDyIMxKloWkKTddIMjg44HBgoEC1aNOKMpI04+yNBj+5WOfsjQYtPyZOl/+0pq4Rxred8bYG2SsTr/ZKT38/6ClAX7p0iaNHjy7+uVQqUavVuHLlyrL3HDlyZNnnjh49yoULF3o59b7WfRIvWjr1TkzR0rel93evprr64efqpTDKWp+9/eHjcM3lrUdqoOU7Px0YKDDRjojTlHaUMNkKsAwNU4ezN5tMt2I6YUqS5mPNCp1UKcJULQa2IM4wdLAW7h6mlpfI7LUgyUbFGUx1EuaDFC/OUAvxMVVQsu+8nu6fFXkKHPIHC01TC5tumBwbdBl0HdJUkWaKLMt4+pdT/HKiTd0LudkI+NVki/NTbc7eaDDv5Xthj5ULpEAQp7TCmNem25y92URDMdkMehrS2Gk7dX8Rd9dTzsL3fZyFYv1djuPged6G3tNVLjuYpnHH6xtlGDq1JXu93otqNZeHjg1t+XGXtt2R0RJ+lFEq3PqatIOEI6P2nm7f7fq5NvK9e/eDY/yvX02jDAPXMfDClExXvPvBUWoLWylu5rP//to0o4MuunYrPBVdm/+63uDQUJE5L8aLUixDp2jr+HFKrDSO1opcqnsUoiRPbxZMploptqmhoZNkCWmSP9FnsKx7mqmd70F3KfL0ukY+ztztGVuGgbZwkUs36+jSNShYGgXTpFwwsU2domUQKkWj6WMaBqmWj3cnSlEpWoRRwhsNj4JtYNsGYabx2qzPA6bOyQMVRmsFGl7MxVmPom1wYqzMmw/X+OmNNpYBYzWX8sJ3rkL+nbvcjnr+e7wd97vtur/0m36PFT0FaNd1CcNw2WtBEFAqlTb0nq52O7zjtc2o1Vzm5+98ABB3t7Ttjpdtnr1Qp2Mby9Znvvfk0J5u3+36uTbyvSsC7zxU5txki6sNn0HX5J2HKhSVuusx1vqsg2J6zls2ftgOE2qOQdnQ+fl0h6Jl5IE5zdCAoqFxaaZN0dQZLlpoSmHo2mJd7TTTcG2TLEtIF2ZpL+2/Z0CU9FiNpAcLk8vRF1LbjpFflQ6LC7OX5kZMDWoFkziDdx8b4NXpNpONgDRTOKZG0TYZLGhcnO4QJSmHqwXIFDPtCMeA4YJJzbWx9Xxt9pXpNn/w2GEA/vHn1zlULTBUsjlWK1BzDNphws+uNvhvJ4bodG61nFKKa424579Lvdzv9krafbv0Q6wYHV196KCnAH3y5Mllk73q9TqNRoPjx48ve8+lS5fIsgxd10mShEuXLnHq1KleTi12wF6Z1LJRO/Vz3e3m18vSmqWf7Z7nuYtzK1bC6kQpv3n/COemOlQcE01TXJnzSTPFcDmvquV3Ut48XmYuSNF1HciXH7XjlJJjULIN/DDFtCBJFNFt3eXdC88LqeslG0/ruoZrWUSOIkry0qO2Al1TBOlCj1uDkqXx4rUmaBqlhfXIfpzhWIpjg0WuNUPiNGO84jBUcgjilKKl0wwSRisF3nKoSqbUsopkhwdczhyylmUwusMpSydezXsR56fbRKnimfO9B8bNBNp+mCwp1tZTgH7Xu97FxMQEL774Iu94xzv43ve+x+OPP47r3koZ3H///YyOjvL000/ze7/3ezz11FMcOXKEEydO9HzxYvv10/rMrbTdP9dO3fxWOg9+QhinBHG27OFjpOww0fSZ8wyO1oqohVHZIE7pREme1s3yamGtMKNo62QoKo5Jw48YLJmECQSkFI18f+YgZbFS2E4G6aKZz+QGFquG2YaGBRypOmRoWLqGMkCliljlO3BVLI3RskVKPu08WOghz/kx9w25JBnMeiGvzXRQSmEs1BsP4hTH1GkEMaam5+uluXPewGozoN80VlqsFhYnKf/negtQPHa4ujgevdnvxs2Gv6nv2k6ud97vPfXN6mmSWKFQ4Jvf/CZf+9rXeP/7388vfvEL/vzP/5zJyUk+9KEPLb7vG9/4Bv/wD//Ab//2b/NP//RPfP3rX+/5woXoZ9sxU3yltdtLN8F4+WaL/7xU5+z1Jv/n2vwdN8LxaoE/eOwwbz5Q4ZFDAzw0ViJMUl6f7WDqOpapc3xh/Nq1dAzdYLTs8NCYy2DJ4eRQmf92X42KY2LqOgMFC1vXKFg6hp4H6qIBtr692+RpLEzuIj9nwdKwzXwgeqxkcf9omVRBmOap+qGSTcHSMQ2NSsHEtU3eeniAsUqBWtFi0LUoWDpzfoxl5DO5B4o2pw9UcR2LMEkJ0wRDgyhVnDlUoVq0VpzdvNoM6PecGF6ceHVusk3ZMXjbkQGGSk7P342z1xub+q7t1GTJvTRBrt/0vLDtXe96F//yL/9yx+tPP/304n8/9NBD/OM//mOvpxJiz9jqHYommwFPn5tg3suX+FiGxoXZDgY6NdfkxasN6u2QGS/CNHTqXr7L00wnXtaT6qb3n784y4tXm3TimIdGSoDGpbrPeNnG0DUKlsmD1SInhouYhsGp4TIzXkQzSKkWTRpeQiuMMXRFslCxSydfe5ypvEhIto2zxhb2wkAHBhyTStFmrGwy10mo+zGDRZMwSfGjDA3FiGviJwqFYj5IuDbvkSgYKFjEmWLItbjRCJlqh1i6hmPq6LrO/3VikKl2SJQqfvvNY4yVbKbW2EHsbsMn49XC4nfj9jT4Zr8b9U60YqC92/F2ar2zVCbbPFl5LsQ22Oqb3/MX61ydCxkomFSLOmGccXUupGDC5TnFbDuiE6cUrbyiV5hmvDLZpFKw+PvpNu++b3CxN51vI2nz6ydvbSOpLaS7X5/pLNzsNR45WKHm2rTDBFODBEUrzHjTaJn/ujZHkil0LZ90pZkQJ3nPtmjpJFmGnm5d2rtbW7v733pe4AxT1zg0UOTkSIlr8x5BnOI6JmXH4oiuc70RkGYZrm3hmBnVos2cFzHdiTlYcSiYOu0wxTI0hl2TyVZEpWBysGLzpvEyNdfm6JBLvRPz+AOjADx8l2u92/DJVn83hko2M/P+ho+3U1us3ivbae5Gmn47M1FC7FtbXezhlak2VSevVKWhUbAMqo6BF2Vcnc/XMqvullEaVG2TX0528sCrcUdasZve7G4jCfmN3rZ0DlYcipbOrybb/OJGkyhJUWgMFfNtJ23LwNYNDlUdKgWLStHiULWQp7m1vIekaRpLOog932i02/5bWwjQANebARUnD65KgwMVB9PQMQ2d+4ZdDg4UePvRAd5xbJi3HKrx9qODjJYclKYxUrY5UHXw4ozRcoFfO17jg28e490nhhc3y1hPsNtI6dit/m6cOTywqePt1HrnXtb894vdStPvnRYSYg/ZlpniCwGpE8bMdCIaQZyPsRbNxRrUug6jrs2sF+U9W01DR+PCrEe9EzHR9PmDxw4v3jSP1or8ciKv/KdQ6AreqPs8MOKio7gw0+a/rs7z0KjLgWqRdxyroWsa1xs+pqahlOLyvE87TPN9nzWI0pQBx6ATZ3SibEvWR6/UE9c0DcvUSZKU16fbNPyYgYJJ3Yt403gVAD9O+NVEmzhVVIv5Y0LZsTgx7HJl3qMdZfzmgyOLvaHujbgdJuvuVW50QuBWfzcODhQ3fbydmAS6Uz317bRbaXoJ0EJsk628+b1prMRLN1r4UcpEK8xTvgpGS06+njmDN4+VmWyHpJmiHSQcqDrMetHCDGed4ZLFbCfm2Qt1To+VODfVoWQbnB4v8fpMh7qXMFa2CbM8HF6ZD9A0cAyNKFVcb/gUTJ1DtSJHBgpcrPv4UUIziMkWxqDRoB3ku0YpdSstvZUzvFPAWXhY0VQGmgEanBgqMuvFXK57KAXJws5bB6sWlpGX4uzWyrYMnfuGSrz96MBi6ho2Fzw3c/Pe6sDYz6st7oXlmruVppcALcQe8J4Tw9T9hLPXG6SpomDpVIsObz0yQCdKePlmk6KtM1g0aQYJ5YLJgWqBgqljGXlqPIhThksWJdtgqhMt3jSDOONtR2ucHq/w3MU5DE3x3KU6qYKKbXJ0wCRD49hggTdmOlSLFg+Olal38qpZcZyh6Rq6DmE3Eqt8hvV2CVMwdIVjGrz9WI0jNZdOGNO50aQTJUy1Qw5WCtimznCpAGTM+QlKKdBgqhli6HB51uefvRss5A8WxxaXBu27uRfGWLd7fLWfHyDWY7c2EJEALUQfW3rjHCqaVBwLd8Cg4lh5pSrXplq0CGPF8eHisv2Jz011+NVEi5KjEcQpQZJxaqS8GDxWumkOuiZ+nDHsOtw3lE8eC+IUy9Q5OFAkjBVFSyeIM951X41Xp9skiU6UKQxDw1b5rO6MvEetA2qhFGemNrcdpUl+vO7ksGxhnN2186VTRVNHoTB0nYKlc3ywSIrG/WMljtaKmIZOGKccG8zH8r0oxTDgkYNVXMvoeU3yXt/9SQqW3N1upen3xjdIiH1opRtnwdK5b7C4uP0h5MHg+HDxjl5ftzDJbCdmuGRxaqS8OCt7teDRvRGZOgRRiqZpzHoRVcfg2ddnF3pXY4s37v91foZXwwTH0EnSDN0APVX5UisTSraFFyVYho4Xb2xat87CsHu3lOfCfxdMHV2DNx+o0g4SZvwIy8wnvB2qFhkomtimwZlD+Th0phRBnPH7jx4E4Jnz0/hxRtkxOXujwcBCfexrjZC3LHxmI2OLq928j9cKPHN+uu+Lc8gyqLvbrTS9BGgh+tBkM+Aff359IX1qL/aWT42UeGO2w0DRvuuTfLcwSTfIu7axOMN3tSf/xXXSGrx4rYG9MJicqnxJ02jJWRzDnupEFE0dP0oxDdDI94nO8iwycQpJkpFmClRKtsGBaBPQDY0kU5havktVkoFtwGjJJknhobESzTDjzKEqrm0QxHM0g4S3HblV6//23uzSlHQ7TKkUTFDQCvMCHRtNT6908z5eKyyO8a+nV7qblbbuhRT9TtiNNL0EaCH6TLfnPOclDJcsoiTj5Yk2jxwoc2CgQJBki0tj7vYkv5kn//FqgY88eoj3nBjif/znZSZaEc0w4chAXt+7EyU8dXaCUyMlRkoOpqERxAoNdWs3KT3v9WYoXMegE6aLaer1zOq2dBir2IyUHS7OeERJSrZQR7vsGNRcG12H40OlfIMLS+fSrEfTz8fFr9Z9XEejbNuUHYMPnzmweOylKenuMrNOmNAIE35ysY6ha5waXntHsZXabGmbPnN+et290t1OMe/1FP29TH4DQvSZbsoxD85qcebxlfmAk4bO8aE709lr6eXJvxVlPDBSpmDngeyXE210LaMdplys+2SZ4vBAgWuNAE3Li33UOzFJphiwDXRDxzENDE2jEyZE6Tq3pVT52m3bMHhgxOVqMySIE5JULWwnqfGWgxUMQ+fB0RKvTbf5xfV8gthI2eZGI6TuK0bcjBPDNc5NdRgpO4xXC8tS0kcGCjx/cY7JdsipkRKWrtEMU+p+zGQz2HS7baRXutsp5nthGdS9SgK0ENtso+nL7s196Rpl29SY7USMV5wdu3Gem2wxWLTyoiMLxVEAXpvqUC4YFEyHyVbEgWqRasHkaiPE0A3GKgbjJZNCwWKqGaJpcLRW4Px0m1kvweDuk8WGShZF26AVxAy6NqeGDZJUEST5BiCPHBjg+HBxcTLc5bqP0hSOpTPZjhkpOziWjsoUUaYt1qbuPqwsncE+6JrommKqlV/rkYECrmX0FCA30ivd7RTzvbAM6l4lAVqIbbSZ9GX35l5zbR4+UObqfD7Ra9A1e0p7buZB4f4Rl3OTHQCchdnScQamZuBYOn6cUbQNXM3i9LjNcMnGC2POTrQ5oBmMVwtUHJNWmFArWnTChHAdU7lVpgjilDSFB0ctXMdkqhnimClBmPKjVyexDZ1KweTMwQpppkhThWubzKgYP04oOw5emqevbw94S7MK//OFmExpjFUMHFMnTDIuzvqEsYIHNtXUG+qV9kOKea8vg7pXSYAWYhttJn259OZeLVqcMHTGKmnPwfnZC3WSNGW2E/PyzZjnL9b58CMHePjQyj3y7pKrowMOZ282mQ8SXFPnsYNlGmFKw48pmBpemKCA8bKDRl5ZzFiYbR0nGdeCgLYf04nzIBQFyZqzuXXynagGbBPLgNdmOoyXHdIsoxOmTHsxtpE/HMx0fBp+wolhF8PQidN8fN6PM+JMYWoaJcdcM+C1ohhNYzFDULAMgiSlFW2+B7uRXqmkmMVqJEALsY02k77cjpTjuckWSZpysR5QNHVGSjaNIOapsxOLY7O3Oz1e4elzE1ydCzlQKXCgCs0goViwePTwAM9erKNrOplKGXQtdF3DjzO0hY02vFgRJCk60PAj/CSjYBq4lkFzjW60AgxDY6Rkc7RWJFGKgqlhGgYvXpkjzTICFFmqCJOUmY4izRSHBgrUO/mEtlaYEKX5Uqdh11wz4FUci1aQ5ns+W/lGJErlr/divb1SSTGL1UiAFmIbbTZ9udUpxzkvYbYTUzT1xZ7iQNFiph2t2psfrxYYKlrMeQlxpig5Jm87UsI0dBLgT959nHOTLS7XfVphTMW2uNkKeNNYGdvMx6IBfjXRJFJgahqGoVMEOmG66ji0CRyuOBwacGhFKTPtgJvNkFrRZLIVUrZ1TM3AT7J8Ry0yvCQlyzKCJCVVcLDiLKTkNQqmzntOrJ59OD5UpGDqzHoRrSCh7BgcrLqMV53eG36dJMUsViIBWoht1C/py0HX5OWbMUVT43IrwI8zDD1PS895yaqfU+iLG2R0ZUqtWoks38kp5GLdpxPlPdlXp9pkKsXUDcI4RdM1bBP8FU6rAyOlfIesmU5MECVMtEL+//buLEau6twX+H/PVbvGHsttd9vYxjix8TUJ98DJcCFOgnEQEYcIhBEhg4iQGKQoZFCch4AIUSAkOdKNjHhIIllw8pCrJEg4CViJCD4YyAnhMB0HsLGNsd1d7u7q7hp2DXtY96G6yl3uyV1V3TX9fxJCvb2ranm5ur5aa33rW1nbQd52IYRA1vGgTG+50hUZqiwhaqiwHA99QQOfvqSvfBJVOu/Ar8kLBr8tsRDGMjbW9wQq/o2qPV2qGTRyXzXVDwM00TKq1/RlrR+4W2Ih/OWdUZycKCDiU6HKEiy7uJ1IWmDj01JnAErBrjeg4rVTSRQ8AQgBXVGRdz1kC27xWMzpeK9KQFCXoWsqbNdD3nGRLDiIpwroDWgYTtvwBBAL+jBu2SgUHAhIKHgOdLV4pKQsA5++pA+np3IQEsrBGTi3nLBQ/7XbTR4GqQAAIABJREFUFHOj91VT/TBAEy2zWqcv6/GBGwv7sKnXxGimgOx0stZgxAfbKx0iPbelzgCUgt1vXjuNWNgHQ5Uxns5jLJMvFi7xAEUGpo+ghhDFCmGeEMXzowWQcwTG0jmMp3PIOR50RYajyTA1GZAUyEIgKyQosoyu6YM71vUEcDadh6g4Obr4ZUJCsb6263oYy+Tx1rCDF48l8G/bziXItdMUc6P3VVP9MEATNbl6feCG/AY+9+F+nJrKI5N3EDBUDEYMeEKa9zHVViJbEzExFBV49YMp5BwXjgs4098DVAkwNQmWXQzK+em1ZNcrbuFSJAASYLsCkiRBkSU4HqAqEjRPRn9Qx4dXBZG1gdIhF+m8g6ipAZBmneWsShJc18PxRPG4zN6gjqmsjafemj9BrpU1el811Q8DNFGTq9cHbmnbVOlACODcGu1CqhlddpkqXngvgdFMAYosw6/JsGyveIiGIiNkqLDdQvF4SgHAK459JQABXULY0JHMFaAoxWIjricgBNBtasg7HmLB4qEYgIAniqU+r99SLOd5/peJQ8cnMJbJwzczQc6nYSwzf4JcK2uGfdVUH/wXI2py9frAXcmEtS2xEP7j76fg12VEfBqyBReQAF0GIIqjZg8oVxWTcW5rdMGVIEuimEwmSygIQFckuAKI+jVs7g/iK/+6dt7XnusIzbeGiyVAS/KOh25TWzBBrlU1S2Ii1Y4BmqjJ1esD90Kmq+dKpgJwQQlq5z82aqpwRfFwi7BPheMVi4dIQqDgelBlCX6fjHTOxXQuGSQArhAYzRRgagpWR/wouAJ+XUHQkPHRNdElb3/aEgvhxWMJTGVtRHzFEXjW8bAq7GvLUWW7Jb11svZ7dxK1mXp+4C40XT1XMtr+wyMAJAyEfQsmqJ3/2OGpLCYtGzlHoC9k4H+tNnBq0sLxiSw0SMi7HnRVgiRkQBR3RJeOlJQgkLMBz3Uwningom4/ugMGNkxXC1vq9qdY2Id/27YKT701grFMAd2mhlVhH1RFmfVc7bI9qZ2S3joZAzRRC1iJD9y5ktEmLRsCEjb1BcvXSvfObM/Mx05aBRxP5DAQ8WN4KgvbdXF6ykFfyEDYV6w4dngkBVkqnh/tohiYZRRH0JJUPG5SVWQMRn3I2h7CPhWxsDFnwLyQoLp1dQS9QWPB+7g9iZoNAzQRAZg7Gc12BYRUuQ1rrgS1mY89OVksJxr1+yBLEvpDOk5N5JDM2vg/G3swlimg4Hg4HE8jqCtQZySRm6qEaECHLitQFOALl60pJ7LNdcTmUoLqYl9yuD2Jmg0DNBEBmDsZTVOkOfcWn792O/OxmbyDkKEib3voD+nYtjoCIQT8loLVUT/en8jCrykYiviQsApQZMB1i4lgfk2BX1OQyjsY8Ol46Xgx+AZ1FfHY7JFyPYNqK21PmjlrMNgXwLqgzi8RbWjh/RVE1DG2xELIFFyk8w48Icp7i7tMreLaXGUwZz42oCuYytnIOR6Gon4AQMJy0G0Wg1/AUJHKu/BpMlwB9If8iBgKVEVCMu8gnswhk3cwbjk4PZlFPJXDkdEU9h8eQdb20B3QkLWLxUfeT2Rh6kpFW0xdqSo7u/QlY6Zm3J5UmjUo90Wh2BfxZK7RTaM6Y4AmIgDnktH8moxExi7vLb5+S6zi2nzTx6XHCk/g1GQWyayNkxMWzkwfP9kzPTpdG/XB8QSOJ7KQJcDUZUQCBgKagoCuwhFAUFfgeAL/jKfxtxMTOHo2gzeHk3BcD7IkIWioCOgKUnm7bkF1ri8ozViTe+asgSxJCPqKfXE4nmp006jOmuurIRE1VGmdtjSFeuj4xAVnM5f+fCxjozekYzxjI2HZmMo5uGpDN0YyNtJ5B2G/hh5TxdFRDzIUjKcLUFQZWUfAUCSYsgJAKq5/T0+wj2ULyI0JHHBHceXaKNZNH2wR0jVkpgN0rXt+W2V7UitNxVNtGKCJqMJiiVcLZU2fG90ZWBMtPl8678ABysHvxLiFsUwBQUNBwRXFAFsAXE8gVwA0VUYoaMATgGwLZG2vWC1cEpAB/Nf7k4j4NaiKjHU9/vJadD2CaitsT2KlsM7Bf1EiqrBQ4hWABYP3hOVAlgTeGLcq6n3nbK9ihB3QNfSYAkfHLOTd4ii5VElMFsWgrsjy9GEegF9VoEoSNEWGZTt4dzSDdd1mORg3e1Ctp/ML16RzDiuFtSkGaCKqsNAU6mLB+92zSbwzaqHLr2IgZMB2PLx2Oontq0OIJ3P4zWunMWE5sBwXCauAgisgUNz7XNrNZTsecpKAqsjFZDJVRm9AQ5epwwOgyhJs1+vY/cnnT8UP9ukd2xftjgGaiCosNIU6X/A+MWZhLGOj4BbXkR1P4ORkDqtCBgAJqZyDg8cSmLAcGKqEpFXASMouj5ohAL9WLFziuMUjJ2N+FbIE+DQFli0waCgIGjrWd/sRC7ffKVRLMXPWIBo1MTlpNbhFtByYxU3UoeLJHJ47MorfvT6M546MlrfpLJTNPN9WpFTBRkBXYKgKNvaY8GvFOtxTeRsfWRPC6WR++s9lvBNPI2t754IzitPbOVtAkyXIMrC+x8SnN/dj20AYfk2FqcsouB7Wd/urKvdJ1Io4gibqQIslgi2UzTzXwR0hQ4OpKwgYKmzHw0XdOgQEUjkHmqqU75cgkLFd5G13Vps8FEfOfl3GtoEQ1kZ9yOQdTGaLXxDOpgowVBkfXz//dG671NImAhigiTrSYhW45ku8mi94H46nYBVcrI368NZIGgAghIAqA5mCiw/1B2AVXAhI6PJriCdz0GWg4FU+vyuAvqCOkVQeR8dGykdMGpqMgiOQyBbm/Tuxlja1GwZoog5Uy17a+YJ3KThuiQVwdMzCRNbG/x6M4OPru8t/rsjFcp4QgCwBulxcd/ZQTBRTZeDKdV04OmYhlbcByDA1BbIsY22XjknLnreMJ2tpU7thgCbqQLXupZ1rKrk0ss7ZHi4fisyaXr5qQzdelASOjaYhJAmeK6AqgJBlqIoEWRLo8uvQVBW9AQNTWRuuJ2DZDrbEQjANFcmsPW8ZTxbwoHbDAE3Ugc7fS7uUClwLTSXPdeJUSSzsw43b1wCQYKgyXjmdBDwBXZXg0xTkHRdbVwWRyTvoD+lI5QxAkuB6AgFDw3g6j7FMHgLAc0dmry+zgAe1G2ZxE3WguepuX+ha7axa0MbSakELSLhh+2p85uIerOs10RPQsSrqw5qoD4amImCoGIr6ETBUJHMOZBkYS+VwdNyCocnYEguWD8uYeUBEq9TSJrpQ/GpJ1KGqrcBV61RyaaT70aEoXAhk8i4cAI4EnE3lcFG3H2G/hq2rQvA8D7IkI57JY2OPie1rwoiaevm5Zq4vr2QtbWaL00pggCbqEPUKKudPJU9aBRwZTaPgijmnns9Xml53XQ9CAAVXwHI86ADyrsD7CQt5W2Bdjx87Nm1ELOzD714fRndAgyydO5t6ri8FK1H2k9nitFI4xU3UAWadITzHFPGFmjmVPJHJ49VTSZxN5SFJAv/5XgK/ePl9/M+ZqXkfXxrpjmby0BUFa6M+XNRjYnMshIt7AtAUGQFfZaBvprOaa53iJ7pQNb27X3rpJfz4xz+GZVlYvXo1fvSjH2HVqlWz7rvmmmuKeyLV4svFYjHs27evlpcmoiWo5xakmVPJr5+eggQBQ1VgKCrChoypnI2n3hxBb3D+cpyxsA9rIia2rdbw1nAKQVWGNH28ZCrnlANe6fEXktS2UtPOzBanlVJ1gLYsC/fddx9+8YtfYOvWrfjlL3+JBx54AI8//vise5PJJJ5++mn09/fX1Fii5dKqa4oX2u56B5XSVPKE5eDMVBa2K+DTihXDIn4NY+nCosG/y1QxPJXFO2dT0FQFmiQhZCjoMrVZbVtsfXklp52ZLU4rpeop7pdffhlDQ0PYunUrAGD37t144YUXkE6nZ92bTqcRDoerbyXRMqrn9O9KWkq7l2uKuMtUkbBsGOq5j5K87aF7+mCNhfQHdLwxnJquOCYjazs4MWEh4lPnbFss7MOOTX34wvYB7NjUVxF4V3LamdnitFKqDtAnTpzA0NBQ+edAIIBoNIqTJ09W3GdZFlzXxZ49e3Ddddfhtttuw6uvvlp9i4nqrFXXFJfS7uUKKltiISgyMJWzISCQs13kHA+9AWPR4H82U8D2gTCGon6kczZUWcJFUT/iqfyS2zZhOTB1peKaqSuLfkmoRi1b1IiWouqvz9lsFoZhVFwzDAOWVXnsmed5uOmmm3DLLbdg27ZteOaZZ3DXXXfhwIEDiEQqiyIEgwZUtfKXrBqKIiMaNWt+nk7UiX2Xh4S+LrMiQ9hv6hhP55fUFyvdd0tpdzRqIhzx483TU0hkCuiN+rE1ZOD9VB7/HU+jO6Bj25oIBiL+JbUhGjXxRUnC//vHaSQLLnqDOjaEDCiSgn+9pA/RBZ4vDwkbV0ewaU0UU9kC3jg1iffHLeTTBVw61IVwxL/g42ca7AsgW/AQ8J37SEvnHAz26cvybxKNmti8trvuz1uNTvydrZdm77tFA/SBAwfw6KOPzrp+6623Ip/PV1zL5XIIBAIV14LBIB566KHyz7t27cLevXvx2muv4eqrr664N52ufL5q8XzU6nVi3xkQGJ2wKtYU03kHfk1eUl+sdN8ttd1+AFesLi41xZM5HHxvHAFdgakrGJvMYv/ZdFUjwXUhA7d/dHV5LTysFouJ+IVYsD9mtt8DYOVc9Ad0hAwFru3i1y8dR7dfg4C8aF7AuqCOg8cSyEz/fUpJZFdt6G7793Mn/s7WSzP0XV/f/DNFiwbonTt3YufOnbOuP//889i/f3/550QigampKaxbt67iPsuyMDIygg0bNlS+sMqECmoOtZS9bKRa2l3vgyWWuv84nsxh0rLxyqkpdPk1KKoMCQKAhKhfw1tnpvDPeBoRn4odm3rL6+vzfYFYySIlnaBVkybbTdVr0FdeeSVGRkbwyiuvAACeeOIJ7NixA6ZZOV0wPj6O3bt349ixYwCAQ4cOYWxsDNu3b6+h2UT106prirW0eyXXbM9XSm4zNAVXDEUgQeCNU0nIEBiKGvhgMo/hVAFdfg0FF3jl1BTeOpPEP0dS+M1rp+dMgmNAqZ9WTZpsR1UPY30+H/793/8dDz74ILLZLNauXYuHH34YABCPx3HHHXdg//79GBoawv333497770XrusiEolg7969CAaDdftLENVqJSpQLYdq293IrUIvHk/gZCKDZM5F1nHgV1X0hnQUXGAq58CnyvA8AUWWoCsCY+kCMpqDjb0BjGfsWSNpVvaqLx7b2TwkIYRodCNKRkfrkzXbDOsKrYp9V71W6ruZQe38Ndvl/BCOJ3P4v/95HD5Fwtl0AZIECAH0BHW8N5rBYMSPwS4fjo5ZyBVc6KoEVZbheAIXdZvQVBkbekz4Nbl8ctZzR0aRtb051+IXOl2rXdT7fTdXWVVPCCQyNr6wfaBur9MMmuF3tqY1aCJqP41asz0cT6HLr+H0VA66IkNXZRQcD1lHYDDiw5lkFqcms/CEgCc8CMjo9qvw6QqyjoeNveasIias7FVfLMTSPNjjRB2qEdP6E5aDi3tNvHM2jZChQggBIQFjmTwGAjp6TA1TeQe6osB1BCZyNk4l8/jImjAuXRVE1NSRzjsVwYIBpb5aNWmyHfGwDCJaMV2mCl1VcHFvABACWccDPIGIUTwHWlVkbOgOIOLToKoyBsIGPhwLIOTTEPZrcxZYYWWv+mrVpMl2xK+YRLQiilurCnjlgyQMBcX1b0OFEEDeExAC8GsKugI6ugMGhBBI5R18qD+Aw/H0vFPxnbDFaqWz1Fs1abLdMEAT0bI7l5Sm4l/WRnB0zMKZqSwChoKBiB8FACFVQsKykbc9+DQFecdDwFBh2S6CxsIVBts5oDBLvXMxQBPRsqvYumOouCJgIJ0PlTOts5KE/f99Gj2mhGPjFnKOCyGAgC7hjeEUtg+EOzY4cdtT52KAJqI51XNadbFM64GIvzxNnXM8pPI2QrqGVMHG9oEwVkeLNbk7MTgxS71zMUAT0Sz1nladmWk9aRVwcjKHRKaALlNFPJlDNGrOOU1d2pM7U6cFJ2apdy5mcRPRLPU+grOUaX160sJbwymkpo+X7AsYOHgsgeGp7JyPO/8c60mrgH+cnMA7Z1N47shoR5SfZJZ652KAJqJZ6l2ru5RpPZYpwPEEwj4Vlw6EsDrqR0BX8ObpKcSTOTx3ZBS/e324HHxnBqeJTB6vnkoilXfx4ViwY2pEc9tT5+IcCRHNshzTqrGwD2siJratriwjaeoKjo+m8f5ZzDmlXlqbfv30FIKGgkv6AoiaevnxnbAe3c5Z6jQ/BmgimqUe1aTmSjI7P/BPWgUcGU3jVDKPwbCBTX1ByJJakQy2Y1MfYmFfOVnq/ODeSevR1Fk4xU1Es9Q6rTrfkYX9AX3OKeueoA4JEv5nJI1JqwBg9pT6+evRAJOlqL3xnU1Ec6plWvX8vbuO6+H9hIWjo2l8qD+IvO3g7bOZ8pT12ZyDVLoAnyrhg8ksoqY+K/iyRjR1GgZoIqq7mXt3J60C3hpJw6dKkAAYmoJMwcVAyIeLek3IkgTT1PFfkzn4VAmpnFvOVJ4ZfBcq6bnSpTAX0kxtodbGAE1ENVlsrfnkZA5+tbiaFvKdW18eSWbL93QFDFy6Koh3RzMQAPyaPGc97blG9c1UCrOZ2kKtjwGaiKo2X0Da0h/A4bMZAEAqb8OQZeRdgY29QQDFKeqQoSEzvabsN3Woiox13eaSg1kzlcJsprZQ62OSGBFVbb6CJmczhXKSGQQgILB1+jxnoJjcta7bX75nPJ2ven9vvfds16KZ2kKtjyNoIqrahOVAlgTeGLeQyTsIGCoGIwZytleeji4ld6mKDE+IiuSu0j3RqInJSauqNjRTKcxmagu1Po6giahqEjy8djoJ2/EQMlTYTvFnCV75nuWuhNVMpTCbqS3U+vi1johqIE3/d+5/FdemLWclrIWyu1daM7WFWh8DNBFVTUDCR9aEcGoqh1TOQdBQ8JE1IbhCWvzBddRMpTCbqS3U2higiahqXaaKrO1h2+pz+5XTeQdhjatnRLXibxERVY1rrkTLhyNoIqracqy5LlaJi5W6qFMwQBNRTeq55rpYJS5W6qJOwiluImoa8xU+ORxPXdCfE7UTBmgiahqLVeJipS7qJAzQRNQ0FjvzmWdCUydhgCaiprFYVjizxqmTMEATUdNYrCzocpcNJWomnBcioqYy35nP3FpFnYYjaCJqaqWtVVnbQ3dAQ9b2cPBYAvFkrtFNI1pWDNBE1NS4tYo6FQM0ETU1bq2iTsU1aCJqaqWtVUHj3MdVaWsV16apnXEETUQrJp7M4bkjo/jd68N47sjoBa0jz7e1qj+gc22a2hoDNBGtiGqTvebbWnU2U+DaNLU1TnET0YqYmewFoPz/w/EUNq/tXnC6eq6tV4eOT6A7oFVcM3UFiYy9An8bouXHETQRrYiFkr2Gp7JLHl2z7Ce1O76TiWhFLJTs9ebpqXlH16X/nz+y3hIL4eCxBIBioLcKLjIFF5cPRlb4b0a0PDiCJqIVsVAd7USmMOfo+v3E/CNrlv2kdscRNBGtiFJAPRxPIZGx0WWquHwwgljYh+50AWOT2Vmj61TeRn/ImHNkXVqXZkCmdlXTCNq2bTzyyCPYvHkzRkZG5r3v7bffxu7du3Httddi9+7dePvtt2t5WSJqUbGwDzs29eEL2wewY1NfObhuWxOZc3Qd0jUWKaGOVVOAvvvuu+HzLf7t9Rvf+Aa+9rWv4dlnn8VXvvIVfPvb367lZYmozQxE/HNOV6/r8TMRjDpWTe/ye+65B5dddhkee+yxee955513kEql8NnPfhYAsGvXLjz44IN47733sHHjxlpenohawIVW+5pvupqJYNSpagrQl1122aL3nDhxAoODgxXXhoaGcOzYsVkBOhg0oKqV01nVUBQZ0ahZ8/N0IvZd9dh3sw1PZfH3M2mEfBqG+n2w8i7+fiaNz0T8GIj4y/fN13fRqIlwxI83T08hkSmgN+rHjjWRisd2Or7vqtfsfbfs80TZbBaGYVRcMwwDlmXNujedztflNaNRE5OTs5+fFse+qx77braXj4xC9jxIroSs5UICIHsuXn73LHZs6ivft1Df+QFcsTp87oIQ7OcZ+L6rXjP0XV9faN4/WzRAHzhwAI8++uis63feeSduvvnmRV/cNE3k85WBN5fLIRAILPpYImptE5bDal9EVVo0QO/cuRM7d+6s+gU2bNiAEydOwPM8yLIMx3Fw4sQJrj8TdYCFipMsN550Ra1u2QuVXHzxxejr68P+/fsBAE899RQGBwexfv365X5pImqwhYqTLKdqD+YgaiZVB+ixsTHs2rULu3btAgDcfvvt2LVrF+LxOOLxOK6//vryvT/5yU/w5JNPYufOnfjtb38755Q5EbWfRlX7mnkwB0+6olYlCSFEoxtRMjpan1+eZlj4b1Xsu+qx76pX77773evD6A5okCWpfM0TAomMjS9sH6jb6zQDvu+q1wx9t1CSGGtxE1Hb4UlX1A4YoImo7TRq7Zuonhigiajt8KQragec7yGiplDvbVE86YpaHQM0EdWkHoF1eKp47nNAV9Ad0GAVXBw8luColzoap7iJqGr12m/85ukpbosiOg9H0ERUtZn7jQGU/384nrqgkW9p9P3CiQl0GSrWdvkRNXUALAlKxBE0EVVtwnJg6pUn0Jm6ggnLWfSxM0ffAxEfUnkHb42kMWkVAHBbFBEDNBFVrZb9xjNH3xf1BgBIkCBwciLLbVFEYIAmohrUst945ui7yzSwdVUQIUNBPJXntigicA2aiGpQ2m98OJ5CImOjy1Rx+WDkggLr+SddRU0dqiJj64BccVb0+XhKFXUKBmgiqkm1+423xEI4eCwBAPCbenn0fflgZN7HlNatuR2LOgGnuImoIWZW+xpPX9i0Nk+pok7CETQRNUxp9H2hpwpNWA66A1rFNW7HonbFAE1EDTFzLXmwL4B1QX3Raerz160Bbsei9sV3NRGtuHgyh/2HRzBp2bBdgTOZPN6Ugeu3rFowSM9ctzZ1BVbBXXTdmqhVcQ2aiFbci8cT+GAiD1mSEfZrkCHjg4k8XjyeWPBxPKWKOglH0ES0ouLJHP5yZBSeC2RtDb0BDb0RDWFDwdtn04s+nqdUUadggCaiFVPaJuV6An5NgeN5ODmRhWGogNTo1hE1F05xE9GKKW2TWt9tIut4gAA0RcapiSySOQcf6g80uolETYMBmohWTKm854diIfQGdXgAbNdF1vYw1OXHx9f3NLqJRE2DU9xEtGJK26Sipo5/GYrig8ksxjM2VnX5cf2H+7m2TDQDAzQRrZiZ26TCfg3rFRn9IRfXf2QN/EI0uHVEzYVT3ES0YubbJjUQ8Te6aURNhyNoIlpR3CZFdGE4giYiImpCDNBERERNiAGaiIioCTFAExERNSEGaCIioibEAE1ERNSEGKCJiIiaEAM0ERFRE2KAJiIiakKsJEZELSWezOFwPIUJy0GXqWJLLMTKZNSWOIImopYRT+Zw8FgCWdtDd0BD1vZw8FgC8WSu0U0jqjsGaCJqGYfjKQR0BUFDhSxJCBoqArqCw/FUo5tGVHcM0ETUMiYsB6auVFwzdQUTltOgFhEtHwZoImoZXaYKq+BWXLMKLrpMptNQ+2GAJqKWsSUWQqbgIp134AmBdN5BpuBiSyzU6KYR1R0DNBG1jFjYh6s2dMOvyUhkbPg1GVdt6GYWN7UlzgsRUUuJhX0MyNQRagrQtm3jZz/7GX71q1/h+eefx6pVq+a875prroEQAqpafLlYLIZ9+/bV8tJERERtraYAfffdd+PSSy9d9L5kMomnn34a/f39tbwcERFRx6hpDfqee+7B17/+9UXvS6fTCIfDtbwUERFRR6kpQF922WWL3mNZFlzXxZ49e3Ddddfhtttuw6uvvlrLyxIREbW9ZU8S8zwPN910E2655RZs27YNzzzzDO666y4cOHAAkUik4t5g0ICqKvM804VTFBnRqFnz83Qi9l312HfVY99Vj31XvWbvO0kIIRa64cCBA3j00UdnXb/zzjtx8803AwA2b968YJLY+T7/+c/jW9/6Fq6++uqK66Oj9SnXF42amJy06vJcnYZ9Vz32XfXYd9Vj31WvGfqur2/+PfyLjqB37tyJnTt3Vv3ilmVhZGQEGzZsqHxhlTu8iIiI5rPshUrGx8exe/duHDt2DABw6NAhjI2NYfv27cv90kRERC2r6mHs2NgYvvjFL5Z/vv3226EoSnl/8x133IH9+/djaGgI999/P+699164rotIJIK9e/ciGAzW3noiIqI2tega9EriGnTjse+qx76rHvuueuy76jVD3y20Bt1UAZqIiIiKeFgGERFRE2KAJiIiakIM0ERERE2IAZqIiKgJtWWAfvbZZ3HDDTdg165duPXWW/Huu+82ukkt4y9/+QtuuOEGfO5zn2PfLZFt23jkkUewefNmjIyMNLo5LeGll17CjTfeiGuvvRZf/epX2W9LwPdb9Vrlc67tAvSZM2dw//3347HHHsMzzzyDXbt24Xvf+16jm9US4vE4vvvd7+KnP/0p/vSnP+H666/H97///UY3q2Xcfffd8Pl8jW5Gy7AsC/fddx8eeughPPvss/jkJz+JBx54oNHNahl8v1WnlT7n2i5Aq6qKn/70p1izZg0A4GMf+xiOHz/e4Fa1hlLfXXzxxQCAyy+/HEePHm1wq1rHhR6/SkUvv/wyhoaGsHXrVgDA7t278cILLyCdTje4Za2B77fqtNLnXNsF6P7+fnziE58AADiOg9///vf4zGc+0+BWtYaenh5cddVV5Z8PHjzIkqxLcCHHr9I5J06cwNDQUPnnQCCAaDSKkydPNrCMlibMAAAB40lEQVRVrYPvt+q00udc255YsW/fPjz22GNYu3Yt9u7d2+jmtJyXXnoJ+/btK5duJaq3bDYLwzAqrhmGActiVSxaGc3+OdeyAXqxYzC//OUv40tf+hL+8Ic/YPfu3fjjH//I9Zppi/Xdn//8Z/zgBz/A448/Xp4GoqILOX6VLoxpmsjn8xXXcrkcAoFAg1pEnaQlPudEmzl69Kg4dOhQxbUrrrhCHD58uEEtai2HDh0Sn/rUp8TRo0cb3ZSWdckll4jh4eFGN6Pp/fWvfxU33nhj+efx8XGxdetWkclkGtiq1sP329K1yudc261BJxIJfOc730E8HgcA/OMf/4Bt2xVrXTS3bDaLPXv24Oc//zk2btzY6OZQm7vyyisxMjKCV155BQDwxBNPYMeOHTBNs8Eto3bWSp9zbXlYxpNPPolf//rX8DwPuq7jm9/8Jq6++upGN6vp7d+/H3v27ClnwJc8+eST6O3tbVCrWsPM41ePHz+OtWvXlo9fjcViDW5d8/rb3/6GH/7wh8hms1i7di0efvhh9PX1NbpZTY/vt+q10udcWwZoIiKiVtd2U9xERETtgAGaiIioCTFAExERNSEGaCIioibEAE1ERNSEGKCJiIiaEAM0ERFRE2KAJiIiakL/H5Cq57wG//oVAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" } ], "source": [ - "with model_hier:\n", - " trace_2 = pm.sample(draws=2_000, tune=5_000)" + "plt.figure(figsize=(8, 6))\n", + "plt.plot(\n", + " prior_sample['beta'][:, 0], \n", + " prior_sample['beta'][:, 1], 'o', alpha=0.3);" ] }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 559, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAEoCAYAAAAt0dJ4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nOzdeZAkV33o+28utXdVr9PdMz37jEYjtCIW4xfwZBDPgC92xIv7iIBr+z3HxWG/MMSD4GJsbLCNrXDYvgQ2xtgYwnHB5iFfTIDxu8ZXIKFtpEGj0ezd0+v03l3VtVdmVu7nvD+qp2das0jIknrEnM8/M52VWXkyKyvz/M7vnFOalFKiKIqiKIqiKIqibDl9qwugKIqiKIqiKIqidKgATVEURVEURVEU5QahAjRFURRFURRFUZQbhArQFEVRFEVRFEVRbhAqQFMURVEURVEURblBqABNURRFURRFURTlBqECNEW5zK233spf//Vfv+j1f/u3f5v3vve9r2CJFEVRFOXVp56HirJ1VICmKIqiKIqiKIpyg1ABmqIoiqIoiqIoyg1CBWjKTWVlZYWPfvSjvPWtb+Wuu+7i3e9+Nw8++OBV1/3CF77AW97yFo4fP8573/te7rjjDt71rnfx8MMPX7Hu0aNHN9Z5z3vew8mTJzdea7VafOpTn+K+++7jzjvv5P777+ev/uqvkFJu2v79738/9957L/feey+/+Iu/yIkTJ17+E6AoiqIoqOehotzIVICm3FQ+/vGPMzc3x5e//GX+7d/+jV/5lV/hM5/5DE888cRV17dtm7/4i7/g93//9/n2t7/NgQMH+NjHPka9Xt9Yp9Fo8Pd///f86Z/+Kd/85jcxTZNPfOITG6//0R/9EUeOHOHP//zPeeihh/jEJz7Bl7/8Zf7xH/8RgGazyW/8xm9w9913853vfId/+qd/Yv/+/fzar/0a7Xb7lT0hiqIoyk1JPQ8V5QYmFeUmsrS0JEul0qZlb3/72+Uf//EfSymlPHTokPziF78opZTyL//yL+WhQ4fkkSNHNtYtFovy1ltvlQ8++KCUUsrf+q3fkocPH5bFYnFjna997Wvy0KFDsl6vb2yztLS0aZ+/9Eu/JD/0oQ9JKaUcHR2Vhw4dkqdPn9543fd9+dxzz0nf91+uQ1cURVGUDep5qCg3LnOrA0RFeTUFQcDnP/95jh8/TqPRQEqJ67o0m81rbnP33Xdv/H9oaIj+/n4WFhY2lg0MDDA0NLTxd19fHwCO49DT04Omafzd3/0dR44coVqtIoTA933e8IY3AHDw4EFGRkb46Ec/ygc+8AHe+ta3cvjwYe69996X+/AVRVEUBVDPQ0W5kakATblp2LbNL//yL1MoFPj0pz/N7t27MU2TD37wg9fcRtM0urq6Ni3LZrNYlrXxdzqdvmIbACklUko++MEP0mg0+OQnP8mhQ4dIJBL8zu/8zsb6yWSSBx98kK985St8/etf57Of/SwjIyP85m/+Ju95z3tejkNXFEVRlA3qeagoNzY1Bk25aRw7doxyucynP/1p3v72t3PgwAH27NlDo9G45jZSSjzP27TMcRwKhcKL2ufk5CSTk5N85CMf4ed+7uc4ePAge/bs2fRAg05L5Kc+9Skef/xxvvvd73LnnXfysY99jOnp6R//QBVFURTlOtTzUFFubCpAU24aYRgCMDw8vLHshz/8IZZlbZpB6vmOHz++8f/V1VWq1Sr79u17yfscHx9ncnJyY5/z8/M8+uijG68fPnyYP/zDP0QIwczMzIvaj6IoiqK8WOp5qCg3NtXFUblp3H777ZimyVe/+lV+9Vd/lXPnzvHVr36Ve++9l6mpKYrF4hXbGIbB3/7t35JOp+nu7uZzn/scuVyOn/3Zn31R+9y3bx/5fJ5vfOMb7N69m/n5eT73uc/x9re/ndHRUebn51lYWODDH/4wn/zkJ7nvvvuQUvLNb36TVCrFXXfd9XKfBkVRFOUmp56HinJjUwGactPYuXMnf/AHf8AXv/hFvvvd7/L617+ez372s5w9e5bf/d3f5UMf+tBVt/vIRz7CAw88wPT0NCMjI3z5y19+0V06crkcf/Znf8af/Mmf8PM///McPnyYBx54ANd1+dCHPsT73/9+jh49ymc+8xm+9rWv8V//638lkUhw66238qUvfYnt27e/nKdAURRFUdTzUFFucJq8Xi5bUW5iX/jCF/ibv/kbxsbGtrooiqIoirJl1PNQUV5dagyaoiiKoiiKoijKDUIFaIqiKIqiKIqiKDcI1cVRURRFURRFURTlBqEyaIqiKIqiKIqiKDcIFaApiqIoiqIoiqLcIK47zX65bF3v5ZesqyuFbfuvyHu/Ul6LZYbXZrlVmV89r8VyqzK/el6pcm/bln/Z3/OV5rrBa/IzvJrX6vV4NT8px/KTchygjuVGpY7lxnO9Z+GWZNBM09iK3f67vBbLDK/Ncqsyv3pei+VWZX71vFbL/Ur4SToX6lhuPD8pxwHqWG5U6lheW1QXR0VRFEVRFEVRlBuECtCUG4JwbKQQW12Mm5aw7a0ugqIoymtGJCLs8JUZBqIoiqICNGXLBc8+Q+0X3k3rt/8L6lcfXn32F/6c2s/dj/cv/7zVRVEURdkkiATnSxbiBns2nKw+xzPlo1tdDEVRfkKpAE3Zcu2vfAmCgPDoU4Qnn9vq4txUwtVVvG/9d5AS5yt/gwzDrS6SotxcQhdi9b27lvE1m4WaS8m6sSYEaIVNANWoeAOTYUhcXtvqYihbyAmirS7CS6YCNGVLxeU1ovOjZP/zr0E6TfD4o1tdpJtK+8gREILs//1hZKNOeO7MVhdJUW4qqdmHSC68uve9UISUvfILrxh56NbKK1+g67jRAyDJFpRPSvzzDyKr46/+vn9M8eoKMtqaSnJ49jTR6ZNI39uS/b/SYiGZqTg0XNXAczWNdsiRmRoLdXeri/KSqABN2VLhc8cBSL7tfyXx+jcQHj+2xSW6ubjPHUfr6yf9v/9HMIyNz0NRlFePFrZf1f2drZzlTO0kbnT9ikti9TiJ1WMQXarglr0yj6x8nyAOXulivmKcwMXyX3z5pZQsOYvEMt5YpqEBIOSrP3ZayJhn2rOcW3wIo3r+Vd//iyXqNaLRs0STE1uyf+muX9/xS/uMNL/5smW3ZRQhgyuvOSkl8cL8Swpiy7bPdNnhxGLj5SjiTxx7PXt2vvjaHCuqAjRlS0XnR9EyWYx9B0jcdjvx4gKi/epWVm5WUkq848dJ3H0PejaHsWs38fTkVhdLUV6zNL9FcuZ7aO3Kq7K/6MIM8coyAEHsc6T4OHb4whP+OOvrXB5wXI22HsBplwVjC/Zc5z2i1+7EQv/t3Pf45tjm8WNSCOK10lXXL7lFzlRHmbMubCz7sQM0EZOcewTNuX6XuyAOCMX1g4JTtZMANGMXs7o1wc9F7ci55jnYCDqCS91ThdVC1GuvWHmklBv71S4ue16Wc8Ge37iOryc5/yja/BEA/EcfIZqeesnlCp58nOCJKzPlorxGNDlO6dzTOKHzY71nJDrHFd/YSeatE/kkotdmcAYqQFO2WDQ5jnHoEJphYBy6tdN1Y+LG77bxk0CslYhKJRJ33QOAefCWf9cDSFFudppXR4sD1sonaPj1F97g+RVbKdG8F98aHl+YJjp7EuKQil/BFz6LzvwLbnexIih5geBCW68ivMLZsqWGixdeP1i8Xk9HrV1Gc19cpV9KSRhLWtHmLp7BhQtEZ05ddczSdMViomRjBZcyidr6ubm88h8vLhA9r5EriAMutGYgsNECi0Tx2euW78nSYzxRvH6X17rXOdbUUoPYvnaDpoyvf05/HJpXJ3nhf266FoLY5+jaU0w2r/HMvsqHFj5zlPC565+DlyJeWSZeWiQ6P0bw2CP4jz6CdNtXLcdUa4Kp1otsjLx4XcUR8VwnQE8sPUVy9vtXXV1IefVuufGlDFk0M01w8Rysz149W5/kmfLTV2zWaIcsNdyNYGzTW64vS+jaFa+9FLLdRjQuu//EIcn5H3YyiS+DIPrxM5mNdkj0EjOgubVnGak8deV9dot5YYzlvXDGVAVoypaRUhLPzWHu3Q+AecshAPzzKkB7NcQXZgAwD90KgHHwFkSpiLBaW1ksRblhtSNnU9ZJSMFTpSdYczuZFxkG+FOLjLYu8Fz1RVRCxeaHtFGbILnwGFhXz+Rcjbl2muTsQ+itBbTox5tIIxYvVIGXz/v3Rb6vjF/UFPR6a4m4PMnoqsWJpZdWCbRDm9UL/0Jj9l9f1PpXGzM2XXE4NlUkbi5D+8r7X9PrZLTmay6L6+NZ9Ktk0KKJ87RnxjddI+PNMWbtGepBJ2DX4rAzMcx1BJF84UqplCRLLfzRWbR2+YogRIYhwaMPE83OXPMtRK268fM2otFAVK+d+TWr59EiD927FAiH69dv/XmNEVcEKJqG9P0rAsbR+llmrWuX78cRjZ0jGh9DrK6PmbwsIEJCxfb5/vjaC55XKSV+JK7bIqC3y1ftlrxm+fxgvMyZlc41dL7Y4isnfnhFVjuenUE+P4so5RXXZhgLnpmvM7pq8chEGWthadN4uosxm7YenwXxv28ineDpJwmPP7Pxt+6W0fwW5uXdaKW4MhMsInR79brvXbF9Hp2qULFffBkjIXlmvs6p5ZdWJzH8TrBpxlszBjGIBKNFC9vvXIs/mCjzzFydx6erPD1box1c//6rAjRly8hGHWlbGLv3AKBvG0Tr7sEfv3H71P8kiebnADD27AXAPHALAPHM9BaVSFFuXLGIObr2FGP1cxvLpltTeLHHdyafZr7WJppfJK61SJZfuEIRrywjGpsrtrrfIFwuEzz+2FXHq1xT4GNUx9fHI12/Nf3yVuwX6uL4/ADyipelIJYxC/b8pkr5ROM8z5SPXrPCqDdmSc78K4nicRKVc1eU62q0axzWkeUnmfRLnHYX1wsVozdfOIt4uZlqmaX2CeLWAmbpyomSNE0DKam1A8YujmdZL9DlWUghBVOtCc7XR7FDi0hEl87xZefacK5fmS3NzzJ/4nvXXkFGGzFzO4gpnX2YVvkkUkoWK1PUn3mUeGke4hCxsoIf+1d0mxStJuGJ48TrvSbC4890ZlEWEUhBNDGO9/QTVL2LQdv6B7CeIQrqdR6ZLHN26hRT9XMbn//p2kkemv+f+A8/RDzbyTiFcUDw5GNEZ05vKkN9+gxz5bHrnouXhZRMVRykBHu9Uly2A2arm4MsISXfHy/z2FSF8CVkbWaqncx0sdW57s9XithxbVOG8fkZ1k0X9mXx2VLD3Qj0ALQoxD9zmvD0qY1l8fo51zSNJWeRJ0svrotz0V3lhys/wLtK4CKk3LhmpZTEUnDxsxetJti1Tia4fNn3ZPUYpelneXZ6+Zr7bLide0njRWSOLmr5DYSMKdrNTT0SmkGDhxd+sGkcrB8JnluoEwSXrnOpmwBoL3Sfu8zzG+H+PRpuyFLd5eR645MQkrJjM2Y/gRu38KLr78d8WUqhKC9BvNB5iF4M0DRNwzx4C8H0NKmtLNhNIp67gNHXh97dA4Bx4CAA0ewFEvfcu5VFU5QbjliviNf86saydtSpkLWDmPGSzc71ypb+AlM7235E/ZkTDKZjMgcu30lMXG1CuoAMArRk8hqFiTFqEwgRU44sdjRtgqxgoWrj9pW4red1V92s4gQ8t9CA3hCTFx4/pV2cIOEq2YSSW+RE9TgD6W1UvDIpI8VQZhi4NAV9KCKSxpV388Ta5op6X2sMp++Ozh9xCEbiim1ezGSONb/KYHMJozFLYGaQucEr3weJJqJOVkdKNE2j6C+gyxgnDsg7LUTbQc/mCJ59Bi2bQ0/q7D15HjkcIW/pNGRdyqBdKtjF/9f8KiWvSE+yF/1iN9HLD2D9vLeDiDlnnJ253fSQ3Xh5lzNPFGUhDrAjHU2DbMLAL50kkslN569iBzTKZdprU+yS5yj7JdaAu6eewZQxRfFmnpp+jL6cyf0j7yBwbfR0GiMIsYIWeauFIQSRiFhuL5E99iBOkGFvkGescoHSTpef2fE2EpcFEu7CIpNHniW9axjbm4G1HHODLfb1dVPxymQznetWWi1W2yuUwmkOaztJV8vrp0LiPfowXfMzBIP9sP/6n6sVdt7nUPfhjWWxkGgaiJmpjbrEtUnsqE41aFKyOud5tekxGdvs688ipOTUcpPthfTGFj9OgBaLCE3TuUovRPQwQrtsQpp4bhaAlmwTTDzDwGIDKSUzZQd/mwsjnfVGVzdnoLUg6MRvUSeANiujLNf6AZMg9lh2lgCIRAhxwPnKc7SWj/CWw7+CzG7b9F6j9bMAPLP2NPdtfweas4ZM9wIwZ8+ysvoI9+/4WU41R2nZE7wjP8Lp5SbLR49xX5dLaj8gIrR2mYpusDr3fWbbt9Pw5ji8q598Kr1pf88u1Kk5F+8lL3w+jxQfpyfZy2p7lWUviRVXSZUL3Df8TpKmzpw9S6RHNMMmfVovElioe0SlUZzyMsnX/0fQTeR6DkqXm+/HVSfgzNocB7Yl2d21d9NrR9eeIp8o8OZtbwE69zkhBduzOzat50ZtAhHQney55nFcvB/YfsCsNUMgElhRp8GjHhaB3dc9DypAU7bM8wM0AGPnLoJHH96qIt1U4vk5kgcu1Q71gW2QTCFWrt0Kpig3K89uIiuLWL4N29+BuXKMbmuaan5gYx0JRLEgVbJxAC2w8EOH4/Y0dzaW6cvuINz1Nk7Nlkm2PAqGRmH9MWyWz6EFl1XKpESrzRG1ArTdB6gUj3I2boKR4HUh7HUqtJtzFMMWwego1p2dWm5jbZxi/37QkwxmhlmzfIbXK57T5U7ruuPFdCc1YmKKLQ9N0xhxJzAaFyju/DlySZOkqW/K+gCcrp6ksd5Vb83rdHG62LK9udVZQ/NbGMtPw677WLJiejIJulLmpvEssZAIKSm0F3B7DmFUJzCr5/H3vxvMS5U8M2qjhzrzNcFwIU3KvLLzTywk/zw2yn/q1ukGNBltqgsKKTrBkpQMtEY7C52fga4hhJDUjRZ13Wfb0jJRfITUO9+FbDZoFCs0do+QAnLlMmM7nmRP47ZOVo1OBa4rcXB9HxI/7HRVM1oOLcOlp28nAMHl2QoRUbJ8Tp2bJEqfxw5H2fWOX750LFrnmqjMnWG85hMl+xkeHqH19IMkKw7ynh2sNn3S61lHc3qeVEHD7/VAADJCk4JYSGbrLsdmDXb1GrzNneLZY98h+qnbeP18ncW1Mbq7DHbP5JipjVMtjbOcG+anxiLE6+5juWUxXbJ4U59H4qnn0AcTLHYv4KxlCSJBullDS2q0fI9TyxV2dec7XwLf4WL1smYvoWd0/NQAaTqfqbQtxORZ0u4yYbdBYvlp6gNvxvajjWsV4EJrhln7UhfIvV37SRqd4O/hiTJJU+d/mZ993nUg8MOYbNK4tFBKlheP0D05z+Rb/hPPi1dw/JiyFVC2LgVSbm2RXiCI4dGZZW71GvSnL1XGhRcgrBZaV56Hn/h7unaNgPamTe+bbNbZfW6STKkO+cui0MDmRPAczPUxZBkMpocAaHkhlh+QT11qmNFkzE97T3K+1duJ8Q0D3Sli1GcYdMrMpW9j0v4ROxIRPYke9Oo4KbtE2epkJnVnjTi7rTO+zF9l8ZH/hrlzH9FAP1EcYlTHMavjiNwQPtCO7E5jQhxS8+sY69+i6bLD0VJMNhS8C9Aij+TSU5zW9iAtn1pUp5VMMlUf5d7hN2w6DxvB2YvkC5+SV0QCdty5v0xXHIRV4Z23bmOm7DDQ3+mG+ujKY4Qi5nDubXS5q4iMhMiHpInUjI1zeLnjCw3G7DOIZGFTgHYxC2yFlzKX5+qdTKGGxnB2O9DJQB5bO0ou0cX9O372msdxcdzguPMUSavA9Hr3aU3G5NrzGO4+oP+a26sATdky8cICJJPoQ8Mby4yduxCtFqLZ2MjsKC+/zvi/WbL/4T9sLNM0DWPHjo1Z4RRFueT0d76MOT+KdXiIsaUZDi4+TCaZhFzfRqvwhZqL26gjezoZoOTcI0w4q4yZ29nWnmBA62STtIlON24RR7inZsnccwt6bQp/dBbR9kC3MWrjMHYMWbOYD9/MUutHmOleot4DrK2MsXvtAnorAHTWbB/XDtCkJOmuMb7wEHHPXux2gZmygxsK9vVnaboR7fhSgDRWP0e4MgTJLnanL9BwQ75ydIHXDXXx3js692UhJcfma/Ruy1EJr/3baWuWT1YL6ckk0DUdszaJlt3PzMQp/r/FBLdv7+Z/u2s/yflLE2BcniWQaBh2596jxT7ysgBtZ+UJUkGS09l3ULJ83rynd+O1ROTjSbD8CExYszy6M3B5V89IRDxe/CH78wfZlbvUap1Yehq/+6eI4oC63uREoswB2bOR7fIin4VGG31HxGR2heE4Bnaw0l4mY3QyMXP2BcIgRSGxjWqtTcny6PZtuk9Pga7BO3bixz7PLv8AqRfwZUSX248ldpGfOIOnL2AmYqzlP2f8Tf8HkZT4RufYw8oYfv083eYgpjNCrt4gJIEmJHroYwcR27TO5acFnWtGjz0iISC3a/28dj7DKIap8Xns6jI9z9QQLYkR1vEjj8TMY9iVCYSQJNwAW/qcXbGQdCZTeeTUHG8LI0ozYzR29dDj97CtcZq2noNB0PyAucYRQrEX3V4BdxWi14Fuotur6DZEg0OQ7CESMe7MOLl2GS2wma80eXOrxFOtzpiswr99G3nH3Uz37GRNzqCvx+K6s0bgt9FSJrrWCUxXmx4TzQjPbnN4KIcXtQiWZ6gYw9w2mMFoLRAP3QNSUih2MhcL9aMc3tYJiNpxi3Lb4GjpGIjbSOmXspir0yfZMWRwpKjz7dUJbi/X+b/2FFhtr7AX8E5PUV0wqb3xLtoTS2hLZTI//cbO51a9QKsWkjp/jJDnZX/9FmZtEj3ZIEISyz5W3WW09er4oys/5Bf2vXtjdU3G1KVNzqki5fpnKgRSSEwZE0oPGQuc1QX6+tpo9hJBPYS+zd/P4OknaTfHqFaXyFdcrLfei9mYQk+0EEKgmZd1p4wjUtP/A92Z21jmeT7ImHI7QkoDTdOQUYzn1EnRSQprkU91/geEyS4SfbfyYgkpqPpVtqW3XfFaGAuE1ICYttnkr0/8iEC4BGae23IwsbBA3l1kaP89JDSDiu0ysN44IzSdemDgrpwlMdgi3PEWgjggEsH6fjfvS6tPsXP5OO1sP9XgIb6/9jipwXvoTvYw2jhLX6oPgeRM9SQXWjPc2X/3dY9rvHmOkh8z1F4hbsZ4gUk6Kcm7i3SFguzqUTh8+JrbqwBN2TLx0gLGjhE041JLl75r9/priypAewV1xv/ZJPfu3bRc3zGiAjRFuQpNRmSky+2zE8ip32HpYJau9DZM4ywHzxQp5DNYXTEN2SIT9WI0HUbn6nzHc/GGi5SiNnfQaRwx2jZaENB2PQa8CWYavSxHTd5gu7irNZLDMUYJ/DCgbntULzwNvWDMF4nyu6hONnjWqbMnldson9z0v85fTc9izHqSanCQdHI/Sb9KU1QwYx83MMnJNuW1GgnN5Fx2hb50AYClZmcSi1DGnGoUaRgHWFlt0XUpWUgQSTS902WwbAVUfJtSrc67bhvcmILeDkLKQcxacY1tcQnu3HdZKSWtUOecleHugkskBEEkEGHMasNlZKi7c94v+wz8SHBiqcldOwqkE53nhiydpeIEnF4boHs72GnJbKSzb+UZVobeQSGXxYs7XVFLbnFTgFaslcgvnSXVmgQTygKOexVev97iPm1NsOJ5DJxtM2tA0SiRi/djli7Q7dho2f0kZyrMpF3Mgz9Nt98ZG2ZURtGdEjI71Jk1UgSYXoO1KKAdtwg0wcjwvYDEC5o4toWdg0ppEfzz6H6IyGicSt7BKU3ndUkHw1slKwNCEqTCNvudRaL1s9OWPo4bIWkTxpJ2EOMmI/xYEmkW0DmXsVMmEbfpPldCJPLQryGrVSLhYoYxoDEwU0VqXQDU9DpWFHKmNU+rpfPGROfSyqz/yLkW2ww0WnhWSGZpCe8NMbpTYry9yj6nlz79UpBddEv05nYy3hwl662RkZJ6lGQm6OO7sw2MvSHppoVYWaayVqf4zvexGgeM9CbRRYjWXODR2cexs9vZPrhCYO1nqZHCa8EdOiw1l2HmDE7cpq8nJKolMQ0JMqZq+wSxIAVol0VLTlznR8s14tAlVTwKg28GM0/OXSYROYRNnWpV0PJy1DzJhcYSpdWAXGSREZLnLjzOfH+bISAOOkFB19Q51laPcGRaw48lSEmluUzSaXKwCwJ5WRbust8h1CPBttkljK69FFuXsq2x8Bn1l5FxxFCQI7E8ib82R9xeRB68m1hGmJU1GpUiWjXm7oZLKwatYCJNY9MYt+p6l+zUao3+f/seZr6Op3WyW+k7DwCdho/di8fQk31ILWLBsXj27AI7zz7KtBgkicP/u1rm3u4R9p6r0B90URn2kQj0OESiEdmrRIVdCCnJJS7do5y4wbPVZ7H0YV7ffynLNtOaYsGZ597+N9KbuhRZSgmlRpIw1tizzedC+yS6phNHdUy9c68yvAX82KXVatCrm4Sycw3GqW4kGuftNGbsoNtFAJ668E9csGIwLgXjF5mVUTwvIBOVqNtlhp0yKfcJcoVbEEJwurWMFzqca46z2q5yV+Egy9Y8YTtHzltlqKeA6NpOonSSWuwR1KaRls92Z4lgzqIo7mJnv48uIkBj0i+y44pSXFae67ymKK+ouFREH958eRo7Oy1E8eIiidvv3Ipi3RQuBmGJXbu4vPOBsWOE6OSJjbEZiqJ09PjLpLQ6mhfjmeuVLBlTsQySLZe8sYCf6bQAN92IwdOTzDV8uoMGrUhjvNfmHUjsR79PdnYMwwvwd4IpFnh6ephJuQ3dqjGWybPDCRmZfZQFt5dbvW6CiQpmr4FbcRBTKzS79lNNxAxq8fo4iysHdnih4Jx1nGV/gpiYo2srdFXHGcJk1apTo0CuP8VZfw3hb6O/NUV/AWrsQcpOV54Jr8hcWOXZ6hSZpMYbeiVRLKm7IXXHIyakK5XA8gJ2rA81++FUhe5enXYYM9tsI5mRp5kAACAASURBVAudQGrZge9879u876COoWksN31KgcCRLqebaUa2x5xbtUiEDqx9n1b3ByikExu/xQYaVSfAiwQTM1Pcs2cbMtOPROIFMUiNdrPN6uoKzXZA1mxSd0fR0h5GZphs4zlmUgPsyJ+kf7VCY2cPRb1Gnn0k/ICcZVEU3ZyNtpNtTnCL/07CSHayH06VLq/GzA6Nn6o9x77mKt2NGk7XClMcJGuVCA52xilqCCqOTz4KaBRnWFs9TE167JGS5lyFHfUJONgkUT9LU7OZZoZdcZZFt0m9+gjb/RIDz0wgekOKd91GuZ1jtX+A/tLD9AmHSJrk7CJOHKEDrtQZFzm6TQcZQnp9zNujiRUcGZOyExhdh0lEPkEQMip3MSDGaUZtHD1F9/Q0zbZDn18m2WdSvbyCrHWuKyEF7bYP5QqpPWfQxEE8AlLNM9zu+TxrbKMYZTk5t4IhYkIRseKu0Je7fHCZZKxx9rK/JF4sQdOYDCtk3dO80THQ/BaansaPYmbWTBAa8eI8A9USK9m9sHCCQ6sWulVDN7ZR1SxCNIylRRKLZQLdRUv3U5KCke5OV8FTS51ucsnQItuuEcWdDFpCS7HUWoGJ73GwnmBZu0Bh8H3sbZ7FXFjFin2aVjdDFJAI3NgjtTSJ098LRCRjh3zzPKyPmpdSYtTW8LWQSaPMNrPA64IGadfH0xNoud2YUY2o7VEKq2jZLoaNztc3bXeCp8y5C4w5Syzo8wTC4V1r46Rmj3E+sQczmUXLBUjNRQQBemmNeGQnxBFZv0nWheWGQS2uM/BoiHXHEGe6TlJZO8mu8gKz8RLFtMUbGxEpuwlGEtbjJ/v0JEFhZ6drbCzwrConwwYtXG6trHTK6LeJEz6ZCzUm02320ksSh1lZYylYYJi9jEW9HO7RmVo7ghcIbsu/DYBIBFxon4BEhUE/wZKziIbGSG4nTuRQ9aq4sUvgFjfdx8K4Uw+JBbREkXwckXdXSAbdrNoNSmGnLnNQCiZllVibY3tjhEzXASzhdSYyEgIhOz95YbTm6bVcyj13M1N1eFNfyPiaxT0j3XT5FnXLYbHnFmSuTeil2BcK3FKnTLsji6pXJbJWyMcOg0snaRfP0rBy+MY20r06czWHu7dvo9g6x6AbkW277GgvM2emIAFBpFNrGZiZFmZ0/a6fKkBTtoxYK5F43e2blhnbd4CuEy8tblGpbg4XpyJO7LwyQJNuG9looPX2Xn1jRbkJpaIGroypx1l6RRNdJkFELLa7gCFeHy8QOg0agDB0tPVJRQwtpmWnsLSA0cQJWtUCvj1Ht7kDKTWEBLPlkmlbnO22qEWC/UGdXnuJibbBBbEeoKxPppcRHk64ymrK44whSDS7KDgB2rETGLcP4QqTSMDkmk134zkyehuZ3I/lRcTSYVDrXj+eJovNXtwwjeVmsUOP83qFIFUhKwPgVgIZE8uYirhATsRI2c3k+ji2hJZCSonldboLrfiTxDKm6ixyWzaF7cectxtEcgYLg0Yzy4qd4PahVaJwkJrTYEo0qYkuuvSAhL+EFldJCBsJWI0ZerMmy26JfulC7GPFa9RdwdLEOQ62u0jveCv50Qu8bm2NoXgJaV5gX9RiNT7AhVyTHrFKK38ImVphojvEC1c4HnuIyGHkpI22cwB3u4vph0hN25iCPRYRX3nqa5j+Cn16F1FzCqFX2b4myPttlqwsJVPSVavTMJskslmWnFOM2CfQ9TR2oBNEMVKCO79IayCPLDdYC7sZiiVyeZVEXwlX85ASinqK/qgFrk/f4jxmECKqJfSlObZZK+gjexhqLzMSL7Aod5JuCYQbcVLupyqyTDBCd8pmJFHhDrebeiLgXMJmJCwwEfbQWAzo7V1i0skTAE2ZwdUbzJohh6IEVadO1myjxQZV+pBIXFkhHdQxgiSZyjKNxAIr0iU5XmZ1KOR1skS/3sCi0z01GTVonnqMwr4IEQvM0OH4yiSmLvCFR2JihrXB3Qz3d7JzsZRoUhIR4oQ2+08dZZst0d0qTa23M0mH4+KiMTK7AqLJUvAs/VqnEbeoW5xPTEDYRTLlcV/ThliQcnyCxXmSB29lpeGRL7hEXQEp4ZEO6+yarFOSBnr/IHrCw4ka5EOLlkyz6/Qs5+85SrbpcrDewkmbiHaDwcAnLzxEX5L0Sp2nKJExLHqabmesqIzRRYyMI/TIIdQ7GdgUNWpxmkjLkdD6uSu0QBZYWJ6lPFBDZmLeGC5hGSNkhEOoJQlnVtgx8W1ayUWah3vpn5vENiDjuKTMMl5jmWeiGjttg8xMkaHdVdqmxfBsBWMAMHoxWy5mO6DnR/O0QsGtpQlsrcBSoTMroy4FkRchYnOjMXbcLxJbPloqR7keYftpou7O92FazKNFSdLSJkmSptegt5VgLNMiJ1pAmiBs0Ww7iFyKxxYqjNzexVTFwXQ7gecp6yHq4SoFrRM0//PctxjMDPEz2+9nyVnkaLEz6+tAepCx+hh78rtIUNi4/y6WU4SJFCQXqcdl+jybR+YuzSRpuaPYUZVEJPj63BGyDQOzOcGcyGM5GZ6tSqr5x0gAgYywozrQy4/mamiaxkKzysDKU3SFGoXKMu1qg9GkRYnd3K7pFMI6TTLMJUzmDR3XzNPIbyeLoOKnyckEj1XO4up9mMY+TuXvoqZ59GklRpxFeqI6JKDUNCj4GQrJ6//UBqgATdki0vOQzSb64NCm5Voyibl9+8seoEkpCZ4+gjGyE3Pvvhfe4AYhmg2CYz8i9bafQUunX3iDF+liBs3csQP8S63v+o6R9deX0FWAptygVldX+cxnPsPJkydJp9Pcf//9fPKTnySR2Dz736c+9Sm++93vblomhODee+/lH/7hH/jGN77BH/3RH2Gamx+FDz/8MENDm+9N+bBMXZMkGwHbqNCqRJRySVgfz6/HDkFpnCR52qaGROCFMbEUFEQNzSrRLnswcC+GDGlLCUInEhIRRQgEK2ZIXfdItR2kbTOe0blflNFkmguJJMN+zI5WhRI5EkaEoxsYRsiOiSKF9Qk3nP4cF9L9xJlufBlhhG0sV2fVP8MuUWXQ6F4/EZJWRVL0UhyKyiQim1RQJSeK6AmPp0fPkCkt0NSSeNIlKV1iWUBKiUSj6YdkL5ugUUiYc0+R1DPE0sQLYmpeF67UaYuAtSBFQo95st5grh6RMQOyifVZzkSbsneBTHuaXc4iK6ltiONfpbn/TVgrFbzlMYqxQBcupp+k4U/TWMqg7YBMeZG0FlA2C+hGTD1RYKp7H/n8sww1JUOtk6Q8Sbs7gyY9HKFhiJCEJ3F9jwvVMaYdHT2ICBJp/FgQC41w+QyuEaJL2BG0SePTF0Wkqmk0HGa7IGM3SWTnWUk0MR5/li4Xkm5EzsuSL1o42wvsnjpDbrWbaspmRxTjAudNl9gaQ4okNinqcpB8FNAjXbT1yUSa/hrVxgRJKRlaOUVN1EhJwXGxlzdVxrFTBsWkT8MHJKxFIxSMFifivXQlzlOK+lg2DFrxMEKTzMYNltMVDiRn6CsGNIgoLINebBKTxDBctFyn29f5bB3bf5Rk0yFdsgnbLugBri4oWl3keiVZrYFvumgXs0dI2qUabW2NZj6gENbRY0Ep7GbNqZIQSTJewGQtYr8Pw+EyKbK0jDLJuk2yLYARKnaAGTUwm1XyK2UyaUlmZYFSoQGZHjyjDaSYMJbRZcyaXmSWEkNyJ8NtwW7XJ9SsjZkyE2vPcIs4TStYIcahRRf5+WVMy2L7QJHpMOKs2Mt9svPTB3ede4IgjphlPwf9EEt4ZKVGLm6RsDw0U9BaqJNZsehq6bzx7GnqiW58I8e2J7+EcGyMVISfNKnGCXqRnJW3cDdNNKeIq7nUwjZaJGgZNWqhoOAbHAjGifQ0shGStxfZ023BtMQ2Up2xpY4PeQ9H+AxWJsnWJaahs226RH+2STlKEq3/6EOgxSRcDyl0cpNl6IYu2QLZRUt3KSYa7AoNwkjQFC49RpYYsBprbM+bmH6FNWOkM2mGBroM8EODNAJdd6gmfSwz5O6oTSxj0lFMGHVhhynSsWTRL9NY7fwcg5SChhtRDVbRNWitN+gIBEV3lRPlUzxbOk3TiyjbPk2nxorlEYZrJIVB28ugaZBKCKJYoxJY2GFAX/UE+aiLiyPnuqqPk4sd5lJ7WInrZJ0Shz2b7hgsmWbeijGDmErT57SVgESVXK6HRlTE1JJ87fz3eGdrkZwxwJSbQiPJYbNE2RsiSNpkknW62hIvKJIOq+iaQWQtYqe70EOXQJM0pUEsXU5Kn5ITgWZiJ3sQSMIYvEDDS55H1zvnoOGqDJpyAxJrnR9i1QeHr3gtsXMX4cUfm3yZuP/9G7S/+Hm0ri56v/5N9P6BF95oi0kpaf2X/4doYpzgvrdTeOBPX7b3jleW0fr60TMZ8C/9Fowx3OnaJIpFUF1MlRvUhz/8YW655RZ+8IMfYFkWH/7wh/n85z/Pxz/+8U3rPfDAAzzwwAMbf0sp+cAHPsB73/teAJrNJvfddx9f+tKXXnCfibABMou+XmlJiJBQahQuLDApB1h0p9lOi7vkKlNuTD2ZpRL71BOCHr1GXnOomjrVQOOA3mbMNEnEKfaJiJJhUUlJ3NiiYUgMLyRIRLTMLGdlnp+qj2LnujmX6WWXFbOtvEY618beL1nMaNziQjrwkbGg2syy4DZpUmWXdCm6Wcx2TINJ0sKjLfNkDJ/h1QrTWkhGy5NxAwq6T0/NZ0CsEeglvMUnMOM6A+lusvk+Im0GP1rBcUr0tXYhAo1G/wI7RD9JCpzXhzG7HWRikdJchsHlMj2Wz4zQMLQ8kevRKyz6ZtqEURothkNamxwLzMQH2GMJbnFKJBEcpIqbHmRg5SlOiB4m2ml8fZj9PXmm4xZONsuYXqcezXDLcIFE5OL5Kbq8ACdMM7h6iluKYxgIYnQSkUGWECKfkqiwv9QmX4ood2fIry4T5RsUaib7aNHqH2Gl6UIOGmYbVw+4tVJH03VqgwbS09A1QZzTaUY5duHQs+SioVOwQoSWILXkIxMR5WSSQT/B7mCWY0i2ey7zWh/F0GYxMceuII+phdTJsSaTZFtzLKQ9bkUnh4A4xiNFYXYBe8gm0gP2hvO4mk7seuxdrHG+ZxhSvUTSpBYPMOQGOGaKQIKre2gyAN0klhqe1sRA4EmBjHykMDG9GLQQMp1xUNITtIMyWhziRzGOm0KXCUwp8DBpyzJLmkkya/H6WFJMCkLR+U5IKdHiCNnujINLEIKEVthLVgjSusZ8UKCrvcyAodOlt7n40+FSsp5zlgzbz5I9W+Ysd1NzQrp0By/wMe0qINGNDIZXJ6dJzLRJPmhypr+XoOVRWMl1zp2UJOrLJPs98ksNfKOA6TnYRoYBc5RCOcJtv4Gal6CVTlCXWfqI0PQmsUixHLkcrDcwdZO94SLdekQt6MFISoQU9EmLbs3A93VS6SZOnGWxtUK/liMdVmnJAbp0i4guJDoRMedlleeMKnu8GD2MCaSkFbTIWsskAVN41NtpdDugnXfRhMTToXvWpSvSaXWlaadT5GcqJCwP74BGDg2fFCOahx9oLOsxxb4qeSegr1kgO1WBW2PIJ8hIm4pRRUgTTyQI44DReI5ePwtRQBQnoLmA0xNimzmEyJH0AnZaSxSDDBi7QFQZmXdo9aVo6zEy2SLZ9oEhpAwBA42YeH0GjiNLpwnDXizToDvbySwGEcxXNIZ7JJMVm3q787txfhTjxJ36SNvXsNoGS+4MmuyiP2+T1tM0vCSRyLAQVynEHkkMhv0KDS2DLkLGrTQtzSZ0x0i3W6T1eVzzDk5ZLdZmiww1BvCigNhKYaR9otK3aGS2IwnRpKBNTCXZg20IAtEFusmSSJAwdUjuoB22ibUWSREy1FzEF4PMZO5kWpMcqtbJB03KmTRWlCYhQwbsGZ4wGiTtXiK3gd4f4ukWS/ZuItHkelSApmyJ+GKA9rxWaoDEzp14jzzysu1LRhHu17+KPrANUSnj/eu/kP0///PL9v6vlPDkc0QT42h9/QSPP0o0O4O578ALb/giiNUVjB1XDk+9mNGMy2svy34U5eV29uxZxsbG+MpXvkKhUKBQKPDrv/7r/N7v/R4f+9jH0PUrp2C/6Fvf+hZhGPK+970PgFarRaFQuOb6lwuCEIcUNml2A9VWloea+7ADnZqWYSbKMxJaEAr8VJUTPRmsVA4nEbJDSBJhhB81eEr3qad2k409VuUyi8s2vVqFmW0mrozoMVtIKflBv06KWbzKfuJlj2Suj+UDvRTNKq4edCrDXoid6yErPJIypGelSVNPkXM92rdb0LQJ/H7MeJ7+rEs2dknZi2wzQ0oiIqO3eJ1uEegDxJqGbSRJZadomxFee5hklKRudLqkeaJNKfRptg2ycUSsS2xs5n2DwXKafKbOqj9BnF5iMcywrx4xJoeJcUgkejF1jaRIEje7yOVSyKROT7JKECXJaYLzGmTyO9hrVHFFAjNsMNfWKMpuWvotDMo6fd4C3V4/etthV3KWA+EiXipJsu1S8GwqWprRXIV9muBgAFpC0sp30dY03IykHnYxp28np13gkAzR1wJGEznmEt3choeBoJ20cDQXO0wSIUjpEAuDZiJFJaFzt21RzaUJ0ejTLUyRYtXfzt70HGFCYET9FDSbFc2ngc52I01KtBleNMg5LtGOPmRWUjUqCB1SModDksF4hb3lJWp5k5R0iUghgwgv3eLYwCI/HTlILcJIlCFMY7YFAsnO8ipGJsmFbRBGGbADQl0j7PXIOTZR2CAOkhhZD2l2Ks3RxZ928CJELHETSbJJk0AzKFclea1NnpBSPoElCuiayYgIidHY2W7gRg6VhETzQDclVSMm61fIhC69dolnk3eyKufoNSpYmqClSWTcRY+u02SMLu0CtkiBkPiawETjeLyPyVaWX4jGGIhXSLkNhsMUbWlTqFpUenVIS/a7S3TJNvkww0R/Fl3kSLYjtNDDJEJqJqbt8aN4kntsh4KsQX+SZKyTaHkU3Cbjd7okpUZPCzRd0uc2KbQcVvsEA2YV2+8jLAqmjFXaWkDVhC6ZYyLXJEJA0Bn1mdNcpjOSogm7nJAfdb2RvfESdrZMkRz72jGu4SKlpJSoY5hNJlMp3IGYpOYBBjMiZrsXMJCusxQMYTQlQWiyKneS0luMhDa+B7rwmRYmfUGLhCaJdFhOSPKaAAT/Y+AQb5qtscMpUnlTiHADwjigkRbsWw4QhxOYMiAlYxzRw3JQIHZs0l01DoYzrMZ5kuu/xSelQHdDuj2bULSRlk1fKMlUqhhBTNbxyVddwpEMR3fHtGUnE6SbqxzyYnRhsDbU+Q3CJX8SN9DIrs/JEQtYqkLNSpBItPCDcapWFjPdxI0CAuEQCh+bOpaXAS3C12Zp+d14QRexbrBdtNnmWEyQoT/Ks90UiLaDJ8BKVolp8f+z9yYxtmXXmd63m9PeLuJG8yJe32RDJpONTRWLEi0LAmRItoESUBIKBggQBuwBhwI00YQDaeCJJQjUQJoIEAQDVgEeGILggaqkgi0VVabEpNhlx9e/F33E7U+/Ow/uy6SoTFICkl3B75vds89ZJ+IG4p679lrr/00bwCWUytBEc04RFLYgd2MCkHRTtuaHXKsm3Hcaegna1RgNVbTBo3bBw3SD3H4EQsvB+IgttcdDMaWOVjgpeWJ3iFeS6/LbQCBCctE6RodfYe+ZSfaJ6JC2wLoZPT/HdDOqYLABpu13BFTej+cJ2nN+LPjTdYKmdt8/QQvz2btmoR8U8/evERYL+v/L/0r9v/9vdP/xr/6zSNC6//hXkCRs/MEfMvsf/jXd//0ffmAJmjs6IvroeyViRb+PyPJ3K5zPec5PGq+//jr7+/uMx98RM/jIRz7CYrHgyZMn3PxHyqTvUNc1v/u7v8vv/d7vvZvEzedzHjx4wK/+6q/y6NEjbty4wa/92q/xsz/7s++5Pkw6ggGD5mvxTZYu5Y59xN9yh1Z6jlYRf8s+/2V7ykW2QjwT7jCrjNsLuJwEekXD7OYhX9oa8NHzmGoxoqkiXBYwXrGzbBnlnoOeptCeYOEkm9MYw6gpQRi+tdUxMJYN78GtW2Ws8CipuChT6mGJtEua0x3SxZRtYWjiOVnUMTQlmVRExDweSnrREVGzwVv+DudscqQVdyPFQHV8bZCQ2R3kxoinrWBlPKeuQfe2OY2vEgJEgwdMw5Anux+mlz9lHht8FKhxJAPF4CgGYj4q3+QWlr+Nf5qH/T6X4pbL7UOSPKKtcqzq4ZzlqBV8NHE8moMzmlM3YqkcuZrSOk/enSLDFreimL6P2KseM2luYmxNRsPTXPKEWzyOYvY2v8YdbzlxG8zcgNofYYRm4XvsTUqSwrEcp3R1QSsTDIoUQ6pPOJUr3PFt+m6bi1uGWsSAx6KZqCHatHQEMIF4BTJR3OsbfJ3wQrmCQYeedvx8c8Ty9h4HjFm2EZf8KZFp6VDs+RWXfMLX9AYvyEM+3DzGnXse3hFsKY0KEUpWzHszUhwTm/F6npNZSZ+cO/WSlarYtksGJ55X1SP+Xfxf8+1kgBYSFb7NoDLcfHqXi3yDRz1BknqCkrQoOiJWUmOSPjar6GuL0p4NcQ/TdCQpjG1g5AzIJdfNioyWcVuxuYopsoyimCK84TxP+JnzGZkreG3T8hH7OhcixauWLyeKNJkzbHrUsqNUhlpaQqsRZQ2uxGhFu0rYW57DYgl98KZDZa+z88SxXdQ83BgQFfCoL/jpxw3xhiIZpKQruH4Og9kZHoO2YJTDmoaGjlxUSOFYhj5ybpFtQWZrVirlXO5z5/CbxPqc2DV0uma6bdictTzw8Hf9BKdX3KpjQoAD1i2+VUjY9Yrr4ZBSBFRhWR7ENJcKHm2VkJbYRR9VtGy4C4reKR86f0o+bjHbIJEIEYgbR/50RFMC1yApBNrMOUmG7HaGjcmcbqn5hnqZa9tn9NwZjVD0NXRCAY5WBLw0RMGy8Al7ouBAxLygF5Q9KMhwzz6LNu+16OH63DJ2nMjLvDI/Zfm0o7w8Z5w7mpDwhqzZeHjC9S7m8UsOqzxOerajC+x5xiTXaNuiaosVAuEDCsctf8gN6zlIrr37uWl8ResErhJ4r+mc5+nxMSbEZOmc6fxlGiZEUjPpTvHB0vqKlD5n1QTQID2OhoDBeM0tu8JIS05NIx3LULNlwDZb7LaBo6HAYnmju8ZxdoRzDhscwnsW6gz8mIqOt+ctp81tui7h2BhaG9GmOaWPaDtNmsGyjHHRGaNmiQDOuwmBhEg43tx4hV1TIQg8PYtwwXCo4ZqoGA93kWKTE7tAz1fsB4tzFb86/zqvJwPOxZiE7Ps+6773VuNznvND5N0Wx53d96zpq2tjT3/0g2lzNF/5W9Ca+FP/kuiT/wL79lv4sviBxP5hYv7+NaJXP4a6fAX9oVfo/u5vfyBxg7X4s9N3583+IUII5O6l5wnac35imc/n76l6jUbruarZbPY9r/uTP/kT7ty5w0/91E+9e2x7e5vLly/zO7/zO/z1X/81v/zLv8znP/957t27957rOxchqpbzeMSxyjmXCZ2EXTkHvaQjMJF9jtsNdg49w2pK0sClY8+T9hZvdy+xGXWkLDFpxUE0JLGWUiRY7Wiilr2p4MqJYRIHUgIxMJEJw7zjqi7J1JK7mx1FagnKMpiXPNUxrw/2uJ+N6dJzLvotG2LOlbMF0TJl2DRcncy5clGyt+go2wUXE09+2BAvC46jgrZ3lzPlEDaA9zgjuV9FfNMqLh/fI29qRGioS0Hw38bwJbx5i2jVEDcdzcwx6QpqaTDaYyNFXBlU1yGD55p9zDVOEcJx2MUUhycMp4cMjx+j50uWZxWnFyvmK8fm/DWuubsICYf5FnvZnEFasZOdYrb6XNk548rwlM1r+6h8gMtgtrVJ1U9JVInzCkRgUo24YAluBbQc1dc56XbwRrLUA0qd8qI85GJngZMW7wRb4px/3b5JbmESrSi9ovOBNl5XjyLnyIWhjDxRF1AOLIq9bEYaBUIQHAxa5smSInKM65bhwRzvLcNQ05M1Lm1RqmbsPcLDSKww0Zz0tGFJyo2nHYXLeCpHXDs65daDigf1ZQo/pPY9pgx4XV6CGsa25nJb8GHxhJFr6WuDRRPT0YYEFQKJrdgvjuhQmGJI5QLnoU8pNC4EpHecjCvezuGpHyNsQMiAFIGsCXx8cg6iopQtRdyx0h3d6U2OT1/k8ULzQCh+9vGETNRoa2h9RSPmbLPgjXCHByrl7nCTu/2IE3nGxnIGBJba4ICdWUNvWbK3uCAEWMgeCHDLgPSBiHVbXN54XilOuFHPSI5aKt8nrz3Bak79FUoREwiMZEmPhv3zOcms4O9iyVJBLB2T2HGadbBsKLoIEcUo4dE4eqEGF8hLC0Fwg2NmW1NkrJCAdx1TYTnQMYXy2FnKsexTEvhWPObNZMjr/R6LKmBXBmkdMoD3go1VA1Kgq5R+4fCNpRWBjcKSLAYc1mMKkfOYhG8Oe9yPt7jf7vJVXuJUjolcRycVSEdWt/z74Sf5v3Y+TS0UQQgcig+3F+yqgixpSOMZCy0Y+YbIdXjr+Ho+ZylrsmfWg0aCms+wraNqM7ITz7acM5QLpAg4YSnSJXdWF9AYtGtoyJnKIQ96tzgY7NMaSecUT9xVdvwpna/XLZ+hY2cyJT5eYWcN3VwyW3YsZjVVZ0E6rJ/TngT8VCJKT2gXlO6Coo0oGs3RNME4tfZdx1HVKSszA+ExQaGcQ0iBEBaEIA4OBOSiQwiwIWIpFLXv0ckGGVq0CGz6BR8tz8gKSdzEPDY7LPSUpT3htN3kreI6k0LjfYzzAhs/xMuKZSvQWuJpaeot6ibnbvuU2cZ13uI23/Iv8GVZ8jBZ8lre47V0yYM+nOox3mnAcNmvOOuu8LFmxkfNQ66W6i5PiAAAIABJREFUr3/fZ93zCtpzfiy4s1PEeIyI4/esRVffEao4RL/w4ge+l3njdfSLLyOSlOjjn6D+Y4998w3in/rUB479wyI0De7+PeL/8X8CQL/6UZo//T8J1iL0B/u39acn4P1aMfN9kLu7zxO05/xnRXjmbfS9rCG89/zRH/0Rv/Vbv/Vdx3/913/9u15/7nOf48/+7M/40z/90/esBWHR7RJUxVyPaa1glh/TWqjTmmWv5GMPy7VBqpbcvltSjByNW7+eqG3SheOFJyv+7voG+7O3GQRPKyKEBZTFC0kkPJX0eCGIbaBAcW8QA5YX7AWLxmEk2Njg2xRTO6ZRn042jOQUJSyx9Fw1S94a7XI0ikHGbGmNIxBEYN4M0Oczdk4tkS7Ziw1dpFBUJNEIIQIuWPDHnExqbk0m7CqPUB2xnuPEBgebKctOslW09CYPaIoTymFgmFf0vSXUOZP8IVN6vM2CTscMm9eJyjEXIWISBC/G51x1LRMFx+YaQQa+GfZIlCHkEXvlE0ZuSqEyArAsCsZqRmovmFZ9Wh8zCscs25wz5dm0CTfEihPRRzpL6Rts0zIQB3zEpRwvttgXc97cHrDIerzYP6CNAdExdIZdsWDuxszLAV4XLAaaHbOijluMV+wVFaBAGWIkDoERksh6fNCkskF7Tyk9e2lH1hikMyTzlr2qRUYOayweRW4iEu8QCDyWlXYsI0EqY6QL1EFx6DZow5zrhy32GnRINJ6s7jgpdqiNJTWHaAzXZiVR6tmMKrbUnJVraJ1CyJLYSoal4tq8Ji9aVtpiFESxYyACmbbIUpBOHY/1HmP1GOECTsUMF47L3SmZKNB4Um+hidloAyuVkp/G7LmGPLRIY9mWDZcfaWTkON7ZYBECG75hFXIuffMhjDrmMSycwGRXuHaxJCgPqxltqljpwCQWzJ0kPw5sLgPBB4QXhMgjXAAf2J+XpJVgJhOwGZXoUKJBOsPhQNJ18I3hDlH0FBO3fLp5yipK6Sy0EqSDPJwT+RqrQBBoHWw9VlgMR+mKV+ctotWMrGDZOoKoUAKiix3O4xUpFekkxowijrYn5M0WTbKJcXt0KKrEMpdLzvQct7yGSgyiucB7Q4InF5aP+VOmTeCuyHkiOkzmmCcLem2OYURtHLqbkK6APixWCS0RNoEDNviQn8AyxWWCIqu5T4fw0CkotEfaljmwceo5AxoRQAYWSrNSgaNccgWJCpacjkeJgTBAW6iUwy0k3jv2pi1LZfFSMFy1BJGwrDp6hcH3IARL5GOEtZTzAx7Nx5TdZZabC9q0AjugDVPiRiHrTbRsmYmM2loy6ZCdQZ9XBHqIqME3kqZOCThCusKLGG81Vrbga7ytUcHQ8wEpCoSL0N7TdxOCXyJ9j0pO8d7hvcN5KIqYF8yUG23LoYyQVpL6FQduSa0WmBAorcXIDicWWApCdAAhoVztcpTexQVPIGBMyqSZcDZzvP40QxBokgXGepQPOAun7QRpxyx8zDgIRm5FTc7U7HDLP+Ub9vubeT9P0J7zY8GfnrxveyOsRULgO1LwH4RgLfatN0j/+38FgH7hJQDsvbs/0Qmae/IYQni3pTF65VWa/+Pf4u7fQ7/8vZ3n/1mxnyk4qvepoME6Qevuv7eC8Jzn/CQwHo/fUylbLBbvrr0fX/nKVyiKgs985jP/ZPwrV65wdvbeGczQdaz0gFJlyOBJWkGsHCG6YLMds1QxtethhOU80+yeNnxz5yZRv+NlNwUk/jRmd9Ai9iU9d0qlUw7YQrkF3oxpVYf2KzoV2LeWqTPE0lDqiF4b2FituFE6glw7blk0faOotaRVfWw8pOsHYhdYjBve2rjFli3pqwkHg03GYkbRalxYovcMJ0VC2jiGhcGLjtwbPjafYlGk4RyvG3LfkaYtC5khhEW5TVy7w8uLJSiLNAZpS1JvGBpDv5bkUrNZNyydoIslujKkjeEOX0O1Ef1VSqIr3th2ZCJh7iS668iHFV56Tn2Pxbxl6GuQNRvdMadRx9Jb8IGZ8LxVbvHz/ojUa+4mOUd03DSC272CT3FIaxOi3BPTMQkDtPQ8HUmatOVTb63omcDfvOiJZnBLTNmPGhZK0MYxttHkbUMRa4aHHZZAo2Ax0GwZj3QB7QLLOPB43HHnacR2ITGqRWqDCJK+6ohUIG8NyngiHK3M6Z8F9MDSRJpWB/qhxRBxmjnwgVoDTtI2HryEIAhBcBY7RFDsnjeMZ6doOyDpoJIpPSxeSprYE/kVdBYjAjfmHW1aERuIXY4XngpL4gV7vkYFSyNG2CimkWI9WOUDSAje00SBgCfGkvgKS0raeHbEEbdDYNaPCAIMMRGWLK5JRERHBJVAhJYXJg0naY+01mwsOqrEwMhyzhCRel4OBQsRU8eWh5d63DousRaMitguY6yJaYNmGW8y4Jy09JxEGwjp8URsVoZGJzgpwAd85CgihTUJke3wQhAR8BcBgaDnLXMBLoC9KPCdxKmI4CAyjsb2kEg29YzSQSc9ISScRDETexvpDOOVoqRPbCyt0kSdZadYstnN2L4xQ1kwRUXfNWRFyer2I/rNBhO3ZNh5ZGKQzqPtulLZ6cC3KahlitYCQ8oyiogpuTcuGU8lVxvLWRRRVCkm0ZTKEhtFTcz4wlCMFBepJ7ca6TqED0wTWKhAr/XszxrKOEKEwLE05PExe23CgU5pRcyO94hgeS1LmCnYbT1VHJii6VXb9FQHrK0RUtvggTwsSZVEeYtWhiQknEeBC5Xyn5KAzjNqqQhBEpRASYg8lCECqShDn4oNuviCPgkTO2RIRVMPWXT7iPgC4VIEAREsiA7T9rnja0aypGVCRmDDehLjSJ1lEB8j3AAoOMoXJBjGXcTQ5RyKATWCUlYcSssvijNUmHC/zbB+QBc6ZmJBywlBeKy3+ADBppTNDvHGVwk8a7d0EWU54OvFXcruBgljSDwBR+lmzOohiV1BaWhDzlYQXMiEl33DsdLUcYdwq+/7LHqeoD3nx4I/O0PduPG+a3I0QvR67yYSHwT36AE0Dfojr65jb24it7Zx9779gWP/MLGPHgKgnlkC6Gd+ceaNb33gBO2dxFe+j0gIrIVCwmxKMAbxj2TLn/OcHzevvvoqp6ennJ2dsbu7bpH+xje+wdbWFteuXXvfa/7iL/6CT3/608T/qGL/xS9+kc985jPf1fZ4//59fvEXf/E9MTrv+dLODpFMUTKlig+pdYNymkv6jFlziaydc75V423gtfEVTgcd/6I55ePxEUfFNstmxEB5hF9PhXRKU6QVIUhikdBE23hzTNc5NmVg7AtO1BQBRNKyWXVkPqISEqs8QcCleYMUOdejc+J0SdOPubelCShuruZc9UucqCiNIxGKFZJp0pJEmjJXqADBKWyI6HeOzBYIl3LieiwTwWG2ZKX7PJZDpK6g2yGrMlIRoWRDySWqsI3ML3Byiyw39Bnz33ztgKtnBqRlxwpiUVFHilVqWWQNvinJ6o6H+mWM01ypXiepKh7uGc77jtqWtDrCKAc0pCbQaMVpYrAWbky/zltOEwVJ3VX0fcJKNuzFSwaq5UzEzKMx1kHnA50SPI52cL0ZaEOlFI2HiJYrqxgbIha2z7CRDGeWcVnyrb0YNd0nZBUQUaiYVlaosG4Rkz4wWlg6EXOm9qjjnJebe2jWCn1BWY5Fn5HpSIzD9yuOZJ9bB4a/vxkx7QU224y+rxEEgpCYIFkljlVwhC4Q2YD1DisEqYfR3NMLNRvS0mkoRJ9BV5MIRzk8YVgazCqnKK6TVY+QPuCl58Z0QRcrerallQbdSYQDhadMIJMpsXBEwqG9IAIiC1awzmbKPhECYUHGjvUk1dokXVpBiudxD+KVXM9fes2oLZjLACEDAqXOqYUnto4UyyUm3MyWvG7H7Ospiai5bD39ImaRDhjQIoXjreQmPvWIFlCwShOEX89fBm0w2ZS0USSyY9yvSOOUpUtR3oMIPGaXvIKmaRHWkc0StoqWN3sZUvYZmxUTMUBxgRRwf6NmiEF4xcGWJ5QlYSEwIUFX+doUWtu116EKbJXdupIaVuwdTZBpw6Iq2KBlXFpePqjxwjGuGy5R0QmHXggmVwJGRCx1RlkvKN2QEWvfsM0lkDWI2FHpmIOkZqINKvHM0paz0YKlXDFYGGyuEcYTUlAO0tbRaeh5ECaw0xqSzNP3jloIBqJhKWIiYTG+49HQ0TQ71K7johqySlKkvMArxZG6jUy3SeoD+tazIQvevmIwFjZnkr1DWG0vOd8QTLXBuowOT02DUm+D8ARREmyPTkhknGD0I3y7g7N9Ag5DS6k9Ki4pZUczv0GIVgjlEQhA4KWHoPEikGDxwnM5lOA1251m6GFJ4Cj2DMQK4WKmStFKx3XfMbBQVS9zplbk6X1kWPJmd40tfUGhDMFrajugIsbHFu9ZV20JOA+Bgso4wOCsA6+o/YpUGKwb4FgQW4tQLQRF154yWvbphMGphkYLTvIDtruSG8bgMDhhv++z7vkM2nN+5IQQ1jNQl94rsQ/P5qAuX8H9AGbQzOvfAtYVqHdQt+/gHj/6wLF/mLhHD0Ap1LXrAMj9y4jNMfaNb33w2EeHoDVye+d919XuJQgBf3H+ge/1nOf8oHnllVf4xCc+wW//9m+zWq14+vQpf/AHf8BnP/tZhBD80i/9El/+8pe/65o33niDq89mW/8h0+mU3/zN3+TJkye0bcsf/uEf8uTJE37lV37lPecWC420loscNiczts5OqVRL5Az9Vc2mWe+6ahfweEzo85I95qaZonxgqCtaCVfKlk8+nbKMBlTpBj3tGUcNifV4FELA3oklqUEEj5CBoKGLHHf7EEeWXBoanxME7BcFH+YQLwK1Fpg4AIKX2hX/s/8bPs1j7rgVm84hzIhF6FH6HBciouARXtMoxZm7xaG6ymKkOd+IScZzdvsVcdzicEjRgahxPmIVxVzEu5ynG6y0wOopXVAEAp2TGCLOrjacbAfYqXjtBc1XP+S5e6tHvZtjd/rMLg9586bkaK9iNq6ot6Y0+YpiaVnNEyglm6eO8allNDGMjhwvPRLMTl7GntxGBYGVgACfBspUs9Qj/GrBQ1PyX5lv88pZwehx4MrygsfJko+rv+cjTcGldEmSdFw/1lydBXYnAQloH57typ+xXbS8fD4hRBcIJFqCEIFZarm3FSiVRHnoVZ7EdFzoHbSDTkSslOLbcY+/7G9z0Ycb2Ywk7bgQCcoHjNPkC8Nw6diaOvpynaAtwybWx0gLjfa4uCSzHYlp6YTAB42wgjp4ahkwBIKKmYsedIGRqteJnGjptx2WHq1MIUicUOA0zma0QdGKhEgGVG7ofMzbWxFWeeIUdBQhhUQ6QSQ8vsuYhH3wlmmc8nbyEsfxBoaYWntkJJCqYyI3iVcCbQK1NpwMZywSR24MIPjK+BOEkJFUAW08fd2iMSjVIoQnbxtqepzFGwC0xHgRkYmW0dIBAiUDIgpYqRECOh3wCIIAqyU+gNWKiz70m5ZUemoEDaDHhuFeQ9TERJHHNg2SgFSeRktmucBJx2TgOBkEesEjApzmlkQ6tilA1yDX83EygAiQmMBqs8DsP2YVl/Qajw+SQe0YVA5lJUmVYbUhlo6gYH7JM/AWDwhliFcRNkAVKaSXlL0GbEtaRnRK4Qm0ImIkKzyCibxOI/aRLrCINdPUoXxAS0g7zzwGZT036Mi9J7KBqIPIgLIQWxBA7S+4u204ShwTq7FBIDvFedTj/pamjD1WBk56ASeglRFWehb9hicjgfaWS9OWvFvP+j3KGh5FkmByvH3mnSBqPB3eZljrsNbh5BRrNN5kBNPDGY0PDYQaL1YE4QjCYIMEJIh1Qo6s8T7C+hyPRBLohKKgz9RtU9gtqpCyMtsEm6L82uRgJiKCd5wJwXlk2LMQBcFIluQehNUY16NQJYGjtdykyVB2LS4iQ4EuPbZSSCNJWksWnpK0T4n8ASqckjQFYnkFUaX0loa4XrfeO2mx0oIwKF1RRzXnMqBN4PvxPEF7zo+cUBSEunqPSfU/RF2+gj/+AVTQ7t9D9HrfJYihLl/BHX7w2D9M3KOHqGvX3503E0KgX/4Q9t7dDx776BC5t49Q6n3X3/m7PJ9De85PKl/84hcpioJf+IVf4HOf+xw/93M/x+c//3kAHj58SFVV33X++fk5Ozvv3ZD4jd/4DT71qU/x2c9+lp/5mZ/hL//yL/njP/5j9vf333PuLAy5duAZL0ritsaLwJ1Jw0tuTl5JrtQFPVpkcOhg6dWWTzw641JRIAApYJYFnBAknUV5gQiQK8fNrOZyWaPxRAhy58hqkCHgEHQKhAqo2QBvcrQTxC2MFoZLTcFeuSJzJZ0UWCHp2cBl2xJTImXJdii5HhYEVXIWt8ySmtonlM1NYi/4mLug5w01ER0ScAxp6AUDylEnCwIdAYt/poYWmh5KnKFCiay3CKuPIK1CGUVSrTjKI55sSVZ9yUgEEhHjRMQihpmWTDNFJiPyqEL2K6rdhOXllNlwwKG4w8RfAqGwSUShFEErmlhCvmKVR2SDEd3OkKO9mJMrgm/diXmwuctfjbc5yQxKdqRxx242ZxQKPvqk5N+cPOK/PT7jctLyaNtwlOTUYQhCIIMnNp78LFsbiIuInis4uFwhpGS/XYH0TKMBRsEs84ggSRrPy5zwafUQ5SBYzZcvbfEfdm9yJau41lswx/IwGtHMdmlFwteH1+lCyqhquDNfcHXZMj5znKp9nqjbKAfea9qsQWDIO0fcCiph8ThSaZhFllluQTm8tHQuQsspVbJkMzniM8cHOAWRc0gvmPbWhtIlWzRRhwstV+OCjw8POdI3OZO3WCSBcVSQCMeZHlPoAR5wKKxYJ+AzvYGUhpqM2HR8Y7zLwaWUbhDzMLmMa3KkAysb6jBkkm0wyUac9EbUsWSW7JJay01ZUhY7TF0fROB4w1BSIR20Sq/rJnL9BXagK1Y6ppEJHsnRIEFmBiNgGcVUKgIHUWexInCWpjzYSTnekTQRWAQ4iLuAkprrecVeWpOvarJ2tm4h1RkPo2t4ArH1KAcOCUGirCD1HocgSY/pNqaAoFE9YuXYUjU9bTA6sGKTyEVExGgDeeu5NFM8uFZwlgl8J3g4lLRp4Hrp+dLgFrNE0riYraIlb8FqixeBD51OmSYaqzzUEbefRigJsVhX4NuwwSLKkBqEgEU0YKL6PNzMafuBV3s1qfEcacl9ERE8KAMvqoo91RID10TDJ8OCxDku8pbbas41loi4oyPnohcolcOJ9aaBlB6jLJdWHXhBnKXsqRIdOlLRcZIvWSVLBmLOuBGMrCMxPSKTEAWDpER7iXagbIpUc3zwqOYSo1AyMI4N6xipc5RTbIWCq7ZjV14wVKf01ASNx9g+k26PVcjQomMSl9QCgku43nksULtNbHeJWdJQ6gprBpgQswwDlsrRp0R4wXU/ZVdOuMIMG9Y+bgKD8BJvcwQWj8CYMS708UQYGeNiKHoFZuOQLpszkxtUYUxtrzOV15j29ziJNvDCsoxbggjvqm5qZWij95+ZfofnLY7P+ZHjT08AULvvVXB8B7V/he4/fYngPeL7+Br9U7hHD1E3bn2XeIC8cpWwWuJXS+Tgn+eB9KPGPXqIuvPCdx3TN29Rf/UrBOe+Z3L1z8EfH31PgRD4jrKmOzvleYPjc34SuXTpEr//+7//vmtvv/32e479+Z//+fuem2UZX/jCF/jCF77wT97TtoHMWz7+9JgnY4XHc2vWcKmC040eSliEFAQviIJnw1wwaBQh02yUBZXO8M923jerlqZvuDqbk292SA992SIbhW8iup5AqMBg6tlMLAMluB5Zjq3hkBuc623+u9k3GFx0rNIAwqO851Beo/QtMQvu2Q8DUzLWw+8VkthLvAhEwdK1Az7pj7DBs6Nr9nxNIftoHFLAO/IVKynwwaG7CBt6KO9RviOkZ4h4ArrDlh8C3awrGapA2ZoJ+0Rdn1e7Fbs+4sOc82/lNkM55aqY8pgNLhOz75fcFTFLnZGqgnKYgZEUMuZMSw7cywgv0Jtvc8R6hmaJ5+vkHIbL5GLGQD/GCUs5rDAu4kpkOKwSWuWZ+gwXYm6mZ4ySjgPfI28CI98x1w3axBxll9mwcxCeTsAihp4PRM7T84YXjyt6yhKPEhY+5i45Rf0id5ZPkWJFlHXkvmERWxp5h0Is0NJTMKBmxOVwiC4lBKhkj1XW4XxGUvUY5C0vPT7BoEmdoYgyHIpCDdAO0rZlc9UyFbASnnavZmMl+Xf659m0E356dQ9lHGUsMJ0lVhPSmeSlYsnJfsG9bgzBMa5aglgL5uTGsT3vsHrAYqzxQGo6hrphPy8oMs9XRQ+CYjWA/rTllqo5dSkx6+SpERppHTfOO9qNljMx5MppyWZT4weWpRlw67Hg6Q2HVesKbJcVNJ1kGDfcSA2LckG3SsmzhoORQetAlUluZwVNJalsirawLWv+ptewHTqck2zKkoUy3E8/wazXMFD3GRTbTMMeMzwrndJqxUUvY8dK5iLl7nDM9dWEu2KfDyVvkwdHIo8Bx5weBr82b5Zw7dQDmmYkeZTtkBh4Zb4AF2gSSx1DoyPiXh+jNvB2Rm8lOOuPmIk92uYI8hUnI0NqBjgJW4WjXwZkAyJei/UID2dxTE7Oef8R206QtxA7y6itiI2g13pMoknbQGg0LlVYJCIErFCc9zyXCkETBf6fW4JhuUmmSu5EDiECUSOYxZI39gTX5p5+vf48G+qOVRsYScfOscQeOV6/nbNJQT+UHJFwEV7g+lGHViti6ziPx6QSri3PyWrDRN/m7a0FmZ8wuvCIfcPIe1wIDNVTNm2Pw2jBi0aylJYorIg6Q/A1rc85jx4jEKySJ+TBsu8qnO1zrb5gVtdY2XDaE3hdstvFTOOCEk3uDU/8Fe7ZF9iQK27o14gCVNmUG23NcfFhEtXDRgmN2YeNJwy1oSdb/DpXp4tL2qqH1S3X1Tmn6hJHmcEmAuV3sN0uXrf0pCXE5yz9iLq7iYjfBh2wQUMEBIXzDmsuEeiQyQWh26S2u2Aj4v59cpujxRIlPF7AlVBjXMfDf+K77fMK2nN+5Lwrsf99Kmjy8mXoOvzk4gPdyz5++O4c1zuoK89UIg8PPlDsHxbBGNzhAerGP/q5b95avycfUDzFHR1+T4EQ+I55+PMK2nOe8x1qEVPkkkI7lOiIcQgP9wY9piloAjO1zRv5q9RkbNU1pd9ER5LIOYw3sBZQwyO5vFqhXUuvc6g68Ame8KmnB+xfNCgPskoRIVCLliqVeBsjRMRptMs02mUqh2TKETxYLwlRzO2s4Fj1KZRBPJvesMry1YHjIHW0QtJ0e+vqTNxxv1/TKoPmHTlziX9mfOuEp5KCzmcYoXC6JbgM53s4EXBRg9MGVIVXHmSHiKdYFZiOHF5YlE/ZdR0ieOYM2LaOD9uKLSP5aTNh30hSp9k3gat1j5tVyq1GcdlIbrUJ43qX7brHz5tTPt1U/Fyz4GNNh/WaDoVwEU/lBudRYNe3GCFoNaDXXlgqKA5GY442c1ZbglU/cH8cc97XbGU1AzpqBRfRiKf6BrHqmOeWo3FF2y9RwjNeOXpFYLMw9GeBy7MKx3VkOSAiJwqWOnJ0acP5hmUeSZZqiBRgyQDBIHZ4BLVIcGjGS8OV84aPXjT0FoZMeBIV2NEFEOhIuYguc5DcomcsRklaF5P4gFKe19TH2VYFWQRV29BfGFwjyGoPzYDaDNEykHhH0es46vcZtiWtiLi/scvxzlptspYZZ/GIfun42MU5/d6UIuvx1d4V+ouUyJd0IWU7M9xILkjjQBQ6Wu0ok8Ckp2Frynja4JctaduxuTQMzg2uyIiNZ6etuCQn3FFP2JYGCDzq7VLLBKfNWoCkczjpAXhr37GMA6k2NL7PYTKmzRp61AgHJgjSzrB7Zvjk0yPyRuCC5sHmNk/6I94aKawOOOmoE89HF4YXZh27ekHcB2Hg6+oFitgzaAuUt6hgKcUQb/rMyXhmG8aXr3jmwxWJKfi7GykqGJSHLgq8mM3wUU4hBlgfYVFEHQgHk7zFE+EFPOjt8ii/CV7Rq2HUeTLtSaKAtevKbVANOq5560rMMtZk1uOJWWYxy1xzuFPjcWyuSka5JwTPpmhBCJQPTBLPNFlvQq/yjkkiqKN1Bd4IQWC9dp4KvrGtqaXgrNDYsiNIgW4kpexzeHKNtlxvIjkRoXzEpq3IVxmfqCZ8e3iNfz96FVf2WYkhNqScZoZFBMJoPmQqbvqKUjkOegu+PlxyJHPe1hGnImJiNrDzHnLZwlLhrKNiLaVfSk83T8lOYwZHluRig/b8KvJ0n3iqOWkHmColMi1VB73K0VVjRo0hqxWbF4E7T1Z8bDqHZsjVZce/PC65cdFyqbasCOy1E3SwBDwLu0MpIoJqSFxGF3pMVMJSJaj4jD4tymu8XBvYp8ESdSPidoseJXG9RbK4yZWuo09FLpfE0RylKhI9J6Mk5A/Q1AQcUyl5tYIt19AhsLbHXPnv+8x5nqA950eOeydB+x4zaPAdhUH/AYRC/GpJmE5RN27+o9jPfNZ+Qtsc/cX5Mxn8726zeuf3sB9gfs4XBWG5RH6/ClreQ/T7+PdRsnvOc/7/ysFgxFF/QBE5Ulqkt7QqYNXa1yfuAnES2Cktc3+TSgxJZUfqO5yEOhLUpLQixcQlZ9sVh/tLJr0OX4K0FbtqTq+WqLzgKBXELiBDx93+iHaQcW+UEFAsU0GIDUEEnAyc5kMWmx33RjXbySlNXPHNYcVce8615FEsEC4masf4dsyquU2kaiBQaUsnwIn1PI0k0MkAIXDevMCku0FNjDFXMe0NvBvgRPLsXQkgLFI2CL0CH+PbPZzp08UVd6K7BCF4WTxlREXA8yRss82CbTFlIlLOwogOTQiwQUGfChWatSZCAAAgAElEQVQCGY7UKUJQgMT7jJ6X9H3EpXKX28UGPbcWEADHRjAkTtJzMYRA5XsY1ycIgQRGocO4nAuGVBk0GWznS+aZZW82R3lLv2qxqmKZGRb9jjIK6MbjfeA01yzNkL1VyS1TsWEdlcx40rvM/WyLTkLBmLvDLbSB26sS4h61H1DKHg6JQ/Jm/DJplZNXiswICiE4SwKx8RznFVF+n51sSaNGLPQWWWc4G7ecZIYtDHWSsFR9wnrUkKQxPMk3+VbeJ20tV84iZrmiijz/73bO1zb+Cw6jV7Ay5fBqx3LnGBF1CG3wWUU9PqXVUCYVb8YRj5SFdu2n1i8dx+kOJ9zAzRQfqeZoHFZ33G5O8cMapTVXdcVUtLS9JU3kMSoghWOzbRg2AWzK5mrKS9NjEgounXgWPuE8tqyEZdBCqT2+2mTKJn+/qXja9zyIdnnaHzMalnxKXjA+Ffx/7L13sCZZWt75OybdZ6+vW756prunG8ZhBhhAWC0Sg5vArEK7K0XASqy0WhakkELaVUCspECrRbsrQgok3DIgzMIAghFOBoQZmBkQTI+f7mpTVV3m1vWfT3fOefeP/K4p24aFaNB9/ijzZX6ZJ0+ezO99zvOe512+5bkZNSnG2husD+zaS+y3UpbcJjkOLTlDu8qt+AyZE7LK8GKWcLkb2E7h6dUJLyYxL3QfZWDP8pnxLdZPXWPd32IzE253DWaa8sYXHCo0a0HjjuVMcoMyLNIONZfNoyjlSIoxp4YJI92jkjbni5xM1fSLiotxwa2l1/F059OZ6CVqrSCCc1c0dl8TBgmfLrt8Wes5Bukik0xxq32RXbvOVnKWfXsKo2ZIMuPaqiMLDrZbRK0p7WjCWqhZHgmXbnkWJx5E4alJco/UlonVRAj7iaLying3YmErptozRMozyxpnRgDfL/DpBlcNnPZjbGuJN5iCJ1s7LISKihitFKujKWnpiCtInEdLs35TsczALSCiGJXLSKkZS5dSwZAe2SBw/vqYbFBTqBGbuoMerZLMZiyOahZGnuA9L9qz/NrSkzzVfx030mU27Wn2OAeUeFWBeJRXxLWQlZ5H8oI3TodcYkI7qfhQ6xF8LOwkfcpYcbo15ZZepwxdUjWmm9dQVbT8BDVOoFKM8PSKCjdYIHIOKVPKMsPKiCiM8EWElIsoZ8hmCdFoFVvHLJeBxdpTTZ4g8wEbFBpB4UHPyGRGpxgSl2MemQZyKZlqzyeTiL36PJuH79H74yTF8QR/7Aibm2AMemn5gfscEDR/6ybRWz7tVZ3HX70KgL2boJ1tCJq/ef1VHfePGmG7IUZ3F/E+UNT81Rfg8/7Mqzv2XH17mIIGnBSrPsEJ7sIjboSJHY/LGFsFrtcKrQUi6BWe5UHgVDJk2Tmeq3vMdI8LrU3wMSjQIRCKLgZHaMGNtRlfPBlwYViT9yPGqTDtwyiJuW0Vg+4qq5t7nMlTnl8w3M49WhK24lU+X3+CFXLqrkdHFS1VMDMFCQGtLSMjOB14puVoFWfYKE5xwb5A7tb4PH2LAuFpE/Ni+QYuyjaR3mMQungshWvzOX6TR33Or/jzjGLDuF5GpxuEcQ9UjdC4I4joxqWNgNSLhKSLMjOCz9AU7EcVH2/FDLXijUVNXRmW5y51z8pFng4XOaNGGDxaeXp6SkqFKNijy6YssEuXT5WrjRmIKAxNYeESTc/Bct4hqMeooxfZkyVCuUar/QlO2YSsXCCWkmtZzZuqgJKEkXTZTDfIKiFUgfXxlFk6pO8co3bJ1KSMwzpO3WDYdeSx55Ory6jEMY0VK4MeRdmlo0ueOzNlsw0bYZWOLhjYLs6lfMbWDqd9waRtKKZTnlpZoq0jqqJFZwS232GHlFPTAdbnmCrBa0NWjdm3Ke1txWfKizzbOcOoU+KjioluUWPwKjCMFZ1aCC4QqZqrfaHUnj1Zoi8pXnl2W4pdu8BSNWZ9ktKtNFYAhP22ULYdOnGkG4ZoyZMgmDIin1hS5xgrGLQCVdCEUlPt9xnaDh97rMNk8QbZZEZZRXgVc6tV4uuSJNsltZ6xUjgdyOMcpE1cFcSlw6kCnRRoDaEUCIo91eFKT+OlZHHLsGoD+tGSzSyw62oGy1NuW8faIOd99s0UqXCh/BCbURebeyQZULYUIzlPbDVWOZJUcao9JJ8u0JopXCtlLylYcB4xgdxAXkU8OthkGPWpWz1e9+KIrdpzJkz50FpMUsHabkRvZ5mLtyb4U0KkPMtxhbERu0u3uexrLm7ldCshhIw0OG5nNboo6VcbGA+rndu0h6uIMcwy4YXM0i0h3dF8sJfyxHSXF3pthlEfX8Vo76lUi1h5gjFEXlHEgRrIdoVMaj72RI9HJluc3t/j1MSRlJr124I8qrm4P+XcfmCFjKlE7FjLTAWk9JQSE9Ka3AaMVizbgvYtMF7w3ZLzlaF9zbJ9sc2L/YKFStB4zoQhUSmMdSALjtokLNf7XCi3+eg0ME6WmWTneHR0m3HoUmWL4DVdO0AkYWm8TSdotlY1sySw3W3hpjGdUGClRwTUknCtfZ48Kgn1hFAtodoOX6wxW3werIBfIDJjbtdrxIli4ISno4jzfpG+HjOygX1xTH3FZjLE1F2C3mVouoiuyVJNpkvW7QzxQ9qdhKtZjDJTapkxizTtSrGrFtCta8ShYLHcZ6pWoQAxE9r7fVq+pNKQRIbOWLBtRS0Qq5J4VrE8FFaLEdPuBFGeFjUta6hFI8FiMKQzwb3EGpITgnaCP3aErU30yupD11Hp9dOg1B/KydFfu9Oq/gAqy1BLy69Zo5AD5epugqa7XfTKKn5uwf9q4DcOaqA9WEE7OLc/UdBOcIJDbLY9mUxpI4x9lyrUJHaKlZrUKQSIqsAkLRh0OqhCsxwnJL6xSN9dGOEWA+3tmKuLDuKKdB/qoCnKFjdTzdlohEhJ5AHt2QyKyltqSWiPoG+npGsf5szVAZXTDE0HqxydvGRHKWoTmNhA7VukAZxE2KBRopiGJZwIpfU43+H5WJOokrPjNUq1z3l7g5YxfFCv8Oluj0SmrMYv8GmS8svuTZy2NxB7iw1rAE8mBedKjQmaj/gO6ApfnELHO6j0GtoLGuGDXMAyQ2V7kD7NTdclhKb/bovmYpjQCk2tLR0CXZXTJWcoLWJqWuSIKRE9ZQhcjYfscYORGLKqogqLSDBcNwml8kSA9zG5WwRTM4g8uQnsWM1qBSKKQlLecGWCmip2ao+OhpQrU4ZxDGkHF1K0jxDjWBxr9lsWozJKNDfTFdo7nrxbsexGvJCtsiPSWH7HA6JkgtmryEVjXElUa0YO9toQVcKTo+dRylHrQOYct1LHZvsUO65Hd7AHNuIW53DRlN31DXalgwmgyjUmapsqdezIjAtjhc+noGp6dsIIw7ldz05byPSYaGrZSg0t7SmMMIg9hY2hTihEkesBJlgmVojUmFQ5JM9ANDPdIdKemVY8cXvA6r7n6X6fhVxxuzOlpUdstTUKzaVbFW0VsLHD1BqFYtoLeFuQCNg4R5EQO0+iStp4gk8at8vIY0NgmJ3lDJdJKk/mMj53o+AT1vJJLzy6VTI5D7d7p1jcGlB7Q+LWmWhD2RmTugylLKHzAsWexhaKR7cdl9cDLgo8tWy56PZ4QVqgYCWZMJKKxZFnJ+qhJWJrsoJd2KVTBTSwlgZSW+B0xFs2RqAMrdzTGjhadodWFRicURAJQQVCJ+eJ3cC+gWfPtXh0S1FkUBWBqxf3WJ48zal9h0r1fH1nk762VHnS2YxFWiyTs2cSlM/YjheIk+tc2lOofI2pghAKnICLUjJXcHq/oJcHHr3tGcZQS4sL2zVrzOgZh4jG5Z6RWmTYUcxcm7bfxVjBTmGaWKqoYG3fs9dq1pu2p0JmAoVktFWJpeC5TPH6lQFSxlxwE27EMdo5+i5nMYW9tIWYGJPs8rw/w4xxoxSqGEOJFsfU9igzy8aCRacbNKrddUbG44t1bCdB3CLajIEaEYPONvD5WUTTTPgoB3i0z5gFR+kz/oz9JJqaF/Qq68kQ1ASjBiwyZi+cZiuxpFLjTNPfeVywqHM6yjNUhu3ugIDGqC6jtIM1molRlNSNVb5R5JEgFRR1C50OmWQZ2SQjoqJaGXIjipjNYnS8jRJNaWKmvTbbizNilTDNCnoaWoWwLzFa1ujJkLXc4KTz0N+cE4J2gj92+K1N9Noa9vYfIEkfv/joPfuoKGpUnD9EiqO/dhXiuCF7d8GcPfeaXYPm5/b2dxM0aMjmH4qg3TqogXZ/BU1Nt7B7l9GrK7hnnn7V5znBCf60QWgco12AG6bLvnWcYoYKgtMJL/TbJLOMPBuxLENcEFIciOKT3Uugr6NjT97OObMfaO8adk2XXHtqoDsMBCCyjqnpg4pxKqbQGgKIBLQIj++McHHOwARKYhLvSApDOgosTjtce9IRSYueV8RisaEhfHVY4NnuiMekpueaGf9TMuZN7HC9PeKmsvQcpNqwr1p8lJTbOsGHkothm3Nhn8CUmVuibUrOhQlaamKvOaNus6cMddVHt5/Huy6LPuf01DIszrJmd1iwDmU9L9qaWzg8sMRz3CKnnoci42qJx/RNjLrCTPpM6FMqw1UzZV9pjATGWBJxnNUbbCXLSLHEk+o2TxPomSEz1lFuAUOgRhNJTSTCvl9hlYI3uxHXTRedV0ShZNwWIm+It1KG52M6E08aB7yKEEpAobWjr2aMpI1TCcrPeCwMGc1mrExz6GmoEt4aX+F53Ucj8zpKoAmsDHIqU7HRge40ISlrztZTppGi0h6Lxqc7LFAyw7JgB8zqBZ68PaYXalpeuOgHWBOIaigizyh02V4Y8Lp9uMSI67QY2pjEBU5VNbfVKtYLnbIkTm9zbTGwlWZ8+rUB/TChShKGIaMS4bzapoufj3TFAlNmkjCuMhSWvDNGVGDS1qxIxOqool+1maTSZJiGJh03ywWnFNoqeqrEazgtA/I4om9zrHhWfKDQHUoNtdREWjgX7bNNSqYdp8IQtWlYTYWL6RapLYlmmvZwiiQ1TPuMiRgtTVGVJdMVb3+hYKftQCAEzW5kMBI4F+3RvpWyGddUp2q805wzM1ZcjQkBryxeWSqjCRKRqBqiiNVNjesXRBPNWZkyU5bcGvrjmpbUiNbMipQ69oj23MialDhBODXOqbQBoxgaePLKjMFkn5U8Z5g2PeyMoBD6lOxlMUPJeWyoeP/yIovxc3zORsR/vthj3Au0S8Prb3SJihZby2BSz+fdvk6FJdUOpxTDlsDMcXbfkXY9/UIIiSfomhtndwix5bGb+wyNoVN6YvEUtWKSwY3EUhvQGFQAEU1RtVkZF3TGgvGBYqFCb1n6IefGmU16G1MkaEZ4ls0QM/NUnYK2GnDRaz5qV9gP6+jIonWORBZRgnjdLAIMjXSkk00kGEQSlCkaNV4iwEKI0PEeoTqIg+YPlCooTUFcd4jIyZWnq2ZsWc0Ui4TGNOm82eKMT9lULdZkigD7cc0aWzgVsL5RjUs0lSRUvkshTVU2UKA8ngihhegIiQdIsocvTjNd3gTlMalD3COQ7uGVAgSRDhKnlHGGsjVKJ5z3E9pYtklYVlN6ZoZEKzjzcJO6E4J2gj82XJtc5WP7H+GzNm/RXjMs/uzXICjGf/a7Kd9wb90hc+bsH6pYtbt6FXPh4n2VOnPq1GGNtNcawtYmKmuh2u17tplLj1D80r991e6WYeMWqtO9r3ul3f4Y/Z/7enQ9odj7FMrBgH/3/M9zbun1vHHxTa/qWk5wgj8t0ABKeLGlCHpKVbcIElHoNkZHTKKYYbtAq0ArlBTxhCAll9sdLu4N6S8LKSlJK7BUTmgZR2Uy5kuJ5itBFLEWosqCD+QqocYyS2qGqkVUB1ZUTgBiEUQpStNikBmK4FHAbr3OIgO6riYRTz/UKD2k1nDOj1DAZjwlLhY4xZiNKJDWDmXAq5rMNetucDHWeMTCI36XoBwqJLw17FEbB14xCCkronib+QP2k4rUWZ4rNaGecVoqzpaOFf9xulIR6mUeCUOWidAR1CHiNl3a1jOymoGp2CBgxDDFs1xN2WKNdck5IwnrvqKjS65Jxuul5BQ1v9vep5P+PgNneaTM8W6Xj9aBWpe8kBnOzxJGRtMPnt048OL4DJWJsfWAWmsiKygRotph9JhoL6Y/9VxdrBAxtKuAx5JRkamSVHnGaQ/rIm61SlpTzaW9nM6mY7YaoGN5XdhnOQTGOqErgtcKkUCwHkWgtDWCZSssQrJFVkNLTTFGqFF0yamywGpcklpLS2o8jRnE6d2a7jgw6Fe88fp1Pt6vKI2hV1h0SzVrn0LJVHXJKji7VXFqvAkBlmaBW/1mjHSCw+kEpwWkyR6r5SAFsjG6aEvJSgFtu0+lFaXWjFVMbiMubnlOTyZs6JhKx4hKyHxNcBE7HYeoCHRTpapTBx7dGFOJxaNJSujHE24njiQPpAiLtyeM1gQxGqtrpnVK4kpapsCpQLW3RB4JwUJioKUr9p0iKDi3V5InmjOzGVYClTJonfLYlZy0Ema2se03XmFqQfz8SYsa1UgRqG1FxztIasRHOBSxkYa0ILSVo0Q15jgKjPes7U/ZaqdYESQEgg5IsCxNaqz2WF+A1k0JB+2IXECJoOe11Ziv+dy3bQQ4O5vBUuDi9gwJlgu7NRrNsG1ZrgtORQVplDKMPLEYFkJOpioG66EhJq0cQ0J3Jqig8CHhcs8j7UClHVbBWVPhAgwS8ASSAkqj0TS29CYECpOhxmFel1ERNMgs4sWO49HqebaTxvWzjiO89jxy3TPDsYtlnMxgGviiWcGVeoaxQ+Iyoky2udFZY5Q5atfDF2fR0QhEo3RTfVzponkHikKkMTXphYq380F22aAONY6ITOVMokBLb7NnKxSQ+JqlusNOFCiVRZinQquKlIQ1mTVtDooYKFjEKEeEJiEwI6bGsuf7eNvY+AsKCRbluhAiTPsaINjselN6IRogvoMGEhxKQmNSJBEISN1lnT28zVkKnlK6ZDRGUb7OqPWUnqse+ptzQtBO8IqRv/v/pf7oh+l8699Gr6y8rO/81u3f4B899e2E4PiJTU/WH1M8/rXo8U06v/n3qc5/AdK6s06RPnOG+gPvf9Xt9NeuYI8VqL7j2KtrhJ1tROQOC/7XAsL2Fnpt7b7tMpcegTwnbG1i7qMMvhT8rZv3NwgJnu6v/S0k7jB9y18hfeH7gEV+5P3/B5tLim98/K/ylx79xpd1DslzJv/sn6KXlmj91b/+hyoJcIITvFbQhJswlRbaeYz16LL53GghRtCUEBr3xCzOmQGVEio9YGlPE9VNYdo4MlTzIhb+2GM+0W06YcqF0ZCBy7AIBlje98xN7lDz2q+CwqiAAIPUoUWhRDjjR7S0ozIKh3DdaJZ0wSkmaGmC0zY1n6mv44JhajyJArQQgEsMmBpDYjXaeLxR1KbmaX2KLEAaFLlx7NJCVMXNOmEleEyYsmxnXFAlbXWb4JfZdWucYQYiGBHw0FEVrtRUOuIUBZGL6CnNOSJKMbyBKVf1Ct2QM5IWbzB7WBXRDoaehxYahTBWy6RhRlCBmYoRFG1q3qw/yVW3yAJDNpISHQQTIFWeKnhataK3WQJQYchE4TEoa+nlFWjhUjEmzSt8osH3sRQAGBWo45KQFCQ+AIpTbopS0N6BWawpu0KKx1ASVYGgNFoEWzXkw7cKVn3JjSSmpyCSgFcHBF2IlQcBpwNJqJhJ2qRLBqE7DqgAX3T7On2xXKhLxFomeQevKgKaHiWFipBEuLgDxXycxT7wWVf2GKeWvq4BDseUrjRyqKCBRwgaWroZZzZAGmpqbciCkIhiEkFSCJWCoGCkuvSyKbGBmW6s+AOQlc1JxhJjxdMzJeOsQHlN5JqyBhBYGDn6doY4w27URWOo53XQKtUUV1ZGOB2NcUpY1o4d30VQJKUgB305t6yIXSBoKGkjAVpjYWXXsVgKNxYMM224lG1S1ykbNmddHKVPqJj/XoliavsgQxRCZ+YBIaobdqWDcP5qjteNsY5WATn4zVYwjdokyqMFaivcbi/TDvtor5C5r+LY2KNeF8Wbbu0yjlNGVqOdEPDE3rFkZxA0WgVy5ehXNczHTK1tIywpIY2ElgooawnBUKuETKbEBFLTTOhajiaDCAalHKAY6RZeG1IRkiJQKuY0BZzTRMAw8qzuNfcz1zGRTJmqNrYWFvZL+vM5Y42DaEChINIjmBlOjxtH7sJaquQaAc3NxZSZjahVTi4WULRlhtElZ/UOvdwTBC5tlFSuSa3uSI3vOlwnJqk8tdWMrdAvEoJK8Dqg1YGwK3hdNe65QFCaOjRPp8Gj59NjsXiCAhPvE+HJ5wWwEwHjYyrR1IS5F6ZglCcLHhsagqgP6k1L81ZBK7riWfY5o2hKHTICitXdijODkkgEmPLl1cOzlE4I2gleEeqPfYTpv/hnAExCoPed3/WS39krd/mnH/nHPN5/gm89/U2Y8K2EtrD3+d9BUgxZ+okvIv3wD5O//e/c8T1z+gzl7g5SFKg0fUXtlKIg3N7AfvlX3ne7XjsFdY0MBqjFxVd07D9qhO2t+6Y3wpHhib965VURtLBxC3Ppdfd8Hl37dezuJxh+yXdTvuFr2f9PPw7Ad5z5n/i5pWf54cs/yGcsv41PWbw/4T2O2bt+gPJXfhEAc+l1pH/+Ha+4nSc4wWsNAY0iYEKjXPXsDKmaH3ebCy5E1EaAZtJHSxNBtSpHrT1J3qxTm8aOoBpraX3g530Muc7waIwHhXDKjOhuxg0zA6I6IBpq1QSSiobkBSU4JfSloFK6qXkFVEqxxhiBYyE4CII3gguKYQSx9/MQRJhEnml0tHeLGiWwozIq2xAkALShijXjWENYZIeUrh5xNrIsFIFuXDT1ghTE1FRE5JLgg0EUiILyWBhiEMaqi5Om/Y/LDZoeBW1hgxWCMKetcLFs8Vw7p2ULZiYiEpj0dzhLQ4QDgg4wVpqh6rDRLShC4K07gleWsW6jqpqp7bLChAOuvFwU7OkW3nea+20MUKOCsGwakxOKQzf2w7/PblVcTxpC1ArujvuqCMTKk6oaBcTKoZRvbpI+YulKZF4gAfZ9m1JZEDBSETlBBaHSiknUHL9S8Tz9VojmIXWs84NBSykW0Qo37+eOrzGA9dKYvQDtKej6wPK7UYnU4eiSuU+mZoGKJ/Y9Vd3B6wMy1BRTBxhF7WNq8OGFN+0ThVdHk3Wt2ZHF+DQKKKWYCyd4ZZiaNlDf0YeaQMCwnzTfVSogYqiDARRGByqT0sY3Cggc/rmy2/RXHjXHAHBaWAwTqjBjYtoomjRjEGaqhWoPDs+dVPdaogcaBVLRkPcFk5Oq+rDnDgJ6R4RLC875ww+b9h3rLEGxWBXNDvrg2ZPD4wQl1FrwCLVu3kZgGEUt4npKFaVEVjMOPVrzNnTGQjaCrbMHbW9O7omY6haxlBhxhLmhu1JCmB//+E0UhFqDFUV/1LStVgGDIqqbUWScMO4ZtpcNIxszjWIcmkiBDZ7F/abe41JVkBRC5AKPT6BItvBaMexaVvdqInd04lpptmizo7oMWhFOK86VE16/N4C9o+erGTfCWXIQhYvmVxoUa7Ym0TVJJfTQdOIKb9Xxi8OjeFKNWPKNs62neT9dX86orKKDu6M/FmY1a8MKpUo8igpLjSGjwszHRKUMPW/pJZqOGFbKmrpu6qxsLVsEYUcebrN/QtBO8IpQ/NIvoFptkq/4Koqf+Sn89hbmAWTiAD/w9L+iCiV/783fzunnNxgATy1ZLt/6Zd75WxXJRkzyu9/H7G3fhrJHtjYH66T8xi3sI/eSiofBv3itmbW9dOm+2/VKo9aF7S30a46gbRN9xtvuu+3QyfHaVficz31Fx5UQ8Bu3iN/++fdsi97zv+G8ZvdnP8THv/kMH14OfB3w6OYu3/YFf4cP7T3Fd3/8/+T7Pu9dD1UcxTmKX/h54i/5s/jnnqX4pX97QtBO8KcChqMfUyVC0IpaJ0S+WRsRK8eRDiLsSUYnNAqKUYGZ8WReMY48BsWm75GpmkU9u+M8fh4s6XAwzy20VXnHPiqAV4fz4PNzNuoUxKxv1qRFk76nBPYWDa18rmR0muBj2gJtPE5pCO35EY4/23eSxwxHTU1NzEFdJUKCRhBpgs0BGSMUA1nns6kO6/goaYjDiFbzweGGg9NomIeJet7PNfZwN43g0Ewkg3lamqDRSrFQR2wnjV341Hriu1rvDXNSByhFaRS++TYg5KZNS1Uk6iDga66tCT8haIWe93V4iWQL3bDC+T2SeduPxo1ByFRNaTTZPIietjSd6Z2Bmsyjfjl2PyIJh8esVWP6cYDCHhubx87X1QUj30xuSlC0TM2Sn2EOqdm83fXDA8UjKLrj5ryeB6fYHydpvZF/4H4HmMzb73RAiblzGNI8AwfH22jVmPn9V8fH7FzG0FqjcIeTCKkUFOFogrfQoYkNgrAXl/RzQ6SbFD952ZWnjnpvPjRoqfqw7z2aSIXDe290aBxID6+r+YfjXhs/OWz5wWPSfCJzAlup5pgHPRBQ1FGzHCIpD7bdeR1rNw/+fzCO1ZzUm3nfzt85NGpuHnmiu7LvBKFWctdnR9DAzdMRYX77PqxOgVJYAaUDsiyH41kpoVM4Tg8KuqWjV1S0Ck8hEc8vZIxMRBDNzFh2OzFOaypj0AhFFTi1MwKBPFPYY4+t0DyDJjTjRXlFUgayeVprnRriOiCH3K7pU4+mrysiFaiVRoImqzyP3cibY3Ks7fOrrjGMMyiOWeU7Yux8uwecbZGpGu26ODtikFpmKxoxR+d/GE4I2gleEeoPfZDo0z6d9Cu+muKnf5L6d9+P+cqveeD+t2cb/Mdb/56vvfj1nO9cIHzsXwPw7Os/hX/3yXfzZT82wJzqcO70Lvo/fi/y5d8CgJQF1W/9BgDT73ivRKAAACAASURBVP0eev/4u15Rqpy7NndwvKvY8wEOFKqwvQWPv+FlH/ePGuI9YXcHvbp63+16cRHV77+qWmj5u38CqoryA+8j/Ya/gJkXCg+Xn6JlrrL7XJfyw/+B33zjJs+eP8/XsQWXP0DL/s980+PfzHd95Dv5ve0P8Nlrb3/gOeqPfhiZTEi+9Mtwp8+S/+SPEaYTdPvhbkUnOMFrHS2vmR0rLJrO7gxWFg5UizkqMYxDjMy/s594QnUUKAmaIA/+gTYvHdfOj3QEFYQLN+tD1Wnc0/RGgeW9o4Nl+UF04vAGykSzv2DBBlCaOro3bDgITSL8XDGQO7ZZaWb2BYWSCIUj02Oc7qLDPOksNHP+oo6C2qOjHCMIoSHDMxKUNPuLKIbSQatwuKcQKJTHq6Pvyj0kc05yDlUL2FIddBgetj4oxcIdJLlJMzTKYxACiraqjh3/wdBBOHerhgdMYpl5W0t91Oa7ydlxuGPXksqDB8QgOVJc7kaEn9dgM8S8zEF1eKQ7j3dAEB8GNe+z+8GqlyKCitIKR3zz3lYcHFkTWNQzNn0Ppecq1rwEw93tuRuPXGvu57DM2KhbRGr8Eu16OO7XK8fPm87HT6lTKpLmOZlPbBxHFeyRmhoAPTcaQrhfzzkl9yqWHBG0oEzjrQGH6uS9d+bgbXGs7XKk/j0cR1cZNIg+OkNQjfZXoxHVEMnjD3+RWnbWG9fQdlVhfaCMNKVtaImej5W5OHaYnp1Hltvr0bHJi4e1UeFRRL5ZC/iM6fOY1Pfs5TBsKMMjMuKyOsUmHTpFTae8dywd6NuTxDBJ7THiBglNGmzzHgSjY2Kl6fqUQMGAhD7FsV57eP+eELQTvGyE3R3CjevYr3on5nWvR6+uUX3gfaQPIWg/c/WnUMA3PPIXmw+e/yAAj7ztG3nsZ/8BVAH9v7wL/2vvJP7kz1F++bcgzjH6jv+V+n2/DUD9vvdSvOffkH3tN7zstvprV0FrzLnz992u1xqC5rdfW1byYX8PvH9giiOAuXAJ/+LVV3Rcd/kZZt/zz5tzbNxk+C1/jf73fD8sXMT85v+D0iD//f+N/M1/yNL7PsIXffNfx7S/H3nxMojwpWe+jB+6/P381JUffzhB+8D7wFqiz3wbKk3Jf/xHcE9/kvgBiuAJTvAnBd3KMMtertJwPOw5+hE+UD1yieZbHkzQ7hdYvlxM2ppb6xFKweaqENfzWV3dBE2dqWdctEid59xseke6WZkoyuTY2edNnKicShkW8XjVBICRD6zkJbEXKqvY7CXUCtaybTKxlDpQHcyrzQ+YyOGCq7kCIM36jypgXeCKbVPbGmUdQRK0NLqEUh7m6X+p14znphta5FD8a4LV+/Vbs4MCjPjDNSOJqlGkh33dklmT2gas2smhggFHQa++b6h8hKiWeaB6L9RLfPc4dnyrSZeaEx4lDx4PD1L2DsaXJWB0k2Jp5ysY/+hwQD+O/g9g1dF9Oo7jBOOg25xu0g+PY3Mt4tRWkx6q5eiaV82EvZDRVhWpasaERx8q3g99jpRQmXAYCDvMPQTv5eL4vdXAMCSHkzaLuqC5j3o+fmQ+8s2x7x/9efyoioCZp3bG/s7tzef3JkofkiY0uW7RCjMehKDMPURRBYGHjLcDVMcLLc8nUxTzVNQDV8M5db5j7Itq0lPn1ztN5qSsSRo9dvUQzRlmPS8BbeToCb/PcOJgRN1UPdZl0kyymOa9t0R+z37QPB+PyD4A60yo0eRpREgd8bzdlkAxn+iYETHFzp8l5i1r6FuHihaOBAch4JXiNMN5X6u7Hr0TBe0E/z+h/siHAYje8laUUkSf/XaqX/9VxPv7qlulL/kPN36FL1z/ElazNfA1cuMFVJTymY/+V+y/+L+TtxwLK+vM/EVa+gWKumLr2/8hv7v5O/zs3z1L6/oWf+X9XU7/2I+Qfs3XvmwVzV+9ij5zFhXH992uF5dAa8Lc0v61goMaaA9LGzUXL1G99zdf0XFnP/ou8m7CD31BzdW3rvDF/2mHr/ybf4OFf/2jJDu/h8tiwus/j9HpPm+6ssfj578Kvfpv8KOrmL1nYPkJ3nnh6/jBy9/L9cmLnO9cuO95qv/8u0Rvfgu61cY+1iiT/tnLcELQTvAnHC+R3XaIgGYQUiosVgUUR6qZRzMKKU7MSwb6LyeGTr2mMHcex9bCxumIwwBEKar42BonYNQ3XF1oEeNwZU1cNc5yi4OADoHW7Cj0adZEwQIOrzwdArU06UaWQG00U2vp1I5LuzMUgX4inCk960VJlRlUHRAR6kjNgziFGMFpjZFGMcnGjbIXU1NjES3kLRisNIqDraEzLvGqIZqJ0bScMEwEkwqaQFqCU4q4CkT1PFksKGxoUiRLZXl0eme6aEtXh/1ixYGCUsy8CLdQicEowYnCi2blYA3a/aSLg157gNIUPeCeHySrHaAUe6hgHBCGsr6T9R0//YOUvYBm0cyoxVKInafhHfV7I2a89ECTOeG5V2u5E7FUJFIy0R3uVTI5XKv2ICRO0a9rpibi+OUOFg1FckBhFGdnllxDrTU7SaCvi7uuWx1SHyVy/4d3LujUx9TMg4C7to2ByatB5jW5aYjTTBJaqiKXCAFaqiISRyIlCpjqI6dmdbgCFEyokTkZQEMkFU7ZO+hLJI2L5ZHlyB2XdrinV5ZcZ2gCsVR3qMy1stS6i7qL4Vv34Lt857iDSmyT3i0HW4/9rRzQSGuCnk+iNOmaR6+nMB/7zWdamveKuWukxTiUClg5rhbfX+uHZm1rQ5yO+sfcs+br+NU0+yTiOc/okNgLCqXnpQGOSf8KiMwU8Y0Tb6kiEvFzvVPhlSYoT0w1ly8VHk09V7LVA1TR4zghaCd42XDPPA3GYB9/AoDoLZ9G+YvvwV+9gn39vbXM3nv7N5i4MV9x4aub/Tc/SDn2mJUluL3JZ3yicdga/NfvZLzYZuFUxuiv/SU+VFzlu/4by9k0cGtd+CdfPuL7f22A+73fJnr7F76stvprV7B3Fag+DmUtennlkBC9VhB25kWq5+mH94O5eAn5xfcQBgP0wsJLH3M0IL36K/xfX9Pid84qHrPCD3+Rx/7qTb7iv/tv6aQTtgfrlD//5+h7Tw9o/97Hqc5eov7odaKb78MvP8GfO/cOfujZH+BXbvwC3/zE37jnPDKb4Z9/jvgvf1NzDYuL6NU13LOXX11nnOAEryGYB8gUs5Y5NBAwTnA+atZ2zK23FRp3MKMvav7TDD0/ZGq6cDj3ej88gAXMEdcJg7QirT3d2jCOjtQhxZ3r0xI9RSGUoQmex6HFsh5RxIYibgjjuHvk8XYuz7iRNTP/RhRPmQUcikIygjoKta3KmUofvGBwtMyEsxZWr0J77EhqRdAKE4CiWbsXBUeMYzpfMaaBIJaqZRnpHh1VkkxLWoPA4ijHWUtcOjSBWoEzCus1kXjaukT2HFYEHZogyGlBi6LrDPuRBwV5iBjqDHWg5BzvYQVJKFEIKTN21DplsHPFToilCZgBJpLQuWtNoGh13/Q/bzVmHugXqSYr/F0KwcFaIAXH9q3n9CIEUPOUt7DfhGsLtWEw98M3CF4JooQ60mgB40JDwubH0EETKUek3WFIK9rg8EROSII+TLkUNLGU1KpReHdCm16cYxwQINL+8Lj3w2pZM47u7QdB450l0iVB68PJiTrWJFXA4Bplk7jRW4IidRojjbV9kcphip6WJuBOQsOwyjqlNIASYjyZqYlCE8SLOlLQDu5RHR0YW8xJihFKsfRDoDSNi4doDp3+HgQtinBg3CON9lOhiIIiN+BEM5KUIRk4Q7AerQPp3BH07l5SQCJCGZrrd/O0zZ5MiamoaHGz06TnOQyxNCPS3/+1BEArzCh0ipvfz1Il97xRykiTljJXvu40EvJWYeZk7UDtriJNVB+lH45Cwopxh9ekgNuqS0uawtLiNMG4Y1sFJNB4zGrMsfYoadbziliU0KyPpZlc0SiMcgTUnX0f9JxkK0YkdCkP302bqsNpGR+e+4jic0AJUQRinVOFDDCIClxhhRTPDMNIpayqfSKl2VZtWtR0qElwrJgddsNyk0YJjYsvwifUKYrQQdkBHZ3zltA4gUZljzJ2pOLnjp8Pn7B45YWUTvBfLPy1K5hzF1BR87BHn/KpALhP3L+e2C9f/wXOtM7ylqVPa/a/+X7qmaFYPcfob38bOgi//ibF9b/852Fpnd1nOgw3b/Hdf3GFBenwk888xd/97Zqbffj1LxTW/uB/ILrxOy/ZTnEOf+P6A9efHUCvrjVr0F5DOCCMByYm98Ohk+PLSHM0u8+w+NNfxeALRrz3vOLrnxLe/czv80Td511fani2W7F/uY0PLcLXv5N3f37z8hr/g7/POFumnkXY602fL6crvH3tc/n3N34Zd5dDGcwJfAiH4wLAPPoY7rkTgnaCP/nYLfskQdOvLUWqD3/ub56xeK2olGbTtilCQuJyFJqgwFuhFn2oHkS1pV+XpFTH5mgDbdcEvpVEWFFEojACqeS0pElRSpkR4RClqCNNFRmCCLXVLFURQ9+YcLRKR1wHtAMvppkFVoJVNYlqbO+RQFHFLE5SokpIKiHLA9FM0cqF1aFwdicjKhS6VPSnBf2ppzP1LA8Di6Oa1VHJ4tjTn1a0nCcOQhRGGK/YX4F4peLa6VOM1joM19oM1zqM1ztMT6XMlmOma212VxfJFxIG/TYusQxCjxApetmMRNcoUSSlw6OpWhHlUhtpp1SdiLIbExLLtK2oI8Wkq9hZsVw/G/PixYTdMxGfONPm1hnN9bOWT6z3eHq9y9aKwc4DYDGCizSJlCxWgVEUU5BQzbUrhyZXpvm/galqSOVxvwRn7gy0Dgw0yrlyGVB4c+dMPUC3bsbFwVqzRBo1L58X8r280qUOhrExZLmwE9qURYfaxyiBWbdRCQY+QeZpf02gfdS4ScuyX/XZrxPq2lHmlmHIGhKi1WHa3EHQ2vUVCsWeb1HFikoZKqvZ1W32dMIoZOz5NqnkZK6844qWqkCvvlfRQRSpqwmi5yqcRvRRYF5nB66TDZ3q6IKOrzk1a/qhTjSVsmyuRYR5P86CZafusakX2Jce45AwDglCQ6JLbXDHHEedUbS8wx06+AlKB6ypGIWMG512s+9c0QmKuRH7nWGyt42NvzmWFliJxnjBztc3RThqZZhGlsoKkXhsqCEErDgicRjc4f49b5vzmkDk1OFkUCSelgRiJ1gJyJysj0OCqCbVM5aCykNL5cRURGaGxRG0QuExbkrHj0mkQJsSrxuyMggZChiueDphTFP97cGajhGhjptrPygnMAwZoBhLStsZkqAJolGhSZs0BCLlUKLmPRnQwWAOnS4bTTBE+9SoxqDDDglAEbrUYnHz0ezQVBgiatL5elaAWjv2pMs1tcCG6nGcgBU+o1/PjViUsKNa7Kg25XyS4TC1Vs2LUwOX1RJjlXCbBUYqwYhmRMxAZ1igImJHtXiBNf5An+J5tcTz5ZM8Uz7B02qFK2qZkhhCgg2aCo8oh8FTYImCJqdJ3X4pnBC0E7xsuKtX7nBF1OcvoLo96k98/J59b0yv86G9D/KOc1+FVppntiY899Svkk9jnr4xIFy/BsB7v3iNd791ysIP/ijVl2b8j9/wWQz1Pt95+ypP86l8ePglPHlN+Bfdc2z4lIX3/AXav/OP4D4E4QD+1k1w7oEOjoftX10lbL/GUhy3tyCKUA9RxswBQXuYUYgI6cd+lIWffgd5vsPf6ryZrID2s2/iZ/gy/tWtjyMCf++LV9n/ugV6//xf8t6vuMR73q4RrfFVzZXf/zDioHjmfbz/SlPD5B3nvpr9ap/3b91LlOs5UbdPHhE0+9jj+GtXkbK8Z/8TnOBPEoauw7m8IvWaDy4v4+cLjWolbIQuU4nIHIholBdKq0ApthZiXuj0OTNqsz5N6eeaOqnYXG7q/rhJj4VKk3hIpKCsE2SuDhiETmjUhcjOqBMIBKwEeu4gjbFxLktCjcewHVoMfAtdRKQltHKPLYXOxLE4LhsylQtLE0cvH3B6UlAMVw9NSa6qJjCRyBGFDCcGKx4tASsV7VARKU0c1djIkSnHsp+xludcGFd86mDA8kBhK6hzSzsvmRUJpg70iwkhh6qM8MFS14bKGa76dXKbkqcxrq9xiUF1FMVizHMrZ9k93eeF9dPMFlLq2OASg8siqm7E7pmI3TOKm49E7J5TzFaESVczyxTTjmGvl7DfjSnaEYNOm2EWcXsxwQIh8mgTeOF0DAi9OhB53VjSh4hePaKOKqoYpolh3E0xAtN2M7NfiZ2vK/JUicZbhU8b975INEorJh3DtDUPWI/7qgOZa5KwdnyHoMCKpxZLGWuCLJIO1ueKl2eSaAprmPmYbNZiddYcczQna0XIEAUuaoxUUi90fMJuZxEvlrQU6ipmGjJwQvz/sffmwZpmdZ3n5yzP+u7v3bfcl6qsrKJWCgWloUtFFHBpncZRQFsHEVxaDW03usUejFFjOjCGGR1FARWXVmiRTUCBgoJiqSpqyawlMyv3u9/77u+znnPmjzcrpSigmdBomIn8Rrz/PPfcZ494zu98v7/v1wqkFMRGo3iqsAOEJTKGwExszgESAgLnGHmKUSAnhYtXIpxEGIVygtiNrzBhVwKOJ9NxcArcpAAunWTXRMCkYPLsZBFiq+44V4vYyJuTkGqZI69I/pQT6ELSLWoMqworodTQNRE5HmMdMIgmhdhYRJyXLbZkBaMEGA9VSEJriZxBODBXZr2p0/jCXDXxWY9jhCwIhQHprkrpvjAOwxBgrY++UkA9Ncd2CKJskru2Pe2T5CHIFExIWIJ0Bl1OJKVPPf3IQOAyYjdmruxjPEtNpSyGKY1qxrwe0NJjUq2uOHAIllNJ2yhiE9CzEVaDUwVlaUmFh28L1uZA2pxAjDB6UoRrzxJ4GTWXIuUIbVIaZRcnLZmfopwhMk8VKYI0lFdkfE8JbSW1ap26ivALj9IToBTmimdh4jxWaSGvPHthNZlOGeExNj5yHKFTELnAlorCTbIVc2VJpKVQllJICiQZmlIISutPokLE5P4+JSX0HMzkEwt/KUpsUaWX70Gmk0Vt7QSBkURGIRD4FCgMu/hsiwqFU2RXir1UqCss3UQyCoBweM5RczkVZ4mspWYnjF+BJHUBmfPBeujiigLAgWcLUjwGsoS8gXIWaSWalMhOWNMUdYWJlMyn4TPcNr8Y1wq0a/iq4PIcu3r5anEAIIRAH7uB8ksUaO+7+HdIobhr6UW85d7z/Ls//QwHk0cRGVw3WqcX1RnqgKmV57N14l4e+I038oPxzzJu389zy5BvRHPgVW/nX7/oudz1oCXzR3yr/xreXn4L8ed/n/r7fwzMM914YJIRBl/ewfEpfF0yaFcy0L6Slb2cmwc/+PJOjs5R+dQbqX3sl/hEcZQXlv+Jy/Ud7vq85aabbuIFP/57NFrX8SPjAlt7lFfqH+Ijv/fXjP/b3zBb3cfp5jKdqM7R7iUAonHC773rffznDz7Bs1p3MBVM896L737GYctHTyAXl54mu1R794MxmLXVf9Z9uYZr+FpD1LpYV1J1fR6bClkNahO5l8hI0YycnuRQaUGpPFJVBaeoZD10v4rfG+K5EZ0wZ6QkF+Y9PHyECYhLxUzRJzKTSbrIS3KnSPot8iv9G1aBcpNeD2UU5orRiHYQmwLpQFtB4is63gyX4yrGu8IQIVGiZNoYEs8x8Dw6XpVeK+E90zM82FgkiQRtIsZiGUXMUuUCLpIUfojQHpuVCr2aJKs4ZGDJA8V2FNCJPVQkUIHG01VGtYjdtuVSzUPWSs7pObpRlaQSYCuSyM8YByFJFHA5nmZQqXC+Ns84jpjzu3ja4HxJESiy2EeEcK8+ymZQQXsFha8ZRwE2lnh+idGQS3HFdXHCU4ZX+C/PeIhsihEhSuY44TH0PYy2yPqY2DimcosMRhS5pjSaWhJQOIXnSiomIxbjiTypUJhyMtnP/MnU6Sk2yQpBtwWDrEWQley0FIWSGOlxeqXJmZUAq0CKicQTYCkx6GKSYTb2JDPZRNbVK0JcWUUXDUJTp9ZrIIA8gPPtiJ3piHU1x3o2xVZaJbZdIn/Ajo2uvKigXMF03uXcfESvc5BMT4ql2iBAFRG+0cx0AxZH/sRh0zlWZwNwk4LEdwWenRQma9To2BiFYbrI2KlEbNcq7OqYPQNo5im+LSf9exZKKSmloJSC0PgkeTxhKKzFd9DsxjgsZWiYLQRpNE1mBRdmHKo0rAbTICAiJQ8VI99DOFjoK6x1lAi0dMTCoMMcVE4SdymkJBM+mQ0Y+oqR8LBOUCqBlJZ6AZ4rJ1JHBOdqNXbreiIRZdL/FpFRIaFdCCpG4JUJsR1hEAwjzVYzIpGTSXnuiytSTUuaCc7GLc4t++SRpO/7FL5DUZBfsSsJy0mWYIm4KksMDRzog5toU/FtxoVKi7ycp6PaBP0qKvNIheBUpYlvoCYF07mingeUSErl6FYUm7LCBTvDatAmsBO7eychMo5BBJSgjKDfdPi2oJ3nhGqA1Bnry5ak7hjFPsOmx+aiRImUtunRNiO2xTxboyZpK+LcQgtdKgo3eccrQRffCHTa4PHRFJ00Zu5yixsuJezdSbjxQsFif8hs33Dr2YQ7z3TZuxoy38mZ7RV4wzb1JGexk7JvJ+HWix32bqXs6wxY2imYGeSsrPusbJfM93KuXxuw2IUwkYSp5cD6mPqWpr7tIceSODX4xhKVJQv9kLhQNEyHhXST1lASJ4JmIhC5JMwNQWapJJYodZAoGn1oD0paw5w4M0TliGbX4fWmCMqEOC1pbi0w27VMD6CWpTSTgvY4o5KXzPQ1jcRSyTPms02aZUqv9PDyHvHY0l9fxnYdi90OyRc5AX8xrhVo1/BVwVy6CNY+o+jRx27AnD2DHY+ubittyd9feh+3Tz2H3/r7LX7vnvO8al8PbzxhvXSW0mjVuTSzl9Ofivi5v5C8Xt+EbH8KVMZPb5xlfMtrOJtW+K3Thjsfc0TG47B9H68vf5jXF68iOPchqnf/6jPO0xUF+acm7I5cXv6K1yRnZnHjEXY0/GfenX85mK2tr+jgCCCUQs7NUTz4eeyg/4y/hyf/jPiB/4s/t3fxyvwX2JN+DCEszz1p+ZNNxf1rY8bP+UX+3fYlGoWl1n4vv16/g5s/0OcbPuxxanofU8UYrhiyFGPFT+1b5W8fXuc1//UE3zT7Ij67dS8byfrTjluePPE0eSOAWpo8A3Pp4j/ntlzDNXzNUW2scVpVWctDfByrQcDmckIa5Wib48REqjiTxMiwAtKSCc2enZJaOaYsJWfsNL3AZ74nUOMpdpdzzhySuNyjnkO7MBxKd/DzlHGqsEZjpQUlsbGi1AqnBBkeUhUkGkDQzLIv+JgrtNVUiwhfOgpfoKjR1JpKCMKHk3KZvpiiDBzaKYQNWMv2cDE9iCsjtFOExuDZlIVxBekkpfUZ2QpbVOjkHgNTI0XSEwGrrsp6dphzqsk53WTb82iUHl1dwShFoTQ9KkjPYQNDEsBFr0JPBhNZnjQYafHkmK4I6LuATGgGMsQXJUZOwrnPyBkCOeZBt595sUkgx4DBiEnLfSzGFEgq1lEpNRqBsD6YkMA5dF5FyolRRlhNWUkE9RI28woPL4WMhoreuInGErqU1sghzaR/rmH6zJhVanLAtqgwtBE6d2AUW+0Ar4TAOjZMhWF1YgZwb7iCQ1DLPJq5ppIGOOdTs2NqdozDIYVEqox2pvGtQ+JoDGK0Bd00nNrb4vx8zCN7Kqy1Qx5uTJHHkxX5YFhBOuiVGijInaR0klIJas6y5Ty2RYWRp8i1wtoamZ4YT+ykDVplQst0aSUKpxyfmplmpwpnpkKMnPAnmWc425onYoCH5dxMwENLTXa8CM8J9g5KYpsydIpeFpAbydq85OShmLmxhcTjZNikH/js6QRc19/i1t0dFj2PC80m66pBJiUtk+KpjFHukTtN4hTbtYCtOUnh20nUQpLhdEpVdpD1SX+kcCW9uiGXHoX00BZ2mvCP++YYlnWMdJQeE8YQKL2JjFHFHYbapxMEgEC6CWcnsZTOIxvMsDxSE0bFwuZUzE7D54GFOUCQBJPeUikzrHWM8wisj2cEpRZU84xupcKZ2ZihrFEvBqx0BIujHCkg9aD0JEZW8K0kKDUbZYUz2RKraYvt/mG2ynlS67G5YuhMK4wVeKTMlLuIwie3it2mpOIKYpswZYc444ELEALqxuBZR1ZxHBwaOkrw+IwgKwUElkZhrrJ6spKQ1wpuKXY5pIYUgYdnHKVVOFvBOEFUeJxP9nHJTHHetify17kKN/W7ZIHH3g0fNYyYGsJsP0cP5khljSLdS5E32NF7ESJmT3+DRr/GvifnufN0yXWXDLU8xbMlSaDJfUepBMGwQa3ToDkCbR1BaaglhqP9VaKsxM8dxUgTFo762HLgUpVaXjI7gOVNxd6NgsUtRTyCalJQHxumhh6HOiVBmVPJHDrTZNsN1tMm/aKCwSM3NWQJlbSksdVgbqdkbieglRgaac5Mx+f6C5q5rmPvYINDnTUWByXtJGNp1KeRjWmlKft7Q/ZvFqysW1pdx7N6Zzi+M8Zduo2PdZ7DZlH/it+cawXaNXxVeEpOp7+AQQPwbrgRnKN89OTVbZ/c/ASdfJdHTx3jE0/u8HMvOMjr9m9QjK940tQbsLHG/tuu5zWf+DBvP/oSNqsh/sy9fNNWxtHUcPHAD/CTf/0wa9UZPKG5I1lgd3aT1wRrvN18K+/Q30V08s/wLn78n85xa5Puj/wg2Xv+FoDuD/5PjN78JtIPfoDsYx8hu/sj2J3tq+Ofyhr7epI52q1N1BdkoLksJfvE3aTvfw/pB97L+E/eSvfHXom9eAHz2Ek63//d5A/cd3W87F+i+vH/yIP+bfxy5OnK/wAAIABJREFU/iq+bVZRqd7PfFll/wZk88v87LtOcCJ+NmE4zw9vDiiaF3HNi7zhud/Py+45xS3H5xFFjr7pWQCk5QwvCE/x2y89xvndMe/51F4A3n/xPVePa7Y2sVub6GPHn3Y9amUSc2CvFWjX8C+ItbU1fvzHf5w777yT5z//+bzhDW+gKJ7JqH/sYx/juuuu48Ybb3za7/77J3Efzjl+93d/l7vuuovbb7+dV7ziFZw6depLHlNXDKbRYzRbMCNGrE7V6LQcOVU0GaHuEzhLm0kQcChGOCexniBXgq1KhE4j9q1rpDfFsUsx1jmmsx4zlS1sTbBdaxJVM3wc9WLInnSNBEXsSvZLn3P+DI8tVHmw2uCEnubBxhS9UY29/QLrBLJoE5URPRGgTJVyvJfKuMl0ElI10DZwOCvw0hnEaIbDw5CWFUylFZpFjbo34HZ5jueJR6nJgrngAtfZAbHxKfGRThIiIBJEeogIOhTKMpI1nJyiqPYo44IsVtzrrfCg2s+x8BxCWC7T4kEvZhA4+krxgNzHtqiyLWLOyQafVAe4T8+z5J9jJrjIZ/QcXQ0P6RYXPA+hDNV4jXvDOtX4PJeCJqkf4aTgCTGFQSIpKZGsJJoDWYawMCoraCtYznMi61ClP3GLs2BsyCBqo40iDRWdqqQ0igdWpiil5FS7zkBW8FOf8kq67MI4ZWFUwQiFkwoyn4u6zup0BtU+g1jTp8n9yw3G8UQc52OYG8VUC5+LUzU+cbTBYwcDTl5XZ3t+hSCb5nB2gRvTjNzMshtUqRRjhmWVRAW0zIADvS5z7jw1dqiqbQLf0IsVZ2sx8z1LxXbpOB85btCmoFNxNN0mO3FILUspXEzXa0x6DYuUbqWOKiVapXilB0rgScm5BYiM4eJMzGajwun5OjeWD0EtZXU5oZSSCgMuzcVkFcVw3qczrxhZn0EWsG4CNlxMw2oCl0767wCZV9iqVXDaEZdQLSUnwzZ5GnB4U3P9BrTTdWrlJsNdhxyMeShdxGFoGYFOFcIZAgqGynLJCk6LWc7MVLF6EnEusITGMqw76uElpsshdZHRXxwxbhh2Fx2BkwTWIYUlkd4/md6bcGLlbiRO9KkE69RICDFIUVI62HERj8VTrC3BpemJ3NUgqGSGsWiiS5/ru7vcnm9yoDvm0K5HpTPPWmWB/RuWvf0d6oVFOYeVsDNfsr0QM1ZVzpkG3TggVjvcsPsopYhIgmDCYvWhMQjAGCxDnCuYjrbZjBSbStGfC5lPNEJMZIdJqCGS1AvL3mHJN24V1OsF+7qGWgImgNQIMiO5sVtw80aJLSSIkoUw44ahwK9XST3JoAzZki16geTewTJ5UsfYnFw7OlrxQDiLWElI6nBhNqTFDGcX57jnWJNTy4pH5w5wurWPs82jXDwUcv/xNh+9foUnFpucmj7M6alp8tCyU5/n8lKVC8szrDaabMYLrE9Jhk3F2vI6W8vn2Zwec3qpzmDaYxQLTnt1dmoVgmCHQ/oUL+IJvrW/wYHMp2IqPCFn2NEReQjdusAoyXg4h3IBg+EiY+kRloaeWwEaKGVp5l2qeUEniBhrjUSgXUapS6xnmLKXmcovsxnVKOOS3WCai40au7WAfsVnJ47IVUR7NE9Z1ZjZgKQW0vE0BZaa36Eb1cl1g9L7yj6N1wq0a/iqYFYvAyCXns5K6euPATxN5vhXp98JZYNx7zBv/r6b+Le3LuFfuod0OAkrrra2wRiWL76d1IZ8eM9ziJf+jFQXvC7dpXc25Ofe+Rj9tOS/fN+z0Hv2cesFj15FcOP233NousKvD7+LQbxC9Z43gHM4axn8+q9iNzeRC4uo/Qfxjt1A8l//guFvvJ7Br/4ig1/5RXZf/r3k938O+Ccr+68XmaNz7qrEESZFT+dV/zODX/p5hm98A8P/9dcZ/9//J85Y9B13AiDbbQa/9h8m+WlA5TO/g3OOV/dfRSPy+aniBCf2CJ4zWkIoxa+88gXEvuJn3nWCrSc9fqDo084dtbm/4FzlEB/ZcxtHP/fWyb7SzwKQrE4MXv7VoTZv/YFbqOtZytEh/tu5d2Ou6PTLRyfPX38RgybrDUStfo1Bu4Z/Ubzuda+j2WzyoQ99iHe84x088MADvOlNb3rGuF6vx+HDh3n44Yef9rv11lsBeMc73sE73/lO3vzmN3P33Xdz66238upXv5rsS/RMCg1xAfOFoEBRhhYlJY2kjhACV/h06oKKTHE55A6EKEhNFZzECkkzTahkBhME7GRTdPttgrUayRT0ZwJWbRVvrHG+IATKqs9WrJkvcyo2pddf4dO1BU7uC7i4NM36nGKq3MbDkgmfsWpSLT0qFkRwmaPFJl07g9AWKQ2p9KigUCIkDX3mxYh9apXnike5XZ9ACsus2mK/GyGEI5YpK3KHb8o2kSIHWaJNTOQkM/QJ5S6xGVHtLtPMNYFMiP1NfByj9ChWFYzjCxgEhYBV1aQrl6mJBou6ATaiTsay7AMV6i6kcA0yV2NZJsyKlFxG9O0M2krqAw1ynYYYMxI+9SBlpsyIS0HDdSfPCUfbCK63G0zrS0gch8ceR7jMfnmZqssRDo4OCs6sLLK1UEVFE6bj3CLYeJ2V5DShGdKPJcPYMLurqZVjQGCSgCU2ScIlusEiiVnE5B6pbxk0JLWdCv2sylbFR0c7XJABR8YDOqbGRlLHpCm7WvO5imLga6z2mClBNiy1RkYatimq8LnqUQZplV3XoiM85rOcBVMyq54gUh2c76i6glaRsTCwzCQ5nztU41MHBBfQXPA85roly70RSXY9td4UpQjY2xtwx6kdmrsJldEIbIWHwnl2yzpVl3Nzb5IVZ7RgO6whRlN4whHGCs+ztOQGLbmFU4LNpZhe7BOYKbaCCucadXYrmg4h1UzgU9Is+2inkSKgaPnYJYlXQmO0TVRKqqXlYNexHnt0fY8qO6RxhhSCbgX8MGJJdClKD4ljfV+O2Vty374qn9yzn1EQEJQBwgmcznhi3gc85sSIm1hjLhcc81P2BDukymfb1Sk8TdVCQ20hgPPVBptty34hCctJqLEho1tRXD4g6V2X4OVDBvkMCMO5WpM00DSTiKnCEqgh2/WAne4UayLB6Zy6hjl9norJWSw3KDyNZyYS0uG85cz1hostWCrXceMEkOzUPR7bY+lVBBJDWxf4sWS2gLjwGQaCkbYUXkJDJmTRgLWKT6o80naVs3MRXRdxfqbKuKWI3cQQ5Izz2Ck8mr7g5jXL9tQktKyHZm446blaOd+guj1DRViq5PR8xSAUDKRHoT1E6TGXpdRHCqdKpBhTaMv+8iK9QcxGNkVWSYnCMTVvQBvHnCtZUj7zsscReZ5bwl0OssFhdjhkE4KaxbRK1g/ExM1JIdRCs39wA8tZk/log6X6o9zsdTheGlas4nq5i4oHWOqkfoPNlTEXFzRmbw+50uX8YpMT1SU+M1Pjgfl5LrZq9CMP4Wk2q1M80F7iba2beSg8jJY+MpSI9iUW9AV2y0W6FU0namBsi9Jr0K22uDAb0a1LjNegH8ecn/XoTA0ZzNQZxzP0ahUGjQp5ENKp1UnrkvhQlfaNx7Erc2wtTCN1lYq1eC5lKd1gquhzZ+crZ+5dK9Cu4auCXVtF1OrYtVWKRx7CXQkxlPUGas/eq06On109y4nefXjjO/mjl9/GbStN1ObD+Bc+yujKHF3tP4pFsOFu4w+PvwQtdxGVM9w5zqnhuG+7ysLJj/K/vfR6rpuroQ8c4Fmf7yIdfJbT/OZ3XkeGz+/mL0PvPIp38W7yuz9K+eDniV/307huF++226n/5u8w9YGP0PyTv6T5x39G481/gJqdZ/Drv4YdDa8WQl8vDJrr9SDPr1rsD3/rjdidbWq/+Tu0/vJdtP7yXbT/7oO0/uhPiL5jEl0Q/y8/gRsOGb/tj5CDywRPvJP3hd/BOlP87AsOcXLzM5RacNNZh9q3n/mpGm/6nuPkSY/PnoJLTvPKTp/UH+LV7+dtN76EjY02ZS2i8BcmmUCbBTLvEz70x+ybinnLy29mzn0z/XKbP33kw8CVAl1r9KEjV6/HXDhP/sB9yKVlzOVL/+Nv6DX8/xIPP/wwJ0+e5Bd+4Reo1+ssLS3x6le/mr/6q7/C2qe7kPX7fer1Ly8j+fM//3Ne+cpXcvToUeI45rWvfS2DwYCPf/zjzxjrZzn7NiStkWMxh+kcWknA7LBBrius15rsjg7xSDpPltXwxZCUgCKJkE5yqV4ntAM8l/Cg2c/Yxdx4waOVKrr1gN1ajcROsRt7eJ6k0BKhK8wMZmk5qIkxNxdP0BRbCDmJp3VOUzE5o1RxvpjBotmoLPCS8Rme3U/wSo/re5uENmdNKB7M9jAupjlmN1Eu5YIvScIuB2oPMiU3aXhnaY1TylGFx8qQsCiIywKXlzTNFrHpUO/tIejuZ2rT5/B6k5XVQ/hlE1lK9vQ0U0NLs+fw8pBCgpKaphjgO4lSz6ZNgC8Md9SHzKsxbZdxU9ll2ZRMKc1cnlPLFTqb4nJ5C3kyRysRzOUJ8wPHN5yb4sxoL8M0JMkVbTNmtlhlE8VYWEpp6GufyLdcrsbYWsZKdAGjHfvjx7jNf5Lbhl3iRHNvsp+H3BLSlXRchQdXNE/uN0SM8MzEYU6WmrlRh7DMELLEWcNaUaHjQjLtsVupUg6WeeEO7OlPjCdS7ZASorBDKw+plxG14QCTCwqhQIHRmocCxZlogB8bdsOYXhJy0+hxlrI+86MO00kXUdRo7bQIRUHdgpM+O1OKvqeJtcFJqKSOWmJp6AHdikYYxaGRZV9/zM3dc3SrNVIvoBdVkQj8HI5vniEtFd2yydnGCuHOHEs7dQ4Pfdp9QbDTIhpJOlWffjNkpxZw1CbMpBaPkjEefadBWqSAM602I38a5xT9SLM+WsRLUqLSR5RLyCDGRg7TgKznMXXJsC/N6HkKmgV7ywVEXEVoTSZCVmsRRTjkg/4sZ7OC67a7pCrGaYG1AUFZI1M+qgyYKgRCTRZVNiohtvTZn0FrIcdrOBp5xNzA4lOy2ZiiJ5eZkRVu7I45sDtmudfnedtjVuci1veFdKcVQ+OxVvjEwzZ+WRKVJWMXkDvFwJX4xYhmsUO9LPEd1OKHmS9PkThJb8nxYGOWHeVxbLTFsSygYhRjJXnyOsNuVXN8WHL7lmJjM+ASHhW69NogAsGJgzHXm7Mc7a/S7JRsl96kaNSSJoYn5n12+oKZjkQIiXFjGklCWmoSX3MynKIiUmqqJK8biKGSKmQoaQaWRVMSWEemJGQSlUnOyUXCPMQJQVcF7IiQwncYWaC1YaQ8SutjnMRzCTU26Sxc5vrxLnFqOLpzhnqwyk3hQ+yrnuMbyh7PZZu7gjNcL89zS3iKG+yII8WYY7bPLXLMvNtlyY55XrrDzdzP3uA8+1SPmxjQKCVRWcXZffRkG0FEezxHZDUrDJjXm8zKbebVecLwPIU3IlOWXVVh5PsMIkHmTxxUF3JBKTQpHomnobJDXNmk7Tz2qQGysU3c3mWmEjD09zKIKvT1FCO/RTfYw8WpOsPpHuHUPGu1OS412qw1qtSWfSr1NjawFL6mHs6QyibWW2T5eIHXaNBTKYNA4zcSLh+E00cqPLp/htVDlviG0TO+M1+Iazlo1/BVwayvQRDQ/ZEfBCD8/pdT/cl/D4A+dpz805+iM855/cffjqjCb7/gVay0ImT/Es13v3zisNSvgjScuX/I2dkjFBuKUweWCabfD8ATvuLFK4vwbwHeQ7J2kcT/Xp697wCVD3+Qw2aJB5fWebUZcmSmwtu27uDnmzNED/8xW+/1kMsreLc9G5eMr5qZiDB8Wh5a9Zd+jd6P/wjp3/0t0Xd/L/BP2WNfazzF5MmZWYpHT1Lc+0ni1/wkwfO++Rlj1d6JzJCiIPjWbyd977uZvrUE5/itzvOph5pvv36WN737PNoKDn92FX37c3lw9wH+4tyfwuFP8ytHABaoGwNW4rU+Tbd/C+/e8w0c6K+x5/QWs35ImaSYQlC95w2YmeM0Fu/k91/yA3zfP/wlb33sr3n+4jfRfORh9OGjiCAAIPvHDzF4w+vBGOT0DOUVhu8aruGfixMnTrCwsEC73b667YYbbqDX63HhwgX2fYF7a7fbZWdnhx/6oR/iscceY35+nh/90R/lZS97GWmacvr0aY4dO3Z1vOd5HDlyhIcffpi77rrracc91jHY0iGyjO9IBrzfNlBKERYKYo0spzkoLvNY4yiVxFLINYyIeXi+wXKyyaPTs9yyeYFeUCP1Qi5UpujUA/ayyt7xOkVlTFBk+H1JWQ1YFJr3t29kfneNip8RhCVHwjmqapfMGxFnMYG3ydCDvDoJUf7w4i3cqJ7gjvxJEiLGwS5n8wZvieZJanWeX1rkoM2KzFgajxANx9B5RFsFtYogMxFWCAaVhEfiSZ7bSzPBrtGISodSVtnN6hQWhs3DSJWSuAyv36M/WKAmjyIrl8AUCGc5nyzxvfll/tHW8Z1hrpyYVyyPL+MubfAPzedQFx1uHVzmQLJKoSW1WsKFaI6Pi+ewt9xhz7hLz5/DFzlFM6Lvz5KU13Ei7xO0Q1btPJl9K6nImCstuVWsuQUSLpILuDlY56ZsjYelxpMlqSq53vUJcGAVhYVjgz6XPEUpFYcGEbormNnVXGxEnJpt8c3yMgKH8gwesOVirJFoDIXwsQLiK4FOnjPMFKuU0lLKHhsK5sUWqq6ReZXdRpOGS3BeydA/wzcOqixOe3SLmHY+pIojKiemEtuhohQ+z9pIEJHm0XpBGgmsEhyxEh0oMqEISsfSDgwGS0gruW7nErYJA6VpyDVK7zBGKxaG24RFgbSO3NcEbYPwHRUx4Iw6RK5WqXKOC43r6Q5n6IWb5MLHeAFRMaSJo5PWSPwBWdjj3MBRqiaX6lNcavhQzrM2n5EUS2RZSFhIWi7lhTxEZ2qGHb9OUBisUWhXcs7fw+OxR7qwzL8ye6nlPv5gzJocMpQ5nYUniYWk0fVwZpIl2KDEw6FMjj+eJfIusmDG3D11C8PKAC1yShTKZYSeRVQhwzFtC75ta0gwnTDV3iZwY3alIepn6FGDoumxXhmwT5TsigrW0+zvljRGu/QCx9JGxkf2gPWHXC59wlGFPf11VqcVZehh/RFWay40FM4GhM5HkSKEwneTIPiylNwdx0SF4F93CwZC8Ei7wuzlEbvzIJPrEN4661MhUdJn5swOOYa1NOSSqnL9dIA/nRHtlASpfzWmY1SPSE4nuCikySYesxzOM5pX2uuLhqHR16SqINSau+yYfg8+bUPOqIha7qgzYqPeJteKKbXDA+0pdgNNUHhc9hosVHewu7NMbXQwcU4ZwJGdkAOVHs5maCz9wHC/aPOEruPbgLA6zcH4Jax7n+dxs0gz6tGXFYZFxmywh4vDAwS2T+mdJtMJ2yLDqD1sRTdzOhdIldIKPAbyBEmmke42pD/koL3IIbdN3xc4BJ7XZVVIrksUa6IGLr8SSVDQMIbj5YhdXSUoGlg1JJdwXK1zwA5RyIlbJAVLweOkdcUD/aOo8QG8cAMj/ImTp0rRQlOpdkkH+3FWo1TBKAOSowRxQitM6OzOoDwBDBBCcKR+hAudAqfvI8CS28VJeDqT6ISvhGsM2jV8VTAXzuO2t/Cf/0KC73wZ6V/9Ofl9EwmcvuE4rrPL77/zHpLwXq6r38ZNc/vAFNQ/+BNQJhQjBcnEyakrPG7ePs3x3XMcK5/Eb38cIWB/WXB4/Vm8/JMNvv9uQyfZ4jc+/3recu6PATh+csTpBeifOcFPffN+cjzeJ74JHvk45cMPEn7nS7Hnnpyc04GDX/I6vBuOo298Ftl73o0IQkS9/nUTVn21QJueIXvv30IYEr7su7/kWLWyF5SifPI04Uu/C9KU4gN/w5O1Z3PBzfLS4/PY8YiHZsZc16sSbHf50MX38e/vfS2ne4/zkic8XvsBCC+/iDuTDKRFxedZmXucg/017th4jF2/gssmzei9rTmcDql98CcQyQ6tKOLbV74DET/Kr733HsrHTqKP3zi5jsGA4W+9EX39MaIf/lHs9hZucwP3JXqEruEa/t+i2+0+gxVrNBoAdDqdp22v1+ssLy/zS7/0S9xzzz285jWv4Zd/+Ze555576PV6OOeu/u8X7uuL9wOAkQQWjJvYjselz6rWbOTzHB4OmClSKm7MudocZ9uzbFc1m9MjUh3wmf0NOnFEVgEtE3yXs1adZidu4ssBC64kw2MmHeAQmIEmTktGgUdrPEaNJVI5KnGILh1KZvjBOereZbJAEEuDFI7cKVKpME5QJcEPS0Ztj3GkyJTPOT9i229wlC0OjR5FODuxiMYhTEhoNZ+s7iHxPIxneaISk0YRTnsI7fD8EqsURklyOVnRl9phq4aBHzJs1clbFWy7iRCCzMTozZKBCVlkm9ogx27XYOTAljzJAjuqSR5GKGtZSjpsp9N8Jnwuu36dpXDEddEm1tOUymM9nENIMMrDRFMUB74TtXgzDRERuIBNrTloN7lVn6JUHoeNj5YBbVPihKGrQ0onmEQ5S+rGMm0sB8U2NTukkQrqucT5MevtiNVahaHvM/ICtCvI4xxhHV0/RKU5y1sdokxgRYGVggYZ7VGfPBjSVh08YWnFZ6iTQU1yYWnyrvlGgZAIYVmxQ8ARSEPVFCQy4nBynrXKNNthk1J4aCOwGahc0otBliW71RqSgnaqcZ6ehGIPFzGuxkYc8lhb4vevGKVLSzMf0ciG5GKyLh+YgtQPaNsubdPlUjTPOW8Rg+aiWKQbVxFiSCmHBKrP0fEkq2xDN9mILYk3JsoHPOL2c8LtnwT/KoWlgpYjWmYwyQcDKmoSJH5ZLhBKO0ngZmLq3gs9skAS+RpfK5SnmM9Cposq1gPjZVgjSBH0YkspYaksmB9JChVj0kUqhaDr1+jGE2fTMI0ppEXKSV5WjQwdGFo646g9S8sk7E0STk6H+EaQUOdee4y8lMzbjJYoGIWC3bYmcIbDiaVlDaNwkgNWehmbcUkgHRVjsTgCK3h8RXGm5aFHGiQIlVPNE1aSIbkU6BKsFJQCTOrRKUMkknoiuP2cR71oUliFFD22XIzC0XSWeg5db4qBrl0NnRM4jC8ZVxQHxjGxSVjojRh6grZeZ09uoZiwY8tjkELg8kkcgRAgSkFoIDWSnlO07Q5SFgSuwAjwdJ9zbcW5OTgftHB6zK5uMPBjTi4FbNUFc2OJtlAhZbpYR6gSKyQ7usKq32QYTiEqU1TqDeK4QCiNDiKI1lDREOs0iaixFsZsaY9Sabqk9FyV0kkopsBGKDkxmJOmjkNhpMSiJgWqmPQ4OsAJgfZjDoo18ryOQNKwoJ0jNFUW85i4jEizORTguYnt/TlPc9HXHPZ3iYKcIOxgRUE9mkRRuCtOukpKPBlfCUF0ZC6hLGuAw9OWdqNAS4HWgsDXxEFAM66jhUICCkHociYm3ZN9fyVcK9C+TlGePUP69+8nv++zuPLLZ379j4CzFru+BlpT/fn/QPVnfh45O8f4rW8BrhiFAN0Tf4f0evzgke8HIP7s/463cT/lzHG2zk+ML7pRHe0Mp/ZMzCR++nN/gLKGuzoev72a8dju9/BdGzv8m3sc/8c9+/ixD1g+cXSi09335BAnBfef/Ufu3NemFij+sHc7vSd9EILg215MeXrS4K8OHvqy1xPc9a2Y82cpzz45sdrf/vqQOJorBZqYnib72Efxv/F5yEr1S44VQTCRlp4+hb7hRtTiHP1Hc942uhMB/MhzVtg9/RBn5wVHTkx6Mz50q+S77oXffUeVH3jXiJd0+9jdO3jx+gr/aW0AwF2PvY3bNx7jwakDLA03eXTvTQCsPxSCCpBJh9o//Cw4x8sP/xsQDrn1t5BlV9+D9N3vxI1GVH/2F4l/+McmbKZzmMtf+z40s7FB9uG/J7vn47gk+VqfzjX8C+EpyfUXx1O84hWv4A//8A85duwYvu/z4he/mG/5lm/hb/7mb/67+/pi5J5h15tMQnNhKdSAZqFo+Tv841Sbi1XLDm2etXmGw7urLPcy5rY1i4Mt9l+uML/tUemBTENS53Pz5hMc2zpHdRhxQUYMiLlQbZFWSkRzzKYXcGRni37NI204ykwyXO/S9QVj1yRJj7CRXU+cOZJCYa2g5UZ4zoHWbHt1zhQthlaykuZMmyELhaFlO3xM7+HemdswUiGk43KtgfHH9L2CY/k6FKALyZ3DLn4/Q2YppvBI04jQ5oSmoFYUBGkKYx/T94izkmh3Hb2zg9vdxCGohjtXrMwVJ9x+hh4MWiVFHBDNVHiWd44FsUPqw267QXepymJtlRdmH2KfWeOcrfNJsR9lCjxX0BpuIgpD0+zimXPIR/4Lg1NvYZxnCJuxUBY8JBd5pNhH1SQ8qTIuG8cpHZI5j9iNqcsS6SZZ3SMnWPUUd4ujXNLLbFUt55o5W2GPyiBhpdtnT7fH7GgE1mOmpym0j85rOFGjU2nQjTS5qqIyQ5oJssDDlTOcdovsErGdHOESU7hNx8HTPZwQ7HoOrMWUAY9QZdfUGZaakdQEdsSpaA8H+pdYHG4T2jGdSJDXSgJlme8LKkozPeqBkaTkWFPilw6mT+HJXabHKTdsW7xaibQespSshU0enDkwyY5iYoxRTUb0qbIlZ7i18yjPTh9HuYJvHj7CoZ1N4qyKdgF7M8d6NFFH7Jeb7E8cIl1krbnEC72H+Hb9aVQpqI3GzIy2KbRlJGN8YcgErOZtRlmF5eIS/VJdnaA27ID9nV2W+mN6g5TROMWMEjKboccj6gMfW8yQNQq0drR7EbqENRFyri7w3QBTXaXnwcH+JdqjFBwMwwLtFLkxGCfo4JOONWcIeUAf5/5gifviFrdcTlG2ZD67xPPcg4RC8HmvxgUREpVQ6RVII7mnoXh8yiMeRzgTESTvG3dbAAAgAElEQVRV9vUdHSvoFx44yKVjbtdwpFOwWB3iLBRlyNCPuOQ38a3DKlgsDe3S0QwyWjqFouRSQ3LPXsPlymUClSKFZNoUDHTEutbkWBbLVfakq8gCSicxUmAFSAOXwjHKV6y1KnRFi4fKmzgVC2S7IKkZPt+SlDhsxWEQdJQgiw0jDXvJuY6UDeZR2eTZKKdgvMjNl0v2rwkOp7uUwzlWsnXiPGH/Zo5XOs43CtaQdIuI3FURZUTV5NyRbnFrcpk9/SeZGz6Mt/UYtVGX+SynnWyyMGrR6EFTdlnhSW4er3NDPqBaJiw7yXX2SQ6Ky1T0eYztYV2OL0d4coemS5g2OYIC5yQ4R81O5MiFgzIf8hD7IRiDcKwLxXntcT4Y80Rlm65QeMEmQwFD4bDC0raWhcKwNm6zPayTDRcR0rE7yilKEGJidWOsJS0SnNXgPKqqThz2kTIhLXNWdzRZacjLkiwv6SdDzncvUtjsSnyFpeMqV5nPwl3LQfv/FNx4TP8//grdV7yc4X/+j/R/5rV0X/lyikce+pqdU3nyBDiHd9sdyGYTEQSEL/seys/fj1m9jN2zj1T7HB89xHJlD3dMP5szFz7AxUf+gOGR74PueXaemKzaNe+8k339df5s8dn8wfMPsme94BWfafA7nSd5JzciheVX9/4YYSvHfuKjvGh0hDe+8PfZaCukBb9w3L/2KQC+/dgcJ+xeupdqRHtC1PQM5ZlTyIXFL1vYAPjf+DwAivs+i5yZxXyd9KDZrU1QCtft4rod/G947lccrw8dwZw5hRCC6o1tku2Aj+7u5fBMhVrgcd/j/w977x2vW1Xe+37HGLO8862rl712b3TcgDRRL4poCB4NJjcm8ZNu1BAOek1i2jGKejRGY44NjuZYMBqxa9TYUIEoiPS9qRt2X3v19fbZ5xjj/PEuthCQmNxEvPfw+2e9a9ZR5xzPfJ7n9/s6ANZRFBJ+/efezCtf8Hb8gw+BhVsnjqPlBFzj7uAXkxYvWtnKJd/Lufm4Ku8641cp65xTNqyFkbUzdKtFdNorac5ex4O730/DHeJZk8/mlP5gbPa2HoctCpLPfhr36Wfh7NiJEAL/ohcCkH79a/9pbfevwaYp/Xf/Da2X/gK9K15P70//kOZLLyH7wY1PWpmewr8PIyMjj/FwdTqdY/v+NczMzLC0tMTQ0BBSyse91uNd5/5Rj64HixWPa8s+cyWL8fqYoM3O+T4j4TIH3WFGi4SSXCIVAcpqpvst/MSwrb1CLKqIwme06FBPQ2pRl9HVDqkzoIuXUiBcQ2gLOjbi+Ogww94iSeRyKB/iZn+YKN2ILUbIUESmgmegHBl8NOs7q4wv9/hEcBrXV0aYM1McZR2nJ/Dr3R7bTJewssic59H3PRxhGdWWmojIEGQCUkIapsf/lXQ5McvwtCHVFeJ8HK0VftZh2MzT0PeRm8O4bRfRG6FiY6LKQxT0QMRYCVudZfZOdqg7XQLV554A2uU6P6jv4Pqx7bgiwpEFt/tb+WL9HFq1GvOlYRyVcrG8lp1qL6mr6aoS95lNNLMavXyVmnqAZ8u7OT6+hxfGN+AVfYa0pY/PsM3ZyAIZkpI2HEymuFmfxIjJCZNxVvIK15ZGCbWLrwrqpGS1nNzPmOwaujahVc5pNhK0HzOerhA5DlYIVq1HjM/T/FnCmkO/IvGMpqKXWVGCVVeRWY++rJNbh0xXcGxBnrrcqY9nX7CFsVZC15SJshInhVO07Drk4YL1YZeqzoi0RyoFR2qTGDEQxL57PfSFZERLGplmqq2pYYhyS4Ylk5blqqTkdKDS5u4Jl1VXILTkoNjBaL/PWNTDMYZceVipEFpgmhKTSVbNCE5tDiP6LIqE1dIRehNzSCxBbsjXNEcPWxfrx6Ako7nhdC+mWxksXsfjJSaivWxf6jGcNKnUjtL3oe2UudGbIVxyCHMXmYNUlliBQ5dtcZ/zb28ylx5gKV4g6nVw+hFDRYy/tJMgH4FKTlRW5F5KRzooYfCKEnnQolNyeahaYV24Qj3LkBbKBXSUR6et6C8P1MqOll1uHa5wtxsjZwvaORyoCO6cqnPTDp/QjTmx51BekKw7ZBDCkNYFR4ZcCgmHqx6+NZBMcryJcaoRR4aHSQPLcCsny6dJRMB4aNmQp0zbLiVSCpsTiphMWQJHc9Z8yk4n5ssbJXc2NMeZFq622LRExR4icvusm8/ozNVYVg1iV1CvRIz4GZ0VRWfOx80KnCCnXxJoBeWeRlcaCEdQmApWpGTWoykUcaFQfUFUs4TSISnn3F7xeKDhktdzRusZflnjOhY3stgEmsUwz+z3WR8aJrsF5ThjoplSCTM6foNUVBBGcsR3WDKSxDi0nDrVTLI5zJmJfYZsShAVHJi/C9132JE9xPHpKsfHPU7OV9gaz7LZzjMim1RsRsO41LWPm68QZItUbY91Zo7Nxe08N1ziwvwgZ7nXsTVfYkgX7M53cjTaRYjHUrqFjalEiJyT8w6BBas9bD5EIn1mVUBgIbA5wgTIIuD+bBt7xRAHZRljBdZYDucbWAwnKAof685hVQjuCtZCkQ0T6y5JXAfVQzirLHdzLAbtHaEgplkcQNX2YJxFslzhSZ/FZJE+K4wmFZxug2qY4aYFQ30JnSd2vjxloP0MwaYJnT+8nOz671D+nVcw9PFPU7viv2PznM5/fdWTtphMvjoQJfYvuPDYNv8FPw9CkHz9q3zpvhX2joyxfaHLOfXT+esPv4Q/vfEK/u91E1yeHcQutVDJIKTBdw2Lxw1z+9QMN526xI3HKZ5/fYvZ9ihnfmsfz4k/zp3+dpiBIpJUL38t2ydOYey40zhlf8FLbzAsOiH5fffyO2dvYKa3jO5CfXwZihj94F6c7TuesD5qaho5OUV+1x3IsfGfnRy0pSXk6CjFnrsAcHed/oTHq+07MEtLmG6HRmMgzn3iwiF+46wB0+aeg9/jRTdpnn9LgZme4Nz1z8U/71m4k1VUSfP+6Zdwsb6ZF3/nezT7Ff7LZ2ZJHcHfPc+wPNLj+u27cNfEqgWwck+Nf1i4l+dvnOGyg5/gzR+8iOm+x9b5lJVywEf2ZxR7dmNWlim9+CXHyumtjZv0u9f+RzfZTwQbRXT+6NUkn/0UpRddwtBHPk79b9+HHB2l+6d/SPrP1z8p5XoK/z6cfPLJLC4usvSI0OTdu3czOjrKhjVZh4dx9dVX861vfetR2/bt28eGDRvwff8Yw+PDyLKM+++/n127dj3mvlZK9k9Yln1B5OR0lU/bM+xrdDAipZGH7Mru4aTSLCU/wlpFlYRGqUvhGKbiHillLIJN3iJj3iqHNvY4NFkw3orZ3GzSkEsM6RyZGbCQ6IRVL2TOV2hcZv0hhPZxMoUtDMpkhCJASkHdhpSIGdJL7HaHuVeN48sET0u0lRjrsF0sscm0WDRDeNplJCqzkG3m2vhiHtI7WDXTFE4Jx0kYtYNwpUS6lIQgtkPIYoS23yH2InqiTr/SpjO5m7S2D+NausIjFiX6jiX3l4h1wGgiie1AVHdE3MaqbZJbzS39BotUmafCvbbGqkw4QsGyW9B2I24QI0R2Aes06XgZS57H4miX/aMthpxVCk+RqxL75QgLcoyqFZSNRVqJbw0t4+KFAUVcp1NUSXSJ2XgT9+pNLHoBK0MFM26bkSIlM4KtSYftRw1b944y62whkSVk4aFyl6P1EVp+FWElnhxock3oZabbbbY3ZymGunxvVLBUN2hZUNESkfj0owkKZbh7xDBe6zLjr1L4JfwiYyrJGS0U05nHrDtGuZXhSc2e8jaOeOMUApqlOtbtYLw+iRDMuiCMoBQKSpkh1RJrJM0KHBiT2E6VLQcdhmRKOxA8OOZzz3gNYyMKJ6NWhGQSZsc8vrdtF6oqKLlNXtC8mVpjnpVGxL31AqMkyisoqpp6kmAj2NwMOeC5rKgqaTHQp6vnhnoIhdbsXG6yodWiXCSUCsOw1yMnwCkiKnqOXPTxuxaWJcFISnOiwpHAQWlDaDxod5hopmRW4tqMSj/DzwXnJUtU7SSzpQZekRCElkTnULSpJDFWZURugTUOBslkz6K8HqtOTiv0aArBPZWCxUCRGpeZXpOaXOKok3BfMMFKxSUo4K7aOPlCQaVToArNuE6ZMhlNkaGKgfi8K3I8cjQ+WpVIHY+249IqK9J4PZHczEyekjQdRntdGrnL7Y2N3F6ukcgCx1hqTYm7LCgSWKpqGC4zU80pKLF+AcZXfJ5+X87BYAO76zOEZUXNaDAWKyA2ip1HwKkF5CWDKDSOq2hbwRApVZNxpp5jn63QzB2cVDASGdJqgegbDuPSlxJtBF5q6JUtvbKlqo6Sjy1QcgqGbIK0FqXBGB8MVMgIfQPKYpH05ARDzWFuqW6jOyrZv26GhXQLN2Zncle0k2/Jab6qxvhOcQJ36K18PTubb8opbvCnudaZ5utiinvMFu5iiutKI3xfn8EhvZ57zCjfVmX2uw4LbkFkCw66CXcEirtLBYddj0N6mgUPOkrT623BD+vY/hBBVEImKWNhxM7VnKGowNcFscixJifQEdU4Z/OKod72iEjpZ4pk6URW509ipZ8x2Z1lprfEWLxMPZ5nffMIm1qL1NoOcqHD8YtHOf1Ii5NmEypHmtjWMqU+lPsxJjQ04i5+d5n2TX1a+/YyFjmMNw0LKyXkvMPIgqTRBLlYY+7o0BO+654iCfkZQv9v30Fx925qb3ob/nMuAAa6Y+7Tz6Lzmsvo/sWf0Hjnu3FPe+KF+38krLVkNw4YzZwTfkShriYncU9/OtlXPs3F8f+ifF6Tr7ZqPP2tn2XrAhhleej3zuWuMGPl7hoCkK5m2P9HbjjhbDbVbqLpr3L1yc/h5P03sveHG/jOltN56U3/xFnbP8zsugnG7m7T3v0lRr/4GpybQ5SBi2+xXHSrYPXAa5l611f4+d4gpLE2HfK57/0Zp84e5tvHpeT7/p5f3PxSPOU9br3cp51GdsvN+C++BNtqYYsC4Ty508GsLCPHJgaG49Q0amr6xx57w/x32aOv5aXAF//pdbxC7Ccqb+XcxXu58LgJ7Pc/z8/f0GOiDUgL/SWyl59F+AevwCxGlDZonh/ezJn3/YAflJ/Bd4+M8Hvtr3DVGc+mU7uRofyHRCcHBPk/Yw56ZKFL50iZ4SN9fu1pP8/F7/wCbksTe1/ji88WvGDTHK+57xfJD2wEx8E96+xjZVUTkyAlZu4oen4ONb3uP78x12C1pvvGv6DYcxe1N7wZ/3kvOLbPef8H6b7mMnpv/kucD/09asPGn1q5nsK/HyeeeCK7du3ine98J69//etpt9tcddVVvOxlL0MIwc/93M9xxRVXcPbZZ5OmKW9605uYmZlh+/btfOMb3+CGG27gmmuuAeBlL3sZ73vf+zj//PNZv349733ve5mYmOC88x7rvbaFxWhFTw6EbKstqI4kLHuKXPpYF/pFmflilMLPsHIQimSlxkqBl+Us1AJSL2c87pCUJY1aiJAp2WKZepSxZbgHWGwuSISkGsO6NGPZ8wl8n4ngICM9FzFfBT+hQLAaDJESMm1X2BLeR6cGnigYTavslYpS5SC2PwZWgtXsLvkU2QpGOzzkO+ioRtO3pGKCDVnBkfg4HC/mWfYwq2aUw2aK2WDw/DXCYp1V4kJTICmiTWjrgtekyIYodIluOoFfnmWTs48ZU6OXbMWxggDNZJYxKRc5wiS+nSUQAgsIY9hqF/FkH2ksVTJGbURuPSZFn1PYRyAGYrUj/TGWqbDVHkELByNzQicnLCoM00ZY2OdpXD1FbkoM0eRIOcWaaQ7bcQqaGCFYCRRn7r+fo36N722IGY0KTjhoOFyuYG0ZrXrsWGlzYKjO8nifSu4gAF3vs8/ZxnhvltxVJPWEKZUy1HWYWLAcGhVMBCtMtCV3BBvZWF6kKat4pBhP0RCwpbXKJm1YLSKWPUOiYvq6Qt5JmeAw0tTx1BL3jhl6MiSXHnvLk/iySaqncdOCelKQuS6ipJgdlvQ8l9MW2mxMDZ6UDCUJ35ms0U0qeKU7yKSk1qtzaLhCxbf4aY/Mc/FtnzEdcdAI5kSVfVVYF0kqUc7GZJl7J0vsbY4SkjGy7BJO1pFGsiHtMLOvh6kamqrHdCaZihWyV9CnzVJQRluHjBK5A6mbsH7Z4kSGzJNktQouBZ2Sy60NzSZCHCNYcYbxZYRvmkxHBUmmWVECr9LHIKktlPB6KeeqNif07+EHlCiGM6wIqK1OUi1SkmrIYb2FO3PFRvUA+kid1bhOpdxHO/Eg/FBIcl0BMmpFCt2QZdcSSIM0DmExhp/N0ViA1NbxNjoMuT2WbJWnLS0wX6vR9HOQkKgG65sh+cgSSTaNbSV03JS+naRwEkLjoQpN5EqcQuNEkpkDkknXoa8rVPwEXxqqSU59ZSM9JyQTDn5mSYxgz7Si5YeMLoDxFYVTIYwDZuY1Q2KFWLu4fVjfN4yMddhyOMR3C2IlkVgqJU01gtvKgvtmJOfvthhpqSrN/cMO25c1S5sSIuVyJAlYLNWpdTPKkcVTXZaLLp6bEXljdPyYyU4JlUl8bUitZMiPGdN9dhyFiupTEi6inqDzDSRmnsLx6VkH3atSNSFBCk5RMLQ8jydWmZrrsH94ltaoovA72NJdaFMhaa9n0UYI1yeqdvFsRNzzafQNY8Q4NqfRrLAqFSZuEIeSbbUlrDtHlOX4xmdT0GHV1RQKRuIWO3u72ezOcX9dkCHpCI8gNvQDg69adLRDrByME+MUObJIGV9xwXXIRrrErqCaVvGth+54VINZ6t11KBnQkTGjcUYnH+FoIlifHAXfsK4PvtMldhsIXWHBGyOWfVYmHz+c/mE8ZaD9jCC78XukX/0ywa//1jHj7GHIeoPGu95L57JX0n39nzD0ob9HTU79VMpV3Hs3tjlg4FPTjzAYrKU+ucLqbV3mugGHJxwWj3qcvWDZc9p2xh5qMXr1Pay/aDNx18Nr5Gx67grSs7xYfIerJybZkMAH9nyJ4nSP+s0R18/s4rXP/mPeGHyM88S9rJ5cQdzyDyzf0aA0mbH+nBaJhOt/MMWW3asUVz2TcxeGOVCfYltlgfJ930TYKovrynzugau4c/V23vL0v8aV7mPq5e46jfSbX0NKBdZiVld+am3642CWlpCbNpPfdSfeIwycf4kP7/0gH3/ooxw/MgPA2MFbEDW4fWoHZx6+l7l/+l2qH72NeuhTPL/NyUMRy/fUWL2nRvlt76d8QkIwkvP84Tv489MupRVVef/1f4ueULzO+wbhQsBtU7fwkniBiayAiyyLe+p07q8y2euz8pFDyLbLtU87jXMO3sv5t8V8+JcDzulNsvP+OcoTCsd0MVQAEFIip6Ywc3Ok37mW8st+46fSngDhle8hv+n7VF77ukcZZwCyXKH2399O+zd+hf473kb93Vc+JofpKfxs4t3vfjdXXHEFz3ve8yiXy1x00UW86lWvAuDAgQNEUQTAy1/+cpIk4bLLLqPVarFlyxauvPJKTj11kFv50pe+lNXVVS699FI6nQ6nnnoqH/jAB3Ddxz4z+r0q9ZbEFbCoPE6MYyrNMvF4gqWBzRSagr5j0ORkdphA9EltQS1NGI1D+o2C/VWPctHh1p0pOxdgVmwgzg5SESlpHtHMGliRkpTKLOkaI7aFKaC3krBR5Oi0BAiEzrFaEroxBycVU7HCOBGFFPg2Y7HcZaNtEknJUr2LZzTKQks5SLdFoGDFSxFFRpwVaHcZmVWZd1yGGKXHUTp6nLZQSGuQIgdRIIWgrCEtAhA5ZTLqYhXrF1TDMi4F1hTM2CU26pQ7i5PAgXWiyYYiIaNC1QrOEkfYZ9dTI2UdIZtZ4aSszZ12G01b5Qw5y4N2hk02pMkYddnFKcqcQosjtsyoSIllDq7DDt1GYdC4eBhWPIMxBRMpuLIAmRMJSW4kWuXYHHIgdWOqpiALFDNzmrJjUG7G9qUeSoNvMsqqQ0wNrRUFAzY9UTqK7BdgFY7KmOzGCOXSZoRa2qKXaSZXJCv1HiqAQsKDjZiaskw3FYERNEKD0jlpvUPTqzLvjrLsrRLrGNIxesrDKQrqYcKyK0kFtFnHOjtGqnsktkvVpAzlCWnZJxEj1GSfTinHKySjsaKpxhgLYyKvwlDSZDzWHArKpI7LWJjSDxTWDrNazsH6NOKUMxdhviaZbKUsVyUnHslolkbZ3g1BWSqjllUabJwfRFfovqHuCDxZUPM1QmkO5lD0C0LPQ2UGV2o8EQINYuFypOZxMCi4oHWIB9Q0nUrBdRWfC/ZPktBgsrxEnvlsKa1yqHApbI6VFsdxyE2AIwRBWsZ6ERM9yVLZDuSwJcSeYLyd0y08inKfxLiI2KOcFqgYVidAA7mRVG2MZwVGWrTSeGiUMPjaw01h2XVIEFghSK0LRrKju0rQVcyk8Vq+lsVKg5QxXpGzELh04ypYxaFqhpcvsaEd8+BUiRoBpVITyJEFlDNBvZdQVGImSzkqrnPEFRyqbaKsO4xGEe1aHVd1SVwoXIecMQrl0NINPLGEbEOllzEbuAS5wUHjkJNJQ9OVNGuC9ohgawKRlEhjCbUkEALlFSwGkmJUUCskoaxxVGsOlRL0csowGpecUdPGz+C8xgFuNONMhDEqD3BFQS3s0F4YpVSR2FLMcili67LgjLRN0z2MHwckokxgutQjjxI9olLOkckc3+2T2xJLVR9roL6qmcgXWPZAF1COM1Ivo9IaIu6VsX6LjatLFLiIumJcxoz3c5b9zexTJe6azDihqhFkzJo+G1fnqcg+LQNBbhFWsDLWppYZtKvxjIMjcsrOKr1skkQqrKhQ0SEeMVAgrYfSAlcYMi2J9DjWrTOeLpLkhpIqcHKLsIY4tZQyTV8mxJUOsQGdaRKtKDsWYyWEhlOjuxnyF9nbfuI8+KcMtJ8B2Cyj/553oTZtofzbv/e4x8ihIepv/Wvar/gtev/tT2i8/+8Q3uN7h/4jkX7jayAlNBoIv3Rse+nuj+HLH7DKJF8Jx/luPeOq2w03bjiJt2z6TS7ZdJQ3LL6BM+N97G9PMLqri+Nbvlg8gzfOWLSa5ZOLi0zvyjlYriPtebzy1i8jRiz3+Rs5T90FCJbvqFOdiZk6r8vKgRrT2zocuSBi/TUB6T+HTM9pPnvCGTRMwvPlCgeAV13yPjZFN/Kuu9/O++/9H7zm5D9+TL2cUwchTKbXHfxdXnryDbTlJdRJJ2FbTZxTnva4x3x/8Z/5+EMf5aL1L+S1J7+Ozkd/keepDl36fG36dJ65fw8jX7yJ5kKNb19g+KORiOb+AP90w3SlxfwtQ9hC0Nge8YBZT9VEvOmWD1GqlAlf7LCue4R3ZB0uNut46dQGznjwYj7gv5exnX3a91fZfniWs467n883fokPb7yA7wWn8MYffJSVuTLvnfF4V1cxtCOi9u3X0nnRJ0AMoqjVhk2Y1eZP1UBLb7iO5NOfpPSLv0xwyS897jFqfILK719O/x1vJf3qP1J64Yt/KmV7Cv/vMDk5yZVXXvm4+x544IFjv6WUXH755Vx++eU/9lqXXnopl1566b96T7EyykZvlr6sYOIaJ3RnCbqS1UaFQg5ow42VtJ2MPDN4MqFMzuxog4XMx23DOhWS93IWhxxG05ja4jgbwzbGt7QkZNKh6VaoepKqk+L5FmWgEJZUgbJiwLBmLMY4SANaCLpemalUHEs+FybHzcAaSYDFIcVYy6qVDGWaU8Q8DxSCislwk5CjImLCbZJVOkh8YmvomYC4CFiodKhRUCMCDNJqHKeEcvq4SDybUtIe1naomYhy0sVqjW8KhqOQkk1xjKYqInydUhBQETmBzBkTXayQCGMRDqzIBsYqKjJHYpigxR47REBBSResFx1CETBs+8zZcUpkYDNKGIRVhFSQGBKhUNKQyBzrtimJiNQqcq8zSPBH0uvWiTxLbmCChOM7CUFQUC03MawnlAHtwEFbByMFfRWQO1XqYZehIqEqciLXR1FQTXLaQxLlxmxxusyvVAmM5mQzz768QipyMmmR1qCMIcNj0S8xFBcIwMsUe+sp9VSAgP7wIuXeFN2uz45+E1ck2MggdMamTkqRV6jZlKNlQSNx8B1AOnhopDBIK1l1XE4tuuzzWjS66cA4H4ooGYEwhpHaCh08PG3QKsZLDSd0O0gD69opS5TRQlKmwAlDcjwEKefsa2OKHiPViI4nWSx5GOlQsm2qfk4iJNNLBkhZrAvSqmBn2CctLHONjNlqg+GywXY1YQbjwRJxbvGjEjp3qAcx0locbVm30oPQML9eYQVUfA9HG2JTQUVgShKDQ6MXUM5zfEdjlaWcCE6Ml3Ckg5sCArquwU0FKh9oY42sBKSqoFqAkZAri5GgrUvkFNihNpGWeNaSS8GWo31SL8M4GRKLYwZzTdsyypNs9FY5TAG4DPcKFmuKyZamVGRIIFYVjJ+DkgQWSgY0miiIUBIKYag6OWeX9lGSkkj3qLkSpTKCo5LjnRAlDLm1tFRA6IWUpKFUWA56JUakxjOSGj1KeUzoQSYkSKi1BT0fRoxm1z6FpywmF3QcD8go9wS1lsd6mXDEL7OQOGyLu0Sui5QCVy6h5BDNUs54cpSykxCYlI4pEcwW7G9UII9oT6cMy4SjcpSjXoVUpQx1FEamdL2EoxSUM0274lJ4htnhiIgAL/Dw+gMD03oVQnxy5dOqRRTK4tQNxgSYIGKv12A0hX6Q4kiBnCizahXDQtAaCulbHyktHQI6JRchNaGn6FqfxULhCMPhsiKVCk+kuNbSKGfUix4lBIdwSY1Dikvse8h6QaLLrMiIxK1gixKy1OaQtJSUTyTHsKXxwTM2KLFcLlPkwwgnpKsmMOUmO7IMYz32R5uRIw5Vdx+nRD0Wq6XHe9Ucw1MG2s8A4s99GnN0lvrfvAfxOF9uH4bauAYOZngAACAASURBVInqn7+B3l+8juhDH6Dy+//1P7VctihIv/ttRL2BXT9DVIQEqozM+1R++E6am5/OoXrMqYeOkIthvKLJ17efw+dKb+X+2rk0Sgl7rxuILg9vjPiufhq/4NzIncUIty03mDzs40xlzKRd9uy4jpH7PF71/X+ksSniaHcUuWLpbSoT7CpQvs/IZkV/scxvTnS46owyF91cQiB47pYW1+uncZ78JO6Gk1Fj47yQF3Oof5DPH/w0P7f+Yo4fOvFRdVPrN0CphGkPCAKebLFqE/axUcgaKTLO1seyUEZFyN/seRvb6zt49Ul/hJIOzkmn4Itr+Gd9EjPrBUIZVg5UmR+B50y3KCIHd6xONV+idfwM98oNnPjDg+z72jTPmNnDafMPkMcK5zlNNoU9pAAVl3jOrZbrn57xhuBDzOlRxkst4jGfZJ/H5Ikdtm67j8+PL/FOTuJwdYILb7V8P1kB4O4zX8b5s++ntOdqklN/m6gIMTNTcIdF770ffeTwf3o4oV5eov/2t6B2Hk/lD179hMf6L3wRyTe+SviBK/Ge+zxkufKfWran8P9NxPkwrdJAWPT8zhEqNkUIg28dhkVEIHIiWcbLNa4OKVIH7RiE8dgV7iWpQEaAzmqMZEs0DhR0nZRoKOKozBlKh0hln1Q6VJXCwWLLMRiJwKByB+MMWNZyZRAqRuoAw2ABWSDJpWUsSzH2MI52yKQgVQqtLCEuxmhSfJQ1uKTobJpzkpQNwf3Y1GIpGNcLDKsu3e7kwOByEiSGYZNjjCKyLsZKqqlF2RwpDJERaBQtDF5qqeSSEVFgMocpr0WRSzyhCW1AKlw8cko6Z4QemXU40+4lTxU9p4I1FqUKTC4ITMKk02Krnacpqggl8GyOMhaDGHh0tEZ5ErTFruXH5FZiEDimQNmQQGfkOiCwCQ2dUjcGFSsiaUmVQEZVhOpjlaHvGkomo8AhUh6RDZAGEDlCFkQOTK4l94+pPiDQGoZXwJEhzaKMi0FYidGGkw50sEYQlQf9xJoZ3XMMrjcg3whMjrGDPSNuiE4lxm2RVTUhERaJn2mCrMBNHXxvCceNmCgpnNwnygPW+QO2XmnAIGm7ZUqrIc66fYiuC8KQ+zlap+SuYtGxGDImQkUhJGPNHC0k0go6KiBcCyZokGBVSmY8QkciDTjaUo5zVvyAVDlIYUlEGS0ipNEoaxAIjARfagqj0GLgSSx7fSRgtKTravwoJ6jAabMp1oN1ehUhLYX0sAiQhswVLA2njFqLxCIzSSwFJneoJwVu7CJEykx6COXnlOIM4YODRghLgUMqoSIUck2DasqGLKZ1lFEYadDSkBRVQkeQKYsjAOUTY/HQGGB9sR+9Ru/u5pZMCQQWXxn8NGHjHASkRF6OyuoUQiJlgQJSV+HKHIVF2IEXL1KSpuuzITEY42CEg7eQkrgaowQdD2pWM+Jo6m7EqvRpKsNKOaeaFyhjcLVgOMuoBxm+0mxuQ+xIKBSCnAKBbyBVAqPAWEWsSnTxqOUFZA71dkwqJVoanFyw6UhGLgISQAlLw0bUlMYc0bhy8PxxAauhJ+tYAcOlZbYpCIVkcXiZBdcHq1gNXIzxBsaUBU0d60QgXYS1KNvD4BL5LpFvaDse5II8DxBuDkKDXwA5QiqWpOKQHyHdfDDORxKkXWLFKqxrScygbH1ZoGSIKSyhHaYjfBLPUFjIrKFCTo5CyIxcCXIGH7tipYiNwlqFFBqJS89PgRDXOlhZUARtMuth3RxdCKyUgIsRisLPQYQIK0lkGZkZRuwswgZIJRjzF7BCcUjWcN3sCd85TxloTzJMp0189Ydwzz0P76xz/tXj/WefT/6iS4g/+XG8c897QiIJPT/H6se+SvjgPuT4BP4Fz8c58aSfOIwru/1WbLvFZ873+NLZe8m+eSF1t8HbsjrPTlq8p/oyKjvez9n31jg7rHOk5vDau69heazOL3Q/zlw0jF6Q+EM5d3g7eH3n1/nr6Qd5XbPFN2cnGZ/pkWx/Ee20yRlHvoe+QLL3tjFaB8r45ZzS6QW/OvN62qLBa+PPcLnzBZIooCos1eMi7A/LoOAZ1e/zrWIrAI1thto3LsVduIXX+HW+O+Rz1X3v4d3n/s9H1U0ohbNtO2Z+ftAPTzLV/sMG4sO6Y+oR4toP4/MHPkM7a/OermXqY+dgqtPY6hClIOG2fAdvCT7EyoTCzsM952heXaS0jwYMbVnkH+2z+H86r4AJ+Oj5f8XGPQt09wWkDcGmc1YZGk+Zq84QbbmYxl0f5Ff6IzxnucWEjXjz8kWsH014ycx1LN/V4PDeUc4+YTcfXngBb3joY3xt7EyefvB+bh87hbnhPfy3+Fy+u3433g/+ilc2v8me6BAcB6e4htd/CqJrv07tt1/xk7dNq0ny9X9CP/gAlAK8F16EPWHXjx3HVmv6b3kDNs+pv+HNT/jRAwYhmJVLXz0QMP/MNZR/83d/4rI9hf9zsKM0z2yQ4RvFloXsR3pERlAX6SA/SaVI4YHjYLFIAxPNgsDJ6AQaLHT8EE/7lLMMqQyBzLFAx9No4TPs9tGDzCwsglB5CGvJjIebDog7tBAYq3GsQQBWGGLHoSYTPFmQ+y6xFGgEEgsCMinRwkUbRWolq36ZqgiZ8yyJ0jiIQXmdHgWC2HU4Wg4RjqFA0JUOufVIrYsyORE+YEFlhKJMqiRCalbcIabcDkOhRDULwFL1Y0Rh0QakYykXCW6h8VUOWCp5grYKLRUqBeFDv/DJOy4Tuo0FyiTgQlz1EdoiNHhFjm9SZlZzSoWlcCSxp6mUNNaRVBPBTrdLqdD0paQr+hRKMKQLYgSqAKxk43KKRrIUOFhVDDx6FISqhl+AZ3K0NLhdfYxazfKj54+xErf4kbYXSHJhKKUD7yCAkAJ4tDBtpgYGx6gahORm0lu7hgER4kuDEeAXgkAYKqJgykuY8yQ9aXFzgxKDME4pB+NLFBKJIRMSjWbr0T59x0d7kjEycgyRLFMIi5sPPLN2rdx2rV5aDJTivMIiHIufG2JyprIUgyKVDrEo4zgZUg40onIcciHpuZaBZvfD/lywwhKqKiWREIhBn6vCknsDr++GZSjQTPht3FyzIhqD3C5HY7EIa2nIiPHlHKcYtPC026dtNfOmisVghaRme4wWIVpKWKO1LxxDJgZeMyQo/aP+y62DZySSjDMWV8kdUIUF6WAQKCwKMzgXqJo+phAUElwjBnJYgMSQOx6GHEdbHNfgaEGuEhLpgFRYmYIYzGmDJFWQyIAch4MlgZ8VdPISqaNwdUEqBMIKhkRI6gzaqetojDU4pqCiUoSBWFYp+xKBoC8rjC6l5MJDG0lFJxgpSYsShRiQqAgkVoIQCo3BSQJiCblwURa0eGTPiWPjMcoSUnfwv5cPxnFJpoTGY1SGVKzAEKCEwVjwjYcjUoTNyNTgY5ZdI4CxRiIsWAYfn9AOhdWAwbWGHAkyZDB1BqUxa78yZYnXaPUHI81lvZyjI0usUMYKyDE8nN2VCQUUjNiUk+wSLhp3oNqHi35Y0gy91pklo2kJicVBrOlxhMLBtwNNPSlyJIJCZHgqpNAjg7tJywxdPK054PiYooZQFqk0UValQUKJYvCxjYK+kx9r3x+Hpwy0JxnxJz+BjaJ/kzes8gevJrvtFnpvvYKhj3zicSnl0+9eS+8tV4DRqHUzZDd+n+Qz1+Cd/1yqf/inyKEnZo9ppU32fPqv2OzBDccVXBSeyOSZFzC7fDtn3PYZvhOs45p4N6ftjNgtf40/v+Xj9I4vkx1y6BPgkTMu2nSYorou4c36RbzA/yB/OTHEl2ZjfmHmPva5Oxne+RLmb3k708AfrR9l91SJ9x1aZXsjJG66fOKBt/Bx50I+uPOFDNPj1zZ/m07o8Quqx5IIEEYQixqXqS/RtQGl0j7cuRXymXMp9xf4veV7ebtJuG/1Lk4YfXTYoLN9B+m3rwXXPSYS/WTh4fvbbhc5MYGs1R61Py5iPvvQR3h2FHNKUSbbfAGqvZ+6HjB7nm4fpJEtcodZxyRwykSPzAq8mYK7zFZel/0Ov9z+Lhf98CZ2bj3C5AV98kzwy+O7WGxIvjI7h4hWCad2MXf0Qk7lWxDDO0aGmK3cyL37Xs6vrPsO3AVeP6dlKzxP3c5XWmdywabdRAddOmzmW8ct0a5/iMvzKf5nHvJLi7OccfrLKQ4d4BbvWu5fD42vXI1+0dPZNfrEZDfWWpLPforw766COEZOTGLjmLkvfxH/+RdR/bPXPy6xS/LZT5HffhvVP/1vqI2bfqL2d086Ge+Zzya+5hOULvklZL3xr5/0FP6PgnYHXpN0bSH8MLbtz2Dtq7hLSupouiYAs7boFeDaQW7LwEMBqfQwpnJs+WORaDFY9Dy8PNLHFibusfd4viYyjLVIC5WsICwNFp0rfoEvDJaB18yuGWcPmwTGKnIbYKwCoExKhYzMSwait4Ob4+rBGU03x1AMhLGNwFcC1xYI0jXjxKAspI5AC8FEL8WlwBU+G6Rl84Kh36swRZPBEs9ixY/KI8hxxGCJ5RiJQmMy2OiGiL4gzx0KRxAPe6SepNbLcTONSVKsAGUHosGJKwkrDiosMFLiFFDvGaQx+Fox4mqsGLTZpIzRQjCaaoQZtLRB4uY5oayhTIcgg6oNyYSPxiCxKGlQa+1TtwkI1q452OgWj072l//CEBNYKv3HEgL0HY0ENAphLANfC1RlRteU2NiLsVKAtbRGHSZaER1fIuVgYanSAgtUZUHCwNnAWp1+5KuDsopBgLYeShhKckBH/3AZ1qqGwtB0BhEEQyqmb3xKVgOCURtjhR0E8QmNRqFlmUdOhqNlsfbh7EeLewApNNYtjhk9D58jB2SlRNTweIQ3QUPqGFr+YM6VI4sJNNXw0e1aUinrVUwmB54sBzMwiIVFGrNmD8tj94qkg5c9oh8M2MJjJFhlMIvlWn8NcsvkIxb6x+qyZnAXj+BAV8JSCAM4oKFA4WCo6kGobio9hJQ4wqBx0IPZhlm7n8FiUORWUSgQYtB+hZAsywoV2yeXkmouyFyoyxhhxFoZBu2cmYFOXSp8BIMxVwiHXP4ojE5ajaTAIAnW0g8mlg2Z8Adz4QnshYe9huYR4soVkZHgojCEjiCVgxrVRExOjRwHK3ysWKOTF8DD7SQKsBIXQNeOjZa8GEUCUsUPd9GxZ5myBViPWHWPlcEVBYUwDNmYIeJj/SWwjIsOPac4tsUg1oykR45aQWYqPDxONtsuVTQKM5APIGC9WcWzgiM0qJBRIadEQaVokWiJ8ecHfbn2PEhw6DkJViRM6wyFoMDBkymF1NTI/8UT4vHxlIH2JMK0msSf/zT+BRfibNn6E58nymVqf/FGOpe9gujK91L94z971P7s1h/Su+L1OCeezMy73klYamDCPsnnPk30kf9F+6EHafyPK1GTk497/evnv8P77noH77xrldaubfzt3+1j/rJL+Ob+4zlj7w2UjOWNya/ibfw8d8xfwoVpH4nldet+H3O85Dr5WjSS+UUfEPSny9QOrvClC1JSpZhzJDtyzZfKLW65/mo+1r8PBLxtscPXaiHHNyJ0Kjh02zaGJpZ4wYFbeNb03Xx95+9w4eqtdJwKx+mjJKMp0XKJzy2V+PWJZfaaGcZHMpq/deux3Kfn3fkB3j/7Eb5w51s54YJPPaqeavtO7Je+gPgZEKs2a5ThZnkZtfmxY+GW3e+ha3N+degsWs+9EuTgRZ584VXUj36b57p3cKcIGFkBlOFZImJfNspx3iof8n+bP3O+zMzNDzFe7dA8MEWpPktjU8JfJvewbtEyUjJgEj52/V/xpUqNTwGREHy2UiFqKF5+0xf48gnP4OzqHtptn2mWGZYh9521jTeZ3+Xq4C08++hu/vKZv4uqvIPrlrfzBf1MLl6+mT+4dQtnjJ/On33yOsILz2L8azfxun+8jDPP+RV+d+cr8ZT/mPpaY+j/9SAvzD33PCqXvQZn4yZsnmM/+wmaV14JnkftT/7iUefpo7OEf3cV7jOeif/z/+Xf1Afll7+K9m+/jPgfPk7lVX/wbzr3Kfz/Hz+Ob0v8C2FrXxRUZEpGGaUVWmmcNeNLYajIjJ72/jd7bx5uSVXd/X/23jWcU2e689C3Z5pu5klQnBkFFU00GBUVI0STqHlFMWocY4wviWiiaDQajb4RRFFBERBpRSPzPA9N09Pt233n6Yw17b1/f9S5Q0ND1JDk+SWs57lP96lTtatq71111nd/v2stGrKA32YTflebDqKMBQIimZ0jVSIDH1Ls03Js80+4zghpLF2zKV5sEBYK+zjACcuX/oyokwpBC5d0weltO8XGhu1irgCGDh8QkpkORVRQiMQgtSXxVfvaQDu5Noi1WCGoTEeoJKs/pT2JLkAr7xIFTsYwVlycJAOeRgi0kiijiZXLcCkEMvbJAk5icVPAWrRU2XWmGkc2aVaLEC3dl25f9QJYi4VHRYRoESGFJbFZ3ErLOqRW4i84m7/BsKl0XzesZV1yInnyfuh9yDXFAlgX7WtUBIUmzEIos35e7kwL22Z+WLo0iUEjaaKIjUeKoixb5DE4qUY8AUTtz4oigjRrLxH7q8q0bydUVYHANvfblmyD8eXHLPSPBSLhkYqsplukLIm0i4sVKhGI9vQ1ZDGZNTcDT0YutAsLPKBBLNaQsotM9wIobDOa7efWMTabg8uOd9KM2Xw6s8u+T8UCe2qot1kmKSxF0cITmkSFmTQTi7WghUJZ/aQ24wxZoYVss0ugrSIWHgboaTlU3ey4BcbHPs0YhjKPwJI3TRQmY6vIQFyMhwBcE5OlFnny+O47p/btv2wbdKlM9o1Ymk0looy5EgarMiCW7ZLNzGxPCUhSHBYnvzBgMwbYb2+Ti2cCY31gX1ngQt8vLAos7408yT6juNBjS2PdZoytt7iHRVKyEQZBQEIXrexIK1gt5sFm74ma8JFpN4lwCFGEeDhoKjZk0FYZRIDWWXKl9rkSt0HRJvvMnaezZwHaf6O1vnMxRBH5P/rj3/pY9/AjyP/hG2l99xL8U09blDqaRp3apz6BWrWa8mc/jzvQC3NNZKFIcPY5uEcfS/Uv3sP8n/8JHV/9JrKzc7HNuWiWix7+e341+gtetWcFhXCaeNOpfFKdyJ3DFdbtfZALnOvY3H8yM/7VmKRMXDuGU/f8E1bAyoPXcNL41zNNtkiZ2d5N0df8OP8CRP8viBxYPaZ4dLRMvr/Gu+eneMuKhzm7PMAH7/LZIPfyGtXEAlduOZjNq0/mtoGDmd7UZvtG4Vou4gx5E38Vf5OOQxpM3+rjb/MY7uthlZgkb2KmG2OYYpbKXR31J7x69BouC4d59/TDlLuXYtGElwEDW50neXzr7ziKz4yl27cBoHftQPb2Yq1dkvDpiOuHf0S/IznwhIsWwRmAO3YnNVugSMjlM528UYM9KMSVcKs8mrdEr2Uy6uBKDoDngWdijpgb5mWP38hbVm/m6CgmEQ6jj6/gwuMst5YMF+99nFBI7o9zHLZVcMdBlitfMs/pd6yjNBQy/VgRnQrmnBJ/4lzF9eokyrmQ3pmdWJ0nnjoRv+9n3Lz6jfz+I7fw8ur3eP/esyif+mHOKc5wmrqdt+5azyf7v8sdk7fxgSM+sk+MoLWWxhc+R3T1leTPfhvBuX+CkO0XvOvS+WfvpFVt0rr4W3gveBH+i1+aHWcM9b/7NMJxKL7/Q791RkbngA34p7yM1g++S/51r0d29/xHhvRZ+x9mT15Lf2oLREwdH7KIk2XfWHwSlDKMa+9pnXwrxJPA3290nQo2bI/ZvtZHO1BoaHKhRRmLlllh23LN0B9nMUsVm6IlJK4g8gXVkiT2lrlF7cvfKgJC4TAjcosMjTSG/laIl1oavmKi6KMF9OX3kCSK1fMuwgrwFa4VKCtwlyELRwi0sBgscY+DBPK0aEgfJRKU8SgmmfsspMEKF4nENYK60qRKYBYd1SVBlnYhdbP/2yc4bSMFnyNnacvwBC3jUVaZtDyU+cW2tBBoJEZkgKkoon8PzywemzhLksd9xuY3aYCMoXKFpml9jMmkeeZpqtbKJTpvH1NYWtZdPKtmwfFf2Pc3m1/it5j7ociyjD65jf1u3sdiZWm2nWWx7JQd8xovWZK6jQVtkALUTZ6azeGS0qvqAPuAq6cDMMJIPL3kBus2w7cchPymls0z22bDJHkR47UpTbUANNFo4aBRT+oLuwwgGamWALsVxDJb7F5uWtA+4/6uZcl8E+LYFCueyGuCY1MCspqNVbmk2klcgZv8+33g2nSJ1d/f+Y2HsLLNmmX3skBfLSOgl+TidmmhJGrfm0smt01s9i6NFmHL/sZ16Zp7bKPN2C5tr+LTQWu/+y/8fxafbaIb05ZAZvGHAiksKQIt5CLTnV2wwGkz7RLYI0ooLCWTIIkxaNbYkJzI4g+Xz81/723wbKHq/yYz01O0rvg+/imn4axZ+zu1EZzzDuTgIPULL8BG2ZJg6zvfxs5MU/zwJ/ab7MA9/AjKn/siZnqa6sc+iE0StNX8bOSnvOVXZ/Fvo78iV3sFq67vouoGvGV+LXf3Hshz+nJ8b/WVbMk5fCrYhSci9MTpSGNYPzfMnFvkwT2zvF79iiRxGUXhzylygwl6925+eVSmI//j21t09qzlb9Yew5zw+freOeamTuWs1a+j1pVd798kb+a9Gz/K5pXHsnFuN+/beRmfvvOr/LXzTU7f2MU15ni+zemUBiJaBcGhuyyf9xzyIltZmXr4+n3u+ZSjP0QqBDfee+HituThh6j//d9lH7TB7NhO9Otf/k7j8B81MzNNeOXl2QdrSe64jda3vr74ffTgv3KzCyf1vRjpLLFN8cwuBswYg2KazSrgqC0O2lF0HNrikXgVf6XPYX13gTcU7uELez/PB++4mJfvupVthR7+73P/iNdGn6ZpfVJP8u61p3N947V8bThhTRpzXs8K7ut4M+dva4ARTHQK5ov3smuwF2Hh9rEuyrrGBrmXw6O7+XX30QjgiNb1xNMn4jRWcV3rUi5deTCvNT/jvYclIODzySpu6T2IgZvGUHvPZaQ6y7tufjv/cP/nqSc1AMIrryC8/Pvk3/AmCm//s0VwttyCc9+BWruOxpcvwqZt6dlVPya55y4K73oPqrfvdxqL4Jx3QJrS/M63f6fjn7X/uTaRT/f5HHtP//O6IDNa+OEXQH8rcy4clscrPXNmpVi8rvU7IzZsi1gxmtI1q6nMG7pmNb1TGj+yBCrGlhP2DrhsW+8zvMpjeJXPXIdDM1A0A0krkLTykjAvaeQVtZxD3Xdp+oqGr6jlXR7vKvFwX5ldlQIt5ZAowZQdwBhJMVF0xQ7dsUM5UQRa4lqx+CcAx0q8ZX+9NqSoHfJpnsBIclZQspaCdsjbDOghoJgqKomLWnR/9++sin2c9WxVfaHjY+sgrF6UmiVt5y+1kgldZkKXmNSlLCbmN7SpbucpPav9sRRa7X8WlGWUSSXbh+inWXByFkHvE/exWAQxDrFxiIzTFnj959mTuafsfKkVaPvkc+/rImfZEX0t2qBzyYKmecJxgpZ1adnMhY9xmNIFWtbdR2K6P4BWL2ZZIZGGnFlYblhiLn83WzqPBTyx1NakLjCpCyircW2MaxNcuy+TagEpn3h+24YnWeuJeuK3+x/Lhft3bILL0yeiEHbpHbXYrhDtv6c9FMkyFtCyTDYscGwWv+dglvp1AXWLjKkS1uKlmnVTDQ6cqDM4FyEtSGuzQtnWYqxAL2PgRPuapXk66A1loqydpqRjTlOqZ1l2c6EhFxr8UONHBj8yqAgeTvqppx5zOo+TWg6YrHPQnjrr97TYsKfJ+j0tNu5pcvCeOkeMzLN+soGjU6SxGCNIjcSabP4KI6jjUZcKQYsZE6BSizC/3fx6lkH7b7LmJf8KSULw1nN+5zZEPk/x/X9J9fz/Q/Pb3yL3+6+l9b3v4J/yMtyDD3nK49xDD6P0lx+l9smP8cg/fIiPHTXMbLoH3VqJmvpjjq6s5AWj72PzqmNZpZqcE3+f0+bvYDOGf+jvpks3eM9ILx9oHcmZyXdxNVx86Mt4nfwVJdFCu3Dt3HqOT0IeWtHD9YdMUGmAEzk8tPL5PLribTywY4I3hhN8z/sUV8bfoYlPxWvy98mZfEO/AmU1m2Z2UQyGOXx8OwMjU6ydm6ShXsM5jUv5nH4B7+q7krHje+i6Zgp/xOH+lQMcFo0xfv/P6Hrumxfvd+3A89koAq6tPsgroyrGetQ+9XFkZxcYA76PGdlN/cK/xT3mOGTxyTF9/5nW+NLnIYoQPb3YqUnc419A85tfx33Oc3EPP4IbH7+ENC84cdPb9jnu5l9fzevIXqZf66jwNztTxgZdDnMj/ik8iQv2fB33VZ/lRdedR3OLwwHuJA92G5631+W2VYfwiLOWtyfv4+vu57hEfZskUuSJeW/yTq7ffTyzq7r47vqDOP7xL6Ct5qrnCQrjKa/1DLN7B/BWTROmDmepX/Dug/6ck7bfyklzN/BQ5QQ2jbyUnqGv8XdFuK+7zEe2vY2XBuu5NDydX695Ds8fe4hX10v829RfMub+kJ9wGT8duYpzc6/g5C9egXvc8wieJi5TOA6FP3031Q+dT/iTH+GfcDKNr3wJ95jn4P8HUuWrlavwT3sF4Y8uJ//GN6N6en/ntp61/1lmkIuOjxWCdmo/IMugOKMD+lRtcf+KDCkKzZjNY6xgMFQou9CWIBARbnuFfX/8R+qA2/bhNPIpncclfiiL7xrty+JsclHm5GAz0JALM/6mGWTOjpYZkyKsICdrhGbpvbfvSvsCzLSE7dXyBdfoidwVgBQpQ8wT2TwasCLLqOgTk6AA2d59KRot8wQNBjBCYixURIuqzS/2TaeoMW47F2Vatj0eFotrBIk05LVDS+l9+lLYTJZlJCAEAA5tVQAAIABJREFUJRO3WbF2K9YwpQt0qSYOC8zM8ruHyLq4QrfLHDw1s6AdQa2kKNf2P1amDS7LiVqUqiWuQOn9t7kc6rSEwz7azGXWHTrU3SdL5rKIo3YrElrSobjIMz49f5Z9v+9eVopFqeDT2VO1/fQuNUibZZHcd14t/xdcK0hF9gy1rJttXZT0iieAYEEinlyOaLLHwY8sAyai102YtRkT++/1yVPd7ALz88S7XdghxgUDrkj2ibUTKqW17LnL5l8W85fdxlIb+8P8rpXEwuKSLrI6GfO+736tgiXXXP7MLgeTctnnZfTW8s9tUwiWP11i2QyRJvvTMgNpHbZFjEPOaBy5NDelsfiJprca01NLskyUGHybyW7jGUlVeQgLMyrHeDFP6EjGizmksHQ0IjbsibECIl/gtGWYS1JWgdMGitYKEiR++7n2xBxd9skSY02Klg0KFnqYw4p5DBA6iqSdoMW03/WONRSjlDRSrKtqYrz2Ak8mlXXb7zGNRMiInJojiA0DNqZXwvyApRX8Zgs+zwK0/wbT42OEP/oh/stf+RsnMXgq8557PP6pp9P6zr9i52Yz0Pf2P3vaY4w13HKoy9yxJV7wkxsY8HoQg+dy7uGv5IQDe/nxp7+EpxNKR3XyS+9P2RG4nD/Qz32epNQYojryKj5OFyudOc7b/itqFLl19RCX5f6V3dKhL4GenWUQLb5yVJPhkscZmzdxb+dhfL10OGyfRYmEqDTKKcGJDPpbsTImQjEpH+HYrqtp7HGZpZsHxWlsPuKVrF+zh9c0biDY+hOc1iDvve173Pra9Ty3tJdxp8Rpd0d8+mjJ9/bAkeFtVOOUnLc0vV+24jS+tOcK9j56CaUbIszIbsoXfYXWpReTPrYFrMXOzRJefhnB2b87aP5tLd2+jWjzzxAdnchCAT01SemDH2XunedSu+Cv6b3wg1xLlbXOIAeUN+5zbGnkeqyAKzu7Of4eB0HK7JF9tOwoL3zgPtbNh3zuF1fTVxvimxtO46ahw4mlS75jhIH8LWzc5PNA9U5eptcTkOAYxXSyktkWePUJ7tqtQPQzad7HHzx2E96KR7i8Z57XDaSs3TvHDenBVIJtnBzfRX/hYR7tXM0LduzA23Qln2y9gYGRD5HruovNvTdxVy7HBydm+DvnS2wrH8js3TlW37aZj1z4WUq5Y/jnu27mzplLOOAb36WqBPe/+QhOtzE5nrpOiPuCF+EcfiStS79NsuVRbKtJ4by/+A8Xmw7eeg7Rz66hdfH/o3je+/9DbT1r/3NsfwIyTzep+gVSqzK/qu2uKCsJ0CAgkQprBbLtKPeGLmM5Q1FGyP24rDnbIhR5aCdbaNgsgL8olpxzK8HTmaO6YI6V1EwmZ2sWFPXiQqSHQEtLo6gWHUkBYLN4sg6bEtiY8En3ty8j0MAj0bks75qTBSYJFWJMDmksCssq5ilSo0QNZSvtVe4lYV8XNSLjoo0klm7mTC4DnonMUgoKm8XzZMBQIJBIYxhkmjE621dniIVhwouyvpAW10DdukiRohbigqzF1wprNamAwaaHg8QhwlpDXoTM0Yu2sh0rmI20r1s0XQ8/XbygDJjvZyYsbA09gW2jcO0IVGr3AfYaSdN6FElpWJ+CiPBj8yRJmSDTo3kiJdEOVkIqJNqRqNRQTBW5VDCVy1jd5cDfkiVcAaiaXOY2WoG0llgotvqdbLTTOMYidRuABg5uqJcyTj7pDpcidsb6XFZPNJDWLJMz7nvcckhVLSvK1fRJ7bXyknwr65ee0GEyp58ALPb/Hu9tOcy7goZroM3CCsAaMuyfJhh3Cdpasv5bkC2WkgUgA4XYwwpDPfUpuvUnAbylsXviuC99zu5VULceLeOSW4hBtQpvQdfZnuKxkXjLgNdyCfMCbDYLCxbtRCGyzYIqKzJ20ap20n8QNmOodBwh/ICmp3CtJh/HaJHL5o0UzHVbBppi8SyOTXCEv8iuicX5KfAtlEOXebkEJCVZinzB0gLFEzFc6ggO2BnRyksmAsmm/AyRK3FNi2Ko6Z51kMa2pb9tVlUJpjsd5l3FRDFgYCamHMfkRIw0sKEVsi6sModPS3hYoKsd4xj7CmENkS8xKusjYQXWQuq2l62MYM51cfyEUt0whUPiu8RKtBe8sudMI3lIlOk0EQ4pCYpYKqpFZ/H+EqHat2txjaavFiKMuzhPIhzyxO3eyp63vrRJMx9ihWG25ePPWlbsTUn9bEEgp58egj0L0P4brPmtbwAQ/A6xZ/uz4J1/TnTDrwivvhLvRS9BrRja737WWm6ZuIl/eexrbK89jvv8HtZtlXxks6b7Y4eQ3ngF93z+AZ73+EO0Ch5vLX6fL5o1fGulJbCaTxSP46vTf8g2dzcmKqOZZdv4GsKOiE0bLmLDWJX7HI9v6t/n9aM3UO23bNHPh0dP4burS3g6QagG5Z7rUJX7SVQCqYIEVusmj+c2ghjh0doNiApQga7k+wy1Ksw4L+Rz6R9SiRr88x2fpbvSYtgLWZXMc+XG53LSw/cyH+a5I9/Nca1pvn7dZs4+4+WL937CprfxlZEruPHByznx8ib+K1+Nd/RzSG69meT2WwFwDj2c8MdXkD/r7P1mB/zPsNZll0Iuh01irDHI/gFkTw/F8z9E9f3vYfq7/8hdh+Q4d/Wr9wEeP314nNdyDymCLxVdPru9yN6C5NTKQ9zldHJMbhtT20pEe+c5u+PDFFfvYlX/Nwj93VQDwxQw1RRYxzJv+znETjMrWoznduJVHgeg1OxndvbFpLNHcMnG30eMvArVcQ+/2nAZLxw2fH/qxbx7aAcKeEPnV3lg/QYOvUOyu14CBWO2n2LjZfzjyWdw0V3v5/0rivx4R46PrhpCrH2I52+9j1v+4nyO3dDPJw45mLnH1uJNPMynzxjivrFv8q3pH/GmA97Mq9a8hpx6MlATQpB/3Ruoffwvia++kvwb3vRbJdt5KlMrhvBffgbhT35E/qy3oPr2n0znWfvfZaqdGkM7GSM0nwQUaaKRxK5EI3ASiRBZIoAFByuVimKYJ8ppvNAgtULoCEeCeUL8hmdjHGuQNqUe5CjHmZM9cqDg2O0xAkviSZzUoKxux39YHJsxYQrBblFmBfM4aVb7Kmcs9zjdVIjoI4vRiXHYZTpZzTwSS5AKxpRDXqRME7AuTulJJHtzCU2lCcmxXsxibR1pFC00c+SppoKuJGJAR8Rei5xIcWxMIbFEVhHFgoJcAidKG3yRkiWxd6gbn4pokghB3dEkRiDNDLHK04wUD5o1HO7sRGIwVlCxDSZkxyKn92i5CVpQFznychZpXJK5Dcz27mKlbVBMHRKZ4glNUTToqfUzZT0my5KVU4aybVBTPuV4lsTLZWm3EewolOmbq5JXc6SUWSCNhIDJtIQFCuUGxcZSIgsQjPT7WC8DRzPk6SVzJjO5mCXSWaKRinEQLR+RSzHqCdI9scAoQkFGFG1KSygmpUeqMuZzWuTZFCWMYyjZOuDjWEFLZIxBQ+dxDSRtVgmbZfBLlYdBZByNEpm80kIrEIhU4MbZnHVNloQkFmKJG5CaCRnwWD5gpTeDF0o8YmLh41qLJMaNDShNUwUIkTmuph12pADHZtxkTkvqy7IBqnaA1AKXU04bVEzIqC0uHm+BpJ2BtJIoGq5px0JahKezwdEWT8dYfIygXfMss5EVLiv3JqBUOz0F1JMCNXzq7ix9YooQgTJ5YiEJbINafSW2PIuwltkOh845DQsjLgWtgiLf0FniDytJjSSWkgJk9eBkSiJdPBtRmfeZ6dcUtc1CsgS4dtnYC8Oj3WU2TlSJlYs02cJGIpfAprICISQJEs9qFJpy0mAKhY1DYjy6nDrauKAEYcEy35HFnu7LiUNgWrAM6CkMTgpCSozcF5IqqxHWQVp4fHWONXtCXJMV8W56LATEAZBvGfpaKVr6VGSEwdLCZ68uUM07zFVcQtcSOi5z+Rwm6UL60wgLj/ZmiwwmLbBKjdKrI/JJjiCapZDWMFYRYxkOfFzXo+XEaAR5QlYlKXuVx7x0Ue17tFYxQYl+MUuUl4xIH2Gy+mfuYjETSJFMyhwzJsCqeBGkW6twRIQWDtaqpSddwnxXCibAt6ad6RSqIitDIm0G1hzHUvcklUQiAkWrmGPVbBNXWxwsJf30haqfjUH7Lza9e5jop1eRe/VrUAODz0ibqqcX73nPhzTFOeyI/e4z2tzLB+44j4/e9QF2z8/T2vN6jgkuYPW73odXnaX2F++hccm36Nv2CKWkRb4Rc+e1XdwoDC9pai6fSXH638/O+EZM3MOm0jyEDUrTszy8vsFr6nVaQjAXrWa23omZF/xg8Hii8dfQ0Yx4xZ4rOdn8FZUD/xbbeScHJw3KqcOpYZVPze2l23i86qDTODY4G5sWsNrj6AeHOPF+w2xuluqB17Ch7+Oc3LyUYtTgogPP5IikyrxQrF2TZWB82/ghXNCVrbIcs+PLRMuCtLtyPRzn9eHdMg9Ygrdl4FitWw86e7jcY4/DTIwT33LTMzIu/57ZMCT+5S/wXnIiNBrYZjO7HsB97vE4Rx5Nc/MjeInlxNVnLB1nLTf96koKIuJHlQ4OdA8jPzHH8NpByqJJp5zhshWnEiqXQyfv4tDS3yIO+gpzlZ1sHEl59Q0uxBWsFXRGZ/B/jnorQd/hvL06xSfmx3BTOCpWdLt7yA/9gN61n+bs8U9SiWdI54/mi8F7sQJeMX4n3wvP5B7H5w9qdR49cBwBTO+2nFDZCQiaYox7xg/gW52n8Ocz89yySvKV+0YIhwtI4NjRh2nceivNL1+E9/NrkGvWcsqJF5KO/BnV+R6+8ugXeeu/vYFbJ27ebx+6L3oJOA64Lvk/eubqlwVvPQeMWVxMedaetewHX9CpGxg8SCVGgWdCYi1pGYGjs9qMFkHcLNMZKjoTqBV6mOlKmHV9Yi1opWDa7ye15EPiteU323tL7B1wEFiMyGRwwkmwInOcHZut5Fqbyea6G1lsqlGCyNGMuT6pcnGtZEXLkmqXKVlgWFYwEqRxGZdljBQMRf6iPAwLszaPQ4pvE2KjsnTjkUsxjggiIDaU04RVusrReoINTNKdKmLhUo8HuEsNcpO3jtgRqKDGY3KI0PHAEeT8kB1Bjr0ly2wQMVqK2FFp8XBnyK5ixGyhyq5ywkRxnoc6QnZ2zXBtqcCOUsRIMWZrSTBcTHgk7yNzM1gJe1QZnBaJTNkqOtkaDNAj6+StQ7f2CZBoZWhJh7JTJc1FjPa7SNtOoiGg6SkSGzLa5WOQ7CkUmA8cIqWQqrnIVDaMTxDmKNeLdEQuWMtut8SjPWV2rnJJAphVPnMiR4xA+wpl2vFUCrRRFGslIlOgrx0K11LZeRybSciaJpPkmVaRKmUwloKI0BLG+7IV/RtWDnBvbh339PZDCN3uFNiMbZknY7XcVHDvulKWkAKo+Q6bD+nDSMEMWdKJhVT7Vmmc5dJFKcBKwiilYR0aUjIn/Hb8miBEMNCEakEttuGJiFwIcSRwbAxttrblSmY7FGUVUpQRKZI4LJEzLi1X4VlBveIy3uMwFwdgoWRCFEmWVMZC0SSYdrK/PXGJ0bjMGEtJLVJHkDpZkhuJwbMxo30eoCjrBkpFGM+yY63PTF9b8mhSppMKs7pMqVWijo/bltspLFJoKmZi8Rm07QXS2JMYR5FKh5mejN1OhQS9kHYGsOCYFE9nLLCTuBR0Ay0UZllZzkAbcjZjxlMlGS+VKOqYDXMNtKuwwkekFUZFmar2qaV5OhOHputSddt1CCNBgsBpuSRGMWsdlElwZIhvY+YTl6nUoaoloc32dY0ltYLUsdg2iC3rFo5JkRhaRUXqghTtJBt5KCaC3sgldrKIvaJuARLPrWOkYM9QwO41OSYGXG5f28F9vV3c3+/zWGcHW3vz3HxAN/euqjA8NMdYl2WuBKgYVIhJgzZ7KbDWxZoCu81K7jMbGI8OYrjYzb09ndzX08UjfTlS38UaRS7Jkub3JgopU4xbXwRL2RpZxh5nksPsnenLJjk1n02B9jmbIotbzKULgKldr07FaK+KFRptHawQGJ3HWJfEBsTSUBMOUyJgSuSZEAXmRMC0LbNXFnjIKbBLdKJUAylSYl+wd8BlbmULt7PEj/ufOhQJngVo/+XW+MbXwHUJ3vJHz2i7ZnYGlCL82TVYva8WffOeazn3hjfzwPQD2KnfJ9pxPh974Rv4uH0c/ZlPITyHXcV+3vCyj0POhTWr+NZZgyQ65q8uSfnELbP4z/0AX7xtNzbtRArJZ9J/YKV/Ob423LdecWQUcY8u8P7oPF4//ksAbux+AR3Fn1HddBU3nHwztx2S8urxBmfN17gvOha3lXJtscDbBvu5qiT4l61f467wm0i3gVAxdx+6h/uHOjnrV5JPjk8hZMzm527nc3+ouK13FTfq53Of73FK5W62daxg7W0z7A06uMvP8WJxHxf/+t59+uE0/4U87wGIjj8A1T8AsA/jIvv6kb19hFf9+Bkdm6ey+KYbsM0G7jHPAcDOz+G0U+wLISi+6XV4TTj7voAVwRIret2jE/ypvpgU+FIl4KyRAwHYuHonY0oRRB18Jf9yvne6z6WveJzJ3lneNlLnwzfE2KTEj1+ose48QhrmclfxhYc/w8/n7+F9/b18uK8HieXBxlpWJA7/d3yKoVqLK05okR72ZQq9P6RejHm4cw2Do1Ncok/iATNEp9GUukPmA1gtbuEPJv6FtQPbMa1VfOO2x5g/6j2cW024+JIWZ13b5IGhlNYxh+K5Du86+Xw+c+wbEb7ADO/i+Re+j0sPOZC18Xk0d76DRujw4Tvfz2cfuIBY7xuDkdx8I6QpJAm23njGxkYNDJJ7zZlEV1+5mGHzWfvfbRaLEYK+WFFuBRTSEGVjHCKUbrC6NktPQ1OOBJOUmaJEy8mxMokJVJO9jmLK1IiaCXs6XUYqHlYsZVfLzNDQigJ1PKvI2ZDAxhQjl440JfIlw06ZVEiStsPYETfoCat4uZBmV0K3O0MTl6ZQ1B3FcK5MqErk0jKuDkBAZ+pjc1W2y24C64LwyaHABsw5eXAMuBrlpGgUt3lDNDyflme5N+jmLq+LyJHUPYeGJ7iGF3FP6xTutodTlx00XNiek4y7ivudAfb4KY3CKLeUBbuDiD1+wmguZsKzNKQirx0q2uHwWHJcoumIyyTpCnpiD2HKJI4h8ltM+oaaF7E7J7gtX2G3WUW1eSiBzrPLKzLmFhBIGjZgZezgiAgHzawSbEgbVGSdeWVBiAwMxxJPCwKjsW6RKBDsWF1gNq8QxpCqrEhxy+SYshUmTYlc7JAqiSDAsYbHVhSolgOGhEMNh910UBcuJb3ATgikI2nqEhYHRSav8kREpREQOZJpmSdtdZJGkrr1EdUupk2FB4v9zIocsRJoKZktO2zd4BEFitYKD0cZhNRs9QoYa6lpn5rj4qoavpfJzR7pGWB7ZYCa51CMNRbBtO+Si+r4WuCQUsNDSY1oSzytglkZMFYR7PYCWlEHaVSk0MghErhvwOWalWXqJYFrDeU0JJKCsKgZaAikNWAk1kLDUzxS7sgYZmtpFiw6UeQiH42khsd0roAVWVbQZuzjmoSGI5iNyiS4mP4qadHS3ZS4GqS25G2Cl8C2njw7i0Xu6e3ESIlnU1ybMFN2GRnMoT3LmiYoAfnULi6I5JNlcZNktfzqiYu0GchKY4cIRYRkxuRIjIsyAjeVCBRjPQFNlcWfeiaTFgpgZ3+eVLhE0iP1JDMVRSocmu2QC4PMGFUEiVT0hwnlRLG1UEYIyUPdK9lSWceW3l682EUYw+6ST0O7OJFBJA7j+YB58kzrAn0TlhXzFr/lEUtJIxDEPgilOaBq6J12CZI88/k8Y6ZIzfUoJZJcKtGeoK+lcWyWuEhLiSdC8qWIWqdD7GeySuVrAhVwe2kTw9VV2QsrNnQlDluG8uxZI1AyZXUc0GN7eVwNMloqs7dSZKTXMBVUMKoFpCBSpJMtlNu0iE26EDLE6CADt0IjRIogIRUujzLEFtHHXlFm1HHYKwoUoxxua4ggCRholbEmR9Ot02kilDAokVKzeXbRRYTDDtHBTtHBnPCYJocSCYl1aZGj3o5Q8zF0OhP4ooVeFGYbrGpiRYqub8TEneh4gDQcIE06QdVAhmjrYRZoUQxChQhvklgKYiHYK/NYUup4aCQtHGJdRMunT+DyLED7L7TkwfuJf3Ed+T984zOawluPj5Pefx/eS0/EbHuc6LqfZtut5nN3fZYL7vtrPL2GmcfOY53zMi4+6xhe8ovv0PjMp8kPKSqnV/nACe/i94ZvpqM6x3ePm+HnqydxzwwoDkaM3dnBY9+/jpHW3aT1gziz70HeWeolLe3hnPMUdx0IZ64c4E8O6CLa9Dm2z4WMdkiqx/4jetUvybs7OWeyyj9+NWXobo9LOsq45Yc5JA45f3KOd27LmMT1xfXkVR4lFJuKx4DxGO2f5ysvgws7evmju2LedL3mnrXgbPoS949rekyKj6a6Okd59w7OdF/NJ3s6UcLQ8+BXGasuRVYccWMNI+D6I2cXt6k169qxHmCmJvFOOInkjtswzWfO2X8qC6/7KbK3D9nRLnWQposMGsBE/hHuXSc48ZZ48XqaseaKX/yCo+U2LiuVGOg+En39g+yu9PL8ylbGlOIH88dw8Iq/4eojQp6z1fKR76f8uhLwVy/1ufOQBghY5R1Hl9cFwAGlDOC9cuAVnL8j5PfqdXLBbu4I4Ju6i099y/CPd8xx4F6L6L6HYN1XuPfQMby5lKHBT3PhKjh27WpuLwb86bsdbj845cMH53hf/VqEalBPG1z7y82M3NKL3OuTP1JzyZkuFxy1BRGGXPDoxfxy5XP48ekns+aUKWRaw//oe/mi/zjnHnUiU1veiVs7hWt2/4Tzbn0Xk812UW9jaP7L15CD2fyJfv6zZ3R8greegwgKNL580TPa7rP2/08rJJK8zmpvrXJGKJtqVpNJKhCWjjgmEE280KFlfEh9jM3iZIZas5RaHpX5gFIrIHJz7BxM6TchG8M5Vjkh04MJnpUQu0jbwpoIB5NVCVJgpMBJFTv6OtF+J4Mth4Pn63QZSdN1iXOWuCPEQaBye5lwLEJGWSwclpy/m6HIY1WoMMKQMxph8tzABjaFkoEoTzXpxjOWNck8R9o95KIS03QRiTyPqG4eTI4iSgZphgdwtxhk2Mmxw9fEbamldKcRIkaqmBiPqXyMDXYi/QlSp4WX5ukP8xzfMGysF1G1AxhqdLGm5XNAKFlnp4l0idl4NX5Sxia9mHAFq+sVDmrkObYuWRcJRNxJGA/SFQUgBLtkGd9oSLIC83l/jEgYlJUkKAQCtx1lt0MGFOQsM/0psWfJRZK666M7IsrxPFK2SJXEtVkNJa1ShFGoVJIqiZ9a6oUuhs0QD3V0obXEpDAsFI+GG2m1BjIeRWWp8Y0Q7OnN00hKFOb7SFTAfEeJ7Z0dJNKnEuWQJATaoalcQFB3PBytiG2RxAqmSdjieqjUUrRNOpoeaFg5U6avAWMUGKVIaASpCZjzCpSdOYwUKKsoVztZNyMZaDa4a12eB1Z6SKPpYo68bTFp+pghvyhTm7V5IguOjAg9ix8F9NVdeus5qq5PqhRraykylCSyXdZAQl215XhNmBB5pk3Abt1LNa0wkxaopgGjFJBCk1cxeZ3gaJhvWNAtqsJnd66D6gGWnSstu4MutgadxL5ldWoZ1SuZ9CpUVBVZLaOaATr12D5gGS12IAwYz1CQWW29x5N+BkUTPRCQ6ByeteyKu9npFohcSTGpUomrdJk6noww2sVEht09BjWfJxWKYVWkiYfQkuHegLt6BxmVFVqBg2sclHFY2WyQyBSpHWLrIHWCiEO6dMpYd8DjHavY1htk0lwBXipxtGAq9ZG4pOU8OzqLODrFxiWGc72U5xRBQ1HQ81R7Rml2TLJibgLVTLmna1VWAgKIfZtJE63DYwPlDIRIhdEOudShe66D3GSFEW+QxHGIHKj6kjinKGmD7xuGGu2i3iLjjrS01Csu04MFxvs8ums5ikmNCT+gMNfDfFgGbXGtRNfyTCW9zDQPZLzZxxajyCctKnqMrqhKKbT0tqr0z0nysYQFlsr4kBZQUZEgTcjFWVkRIUKEiLE6D0meLPKtLUbUeazJ4WIpOpOMkZVgclOPjS1BRyqRVhLqAmOmh0kR4GIIhUuMS77Vy3zah2MFQhiMzearL2sEYoJckuKlBmksTirxdUIpjijGIblE4iWKQmhYPQVrRjronC2wojFKrhXgRT652FIyM/TNW9ZNhWyYDFkxF5JvSkQs6dXzaGMgzJEPG5RaT19/91mA9l9k1hgaF/09sruH4E1vfUbaFFEVf+uV8LXzAOg9aBx3VQ/Nb32dJA654N6/5pItF+PWX8zoo2fz9uOO5KtnHEDpbz9KeNmldBwUsfJF03ys4yNoIXjTzuuY79NcviHkb6qaF8w/ztALZygMhBQ3388rt8zQJ8cYrv+aavdutg0KDhmBv5iq8sGJBuH4yxmYXMehw5p713lE0y9lxYMncOElIVeJF/PQkOTIrfDuqTm+euMMX5qdYGr4VB53z+E1K36PnfWdfOqoT3Oidzhb6nczVJfIqAjawZsZZOMDDptGLKc8mpBLLd9/wV6uSTvY5jgcsz5jy7yr55n2i9ye83mLvI5/uuYGrLXoPSPo6zbzyDF5rgqm0G0mRuRyyBVDWSbH0b34J5wESUJy83+uzNE06iS334p/8qmYyYnF7Wr9EkD7xd7N/ODFArceEf7w+wB88d+28efmYiIEX+6scFL9VAZHtsKaCA0MpwE/3vQw20uG1wy3OGq7ZeNuQddwEZPmEdrl4L1D7InvIB9ZvnDcZ4hMxFCwkld1vIWrpt/F+0fqbH54hE+OT3HCg4ZEwUdeWD/wAAAgAElEQVQ2bOLsB3zOuWKIcPzl3Lc2e8ke/nAfeva5nDZV4iNTM7x42GVXH+BV+WRnndPUD7FphfVXfYfmzoTeo+ZZc9A4Xx2fYqoXHjgQ1g0/xln65/yTOI3bN53J+pduJVjj0vr8hbzxtsv45zOPJqifQTjyZrbOb+Oczecw1holvn4zevs2ul4ygL8iT3rFNwjuvAhn8oFnZIxkpYP8W88hue0W4nac4rP2v9d847BLdTAuPRoKtGNwjcAKRTWXyciSvMQaj8FpSXc9pBgaHCOR1uLFRfzII1GwaspSms6zo8dhrE8xj+CgWorbcinWclgFBR2yxolwVYhPk/kBwUhfHjl+IPeU1mM8gx8nTGtN6mS6KRl7BEYulpKWQiOcJp43jUdCSzjsEF2MKZ91ScyQnWfIe5iaW2enHmTKdHOwHeVRr8T9qptRetkhupHuDA1boGFK2LgHaV2EkMy6MVOuQqga0qkhvWmE1JAGGAQpghemExycNDmhoak3N+InJbpp0SNqFIlIUDTIMUYHkXBp4mJElt6kLJqLVbta+GhcvKRMKaxwUNQktA7SnSLnTTBo4gzQipSiSemR0wzokEKSozfy6WsrS0oipS+NmeoX7NwIw10uVpeIJlcxsB3UWAtfVIn9GGkFTU+yYXqegmkykMABeoRSaR6DpGOuTDEyrJz36G9qcmGAbHYTpQVcY+jKFQisz7rEsq7ZRDoRt/duYqfsYI/pJJYOHSbl5Kkxjgy3MdVtmO2t0pffw67yCoj6WT1dJ3U0BWeGQDbojgwdrTxN49Mq5JlWASYq4usmE70ReVsnsR6p0KxsRrRklglTWYkUloKu0xtPUYolQkJUVkS2QGQluqOK47co2gbWCrxUsL2vk71DAesbYxRocPzeGqHuo5golIzZujpPo0cwJz1mnByJUQQtSamVw0ofoR2avkvigxUKi4MD5ExCkBocDZWkxbR0McqS5Ca5qVAgsRkLKY3P6iqUdINUKqTRTOUa9Mq9yDig6bmoNIc7ux4n0RijeKDLYSIN8OOESmoY0xnrbIzAJIoWirFuRexIpv0AvyNizi8yUioykfOYMm4maaPFLQf6NIOY+bJDoyjZVS4yt0IzEa2nFCsEMB92sr1SZkt/mQ3jeVwgaPh4ruLQiU7G5YHMFsBYi0wMWEMqweZS6MzR7ImJ3Ty1XErDF+RpkosdHGuolap0tDS5VBAWHayXUkgtW1aW2N3fwQNDHliJ9evMlTVjxYBoITavQzOgR+nUo/S62+mOm9jQkkhNQdRR2jDba7A2i+8b65BMedAvZmmlRby4zAE1GJvuI4wkofIohICBCVFipFkhcDRrzCj5sMAKZsl7M0gkHk1aKkfddWm4HkOzTdbOTbBhFLrmFd58P72jgwzW5uhsJnTFk/Qko0grMUkFq4sInUOIBIcmrq3h0ESpWbrsJIU4ZkdzDRNJiaPjnXS0BCYuELZWEjc24ccd9DWKdLQ6cHVWlDsfWXTTYyzxEKllw3SJvijBMSm5WDM4DV4MfpgjV+8giKBv2qfU8MmlMcX5CitqVUq2jnagp9rFQfUIKTR+GqC0i9QOedOk0ihQaUm6m5ZyFXKJoBgKVoWzBKpB6kGYU0/8mdnHnk0S8p9ktaTK7vowtaSGsYbuG+6j65GH4QPnk/gOyxO/GmtJtcVYi7GQcyXyaTLRiXCW4J5/In//NxFpk6k7+/H7PQrxg/SvnWLXjd189Mev547CJNHE6ZTT0/nM6zdxGDWq7zwXvXsXA8fOUT66i6sbR/Pz6hBfmPgXaAq+dIbLSSOCl6d7sAL23trJnx19Pu+48we89a5rObT7l3x+Y4RjLB++LOWEQo3ew+p8Nnkdz7FdqN3PxdOPcnP5VaQzm/jYz/+Oz7yhi4ne+7j1IMELH7GccYNHOmPZctMgr7S3ALdgLlWc2Akd9fN4R2Q47uAcX3hlTC5pceQWwVuuHwbj8r3junno4CkqIXRNlfl/awQPtARfNJPc0b2SNVvu5sCh4/nIAQ2u3j3Oqya+zBX3H8qpP/lnUA75V53IZOs6Htn2Qw7beBaQyRzjqSn06CjOYUf8f+y9Z7RkV3Wu/aywU+U6dfLpeLpbObdyFpKIJhhsY8A2BpGvDJhky4AtEYxNMDldk40Bk0GggBIoAI0i3Wo6p9Ph5FO5ase1vh8lEy6+vnfYeHz+xsf7r0btvWuPWmuvseeacz4vYqhGdPddeFc9/r9sfiQ/2QJpinvRJcRbfgxSgjHotesBsGnMrek8a1bXcC44nv4XP8+W066g9eiNXO5u5SOVEuNhkX03buNS4JzVe3lftcI/lYvkOjmKPYdvrBFM5gRrjuZ55U0NvtCT7K8F7Jw+zJO3ujz3lkWUfD2vrGZMUMNb+H3eChxkBK+ScOFkyNJOy4MbJI3KIm+70uP6Lx1kuLeOR+NXsVR4O6ftzvFQ9Vy2i9N5t3cdz2iHPHzjKG97IcwUGtTTLq986F+Y2LXMlvWncPyh/eTXHWJMdLhhT8bfXzLEu/bASxp7+NHIqbzxyLl8Z3wrq8/bzUKuTP3rX2HNzCH+6U1v4X0PVLhxbxmz9lO84p4X847PrjBZTqip2xEbpli8J0R/7x/Il99JMnwK/TNfRrTxqb9i7P1r45AZUmNxpEBJ8WsESPn0p2G/9iVWPvD3HH7X64ilIVABFbfKmsJatPztEvr/Fy3EAal0mSdHqg2JinGSQVampzWzo4pmc4QjhVHIt9m0MM/h/ihj5RbSDiD4OX8Zpykxicf4CswUhxnPWky1QhLrkW+BytpkHcVQ2sV4gv0li8wSJvsaEzZpmAWOpWMctkVGwjbFxKXhu4ieRzEnOGQcJpIWvdDnrDgi9paYUF2s1Ux7j3CnOROre1RNzIhaQgsLRlARHeZUlUwZ6lbRVAUWIgch+mhdJ+oeh5QJJhsEg3ZQk4ZNXTABQi8idR2ERQcL2H6FfFhlXRxTtTkWhCDP4O0uQjMpljlP7iC1PiEufTwWzRB94YOVDIk2rkjJcAYZF+IBeMLCnPQpKpemNjScDOW0UImiIpfxgqNUjGEkS0CEWMoUUlhRHgXZpaCWcfsOVkckfQeRFujpGonySTIP4RgCNU8uluT7UA8cxrp91qcxR2oucV4SBxlLvRzntOZZHa5Qq7ZoaIdhe4SGneDhVcNkSZ+NScjCaInT0t3sYRWB7LPW7sHvLzMUNSgYjbYZyod+KCnGZbJUU1dLLAYeTeGTkmdoRTOUaCR9SmlEJQ2JhYdkQPPc1Ooyn1csjfdI3AJeJFnVE2zsrDDLCLtqa6ksJNiwCJ6g3PLQ/RBJiXxJ4fQMZAptoDokOJh4MA+lvmQ0aePiE68JScwKpThPbWEVe90KUu+iYJo4TUk+cem3h7HpPLgJGIGbahInRYiAeiWH0wwwPZdlv0k5F2K7MJL0GGr3OTTms7KmTSJ8Jo3k+GVBoxvQjSHIK3a7BVbLPYAhxqWQGBoyI2hVKTohJXMIEQ9KB3Ndj8zXeKJP6EOOJms6o5TTlCyWTHYc1iZd6rZPKlIaUcz+6jiRjJAyY91yi17eZfu0wHGb1MsZResRuw59EuZij82dFSY9RbNaw0YL+AgiGyBknkQEHKuWkdkxHu2vQqsQz0aUunBCL+Ph1RJVzTh1d8ptI6ewqb3AsDxE5BXJZYpq1MPNLLmkR6Q0HcehFBlsDuojPhubPZrFIg3XZ7lymFrLcGRYIYRlvuwxO6a4otnlkoUOxgYMhZoFV6B0TJA6DGnLSqbpZy66kDAsBLmVPEtVn+7qLmelGRubKQ86a1jFCkdyJVYl8wRG0CgW2bAS0/Zc5grDJG6fXBSyNvwpfjUhV2hTkjHzUpOYMlYY2l7A9pEKGxe6jPR6+HaJfNQnsRGNnMV1FUEaMd7pUkwlXqdJrFyMSWj6GW7iIlyNlRHGjylHPZKwSpAZ1oUxjjBkVlFcFpwRHOFhZwSVOeh+j6KriLx5QixpPE7oxSwon54ZI2WI6WwWL9UcFkXa5RzNIEGwQByfSegv0w8GlMukE0JaIvQTPN3AxKBVh0VfQRQhM49YCyJX01c+i+UAxxE4xmfY9LGZpIQlpywFG2K8lCHn36/U+u3bxW9QnaTDdw9/m9uO3sz+9i/6VvzI8r5PZuyZgDfJ92FvfT/KlCArk8Vl4qiESaqYaAQTjWHTCjlHU/I1qyo+U5WA40bynDsKJ878E7ltn0YkPaJNT6NdfSLRl95K/lWvZuX3nk02+1PevPYG9ubnSOefzEtP+SN+f9MQ9rabaHzy49isT3pVg4NrcyS9Hn8dPofTiwlr7zjKzlUOR6ZS3n1wgcwVfL3xJH42NElWKqIv0Hi3R3yvNsiD/9XuNqccyLHylBI12+UusYHt2am8YflDdFzNI6UzOMN5L+/5g4wDY3U8UaS7sQjM0NrponMp5XU9jlRdflT5YzY8cDcblo/9vBfjzB0hnz6UI04TvNjSyMHb/0DzJ91TEN+4k09eBIdGW9j+KD/15vnDyXGum57nuPtb7G49j6Q7w1fzEc/r3s8bb/xHwu/dQu7Zz+Os8/4Q/85b+P7MjT8P0NS6abjvHrJjRxFS4l1yGeH3bsZGEcLzfm2cfxOKf3QfolBEn3Ia4be/Ca6LrA4hggCAXfu/yjGteOHY5eSveSqNFz2fPR/9GG855SaOiDwfL9UItl3Dc+a/Trsq+PR0mZsLeWR3hE6+Tpr1ef4dGRdWTud9Vx7g938seMHthlh1kX6A7g7oYmQZ6xag64V864SruPzkNifsuJ32jE/9Z0UUoE4+GcQuEqG44bmKM2d+QNeewQOTG7jswE5msz+m4Kyw1axnTWGBQiR4x20RL32aYmcp5tqdP8EMSbacfgL762fw4/k5/nDtrVykF7ion3HfSZJzf3yIl77tBP7qRyv8df0SXubvpn9+Qr4Uk2x5gOwlz+cNb7qeS9Y/nnfeo6iPfII/f0aej3Qvo/i8N2PafbjvKcxVX8XQxUME2z5D6bZrSX/yHppnvIIf567k4dkeh+p9jjT6zLUiunFKbCKkt4B0lpHuCspbxvXqSKeDlS0y0efsiwxv+Jrhvo++lm+f/4uig0DlOL12Jr+37tmcWdv8n8b7/1b/vTUetfCSBMd3WbGWjBQvA51BQYG1UIwbuHmHNeEuFCWMtKyQZ8S2KSV6gLOWgiDSqDRHpe3hDfeJaxEHxDgiJxhJ5mgZyQQhiVTUOg5TcZtc1qeSDAip5X6fashg51wIVsVNFpoeC7lJIq8IosNkNNgILCSS0zqKnxZgnoAgOIASMbK9hpzqUkslg43cx8hlCBw7gFBPuTvAFWQ2B2KJ2Gsik1FkqgZYayMHGHPjYOIaNvDR/hyuEfhxkcNmhE12mVg4rGWeWLisFfMs2DLHGMIhJSdCQjtgqoVC0BGDvo0VKZBunyiOaOBSdSJCNG3RJJMHaYgGJsujRErRwEFZIJYw8L6SOLIPMsSJRkFAiGJEhkylMbVuypwrWInylGLLXDGgEMf0ZZ58lDHczqjUwboh3bwk9SQu4OiYpvTYKwxK9ekoRSVNmOjF9PwA3wk5aaXJ3omYORXQaffJy+6ATvmYYW/NNPjZmEM98igswYRrCVoDoLGXeiSySj9r4WY9prIWmZIUQ8FwnLKoXabikDXZUfY600gD/bLPaLuPLwyPakVjuMVpBwZgktVhyimdIwTxQVTmsW6hi9sdRrp10kzjZBq3nyNzBCrJsTlOkTKmQ8ghP2O2oCmlLcZtHccTHEkKOMkgu9lWedYs+YQ5aCioKZ+44eOnkOUkUsKim2fFdTEqpheNsUdrgjTBy9cZNh2KPY8kg6OllGKiUSqmGqVctJwhjeQEs4+4qVjpDfHTySGOq63gGk051KROyMFykXpJUuIYucYmlt0pTui3qBuffLZCMUuZMw47C0WOb/UoJoK5VHByO2TSCBZ1DMpyUNQwdYelYJyz29vIBFg3wzoKI6GvXcbmYK9ajyrMkUkQcY+eo4i1y9GcpmybtHXAnD/EWFcRa01DeFy0ci97vTL14TqZgiWp6FYMngN2OGFZO7STSXR8kPFexnC8QIAkyGICG1Js51k1Kxlr9Jj3cyA69JMCR0weT64w5AnmxjWJGqAXvVTjZBLPGFwLxsgBgEZZ0mpGiiEfGfqpRKcu0WO+c05oUO4UJ5glDqki7bBBQ/f5WW+EgukRppYsS4k9l17OxbNdBIMeTSsEqYoRemCXlBMZRQXKNEiyAlXTIHY10WRKixQ/HcIEXWZFk3zmEfrQlYpqCrXuYU6reyxnmkU5Ts5t0svX6afT4NXJhMV40JGSutDsdPJUVAG3L5jVBY5L67hpiMHQFjlmjcd01mDWc6nrIr1cyLj0yJwY3++RueDJhL6TUBGzOKKKsApHJYThEJ5jwWmTyR6ZyJF5DfoyJksFWdAj1Aqc/XTbJw9op8KijI8xikQYlBYYKwidFsU4T2p9jk/bxO5BRqN/G+r3r/ptgPYbkLWW78/ewYd3vJ+VaJmT/Ule1U7Z2K1TsRL74xJeB5LL27xpGealww43YMaLWckv0c/vJf0lFxqNT1GuJjDrWemuYvlAjhN3fJ8T1Z3kRMQjhcvpXfwqNp24mf4nPgZS4l1xJdvn2lx373forJ5jZP8pvP+B7+LffBOd2fTngNVIwwOHK3xlnWSfei6p1bx471vw2n3++emKtzWWafgFXmGv4aH8Zl6x6Ra+xWtIcoI/fu4ke0csj/9xnuaxE6j7B1mbX+FH9nh2pycQOAc5/8hB7hk/m7/Jf4hvTS6w33V4+0Id06mz4c7HQBfCkptI8CcUZ48v4m/5Ik5L8I3jr+CRP5gnf2yWv3KfjZ5fRqURNx67kZMPWg5NpLwv3sW3Jo/j+E9u58bNmi9euAhG0hSKd56V4533Wy45tpVvFl7A301+ibO6j/CSR79GW+QQVz0BPzfKpTbHndEMLzMpWupB35e12KVFbJLgXnwp4be+TvLIQwM65m96vhhD/OMf4px3AUJrsrlZgF/pP7tz5kY8Y7ng+D8ly/LMVSd45s7bqR7X4M/HVyH2v5TU+Jy8cpA7LjTcks9R6Cg6hUXO2A8vvTnl5BND3nruEDuyR5nbadk/Lri8ciGj+Qnk2Bhfy37Ed4MdPOng73L1d77Ms+Z/yHEbD7B4qo89IPAqMVHDYfOte3lVljA9dIwP1nwemnb4h/nr+WHlGQTJbs5KvsoW9Vy+wtm8VXyF3SdOoA86yH2/h17/L3z4KYo/i1p81PkAt4+eyWuSl/PZ+Cze5P4Tb7AP8upzxrhwh8X880vIbX4iN9av4M7hXTxp9y6etNMwmRnMwjytV76cEz3Nl1d3+Wj1Ar77uB1co/fxqt2LPPWkNTibzyG86wf0X/YNljY9h30/+irTuz/O9A9ez+l2mHvME9lRORG/tMxw7SgBh+jY2V/CZIMnKhRMkdHIsj4O2Zg2GK5m9Fbned7dimcNh2T5NvNK88DYMHc1tvO6n7ySM2ub+cvT3sxIMPobny+/1X8P5UVGN4a04GCMIFN9Qg9GkxjP5kmFxDd91kcHSAUseVVq2QoiVbSKAVZIkAMPs9B1WMjlcPAZchQFDYumRGPcxSTLaBtj3YREaBr5HEONPlImxClsSnfT1j5a1elahVXm55hy3V9mY22R0EpG1QJ50yG1ivWRoqMsseqiVUJqPYIswybDzOuQIQShkIBBmEFwpo1+rHsrxbHQkRrp9DCpRRqN7dWQzhFsUkFZM8CkJ0WUrFNNM4wM0e48CyJBJ4YeGUecPnMyx4jtMic9aqLLqtSyR0isblOUEWGiORan5LOYYVMncz22Zy5LokhX+SxSQSKYSBSx7DNh5yGTzCmBNopcaDFaUg4FK75lujVLKgZo9bJjWZv2KRh4xOapa5+alUyHMwRZn9C65GPL2rkAkaYkbkw9p1gc0cQ9j/ZEyvZ4ipI9QrcETmsRYoGbOqjIY6qbo2jqHDUCISwluUwiciRJhsTi24i+hUR7RFLw06mYsTCi11f0O5qlLI8VFoeQVdE+jHGo5zSVCLS0dLRE9B02ZQc4FhfwbUgRh3ZVENg+zYoiySxxMeVwL8fRtIybuDiZYKZcJhcbanGTXC+gH3QZzxoMhy36pUkeDEY5bnaJNaLJ+qzBPKN4rQC/1GOxM8QD6SiOXQRVwEsV5TgiT8pef5jU71LtCeaG8vhBgcDp4eom80OjtF0Hm+bY71VYFTfxZUS530V7GStZgHViUq3JhEQZOG4mwJZjWn1NKi2FLKIvPcRjHnzaZkQEtKoZXRVTsCvITLG2NcuYWeLEXocjeQ838ymFhv1rwao+7bky440lhmouq8wRnEyRUkLRw7MpnjA43hI5mTLvC3KR4eRFSRcHlcF02GWHtiSZxI8Ey4nPeDpHSSxRFwlLnsU4KUZaHOshVIKfpAx3I+qmxTFHEnmQJpZGrKhJg8ZiEMhEU2gErG5laCNYyTsYIRnqRuwe9ymEGoQk9dWgV10bYiHxrSVVUOtDIixe7DDcDFBDFicd0O+1MAghqPQsI12LmxhkAAXf0MoU1kKvmmHCmOMr21BKYIzEAYzMOFjLU0liZK/K2c3dDBOzbaiN34joO8tMtRxKxnI4MOzSOfYqizaKieYkI2HAoUKLAMgyD+OE9FH0pEecKYhLGJFirEshcQlyXYRj2K/GWPJDYtPCIPFkjoJzmLZOsVKTjwVNkbBW7CRQXaRISALFSs7hJ3YIsgUO23Uc8lJytCAIqCYus7pC0a6QIvFJcK3FiYt0gh4uKet6AY8GeRZEiUwnKH8JmQbYLKNvCyh/Eav62CwH/jKZ36CBSxrnyXCxmYbQITEBjorI2TFSEZIQMYTgoCc4LhuQT61MccSvm2b/sn4boP0nZazhIzs+wNcPfpnjSsfxD2mNzTtup1M9mU/mXsxdPxW8Y+f/5P7Nj4fHv4CLvD1MLN2Hd+B7qMVdA5LPxGYW1zyNveUJ9ts+B3uH2dPaza7uHcT5DPLwpSzjfjtNn3N4ZP44erfUmbzvJ3zwppspnLGZj+9o8/ldn6My9B1euG0jj791GzLJiAa9yuycFvSmQ9YfgQv2BdjmiTx4fsSrxesxD0kemZbkhxM+Kips9RwE3+YDS5/maZ0eN4rj+ZtajbhwhJGGwwvvatIutvnapVfzLvlp3p09BStjzjGfIYghWt/gU6vnaAmH67YkBCVYc0uAYIWR81vM/bhKa59PetWfMfuDL+IcXsK5yPD9dY+jeaxNf/S9fH5di2tPej0Aj3tbxI6V7/Gy76Z86OmzvDb/eD540T387r1DnP+o4aNPctm5TjBSyNg9Kbhq4U6+fNzjeNF8mS/2T+Q5R3dRXduh/vIXoq5/O1cObeZ7zft4+NhdnLPq6l+QHK3FLMzjnLkZfJ/4h/f+lwRo6c4d2PoK7gUXDT4fOQxR9PP7SE3KHeEhLrU53GbKzEv+gI25GTr1gHt2r+dMvZpDWcYZcwMoxm0nK8aSlI6Q/Pk3Ms7faRk7vcld51zG7dndXLLNcuIRaE+vZ/rN7wXgkeWH+PSWj3N+9dn848zJPOFp9+J89yA77x5BffDjyO+8jrTRpXpch96K5aLvCNRFKW84KPj7kzNeO17jj9N7iR9UXDn7ENtOPp1v9a7kjd432X/cBNM7j/HmB77Mo4cMn71a8ZJoLc9cgTf2tnFj/hVcMznKDVrz+Xici7sh95yS56LtKfeu+xxfcI7yxX1P4Tl37UfVQg5eHHHYU2x6yGG8ntLd6/GnPMTvLE3y0XOP8O74zdy649W86aIrcN73d3zqs7fw6WaRWOQYHf59NpYfoWF2MqPuBu6mCYyoEqcWN7CpdDEb3RHWJAlr6wcpH/o+ur4VgGTsLDqb/ogd+fO5ZyTl8ne9hm13n8gXLn8mfzP+Y/565mv8hQ7457Oey8cXbuMl9/0pbz7jLZw1fPZvfM78Vv/vK3BCFvLDHF47yYlHOiRei+0jBY4JhWol9BOP1FpSBH0nYylXplH0me50CB2XLJXoZNCP1g5chNU08wH1NKCsWiymBYzMCFRIbAdY6F5RknmWZNmyN3JxSXGdFWo2Y66QZ9lzyKzD0HKP2FXk6NHBoSsUFbHIqixlThbpiwEK3OKijSKzLr7XoGFz5ESXn4kaR7M8CAMCYuPhYohwGM36NJQD2iBkgpWG2FFghjDxNMQBSq1gpMKqCCs13WCcteEMgfKZNw5LTspO7dA2LXwLR5Jh8rJFT2f8wKlgU4c1ok6haRhutWgry0TaYU1fMOnPUNcp5dCjmAi2DAkKqaAi53BziwRNw3xNE2iX2ryH786jpaYWpvhdxVwiiN2IbaaAcQwxChEZdOxSSF1iz1A1bZAghaRg+oR6YHQbak2K4Egx4Fg+x2GpmDBHaIuYmj5GFjAIxntFdlXG8CQMJctsbCu01bgiwTctXCvIFUNmTJVSNsd0o0Yv30OJjPme4pENFTbuDIm0Jm/bP8e8CwYZnPmyCzJkJNH4dZf90mGtOAyJIaKEEpBLU8qmQL1bJPAbHIzL9Po+vokwP8cNCDzRJ3I0nbxHGjTRqR74RlmJyRTb2+MUkmXGZURXuYzUBfvR9FKPUZuSqYGPXawcjJEkQYd1oWV1VOf+YC0ZYFKFVZaw0sDIEdxMUIxSvF6Ap+u04hzbWgmZl+OkYI5lVWCq6eBlFscaltplJClWWBJH0HZcpnqAp1EkhHGOvlRMxEsUwhyp8lE6Q8gQP4wpxQluqphodPFGDUv5jFXREulwylp5kG7q48qURAyjqJNTK3g2oGzbSAQLNYmjUtbUNRXbRFuI3AJGSJCKYl/hmAzTWKLtCbpxkcjpEdBhfbqHopNho02MdxoU0xVCN0AmPvVKSJZCIQIZCLqu4ILmLA0shz1DojWxsGA8EpXY+t4AACAASURBVOswX4pwjAVt6ecsXjXC9gZZboPAsSlr6xaLBgtPOtjEyVbYU4pZijUrsUM/sEyFGZP1jGWpiCU0EpeFLKCA4GjmYGogEkU5EezSHonIUSRijB00ClXkyioEliCNacs8C37M3JhgsjfLpjCmaXw6k5qu0KQipS1dlphirzdYc3pCkjGCxkfpLlmawwpF2h/HGIWSHn1/lroaQ+mUMB7GISLRIJIKRbFIontEaRlo0xYuBdVgldNBiz42USjjkgunOFaaJw3m0LFDQTl4oksl9siSCuYxK4o8EU5cwjWDwHevmSSO82RphpeCoyIQCi16JKaAMcNoQgp6N5FxMJnEzVJ8acgw9JMArZbQNqOfjCBlm5KoM5q4zDsFYncWmwz8DR0Le1WOprbUft2//Vf02wDtP6HMZvztI9dz1+wdPGv17/IX+35CcPRH3DH2Yl4+cyl5Af9z5/tgfIInvuONj5WvbaDLE+le8hb00nbcA7fiHvgeU1vezRRw2S9dPwF2lid4eOJUfloa5me9GY5070JN3UVFOKyaWUNuaY73rb6Yg3d9gb+c+Tbn7AGd7SJ7LGW2POYwftoizxjqgdTceMZruG7POv5Cf4YXO+9j5qEK3SjHbRdJnnHGG/nnA48SHetxfHOIDyfDvM4T2GAG1/shAlgqx/zwRNgtnsi5pd10rMfNyWU4az7PM26P6GvFl84+QKIkk8twvy3wzNskyzLHKZcdpVTp09iTJ1x2CO+4Fbl3mdmnb+CC3H18Wb+B5zT+kl7tUr556Gs8ZfVTWV/cwPjTnoVz7a1ELjzuEcOdZ3yPWyjytCcsou8d5q+/lPCDUwQ7Lk5Y3iC54B440f9Hvh49jZv9NzE7UWH87CbZgqb5N9dx2t++noK5hx8c+ArnrLoatWbtgORoLdnsMdTUKtyzzyX+4b3YV78OIcTAusDa/7CBtU1TkBIh5cBnTUrc8y7A9npQXwEeK7UEHj58K3UJjw/OZv5/vIxibpHJS5vseLjAJWsPstucxO7SPH9++EH2T1ku1l2OPVrked9PKCSWsXMa9CZT3qm3M74ML7s5Y7kIm68alHSmJuWD2/+BqjPK1p+s5rvFd7Ax2cVnfqfGOTcVcd76XrJ+H7DUju8w4rZ58AfT5O4T/Oh0h027M/adDZ9dDdUNirN3gb76y0QHr+VWcxZP0g/y8rNfxRt/9DluO24wEYXb5KuldfyL/hOK3TFG93qY0jL7C4us27SR6cp22L6FrTuqvGLzTTy59CBvvOoFpKtP4b3uR3nS8n1Ej4efHBvGe8Cl2IfqoWO8+QDMl3fyzdPfwTWFP+WTUiG2fIrqU6HLUXrAfl3klOr5PEGWOO3YQ5xy9KcMZzPAo786RlKTTF5A+5TnE69/PKY4yPhuAjadAP3OKzj3g+9lvr3Ic6Mnc17xXP5Rv59rfvwxzrv8rfzV4i1c98DrePvmd3L2yLn/oXnyW/3faXZ2lhtuuIGHH34Y3/e58sorue6663Ac59eOve222/jwhz/MoUOHGB4e5tnPfjYvetHAB/ELX/gCb33rW9H/y3N9++23Mzb2qwblRRszO2mx2mFlqMpcbplmISELPaJaSioD1i/0yKRBorFuzH1Ta7DzC5xKAwMM9y1zSrGU9yh1IixllIl4tFtieVRRbRn6VpIqQackIAYsuJnBSwS2HFHswLLSKJ0icWmmebYWq5SyHvksxDMZidY86Fcee/mW7BN5DouMmgkZj6GNi5AWKzu0jUsqQMqInBUoLNZKVvBpSomDwY9LWOkjZIrAQ0iJcOoIXDLpgZeg/RksEuFYYltk7bJg7aIh1YZGwaL8hMgmhH6GFjGFdoibJXRtkSzxKffnAYsUEcNDj1L3JGl7YJScOg5SGUKbkfkptXYTwph8X+MbwVgXECGB3ct0L6VXyTEjJA1g3q8ROYYjNcOd5gRauQbP3XqMMQQ9b5HAgrA5jFCEyiWa7CDnXBInoqnLrDuUw80tEEqNtIJSLMinYDVILLGrmaHGvCmRkyFSpWzohDgiI041y7bE6fk2tpuwuryHlsmzKp5nT8kwO5QnyuUpOG3ComQ62Y1VhsgFJ4uhPUbi1ul5hsyx+IlECEnOGsqpIIkc+krj2gxXWXqmhGsUB5I1bFud45x98yAHUIpar0+kXQJahOkkEs1Mu0CrPcn68i5EqKiGgkXfxRWCsmmTEZAKF0dFKCvRVjLWX6TpTzFmmvR9l9MX+6goIMvgVG8HqQ9pKCgmPrVEEHfaxKRUIpjot3C9BaKcpKnybBKL+NJAqin1HRo1j6QZUUl79LRCWQYm0UmeRAv8LMIqGOv3iUVK13Ep2B59JYFBllRbwWjY5fQZwXDT0vpXE2UJYEgTy2Lo0rA+vbKPE/vkMsG47TKczKNsgYQB0MGQkiERStCVilQKouZaaHVArQw80tC0pMa2CuSshxIRXSFAtWkHkkKiaBViai2HDcYilGBD3RBnMFuUTCwNxsNW69R1QLnfRxmDkypmhnOUki6hzSGdjLkqDHUGfXYePfLyMC4xMrGgB2CYogmZasTInuRw5qKUYFymSGVY0oO1pWEcWkLiAYsqTz0VnGUUtdAl1AFNHTDeDykEFqdTwM0khVjhpQIrY4JU0hYeMpUsxS4L+QKxkqRojq/XqEuXY45COQlGSKSqY62DEBZH5LE6whgX7XRIkzKO28AJjqEeqzJAGBKbQ4oeVli6OsNkFbA+JtNYGaNlRF5LdKax1qWcKoqygSN7tHRGFvoIr4nRLXLdHCbTOLpHmRBfhsRo6iIgUYoDqowRlpaUaJsjVRpjvEEpq9vFpC5CKPBjlGiDdTDWIbUuXhoQdyexpowf7AF/P8iQvO3j9aoMRQmpE1AOLcuuxDWSVaGDj8T8qkf9r+m3Adp/Qp/Z/Qnumr2DF216CS/fcRvOsZ/wDu/VfPzQufzRuOF5X38PLM2jTzwZ02qiHusvAkAI0pFTSEdOoXfua5Hto+iVXcjuHADGLZHVTmC8Ms2ThORJj53WilvsaGzn4SP3svErN2GAF2/9JkH2i1A80rDntBqrUsmFGx5FexkdG/CC+I3s3DvBp713slnsYq9zMenyLr565jQHVi7hNd92Ec40Kr+fI6MPk+UO46lBCtZaCBKfxy0PMTM2xU3l83mL/BzfzC5itHIn2tnFqv0ej6yHWDuI1hr87jGe+lALgOqVx8jlQrbvmGT16SscvbMKh3bhP/uPOel/XMu7v38NL991F9/wr+dP9r+M9qaAD25/L+8574PoU08nG5nENOZ4+g8th0Ytf3dGgfPnm6y/eoE9t65ifbPIWZ9tkl7ZxMgSV+7dw6cu/ipvm3kGN1z8db7av5hnT93D7CllVj75bR73hJQ75A5emcW4noccn8DMHsPMHsNmGWp6A/G9d9N82QvJjh7FNhsAyOER9Kmn4V31BNwLL/7fBmw2ConuvJ3orjtIf7b9F+dPTGDbbeTIKNnRI6B/AbD41wzaHQe/QinLWLvFIbCHmLqoyVJUQp1m2Z1N8sFajlPDbzC1ApzXwd6Y55IQTGUVa896BK8c82e19aQ65RXfyWjmYLQl8c67EIBvHvoaBzr7mVx4Gl9y3s5ItsKrRoc58ezrqJw/ResvXgNA7aQOK3GBfL/P6Zft554fjnP11oR3Pkvit0fo+Sn3nbzChbsNv7evxbfWfJ5vHL6Mp6st1CbafPK0JzFV28Px9S67qgtI/yg6f5B4BI4ajeito989jm//pIITX8aWC4d5zr4H2DdjGFoT8fHy+3hB/TouSl/O29w8z5Pf45KpJZrC5Z6R3yG7/wE2HE4Za8JL7z7Ei8QNRNLlql2HWb7sOKbP/jPOHD2XdcX1SPHYDvJmsHGXxuJWZOcoIulh3RJZeR1p7XjQv/SM/vJ4Zhmm2QCteerNn+DC5/8P/lqdxIVL1/Hd6j9wyvffzIev/iCvnP0qb3rwDfz9Oe/l9NqZ/xeryG/1H9G1117Lpk2buO2222i321x77bW8//3v53Wve92vHLd161Ze85rX8K53vYurrrqKRx55hBe96EWsWrWKJz7xiTSbTS677DI+9rGP/R9/0x1NGe0qMplifZdqOgpRnUwC1mUhmCQVR1FkhDphqNeim5Y4pBOmbMxyViJnIo5Wyuwar3D57llkb466yOHYLj1cJm0TaeHIasWEsvSlJrUCmwlkqhjvWh7AxVpLzaZY67JzrMzGAw6RcKgkXZJYke8aQq34J+ccxkwXrVaY110m5Ty51CXFElhDU/jk0hCvpxjiIMP9CDKDtYK92TBVt07Zy9hftigrkELhmTaVZkbZzqJESGJH6dpxMl+S6Ii8iajaJYK6Rw9BxzisXUzxcXBUTGogkjBqM1xpSbVLFOfxO6sY9VqMTNWpGEFYd2g7inouohq7tKsJXRST+jCOL2gv56mkfbqeJAs1+V6MqwzNoSGG6bBXDlEq7cVLC3QpsboveMCdwIoW9aiENpKdmyTFpYyKlkzNCxzdQ0WTzPslgmCBvWNlNizGGBsSGwdrBKVYAoJOARItaJYcpuZgKplBOBmejHBJOCNsMZQa9hvNPoapmpDRNCUWmo6MyIoBAQ6Jn7GcFthoQ1wRkwpBLlP0IpfIeiRKk2jwbRshEqyboRJFnOXBRnhpl6IYGDHX0yIlEZMZifFSPNkC4yGAtucigdjNyGcRnu1jEQRphkRQ60tSI0hCyGRMrCF1BlAW6yZUzRIpHn43YyxdIG8ERvSJrUSbDCkVtcywbwiK8wqdSvykQD6xrOR9qghOaO/lqAdxoMmM4EBUYUiFRKmDbwWpUmjZYki06KhhHJMiMDhZSuqCTUEYSxRrCFIs4EYuCQ7YhDhRGARJonCEYKnkkxlF0RiGCFlecumGiu7GHioq42YONh4YFudMRhZqjNWsX7IoNyUWEjeD45sei0bTtgG4ilQLjJRkVpBaQaIkXuQS99dhho/SzLcRK4ZeoFkWip6vwFiSvk+YZTSqCbqn6ZUzJgFpMnzdIx87BFlCU+WRxkWKgEa5RaUVUUwVS1LQMIOAaTSu4+gIJSRjPUnf18w7KZHQ1IuaqbbBCsGsoxmOBVWZEWlJIqAj9KC0EhgWVU6f6VAWCcNOi8AxdB+bI+tbMcd0nywTjIQhDpK+zVHoOQhpOLWRUV8vmCt69B3DVChxbYwUGVqHKMokoofNyig8lFNHCx/iCTIrSZRBmgypU5T0USZA0yHNyqTWgEwfy+5aMBpjQViFsAP/vswGxEjGRIirYqo0qcoVOlbje4dpKg+JpSUchkWGVJYhkTIVOjykUtbKZWqhh85ZImnxVI+SKKLMJNZdQrgdbFRGCoU1NfBB4ZNlklRZpN2Ech3ScBVKlohyx8icZTAOPc/BEw7ZY8+fsg65qIqbOKzIJlYMSJD/ntT1119//f/uy17v3zdR+4/K9x3C8N+vvfzvpv/1nu+Z+wEf+Nl7ePKq3+G1x/bh77+ZN5uX8nVzKe+5sMblH/hLqK+g1q7DzB4juvM2vCc8GeH5/+b1rVciq6wnHTmVdORUsqHjsMHQzz26YNDrJu9/kMpnvsbxn7iVieV4YIunDHsm4TvnCL50meafz7may89/Fo/jcyiZst1O88z4BvK2y985/8i5cicRLncnk7xl0xO5e9Uwycg2cmPfQdd+hC7sYUQt0pOgkhyZTPGN4PZjB5nA5wPZH/J0+0Ou9h7iM61LeHTj3bxoq2bTrpgvXeKwnyuYOLCZ196+k2KUoq8IObnU5PVjw7x/usZN6iKe1dpNVHeYKRUYuuKJnLzmSv6ieR/ntBe4xv6Q78dnsU1tZW1hHatmumQ3fQu3HxE5cO/JVZYqEVv8PM9st6lMdIg2rqW0sIzZWSYYj1m/T3DjeX12DTWY7BcZkYaZVo1TVh1GLC2yaleN/TpiWJQYjTyShx7ALC6Szhyi/+lPkNy/ZfCfZwb3ksvwLr4UfcaZyEKR5OEHib77beIf3IlaP42amPz5/LDWEt9xG63rXkt0y01gDO55F+Bdchn6tDMGWbp9e7HdDtF3vkV0683wGP7ZueQy+p06X/vpZ/ijnxmmH/oZay5bIQwdvuZcyvl6K08bOx1R2cprbk8YblrmqLGqGdG9eoLTi9vIDcV8rlTkG1UPg8PVD6SMN0BZS3Tf3fROWMf1h95NOZzgK0s3U3QNLxgtUdzwdF5ywivY2Uwpfu+raM+w/4wKz5m6jG+vWeHquMeGiS77Zse44hHLFud5zKkTaQwv8eStDUYSzU2ndfFWClwiF5g2x3hr+fn8jv8AN3S3sNULOOoqwOKkLlOmR00t0Snvx61uwa08xJEhl5vXnsWW4CzKWcp6Ocsz5d08xMncmp7JVjPN1fJB3KJhupby3Svext+euIud69oYCZUuFKMM11jOvH+J9Xdup9yIUeMTyOrQLx425WJKq8mGTyIdPZ2sdgKmMA7y17Mv/6rue99F+C9fwDlrM2Z2ltwjW3jm1WfSWnM8Nxw4nie421h74Oucd+Hfc09zG7cc+Q6XTlxB0Sn9m+vH/1f0X3Xf+fx/HL6zbds2PvKRj/CpT32KSqVCqVSiUqnwoQ99iGuuueZXYC27du1i9erVPPe5z0VKyeTkJPfffz/9fp9LL72UO++8E2MMV1999f/xd5vf/QC5RkS9UCTFw5Ij1R1iDYfkOJU0ZF0zZTQxoBKm2n1WcpOYniY2AUlOcXa0k91emX1jNdYudUhVjskwxpKwr+Iz2l6iInpQdmk7XebTIX6areb41jzKKPqjeVp9g1VQshaTORyslKgtSjKjMCImTF0qvRgdavYMjdI2Gh9Dp9CiQpfRxKXaqyDaijWzbcoNQ7ktKHUNI1FMLPUggyd8SmmLyS4UGoLRVp9VjQ5T4Sy1MMLHkDdthvqSkZZDpdNktNdgVbjEZDeimhhmJ4rM18rIYosVz6PjF0ntFEFSYURrThyJOS5YweZyPFA6icKIYFovIkUO8pPkrWQ6A8QwypapJYKNcZGJOGU2OonL5RybTJ/Id1kIJMVCiUWvyGGdp5BlFNUsSTZEJFyCLEbVLaV+Qq2V4BtIhtqo0OFIPs+Gdp+SaKKHPOZVgb1ljUUSlHpUO20SoamIHiOhAJlhHIHJBK7jUula+oUGY3GXgojQMsY1UEwGkIaj5TJOaIikQmLZeoJPySiG4jyzygGhWV1vY61FS0uQatzYoy3y9P2YTBuCapdUSEJf002reKFDM9KM2Bb5NEOKPruc01F2nHxxmbA4R5QZSl0HnQn2DFcphRm+ivGzItrpDMjRvQKmElLrdwkinwWtCFQLR0GiNEhNy/FQbohxBMUsoZvWcKSh60QgIEAgLVT6iuXx/4e9N4+2rCjvvz9Vez77zOfc+d6+PdweoIGGRpqWSUARnGcimmgcSJxiMARjjAMYo8SYqL84RBFURMWIIgZFxAEBQaAZGroZep7u7TvfM++56v3j+pqXEP1p1vtH/vC71lnrnKrau87atapqf+t5nu/Tw2xZ+BoerY0wLwWQke+6rO5MEngZphsSqBxJVIEsJpOSme4wuzyfaq9JMd8jclKm0gqd2GYkmWPBkdgiQSpYP9/hcMmjJw106pDoHHa2rJRYmxc0bEFqmES2gyy1WOk1Oc7s0EsylrRJpz+jVfApBQPkgxmUl9GfNmlZgnJkUI4duo4kNTPygYkdFulpg7l6imV1cVs5pAwYyuYByeOVMiKV6LSE3a85moNHcwPUnJB83OX21UW83jClfMzuqibrCFpljeFoVixI0ihHukKjehIZZoRGDm1qugWPkmpT6AlGtKRacAmaJUJdodjzWNFdZJyEXGqxUHSIVYpLzEIdag2FozUiNXARZC5M2uZyVsSkgEpdWjpHVjBYPRtSMZcY6+ux209IpaI0bdCRirposDqeohykKOHQFAXsjkG5bVMxlzg0Itjt9FMgpZRalBOTtrBYYAAn2UBgTi1b3bWLqzu4mcbp9WOJJoYISLMKObNFQU5TylJKUR7TWCRWzjIZUxLMLlrlEEIhjZjVeoa8iNgp62gJbUNRygy6uoSP4hGnQKaLJFLhaoNQFwkpkRbaTIh51nc89jDEhqyHqzV7PYPYTNkUd1i08szLGpkIMZ2l5Xgz5WJSpFw5TKpAqzxCWxQ8KJsriIIRHFlAOftQIkSKHFW3QOZYSJ3Hj0KGYgMj7qNPKaTIGKVLJxnm9LNf9Rv3nD9Y0P4HONg5wJXb/571pWO4TNfxnvwsn0pfzrbq87nuRRtw3/020k4HOTJK+eprSffsofn2i+n+6yco/N3l/6M+k4cepPtvnyZ9bAf6V5LsAD88q8TXzsxIdULO9AmSgGe3b+bcR6/HEDE36lP5dOc8TjgeVhy9mcedGT5lncTjlod2pxHyO7jAoLJ4RitgS9xgIkn4m746mwKLhwo9BPDnqoTZGuA6+znMGSVe7tzFwayfBye2MZYmVPdpOq7k/oENlAs/5l+uTbBScJ/TY0W5xSXJn3FLo4xT+xlHxu7jzc8t8tFvR4zcezdfef9HOeHP3sLbt/4zf5q8ic8sdPnq/I94W3c14U0fovl4hPDzGHnF4FjEtXv38MfuKnZXunymWuIS0WRU7yJdD+nPbPZWRlkZz/Cx+5pc8kyPD48ovjCzi89m7yC3lHDK8btQ2+Hd3y7Atz9B4//znNXMDM55z8V+xhZ6112L8DwK737vU8ZCpynxHT+j+4XP0brk7eTeeDGlv3g7OgrpfOyjRD+6BXP9BvJ/+wGsk095ygtjePNNJL+4k+KnPoteWqJ3/dfInngMgPZly/nsPgR4tZixsxeJQouLzXfzCfsfuWBwHamzn+dNwbrdgrBiM3i4y+DJbYblLtx6xE7b4l+qZcgEV+9eZHx1QuTapGOnEz3yJNnb38lFmwTnrziMLpV47UgOXVzJmyb+is98/XZe/NUPgNL86Gy4emMG5i+Zap3Iq9Pjuc68mlOftZ/dtw7ysbs+xxWvc9jhDPDkkMm6AykvXor4/sR93PvwBC8r38u64DBXd17GC9R2/kKN8UtmUJmHEBm1NOPUMOIV0x3uMX3uKfdzb2kXi6VHOQxcnub5+3ALJ8Rdzky+yFF1ERlDXNS4lH9zPkd+aT+vbb6Rn45U2LOhj+0TLSxpUVwI+dTnFQqJ3W4Tfu9Gwu9+G+c5zyX35rdgDI/83nMvvvcewu9+G/ePXkP+HZcQ3HwT3X/8B6J/uZJ3fePbHD+0mT+99V1813ofw7e+k4+86Cre+sBf8b5t7+bTp32BnOn/3n3+Ab8ZO3fuZGhoiGr1P0n3xo0baTabHDp0iJUrV/66/KyzzuKss8769W+tNTMzM5x66qkANBoN9u3bxytf+UoOHDjA+Pg4l1xyCWeeeebT+pXSRpsWtjIJTIW2BTlZIImKhAVBoZESFzJkL6acRswMVenXSySJwLFsPNVD9afs9j2UpdhX3MhotsRQfIDdjosjW9gqIjUlKEEgBYFlYCUJK7oxPdNlySzy2FiHtUdSJBnCjFkoaPw0oRa3cESDFjUk4Lc9Ttu9hxkvR9cucEy7xQiCQi6l17XJNxpYUjFT8okdh8SSrMgMHsn5eDrmSNJHaEryjTkOigJLlkYIG8cOUDKm6Q6DBU67iDO7gmYBdKFH3jfJKYu1Sy6uKuD3+ugzF4lcmwfjc8lVHEqFJivlE+SMDk0EMwxRICRNJMN2k6rssluOsEcOMiZmmJdDFOlQdwxMqRhSLdYPTiF6Aq1MqpZFX5pD6YAnGKUpPEasg6SuSdKz8EXI7rhOart4kWAqV2BVO+V5h3rcWjJY0CX2JCWON/YyHvTYZWgyKTASi7gMxlGJn4C2DHKJZM4y6EpJLVaU2jazAyZNX1I67JBkBqbTZSGVDGaKlu+CWLayeFmPuRUFJJJEgqMhk8siI6vaFgedGJ+YAiaHPInVzTBRIDLqicGMBbFn0aiWGG8uEOQC3G5IovMoI4JM0JY2vjYIdZ6c1SLXqaAF9CwbREhYgHqoltMZqJR+nbAUpSAgtQ1yavm7NsWvrBeC+YJPvtPFRJE4kiPuMEupw4nq58TCxELSxKMX55nRCbWypqAEpraZKZpUgkWCfI75wTxLRsBoIvFVlzR2mXULCDIKScramRy1uEDBniMWCe16m4pIEC2FrQLQgk7BwNERKQaxrTla9Cm3oRAoJBpHwWCQcLCgKCaSAIi0Rde26SQ2obJwVEobSdQ/hBtNYpKhDUHs2sisTZJU6SYV5ouLDLQUhtlldSh5UJoEZp7mYJMNh0KkaSNkhjQFPSvPrtER+jODorOP1BxBxA5RtcTEofX4KAr2AnNSITNJJASpFHSUA6lkfWrxmDQIVIqfBfhRhdjyWLtUIEog6M9wdcb63DwHgpXoVOHkYzwR0qs6CEswumBga9gjQAvJQKBY0BIv0xwe9lALGVpCDoNWVqMnMypZD0cnNKVBhMXZLYNbCprEU9gCfC8lsjWivexJpYGjpSKGSBjvVQitNlIYJBi0pGBVlmHYAeVYMZMe5R5T0NUmSmdIy0BZJo5nkGWSoo7waCNSjUThmimB148yeuS7Ke1eFS0USkg0OYRUWFaXefJMmzBtlvEUrGSWIBbE2qClR3HkIkJ4rGyvZSG/m4Z08dwQ35FYqUZIi0EUh2WNQ3qCvPsgXZlgCkVd92Nnw8SyhxTLKrVYPXx7iao9RJBMI7GQRopjKzYUBwg7FpDRRCKEoGA5+K7CoZ/UyDMQPkbJgFxaRUsoiQAoo40/5EH7/xWdpMMHHngPruHw4dE/ovr9i7ktO5k7Bt7Av738eIzbf0zn8cfAMCj+w8cQjou18Ti8P/5Tgq9cvewa93sIT+gkofeFzxFcfx2iXAbDYMErsas0wskzO7hua49YaY4pb+SM/jPZv+97HDYjXjtmwvvwqQAAIABJREFUclQOEBtHgWuZBe4bAfDRaYAZmpz4uMdJW1/Aeae8gT6zgHfjyzAbR3lt/0qOLJzKoaG7cRKXkhHyx1OP8bPcKXw3PpOzkofZlNvHl8OTmS/McfF0j7X7fJ4cHkOXn+D9N6Q4iWbkjEXy9YQrqiVWPfQzVhdeQjR/HkfLksP9P+YvXjvJB7+Z8vK7bqJ9349o9o/xMbtObypibzjIpfT+8zl02mRIeNxjGo+P39mk6QmOVn22eRZF2+Jm8RyeY9zOyiMzpK5k1XaL16/r8qVyH28ZTLjMuopXy7/nxsV/5oRN+zkynnGV38dlx78P4+Bhgi99EVmtUnjP+wHIDh+i96UvohoNZLn86/8iTBPn3POwt55O5+MfpffFzzO1YztJq0P62A5yb/wzvD/50//W/TH+xZ3IgUGsk5Zl2eNt95HtegJr8yl4r/0Trvnlh6kEh3iruUAcmbzavZLn+lfz+vowbStkw/wEl91/H/OqgL2QoIHrF85hIpxjQj7OAyrPh36cMTYr8NIcC/9vx0ceBJbdu89/SMNDRSYNeGstIldMmZm5iFe3Z8lszcdfbnLvGknS2oQxvZW8s8TLHryLi19g87VFj2OefZQDP6rznhtC3vmmIzy08TxOPHgrx+2CH5yquX5M8LI2PN+7l0+oC/mU80qumL+GF1pj/MAJiJXB4+kw9xv9rHLv4mXdFuee9HGi1c9j/5GHuOOTb+Nnx8Dh+hIP+022Cwl8kzsBhuAcXaOSZdSzlGpqcWrlRLziSv7j0HdYqCR850zB8++zuHXoJF60/27k4BDRnT8n/sVd+H/9N7jnXfC7z78opPOxj2CMr8K/+K0AuC94MfHtPyW59x7aV7yP5372iwwUzuFdN13K1Z3LWfGTK/jg2R/i3dv+mo898hE+eNKHf+f+/oD/OxqNBsVi8SllpVIJgKWlpacQtP+KL3zhCzQaDS688EIA6vU63W6XSy+9lP7+fr71rW/xlre8hZtuuomJiYmnXqwNDOnjJym2WKTtWhixSUiOQmsIP9pDs+SijC6BlBxYXabTNYgjk4G4g6EjOqbFvqEiZiqx7BJx2sNUGqRAKBdLRSgNlhJEQEda9CUppSDDMS3ut+pYokMukRiZjSxHjGrJmt4Ufqg5bHuQSZqZzUyuwtrGIoGIqHQd3BzkkOQDm74sYpfjMDeiSHSe/eEaTg/nMa1FtFh23HBFhpOVGMwrfub10SJBaIuca1IIyuTCCgXrCPNGH9LPkxu06DrQsR0yWcA0E9yjY6RWnpqaIswAp4J2LFYmixRSTWRVaCgPy/LRsYkDFIXJkaQGSUwoB2mYCYaUzKkqfUaH3XIMrCK27FGOD3LYHMLIAsqZzTbbY1HlEAgsN6Bf5lCWw6zRz6JvEBFyQAxw0S9+yabFhM54DjN0EL4kMwwaRpEBr03ZmacwuwI3FEz1DXByr0vH1Ez7LqsbKbnYpOkvS29YxEhtQJqAdilGGscwOBoaBIZCFU3CksdUr8jGLCKXmaAFidmllZVQmEhtYojl2LambSIyk5xWWFVFOy+ZG9SsSGDZMQ2UaVCrLdJomLQ9G6Pl06ukBLZBN3U4FA+QmvsQliaVNrE0yWyHJ8cKbHLa1GZSRJrSTAxSbSJCG88I8PvaVDs9gkgAAoOUwyM2oVsjdSKy+S5dUly7QWOoirGUsDQQ83C4imMmNYOuSxA5zNU1wz2LY+Ue5rI+JE1W9gw6qwfYH7dZe3iavsjCiaa5adUQoW9gmuMMBwH5sIefaZyS4O6ySbsD/SIisyBNbGI7JcsZLJZN9lds4tRgPJikpBIMMrqGg5tCUMqzbrZLsaUoOjZHdT9e3MI0LSwZktgaIhOtXXI0yJBYUrAwKvGOGqhejTmrzWxfxglzkpKXw1IlotRFOmDbFiOBzc6xFqPpIuniBFOuQ9VqY/ghZgvMTFBIHSxpsFIdYkAdZkfBodowQCumkcznVzPoejxXP4xORmksRUzaZXJWTEnNU5aKA+4AvtPE0xkUDI5rHiTtpFRyLTDAcrvEyqedlNiQRsRGRjHWoH+1PsmUuuNxgB6+CtBaUEljeiWPVZ0OtsqIhcGCqtDTNgkxiXCwlaBXTSkuSmYrLn5bk+uGmJbJYHuGfEkTuwZltUQoKpgiIXVteqUhOiNrsDOBdaSNHRtou0XeqRBJQSYsssyjas0ya0yQWA7KdVDFEk4myVKJXZRkCOLMIqWIMME1HKS0MKXAlBIpILaWZ6E0UlQqaIkCWvR+FXa4bLE2pYUyJJYTcjjup+0XOCJgPEvoj3vY2TBds4MjAmpOBzMVSO3iUCAMN6JkA7/vEAWzHyGOYpgB0ggYzm3EtTUnr+nyyIEcvl5BaM5iSAlaULALLIUZltC4WvCE6GOLsYOSucgecyN1M+S34Q8E7feA0oort3+Iyd4k/3zCFYx+/1IOZnW+OfwePvmSE3B0xuKnPg5A7h2XYK75zw0+9/o3Ev3oFnpXfQ5ry9bfKWeSWlqk9TeXkj6+E+u0M0ju+yWT1REu2/IG/vUX/8AHXyuJDY1v5nm8sZPHGzspp5o1JCR6FSXXZnK2jhGXieJhzNRljVrkDPdmnv2tSYKJMTZe9m5QGc4tbyQ/+yiX1od5eOFVbOz7GqctKr5WhbcutGgd8ybe98DJlOI2L8nfQ5hZXLdmjg1RzMB2ByuDav80X/9xA2ufT9/xbeTEOrZn+1iVpNyypU0tdy+9qQPgFphub2UmfSbvec2P2LK3yXN3d/Gbe5iLLXpjNhOHYpwYGpsC5DEh+/UK7u+dRDjlM7Ewyab5w/Sdego8eRvpURvVheeLnxJ6FvQyvjd2Ci/ffS9/9vgcB9Zu4Gc1k3+uaU7M/yOvmH8dN898mZNrk/yo2uSG0cOs913WA2pmGp2mCNPEPu0MetdcRfzLu3EveP7TxkfkcuTf/yHk+KrldAdCkH/f5bjnP70tgA5D4vvvxX3hS349/umhg2ilOLLCY264w/2jR7nh4AJpbPBa6zKmRr7J960mk6ZNderZfKF7DTO7+tnet4YT5/ai8oKzpp9AhgEBeVYVBFHfCFG1zWxg8kR1jF2bT6Fg7uJ0cR8rsinUzhzOEy6pBGWatLsHMWoJP9mk+MZmi4YYJ5w8jbz7BH21q7DzBX7w0h7HhiE/tRRbS30MbV1k8hdVrr4+4mfP/QnChFX32rz8mA7/Xj/Cg41RXmXcwVXRC/mKPpfTNq7hrbNf5FY75dxej4pu8O1shL91T2ck/Tkbb3sH6uXfZfXYZnLjL+b5X/kuX/vjlLW6wr3pqfxUrkFbLYQ9j13YjZ/P47f2kBpdbp65nXgOBBJbWtxwWkS5FXJwdB2fqY7ytge/hX3yKegwpPOhD5Bufwj/kst+J8GX8HvfRc3OUPw/n/t1TjwhBIX3X8HSq19OuuNRop/cxonPeS6117yaf/rmFO+d/RwbHj6Wi9e/lc8/8Wn+ff83+PPKm/+vff0B/3NovZwq4betq5/5zGe49tpr+dKXvkT5Vwcul1566VPavO51r+M//uM/uOmmm55W5+VjwpxLrhMzlswyldXYmY5zkCESy8YxDdbGR1gtAh6ueGjbR8WC1lgP0ZrkRA6x0HDx0wFyXcFEssBMXlBa6GCnBezU4skRh5prcGbH4LG8QJLimYrF1GEOn0SVOHXRJVURoEgLJQpCMRwFOGlGJx1Bt2yeqOfIBjNauYDDsk5sDpErL9IMBM9TdXKEhHmTXFzFTB0aOk9ZHiQ0wTElniE50bUpJi0WS6O4EcSpZLAUEQfjlAqrQcQE+QNkePTpFLdX56jcS4agqjP6MotALI/Jg+5pLHV7aGmywWxhFPuZxibnNhHtJr7lMyJL5MOQTnELS4s2ZnOJId1kfzRImxJrxVFySYdEC+axyYvHcGWCl2iMLKSpc7jYlLyjuGmBAQMKIs9swcdNNWO5gzSSHPNUiHMCOgZHxQB9LbDLJoZMmNN1ttlrWGEsYPoVTPcoA47CV4oeoKUkw8AgJXEEqQNIxWO9IfrlLFhgJUVKmUGiQh6rVDDKfbiAkIowccgiF6UEB21Nf+TSywqYiU97ZInKUoN9qx027VpCqIQn82tolBNGjS415iig6FFka5KSSpPQLLBPaZQzjopmSV1JWffQZkxXKjQwXexj0S2TMw6BG+Cg8EUKMiOS4EjFisU8E34Xncs4FBfRqo0SipZv8og3QEE52MrESTzKaI6MHWKjcYSTmwnVWPBA3iLEBlNQ832WggFatBgxZ1gn8mRLgkomGVY1dhsCxCyWYRFZiulynoKQ9Lw840GAI5eVRPElZuaQCJOMhMAxeWhgBSNxRDw+iW0ndHMuEWD32iRpAaKUEAuBplNwSUPBqNUmEMviKr5ts6LlsrMEdTK6UUpoO0jlkIgM2w9QroEwoK0qjLWnacs2CBNDSMZkAPRIhMFwfo6RqMVMJpA6ZUwcoGPVKTgWiWmQWiZKSpKcSeAPsqRmKbg2kW9hWBqTlF5VsmFhN5t7OUypqdgBlTimL5umWXYpeG0qWjDfiyjGAVG+SGb12NTbR9ZJOSwFkmURlN1OjbUqpJP45Hp58nqWhuEvqxFqGNI5psuwkAso71tOoGHZLh3foZxFzFUtIumSaocyipJwCUSeQ5agbiyQKIdMgZXPWNPdj5lmmJaDLTOKdJkWE/SbPRyZIA0To+RjAH7PgEDie3lqBcVSR2LGNeZ7GnckT63dphUlmE6ZkpsnUSGWMnAkZDGkwTLV8k0bT9QJmEMamsiwUdLAkyVysk1XOiBgzsojxAymkbLO6rDLjIhiF8vUpKZCmEUWvDw5o0tRNhjsTjFlDDJcchkL7yX1bR41N7O7GSJkhm+UiDUM+F1MS+KIEqndxXMUJzklBrtPILRmbR4sFXG4bVI1p+gXg6h4mqOqwaLTIwxqhJZLs5Bwj1yDaaxlxvrtrv5/IGi/B7625yvcPXsXb1//Dtbf9nGMuMmXh/8PH3rpqViGpPPJf0G3WpjHHof3igufcq2wLHJ/+mY6H/0Q8Z0/xznr7N/aVzY1SfPSd6LmZvEv+Wt6V3+B+fIgl5zyZp4/+D3ef5FmvrT8MrLGrFKdrvGW7g7GVcgDJ3+S++RxfP6eJ0hTj5Jo8WZ5G8+SD9N05/jxkSLFACrPWIGOOxR//E7cAz/h49U6OxZfyqecf+O5R1u8amSIcWVw5st+xPu/cAeL2qdmt3mxuJtv+3VmbHjDkS6bn/Cw+iK25BY4cmcVUU3YNZ3nnbUGkV0DoJhl9E3vpxRbTPmjPMv+MQdMwfz8qezoD9l2zEMArJu0ePf1HZby8ImLDPYPFYACEAB3w0a4C3BijW3fQ7ZpI6n5OCd1IiaShLurz+C9n93BKQuPcLDQj35U85Gx2/jjmbexb+A+9jkzuGNf5aXeWXxz8qf8LTO89+FPc4Xn81UBu0Y0zzxyGHPlKoy165G1OvHdd/63BA1AN5aIfvh9hOui45jwxhuwTz8Lmc8/rW287T6IIuwzll2utNY8HD3J8cB1+g72bvs535ieJUbyOnkRuyZupESHSWmTHb6IT5qfpLczj0olmDGJpbnitaO8gCNM6oDvlPI40UqM4hJR0CWyBbDzVx/4AQD9sA7WTGkuuSmjvBDx6T/J8Wg9xVM23dlzIDfNM2pfoZOMUuuUYHKBzlDKI67DHX4OgEsfrHNGPSKZcXjRXS3c4xP0QyVe8GjCzadpbhiIuHJhkXPsh7k1eQYf3FbmW2+/hVduewfXiye5YXKRt2W38GV5Cn9XOY6rlh6hevOf0H3JN3EueD7xd29kYpvFnedYvH/hh7wvy7g6fh5faT+beP58mmV4y9nrGb7779jc+iHXGSewvb/II6WAGTXHF59nsGHy6xyuXc6XheIN227AedkrsTadSPC1a1ELCxQu//BvjAmFZetZ77qvYG0+Gfukk59SJ0tlCv/4CVpvv5jOx/4B+6yzGat4vPA1l/K9r+/hxbu+yOnFT/L44Dlc9cRn2TyyibXOxt865/+A3w3VapWlpaWnlDWbzV/X/VdorfnABz7APffcw9e//nXWrFnzW+8/MjLC7Ozs08qV75FPIowO9GctbF/zkDyeseYSU1kffTnFCW6EHaT0Ry6PZMv+QI6RsVC32UaFWk1SEzU2LU2jhIvvxzjjJkFoYnqarmlwyCxQibqM9GDaNhnv1Kmb+9lXzIGCNU1No+fSyS+LeRgqJdE2popwaopQlmkMFmmOzuOGVeJ5QSkrkUXgKIdm1yUyPY5rR9xh9tEwXSpRl4rRZTg4TJxsYMHWHNOaxs8aHJ6L6S/lqWmDU0TG4e4h+lohkdYsVhOOTecoNi1m7BJlUUZ5HdYEFmvnQ7arFK1CFowa05HPQDrDameaaatME0iNORA9JDnqjmBjdpBeq8sqTISjGQ1nKEmX7RTp0sdCpY92YBJoqJsejxVOQJgBubbPUqfImlBiKxjMZqm1Q4RIGbGmWWfArdKioDpU4wbK9EicgJLRJTVK1JMuDssJe0vdOmO5PEF1hgW7hZ85WDoGbPJZj7JOaBseOR2jsPD8LmPNWSqBz+o4JDAsAuXS7Ut5dLzKiV3JqLnAdM1BNQxiz8YhoCNzlA3JuJrnCT3Gw9Za1o8tsDbTlLAIdEaoyhSbJYbNWRxbckI3pBO5KCAEcqlFO+vjibEJpoujlMUSq46GZP4cs8phupwwE4+jhIPnzS2r4mmNS0ysMhydMRQGCMtD2hAmNoG3ksjYTQ9FWwgyAUtZhV2yzXrmOWiWWfQ6DMQRSV0Q2DYjIuXo4BjlrMwKHuEJr8q5nQa5MMfxmcHjcQGtNSLWVKMapfAoiWXheynFzMOSXTb4h/DdUaSsQzwLRp4ZeSbGUJuieghQ9KkG/UoS9PtEsY2jTNqeYnJIIIpV1u6fITJNXGmywugnl02zkFVJFGgUOidoe0USYuqpYH12kG8M11kwPc5qLVAnJZdOslhzsaRkc0vyuFXCETFCCkZjaDgxmdbk6ZIog0KqmauYxMJhRC4xHlvMtQbY67cIpCCN+3GVR8EaIbH34GsLI1EkRkosJa0Vmu5igUCFzOZ8gkKRcgAzZsx8oUA132XT3oM0Zzw61SqOkRKnJo5K0WhySiAyh5VqkXE3JjRsirJDkOYY7PjkTYUoKrJM0atKJg2HqkjxU5Pj9JPgS2KrH5EZHExL1ESTEe0wva7OPtPGbDeWk9JrmLWHKFS6ZEuCtGCTFUxGI80B10RnsE+vIHJtfAOiaFm4zkxrOCJFigUkGbV8xsk1n19M7aNkVqiUDI60Y1IjoG6tJkqhreZxRYE+e5hmdwq0hWmBZaRkOuIRUWPAbxJGNgMSLGViuwaW3aFjLmsB2MKnIntUUocpDUJJlFLkkgpNFWNhUCuuoGJOo5wOTcsmQ6JShaV65B0FUlB2FjGNgIGkR9FaR2bP04qPksaCle37EWaO6dw4lpdQ7DU51u7gWzadJMCLWhR1j4AUhUTLAtucVSRkDKUulv7tFrQ/iIT8jrh/4R6ufPAjPGf4fM7dvovjWj/nuoH38OqXvwbLkCQH9tH9yN+D41C+5jqk83RmbKxaTfSTH5HueAT3JS//jae92eQRGm+7GIIexSs/TvDlq+m1u7xzy8WsfuY2tlm/oJsTrPRGeENzNfGeVXw4+QGprHLV2qv4yCMGd+9vgrnIKwo/5Bv6k5xp7GB/7HPZqMM7b1LMjUB57EEq91+N23iSa4oFVjX7uVz/kLEs5iPWBu6pKP5i6M+Z/eeb+ExxMxL4cHINxzoHuaI/z+ok5R2PhLT2+8wcKwjvzyE1EBjcutlhdO0WXrPhTbzzhMs4+0s/5fk3t7ioNsuW0VP5ysFX8uLectDkxpbJppZHyZ3kvj64dXOBwyMnsbeicI2IixqK7R5sivJcdLDBih2SwUWodGHNiScjpxO2F7qUUUCTKcfkrB0RP5g4kRMmD4MpeNbQNr6/+GZi/zAYAdI/xA3FlaxJeryxvYS58nyK22eZKWTsGTFYt/qZCCFIDx4g+cUdeH/0WsR/8RdW7TbNd70DdXSKkS9+EU7eSvit60keeRjn3POeZqEJvn4t6ugU+b96N0JKHj94Dz859H1O3gv1P3s7r917CwNpygXVZzM5+gCI5QU8OPx63mt9nXNmF5i6v8q9A8dyyvQebtsiOXSsS1Mt8cOiz4rI57g1z6B8YIbjd3Y5fr/mjHbI8Z5mu23wzCDgxGgNu+wmWbSWJzes5fqzFziSjzmraXLKoRMYDvOM9PpQzS2MWlu4Qj/A1u90eNYOwevf9lVeuP4NHJsMMNedYdX9bSITsiWL/SWbYltRigS58YDrS3le3OxxVvAkXzBfRMfw6H7nBl696XxuCe/kl1GNNSguSvbw4t4C93gFhsIm+Ue/Rm//d9nvCY572OC7J8Qk3YzTzTZnyJ28yrmTG4s2C60+bnm8zUO5rei+4/iTxjfpbzkszmzlBaN1Ho6OMlNSiMJdPGm+goqSjN/xfbxXvRrrxM2/GqftOOc+5zda0sIbbyC+/acU/vaDGENDT5/PA4Nk83NkO3eQ7tmFe975FBwTd+Jc5nfeyqojN+Ktvownsif5wYGbOWfoOfjW04n7/2b8bxQJEUJwzTXXcOGFF+L7y/F9d955Jw888ADvete7nrauXnnlldx///1cd911jI6OPqXuU5/6FKZpMjw8/Ouyz3zmM2zevJktW56aKiH+5VU0EhN6UBJd0gGXwRLMWwOY3ZDzzf0EQpNZBlP5CVa5Y3htgakyMquNJwNWRmVWFVawZmonDXOEsVyRTcZBdtjjBLKE9rso7bM5CDkuavBzcSprZJNaucfufpPVus3qRouZXI3QC9H9PhGaib0RQsD82j7SskNwfA3l1RnUmsSVBKWNLFUmMQoGa4c2MTu4fNp80ChzRBapKs2YnMV1u/zSOAslV+E4Gs/u0qoW2OX5ZG6ezWMTzJkCURhmyarhVC2KpTEYLDFf7aMwkMcvjjGx/ngacRdfe3SdPo6aJvPaJbIUuaF5FiyPzI5IHJOeKDApypRqZSrpAdABkZC03D6s2kqm0hArPEKiUrq6j/k4Ja+WGE4q7Bcj9KdH0JZmzqxgeS5josCi3kDVO0KWGJgqw5UG+wyw44gBZVDu9SglBr2xEiMyx14Hit2InmUh7H5GPVg0e6hfuRQOLnTx0yV0LkWqEkVDseQpulGe1KkQWRk6dchHLkIIEkyK2sdyS2ht07U8pgpQLxWRKqXrRDhqiHI6BMzRzerUtcQdtBhqN3GaFm3lsrc6Rk7CCTHIwhIiURzMNlKVXbp5mMxK7K2tpmkWSYyIuj2DbdUx3AYztoFWDmm4kcw0cNxZtIwY0B1WzqdkhqJjWhRCcLTENyJ03iCuFJmqQtfIMGNNt6opJEWUiBhsd2gWauAPcXJviYLo0BYGi6qOSIfIyzxBJUQXlzipGyGUpqt84qRNXoc4XoUZdwyvk7HBmCTWkkdqFUwRsz4LOcmwsZoh3WyAg+Pn8CR5LDuHn06RuBHz5UGC/CjjtdU8YiaEtklLCipuG7vZT2Wpw8pWhPAsqiNrcZwc1apF6vk0yBNbmiW/TD3N0ScU0dBadkcpbUuyOutSzyQ5bWFkNlglNjgFDhtVqkri6oSqV2alzLHoxvS12+R6FjnToV/maIs8Fdr0CYcOKQtOkZLS1DKTGfpYYSieJbpkymDsgOBQPiMtG5yS5SlQQmUJvgzJtbrk04RCbp5CLsM2HWwDWtpnrJqjYHVI50KcNKXmS4R0ySwodlKCkTq9vjpt1WOikyHJIXMe1rgEQ7DL8WjIiPGFjFWqh9nnYtrrEMYQM9qjl5kURYfIha5ZYLaSo1MwqSces+0qPb9IviSZLsU0+3KslynDWcqsb3BY9WEnK0g9l8TzsX51mLsydxw5tZbAeAzbXPZ02DQ0wlIyS8kTDLjjzMeHSXRI3RlAaodI9XCkR8Uuc2Q+R14MU/NdTCshE7NEOiXvCYaMZcuYEoK6cBASOvoYukJgeatYny2gM5v5aDXHeoM4dY+hJGI2gTRfolBeSWxa9HJjtLMmq3pTZGaZyahEn1ripHg3fmgwnE5zvJ7mJFcQZHM0onlyWcDpbomkOkAvK9GzCqhkAWW6HFrzAg5aoxwtrAKzTDmaw05X8Kh1DGm+g5NFDFsONbfLGZvO/4173R8I2u+AI93DXHr3X7Iiv5JnHRrnRfPXcEf1Qp554d9hSIEOQxpvfj30euQ/+GGs9Rv+2/sIKRH5PNFN38FctwFzxfjT2qj5eZp/+VaIQkqf/jzxT39CfNcdfPCU12OdvoP9yU/RAl5x0Gfs6LGoluCt5vf4V+MNXBa9kfumU7S7i/LA9/m8+33e3L6HAIc5s5931QR/uSfgjP4G6zY06FOKaVNx0DJ5fi9gRDS4tlTg8s6r2NO3m5HY5cIP3cMHNryMhlNgIj3Mh3Nf5ie5HF+vFPmX6TmiO2soL6W1aJIJg2ZN4XcExy7lOOmU19EZ2Mo9P9/Bj/fANc84n0/mX8nPlgZ4jvEQZ/Iwb5G3sHXyccZub3LSXoPThxo8kJfsrh5FZmvpZhlHDIszoza/9FLO3fQ+zv3mwwwdFpz3UMRZtTavOO9v2P/Y7dxRFPQnEcH4Vs5++ADjrQbbquuoHWixZrDNmvrj3DH3BtLCLpAJwuhym19gdRBzwczDPLjoMDQPV5z4JIvRAp20Q9WuIG77KdZJJz9FYEKHIa13X0K2exfFj36c8hmnkQ6MYKwYJ/zmN0iffALnnOf8mtTpLKPzTx/F2rKVhVM3cM/MXXzssSt55vaIkUUIBn/ExjjiwtJxzFUmkZkFRkYwdSFvdrfx1u42dtw5TC/LkRR8BoI57t26mcn8Hh5zHVZF8E8b/5bnuWOsuvJmxmYNTt2j2Pi/BIcQAAAgAElEQVTnf80/xTspqZATp0/mhvpeRHsrKhcyU3qUiTTkbZOKC76q2bjvCC+u38v5xYfIi4B9PY8PBy/h+okzecxZy579DbL+VaysTLB5f5vske0YaB4a95jYmzE7rrEO2ZxabXPToEcoJBeoJeJFuN85lseKo5xx7aeoOHD7moD9u5/J11cmVHTC83otbK2YNQXDKmJdOSC/ImTLtOZjx7ucFgwxpKYpqoA3pY9weGSS/c40C0s1bp8f4UbnpYxlh3iZuJMvT53L25caHIiXmC9oZPkX3Ge9kK1z03g/+yH5d1yCdexGwm9dT/rYDpxznv00kqajkPYH3ot5zDHk3nDxb1wbrGeeTnjjDWR7diHHV2KuXoPvOiTjZ+M+dj3ugdvxj72ce1u38fDiQ5w3fAGG/O2Bwf+b8L+RoPX19XHXXXexc+dOtm7dyuzsLJdffjmveMUr2LJlCxdccAFr165ldHSUhx56iCuvvJLrr7+e/v7+p93rlltu4frrr+eMM87AdV2+/OUvc9ttt/GRj3yEQqHwlLYL9/w7rSijqzzKqks4XMHOVdjhrcJaaLAp52BoyS5Vo+OVqXnLLo4dHXDQyuOKmBONKtrtozMdMYJPvZwxwGH26mF6SZmq28NSOSZ0QN7tcciBdVFCKMvkVY68Mim4AVP9I8zWA0qGxVCziBvEJDmbbl+OcCSPqNaxnHHc8CiJ0aFWHafq9DORaupGkbYZ0fU8jrpDNGOJNFyGmUUWezzubaK/WOeFL3wTmbmfA6Zkr3Ao+ROsWd1HUxeh6OLWbax8jTSXI/UcfE9hCoFj5FhRLdBqTbNT9bFQrtCKFV3hEdkWp6xu0dAldD6g40v2WiXaOUF3zGPRT2jmYHetxuG+MXrHb+RoMQ/WIoWaYq/VR0s4jKgWm+pV1tc3YMxvw2z2aAcuIvEYSAOmvVVMDxlIH8rlCeJ+hyfzNqnnUKqPEaQRxcSkWMuTjowRxEUWKh2mCi7jssj6isX+rImlJSNxFTtNOOQH2I7CK7iYnk3bDhmNY5RTpjW4kpmSoGjbxJ7P9HH9FMKU2DSJ8i67xo5hKO2iVZXx+CgdX7HWOgtPSJayKczM5QTRRtRMVjSbiBZkosS+8jCZBn3iGCvCWcbabXaJtUzIGSLLYb/ZR5DV6OHi2TOM2FMMpQ5SLtHKpZSUjQrHCLGo5I9Siav4aZfVDU1sCwJfktMuOUPiWAlR0abhlikaebJ8DkuY9Op1rF4eTcRou0m+0E+lYnFss02RNgkG+2UFlfRRxoNqh66bcEInZSH10NIm0E3MFCy3Rn8+Y3XYoq4SjiQe+ytlhBEyHkNdFPB7AQvlCfaf/lKasweo5wwGFxuEJZj1qth2iQnX4rCWTJsWHTQFE87e7zM2F5AjQJsGxtAQ2nQQTp3dK89AdA/Sji0yYdK0R9gzehJevU6zL0exuYeRJMRTBh2zxiI+K/HIWwb7Es0RxmhTYLwcgyGZNgN0msduWMyvqtNMK9gSBtadhbE4zyE3T2z1qClFIRU0KVA3MjYbTVaJUSbbbQ6WUrKCwYmqQuasRIRLJIZPmPrkzDoLnklczjGqTJI8zHo1VhddUt3miF/ELA5iJGUWrDJLTo5mJEnyZeqyhNdMyYcWUmmCFRV8dzmef7eXw8g8jplJsDMNJZNRf4K6VWBBdcD28SrDeDIGOcaRXEgiFH5ch26eSEuqrsnRfIe8shiXBol22FmvMx+5GKofywHXshkdLtOJUtYWj2Og4HA02Y5mWdxubXWEVjaDELC2MoJlKo50ZlhTHqHPL7EYLjFU9JE6BzpH3jExhUMqOpSdKZCLHF88Ft8Yo5fOkUiLjfSRmT6Op9FuSqVyDNKMOBiNEkd5Tu6vsHLNGNV0kmbSRBcM/h/23jvKrrL6/3+denufO3Ont8xkJpPeCJBCCb2JSvlgQREbCqIIIkXFglKUr6IUAUUBRQSBSA8QSCCkkpCeyUwyvd2Zub2e9v3jhhRF1N93/b6fz1pf32vdte497TnnOc/e93nvvZ+9vUqIRt+pBNR6xgo9NKY7cYte0gU7kpXHKw+S1qqZbs+gKjKiQ2aCIvv1FGnZRqThrBIHyOi0mx56hAwxZxVOXznJIpiigijKHJPowaHI7HFPBVEnULRR5chS6RWY3XbqP/yv+w9B+yfIaBmu2/A1CmaRxRMn8eWRO+nzzKHqvx5AFCUsXSdx3dcxu7uQZ83B/ZWrPvR6UkMThZUvYezZhe2cjxxl7S15ZL6CGR3D99O7IZ8jdcePeaFhEe+eMcqY8A6iBZ9b4WWT90JOkrYyQpCr9SvZqNXjdG5HrvkjF6gv8uDEDprzaUYtP2VCikcryvlKfJilahokGaNpMVkjR0UhjWwJPKDM4Ppqkddyp3JW19tsmgpXPFXktcgprK6ZgywY/Db5fcq9Ga6JhFiSzdGxrxU6Mwx7RMqS8MqxrczZE2d3oJ6kqBJYuYLBN99io2EQrkrxaf8mrhZ/zzXy05wkbSWSG2d0nZ/JPW4EAUTFx5unzeb6/vdwmRab3XEQdVL5KRiFAF51jLfi61CkU5mzayc5FQ4kckwv/pmTPNUcyKRZ55Zx5XsYdDmZvzPH6rbF1E/0ERuyc2zVELXeEVZFL8H07cZrgabbWRkEmwmLh8DRJ/HMMQJ7MvtYM/oGz+Xe4pyNFu9mdrKtWcIm2fEJLlI3fQv93c14vvdDbIuXHRrTcmMzYlmY/BN/xOjrRVlyAvvT3by75lEir2zk/rnj3Jn6A2+PraZAkfPfFrGrIhVNCS6pqGfMVSQy7iXtyVIYPYMr8918RnuF/ndDyIMiT7ScyPL9G+icLfD47FGiikRLQeeWTAUNNlj/x3spPyCgmCJ9bQu4IbCRmDrBBcPl/NZnQyg2I3g2oorjXDc5yYKiiIsz8W/pRlJMYl1urJzF9Io+zlQ38CX5Oc60baPclabLEJhc9Q4ND/4C++Z19Hoq8Bcy7JnRgV6YJDxioUgmezJu2msS3B/08bGJLEvNvTxqO5Y8bjZXtvPVV19jzUwBuzxMb2YJr1RFeVpuRiiUMd8cxQYUAlMQkKhwT3BhMsP9YYFluQLbjCZqhXFOzcc52dhDV2QTE64ouXQ5K7UlvGIt5OPSajZbUwh1NdGY7qa7wkQIbuRt9zLO2N2JtWcXriuuQqqsJP+nP6B37SuRNFE8JIv5Z56iuOq1f+g9ex+CICC3tFB4+UWKa95EWbAIqbwcu8tPLjid2u7fkzuwE8eMr7Bq7GkSWoJjy4//P9ZL/7fwP5GgASxZsoSVK1dy22238dxzz7F8+XKuuuoqRFHkBz/4AaeddhqNjY3cfffdbN++nccee4x777330GfTpk2cd955LFq0iN7eXu644w7uu+8+kskkd955Jy0tLX/XZv/mlylkUkiKRdoTRKzy47K52K6HsY/HaLULZCpnkooNginjdrnJF0ziRo5BuxN/SOGY1pmYKRfFoUlUyYXiFQjTx3ZXHYm8StAWRzPs2C0nXm8BeyKIAx95LKSDy95TkpuMLUBaijNFtCMWVUR/gOS0Ogan+DHcKnXlZUQNJyIC4yK4lHKagmXYklFcgp20mC8lIwmCkUuT1EJMUybwuWQ22Y9HtdWyvKOZsfGtZMwig5oPp1RNY5lIRjPQDQtFsGFiHOofu+imyTEPu+SmzGthJvvxCxYRfzWJmEyZojDNZXJJg4djynwENYFePUdGV4iIfpoqFtJk6ATEAGExyIy5F9PsrwPNR32uQEuoil7PYgxHFVPcGu0tZdgWnkNXehe9BZUBoRxR9VKtJXHkFRons1SnUgimF4/lpS85iJZWCOQ0XCkL3evEVxagPXAMPdkREvIkGhJB3UeVU0CZeRpq/yBu3Y5VLJCWMgz67TSFVDyGwmwljTtQQ7/aQliswrbwItSRKBm7g2y1gj9TpGiY9LQcQzLgotqRxkg7qMiNMkV0EvIuZrAYI2f2UGvkqRQE8j6ZULqIHC8gqVUMVx/HqCyhNDbSnNpDeS5BWMhDpRPLKKKmVQJCgAOWk7C9k0rLpNY0EXSBmDfN1LyNoKmiSBJ1qpM5BQ/RnI3ydAa3YDBYpVBFJYqeQ1Y1dIdIXPFRZjoJuZYzLsbpr48gMoXAZJYp8Um8dR5c7gr0uIHLijMuS/SJXnQtTHP7VIJVOdJkCWSqqbC1oguT+Owugo5yCAQocyvYJxMELIWhos5YqBGp0ode2UbzeIKglmfCUc7E1Nn0yhnUqgD2bByfXmDEV4Wv6KfWruPNhTmAScisYK4QpiNdxJlPoVsaUmUloteHJIKrYQFdvqkMJuPYsnF0VSK5aCHjbi+Su4MkSYLjW3EVJbQyPwdmLuU4f5DA2DhBl8KI5mZSF7EUmcqqCHq5RLiuGmfOImMJDLZWY2UCWI4AxdkXoUezTFrjpOUcTkR8ukCDMIJTtKgNhjEUP+p4lu3OBG5HGQ3SVDTZQ7dWxqQYRjNtULOQXbUexhoamZ6cQDPzTFoeKhxhAmqRuLMVv+xGExQ6F51Dl9eGUBzDCvoJaAoFLYvTMMlHvKTm1iDFc6TwMWzTEU2BhqgdN3mUkErA3gBAEQPT5qSoesgGfLhMhW41i4ZBYzaInjIZNf34VBdBPUmZZqfOXYtuaez1iaQsJ0HRjt1lZ26oAXeFRLqo45fqEAUBu+hiUhvA71Co8URwyE7K7eUsrz6dZDFO0ogyM9SBx+bAaROockWocDvpGjMQRfC7dGQ1gU/QiFgyjeFpTBCmkOsGwBe+iEGhgM3IUOeupSJwPNlcJ/lsANGAjzW7kML1aMlOhKKF4G5FEmXq3VMwLZFzWxYxM3OAoVwGm8uGEjJ50+mlzOehWrYhiCphVSIjy0wW80jAEslLwDTI6h7cohsbUZyazgk2P6otg1JI40sPU5YfIykG2K004pI92PJZgvYMAZfEzNZ/XOLlP2vQPgSGZfCjrd+lL9PHkvxH+cbwT0k4G/Bc/AiWpGBZFuk7foy+eSNIMp4bv/tPrynIMs5PfYb0bT9CW/8O6qJS8WCrkCf57Wswenvw3n4XcmMTo5/+L8adAV4+r4e4NI5gWXz05TbembqAJmmYG/TL0ZBpsW9ksPItwkqU650zOabuM9i2P4wxvJUoPhQ5wwVjPYQMyE3K2PwFxP43ido9/DQU5snM+YiVL6GnOjipbz1/PdZg1n6LXfbj+EPbcgCOtf+W6eVjvCU7GJJlvtVboLhuFJwGleMS9y9pZ8GwjmSYuOdbVMtjeIfyzNzTTcfqHhzhAoEOgcLcNu7K7iPYV8fCN5JYhTyROXHUgEb/6wIXbqtl5DOPcNyzV3Du4CDfClWy27eVnlwt9tGLKXp2s7LtTY5fJRP1yDTsz9M5J0JbYQM/NGRkKchLHjtGW4EDW+D8Hc/zk9mf5LsbfsuuNeWcsGwXT8g/5eMD3yBZ+zCBQo5kroX7gvso1OY5YwdM31/Ju62T5Acuo7wiRmfzS9Rt7ueLi0oJYK59XmH+jjxDX/goTYsX8bdTzeJpJ7G5sJX1XS/x3vOnEFMKXPayUaqXNGU6wVwDUfF1RENgytgIyZYcn6yspGi4mLLPy/7WfoqTx/K95G5muzZT3OLC2qeyYupSTh59j5TH4u6lAklZpK1Q5Ft9Am2RHGz6Ne5tNYz4IJLQuW9ukRF7nPaBE7hHDmJzvIGgdnJaOsvVsRhbG87k+AU3MXrBBTgjeaqPj9G/M0R8r5voeBkrlmRYMrOFYzJw/LptTNu1Gy0to/o0HIt1woEs+ssSU7sGuee4E7jmlZUIBtQMWcS7VCr9OveXebhJinHLxG18w/MjRhxBrlr2TS5Yexe/OQ3OWP86z7qOZyy0jtvMGTxsVHKhsI7LM6OoVgo9L2KXRW4ZG2Wr3cF0ennHaGehuZ/apbfyQKKPP/a/woMN27Bnp+AcOZHv65+mgkmOr9tBV+xylvT+jjUNOpmWv/LzZS1ct/Jdcn9+HOdFl2Dl82R+djvpH/8A943fRRBFrEKB3GO/R549F2XO3H8q0+qCRSgLj0HbuIHEtVfjv/s+5OYp2KYsYzJ3G4tXX0ts1SPsnX0Of+17mnb/NE6vOevfU0b/wVGoqKjgnnvu+cB9e/fuPfT91ltv5dZbb/2H13E4HNx8883cfPPN/7TNrFyGIAygolMQDpZOEGU6QpNYjDIinwii89DxpqxgoZNVPbiqoEIVqXHXEZw/lx0DwEQUQ5CQRAHD5UYJuDkpWsH+lESNT6fMX09RDeAaFejxFbFXyOQ7x8jW1yJO2GnOO2lVHfTbJXRTQqyKgBnFrpTqDXZUekhn5tM98jqSIOOQ7VSIZSQlFVHJkVLKaPZITApRfK4iTtFBu6ecgFEDcikrZkh20S3EabPPImdVI4k9NIdcFA2TvgmNmoALWRDZF00RVKpQJTuzq1sZ1bfjUkWqVB+arYydjBN0yZwxrZKA3AdYtJZ7GO6z4xJlbJKAQ3VQ5nCQ1/MkXI0EHG7sioRdKQAgCxKqqGBXYOqsM5CCrpKxsSJI1BA5EItguDtQpQzeXJJ5vhBbkgtocuYQXQHaJwzijlqOD0/npV1PEA+6qFVcYELRYYOCgCgKeIUCEUcz86YvZfPu9QzE8vgCc+izNEyXwFBFPeGyCYRBExQvlZKdXE7CI5fhtdeTy+8j5JZRZRGnoNLQWoNbS0DMQaWcQPHZGGtrxxuYgf+dKMOWQEiTaHaXsys4i3HnVlzJAyi109AbWkjEBCotkxFnDZJokbU8iB4JTYviFzI0CllsZg9yFmxKafw5TIkLslMY14okbDa6qsIYLpmawTFSuQmCQpYy0YOUlxHdbqqopC9hMaG+P35LhmNDsoMoojvciEIZnqCX9Ix6KuLVyEKaSctPgQwiFgUlSFnHSWSinSCAJKlUOL1MREEVJMxQkBpHmLhWWj8qIiJKIoIFNmzYK2YwYJ9FeONK/IqCXZERFZnKsEhhQRvSuEEk3YpRSGCqOnZUGhzLcKSjTNV0jLCJMjxANugiEKksrRnz2dBlEflgjcu0vYqhqU20RkKMDCWxsPArESRfPRWZAv31HUxxLkBOv47WVIM6EcVwuNkTqqIhM4IsWGQDYdqdTjy6zholc5SOEEQBEQmHoSKbEg49gCJl8VgZbFYchJJXPthQz1RFQJcdFDi6DIuysI1c1XK8xTimpbHTNRdv12+JSwH0gh/T5WeKFEKSBuleeBw5RzN6736iZeWEPG7UvIXL76XgtZGcW830xlPo6jBoXN9DR3wDSS0LpDG8LiTRPNRuvTdC0dnIjnQXIbfFLKfODtHNvkyBKilCSknSp3uxhCy5unJku4PAuEq3OQPYTkgK4/NVYpcSLKq0sVux0R62MzsQZO2BSSK2ZmLaCDY1BcDyqtMQEBAFkTJHmEXlxzE7NI+gPcQbw68BoBvWofvzOg1MQ8cjTMFm7sOy+/lE83Hcv2YlpmXiU8KUSbVMyEnOqp2JVNNKVJvNc+MZFGeGaieUBaazmhVYsg1ZVGkuc3F8XZCBRJ6gy4ZV1kEqmUUPVlLtNPhodCcecRJd9GKggM1BuBgjgIBNy4MgUrC5ceTcSIbGkso5jOhOwrYc4Vgfak4npeXJyU5SYinzcMij4SON418IpPkPQfsHsCyLe3ffzbroWmaklvCT6K8w7EHECx/HtPmwDIPMXbdTeOGvADg/+zmkyqp/ctUSbKedSfbhh8g+/CDKMceCYZD67o3o297D870foi44hqGf/AR1ZIj7LpMYcZYWaM7fdwHbG91ss5rZZLRxorKWXZUbGXJFOTV8ClfOvha34kZdfRO24Q2s0BdyrrwBXT/4ogWQPTZi3Q7+EnDx8/l28qPnYI+swMhX4JK6keQCRUXAZtj5ffvZWJaI6lvL7RNrKdoFbqoO8pl4komNLpo1C6Eg8eJcJ9f6NpFa68RTn+O0yt3ooo98soDSoJGxGijERYbeiCJsSbLc8COnR+mbGsR2xa+4YfUm7nA+ir95mPjTf6W9Vif/yQ1se/sH3Lf7D6x1qPw4ZJGs7keMLWDX2Ff56sf7uOL1DYTsnezboNK/+HhOkd7mxsEEtmqdZz1unjtR5yt/LLIouo17l3yUK1Y/xcCqEP6lce6Xf8/VscuJBe8nGB8l1n8SzzW8zhnoXD20h0un+ji3eiNdExfyVjDF18aeZOG7l7J0fAvzd+zhTyfbeSq0AvHV55kemMGCyvnk8xpbJ99ld2wnptPEOd1BeMCNVzyBk3teYndzA5v3fITplfuZ9Ee5/b0Usu7gsWYHxWwT7d0u9s7ajpGazscmXMx2rKdsg8rEbg/bp1YzoAY4NzbKg+cKRO0S0wpFbuxVaLNHYWKUOw6cwHmZTrqC5fz4jPnsNuqgdxm9kaexuwapL+p8Z3gCmximeP5fWSS7SVxxMYJVpGJhirv4OKMf/QzHed5F+V/38vHnRYS1MXrSKdAcSBVlOByDOMsLOGuqCYdE4m1p5G0Gv0n8iS+cOp8bn90Pikn72za+Hk7yjeYgn46mOcs9xs8rfsn+4W8y5CnnL9UN1EYPsGmqSHt6LZ3pJmTfdobGl/CAbSorPEP86hWJigZw+uOIwNx8DgFQFIOUoeDceDfJC5/jo4uuY85kF7esu5Fe90N0TDZjH1/MX8ylhHwJrOxnqUutos+9j03zOnkxoXLqfb9EXbgIx/kfx0omyD54P4LPh+vKr5N/fgXmeBT3Td/7l/WF66tfJ37pJaBrJL72ZXx3/Qq5pRVm/BfxwiTnrP8x0laN4bZ27tpxBw3uRtr80/49pfQf/Lcio5QxbkUwIgqibqeeBJbsQPGG6JlqQ/HOwJs8UMok6FZJLmznuGiWgYl9FHx1TNc7AZBq68hFahC9Qaa4NXKp2VwwvYVYIYM/laY8GUO2B7DXzcTXN0rGkyDe1kRKGUEOhbDXzKDy9TeI6AYi73t9j1x3d/h7k6udnNeFU/Zyam0dq/MdRIuDOPwTTFUFBD3PbLcfRZBYUOYlq0s4kj4qPCWzU70aQnHZ2OkuJ2fz876T2S6KTK/yUjQLSIJMa9hNOgl2RaI24GAkaqJIItMrvbyXNihTdVp9Iu3T5kJnHwAem0yVPYtmCTQ4i4yKIi1hF3h1UlUd2JTSDMYUSpNry7IIu1U8donqMn+pFgAgSDaCLoXyQhI5LDJDUalUnNgdQeY1LAdRIqtnSIypuCQXSngBmbFSyqQp/lqsScj6PGSLbhpiw0yTBcocpTp5kiDjlN1kKmrRJrfhNiHmaWcyZFFoEkmrLuRYmsl0NW5AQMBCwK0oWI4gqt1H2B0knylNSp3tjfQbYUx3BFcojB0bbcpM3N4EIdWB6mphxJvHWuBmmuhntqMfZ2oPkZhBxN6EJQ6BKZByBFGFSfLYCQAVkou0lKHc5iChFyhoJo2ChzobbFbqQBSwVAVDdhEWUmhBB7JYSr4ldczEVZgk3qNRKB72iAKoZmmK6Ffc1HgUBJ8bI1CPkdBRETGCx7A21It9OEGdL09buZtNEwrV9iBNngbg8CxUFERq3LVoqVJ5mFKixlJ7Z4fq6bU1kXdnQFIRPS5kUWB2g4nPIYIjgCK4CAfCSAsWozpHGR0LY4wUcKQTgI69oo7knAz2ZAZdcVHvV8EskfvFU8I81y1gijKWIB4SEcPSaQ75SHiXMlLrI+iYAoLIQNlSqsS1+KaUE5lwIIzIiNkRQo4AsdoQnmQMUYS8qxGjsh16d5TGoiCQnjoLadtejlXqGc3nSQgqdk8FVa46CjYBK5dBkkdQFBUEqVRYDMj6PaSDfuTaMCfXhVnTXRK2nOAh3dCAd1yhqDZguHXkqgaUSRNBkpEEGVxuxJQNZ3mECjGLM+ViXZsAkkhI8eEPd1BwZpldqGdHfj+FmgBEFBR5CJIgSCLq7A6KPSIIIhlXGEP2UVMcICS7qK2cyiZ9lOSYieVw01pjY6qzDCE9gFVUmCZG6FfDZASBOk8KWTJYGF501FgSBYkOz1I87jgtwQDuI9ZjVzgiRPNjuBU3knB4zAgCeB0GqbyEJEKNPI2cmSDlaUcT7QgIVCpNqFoSSxDwWFBGLUqgBRMQsJAEC+uI+yirO4V9fXEwEzgUCVkSaQgeNEyoHqqCbgRhEikv0ytYZB1eXPVzkAQJw12HnI/hmdzCeGaYieq5nFB5MrkiiHoGy26jQrajJweoqzmOZ3vfYSSZoyO2DcHugwwokoVdtfAZTubYI3wYBOv9/MQfgGg09aEn/3+F3+8kHs/+8wP/G/G7fQ/xu30P0ZZu5NGxtRS8dWgf+xOmK4JVLJL64XcprnoN7HbE8goCv3n0UBrufwW5Z54i89Pb8Nz2M4pvvE7hxedwfeM6HOd/nPjKZ9C+fys/+5jA+lYJDBs1PZfSWaxHxOIj0hq6AvvpKusiqIZZXHk8plHgeEPhxP4tuAbeOtTO+4ow1u1ico+LYkpi1xQH3ztfJDd6DvbKZxFND/ZCjs+9luZX50ict7fIfunzvK1PQ1BH+Ib8U640B7nNF2C928ZNL2s4dtgwBYsd9QIPLryQh9Y9RnZIxf/I44iRWtK3/YjCS88jTW3D2LsHobYeQRAw+3oO3VtXBMaOn4Y+95v8eOMk99asZuqjT6FlJeo+IqGdei2JmmWsfeV6pkdX8bTXxRMeN37DYtFkCGd8GuN6kNBIgs6yNpbb1/A55WXimpf/FZF5yuvmuhcM5r5n8c0lX+UC20PMX5XHYdfwLYtznf9LdAt5YrUv452sIDl+Mve/8jv21grsXV5gi03hxYERpIPinZx0MrzKyx8al/O7aadRW9OJ7NtA3OpGt0rhwJLpwaHNIjs5i0S8GhF4PPd9FgZKkzND9XKTV2GHKrN0q8DZr4tcddEC3JNe9s19CyFbhS+xlCezP0Vb6yY9ZGeoVeLmxs/zy9ceIhop8ttdCcQAACAASURBVK1PSHQUNX48AnXWKFlL5bL8tczp3sVAdTmqS6Bc6ac/tJu3vBpO0+LL8Tg1RS/yvG/TPnUZjk0/J/HQX0h0OwgvMTi/4jv4wnV8umk7nc/cw0l7FAIThUPvSohUYo0MI5SFsWKTSE3N+O78OYLdQfzC05HFJN8++VLq00/w2ZcMTBEEH/zhwgI7XQpP9o8wmHWzvPoMimPn4yHF7db3uW6axHnvmOyqtrM34kJUYxSiJ6G4d7JwcJRr/6wjySaemjzlC5KIknloSmoBhs3PjrZzeVUFzVeLpiv8pfcxTMPk9OEp9KQWsoF2vGTw+XYTr3wKMLniBYOlo27Kf/s4ljtM5u67yP/5cRyXfo7C8ysQq6rw/fLX/1I5jPeRuv1WCs+vQPD6wDDw3v4zlOkzAfDufQTbq9/mdaGFbzc4kRWTuxb9kkbPh2cU/O/G/1+6Ohz2/POD/odhw1P3s3n7y+yzCwztCnJx0wTNi2bzVFxkU8842n4v7QPvsKjcTp8+zrN2mS9UT8XbUMmT0ShT+t9Cjdq4Z80ojTUzmWYTafXB0hOasPwu2tumoY8n0PpG0N0NbBFlKsY2UeOq4f7hEfYOr2A4K9E0+wQumttKw/YNTA6l2DQ6jpVTUZbMY0hKMDE2yGA0w7YDo4xv1pAq29D7tiKZGlLjMSBZfO17Z/OL276PMWmAMh9REDlXWoslSDzv+Sha3xYKg3u4sF1EVhTeGHHSP5HFNVM4NKG0dAtBFrAMC0ESyPXqFMfyCJaJZ6aH41sV3PtTbB1xMF5zEoXRbrI927h4+mG7sByoAkNHcod4ptfBsca7+O3w4j6dxEH1Y6tu45QWB1psmDXFVozYEOZEL5qmIQgC97zyC5574BZEm5N3RuqYFx+mXBtiTb/JcBo0TStlb2t2Yowb2AQbZ39uOqqiUtWdZeOED21OMyH/AIsMjfDaYVbuibNetTE3k8FZ1cKOjmZmOwcIm2HWhBRa/DJT6ltoamtmz+7d7Hl5H6KhcH5VDTF3huEpAWq370dXJLbYVMINYSb792Bbt5l8IYe7ag7nff0+nr3xOnJCDw3hEJ888wLiM09hc2IN7/75QbR9aXwOGT1okRrVGcl5Ob0yRW11A8mZlfTH81TtHUPszxPTUjiqvbSEK+keH2V4aBD3QIxsLs9qvYXNs5sQs5OcPpKhdU6IpplNTOuL0mcm6LfV0CIIHBjbScGw6G0N0bJ5nJhRj1YGoyfOIjDgom3dU+jV0DVtKr7RWjoycTQfPB/cTSyTQhIXU9mv8cb+P/GFj5+K+cwkezr3EohMIgfdbHtrGMV0ccstP0Lf14k4sou+YozRtnKWH3siv9wb4A9PPoVr04uMWRaav5yGZQFOWV5KoiBaGpefeCWf/uQnmJycoBCZzkQswbED76HYXbiFImVlZXidCpNiiJlVXpqrgnQOJQiefAojib1I8RTbfH7KwhavbevmwFuThLMDLDz/RELhJUxrm35obNYl1jM7aNCVt/OLPg+LJrdwdlULaxWZ+sR6GnU7ee808scez5uP3cWW7p1sSdTiDVUQLi/np1dcwpN33snugU1MdO6iMFhAFCU8ThszwyZ7GwRGMgKNcgUzZ8xiZd8QbxtZMjsOwGAa6ucDEPZ5+Hx7hkQKojtjlFVH8M1pxT62mT6hiif35ZBq4px2YivWSJyGvkGa3BW8VNjL+HiUyY15dowLzDIM7vvel3lp8yvsGUvyql1kapWfYyZLIezRRAZbogylXuF5M0bdvhFsx9WyeG47M+UZ3LK2iJ6TmKaNcNnJDvr6SoaWF4VG2pRtbI/62R5NEii+y/aXRphIHw6Nd7YvPfRdi/aijfd+qK71HVPy4COKqJWth7ZnOlUkeRJXXYgvXf4xfvqlmwgeO4WwTWf3a0nOmhXGIxZ4fl03ySKc2hHAU1ZBd8ZNz5Y1jGZFZFnG2bYUT4dGcWgv2XdLXtBcLofXZlK/0MNI3kTbmcY200PaFLD0ktJLrE8cuj9Hs4Ncd+7QtvchSRKWZWGaJra6apSyRiLNBVIjBxAjrQiCSJW9QIOeR93bx+Z0hD179nxgP4gfuPX/YViWxSNdv+V3+x5iXsrNn6Jvkiqfj+Pzr2C6IpiTEyS/+TWKq15DLC8HQcD7w5/8W+QMSsVupdo6Uj/4DoUXn8N52edxnnU64srvkv3ZD/nlOSLrWyWUVCPpzhvpLtZwvr6Gq6z7eLlxPV3hLk6vOpUTC3mO2/QAN679NWe/cze2gbcYEpw8aK+nAIyKEqtjfjb0+NCXfxwefoifXVhJbuwc7JV/xaU5semT3PBUmhWLJAIFi5m2Ct7W20Eocqz7Cb6iDbLLtPEHn5PvvFbEscNGUYIRv8DWxeV8bnQ3mT4F18fOAWQSV32ZwkvP47zs87i/fi1yewdWfy9mXw/KcYvx/+lpXF+9mrBaxnFP7WLxzZdx/47f8/g6D/su/BSCAAPPGdifvobKFRdz+uyLMS/aTMJ5FmcnCwRNnRfLY6xrfJNTwg9zU+Oj/NFzE2fKG9lhNpKWVK4bS3HdeIzHTrBIuwWu3/woT5Z/jexykbQpM/lykBu6H8fuTDNzSzup0AiO0HrWhzto74cX3E4+mUghYWHY/IzvcuHxZ6k8aRLfmZtom/pj4p7fMW7uppCtoDB2Gumua0ntvZ5AbzMf0V7lPv932eG6nIWBTmL7nJimiFhMckEqRVKSCY2ITDrsFAph9s1di5rzMWfQzbdHXib9sp/UsI398/ysPOdSrtn4IpKgc8c5Imdkstw3PInPTNFtRhimnN/a7+Bb05/me6EHqK54nCcb3mONV2NOvsDxSS/paffQ8ak3mKsPEHjkeNKP/JlEtwP/XIXLgjew/MBObnr+ZmZc+0vOX2tS1jAD9w3fwfOTOxE8HqyRYRAElFmzcX3tGoz+PuJfvAy9qxPnV75OIaZyY/9K0qF5vDRPQDTBisMnVjgoaCIPun3UedL8fHgDkmsPKTzcJ1/KmfEMzy8Q+PxrGTqiE5RTiy38OlpmGuur6njrgSuxX/1t9iU9vNIb4YAiowGPOny8QTNxPcns937PNzf+no+tvp3ybXfzw6ZP0+qfzos1u+mtfoVfjN7FdOEA/Yn5GJ3XImoB7jlL5qXaDKlvn4Jz229wffkr2E49g9zvHsIcj+L60pX/FjkDcH3lKsSq6pJFxOkkcdWXyb/4HADiMV8kduq9HC8McH9fH1qhyDXrv8aBVPe/1cZ/8N+H6WdfSrS1g7zgRrF09lmtTEZmH3WMrGUIoh/6vZ8GdM98wpqbzp4g25MlYtqTT5cOsCwsfynEqVi3DLG2GUEuWZA1yclAw0lI534OSyxj91qRoWEBh+FgRt1y4p5m0rYSwbfn0gRsYAkCPYUgqf1uins0zEyM/N63sIo5AIzEMBiHx7Ue0yl0b6RwYCOv9VhsGymSfueP6CP7jnouIxPDKmTI7j2CrP+NeFhGEczDHph1Awarewz2DSaIb36B7EEvw5O7DvePHhvCSE8CYFoC6wd0RtIWycLR13591MOrB0xy+9ajje0/ap/+/n1oefTECFp8BADxb+4vfyCPmTXBgoSuUjBFNsd8mEKJdPrTXjoOvp/cEWZrITUGgoAnraLqMkrOQzhfwft2+Wa5BUUXkSwDrwJ1QQeCAP0ddQy11pRWDgoi4XwFqgZqwUIwZKp9DraXVbE5KHKgpgpl6VkE3KVzHUKpjzZHHawZaufF4So6R3KkQm5MmwSySNCl4LeXvItFWcISRIxAM3klQMxwHHwpFoJpgl6A/AgjaJQHIoSPPQt1+YUYgRrcooeJ8hk4nFMRFScuy4YsO3ELpQl22OWmrsxG0eeiIdJEu9iM07KRcVQR87VhYSEjU25NQcIio0sUAy2UTGkCfRmZoaIX7QjnnFRfjxlqxvCX4wjUo1ctotUL6tge9psGacuEbBz7gJ2AGMQpuDAFBeEI74qUHsMY60IqZjGTUUqltQUSWR0lPYqBRP5gqC4CxJvqiEfC+GwzD9+IISKYAqFCEAERu3J4SlwzfRkAM0MW3z5pHqdFGkvtHrwH+/QmHMtPJ+DyMO30M5iQvPB+PUYEREWhr7kNXRSYFA6HEmqmwLujIgfGTLI6SCmJCiGCdXC8ar3xo8Zt0RLpM8rZko3wvnVEP+iZTJl20AWsnIRfKSeLkx25CpI2L2lDfv/RAXg7lyO7+DzG5AreUktbJ4oKqydKpUn6M+qhNi1BYNOoTEo/wphiFkEvUpaLHnV/6kEvqGBaaBZsea/wd/L7f4SD+kqPj2IkYmS27UYb6SXkLPVBekcfnZt6QVSQBQszl0Q72N2yAJKlM5wyGEodFmqr+L4eO9o/Fc/BgZxAxhCIJkwG30piHQyzTL6bPHRcckuS1Hv/3IFlJHTMnMjEmIpmlsqiWAYM5VXejnr4894PP/8/IY5HwDB17t75M1b0P8OpqSK3ju9luOMrqEuvA4cHbeNakjd/GyuZQPAHMOMJPN+/FbnxX7CCa1mk1ACClkHQsmDq2FrKyb7eh62lilDrGPLvFvLqJjsPnROiqyFDcWIJjC3jY+Jazty5lh02i1+fmeQkAnxdmoZ//cP4DY2i6sYKzKE78R5XhyP02ERaC3nWUM67djvUA3PBLr2K0r2WyUQEe+RpAnqQKeOjXPmixvNTFfrKBY4ZDXJt/hpAoFFdze8T68kIIt+MhLjnz0VsB+xkVdBF2HpmnkzsWOauf5qcz8bWQpApn7kEZBnb2edSfHsN2d88gODxYr/4Exh9vWhr3yKdTOK54Ts0X3QJK9/+Nb3P/IYTdu/i+q5t5Lco5BvqUHv6OPB6BVWn5PC98FmmVh7DDcfdQKf6TXasf5Dy3HMUZIGbwiF+4gtyZp/ETCtAk5TESwanqPGplManUilGz5aw9Uzyrb334zztNNa7NjLv7WEc62V+MLEFxVbPPWoNG6Z38fDy2TQ/EeHG7n4uFNO86HYjji6jbttGjKJExewko3qUIpV4kksYTx7DbCPKqfJWFohv0GLrxSkUwYCYpeAwNBJ9DnYPe/Ft9fH65RJXJga4aWISsb+Bm09bxOTU13HknNz+WJr+jmaa334PTRF54vRaLpsVYHDleywO72Ts5AIr4kWcB/8ENExMJPqtcrakHLxakeedCJhAQ16iVwrT1PBVLp+5BPe+J3H+YQlCYpShXVNI7c5iqxDYNFDNj9+9HRGLfZWw9fwWTv/EbTgD5WR/82tyf3wUMVyO6+pr0ffsIv/csxRfW4nc3oExPEjiq1+Ej15EpjaEe1MU2b2YylkJdoz7aOuzsEYN7njY5Obz3Swx8pzu6OUHE09xg/Nq3jOmM5b8GHb3C/z6DIkf/FFn++k7ecVVxaa6VWipVu7ufJTH3CqTXxQoqasqwrrO9EKRVRUaklnLHeNjLCn4qfaW8YXx7Yiv3cwJ/kb2Vszie84d/GYK/ORPv2HTSdN4zTmPVfuvwVn1GA+fsoeBTX7+66XbmLf11yhzzmLsDROzKCLsW4dcdjBJkiCWjDOuchD/scoUXW68P/gJiSu/BIKA1NhE+tbvo+/dg/f669BbziETbKFuxRd5fKibT0Vq+erbX+SHC25jTmjeP7zuf/A/B6ZooyjYgSJp3Gh2/wceN+ZToFCSU1EQ8RX97Mg5Du23xg8gC+UUfYcT0Fj2AByRqAahlAXs/Vp9GU2EASjLl6MEpjDqnY1D7CScUehxmEQkASegZqCoS/ABOb70iX5Ehxef/WB2WcvC0gtgSUzqEM0cPWEpmiWpez/ORo/r6Ckd2SOT68mhBBT0pI6jwVEiP+9DLE193r+epR+esekmFHSwHSFKb4650S2LVB7e6Dk6zO5IWHrhqGQ+f4vMtl6GvCLVLpHUh+Q4O5D3YMeO30qUCJQhYhcl7JbIiE1hnWHgBLbrGk5TR9ZyjHrtjAUrUKI27F71EEETP8DOLSBgiiIRqZIxSjX1rCMYrYGAU5UI5cfIxRT81RVHnW8cnK0XijrqxH4YOIDo8ZITj2PuJVfxRtcfcVkjh0hozO9Fawwwb+oc8uMHEEyRaE5CL1joE13onZ3IhkTa24Zj2jJag9MwzXE6yheyfWCArM+HV/ChOJoJuyrZHhmmom+cBocbLeBAnBDJ+N1YThuqYMNXbieS09lRVoEck3CoKh1Oga7Bgw9w5DsaF6FcwsxZcDCSTFBt2M6/iNxbj6H7/JjuSkRhL4J5mLwDCLpIjVSLbunkrTzyEfpXTo9hJYZZr+v4RJFjDvX9B6M1dDwxR5bgcB8Df7NPEUzqPDCv1s/b+0sGA1E5LK9Bp53Ch+j+1roFqPlH/m67oShsjPjo79ZZfMR2CwHn7gIbTZ2GtgYUQUHScpiJwcPCdgR2m3XkrCg1loVsmmRx0pMtp08JAgnMIQeeg2uc8igcoJ6x/d0Q62XP5BHtSjZ6tHLyZjeIIGUkDEtk1XgZk+kJpthBzZbWYwI4ozIVlgsBCBZGcXXuQq4pEboCKvtopsw0CEgaatakOKKjDf19xEVhYCeyL4LkCf3DPjwSuf05zKKJa5qHYlRC8pqYmRiF/h5EUcRMJ0sRziZowxqFQgHJr7NuwkOTNkru4DCShIOE1jx6VBQHdpArhChmcn/Xtp7SKUQP66vUlhIRs7QjCZ5FZmfm7879W1gHDVbFURF9MIORsqN4TdQqjYIuYFofbgT+D0E7iIn8OLdsvJ4dqV1cFk9wTrqc6Pm/xVY1g8LrK+l54F70gYGS4jFNBLcb709+itIx/YMvaOqofW+iHngFdeAtpOTRLt3JvS6yW3x467NUzdlE//ZtXJ9Zxq6T4+iuMaTRk5gfq6TWXM95L79BsTyDfWmON0cFgrl+iuJOVjnshMovpnbDDsrLNpPS6+gpNoOti067DZtpcuHeAlMz07Au/SS/736E3nQvircksRVCnLK4yf3HKbzTLoLm4NXY1YBEiH5esB4G0eJXqQq+/xsLV05mwgPeDPzlIypf1TKMbVuBURDI2N1MeeZhUnY37nyOwnMrkJqm4Pr6tdhOPxPR6cKyLAqvvkzmZ3cQ++wncH35SpaffznrpnRwzdZbaOnVWLytnml7+gkaIlbOYmCFjn3GsVQZXQSeOo/ZTWfw8KLr6bQu44nXb8SX2cCTXidPTDF5RhvHqc/ivIrPkdm0kx6rkiZhhGOl95hf18kycSfs38kMm8RnzzyWz2/aTXB7Aj24l2/uynOvt4pVdVu54ZNtfGOXi3gkxp1+Lyn/u8xFZNnuCOfGc3zD1PmT2cJJti20yX9ClvVDoaQAecnDHrkdR34YlzFEz3tBbrmsHVHby0BQYFrRQfOYh0vOnkO6/nWCcSe3P5EDn5sFq9/BKje49fQq7i++h3RA4AstpWKGecHHC9pCVpuzSOBkSoODjUoec+xxeptLRXGrdZ1TYzYmOq7kgbkfx9HzEq4/n4o02UUsPY3oajdmqqRAC6MWDm+Sl08K8kJLnGXzPsEX2q7A7NxL/NpvYhzYj+2sc3FdeTWiyw2nno7zs5eTf/Zp8k8/iRWPY0kSwlOPoysOEASu2vIUY75aNi+LU/6sgDMv4NYEfviIycvzQ4SrxrjYs5P9uT/zoHwpw5kTsGcGSUe28+1LZNoHXTgj49hwgacTy4JE3sUV7VdRsXo7w9teYcUygVUuJ4IFguVkZfYsTuFJUjuS7K68lFXh1zgxPc68vX/lr8A+V4i9JxksfH0n2hwdqkxiQ4vYY3h4df5GNo3MZbke5abeX+M7V6DvjSDxnz9A7ZZJ3JHDitqS7Wjls9Bql5FvOQ/T9/dlMuQpLfh+9WuS116N0bkXsaKC/FNP0Pv2aly33Io6bTp8+hWsVXfyeNdDfDkS5tr1V/H5qVdwYdMl/7bX7j/4vwdZkBEQ8BUCjDEKQIWztIbAJ+Yx8xn0g+9Pl4VDBO2DYbFFgKLPz8lHbhYk1KZqjHwAs/jhf8+a5MIByJaAIZbWa9jsLkTzQ0JSDY1i71YU8ZLSb/MfHwoc5fX4W5gFk+y+UltaTMMqHn7ewmABR7MDs/DBDazcr1PhElhQXSKKYwWFD2SU/wK8kvfwDwMOJKA/ZaL/k2eDwzrblvZgd0q45BgxTTm0f8w0CQAhQaAv4CZsPxwp8z5BE46gBAJiqW6aWEVQPLpounkEkdOtw9+lvITI0RkD3jXLyAx2oTqcR23P4QDFieGpRkyXPIUeoYBPy9IQPJ9w+wJ8o+Os25lgfzFOQzwLRpHivmKJ6B/RVYKntAaoGDw4aZYlnIaTpLeJgpBiJCITbmhlWfWprO5+46hes5xO6k4/gf3dA9Q6FxMdGcR5sFSJMChS66hlR2AfQ4qCNy1gT3kY0w0GjiAfcm0tyYUdmDaFfwZZkHELH1xDMmlZJA3jEEH7YAg4ZTs5ScQq5dDBrSWwhnZCoNQpfhXcNpkKj42JbBGH8u+XQxGsowVGOPhej5SNzbrOPFlGMCFVNIlJpX6T9OwRnh3QerciOjzgLSWqKh4sz5JSVZxA2rRhMw4TjGqphgPGfgraQTnKK2zde+TM5DDM/SY4QA38feSXoimIY6XxqeQkGvCTB1SzwFYji+gp/e/pB+mDZElki9OozrxDtmccrL8XPCM1gWhz/8sErRgtPUNifRLnVAltwiLbeTiUsNBXoMHRgJE0kA+OOyM+zBgmI6nDjFR83+P4t0TI0DATiaNI1/vI7s5iGIffo1W0+JCVYB8KyygxRSMziZkv9YuRktDGLYpj1geS8SPx/zxBsyyL1cOvcdfWH1E089w0niQS+iyei65GECWK698hfdedWPEYQjCEMm8+tuOXoi478YML3BpFHNsfxvHe/2bvvMOsKs7H/znl9rK9s8sCS+9LF6SDDRWNilFDEs2XGFsSjSWJJRpNjMbEFmOMmhhssRsLKoJgAeltKQsLbO93d+/eftr8/ljK0gSMgua3n+e5z+45Z+acd8qZM+/MO+/8HSVch2XzoncbT7zfhZhJhQi7j8jS9QTX/RtPkZOUIU1c3zqbd9OGoBa9gSyHMWvOJxIawZj485xf9SnJk2J4k3UmhiT0buNZlzGAn7S8y1lbkpn32RtkDQuxhAFc2y0F3DsBiQGJBDtsdl7p7aDIL9O64280xesBhe7RvpwaWcNKw82nPVTCLgnJVInsvg6EHQ8hPrH9ChFQ+Kwkk3MbZNRUi0q3SmbA4sVzunObbSVb1hTgqkoggJS2Ds9MdiXB2vwiIlMv4Mw5s/Z4FOtAkiScM07HNqyY8B/uIfLgH0l88B6jrr+Rv536DHf77uDhbiWknDkA34qB3NS0hqwt24hvqmDXJhtKSm/8OSvwLj+dwafOpvcZd1O77SNOW3c7dztS6VUFnw7YyDPtG0nr62BCsBU92o8Hgt9hq9Wb3lYll7e9z4iMGv5uLeO8Sf25IqeWAR91DBP/fFuQrFqZF8eU8sDwDJ5o+BF31Szk6ewwnw2y092mEVjuo2BSC9fKr2OkDkbL/SGRvHG4+5xKqHYXtvpV2OpWMbh6GYrURNNWL/GeGu3u7RgS3N4Y5C/tV7AjvwySP6VfjYubdkRIEzG03TG0gTF+Oc3Po40VqJKN8jovbzlH8W/XTJrwM8K1mPykD2hLNnlpjwlKjl3Qs1Yw09VOL70XQy59GXfd5zifPQttSxl1DRlEqrsjEh2mE4oPXi84hU8GWVT3XIvP7ucXg+9nrHsI0QcfIP7Gq8ipafjv+zP2cQe6hJd9ftyXfZ/Y7Dm8+o/X6bnybQbX7SYpEUMAeouC+5Mw10yt49czp3LWgm0ETZmsngqnrzLZ7c5A9Gvnlz0/oEbLZ4E8jXjtpTjkRynPrKYuBVLDMhObI9hUF297PJi2ME9se4I+fYrYne4iJhsUx+KUOJ0Yaoz3C7cQrzqPh7Nfp7DhRfJWpvHdC1O4zDGDq1L60GP7a/RO3o51HuTUtpHbWMM/MuYQrz8fT8KgLXsdL4b78nr0XO4yPuCMiSVUflpA9fIcUn/9Yxw9cpAj9SgtO7DVr8az4j48K+5Dy59EtPgq9G4H5pHasxcp8/9N7OUXiC94p6NZqK+n/corcM7+Du7L5+Gf/msi/WZxz4LreTo5wN9K/8LnNUu5aeRvyHEfm7OhLk4skiQxyDaEjcaGfQpatiuHQqUnetSgUlQQUBUiGV5CqoYU+uLtCRKShCEd2Ak0knpg00KouePg81XHJFfYtFNpyuR4BhKiAWg6apy9CPOLOwh7Lx+te9K5AwqgN+vozfoRI4Y1CGuC+rCBqgooBDPUfLSnHPZsP08/ksoiB8zafKFydpjb+PQ2PGYK7f4kymMHz6/sn/1KluM44m1AweEVNAn6pwwiJO/v+NrNjv9lsb+sA8aBitfBKHqYusY2undPOUIIaU+/W8Kyq6wMZ5GrdigaTtmFkFSiQJMQbDcOXw8lhxPH9NMwPl4CQKj/wAM6jJrDiZ6y//nmHgVTdFI0RxWkYDalE23cb/4lRSQK3AUs9/uJSfI+nXCTYXBwaoZ2G4/tC2amvjIkGJLrpzYYp7IJ0DtM39CiHKC1AsO6JX3pxzjDdZCRR47cMesyOMnFshoLrVIDtcOEsP2LbtAZPYalx/cdKnqElQj6uz303Jcsse8/p+QkM55FWISP4d57fgcVSEhW6GwTsFexMaX9SnRCqLS4i6js5L+6hRSWNXlJtG8/4iONtnpUfwbGHhPkY8LqeJG1psoD31sLchyHbn9jHdSG2OQjKGgnCCvaRrxiIyLWjqoq6A07kYWJEL1BWFjxLy6rb6SC9vGeBmPixMlfeP1gJk6czPXXd+xD9qc/PXzIfR599CF27drJ7NnnA/DiB89TnreZeHdB/4TGuVVebn1OsLvyHga6/8yNmalMzJewUhIkXzyZ2/71Cptf/5xVf3kI6zCN/LQeSHfZUAAAIABJREFUCo+c4aR/hsKiXQaPrtJ4Z3s7uvUy8DIS8JuiVC5QMnDm6Dw/cDh/t25E7rYZZ+Z8PHGJtIrTmUYll2pPkZXcDsmwKSzxz4VxFm4RnOpeRclNFaQYEhfX7iBrWIKntYE80N2OZK9CAuYE2vl1exvPfuRly/WX8PLG/2DP7I4RmsGM9gR3B16h6pN0ztAFf7gINnWXCVfOwzJTSBLtLIn/nJbVfkLVLhwesA9rp7zGS1azxWeFNnrLPmLlDlxlCQSCoGLx5qkKK/srDJAj/CCyjKFtS9nwyB/4YHMrCzbUs6La3GcXvJez/X5uNAxSr5jLK8E2PmhuRp6chOv7LlpGb2FecBiTC0fyu5rF1G3yQmuElhYHrVucsHQJzvT3qbZilEU1HjqzhY9akrj8QYvbLrNRlu7mbY+O6a/ElvkUp8RlKqODud1+NrqRTZ/QTq4yX+WxQSmMywoy9y2Z+Joo/zcgxJCPnfxmTDuR/Pf4RctIflVdybCM7Tzf10d2iZ0LG+3EPQkKf/cZEf0zAFatWsWoUeP2pe39y9xMyrNRXu7hunl2Cgydm+o1fmo7n2CPj5DVCGevtXFLvJz6tckYpsLGGXEeHOblV1UmbzaM5GXlbGrTPDh8Gyny/gPF3USpKrFDgBHNxm2FuOPlILpDIm9KM+WfOPh06zpy3h+GL+Ik0WoDUhHCQEjgzorTPtDihz3PJJG8CklJMDF5Ik9+7wn+JX2XtIwMkhWFF9vaeLh0G6FzzzigvGwyFOconDamiJn9fPzEtpv3Zjq42etDDSj8+F2Tnk0SjiaT6g2pnDmonk3pqQxrbKGxziRteBtt9UkE1ibRXubm3sHPEUpN41NlKMHa/yM5/0EUqZWbXjLJbrVRPiiZqX0TXOs7G8NXSkm4lNYVDfylx5mco7/C534HV2akY4l2Fuet45K62fwj7U0m2Oo4bV0284tXI363lI/WNdPoiXDZKAc/GiRzmmMn0/XfszpexNNtZ2JWt7CyuBQjv4Gf1VzCHRGNe0e9RuFHtdTd8SA3N1fzfvP+kcp8v8RlQ2xcN+YjsquW8u4OnevfT1AaOLRX6FLhO0UO7rnmMrb+53X6r/4X9R+8wCPVYZ4NNGMIi+tmD+P6U1r4q7WR7y+6kIzdOVwx9EpUSeWNN16jZ89eXHPNTw9p+zpf+/jjJWzcuIEhQ4Ye0B4ejqO1r10cHz7Zhyr2jOJKMobbTladh/LqOOR/cVzzoNFt4clE80w/rufX6T52ahqjFXfHmhpxHEvLjzLLtLe/frjv3VdBRKdjmm77cjC/3H57siTz+mYDVT36TMyRsFsJnB4JIdsIH0ZhsCdakUQ6bnR00SGnEIcqaOG+/bAVj4SSTfvO+fUkitQ+VFglJIC2hHyAuePBZLtycESdRxdakoj2zUSL6VBxmPtJEiWmSeJYR/+VL54xqiWbAlcuCdt+BcapOlEkhWz5i73RHYDDCYkOxSPVkXqUwMfOKiEocLqwC0GmodOSmkq+vDdNEnZVpjDNTeVX8KxmTz/07EO3YJGFSWasCpfUsezFo4KrNXTIe7bKMNASiX2eSKFD/7BCB7+QAql6PRnd3JjhWmJYB8SR9pbtV2R5sd3hIJSaBvV1ALTpdlrdRURtacCGfeGi9kxM6g6W9AvvLYwEsV2rj1MiQXTrx8cZZz+bAjIDfBIx8+S527CibfssY8y2OlAUtLIA8Xi8awbtcIStEIviH1I6rgSXsLiyOU7Jqnyu+M9qegmT54emc/owgTendf+Sk7Z3eOqcDpvkxojFy1sMnlyrsb7eIt8v8cBMJxcOtFHWYnHW81He3dExtWlXYEZPhTOLVM5S0jB2+anNSuba4muI2Q28ef8AVz1jmjRuCGn0d3bs7dNiqbza4Ob2D1pw1ilcmpzOs5k+np0u05IE121qoHdvjZ/LY1hYFAArhCTDzO1Rfm1rY2e1xOUf1/KHeWlI6sVEd4/mdPljppatpXZjKgoW95/vYGNPk3jt+ViJfMbFSri39G/UVySjq/DBODjb20JgeQppcYkGPyzLP4/7y5+ifm1HI70iGuHq6hoS5RLpM9Opn5HK0pwskoIms2NwbXGEXxV7CGuCpeUGC3eZLNptsLnR4q32dj4Kh7kmLZ1LU1KY5fPzr/WtfOdXv+Hixy8nbcZ6PhsI53cfwr0DN5C+xWL95y4G2dwIEyJNdgqFk0JAe00wKcUkZpe543mdW78fpDJVQgQHkmUFqbNXEUzfiDN9I0kxB02h/vwiMYukSjuLCp9h3dwYD70dJbDFx+CMBPPrmvjVzDx2pq3gD+4sZjaM5enIYv44OY1x//HTb3IzN0x2ctfCOAczpafCzF4qDet8PDdR5UfRIFmt3fhZWi6h5EW4E35+83aCkVqEmu2p2JIMHjlX4pMcL4U1E7jRGobVswyP8zl8vnqQoF2zSG/z4jb7U+MK43KWcftzCQqaBe6COPFXkhgcURiMF6oFUUBBos0wKPeGmXyGxsOZubydZAflM8LrQjS+0cD8m67mjLQCihwO1sai/F91A9sSHWZ9fgeckq8yoUBhQr7C6DwVlw0q1CYe8cgs9mWh22TiO6M0vl/HW6vauSwphV9lZRHe5qS3qOa5AZeR1f4WmZpJdGMSvUe2M3+ElymfqeifpfLb1Kd5pf8k/po+m2Dtj/AUPsptlxn88R8xepU0sTGQxlmjW3kjeCmoIQb0fZ0eo6by4G0vc8MZce7f1cqNPVMxdYNN3dYyM3AGL1kf8jOzjk+Dubw328WDLXk0xXReWNZK0XtBLpiaxNV97BQnlTFGfQjdrrBkRwr35ls0Fj5GtG0UP274GX3HlPGHlfN5MLOA5rFNvNQY5j+lOhVBwe8/1fjTco2rRtm5Y5KDTT9ReWSlxm+WJAhpMCpX5vLhdr47yEaSU4KmlykYB9BGAfBoq8qN27O4d3WUx9/cSN7abH5zsZvV+S18WFTLQ6E/MNl5GkL6mnrGXXwttGo2AqRSF1OQrIZjiPHfdawivftQVlYGjQ0kSUmYSh5loTKCtH1hPKeyRwE4SvXaawAR77w06BhMB4+bL6mc7cWw4HheFTkYQYmkAfvNpuIuN+1DhhJf9tkh4W2RBG69BaeVQ/Cga50VNMvpQk5NO+S6S3KhYWdbm4PtjRbFhUeWbWDKYNwhz5EDAH2S+7K7YQ2m14FQTkzn00Ih7DhQEVMkhck50/h4x5LDxjncxIX9lAlH7Zh+GWJAXJaJA+2KQpbPj9hr5XSQHEVqH0oDR/HQsAeR2bEditpvAFJSEqxbS9yWiuUvOC75duk6XlWAqhIG2swO87z4npnfRLMLbeehZr7SF6o+e/Lxq5qFlKRDlL2IPfOrufdJYGuLwg7bkWahv/n8f6WgRZUoFf1q+XPkPgQGF4XCFFRm8ZsXWxlobWPBaD9jB2u40mJE4vDURot/l8QoabR4Z9GnfOe0CYztpjC7n40rhtu4epSdmnaLDI+EYcGti+P8cZlGklPi8uE2zu6jMr2niguZss8zMSoU3i8o5qMRgxiS8zil/lacluCnzW3Mbo+zxp7Mb5NSWNSuUP1BgKlVGvf58+hZ4CBomjziC/H5qBTOaQkxxW0w0z+RurRyzDYLNVlm6jqD+3zNmBb8s62AuXf246/VQfTgBPJZywWL3yGvzSSiKvz8B+m0ZQRINE6nqDKV63Y9QGFVHTHsrB9i8cJ4hbtXREgsTkF3Sjw1A4LN53JL3RsEdviQZEG5FudvzQEMIbCigsY3Gml6t4nkscnEpqbyTKGLf2rdyYrkM7ktygVZG3iwzx6XrhGLpRUmS8oNnitt4uXyNq5JT+eq9HTEjbczu9zg5Q9Ksc3MxJqmMK9bBv3SDb47OMQjbwSRy3Smeb30c+7paMgWIiJhi0vYgAeeTLArW2J33mbWdHOwKWU442NlnCJV8rormYrUdbjU9WiWRCRaSMge4NwLI1z6cTfOWVmG2m7x5IpdPNivG2/mh3i3exNbW8dwd9s21g+xyKt28qsxEi/5vJS+HdhXx7xDvTx5lh0tIliGmx+nBngkMYZPu9djKTsoaMnkqXVb0BpdtDR62dI9k/vOjRJzmsRbRrE9Yys2Z8c2CR4N5rQFCcgqr8kD0QwboxrXc3adxilbBL44gIRe7sBmE5h0fIeCpsXScJjlpsapl6TR0NvFvZ50TCC0IUrTK7sZ32bjgbRsnA8/jARcX1vDB6EQkwoVLu/tYHJ3leIcGUWW0E3B8kgSt/j6sipJJ+RuwTIE7SuDBBYGiO3eP7u0OBxigMvObH8yLaVero+8xq3952KmPsvcVRK9VyRxblGMBy6xU1CmcNnHCrM+W87UtHX8s+dMFsjfg+7/5MofJ3HTy4KRlQH6vLOE5sk1fOK7nF3aLK7a/B9uOrUPzfFdnO6MEPzUzT2nOjEDOi1pJZzuGsEfa3bxp2iAeTlZXDmsnSs/lvlFRiY/Tc9gaUmYa1YE2TnFxZTpfibGNaaFDF5vquGB1BReS1lFhm8lyS29ucF5JT9b9jK9dkj8cpCHh04LsrnZ5N0dBgvKDB5dqfHsRp27pzr42Vg7Vwy30Z6A/CSZqC54ebPOvzbqPDD/PSZMmUGvNJVzB6fw3Z4J+o8J88RgmVu3ZPHYBoOHXwly6in9+V2/rTyXqvGW/BrqKR7kdhuGZRywQL6Lbya6kKkjC4NjMDP6CjDdHrQ9Mx+SJJEmpR+gMByJzD2dLutgs4aDqAgKBrsOVNCiO6PYM+2YoS9YoPYNx1YaxJ9ae8zhZU0mqSkFj2e/4nQ4E8ejURGxo1mHDuodL93c+ewGejrSWQDAsaflRBKXOpSPsG2/h0DpKDN1Xy17nNQcVEYuyYVqHL09TfSZjSvZDW1RlG5HmQ4/Cjt0HVUIvI4DZ0djskxowCACyz47ui3xQSh7ZnOJH7Ph5P9ndGTo0UwJv6n8z3/xhRCsb9rIU1tfYHPBJ8hYnBMOc16byq6qblg7K1k63iK7IIHNbdHQCre+p/F0iUATCtFox0dIKHYqgoKKoMG/NxtcOEDl0TOd5Pk7GiBLCM7vb2PuUBtFqTKyJFEdtHirJJNeFW48mk7TcBfamGU0+dcTliVOa4vzg00ab6cXcUrfFtQanT7/jHFpo8Ip7mzkDInV0ShP19WxWA8x6JpeZJkmQ0M2puUPwbDvxltpEi5QGVTu4xZ3BYoCa6U03jllGGGtB3rraKbXvc/PVyxEU+w8WTyc9yYE8CiVTPxkABdsW0F283tIioXSPcEvZ7jwmjI3v6pja/CwukDw+CwZ6YN+PBxYgKNVw+7TqQ1CnuLgHwXdiVoWa6JRlkejrI5FKf2kjdaPW3H1cpE2LQ0xwuClFIkX9X7IFR76bivhdLOVGQUKFwyw8eiZsKzK4NmNTczfFuCfs87jp5EI/2el8frSIPPf2UpkUhacmcEdOSop80z6BRz84h1ILNvCFI+HKV4vg33J1CVlkPCp2EQCn9bG5HUJpq8xgNVUp4OV4eJv/hbWZGfzgaLjCJqs61FBjVtC6Ck8O7mCD7v34Y9vltG0PpmftDQyZgTcljeU8tTdfM+XxkRHEiNLttBLjjM/z841f+7Ls+WPMuq3PZmrWfSUW6gs9dE+LJXL03IJe3ZjxnI5I9DMLau2EdjqR1gSf5lYxJJTKhGGDywTZ+oy+lWDE5MBago/a9pKeb2HspjCxIYycvasfdVUaExzUZOVjB534onFkNvqWNrWykfhMCWpqZxySR88fZv4p0PGZjho+RzaX9/OmZqLH6TkUZBnp1LTSMybxxW33sD3htl4eISH3mkKCUPwebXJr9eYfJbdk+aBBSg9a5HkBhINBq3vNNP2aRtG0CBXtTHJ52OEy80pHjc97B126a2mToZPwqhRuL31OW7PG8Mvz1jOpRtlzl3j4toGk/enGcy92s5ji8Ikbze4atV/+MFmB+/36MvicWXcO8dG/o7x3PjBVn714Q42ZP+JX4/+GfXSZH5ZqHF6KJM/JT7lOwXNrN9ZzNu9m3A3CGLeGn7a08fMxlzOC1Xw5vQkfr9pN/o2g/OTkjjHn8R0n4/GTTqLVkd4ZajKg+f4yTPSuXNZgumZrTzU18OWzDJ6JG+lJssidbEfqQS2Vqai9KnhZ2MT3DTeQUQTbA9YSFKHGViSUybJCZsbTS57Lcb6ho4OsOFIJqJDSaNF82Y7D3wW4ZRsnXsnORkxMswfBsm0lEVYuaucDS0DuG68nZj8GQ8lm6zL+pyz3zuX6TnnMsDKwyN/8eh6F98udMVDTD2xo7y5jlxCq0LI0hfPvmxqFOwK7V+LBh3ezBI1X6Uf7W8HsnX4vDoeBe2rQpIVpvS4EMubTWzJ0yf8+cdKQpZZqSj7B1JPMHpqGlC2fybtG4qwfTnzXLulIVWv57g1u/9PMCOtqEKg1R95bdw3mW92rf0vaI6EeaNlLVtYjraqBrspMycU5tKKMKHmweQ4d1OcuwlyQNdhY63CH1bpvLoljiR3bGZ3uIGeARky9013cFYfG6XNJn9bHWdqD5Vx+QrFOfsj6BEZaUsywypsaL4EL862+E8PDYGXoXUqcz+MktC8/G6yTva2Om58y2CIaUeWkqi2aTweCPBme5AqXWdKD4W5V+WzONlBUVsSj2ZYZMbjNKky4XyJU8MaP7DvIFtorFWTuDRlAErtSNR4Hvd8/heyIy08M2AGHwyzUxz9kBve1xm9w0KxNmHzGrgGJfhgmODvaUn8cKnG2I0ymmrjr+Mslo1WuPTVDE6r2YJqM3HmazyyMcIfG5vxyjKj3W7GuT2Mdbu5KbNjVFazLLYlEpSE4pS8GKL0+WYaB7nxneHH2bOB0qJUthnp/G63hX1zA6dKGlekyzx2lov26YJYXweXLS5nipzMRcnJXJqSzLrSKJ+UlFHZz8fgibkIp50rTldJm3oqnjikEabKG6LSvYs1Lhslqo2cVomhNTB2pyCnUSKnVaA02wiQTCFx5nkEVeluztgSRgkpfDaknheLu1NXWMHPL3Py6NNRglUuelfDf3pu4JmhObxY4GNpXi3LUwq5trqdy1LKGRN3szi0mssrVX6c0shmyct14/vTmFqPMCy61/bg9yWbcG1VaY76kVSLv0/2sXRMOVYsjz6BZmaui1AQM4j5PRQ1SXgam9itdbhe7onAsAmCaVCbDYt7S2zJ0Qj4Gxio6YyIGfSIepgYKWKQ4qbFYdCqmlhtXrLL2gkuqmau8HBqcj5uSWVjLMafamqIpUZ53fsJldd7sasSbzTAT7eolHg8uAamY8/sGJ2TEi20rxaIBbvp3gBTnU4Ge7MYku4ifc+HL2ZZrIpGeaG1jWXRCLs0jQluD8+MyMCKqNy9fQXrg9k8fGYjawrgmkUK33kDBhfo/Pp0H8PGRrluTQx3eYLzNm/gvM0SZdkqnwxazq+/U0xuxQy+u3klL777W24fdzk74xfyXrcXSVf78utIKT9zriMYTWV5pgu7JTG42UUYNzu0wfjMnXS/uht9X6zkwaVNPNjUxCSvl3P8Scz2+PlumUzL/QmWpUR4fJyLHq2p3P6QxoqRgpfHuvhLjoHz4ihXr9YZ/bFAXpdGMB4irW8Ejx2G73nvI5rgha0a1e2Cq0bZ+fxHHv7wmcbvPz18Z3Zxucmo3WEmFCjcNdHNpIFhZg0Kc1q0hop3cghmjeIBzxbqe0V4LEPinbp/8o6lkqYNZ6xj9NdiadbFiafBN/Togb4ODu/g7RCOxRvi14mViKIAwvhyXh6/bo6m5H5dmKm9T8pzjxfzJHqmTWRlU1nQneQTOmt3YpG6lLMjY2jESj/90l4YTzb/MwqaYcHKihbK8tIIZ9Zx4eJzkOxx+jUqXLE9Sv8Kk0iDm3jCjo0aqgt78nFzJm9W1fNWaSOK3UY4bB3xm+WI1PDE2U4uH2YjosOScoNBmTK3TXJSFbS48zN4PjyCcT0zOaOtmsHlASwJ3hgv8cY4G1h2iks8/ODjZvxRk7pkBX9rjFtflgGFrXGdxyPNbBRhEk6Dbpky80b6mDoghcX5dv6dqjA9pDFaL+dll4dKl4olSTgti5HROEMTGpWKnd+1nobcMoOplWsY0fgRL/Q7BbtrN1NqP+apVxK4NcBpkdIrilagUpql8YTbx4S1Mn9db2C3FBYPhBeGC6ZUqzz1ONgTDfh6xIibCjeuDPJSsGN9Q9iyWBwOszjcMX2cqaoMdboY7HQy2OXkHL+fS/Z4gTJbBJX/rKNMCGp75FPfL4WaglbipxmELJNXNYOV7Rq9MSmsWsQ/fpKOpFvYaSNZTdBfsuhwDB3CMkqpSKhstdvZ7rSz03IRDctk7oTcFhdzGwTZrSbqHgN4gUTYobCyl0RllomueOjZZmdURQvdayJYRkfjfc5ywTnLKthY5OK+09N4Y3Sc85YLSgqdDNgFF5QFuSCplSWFGSzto/FwD5O/GUP5Tmucp55tJThEYU7eMLb7AhQ0NXHu0kxmlTeQVLcdhJPaLAWvblKRKbNwqJPTVjr53pIK7EIgBEhCBRJgt9id5WNjrkqjN4I/ajFiu4PugTj9A9B/M4BJXBHUpylUZahsTLVoTm7F6QvQzR5jnEjQT9PJyzVQvifTYaEfI2TYSDYVJqkeDNVDXdNyyuwuyl0OageppKoq/SwnakMGeYsc5JRU072phr4OB2n2/H1OD3YmEnwSibAxHmNTLMb2RIIDd7CBT6MRLlxt8WxxNt4Cg+GlDfx9vsyCIRK/vNhi2jrBBesV/vSEwdreDn4x0smZA9sZ06SQVh3BXu6m6EMb35dWU1KwliUDi9jinMNpO9YzqyrCK9GzWCLX0CezmQu1AJe2RdkuqzS47KzOCpKjNzMtGkOEZV5I8uC5qCfLThFsr46xbEcriwMNvBoR5JtuimUvUyQvs94XWGhUeSX6bbF4aGWcz3v4eHGCiz+NaiW1v8XcDy3Glfip3JHM8l65vGplIjWU8ONuO7hooA2HKrG+ziRhCW6f5OD7Q21Q/gZOtWNfqYP5rMrirFcNhvXK5rtDPIz0G6g9+uPctBsjZidtpZ170jX0rChv9fbx756reUdahTUhkx3tPvxrN+M7+nrjLrr4VqI3V2JG2rBi3ywzrkw56+iBujj5dG1d0sW3lG+tgpYwoSoCZeEYpfpuQspmHE13U+CJ0G+7YGyVSfc6CzmqAHbiKUlUZKdQIsn0mXMJht/PG2+8xudtATQTXId5hip3OPi4epSdQR99n/7DbNSGBFKSn+oeefwp0Y0aw0EfKcjQzBaeCNeTvbaOuA0WFMssGmIjNWjn2tcsxuwOgyuKy6ljyzbxO3VaMhIEPAKHT2KoD4q9goDNT6OqUC2rlGLnVx4HAZeMNyrYEbFRKidjRAQeJ7Q7BOe1RLksHKTF9HNDw3X0DNXQL3sB27rLFCoN3LzuOZKiEHMI6K6RlpugMsvPOlNhR8DJsCVO7qoFXbL4ZJDMO4MFw+slHn1NwhG1cGcmaC3y0bpO5+eldayMHXmPnUbDYGE4xMJwh4tZGehhtzMm1cGoDBuDclVmptnwpVZid+7GG47jih84KhoUbup1N5tVL5VuN42WQiJuYEUNlEgCT1QnKWaR1SbIaYHT9i1/EggEIZdEYzJ8NkBmt1tQVx/hwlo7RQkYVQZYLp6bbPGfjHYsPYUBu3P5zaclJDtixGQ7RoNMUWWUW1+P8cGAdGpS2uheF+fOi2xMqlaZVhpi8sZmJm+QMBRYUxDljWFZLB/noW9LI+d82MjASoE3LoBaVK9B5SCFZwY4mLMkgV/A+wNz+MVbDRQ2WdgsgZQKHmccPa7wQp9ePD8WFGcd9pjJ2cu9nLm2Hbcep02y+Jc/jFrooUio5AQhsw1G7bBwaHtNbSTATYvXzcpUaEySaHcrRN12LLcdXHY8HshDo8CMkZ8IM10K4Y0EodO+i6ZVRTTLQcyj0NZqUN4SZWWzycpmjcUNcZoOp2kchrWxGNNXVPNYzxxyx3nJqg4wa62TM0rgvZEqN8wxmbpL5rSVFiN3QEOyj9f6SaQWOug3QKGoNUKkGgorXQyp2I6ubGdDoYMl3fsy0L8ac3sazwevJiv9JSayjZ8FFO7JllE0GRFX+NjwoZiCNAElyRI/KZQYmGKjz6Bkhss+ck2DXMMg14gjonHaozJ6RNA7JuHT7VhxhSnxBFPeg/aEnVcHpPLv8RrvjNA5e7XOlC3VTKOa0lyFtZ7hvBRNpdrpZXRGKxfYK2hO1OFSIbPkEcp/6uWJtQYLai3aDuPDoTGm8EZ9Diuk3A5Ps7NMVj8/n2JFYRgW1pYtnFVicZZsEk2zWJdXx8ru9by9bTFttmx03yBWVdTQz5VNL6+CJQRyV+eki/8BvmnKGUCWks3E3Ml8XLbkZIvSRRdd/A/yrVDQ2iIa2+sq2FG3nvrmEiL1paixAK5IhKKgyaQA5AUEmW0Cec+siZriJFaQTlOvYfS9eC5K90I+/8vD7N5VRh+PilNvJcsWZkCKTncJUrwWqiWTm+ogI9dDeq6LpFRBrepiecLDWzEXclSQGouT3qyREwhzY/NW0vd8N3QFynJsbO9jkOZOcJqmMb3SIuSTiY4TlE6xCCMTSygkNBkz4cSMe9ETCkoMXC1gM6DNA+t7SJT06ORNRwgMBeyWTGpbGsnhZAYTpZejjSqjB7coOdT742SkvE9avJnhnye4tBkMBRq6m7gKIvh8OpVtLip3++i+DIbrLoYDdX6Ll0+R2ZWjMGmbzP0vG8i6wJGiUT80jdL6TJa8vYW/NweIHmaI3u+AdLdEtlemIEmme7aH3CwXWakKqT5BkkvHVAVRSSYmJDaYEo2Gk4DpIq7ZEGEJW8zEHTfxxE18cRNfXOCPRBkeiuI5yDrMkiDkgqAb6vwK9S4JVQeXbpGesPDHwB+DojrBJMCSPLS5oVEFXwxGW/VLAAAgAElEQVTGlcUYVwbtLtjaLcSaom1cf7aCT/hIigsqUyXqvXs7tW2U9xTc/qzEYzubCeWZhPNAb3dSE3IQDKukNEW48z+7sO9ZL694DbzZGkq6TnsatPsEecLi1xvc6E1OHp4ts7xvE8tGyICMS4fubRZYPhqdFrmtNcxbLDN8t0l6u4FMAkOGmA38usx1Qf8eb7d7Fz8LEnaJGrdEWFUQqoRQBYpikRS2KGgU+OIGYAD7let2F7T4YLXbTsiVTrtTJexUiTlVdJeCZAenRyfJHye9IESKqjFEWIy17PxKuInGFJraFeoDJlX1cXY2RNjVKmgIWzRHBaFOenetofOd7ZXMbghy8dD+JI+3UbSzhrOW2TlzBWztofDXc8AXgelrLc5eIZCFE02FNZkelLwEBROCKDrU1nnou1MwcudGIg5Y00dha2oyT/jyeTZazJBAK3c01RM07Wyx3DQ5Y7QmBQi5Yjh0iYQN1qY7WG/ZGbJL0KtekBEUuBISYRfEXBKmEySPhdOp47QbOBwGLpuJT44xxWzlzIiEJwzRQpV1PWzEmjwUVErM+bwFmRYMGWrToDxF4vOUXOr8DoKqA4fbIndqlB/Zo7gSMg2NgtrqOC31UaJxidSUOL7kNtxOO0mxCgzZQXuynW3d+zD56huwIhHWP/sMKbs34q3YyfhNQcav76ircXs1lek1VGV8QH2qRJXLzu+3JyGS8/Gl96Vn+gD65g2kILNr1L+LLrrooosuvumcEAVNMzViZgzNNFhX3YJklwiGosStOPFoG4Wfv4m7fSe6aaBbJnFdR2gm775koSQENg28ERgbgqSDJnBMGQy/ipLkxzuiLwvKKmh2u/jB/81l24d/J2hsoeq5X5IwVWLxPDJTq1i67AHshoXbJhg+OBWbmYQ3buJJmHhj4K0WeMvAG4NBCYDEnl8HCVWmyeug3q9SlZUg5o3T6JfB0lE1iUTQQWvCgasBvHGBPwrpUXAlYEuek+qkJHSbIOK2aPcZVGem0+hzEFXcmKGBSFICd20jbl0hJWRjlFbGIGcZAbtK1NaK6W0moJs0aBa2YDsjmnfRq07sy5vWLJOWYRpOxSKz3IFtiR8DyJZASobSfImAH8J2yGlVOGO9wLvMAtnElmOyo0cmJXYZLVKDlSWRdXYyd0gpKJKEDNgsUCxQDAnZANmQkHVQDbDrEo5agaMCVL3De7JDB78O8gH6XXzPbz/tqqBdsXBkplEdbqTJEhiqjGIoJMkyqXbwIMC0IcV82GWZcn8OlheELFGfHqPVbxC3CwxVQlPtxGUfTkXDUCAhS+gyZLXEmbA9gDsmmLRGYtIaCYSMJCSEYoJsdNh1C7CQqfFZGGUSno0WrgQoQC86nHUE0iHU1yDPG0FyCtoTdsKVNlyrXYCEG4jboN2t0J7q4PRlCjNWAAiEJKFqTrAUBBayEEgIwi7YkqnyyulFxG02nJbAZhlIAnRTJdWqwGEZSJZAtSA74CIz6EAzVRxxk57BelRLkBkJIKkmIbdEmynRGIW4ZIBqkDAEnnaFXs5sEjubSDZNPOaR1ni4sHARt0PcDg0OSNhAV8GnShQ5oWdPgaWApQqECkIRWDIYUsc7akpgINhBM0LAqoGZ9OnvYFB5HQPLNQaUyWg2QWmuzIIRAqchkxoSpAcFGescKIYDE8h1mBi9YoTcglirg3HbBBM3BTClADtzoDpDYnOyheKSyHDIdFMkPBFwtMMybSC73Hk0eSxidp2dFLI9z4ABmwCLnHgzue3t+MMKvrBKtFmlV3UTvRs6tO+YvWNwoNEN7W6JiKMjP3SbxaY+gq29BUlRCXvYjSuq0K1BZ9jOBHbz4LruIOx0kO6BApefaKpE1CERsyvE7XHiooZFy/6JZpPxO/Iwqyt557YLQVWwJAkjA8IDzmDJ8nUU+tOY1i0DbdMqChqb6LnVQNVEp/ergYS6mlYvtLig1gmaAyyHxHtvysiqgqKoqIqNupzh1AyfhFN14lTt2GQbPTKT6eH3oMoqGY4MlC5Pkl100UUXXXTxtXNCvraXLrmAQKL5sNdOLbGY/dah5lIWEHeC5pDRnSqmz4lWmEIiJ58W04WWmk/mhx/gqqlGaTOgrYVoxXIm7Ykf+vkdFB10z/Ec3pOLKUHEoRJyOAg7bLQ6bFR5VUJOlYhDosUHLclxYp527npOx2FYdGuL0W2fmdL+RcKaAlGbStRmJ2pzELE5qfd5aUvzsaFXGHPgVv5VtxvnntmoCiuTSdqtsN9TO56ef0R2NBMFzlhkcvbKjrBF7Hdn3oGEKUObT8bm1JFlCxGTSWlQiLT4aPbYCbkVPOkxUiMG/hjktEJO635NSfcLrBQHLd2c6BGZjJo2CmtaKATotFP8YfNNBk2VSKgSCUUiJktEhKBdCKKmQdTQiRo6MdMialhEDZOobhFJGER1i6Bp0mKaBAyDdicU/qYXqt+Gw5nggb/Yye684YzFnj6uhBODpEQrLxdNZtngIbxhvw1kg3Hdu2F0MumKVc3FCA/oiNtpm53MxvX0ql2AJckIScJCwpL2mAc62rEkDQuw5I59XEwJdvoUwg4nmmxHMWS6B2L0aUiQUw/Uq8Tp2BfOtufX5FXYmuMh7JSxWxoe3cClxXFrFh4NEB0KqzAEkukC0aGwCWScmoQ74qC9bRJN7kO9uzmyX8OesnLf8aRojN81NFEj0hifeIS/LvojhaH6jouajE0DH5CvAKhgqSwYLvH4TAVop319gsoHK7FLEimKQqqikKqoJCsKHpuM167gsyt4dQVvQsETlXErNpyqikOW8UoSLsAhBHZTYDMFNkNC+cI1UR0vj4lMS4YPK1XBG43Rvz3BwCqBbB3YJiRUaE2VaFZSkAMSqVUaGeE4ChaKyyTuErgNH2NKE3jie+vAgfcYwEZ+f2EJZQV7XD+3aiTqZ0N8CABJUhWPOW7uqPZp0KzITJnZjeIPppIdEyQZIZISIZK0CEmtUbJ1DZeh4dINnEbn1av7R5G2d4O/nSXhanfhC3nwhxwkRSSSohbJMR1/XCO5zSBP13FrJm5NRz1A7G1HyL9dfLfT0+ydrjRNnkpo4GCGZqQQKd+AVrUDqbkJTyiCP5JAbTFwxQWuhAmYQIdi3ltZwk8yPyHk7mQWWbP/39PyzuTmobceQZ4uuuiiiy666OKr4gsVtIwM31fykCUXf/TFAe4/8HDRokUATJs27bDBFy1ahA1oHV1Ma6fz06ZNY968eQA88cQTh9zn/vvvZ8eOHcyZMweAf//733z88cdUVVbhdrsJhUJomoa8z4ujQjR64JTd68eQ3qPx8gFH7cCsI4a9ec/vf54IbL9xvwI99VjilG6DdzqvHzx4C9GbDhtt/p7fN57P3z+mYCXAX4C9denMY4lUCjx/4ClNCBoMgwbDoPOM8dfOse0X+tVwd+eDEuDJfUcVHM5BUBsllHz555UCi/YfyrJMbm4uLS0txONxhBBIkoTT6SQ/P59evXqRl5d3QBvVu3dvbrzxRmB/23jwtUWLFrF27VqKi4sBcALdpk0D5hwi0qJFi4gDxYdpX5d9+ZT+z2OzKSQnu/F6HbhcNrxeBxkZvgPOORzqIf/vve5wdHxuZVnadz+Xy0Zyshs49Hvb+bzX60DZsyFx5+cC+5518PHe5xyOcePGfYU5c3IZM2YMynF66bPZlH3lAewrz+Rk9768UxQZSer463Co+8J0Dru3HFyuDjfpnc/tpXMdsNkUFEXG5bKRkeE7oJ6sXbtmX1/F5bLtey6AosjYbMq+su/MXpkOlsdmU5BlCWnPoKUsS/vqSed7dJa18z0PTs/edOzlcPfYm8Yf/vCHXHDBBTgc6r56vjcvj9SvTE52Y7Mph5W38zP33hPYF3ZvHnUu08753jnNnd8TWZb25evB+dKZw6X14LB7y/LgtqGzTHvT1Zm9aXQ41H3pOThde++9Ny/3lvne63vl6lw/O99vLzNmzOC8887bF6ezbHvfic515+B2pXObtbeOdE7Hwc/7Ojn11FP/q/gnUtYviyS+rf4nu+iiiy666KKLLrrooosu/sc4ORt4dNFFF1100UUXXXTRRRdddHEIXQpaF1100UUXXXTRRRdddNHFN4QuBa2LLrrooosuuuiiiy666OIbwteioNXV1XHllVcyZswYJk2axF133YWu60cM/9xzzzFkyBAeeeSRr0OcY+J4ZF64cCGzZ89m+PDhzJgxgyeffPKw4b5ujkfmp556iunTpzNs2DBmzpzJ008/fYKl3c/x1g+ASCTCpEmTuOWWW06QlAdyrDIvXbqUfv36MXjw4AN+a9eu/cbKDNDc3Mx1113H8OHDGTNmDL/97W/RtCO53f96OVa5b7311kPyeeDAgXzve9/7xsoMHe3daaedxrBhw5gxYwaPP/44J2sp8PHIPX/+fE4//XSGDh3Keeedx/r160+wtCeHL9NenSxqamq49tprGTNmDGPHjuWnP/0pDQ0NJBIJ+vbte8j78sQTT+yL+95773HuuecyfPhwzjnnHBYuXHjS0nHKKacwaNCgA2S94447AFi5ciUXXXQRxcXFnH766bzwwgsHxH3uuec444wzKC4u5qKLLmL16tUnIwkArFq16pA8Hzx4MH379qWmpuZbUSalpaXMmjWLqVMPdN3135SDpmnceeedTJ48mTFjxnDllVfS0NBw0tKyatUqLr74YoqLi5k8eTL33XcfhmEAR/+mCyF4+OGHmT59OiNHjmTu3Lns2LHjhKdj586dh61Pb7/99r4w35Yyeeyxxw5Jx6BBg/aF+SaWydeC+Bo4//zzxc033yyCwaCorq4Ws2fPFvfff/9hw1599dXisssuE9OnTxcPP/zw1yHOMXGsMm/YsEEMGjRILFiwQOi6LlatWiWGDh0qFixY8I2V+aWXXhITJkwQW7duFaZpipUrV4rBgweLhQsXnnCZhTi++rGX3//+92LEiBHi5ptvPkFSHsixyvzmm2+KWbNmnQQJD+VYZbYsS8yZM0fcdtttIhgMisrKSnHJJZeI999//yRI/eXqhxD70/Hiiy+eACkP5Fhl/uijj8TQoUPF2rVrhWmaYuvWrWL06NHipZdeOuEyC3Hscr/++uti2LBhYsWKFSKRSIhXX31VjB49WgSDwZMg9Ynly9bHk8GsWbPEDTfcIEKhkGhubhZz584V8+bNE/X19aJPnz6itbX1sPG2bt0qBg0aJBYuXCji8bj48MMPxeDBg0VpaekJTkEHAwcOFCUlJYecb2xsFMOHDxfPPfeciMViYs2aNaK4uFgsXbpUCNHxfhUXF4tVq1aJeDwuXnjhBVFcXCyamppOdBKOyAsvvCDmzJnzrSiTd955R0yYMEFcddVVYsqUKfvO/7flcO+994pzzz1XVFZWivb2dnHLLbeICy+88KSkpaamRgwbNkw888wzQtM0sW3bNjF+/Hjx5JNPCiGO/k1/9tlnxaRJk8S2bdtEJBIRf/7zn8WUKVNEPB4/oelYvXq1GD58+BHjfZvK5HD8/Oc/Fw888IAQ4ptXJl8XX7mCtnHjRtGvXz8RCAT2nVuwYIEYNWqUME3zkPCPPPKIMAxDnHfeeSdNQTsemZcuXSoeeeSRA85dfvnl4re//e0JkXUvxyPzqlWrxMqVKw84N3v27EPScSI43vohRMeHavz48eKee+45KQra8cg8f/58cckll5xoEQ/heGReuXKlGDVqlIjFYidazEP4MvVjLy+99JI4//zzjxruq+Z4ZH7ooYfEBRdccMC5efPmibvuuuuEyNqZ45H72muvPeTdu+SSS06aYnmi+G/q44kmGAyKW265RdTX1+879/bbb4vhw4eL0tJS0bdvX2EYxmHj3nnnneLHP/7xAefmzZsn7r777q9V5sMRDodFnz59RGVl5SHXnnzyyUM6Znfeeaf4yU9+IoTokPngb/FZZ50l/vGPf3xt8h4PgUBAjB07VmzZsuVbUSYvvfSSqKmpEfPnzz+gA/3flINhGGLEiBEHDAAGAgHRt29fsWXLlhOelg0bNhzS/t5222378v5o3/SzzjpLPP300/uONU0TI0eO/NoGwI+UjsWLF4tJkyYdMd63qUwOZtmyZWLy5MkiGo0KIb55ZfJ18ZWbOG7evJmcnBxSU1P3nRs4cCDBYJDKyspDwl9zzTXHvYfJV83xyDxx4kSuueaafcdCCBoaGsjMzDxh8sLxyTxy5EhGjRoFdExjv/vuu1RVVR0yzX8i+H/snXecXFXZ+L/3Tt+eBBIghSaBhCCd0EIJXUAQkSKiUmwgL7b3tb2Aoq+KBX6gCCpoEJTeO5hAqAkJhGxITzbZZHudPnPr+f0xfXZm+87swvl+PpDZmXvPee657XnOecpQrw8hBD/72c/4/ve/T3X16NTlGypDkdnv99Pd3c3ll1/OkUceybnnnsvTTz9dapGHJPPKlSuZPXs2d955J8ceeywnnXQSf/rTn7DtvgXkx5qhXh8pYrEYt912Gz/+8Y9R1dKG1g71+bFlyxaWLVuGruusW7eO+vp6Tj755JLKDEMf6/y6MTU1Naxfv37M5Swnw70ey0FNTQ2//vWvmTZtWvq71tZWpk2bRiAQwOl08oMf/IBjjz2WhQsXcuutt6bdmNeuXcuBBx6Y097cuXNZs2ZNSY8BIBBI1LO89dZbWbBgAQsWLODGG28kHA4PKOfatWuZO3du0d/LzZ133snJJ5/MnDlzJsQ5+cIXvsAee+zR5/uRnIfGxkZCoVDO75MnT2a33XYb02Mrdiyf/vSnueGGG3K+a2trS99H/b3T4/E4W7ZsyTkWl8vF7Nmzx+xYih1HIBDANE2+/vWvM3/+fM4880z+8Y9/pN3nJ9I5yUYIwa9//Wuuv/56fL5E1dvxdk7GilHXZPx+PzU1NTnf1dbWAtDb21tol7IzEpn/+te/4vf7ueiii8ZMvkIMR+ZbbrmFT3/60/zyl7/kN7/5TZ+btRQMVe6HH34Yl8vF5z73uZLIV4ihyFxTU8OMGTP48Y9/zNtvv823vvUtfvKTn/D222+XTF4YmsxtbW2sWbMGn8/H4sWLueWWW1i0aBGPP/54yeRNMdx78cEHH2TffffliCOOGFP5CjEUmQ855BB+8pOfcNVVV3HQQQdxwQUX8KUvfYnjjz++ZPKmGIrcJ598Mi+99BIrVqxA13Vee+013n//ffx+f8nkLQcT8X2WoqGhgbvuuotrrrkGRVGYN28en/nMZ1i6dCm33347zzzzDH/605+A4sdZjmM0TZODDz6YY445hsWLF3PfffexevVqbrrppoJy1tXVpeUsdhzj4Tptb2/niSee4Jvf/CbAhDon+YzkPKTOReo+yv59PBzbc889x4oVK7jiiiuA/t/pgUAAIcS4OBaPx8Pee+/N1VdfzVtvvcWNN97InXfeySOPPAJM3HPyyiuvEIvFOPfcc9PfTZRzMlJKMtWcsuAnQuXuFIOR+c477+Tvf/87f/3rX6mrqyuVaEUZSOYf/vCH1NfXc/PNN/PTn/6UJUuWlFK8ohSTu7u7mz/+8Y/87Gc/K4NU/VNM5i9/+cvcc889zJ07F7fbzWc+8xlOO+20shg7+RSTWQhBVVUV11xzDT6fj/nz53Peeefx/PPPl0PMPgx0Xdu2zT/+8Q+uvPLKUorVL8VkXrZsGb///e+55557qK+v54EHHuCBBx7ghRdeKIeYfSgm9/nnn8/XvvY1fvjDH3Lcccfx6quvcvbZZ+N0OsshZlmZCO+zjz76iC996UtcccUVnHvuuRxxxBE89NBDnHbaabhcLg466CC+/vWv88QTT/TbTjmOcdasWTzyyCNcdNFFuN1u9tlnH773ve/x/PPPF0ymI4ToV85C+5SD+++/nwULFjBr1iyACXVOBsNIz8NA+5eCxx9/nBtvvJE77riDvfbaCxjeO70c19xZZ53F/fffz1FHHYXL5eLYY4/l4osv7vd6mgjn5N577+UrX/lKjqfdRDknI2XUDbTJkyf3sVJTLgvZbiLjiaHKLITghhtu4Mknn+Tf//53WVaihjvObrebU089lTPOOIN//etfYypjIYYi929+8xsuvPBC9t1335LJV4iRXtPTp0+no6NjTGQrxlBk3nXXXfvMNpVDZhjeWK9cuZJwOMxxxx035vIVYigyP/jggyxcuJBjjjkGj8fDEUccwbnnnsuTTz5ZMnlTDEVuRVG45pprWLJkCStWrOBXv/oV3d3d7LbbbiWTtxxMxPfZm2++yVe+8hW+/e1v57jj5zN9+nS6u7uxLItJkyb1OU6/3z9ujnHGjBkIIQqej2w5Cx1HIBAYF8fx4osvcuqpp/a7zUQ5JwPJ1t95SG1T6PdJkyaNodT98+c//zk9ebZgwYJ+t029H+vq6lBVddxec9nv8Yl4Tpqbm6mvrx/wvoGJc06GwqgbaPPmzaO9vT1Huauvr2fKlCnMnDlztLsbFYYq829+8xs+/PBDHnroobIZD0OR+frrr+fuu+/O+U5RFFwuV0lkzWYocj/zzDM8+OCDzJ8/n/nz53PPPffw/PPPM3/+/HEr83333dcnFfLWrVtLfu0PRea5c+fS1NREKBRKf9fU1DSgb/hYMJznx3/+8x+OPvpo3G53qcTMYSgy27bdJ7bPsqySyJnPUOTetm0b//nPf9J/67rOihUrOPzww0smbzmYaO+z1atX893vfpdbbrmFL37xi+nvly5dmpO+HRIukLvvvjsOh4N58+bx0Ucf5fy+Zs0aDj744JLInc3q1av53e9+l/Pd1q1bcblczJkzp185Cx1HfX09hxxyyNgKPQAbNmygqamJE044If3dRDon+Rx00EHDPg8zZ86ktrY25/f29nba2trKdp7uv/9+HnroIR588EEOO+ywnN/6e6d7PB7222+/nNgmXdfZsGFDyY/lmWee4dFHH835rqGhgRkzZgAT75xA4t0+e/bsPhOBE+WcjJRRN9Dmzp3LIYccwu9//3tCoRA7d+7krrvu4rLLLkNRFM4880yWL18+2t2OiKHIvGrVKh577DH+9re/scsuu0wImY888kgWLVrEqlWrsCyL999/n+eff55TTjllXMu9dOlSnnnmGZ5++mmefvppLrnkEhYuXFjypBtDkVnTNG6++WbWrVuHrus8++yzvPHGG1x66aXjVuaTTjqJadOm8atf/YpwOMyqVat4+umnufDCC0sq81DlTrFu3br0S6gcDEXmhQsX8uqrr7JixQpM02TNmjW88MILnHbaaeNa7o6ODr73ve+xatUqdF3n5ptvZpdddilL7FwpGWiMxhOmafLTn/6U6667rs+Mc01NDXfccQcvvPAChmFQX1/Pvffey2WXXQbAJZdcwvLly3n11VfRdZ0XX3yRlStXcskll5T8OCZPnswDDzzAokWL0HWdhoYGbr/9di666CIuuOACOjs7+de//oWmaSxfvpxnn302Xfvwsssu45lnnmHlypVomsaiRYsIBAKcc845JT+ObNauXUt1dXVOKMREOif5fPaznx32eXA4HFxyySXcddddNDU1EQwG+e1vf8vRRx/NfvvtV/JjaWpq4tZbb+Wuu+5KuzVmM9A7/bLLLuP+++9n06ZNRKNRbrvtNqZOnVpyjw6n08mvfvUrli1bhmmavPXWWzz++OPp62kinZMUxd7tE+WcjJixSA3Z1tYmvvWtb4mjjjpKnHTSSeKWW25Jp5KdPXu2WLJkiRAikd573rx5Yt68eWL//fcXc+bMEfPmzRNXXHHFWIg1KjL/+Mc/FgcccEBa7tR/41lm27bFPffcI0488URx0EEHidNPP13cc889wrbtkss8FLnzueOOO8pWB22wMluWJW6//XZx8skni0MOOUR87nOfE6+99tq4llkIIbZs2SIuu+wycdBBB4njjjtO/POf/yyLzEIM/fo4/fTTxV/+8pdyiJpmKDIvWrRInHHGGeKQQw5Jyz4R7sV7771XHHfcceLggw8WV155pWhqaiqLzKWmvzEaT6xYsULMnj27z7tp3rx5oqmpSTz//PPinHPOybnusksFvPrqq+K8884Thx56qPjc5z6XrmlVDt555x1x4YUXikMOOUScfPLJ4pZbbhGapgkhEvWeLr74YnHooYeKs88+Wzz55JM5+z788MPirLPOEocddpi49NJLxerVq8txCDncfffd4owzzujz/Xg/J6effrqYN2+emDt3bs611dTUNKLzoOu6+MUvfiFOPPFEMX/+fHHdddfllLIo5bH88Y9/FPvvv3+fe+b0008XQgzunX7nnXeKU045RRxxxBHiyiuvFNu3by/5cTQ1NYkHHnhAnH766eKQQw4RZ599tnj00Udz9p0o5yT1brnyyivFDTfc0Ge/8XZOxgpFiAkYOSeRSCQSiUQikUgkH0NKWzBIIpFIJBKJRCKRSCRFkQaaRCKRSCQSiUQikYwTpIEmkUgkEolEIpFIJOMEaaBJJBKJRCKRSCQSyThBGmgSiUQikUgkEolEMk6QBppEIpFIJBKJRCKRjBOkgSaRSCQSiUQikUgk4wRpoEkkEolEIpFIJBLJOEEaaBKJRCKRSCQSiUQyTpAGmkQikUgkEolEIpGME6SBJpFIJBKJRCKRSCTjBGmgSSQSiUQikUgkEsk4QRpoEolEIpFIJBKJRDJOkAaaRCKRSCQSiUQikYwTpIEmkfTDwoULue2227j11ls56qijOOqoo/jjH/9IKBTi+uuv59BDD2XhwoU8++yzAFx++eV89atfzWnjr3/9K/vvv38ZpJdIJBKJZHSQ70OJpHRIA00iGYAXXngBl8vFI488wsUXX8yf/vQnrr32Wk499VSeeuopjjjiCG688UYikUi5RZVIJBKJZMyQ70OJpDRIA00iGQCv18t1113HXnvtxZVXXgnAnnvuybnnnsuee+7Jl7/8ZaLRKDt27CX8sxAAACAASURBVCizpBKJRCKRjB3yfSiRlAZpoEkkAzB79uz057q6OgAOOOCA9He1tbUAhEKh0gomkUgkEkkJke9DiaQ0SANNIhkAr9eb/qwoCgA+n6/Pd0KI0gomkUgkEkkJke9DiaQ0SANNIhll8l9M0hdfIpFIJJ9E5PtQIhke0kCTSEaRqqoqgsFgznf19fVlkkYikUgkkvIg34cSyfCRBppEMooceOCBrF+/nhdffJHGxkbuuusuWltbyy2WRCKRSCQlRb4PJZLhIw00iWQU+epXv8oZZ5zBDTfcwBe+8AV6enq46qqryi2WRCKRSCQlRb4PJZLhowgZySmRSCQSiUQikUgk4wK5giaRSCQSiUQikUgk4wRpoEkkEolEIpFIJBLJOEEaaBKJRCKRSCQSiUQyTpAGmkQikUgkEolEIpGME5z9/djZGRpR41VVHsJhbURtlIuJLDtMbPml7OVhIssOE1v+T5rsu+5aPUbSjB2xmD5hz1E+E/l6y+fjciwfl+MAeSzjFXks44/+3oVjuoLmdDrGsvkxZSLLDhNbfil7eZjIssPEll/KPv75OB2nPJbxx8flOEAey3hFHsvEQro4SiQSiUQikUgkEsk4QRpoEolEIpFIJBKJRDJO6DcGTTL22F1dxP/zMlbDVjB01Okz8Cw4Eef+c8otmkQikUgkkgmCGmrG0bsZY8YCUD/+LmASyccZaaCVCaFpRP5yJ/GnHgfDQJk8BcXjxn5tMbH7/o7z0wdT9d8/wbnX3uUWVSKRSCQSyTjH0bsZNe5HMcIIT225xZFIJCNAGmhlwGpvJ/jjH2Bt3ojn3POpuOzLOKbPAMAOhdBefoHoonvwX3U5Vd//Ed7PnFNmiSUSiUQikYxnFMtIfBCivIJIJJIRIw20EmP39hL83rexu7uo/s0f8By3IOd3tboa34UX4zn5FEK//BnhX9+MCIfwXXRpeQSWSCQSiUQikUgkJUMmCSkhQtcJ/vB7WG1t1Nxyax/jLBt1yi7U3HIr7hMXEvnjbcRfeqGEkkokEolEIpmYyBU0iWSiIw20EhL9292Y69dSfePNuA4+dMDtFbeb6p/9EtehhxP+7f9hfFRfAiklEolEIpFIJN0RHd20yy2G5BOINNBKhP7+CmIPPYD3/M/jOfHkQe+nOJ1U/+LXqLtOJfSz/8WOhMdQSolEIpFIJBMaGYM2aryztYvljb3lFkPyCUQaaCVAGAaRP9yCOmMmlddeP+T91do6qm+8Gbuzg8gdt42BhBKJRCKRSCYsQqAYkdQfBTfpjHfi16SxMVSiulWyvpZv7+WNrd0l608yfpEGWgmIPf4I1s4dVP3X91C83mG14TrwIHxf+graC8+iL393lCWUSCQSiUQyUVFiXZk/iqyg1fes4v3uFSWSSDIc/DGDWAkNQsn4pSQGmrVzB/r7K7B27ihFd+MK2+8ntugeXEcfh/uY40bUVsVXrkKdMZPI7X9AGMYoSSiRSCQSiWRio2Q+ChkzJZFMdEpioPVe+SWC37mW3i9eSPCmn2J3dw2808eE2CP/RkSjVF7z7RG3pbjdVF3/faydO4g9+tAoSCeRSCQSiWTCozrSH93N7+Bse7+MwkgkkpFSEgNt0n0PUnvH3fi+fAX6228QuP5a7N6eUnRdVuxQkPjjj+I+aSHOvfcdlTbdRx+L69jjif3z79jBwKi0KZFIJBKJZCKj5PzlCO4skxwSiWQ0KImB5thjOq5DD6Pya9+i9ne3Y7W1EPzv73zs3fTijz2MiEao+PKVo9pu5TeuRUSjxP59/6i2K5FIJBKJZAKiFFDnpKvjmCBMsyT6q7AshGmOeT+S8UnJk4S4Dj2M6htvxty4gdgD95W6+5IhNI3YE4/hOvZ4nJ/ab1Tbdu6zL57TziT22MPYXZ8cd1GJRCKR5GEZYMTKLYVkHOLo3Zr+vK07ij/28Z4UH21EkWQr+puvoy9dMuZ96+++jf764jHtRzJ+KUsWR88JJ+M59XSi//w75ratA+8wAdFe+w/C34vvC5eMSfsVV34NTJPYw/8ek/YlEolEMv7xNLyEZ9vL5RZDUnb6GhNqtCP9eVNHmB090pAfLna2sWaNfZZFWwDx8Xu+hK6jr3wPOxTM+b4z1kFnrKPIXhmaI020x9rGSryPBWVLs195/Q9QvF6if72rXCKMGUII4o89jGOvvXEdfuSY9OGYPgPPyacQf+ZJ7LAsXi2RSCSfSIRMyS2hYGp9xdIAsOzyFa4WQmDaE99Nzy7xGI73UuN2MIDw92Ju2ZzzfX3vh9T3fjjg/hsC6/iot36sxPtYUDYDTa2rw3fxZehvvYGxYV25xBgTzHUfYW7cgPfzF6EoysA7DBPfpZcjohHiTz8xZn1IJBKJRCIZHYq5zY0JdsJ4L6ey/1FvPUvbxtYdcKzIHjerxINY0utkOCTlUyis4457+ScAZS1U7f3CxSg1NUTv/Vs5xRh1tBeeA68Xz+lnjmk/ztn74zr8yEQyEl0f074kEolEIpEMn5ZoM0taX6U7Phax4wUU4uQEcTmV5Y54+7D2c/RugeQK4Hig1KuQE92+iZiRcosw4SmrgaZWVuG76FKMZW9jNm4vpyijhtDiaEtexXPiyagVlWPen++Ll2N3daK9KmMQJBKJ5JOMYRsfC3eyQoQ1MzcOaJBYtuDl9R20BOJjINXARHSTl9d3sKM3RkBPlMaJWX1ji8bGiEoZaLnfpuQYLaz29lHV4ZRYN87Oj3B2jB8XuJBW2vtqwthnRZzENKs891u50C0N3Sq8ULKs4x3W+4fuKVhWAw3A+9nPgctF/MnHyi3KqKC/9SYiHMZz5tkl6c915Hwcn9qP2EMPIGyZUlcikUg+qbzR9tqEdSfrj4hu8nZDD1s6hz4rr5mJ9+KWrvLM6G/sSMSIr28LpXVZOy/9fVS3eG5NK63BsVFq85X9lmjTqLZvrvkQa/PGUWtPSSq6yggnGyxhsbjlFbaFGoa1f7ZhG4wPPQNmRDeHPTGQbbCLeHz8laUaYEJBtz9ZXl1vti/luZ1PFUx8EjHDw7rnym6gqZMm41l4KtqLz2NHJ/6SaPyl51GnTsN12BEl6U9RFHyXXo61fRvGu2+XpE+JRCKRSEpFTE/EUm3rjg67jXK5jGXH6KQ+9zHQjMzxdYaH6dZX8ABF8qfc3/L7LwVDWiFMyicUx4j61JMukqNhkA5n/vudbb2saQkOvGEBskdLf2vpmKf1Hw2yryvrE5a8KKgHaIrsHNXEJ2U30AC8F1yEiEbQXnmp3KKMCKurE+O9ZXjOOAtFLd3Qehaeijp1KrHHHylZnxKJRCIpM2NkdUSMCDvC28ek7eGgZ2VoGKqbYyZP1+iO1Y5wY1GXpuKyJIRpiuzI+T4V3xSKm3ywM0BXZJRWH5JjlX/ko33VdEd0QvH+V7tEfq9mHDXQ2O8+ygglNUVCJpfqHlE7UED+QTCSzI/jPgYtJV9WIrxso+zj6mpdjJARGvU2x4WB5pwzF8c++6K99Hy5RRkR2isvgW2XzL0xheJ04j3nfIwVy7Gadpa0b4lEIpGUiTFaCfmgeyWbg5vGzSx4zMjIMVTFdah5lO1QcMBwgagZYXNwI6t7Vg3YXiHFXrNzV8nyE1CkVgwh4VqXctMcqKdi3/UxakdZ+2/yx2kYYHUzfxxcre/hal8FZoFaXyn5Rqjkpwxop+Ic1v6iyOf0dwWuEyEE4VGIVxtOvOVQMGyDTYGNxEcpVsywDd5oey3993h5dpQKr8Nb8PterafoPu2h/lfLx4WBpigKnrPOwVz7EeaO/mdUxitCCLSXnsd54Dycs/Ysef+ec88Dh4P400+WvG+JRCKRlIPCSlzMHL4rIICdVK4se3woWfEcAy1xzLppD8ltbjCbingcY/m7mBvWD6qt6CAy1bkdGTWrmLxmPyst727r5fXNw8z6mFpBy2t+LMv/DBbFTBoGBY3h0Zl4SBkfPmfFiNsqeOoKyL6pI8LbDT1E9fFx7xSjR+tmZ6Rx2PF5+c+eYF7iGUt8slbQihmkfr236D4fNvWfrGdcGGgA3tPOAIcD7cWJuYpmblyPta0Bz1nnlKV/xy674j7+ROIvPovQxk9qWolEIpEMDTscRpgmwupfyTMsnXajb4zLSGev1WTsz3hRsmJGRhG2RWLF6bXNXaxvDw+471C8zISZOF7hL65UAYghGBB1PheQ8AQr5iZXaLWkyR/LWYkZMM17PzFo+ajK2Kt+3fEuFre8knZ162ucKsn/F5Axte0IV5FSiSrcw3VxHKj/AgZaZyShf410BSze36qpZYBRYOVxCKTiIQczyVCQ1PEljf3sZ45TcX7iVtCKxXW6Vc+w2xw3Bpo6ZRdcRx6N9upLE7LAnb74VXA68Sw8tWwyeM+/ABEIoL22uGwySCQSiWT4CCEwlr2N/vpi9Nf+g4gXd0Fa3fMh9fEmtmqdOYqWMsRXu2UL2rIyCKYU+PGiZGW7ONpCpFecBnIRymZQWoWaXFkaQAex07Fdg9NVLGESt2LFt877wRKCta0h3m7IuEf9Z2MngdjgMvkJIbB6M9fDWLrLFXMHbUzGMMaTJQX6jFWRVTyrqxP97TeStV1HJncq1bs6CiuGKUly9NMCSnkqXrJtmBk5XY6ErGvW7+jzW6pv98438GwbWWklkXZ/Hdw9rmhBlLg/W5ic37OzNlrCoiXaTMQY28R/bcF4v6vPpSQ9njZs6Oxb+08dhrk1bgw0AM8pp2K3t2GuW1tuUYaEEALt9SW4jpyPWl1TNjlchx+JY+Ys4k99PEoWSCQSySeOLBc+3bSxA8XdYAJGQmFq0Dt5tz2TxXcoKzy2ECxr7GV1cxB/NGEAuNXEqk92sdm2YLzkk6cN3RGWbOokbtppxXWopBQnfVBxXMl9BjjO1PgOZjyEgMZYPVujK9LZBPOTVth5hkjaAMxr39+PgaZkFXU2W7uIb96J1e1Py5C3NWqkfXRiGIsYaPlulMVW0PKNMGXr+6h2FHPThj6/DUksYdM8muUECq3q2Zlra9n2noQrbvL3tW2hrF0HfxzOpEts5doC8Y3JsVb0ISakMGI4O9fkyJ66LwYrmbtxCe4dr2e+EAJhWen0/0aWgZZqe1nnyDOLf9RTz+utfTNY9kR0VjcH2dieGAvDsgcZqzk22LYgolm0BuO8uP1NupLZWFOTXI5hZCQdVwaa+7gTwOlEf338pxPNxtywHrutFc9Jp5RVDkVR8J53Aebaj9A2bCirLMUw1tQT+r+f0/uVS/F/++vEHn9k/NX3kEgkkjIS1S3Wt4cTLnx6P6tEOYpf5nNLtGXQfW3uiBBOZuBLKVY+ZyWQSbLQEoizujlIY+/I3KoAMKKgD25mfXNHhKhuYVo2PndCwRnqhHn2EA24qpFOTtG/ojeYNPVtsVYWt7yCYevE7YwrpmKauK1c4yX/mFJ/2yLXeOsvdszVuiL9WegmKApCT7xbhQBTZN6zStyPq/ldHN2joCcMaMz2/dTf/u7QRpx6cgViBAZk9jka7rxCwbvLzm438bklGCcQM9neE81aaRtmn/3tN4TwlWyj0NX2Po7erRDLSlgx0rkWITA3b8JYnTAkDTtxfe1RMZ3K5POjEKG4OaT4vPZ4W0FX65QxFkg+u17f0j38WM1RoDdm0B3R6U5mYE0Nb2pcHGpfA01V+590GlcGmlpdjeuI+WivL55Qbo7664vB4cB9/IJyi4LnrLPB7SHw8MPlFiUHYdtE//E3Atdcjf7m66i77Y6Ixoj8v9/jv/JLWJ0d5RZRIpFIhoWwLPRl72AH/ANvPGBjgrZgRhHLjinWLa34uzHr652RwSfbCmXFOTlT5WGy+rBsQUhLzpJbI5+h9mx7Bc/2Vwe9fSrmLJVsQzftgeOxipAdy1YQ0edDkc0GdnHcGU6cg9QqZ4ra5euoWpZXKynfxdHKrKANp/5WAiXdsI1gU+RdQmZ34pek0qjoA8fwDUiR61EZdP7MflwfR6AHDict/uAa7ruClumzsMhDK5uQaMDr7Kuei9jgkv/4tV6WtL6aySCYMnCyznf6Gh6Jrp01uW4LG7fqYU7dgcypm1d0l3e29fDGlpEbUm2BxGRRKG5iCzGikgajQdzMNTodSeMr4/rZ937ITiBUiHFloAF4Tj4Fu611wCxK44W0e+PhR6LW1JZbHNSaWjynnEbo+eewI6Pw8B0lInfcSvTvf8Nz5meY/OQL1N5yK3X3/pPqX/8eu6ODwHXfxOro67crkUgk4x0RCiHCIcxNG4e+rxB0xnInqJzZ7nxJDT1mxnizfSnbw9uydh6WuDkUWpTJVm43tIdYtq0XGzEqsTyDYVNHOD0bLoSgN2bgSPa9vLGXZduLp67OJ1efHmSijQGUPd3SiZnRQRkBm0Mf5XfSZ698ubb1JFYYbYamQMezdURFTR+PLaBT207Q7EwXb4a+CTocXetQw4nV166IzvaeKLYQqOEWPJueAms4CcgSffTmZ7NLnk/FiICZtbKZdiW0cAS2j4ob5nCMNUf3ehQt416cviSy3QR7ugv0lfsvkKhtN8QC5AVTvgzyWuhJGma9WmLMleQYKs0rs9rPTDKEjSK6ohA4erckkpJkSSWEoCvagUCkV3UFGROk1p3Qhad6pxVs1hQjr/PX5M+s5i/d0k0wXtwTSwhBQ3dkVCaYipG6h7v0RKmr1PPKtHPHLl+u/hh3Bpr7+AXgcCRWpSYA1uZN2C3NeE5aWG5R0njP/zwiFkN7+cVyiwJA7MnHiD/+CN6LLqXqJzeh+HxAsrzC8SdQc+sdiJ4eQj/733QWLYlEIhkNjj32WObNm8dBBx2U/u+mm24C4L333uOiiy7isMMO48wzz+TBBx8cXiep3BJDWEGr7/mQ97tWsDOyg/reD2mLtSYbyTOEki/xVMKDHi1bKbSLfB4eyxoTCl228tbkjydc7eyM0jFYTFvkpMgfLNu6o2kXJgG0BrX0jDSAYQ1e4c5WzgcRMZb8p/8tV/d8SENoK5AwnIdO3sqLKPzrxo5wzlntb/QbwypL2twEdQWzrQezvTtRR8w2sW2BhZVoWYBrx1KcXWtR4rmGrrNnE66W99jYHub9HX42tod5dUMnXRveSPRfyDV1kCtoH/XmrhqK5O+ulvfwNLyU2EcLpg0yNdaLI9SCGhpeHNmIVoaEjbN7I64dbxX8LYUdSsQ/ZR9pqt/83vvNypizfz8/5i+nFtk4dc2nb9cC26XkjJhhlne+02eSCECNduDs/AhnZz0i7kdteR8l7mdnpJHmFa/klfMQOS64XoevaNyVJUY3rKWhK8K2nuL3YXfUYHNHhA925sbzCiFo8sdGxWMv1YRm594jdj/xqgNdEePOQFNranEdcRTaaxPDzVFLuTcuOKncoqRxzpmLZ+5c4k89XvYxNLdsJnL7H3AdcxyV1/xXQR9614EHUfmDH2GuWU3s/n+UQUqJRPJxJRgM8vDDD7NmzZr0fz//+c/p7Ozkm9/8Jueffz7vvPMOv/rVr/j973/PG2+8MfROhrGy1BnvwK/3pms16UVWJ4SwcbZ/SNXW3BI0HbH2XBU4T3kbTJwU5IqechPKX3FIzQ4PFDORz+rmAEu3dA8pi2D+tqk/h50kpHCYXv8bDzB22Rkz1/v7T2pW6B0ciBts7EisWnSGNbb35LmuZS3kDfYd7tdVArYfvy4wu/zYwYSMrp1vYQuBw9aYFd6Ot+ND1GhXMnFEX9ktW/SRpzOUXPEocJ0bA5SCGIoK4m5cAo6UUj+4c9FPzwBolpaOpUwzUAHstNBZxn2B1VXF5crdTTeIRuN0hjVC8eFNNvc7XH0Gs/DWmUmcwolYEt/kfhc0CiQjSia4UGyTDa1+6v1OrGALETOKIxwlnvXMSoxP5vpQUPokv8n0nTmnAb3/WmCDYbDejf6YQSBmYNomi1teYcnWbaxtDdEcGHmx7qKe5/3cABNuBQ3Ac9JC7NYWrGG4i5QSIQTaa4txHXo4al1ducVJoygKtRdfjLWtAbP+w7LJIUyT8G9+gVJTS/VPb0JxFM9i4z39TDynnUn0vr+jNwy3cKJEIpFkiEQiGIZBTU3f7LrPPPMM06dP54tf/CJer5fDDjuM8847j4ceemjoHY2m658QWNnGli1o7VxFKGnIpVYm1vSuJlvxUrXc1ZCMa81wZEj80xnroFPfkU5l7RyigdYVTijGQ0mHH9FyFf6UEuNzOcDSUWKZ+BXLFkOKRxvQ1c3uq4T3144t7HQSgMEQT8bA9UQM2j9MuD6mDLXBUtDwFoI4EZrsJjbpbcnwMxNXcAOuba8yaf0/2T2yE4elo+hF4piKa5hZn/v2/frmLuysJA5rW/2s3N4NCsTN4oqvqhVRzD3exL8p42eEk8xbgptY1ZNx7VP92/Bsea7/RDXp4+x7vYvs5CN5Cc48y9/EePMNWoLakK75giIU+rLPClph4zVlbKVXMQsUnM83DgqW1MjaxFCcAKxtC6ezvKaSdwghEu6OeQbaYM7dyq7lfQ3oQZCKl0313R/Zj63eqEHMStwDG7oTXgtDjWl9eX0HyxtzXXbzZUj9lbpfC/UwUL/j0kBzLzgxUbR6nNfzshq2YjftxD2O3BtTVJ15FkpVFfGnHi+bDPHHH8HcuIGq7/4AtXZgA7byuu+geL10/e53JZBOIpF83AkkU9TfeuutLFiwgAULFnDjjTcSDodZu3YtBx54YM72c+fOZc2aNcPoafgGWqE9TVsQ320GAMK2WK+1siK2s++GQjDdNYn9PbvhcefGQJuDLDJdKAlFStnYEtpEp74d0058M9RYntSqV31z32LaxTDzBEr1WBvewtTmlxJxSckVEMsWvL6ps28jtplWXvvJ6dCXAisnRTZMbm7n1H/K9COIGX1d3TaljTGBt3UnwjAKGr22AC2ZdCBbftM2eWzTYl7Zmh+jL9JKaCQpj2KbKJbOK1Y76/wf4LDCuM0gIvm7HTcwe7MMqGKGpmVgNzXQFulOrLxl8cbWbtq1bbRqmxHC5o2t3SibXsS58t/EV63AiIUpOJYFDIbsYwHSWnXBQtaDoNhejkhCKVeLxV1l7W1nTbxkLo3sCyoZ25W1nTLAip8/arC8sZcVO3rTGf8KyV1odcVqac7buP+xyciVJVPRGn7Fn2FquDV97g1DTxhzQmCmzqNpJmPQssZBUXL6aA7E6InmZjhModsDG7Mxw+Ll9R34owb+qEFvsi1bgD/W/7NOzZLLEiK/xvawrrBUSZIUQ03mY1r2gPbruDTQ1No6XIcdgbZ0Sdld9PojtuRVhKLwtymr+PY7X+Pb73ydn33wE55ufDwdpFku1IoKPGeejfb6Euze0stiB/xEF92La/4xuAdZfkCdNBnfV68m+tab6MvfHWMJJRLJxx3TNDn44IM55phjWLx4Mffddx+rV6/mpptuwu/391lZq6uro7e3t0hr/TCIFTSrswPtPy8nC/D2gxCYlsD2eLG9PkS2VVFA+bOFzSz3ZPatmJXfzKCwCsWnFHNNGuLr2DlAlrKC8hTIjAdQFdxElZZKv55RjqJ6X+XMs+U5XC3L+jY+oPyDPMCU912R7Td2hKnfaZESrejilJYbW5fd/IaOxArPHjXe9PeGMNnZrbChs5NNHWFaos2J2KEs97JUzItCMsW+bwpNFdPodNXQ4puKnjTkYxu7iO/ITrteWMP09HTS2dvClob1OLtzDcOYbhE0ErFLFgYx3cJhG6ht3cSbN0GkyCpVAaM281vqQzIL5TB1wJFlcexn3+zrs19Dsy89UZ361kS9wZ6Iwcod/pxkF4mu0xcXdl5afdFHl7MRplm0WHj6ysqW0zbAiKHmFZF2KIXu1UKxazY7IztQYz2okTYArMZtIETOY1Ah10D7qCXEisbCMboFV+/ySBmzzYEYGzpCNPtjuJ3KoNync+RSsq+N5D0zCnaGnR9Rll6MT62g5fZhDGLVzjliqcYI9wknEfnDLVjbG3DuvW+5xenDso63qXzxfrpnwmvx99mnel9UVDYGNvBG2+v8ef0fOX36mVwx+2tM9kwpi4ze8y4g/tjDxJ97horLv1rSvqOL7kVEI1ReWzjurBi+z1+E/tRjRO/9K66jjh7SvhKJRJLNrFmzeOSRR9J/77PPPnzve9/jG9/4Bsccc0yf7YUQRZ85DodCXV1Fwd9sp02kwgNAdZFtohvbsSo8+FQTZ10dlf7k9tU+Km031dVe6morsDUHDpcDb4Ubt89NRYULd9yFME08Pg9VFV6EV6OywgO6xYHKdCocHiorHFQannR/NbUeqt2FZXE4VOpcEQh3UFk5DT3rmP1qB5ojTGWFhwhuPB4ngXgzDTGLBdUnFB2DQkyqiaAkiyun9lMqEzL6irQTUxQqKjNKq64q1FS6qazw4HK7qHLEERVODGei2LOqqn1kSvQRQNRVEFPiVFQmtq2s8vQrvxFuw7/5Ixy7TOt3O1+FG4/pxO1xM6tujz7bah0R3B4HHo8HHwK3V0dNzYe73ThdNh6PkxqvSl2NjzgKqqpSUekmqpmEYwYeTyIkYOrkCrSkEu+rcOHxuHA7XPQaNoH2VVhVPvabdhZerwdnzIHDpbJOq2JvpRfVpeKaMpNg2CDm8uCLddAdM3C5HTjdDvB4qErJbigolR5My6aCTCFtt8+J6VRwupxU7L5PznmrqHTjCTtxuhw4XIm/3V4nuJx4ndV4XCqKz02lx4PbkTX2mpm+DtJjWleR6N/rxHQ7UUwHHq8TV40XhnDNxc04lrDwKD4qQx48ESderytz/QW8gAdR44PqIu0mx8IhnKgkzkvq2rEUg2jyXndWuPHVVeC3BBUhDYfLgdOpps9d6roDqKnxsbEthOJyUOFycNLsqby+oY2IyH2ueH1uXELgNOM4Gnfi3vdTOKqr079XJ8cJwFfrI/TKEhy77oJ7731wTJqE4nCkny21NZXUYGqI3AAAIABJREFU1VSg+ByAA1VVqKt2omxejBFtp2nXvROGuaJSU1PR95pXfCjBRFuuZNp/l8uRuBftKKpDwaNoVFV6qKwSYBjpNqqiXrzOzDnPHgthuhLPryQV1S7qfIXPRepYfJUeKio1qqt9hO0YiqJQXeXFdhg5413ovlU9BhWVkeSY+Agp22iIbsLnnU9FpZuKSu+QnmupY8nex+l04Eze4x6Pk5paH3WVbiqibkzdg8uRK5sjbuSMSSHGr4F2/AlE/nAL+ptLx5WBZgmLP637f6x8/zFu67RQr/48j53yg3S2GiEEjeHtPNn4GC81PcfrrYv5xgHXcvbM80pubDj32hvXoYcTf+ZJfF+8vN8YsNHEam8j/tTjeM7+7JDPneJyMemqq+m8+ecY7y3DPb+vEiWRSCTDZcaMGQghmDx5cp/VMr/fz+TJkwvuZ1kCvz+KogVwdG/E3P2IRCpzwA5HMaKJ2W7LXzjGR4/qiKjGqm3LmaofQCS5fUiJoe38kFjrDvxzv4wdjxOJGZiaiR2M0NYRQvcYaJZFZ28zLruKzdo2IlENRY+j6ApRoxetfROx2t2xfQl3cn8giuUq/Iqvq6sgtjZRi6yiZgHNkcwM9vtNmbjlWFxH0xT8sW4cSiWBYBz/EJJ1tHRFEokGFAf+5Lh4Ionj1oqMU08gRjTL9cshbLAsYjEdw7CY3FNP46RDsJyJOJiKSne67RTZfbyxPpOdLuh24PfnJnZIYTXtxLn879g9LQSjNkpvJOedbdqCrrBGnc9FOKKzvd3C36ET3jXMnq7c/tu7I0TjGrG4TixuoMUNVMUBKARjFZhGBE018bf3ElOqiUb0hHEW0VndkusOGgzH0+PR7TTQNANUlZg/RPW69VhTavFPjhCPaZiGRSiuMMm0adNVJsc0wt492eRfh2nYaMKBrlsYDgtTtxAilBk7I4YnomHagmhWGnQ7ZqCYAlM3iXQ2o1dnjjUa0dF0A9Ow0BWTaETHthVUBKYJ8agGMR2XpWE51HRfSjyEO5K7OqT5o3giGlZMx9ZNVNNCiRvEgzEsx+DqfwEsbnkFgGOnLiAS1dB0k7hqpPt2hWKoUQ0jGMO2irSbHIsYNrbXJhrRCang90exA5H0va4Eo2j+KKFg4hx1+GOYpo0VDGN6fDnXcTAYIxzR0E2bg/aoQdu0GVZtIvCp2fgnJVZJbSEIJdPx+0JRdMvE7A3icGQUecsfxRMKAQpabwQtqiE2bUVpbEbdfTquA+dlni2uOH47mr4fKio9BPwR3BGNWNxAdLWyS/cmWnY7mLAjjp/c8VCDUVwRDcMGI5mF0mdrhLo7qTPaiZsVaLE4ImoQ8sSImXp6nKMRDUMV+N1RLFvkjEXM0nF5M+e/1x/GpRUubp06lpWtCRfLkNtBJKpj24JYVCMaNdGScauBYLzPswCSxbGT/a/c0kXcV09M03DFdKIuHX8git87eP041dbLq5uZv+ckLFug6SZmMo2/ppkEAlFUwyQciRMxNFyKnZatK6wR1a2cMSnEuHRxBHDssivOufPQ31xablHS6JbOzz/4X55ufJyr2g8ERWHO2VflpBJVFIW9qvfmu/P+m3sXPMABtXO59aPf8uvVNw8zHe/I8J5/AXZbK0YJXQZj/74fhKDiK1cOa/+a885DnTqN6H1/H2XJJBLJJ4nVq1fzu7yY1q1bt+JyuZgzZw4ffZRbo2rNmjUcfPDB/bbpbPsAR7glXSOpK6Knkz/0R0rZ98e7WOvPjXNTjGi6eHDK3UaJRbHaWtm4JZFmXCBojbbQFe/Mdf23dJxd6xL7ZKVN79drJyd5Q+6GnWEtUT9JFAh8TzYaN6wB0+fbQqBGWnG2r2KSt99NcwjnJQlRhIIQCdekeZOhyjlAUdp+YoD6HZIN68Cy6TYVNsfAzIv3WdcWYnVzkKVbutnUEUMzQRU2zua1vL42kdjK4W9ADSdinGzbzsqhl+2mKgjWVRK1Q7y37ZWBU44LELaNHYuyvTupfCqgaIlzqMb1nCMTSsK5zC0iWIEwm7s1Wv0pSQoUP87Pmpn12RYWUSuQSdtu5hpViqHjzHbDE4Iad6KvHjOQKR1BbnKNfrMoZocBCtHv+eyfAhkY8whrZuHaWKm6YZaRcWfNZH3IbBbP3EfOYMZ9TylaegCm13nZo9aLtWkDCmCHEwZ5RDcJFsj8KIRIyG/GUUKJa9LZXo+zfXUmztK0CBthrGioYL+Fjk0gqA4nXBSdll7weaFGE5Mb73dnJnp8dphKPYrAgZqKcxV2Tk201NFmkun0787Xxz2wH3LzUuZGKMaKPJPyn2OpRESpb4db+D4Vh2bm7e9SMg+8Qi6O7+8M8EHTwNkrx62BBuA+4UTMDeux2stfwNgWNr+t/z/eal/KNXOu5+CPojg/fTDqLrsU3WdG5UxuOeo2rtjvayxueYVvv/M1doZ3lFBqcC84CWXyFGIlShZid3URf+5pPGeejWPabsNqQ3G78V36Jcw1qzHW9Z/CWCKRSIoxefJkHnjgARYtWoSu6zQ0NHD77bdz0UUXccEFF9DZ2cm//vUvNE1j+fLlPPvss1x++eX9N5qlhLQF47y/w89bRWIrsrFTq3V5ykq+Z0U65iwWA0UhZGTqnikIbGHjTGZRU20TNZ61Cpid1KAfpUfZmJWyP0+e9V07aIk20R7Pfe8KIJpUgJZu6Wbpltwivd0RnVVZSodti0xSCWvwKcd7ozqTKhLHN6POSyoZnIKCQ1VSkUlFSRmrhRhMTHvcBrcdYktka04B35ieOHZbCLrCieOptCLUaB3s3vEWQgvh7KjH1bIcgCpXVZatkfkU1LqxVZU2pR1VN/pM3LpUBcvWaY6vp9lYRmu8EWtHI9bWLQh/svAwaiabowBX+wdYqbTyVTNRfLUIdyWGp464lXWKlcTY2b7J6X2LlRZQdI2W2Aa6rC1Fx6q2/j2mbW5M7C5AESYOJfFH2IpAVoa97JFX+s3al5IjkZZmrGLQBPB2Qw8rd/a9d3PU/uTEiWkVGKdYNB3/5YhlYrpqeorrrEreZzu5EvzW1h4Wb2nAsDVcDiV19Gzs1dnWE8Md2UKgu42X1zaTXwZQM+NsDzfQEm3BsA1Uy6Ai2lP4ehd540vCqE8/L4xYehtHMKGv9ugZU8FhhMGyEsIryfaSTWUfm6qomZpweWIUm/jJpznStwZedm23xH6ZffXB1kdMJwdJHGe+gTUYgnEjnakzldhokq8Cr1qFQ3EWTfaiRLtwG8FBRUiObwNtwUkA6G+VfxXtno13s6T1Va7e/5uc7zgaq2ELnkEkv1AVlcv3u4JbjryNbq2ba965mpWd7xXfQdg4erfgbngJ3+p7qHzr59S89HVqn/kidU98jrqHz2TSg6dQ9+g51D51MTUvXEXVa/+N74M/4254CUfPppzZKcXlwnvueRjL3sFqbRmNoeiX2MP/AtMcccyb56yzUSoqiT82jJTXEolEAsycOZO7776b559/nvnz53P11Vdz4okn8qMf/YjJkyfzl7/8hWeffZZjjjmGX/ziF9x0000ceeSRg25/dTI7YaFEG32w+s8Yka/IKsIipsToEVnKnhA4VVc6W9rRVsJtDpKZyhQHPkdFctPBKR0iTzG3SRgiIT2AaUH2AsOOforBftAUoCOkpWejLQGWlVBi4ubgFSBLgNOhcNoBuzJ3t2pSKn4ql4bhqiVbKatw57pxOnqLGxR+vZug3n9GSQGY2OzQWlnbm7XSmexfN+10Yg8VK33enC0rctpRFQcIiFoRBIKA0UHcCmNbNrZDJWB14OzyY2fVETtw92oOmFZFPFnsNiZ6aYtvQ0Qj+PVeAtGEUawoYFkZRVsNt6VHpFcDVBcoKv66o3JlShobwpnlxlsowYRtUffhMnzbN5LMZo5w9HWXVZKye10OQOA2wzjSOyTabYrsRLe0nOtMKVTzL2WoZl8qlpH3xeiRKhwdLJABcEdvjNU9zuStmujfn4yl7HP/Fhi/2u7WPt+lW0pbGEryms6YNTvia9gSXYHToSJQMAXotk0obuKYVE17XGXSijeJJxPIpAxJPVmCwxAGQgh27d7ELt2bcBRaqczKbuoyUmMu2B7eRtQI4dn2Mq7W93DteD1vpT1z+Gok8xwQgUAiUQmZRDUJ2QbvCl2sZuPWUN97WQG6wxpxMzElMSUrlrEtNMR6ZsrA15Zpm+iWTlswt+3GnhhtIY13t/cQN2yciptKt5M96rw5BmjqsyUsgnoQd9Nb7NH9zqDmHcZtDBqAc9aeOPbcC/3Npfg+f1HZ5HizbSkPNTzAuTPP59J9Lid2/yIA3CeePOg2jtj1KO4+/u/878r/4Ucrv891c7/DeXt+Howo7uZ3cTW/g7NjNc7Oj3LSvwqnD6t6OsJdg+30YvqqweHCacVRzShqcCeutpWoscxspu2uhlnH4Js6H33G8XjPOZ/YA/cRf+JRKq+9ftTGJR/b7yf21ON4Tj0Dx/QZI2pLrazCc/a5xJ94lIpr/gvHLruOkpQSieSTxDHHHMOjjz5a8LfDDz98GHXPUtOvg1ccs40lV3cA7452wp/+FMLl7FMrKuW+pwqBhZW1KJaYLU6sINkoKFTV7YeIJJ790xyV7FWxO5U1s6nv/XDwWezyCsw6FCdgYAqLhnaV7kBKARJDckUSQhCNG2iGTXt4CIpTcrVMzVJkBQLh9CGEwFIdOTq7adnEDQuvy4ESLZByH/C5HYTNXlb31KO5qjhlj9OL9g1gqAqoak74QvYmucpnMYM7Uaa3OboNj5hB2OohbHaDKTBVG3dMQ1QJnG0tMCkRqz2jzkdDdzRtJCuoVHudHFlp8mQohK4pUJ2IMbQRWDYYSfdaWwhUYaKZBp2hGLVCsCqSG29nq26wQYnkuiUm+sr48ilJ48/nDxCrS622pa57G2P9etQpU5LHmal/Na17Gc7JvuzFGdSYhu3fidjngCxB+hoOSvI+EEpu4gQl0gFTDuizfX+4W7sIUaAsRRb9ucmu64jgjKnMrqHP/ZFaCVem7ILo7gLbzskS6FQVTFtQW8B1NacllwswsS0LO5yl82GzJfoeczAT3pRJMe1wNG0wWr1RmFaZ/tGyLXCAI7my7jLiSVmcfZ5TorcHq70VUQ1OYWMLgat9NcYuc6hnBScCargNEDjCLVh1++SOG+DdsA2l1wCS94eu5VwHmWMZ5CRRse3yZNfsKH49wk6/jcOlJozMrFvUshOlLGZOduJUHbiS45H/qM55pNJ/+Y032l6jLRSnyjyIo2buxm7JrKo+l4OIYfHm1p705JHDkcpemenTFil3SsGKrmWckr4uBh6bcW2gQWIVLfbg/djBAGpN7cA7jDKt0RZ+W/9/7F87h2vnfgdFUdBeX4xz3qdx7Dp1SG3t5tudO465m/9b+WNuX/sHWuv/yo+aNuOydYTDg7nLXLQDPo+/9kDWWTP4MFTDB10OmoNxenqNHP9kp6owtdrDPlMqOGSfWk6Y7uRTjjacga24WlfibX2Xqi2JYFlz0n5oB88i9vQT+L5yFWpV1aiOUYrYow+CpuH70ldGpT3f5y9KZKF86gkqr/7GqLQpkUgkI6JQsqeBjDU7NWst8DR3IbwuHJEYZl017fE2stXo1EqDmlTnhADdtCAWw5FM+iEQCRci1U16BU1R+FTFLLpSSgmg6GGUWDd27Z5ZsuQVgs4/PFIFYO0+istgsuabtqAzrGFYGfe2QUxUZ8kj+qh5tgDF5aM1GKc9rMCuNj63A49DRbdslm7p5ow5U3F15sb2pWJfptd6WdK8oeiqYsE4rJwaWCLt4qibdmoLVJGpZRSIG0xxZLeRqbeUGocZjT3AJDrMJqaRiNtJyXjAbomSD7XeXLXMpUCdM7GNuyeIVelDqa5EIGgPacTiNo3hxNUyKd5IwLRQcWHaAkPkjqTurKHbNwulN8t4KVj7LeX6lqnrlT6HwsZuacJuacrZVlN03rea8FizcAKKraPoYbw7gjhtDbHP/gX6zJAy0EzPVBy0gp28rguttvWHaVHR0EysxYDDdy+6Wb+3bE5x7qRJrvlRQgbW9oaEUeZIntX0Sc5tcI8N78P0IhMBAEriTouHwsTefRvLNxOScyGW0Gi1d/ApMiudzqmTsbe3JAxoNXeSKHX9KopKjutitqWcxKj/ADvcQpfbhaqoKMJCQaBG2sEzKb2do2czqH1NBNsWGIEwPapBpZ0wVjRTo0cLUuvK1LtVFCVhOPaRoC/F7sv8CaGt0ZUEVQ8wN9NP3tNiW3eUtzvfZe/JVZy0e2Evt9QEiKmEkvIVl1AgsGzB1uhK9o0fz241fUN3QkndXC3glJhfQsAwcz0l+mMCGGgnEntgEfo7b+M98zMl7VsIwR/W/AaBzU2H/hK3w43VtBNr8yYqv/2doTVmxvFse4WaDY/y551Lub2uhkV10LjvPG7Y71q2OQ/jzR0R3tnWw/r2xGyKqgTZe0oF+0yp5MhZbiZXuKhwO7BsgT9m0haMs7kzwlsNPfwJmFbt4ZTZh/KFQ85m3vlTCDZtxd24BO/Gx5m263K2fTAVbrkE57duxNzjqP7lHSJ2KET88Udwn3gyzr33GXiHQeCYPgP3sccTf/oJKi7/KorHM/BOEolEUhKGYnVkXsq2x4WwbVzdQYTDgZ3lohcxIlhJt7Fqp0JXUsHSegM4o37qDD9MPZrG8PaMDDlR85lAfSFsXK3LUPQwWtUe4HCBsHFvfwXsHqAyR7YUiRW0lHKU5aojoNI9sIW2qslPIGYSN6x0seWhkEoIkkJJBU4pGbc0W4DPpaIqCnqOS1yuMp9aJXEoClUeB5G82sRC1xGaViDDsQBFJWAk4pM2dUTQkn1v743lBNuklMuG7ihTpuYadfGk65mZzIpYHYiBaxJ20tIVCGwloSjOmrI7sZDVNyYxuZrlVGxMoeLqDmBX1YGwE1njnAK/oSSNaRWnrZFR7RSsnTtQPJnzIFQnSktW3FXKYBci4ZGjhaDqyOTeCootEsOR9qjMTDZkUDCUxMpApxVkdyFQbBs17kcxvQhV5G1fyEBLus2ljl8LIAwnYhA1slLolp52u1RF4VVOs7MHVQti91v9SPT5v6N3C2qzDvhQA9twK43E2auAgSYwRRxhG2SvBZqWIFUrzNG1DmfXOhR1P6IxjaW6A2FH0gaaU00EXrbooE/dBX3/A3HUrcUm5TqZmyojNamjqInVm5xi2TmVzk0UYSeSt9gzsFXYv/pTLAttxGlpTGtfDbVzEm1pQYQvY7ClsBE0qt1UO2wUYQGCxu0rYffZRLOyYpq2SdAIJA2U/t0di8XLFq2PJlIrh5naa6ptkopfDGtmv7XVHMkpMSN5Xw40v5YyAtf0ruTAqeckZRN4HAqaJZLPJTuxkpZ8DttCsLYtRHdEo7Yi83yx0kZ1/33CBDDQnAfMQd11KvpbS0tuoL3U9DwfdK/ku/P+h90qEjMx2tIlALhPWjioNhQtgG/Nffjq70WNdWNV7UH8sGu5dN8L6GpcwQfNd/Dvt3/G3N6pnEaUL7gFyu67oe5xOJUHfgbXrvsP2EdH0g/2za09PLyqhQffb2bhAVO56ODdOOzAy4gfeBnqwm14Gq4j+F47n9r1AoyZ84ke/l8YM08oPCM8ROJPPIKIRIadubEY3gsvRn/7TbQlr+I965xRbVsikUhGh8GtoIEAVaE13MK0SDXV9V0Ip5PoLDCFzbLOt3GEKqgAfC4lsYJhCyzTIrV21rffjLLm6N2KklwtE4iM+5oZRThqwdJQtBBKuBFq52a2y8KjVACFM4wVixVJHGKinUAypsdOdq9QJItbsv5Sn68L/J29UqEkP6uKgm7ZpIOkAOGdhJLMTAdgR3vwaZ1osTAoJkKInJAhfcVyiEVxHXNcXu+Jfys270Tb8hrdM3Mze6a2arca8RJiGtNSkhHVE+5mQgjaYomse71GbkySnSxVIBCY2DSGt7G8rZdPVx6RaMURQKTi9mJRwM2c2W7WbDRRLYuYFUOotenxUEmqpk4PNe0hoCJn3F1xA2pSRiEYpoUVCKHUubIyDiZWUYQt0kYYippR9vMNtOSftT4Xhpm5ilRVYaOjC7/TQMEBRhjLs2veakg/94tIyKnYBlZnL2KPrLhHIXC1vItVty925bQ+u9rYCYOSXLWmNWDxyoYOTj9gKsam7Sh6kPjeFkVV4Ly4smqvkxgZVzg17kdRd0n41Nk22QaIEBASO3EKqMlqY2NHGKcjoeo7ezZh6CEUH6CqiRXirD5TMY5ddhTV68WqrgVTw6v3YIjpBeydpGD591O2jyRgtLYACQ8qxRYIFVyqE0Uz8NlhFHeed1VyV5eVSYBi2iK9nNri0piFQG1tB2ZjZBUgDxrJLLfxTupc/XubBY0QKzvf49Aph+EosGoHWauEZManyR+jzpcY5cmh9SjCRojjCz5DsnE7vGCAM2lCD5RlsmA2VsBCI2A3E9I/hWmbieudxLB/sDOAEDaNkQifrkheCaaR8UoYhIU2rpOEACiqivv4E9CXv4vQhhgAOAI6ox38ef0dHDz5UM6e+dn099ri/+Ccc+CAGQqVWDeV7/ySyffNp3L5bzGmHkzTGfez6LCn+FbbOfzPv1/jrHfu5+WmJn4c2Ml812r22sVin2lT/j977x1l2VWd+/7W2nufWLmqc6u7lQMKSCIIBBIZY5soggFjLs5gjLExGBuejXHE1/fZGCeM373YYHIQYAwWiKQEKEvdLXVO1V3x1Mk7r7XuH2vvE6q7JWGQHxqjvjGkrjq149rhzG/Nb36Ts/Vhzt31v9j8qWcz/oVX487f+ZD7Wj9a5MWXbOIvX/I4vviLT+INV23jrqN1fuWT9/Ebn7uffUsd9MSZFH/lXaS+YLH4GpzmESa+9FomPn8d7sLdP9RYGd8n+NTHKVz9dNxzzvuhtrUa3pVPxDnzLIJPf/IRF72vYQ1rWMOjhzxDNSiDephVeo57tr7HYHoBmUhT3EaASmwG4oHlOUTcJohSwCCMGXYnO4X8ahAys/9XWnNwJSRM1VCWxBIjgRrdQqgTjvgHh89FcMraK7BuZY/kPTxR8XoSPyHMSYENQHHfF0+5rl1noCZORVSSeo8A5n5zUgiCgfYG3TjFOMN+/n4KG+p3cmz24z3ziuPNgFsOZe0IAjvjrw7s7+0bclJoKCyuoMPgtJfXAdoMG6ccree/G0pOufd5tR0icbNslI1ltLHVhAB+YoPgZrJCYkLAUC4Ax6xLoqqUKE8XEWm/pgVAhA2EyAJnYxhdaiOMoSLtaOUouJJ1IzYgrde7pHER3e5aR74BGECqrE5GCGReEyntPZGqmND07ecHg1f36By60aYugl4QL7TKqvEGnpnVaVLoE7/GfO9nHUSo+cWBZRSyu9hzylwNYzR9OXH/83aoT4qHd82d3pJeDGRfVKNp2ymoEA0IfwkRNaxrjVH97FVvHFb/0IfSA3Va2tgAPB+HgckPLyPwbWENbYSwjorlpM665v29nelmI1vVIMMY2fXtu6VHonU/22Q0ymgKwQErxcvHKU0Zv/8EU3v2Q7I6xs6u/aDBi79I0UTZIQg0hlSfvlWEI5yTJcSrfl8I5mgmDZrJQ1nP92+4nOQo0+ekYtXEwUPDLtVKm0NS5NOhd4my37VRKKNY0XvpmnkeaN2GyTNoA9BoHEf0+yR356lH9t3Ta1HwEPixJ2hgZY6EIfHtD+F++COEMYY/v+PPSHTM2y55JzK7A9KjR1D79lB8zul1xSoN0Hd+gLGPPo3yPf9Ec8sz+LdLPsKru2/jmi86/OMNt/P6E+/ho+57eXLlBO0nvo3d132Wt1z6XJ47HvLOMx/HsVd9ldrrv0/nqnfirOxh8rMvZuSbb0fEndPuN8f60SJvvHoH3/ntZ/CWa85k51yb1/7rXbznKw/SetwVOGedQ/PWY9R+9mba1/4ZTuMgk595IaM3vBnZOtnS9JEguP6zmFaL8uve8F9a/6EghKB03StR+/aQ7rz/4VdYwxrWsIb/DvwgE0ZZRKEHfhZJ/wu6cqCGc8gaXDiA9JcQjQN0ZAehE1KTBeSrZsSHA92cwNjfm2FCPUiZbYS94E8YDbnkSDjsDE+wEM4S6IFgdWDzq/Nl+hR1aTkSpXsOjlvGS2CsHEqyKjBfBT9W/f5e2QEMxjkb6ndwdveOnrGEsAeCFP3muf1ND28/zp0OpcHNop26n7Cyql+UXlxti26IEs1KN2F3Yxd6ILshMxt5x6RMRH1TkjzgUsaQapOdu80GFIOYbQeXbWAcL1FQdapJk8mVAyiTDnGVQVOBsmf/sKRbiLiG688i0mE3UJGGSGywatwSWghK0mbmYoYln85Q7ZIAITCD5D2D0AqpE0b9I8jcvCOTDO6t7+a7+kHSjLTYFaAtLcHUNWuikdib1q6b2eoPE/Xh8FN2TkDcRi7sQwb9fn5xGrOzfj9pGlmXamB1S4AcduIjFyZmcrdO3CNRj3iSN7sGqtklOXKEkSPfZ3PnPkzs4zSP2ONzpD0ObWhHDx9sG61WGZMYlgd5TXZdhRB4jq0lyxVzxgBycNLEXgvn5n/Bja2hR+nIPO7+I6c4R/v7t7t7+Y6yGd2yW+mNEyqlkEbIZoLTOc6pkD+RnjC05w4NtUmYp/WQrMgVj1yo54pTN5G3x9DfSaSzWNisrlcdaIcwvPIQ8veUMYbFYOHhX+WrfKEOBXczGz4AaELdAqR9hkV/WbtbhcTKxkXcZaW5lzl/nsQkwMNLd3/sJY4A3uVXIkZGiG/6NsWnXfOo7++mhW/zzdlv8ssX/Bpbq2f0Po9vvAGEoPCs5wD24u6q38/3lm7l/vp9HG3uo5GngrdM4ugNJMlRzOI/UXU38NJzQ57TuJXNccTypW/DXP6r4JZZB/zN+iv5yP4P89ED/8K9tbt504Vv4elX/BrhJf+Dyu1/RfmRnmnpAAAgAElEQVTeD1GYvZXmT/wTat3jHvYcSp7D6554Bi++ZCMf/t4xPnH3cb59oMYfPvWnuOij7ye54y7EVa8jOu+llO/6eyr3fJDiwa/gX/nr+Fe8EZxHVu9lopDgE/+G98Qn4z3u4h94rB8JSs/9Cfx/+ADh5z+Nd8mlj8o+1rCGNazhB4EN+lZNreZ/CwJEubxqWbtg7pAnVjOd0AY9Xha3ejpGGoE2BiNsqCYAYYStofGqCE5xDLJf35R/JEzeJSvXHQpwvMymYtWxDxHA4c+V0aeNxXYvdCg6kgs2jCBF38kslySecqCAO4818GPFpvESRVeenFyJmriOhLiDNLrnYumeyrHkNDP1VhbVX95KDref5kzsduZaARvCFLG8SLjhdrz1VwLgSkmchlxSXsbTgk5kr2fkTWBoE8SKXfNtTCFhamIUACftN6tt6wZpoUBng4EGqFUz6cYYqkVFNxY9UvmgPorrKoSDJapGc7C7n2kVUzD2iiVOCWTB1jBKwT7ZYNaZhUzGFaXiFOUMAsIAUygN9f6SOqWQtvGiiKkjh4auWj2yBGw2OEq9eQfFkUkCd5ya22GjKNIRCVFhGmPme9k+JXKCpHuyyWaUMuL2SaMMVhA6tXf5wJgcMnUWgjnWLe5imzh9x3OjNVpp3JaNwRpxA6M2slJrMpLF/WGUcHoKMDAq2fOqogSSgGJkCYFO4178LYSwWSijOboSUVp172ngRHsnm6oXopeX0IuL9p0wk8llDSRG9CSmOsqJsKFacPHjBBAUWg0S4P5WKRPQmSES4IVHwEzmB8XgM2YndVJIA1Kt0I06YKWhvfdPTtBPxXnzeqnsvnEltLsBI0YQZ8cwl9SZwt7n60t92enG8ibmg7mTairzI9tVv5+Z0jo2lDcOfNo/CLXK6XOw6XVLz1LmIgzDbUAAHljsUJrgIaEGCHuoQ9KHqXOUPdWE/T3SVnYs3YAo7GBMXtCYn2teE6hIlOGB+YDz0gcwiY/B3sPioZq1Z3hMEDThuhSe8jTiW76DSVOE++gddqhC/n73+zl34jxeseNVvc+NMURfvwHv8Vdgpib54pHP89nDn+RY9yhSSC4yJZ7dXqSsqnwrvpwDYoaZUcX6CUVBLrDcvYMbhOaG6RFgBJY+zfS3v8nW6hlsqW5la3UbW6tn8Evn/SpfPPp53nP3uzhr9BxeeMZLuPSS11Dc9HjGbnkv7heuw7/mvahtz8QRDgVZoOpWT/MQwFjJ4y3XnsWLLtnIX9y4n985vIl/HZkk+ed/YuOTnwKFEfyr3kH4uJ+leusfU/3+X1Lcdz2da/+MZMtTHn68vvQFTH3lR157NghRqVB8wU8TXv9Zqm9+K3LqIat717CGNazhUUSuL0phINxrpjDuQnroIOrAPrwnPxU5OpotO5iW0sP/5jAGUsVkyUblZ3ghVtxuJTgmS57NzN9JUwpEaRLWbTnp6AqZTbmVHQ33pMLkhf0Ck8sYBwJLZRIi41PNZ+hX1bSo3oH04ceKkmuXj7JoqZ+osZmubqIIEkX5FMrJwdlse7bDok1jbBZOBks4KkSIKsaAu+o7T+cDdIptgxha/rQ9mpJ+oJZm2co0CJEnDpHMXIwSEU6aMnl8Fnlevh3DXfoI54oz0DobIwHNIEEgKMgSschreAx+tUDqSdKCRBlDO24gygMO1UIwUtaUigm+srQpRtFJuwgq+WZoJUuU0jYFAb6OSI0kilOKBYdO1MYxxt5jjg0Xk8Tr1aqJvG5KQHLPXSBdSk/rG4e5qY/KshmOSUmNoR6k1FXXSmaB2fC4vS6pj8x700mXmvZZ8GuUAKfXY8yQpoZEaxwJ7TDhcC1gfVWyeez0pAsgzcidTAPw7LLmFL3H4pu/jQralFu232s36XLPnM1wVhsNvOoy30lTnp3J8QYJ+yCMMb1srTGAX8OZLKGAQvMACSVLhHRkl1s10TIocZy4+2bU2ROYus0ImiAYkoRWHUM3XUVE4hhPxYyJFB8PGfjobodWbJgc2LZudmgwwjgeK+FK703Uk77GPtKvUd73H8jOAohVJMQYW++ldK+lRaIEJ5ohm8dL/R3ZrQHgCoPC9l6UvYkhjYgSzhu7gDNGtvU2v6mymflgzo7naulfRohq4fIwQRt6F62+xvZvBUfiGzuelWSZ+v7dwLlDSyptBp79YSiTcCI4iutmEyZxi/uWbudKp0Rp81OYT+ocbB3gSeuusm0K+qd/0uSVIwUi8zDK33mD75ZUJ3RUHYGkESZ92TcCV0UPm9F9TBA0sDLH6GtfJbn/XgqXX/mo7ecTBz7KYrjAnzztT4eKFdW+vaijR1j8qafyJzf9LLPdo1wwfhG/s+HFPPeuf2MqnuX9yUv5bOk6XnDJVt574Xp2jHuU7/kg1ds/jXGKLD3lHRw84ynM+sc53j3GbPcYs/4xbl24iUZ8cjf7g+39vH/3X/Y/mPaAKdj/1/a/DCWnxExxHTPldWyrbufM0bO5NH4cG+UZlF37Qt8xVeHvXn4JNzy4xOfmnssv3P4pPve/r+enX/9iiq5Ej26m/fy/J7zgFYx+511MXP8KggteRffqd2NKJzv5AJgoIvjYR3Avuxzvsst/NBfgNCi99OXWcv/fv0Dl5x49MriGNaxhDY8ETv0AkPdnMkQ571rOZG9p1hRYawiz2XFA6tNk0OKUidt20j7PuuBKQAttZ9jjhLjbhGo/kLe25AOz5VphtMKTHhJJrMN+L7EBgpbXoCFdchvuoiuZLHvcvPhtAtXuFbvLVbVoWg9n0BpBwg379tARB1DmXJyMHOYZNKXBlVbqdtvhOs866+RWOfnkYj4cxn64einclq3FkjpmJJjFdWwGTKqI8e4htD45LshNTaQYkPdl249VxM16N5eJMxkVNtvZPrIMWS5p0VdsVQpXShKNbSAc+4yemEYstxmZhqhizzfGIIyy5CfbTaJs816BxAztOztPYQO+WMVDAWze5gBha1iM0SQ6xQiBEKYn6wp0vbfOXLqMYj3V/ct4sSImpIwNBMedFBKDlCkyk5uJtg+eN5zdHMhyekl7oPBGYQz4keHm1iGcKVtnflCucA4gTN9JT2Do6ghjXBI5gSlKRNREadh5TDIj2lzamkOF8wiTEoUpDBC0UxGvWtphtnuMc7NMT3J8iWR2EXl2gvAG8mFxDMYQbZyhOL+MkoJ6EIIxbDmywoi/C3/HuT23yE3jRfb7UMpS1t+e+wZblzRbFxVUrb197rgnpUQxwMWki9s4gNtagegpuPP3Qzo6PIw5ooARx9BRWdVWL8liuLSqua013BdLL8yjOicYc6CsK+xIm9Tn9pOYPtlVzQ51abhzMmSbGUHmdiRCWBml0Uh/geL8nYioTWgUBkU37fbIEVpz7uh50Fi0mXpgPhwh6cRMV72eKdGD4Ty7g5hNQExin+sBLZ9rJFKpXilQjpyonCrnnh/D6sTC8LLDZOhUZGZb625bg1Y8l3FP0UwcYt3AA46s+LA1X92uW4/nmA334ssuReX29iH8Gn5bUQnOZ1d7JwB3LH+Pq9Zb8yC56h2VH52DtH3PjK0b7ElSs2UacY1msoBWvt2G6W9D6OShlKHAY4mgXfVUKJWIb/zao0bQ5v05PnHwozxz03O4cv2VNBp9Xbz/ta+gpeDthU8xwXbee+kfcv5tn+WixQ/wgN7Gn02+h6ue9HQ+d84MrhS483cx+ul34tZ2E539k3Se/kfI6gbOAc4ZP9mZsZO0qUd1/LRLN+0SqIBEx9y/ch93LH+PY92jAIzJMtd1fLb6deZnzmfxjKuJTUo7aVMLl7nxxA100y7ssl+uF4xfwGVTV/D46Su4bOpynn/hep78njdRf/WNbPjCv/EatvDu55/P5VvtF2ey/Zms/MyNVO94P+V7/pHi4a/Rufr/ITr/5Sd9aYbXfxa9tMjIu9/zqFyPQbjbtuM94UmEX/gc5df83KOaRV3DGtawhtPBFMcgWEYXRmGgdKoXzzaHJ9vib3ytvy7GshbH/pajrUPGdBHQQ0xFCY2rDVP7lijrkGBDdThJZAwiM5dI9+zDVGqIM5+DFBJl1NAsd778IEHLPxICrjhjgk8d3ZMRGevmtrqvjzbDBfUrfsxycoxIJ6SEOJmcTq6qltdGZ/ViJ4ck+aJ6gCgMrq2FRKB6q5okYl37ARz1eGZGClQXv4toL2LCc8AYTGGEZP1lFGZv6df8CDFM0ID5YJ7UKI5T4wJhI7nFZCC/YaBQWwRHYjmmpnz8MGLhMMU0RstyLyDTsoCrArQ2vfKu1CiMsW0PcolqIakTFV1y2SFCnnS+vZ+NoZuuMBcssb48bbNVA+WGnijZpY1hIXKoOFAKbLCfOyZqY0h0SKHrw0wREAitLQUVDEniRNgnfIMGBoWkQSLHMcYGoGnar7UDkIPauOz4ZpZ8Rusx7QvHMUDX2HttoR2h545D8yBT3jEqUsH6q/vrZ5Jd4bqQ2GNbbizSDDbQdexEcTpvG7OjVNbsuY9Ua1TbEjCdKoxOOTvoP4+Vw3tP6bwQpD6pSakdeZCt5fORsd2GOrqAG4wghH0eQp0idGKfC0eAipCd44BBhisnbxiQcUxhiID3fykNHIsBTDa2vvKZQLO5KKCUMl/cxYifDi+b/bwiIsaFZyuaxKosT2LP437dJBQeQRrQTJoYYyjg2QzRQF9EjYPutNDBCShrMHA0XmFEgSMMI549hq7seUHa4VTmJLKVn6cyim/OfZ1GsoEpb7P9rNeIfXgdM5A10xiS1OA5toVEfl6DRK1UkLb9hTFUHE0jkazonZTMSK8txiD2rdSY9buUyhJHCqrSIP0lwiQiUoLB2sZuat+rY94YK9TyAxyy7x/kpLL3PEF+dTaOw31tqCQtRJaxMwN/f7jat8dMlCvKZQpXX0P0rRupvvW3H5UA/R8e+ABSSH71gjcPfb7sL9L8yqfZfyY876JX8aToSh73xbezTR/nM5VXMvW83+NdW2cAkO3jVG/7M0r7rkdVNtB8wYeIz3rBw+57xBtlxBs96fO80d5isMB3F2/lgcYuvtnYzXXHmrzl0J18fWE371w3TZSl613hUXYqOFKitWF/ax+7G7v4+MGP4AiHLZWtXD79BF78cy/igr/9P1x26G5++ZMh1122iTc//UxGii54ZbpPeSfheS9h9FvvZOzG3yR+8FN0rv1z1OTZAGi/i/+RD+M98ckUrnjCDzXujxSll76c9rveQXzrTRSveeZ/yz7XsIY1rGE1tIE9jdUBySqc4tvXJAlx7EO/PM32tUyt+1rVrB/KZNiaDA3KMKkk80EDEdagOsOkU2Wp7SMWF9hSyTeW2oBfSB5c7HAxmf4mDyryDBoC02tonfXZkoKCK3FEVqtkoK2XSJnCpWJnfxm2pB5s2jxYP+IMlMJEWvajyVOYOwg7Pd6XOjI8F6jwECLtbV0DMqixafFmtl/8UlxRZncrD+BygWQ2451nKxly46cWz7KnYQmJy8lSz8FQyu7T9LYjTEIxDFCyikAwWzmb84Q11cjXSXSIQbMYzveCUJkZb0hjyAlaqiGMBrKgUYQ3OwvFjGTlDnwoBA5CGIROAENJ5CFyNm4D3cDz9nPCCHs9B8ZAJiktJ0brApnOyx5fZ643/ranlLFEO+f2wiFINLOLbc45ukxJxmgy85U8g5ZdvAk/RWGQqW0JnF92t5eQtde8Iz2GChZyA51iAR0ItFaQphTnllGbswxV7+TsP50opRkmzGAdNJc7y2ybLKOUAaXwBvtwqQgkiKjB+Nx3GHMvYCY8RHerjbOka58JEccYx5AenWc0LiPPnQZjOBAtUQ0ctuMghM0e5uOz0PApd9K+IQn5mBgmPcNK2r+pddcSJ8cYOnFKO0xZP+qilxZJdMxKd5GpNMQUDLNnlElNiCdtFl7o1MpWtcFrxahRB2dx2Y7zapKUPfcrJkbjUmokmLLBSIGMMuOW3HjI9UArzMIRpFgmnRzB2WQzczP+CcbHx3vvuI7UjAmZ5/yQIyCVfYbziZCcsOXW+/PR/h5B02gW2xEbR6u9Wl4hxFAGrRbWeWChzVS1wOaxUu/9MvgG2TBSZLYRMF6SVFNNy10EU2JP/SDbx/tNvvOtNgONJiLV1uMFoxCxNQxqJAW2nMJZcfB9pKHXfBtgJbFy2kHSOHgFCp5m21QZFloYnJ7E0QDFtM3pvS8tHjMEDaD4nOcR33gDyR3ftxm1HyHuXL6dmxa+xS+c9yusK/d7NhzrHOUfPvOr/FYzYfzVL2fHffCs5dcTiDK3PumDXPPEFyCEwFnaRXn3xyg98AkAule+hfbj34j2qjjG9KUm/0WsL2/gRdtfyou2vxSAIA04dtcHePbtH+A/WgW+dMXraTiCUAXEOka4hk7gk+iEbtrhuH+c5XCJo90jHO0e4UtVw/vWCX7mvn+l/sZX8/mdETcdqPHO55zL08+2r0w1fQGNl32O0u6PU73tT5n8xHPxr/w1/Ct+jfCTH8c0G1R+6Y0/1Hn9ICg89WnI9RsIP/eZNYK2hjWs4f8nGI50JEfTtN/o6BRuYqdEmp40a+y0jwGQaIVQMeXle3B0CWEkxujcrRyNbRpsMle9GafMPUeW2BpJNpRs2NJW4CWKRMcshcvorPOtMNo2IZ6/0xogCGFd4TI+0z8iW6Uk0wineRgn3o5PwFhW42FWyTKXu303NzPgSiaFGJoNHzRJWY31te9hujXUjp/Jh3K4Bi0bsYVW1Pt7O0pxhUYIQd47O0zNyaS4bd0ZT3J0p+9GmRM064Zn0ZBNtDEERuBiSOgHboFsUwbcbogqVnI7AAQ6czo0pDoiMT6+6maZLrsMwDoxygk0RkAnBIwmn+xPdu+kePQIxU2a0aV5YmGzMnpygsjUcYVEpW3KB2bpjNj0rVSaQidAVPu9qsajRZCw5fAcS2dPYIBROUmqOr1GzoyWSLSmEcRMjg62VAahFZvHSixrj2bHQ0sXg6QVJBTCFt5yi0nT4cSkZJ2RjKo6ypG0dJdqN8Y1ghRDsZPiV8FkhC+OE5TRfFseJpErhKUtvGLdxVSWdvauzOAFa2gfLTwqQQ2Vbug1ch5c9Pb7DhFXx7jWGLpxvwefMgZjUgpGU8zcVpz2CZg0SH8FJwmYCvaggfKxW6BS7jUQl2mAkqJHBtw9B5CjAXo6Ix8m679n+hMUSZJArCgmdYST+5fC2KEH8dZNMD22jlpiH7Zoz9HsjjA0fYUyhkQbSFM0hpnZVlbrBYlnJ0s6iWEKIO5CGdRKSCWNMDOGWEvCRDNbm2dHdxaMYdHE7A4Oc51rSVFYX2H9QsTSWJ2p9VP9/nc9swoHtOkRwLzo1QBRqjnR8dk6KTEIRp0yMmsv4TkBY2qZ+aUV7p0tcO0505Q8p2c4O0heYh1QkGUwmjDRHGsEaHYxUZhkS3Vr7z2hjWbnyn0ArHRjNo0VBzJodgJoY1nQbSnGSx6esNc8drsYUyTWmoCB9gz0a1QlRVINRWMQ4RJjhRFasUdqNMJo4tQQKc1oMbNkGXynmMFekIKiK7Jb1U4K2adf9CbEehJrowCZTXLZe2jKP8D81AU8FB5TBK3wpKsQI6NEN97wIyVoqU75291/zabKZl5x5s/0Pj/YOsDbv/8Wfua+DspzSZbu4w3etzg8egWlF/8dj4uW8e76O4oHv4K3eC+pKPDd6jP5O17JvXeM0r6l319MAEVXMl0t9P+reExXC0xWPCbLHhMVj4myx3jJo+hKK5V0JKnSBIkiSDR+oggTRTdStMffwLoLNvGMPb/Pi27+33xo6/uY1TN0opRAGZp+TJgoHClwpWTGEVSLgrSwj4ZzB//27Lv5vU802XHrR7n3KodYbeAd33wKz3zgJ/ntZ53LVKUAQhI+7rVEZz6PkZv/kOrtf4V77+epfVpQuOYZeBde9CO7Dg8H4bqUXvwy/A/9A+mRw7jbd/y37XsNa1jDGgAwhkCJk8jAI8qgGVtTVAsVE44CDO2OJmuPhegu4JYSJloJunIG20WT2B2x1MdkBC3/0g/rbOkcstvFZuL2d2HlUI1mNcVLu8TRIhTHQcV4i/dlB2EJmsntrzO+Zg09LEHLW7rYf8d7+1jd0SxWg6KdYYImzLAky+7r5AxaIakTDQyXVAEj9YOw/km4yztxVNjPAObHYUBmzLWYGZQ8uNBhbEQzNSA1ku1jQwQ0SBQF18ERfSLoZjqlwpWXwve/m+3DbrulDC1jcPQKYA1ZfNWmaKAcNQlkNZsRt258eXNuhEATM+bOIHUFz6vgyRoVUcTBBWJs1kAiMf0BUvaeCEWLibBBQYRQKmCKLtoY6sVjhNWElqdwm63emEwfOk7z4mHrOhcQGlhp41TKdEPorAi2ZwTNdwytULBSD5gcHUE1su0lCTIJcaR1r3PSAOlWkMo6kBbqCxjATTVNTzGV1CiSEKkCHROwcTEgdSo4wkUrQdOUmEgDRJqgFhdpJxH5zIBBkgyyZwNalNEFl8RxUUkTTEopbQ857RnhgDHoZoPq7ntwNm/L3PyynI7JsqfhEl6c4gxYvSuV9N0QM3SaS3iFdT0NqVDWACifdnGCGlTdgeS2xgQh2nfwanuBGYQxeMrHS1p4wid2RrJ7zOAuHKc6MUMtnxQZyJKXUMRxjDH9JtGFIMVkZNHXMStBzFgck5y1Du/gEkJITKoBhyjoUKGKnyhMybC/eZhzgMMmZCJuETozTIkCy7El8CcIKOug534YPng8G1MJWqHxTtlKY9k02crAPSYkUguEsD3mZutNvMpGgkRR8hy+va/GguoieLC3SpQRtEG5otbQiOtsqW7tSXOPdA4P7dsYOODf0VvHAMLYySEpBCMFgXQEwgjASjMLAy6vYaK4P+t7JxAEiaKqI4w2aFJq1Ij0RoxKeHDBLnfpljHaSWvoOLSxMtrxqE4Bl1i3qFEAk1JJ2hTiIl4Y4TRPMGFmaFZj0Io8N2jQrFQ2Md41JMqcNHG0Go8pgiYKBQrXPoP4m9/A/HaIKD60+88jxReOfJYjnUP80ZXvo5DZy8+2jvCO7/86XqK5eqemsCHmZd63CEZ3sKWU4nz6ecgsNXrAOZt/TV7P59XVuGKS89aP8BNby0yUXTxHkmaOMkGiqHVjan7C4RWfu47FNMOHt9p8aGznyeKdfEj/L37xwBt5u/duFkrnMDlSZPNYiZInUdr2ZUmUoRUm1Fs7qPtbOBz/NLdu/iAvv+kgN2/fwvKmE5Q3f57b9Jd52Zd38PwtP8kbr3weE8UJTGUd7ef9LeGFryT883dgAsX6C+aJm4fR4zt+yHN45Ci98MX4H/5nws9/hpG3/vZ/237XsIY1rMEik3UNkg0zLL3JP8sRaojilEIQkChNKqEVpaiwjclK0qyhhGb0WAcT0KubcoSlPgaJUClpRoQKjcMIMwZCoo1hsR3RJEUYQzNIKMU1yCyd3ZoNktpRCkFEuSp6fZXyYKkTxRjtgEzRSceepzB4Uvda9vQISAY90HjXWqjbz6UEmbnlVR1NnJOvuN+IVvjLFPdeD7EPlNDGsG+pw1TjfiqFNt5shAxWMJihOqdRV9PVLp6AlD75MkgakWGq3Jc4HmwLNkr73Su0YbETU3IlG0aLNshzHDC5JEsiJiZsNjRo0EnrRNr2GFtOGrjGSk6NBsfEgEPFE6wvg2nZwFBpmY2TldUFYYl2mPL00WuQhRoi2dNvay2gGzXRSUg4oHUyxlDXS5TLHQjzcxMgHDwpGfcUyyLCG1ZkstJosn7gozz4S1G4wkNnGR2RKpRTZM6LKa8YlEnoJB2KiZX3JUcXGOk+AJvPxBiVuVnaG2DDgwvMTY73nOjAgDDs83yqbdi80Bno1yUIA8FStUqiS5SaHRqFGfYt+UQVjeN3oGq4v/UAT/eXrGmN0YBEORMYEdo9ZLuJVIh2y+jyNCJsgDGYIMCR4HTapGVNnm5OtYGki8hukMFnc84XbBmopQwLEyy2jyCn06wmkJ55Sj7EMvEhq8PDlTgjDuniCmrRyXrypUx6iijL0gxWIhkpkRrKDgjj2t58+c7TiJnGEnqlRjR6wVCG0GQy426a0AkTvCQlqRTwCrbxc5oPv4aKalKnajepbFYvl7ZGaYBAUFnQJLKEX7UujH1FbDZDk+3PZoEFutnB2aApGZ/eU5vqjGoIJrSkjW20fjwpEydez0ny/hMtBAI/VuxZarNjqpKNx3CTdYDZRsB01WZwc/lgpMKh98zgz2VnlHJ6jGpklQeyO8dLNj3Agqjw/UWBowMqKkCbPj/YNZ/3EBZ23ya/SoaWaRHgs6ha7G7vZTWMjqkmISPBcSqJhqPfYXvnIGFUYt5d4KwwZXtQJ9VdxrSL1AKfCUbDWaorCyy1D9NkDOWOUhupopMp6DbRBgrOQzO0xxRBAyg+5/lEX/4S8W23UnzGs37o7dXDGt/e+Xe8Q0zzvD034Nz+IRqtw/xaNSSVgg99t4EKxtl8Vh3jFPHcAqo0ycHCeXxkfhtf7Z7LyNRGfvqKjfx/Z0+zfap8Wsv7UyFRmkaQUPcT6kFCw09ohimJ0vY/bfCkoFJwKHkOFc+hXHCoeg4jJZfRostI8akkrWuY/vLP8X+iP6D1zH+mesnTh0xOToVOlHL8wFbc33gD77l1nA++8DfZ1fo+SWEvbnUPX2v8NTd8/f2UzRbOGbmMp258As8ubEM84FJ9wjZG/NvgY88kuOR/4D/hLad1e/xRQk5OUXzGs4m++mWqv/wmRKXy8CutYQ1rWMOPAEvBIhu1xhPmpL+dYtK5h1uaDuMH9nCB18Z4Vt42aCvfC+mMQaXSEgEJSImTTXWbNEQYiZ9lpkaEa0vXnRJaR6SZXFFjaAQJJ1c0w6Fln2oYsGFslEFqgzDcdHCZWttl42iH8WCJyGgM0xjRn0TUxmbMmmFCO0w5Y7KMQOI6YijocoToEbRzqhHfP0lOBecxQaYAACAASURBVE7zMGllBrd9nGj0bGYbAYvtmPVZ09ecnAkEA9Ek6wopWzxNsb7XCg+TvrSvFC4hpA04lbFmF+0oZSmNcX17PGHaN9BwRsYwbYNMm0hfIKTba9yc6j5rWlYVNmmNNn3/OmEsqSsVDOtGi4i2JWj9q4rN/BlrY75prEgzcdCdyG7BaEId02wehU3WufPu5TuINRQ7w9/dRljHuB2FGeblwsDNZq9hJ42p7Ns5lMZ1gFFHM+XEzGZ2MQbYVHaJ3VGUC4KA5fgITqfK9PpzOZE06MR1Kv5xiq2+NNWQB/UGgWFLWuKEbONQIkHgO5rpZd/2eyv0w8qCn+JSIsWhsFQnli6xVCiV4kYJxkC3dRSnaWt5VGVzRhbs+i2pEfigRwjbx3AZxYgy0tgOfulOmxUWWrHcjmkl1swhSFJr0GJvbZLMs8A4LkudhKpOel4hiTsKgbLEPCMpTrdLWhzrDXP+eWQ0tXbE9tIIQrg2S2cMO9PdeKrB5izLmmegcgMLgNLcLMycjbeyF3SMMpLa0rdwdYOI8yjXFkmqBq0NynNAp7Tw0VlmbZNcwZBZ0kvBQS/CiSoUOwlFrYFqb6LICVZsg3ggMqp3P6aihPbygqoB46D8XjIQM+Cq2VhmndtgIS+aNTqjZFDREiE0CRLPGKaESwTUg4QjKz5homn6DlQU3cjQCSWhmzI2wDpyN0c/zhw6s2duPujLjQ3wwEK/sXwnabEuPkrYbZO66ykkPqOmy6IsIxDMJCeYUCskentvnTBrnyFNwkhwHCEbpGaUzaUJApGZ4xjBMf8E88EC67xtjHQCXH0f3tIdTMRQixp4xuFgrUvXHUUQ92rmDKCkg3YKKOlCDI6K0WkARjOmEpsdFH3ZrDaGruob85wKjzmC5j3+CsTkFNHXb/ivEzRjcOfvpLzro5QOfpmPZ0432ttLY3w7b5pwWaLIq0+cQWHfLuKKIfmVf2H5jKuZbYb88Q17ufNYkws3jPCu523n6jOnfiBSNnQ+jmTdSJF1I4+sMfTpoGcupHHdFxj/0usY//fXoZP3wZmvOFl8P4CRosv5F51F8MY34/zV/+QvnHlKr/8NVvyQj+36Jp878DVS49PxWtzPf7Lz4Jf5oBF4b5pkY2UbF088h+c2d3PtPf/M1IOfIrjslwgu/XnrcvYoovSylxN97auE//Elyi9/1cOvsIY1rGENPyROdI5zX/0e0ljZAHLI8MKwEEvWeQN1Vxj2LnbYkCg0DjJNMK62DWOlIDUJoR4Mh0CrGF/FLLuaDdOjLMwdYTrKZ5/t/1JjcAGPvCG1tdZeZj2YhCQdLj1f3Yra1qA5w98NxtiAFoHUik7s0IwcTDHLjmEbXWsM862Iwyv2O7NYWSDUncwYoH/uVnakqYO1hs8DmSSANATXnvVCK6AVpTijueEIaOnSN/nI4/WBcxBZgX8aDDnQyWAJM2Dq14oF0qQkcWhrdlR/GyqrjYm1QWOoTLQhHnYElFk9kwEKokV3+QhbT6yAb6VVVVnNsmHWSl8YhdKD4jmBbB6llBh0VVP1XLqDXQuEnclPdcTgx/VkmUpzBUrl3rbyLBICxt0yIkmpmA6524xKIpRbsb25gKqw5hxjLtTzscsu97gnUAhi4QIBSgdAlUR61JI2RQbqbLIAulg+hw4BGENZeYzrmKPlAumUi17Kgt8sA5zn1vKphyTVSCUQaYMT1YPgFhlVtiH1cu0YTqFOLqOVraPAaHZvCpbd/vWN09BuWxuMVqR33o6OIkuWVcrRVoNIW7I+4W5kiRoiS6qlUpI6gqI2/Zqi3IBFekg0XhqiUDSiBmLhCONLlb4lOlYTe69qsU7HnJd4HOu6OEHM+e0OK1GDkm6wyazHYHAcaQ0gtMb4XUQRdH2eRW+OCxtbKcSz7Eo8FtV+quEIgUgpNmo010lSkxKMeIy0EzpFG8gLoxiTCVvLCYtoltIuidE4ZNYZpp/aNsag4w6xMQgdEeVVkmkEcYByp5FxiyMyouEfxktWrCOj52A0LIktGKxhjB8r2mpgggaNFJrYSHAKCO2js/fIhuY9HB3bxr7FLnuXukiZUO+4VAqaAwsOyy2P1I9Yv+3kd1KOQGXumSbtLZG7zPaOIa/XNAlz/gnGlJ+9vyQVz0WGPh1gsWm38MVdRwgTiW8WaevdlLIsnqscdCpxCjY7HUuBCpbZ0j3CBAtMyQ04iT1WB4fUKdEcPZODhcs4JA2RkaTVPTSSDrPuKJvHy6SjRbR2SOQoK+6ZuJUY/MPskNOkosoJ/F4NWssEzIY7gdOb7J26U9+PMYTrUnzms4lvuwXd7Tz8CoPQKcUHP83Ep17A5OdegnvwK3ynIPjiBT9B7XW3sfgLO3nrjvPZT8KVJy7jTfVbCeaLFF/0KtJtT+M/Hljktf96F3sWO/zuc8/lw6+9nKedNf1fJmc/auiRzTRe9jmSLU/B+cpvMfYfb0D4Sw+7Xukl1+E98cl0/ub/JT10kKlKiTc/8QXc8Mq/4Nef+DyqlQZGldl44FLO2XM2npnmmLqHrzY+zNvM93nCjrO4evp8fmXvN/nYJ1/J3C1/AuHJfd1+VHAfdwnuxZcSfPJjPVvaNaxhDWt4NHHg9s8jgxUiHdsah7SLl/a/g+bi4e+BNFUcqvkcWO5nQ7pJl2aQYISgmSwR6L7xhQHCqAmJoiUT/tM9jBYQpzkNsMFmXqfR+/IWsK/tskdPEOg2B5bvAGVJxKJu9mpN+otryBwcG50Gzvw8hWP76XYXcNIUYTRh4mIQmdypTw4B9i/1M1aLsTU7SFXuOJntQ5C551lsHbVzwfLEHbg9QwhYaIUEiV0vzQLM1Cn3rfez88vzUgVX4ErRzyBl+zh7XRURrgweAZG2xfnF7glbXyNgpuJRdATGGDqx4sFmygJF5NR0f5tW38a6pf532DpToxovUWwHvcXcQZKbkcg0k8VtqyaceeyBXirF6Dwss6hSxNExEoeCY+jq5d7fEtOhELd7JRT50Ivs/8LAjK4xKtu4RllXQz+EOOkt3MvwDmRHKllWruHXkBLmHXtfycy8oJ12eolKU2v0erBNGA9XliguzuF22syoCkY4CGMwjiQZKYCUeFlNUC/FCMSpIklNJrsDTEohaSJ1aLPGrQ5N3RN9gslURWHKYjvGsdQXT3gkOdEIlyEMMY06es4SCRlHQzI4hyJjzjgyM+9xZL9SsiUadEl7kb7OGnJP1Q9hhOSu2h0s6UWMkCyqTHqnFE6akmqDNClzqkUNWDFFlg8vcfadR6m0AtykZQP63DI0u5dKEtqiS2oSllQbQYJo+IzOJb2xSgYe1Iy70zhzXf+8Yts365BpcK/TxjcxYHAMiLhNMV5BYDNw+ZYirYiNspkeZe8PoTSogNhxaCifOGsHYScBDFq4vXu8EaS9iRMwdJTV3HaNS4yHR4IROuPi/Qtgy3rsz4P1bBp9yobyYIlzNzk5pl+9pMo+6UZWeBmYENCkQExIMUs7qcQhTBQH/Ns5Ee+moQ9QKSncYoJrCnaCS2RCx+I4Jk2Yqu0BA1VngpXRM+iuv4TW5Nl0Nz2N+uj5tFSBKCOsgVtBuUXa7jgxmsTE+QUndUt0R8+iM7GD2tQ5dEubKYxdnI2HXSYx6cNyh8ccQQMrcySOiL/1jUe8jnf8ViY/+XzGbvxNhE5oXfun/PyFV/O+redyyTV/jR47gw/u+Xvurt3JM+a38I/R9dRqF9l090+/gr/8xn7+4Ct7OH99lY//3JW87NJNP7Qz46MBUxyn+cKPop77JxSO3cTUJ55Dcc9nOJW9cQ4hJaPv+gNEuUL793+3R3xd6fLKc17G55//OV4981P80b/fzS/d+iBxPMELx97H28/9Z5498VY2y2cQiBL3jNf50EyL1za/zHNuuI5XX/8a/ujmv+CmE7fRSdqn3f8PCiEElZ99PXp+jujrN/zItruGNaxhDadDs9vFaRzsScU2N+9i89J3kId2Y2IbnLaMz7fU/QQm7qvcBkKMvUFmqiFl1lPMSgMNkBiFnwpMlrlZ9KKMnFjpT4CLEyQ9IuMg+r13MmKgTIoTLOO0ZzHGsGJaAwHWAIRAdwOSE0vIVhNvaYHOvluoLC9RPraI0w1x2wmy3qXabFFudXAbbaitoGvLOIH9jshjsoVOSNvM9jcPtPyw93M+GAeW++QO6Q5nxrIflSz2CvzDbCxExhw2jpZw5MBaeYbHlRitiRdWSOaWMSqzVjeaUCl7viph1DNMlAuYMKC7WIPAp53ZjS91LFlWGjqxYuPiQL0cYNC4RD0b8WlR7p1damzAX+tE1LoJ62cPsm65SSmTVVrnuV5XOkqiyAY5gSsEEon06jj1No4fcrRoZU9ShYiMREjpWgMEAV43YeOJVkbWFevcxO5A97NePf6KJXajnYDth04wWWuzd7lLW0WogaZqBliIV6xkLzX4dNkTz6NMCq4cMJTRVHRInBpCA9IYwo1jyKLHiIwpSpO5A2Z1fZk0MnZHGCkVCbWDMCmlpAlGkhacXnuF/FjmmhFL3YQo1Rhhm2kLIUhzc5yoBY6DMBGk9poJpRjeCkjh2mMxhvFCyvbpMmBY0DF7dYSoN7P7rdC/+bIJEWMURkjirKaQtItb67D+WISjYxI0oeMggFrX3qMTdZ/pQjZhnBnPLGxdjy+6lKV9jotxjMrPI8l7gdG7R7wkZSSz4NcCjByQzIYhyhg6IqaXUzbgmnwLdruL4QK1AQP342mDWjYRBFBd6RMJW1SqSGVWUbhKOpsbcuSITcJIRmhXtEs0KMLz7bOd98cbzID1k5Yq6004TLvsJ/1JHk8W0MYQJie/u86uXAFAOat48xyFiDsstO5mJF6g6Ao8x2bxl7NnOlBNJLYx9WS5i0CS20wKq1VGARXh4SFoTV3LHd2t3NruYApVOgMTcUdXfFJ1cki9uvm2lML2TBOCxfGzCIrT/fHAoB6Bu/tjTuII4F58Cc72Mwm/dD2ln3rRQy+sIkZu+SPK938YNbaN5k98kPisn+SGE1/l7qMP8vZLfo8Rb4SvH/9PPnP4k1zVGOH9wc2EF7+Ozo3341z5JN5xZ4tbD9V5zZVb+PVrzrIzeD/OEBL9pDfSnL6K0W/8FmNffyvp3f+Ef/mvEp3zU+CcLKeU0zOMvuePab3tLbTf+/uM/en/tAXUQFEWec2/70cXDbtfdSnXmpvoLtzC7Qcv5JzxZ/Gzj38l27efy3Kg+MbR+7j96C0ciHYx7y6x0Lqeb95zPQDjzmYumbqYJ254PFdMP4HNlS3/teyjMRQv2cHIpeuQX/4r3ItG0OPb0WNngHhMzjmsYQ1r+DFHL3OyeA/GuxxSHzG7ixmxyLHO44m6Afsqi+BCg26v3n/IVEMUbb2WtIGrSUs0WWHCFWijMbKAEAkpLqrqATFSgzGaBDeTLCVUsATNzQxEMFZoJ4DKbBO5dZwwPEZQ8onHYoYCImOI52pEh74HQLpuhnDyIry5O5ArEanjgjLWpEBrSkFIudOk2AnBd1Fuh3I9QHsF/Ok5jOeRKBeJwJT6+8ltvAUQRzFpZ45jh2uc582jgv2oKEEmTYhidBr3E1jGMF62oUmYGkQQUGz6tMMqabKMCFIbSC/EJNW7aE/EKK0hCIjnV0jcAF3aiRIJSZJSELaSrbKyi+kwJi6fi16Yo+56PUlnkKTMNwIK0G9wO+Q4aQh1h6JuIcUkAsE2PYHvOKzMNmiqDqp0KbW2QuqY0WCZWdlCplNsLp6FGzUZDBvyH/NM14YxiXffHpTSvb8GWyZwjvoIBVLHNiQ3MHa8gWt8jkYjaKVxpaGAxkeAVhQdp5dlzVFMbAbPi1OUgMBIqlLSkQmqsYJ2BEen27iEXDQXUULT0hqFId0xTsIEZs4eV1G36W44C+MfoBWWSUfsWLlS4GLJTZu+PDOplimEDsoporW0Nu6ZcYfIzMt6qYLeTZATPAspJKGOaaiAjvIZl0WKnV3IoA3VTayGNpbASJPVCkoYKbnMZxmi2Ai8Y4eI111I4lYZy2z4YyUwYRvDCJHu4mElhh6aWEAx0AgH9hNQli6ICKUhSg1lElY4Riw29I7cCEmdOnubKeUqjNU7lDoBBsGkXqYDpDruUZNzjs0zio+ZyShLxgJErvMz4EWaUpBiPIPRMToTyOZK4lbzQQ6bsDcWCzpkw6JLlB+T8jniagSuvceNQgsPxwicdgAeOOsnYLmGMIZi1rNPAEpritIBBQJJxzgIkbBdFNCdDjPNe2l564ARkjQnaqLX/qCtVuioGRpJ3wK/KKsUTIX7DztcuaP//qj7MQudiMmyx1ipT1VEpmPO+/5NlSJoHqJqAorKJzKKQhrgOCl3zPabh4usKk+TS3IHJ8+sz6IGErdCyakS+BG7Fhe4ctsox5oNjtQDtk+WWU5mCf0i46V8zexeFvlETj4hY1tNCER2fe21zHUFGj3Um/FUeEwSNCEEpRe+mO7f/jXpgf24Z59zyuVkZ46xr/wi3uK9+Jf9It0n/45twpx0+dCD/8D54xfy/K0/yd7GHt53759ybiD5+/puWk/+HRRXopdu5CNPfAW3Harzu889l5ddevKL4McZavp8Gi//EsW911O5828Y+/pb0N95N/GOZ5NsfjJq/Ez0yCZUZQNISfGC7Yz9/KtofehjhO/+eWaeux63eRBn7v+y997Rkh3lufevasdOp/vkM1GjOAqAhBBg2QQHQCCECQaTMRj4nMDh+vN1YF2b5XSxfbGNDQ7X4YLJwUlCZOzPFpJtJEQQKEzOZ07s3DtV+P6o3X3OCJDtZWOWuPOuNWtG6t29a1dVV7/heZ/nyyzsHsJuuGT1zLY7nIXR38MyaAR+vJeX7r2el194PcWuF5Mby913fIBPnb6PO/2YjbjPP2a385k1V/WaixZ53PzjuHbuOq6dvY5W9PVJRsRwlfDE3xMd/zTBqduRWRfGDP+3vAQAE0+T73sKyVUvQy095hs0q+ftvJ23/1vNEdpp8Eq9pVFGxxzlpJpnTrdYGaRUW05by46GeENQD0rtJ1pihKXpz5HgkTuqDwB8CVoI5kI4XCabpDD4GAoiIjzaRoPOXUBkwWXTnWPv6YQZDxqrNe5qaOJhgqjl+KfvRPUKKoMqvumSh1XslMBr1jGNKUyjjmiHFM0KSTWkOspRBkzYoOOFjLJFqNVYmt6LRw1137Hx40AyIiz10PzaJpctWcTZHK+7ibe2iZcOaaT3cVA3iZMRzElslmN6ffQGaJFgzp6lf+r/w7vu2xiHmqbbJT1yEi8x2KKOLQSmP0ImDuplIp/eqTOc6XYYiQDbLylFAh+z2SZZOUqvn3JNZY1D+Q48z3lUe9NlTmab4C8ikGzINf5qvc+OrEZLD4Hw3Mpe+aDGagpTCh1b6J7ZZKoS0eykyFGfM3sH1PKCat5FjkqZAgE+IdYoJAIpHQFKNfKwJfJVYhhmilX6zFKjXFJM4IGv8LIudE9Bo+4qpRJEoQmSAj3oUexq0FwfkBHjpSnK0wztkFDUYWEBmZxAGOcmCqVLuKigS8iqnwANzHCIMQ2GViP1ViRprGEqDmj3tsSeBYKK2sTTAVYFDPuSSrvAUyWxjYDdZppDtMnxkCYoK1qGdAyDxJJR4CmfyvoQO6cQgb+91ILoDRlWCqgIBBJtNUfvuRerJM1wGrDIRmWr+CXA0xk1hq43Ubh+NYCBzdC2KPeWs8yfYXXxiYisR1BWbI+tSdQoYFri6NGNYpAbKn7BBKhs2SYowZYqOGCThIN7JPvWe+DNAsKxtlpNajSzgWHes4xMiizGCnow8DeZUvNE1gXcxXgTYLnA7OBecRCXL9mqTplRhBUZVlYgkJBbKv0+XnGu12+wFP2EXISEKEBzOtDMA0IpsIZmPMPIJsiyGndSxVxkLMpqMpsz7nUcJAV+OYNDOUNo2hgvJjIhKo6pJ8tEo9PAE0rJDiiUoL+Nrfz46Mv08iFGgNKCZlyj5s1wtg33ndE8eZdb/3GiRD1YmmPc89ao0NCWUBmWiy5hGJdbx0WqnrUlnNLNmLYFWAU+JR2/RVtDlitsCKlWWFugRIS1Ak/4tNMcbSwbw4J5+SgsB8lsB8sUENAK5ukFA/r5FhzaWmirZTzpEmtCuO9eMDiFyDdB7XQFb/uQFBHAwzRAA4huuJHhH7+N9Ja/+Zp06177EM2bX4rIunSf8afkFz198tqfHvgjNrMNfvkxb6KX9/jpO36apsr5w9UVht/zexSXP4/uf3sd7fo0Hwwv4FefeTlPu3zhq+7xsDAhyfY/j+yy5xCc+gzxgb8mPP73xAf++uu+Jbi8wcZn7iPs3EPrsU1Ghy168TEE3/tyTG0JG7ewCE4MjvKRQ+9ltHkPuwvL/mHBYx74W6YOOLHuvHUp33XBk3nCdz0HkWyw+aVb+dTRvdzsXcl9VcXZ6iE+ln6aj5y6BYHgkTNX84TFJ3PjZTdQpYXsHiM6/FGiox8jOPs5AHRtkeyip6MWrkbV99D71V/Hm6ox9eoXEJ75F8IjHye+/4Pku5/A4Im/gp659L9kms/beTtv39p2cLRCK8uQcYze1jhv7VjjZqx241wrdfAAUysDDhYBtcEAi3XEIAXU+hleME1oNYX96j4LKYzLvAoHh0sxCOEh8TBYvP4ppL80uZvTy3X9MQ07ZN4s45ODLhCH7iGPHGyqOchRfhUWGniPehT+2Xudt2mVgxjZsahqOQ4ESIH1JEa4yp+MqmRLu92947OobhvKAC1eX2bnVAd1FqKTpxBpjp9u4lWbqPoUZmoWFg3+zsvRqz5n4mkqgxwTRkT5kPrdd1D12qiFAXYwwBiQjQbtpcczmx7ErzewJ09gCsWalHTW76fWTakMNzghr4S5KvGVe1EbdeyqZFGchVFKuLnGXm8nVodMbXQ5MQ3CFEgZILFkSjMqhkQqIRZjcW+XY5d20kqEERJhLbN2iDQGhkOwHkIIjuQHuXpUJxAWXUJeq8UGM9kpqO4iKOF6M9WQs/4WU6HEcqq3yRPSY8wVtUkAYfwaOuhCZkBnCBW4tfYhSzThICchLp12TUNqCiDQW3Qt1vfxcz0pUAXdwYTU4XTYYA/lgwHVo2v0l7YgWuNNuZyHnOwVLJaf4So1BdIKWp2M2vIAWZTw0FqIl7gJK+y4a05jPEO50Sg8Vz4TCPo2ZiOJyNfaRDvnt/bdWpus0+b0dIKsB0QIpAaRaIzvlXAy6YTfz96PN7vIMM8IaRNKhWcyjDaEnREiNFhfctfavzBDdRIEWgSBVnjVFrZtyRRgDLJQEEUkdsgZf43FoomyTqx8O4F+LjQCi7e+DrFEWEj9Okl5NtRDwUYJvVz3OtRqTaqZI9lwE2QQgZtvHQvY1n4lACug0Jq07+EazSy6KJBSomyAFRJlC6TNJhVIYzXor/b6E5OzYJr0GW4FlxZEGVzaIKAYFqSyoK9TMuGjrOWst42+RsAFcpaBzCfz1zAhPSnBShgzZZaPJ4RPy19iOOrjl7BMZQu6I4926jMSAVXRgmAKLUqI9iQAffCJuGW5UgRqgIgaZDsfAfcfIbMFYsw0WdJw+FbSS/PJ96yr1thZ1RjlmiSnrWKY5hSeJvMMiSg4qIdIX5ObgmFm6SQZy70Ml/rZmguLQdkMX/g0/GnSImW1q+gOh1w2N0VhEqQQbGabDtdgDZXeASQd0t4yQrjk2qnNh2Zaf9gGaLLVcnTrH72V6mt/GFnbEvnzVz5P88OvAOHRfe6HUPOPmLz2lfY93Hz8r3juvudzSeNSfuDjryazG7xttU34zLdT7H0S7XvvR9/5WW656kbe9JxH8qSLZ78Zj/ifa0JS7HkSxZ4nuR/y3nG8/mnkcBk5XAVrsGEdU9uB//xF4r+4hfbNt9C+N8Hb/x20fu0PMfG5unO75q/itRfexOHeIT5w9D380ZlPYs0c+4cLPHqzxhPbmzyu+xdUv/inWBkS77iOl1yzxMv7X2Lt+L18sHc9H1z5cc76fRrTBzgtvswfbL6FP7jvLVyhJU/rbvKswZBo+gqGj/t/yfY9FT135TlpB3HTJv03/wbiJZcSPvWlUIyofOXdVO/6Xabf/zSG3/azJNf80L+eqjhv5+28nbeHsDQZkNoBQtbxwoRBpigyl5ENSup7MyYeYIstLreCqQP3kkYG4znFM12KK1c2e6RhhonlpKcEnPMayRChNBbX8GBxECdRKIw/pj8HUfTppQVxMXR+XzVA1qcQjSGq0yMNG8iWj/AEqilRYY34sstI5xfgrIPPSZ0TqbLnykIzaBAUBYiwzONrTidHudQ6GvFxNj81oGpNUr+O0Jo+FxI+YT92NCQb5Ji1NXRrgcGOR5JmLVj7PMY6Cnh8n1qYYIKAdhgzVz1LP76WKO9ik5I4Ymkn0vrYOIJcYBq7obqCMSFWWbw4QlGl1j9DXW5ytHo1zdY1jGYb3J+nNJfXMcXQVXDaQ1p5BEis1QijkSXGyFroejX8oEWgNMIKAh1SUXWSYEAXjdQWhY+0ipqoOaionAPresY8PQLqyLxgRIGXK8L+OjVqTCcHqAwdYZeauYBpLyNlvVxzW86w4QvBGrZouQpaWGdz8QKqw2UGFZgRIFSCb9w6VU0BvsIXlszaspcKJ04tt5z8eJDTKkZQjyYBhkZgpHcO/lYbRbiN6MZBsgye8Im9bS7zNuhqdVQQeQGDWozIBYgc3zowWcWOSK3AotCeAaExMmR5rmBu1SLxGKkFYq9HmmkimHxnhNIUuEBPVwMW84i+7pfbU2CMBiOwRUFkBkSb6yjfY01miNhzQxwM8TyDpwrUVITMciwV99wl83zj8//E6PrvpF9ZwMsz/M0OKslRMmKl6OIDRmjaesjAeBTGaVlboB8ULGJosElFBihRwffcGmQqI2eV2J+hjkJNtUAKhFGczDZZLNfBAFJnzMU9jGlN5vjyTo2jQYdeJeZ1tgAAIABJREFUVGW3jZGUgfNKm5UL6swek3hBQZFpQm1B+oTTCoZsV6SY3MNLDJ4VpeSfGDd9IUrR8lzC+tCSNwQdzwVgxgBKYrd1xHgIgvaI1iAFKfCtcOMSUBDjwSRJBVDzp6nhkFHd4ixD0yMrK3wC8GXAxqhgsV7CD0WGMgplFdZCRcxh7BYV/UBtcsfZz7KoRth0kyKoYqSHL7wJkZAB6jYgUj2OdE9TnyqhkHXFTKWg3xWEKPapDhs2ZsMLiExGoLf69LpqhU7Scr1i2mXQxHjeMPQ4gBBVYu8CPFHg22mykujn+LoHgWG6GnCgm+KEsc/SywoGUuJZiS2F6iUPWqwH2cM2QAOIv/9FZJ/8GNmHb6byQgdz85fvpHXzSzHVeTrPehemdeHk+sIUvPmeNzEfL/ADl7yWn/roz3NWHuINmwkX3vQe1NK1DHPFP7/5D3mkF/LE172Kx34rBGcPNiEwzX0PKTDtX3MWPnyryyjVatg8Q8RfWxj84qlL+Pmrf5HX7v8RPnH6o3z05K28p36M9+ITDJ/AI9pTPLkY8bS1w+w+fQcAu4GfDP+Gn+RvKIxEbhr8tuGE7/PJWp1PTs3wlpkWvz8zzXXzV3Hj7qu5fvYyggcFWvEzbiJ559sZ/fHbCK69DhFUSa55Lellz6XxDz9P/Y5fJVi+k95T3wpB5WuM/rydt/N23v51C4RjKxRAkG2QFWZSmZBYel4XvdRk1L2PnUdXqDcvB29qGwnAVilmZdcs8yfNxFHq5QG1QNKw+VaGX0C16LnKiZRYI50Ar4VNNYTA9dr4wmA6fWAOAFUNoVqjYod0qhVsdQo5HUJjF5w4hLDGkZOUZ2mcnKXJvZj0JJH18EWEj6EqfXpA4BuSfJOCLh21zDyLCAEFA9pJMekPsZ5HKof8U/cuHj//baiZFkbnmFaAkGOnzJIbqOicZNhF5M6hNcZQzMwx2Psorq9PEfQPY/0Y2glyVGxBDsdEG2O/phJRNOYpzCrThSKPJHd3a6BHWAt9kZEtSLSaQi3sJRd1MBaxcRiJYzDUuHWoHNukE7QI0yMINDtYp0WHQ9ZBC6c3XV+PBYKS+jz3WsCGq4KUg5LasGH7+LkCZdAYfAS+zkn3tBhddjn++j2T+ZfCIrThjJdNpABU7Kplyq+St6aIBXhGI7MOXmoIRQVlCxoUGKvJgiZIyY68wYbv4FaelSz3UmqArzViMIA4nDAE2sKgQgnWuv5HLDP39hFjaK3KsD4EwmNXtUEPp6MVLXfJym6EVpHQjKYZhZIAmFcekZas+xCIjGapGwegpMJqQSJVOT6BV5JwqMBJ85hhjn+qg55ruf8W4OFR86sTuCII1vsnaHg1arZGRXcxZWAkRfkds05Q2TOGMFf4QmIapqzMSDpzNZRsOJHpLMUCWQ7CKGqMSIoYfB+jLT7KhaphBEmCNWCN6w/TNscKQUhBQkCQOXIO9w6LlIoQKKTHBJxoNSkapCC0AoUmMDnZNmddIJDaUOxYgjPukVLP8uWwjxXODxMWChFgrMbDoyIzmmaDznAv85HrTwXHeiiwYJhUT8eL4pWSEUXgofS4b06AcH1T4TAhiV0yaLeYBZtCNwUPrOP/dJBbbZGlxuHWOXeujStJWyDNLdPGUDDCk3Xeffgd7K7toRUs0BBTDGnjixBlc1IzILRzrl9MGKKzn6cUuXDnsrD4VmKFdWy0+jh1GzFX99nougAskAa/RAl4tmCH6lGjzUJcpQeMzAhhoMO9GAzdtFGO34VT416yqlfHl64/UmxNKZ6EuUbIvtmAT667ZEpkFYXVdBPFNFAY1+Prqqlf3x7WjArB5VfiX/1okg+9H6sU3uYBmre+El1fov28vz4nOAN435F3cWxwlNdd+dP8r4+8hXvlHTx3oHjqje9HL11LWmje+K7PcM3Bz5I/7Zk89hEXfJOe7JtnNssYvu0tDH75F/Ef+SiqP/rjFF+4m86rX4F64L6HfO9cPM9LLn4Ff/Hk9/F71/8xz7/wBczNJdy9+25+58L7efp8i29vPJufiF/MXy7+GGf2v4b0ihdiL3gStPayZqb4aPJ0fn/tzfzzwV9lR/eNPK75fRzpHeKNn38D3/93z+YP7/s9Tg+3sYVFEdXX/BDq/vvI//7TW89RnaP39P/N4AlvJDz6CVq3vATxDaT+P2/n7bx9a5sUrm9gpARnhit8MVxBbfuB7fhtVK1Ob+8cyajDseUN7s4iotSxm225l1CthiWJRvl/wzpFAakebl2EwKNw/mYgMPUKrvZk8QuDHmWOZW2Y0LMjVq1mZGMclEgxF/pUorJfxQBC0qMgJXdC2du8KK/oumw+FlmMYTfu2XzPQXrciMrMv4F14+jytxM9DcwpRmrEerZOmZyfOIqUs9DP4cuHj3Koa8ly5zT5UkyKObW1z+GvfcX1oVkHsxRj2KUQCIQjloCJU3hEtjlcXWZ3//MAVJNlrNHcFyZk0rqqih/QkxnKF1wy2ssl2SVI63EmtWQmp6/anE1P0NEJVYZINELAIhs08pT6ICdQQyQGqYdUsvWJ44uU9EVOiuLYpFvJUeIH1nMQKSHQ1YCo2uTbK5dwpXVRTpwUXH7PMuHaJumwjzcaTghWAIrKIra2RG24itcfgXVOoRSOlc4Yg5U+Mk/xkZN5lEJu84PFZA9Ogl3psba7QqJHtPM2Nu2d009Vy9pgNAESf7CKMDm2FLyWwnUiRUY6+JZXZY7WliyDBRUG2G19YBZN0qwxJrPZnZalGWsppPt3cbY9IWfxkMycVSwcUvj5kKoWZdgDwcY6SWd7P7x7wZtsRdeXOb8xIpxA0ywDO8AiSSkY6pHrEexuMiwsy11Fw3aIyIlt6kYsA+ZYRdotQocgKQj6LpzyxWAbqBnkOIi0JbHH9i/9+IVtzIhjB7xihkjUZD7Gl64NXFJAo9n0FF2pseU9HIunezbpFhbfJhS5oJtHkwSANpAFsZNFEKC8cFJlE6VMkapsI+HYGikg0HmTLJymH+1EZDkyz8tAV4AfY6UAKxAliqCd5fTNSRcsbzMhZAmjLqGv24I4B4DNEAIGJdW+tmpy3mBh30wVdwJtVcpmZUwsXY+jsZalqRhRmZ48h5gwK47PL0sjLJiv9HDkHoILyjPTej7rSUwvcwySJa9leXuLNuqcAK0S+Cw0YjzhCJ/GQxUIuolgUPS2zalF4yCxFmirHspkJOqhpcIe1gEaQOWFL8GcXUZ9/P00b3kZ1ovoPuvd2Nq5PWPHB8d416F38KSl7+Zzt93Jnf6HeURu+dGnvR8zux+lDb/w4fu45LZb8bE88sd/6Jv0RN8cs9aS3fYPdF79cpL3vZv4Od9H87ffSvXFL6P5tj8BY+j8yGv+TdpjQggeMf1IfuSK1/PO7/wAf/bEd/Ejl7+e63ZcRDp/L3+343Z+qXIrT23fx1M2m/zPpVdx7PmfQv7Ax3n5Y3dxW/VneKP/dor1jE/+83V0D/4sT6r9d66Yupq/OvZBXvEPL+QX7voZ7lr7LNZaoqc9A+/iSxj+8VuxWbp9ICRXv4beDX+Iv/JFWn/9fcjB8jd4Js/beTtv35JWIlxODD2OGueEJ1IRUiCtYt4cQ6qyNwnLSmIwCOaWjwGQhZH7EMrGcWsnzobFo6l6GO2qOVoXpKXDM2EGG2dqLcw+MKL3mUOotQ5meROhDSMyTtUXsQg6ekhsHeRxRfXGhTq+JLvczbqjehZbTvvQjMiNQluByF3WdxwkeDql5IpElC5D4LvKS6J7GKNIdY+R7qBwQeNIjViaikpnfnwX99da6u5tLfh2/FviXt+1fhtCbeliGWsREieuDSC8cyBUY4d3RWQE0l0TFl0Wul+ikh5095cC3yRoY3hAn+agWcYrLB4QEML6GeoHT6PQZEaw4XkkVChETCAlWMH8akqYuWDZwxD7ElsJUCJ2aygEvrQ8EG5gVtbISwf/krSObyW5dGLj11X28dj564lkQFxS1welfll9WSF1wb5jbRZPb9MGkz42aiKq86Q2JlXb6dm3NK9apnbudrUPojo51/PGCFlqX2mE1YS9vut1LC/JjKB/qY+PW2tfu0pTxTj9t1QohBRk1imUJXlAN4tKX9WSihAVRwhrMQZW/TVUFG6t7bZiTqEMpjuYeO2eV1KZGEuUW7y8x1ikYBwEig0Hg1sNLmSNCxDbf/utRRnXe7cVB1iMdUG3tpoV5Rj+qvd/icrxE6S5om62kritfJVAqMmEFbKCFRJjtwPTRFmhGs+be6UhGi4gQqNRIARZKQxm84zcFpOlKKxGSIjNWbxt9COFtpPPE2wlQkwZ+Iky0BNmq1/VAp4158AcjYopvNgJfAtQMiAXVbQ/MwkG9cYGfpJRHIe8pP83F+zECANWYoSHRXLQG9Hz3LxbGWxVY7FIDK1qwEmzTt+eYs/sg/3ELTjx1spvBfQWg8DiS59u3nHSFbhzwmAR0iVnbAk3zPQ4gHNhTyQ8hJRc6O9gfGpG2oAAz6YumWNcRTfytxJrUkhCGWFsiUgwjZJcREzmPzV9VoqjZCrFGjc/O6cqhL4oyVDOLRkqDb1xgGYt9cGRbeeWoB4ZBrrNQHV5KHvYB2jhdzyRYP9FzH7ljYisR/emdzq69W2W65xf+8IvUfEqLDxQ467wvdSs4I1Pfjte60KMtfzKJw7w5XuP8Zzj/0T8tBsIdu/+Jj3Rf51ZY1BHjzB677vovPxF9H/hZ8Bapn7rd6n/9M8iQneYBldeRevP3klw3eMYvvV36bzqpeR3ffbfdA8hBBc2LuIFF72Y33r873DL0z7Obz/+rTx/30tYmvLpxR/lL9fewHM+9Qyef/v/5HeaF7H8yg/y/Mdfziejn+UdwZt4FEe49a4Z/v72G3m0+Q1uWHoJD3Tu5b/f+ZP84G0v5eZTf4t8/eswy8uM3vmOrxpDfslNdJ/1TmT/dBmknfkaIz1v5+28nbevbx6grJiI5wK0wz6xTdi/9mWiImHQ+RzrPefA5To95/2jwmxlWeX4M8eBB+TGQV80hqVki259q2FEgHU6U3KsNaUM/lqf+urIwQcrIVYIMl24jLZwUBpjYTPRk48bsz+OP707OkSOc3i0tdQzi9JjGJCj6Z9orgGRJ1A2IzV9eqpDYvpkxlX/nKOjMdZOqmeCrb+Xk4ANtQ1uLrYc2yjfRCQlNbbOGaaa2JcItipo22ULwG7LksMyAzazk2gvwAQ1lFdxQZrOuJd1rBCMyFxwai1hmrFnZYOo1CtDwKZfYyjqJFQ5Fe4jwUHKPKWR4xqOBDwfbSUYgxHSVU+spaBgxgxpUApBb3Y41XPzVvMjqu2DRL2jk1mx3pY+mtQg0cSJRlhLrZfS3hwhACVChmWPmOtlFKSFoZ+6sc/o+nhGykdxfT16a4sxv9Fntj10gYbwyawCXdBRMcY4R3hUaAZUWFM+hec5QV9rkabANxlgyW1WVgQgNQP3+lZtjkiKiZPrlXtG5QaspdYvsBaSUscKYVEW1HpnEnx5UrC8MyKtV9ATh9w95xhYbI3lUC8mUW5PrGVzjGi6FIgFoUbMiC7CFgxmInTglUQfULceWBdUecMhYX9AgKEqXEXKWotUOVWGqBKe2M1zCgIygrKXy2A8sQUhxJJUQ6QURDJgUdQY6A1S3SM3iWMltAbTaTu6EevId1TkoWXBvFglxJ0ZG4OcTGsslnRpN9IUCAH70wrWWtqqQkFQhjRuS7ZknUhU2GUCWrrCvNdgxqsgCgNaky7VJ9/f1KuxmUqU0mBBZQV+lpPYGFl+748nmjSwE9IgheWsl9P2S5kEGTmYqIBascHVwQZ7pmPiQNCIPKQ0VIKtEEOO160MnraHNMZaTLk2EsFGusFqepbN/OTkmmtnHsdCdCHj81BZW2oLCrQ1DG1BiEdFepOwTZt1gs5Rar1D1NLTyLyHlJLrZy9gTH/fq+6mGtSxxu1Hr+z8GlfQnI6kh8AhE8YVNF+665Kt1rWJxYHl7o07AbiqeeU5wfsGa3hiDLa1X/3mbfaw7kEDt992PXlE2ElYm349Yv6qr7rm/xz8Ew71DvL07mNZDj7Ail/hd657MzPT+wH4/X88ykfuXeWtg7vwjKb6ytf8Vz/Gf9isUtjhADscYvOcLJIUmz2nPp9n2CzDdjuYTgezvoY6dAB96BC2FBf0r7iK+ht+iegpNyD8r94WstVi6jd+m/z22xj+/u/Q+6nXEXz7E6i+4lUEVz3y3zzO0Au5ZvZarpm9lh+76kfpZl1uPnw7Hzv2Gc5k9/C+E2/jfSdgyp/j+uuez7ePBvzWgd9gUET8n/pr+avDVzK4/5FcufRYHnfJEQ7nH+ctX/lf/Klf53t+8CKeevM72P/UG/Av2HfOfYvd30H32e+jefOLaf7NC+k+90OY2uLXHuR5O2/n7bw9yLpRAz1aw9ByAZoF6fUppKa+mVPTFYYzTTLn+yPkFqwGBEWtRjwa4DL5skRybcvvW5BG052OQZnSl7LkJgfpeA0CK/ATg7QO7rUqdnMx63gll7+RW1lppaFfKHLrArQTRYeRKejlFe44MURM9ck2TxBmCqSkJwqEhceZC6mnKWeDLoE/RAjB3FSGQrF32kNlzsH2PUAzIXbY/hzKKJQ2eGWAFkyqJY4P7f7wEVytPwv03WhL2FZUdCdeSVYyIRZlk76r+AlqoU9abNG1b+9nOSn73Nf7Z5qJYRAsYkXpFtoCKTzWG1dQzTecI24N+458hZ7to4nPWYuxzV1c5/iRFl0dUDVDGmKAxOJHAWQab2gQyQZ4kuohj2RfNKkLRCLHswJlwaROdDyLLiI+/jnnnI378kqoqzEGaSRVkTKMQ/Z9cZlOCnkUoHcsspkU1IIYG0eoOCboJdRVQH9CQ+7mYShqNBiQCQ0CUqUnzuj4Omktxg8xyjnKoQ1IjaSqJYlXIzceicjxresBG1dTfTXC2pzcSlIZEhuDRWLtVlgIDmoY+xJrJfOxYroYYEWVme6IPWcHZFLQCRo4gWCBGZd8yvtITyCMR05AT3s0jI/BVaSHeYB26RJSUWeYa/bXBe3UQwyH2AgOFzCdDTHWUjeWY62QYscOmiuHAQe7DNf7nJR3My9nkTiR6LCEWhq2EiRSTOrek3kwgBE+eq5FvtYhK6GGRei5c8FKItVlR+GQXEPdJRKuR7SykqIXJSGgYx8tyzAr8DBRjMy3PH6LJdl7MTZvQFdQNU4v0QXGARE5eVzBJAZfeAhhuOjoCaSUnLm0yf6mYLCxQbipMXtnJgGatq5qmaeOgGNMRz8tBsRyE0yVQ2nKguc7Qe1YkMrtMGNn83ENL9pkFA5IRit8fngYGWg8YSYabmOTZfAbeIJMnfttc1Uyd66M9d7WRuuktoIxCUkR0wgaqGya7mCDeVzl1g1HcLfp01CaIGjQqCew6VbJMzkzkTeprgvhbuaXQZwKauThDFonGJuWp8nWyKTO6K6fYpetcMwMaMWGs12NNAWhJ5HJBn4Z2PlFD6ks1GbQxlVpAWIZUmiLX559I52TyJKl5quPnHPsYR+gVT/7Ziq9u1ldvpz2p/+B1o0/dg6j493rd/GBI+/hUcMd7LGf4k+qTX7qip/kqsXrAXjnnSd5112neOW+kIs/8imip9+It3vP17vdN8VsnqNPnkAfP4o+exaz4v7olbPYdhszHEB6brb2obqtRLWGd9HFRDc8A/+y/QSPfTze4tK/Og4hBNETnkT42MeTvP89JO97N90ffjXBtY+h8rJXElz3uH+38HQzavLyK2/k5VfeSGdU8I7Pf4Fbj36GDf9+PpHfwcflCLE0xTXBLDes/gG3hDmfXnod7+pfy4c+s5PI/0GuvbiDqNzOrUu3c8tr4LpPvZYX3vSrPHrh3PGoxWvo3vROmre8lObfvpDOcz6Irc4/xOjO23k7b+fNmX/qFEXNMjIZaRlQJOTkwiO2FpmMqPWrZPEW7Awgs4KiPoWS2sGQjOBkGtEcGqajEM9qmtkKBYCF3kyITTWLokpR5GjrkRuD1I6drtLWrCtBYkCnEi2n2LQpBQFCSIxwlZNMuaz7UFlSqzmtO7RNikeF5ZHgi/et0hpV2Sk2OJlViTzXIxHbCGGdkzidr7JWmyHyIrROub/3JUy+TGwfTRwI2OI0mZjB0ssy1vrJpCeoHsLFlSpL3YJuAtrorUoIoIwu3ZetmUvbp4Ed7GrF1Koxoe8qWbXQw9Z2U/TOMmQb/BGo+1uCsB21CUKWEMnCZcSFYBTNg+iCNUi7TS5h2zOcbvpcvp4TVnxkw4eOc9yskBD6iBjs0BAcPU0+pfGkQAkfa53zOpjzER1NYCUSxZgiQt37ANo7jrnkYtjsTLLoY7ia1LBUSI5KO4Gp+YWmMJZMWerWYgMfPI1nUhq5oK+2iRkDxpOs7I1pDZ0MQ1GJ8frBpEIxtmJqBpmJyXtT49MUmsLzKKwP5GWNTICxpPhECHw7BKZRwl0zDpGlNZgyGVAtNsBzzngoLFowgfWCRGQWGTr/dETEUM6zGfTI+mukVMl1SoFiFMxSzdsMjY+HZDMN2VQVdluJXwILpRAls6Jlc76FuiLGrJ5i7qwmVQGzNmS3kKyYLUpzYWBUDPE766zNCTrRJtMdCaXEggWs9EgjjzTt0ah75+yQTAQYKRnsmUcEESsiZWEzRQNSup4wL1P4fsHmTIXIunk01iJxDK/WizChxlcueE6mquSNaVRRQHJub9JCPUB0HbHKhcM6K6QlyY1AxQFS10AahowFtw1z97eRl9agJM0Y96kB+MIFkmk4D5xB564OKIH5vEvjYIdgWpDFAVGWletUoEQFbGcC9/bK71cPxef9ISOTk9mESG5VjMZWqXQoigE7qnNEOmRtW+WpMAZdkmjM1d17x5DAfj5goTqNEILNvofAktiMXWGFVdWjAaRoaliyvIOoLuIJO+l9nArOHYmVAZeFcxzkxOTMscJVicfXhV5EYDJk0cUXgKhSyTcJeqtUlSRmkx3pEbxhwkJaJ1Ej+mTgC4fQynvYmkNMZDrBGLsN0it4gA0Kmsh/JUJ7WAdo4eFbqd31FpIrXoT6zldifuTVJG//M2o/9hMA9PIev/6FX2amCHnJ8B5+bmGOG3c9k5v2vQCAW7+ywu/941Gectk8L/vcuykQVF/12m/a89gsRZ84gTp2BH3sKPpo+feZ00w6rgFRryMXlpCLi8j9VyAbDUS1hqjX3d9RRG26waiwEIaIMESEEaLZRLZaiOhrszH+W01EEdVXvIr4+d9PevPfkL7v3fT+2+vxL7+CyoteRvjk7/qaVbh/zVrVgJ/4jsfyczc8kQ/9y3He/bkTHO4fpN46wOHZe3nTdA0xXePa9M95bfRHzFz1Sv5OPp1PHPTopjdSjZ/ErrnPcM/0bdz5uZ9iX/1CnrfvBTxl19OJS5FSteM6eje9g+YtL6f1ty9yQVpl5j80H+ftvJ23b32b3kgpQgPSYvoZVMsmfQvWQEHBzjN9NudwgZgQREWGQZCSkFvlsrYIVBBw4NKdXPWVL1BVOdgtCvTCuB/2JNfEZaab2DXXZ9bHKwrkUHBCQ311BYRggOtxsriK1q6phG5awuEQHOx7pFXLvfYCHkmPcS1LjxnXxv0snFsRsxb2+LvJw0VGSZdED2knBXPsxi+jL58KdeYZcAyAB1YGnPHaLNkRHbNVV6lHPrlxgY4xBi0kSTTHjFqFbBNba7EkN6CEvqXJEFmFqdin3oyQVKAkBalGAbIS0OuskVYaEzfHGIh0AmwTMAbGMgVOf6gUtLaWyGw5wqbM8EsBgcyoioLZaJYVuUFHdMBCQwnySgXBuEdMoLUly11G3NOW0BcYKZjPHUOLVIpLjv0DYs9O5wiW7wuUCxiqqosWrp0gNj6xKUCIEhJmsFK4vSHEJGgL1ZCduc/Qim1ZeBeondw9j6hU6Vx6LVccHKDkCCMNGw9ymI3nYWsRoKjaERlg8LFeiK9dQKIQmKxAxTF9G1AXglhGNOMQBknZg2TpZ5qZcq01Eh9Ff7pKq6toBFP4tkJidFmFchWs7aPphgtUhvdgbEHPjjhtT5H5Ammc5qqx7tkL7Z2zP025fbPCQWqzcCtIFggWbYVIJzSyDu22YlYZkoGhsyuiMCkzPUVhc0ZS4ftwLB/gA4Et0F6MHctnNF0lSZZzfcbOURMxeD555GPH8gSiIPYlvjJUuznNZoezrZD5NpN1EjrjSOCz34/J2dZrWB4kzepe4F6aqsau8HIAgthFs9aLqIz0pOKMhTyoUvVqJKJPMt4fcZ1+DrYbkZmcaiCI/Rod4aQedmcR3uFNsr1zaGVIc0WAh1cook3Nxuyl9LIOOtTEJiEapEwdXyFb0uR+A1Ot4xUlbFFsr51CPTlDaGawU49ECMjtgIAqyjvNkNNIMU/kiW3vgKQwIBKO9A8zkDmFHeEzBwgykzjIqQBREuMAeL6r3G7aHG0tp/MOFeGzAEgZYvBZ8D2Kfoeq10ZYi6osIOI60yKeIBSkVeRakCgDJbttOxk5yQABuR+jRR3yroPEGoUXCDw01ouYjQOODSRaBgSM5VaA0Qa+JxDVEppbJpKmZY22P0UozORZvp49bAM0b+M+pj71UxSL1zJ48q8ReBHRTc8m+eD7iJ72DMQlF/M/7nwD3WydX99c45cWFrm8uZ8ff8TPIITg9iOb/MrHH+Cxe1v8jwsKRr/5CSo/8IP/pkrSf9SstZjlM6gDD6AOPoA+chh17CjmzOkJgxGeh7d7D95FFxN+91Pw912Id8GFyB07kfX6Q98AqLeqqM5Di+D9R01Wa1Rf9FIqz3sB2cc+wui976T/xjcg5+aJn/M84u99LnL63x/8RL7kmVctcuOVC9x96lLe87mrue0rGwSVVa646Cgrzc/ypvg0Qn+IRycf4PXXfCfx7A9z90nFPx6eYX30PYSNL3Bm/g5+e/Cb/NGoPVYLAAAgAElEQVR9f8ANu2/kWXufzb7GhRQ7v43uM99O88OvoHnzi+k++33YePobMEPn7bydt28ZE460oLY6IlofsrEvKvs/tqo2FgHG0KNg4Hept09graaQFmvHznnJEGY0Sm9VP/xcgeeqSdliExU2ERo8nSH8AFVYchXT6vWYympOp9da1jyDnfyUC7QxBNIRkTSpMiQiLXKOj1oosVHCwxwl+bjnZ6tTxJxTEVPGkWnsna5yKgFfSiohrA4foFa+KWJ28plj0ygqYciylPhewtgRmQ01o9wRG2gZoq1HLA2JljT7Bwhnt4vBllUXxFeX6UqbqXhk6fFzevvS3KCtZVVsEKGZgEyFq25oDY8Jemg/Zq38nJFfoxAhoKiEmqisUDSCBnGtSa1z3GXBrU8ZK4GARnoGUy3vLaDeTdzdpBPKBYjaCUbGDNvLBI1LJhcn2qKtwDOaRSw+kgUV4JXkCJMVKWGr20kBLaDK2CzHUbl7FM7HByq+R1i/gFAew+JTFzmBp1gu87y6VsEKHzyPzh5YOpGTYMlt1QWCMmRU8wnSAt0ZMIxiTu9cpGEtdrmNFRKrYhAFqdUYM+6pCkhnq3g+1FpN5roDcq9JIfrEUiBMRqQzqsOCYHpILhfQoUc3U4TDgqYWDH2DkD4RDXJTBWzZTQfDQjPSmraNqWmDTFMsdTYGuZsLY93+FxV0keLjEw9z4mWFXy+I04CAkL5vsE2fRj8nSgpCmSOISuIe8NGs7GoytbJBEYVYoVHYyTYcETOvR0jRJLcOEulhUCimVRM5XKHwquzOVzhZqYKYcmunM6yFDQraZQ/TZE2t62nDQn+uxcrFe4g95+t999K1tDtn2BxWsNmK20Lln1iErjdTSIywKA1h+cmGKtK2QQTsnvt2VpaPAFDt5qTWEp5cp2skJm6SIAhFDy9VxLVpsmRIFcuqrTO12kZ7Ei9zyaMwCrHGx5MSHTWRomCEnsyP0AnL2UGs3c+6uQeApTIBslo8QNNfKLNBW9/lmtciNX08EZAZaHo7GSKoshNrPKQQFAwR20CIudUcMEMnlQGkVuHpHBm3yPMaDa/NUrpJN8yoJTFXzlxEWJ+BYbccq6VtNxgUgjx3eomeydHCka0UAkbhDGfNHlQoqNZmyYbHkIFELTwKgIRZhupeFBITgGWKTBuM6RMNBlxWVZwGNmyPvp2iVhjqQYrjR31oe1gGaCJt0/zIazBhg94z/jd4rixd+6EfJb/9Nvq/8ov8yQ9fyz3dz/HTm5v81uIe6lGDX37Mmwi9kHvO9Pi5W+7l0vk6v3nTZWSv+38QM7NUX/KK//SxWmPQR4+gHrgfdegA6sAD6EMHsMOSTtnz8Pbsxb/0Mryn3uACsX0X4e3ZiwiC//TxfCNMhCHx9z6H6KbvpfjnO0j+8gOM/vSPGb3jz4m++ynEz3oO/qOu+XfDH4UQPGZPi8fsaXGinfDuu05xy1cW0ebxXH9pwcVzn+FLG5/mLd3b8Dq3cW39En78mS9ivngUn/mTr/BPp57P8cWcYuYO/kr9JX99/AMs+Pu5Yfez+P5LnwE3/jnNW19F8+aX0n32e7FR8xs0Q+ftvJ23h7tVDIgSuqQRFPmIWECuDFPboHnCWkbWkMkRkhWstuC3qIY5YqRKp0QwZn4LRYTIMqwxCGGwnkDGsKd3grVZj0qi6C34hGsN1q1kRp1FlIFVYRVhSTM9mK+zJ15nXg4p9LgXSHBSzPBlG7MpFeiN8Si3OYYw7uUa/zMXEeuVC5lOTxJYQ+BJPJPSHxXMTTUozDKx75JvwuQIGyEw1NPTiGyeS/ZWmMk8rr5qhr1nbidYW+XM3HcQCD1xtzW+g8aVPwvtYis7Dq5IICc/GRaEIN/3PYh8gCh7ZxqRz1QkGUda9UCSjQztIiWMe3iyykhCRsFYt0kD6XDE7hasCB9lfUa+0zpqVjwMms70NMNMO02wKEaHAXKUEZqqc4p3teBAh0hDzQZo4TO07tmkNSghqAiFwcPPC3IEa+uC2lJCNXZPuZpUaNiYyDgijkwExLkgacbMiQpnyrkYs21m1onelstHaAUFkJNQNYrIrNG1DkxpfY/14iSXYKgGHhUbkzKg6RV0dQDSY3/zKmYGd1DXBru3yezh0xgf1vyMug5RkcdlRYS0GlsoLpEX8W2eBdHBKEvLaxAynKyPGAM2PYmNPFqyRl0UVNUmxXpC3B1ShIKw3GfT6328WUMBDIqCeSDQEVU/IIzqrGQBFklXzlIXMQ05YFBuhTN6hkU8Mlvqn5URnEaglMGYBGMNGkFDxghZ4AtD1oxZDhoI64hopAgIk4zFbp9TuxOWJlVAS1oLKBaqmGHOQiQ4UdXUz1pahdu3K94Su4Ugs6YMGiwhPmkSkAqfCIhEQYMBBqfzJvMBqS1onrHkYot1UwC+SZB6RCZG6EaNohITWkMlW2NDrFL4BaYyS6pb2GEPdN+dIuWXxAY+VhhCOc4gGMeCWiaBIj+kNxsR5+4cG9qAngmZZ0RbBgyqI/YPHDRwYddF6BMpZ+0xkmjAo9sF6dwU4zJ7LfTYIUGkAvwq4OH3CoosRygziSyGZnXyjOMetEoQkpr+1l6eTIIg9qYwto0nfEQpex0yjTE5vaJDFOSo3A3CAheF83yRg5NTw4TV8qMkFsVJz1ANYwLZZOfJVS4RmqW2JVk9yNyJNoHfJawN0LUp/LRLvT8g8dYRweexwy6rNYmoLFOxHpkZUE0WWOqPqNk+U8m9AOwR++geOwwyxfcUM5Uem0lCULG0RgOi9fuRs4JARQxsjVaeULcppsioDc9tTXqwPfwCNJ0z9bEfRg6W6Tz3g5jaVsVL/v/svXe4ZVd55vlba+28T7rn5lB1bwWVKihnhAJIIBHaYwS07Q5uP562TffQNsbGw4PdDu32ND0GG5wZGh4HTGN7jG0wQsZGIFAqSQhllaTK8eZw8o5rzR/73HNLDI2Npz2N3PXVc5+quvuEvddee+/vXd/7vW+1Rvmnf47me97F1B8f565Xdfnc2B7atPnwNb/MiDfK8dUu7/7zZxktOfza2y5BfvpT5C+9QPkX348Igv/Pu2eyjOyF50mfepL0qSfInnka024VGz0Pa/dFuHe8EWv3HtSePVg7diFc91t/6CskhJQ4N96Ec+NNZKdOEn36T4jvuZv4C/cgZ7bhvfHNuG94M2rs2xfn2D7k877XX8QPv2o7n/r6OT791DkefOm1XL/9LfzS1EMcn/8Ef5W9wAee+SUcYXH766/hw7/+OSI8jr7n/TwcxTyy+jcsOA/yiRMf5A+O/ibD5hr+yY5/w48f+20qn/1+mt/9SYxT/gcYmQtxIS7EKz2GjcXpLCPr06qm5ru0JiAWhgo9sv69Y8eRxS26ou+QCQfXkYxxjiy10JuVJ0sQOzZTkU+WwLFaThQ6g14iIUArwdKsQ1RWDLUc8iSlYcpUEP0/RfUrUx5D/jC+aCCNxuQ5wlgoWXxQW5aI0pV+qUyQiYIStpnYnK+yaIDIGUKLHiCQJkMKQRAVK/fzehojLMLu8/ixjx/5KG2ThRlDtovsrWIvL3J1/WJkWEMgGHYzeq2X+qqVCoEmRw5A6masxZJgsC55Hg1qU/baKWOcErK3MnhPvjnaBkx5EtHrYQw4lsGYJmdJMcQoJFKKQiEBaERx//3FCVESZF/xMg594lAjhSJUZeykRw64RjGV19k+4rO6miI2DBXtkQmblpakMikU2qTEc0Ocbr8XRhrQkPUpjpvKijXt4eQCV7dYADw3pIJEKW8A0DJLFr1GFIp7I7iEGYRa08FwdZzh2QG93hkUFiN2iV5WUCRbNKkDjnHYqSfpiTUe79PqpkrDTCroaYuKX8PoDdbokuHQUMXYFP5Uxc56tsJXhkQW9MdN4ZdvZGmtlGcJ0zOYvgiKm6xTWUv6Z1oRSANK4HQz5JgkqYSIdVGImhhB7EqCPs1VUNgBkIIvbBoy48RUld6Cg244aGMP/LZEv8JljEac5wenpMSyFJZJaI+F6LiwslC6oLMJIMjWieQQJu2bx6PRRpPKhOaog2lGNKerlBaW8LWLVhYp1kChcvN6RUp0MEzmNqDX2JqXotjDKMsxSpMkPh27RKYjcm3QlkucJ+TZBomsoURx/EF0ll1rz7Lkn8PWMbpvah4nOaXAojk9xHBXIqa3oa0lovUuSQiO7sOfXCCUD2hsZdO6/GK8x15CJrpwWNSaRRnQ1YpASVquhqESX1/7Gl3j03ZiVAwOHqsi6R/H5tVpChAlBTLV+PMxTnwOq9XizGyPeBRm6y6rC8XrpZDslaM4yudstjD4FM+SlD2L5XYh/JPoLkZoml1BdWOD4fVVxmnz5LRPxXPodorrXWR50VvXpy0XJ7uvuCoK5VcrhvLZBkFi0cy6jJY13swuVPICfkuxLh3sKGNopY1IY4Sw6JV97CTFBrxIkBPhiAhMjBPFOJ0mgcqQSUoyWsdyJmivhgROhUR26fk2DSunAdSTEqIbsyfp8FzsUy377D52grLTgQwCZwvAfrN4ZQE0Yyh95X04Zx+kefuHySau/obNho8lDUrXCt74mOG3bpjjxXyFX7jqP7GnejELzYgf/fQzWEry62+7lMrCaTZ+97/g3Hob7mtv/3vvVr68RPrIwyQHHyb92iOD6piancN57e3Yl12Btf8AanoGodTf8mn/OMLaPkvp3T9F+G/+HfFXvkR091/S/S8fofux/wv72uvx3vRdODfd8m2D05GSy4/esoMfvH4bn35qnv/6+BnedeoAl419iPeX70fM/x73eJK/qjzOE29P+MVPNrj4/3gHUz//k/zM7T/Favtd/MXhh/jy4udZzB/jD3TMp2Z28vbOCS755Ft4Zu7XODA3xeVTFUruK+vyuBAX4kL8w4UTZZRaCXFsEyiJJ1JKJzKSUkED3EwUjSj6vnLbwgjIHUVVx5SzJusMIXWCEAJHQCcIUJHANZKNYaeQMX+ZKF+/siVE4QOkXy5AUpAli8rFkOVzZWmKVuMl0kxi6QjLcum5dXRaUL+Q0JURvhMz3n2cDRMzph2W+/LxjhGF/Lo9xAR1xrMlTONpvIaH1e8hCqMFcuWSyaLfoqUjPGPhmw629KiLFnJjHuQwdrOQybbjNXwsyqKLoVpUGXPwFFRsxUpflPFcTzFTKo5QG7DXD2NJm7w6O+h1KQ58axTyPi1tNg2JZR3B/GCMYiFx+v5xWlqDVXsjBHa+hjQp+H0VNgmZKsDApoy68nyyfOuZLQGZpxj8LVrl+QhFgxCG1B9CSINSFvo8huYmpTTbpLuK4v0lLLYnDm5W+E2VhFeUOTAEnRj18BHynSMYllBGEFDI7NtC4NoWxipsCwKR4cuczLKZLJc4uQtKh9uI1QxEjmLreyPdo+rG9BAoIUmnQ/yGpIFHKmzQZ0lWGyS5wcjCaLtwEjCkecxm+ljgmRz6NNdM9uXKLUHoKjpLTVLA4GILFzvP6Jsa0ClpcttlQc+z7nRZ9QRK+FRFIREq++bAldPrJHZGKgxr3gYjMhiIzGSOB3lCw1oj8OqsJ+cYZRIlXYJNL8H++Gd5jk+PRBs8rRhKXIxr0cIHBLrwiOif0T5tWSgibUidIVI6tIVDJj1iu42RFbbqOaCcAMsk1CeaVKMeWxi2T1NFkGTQUj4yykAV946O8iHrUYsW8RONEjYm2mByYx4v2cBXHXJhkxtDbtKij1JKVndWGX62U1wbSrI67uOYlCAqZrqDwhM2ZdtFTW8nNU9j+lRtxZYQTWApRA7ZkMWaHZP0VlHtMpTBMzaZLOB1qkJE/+zFWT6YA5sH2klSLGDo7Brd0irxUIwbxcSug9vusv34adJywEYtxV3vMb3RYmlyHK/mY6MI15vE9JAYwnaT4XNnig/2oXHvUaZsRX1xiXLSwF6JUKUTSNGAMQsr0jhRgnV2hVov5yINQaeNl2fkgc1GzcMZcwnK66jZUZQOiB2fSHuc6wTYSU7sZSyWL8XKu5hezJKTIGWFUbmXnm6i6lM8vXaOGSdjx75LQUos7zLOtQ9TdhVGtchCl/lGcQ2s10tE4UWIs19DLgl2ry2ikCxsC7BJWJPn3dO+SbyiMlD/id/GP/THdK55F/Het79sWzvO+M+f/zyH1PuxbjGs7hrmq9VV/lX7am4eu4WFZsQ7/uRpOknGR77ncqYdw8bPvQ9RKlH6iZ/6tvbDZBnpM0+RHnyI5ODD5MeOACDHxnBuez3OdTdgX37F36v/6h9bCN/He8Ob8d7wZvKzZ4juuZv4ns/R+oWfQZQruK+7A+/N34Xas/fbokCWXIsfuG4b33fVNHc/t8AnvnaGu569jktrV/DL7t2858Sf8Uipyr3/6z5u+f0TVH76/XzgLR9h6I7v5vUX3ckPX/VBojziS6e/yudO/RV/oh7lU9Ueo8138Mn7byJuXc6O8h6umq5x+XSFK2eqjJb+cVQ6L8SFuBDffriNmJEoxnIcpO9hjEVqwOv00YUQ2MbCIOjVqsSxxhMw6sNU8zjbBWhaLOWb6ZruQ6tClnxvb4QX/UVy4RIHU7Q2lre+XAqMFH21v/NW7dmiAY6WPGq+RasBUaoRqli1rlc1emVLZl1K0PkKzfwksY5oyQSMg2NFeFoAHtvqIVEDAmPRAezWCcbigh655A4zHK1RkSnNXGDMNoZMm9H4DFd5q2i3CjHIxgmEPzzYT0t38W1J2bPBaBIjcYXEdySW0GTm5ff/TdGSvDTRBwDndWycD9A2j8vAeqv436YCXC4UOy2fQEc8YddwTQJZTHduO6XDj2K0jyVybCsn1hlS9SlSBl7cP8Fdr3o1zsl7+udKYFsWm7qPQ4FNl4RgrUvTtTBIRN8IF2WhdFbQE/uy4QCl5Ch4AUhJx5ugKpfY3BgaSdbNwHUKE2uTDI7RSaFjVxFmCSEEHX+KEk0CemSWS3TxDuTaEURumM2GWdcCt+az2k3RlkKwZbgM9P2zDL0kA2xkbw1b5JREnXMmpiczVJyTOAqDjcagEERGIh2LWFgE0iHXffCZdTBuAHGGQTBbmWPZCynbGY28VZwl28ERPpb0SCj6fbafWaKZVUhWNyjj09w2xNA5zZiqcMROICsWuzMt6DViHBmi0VRFdzA/AGKRYERBrZP9vkVbWgyZCBXayE0fvb70uUw0qbYp5S7tZJJetoqtEwTFAsjJuVIBN0VxXTedYWLlIiPJMnUMxfedsTaoYWiWHLpxTm/3NP6ptCjHOhKyPniTgrJTzJHCIFzRVBGV/lkxQpBIC4uMehYhRIaSPcLcpVat0UgKSqYSemuhQhSsJaQire/FtFfIN/21hCAVNibNqPklHEui11bxxwPyTW+y/nQo6wTLAVfHJApSA21bgsnJbRvRTTDC0HEm6boBO3SXXm5YaqeUEouS5bFJ1FvZN0b1VJdwPcU7u4izuAyNohpbD2xywO/0mF1fo5vkuLLKttPzVJcV5bSoDprFZQTg5iGJgMNzu5jpLFOVdiHgo0ApQbfugpGUlzUqjQk2MnzXQ9gJw1qzmOZkvqQxXCMaqdCIVhBCILvLYDTrIgHhkzsWGYKFytUEKgPpYns+66pH1WnQ6m41y20OfezafV4tRVX+vHjZOlK5wlfLlzA9pBnpnqS93iRxXDqhZsgIKuVvNPN+ebxiAJp7+DOUHn4/0UXfTfe697xs25GVDh/87N10679KKuH28Vv5U+dB3rS0jTd//BGOPvpe3rP7LTQz+M23X8ae0ZDWf/hZ8tOnqHzoN5H14b/1+/NzZ0kePUj66EHSx79W+IdZFvZll+P+2x/FueFG1I6d33af1f9MoaZnCH/oHQQ/+EOkX/8a8ef/kujuzxL9+Z+idu7Ge9M/wb3jjVD7u1NNXUvy1sun+O5LJ/nS4RV+95FTvPHYXby6fBP/2foj/v3SgzS+axtHHqzxr//vVb5w9A/43177CWaG9/C66Tu5ber1vGnuDtppi4NPfYgvn/wLVofvR43cz6qu87mFfXz6pf3k3TmmqyFXTFe4YrrKFTNVZof8C+f7QlyI/0miagWcoQt97ydySYaN00/6LGVwc806kOoCgklpkDrBlR4WOTYZuk9fUmkHAXRGy3jKITZuoeYnBO2s8OmJyi5uXJABkRKVazIUy7rKsJ/TSlKqQDQy2gdrgkk5xLxeR+kUYTRuYJELjREFN7PokTLk/aS1bBQ9k2CZnKpuM+10yEiRqIGRqgB84dCUkloeF9UUt8prZY2zJqbTk8TKI/dHEW4Z7VYxUY72R1DRBoGjoKdxlBzIrRsUQhQEwykv5VTPIbT6VUigkQpcaTD+CCKLviHzKfbdpDnxcotwtYctLbIgxpgMgyqE7oyggltQ3oRi7+ozRFnOCW+UEhFtBVq46L7CZpHYF9Uo5ZawbHdw/EJsAYLAMqTn+ZjJvEiMFRLsACMLIicDgNaHE5vJ3MoSY0MVPFuR5ekgWd7skbOF5KLSHl7KG4XgiizTMUUiL4Qg90voSgkaEZZnoUMP41vIXo4vHSy7SrO/50pYINIBPPOrc3iiChiiVBOlOSmGCJsXGSHKF0BoOhWXDMlxdjCFwVg+7ekdhN0FXOMgZYk1XeyvBRjfgXirp8a3SoiRlJlzPRZZLahwwkJj9eX7iygvNUgQtPKQc2YX/5QNbGGBjhAUx5xmArKii3BKBYx5MT0bHNOjGYwg2yvk0iI1gjAvzp8lBNIYhKvITU5icuy+cp4whhN6lAO6S2pyjCm82CSGTAm0LcFkW4sEGFIBIXnRddenLGYqIxMGx9IcevVlDLkWtb5FRSps7POKqxXfhrEQs9aj5FiFiqglaWcpsUmJrQDhSCyxg+ZEnebwMGNqjMn0RUiKq6KTzzOQAOmbNCMk2g5pOTNkYgWEQDsVOnEhE6KSHCMVavssu70WMngJmq3NjkEqIsVVhm7/uKSRtAx4pofje5ieZE142I11ptwxBBDnGheDFIqLrXEOcYQUcK2MzriHO1HDH57jZGJITy9jKUVPQCP08YThJBYbiWZPHLBieVRXVlBpD2kynhmv40WaGcrkToAIxzhbdYmDECHAGffZWH+RcDKgk5YorzvknR65LWluq9C96i0EK0/T6S6w2tO4uUUvyXBRg3xNZD26fQEhAGkMqXSJLR+hDUOBQ+AalqOCppqZzZpvsfyzWS0GsKRgdsin5tlkVpdevDW3JRZD7hB5tc7yFSHzzx8lrdXZIxfw6Z2vBfRN4xUB0Jyjd1P+mx8jmbqe1m2/MrhRa2P4o6+f5Z4H7qWy7bdZsiV3jd/OHy99idun7uDdb/hZzpY+y08cEjQ2Ovxy73F2H9V0/+Ipknv/muAd78S56ppv+p352hrxQ4+Sfu1R0kcPkp8+BYCcnMR9/R3Y170K+5prkUH4Td9/If7bIZTCufZ6nGuvJ2y1iO/9a+LP/yWd3/wwnd/5DaKbb0a++jU4N93yd1KsBFBS8PqLR3ndnhG+enSNjx88yc3zP8pbwtv5OfuTXHXtM8zX93Ln11vceqrMZ+/o8tHmb/DRF36LK4av4nVTd3Lz5T/Bm+rXkt/7Lu4rD/HX27fxmPUYauhBXFHGzi/lgYWLufvQTjA2Nd9m33iJfRNl9o+X2Dteplr1/4FH70JciAvxPyK0kOQCIpHjAHackvXtR0GglEBoSNJCuEMIgYpPEaoym8TEkAQfB5knCFM8flNvDMM5rMwhoaguNeOUUPis2TZVK2CFHIQg7MVE2Pi4rAYh291VdB4SOCNkwTh5JYTFrwHFs18ZXVDSlAva9HvW9KDCBFDGQfeTBV8Xnke2iRn2QsajlNbm60TAuhKYfrO/UQqtFfVoAyeVrGuJ6QmS7jpNo3lpTbNjYwN7bR2kYK5kI43VpwFqcmEBGikgCWcIe2cRJzfonIrpjMyg1tdJQwfd6WGcBNIck2UFvStJydd7xKc2SC2NbPWwtEKnz7PdF3hdj+BcA51LSk4X02szxDKWSPA2uphsA4xBmojm2ByyE0GeUIoXca3tjDrb6Kg6qn+s9AElCIbMGpLy+Qomfel+QOfUVMCu0k4sjpKdj+oAvWkU3O3hhGU4j/4I4NiSHkVuMxNsox1PoIRNM1tGECFM3zkpzTBWsW9u4LBnPODgNbthpUNy01WFV1p/Dsg9V8KRhxBAb24Sp+0iMo+NvAHABBvEOhx8f9vYrJU9bL9DPalwHMiMRpQmSegiMslaalPtV2IyA5noW/f0iw2NXgII9MwY1vz8YAikUKR9gJH0rwnbMqSZoK1CjBgmN51iS5+eGJoyPWLsblSI0QgwJinovXkP7bj0ZnbgRydYwWGUCl369hR9Dt9m7TU1eZ80zMAcu5d3SByFijVWZvoWA5CZuADZGBKhyY0Y+Falrk1WCSk5bU4EK4CHEg6Z0EzrMyBgkXF2ME/a76eLdcyOaoknRQPRv6ja0y6NnuHwdA070YytCLw0ZK0yStep4DoTPOwusL8vyJ307RhapWFqahUlCtqkCEOOJ5KezAk1oGxs4RKYhJaOQUjU9AyycQTLsQsAel4IA9nwEI3WOcrCR0tJZlpYsoTMTdGvBpR6BqUZeLABZCsNlC5oq166Tgfwh32yuQl6yx3iMCQxGZHWdDJDYis63Q69XsrGSB2/u8Ky1EweX+dcuUwnyFmvljHOLJ7tUNczSMdDiMISQ0ib0M/BDmgEFuneCst9/BSUA0qWBGn1FTkNUkhq1Veznp5j82IUaedlx99w+roI5vzO160O3dREjFfTgaH3Jp0dYLzsctu261nKDnG2C73+ZPcdCJWFrSRTwTQnnDOsjoxQ1svF+BkN4lu3PH3HAzTvuT+k9JWfIZu4iuabfx/6ZpULzYj/8FcvEp89yMT2j/GEa/HWiTv4k8UvcsPojbz3sn/PmY2YH1ufolFN+YB8kV3330vrS38OgAhDkkcfJn3mKYHTKsIAACAASURBVITnIxwbEJh2i+z4MVbO9rmvrot95TV4b/2n2NfdUKgrXqia/HcLWS7jv+Vt+G95G9nxo8Sf/xzJl79Idt99YNvY116P+5rbcF51E7JW+1s/TwjBrbuHuWVXnYdOrPPxh8tcO38xPxJ8hR/b96dUa13mn/H5nv96krfv2sFj37WXP+o+zwee+U/82nMf5Mbxm3nrLT/L/3LwN7jrmS+ydNMv8EB9kgcWv8rDSw+hxx9ieNJjm3s5dnQZSyu7efSR9c2+c0ZKDnvHSuzrA7aLRkPGyy7ywpy5EBfiFR3jnuC5FDJRyGlvhkFwyi3obKGT4yYthPRQsoavu1ioAX3Pw2WUBqNZIeKRqhBLxIzaI5zJk8Jwt38vqXk7KGUtEt1lDYMjiz4ZS0i0FFRqkI0eoB3lsCIwlW3ocgvRy8Eyhez7Sg/X65BkCQaNlekCtCmN1+xS3+jSKVcQpX7PV180oVm+iHpvhXJHI3IDuLSdaWKzzpI3CcAlozs4vGyYPfwMblPjBQ5WomikhZfUmTSisfE841GbceFhrRdjMBzHTOYptsopOxlJEGN6KwQby2Bb6PEJdKKRzR40e0TqGMY6B0B+SqLnn0c1z0JeUAA7YxYvTQpGFm3cdsZcJyLLWwSuZN2xQYLIDPuPvYhl6X7vjMF0wDY5ridRsU8v7aKQhPEStp4q+gRXnucic5xjQiOEQhjI5/qMm/Pv6UJgNHjtCFkJmfQn2NBHgMJEedMzLreKZH1TGkVbISJZH8yjgbKdAYEciEWc/3spBCYtAHtSC2EkYCk6x9iQT17zOec65+8W2fjM1lx1bba5muXWKmtpMaauSIk3K3hSkLs+gpiyVaKkK6BslkiZBjayCLsH2PJlxz+qJsHEVOwK9dIONhafBqAZzjHmHSb3ArJSDZkUVR/t2uSODQIsuQUALjqbog2sxVuJq2dK5KKJm5hCKEWDLVJ6OGTCYmV0jFr2dSYth1MSni9dzrztsVudIc0M9nkI2NGrJNQAgaNsGlMhUc/HtGD8XBcPQVuHAxrxdFSiEbRYciROM+rrgEKvElKpVnFl1l/sMH2PvZws9LE6PXIUqbGJfRe3U5hMj+cJvboiaIGRktwxtAIbhCB1FZmjIC3Mxj27UOS0na3WijX/Gp5ttslKFly0AzjGwoERHptKeHa16KSLhQVG4BKyFGu6GsZ3jhX6B9JCiEkQzQH8qGV24YHn2tCCrtxShrQQjM630cIraMq5pp7ZKFWhM76XtLXBQrQ8AOAlLBwjCaXNRt+7rNw9hdef41qHSCmR6RoVbZjTEetWSFQOOHdgisXUReRreEkTm3WyvrrqRjdhaKDfZvCsnCgYJqrsweqcg7S5eXn057GNk3YJshxLhsT+NloqHfTPifTlFlSFUTVEmcbqH7svK8BSkbsZ8F1N2TaUXcl4dQvgCiG4ZGyS+xYOFf/v/75sldhT24MSAikkzd7m9S0GCxmvWJl9kbQJH/ol/Of+kHj7a2ne+RFwQtJc86nHz/Lxg6d4lXiMbPaTPOHavH7sFj69+EUuH76Sn7vqlzi0UKg1SiH47e+5nAMTN9HbXqfzgfcjp2dQO3Zimg308jJEPUyagjGIMMTafRHl7/tesp0XY1287x+NyuJ3elg7dmG9811U3/deVh5+jPjL95Lc9yXaDz0AQmDtO4B9/Q0419+ItXfftxRcEULw6h11bpwb4tFTG3z8YJ1Pnrme94x+ln/+2ntonQ5ZPrTI9R8+zo07drLxhn/GPRd3+eLqV7hv/l7mxsr82irsvO+9vHn2Nl7z2l8mvuxneGr1CR5Y/AoPLt7PqnkEa8Ti5j1Xszu4AS++lLNNh6dObfDQ8bWBl6RrSbYP+cwOBczWfaarHqMlh9GSy2jJoexaF0D/hbgQ3+HhWBKZQUpGR/fICYEYC0Uq8kE1RKDBpAQqKJJRDKEqQb5BXvDumLBtVjBkygciaiJnQaq+sauFLVxKqsaK8glNzBXGJ0s9Oo5Llri4OIWgQT9qnkNiDPrsWeyTG4S6g41mOSgz3j1Odz0mFE0wKdN0GLIX6SZNFKDW2lwlMvJSQjmXWP4iqnuWCId0QTDcaxKs9xhvNlGmx1Cft7WtKtjoGpqmykK1QjK0zND+OZZ6hULbetKgbjKWki5rseQaOQSpZnvms9wMWG/0MFKjbIm2S2gRkJUDvFddQ7yxytmpffiNJUKrQ1fEjEY23VARj1mcc9rYQhIGPkf8DrQEx7ZN4Z5aoKtyEk/RKztk4QRtX1M/J2i3ffKqRbLRRW106NYCojhDSIXVT6s8YePbilrnGFHqI5snqagUq+bRii1i18coh28MYcA2HhaKsnQQzeZgW2hLkkSgwxor2qORlhDDl4M+gXF8aK+hmk2MLOTvAWTeIzvvkSCFKiqgg9/1qaBKkQiDzjoIAdY3PEa0May2NZVtO3Hbp87b8nLpxUBktIyF9D2Ie0CCEoVgyfkeoefSBjO+ggxyz8NkEqE1sk/5soSFLZ1BpSEJCqCryqMYKcA4CARGgtGSUI0h1LkBC1QKSZILmpFkSyZSkkuPqF/PijLNrB3wDBmLgeTxoeNcsl6ojfayFs5m/2HoQOO8IxaCONXEUiME2EYBMTKskcQCIsAYyv3KtmM0niVpAl1Rw2sUVZeoVlQb6944sl+F3ATXQggi4eOTkkqnn5AX++NKBycT7Ehd5l2HPLTQdhtl1xGiUKBcHS8jzAxRpcRs2WXfcImFtYKVIzD4skbW7/haiqsEOsf2LLoiI9YSH0iNhYwiiBK0BUlqaKzHnF7vsd6o0/VC6sEUhiMIoJTbdH0byOm5IwgkeX9BIeykuI5Fo+cQ0sOLEwSCugxpux6JO4FuLRf3tT7uOGCqTHkz3JO0KXdOkSWFb54THsDkbbQQmKigFI9Mz7C6osm0Ik/bdJRPnKRM9CpYtEj9CqOhwmovQmJhnDIVN+tTPsHYIcYbhs5ZHCGYdYZYo6iyUcxePOHQ6y+oJcMHoH0M7b3cUinNt9CSNoZRZ5ZYF+Nsq6KXEIo1iR2VWebKmzNTbm0ADGagKFn36uwpX8pSK0UbQZYX79h8UMj+rPlW8R0H0GR7Hvfo3fhPfATZWaR7xTvovOp9GKF46Ngav3rfUU6t93jvxAM85H+aZ1yXW8du4gvLX+VVYzfx81f+Rw6eaPPTnzvEaMnh1996KTM1j+4nf5/uR34L+9rrqbz/g38r6KrVAjb+gY2eL8Q3DyEl9oFLsQ9cinnnu8heOER68EGSgw/T+72P0/vdjyGqVZxrr8e+9gbsK65ETk59U5AjhOD62SGunx3i8dOzfPzgNB87fRvv2/6n3DH9MM3TZdZOr1L+nU/wvUHIv7zzDRy5ZTefV0/zz8QD3KVq/PipL+N/4kYWLvleLrv2fVwzeh0/duAnObTxHPcvfIX7F+7j8dVHkEiuGruK733NzVw7fBNrzYCjq11OrnU5td7jhaUWXzq8jH75sxHXktQDm7JrUfas4u/+v0uuRaX/76pnU/Mtqn5BrwwddQHYXYgL8f9TCAGTGZxS0PVtrK5CEYPrkNig8h7CxFjUCYSLwR5QrERfXl0AGIMlBFd7dZ63ywjWSHNN2SpgQoa1+UoMgqBaQ7QkPRkyqsdJU8GpoSEsJ8XKFGWrglaSTOfI1hYwUBQKd83hEosixWiL1HbwVBevkaMzQWukTLTQA8tmti5Y7zogFdp2yYRPHA4TuedQExZptUbPjJO4o6yn80yMTrDe1GwYj5Oijgoyyk6bzC5YLiaKybvrJDrhWavHjOMzEgRs2A6tcpVjlYDMPopbEXR0idKKi++EIAqD7Miu0R4uczR4iA1iYmOojgzTyk+jPA8v6dJzNfV+35OybNbmKqygKKk6qWwQGpsZL8TzM87USthWTq/kMNJcQWBIfZu1bsa2rIvSEaI2AZ0eie9wTZQi8v6KuxKcm6mhz0sJ8uoOvNkVOLGBSnNsN2AsqeDGKXJlmUQGFEikeH20ewcn3Gshz1Bt2BlQVCeT4jsSSlhuDeJ1hE5ehqGMMbi9GNXLkIgBY2OwWm9XaKbnoZHB+8ASNqs33k546G/ALPbnVRFZn5E0Zdocqm5DuqOY+Ra5lEgj6OmtNf5ExwgB7cmAc2qE2fouFnunmHi+X0Hpf2g7znCsEh1vArc/78ftaZpSoXQXG4UxRb9eGlRw8nMoaUB7KDw0AikEI2qMNl0Qm6ImW8+6ShiA3cEuuVh2h9VkHpFm+GVvMDb0+zah6JOLax7OUkwgU3paMdEdZ7VzBs/fIBUpmaPIY0OufawswhYST0qsOCFVHoJeIVDi5xihsKTAEhap59L1wkGyreKUjggG169DQj1apa5TtJ/jmTF0kIPSdKpTxInEoUtMSuZW6fqVzbPHue4ZhFB03TJOnuEbbzAGjU6Hl9KQy8eaVIwZ+OVJDardIBEjRGlON8lRqea+IyusxSWWUsnlkcBCMB4PMebFnL7lBpaax+HRwwPKNkDQzkitkNiOqPgOU0ISd4ouLGPZNC69htH7nyVJC4GWzTMk0OyJYzayJpHlsxHs5KLSjejOwaKqZq0zVx3nksmbeKHxGOSaRDjoNEFaXgHiMXjRIjP+KL20RZJkkLS4Y0eZL7eAfj+m6C9qzOLhSZu50g42Gqe3LgIhyft02c0FEADbCHqbCx3n1bKkUIw6s8zHRxhyhliI08E2bXKkUNTcoodTDu7rfXaAO8JCq1gI8SwPW1qkecKL89nW6wbTWKNeCT1osj1P7c/uQkQbyLTgmSZT19O883dIJq7hq0dW+b1HT/PcQovZmssf7bubX43v5UXH5YbRG/jy8gO8buoO3nPpz/CJx87x0YdOcvFYiQ+/9RKGHEnnV/5Pos/8Gc5tr6P80z9/oSL2CgohBPa+/dj79hP84A+jGxukjz1CcvAhkkcOEn/xrwGQo2PYl1+BdcVV2JdfiZqd+3+Bl03T66fOzvLxg3v5wMnnePfcZ3nT7APE6x4rC2N0/vIzbP/zjH+37wA//oYf4Znrh/jVpS9w+6HPcf1Tn2D52U/x1dnrcC77Ia6cuJUDQ5fyjr3v5GjrMPcvfIUHl7/Cbz7/IeBD7Ksd4OaJ1/A9u25lOtwFFKa2S+2Y5XbC8uDvhLVuQjvOaMcZpzd6tKKMdpzTTfP/5thYUjBWcpiq+UxXPKaqxc+OesCO4QDH+tsK6BfiQlyIv3sIQpFiYRP3HyHSKQMdQCB1hkLimKIvzQJUnmCsrdSyqBwYbHKmiDmKh2u6RSItJVJY5EYOqDC+rUgsSVzeg1i2kEgcY9MNQh69eCeXHD5EBZe6b7G7bjO6CtGwz+kKyDhjafski94ox32JkxZ7sU00eWm8RDvy0WSMuTWUFExPGpImZPYoKzuvwQhF3CnTWDiNPV5FpjlJNkzkjrEWtYinRrlm76X81UuHYaNIYjKzRf2M3QqX2pOk3RZPmhb3pvP4SDRVTjtrLPuGIdHhybTDCbNGXa1j7BEeOffXrLUFmYzJyQicPuiUFrnJMRiUHRC4w7SzFm1/iOHOarFdbwFiV/oIDSXpFhqGpjiHkfILwQpjoG97FQcp41HAWGU7p3a36OQBsk9LNU4JV9hY0sY+7/gwgvpQyIlTkth3cCrjBBsb2BtrMCXJ8cAPICqohGfm3oxVqpK9cAhKFUyWQaMxuE9r1JY65Xm0PAEEqsrokeew8xQ7M+QOtINt0HkRBLjKZaV+GYmUeMojyrfEOjZpkuYbFgYBYqtCVm1BS4ClyEvVQgGwEiDpvgwULfUWGXMKhcLMtYv1fyFB2Jv2eoCgGWUkt/0AnVTw6uGCpidNji9LOMzT2jdL/akWFQum6jmry7KoaAmfmZpHtOIQWgIjw8JUnBQQmzqMKKnIEcQ1l2ykjG+bQdJbtVNG5QrJcUnmWpiuhTUxzLJMaOWCUAo8MuapU7bHcHaMMr14mkUsBJK28ZDGhzzHcs6XMiminPls2CGT5RKBLRGJIHNstGVRuMMZkGbQ0iD7YEf2bSw0hlQGYJpFX5glsTOJF1RYyUt48pv03AuJM3Qxu/xZzrgzsHCiOHcU4v5LSYLXS7e0GXwPiNixbQR3LUe0JBkw34xxXYXrKBqJJpQ2JdshmAixq0NMhDYLHAYknZJLVW7J8CflCujmVt+ZNhilMLaDkRKBJMr1QDpDGBgzkkp1hIacYZ93MaQOw/Z2IrNBV0LJVYz6Re/XlLuXjXiNFU7jWJJ2MI3qLrKjuoCMp5EIjB0i0g6y2adLin6f5XmLXztLu3ArF/Ho4mNb899kA4Dm2YM9ZL+pcnBTXdW1WD9fB4RNFqIhy80AKDWyRXaPhOws7+JY68h5392vONpbmhTbg92DinczOt8cpfhsO+tiqW+t9P4dAdC0WyPa972IuIEuTZPMvJpFbxdfeGGZz3zhcY6vdpmuevzsbdNcO/+L/ER2iKbrsbtyEQ+tHOS7Z9/Gv5x7Jz/55y9w8OQ6d+4d5adfvwcv7tB838+THnwQ/59/P8E73lnIkl6IV2zIag33dXfivu5OjNbkJ46TPvUE6ZNPkHz98QFgE9Uq1v5LsPdfgrX/ANa+A8hyUZe+fLrKr7/tUp5bmOPjD1/CB48/z78duoe3Dt+P3JWwtrGfxuFlog/9Chc5Lpfc+hqsN/4eD3nPMvHkR3nbsYdoHX+YeypVjs3dyu5db+O60Vfxg3t+mHdf9y6ePvN8v7L2FT76wm/x0Rd+i13li7h54lZunngNc9UdzNT+bmIiWa5pxznNOKMZpWz0Nn8y1rspi62Ic42I+4+tstbdWulRUrBzOGDPaMiesRL7xsvsnyjjXgBtF+JC/P3CGCwDvojJshgIkNLGCAtIil4nBLFlcfLiSaY3AkbaWdEr5RW0sBN2mzTRjLdfohaNsc0Eg+QyRTCahyyUAgwaIQS1wKZrMkI85nfto5JmZCcLufvA1RhRGBIrKRk78gwizRC2RDsK4wqMKVaiAweyFCbLOY4/SXujgxZ64Mtlq5zttf1YvXOsO/WBEEjXn6LjTzECJN4YvWSLGiSlZLY6giNPAClD9ixwYmu8hKA2fjUza2dQ+TpHdYtUZ6RSMWFVCNOI2ECoci4205SNJrUnOO3tYZFl6C2yr5pgyZBt9jASuHrXv+KEu51aOMnE6mEe6BxBZg1GvITnpDMwVQbTp8wVVYzRksuuYBupWCFve2gpKFkKmRhyJRmmwoSyUMJBSMH02DT7Z95I7Prolz7DdeFFZGIawZNbSKefvUZVD2MpxkYkpZ5GdQpz5EhUsB2LLXBuDVb7DQrTbkGWYukMjV2IkGwKsBiw119ktNElduvEVoUNDI4lsfqr/QZJwxmiSooQkqu3vZFe3uPrK1972bRVwgahSMbGaI2XKT9zBK//HAhkhZEqZDUJbcjLJaKbr2Fy/llEZ5UNNUbmFT1Vgx0bjLBgjiFisY5AkCkP1c+vjLK4aqJEyc1pAeXuaYatM4wOOzwZgGUswOBJn7o9Rduk9FKNkhLHUed9x6bIhyG3A6T08W3J8+kaDRJyasB5z1IBpfUVPFGnbuVYs0PYc9Oki8tkyiaVGl9LfKlJ7QqrE3NMN7qMRsP0pI8VdQgpVP1CmSGNwBEKhAP0kAiqlQp1r4SR1pZOjKFf9dFM+gm2yDmUVmlSAtMkNYZIJ8Sy0hdUaVLyR2lVRxmeHKXXOwfrEdl51gqDkZYKT9o40iIdHiN1Hew46Y+KwZVDnFjt4gBtQrY5o1T2VNgebOfwWqd/f1BcPlXhsrk6X32uSuswpE6VJBUDsRtHuYROQCvpoaXAczRjZYe1ZnFNKakQpnh9nhvQmhvmhlhXYlBBXTdpweBzApwdb0CsPsp2ATKWJClMenOci14aAD/P8thfuoUoyymrUY72fRMRDq1ghl7gQwRjVpnjYQ3VOgf5KuNWmXZl+8vm+aYjJIDyhrf60YxBm7yg2g4W7QVKOrDZk/YNUvk132YxlmhjBnRdgO11h8BV1JyhwXd+Y2wypCp2hbTvSP+NQG4zrrZfAQAN26d59Y/z4lKbJ840OHjfGo+degRtYP9Emf/4pr28YWSV5778g/xIkGDZAb5T5mjrCO++5H9nTN/K9//hkzR6Ke97/UXcdekE2dNPsvGLP4deXSH8yffiv+Vt/6OP8kL8dw4hJdbOXVg7d+Hf9XaMMegzpwvA9vRTZM8/R/fhBwevV7NzWPsOYO0/gL3/APt3XcSv3nUJLy7O8YmvXcqvHP4e3ibv5V9PfJHdYyu0O8M0VudoP3Q/8d98geGJSeSdP8TSTZOkp/+Yu049gP3UZzj8/Of5fKnM0vabuOqS7+PS0tX8i90/wL/Y/QMsdOe5f7GgQf7+4Y/ze4c/xky4nVsmXsPN47eyp/qt/d8sJakFklpg87IH0TeJKM0524g4ttrlpaU2Ly23eeTkBnc/X7jV20pwYKLMlTNVrpiucvl0hdD5zrgFXIgL8R0f/aZ3kRtMmqKFLlbBUYXEtJLYRjCi11mztjEzrIlOFYmWVJtNDArQyLUW0q4RnMdjyzSMpy6HypeRmkNsH/I52yiUyCyhSEanaacZur2MEjnWII81JJmGPEdrCVKw5I4wiqHlz9DMTlP2wdJN9pWHaAmDrbboPSuqRiOc5LuERSgd1voA4OptVU43mlgdD9CIcASTbu1vaNtIIfCKAg2BrLItnCXOI5aigkpnCxslBFdadca1T5ec7dVLWMpLLCUJy5UD3BS8yEITgjRl3tlJqfRqZtx1bh97BoEglA6+LPq+YuWyZ/bO4rPXjvHa0sX4tPj6xiKZUOepUwoybVgsTwMRrpLsro+Q62FOtI+RWx4ybWHFhmrjNMGBG7BlTl4tc7M/xtDUTeiwSMKMV0ONX0XY2VoA6w87UPRdgcCxDL5lGOjxb0rsD3JC9TLlRyj6osg0sSkocY5lEZdDvG5CkhVVsEq+QRyvsaJ7GGerAgCQKwWkoFyc/o+SFlpvJfqqn+Z1d+0glyeLz/QslBI4wh3QtIadjFUhEVIReA6LyT60M0dWybcAWj8uH5IcGJak0cUsv9imA6wGO7CUy97xEvW942TxJq2sWMBQUmCHPhfXxjjKC+RGYOshEtFCia3KpPaHkb1iEUKGDiQZkQjwlU0k+85hskh1G2YZ2F7YD1CMuasVu6w1xkxEOxZUjCkqP0IwmTpMpg7oYZaqJaRbIpq6CBEJ0uwFhsU606JBV3ZR0mLO6dC2yiQGyj4MlxxUxeVZISj7LjIR+KqMkWW8PKPUPktV5CSyKLF3jc+GMYzbisgJOGschOVu0V5tF19ZWNIGokEiDwzAhEEx69S3FgQqIc5KRsmp0RKStWSabpoy2Z8TlpFMmiq+YzHpCpZbMH/pPu4cL7FvssILZz3KVZf5nkWvXMUa2eqprHo2qY7ZtCQ8H/RYFIA0Hi1EgoTOCR3FKpBJn1z2yGUhJpLVdoNXYyKYZKE3P/j8+v/D3nvH2XVcd57fuvHl1DkA3chEIBghAswiJctKFiVL8o5sjz+2d+SRTY+TtJ+P17Y88nr8mXHalS0tx/I6rO3VSLYCbXlkUhIpEWAACRA5ZzQ6p5fTDVX7x33v9etGAwRoBcrqHz79wXv31a1bVbdu3XPqnPM7UZOJukAIhWzLZWhoGihFSlvPvMoH1xWCqpHCT68nJn2ojSEjHVjVI1iaQXd8kHI1mOe2COITXeUTAhLhLjpEhEEtgYZP0W/Mp+bmhh3H1gVSs4jaxhLrsiIRNtgWznD+nGxtEkQsnXgoeJZCut0o2bTYLzzXzRg0QzeI28F91YXG6k7FpRygZGtJMKqzXA9CqeUM3wFmZorX+umGsFwcl+tLPndgjGzFpeL6TBXrTBfrXMlVqbrBDVudDvOWTV28fXM3w5kI+snP8zeHf4+/SERJ6lEKfpXeSC+/sPE3+OcDIb5+eobV6TC/987NbMzYVP72r6j+v3+J1tdP/Ld/F3Pzlm9L27+f8P3c/m9n22WxiHfqBN6JY7gnjuOdOI7KBSZyLAtj46ZAadu8hdraTTydM/nnY+P0zb/EB/Vv8Vb9AJrvMzW7hspoGufcVLCTftsdRH7oYWJ9WeTFfyQ5cxwNOGuafDMWY2pgJ2vXvZd7ex4gZgaWu7naLC9M7WHP5Lc4OH8AqXy6Qz080PswD/Y+zJb0tgVa528j5soOxyYKHBwtcGgsz6mpIr4KrGy39SfYNZzm3jUZdmzoIp+vvnaFb1CszPnvDV5P27u64q9d6A2Gsd/8JS6MPMdF3WM8biKyMTZ2raZQmqBmzIPvYDgSPzzIvp4Q3RMF+kUNzbDoc0KE52Y5H7UQvqQarZCaD1HuXE9vIkpauDjpXqpenm903MlbEicZrEaZdE4S7u3h7AHFHz+fJyp8PrBxAL0zwelhmw1nr5C/mKOelbx7160AnL/yLC/3CtRokW+6Np6hiHZ7rKOMOTFLLm2y6/Z7OXfxEpphU5rp4VhR4ydGv0pnTy/7ixmenkhRObUbYQoeeVcKoXwOjHtUpYECohuilE9mKR4tkrr/HvQYOOOnQfloUY1QfxArE/nqJO/eYBK3oSsiGClIRgsKI96NHu/gfxxzeV/mHAA71qY4Uuvjn8eTaL7Do/qBq+7B5455aJqGruv86KYgyP7X//RzfPpTP8tEbA1ddp1cWuDldLSoZO94iEdGT7BKeYwUQNMNKltuYZcuGHTLzIVsJg0DNzOIZW5mayecOvACX9l7jryKkc3O855MB5nufurDm3lz5wiinsfq7qDL6mNVOMnR4xe4nC8yRYlHI5JoPIbsyHDhTBitS6d3+gh1M8FfD7yDl48eZrhWIzmwiv/4UJLTL7/M8OQYJlGSmV56hjuI9Lgce24fR0aLWB0DGE6Fs9UYs9s81vQM8J6uJMWxCCCYV3OU7FNcnosxg9CV2AAAIABJREFU/OCv8eCDD/PEs3/KK/v2MnrlCnk9TfVcoPyZ6jyrb+vkbQ+/hU2bb+Fsts7OydNEx0+3xvcbobdzJVzAnzyCVwzTk9mOMZyidvgUxWKRW4azpGWJdbF+tj3yk8ipo5w5P8Lo0XHm+lYjj1/k5MF9/MLnPsvnP/8lXnhhD+/2Jkh39/JyfhTbK/Kb//l3OPzNf8L2HCZ630s+e5mqV2U+l+PKq5PIWpG+iOKYV2D7+n5uC/dwuWDiR3NkIhmOTeUIi8PUzE4uWfCqViBUy9GvR9iWjWFIgecM8P7hOcKRCKWoYjrpUMj0M3ylTKVSYcZP8OX5OzkyfoXb3Sy3D6winRljsDxLhxsit8VjOix5k9vBfsMjq3pImj5bT5WZiKc4Oxxj/Y47MCf2c3KqiK3rnL1wAt+f5MFZAyHSRNftYj53ij3uNLNXiqyZnEH3dAqeSSKjM1ess6dXMZBaxUMPvJmnzuyjMFfCmdHRNR1n/BQAHVqcj2xczdhskX8sbya+9jaSiSSJymXCVp4j7hRl3+CtwzHqc/PcUqoTy3dy6cwpIrOj1FfF+dt4gpmnXmXv3r38H3/9m6SOXMBNDtNrpuj1TvKlZJxStchDSkePhXgxbXD3SInOsEMmtYEplSYyeono6SkyW/vo6erhq8YmkknYPH4ItzLHyViVsWKZ+/Uqf7/3Cs+cdwivC2N1WnjFHpTqxZk4i9nlkdyh4867zD01h5HsCWIsB27BHtiMX5hET/Vg93rUx09THwucRyPro9hC8ivhlxhLh1n3gY/ziU98gl2DOmtSki7H48WX6nzroiI6bPG+22NIN4UI1/jHchdSSapf3c97b7HQNA0nFKIwZGP7cCByK64ZAwVKSma/egzlXSJ1X4rw2gepXkqj3FdwZ4INjsKrBRJ3JVC+orA/cMFO3hN4F8S2DqGFUkx+8QLu1Chm5xCaXSY6LAlvfjfd4Rzr5SUG7QrlI+M8d2WQU6dOLfvO+a5vn1ddn384NM58xSVkaPTEbbrjNncMJrltIMkdAwk6Y43kkLUspa/9Cr9R2s+RRBRbsyj4Fd4++B4ytcf43784g+uX+PC9Q/zk3YOIvc+T/b//BDl6BfuH30H0Vz62kqfsBxxaPN7KuQbB7oacnMA7cRz35HG8k8ep/dOX4R8+B8BbEgl+ePNWqms3ciT2Uzzuf5jB4h7e1rWXHT0HcG/RuDLSR+XyKbw/OEjOsqnvfJDIo79IOjFGz+Un+V8nj6Jl/4XRU1/jW9EYY/130b/+/dzb+zA/MvRefmTovRScAi9O72HP5HP808iX+eKlz5O2Mtzf+xAP9DzE7R13YmjfnsezI2rx0PpOHlrfCUDF8Tk6UWBfg23y089f4tPPX6I7brNzKMWbN3TyptXplRi2FaygDcI0aVBvIAXYQmJqGlURRTDfKBVYvEzhN2gNFFITHF7tk7DByAsMwJA+Y8UQse4gRiff0UO8GWie9Foh6xcjg6wKxfAoglMBywzqbyRQnu5KY1/MLWpn2BH0zIcpFArIsEA5oKSLquURY3W0dEBv7kqI+hpn6gl8VWSyBOWQouiBN3upVZ9SoElF5VARtkYDIcY1mt1tQNJMHr3II0DBZFlSdKArojNaaPK5N+JlaqWF8W3sqCtAqxcgsnj8T84sjuM4Py8pOgKlWVRHHbgFdA+iI1XyiYVYnr1jPn5UNixFilcrUe4I1wIWTOVysSfEoAsVgtgdlFrGcanRVaUR1koUWE1HdwIz1YNxcRQtrzDbwoWVWrB0eV0mF/W1KAHm3HmIDhD2PVStTtivEvarSGPBO6LpbiUV1KsVyr7GU26MR/J1ejpi5FKb0ccCIgKr+Y4Qsu3ajV398xquEQyiN3YUIyqBTqJWGmUY9CYE9fEq7RJS1ewAiriWST0cxkumab4GAr6QZh6oIDZPEwI3nGRsKMp9sRnOihpL0Zwiz8/HeCRZxNAMIutMfC2EkYWM2cdYZh6zsHgeS7+C4VYRYdVG6a9hSIUyFijKlZunqsNsCBLCJx1ymawH6bCdSARFmSkjSZ8IM7cmTWlyGm3Wp2xaoBsoR6Irn6iKAbOELI1elWa145DK3I9T2o+vbLqUBpSRSGTTbAxETYMhrYuL/iH8NnuHsaaXkZKg+JLP/vM+xwyXBxwdc+FUlNeMn1OtwapfCmGEFiyKji8YqSc5lhdggKaCcQjimBb4FOpKw0PnRHWA+6m36lNOBTkz3yqnlxOcDEvKI5NsHZ6nai7M9uY0kghwNUQIogZYPpSMCHOaRgbIrR9gfi5NSmRbdEZKgBA2kmprziysD023YIEsFaheDuFMB9YvLx9Y22XHIKpeCZYRKSifyuIXdT6wKthQt9LBJqA16zK8ZJoJqZg8V+elkeA6rgtzdZ+kFGjuwqZz1YW5qqIrCk5FoibqxDwB65u9gNoVcGYuIXQPd87F6svjzEiEmF5035xpp9WHRWg8v0oGg+nOXsZIGkACoTfoSBrDUXkNkrfvuoKWCJn803+45/qFlIRTf89fHf0jPhs18EPBJFwT28iA/36e2hMjX5tk13Cajz2ynr65K5Q/+ou4B/ajD60h8fv/J9au+74LvVnB9xuEEOh9/eh9/diPvhUA5Xn4ly7gnTiBe+IY3skTGPte5k4puVMItLXryW94C/+Q+XeQGWNd4hW2bjqBPy+YuxCn8NI3ULu/zoVwjGcG7+TkqvewoWuKt6jn+WD+NFb+WeZOf4tvRiK8GN7IxdBbSRv3EDc2kDY28bbwT5EXR5nw9/HUlX/hKyNfJmrE2dn1AI/0v5m7OndgLUPt/HoRsfQWs+XjD6xhplRn76Us+8cKPHNmhn86NkXU0rl/bYZHNnZx73C6Lbh2BSv4wYRmmZCIEcmC8oKEzwpJXYQItZUrpSMYmsuUSGJ1elTiMTSlyKY1MgUNA58cMFuxMXWDbGcvKRPWag4V3eOkpegNbaLuFDGtNNvDUca082jTp6n1b8GJ2fQPDRJ2C+RT4Fl99DgLO7BSgOlrCN+lPhvHyLiogiCacyDrMesKpNA5Xg5TnsqgR8CdyqKAYoNrQDVyjClPITxFdKqG76gWCUDlYsNiqljK2I5oUJPJaqCYQSAYLSkV5IZrc3Nq9zPKViX7c5KoCZu7NCaKisNTixW0feOyoQwqpBM4Nz5TinGfDDx/zlRtEBKxZJ/JQaNcN8EQaEriGAIcsHHxhNlgh1vo1ytKMRSOokWTzCTqxLNzgeCkaZj9nSRsQcgvowAHk4iACkmgSlFP0S99ClaQe6tdWFyr1cg5BQzlUVUNohArjdfTz8nqBY7M1bC0GFEpYe4ieo8JrMbXQ637oAsjiH9qS5zbdLsKwvEaHZE+qgyhkTCD2ioUkqi1zJqu6QiC3G2OGSasR7h11RDfnJxnIg9DokqaMkIzUPF+3J47mCjnCE2/HAjfy2R2asip+Eqwe8LG7b0bOfEcnl+nNxFjtlKhdyCNdeUSF2CRUG+4JcKaT1S5FAjUkv7CCFON0B1bh+GYou6DoUnSZjDR1puB65ilO7gSilqYvsZEkCGT0aEu6ifM1nUyokqUJJ1umLAymdHSCDtBn91FtmcXXqFEJQ61skLmK8gF/2JSZpiItDGlS65xDUNa+OkkXiXPWL4HWZ3Fa3caUKBqEm/OQ/UoBBqGU0ZWPZSjofwIoqk5VxTjboK6LKHVi0TdHBkRIixLoBkLTr160B+9jSb6tOdxzpTI/MKzY9dsZs5IwnoRz0wAAuFqrXYBSBXk9dMVpEWEA0PdxMfnqAtBwQ/j2Gtpxm81AvCCNkioKoOhpKA7KkjVXVTY4vKlKkYGUJL6ZB1hC+pX6ovmSe3iAbRQDD0SWKKS7iz3J84CXYvKnZ6VnMv7/HJkHbVzNRiMMl6C+WlJ3Q8a4kw4fK0meWdHgROzLtyzEK92cFLxQwFnG/sOu3TFLfx1wXnVszrO1CT4LsoP1r/iK69QPFYkcUdiUTuqF5f3Nmq5qbYRvKlGokFZDaz/rQHzJNfDGyIAZbwyxsnscXzlMTP+Ii9PPcdJzcOPBRNuOLydcOURDr/axz5P8dC6JD+5Y5CtzhzVJ/6A3FP/E5FIEP2VjxH6kfcijDdEt1bwfQJhGBjrN2Ks30joRx4DQFUquKdP4h0+hHv4IPFvPcW2WoPOeWiYsVt/FjVkYt0yxmDxEJyZIHqpxo+eew7O7saL2kyt38CfbXgMLe1yq/tN3lE+wvtLByiLg7wQDvOsNcxu7z5minfg1vuB94B4B0b0DG7iGN+oP8szE18FGSLi3kqXuJvV9u10x2KkIyYxyyBi6YQtnaipY5tag/ut5UCOUoognjcIdvUa/0sJnlKt41Hb4G1berhnVZKxXI0TU0VevDjP06dmsA2Ne9dkeGRDJ/evzRCzV56vFfwAQhP4MRNnOsoFw6c/riM1DSsRJ1uxKQ046A6s9qN01Cq8ku8gsq7CfCiFLFlYTpXigIfpWTgXFdRd9lXWcU9kiHEjwU75Kv1Whh9acz9Dg+t5fs9z9ALp9Xcy982/BMCX4IVM0vEwHXMdoGCEZ9HkggZUiwj0WhFVnEF6XYCLLCjMqsQFCp6gmOnDcS7jzVfxZqt4U0UIgyznELEOZKXBnKggeaGKoRaEDenKhVgOV+HOj6BZC8Hufi0o6867zJcV/3LW4+0bDE7NSp675PPQsI4s53g6P4xfXHCvE41rKAVIn3PzgfBypaAoO9eMxGgpdkpBWeqMFg3qcZOCaYCsXWUNEwJyDQa4stKoG6ApwQxpirpAauaiULEaUNZ1LGVynlV0OOOsaavPH8ggz11GaYosCeLRYUp0AJepajGmS5349kLqhCYsDTylc3A2xbruQNbxQ32469/GrPc1fCVo8gjq0kc0hDlPD9HcrvOGulFTYlHO7G4tYMZbROmtAjZBIQNSGb+RKjuldwAjVLQYmvJb9QgUWiMf2JvXDfPSkePAFJNampwWY2PDcmdk1rC+eJ7qaGD9Wk5BG7d1jEQETeQpOBoyMcjMwJuo2QnuvhJhQDc4ZItWnGEj0oXZmoYvJZYOfWadQqNPUbdCxQJLwlxExxBgaBA2FoRd0ysDUUBRxmbI60VZKUqijiCLaG4GKNXYYwjenCnfRhkCjBBSGGjdPSiqeHEdeyCJvDSPm1+w9D0Y3YAZM8iveQufOfAMWBUKtkFfxSSc6oGGpVP54AmY1CWrAFwVWM8k2BM2m80tvHB+D9XDZyGykHcOQGUXPpvZy2hsxRCStMyR8isc9CugJfCFybq5LmYr02AF2p1fV0yN1vFKVysCzXG+Ug1jVS1ERePsRpP+kI4rBDVPx6gFmwaObWL6gUI15qfRjD6gQScfUThVkFqQC26iZlHzBI+saSixs2Xu6qrw9LRHLT+JBjiXa60wTaUWdPLKqeeJ3fFO1oaKbM3M4kxnIdnFq/MhRsujJOwQ4696WLbB71nd+Dmf8WJgQTtyQaI3afQleHMeX5h0kVLSCchakMcuV4eCA8ezgroPoyVoUh8pfzFrdvlkGVm7vhLVDr/qI+vzaJqFV5xrHZd1iZf1KL7yDYz+BGKTju0prNxVO1eL8IaQtP6vg7/H/vzB1nclDEy3n6izg9nJrRx1kyRCBu/c0sX/srWTvmMvU//9T5E78CpYNqEP/jsiP/UzaPHEda6yghXcOEQkgnXHXVh33AWAcl28M6dwDzUYI7/5LKpcxgEq/QOY2x4k9MMhBqNZnNOHqJycxTx2hIHDxxC6IrQqSv6WXbgbMzjWFPdOH+GHKidwOcGrYZujA0NUVr2dns4fJiRvJ1d9H7OVKmeKB7lQ28usdYDLYh+XfQtvbBNuYRte+RaQ3/mUEb5U7D4/xzfPzqIJWN8Z5c0bOnlsex+d0W+fZW8FK3gjQ0/EoKhR7TbwdY/ZmIl/yy3Ypy4ihcGEHiKd9SknoqhKmDsj0xQAHw2FRkVapPU6M06NzWN1xutFNsyeYm3PXRQ9iFYshOsynOlaHHRuB7vcwRfJNJ2onttY757lXAFydpiehsBZGV7L/MQrmM4EZ+dBhQKhqjQ3ycSEy+kphXU3hExJ5eRp/GInqFUox4UwKKeKN3oUvAVBe7QIw7FAoCu/UkApRezWGHpYR/kK5eRxZxdcFesj9YXNdSBfhxev+AzENSZKiqNTEk1UmJt+HoBvXBC8Za3ecnGULLjpAcxXr6OctQYJPKeGrHkcLkXQJiKEVjkor06oPXuzUkhHMBPVuFwLcWpIojTBy9V1DNg2qtHwpWqGauyKZ0mRUIstTyoR4aXIAHE3H9wnMwQIcp19zPasYqDSpPxeLOjVYrdzLneCqJoJfo2G0bq7QdO4lEhyWSnWNpquA3unIzhqI1bH/WSSPkL6pHpc5qdAeguiXI/eS3qqg3HGF/W7OYc0oQWU9QLQA9vvrNHHbGR9o5WBWtiLw+YkaEKwLakzNleiag2gu/MYbaQea9M257SG8rhMDPUpz6YjalN2RWtcK5GOxjgHR+7u3cVR7QpCXcaVcGne4dJcmYOdAzy0sQs9JJDVacJEcRH4KPavjlHzHWQRSgXFLTFJ1jWJGR5Cgid1KloH++UqZOROurv7KBdeJM1lOtQqArVAYiuJj4amfGQ8ikrHUFbgGmpsvRWOXwLggZ6HeXFbkck2X1ZdaGhCYJsR6tIggaRq6WTjq4hb1oJRuJGcrdaydAb3on6xjqGbREUMa9bGn/FRfVX8yjz+VB1Zl8Tiy8fraigMJLgKbOjy7qbAMVx/ZlE5d95fauQO7pUSPD+XwVWNjd2KIO+bFPpCyKKLj2DKCbFeMxlIGYgGVf1UJEFfe/2pEKN2FL9aZ75u8sJYjHvUWSaKigMTPps6NdZnNN7WPQvdV6scSkHZhXxNUfMUg12zZGIOblWxZ0SS9dIgfTSnyOxM/qo8sqNFcL02LW8ZOJNnkX7Qfqng6QuKcLi5piqcqQjGKlD+4k0Uv9C41zegKRWPFlF1RXxzHF+OgO8t+r16toqm1TldKzC4aQjb5Y2VB23vs19hOPstPnvhBfYMuOiGYL72AMXZ9yHMR0AJlB8HaSOUpFOr0Fe4wtjev2TD3AXWR6MIz6UkBKOeyxeyOf4+nyN39DD8zsfp6Ohgbm5BazVNE9cNFlxd1/F9n0gkQqVSaf3e/H/Tps2MjFwim80ipWTfvn3s2LEDgEQiQaFQ4PsBzX4eOHCAhx9++LrtFkJgWVbD5AqGYdDd3cPQ0Br27dtLvV7n/vsf4uTJ49TrNdLpDBcvXsBv22UQQmAYBkNDw+zceR8TE+P09fXz2c/+DVLe+M5DO9rHXtM0YrFYq10nTx5namoyEBIax8+dO9tqS8v/vvFZ13UefvhR5ufn2Lr1ViYmgpfWRz7yOA8++DAAn/rUJwHYvv02jhw5zPbtt7Xa8uCDD7N797d48skvsXbtOrZvv40nX92P2LwNbeQy/dl53lSpsO75F6lXyuSBuqbjDW9BvSlGSBZJOWWqF6apPnWO3FOgGZJQxqYyIGCVYJOos3P8DIyfYdT4FEeNML7WRV/mDn70wcc5cCTFoaO9HM0eRq73uWwdxxg8ii4MetUwtXM6draXwoRHOpOhp6ePk6dOcMstW3jXO9/FyRPH0ATcvnULlqxw7tirHN2/h7BwOXP0FWxVZ9cdt/KWB9/Epz/9KZRmYsdSeKEOJh2Leb2DMWsNWvcmRLSDMzNlzsyU+bMXL2Fr0BeB29OKn/qhezh/+GWWc6tujvXu3d+66njzWLNMe7n2Y0vRvG+PP/5L15tOV+FGrncj11+u3ub8uZnzVvD9gfC991J96mVUdkEZuU1fy3NcRHgZrhRdzmcrqPggaf8sPgJdq+MIAxPwlUZnyaReq2O6gXeLoRyEgIQJSwX4ZaEUdWyEGWqcA45ucDQc4eGeXrxEgtO1TiZnHU7MT1F3j6MnE3jTdQ5NgOdBxwITPbI0iXQNVHaMs1KxLnm1nHN4Gg6Ny8Abp+HSWD5eRljBg+5mXfTIgmBeH6tj9y3eOBrJK0bywXvj+JJYstlKcMXLeZ+CpeNKbbHr42vAifRyZl4yOjGD50lU1QA9iLeVjsdEWbE1FZR1paJ2ZIQLwx3ErTixcpHLZDA9CwHURRiEhrPk8s20AzqKklzYlHL772Fq1KCgTyKVBziEzSh44Fk21UwnFwpruTVWZ65S4nB7pZqNbLg2zpFCrbmHHsNAmCYV0+QyEDYt4rJGDgi7Og4WSjPo6OtGFksM3fYor+4/walcieHrjtLy0utU+k3o4wHxgRVK0KGgplXJAnGpEW5IiBkzTLrWRybdRQYPIRZimmgI7mWrh7GBEIcOHVx0jbG8x8FCF/mJ3aQTi5UNvemsqQcXyrtVLmg2A3OBdabq69SMFKYBKSdKpyY4Xg0hL7okQnmIF6kWfOZHfI7KMJEeiyEXepHM1lLMxrYylTVJCwsQFM0kIc0ip68l5pxEFabRDIWFR1XrRKY9SvEhIEeH3YXQdXRhYGsWpm7iJWOoRApUsPGhzAh49YDcq0F9qHs6WTvJkGgwIIoF5WFSl2yQcCwmUTmJn/Wvol73Rg5hmiZ+00XuGnxKF9xOLOFRGgvj6z6htVBEp7tSCfLvAZd8j2WipFpw1eKtCKUHtkSlL8wXP54IWDMbZcejyUUKGkLgmTqiAtIXzDomL1yRXM76SAX7xyWzFUXYWF4biZiwPqMRswIrpicUY/UoZybDjBVVEIqqFKUjwbqrvY5UWUp6LKFqbPtR4ZdNvMtpYHbBJ/cmISvBeeXTZYzUtVUr16flQl31rlkM+C4raMnaFbZOfoEPpA1qeoyKo6gUX+ZiqcLEFYfpS0W6kzG6/TKPdMS4zdQJXxlhsJQlFLKp+B4vK8XRrh7+9uB+ypXvT9azFXz/QwnBqGVxxDS5smETj73nvfw/v/uf+f2f/WmO/f0X2VKtEXr5EkJKSoAXjpDLhIkkoxSmRonMK+LTIcRBgDjzaYfEmiqhbpeH4hUi+kWoXITPfomMpnG/IVCdAiurgeNzJGSzvyPNc9YZxtZrwGkG6x47qg531n1+Y3OFPu3LhL/535BuHU15aCPBAvJWoLXC9jZ79BycfI7PPAJQBQo0XRiamK7q0LEJf+gBvnQlxhdmVzGqurhUElwqCZ78i33YmmBNHLYkFRuT0GmzrMK2ghV8v0HfdA8zz3SS8wTYVVBgi2bch45VF9SrDlURobORVvcCfSR1iY3LmNSJ1nT6C1AXfoNCZAFeqB/TPQ/adazSDcVlqVDnCkW9N3ioFYImkbMqO5SPzUKZFumQV1qQCoQAb+o8uq5zeApMoRjJXy3IOIs9fwLLWcOyVR+v4865xLfHW7/dLPaN+ZQvKwqDgReMX8m9xhltEBoHJxSp4YbCOFVBTYyhRfvAcSi6AftjxNJA6Bj2LJTSXMmE4XSYSmaYdMogLarMGJs4WupioqwRaSMp0d0KAkVS1Bh1EiQYREu+ibWxPlyjQUgiLdJmmpAZRvg1MjZEknDG6KJv421oRwL1TJPBYDbFzJKmERcmskHdLVILLm5VTeNwOMLCHWvEsty+g7WZMMI0mVaD1NT564/RNYRTqdu4WpSSnsDXQwyFwPAzZLmEKRfPQ11pWFoUc4l9UfjBJrgUOlLXqS5Z8AVge2XwF8yqt2fupObX0LgU9EgTFDdv5cxX/pGR6Vku1MvYdmhRPT23rmeDrvH03md4NR9iQzmHXspTL0rcKRflKgzLomIoLld1tqIxGRmmOD9LGjB08DWD4+GNdHqRIIZ0foSQ4RIeytCRDDETuw3b0Ni2/T50OyBuebD/EcrlQCG7p2sX4qzGSe84AO7Qo61nzXRMEnmLkBGiFA1cSUM6aF4Vf+YCbraGtj7CczGJZmtky1cTqtwMIpUZ9qthPH8SUc4HY+TmW256I6bF+SUue68FoQShYhxVqAJ1hCeI2h0M6gmmnWD9iLjBpn+HWJC/Y65FEYWsC5zLBxktq0WWrku5ZYJV23B4ShI2oOiAnS0Q2Xwb1cql1nrnl+eveW71aJW6W7/m7wDurIuRuYa6Iz3k/Bgy5oCmI+vlq4q0pxfx8tfXqsonyohrKKPN8726wKgInj7vkxm8dl3fVQVtJraFL2/7K/7sv3+aPc9+g//U2cUGw2GH2I0tBN2GwWDVJiYENNIDzITCPOW6vOh5THZ0kisVGQqFrmfNXMEKvvsQgilNQz74IE+/coDwY+9DOA7hsStsjcYYffF51MUL2BPT9NYksLDj7FsWc3mNuYMWYcBQCt2WWDEPvUsiux38uI8WkviGBEuwRdW5c26Sn5eKUV3nxUiIF8MhvpoI8SVNg544w47LXbU62+uSTQ6sc11C13hRV30dkexj9+GLjBYkWS9ETYsyNluiVHNZk9a4azjO/ZkqXaf+gl+QHh+xBHPRTRwP3c0XanfzYm2A+YrLqTycygcLVFhXbEhALjPJjtWp78KNWMEKbg4TExN84hOf4ODBg4RCIR599FF+/dd/veVh0YShW1R77yZx9BVSbpZUshvjli1w7CnCfpjEjEk1V6PIAoNgfP5+7h9I8rX8PlyKFPwQJa/MszOKN8Wgri+8gsW978EZH8cIL6EvbEcjxqJU9xZlRRTy2oKYn/MDL4mGXF34VoENP7+hceJCOQXsHQvWB/1mOIFkQAjSXlHxQPG6QspSnM8qwMeYPIdfzqKc15/uw511gVGqxyvYq+v4xWBsal7Qr6VCT1PZjQoHhCBXvXoHXVM+XdVRbLEOENQIXbXzpERgbRC2DbVaYOFcZhwz06fpTNno/f1cicex8jlUppduQF89fN28mJYI+hINWw1W0RvF4nU/akQpe2U2dsUYt6DkC+xGW/u1AWbKMy33w3ZIYTAX3sBoaiNrmzUbgSLl6hEgf0Ot6QgFFk43PI2qlBGGibJow/0UAAAgAElEQVSsYEzbBORmC6Qdwkul0SyLOd3AFYKEklQA/XwVd0xBN0xKm+68pAy8GL+DsLbwLN3W14Wev4I21YsCYm4OcuOMdvfgmibylo2kBjfS1xHH7lyIqdy1rrOVRiRmxjGE0ch9B0IzaLLQxLMJUlUduoL71xnqQgCR3CTKqeBXfGpnaoTvDOOP+dTP1zH+lXwJmvKhYVHqs30sv0iTa/D1cDBbUzaiSwOp42ctDOEidIO0lmZfPMWcGCPqF7izA46MLShFq12N+KjFoYKOcm7ecOJJqDjBcuRMnUPYEdyZS6Ak1fP7UM61lVnlqhYJx7UgL9Son5PEDYNOw0DTdWxNw2ssdDI3hhPNYDh1pPKoGiY+inorvlVhjtSRjkLlXBKahqMUteXkKR/k9cg/PEhN6Jz3w8xWFNdLVf3dj0ETGhKBLQR3hcPEdA1XKRylGPdczlkWectGW7MWa+utnB69wrPPfh2AnpWt+BV8H0FZFpU16wg/+DAT3T2B+9ut2/n/Pv1JiufO8sitt7Fr/XqsbJbJI4dJOnVsETCb+XWdal2HOeBUmGYEQVNs8YFiVDCVUox1wMVuQa5Hw04JVNjGdVzGQ1FGk2G+2HBBEQjSZoKYa8FsiaQL9cvjdFTr7Ood4N54L5HkFd69StBhKTQCl4Kqa3B8FkbqgsvpBxF3v4NjR15FXtzD7f4VHp7/Ox7m73A7t3EwvZlvsIvnij1cKEHVFxzJwpGnzwAQ1gVDMbg1pdiyoq+t4A2Axx9/nA0bNvD1r3+dYrHI448/zic/+Uk++tGPXlW20x7kYvoixqUyatVW9MFVpLa9nVGOoo9cRiDo1MqtXeyoUGSMTnrcCNOTOiVb8M9TPeTqExxP6qxqM9No0Rjaho3XbasoTAKwrivK+ExbDuSb2LJUNcWdiTuRFYkzdT0HqJuDrEu8YrDWKFct2nW+UXjZ8dcudENQuFNzuFMBqcn1EC6Mkgq7GGKQLWnYW8tet/y1UDZMitu2E37Hu+C/f+qa5S66NVKmh7n1VoqWjWNabNYqrHvfOzCi188PGBMuO4fTJMM3qJyVsxBKXeUyenfnPTiyTkRC1QYVSlNpVCmEWFY50xpzbE18sRwmE6uYiW6lbiaBiavOux6MTbfgTyYRqeVfBl5D5nMygRhr7byXS7YN5RKJnKJSrjPdFqPoCo2joTBrnTodSdiYgtpoib4wrEl30xO/nydPvsosYMhAwSgIwUT/AF2mycZNQzfU7rX6em5Jbmkl+W5iohZiNeBgMRAdZIuxjefdPa3fVU3hz0jk/M1ZttqRrM+QEklyQEdtHHHxIHRvoNPwaQ9oyd/ULksA4TRSU9cNVK6ASEVaY18xTS7oOluXnHOMW4iYZaazWTqmRrjVsnA1Dd0wkSi6GkqoBlx2XErSxxCBDpDRDWL64tlWlQp/6iQVKXFDITQB6VgUAxEkohcCTBPt8BHutm1MXccXGroAXdPQCUhzpAJpmiilsBAoJVs5FDVNwzRM/BbjYpn61GmsSBIpJE442HRobpYopaDp2R65toeDInDBVCogX2sbWXxNEGlcu3h8mpoS7IxEuLZt8HtIEpKXkh8buXzV8fXrNxA3TbYmU6y1VggIVvBvDEJQ0A1OSklvRycbH3oEgCcmJoI4uS3bCPk+m7t72NLXy9aeXi7sf4XixYuI2Wm6pMIslwgpRaqsSJVh0xgES0Ow6PvCo2JBIeYz32FwtlNxpl9xsQfm4znmhYDORnv6Aneal/D5Y8ZgR9sLSiqEVBgSrGFFWCjCfA371acJSYXWZ2DpMTrUdjY7HnfLImtzX+Q/qS/w70ODjKzawQHzPs7Uepg1OzgxWSRX9RYsbJfhvx1/nqQpWB1RVLumWdcVpTf+nSc+WcEKAI4ePcqJEyf48z//cxKJBIlEgp/7uZ/j4x//OL/6q7+6bLxDMZ5gKhpdsCBYFn7bTnhCOJzJRxmfqXFPf2AN6HBTmJNVnkutI+8FQmxBiJv2/xXVHGv1LOs7o4wDW1JwrjbZdDi5YViaRflY+XXFc1wLxUMBvf31LEBvRBheBashrBvaUq7Fm4AQuOn0a1q2JoCh0IL9c84wGB8aoisZwXuNmBTgxpUzQM1dxvPOX+XiaGhGy+V1LPEm1A3k3MyIKv0RSC+zPAfK2c1DRCIYa9dd83dPCArbti9r0p2v6VhVSWGJd5ujaZwKhbnP0AnpgVLbFwnITmJmnMEoxEwYka9/c8IWNgPRq33Txmsh9pb6WNsgw9CXIU3xJ16/cgZgyxoZrUqOYK5qbgXGDmNEPoiv60xFotSGhqmNXrnpugWC9KzNxPkp5kvzhDsSyFD4Nc+qRGJkcVG1Ev2GgYfAFx4FX1KREh1BWBMMWSaweP5edByimkZ3Yw0tyyBlRkTT0BDoAupSMem7CAS6ppEyDHDqmEIgAYeAkRoCKUgRKISe7+NJSU1Kqr6PpeuUhaCuaYSVwnUbm9cCHC+PGe3GrdVxSmXCmsBorI/tpEWi8Re0b8EC31z2dE0LyIiUapXVhCBqmHgiyINZL1RwHOe6xCbwBmFxXMEKVtCAENQMg3wqRXnDJkIPPsxsIsmRI4e5cOE8a9eu44UX9mAoxV//8Z9w8OtPc/iZr9NZqxLLZukRgqSUhOo1YnWfgTmfW88svoRv6FQ0yEZ0zlNmIqZwhjMY67rYP3mGYkKjnNHxozpKFzgGuJrG1Z7ZENj0qjzdfGknF15ahtqHrV5Bj4AUAmONSUYaIEMoP4znh5B+mJwbJiejHH75OZQfRskwurSJ62H+x9wz9MVS9EbTdMbCdERMMhGLTNTEUwJD3Pwu/QpW0MTx48fp6+sjk1lwNNm6dSv5fJ6RkRGGh4dfV70+GtJzF9G1A0QKl1GTF/4VLV4MWwdTXZ+q+QcFlSMVXNe9Kj7vBxtqUezXsiVuQDkD0IWi57Vk9e8ErmEJOpm3iVfgSvHmqtMEZL6je4Dfm/knQyHGBlcx5zi8PnU5gOmaGOUsh30Px77xgRqxbA45darVKp7r4rsuS1VRSwjSus6852Frgfdc/VrkHdeApmmEBMgdO3ipVsMwDOr1QEvXl8wV1w1o9pVSSCnRpcQwDHQRMIq6bQnCq8VZBODnZ/CVpOKDaBCGqJtoo67rres1IYTA8H00V2u1sVaroZTiej4TKwraClbwfQhPCPT+ASpr1nK8M0jkOKEb9PX1t5S4+3fdx8/96Ac4+uUvEBofp19K5OQ43uQk4UqZeM5nNSbkCJKBPF/iJ9p2t+rKoyAlOd+nqCREI6zespn06kFGc3OMl/PEezpBVIACVtihUJ2irlUomVDTAV1D0yS+oaiYMGObTNllpi1BwdTQBJiNtW/pxnsdOA2cdoEcqLkwyo+gvGjwf0cE/DD//LnfJW4k6YhkSBgJusJpuiPpQKmLRkiFTdIRk2TIRF8qMa/gBxq5XI5EYnF6lmQyEG+y2ewiBU3XBY888gA7d95FvV7Htm1SqciiY67rEovFFn2ORCLs3HkXH/rQBwGo1QJHZdM0CYXCpNOBFTsWWxx79sgjD7SOf/jDP8P73/8eADKZjtZ1Ae64Yxuu69Ld3b3oe61Wxfd9lFIIIRax3G7atImXXnqpda1FrjwsZsTVNK0l5LxR0N6+zZs389JLLy061o5Fu99CoGkatm2jt8X/maaJbdtEIhG2bdtErVZF0zR8P4jfsyy7VaZ57yORCLFYcB/uuGMbAOl0mlgswp3/8T9AvY6WSrFz512tOfBjP/Y+fN8nGo2RSkX4xCc+3pon8XgM1WAC/MQnPk65XMKyAgHZcerouk4ymSKVWjxPPvzhn6Fer7eu3WxPrVbFdd1F9zQUCtPd3b1orjXnUTt27gzSy7T3sdmPJparo9nHNWvW8OEP/wwf+tAH8X2PUCjMr/3aL6Hr+lXtb69j8+a/CSwLS9rbfs1Pf/pP8RsU5o7jtPpnGEZrvIKyC89esx/tbb3jjm189KO/jGmaJJOpRWXaoevaoja3P5ftaN7L5jxpPqPbtm2iUim3nsOm1dr3fYQQRCJRuru72bZtE9VqpVWuvV/RaAzXdVtj2ZyHAOVy4Hs3OLhq0dr0oQ99kGp1IR7M9302btzYmlvAovHyfQ9dNzBNszV32se/Oaeaa1ZzjjTRvF5zrfhOrheaprFp0yb27NmDEKKlDC213i/XjuZa2HRFbOI7vcY129b8v9nmn/iJn7jmOSsK2gpW8G8UStMwBgYpbr+d4vbb2dxGIf/kk1/C8H0OP/0/GQLefet27hkY4PyLL9Jj6CR0A1sIunSdLl3HUQrpScxT59BPn2O14zCkFHB2mSu/lmtyIzWo5iMMgTQ13JCFTCcpRi1yYYMxv8S87VOIQNZ2yIc9SmGXYqhEIVzBDQsQPggPR/OZIwjXwwOKjT9A+TbKbyh0fgRNRdCljanCfPrL+0lYCVJWAjdXJaGHKZw+TWckwmitRMyAvBM4kmhCEOy5qeCfCj41fRTi5koOxn8raBdo2+H7imef3bPImv3447/E7t0LxyYmxrnvvgcWfW6m73jhhSAW5eTJgAGup6eXrVtv5bHH3gdcndJh9+49reOf+cxf8tnP/g0AH/rQv29dF+DJJ7/ExMQ4H/nI44u+nzx5nFwu21IyDMPAa/jQ7d69m127drWExeaubjOFSjNdC9ASBj3PuyEhpikAAa871cr10IwjcV0XIQSvvPIK9957byutzlK3zeYuevO8cDjMunUbyGQ6WmWaG1vbt9/GE098ipMnjxOJRMhm50mnMwwNrWmVad77ZjqN3bv38OSTXwLgscfeFxx7aX+r7mbqjSNHDvOVrzxJsVhg5877+OM//hN++7d/pzVPfvmXH8fzgvvw27/9O+zd+wJDQ0FK7MuXLxKPJ3j3ux+7Kq3IZz7zl1y4cH7h2o32HD9+lKmpSer1gGDBtkNs3rx1UYoZWJhn7TjSYJxs7+NyKWiW1tHs49/93d/w+c9/iRde2NNKcfMv//IV0ukML7746rL3dffuPfyX//IJRkYuXdXe9mv+wi/8IvPzQTqlkZFLrVRKzVQ8TbQ/e+2pT9qfm2ef/To9Pb28+92PXTM9SioVaZGEtJ+/tGzzXjbnSfMZfeKJT7Fv3148z8MwDGKxIM4wl8tiGAY7duzkIx95nCee+BSHDr3aUvLa+9VMYdQcy+Y8BNi79wUA/ut//aOrPG0OHVoY61KpxN69e/mjP/pk65z28ZqfnyOT6aCvr781d9rHvzmnmmtWc4400bxetRood832f7uhaRqhUIg9e/bwwAMP3JwFrbEONteB9jZWq9XWetVc+5ZuXN0IrmlBM4zWGgRtFrSN17ahrShoK1jBDyg8Xee853GiXie2apgd/9uv8p7t2wEY7OhgczpDrJCnDxiyLDbFE6yxLPRqBXGdBUvqOtK0UKaB0nWUphEOhRDSxa2XMKhjmXVMy0MYDdpoVyDzeRIzGr2OxgZHuypp5KJraALH0qhaOhXbpBjSKIahGIKarajagrIJVQuqZoWqWcExFZ4ukbof/NXAEzCtgRQwI+DsfpDKQHhhNDfE35/5KzTfQEgdXQo0qdCUQlc+hvLRlUT3JeuNLjaV06zLZwlNn2f6yHOEhI+9YRXW6m50JDoSDRmYCoURuBZpJmgGIhHFrPgozQyY+jSz7Xe9cdxY5ncDhA5LcgCu4MaQyWTIZheTQuTz+dZvK1jBClawghV8L7CioK1gBSu4ClXgIjBdq1GvB+41m7p6+I1f/y0euP9BXvjaU5w/sJ+tg6vQyyX0cpn1g6u4dPIEmlNHq9fRHAfNcRC+TyyRQHketfk5hOdRkRJR84gYArdcxA7VsCMudsbBjLpYUQ/dkgsRub7AczT8euOv+dkR+HUdPyfwpzSkp6Hkv1ZB8QkcLG8GV7OXOcDTmyN86m3dKGWANEHpCAQLoXONHbqr4haaxwOGvgV1WKGUgTPzNqTbwXL4Rfur/HL0a1crekIPPqsg47BQcoHdrfm59ZtqfW4er239cSo7fuUmx+WNjW3btjE1NcX09HTLlefIkSN0dHSwatWq73HrVrCCFaxgBT+ouK6C1tV1fcrXG0F7HU0/Xtu+9mV1XcM0dcJhk1jMJhw20RpxI6apo+vaNc//1+wcm6a+6PwdO3a87rreCHj44Ydf13lLx9e2DTQtcFnR9Wszfum6RjhsYtsG4ZtgmVoOy419s13akhii67WpCds2WnOq2bdUKtKam7GY3ToWi9mL/M27uuKkUpHWfGx+XlpvKhXBNHXe9a538fa3v33ZOprnN/vRPG9pXc02NdvYPLfZhmYf2tvWrKO9TCxmt8o0yzf7ufQehcMmH/jAB1rfl7vfphnED3T3JEn0d6Imu7FuXyDdHXr0Uc4988yy9+BNjz4KwDNLfr/90Udbxx5tlGkv135sKf7gD/4AgI997GPXLLMcbuR6N3L95eo9cOAAd955Z+u8zcDP31Trvh1453ek1mjjbzl8O94V3wts2bKF22+/nT/8wz/kt37rt8jlcjzxxBP8+I//+FXvk+b8b38Wlz6fzeeu/XPz9+Zz2/4+a18Dlo5h+/FYzG49j0uf6+a1ln5fula2Y9euXf/aoXvD4J577rnKtem1YJr6ovdc+/reHDtd11rrYPva2l526RrcfqyJ9jnQlGHCYZOurviieXLgwKutdSMcNhe9i5tyUfPet6PZpqXtMU299e6GYN4158lyctnSOpf2Z7l349I6mn386Z/+ad7//vcveq81x/Jaa0XzHbpce9uv2awTFst8S2WX9nFv73P7c6JpojWuS8elHcv1dWnZdvmn/RldKq8ufS6bfbRt46o4pWa/mnUvlY2bvzfbtVROWLqGvfWtb+W9731v65z2tjWfifa5s3RdaV+zmnOkvR/fTe+NBx74/9u786AmzjcO4F8PsHVaD2oFRa3aabgChnAqIoc6yuExWsBai7UyCNYT2qqdEUU7RUXp1Ik6OlikaGGoR6UgqNQWraUjYBsEBAVrEeQQJFEQEsDn9wdDaiSBn0DI7sz7meEP3t0kz7PPu/vuG5bdrv87+Sr4cKXJIOLSf/4yDMMwzACqqalBZGQk8vLyMHz4cHh5eSE8PPyVT/oZhmEYpr+wCRrDMAzDMAzDMAxH9N9TKhmGYRiGYRiGYZg+YRM0hmEYhmEYhmEYjtDJBK2qqgohISFwcnKCm5sbdu3apbNnIvSHkpIS+Pr6wtPTU639xo0b8Pf3h1gsxvz585GYmKinCLWrrKzE+vXr4eTkBGdnZ2zcuBE1NTUAOvIKDAyEvb09Zs+eDYlEwqmHjf79999YsWIFxGIxXFxcEBYWhkePHgHgx7bv9PXXX8PMzEz1O9djnzFjBoRCIaytrVU/O3bsAMD92DsdP34cs2bNgkgkwvLly1FaWgqA230+JydHbZt3/piZmaGyspLTsQPA7du3sXLlSjg4OGD69OnYsGEDHj58CIA//aY3+DSeaRsPFAoFzMzMuvS9Y8eOqV6bkZGBRYsWwdbWFgsXLsTly5f1lkdfjlGnTp2Cl5cXxGIx/P39kZubq+kjBkRP+zwfatLb86Pu6qBUKhEZGQl3d3c4OTkhJCREdd6ij1xycnKwbNkyiMViuLu7Y9++fapnBmZlZcHc3LxLnW7evAmg4xlZBw8exJw5c2Bvb4/AwEDcvavp+aC6zaOsrExjf0pNTVWtw5eaHD58uEseQqFQtQ4Xa6ITpANLliyhLVu2kFwup4qKClq8eDFFR0fr4qP6LC0tjWbOnElr164lDw8PVXttbS3Z2trSqVOnqLm5mfLy8kgsFlNWVpYeo+3K19eXwsPD6enTp1RXV0eBgYEUHBxMzc3N5ObmRjExMdTY2Eh37twhNzc3+uGHH/QdMhERyWQysrW1pRMnTpBSqaS6ujpasWIFhYaG8mbbExEVFRWRo6MjCQQCIuJHv7GysqKCgoIu7XyInYgoMTGR5s6dSyUlJdTY2EgHDhyg8PBwzvd5TRITEykgIIDzsbe2tpKLiwtFR0eTQqGgJ0+e0Pr16+mDDz7gTb/pLT6NZ9rGg+rqahIIBNTQ0KDxdbdv3yahUEiXL1+mlpYWyszMJGtrayopKRngDDr09hj166+/klgsppycHGppaaHExEQSi8X06NGjgU5Bq859ng816e35UU912LNnDy1atIjKy8vpyZMntHXrVvLz89NLLpWVlSQSiSg+Pp6USiUVFxeTi4sLxcbGEhHR+fPnydfXV+v7njx5ktzc3Ki4uJiamprom2++IQ8PD2ppaRnQPHJzc8nW1lbr6/hUE002b95MBw4cICLu1URX+n2Clp+fT+bm5lRfX69qS09PJwcHB2pvb+/vj+uz5ORkqqyspISEBLUOEhsb26UDREZGUmho6ECHqJVcLqetW7dSdXW1qi01NZVsbW0pPT2dHB0dqbW1VbUsNjaWFi5cqI9Qu6itraXTp0+rtcXHx5OHhwcvtj0RUXt7O/n5+dGRI0dUEzSux97Y2EgCgYDKy8u7LON67J08PT0pNTW1SzvX+/zL6uvrydnZmYqKijgfe3l5OQkEAiotLVW1paenk0gk4k2/6Q0+jWfdjQclJSVkZmZGbW1tGl8bGRlJa9asUWsLDg6mr776Sqcxa9KXY1RwcDDt3r1bbbmPjw/FxcXpLN5X8eI+z4ea9Pb8qLs6tLW1kZ2dHV28eFG1rL6+nszMzKioqGjAc5FKpbRr1y61dbdv367a9gkJCbR8+XKt7+vj40Pfffed6nelUkn29vZ0+fLlfs6gg7Y8rly5Qm5ublpfx6eavOyPP/4gd3d3evbsGRFxrya60u+XOBYWFmLcuHEwMjJStVlZWUEul6O8vLy/P67P/Pz8MH78+C7thYWFsLKyUmuztLTErVu3Biq0Ho0YMQJRUVEwNjZWtVVVVcHY2BiFhYUQCAQYOvS/51xYWlrizp07UChe9SG8/e/tt9/G0qVLAXT8ObqsrAznzp2Dj48PL7Y9ACQlJeG1116Dr6+vqo3rscvlcgBATEwMXF1d4erqioiICDQ2NnI+dqDjlugVFRV49uwZFixYAAcHB4SEhKC6uprzff5lhw4dgoeHBywsLDgfu6mpKczNzZGUlITGxkY0NDQgLS0Nnp6evOg3vcWn8ay78UAul2Po0KH47LPPMGPGDHh6eiImJgZKpRIAt45bfTlGFRYWwtLSUutyfXtxn+dDTXp7ftRdHf799188ffpUbbmRkRFMTEx0mpu2XGxsbLB9+3a1turqatV+JJPJUF9fj48++ggODg5YsGABzp8/DwBoaWlBaWmpWi4GBgYQCAQ6y0VbHnK5HG1tbQgODoaTkxPmz5+PuLg41WXyfKrJi4gIUVFR2LhxI15//XUA3KuJrvT7BE0mk2HEiBFqbSNHjgQANDQ09PfH6YymPEaNGsXpHO7du4cjR45g7dq1WuN//vy5agDkguLiYgiFQvj6+sLa2hqbNm3ixbavq6vDoUOHsHPnTrV2rsfe1taGadOmYfr06fjll18QHx8PqVSKHTt2cD52oGPgBIDU1FQcO3YM6enpUCqVCAsL402fBzommmfPnkVISAgA7f2GK7EPHjwYEokEV65cgZ2dHZydnVFVVcWbftNbfB7PXhwPBg0aBKFQCG9vb2RlZeHbb79FSkoKJBIJAO156iPHvhyjtOUhk8kGLH5tXt7n+VSTl/WlDp216NyPXlzOhdxSU1ORk5ODVatWAej44mPChAnYtm0brl+/jtDQUHz55Ze4fv065HI5iIgTuQwbNgxTpkxBUFAQfv/9d0RERODQoUNITk4GwN+aXLp0Cc3NzViwYIGqjS816asBuYtj5wyeD0/u7g4RcTaHgoICrFixAqtWrVLryC/iYh3Mzc1RUFCA1NRU/PPPPwgLC9O4Hte2fVRUFPz8/DB16tQe1+VS7JMmTUJycjL8/f1haGiIqVOnIiwsDGlpaRpvSMGl2IH/+vDq1asxbtw4jBkzBmFhYcjLy1P9U7em9bmUAwAkJCTA1dUVkyZN0roOl2JXKpUIDQ3FvHnzkJubi6tXr2Ls2LEIDw/XuD7X+k1/4lJdtHl5PLC3t0dSUhLmzp0LAwMDWFtbIzg4GGfPnu32ffSRY38fozS9Rh9e3uf5VJP/R1/rwIVjxpkzZxAREYGDBw9i8uTJAIDAwEDExsbC0tIShoaG8Pb2xty5c3HmzBmt76OPPufl5YWEhAQ4OjrCwMAAM2bMQEBAQLf9iQ81OX78OFauXIkhQ4ao2vhSk77q9wmakZFRl1lq5zfAL14mwnWjR4/ukodMJuNkDteuXcPKlSuxbt06rFu3DoD2OgwZMqTLNwv6NmjQILz77rsICwtDRkYG2tvbOb3ts7OzcevWLYSGhnZZxqd+02nChAkgIo19hmuxjxkzBkDHt7WdTE1NAQCPHj3iTZ9PT0/HnDlzVL9zfX/Nzs7G/fv3sXnzZrz55pswNjbGhg0bcPXqVQwePJjz/aa3+DieaRoPNDE1NUV9fT3a29s5f9z6f49RmvKQy+WcyOPlfV4TvtSkp9i6q0PnOpqWjx49WodRd+/w4cPYv38/YmNj4erq2u26pqamqK2txahRozQe/7jS5zrjBPhZk8rKSuTn5/e43wD8qcmr6PcJmlAoRE1NjapTAEB+fj7eeustTJw4sb8/Tmesra1RUFCg1nbr1i1MmzZNTxFpJpVKsXnzZuzduxfLly9XtQuFQpSUlKiuZwc66mBhYQFDQ0N9hKomPT0dS5YsUWsbPLijO7q5uXF626ekpKCmpgazZs2Ck5OTKg8nJycIBAJOxy6VShEdHa3WVlZWBgMDA1hYWHA6dgAwMTGBkZERioqKVG0VFRUAgCVLlnC6z3cqLi5GRUUFZs2apWrj+v7a3t7e5RvIzr9YOjo6cr7f9KNgsrsAAAT8SURBVBbfxjNt40FWVpba7duBjksgx40bhyFDhkAoFHKmhn05RmnKIz8/HyKRSLdB90DTPs+nmrysp/Oj7uowceJEjBw5Um15TU0Nqqur9VanhIQEJCUlITExEWKxWG1ZfHx8l8cblJWVYeLEiRg2bBjee+89tf9tUiqVKC4uHvBcUlJS8OOPP6q13bt3DxMmTADAv5oAQGZmJgQCAUxMTNTa+VKTPtPFnUcCAgLo888/pydPnlB5eTl5e3uTRCLRxUf1m5fvIlNfX092dnZ08uRJamlpoT///JNEIhHduHFDj1Gqa21tJR8fHzpx4kSXZQqFgjw9PWn//v3U1NREt2/fJhcXFzp37pweIu2qurqaxGIxSSQSam5uprq6Olq9ejUtW7aM89teJpNRVVWV6uevv/4igUBAVVVVVFFRwenYy8vLycbGhuLi4kihUFBZWRl5e3tTZGQk57d7p4MHD5KbmxuVlpaSTCajTz75hIKDgznf5zudPn2a7Ozs1Nq4Hvvjx4/J0dGR9u3bR01NTfT48WP69NNPKSAggDf9prf4Mp51Nx7cvHmTrKysKC0tjZRKJUmlUrVbid+9e5eEQiFdunSJFAoFXbhwgWxsbOj+/fsDnUafjlHXrl0jkUikupV4XFwcOTk5kUwmG/A8XqRpn+dTTV71/KinOhw4cIB8fX3pwYMHJJfLKSwsjAIDA/WSy4MHD0gkEml8rAMR0dGjR2nmzJlUWFhICoWCUlJSyMLCgqRSKRERJSUl0cyZM6mkpISamppoz549NG/ePFIqlQOaR1paGolEIsrOzqbW1lZVDdLT04mIXzXp9MUXX2i8GzBXa9LfBhH1/4WZNTU1iIyMRF5eHoYPHw4vLy+Eh4erXUPKFfPmzcPDhw/x/PlztLW1qb6tzsjIQHV1NaKjo3Hnzh2MHz8eQUFBWLx4sZ4j/k9ubi4+/PBDjd+wZ2RkoKWlBbt370ZBQQGMjIzg7++PoKAgPUSqmVQqRVRUFIqKivDGG2/A2dkZW7ZsgbGxMfLy8ji97V9UUVGB2bNno6SkBAA4H3t2djZiYmJQWlqK0aNHY/78+di0aRMMDQ05HzsAtLa2Yu/evfj555+hUCjg7u6OnTt3YtSoUSgrK+N0nweAo0eP4ty5c8jIyFBr53rsBQUF2Lt3L4qLi2FgYAAHBwds27YNJiYmvOg3vcWX8ayn8UAqleLIkSOoqKjA2LFjsXTpUgQFBamuXMjMzIREIkF5eTkmT56MTZs2qf3FZyD15RiVnJyMEydOoKamBmZmZti6dStsbGz0kkcnbfv8hQsXOF2TvpwfdVeHzmN4ZmYmWlpa4OjoiJ07d+r0EjRtuaxZswYSiQQGBgZq648fPx4XL17E8+fPIZFI8NNPP6GhoQFTpkzBhg0b4O7urlr38OHDOHv2LORyOWxsbBAREYF33nlnQPPIyMjAb7/9hu+//x61tbUwNTXFxx9/jPfff1/1Wr7UJCMjA6ampli9ejVMTU2xa9cutddxrSa6opMJGsMwDMMwDMMwDPPqBuQujgzDMAzDMAzDMEzP2ASNYRiGYRiGYRiGI9gEjWEYhmEYhmEYhiPYBI1hGIZhGIZhGIYj2ASNYRiGYRiGYRiGI9gEjWEYhmEYhmEYhiPYBI1hGIZhGIZhGIYj2ASNYRiGYRiGYRiGI9gEjWEYhmEYhmEYhiP+B3NZTLIkZR9wAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAFkCAYAAACOz1rQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de5BU5Z038G/39NjtwFxYnB0k3JQRpFjf2S0oQCgwog4ZBFwqZSkptkrKhCQk7tYKmxcvK15KVxdnZSFSFF6yJLPJJsZKoTHjjuDLZQdCTJXFFmRkQJwYIzMhchuYnmYu5/0De+zuOc+5n+c8p8/38xf0TJ9+ztNnzu95fue5xDRN00BERERSxIMuABERUZQw8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJlPD7A06f7hb+bOTIJC5ezPhdhNBi/Rhj/Rhj/ZhjHRlj/Rgzqp/q6nLh+wLt8SYSJUF+vPJYP8ZYP8ZYP+ZYR8ZYP8ac1g9TzURERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJxMBLREQkEQMvERGRRAy8REREEjHwEhERSeT7Ws1ERBQOzW1d2Lq/A13dGdSUJ/FPi6ZiwcSqoItVdNjjJSIiNLd14ZmW4+jszkAD0NmdwSM7j6C5rSvoohUdBl4iIsLW/R3o7R/Me623bxBb93cEU6AixsBLRETo6tbf3k70OjnHwEtERKgpT9p6nZxj4CUiIqyZPwmpRH5ISJXGsWb+pGAKVMQ4qpmIiNAwrQYAOKpZAgZeIiICcCX4ZgMwAFRVleHcuZ4AS1ScmGomIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIok8C7x79uzB1KlT8cknn3h1SCIioqLjSeBNp9NobGxEVRVXOCEiIjLiSeDdsmULli1bhhEjRnhxOCIioqLlOvAeO3YMBw4cwH333edBcYiIiIqbq8CraRo2bNiARx99FKWlpV6ViYiIqGi52iThpz/9KWprazFz5kzh74wcmUQiUaL7s5KSOKqqytwUoaixfoyxfoyxfsyxjoyxfow5rZ+Ypmma0w/9xje+gSNHjiAev9JxPnPmDCorK7Fp0ybMmTMHAHD6dLfw/dz5whjrxxjrxxjrxxzryBjrx5hR/VRXlwvf56rH+9JLL+X9f+HChfjhD3+IcePGuTksERFR0eICGkRERBK56vEWevfdd708HBERUdFhj5eIiEgiBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIokYeImIiCRi4CUiIpKIgZeIiEgiBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIokYeImIiCRi4CUiIpKIgZeIiEgiBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIokYeImIiCRyHXh3796Nu+66Cw0NDVixYgXa29u9KBcREVFRchV4u7q6sH79ejQ2NqK5uRlLlizBY4895lXZiIiIio6rwJtIJNDY2Ija2loAwIwZM3DixAlPCkZERFSMXAXe0aNHY8GCBUP/37dvH+rq6lwXioiIqFjFNE3TvDjQwYMHsW7dOuzYsWOoBwwA6fRlJBIluu8pKYljYGDQi48vSqwfY6wfY6wfc6wjY6wfY0b1U1qqH/cAIOHFh+/atQtPPfUUtm3blhd0AeDixYzwfVVVZTh3rseLIhQl1o8x1o8x1o851pEx1o8xo/qpri4Xvs914D1w4ACefvppvPrqq5g8ebLbwxERERU1V4E3nU7joYcewosvvsigS0REZIGrwLt7926cOXMG69aty3u9qakJ11xzjauCERERFSNXgXfJkiVYsmSJV2UhIiIqelwykoiISCJPRjVTeDS3dWHr/g50dWdQU57EmvmT0DCtJuhiERFFBgNvhDS3deGZluPo7b8y76yzO4NnWo4DAIMvEZEkTDVHyNb9HUNBN6u3fxBb93cEUyAioghi4I2Qrm79xUxErxMRkfcYeCOkpjxp63UiIvIeA2+ErJk/CalE/leeSsSxZv6kYApERBRBHFwVIdkBVBzVTEQUHAbeiGmYVsNAKwmnbhGRHgZeIh9w6hYRifAZL5EPOHWLiEQYeIl8wKlbRCTCVDORD2rKk+jUCbKcuhUtfM5PetjjJfIBp25R9jl/Z3cGGr54zt/c1hV00ShgDLxEPmiYVoOH62/AmPIkYgDGlCfxcP0N7O1ECJ/zkwhTzUQ+4dStaONzfhJhj5eIyAdcopVEGHiJiHzA5/wkwlQzEZEPuEQriTDwEhH5hM/5SQ9TzURERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJxMBLREQkEQMvERGRRFxAg4goArg3sDoYeImIbAhjAMvuDZzdpjC7NzAA5ctejJhqJiKyKKyb23NvYLWwx0tERcevXqlRAFO558i9gdXCHi8RFRU/e6VhDWDcG1gtDLxEVFT8TKuGNYBxb2C1uA68Bw8exPLly7Fo0SKsWrUKnZ2dXpSLiAo0t3Vh6fZDmNW4D0u3H1L+uWJQ/OyVhjWANUyrwcP1N2BMeRIxAGPKk3i4/gal0+PFzNUz3p6eHjz44IN4+eWXMX36dLzyyit4/PHHsW3bNq/KR0TgqFQ7asqT6NQJsjXlyWHPfv9p0VQsmFhl+dhh3tyeewOrw1Xg/fWvf43x48dj+vTpAIB7770XL7zwAi5evIiRI0d6UkAiCu+gHjusDogy+7018yflNVKAK73SedePGtZ4eWTnETx8h72eHwMYueUq1dzR0YHx48cP/X/EiBGoqqrCxx9/7LpgRPSFsA7qscrqgCgrvydKq7aePDu88dLHKTUkn6sebzqdRjKZP6ggmUyip6dn6P8jRyaRSJTovr+kJI6qqjI3RShqrB9jUaqfaytT+PR8r+7rojoIU/1sa/29bo9+W+vvseLm62z/3oqbr8v7PwBs+NUx3c/u6s6Epp5kC9M1FASn9eMq8JaVlSGTyW9x9/b2YsSIEUP/v3hR3CKvqirDuXM9wp9HHevHWJTq51vzJuqmT781b6KwDkT1o+LKS3qNiuzruedwSvB7pwp+T4/Rs9+oXEd2RelvzAmj+qmuLhe+z1Wq+frrr8dHH3009P8zZ87g/PnzmDhxopvDElEBr0alqrryUjxm7XU303l0RySXqj8imYqPqx7v7Nmz0dnZid/+9reYOXMmfvSjH+HWW29FWRlTE0Reczuop7mtC483H8Oglv+6CoO0Csskel00cMpK8NQbkWx3VHMxUDHjETWuAm8qlcILL7yAJ598Eul0GhMmTMCzzz7rVdmIyCPZnq4owAU9SGuMIA08pqAn63Y6T27jpbmtC43vtGPd+d7IBCBOS1OD67WaZ8+ejTfeeMOLshCRT/SmI+UKeuUlOz1ZL6bzRDUARWFaWhhwyUiiCDDq0aqw8pLslZWiultPsU9LCwvuTkQUAaIRvfEYlFk6UNST9eOZZFQDkNHIbpKHPV6iCBCtMfx4w1TPgq4fa0n7NQo7rJsduBXWtaaLDXu8lCcqIx6jcp5Zfq8x7NczU7+eSboZHR1mKq01HbW/wVwMvDQkKgNOonKehfxcY9ivAOlXSjhbpm2tv8epCI1qBtRYazqqf4NZDLw0JCojHqNynjL5FSD9fCbZMK0GK26+jiszBSDqf4MMvDRE5QEnemmpwrV4rVL5PIPiNu3nNEA63Wmo2FPCxS7qf4MMvDRE1RGPorTUiLKko1WHVD3PoHiR9nMSIK18rkrPJMMiDM9Oo/43yFHNNETVEY+itFTjO+2OjqfqeQbFizmtTubhWv3chmk1eHP1bPxm7QK8uXq2ckFEJXqjwJ96ux23fb/V09HmbkX9b5A9Xhqiau9ClH4S7VRjRtXzDIpXaT+7g3ZEx+/szuDZXe1oPXmW349Neo2ZvkENfZkBAOoMYor63yADL+VRYcRjIVFa6trKlONjqnieQQkq7Sf6XAB4/XDn0L9VCRZhYKWxpMogpij/DYYq1ezHBH1SnygttfaOKQGVqLj4lfYz+3vV+1yRKCzn6AWrjaWoDGJSVWh6vFGf9xVlorTUsrqxgU4FUX0QyxuHP8XG/z5mWj4/0n5WB04d/uP5vN6tEVHvmL6gN8hNT1QGMakqNIE36vO+ok61tJTqDcHmti48885x9PZZK5/X9Sv6e31+94m8z2k9edbWcZ/d1Y71t0cz02GloVfYiKpIJXAp04/+nO0gozSISVWhCbxRn/dFalG9Ibh1f8dQ0M2SWT7R3+WFzACa27qGymD37/f1w52o+1KlEnUsk52GXmEjSvXMTBSFJvBGfd4XqUX1hmDQ5TMaOJUb/I1+T0SVxo1Mbhp6qmWLKESDq6I+74vUovruNkGXz+jvMjf42xlgpff+IMkc7Bl0Q4q8FZrAK3ujbCIjqjcE18yfhFRpcOVrmFaDypR+Qi03+Bf+XVuhQuPG7XaFdoN20A0p8lZM0zTN/NecO326W/izqqoyLlBugPVjLOj68ePZmZfH3Pf7c0OjmitSCWiahu7MgLTnfIXPJYErwd+owTz73/Zh0OCOZPZ+u5xeQ0u3H9JNkY8pT+LN1bOH/q/3fQIQjjweI/hunNSlF0T1w+fGVxhdP9XV5cL3heYZL5FsZjcXr5+deT1SelndWCyYWOXpce3ccJ1MUzIKuqKg5Aez87SS+hXV+1UlMeF0H9F3o9JKT6qP6A8DBl4iHUHcXPwaKe3VcZ3Uid3GyRjBYKvCnqRX9OY6AzA9TyuDPUX13ttvXCbRd5Nbl9mGwYZfHXMVhJ30XFUf0R8GDLxFiGkg94K4uVjtRdn9br0amCOjTkQLQKT78qcheUE01zmZiJuep2g3pnnXj8LS7YfQ9fmzX6eMvhurDSCza8Vp45IDvdxj4C0yTAN5I4ibi1kvyul3a3cqnuiGLaNOsufx/O4TuPD5wv4AcL633/PrWDTXWZQGzj1PvdTvvOtH4a2jfzJdNaoylUDG4HMA40FTVhpAVq4Vpw0pTu10LzSjmskaL7Z4o2BGkZqNlHb63ZodN3eE7e0vHsCTzcd0R+vKqpOGaTUou2p4n8Dr69hug6HwPAu3K2w9edY06KYScaxdOHloJLfod6xOxxK9buVacdqQUn1Efxiwx1tkmAbyhtHG7n6l8s0G0Dj9bo2OW9gzOq/zADJ7w3ay2b1TMq5jUc8tVRJD78DwRPG860cZHs+obLHPPy/3+yx8Xmv1erLS47RSf057rioN9AorBt4iwzSQN0Q3F8B84I3bzxUdx813KzquXs9IT1d3RuoNV8Z1vGb+pLxnvMCVhkQyEUfvwPAGiNm60qIymw0MszsAzUoDyEr9uWlIcTUsdxh4i4yMXklUBm/p3VyWbj/keICR23rz47u12oPM3rBl3XBlXMcN02owoiw5bFTzhl8d0/19KynYwjInYlcGhs1q3OfZ34qVBpCV+mPPNTgMvEXG7z+mqA/ecpoC9aLe/PhurayVHMTzO6OMQ3bUsGikrp36yc51zrV1f4cnKdjyZAnSfYND6fvO7gwe+9UxPL/7BNbdVuvqezNrAFm9VthzDQZXrlKYivVjdcUeGYKoH6fnH0S9WakfvRWRSuMxXF0al7rKlRVmqzc5Wd1Jr468WiVK9J3bOZ6TLImXGSkV70Eq4cpVJEXUB285TYGqWm9hSjeKRuo+3nzM8Od25xnn1klndwbxWP6IYKvHMvpurZTLSZYk6hmpsGDgJVuiPnjLaaAyqregn5mrmG7UqxNRIBvUxGsfA84aN9n6cBPEzNL4ZuVy0pDgqlLhwMBLtsicUqIqJ4HKaKWjKPRQ7DQuRL228mRJ3qIauXr7BxGP6a/17LRR6DaIzbt+FF4/3Cn8uVm5nGRJVM2sUD4GXrIlTKlJlYjqzYseStA9ZjN205+iOkkmEkjpLOeYNahh2M/dNArdBjGj6UeicuV+l7EYoDcCxyhgRz0jFRYMvGSbiqnJMNCrN6dTV7KMgtqKm6/T/X1RkPYqgBceJ903YKtxITr3C739eGLxVDwmqLN4DHi4/gbbI6FF3AYxo+9Qb2BV4XepF3TNGhLMSIWDq8C7e/dubN68GZcvX0ZVVRWeeOIJTJkyxauyERU9tzd3ox5zYeA1CtKANwuD6H2GiCgwOa2TQW1448bNYCO3q5cZLahhZzGT+Oc93/JkCWKxGDb86tjQSmJ604Oyx1I1A0IuAm9XVxfWr1+Pn/zkJ6itrcV//ud/4rHHHsN//dd/eVk+iiDVU6decttDsZMONRoVrPds1MmgHKsrYQHiQGr2PFxEb+1jN6l8t6uX2f1ujQaPfbVuzOcbMAwYfmb2/8X691IsHAfeRCKBxsZG1NbWAgBmzJiBF154wbOCUTSFbTqE20aC2x6Knd6h0Y1dpLM7M2zVJaNztpoiNwpAdp6Hmx3P7XNaN6uX2f1ujUZB6w3S4mjl8HIceEePHo0FCxYM/X/fvn2oq6vzpFAUXUFOh7AbRL1qJLjpodjpVVWkErqbIJjJ3aXo8B/P5219V3jOouBRkSxB2VUJy3Vr53k4AFxVop+C9WOwkZ1gbue7Fe1F7KQsWYXX9LzrR6H15NlIZJNU5sngqoMHD2LHjh3YsWOHF4ejiMm9OYg6X35Ph3ASRFWYM2m1V9Xc1oVLGftBN1dv/yB+8b+dw3rIuecsmkJzx43VWH+7vfEfhUHDqOGQnWZU+L35MdjIr5HD2e9MNHhMVBYRvWs697tRPZtUzEyXjGxpacHGjRuHvb569Wrcfffd2LVrF5566il8//vfx0033TTs99Lpy0gkSnSPXVISx8CA9dZd1EShft44/Cke2Xlk2IbkhcZWprB33ZfzXvOyfm55fg8+Pd9r6XOzpvzz27oNhRiA9qe+4km53MitH9H5eWlsZUr4GUb1mPXG4U/R+E47Tp3vRVVZKbp7+5DbrknEgVgshr6cLftigO53MKqsFFeXluDU+V5UXp1ALBbDuZ4+XFuZwto7pmBZ3VgAzq4hvWs2VRrH03f91dBx3RB9V4XnavaZVr9zo+8mCvcgN4zqp7RUP+4BFnq89fX1qK+v1/3ZgQMH8PTTT+PVV1/F5MmTdX/n4kVxT4XrgBqLQv1s/O9jpkE3lYjjW/MmDqsLL+vnlOAGdep8r/AzjHo+5871BD5ILLd+ROdXKLuGsGijANEiFQAMb/JG9QgM752d7ekb9jv9g0BFMo7RZYmhTQhEC2qc7enDWVw5xrl0P1KJOJ5YPHWo/rNlcXINLZhYhYfvGD5tacHEKk+ux2/Nm6jbS79z+l8OSxMbfabV79zou4nCPcgN6Ws1p9NpPPTQQ3jxxReFQZfIjN3Nw/3iJH1oNt1EpUFiVnYhGlNQ16Kbf+4zXjufb8TqaOjuzAB2f3feUP1a5fUjAC9HDus10PTmI9v9PCvfefb3SC7HgXf37t04c+YM1q1bl/d6U1MTrrnmGtcFo2hwunm415w8CzR6vupm314/mA3ciQF59W10bnVfqhx63cqALTebSBTKBgk705bsfoZMogbaw/U3uL7+rQzW4uIawXAceJcsWYIlS5Z4WRaKIJkr7Rilfp1O6xH1fFRYM/eNw5/mbfJ+5/S/1B0cBej3ekTnln3dSq+zsBctYndfYKN6rBCkoP3u2TlZFczPAXp61zRHNauBS0ZSoGSttGMl9etl+jDoNXOb27rwzDvHh56fd3Zn8NbRP2H5/xkzLFXstKFjpddptdem1wAz2hfYKFMSxLKJTlcF87uBxsU01MTAS4GTcXOQPfUn6DVzt+7vGDZorbd/EK0nz+Y9P6xIJaBpmuEyhCJmwUFvJalchb1AvcFDemVpbutCz+Xh6e1s/TptzLkZDGd0fWX/Xfiz53efCLyBRsGslMfAS5EgO/Ub9Jq5RudbmCr2Y79Zs0aG3me/dfRPupsHGL0vqzKVwNqFkx1nL9zWhZPr60JmAHfcWO1ZBoLsC2oQZNy3IxMpRNSD8LNn0TCtBm+uno3frF2AN1fPlprys3K+Zr00M2vmT0IqMfwWUplKmAZQp58tSm9fXVriqn7d1oVRfRtdY9kMxJjyJGK4kiUwqzvyjtvv3Sn2eCkSgk79yrZm/qS8Z7zA8PMV9cY6uzNYuv2QpWUdAWe9eqcZCL8yF26Pa3Z9iVaj6szJQFgR9NzwYhPUIEgGXoqEoFO/sjVMq8GIsmTeqObC8zVKFVtNueltw2dl71unzzb9eibq9rhm19eGXx3TXWErHrNeRtXmhheDoJ6xM/BSZERthOeyurFYMLFK+HOzeZ52B5/ZCQx2MhC5vbyKVAKJGNCfE8W8yFx4kRExur5E6/IOalfOz0odq7A2eLEJKhPGwEtFh+k4a3J7aaKer52Um53AYGdzh9wb4/nefpTGY6i4Sn+akVN+Z0TGGGQX9BonetewCnPDi01QmTAGXioqTMfZk+2l3fb9VteLTtgNDFYyEHrBvG9Qw+irEtj93XmWy2aF07S5FUbZhcLGiegaFq1NzalH7gSRCWPgJeXZ6cFGIR2XrY/O7szQpgVWV4jKfX/uakZpnY0qEjEMS7kZfRei52XlyZK8AGZn9aSgenleN+DMtvzLPR/RNZxMJJBKxH1JizJLJBcDLylFLyiINl5fcfN1w95f7Om4woCQXf7RamAw26M114hkYlgPUC8YHf7jebSePKsbdBMxIN03iAuZjO7nmZU7qMEvfjTgsktEmp2P6Fq90NuPJxZP9TxAGjUy9P7GVBLWBgPn8ZIysjeAzu4MNHxxk7Yzzy6I+boyGS3T6GYerJ4LBZsfiILR64c7dYNJRbIEI5IJ9In2EbRQbtFc4Z7L/Whu6zI5A3NvHP4US7cfwqzGfVi6/dDQMf1qwOmdT2Gv1ega9mNueFBzWd3Su18803Lck+vCbwy8pAw7QUF0A7RyYwszp/Ncrf48lwZYCkYilwc0052LzMrVMK0GD9ffgMpUfnLuQmbA9U22ua0Lj+w8onvj9qsBlz0fowUzZF/DYc0ShbXBADDwkkLs/KGLboBWbmxhZmWeq5ufF7ISjER6+wctz1M1OnbDtBpcXVqie/zCm2x2QFRhD1aPaD3r7JrVfgW/hmk1WDN/EmrKk+jqzmDr/o68csq+hsOaJQprgwHgM15SiNWNu63sk1ssgbaQ0ehYK4FBNG8xu0GBXv3nBiOz/V0LDWoYNiDISbmt3GTtDogyW88a8GeaieydssyEdVW3MG8wwR4vKUPUy/hq3Zii7cHaldsbAr5Y+chqvYh6U+tvn4I3V8+GqIOaDUaF7/1q3RjdZ7BZ2eMXvsfu9ym6meamw+2mHs16en6tta1aijSsWaIwP1aKaZpmPPLBpdOnu4U/q6oqw7lzPX5+fKhFsX7sjFJUpX5UHVnppH6Wbj8k3OdWtLduc1sXGt/9cNjz3FQi7tkNXLQrUe5niX4WA/CbtQv0j6mznrXfQWdW4z7hSlYxwJdryOk1qsrfmEjQf3tG9VNdXS58HwOvwlg/xlSoH72AkJu6DTIYO6kf0flYCUZ+3wRz5y/ryc5pLmTUaNj3+3OG61n7QdS4KfTVujFYf/sU15/n5jtV4W9MZQy8RYj1Y0yF+rF6E5XRkyrktH6C7kWYMeox6jEKYEFcQ2a991xPLp7quu6dZDGyVPgbU5nTwMvBVUQuWB1BGabVs1QdnJZtENjtKew69mdPeo5eKRy4ZXQ+XlwzYR79W6wYeIlcsDoSG+CNzg07vcRCVucSy5TbuDHKmji5ZgozFhWphG4dhGH0b7HiqGYiF0QrK+nhjc45O4urhI3RKFy714zeak6XMld2dMoVltG/xYo9XiIX9OZ7Fq4vDRTvjU7W82BRzy87Ctgo61CRHL74hkoaptXg8B/P666Z3dmdwdLthyxvLKHXQOnXgIqr4hh9VULZ5/ZRw8BL5JLeM9G6L1UqPUBJxE4glbkFo9HOR+m+4VvlZSViwB03Vnu2vZ9f1t8+ZeiaKTxPOxtLiBoo3ZkBz7dRJOcYeIl8oOoAJSN2A6nMLRj1VlfK7nwk2oShIlmCO26sFu5uVVjGoEdzZ68ZKyPlRfUc5tWcooSBl0hhMoOB3UBqd7Ssm3PRS+mn+wYMB05dHtDwzgenLZ2TzN67GasDqgp/r7mtCz2Xh9dHsT7mCDMGXiJFyQ4GdgOpnd6VF+eSm0VobusSbiqf1ds/CFFcLjwnmb13M1ZHyufWs2jUdwz5y1GqkIUJOrOgAgZeIkXJDgZ205R2Ftf38lyyQcaN8mRJ3nNfL6fzOJEbjMqTJSiNxwz3MS6sZ9Go7+wRguzB51IpsxAkTicissnO1nNuyF74wO6i83YW1/fyXOxMLbo6MXzbh+yz4dwpNyIyno0WTgG6kBmApmmoTCUsbyxhpR5V2KtWtQ0igsIeL5ENKozk9SsYWNkKTy9NaLbsYLbMXp2L1WCdiAF68bm0JIZ0v/n6V7KejYqmAF1dWoJd35krfF/udxGLAVYW/w16EReuonUFAy+RDUGP5PU7GBiNxrbS6BA9vxPt5Tvv+lG2y2iUGo5/HoCMBl8ZBd0xn29OL/PZo5NgVPhdWF1xP+jRzRx1fQUDL5ENMlvsfm7G7oRZo8MsMOstEvHW0T+h7kuVts5pzfxJwoFVmvbFFoCzGvdZPiZgbdMArzW3dQl7q0bBSJRuzzY8KlIJXMr0I7eNocLo5iAakypi4CWywa8Wu6inqNJ8YLNGh1lgbj15dth7nWQLGqbV4PndJ3AhM3zhjNzvQfRdVaYSyPQPBn7zzzZU9MZQmZVH9F3kNjxUHD2sWmMyKAy8RDb40WIPy0hPs0aHWWAW/byzO4NZjfts3YTX3VZr+j2Ivqu1CycDCP7mb9RrzR08pRdArTQAVWq05VK1XDJ5Mqp5z549mDp1Kj755BMvDkekLDsjea0Ky0hPs1HPol5/9nWjrEB2dPEzLcctjRK38j0Y/U7DtBq8uXo22sgn/s4AABSVSURBVJ/6Ct5cPTuQQGDUa80NuoWbHjzTchzzrh9lawQ6qcV1jzedTqOxsRFVVVVelIdIeV632MMy0tMsTWiWDRANsMplJ/Vs5XtQuXdlpdcqapS9frgTFckSJBMJXOjtj2zKNqxcB94tW7Zg2bJl+MlPfuJFeYgix2gDANUYBTKzwGy0C08u1RocfrHy2MKoLi5kBpBKxPHE4qkMuCHjKtV87NgxHDhwAPfdd59HxSGKnjXzJ0FnnQek+wZ9W5zDL9kU7m/WLtBN4eoNsCoUlaklVtLlZnWh4iMJMue4x6tpGjZs2IBHH30UpaWlXpaJKFIaptWg8d0Ph8057RvUAlkr2E9mvdmoPac0S4VbSc9HJUNQTEwDb0tLCzZu3Djs9fvvvx+1tbWYOXOm4ftHjkwikdBPmZWUxFFVVWaxqNHD+jFWTPVzQbCaf1d3xvE5qlQ/bxz+FI3vtMNonYexlSmsvWMKltWNlVYulepIz4qbr8OIsiS+9/r/YkBQeddWpnw7B9XrJ2hO6yemaVbXPMn3jW98A0eOHEE8fiVbfebMGVRWVmLTpk2YM2fO0O+dPt0tPEZVVRnOnetx8vGRwPoxVkz1I9qD1c2iDqrUj2jnnKxUIu56ZLhTKtWR0fSmWY37hI2WJ318xqtK/ajKqH6qq8uF73Ocan7ppZfy/r9w4UL88Ic/xLhx45wekihUvFygwK8VfZyW0ctzM9rUYIzJsb1eBKLweP+0aCoWTAx2RoaVedyiAXgVyRLfGyxWvwMVF+xQVcnjjz/+uBcH2rFjB5YvX46Kioq813t6Lgvfk0qVore3z4uPL0qsH2NB1k/2Znnu8xTxxcsDOPjRWVxbmcQN1SNtH++G6pG4tjKJts6LuHR5AGPKk3hw4WRXN66WY6fxxFsf2C6j1+e2ac9J3ddjAP7fA/OEx/S6HHrH23f8NK6tcHY8rzz4i6NDZcrqH9TQ1nkRX5txpSMzqqwUBz86i/6cZa5SiTj+7x03+Fp2q9eQle+qua0LD/7iKDbtOYk3jnRiVFlpoPXuBaN70IgR4oFxnm0L+O6777K3S5Hhx6IXZiOC7Wp8p91RGb0+N7OFNWSVQ/d4fcGPCrYyj9uPhVussHoNmX1XooVAwjZq3ytcMpLIgTAsenHqfK/u62a73ni9KbzTNLrXdazqd2Z1/W8vFgOxmw62eg25Xcc7ahh4qejIeNYUhu3Nrq1M4VOdG6eojNleiYjTc3O6ML7XdazqdyZjx57mtq5hG0tYWRPc6jXkdh3vqPEs1UykAlkpLbN1i1Ww9o4ptspoNAgq933NbV1Yuv0QZjXuw9LthyyvrWw3je51Heser1Tud6ZXd36nkbN/E3q7OZml7q1eQ27X8Y4a9nipqMhKaYVhe7NldWNxqSdjuYxGvY9sIJC5k5LXdax3PJmjms3qzu55Wc3sGDWoAOPv3eo15HYd76hh4KWiokJKS6VpFXZu6KJ04ZjyZN6NVeazOq83OSg8nsx5ql7WnZ0GkNm1b9brtPoduFnHO2oYeKmoyHqOJ7rxHf7jebx19E/K762rx82i/cXyrM7PRpOXdWcniIv+JgC5vU6Vd4qSjc94qajIevYquvH94n87Q7G3rh43i/YXw7M6v8cHeFl3doK43t8EAFSmEoGtGBZ17PFGlErpUC/JSmmJbnyDgnX9wtIjdLJof7E8q/M7je5l3dnJ7DDNqx4G3giSOUAmCDJSWqIbXzymH3yLoUcIFPdN3Ov5y4W8rDu7QZxpXrUw8EYQJ7O7J7rx3XTtSLz3hwt5v1ssPcKsYryJG6WTvWw0eVV3xdwAigIG3ggq9gEyMujd+OZdPwpvHf3TsN+9c/pf8oZoQxCPQZ7ffUL4M1UbTcXYAIoKBt4IUnUFH1WJAkHhjW/p9kO68yVbT56VWdzAeBEwg3oMore4RBaDG3mNo5ojKAyrLqnCzkhXo0yCk9WewsSrEcF+bD5BpBoG3ggKaqeTMLITCEQZg4pUouh3ZvEqYAb1GKQypZ/8E71O5Aavqoji8yFr7M6X1BtwpWla0Q9m8ypgBvUYZO3CyXjq7Xb05QxJL43HsHbhZF8/l6KJPV4iA3YWPRBlEroFzw+LaTCbV4tDBPUYpGFaDf75K1Pyvrt//sqUomkYkVrY4yUy4MV8ya37O4p+MJvVejIbgOXFNBmng7yYBSJZGHiJDHgRCIp5tacsK/VkdcSymwCoyuIwxboyHHmDgZfIhNueUFQWOzCrJxkLt6iwOIwqwZ/UxcBLJEHY0ph+9NhkjFi2+xlvHP4UG//7mKfnKSv4s1cdXgy8RJTHbo/NagCQMWLZzmc0t3XhmXeOo7fP256pjAYGe9XhxlHNRJTHzpxcOwtnyBixbOcztu7vGAq6WV4s1iFj60QuNBJuDLxElMdOj81OAMhOt8pdlOKqkpi7wgo+w8riMH71TGU0MLjeergx1UykoCCf39lJ1zoJAJmcQH0hM+B5itTq83S/Ut8yBtNxvfVwY4+XSDFerXvslJ0em920qkop0jXzJyFV6k/PtGFaDd5cPRu/WbsAb66e7XmjieuthxsDL5Figg5OdtK1dgOASinShmk1ePquvwrlmuVcbz3cmGom8pAXKWIVgpOd6U/JRHyooVCRLMG622qF71UtRbqsbiwWTKwK5LPdCtsUNfoCe7xEHvEqRSxjVKwXsud7vrd/6LXLA5rBO5giJQIYeIk841WKOCzBycn5MkVKxFQzkWe8ShGHZYlJp+fLFClFHQMvkUe8fH4ZhuAkOt8KB5vHc/nD4LDu5WOqmcgjYUkRe2XN/EkojQ9fAONSpt/Wc+2gp09FGes+GAy8RB6J2vPLhmk1uLp0+C2kX4Ot59pmz4qb27qwdPshzGrch6XbDzEoeCjoqWtRxVQzkYfCkCL2UndmQPd1O8+1jZ4VczMAf6kwdS2K2OMlIse8mPpkdAz2yPwVlqlrxcZV4O3q6sKqVatwyy234M4778R7773nVbmIKAS8eK5tdAz2yPwVtXEJqnAVeNevX48FCxZg7969ePTRR9HU1ORVuYgoBLx4rm10DPbI/BW1cQmqiGmaZrzUjMCpU6dw1113obW1FaWlpcLfO326W/izqqoynDvX4+TjI4H1Y4z1Y6wY6qfwGS9wpUfmVXAohjryE+vHmFH9VFeXC9/nuMf7wQcfYNy4cWhsbMSiRYuwcuVK/O53v3N6OCKiYdgjo2LkuMe7c+dOPPLII9i0aRNuv/12/OxnP8O2bdvQ0tKCROKLwdLp9GUkEiW6xygpiWNgYFD3Z8T6McP6Mcb6Mcc6Msb6MWZUP6Wl+nEPsBB4W1pasHHjxmGvr1y5Eq+++ir27t0LANA0DTNnzsRPf/pT1NbWDv0eU83OsX6MsX6MsX7MsY6MsX6MOU01m87jra+vR319/bDX29vbsWXLFgwODiIejyMWiyEejyMe5wwlIooWLrtIdjiOklOmTMGECRPw2muvAQCam5tRXl6OCRMmeFY4IiLVcdlFsstV93Tz5s34+c9/jttuuw0/+MEPsHnz5rznu0RExY6LfJBdrqLkuHHjhnq8RERRxEU+yC4+kCUicoGLfJBdDLxERC5w2UWyiw9kiSj0ghxVnP0cjmomqxh4iSh0soG2szuDGIDcxQiC2DowattBkjtMNRNRqORO3wHyg24WRxWTyhh4iShU9Kbv6OGoYlIVU81EFCpWA6rdUcVcfYpkYY+XiELFSkC1O6qYq0+RTAy8RBQqetN3clUkS2xvHcjVp0gmppqJKFRyp+90dmcQjwGD2pW9ep2mh7n6FMnEwEtEoeP19J2a8uTQKOnC14m8xlQzEUUeV58imdjjJaLI4+pTJBMDLxERuPoUycNUMxERkUQMvERERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJxHm8RBR53BKQZGLgJaJIy24JmN2dKLslIAAGX/IFU81EFGncEpBkY4+XiELPTaqYWwKSbOzxElGoZVPFnd0ZaPgiVdzc1mXp/aKt/7glIPmFgZeIQs1tqphbApJsTDUTUai5TRVzS0CSjYGXiEKtpjyJTp0gaydVzC0BSSammoko1JgqprBhj5eIQo2pYgobBl4iCj2miilMmGomIiKSiIGXiIhIIleB9/XXX8fixYvR0NCAVatW4aOPPvKqXEREREXJceD98MMP8a//+q/4wQ9+gObmZtTX1+Phhx/2smxERERFx1XgnTRpEmpqrgxomDNnDo4fP+5ZwYiIiIqR48BbV1eHjz/+GO3t7dA0DS0tLZg7d66XZSMiIio6MU3TNKdvfu2117BhwwaMHDkSqVQKTU1NmDBhQt7vpNOXkUiU6L6/pCSOgYFB3Z8R68cM68cY68cc68gY68eYUf2UlurHPcDCPN6WlhZs3Lhx2OsrVqxAU1MTdu3ahbFjx2Lnzp349re/jV/+8peIxWJDv3fxoni91KqqMpw712NWhMhi/Rhj/Rhj/ZhjHRlj/Rgzqp/q6nLh+0wDb319Perr64e9/sorr+Bv/uZvMHbsWADA4sWL8b3vfQ9nz57FX/zFX1gtNxERUaQ4fsZ73XXX4f3338fZs2cBAHv37kV1dTVGjRrlWeGIiIiKjeMlIxcuXIijR4/innvuQSwWw8iRI7Fp06a8NDMRERHlc7VW8wMPPIAHHnjAq7IQEREVPS4ZSUREJBEDLxERkUQMvERERBIx8BIREUnEwEtERCSRq1HNRBRNzW1d2Lq/A13dGdSUJ7Fm/iQ0TKsJulhEocDAS0S2NLd14ZmW4+jtv7JGbWd3Bs+0XNmZjMGXyBxTzURky9b9HUNBN6u3fxBb93cEUyCikGHgJSJburr1Nz4RvU5E+Rh4iciWmvKkrdeJKB8DLxHZsmb+JKQS+beOVCKONfMnBVMgopDh4CoisiU7gIqjmomcYeAlItsaptUw0BI5xFQzERGRRAy8REREEjHwEhERScTAS0REJBEDLxERkUQMvERERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSxTRN04IuBBERUVSwx0tERCQRAy8REZFEDLxEREQSSQ+8fX19eO655zB16lR0dnbm/ew//uM/0NDQgEWLFuGRRx7B5cuXZRdPOa+//joWL16MhoYGrFq1Ch999FHQRVJKV1cXVq1ahVtuuQV33nkn3nvvvaCLpKQ9e/Zg6tSp+OSTT4IuilJ2796Nu+66Cw0NDVixYgXa29uDLpISDh48iOXLl2PRokVYtWrVsHt11Lm+bjTJvv71r2ubNm3SpkyZop06dWro9ffff1+79dZbtfPnz2sDAwPaN7/5Te2VV16RXTylnDhxQps1a5bW2dmpaZqm/fjHP9buvffegEullvvuu0979dVXNU3TtAMHDmh///d/H3CJ1NPT06MtWbJEmzVrlvaHP/wh6OIoo7OzU5s5c6Z2/PhxTdM0rampSbvnnnsCLlXwLl26pM2ZM0c7cuSIpmma9vLLL2vf/OY3Ay6VOry4bqT3eL/zne/gH/7hH4a9/vbbb2Px4sWoqKhAPB7HihUr0NzcLLt4Svnwww8xadIk1NRc2XB8zpw5OH78eMClUsepU6dw9OhRrFy5EgBw880349///d8DLpV6tmzZgmXLlmHEiBFBF0UpiUQCjY2NqK2tBQDMmDEDJ06cCLhUwfv1r3+N8ePHY/r06QCAe++9F//zP/+DixcvBlwyNXhx3UgPvH/913+t+3pHRwcmTJgw9P/x48fj5MmTsoqlpLq6Onz88cdob2+HpmloaWnB3Llzgy6WMj744AOMGzcOjY2NWLRoEVauXInf/e53QRdLKceOHcOBAwdw3333BV0U5YwePRoLFiwY+v++fftQV1cXYInU0NHRgfHjxw/9f8SIEaiqqsLHH38cYKnU4cV1k/C6UE6l02lcddVVQ/9PpVJIp9MBlih4NTU1ePDBB/G3f/u3GDlyJFKpFJqamoIuljIuXLiA9vZ2rFmzBuvXr8fPfvYzfPe730VLSwsSCWUu7cBomoYNGzbg0UcfRWlpadDFUdrBgwexY8cO7NixI+iiBC6dTiOZTOa9lkwm0dPTE1CJ1OX0uvHl7tTS0oKNGzcOe3316tW4++67dd9z9dVX5w2mSqfTKCsr86N4yhHV14oVK9DU1IRdu3Zh7Nix2LlzJ7797W/jl7/8JWKxWAAlDYaoflauXInRo0fj9ttvBwDcfffdeO6559DR0TGUBooCUf3cf//9qK2txcyZMwMolTrM7ke7du3CU089hW3btkXquhEpKytDJpPJe623t5ePKgq4um68f/RsTeHgqueee077l3/5l6H/v/3225Ef6PDyyy9rDz744ND/L1++rE2ZMkX77LPPAiyVOo4dO6bNmDFDGxgYGHpt5syZ2ocffhhgqdTx9a9/XZszZ442d+5cbe7cudqNN96ozZ49Wzt48GDQRVNGa2ur9uUvf1k7ceJE0EVRxp49e7Tly5cP/f+zzz7Tpk+frl26dCnAUqnF7XWjzDzehoYGNDc347PPPkN/fz9+/OMf48477wy6WIG67rrr8P777+Ps2bMAgL1796K6uhqjRo0KuGRqmDJlCiZMmIDXXnsNANDc3Izy8vK8sQJR9tJLL+HgwYNobW1Fa2srrr32Wvz85z/HnDlzgi6aEtLpNB566CFs2bIFkydPDro4ypg9ezY6Ozvx29/+FgDwox/9CLfeemtkMpBmvLhupD4I+/Of/zw0AhUA/u7v/g4lJSXYsWMHbrrpJtx///342te+Bk3TMHfuXKxYsUJm8ZSzcOFCHD16FPfccw9isRhGjhyJTZs2RSrNbGbz5s34x3/8R2zfvh2jR4/G5s2b+XyXLNm9ezfOnDmDdevW5b3e1NSEa665JqBSBS+VSuGFF17Ak08+iXQ6jQkTJuDZZ58NuljK8OK64SYJREREEimTaiYiIooCBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISKL/D3qoCx7DeWZQAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -1835,15 +1976,80 @@ } ], "source": [ - "pm.traceplot(trace_2, var_names=['alphas', 'mu']);" + "plt.figure(figsize=(8, 6))\n", + "plt.plot(\n", + " logit(prior_sample['beta'][:, 0]),\n", + " logit(prior_sample['beta'][:, 1]), 'o');" ] }, { "cell_type": "code", - "execution_count": 127, - "metadata": { - "scrolled": true - }, + "execution_count": 502, + "metadata": {}, + "outputs": [ + { + "ename": "KeyError", + "evalue": "'alphas'", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprior_sample\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'alphas'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprior_sample\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'alphas'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'o'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m: 'alphas'" + ] + } + ], + "source": [ + "i = 0\n", + "plt.plot(prior_sample['alphas'][:, 0, 0], prior_sample['alphas'][:, 0, 1], 'o')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 503, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Auto-assigning NUTS sampler...\n", + "Initializing NUTS using jitter+adapt_diag...\n", + "Multiprocess sampling (4 chains in 4 jobs)\n", + "NUTS: [beta, mu, packed_L]\n", + "Sampling 4 chains, 114 divergences: 100%|██████████| 24000/24000 [03:46<00:00, 105.93draws/s]\n", + "There were 30 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 48 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 13 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 23 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "The rhat statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", + "The estimated number of effective samples is smaller than 200 for some parameters.\n" + ] + } + ], + "source": [ + "with model_hier:\n", + " trace_2 = pm.sample(draws=1_000, tune=5_000)" + ] + }, + { + "cell_type": "code", + "execution_count": 504, + "metadata": {}, "outputs": [ { "data": { @@ -1881,566 +2087,727 @@ " \n", " \n", "
\n", - " alphas[0,0]\n", - " 0.271\n", - " 0.056\n", - " 0.168\n", - " 0.381\n", - " 0.002\n", - " 0.001\n", - " 1023.0\n", - " 917.0\n", - " 1048.0\n", - " 706.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[0,1]\n", - " 0.729\n", - " 0.056\n", - " 0.619\n", - " 0.832\n", - " 0.002\n", - " 0.001\n", - " 1023.0\n", - " 1023.0\n", - " 1048.0\n", - " 706.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[1,0]\n", - " 0.358\n", - " 0.057\n", - " 0.254\n", - " 0.460\n", - " 0.004\n", - " 0.003\n", - " 235.0\n", - " 235.0\n", - " 258.0\n", - " 2014.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[1,1]\n", - " 0.642\n", - " 0.057\n", - " 0.540\n", - " 0.746\n", - " 0.004\n", - " 0.003\n", - " 235.0\n", - " 234.0\n", - " 258.0\n", - " 2014.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[2,0]\n", - " 0.377\n", - " 0.030\n", - " 0.319\n", - " 0.433\n", - " 0.002\n", - " 0.001\n", - " 279.0\n", - " 279.0\n", - " 321.0\n", - " 2005.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[2,1]\n", - " 0.623\n", - " 0.030\n", - " 0.567\n", - " 0.681\n", - " 0.002\n", - " 0.001\n", - " 279.0\n", - " 269.0\n", - " 321.0\n", - " 2005.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[3,0]\n", - " 0.324\n", - " 0.049\n", - " 0.219\n", - " 0.405\n", - " 0.005\n", - " 0.003\n", - " 110.0\n", - " 110.0\n", - " 122.0\n", - " 50.0\n", - " 1.03\n", - "
\n", - "
\n", - " alphas[3,1]\n", - " 0.676\n", - " 0.049\n", - " 0.595\n", - " 0.781\n", - " 0.005\n", - " 0.003\n", - " 110.0\n", - " 101.0\n", - " 122.0\n", - " 54.0\n", - " 1.03\n", - "
\n", - "
\n", - " alphas[4,0]\n", - " 0.341\n", - " 0.058\n", - " 0.222\n", - " 0.443\n", - " 0.003\n", - " 0.002\n", - " 330.0\n", - " 330.0\n", - " 311.0\n", - " 211.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[4,1]\n", - " 0.659\n", - " 0.058\n", - " 0.557\n", - " 0.778\n", - " 0.003\n", - " 0.002\n", - " 330.0\n", - " 301.0\n", - " 311.0\n", - " 211.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[5,0]\n", - " 0.362\n", - " 0.041\n", - " 0.283\n", - " 0.435\n", - " 0.002\n", - " 0.002\n", - " 329.0\n", - " 311.0\n", - " 346.0\n", - " 775.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[5,1]\n", - " 0.638\n", - " 0.041\n", - " 0.565\n", - " 0.717\n", - " 0.002\n", - " 0.002\n", - " 329.0\n", - " 329.0\n", - " 346.0\n", - " 775.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[6,0]\n", + " beta[0,0]\n", + " -0.515\n", + " 0.264\n", + " -1.078\n", + " -0.098\n", + " 0.011\n", + " 0.008\n", + " 592.0\n", + " 592.0\n", + " 595.0\n", + " 1330.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[0,1]\n", " 0.390\n", - " 0.034\n", - " 0.326\n", - " 0.454\n", - " 0.001\n", - " 0.001\n", - " 856.0\n", - " 856.0\n", - " 836.0\n", - " 1408.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[6,1]\n", - " 0.610\n", - " 0.034\n", - " 0.546\n", - " 0.674\n", - " 0.001\n", - " 0.001\n", - " 856.0\n", - " 814.0\n", - " 836.0\n", - " 1706.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[7,0]\n", - " 0.415\n", - " 0.034\n", - " 0.349\n", - " 0.470\n", - " 0.002\n", - " 0.002\n", - " 203.0\n", - " 198.0\n", - " 211.0\n", - " 2492.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[7,1]\n", - " 0.585\n", - " 0.034\n", - " 0.530\n", - " 0.651\n", - " 0.002\n", - " 0.002\n", - " 203.0\n", - " 203.0\n", - " 211.0\n", - " 2492.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[8,0]\n", - " 0.428\n", - " 0.079\n", - " 0.268\n", - " 0.576\n", - " 0.003\n", - " 0.002\n", - " 825.0\n", - " 825.0\n", - " 783.0\n", - " 1792.0\n", - " 1.02\n", - "
\n", - "
\n", - " alphas[8,1]\n", - " 0.572\n", - " 0.079\n", - " 0.424\n", - " 0.732\n", - " 0.003\n", - " 0.002\n", - " 825.0\n", - " 743.0\n", - " 783.0\n", - " 1792.0\n", + " 0.312\n", + " -0.109\n", + " 0.930\n", + " 0.017\n", + " 0.012\n", + " 345.0\n", + " 345.0\n", + " 385.0\n", + " 487.0\n", " 1.02\n", "
\n", "
\n", - " alphas[9,0]\n", - " 0.383\n", - " 0.043\n", - " 0.307\n", - " 0.463\n", - " 0.004\n", - " 0.003\n", - " 119.0\n", - " 115.0\n", - " 123.0\n", - " 210.0\n", - " 1.03\n", - "
\n", - "
\n", - " alphas[9,1]\n", - " 0.617\n", - " 0.043\n", - " 0.537\n", - " 0.693\n", - " 0.004\n", - " 0.003\n", - " 119.0\n", - " 119.0\n", - " 123.0\n", - " 210.0\n", - " 1.03\n", - "
\n", - "
\n", - " alphas[10,0]\n", - " 0.383\n", - " 0.042\n", - " 0.301\n", - " 0.457\n", - " 0.004\n", - " 0.003\n", - " 109.0\n", - " 105.0\n", - " 107.0\n", - " 133.0\n", - " 1.04\n", - "
\n", - "
\n", - " alphas[10,1]\n", - " 0.617\n", - " 0.042\n", - " 0.543\n", - " 0.699\n", - " 0.004\n", - " 0.003\n", - " 109.0\n", - " 109.0\n", - " 107.0\n", - " 133.0\n", - " 1.04\n", - "
\n", - "
\n", - " alphas[11,0]\n", - " 0.404\n", - " 0.029\n", - " 0.357\n", - " 0.469\n", - " 0.001\n", - " 0.001\n", - " 398.0\n", - " 370.0\n", - " 429.0\n", - " 187.0\n", + " beta[1,0]\n", + " -0.433\n", + " 0.214\n", + " -0.871\n", + " -0.019\n", + " 0.007\n", + " 0.005\n", + " 1011.0\n", + " 940.0\n", + " 915.0\n", + " 1237.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[1,1]\n", + " 0.339\n", + " 0.258\n", + " -0.104\n", + " 0.855\n", + " 0.012\n", + " 0.009\n", + " 437.0\n", + " 437.0\n", + " 461.0\n", + " 604.0\n", " 1.02\n", "
\n", "
\n", - " alphas[11,1]\n", - " 0.596\n", - " 0.029\n", - " 0.531\n", - " 0.643\n", - " 0.001\n", - " 0.001\n", - " 398.0\n", - " 398.0\n", - " 429.0\n", - " 187.0\n", + " beta[2,0]\n", + " -0.446\n", + " 0.183\n", + " -0.848\n", + " -0.143\n", + " 0.009\n", + " 0.006\n", + " 427.0\n", + " 427.0\n", + " 444.0\n", + " 486.0\n", " 1.02\n", "
\n", "
\n", - " alphas[12,0]\n", - " 0.347\n", - " 0.068\n", - " 0.233\n", - " 0.489\n", - " 0.004\n", - " 0.003\n", - " 288.0\n", - " 288.0\n", - " 280.0\n", - " 230.0\n", + " beta[2,1]\n", + " 0.355\n", + " 0.255\n", + " -0.067\n", + " 0.831\n", + " 0.013\n", + " 0.009\n", + " 396.0\n", + " 396.0\n", + " 423.0\n", + " 603.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[3,0]\n", + " -0.488\n", + " 0.221\n", + " -0.955\n", + " -0.116\n", + " 0.009\n", + " 0.006\n", + " 585.0\n", + " 585.0\n", + " 531.0\n", + " 1175.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[3,1]\n", + " 0.382\n", + " 0.311\n", + " -0.074\n", + " 0.969\n", + " 0.016\n", + " 0.011\n", + " 372.0\n", + " 372.0\n", + " 403.0\n", + " 536.0\n", " 1.02\n", "
\n", "
\n", - " alphas[12,1]\n", - " 0.653\n", - " 0.068\n", - " 0.511\n", - " 0.767\n", - " 0.004\n", - " 0.003\n", - " 288.0\n", - " 274.0\n", - " 280.0\n", - " 230.0\n", + " beta[4,0]\n", + " -0.440\n", + " 0.220\n", + " -0.903\n", + " -0.061\n", + " 0.008\n", + " 0.007\n", + " 674.0\n", + " 539.0\n", + " 730.0\n", + " 561.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[4,1]\n", + " 0.340\n", + " 0.272\n", + " -0.065\n", + " 0.863\n", + " 0.011\n", + " 0.008\n", + " 603.0\n", + " 603.0\n", + " 661.0\n", + " 813.0\n", " 1.02\n", "
\n", "
\n", - " alphas[13,0]\n", - " 0.405\n", - " 0.047\n", - " 0.319\n", - " 0.494\n", + " beta[5,0]\n", + " -0.451\n", + " 0.199\n", + " -0.877\n", + " -0.111\n", + " 0.007\n", " 0.005\n", - " 0.003\n", - " 101.0\n", - " 98.0\n", - " 106.0\n", - " 173.0\n", - " 1.03\n", - "
\n", - "
\n", - " alphas[13,1]\n", - " 0.595\n", - " 0.047\n", - " 0.506\n", - " 0.681\n", + " 723.0\n", + " 699.0\n", + " 705.0\n", + " 1303.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[5,1]\n", + " 0.359\n", + " 0.278\n", + " -0.035\n", + " 0.926\n", + " 0.014\n", + " 0.010\n", + " 422.0\n", + " 422.0\n", + " 533.0\n", + " 537.0\n", + " 1.02\n", + "
\n", + "
\n", + " beta[6,0]\n", + " -0.406\n", + " 0.186\n", + " -0.783\n", + " -0.072\n", " 0.005\n", - " 0.003\n", - " 101.0\n", - " 101.0\n", - " 106.0\n", - " 173.0\n", - " 1.03\n", + " 0.004\n", + " 1147.0\n", + " 1147.0\n", + " 984.0\n", + " 1344.0\n", + " 1.01\n", "
\n", "
\n", - " alphas[14,0]\n", - " 0.403\n", - " 0.037\n", + " beta[6,1]\n", " 0.329\n", - " 0.463\n", - " 0.003\n", - " 0.002\n", - " 129.0\n", - " 124.0\n", - " 129.0\n", - " 224.0\n", - " 1.02\n", + " 0.247\n", + " -0.067\n", + " 0.844\n", + " 0.011\n", + " 0.008\n", + " 477.0\n", + " 477.0\n", + " 564.0\n", + " 536.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[7,0]\n", + " -0.367\n", + " 0.175\n", + " -0.690\n", + " -0.022\n", + " 0.006\n", + " 0.004\n", + " 992.0\n", + " 992.0\n", + " 937.0\n", + " 1052.0\n", + " 1.01\n", "
\n", "
\n", - " alphas[14,1]\n", - " 0.597\n", - " 0.037\n", - " 0.537\n", - " 0.671\n", + " beta[7,1]\n", + " 0.294\n", + " 0.207\n", + " -0.106\n", + " 0.661\n", + " 0.007\n", + " 0.006\n", + " 1001.0\n", + " 635.0\n", + " 961.0\n", + " 913.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[8,0]\n", + " -0.338\n", + " 0.224\n", + " -0.771\n", + " 0.106\n", + " 0.007\n", + " 0.005\n", + " 1028.0\n", + " 1028.0\n", + " 923.0\n", + " 691.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[8,1]\n", + " 0.266\n", + " 0.239\n", + " -0.192\n", + " 0.728\n", + " 0.006\n", + " 0.006\n", + " 1544.0\n", + " 723.0\n", + " 1249.0\n", + " 971.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[9,0]\n", + " -0.416\n", + " 0.183\n", + " -0.771\n", + " -0.081\n", + " 0.006\n", + " 0.004\n", + " 1066.0\n", + " 1066.0\n", + " 974.0\n", + " 1495.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[9,1]\n", + " 0.330\n", + " 0.236\n", + " -0.059\n", + " 0.765\n", + " 0.010\n", + " 0.008\n", + " 507.0\n", + " 476.0\n", + " 678.0\n", + " 586.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[10,0]\n", + " -0.420\n", + " 0.189\n", + " -0.826\n", + " -0.083\n", + " 0.008\n", + " 0.007\n", + " 495.0\n", + " 410.0\n", + " 542.0\n", + " 271.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[10,1]\n", + " 0.338\n", + " 0.263\n", + " -0.058\n", + " 0.805\n", + " 0.012\n", + " 0.009\n", + " 470.0\n", + " 470.0\n", + " 491.0\n", + " 668.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[11,0]\n", + " -0.384\n", + " 0.162\n", + " -0.676\n", + " -0.057\n", + " 0.005\n", " 0.003\n", - " 0.002\n", - " 129.0\n", - " 129.0\n", - " 129.0\n", - " 224.0\n", - " 1.02\n", + " 1141.0\n", + " 1141.0\n", + " 1002.0\n", + " 1080.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[11,1]\n", + " 0.310\n", + " 0.217\n", + " -0.044\n", + " 0.752\n", + " 0.009\n", + " 0.006\n", + " 634.0\n", + " 561.0\n", + " 730.0\n", + " 677.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[12,0]\n", + " -0.411\n", + " 0.212\n", + " -0.851\n", + " -0.025\n", + " 0.006\n", + " 0.005\n", + " 1239.0\n", + " 1096.0\n", + " 1100.0\n", + " 1703.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[12,1]\n", + " 0.330\n", + " 0.262\n", + " -0.092\n", + " 0.889\n", + " 0.011\n", + " 0.008\n", + " 589.0\n", + " 580.0\n", + " 724.0\n", + " 577.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[13,0]\n", + " -0.375\n", + " 0.183\n", + " -0.732\n", + " -0.030\n", + " 0.005\n", + " 0.004\n", + " 1229.0\n", + " 1229.0\n", + " 1096.0\n", + " 1529.0\n", + " 1.01\n", "
\n", "
\n", - " alphas[15,0]\n", - " 0.398\n", - " 0.041\n", - " 0.324\n", - " 0.477\n", - " 0.001\n", - " 0.001\n", - " 1076.0\n", - " 1076.0\n", - " 1099.0\n", - " 2714.0\n", - " 1.00\n", + " beta[13,1]\n", + " 0.301\n", + " 0.226\n", + " -0.074\n", + " 0.739\n", + " 0.008\n", + " 0.006\n", + " 866.0\n", + " 746.0\n", + " 863.0\n", + " 757.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[14,0]\n", + " -0.398\n", + " 0.175\n", + " -0.727\n", + " -0.065\n", + " 0.006\n", + " 0.004\n", + " 937.0\n", + " 925.0\n", + " 851.0\n", + " 1355.0\n", + " 1.01\n", "
\n", "
\n", - " alphas[15,1]\n", - " 0.602\n", - " 0.041\n", - " 0.523\n", - " 0.676\n", - " 0.001\n", - " 0.001\n", - " 1076.0\n", - " 1072.0\n", - " 1099.0\n", - " 2714.0\n", - " 1.00\n", + " beta[14,1]\n", + " 0.315\n", + " 0.237\n", + " -0.089\n", + " 0.746\n", + " 0.009\n", + " 0.007\n", + " 727.0\n", + " 664.0\n", + " 732.0\n", + " 811.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[15,0]\n", + " -0.391\n", + " 0.186\n", + " -0.794\n", + " -0.042\n", + " 0.007\n", + " 0.007\n", + " 627.0\n", + " 403.0\n", + " 722.0\n", + " 332.0\n", + " 1.01\n", + "
\n", + "
\n", + " beta[15,1]\n", + " 0.305\n", + " 0.237\n", + " -0.082\n", + " 0.764\n", + " 0.008\n", + " 0.006\n", + " 861.0\n", + " 861.0\n", + " 848.0\n", + " 673.0\n", + " 1.01\n", "
\n", "
\n", " mu[0]\n", - " 22.106\n", - " 12.381\n", - " 1.756\n", - " 44.145\n", - " 1.179\n", - " 0.836\n", - " 110.0\n", - " 110.0\n", - " 64.0\n", - " 12.0\n", - " 1.05\n", + " -0.329\n", + " 0.102\n", + " -0.507\n", + " -0.133\n", + " 0.005\n", + " 0.004\n", + " 416.0\n", + " 380.0\n", + " 397.0\n", + " 543.0\n", + " 1.01\n", "
\n", "
\n", " mu[1]\n", - " 23.335\n", - " 12.095\n", - " 4.227\n", - " 46.619\n", - " 0.863\n", - " 0.611\n", - " 196.0\n", - " 196.0\n", - " 208.0\n", - " 308.0\n", - " 1.02\n", + " 0.247\n", + " 0.095\n", + " 0.059\n", + " 0.410\n", + " 0.004\n", + " 0.003\n", + " 482.0\n", + " 384.0\n", + " 464.0\n", + " 590.0\n", + " 1.01\n", "
\n", "
\n", "\n", "" ], "text/plain": [ - " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", - "alphas[0,0] 0.271 0.056 0.168 0.381 0.002 0.001 1023.0 \n", - "alphas[0,1] 0.729 0.056 0.619 0.832 0.002 0.001 1023.0 \n", - "alphas[1,0] 0.358 0.057 0.254 0.460 0.004 0.003 235.0 \n", - "alphas[1,1] 0.642 0.057 0.540 0.746 0.004 0.003 235.0 \n", - "alphas[2,0] 0.377 0.030 0.319 0.433 0.002 0.001 279.0 \n", - "alphas[2,1] 0.623 0.030 0.567 0.681 0.002 0.001 279.0 \n", - "alphas[3,0] 0.324 0.049 0.219 0.405 0.005 0.003 110.0 \n", - "alphas[3,1] 0.676 0.049 0.595 0.781 0.005 0.003 110.0 \n", - "alphas[4,0] 0.341 0.058 0.222 0.443 0.003 0.002 330.0 \n", - "alphas[4,1] 0.659 0.058 0.557 0.778 0.003 0.002 330.0 \n", - "alphas[5,0] 0.362 0.041 0.283 0.435 0.002 0.002 329.0 \n", - "alphas[5,1] 0.638 0.041 0.565 0.717 0.002 0.002 329.0 \n", - "alphas[6,0] 0.390 0.034 0.326 0.454 0.001 0.001 856.0 \n", - "alphas[6,1] 0.610 0.034 0.546 0.674 0.001 0.001 856.0 \n", - "alphas[7,0] 0.415 0.034 0.349 0.470 0.002 0.002 203.0 \n", - "alphas[7,1] 0.585 0.034 0.530 0.651 0.002 0.002 203.0 \n", - "alphas[8,0] 0.428 0.079 0.268 0.576 0.003 0.002 825.0 \n", - "alphas[8,1] 0.572 0.079 0.424 0.732 0.003 0.002 825.0 \n", - "alphas[9,0] 0.383 0.043 0.307 0.463 0.004 0.003 119.0 \n", - "alphas[9,1] 0.617 0.043 0.537 0.693 0.004 0.003 119.0 \n", - "alphas[10,0] 0.383 0.042 0.301 0.457 0.004 0.003 109.0 \n", - "alphas[10,1] 0.617 0.042 0.543 0.699 0.004 0.003 109.0 \n", - "alphas[11,0] 0.404 0.029 0.357 0.469 0.001 0.001 398.0 \n", - "alphas[11,1] 0.596 0.029 0.531 0.643 0.001 0.001 398.0 \n", - "alphas[12,0] 0.347 0.068 0.233 0.489 0.004 0.003 288.0 \n", - "alphas[12,1] 0.653 0.068 0.511 0.767 0.004 0.003 288.0 \n", - "alphas[13,0] 0.405 0.047 0.319 0.494 0.005 0.003 101.0 \n", - "alphas[13,1] 0.595 0.047 0.506 0.681 0.005 0.003 101.0 \n", - "alphas[14,0] 0.403 0.037 0.329 0.463 0.003 0.002 129.0 \n", - "alphas[14,1] 0.597 0.037 0.537 0.671 0.003 0.002 129.0 \n", - "alphas[15,0] 0.398 0.041 0.324 0.477 0.001 0.001 1076.0 \n", - "alphas[15,1] 0.602 0.041 0.523 0.676 0.001 0.001 1076.0 \n", - "mu[0] 22.106 12.381 1.756 44.145 1.179 0.836 110.0 \n", - "mu[1] 23.335 12.095 4.227 46.619 0.863 0.611 196.0 \n", + " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", + "beta[0,0] -0.515 0.264 -1.078 -0.098 0.011 0.008 592.0 \n", + "beta[0,1] 0.390 0.312 -0.109 0.930 0.017 0.012 345.0 \n", + "beta[1,0] -0.433 0.214 -0.871 -0.019 0.007 0.005 1011.0 \n", + "beta[1,1] 0.339 0.258 -0.104 0.855 0.012 0.009 437.0 \n", + "beta[2,0] -0.446 0.183 -0.848 -0.143 0.009 0.006 427.0 \n", + "beta[2,1] 0.355 0.255 -0.067 0.831 0.013 0.009 396.0 \n", + "beta[3,0] -0.488 0.221 -0.955 -0.116 0.009 0.006 585.0 \n", + "beta[3,1] 0.382 0.311 -0.074 0.969 0.016 0.011 372.0 \n", + "beta[4,0] -0.440 0.220 -0.903 -0.061 0.008 0.007 674.0 \n", + "beta[4,1] 0.340 0.272 -0.065 0.863 0.011 0.008 603.0 \n", + "beta[5,0] -0.451 0.199 -0.877 -0.111 0.007 0.005 723.0 \n", + "beta[5,1] 0.359 0.278 -0.035 0.926 0.014 0.010 422.0 \n", + "beta[6,0] -0.406 0.186 -0.783 -0.072 0.005 0.004 1147.0 \n", + "beta[6,1] 0.329 0.247 -0.067 0.844 0.011 0.008 477.0 \n", + "beta[7,0] -0.367 0.175 -0.690 -0.022 0.006 0.004 992.0 \n", + "beta[7,1] 0.294 0.207 -0.106 0.661 0.007 0.006 1001.0 \n", + "beta[8,0] -0.338 0.224 -0.771 0.106 0.007 0.005 1028.0 \n", + "beta[8,1] 0.266 0.239 -0.192 0.728 0.006 0.006 1544.0 \n", + "beta[9,0] -0.416 0.183 -0.771 -0.081 0.006 0.004 1066.0 \n", + "beta[9,1] 0.330 0.236 -0.059 0.765 0.010 0.008 507.0 \n", + "beta[10,0] -0.420 0.189 -0.826 -0.083 0.008 0.007 495.0 \n", + "beta[10,1] 0.338 0.263 -0.058 0.805 0.012 0.009 470.0 \n", + "beta[11,0] -0.384 0.162 -0.676 -0.057 0.005 0.003 1141.0 \n", + "beta[11,1] 0.310 0.217 -0.044 0.752 0.009 0.006 634.0 \n", + "beta[12,0] -0.411 0.212 -0.851 -0.025 0.006 0.005 1239.0 \n", + "beta[12,1] 0.330 0.262 -0.092 0.889 0.011 0.008 589.0 \n", + "beta[13,0] -0.375 0.183 -0.732 -0.030 0.005 0.004 1229.0 \n", + "beta[13,1] 0.301 0.226 -0.074 0.739 0.008 0.006 866.0 \n", + "beta[14,0] -0.398 0.175 -0.727 -0.065 0.006 0.004 937.0 \n", + "beta[14,1] 0.315 0.237 -0.089 0.746 0.009 0.007 727.0 \n", + "beta[15,0] -0.391 0.186 -0.794 -0.042 0.007 0.007 627.0 \n", + "beta[15,1] 0.305 0.237 -0.082 0.764 0.008 0.006 861.0 \n", + "mu[0] -0.329 0.102 -0.507 -0.133 0.005 0.004 416.0 \n", + "mu[1] 0.247 0.095 0.059 0.410 0.004 0.003 482.0 \n", "\n", - " ess_sd ess_bulk ess_tail r_hat \n", - "alphas[0,0] 917.0 1048.0 706.0 1.02 \n", - "alphas[0,1] 1023.0 1048.0 706.0 1.02 \n", - "alphas[1,0] 235.0 258.0 2014.0 1.02 \n", - "alphas[1,1] 234.0 258.0 2014.0 1.02 \n", - "alphas[2,0] 279.0 321.0 2005.0 1.02 \n", - "alphas[2,1] 269.0 321.0 2005.0 1.02 \n", - "alphas[3,0] 110.0 122.0 50.0 1.03 \n", - "alphas[3,1] 101.0 122.0 54.0 1.03 \n", - "alphas[4,0] 330.0 311.0 211.0 1.02 \n", - "alphas[4,1] 301.0 311.0 211.0 1.02 \n", - "alphas[5,0] 311.0 346.0 775.0 1.02 \n", - "alphas[5,1] 329.0 346.0 775.0 1.02 \n", - "alphas[6,0] 856.0 836.0 1408.0 1.02 \n", - "alphas[6,1] 814.0 836.0 1706.0 1.02 \n", - "alphas[7,0] 198.0 211.0 2492.0 1.02 \n", - "alphas[7,1] 203.0 211.0 2492.0 1.02 \n", - "alphas[8,0] 825.0 783.0 1792.0 1.02 \n", - "alphas[8,1] 743.0 783.0 1792.0 1.02 \n", - "alphas[9,0] 115.0 123.0 210.0 1.03 \n", - "alphas[9,1] 119.0 123.0 210.0 1.03 \n", - "alphas[10,0] 105.0 107.0 133.0 1.04 \n", - "alphas[10,1] 109.0 107.0 133.0 1.04 \n", - "alphas[11,0] 370.0 429.0 187.0 1.02 \n", - "alphas[11,1] 398.0 429.0 187.0 1.02 \n", - "alphas[12,0] 288.0 280.0 230.0 1.02 \n", - "alphas[12,1] 274.0 280.0 230.0 1.02 \n", - "alphas[13,0] 98.0 106.0 173.0 1.03 \n", - "alphas[13,1] 101.0 106.0 173.0 1.03 \n", - "alphas[14,0] 124.0 129.0 224.0 1.02 \n", - "alphas[14,1] 129.0 129.0 224.0 1.02 \n", - "alphas[15,0] 1076.0 1099.0 2714.0 1.00 \n", - "alphas[15,1] 1072.0 1099.0 2714.0 1.00 \n", - "mu[0] 110.0 64.0 12.0 1.05 \n", - "mu[1] 196.0 208.0 308.0 1.02 " + " ess_sd ess_bulk ess_tail r_hat \n", + "beta[0,0] 592.0 595.0 1330.0 1.01 \n", + "beta[0,1] 345.0 385.0 487.0 1.02 \n", + "beta[1,0] 940.0 915.0 1237.0 1.01 \n", + "beta[1,1] 437.0 461.0 604.0 1.02 \n", + "beta[2,0] 427.0 444.0 486.0 1.02 \n", + "beta[2,1] 396.0 423.0 603.0 1.01 \n", + "beta[3,0] 585.0 531.0 1175.0 1.01 \n", + "beta[3,1] 372.0 403.0 536.0 1.02 \n", + "beta[4,0] 539.0 730.0 561.0 1.01 \n", + "beta[4,1] 603.0 661.0 813.0 1.02 \n", + "beta[5,0] 699.0 705.0 1303.0 1.01 \n", + "beta[5,1] 422.0 533.0 537.0 1.02 \n", + "beta[6,0] 1147.0 984.0 1344.0 1.01 \n", + "beta[6,1] 477.0 564.0 536.0 1.01 \n", + "beta[7,0] 992.0 937.0 1052.0 1.01 \n", + "beta[7,1] 635.0 961.0 913.0 1.01 \n", + "beta[8,0] 1028.0 923.0 691.0 1.01 \n", + "beta[8,1] 723.0 1249.0 971.0 1.01 \n", + "beta[9,0] 1066.0 974.0 1495.0 1.01 \n", + "beta[9,1] 476.0 678.0 586.0 1.01 \n", + "beta[10,0] 410.0 542.0 271.0 1.01 \n", + "beta[10,1] 470.0 491.0 668.0 1.01 \n", + "beta[11,0] 1141.0 1002.0 1080.0 1.01 \n", + "beta[11,1] 561.0 730.0 677.0 1.01 \n", + "beta[12,0] 1096.0 1100.0 1703.0 1.01 \n", + "beta[12,1] 580.0 724.0 577.0 1.01 \n", + "beta[13,0] 1229.0 1096.0 1529.0 1.01 \n", + "beta[13,1] 746.0 863.0 757.0 1.01 \n", + "beta[14,0] 925.0 851.0 1355.0 1.01 \n", + "beta[14,1] 664.0 732.0 811.0 1.01 \n", + "beta[15,0] 403.0 722.0 332.0 1.01 \n", + "beta[15,1] 861.0 848.0 673.0 1.01 \n", + "mu[0] 380.0 397.0 543.0 1.01 \n", + "mu[1] 384.0 464.0 590.0 1.01 " ] }, - "execution_count": 127, + "execution_count": 504, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "arviz.summary(trace_2, var_names=['alphas', 'mu'])" + "arviz.summary(trace_2, var_names=['beta', 'mu'])" + ] + }, + { + "cell_type": "code", + "execution_count": 571, + "metadata": {}, + "outputs": [], + "source": [ + "prueba = arviz.from_pymc3(trace_2)" + ] + }, + { + "cell_type": "code", + "execution_count": 576, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "\u001b[0;31mDocstring:\u001b[0m\n", + "Run a statement through the python code profiler.\n", + "\n", + "Usage, in line mode:\n", + " %prun [options] statement\n", + "\n", + "Usage, in cell mode:\n", + " %%prun [options] [statement]\n", + " code...\n", + " code...\n", + "\n", + "In cell mode, the additional code lines are appended to the (possibly\n", + "empty) statement in the first line. Cell mode allows you to easily\n", + "profile multiline blocks without having to put them in a separate\n", + "function.\n", + "\n", + "The given statement (which doesn't require quote marks) is run via the\n", + "python profiler in a manner similar to the profile.run() function.\n", + "Namespaces are internally managed to work correctly; profile.run\n", + "cannot be used in IPython because it makes certain assumptions about\n", + "namespaces which do not hold under IPython.\n", + "\n", + "Options:\n", + "\n", + "-l \n", + " you can place restrictions on what or how much of the\n", + " profile gets printed. The limit value can be:\n", + "\n", + " * A string: only information for function names containing this string\n", + " is printed.\n", + "\n", + " * An integer: only these many lines are printed.\n", + "\n", + " * A float (between 0 and 1): this fraction of the report is printed\n", + " (for example, use a limit of 0.4 to see the topmost 40% only).\n", + "\n", + " You can combine several limits with repeated use of the option. For\n", + " example, ``-l __init__ -l 5`` will print only the topmost 5 lines of\n", + " information about class constructors.\n", + "\n", + "-r\n", + " return the pstats.Stats object generated by the profiling. This\n", + " object has all the information about the profile in it, and you can\n", + " later use it for further analysis or in other functions.\n", + "\n", + "-s \n", + " sort profile by given key. You can provide more than one key\n", + " by using the option several times: '-s key1 -s key2 -s key3...'. The\n", + " default sorting key is 'time'.\n", + "\n", + " The following is copied verbatim from the profile documentation\n", + " referenced below:\n", + "\n", + " When more than one key is provided, additional keys are used as\n", + " secondary criteria when the there is equality in all keys selected\n", + " before them.\n", + "\n", + " Abbreviations can be used for any key names, as long as the\n", + " abbreviation is unambiguous. The following are the keys currently\n", + " defined:\n", + "\n", + " ============ =====================\n", + " Valid Arg Meaning\n", + " ============ =====================\n", + " \"calls\" call count\n", + " \"cumulative\" cumulative time\n", + " \"file\" file name\n", + " \"module\" file name\n", + " \"pcalls\" primitive call count\n", + " \"line\" line number\n", + " \"name\" function name\n", + " \"nfl\" name/file/line\n", + " \"stdname\" standard name\n", + " \"time\" internal time\n", + " ============ =====================\n", + "\n", + " Note that all sorts on statistics are in descending order (placing\n", + " most time consuming items first), where as name, file, and line number\n", + " searches are in ascending order (i.e., alphabetical). The subtle\n", + " distinction between \"nfl\" and \"stdname\" is that the standard name is a\n", + " sort of the name as printed, which means that the embedded line\n", + " numbers get compared in an odd way. For example, lines 3, 20, and 40\n", + " would (if the file names were the same) appear in the string order\n", + " \"20\" \"3\" and \"40\". In contrast, \"nfl\" does a numeric compare of the\n", + " line numbers. In fact, sort_stats(\"nfl\") is the same as\n", + " sort_stats(\"name\", \"file\", \"line\").\n", + "\n", + "-T \n", + " save profile results as shown on screen to a text\n", + " file. The profile is still shown on screen.\n", + "\n", + "-D \n", + " save (via dump_stats) profile statistics to given\n", + " filename. This data is in a format understood by the pstats module, and\n", + " is generated by a call to the dump_stats() method of profile\n", + " objects. The profile is still shown on screen.\n", + "\n", + "-q\n", + " suppress output to the pager. Best used with -T and/or -D above.\n", + "\n", + "If you want to run complete programs under the profiler's control, use\n", + "``%run -p [prof_opts] filename.py [args to program]`` where prof_opts\n", + "contains profiler specific options as described here.\n", + "\n", + "You can read the complete documentation for the profile module with::\n", + "\n", + " In [1]: import profile; profile.help()\n", + "\n", + ".. versionchanged:: 7.3\n", + " User variables are no longer expanded,\n", + " the magic line is always left unmodified.\n", + "\u001b[0;31mFile:\u001b[0m ~/anaconda3/lib/python3.7/site-packages/IPython/core/magics/execution.py\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%%prun?\n", + "# arviz.plot_trace(prueba, combined=True);" + ] + }, + { + "cell_type": "code", + "execution_count": 573, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5gceXno+2+Fzj0zPTlrNMrSahObd2FZWJIxBq99SbbBcADb4HiOOddwsX3BGHiAsxgfrm2wMfY12IB3CWbZrI0Su8o5zWhy6J7OuaqrK50/RtqVVmlGOzMtjX6f59nnWUldXW9Vp3rr9/7en+S6rosgCIIgCIIgCIJQc3KtAxAEQRAEQRAEQRBmiQRNEARBEARBEAThMiESNEEQBEEQBEEQhMuESNAEQRAEQRAEQRAuEyJBEwRBEARBEARBuEyIBE0QBEEQBEEQBOEyIRI0QZiHHTt28K53vWvOjzcMg4cffngRIxIEQRCEhSd+7wShdkSCJgiL6OjRo+IHSxAEQVj2xO+dICwctdYBCMKVxnEcPvvZzzI2NkaxWOSrX/0q1WqVL37xi0iShGEYfOxjH+P222/n05/+NNlslr/8y7/kc5/7HF/4whc4dOgQiqIQDof52te+RjgcrvUhCYIgCMJZxO+dINSG5LquW+sgBOFKsWPHDj784Q/z0EMPsXr1ar7zne9w+PBhBgYGuP/++9mwYQPpdJr77ruPxx57jMcee4wtW7bw93//9xQKBX70ox/xoQ99CEmS+OQnP8mNN97Ib/7mb9b6sARBEAThDOL3ThBqR4ygCcI8dXd3s3r1agBuvvlmHnjgAcbHx/nCF77w0mMCgQDRaPSM7cLhMMVikfe///2oqsrk5CR9fX1LGrsgCIIgzJX4vROE2hAJmiDMkyy/PHXTcRwMwwDgX/7lX1DVMz9SBw8efOn/H374YbZu3cr3vvc9fD4fn/3sZ5ckXkEQBEG4FOL3ThBqQzQJEYR5mpqaYmJiAoCdO3dy8803s3btWh599FEAUqkUf/7nf47rusiy/NIPWjqdprOzE5/PRyKR4MUXX6RardbsOARBEAThQsTvnSDUhpiDJgjzsGPHDr785S9zzTXXMDExga7r3H///ei6zuc//3kcx6FSqfCRj3yEt7/97QwPD/Pbv/3b3HDDDfzFX/wFH//4x/H7/axYsYJ77rmHv/qrv+L+++/njjvuqPWhCYIgCMJLxO+dINSOSNAEQRAEQRAEQRAuE6LEURAEQRAEQRAE4TIhEjRBEARBEARBEITLhEjQBEEQBEEQBEEQLhMiQRMEQRAEQRAEQbhMiARNEARBEARBEAThMnHBhaqTyeKr3kE47KNUMl7181xJrsZjhqvzuMUxXz2uxuOuxTG3ttYt6f5O0fXqVff6Lpar8bOyWMS5XDjiXC4ccS4XxoV+7xZ9BE1VlcXexWXnajxmuDqPWxzz1eNqPO6r6ZivpmNdbOJcLhxxLheOOJcLR5zLxSdKHAVBEARBEARBEC4TIkETBEEQBEEQBEG4TIgE7Spg2yXS6QcxzXStQxEEQaiZSqXCvffey49//ONah3LFUhMHwa7WOgxBEIRlTSRoV4HJqf+XZOq7uG6l1qEIgiDUzD/8wz8QiURqHcaVza4iiQRNEARhUV2wi6Nw5atURimVtrNhw6MocgDLyqCqTbUOSxAEYUkNDw8zNDTEPffcU+tQrlxWBbtxNa43XOtIBEEQljUxgrbMGdUx1NDreHD8IfaO/TX7Rv5nrUMSBEFYcl/+8pf51Kc+VeswrmhStYR34jkw9VqHIgiCsKyJEbRlTvLfxGeG7iekjtEiF/hgU4nt8V/QE15BT6i31uEJgiAsup/+9KfccMMN9Pae/ztPUSQikeASRnUFiqwA780EGgLgOf+5UhRZnMsFIs7lwhHncuGIc7n4RIK2jNl2iZ1Df8zGyEbW1W/km89qHDT6uO/246grPSJBEwThqvDss88yOTnJs88+y8zMDF6vl46ODu68886XHmPbLrmcVsMoL39StYRkyDgqwPnPVSQSFOdygYhzuXDEuVw44lwujAstVC0StGVM14+iVI9wU8v/TcHMs3n1MEpmki0H38onbr6l1uEJgiAsia9//esv/f83vvENuru7z0jOhDlyTDyxnVS9b8T11dc6GkEQhGVLzEFbxuL57YxWHHbF9jB+6CauHbmV0dAeyhWF/7n1q2SMTK1DFARBEK4Qrr8Rs+s2XNVX61AEQRCWNTGCtoxNJrYyVVUwt9/CTilPRF5BufoRPtr6MK0d96BK4uUXBOHq8od/+Ie1DuGKJVWySKYG4c5ahyIIgrCsiRG0ZUovVHl0ymSgGGJCCaF5MzT5PbT6TLaU1rJ1F9R7L68SFdd1cXXRHUwQBOGyJCmoyUNIuqi+EARBWEwiQVumhnbFOSqVeY36q8TcAKbZzIRlcsd6L6OFFTw1E+B/bP3LWod5huqzT5N+y+vRf/DvtQ5FEARBAI7pBhOGCYDrq6e68l5c7/kntguCIAivnkjQliHXdRmZepo/6krz+/f+HvUejYhk8SkpyPZDQTa07sWnlrmj/rdqHepLXNfF94Z7iXzne2jf+SfsifFahyQIggCuO/vfVUp3HMyTxy+X4yj5MZBFebwgCMJiEgnaMpSb0cnV7SZjyaRmNLK2yy/1/4Q1Kx7iwx0lSoEhqo7KiUQFwzZqHS6u45D96G8zOTyMtGYtvre8jcqTj9c6LEEQBJT8KGryUK3DqJl1fh9d3tmEzPHWo2SHkbRkjaMSBEFY3kSCtgwlRgrQPEy66uNjPzmK5YRoyt7FofobqK97jF9K3Ynr+Hkh9iOO54/WOlwqhw/xmbfdxy/r8MGRaaTf+wOCH/5orcMSBEEAxwbHqnUUNTNsVJmqzpY44glgrPkV3GBrbYMSBEFY5kSCtgylxotInjxVu52UWaZLLaG5KX5wWGbIXYsWSLKyfpyNM7eyuf76WofLdyejxLt6+cXGldQpMn9XrGDu3ok1OlLr0ARBuMqpqSPIWrzWYdSM7bp4JAkAuTCJZ2rbVZ2wCoIgLAWRoC0zruOSHC/xvYzKk+k2cL28xfXxzroqX+o4xkP6fraH6lgTGWGr6uHRQ7tqGq/puHy3vZf/6VaoUxQ+1dnCg5kC8W1bqT77VE1jEwRBmCXVOoCaWe/30eY5WeIYagdcJCNX26AEQRCWOZGgLTPFdAXHNbilziA99QZkYMOaRyj0PkWi+xn+rF7m09NrWROewUXm6YmDNY33uWKZxrow/ZF6fvbCT6l7+MPc6TF58pY7MQ8eqGlsgiAIAHbTulqHUDMnTi9xlBTM7rtEiaMgCMIiEwnaMpONalh9J/iVSIU1AQ9ByaG5Yxe5XX/Kz4++gXGjiS3BKG2+NI6rsib8+prG+92hET6y6+usev4+3nT485jZKL9z9H6eb+3EPHII1xKlNIIg1I6r+nECzbUOo2Y8EoTl2UsFKTeGeuJhMMV6lYIgCItJJGjLTC6mkWzYQcqUcYv1dAbjDJc2MbBmB3sbhmmO30i4fTebD/8usmTzyIkjaFa5JrFOZzK0FvbxgexPmPK0s8N5Dav1ce6afoJCcRL7wx/Drda+y6QgCFcvu6EfNX281mHUTLfHQ0iZvVQoSRGSJQnJEgmaIAjCxdi2zeTkOIYx/2tZkaAtM9lYmbJvgpTpY8pVaQ3HIN3LkdE13Oi0MmTI3NCxl2xohn5PmXorhm5UahLrj48e5EuDf0PV9TAy5mcm4eGAs4G0FWRtNcH+t/8qcjBUk9gEQRBmuVd1U4yxqkncnD1+xTWpeFtxA001jkoQBOHyl8mk0HXtkrYVCdoy4rou2ajGKBkOZlvRkLheMdg0cS99viJv7T5AY/ceiN3JJ8uNtLccomh2Q9a35LFWqwaBmedxHbC9HrTr30hzVxPPcxsNis6Y3MBjAyco/c1Xlzw2QRCEU9T0cSSzNlUGl4OQLNGkKAD4XI0uOYpk5GsclSAIwtz4Bn+KpGdqsm9VVenpWYHPN//rbJGgLSN6waRk6RyvOpSm3gTA3VovjzTvJurP42u4Eyc4hi+7jr++9X7WNkwy40T4wfGHljzWkZFh3qi9yHOe6/n06j/i/1n5Dp4KbUBxqxyt9vGdw5+hbM1gHty/5LEJgiCcTjI15PLV12p/QDcYNUzck3/W5AZSZh247gW3E4TLmaRnyR7ZQjaTrnUowiKLmxbbpUZcZekHIizLRFE8mKZJPj//zrciQVtGCkmd4a5RPtOpc3P7GCG1zOeLbQSGb6J76A7iuxroL61iUA+gI1MyGpFwUe0VSx7rwSMvcn3pOF/d+FHGPN3cN7yVLRtvJtu+gZ3qzfRU49yc3Uk2kcA1zSWPTxAEAcA9Wd6oJmrb8bYWJAks1yVvOwB4qWLLAVx/pMaRLRLbFKODVwElc5yW2FP4PEqtQxEWWUSR6e29CVT/ku/bcRwMQ8fn8+PzzX//IkFbRgpJHbvrMVpVF63Uw7pQlDdveIC3NFXobklhmBJafhPHlALV3CqypXZcJHRjaecTuK6Lr3SY/YH1PHX4d7k1c4jPZ7/Onx/7Fs+095GgCc3xcl/8KY5vuhZ7fGxJ4xMEQThFzY+BWcYJd9Q6lCW3zu/j2oCfVnX2QlaydVqlGSQtVePIFodcnMIz/WKtwxAWmdV5G8nr/gDLvXrXN7xaFG2H0bHtSJWlL3H0en20trbj9/vx+0WCdlUrJHRe2z6AA/xX8hoq1TD+A7/BH6h5/rcVwKysITVwGxvCMTZW2rivYxcNSDyU+gnuEpasjIycYIM7hGyYeI0KJ8w1/JX7IT6Y/i/uSu7BdmHAXME6fYzDn/hj1DVrlyw2QRCE09mNa5BsE7uup9ahLLkXSxqH9AoFZ3YErapGSNFek7vRS8GJ9FNd9bZahyEsNksjcOInuLaozlnuTNfFE2jE9S39qH+1apDJpMlk0qTT87+pJRK0ZaRYPkTEY5LRg5RsP/1GMyXT4v2Rw6xp287TjpdGr0NTIEfZ9rLLaCLkzbE5tRmjvHRfVEcO7uZG/RiZcBOjai+f+buv8b4fPMTkSAt/kPg+juJlj3IjmuTj6aKONXBsyWITBEE4nZIZRDJLSNWrp1GIk0njpFJ0ezzA7EUOgB8dVZZwveFahrdo5MIknvFnah2GsMiU3AjBagZFEiNoy80rBxuaVZWOpj7AqUE0ErIsU19fT319w7y3FgnaMuG6LqXQUxzQPDw1cB8Av2xGsNdvIRq0uK93D/tch0idxszuDxKLvoau+knqwpMcVD2kEktXdy/P7CPpieCaLrvkzZSagjz1njfzQP+7aJEyHF/fw4zcio3C7YmnKH/r75csNkEQhNNJRgEcGzU7WOtQloy5fy/m/j3Yh3dzrWvRoaoAZCs6xcoUcjFa4wgXiWuD7Kl1FMIis9uuI3Xdx3HNS2t/LtRW1XF5JFc86+/z+RwnTpy5ZmXRMpmY3o9ULS1VeC/xer1EIo0oiop68jt0PkSCtkwYZYuGyARDuV4GCmsA8NpVthfXcOP4GwgHUlwfTLPdU0aSHJTubazyZbg2MkbJDbJlbGnuGhaLBZrUBJakMhnqRNmrs+G2KeocjWONvQzrvfzZoe/guC4ly8/vT/6AWDa7JLEJgiCcixtoBseudRhLRuntQ+nr5znJy85iiemTjZpMfzPjnlU4y3QdNKdhJWbva2sdhrDIpHKCyO7/hT/6i1qHIlwC6zxTclz37FEy07Zo9Hhx1eBih3UWXddIJGbIZFIkk4l5by8StGWikNTZMXULq4M5pqsRVqtlspLBTdF1tHe0cSh1D+3tu3jCCNOoKmQS6/Fm1/PE1OuRgE1Nr1+SOKenJ+kmRkc1TSbQQI+SQA/VccvK13JNqcBR6zq8kxoBU2PU7qG/EuVApBlXE3e6BEFYemZRpxzLgHT1/Fw6pSJOOsV1ThWvBL6Txx5xcqypjCzbc6FkBvEN/rTWYQiLTNYSOKFOyj1vqHUowiVSz1GeqqoeAoEzE7Fmp4y3HEPWl35JBY/HQzhcR1NTC62tbfPefnl+y16F8sk0z0kxMqXVhNQyzbbM5PX/TlNTjsLNU/xKx6/xlr7nSboSPfU65vQ1NGY28+61PwTguaGBJYlzYnyU9dYYAB869lOObriOPcrNvDCynyc6V/FXr/8g//umD/Kft7ydA55r8TsG+o0bRYImCEJNPOmuZ08+v2xHjc5FaW1DCgapx+E6j0L7yXbkSd0mWppGzgzVOMLF4XrrsJo31DoMYZEdrVvLTP87CEa31ToU4RKcWv7DcM4cMXNdF10/81oxrwSJe5txvaGlDBGYTRiDwRC2bWNZ1ry3FwnaMlHUHuXXOqfIlXuxXAXNDpBKrWNQb+I/jv0rwYFRZKuRd635OYX6QSQg3f8INzYNIwOD2ecXPUbXdcmO7MTrmiTkCJWsj5ITovdnBymkqvR4kvzSoa28J/4kn0h/nxma0SQfuXYTuaVl0eMTBEF4pUDIizcSxGpaX+tQloyradiFAjtDTRxU/QwZVQBaGjspRW7Dql9Z2wAXiRNqx46srnUYwiJKmhb5iRfo3vc1VLda63CESxCQZVRJwn5FpaOiqHi9Ly9IbZomI8MDdPsCSJa+xFFCuVwiGp2iVCqQz89/qo5I0JaJXaPr+GFa4d0rn8S0PayVoUlr4J4GH6/b+Ca+tPIJBnNvx1FzfMey6PBIOC98kt3pa1Ekg67E7ZiVxZ1jUSoV6XSiGLIXV5J4bMPd9KXH+OJv/gH9U9N8bOcgeze8hn9b+ev8W+RXSNY3scuzicbqDJWHRNmJIAhLzHWp00bw2QayvjzX/joXOzaFpJd5Z98KIqqHRmV2BM0tT7IutwNLz9U4wsWhJg/hG3540Z5/enqSQkEshF1LTVTZbOTIq91kOpZmasdSUGf2IFWujvn6mWQcIzmDzZkZWrlcpFo1XvqzLMtsaK5nSstT0pb+c+f3B2hpaSMSaaKlRZQ4XrXSDT/EliQODv4qpuuhb83PeFrvYXDSYu3jvUxmp7j2NW/koYm7mKx2cE3YpqSHubP5GJ2hBM8FbKZj8UWNcWJinDY5QdjWeDR8Fz7XYOyGLvbfchf9v/NR1v3ybfwvdS87+jZxQ2yAqk/CqcB9yaeI7tu7qLEJgiCcxXWQvTJq2UBNL00Z+OXAKyVRnDjDRw/QXdWInEzQMprEfg3isZEaR7g47PoVVHtft2jPryjKGReQlwu5MLFsFx9/JXfsF+zNqET1DjxDT4J9+b0el0IpTiMZV0fynzj6Itb02FmN8+VynOaZ5176syRJpOQABTnAoHf+CdKrJcsyqqpiGMZZpZdz2n4RYhKWWKVc4O1rdtHsNnLU8eDFoenQu1ihNXD3rXnalQbuXfk2Hos+yD3NaW7u/xF+ScL0ZVAVk6CqY7h+ytXFnee1Z892WtQMTzbezv3rPkJwX5LSoM0Hill2b/kpP3vghxz5+UEClsaHS//FdQxQpoE+PcrzvqXvwCMIwvLxla98hfe+9738+q//Ok888cQct3K5Znqc/pKyqLFdbuzG1RR7r2ef7GN/sczIyRLHzq5+5EoDoaYVNY5wcbie8KI2QGlqaqaxsXnRnv9SyXoaWU/WOowlkfC14E3soz/6IxzZA9L8259fjoxVb8OpX56fy1eyJ3ai5GI0KGd+LwcwUKSX56EZRoVCYpImX4A2c+lH/YvFIrHYNNWqQaUy/xJLkaAtA5n4YXKWws2Nw6xqOcZGVSfRs4VNnXuwVn2Dwq1/zJ2HNnLT85u5ptLBoel7+WFwkpDRTmTkHWi2DwuoD7YvapylYoFeK87zgev5xuAXGW7sYceGm3jHsee4Zw20NyuUShpve/LHxO0W1jLJcXk1Cg71xQlcc+kW0xYEYfnYvn07J06c4Ic//CHf/va3+eIXvzi3DV2XGSVCTK7iSFdPkiY7GvWj+7knP0X/ru10nCwlOji2kx7/NJXs4lZb1IqaPIh34rmLP/ASxeMxisXCoj3/pXIVH5Iz/yYGV6LWpl5WRrpJtL2RbN0mbLsWCxgvvMCBbyPnxhZ1H65Rwdjy+FmLQS81ySzjOAaVVzQJcRQfVTnA5OQ4AD6vl2uawqSrFVRn6UdK6+vr6erqoa6u/pJuzIgEbRnIpo4wXvGya/T9HExvICdZzKgN7PWsoGPvX9C550uEJwNsXv8abuFGkqUevqs10uq1qZhefm3V43iR+PcXfr5oMVqWSQN5/I7B66M76UtFKbY28hvPfJ/cxLMM7owxFe7Fq1borUQZCXRzd2o3WRqwkalfL8+27hEEQZinW265hb/9278FoKGhAV3Xse05zLmVVRLhMIY7hRVoXeQoLx+ekINpFYlbRQJrelG9Xmzb4ni0zH6pA0tanmvC6eF+jJVvXrTnb2hopFQqUq1eXs0p1MxgTRbyrYVK7AC7NT+lQpnKgUfQE2O1DmlByMkjOFO7zvvvklGAV9kow0mfbFVf4/ev1NhLW/kIOevMBK0hsR2/Nv3yXxh5TsROILkuiUAXj+SKZFLDKLmlKdG2LAvTrKLr2iXdmFkeY7tXOa0wyHGzh3ylFb3aRJ1VR/2JO1E21fPtWJEPuw38qVzmfW2TRJUs/63rB/zzoQ+RUySUahBXtrBwaI95Fy3GZDJBh5xm2NtDyDA4EeinUA6RaWgm2qSi3vcx0keOceuufezatIqeaBxfvUlvZZqtzTeiBZn9UriE1dgFQbi6KYpCMDhbJv3AAw9w9913o7yiPEZRJCKRV5RS2yZ1boF8Yyfhvs2o/quj1NrwtDE+mWD6phuo9Kwh7JXp8nu4rrebmad/QcXnJ3LbG8+7vaLIZ5/Ly5yu60xPJLmmrwUaFicZV1WHUMhDpVKmrS0yp22W4lxKIR/UBXCvsNdsvhRFRu3qZ93R5+m2DlNY+X7a+lfjDV7hx+26lLtvQ/M20XWe11A68ijUd+P23n7u5yhEob7rgrsx4jbVoI+gX67pZ7w7WMSnuoTqfEQCs10bbdvmRMmiIRBm8+aNBINBstUCpXiW1RtC9JcPclPbOnxD21A6rluS93o6mSAbi9KzZi2mac77fImr3WUg49/PaPIW1gWT7M31szY8iRzUcd0Sn/C9BenuLlY/dQJ18GGaR+/mcN8mVkXGeCG3jjunbqNh1eO4OGT1NhzbQVYWfmB19+4XWeXE2Nmwmduyh/iF/2acfAkfJvFcCysf+S/+2x99kpGNawn9+B+p5JMMNPeTbw9xotjPDeVjJH/8AG2/9dsLHpsgCFeHLVu28OCDD/Kd73znrH+zbZdc7hXzcKtFfGSZqNaz4cR+1N4blyjS2pGMPPbIIeqMUfLJYXqnxgm/492ULZdkaohIxMLRpbPP1WkikeAF//1ytVJOkdyzC/n695+VwC+EmZk4kUgjoVDjnM/PUpxLX9nAkSqYV+BrNh+RSBDZCqLSSax3HVL9KvI5DU/1yi4m8448SmD4MaS+t5BNFZDOcSPbVzZw3CJm3dmvsVnKEJp+juraXwH5/GmBmS3haAbVeIbmhoaafcZz8RmiVcgks0x4fFwT8GFZJtlckbCSIZXKU18PpqVQXy4xkC5A2KS+3kd919vw1rXDEsRuWzJWScM0JcB7zvPV2lp33u2v7HelAECz12QmfRN9/ixVV2W1p8yDpQ3c6L0dpclPYFMTn3vtKsL1v4WpN3Bz9nXc0bmTx5UyaduhL5ygwaOzNVCkkF6ctSLq6iKslia4qXicD679PA3ZHBucLPV5BX3TtRx1qswMHKatPkxvexclqY640ch7Bh+lrxLjNcVjHMpfHR2KBEFYeFu3buWb3/wm//RP/0Rd3fl/FM/ggqbW4RgWSnH64o+/CLkwCeblfRHsmd6OrE2SUDxIRZN9gQAaUNE1JqJlDqtt1DUuj853pzMMgyGzjdHgDYvWabGjoxOfz0c+n5tbie1SqPF8olN0y+L/PzGMvshzzY3EYY5IdWQHXkA/8AhmcnRR93cxSm4EuTzz6p7EqpD39TC15zjmsaPnf9x5pomMjxynULEu/l449Z6tcYljRdOwLZdCVWP8ZAMjXdeRrAqO6mNmJgqAVEozVDSxPPXQdi07Kw4z2XHUmT1LEqcjSZi2TamQozh1aN7biwTtCmcWDKYyPRjVCKHGYdokm+ZMH68zVP5zQuJ9+QyDyTLB17Rxz5vWUmg/SknL0+LLMWMGOeo6qOUOLCSKdgiff+HvGjqOQ7FYoEEqMuzros5bZWN2BLnOxw26jjk5xvUNJczxXaTHBnhr4x6q9Y0MldsY1NoZMzuQcElbV0cbYEEQFlaxWOQrX/kK3/rWt4hE5lZaBuDaJsQ1yhmbqOy7+AYX4ZnZg6ynX/XzLKbqyjdRbryRCU8XSr5AS75EybaRJZsb165i/eQw8YForcNccK7rUNWLrAyU8HoXp9w/l8ti2xaWZVI0KqSsy6Exx+WRoOUKBSTXQZYX+bI0UM/N5m4cp8IBfy++7o2Lu7+LUBMHUeP7XtVzmFWTg7afaFsb7upV53/g+TqU2lUcx+Wi74WT79dyLkNyvEZLbbgupu3gRWaFR6XPN/tZ1TQNzTKxKi/P9dLVAK0RH5sqU/Sn9vPO6gjrU7tgiRo+aYUceLyojoF++FE0bX4350SCdoUbicb4btmLB9BMD10NIxzveIaezT/nS+EGNMOmwT87ZC1tmWLtyiqBQgv65C30hOKsCsuo0VtZEZqiiESlUF7wGLPZDLHpCcJOmYrt5W+OfIWxsspDHbcy0N+JbGj0b7qNNW96D63/8WOKt/8NK3we8pkK99/+YV5ovwEZl/XlC9wZEgRBOI9HHnmEbDbLn/zJn/CBD3yAD3zgA0SjZyYZ1jkull0U0sEgqlRhoOKe8zHzUe19HU5ocbvlvlrywE+puknCdpKoqtA0M0SkalA99giZoS04K1qJrOg/Y5vZVtKXV+OL+fL7A2yKVKmmx4CFb0jlui6lUgnXhUhTCy9UTA4ULoOOjidHTazImpqG0dnUxAfXrcW3CKWlMNuB0M5kUIPdZN0NuNf9GkrvKsxiZlH2t5Q8ToWb0i8SObQdt3gJzTI6nHsAACAASURBVF5cZzY1cy/c0dK1bUBCkWU8/sClhPrquS6yLFH1Big7NuNGFdd1kSSIVx3SehHpZDOUoNdPaGYGs1Bi1FU5VLeexIbfwGq/YUlCrauP4JMlUAKMB25E1+d3fS0StCvc8Pi/c6PSzIZgmuH8ao7kVlOZfCda6DcoS/C2Ta389RODsw9WZe7yvpFg8wnqUqv4k5u/wZgyg+643NR+kC7gwacfXvAYJyZGaZaySIC/omPlFca67uBbk1+h93U3UCdD+cUBBqdTOL/zcdTePja+47cYvOe1/Hnyu/Qr0ySVRuxe0cVREIT5e+9738u2bdv47ne/+9J/XV1nTohPJl9eB8q2bQyjgqP4sQJdVP1hgoFmRkZOYL6KEixZzyAtYIljuVxa8JbX8XwFNbOXLmmMiFRguK2RsclRjOBqnGMak7qERz5zzaxisYBtXw6jQfNw8nWwXZeqM7t20vHxGWY8Ky9pzaKLsW0b27bweDzECwXkzDhmZgjdqXGb95MX5W6gaUGfdnx8lEqlMufHxyoV/vnYAPl5bDMf7sh+Ko/+K5WZfUwHAsi7H2Dz0UdxJ3csyv7mF9yr+wybsp9jgeuJV/0Y0clzPP+p99jZ11C2684maLMZ2oV3ZFng8aB4vATqGl5VzBdzdOAYlnWO71oJGpsaafcVCJ5cGsJyZxelbvKD6tpoO39EITmDU0oxEGpF672B5o7rGdN1tOhevCOPL2rsp5iOiyOryMce4HrlCM3N82s+JBK0K9yBUplRs8B/X/sQU8UemlHoReN9RoDHNob4+N2rGEyU2T2RQ+6vIzhtkW4bJaG18GIuwqDsYEzfTMEMkZQsbk1eu+AxZjIpuuRJTEmlRSmxL7IOw8wT3d+OdehnvO/Nm+j7758ik0lj961EUhSknzxIlE6eyaziRz1v4t/q30WdpFEardGwuiAIy9rpiU4sNs34+CgYeeqMCYq+Znoa2nBdXlVCpKaOIJkLV6UwPT1JubyA7dFdl9Zb34vV8Fp+2PRW4uEWVkoBlEKRYrFIZ8hk3dQosRPFMzZbt24jgcAV1AnPquAbfQJchxdKGjvLGk9pBnIgzFpvCv8ijA64FY3K849hWSZhr4dVXoVrIi0EFrukj9n37PSR/TjnSgYVD1rrdQwNb53Tcxnl0rmf5xwcZ+7z7NyKzrq6MMH5lJfacxu1dbQyli7huelegoE6rnGHGG7tY4fcjpGp3dQJe2oSdx7n6Jwcm5GZNMlKlXJHF1PnmmfmOsQ0k1cu+Va2HR7Pl1AtbTZJPMdX236tQunUhraNa1TIjp5gbP/uVxf3RbzoyFTsVwRk6mCZNNtxvKpL/GRYLhAMhpCzJuFyhValRLi5jYqvnrVNCmvGn6NuejfvrAywMn8Mu3H1osZ+ipZN4ToWXrNAbCrG6MjQS/Pj5kIkaFe4tG8APbsOudRBqtJIeyDJRNCgmtP4aF8rAY/CZ96yjqaQB7k3jJsxaOhdyTaPxNDMGhKqS8Ru4ZbWQxiuxENOcsHvyGazWTqIkvQ0MuHrZNxu4ljnNey57lq2pbuprnwrex99kI2rVtMckNj503+h45Of5o4bbiRkVGi3M3hMi+uLxzl+6PCCxiYIggCzc5BOMYwKkl3FO/k0JUUiosV4JDpMbPaRl7wPY9VbccKd5/w3x3XnNZpy6nt6Qb+vTY3i9n/BGXmaHiNGwfEyk4vSVRemHN3LrqYAmd5G2tafOc9lZOTEvOdXLJTE8ACju38xv41UP8bqX0bS06z0yGz0+6hIMsE6D9HC4jQIsY4exA26gER9IEhzYw9PlqUlGUGTJAlfKHzuEjbXoaIGGA/OrcQxenQfuckTF32cYVTmNdrcFWnktrZW1Hmsd+obfgSpkr3o4wpDJ9iWiCK5BjP0MBQNEmquo66hkaJdo1I9wBoZxi0WOStzmivHwjf0EGsicGN1kM6ZE3i08tnn3XXYNp5jqnzm6KRx8rsjkt2PYmRm3x+veI/ECgmiJ0eUXcvCHhnGPXHx1//VcF0XtZpHKp45Ghh64Quko8MMFfxMZlXyiSmant2CY5kEAkGKjoWu+snYAVLxGEFF4lDK4IfeDew1FZ6VuphuvBm7cWnKeSORerweL5Wu16KvfdfJJi0vv78vtvagSNCuYObeJHe0xKC6klgwjuMqdJXacCst7DEAZfaN8Po1zfRGAhRsB6krxJuDb6YUmaLDbebjt36dDr9GRzCNBMwoEoa2cKUqtm0Tj8/gk6scCK/jc6s+QdbXzXuOHiIrhbmtswF/fQP1bV2E4i8Q/OfbGN/xDO7334ln33Mke1fz2IGPE7SL+ByTgdTQgsUmCIJwyumJjqp66G5rQrYssnInriNTSqXIjw2fnEx/adTkYWTt5fJA13UpnuyMNmNaPJkvU53j8zuOg7vQ3Qa9IUqhfnxWik47QcDQGGxoZWBihIaeO5BiCgf0NqatM0cBbdtGWYTlWS5mZvAotmXiC82xK+cppo4nugNP4iBdko0LdMSnePbIMDHCFxyVNIwKw8Nzv0A1Kzqju39BtcGD27UZWZaZzGV5/tguwvEjqNnF/03Tc3EUVUFWztFC3TFhchel4wfOmew7joPjOFSrswvuSnoaJTm3+eDzmbM5lC/wvYETZOdZ4igZ55nH5zovdeurrF3DKn+RzKPfZ3r7T0i5FtcOPE7L2G7GzMXpXH0xrqaBaWINDWKNXVplkKTPzp/TczOM+PrJeBsJKcrZjVZcB8W1cNwzk986WSasyLOjeI6NZBv4TvwMrJdfAzU7jHIqUXIcUBTylTLTi3hfwXVdXD2DlRo4/S9BkpgYOEC24iKZBs3jg/TldqLaJul0EluVSKuzpZfxyTEKuSQJb5ie9g5W9V5LMTGJu28LvsGfLl7wp8LNTSLv+WfcQ9tRj/8nPblf0L+il46Ol2/Qece2XPA5RIJ2BcsenqTHr/OHksmkbNHnKdNbv48PehSue9dq5I6XS07+8YVxvr93GnllHf7pKutNha6pW3hg4nr+P1PBk96ILLnEXD/e1MLVgKfTKWan2tsc8K3ld5IP8kLHWrypGJJpEi05VKaPsnF1Iy2Hv4n17v/g3Z/7B+o2vpm+1BQ7WjYRV5so+UM4ksyK+N4Fi00QBOGU0y9ObdsmlSsgmSaBYg5v1aC1mKWuqp8x0jZfSnEas2oyeXC2PGjUMNlanB15KjsOh/UK+Tm2X7dtG3tgAGd0AVtGOxZd627CWvl2jntWU1VV7h3bTvfYBOVCnHWBLDeWp0hPlXFSL5eGrV27AZ/Pv3BxzFEhk6Scz8yrlA4AWUauZJGqRQZ0nW1FjViwjjVqgWvNA9TV1Z9302q1Oq/5dm6xiDI8jFpOou3biq0VaPOprPUH6DNkMp65dxWdr3K5xNjYCPGDTxAfOox5rrl1ig+jaQMrJ/Zhn2M0L51OkUjMYBgVisUCgfZ+5M7rLrjfU58ln2/unU8jqQRvTMZo8M/vfXShkmGpWgTHpnz0EOVYEeu2d9KHBGGZZ3rexmDjWhoa5pncLxAnFcO1TXJlA4xLu+aSXBvXdRkfi6LmZzADMk/J5llr+DmOTZ9+jHJ8jEIi9tLf27hs8vsoppIYuo6SH0cuxVAzs4mRZLy8tFFV15gYHkRK7UObOUA+Pn5JMc+FK0kQiOCET5sn7NrgunisCnJKBwJ4FZV6PY9SKWJZFoar4jFz+LwSmq6hBCK8LZSmfegZzJEd/HKLh+6VzVS771y02E8p5FJEsza2Y2PoTezMWxw+coTJydPOm3Xh110kaFco17DRijO8OH0nL1YCTJe6cNUyU1YzW/w2XbvOrKv+6B19/O6dfcgr63B1C8+K63goGCKpTvIzycRJbqQ/HCWPy1h+4dpAO46Ngs36yhgrC1O8dWwb797zGDeuG6E9McUNd99B1yPvwTvyOH929/fYG7kBpRTl+ViS9EQU1x9gyu1kdX4Sj2vRFYwvWGyCIAinvHJkzGfmKMkBih4fSFUUXSPkVAgMP3TJ+zDW/SrUdVDXNnsX9fRqLglY6/Pin2OJl+M44JhI6dEFW8tKMsuYu/6J+vSPafdkaJEKHOpZi9XUSDk7yqH6Root9axYUY957AgA6vSLxLf/B4XC0q5TaVUNkrkcyZkYpj7P8krFh7bq7RRCq2n113FPdJzS8QF0j0lUU3AKsdnSuWr5rIsovz+ALM+906Dq99PW2Ex+9w6k1Svwxneh+sNYcogD0Rn2FBZvBEfTNKpVA0VRkJs60HSNaHSKkZETjIwMzd5Atas4YzuxRo8hn2P0KhJppKmpBUVRaW5uRYtPYE4fuOB+o9EpDMPAMM49wqvlMlivGP2NtrQjr91wslPg3J13BNJ1sdquB1lhPJFiXJZpcYvE2jejZW06nRh+4MjQ0s9Bs20bN7MdDzEy5eo5R+XLpRLJRAJd14jHz7dOmovrurSls4RKZTork6CbZDNnXsOZlQq2A+V8honBo5RKRUpjIyR272JnWQdTxy3EkMsx5HIca3IfpVSU50b3MJOvUKmaxIeOoeWz2NU4XqnMSrvMzNgQU+MLv46cadu4VY2Afdpn4+TNg6ZIAx7LwTErFCtlJswyxug2RgwTN6ggyxIxM0KxXKaqZ3m45OXFxuuYsMv8rBhiSOvCDTQveMyvVN/YSvf66/GpFUq+DgJr3kRLWwfhcPilx1xsPrJI0K5QzkQRNVDmxZmbsNoGmCx2M6Z14MmswlsXRrm25YzH+1SZnRM59lQMvO9ew93rm6mzNHrKnbSG4pzQ22gPT7NGqjJ+YGrB4tR1nWAAZBya7BJTbgur9DhyqJnXffij9Gvb2N5yG9ptn+TNM0/RpU0Rr+/nq9f+IW/8xJ/xvqOPk9Xq2GiM8kTdHRjNQcp6bUoSBEFYvlKnlX+1tbTQ7UQxcwkCuRJxXyfpUCsFu0L5PE0Fstn0RRcf9o48ilKcINjQCIAqSXR5PQB0e1TW+r2o8twSNNucbZBgw+zd5QXg+how1r6LqNuEx6qiKA71Ho2J2ATBhlXUxRSGcg1EdXA3bZrdRvGRsxrQkq9ysV2Aahk5P45tVnEuMkqlen34w/U4l7Dgs2QUqD7zr8SH9tOqOGRdkxVD25kZL+NVFSrxQSRTxxPfi1I88/ewUtHnNWJnyjKxhjBGfw9D03mqyRST49t52DRZ0e1llZubd/xz5bouzU3NhFTQ8hkkWcbv9dLV1UNraxuKIs/OtTTTVLx+Sqe1/XeKRRytTLlcQtc1pqbGyWYzWNlJtMQ5OgWeRpIkbLNKOp0856LfxVQC67RlGWzX5empaR49cYJtxTIZaw7n99RNiZMj2tVqlVjstMXkbQPvxHNI1RI3XHstq0ISied+jvuLn9Dkg5WxIzTnTlBtWvrmNkalwtih/Uj5CVy5SOEc65MdPX6cFwZPkI7PkM+fZ56dC7IEUrNDwRNmOtBKIhYjt+d55MLESw8bTMwwYStYFhQNg2KxQHlqilK5zBPZPHlHQp/Kk9fymIFmUjmdxNAxZrI5bNvCMEwso4LkumSUIDPBdnYGmkmMDTO898U5N42ZK7eSR7IMJP+Z17GOGiSTLNHld9jcVEJxbfJBlSoVEqaJ5PXRZOao18ep8ysYpoPsb6ZJM+g1/XQYSRpjO/ANXfpNtrnSJ/ZQGngc4lP4B5/kwPQR2hoCNJz87gdwL3LeRIJ2hXLGi+xa+a9MFXq4PZxnvNCLT3Jp6NzK7/36JuTu0FnbjGc0vrtrCnskzy2yl5ZKmFtH382q+gkOmWHCHo1hxWBdIrRgE8+3bn2aOiPBSKCXTinN/vBqDrSu50epVaQPPkNy6Bm+tOFPMZG5ValSmhynrTzNz3d+lPKeHzLp8zEkddHqy/Hj+jexTh/jkWefWZDYBEEQTvF7Xr4oDIeC5NNRpoaPU5WrlPwRfIqMVdHQTr8IPM2cGiLIHqoEmT6yD9dxCDsW+ZOJTdS0mDYtqnO82LFNE800yJSNBUvQsHTqPTYFu4MdykYcJNZnx2hK5Skf3EF7JMmd1RGsWIaJhx4Eu8qIXU+9T0JdgPWr5EoWT3wfEwd2kbrIQrhVXUPCxRuL4uRy5C2bocrcuvq5agA9b3E8XmBbdIpnSxrT6zfR3NZIdmyY4vQkRSlEufVmJD2LnJqdc2Xb1ktJwFwuSpX0AOrYHuoPH6Eu5dCWmsENdRFuXkuvBG0jSTx1PXOK+VJEIo3Uh4MEvSr5mSkObX2KzMgAHo8HRVGZHbd1edyqZ0/HOrTSywmaueMFzB3bsSyLdHp23mQ6EcOjTdMQUsCuImnJc+63GJ3GGTw0ew7OMe+tbdU6vKd1/SzZDhsb6nh3OU+PJM3xwvTlaxTXtjGefwbl9LlXniBWyzXgWIwMbGW45CP8f/0PGtZcQ8zj47n172EssoHNdZ4L78auXnR9sPkyDZ1yQceqVsDKMnHawsne4UeQqkVU2wbXRqvMJrhOKkV1145XXJu52LZDoqJSdSXSTj1uOUdy725c4+VOq9OmgyFL+BwNOxAkUyjiAqY2RrmYJ2tKpKs2j6Y0JotZwpXsS4tSU8nByZEex7bQVS8zda1IxSyR7DBu9NDCLkvh2ARiu5EkMO3T54K6mJ5OvEf34Nh5yrkS40oQHIdYucA1He3IBQu/bdMYUPH5VFSfh1vtQZqix0jGCtzaVk/T5uswVr/9/PtfoNc6m4oxnlYptG/mYOP1WJLN3sNHmZgYw3UcjC2PMzR44Y6OIkG7QjljRSyCgEzQHyOpN9PuSvxX4VaG//UoTvrsUoV717WyZzJHWTOpUxV610WQKyGC3hw7LS+bm0+g2X6+r04izaOT0oVEIo3ca2/FkD18resDHPWt587iUexgE/2NcZpv/Tg/PvSneCQo9L2did0PYXvqyF73CRxFZdv6t7Cr7y58TpV3Jp6mrZphaGZ4QWITBEE4Rd73fSQtRbVc5PCO5ylKDeiWS1EK0Fc6gZQewMrncXLnvpttWdZ5S7pOqfa+Hk99C+1rN2ENnSCZTpONz84JOaEb7CuWKVyko5uua7MNQkwTU59Az07gvMoFtE+R7CravgeITG3jusxRMG0GIn38+113sXdlN7vDPYzWNdPX5cPs7sdNHSc3sQNjchtuMHzxHVxs/2bxpQvQupa2Cz5WT46imDkMWcG1LA7qFQYrc2uaYjsuM+0bWCtn2NQQ4V1GhfaRY0TVAFG5n6xTR3rsEM74NgaOPUwheRw4s+nFXBI0x9eAGvQSavLyE79KqsNPLn6E0sgwrwuaHPZV2RabuOjzXCpVVfFILnUBFVf14Gtowt/cTrFYJB6Pcvz4ESyzSncli4RD9bS5UGWtRKWi0dTUTPfJhcm1XBYzHSWTSFFNjyFPbDvnfv36BK2V2XmW55qzGT1+kOixl8skA7JMMRhm7KbbKMSnqZSKZ23zSloiTj51MkF0bLy9K/D6fBRtm7LtgFXB9QQZIcBe02TGa3PsgW8T9TfSls+zafJZOmNjHD184Yoh3/AjqKkjF41nXmQF1S7h2GWwDNzTbrBIdhVZS6K7oOTHqRzcgx2NYg4cQ+nsAtOkunvn7INPNs6QDRXbMel2krQ7SXJ6CSO04qXnPDUa7WJzQptmMj6BUy6SGR8hkI5CXT0+qUxec4gWHeSdW5E1HVVPgG3hnhzhq2RSjAeamGloocXSedgNMOMJMZeF3QuFPKVScbZ0+AIDALIWx62WMV1wy6dPaXHw5AYwqgamx8U0LWQjSYOVY9JyKB1+jqQDyWATaTvIRKKAnS/yYqaJ/OY3sXt1L3835XDgSOG8jWXk4jSe6KtbF2+/VsF0XOi8FdmWmAmFGejcSKh1Mz3drbQHHLBtLMuiaIoRtGXH1SwsxyShtdGomKT9RfySwx2myu93t7HyQ5uQGs+enNsc8vKangiPW1WU/nq6V6dxfEWSepmMGcJjy5iuQtVqxEm9+jsilYqOaZpE1BKTnjZ+0XojE/U9DKZ8tDYE+NWujzK89t0cvvsf2fP8QyQCDTz2ho8j+eoI917L9aEC3xz9Br87/m2eK21CN2V02U+LlDhn2YQgCMKlknCQ9RTxJx/Es/vnePU0UlEnbQRo1gv0GxOstfZh2WePlJnpNLm9u7EucmHpnHgIN30CXBc3l2Uql3vpYiV9YBvV6RGsi3RxnJycLTVzbQvLNqhYNiOxaeLmq0/SXF8Ddts1pOv7GY2sxLEc3lDYSWtqnMa8RUu0ihZzGY+bmP2rGa1bTWff69D0VuznF6KyQXrpDrY/PNu8QXMcRs4xMpaaPIpZTqO5UL9yFSXboX/s4dnGEBdim1SmBjEOPkVpaIyZrVvYeXgPxmQUz+gEdUYSWyvwgqeBWFVjdeIofnP2Uun0Eta53MR09Ar57Ycoqlk2eCvoRS8KjRgdK9gay9CoVmgwCwwOHpvrCZqXmZkoM5Oj7N11DDsxwuq+dnLFPHYxR9A20UoF7IEXkQ0dUwpSLL48YmHVN+B0djGRiLNlZvZCWXUcqqk8WrHMeEInq9mza1O9QoNZQjk5d688Po7x/LNn/Hsw0kzb6g0vlafmbZuB4REO793LqOIjU7r42n7Rx3/O0PGTpZa2hTYzQSIeZ9gwmazoSI6JZ2Yv7UaK11/7FrpzKRS5SsPhJ2gr51FKGvWZcdSOxvPv5ORCyK706keHT2caBpKiYjf1UMGH+8r5m7ZJxbEwLYeqaeJWDXx3vQ6lpxdUFaW3D9eycG0TBZtyWGJY6SXua6DJTRMkS/nQ4xSTs6+bW5zBdl0Mx2V1dAr/7p2UJwcxCln6UmMoxSwxNwKFDIWsTroCVnKcvvRBGhKDWImTSayhYzkOPsnGxcUKBIgHQijlc5c3u+7sHDl98Dj7n3iEmZkY3onnUPJnzltzcik8+38we258LVSQOKHWkWa2Emx2XqKEnddwyiUsFGTHoa0ch7KL429lbHQQpVjGzFXw6HnCxRx21aCjyQd7nuP2dJI3Jo4xpGVwJs9clqNUKs52KLUqs6Our4Ltuti4xIdfYMijoGQmuGbyaerGHqI49QJBMwn/h703DbIku+77frnn25d6tVd1dXf1Oj09M40eYAACGBIEuIgEaS4Rok1bDsmyraBt0TIth0MOR4j2B4f1waEQLUsh0bRkMkiIIgkTAAfAADOYtWe6p7eqru6qrn15+77ky33zhx4QGMwKgAgFhP59zKq87577buZ9595zzj8KGYwGFML3DhV+6KD9ECIkZV77aJ3XG4/yIV+n7KdZ1IZsLP8u05M2shcivEsew0+fm+Tr91t4f7yN0Z9lkO5xofpZTmaq9IYPdsmaiETV719MdXt7E0WMKYQjLDS+cOs3efJgleXSkF/2/5AX3/gbLJplfqNrkqt8nuPrv8/PTi+AIPD7UYmXHv27FD72t/jjuV/gf/joP+D/fvzXkYj4ydq1f2eaOw95yEP+/USXYoJenVGnQSuA5mCEGAcUVRPsgIw9Iu+2qcZvdYSq1TLNfhc8l8B4l5Lfb3JbnqKqTtHc2UB49AK+beCbY+I4Jhw1wbUginCtMdag967tyJJEMB6jyAoIIrcdn5vm97+pFrkjvlxu8by2RJ0CLXmK7ihD0bUwh30mMzVOqR1Ex0J95vc4Lgv41RuczFYQT574vj8/VrMIosREKUt4/V8BsG173H+Hk7FVN8thIKFHAa97MW4cEwkSgmu8Z4i+tvsMvcoOvpiiUVjgVnGGlx99inuXP0FSN9CcA5LFSc5NLnBVf5QX85/GLj8IRfrmqdlQVmF08L7hUHrrdfZnC7QaKRalObTSBJbfJdO4yod3X0fqjkHMMzn53qeF3ytxHNPq99kZj5DGbQ5uvU5/b4vAdWju3EczhgR3rrIfyFwI1jGPrgOwvX2f2HMRWjWye3eZeDOETc7mEEqTqJFH5s4NjF6PyHm7Q1wVwHoz5DXY2yXYeOsJVHZqlsb2Oq29B9UCM527PJmKeLxeIV/e43B9nevj957PtmMT2A8cd0GMUY5uU8rnuCTaPF79OqGgcbB9hDsy2Ln6h+ykZrgx/QTS4gyt2Sw3ln+O4VSJS947hywDDyQIAMR3kCf4gIRB8Jf5on95LfQoj1O0Kh28MEJvb4DxrXDRwPewTYP+aEjQWQHPIzg8eNNWEWl6Gn/lFlGvj+eFjEcxM16HGb+Do8r4EyL1tsmwUaVy7zXi3gB9bNPzQkzBR9g7YO9gk2oqh2QbhGFEpZjBGZukrRqeLJE+eI5gbCEFDjOdG+COcQAfgSASsAURodlBsB2M9XfenKlWy+zv77Dx0rMcdpqk0hnaY5dy5YCK962Nruhol6D9IBezs79FL8giyQqypBLaNs5zzxJ7FsHuPovU2Sie5N7EWfpGwF3tJL2Rji2LqF6AVDYxKmOMXpPANimOKuiuRb1rkTMdfv7cAsLZ/+At/bRtG98PIHQ5skYfuJLuO3E5lUAXRTQ9TeDEtMUJKvmLOFKCg5HG7kgg8gPa9S2k0Xuf3j500H4ICe902a5/ATfI84RmUh3P0XOzJA7+Nl8ti4T33z3p+JPLE9xtGAQx/JczE5Sm71AI4PHCPZ6cXqGgDdGJ2TbfObb8u6FcPkSprREjoHs+jq3z39r/L9GHPsEfLvws1af+AdrX/jv+4NRxzn3m76HMf5inMynyf/7XudhbYUKRkU98ksuSy69UXuV/3v8XaJEH0yK56Pt3IB/ykIc85Ju0hw73rq6x0RzTMwVqXhIyk5ynwV7pOHcyxzHCJJJl/2VydxzHlIolCrNzCLk84fsUMJr1dGatGkvLi2w++8f0mzskzCGj0ZBF0efJREzRqTF45fe5ffUVnumP3nIy1um08H2f+otfo/zKyzRklbqa+ivLmxj2B+jrt/i5xnM8EWzxiHvA3cVHGKSTRGmRO/pJ7peOM388z9Hln6ZdvcmR43BkJaFQN7xbTwAAIABJREFU/L4/P0oUGPg+g+oqZhgyCgKu728j229/3/dNk6DZJwwsgtohnxDGnBnvIjhdyndu4H6HllkUx4RxTJSYQEnniabmuGDu8rQq8mONA+b379KQ0qxPPMpBKOFc/wrHBrssGFfxMg/GN53OMDs7T/eVV9hZef0tmnbfie95VMTTGPk0zbzKnxBT0QO000+i7N/Enz9FT1cxnTbp7PdZaj+OwH/7pqVrmQyrFRJmF0dNoOVnWXzsSaZPnWf5qacRPYv2eIjlKcRBhPJmSJlUvUb/6Br1m68Qb7yAbzcIyzv0d7eRhy3E/j7rY5NVWyHgWzlc1pvPRVtSaamTtPe2CJJJ+I78xMrdWwxtm9KJMw8upCbZjFSee+wy5HLIkyVS76Orp4YVQmtIv17ny1vbbJ18jJV6k5fuXaFtdIjMFvbqXXY2DylHefRhlZmNKwwtjVO9Mj++8wVSI5ub7fdwvgT5W+P7PVK/f4ej1TfDPcOQThDgR9CKE2z4Mh0nha/FjCtrf3mPYYwwrTFxGBDFoMQRUv0ufFtxGuXyh5FKRYJql1xtSCEYkpUcJtwhY0Vl2OrhdquEu68S9WsosU8z1rmRmWdcVKins3RTeXqJNKPCBJISo4YuEjKbE3O0J3XSRgfdH+IFAZ3yPgNCXEEkCAQmdw7oI+AH0Gz03nFTJHjtCoFpEqgKQ0mk73p8w9b5C0dmz/2W0+p5HmuRDlHIvm2w0+0g+i6jgUXz9Zc5un8XYzRkGPqIkofnaUhxwFBTyUpDMLbQFBFNsLEVjUi2kcMBfqfLjXgeY+YsW6LCv0rN8Wf7NkHrPp71rXfK5OQUmUyGsHAas7ON/b0KhwNfHhhsOy7pMMX8eMhsScHIFbksDDk5X2CqkCYKfIaBzZj3Fkl/6KD9EBIZHpK+x68nyjxR3KQynsWKVY7LJv/r37yE/NT0u96bTyhcnM1ylBCwKwbPBSfQvARvtJd59v5nyasDaqKJtu4QB9/fot/ptMkIdUQisoLNbljiq4fn8Lp1lhSRvyF9iK8PZ9C6ewTTTzwoiQuMPvM7PHby45wKOvxpq4U+ucRE1OWfTv0av3Hyf6IkDPmHLz3/vhXTHvKQhzzkg9Icy3SFBIHnoWR1Bk6M5vUZ+yKP2hXUSEDGR7XGxN6DH//R1a/i/uk/w9neRDi8TWS/R2hWHFMvX8O483m2nv3nuLNnyJx9EhEwmnWmhQBh1CeyDFzXI70wixfHbxGu7nXaGEeHHAxb7EguZhSza8nkDq7RC8Lvu7hT9uhlUsTsz5xhM3saSYbieMBITDNtjDnTGlE8aHO40+KSHFKdepLTp56m0K+j/uH/TvwBc+EEu4vcXnvbddEdsuP43DNHlAcVOt0mXqWC+x06UY2te+jVAyTLYVKuMHl2gcnD5wkOb+J3D0lPzyGrbw3zb/gBm46HP2rR376Hv7PCa+oiW1ev0dq7w3G7zJlulWODXXy7wdr8I0hOi2V7SCF/hqjXxR4MHhQJGfYQD+4g1d9dg65VPaJ99RlOXf88+eCAj3ZXOd8f4K5XaZz5LPvdPpOeT2Lgsbez9YHG7d2QOhto+1972/XOxlUGnUNGgo7T7qF22xRLDyrjWZ5He9jmucQiTpQgG9uo8YNxXo9iDjI+48kUVVHF8ECRPPRuF52IOPTZmJ0mkDUi+cE494OQr1Rq+K5DMKqzKZYQRIGo3QSn+5aKdaKskExnGdQfnCCMIgjrDRIHu2wjI1X2OSO9dwhpIx5xN5+ndmeD0aiLdu/fEt99juLqi4yr2yiKRv3EEquiy7HUBIM4QXVylqFkIkUCAzNBzm6TWJp5W9uxOSS2DSIE7g8nCYpnP7CUxXdW5nugPRcTOQ72M19i+/bL3HjjCkW9w63SHAfJaeKhSdc0IY7Z3ToiMAeo/pBC1CeOYBQESKdOwbdXe3QcItOid1hnUEixkj/PVmGJll5AFT2U9euMX3sezwsIPQspjvBiH8WKcBIyRwszIApkgyGCZTAkyZTdohj1yKgjOmIGUQqZG9YZ16rc73SIACGMEeOIfUGgpyVxJIVyx2Q47GP2v0OiyfcRPI/s7AJqFNLdv4cbupiCwLdHcveuXmfr7i6HrsPm9hbjnRV8e8xQzSJUy2xmVdTDF1ibPEWYEFnya0SxRC+ZJcoIPGau4/Z7iDkFccJHTgSMEgXiTJZPJnqk12/waHmdTxyuEjh9rPq9v5x7YRhSLh+ye/8OQvse505/ipk3K+saYUgYx8SO874VF7/Jk6kE87KIevglkmGTbP2rPDK4xXVXJzxc526nQuC6DAJw/Pee4w8dtB9C7h9LEvsyTvlp3Nk3qIwWMIH99A6dV2vvu0j/o198hNOPTSHXLFa7p+hc+tfo6Rrl0VlKyQ4d0Wc49uF9EhjfC9/3GY9HzEl1xmKCSBC4n1zm1AWfzziv8rP1Z/nzM8f5ib/+P5Kce+Qt90bZBZAU9Lt/wNPlLzJ76WdYly+wr87hiCon7AodQaHReO8KOA95yEMe8kFJHtymUt57M+lewHdDymOfTqpAHEUcN8voeEiRx2j9JbzXrxDUdzBGW7Q2b2KLElf75fd8/473xtyI89z2VdTNF8l9/ctYno+/u8ludpqNMMlhZ8DYj1hp1Ki5/rdq1QU2aueQ9N4WRmuIPxojdgaogYvfrrPRbGJ/Hw6abQxRujcwUyLK2GEopJGEEEL45OANYt0kmW9SKvgUlYCD6y/xRNjHf+NfkphV6F14CkH+YKFggm8h9Xcf5PiEPtLgQcVGwTPRPZvUoIzb7rB1sIIajDjefP0t92vpLLLkMe8auLKGs3mHP7IyXEmcJNx5nsrmKr7z4EQpGo+Jel08d8yKadO9tY0bSWjqBJ6YZGNpCbuo8PKpy5iajmqNyG+/wezhCopV5fXUOZrbN7h+8xbb9+4+aFOX6QcBcW+XuucTvcO4J5JJlKTD//mR/5qOHVGUHDYLE4zEAUU5wwWzjuf5dPb3WUp/d+LMyv3PPyi28M3xDN9Z8HYxpzIrV6keO4Gnp4msfbIrf467uoLx+l+g0iZpWrihTdowEY0A1zJYl6bxfB+za5Krdik2D7Dpsp9JoRJjoRDpHtn6VZ7/8z8BQA48jE4To9fBtIfMOPtIvR1S/W3q8SEbvQehhObYYG9jjfLaLew3w3inuneZ9LpMj1ZYPvwyhizxovXueeZBHOOFEcQxcrVObvs+yXqZyeE+53KgdLsYnsQLcQml12Onf0iQTtLKztObWaKez/CNcz/JldMfRyjvEjpvPaGNnvldor/4PWJ7SK53DX/U4mj/ZerlG+/73RyuXHuLhIBjHmIZuwQ3XqH3xjeYXP0iie5dyn6RQr/OPF3GqOyuX6e1v/Ygr6z6BonBPaajBowcbo1s1jePENv3iJ0xYm8b/9YNwkaDa2qRtbnTTEgjZC8gH5rIYUjbiRjZDl4Y0wpUAlFCNRzshMdcssUj3g6R6yOGAZnAIC1YCGmRotMgZQ7RWwYFd0DgCSR6A4TQZ3f2GCM5gS9J4JokQhPNcYj7fTrNGs2dDfzDu7jdKuLBqyR9EywD785VzteuMWjfY7G3hhi4vOXXpefTSRa5a3sQRghhQMYb43bvEIxrdOQEpmmA7GNGAmLkITgeTqSRa42oBRoXzVVsRcMPY2QNLD+gG9qYQxuxVKKWSKMFR1yeneDG1MeR3xRRFwSBfDbLYipF2LJ4bmOVV2s14ijiVcNizXYxbt8iflOCwrt1A7f9dj1e0WwiOH0U20KJIoLkBIf6FH8kfJTr0hJzTotaL6BaMWjsbuF4LsPBez/333tg7UP+nRBcbXC0dZ9y6jjrkzuc9RN03AKZGDLxR3At/32Tl3O6zMu2w1N9l9OTaSTSFGWDXzz3x6zFMivtx9kV21xKfO/To9NpIcsymuRzIM3xd87+Qz5282WePfNb5BcW+SVrl/wXfpcf/+W/865tWB/5+0wLIgWzx6Ln8p9s/Q5qwsWUEpz0Kuxs3WF+fvF77uNDHvKQh3yTL8x9isiKOdvaJt3cxlYXaMpp0rFAK5tjtl8BERxBpW66nHTHbI8G3EzPMC0GTEYhZiwQRDHKO+3+CwJWLktFBFFJcr+yTzeeYpaYWBdonb3AmBAzDumZIWLQJR0F+G/++Fcrr5EcrCJLA0RbpaOnKQpQCAbYBrRHA7woJvku264dP2DL9fix9LfpPsURQeMerppmcHcHy1TItdosZ1p8cnyD2Ivop3JIakRxbNCV89TTMzyZ6/Hy8V9htrnB3fxl5P03aOkBJ6IIQXz/fd8ou4ibffDulgZ7SJ11wvxJBG+E2N3l5NEaHgJG6g45Gwx7THDJQ1ZVxr02jXtvMBl2ENM6kWMyODzk0dk0C8YW3cVPYu0/jzs7gZ55Cv+N15HtMsasTj/3ONXpRQ47I6aKSWb6u5wbzfJa0+fpxisoRQU5JTN0wKltU8jZCHYVNXWeVPWImYVF1JmLDMxDkEYErbusDLpcypeYUd+6XnaHA3bFRRbr17mXnycc75DwO5iPfJrUtS8TaDYdYYJC3CXefQHmP1gO37BZo9fPcuJMhruWw5KmIOhTFN8p3FIISCw/xahhMa0niccyr2204ESVc4FBK3OMlurTTGapTM+gSQXG/+afsHxshpzTJt+2kWSXcJzhBfsM6qiFanSpZRdYWluBnMs4dHCiCFlW0FJptns9GA4R5Yh82CRyx7iZkKNQIj0aIfd7DHfXOV5MM585BUB/5sMcdbc5b21xOhpwoEFx1Id85h3HwPQshDhEiCOIYkTLZMY0sMMDPqd+nKe9DTKVa1hBjCyVeXR8yGawRNYYsbP8CI54kjOjdTRChHGIdeNzZD7xn3/rsVByREgIkkrdkZmprLORzCEIKWbf47vxHZsojAg8B1lVAUi3XmSgTqKKHRJRG1yBhY5JN5hnGGfZUJb5CCskvRb97ddIjSrE+TQ9QSMRGYiEmEJEvV3nhOGilsooWRcvPYMy2qSWjXi0vUvKHKEIIfXMHBORQU7vYIcuQ2+WvqAzI6nkhgYzbocYEd11UPCISaCEPvnYwI4VxraCEwmkBINqNEGUkgkiEWVsEqcyGKpGjEB6bPDJ4So7+iITQYPE/vOYDZXmvSGRMGI2l2a4u0mclTkadEmEAsFumXIuQWHjGY5yS5A9TRyGBKMBCUcmh4iby1HwfbxIxpIlhGjAWbuNGX8IddRjJGqEkkomsvlIdwUxiKlRpESDROSg2R5GOonq2wS9FntCjo/2mqydOMX1VAmpNyK/8hLCYx8FQBQESnufx02fxSwuceHms/S0EoKh8encLDX5OE13laBbopDLIRYLlDfvspjLv/WUvnqfOClzZb/J3MXPEFhFUvGQj7FOw5yiJCv4y4tklQSBY+AEEQnlvWspPHTQfsgI7g84TD3Dx3MNjnOfTdWkpBj8p77ATzw9w+z5pfdtQxAEnt3rcjmvcTYV0Wlc5mKvyB/rIUGujR/JHEUpgpdryE/PfU/9rNdr+L7PjfxFilGPnzGucKp5h38c/TOc8WV6l/8+qrH53o2ID+LWJ77xd1nwZmlE01wIN3BFlY+213hFnOfHv6fePeQhD3nIWzFFhaQzpjc/hZDyWHQ6WGKKjpqnENiMkg8S3HfmTtL2VI4FPmL/AEkqMine4ZRdRh7WMYJfoCi9PbcgDn2Wu1/DZBnbilECUCWwXBdf6jO9vsvh1MfYEE4ghAFOYNL1Ai5HEb7rIPgOI8PAC136yQSDpMaiM8YPJRAlCoNdHP8iyO8svCsIYH97mE7oEd39/1i58hLjWGT55GeIBxVwVW7PXuCOeIqcZPDx+m3uHz+L7esst/ss2luUs1k+MXyB4ad/iZS2TqyEJDvbGM0K2dlj7/j5b+nL8AjJ6VIJsximyZmFjz247hlQvU+gOChBSO7+LTQni3RKJmysIx97AqvfIzy8TlaDTvEUk+MDBpaH2a1S1fIUm/uky2WEN6ttRoKIgUQcuGjtPcrlTazqAFuWuFc6RvFgD1EMWJ87y+XxNknHJkhIbOdOsCWPyMUFEuYMLa1GIjFHr17jyvwys71DFkKD1vqLbM0t486c4KRTB1kjzCxyM5boRgH6cMSTzgaTXQFZm2Sq8jrh4jTVvYggVBlKMdttgcc+wBz1fZ/Dw32ifpNy+ZADJYNezFPe7fLT0tvzH3fWblOWJpgUXeIgpCaprF+4yMXiIuX9HeY21ujMLOPGGqIvsZ9OIkQyY18i6yuEWYNXlp5kIqGy4Gyi9yzkvoyQ1BjkdU54e2SSB7zarlFI5NlF4uT6CmLNRJ0W8eIaW/o0lufQ6jWokWJh1OOSt07CncPcfJV8qsihL5NuHqIOfTZ1lZTQQWjXCOZmkeW365RF4zZS7COKITmtiz7qcJjM0jKSnKpfI9bHhJs3GMw8wdmDrzFndbiVPI+ZVzk9usup8ZBez+WytsP+6Z9AS2fwPBdZVrAsk6QiIJVvEfcu4WeXGaszEI3hzWdR0d755MNzbBqNGhPHTyEdlRGSSVa0CUw5xdkggsDGswJCTSRZDNjKTfPh9iqTwYhbw2WyuSaC1SHOpgjjiCgKwI8JXYe6PEFqxobpk9j3twmTO/xed4w98pCCACOdoxslCRJJYi8mIXRJxD3ujQzOaB1cSSVURUr9JnLgE+opBnqec9UD4iigMTXNonVEHPoUYgNPS1BTCpxzj7DR0D2b05kRgiCyIp4jL/aRUdB80F2L+OgOY/FD7M8tcb5xH5wKYsZj17OwidDsACU08a2Q0IfglS/iLf0G1bu3uVEqQa/G0d1XyfSHJAZ99KDO68un0SZOkDTWqO6tYaGhEdPOlkgHNqNMjj3vFInIYSA9cOZHqQzNdAnTUik5FX5B3mdTSlNsVzjvHbIrTjNt9AnOXXrwnbk27W6I7pkY/SsIkUlez/BMdIqUMMXTWop++nHu3LrKh7WAdPMmQpQjjiKazTql0hSiKGIfOdiPnGWpf5ULo3Vq4iaHfkzRcpBGQ67l50msrfEpdw1Rjrm3/PN0hTl+6j2e94chjj9ExCOPqO8QJPrc6l3khhtRNqcoySZ30kf82cuND1x98X/77Hn0ExlOqwr33RM8f/wrrMZp1ofHgRgJcKe/d/9dEGAy6vIT/TdIeQ7/1b0/Qngky53Uacxz/xnpyfPkfuLvfaC2xj/1T9FOfIamtMgJq0IicFiIWvza3nPfc/8e8pCHPOTbOdk7wJZg2TngtFhhWuqRFUwShFiKjq9oKBoIqojY7XNoNLE8g8lhAzsAS0tSTk/ywsigsr5Kb+cOBA6HrkfXtmgZI7aFWab8JieCCtWpInmnyaGe4Yam48cCicGAjh3gCAFPdFf4qH1IHMfcf/UrvHjnNo12nbhRoawlOSxNs5edRTRd6DlEpkOr9e4V6To7a1jNb+U6Cb5Jbe0alZ6D2fIQug0Sw00ixSPT7qIELlnZ5o1jT3BqdMAEXbolgfJ0lpI6ZMcfcOL136Gz/iKy5KFlVOTWLXq9Lpb55jr0LiK/7tUbRKZNEHkEqRLS8BCikEjLI8gShp5lo3ASRxIZeR6WGSC7D/JbgjDElaAeSHhGlVvKcQ5y8+yJMjtenoan0ffThPqDoiVDq8/XlCJ9IyI4qjGzs0LG6pLOLVC0hhjnjuNPJpGyIiMlw74yhToe8sjdO7RNgYGaody4Q68RsdY12fVM+hZ04iT9RhPJrBHd+wqD7i71lklv5GOsfYlk5QZptcXXZz7C9egc9xYfpz2jcmPhLNlUlumkhiz06cgRh9PvfFL0TYxOk7Ln84ppEwwGmO0Kmzv3uX5wgCYI/GRgILxZdEHo7hIbA+T6dcaeh6EG1AuzCD54wyN+/vV/gdHeZ2h0yPkt8Dzy4y7pRpfJRo1Zp4XU75NxR3SFaU6XGwwNn4n9MhNbNUZJmbGSYCZokokMzMjm4Paz/NnaKv1amUeTIol8TGo0whiF7KUnaep5dgYt2sMh3tYGCiPMVp1yF6JEibrRYSSDGnQo+C3UTpd9xyR6N8kJx0SMQ3KxiSlAbDaQpJiFTA/ZDhiGSZzNG4j9NsnA4Eb+LIEskhE8EgJ4uspheo5byhnudVTaGwbdapl+r0utVmEkgz2dYrt1RBzu4Nl1Cle+QbC3ypVn/4zYbL+jvIDvukijMuaNL+LfvklYKWNEMrJncNjex/UMTEWnWphhQjO5FG4jawKNUYqD/BxOGON6HkajTSyAKauMPTA8n9W+yRVjRDxuIdde5ZmjDs/mzkBo00tk0RWfaQYUfAMxCNlfOEU9O4E3tBGjmEBWsFWNTrrAUE/haxqhJmPlUriiSsK16ehTVBNzaHgkNIcFscPaxFn6Wg7RGZMIHSJRpCCYuKGMgc5sskFOGWM5Nq16heztV6kqETueSjcUkLv3sOcT1CZmSQQ+QznDaGGC3LBCv9Wk3Wow1iGtuuxXO+j169RcjSASyO5ucuRH2GGA0+ujd0yUMGBIGl9OMJZTeIiYkoasghhHGIk0kS1wXGvyolugNtDo5Yt0C3mGSsi03yM0IarWcNfXUWKXyeWzaK7NzCNPYg2OsLdexzrY5ODua9y98n/Ra61zLm+QMOs49/aQD+4Qd48Y9VoPdClHI1KTPYqVZ7A1kZcO9tjsyHT0DK0oTyVT4tT4iEmrQzlK8WXrJD/m3GGspd7zuX94gvZDhL8/Yk2IEDY/y5fFDL9ZvEHZyDD28jgc49wTcwiZt+82vRND2+cfjUf8h5fnae21+aQ/RRqbcbbLzmiegmRw2Gxw/vTku5bsfy8URcUTRfKMyAYmnhliiFk+d+5v8subq0g7Gzz2C7/5gdqKE0WOFxXO7lwljkT2UvPoOFzviBTWn6PwyGe+6/495CEPeci3E5suRlGFyEMQInxB4lzc4I4zwbZ8gk4hwww9IknAGfVJRBvcKi6AFZEw2vTTGYTQJQ5crlcqfJgDrisCx2KXo/KA6TCg62pMay28QCGQNIw4wazVQkm4FJwRT9ZfY0d20AY2tgUpLY/qdOk172I4NQqhQ11JMsqWUFyPkaARd106C/OMPBFt+xWEYhJ5sIe/+MkHdrkugqax3djHVETiU5ceyMpGITmrjScksEKBYfk6vqcz4fRQ0zI/H11jx5+nn86yJy5yrFWjJhapiZPYqoLn6hjhgK5+nKo9ZsZr0TQs/HqZ2q2vc+6xS0TX/4DQ1NB+6b9HlBSQHqxPR7lZDoYC08ImI18hPnkKL4qJYhFbkAgVkaYyQaCCl5FRXZOV129y+fSnKe9uUglVOm6ElU6Rjw1mnSahDpago/llJjIV1ju7TM4s84YYIrg9Rp0WoQXjUoa2Nsve0jyFXovp4TbquM6Hw32aWolNYQFx4GEvicyPj8iYfZxBjlLxEMlJMuyMkBSIbYFWkGK5t4JjqnTqm8hBkYxtofjTZPde4qS1xoU7G2wvn6U42GQgH2Om0eO1k08wndzCs5N8fHyH9Mur9Pa3iX72b5PN5VFVlahjI6gSrxES726QP/sYrW6f/sprhM6YUaqA5ca0h31WU5P8lFlFGfSxv/A7CMs/gzZtYYppLof7tP0sKdci0TdJLFqorZfI2UN6qRT+KORpbjKYzWJGCnNRh1nXpavmyDpDmokEbn9ML5MjtzRGp8lA0TBSOkM3g6ukaToW4+EhU16fdcHFlmXu6Rc5G+wz2dqm7yUI2mMK7i4LxmtEhFRy07SOL/BoHHIyMcuVpE8/s8h8/z59x+H8uIb6ZpjgoesxYZmogY86OUXoOyBABLS1NIloyFHiGEM9QabdQUyrFFv7BJKOraU56VW5k77E453rdOMSQ7vExe4dJBUSwi6O1GeiqiCm8oSjkGcmTzNoqtgDmTO1HtXWJn/NaDE90LjdatG9PaKweBnmP4RZPiR7YhmA/tEOtWiIPmrRf+RXmNy8jSh4BCKUtrfYIIOdyiOHIQo+chSQ8FzsZJLjUZXb0RSXbZdDTycoCCihh60JDDUV3bR4bjxL+9orfMqrcTd9kbRrMFYzTFgjelqOhbjOMCiQEV00ISRnjxjoS6CKuIqKkdTJ+A9kEQJkHne2CTIqB6lTiEKMq6gEGQkkhbI4R162mKbPKJckMgXMZBZBjFmKqmQlGw2HrhIjpAR6boLtXI4nNreRG22qc3k022JR7nE79xRxBuZ7IwgjluI6c8MKOzeuMDb69BISoqSCOWRKarIZz5PxBmi+ixr5ZIMeNUpMJyKUkc+M12PS9hgnZRKShyJE3Eue4lx9kyChohsW8USCVqTy9dJlfrX6PK/IH+Za/lP4rsG5uEEs2iiiROnrX2bZuc3Qixn7bUZOSDySeMz9Go2FY0h+iGntUu88yD+Oi1mMVgvxq/+W0jEFofTr+FdvMdp+AVMJyY57bCx9FFkpMsyXOCEc8VR3jTVlmYVEi0mjzpo1jZwMOGfvvueaJP32b//2b7/bHy3r7eKQ3y26ruA4bxf2/PeZH5TN/Zcq3KIOx/+MjeEZ/tbJF/iL9uP4TpFSdpX/4hc/g/gB88ZUWeQff2OPXwhkPtcY8ItxTGE4jTa5w4FdohPH/FovizqhIxY/WALzN+12XZevfvWLNAKJvxZfwRVVemqBXxq+wM/kk5Q+/VvMHDsFWvYD2y6qaXbuvgFSxDMzn+SzvVf4X878Nyi7qzzyxCc/cDt/1Tyc3z86/Cja/e/C5lRKe/9/+gGw+tIXyPYc8uqIlOKxmT5JS8njpHWme0e00pOcCOqYUoKlcZl2nOdmYgk1DskkXJxQQCfiUJnjTrfPws1rhH6TKc3loDfm1e6QUVph2atSUaZY05bxFZ0pu4cuuWSCMfulJYpWkzCWKGRG3Ms+inj0IscPXyIzbjFwE0iWz/rMORxFYZDNMycNmVEGbGgnUNt7XGIXrXMXf+lTjOp7XP2T/4fJ2/eGbau6AAAgAElEQVT409wEchzwkVIObf9ZYkmn9upX2Z+YQtcjPGeMPg1rxXP0M5MYappCOEIxXQRJZD15gsl6i6IxZCs7x0fMGzjpY+jVJoEWko6G1LyAZdFguzMmk8zyxdV19KMV4mEZOZNBysyw/cIzhDe/xm3Dpd9vkGrblAon2JNC7q08z+iwRknqUVOnyQ9tzESCTNolb5cpfuiX2X3+T7HdIcNcCjtdYNnewQoTKHqMTYqs0yMcS6jtHu3ZU9x3HfL92+StKuEgpJdMQxBwqX0DU5bpyxqPywcM9SxVdRrV9OnkSvSCAn5BwwjTHMozGBNJotinZ0HK7zCMkkwKXXRsnGFM2zLIDfosVr9Ca/5RKuM+u5ZK5Ac8Fu+SigWk07/IuctPU2vsEays0hCSlMZtDo0s2dDByiSRelskZs4QH42JhgbxfJ7g5pfZW1lhazQm0T8kkxrSNBVKtUO2bY/JRJvp2vOken3i6gqerDOYfZL66svMNA+Z9LsYmRSvLl9g2T4ktiIEe0CIwL3UKZajKlvxAnnB4GbyPDoek0afMBJ5deoSOadPmFQRHJFU3MLQC5xQW8xbbXpxilqyiO66XLbWCKwBsRwyDnVCSeZEVOXM4BDPHDPpNSiZbSatMeOEztdz5/kppcuNozrW/i6ZXgc3I9BVshT6LQalJTxFZGPvNsbWEYMbr5DLpKmN2hiHd7C1FFmrjx7aKIJHV0qDLiCJIDkBs8UR03YHzxa5k7/Eh4I7TEtt2vISfq1LLuWSzvgcBVlU74BOfZ1MfwdTERnaMTPDFlGliaeI9IY+RjzGa7ZJySFR8Txh5ZCdP//X6KU5Etkkt55/lqHbplUx2LTGhGuv0Z3JkxiOMNwE3XQaIS0gRBGiLjASk5SGA5rTU9zTTiHbHulKl7tzZ5mIhhT8IarroOVgICRZPlwlECPOO1v0UxIZHBpekbNeFUmJ2UwcR1CBKCLTH3E0uUgnM4GsCmi+iyhGTFh9dM/FzaTQBB9T1YlECV9SuaOcRItdJoQxc+MGZjJDKCl4sUInzkBKQYl8xCiioFjoUkAjMUGfLOVkiZdmL3Ewt0jW65GKbcKsQj+dZU7tE3sRppPGTUnk9DGaHNO1VILOmIzWY8rr0FKz5N0Rd/JnEURwQ4Gf818mcESaiUnauRI5xyCSJIZKGoCxmiTtGuiWjeRAQnJxMjo9JcdEZPJp9xab8QxaHPNx4TX02KY0HHIiB89pxxC211gPkrROfJildAKzsoYqd0nEA5QooKhfYL9pYyHRGzjkoy6Lxgob1hzChIavpxm9fh2p1qGpykSYZASDU71DkHwEKWbKaNFJ5EgKPqphs1J6lGOJDrEEH/rYr77rmvTQQfsB8IOwOQ4i5BdrxJe+yp3mBI4g8rHJFf7NwU/jxTIDN89PtyB9/oNp0QiCwFHfYrHh8ukfX2LhjsLIkRjmt9myF+nFMqf0Cqc//cT7Fh35Jt+yO2ZjfY1fM/+IjGzzL6d+lX9+4j/ievoJSvlLeEFEZvb0d2W/lkjy3N0ak36Fp8xVEnhUvAn6gs6Hzl5EUr67Klh/VTyc3z86/Cja/aPkoJlf/ydMhz3G6QzLcRlJiFhPLpMUPJLWkOmoT1pwcQSVvD2ka2vcXnoMQ0ijBTaBKLGduES326ZkH3LqaIWEMoZ8li+Js1ixQMIbc87dZU9fYMmtcCE6oJqdYi8xz4Q0wpFVUCKcVJI0FidrV5CbA2aG28hqSFuexEyn2UvN00sVmIwGPNVdJZRkWl4GLJ+u6VAtTtOLCmzsbVK2hkxtrnLXDwkyGS5IEUblFrUgZu2gy93pUxSFMdNuj0CUIQg5YdSoZmeoM0FFnOays04/leOY3KGamOUp6w4HiVnmmyu8PHsRJbK4oBzRIEnS7dJ2MlQONtnJlVC0ACuwscRJpFEL/+6LTNkDVrNLjAKJxRMn+cbuJvb9FykdrYNoM+n0OJJnMd0koS6RFUzGUpb5cz9G9cXPMyhkKdFD8AMK4Qg/FCkGfTLxGM21yccGUm9I0x6hOH1Et48muMykuoSyiKmkmYy7RAkFHY+ZcEAki1S9Er6iIfse53fvk41tLEknm7AQibiSeBQrFDhr7xEgkpYsEqHPmDSSHCPZDb6UvMhCbx21fMR03GEkZ7FdkbTs4aVl6nGRxaNVyr0Gkh7QU3PcnjtLs5TBiS30e6/gq2kIBbi3SVY6wnjja6waOk1VYDJosBQ06Qc5rFiln8zyk40XEd0D4m4D0ejT77roB5/jTuIkB0tL+KLCbMpi6OkISFi+TAz0Uzk+0b/FtGRQN1Mk0zHBOOZitIfoBtzLnuFXb3wNcyLJjDZgJX+WZL2PWFRR5RBLSjIWU/SENMfdGt1snqadJC+ZTEpDQkFCcy0OcnPU9SlESaDUb9GRCrRMnUW/xmzxLHsjk23D5WK8RTEaYql5diKF1YMK4WCV6Z2XUe/eZ284xli/RjuXQOgdARGumqCRn2UyMMhpFlIg4EsSeWdInFUoeQNaiUkk0WUQpTEDlWZYQO10CCWFm4nzJCtj1oQCKyxSHDYxnIiie4Ay6GGJIjl5yMBSCQseB9IcC901djd3aO5dJaPWSG58kdX1VxnSJ6OaBCmVk/Yew3yeZOCiEKGLDmFGwVJ0DDFNVjHpSHmiSGDW7TIrdfFkhVCVaSezzNMiG1rovoMgCMRuzLJfJgpiXo7OU0wPkAhJux4LUgtRiMkHI2JZwkFlrKVwEyrH7SqCJrMUNjhhVzkqHCMiJlYldMHDEXVmgi7LVplaWGBSGnGYXsSQs+hCQCw+cCiLXh8jkUNCQBQj8uGIUJZJiTb5eMyRNsNm5gSXuvdpZ4q4Ajh6gnPCEZoUYMlJ6oVZVubOkk4EFEcDauMsM+4Rg1SOvfQMogBKIkYKQnxFQ/Q8JBmMRJYSIwJFZqTlKDkD3KRO5HiEksxq/iyTQQ9VijCkBJoSYIk6R+Ek6U6LkZ5lKtmjpaVINseIHZF9N4F5tIWWruMqGhcbRxwd2QzHHUxHYiYxINLP0euvUZ+a4EJWpOkr1GONXL9Ct2cTJxWMyKG2tcdwImRR2MJUdDqJLGEQE2Ykbkvn0COL5biBHAfc009y1j2iqBpoYsDZj/3H77omPXTQfgD8IGy+ttJA67nwyC6f2zzGvOSxkDvi+fpHmIskfuvCMc7/+CKC9sGjVkVR4P/Yb/FbnzlF+dY91iOLbgRlsgjA5SDF+dMzCKkPFjb5Tbs9z+Pm9St8Vvg6u/oCF9w9/KrP094RM4pHNh6gLVz6ruwXBIFer8tF6zU0u4erabwy92Hu6ae4PNggf+zid9XeXxUP5/ePDj+Kdv8oOWj3r3yOoZhA8T3yismU08OVVAw/RehFRBkdRYqYcAdouCQDm+NSg45eZCIcYUk6JbeF2DG4IB2wOXcaqxkiZQvo91aRvCE/5bzOC/plXBKUYgMxETMddbESSUJFZj5soccep/wKAyVHizS5cZNSbNBMTWKRYFHqct7d4clwk8WgRS+RJ+E4NFPTTBg9BqrMbh30gyOuRCFPuBUCXcXJ2MyYh+yOYrr1Cl+Sl7iWW+Ssd4QiRkxHXcJARrE9knpAUnbZkhY4EdWZUE2kMCLnmGh2gJVJ0EpNcipuoLSGTKUs8pJJiIizazNj3Oe+OkFRHrIhHmdqXKU8bCOOD5lXh9yyZhCtPabtGkPDoSMqVMMYsdHHzqXwQxlb0qlKeRAUFp0mAjAo30WJatyzj7EkNwiciCW5jSb4pDWXIJSxXIWE4rFfmGGuu0UsmPSELMVoyGzY4VjcJCeYmGKKdrrIvNHEkzVcVEQF8v6IllokF4zwUwlEDSrZOS7Z99FwmXMaXPB22VPm0aWQjD9GdT00JWCGHheiXV6xlsjUe8SlJFvKAkczi6Rdh444w3zL5BuiyHlhlRvaoxyPKpwe7BG0Q5aHm1jWmJ3aIYNqlZGwQ7dzn+tSmkMxx+PRNqeDKlnJRLc97LFKO69xImgz1mQ0z8Id2xw5SRqhzrWFyywGDRxJ+//Ze7NYy7Lzvu+39rz3mad777nzVHN1V3X1xCYpUgOpKTKlxKLtyIith1hwYvghAjI+GAgkCDCQRyFA4hhxEgSWLFOCQg3URIlkk032zB5q6Lp169adzzzseVx56NCRIlOiOASCun5vG2fh2+vbZx1857/Xt76PK3KfpV6PuVJi0ZrSK7WpqRGRYSINlQfmCjgG951N+mGTwlJICwWnGrEkxlSs6H0B3zIY23UamcvL5Wtsjx6h6TkXg0OW5JjEsHiteokWc1b6ZzjlDCyVcV5GKioylbzSvU5et1CygNnpFI1DRlqJUt/FmAQ8xOSCdkAkMwJ3zkJ/n9D3GOtVojgEZYQscow8xTcdNJlzr7nN2G6S57BqjdBMSDWLQgGpwqGzzZI3JBiC46ccdRap6AlrxjmGGnC2tIShCnbG9xk06ky0Er5m0KsvkmkqJTegUfPRSoKm4qKpAVnJoGV7TOwSgWEQFSYTvUyQGggpGDbbFECsGsydGq5dwcwzzCTGsAqC3ESVOUHJoS58yjKkUDTeqe3yXHYXNcsoHB2vWmFuVSkXEV5hQddkKz9jIZthypRmOCOVKh1mhIpJrqpspD3W4h5Cg0eVFWwlJdJNKr6HlqUUqUZFCQkNi0vhIzQy2qqLEkra6oyHpVVs8X6KoUAhjFR8u4Sm6iwpQ3JVxSxSXLPEhDJe7rAmeywlQ55O3yN1NAyZoCs5oe7QyqcoisDRIlaLHmaW4GUqS0yQNtQMn9O8yRp94tzkUviIuuIiDY0ChUi1ULKUVDeopgFCaMylw7Ra5c3WZSwlZSkZ0YlGpLZOW86IUHlt4Safcr9AS075LePj+DWDy2KPpFXQazVZ8Y+50X+LuR9we2WD+aCgKKV0GdDLTA5Zoj0/YDiIcB0dudfHGUxRV1RyGXN0NOe8XuXcqmGJmLxuIkRBKQ+x8ph5XubJ07t4VgVMSQP3/QyJbEaNgJXv+0ffNCY9FmjfA74XPs8FjNYLzk9/md+//xP8VP2Eod2j563wkdqrdOoWW1cufcu7XQCLFZOXvnTI0YMJnw8EiuZiecvEzWNmSZW1wubpswjtRudbsvcNv3//93+HC9P3WBH36GtNekaL/2DwIvULH6bzI//1X1mcfYPt7V3E9U/zL07H3Izv0Zh6DLIy16Zv0rjxE9+Wze+Ux+v7g8MH0e8PkkB75dXPElsGjppgiRRN5syMCud6h6Fao674mLKgmriMKw2GVhNTT7me7nEt26ckQ6qjAUWW47WrqKrEVlKmaUDqGNgixLAF++U1LniP0Ay4kd5nqDe4Fd1lLTzDTR0WxYxAGNhFzJIckQuF0CkTKBZxbqJ6KbNKlabiosoCD4fd9P9JcXLWWdZHlGKPVfcdKoMhZ6HBTIQsK0O0NOM0ySmlQxI3IjF1fmj0VcZ6hZ6zQFNzyU2LE2uBrhzSN5psh6cYWsFYrdN2x7SZcV5ps570KAyFZjVkM+sxN8oMjCaBo4MDddUHXeAEHrfYQ+Qp9zKH9PQUxR5iajEX1UNiGVBPzngheovD7iodw2U161P3ZjRsl1cq11kthlSUGWJ+xp3SJoFp8mx2B1/YpEJnnjmkmo6rlwgynVO9y444JTc1msWcB+kqup1TFT6lLGSm1bjk79NmhitLTPQakWnRM5oEocHUqbJf30S1wVFichRczaaZzrDyhKViRGFq/L7zEcw0JjN1LDMhQWNqV7GUmLDZ4ry0RoDk+9S3OFWXqA1mlOWYmTulY4zoxCNGSoOKGrCkzDlrtXGdMt3ojImxyIEjOEgqLPkn7JXX2R7v0THmVJUQtcjITIGhp1giojr3mMzh3KgyTjRkx2BJGdIKJywmI8pazG+2P84V6whLTTksdbkSHnCvvE2XMZ5RoSRiVvMeO8kxb5UukloaC46LlJLAKlNWI4ZZBQHUhc8l7yGVIOCsskRDcbGKhNV8gCMjnkgeMBZl+qJNYaiYIkOTknrJJ8RgSJO66jPTM/qZTXs+BlvBbKSUqjle4bAyPSetmrRUn0Bo2HZKoqisBMekdYsiB8WQrNKjnU7whUk1naNpoKsFFRFg5BmRYjGKbVbEOYvmhP20xVl9kYblcWo0mSwucJkjdJni18tEXo5nOCxqcxQFMlVH1QtazKjHLqmuspRPuFd0EabKkb7Eshwyi0pURIhFzDv5Fs9ym6YSYCgJgeFQzX1a0YiH6jKaI0lSlQ3RZ6ZUqMiATNGZixJWGvJseo9js0NPbxMpFgvpmNC0qRKglQXNYo5dxNRyj4msslWcc9vZZr3oUckDRmadTFepiwBXLb9/dlQ1eT55F9tIKSSEhkUnn1KJXM7MBXS1YCRqPBPeZiM/xVccFAlIiVupsU6fzfyYjeyMsVKlLWcMzTozWSLRNGwtpVlM2U7PkZrAU0us5X1UpaBI3/9OUkNhKzjFs8vsiS5pyeEp/zY7+imrxhBdkxSJ5Fi2iXSdC8UxBYJOMWFSbnBaXWJhPkBaGvedTY5rXZ4P30LLclAEtpVSTVzsImLZnNFmzkCp8aZxmY/Il1guhmDbzMwyM61KWNhEqsGXW9dJC7D1OSUlQk9jfLnOK6Uuikzplxtc8u4SFzojwyFuO0yNMmY5wzJTapqLYyUkik6ewmoxwNJzqgTM23Wko9EoXCZFiVGlSVP1eMvc5ZkX/sNvGpMeC7TvAd9tn/dHPpt351jtL/HaWyYveVv8rDPkVakw9BY496/BwOaFp1cR6rdemFNTBPcOZ/z0oODKbpMH6eusTNa5cuk3eXN6kWsoVJ+KWVz9y8smw//r95e+9Md0xl+lVfaxipTXzKvM7QrvRruUkgHV5Yvf1nPIsow/+cIf8rGzX2E7OSIRGnvRCteOvkDthU+D9udLW3+veby+Pzh8EP3+IAm021/5VdbTM2r4TNUaUoJJilNEVHOfC9khUypU8gChC2aUuZQ/Qk1zjtUFekabjjanVo7ZTs9YSfr0nRY3ij3W6DEyGuS6ypX0EStiSKqorGfnVFIfT3OwREK58HE1m/Wsh4rE0x1MteDUXqBA5VRv0yzmNDSf0HBINEGFmIf6Mo3co8hhS/ZwSxXW6GGLlK/WrrC3vM1S2EdRCyxTclpdZnE+pKm6SKFhGRkqOT29yYI7RFAgbY2B3iLJNZYYYyQJdT2gJ6rcLPZQlAKZCiZOnUKq1AuXsgy552zSlnOMNEGJM7JU46yxyHvVdVajHqhgioxzbQFbScgzSSmN6CltNsU5nmqjyZyz6iLtdMZBtYseZkhd0DB8pKFRliEdMWMubSLNwTFTCimoKD6ZYpCpKg4hiiYpyYgLHNMs5lgkTPQKO9kxqakTqyb71grnepvN5JRKHBBGGi3h4pkOzXBKhxlPxfcochioDe6JNZoln6lWQZgKN6L7HDmLJLrFmb5ALfdYCgacmYscsUE3O+ZSdkCeCN51VijH5xj4dNURr5av8lxxh4flVWLbwNVtLstDFrIp7zbWMUSCJjJULcPRM+qlkLFZJzQsFtQpSd3C0TI8xaKazRgbFbA0tIqKXy1xLdqnJVxi00YqKtUsRNMkSpoTYfJkvEermKGLjKDQKcuYVNFw9JheVmdUNGkZc64UBxjkTI0arWLKhfiQTNGY6WUyU0OYUFN8pkaVSuYDAktJSW0TzZI05YwSEftGl634lHeUba6LPXayUww1556xg2MHXM736WgzGoVLqhoUNR0pFXSRI2o6tpbgODHl2CNWDApT4cniATMqlETEjjxBGhrtdIYhMlQKhBTsl1ZQs5xJUWOmVLinrnFLfcDl/IDXFp8kNEsoFDQUl5oI0Mi4Ee3Rzqc87d9hPTqjKGkcOMusBGdYUcRtc4u7xhZb9NjxH6FmkkriYtoFd61t2kZApQiQOpRkxKI/ZDc7QgjJZ1uf4Il0jxX3nIoaUk/mnNKmLafM1RJ5DB0xZa5VMEXK2Kixmx5TEy6paYBQqOBRLkJCbGw1pZ651PM5hsiJVZNEaqzlA0wy1CxnIR3TzYY0cPH1Es1szsBsspGekWgmpSzESSM281PMLEGqChoFoTDJNI0Ai0Y8w9RzCqFyR2wSOg7NbEq3mFCWIZv5Oa10hkHKwGrQxMMTDoWqUks9NmSPnfQET3dQFElTuLSZkTvvC0kfm4fOCrFq0SpGdI0ps7REZFqsK31GVh07C1kYDqm6E/pJhYvWMc9Ht/E0h046YShrrCgjTkWHbjIkVxT2vAXK9Ywjo4sz9rhbukhkOYi8oJTFyAK2/CM2T9+j2smpahENw2fiCD4avUbLclmQY1b0MfvOCvftFZYbPk3DxVAypKqwWgyoFgFOGLJX3WSi19GUAplL3HKFVjzBVHP29TWOK0v4hc1yPuLyR37mm8akxwLte8B302cvzvgH/9vrfLLiMDD/FW+/8X18cvNFNtWY3/O7JOECN+0a/9k/eg7D+KsX5RwVOTv3Xe5sOCju2xSTVRLnlK95F+mQ8HygUO+0EVXjL7VlWTrD4ZjXXvsaN427NMWMWu4yvm9xszLgykd/ilpnGcpL386jeP/c3OFDVMXiD8urfMR7k5+/9d/QHPsslHTKf8Vzbd8NHq/vDw4fRL8/UALty79CK5miKwWBMOklVY5LK8hEspwMmOtl3KzEkbWE1BXa+RizyHhR3KQf1hFC8mSyRy9vsC+7mEqKIiRlQqppwF1zg+VkyF1ji6HSYDEbEak2NXzO1Rb13MPPTSpFRFWGaLJgqNdp5nPeLF1iXJSp5QGWldLWZogCPN1C9WOaeDTlnBIJdekyMBtUtIih0eRKekAl9rDVjNSxuZQ8YiXuMc0rNNU5S+mQ3fyYoDC5NNojc0xUQ7CYT3kkFrk5v82es42dJtjEzMs1LBJSxWCSlJCaTqDbHCqLXMoPMYqMlXzASJZxipjD2jpmHLEjT9n1jqhKn2lRouxFWGaE59QIDZNzq0NV+hhklLQEkwRLSVlgxo44ZkFMKFSFWuZyljWZm1Vi1aKjTBlbdQ70Few4ZG6XKXkz5kaNbXmCZzpUZYBQBRYpJ9YimszRRMZDa41E6KzKAdvZCZXEYyJqpBWTreKc3ewIK0uYaRXWij41fG7J95hqVSZGnVvBHUwlxVBSxqJKN+mTRwWqLcgVna3wEEfzaGo+iaahKZKa6zOqVsh1jSKBzewUW0m4Ed6nJedICUFhoGqwHh9TzyZczI+4r6/QzmZkmo6vOpRkSC3zaGYzCkVhszjn0FlhU55zZC9SV3xqhc9MqaCRE6gWu+Ehc+HQymZ4hU1JfKMaouDQWOBa8hA0QSmPWGXAtjimUNT3d0HynDNjAVPEPCytoqrwpcotrmYHdPIprnDwFRshJaFuYhQpnXzKatpjqlax05h+UiI3LVbVPk9F95hYdaayxFrcI7UMTC2hkIIoNamnLlqaESQm42odR0RspSfM9ArCEOhConhQVQOmWoVM06nEHgY5I62OTkaGRkmJELKglbtMkwqmFnGncYGPpm9RD+dsinOe8PfYjE7YiM9x8og6AZluUi0C5qLE55ovIDSFm957FJpGmOocml0+krzDet7jDtvU/DH91iJf0W8wE1WO1QXSXEWi0pAufmTiZyYlGWHIjKVoQKja9KwWQhFM1DqrjBBIdjhjbNVBU2lKl3Y2Q2ggpKSkJbyqX6GqhSDfr3xakiF5Kkg1g71ihVzVEEFBYuhUiHi9dBldZLxceoJa5LKWnXPb2OaetcmF9Ji+2kLJJL5i4CgpRpGyb68y06usBH1yVcOTFiEmLcXjobbGHyjPMrBaNAoXmRW0ijkeNnFhEAsHQ0lxipB3xRYjp0EF//3fYSEZKjVaco6p5syUCsvZgPv6KuUkpK+02DeXeS69RyINHCuBIic1TYSUXEoPMZ2cmajSsxe4Ke5TlT6uWmIjPWOuV6gUISO7hiigoXl4ogSawmlpkW27z1I8YDEbcz3epxrPOVC7JCgsVj1qakQrm1OWIZrMMfQCSybsl1ZYkBNMK2dVfV+QbmWnqLLA1xwSzWBGidzQMLKEfqmFn5vsckpJRsSqSa3wqWY+D81VVooBO8EJ3Y//3DeNSY8F2veA76bP//JrhwgBn/5bF3nlvX/B5N6Pc6k8RN/9PX59/0chddizX+Knm09ifIvVFv80uwtllCOPf7J/zo/HVf73yiOiRKFfNFGVjL8XNNE2qijtv3x3yrJ09vYeMDk94YXs81QKH0XAb9nfj7/wPJ2nfwqj+a3txv37EEKwtbWD1rnEfxt3+E/Pfp19fw3pCPK8yc6FK9+27W+Xx+v7g8MH0e+/SQLtl37pl/jlX/5lPvOZz3Dx4kUWFxf/zOdnf/I/4WQRiiLJpYIiJUO7SYZGV4xQ4xRVFuwmx8S6QaIYxELHlzbrSp9y4lISMYaa8wZbbKpDgsxE0eF15zJL+YQiVykSyVwtU0vmnGsrdIopukyxwpjXxS59q01iWXSzIUmho+cZy9mAJNV4Q1zksjiiJgNeMy7RlBNMAWtyQDOZ0RFT9sur1DMPEGSRYIUBYcmmSAWaKIh0k2Y2Y7noo+qCuvRQRUFVBASlCqZ4X4gdWx3+oPo8nfmAdjalobvEmomqFQyNJveTLl1jSigMAmGhBgWOElJRYpCS5WRE3+nQGQ7piAFTo0lHnzGx6sS2xWFznb3qJZ7wb9PXGoh5ztip0yrmBIqJr5TwsbFkQlUGOFHIQG9iZCkmGVvZCUMqzBOTNyuXeTJ8D3QFqQguZUcsaDPui3VyXSNOVFyzTCRMhkodIWAhGyER1KXPVK2QKDooCodOl7aYU5EBlTzAFw6RYqGoknY6pUAlVky66YhHRhcnjUARNHOXWupyqKzR1qZs58cYRswSYzrpBE9xQMJIqxOYFkmqsuUdY5oF3ez9Hm+hYpFkGpFpc6x3iRKVXctpTnsAACAASURBVHlCohjkUmUpHLJnrrMxP6GnNdHUglrhAyr13EXXc5ayEVIRLKYTAsUiwmKo1kh0k1BYSCkIVBvFTbnnbLBWDLinbrPpn2KRgwIr2YCvVG7QljMupkeMqBFKC02TDOMymgabySlamlKTPrnQ2A6POVTaXEyPKRQF1ctx7TJCSASCEIvAdNjgHCeNUISgmc/JTJ3INFnJ+mxHJ8yUGraMGDgtzDyjF1eRtsYF94A37Ev08waBXuK+uU54roAKUtU4LjrMlTJdOSYxTc6iOtvyFF1kHGuLVFOPTFVY0UbUi4BmMWNm16gUAU4SUpUhSpLhFjZ9tcU9exNNyZmoNWJp4gmbShKgFJI40SmETs3wedW6xkBpUM48Sk6OMk9YFiOW1DFGkrEcnnItPIAZzCljGDmTqEyY6QhDpVG4nGYtap5PTST4mk4jnXPsdKnGEamiYscRRhjzSF+mm45wA4PcgnY6wctLWEpKI54xEnUUJGO1zoZ3xLHVxS4irsQHNAoX16i838ssF/ye8wKNxMVWEnp5k9DTGJSahJrDSjSgnrlkhUo58dG1AikESaGxxAQ1K4gSFS1MeaivUqTQUiJmaoW79haRarCWnpPkOhWRUMtdUFTOtRakBT21g0VKq3h/p7Oee+zJLtOkhqZnbOTnFJrKUjGiLAM283NcUaKVzChnAWNRpW74WCKhUFWmepWiEEyLKkIRKHFGgYZThKymQ9DhWr7PihySo9DJXCQKuaq+/8JNwrnSIS1brMZnOEGETAVDq8VYr5DlCufWArXMpRHMmepV3kgvMreqrMU9lCTnPXuDjfQcJZFUCHlgrbGVnVER7/fLW037GEmGjBWWRZ//tf1TtCZTbnz/p79pzHrcqPqvMUMv5ldeO+G/Dw2Cvdf59Xs/wknngK+EXaK4Sj+uMSh0GvOPoCX5t3UPRQjOyypbmsZJ2iJ3hviFxaXGHnuFzW+Vvk7Q/dbtnZ+fko+OaDJHI+Pms7/GsbVIGoyI3/mNb2uOf5qzsxN+5zf/T15+4z9BJadjD/mdS9/P6cl9lPnhd2z/MY95zN88Xn75ZR49esSv/uqv8ou/+Iv8wi/8wp8bU0/nBLaDWSREE4X8MKMUxNyID3G8CLUQWDInyjUqUYCT5MTSYR6XkLnCUK5xPGmzX3QZtK/Sz5uMlDrvJSvc1Xbo0UKZSFSZ0PXPeah0iZIGERY6GbfNbTb0MfNyFSuNOFY63MtX2UuWGOVl1vI+y2KIFCCBeuZTyQP2rVXe1TYZRDWO8g5uUSLVDUaywllS5W3zAjka+8USWlKQxgq+YjMyG4yVCi8rV3nL3kWlICo0POHgFDGlNOVj/bfxFmxa6px65jIyq4yyCpXMo224fL54lveCTR6ma5C3eV1ewZMWUaTyYvkGD4x1LEXBz+qMPIevyx0eiBWSWCWQOkuPegxdh/6kRmc44dLJA5Q8512xyR8rT8NcJ/d0RmGVl9PLzAOHmW9zNG8wU8psyD5H1VWec9+mft7nnCaVNCTSLJIY1KJAdVM6ckYnGDPNy8zVCtVkjlGkaHnBVKkgUslcKTGXDp5eIoxUXuEiXyjf4kxfwCpiHqULfIXrFIXgtGiRpDrKPKYU+jhZxJHsYKQJm+mQ3fCILFMYyBoPrBWmShlTZLTyKWd6iwZzltMeDxqbeNLC9UwmWYlMKoy0GnfzDZrjAYmmM9IahMKiOppR9eaoewHqPOe2sc1Qb+LlZWyZ8kjr0kknnKiLbLnHjNIy52mds7xOqBooqDSnM0gkMoaFPGA7OqJHgyQ3KBSL83wdtciZUsZzDf5IeRolzGhHY96wrqEiqRgRS1GfQ9EhwcSjhJ8bjPMKBpIhNbr+kE7sEmcakTSpJB5SgT17nQSdPNN4SbtKKxxRT13qqYtRpPTTEkvugMzVKWc+clSguzkyyjinzdv5Lt10wHLcZ2LUqeQpx/E2d7hONxjjTkuciybvJcu4WomH5jKuKFGRIUNqWCLlHWOHO9YWU6XGLC3jegZHxiKntBkndd6KdzmVLV7nGsfqAjkKV/x9docPedW8xnvmNufOC7xpXuXz8lmsWc66HzJ3W0zSEh2mXIgOMNMYEeTUx3NCz8RVV5FTnZPjOm9oF+ildTy9wtvhDqWRSz2Ykw7aTEWN++Ymc82kHg8JMhs1zuhPm7xXbJCHgifO7tD1ehRxCgLOzTZH5iJGmOJLG4sI36myWZwTCpO+1qCaeTw3fwdDZPxa9RM8F9xhl2MqsYcZhizbE25577EZnuALG5cyep5yx97hvrHGmDJ31XUm1EgUgy+Zt4hMizV5zNhpITOVY7FEd3TKZnRMgEnqSorCxEkjDoxltDAlGKsEhUFPaeBmNiNRpae30JOUdAJv5ZexsoSd6BiniNjXl8kKwbywqKQepSSgMZ6wmE5YSfrIOOM9bQ1r5lPNY8LUIBoquGObd/wP8ar/CWIcXOFwKFb5svEUBim5gC+Ub3KneoGm4dHVxhQF3M9X6ZvrzI0mrmgiA4EMIZsVRJlBLgWZplG2I/p6k1cq15nJCtdne2SZSoBJ32hwy7tDDY+h2mCqlHELh2KWoRgZZpZQnUR4/MUN6h8LtL/G/C9fPeQnNptYw4jB+DdZzVT+o6u/xt9ZeZmD3KBjzPmHasL/8GOrWN9ief1/H/2KxpVc4T1dYuQKz04u0VQjpBTc8y6if3mKnMbfkq3j4yNmWpn/bvOf0tNbLOZT/uH8s3ziP/55Wjc/9W3P8RtUKlWmkWSi1plrFTajc7YGh8RayL3bb33H9h/zmMf8zeOll17iE594v6H97u4u8/kcz/P+zJgHbNDPWrzFDn7sEBYm5TwjEXBPrDKqNJhEDTJ0Cmmw4Z7RDqZMkypmVLBAl1V1hpvZPHnpBpdLHda9HifqEvVgRmDYbOgZlczn/9I/xr65y7m2yR/oP0SYWxhSUsFjPT4nyQUTWeKPsmeYS5tZVuMVcQshJZHQ+DeNT7I4PidTNZbyMV/Xd/mKcwspddqzEXYW4YoS3YmHVsByOKSZRTDPkZMK0cDEH2vIacHG4IhyGPBmvMvCqIcndXpGBSsLeKuxTbUY88BcoZfVeVPb5o/lBf7QfYI8lnzq9Ou84MYY1iJJeY1ryZzGeEaaaUSag5oXzCobrJSXuZifoGUZbr9EJQzJQkFoSbQg5dZZj21tSmHAYbrAOOhSZCYys6nLEDsquJInNMcj7jeeQyuVmUc2Wp5zaf6A3BX4A53+uIbh+7gzwevDbU4PGjzIu/SKOgSSCJMoNphEJoeywRfVG7wir+JLm5ofYmUplcDjyFxirpapTyYsBGOimWQU1SjlHp5qU0QWudukEfocZgucp21Ko5STZINH9mVO1S5nbofDbJdXtev8ivqDeKlFWYloa1OueXu05QwniUgnJY6sDfpuk5FXYlR0SNyQ6onOYV6nJzt4icNYa/NOdgvTrqEj8Yoq+0GXfbmKmzTIVY0UnXusc2h2uZet0i+t8IZ9HTtNOJVN3KJKkFkoKDiqyki0+KLzAnFhU4piJAb3RZdgqnEjuc/fDT9PEQtmosEdLhGnVZw85FhZYKC3caMqZ1qHN40rvFK+ziuti3xZucn5ZJVxvskwbXLb3OJcXSQVFrnUyIWKEYV0RiPeCS+xr6ygRxmDeZt/a/0w99QVqnlA0bcoazrX4hPWUokz9Pih0VsMlm+y19jBtEwc28GJFZYDjzCpMVUX8NIybmrTLubEWJzIFuXU4217h5la5lJxRCcZc6fYQBSSBh4bSQ+Jitd5ksPyKi+WnuHW7Ih9Y53fXP5RpAsiEDzSljGMTZ76Oz/Lx68+xY/7t3laS/nQ4lNYn/wHFOEzxPMK/aLGpaN7bDgG5kf+Ccpzf5/5zjJ3jC2sXspZ0eK+3GVofJxCaYMiSZLnuF+/ztvGRd40L6GTUy4S5tk2FS/CkjmN2KURudQDj05wzl2jy11tjfpsSjqBnmwxN20axQwlLzgxFhloLbyRwXnRYFRUmA9UNmYniCIlDkysNKblz5gUZT5X/TiPZJdS4uNLg5fMJ/lCeA0z8elT416xTpEYfMn6MO1gRh6rTJUqZ7R5pHeZajX6dou74bP8W/OHeIeLnOcOWaFDoWAP50SaTcebUEpDXhFXuK9voichlTxDajWUc5CxQRqpTJIKw6zK/azLHW2T+1mXz4tbfG3xJrGu49YqOGbKYn6Kpqq0g4yjyTb3q8+zX7vMK2vX+IP1Z5hS48vFdc5lg+ejtxhFLQ6MBUrSQ+u3eRTsMJqW8YaSWC5y/bmfoCqh4lks9QZoSp19a5P/ufPTPBDLBAOVpjflQFshjnWO1WVEJjhhgSyTLERjtqJjqrFLPZ0SSZ2h0kClQUUm3CmtY6sBS3H0F8atxymO3wO+Gz4fTkL++R/d559fWMZUBF+zfwPtfJPDks9i+ZA3x1fICsG5OkX2Pa7fuPxt32t5qUz4So8/VnNqhc/nVYObzim3/XUuobBYnrNwaQ1hqH+hHcvSefPNN7k6+iMW5YTN4ozd2w/xjFWM9cs4rbVve47fwDBM7tx5m1Z2ylpxwmp4Trvn8kPui2BYVC7/IPwVKll+pzxe3x8cPoh+/01Jcfzt3/5tLl++zPb2NgC/+7u/y4c+9CEajca/G/Pllz7Hkb5MmulkoUJYWuJKcsies8m75W1KliTe20QvBeR6lTirYqFykK+wUddYyGuczQI223U++SN/l87wDoPhIyypsXX6CN0WaGobP/O4r19hV4FLKhyNCzbklKIecyrafFa+AF5GrYjoz5pcSw9oGxq/Xfs+7CCkno9QFYEa5oyaTTr+hIHaZitOiNJlDpRFtuIj3vYv4Cg+72ibtJmT5ItU4inlyhWc+X06tZRz1lFiF1+x+Xr5CRZMF42AmS/pawscOF16oy2OtEUupAFfLG3TmUraSUo3SFl76jrrqzFqtM56UGOxtMXrqklrnBKY2zwXvIJTvUGh6ljpAbFh8X3rlyglBYloY7V87l94moVlm5JZ0JAP+UrjWcLFDZ7wIq4YB8i8i9vYIL/ycR48HFP+gU/R8s9ZvPYx0v67NGKP++yga2tUlq8y00u0kjFLF38A1V4l8ieMhY3IbD5XeYHOZM62dYotQrJE471oA9tIGYoFVpI+X9ZusBEeMUnLPOXew9fbHCTLqKLJ3NZIcoP9uMOWHtDX1nkzvUpz5yn6FZOK8zE2nEUa0WvEwuXJ4AF/LG5woXdAljQ5c2r8Uek5SocnpI3rhMJB1iRLTNEsncW1j7AkrpF3CprrV3hQnHPsPIe9cIOFhsRKNIRWIjLW6CQhjXCArYVYhWBgNqiGcx6KJXQ34dS6StX/CJFSpmcIHpSfJM0dylHMqN7lLf1Jdr1zKvGEc6tLP6iyNj8FO8UyHWLTpuNPiCIdr9JiX92mosJt2WHTP+Oy/4jYM8mkwlPhu6SmTq/UZCSuszBLaCkGjtfjXy9/knY4oSQi6nJERYZ8dXyNueywGamMVZ3PtD5BXcxYM+d4WQvHXGOwfAPLsNhozWk6JpYboOkZh7c+wrCosOONMSYxmZNTa8/R4pSx0SavWxRxxkhrkhQ2ryRPEVgqn+GjdMWUZ7N7jNIye+EtyvoMPU+II5uSXqK8/lFmJxOSSosnkyktec6j6hPcPH6VQdwkFTZ/68kn2dy6yO7KCp21pxgaS3Blh7XlKsbBI0zOGZ1qxKLC8o/+NJ1kjcJSuT875N3hFte6M05SA1sYbDY6TAOPanhMU6xQqtc5z3K0WHDZHqGywjRbJUnBtUyqAmSmYUQpaS1laLWZqytsJicYecpEK9M0PTJToA1y7je2OdGW2Jkf8IZzmYnVYCwWmEZVnklvE1g2uZmjxwbHcoFqXmIqbBbzIaGu0yrm6AroZQFpgn+QEekLfH3pOs444Hpxl8ViwFfkTVwchrUK77Sf5bbZ4icHX0Qt38JXdTb9gCO7gxxMObLWUZwmWZGT5Bo5Gp5isjl06RUdxqLKRX/CIF3Bdwy8zGRj4GEJhT8pLtNSIjQ/Y8MY8EhfRiiSu+WLaL7NXOsSllqocoF0aYKPSW/epl6eo/dCfix/ETUWPMwukuUOvfIGH1IUNs1bOEtlNp75YXZrazT0Og+OQ4S0ca5nrD/zM5z1z1ic9FhXhuSnCV9rP8VRZ5XGaMK9bIMLxRGFYdGXXaSnUFfGnCtNvly9wU15RiUY0Q+WaRszvmKvcWjvULg1Pv6DH/2mceuvXlXiMf+/8Nu3e3zq+hKVYx/RMDl++9N81Rhw+vCTPNV9kUfzDYK4RppucOvyt3+uC0CYKp/fsniw5/OP5RrnucDMC1SR46shX/Be4iLP8ZeXCQFFFtwy73KWd2glMy69tIf/c9epR4fAte9ont9gY2OLd97d5Zq4jaFkfL7zLD9/5b/kv3rlf+RHDl7C2vrwd+U+j3nMY/5mIKX8c9f/35Yk79obBEWF5UlKUYy5sWZC7xQjKzBUGyVW2G6M2ZNNbHTK6jmZZuAqbWLh0ZEqWeUCeTmnXncIqpc5XwiIEoUr9SdwGzoLx19GY8aimNAJFnAW97jcn9BQq3higqeUcHMb3ZWkjcusra+RjB5i6SbLicXiBOxageVFyEqbY8OmCBXWEp3N5o9y2DtlZNjsaxpXxhZnlSZXp0MWl+ooqk0rilEdaNllsvYmniFRHrTxc5ugvktp72v0TYcd/T5DaWOKKkrzgJ1gzpG1RmZVEWXY8M7Qqw2mm89ihj6Km2PZTWaNMk+vfYz1UsT1ZMTbt3coxuvk3Yi7sxV2F0K2fvRn+Mrn/hnby8uU/RuU8gZa7ZTG5Dp7dY3qsEextMbUWkHOVvHFGp3uc6zfaOAfHcLyGln5B3n+wgV+f/9F7lefxhn7VLMCM7QYKTt4xhntjSYrU0lj1WUwh5H+LHqqUFJsamkEGrylXmXbjdHtFD2LCZKreOUKL/WeYNHSeXfzZ5kNdHqlIVudA+pZmTfnl6kyop7Vebu2QQ+LLadGzZ1y9WKT6SOd4aWP8+bROfrRPVaiAXbNRbM/iche5sPT+7y48vf4gY5JosU8GuzRVs7R0w26ziZn3XXWixr1ZMCNRodUFlzZqbI0WWUUHzKa2aRVh9rYw3AWeVPZYmF4HyMWjPMGry09D8opi8dD7Jsv8olTnUK9z7vhFgtJHSOOMHp1RO5QshVe1q5w0Nqk5p3zMfMOjTzgpc4zXJ3dw7XqhJlGPUnIVJtFd5Fx/IBqkfAgX2RIGz/Kqes6n619DJ0alqdiVp5hT7xKtxqzxhnLp5AvK3TllFBajLUW5cLkrF7l7fomkyhnUKvxhDLly94WQbHDzYtlvnZ0iSX5ELVmsbP8UebFI0oLh7w8avEo6NOo1OgsXOA2IxbNkG2ngmW2OUtf50/E87QbLvXRI87sBuU4ZyUfciSbqCJjRX2IEk8YZm1sXcd/4VPc2rnBQvxVZqbOZHWNxkKda+MU2yyxppg0F1t0rj2BUQJHdyjMXS6HZU4nx+CUqHbqZMYqbVVhdXWNQXiF/MGI7prFg9RCtcoktQYmAUpoo+t3mKgNVgyDApUnN7c5PLqNPwO70iIm4mK1y6t5hcbsNlcrcxTbQWm0eFsskSs6gVjA0xxKFiyKEVOliq84VFUVc9Cg2qkxrj3NUdfg1uFDTlo1VBnizHz8ssFpusyHDNjKMoZ+j2B5Ez9aZJpVUIiohw7ryjmTyOd+bYFdcUb99F2+WL6Cm5eZZRaZUJFSokUKVwnwvAMSu82G5fNv/EVmScEsvUwmQ4K4xkLlAodGyIEf8zBZYlm7T11/B9XYJnElf6L+MH8//jyflZcZlRWWytto5bdZndgsWi4D7yKZcw89SqlrPs+GZ9yv11kuD9EGy7ybG6TBAisllY/O4KHSwFzOeT36KHOZg5qThxLHm+KrghqrPPnEBVavPoWhqkghOL7vE0U5/m6bn9z9QS6cvEFDKRDDDGvlKs9rKWUvgGqTVi/lt9ov8MPJu1wUDo69xW/Q4UxpYI+3WDUKpvYdznyNRTWm7Lq0sgdI4y/+7/5YoP015R9/eIPYS5H/8g7+1gEbO7/G8egKlpZSb+/z8OyjNKXGVvWEix/7zgXJZdPgJUVhMatQ1c+oHj5DXlL4Qmbxr4c/ifzVBxQ/ewlF+eZZsW+//RbDQY9/pv8c/1T5DKnQ+Myzn+Rvf+y/QK9Wv+M5foPNzW3+8O4GRaHgyIijVpe/ffA5vt99k7df+hzPPhZoj3nMY/4Ui4uLDIfDf3fd7/dpt9t/dlAtQ55nuASozRn91g7z4Q6X9ANeThTqWpeeskEo3iDEpFwIXlefJbIr3FOWaRSSOKvzyE6YvvhFNmYXKPff5tDs8EplyLG7jB0tUmJMJYsQqcMw8DCVNQ7K+6xlDkVi8NTRkIuhj71xg2N7i0CR9Es2rd6UE7OLpwZEfotg94QHlUXe055gM0tZOc/p2FXMPKFz+SZVZZNZueATK03Coz0Grw850kza2TrJ5RdQDcE42qdQCxqEdI4H3FYvM2x4XAtHJHGKUby/g3IiLBpKitKb0stN9pILLNQfcWHkMhMB0q1wlB8xGtochzH/+fV1imqDKO3zctqnNTdImjX2L73AyedeZXVW4bSYcG3pwzynabw9GLDXHZCMY7aMlDc0GOZDMqmg5pJj7x5WcZP1K08zLDUYGBWmsgKLn6YzM/CDr9GonfBFX8M3Db7QNKk8nPBjbge13iBO1yizRCl5REONGLHEvqWS25LxMOKZbMKRscAbyRYr40dYl+rkpQ6H4zIicXEqc2rqDOf0QyyFJmnZxSvPeNi7QN/weeMgoBxVeOZRnyyQhIsrPGnU2Snf5lRrMtE9HE7wrcuYyilGnPFrRwqmOWMFle3DW4QNi1GeMMn/D1aSZxFhlbOsz0gZkD+K+Go/+7/Zu7NY2bLzsO//vdaed82n6tSZ73Du2Ldnskm2mqSokYmGyDYgi0JGII7jByNAACFBkARK4CBwABsBJMSG/WY92IGs2HEgKSRFSxRFstlkN7tvd995OPfeM59Tc9We91orD60EjiXRsthMaPH+Xqt2re8DNmrVqm+v9bHRntBffQXz8H2Kepu8cmDh0iwsDhp1Bp02P3ykmV19mV72eb6RtDk2y1ybTjBn30AtLuGvrZMMHB6blEvVOpFzBlFUiNqCd8VrZNYpt5TDKj5eadNkQpn38V3NG2Wf1XzIvrfNQBjavQNYLHMYv0Dlr1IdQ7lIeN+t8NwaK3aXT2T3qLPNIHawnYT92hp15bHjrPJmOOQlNWLFUvRLwxfKVzhVET0RMjxucWd8zMgVLJ1bJ3U+S2x9jZNHT3heNXkjvYBtCQKmWNUeZdZirltMiwWFSBmaGnbS5vn8baxZyk1P84/4aerJKa/69zjWDV6qEuJCkLb7fGLpIqexxc2B5MefW+P+uU3SwQnhUkgvOiAeRqhWn7f332c6zPmR1R+mWsw43r/HcZIxvD/hUlmjVfVorQTgBvzuo9/hI3lA8shhjyYdL2DPaZEWCf2qzkp8hBYtbiQvsuwV3Bkk1BOXqnT4ZtbnBXnMwUCgdJeBXME1L+Kf3+f3lp7h4Z13OOe+z4NMcoE2nivZF20aBkYy4qJ3l9hbp7Qc4vYhVqC57ZznQjnhljHcqXWxC5dp2ieTOW8tv8KezLm0eI/Uc7iajnioz3KwGuCnDQLLEARNdDWlrlr49ZDueETmgQtktkfLSdkxku68zp3gEhtzm4nxcfQGTlVDlS6O7fNw0WYWeGQqJ5Me59SQFnXmNc2BDJC6YCQ0J4sua+Ftaudj2PkMvWqI1IpY9XnXPEdmEkIjmRXrnCJoNkdM3YRJqnlF73GmLCkaMWQ+l+dvsnBrZF6D++lVXgpvUwYGb/oc9y3FO4N3+MXsZe6N9jj5/HVunGj88JT62zH/01v/AL/f5dWsxbZvsTO7St8/IalgoNYxbsXFgSJrdyiLjHhri/b9MavlMe1Gyh3VQy8uEcg5e6rArhzmeolW+Z17DD9doH0f+s0bR5zrhFwZV6h+wF3x6zwen+W0aLEiY+LwhOOswxwIrDnz44R6P/yuxny1U+NdBmxakrGjcFXEcnDISbrMsTjgPZnxsQerrFxs/YmfUQ88Pqd+ncOixTpH/NryzyDHgsXD12m8+NnvKr5/0draJrmCfdmnw5gfz17nEydv84Xzn+TM9CFU6f8vPdGeeuqp70+vvfYav/qrv8rnPvc5bt68yfLyMrVa7f/1niiLOUk3EE2HrfaY2NriTW9GN1tioQS/V/bwHJeLEoyTYydNjHboVqe4FdwJSwqrjRGnfO3GDeKDZ1hee8KrYsENRqjRCm/aG8yrDoEJKM2YUdFme+kJw0Cxmpa85V7gYO0KH3FPeGIdYKbr3MvbrM4sECP6S1N2ix63xRY/O31Eo6qoKkFcNXngx6yvvY46eIHDPGXe9fnpy69wb3abR3sJ97I2Ri5w9YJP5k/YmR5ix8v0HEWpY45tOHTWSeoJ88FddmrLHMd1vNxFZjZT0UGINs+6R3TCUx4Ma6w37lPXv4tSP8qXcGhk65ymUx7tjDD2nMfW19mX20zzNs/VXGa3d3CPDFW1xGFvh2Vxg1uPA/T4kL7u4OhznAiLw8pmRRyhew/I82Ms3eTL377La+v/IUuPEoRTcmtnTsNp4B8veGjViWsxszxBGsOFaZ/3igZfLwzucJktuUFbzGiJnIdFl92yzqCcceRc5JnWhLF7xBvuOdpRmxcGEJkHfHswJx1cIZEe43SDZ2sjrksX45d4kcXDtkcWH+LqgN2py5KqsS/fQ3lzTsdjnnFSJC79PGDqdHmcrrFGwNiVWNEYFqvEVou4PSa/dItq+in2Jk32si6TNGVRu8fD2Sphpbmx1+dV5wkLZbHRmdNZXuLvPUlYmjc4mxq0cLrQsgAAIABJREFULhFeSq0zIT1RbOtHqIv7fDJfoNyHPFm0UUWd0bTLLSM5Z6WU2PhobGvElXJKZklUa8H7KLbGMFB91uWQYdkhM69SNSsKcgKrjm+NyLNziGDOw6rPRAWYWNCXO+DDvaJFzfVR5jInaZ1L0ZD+QvBu70e5Ur9B3rQYJz5mIWmWCcEze6jc8DPqTX7D+gkKVXHrwWNWgkfc1+cQBwanUedUZRwmJW/PetSqAX3bYLvvslUGHBqb3WwKS+/yctnEDRJKL8TyrzErIjb9m9yonmXfrLIvJoh6wReT13jFvsOqd573Dr9O4X6SuhWxtNTjTqkwokAP3uNoa5XcfoZWGPG1yftcDs/z5qN/Ts0sGJ7uc6e4xnM0eGdRccGfUp55G9X+RfpfvgOt20zSVWwN/c49VNmgJ5ooT7JThGzoA45FncdyQnt8l6Q0ZKaBshTvlWs4zUfMyojz1VWOgn3qjs3do+tIXCoZkOCRhxYX8zHfKq9y4rhMTMRJe0ItG/Ag3uKd8gIb4ZBU1vl9u0tQHjAyy1xJ5ty3z3FoXGqTQ6JoxOPJNjtyjU9xSsomq9F7mFQDNo4FO6EhYc5pXLCwNLr0cLOE3KpYa+wT2SWPvRbnpwW/F9bwC0E9CBhFU2hs0xEh15XBSkrOcsoFW3BEj7dFk0waUgIuyANsp4tbaTbNIbdMlw6Kb8t1zpkp11supd/hoDqPqB2Rx2uErZsc5y3uJxvEjqLe2uXJbJVSW2Ruztemr/Dz/uu8HW9hWRox9fDKS1QrN7g5eI7ZYJffffAVHt97j2qwzA182nJOd77ERHv0aiP8ZEGsC/zeZQ7Onued2/tMi2POZHWUKFnKh7wvLnMmvM971lWu6QNU2sOIGlHnAY9mhv3ix2k6mqBsENuLP37C+kNP96B9D3y3Od89XbAUuSylGnOSsh++wd++82+Rao8fynzycMqDk+cpEPw3LzzH5jPdP/K4zr+u5mqNv/X2Hr8YhHxe3iWqJH7vEXvxKtKErDuPeO7Zl5F154+93hjDvdvXaT75EntLq1zNH/GXX/if+XQx4hMfexXL/5MXdv+6pJTs7+/Sqg7oqGO+1bjGm/sb/J2P/kdcO7mLPLxH79KrH9p438nT+/sHxw9i3n9e9qCtrq5y//59fuVXfoWvfOUr/PIv//IfqaC99fo/YajaIGyyqsVzRy4Lr0TJEY91n9hRlE5GV5+CzHlHnkH5FZY/wisDWu0HnMiKW1lOnwHluIcdzrhZ1tiQimnhsuGkJCaktFOm9UMelG2GJuD67CI9M+Ru+SzKETScEa5MeDfukOeKzcKj8MZEsqBKVphIeEncw61i5vkKQR4yJGNH2xRpnXdnCt/N8I+gu6t5PHqIUDMay7dxKp/Hcodvjja5rwWW+5h9L+WRs0E8ryHGHYT3GGU3KVWEwGJFjzgyLWRb0xAKRzzGtz3s+Vnu2SNOjcU7WQ8t5ziJj6seks52OIlO0VkbPwnYdqYUJxXHiUNg2ZRLQ3b3QubxCMs+JJ13+Xb7gMe6x6D0kWXMSpQyrbrsiYyO/4T3HvQ5uHfC68e/xdHDA1bMDtMs501vzt2sxVFV55PNxzzCY5g0ce05Uf0RW9EO14uSx6XEslzissOQiqrm0Kjv8qjosh/3WHH2yOpD4ngZnJKFXZDjkGibw6LFWulzjYDrwmJaeQg7prSgr2wW3owovEdeeihnysIS7AxeY6JaXI/mXLYy7lV1Au+AvUpzmrXoNSdM0zZr5BxKn4NUseTtMBu3CYIhlb5ElQU0xAFngiGfH5/h/XEMA593Uo+abvOSFNTMiKxK8Zslb0dnYbYgsHO+MdviOI2IOOZbZotmMMAKZnyjajOkouGe8hXTptAOy/4+rhBQLJOWXQ6sCK+VISvF2/VV7rs1Vsk455+yVN/hy/oKC9kg1i3qQtA0E+LKYMmc47yOEYa8CsiN4qr3Lmngcn1plctmziR3iBGUMuCJXef+vEdbTDmRXca5onCGjEoI7DlxXuOdsuTmjsVM7TBcdKhl55kXc8LaCY/KNo5lYxZXmFktysDivewqc0fS7+7xcLyMyruE3pRceoR2wg+3b5FJoOiw0XlMLjQ7szEHTybkYkF9aiPu3uFOfof98gA/L4kjzSSMefwk5Nb8Pm/vt2gdOLyhNFqXWIsuM50hvD3ujeE3rgfkSZeFqGh6E46NDcJgygDfUgyBovJxch8dTikbknu6zmp4yiSWlK0P9n/ZZUiBwsnq3AxPmcsh09QwTFY5LBtEszrKVSQCVso579Qu41gFP9Z6wq35Nvs4JKXLejUmVDYzy2aw6LGmZvSqU/6Z/gj3TJ8d7bEkFZGv2NNt5r5Dy23zVuGxVE1wgN/XV7nEISUWt6rzrKtD+s6IR7KPNJpt/4hubhDWAi19jpMlYgssJ8XxUgaJQ9fNmIYxPSUYmZTXRZ1nOWDDypgGDsrO2Ct7NKsWSb3iul7DF5pWvM1tFTBLl9mKcqaWpHQUR8Zlahds10fcXiyzKFqksiCQJSpfIqkCjozLaKXFm9aL3BAXOafuM6kLcidjLCzupH16SYf5w4oNeZemNyI1hpdae0yTiPfzGqviCX0vYyr7dAZrfCN5yL0qppa2aDglrZU7XC8vclh18NWCm/kKU+kRm5BbXsJxKWmEh6x5ilvSZ+4YrHCfn/2hH/sT562nFbTvM1mp+Jlrf9jIuQ/z5k1e/1bET2bwm6rDy1f/Mb87vMJm9xbP6hHOub+AEN/9oRhSWPwnbsBfX0x52Wzw0BJcEAm2qHhTS/7L+SeovrLP5OMr9M7+0aNBR4Nj7r79Oi/qKfeaW/zY/A2eHd7l2oXnsVpnv+v4/mV/8S/+AmrwEtGv/ySfGn2b32l8mv/1vf+C1fyEw8dbwH/+oY/51FNP/Zvrl37pl77j6zfyM0hZ0i4EhCPesGOmVcAmGRvukIXnUGLYyTcwpYtnC0xlkI7gsbfgzvgSLorSwMB2eNAYcCNbpm4VnKTnEJXDjbLGlsgJvSm78RanVUjNHxAXdRwrYNO+xWm1zBfKM2CgZmWUnuCxd8jQWJzDsO9mmLyJbSqO0xVuCYeVcI5nJJOsSzcY03Vj9m9fw5anXNMWh9GcyDNM56vcyZbI0yU6ZQRG8shewnMSatWMfbPKpjeiXTbAyki9kpe9AV+1uwhVkscwo+SxfhHhzjmexXzEm/FFdYlZGdELD1lfus29+RKhVzCPV/DcOb3WDomc0+mfMhldRhRN7py2mJRHxPkKgbOEHZ7iLzYI/RjPqhgmHW7MGhzYgkxUvGylHKi3aLstzomSaRXxxcMW2hhkM2VWrFB6GbcciztJF1dqgmjEduMRuyevcNcItJBkxqErwHE8clExXtQRsiJTDrOyzlrziGMpeNafkmdtQplgK5uzdsascpg5U0oLSuMgRUlpgVc7oVm63B1dInJSXvCHTGbrPHSaDLQkLpbwtOYYi5aU1LSh4SWQKq7WHvG10TNcbD5BZ3WKvEHDmfGN4Rpl1WJJn3BUtXmgKurujN2kze+XDknlMvYmPHAGzLOAIWe5OJtzX6Wc8QR3Zhc4mK9SOTnHukdNlpxWgr43JTCbOHbJV5xtToo6g6LEtrtYRlAoByE8Ei/DlDl2tGBgGzJleCArjGuxXLZRzTlNJ2NcBQh/wX7WJK5qtJwZq96MoXLI3Bl50uVRbR07CLDKGreTDb4eb6GVoNu9i5yu8nFvgmU2uWsclBLMLUHHn+Eoi7ElubH4oJqXJR2sKmCkj3F0yMgpyIs230o7nPMKnl/+Jm+pBk50grC77AxWWQ3GSONh1BIjO6BC4GrJ9cl50qLOfPY8wgoopOJyeI/T+Tonu09IV97mcG8L4UumIUwWEc3iCTvHz7PqdOkVKUd2yiD3aciYN+MxjeCUW9kStufQDGYUQcJJvoRxZ2BcRoX84ERDI4hlhWsVJEbx8eiYh54hKS9yYkVUDcFe0eGMTNEyBuXhiZxcWSzKlIN4E8fOOC7arPgxoci5l/SJRZPTOKIQ8AfTV+l7KXulh+MapBtzq+xRlRaOm/DV/BqVa1EWAUpqjHa5XzZ5pXZIT2bYsuCt2CfOlxBCI5yStk4pNUxKDyUzOl5O7jvUEsXC0cRIbs432bBT9nXAoXbwZcG+drhaHNOs1zm150yKJTYaR8wm60TK8MBe4lJrB9+fksUr+NEcURuRVXWUkNyL1xhbglzCyK9o+xMeVnWCsqQpChra4WtHzzNB43hzIiUJ7YTcjRkITbMIKOcRUjxhxapYay8YVS6yanKlfh8ZfYV74ytkkws4tYhh3qQM5mxEAx7O14kqwyzd5AuVz2vBMZIFK+2v8K39V1Ha49ibMZydBwsOVINJ3GNdTFgVISN7Slm02HccKnOGK24OiccMm9Fi+zvOSU8raN8Df9actTH8u7/2bbZ7Ict7CfrGiHeKv8vXrv8Yq0v3GBRL/Oi53+HzBx8jqXxuLS7zw0VE/3L/X/3hfwrRrQm1THO2CPgDb8HVwRq3bHjeW1CFNxjbMarosXz+j+4nO37rf+fVvb9HW87YCdZ5fnGfl/7+2/R++iN4K3/2Eyb/JFpr/slvfZ4Xki+zWg74bevTtOZD/ta1/5hYGz7a8LBa393hKX8aT+/vHxw/iHn/eamg/Wl88Utv0Q4WCC9jlHXIjGCiPVp6wbHosGrn3MmWmdo+UhoW7oIMgS5rHCgfkbUpRIFlCVRRY2Js0iokNB7zKuDAeAxxmYqKQdUmRKOF5op/SopNwYKRWqYUNqklSYqI0ElpODGzokZifE6qCC1z5spn1dpjYfsMaWJbisIyzGTFpGxiqhpaV5ThLqdWxhNpcVLWWXVjClFhy5xGbYCRFQsk27UT5soDodBoMmOz1BwirDY3kxVmZYhBsmzAFA7Gj7mXLLNwK5SxGVh1pFAU2Cij2TMBx9pnogLqSYcHzpD9KuK98TO8H68xTSJENOIobxJnPerBmHkVMqoifCchiATLU5+7wuVisMeBqrFI+8yl4bRo8bhoM/Nn1LyYgV0Saw/fzbDsggJBrl2yKiSzLB4kPZRMSfEotc2wChmpAGSJjiWxcSksQygqhkWbo6LBtKrx7nwdjGSOZLdoIYIhuSx5iM1Yu4xVwLRsMNY+U+MgRUFWRhyrGl7lcpgvEZQBSf0A1zKcjTscKQ9t51ja40V3zlY44rhoILwp06pJKSTTssFcu9S9CWWVY6UNdrXDvgo4qWoIW1FYJTU/xpMlDy1JLFokeCRCsVu1kKJit6yDKLlc32dXL3GS9vFzj5uqwXLtkFYwoZIKz1ngIGjZC4qqzk7VwJc5sXbpZAuGZYNhuUmqwLFKnEIS6ZKB79CwMhaqxtQI9vM2oVXhS8XIAi0UTTtlrEN2ij79/ohHixXKqmIODKVG4ZIj2fRHtBR0K0WatZnbJal2GRuLhQpJjYPvzVGWxcAIqkWDUBoWWZNDI9BYdBpPeCtew1qs0LcLQnvOMK3RcuccC01qaWomx6eg7iQcl3UqbVMPTzjIuwhh2C8iRsql3bzP7y82OC1anOZtTvIlnpQtpmWDvaqFdlKkn5DKiqHymViAzBgah8MqxP/D3CeVi2N9UO2ptEWsIlIEvptQGpuxcpmUbURtwoNkHcdJWDgpWVFjbnw8oZhJTSsY81gaDpRP37jsqoBEe6RVhG1VxKXHlh6iI4nIJJ3KZao9XDsmNzApa4yqGqGsODU+69YcW+UsM+fIq2EsQ176LDsxXSdhnKzwftpHyQJXlGxxjC1LhtR4R5/hsVmhEoIL4pB7ep2RbjDIlnmcLWNZmsdVQCkKCiEYaQ+koTQ2t8smx6rOqKoxr0IyGyonY2ia3FdtHhUtjHJYdha0/QUTu/yg7UfRArsk8Ea4TsXUuCwqlzVRMdIegSiYVxGDqkaiPCwsFsamrFwOk2W0sTnUTc65T1hjSuy4jFKXt6tVMlkyKAP2Rpfo1fe4Eg356mwNZWli5TCpaoy1T6p9Qqukcmfs2gVK+VRVRCkNoTehkppZ3gInY0sUVF7Fe7MtJhbkQiMsA1JRGEWFZqp9Gk7Mz3/qT37a62kftO8jr++MySvF82tNxHqEXuQ8mMxYWnS5tP4Wf8WdY+r7PEz66KLOz107z3M/+9yHNn7/YptVy2JDCo7lDKE1hXZIRMpodp4zwxZXt//4xnrXRy7fUC/x0Fnn5fltDs0Sk7NrNJ77tz+0+P5FQgj6K6v8o/CnGNt17l7b4IE+y6nb5LOLN/jHX/gyWuvvydhPPfXUnz+uqbMXL/PeYoVB5TBSEYV2mIVNGl7OQb5Ex0mRaNZqByjtkSqXY+PgWgrLHVPIiolyCMIJPbukEoo9LbD9MfVgRMcbcbH5hLpVEtgpcRHx9XiDgfK4xTbHos7NbIVIZvhuyqQMmWqHlqhQeYOs9EmVT+DMue+us6NXSJRPqgNi5RNqh747Z6xcgmCOshWPhSDNm0RKsLALCu0ROAtuLFY4QdD05pwUNRLlkJR14qxH1ztlnnqoooaQCQBpGdJp7PKR1beJtUtbVNg4iJrGsRSvte8jjIWWBiELtguPF5M2l4IpZ02dsFrCM4LQzlnxY/p2xpa2+SH/hK6GurE4bycUyiUZaCZYbHgDhkKSlSGFpUF5FMrFtwwtmXJsJKOiTWAnXPb20EWNuQpoOQk1J6EfHuGpGrnlMCojpJGsOwtW3DnKuMTCkGlJWoYYYyGdlHVvSlb6VFWNJoCT0qvtEciMQhSESmLLggyLAoumzFnxhgihEDLDAmZVROEmHARTbKGZlnV+r3XE1EhmVcSobPL5osPcW/Aw7bGXrDPUAcqJGRY1Rlhs+ftY7pRh7QATjQjdGJ8KaQyzokFgpxR2jpEVTmuXSW3EdS2ZlXXuzTdxgUHR5P50HcvOqGSO9Bf0ZMpxUWevaHN/vsYob5Mrh/t5j6GRaCxmZY2pcvHcAikqjrRLS2Qk2sVxY+Z0idMup1WNMu2wQkldFuRGcpK1mJURhZGcFBG2TLEs2J2F+N4puTvnmcYuTbvANYbKMvze9CLHpcdDO2XPzdBCkRiJ5VTEloUwFjVZUGgLoW1OhaSqH7EcTAgsuOhNias6k6rJwi55N11imNZxTIUqIhwN4zIiQNN2J9xJVmk5GQI4SNaILcFuUeekaCOF4HbRoShDmv6YlrPAd2ICmTOrAl6xx9RTj1DZ7BdNxti4QnGMjZE5DTujpl2W8hZn/Qnb7fvUK58Eh0DklFbOw6SHpWxWgiEdf0I7rdMwEikUiypkYmscUZCKkr5RvB8vc2os1vwpwyrEMi49O2PVzvCFJhcO3+A5niRr+MZl0x1zubHL9WSFQdHEtjSp8pjnIZtiSCokNScGZVhSkppWbNoxy1IxqXyC0kWhSbVDXNR4l6vc4BIH+QYLU8OVCm08RCbZKk4RlqHvzgntjKSKKLTHomzSEwVL3hREzlA7RHaC1g51b0bpz7HtjMLYBJZiZDwCkVLzZsSWxT8bX2VW1kmNQ6kd1hqPOBWSqVWhREGFhW2nxJXLIx3Q9id0nAVtWVAXGUncI9EBgR0j/SkTYXiHa7zRuMpRHHBf9wmdmJ14mUHaJzYut+IVvhj3sJyMTVlSVjVSUeHIkr4/pB2d8CDvc0N5PM6b7BqHY2CkPJzSIxAZpSi4mS7jyQLjxcRGYguFsAxT5dDwZhg3xrE0guo7zklPK2jfA3/WnP/ml+7xU8/0eX4pAinYd27zv93WPHe6SePsV7ncPOU0b/Jbhx9honxs/zf57DM//F3vP/u/SSn40s0T3tAVI/+YO62brDg2C+XzQtXleQJUDl9//ZgzLyz9P+Paj7/M8Tu/zdXJO3xx+9P8yPhb/Eb/J5hZ61z69E9+KLH9cc6cOc87cZMquQcWDJIl/sb476CEJGw3Wb38GRDf26d4n97fPzh+EPP+Qaqg/fbrf4CrbYbpEk2pyZWD0i6RM0YWDTJAaJuFcVj2RkSiIKl86hiWRIVn57zaeMJOskZL5pTaYWHAdjKmyse2DKVyebHxmMBI2nZGailmWYfSMsQq4MXWA1bcOXuLdUpLIzBIYcDYOCLjBBsFIEoSHeEYl3Yw4bn6HmNjE1pwsX0PIQu2vBmDvMPE2Cg3xtc2qSVoRwfkZYtRFRBWPkVRY1QFlGUdISpWoxOWpOFUNzDRlHWVIWWKloqFEfT8Mfcm2+RZkzWhWMicTAtaIud4scFEO6xaObEX41Nwp2jTdicMZcnLwRDLTfAsuD/doGstEM1jqDzWGwec92acCk26WGEVcOySaRXia4/SznGriI9YFRJFN5hyP+3xbHTIlfYNIqdE5k0Kqeg5C6y8SeRN2Cs6zMuQwM5pe2P6lqZnbFIVIJ0546LJxfoTRkWTpsypCY1dCRxjU5eKXLtE7oJUeTxMlzmDprBzKiNYt0o2ggknWYsrtX0uUNB1FzzKupxqByELjJYEdsysCnG8mMpJSC2oiRy7iCidFM8pKbVAioqZcSiUx7BsM1I1Eu2RVAGbckYuDU000hg26o9JlcNxtsRx3qYmNN1wSKZsHCNRRiCrAFtossrl49FjMpkzKWt8tPs+aMm4rFNgUSkXY2lWaocAzKuArjMjFBkhKbuyC6Ki1C7r4YR72SaOpchVgLEMdaHZUz7d6IQGAi0Uy/4JILGxURgWRcCSKvFkTlL5xMal4Y2x7RxkxcIyZNrhqj+h6WQsG0Oc9DivDMvRKf3ogEz7DIsaHXfC+dohoVGMZU7bXXDVUtwrmqyHp5yUNcY6QCBIgKaXYAmDZwz9YMRx0kNaGs9OWfdmnAmPqYyg4c6YlXWyMuKTwQm91m1UEWI7BT0UPoYVHGxRo+4f0gqfsOHFeNrFERWZduiKCtdNWKkcdDgi0S5F3sZ3ZthaYIQg0i5O6fCKTKiJEQsTUcarrPojPCzaskI4CbOqQUrFTtbFE4qz4SnvZl0qAw0UadrGDY+ZqhApNE7a5Ep4xEJLcgGjsoZjaRpOQiAq2u6CLS9myR/juhUndo3RfJ1nMkl77S12sw5jDHXmdLyCNG9gYzHKlwjDKbaRWHZBVXm86Mw4spoMhc+waiGFxtc2nhMjnARtJA2RoC2NoyXPNh/yYmuXpqyQToyqHOpOirKgxOKMP2ZURvTtlEoUFJVH3cm4IGPGKuCZxmOmRQOpHUJ3TlbV6NWOSI384Hs7bxNWDoFdUBjJNG9hqgBjF4zLGpGVAxmzpI6XQcuZM0jXGSXLnHcX5LLitKqRaJtAZhgjAMmTooEjKlzLkJV1xmWNqfJwZUYBrHsT9rNlToo6K8GQw7yNMZIXW7fZzbrY2qeLwfYm+LIgy5tYlmA7POE0b/Dzn35aQfu+d/dkwc2jOf/OsyuotweU//QhX3n7DxjufZT1T/4q/917f40jZbGz/0NsYGOQ/OXyJz+0xRmA1Qt4UQneQnG5ajEremxF+wyqkFVvxn969m9wMHrI1U+vwr8w7NHpKUWhqEcZ32g+j68z/u6Zz/HcS89+aLH9cWazKeU7v8NPTN7gs8Ovc7+1xOfvnOXfu/I/8jv2Grf/6f9AWf5g/aB+6qmn/oxERoDGcWI+ltX4UbmgrS0sq2RS1lnD4GGwNGRFgw1/xFJ0Qscb0BZzPhqdMl6s4yZtvMzHsYfUZcFWMOLZxkPadkadnHtJh3tZB6qAC96UZW+CayyW7ZhG3OBj4SnPRQc8Hw5Y9aa0rQJFyWZ0RF3kSFHgGgFlyJKzYNmdcjfuU3NnbHpDennIy507fHO2RWiP2LZj1ilZNzmXS5tnS0mDgk8Ep7zmjfjU8re4HBxwQSy4LKe084g38y28xpw175SzzSmvdg6Y5W0mRZ0nZZOuO2CKxYkxGEshhEFUAU17hK9s2rJCOzPC7m1Cd85gtopbOrxZ1jjJGhxqh0kZMEubHMc9RnnEhdKh7p/ScxesVi4rqcO6EhRVQFdkLJSPyuuMK5uzWUCtjGhQsVl/wGh2jnvDa7RTh8vCMJxtsqbBxeZscEzDm9D1xlDUiBAcG0NbFITaYTM8ocprmNKlIwpqzoxI5CTGYubGSAxWGWG0jSsKJrLEszSbWcRKMMRx5iyQxEYzVIZtmSEtjW0ELX/Ahj9k1UDTSZhpQaldbBRSebhCEWjBhlXwlzq3UEXEBf+USAss7fBiYbhgJZwVKXN/jxeCu1zWJb6dUAQjtqMDIuC8N+KyMyY2gtXgFCxDCXxy9ZusBvs8a8ecb+wyTvs0lGRNpFhasl3b51L9MddqD7lY20XkIWnRpGMvsOMuj6tt7ofr2KJEWIaNYEDPnrEZDGm4C0J3inQXzGSB6yS4lsL2Z3TtBd1wl20xoCdzOt6cnj/mMF3itIhoG8MZmXDOH3LBnfBM9IgX3DEfqz3hUushPW9MlNdB2XSiAy7WjlixFKt2zEV/wEY0wTgxdXw6f1gVfmxJzokUVTlcio54JTyga6cIC4aljzGG3LJYYKEsTSBzzosCIXKMpbnUvk9f5lwOD/lLvfd4lIccG4ug9PDHZxGl4Cdqp1QaLNtmQ22j8stsB6dYYoZvNGuiJCxqNJ05I8tQKUFehNgip+PGSC3QeQNjadaVRUu3iBwfJQQzrYiVAyJnkdfppQ1+zD/ieXfIBctwSUzYmW/gVx4dy2BpQSRKKEOejQ5Zc0dkGla9IVpkDMo6nvlgAbHkjfFEiTI2Z6N9lsSClpGc9+dccSqKrXd5MF8mzlzG8w2sYpXxoo8xMEdgvBm30xUcFKGxqVUBYaWZG584X2HFnbBiDMO0TWTH9L0Rz/jHOKJkN+/yTO2YF8Mx4/kqIgs4L6fkymZfeZx1ElxL42J4KTyhKCVpHmIh2UuW2Nf2B/nELXxvQGBprMpmiYph1iaUFZfcCef9IRMtaNsL8sqjaWeUykFqF6EkK6WDZ/nYVKy4MZ8UC563Yn6MSMOxAAAgAElEQVTEPuWMndE0gk+077COYin36LkJuggRRY11/xTXWGzW9+k5c5ZkTFV5bLoxP7X+DT7TfZfN8JiFllzyTni28w6JMOTaBqvCtkouAB8LTxmWPl13jJIlG51733lK+v9i3nvqX+0ffnufv/DcKpEjUe8NuU/BcXDMq94J7f4t/nb7FuHqN7mxWOaZ+i5/JdB87HMf/1BjsKTF5eUaU6M5l/cIVYelQmIM/Fe5z382+2/ZYp2utJgPsg8uKmJupUvcNmf4a+v/NSvpKRPRwI9zNn/iFz7U+P5l9XqD1O0SWwEvLO5y0lrGWVvjr+/+Bv/9/v/C6tE/J52efE9jeOqpp/58GFmaYzemEjkTKjxPIozmTtymkiXGmbM2O8tVf4Rnz8m0gy0USnuI+AxKC55tPaLpjrmDxdnpJTbDfRSKj/du0G/epy4yvFmXIq2xu1jCqSJWKfhU8yarpmIgfO4ah/3KQsoEUwV0ZMpCe3SCQy7JOQ27oClLrMoHC+LKJ1I+7TLE1xUb3oT9vMXzjSe8knVYZ4ZlNFq7+LM2u/Mut0ub49k6jUWbYdolKupUwYLzqsJZbGLlDe5PLnF/ep7fPvwk/+f8LM36Dk1vjilqTC2Li8ERUfsem/UD2k5OLT6DbxxW7ZRO2uU5t6ARn4Gizb7QzEVOoqAfnbBR1GnpiIu6T1MYzgRjWskyJlnhUm2XdW3xWM55kjXReZNLpsIhY6ZsjosQzytIqpyPhYcMhtco8iVUBSvCIs2aFDInco/5WOMhLy6W+ZHldwmMYlXkPKMFm533WCnH/OzqN6lriyBt83LrJsvemL1khbB2woY/omXHGMB2ElTpsx6eoEVBqmwGTsKTvIVt5fSdmE87FaFIKPMmG1ZFpDQ9O+dwdpbJ+Ar5bA1HG5pySNvkLCg5secUcY2DwfM8WDRoRsdc1BY/179OTZTEeQc9WWZ92mSx2ObYPcM8iGlYgqpoEmufH3IXbLoxNW9BX5T03QVXGru07IT54ByL8CETO8eWCavegG5V58neZ9AygbyGO2szzQKsokZW+tSSCKeIuNDcox73iPMQbSnadoyjHMbahypgvYiwlEOqbJ71T+mWHlkZUGlBrF3mh6+xrnzOpiFSC2ZJl5ZMaYqKrAy5qg2b9YfsFnX2kzWWsxrbsuDuZIMjVeJ4R0RLX6eVdPn2wUvsp0ssCh8bF501QNXpdz+LlVucVAlhEbBqp9ScFGFP+czqdS4FJ3zc2+N5/xRPuYTehFncJ1IOTmUjsxJHC7oy5u5oGyUUPiXl8DxX+0+4uNzFBBbCsjDNXSaNfc71x9Q7DTZaKbVGRDN6Bk8IVizNonGXJ3KEpxWldujbGWtxg56co7Mm6zLDVzaxO0Q1DhHaw7YshGWYYLBNiYqXiasAkzZpKI+IgLNiwbKAFXuOKTRR+kHbhCtixvP2grVS4HlDGpTYSBLLol55fJaSpsjwtOGMFlyQH/zhc5J3kUbxzcoQrr1LM1ml52fUxYKekRw4OTES27isaINnVWwFhwRyij/r8lPekFfaO6xE+7QsQ1dWJJZF10gCJfgoinbR5GWrYFul6LzJYVGjffoMRbyGjNuEeY3CynErOOcNse05kVC8aOf0lU8vr3NVZBwXHSpsmv4MowVj5dCxYLO5Q3O2yvOpQ9M/QDunBP6QhZcS5D5zbSPtgs3ghKv1PUrfUFKn0c7QpcskXWKlqlHThpqdUY+OOa1CLjoxF5beY7v+hDju49ozxtqiZipsIzhbO+RaeMrF4JRCCW4MrtCyUlrukH4w4YLMGQnF/ekWTTsmEhmb7piP2wnngzEbVkEy3mYYtzio5Heck54u0L4PDBY5X7pzyi+8vIbemZEozZPpDe6MLnJx/U0eDC5z6J8giibXtWBPC/6Pjb/J7t7Rhx5L7VyTV0KfHMF6OOSbvc+TKh+DQSmXd9S7FIOMP/i1u6hK0/j8X+VM+j6r3ilrYsx/cPSbJHj8+1/9wndsav1hsCyL7e1LvOlfw0bxV7/+DzhyVzn36AFfL57l76/9HOtf/SWUUt/TOJ566ql/86W5RyEStqw5duOIpOhT+ANWvIrSPkZTEAQjtv9wn850skUVt6gsQaOoU5ttksYN3N4brAQh3hrkVUlWKUaPP00jaeCagED7bFkZvh3TCncxesKKcslUHVtUbEXHjIo6VdoiKiNsYyOUw5P5JgvtIrTNtjemZxZ0lIvOIsK0RqtoYIXH7JJQTjfoKY8qmDKrXLb9OaknOZWSWn3MmjembWDkrBL4P46vthhZCVb/Nn54yIr2sYsWnzi7RCvKuOzP2RY5NRQXRIpZbJBaNpFjsHWTfq1DKLtUSR81XaMwkrNSM0Mwb8e4CHJ3QqhdEmfCfWdIZj44VGSYtPDKJWZFHeINFlmXuluy2Zuw1RnRjgbkjV364SHt8IiOsblvK5oBSGW41nlArzSEaoo3nuIIRc+Z8LbQJA8+Q7ds8mSyiVXZVGmPG5amV4aY2glP5iEDDKksGJcOdt7CVD4KQceUbFc23ayOVQlqlYPIa6yKjP+LvTcP1vTK6/s+5zz7+u7rve/dt95vL+puqdWSRjNCMzDMGIaYiQdjYlcIBFOOXTgVyknAULaT/OFyyhWSUC6cShEcAwaGwAwMBBDMaCRGUqs1krrVrd7vvrzvfffl2fLH7VGrtQ2YGQGp/lR1db3Pep5zzj3P7/v8fud3jri3OaxvcsK6Thgr1DsVBkOPYewzUBIcdcCM0kf0CoSRwihOIElQlJhZo8kRbwUvcLCEQSl2qMoBXuMgS9ouf9ovIho1Hte7uJaBYgZsGBFj5gRPHZzGd0N6/TTVBAbAhPc6VWuX+jCLNfKJe3k2G5OstlP0tR0m3TpdpUtgaOzIIT21jZu6zAF/nfP2LlavwAklx7I+YLpwhbPuJicyLxOR4Njb6AMfLUk4mbrGUdFEdItcH6YZRTprSZOHM5fJRwkPO2uUtA4FQuJAZcFaYyXxCIIsszJBiRU0ZUSIpCdgk5hnOmNkzQaPpt9gfVCi302xuDuH2S/S0mMMr4qsrpHP3WJEwMLYBRxlhCLAVFyOPj5P4inIcJz83jSX8YiZIBeYtOtjHJMjeloP2c1SMNqEicJMrJI39khpbUJnh8XiZR5SshzyTQ7m+hxKhYzZMxSy38Pi+I9geyU8RTDdrzKRf5LQCjhZ6jCmFXj8sE3l8HEemlXYTOx9UTL+Eh27yV4kkf0C2SBPWh8wk7mBLzUKoc54mEbBZ91ok3QLxL08mdwetsxyapDDG9k0RZON7JtsuhuslF/hRmaVJL1O1qwTJzpOorNlbTNIbbLazdDpp0mUIaNBCgWF42aDnY5PRm0xUCIikTC077AewzF9j5VOBaM3hhs+xQ1tmuKYxbin0IsUloyYMSfmqNbgYa3LuNbBBArGDmWzjirBsndQjCa6EChmi14CitliKb2GatXJuauEWg95dy7beCKpCsHR4gUy+VtMxwrpKKap75FS+6R6JQbDFGWzTSh7VEODQ7LDNF2KyoBZdchi9hKOHNIOLQaBQcXfJBBphuERer08mYFP0C7TTnxKgcmk2sPWWxS0Do8OG5TFKpnBkJQcEho2l71b3NHabIUJE2LA6ZFBvm/jZFeRoY10VhnThyxkX6MTmTRbJSSCOFGIEpXFaIRPn7C5QGtvmmE/gxSCzZ5PpWuRtzYoaW2URNIy6zQHDjNDlbGBz87AJ+G9l636Bg8E2l8BTE3hZ79ziYpvsvblVbY6I070pnmtPkdq/g/59de/n5cTDXX1PLsjn+v9Iv/c+XnKueK3vCzKqSK5SZ9rxChC0u3nKJoNfGOP5+o9/o/s5wlf2+TjP3YIRZVcO/HTfGXTYGy0xcLedZb6NxisKHyX8sFfBr5VLC+f5JX4IIFQmR+r83q2xLZI898v/SinB6+xsnqLV15+4UMpywMe8IC/vkj7KguFlzH9DppM07TSSMZptsv0Rh5vDH1uhBHXRzojEdHVm2wypNkrM504pEOfttbBys3jlEvkJnqsWXu03de5qe8Sa10OZXocLTQ4U9rkYaER9FMY2oCq1Kh4W8zYXbyhS3ngEndLnE0EQWsCs5/C6o2R75YRoY4qh0wVbqCKkFPFl5muPUO2r6MHHs+FNmP5y/jtMlcTg5y7xc4ohR8XmE1JTkRnOZ0KUXI77E1mWZgpMj5ep6pp9AOH3rDElrOLk7lEIEMeXb7GYkmhWL3DeGadRLUwEw05KmHkxmn7M5QqRdoFnZYiEJqNMZND2znHSlhhebrNcU9yyDhH1F8gDlJUsDmT6BSsmE2pE1kpLpa30MpDAgOyvsuBdBHXy9GzTNb8Hkp6kpzXZbxkYqR9rushgabhuYKS7eENiwySJu3EILFCDpc0bloRLxkDelvLVBKNvBpRkSNGQiFBIZZQ8W8wUGIcGTDoFFESDRWFzihPY+RwWw7Z7KfZGymM2WvshTrByMSJFepKQm/kkTN3uRg47AmfryUuA6XHpLvFlkgoBhYLeg87FGgkbPZLrA1yqKQ4UfsM6liLrN5gIEZkkgwFs8WmdPD6hzEDA0UxSPJtgo6OHh6lUsghtYSkM8eon8LcPcyl9eOsjHT+YG+S3fo8mjrktN1jK/bod8s8qke40mJK8/iENsWtIMdulJCYLbA6eBlJYGTZjse42k9zqT7NbnuSemSTDB3iQCPpFvCESlUMmYs01GEWU5gYgwzNVhXLbGDHGpESIgdFlCBLWuuQmvZYDGeZcm8zUgcosaDfrTDRHWdld4ELzXG+Hibk09fI6CZDK6BrdMmnyzy9dJh07RCPWionzQlycgJVSpLQoc0YpqOhT5U5NNHhpkhIuwlGaYZO4xj6oIyBRm+QZxjqRKHKMNLZDm30RCEeZImax9G2HuXN1kE+Wl7miYmneeg7Psv03zyCPTnNUOocWlykYO6gqQYT46epTY0zWZVkSsuMhzlMzWHNzBIKF9mvoIxOcEfVSUmXXnwUxc6CZqAkEi0oILQ+3+F2aU27rOk2e0OdXqjjp0KSaYml6hyQA2zSRGIJxRZYrsNOMM2trU9RkVlaWoJQ+hDYeO0q03GJO4kD6oigOcG0vofur9A0AwaRxkGnQzfU8ZUYS2lzZWix06viKipKbo3D00VCSpjxFDNqQEOPCPVVbLvBn0Yu2dAjG9mEQZqMatAVLoNhmWZrnCTWaAWSSLZZjXQ27A4Xu1OIIEVaS5g0OmTVAZnUCqaSkLQW2dp5GkPGmCMfR48oWXUG/Qy93hi3dw8z6I2zKUKyiUmmm0cbGrzUmOJGp8AgsJhTGmgDlaY6oFJocHb+JKtqir7TY6nwJmNWj+83HJp6B012mCCm67TIldpo1T1sr8WeeQXb2KJgjHi5XeHqxiksIdk4LlmePI/ZH8PUO7QDk0uDx5gwfMaJGRcDWr0sfRmSExH25iMU9YSScwuznyEfw8dUndAeMIwlaiKxYwOhdhnYW4xUsR8ebNQRybszor+dB+ug/SUzCCI6w5CPzOf5zT+6wfmdIdvWFi/P/gb/sF5FESE3A5+/PfUsL734IxTNBsnIw3ooxLC/9c0nNMn3VzL8nUtbnB2keVNM82jqOneGaX5lmOX3bvxjdCMhuLpH7/ov0l54jDc0i1+b+xwz2jrKlYj/4fQP85P2tz/FPUA2m6OvTPC7mUc4v/cSL08f5OHV13mq+SKf3n2GK+YEj6z97/RPfmvDQR/wgAf8/4sjpsQMTWyzgSyYFDNpXroWsCskZRmhBBncSIWRS6c+RTR0qY6/xmq/Al4fYRRokGGiKpm2jyK2dslvCgxnlbCXw1YjjPwko9E61fyIr7YC1GGBY/Zz6MkxDhWHBGHMbr1Gy2pzXhuRDyrY6Tso3QItQ0fKBvbIZxAZqCLA1EYoI5+4OUM/Evgjk+XkKI2yzlfGbjGRSjAbgmSgYSuCtp3w4o5PRy7hJTE1FB5ZLhGtPc6R4S/ytVfyVP0VGmnw4iNoeoYTM4tY4TL/4eWf4tbWMpOzO9gti0Lk8ffOPMIvXf4ijnOcVnWVweYuSzM5Fg7Pwt4tPuvWyB1/hAvWJicreb743Dat3e9mRh9wx1lj3LY4ENs8PH6QQJ1Fc7u0Gh61ynGuySGjuM9M+yozhQlmSp/mtdtrTGRDdtrjbDS7VNMpKsMs9X4BZ/MqhmwRJ2No7RoT1XVWcyGdjXEsvYFh9Jlz9wiigM3ApZBIHLXHndhE1Ya4WkTH7GF105S0Ol3DYYMUUgvxOz6CLsHIQigBBA6xu84uGq29GrVEZajbZPwhpmqx0owo2QpGoiH1AaowGMYKY0ODeXfAxfocfm2MT56b4D984QB+kPCytsLX6kexlIC83kOTJrupHYZJnyVFoek1iT2VZeUxXP/rXKsOuHMrjUwc4lAjEBJVJmSdW/S9dZq9IpOLJxhve3hJnuHeNRa8AM/OcqZnMNIU7JGFZ0UUfYue6tNbOciEtoGCoGKu8WpjgU40xDFajCKH4cpxcmMXuCWHRLFDK/GRrQJGz6chXZKhTzNIGEaS5miaQ2qeq0nI+eMLfOHqMzBwUZOQETF+oqHFPaQWUm0fYz0JKLttVHeTtKIz6ysczZ3iir3DGn+CHz/M/Pyn2Xzuf0F28jiFcQCm7Y9SynyZdmeVWSvEqk5w8esjiAwUesyaHYJujbUkIAhUWiLGimy0IMMb9k0O+GUWoglmjywhXB2h7fstDpVDLE3S69/mV1d2aA8jDC3NgdmPEYS7KGN5rMChpCsU6wpPT7/AysY2jnoIx6iRKVfZa0V870fL/OnXL7DTmmAhrHCLBjKb5/icgyUlv9p6lTDMsaxWeXr5CO3bN7kxaDJUJ3GMPorqYnOYeVdBSUzSfYUdTdIWdcJAUtSOsFp5CVWrc+rOcTyhsdWr4dAhM3MFU+xQHE7j+A22Ao+wN0snfxGld4Y7wwxPuhGa3CAZVJGiwZVMjhlvklq7zrBbp+Rs0e7UGPQcPFUnbWoMvNtEIqLsbpMZTXKrvsSuuQmyDzufZTK8zZjvs7tr0RaXUZSIWCi4rsdOUqWhx1yL/oQ4cqmOHG6GEt+/TnM0gysdcuZ13mzl+bqyR0fo5PQ2oWlT82PS7SbFMEdv6HJFJDw8tobpK9hZhe5I5eqgRjXI4MsUh80+e0hUNWKY7rEbjNPvhtxoZchFRSyjTreXx0/fYjvxeNPscWryLGUvZku7SG8YcM2uc9J/nHm5Q7zZpxeb2HJA0Wqw7bUxglOY7hzRzisEA5dWMM1cesi1ZAuSLilvl93OOHanykAfoCYOnhIirSGa+t5Z0b/BA4H2l8zFtRY/+7tXODuZ5vSlNru6St9M+OruAp+qPsultZNYckS5n+L/jGFvlOWwscXzL7zC9JMz35YyzQwTvk81UbsT3LJWyJgrPLtzkISY2+k2r8iv8ZkXnkTjMmH0GB/d/H0+UR/y+5VHAbiu1vAeOvttKdt7cfDAES7fWuWT8R9TTur0hiOu9Sf4bwY/yBce+T5+/4X/gmsXvsKB4+c+tDI94AEP+OtF1Mtzc/0IwptEkybnZ2pk3BeJtjxsvc0KktnYwomH3MSlRBddGFjZDjtSkKgq7bzKWX2BdhAS1COmQ51VE0ZJQrc3RtYeZxjmyOiCcfNF2qFLjAJKhYm8ytB8nTt7kgk7pF9dJZQOB7ctHNXnshBYMiHFkCTSaQmNx9J3uNIYx9d1+lqCl91j0m9Qnj9C6Q2FI0tzbH35Kp3ugOkZh/VqCsVUONueoduHSdPA1BQupfZwlc9S3nsOWUlx2pnGTG5weNJDKB1Y7XCi+IPkm21ymQkmcjm26ze5sgfTORsxkHx86SB7N0ZMF6s8Mlvi5UsXKaVyZO0c54+k0RWJlu/RCJ7nssijalVWlZB62EEcjJjbynDbbDCV9Jg5VsDrjrB1BRmHDIeSTDrNbC79thZbZKN9BXNwnYdmz/NCZ4WgZWDYCmmvwMOTXV73LrFpjljpN9mwd8kIk7hvUBgO6ElJrAaE0SKxMsLBxtU1DocBF9tl1pyAfG8SQ7lDYezrzOzWqKsJe2FIp1uAUpdxr83absitbo6Z3DVa+hiBNknPeAU9MujTwS33UMOAM80QNx7RJMN8ocJ6xiQcRjw8M8ud5m3O5Wu0HJ/1nV0O9l9lQ+txNDXizsYMxsQASxlRzNlkDI1yqs6KJTH1cbrdDczYRezNM57EjFSFg70pNMtFr3o8/2aBxyePsnV7l2aQZmB3ubAtmTMlJR+WzUlS5hzX9jqM6V0qhTq9rkCIEV2GaNYGM5k3GRMqe9ohOumQendAR22RwmdLiZD+bQrjBxl1MzSaX8bplEgUF2KVOEpQEh0nKqCKAZVEcklrcKdfYaQVcL1XyPWnuMU2geexa15nAgPhd/CKNseicaayP0rGHaM5iHhJHAQyfDQ3B8D52RKjnk8zfRNVKgwUieob1M09VDlifVigo6uYMVgoDIc+jHym0w1edBQaXVjQXUTKQMh72c88c988VhWNsUyJcEdFNQ00LY2mFWm3v4rjLGNIi4cni9xqu4w2F7GVIqdrO+i3XXpKhJ1Pc2BcZW1vDD3OcX7PYSsUGOoW80eO0X/jAlakkc4X8PQS/VQPM9rkWD5DJK5TraSp71So6IK8DdnaMisrN7E3YnaTPU7Pz3BN77HReI50w6DcDWm7HcLAZ8obxwgLqMMsLW6jKQYy45HJPILX8Dnetlk2DmBM+BxWBRdHqzwetVnZaNKxfdKig2d7vGnorG2MOBDriKGLnTjo9hpJ1OPqVpMj1YCvt/sIxeBTy5s896dtNH+WtGojtc8TDC36wSSVrI5SymJZCjeenSU36CO9NSQKJWNIyVglCJbpRT4y8THcFrO9EsreOC+Ol1iNbjBrbRMqAf3GLL4U7BVCzi4c5B94fX7v6ibNO+BnDTKOR6ubRqqb2MSInkE1WiMaTdFTVeqezliqh7arsCUEAyUhICHn6PipI4iKz63Lz3A8PkPNLzAz1+PqK022gogwLpJR6/iqw8SEy4mHF+h9Jc/LnVVaUZpKIjidvsBu3+PK1kFCaWDY6/giQNUGZKXgb9Zeo51KfeA76YFA+0siiGK+cr3OE/N5npzP8TuXt/k7syWUN7f4TWkThCaqvctLr/4tjuQvk155nEaYooLkB4+c5dRD1W9b2dSzZY7WOxiXGnypPcHN3B8yir8bUx3w+ZbP/JRBsilYT/0Qv7+yzufUN3k+WWRga1zXxijWJpDp9De/0beI5eUTXLn+VWIET6/+Mb9z9An+1s3/lwsHF/j3r/xD3GiX6ef/a1j8PNj5D61cD3jAA/76YOcvosQWJw8XEa0yx8odrrWKXN/p0R4lmMAABwMNN07YdhtkhnNE+pA9Y48Ws+ysnUAbmyVnabw+uknFHWd8XOXS6322zJCyVDh9zsTLjvjItSf5o0tN+t023fIS6WITMTLouStErTJlO8IAwiK41hRTYcKt1TbF/gZxaIHR405njHac5eQBB/8lBTuxGCVL5PJH+Fh6QMr16B+9gKrdQdQKTEYlNCfBdp+nEB9DtfbnQOSNApZqc1E7hOs5aDsKUlaJRAXXyRAWdjA2tsno0/ibCt8xrvP1aYtXtl9hqWwRDgWqVHDUFFJKTE2hMTZHuZxHCIGjq8RJQqjExF4TW0qyusO1gaSsj9gI3yQILOqpAQuVpxBSUPT2l1tIkiUMffw926zsLZC4Mwih4h5yGLyeQ/VMlnMeSaeHSGLC8CjDUCEVPo/uR/QGD9GXz2LoMXXNxTN8UsoaQhbJWpvc2i2SjwPKJZNXd7PQWmcqdGlk1on7Hs2hRThMM+BV/JGKg0mkKKSSJQqWwVVFQ9UymGGDcb2Bpecp2Auow5v0210uRgmHcyb/+GNzJDFY4zaXr40Y62l8LOvzzLxC44pFVwwoOG3IpVEzLuuNLqMwQZRcWqVd5pQcg6UM4pkBJXONZpRjr/gM+eYJjMwltruzDLddzmYe4s7lDsH4PGMrJSbSDmZuDUsusRvGFG0V09BYLqf4SnM/82WzV+Er4iVMPSLj9eiHPoPGNJn8GmuZBu5GgbaiYBoh20mMHw9YLJbw3Cx7X+8wp0QYSYa645D1snQUwbidZ2tvDyVJiAm4QIyierT7s3S1IietEdNBns5Io2PtEMlJhBBoqkLe34/I0WRCKGHkaEhl39PlmxqNgWAvmiTWcsx5BvmMiRgJWkabhwqPsdK6zOqayZjZ5ZYyIlEHVCywYw+/l8FcSt0nzt6OFDqHx4sk4SlU694SIKY5j5QWSZLw5etdllIGtjOFoowoZXxOTtQQAnRbZXzqPyMr9qh3h7zU6KMq+v6Y49gEcUjBu8PS/CFsTSE7luZEvkarlGIQf4Kj03lMa0TSHHFc0ZBTGb64cZO6DVpkcnC5gtGIeKn1BkLsJ3WTShYzMmm7NRpDiWMeRt+qY4geO2aVsjdLclgj1Ui4bku2V/Y4VPU4tlxmdX2IWS7z8pXL7IkR2cEiVUvlttpEGirDlIdhp4i1GGUwR6jtUVmqoFxcpTmEfuEsV3Iv8mTeY7Vhcqh2iOJeh3yzgMhLFg8WWfI0fuvlFpXQ4Hj5Jp3OCfQkYWTYsOeTs6fZabUI4hRelCWwI1J+lj0xTiNuIQclXDECTOZyTyGFZCw3zdF+jlYoOJVxSI0SxjfG2ZNv0NXbxJHNtpiga0E6aJNSVtB7ebajLtXUgIOp6yTlPAfShwDIlHIob2YwJxS++3AJkdgM2GCPPhuRw1FlgtKwRt+w+b2tFqF2hS0rYCaq0RmNUHxYyG2wunWGoWNTCaYQ1p/Qmt9kZF5EFeNUslMf+E56MAftL4nd7oh/+/xt/tUfXeP/+fomv1QpknuzxT9ytrixLXh0ZQFFBtxSYTn7Jpd2DtIQET81/UUupb70bfJC/n4AACAASURBVAlv/AZJknCkE/PTSZ/WMM+lgceUf4swVrgUR3y2ViQ3+me0txps760xwSrPzZ3gp2//rzybPs5njA+e+PitxjQt/pPv+S/Z1HL87e3fZq06yXVjlnQ95HdHx/mp4g+zqeioL/3Cg8WrH/CAB7wnJjooPbJOl48vlQniPludbdyM4KivMOU6nJhu40mLtJZgY5DxZvi7ZxyePn+eqiwxLjwmq1mmcy7HTx9ku2iTJBETnk+KNDJO2FrfRYgRju5SXMiBOEUhmyWtd9C0iCopTmZ1fC2GxMWVxzg/U+VzJ2f4rhMTZIWOaQzoo7IyLKJbHtmpGSxFo9eZY8Kp4Vk6ac9HCIGZL1A4KunaLjveCi8PB0j1EX5vKHg9uz9XuGAVcTUXKxH4asSByRQzVgW5o9DeGaDm8uQnHkUgqS6mKRdtxjyfT0w9hiruvYu6nkbkaNzc7dJNdKR+z8SQQmAJlYmwSE0pc1l/k+rsgAPVczycf5Jjy49yOH+Molm6r12EkCjK+8/VEHfv3yul6Z4+RGoEwpSoeoau53LFixhkDGrTabJ2mnIhR9ro0dcDNtuf5DsXTjLp90mEYKTGCMslZ6ocSc+Sz9rcVtMoKQidhEBVqah7TIkRVSXN8fEKndIuNVcnJ/eoD+ps9UZUSjXmvRKN2KcT2sSFMr67hGnr5IwcjV6EEAKpCDpxTHpg0M4aiGN5vuPIHH53kfzQY+JghcqhO2jWLp85VmEmb6OoEmIDNclTNi/TcndAC8hJyVnT4tGCTmR5bMcpPnW4zCNHSzx9fgJ3fRw9e4fE62MbHfZGWTqqj4KHoqvMjKd47EAV1XqCvDPBsj7HAXeXodnGFGNcTPdZszaJ5YiK1uawtctsrklRn8Yc1ljIV9EUgeUdohceItCKKGYOS9FpFU20ahVHGTHojNGLXerpmKcOTTGrpalagtW2T3ug4tmCZuYour/8rrbWFEHFmMdJ+/jWPTsjk/4Et1MavZTO8fEUnz5YpR+6NPSAxVOLzGdURKIhhz4FEdI1hzRLZc5lUjSNIXjvb7MYxjSlwqOMHS8i1Hv9WdPyd/uf4NxsmTCCnoRYhLSDJpanYbrafjunHdzUGBVTZyxtsJtyeLz8JKaqoiQJ04MeqhSYmkJ+OsXU7GGOTM9xfHocR3PQFYlpKEghUKRACgUpJSV7DlUKFnM1/unZHwMkERr9bIlg3OR7jh+nWDzD6cNVzOA4WmuZ08WTHKeA5q3SiEccGEth2xq2qeH0A1Y1g5WtBkvuPNLXmbA3CJWArCpQCjGxlqVnJDTSgupUgJ1aY7ApkVZMwbLIWFk+Vz6MVZugmTFoJxXuqAGuW0GZn0X6OkGUYBUGCH+P5t4UgVGlm0wShymkGaLpbzL0FDaTkwyVKuXZAyxPZxg3j1AezRAoYyAy3BzlEHoNAMvIc252BtNUkIpAPVvi8fECj9byVKdNalaZYOQSDg3u9HO82TrGjeAwq6MxGqMqU/kJlmYPI8V+G6d0lQkdCknCK2stNC1FyVpEGx1jbiygk/Zp2hlaNYeZvMPjS49R1VJkVEFaNXCMWVqpPI4tqaZczh6sUilojCUFunpMz67hpT/1vv0OHnjQPnSiOOHZG3Uemc7SGoT8xtc3+NdzZbw3Ovz6dJdrb/r8SBgw9dQ/Y+X646wPMhxrTvG/qU1sCbfbS2hrFrx77PqWIYQgZ2j8nHT5N+YVbiUZfOU2o3iGn5j9Lb7yxjmey+UptG7zA9d/hSvOGB/bex49GnH6Cy/iLvW/fYV7H+I45pdTH+cf7Pwi3/fGF3i+doxHrl3g9tBl1tqiHdv0X/kV1lMPM3Hk/Idevgc84AF/tdE2z+IPZ9gJ50mqDgV5mIfm1pHXUyTDx1GtmHJmj9d7LQ50htwa5UnSNkvVfQ/P3PgmK3WNnLM/r0BVqowKW0zUTvPF1r9jwT+KYyg0gnEcZ5ykMuSMn+aZKy0IIzo7MemJE/xp8BIrjMhah+jby8SJQc0zyDo6H1kscetZyTMSZvx17FAyTD+EnaqxffgVgjhGLmXue67F3Hnmso9wdbtPPbrEzGKKrVtDhBCE73AaHJibQApBZyC4pvWZ0RKS7QHNzT6KJpk9XcQ0FeKNHk59wKWojZeS5F2dtKURqhJFCmbyDq/eaiDfsU7np49UWP2Dw1yN+3hGl0fHznBpLQYEQgiK1v3i7M+Dr/mgN5moppmdy6Gtn8DwTKoph6ubCYp6hkpK4JcyrP3eQRqBh1ZKc2BqkmYjxbVuQtvtMFQldjdNp7+f/XepqlKITzAKNPZGqyQiZmdxgO5N83TxCV54ZQ2l6iAybWoyz6FcyGxa0v4DlYcMg5E6Qbnk4BvQfHOapGdSy9tvlXsqa+MvlBE5C93cFwoyleVA1sKujLE++gMO+ik6QbKf7p0EERYJjEPU0iOuOM8yCkO0aECvX8OeDeluHGDeP0wSGwgBe6MQp2hiGAU0XK5FGQpiG18/gYhSCEUgUzoHHId5U+eFwQbmrWkU9Srt0i1EPMtYvcS4NFFyl0l4mJsovB5GnFyMcTbWUE2FJ6cLXNw1aDQDTE0lNBXslMF2e4QQdQrGkDuJjRfZDDQTzTIxnAy3hEUtGWJUTSzlEkuFCucms+9qY1UKVKlztGpwonZ/lM6i8zC2vl9/2pRH8KJKLFUs3WTh4Cf50uU/RI5MHGeTkZUhW5lmsVPhZmcP0X7/9VKFUFDV7Aday66hsjYIsXsb9Es+7+OM20dXCBWBKvcvOOvcwVNnEHcXl5U5897z3s21pimS2NWRRReA45OCr3YCDDV561gpJWpeMsCgWp0gSiIUqfDkXBmAK7gQR4S2SnUiTSE+A/YITZOcm9mv6yQTo4QBWdXg/IyDe2EMme3y8cUiv/WlqxiKybHlIi/dzFHQs9ySYPWz+FmDSmccPyXRFJCpF0jsx5mbyRB0DNJ2hnCzyiBSKABCQNbySSc2q70q3fwcBfMmRW8VIc+QGz1OJX6NTCWhkE8TIlgeT/HGroNl6fipDM26QsFoMO7r91XvE2drkOzXi+k7ZEYz2BOfQgt0lOCXUJRFng9iEmvAfDHNnc2E2I/ZyO/xdPre2r1WyeZQ8SiLvsfSeBrf1Kh4Oc5pDrnsJbxczJXbPjJlMJ2zuaXuUUqP2GsqvJLz0AvfRRB9AadscriaozmIGMUplCTLBhOk3TRF84MT/T0QaB8yW50hv/bKOs1+wFZnyL/IZ5h/s8OvxwH/8lrAcqCQUnrsJAOsUOXHDv8ipdd+iB369GKViYfP8F0L3/rsje9EHsiQv91C7dXo1o8wqnwerfEol7b6rHb6PKE/xc9N6nxfXOfz9jn+3u5voyQhzyaHOX3o27tA9XvhOC5h5gmudP4YRxlwZWyWM7ff4LP6s/xRsMxydI0Lhac4/8I/olX7ZeL09Idexgc84AF/dclbh2j7PZ6aL6PetbCKVpHYtlB1g2Gnz+GFozz78htoqSajnuRoMYWh74uK5eNFDkX3PPSuoXLoVIlIDTjxxsMo7TRXRhGauf+FVqT3w6UOfXKKqDki5Z6nO9zEkg3SZp6FWp9Iy/PSne59Bp+qWmR16GgDJqxt6raGpkiyQqe7FzO83oKT9wSAEAJVqBwoecBpdje75GtD5qoOyjssyfVmhKUptAcBcxWPjKWR1lWiMEa39s2FZBhBlJAqOYzpNgcL0+jK/rMsFhyKnkGc7CfAeuf1B2GMLlRcZ0BWq+JrPmHUICHhL0rZqlJvt9BjHd3RSBLohx1Mw+JUrUw141Ape4g4ZC2wUVSN//yjc0gpqdgFyCoMUnUM3cLs1XDMKkcyHl9ZCwiTFOlshe7WLhm5wHhuDjtlMurozGoOznQK1zA57NWwsyGd5gWGmoGlPsnRczXKGYttXTLYMDjouZyZvCei11sD/vBOg1O65Btbu7bC1d6IfP02QdAgjOHGbo+FoosQAn/SwvZMdvo2lszyrL9DpK5wzGkyrC4yXC3QHIWMooRhN+TGa3WCkoFDhbRl8qkD4zQHAWHKwncL2LF4KypHcTRKaYvhoMPlkQbGAbKZNErbIeqVuNXd5IBbpWvfJG+75FI6vU4XmdrvAycmLNYzLSa3PXquRHE1hmGMr3WgcJvU5lnWXJN02mKj3WQt7vHQbIUxZRdl4JDtHWStkryr7wCoiiTv6JQ8462/0W+gCA1X3zfWDU2hKGzqMkSTGrZtccBMczPqMtBH5F0o+wbpkkugmMi8+a57/XnJVFRWOgadlI3/fuGSUx6BEXNuar+lValizT5C07QQ4v1VnalJgih5y4OnKQq1TJ2xd3ibkRAqYBom3dH90UIiEljSY7U55IQQ3GmMWOsMOF9y7h2TMphTUpiGx4tX1rmirXBe1CjteaTKLi2zz6FamuduOzSHJqqVw7a3mCxOkdnskCQRMYKN1gEm9BS+Y3ClJ3Dtc/StSay7CVikECyVH6IkA7aau7wWJxh9iesbtG2VlK1ytmmQrpk0L4LiKpQ8A13YqL7LKGgTKWWmyxGGen8goFAEfEPsujZipKHrEzRHF3nVrpBNGrSKq8wlNnqvwqbT4CfPnUdVFCzVeus6qhQ4RZe6ptAahqRtDc9Q2Q00hBhh2CaPPTLGZnvIH1zZYSLe5MyYzR3Lo1G0eaKcYrvzKbLFIdPjHnEMV14t4qiQN47wUOWpt8bN9+OBQPsQ2e2OqPgm/9OnDvLUz32Vn1BszmyGPEfMvxZt3DjhyaFO+/hvUawvEY6/yrHtU/zzOOYmBrPmHj9z7Yf5v2Z/GV3Rv/kN/wLIaR8nhksixldMYm3AseJFtE6PY2KIkspwev0rFJI6FypHubB9DSMY8tJHPsmZDynF/jv5zCPn+M3feZS/v/Xvaayneak4zsLqNFpri3/nPM5v5D7J0cbXuPylf8P8Z/4pUnnQ/R/wgAfs0yq08GQO822hU1uDTbKVAjPeJEsrXXo324yXbUqhYKRBOXXPsBNCoKv3j32aoTAM+gzzI6ZOjHH19QbKO8KpCq4B7v6LOmxplPRN5ue3SfkfoTPSgS6Se8bbRq3HVmePgneGQsqiITR0RXJt9QBmCBnjg8e17UGA3OrR3+xy7LHafftqaQtdlaTLGnu9AFOTKHf/vYUukWMOZU+j8g6j0tSU+wzNd3rQekHEKDCYSR2kpQp0RcG3VAz1L/7OqLkTeKLM5fXNfY/QgQxPRE8QVxR+8YUVck4GTZFEiULJbtPXYrS785iEkFhKnlgVpC2f3KElZgoO9RsN5lNz9G0XIRQKhRoHsBmkTHaHAVbZRZ9y6e4MePrxx0m2+yQR0AowNZ+8aVDO7Bt9QTxgp7+GrcyxoUL5bXVUUlVqY/cyurXTOm4r5PLGOsdrHld3RsA9Yy7rGzi2YH33TfqZG1jKcYbdNxgTNvXdSTyR4GY1Snfn8Z1+dIznbtZp9ELKKVjbfJaBOs/Z8bl31aOwVCrHClzUhwz6Jgezn2KoXqGj9YjRyGqfJsw7WOZVTlVjjk49RL86h7gr4M9VzhCXY7p+wGYS4bkaAkG9tUir3WXL8JgsO3hpk48u+fz2tS1qRUFqO0fXVlgdtsmaS+/bzgXXYPGuJ+ntPDGff0vUqVIw76vsWQaK1EAkWNJDMYcM1YAxM0QA0jcQRh8n88GG8p8FxX6EUaqDq6p8bGzxvY+ZTXFiwkV/m6hYGC+gSAm8v0Cbytr3/VaEpOIbzKXu354kECUhQfTuDx65KR+j0ePEoX1Rl7I0eqN3rxHbHLS4drNLySiwY9XRtQ76XJrojkJXSVClYKFYZqv/cUaDK1jWCD89zfHqS6w3RxiqJKPkGIQCR4MnKh9F3PWQfwMpQJMGRsbAHCRAgtASBrK1v18KFh+ugYCGIsDYHx9OTxaw1RHPd6+RUS3Gq+pbIc7vWd9FF9ExkNLAFA6DYYpstMpuPY1QZjl/fJKb6zmiyMB7x9QcKQTtQUja0rmy1WEiY33DMUd+wgSx/0xl3yTv6CjtFFExYmN9j78xXyBladxu9BlPW6RcndhUyOcPMm3pvKwkWPo3z4fwYA7ah0ScJPzYr77CG1sdfvaLl/mpkc4nRgq3KhY/I+tAyPcGI8LqRZanvsru+lF+5uIPE9x+DFv20ZF8nzbJj2f+22+7OIP9dPvqQprPYTDp7NDoTLPgXOZ/7P4ApRO/zm7bYn7nNZ4bHuBL5UfZw+VLxXN8zyMfXvbGd+I4LleCGVJJh39x/X/m+uQcd5IU3+1dpDjs8POv/RNuqQ6ntv9vsr/0EcSw+ZdW1gc84AF/tQiMQ6Sqk/cZEgv+EvOFOSxvf8zVbJVjRwskgaRqGByufPA6NgCu5hKNQqJWAzVvUCzY73usMBRuJ3lWd5ZRFP8tg/PtOmcrv4CUs5yqHcadPYdQFVRF8Nm/cYBTT01jL2Te5+p376ErNA2J/x7lKHoG6bsC9Y2tDjvd0bvPFwLh6+/7xV8KUKTgowt5bP1+4SVUSdtR2HQ1fEtFVyUPT2Xf5Q35j0XTJM2s8VbZDMVgtTVkOmdTvSumpZRYZoqF2r0oCkN5ElVWGGnz1Ps2Wc/A1FWemM9ztFJESnX/moqLmTZ5YqmAZ2joqoJoBpycSO/Xi6cjIw0GET2hsZ7T2GgNAEhkgpuIfcPubYK35Bl85GgZo3fPWC5UXNxpn5Rlo+plDlUnOVm7l/Hta2tLPH/bYDwVM5AJO4MmW2aPriqYKhWZXMrRSWus3733emuApSmcX8pTq7hs2lNE2g3C8L3fgc+8uUvecVnyT6GQ4rHqE3i1k/S9EoYoUsm4FLNnOTL5FFIqONY9Y1OVKrqi07Ulqq4wlrKopkwWKseRwRkmbQtdVVEUwUQ6zafnznOkOE/WLGJ5BrEaciJ/6gPb2X2PjxCGKt/qR4oU9PSDxMY8qpQgBJ6t4Bl5gtimZJSRuoK8e7zt/8Vtqm5LkqyP+Ohi4Zt4w5T7PlxYuoKufnD/l0Lcd44iFKQ1RTF99L7jpv1pfDXHQsllNu/cty8/49MUCV++Ud//7egcqb57/KpYEyyMTbAwk8HV5mjaC0hTYWxhHsfd74OPzU/xQ+eWkVJj3PeJkg1Kno5rChRFoM/4aJp6t+zyXfUhhMA1VdJ5k/LdbJlO7QCHFz979xxQpIomdbyqjfT2j9npjGDkMG0eITu7wmIh5oP8TEJod/9XmT08x9liiJue5mSxyGOL20zPpPn7j82Ttt89B9HSFKZzNrauEMX7yiwhIdTkXXF2b2xTFYlIG6wq7Pc3IIxieqMI09XQDBUpBAEwuCvy3stD/E4eCLQPgSTZjx3/hc8cRXu1zo+9MeCPCfnqlMVPrGwi1QE/XnyJigypHvlV4qFL7eiv8Qv5KzyL5NXE4D/Nv8bCd2ucO3P8Qyu3cijLx6XOGzsH+H5rhf9q50sIYn78wo/yk7HgNecsz+Qe4iev/zxPtF/gq+7DlBfe+8vRh4EQgkfLczzjn0JNIn7nqz9ME59fld9Lxajz+m2Pf1n9AX7D/S46kcLa7WuQPEga8oAHPADGChfR44v3bau5E7jaPc+GHsNU3sHN+XhZ68/0ko2SCCvrkxI+vqVSS79/OJUqBUHBAM966zfc74l6bH4ML5PmxeASG/2Vt/Zbusr1nR713rtF1duZ902Wcw4Tix8s5B6aTDOW+vOFfp2eTFO76zFSlXebF1KXrE262K7Bw1PvnmP0F8XRVR6by9237dp2F1XKe3Uo4JqMuGLeb5QpUiWRLgLxlgBQpXhrbpAQoBYMmNwPM5wtOOQcfX/7N8JWLRXhavjlp+m4FYQi6Nz1UhSyOZYOzuO52rvqRmQMhHPP0FzrjYgclaNjOUyxg2uo5N17Xp5EOAQJaJpCyUyoqpMcL30UZfzjqLpKZTbNyfkcOfue8Gj0Al5bbyOF4Nx4gWPjyyjKuz1RAIcqHg99IwwzSbBUA1WzsRybjFQo+CZSzb3v+QCeod4n0DVFJ1bzSEC8bW7VZHY/8Uk8toajasy1PniC/dMHim99RHg/hBB0/RSMPrYvDgSkdZuHrDQzWpqd3CGEp98Nh4Nec/iB1/uz4Gd1xJj1AX6wD+bPc54UCrGSwzAm79vu6TbTWY+xlMVc4X6Bls6aCF35pnfKOgaVmSxxwaJUvobZuQ5Azigza+8L5zuNPi/f2WPGOsHhY2VM22Mi41ByDRQhuFX/5nkIkiRBjZP9pDfAozMFik4B2G+/aW+GSXeKc4cKPLm4v30sZaL7NrVKhpS7hBTaB4phRfFIp74DgO5ghbRdoBknCKNJ2W988LlScG4mR/dtXsb+pEcrreF7j+F7785lIIXY95hZGt9wYmbHXDRTQQpw2iFRe/TWM34zHgi0D4F/++Vb/PKFNaIvr5Nc2MYQkrPnC/yr9SsYhsAJLF7VB/xWYY+svcfeyjK/cf3jXNip8juiQ52Q8/kr/MwL/x2doP2hlVvUXMyCxXeGZfyUxd+tlkg5qwSJ4J/Iz/O48jU+1/1dsv9fe2ceHkWVLu63qvct3emksxJCEgKEJWEJsguCwLihgggy6GzqVQeX8Y7reMc7uzqOv3FkHEdFx4vOoKiDCyqIIQSRPcqSEAiEkH1fOp1e0kv9/ggdEkhCCCRhoN7n4aFy6tQ5X311zun66jvnO/5GGnxGbtpdhOQbWINn5vQr2Smm0agwkiSVM6Q2B7tSix+BZtHCTw7/m3GOnTR6XSRs/Smha+bKnjQZGRlE3SDiI1K6z6RtfbM0h47BaOp6GlaHchFptvjwx2mZMsRKqL7rr/ValYKlU+OZPap1nXFnniWDRoWgFkGpRKWEOSdfXqDVqAo3dO8NEA0qyvx+cr8p6z6fIPToJaI9oXr1GdMaO8quRBQFxD5889CpOnrt5qdEMLOd0SYIAlEmKxGmU0EmVBpF23qQecNjO3hogpPFrkwKQzSq0Jw0OoaGG1CKAgqvhKOs4wupMsyEObbjJrQqUcSmsZGcYGFkZEfDRjCoEMynDDCvv3VVnlJpIyRkfKf36Q9IKJUmQrUKJg82M4lQwu0K8iqaCBxtJNQdaJtKZ9WrCDOo26YG5tcfoM4X6OAFaM8giw6NUmRSfChTE6xtHyKuiLUwUqFApRKZM8zW6bVBzDpVm9cSWvXeFKomZpgVTSfGuyLCghiupUBvOOd21xluvQKnQdm6flOC6DgdhkEmUnQTCYgCAUlCFAWihpnRdOJBOVc0SgWC2DotrjcI52CiqcTO5TWGa9GZu+j/ooAvxsCMpJ59GNGpFKhd8aiUrZNxE8L0DAlr9bpHmDQMjTSBIJJXl4JSGYpKoSY1NgStSsFVyeEdpnF2RrPHj9qixROixqpT8c3xOgJS6z5k7T9iKRViW1m+gITo9CG1+JECTgJS18FdggTbuEIZzbeF9ajtXvYdj6e8ZRGi2PUHKH9AIuNIDYHAqemiktjqAVcoDIii7oxrBAEqmzz4/IG2pxkcwpWiQJNZhdvSc2+tvAinj5EaPCzNcVCxaAhvf5PHZtw8e0MK67YV4vCruDPhA1QHrqNQHUAfthOf00Kxyc62Azdzt6TkHQIYNI1EpCxnVchIQtRnNoq+QhAEVN8fxt0v3c/q0lgq1Qa8sZX4jsbybksa16tUjBf3E+2oRsoNMHt6GoFCO2J8SIcpHP2JSqXGakih1hNKiSqK5GFucsxqsnInMjyhGKGwHKdV4KXIW3k8dTwtR97F3tSESVSBquupRzIyMpc2E5LGomz3genhhx8gJ+cAVmsY0dExLLxhIYEqQID9+/YDkNqQyt/+tpK6ulqs1rC2/6OjY0hMTGLFigf561//Qq2mhlE/Gk1W1nYArrxyVpdyVDZ5OFhuZ84wW9uLceDk4oesrEwAbph6Jc1+FwaVsc2IC55rX3ZnaQCxiRaiBnc+PTMrK5N16z4kMTGJ1NQ01q37EICbblp4Rt7O7iMrK5PZs2eQlbW1LU9WVib79+9j27attGgs/HD5chKvntWlfKeXt3//PlJT087IFzxXUHCsTd+dcfoL/3BLAlhOeRjCBhmwxuoZqpjXpRzak4af+jTjYkiY/oxABQBJw8M4eqjq1Gu3X+L4iUY+y95AhNjcJmtnOgjRKbEZ1IiiCq02BrfbeUb5gYCE0ZCKReFjxNAoSvfWtxoHggBKAeHki2BWViYVLogbntrm0Yq3LSB7xx4Khcy259NehuDfQYLppUpoOZRHfvExSsT6s+r9dOaMjKA0t54YjY6o8I7vMt9+W4LoLSdMKCArq6lHbaKg4Bjl5WVMmzaDFSse7HAfV4y0tQbWEATQKwkfNQT/YTteg59hQ0LbwvSrtV2/BgfL27+/1bPe/j5P11lwPaNJq+xwbuXKFwFITU3rvK3mC+T5colLb93r7eGHHwDghRf+ckYdK1e+yLZtW4mMiSIuaTCq0eoOejIPNiJ1Yed5To5t3X1AaV+f1x+gTNQTE9v6nCw6VZvnUq9WYDGoQZJQ+Tbj8UxFq7+CLfnlzAnpPMDL6WiUImq1iMeixir5T9a/BVEAJ1B+iDPaZqPbh94faN38XFQgCt0b1u2vNagFRsRB6bEW1I21lH77JSu/TARan02QoD63fb2Fb/flEjd0JHolZFXnkjpxWqd9PUjw41BGVhZqEcISxraNz0qFiCJUg1ejBHvPPLayB62P8Oc3UJ5dyT8OVyLclsxnnx1liVvBjycLPLllC5UNLh4YncPaiok0TMsjOXwPV0bkIajcfHn0GgySkncUzRQj8KMhX/Fe/VZE85kLOvsaQRDwadJQNoxijqWRofpdLBy0gXpMJFHIPyOu4QrXQVaO/S+8jXr839Xi/dcR/DX9H2o/yOxZc9nCRPQ4SXfk8mLhc8xwbSHPHsE/Rt/Ogfw4atSDyN/0HJ7i7YT/+yZC/zUXRUPBgMksIyMzsEiuDByOnV2eD7SfHSRI/95J5gAAIABJREFUrf96SJgnHL3ScPaMQJhBzYRBrd6dtrVUp70UqJRaLJrQLr+knw2lUkTTzYtpX+FXaPCpDXT1kb+/yDcpKHCcekkSRKFt4+PTOT3CpE7dMV9YmA6t7uy6FFQiYpwRBWefZWJ3+WjoxhMzb4SNuSNsCIJI6JgkNBodQ6x6Ik0nPQI+CclxyrtgULaWubuoAQCrxopaOPeHYIoxUBfqpULo3awT4aRXVqEQzvB0KhRlrbalq3OP4bliUCs7TIUU1ArihocyLDoEs77rNZS9JWiUNLecmwdNddLIMKstZ8l5ClES0QTODGwiKEXEhM4/vBg1StIH97wOgIgIPc1SN+OcICDRGmRHozIyMmZQj4wzaDUY65zeVoPx1OzjbpmeaCVpcgzDUsIYNzgRs/nqHtUF4Gmpx+NTYbPkYwo7iqPl7NO3FUjE6CHspKotOhWzkrsO7hFsbwKtnrP0k2tTgzR7zoxs2x2ygXaBkQIS9vXH8W0qaV2EKsBTaw+QWuNj1wQL/zyupaDRyg1DPqBy20TixThU4peoauMQCfDekRsobo7mRWCjX8doRIZJN+OplTqEAO0PFPVHUZVux3/FjYhSNC79FVTW13B/4+fcIGznfxW3ogu08LllBsM1yWgtWiQlSE1epMMNSN5Aa0jmfsZisSKZJ6L0B/gw9CruG/4UaRHlDLVWMe/bDGInwkR3NoOc5axSzEWBiEMbSVNdJYqaXAR3Q7/LLCMjM7BYLJMwGPpwg8keohSFDovW56dEtHlv/vMR8KsMOHs3C+yCkTIohGGdRALsjPbvp9MSrcSEdHyxsw0xET2s6xff9naARiki9mBLgQlxZuIsXf/e1zS3UNXUamDurd2NL+BFUIoYNYq2+qSGU2sRTSqYmmBl3CBzZ8X1iNnDwok0aZBE8Am9W8rQpotO3lF9vpH4FCYarH33zqC/ANEaz8a5TFUMMkaVRqQu6uwZz5Ows0x/bo9SFDDrVEwe0vVa1SFWPWqlGUFo1eugbtrs6aQPthBn0ZFsM5B4cl/As9nMoiAgKs8MOtITVKow8muh3pVEcW0q5Y1JZ72mPGCi7hyWJypEgZlDw4JBJzsl0qQ5Y51sV8gG2gVE8gXwrT+Bq6CB9WkmNrldvP9NMQ80ipQn1fJi7iHyKh3896g3+ebIArLUIpOSXuXDAz/k0PHZKNR2dpRfwY0KL/sUHhD8PGyrZcT3ruCReT9D0cV88b5C0XCcpsObEUZZiNaNYLdrHgvrbYR7HaQJBYQ0O7ml+kvWOr/HhPhRhC5MRqp0Iw4x4f+uBl9mCb6Nxf0qc5ArZ81ni3cqt9ZtoigQQU5gKNOkfewdNZaNzvGMzqpiXdVkigcnc8KnpsTeRHjG/Whz/4W6aPOAyCwjIzNwKBR6zm2pvsy502qcdBIFvF9RKsReRY40apTn5XmpsHtw92BlSbhR0+1Uqm9LGtlX2hqSfGbUbNQKDWK0AVN8CPNGtK5fDAbACGLSKs/wWp0LKkXvXow7MrD9S1ApUKR0HxznfJifEoFpADzTfYHXL3GsurnbPGadEqXoQJLO/YtLmEGN4qQRODoqpG19W18hCH4mxkeiII5RygpSwg/36DrvOX6L6O5jmlYlolGKPe6Hl0ZLugiQPH486wqotHt4Wukmd3slauBVpYnmeC3vVJmpdbkZa81F8+1tJCl1NA/9gjCvxG1SHVET3mft/h8Si5J9AfhI8HHbiLXk2Efx1o5f8PyMP/ffzfg9KOvy8Qy5mi3HfOQeL2KCeIIbN3zCsujD5OgTSKaUH7KR3coUFoS6UGdXk++TsDi8CMUOxHgTgbwGlHMGIUkSvg1FKKdGI1yAcLY9ISwsHO2I+RQdPsgT1W+yPnQSVT4bW4Zdwd371pGngavVBxlU4cVR4+eNYbdwkzWcyUV/x1l+DF1IPJrjG2me8ni/yCsjIzOw1NZupqXFhNE4caBFuYRptcwGaIlyv5MUbiC6ncdNFAV0nL/70KxT0ehqncKoFFtf4wTjKa+rmGweaFuoUwQRNAYVI0N1RJj63psl03uUCoHRMaZu16ztK7WjDfi7DDbT87pEhkcYqcw7r2K6R/Jxos6DTpUNpiYanNZ+91BZdKpz2vPxMhkm+5bffZFH0aoctpfbWW6vQ9AqWTE9nk+HxGJJKOSHJyopb3Lx+Og3mF+ZjDNiEDtMJYxR1lC59V4Gjf4UndJDfWMi9UA1EiOtedQacpg1dRm/nPibfr0fRXk23i//B5/Xy/iZc/l3S4AtgQoWROxHo2whxVfEm5E3sUjcym8ctyK5m/gbjfzfgTKUUyPBGyBQ4USI1OPLKEWq8yAOMoJBhWRvQbJ3Hwb6QjF16kw2CHMZ13iYaFUjn6XN4Q8FK3nI/39EDfHxhXI8U4/vIL9wMAdDkggt+jvb/SEoanJQHFyD/+QPn6ImFwL9P1VTRkam/wgLuwq9fuCnOF7KiIFW40R1ERoPXZESaSIt9uz73XXGIIu2gyds7nAbFtF93jKlx1m4qpu1MIJSROhiTd1AIggCkUkhDLbqL6Fpu5cmoiAQa+5+yuK4QWZiwsajVPZsyt5AIghK7G4nDa6R5Ncl0egxnfUaBQGM5x/gs420WHO3nvHTuSw9aD2JHNXdNZIk8fJHW8izQ3lNEyd8Bmp9TWzf/zluZxO/+OvvyPr7Tsot8fy0qgJllIkbEzbAjjsp8WbwjmIa6dpqPNm3oU/cxubaUSR7Rer9RgxCCxqFl7tidvNIiZ+VdyQScPVP6HqtEkZFKNhb5mfeNd9jb/YThO7Ywm1XzyRUB0P0lXwWNoMmn5EH6tbw0pAlqCpd/LZqJKtsh5HckTRlCXzdWI2n6ghRBisGtZ57Jt+CUWPgaO0Jbh41jyRrHL/PfKVP70WhUCCKIpMmTUY76wburPoApc/L/wz/Kcn7TrDYtZlPoqbzmuk2Zhj38qu9f6CgxsD69PmYNQ6qTpQxy/URn3+xmVlhlfz62whazEkkJCZRUFDQFoXJ4WgiK2trW3QmoENUqSBjx6bg8bj56U8fakvrLAJWV22zfXpv2m9P6Gm5wXu+0PXLyAwkPp/j5HqjC/iLLNMRKYDWUcZFaDt0iV6tOGPD7Z6y5Wgt6YMt57T2pycoRAHFxegik7msiDBpiDAlD7QYPUIQdIwfMpqiQ4cYry1Gq3PQ2BDT7TXxikZCBvDn4D9omLw4yC5pYOlbe1ldIJBbK/AnKYLBzdXUOPIQinYjaIy8934FYxPs3K+uxBuVzDNjX8O5/TD/4hlSb/iUm4Q6plWn0RC/m7ixaymvS2ZE6XXYAEFs4RmvlZU1dhredfSbcQZwc3osf72ttbN9+c1OjAuXMe/Hd6EX/Iz0fMfXlvF8ar+CEf4Csk0j2aw4QXJoPog+/uJVo7Tm8KlQxzdWK3lVR1nxya+odzWy/oev86drHyc9dgzv7l/P7zNfIVRn5hez7u3zdXUFBQV8W+zkTd+N3Fb7JW/veZQfj/o175nncYPva26r30hG6CRKavSU+w2ENNXQ6FCRUpvLuqOjaMBCM1ruHVrGZEMxC1nfp/LKyMhceHw+H4899hjLli3j1ltvZc+ePWfkcbmL8PvtAyDd5YMAqFocAy1GvzE/JeKCG2cyMjLnjiiqGBk9GLPuICZTLfbGvg/Kcr5clh603lDmhA9OCJTsPYBKIXBDONSLsKVuH96KPBpjRiEhsCQOFoUc43f1BlqUapINZVRtXcHsRY9zbOtTHFtvxoLA55Z6atzxbNrxc3TOaB7DQ1RoLk8P+Zo/H1aT8devceX3T6j6hxZO4eiRXN7bXcFG/yAs//s8M/ZuYeymNag1WiyuChIHNVPgD+Me5ae0KFS8GzUX0b6eSuM3mDVj2d6YQJg9hptnPcPkwquIvfJOpNFzCfMHKLdXYVQbeHLWf7Hl+C6iTBG8/e06Khw1+CU/oiASkPrOED1w4CCimEp9xEKuZxc7dy9jk3kSDwx7jAXFGfzK83c2hKVyJHwClsZqkmqKeDNpMbnjo3mp8gW2FcajV+gYFKlC3dLIaF0T492b8R0ZhSJlVscwXzIyMhcdH330ETqdjn/+85/k5+fzxBNP8P7773fIYzFPpKHhzP2mZGRkZGQuDbzecdTUiPwn+KcufgkvAlZmHef/5QiUNMO8JCvvJsVwf72J6mZ43ZtIVcI8RplrePrx8RwaM4H/cphpVBq5VZtBuPFzjkUf4LuNv2duo5VKBfzb0ozbWIujxYDfGUk1MDvhY36QuJrVh8z8e9UXfW6cxcfHM3bMKAAEZxVRMaH4FUpwe0hIHkryqJGEtDQRKxzlx3Hb8QpqEt3FODQGdoojcYuJ/CyyFLdPS9iQl9Eo3Xwqafn4wG14kz9j3/B/IIWH8cL2f5Jx7BtsBiu7Sg6waPT3+F7yDN7//koWpMxmyZhr+ewHr5McFt9n9ypJEtu2baO0wcs/ndNZyR0MslfzaOGbzHRn4xNErgvdyy2q9cQnuHg++ceYfB7uc66jvkLH7xY9jTvKQkpLPoePhWLxOMgp1vKvv7zOhhd/y7y8h9E0lBMdaCJRUddn9yEjI9M7FixYwBNPPAGA1WqloUHeSkNGRkbmckMQ7KhU5xA7fwCRPWin4fD4EAUBh8fHXWu+I9yg5nBVE3olpAYULMl349D7KBruYFGtgnjlMcqiv2JTYyq/ObYEW8BHuheOokdtv47h5VrUUoDjejtbtX6qFX5SI/dxomkQYkDNWKWDGyMOogs/zq+qQ7ALh3GW981XXJPJxMyZM/n0009B8rN2Tjk31Bt4adMJJvz1H8xeIpKSvY2hm/6By2gm0ltCuEHNxpCppLty2GSdQg1m3rNcTfo764gb+3N+NvGPvFenpTLhTyjKfsKnjUM5+PVjPDniIxbN/jkhmsd5sTmC/zu+l2c2v8z6vEzumbSUgCQxNX4cz13zGALw7m0vknH0G/JqCskuO8jR2iLsngs3FSYQCLB79x5iY6MRRozgTe8MQkJC0AYaqRhsY7JrH9dUZZHmyedmVSj1WiNqt5ui2Gie2PoiMY4SsnWjeX7xXby089dU+vTEa+sJeEt4u3QY43XfcjBgRXRLXB2qJLVoC+pvvDQmLkOb8SozYnzsLhSY3LSLPNNwGjAz2VhMHYPB50ZZewhf5DjEQAtCH3oTZWQuR1SqUwsJ3nrrLa6//voBlEZGRkZGZiAQxGaUyha83v7dV7g3CJLU9fys6uqm867AYtFfdNNGsrIyCUiQmDqJo9UOjlQ3k1/dzJEqBxVNHgxqBc0tfkQBfnblEGz1PkJyahmOAFNFfL4TuMsOkW3JY33ZBHTF41Gpm4hqtiAiEiJJqAMiRdpmAupmKj1msvUtaJUeGr1GovRVXCt6uE7tRxFQ8m7BfjZP2Iu2MJysP36OdAE2iYmMjMTtdtPY2Mg999zDhx9+SG1tLSvmJyN5qnkpo445ty2g/tofck3+d7h9XjRuB5qAiytteUxpyeGgYii7I8bw/YpP+WXiT1FJPnKaI6n468uERyfwqxH3YbY2UjJuJcW4WFUvoKtaQn5dCiIB0s2FfH/0O5Tl38D05sFkVRoRXY2EW6IZL6rYVbyfldvfxqw1Mi95OnHmaAZbYrBoQ9AoVVQ113G46hibj+9id8l+ciqP4pd6Fk0xGCTEZosgMjKKpiY7JlMIRUWFREdHM2/ePAIBCZ/LSYRBR+GgJHYmjcKlVjOuLpfXCn6FQvJj8DvxI/KJ7SpWRt/GgyVvg9tHqSKaT81TeK3o9/wl5FbGew8TVVlOljSMq9U5fOJNx6dXE1VQgEero8EWjuPbw4RcmY5GoyRpXxHR2kJ2xM1ieFQ0mrpsLNN/jKrgS4wV3+CY+Xus1d8QpnDApPs5/tFvaVZHMPqau8n9/BUaNYOYMvt6hBYHkspw9h0ee0BPg4QolX4yMi6/ICEX41jW1wzEPdtsZ4+u1R1r165l7dq1HdLuv/9+ZsyYwTvvvENGRgavvPJKB6MNWj/i+NuNvcXFRbjdLhQKJSqVitDQU/snOZ2tOtHr9VRVVeH3+1AolG3/q1QqNBoNERGRVFVVAhAREYnD0fqbajT27h67u76zc72pz+Foor6+Ho1Gg16vp76+HqDD/QfpSg6TyUhTk6Mtj8PRhNPpxOFoTYuIiGhLP5t8wWv1ev0Z+YLnPB5Pm74vdtq3Bzj7M1IoRPz+3n+066r89umn5wn+HeT0NhVs/xdS793V2Vne4HP3er0YjcYe9a9z1WWwvOD9tr/PnvbF4PPW6/WdttXTyykuLgIgLm7wGeeqqipxOBxt40tnfeJ8OJfx4nzbZXf1B+npGHG28rpqv0H0+lN7sLXvA8Fx5/Rzvam3K1TdRDO9LDxoDo8PrVKk0e1jTXYpY4CvyuEX3+5BrRDx+AIYlAqkFh9WEUbaDNxnNfFp00GulPLxBg5QnVrJthYV6loFnzcOY0z5UKTCURxRqFjqUSF4QjmhlPha20I8bpJ8SnYpVRgVagp1fpBE/Aj82HKc+UoHOxP/RaXew7bM8fxp9YdMLZ/P1599jhQ4u3EmCAIWi4X6+nrMZjPx8fHs37+f1NRUwsLC2Lx5M6NGjaKivIwmu53dmZ/zxjIrzx2dhC5SQWDsLfzkmnBCHY0UlRzB6ipFbXQxw5TLaNcxXF4tB1VDSWwphjq4dtzfGGEvQLHrMDvffB5LVCyWQAtzVy1hyaS7+Jn7KWyGcsptO8mJfY/EmBC+K1jGrsYECnc9hFlfzQ5NFXqriqMBLTe12MmQ1KQPHsubg1I5bq/F67GzcvtbbC3cS7jewgff/yuZx3dy3fBZTBuSTiAQQEIir7qAr45tJ6twN/vL8/AGzn1Pmfz8fBob7cyePZuoqCgckkRcXRURR3Opix3C7hFjmTfuVe4rXMN19VkY/S7mVm/nxurNeFDR6NNhZA93NH3KgtF/Ib0lF2+DhiRPFXde8Qyh217hRsV3vGm5gZus31DQbMPY5EOVEIIz9xAhMQpqlGqOapII1VfzXaEfpVLH8KM7qNpnJzpgpHF3JlVON+ll36DTTkVssFPe3ICYewBN+XY8IRMh4Ef92gSqF2/EopEQv/ofmq97DYM9H3/JHnypd6BuyCfg9yNFjEJw1yMpdaDUnl1JMjL/oSxevJjFixefkb527VoyMjJ4+eWXzzDOAPx+qYMx+vTTvyYn5wBWaxjR0THcdNPCtnP79+8DIDU1jb/9bSV1dbVYrWFt/0dHx7RFaH311TcAWLHiQbKytgK9j8Da3fWdnetNfVlZW1m37kMSE5NITU1j3boPATrcf5Cu5Jg9ewYZGafqDka63batNe3ee1e0pZ9NvuC1qalpnUS3PRVB9/SIuBcr7dsDnP0Zne9Hkq7Kb59+ep7g30FOb1PB9n8h9d5dnZ3lDT739lGTL7Qug+UF77djxOWe9cXg805NTeu0rZ5eztNP/xqAF174yxnnXn31DbZt29o2vnTWJ86Hcxkv+uLjXWdt4HzGzK7GxODzDJKamtahzvb5OjvXm3q7orsPkhe9gbZ6dzHQGlZWKYooFQJKUcCoUTI7OZyyRjf1zhZGRYdwoMxOfrWDyqYWDlXaqXf6KLe7aXT7SAzVoG2pIT/QzHRBybUuK0uVHnSCE7+lHL+xlubaaHaq3WTURLL+uAmVZOSTAxGEBEajkILL9STSBIkGwccObYAIr8C/TC04BNAh4RMkDqEiRyECAa6L2cPy2G00OWNIK57GceqoTf0n1c0CG3MTCC2KxefxUnIol3Hjx7Jnzx7S09NxOp3kHzrEtddcw3c5ORSfOMH9Dz7I6tWrcbvd3HPPPRwvKECtVhNpMTFz0lhaJDUTzA3MmnIXN7GLocpajinT0Dj9KHRefn2lA12Dh79IkczjGxIMZTiUBsaYj1CusdGMnj260QxzH8cguPjvlEcpVkYw/rudlH/8ER9mH8EXCGA5qYkWfwtvff0Sfm8FT0z6Md93JFA6qpkjyhqsyf9C5wul1hPG1yVTyHdbUQlevJKaP55UpUFRizGgwmzVkCSYWXzdL7hdVKHAR1l0FoEGgV1Vxxiks/BFfgbpsWNJDovjoWk/YFnadVi0IZQ1VfNhzkYOVx+nuLGMCkcNLq8HQRRAAKWoQDgZjljZPmJkAEpKyigpKcNsNjN69CgCxhDCm+3cun0T/oDElthJvDXkZsIVdcQGKkl0FRPuaUDvdzOrcRcGv4s/Fb5ArKeCML8dBX7ydy3AodFTqongR8rPKRseS5TTya7wcVzb8DWbwqayxjiWe0ve5auIqxifu4N0IYd1YVcSUZILBoEtpvHcUPsV5dWRZAwawVWZb7KjXo01pAXPhn9Q1mgm0nKAvX/8Jd8J1xO17hUaPeE0K4dg+/pT1IUVuIXjIO7FULKP5uojTL7mv6ncs5LC0hYW3PkMxz+4jyLPIK5c9gRl7z1AmWUqanUIYlEmB/UCqSkj2PXlu9hSv8eQSAtbvt7KuAmTMUpN7DiYA4IZt9NBZVUV8UMS8Xjc+Hw+DAZjv4wLMjLnQnFxMWvWrOHtt99Go5E3yJWRkZGRubjpNwOtuuZtrKELAT8NDRsIC7uFlpZSXK48zOY5uFxH8AeaMBomUNOQzaajCqYOMVBZ8SLFjlE0tIQzNiyLE85ZVDU1Mzd+A/fuSMfmh7EhpXxVMhmbtgad5QT2Y9cxLWI3Co0bT9M0TDFfY/eEUFs9jlus5Tg9RvbZtUyK20OVPRGhKo0o/WYamhMY3aRgdsJmchzzidQ20hK7h5WOWASdF7XQQr3TiNbghRYfNc5w1JoASl8Lap8GZ0DDkJBiosxVmCOcLDSt57h6MNVSFIm6ffzfQTO1CoGr37oCR/QIZjaXklzyBZrfPk1CYQGDtdXk/eBhfMe8pOlPsP/um7AeqWPFeBebdN9ndFEBSx8YwWrNDaQXb2POOCf/Dszj+tr1VCXb2NY8ifCWXWxLHsXWKpHNWpHr67cQq61EIQUY0lxOlnE8d/r+zRWO/bSIKloEFbqAh6iWGk5oYthvTOZ962xqGnVEbtxK3d5vWXW4DIe760WVGwq28Fnul2S8+gmuDfOZaY4lzppD/fC1lGoaMSZVoxDdaEUI+PUU2WPxS0oK7fEU2QdRiYojko5NWg8+yYuECDVTIK61/BiVE3PCFXzXYsSsaERSFePXm5CwE7D4kGJmI4levmeoYontMD51ExAgNPd27OpaHE0mPA4T2rjDVBVoKCs/QcpMFaElUxDV9RTbjuAonIYUUojOVEp8wxUUOkr46tMPGT40mWhbOI0VZZSZTJwIGUGj1sDfohej0vkZ6i8m1lfFYE854Z46oj01hPoaiW6pZpirkFYzHa4u3UWefggPVP6T54v+HxJwh/0LHDodIjDFfRCN2IJR6yLgFck3DiJVexS/oCBM3cDMSAmnQocbNbWhZiQE4p1ZhGsG4VDqGBc4zM6QMTyvmcQfne9ye9qzTKg4yE0VmbwRu5yJf1tIRcRINkbOZswfr+PLmCmUSaGM+t1kXh32Q8KOn+AW11f8z4j7ufbLNai/PMJv0p/knnf/yDFTgDeG3MTP/ngX+YOHkq0bxs++fZbXjt2Av87NNeVbeWfcLQw7nMf4kEJeT1jEoqKPCPM5+ePIu3ki7yXK9PGsi76K2/Pe55A+joPhKVzj/o68QCQtkpJYoYlvDQmMUxZiDXjJkIYzzXmI5oCKLyMmcptjCy5JR7ZyOPOdh9iLlVpzKGn+IuqaNYRLPtJLC9kQFs84cxnD9WreFMZwjdGJ0etgrcvMDzw7qcPIvyyzuT/My44GNzlukftM1bzbZIaAj4Wj0vjbgcOk+Y4z3mbjs+NOBo+7hcHOnbybV83EITEovZVsqArnhunTqcrPYHOBnxWpIruqnYyadQch/ma2FuxmtsaLp6mMndpEpqR/H3vOexS4W5gSqKXIUUdt3GxSYsdwNOffGARIcpeyzW9kcMr12MQAnzt8zIwbiVSxl68J4+qYRBoKMjhgHs0Mi5nyY5spjZ3JRIUbZW0e3tgpiPYSRHctvog0FLV5ICrxhw5FWbGXgDGagDEGVdEWfJHjkJQ61Mc30JJ0LYK7AVX5TloSr0HRUIDYeAJv/FUIJTtR2l34Yq5Afewz/JYE/GEpaPe/SUvifAKGKAw7nqN54kMXtWd27dq1NDQ0cPfdd7elrVq1CrVaDoEuIyMjI3Px0a2Bdr5rAdqXY7Pd2/Z3VNSPTh6NOPkPYEK7/DNJObn33YSUf7Qr6Uftju87S63fa3d8bYf0r776ihRgzpwn2qXP7ZB/Rru/lgBfffUVAHPmzIF2f2dnZ5OZmUlsbCxZWVkca27GFdO6+d13GDl4MAu3200gEAAOA7DuNEmFr3M5tRTw83ZnPm53vLnd8Te83HacwV/bjj/kzwB8wFsnUx7idDafkXKKBiAX+KhDqih2DPapUIhoNMp25wUcPg9TfjwPtVqN0+nE5XLRzfLGc+JED/NtAP7UJqMCUVxPZGQkMTExNDY2YjabKSgooKmpCdt3NlJTv2u7dtasEPLz86EWkpP1ZB7IpLm5CQk/BksIu7/LJlahIDk2Fkf+EeaqJB6585EO7SAjPx9IoLS0lFmzZvHII4+06geIi4vD7S7j0Ucfbet1+fn5JCcn88gjjxByUo7T2xmdpB85eTxuzhys7fLMO/mPm29jPwDzgQe5EeD2WxkP3AHAfzGl7arH+Xu7Oh4G5vzgbQC+AVh2E9DaB/jRMr53Ml91+hX8up2M09vJMRMItrzWfvQTABadTJ/H2VnU7vguAFYAsOxk2lw6Z1i740c7OY4Efn3y+IaT/07V0cpT006vG2AOKe3ytI1Wk6cT1MKCducXplzRdhxMt836CUknj0e2yxs++FQvbX9f3w8eRM7mtmAZthsJbgtqi1pMajBP3OCTie199PhuAAAJaklEQVSktE1sdzyr3XG7ABlRwZLNMPhkJFVbGnByWodtKm0rj2xLTl0354FTxwt+x6lZ+hcnDz/8MA8//HC3eVQqRYffPJ1OhUqlQKNRotOpsFjar0Vo9cJZLHo0GmVbvvb5jUYNNpupLa/NZmoro7e/rd1d39m53tRnsejb5A8ety+rPV3JkZ29t0PdFoseo1HT9rthseh7rI/gtcFrOjvXXt8XO+3bA/TsGZ3PfXVV/unPpzOZOqs/qHPgguq9uzo7yxt87hqNsk2GC63LYHmnP7P2587WF9uPFZ211dPLCfa3zu4n2Ifa988L2ebPdby40P2tszZwPmNmV2Ni8Jl0Vm/75xLU8ennelNvb+g2SIiMjIyMjIyMjIyMjIxM/yHvgyYjIyMjIyMjIyMjI3ORIBtoMjIyMjIyMjIyMjIyFwl9bqD5fD4ee+wxli1bxq233sqePXv6usqLgl27djFlyhQ2b+5uzdelwe9//3uWLFnC0qVL2b9//0CL028cOXKEq6++mrfffnugRek3nnvuOZYsWcKiRYvYuHHjQIvT57hcLh588EGWL1/O4sWLL4v+3B63282cOXP48MMPB1qUPuVyHcPOh9PHgvLycm6//XaWLVvGgw8+SEtLCwAff/wxixYtYvHixbz//vsDLPXFS/u+Juuy93z88ccsWLCAhQsXsmXLFlmXvaS5uZkVK1Zw++23s3TpUrZu3UpeXh5Lly5l6dKlPP300215X3/9dW655RYWL17Mli1bBlDqSwypj3n//felp59+WpIkSTpy5Ii0aNGivq5ywDlx4oR0zz33SD/96U+ljIyMgRanT9m5c6d09913S5IkSfn5+dItt9wywBL1D83NzdLy5culp556Slq9evVAi9MvbN++XbrzzjslSZKkuro6aebMmQMrUD+wfv166dVXX5UkSZJKSkqkefPmDbBE/csLL7wgLVy4UPrggw8GWpQ+43Idw86HzsaCxx9/XPrss88kSZKkZ599VnrnnXek5uZmad68eZLdbpdcLpc0f/58qb6+fiBFv2hp39dkXfaOuro6ad68eVJTU5NUWVkpPfXUU7Iue8nq1aul559/XpIkSaqoqJDmz58vLV++XNq3b58kSZL0wAMPSJmZmVJRUZF08803Sx6PR6qtrZXmzp0r+Xy+gRT9kqHPPWgLFizgiSdaoyVarVYaGhr6usoBx2azsXLlSozGS39PqO3bt3P11VcDMHToUOx2Ow6HY4Cl6nvUajWvvfYaERERAy1KvzFx4kRefPFFAMxmMy6XC7/fP8BS9S3XXnstd93VGsuxvLycyMjIAZao/zh27BhHjx5l1qxZAy1Kn3K5jmHnQ2djwc6dO9uiz86ZM4ft27ezb98+xowZg8lkQqvVkp6eTnZ29kCKflFyel+Tddk7tm/fzpQpUzAajURERPCb3/xG1mUvCQ0NbXtft9vtWCwWSktLSU1tjR0c1OXOnTuZMWMGarUaq9VKbGwsR48eHUjRLxn63EBTqVRtG4O+9dZbXH/99We54j8fnU6HQqE4e8ZLgJqaGkJD2wJxExYWRnV19QBK1D8olUq02ot336e+QKFQoNe3ho9du3YtV1555WXTzpcuXcrPf/5znnzyyYEWpd949tlnefzxxwdajD7nch3DzofOxgKXy9W2r5zNZqO6upqamhqs1lObgYSHh8u67YTT+5qsy95RUlKCJEk89NBDLFu2jO3bt8u67CXXXXcdZWVlzJ07l+XLl/Poo48SEhLSdl7WZd9zQTeqXrt2LWvXru2Qdv/99zNjxgzeeecdcnJyeOWVVy5klQNOd/d8OSCdtkuDJEkIgjBA0sj0B5s2beL999/njTfeGGhR+o01a9Zw6NAhHnnkET7++ONLvo2vW7eOsWPHEhcXN9Ci9DnyGNZ72o8F8+fPb0sP6lTW7dnprK+115Gsy3OjsrKSlStXUlZWxh133CHrspd89NFHxMTEsGrVKvLy8njggQfaPsqArMv+4IIaaIsXL2bx4sVnpK9du5aMjAxefvllVCrVhaxywOnqni8XIiMjqampafu7qqqK8PDwAZRIpi/ZunUrr7zyCq+//jom08W/Kez5cvDgQcLCwoiOjiYlJQW/309dXR1hYWEDLVqfkpmZSXFxMZmZmVRUVKBWq4mKimLq1KkDLdoFRx7DesfpY4FOp8PtdqPVaqmsrCQiIoLIyEgyMzPbrqmqqmLs2LEDJ/RFSGd9TdZl7wgLC2PcuHEolUoGDx6MwWBAoVDIuuwF2dnZTJ8+HYARI0bgdDpxOp1t59vr8vjx4x3SbTZbv8t7KdLnUxyLi4tZs2YNK1eubJvqKHPpMG3aNDZs2ABAbm4uERERl8Xau8uRpqYmnnvuOf7+979jsVgGWpx+Yc+ePW2ewpqaGpxOZ4fpcJcqf/7zn/nggw947733WLx4Mffdd98laZyBPIb1hs7GgqlTp7bpcePGjcyYMYO0tDQOHDiA3W6nubmZ7Oxs0tPTB1L0i46u+pqsy3Nn+vTp7Nixg0AgQF1dHU6nU9ZlL4mPj2ffvn0AlJaWYjAYGDZsWFsk9qAuJ0+eTGZmJi0tLVRWVlJVVcXQoUMHUvRLBkE63T95gXnhhRdYv349MTExbWmrVq1qmxN8KZKZmcmqVasoKCjAarVis9ku6elgzz//PHv27EEQBJ5++mlGjBgx0CL1OQcPHuTZZ5+ltLQUpVJJZGQkL7300iVtuLz77ru89NJLJCQktKU9++yzHfr2pYbb7eYXv/gF5eXluN1uVqxYwezZswdarH7lpZdeIjY2loULFw60KH3G5TiGnQ+djQXPPPMMTz31FB6Ph5iYGP7whz+gUqn44osvWLVqFYIgsHz5chYsWDCAkl/cBPva9OnTeeyxx2Rd9oI1a9awfv16XC4X9957L2PGjJF12Quam5t58sknqa2txefz8eCDD2Kz2fjlL39JIBAgLS2tLQDg6tWr+eSTTxAEgYceeogpU6YMsPSXBn1uoMnIyMjIyMjIyMjIyMj0jD6f4igjIyMjIyMjIyMjIyPTM2QDTUZGRkZGRkZGRkZG5iJBNtBkZGRkZGRkZGRkZGQuEmQDTUZGRkZGRkZGRkZG5iJBNtBkZGRkZGRkZGRkZGQuEmQDTUZGRkZGRkZGRkZG5iJBNtBkZGRkZGRkZGRkZGQuEmQDTUZGRkZGRkZGRkZG5iLh/wMb+GgcpMJClwAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# pm.traceplot(trace_2, var_names=['beta']);\n", + "# arviz.plot_trace(trace_2, var_names=['beta'], coords={'2':2});" ] }, { @@ -2452,7 +2819,7 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 506, "metadata": {}, "outputs": [], "source": [ @@ -2461,17 +2828,17 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 507, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[74.97363898, 1.08725705],\n", - " [ 1.08725705, 73.79522574]])" + "array([[0.05553475, 0.00057874],\n", + " [0.00057874, 0.07489045]])" ] }, - "execution_count": 129, + "execution_count": 507, "metadata": {}, "output_type": "execute_result" } @@ -2489,14 +2856,14 @@ }, { "cell_type": "code", - "execution_count": 130, + "execution_count": 508, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "8.658731949850676 8.590414759458374\n" + "0.23565812063092312 0.2736611968654907\n" ] } ], @@ -2514,7 +2881,7 @@ }, { "cell_type": "code", - "execution_count": 142, + "execution_count": 509, "metadata": {}, "outputs": [], "source": [ @@ -2523,16 +2890,16 @@ }, { "cell_type": "code", - "execution_count": 143, + "execution_count": 510, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.014617187099617469" + "0.008974016733377305" ] }, - "execution_count": 143, + "execution_count": 510, "metadata": {}, "output_type": "execute_result" } @@ -2550,27 +2917,27 @@ }, { "cell_type": "code", - "execution_count": 157, + "execution_count": 511, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/rosgori/anaconda3/lib/python3.6/site-packages/pymc3/sampling.py:1247: UserWarning: samples parameter is smaller than nchains times ndraws, some draws and/or chains may not be represented in the returned posterior predictive sample\n", + "/home/rosgori/anaconda3/lib/python3.7/site-packages/pymc3/sampling.py:1247: UserWarning: samples parameter is smaller than nchains times ndraws, some draws and/or chains may not be represented in the returned posterior predictive sample\n", " \"samples parameter is smaller than nchains times ndraws, some draws \"\n", - "100%|██████████| 1000/1000 [00:00<00:00, 13577.93it/s]\n" + "100%|██████████| 1000/1000 [00:00<00:00, 14674.07it/s]\n" ] } ], "source": [ "with model_hier:\n", - " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1_000, vars=[alphas])" + " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1_000, var_names=['beta'])" ] }, { "cell_type": "code", - "execution_count": 158, + "execution_count": 512, "metadata": {}, "outputs": [ { @@ -2579,18 +2946,18 @@ "(1000, 16, 2)" ] }, - "execution_count": 158, + "execution_count": 512, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "ppc_hier['alphas'].shape" + "ppc_hier['beta'].shape" ] }, { "cell_type": "code", - "execution_count": 159, + "execution_count": 513, "metadata": {}, "outputs": [ { @@ -2602,7 +2969,7 @@ " 0.60526316])" ] }, - "execution_count": 159, + "execution_count": 513, "metadata": {}, "output_type": "execute_result" } @@ -2613,37 +2980,12 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 524, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.24697548, 0.75302452],\n", - " [0.42467736, 0.57532264],\n", - " [0.42166306, 0.57833694],\n", - " [0.44448191, 0.55551809],\n", - " [0.42100179, 0.57899821],\n", - " [0.37360006, 0.62639994],\n", - " [0.37927549, 0.62072451],\n", - " [0.44419996, 0.55580004],\n", - " [0.36517739, 0.63482261],\n", - " [0.44141308, 0.55858692],\n", - " [0.394294 , 0.605706 ],\n", - " [0.3967169 , 0.6032831 ],\n", - " [0.40965493, 0.59034507],\n", - " [0.38298484, 0.61701516],\n", - " [0.44275081, 0.55724919],\n", - " [0.38240091, 0.61759909]])" - ] - }, - "execution_count": 170, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ - "ppc_hier['alphas'][10, :, :]" + "ppc_hier['beta'] = logistic(ppc_hier['beta'])\n", + "# ppc_hier['beta'] = ppc_hier['beta']" ] }, { @@ -2662,21 +3004,21 @@ }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 525, "metadata": {}, "outputs": [], "source": [ "th1 = []\n", "\n", "for i in range(16):\n", - " result1 = 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] - ppc_hier['alphas'][:, i, 1] \n", + " result1 = 2 * ppc_hier['beta'][:, i, 0] * ppc_hier['beta'][:, i, 1] - ppc_hier['beta'][:, i, 1] \n", "# result1 = - 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] + ppc_hier['alphas'][:, i, 1] \n", " th1.append(list(result1))" ] }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 526, "metadata": {}, "outputs": [ { @@ -2685,7 +3027,7 @@ "(16, 1000)" ] }, - "execution_count": 172, + "execution_count": 526, "metadata": {}, "output_type": "execute_result" } @@ -2697,18 +3039,18 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 528, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-0.14882845, -0.16713849, -0.12572338, -0.16234816, -0.15933411,\n", - " -0.15933411, -0.14183207, -0.15078374, -0.11327207, -0.12033916,\n", - " -0.11516225, -0.18994582, -0.15237905, -0.16838453, -0.13914512])" + "array([0.13474574, 0.13206396, 0.12006383, 0.14417826, 0.13744859,\n", + " 0.12955934, 0.13110731, 0.13301547, 0.13427609, 0.13036162,\n", + " 0.12951439, 0.12993904, 0.12792267, 0.12701882, 0.12755265])" ] }, - "execution_count": 173, + "execution_count": 528, "metadata": {}, "output_type": "execute_result" } @@ -2720,12 +3062,12 @@ }, { "cell_type": "code", - "execution_count": 174, + "execution_count": 533, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAFkCAYAAADIT4SLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPyElEQVR4nO3dW4xdY9jA8Uc7tbt7GFwMSVNViUOqCSK0aEUILabEIb3gTiTcOAuZRKRUyiC4IdEocSgJF7joEOdDVTFoJCQVEhONpI0gbUenU9O834XPfObTUtO95rCf3+9uH6z1bs90r//sNbPmgFJKCQCARCaM9gIAAEaaAAIA0hFAAEA6AggASEcAAQDpCCAAIJ2Wf3rwp5+2j9Q6RsS0abXo7e0f7WUQZjGWmMXYYRZjh1mMHf9lFm1t0/d5u6k+AWppmTjaS+B/mcXYYRZjh1mMHWYxdlQ1i1QBBAAQIYAAgIQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIp2W0FwDkM621HvVa9W8/ff0D0butr/L9AOOPAAJGXL3WErM7uirfT09ne/RWvhdgPHIKDABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0mkZ7QUAY8u01nrUa94agObmXQ4Yol5ridkdXZXuo6ezvdLtA/wbp8AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAd1wGCcaLKCxS2tU2vZLsAY5UAgnFiJC5QGOEihUAOToEBAOkIIAAgHQEEAKTjZ4CAprXz992V/4B3X/9A9G7rq3QfQOMJIKBpTZ40cUT+sn1vpXsAquAUGACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6bSM9gIA+GfTWutRr1X/dt3XPxC92/oq3w+MBQIIYIyr11pidkdX5fvp6WyP3sr3AmODU2AAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASMefwgDYDzt/3x1tbdMbtr1GbgvYOwEEsB8mT5pY+d/p6ulsr3T7kJFTYABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApNMy2guAZjCttR71mn9OAOOFd2xogHqtJWZ3dFW6j57O9kq3D5CJU2AAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgnZbRXgBUbVprPeo1X+oA/B9HBZpevdYSszu6Kt1HT2d7pdsHoLGcAgMA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIp2W0FwDA2LDz993R1ja98n1MnjSx0n309Q9E77a+SvfB+CeAAIiIiMmTJsbsjq5K99HT2T4i++itdA80A6fAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKTjQoiMmmmt9ajXfAkCMPIcfRg19VpL5VeEjfjjqrAA8FdOgQEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACCdltFeAGPTtNZ61Gu+PABoTo5w7FG91hKzO7oq3UdPZ3ul2weAvXEKDABIRwABAOkIIAAgHQEEAKQjgACAdPwWGABNZefvu6Otbfp+b+ffttHXPxC92/r2ez+MDgEEQFOZPGli5ZfxiPjjUh69le+FqjgFBgCkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdF0Ich6a11qNeMzqA0dSoK07/E1ebro6j6DhUr7VUfpXTns72SrcPMN6NxBWnXW26Ok6BAQDpCCAAIB0BBACkI4AAgHQEEACQjgACANIRQABAOgIIAEhHAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABIRwABAOkIIAAgHQEEAKQjgACAdAQQAJCOAAIA0hFAAEA6AggASEcAAQDpCCAAIJ2W0V5AM5nWWo96zf9SABjrHK0bqF5ridkdXZXvp6ezvfJ9AEAzcwoMAEgnzSdA01rrMWnSxGhrmz7aSwGAfbLz992VH7f6+geid1tfpfsYi9IE0EicnnJqCoBGmjxp4ogcu3or3cPYNCYCyA8PA8DoGIlPmSLG3idNY6I6fDoDAKNjJD5lihh7nzQdUEopo70IAICR5LfAAIB0BBAAkI4AAgDSaboAWr9+fVxyySWxePHiuPLKK2Pz5s17fN7nn38eS5cujfPPPz8uvfTS6O7uHnysq6srlixZEosXL47rrrsutm/fPlLLbyr7OotSSjzxxBMxd+7c+Oyzz4Y8tnLlyjjvvPPi/PPPj2uvvTZ++umnkVh6U2nEHL777rtYunRpnHnmmXHZZZfFd999NxJLbzqNmMWfVq9eHccee2yVy21qjZjFiy++GO3t7XHeeefFVVddtddt8M8aMYthHbdLE/ntt9/KqaeeWr766qtSSimrVq0q11xzzd+e19/fX+bNm1fWr19fSinlvffeKwsXLiyllPLjjz+W+fPnlx9//LGUUspdd91Vli9fPkKvoHns6yxKKeWOO+4ot99+e1m4cGHp7u4evP/DDz8s5557btm2bVsppZQHHnig3HLLLdUvvok0Yg4DAwNl8eLF5fXXXy+llPLyyy+Xe+65p/rFN5lGzOJPW7ZsKRdeeGE55phjKl1zs2rELL788suyYMGCsmXLllJKKZ2dneXmm2+ufvFNphGzGO5xu6kC6O233y5Lly4dvN3b21vmzp1btm/fPuR5vb29g2/mpZSyffv2cswxx5StW7eWZ555ptx4442Dj3377bfltNNOq37xTWZfZ1FKKRs2bCillHLWWWcN+aJ+8skny0033TR4e+3ateWiiy6qcNXNpxFz6O7uLu3t7dUvtsk1YhZ/uv7660tXV5cAGqZGzGLTpk3l008/Hbz91ltveX8ahkbMYrjH7aY6BdbT0xOHH3744O2pU6fGwQcfHD/88MOQ502dOjUWLVo0ePuDDz6I2bNnR2tra/T09MSsWbMGH5s1a1b8/PPPsXXr1upfQBPZ11lERJx44ol73Ma8efNiw4YNsXnz5ti9e3e8+eabcfrpp1e25mbUiDls3LgxZsyYER0dHbF48eK4+uqrY9OmTZWtuVk1YhYRf7xf9fb2xgUXXFDJOjNoxCxmzpwZp5xyyuDtDz74IE444YTGL7bJNWIWwz1uN1UA9fX1Ra1WG3JfrVaLHTt27PW/2bhxY9xzzz2xfPnywW0ceOCBg48feOCBccABB0Rf39i5euV4MJxZ/H9z586Niy++OM4+++yYN29edHd3xzXXXNPopTa1Rsxh27Zt0d3dHZdffnm89tprMWfOnLjtttsavdSm14hZ7Ny5M+67775YtmxZo5eXSiNm8VevvPJKrF27Nq677rpGLC+VRsxiuMftMXEl6P/qjTfeiAceeOBv919++eXR398/5L6dO3fG1KlT97idL774Im688cZYsWJFzJ8/PyIipkyZErt27Rp8Tn9/f5RSYsqUKQ18Bc2jUbPYk7fffjvef//9WLduXRx00EGxcuXKuPXWW+Pxxx/f73U3myrnMH369JgzZ87gd7dXXnllrFy5Mnbs2OHfxR5UOYtHH300lixZMuS7Xfauyln86bnnnounnnoqnn766Whraxv2WptdlbMY7nF7XAbQokWLhpzC+tP7778fa9asGbz9yy+/xNatW+OII47423M3btwYN9xwQzz88MNx8sknD95/5JFHxscffzx4+9tvv422trZobW1t8KtoDo2Yxd6sW7cuzjjjjDjkkEMiIuKCCy6IlStX7v+im1CVc5g5c+aQ36iYOHFiRERMmNBUHyA3TJWzeOedd+LXX3+N1atXD963YMGCeP755//TdrKochYRES+99FI899xzsXr16jjssMP2e73NrMpZDPe43VTvYPPnz4/NmzcP/nrcs88+G2edddbfKrCUEh0dHbFs2bIh8RMRcc4558Snn34a33///eA2lixZMjIvoIns6yz+yZFHHhnr168f/Bjz3XffjaOPPrqS9TarRsxhwYIF8euvv8batWsjIuKFF16Ik046KSZPnlzJmptVI2bR1dUVH330Uaxbty7WrVsXEX98oyB+/ptGzGLLli3x0EMPxapVq8TPfmjELIZ73G66vwX2ySefxIoVK6Kvry9mzZoVnZ2d0dbWFlu2bImrrroq1qxZExs2bIgrrrjib28aDz74YMydOzdeffXVeOSRR2JgYCCOO+64WLFixbA+Gs1uX2YREbFkyZIYGBiITZs2xaGHHhq1Wi3uv//+mDNnTtx7772xdu3amDBhQrS1tcWdd94ZRx111Ci/svFlf+dw/PHHx9dffx233XZb7Nq1K2bMmBF333230zDD0IhZ/NWxxx4b33zzzWi8lHFvf2exfv36eOyxx4bET0tLy5BPM9g3jfh3MZzjdtMFEADAv2mqU2AAAPtCAAEA6QggACAdAQQApCOAAIB0BBAAkI4AAgDSEUAAQDoCCABI538A6+crHOY8nk0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAFkCAYAAAAE1r5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAASTUlEQVR4nO3dfWydZfnA8WttR1fYFt+KSsZggJKxCEoCuNW3idi5dgajJKjBbJlKJLKoi8uiEEFljJmZmEiiBg06MIE/xEQLIwgotS6skGVGky0ss7oQuxh0dMW2W8f9+8PYUJlr/V3POX3Z55Pwx2nPuc99Ltqzb/uc02dOKaUEAAD/Lw1TvQEAgJlMTAEAJIgpAIAEMQUAkCCmAAASxBQAQEJTlYsNDR2LwcGRKpecFebPbzaX/2AmJ2cuJ2cuJ2cur2YmJ2cuJ9fauqCSdSr9zVRTU2OVy80a5vJqZnJy5nJy5nJy5vJqZnJy5lJbDvMBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEhomuoNAPC/mb+wJVqa//X03dq6IL3e0MhoDA4MpdeB05WYAphhWpqb4vzNXZWt17e1IwYrWw1OPw7zAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACDBH+0EZoVX/lXwKvir4MBkiSlgVvBXwYGp4jAfAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASmqZ6AwDT0fDxE9HauqCy9YZGRmNwYKiy9YDpQ0wBnMS8uY1x/uauytbr29oRg5WtBkwnDvMBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQ4Nx8wJSYv7AlWpon/xRU5UmHp0LVJ04Gpg8xBUyJluamyk8kPJ1VeeLk6f5Y4XTjMB8AQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACU1TvQFgZpi/sCVamj1lAPwnz4zApLQ0N8X5m7sqW69va0dlawFMJYf5AAASxBQAQILDfACnueHjJ6K1dUFl6w2NjMbgwFBl68F0J6YATnPz5jZW/nq4wcpWg+nPYT4AgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASGia6g0AMLsMHz8Rra0LKltvaGQ0BgeGKlsPqiamAKjUvLmNcf7mrsrW69vaEYOVrQbVc5gPACBBTAEAJDjMB7PU/IUt0dLsWxyg1jzTwizV0txU+etWAHg1h/kAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkNA01RsAgFMZPn4iWlsXTPr6E113aGQ0BgeGstuCMWIKgGlt3tzGOH9zV2Xr9W3tiMHKVgOH+QAAUsQUAECCmAIASBBTAAAJXoAO08T8hS0xd27j//SuJQCmnpiCaaKluanydywBUHsO8wEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJDg3HyQMH9hS7Q0+zYCOJ35VwASqjw5sRMTA8xMDvMBACSIKQCABDEFAJAgpgAAErwAHYDTyvDxE9HauqCy9YZGRmNwYKiy9Zh5xBQAp5V5cxsrexduxL/eiTtY2WrMRA7zAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQELTVG8AAGay4eMnorV1QWXrDY2MxuDAUGXrUXtiCgAS5s1tjPM3d1W2Xt/WjhisbDXqwWE+AIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEpybj2lt/sKWaGmu7st0+PiJmDe3sbL1AEBMMa21NDdVfgLRqtcD4PTmMB8AQIKYAgBIcJgPAGapV77utLV1QXq9oZHRGBwYSq8z24gpAJilavG608HKVps9HOYDAEgQUwAACQ7zAcA0Mnz8RCWvb6J+xBQATCPz5jZW9jonfwuvPuaUUspUbwIAYKbymikAgAQxBQCQIKYAABImFVO7du2Kj3zkI9He3h7r1q2L/v7+V11n3759cf3110d7e3tcf/31sW/fvrHPff/7349Vq1bFhz70ofj85z8ff/vb36p7BFMkO5Mf/OAHsXr16njf+94Xd955Z8yWl65NZi6llPjhD38Yy5Yti2eeeWbc57q6uqKzszPa29vj5ptvjqNHj9Zr6zWVnctLL70UGzdujEsuuaReW66L7FwefPDB6OjoiFWrVsX69etPevuZJjuTn/70p9HR0RHt7e2xfv36+Otf/1qvrddUdi7/dt9998XFF19c6+3WTWYu/f39sWzZsli1atXYf9u3b6/n9msm+/Vy4MCBuO666+K9731vfPSjH40DBw6c+g7LBF566aXyzne+s/zhD38opZRyzz33lBtvvPFV11u1alV57LHHSimlPPLII6Wzs7OUUspvf/vbcs0115SBgYFSSinf+ta3ysaNGye622ktO5Nf//rX5ZprrilHjhwpIyMj5ZOf/GR56KGH6vcAamSyc7n11lvLV7/61fKud72r9Pb2jn38+eefL1dddVV5/vnnSyml3H777eXrX/96fTZfQ9m5lFLKmjVryvbt28vSpUvrsud6yM5l7969pa2trRw+fLiUUsrWrVvLl770pfpsvkayM3n22WfL1VdfXY4cOVJKKWXLli1lw4YN9dl8DVXxPVRKKYcPHy5r1qwpb33rW2u+53rIzmX//v3lgx/8YN32Wy/ZuYyOjpb29vby6KOPllJKeeihh8qWLVtOeZ8TxtTjjz9errvuurHLg4ODZdmyZeXo0aNjH9u3b19pa2sbd7vly5eXAwcOlB/96Efli1/84tjHu7u7y4c//OGJ7nZay85ky5Yt5a677hr7eFdXV/nc5z5X+43X2GTmUkope/bsKaWUsnLlynFfwD/5yU/KF77whbHLzz33XFm+fHmNd1172bn8+3OHDh2aVTGVncuhQ4fK7t27xy7/6le/Oi2eW0r57zPp6+srzz777NjlJ554oqxZs6bGu669Kr6HSillw4YNpaura9bEVHYuzzzzTPnYxz5Wn83WUXYuvb29paOj43+6zwkP8/X19cW55547dvmss86K17zmNfGXv/xl3HUWLVo07nbnnntuHDx4MK688srYs2dP9Pf3x4kTJ+Kxxx6LFStWTHS301p2JnPmzImXX3553O1feduZajJziYh4+9vf/l9vv3jx4rHLixcvjhdeeCFefPHF2my4TrJzmehzM1V2LosWLYorrrhi7PJTTz0Vl112WW02WyfZmZx33nlx+eWXR0TE8PBw/OIXv4irr766dhuukyq+h5566qkYHByM1atX12yf9Zady9GjR+PIkSOxdu3aaG9vjw0bNsThw4druud6yM5l3759cc4558TmzZujvb09PvvZz8ahQ4dOeZ8TxtTQ0FA0NzeP+1hzc3P885//nNR1li1bFtdee228//3vjyuvvDJ6e3vjxhtvnOhup7XsTFasWBEPP/xw9Pf3x9DQUDz44IMxMjJSl73X0mTmMtHtzzjjjLHLZ5xxRsyZMyeGhmb2Gcqzc5mtqpzLz3/+8+ju7o6bb765qu1Niapmsm3btlixYkUcPXo0Pv3pT1e5xSmRncvw8HDcdddd8bWvfa0W25sy2bm87nWvi5UrV8a2bduiq6sr3vSmN8WXv/zlWmy1rrJzGRgYiN7e3vj4xz8ejzzySCxdujQ2bdp0yttMGFNnnnnmq/6hHx4ejrPOOmtS13n88cfjN7/5TfT09ERvb2+sWbNmxv/Pys7kPe95T9xwww2xdu3aWLt2bbzjHe+IBQtm/qkDJjOXiW5/7NixscsjIyNRSokzzzyz0n3WW3Yus1VVc7n//vvj7rvvjh//+MfR2tpa5RbrrqqZbNq0KXbv3h1XXHFFrFu3rsotTonsXO6+++7o7Owc95vv2SA7l0svvTS+8pWvxNlnnx1NTU1x0003xe7du2f8D3rZuSxYsCCWLl0al112WTQ0NMS6detiz549p5zLhDF1wQUXxJ/+9Kexy3//+9/jxRdfjPPOO2/cdfr6+sYOXY2OjkZfX19ceOGF0dPTE+9+97vjta99bTQ0NMTq1aujt7d3Ug9ousrOJCLiM5/5TOzcuTMeeOCBeMMb3jAr3l0ymbmcypIlS+LgwYNjl5977rlobW2NhQsXVr7XesrOZbaqYi4/+9nP4v7774/77rtv3K/1Z6rsTH7/+9/H3r17IyKiqakpPvGJT8TevXtjYGCgJvutl+xcnnjiidixY0e0tbVFW1tbRES0tbXFn//855rst16yc3nhhRfGvcutlBJz5syJpqaZfaa57FwWLVo07p3kjY2NERHR0PDfk2nCmLrqqquiv79/7G2DO3bsiJUrV477bcFFF10Ura2t8ctf/jIi/vUr90WLFsWSJUtiyZIlsWvXrrFDNU8++WS85S1vmdQDmq6yM3n66afjhhtuiGPHjsXg4GDce++9ce21107JY6nSZOZyKh/4wAdi9+7dY98EO3bsiM7Ozprtt16yc5mtsnM5fPhwfPvb34577rkn3vjGN9Zyq3WTncnBgwfjlltuGfuH4Mknn4w3v/nNM/4Hkuxcurq64ne/+1309PRET09PRET09PTM+B9osnPp7u6Om266KQYHByMi4t57743ly5ePe7nFTJSdS1tbW/zjH/+I7u7uiIh44IEH4vLLL4958+b919tM6tx8Tz/9dNxxxx0xNDQUixcvjq1bt8bLL78c69evH4uF/fv3x6233hpHjhyJ17/+9fHNb34zLrzwwjh+/Hjceeed0d3dHQ0NDdHa2hq33XZbXHTRRZN6UNNVZiYnTpyI22+/Pbq7u2POnDmxdu3a+NSnPjXFj6gak5lLZ2dnjI6OxqFDh+Lss8+O5ubm2LZtW1x66aXx8MMPx3e/+90YHR2NSy65JO64445ZcTgsM5fGxsbYuHHj2OeWLFkSERE7d+6cyodUicxcdu3aFd/73vfGhVRTU9PY7WaqzEze9ra3xXe+853YuXNnlFJi4cKFccstt8z4F+ZH5J9bXuniiy+O/fv3T8XDqFz262X79u3x6KOPRkNDQ1xwwQVx2223zYofTrJfL3/84x9j06ZNcezYsTjnnHPiG9/4xikPEzvRMQBAgtPJAAAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJPwf6CLa6JKTCPcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -2736,7 +3078,8 @@ ], "source": [ "plt.figure(figsize=(10, 6))\n", - "_, _, _ = plt.hist(result2 , bins=20, edgecolor='w', density=True)\n", + "_, _, _ = plt.hist(result2 , bins=18, edgecolor='w', density=True)\n", + "plt.xlim(0.08, .16)\n", "plt.yticks([]);" ] }, @@ -2749,12 +3092,12 @@ }, { "cell_type": "code", - "execution_count": 181, + "execution_count": 534, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAPoElEQVR4nO3dX2jV9f/A8Vduus0/oy5OgZRpVGKDiiitVoRRWU6jP3hRdyLoTf+jGETYH7RV5FVBQQWlXtRFddGKKPtnNmqVBAWGUZYESlQ4T50tZ5/fhTTym/2cnn0299rjcfc529n7PV9z57nz2fnsuKIoigAASGzSWG8AAKBsggcASE/wAADpCR4AID3BAwCkJ3gAgPQaD/cOP/+8d9gfbPr0pqhWB+raECPDLI4dZnHsMItjh1kcO7LNolKZccjbR/QZnsbGhpH8cNTBLI4dZnHsMItjh1kcOybKLJzSAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCk1zjWGwCOLdNbW6KlqfxvDbWBwaj21UpfByBC8AD/o6WpMWZ3dpe+zo6ujqiWvgrAAU5pAQDpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeo1jvQFgYurftz8qlRmlrlEbGIxqX63UNYDxQfAAY6J5ckPM7uwudY0dXR1RLXUFYLxwSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANJzHR4grUNd3HCkL3bo4oYwPggeIC0XNwT+5pQWAJCe4AEA0hM8AEB6focHxpHprS3R0uS/LcCR8p0TxpGWpsZR+SVcgGyc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AIL3Gsd4AlG16a0u0NJX/pV4bGIxqX630dQA4coKH9FqaGmN2Z3fp6+zo6ohq6asAcDSc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAev60BIyQ/n37o1KZcci3/dftAIwOwQMjpHlyQ+l/s2tHV0epHx8gK6e0AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIr3GsNwAwnvXv2x+VyozS16kNDEa1r1b6OpCV4AGoQ/Pkhpjd2V36Oju6OqJa+iqQl1NaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AIL3Gsd4AAIfXv29/VCozSl2jNjAY1b5aqWvAWBE8AONA8+SGmN3ZXeoaO7o6olrqCjB2nNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASK9xrDfAsWt6a0u0NJX7JdK/b380T24odQ0AEDz8p5amxpjd2V3qGju6OkZlDQAmNqe0AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKTnwoMARMSBK59XKjNKX6c2MFj6GvC/BA8AERHRPLmh9CufRxy4+vm+fftLXwf+ySktACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNc41hsAYGLp37c/mic3RKUyo7Q1agODUe2rlfbxGX8EDwCjqnlyQ8zu7C51jR1dHVEtdQXGG6e0AID0BA8AkJ7gAQDSEzwAQHqCBwBIz6u0xqHprS3R0nT40ZX5kk8AGE8EzzjU0tRY+ks6Iw68rBMAMnBKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6Ljw4woZ7FWQAytO/b3/pV5uvDQxGta9W6hqMHI/MI2w0roLsCsgA/7/myQ2j8r24WuoKjCSntACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJBe41hvAADGo/59+6NSmVH6OrWBwaj21UpfJzvBAwBHoXlyQ8zu7C59nR1dHVEtfZX8nNICANKbMM/wTG9tiZamCfPpApDEaJw6m97akv602YQpgJamxlF76hEARsponDqbCKfNjong8ewLAIyd0XgWaax/+fqYqIzRePbFMy8AcGgT4Vmk44qiKMZwfQCA0nmVFgCQnuABANITPABAesMKnp6enrj++utj0aJFsXz58ti1a9e/3qcoinjuueeira0tPvvss4Pe1t3dHUuWLIlFixbFrbfeGnv37h2Z3U9A9c7i5Zdfjo6Ojrj66qtjxYoVh7w/w1PvLP62YcOGmDt3btnbTa3eWXz77bexbNmyuOyyy+LGG2+Mb7/9drS2nk69s3jmmWfi6quvjmuuuSZuueWW+Pnnn0dr66kMZw6ff/55LFu2LK655pq44YYbore3d+htKR+3i8P4/fffiwsvvLD46quviqIoimeffbZYtWrVv97v/vvvL+67777ikksuKXp7e4du/+mnn4oFCxYUP/30U1EURfHggw8WDz300OGW5RDqncWXX35ZtLe3F7t37y6Koii6urqKu+66a3Q2n0y9s/jb7t27i6VLlxZnnnlm6XvOqt5ZDA4OFosWLSreeuutoiiK4tVXXy3Wrl07OptPpt5ZfPTRR8WVV15Z9PX1FUVRFI8//nhx9913j87mExnOHAYGBor58+cXPT09RVEUxfvvv19ccsklRVHkfdw+bPBs2rSpWLZs2dBxtVot2trair179x70flu3bi2KoigWLlx40Bfwiy++WNxxxx1Dx9u3by8uuuiiujc+EdU7i507dxaffvrp0PE777xTXHvttSXvOqd6Z/G32267reju7hY8dah3Fr29vUVHR8fobDa5emfx/PPPF3feeefQ8ebNm32POgrDmUO1Wh2K/KIoir179xZnnnlmsWfPnrSP24c9pbVjx4445ZRTho6nTZsWxx9/fPz4448Hvd+55577n/efNWvW0PGsWbPil19+iT179hztk1ITVr2zOPnkk+OCCy4YOv7www/jnHPOKWezydU7i4gD//7VajUWL15c2j4ngnpnsW3btpg5c2Z0dnbGokWLYuXKlbFz585S95xVvbOYP39+bN26NXbt2hX79++Pt99+Oy6++OJS95zRcOYwbdq0uOqqq4aOP/zww5g9e3a0tramfdw+bPDUarVoamo66Lampqb4448/hrVArVaLKVOmDB1PmTIljjvuuKjVcv/NjjLUO4t/eu2112Lz5s1x6623jtT2JpR6Z9Hf3x+PPvporF69uoztTSj1zqKvry96e3vjpptuijfffDPmzZsX9957bxlbTa/eWbS1tcV1110Xl19+ecyfPz96e3tj1apVZWw1tSOdw7Zt22Lt2rXx0EMPDd0/4+P2YYNn6tSpMTAwcNBt/f39MW3atGEtMHXq1Pjzzz+HjgcGBqIoipg6deoRbpV6Z/G3jRs3xlNPPRUvvPBCVCqVkdzihFHvLJ566qlYsmTJQT9FcXTqncWMGTNi3rx5cc4558SkSZNi+fLlsXXr1qP6QWKiq3cWmzZtig8++CC2bNkSvb29sXTp0rjnnnvK2GpqRzKHL774IlauXBlr1qyJBQsWDN0/4+P2YYPntNNOi++//37o+Ndff409e/bEqaeeOqwF5syZE999993Q8fbt26NSqURra+tRbHdiq3cWERGvvPJKbNy4MTZs2HDQU54cmXpn8e6778b69eujvb092tvbIyKivb09fvjhh1L2m1m9szj55JMPegVKQ0NDRERMmuSqHUeq3lls2bIlLr300jjhhBNi0qRJsXjx4oNeOcTwDHcO27Zti9tvvz3WrVsXl1122dDtWR+3D/s/esGCBbFr166hlw6uX78+Fi5cOOzSu+KKK+LTTz8d+sdfv359LFmypI4tT1z1zmL37t2xbt26ePbZZ+Okk04qc6vp1TuL7u7u+Pjjj2PLli2xZcuWiDjwzf5I4pUD6p1Fe3t7/Pbbb7F58+aIiHjppZfivPPOi+bm5tL2nFW9s5gzZ0709PQMnTp577334owzzihtv1kNZw5FUURnZ2esXr06zj///IPun/Vxe1h/S+uTTz6JNWvWRK1Wi1mzZkVXV1f89ddfsWLFinj99dcjImLJkiUxODgYO3fujBNPPDGamprisccei7PPPjveeOONePLJJ2NwcDDOOuusWLNmzRGfhuGAembR09MTTz/99EGx09jYOHQ/jky9/y/+ae7cufHNN9+MxaeRQr2z+Prrr+Pee++NP//8M2bOnBkPP/yw041HqZ5ZzJs3Lx555JHYvHlzTJo0KSqVSjzwwANx+umnj/FnNf4cbg5bt26Nm2+++V8/ZD3xxBPR1taW8nHbHw8FANJzkhoASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEjv/wD+Zf+eruYNNwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAFkCAYAAADPDVqeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAO60lEQVR4nO3dXYiUdfvA8cscXdc3QtgyMl8ilJQ0giirEylcabcgqAM7SuxIUEIpPBAUStgMo6IgosxKPfAggtrYjTJS7MUswbMQckko7cHK3c3ZzZV5Dv7/lscn3WfVuWd35/p8wIOZXe/fTy+c+Tr3PTvjKpVKJQAAkrhmpDcAAFBL4gcASEX8AACpiB8AIBXxAwCkIn4AgFRKQ33xX//qqdU+Cjd1akP09vaP9DYIsxhNzGL0MIvRwyxGj8udRVPTtGF9X5pXfkql8SO9Bf6fWYweZjF6mMXoYRajR1GzSBM/AAAR4gcASEb8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUSiO9AYCiTJ3eGI0NxT7MlfsHore7XOgaQHWJH6BuNTaUYu7G9kLX6Gprid5CVwCqzWkvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASKU00hsAGMv6zp2PpqZpVTnWpY5T7h+I3u5yVdYAxA/AVZk0YXzM3dhe6BpdbS3RW+gKkIvTXgBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKn4bC8YI6ZOb4zGhur/k/3vD9P0IZpAvRM/MEY0NpQK/wDNCB+iCdQ/8QPUXFGvYgEMh0cfoOZq+SoWwH9zwTMAkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFW91By7Qd+78P37qM0A9ET/ABSZNGF/4z+Dx83eAkeS0FwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUimN9AagHkyd3hiNDf45AYwFHq2hChobSjF3Y3uha3S1tRR6fIAsnPYCAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIpTTSGwBgaH3nzkdT07TC1yn3D0Rvd7nwdWCkiR+AUW7ShPExd2N74et0tbVEb+GrwMhz2gsASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFRKI70BAPKYOr0xGhuKfeop9w9Eb3e50DUY28QPADXT2FCKuRvbC12jq60legtdgbHOaS8AIBXxAwCkIn4AgFRc80Pdq8UFlgCMHZ4RqHu1usASgLHBaS8AIBWv/DBinI4CYCR45mHE1OJ0VIRTUgBcyGkvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASKU00hsAYHToO3c+mpqmjfQ2oHDiB4CIiJg0YXzM3dhe6BpdbS2FHh+Gw2kvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJBKaaQ3AABj0dTpjdHYUOzTaLl/IHq7y4WukZH4AYAr0NhQirkb2wtdo6utJXoLXSEnp70AgFTEDwCQivgBAFJxzQ8XVfSFfE1N0wo7NgAMRfxwUbW6kA8Aak38jEG1eHslANQrz6BjkFdlAODKueAZAEhF/AAAqYgfACAV1/wAUFf6zp2/6h+n4cdx1DfxA0BdmTRhfOFvConwxpCxzGkvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEilNNIbqCdTpzdGY4O/UgCqo+/c+Whqmlb4GpMmjC90jYiIcv9A9HaXC19nODxTV1FjQynmbmwvfJ2utpbC1wBg5E2aML7w55WutpaaPXf1Fr7K8DjtBQCkIn4AgFTEDwCQyqi45qcWFwrX4qIxAGD0GxXxU4sLhWtxQZcLkQFg9HPaCwBIRfwAAKmIHwAglXGVSqUy0psAAKgVr/wAAKmIHwAgFfEDAKRSV/Hz1VdfxSOPPBLNzc2xatWqOHny5EW/r1KpxFtvvRWLFi2Kw4cPD95/8uTJWLRoUaxYsWLw1/bt22u1/bpytbP4T7t27YoFCxYUud26Vo1Z7NmzJ1paWqK5uTlWr14dv/zySy22XneqMYu9e/dGS0tLrFixIlavXn3JYzC0aszizz//jA0bNsTChQtrseW6VY1ZtLe3R2trazQ3N8fatWujp6dnyDXrJn7Onj0b69evj+eeey46Ozvjvvvuiy1btlz0ezdv3hzHjx+PGTNmXHB/d3d3zJo1Kzo6OgZ/bdiwoQa7ry/VmMXffv3119i7d2+Bu61v1ZjF999/Hzt27Ig9e/ZEZ2dn3HLLLdHW1laD3deXaszi6NGj8corr8Tbb78dHR0dMX/+/HjhhRdqsPv6Uq3HqJUrV8aNN95Y8G7rWzVm8fPPP8ezzz4bb7zxRnR2dkZTU1O89NJLQy9cqROfffZZ5bHHHhu83dvbW1m0aFGlp6fnH9975MiRSqVSqSxbtqzy7bffDt5/+PDhyqOPPlr8ZutcNWbxt3Xr1lXa29sr8+fPL27Ddawas+jq6qp89913g7f37dtXeeihhwrcdX2qxixOnDhROXTo0ODtTz/9tPLwww8XuOv6VK3HqCNHjlROnDhRufXWW4vdcB2rxizefffdylNPPTV4+9ixY5WlS5cOuW7dvPLT1dUVN9100+DtKVOmxLXXXhs//fTTP7739ttvv+gxenp64o8//ognnngimpubY926dXHq1KnC9lyvqjGLiIj9+/dHb29vPPjgg4XsM4NqzGLOnDlxxx13REREX19ffPjhh3H//fcXs+E6Vo1ZzJo1K+68887B2/v3748lS5ZUf7N1rlqPUUN9jeGpxiy6urpi9uzZg7dnz54dp0+fjjNnzlxy3bqJn3K5HA0NDRfc19DQEGfPnh32MWbMmBHLli2Lbdu2RXt7e8ycOTOefvrpam+17lVjFn19ffH888/H5s2bq729VKoxi79t27Yt7rnnnujp6Yknn3yyWltMo5qziIj44IMP4sCBA7F27dpqbC+Vas+CK1eNWZTL5Zg4ceLg7YkTJ8a4ceOiXC5f8veMig82vRyffPLJRc9xr1y5Mvr7+y+4r6+vL6ZMmTLsYy9evDgWL148eHvNmjVx9913x9mzZ2Py5MlXvuk6VeQsXnvttWhtbb2g5rm0Imfxt2eeeSbWr18fO3bsiFWrVrkW6xJqMYvdu3fHzp0745133ommpqYr3mu9q8UsGJ4iZzF58uT466+/Bm/39/dHpVIZ8nl7zMXP8uXLY/ny5f+4/4svvoiPPvpo8PZvv/0WZ86ciTlz5gz72KdPn45z587FzJkzI+L/riwfN25clEpj7q+pJoqcxb59++L333+PXbt2Dd537733xp49ey7rOFkUOYujR49GpVKJJUuWRKlUiscffzy2b98e3d3dMX369Krsv54UOYuIiPfffz92794du3btiuuvv/6q91vPip4Fw1fkLObNmxdff/314O1jx45FU1PTkI9PdXPa66677oqTJ08Ovv3tvffei2XLll3WKzYHDhyINWvWRG9vb0RE7Ny5M5YuXXrBy2n8b9WYRXt7e3z55Zdx8ODBOHjwYEREHDx40IPTZarGLH788cfYtGnT4FtHP//887jhhhuEz2WqxixOnToVL774Yrz55pvC5ypUYxZURzVm8cADD8ShQ4fi+PHjg8dobW0d8vfU1Wd7ffPNN7F169Yol8sxe/bsaGtri6ampjh16lSsXr16sC5bW1tjYGAgTpw4Edddd100NDTEtm3b4rbbbovt27dHZ2dnXHPNNXHzzTfHli1bPMhcgaudxX+efoyIWLBgQfzwww8j8UcZ86rx7+Lll1+Ojo6OqFQqMX369Ni0aZMLba/A1c7iq6++itdff/2Cx6RSqXTB/5wZnqudxfjx42PDhg2DX5s3b15ERHR0dIzkH2tMqsbzxccffxyvvvpqDAwMxMKFC2Pr1q1Dnjqrq/gBAPhf6ua0FwDAcIgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKn8G8Qw3bffSmTBAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2778,47 +3121,37 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 93, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The watermark extension is already loaded. To reload it, use:\n", - " %reload_ext watermark\n" - ] - } - ], + "outputs": [], "source": [ "%load_ext watermark" ] }, { "cell_type": "code", - "execution_count": 118, + "execution_count": 94, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "numpy 1.17.4\n", - "pymc3 3.8\n", - "pandas 0.25.3\n", - "arviz 0.5.1\n", - "seaborn 0.9.0\n", - "pystan 2.19.0.0\n", - "CPython 3.6.9\n", - "IPython 7.6.1\n", + "numpy 1.18.1\n", + "pandas 1.0.1\n", + "pymc3 3.8\n", + "seaborn 0.10.0\n", + "arviz 0.7.0\n", + "CPython 3.7.6\n", + "IPython 7.12.0\n", "\n", "theano 1.0.4\n", - "scipy 1.3.1\n", - "matplotlib 3.1.1\n", + "scipy 1.4.1\n", + "matplotlib 3.1.3\n", "\n", "compiler : GCC 7.3.0\n", "system : Linux\n", - "release : 4.15.0-72-generic\n", + "release : 4.15.0-91-generic\n", "machine : x86_64\n", "processor : x86_64\n", "CPU cores : 8\n", @@ -2846,14 +3179,14 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "2.19.0.0\n" + "2.19.1.1\n" ] } ], @@ -2864,7 +3197,7 @@ }, { "cell_type": "code", - "execution_count": 64, + "execution_count": 20, "metadata": {}, "outputs": [], "source": [ @@ -2895,7 +3228,7 @@ }, { "cell_type": "code", - "execution_count": 66, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -2912,19 +3245,19 @@ }, { "cell_type": "code", - "execution_count": 176, + "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "data2 = {'N': 16,\n", " 'n': 3,\n", " 'alpha': [1,1,1],\n", - " 'y_obs': valores.astype(int)}" + " 'y_obs': values.astype(int)}" ] }, { "cell_type": "code", - "execution_count": 177, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -2933,10 +3266,8 @@ }, { "cell_type": "code", - "execution_count": 178, - "metadata": { - "scrolled": true - }, + "execution_count": 24, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -2946,58 +3277,58 @@ "4 chains, each with iter=2000; warmup=1000; thin=1; \n", "post-warmup draws per chain=1000, total post-warmup draws=4000.\n", "\n", - " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "theta[1,1] 0.2991 0.0006 0.0648 0.1829 0.2522 0.2966 0.3427 0.4330 9140 0.9992\n", - "theta[2,1] 0.4897 0.0009 0.0695 0.3542 0.442 0.4900 0.5370 0.6221 5691 0.9992\n", - "theta[3,1] 0.4648 0.0004 0.0381 0.3924 0.4391 0.4640 0.4908 0.5395 8183 0.9991\n", - "theta[4,1] 0.4578 0.0006 0.0575 0.3446 0.4187 0.4574 0.4980 0.5702 7824 0.9995\n", - "theta[5,1] 0.4008 0.0008 0.0673 0.2730 0.3544 0.3998 0.4459 0.5341 7071 0.9996\n", - "theta[6,1] 0.4436 0.0006 0.0506 0.3463 0.4091 0.4438 0.4779 0.5423 6712 0.9992\n", - "theta[7,1] 0.5051 0.0005 0.0445 0.4156 0.4745 0.5061 0.5356 0.5891 7149 0.9995\n", - "theta[8,1] 0.5469 0.0004 0.0410 0.4673 0.5185 0.5464 0.5753 0.6270 7593 0.9993\n", - "theta[9,1] 0.5398 0.0011 0.0966 0.3465 0.4742 0.5425 0.6061 0.7266 7080 0.9997\n", - "theta[10,1] 0.4642 0.0005 0.0487 0.3709 0.4305 0.4641 0.4968 0.5605 6911 0.9994\n", - "theta[11,1] 0.5105 0.0005 0.0494 0.4135 0.4764 0.5113 0.5440 0.6046 7443 0.9994\n", - "theta[12,1] 0.5517 0.0004 0.0369 0.4764 0.5279 0.5525 0.5760 0.6232 7365 0.9990\n", - "theta[13,1] 0.4875 0.0009 0.0820 0.3276 0.4314 0.4880 0.5431 0.6477 8165 0.9997\n", - "theta[14,1] 0.5253 0.0006 0.0555 0.4165 0.4872 0.5252 0.5632 0.6319 7278 1.0000\n", - "theta[15,1] 0.5356 0.0005 0.0447 0.4460 0.5057 0.5359 0.5664 0.6221 7475 0.9997\n", - "theta[16,1] 0.5472 0.0005 0.0527 0.4434 0.5116 0.5479 0.5826 0.6524 9245 0.9991\n", - "theta[1,2] 0.6003 0.0007 0.0677 0.4625 0.5548 0.6006 0.6473 0.7276 8988 0.9991\n", - "theta[2,2] 0.4699 0.0008 0.0696 0.3344 0.4218 0.4686 0.5177 0.6061 6244 0.9992\n", - "theta[3,2] 0.4111 0.0004 0.0377 0.3392 0.3850 0.4113 0.437 0.4855 7224 0.9992\n", - "theta[4,2] 0.5139 0.0006 0.0578 0.4025 0.4736 0.5128 0.5536 0.6274 8235 0.9994\n", - "theta[5,2] 0.4792 0.0008 0.0690 0.3463 0.4324 0.4779 0.5249 0.6140 7355 0.9994\n", - "theta[6,2] 0.4425 0.0006 0.0502 0.3478 0.408 0.4416 0.4764 0.5423 7003 0.9993\n", - "theta[7,2] 0.3858 0.0005 0.0438 0.3022 0.3561 0.3844 0.4139 0.4761 7283 0.9998\n", - "theta[8,2] 0.3381 0.0004 0.0391 0.2630 0.3110 0.3374 0.3644 0.4151 8666 0.9995\n", - "theta[9,2] 0.2926 0.0011 0.0915 0.1321 0.2252 0.2855 0.3532 0.4864 6311 0.9998\n", - "theta[10,2] 0.4041 0.0005 0.0488 0.3073 0.3699 0.4037 0.4367 0.5015 7187 0.9994\n", - "theta[11,2] 0.4016 0.0005 0.0493 0.3088 0.3678 0.4007 0.4342 0.5031 7216 0.9997\n", - "theta[12,2] 0.351 0.0003 0.0353 0.2844 0.3272 0.3504 0.3745 0.4219 8114 0.9991\n", - "theta[13,2] 0.458 0.0009 0.0828 0.3007 0.4000 0.4561 0.5148 0.6215 7876 1.0002\n", - "theta[14,2] 0.3491 0.0006 0.0538 0.2496 0.3107 0.3481 0.3852 0.4595 6858 0.9994\n", - "theta[15,2] 0.3694 0.0005 0.0434 0.2889 0.3377 0.3688 0.3998 0.4543 6889 0.9997\n", - "theta[16,2] 0.3602 0.0005 0.0507 0.2640 0.3246 0.3592 0.3942 0.4628 9029 0.9994\n", - "theta[1,3] 0.1004 0.0004 0.0426 0.0338 0.0690 0.0951 0.1263 0.1986 7610 0.9992\n", - "theta[2,3] 0.0403 0.0003 0.0277 0.0051 0.0193 0.0339 0.0546 0.1108 6664 0.9992\n", - "theta[3,3] 0.1239 0.0003 0.0258 0.0775 0.1048 0.1224 0.1415 0.1778 7460 0.9995\n", - "theta[4,3] 0.0282 0.0002 0.0201 0.0035 0.0130 0.0237 0.0385 0.0795 7269 1.0001\n", - "theta[5,3] 0.1199 0.0005 0.0453 0.0476 0.0873 0.1146 0.1463 0.2256 7672 0.9995\n", - "theta[6,3] 0.1138 0.0003 0.0323 0.0577 0.0909 0.1107 0.1340 0.1851 7348 0.9997\n", - "theta[7,3] 0.1090 0.0003 0.0286 0.0597 0.0889 0.1066 0.1263 0.1730 8172 1.0\n", - "theta[8,3] 0.1149 0.0003 0.0265 0.0676 0.0962 0.1129 0.1318 0.1723 7691 0.9993\n", - "theta[9,3] 0.1674 0.0009 0.0753 0.0476 0.1101 0.1594 0.2143 0.3385 6826 1.0004\n", - "theta[10,3] 0.1316 0.0003 0.0327 0.0747 0.1082 0.1290 0.1530 0.2004 7045 0.9994\n", - "theta[11,3] 0.0878 0.0003 0.0268 0.0426 0.0684 0.0851 0.1043 0.1490 8129 0.9994\n", - "theta[12,3] 0.0972 0.0002 0.0219 0.0581 0.0817 0.0958 0.1109 0.1449 8508 0.9996\n", - "theta[13,3] 0.0544 0.0004 0.0363 0.0071 0.0273 0.0475 0.0724 0.1435 6322 0.9996\n", - "theta[14,3] 0.1254 0.0004 0.0363 0.0615 0.0999 0.1225 0.1478 0.2084 8258 0.9998\n", - "theta[15,3] 0.0948 0.0003 0.026 0.0506 0.0763 0.0926 0.1110 0.1524 6993 0.9995\n", - "theta[16,3] 0.0924 0.0003 0.0305 0.0424 0.0706 0.0890 0.1112 0.1597 6543 0.9993\n", - "lp__ -1.4147e3 0.1016 4.1023-1.4236e3-1.4173e3-1.4143e3-1.4117e3-1.4076e3 1628 1.0021\n", + " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", + "theta[1,1] 0.301 7.22e-4 0.065 0.182 0.255 0.3 0.344 0.436 7991 1.0\n", + "theta[2,1] 0.488 7.87e-4 0.07 0.351 0.441 0.489 0.536 0.625 7995 1.0\n", + "theta[3,1] 0.465 4.0e-4 0.038 0.391 0.438 0.464 0.49 0.541 9070 0.999\n", + "theta[4,1] 0.459 7.02e-4 0.06 0.343 0.417 0.458 0.5 0.578 7298 0.999\n", + "theta[5,1] 0.4 7.67e-4 0.066 0.276 0.355 0.399 0.443 0.536 7367 1.0\n", + "theta[6,1] 0.443 6.13e-4 0.05 0.347 0.408 0.443 0.476 0.543 6765 1.0\n", + "theta[7,1] 0.504 5.46e-4 0.046 0.415 0.473 0.504 0.536 0.595 6994 0.999\n", + "theta[8,1] 0.548 4.61e-4 0.041 0.467 0.52 0.547 0.575 0.629 7930 1.0\n", + "theta[9,1] 0.541 0.001 0.1 0.343 0.472 0.543 0.611 0.735 7726 0.999\n", + "theta[10,1] 0.465 5.76e-4 0.051 0.369 0.43 0.465 0.5 0.564 7693 0.999\n", + "theta[11,1] 0.51 5.07e-4 0.048 0.417 0.476 0.51 0.543 0.603 9087 0.999\n", + "theta[12,1] 0.552 4.02e-4 0.037 0.478 0.527 0.552 0.577 0.624 8426 0.999\n", + "theta[13,1] 0.487 9.2e-4 0.081 0.335 0.429 0.488 0.545 0.648 7723 1.0\n", + "theta[14,1] 0.525 6.54e-4 0.055 0.418 0.489 0.525 0.562 0.635 7082 1.0\n", + "theta[15,1] 0.536 4.91e-4 0.044 0.45 0.507 0.535 0.565 0.621 7920 1.0\n", + "theta[16,1] 0.546 6.32e-4 0.053 0.443 0.51 0.547 0.583 0.649 7067 1.0\n", + "theta[1,2] 0.599 7.83e-4 0.069 0.462 0.553 0.6 0.647 0.732 7787 1.0\n", + "theta[2,2] 0.47 7.91e-4 0.07 0.34 0.422 0.469 0.517 0.61 7829 1.0\n", + "theta[3,2] 0.412 4.41e-4 0.037 0.338 0.387 0.412 0.437 0.485 7109 0.999\n", + "theta[4,2] 0.513 7.16e-4 0.06 0.399 0.471 0.514 0.555 0.626 6944 0.999\n", + "theta[5,2] 0.48 8.11e-4 0.068 0.344 0.433 0.48 0.528 0.612 7117 1.0\n", + "theta[6,2] 0.443 6.49e-4 0.05 0.346 0.409 0.443 0.477 0.546 6048 1.0\n", + "theta[7,2] 0.387 4.95e-4 0.045 0.303 0.356 0.385 0.417 0.477 8197 0.999\n", + "theta[8,2] 0.338 4.58e-4 0.039 0.264 0.312 0.337 0.363 0.415 7136 0.999\n", + "theta[9,2] 0.292 0.001 0.09 0.131 0.228 0.286 0.351 0.484 6683 0.999\n", + "theta[10,2] 0.403 5.7e-4 0.049 0.31 0.369 0.403 0.436 0.503 7420 0.999\n", + "theta[11,2] 0.402 5.18e-4 0.047 0.312 0.37 0.402 0.434 0.494 8376 1.0\n", + "theta[12,2] 0.351 3.93e-4 0.034 0.285 0.329 0.351 0.373 0.421 7492 0.999\n", + "theta[13,2] 0.458 9.36e-4 0.08 0.304 0.403 0.456 0.514 0.614 7343 1.0\n", + "theta[14,2] 0.35 6.47e-4 0.053 0.251 0.312 0.348 0.387 0.452 6700 1.0\n", + "theta[15,2] 0.369 4.5e-4 0.042 0.291 0.34 0.368 0.397 0.449 8556 1.0\n", + "theta[16,2] 0.361 6.08e-4 0.051 0.262 0.326 0.36 0.395 0.468 7159 0.999\n", + "theta[1,3] 0.1 4.47e-4 0.041 0.034 0.07 0.096 0.126 0.195 8533 0.999\n", + "theta[2,3] 0.041 3.66e-4 0.028 0.006 0.02 0.035 0.056 0.112 5936 1.0\n", + "theta[3,3] 0.124 2.9e-4 0.025 0.078 0.106 0.122 0.14 0.176 7558 1.0\n", + "theta[4,3] 0.028 2.4e-4 0.02 0.004 0.013 0.023 0.037 0.076 6610 0.999\n", + "theta[5,3] 0.121 5.6e-4 0.046 0.046 0.087 0.116 0.149 0.222 6738 0.999\n", + "theta[6,3] 0.114 3.67e-4 0.032 0.059 0.09 0.111 0.135 0.183 7768 0.999\n", + "theta[7,3] 0.109 3.21e-4 0.029 0.061 0.088 0.107 0.127 0.17 7954 0.999\n", + "theta[8,3] 0.115 3.21e-4 0.026 0.069 0.096 0.113 0.131 0.171 6764 1.0\n", + "theta[9,3] 0.167 8.95e-4 0.076 0.05 0.111 0.158 0.213 0.341 7185 1.0\n", + "theta[10,3] 0.132 3.61e-4 0.034 0.073 0.107 0.129 0.153 0.206 8845 1.0\n", + "theta[11,3] 0.088 2.94e-4 0.027 0.041 0.069 0.085 0.104 0.152 8509 1.0\n", + "theta[12,3] 0.097 2.62e-4 0.022 0.059 0.081 0.096 0.111 0.145 7111 0.999\n", + "theta[13,3] 0.054 4.98e-4 0.038 0.006 0.027 0.046 0.073 0.15 5718 1.0\n", + "theta[14,3] 0.125 4.77e-4 0.038 0.063 0.097 0.121 0.15 0.209 6448 1.0\n", + "theta[15,3] 0.096 3.12e-4 0.026 0.051 0.076 0.093 0.113 0.152 7006 1.0\n", + "theta[16,3] 0.093 3.61e-4 0.031 0.042 0.07 0.09 0.112 0.16 7287 1.0\n", + "lp__ -1.41e3 0.103 4.0 -1.42e3 -1.42e3 -1.41e3 -1.41e3 -1.41e3 1502 1.0\n", "\n", - "Samples were drawn using NUTS at Mon Dec 9 22:34:31 2019.\n", + "Samples were drawn using NUTS at Fri Mar 27 17:06:10 2020.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -3005,12 +3336,12 @@ } ], "source": [ - "print(fit.stansummary(digits_summary=5))" + "print(fit.stansummary(digits_summary=3))" ] }, { "cell_type": "code", - "execution_count": 179, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -3019,16 +3350,59 @@ }, { "cell_type": "code", - "execution_count": 183, + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4000, 16, 3)" + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "samples.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.28969053, 0.55576013, 0.46880875, 0.62499109, 0.31250517,\n", + " 0.45638551, 0.51475111, 0.54379053, 0.50190306, 0.53247051,\n", + " 0.49688836, 0.55487369, 0.47213411, 0.56546164, 0.5566992 ,\n", + " 0.5919083 ])" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "samples[0, :, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.10047556624303831" + "0.10000779136186363" ] }, - "execution_count": 183, + "execution_count": 28, "metadata": {}, "output_type": "execute_result" } @@ -3039,7 +3413,7 @@ }, { "cell_type": "code", - "execution_count": 184, + "execution_count": 29, "metadata": {}, "outputs": [], "source": [ @@ -3052,28 +3426,28 @@ }, { "cell_type": "code", - "execution_count": 185, + "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.26316683, -0.46907552, -0.18810958, ..., 0.01134663,\n", - " -0.02195103, -0.4870123 ],\n", - " [ 0.04889463, 0.39351895, -0.1193489 , ..., -0.08524156,\n", - " 0.11291295, -0.03893748],\n", - " [-0.10991316, 0.13760039, 0.14554263, ..., 0.10282834,\n", - " 0.02578634, 0.01062272],\n", + "array([[-0.35447872, -0.17297568, -0.17596767, ..., -0.2805937 ,\n", + " -0.47618688, -0.13276545],\n", + " [ 0.15755553, -0.0566407 , 0.03664864, ..., 0.11863572,\n", + " -0.0685502 , 0.06912136],\n", + " [ 0.04329983, 0.14636458, 0.10092675, ..., 0.24371403,\n", + " -0.00409195, -0.03231013],\n", " ...,\n", - " [ 0.09066012, 0.06472593, 0.07636403, ..., 0.19946736,\n", - " 0.07081995, 0.20796647],\n", - " [ 0.23329006, 0.29721636, 0.13941577, ..., 0.20717848,\n", - " 0.12005161, 0.24211568],\n", - " [ 0.09777631, 0.23095916, 0.05175801, ..., 0.30393431,\n", - " 0.07606157, 0.15274686]])" + " [ 0.22064079, 0.24680335, 0.09860484, ..., 0.09248436,\n", + " 0.13465215, 0.08122155],\n", + " [ 0.22483055, 0.15969287, 0.10511641, ..., 0.21970223,\n", + " 0.14075503, 0.0461641 ],\n", + " [ 0.27342662, 0.16853591, 0.18921759, ..., 0.28294102,\n", + " 0.16541389, 0.16547692]])" ] }, - "execution_count": 185, + "execution_count": 30, "metadata": {}, "output_type": "execute_result" } @@ -3085,7 +3459,30 @@ }, { "cell_type": "code", - "execution_count": 186, + "execution_count": 31, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.13276545, 0.06912136, -0.03231013, 0.16520493, -0.16403938,\n", + " 0.06041195, 0.02550831, 0.19337253, -0.0194513 , 0.03460096,\n", + " 0.16171201, 0.16481575, -0.24930883, 0.08122155, 0.0461641 ,\n", + " 0.16547692])" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diff3[:, 3999]" + ] + }, + { + "cell_type": "code", + "execution_count": 32, "metadata": {}, "outputs": [], "source": [ @@ -3094,14 +3491,34 @@ }, { "cell_type": "code", - "execution_count": 187, + "execution_count": 33, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQ60lEQVR4nO3dX2id9f3A8U/a056kNkE6joq0tVYvxGIdU6niQAvFxCX4J+As3szhxUbRXYwNCtIx/SkGndvNkFoUq1Vk4r9CMxUdigr+2RhMvGhZ1bDiaNk62iT2JDb1+V2IR4/rn3QnT9J88npBwZ5/3+f5+vR73pzn/GkriqIIAIDE5s30BgAAlE3wAADpCR4AID3BAwCkJ3gAgPQEDwCQXuV4V/7rXyPTtR0zavHiaoyOjs/0ZpzSzNGJmaMTM0cnZo6Oz/yc2Fyeo1qt85jXeYUnIiqV+TO9Cac8c3Ri5ujEzNGJmaPjMz8nZo6OTvAAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANKrzPQGAKeWxV0d0VEtb2mo1TqjPj4Ro8P10sYA+DbBAzTpqFZixcbBUscYGuiN0VJHAGjmlBYAkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6fksLmHZjh49ErdZZ+jh+pBT4iuCBWaLsXzGfTu0L5pf+A6URfqQU+FqO1RPmgOn4FfOILyMBIBvv4QEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6lZneAICyjB0+ErVaZ6lj1McnYnS4XuoYQOsED5BW+4L5sWLjYKljDA30xmipIwBTwSktACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqVmd4AyGBxV0csWDA/arXOmd4UAI5C8MAU6KhWYsXGwVLHGBroLfXxATJzSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC9ykxvAMBsNnb4SNRqnVP6mN9+vPr4RIwO16d0DJhrBA9AC9oXzI8VGwdLHWNooDdGSx0B8nNKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC9ykxvAJRtcVdHdFQd6gBzmWcB0uuoVmLFxsFSxxga6C318QFojVNaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJBeZaY3AIDjGzt8JGq1ztLHqY9PxOhwvfRxYCYIHoBTXPuC+bFi42Dp4wwN9MZo6aPAzHBKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6vniQGbO4qyM6qg5BAMrn2YYZ01GtTNu3xwIwtzmlBQCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9CozvQEAnBrGDh+JWq2z1DHq4xMxOlwvdQw4GsEDQEREtC+YHys2DpY6xtBAb4yWOgIcnVNaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSq8z0BnBqWtzVER3V5sOjVuucoa0BgNYIHo6qo1qJFRsHSx1jaKC31McHgK84pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkV5npDQBg7hg7fCRqtc6WHuNE96+PT8TocL2lMchH8AAwbdoXzI8VGwdLHWNooDdGSx2B2cgpLQAgPcEDAKQneACA9AQPAJCe4AEA0vMprVlocVdHdFT9rwOAyfKsOQt1VCvT8rFOAMjCKS0AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS82vpAKQydvhI1GqdpY9TH5+I0eF66eMwNQQPAKm0L5gfKzYOlj7O0EBvjJY+ClPFKS0AID3BAwCkJ3gAgPQEDwCQnjctT6HFXR3RUTWlAHCq8ew8hTqqlWn7ZAAAMHlOaQEA6QkeACA9wQMApCd4AID0vGkZAP4H0/GbXX6va+oIHgD4H0zHb3b5va6pc0oEz3R8f41KBmC2+V9fRTqZ+8yV58dTInim4/trVDIAs810vIq08/96Sj81FzHzYdVWFEUxY6MDAEwDn9ICANITPABAeoIHAEgvXfC88847ceONN0Z3d3f8+Mc/jr179/7XbXbu3Bnr16+P7u7uWL9+fezcubNx3TPPPBO9vb3R09MTt912W+P+27dvj0suuSR6enoaf1599dVp26+p0sr87N27N1atWtU0Bw8++GBERBRFEb/5zW+iu7u76fLZqJU5evzxx5vmZ926dbFmzZqIiHjooYdizZo1Tdd/8MEH07pvU2Uyc1QURTz66KOxatWq+Mtf/tJ03eDgYPT19UV3d3fccccdMTIy0rjPXDqOjjdH2deiiNbmyHr0tWPN0VxZjyatSOSzzz4rLr/88uLDDz8siqIoHnnkkeInP/nJf92up6enePXVV4uiKIqXXnqp6OvrK4qiKP72t78VV155ZbFv376iKIpiYGCg+PnPf14URVFs27at2LRp03TsRmlanZ9du3YV11xzzVEfe8eOHcVNN91UjI+PF2NjY0V/f3/x8ssvl7Qn5Wl1jr5ty5YtxX333VcUxZfH0+bNm0va8ukz2TnatGlTceeddxbf//73iz//+c+Nyz/99NNizZo1xaeffloURVHcddddxd13310Uxdw7jo41R9nXoqJofY6sR1871hx9W8b16GSkeoXn3XffjWXLlsWqVasiImL9+vXx9ttvx+jo1x9I37VrV4yMjMS6desiIqKnpyf2798fH330USxZsiR+97vfxRlnnBEREZdeemns3r07IiJGRkais7P8j+2VqdX5GRkZia6urqM+9ssvvxw33nhjLFy4MKrVavT398dLL71U/k5NsVbn6Jv+/e9/x9NPPx0bNmyIiBzHUMTk5igior+/P+65555YsGBB0+V/+tOf4oorroizzz47IiJuueWWxrEyl46jiGPPUfa1KKL1ObIefe1Yc/RNWdejk5EqeIaGhmLZsmWNv5922mlx+umnxz/+8Y+m2yxdurTpfsuWLYuPP/44li5dGpdddlnj8jfffDMuvvjiiIgYHh6Ov/71r/HDH/4wenp6YmBgID7//POS92hqtTo/IyMjceDAgbj11luju7s7fvazn8W+ffsa91u+fHnjPsuXL4+PP/645D2aeq3O0Tc9+uij0d/f31iUh4eH47XXXov+/v74wQ9+EJs3b45iFn4rxGTmKCLiu9/97jHv/+1jZf/+/XHw4ME5dRxFHHuOsq9FEa3PkfXoa8eao2/Kuh6djFTBU6/Xo1qtNl1WrVbj0KFDJ3WbiIgXX3wx3nrrrbjjjjsiIuKCCy6ItWvXxhNPPBF/+MMf4oMPPogtW7aUtCflaHV+lixZEmvXro37778/BgcH46yzzopf/vKXR71fe3t71Ouz75s7p+oYGhkZie3bt8ctt9zSuOySSy6JdevWxTPPPBOPPfZYvPjii7F9+/aS9qQ8k/03dLz7L1y4sPH3hQsXRltbW9Tr9Tl1HE1WxrUoovU5sh5NXub16GScEt+0PFUWLVoU4+PjTZeNjY3FaaeddlK3eeqpp2Lr1q3x+OOPR61Wi4iI66+/vnF9e3t73HrrrbFly5a4/fbby9iVUrQ6P6tXr47Vq1c3Lt+wYUNcfvnlcejQoejo6Gi6X71ej0WLFpW0J+WZqmPo9ddfj9WrV8eSJUsal/3oRz9q/PeZZ54ZN998c7z++utxww03TPVulGoy+3+i+3/zFYnx8fEoiiIWLVo0p46jyci6FkW0PkfWo8nLvB6djFSv8KxcuTI++eSTxt//85//xMGDB+Occ85pus3Q0FB88cUXERExMTERQ0NDcd5550VExPPPPx9PPfVUPPnkk00vJe7Zs6fxSZKIL98VX6nMrl5sdX7279/f9AmBoiiira0tKpVKrFy5sukl4927d8f5558/DXs1tabiGIqIeOONN+Kqq65qeuzdu3c3LV6z8RiKmNwcHc+5557bdKz8/e9/j1qtFl1dXXPqODqRzGtRROtzZD2avMzr0clIFTxr1qyJvXv3Nj6Wt23btli7dm1T2Z9//vlRq9Vix44dEfHly8VLly6Nc889N/bt2xe//e1v45FHHokzzzyz6bEfeuiheOCBB6IoihgfH4+nn346rr766mnbt6nQ6vy89dZbsWHDhsYb5rZu3RpXXHFFLFy4MK699tp49tln49ChQ/HZZ5/Fc889F729vdO/ky1qdY6+snPnzqYAioi4++67Y+vWrRERcfDgwXjhhRdm3TEUMbk5Op5169bF+++/31jIt23bFn19fRERc+o4Op7sa1FE63NkPZq8zOvRyUj3W1rvvfde3HvvvVGv12P58uUxMDAQX3zxRdx2222NJ6hdu3bFpk2b4sCBA/Gd73wn7rnnnjjvvPPi4Ycfjs2bNzctMJVKJXbs2BEHDhyITZs2xa5du6KtrS2uuuqq+MUvftH0XoTZoJX5KYoiHnzwwXjllVdi3rx5sXLlyvj1r3/dmK+vrmtra4u+vr7Gew5mm1bm6Cvf+9734tlnn42VK1c2LtuzZ0/86le/in/+858xb968uO666+KnP/1ptLW1Tfs+tmoyc9TX1xcTExOxZ8+eOOOMM6Jarcb9998fq1evjj/+8Y/x+9//PiYmJuLCCy+Me++9t/Ey/Vw6jo41R++88076tSiitTm66KKLrEeT+LcWkX89mqx0wQMA8G2pTmkBAByN4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQ3v8DD4IY3dm/5eAAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "(4000,)" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "res2.shape" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAHwCAYAAABNBkuaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dfZRcdX348c/MJFDCbiJZ5MEokKQuKiBEipwiKME+QE85SvxxIiCC1R6ElgQtArGlWNAmxWKCAcFApG0OkYPKcwhWDVhrsFabeCAkJWEoGEBTIA+7MSFh9v7+oLuw7iZsQnbvZzev1zn8wZ2dud+db7539n13Zm+lKIoiAAAAEqiWPQAAAIBOAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSGNbXL1y7dm1/jmPIGDVqVKxfv77sYRDmIhNzkYN5yMNc5GAe8jAXefR1LvbZZ59+G4PfoOxi1aqnNAtzkYe5yME85GEucjAPeZiLPDLMRfkjAAAA+D8CBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQwrewAAbF+lUolqddecT6rVam/4MTo6OqIoil0wGgDoSaAAJFapVKK5eVTUapVd8ngjR458w4/RaBTR1rZepADQLwQKQGLVajVqtUpcMq0t6vVG2cOJceNqcfX05qhWq9FolD8eAIYegQIwCNTrjVi+QhAAMPT5kDwAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIYVvYAADKqVCpRrZZ/DifDGABgIAkUgN9SqVSiuXlU1GqVsocCALsdgQLwW6rVatRqlbhkWlvU641Sx3LC8cNj6oV7lzoGABhIAgVgG+r1RixfUW6gjB1bK3X/ADDQvLkZAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkMawsgcAwOBTreY4v9XR0RFFUZQ9DAB2IYECQJ/t21KJRqOIpqamsocSERGNRhFtbetFCsAQIlAA6LPmkdWo1SpxybS2qNcbpY5l3LhaXD29OarVajQa5Y4FgF1HoACww+r1RixfIQoA2PVyvIkYAAAgBAoAAJCIQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIYVvYAADpVKpWoVss/b5JhDACwuxIoQAqVSiWam0dFrVYpeygAQIkECpBCtVqNWq0Sl0xri3q9UepYTjh+eEy9cO9SxwAAuyuBAqRSrzdi+YpyA2Xs2Fqp+weA3Zk3WgMAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANIaVPQAAeCOq1Rzn2jo6OqIoirKHATDoCRQABqV9WyrRaBTR1NRU9lAiIqLRKKKtbb1IAXiDBAoAg1LzyGrUapW4ZFpb1OuNUscyblwtrp7eHNVqNRqNcscCMNgJFAAGtXq9EctXiAKAoSLHG3cBAABCoAAAAIkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhjWNkDAMpVqVSiWu3/cxW1Wm27tw/EGACA/AQK7MYqlUo0N4+KWq3S7/saOXJkv+8DABj8BArsxqrVatRqlbhkWlvU641Sx3LC8cNj6oV7lzoGAKB8AgWIer0Ry1eUGyhjx27/LWAAwO7Bm74BAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASGNY2QMAgKGiWu37eb9ardZv4+jo6IiiKPrt8QH6k0ABgDdo35ZKNBpFNDU19fk+I0eO7LfxNBpFtLWtFynAoCRQAOANah5ZjVqtEpdMa4t6vVHqWMaNq8XV05ujWq1Go1HuWAB2hkABgF2kXm/E8hWiAOCN8CF5AAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkMazsAcDuplKpRLWa49xAlnEAAHQSKDCAKpVKNDePilqtUvZQAABSEigwgKrVatRqlbhkWlvU642yhxMnHD88pl64d9nDAADoIlCgBPV6I5avKD9Qxo6tlT0EAIBuvAEdAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQxrOwBAAC7XrWa4xxkR0dHFEVR9jCAQUSgAMAQsm9LJRqNIpqamsoeSkRENBpFtLWtFylAnwkUABhCmkdWo1arxCXT2qJeb5Q6lnHjanH19OaoVqvRaJQ7FmDwECgAMATV641YvkIUAINPjjeoAgAAhEABAAASESgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANIaVPQAYCJVKJarV8ns8wxgAADITKAx5lUolmptHRa1WKXsoAAC8DoHCkFetVqNWq8Ql09qiXm+UOpYTjh8eUy/cu9QxAABkJlDYbdTrjVi+otxAGTu2Vur+AQCy84Z4AAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQwrewAAwNBWreY5H9rR0RFFUZQ9DGA7BAoA0C/2balEo1FEU1NT2UPp0mgU0da2XqRAYgIFAOgXzSOrUatV4pJpbVGvN8oeTowbV4urpzdHtVqNRqP88QC9EygAQL+q1xuxfIUgAPomz5tCAQCA3Z5AAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkMawsgfA0FWpVKJaLbeBa7Va6WMAAKDvBAr9olKpRHPzqKjVKqWOY+TIkaXuHwCAHSNQ6BfVajVqtUpcMq0t6vVGqWM54fjhMfXCvUsdAwAAfSNQ6Ff1eiOWryg3UMaOrZW6fwAA+s6b8wEAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDRcSR4A2K1Uq6+en63VaqWNo6OjI4qiKG3/kJVAAQB2C/u2VKLRKKKpqalr28iRI0sbT6NRRFvbepECv0WgAAC7heaR1ajVKnHJtLao1xuljmXcuFpcPb05qtVqNBrljgWyESgAwG6lXm/E8hWiALLyIXkAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGv7M8BBTqVS6XSG3LBnGAADA4CNQhpBKpRLNzaOiVquUPRQAANgpAmUIqVbzXCH3hOOHx9QL9y51DAAADD4CZQjKcIXcsWNrpe4fAIDByQcFAACANAQKAACQhkABAADSECgAAEAaPiQPAFCSLNcN6+joiKIoyh4GRIRAAQAYcPu2VKLRKKKpqansoURERKNRRFvbepFCCgIFAGCANY/Mc+2yceNqcfX05qhWq9FolDsWiBAoAAClyXDtMshGoAAAUPrnYWq1Vy7y7PMwCBQAgN1Yls/DjBw5MiJ8HoZBGiiVSqX0yu9UFEVUKpVu2zrPAAy0LM8JADB4+DwM2Qy6QKlUKtHcPCpqtcrrf/EAaDSKHmPpPAMAADBYZPo8TKaTrr2djC7L7vL2t0EXKNXqK5V/45zfxLPPdpQ6lncfUYv/95G9UozlteMZN66c3+C81lvHvHJgMZbuMo0lItd4jKV3mcYSkWs8xtI7Y9m2TOMxlt69Z8KwFG83e63eTkaXZXd5+1ulGOrfIQAAMGjk+f0ZAACw2xMoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQx6K6Dsis9//zzMWvWrHjooYdi3bp1ccABB8Sf/umfxgUXXBB77LHHdu/b3t4e119/fXz3u9+NNWvWREtLS/zhH/5hTJkypceFGp966qmYNWtWLF68ODZv3hxjxoyJiRMnxqc//elobm7u+rqLL7447r333m3uc9myZTFs2NCcsoGYi5kzZ8aNN964zcf513/91zj44IO7/n/ZsmVx7bXXxpIlS+Kll16K8ePHxznnnBMf/vCH3/g3nFR/z8Pq1avjgx/84HYf573vfW/MmzcvIqyJnZ2LiIiXX345vvrVr8acOXPimGOO6XpO38h+rIn+m4f//d//jdmzZ8eiRYti/fr18Za3vCWOPfbYuPDCC+PNb35z19ft6HFsKBmIufjWt74Vf/M3f7PNx7jlllviuOOO6/r/p59+OmbOnBkPP/xwtLe3x0EHHRSnn356nHvuuWku7LerDcQ8HHroodt9jDFjxsSiRYsiwpp4I6/ZX/va1+L++++P559/Pvbbb7+YMGFCTJkypcfzVcbrxNB8Ze+D3/zmN3HWWWfFr3/96/jEJz4RY8eOjV/84hfx9a9/PR5//PH42te+ts37dnR0xHnnnRdLly6Ns846Kw4//PB44okn4pZbboklS5bEbbfdFsOHD4+IiMcffzwmT54cI0aMiHPOOScOPPDA+OlPfxpz586Nn//85zF//vyuq6W2t7fHiBEjYvr06b3ut1Yr/wJK/WGg5qK9vT0iIv7hH/4hfud3fqfHY732h4AVK1bExz72sdhnn33iL//yL2PUqFGxYMGCuPTSS2PdunVx7rnn7tonIYGBmIeWlpa49tpre32MF154Ia666qoYP3581zZrYsfnIiLiueeei89+9rOxYsWK7V7Ma0f2Y0303zysWbMmJk2aFJs2bYqzzjorxo0bF8uWLYtvfvObsXjx4rjnnntixIgREbFjx7GhZKDmoq2tLSIiLr300njLW97S4/bX/uD861//Oj760Y9GR0dH/Nmf/VkccMAB8W//9m8xY8aMePbZZ+Ov//qvd/K7zWug5mFbrxMvvfRSXH755T1eJyKsiR2Zi40bN8bkyZPj6aefjsmTJ8fhhx8eTz75ZMybNy9+9KMfxb333hv777//Du9nl75OFLup66+/vmhtbS0WLFjQbfuXv/zlorW1tfjhD3+4zfveddddRWtrazFnzpxu2+fPn1+0trYW8+fP79p29tlnF4cddlixatWqbl975ZVXFq2trcX999/fte2MM84oTjzxxDfybQ1KAzUXF198cXHooYcWjUbjdcd0zjnnFEcccUSxevXqrm2NRqOYPHlyceSRRxZr167t67c3aAzUPGzL5z73ueKYY44pXnjhha5t1sSOz0VRFMWxxx5bnHzyycXKlSuL1tbW4mMf+9gb3o818apdPQ+XXXZZ0draWixevLjb9rlz5xatra3FTTfd1LVtR45jQ8lAzcXMmTOL1tbW4umnn37dMX3+858vWltbi6VLl3bbftFFFxXveMc7ipUrV77uYww2AzUP2zJr1qweP1NZEzs+F7Nnzy5aW1uL22+/vdv2Bx54oGhtbS2+8IUv7NR+duXrxG77GZR77rknRo8eHSeffHK37WeccUZExHbfVnLPPfdErVaLj370o922T5o0Kfbcc8+u+xZFEePHj4+zzz67W+1HRLzvfe+LiIj//u//7trW1tYWTU1NO/9NDVIDMRcRrzy/I0aM6PqN1basWbMmfvKTn8SJJ54YY8aM6dperVZj8uTJsWnTpvje977X5+9vsBioeejNz372s7j77rtj6tSpMXr06K7t1sSOz0VExPHHHx/f/va343d/93d3yX6sif6dhwMPPDBOO+20+P3f//1u27f1OtGX49hQM1Bz0Xk2/rVvv+7N1q1bY+HChXHYYYfFkUce2WNMHR0dcd999233MQajgZqH3jz11FNx8803x8c//vFuP1NZEzs+F6NGjYo//uM/jlNPPbXb9t6OOWW9Tuxes/l/2tvb48knn4zDDz+8xz/oMWPGxOjRo+ORRx7Z5v0fffTROOSQQ3ocwPbcc89obW2NZcuWRUdHR1Qqlbjiiivi0ksv7XUMEd1/9dje3t71Xv2iKGLTpk07/T0OFgM1F537eu1nUjZt2tTrr5gfffTRKIoijjjiiB63dW7b3pgGo4Gch99WFEVcddVV8fa3v73rgPfacVkTr+rLXERE/OM//mPsvffeu2w/1kT/zUNExJQpU2LGjBm9jiEiYt999+22rS/HsaFkIOei8y1enceyTZs29XrsqtfrsXHjxnj3u9/d4zZrYtv6Og+9mT59ejQ1NcVf/MVf9BiXNfGqvszF2WefHV/96ld7vCVu48aNEfHqMafM14ndMlCeeeaZiIg44IADer39gAMOiNWrV/d6W3t7e9cHhLZ1382bN8fzzz+/zf03Go2YP39+DBs2LE444YSu7Rs2bIiNGzfGRRddFEcddVQcddRRcfTRR8e0adPixRdf7Ou3N6gM5Fxs2LAhIiIuv/zyOProo7ue4ylTpsQvf/nLPo2pc1vn1wwVZa6J73//+7FixYr49Kc/3eMAaE30tL256K/9WBM97ap52J7ODw+fdNJJXdv6ehwbSgZyLjZs2BB77LFHXHPNNXHsscfGUUcdFe9+97vjk5/8ZDz22GN9GtNee+0Vo0aN6vd/HwOtzDXx2GOPxYMPPhjnnntuj8CxJnra2bn4l3/5l4h49ZhT5uvEbvkh+c5C7O3DVJ3bt27dGlu3bu36gPWO3DfilQ8VbcuXv/zlWLJkSXzqU5+Kgw46KCJeOTu8cePGWL58eRx00EExY8aMqFQqsWjRorjjjjtiyZIl8Z3vfGenzzxkNZBz0d7eHs8991ysXr06rrjiihgxYkT85Cc/ifnz58fPfvazuPPOO2P//ffvety99tprm4/Z+TVDRZlr4oYbboiDDz44TjnllG7brYkdn4v+2o810dOumodtmTdvXixcuDBOOeWUOOaYY7q29/U4NpQM5Fy0t7fHli1b4j/+4z/ic5/7XLS0tMTSpUvjlltuiTPPPDNuu+22eMc73tGnMW3v54DBqMw1cf3110dzc3OcddZZPW6zJnrambn4wQ9+EHPnzo2jjjqq661fZb5O7JaB0mlbfwKw81eD2/sTgTtz36Io4ktf+lLMmzcv/uiP/ig++9nPdrvthhtuiObm5vi93/u9ru0nn3xytLS0xDe+8Y24/fbb4xOf+MTrf2OD0EDMxVVXXRURr77HMiLiD/7gD2Ls2LFx5ZVXxk033bTdPy/Zl30OdgO9Jn784x/HsmXL4oorrujxF7msiZ2fizL2Y03sOnPnzo2rr746JkyY0OMv2O3K49hgMxBzcdFFF0V7e3scd9xxXT/YTZw4MSZMmBDnnXdezJo1q9uftN3emKyJXePJJ5+MH/zgB/HJT36y188kWhM97ehc3HfffXHZZZfFwQcfHNdff32P1+MyXid2y7d4df4D39bZjU2bNsWee+7Z6/UV+nLfiOhxVnfLli3xmc98JubNmxeTJk2KWbNmdfsHUK1WY+LEid1+EOt05plnRsQrP8wNNQM5F+973/u6HcA6nX766TFs2LCu53d7j9u5baidtS9jTURE3H///TF8+PD4kz/5kx63WRM7Phf9tR9roqddNQ+vVRRFTJ8+Pa6++uo44YQT4hvf+EaPs5F9PY4NJQM5F0cffXR84AMf6HHW+cQTT4wDDzwwHn744T6PyZrYNRYuXBhFUcSHPvShXm+3Jnrakbm45ZZb4uKLL47W1taYP39+t8+8lfk6sVsGylvf+taoVCrxq1/9qtfbn3322W1e1GfvvfeOlpaWbd73mWeeiaampmhpaenatnXr1jj//PNj4cKFMXXq1Jg+ffoOXb+h87E6PzA5lAz0XPRmjz32iObm5q7n921ve1tERK+P2/n+yUMOOWS7jznYlDEPjUYjFi1aFBMmTIg3velNOzRea+KNX3RsR/ZjTfS0q+bhtT7/+c/HP/3TP8XkyZPj61//ete1T/rit49jQ0kZc9GblpaW2Lx5c2zdunW7a6KtrS3a2tqG3MUBy5qH733vezFmzJhobW3doftZE68/F9ddd13MmDEjJk6cGLfeemuP1+kyXyd2y0AZMWJEtLa2xiOPPBKNRqPbbStXrowNGzbEe97znm3e/8gjj4z/+Z//ifXr13fb3tbWFqtWrYoJEyZ0+zXWZZddFv/+7/8ef/d3fxcXXHBBr4/5q1/9Ku66665YtWpVj9uefPLJiIheLxo12A3UXKxbty7uvffeWLp0aY/HWLduXaxdu7br+T3iiCOiVqvFL37xix5f+1//9V8REdsd02A00GsiImLJkiXx4osvxrHHHtvrY1oTOzcX/bEfa6L/5qHTNddcE3fccUecd955ceWVV/Z6EmtHjmNDyUDNxebNm+P+++/v9Yx7R0dHPP300/HmN785hg8fHmPHjo03velNva6Jn//85xFhTewKzz33XDz22GPbfJ2wJnZ+Lm677baYPXt2fOhDH4rrrruu18+OlPk6sVsGSkTEaaedFuvWrYsFCxZ02975Fww+8pGPRETEiy++GE888US3X1mddtpp0dHREfPnz+9231tvvTVefvnlmDRpUte222+/Pe6777648MILe1wj4rXWrVsXl156aUyfPr3Hn8e7+eabI+KV91QORQMxF0VRxLRp0+Lyyy+PLVu2dPvam266KSJefX5Hjx4d73//++OHP/xht78AsnXr1vjmN78Z++yzT0ycOHFXfOupDNSa6PToo49GRMTb3/72XsdjTezcXPTHfqyJ/p2HH//4xzFnzpyYNGlSt88m/rYdOY4NNQMxF8OHD4+rrrqq66rXr3XbbbfFhg0bup7fWq0Wp556aixfvrwrSDrNmzcv9thjjx7XmBgKBmpNdHq91wlrYufmYuXKlfHFL34xjjvuuPj7v//77b6rp6zXidoXvvCFL/T5q4eQd73rXfHggw/GnXfeGVu2bIk1a9bEP//zP8e3v/3tOOOMM2Ly5MkR8coPQlOnTo0JEybE2LFjIyJi/PjxsXTp0vjOd74T69evj3Xr1sWdd94Zc+bMife///1dLzBbtmyJCy64ICqVSkyaNCnq9XqsWrWq238vvvhijBkzJvbdd99Ys2ZNLFy4MH7605/Gpk2bYtmyZTFz5sxYtGhRnHTSSXHRRRcNyQ/dDcRc7LXXXlGtVmPBggXx0EMPxebNm2PlypUxZ86cuP322+OII46IK6+8suv9mu985zvjrrvuioULF0alUoknnngiZsyYEY8++oVFSGYAAALOSURBVGh86Utfine9613lPFn9aCDm4bXuvvvueOSRR+JTn/pU7Lfffj1utyZ2bi6eeeaZWLx4cdcx5oEHHoi99torWlpaurZ1XiStr/uJsCb6cx6mTJkSa9eujTPPPDN++ctf9nideOaZZ+KQQw7Z4ePYUDIQc1GtVmP//fePu+66K7773e/GSy+9FE899VTMnz8/brzxxhgzZkxcc801XWeaDzvssFiwYEHcfffdURRFrF69OmbPnh0PPfRQfOYzn4kPfOADpT1f/WWg1kSnBx98MBYvXhyTJ0/u9eKO1sTOzcXf/u3fxqpVq2Ly5Mnxwgsv9DjmZHidqBRD/Wo227Fu3bq49tpr4/vf/36sXbs23va2t8Xpp58e5557btf1GGbPnh3XXXdd3Hjjjd3Kb/PmzXHDDTfEvffeG2vWrIn99tsvTj311Dj//PO7/pza6tWr44Mf/OB2x/De976362/dv/zyy3HHHXfEt771rXjqqafipZdeikMOOSQ+/OEPx9lnnz0kF1in/p6LTgsXLoxbb7016vV6tLW1xZgxY+KUU06JP//zP+/xfu+VK1fGV77ylfjP//zP2Lp1a7zzne+M8847b0ieKe40UPMQEfFXf/VXcd9998UDDzzQddD8bdbEjs/FHXfcEdOmTdvuY7/2KsF92U8na6J/5uHQQw/d7teNGTMmFi1a1PX/O3IcG0oGak08/PDDcfPNN8fjjz8ea9eujf333z9OOumkOP/882P06NHd7vfcc8/FV77ylfjRj34UGzdujPHjx8fHP/7xXn9rPFQM1DxERMycOTNuvPHGmDt3bhx//PHbvJ81sWNzcdJJJ73uNUnKfp3YrQMFAADIZbf9DAoAAJCPQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASOP/A5vNm10fs+nmAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" ] }, "metadata": {}, @@ -3131,11 +3548,11 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 35, "metadata": {}, "outputs": [], "source": [ - "modelo2=\"\"\"\n", + "modelo2 = \"\"\"\n", "data {\n", " int N;\n", " int n;\n", @@ -3145,35 +3562,29 @@ "parameters {\n", " vector[n] mu;\n", " cholesky_factor_corr[n] L;\n", - " simplex[n] alphas[N];\n", " vector[n] beta[N];\n", - " \n", + " \n", "}\n", "\n", "transformed parameters{\n", - " \n", - " vector[n] theta[N];\n", + " vector[n] theta[N] ;\n", " \n", " for (i in 1:N)\n", " theta[i] = inv_logit(beta[i]);\n", - " \n", - " \n", + " \n", "}\n", "\n", "model {\n", "\n", " L ~ lkj_corr_cholesky(3.0);\n", " \n", - " mu ~ uniform(-5, 5);\n", + " mu ~ exponential(0.01);\n", " \n", " beta ~ multi_normal_cholesky(mu, L);\n", " \n", - " \n", - " for (i in 1:N)\n", - " alphas[i] ~ dirichlet(theta[i]);\n", " \n", " for (i in 1:N)\n", - " post[i] ~ multinomial(alphas[i]);\n", + " post[i] ~ multinomial(theta[i]);\n", " \n", "}\n", "\n", @@ -3185,29 +3596,79 @@ "}\n", "\n", "\n", - "\"\"\"" + "\"\"\"\n", + "\n", + "modelo3 = \"\"\"\n", + " data {\n", + " int N;\n", + " int n;\n", + " int post[N, n];\n", + " }\n", + "\n", + " parameters {\n", + " vector[n] mu;\n", + " cholesky_factor_corr[n] L;\n", + " vector[n] beta[N];\n", + " simplex[n] thetas[N];\n", + "\n", + " }\n", + "\n", + " transformed parameters{\n", + "\n", + " vector[n] alphas[N];\n", + "\n", + "\n", + " for (i in 1:N)\n", + " alphas[i] = inv_logit(beta[i]);\n", + "\n", + " }\n", + "\n", + " model {\n", + "\n", + " L ~ lkj_corr_cholesky(3.0);\n", + "\n", + " mu ~ normal(0, 5);\n", + "\n", + " beta ~ multi_normal_cholesky(mu, L);\n", + "\n", + " for (i in 1:N)\n", + " thetas[i] ~ dirichlet(alphas[i]);\n", + "\n", + " for (i in 1:N)\n", + " post[i] ~ multinomial(thetas[i]);\n", + "\n", + " }\n", + "\n", + " generated quantities {\n", + "\n", + " corr_matrix[n] Sigma;\n", + " Sigma = multiply_lower_tri_self_transpose(L);\n", + "\n", + " }\n", + "\n", + " \"\"\"" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_ffbf49915be317bed47428f1a01cfff8 NOW.\n" + "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_748691e7ccede7ca1d8cce075e5cc736 NOW.\n" ] } ], "source": [ - "stan_modelo2 = pystan.StanModel(model_code=modelo2)" + "stan_modelo2 = pystan.StanModel(model_code=modelo3)" ] }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 37, "metadata": {}, "outputs": [], "source": [ @@ -3218,7 +3679,7 @@ }, { "cell_type": "code", - "execution_count": 96, + "execution_count": 38, "metadata": {}, "outputs": [ { @@ -3227,140 +3688,140 @@ "text": [ "WARNING:pystan:n_eff / iter below 0.001 indicates that the effective sample size has likely been overestimated\n", "WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed\n", - "WARNING:pystan:4639 of 10000 iterations ended with a divergence (46.4 %).\n", - "WARNING:pystan:Try running with adapt_delta larger than 0.9 to remove the divergences.\n" + "WARNING:pystan:24 of 10000 iterations ended with a divergence (0.24 %).\n", + "WARNING:pystan:Try running with adapt_delta larger than 0.9 to remove the divergences.\n", + "WARNING:pystan:1 of 10000 iterations saturated the maximum tree depth of 10 (0.01 %)\n", + "WARNING:pystan:Run again with max_treedepth larger than 10 to avoid saturation\n" ] } ], "source": [ - "fit2 = stan_modelo2.sampling(data=data3, iter=5000, verbose=True, control={'adapt_delta':0.90})" + "fit2 = stan_modelo2.sampling(data=data3, iter=5000, verbose=True, control={'adapt_delta':0.90}, init=0)" ] }, { "cell_type": "code", - "execution_count": 97, - "metadata": { - "scrolled": true - }, + "execution_count": 39, + "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Inference for Stan model: anon_model_ffbf49915be317bed47428f1a01cfff8.\n", + "Inference for Stan model: anon_model_748691e7ccede7ca1d8cce075e5cc736.\n", "4 chains, each with iter=5000; warmup=2500; thin=1; \n", "post-warmup draws per chain=2500, total post-warmup draws=10000.\n", "\n", - " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "mu[1] 3.2259 0.0658 1.1490 0.8594 2.3988 3.3432 4.1962 4.9292 304 1.0180\n", - "mu[2] 3.6858 0.0391 0.9187 1.6463 3.0634 3.8291 4.4515 4.9458 550 1.0108\n", - "L[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "L[2,1] 0.0011 0.0131 0.3742 -0.695 -0.276-7.2306e-7 0.2743 0.7092 811 1.0027\n", - "L[1,2] 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 nan nan\n", - "L[2,2] 0.9223 0.0023 0.0961 0.6484 0.8880 0.9611 0.9906 0.9999 1734 1.0008\n", - "alphas[1,1] 0.2702 0.0010 0.0557 0.1717 0.2288 0.2675 0.3085 0.3838 2606 1.0017\n", - "alphas[2,1] 0.3501 0.0015 0.0570 0.2415 0.3110 0.3493 0.3885 0.4636 1332 1.0010\n", - "alphas[3,1] 0.3774 0.0008 0.0319 0.3161 0.3555 0.3767 0.3986 0.4413 1418 1.0060\n", - "alphas[4,1] 0.3287 0.0011 0.0473 0.2418 0.2961 0.3278 0.3599 0.4240 1720 1.0005\n", - "alphas[5,1] 0.3426 0.0013 0.0602 0.2302 0.3009 0.3404 0.3820 0.4663 2047 1.0003\n", - "alphas[6,1] 0.3608 0.0011 0.0417 0.2815 0.3327 0.3607 0.3890 0.4432 1447 1.004\n", - "alphas[7,1] 0.3901 0.0008 0.0359 0.3204 0.3662 0.3893 0.4141 0.462 1862 1.0014\n", - "alphas[8,1] 0.4125 0.0007 0.0326 0.3497 0.3903 0.4119 0.4347 0.4776 1798 1.0003\n", - "alphas[9,1] 0.4255 0.0020 0.0828 0.2732 0.3661 0.4238 0.4810 0.5925 1693 1.0040\n", - "alphas[10,1] 0.3788 0.0010 0.0420 0.2972 0.3500 0.3787 0.4072 0.4618 1569 1.0028\n", - "alphas[11,1] 0.3816 0.0008 0.0396 0.3068 0.3545 0.3807 0.4073 0.4633 2058 1.0024\n", - "alphas[12,1] 0.4040 0.0007 0.0298 0.3475 0.3831 0.4042 0.4246 0.4623 1447 1.0021\n", - "alphas[13,1] 0.3545 0.0017 0.0667 0.2266 0.3082 0.3537 0.4 0.4828 1515 1.0009\n", - "alphas[14,1] 0.4046 0.0012 0.0455 0.3184 0.3735 0.4043 0.4344 0.4956 1420 1.0020\n", - "alphas[15,1] 0.3975 0.0008 0.0354 0.3276 0.3730 0.3978 0.4217 0.4675 1929 1.0013\n", - "alphas[16,1] 0.3981 0.0009 0.0428 0.3169 0.3681 0.3981 0.4267 0.4834 2284 1.0009\n", - "alphas[1,2] 0.7297 0.0010 0.0557 0.6161 0.6914 0.7324 0.7711 0.8282 2606 1.0017\n", - "alphas[2,2] 0.6498 0.0015 0.0570 0.5363 0.6114 0.6506 0.6889 0.7584 1332 1.0010\n", - "alphas[3,2] 0.6225 0.0008 0.0319 0.5586 0.6013 0.6232 0.6444 0.6838 1418 1.0060\n", - "alphas[4,2] 0.6712 0.0011 0.0473 0.5759 0.6400 0.6721 0.7038 0.7581 1720 1.0005\n", - "alphas[5,2] 0.6573 0.0013 0.0602 0.5336 0.6179 0.6595 0.6990 0.7697 2047 1.0003\n", - "alphas[6,2] 0.6391 0.0011 0.0417 0.5567 0.6109 0.6392 0.6672 0.7184 1447 1.004\n", - "alphas[7,2] 0.6098 0.0008 0.0359 0.538 0.5858 0.6106 0.6337 0.6795 1862 1.0014\n", - "alphas[8,2] 0.5874 0.0007 0.0326 0.5223 0.5652 0.5880 0.6096 0.6502 1798 1.0003\n", - "alphas[9,2] 0.5744 0.0020 0.0828 0.4074 0.5189 0.5761 0.6338 0.7267 1693 1.0040\n", - "alphas[10,2] 0.6211 0.0010 0.0420 0.5381 0.5927 0.6212 0.6499 0.7027 1569 1.0028\n", - "alphas[11,2] 0.6183 0.0008 0.0396 0.5366 0.5926 0.6192 0.6454 0.6931 2058 1.0024\n", - "alphas[12,2] 0.5959 0.0007 0.0298 0.5376 0.5753 0.5957 0.6168 0.6524 1447 1.0021\n", - "alphas[13,2] 0.6454 0.0017 0.0667 0.5171 0.6 0.6462 0.6917 0.7733 1515 1.0009\n", - "alphas[14,2] 0.5953 0.0012 0.0455 0.5043 0.5655 0.5956 0.6264 0.6815 1420 1.0020\n", - "alphas[15,2] 0.6025 0.0008 0.0354 0.5324 0.5782 0.6022 0.6269 0.6723 1929 1.0013\n", - "alphas[16,2] 0.6018 0.0009 0.0428 0.5165 0.5732 0.6018 0.6318 0.6830 2284 1.0009\n", - "beta[1,1] 3.2385 0.0748 1.5245 0.1976 2.1875 3.2682 4.3030 6.0969 415 1.0106\n", - "beta[2,1] 3.2424 0.0671 1.4828 0.2796 2.2277 3.3400 4.2798 6.0665 488 1.0081\n", - "beta[3,1] 3.2193 0.0715 1.5054 0.3086 2.1666 3.2379 4.3053 6.0204 442 1.0121\n", - "beta[4,1] 3.2158 0.0741 1.4952 0.2303 2.1715 3.2817 4.3043 5.8683 407 1.0165\n", - "beta[5,1] 3.2630 0.0736 1.5009 0.2441 2.2089 3.3462 4.3340 5.9145 415 1.0104\n", - "beta[6,1] 3.2364 0.0742 1.4918 0.2866 2.1650 3.3170 4.3175 6.0066 404 1.0133\n", - "beta[7,1] 3.2557 0.0758 1.5133 0.1784 2.2249 3.2905 4.3612 5.9828 398 1.0165\n", - "beta[8,1] 3.2259 0.0653 1.4759 0.2202 2.2272 3.3057 4.2915 5.8631 510 1.0079\n", - "beta[9,1] 3.2515 0.0725 1.4962 0.3307 2.1790 3.2903 4.3106 6.1601 426 1.0151\n", - "beta[10,1] 3.2630 0.0714 1.4988 0.2828 2.2214 3.3281 4.3479 6.0415 440 1.0109\n", - "beta[11,1] 3.2481 0.0788 1.5204 0.2189 2.1967 3.2726 4.2991 6.2250 372 1.0116\n", - "beta[12,1] 3.2038 0.0631 1.4347 0.3324 2.2056 3.2803 4.2518 5.7939 517 1.0095\n", - "beta[13,1] 3.2848 0.0773 1.5243 0.2597 2.2250 3.3338 4.3469 6.1231 388 1.0127\n", - "beta[14,1] 3.2543 0.0719 1.5079 0.2189 2.2136 3.3343 4.3590 5.9097 439 1.0108\n", - "beta[15,1] 3.2748 0.0724 1.4954 0.2882 2.2349 3.3356 4.3488 6.0593 426 1.0126\n", - "beta[16,1] 3.2567 0.0709 1.4820 0.29 2.2149 3.3237 4.3454 5.9015 437 1.0117\n", - "beta[1,2] 3.6959 0.0496 1.3556 0.9896 2.7872 3.7237 4.6293 6.2557 745 1.0091\n", - "beta[2,2] 3.7305 0.0503 1.3469 1.0297 2.8071 3.7577 4.6702 6.3048 715 1.0071\n", - "beta[3,2] 3.7056 0.0469 1.3463 0.9312 2.8040 3.7658 4.6293 6.1879 823 1.0064\n", - "beta[4,2] 3.7454 0.0486 1.3594 0.9555 2.8574 3.7743 4.6674 6.3774 782 1.0077\n", - "beta[5,2] 3.7376 0.0440 1.2952 1.1086 2.8742 3.7829 4.6209 6.2013 866 1.0044\n", - "beta[6,2] 3.6970 0.0411 1.2830 1.0644 2.8460 3.7418 4.6000 6.0731 971 1.0036\n", - "beta[7,2] 3.6969 0.0449 1.3325 1.0120 2.7962 3.7554 4.6147 6.2151 877 1.0066\n", - "beta[8,2] 3.7044 0.0550 1.3353 1.0408 2.8144 3.7322 4.6363 6.2081 589 1.0109\n", - "beta[9,2] 3.7076 0.0451 1.3320 0.9188 2.8136 3.7422 4.6428 6.2170 870 1.0032\n", - "beta[10,2] 3.7225 0.0435 1.3169 1.0416 2.8177 3.7791 4.6516 6.1815 915 1.0072\n", - "beta[11,2] 3.7049 0.0435 1.3081 1.0128 2.8256 3.7525 4.6298 6.0571 904 1.0077\n", - "beta[12,2] 3.7134 0.0562 1.3591 1.0266 2.7855 3.7597 4.6871 6.1724 583 1.0095\n", - "beta[13,2] 3.7047 0.0434 1.3035 1.0626 2.8680 3.7051 4.6143 6.1418 900 1.0116\n", - "beta[14,2] 3.7283 0.0473 1.3262 1.0170 2.8390 3.7899 4.6422 6.1933 786 1.0061\n", - "beta[15,2] 3.7097 0.0444 1.3188 1.0377 2.8356 3.7572 4.6128 6.1742 879 1.0065\n", - "beta[16,2] 3.7203 0.0474 1.3363 1.0278 2.8194 3.7491 4.6733 6.1851 792 1.0057\n", - "theta[1,1] 0.9162 0.0042 0.1169 0.5492 0.8991 0.9633 0.9866 0.9977 762 1.0038\n", - "theta[2,1] 0.9186 0.0041 0.1143 0.5694 0.9027 0.9657 0.9863 0.9976 746 1.0033\n", - "theta[3,1] 0.9164 0.0040 0.115 0.5765 0.8972 0.9622 0.9866 0.9975 815 1.0055\n", - "theta[4,1] 0.9158 0.0043 0.1177 0.5573 0.8976 0.9638 0.9866 0.9971 720 1.0061\n", - "theta[5,1] 0.9183 0.0042 0.1158 0.5607 0.9010 0.9659 0.9870 0.9973 738 1.0048\n", - "theta[6,1] 0.9175 0.0041 0.1137 0.5711 0.8970 0.9650 0.9868 0.9975 736 1.0058\n", - "theta[7,1] 0.9178 0.0043 0.1168 0.5444 0.9024 0.9641 0.9874 0.9974 729 1.0062\n", - "theta[8,1] 0.9176 0.0044 0.1182 0.5548 0.9026 0.9646 0.9865 0.9971 701 1.0047\n", - "theta[9,1] 0.9193 0.0037 0.1098 0.5819 0.8983 0.9641 0.9867 0.9978 860 1.0037\n", - "theta[10,1] 0.9188 0.0043 0.1144 0.5702 0.9021 0.9653 0.9872 0.9976 704 1.0047\n", - "theta[11,1] 0.9177 0.0043 0.1145 0.5545 0.8999 0.9634 0.9866 0.9980 711 1.0053\n", - "theta[12,1] 0.9186 0.0039 0.1116 0.5823 0.9007 0.9637 0.9859 0.9969 791 1.0039\n", - "theta[13,1] 0.9193 0.0043 0.1153 0.5645 0.9024 0.9655 0.9872 0.9978 694 1.0049\n", - "theta[14,1] 0.9173 0.0044 0.1187 0.5545 0.9014 0.9655 0.9873 0.9972 707 1.0038\n", - "theta[15,1] 0.9197 0.0041 0.1130 0.5715 0.9033 0.9656 0.9872 0.9976 729 1.0058\n", - "theta[16,1] 0.9194 0.0041 0.1131 0.572 0.9015 0.9652 0.9872 0.9972 733 1.0038\n", - "theta[1,2] 0.9494 0.0020 0.0740 0.7290 0.9419 0.9764 0.9903 0.9980 1261 1.0046\n", - "theta[2,2] 0.9510 0.0019 0.0723 0.7368 0.9430 0.9772 0.9907 0.9981 1391 1.0027\n", - "theta[3,2] 0.9494 0.0022 0.0761 0.7173 0.9428 0.9773 0.9903 0.9979 1174 1.0039\n", - "theta[4,2] 0.9510 0.0020 0.0742 0.7222 0.9457 0.9775 0.9906 0.9983 1364 1.0029\n", - "theta[5,2] 0.9532 0.0018 0.0687 0.7518 0.9465 0.9777 0.9902 0.9979 1421 1.0031\n", - "theta[6,2] 0.9516 0.0018 0.0710 0.7435 0.9451 0.9768 0.9900 0.9977 1522 1.0015\n", - "theta[7,2] 0.9499 0.0020 0.0735 0.7334 0.9424 0.9771 0.9901 0.998 1342 1.0035\n", - "theta[8,2] 0.9502 0.0022 0.0731 0.7390 0.9434 0.9766 0.9904 0.9979 1093 1.0041\n", - "theta[9,2] 0.9502 0.0018 0.0744 0.7148 0.9434 0.9768 0.9904 0.9980 1552 1.0018\n", - "theta[10,2] 0.9516 0.0019 0.0717 0.7391 0.9436 0.9776 0.9905 0.9979 1414 1.0040\n", - "theta[11,2] 0.9510 0.0020 0.0733 0.7335 0.9440 0.9770 0.9903 0.9976 1334 1.0039\n", - "theta[12,2] 0.9496 0.0021 0.0732 0.7362 0.9418 0.9772 0.9908 0.9979 1184 1.0033\n", - "theta[13,2] 0.9515 0.0018 0.0708 0.7431 0.9462 0.9759 0.9901 0.9978 1404 1.0037\n", - "theta[14,2] 0.9513 0.0019 0.0727 0.7344 0.9447 0.9779 0.9904 0.9979 1446 1.0012\n", - "theta[15,2] 0.9510 0.0020 0.0728 0.7384 0.9445 0.9771 0.9901 0.9979 1302 1.0027\n", - "theta[16,2] 0.951 0.0019 0.0708 0.7364 0.9437 0.977 0.9907 0.9979 1396 1.0032\n", - "Sigma[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "Sigma[2,1] 0.0011 0.0131 0.3742 -0.695 -0.276-7.2306e-7 0.2743 0.7092 811 1.0027\n", - "Sigma[1,2] 0.0011 0.0131 0.3742 -0.695 -0.276-7.2306e-7 0.2743 0.7092 811 1.0027\n", - "Sigma[2,2] 1.09.8562e-198.8112e-17 1.0 1.0 1.0 1.0 1.0 7992 0.9996\n", - "lp__ -1.4439e3 0.1163 4.9815-1.4544e3-1.4472e3-1.4436e3-1.4404e3-1.435e3 1832 1.0022\n", + " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", + "mu[1] 5.003 0.1 2.855 1.046 2.879 4.434 6.604 11.845 818 1.005\n", + "mu[2] 5.881 0.078 2.698 1.905 3.854 5.43 7.537 12.034 1185 1.004\n", + "L[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", + "L[2,1] -0.01 0.009 0.375 -0.719 -0.284 -0.01 0.262 0.698 1841 1.002\n", + "L[1,2] 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 nan nan\n", + "L[2,2] 0.921 0.002 0.101 0.627 0.889 0.962 0.992 1.0 2772 1.001\n", + "beta[1,1] 5.024 0.101 3.02 0.479 2.839 4.523 6.728 12.022 903 1.004\n", + "beta[2,1] 5.02 0.099 2.993 0.574 2.821 4.513 6.784 12.021 915 1.004\n", + "beta[3,1] 5.022 0.101 3.011 0.529 2.832 4.531 6.778 12.096 880 1.004\n", + "beta[4,1] 5.0 0.1 3.015 0.512 2.782 4.465 6.753 12.121 901 1.004\n", + "beta[5,1] 5.025 0.101 3.024 0.48 2.83 4.538 6.751 12.162 888 1.005\n", + "beta[6,1] 4.999 0.1 3.022 0.488 2.78 4.522 6.722 12.055 909 1.005\n", + "beta[7,1] 5.038 0.1 3.006 0.536 2.852 4.536 6.719 12.163 906 1.004\n", + "beta[8,1] 5.022 0.101 2.993 0.57 2.851 4.525 6.735 11.911 881 1.005\n", + "beta[9,1] 5.011 0.1 3.007 0.547 2.834 4.479 6.691 12.017 906 1.005\n", + "beta[10,1] 5.018 0.101 3.018 0.501 2.835 4.486 6.731 12.045 894 1.005\n", + "beta[11,1] 5.011 0.1 3.006 0.502 2.822 4.508 6.729 12.063 898 1.004\n", + "beta[12,1] 5.019 0.101 3.013 0.499 2.828 4.507 6.74 12.044 896 1.004\n", + "beta[13,1] 5.025 0.101 3.026 0.498 2.816 4.485 6.798 12.129 904 1.005\n", + "beta[14,1] 5.018 0.101 2.999 0.569 2.858 4.471 6.737 12.033 887 1.004\n", + "beta[15,1] 5.023 0.102 3.004 0.537 2.859 4.517 6.767 12.019 869 1.005\n", + "beta[16,1] 5.016 0.101 3.008 0.507 2.81 4.522 6.752 12.056 881 1.005\n", + "beta[1,2] 5.906 0.08 2.866 1.416 3.799 5.51 7.627 12.384 1298 1.003\n", + "beta[2,2] 5.894 0.079 2.865 1.42 3.779 5.485 7.629 12.336 1305 1.004\n", + "beta[3,2] 5.904 0.079 2.875 1.37 3.797 5.495 7.633 12.401 1322 1.003\n", + "beta[4,2] 5.893 0.079 2.864 1.384 3.815 5.494 7.57 12.29 1326 1.003\n", + "beta[5,2] 5.889 0.079 2.882 1.315 3.805 5.498 7.631 12.292 1340 1.003\n", + "beta[6,2] 5.89 0.079 2.864 1.378 3.792 5.513 7.603 12.369 1299 1.003\n", + "beta[7,2] 5.889 0.081 2.881 1.394 3.756 5.507 7.608 12.422 1271 1.003\n", + "beta[8,2] 5.883 0.079 2.86 1.354 3.798 5.489 7.602 12.333 1303 1.003\n", + "beta[9,2] 5.918 0.08 2.876 1.386 3.802 5.524 7.651 12.336 1293 1.003\n", + "beta[10,2] 5.899 0.079 2.855 1.366 3.824 5.483 7.624 12.327 1322 1.003\n", + "beta[11,2] 5.907 0.08 2.866 1.398 3.818 5.502 7.627 12.305 1293 1.003\n", + "beta[12,2] 5.888 0.079 2.865 1.364 3.804 5.485 7.608 12.298 1307 1.003\n", + "beta[13,2] 5.883 0.078 2.86 1.38 3.793 5.503 7.589 12.298 1329 1.003\n", + "beta[14,2] 5.899 0.078 2.852 1.356 3.849 5.494 7.616 12.25 1325 1.003\n", + "beta[15,2] 5.895 0.079 2.863 1.392 3.803 5.508 7.631 12.299 1307 1.003\n", + "beta[16,2] 5.896 0.079 2.872 1.37 3.81 5.514 7.618 12.353 1314 1.003\n", + "thetas[1,1] 0.27 5.28e-4 0.057 0.168 0.23 0.267 0.307 0.39 11696 1.0\n", + "thetas[2,1] 0.352 5.31e-4 0.057 0.244 0.313 0.352 0.39 0.468 11479 1.0\n", + "thetas[3,1] 0.377 3.1e-4 0.032 0.316 0.356 0.377 0.398 0.442 10414 1.0\n", + "thetas[4,1] 0.33 4.36e-4 0.046 0.242 0.298 0.329 0.36 0.421 10923 1.0\n", + "thetas[5,1] 0.343 5.62e-4 0.059 0.232 0.303 0.341 0.382 0.463 11015 1.0\n", + "thetas[6,1] 0.361 4.0e-4 0.042 0.281 0.332 0.361 0.39 0.444 11114 1.0\n", + "thetas[7,1] 0.389 3.38e-4 0.037 0.319 0.363 0.388 0.413 0.462 11817 1.0\n", + "thetas[8,1] 0.411 3.2e-4 0.033 0.347 0.389 0.411 0.434 0.479 10913 1.0\n", + "thetas[9,1] 0.429 7.62e-4 0.082 0.273 0.372 0.428 0.485 0.595 11605 1.0\n", + "thetas[10,1] 0.379 4.05e-4 0.041 0.298 0.35 0.379 0.407 0.46 10498 1.0\n", + "thetas[11,1] 0.381 3.7e-4 0.04 0.304 0.354 0.381 0.408 0.46 11637 1.0\n", + "thetas[12,1] 0.405 2.76e-4 0.029 0.349 0.385 0.405 0.424 0.462 11031 1.0\n", + "thetas[13,1] 0.352 6.3e-4 0.066 0.23 0.305 0.35 0.396 0.487 10946 1.0\n", + "thetas[14,1] 0.406 4.45e-4 0.046 0.316 0.375 0.405 0.436 0.496 10539 1.0\n", + "thetas[15,1] 0.397 3.59e-4 0.035 0.33 0.373 0.396 0.421 0.467 9605 1.0\n", + "thetas[16,1] 0.398 4.13e-4 0.042 0.317 0.37 0.397 0.426 0.485 10530 1.0\n", + "thetas[1,2] 0.73 5.28e-4 0.057 0.61 0.693 0.733 0.77 0.832 11696 1.0\n", + "thetas[2,2] 0.648 5.31e-4 0.057 0.532 0.61 0.648 0.687 0.756 11479 1.0\n", + "thetas[3,2] 0.623 3.1e-4 0.032 0.558 0.602 0.623 0.644 0.684 10414 1.0\n", + "thetas[4,2] 0.67 4.36e-4 0.046 0.579 0.64 0.671 0.702 0.758 10923 1.0\n", + "thetas[5,2] 0.657 5.62e-4 0.059 0.537 0.618 0.659 0.697 0.768 11015 1.0\n", + "thetas[6,2] 0.639 4.0e-4 0.042 0.556 0.61 0.639 0.668 0.719 11114 1.0\n", + "thetas[7,2] 0.611 3.38e-4 0.037 0.538 0.587 0.612 0.637 0.681 11817 1.0\n", + "thetas[8,2] 0.589 3.2e-4 0.033 0.521 0.566 0.589 0.611 0.653 10913 1.0\n", + "thetas[9,2] 0.571 7.62e-4 0.082 0.405 0.515 0.572 0.628 0.727 11605 1.0\n", + "thetas[10,2] 0.621 4.05e-4 0.041 0.54 0.593 0.621 0.65 0.702 10498 1.0\n", + "thetas[11,2] 0.619 3.7e-4 0.04 0.54 0.592 0.619 0.646 0.696 11637 1.0\n", + "thetas[12,2] 0.595 2.76e-4 0.029 0.538 0.576 0.595 0.615 0.651 11031 1.0\n", + "thetas[13,2] 0.648 6.3e-4 0.066 0.513 0.604 0.65 0.695 0.77 10946 1.0\n", + "thetas[14,2] 0.594 4.45e-4 0.046 0.504 0.564 0.595 0.625 0.684 10539 1.0\n", + "thetas[15,2] 0.603 3.59e-4 0.035 0.533 0.579 0.604 0.627 0.67 9605 1.0\n", + "thetas[16,2] 0.602 4.13e-4 0.042 0.515 0.574 0.603 0.63 0.683 10530 1.0\n", + "alphas[1,1] 0.945 0.002 0.104 0.617 0.945 0.989 0.999 1.0 3498 1.001\n", + "alphas[2,1] 0.947 0.002 0.098 0.64 0.944 0.989 0.999 1.0 3003 1.001\n", + "alphas[3,1] 0.946 0.002 0.1 0.629 0.944 0.989 0.999 1.0 2848 1.001\n", + "alphas[4,1] 0.945 0.002 0.1 0.625 0.942 0.989 0.999 1.0 3035 1.001\n", + "alphas[5,1] 0.946 0.002 0.102 0.618 0.944 0.989 0.999 1.0 3062 1.002\n", + "alphas[6,1] 0.945 0.002 0.103 0.62 0.942 0.989 0.999 1.0 3088 1.002\n", + "alphas[7,1] 0.947 0.002 0.1 0.631 0.945 0.989 0.999 1.0 2962 1.001\n", + "alphas[8,1] 0.947 0.002 0.101 0.639 0.945 0.989 0.999 1.0 2882 1.002\n", + "alphas[9,1] 0.946 0.002 0.102 0.634 0.945 0.989 0.999 1.0 3036 1.002\n", + "alphas[10,1] 0.946 0.002 0.103 0.623 0.945 0.989 0.999 1.0 3017 1.001\n", + "alphas[11,1] 0.946 0.002 0.1 0.623 0.944 0.989 0.999 1.0 3165 1.002\n", + "alphas[12,1] 0.946 0.002 0.1 0.622 0.944 0.989 0.999 1.0 3191 1.001\n", + "alphas[13,1] 0.947 0.002 0.1 0.622 0.944 0.989 0.999 1.0 3323 1.001\n", + "alphas[14,1] 0.947 0.002 0.098 0.638 0.946 0.989 0.999 1.0 3232 1.001\n", + "alphas[15,1] 0.947 0.002 0.1 0.631 0.946 0.989 0.999 1.0 2916 1.002\n", + "alphas[16,1] 0.946 0.002 0.102 0.624 0.943 0.989 0.999 1.0 3281 1.002\n", + "alphas[1,2] 0.975 8.6e-4 0.057 0.805 0.978 0.996 1.0 1.0 4359 1.001\n", + "alphas[2,2] 0.974 9.14e-4 0.059 0.805 0.978 0.996 1.0 1.0 4210 1.001\n", + "alphas[3,2] 0.974 8.81e-4 0.06 0.797 0.978 0.996 1.0 1.0 4605 1.001\n", + "alphas[4,2] 0.974 9.41e-4 0.06 0.8 0.978 0.996 0.999 1.0 4063 1.001\n", + "alphas[5,2] 0.973 9.58e-4 0.064 0.788 0.978 0.996 1.0 1.0 4418 1.001\n", + "alphas[6,2] 0.974 9.15e-4 0.06 0.799 0.978 0.996 1.0 1.0 4253 1.0\n", + "alphas[7,2] 0.974 9.77e-4 0.062 0.801 0.977 0.996 1.0 1.0 3983 1.0\n", + "alphas[8,2] 0.974 9.0e-4 0.059 0.795 0.978 0.996 1.0 1.0 4249 1.001\n", + "alphas[9,2] 0.974 9.09e-4 0.06 0.8 0.978 0.996 1.0 1.0 4352 1.001\n", + "alphas[10,2] 0.975 8.97e-4 0.058 0.797 0.979 0.996 1.0 1.0 4156 1.0\n", + "alphas[11,2] 0.975 9.06e-4 0.057 0.802 0.978 0.996 1.0 1.0 3927 1.001\n", + "alphas[12,2] 0.974 9.39e-4 0.061 0.796 0.978 0.996 1.0 1.0 4173 1.0\n", + "alphas[13,2] 0.974 9.04e-4 0.06 0.799 0.978 0.996 0.999 1.0 4448 1.0\n", + "alphas[14,2] 0.974 9.39e-4 0.061 0.795 0.979 0.996 1.0 1.0 4174 1.001\n", + "alphas[15,2] 0.974 9.53e-4 0.06 0.801 0.978 0.996 1.0 1.0 3975 1.001\n", + "alphas[16,2] 0.974 9.52e-4 0.063 0.797 0.978 0.996 1.0 1.0 4340 1.001\n", + "Sigma[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", + "Sigma[2,1] -0.01 0.009 0.375 -0.719 -0.284 -0.01 0.262 0.698 1841 1.002\n", + "Sigma[1,2] -0.01 0.009 0.375 -0.719 -0.284 -0.01 0.262 0.698 1841 1.002\n", + "Sigma[2,2] 1.0 9.12e-19 8.83e-17 1.0 1.0 1.0 1.0 1.0 9356 1.0\n", + "lp__ -1.45e3 0.097 5.25 -1.46e3 -1.45e3 -1.45e3 -1.44e3 -1.44e3 2913 1.0\n", "\n", - "Samples were drawn using NUTS at Tue Dec 10 16:22:40 2019.\n", + "Samples were drawn using NUTS at Fri Mar 27 17:07:56 2020.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -3368,12 +3829,12 @@ } ], "source": [ - "print(fit2.stansummary(digits_summary=5))" + "print(fit2.stansummary(digits_summary=3))" ] }, { "cell_type": "code", - "execution_count": 98, + "execution_count": 40, "metadata": {}, "outputs": [], "source": [ @@ -3382,7 +3843,7 @@ }, { "cell_type": "code", - "execution_count": 99, + "execution_count": 41, "metadata": {}, "outputs": [], "source": [ @@ -3391,21 +3852,21 @@ "for i in range(16):\n", " res5 = 2 * samples2[:, i, 0] * samples2[:, i, 1] - samples2[:, i, 1] \n", "# result1 = - 2 * ppc_hier['alphas'][:, i, 0] * ppc_hier['alphas'][:, i, 1] + ppc_hier['alphas'][:, i, 1] \n", - " th5.append(list(result5))" + " th5.append(list(res5))" ] }, { "cell_type": "code", - "execution_count": 100, + "execution_count": 42, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(16, 8000)" + "(16, 10000)" ] }, - "execution_count": 100, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -3417,25 +3878,25 @@ }, { "cell_type": "code", - "execution_count": 101, + "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(8000,)\n" + "(10000,)\n" ] }, { "data": { "text/plain": [ - "array([-0.11965072, -0.11812914, -0.164097 , -0.16740873, -0.18001722,\n", - " -0.16055835, -0.07397384, -0.12309058, -0.06696517, -0.18929071,\n", - " -0.11754521, -0.09852861, -0.20565993, -0.10907691, -0.16215137])" + "array([0.93894789, 0.96938789, 0.81823725, 0.96043972, 0.98275602,\n", + " 0.49781907, 0.93636218, 0.80706103, 0.99502264, 0.77100402,\n", + " 0.79591668, 0.83848738, 0.40896394, 0.9346735 , 0.77259644])" ] }, - "execution_count": 101, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -3448,14 +3909,14 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 44, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAFkCAYAAADv4QVjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAQBklEQVR4nO3d32uW9f/A8Zc5nfPHimDUQZmVRCREgWiWBwnqjNmBkWBHn+qkEPpxEgwiQqGQIvoHCqIOOikIav0k6MeBkWZIBoZRK5BWHwp1d92uqe/vgd9G+8zN+7Xt2o/7fjygg627+7r26rXtya7tuheUUkoAANCwS2b7BAAA5hsBBQCQJKAAAJIEFABAkoACAEgSUAAASW1VPfF//zsYy5e3R602VNUh5h3zGMtMxjKTscxkLDMZy0xGM4+xJppJV9eK1HNV+hOotraFVT79vGMeY5nJWGYylpmMZSZjmclo5jHWdM7EJTwAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAElts30CAHPN8s6O6Giv9stjfehM1E7VKz0GUB0BBfA/OtrbYlVvX6XH6N/XE7VKjwBUySU8AIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAICkttk+AYBWdHr4bHR1rZjSczTy39eHzkTtVH1KxwHGElAAs2DJooWxqrev8uP07+uJWuVHgdbjEh4AQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAktxIE5hXlnd2REe7L13A7PJVCJhXOtrbKr+Dd/++nkqfH5j/XMIDAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEhqm+0TAJrD8s6O6Giv7ktKV9eKyp67mZ0ePlv57OpDZ6J2ql7pMWCuEVDAtOhob4tVvX2VH6d/X0/lx2gmSxYtrPz/S/++nqhVegSYe1zCAwBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgKS22T4BoHrLOzuio92nO8B08RUVWkBHe1us6u2r9Bj9+3oqfX6AucQlPACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIMl9oACYktPDZ6Ora0Xlx6kPnYnaqXrlx4FGCCgApmTJooWV36g14vzNWmuVHwUa4xIeAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJLaZvsEoNUt7+yIjvbRn4pdXStm6WwAaISAglnW0d4Wq3r7Kj1G/76eSp8foNW4hAcAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACQJKACAJDfSBGBeOD189qJ36Z/qXfzrQ2eidqo+peegNQgoAOaFJYsWzshd+2uVHoFm4RIeAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIElAAAEkCCgAgSUABACS1zfYJAMBccXr4bHR1raj0GPWhM1E7Va/0GFRPQAHA/1uyaGGs6u2r9Bj9+3qiVukRmAku4QEAJAkoAIAkAQUAkCSgAACSBBQAQJKAAgBIchsDAJhBM3GvqX+OQ3UEFADMoJm411TE+ftNDVZ+lNblEh4AQJKAAgBIElAAAEkCCgAgSUABACT5KzwYx/LOjuho9ykCwFi+O8A4OtrbZuxPjQGYX1zCAwBIElAAAEkCCgAgSUABACQJKACAJAEFAJAkoAAAkgQUAECSgAIASBJQAABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJLXN9gnAZCzv7IiOdusLwOzwHYh5qaO9LVb19lV6jP59PZU+PwDzl0t4AABJAgoAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACDJS7kAQBM6PXw2urpWVHqM+tCZqJ2qV3qMuUpAAUATWrJo4Yy8Zmit0iPMXS7hAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASe4DxbRb3tkRHe2Nr1bVN3oDgOkmoJh2He1tM3LzNgCYLS7hAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACBJQAEAJAkoAIAkAQUAkOS18FpI9kV+AYAL8920hczEi/xGeKFfAJqfS3gAAEkCCgAgSUABACQJKACAJL9EPkf4CzkAmD98x54jZuIv5Px1HABMD5fwAACS/ATqIqb70lpX14ppey4AmE2nh89W/n2tPnQmaqfqlR5jMgTURbj5JABc2JJFC2fk109qlR5hcuZ1QPnFawBgNiwopZTZPgkAgPnEL5EDACQJKACAJAEFAJA0pYDav39/7NixI7q7u+OBBx6IgYGBCz7uyy+/jJ07d8a2bdtix44dceDAgYiIGBgYiDVr1sS2bdtG/nnhhRemckqzbqoziYjo6+uL7du3R3d3dzzyyCMxODg4U6c/7Rqdx1dffRU7d+6Mu+66K+655x47EuPPJKK5diSi8ZmUUuLll1+ONWvWxMGDB0fe38p7Mt5MIlp3T44ePRq7du2K7u7u2LVrVxw9ejQimmdPGpnDeDOIaL69iJjaTCa9F2WS/vzzz3LbbbeVI0eOlFJKeemll8pDDz005nH1er2sW7eufPPNN6WUUj766KNy++23l3PnzpXvvvuubN26dbKnMOdMx0yOHz9e1q9fX44fP15KKWXPnj1l7969M/dBTKNG5zE0NFTWrVtX9u/fX0op5ZNPPikbN24spZSW3ZGJZtJMO1JK4zMppZSnnnqqPPnkk2Xjxo3lwIEDI+9v1T0pZfyZtPKebNu2rXz00UellFLee++9sn379lJKc+xJo3MYbwbNthelTH0mk92LSQfUxx9/XHbu3Dnydq1WK2vWrCmDg4OjHnfq1KmRE/7ncTfccEM5ceJEOXjwYLn33nsnewpzznTM5NVXXy2PP/74yL87duxY2bBhQ/UnX4FG51Gr1coHH3ww8vbg4GC54YYbysmTJ1t2RyaaSTPtSCmNz6SUUr7++utSSimbNm0aFQutuieljD+TVt2To0ePljvuuGPU+zZs2FC+//77ptiTRuYw0QyabS9KmfpMJrsXk76E19/fH1dfffXI28uWLYvLLrssfv7551GPW7FiRWzevPmfn3bFG2+8EWvXro1LL700BgcH48SJE3H//fdHd3d3PProo/Hrr79O9pRm3XTMpL+/P1auXDny2JUrV8bvv/8eJ0+enJkPYho1Oo9ly5bF1q1bR97+7LPPYtWqVdHZ2dmyOzLRTJppRyIan0lExC233HLB52jVPYkYfyatuif9/f1x1VVXjXrf1VdfHT/88ENT7Ekjc5hoBs22FxFTn8lk92LSAVWv16O9vX3U+9rb2+Ovv/664OPff//92LhxY7z++uuxZ8+eiIi4/PLLY9OmTfHcc89FX19fXHnllfHEE09M9pRm3XTMpF6vx+LFi0ces3jx4liwYEHU63PvNvYXk51HxPlr1M8++2zs3bs3IuxIxNiZNNOORExuJv/Lnlz4OVpxTyZ6XDPsSSNzmOgxzbYXEVOfyWT34qK38f7www/j+eefH/P+++67L4aGhka97/Tp07Fs2bILPs8/v5i1f//++M9//hNvvfVW3HzzzXHzzTePPGb37t1x2223xV9//RVLly696MnPlipnsnTp0vj7779HHjM0NBSllJaYx6FDh+Lxxx+PZ555JtavXx8R0fI7cqGZzMcdiZi+mVxIq+/JhbTqnixdunTcx83XPfm3iT6+Rh4zX/diIlOdyWT34qIBtXXr1lGXEv7x6aefxjvvvDPy9h9//BEnT56Ma665ZtTjfvnll/j2229HLllt2LAhrrjiijh8+HDceuutMTw8HFdeeWVEnL+ctWDBgmhrm9svz1LlTK699tr44osvRh577Nix6Orqis7Ozoo+mqmb6jwizv+U5bHHHosXX3wx1q5dO/L+33//vSV3JGL8mczHHYmYnpmMp5X3ZDytuifXXXdd9Pf3x7lz5+KSSy6JM2fORH9/f1x//fXzdk/+7brrrou333575O0LzWGiGfz666/zci8mMtWZTHYvJn0Jb/369TEwMDDyZ7OvvfZabNq0aUytDQ8PR29vbxw7diwizl+H/Omnn2L16tXx+eefx+7du6NWO/8yga+88kps2LBh1I8X55PpmMnmzZvjyy+/jB9//HHkObZv3z6zH8g0aXQepZTo7e2Np59+elQoRETL7shEM2mmHYlofCYTadU9mUir7snq1aujq6trJLbeeuutuOqqq+Laa69tij1pZA4TzaDZ9iJi6jOZ9F6kf+38X7744oty9913l82bN5cHH3yw/Pbbb6WUUgYGBkpPT8/I4959992yffv20t3dXbZt21befPPNUkop586dK88//3zZvHlz2bp1a3n44YfLwMDAVE5p1k11JqWU0tfXV+66666yZcuW8thjj5VarTbjH8d0aWQehw4dKjfeeGPp7u4e9c+RI0dadkcmmkkpzbUjpTT+edPT01O6u7vLTTfdVO68887S3d1dDh8+3LJ7Usr4Mymldffk6NGjZefOnWXLli1l165d5fvvvy+lNM/3nAvNodEZlNJ8e1HK1GYy2b3wYsIAAEleygUAIElAAQAkCSgAgCQBBQCQJKAAAJIEFABAkoACAEgSUAAASQIKACDp/wD+kxbw2FjFUwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAHwCAYAAADOwnKhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAdnElEQVR4nO3deYzU9f348dfsgKiwINqo0VIFdGlwQWmsWjyopEpt0Hr8IlpLU8/WxqtWBVOrJGqtR20VPItaAalnNVKqrdYG20ZjjbcBdFlsFfBAZbk8lmV+f/iFunIz+2Jm2ccj2T/8zHx2X8Pbhc9z5vOZKZRKpVIAAAC0sZpKDwAAAGyexAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJCi0/re8cMPP8yco2r16NEjmpqaKj0GZbCG7Z81bP+sYftnDds/a9j+VdMa9uzZc73u55WNdaip8UfU3lnD9s8atn/WsP2zhu2fNWz/2uMatr+JAQCAdkFsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkKJTpQcAAIBqVSgUoqbG8/MbS2wAAMBqFAqFqK3tEcViodKjRERES0spCoVClEqlSo+y3sQGAACsRk1NTRSLhbjgwkXR2NhS0Vn69CnGVVfURk1NTbS0VHaWDSE2AABgLRobW2L6jPZzgF9NnIAGAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACk6FTpAQAAYIVCoRA1NdXxfHi1zNGeiQ0AAKpCoVCI2toeUSwWKj0KbURsAABQFWpqaqJYLMQFFy6KxsaWSo8TBx7QOc4+s2ulx2jXxAYAAFWlsbElps+ofGz07l2s9AjtnhPRAACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFJ0qPQAAAJVVKBSipqbyz0FXwwy0LbEBANCBFQqFqK3tEcViodKjsBkSGwAAHVhNTU0Ui4W44MJF0djYUtFZDjygc5x9ZteKzkDbEhsAAERjY0tMn1HZ2Ojdu1jRn0/bc2IcAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACk6VXoAAICOqFAoRE3Npn3et1gsrrJtU89AxyI2AAA2sUKhELW1PaJYLGzSn9u9e/dN+vNAbAAAbGI1NTVRLBbiggsXRWNjS0VnOfCAznH2mV0rOgObL7EBAFAhjY0tMX1GZWOjd+9VT62CtuIkPQAAIIXYAAAAUogNAAAghdgAAABSiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAghdgAAABSiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAghdgAAABSdKr0AAAAm0qhUIiamso/11oNM8CmIDYAgA6hUChEbW2PKBYLlR4FOgyxAQB0CDU1NVEsFuKCCxdFY2NLRWc58IDOcfaZXSs6A2wKYgMA6FAaG1ti+ozKxkbv3sWK/nzYVJwwCAAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApPA5GwBAmkKhEDU11fHcZrXMAR2J2AAAUhQKhait7RHFYqHSowAVIjYAgBQ1NTVRLBbiggsXRWNjZT+xOyLiwAM6x9lndq30GNChiA0AIFVjY0tMn1H52Ojdu1jpEaDDcfIiAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJDCJ4gDwGamUChETU3bP59YLG7YJ3BnzAC0L2IDADYjhUIhamt7RLFYaPPv3b179zb/nsDmTWwAwGakpqYmisVCXHDhomhsbKnoLAce0DnOPrNrRWcAKktsAEAbyDp1aUOtmKGxsSWmz6hsbPTuvWGnXQGbH7EBAGXKPHUJoD0TGwBQJqcuAaye2ACANuLUJYDWKn9yKQAAsFnyygYA7Va1XZQNQGtiA4B2yUXZANVPbADQLrkoG6D6iQ0A2jUXZQNUL7EBwAbZ2OskisW2PSB3nQRA9RMbAKy3cq6T6N69e8JEAFQzsQHAenOdBAAbQmwAVLlqeXvXiM9miXCdBADrR2wAVLFqe3vXlpZSpUcAoB0RGwCrUS2vJlTTaUt9+hTjqitqKzoDAO2L2AD4gmp7NSGiOk5bAoANJTaAqrG2VxPa+m1T16aaXk1wETQA7ZnYoEOollNiIiJKpdLKi2yrQbXMUygUYuutu63x1YRKvG1qNbya4CJoANqzdhkbm/rAcW3PqFbLgdoK1TRPNc1STafEtLSUqmaWiOqb5+Zbl8bcucsrOsPAAcX4f8dsFX36VP5A/8s7f/Z3XTXM8vkZqmGeavqzMcvqVdMsEdU1j1lWr5pmiaiueaphho1RKJVK3loEAABoc9VxXgkAALDZERsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrHxf+666644/PDDY8CAAbHPPvvEGWecEbNmzVrv/R999NE45phjYuDAgbHvvvvGcccdF48++mjixB3b/Pnz46KLLooDDjgg6uvr41vf+lb89re/jU8//XSd+y5evDiuvPLKGDp0aNTX18eQIUPisssui4ULF26CyVmh3DW86qqr4pvf/GbU19fH0KFD42c/+1n85z//2QSTs0I5a/hFF110UfTr1y/Gjh2bMClrUu4aPv300zFy5MgYNGhQfP3rX4+TTjopXnzxxeSp+bxy1nDOnDkxevTo2H///WOPPfaI/fffP84999xoaGjYBJPzeR999FFceOGF0a9fvxg9evR679fc3Bw33HBDDBs2LOrr62Pw4MExatSoeOeddxKn3TA+ZyMifvOb38TNN98cQ4cOjWHDhsWCBQvijjvuiI8//jjuv//+6NWr11r3v+666+LGG2+MffbZJ4YPHx7Lli2L++67L6ZPnx5jxoyJ448/fhM9ko5h6dKlcdRRR8U777wTJ554YvTu3TtefPHFmDx5chx88MFx4403rnHf5cuXx8iRI+OFF16IE044Ierr62PWrFlxxx13xO677x533313dO7ceRM+mo6pnDVcsmRJHHvssfHf//43RowYEfX19TF79uyYOHFidOrUKaZMmRI77LDDJnw0HVM5a/hFzz//fBx//PFRKpXijDPOiDPPPDNxclYodw0fe+yxOOuss6K+vj6OPfbYWLJkSdx+++2xcOHCuOeee6Jfv36b6JF0XOWs4ZtvvhlHH3101NTUxPe///3o1atXvPXWWzFp0qT45JNP4p577om6urpN+Gg6rtdeey3OOeecmDdv3so1/dWvfrVe+5533nkxZcqUOProo+Mb3/hGzJs3L8aPHx+1tbXx0EMPRffu3ZOnXw+lDu7NN98s9e/fv3TKKae02v7666+XvvrVr5bOOeecde7fr1+/0gknnFBqaWlZuX3RokWl/fffv7T33nuXPv3005TZO6obbrihVFdXV5o6dWqr7VdffXWprq6uNG3atDXu+9BDD5Xq6upKt956a6vtkydPLtXV1ZUmT56cMjOtlbOGY8eOLdXV1ZXuvffeVtsfffTRUl1dXWnMmDEpM9NaOWv4ec3NzaUjjjiidMQRR5Tq6upK119/fca4rEY5a7h06dLS4MGDS0ceeWTpk08+Wbl9xowZpf322680fvz4tLn5n3LW8LzzzivV1dWVnn766Vbbn3766VJdXV3p/PPPT5mZ1t5///3SwIEDSyNGjCg9++yzpbq6utKoUaPWa99///vfpbq6utIll1zSavu0adNKdXV1pauvvjph4g3X4U+j+vOf/xzLli2L733ve62277bbbrH33nvH448/HkuXLl3j/k1NTTF8+PA45ZRToqbmf3+c3bp1i0GDBsXChQtj3rx5afN3RA8//HBsu+228e1vf7vV9hWvIE2ZMmWt+xaLxTjuuONabT/66KOjS5cua92XtlPOGvbo0SOGDRsWhx9+eKvt+++/f0REzJw5s42nZXXKWcPPmzhxYjQ0NMRPf/rTNp+RtStnDZ944omYP39+nHbaabHFFlus3N6vX7946qmn4uSTT84ZmlbKWcO33norIiL22muvVttX/PeK28nV3Nwcxx57bEycOHGDX5V/+OGHIyJWOYY96KCDYuedd66aY5oOHxsvv/xyREQMHDhwldsGDBgQn376abz22mtr3H+PPfaIa665Jr75zW+uctvixYujUCjEtttu22bzdnSLFy+O2bNnR319fau4i4jYeeedY9ttt125pqvzyiuvxK677hq1tbWttnfp0iXq6uri1VdfjeXLl6fMzmfKXcORI0fG9ddfH1tuuWWr7UuWLImIiC996UttPzStlLuGK7zzzjtx/fXXxw9+8IPYbbfdssZlNcpdw6eeeioiIgYPHhwRn52iujHX6rDxyl3Dvn37RkTE7NmzW22fO3duRET07t27jSdmdXbYYYf4+c9/vlGncL/yyiux1VZbxe67777KbQMGDIi333473nvvvbYYsywdPjbmzJkTnTt3ju22226V23bccceI2Li6nzlzZjzzzDOxzz77RLdu3cqek8/MmTMnIv63Nl+04447rnG9Fi9eHAsWLFjrvh9//HHMnz+/bYZltcpZw7WZMGFCREQMHTp044djvbTVGl5++eXRo0ePOOOMM9p0Ptat3DVsbGyMHj16xPvvvx8nn3xyDBgwIAYMGBDDhw+Pxx57LGVmWit3DU899dTo2bNnjBo1Kp5//vn44IMP4uWXX47Ro0fHNttsE6ecckrK3LSdOXPmxA477BCFQmGV28o5hm1rnSo9QIaWlpZ444031nm/7bffPpYsWbLKM6QrbLXVVhERaz2NanU+/PDDOOuss6JYLMaoUaM2aF/WbsWz12tasy233DKam5ujubl5lWcJ1mffiA1fbzZMOWu4Jn/729/itttui7322muV06toe22xhtOmTYu//OUvMXbs2OjatWt8+OGHafOyqnLXcMGCBRHx2QHrsGHDYuTIkTFnzpy46aab4swzz4wJEybEPvvsk/cAKHsNd9lll7jnnnvijDPOaHVqcd++fWPSpEle2WgHlixZssbYrKZjms0yNpqamuI73/nOOu93xRVXRESstggjIkr/90Zda7p9debNmxcnn3xyvPXWW3HNNdfEHnvssd77sv7KWbO2XG82Xlutw5/+9KcYPXp07LLLLnHDDTdEsVhssxlZu41dw08++SQuvfTSGDJkSBx66KFp87FuG7uGzc3N0dTUFD/+8Y/jpJNOWrl93333jcMPPzyuuuqquP/++9t+YFaxsWs4b968OP3002PBggUxevTo6Nu3b8yfPz9uueWWOPHEE+OWW25xDNMOrOvfymo4ptksY6N79+5x1113rfN+vXv3jkmTJq18KfKLVtRg165d1+vnzpw5M0477bRoamqKcePGxcEHH7z+Q7NeVpyStqZS/+ijj6JLly7RqdOq/2uvz74R67/ebJxy1vCL7rjjjrjyyiujf//+8bvf/W61p0PS9spdw5tuuinefffduOOOO9JmZO3KXcMVr/wfcsghrbbvtttu0b9//3j55Zdj8eLFTiNOVO4aXnnllfHGG2/EQw891Ootbg8++OA45JBD4uKLL44HHnig7QenzXTt2nWN67+hx7CZNsvY6NSpU+y9997rdd9evXrFq6++GvPnz1/lwtIVEbLLLrus8/vMmDEjRo4cGVtssUVMmjQp6uvrN3xw1unLX/5yFAqFePvtt1d7+9y5c9e4Xl27do3ttttujfvOmTMnunXr5oA1WTlr+Hnjxo2LsWPHxtChQ+Paa69defBDvnLWcPbs2TF+/PgYOXJkdO7ceeX3WHGt1OLFi+Ptt9+OHj16WNNE5f4e7rTTTjFz5szVnp6z4u/QJUuWiI1E5a7h008/Hb169VrlszR69uwZe+65Z/zrX/+KJUuWVMXBKqvXq1evaGhoiFKptMorGBtyDJutw18gPmjQoIiIeOGFF1a57bnnnova2trVXuX/eW+99Vaccsop0bVr1/jDH/4gNBJtvfXWUVdXFy+//HK0tLS0uu3111+PhQsXxte+9rU17r/nnnvGG2+8EU1NTa22L1q0KBoaGmLQoEFV8ZLj5qzcNYyIuPvuu2Ps2LHx3e9+N8aNG+egdBMrZw2ff/75aG5ujttvvz2GDBmy8mvEiBEREfH73/8+hgwZEo888kj64+jIyv09XPH2qDNmzFjltrlz50bnzp2jZ8+ebTs0rZS7hh9//HE0Nzev9rZPPvkkSqWSdxircnvttVd89NFHq7zl+/Lly+PFF1+MPn36xDbbbFOh6f6nw8fGYYcdFltssUVMnjy51fbnnnsuXnnllRg+fPjK9xBvbm6OWbNmtfoI+FKpFOeff34sXrw4xo8fH1/5ylc26fwd0VFHHRULFiyIqVOnttq+4t2IjjnmmIiI+OCDD2LWrFmtXmI86qijYvny5aus91133RXLli2Lo48+Onl6Ispbw9dffz0uu+yyGDx4cPzyl790jUaFbOwaDh48OG6++eZVvi6//PKIiBg+fHjcfPPNK99SlTzl/B4OHz48OnfuHLfddlssW7Zs5fZnn302Xn/99Rg8eHCrz98gRzlrOHDgwJgzZ0689NJLrfZ9991346WXXopdd91VMFaRRYsWxaxZs2LhwoUrtx155JERETFp0qRW9506dWrMnz+/ao5pimPGjBlT6SEqqVu3blEsFuPee++NV199NZYtWxb//Oc/49JLL41tt9221ekZ8+bNi2HDhsXcuXPjsMMOi4j/vQvO4MGDY8cdd4yGhoZVvrbaaqvq+Lj4zUT//v3j73//ezz44IPx6aefxrvvvht33nln3H///XH88cevfIZ0/PjxcfbZZ8egQYNWvqtG375944UXXogHHnggmpqaYsGCBfHggw/GrbfeGgcddFCce+65lXxoHUY5a3jxxRdHQ0NDjBgxIt5///3V/s75zIZ8G7uG3bp1i969e6/y1b1795gwYUIceuihMWLECKffbALl/B6u+Dftj3/8Yzz//PMREfH444/HpZdeGp06dYprr73WZ95sAuWsYZ8+fWLKlCkxderU+Pjjj2PevHnxj3/8I8aMGRNNTU1x2WWXRZ8+fSr58DqEhoaGeOaZZ6KhoSFmzJgR06ZNi+7du8fWW28dDQ0NMWfOnNh1111j6tSpcdJJJ8WOO+648rPhtt9++3jvvffi3nvvjblz58bSpUvjr3/9a/z617+Ourq6uOyyy6riCbnN8pqNDfWjH/0otttuu5g4cWL84he/iK5du6488FzXB/JNnz49IiKefPLJePLJJ1d7nyuuuKJq6nJz0KVLl7jzzjvjuuuui/vvvz8+/PDD6NWrV4waNSp++MMfrnP/G264IW666aaYMmVKTJ48Obbffvs49dRT4/TTT88fnogobw1X/M5dc801a7yPTxHPV+7vIZVX7hr+5Cc/iZ122ikmTJgQF198cXTp0iX222+/OOecc9Z5+jFto5w13HPPPePee++NG2+8Me6+++5oamqKbt26xcCBA+Oqq65a72tfKc8jjzwS48aNa7XtmWeeiWeeeSYiPvuAxieeeGKN+19yySWxyy67xH333RdTpkyJnj17xjHHHBNnnXVW1by6WCiteG80AACANtThr9kAAAByiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAghdgAAABSiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAgxf8Hvfp4vrAOSPIAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3493,7 +3954,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.6.9" + "version": "3.7.6" } }, "nbformat": 4, From 7f69d78aefccf907acbc1193bdf36577ad36ad2b Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= <33338133+rosgori@users.noreply.github.com> Date: Mon, 30 Mar 2020 17:57:34 -0500 Subject: [PATCH 8/9] Improving again the hierarchical model The option `softmax` was added to both hierarchical models (PyStan and PyMC3). The results are identical between both (fortunately), but they are different from the book. --- BDA3/chap_08.ipynb | 3075 +++++++++++++++++++++++--------------------- 1 file changed, 1623 insertions(+), 1452 deletions(-) diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb index 9b1709c..446739d 100644 --- a/BDA3/chap_08.ipynb +++ b/BDA3/chap_08.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 421, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -26,6 +26,7 @@ "import time\n", "from scipy.special import expit as logistic\n", "from scipy.special import logit\n", + "from scipy.special import softmax\n", "\n", "import warnings\n", "warnings.simplefilter(action='ignore', category=FutureWarning)\n", @@ -36,6 +37,15 @@ "%config Inline.figure_formats = ['retina']" ] }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext line_profiler" + ] + }, { "cell_type": "code", "execution_count": 4, @@ -54,7 +64,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -70,7 +80,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -271,7 +281,7 @@ "15 West IV 0.554 0.361 0.084 0.057" ] }, - "execution_count": 6, + "execution_count": 4, "metadata": {}, "output_type": "execute_result" } @@ -283,7 +293,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -299,7 +309,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -332,7 +342,30 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[0.32568306 0.51124744 0.53068182 0.47058824 0.45240761 0.5\n", + " 0.56744705 0.62022472 0.66627771 0.536 0.56039173 0.61190739\n", + " 0.51493306 0.60249151 0.59275521 0.60546448] \n", + "\n", + "[0.915 0.978 0.88 0.986 0.894 0.894 0.897 0.89 0.857 0.875 0.919 0.907\n", + " 0.971 0.883 0.911 0.916]\n" + ] + } + ], + "source": [ + "print(data_obs[:, 0] / (data_obs[:, 0] + data_obs[:, 1]), '\\n')\n", + "print(1 - data_obs[:, 2])" + ] + }, + { + "cell_type": "code", + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -351,7 +384,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -360,7 +393,7 @@ "1444.106" ] }, - "execution_count": 10, + "execution_count": 9, "metadata": {}, "output_type": "execute_result" } @@ -371,7 +404,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -390,7 +423,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -399,7 +432,7 @@ "1447.0" ] }, - "execution_count": 12, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -412,7 +445,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -436,7 +469,7 @@ " [ 46., 30., 7.]])" ] }, - "execution_count": 13, + "execution_count": 12, "metadata": {}, "output_type": "execute_result" } @@ -454,7 +487,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 12, "metadata": {}, "outputs": [], "source": [ @@ -466,7 +499,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -477,7 +510,7 @@ "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 15, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -488,7 +521,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -532,10 +565,10 @@ "
\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 16, + "execution_count": 14, "metadata": {}, "output_type": "execute_result" } @@ -546,7 +579,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -557,7 +590,7 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [thetas]\n", - "Sampling 4 chains, 0 divergences: 100%|██████████| 16000/16000 [00:12<00:00, 1261.82draws/s]\n" + "Sampling 4 chains, 0 divergences: 100%|██████████| 16000/16000 [00:13<00:00, 1229.44draws/s]\n" ] } ], @@ -568,12 +601,12 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 16, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeZAk2V3g+e/zK87MiMysrLv6PnXBih7BtMZgZ5Etw2WInbEdGWYIM2b+A2zBDDMM2EGGwWI2Nms7/7C7AxiztqyxAmZHaEBISIJBZ0vqu6rrrsrMyjMi4/Yj/Pb39g/PyqzsrOqubnV3Vkvv80dZZUS4x3MPD4/389/vPRdKKYWmaZqmaZqmaZp26IzDboCmaZqmaZqmaZpW0gGapmmapmmapmnaPUIHaJqmaZqmaZqmafcIHaBpmqZpmqZpmqbdI3SApmmapmmapmmado/QAZqmaZqmaZqmado9QgdomnYHn/rUpwB4/PHH8TzvTS2raZqmae8G+jdP0+4dOkDTtNsoioJ//+///Tu+rKZpmqa90/RvnqbdW6zDboCm3Yt+7dd+jeFwyM/+7M8C8Bd/8Rc888wzbGxs8Mu//Mv82I/9GK7r8lu/9VuMRiPyPOfDH/4wv/iLv7hv2T/6oz/ib/7mb/izP/szqtUqaZry27/92zzxxBN8/vOf54//+I+pVCrEccyv//qv88EPfvCQt1zTNE37bqN/8zTtHqM0TTtgfX1dfd/3fZ9SSqnHHntM/fVf/7VSSqkvfelL6qd+6qeUUkp94hOfUH/yJ3+ilFKqKAr1L//lv1TPPffcvmWVUupP/uRPVL/fV0op9Rd/8Rfql37pl5RSSv3kT/6keuWVV5RSSi0tLanPfvaz78zGaZqmadot9G+ept1bdAZN0+7C008/DcCJEyd2a/O/9a1vce7cOb7whS8AMJ1OuXHjBsePH9+37NzcHL/8y78MgOu6tNttAD760Y/yq7/6q/zIj/wITz/9ND/6oz/6Tm2Opmmapt2R/s3TtMOlAzRNuwuWdfCrUq1W+bVf+zW+//u/f9/jGxsbu//f3t7mt37rt/jMZz7DyZMn+exnP8snP/lJAH7+53+ej370ozzzzDP8/u//Pl/4whf4N//m37y9G6JpmqZpr0P/5mna4dKThGjabRiGQZZlSCnv+JqnnnqKz3zmMwBIKfnt3/5tOp3OvmWHwyHVapXjx4+Tpimf+9znSNOUoij4t//23+I4Dj/xEz/Bb/7mb/Liiy++U5unaZqmabv0b56m3Vt0Bk3TbmNxcZEHH3yQn/7pn77ja37pl36JT3ziE3zsYx8jyzKefvppjh8/Tp7nu8v+4R/+IU899RT//J//c44ePcq//tf/ml/5lV/hP/7H/8ixY8f4+Mc/zszMDEmS8Cu/8ivv4BZqmqZpWkn/5mnavUUopdRhN0LTNE3TNE3TNE3TJY6apmmapmmapmn3DB2gaZqmaZqmaZqm3SN0gKZpmqZpmqZpmnaP0AGapmmapmmapmnaPUIHaJqmaZqmaZqmafeI15xmv9/337I3ajYrBEHylq1P26P37dtH79u3j963b493835dXJw51PePovRdu+9u5918LNzOd9L2fCdtC3xnbc930raA3p572Wv95r1jGTTLMt+pt/quo/ft20fv27eP3rdvD71f37zvtH2nt+fe9Z20LfCdtT3fSdsCenverXSJo6ZpmqZpmqZp2j1CB2iapmmapmmapmn3CB2gaZqmadq7gD+MmU6+M8ZeaJqm3Wvc7Yg8LQ67GcA9EKBZ2y9hDi5S/9a/O+ymaJqmadq9TR12AzRN074zudshwejeuAh2qAGaiMe0//JfIIqU+kv/AZF4h9kcTdM0TbtnVZs2lcZrTr6saZqmfQc41ADN3vom+cIT5Me+l3z+cezNZw6zOZqmaZp2z9q+7tJfDQ67GZqmadrb7JADtOdQziyVa/+F7MwP4qx9+TCbo2mapmn3LFkosig/7GZomqa9ZWShkIWkyCRePzrUtswu1qi3nUNtw02HWitheDewui/Q7J8n+CefIDv19GE2R9M0TXsX+73f+z3Onj2LEILf+I3f4AMf+MDuc3/6p3/KX/3VX2EYBu973/v4zd/8zUNs6X5FLjEMgTDEYTdFO0RpnCOEwK58d9znSdMAutddZKFYfGCGyEuZXay96XUVmSSeZjTalTe1fOt4DSHevvOwUgq3G9E6Vnvd8/2hZtDMyQ2U3UA2Fml869+BzKG4NwbnaZqmae8ezz77LKurq/z5n/85v/u7v8vv/M7v7D4XBAF//Md/zJ/+6Z/yyU9+kqWlJV5++eW3vU2ykHc1I9jmxTHjrenb3p53Sm/ZI4vvjZnQ3k26V106VyeH3QxNe0flSYHMJZW6xbGHW9/WuibbIcO1N18Gvv7KCHc7/Lba8JoUxNPsruZ6OrQATYQDrPFV8iPvxfTWEYlH+y//B6zeucNqkqZpmvYu9Y1vfIOPfOQjADzyyCN4nkcQlD/Utm1j2zZhGJLnOVEU0Wp9ex2BuzFYC9i6fHcd7qJ4Y9MzmsMrUKRvpllvK1koDFOATga+YTNHqswcefPZgzejyCTyDRx7460p0/HtL6QrpVg7N0QW8q1qnnYPCUYxRf72fbahm7J2bvhtrePbPe0cf7RFc6EKlNv77bbnAFGeI1Gv/507tBLH6st/AID/I/87za/8z1i9V0Dm2L1z5Cf+0WE1S9M0TXsXGgwGvPe97939e2FhgX6/T7PZpFKp8Au/8At85CMfoVqt8uM//uM8+OCDB9ZhmoJ2u/6WtSmoJRiF8brrDE+kNOcqzLZfu3M+qJcBZ7tdR4wmqIaA6p3XbZqv/95vtdBLIRMsHGmWgdot0ijHcswDj9+tN7I9SioQvK3lSt+O221L2EtAvLXH4Ou5/nyP2ozNqcfn7ur17kZE1bYPtNE0DdqtOsP6lNmZGpazv0yzyCRSqndF+ebrHWfLL/d54P1H3vRxHE8zilzSaL25Mrw36q06D3ibEfVFh9rMWztG6+Z57djJWRzDfN223ro9o86U2SM1LLvMN4lMIGPe0PaOtgJmF+tYtsGUhErDxrIN0klOvV55/XVFE8Ty36PO/ADMnITXOOcoqYgXMubmGq9b4nhoAZo5uYGyaqhKi/g9P0Nr6WdRpo05vnZYTdI0TdPepdSrrkgqpXY750EQ8Ad/8Af87d/+Lc1mk5/7uZ/j8uXLPPHEE/uWKQrFZPLWlbcoW2GOz+F2HkfVFu74ukHHJ04zpLW3DUqW/7/1RzzJMoQhmExCRO0RVGRCfOf2ttv1t3R7Xo8sFP1VnyTM6KxNaMzt74BuL7nMnWzg1Pa6HmmU7/v7tbyR7dm8NMaumhx9cPbuN+B2lEREI1T9yG2fHqz5zCxUqTTsN7Ta221LGKcYpvG2fGZW5zlUpU0x/+j+9wwTkiyjMbm7YKF1uryI8Oo23tyeMEyYTMIDAVowion8lMX73/jnsXFhxLFHWu9YcPd6x5mlBkzcOsabHDO6fn6Ekor7PnDnc8KdJGHO9nX3DS37VpwHkjBnMgyxmgZJ8e1PVDSdJKRhztzJBmFYZmRdP0JUxeu29dbt2bg2oh3Ud8ethWFKIQqiZ/9f0jM/iKrN71t2tBGQhDknHmvvPra94VGY5cWDtXNDZo/WaB+v4wfx7vF8U+Xqp0ke+mdgVXcfM7we9jSBy18mPf1hVH3xjm1XUuFOIipjG8MULC7O3PG1h1biaLkrFO1HAMhOfIjBx59D5Ic7e4umaZr27nTs2DEGg8Hu371ejyNHyk710tISZ86cYX5+HsdxeOqppzh//vzb3qY8KYhGPsVw646vuRmIFdnemK0ilyy/2Ge0uX9c2tGHZll8oPxBd9a/ikj9t6SdSikiPzsQ5L4RGxdGZHFO5KY05itUm/sDlmCckEbFvoAziwu619w32+jy1jzq9iVXRSbfknFwhr+Bs/G1Oz4fTlKCO5T83clgzWd75Z2976vIpojs9mNzlNr55y4+/+61CW739h1okYwh378vJt2QyM+QUuF247trrMz33RfXtI3XSkq8NYrkjsfSqzW9s4jszY0ZVUrtfuffjCw+nFlcb54b7uY7dTfnkjyVpNH+dSXTjM1LY+TO/nFWvgj56x8zItk7h8hCkkzLfWQkB8vLQy/btw3mZJk8yd/Q8SVeq7T8dbZbGALTMuAuRqEdXoA2ukI+c2qnFSZmsEZRO0J27IOH1SRN0zTtXerDH/4wn//85wG4ePEiR48epdlsAnDq1CmWlpaI4xilFOfPn+eBBx5429uUZ2WHb2v1YHZv7dyQPJNMtssLk24vInTLzu32kodhCFrH9pc8Rl5KujPNfj73KBTZbd9XScW4E75+RzCLIItQEvor3m7HBsDqn3/9MW63TOolC0WeFuSpZDpKDgwGGW0EuNvhvvFJdtXkzPv2X+G+azLHmPbu2MbmQpXm/P6s0O06x1Kq3Q7h/hdLxNaLZOlbP+bGsk3sysHuVzhJCYZ3GcS8Shrnrzm5garOoayDJbSVhs3MQgVn9b/u3YtWSezNb9y2s1nxr1HtfOW272GvfgVzdHVnVr5yv3m9CLcbksUFWXJ3AbPhb+Ks/tfdv5sL1TuWgyXDAUV2+8/obt8PoLL0Oczh5dd9nZKSbrdCkd/5u9W/4RP5e8dlkcvd/eEP7iLgCAeI0dIbDuQiPzswRqy37LF6/tsfRxXevAhxm0gmjXK2l/cC6v6KR+Tf4dykFFlSELopyXT/a6pNm8ZCde+i1ewZEILx1pTu9YMXcozJCsJbx+48v3surLcrnHxy7uabHVjm1d91q3cOFfvko21EGtx2E0XYx5is7PxhoMxXZcvfQHQni3L776b0+nACNCVB2ERP/U+7D5n+FgJB/aX/AxGPD6VZmqZp2rvTBz/4Qd773vfysY99jN/5nd/hE5/4BJ/61Kf44he/yJEjR/hX/+pf8fGPf5yf+Zmf4cknn+Spp546sI47DYDP1y8QDd/47HrtY3VENIRXVYcIIXBqFoZxy2+72vvxzpOyM3trwARlBywYJiBzlNO4Y9mdLBT+zfsJpVPEtLfveRXlFJfGVG58gcqNL3Lzam4a7r2fOb6O6W+UV6ez23T8i5TK0ufK2Zcpt2N3fJnMicevyhApDnSys7hg89Ld/d57/Qhv20OEfUhfP3sRThLcneBXKYU/iBlvhQcmbdk4P2Lj/OjgCrKI/pVttpb2OpEi9Xe3980S8Zi5+Zz5k80Dz1kVc+fq+o43UFUkhMC079ylMycrmJOlA4+3T9SptRxE6mOE/fJBmWNMt/d3PJUEJTnWHjDbuHOQIaUinKSsnx9R5JLRzuykSpYB/K0Behrlt521UrwqaxIMY+ROQJSnBcktx+nw+RcYLW0eWEca53Su7K1bhAOQ+b4JUTYvjfet6/WyYkmYk6eSozM9rDtU5Vr9V4g3VwhGyU5mOqW37DHeKr9DuXf780ieSeIgQ6Q+du8s3Rev0Vt5Yxny/oqH1yuPmTwtWD03ZPXc8LYZXsNbL79LdykYleu4XTmyMASV+v7HrVuOxUk3xOtHpFHOpBvu+1xuJQuF34v2MlymAxjlsX3r90IpUJLs+guY023SB34YdoKmOMjuOItjkckDz6VpeYx3Xlkn6XXLt+1fALkX3NvdF7F7Z8t15JJ4cvfZ09BLGaz5O81W+MMI0xJ3Va1wKGPQ7I2vg0r3pQnTh38Ur75I+9P/Amt0hezkDxxG0zRN07R3qV/91V/d9/etY8w+9rGP8bGPfew1l195ecDCw40DVzeD0MEfxRTrAxYfmMGumISTlPaJcvC4Uoo0KvZ3UpQkjxOMxMW2y85a6KagII0Ljj9aziJ5M2OSRjmRlzFYCzAMQexn+MN43ziuozvljagMu/McaaWFqs4h/QFG1IejT5bPC3azb9b4GqZ7g+Sxj+5M+y+xKybGQ7MkV6FSkRj+JqgqVsWkyOVeZ6hIcFb/Adk4evA+pTfLwZQkXLqEubWG33qaOMw4WV9i8kKI+tAP0WwZqHino6nYl+0YrPt3PYPgpBOSdkPOJH+JnL2P5MH/Hij7E9mZH9ztoN20u950ijRqjLemnHn/PHMn9wb8m6NrkDrgHAyWEAIp9x8H1vbLFK0HkLNn9h4sUkQcAXvrEImH1TtLMXOa1JzHmtmbMdRZ+zKbm1W8J/5bZhYBYe62vTFX2bstQ5FSWf5bkod/EszX6arlMVz/GrHrMH88Ijv5IVR1J4tQJKAUxczpA+NxoAxkEYIZIF94vHxw97NVu0Gavf4VRJFxY9mhWZPMPnaHpuTgDWJmRZkJuRlYKakIhjHudsTcyQZKKrauTG4/jutV378ik4idCTl6Kz55UuwfgxX7ZYfa2BujNh0lDNcDnOkK9x0fIbKQaf1RtkbHd5fN4pwkyKjULfz6+5BWiyp3tn1xk3pwmXa0AXEAlYPjh8zxEsa0CTyIkor+ik9zvoJhGVQu/RlOp4Aj/+zAcmmY43ddWuLrFM0TZMNLyNYIHp6FIqGy9DmSxz56YDmlFO52xMxsgTG8imq/n3TJpTvNy889kyRB2de2ui+SL74fTBu7+wKyeZzsNuOl4iDDqVsYhsAItnaClfruRzMdJ9RnFJXVvyd9+MfLz3nn+2Z1nscYS+CDDNYCKnVrN2gs21uuo9F2CF/10efemNHamKPHUmiexOqdI1uvQKtFnsndc5M492dUvQlurw/G+whe/AqzH/mnYDoIylLJcWRhVAuqt8x9czN7djM4SqOc/kYVFkC2HyStz8JoiihiUAcvxEwnCf2VWYww5r5918b2b4hIfczhFfITT2HZxm65d5FJ3G7EzJHqgWVu51AyaJWLnwSgaN237/Hay38IMsfqvHgYzdI0TdO+y2VxsVuauMvvofIctxshBHj9GK+/1+lIo4LtV5Xg2J3niM5+mWLmDDU7JYsLhmsBaVyQhllZ4pgWVHZ+vJUqSxizpEBKxezRGkcf2j+hwmA9YNINy45I7BKsd8jTgrXzLp3lvUyPYQjSqOD68z2CcQqUweHy84NyzJdUuK98iY0NiyQxcLZfQMRlFmnz4hgG18usmVJEkcGNy2WwuK88yHQg9cg2r+G5BqicsLtN5KYE4xwpBXkqketnCV/5BuTxTonhLfs6KjAdg3Bzk8rVT+8+LuLJ7ceeqHw3g+XslOMZYa/MNBVpWbIJuNsRTsNGhAOql/8TZhFw9KFZ0qhgcMsVdGtwATPolO8ZDvZdNcewCEOD5GYzZIHdeRbDXdt9yXhrihquki2f3Sv3VIrK1U9j+OvYvbOsffMqkVtmUW52DFutjLl5qCz/7b6J0SIvJQ1zDH+LytX/grX1LPbaXqnfrdkeigRzcLH8KPwNqp1v4PVj3EGGEQ1R4wQ1SXDWv0Zl+W8RqY+IJ4ReuhsEGtNt8rSg6pdtMIJuWSp2S/C9uzviCSKb0jpzhNri3gQLBz4iJZlXV6kyYdqbgJIopfD65fFzM3FQFAphCOxqGVRZnef3MjrCQEnJjZcGhF7K7LHavkwzgIoTkovlMWuOrt52PKZSZcZKZCGy2ia32jttKLN5o80QudOgadEmSg7OTuhujnG3y4yJSMpAcOi1kcWdyyeFKna7307dYjpJiLwUVZkjO7WXfChvcVDu42AUk0xTkAWmt8EwPYOKy3PKa415yjOJ2w3ZfGmNxA0QWYEKbsn6CnZv3WB6a4jExVn5ItGpH7xjIqR73d29cGRvPYvdfWHf+obrAWmoKOb2ovSbt17I+lsY8RjDMgjHIf7a5s5ygmrTxqmXn7dhvirjW6RYa1+nbXUobry0e8stZTjEo5jOlQn9GzuZqLn7D5TrVq79NeR75+U4NskTxcbFEflOqeurM/jCEAihECis3lns5S+CUuTth8CwDwwTy8Npmd1Tt//sRdjfyTQrsCqINMDovgyxC3mEc+0z5VjMfoQQ6nXHPB5KgGZNlgCBqu0vzxAyRZlV7M63DqNZmqZp2ne5ztUJvaVbyvOUxMEHVaCUwtl8BjvfXxLn1ExOvWf/NOUicalWCwx/A2N8bbdjKgQYlkHreB3DMrArJlJKClF2cIpUMtqYMumGTLoh7naI2wsJJyFxZxN/2ys723lEvn6eIpOMeope38LbnrJ2bog3jImDDAQUo02szgsEw2gvOxPlrF3YIvU8stbDFAWgYLDq41QUlc2vYg0uInY6Io6jSKbZq8bECKzxEsHmNq5foUgKlNuDyRbkEVkmUFIRejmjkVNefHVMRBEj4jGhWwajkZvi1G2Us5eNcNa+hDW+xmgjYDrZK88SvUvgzKBMpwzglMLqX6B66c+pP/u/Mfz6l8jdIe52SDhJEKmL6a9jbF+it+wxHSdEbrr/Pl07PX9n42v7gqXhZoznWSSxREpA5RTN0xjR3kQ0/iDGj2p4W+O9e7gqCUWCsTOexZ/A5uVx+Xns7L5ms6C5UGYk5C0ZDKdqUm9VMKIBRjTADLZwNp7ZfX772oRo7GO4q4g8Ro3WyqDXrmNU62SZwcCdRVZayG6I7ISkp/4x6QM/jJG4mN4agxv+7jgoe/MbLHAFKQuuXKljJG45kYi4c9ew291kc3t/dsGcLKO2L5Blgu0tB9e1yZOc6YXnEeGAzlW3DMYcE5GHVK5+muF6gNy5B5uSCnN0jXB7iJIKw99EZAFeP+LaM9tsXBjtlR/v9LGttW+BX5bHdrfrJK+q4jNIQeakziL5kfdgxBPMyTLj5W2mZ79OMEqYP72XLY8uv8B05fqB7Z2efxZv6QYAJ99/jKMnJccfm8Oo33n2vZvHVDBMcOpWWWIoBBQZ9tZe/3bz0ni3jDH2M1AKkbiknleWJt+SxSkK8G8zPnE6ThhuTDFFjmnIcv/s7KM8laidGyMDKMNC2XWCUUznm6/sjau6hbc5xO9O6K/4ZTlfbOzt90IxvFmSLEDkZdmmUorpJCEYx3Q6ZcZfSYUIB2WWeuf1oZ8iRBmUJ9P8QPZ8a6vCNHJQCorW/RRYSKlozFVw6hbSH0CeIMdbrK1WkVYDhCA/8RQYJqJId8vCTVNh5AH96yO2d87nN8e8hW4Z8Ba53M2SK7uBOVlCSklj9OLuxZ6SKi/efPP/oQinmOMl/HN/x8rzXycYJwy2EpQC013FiEcgBMqs4tz4O+TFv8fb7JMFZVmnsVMOKkZLOCtfOLD/b3UoAZrpraHsxoE0dnb6nyBrCyj7NuUGmqZpmvY2S6OCIpNEfkqRl+V/eeCBVcGqmMRuyEJ9sK/EKouLA2ObzPE1hJIIoFbb62gFw4hoHHFk9HkMlbLyQp9pOGU02T8eJEsKpNvD7Yb4w4RkNN4ZR7SC1X8FY9ol7nYYrgdlp9rdJupukmeS8UbAwn1NhBAYfgcRjxheWtkb29G0efjkAKsxi2ouonyHilfO5DhZH8JwhWlcJbs0QfYikqJKHOyf6Ww68pm2P0i9muJ1PKZZDaqztP2EmXpKpSLxBzGteYPTpyOiQJYTA1x/CWfty6jhajmWbDpApsluBiRLCgplMJ626S6VY2rWXupQdK4CUFTnkTcnGNshwiEiHjNtfS9JUQY+aZijrAZF4zjCKMd3zZ2oc/zRFkruZaOqOxfiDW8dw1vf275hyNxchuWY9HoO462QYtKjcuML5LfMEFnb7GEWJmJ3bJrC9NYwB5cAkLIs+QOwdoKtlZUaS+c80vt+CGU3mHYHOEt/QxoVRH6KiMcY/ibKmUFWymyVEWxhjq/hvfB1xPV/QERDNlYEXi/GiIbkUYzrWqg0JhsPibwyYhEyJ09zIucUxczpcvbLqglFSid5jK1ei/FSB9e1KQrKQNl0ysxkFiL8rXIMo9zp3E4sUi/FXvsSKvLJr1zG6r7ENz69xspKDQUou04ub3bsy0xJc75CkcSQRYhwUP6dS6bjBBlFiCxgsBEST3NE4pJ3r5FHMVJK0rDAMA2ypGDmSLUs+621y/JQQNYWyGVZBlrkZSlcfv1ZTG8NagvI2mJZsbYZ4GRdjCNn6N/wywzoLRcdjGkfEU+IhhG9r+zNvCqlYP3cgMSPcIcSvzPC2HqZ21FFBomPCDp4gxi/HzEdpzjTlbIMOQvL/akkVud5ZHbrRBkKM9hCRGOMPMKY7l0M8DyLyZWlA5PiWEaCZWQU4z6pNc+k68FOpshyDIQhyJICY7KC4a2Vx0MuEImPv7JCfPnZchsLhdeP8C+fJ9teJwoyJtddrl+YIQwNUGDkEmsYg8zK43GygtePdiZBKcspdzOkmQRjrzRXScVozcf0NzEtg+6Sy9blMe7N8sciRUxWyUWdoFhE2U221i38i2cp/DF5nGF1XsBZ/Xvw1mnVJ2UMoSRW57nd4xPK7GwQmLhXlxBBp6yKSAtGV9YRMiXyMqbjpAwixU6gVltAJgn28AJVw929OHWTCDqoPAEKDG+NzosXSaIclWWsX4nwPJMst/A2BLLr7473HLhtHNvH7W2X+0EpnJqFbD9Ax/jQbY+h3ePxNZ99OxQpIg3I5w8WMGeLH8CM+pjDS+94szRN07TvboYpkLlESsnK5TGTTogR9hFeF3bu/WPbimiq6N2cJr3IkNnBaZoNv8M0UMjmcfxkvsyoZCFttYyYrHLjRo0sLK+8JkM4IY6Wq8slqpA0Zg0WBl+BPGLxtE3rxEx5KxpVkJ16mqL9ELVKRvtEA7PeAEAYJjLNMKI+o+efY/zKS4BC5DH25AqmYyCiEVbnPL1uExm5WHEfDEVhCJyaSZLXWMk+zPZkgTwuSCuPIVv305hewNjaG34wXJty8VsBqTfFqgicikHDv4pppPi+iWVJnJpFZJ1kOHRwnALDFHiewdZWhcGFFazxVQx/k2Bjc3fGtc6VCdNrl8mXnyWL8vIKfNgnC4KyvDHYwo+LMvIRAlDY3edR/gBzfL3sPE5Wyo7sTidLFuVV8ywtKHJF6KWMVkdl1iYr950x3S6Dkh2V4cv4xv3IcRcpwR8kbK7bKMMuZ8Y7u9N5NiyEAlmdA1lQuf4ZDG+dLDO4/M0RIvUw8wDhb+5OwnHqVMyZMynOjb9DDK4wWumjsow0yknDHO9a2bmTVg0jLnM9rVgAACAASURBVN/H3nq2nBghE6g4wAgHBIFJkRVM0/KeXEUhyHNBfOMq0WZZihldeYHhF/4zwcVzWL2XYbhE4odUlj5LvLXO5PoyuedztL6Ov+2XGYgixXDXkFe/zOYzr2D3z5XlfUC1FlJxphjxBPvl/4S89E3M0VWitFq+fyZoOh7VajnuzWrOInPJpBMi3W2c1X8oMy+Ry2AtYHxjRPK1r5IHPqoo6FydMFgPWbtRhXDE8fssjj/WQnUu0rk4oM0KC2eaKLuOsnbK5aIBFStFxBMGN3w2L45R1VaZsHTXqL30f2JMO2RFhIymFPY8+WibNEh2A+2q7FMdPIc1uEDhJpg7ta25M8/ULRCTG0xeeokbq3WCnou9/LkD5w8R9gmWl0m3t1DDVap1g3pwiXgwwp9IZPNEOQ5QyTJIbXHgXoGyOoe6JYNpTFawN59BSghufBVr7avl8Xn105ijq1gbz6JG6/Smx3A3J4g8RbgdYi/Gu3AOKRVH75spLxq4q7vfGYBB32a8NkZJxWRzxPYrN5DODHlWloCK7YhaZjKZWGRxgcglRaGwts9i984ycL6PjQsj4iAjCxOs/gVg56ssQNlN8tn7d7fFqQpq8TK1/jfIUwnTIZONsvTXHFxGJgmtRojb9bFf/r+Rk23w+5gvfA3cDlhVpFXHi9v0guMkO6WcypnZCdbLW0V4az2KQiDNapkNFmCKjJn0KiKPSaOc4XoAqsAyJW4/Q9x4keTcNQbrEaGXELp7pcAA5rRLW63gWAXkCSL1ynP/1a/gdqZMpxZD+SDuyEAaVeLGw6TDHnkOrJ+nmIwIAgOlIOxHODe+Qrh+48AxdKt3PEAzJ8sgzHLWlVfJj7y3LIMYX31VelHTNE3T3l55WhB5GUGUs+xF1GYdzMFFVCER2ZRpf0Icw3TgkexcEXVW/45GeJETjzR2xwTdJPIItXmN5Ooy9Wf+F4Ir59m87GLkASdOxFi1ckqCOA/oTtdA5kwHLoxvEC9dYW3zFFg1vOe+Srx8uRzb4a5hdZ7DmG6TFDW8Xkj7WAVZbRMuXWZ65WXolNkgO+2V41eymDixsUTCgryEMbiBlxhAgWHZqMTEHm4xvXyWmdqUMzNXODI7gWoTs97AyEMyz0f1r+7MhFeWm1VrgvXxGfx+wrArwYSKGSNyg/HYIfYj+psJcWyQJAayUAiZMTubE4aSZDQkSQyirS5FnlEEASpNKKRB1cmwbYXZP48lMmxLgWGx0fwezq3MkGzWytJMDIxkwnLwvRRRROZ6TMYKVILII0TQJUsVXi8iTwr6Kx6t4HlOtzco2g/slpGp2jzS3ptApCgE+XADsogwNAnGCfnCE+Tzj2OaYnea9XrRoJbOltmCm2NKrCqRbDIJGohoTLUuUHaDTqfCcGhjmgrThGhrC7N/iQeerGAYcOTG/4U5uMAkLMcemsEWRrRTTitMjEqF+fkMY/4UcvYMSpX3l9tcyhG2jeNIpFnDcXIqRll+1uN95PWTnJhZBSnJh13ya8+SPPZRROpjuWuoaEK3W8PbDijcHjLyyAuDerzC0RMFyIxCGnQ2JGraJxps77RJoIocIp9Kda9stLvdYBo5VKqKLDeREuIkIa9Vy0yHMOh/7csoKZFZjgL64zayu47MFdF2D8eMySZ9opWLqM4VxHAZsoDB+atsfPk5RDCEvCiDgcRDKoGz9iUaZhkEF6KOyjPUZEAx9wiyfpy1KCE3aqSX/gHl9xEU5IN1rM7zKKvGtCjLlIveddRgGef6Zwk2usRFncQLSQsTIUweWljBZidDGY8R0RiUwvA2GPsz+MkME7/O+Kufw958BpuISM0hwgHW9lkYXC/LlVsfYuOZs2TPfwqUpGH7iMRFITDNHDP3ygtEUVlWqGReznKuJN4kwFp/hmwaouw6ln8DI3Wp1iWTtSHBMCTPy6tGg42A7NTT5Cc/hDm8QsXOMN0beF2XZjMniXKC7gTl97EGF5nNl2i0HAguMM0ixmNn9/Ye01FYlvwKQSNbxaoYRG5GpW6gAKEg2artBL4KEXsM1gLExgsUneu40xqxdQwzc6lUYdyNGF24QlS9Dz+bwx2L8iJEZaYsh5YpjhlRLzZQMsfuPEvv6hbDbYUQEhAkzYfpbNnYW88igi75YJk8V2VCKBojpwGDC+tsdz2i1CjLK6XCXPkyxbhTtrN9HEwT20xwxlcYXN/GO/vs7n39ZH0R7ApFWjCNKshKCycfkyQCQxTkOeWYsyRnuuaydWmA24+RSjAdemw8f43eSz0MVSAGI4KrG1ivk4x6x2dxtIaXQUnM8fLBJ50GRfsRzPFV7K1nye7/oXe6eZqmadp3qcl2SJ6lqBE8Ol8rAxFVMJVtCm9EOkgYGyGtJx6Anau31vZZotZTbG4NeXhhm+LIewCQM6cRQUyRGqi8wB9L8iQjmXmMWtsivO8YdSxENKYW+czkPubKl5gLYsJ8BhULptMANf8A7qDCifhq2eEwHZyVL2J6G8i8Rp7keFsTjHiCVRlhxBZWXGPhoYxebiLdba5O30OQNZjp3sBjm/rJnPfPnsOd+0GsqIMUQHMBy99kevkc7vGcabqI0d/GVFcRR+dZWq/TPH6BmTNXUNYMFJBXj1JpmKhoTFFR+K7EVDO0kCSOxPJWIXbJMjCdGGQFOdwimZ0hmM7QaJ2hYkakuc3aqoG8+C3UpAPHBP1eRhYuoY7NcfyBKtvdHnQ3uL8BovdhBrmN79V5bzNHWVX63Rp59TTteMB4exNjsk7jsSdZHr2PYyfBthTZtZdpHj9BfP0Knm9zf/MidWUxHhkUwVU2VuosPFCUdwIKe8w5gkw18P0ZEpljFB0sdYnq0Ry7ajLemrJQTBFWgogniOoc5DEiC9nst5lGFWZaEmvly1Ragnj2QYpC0O/bOEGAEZ7hWJqy/cwF7j/tU7EzLG8V20xBprvTiYedMRV/CzURuJbFrP8CZr3N6YdMBkqxdtHj4Ydi8lwiUp8wbTAIE/LuEosnFgj9CWvBImfMPpn1BNaDj2N1XwQE0pmhqBrkRYuZ+2ya7ktce76OE9zHgw/6LF+LeOJ7LIzhKsn0MaQvsSmPfenMoqTBIKzjd8ekdRPTKLMsTu9FFlqwmb0Ha6ZNXIyY+tdRpoM1eJHZah1/GBIgiGKDznWJrbaxT06YsSbk0w41MSQZz5AGKcc+YEIqaIt1ZhoKJc4gihwlJWCWwXHik3cvcOR9/5RoKUEOJ2RGCO8xAJMTacSmmRAbxyiKgKl7BYwtwrCBffRJFqbXMMI+xdoyIm9h9S9RV4vEqiBJTFpVKKpzrLoPshgsM758jVZ8AUcEiJlFrOFFZpNlfPEwuJvEtBnHMUkC9tLnsbPzCNmm8FwSs4F17cuM1taQ2Qbi2Any7ZfhPgOn1aIoLOJxgLn892zG78WqKcICiGzwzvHijSk/8OgWZtdHOT9DmlcQSjIepDSaPshyHJZlG4jUxTn/OfzL50nOVKmffpDqpbNM4gdwQ0Hc8akOrxMNElr1MW6wgLHlMy9MiixnbRwwZyXMtlLqqk8YC4S3gRP3mFyz8eeOYRiSdAYoBEboYmVuebPxaIKR1TGLDqjjeH3Jyfhb1IsHKQoDVT/CNMoItoao3EFW25j1oyg1AiWR1XmCLCW05pjLexiJS897DMOeYhcTkDnF2jmq8yMIbYzIIhivUc0eYGrA8dY6YXCGzsqYG0sBs63LVE9/D0opNlYNHKOCLMBnnlm7yVzDo1ITnHjyCNc7PVDF7tiyooAwtjBVQbUQqFhRnQkxMoNmM4dpjKF8pKzi9F7kxMkJ0+AIreoQ1TyD0Ztgbr+EEQiimaMUR4695u/ROx6g5UfeC8gDNeS7z88/VgZoG1/VAZqmaZr2jpFS4Q9eoXX/I1wLZzkt2rC2hT2GSM5jSgcr3+JL8Sn+USQxh1eQzZMIVdBYqJMfLX/41TBGeBtYzhMoe4b+tEa0blDMFjTia5g9Se/CP/Dw99Qw/DqmaNCIJMl0BleBMApq0ZDCbqGynIojmalMmfgKkQYos4pC4TjQPhozvp5RYFOv5QSiS5A+Qmf5GF7aoHXkFSyjYGE+JYwNQu8Mo3SZ3vQJmvmAY8YVhDhFbhyhOSuZxhKv+h6MbIvCbqOSEHN8larzJNGJH6I5HTJ8+ZtYtdPknoslfWzhYKQJ2dhjogqsuEVQmLRnDcLQJui6tBvPw+yH8IIa/UszZccn7FEAdbUOzkPkhYA8pQhHRJMe5tHHMEfPsfbyDLg+FTOjPxhxPhzyZMNGShslDEQes3xUckqcp7a6gjGQZM4MxoIFecjUnyJkytY3vwJzDnMLAVVzAW+i6LqSSXyO6UTQPm0xvL5FEkoqacBkWMemi2w1kJmkcLsIJ6JYeo7M+l6KXJELCYnHX72U8MNnnqPuLZHFKdVsk6Yxg8EcMktRokatVnb0HUfhDJ5Hhj3y2MFun0CoIX7QQAmTMmIuC5xEGnDhP7/I98xe58yTFuvBY8jWw3x+eIKZcx2aZyKUsAjCBHdwnWPVKqZqUcRTSCos2AGJf4NaZYw5HpKtH2GQJ5w5+U2M6QLIWSyVsihW6F8TOP/4/YRJzjSo4TNDNzV4QilMo0DkEQ2xRGI2gNP0vBadrQ5mbUjNgIqSTLMT1GoK33MI+i7IjHiaEaUCR9kYeVkaPHUFTg65lHi9MXmaIxVU+xfw4iab46eI6zWOz3h44wZTt0p++Ryyfp1++wFOLs4g4kk582TuEA8j2v3zbPV+mNnpN2gU6xh2C8uMsfrLyMDk7OAEdWceJzRot3P6A5/NXo2gmKe58XX8SYPZx6FScylsAQIa1ZBx7AIxhoyoJB2CWBHmpxC+xfIr28xWpnzv/UuIaEgYWfjJLPUoZuZom9RtMH+koJVMyuCv+QRup02eejz+uEE6bLCSHaWBQZrZTNUiSdwmFLPUsmVEFkIlZCotVGEQbkpid4NEGiTGIpvZQ2CU90Y0bJN2cgVrIBHz2U7JaUEtXGISB1xcs3j0kTmyzgpplOOpnEnepLs25sFRQhrmFAtHyY0qjipIA5NKYdOkSR75dLxLVKNjKAri6piVrXmSJKE6q4g315HhWWTlCcgTrHQIshyTtlDZgqyOVanQGnRQqgf1B4mLBnOVEb4UmO4qDXsM8csM+vMURwuU3cCYDFFWBWXV2TK+n7mKpOrE3Ohb1NJ5mvfleNkJjhZDskxguKtYSYSo2EhH0pvMM3vSwLp2GctQYDgIFOPlLubIY87owxzkvVU2vDMUozZHs4DpMGRhLiLKI4x4nWEnJQhqGEWKzGIyWRAOMk7NxpjSxJ1UaAGkHfK8jspzbiwJEmUQRindiUvbqlCvzBE3Z4h7n6ae3Q/cOc55xwM0uXNTguTRn7rt88F/979iDS6+bupP0zRN095qeTJhtLaOdeRx1p5fI9k6g5F0MOQSpvEoYxzScJN65zyVWgPlzNJa/g+o99s46x7xfT+BWFkmGMV0JzmNNMJM20h1g8lgheooxzwpsHoh1gfuw8ggEeCqKScrFpXpkNiewVcz5GmDmUGHfmRAPMMxcZV6PYfhBCMdkMv3cenvVsqyp1Sxkbbo9n1OVCKEUccqPKzcJWSRwbBC3RwTFaeoppAXCcqcwzRypvE89mREEPcRUjE7fYl6NcarvAc/sIlSBWaIJSHlCHEksaPLKOMB4r5LHs5iVRLSsCC2y+Fh7gja8dcwmIMCepMalWqIzGIsa4DlZaTtNnnrDLNpD5VMIa8QpDXmk5wHWxFL+RR5ZZXBsffTNBvMmgNyVWVqQmGkXHarpP4Zvt96Hr86w1Lc4tEMlFUBw2I6NYi6Ef3tbxJaNtPxPHlQ8MEjKzTmbdKNIXY4xo5ihNNkGC8yd/UCEpMK4JgZNgkq7BCODEaVReKZ+zHsGuQgYpcwHBAl2+Qv9cmuXcf/wPt4xf0fWcyfJ0sTiAOmxSz1SpNWbpIoyDKBzEDl5fTxJ45HfOPvxjwoq9RaktzziPwWzbZCRENacoNK/yKj2imOHOtS8a/xA6cf4oaTEWx0UcrGsQRVpxyTNdhMyaIKcWeb67X3MIke44nFv4JC0rJ7KNEqJ6IIJUZmYEyrTN37yJsDjBc3GC33caw5jrs3sNQjYFUR4QARz3HJm2O1dponJahgQBGmZE6VqpVRUQEibxNNHep5m3h1g7yeEMmMWEwxqhYChQKiQIJVJgmlu4VQFbI8JFiPicUiSgb43hqOsqnVCryJS5w1WJ08QuDF1NRlkijBVDHKaiM3cgo5R62aY8oQGYxhnDCxTS6P2xzNjpHmGXUzJe4PiC0HQxjY2ZTCN/nK9FHOWD5haDATT3HCCdKZ51rnfiynz/1PFCyoZUzXIq3FeNM28/UqtckIY3aASATGtEfYO0VjZoIh5kjXLxMzh1ukmNXjPDxrYkQDbOsUcQCT7CjeZIvajM3WmoE5buJYI2rtIYYb0pMzXLIfZP2xa0wim5Y3yyhapagskhuSzqZFnsQoNcXMp4hKRpLWEXGI4W8hTAPT7xCEPc4sXqBqNQhjC3dg4PgR0owxsyrtLCDwqsi6RKoJaTwi23ieRLZRwPHWBkGzTew3mExdTi0ICimxlY/RaDMdRThSIguDNBMYGKQpBG5B4Vr4ruCU2uJqdpwHioxTqUFaTDlxPCDxqqRRBdNq4gd1ZlIPEQUUbgs/dJGFoGrmWOPrpP6QjUnGYJIQByvUTyhEPCYJZ+h1h5youWTFfWSFJM8LDAKwq8grLxIGFZTIULIgcX0ce0IyntClgt2cYi8sko+2CAKbpO7gbY2Z9iwap6flLULSjPXJe5iqKnPOBMuJEXmG6syQZSaeK2hVwchs7F4HFXRRloOReXSi46gsLMd2Tq7xjeYj/Jhs49h3vuE7HEKANvf//SRgIl81xf5NyrDIjn4AM9i67fOapmma9rbIQmoqJBMNFpsOjelZUllhmh5nrBxcMnzjFKtGk4Ed0ysWONHxSMeP03/W5eRpieeNiDcucTrNGfrz1KomdrWCkBXmrQTbaBAPInyaXP9WCqJKJQupIwmFRaUKoZEiK22c2KHOAj3W2fZHzBsh4XhIfuw0x60eKouxHMGkb4MsmLEVUgoMGTOqwWqjxYKoIesOxAJRuY9mJIiKEMtaJ05niTAYDh0yexEzOU8/aLMZNThjNamka0gkWa1FMhU43eeJxkeQ0wmGESLzmJmkyrxRIZETICNTgsTIsWRMmsZUKgH9MTjmgGhlRBEnxDMf5MzmNzHjFFMmhMIg6FWwvFVyQ7BsPEY0XaE5s4UyqnjxDLP2NXAgv/wcDxw5jq3uJ48MVsMz/DeLNaKpjWmauMk8A2zmbQnCRkmH6TDEqVwnz6bUmwaTocDtmyzaDpiQVxbJghHEIdn6GJMWUTWlaXpIDFJVYIqUMJnQXVth/j1P0h21GMTbLMqUIrd4OjpLq1hjMHiMWjGgEBb9pGBjYY5/5HbpT0K2t5s0ZgcU4gTKL5C5zf0bX2bj2sOoXPL/s3dnofZt+4HXv2PMfq61dr//+9+c/tx7bn9vTiql0aSkDNcHMfoiWIoRJAiC4Ese40MgCSGCAQmCKCKCIKQI9aKllIWVVLrb5HanP/9z/t1u1957tbOfo/fhH0sk8QQk9yLU//O2mGMxBvNl8GP+ms2QMwuKmBnbaIIvXqJMD7m5eJl7dp+L1T2OjEOKFavLPySvcgb5FWyTo5RBO4cQMcaCM4F2lHTvvIOtG97Z/Wnyfs68v8+hPCRZvAv8HYhTXJjx4c4z/oU3BPlFzt0oYhViWj3DI+gfvkuU7+JFitYZfrckuvkRd/IJ505AcsS23qUUz5veCKuZ2IBQMTKpkMkuufHEA0TL94iKW+7OLrmu3iL2DmNjhFMgIpJ4SqIU3j+fPVZkGmct3WJJNezSZZ7cNNzqEd1l7MUZ1UJxf/cp7vXPE1U9s7IhUEPIGI1kfbZhVuywGwqcaii/8Tabh2d01cAs91z0u/zxyUP+7WXBzWnBoL5CUFckV3/GGL9CKTJWtx2jPGbd56z7CUEI1v/bf4/vFcd7e6jbj7moX8VN3qZ2lmRbE2UlsVQIo8i4QagW8OBHRpPw9HvfoR8sB3nMoC6RfgSv8D6lmH9Kks0I5X3OHwuSvOIwOqBI30B1Pc8ORu6InFTXSHWFiCecqWP0Ys49O0N2V8S7J+j5GaFc8a4uyeSMoWqJm1tCrQhTwyc1RO6WN4qW9e05W9MzmGMmW0Ne7LPRA5+sCnZuP6RMGlK7Q73ZxZXp82Yn44ZExEydxo0lm8ZyKGNu3j1jcx3hjEfODpDlHnKtCfGUEJeELmZ1NSLTgUTXqEFAgK7p2MQTIvcpfXvCDI3zz2OGYT1y2R2QJ4okVlTtmk8WgkP9Luqkp+5T5usDRLZCZjVOFIxi5KZ6yF72Np1t2FEV2U6FDIKUlFU/56C5RYkpkfOkoYJkxs78n9JfFYgHh4BApgkFS9aDYusyDo3ANDXSZkxCRrL9FI41bbWkl8fcQYMTJJHh+FgyaRO2q5LSWfrliu+2Ma/oe7z+GdfRTzxA697+jyl/8N8Q8t2/8rlwmvTqW4jxLw8dfOGFF1544YUfl1txRl2dk6Wv8fRmy/1DjfECQmBUKT6tac6uMdFPczv/POfTA6bufSaZIBMt22WJqN9hHCXXtSCYp5jZMd6NuJAwth154tGN4gY4MNf48nVktk8epoh2ytP+lmjyPMUuINDDHOlukAy4KCdGcnwXWCds2hnRbvc8LS6KyPUFWTRgQ8EzMlb6nP9l8hLHyX2+oAasS4Ap+17yyfA1liHFhpSxXrMjWgb5gNFpZJwyDgbrp0RpIEoHlE1Yize5PcuRQ4TMDfLyIUzfJgqeEEbWkwanj9CXH5CMhyx9ycHBLtr2qGAIJmJPFMxcROJ7fLsgmvREYo1sX6evLtFlxkHqMK0mHx+yCFNU2/JxdIe3U8f/Pn2ZMTT8PePAg3OSR9UbCHeK148RDw6YyUDctuyZC0wn2faBqaoZ+hUi3WNaDAxK8eH1Gxhp6YcVnbPc3N3hZ+cNeMn1zQ5pnJHt5hgXP69Li2JacZe9Zos+e8jD/SNISk5WER+UX2Vmrpj5C67UW5SRJ0Q5fZKwywFhHFnWl6zVnIM7DZ085Whyh9t6wl4meNrXLJViE0VcTCq+1rzMql7xZnGPUllstk8QCXF/xjJ7gyebKdrscXeyJRaS83kOTiG8IBnWePcSiYHUzLB+5EdlID3f41gc484snIAPgoSBtn6ZHTdy+WGLFS2ZmzCOEr/qUKHnqtnjFXuGGw8Im2vulB2ontubAsMuydCzZ9akM4EZYmLR83Q6YX+SkAwrIEeOBmEF7w4npGrCnsoRticYh/eeVHSMRmGqnIgDumgHOVbsZRs2Q8LtbYyjxUURZfY649VDvOzZ5AnvzJ7yxZUn+Hfpll+BusPbY/pIs8k7Qr+LTuHGWvJuzubbP2TfxqRW0JsZAwmzbcfNVvL6bINnh6dRyytm4EcHE77WS+6qJaMeKdQhEWtG7TFDitaOYqV4p/iXCdrgx4YuTCmLGSdlhdc9o8/JxT4+KfDxPuo2J/WBNZ6jnWO0mtKrBSkViIz5ekRl+5BEbIcJZquJDjVb4ViKnCLNwdeM3tL2KTYM7O6lCF1T5jVe73CrBPNK8ZosearPeMpXeX17ifz+e9j4gKPwOYL37DWKZTzBrpfPO6ybDun3qKRjbWqk88zcHrrbkKtbTJJTTBqq8IChl9wgsWh+ykqW65ZWf0xsJ4jbXZzZw0jNTv+I2D0jFg+YqghhR4rRMu8ETRpIZElOB8bgN0/QeU9YPh8I/WE3Zyr2mRSCIpqx9Q2h26BszuX2GB8GtCmp6xRTD2w7SzIYiApEck0frVgHGKcp25Mv8ebmCq0NUQqjDggRMbqSVK2QYQ8XHXC9fJVRd9y5W3H1bI0pN5xtXqd2JyhfU3PNHT9BuoByjoiUd20B5+8SxxPsENNkx6T1mmszpXZLEpni2GcSFdSjoBnWYD47zvmJBmhi3JBefRf+Iv3grxKyHap/439g/+//64hxS8j/3yfWv/DCCy+88MLflNPLP8CMW2RXcdz9gNPlNTN5lz/dPWJHWdLR41zBoR/IdOAoWjJ79pDb8avYrMJO54zrHWQ8Y9vFjMpw1TbEIiUbShoTWIkZZaTph5a5bWj9itSMtOlL3PcFudDoNmbwCVnwNMtP6YtdennE07ggkznZ9cje0GMUbC5asB1RcUA/piibIeIpe6JmNJeMlUEmDcrcYZYOOJGz9BInNFksWZ/ekg773LaacrLLNE4Ivn0+H8hHxKZh2BpkCNyeO8gT7pQVl5sTYrHltr0kz19izHKquGU6ePIuparXbMSaafQaQtRYI0jzGSa5RYsl3ew+Tx/k/CtC0fQnOC/BOTaqgSolT9/gYnPKPV8g0guMVTRqB+1ScuFo656T4pib9lO+18a4mUfsP2BJQm23mL6mNQc0omAbT5mJPSIxUumcxG5JonsoXbOu5yQhpS13ONUZP+9vSIQjsgOTyDETR3ThCX3rCeWUy/U9ku0KpSe8fXrNSaVpYkFie654i4snd3lr9xGDmxFpy9+6rpFxYNtP6XTMo/wOWb9EaMM37IQPmi9wHBUM/Sn7RcKtyXAqMOvusK/OUVKQxw2RG/DK4pOMTkQ8mhxzkxf83JXlj0922Yt6vtys0dcdCM+2P2PcPUSajtj3RM0NcQm742PU5AH/c/gGT7d7fC3OwWm26gofEtJ4ZFQBmb6MjCaI1S2XaiT4hGgcuIimYCZ85+MtD3YMuY348xDxkt7wlhrJ+y06ybmaOqKoIzdTvtPBS/k1L0cJjY4w/lW83WECKJ1g0l2O7RW3Yp8gZwg/IrKIoCXfXZxwXOwgWOC7DT65RzI61u2IiQRdMSGNCmI34dlDgTePzLBVswAAIABJREFUqY53UANU6cAzYfhSN4HpA1JZs7tzn+tRAfvEfkHQHvwcM3Xc5IKNvc/EVyh1iNc9l+mHHJkjPq8qVHOH1FeUWcLG5KDOmMqKzj+gbe5wKGaM/TNUcsvF8T2KG4Nlh2vludj2TIYMjq/I/RTHfYJOWfUXrJOvY5sa7TXeWP4g+yl+Tv2QoBw+v49rRxZpTpffYeI8DwaFLXZY1VtEL2mkRfaeXFY0mylZbLgWI43WtF1MLwJfTOfU08Ce0nTC4H2OtZLYbZhuFqyHa2SZYHTH+a5gp5EMxYS039K27xO7PWK5iwqOSfuIrTtA0nMV7+PwJLuacRC8QqDRmp2+/Yu01TWtmLBZNOik5lJtWEcS7yGRliBzeiGQpExIENO3mNRXqJsj+tGjTYFNPbFu8J2kNdeEaMTbjp1sl7YvUAqy7QY/kzj7PEE5eMtoBP2gGW1DVgi4/ZTOO4z0zERKg2CblkyqC87dDJnusgiXiGiXvHecnk1Rk4aHacEf7bzMQSeoJgVBaGyIsCbDMfIkLrjKCl5u7jOd9SxtoFOHvGRXtDW0yYS7ZYsxFdH3v0d8722SdcQyv/+Z99FPNEDLHv1D0tN/AjL6zHXR5vkMkPTRP0R99d//sZ5p8fRTdk7ukZUvhmO/8MILL/zzzFJSzY5JyoiXtivSaUqwI9nYkwwjmdWsxIrRvkpjd7g8X/P+YsLgj+h3d1nkj/jC2KMGz9hZEpmRFzOGMuJm6qkvWg6DJ87uoAfHTTlBuAlx7ylMxigFran5+P6rvLnZ44f7JW9dPsF5iYxHPpQSesU07PBU/12GxNLYK5L+ik9f+zu82e5QNjvMCocZ12ByJvUanZ8gTE/PBOMHYjokEZmSqLYgCga8RFCSm31qqbnymiMPiRDI2CCtox4Vk/6SXtyhadd0MmF9d5e3L88JRYYPEmchCTGDb4iSGBNSOisAQY7E2ggrG0yW07spIVS05oBH+3/Og43FCU+78KzyjLOio8odB61HB4XfabiyO3xu65k3C3x0RGw1k0SzVi2hXtCVh4x+IDOBKxTLSeB2eoh0EUlXo4H3rr6OzY/obU85beg7T6oVX7x4hk5LrCsZXYvsAk92ajJ3SBY8o+6Yxxk/yj+HyiJMEBzyITvrS161JxjfkwpDm34ekW4YZMb7x7u03nBSBXJh2dMJw3qkneU8WT4gijXv5Xu8xkgzvkwVWoLcMoQLzsPXmakjVLRLMJqBDefDFQezCXX2GtfRB9zYI6yZIbBsty1WGbLJPi6zWAwTa8B7mqYgHj3ztmZ57yW2kzuMtuW97IjPj446rZFScKd8FSEEvr7Edh1GS7Z2Ra2niONdTOMYteds4Rm3NZiE6/3P00Qxn+YPCZHjK9VIHwznfcd0+ZQ3ZcNFPif1JQdrwcl0Rd0d0YyP6a1hllv+dPa3Oe7PuUk1T+WWu/oBPt3FipGzbceX9lcsI4cMgT8+mHC0tkxDSsqEN8KEMDXctJptyBkXV0RRRu8z8jgQ/C43zpJbQTVecGf/HsvYUQww6CXezQCJlI5221BnBXmAVbvDq/mrjHHBe8uYu6MncmuUOMJSE4UIowOZ2vLRnQPeWC7ZCZ5tnFAhWfd3SFOJsTUjhn8sv8o3KsW53cW6FCU8GCgyy9QnVLoHZ0lkzCdvfg3ZXfNFP2CCZ/AR95enGFFQhwmy0WTymCT6kD6d0o3H9JnkcZGzV2asupzY1Piupk8Nf+ZO+PKQo8wpaZwwyF2kjKnLiNbkHFrDo23OzEJ/L+IgiTiUKWtyWi+IZULqAkYPnCpPPZUUxhANl+xOSz7craG8y+yjT9iPU56Jgno64Xh+jkwt50lOHI0kcsL15pqXIslW7PHqZM4/2r3PQe35ah3Ruo7gHOrmEdODN1m1C4ZwzNYfUI1LKu8ph5ZJsUPnSiKXsJhAEDGXQ4qrTzEYhBTU/QZXzpEpJIkBBfOwQWUVRXWfNtZs/BlvGKjNPlb2mMQSJRmZGBB2xnVX8p77GeJ6i2oW6N2XCFJybu6SBYdwB0zwjFlGlt2n7StUv2L0S44rQ+RapnuOj0/ukz/bELeBn76qWGaa1uWfeR/9ROeg/V+NP+zBFz9zXbL8AJDEi3d/bGfxfzF09OL9H/D7/9l/wh/8t7/Dsx98+y9atr7wwgsvvPDPm13lKauKqFnR+ZrFbUrqT4iHntH1tLGhizqG9oJNV1OHjKURjGOFFJ6x2fBJ/5gmONpRMKotkyBJm5bGprhgwIETgTG6y6l5BeUClS7I63Oa6iM6K7DW8b17MRsJnz64j8Kh5D5epGzjGe+Y+5yP93kmO75/5whX9bC6RPqPiLpv8yftipvtij4asbLD6JhbvcPDOOHD3YKleZnB36cVAScmWOdY6Zrv5IEgPAhH2i+Is4g/eXDISMbMCuZu5ExmuDFgHUwpud9PufI950j0ONK1z2jGml4rYmKCd/iQIH1EYzrssMKMS44Xc/7F8zNu6jvPB1CLAr+zw3V+g8LRjB3BW+ZmzZPsktHm/EloGZVj3vZcxZLH8YLbvGE7KBIEmd7wYHPNa9oRBVjbOXJcsS1SPilX3BQrqnRF3QwMpqc1JXUXoY2jVwseP5jwOCv41r09VH3GemjI2oixqrHz9/BdhSIlkjO+cPaQHx49JFFbcue4TAs2bUI5rNAmIpUtY9KTbx5zZ6tJ9ZYw9vSxYNv1zFOLyRqufc5lKZirI8Z+yTpa4ULO4+KY03yCTgRRGFjFXyC2FUoKSFJiDwTBo7LnRkrO0wmDgEvbsDEV2j1/B6kM1LkEv4s1U6pxhNNTTtqBzclL1DNo3ApHwGhD19ecDZ9wqZ7QtCPLfIfKjqhqYPhwifGKPpFYVVNvFFvX413L5zrFeRYzpDnBXKLqJ1xND2nWa07HCm81g2rYdh2pbdC9oxluiYeOuSu5ngQeiscYu4DM4JAoUzG9fUY2rvhknXEWFJfxE4Rq6b1hxPIJ3+G7uw851RGtfQnlc66jgYtQM1QrsqZhG1sMlpvqY7qh4Zl/mSdpifcW6xWpNUjxOm16wncfSD6tP8Z3LX+/+nluxAJvK0IWuA03/CD9hJv4kkgHtuywkYbEFXx53hIpix1rhLaY1pHZipGMIGAqUt47XvPteMqByzkSmmBaokhQCAHBMroVSluGQRLHE/L0mFsfsclqBkpWwtHYBskEiaCTjof5Lr2e4r1jxhQ7KdlouI4dZRcR4sCxt+xqzTAuMNo+79xJSikiHuk519mMD8tDtq5HeYfEcppJ3lk9Za1qJq7gKjJ8MCnpXUdvMxIzo5U72GC4MQ30huLqMc4OWO85iwLXcsQRo/sS2yckoyeXBe1YMaYVKsAHm2NaO0NYST08Q6iaaVri5BfxIcJ6gx01su2Y84xerDhzA7fNDeOmxo2PsZOcIYXHek0Teay3DGPCo/0jlDog7QIXeoMSijvqgOPrmD966YT3dzzJpmZVb0GN1NYT6xFRt2y5S5QdkIYnfJI/Q9sIETIyo6gmJZssJQQwjGR9T7a8YtmumZsTlNjjarZPFRJUvEPfBuKrFq1ueJSu+Oi1e8x3Z6Aff+Z99BP9gpbM/xy8wdz9W5+5zh5+8fmQOt3+2M7yh//df8kbf/vnefvf/Hu89fPf5Nn3v8WH/+R/5eDl19g5vvtj2/eFF1544YX/f1q3W0ZpKLuK2MTcqiVy6jgLKbnUdPsHqDEjFRlxpvno5AG6+RKvza8o9JT6aOBZWbBPyhuVxQNdGzEl5e5iw8L0JDTsipJ5EOzbHh87XDZjKWPiKKZLHE8OX+LB6opJ3xDbFq8NyVDRZFO2xRH7/pBTd0vooI8NICj7cz4qJa/aQ6S1JKHmlVXPShbE3Zpu+gpPdxLuqoFURKTC8TR1TDjmZ3TPPM5pgmctViS+gUpB0qJ0yic7B7y6nXMbNK87y+1ez+N8xpfXW/K14am+YtqlLHYMh07wQRqx3YvZbxe49JY4KCIsV17ziozxesn370yIdu/yxesRU2aMauQyCdCPrKYt3TAhiIzSWF7TD6jCAjF2JMYQCckNt5jmiqJb0ISCQWtwhn8wnbA3jZl1WyILCYKyGbFxDEi8MPxJXvJs8iFfbvYo6jXnhzmvLiz55TWmTIl9QHtL57cM3Q0zk5IDva5ha5CTtzjbTdlXLY4tq1jhWdEcbHijTXDtJSezLcv8VXZXF1T0SCIq0XFRvspk44n1jOAnCHuGDkdgDUV6yGoyUMqSb91/lVt/BlcbZuNDVuuamj1W945R2yl2covUI0bMyJFgUjSO870Jy8iBWbMYzjjsS3x5hyFyTKOeVtwyTwz5+og3hxtCq1naBisDrh3x1PixQnpP1ezjy0Afx9z1uzy6l9JYj5YRz/Y9DwbDWGwQ44+wK8lLriMWc1yQTG3BZjigmpVIveIqS7F9z2xygF8MCHtBJqdk/ZyyXRAf7RKNir5s6YPiFX8PRYxxDqPXbLMUHUYIE/auPmHwHTYNqCxnkyf8YZny1VuLDw7TWwgSScQQBfQEkhDh3IjFElSFnZWcl0vKGm6Smtu9BxTVjGsMx1ZzUt1ij2aI1SMWh5+jy/Z4Sa3oojXlWtDOPo/Wl9h0ZEwOSUPKQT9CJGj8irxRDPqILQVdkGjfEq8d16lH2EecqB0QEWt7wWYn56XI0cUt29MJ8viSzE/R6wvS3QNiPJFRGDHhMluwPvgq7Ri4r1tO90eSVrHT7PNorwTbM1tcwmRF5TRGFJSRY1pvuS1zYnvEJJPYrqDZvoObJER6YJ0l5MWaaMzABwIRD+9O+NpNh5IbIjWhjDMyBIndIMMbtH5g6lqMUAy9pAglIYropCZYi9QtVXuBTSbsr+fk+1Mu+0f4RPHddMq9/oJkrHld32F/fc56JjnMdomHESUDf7R7iLEPeb3p2AkxdaZIxpooeHyIqJOaOpkR9Veso4zLvEQUA9YIJlIjuzVLtyRWDn/9HsPxF7iRt9RSsUjgWN9ispRW54i9gvtDT5tk3IwLin6fWtRE+oJ5dsCbtmeVlvSJYCYS9vsObbbMm4Sn2ZZO1JzP7qD7hAk9jV7xj18NfOnWYLwjHVZ0MuV0LyOXgibLKLPtZ95HP7kAbdgQbT4BD8J+dmtJe/BF8Jbs7A/5cYRoqm+5+ugd/qV/7z8CYLJ/yFe++Yt85Zu/SAiBvtpQ7u7/GHZ+4YUXXnjhx+W3fuu3eOeddxBC8Ku/+qt8/etf/2fP5vM5v/Irv4Ixhi9/+cv8+q//+l/6vxlLgu8oTEehM85Lyft5ghVbdpqGrHboNKWk5OODYzYhIYqOaOMKs3yESEYKN0I0x4eIEBTDuOBPv/R5Dp48ZeJ6QjrjWnYsU8+BloxmxZPjPd5abGhmM25cg7c1u9WK3nVETtHFEbe7E7K25mS8Ij46IOgBGQaKfIsXgvf2bpnqQ46C5Lg1DFHg0eEJiV6DrFjt/ohV/jM8nXxAtvcyLzXgFx8yaRyD3cMS2GlXPA4dF4cL3p5DkwYe7hZ8pRqRgBcN81XNtTshF5pHkWXYS+j1AUUecz117M0ty2SXIYOis4xhIHGGm2lg0i5wUYccO9JUosc18fqMavoFNrKjm00xU8kdnZGpAWSKkp61PsV1HZO+pt95hdwOpJ2CsUHYgMtyvExgbNnfLCltTEsFueSuP2DaVnhhwXvy3nGkPZ29S1TPqfIMaQLPdjum7RmX8ks0t99jtmM4VJIm7VkVA1lp2ekkN0nB3vIh29yyKSy1MxSkdFHHdOyp0gkHNuW6/SpqknF6uEe03eLVgIxL7naKzlv2e8vj8n2OO4kNx9hoZJtEXM1WvNxOuFuvqMeBaojYhDUzqfDDNbfmAQtOSNpLpuoGnXWY+E3S6oqqTIiEZJUXz78MqQqperb5nIuD+8ibLVmY0qcJOjrB2jN8KnlphNh7pBk4n61Z7tfcX02YjRAXAWV22YqAxbFb1TSzAuc9JgDWsSj2GNyIbC2ES3qOacUapy7xQdPttuw0hqwr6aKYmbdEaYdVHVb0XN99hYus5wSB7CrGIqLpl6yyChFXJFYwGXJUHDEMLeOuJ18P7FGQtpr72xum5Sm9TDD1nHHmccIjYo9wEq8kMvGsiohkbEmsYZE9wnFJIe7TFUuK7k8Rw1tIN3KefsxB/BbeHzLVW7I6p7eXnE9HZn1GGAdud86ICo8XJWkck1pNOS7IiwNgZNKM1G5GMi6RyS1FaJlVmsWBpJpF2P49yPdwPuag8txkLXb0fNRDtn7G8o1/lfPjmG9cXZEPkn5YslO1qKzlk1cUeYgZNivUYUkUbRGMlO2CXV+wTD2FqnHeUM9mBO0wQTOpO2wwVOxxEP0UNVscB3x6csGdqxtcEFhGlvJTXjJv0DnBRB7QjBf4fAu9pBcxXh4yZinr4YJpyMhsgRaBVBZIRi53pyzza/pE8+bY01jBpyfHvGwdRXlErDsy3zG6iip/RrCKm51PMftfwZ0t2DOa79hLPip+lvvRHhmCxjfkFjLlESEwpCPC9Uir8cUB9TRDRzdIIQmTfW5PJLtzw6M7u3zpYgne48YLLvZSZmdzjq8+JBk65NAzusecumveHg65loZYGEqxRMkSTM69+ZJ4LejKCdu0Y7IytD2A4lk/R5ieqe24uv8ypR4YhxuED/TphErOyV3g/aOeaRtIdIRs32daP+U2/uwQ7CeW4iie/iH24AsILP3P/Kefudbtv4kwA/w1gdz/V1cfvsvhy69T7PzlBiRXH77D//Ff/+eEEH4se7/wwgsvvPA377vf/S6np6f83u/9Hr/5m7/Jb/zGb/w/nv/2b/82v/zLv8zv//7vE0URV1d/eZRLMvZEXrFOljw72qeKluzXKxK1Rtot0diQDgO+W0LYMusqhiRCJQoZDGULiU3ZCXtEIaBdR7MDHR1CtwigDwPvyU/ZFudoUeECbONz5uEZtVth7Yr7T/8Rsluh8gyCY1vMaNIEHXqE7xj1BUN4xKLIKaolfVDk7YAaap7sRcRRQcSAV+doBuSoiFSgypbcO/2Il04/oc0EsU3R6chNUtMkC7z3PC4btt05Zzsr3tv7hJ3r9+mX51zZW5wcsF4jxhZBQh5qXt5W7FRL0mZLz8ggB0KwBOfoUssyu2aeVyTDiuA1W7HGoPG2JxtH3jnJWaeBZ/eOCZFgMhjWkaeaTYjdgPGWNqrp85rKDRy0PYIAIeAigYlAjY7UDGjpQG+wvsKiiDV8Whq00NhI4J1Cu4o/n16yLC9okwm453VNOg5c7Y9EmzNs8DSJ4kcnV7RRoBERy1ixjS0ei0Nzp23J6nNsWDHEHY4t48EBdVxyJbZ8NK6JNmfkauTy8B5n+zO08GxcR2QdizLh9bMFor3BeUEtc6r+mmSwvLu/4vvFI+b7MT98RfLR3ZYf3WmxdmTWNYjxKUV9wZD17G1bXjv9pxysvodUcyb1nNkwkFqHykp0lGKN584nT/HOY8TItLngzs0T1OQAnSY0cc0q1TSxo/Yr4tEjtKMLineL73NTbBmGG/bWGhEERV8xRiM9Bu8kL12sGPIEqTumw4pl2eP6LUmjUdmMbLAUW8UoFSbPWaUpsYyxrkUlkod3j2HYYqVEhRbfbniSfMAmnFGVgTGJGPH44GAc6O0SKyPauGdRLOjiBjfecp3eEuktk3FACoeOA4lRJFZyKTSD0AggkgVbqagmKTIENjvw4NoxGywymuFFwqf7F1zvfoBVZ1yLdwnC0UeW+R1LlXUcd2tm3QpHC2pBGBdcTiQ2eOJkyv6gELoi6t6lSxRHziN8h2x/RN5+SjANUnesk4anac26yBhSy8N7FcL2UF2RLJ/xg6N9rM/IlaVPJa1oma6fIO3I6D1HN9fM6pqApkks3355D+0VqTY48fzLe7CWiW6J3chYTLlJA3+y39LHklu5orPPUFKzN2Y0aU+XbdHjNUaveDJ7iNUrMmXQzrCkY5FqPs3meGtRTuPHgan2RM0NwfXM2oaTxcjdumAMHWPuGZKcNo945+SaxSTiapog9S03RUYjNmSDQVvL4+MZF3uetVDMmi2RB+06TouRm0lElY2MkcP7gBUCYQU+GJyMifyMqRVEwTD6mEbmCDfShREdD5TNkj426DRCiZ5IKyJvsWJEJFtCBC6O+XjyiE9mc9ZJgRItRmasM4EdL4jVAH1LFXrWsuI8XdLaLbNec//ZDzi7e0SICkYZUXQ9DC2trJG2AV8TfM8gp0SufF6D+Bl+YgGa/PZ/hbnzDQKCkM4+e3Gc46d3EV4h6/O/8bN0myV33/rKP/v97Aff4nv/4H8E4O5bX6bfrFidPfkb3/eFF1544YUfj29961t885vfBOBzn/scdV3Tts9zMLz3fP/73+cXfuEXAPi1X/s17t//yx20zidb6rxHxTHSKvADvThFyy3FqEj7DbHqCKrCqzXpOKcevs/gVwxuTWQcdVYx6ks6NiyyiqU9ZbJ4iv+LlsoueCIfmA2aNtG0mSTI57ViUb8EMRBbjZYWMa7ZJhWivwHV4iT0kxmz3pBEDXc350Rjj3OBOwvDUd3h4y2P9izXE8j6NaVPmDQ19zaKyN0gVEPWnrIoMmbCkKYv89FsyW3pCLqBoBhTmO+UtHiEGcg2Z1TmjCE2LHYGFtMZzyYZ1nS0fgt+JG4uGESNikZE2BLpCzQaKwZUCmMMwq0RzgGeYtiyzhzCKHz1CTsXH+BMw5h4ZnX/PBVtGOlMixUpbTxyGwSLvV0kDmsqVASRC8SRxhBQETRRTOU0OhJUGQS9wTFi7ep5fZ0LpNpihKctLVHo2ewECIbpoBkiBcNIFByzFqwbiFVg2kq802B6jLQMGA7XltjEeD8Q3EDtNwxCYr1iLjStXOL8Y1T/Q6R6wjZZg+k4O9oDH4jHiFgvkfWfY3E01BxUIPuIdHtBWS9x/Yqiq8m1wUmN8nP65JQ2j0lNxHxfIoWg0M8DgCZzRN2cdKhJhp5VEdEVz4MO4VKEM3RxgnI9O9tb9rdznB+Ro6ItUtoiQVpYzFrmBy15N5D0PYiE68mWLrrBJhmpTdmkETYOdNHAfG+CiQVd5tjKFWOqSNRIFJ7XB/ZZwuLgkDGZEuuepVSYbEI3UUyGBd5bcCNYRVYrhqCpIwMUdEnHkEu2mcZEgWCWCO+oQ0ebZeALGrFG+QVXR4c4KYnsSK4GjHRcZd/mz8QPMaGhTkZW2ZajTWA6FKhY4ozCCUMVX6HDY7JesZjEbMuEEBzeapS5oBwd0xuLNI5eFqjIEQ8Vvb9gG3fETmPVlllfcZM5rvMnzKcVynRceUPsA5nTCDcQhSmt21K0Gh06Bv0RKgYCSG94PFFYvaVYPqSLW+JxRA4VIUAIDZgGr1bEWpMqxcN8zXn+hHT1I5wdEL7HSk1me6Q3NEnPcjZi9Q1N4jgtP6aLt1gypn3EpGvR6Yo+tngnIAjaWLHwl9RJi7cVJmwJsUWYGyLzjC6HAxfjpyXpMNJMZhjTEVdXhGDpyxrpPYO/xUWa77x5zia+IrEDu80j6nCF8xvWkxgTJ0TCEzMyL9Y0maUvCrpkSx21VLnHoxlisBJsHLPdi6j2IDI92ju0MOhQEY1rknbOOpuihMIIQxASvGOyaihFhlBzYj1gg2dTajI/obM9ctxw1JbcWZWc5qc0rDlYdhixIR97rFc454m6FU5tGX1FF3W0SWA9nbBT35AMNYkeKdRAlQccnjFL2M48qRmJ2qe4sEU685l32k8sQAs/9R8Q8udpg1F1+teut0fPA6jyO//F3/hZvvqv/Vv81C/+OwTv8c5x53Nf5tW3fxYAISWv/8zP8fR7f/o3vu8LL7zwwgs/Hsvlkv39/zs1/fDwkMViAcB6vWY6nfK7v/u7/NIv/RK/8zu/81dmSWx2BMUYiMeGtn+IdB25cngaImfp5Qq8pk4HUHNm9QVmssd2lhOiBGEtJ6tArC1KQGwDk8Zi9TNGaVDCEPRIaXK6ckKXNChRs7+qwUc4r5DaUAwjwq2R+oxIbQihZ6de42RMrgw7xgARJstwsWE77VGxY0wNmevp/BLQeBHYJCNNVPHp4TnJ9hmp9eA9tH9Mb6/ZDu+Tdo5ZVXG1X1IOnpNVjBYNe1dPKduKLtZsJh4hPIf1Gms+ZuCMq0nGtsjQsaZJe07mjlgpDJogPCpNkENLNm6RElQCOMMmHhkTz1iUeBm4LTYcbZ8PKpY64IQmH9b4oIlNxLbwHM2+SN56rL5AuIDHkOgGIR3VJMGHgPcWYR0+jnASNCOWNbGxBG/Q0uOlZb9x7LYJe/VAn+XkvQNgjHocI8KsCW7ESYn0FmggOAKByBn6MGeVx4xJwIqY2Ae6wmGFoy1zxjilTWKc8GzLlFx5pFXE44A0I4dNx36nWWULusIQuwqdpBgpcSFipxZ44bi3GHjrmUaOPUOqafMBFY84GYh0j/AWC0jVYAUMmcdJR5UYlntHz0tKnGWMFcE2jLLDxQmJ8QS3pBEbFhNPVXhiEjLr0ZEAD/kY8FJRuJjIx6g4I7EjThoiU1EOlshF1K6nGAZ0uEZ6ibQeQ0Kbl4BEWs1iP0HgOKwqJsMavCLqb1BhQAtLHX/ArDkltgYVOVQS0NKTag8hIALkShFwgMUKR5dZrDAcrgf6uEOFLb0caRLLdmKQSByCIKAcLIviGhkEAEYtuT3oUTRczHJ2u0BsDNKsISi8hKz3ZHVHalOkj6mSWxaFx0XueeML2+OkIPERzm2okhuUWDPEHfOJwekFIizopzGjvEGlLc45djpPrgTbtMGKQIgSRlETRo3wltg5xsTT6/fw/poICN6zLT2JNWTaky+fkDaPqaKAlQITSZqoRirDye2cbLgh1QonHH2WYcKACwHrDdu0x4Y1+9WWyGr2qpZSG8qhR0tDZgSlCkR6yd7miqLWxF7QFoIhNaxzhwweKSfEeJaFpheatOvQUcW2fo0bAAAgAElEQVT1pGeVeZyesyxbuklJbkciRu6d18TG4Pyazs7ReYGRlmn3FC07vBkYfU8yGioxcHRzTmQCy6Ql6wY8hiACIYwE4RijgdQEVKhIug3FAE3SY0NF2jzi3uIj7t/W5FqgYxABlnGP04pJu8QKjY0TTJTi1AY1zhFOo5OEkQEtBy5nmmm7IbGGMZMkZsBIsHGEyRJi40mtIATDkKQk208xDMROYeMIl1j6aMQFx34tCTIw7bYQWpK/JkvwJ1aD5n/6PyT+n/5d/Oz/ZO9dY23Lsvq+3xxzzvXYj/O673vr3ltdVd1d3dUvOoDdbohBARLS2JKNE/UHCyf5QBQUQSKhKCKRW1YkK3H8IQghkwgnJORhxQTFsSGG2GDAhoAx3UBXV7+rurqe93Ge+7HWmq98GGvvc4vutCW6aBrpDOnqnrPP3mvNNdeYa4//+P/HmLdIl97+Zd+TQuCTv/oLDKsl73rfD3LjhV8i7dx9c8eRM5/8J/+Qp//sd/H8b/86n/utX+Pwi88Th579m7dp5nu86zv/HF/8vd9+U897YRd2YRd2YX909gcBVykFY8z259dff53v/d7v5Qd/8Af5/u//fn7lV36Fb/u2b3vDZ3aWgkuwrBMmJCgZGNg7tZSsAbrEFdNTA6nQmMzk7FXma8vKRgYTkeIwwynJFIbKAiukXxItnNWOFaecSqTuK6JEBgtBAlYyxQzYlCnAWlZU0WBToq8PIVhS3qPjjFf8lGTBxWMkG+posFZIRNrujFJNqIrH5cJ0uaaUDLnliS+ekBAm657L9x/QLnvIiVA1DC7jz57HpAXJR6IYomRKfA2TMybWuHSfvnYEsUyXlqunZzhfOM0dloKPhlQyvlsRvaXknsyAwTCJLeuyZC2BYhxZYH70BU4nhZIXVMYyP3mISRlTerJMKSXhk+B7Q2giLhqu3V8STaGJESmFTgLT5QLIDL5C8ookDcEmsok0PWQLpmQKKinqKkM2K5bOEk2P7xPLiWWoGvLaYLMlSk8zJEQmLOtENxF2zhIUWPh7DLUwyIJMIgHTZeZk7mHxCuvSUvdL+qpnsoosG8FEmA4gw31qW/NQAt4FSrHsnA00aY2lQooh5o6d0woXE7F0rKUgpSHIEp8nSLE0/ZrpMmPDfUzepQ4Kzqo+07WO2w/vsbIFSZl21bF2mWQddtUzWfdEV9G5U+wAPhTWbc9Ze8T0rKbtINrEzknP2iXWs0K1WuOXa3wqGDmiEMimY900ND3IcEySSC8eOxwx6yHaAE3D7gIyFheXhN1rRC8MdBRWRJ8QPD7qehs8RFeougEplmUNswRBDHsrSDjmq0TwgbNWtC18K+RsOJxmDk4GiggFCK5AgeiEK0eQS6CURNu9SHW2Q7uKuPwKSE/bR0IU7h841j6TOKHqoQoL5meJWYo0/T2SV6Y2uim7q54gMEii6XoO6wq3vseRSTQT3TpjiAOmJJZ+zUnraFeCKZFUAlV0dG7NdClkY0hicUNgKQvcOjNZCo1tOGsSPidOJhaDpQqZFDt6t8vOySknUyGaSEyndLlgR2CabIZ+IFoLFOrQs5hk3HBKsJZAplkds7ZTeldRx4QvGR8KAwEbRVmeDDYKawk0y2MO5y2zo5cYfKKTxJmLVPTk/gtEKuZhTTaJx17sCQhJKkzx+KHBxkKQnt6uWNdT2m5J2wNGSKUH6TBFaIKh6o+J5T7ZGDo5IpFZNj2TziJxhV8PGNNQSNT9GffaE3ZWgSCJo1nmSl/jIiQjlHBGby0SYVHtsvKWJghdVRHFE+2K1WyXvgrY9ZJgYHrqIXVEk3Cxoh6CqgBjYFXtsKwKTSes7cA0FvaOXmFVG4JPlJLH5y4MTtg/Hah7yCazbjI5W2z8OmHQAMz6kFx/+Y2nH37xef7+f/mf8pl/9kucvPYKP/dTP83q8X8d9/pHIa7ftDEsHrzO7/78z2DEMtk94MHzn+GZ7/gexDqOXnmJq0+8nZ1rN3nf9/zbb9o5L+zCLuzCLuyP1q5du8aDBw+2v9+7d4/Lly8DsL+/z40bN7hz5w7WWj7wgQ/wmc985kuO0fSBIuBDJlgPCDZn6pAoJlGFRM4J2x9BSZDX1CEhKVJKGQFAgLxCigCBLi9o+jRmfnsSNXUUql73p1q2PW5IJIFCpveJxQQwicFt5ICZLA6TOyAQ4hGTLmLDgCmBtSRcTMzWCVMSDK/TyxEmZVwYKETa1UNcjMxWBZN62tVDfCj4JKwrIVFouhUu9rgElw4LwQjRJVzqqbsV0UTOWsN03eGGB6xc5qFfkcks6sSqHghmwMSICxGXItkkTBa6fEoWQzYw2EKmI5cFpoBPFVUoVEMHRaj6DHlNV1mCQEhLpp3HlMR0OdCuOqQUIGOA3g50XojSkUzBDgGKNhOIFqKrsVmDVgCKzn2ipzBQKOydZtplQPpjqr6nCQWbIJaO2aowP0tEyUSBzMCVlz/L/lmhGEMUcFmYrjNRes58h4mnzFcRQai6MyZdZrBrSj5jYMXOYsGDnUy0AiWqFLQc0gYgFyRFfIpIydy6J+yeLMjGE2Wg7TqSFdquo+l6bDqiiCAFki24EFnlQ0LpKXmByzX1oJ8jdxQDpQhNb5n0AZMjKS8ICCZHztpMsEIskUJh5/QU4pplrQDKSMO6FooBSYkkEZcc2QBkKD3BBrIBiQskrqj6wOAdp36JyYFsDIsWJMOdVwNVWFJKou4yVZ+QYnAR6n4g2syyDvROkzDZJOohU8UBm4XZMiJp4MpRIcqCZihAwRRLkkAVCvOVwSdd24f1kt3jHpMF0hmTXrddMjli04JVnZisC/X6lCARFwdcMlQh0a7A5ISkJRINNlVMl4IfEpSe03pNLytWteVkavHdirUPDHQ03YDJhWw6TBYKAclQRZAsFBI+53GdCsV4QjxkskrUA5Sy5qRJZCMUIrY/JJqOujtjtnhIu1qTzUDvBUj4GMmuByKZgSyFSZcxOdL0hklvOJ5apNQUExhc0j3EsBgcpkQ6m7m3NyWajmrIRJuoQk+mx0U91nQdkZQIAp01nPglp80aO6wINtO7Qiodrl+QAEpi/6RjfrZAcgUYkoF29RBKYNkEemtZuUNdg2JYVpGmC/hgiZIZvOAD0J9gYyCVE2Vmi75/dvKAk2khWmFdm5GJTcxXhXrdMV8WchmUjcsntF0ilhNMXOKSw+eKuisko1uPrKtIlszgG4ITYklU654gBgMUA30l+gzLKmN3KZFMxKRItBXBZUAoJRBtZl1/5Rq0r2mbfWw9ZiS/1F74F7/B4uF9XFVx7amnmeZDqhf+HrZqkOXr5N3H35QhHL/2MrvXH+Pe5z/Nb/ydn+SZ7/jzfPwX/y++5ft+gGa2wz/6W/8VL3/iY+xcvc6VJ97GWz/w7W/KeS/swi7swi7sj84++MEP8mM/9mN8+MMf5hOf+ARXr15lNpsB4Jzj9u3bvPDCCzz++OM8++yzfOhDH/qSYwyyZlnDpC+sXUEkI9HgSiYbIVkDFIIT6tAzXyYGD0OVqKLDJgvAurXQ92TAlkoPngcyQnIWSYYkGmzunWowarIBAZssgiHagk+ZwRXqAFBohkTJhmQ6KIXgBZ+EwfYUDDZDlIwxlsGqVKvQQYbe9lzqMoOL4Aw+egqFroLpOuBjIUlHnaCOAlhKt2ZdJ0wu9C4y7RykniKFrs4EGVi6Qp3BJ9hdJCJQHJo9JuMDZLskkEEKetUJMKyqyO7qGJMHkhWqEMkOigVTBoKx1Nnghoh3mSIanNkRDBsg2IwUKCRsirgsGAJVQLPdAuSEKQEfIYngY8El8FHwybH2ESi0Q8IAySZsEYoo85ZJFKtSOx8GbK91bJdOoIoWm4WuNmRjWTYJSqAaAlXWWrcqCmGUWBmEul+SKTSVYEOiOBhsos6Jqres/YARwUcAoaBAriaTy0CTDKUM+FSQThicox4iNkOhsK4C4MlSMAKuf1XlgSUSnEoYowz4Qe9RAapYk1HGsQA2C31tMEkz+b0L7Cyhd5DLEXXSWM7kQBQFS6ZAJlIHyCZQDZAlEZxRvxp6lv19IgGKYbaG02lFw4BPGYQRuGR0KWVsDtgkNCiw76pEHQ3ZGKrBYtOAlQLG0ruC5ETvE5IEWzIGQ5KITUAxSDHsn0JXneBCxGAJouerouH2K8p2t0PGFGHwlrM6M1vBqhZ8TvhQ0bvC4BImR7IxZElMVz3ZwGwttL0Co2gSzWCokpAlE6zBR+h9pMRCMkIGotM1EeloIlRDxI779ZqSKcZRDMzXmWIMgweXerJJ9N6QrKcJWbscssSgTHG9ykgKiLUYba9D2yf6aoCcuHJc6P0JVUhItgQPwawJJuGSkDxM1wPJDBg0aWHzwLq2NCFx0mR2luozTbBjwiozSYZsO8hCdh0uHOJyYL6IFCMj42uQDJ1PtAMMPlGvO+oAyQxkMeqfJrO3gMEKyWVcFtZeWHvPfB2J9EiCnYXhrIlMu4yNA8Gu2BkywUIVhMEVMFCwmDLA2GzIxUQxmWhUtpvE4dB766PBFkOwkc4X2q5DciL4AazHBWX5S8kk0xEqwcUC6NidPlqY5QHJEB3YOIxr8+sFoMUe9+BZTr/rx9/wcimFV577PT75q7/ArXe+l/d96C/x6//rT/Ktf+UH+MRP/iLv3n/wpoEzgJNXX2Lvxi0+8Y//ATlFXvy9f847vv3f5M57vwmAq295G2cP7/Hkn/6zPP/P/+kFQLuwC7uwC/sTYO9///t55pln+PCHP4wxho985CP87M/+LPP5nO/8zu/kR37kR/jIRz5C3/e89a1v3TYMedSuHGsNTpRC4QyXMrYIG7GJS4ViYBADJJIYmjGoL0QN6MlUAwwWXMpE0cA1SaH3CcsKQ8ZmoQ66h1kyYAUkG4RCX0Wq6CgIPjECw8jaO9ouQRpIPuBiwWiMrSYgOVMk48ZmHAC2CNcfqnQQDDYnZishC/iYiVYDN5cNhUIyICVgCtgkGEQDaPrxGoV6iFASs1HgYrIgVgM1yigFMiCC1vWMs2hyAmuBxMHJis7rvmY2Z3pvFdRmPZ4H9IgFg6GJThszpDC+Op4bMCURJRE5Z9Y2f5PUA5CNAJllUziaReZrIUkczyK4qMeMzhJLGoGLMkWDy7ioLNXeSSZ4RvlUwVCo+oyXNI40kPEUCdhiSNbodaPyNrKC0CpkMILLBZsyZpywto9EqyDe5kxyeq4smbb3JJ9VFpvVP20MZFGABhqMZhMYnCApI0UYPVYltBaSRLKBagwuXeyZB4OM8xqstjRPkkkCVYhApooKIwqZ/eYWc9nj+f45ZOtvQikK9EDIZaAKQhEFgvNlYHBgCxgSQQpzVY5iEIrReUimUGVDlESSguSASzBfWxRURjprSUaoQqav1Etc1HpCBUMRkws2q79h1LfLxq3QekyLAlJIuKTrMI36Mh8DO0u9tqaHrjakesCHAZM0hJai8l6bM65kraHzYIpFYlDW1SkQMwVsMdRB1262YEvGRaM+mC0lD4gRkuhzwhaBokDD6oYX1EHnj2LwMRGdjluZw0w2aCIirIhWSAI2Zwarc18NWhPqU9b580ITCj4ZDs4gGcgyrvsyUOGwxjKUjnWdxwQITNYwuKTPlLXew2hBisOmQjYDkjLVsMZsJr5kkghJVkzWsr33VejpXWJwHpcKLo+ruChox0DvChOBui9QegZxFLFQEqZE5kuDywZTDDuLIyArgJKCLbD0YMpSXw9CtBnJIMXQe33G+9TTO3AZitG1W0VdGVoHmTGpx+ZMtKOfABIHDJZFA9Neryq6Mq5BvfcuQbAGwWDT1wlAMy//NqY/xgynb3j96OUv8Es/8V9TcuKJb/5WXvvsc5ScmF+5TrzxVszqZZqP/0907/q+N2Ucl+4+yaU7T/Cb//v/wP6tO4T1mvf8G39h+/f3fegv8Y9/4m/QTOe89pnniMOAq6o35dwXdmEXdmEX9kdnP/zDP/yG359++untz3fv3uWnfuqnvuLnkyhfYTKEnJDMtm4pCvisQb6PGmzbrWZOzYxshCHhkv5NMhgMNllCydicyAJmrJlTMASdz7S9BrKDs9g0sjhmA22glA7JmSwFm41K2gwIeVuwkAVcVgYJBIMiOJuNZqzHoECKjrUYweaCISt7IToegHVlxvHnUX65qYpICi6QESQpKAwCRhjBnAYkaw/N9r0FNpKg8TigQFaKSrw2Z7BZP5PGVtQaTxfsCAI2My/Zkk3aznU2GaulR+M8MzJsOk4pynBsgGVvFYA0iXGede5MRtk39IdqLBc5qy1VSNhkRhlrJssGxOfx2goGZVaSUVAz3h1MdiTJrCsNAMmZXLL+bBToRyfYxOh/guRMG9nWVlVDYLA6D1H0sxuwGq3Of3Cicjagd/oeU/SNBZ1vZeg0mJeCyk+dAjxTFJwZGJk5/Xsxm3mGk+4eSzkim0zwFTYFfFYZaDHKqmJku4Ywsj2eGc/bDDpveo8zxoyJCi3fwWbIVgg2UUTvw+beN0NiVSekaGDdpM3603nzIVNEXylb/mhcD1FlxcaYrb8HLdVSgIHOAyjbU4DBF6pgAEMFFNGj5qzrcQMiqmj0/qaEBVwxuD5TRLajK0CyyvIxJkCSKUiJIOM6Tp6CJkoKgo9Z579s0hbKHEuB6brTdTjKYG1WhlJ9OCDFkk2hSgrM6gx10PVeRr8ZcqZKyuQp2WTGZwTcqu7i8HwqPqsMl5jx3oKPiSRCFOiqQh0KUnoFWGL1npRM2T6PhLxdF5tnQ9ZEVYZiBkyxm0VDNmUrAa8HQ7AGbMHHrAAwG4oU2sHwaOWWiZFgNckVrPrj3lJTFWyeKuV87VRxzJzgcVmTQFXQe7EZZ1dZ2kH0PqGAq4ygf/CJKhSmnT6Ts6lGaSlgLNEn6gjFJDIG+y/Zzetrtw/ac/8nRbzKHB+xT/7q/0MpmTvv/Sbuvu+bufrE09x5zzfym3/nb7PPQ0qB/PBzb9o4bj79bl746P9Lt1wgRvjWf+c/ROy5I1y6+yT1dM5z/+TnoWRefvajb9q5L+zCLuzCLuzr14I1MDaTaLaB4MiejUGqZJU4FjKS9Ys+bRK9KNvUVfaRo2ZUkJfHDLIGn8ko17MJDutgRpZBmHV5G5BE2YDEgWbIZGE8ViGJ1WBN9NygAc5gRQvjR8AY7Di6nHHZqFxTzDj2PAaAheAij8YMzVDIJpPHYLoOyvooOFMJT7Sa2c9jQO4TbBLf0UIbGNmIzEbgyBiUDt7SBJ2DYDdUYKY2FTfbp5T9GrPueYy9Ol8YXN4GqFHOg244P/cWCIzyR2Cc/zeGPVKEZgRfnT/PaCerYDxYGa9TX99ZZepgFFBx/v4w0le9g8FnoJBEg9BiNNA3KAAHmPTKQti0ydRvxm2ogrIfG/+JAoPf+EEik3Fpc43aYEKDXgW7gx1ZCjsCujgmCkoeGdDRt2ze+uBmruug488GumpsWOMhWvUTycpObWSlucTxcxGXy8jEgk9mZDah2wD7krEpk43Oj9aZRfXBR2jgPCYJkui5bEr4pL43uDyuN31/2xtc0n9l9IO1V58oUsZ6LWXhypbH1ftrc0aKsmrJ6Jy6vAFncB7Ia5CexRDtOUBMovJX9e+yfR2gHRSgZUHB27iOlUnNBJuQEh8BWgoAo+g5NckROE+CQPBWQTbn/4pAN/qGAqGwZZ6SwLp2WlNWijK047X1LozPGwXiPkKVNs+KTbYnjOtJay01MSSjrxUkBZKkMcmj8zntVD68ueY8jl7r2sw2UeIS471he+9dVjBVRbNNLOlaKdisbHYT0OTVNtGkzy5NlkCwiWB1PUabcCNo90m2gHZj6q1j8gsYnEpVM0Hv1Ti/G4s20Qzj37YPStn+XAeVmG/WuJSoz8Q8JhBU2YtNhTpmTWB8Bfva7YP27M8QL72D4S3f9YbXv/A7vwHAW77pWwC4dPtx3vPdf5FhveSzryqSf3D45jUJ+fm/+Vc5fvmLvOVf+QDf/u//MNP9S2/4uzGGt/6Zb2d9esLVJ9/O8ujhm3buC7uwC7uwC/v6NZUFbqRwbIMHg2Vw+poG0GULBOA8o52NBjxtr0XswDagK0Y3Qy5mE5xtPz3+ry+UkTHyyVCMjM0DRnD4SLTQ+/Ngr7zhCCqZakfQYRizvGhwEKxKoGzWd2+ARrSaBtaC+PNrM+P4zIYtMpsxm3GcGlRtrqcg43tle96N9O7RANaQqUIYs+7n781aIkWbahqZjeeSsR5Fu7v5eA7ENuc1I0DZsGewCTbHuimjAWsyefs6hhEsqDUj61jQmrHO6/3MBqIom7mZx8GP0kp0/qo0yrSiqKQPBasKUja1Xgp2GWvKNNDV6zLFEGS8kjy+fxxbcOCSbM8XxyC6d3mUBKofbDLyVTIjcNtc2/nMbwJ5lxhB3rmvb/6vRlBtx/H78b0b29zPK+4Gt+unkHzOgp2bAiKblTXe2Ial29wD9R3ZJhh6m89ZCQPrquj+YHq3qTYyU3tAW+1wPCvj2PLIdEATFBz2W1Ar2zFv2Lzqkfo+KTyyHkfWxCjTsbkuyRqAu6TyZWUSN+txw/aegy29f+dz2o/XvGGs/FivGqwCpM15lYk7XwvnDG2mlMS6FvpH8z8w1qieM4fbJEU5354gWH2x96NS4BHW1WZGIJNxyZJGOWqWjbQyY0pWpopM7zMu6TpSOWp+xNdkZJTO52YDjAqFLFbZOrdZF5vn7GYe9bzBnkvLz+1LJYHZyLiWGP3a4FPe+vcmObQZ37rSOdg8E3Q9bBi887UHuuajsJW7Rtmso/Nn7iaZsT1/Pn82ZaOqgkeTXqaMkuN/CXvGl7n6PzIrV9+FMYI9PO+clccCSErh5jve84bXX3r2d3lt1RKk5cpLfx9ZvvZVj2FYr3jwwmd4+MXPE7oVD19a8H//6O+zPO7f8L6n/vS3cfbgHjeffg8vfuy3vurzXtiFXdiFXdjXv2kgvmF09LW110D9PJgYs/8j63EO1PJWJhZsGVmmjRxMmxM0wYxdC8/P2VV5G/BvalR6r2fSphLn9VQbyZkCAaudw9x5EALnEjTNAMsWmGQz1r/8gRhnEzC7MVA2BdrhHFzWYfOBzOCEwTF2H3t0Ps7tUSYM2ALVDfBRnkG2gaQUQz3kLfiQApWpWJcF63wKZpTalfPQ940mPBpob6yMc5nNJqgXbJY3AuMCp1Pt9LiR723G7gNMBrbgswkFU4Qkej0+aqCu92pzPW+8dpARdI18o3kUEGXNtlNYNAko1FEZy2g1MDRF568ZdFzKC+lcBJsRhM6/8ZqjHbsrjrqraMeumW9U445g/xxYSdZ/60p9vwnqK2sPPguVqbf+oswlvFJe5fn+00B+JIjV+qveq18B57VEqASuCQo4g300KTGClBGcbXxVigGjzFVXwfFcawNnssNuno6sBdtrOJ8LlUPqmtQA/dEpyEaTHFnOw+Bo2frCpmaocA42Fo3OmddyNt1rbwuWMuv63AGTOQcgoIDQlnO2fbPufNrUv50DAYCuVp/NhhE06DHaPlMl2V7zoytiC3Ld5h6P12SgLZ7Ba9MKm5WtGt9FNsK6KgxO50oyW8Y4WtmytcXoWqmCsnYbBtflc4CbjfrCBuRt53Z7j7TO743skSFY6H1RkF0UAG6uLgpblv7RewU6xz7lN8z1lns2ykpufgZ9tlXBKKu8Te6ob1Rxw7Bu1Ah5ZAY396QQrXbCLJvvinzu570HjGylyUlkTIDBskm6tpw+Iwen/vyV7GsC0PwXfhnz4q/TPf1vkdtzxurswT1SDBzceRJfN+eDso6/8Nd+lIfDjKqsSDFwdrL4qsexeHgf6zy+mfC+D30fv/bTn+HqE3P6ZeTZX3qZe89rfVw9nbFz+RrP/85vcO/zn2J1ckR8/vOU9ZvH5F3YhV3YhV3Y15f1lX6hRsnbQNFloQ4Fn1SqVowweKEYy6pWpmXz5R+sFshH2URtKmtTedX5F/+mXgOgGTZ1P5sssqUKZht4RzkPpNLYhCNI4XRWWNcaOdm8AQqMcjghi2ylOEnY1sttgpLjmR43i3YWG5yct6HfSI7S+XGD1YYiTYC2h2UD69pwNtVgLcl4HWPgtZFWVkHbbEfZBOGjJNHA4W5DHgeURmYuiZBKpDVTEA9joN5VGhwWA6fTR2SU43EfDd42Yy6GsTX2Rv441v5I4XiadBPj3o7gVMevLOOjMrbNvKik02ad095pkHg4z6yrzKrWwDSKMgBlk503Re+H0YA72JGRGxtlSDkH+s2gwF6lqJt5T5xOZHyPcDYpdJX6o4vaITKPEkqVT2W6SkF0MeqPm/PonJzX7z0q6ZQSqAftprfxg8EpULvkr3OzfWLrP8mMzKs4JqZl8HqPvKmYl1bb4we2Y+7due+XEZh0XlmOrobDnUdDeRmBKfRjAHs9X2aaG5rhnNk5sz1r078hgB4cYwLh3IezGX3cbu6rAJbgEk1ftvV0STYNHM7nabsaRLsm1iFzuJOIAutaOJ4lgtcGHAZlHDdy1kfZ7jIer/Pnryd5NKGQ6b36xLoafTtrYuLeAbR9QbIQfc1ufZ0kafR3TXYctI9xMtMGRr0/P25XW4ITBOFadYcmunHNwNFcpYDRZqRkJr3ddhsd3PhMcYlkM8vWjuANFm1RSWPRdZNF6x0391frAQX7hoyAEJzovnSoT5gCWTyD96iEUkii55ExMZFG1i/ZDXg9n1P3iJR6w2pvZL6gzGuSwmZ7zE3eaCOvjeOxNwmTaCF42SaYlNk/B5brSlUNzVC2iaRo2cpisxlZ2ZKJ43PkjckwQzuoj9iyaT70B6jQP2BfE4AWbv+rxP/403Tv/iuU9mD7+id/5RcBuP7Wp7/kM810xv7T30wqwqwKfP73P/5Vj2Px8B7iPDff8V4+9euHXH9qB+ctr3zqmOVRz2/+3c8Rx2zh2771O3B1izjPpziOdtQAACAASURBVH/tH3H2X3yEfHRI6TtSv+L4+Bd4+PDvEsL9r3pcF3ZhF3ZhF/bHb1Ucg8daA3OVoShztCMH2GIp4qiCboJr03m2XU2z6E3QfaQGrxnTTRZ/w65sG1kYDa71i1y/jldjlr6K0HuDy+cMlksWlfsJTZeZdmbLmqwb2Qaj2eSxyYaaLUIUYVWfB6DNMDY6GZmTvlIZYzYa4AY7snqbBhjGcjLVvy8m7VhPZWg6oQlaC1fF82DcjExDtJCsJT9S672qNwxf4v6eZ71lCzLJGtIoempKjQJTIXgheotN0HQaJAW7kWjKFmCBNj8wmJENFTBT1rUhi8EgLGt45YrWnyzapMGxaNt9Uyw26x54CuYyi1YYvBkDYOFwt7BsCmcTBWs+bqSkMtaTWaLI2ADGEiysqk3Nlwb0r122vH5JWNcysq5mK2NVvykK5C1MO2VTgzMsZjO62jF4oau0u6RsGnqMzK/JWsMW3GYmzVZS2TvtFrjxgyzCsoHgtWZrXbttkCso+LbFbps2DK5sg9pr5gpXmztEKwzOctPd4Ub9+JYJUlYyj01i1B+Tc/S+sGoN9/YbqlDTdurXev/0fSeT8wDX+gneNCPIVeb4Sj5g311j1WyCbGGozJaV6zzbpjZlBEzqYzKuEUsddW6kmDHJYeARAKmfV0DnxovaXSibt6oTgqUORveEY+Nzur9VEjidCmet+uqDPc+yPWfxfFJA8kTzTpK32GypgtAEfe4Usbx22bKsFeRnyRzkKW52wLItuCy6rpznIO2S7Ez9wZetRJtSaHtl+0I6hRyJDqIXZitLsgr415UCtShaCzv4wvFUoIwNPnKhiuNzanw+2DERYxMUa7nlb5PGvxXyVpJczDlLGqUQrUooBy+jT4/zEUepZ1FWct2YrT8nK3SN5WyStvek95vnrhtZY2WD9TXBGIvLduurvYcier0AJ1OzrevU5iSyBXpHs4IxQl8L3ciKmqJyc5Wklm0TnFWtx7T1nN677dxr51THsGW4tdFJsirfPJnBxMz4Sva1kTiKxbz2e+z83L/3hpfvv/Bpmvku159655d8xBjDwe23sMxTXEk89tyPftXDaG/fIgwdv7z8Zzy4f4jc6rjzwTnHr6548MUF67PIL//t58i58MQ3fytHLz3PdDrj9U8/i/vL3839k/+Zsx//m7z4E9/Fq6/9Nzw8/Bk++akPcXT8C1/12C7swi7swi7sj9dOJ0JfaSF8sBpYD5VwNItcddfZ8busmjTKowwPDiowwqrWr9Jlo62hBzfWZWVtxjE4+4ikTLZsXLTaMlyyBnN5lEWdTd0IgM6laZ0/l/VkO9nWaUSrLeqP50JXjzVDo/zOjGDgZJo53HOcTS1Dpe37N/UUdX2gLIBhHI9wOrVEB8fTzLpOJGspRmgHw+CF+5d26H3irNH23iYnsjEczRPr1tJVBuMrHqueGIFB3naV1EDWjnVqjoMzRztWGfRVSxVV4nicH7JkgcqftNOk5EwzFKa91lipNNRTjCeJBtFJFOAkUalRVzl8jHRVemSfOFhVjoe7QhandXIF+koBtsEQnIxSLWWqbCosm4Y07mV1u36SO/E6TTCjXMwyOL33XWU5m8Dz1wsns7HDZBlBv6kZKvAhUA1apxWdZTkp47gz0TqSKFAq0mi9IbBqoK9rTnZ2NKB2Ql8JZ+05+1msY93C7vytTMucUM/ovSc43ah5Zz1uCyGeWqZ0Fayawv09w2uXMr/1LstiotSVZEHKCNicZ795gmQdy4ml8/CZ5h4fM88RLaO8r9I9/RAWLQSva+lsovf+bKL+aopl0juoZ9DMWDWRYDN7/jJPVc9oEFu57XqZmznXqjuExhOs7vtlEFwSdheWwYMguDzlbrqFtQ1VEupgMdRka4mibJm2wBdevTIh2URw2rrxeCas68zJ3BF8oRk7OJ5NLff3HYNL3NsXTHI0QZj0ltcPhJvuOlO3R+fHJh7o1hTFKOPWDNqyf77ShhW9NwxO5YR10DEla1k3KlvtK/0dLJeOLdPOYfO4zrHMeqOBf+UIbkIYmcZ1NTLz1nA6VVCqtZoGg8GVmmg1udT0ev+bwVIFp90YxXO3ehJjPbPO4oqlq/0oCzbndVUCi0nFy1cKR/PCUAn7ZZfazjlt9RmYrPrHgz0hOE+0hsW0Yqh138YqWdpeWehNjeCL1zKvXcqczHQtZqKyWg6iLQpAa4tBH4IGS7QydrtkrJXTpIsdm5F0FWDMuC4sT1RvR7IhWIeh2nbpXExg2ShD7pPgc6sbk3eZh7tFQafAssm4om39V42nr+BoHuk9PM5jrKfCciKAoRhDVzmWraf3nr4SjnYsGcPLVxuKgZ3Jza/4ffS1q0F77JtYfvA/P/+9FA6/+AKro4dcefJtX/Yz7/7OP8/yqb9ILvDx1+uvqmHH7zz4bf67/+M/g5w5uPtBppMpH3/+U/wnH/shvunDd/iuH3iGD/7lpzh9fc2n/umrVO2EZr5L/eCInX/xUcL/+PdwH1vz4Bs+Dt/xXq5f/48oZaBpnuaVV/76BZN2YRd2YRf2J9yawXCpm5FczcHkDt5PyEZGaZBQ2V3qQbt9He6cd0L0Yzn14a5jVQuxmlG7fS7JNR4e7FJM5nj3gFVjR5DlOZ0YFnVCijIh1QBSHBiPy1N6V2OyITrHvX1PEUMWS3CGk6kjWctQja24jWfwcDa1JIGu1iCicjNcNSPaObZMKbKjwYaB5UQ4mhsO6hs0MiV6oa8s60Y7TB7NhdNpRSqWVy61LFuoQoGSuXw00LVzinju7Q3UQdv47y4sPtZAobZTrGupBw2ZBq+p8iza1GLXHtC0V7Ep0FWerq4xBo5nFb0ztM0BXlr6yrOcCMtm0/K7UEQI1pCM5XSSOJ1Zsr1E8J6zCQSntUVZYKkbchFtw/39hjvzZyjiONzXjZ5dUhBeDATRALSrPcFq85KTmWXdCr13BBc0cM8ydqVuKBjWNUQnPNj3rNqW5A84nrdcP3QsJ46uqVm2lirVLBvH2UQZrOla6+IwhmwbDFrn0tXn9UxZIr/xHs/9XWUBmj7SN1eRrIDu3iXhdK6gMLgGyQr4L6cpM7/P4Cp8VD/tPdiitWRtKFyf3oUC+2fKJtUDVKHh9UuRJMJL1/foXc3gHbY4gukxKBhbtnClb7lurrKYak2PRdgxe+wuM1W0VMEydXvsuauA2UoXVy2cThPfcHaNm82THO4K0cEiL7hX7mMyHM/s2DzDILlgsmHegSsVZ7MJq8YSKksTeqZ2xt3maXoP8+qAHbeP5IyhkKopgqevlAFN1lOlXQ7OGiRbqmgYnNZB7iwtp/M50Tm6ymCnV3icuyxmM16+4nHBcjzPHM7hxesTfLHM3Ix+d6YgMRcW05rBqxwuiRB84eEOvHRtnyxCFQp9pYzy2dTzXHqWB5OOVQ3rRkH4shXOJolsIsEbolNfXlXjPoFJt04I9Zxl5fiof5lY6f57UPDJU8isa2HZWla1JxmhiZZVDc9fj5xMw8jURq5UN3jMXKfJNbZqWTVwNLectZlVresrOkNXFSyWJIEmzshiOZy3PGw9NhftlGgs4EAg+IreC0NVY9kZ2dvNs1YBSLGO02nidOYodo97+9qxcfCOLC1nE2XjqxBAdog2jTJdZe27yjE4q/VeybBr93hs+jYWE20YgrHcrp/idvMkfS2smkh0hoe7kehqMJo8K1KTnOfBXuL1/ci60udM7xraXhMw7QAnk0J0sGwdk+ktbLEMleXl4QUmS60pXVcGQ4WLmegaknMUI8yX4Erh1oOea0fwQnrxK34ffc0AGqtD0u5bzn89PgRgdvkq9eTL03ylFH71E4GjtMOt3cIXf++3/9Cnf//lb+T256Ga/Tmu/daf4rVPn9IyYd/t899+8sdxlWXv2oTH33+Z537lVbrTjne+/89A32GfuMbOT/4k9tkHzP/a55n/1c/R/G7F3u53M528h2tX/wOWy4t2/Bd2YRd2YX+S7XqYc8c/Tu+Fib9JNbnMx59wZGuYR891cxXvZ6ynU17deztnsylJMqvJVKUtpmCLYbr2XKluslff5P6lG2AmnMznZLGctionsqUQXYMAy7Ym+EJXFxrXclA/RqahmApfPA27YHYAy9l0n3vzPaTMebh7FaiI1o37rhnWtaWzFS4YblSPcbV5nDYEbFzSN1Ot2Sm699M0VEQiR9NqrIGrWNaWwRdevxQ4mlmW9YSA0MQpQ+V4/vaEj73zLk2xVGbKldNGGzkgvHhzwmI2ZT25DKhkcDmpSeIRhMrsYIzKgCZ2ztW+YTlxrFtlZZYTRztkzmoDxlFcw6r1FHuVLJZitVW3TYbBO1a1ZT/Oeca8i6tpn+vmCvcu17S9o46OZB1FCod7B9zbdyPI9RzPa9bNHm/z76GfeG1oYYU2OCR7bKphOuHlW9ewOVAPYJOBUnEydfTNdbpiGPKgjBDw0pVMth6XC7G+jJSWzllKmrKaWIoJ3JtHusYR/R6xusSqhdcvW/C3eHj5XfSNzsPp3PDpuxWvXRYOp0JpLtPXFWc7tyluHyNTPvfYnNcPapaTGYtpS9MHGn+NK+4uu3GPm+ESnRgW88uwe4fL/g63uUvwjuAagnhePXsNyY4gUIfEpHdIaXjpmnA8h8V0hy/canBo95u1jXR1JpuWhzOhNTPc/BYns2uczGuiB7zleCoYGoZ6zn59g8fiFQzKwizbCT56lvPLhGqqUj8753hnRmTgLJ9QTGZnlRicEJoZfTVutG11rL1LCB47NnWIXhgqONtVMHkt3yLXE86mluv2Gvvs4mJLKZbVVCi2MHhllHpf01cNJ9PI6Ux4Jr0N6xynE+HMdtw3J1RxynwtTHqVw/U+kZ1j0tXE3DOTOV1TEaqGeshMOjidTlhMGwZvmXWZXBJdPdG27caQxNLXjre7dzMfPMiE+VqBQlcLRSzLVoP7vlJg63LFUO9wOm0IVc1LN27TtxVvM3fZ6a5hiqerHNHPAZXt9VUmtvsgcNJGPndnRvSOxbTiZGb55N2Kh1f2SU2tmypj6OuKyXDAYBuOZoVCpA66YfYktwRnef3KTUpzlbm9yamPfCE+P9aVtTzYr3jxeoMre6wnuyynUwodxhSih2UtLCcWM27FrLLujM+Z4/3LvL5fONrdpQqB47nwwmMHfOKpOeQVkv0oYzTjZu6ek6njcCp89rpXebH1LCe7RDdhVWVS7UAcwVnuPKzYX2RsaVnXmVU7Y90Ir+0mTqcVWVruXW54+apw2tT6zG0FZI5kYTWruGZv0U1n3Okvsa4cyWSuTZ/EmRnBT1k2ytRHZ1hMLPWQGLxwNhXWXpUNwcFb/Zcnpzb2tQFopeB++nuQ1evbl/rFKbff/Y1cfeLt/78fM8bwpz70IXZb+MbZJ3j1o7/6hzr933rux/iHL/0cpn8S8U8g1vDYd1ek+55/7dl/l19+4Zd44ex5XGUJYmhmni/+b/+A/Puf5cGs4eX7D/ns3/jrTH7ohzj+kSuUB4cs//sfpZSA99dpmnfw4OH/wjC8+oca34Vd2IVd2IX98duyga6yRGexiO5j5Kc83KmZuDkrN3B04zLPPXnA/f3HSeZUu8jVNfcveUzO1HHCerqHKUKRipPdluO9OVeXjrv5MY4mV/CpItQH1MMU5y9DqdldWVwsXMsHTKpdjuc3wMDtyRM8FW+A0Zbq83XHvYMrnM5uMbRXGNxlEM/1Q4CINXske5ej6g4BlevNpjc53p1wNhWOdyyLScsk7tKEjmm0xLriwX5FsZZk4OG84Xj3Ovcv1by6bzDlEiezAV9aTJmzmApPyju4ZZ/meL5HsJYkM+5duUKWyFV/wCVzleQc0cGlBVzhBrfat3A6ESQZQlpzuHObxfQaZzPLgz3PYrqHD4WmNLwqh7w2Gbh/UDNUliYIpZpwZ/YM1lZIESaDYdbeYjE/4Gp7g2t5j8dOMl1rtfGDtYhc4r3pNlePBwRLMZHjecGbx/h0/ZC333NcOUuEyvLqgdYg9XXhav0kb+sfYz2pWE489RBp+kKSSNOtuZqu49s9ZLrL525fJ1ZT1rXj/mXP0Myo0pRkJqz8wKJ13DhOXF0a6nyFOlimfQAcu8tCHSx1aekbqOLAnQcTuullqmg4a6ZkDLPe0cSOaljx6o2avlZfuHw6I/kZkwHMsOQzlzJnbaJ3haGsOTg65ordZdpe5nJumEaIrmHPXOED7bdQjEo/7+1OcCXjjMeUiibusLtYAANRPOKnXLbXaNkhugl9dZmX/DEfq55nMV2wmB3gmFFlTxu1bq2rKvq6JXiV7k77yFOvnDDtPX5YaY1T0RqtoRL25IAn3Vux1Uz3uRKP83N2zR57sssNucHN6ils8QzOQylUOfO5644XD7QebKiE1kyYmB2qUDHPU2aTa5y0u0zNPm/nLdhqTikRI/CFWzdINnHjuKJITVUgNhWLWUUTI9PYcDxvScbz2u4eyDXeHbVvwvGVd9EyoTL7nO5MKGLoN9svlEwzTMA4dpaZJxaWp/ItMJmHuypHttlR2V0OJ/tIqZj2PTvLjJg5JtVE5iCXqbKwdi2CwcVArPew2XPt4SnLnevE6Vu4t/d2TiaexaxCyoTjWcVLly/h7JOYPKWvHNfmT4CfsGwasruFKzW9K3zuwFO6BdeGKRZLXxVevwSLZpfX9j3Lid82KDKmpS775PoSM3+d/dIyZ87B/Ckum6tIhtVcMO4a5fJl3la/U/drNC2nU2FdCU0PPmRcKsw68MVjqXFxgk8T6jRlOTGc7TW8h2+gq1c8dmy5mg44mVfsmn266Q7F1lRxYLCZIi3Z3mRNYcWaV65d43T3Dq9dbXl+csx9OaYZ4HbzVpZtTcpzkpvjUuHhvuHqmZClIlQ7BD9jFiYcrJYU23C2+xYGL5xODXXaYWb3/j/23jTWti2r7/vNZs3V7745+/T33HP7+9p6r+q9qqLKBMqAHazEdlxECbITOR3pRBQnwYoSFCUYiZCQKJ3cSC6F2CY4FQcjE7CAgKGAKgxU/6rqvvfuve+2597T7H41c82ZD4fQyFUFjqkike7v29prrjWksdfW2GOuMf6DWg8ojKdRjlUiGdFjkuzwYJxxb5xRB+eVCjYcYYMUq81vDofXeAy6gVNOvmo8+vokaEJg/7WP4dKN3/roEx/9YZ689QW6W7tf9dL00mvYdIO56HPvrdsUi/k/lmnvPXvZPj/+pY9i4vfjkZQXnvBz/u/x0Ws/hI8sf+Yz/yF/96d+hvlZyQ88fIyMFbPP3uboU1/A2Abdm/CZt9/h6F/9c7iOYPYnJf6tBzR377Bc/ipvvf0vU1UPeXr8N/9fuecZz3jGM57xh4+VDdp6qkBQRx2Gts3GFBa9KyybBSMx4eBpzI3HIY1ccuGhJS88vWVFewHvedyiW8eQtJkKz8KuubjcJSgL6jhhL3uBzXiPaTuktXaoRnLAJmW0hfAWrwcsTIJ2HpV1QIQIH5DKLod1n0YlPJ68QKMVpRfoqkI1nm+LvpVrbpe7uxmH4Q0QM2pleGQsszwjTMY0QYYiIiRkP3mO0/51pAzQTYOQho0pVDrBKsPKeFZhSvtkB13uswwnzFpDhPQoPcb4MYqMRqc83trnJO9RhX1u3J3ycHuL2GygrcU7S60rpHOctUdUUUadT2ikIcgGtOqUs3AOvkE3mq4bcim6TMfldIMeqQx5OtgkbBy10bSzPSKRQJRR6JCJ2aIMM5JKoRqPRDNkwkSNcaImrzz7toUQCUU8QTIAAqRLUC7iar3BttoHoVhFCk1EyxwiO9cwtSCfV+w+iQjUBmWgiRtP5gyzpMdTpXirF0HcYm86xzRwMsxJbIf+7Ji74/fghaEUBknIyiTsRC+w22xzZmJub45ZJx2KtMvpcI/+qqa11gQ+QvsARIcylBA2QMCTnqJXdhnNS6TzICJWYcBJOyZoPJXxVK7ElXN21B4dNWQoNxEiRTY1ymusVkjnyUWEyEZY7VjGCVHl2DxpcMpx1mqTFhVWlaxiQ3umMHWArC0PjGXQukpsUpwdY6JdrtWHHLcFqlkSSoEUCic0dZAiRZ86HJ0nVEpiKofwgkeTi9yd7OM8VCZgkabcWL3M89zAuoptcxGpwOmAebsDtqByJe0mptNkSBKOxSkPwwXCW1o+JvUtqijmNDK0RIt9O+CS2EP6CKtjKmU4628waYYM1VU21jEXgiu8MN1Gd67SUz2qJKNsBJWo2Huy5MapZiw3UB5slLMnNtChRGiBtJ5gfd7/eaoL2mWbRocYkbCONHvxZVr5daQeY3XE2rTpndVslR02jz0PJwfc3U6507OcdgokUGuDEDFWK4oo4V6/xSAYsB/dRDWSB6MOThnWoaEyKev2mE41wQYprSZF1gZtYRp06M0Ec3UFbwNE3XAaS/SqJnQdJFvE9fmGQ7yGC0cFbdmiJTuM9SazNOPBaMCjfMi1+5IXFpPzcr/YoETKcafmxu1bnAmYISlEi06TMpITpPBopynZJT+KmaxTbNIirGq2jx3R5DrepAgVEOVbLFua48EAZJtZ5wrTvEtYKRKboGtYBp5s3eHKbIuL6w61b7MR7JO7EKsDwgbO0hewOiCWfawRrMLzzZukcgxPVvSbFgPboVYBqxjWcciD4fPMes8R5GOk6uNo0WoMZx3B3uMjiqhmbdoo9nBRhg0UolF4WYIXKJfhpGDaa7HILzDzS+Ja4f0+3aXCe4OpHWFVE1aWrcdrOnPL9eA6E78DXnFWf3Vl+K9fiaP53WWMZw/ewVYlve39r3qZF5rHRwtyMWNrYLj/mV/7fZv03vO4eEQgAuLPtgDB0pxx+8Yn+IXpT/Py6CX+y+6/y8b7DPZ2xD/4yBt8+K5gdn/B29lr7Jc1g+sBT6iYtx0fy54j/quGyZ//CGp7h/i/vc3+/g9xcOGvAIqnT/8XrP3HSyCf8YxnPOMZ/99gXHfo1AH9hUI7e64AJgVBZX9LRjsOulyzW3g/opQJ4/ACB8EVWvOQG7M+eTyiX5SYRqNkTuQk4XTCC0c9kDHb1ZCrT1ZkqzWhc0DKMrpEN9xkpLeIGTGxGTUdYq/JVIuh7BAmEz51kPHm1h6Bbbjf32Kn3mGgR2gUUdRDqC6zvMdZKwa1YLAKSStDanOK1iWc7POkr1Be0QTJuaqhC+ifrshWBblLiKsON955SmfeJp3ucfAowNgOSXOIzUO6to8q93gwPOC0v8vrd2O2V4pHg3288Ihiza92I6b2hIfLN6jzfQSKsArQss2yPWRtNGa1ZPv4jJZ9D/2ixTINmYUJ0sEwmOC8o/YF8zxHeo3xLb4YaypvGaoxk2ADo8akK0vuY1KREhMwaYZcFtcZ6gk3uEpPbXNLrZgG1xA4JArdDBg/OSMvDUaElEnIJNxnXPXYiq8Qmza18hxnCcKvePdyyLbtcU1c4b3r5xk0ewwJ6K8002SLg/i93N7Z5MXqAjeb61RJm5vBDu+03o9fPwcEJE1AYBNCGeDT6yxG/zSLrEvPXAIVkVcFmcvwKBye2ikmp5LnbnmGJyFD8yKIAOsV2geIMqaROaveTWa9CR0zZtx/L1vxe8lsSuQ1BCOmgwtoEZHaiKhRCKXp5Bexo+d5Uk/x0hCQIkUXVEQT7fPy7QClDQ+HF9j022wHI5ZJznTyEl44tDsAt8XpqMOjQQ8vUh5sDJHKYCykIoQ4Z562MF6BDNkQ20CKV5IH2yNMIakDg8KRLTq803qOh0Zx3NKsY8/hw4I/5r+RC9Uem3qXzAzOFf2cJdSK3EXkGEJbQV0SNp73LLe5eiRx3mGEIVCGnjD0Z2t6q4IjUk7VeY/elhizHexyrY7Zm0l21C4v1zcwHraba1wR13iilrg4pBNe55XmVZ73r9M0IStvcS6gvVgg8ezZi8Rqwqp7E+NzNqseMpxg2vscbbUpI40xHcL0kJHZJKssTesmSxdyoRlSxl1GpyVB45Gqh6bBRm2CSrL/cAnOUgWW0ekMLQzHG9cIG4cwGU3SInANeSXozTy9Rcr9/ZzRWck33TuikBHbapeNVUNoHWV6gIhvIJ1nFSdEdpOyGVBHMaV2lLbkydYhgbpCYTpce1zS9Qku7DBkwtDHELR42ot56SzlUt2nCAskDislYRPiTQ9HgFqtOK7vQ+3I5xXKS+5kU+ZpwiyP2RAd7hwc8GA84WHnFU6719iYBpy2HWGxpHNW8pZ7C2cusIwijhJDXLXPBVCcw6ghaR2j3QnSDcGXGNdnMtPE1QFZVdIVGxw0++RqDEKycerZLA1h2cHFbbbp897jEVVqSG3KeBEyWEZ0VhJdRlDMWY7HvH3xm8jWLaJSUaqYoAiwCvpVwzQ8T5rfjNa8034FF46x0nKTa/RXNReSK8QuxNiSM1NQSI9VEZfVwVeNR1+/BO134JqGarXEVuXv+QZNKsXmzgjpK4b2Lb7wCz/9+7bzYHWf7/6l7+IHP/393HzyQRCGXtTnL9z8i/xX7/nv+OTJb7Cb7yEuLvjMc1/k4YfOOPznd9l9+//EyYDim/4M4dUWajZHlZ7Vn/u3WDyo4WfeIP+e/wRWK1xRkGUvs7//3wANDx/+wD+hd57xjGc84xl/GDwfvUJLj7iwHjJc1+z4TaTZI6u6DPSIyq3ozyrGJ2smJ4C/iAxHqDInK1rIoMOu2iZGcUntcOha7ExPaLWvg4nxrmRUCq4kr5FHG+y2buBkQa/2tNWYkRwwoUXsDdfskB1zkUy0zv/wBi16ZyH6bI5pLOOyYKOOGOoRSpz3br1vfh2fblEHAc/LQzbosz8L0c7QdpYX7UU+9OslcTBibCMulgPyQmDqPrPui5y1hlxrDsmaCe3Vdab5BGUDvvFoTn/+NqNywKPJRYpGY4l59bOf5YGIKXXEg/4e0cKRTj074hL9zvPs5y/yWnONsehxKFIuqW30ek4plk/nLQAAIABJREFUUyq1QU7Khx6vCRebTI6usmoSRnKXlJhVuWLwZMV4dko02Mf7kgt1SuwTRmqXqPLEdUN3tsLPHqOjFtr0aVvDSHS5GF4jkx06bpvr9YgnYpOwNARW8sKdE67eO+VWc5+FK8it4fCkxUFwlY5sgwjpnymiMqe3tuSlpVUL2quKvgvoNksCDy8dR9wo9tG+RdcdoOlRtsf4eMTWbAqqYn9+m3cV17igXiIkxLsAK9rsPHiCKxwr46Gw9MqGbjrBUkMNl29bMrHJNheoRcJ+ITlONyhVQ1rMOI1GCOuY3H/Ma/fGPBe8Ql+O+MUk5M2W54vuHmdUBMIzX93hbX1Mx4zYCQ/I1IRhlZMlhxzEH+SV/I8QWk9oHelDTf9MUsQh3/Ckz+XZhDYj+lYwbmKES0nWJYmr2b0/41b1kPys4fJqm2F4EY3hNfEyr1dXSMoVvdmMzqKgo1q0W7s4UfPSW4957+cL2r857E/ICePHnyZYz9hpNlA6Z7gOEdKwX6c0MiGzAWOxQVlMeX69R+YjBnUbnKFuDpmr3xwMLSRNmNIXXbaaPqJaUjhPu9niBTbpupx7g33QEuvWhKTcrDaJC0FR1zw1IdtLzZNBREaXrh/is22cS/miMWyIPrXa4NqDmi2xBUB/dszNt77IlYeP2RR9dsSIQQmzOOVCecjhukW7BimhJVLeN90jnAMioiwWfPsvNKSVxQWOTLYw4jnSeY+mukotErSXvDAbc0NdJyxBuEPM+Jvo2poHnR5WB0ThgC3f5drU0CoO6K4dG3XIwaOH9ERCe9kw8Bmjaco7wRar9jWoIbCWiTfs1QPi2hFizhUGlzVBNUM4SVpr0qJC1ivWgaF/VtF5pJmt5szcgivHEaHV5GvFMm3z/HSDK6uKdqCYiCFab2OqhNAP2Ft16NddOvYisevw/NuP2ZlaLpyuGT19SutxxLecXeGVe57d6F38sepDbJtrvH/aYnepGFrDTrDLaB0iwoQmVPRqwWgO7YXn0PborqF7dMzl4Brvmm+Ru5S4lMTluRprK73AXiV4/zSmXxkiYXjfcc6F+09oN9tkVciVB4a47tEEfd53ss1rZzHXFx0O7p/yQC645DOElwzLLntPEzZWGqMS4qMpV5oXuZS+l1vJEtOE1FFMkWha7et09T5NI5CN4z5fvS1Kf23D3ZfnS7/0s3jvCPM2Udb6PdeX41cIjn6Dudnh6e0vUZfF7xps/ZXYSrfZzy5STr9E6MYIAd/6bzyPiTSXo6v80Gv/A//mx/4VvjD9PP/pq3+BQGp+6j/+S3zb3Z9k1dnh7cFVtsafRAbbCGd4eTvlb776p/iu/+m/Z/S3/jfIcupf/Tjh+z9AHF1EyhbT2c+y8wfhpGc84xnPeMbXlcxKvHNcZQfUiEgWvDZr0z87QWHoB31M+SZRZXn+7m0sEZ1VQRl32I32iJ0jthVZ1MecFFgl0E1Db12yqmrGxhMQMNYbRDbhTA44bVW8thKMZktc/wAjY8riBKlCFuEmERE9cvbnFe+5K/nkITzsjzmOe+izOQOdg4d8rbnxWPFm55hZmtBe1XRUihQxUhpeeFggzIr945Kn2xu01SlnYUlnAVtPZpypKW9u7JH5mN17PebdGe0wpatieiKjxQHbUnLj6ZqZs2zOa9qrgivumJYe8oHf+AR7T07plTlEc/ZtD0/G0XyNK0pUEyDqFf/M44jPlBVuOGFWrTib3sIN9lj392maYxQlgdfsFV1s8ByD25qiVTI6LdkvVizXx2SmRVDHbDrDQy8IncCVFbciweUmI3UhuslZeviMiRGN5dUmpyvbbK1jlrIH5W0uiwERjstcZ9QMebQyHHcNu36AcDOiSmPo0K8TFvOCLOxjQs0GAzarhKUr6R0fcalUfMh4ArtiePSYTtwjSiJedBt0/RV25p5SZnRExlQY3izbvPfeZ7h4fId720NevfslWqrgVrjkwlnFg6HnPe4y4/Itfi77LK16g5vFVe6qkl1xwF3XIa8k6847mKpFU25Sc4fH9pg/vtxkUsX0ZMMX04Z5p81zX5pytzzFh5sETqCRHGvHzmLNltdkhOzpA7Qv+KfeWXDpccHdA8+NaUXUBCBCus7ROr7Hc9OYL1Rn5AhuNindIOXx9G1urB8hx1dQMiAwAyayxSUzJuQOjRS0ywbJJtHsEQtfMwwuEXmJXq1Z7x2w/84tOlazPlsQByGdlSWqalo6JVzNsEKQBh16doNk6YgCgbcaaQNi/5S228QqT75aYjNH4D0IRaMiGt9ww1yk6zo07hjhFN4a+nrMmfOsZEiscq7VI5bLBSGW7alDFQEdPeS5s4pe3KNjJWLhOTIa23jU8gzjAlxdIoKEzYePuWj2uB+WeBTrteDiPENUjlndIMo2Vsy42zxi6+477PsWQlgadUoc7hNWn2UctJFNh/LRWzzdaNOsYxJvmfqYJuhQNXB5Ctsr+HwpSHsC4Rp6TnAg94jLKU/vzsA1PFq+RTfdZBxs0IkUny4+R1Kc0B92iVxOW49Ijt7A9wSrek5Oh3xVc/nOEZ/tXuaP/NopVBkSw0T0qFdz9nXGL+5E5CdHnFnLzrIgMT0SJ8nMANwJD9Qet0xARz7hsrRkxYJFW/JSc4nF45zHo006x1/ARpr9WcalOzn3zt7BlG/z8c2MDS6SuQ4m7HJUpmychJhqjRPwSjPGqPN+38G8Yiu4SiwiJtR8slqwEx2wrm9x83TNINXIWpOvlmjX8HaUcNLcx5urXLz/Nrnuc1HuopoZZnYP4UewUpy6PneGbcoy5NrDir2u50JVcJC9zGk44W/7O+y6hNAGrIIegTxi3DzHe48qBuYJI1vwxZ1tDisomhW7csDpOuAw26FnB0TrJ8zNPseL8qvGI/W93/u93/uVTq5W1R9Y4IuigKKoAXh86w2Obr3B8MJlDl59/+95rVcx4Rc+ynDU5pP3De2NLXpbe1/1mtvzt/mfb/11Pnb0D/iG6Z+gfTRECM8L3/rbSpIt0+Jy+yo/9JkfYOlO+Ok7H+OVX/xJMtHj1v4fpVwniGCKMSuWqxZvrSSXv/mbWf7qP2Q0fYw7ekz5936c+Dv+BYRUZNnrHJ/8DbLsvRgz/idz2D8Gv9O3z/iD5Zlvv3Y88+3Xhv8/+zVNwz9U+1/48f+L2Bkqb2niBFlVOBFiioahTHGiwZVTKJd8PjSUteCyj2iCkF1SKjeljiNOQ9ip+wQ645F8Srdsk3ro+hTRWHo+wNoSaSKU8xzN79GrLEsdc6Qk4cljUhVwsVRsFJ6zwJCjyETJ/rLALyv+9IMVpi6Z6D5KSerFfTpygAKuLtuMXE5UO7K65mz5JkXSJfIaP71LnG1w+a3P0XbmXLWwstTCc40ui/IpfrWgtZoTuoibssuGhagAF+aMZ2d8tmh4zcZMioIZkJuMWLRRi7d5qjrM8za7VUBQVewVEQ0Ny3hCTwTEtaNfSO5pyWXVRawXrETEgTfc7XZ5/awhdIpydhe7eoKTDRuFgtJT65yO6eNVSN6E9Ik54YxcdCBI6SznTHyC8w1BtaaqPZtWUGQDklpx4ek9+iqlvdb4ZsVlc51IZ+Agr+Afxg07KsWKBnV2gpWKLSt4o5rhfcGWDSHpMlUtBrZEiQ56LdisHVcf1YwfPKTjUwplIevzyAkmhQPT0J7O2LCQI3nHhPyph49omhOiMmanfwMZeLbo0RMDFoHjurpMWC5IFilNNeQbxUUeMaUpH0Mw5OKdp2ydrnnh0RmuiblRaZbpmEPXIlgcsVKSZHWfC0+njGdL9oIDWjLDiopTkTHGkJQFHZGgXcXUPiUSAZOmR3t+xI7e4zg7ZKS6dKsFdbHktLfJ/sJxhqOtUnZVG0nD9tFTYh+SpruoYoGqwSgJcUx7vaRupjRlQRLtEZ3eJ12v6Ea77ERj2uQE9z/NzkqybUOGwZCmqUhPj0iSPRoULS8ROuWMOXfrRwRmh4nIoa54ah/zTqfPjuhjCs9oVjBtTxhWEukb4nCA8+CEYR7mpOUZvaLG+JihlyBb4BZ0STmViiUN46pmcrrkVnVCP9+he3JGpzjfZNHWIAs40kf4JGeztHQKQaa6BLKHFoJIaGw8plgt+IazGmkFp6bLptlgmzZzseL/mDzPiw/f4kqwwSNRc7VsMVB9NuJLbJ3OWJ28wZ3eNi/UsEOGNBnj2hA7SS0kg8WSzZMZh0VNaGvadLm6EmQkxLMT+jolzLYpBQzMiKw5L5nrnD7kdrzBB1Yhr5z10E/f5JO7O7xrOaQrIupmRXj/i5xEG/yJz/4yh8EmZZQRR236YkjcCK48cRwHC55Xz7Fn+hipOV6+zXG6wQ2bsBYtcqXZbaYIU3P6cE5vfsZhFZKHfUzYZacyxDKE9RGTs5o3GsU66/CBY8nE9ClFTTsYsKAmDkImyxlPgoJOehnlSjLrmIaSSARsMED6EFWtkF4yJqLAs84GpIunREGEDIZ0dI+BlayMZtk5IG0qNklJTh7QKAjCmMCkrMtH3Jy2aM6eIkzOVrqHrEvM+ph1s8CFXYRPGM6ecjBNaT2+z/XwkMI11LVlXK65O07YXQo+W77FbjBkdfo2PVIClbBeLXlkJNvtA1740KtfMR79oZQ4Ht+5RXtji/7O/pc9X1X3OT39uyyWnwSgGT+PpKEtpggpufNrv/x72vA4PvHkV5BSceX4FbyvSHszvPe8885tfviH/xof+chf5uXBK+wtX+fX3voV6l+Y0ZtK5GrJvfdlODz3PvXPIfN3w2rK6J1P8G3XxvyNF76d1Ud/lOS7/h38aok7eQpAklwFJHff+Yt/UK56xjOe8Yxn/D75vu/7Pj784Q/zHd/xHXzqU5/6smt+8Ad/kO/8zu/8sucy0cMLRVHPyVYlae3xzZpsXaKb83lebdGjG26SOMNwtWLL5wSNIdFthskhXddHAaE0NLZC3j1hr2oY6gzrob0q0SqhQdIqG7ori+peJpY5FyrPlfmMsL3JRiVpWYtaHWOrith6toJd2gVcZcRIdkgqQWgtqnIUzsHilMncc2HdInSenhkSyIBWtEm18Gw8mTGZwuaZY0tuot1vDgHu3qSavIetYIOXzGUG3nP50T1Gdz/H8Ol9Mp2ypTtcefAW2VqRRj0WQtERCTfqiO0yYRz06daGsRqyNQ1JfYCUEapxZLRoBwlpoyiqMz4TNOzWnnh5yrYV9B28errkgydLlFeA4UJ0yECN8POEAUM6RclOFdATOWp9xqQOiXWHwBuqeoHXOQfJpfMxtU1NIFPCsIcHtpzh5dPHKOfQTtLSbSZ1wtrBmhK9nKMay/ueLJCrgtPljNZ6wYtVwK7f5JVgn4mPsVqTVAXt5RG+XJEsz8hXC3Rl0fGQROQEtiatQD15xPOLFVs6o72SDAqLbhriquCPTlc0SDbDLV5rX2dnVTJe1Owsa9phn5f9BQYVRCvJUm/wctFBWUvLKoKm4vD2LS5N5zy/StleBbzyhY8RTk+om4aHwjIXniIIqV3EOuyw7G7yZP0YhycXOS8uBa3CkQQZa7vAF2smK0l3tiYQAbWvGYpdBrWhX4GxEDvJ/kKTNAZDwqiRZOEG65VF0SanS1QV5ESE1QJZFHSmUxICspUk9CGrekmXLv2lZ7ReIasaVRZsnp3SEzF5ax8TZnRKR966jNcB2pbnz5AISdclZrnk0Cpwmkz1GDEkX05ITho2jhfEBGw2ERpNqvtIBLmL6K8LLqwLRlVATyb0ZEhOTCY0WR2gbcO+U7SKisnC0hEdDmYVG2tL1AiSJsRUBZ3FMYfzMwbzlFReQ1tNLDM2rKFHzCi7wji6imxSbpycENcFg3CLtshIVzO0UwxWOXsnJ6wbwZeefJoXqg3qoEMr3CVsJF4HdBr4luM526pL4AP6PqNBsC6mjE4ectrUPFaO0aOnZGdT1HKK9Q5hEu71t2lMihWG1myFqkGj2bdtVNDnn/3iAy7efUTQWOJ6yIfeaRHbBiMjNlwbWTdcObrPNA4plWYnOqRvM3xxhpw9pr1cslMfADWZCBkuKzabFuMndxkWfa4dPWB4fEJY1oQzgTND3lVtYbykhSFYO+rGImpHt8qYtoZsLx5zrUxpJXssyxl69oSWhe2qobKWzAwYzRa0i4qubJPpLq+ue2ysz0tv+y7idX3AxXCbOOiyqbocmZDMDMiahMhrjuIWqXVcW6e8eLJgUmuEA6xgI9xh2GSERUU0DWmJlItVweGd3yCylq6MyXSHwHvKx59G1A2DKmI4nVEtc1iXdG1IVhQEdcN7ZxvkhOyrLdprQ7ByEA5xIiZwHukzZCO+ajz7upc4Oue4/7lPYpL0ywqEnJz8He4/+C/wvgEcSfI8k8m/T1+FVGePGF38EA8+/ylsVaLNl99tdf5cKej+6h1uBC+xfgLgGN3wfOQjf5mmabh+/Sa7uxeo65r3TvdZVAPead9GNYL8w3+azeznWfKNJF7yvz64zgf9rzB/esS//iO/zn/9b/9xZP1J6p/++wQvvoz93OdRHzx/Y2bMLlV172vmv2c84xnPeMY/ysc//nHu3LnDj/zIj3Dr1i2+53u+hx/90R/9XWtu3brFJz7xCYIg+LL3SEWMVRrjFpz4mBaOg3feIAkHiNiQiQhCDTg2F7cYry0Gy1bSR3mFr0qixZqDGpTRpDrnON7DCknsJB0VUVgLHoRMiGqPKdfcNB0y0SKQMUophBXgHUaFrHTEduUIncd5D/GYm7MSEyS45TGJGVCFETEtUjR1tUQ0klaxQoTgbUEgE3ZWNft6BKN38dRE1E3NSTxguA4wFm6ezhi19hHNEmcmxO2bSFcTNo7AS1KV0MQ7bAQtvn1aULsabI0WAbKxhLaim19CqpxosSRG47RCS0PTVOSLFYmOGbo2HwDSOqT2FbexHEYTzHrKaD4lliMqD5npY60k1YqzeklWSyIpKOsFu3oD5yqqak0rHCCKhu3Kgy/QdUlqRtR+jSimGBki5jPawqDDTRIVUYuafKnJ8hRKjy0l0jg2VIorLC/5Nl4ExLZGO08n7hO4ywTSENg1g9oQITlpVsQqRUkF61Ocq2mZbWbrI4zZZIEkrmvSRhMkQ7QMCIKIoQhoVyvC9h6ZaOHsKfNaQ9ImWB4jgwB0QRKk9B/8Oj0VonbHXKxjTmhxu3OZK+sT4vKImatIupcRYYvRyRPGeYQTLUqb0EQ9emvNgUtZ5AlCapwLcN6SVwVhVaLKAlmt8ULSiiYkjWIZ5LTXFr24i9UZSgrCuId2FaIpWYg1o8USH47YCEao9S1a3Q7KNkgPOkiY1yv6K00UDwhix1yUbEa7NMHx+RDfqE2MphEBWzZnVT+GfAfvoVun1FGIJSFsHNgFMzlnHG3yruM7hO0Iw7kYiGrGzB78OuPuu+ks1zidkc+nSCExViClZo5hHUgyZ9EodGXx3gKayFWUKkWrBqkC9hYNvWQP19TosMupTqibmjaeQ5mxTCcIXTB59EXezO+SzWtMHuIEtMIUo2JKIUi9pfESbXJkteLVkzU0M8LOBYJ0yIefnvBk+oQbw5tkMmWlE6L1FB9bqCuuDL8BTJtApazEEXntqITkoFI8mN5m3ZpwZFfo2jLwjrw8QakUqSRXyopcZaRmwHS8QQRYV7OUgu7RPYp8j7Kan/tPGTLnqYWFpiGKBhwsrvNw4eiKMb6omFnoKGiakthpjgPN1VJR2hVEDuEcUdAljBISW+NFwM3pKQ+rM3qjS7xn/QgbaHKd4Z1j03oe+JKckHnjyU/PGLiYoKoJZU0qI0pCRGMJl3N6Tc1x6KkChWos+ILIKYxsoV3MqYWBV4ClxhOqGNWs2W1ShLXE0QBRrdlerklki2kDUV3wKAroIjHTd6hMCycDxmuNqVPyMILuZZ6uP0FarlBIpPdk8S4Tv8Svz0iCPlDxwnyK7AhcU9MN2zhgUDTYpSX2GTGWl9RFZJ3Q2JJVY7k8mzOX8VeNaV//N2jeMdy/RDE9+0cEQparz3Dv/n+OlB2Ggz/L5uQ/wtolb775Z3m8PcaoNS8dxrjG8umf/Dtf0cTPP/pZ/oNPfDdGGl5ffwtC1rjmFldeeoXr15/j/e//IK+//gE2N7f5ax+/z9vDD/Bz7S+xI/f4K39ywF8199gzP8Hw4BeRCF7SPRY6A++4cPobLBcz/vZz30rxUz+BaLVZ/KX/DL8+l8vcGH8XYHn46H/8WnrxGc94xjOe8Tv4pV/6Jb75m78ZgMPDQ2azGYvF4net+f7v/36++7u/+yveQwgNTYULEvqzpzRNhUbj4x5aKkS9RgmNtJb2as6AkDBskfvzQauNP9+F7jRtGueI0LxvMae7mhMtTxGuJtQRuAbXWGqpqW2Nmx8RRD2UDHGNxXtPX0VoL2jHE2RjkTrEBTE7jSAPUgIVshuPCFWMtNA2fZblgky2SeoS2dTnpZoypG8N+6aPUQG1DNmSGbJYsfdkTtZ4YiR9ryibirop6HUu4F3NQIX0OhcQzuLcuZJlXBYc2oae8ygdEicDjOkytmB0j61wwjjsE5k2ue4CEAdtUpMjhCIyXdrJGBm1MVGP50bvoecV2loOVoqgqojqGu8qgmoO5ZQMhQC00OS6iy+mxCqmK0OS0zUbZGROEHiJMj2sL3EyJSVgIAwTJ1BSEfuI0EsaGaDVee9eS3eQ0qCCjKJeE9iasC7xpot2Hik1TmowXcTsEcKBKeYIPFu6hY67CJ3QNA0OhTQpw3BMjmHj9AnDckVSVlip0dpQuBq5PqGJWgQ+pKrX+KjDVu86UdQnT3cZxBfIZYoOMibdq/Q7l3BSY2xDfxrwvqNTRnGfkD7Z4oimqUjiDTbDMZ3akp89oRGeq09nHM5OUM4Ri4jMKlTZEMqY3CmE1OggwWQj4qCFlDFeSHrhFqHP0A4GQYdIZ9T1mm4tIUjZLRq6TiC8Y13MWERtIiFxSDApgU4YpGOErbDeYVSCQBLamjho0xrcwAuBdzXSSyyetLWD9x4tDEGQUq3OaFlBXtWkpk8SZDTVGqI+0nmqxuE9JKbFc9GrqNITNoIsHII4T/6tXaOFJpCS9eoRq8YirCX3jrxpcK7CA2ldEBJQVxVmcUpTF3hAVTW6WIEQGOcRtiKWCdHymKhccfD4NqEIUGiczkFF1E2BLGa01ks6MiJQMWHTEAlDlk3wtqCrW2yJkN1kmyjqQ1XhqyWq8Zi6IHUQmDaRThC2JAgSdJAQC40Qgu5qxg0X8ZxskzpJbD2NrdFC4csV/aqmFY5pq5yRSNAyJCQkLguyZI+0qMjCDgMnGMiIvJgTryukP5+b2A96PF9LJu0DMtMjaRzGC7KgSxJ0mViPaaAfDjA+JCkrWJ+SO4VtCkzT4KOMC9k+KuoQmpzceub1mqerx6yrBaPC0akMncWC3nrJJNqkn44ZOEFYleggpcGhXE3SOAIfky8qkmqNrAqMzgiIkY1goyjRSLRXpOUa2xSUKLamR2TRAC80GkVrvUbpjETGGFsTrE5wrkLHIzxQmza+qamcJ1Exk2DI1vAVWk7hnadeHaOEwaQT2rqNwhPZin73IqgQlCEPcvplgfMNiUq4muyQmS5OBmgZggiYrp9Q6pCrxVePaV/3BO2Nn/8pHn7h0wDkg9/u0/LecufOv4eUEVIqjk/+FovFLxMEAwaD7+Rzu2t+4fUufkuDEHzxF3/mK9p4bfg+qqbkXzz8l9h4ekgt7nO2ecbJcsne3gFvvvkl3njjs/zET/wY/vav8Cu3n/Lnj1+kFAvadY+HG0doVXH59TcQAsYLj2hvU6uILzQD/vqP/X3O8j7q2779XJZHa9Y/9r8D0G5/E6BZr379a+rHZzzjGc94xm/z9OlTut3ubx33+32ePHnyW8cf/ehHefe7383W1tZXvEe1OkILTSQiUpORegiCHIVCOof0gK1QQhESEgYRUghCFMIJEtMm0DEZEaEt0U3FMJsglKaVTwiEPl+LwPkGAK1jtsIuxnuMMLR8QKhT6sUTFBJnl2ipwHuUrUBAHXdASKRz4C26seQyxsgApCYRBqkMLdOnHfZpz2bUxQLjFZ1kiHQNQdQmLpckpk1iUpq4R90052WJdYUxOWVxgmpKQpXgfUOgQ0IVkKO4WhRokxPoGK1DJGDLJaqYE6PRyuB+8x+GUhoFzOo162oKQKgMjS3w3pE7Txz3yU2XWBpC75A6QamQpmnYkSNa4YAs6hPJECkURb3EqZB22CX3Aa4pCLzHlCXCKYy1hCohkAGBByMUuqkJREi7LJkMbpA5D+WcyHlaOidNhwzKJUGxoCNjOvGYUEbkIqAlNZgWQTIgiQdkTiCQyHKOaypk0kfGQ1AGr9vEtqZlWjghMB6SqkQIjXCevte0CdHVipY4/76M0Egn0SpGywCcI1YReboBQuM9SFsTmzYtFUM5x/iGweg1eq1dnC0IncU2NTrIGaxXpCqDsEUjNSEShCSUEZGK8F4QIdFCEkhDLjuExHRre25LBsQyAlsSekFLpcQWtC3ZdBIt9fmGezFlWJT4xhJ5jyrmlKvj88TTO0RVgG+YuOR88Dse4TxyNaPyDtXUpF4RefBNjZOgwhZ5uoEXgqYpaRqL+c0EPMWQeEVqG1LTJUk3SMIW21VFnG8RSoV2nswlhEGOd5ainHKh0UwaSEyOEoa4KpEevG+oqwW4mkRI2lEfpWPQEZsbr7ChEnrrOWHd4L0g9pIkGRIXFRPZQcVDAp2Quv/nWY+RKiK3NWOZomxJGLbJ0jEGQSA0cRCTJgO28j0EATqI6aYTmsDg6oK6ac5/7wgCHWMaiNHgPXVVoGWCevApAhXTSbfpti6gVIStF4RBjjQZVmioCuK6IrQVQnhi08KEHXo6Zdh48nSMXs8JZUhHxoRodNOQRn0uuACTb1OYiNSWBCLEekdtCwIfEOmUVJ73xAVRn6wJyYKcCE0bxWA+JZkcBY3BAAAgAElEQVQ/pr8uGRPQNm2ydJMN0WN7XbLRhKQE4FNMukmCYCgitDIoZTCrKbJaEpmcblUR1hJTCCSaMEgQBOfPs44JAOMc2jUEQhNh2FY5nWJNIA3SWxp5Ls2vdUTiBV0Mh3SIpEGkfaIgJbOWNJ2w3zlESk2gIzoqxjQ1eWOJoi6pjLlu+2zqDrEXqKhN0tnH2TVxXaLXZyiTYbwgaBxtaxHe83+z9+ZRv11lnefn2cM55ze8033vkDtkDiEhIUEIKBVRsQqlBAQVFS1LsLCx7LVqdddqV3Vpl2WXdrdlWaVWsSy0nEqwqtTCaCQiSANhhgASJSMZbnJzb+70zr/hDHvqP/Z53ySNDCqEAvKsdde672/Yv7OHs8/zfb7f59luvon1HWW5yNguc6EM8TF81mfaky5xDJ0jxcjyRZci6jF8uL7++3h/jksu/nUWFp5D152kLB+rhxi7dTa3buFMfCPP/sHn8onf2eLcA/dy8PKnP6H9LrS8/dSfopTmTx/6E779+NV0VSRpw+23f4zz589RVRUxRpq2xW+d5uXmFIOlA3wqvo2TSzsUdcmHP/JylhcPMLBgS8Ml+5/PgzunuXjBcMvWBXz/1nEWfvA13PlPfpRitMChm29i+L3fj4jmwIEfYnPzZlIKiOgnbWyfsqfsKXvKvlotpfRpf4tkjf/W1hY33XQTv/Vbv8XZs2c/YxvDahUX6szXKE2KHi0GTSIhiLak6BBdctXy0zAIMbRE0VgSvpuiizEWEKWJwbNsF9lOEYJDdIGqljMoSWDrCaYYo0RlwCaCFGMWQ4sa7ocENoIxhiT5eemCZ+g9026Cjfm6VAqkns0KSpCiQinBuQnWDBiW+zDa5j4gkDxTN2Vw6DmoGJCYWDFlrnrXbuKBolhkSQpELKSA1gVED6IoEogp8qliu6XNiwXKxWPEYkDyDUYXSOgQYKiG0NUYVRGKRXYzL5SozFKaQWbIEnhRCKCSMKj2sU8guo7x+BgkhUoePdgHUUjdjEpXaFWiVImQEFOhlAURopvhKChIKKAwJUoUZblMjB5tShSRwfAgqAINmPEFpOjw3YyAoJQmhg6jC8ZLFxJCS1EuoILHT8+gtQE7IrqGariKUharNIWr2SKw0M2hWmbeblFKiUkekYjTliCa4DtS6MBWiB5iJKCIoC06JYrN45jFI6joGTUTQjFEuZaoCly7QzFYwQ5WIUWs0tiUUIUmpEj0joGyGJODAiF0lGJIwRHcjJEdE5UmxoAxQ3w7QZeLlAuXEJRCFwtE3xFDRzc+QNVO85ocHaRptlHNDsujY7RNh1KGQllCDJjFY8RuQmmGGFNhokEBogzOdUgVKYsxxlSId4RqiSLl9ZDaGSElkh5glcWVyxAzu6NNRWFHzGLLCCESkBCoRGC4iooeXSxA6BDRKBKSEoeSxau86lIMDHyL62pUtYpBQFlEZdlzWa1kwB0VtlohpcAoJgprUcQsjTQV+48+l9TsMGxatI5EX1OIICbhkqfpGZREQoWW4GY5yFOMcL5FiyJGj1EFSD5HrBCLDy1DIjrlYwO64FEiOGUYpgRLx4ijA3hfM5QBVoHRQ6wmj6coCC0meoJvkME+Br4lClAuMZ6tEUigDEppFssVFApdjEE00VRoKVhcvZKEsDLc3weIctBESodCiG0OkEg7I0WHHa4CglEG2zPS4jtqKTF2AV0Jyyhc7NDlkJg6CjEsrlyOJVEMLSl2aAFVLlLqkq5eR5uKleEqZ7ceRqmKQMIER2ELdEpIrPExUtkRXQjE0KClhNBiqyVCTCg0VfJEbYlAdA1FtYJNARchuYaJKIbFECuaLkXaZhuGFrTB5QcKCRCE0gwwyiCDQ6y3DbreZrB0jNju0HUzbLlE8p6kBKInpsDqoWdi7QjrO67Yfy0qemL47MW8nvQqjvVkG+9alg4d4di1z957/+ET/wwRS11/kuWlv/dpVRCL6nI21n+XUQ1+vEl9dsTK4a9h5cgTi9rft/Mp/s9P/ASHh0d5+s5zGa0NmS4/AClx+MgxXvjCb+H5z38BV155Nf/be6d8rD7ADYstZyfnueJEw5n9mhvP3ciR6+9ngevY2txEzRbpWtBb74eN04Qrnsm7h2PekOCtL3ghCviaD72X2176nRwcVAztYc6v/QZbW+9kdfW795yEL5Z9OVdt+9va2okpvguUo786p+Rva1/NY/vFtqfG9otjX87j+rep4njnnXciIlx77bUAvOENb+C1r30tRVFw6623cuutt3LLLbfwlre8hfvvv5/19XVe8IIXPKGNR//oNoIEtA+AkACiQ5RBFxUpOJSyxOApRRG7CcqOKCSzE0kUSlQGZ65FiwYBiQFjh6iUcCmggyfGjnK4nxiyA6yLEURPCg1GlyilUSiUNj2sSihtMKJRKebrELBmgOgCUSq/rg02KQRB6zJDS5W/hwCiMAjSTdHaZhZIWRIRXA0I5WAFEUGbCjFFds5CS2yn+cBuU6J0iVaG0APHgoTWhhgjxg5AZXATQocoQ6ErkggxeLQZkGLA2iEq+b0xULogJI9KCR8zw6HdHG1LxJT59dQivsMAphijU5ZaQu4eonHJoUXlfusC6ecmmYoUuj1w5pUBpYm7gJwMEkxK1NFhgwcBrQsi2ZFTohFlUQLKjhnaEYWtIEVcO8MUI0wMSIpUMSLaYsoFVEoYpfApoFLEVCtUxYgQuzyeymCAJBpEEUUhArZcwNghiMLqglJXSHCU1QKDhSO0ocVqixKVHVYSwddo3xG6aZ/Pn/L7ypB8A8FTFWOCFhIKEUGJRmlL9C2hnWCLMUk0xlQoXaC7OVoZMCVWFJUdou2QSGa8SBFlRySVZcLKDPDNJqIUMXlwLVpZJIYs1w0dhanQ2tLM11hcvgRE0MqitCW5Gm3Kft0X+T0SpMBQl1hTISnl1yQzTQSHtkMIXWbvyO0ZZdnauJ/R4lG06NzfYoASQ+jXQoyBFPJcIIIonf+JwpoBbbuF6BKJAaKnqpYJSjMaHKAox5nxFdXL6QSrDaoPXqTQoosxorOfopUhIPjo+3sgEX2LFkHZAdE1lIPlfN/7GlLAk1Cis5ROBFOMKXUOOJAipIDSRb4/tYWUUD3gQNnMeEaPLRYwusSRsNpSDvdjzbBfGzWiS7QolDIE36BNhbYVkZTl3WKg3YHQUQxWwZS5byllUiI4YorYchHpgzlG8m+LaApt0bpAi8EEj+7mmGJAUgWS8t6hlCFFjykXKIqctzYqFrAoBuUSYgokSb7hg0PrPH+KhNEVKbq9AJuklPehGBGRLGMX8ES0Mlm6nSJKdM6n1Tbfd3aU177NYEyLxndTRHQeq96tH4oFUt6LTJUDWZCBZj8fIpoQA6RAAho3xxQjrB2y+pJrPuMz7Ull0O7/8Hv4yO/+BvsvvfIJZfI3Nm7GudNccfl/AwLGLH/ad6vqEp5+apl7jm3TnX4Gbqdi/fzNHGufhS0fS7Tb6XZyAjZw5SPP4+zSx4HEgW7Gi170bXuf8yGyXXu+8cqD/J0P3cKZ7W3ufcYzuHZzh0eHp3CfupDDZgNzWAj3O9S8IparLLpttpYKuouWCXXg5atDXvTRD+BF+N37HuRnNw7yb46tIigWxs/5ooOzr1aLIaK0Yu3EhPFKyXi14rY3P8j1L76QwWLxpb68p+wpe8qeZLvxxht5/etfz6te9SruuusuDh48yHg8BuDFL34xL37xiwE4efIkP/7jP85P/MSnV9sNIpRmAfM44YOLLj/IQ8BgMuOjCoSEGaxiiKQUM/DQBpDM5ilI2pC6OVGZfIguksGcKbBqAUjZmVImgwtlMMqQgORalCnwroae+SH6DP6UQUdPUS6DCApBUsLHiHQdmBKje0YJBSnho0P3LEECitFBom9JGZ5kx0LlvTOGLjuTwWUWQjQhCWJKxA5Jkn8PQKUEJFL0gGBFZWibIJBlgNoMiAApEYgYyeAtpQCqRGlB9VdixIBW+XXfoWURUQXed4DGYGndlCgOKcYok89Eja5G6YLU5/mllPbmRZkClRKql5WmHowZX+N9hxKFUvExxYtoFosFJCWibzJAjx6pFh5bKz7n5CltEGXADrFK9/MfUMogYohKoWJgUC4QfINFEDuC4PCxwxYLuHaSHd3eoVNAjCE7lLogxMxaKFNB7JBygaQsCbDFArvBBN/NEKXRZkDwLdXShXm2E5AiURQUCzmIQEKFDHhAsUtrii4wdkgMLgMUrYCUQROgUiQhQMzAQxcQA8lU2QF1Na6bQLlIWS2DwHy6znB8mJQCuloixbDn0AfXMK72QcrrMPbXZopBnr8UkOjRfSDAlov9GhaUCOgCQz7zTPTus1+wxTD778GhtOWCQ9cBOo+H6Bw8IYMl5xqUJLTNvuSuk73rvcUUKasVQuhy4MQsEKNnODrUB0FAiRDFoJNHBJQqkJT6mEiWg/pmC2UqlKmwyqDtmK7dobQ9exUdGhgsHkWUJolC2xHRNwxVRRIIboYx/dgASgzRzVA6s8akhARHUApiQCTlYA6CVobO11g7YGgGiPTrws2RYgRmQPIdUef7hXIxj3TK4CbEBu1b7OggKca9HCkfA7YYAZKrM2pDTAFtSpJvULrMjJ0Z5EHt946IkJQheAc4lKmIfQAjz43N9x4+740LhxFRee30qgZjR3kHSxGRgohkkAU5Bam/N2LsCBhKrXvg1Ae9ABcDZTnMwC6aLHHtV5mGfm8DU4zyft3ve4FI8DVB6b4/oE2VP680xKyKSCmi+jWglGVcLef10M34bPak5qCZoiAB6yceYN+Fj51HdvrMv0epMQnHcHjtZ/z+qrqGC9Yi9uDHed4/+HrMobdz98f/xd77KSXecPd/QKM5MTvBZHaGpBzVw/dy5MATGblfvPUBfEx88PgmKx/+CNd98pMcPHCQBbfAqeFpiqbi+mc9h1e96tUUtsCpwKlj34SNHTvVDK8UmsgtaxP+p3/6k7z0F3+T6++9k9fsX+JHHj7HR80rWN94M/P5XV/wcfxqN9cG/uyX76SrPVd9/WGOXbMPgAuetkQ5sp8mdfpysOTzhpR2ui/L63/KnrIvtT372c/mmmuu4VWvehU/8zM/w0/91E9x00038Y53vOPzbqMyw/6xnZ3s6DtstZIdh67ZAzI9t4YWIQIBUKYkuFn/bbLkLmWnLymTnaX+eylFtMpshfTgbPe+T/37YvLzEm0zG7T7pmh0itlhleyAQMqgSWm0LvAp5/p4N8/tSc4peryJMki5gLYLiLa9M5kBCb2DY3TBrpuqlUHbEaRICh7nZnjf7vWJ3plCmb0+SmjRxShHsvuWqmLcg1Wyk+Lme/0WUpaQIn2BDovqGTxM0TMbhmp0gKJaQlyz5zwpO8iAwlR7rF52jD3Rtxl09myi6q9RlMUWI7QdIKIILhf7Sv14x57RSH3/Hm/alBhbQe/MG8lAVFLs2TjBhxZcTfRNlkuaAdoOMzjVFl1ksGH6a4/Sr7sUM/gAgptneawyeX50idoF7MFhlYVdsGEHvYPoUHYXuDY9w+KJvskszd44Az1Tl1LAtRNEQMoFKEYoZfDdHN/lOSL6HugJIgqN5MISojHFCBGVmYHRob2DopUYBoPVnr1QpNhh7AA73J9liMWYYrj6GBhqp4R2gvddbk8Ve2uqXzX4dieDil7GLJJBpDYDQvSZ3UgQoyf17GrUJZAIviW6muBqYr90ra0e55Sztx4BYqJvfzeIYTNoVKYPBARSigTf7vUhpd2wR25H6TLfT8UCSld9LledWcRigZhivrYUScpkcLZ3JdIDlwjRZ3CGQAr9/IEuRojovaAJohHvkJDTbFI/Z4nde5oMHJDM3JULRNF7Mm5FIgnoFLKEGVAxYrGZLVUFypR716j39iEgJawu0f3/pWf8lBnk0Ug5mBOiyzlk1SKmGGOKcQ9kelBWjPfuOVGGEB2eRBtdBnb9Tp1SyioHkTyn3YwQXD8vaW9fNXZMZTLTnYct9QBXUw735/1nd+yjx8dAEJUDH6IIKaJ02f82PRGk0YN9DAare2MaROW9MOaA3O7+pHWZ95l+1ERUD2o/sz1pDNq9H3wvGycfxpYV7Xy6J02MsSbGlgP7X01T38toeN1nbCMuHuHqT2yw8Q1XsOl+mTO3HeXQc2+laR6iqi7BxY6tbpOjo2NcOHsas9FDFMqwXFU8//t++Altvfv+dY4tVxyanKZwHZv79nH4yFGqxVtID34tk4U548UFjDVsXb/Mzv1bXNYM+P7LPs5r7/lRTj5wEXeNv56f7L6Jr/36i7nqj/4773vWDZw/v8WPHFjhyngjnPsDTj36r3naFW/8oo7tV5vZUnPDyy+hGBjqiUMEqrHlkq/ZT0qJ973pPq554RFWLxx/qS/1c1qae/zbTsDIYL/1ItzbTwBgv+1i5Isk23zKnrKvVPuxH/uxJ/x91VVXfdpnjh07xpve9Ka/8vspedAFsa2zM7mXt+Ix5ah/MGc2yiibH9Ki0WT2zRQLPSDKrBWhA20pUyL2LE5MITNe0Ds52dFABN87nbugIPXR4Jz/kAHYHlslhjY0lH1hkJjSnhOURVaJVIzx0SOkPcbgsb5GkqszI9bDoxgz27AH+kKHmJKUEqGdkLTFmrJnCB7nXKS458SSIoksHVSi9pxV3fdnD9ABKIMtDMHNM2gtRkRRqH7MYwy95GwXoEYQnXPEXL0HduAxtkMAH9os2xRB2WHfZtoN3H96frjkioTKDoGEIuFTzEVYlCYlT9JFno8U8ZAZNWX2clMQQwodSSukZ6sU9JIplSP+0UHPvmZJl8/Otqj8mR6A7wLuGDwRhbEDgvRgqJ87EYUyZT/20ncjtyHKklLMEXttevmoRZv+dVH9Z3rSBQExFNVyXgPEvH5TwhRDQugguiwjs4M9hkOUIYhGjHoswCCCJkLvfOZ1We5dn6gS7+b9vOZ1uguodb8GZI+RpV+TGVwlIPoW07NoPQ7rQyI5EGHEZHBMRJOZjoSgos+gsr+WhBAlhw10CrmNHjSk4BFd9EA09yu4Gna/36+dIAq1CxDtIOe99veyip6AQkvPwIjK96mbY+2AZIY43+bx0gV+vk4xWNldoJnZVMWexDpGT9zdj1LIwHy37z2z/th6VnneXN7HYn8fZmYnB4aiHWQAZgf596KDmAMhEZX/JpFULlCT+9UHPki4dmdPtqkeF1RW2uwFOHavL6SEpI6kbL8HZuVAio6oLKGXpBql+zmVvXWh+/nTPbsvksd47xdFAEMUlYNhKQAakZyvq5TJ+62kvc+nFPJ9o/qAvuSAS0QIkplGvbffZMmzKEPYu6csThmEgE2P47l6yW1wNcoO8vNhN2DVr6FocsBBIXvg9zPZk8ag3fuh93L8Yx/ANXMWDx1G2zzYJx75SbQaccEFr2N19bs/axvza16NAJct/gQxTBkeimwfX+D4g/8cgEKXXDS+BBHFseO5hP8BFRgsLeHax+pZ3nt2wva8Y9Z6XnTvn+UXX/ePueaalouP3ksqA2ou7D90gNp57lj4MDd278bM9yFU+UEXIy/Z+m1umf0Y1dv/X37gwkOEumbLe37l/Caf4HreIS/jnfF5X/jB/Cq2v3j7CT7y5gf50O8/QHCRh29f409+4S95y8/fztt/+Q7uv+0cz3jhEVaODL/gTNTjozFfkPbmHve798FQY745V5azr7gUtNC98V7SzJEmHSl+Yfvx+Viczwhnzzzpv/uUPWVfSpvVm/k/dpAlfr18KUensyTHR49W2VlPfVTaKZMT7wHIzj492EtkB0ynHHtVfQ6MJzubQspnd5KZFF2MsgPYR5ljcARRRJHMDiB4XYEoKlPtgTZNPuvIu7qXreUiA0ZUzrXx7RM7qzTKDvvfz9fuldkDCFEUSWliN83RepvzpIKoPrK8yxDk/K3gW0IKmcUiF2cIPbOBtgRReBFCirnCHMBupFoZdLlAkMxuZTCaz5vbG9OYegbG5Xyy4PC93C4hBF/joyf4FqUHvVOY9piGXYaQ2PVsXspj3E0zoAouj0XfN6MM0udKoQukBww+uuyQK0tw8x5wCihBm2IPnEmKeKUzoOznVymL9H2SFHJOC2mPAfJ90YBElpCKthht8LHLTJwIMcbs7In0eWq7TnvCd5kBAwhJiMoSlc3SSNF4UVlKJ4oQ2p452+UEEj50YCoCEH1D1DbL7HTRlxGvIOb+5cy2zLJIdBlIkIjtBN9N8Cnszd1ugZvQg0ptR3sMThdclg4+7tmaRHJOWPQkEXzM46Jgj/2EXeWm3/s7+uznxR48e1MRQ8/y9qBqd7346HPOZtoFo5kVy8C3yPdA2uV1s6Od4u78qD2wvwv0JUW86Hx/uBrX9yv1Tnrsx3m3OJ6QsLbKhXRSxAxW8L3DnvqqrbEvFuOjB6Vy/pxvcj4pORC0y5znOY+4PiCT10Qk9f0kJVwv4RRt9pj+1CtgfTdDTJHvYz/PTJIyfZ6mAjF43+7tI7pazlLZlDLQ3L0PkVz4BqHx7R6ITbogiSEq3ctlhagLYgoYnXPkRJkcQOjvQ/r9LpF6MP0YKAcIoQ9wKNlj5aOySL+2jLZo6QFlcMReho2YDM4Q6NeaAMm3ec3R31v9a7vrSvWqheBadAwQAsHX+RpTzPORssyxT5DL1xS6XjJsMGJQria1088pcXzSioQsrS5z30c+AMCRq6/noutuIMaGR07+BKI0ZXkpVXnJZ2+kWmL48ddjY2Jj9J2w8E7W71pi9cgN7D/8DfzoB17L3Vt38uzyOdgzCR2GmEfuoN7e5MLrbmC4nKVwr/u9v8DHREXHj3w4H2R60c/8HKdO/TTenyOsfjPnTm/y0Ts+xPxTH+bVD7yDO6cvx40t5+YFj2xNOHDlNSxO7qNRQ76Dd3K2vIbrb7qZG47fx3ue9TzubVq8Osjb3VVcle7g4vFlX7Cx/LRh+TIuCvD5WEopH4qa4M53naaZdHzjq5/OqXu2OHnXJitHR+yca5hvdZx7cIdTd24yWCq44x2nGC0XDJf/5oUHNjfXuPXWd/H+97+LD33o/VxyyWUYY3n/+28FYHFx6W+cZ+jf8ygytphvvQjmHv+nD6Ou3oeslKT1BlFC+OQGdAF1aPg37sPnaykluve/F33RxcT33UzzS/8X+6r3U7/5v9B98n7Mc7+e1HWI/sJUJv1KX7dfKvtyHte/TZGQL4Q98ocfpKgWIQTwDSHmyHokosRkZkFpUuxwpiSmgHc1UWeZWQxZsogIabeKHNmRim62x8SEmCO7AsQQss/QszrBNyAat8se7eY37DpjQNQmF5fYi2iTJVaiSHaIS3HPKVDaZmdH2z0wEcQ8ziHOTn6Wz1l0dESlsxOqDUkMThlsD45UigQRmr5EetIWSfQySSEpTb2bRyI5TygBThcooG85O/naYhKEGHKBEV/n/T7kvonOkiRPIAp9vliWB1pboUg0gBWh60tooy1eaUzWiuJ6qaUnQc8atbPz2HLcO6A6j6M2hG4Kpszl3fsqeMZkeZpXefxcvU7sWVNtSrpdJsA1GdD1c5RE5XHwbQ7s6QJFIojBa0PQpmdhs/ws6CLnwpGlbjmnSbI0M4ExZQa4JGJoQVfoXqboVZalKV3t5XD56EAXhJDXE24OfSEFUaoveGMyCJfMHoVujtiqL2IRaU1J8F2+Rm1zPl4KxP5YhdSvmwxUpZeI2czkpkjwDbEYEndZQcDPzpNsH+hGEJ2rCYaUc5piyJJQEZVzhSTLZn2KiNIoEXw3wcVAJylXUu2Lc4g2hBQye6k0SSlUv97rIsvLQl+Qhhiyk74bUNgNOkRHDD5XbFUq9zfFXBTGDIii8DozO0FrVMyOf+rvaacV29OzWF2gq8XMJkXf51xGki4JAm3Ia1n3lTyV0hnkASJCFzpQJt9fYuiUwqL2WMvkZqgebKuecYy+zpVie7kfJJIdI0S8yiyt6YvGBDEoMnsUe5ZNKQPa7uXTpugxsBd80krvBVAyG2dw8/Pg27y/6AzAtC7y2rAVrShMdIR6M8uQ++ItbYp4URTk/LGgLdHXewVhUkrMtaXoPx+ixydPFwKiyyzbFo0XIfW/36RA8i3Oz1Ep75Pet6CLvjjMY76LSL8vi0YIdK4mmhJRFtfv0yCk5BHT31e+xUuCYoSkx3IgCW2WA+eEQ3bz2+gLuKheOql2GcIeiFo7+KxFQp40Bu0dv/rved53v4YLrryG/RdnsLK2/mYADh74kc8qbXy8hdFhyoffyeXP/IdsfuoAx15wjji7nJOnfpZHpg9wbHSMZ6zlDh+94CJcU+O7lsWDhwGIMXJyq0EJPKO+j2o+Z/ySlyEiNO19WHuYV9zwj9ha3WKpHXNqS+MvvZAmLjHSFRPzfE5NR/zxwyv84/LfcjwcYiieq7Z/hUNXH+PrbvsAr9u3wCzCQ1zAhTzMz24s030JWJCvBHvjfb/J97zr5bzkrS/in7/xpzmzdQ4nHSfv3uSe951mvtUyXin52ldexvO/5zK+7nsuww40t/3BcbbOzAnhb8d63X33XYxGY170opfwXd/1fXzyk7fjvUdrxbve9XZ+53d+g3vv/evnGaaUMC88ihwZEc/NiWfmpLmn+4278TcfR104Rl+3H/2io6hr95G2WtLOFy5g8lda19L+4e9R/e4P4X/r/6E7tcFD//fH2Hzr/bgTjzD79f/I1ve9jPZDH/jiXsdT9pR9iWxaLSOAc/OeBQm5Ep1vgcQ8OkJwOBEmrsZDlsCQ5VumzzXplCGici5EH8GOpsKnRE1Ea5vfNyW1EjrVV2cj4WbrdETi46SAQWk6XeD6gv+NMiRdMPcNro/calNm5ywFlNK40KCLETUwD21f0nk3wy4ym54ldDs4NyP4Bt9OqX1Dk3LRk7bbgXZKKxBNkRmV0GXmSBckO8DpzGZ0yeNcje8muY1qiWAHObS542kAACAASURBVNoMzJRmQuqln5G2/17wLa2fsd1u0bqaUIyz858Cs2bCLPm+oIcQ/DxH5H3OqQqSndVCGTpdZEkRmaUJ8/UMblRmD3MBj6zaSaGDckzoKy0qXdD5JjNWdsBcBBUcjTJYbTNTFD0uNLhulvPv+kyUBOgYcNFnNiB0Oe8mJaLK0igfPcGW6BRx3ZTQS7dczzLSA5VIljDGGPIY77JO5QJiKzqfHfZWF1Au0IYG51s6EehZToBOF3idWY8ggtEDQsqVE32KPYuZaG0O+gWgSYFgKoJvmM3WSL7N8s6YMCRSDNDlA5tjOSJ1cyRlJsmJRuwQH1p25ZqQ0CqDBxc6WleDb0lK0RSDXGChz/ejl8AmU+ZAgR2h7RCXEr5njhMKrTQpOObTs4gdopSl1BVeNHUMdGT5mYuBZCs6wPk2gx5fU/QVSnMu0BBdLKCUohc3EkXw3RTfy1pjCjhXE5XBiTBL+QywFB0JxawYsqMLkrIZ/NsBXila39LYQe53cOjgCSEwja7PNQOFYIMjhg4XOpIIbfB0RJJvaJodEjmv0YWWabeNDx0+dtSxY6YgmJKgNFFpQkrEPtggPesVgZaYC4uIwemCWWjxMeCCY4933GXtUqBx8wyEiMx9S6N6eaSyOSi0y3yTSD4f5h3tiLlSdCkSu1nPopHPmOvmtMUQlKFptonRM5+ew2mD1hblaroUmdUb+HbC1BTUAttulseIDB7rFDLjj2BjPgvSK8u2ycEjrcssNVYqH5WhS7Qp8nEGfc5dAEJ0OIEdP8/HUPR7bBccVhe5SIrSqBgw0RPb7cx8h7z/e1v1+bSJHaXy+LeTPdYN0TlHztd7rHHsGV/na7yv6RK0vqWzGex/NnvSctB+8N/+Cvd85COsPXQ/133rKwBYW/sdQLGy8nKM+fzyhdJgFZmdRrRm8sA1LBz9C2bTN+A25nzjWHPK7ePRR0+ytH49X/eKZ/Cn7/sdqoVFikHejN5617kczesczzt/Nwkov+nv5rZTYDy+EQFeN72Dd3KMBPyr4sW87GBk42xEWOAfXf6XzJdm/NGxF/C2v7wBqzUOxbNW38X58T5edfPv84JX/zCvfehRTsglHIprnHSOy8qnqgt+vvbI9AS3nf8Q927dzTcfeRHP3vhmTt1R03nHye1TTN5d8/yXXsWFz9yHUk9ksIrK8IH/ej/N1PG+N93LcKnked95KfsvWvgMv/ZESynxwQ++l2uvvZ6v/dqv49d+7T9x992fpGkyzX327Gkuv/xKLrvsCi655DLW1tbY2FhnPB5TFJ+bAYjna/w7T2K/9wrYavG3nc2bwHX7UUdHYAS0ItYe92t3YV5xKenUDBkY9LP2/7XH8nNez/YW9R/8Pmo8QI5/lFN/rpDhPuTiiygvvhT/4P348xPS8bcTz20y+Rf/O93LXkHa2WHhJ//VU5VKn7KvGJNuAuU4F38wFa2bMYuGA2aAJyeLEzyGxE70lKbCE9CmwsUuOxRATWKgIJqS2s0pgBJFEM3xouKqrmMWapypMOWY2E7AzynsED1YRitL081JdkQbWgqlUUS62OYy0iJ4XZJszGeHRUdSBS402OAzoIuRKnpaN0enSFuMUCLolIhKg9KIHeGDQ/cMQaqW2D73SQ6OjuJ1wUAXKF/j6aPFopmJwqVIYyoOp4AKAaNsX/jA0xarBCJzU1HGDtvsoLRlsxgxanaIriYVQxxC3U3oUqQZrjBWJSKKabPJGEUsR8y6CbUdUtohbjZhvnOScrCPMNyHCYGud5Lavk9lDEhoMcNVYvTYFOmSJ0aVj0WIAW0swSck+jynffReu3zGl1aGecoy1sblCp5J6VyoQTskRTZshQSPna8j1dKehMz7BjNYIYiiU5pWa6BkEDocCluMaQWctuh2yiR5xjGSVEEi9TJ6DyH18lhFip66XqfdOsnCoWtxpiQUI7QyzLoJKXlGvVbNucwAOjHUVlEoi1cpt6cMQRXo0GYGLQWC6JwPlhJSWIiehYXDRHIxDQltzrtptvFLR2m0ZdBsMy2GrCRoYy/Pm50nRU9RLtJMzhIHy6RmG0dCDfbRakOVsrB0RxsWlWHmakoRkquptSGYEUv9yeY+OLTSdErhY2QQO5IpicEzGB3Ai8IrwewygSmwpStGJ2/HHng6rW/RSuPNgKLdwYqimZ1Dl8soUzCLHoiMlcX7BqVMX+ZeUSvFSBU55ys4OlNSQ66M6po8LrrEt9sUqiD0gRhjBqwRqUg4bejMKDM33Zxk8mHJMxIjwPkGbwpKO8znEAKCYovIMEZcanDO0ZmCKLnq4G7BHt1N2C4XCM05ZOUSihCoxLMpkZQCS25GsANK0YivqX3NSJdAxNoxzs1JpmRzdpaD5TI+NFAt45XBpcAwtDS+RlXLaN/RiKM0g7xWCFkmaAdsD5YYx4gmsdVssWwKKjPmrBKWemnntilIShOUoSlHpGaLpqiIvmWgC9JgmTA9B2Iw1RJzU+Bcw5LK+X+hnVBoy7wvYqTbCWPJOYPnd6XF0VOKJrXbnK3X2L9wNB9OD2wkzwUqF8upU86t9BGkWobomYlCR4/vphTDgyQi4huS0nSxr8bpG2rA2v6sxr4iZtmfj9i121TlEvgWbwzrKXLYVPm8tRSZastiW5O6Gj1czUWAlMJ0M+b6s0OwJ03iOBoP+OOf/ym6+YznvvIHEZU4c+aX0XqBQXU5VfV5SgDbbYpHbsXtuwp1+Doe/XPH+LJ7WI+aI2XHaP1lxCmUYZnFwVlO3/tJnvHCb+OCKzOr9mM3/yVIyzfIffz9295HWdf88XceY33zJgbhXhaWXsrhd/4cl67/OWdkyDkOcwWJZ1z7PNYenjJcHvC+hzTHmxEve82P4jYeZv/mx7mBOxlQUx4s2LrlTi58zWu5uCp5184O0zTgmfETXLZwxV5lpi+kfTlLmv7/NnMzfumOn+cX7vg5IpEVu4r92GG6j445Pr6Dsh1xaulezt14O99xw0v57ft+nVIPOFAd2GtjtFJy5d85SDPzTNazXrqZOI5evYKozz3+H/7w+zl+/H7W1s7z7ne/k9XV/VxyyeUcPHgB4/GYGAMnTjzE9vYWV155Nc61bG5u8Pa338Lq6n6Wl1c+Y9spJfzNx0lrDUkr4sfOgYuZy557iAnZVyH7K0QJ8VxNvHsD8/cvQh8Zk3z8vPrw17Fw/hyzX/g5uve8B3P1dSz+0n9ClpYxh48w/if/FEJArayAT8Tz51ALC/iPf4w43aH8pr+LVNUTDp3/fO0rad3+j2RfzuP6pZY43vMntzMWS9fnN81NyazeYKxLjLbEFImSSKJxtsr5SK4mlIuUKUI7ycBOCUEZrG9pTInz8yxhtBXbpmToapAs+8O3FEiftxBp6k2wudw0doTRuVS765P7IbEZPTtFQTs7w0AVOFOSmi2SKIypmFqLQyPdlE2l8OWYWbmABJ9BpylpuylGFzR+ms870gUfSh1DYBgjtSkJMdCEFoox1jfMtWFkSmYCM1My7g9zlhSZkgj1JmvlkHkxZtHXaDcHUUxFMVHCSuiwviXZikkxYBo6iujwMYNeJ/kwZTG5pLvpJYQ0W8xFgdJ0boYeruTDsptNGl2gQoexQ1wx2JOYaqAD8kECOccq6BLRlqgLQr2Bq5bw2uAQbIyEZotNbUAUbQy42RlMuUhX5VLnqp2w2W5xXCK6m1I3W7iFCyhSyGwBEV0u0IowLUdsA6mbYZTJhTK6OdsC2gxxBJwSrOuY+xqGK9lxi4k6RbQp2Oom1L5la3aO9XKELBwGIucRnLGY6Tk6ErocUYphFiPRFMyrMc43iJsyMSVnux1WQkcbPW641DN7DicZqCkSXXRZRqcLRGlmtmKn3aIm4QWSHbLhZlnWakpod9jRmjNhRutmKF0yKBZoq0VaN8WGjo3kiQsHib6jiIG2GvNIc4aDUtLYIUXs6KJnUowQW1H6jhgdEj3zYojSZQZ+2tKKEKLDIExJOKWyUxwdk3qT2hS0OKKusMoifX5RgWJqSu6cnWalZ6p3wpzTGlYxTIV8uLfSTFPgxOQkI1XQasNkehatFHXsqFSJqhbYHCzRKGHeTajQaIGpr9nuGevQbjKvt1gcrFKaki46nK+hP6uuI+dQPRJapJ1SlmOaHmQ2WuGItMHRRE9RLjEwBZICbWjRdsi83eYBo1CmwruGAAxSPrdvqyhZTrnyIP1RGWGwRFC2P+8vsC2KuhjwqJ9wqFxkJzpaEnhHYwy+GrDWTFkpx+gYCH7OvBwyq8ZY78E3tCKY2GHCDrWqaLst5tGTTMXmYIFJOaLRJSoJtSko5mvUKfCoVhhtWLELTARi8pjoeEgiYzvilNYMQt6DYvT40FIoyxlJbMzXqSRhxaJshdOWxk3ZKBIqGTZtiZtvEJXJFRxdzSPjVQ4En4PIXc3GxgNMilHOMbYVSmk0QgodMy3sDPeRYmRj5xQM9tGJUCnLWjnieGpZCZ4pkWAHGKBrJ7jYEssFxA5oU87jrVLMkmFtcXaANxWFn9P1gPUOOsrgKcyAw/8jSBzPPXg/rmk4eMXVaFuwuflWIHD06E+xuPjNn3c77VWvBEBNHuHwVc/k7H3H2bj7KAerlhJhdmIb71sWL7Ac/+j7UNrwrJd+NzM346f//F9yerrFldUDHI6bjDc2uO+o4rcf+m2Yvo06Kv77e36R6uR7WDPL/OpzvoVOPFs7W5QHO2JIDJYKitEz8Wiidzz/W36AV4ef5PXhlTySDqAWtrng+vPM3/z7/L2lMW+7JPAD8kb+j62n8XOn175Io/uVYevNGv/Lh3+UbbfND1zxGhrXUL37Ui545CqKkeai6dXcceW7ePj627jxwhvZ7ra4+eE/5J995H/lZz7xL5m6yV5b2mhu+PZLeME/vJKjT19m/eSUt/ybTzBZrz/rNRw/fj933vmXHDt2EQ899CDf/u0v56qrruHs2TOICEeOHOPpT7+G6657NkVR8Ja33IRSmmuuuY5nP/u5vPWtf8SnPnXPX9l26gLhI2dJW22Wddy3hf6mI9jvfRr22y9DP2s/aeZwb34A96Z7CX+xjvmWC8Eq3H++l7je0P3nez6j1LGu7+H0mf/AiRM/zqOn/x07k/d/Tnln8+53sv0jP4TMNln6pX+HufFFqNX9lN/4QqqXvRyAwXe8ktHr/meWfv4X2fd7f0j5jS9ADBRLis0f+gdsfNfLiNPpZ/2dp+wp+3KwM+Szg5p6DZUSI9+iikGO5APzepOum7GZPGd9zTk8W/svphDJuTDlIluSmNkslalDy9tCQ3BTfDEilCPmxJzXg9Dpgg2lqSXhkqNJka1QE/rS3TMySzQvhrRKs64MkxRoYgdKc//4ADNTMtUGrQzKDpgmz1a7w2SwyLbKjvwjzPlonDGJHaPo2Alz1tttmJ3FxJq5eNbCnI1SMRfH2TN/zl3tedabNZxviKagMyWTwQpzFNtKsd1LDV3oSCmwHefcM3mYGD0rQFcOaJXFx8B5pXDKsJ1qHt55kEmoqbxjAcGHjjI6KiKtqRj2B1K74HCiGdkBO8Zwkg4/P0d0O3RuAkSCshg7oDUD5qGj25WApYBTho3YEQWoFnDG5opuwTGPDTMSU1MwJ7AZG7xv+bPkeHBxmfv8NsPgGIrCKIMhS81u33yAsyLURO4cVLxtUFJEl89BqpaYCTilqG2FRzCiuS84gqmQGJnV69zdbbMWszQxxMSsGNAN8nfFzWlm5yijx2lD3U05IcLZpQvZXjgAxYgudAQCGyJsR8eGm9Bog0+gx6vUvTx2rSxp3ByVIk4L82qBZCrqFGl8R60t2wLzbkoUzaPa0LoJgtDN1jCuxtmSMUKhK4oU2FQF2+MDrIWaLWMZKo0XzXG/zZopmNsBDRFLAlPx8OolnNca32zh2218DCyZBVwMbMdcfGXaTZlpwywGPLBWjEi6wCfYKkrO6nxEhUHYVJq63YEUmClF1ZfV3zEFv5mmbIWOThtUkRVZMQXQBp0CHmF7+ULElBxvNih1RTNfRynFTr3BPHjW8HTJ8UCzzvraPXRG01hNay07xZB1JWzOThFSYNMUbBDpUmDmNlkwFToJD4+WcKsXEZRmp91iu1ljk4ZZMUDpkmmzSbNxH8tdTYqOuZthTMXc9BJcge2iYG4s82rIuilo2ykTU3C6HHBcJTbJjPdMJerYMfcNtw+WuZNcWKQthgSlaFOga7ZojWVmCx40ni61nJbAeLTKlhJOpoaHkmODgCFRJM+Z0rLup2xIYl1rYoJp7KglMqMjkXJRSl1ilKItDPN2wmz7YaLWmXH2M2o3wyK05ZgHBhUf7s4zV441PHXseMiWnE4THhiW3N+eZUag1iUdAasLQjGm1YauKBgkn2XLxQAVHSWJRimSFk6NFjmugW6DRTvC2AFnp6fZSC3gIUbOKzhTVLjZOdbDhLPR0c030EC0FUVKubJjjCwWC1mqW28w3XqIot5gxeQzF71vaUPHfcrQpEAtkaQ1jda4sqJNuRJoUw7QhWGLHc4KTFJgGjomKHbEsGOHe8VvPpM9aQza+974H0kJLv6a53HwsqfzwIOvJaWOA/t/kKI48Lkb2DU7YnD7r9Jd8RLUsedw9JpnsXjo67h/+62k2WHWz1+KxIJnXnojGyc+iCjF+NBh0lLFrfc0nDi3DJ3mhY98ggu2t7ji9f+FVz7zh2k2f5PhIy2vfnSTj6w8jZde/6/ZKY/h5jdxQX0BDz/8AEcWn07oIs1swGDhEY5ecx3D8Rir/z/23jtc0qO+8/1U1Rs79+kT50ye0cxoRjmgYCGBQAKDQdhkBzAOsKzXxutll/V1Wofda1+Mvb5eYMEBB5KxZYLBgMEiKMeRNDmenEPHt/tNVbV/HN314gA2uw+27sP333O6uqu6nqe63t/v+/lK/mhmiKfc6wmXm1y98yLO1ANkt/4rQn+Mh9bu5ySHeGqg+f6hKv43UW34eno2PzH//9TLurz9kZ+g4Q8jkDyweh+v2P1KrqvdwOrZCM9zOfj6CocP72VvZT8fufDHfGbuU/zAJW/iJy77d/z51J9w3/JXefGOl/7PMfsf/EN46mG87ipD+8eYm85pL/fZffXwP9iW9/TTR4miLs3mJsVikdtuex612jCHDh1h587djI1NMDo6zuTkdq644momJ3dwzz1/xYkTT3H77S8mCEIefvg+Dh06gut+LSbfLkTkX13agn7sreLctQc1UUIUXUTJRQ6HqH1V1DUjiIKDOd1E37eE3FvdquQ/vYH78j3IoeBrxs3zTWbnfpbV1ffhezsIwkswps/a2h/Qan2GYvEqHGfo78xVt9v0fvrtiKEG1f/w4/Te/0eYU48zpD9Hef5upMoJTnyQ8pf/I8HJD+MtPICtjaNe/AOEV+yhvvkhkpGbyE+dRZRLOJdf+U9qd/z/w779l6hn87r+c1fQPv3Rz3I4qKOUw6wbguPTthrfLxEIRa5c8mxAbBKOp20cR1HQmlB65FmfVG/5NjZkTtXZgiPcKzLU5ikmhw7gWENPbGX9ODrDOh5WJ8x2F4gGTVShQah8HMdFJ10W/IB11yFQPp24sxUy6xX5IjkV5dBwXAIvxEj1jG/OsuwaZm1MXZVQEpTImQ0qNL2AoSzfeppdGuWhaIGRwjCOV+Zpx9KTDl0nYLW/yniaoEOPjfI2MrY8cG2TkUmFUS49YWnqNtuyGE/5GCFpo1lZP01erDFwHRw3wFiLa3PSPKHjBFQKEuOUEMJBOwFJf53E9AmURz2okToeedInUYKuVyQxGR0dY70MnCpq4xxG5wxKw3TSHjLr44S1rTY0NyAzGVP9aWphla7wOO9AVfwNgdEiSG2GMT10bmhKxWa6RN2t4/Y3mWqewR07TB1FTQa0bUbZqzzzk9SykWzgeVVONnbQC3yOKclzjc+y56OFoOMFeF6JpkwxSKS1rCdtyn6JcpawWR7joqeoGk037zBwQ9w84zQx2i9isYSdZZRfIvcLLGY9TiVdKsUxUidkSDi0bcpHbY6SEtWZpaQc0uoYjtUkwqGTdMj9kI5K8Y1k4BaI8w3GVZGe41M0CQVj6Iics76LUxzBjdYwjkfFJjheBWtz+m6BlTxikHTIvICBcplzXFy1VVHwjcG1mtymRCtPMShNUnZDjsoYF0n/mercmDFYKfGERPplVtMu3WidpL4dzwtZCKtIpZgXmtE8IXrGU+d6Bazjs6QcJpIufQFrOiFoLXA+75LUJulGK2TRBlOdae6fuISb4ohzQlN1PHxjcJS75aHMB6y0LzJc2YHMYv4ydLnUChrSJxlsMl3fRVE6NIMy67pH1SliS6PgKByvj7Gw7FUppD1Sk7OgYx4xfa7LB8gsY9b1kDqmbzS9MmTSQyUpJWkpWkHbq6BlhnDLRGmLKVcykD71rIfrV+jrjKIbkBjDdHeJWalIHJfEL1GQkjztsmYSSkGVKOtQDerMJT1OuQ77onUiJZkNyly0PXY1pxFhAzVokyuHvvToK8W8FNQReDpjxfWZFqtkRtHMW/ilScomRdgY4RY4gyJxFKq3TsFxKStFbnN6JmPgCdacKl3H4uoOLaPB9MjSlGDkMNKHNZExI30eUpLLpE8/a6J9wT3lAidkwvX5Vq5b1ymSd08zWxxjpzY8LQS5UNR7c/TzhE0nwFUe8yZG9JYou4UteJNX2OpksDFBvIEKh5n2Nfd6A3ZTI3EV64N1OqVRtueaBEEkIUsj4tYUfnUHyhhaFurK42x3nhWlsEGZYh4xyGPyoMp6f5mONSxLhedXaBhLJygTZX3mXYclqWkHRejMMZSnnHZyUr/GkPDoOS7OYI0V00EYl0rcpuzX6CpFff08PoIP55u89BU3/4Pn0besgnbFHS8lam6w/chV9HpPYkyP4cYbkCr8xi/+W8rGrqH01Z9H9hapjW9nWs/xu13F0uJW5o2bVtlxeUjUXKcbt3n3id/k7Q//BF894wA5z/fOcNnZ0yT1Ir/X/RQn1z5LOcq4dboD1vLaI/+Nic4oxZbEqxfJyEjTlHx0gc5ajF9QNBcSnvjkRwB4zTWT9KzDIDNcNrpAPAgojUWUPvI6BIJX1xS/Zd+KRPOz86vfDiL+WzLW8CtP/ifqXoPT7ZNcN/wcXt17K1c2b+X8Q2vEfpc7f+wIneIaU90L3Dn5nRysXcrVjWv5i9lP8JZ7f5CCU2S+N8PS3X9A6zN/DsDg43+GWJihNP0E5V97C5ddblm72OJLv3Pi73wGay2tVpP5+RkGgz6vfvX38brXvZEgCP7O//6vmpiY5DWv+X48z+ev//pzTExM8qIXvZwvf/kLGPM3GRe2nZCf2oRE43zfAdyX7UE6fz8NUTgSdbCO9+r9uN+9F7vc36q6+Yr8K4voqTZmeSs4NI4vcu7896JkgUMHP8Pk5M8wMvz9bJv4KQ4d/BTV6gs5f+GNtNv3fO2a93oc/3ev5xOXtvntlw449a7/jCgd5WdeMc/bvbO82404uf4o7spRSHvI/gZy8xxq9RjkKaXBg9gXvZXR4UcRtRr9//5uNl/5cmye/31T+ra+rWeFjOnSi5bpOoqTXsCy5zIbr9BJ2kSDDTIdg+MQOS5ni1UeL/nMhDmDPEW4Ph0bbwEzTEyGYcZ1ORaEdMMhErEFsAgcQSfYqoilaPK8D1Ix39jDsl8gkoJe2uEMPeZ1gpQeroF1L+SUX6Tt+QhfIUTEnO2xog2usdTSPibukruWXjEkd1wUGU2vSCwShjGct4ZNv4pRLtlwBckiG8oyXwnQJqHXO8f99R18vjHKqJ4idTo0HYee8miFVT4u+qTxGhc6Uxh/iJmioev4rCmPrheQ+gV0HhGZjIg2c45gzg7o+Vvo8IZooU3CEjnHpSJ2izihw5Jj2EjnWSVnJe/hK4eIlNW0w1K8gfZcStJwYXKYLwfQ7MzycZWz6hkymzNvNY7Y8g6NOmWmbUauBBEuHQzaJMwpRcsL6SiHJSfmjNRs6hZBISTVKbNK8NCOw3RMTq8gmZYRi/ECRqit6mnSJumtINhqCZzP+ywrl9kgJHA8pgo+a65g02Y0jcYzydZ7ewW+6EqmRMKiK8l9wVLeJcrarHohm6Vh1oMiOk/RgeGctGyg6ekBfWlIwyEyCbFMiNG0/SKe8pgUDoVwiKfLVTpWM/DLaCcgCoYQdkDXbvmF2tEqYbxOEq8hkhY9BT1rEG6RonIY2IyBtxWhkDo+UdYmMgna8UiCMmfr2+mWx7k/DJkiZVVolIVVN6SjMwZpk/nxgzxUKRNlXWywVQXy3YBq2seXkjRv0ulvck53WfQNTw6PEiiXdbYAN4u6z3kpWbWGdR2TtufJhKSHZtNaNJZN1yewluXqNv5kbJy+EvTzNkUvRJTG2S4GtEd2sFyu0ilUOVUoM2W6KOXQH2wwSDosuC6DsMqCF9JzVxmQMu+4HCPDAH1r6BTKrIucXtph1ZOQFAhSTY7FcwvEhTK9yjBJZRSp1xnoFNfGnF4/xmLrNNtFTKJyEjcEx2UQeKj2MbRO6emEjUKB6VqN491ZNvsbJI7HhuvSHmyQ6JiFco1F3+OBQp0ZPcA1hop06Od91vIBJRwuGM2w1RzqraCVoWUyymQUlKBXGGHNNmmlHVIEjxVDOhICmxHpHouewxqa0GmhA82DlWF6JmYrJmwrv3Cov44fVEmKFdaap1gXqyxWAqJigQuhz1TaZG75XoyJ8MOtFuylyiTTfgFpc0Kr0VaTS8X92Qpnih6rrkEmA9BVrJB0vBIbJmXYMRTQeChOpxtYYWjHPbpJm4VCjYWggETQcivMVuscq41zNiyQOCEbRY9KOaQvNFZmDDkLdAolcCDSg63W0LCI55dxdE7khgyATEd8LDCs5mtIKcnqu7k/KLFpBiwrj7OkZAJaaYczJma9tpNVX7EYevSUhxKSxA5wC0V2uwofh1XXZVk58fntuwAAIABJREFUTCnLnKNYJKenBHXfkGRtUpPRt5qe1kSey6ISvMj7uw/O/1d9Sy5oxhjWpi9Q37aD2sQOVlbfjZQVxsff8o3R+n+P8qGDWOVivQrR5hr3HP0z+plHpz2Gp0OKg3Gejn6XLEkQcU6nBt20h05rjIg+QaoptrqkvTb3LH2Bh2bu5shTMRbB9x96J+QOS0WXFxwTHHnsTh4cfZBEZJyfO4Z1U7LEIt1LGN5zCQCekuweKnBCj/GZPT/De5uvJe8LwvbDFB7+daq1F1EShipt7un1+chG5//wCj+79bGpjzDbneapzSc4UruCu3Z9N2u1Gc49vISJJN/1xucQlFxuHruFV+55LQA/fvjf8uZDP8Zv3/Q+YjPAxgN+6E826P3eeznxp79FNHOO8FWvxRZLW6ShXQeovv9nueXYr3Lph9/K0n/6FZ48eYpPNjt8stnhz598gg996PfpdDrceed3USgU/9HVoEqlyqte9b0MBn3uvvvDbG6us23bdj7xiY9hjMFsxqR/fAZ7vIm8YQw18o9H5sttRdzX7Ude0cAu9bHLEebpTWw/I0lmuXDxh2k0XseOHb+MUl8LQRHCZXT0h9m16zeYm/95mq3P/s+//frvfg//10uazE2k7D26xIFbBePfsZM33Pj/8Nwd38VmeYI/Hp5gcPVbmX3BO2m//EPglSg8/XvUP3I7wYkPUnjivXgTVXa8/WaCN/9r7MYa2cUL/+i5fVvf1r80PTGyi0WRM68XCG3MvXaFGV/RKTWIlcRKGHgB54ICy15MIIpsEwHWZkQ6Yt5GPCET1t0eoMmEQAlNtH0vvnTIlWJKdrjQW2AgJV3lkCYdLtqIeVcwahJS3ULrlLlig6LvEzN4Jk1H8LAjOW1j6tZSFBWmrOAevYpnIlK/wMLgPB0Scjwec5r0nIiiGVBRGiMiHnYTHqkO0VcOz3dCciXwlCBGIMshWTDCkG0xmq4gdEIoDJuO4ILe4Em7jhKG3PcpFCa32o0o0fUKGL+IkDlRoUxJSBrW0s4lswLOBmVip4Q0GUKHxIWAiw607Fbr5JJs4pmMOE6IUfg2Yz1Zw+Z95uONLTQ6KZt5l7XuJkZ4DLJlcPo86vmsKsVo0mHWxLSVJA0DhMmYMwkXdMrRZJPMhSVfUjA5OmkzLR2WqyPcU6nQ6S+TkvP40E46QZ2OzYlMm3EMi1mb9eZ5UgSxE2CzLq40SJ2wB0lZSJqDDYo6J8ASC805s0hX9siFYCPvsdg8xzARs8Uyc1KS4lB0AmbTDjF9NoxmM+0hbY4vNyiWq1hpmPEUA6BuM0qmS8UYelbT1zH7pGBVxxiTcMb0yaxgzaYoa/CUpGRcqkZywcS0ZURW2U5SHqXFVotVrlwEOR4O02aLDlkVMZmj6CtFSwqsHdC1G2y6Ak9YdlnLuPAILEzZlDUbU1AuI06ZbmMXgoyKWyTKSrSTHgs2Z7ncYDleQgwu4ChFD03L9xgiYRnNkhngmJR6nlCwgkB5hEGJ0yOTHJVtoryLT07qeLTyhEQ6lNMuL01yAiSrxRqJTRhyQo6YnAkRMwREecbRrMNX8phl3Se3MQGaunTInqEBCglaJEwn69znaB5rneFU2mYpqDGoDpFXh2kNZrngtNGOizIRJ7IOTZPQsApJRp8SqY5J/JD9Q2N4NcO60rgE9FwoODO07SZO0qSU9MFkeGmTSnKCS5Iufp7S7C2Q2YjZ0jCZTvGkR1emrFvDuhmQ2ZQk7QI5LZmzalIGQtDNuqw6Lmme0fILhCZntyjT8oqsOSnrjmAl6bCZDFC6x7xN2cj7+FmbYZNzUbk85PQYyQe0bULLpDRsTEHnbNYmCGXCFytlzgUBBaoECMpGsz3XlLwiTnkST2+QeJrNYhWhNV57EZNbQpGxUz3GmJT4yuPpXDOl17klG1An5VHfYcV1KAFZ0qMlBJtpF1cIpITPjOxHTBxixMkZEXCJ66KwfNXZxKicTdujK3NO6cdY7S4yoiVh4iJ1lSURI52ApVKVeSFYVRlGSpaLFeYqYyAlF9rnWJSCA6pEmqekOmXBSdnQU6wrGHPLKJ1Qyvps1kaxxKzZHqkxdNHoPKZs4YhqoZ11Hm6ErFaqoBymTM5AwHYgLUMaOHQCj/lSjcWkRzMo0guHkINlWhuPfd3z6FtyQVs8+SSn7/sSz3nNmzAmo98/ibUpvejJb2q8fMctyHgTm0VUxyeZ2hmzq78LLITdXfhuSqF3N9LLGPiG/RNHeFXjtwFFiZzn9xIEsO3OV/GBqz/GjQ/dSimLudt5I18Zvo79KzleNuCK65tc9YZRWn6b08NnAUvTPYfJQbl7OXXP59mYmwbg3962d8v46eygv5FipYPJITz6XhqLS4Dgv9if5FJP866VDdayb1caAE40j/HH536fVtbEkS67SrtZOt3h6oUX0l5MuOOthxna/ncJnyW3TMkt4SmPD932p/zixxTb1SgfeS743ZjOm36A+C//gvzB+1Ajo1Tf8H3oPUdoVvbgSHD++lNse8sPsu0n38onjz7F+3oZf3X4ev701pfxU5nL22aW+H9XNnig1UP/Iyqenufzile8hsnJndx771a1qt+P+NznPoVd6UNiEMMB7k3j/+Q1EkLgXje2FWadGMxUB+MOmJ55G8ON1zIy/EaSZJZW+wssr7yH+flfZHr6Jzl//g2021+iXLqBxtCrOT/zS/zxqV+jf/9X+K4v9fjAHxn+w30xP75jgP8jn8IeejXPmXg+d1z3c/z47R/k56/+ZeLDr+PnN+/hF5c+wdJ3/ymbP/gY0Y3vwAZDWLeEs3mGwsk/ovy8K5HDI3Te8iY67/y//8lz/La+rX8JEl4dpKLg+GBalNMBujDKVJ4QJRGDfgvH5oTGckRWiaxiznhE8RJpGjHcXsJsnmcnKW2T0BArXM8ZNsw6F/JNhB5Q9ReRQYHIK7FkU9b9CovlMZZFjEHTqmxnZWgXG67DBSHpAnO6SwpUjKAgXJZsl4HNqdutYNi+7fCY7BKNeUjtktiMaXeRTe9pQmMYyko8R6/xQu84WglyE9EVmgUVkCqXfh7Rk4aCKuBXJRdHD+DlRboiJ3Z9EgmbwiETkioGx3NpINkuHBppFxGtE1ufSm7xhEOkM7I0JrESH0NsDR1AGkE174EqIoVD3y+wOFSliN5C2+s+Xt6lrwqMKUXB5NSTHrmOSGhTjJYoZTGxW2etuB2hAgIkJ4MCAkHP5JxxB8hsldF8jQoJUXeJ850V0FsES1d5NO0AB0tDumwr1NlMmlib4ONyxqaMivsYCx+m2wgIgzLzUoKwLFWGmalW6JDi2wxpMtqBJXMkbSM4ZzrcojZIzTwFE1H3yhwbP0CoV4jzdXrk1I3EsZKyUvRkQiVPmJOShpS0bBW/O4sfnSU1y1xIz7DsOvjGYZiMRRPhCcWwydmrY/IwoyQ1GzbHR9LBMKv7tHXOGSAqN6goTQvBebPlpeqZDp1oiU2rWTWa82iEV8YXllk94GJnBpO1mcs2cbJFhokZ2B432C7X6j4IhzUsXRJik2y1j9qMXXnKvOkghSUOi0w5iqPWcL6gSYdGWHM8+splMRuQ5W2UNYxIFwfBMTxOW0NsEhZlxkSQURCWovCpaoOrfJI85rij+MtSlWMkGJvjSUlr4SjdteMI4RNqy36dAYa9QjDshjzpFrlYH+f4/sswFiLY8vgJiW99xqXL8wgYdioEwuF4usQibbY5MBxvUEo3abk55XyDbtLi6bRP32aMkZEQc8HR5Bia8SJucRgt5zlDn1W9ggSGnQZJaYi+H9JVks97Zc45+yk3xhCFgKxUY8UPqQkIMSyn66S6RYikg6BrIgQw319mXWYok7BXKLpeyOOBS6T6jHuKCoJduo+XbjKTJeTGEBVKrOULpMKwamJQAQkJvonI+z3CzDKJj4PirG9JVci6saQ5ZHlAMRccckdxjCKQGb7KGS90GbaKQkkSi3km5QkKQUxPOZwolGgDwng4ts2C7mAwjJmLXJIY1jyPkIBN3edk3iRKNpitX8u8yXjK6ZH6RUrW4ya3xKYTcVK0iDD0RJ894RBj+Sxlm+EImNYddLuEyQXWaKrZgJnM0LSaFRmxPLKLqitYcVNiKelLyZAbsFYeQQmHOpa+7xG5Wx7F0ObM5ZZ7TZNlL0TKlHjXjQgFi0Iyqj028g5aSprCckb06SU+a/EQggG+7ZLmmhmRsiT6zGfLGGcJ352n61XoeAG6WMcKRdqcobB2hrnJA1/3PPqWeNAqoxPc+IpXIv0SGxt3k2dL7N37O4TBXoRwv/EAf0u6vJPCY/+V4NSfMLjmx/jgmQ9w6eqlBDrEWIGza5Hx0Seo7eswftPbec1lP8gfPjzPfHPAdxSXufWpR6DTQbz+zXz5k01u9N9DQMSv1H+B6TGPbini5pObPB59hO+76nuZmVnmlHOUK5IryEQfN6khtUPcPUt76Tz7b7yVbbWADz++wMW1LkeH9rMtktipEiPD83irT9A5fBc6Porv7eKBfDvnkpSX1f5x2PdvpGer56SfR7z9kZ/AFS79vM97bv5dDkc38Mjd03TWBxTrPodvm/y61EJrLYETkj59lMKFea6adTi6PaUSGRJfMvpvf5bwNa+ns2sfv3XVVcz19/PA1S+hmFSoN89Sba7zgq9+kYXhMR46fDV9oKk1q8mA/SsPcnHqYf5LOsxNJ3+HPQ/8HN7sl1CdGXRlJ9b72u9PSsmBA4dYWVni+NNPMFkssnD8KPL4MqPhJN4bDiHcb/6ZiJwoYvs5ZqnHfOk/I+Mi2w/+IhsbH2F27h2k6RJpMo+lgPRvpj84Sa16E0pVeWrq7byvOcpq9yiHPnuKNdPmE3clvPu6kOTIK3n//Cf49bUvcM/SF/jw+T/i07OfZKm/gK8CXr7ze7hn6Qt8eu4T3DL+PNzRKxlc/iaQDu7cvWRj15Jc+yP4d72awd1/gj7+NGLHTtx9+7/ufJ6t+/Zfup7N6/rP7UH78uef4mDcZkWtEcgikSqwX/o8KhwKNkdUR+h6ghMShqylKgpchsJL+yyyQXvjNKu1UQ57e+ngk4slkCs0bIlxGjSEIs2WeJoxtquAzPSJ/DKzjtxqUepNkZfKlCVMZX0WhCUXKX1j6QhJzlZocMMmGOGS6jZVG9PQMVUhGGKUYeGRZfOMVjqcZxvbGadhFCkzpCJmgTpl3UcwYBsVQlngrOgxLl1i45CmIdZ6XGsDprwIK+sYa5l1LFULe0yf08JnQjgUTcJatEk/T/HJyfurdExEL9zGPukzqyy5SfGFQ24Ve6THdDLFmaLC1UWGpKIdLLK3cx43chGlBoWky3p5lBEhiPpNRrA41QZjVOluPoJVZYqeJasVGclLHBAOm8qwjmEfoChQ1SUC1aItpgi97ZQLo8zamENOhcj1eTyfZ8YKRpVgNx06m8vY0GFYd9DK43pxlNDmuPlByB2+7CrW0haJI9julTBYdtLnhPCoukWuFJZVa9k0ba5iA9cYNnPLCpYNYajlBs/m1ByXKgEybnOwt05aHGMEzZqJqNuEgmsRm7P4ymepNM5M3qdTmGBS95iQLgVcKkKwwyg2lEOYr1JJltHhXqSFjgBjYMgkLLk550RKMbqAlBa0x97eOtsLozwUFtmjPBrCw7EDwnQF0h4nTYKfdokGq7T8Au3CHsqiyJh0GBVbkIN1WSA2OW3TooLEzweUrIPjGoTjIgk40p2nq/us+5JrbIu6G/IXxV1UlEeSt7f8aaqAlw84ng/wrOC8q2g6ikhq9oocjftMbIVLwwkQrkOUzrEQjtKjz3VOEaubBLaDLOwiKJVoaElRDOg5KzyWSwo2w1cBIzJCiD7Tssp1RuFnG8yLMgdUiQtSMOUW2ZcMKJbWKGmfXDiMypQpd5j93jgF6SJtxko4zIJXYUhYrM3Y3tvAqCrSCWmWB4zoEiL3CE1MJ+0T2gBrQTgFpiSEuWUz7mA8hwklsME4G4UaRsTsTVM2dc6Ck1IQPlqVyE2fSTIqg5izSRfqO9krFaEZMO95mErCRJayXdSYlh6zAnoqo+MN6KlRQuXhej4HVIO+XmJcpKAj5nQfmXbArVLD2yIdZpvsiBP6foWWEBTJGdCjJQU7hctq6FDIwA5yGsKho5rYYA0hGizLncSqxqJMGMGSAWWxSEuPUM83qLgzaFFhh/Y5LDxSvcFpIQh0xA5rOZivU3MC9ucDRmSFaZlii7OsyIRuGlNXgmFVIYlWwd1LLBM8PGLHYdItsiIccqFoCYfDVCh7KU2d4ucSlcOlskBqY4SwNJMuu7KYi5VJdiRNhoMRzrseA73EYXeDo2KUBb1GxwywqkRuc1wlCawhFAbjBdjBFlX2sKgyKsDTGeuqyM68zVmZ0zFN0nSevXIPHg6+HqWTdAmEZF35DIqGTMKMmOXFL3vZP3gefcs8aADGDFhceie5bmLRSPlP958BoBysW9pKWbcWB4dKWgGg1NnLp80XuHhhEtezHJp0yLThoZkWDjkjpo2dnkLu3UertJsbSh9guzjJA/LNjF47yivqFd44sYvXv6TGUvkCHz/zce5sv55c5ny28TmqtRpm1wxIH+XtZ+XiLOceWkYKwR0Hh+kbSUP2mV5z8JfWMAnIaJlR90awDjd6ywjg4d6AE4P4/9ziPgv1/tPvYVdpD928xwu3vYg95X0c+/w8OjM4nuLgd4wj1ddeznJtiDONtZZf+vRxHv2hf8V9P/MrDL7yFbxrrqdw6RXcPlvlo89TfP4/3kl2wzX8t/nHuf3MNJ/p9fnkTSX2rmniV7yc+577Lj53x5sRwE9+9AO8+yP/nfv2DPGVpd/k+IMv5t+c+g1uHTzIz7m/z7sq38Ev7ftRlre/ALV5FtWeAaORndmv+XxSSl5w2wsonXuKpcfupZpY1mmS3zbKifv/kqOf/hhZ8s1/784LJlm//TOkzgpx+QLWJmy0TxDrMQwhb/vCK3nt3S/mVR9u8ObP/hDLK+/jE0/9Cr+2VOfKxgu4Na7zY7cs8M674IlSSFs5PJgssKO0kzsnv5OfvOzfs7u0h27e4RMzd/NTD/0b3nr/D3HH5IvZUdjJZ2Y/9cxEFYMrf5jWa/4SpzfH0B/eQO2v3sTQh+/e8uj88i+QnT3zTc/z2/q2/jk0aftsy89Q5gSTeJScCp70GAJKpQmQCkckrCtAKHITsaE3eagY0k2nqfrDjFcuwRMeT5geF+15hkhwyvOcT9ax1uAkdepC8YjN0NZQfea9iyYgdYtsihY91cRXAZ5jqKgWl5qUhoW91mBthBEuEYam6dO1XWIb0zQpgQjB5DRNyObGPkQuqBhDVXp49Lhc9zmoS2w3HjvyISTgWkHVhAzpIn0TMVafpSFSRGWcojPGms2pygL7c41jIbY5d9icHSbBmgExfRpuSNkNEAhWd1yJ6wRIobjN5BRtQpGcXWYdAbQZEPsZrjCECJQOEYmDJ10KStOtNViwA0ASWoEioJIFWBmytv12RlQZ+UyY9QbgCRh2cyqOJDIZq3mfISdj0ilyu2yhHQ8lLVcaA7pHn5y6rFPQEXEmWY0izNA24vg8wyrgSucpfBFjGWHCn2NK9ag5Eq9YpVDdyRAGi+CcXWMPferOAhvuY5y3TYwQSLtCxWraKsYXDmXhM24sQvpY46AxzGcdpq1m0qTUrKUEJMbg2E2k18V4Fs/EDDnD3JFF7PMEofAYFgaTrhMby6XWUFIlAhUw0DEzZERoMr1OSWl22YSr7YBd3jiH1Cieq5gvefTyiISUTDiUrGE879DKNrH9x8hZILcGoVysWeI5eqtt0qGLJcezioZQDLEVX9CWGsoTjKAZSw09fJpWULIBxWKF3VbiizGMrrHPbGX2NUwf11oWrUWqkAlp2WEM48ZyJOwwXJ5nQEZPTxEl5ymJlK3YZUkimgib0rQZuYlwnE2SsEaxNIZnHRzh4oiAYu5zPR4F3UfbmMhqxkyZjJwAQ1GVuETVUMql74fM2QGnenOc1KClBCvwrIunikgEWMMcLsfIGUrajJASIYllyIjNCaVHUeSUlQYzybIaYUQ8k2MHIAWXyoDtJuUOkzIiXfa5o+wIyjSJWEMgpMOJQoFESgpIqkJTkYJz+TJTcp1WpUgt71J3JRVyzOACgatJXMlA96nlfW6wOVercOsCFc2T5C2klQysBVFEWxdPFDkkLLe4E5SNTyoCXLdEQ+QMKsMURU5VKsK8h1aCNCwgvSIDYVmnR6wGKNFklIArVXMr7kJqPCHpopkzA4qmi0YzIT0u9Xbi6xINA6nJeUpozgmBcYbY4+4kdMus1+pUTI60Mcdkl9DmHMp2oXSVfbKGm4MUCsepcVqvMW37zNoIaRVaKaoyQCGp5jFPioSKs05NaDZkn2wowBOS1IIrHCYLLnZkJzUhGPOHifMNWnkbIwzCplyfx7xO+BzWAy6xMGkSOgYS4RFpTU9kTCWrFNhC8HcQrFOik2cUEFxrNrhJR+TOMN0EbFTFxdLzHLTvI4jJdUjXCzkYXvN1z6NvGcXR8+DkqR8hy5axNqFWewmeO/pNj6daF3BXnuA3VYflxRbb+uM4WUixv4t65yiXXtKkv+6Tqs/x6Mrz+NKFHrudDj99cBzz5Xs4/h3vYHkh5vniF0kcl3fc8Q7+OlX89HiDu4aqbCtuQwjBn81/lIcKn2Mi2MZatsrO1Z0YrZHGw7OT5PGjrFwsETU9rr1xgr84vsJwKDmQzLP33FkGapLKWI/y+c9hlUvLO8568AJmdMhjUczrG9VvPNlvoGfjE/OjG4/z/tPv4bqR5/C2I2/npTtfzvK5NucfXmPn5XUO3DzOnqv/hu5prUUIwc9/9jS9JOfSsTIjv/MbjJ9/msb0aX7zljdRPvUkjIyy/V3/lYmrbuXdp36bD8w/wtPt85TKN/AL2xr86p4Jtm0vce6zs6RumyDbxcFXX4199EGGpy4iestsDDU5duQH2PXC38DWFzjWd9ntLbHdeZQ/oEHpwIsYHr4Cb+M0tT+7C5yAfOwqpp54iObCLKN7D7Dziuu5uBnTNTGF3ZMUD0zi5jnrT59i6Z5HKecVPOsjHInw/35YyN+W1jEXp36Ejv4yxu2j2yP8xUNH+NUntzNR38a1u6/imu0Vfvy263jLzeO86kibSukyNqKQhzbmOLM8xVNiFWVhv8y5bTTkZ697D9+9703cPPZcbh67hfFwgju2v5jX7v0+bhm/leneFLPRLI+sPsjF7gV+9NC/RluNK7ew3rYwTHzJXYTH/xCneY7s0pchrn0e6V99lvz0ScK7vucfnM+zcd8+G/RsXtd/7gra6b86gR6aJw8DiukuloVHEclAWGKRcXne5yIbrFjJCB6OUOyyMTWTU9Q5Q6lmpDSEkIoZYRg3T3IZkvPmAG1bYhcCX4QY4TJnNdYOyISkIDKabp/DtowyZbROeA4+U1IhlEHnPiEuLSEoSY+GyWgIF6QLMmSXFRSkR25yXKFYRpM6RUJd5jJ8ItNnp7eCtjnD7CElZcXd8kIf3z7CbV1Lzwq6UiELXby4yl4c5pXhpFC4xlIVLitCcKmyNKyHIEdKh5JXRkpLl4yT1XGuUjGONbjaoargZL5KamFchhSFZFmvM6i4rCQFhnAYJB575QjW9Thn5hnoLsKps0+5xFGTYbVJHo7RtZo15eKmPYqOZVBq4OUuB6VPL8+ZM4ZRFMV8gwKWlID1NGRB+uyzMI7FlS49IVlyLHEec51T57A7QkUoSk6NE8JyRG+w01vHsUNEpsmsv4e91icmpUfGDuGQqALlXLIpCnjFFSaCFWYG42ANV4k2PTtBTkokqlhrOYzBEZsUHU0oGkRKo4sNRlQRaXPmhMRzFZ4sY1wHpTwq1FjqnYHCPkaVoEiBtm5xbmSISl9QlimbWQslJZfIgFCEjEqPRrZKUQYImVESOTvFKArBtPQoYqgLj2U3xBcGx1jarqYgNNt6U4w7Y7RzSwWIAkXo7WBcKHbIFbA+ndwiyUmF4KzQXJMNGJIOQlgCJRkn4KSJOeiGFK1hh3QwSlIQIVMYIgtVO2BYBszisFsaDjglLkiXilJorSllgrK1NPICBVGkLn2KwgeToMyAVBZZocs2ARMWovUWtjJCJbBk+YCdboeC7TPh7ORJm7Hh1EhEgWGdsiQkQ8kaLSlZFYKDMmDOGlaE4PIs5WBwka4cIxBlrqbMmk0Zs1so94Yo0FFFisKjrBRtp8WefkqvYJiqb6OaLNCQdVomIJMZ48QUHIUUPtqmlGURz0/wwnMk+Qg7nRrWGDzHY8Em7NKCRaFITMxzTMoJt04iDBPpLIluExXG2a7qyIJPIFwWrGRHlpD2V1AadrkNMhuTmB7rjqSVaC5TljXHpy0Ewmqq7ijL+SKeSAjwWZc+JeFTRZGZZRpyCISkbgZgEvquQImQPfg0XXDyARVapPkSo3IEV8zRT7dxMR+lL72tgDebUREOB8Q8x8wEQ1Yi1Vl8UaVuimy3liE7oCZL7MbH+JoLjZBaP6GIi5Q+E9kmD4wbpkSdy1NJWVscJM1slY43zEAN8KyDlgFV3WFdOhC2sf1ValawzYywYUqkXoFh32fXYAtWhHCRuoV0a5wWLpN5j1hEXCpLJDblcrnGel6m6LmYAC6hSpKtU3Cq7MChG1/AFoax0QpVN2DEqbCAZhEYlwWGbcoJp0zV9lF5hmsMnvSpWU3VSkalzwGpWM66bOvNUQ+KHHzJjf/gefQtuaBF0ZM8fewlZNkSgb+fxtBrqNdf/L81pgmHCU59lHe6fXa3jlDQRcLuMImMKa6epjs7TmlylbChmW8u89DiIV5YWefA/fcgV9aYKV3JTTs/TyN/mocOT/Lb/uupKcnRQcKr6hWEEFwxdBXXD9/Ap2Y/TifrgIQg96knNRKnSRDtBH2RyrChtTLGxEjAUifhyU7OdYfqik9KAAAgAElEQVRqsL6M8keR820qo+tQ2s1yLaKq53iQW2lpwyvqFUrqf6+Q+Wz7QTbIB/z7R95GL+uSm4wfuORNCCG474PnMNqy+5phVi922X64Tq4NH3p8nnd96QJ3XT7OTbuHuHxbhf7730vw1S8gi0X8K6/izp9+Gwt7ruf90QT+es56O8Rv1Wj0pzlUn+S9V9xOoFcYChrMLJ3l9NIjeCVQiUfRPsVlu+6ltVLAPHUBd26Nif3H8B9/J5WzT3D1zONcf/ErHJ69yJ0rZ2lMfZj+7Ptoimmyy36E2uO/T+/hj/KVBy6y+/pbWT53gsUvPsIt8TXsZIxD/Z24pzqUZhQ77H7GCruJZzdxVzS9h2e599j97K7tYGmwxpNPPsZgMKBYLH0Npt9aw8WpH6Xff4pi8TkEzvt5x5f20e1afu67r+TFV9yAkXuIzQjTzZjH5yLuXV7i92b/kFfu+ymqpZTjza9wYN7yxo2Q516ZMu5JAq9M4O9CygAh/mYf6ixlKBzhRdu+k5tGbuZ46xhWwKdm/5wvLX2RJzeOcvu2O7ZAKm6R+OCrCE7/KcHJD2Mvfz5Jzyc/9hTed34XIgz/XuDKs23fPlv0bF7Xf+4LWvSFh/FKPUBQ1ZcwjaGMpB34nC1ZrksMiegzrYpMWsNVecxOd4MJZ4aurTGSCGRlG4HyWNIZO70VSkg2ZY1SXmC3LGHIGEdxwKZ46QUcWWbdsxRrkhfExxjkBdJ0hYYzRFH4jFqLkxsqwuUSkzNiNUtWk0mfuoVcaOp5j4pTp6jK9HSPOZtRcGKELLDfemA1vuoghaavMyIjGZAwTIvrs2mSfIIYh1UyGFTRwmEvko5K6FnYT8ABYGBTdgoXx9otihkenlUoIfEBz+YYmRDI/8Hem0dZnlV1vp8z/MY73xtxY8jIyIich8rKGrKKGqgqSgrUplBQQEBERNr2PUtQX9s22o0TKi574YAsUHyIiDIJKIIixVBYQxZVWZWV81CZERnzHHHn4Tec8/5IpbVVWpc+1IbPf/eedc+699z9++3f3mef7xYUdAYpBVG8yYp1mFBZXBJq8SaLOZ/NfoF5BIMYdrgByskgHJeqLLNXzZBV08h2hiRt4ed2kxEaX8esZQYg6BGLLDZ1mERwMe9wRlnKccp+mcNKS1xdxsaXyPdCBnUGqxw8HJZMh2UsmbTPDXqAPJqu6dAwbYYUjKIoOTP00xBXZGmKMmUb0pOKSLiUTZ9NXaBKiuN2qIgmg17KQmcHblpjr9HUzABV9yKhdDlkhyCNsN4iY7S5lBbxdMLKSJW9rRghYNYqlgdDSjJiIO2TuD6CAs8ISc4bZjCpU9JlIsflSk4z2pT0zBZt26akiwQiYFO6lIVDkLQRQvOU47GA4pDIsCX6XBGWqkkoCMWidCkIwWUs58oZVK7AxGYD64+y5pbIOwWMhFSX6NseJZEixRBdCwUhaWKxAm5AYW2fjF4msYq+l2EgbuBJBysNsU0RShPgMS8Eo9Jn1Fq2hKCMYZtzCj+13OxcYFNGzNoit+sUkWqGKRMIHyk0gfKvNR43fSIhyUaXKetdSBkwFA4QaE1aaOBmGuQjiye7pHaMMG3TkZoBm5ARKYqA61QeY/p0SdkuHS7amLqwDLXmGS9eZdOOEbtldlrBomlSFQ7GxrgqZEMqXCFppV16qsOEytIcnEClkI3nGJZFrMgyW4bB4TmKYYOklsdi8GVAQ/apqxp77B5SYbDIaz32ZJcxGzCDxQK3u9tYxxCkNXbhUHQKVIm4QQ+zmr32f5brc0yNj1JsbrDPnbiWrMGSkrAZSObSgMNOkWVHUBAOpf4FhkQRH0HLNgisz6TwiBWQdCnjkdc5UhthEXRtxIAwLJIja9Y5nTF4ScyYnCanJEla5S/LAWtyB7u7CanQLJAwKH18EbNbrHLJbmMQTVfP4tuQvClR0AVaAmrCZaeUWBExnfdoZ0scaiuK1mC4zPrgELsTQdir4xvFbDGDq7O4xsFmV3BTl3rUYrvSrLmKcrjKdeledooMIR5FW2fa8cGX7O4Y1mwfJXxGRcSE0+YKGbZFNWIJBam5MlJmI9xJI4EMXQIHqmmRVtJiRCpKKNbSNRYzJUx9g5FglDE3IJd26XgrdFzFjsQjJ/r0kjrr0mObv42KcMkID2ET8jLAYnhWazwZMeRU2PGtN/6D/kh/DXweYXiEA/t/jXp9hYXFX2Ky/O3/7DmTgYNYLAu2y5FuiVOTp3j+4nOR6iKp7xO1m8SNEjDH3vwjTORuJh9vYs5eQqQxaa7M7s4HibXgQ0M/QGglPzY8wD358G89TO4p7OO/3fCzvPWZn8HYhIuDl5hsTiKEpJ27Sti/nubql7nzta/lyU/McJu1bG3z+UxrO743wLb6Em05QTs3TmnpNAf6Cew7y4fH1njd0hCnO12GC/8yZ9H+vfA7F99NP+3znMHbef2+HwBgdapBc72H1ILBHTkmbxrk1GKDt372Er6W/MTzd2MtbLQj5rY6VB99nIx1aX/Lz7O0eZLhD13iaMNwRHrUZjsw22HAv57ReDuVuRxb505weWSG8LDHww9/kUM3HaJ1+im2qwucmbuPyr5PMfiyBdzzsPJ0AfEuKL/QotMm/cDHCIkXJzjpIlZobFcx/vhf0vMf4ZnqKMVNwzanSumkS1iqMmbKCGsoigKtuMF6ssZUdJ7rsjdywsxTz1ju7MPnnBMcLRxg6dOneMy9xPZDezh16mm+8IW/oFgsMzq6jYGByyj9JeL4Ern8y3HC+6iWhnjt/jb3n2vx6OfnuD++yGqzj5KCxFi0t4w//h5EmuP1j70cZVMOrjyX3sBRfv+Gm6l311nfhDvSpzla+w2+aehuVp7oMnHzHQT5In/4Y9/Lq9/+PurLC5z+3Xfzjv/+25y+9Ahps8PPb/06T28c52NXP8LL/kpV02aq1L7jE5T/8B78s39A/sd/m40vP0b9P30fwctfSfiq1/xrmtw3+DrhF3/xFzl58iRCCH7yJ3+S66+//itjjz/+OG9/+9uRUjI5Ockv/MIvIP+XnpSXdYY7Oy51E4KxuNJFCk2qNBnpokyP3c4MZ6TENyWyKkMspnG1IHE8WqEiQHGpFNBSLstxhZ3dNuP5ZeiWEAISY/Adl8DUOJTZoGkOYIlZlIr1/AyqOYpnNBkZcVAusGoGEUmPPxso8fJ6QlaG1KRBW0udPqEQzFUGyTYEodT04iae0uxUVxm2Ka4cQCJppwVcucaA0yWJx8iQpW89zgYhI4nHYBKzP6rhb19GrkyiybE9rbBOzAQOIzbmlLGkOsYXWWwS4UuXXhrhCE0kEkakZl0oJJYTwzlG2zHjUYk1NBu6Sd7mSbVk2NTImhxWVEAIrE3RyqMkCni4hOociu1Excq1s0oCNqMtPO2xw4QYhlmnjxQSJR0qNmXIKrQ09E2EFpJt6TqRbrGsi6zYTUZtEe2cY58VLNgqEklFGBpJjRSDIz12qSFc0UUIgZIexgr2p4ZISIxSyDSmLDQtJDm9xa3U8IMlWnaMgg0J0xSp5/FkjlRV6aUF5kk4qDyW7CizOFwnEprah/6juKoKZox7heWLjkM+SRgUHepoCuoq9wnDNqCmLV3TQShNIlIqLlhyJL0e2/2rtJPDrIqEJK0xnnZxnCzSQozFGkPXddFln9JiF2tTrks7eDpgUUgMEEmBSq7iiS3K2UnSdCfVxGPIyZImPTZFQsUKekmbojfIuOlSStp4IkvgFPHEGbAJDWZw9FEywkUh6dmY2EuwsUVYQSIkHSHYpWaxwjAhYiJhcbHsYYUgU6ebSXHW9kJqrzVsxxKbiBRDKgWu8CmrAfaaPkp6oBRat4mDWYR0UW2BTUooJCFwp01xreSsAxdDj7ubEUOqQ4UCWHCEYCBtMjSwyi5nkbaBeSRaaHYJzcmBkOvW+wj1KNM8hzGrsLaOAKQSlHpbVNMAJ80hpIcv4WAjpuxb+jbG11nitIcBtkwfI0tYaXGtg5UCbVJusnmUkOw2CXNJnSu5Cve2DanIcZEafpKw3ctiAGEFGZlDq5Bst8/ubEIQbbJmUzIyz7DMsWHbGC9B+zVujFLCxFLfsUaw3KIkikjbJVQZfOkhrEIpD+uCTSARgsvlHM1Ol/29hGrWUhCXyOudLOQLjNYdtpsyjkzZpvpM+SGmtkEOn6z0cGzKTSJACcU9roObehhrGdcL1JNhuqRcVj7DFspSsCpdAuHhSEFqDedzluf1+zzbXqMcTbKbbbTYYiUX4IQOt610OKtjvLTDhEkpuANIfJp0cIREO4p+3COnMmx3Uy5nfOrL66wGAbHvUd7cQtkOeQYxgXdNtAdQ0qWvUgb8VVQnC2lEahN85eEqjW8ddjjDXBGGjJRMKB8HxYLUXFaKntriFjnMoMmSY4i86F4rhzaCpiuQPYOxCZE0CBT5YIyM+OrHvL4mAZoQgkLhFq5MvZpC4fk4zj+hMfU/hBNyJsgx0B5CW8nw8igSDdEScfdajyhf3kfKx7B0+NEbfofLD91H2K3Rzo9x470+nLOc3ZvjKXuIprnWmb2g/m652d0j9/KB4kHefuaXeWLtcS5WL3Jg/SD9YIUgPITqPEFlO+y9c4gLjy0z1ejRAz69/XYOnfwgTi7P0pMZhl/7fzHyxP+gm41YKDzI0ex/5MfnVnlLaviO8j+/1PHfA2c2T/Fns38KwvJjh3+Cij8AwOnPzaNcSWEooN9L+ciTc/zB8XnecPs4vqP43S/P8fR8nTumj/PdcUKuLelM3k6xKxh1biBuGr6Ygc+biP/auWbWO2NBVpU5kT2DsJJ7Vm4gurDMyzKSkbNvxMQBM86N2K7k5NQb+eYj7+TKdxXIiytED2suHttG4b/dSzT4PN6+2OfmtI8YPsL60+/lXjPNpdJV9mzNcWR2DutJikMbOCvvZGnmZraSITq5PuKWEleuzjCzMIdbKfDl/CaNluHw7gMUl0MKF65ydXmd9tgRvEhx+eRZGqKD1g69XpezZ0/+1crdgHWfw+eTG9lddfgvL4x599Qa+ycrfGx6nQ1S7t1dYaTgU6w+yQdnfwvEbST2BLGzg2rzWxlsX+Uvh8dYWewRhkV01nD+6jiLssKv9cZ51fyD7K9tko0jRg/dwGd+7ecQgJ8r8Nh7fxOEJLIR45kcZVXgfSfeSTfp8j17XgeAKe2ie/h1BKffT3jqnXS/+zV03vv/0nnPu3BvuwM9ufNrb3Df4OuGJ554gpmZGT784Q9z+fJl3vzmN/PRj370K+NvectbeP/738/w8DBvfOMbefjhh7nnnnv+1hw7kTw4dAems8WR1Q7jNmBU+2hpyXsSJRXnc1m2koDrE4kSkqYaITINsIJ8ISSjz+IlN4BnOGzW8JOQ7NIhNkXM2YKkoTI8pybQBDgyJDCS0NdIG7Oo9mPxKQhNKFboU0PKYaz2wHOwMgIEGSek0uvTFVnmPYXMpATNGCMTqt4wRSko8yyxgUg8jZBVCnqLBBdrQnraskmdotxiMyiiU4/TGZcjiz7ZxMGmGq1cAix9EjwhSYVFCEWIRRiLL30sAoMBm6IAiYsSfWSqSIXlot9jLOtTbVxmeehm0tRFzfapyjZZnWM6LXNUP0PF9mnZO7HW0Es7dDKawAr8GJRcJjZVBnTEhgnYLX3WZAepDIN6haYZJd8TvFQ+SmKuY0Cfo5feTVdoNhigFQYEiUs/6TEsYwIxzbjoMxNPImyEFg6RjVnIh9RzMXdutvCEh6sXmU+2YW0e/BouDiZxcaTPESHolk+w3ApxGlny6TiWPhqLdDO0c6vsbiS0xQZKVJAI8soBUoomQyQMVS3wdYxJNRKJFoop32V3sw0yyzqKWbvCFHCj9vHNAhFltChwqqTYcgU7r3ZJTQUhNUYqAmMJdEjTdpmMHaywxCKi6UBWagKvju4NU9UBLdnh5tiC7OKQRWoPIXdwvayzbM/jOSNAihEw4lygnmSR8podnBoM2bvRwlhFQR9nM9qNEKvsNgkbaUQsIUUgsHgoPFxyps+YSBhxnmaOHH0RIYsz+I0JMIIQCd0ivaiItuLaqTNxzaoSUjQKJ0mYdBJiPUhBtZEktGSOojxHLmmyEYySEWskcp1GupeMylMLXPLdhKV8SF9Ivjw8z50bM3SjW3Gky3NMwieHqqTNMi0ydCSMCH3N9zkB1Ujgqwwj0uc5osaWHON6M0zd1NCJYSx+kqXkBjI6xtgYCWyFGbKOgx9ZPOkhAZ8NDumrJHaY1CqwYLCkwmLNFsgiw8KQYrhS0GSjlHwkmPSGqacr7PCmmJOSTTVJKTEMu0McSEH0ewjpUJR5+kkfKX2GjeJWuhSDiLbt4SZltPJJhYPWHkWnQNxPyKgM41Ih0iVs4oHrsOXUSEWG0GlRThM21AhtYUmEQQjNUOqhZYojWxgsDpqCzpOzFkHEkDUYq5FaEogGGXmJASw51aUhUhzpcDcWYa5VRBrtIaQim0yT0eso/yBRP0uqHdpDF+lO3UZgAgqxIdu5lpTRIsKqAoMqByYln32CUX2Bjj6I1++hlIMWDit5j43QI9Br1HMFCnGJUI7Stpp9To21oTn06mGqfYVQW+xILtDXhqyWaJlHJGAwuNqnF11rxWWtQWFwbYoSgm1IVlSKMlmktfQF1NI642qUxFpqyjCbjTgcp+T0SdrmCEeTTXqpwXH/rkL53+Rr1Act5tjjdxAEBxjf/ov/YvNOVSY4WN8FCMKoihsq7njVN+ME1/pM7Tx6D5+Z/zFA4qoek/oSVjn09t3EkWe/j9gL2BwIOZIpUdWK1a8ifV8NhviRg/8ZgLPhWTb1JlorWoWr6GA7QaFCZyvijpft4pXdaxfks94ILTfAnZoivXgB07VYIdl5ZY0RfRvHWl1Cee1G9PVAlPZ528m3UvAKPKd6x1eCs34nYWvpWlA9en2Zn37sCp+7uMYdE2Xe89gsD15Y49YdRd43WuNHTnyE8cw4hdseYHTPS8gm0NJwxrU85RrWXzDC4kt38Mhzynz0aIFflX3m27vY3ZyArQifHvn2Tlqt38TqGxiYfJSBPQ+xGY9zdtvryO/8EcKf/TzeN92HvtIhfttl8rm7eMv+F/Bt172YnFvhYxPfxytGf4p3t36a88lRpvVriZSkKD5NTn+SvZmfI+9eIZ8WmH/6KeR6nawzSCs1NNY3CXqSy2cv8rGtx6gNTbA5NMjFeImt/goHOwUm0kFKfoZKucHQ8Ay7dj9OPO7z+40bWeiAs3SS3/rQRzg8kuWH5tfZdAQ/hMfPP3eCi1GPT3dH6coB4vQRxv1X8/IrkzQzZV5bX+PooQl0xUP1G9QNjK9e5dZjD/ED730r3qVTTD/5KMevTiOHx7DGYNKUqNNidfpZZk8+wcrpk9x9epC71/Zyx9oEpz/9cU4t/89eHu0734L18mSe+nWKR1zkzt2oyV20fvmtWPP1Yunf4F+DY8eOcd999wGwe/duGo0GrVbrK+Mf//jHGR6+1uaiXC6ztbX1d+ZwRMSN7afYZRdwVI69KkNGCCpGkCVFAIHq49Fi1grq+UXmy5Zups1WdRKn8CQZ9wqxo+j4WfoiR4y61hbECII4JZcKFipPguzjyATHfYJLOR8hHG6yD3FAHyevS0ghaUlBX6TUA8OYW4NwEykUReExV8xT8c8wKLokNqJne8TbzpD4KVq4tNMxUlEgKwU+1x44tZS4eh3sNcGHEbvCveunmc1oni0HdMMy7eUqFg1SYtM6d9qIkjUYk3Cf8pjUF5EyJSIBC0kaY7FoIRDWIJDk3SKbmQ0W8zm8/Fmybg436pKJDEVdYY+9xH/wPkqkYN4cop4cRluwbooUgo1AspTZRAhNwk7yTpd6ZY7pUg+LJZWL+KJP1pnjqeGAzcx5umGfRlbRtwdIbcpGMEdWrTCV90ilJiFmzqvSthn22Dp3+xmK7ikc7SGRbBQLRJlLeGqaSLRYdxMyagCrXCKvzS63w4v0WXR4lUhKAmEZdCw5hnFtyIja5K7sE9ey6kGBVPU5KKe5wTbJyCYV/SzzeYMQIIUlVgUSUwKTIuw1+UVPxGiy9OQmHbHBePZ2DqDw8dGkaJGikYx0EsYabfIqh7E+rvW4zRj2WIsrfQyW3SLLhdEsVwsebjZD1izhy6to6ZCYiJAMJbXFmJ0nUgXiwaM0gwHa8vlU9Q6WM9d2dTzhIoVLIBwClUEIhRQCi+B4NaAZnmfE+wJxYZ1G4HN21NAI+xih6JgaxqyBgf2ZZ+mVZ3C1oe5eKz1TQtPX15LiRkGU6bLL8xgkh4OikbZACWJp6RETiYgtp8X0wCCtoEOiV9lUMRdKPj2t0EIjlMVXFxAkoFPOVzQ9mZKRlu2qRySrpGqQBMuSWmbRX+Wu1TZZsUZGdKjbLKsWUgUVmWNvM0KJJoaU/fIhdqrHcWSDxMbM5jWPj5b4k/0TNEgRIiGUAWvZAhvetQDElR55naUddnFki9BuoRAgJUJqtGpQci6ipIPULr5TwJEeq6FLrK/J0mfdEqFeZkxeRjhNPBHhS58LgwOkRUFWrqGFxpMB1hpcNGM2ohheppTbxJcBWrk4OmSm6LMSeiQYEmIqEnZ4s2SE5XLO4Vh5kZpboyA28dQsCxmXhVyA8XIEKqSo+4TakJqYFEtJgEWS2DbbRYKDwtoOSrpkmUbYhAHpE6kMxg3IyxrrZootawGBBRzTwLcJKRkarkTJLmWVR0rFRbeNtSkH633GewqEwNExWkFCn8T1uN6fwXVbFGURR3pYY2mmDawAKXokskbPKhCGsrvBoHcM4Rk8NEZAK2nScALW3TyplfhyjdRG4KUMuEP0hEQIhy2VIgpFtsb2kmJJZYomwRFdemrjr5yIj8pOEjoFPCdPwc8wKp9FKZdNp8DnhlyM0LjyWZDdr+rTviYBmhCS/ft+hbFtb0GIf5wgwj+G3/Ml+WiQRMTsXL0Tayxjh2/CDTIgBE986uN84lyJD515GVrHFJ57mtVt13Pd/RYRt7gyUeB3xJv4dFPQMoZX/G92sYYzozx36B6EECyGC8QmJlE9WrLCI7/3Dm79zh2MHSpz69ERro8VrhBsuXlEEiMPH2brtCDafhdGwPhnHuD+bMo+3+O3Vzd52+Lav9i6/Fvlw1N/yFp/FWMN//2Gn/3K+8c+fJnicMhN9+9g19FBYmCp3iM2htsnivzWdx1h+EvPMHgxj3/LDyHLk1yueKiXTvIzk4rX7ICfmlT8WQ4Oez6po/iDS2v8/vF5ngrh90LLy2yLn2SehljBMESiNU39Bmz3g4TtF6NdxfQjN1LIPw/HqZL7mV9AX3eY6OJF2h/8AEoIrLX0pi6Qm5kn24cT49v5pfIDPLD3FcwNfS9GSWKd0nc1E+HbqIXv5QyGS8qyqbsgBMZReOUcd996L9904/O5ac+t3HLgudy+8zZ2+wMU+po7ezv5D6uHOdo3+APrvG/+FXxi+ihHthX4tj1Z0vwon2psZ2Z1k9cNzfMdkzXWc5IXHv9VTotfZn3lN9DJItXg1cxl9vKF7beQ7bd55fX3s3Zmg59cXuX1H38HP/77P89tpx/BiyMe33E7tWyJWmmQHvDMiSd5+jU/QuWFL8XLZBk/cgu3vuL13P39P8qBe76FXqfJyNmIHZtZPv8bv8SHf/O/cu7znyY1gsa3vgeQZB9/G5nXfA/ppQuITBabpv9apvcNvg5YX1+nVCp95XWlUmFt7X/eV7PZa9nK1dVVHnvssb+zewbg4FBpJAjdYNOTCGsx1pKPY26orXJleINiotgn1rjOWyMOG3RlTF9LtoKQRT1KIx3mXDHHfM5FyRpaCrR1QCZ0HEXN81mVOxGqg8ZDiwTfag501mjpkMgPQLkgBGuhop5rkkiDIzrgNwHLTFZyJSs4W07p2HWuDFQ5PlJgJnSZL2h85XBqqMBA8EkcsU5PS2JhMAKEsQx6OUIR0DI7OVY6TLVrGW5HZFKLO3YVEzp8aThDIz+AJ3w85RPIAEiBGN+mGMdDYuiGIa7jYwUgQAiI3XXuq/8pXXcDK6GZ9XBtQmjBlw5VUSe1Pq63xYJbQ0kPR9XJpQZXBljpUe4PIYCCXiVSHYxqMeDUSNIeWioyNmaHWkKi2BevkhVrnM+F9MixpS1Rz6FtA3J6k4uVDK72OJUfJHIchH+evlPDkCJdl5SEoUizvZ2iUHiqg5IxtexlnLSF16vixVkq6izruS6XSz59smh3iX6Y0PQNRd3FsQLr+mRkRLcyRaLXETbBU1cZceZYYoS+7ZPKlK7MI4XCoolshBAa3/QwWoDsIeUGjtR4EjKEWOGBlWC69KixNwko6yxF9xJaNJDpOk29wWyyxOnxMbZUgpYeszmfUt8wyAyhXqCon8Vx+ijVxtXTjNlpEtsDdZmKmqHII/SU4UpOYZWPsBZpDI54hqp+Fld0yJuEQOQ4Eh9jwC4RqDpDUZ8Jc4URZuiEHXK6T8mvs1mcYzW3Qez3cPQqIlgml+tzQNUQFk4WJS0NtrDC4OAV4mCFmutwoeiwNDDAlmP4YvXa9ZNx8/gyYT1oUw8UXdHi1HARJXqUoivUpWFRFLgYThBLl5Jzmm3pFTx6HIxOk3FDXAxatej7Eee9BWacReLCM4zaEGE9kAH81S5x2+9weXiWkjoPWOqyhOc9S8V/kIxUbOYD+lrTF5BlDKUsAoFrI3Z0LmIFpHKdq9k5pgtF+n6EkglK1Sg6TzCov8BcRrIZhiib4hmFKzxOFzTzWcFCIaQtOiwWsiy5WZZVykh6kRGeYdmd5bLuU9JLKLlAkiZI4SCEZCHjMFXwkbZJ3tYBy5DYYq3yNEo8itBlhElISTGiixBNjAvSJKyGLlNFTT/08QkByWi3wbb+Bi0T0ScGBdaVHOxPcaR9AoCCa8l4J+lrh0B4eCwTeSs03Dzr+Ranyj4PTlRwRYsd7iyudGhpSU/CmMv/umoAACAASURBVD3NPj6LW3qUan+NwFj6VoM1dHNFUIKrWZflUAMJWnRwRJtSxmVQrCCNRCLBxhiZomRAIDM42qeUP8fJTAEp4bxjiU2bdbfHbLmI0Sm9wMOTPqs5TSCalOMO2oIMu3SqZ1AGwlQR4LI4Mk4/FzCYK5N4AX1AS5dLZZ+5Sop0NKUgx3ZdwioHH5CmTSITUpsS2wyT9YjHtpVpVl207HxVn/Y1KnFUVKv3U6t99S/zT2GuOUu9da00YMwuk0SK7KgPQNLvgbU8sx7DkEVsDWEt4IH7yjb5qQ9hnZDz1ZAvcRuOgNdUiv8osY43X//fuf/BF3CxeJE99T1kogE6pRobC/OkSYJUmuufv43Fq4tE7ZTH976CQwuXsFPT5C9eoPX+36H8wTtxu20eOPujvGDHr+MAn220+YmRgb9XTOH/BBY7C/z+5d8lsQkvHn8JSl4zvaibsDbTYvu9Q/znL1zEPeUzs9Xhzfft4fGZLaKlNulMk0OtBOEF6ME9bNxSJbyujCiHXJpSxHmPWqhwjq1yo+MykQuw1vLQd/p86cyznJu/SqCavC/9Zl5kM4zIRd5wvcsL+/uxl+ocSROKWnCh3qfbjAlyzrWy3Hf8Fq0H/iO9334X0TMnOD++g9u7t3C3DHngxi5PD4Ssjo1S9j1+O3yAH9z9fcQnX8uBjSnW/JDD/ac4c/DbOFU+yJTShNZwutOnE2RI5V/J7xayCK5l2kqjg9w9s8ldnZ9iIBvyyeZdfO7pN3CLSXjji4ZZ6Ab85sPTHBga4ocPbFC/epL1hs8flweZPeozvHiaWCxghcDm3sTlwmF2LM9yz5NfZufWGu/91jdwy2ffSavXRGOInAz5W57PhepeTp1scH7iIPFYlaK3yf3jg3yp2eXPjc+dB27lm7s1WqefYmj3fg5/80vot1uEQ1VOLDxOZlWxNnuZp2dXOP/Qn3P7q3+APYdeTXD2A4xceiO9e+4nefIJen/0Yfz7vx2Z+/o6c/kNvjbY/6Wh/F8rv/5NNjY2+MEf/EHe8pa3/K1g7q8J0zqPDu1jLD2L6Aj6StFzFQ9XPQ70p/BkncW8S74Vg5hnyc8z1GuQmCESm1C2W8zlY54uReQjj66WRE5KN/ssgUmYye9hOu9y/9oSjgWtBVKt0g+6pKyzIrZT6CkuFkIq9ZiJbp/pMGI6s8mYnsMOW2Rtkp5ysUCoNYPCpR0/y147TVPWcMUOpBWMmTm6MkdRNbgS9tmVeAwnZ5FasKUnqVlJhhobfpHQWtZ9yS7nj4naReZkESEEgdlitjrFzvX9tBzJlldjNRNS2dSsjZ5A2DlOx0fJrCryosiZyiDXee8lrPmkyWXuTd5PwBGsWsTIGptBTFlu0sGn43pMqFMM9FKKTsix4hjlKMJr+nS1oSuWqDoz5NU0s+oQVzMlWslhJmSDqbzPehriRArXrFNhmba99nCbcx7nYqFKaitsE8u4eopqs4LvFRmwq7gmZYkSdW+NYjxOmiRcKYYcH8qTbUpSBJEj0aLO7nbCko1pVy5Td7fYs7JGYNZ4utjixtoavcSwGXZYyBd4wcoFQpWSpmClJBtH+MLS0j55vUYHwW3+Ci7b6GpFQT5LvbLOSMNh1txDz1Fs708hZAMtXVwjiFWdjMkTOwle3OfEwBDZeJrpbJU5N8ud8306ToLV54k6G2xkQ2YHbmQ1dHhwokxHCQJrkc0eWjr0XCinTyPUFkIIrvoRhbRDxnbxZISHCwICOcWBpE9RC5rxc67ZgmwSqGdZVYokdHk4PMyt8SJzdoAsA9S1h4o7uLLDorPKjnAGp1cl9udpuT4z/gi31pYAS0+EdAsNnB5o0cMIiIMFXDPCcnw9nx+HRGp2dFKyqaWpBcuFNQY2LD3qVMQqWk6RlzXGPMmu2jzCjzlfjLihtYqyV2l7MVsW0nSTdtalkEpIDRtBwp+MDfLS2VM0iXksM87OeIt8rCnRZ596jCaTSCZwxCqj7glivQOVJAyoJlfJ01EuTiRYyrnsShTDyR+wVi6yt9di3QyjAIeEbDpDx52gGyTkY4lvJD1/hWxkULRxWOdgv0MdA3qdFf8uYmORQnCp6FPzU27pwpcHBQPtHF63RkIei6TpXku46KZHu2TI1s/SJ08rGmMhmyd2FL1og0I0gqt83KSBFiUilWPFcyk6BZqlBqZ8lqGVqzjRGF8Ym6Rl4Z7ao4z0hrhUCSmkG0i9ypazm4l4hZL/DKvJ89hy2nhel0zSYdT9LO1kEOtOkTjbiOoVZrQk1TVWc4tM9DaReOyLj/PIsMfNzS5DcoqlIEdHDnE1nGCyfpxiHJH3JYlNWQv7mEDRTATPlR5roYuTxIx1IvyojtIOtcEO29ZqdKwFqcAmNEvPcMHdz55+hCv6tHujpG6N7bLNjcaitM+WrjCVdbjTzmPq16EKj3Jbw+NI9zQeKS25g4uFYYZFn4dGAzQudy+1SBKHoFNn3Bznk5M3cWRLMd4QpAgajiKtnkJ0bsBjnUDGxGKCWJ7H2B6pTEmCq0SqyYRdZzr4JrY1v/oO2tdMZv9fWlnsrc+8hercILlU8XJ9mkuNe7j9u3YS5h2e/uQHkVrz2OgL2cLnqJxnYrmJU9lg1+YVCo0uy7e/lo/qA1zgAAjFr2wfIpD/+wDNUQ5zrRmmW9Mkbky1UwJhMSbLkdufg1QapSRGwMXlJldTwdH2ZQbXlpGVYdTwOK3bn8dG91F2zsxy0+Fv42BlnE/XW2SV5HDg/ZODtH8Lqm31bsxKs08xcPjshVX+6OQiD1/Z5PhcDU9KfvPST7PcW+LF21/CfzrwwFc+d+LPZ9habPNR2WW61+f+Q0NIIfjM2VV+QAV894bBnFvBlTnS5gX8//ICCrtKlEKXX13e4IRrUL4mtZa337mLeys5HGk5Ol5kpHeOwon/Qb+ved51D/JUvJ/17gAtIXho0efAWI7tq31ExcdVgj3A5bObDB4dRAiBkJKBF7+I2oc+iJm+wog8gFPZw0x8nlu2x6ixSW7NZ/l23+X4sb9k7vSXeULcQZDts7c9xcVdAfmVqzidOS65Fe4e38el9XXqXkCYJhRcl4O+x6+ND/OZehOU4O7hx9leOk4QRjy5uo+l1jg+Hp+9uMnDC5vc9dwJvu/GbTy+LPm4M8TJw/sJmp8iV3sPfbmBEZp65f8m9HbypSdew20feIpqbZEH9z+fu2YfQ9aWmM7tZWbPC/hEcBtfbueZXo4ZzTbZpq6yciUkWYy569AE2kouCcnl/ABfGBijd+gozz14PWWtSJOYpN3B24qI6w3OTNYZWFHgKGaPH2Mrdz079Cy6v0n6LT9M508fJD7xFDbq4956TVb234Ld/p/Iv+d1/eeoOJ49exYhBNdddx0A73rXu/j+7/9+XNcFoNVq8frXv543velN3H333X/vHPMPfoqWPEPsSZL2PrKsk0iHL475TLTnuJoNcUVCrrOEQ0wrLNJ0ezRliaYeZNieIJPUqNsst/WfRliomyw6t472pvhc4TbuWj/HhDmOjn1aVhC5Xc4GBxB6ngO9L+FgOOO5bOsZtjI9ul6LliPJO3WE6zPQqJFNOjh6gRwx+aTMw5VRxhsGnbmC463Rr+2ikVmikvRQ6hKqv4/VZA8ldZmal9C1XZblPnLeArvjJ1kLFKHd4Gj7Kbb8BNO7id2NFotBzIHWOg2dYanQIrQ+K7kOW06WdiFhthrjdBQ7O5sMOl/mU0PXs998HmuLrAaWup+y4O7Gj1IiCyW7iEOPKDXkJLTCSQ50fJJ0F5ngz1kKQ+ZVmSH5DKFYp5qu02ICxxiaYZ1CtM6itxM3miaSfcbNOl09zJC9TNNVrDpVWq4i9rYoJVMEpo10oRaGDKZdlrLzTPSmSN0FOo6hp4bZZf6Cz40cZF/yDB2vT77XItUdtpwc2UQQWEWrMI0v5nGSlAXHYUMf5qboUerGpe6W2NI5/PgiWm7QUaN0tcT2wfQ8TpQnORj9OVa3mA8Ufb/BQuDRc7bIm3naXpMtV9D2u+zvHCewDuuySU86yMoSc71Rzjk5dvTrzIcuKncRp1umWu9QTg3dzBJbukArjsBtMyC7HCvtBtlkT3IKFVU5mb9IrGbJpjUSDy4P9ZCiy7STpZ3kWPOvYy1rMVbSHDQs2N30HEOlC1PFdZykRZUZjLNKrBw2PMmJ4hgvqP8xW8IjZzfouhGRSlj2CkROhPFjdHCVwd4G626eRXErUeqREZukCoTsYkXCmh9gE0Uj22UwXcVlkwvBCBtuwKLuM9SNWcnlcfQZBjpTNE2b+dIgfrpGKy7QzOVpJ4YyDZpulX7k49kZavERrNwg8dbZynSRApoe5OQyRqaI2NB1mlzwO+ztbLCNS3g2JlUpOZsjyZxC6yts+ZYrWcNMmGNnu0tD9siZlEdLLgNiisF0g929s2TTmJbv8eDALVgEB9JjOGxwJlNmst1iOtjFtvQZ3OAyEsVqkGCSYRZygnVng57qszJmMNkWrWSAvgAv1fTlCn1luTE6TWhrNNzt5GPLivB4enCU/fYMfT/lbGYQ61+kzSQH+COM02Nv/xyqX6aV7iMqnmNGDyDSkA01zHoYsJlfxzZ7dJI+ZRqcyw+xRZv7OqcJkgHWPMFy0GCgv4ygRF/57EjOcSLjshS02G4XUKZIPl1hLbdOIJpUkw0ue4dpO9N4to52YwrRFonpU3cGCdUcGdPifK5A3jYZairmAsWouYSrHI4VDlCIm0y5mrFogXzcYqQecinnsuE5jHKCnLxCEnt0cnVG2iHTA3XqThO3b5krRnhpyoR5guFono1yxFitS5SM8pz0DwjVAlKu8VT2ELLfobDp4HlXCdQ6jugzGCnitMDV3DbGzWmuumW21wKOD7jMaIftnQUqag6/2yVttrk6UKcue4yIaUbJ0en2Kdpz5Owa1hq6/kOcDwNmMjdihcP++It4JqXpb3EuV+KO2w79gz7ta7KD9i9NParx1MaTvKT7Eop+j/nVaw65MBRSX1kEwCtUmLIFlLBcx2EmPvUJ1rcLHCNIlGCh0OBP2t9GhOJ1lQIl/Y8vvfx/Dr+ZY6uPYgcFm2trVLsTdMImH/rZH+HVP/9OpJS85PAw73lshq6E40PPZdfcFZbHx3D+5BPkf/2dLCz/CjvmWtx67CeIX/SnlJXk11Y2uDMbsNP/15Wa/scyt9Xhtx6b4am5OhvtiGLgoJVgvRXxN3PZH7n4F/jbTgOKDz54I5/6y8cYL/rsywecPbvBfM7SX7e87MZt/NBdOzlxepUDjTXEch+bpvQvfArvVfeQue97vjLnQ402H9qsY4CfHa2ipeCuXAaA4rGf44jpkTnzh1SAzoEuz7qv5V5iapMfYH3+RWSdgLeeX2IgK3llp8tzE0nfasY6CZff/UU+evgL2KxmrBbwwpteh/vIu4lOfwRTXGHPj/44erDKEeD4hXM89KXPMywlj00eoB7meEa8iTfseT4vf/Ln6PoN7lw8S90r86rKC7lX7eSjH/kAI4UCr3rV677yez6/bwfnl99Hd+X3+JXjD3Db9joPrx6gKi2LxvJKa7m/q/joZ/6YNxRuxN4yRGZbheuXO0zX5ojzfYzw6Qev4uVn1vjh1i8z+3CBbL3D47c/j71XP490XXa94ofZtW0fm52I0kKDp+frLDV61OMyt+3QHKl8iA9f+k4+8ekHWekO8dJbxnikErCcpDzV7vHKK/O8qlLgxw7fzPbDNwPQrG/wpZM/zKPhKnc9I1BWMHX8MT40dBcvvq3IwLEHaB65nfjSHL2PfZTwVa9BVgb+/zbPb/B1xp133sk73vEOXvnKV3Lu3Dmq1epXyhoB3va2t/G93/u9f29p41/TVqNgr7DkhaQ5n01/i0GzxIAZYFtyjuLWODNZB0dIBu0aS7aC7NS5xXyQ9/x/7L15sCXXXef5OSfXe/Nu7963b1Wv9tJSKlllCctIwnbYbhvMGBqbzUQDQdOecUNPY3oCaAIPDATtmZ6FpWeYadONgXGDMZYsbLzKtiTLtmQtJakW1V716u3v3nf3XM8yfxTQQQzQNO2ZCAPf/CczMjIz4pyTcX7f8/2d37f6XnpBTqTLXG0tcmrjeRaKHc76JxjqDOHXuRrBfeM2Gyag0JpSodnvrOMXN/CcHmCIxB6T+ixPN5scMX22wgXkaMzIhLT9EuPIRbtttDdkKk5ZKx0itoZXwpA7LEwlu7wYhgS2QpVn6QeCZyZ85Oh5lLvHSpHSkSGFe4EvhbdTzixvjB9jNZjDcVLqzjZ/NPsUy8LjUukoxdhlpbdG1Q4InIhU+jilGxyNL1HkI86Nljjjj3GkZrc8RGcQmDHTSY9B4LMaOuzUfJy+4sXSMvfH56jKHk0zoqm/zE7Z51xtnjeNNmhqj/POa5mzLqMs5XwpYt2N2fPvYNZeYLO8H525zGCoqoSIhJ2yJCskiQO9oE/DaAphAR8jx+Q4+JWX2fMHHBjmhLQZuiFldtlnHueKvBvPaXMzmOC+3otsC4M2C8zQxsg2ffc6E/kmhWPJZJmSaHO1OsVWAXGvSUdPcbF2nunAEqkaq2UX40A52CIoYMKeQTmGHb/MlhtRBR4aPMJaMMN0ts3YnWRQzpktdlCexagRWvjs2ZCSUkS6y5GBoSsFE+I8mekzVTzN2N7NpHeFRG3SZwolb5VsUU7O7ePnqakO1nMpp09xrLhIGvbpOh414zGWDrkzJvFKBGOFVSNqSZcw72GLLS61JDPJmNC9ilRHGeQOODljGaEJuO4f56j3ZSK7x2Iao5xpShm4Too1ilbRpl2CFinX8xoTeoOD3h8yTZubLBFJww2WaQTXUKqN63URaU6oOiRC8ZrR4zw8/QbCeExLfYWZUcLVcIphc4P6KOOh4Q027ASKCqlySCwk7pBQ36Dl5IyEy155HZyAebnO0ApSZ5JeyWWp6JLZgEQk3PRcUtfj4mQDNx1zZOCxVq0Qpwk9f5Lb1JCWuIiyi2zaBheqgqPpLmU5wreLVPWQI8VpQrPDjp0i9feI6l/F7zZYCzymU0niFIwch1QoBHDZncFWesykVbzqC/Tc20EVzOpV1vJjBLbgVP8cn56f4WxlP2+MrzKjKtTkDS76iySiQJBScnvcHRcM3AhlY1LbpO/1GAmFI6rUs4JEBPgixLEZM+Ntek6LnnQ43Qyp5DFvy75Cl4hrXsgk6+zLn6eX7mfNnWIuSIjdiNxJyKRkubjGQF5jT/jgDqgKwa4zz21qi8JJ6TlHcPJtck/g6z0yK8iJyPHZEg1SY3BtgUdKzzfEUvBCvcmEU2d5fBrppKxWQxQZ55oltMxYSG6wIxusTV1Eh5O8Et3JQW1YSF20kxGaHKRPmpXpqhWy8pCyHTEMHToEiKJFlPfpUqWsL7NVSvEdw4aapO9YIrnLrL+DFj6eHVAqUs6oO2nIhPnxi1SdmzyYfIJV8f1cmoLJXs5icpWl/DqrTpNJPULpAcfNNi8HDcb2LE/PvZUT3SWaow2aeodNt0KcV2iaL3I0FzjCZ5DN4NNlqfQy8I6/dD76hlTQ/sPl3+Ha9hUODQ+xNDvPYG0fjlAcf8Mhrp1+mt0rFyjueTvP9yUrdJjPBxw59ySLaUqzVWJtxrJd3uZFTmDdOd6/NEP411DP/hSe9NhX2c8jqx/BnfVYurSA9iD3XZZnZqi0pvBdSTcuuLAz4vLEDPvKIyYvncO/cZPsttdgyy8xfXMVkOysv8DN5TdzNSs4WQ45/J9J0P7/WjEfZYrPX9rl5z55gQ89t8ZvfnWVq3sxSxMh7zw5z+X2mOlKwMnFOt962ww/fN8yP/7QAk/G/xPfuf+7+aGDP8HJuQUslr04Z+ZGypccRc6tFD+lLQc2E459rYNINFblpC/+LkZfp/Jj/wzh3lpP6CnNP7m+Qc1xuD8q8d/MNG+1mUpAuJi1P6b20n/ACsEzt9/O+ew9fMtD/5g8zXj1yjH61c8wLn+KtPw47b1lnkhKPKpz7ijBovaoFSXu3T5KqW958NJdVMuLdGdX6O19DWd1lfNvOMJUdYmPPfYZrp05TYJgs95E+RPcc+NlVvptfnfxIZ5v3c63bz7Gbsvhjetfwxus0kw32PP3s76xxubmOsvLK3iehysEcfthUGcJjc8nX3mAFPAnA37I13xHUgIEo8WjPHF3hdkbqzg7n2bL+Q2QLpH7o8ynVd5yVRNkKTs7IdekT2+6xWDcYXL/Ib79Z/9nVg7sZ1+zzLGZKg8dmuR7XrXAd9w5y92Ldb7n1AnO7Xh814F/xeXefjZHM1xYS+DaiIleQXW6xJ6w1KXgLfUKLyYZU65DGJZ529Lb2YnG2KMzrO9epdaDIkkoL9/BQvvTRMsu3bNAnmHb6/jf8kaij/8I2kr8a5+m8sTPElx6lNKLH6D04r8jvPhR/Oufw22fR2Q9THkK3L+6JO3f4xb+ripoc3NzXL58mV/91V/liSee4H3vex9PPPEEa2trzM/P8973vpdut8vDDz/Mww8/TFEUf6a2/SmSz7+fXT9lVrQ5690P7hnWGlu8Ze8VukpxvjZLpqGaJ/ilPvvVOXLjst+sccW7g6m4TV6ktOIdJvMurlY4UuHaAX6e0rMtTqbPM1lsYwuDkCmuOybI+jRVh2m1RahLnPcWiFAkpkoRRzTEFkedKxinQRL7lM0G82wxac6zW4rYP77C/vgKh81LZM6A8949LJhLzOsNYicmI2J/cYHczambITe8RUZORJlNKnmPqgiIZUFTxayJBV4IF3FLcI95jK6J2PQiSnHKunCIvA5naofYlz/DYnyZdtpi7ATsNqocHt5k3qySUbCa30EgEowj6CRVvDxmWnQo2QGOyQlFgm8Ex7JtNkKHXOUI7XPTOUzFu0EjG9CxFWJXMj9K8Cq7vOLdg816LKkX6DlVJtwRL5TuoCE6aDFgrniRssxx8xap08XVGZO2z/7sJp5N2Eqn2HMidgLBstojLALWZYhDyrCec7R/gRgfk86z6F3BTQJeKtdo+EPCIkFJg2/HxCJif/4yW727GbseZf86s+M2Y2m5OrHIXLpJuRjQdupYJ6Mhtsgc6JsaiIhJvcPYUSTaolxBCUXRnyMuxXQcjTQFSriE4Rivv0BkO+joBq7fpZztkOAx9OAO/SQvBwdQdHFtSt8LKaUVpkYJfbcCMsdVCS1WCekzoS3aKVESHWaTNaQWtG0NioKaHnJVz1A429ylnmey6LJTHGS3mKZke1TdDmNvTCAvc1VELKqLLOQ77JgGWrRoF/toOte5kd1O1b9E7o1pKsueKSNdD1fEONmA1OQoNcu0vYAjBpjEZWRLDEzIslnngrtCw2wztBV2fZ9XJaeZEWtcdw0V3cdVgsDJSaxFizEHvXXKsU8mFIE7ApkzV2zx1bljRPmAA8VlNJp12+SA8wpTXGcy7TCtN9mkhZuHfJO+RDsvU9c7TLNFKkJm0y28UocSfSbVHju2QeEMyYiJjGYkfXChoIxrunQ92PMFcVCilexxz+hrZE5EM+ugnQFXSpMcS19hIFL6niQyFs/d46xdpl5sEXkjtLRAwm8vvZb9400Wxn0qgy7Gi3F8QccKSm7CjD3PnvAoiTHNbISXJRxUV8lcRSlNMeGQstyhqhMusEhZbFNzznM5cMicFmv+DofzcxzOr9JRIdIYwiBHWpBjy4q9RtX28eWYdVmhNCghQ0Mhc7QqmLe79J0WB/JVLlcLlL/FlNri/PjNdH1BFj7HhIoJREzkdDC6wGjNOHQJnBEHiiuYkc9mVGO76jM7vowUMZVSh5XxJomwOCojUAmRk6JtlZ3KkGY8YF9yjdRIerLKqA77Oi6brmSERxoGNGxCNR+TWJdmcpHZfJs1M4dv93CdnJIY0qbJtrPMMfsYS9kaESmFAI+CNK+Q+T1STzPttMkkOOEFdtU8vjOknrTJZcaGrBKZDjV3yI7fZSa/SakI2fDmaeSbTNlVevURfTRBYWgVGulBUttCxAGd8hQzrHLw/r/cduwbTkFLVMKHr32IQ6NDALzuH3w3H3v2NLPBZZAOnetXAHh0o4Ki4FVym/nLXwajmD44gkSwfehucnWDiAEfOrBI4z9DPftTfPPsQ9T9BpeTy5ycPgG5j/ErPPrZ3+aujW/h3te8ke+5fYbodJsP5BmLzf3M3IxZn9zF++Afsv+XP8CVlVdz4OaI+zc+y69OfxsLk6/ifeu7XExz/tvZ1te13f6mWO8nfP5im4+f3eZq59YeQkfAm45N84HvOcnNbsKByYh+UrAzyjmxUONLV/Z4+KVNPvLiJnuVD+BVOuwkG/zWmREPHgp458kF/tkfvsxlYW5tKgdmawE/PpQc3umTA9vpBvXPv5/yj76b6J3f++fSPn96bZuW4zAwhoXA+7N7tc/8UwpSomuPszlX4/LhRZ748us48cAS7//iL7BWWuPqlSvc1riDXHYgP8rhqSpd8yy9nVfzCyLml+SAO80Me3rIPe3jCCm5MHqef3XywzRWXN73wZzzv/u/ka9/gEt3H0WEc4wqs+xFVY5unmO3NsGzx+7hF1cWeG3lCN1DtzHxyLczDiXp/J1MPPcBvn3yNXxo4l52Nzs88Tuv4PMFBpNn+L+23kYgj7MxmuPBrZf4wZc/xkzSu+Wfcuh1/OY7fpDHZhyWxwXXlgy13c8hUOxvG37pg79MuakZPxjymZsHKeIEgWWvUuL1P/BuFk/e+5f28WQlYLJyKzC+79D9ROL9/Fj4Y/zRlQd55Mq3UmhFumtwH1snOFDh8QNw6uxV9gc+v7Zvlnnfw5EO//jof827vvgOhqfGnB71+eHua/jSxz/Fs943846F5wnmj5JdS7BXX6L+yHcjNp4m2ngBNXk7Qmfo6gLCDXG6l4jv+RmczWdwBjcpX/8c7mfeg64tUSy8huzQ21BTJ7Bh4/+rYf/3+AbFT/7kT/6562PHdeegQQAAIABJREFUjv3Z+ZkzZ/6Tzxs5Ys/OY1TC1KBLp+kx0hGJ6DLGoZnfJBYRu36A75VJxBRdVWekAiJnlVFeoqQVkU3x5AiXDEVGPJqmGm1zV+8V5uwWfWvoi4RZFIPRPFiHnDpB8ArW6UIywaS4gccGFacMjqSra3RicOwes2KLptlGknIieYoz7hG0EJBDQ4+YqD7HrnLYtg6+homux5p+I+HsF+mP54nChNC9Ts+r4BlFWxtSndHWLbKiwXE94s7G00CBGZW5GrpcCRap2TVOjZ6mZbpsViUH4pxMOAxNg1r/In0/ZOQISqlhT5bYpzJq4wGVogIYUnlr4UagWHcnuWlXqPmnsfkevkmpMGYhPcuye51dZ4INIkKToYwhLRQH7Gc4W7qTThEhTErHdZnq7OJ5e4xdwRG1y5VwgbEc4tsEzyYkaUBSD/BMRltGTBvL8ewcuYkoREoicqbyjAPbV1jNDmDyChWrGIgK14MaODmj3Od0fpQD/hp9L+dk+iViWWAQTOUDTgzPcdUeJlAOvkmY4DolPWKES5gPCMSIqskJRELsF2yEPjJJ0CZk2mxy3XXIpeFIvMqGqeOLmFRGTJltzk9ophOJiiTTeYHjDFjTM1gSzhYnUc6QVNY5LE/TN8cYS82U6kDq86rsea6IJXbtHJ71mWaHDblArTPNjh8gRYEVgpY6jzSG2JnEzZYxYou+V6VUJFTsDtuBg0rnSWQb4c/gmR1a8Sa7XpVRXkYJwwH/CTQeK85XuEqVyWKdzfISTqYIe2XySsKoKDMolihcl1Qt0RSXsHEJVYpxhCXQI2a9Z9gY76ey3eUe1rnh1qmIPrdlN5nMBmyJeVbzEyhvD9cfEhUFW9kUxtYg8ElNykrmU73eoOVcYigruCKn7K+T65toU1BWIet2mkxIDmYXKXtrBGaZoePRFTVGuosWlnm1ykhKumaSPh4WnyKfwpIT6QFlNWBBb5BnEZOioKQLCHa4a7BGvxwxciW1vE+56DJpX2AnUjiFwWpLasdcosVkto2vJDeyb6Iqr5BVJQ/1nsAdGtreARJTpqw2WNar4AS0aZLjUKfN2C4z9ATzRQ8bKqzw2ec/y04xSy+fIXAlG9RRpWvM2z77slWsHGP7HmVjKFKJZwoUPo6OEYXHRG5whIsJB/gmp5V6uCaCFIRNyUxIO59irxqTKoXSYwrtkesQWdoks5aGGNCx80zLPolMsKKMR06aSfY5PZzMsOZFhGZAnVXwRjRsmyBpcz47zkJxk7XwTgpXEpDhhRd4/Widm/ESGMFAh6R5iSndwfE3iCKPdhEyFmUyJHEWcDObZqgqzLJGUjI4VlJJMky1YFeVuHPweaQosykdtKwSmiGxddh2IsrCJRU5W3IeR8Qkus7KhqZaXmVgFXk6R1l69KlSshlV7dFKA0Iygn6bOJ3geu6Bvws2JdIJIzVLzxxgKdhiLASVdI16eP2vnI++4RS0053n+fT6H3P/1v2EpZC7T9zH+Se2WPa+xr7oDF/96kXS4ZAvlG/DSod/+cDdND7628zsG1Kbj0kOv43r0UVifE7xHC1XEEWv+iu/abXFdlL0jSHmQg/9Ugcr4PDuPJ/lcaYak5T7Ia6qorXh9Rt3IM70KG2MORxbHsTFDxaYnDiMzno0lWB0bZKBu0wzv4SJVnjr9h/x3OzruCjKfHOlxD3RX18t+HqvmCttMNay1k/53g8+x5V2zPYwo+I7/MTrDnJysc4/vGueibLPO37rWb7/1CLGwmov4bvvXuCuhToPHGzxtpOSP976t7jS4Z/f+d+x1fNxpOTL17uc3x4RGXj7RI3XNEv8SOJwOLE842tKjctEH3k/Ay/kp/a9Fe0HHGhFuI7k070hv9Xuo4B7KyX+5dwtE1ccD3P5Q1SvPYlyHV44Occfrd/F45Xn+GTvE6RpwkAOWK7s493Hf4xP3HwUGewy8p9iopoQMcdOv8rXAslaZnlIVHGARCTUpuYRxye458RbOev2edMfr9LaG/DIyZucmb5CK044upuzc/gOvnbgDhq+z/Ws4K2NKk40R3LkO+HK7xGsPgbFELm7ymL/Mv6XbzDf+wjdN13jl8+9m7EqE2cVfvz0w3zL5ku04i6ONfz+iTfwvh/8Hna9gl98OeWL1SeQo9/AsZa3PD1NZGqkjX3MHbjJF9eWCeKUxHOJCotqLnD0mWcIvvlB4n/zq2AMzvI+sie+AMYiGo0/R36nKwGNygJe+Cqm5a9zYuplvrp5Cm1dHCHQnYzZocYuRmwUiuOhz2ODMefSjBM+3LdzlUeTi7zGDXkkeoXv8D12tn1e7s2ysnQZb9PiyJhQXsMrKbIj34luHcPdPYMcb+GMt1Czp9BTt1N5+l/jtV9GZj2s42MdD2/3LOG5D1F+4f8guPgwauZuTGXu6zb2/zbg76qC9vXA5778FQwJgTOmkStKcsztyWV6RY1Ml2kUGXNynVhrWnkHF01lHNOgxycb0xxrw4gG9co2Qo3IpWE0PopB4HoDdm2d4+oGWit2RQshcjzbJTQZRnvUnQ7CGlbNASZEHwKF1rBp5tDaIbcOFsGureDIHC0VPpq2nUCKMYV28ImZjA1BktPWDoUj0PkscTFPzb+KLKoIbTBezKqdJ7QxKq9TSM28GqCMQy4KnKBLmBWMtIcQmmAc4Mk9Zswavttnod9BpSW6xRyRHnOcF+gLj6bNWcuXQQuW7U0CZ8SmnUQaw1iH+CZjQW6R2TIqDykVQ4aBRliPdTVPM4+pyjX2bBnP3vIbmpGX6CWzZMNJvFwRsYfQiqruEihJljcoUDiiILR9nnZnqRqLzhtUi5R1NUeeNMCOqZke0k1Yd6awRlHKfTJr2S2WMGlEqhtoX1MXm2QGApFS6BBjJb5JcHODcAyeTdhLjjIqxZR1l55pYXSFBe8MZZFR0W2EyemJGlaPuZQdJ7AuJdFns6iTFBWUqlDLhzTkOntFgzm2uGwWGYqQWJSZNhtMFwPa+NwnH2NLr5DENQYiQEtFJAr6tkonn0P7I/qUaMtpCiEQRjPnXWdsQ5QKibRiR1QpSYEeLzCrbyLdHrqATPjkeQ2LADI8UxCZMVvJETpOgCNSlr1zJKJBbloYxkzoEbnxyU1I4gZc7z/I0eBprqR3o7WPH3QI4yla7g6jpM6aDsGWECoksjEpkpGfUhe7tHUNpcos602mdI+OqjM2dYyROG6B7yRMmD18oylMwCifQuGw6Nwk1BmbaokMj7rN8VUfoz2itIT0OxRW4kqNb3J6o0NU1ICxLoOwYBVOFrGo99jR09ScbXaZ4YZexsXgZLMEosul9F58a/EZ0sn305AdjDFURcw023TS42zqfYiiQq4hN4IF1tn161BIHJ3RMEN2xQwxgsWig1+MSYoaGoeSEWwxTcWJOZhfoxErtsdHiL2CqukQMOIwl7meHySwhhmxzaraR5yVWVI3ENIyjo8gtUEVNbZNk6HxCcWA3EQEokdd7HJdLJFJH5W5NM2QzEb0/JCSLhBosrxBaiISB+bFHpW8g5OnpKbFmApCjBiaFqVc45S2aWUxmZOhdZMbepleMcWEaNN0N+jrBspYClfhGB8rNJt2ksAohDC0dYvUCQiTMfNqi0W7TSlTvKL3U3EKduM5qvmQffoKnaBGvncEo7qMvCp2PE3qW6bL1ymbDtHY0k9miF1Bc+QiU5/ceOSUcK0lkxpPaZSqIN0RDGc4HDwL1qFeDBhTB23wrKKt56hkYybETQ6Z6xRZmX42xQwbbBczJEUFV4yo6oSxG9AyV1kpbrJjpxnoCXLhYZJZrBhivQ6ZDSmyJtpEzLKLVoIMF0coXFJWHvz+v3Q++oYjaF/ceIwzOy9xZHCE++5/LXq3xPq5Ht86+a9xuhd46oqLEj7PNO9hUQ5oZBc5dvYFDjywhRCCwbf/Hl/unaFmtwnJydJzYM3/i6RZY9Ff2aL47Br68XXMSx3spT52fYztpNjVITO7FZ4Nz/KSc5Y7N++iCGOwktgMaNka42REnRItLWgZB+GGhJVFRDhBpTxBdbRAqt5AnLyBpvtxvu36w5yP3kEvV4idhP0TJYT7n069/HoHZO/92FkcIfj42W3Ob4+4Z7HOPUt1Ti1P8K5XL/HK9oj5Rkgr8vmBU0uUfZdK4HLP0i1Fo+w7VAPBP3/6PSQ65qdO/hynpu7l6Rs9fv/5dc79CTl710SD2ycC3rZWMFHAZ5uS2lP/hpnPf4ybtRne/aaf4o6VGf7g9CYf+MoqH73W5mOh5s1BwLFqmV9YmEYKQe1TP0qx/ikmLj6GciQfuXORn981XDQbCEegrEKEkqXKEj92/Cc4UDvESvUAwkquj6+yLzrOaO8ErmOZSnf5KhU+YnMWbMHJf3If8fMb3H51gS9lz9EfTbAbKQ7fbHPfRcnx3n6S+gJfnH+S1mQHN73KOXmcvTjhpZc7zJ4fU5mZ4cyFV+HXnmSnP8tlscglMcNwocHOQ5rffOFHuFtus0KH79z5CjM64XS4yB/c/gY+8Za384lvfQNhoWn2Uj687yzO6PcpKZdjezPcttriyCYsTFzm+b15lJLkrsuhzS5zM9/ExcUqZycabD36CPNPPoHe3MA6LtnHP0bywX9H+vBH0BvryNbkn9sXVgrnqFVOQfJ7PLD4LIFb5eLeFCAhUxzoabqjnM96mm68x5lxwmPXX+Dt5z/AQ0rxG0HO/iLno82Uf+pfYWtvlvPDaWwLKjcMg6slKv/gTUgRI8fb6OYR1NSd5PtfT3zfv0BXF0lP/BDxff+C9Mh34K9+gfj+n2X04C8SXPoYSAcZ7+J2zoNwqDz182RHv+tWje+/4/h7gvY3x9nPP0pmyrjKIShKzKZb7NgmHTNJ2W1TsxuENiVTEaQtgjxkoCYopEIYS15U8Elx9IDYlJnzNuknB8lUlbpcx+QOg2KOQO6xag7S0TMM1QyxKxmLkIpN2FFzDKTPjNmkkmk29AES67MgtujqCXxbMNBV5sU2ni0YqTJdVaNaGMbFLFUzZi9fYsO2QPssOdfpJvtJilk8RsSqSWAySt4Oe6pJZssUto6VA+piyKZugSoTawc3q6OUh2fH9IoJHJnQtRUSK0hMmTFVemYKJWDC3SY1VWzWYFw0yRzIpSAQCd1slsgOMCZEqBJVOaZtphkUs5SNT8dWGKlZ2rQoK4ckn2ao67hOjIOi6B9nX/AshS0x0hFWWAQZsanQyCwVHaNECm5BVzcoJRXKtosvu0yKK2S2jqM9tMyRGBp2QFvUqOVjwiKkb+vsqhZSZhjr0xI9qs42O2qefjFDX4Z4FCghyPNZptMBYzPJOlMEwykyLFKMcJEs6FVaaoNL+hjrZp7Cgm88BmoWiWVbLTA2Ch+LQuDmETWnw46aInI6rJoFEunjAk1nh5pOuJHehlQext9lhwkSU8ZFUHH6DCkztiUWzEW6TFMvNFO2TV+UyTE4NictWvRFDWM9prKUzDTxvC2SeBkphpRNxp5t0KOBQ46vQpw8ZFfX0H6fsQ2p6wQlBKHW7Io6VktCq9kpDoHy8VWACFOGeYs+VQ5xjnG+QCefJChdp1NME9vyrX5wCnIhqadlRFEnsx7SOoxtRN3tsJauMFANHCGYsDlz7jVEWmczP0aiGsSqQSDGTDoblEnpZ0sMpEeQCSKd4IuESEtUOCDRPpEZgopQOiQUXbbNNEXhM1K3TMQnbMxacZgJmTBp1hkmx2iZBCsEHTVPoiYYFw10XsVIi2N8VpljxuzS0zNI47JlWkQiZq7yMomKqBgLpqCTV5CJz6DYTydeZmAi5lnnqjnChlmhkvu4co+OaOIVARP0KByHzmiFmuoSi5CSHlKXXW5kJwjEEIOgUyyidciuncSVY7LxMZRRzDjX6AlIKBPKhCSeRTojfD1i1dzBnF3HyRW+p6nkgMwIdYKrMzr5BCll5nSPUrCJkw/omgnGNBC6QkqVQI+ZNGNyIVjLbqeaOnSyo6yLSYz1kSpg2rnKqlnCwVAbthiqBsN8CaxhYCbx8xJdXWU+HWCKgAZtBjJCWUOqqxS4ZFmTWDcY6hoFkCYrCPo02WXHTIEwrDjn8DPN6uheNuwkdV0wn20zsiW6ZpYSigkR48gRATkqn2ZJddmzdVLdomumGOhJDsiL1Ow2Sk8yzKtIXabrCjyhyOMFhpTJiwZBoShwSR0FsgD7J1zB0aS6hi8yMu0jFUjjEso9XJuhVAXPhMi8gSlcjJcxMNMoabjjob88xfEbiqA9sfUFfuOVX2dlbz9Vp8p3vfn7+NrD1wDLq8PfZr3v8kp/lo7f4Ez1Nn5gX8bsxReZv3iByeMjbuSz8E3v5N3tQ9Toc8zLEMInjl9CmyHl4FXo023UY2voL21g18cQSJgIYFgg72jiftdB0Aa5UMG5o8Xt+17FI52PcWp7Hqc4gHFz2n6f3zr2KJ+YfZI3/lffR/uOBu84vUa1/yKzlz5D201g0KaYPUiRgu8MqPMxXIYcG1/nf5h/iMdtwdu/2CZcqKBP70IrRHh/cSrmf2nbWmv51Cs7/Punb3Jqqc7jl9v8/vMbnN8ZcWQq4te+6wR3zNV49XID15HcMVejUfIAcORfHBC/7/mf5pX+OZajfXzv/vdQKMPvPbeOKwVOrPjppMS3NUKWd3PEShXvOw6w/PKj1B7/DML3Wfq1X+fknQe5uDNmvl7izSdn+cyMi8k1a9cGbD6zzUYv4Y7pkODiv6d27UvknuB/PDjFB5ISKIe7zElu37uddx78Xn7mtf89b116G5OlKVzpslI9yJXhJa4Nr3Bi8nZ+7u630HumzTOmxqutyyqWr0roGsP9uQ9jw4m9/axV6+zWfY4mKaWdXZqjglOvfw+Oe5Cd9R4X9JOUxH4sZSr9y+xtPsXVZ7+Ce+Epni1O8ZJ/G9fZx66cpOc0GLYX6YqAxbhLK8i5GS3zldadeAsB7dvmee7oISbHQ5JSiensq6jx7/BLw59gx+zguSW+r/hujkwdYCMZs52mtKjx6o7LVnOaTx0/wOuefYGN+WkGjQZuHNO4cgX1hccwmxvIpWX8Bx7E5jnx//5r5E8+jmg0cPftB8D356hUThEPHuHYxPMcmgp5cfsg1lg2Rym2mxJt9tibrdCRLq7O+LeL7+TOsMnbS3XujQ7zZdPlI/WQH37X/4K7scaVdspmvUw9Mzj5LPZHf4X84LeS738DxeJrUdN33SqXK11wAhACGzZI7/xH6IlDeFvP4XQvEN/7E8h8iLfzIt7G04giwfoR/s0v4XYuoFrHb73n7yD+nqD9zfH0575Ix9YpcCnFLZQzpiMmKHDIbQmrInQ2wYA6wjrUveus21lck+NocYusGB8HxVBNIrWiWxykT4VQZKQmwBMWKUf0zAxYQWGqGCcDLekXK4xMkwyXstul7HTo2BoJFZCQW59YV5EqYkzE0PrMsMMNluhn+xgSsWMWGAiPxLpIGZOrBn01SywERuZklOh7glhCQkhAjCw8jDR0sgNkVGjYESPPsquWGdsyE+wwpIF2cgQCrIuyPnnRomuaaOshZEGvmGVUTDK2IQPpYxG4IiVHkBJSqBrKBEjrkZgqqS0RmYK2qOJYizHQzCx9USOXFsjo2EkKG5Fmiyhh6MkQF4U2ZTJbYlfUGOgWSb6PefcMW/GdxKaGK2IKFRFkE2zKFl1RxRiH1JZwignaxRKuyOiYKQZmEuVoMhNQZozWPltmmr5p0BV1HAxKCFId4FlNO99Hnk+SOBJrXbR10E7OyNaIrYfNy+zISQZqAg9FqCClwpx3jTgvYQWIosKIAF9FaHyGUqKNxybzWOMjgLJWjOIjbMuATLhY5THCReGTC4HN6tTsgLaYoM0MiZ1AFj59z+Cg6ZkWiarhyQGZkNRthw21QqRiIncNV8aMVYuxmiYXoHEo25wwKyELh6GooN2csfSZKWKqYodE10ipkKkaoSqBFoyoUpcdmnKTy/oYsfBx85CxLjG0VfrxQUaOR2EjPO3hyZyxaTDCw8tdCmnICHFkji3qmNEKQ9chk5JMV4iNw81iBeUoSjIlMwFaGhCGK9kJOtTRQiCsQ8CYWJToUcUVPWIb4KYVdsUkBZJcVbBC0baToCWeKhFLTUN2KBuXM8UpCiCgh7IeuQhIVYNEWmJ8tI4IrCKRgoCc7ew4Y3yGpow1PkMTIoxiJ19Aa8h7p7jozdGjwkB6YD1qaUBf+AxlGVHU6NFg4IRkQiKzFjqHgaoTMSaxJYyw9JJjpDYi0JYNM0NWNDHCoKygLnpk2SxDWyL1CnJdQlkfIzTjbB/CKny3xyA+TKglVsaECl7M7iMXkKsWW2YBIwSGgFoRgrvN9fQuYjOHsSXqWcBAGiKGhFqx5UyRqzrCSvaKRbSbI9AUwLCYpRAOgRiTp8vgJAghSKXEzSUULn3RoGpGxHgkukFgLbumyaaYJsenMBUKPFLrU00VuXEZSZ/COBSmRm48GnHAMJviujNJIQ2eShE6YltOkDoWn4KBnkALSHQNbSIiO2ZLVIltmVAO6eomA9VkTcww1tM4FrCSkQda1bBpkx3msNbF6gAhc1LHooQEE6AAX4fEuk5JjMmFh7CWnBJal6jIIUM9TWpCeo5DLgIca5A2pyRijr/ubwlB+78vfZCL/Vd4YPsBfHzuved+Xv7sGpVmyMGjOV89L2mngperx1BRg+Os8kB/nQMrp3Ejw2cGD6BuC/idZAWXgB869jPsdR+mEryG/s6nyF+8SHjpALgS9+0HMFsx9HPkXIQ8OYl7ZwtZ8XBWasjlKnKqxERjis+vf5abyQWOtd9MGm0DGid3Wa+s8+Frv8eTO59m3nkTH82qPDCdM/3ko7D5Es/V93HJVrkQByzf1qOUdZlOz9ELFrjmr/D9N3LMdgzne5iv7aBf2MX2M+RsGeH/x+Dzv6Rtr7TH/PTHz/PH57a5b1+DR1/e4svXu9w2W+W3vu9u3vXqJRwpKPsO7l/DJw7g8c3P87tXPsgPHfkR7iu/h5/5+Cvc2Es4tz2kJR3+13HA0dBF+BJR8fDfcRh9/SKjX/p5xOQUE498Em96hoVGiTccmeLew01+dtBjbA3OWOOe7ZIWhh/Ifg1/9Vc4uHuRM8erfHB2gj/K6jzkvI79a/v4qbe/j33N/dx99BTyLygCc/vEnXxu4zO81HmBj978A36+83pOiogPy5QTrSq9Uc7zO0OeWdZsDc7R9Ft807DCTG2SL82V2X99DXfc43RUxj9/EcIpjg0PcGxnD6G6TMUKIVzmNzfAZHjGUh7HePUxFZtRsYrcVAGXFTfgsJnnpG3CzCSP3HWUTrXB3GhErxRy+41PsmU/jMDyoryAcgzvXftHnN54hDO90+ykQ2a9RR5cfBfVxfvZP3mKw2IOVZri/m2LjKbYnV/kzP45js0vYq9dxaYJ6sXT6Iuv4B47jnv0GHJyCvfAQYoXX0BOz+D7c9SKGnvJkyzYV5hYT7ioFrifl7nOPKYQlFaHzMyXWS03mQsjnigfoj31IG8//jY+u/4JYh3zibVHecdbf5qDlx/m8rjCWj1is9tm38lX4zaaf+3xampLZEf+Ibp5BG/9KbJj72D4xl/B23yG8un/E2/jGbzt5ymd+R1M0EA3j4L46xcA+tuAvydof3M89YXPUuChkfi6QDkpsaiQi1u+YyNbQxZVBk5IYqts6yUy4THWk4z0FBJNIkpYExJLl6FaIMPHEQUNscNYT9CjzlA3McIhEz6eVfhyjDUeYxmSSo9Uugz0FF07RWIqxLJMIGIS1aSwJXwEY1EiNjWqccRN9uEo91bpeCExgPqTQH5MQLWQDDxJKjxcI4mJUDInsVUEoFSTjDK5owFJ3/HJTBmBy9hGDKmRqyo4GVIbQpnRLvaxa2dRpoKxHhV6dJhkLEMS6SEt+FajpaajlshNGWVKGOvjyhRPRcQ2ZGQqjB0fISy3DodYeijrE8sQRYAQiqrJ2ZMVtBS4VoOwKFysKaFsCMIwcGAga2jr45KiiwpFeoDUyxlTIqWEBbQJ6FPD1wJXWDqOT2IDCnw85VHYkNRPKfARxkWZiLrYI5YlQvrsmWVy4TFyXMDg65SBF5CYGg094JI4SkKJhAq5juiZBWJTY5VpEuEjrYu2IbEIKYQlxSezJQa2SYYH3PJjG2b7MCYi9zKwAqUjxqKCtRKFh1ARfdukkBochTQSgwBHUSCxVpLjUtgKxoSMbY3clhmLEJHV2TSL7DHLyIYYAeAQE9F1yvREBYNEuzkWSapbjG2Nm6wwFgGpKOGi6dLEs4JhMc9GdoSRrSCcjFw1UEWDtlPDOiMMDtaUkCZAY0jwUMLDmoDCMSTSpcAhzeZIhUviabT1cbQPxiEhBONR5DNoaxmIKiklxpTJpAfcIgCimGBIxEB63CFeZlcvsy4WyeytfzYjohCgrYsxVQopscanr6Zp00BbFyWg61QY2yau8RgKD4MkES6ulbhGMHYEcdEiFx5BEbEnQgSSgZ1g28zTsZPEqsWmF+AZiZWK1EagS6Aj+u6fEG0kKRFCCCQWowO2nJDUcYhsjhaCQgpiW77lpYVDIkKUDdC4WOmgTERaTJK4DgPdIsPj/2HvzcPsOqpz79+qqr33mbpPj1KrNQ8ty5Y84XmQwZaxMRCGwIVwQ0IIIfdCEiDThRC4+SCEIQRCEsgTMgAJhCGAGZyAAQ9gY+NBtmVbkjXPQ0vq+XSfae+q+v6ofbrlG8jgPN8T8l3KjyV19+m9a1hV+33Xu9baxhqm7CDOJTS0I1ENxtwSUp8wLlWO2nPIRDDKktoSM7YfBXjROG844fupS4J3hpbrZlonWBSzEpP6MrP0khLhXAJo5oyi7UtYEqp+lglToe0jxCU43aYtBaZdDw0SJnQFyMhchZZo6r6Kyoo0Tcqcq6C8xitP5oq0FXgfoWyROeOpuyq4IlY87fZiWrpNW2LaPkbZmHLgvzh3AAAgAElEQVQ8yhxdWAxWKdpKcAKZT0AsbSkxoQq0fRHtU+p2gKbrYope+plmLhtkOh1CR9OIU0xmS2mIwmRFagrmooymRGS2G2cTrALtLXNSZs5XKFKjZQfIxIXXNTnLFAO0jUdshFE1dKYZVyVSp7h0y00/8nn0X4agna6P8sHt72PJ3DDL68u5bssNlOhh932nuOZVI6SVVdz3vZ1Y2nx76CZuqZ5gsFzg2bUvU+qZYUwt48FTg/zVqvMY1/38Se/D9MsVjI1+jrnsQfr2v5C54Scon9yIrsWYSwYDKbtyCL2+J5Ci5Id75LcsuYm/OvUpNh1ZTrtiQXkqrsJMPMPPXvBa9s3soZbcR+3MpYy2DVv23U+9XKLsjjO74jlkacquExdw7tK9JI3jbJ64j6+ueiGfWdtHrWK4tOahnQHgRxvYx8awT4xD2aAGis9obp33fPTeg7zn23t57vpBJupt7twzznBPgb9+1cW84uKllOIfPt5GbZramVPMnBll5tQJJk8cYeLYISaPH6XVbXj7fW+merqbR/Zv4d59NV6+tsCuE5Nc5RPeOW0oK0GWlJGfWY2c34t4x8wbX4/PUiq//XbidSPz92o6x+sOnuBQO6Mgwr0XreGcpeOcaXyE1zfuZ2NtgiwSvja4mfVrPohqd1Pa6Vg9uJb9+/Zw5ZWb0fqHj8Mowzmnhvj23F2kKmM2arKpu8xr//uNfPfoJD3TGUMt4YmpFo+7Hjav7mNoPKVc12xqL2Pf6lWY49tZvusRFp0+yvHzNlJONUtOnqKaeYpZi5JTTPX0c6o8x/LSehYV17IuPZdhu4ZFbgXDvp91lCginFIpn9kwwJdGhshwJO0GL3rqUTaeepSt3bchQJ/to6LLbN69lv213bRro0DKs/svYKS5DBrjjJd68SoiFiEq9VEsL2XY97HWLeZ8GeFxN0W/VcQrN+LOHAU8bnyMbPcu2g/9AFubofnFz9HTvZPuu95MdcfXqUTrOVmdYcXyA6xIM+5Mr+dNzzmH7x+cpO01c4cbXFUtc6joaXiPRri6UqDHaMQLx+pH+aejt3HDDf+Lq499nl1TAzRiw8GHvs/IDbegzb+jXlEexthedRPZ4CbENqnc926mX/ApzPRhzMQesE3i4/dTeOrzuMoSbM+6/2vCH39C0J55u+fbDyPKkvmElCINbUhdmUwJIh5jI1oU0WS0KSGugCA4WwYXBzAh0FIKL3kFJBeB18y6Pua0oa0UXhRWwKFIfZHMlchcGa2bWB+AkDiF9zENFUhFxTkaSsLn0RTULG1XIc6KzKiYTASvAB9hxeNdgcyXyHyRmo4RG2O8pSEJTjy4IpnyWCJS0Th0yNeQALpakuBcglMOL4qmxFhXIPVdNFyRpg8AHi9YZWnaPloqQlyEE9AArkDN9ZD6BEuEtgbtFUZlNNIBMgkveW0pTUZE5gtkomkpCcDKF7BiSH0Br1PqUsQ4j0JhCd+3osIaCFgcTSo4JVjbxRxVpo0my/ufkpC5MqmthHVAM6cMLUpY0VgMkYOGEcSWcd4E4iOW1Ee0KeBtmTmqNCUiFUWxHeG0JvMJTsGsdJG5EqloxEWIC/nk9QgsBofBO02LBC/hhTRaNWhIROoTnApKkMXgxZMqDzhsTiDb2uOVgDMYLKmCTHsUYQ5L1tFQikzC1w6DcwWs1zhirEggGyrB+QTnFS0JhLilIjLRRB7aYjDtMqkJQLMuhpav0NQgOLSHpsS0ifBOMR0ZWgqyqIUFJO1ismABISNGSUomgUBmIoBCIWRolBesGGKapLYPcTFzJuwl44Sm6LAuktAkJtUZbYloSMgx8j7GiANAXILgaWhN6grMukW0RaNxxDbszUwpJFgoTjTWFairAj4EeOJF4VUaFBwFTYmCUiqCQ9NShJdrqwjlYlIvtIyjrTTVzNOkSKp8cBzg8SSkroxTLrdTsKZJ21UwXpMS4xAchjSr0jQe5xKiLGJalWiLCXPmDR6NF0iJ0QiZ+ODodRoRT6rbtEQxS+580VmwRclouCpNScjQpKJoUyDNemn4vG8YWr5Iw7Tx4rDeMEcfLaVxZKRKhf9thYYRrNc0xZCqjJQE8TkZkogMjVYZrt1DI06Zdb1YFCiPUxbjFW1inElxtkgqEalSiIto2j4sGp0lIPlc+wJNDYn3tEWRoRDxZErTUIFAt1VMjW5i56hTQluNF4PL91Nmy9QkwamU1BeoUwYvtI1HO0PJWeZ8hVkjNFXErOuhocNrx8GjsMxqFXI1XYRXFpHgCpt1A4Hsi6Xtu7AktJWEvZTvdSVpUPMkoanBugrX3Lj5Rz6PxHvvf9QPz5yp/QcedU9vPT0lpqbqz/j3X3HnixlrneGWI7dQtEV+9Vd+i4e/dpCDW8d4wW9ewF1/vYPJQx9iTiX83Yqf5VeWneB6M8MFJ96HaOGxNe/g/tJy3tO3nmX+MF+bOQf/0BjNyhGOXPFeJNOsPvVRCuePMFfdQVfX5f+uF0a//eHf4sCBY7zg4M9TK+2lX2dMJprbl97OxoHzeXziMSaP30B06ll86NBtrNj5MJlSmA++nyd3zTK2v49qtcGLn7OXZNvHmbSeK674AkOFIreOLEdPtXF7prDbx6GZhbr0WqEvGsDUUvw1Q0g5+hf72JytMX3qONv3HuH+HQdp1Ot0a8v0bB3tLesHSqyoxsTFEnOT49TOnMI5S5QUcNbSNbCYdrPO+KH9eB8Ow0JXN0ob6tOTCILFkSnLd4c2M6pW40SjveN1PubFph+P8MTUHoqFGtNLG+j9+xl5eBu2WKT2hjcwctNPMXHsEOXefnS5i7ccHuWxeoMerXjfIss/7PsLLtz7LX5pcoIIyDS8a+gKvjR1Men4Zl5W3EHk2xQKJdYuX8ZNNz3/h86F957Ttz5I6QB8p+dB/nLJrbRVypvO+w0G+p7HHxw/w3V3nqBnZpzvJYr9VFDAC6nxBgaoUADgAGco3fkhyrVJjg8Pc3jjZQxWRphsHmXd4/fSu/a5fGtFF9dmGyGtsdXs46r2RTykTjJd3MsN1YeQsQYNtYJ3XnQzT3VvYHMK167o59Kjk0xN7efdzQ+QupQ+eqk2i1z9gzI+De+Is5Uq6cBifFIG0fROTNJXXMrFvZfzudU9rD1U40iv4URB+JU9bYrWovFoFDk2wDcn0ZevYOYv3wpjJ0PydGYpLmohlS7aLU3/+Q1mrzuPPd07cGmVQuX5rF35Zr5/dJI/+d4BTsy0wsUixZIbhjkunorSPKuUcHNPFzsOf5QHz/yAyfYEX1r2Onrv+gif2zWC9UJlYBHrb3oRay69hrhU/jfvuae1tAFRkeSpLxAfuJ3Gpb9G6f73E5/4AeiY5roXMbvlw/9XkLT/6Fn7n9kGB7v+U+//wbe9B2faWAxxWiAzbYxTtJXDA4KQ+BYpCVY8WjxgkSzGKQ/KgpcQwuYUqBTnIozTCA4vFnSKR+HQKCx4A5Ih2LAzncmVJIidI8vDaQwOB4iL8nt4jBWsUijJcF7hVFCWQl89HoUQgJdy4MQHlUV5jAOnMpwowq7waKsAjZMAwgWFyQxCm0wHYOV9hMcj4gKAtp5UKUJJXofygNeAp+iEpoBIBmi0A69Ak5JiEG8QUjIFBedpiMaLQ4kDfCBICMorkkyTRg3wCu0VqXahiIQP97bKosTincIrKGSCw5MZh3aCUxbrA9DSTuN0irEOfAIqxSqHdxGFTNOIMhCPdgrbIVGS5UU0ABfhxBOFxyDaajJtsdqhsHgX4cWF+fegELxYlAenwPmg6kfeIi5CmxptX8ATbKfTtAMFAbwri3I69NMLygsKMB7aAi4/2xQh9M84T6QapGi8j/HKITYmFQE8iKdIHZt1zb9DDZUCES7ocJi0iNd1nHKIi7EC2ktuQ+2guHhFqkC8IuiJHhGP9QqUQ3xwREBYV+dNsK18foLlCdpBohq0XTnfC4pMOrsuO+voFrRzpGLmv85HhMISpwlegj043cbYGIfDi8eKYLzDK4vP75s4T0qws5iUVIFzEV45Yp/ifFjLTIJyhtfhftLGiyKxiqZ2+cg1kbc4b8gUGAeR02QiON3Cex16q4L4Yb1BeRX2u3iMt6isiDdNvDi0NbR0GGP406ElJfMxyguCxymHtlGwafFkJlw7sWDFk0ogohEpymuwMU63crIZbNOJB69QPpxhHoWyBsRiBZTvWKEP51y+aiq3w0zCv70KGyJ8H7x4vDcYaQGKzCUgaTjdJD8nVIb1hqIVrHJkuc2IWKIsoakd4lXYF+KIvAs2J4oojTAeWnGGy61MOY1gyZTH+M6aeyyCeIPTbcR7LCbscQ82n1/jISGj7RKsaYVxOI3KCsH+JKNhLIo0P+MEpbIAmXyEFodSDaw3WJ8s7Ecf+uSUm7dW7wyRM/z2+9/6wx9G/BchaHefuJPf3/ZONpTO47wdG5grzPHW1/0eX3//Y7QaGVe/ai3f//R9NKc/T1NF3LHyhdxSPcmbW59Cpsfg3CuZeMnnuWXHDkZ9gT9/7CSXjXWFCS8a7GsK7N//ary3rB/5IsePv5sVK95PFC36N/fxZP0EP3/nK/j5h3+HRvUYWdSgu6+L0mCFz6i/Y3FxMUdqJ6gfeButhufL33gH9a4u5ror6LddxeThPZzc+t9RlLl6xd2cP/cnfHvzn/KL6kIuLRf469VLgUAs/Mk62ZPj+KcmwYcDzPzUStzpBpJo9LMGAZg+dYLR3ds5uXs7Y4f306xNU+ob5FjTkMQRc1EXJ1sRG5r7SNI5vLXz41EmQmlNUqrQqtfoX7EWbSJG9+5k8ci5tGZnaNZm6B4aplWrYdM2k36GB/xqTkVLuVyf4RvmWfR5yzt9gXMo4CViV+MM+6c+S9Zugfc8d/tBtPPsHx7g4LLF2LSNMobqomG2rz6P9PA+br/uRTzH/BOPjt7BzW3L/zN6JBwUWjj0vA/A4MvRSvjg525j0dxBTulFdNsp7paLedvNG3j2uqe/FNk7x66/+TJLJobQKkEpxZ9eeit31e+lqAYx+tc4b/QwS6bHaWRlDreGWe8a3B6VGaPCdXKMl6kyF9qVCMLpbJTCHX+EatVBFNH652MG16N71yBKk0bCjiJ8dnaO5zrNkcVPckflcT5y6CW8deVHuCJawp39b+RQpcKmyQO8sZ6w+XnP5mOf+TD/2Hcbrxl5HY3HZ6mxj757T+FsRkE7rjw3ZjgdZVe8mX2HphgbHKQVx51RUiqV6OnuI64O89fFMhdOFjh/2jI3u4db5oZJiFBOUKLJnMMC9bSNmz3BaRtxzCe0Cnn4ofdosUgkZGl4qLaBT/e1WdtV5LHpOayHq5uaklPsvqDCvnUlBPi53m7iqc9y9fDNfGb3n3Fs7igfuvzPWPaxt3HfI5Mc6e+ma+kKGnM1LnrBy1l/7Y3/LufI0xfXI+0ZfFKleutP46My8dF7ASGrroC4m6kXfgqKPx6vsfj/ov2EoD3z9r53vAucximP+EBwtBeskANKj3IRSBbgQAfrYnEEL30HKOcsCUUAbNqFb1rl0V4QNFaleK9CaFOAu/k1F+xfeQK4xgdS51QARSpEVSg8eIPykOUASWQB5FhvMB6yTqSvB/GB9HjJ8Ap8fj/lJQBX5VAuABCRDEsAYuBxAZUjEobY6av4DrnIBw4o7/HKo50nk4VIhnnwJqCsximL7gDV/ArGKzKddSgR2mkycQEsisXn99dOAuGV/DfF5bQ071PnXS450gmYPxAU7xVaUrzXOBGUD+sQlsAjganiCWAvEwUSYC05dBKvELG5GubBmbPmIdAG5QM5FvH5XHf65EMflc/tRJ01r2p+TZwEYOfFgwfjNJkKz2vBI17n4C8wwIX7h0+Y3FmQoUPxQpUTHzdPOQMx9joH6PkaOoO2GqtD5T07/2lBxFFwGU3ReNEoF/qnfAjn806FOfQLpDOMZQHgzzcJLgs6TgWnURDyzLzKP9mxK9/pQf6vfD3m/yZfI0GczPfYdfqQE1jvJSivZ41pwUgkt3GLdoFoOpc7wJXF5QPS+XZ1+Z/hPoqz9wDigtMlJ/hhHRfuigv25vKzwouEM0ECOQznj52fc4UL5CLfANIhRdYgYslEgnnn/4U57NieCueY75w1HukQM4Kd+fnzJ8yH+GDDyNNWDOUVLn9VUhiuy006ECLXucS8Q0gH4q+CM8mLnG2iCD4owj4KzqyzzsPOdZXkjjKn5tdTxM07oTpmIrh8T9hwtnoNHpRyeX+CiYR9EMipiMM4hyWaJ8wdchXOGY3V6bz1BceRO+v89P/MAaw8wVZU6FiwuTB34j1eLL/z3nfyo9p/CYL2M3e9lEZWZ8XECs4ZP4dXvOrV9FUGufX3H6V7UYG5yTZab2X65HcZjQcZXlPl2pFFrP6nj9O3ZoraK77MJ816Pjx6ht4W3HbPNKlrU3rOOtSaKrq/QJqOsf/A/6BYXEdkhhkcfA3t9oF/tQT/2e2h0w/wyEfvpldfRuYUvRdNcGLsJNc9dwufGf9bdkxup1h7AXv3n8uf3/UhVvoG7VaTB66/nvUv2UXamOb4999FuXaElw28HWcifnPkN/nioi18ZPlitlQrT7ufTx127xTy2BjZmTp0xfham5Y0aTRr/GDsNkrLF9G7ZDknetez7/476Bvfh7iMpirgy72cs2Y5vt0gLpZp1mYYWn8e515/C/vuv5tl5z+LroHFnNj1JIvXbkBpjfce9UNCBjPreOXnv8SJ8TKbhvrZM2q52WveZAtERnE6deypZVzycyNU13TT/NqtNL97F/bRreg/eD92eClP3HkbU8ePUJ+ZxGUZVhTKhYdQK7Jsrh7lmsFjZEZ49KJuWPKrrFvxP+f78IV/+Hvm6nVaXnHX9ADHfB+Z82xYVOGDLz6Poe4CrbFp7v6LD5FOzHD9klehkpjCL5/PiazOK7f9OZcfGGNZY5CijRAf4XzwRnkP32hvou0Uc2hGmjX+19bPsfbqtyAqws6ewk0dprX9H0iufBPRucuQuIf4lpXcfccj3H4g5bvasaqnxPhcSncS8fpr+vmEO8luNwR43nHkHbzx0H3MVAxbr3ktv7v/Xpq2yYuWvpjVd8wyeXAPAL0DMT8z9CiPVW/myFSRi7/xEPvXj1B99hbKc8PsOXmMUaZp2YxmoYmTdAFI2i7idjeZmsXG0wy5Ks9qnE+fjvE+HJKph7IWUg9H2+HQPZ15zrTawWMetcPhqDLi4V4+MdEg1kJNwXhmubGuGckiGv0RX724xFwMkSiaBcXL4we48/DfkLo2X9rl6N47ycOnlrFneIDuJcuYHT/Dqouv5Jqf+5/8R5u0pvE6Rk/sp+erL6d+/mso7P4KKp2lteZ5NDf8N7KlV/2H7/Pj1n5C0J55e9/b3xvAPzoQiLOAlkB4qtugFHQIT1CmcsCiMjoPb8GiPQHU50C9A2S0UyF0MAf6Kg8N0k7hdRYA3zxpCuA+kCyf3zNXHvJ93cFbELiHz5WHjmLzNCSEh9zDPQ+i8o/8s+8BAXhK3s9ABObHgwt978BU8Xiv5y+oWFB25m/SgcVO5YB1gax17iX5wER8CPfM5w2vntY35SSQaTfPZ+bnWOWKAp1165CqBQaEyMLkeZj/mfILBECR4ZSfD+fkLGCp8s9mujNeH3SGHIiFfgSlK5vnAXIW1whrj/K4eRvJ+9UZi1dPH1sOWpVbUF4Qn19OBdUvB+1Pa3kIYADpZxGIsxFgZw382STD52DczzsLziaZ3oPugPWOg+Fso/Kdr/M+dXKCvX8aqddeY1VG7nIIu2geP+f2Mp9O7OctSTnJQ+tchw90Lj8P/JUP86RtRKZdPrQOeDdnkYy8vzlB+z8Bd9hbue10Ji4nop056tiF6yxzxzjnHQMLv+875L1jF2c15cgdQ52lcYjP94ay2Fyl7sy38p1166zFWROYW3NHsezYUZhzmyuibsHZIi4nQfl1vAq/LzLvqMqDmOf7BgvEKZyFnXMifCJynlSFvR+whlrY814WxuEIY1BZfk5JIMgdwja/TgvOkv/jdJuPDurM9dnsUnl5mgoY+i0oBCvuaecD0unPPz8ryfcDnciFTv/y85WzHHVKXAjvJFfQQogFoPjd9/wuP6r92Oeg/d3eT3Lf6Xu4Yei5DO1ehBXLluuex+HHxzmxa4pCt8E78P4+WrUpdnady/t7v8Dw8TtxTY/0L2F29a/z6MPHua8/4qca32XZ7hr3nvky1YvW0rd2FQBal6hWn8Po6MeYnXuQ8fHPMTX1DURiyuUL/019XVRczN8c/RPWnHk2Sh5nsjlDpb+HQ/v388Yb3kxPsZd7Jz5NY/wa/mnV1fT1djE8cZBFx0+wte8qFi99lMENj9K1+Fd4/KmlnBvfwY3j9/PxlT/Pt2bmuLZSYlG0kKsjWlCDRQoXdrF34klmDh2jy1eJfEQkCesqF1KaK6AmYPTo3cSn99NQBXb3nM9FW27hpa98Oasuupy1l21m9SVXsfaK61i87ly0MQyuHiEpBULYNbAYpXVIePwhxTaO107z4k/ewdhUmQuWljk+pulOHe+jREww7PsmU2SwyMYtS5j9wB/Q/NpXcMePEV/7bHpe+3pKff2svuRqzr3+Fv5w5FnctvFK7nvWs3Fds1SmD3N1ZYzr+w/hNDgt3HN0LeOPd3H8qSdoZxkN73nyiUd5yYtfzrVXXUNvbz+b1/Sx5/QshyYazLZSDu3ZA1/+NhuTK1hfvRS5ajEHbhzizfv2M/Gtr7Fmsswy3YdqZOEAcqC1YXhuHUtmzuFlUiQd3cq+ymLOxEW+svIyzneOpbqAKnShq8uIVlxF+6kvkh65F/Vbv8CfP/B9/nR3m0P5ph09r4fmui4aK8vcBZzyXZxfTHh7z3EemN3OFY3DpA3P69qngIzfW/4LtG7bRf3YcfpXrGGxGuWlg48Ql6uYTW+gsHsO2buLo30Xc2BqOXrJMvZNH6I8t4xifSUz5cOUG8vRrS6QDGfq2GgWZ9qgPLOqxd7kCLv8GcZaBpzQ7xoYHUFziu6Zg/SXulleiDgnEdb6GktGH6Vc/R7msscoFA5w3dAqjqRd3NTdxba5BgdiR7cT1tRg08EWTgt7hiJS8eyb+C6L0p+ilT3MP/Z10Vu4mvN372P4xAzjQ4M02g2qi4epT02QNhuU+wafuZpmCqAifGmQ1siLSNe9EF07FipBTh2kuPPvSfbdRrroInxl6Jnd48ew/SQH7Zm3h+66kzRXUjw6PGQlhGMB4BWaoIIFiOFAspCzgoQQO3LghDpLZZOgTpAXAlABWPqcJHixIEFJEWdyMOACmM2BQfAYL3i+gzK0ACJ858fiUWIDOBWbQ5Cg0vl58NAhRQsKA5KHEnWw5AJMztU0FZSejvs5/NJ8HlWYA/W0UDTxHaLbgeiCzrNtEJcDvuws0OoAnY8dyD3pKgdLC/3N1RaBeYUsb6EEv8rDovxZfXU5TpM8XCmfMAFEcrJ21vpIAMRWhWIbOUvESyBcnXs6FQiAzkl23iPyBcgVEQlh5YDvgMD8I15kYY18WJMFAK/neT3kYD+/bpi/XLGa/x54ZVGSQYco5zZBJ69RdUhLbmNITpR9rtCo8NJzyecpB8hCrvTltuxzZ4TKv9+xSzoA1OdAP7ehMO8d1uLmGZjKbd9JCE9TefiucsHegrnmYcPY0Hc6hD7Mlw+MGnsW9+3Yv/EOK+H9gZ280HCtDrDPwbIs2Dtnz3OwqvnxiVOYfD9Ibmth7+URSLJAZLTXuaLoQWxOTgVFhifkZy+QthA6GkgYefGJhf2jnMwTH9dRo+eJfE50nQIdHLKh4IcsjCmfN5wOe1tAVK5Q5/cJ9nr2vlbzthb+HYjSvFOgE3row/7pKMlWgkUpH+iTCHnIb+5YEMnDmGVhT82fSw6f38fke6rj5AnXDAokKLQz+bXnt1PuFDprrxDsyiuLoCCPPHja2Sbk4eGdtZZ5Tuc7cyILZ6KIzZ1q4fxyuTLdOZefBlmkEx3Bwj5D0LntXnfDdfyo9mNP0H77oTdjlGGZX07hVMLM4CzXbbyerV87RHM2pVXLSCoZk0e+xaTpoTG0lquT3VSySeIuy2TPHzD6hHC4rKglLX6p692MN9YxeeIoR7c/wvCGCyn19AKgdYVq9blMT3+LSuVyRMVMz3ybJFlHkqz4V4GiFs2ypes4/NA2VFamWbEoA+2szfj4GM+/5EVsWXYjPxj7FpPTiznVFl6y+16Us8xKifHqefT1H6Jn8QoO7jmPiWw5K9VD9GYtDpQW87dz8AsDPRgRbNrm8GMPcP/f/yX3f/5TjB56iiNTO1CXDdByTcppGeUErQv0RYu4O67S03c9Kzdt4Zff+FOcM7KaqFDERPEPVcT+re34dIP9Uwe48+QdlBZ/i+W15/C/azE/09dFsWExt6zkm09M0Mo8179yKa13v41s72783Czdf/xRkufejMrzjo7Wz/AXO/+Uh07dhcVSirr42BXXctNSw7lnvky9olEiHLnuTYwdWcPonh1Mjx7n2OMPc+DBezGnjnHw2GHOvegyVvXEbBju5Zo1/fSWIpZu30n10W+xqecaapFnx9JJbj+5lYPbHmLoxGEKWUoxy/DNNlYcD/c9TKUd8ZptLTYUVrKkXKWAsFkVeHbUzQEljAHf1PDk8gLPuXgJ0UyKmAJ68Hzssb1s/fKn+XR5FdVCjdl2F6Uk5oUXLeEpLG1CovClxZhPrl3Guq6VbFn5EnanNd6RHWXOxbz0gX6m7z+GpsXQ+os5t28ptdp6Hmz8MgcOjdD9tx/CPLWNVJfYv+rnULqLmTNNono/xhTB1libruZiKTO0ocDKC87h8lPDzNhpaqo+DyOAUCK6NM6R5BhPJdNstxO0GjNUJUGbCK0L4WEal4m7hui161k0cT5u1e2UeYzNG09x7XNeRqmQcP3IAJ89McappREPpE2KDVD93sQAACAASURBVMuvDvayWznGyhcwWVlMlEVIcy8P9BxhtBhx4eEiKw8cYHzTZk7u3cqZA3s5tWcnB7fex8DKtRS7e56xjXZK9QNkSy6lte6FuNIg8fEfgG1TevKTJAe+QTp4wf8viNpPCNozb/fcfRfexyhF8MjrdgAvXiPKIl4wea5SJ2fMiAU8rpNghcvBWngYK2dAW7SEiobKh4e5Ui4HGoLJgVMi9byAgsdLAGsKhxZL5D1WBxUriBIBQEXeYZWaBxfiQsidIs+1kkBwxIOWUMDHCaF4SdRGcCirg0rhO6DRorzC6EYI/1NBgRCRhRwx5enkYXQQybz3Ogc0Xjph8zmQzX8YkYKLAqCSMCaFx6g2KEG8XwDlEsL/PApRGd5rjIeIPD/mLI+0xs6DN5Gg6AWFszM/ASiJStG4UNpfB1DpvA6gLl8TTQCaBo+TECbolISQSDpEIr9/1KYDvzqhiEpCvm9YKgmvBjB2PpQNAmnQ2NyWOkQnEAshqJEBt3aITphXjccBUd4HLz7PGww2EXJ8OiRXEBflhLxDgkMIqRVFJHkeong0uTqiQv+07yiaIfRR+wCWvYCWNCcsBoUn9hDbKC+oE0jXPEkQmQf0kQ8BqPMqXj5GCEUUvITy6B0u1yFRHcJjvAcfcsQW3MXC2cB64SvJQw6ZdyQICqNaQdno2FhONCJphXwlRXCo5KqcJgv2medEWu3wKp0nfVqlAfyLR3JFTkmW21ZnDfT85tBe4XSGzsmCR+eh1RkFspDTJx1ngMOZUKFTqzRUw1QLm0zE5k6C8H1ROTn3BsHmRDudv14o+uNzsmgw+dkQyGauaUsWFDAJqQ0LZK9Dziza69zREcJAXU7KrOiceGckahZrwpnUOQUkD0+2HYdEvmAGi9ehv0aaIW/Wm7y6pcvvJfk8B7I7r6iqhXlW+f42TkCC8mfPckYJZsFWAFQ274CZd63lNqmxwQZUnkdm0gUpzRsUFi0Op9LcdbbguIhcBKqN83G+7+icDhivcj6h2LzlRxcJ+bEmaH/x1J/x5OQTvOvi97L3B09RtEV+7VW/hXjFo/94BADRMHJlk317dnCwvIrfffE5rDzyRZTPaPqLONx+Ga++psIdizU3RZ/jwkqFC5/z+1T6Bji87WGO79zG+mu3oHRQprTuoqfnJiYmvkKrdZC+vlcyOvrHzNS+R7X7epQq/ot9XlIe5jNzf8vw6GYKzW5m4mOUymXOnDlNsVhizdJ1vHzD1Ryob2O7O0j/ZJGRqZMMnj7N0YsvxMtpHA9w0eb/wbatFZpLruWFp97La098lTuHX8T3JuZIP/khHvnKZzhzcB9z42co9/YysGqEK17xC9TGTjO+bj3vacA3opQzbeFCibiSXs6NCqy0glpWIf36IXAeKZkfWZ3yX2tHJhu85rP3cf/pe6hPj/Di+vN563SRHq2IrUed388D+2aYOtngvI1C5ePvAKWxB/ejly6n8oZfRZXKHJ87xm889mH+sLaKXc0GadcW4uI6Xhvv5OYffIDenZ9jrqIxDk7e/G561ryR1ZdezZorriOuVJmdnqJdmwY8fuI027/zdXbe9U9k7RbVckL/9x9hVasH1zPIo/FRtkWHOd0cpyXCsZ5FVOsJ1amlpMk4RjS9LuHnJq5ig1pHpXcTkS6jRbAoJtst+mLPiy7vZ+TiFTxweIpj001OFTTn3bQC03ao0ymyeBMrBi/kefse59PVdfz+Cy/k129cy++NTdDKnV4xcCyzLI8N5xQTTswd5y17Pkb1WImbHlyMacWs7ztF35YpnBzi+ORGJqfPo9ye4IJtH8P58HAv/PTLURdcxrKNfWy4doiLblnBpi3LWHVJH11HT9HTLtI7WaIwPspI+kuszfrYlD6fjd3TPL50I3cvGmJ4ehyd5yCuGVlDLZ1ktFBnZ3mWJ+MJGgf3MTXXIFlRIp46hagSOhqg5+R1VMYvoXB4GZPb/x732AyfOOaZ04rZtuUFFw/xyOQs3zo0QevYLGt7ikyUNT1yjDPVLfS3d3NgcI4nNqzjkl2WrnEYG/pp0uY+2vVxmrVZ9t7/XZJSFwOr1jwjO31a0wm+NEg2fDntpVdTv+w3cOUlFHZ/ieLOz2JGH6G1/qfhX3HG/Di3nxC0Z97u+e73iPDEzpAYi0QzQCjzHelZjA7ExfsYp1Mia0IsUgcVIuGBLaBVivYaLVCujOOdwRKIUFVmsaZNlhetQFkS00SrFs6VQClEZygVEvtFMoZkilldABxaMjRgnMGIkEVpSDo3TZRuY0UTEaovenFoH7zN6CyQEqXRyqNVG2sTvM7wIiH7QqWAxouEF0XbUij+IIQ+4SmIxesU62IiJ6BTRIccKCMObBRyTYxH5zlrWllEB4JaUdNkxKAhUp4IR+oKeJOR5Tl6DsGYRu6xFyJxeG+QqIVWGVZnIcFfck+6V8RRHe8KKLHEPs8bSeoICqUcRjXR4kNYnMno0jM4pfJCKYJyBqVSIBRIiPCIqSNRiiHFiyUuzUKrG+VCqKuXNk5bVBbyhUSCgqWjuUAivMlVpiyAYpWCDyBRlEXrBl674IVHiMwMlgQPlFUbJArkSKfgDCJtnAIjnuUtRUtnuCic3cpFRICLUhQqzx80iLIQtYhVUH/FK8rRDMZYsGUy3cbkmNUphxYhsQWcCoUNNEIiTfB5oRBJcYRXIxR1PYRWesKLerXD2ITYC05leJMSOYVTKVoy0Bnl8jguK+JFUXIgUQZOUzAzpBJjdIqyZbwEsOsElGnhcaGEiSgwFlOYQrI4V6MMMQZnWsF2bIKqHkWlRSLdROtAu3UWI/EssZrFEaG9IlYWb+pU1RSmoxyZDKUUymqM17S1nwf9Vjm0zlAuopgJ7aSFICRSR0QTeUGbGjqvWhlIW8jgi2yMiedITYpxofS7Bqy2CBrxnjieBp8ENUw5PEFtjm1MFE+RqUDDlS2G/W3qaB+DCueOVe3gElEZkSfkpYnFiUKLIDpFO4VgiEwdyRIMIedPi0JLO5BA5TEoIl2nRIrPX+dgdIqzESZX1ZQP6nBwGAg6rmHwlPUUTitK3pN4lxNmISIQxcS0SHVQuKrWkkVNjLQoqjkyXyR2AqaJmJCfic4CYRSHSJvIZCGc2MWgMpSNAgkyWXCBiENchFJpHnIazlJMI+RXSgamjXcKjcqdUnUUIbQ6cTFxPEvqI/AGo4LjRHJ7195g4ilUXMO7UggDjuqYLKGYFmibNmJsyFP1Bq/TkGurQq6hUXDN9f8FFbQ9U7v5yPY/4spFV1HNqmT72jSTJtdddgMPf/UQ06MNRMOFN6/g0Ue+ycz0NFYZXlZ6GDN9GBHHWPtd9HMPJ1dVeFL38CY+xOpl7yRJltK3bCUHt97P3MQYo3t3svyCSzF5gQWtK/T0vIAsG2Ny8iuUihupN3YwMflVyqULieMl/2Lfly9azgO776NvppvIDdD2daISHDiwl9Wr11IuV4j9YrRdxK39wtJTdQZbNZLjkzxeuIrJyR5Wr5tm9fnXsPXuFqWBiMXtx3jZsVv5w0XP5a4VF3LlrkdIG3UGVq5l5PKrWXPl9Wxr97Jo/SbuOdHm+wcmGG1YRiuKS186wtC6HphNEQdu2xhMt/FHZ7FbT2O3nsbX2mA9UjaI+edhjGc35z0fvGs/779jF1n5foyk/Pr05bwqLaIFpCsifvUGtu2d5si2CfrlDCPfeR96w7lkjzyMXrOOrg98iCdae/nth97Mx489zoGe19GjMl5RVWy3g/xdX4tXPvRBTO0wu1Zr9o50wSXvomfJq+f78eTO7ew+fowzaMzy1ay64FKGV65mcNU6tDbs3/k42w8c4OjcCXaXZzipJ6mrNmmcsHNoJTsWXcz127pJ2g2a3Qe4cXYl6x7fyrlzXQxUL6DLVYhJmFN15NDDnLJHeUSP0Pf8EQavXs2awQqvvnQZP33hMH/6vQP87cPH+MLpMZ6gzXCUsYgKxf5zeHUbdvbAW9p1pp3n2UT85ilF6Ylprt7ZpHj/OI/cu4+PH/0tVhxQPGtvL4VogO6kzFDxNNc39tNalRKNPEKxcj8jdz5CYWgINVej+oEPU3nJS1myvoeBFRXKvQk6CusX+zr9+jsc2fcDSvpcolYX4+2bKa5qkBY2YRrDXLZ2FdfUK9y5dA1TWY2exiyTE+PokXOxE6fp6u7CxIYT3Sknux2726eId+ymcejrtCYfJYk0rqxRUqRUv4Bhs5gXO8NFFm6JhE+frNHTU+AVFy1l52iN5pkm/vgcPWsvZC4aoCyzNJs7qJdq7Fw6zVW7jrHx2CP0/NIfM3HSkzUOgLeMHuxl1/czju3cT6OmSVsZcdFgfsSrIP4tzXUtg7hM1rsOrxP07EmiM49TfPwTmDOPkw1swhd6n/H1/7PaTwjaM2/33f8NPIZCzx6iwiyJcWRZHB6myQxxZQzjU1LtKHhHkkyTxFMYHKrQIM0K6LhOqTiDySIUjpKu07/uHuqtSqjAqFPKPSdQWSi1nugGXmUUVBNfmiHWHqscxeqJUCzBgo7q6MpJGulg8BSbFFWYZmn1KUTK2KiJFvBxAw+YZC5464szdPsmXU6x2NdpKk3B1MniDFWcREkL7xKqXeNkWREVNYkkpRqPgZljkTlDRkRBtzCxpVA4hRJHafAQ2BjbLtMTncYUT4dqktpi4mlUXtVSVIaOWiifq3O5EreyuANdmKFlDOXyFINdO2lkVYqFOcgSUJ7EzBCXJsjafSTaEiWt3FPuAxCKa0ROYV2ByCYYsURdJyBoQJjeE8Q+Q0RjXAmb1FBRg6prkegMF1tKMoeNwOdkuFo4Tdk6Yp3iyjMYn5EUJlDd4xTjGTKXUOw9BM1+jMlQneILJsN4iJ1Ci6encpJmMaVAE8EHhcXHiGnjoxZKLCKWSv8hrCsRi8bl4XBGz6EkxipHtHg/lVZvIMfK0qUdqWkBGmPmSMwUaTG8mFjrBk4UsU7RphHIoURB7dQppjxBXDpD1qxSLk1RGt5JVJrDZwU0nqI0GVA1JGrQihyxaSOEiobl4hxV3WQWgyjHksoumiSUTYuVchrRlh6nIJlixnUTAb2F0zSMJzJtVNIgtYqKahKrFk0txHqWlijKUZOo7xCtRh9KHNXFB9C+QGaLpLqFUh4dNUE5tGlgVIa1JYxyJP2HabcruFwZVlErqGfiSbQjKo2hWhWSqEZUnqNYnEJMC1WaQhXaZM1qULkLDTIFpXiKuDJNlAqua45C3KBHTZKZFpkWuovj+HYJh6HYdYbYzBCLJy3UKbqUbjNLywhlaVDRNQr9e1DtEiIxztSJ0vBuweKKbZSMQ3mHzmK0dmQ6Q4miqFvE5eNkEmGSWv5+u5iChyiewukMKcwGpSmZw2YJheIkuBJOHFo74tIU3ibEIqAk5Ms6RaQ9SWkSXx6lqqZJC02M93THLXTXSdKsh8QlRDqQ3CSpUaqewGWabl3DxzXi/qN0GUcpa1OSjLTQwliFjVpYrYiiDB/NUjGTdCVjpF11htQYymakpTptSTA2wkUNCnEdr1OS0jgD3TuYtj2kvkCpMEaWDiJYipVjWK3ARSTxNIPFUVo2ItMRZaOJ4louTCoUmgSDi2cQkxIDkQMxLbwJBFkrjzctIt2ilEzjNIipodFQmEXjKShwYil0jxL3HqNVHyRSDh3XSF1MpOfys0xIqsfQ5WlsVgokvTSDtzFx8RRJNEfqk078AMqkRKpN4rrwKqXa/wSXXvmKH/k8+rEkaN57/vejb2U2m+XDV3yMD+54L4vGF7Hh6o30NZax7ZtHAbjh9RsYWldm6+f/CkS4tLyUZc0NVPR3mG68iK8+/0p+oHbwiZ5ruNI+yOZoO0uHf2c+VHHtldex655vMzt2msHVI1QXD8/3QUTT3b2ZSuVypqZvx7lZQDE9fSf9ff8NpX50SfvB4mKGVw9wYmsTkxbpS5ax5ZVXsWvXTp56ajvnnbeJdYur9BaL3PZYxuTSLjbv3kbP9DST1SqTyQBZ/XaOfv8QU8e/wd5jE9T1IOsLR/nlE7fytb4bmb74Zt7ys69hw+YbWX7+hUTFLu7eO8YnHjzC1iPTlGPNm69bw++/4FyGqkVUXwG9sQ990QD60kVBIWhkoWR/5vHjTdzuKexDp6GocJGCiRbSHT9tbN579pye5b3f2UOmx+iZW8tHmhdzSZyEktMjVaKXrSX1nge+eADBcd3rLyCOPK1//DpSKtH+6B/x+p2/zlcOf5FxvZaZwbewVDdYWejj3lY3n8weZfN3foHUz6FbM7QSQ/fFf0lP3y3z/di9+ykefvg+4rjAkiXLuPCiS9h0yZV0LVvJPY8/TrtYZaZQwSdFJC5iJk8RnTlGcuYE9ZZn057dXHQ6ZbAnY61J6KHEBllDdfElJJVlpEcewM2d4VOlv+bd532NOzad5Bd/8QMceWyCI09M0KpnLF5XRWtFKdYcGp9j75lpUjQnyfim99zYlaCtInGedaOevtFR1u4Szn+0xtzBOQZmHOWm54me20lrt3LBgQpDMyUGVq3j5t/+3yS1+7mc+zE4hs60qEea6hc8TtVJj0+wc6nnkeetZW3XCFHHHtMGuJTK93+P7m+9gfjYfQyV91PhVu4aj1lW3ER7ehUMxKhV3fgHTtO9toctR1MGFq/kO8NV+k8dZ2ZqkjQPD2jVZ0E8JtY4B8eWFTm6YiO14XUU9+7g+OiDtJZ/k7HL/gEnLZK5YZb4CoOZ4aUu4rxZy8jxGtddN8SummV0oklt/zSDxYgT1cVYvQjVfBRbibj9AmH56SaXTT/Cpt97D+defwuzExNMHrmHrLWHuTP3MfH/svfmUZJd5YHn7963xnuxZkSulZm1q0olqbQLkJAQEhgQBgM2YETjFWg8wNiD24yhwXZ7gOP2GNxeMMZY9ukGsVgGs9jYCLFJQvtSUqlKtS+ZlXtGZuxvvffOH1GIQwMe2zN98Dn291+ejIx3I+O9d+/37vf9fuc6nHva5+i9qxz+5iLzBzforEW0VyKEJXB9C/lPlKoDYHvkW55DfOkvkNX3QRbhnb2LwlO3I9IuzsL9qMp2jPejBVj8U+PfE7R/eTz24JfQyiMcO0moAnIpzsuZfcpTh6iMH0Nrn2BkjoLbxk6KWM6AwE5wRlbJ+6P4xWWkG6HcmJHGWca3PoTw82HvitUHaVPbchzP6xKnFRyhCMJVpLQoN84yOXaMqD9BWDtHYGckyse3u/hej4Hw8L0+Ba9NwYvxyk0qU0cQTgSig8lL1KYPUkhKzMw+TqG4RheHsg6p6j4DS+I7feTEUXw3IlEFhHEZK7WxvD5+4wgeFsLvkPsZ041T5Di4lQVyYKR+BpMXGZ04TCwVXnGJ7XIe46TIapcsqVAqLOFpjXYkuR0xUj+BTl18u4UIeggrIRc2QjqkusTkzJMM/BSZlSk4KX5pFcvtoa3h4tLzBziFHmHpHFIYKGzgFDogJG5lGfKQohfhBi2sUpOqPcBxuwRBC1Fp4vkddG+KoLSCU1zFkTlWdQXjDpgKTrCZTuPbCqN9XKNoeGcwvkvqDyg5XcqVBRw/olBdpN+foF6ZJ7MzSsLCSQrgdvGq63gqw3c2KBbaOKNzJMpnwllAeAN8r42vDH5lFcfO0FaMa0fUJo4jnDaT1TV6aQHHiWlUnmIgfRy3z7atDyFMgCsV5dIq5e33oQcNrOIalvGpllvgpeikTLVxhCQvEAYdHCdFGEFY2MTxWsi8hAhXseyUndseoVzskwqNZ3XJjMR1ErZP3sfAT4j6o8hgk2p5DdvvI/IQBwc9foQoDSlom5HyCar+MrLgMlGYI6aKEmUqWx5j0J0By1C/8C48P8Jg4YdN/KBFIFvUrA6Z4+IU+kivi29JtJNCZhgvn4IgwqudxHf6aO0glUd59AQ6D/ALbapjRzHRJNrpM1Y/RcHvk6ce0skpVxYxuYfjxljugKIzIFU2TmWFsLJCNQ9pTD1JqgSOcLBNiu/1qTTmyTObah5jdIgTGrQTE1oaO9fgGqSt8O2Eok4wQY+R0gqprXDDNoXyMkHsknmCYOwEFW+DyuQJqsU+PRUwO/0gQdBERj6WBH/8BGHjOG55laQ/NiyBC4fqoMnxU4yNn6Y+eo4UjVIejnYolpoov41PQlhbJVPecMfcTnC9AZ6TU6osUK7MM7rlcbaOzOP5GTq3sP0uvpWh7ITpxnFkVsbxIpST4GJTLG5Q2nUfdiYICxtgK7xwGdfNkV4PhaQxMoewFeXJE0MCdJoRVk7RsRyE8bDcPlL5TM0+jB2uEScVquEG5amjTMpFImx6jkfBNjhuRCFYpxC0qI/M4ZdamMk5LL9D1h+j7i1jTAUpexTrpxmrLRFYgrIbUw0WGCgL6RimyivMzD6I2w7IRBGnOke9soqxYxxLYRuXMa/Lhq0wUuErjwCJVVqkPHYUv7xKHFWoj50gk4ZCoUOcVLBsTbl2nKC2SL28ghWXENpnrHyOOC9QHH8Ky4mQYQuv0ANtI52YUtgEY+FJTcFKqFZOYko9lJEUy6tU/QS7sEaOhXZSZmcOsvfiN/7Q+ehfHcUxVjG/cPfrWY6WePOe/43ScpETB46SuTn/8VW/ylf++Cl0bnALFq949xXcddc3OPOFT7AnXOIlU2s4MkInKUev+XN+qjHDTN7mMAH3P/Ea+i9+J6ONW7/neINOiy/89jvwiiVGt1/AvptuoT6z/XteY4yh07mbpeXfJ03nmRh/O44zQaVyI1L6P/SzvO8L72P3w88HLIr7OyxsHEOZjHK5wmtf+zNYlsWP/9mD5Erz0lNf5gUH7+bURI1mKQCGFTOjO/ZQn92LsC/k2VcOKH/pVnIEb9r7mzxYuZY/qzV4111Dut9qL0EbePnF47zj+bt+qGj6fw49yDHtBHV4A3O0BbEaFuJaAnlRDdNKEI0CK9uLvOfbp3npfovfvWsZWzv8cinlld5WWI+xnjeFdeUoWaz46kcOUZo/wCXFowQvejHd334vj/3kZXxk/AA9V7O9tJu1ymtZsHbxxkaNSwKPXzuzwN8s/RkXHv8MuRcisj6nd0/iX/9X+N62Z8a7sDDPl7/8eWzbIY5jnv/8F/Lww/czGPTRWmNp0AaqOmBGj/Dl2W18dUuB551cYOLEA1zY6vCs8Z9g1R4wThUfF2EMSW+Z3sbTVEo7keEoVrHI+LuezSee/jS//9TvYgmbP7rmTzn65wlJP2f7lQ2erEJ3ecA/zK+yKQRTmeTcsEwd3fCQMwF/ef9pdjmT5JuniZwi0fg04Y9vI69FnH7obo58/nMYDNp2+OYLf5qLTh3ibbf+POOH/hDnyOfo5jYV3WTx3hpx5JBt2LRfnvP1ZwvujMfo5RGXeBP86eYAd+UJhOWi/RHEYBWckP5zfp149yvpdfq0//JR6mKcgerh2QG270Kssa4ZQx1tIS8Z4a7JjINf+SJuniGM5sz0Tn5iyyT5ZhOlFFEvJUkHNDfWMJmLg82VTg0jHmJ16yLTk4eRqcvUPa/g0OokjF/EVQz7TbTJSMZLfGDQ495+hCw61G+cYrX5d4StT4Gc4C1fXODGwym6HjD637+ELFZYnzvNw3/9cdbOHENaPhgHJ3wFfmkMIaC2JWDpWAfLEajUYHuSxmyJsOZSHi1Qmwopj/q4hX+aEFv0lql+4TVYrVMgHdA56fYXE1/4GtKtN4H8l+/c/a+Of6c4/svjM594Ac1ug8BtMWlHbAhBsbCMzspspCUmqkusr2+jUF5iENVRqU3N6WEXIza7Y/SX91GonkSKYc/a1MgRLNvCGE2OohdVWO/OMDZ+nDIxJxavAamYnDjMoNNAGIVf7HDm9HUU6qepKo+VjVkcf5VacYnV3iwWhlJhjUEyQjVYoVE7w0prK1ni00sqTE+copt5hKUVTFxhI6rQcFJEClmwQkE6aKBgRRxduoqCllQax+kJj8BrMohHwOkRbc6ye3SetfWxIaJd2pQqZ5FpiCMs+jpCuuCcG0OMrGIFglhV0IOEWpSxHJZZ7zUYr58gW54mSwNGZ46QWIrk3A6CsMtqPs6OySN0jWS9uZPAiggSH69xko32NGGhSdLaQ6c1Qzj2EFE8hrJifLdDsz9OELbxjM1I8RxRUiHwWyhlg5CUgyU2M5dUVUk7DaSAQW6R5wVGx47i2QnCyuieu4JSfYk0F4RZwljSpFsuod2EflKlmRYZLZ9FKoizUeziElrbuMawevqFOF4ba+YRFk9ez2RpgZnCHD13wPzGxfhWQlifw9MWYdtHF9tkjuDk3GUUMs2WnU/QlRYBJTrtEkHexXWbLJgt9LpTzE48CfEYneZeRFxiZOeXafbG6bUnmaysUgzaDJyEwdJF9KwB7c0dTI0+Td6bQLk9ym6f+fYElpNRrp3EDzfxVIGigHbqUvaadKMGyeYe6hOHGWSauYWrscJFptwOjtAsLj9r6IQaO4xSDoXIY8qao2GvcyK9kUL1DFhdTFrHSEVvUCbCpj5yGku7tFt1ZCGm4kZ02h7FcIXNtWcTBiukhTZ+Z5amlWJMwlR1EYVH4Dfp9EaIMPQWLqMwMU+rPYqwIyrBOqbfIBWK2bGjmLzM2fYoSVbggi2PEsdlVqI6Mh9KoNvtccr1E4w25vG0g03OemuCRJUZJAUSAdPVI4RZituq8tRgP9u23k8vqlGprTLS7jBnTxCno2iTE3otbGnhOYqVQZnQ7xD4bbTKyLVD2pumVl1GColDjtYJQmoSExAtXcFGrijMPE6au8iNiymUTqL8ActLFzLq96mPnAXtYixY2xxjbW0WT8LM7m+QpB5O5hEUBixsbEenIVJGFPwBJTvFFNfw0pzUURQpEffHyZ0NlBPhqwFRVmbE6TKIK/hBh0waFld3MhK0cYttUpFhhCDSNoVkKDLv5QFZVKBW6tDsTDJRPY7l9PDjnMj4nOlejJ3bJGmRsYkjZMUmqlel2Zhr2gAAIABJREFUt7Kd8aBJbfw4Xley1N1K166wpXESKTKs2EU7LlgJOg/p+m0slWIrCzcWrEY7WW+PURk7znhlCU8J0C5xVGahN04+aLBn9gEcYWh3Z2jGI/ijTzEmB2RZkadXLqEcrDJhOxxa2k69dJpiugXpDmiGS3jSUC/PsdHchrYUfqlF1prAylwi5WJZfUqlLnV/nSS36KxcSVhaZmkwQjB6GC+3WdvcTs1roe2U1fYsod0HXcCye9RVhNGG9YokU4JQK6qNRRLl0lzYT25pZrYc4KU/8dQPnY/+VSVouc55auNJ3vHQ27hu7AZ+ddf/ySduvw2Nprltg5vWfp6Vkx0ALr9llu0Nl2/++R+h1TFeNfttnLCGFa1y8s5pPvgnX2Q9z3m0P+Avjr6F65eOsPH6b0J11/cdN40GPPK5j3PywbvZfe3NPOu1P/8DgSDGaJZXPsL6+scxJkdKn927Po3nTf/Az9NPu/zVf/5dAu+lpIUWM892OHX2GI7jYozmxiuuZPHMaZ6+9xvIXhNhDLbS2Cha49PMPuskuy75NXZO34AQAq003/rIA9xcfhcj3ZP8ydTr+ODMm3nTt/t8Me0yOl3kt168l5naP94n9/8Wxhj0mQ6mmWDWI9qHN1g3mk8Rcy+KLoZXAG+TIR42FB2cl29HjgcYY7j/9iMsH1rl+W+5iM7Df4P/hx9DSXjL220q9Rnevu8/cWe2lc+1uvyHkTItZXhi7Sx/e+id1DonWBn1iR1NvuPllC7+3e/ZrVxaWuDzn78Dz/OIouH5ZFk2Sg2bbX0l2ZdtYaea4Omqz8e3B7Rczc445j0HNayfwR7ZiZDDRt512jy9+jWWescJRYFMCFITI4XLajDGyC1vYLEvuOWalF998O1Y0ua3Gr/PuS8qhCWYMxlfKGZUzlO8XqB9PnV9mf76APtkDwFc0Aj4o+Im9lcfwd35YyAEUSHic+1PwvI60rbxaxPMeyGPvfhV/OaxD7L/6jcS3Pk2LNtFpQOO5NNUD6/Qf9JD+prKL2Uc2iVJ8PjjZRgkFi/MBHc6mn1JzPvlLPG+1+Nc8JPfk0yoPGfh499gpFllPZpnNJghNTGuKeBcO4U50MS+eZrBrMen//5LbK6v4hjF6bEZRvdcxH/au5u1hXmefvopTp06gcTCpDbKGmBlIQ6Cyy7+Am1rCA/Yev8Cfz3/Mh7ddTOv1RZXYVNEE8rhTsmy0NwuM77dsFjfJ3Fbf4qdnsItvpz63F/zx/89pv4/PgkTuwE48Ld/xcmHv02/uUpQG+Xyl/0s2y7fzxNfWaQ6WaB5rs+Zx5oYbSiUHJCQxQohBVmkcAOL6kRIqeFRmwqfSdysH1LWay0/Tvlrv4LsLpDN3ICz8G2E0QwufSPRJT+HCcf/P11r/yvi3xO0f3n8ze3X0lYBo7pDI1wjcYbFBssb23H8DnVvE5NaGFuTJgGWERTcHpklIZcoaeNbA3Lpsba2lenwKGkQYkceiA16IqSfVhj3Vsg9jVIOKRJpGXylhvQz4bF09hrqUwdwLUWSepxa2UvgdtgyOk8aC1y/D3mAZWKsIKbZmcS1EiYHTToNi1QFxDLBiy2WoklmR04zEJICGmkcpMiwU4Oyh1iJQVagqUaYdJso42LJPrYBY7kInSAkpHmIoI9ta1JKKDkg7xtmspSe7YAtgDJadjA4CMtF5V0SApxEkSsfUUiwRMxmayul6iIb6Thj7mCIDbcMiegTKoOU4vwiNSXTLlEu8VC4MsU1moEqcHr1EkqFDSaq81h2wurmNsbCJYTISBwPKRIGAhxVAKVpdSbJLI3JbSqN0whpCDUY7YLIkTrHMpKucfHwCdUmxlgoa+iJlELSbu3DmjyIURAKaC1dheM3USOn2NzYxqjbohi0cPuGjlMg1x7FQoeB8bBMhCdBJJLc1sRxhZLXJZM2SoRIBlSiPrEraaV1Nja3MDN5mDwroZOANBohqJ/CImGltY2Cn1JzlvFiQRxkLHWncW2ol85hlCQzZVwrZZBBX/qUnB5OmuIaA3L4vSsH7AxiXca2YrBThIbM2PgqBwyt9j66vVFKEwfoxiMEbkLNisAa0OrsxK6s4FgxcXM7QTBHZmlix2BbMa4qoHOBLy20tkjjDBH0cTMHIXI60SjCHfbkOV4bRwuEmyJwESQkiccgGsGv9ji3cCHSbePbCQJDODJPRRm67RnWlYPlxcyWF7AyxXI2gi0dHCsldzqoqMCojDCOg9srEnkDVrq78NwOcbjImJXhpYbckWS9EjEucV6gWm3iDgYYz7DW2wqZxfjoaZQZugj70iFUin4GqVEUCprW+nbGRtaxjUJJgTTRsCc1hViP0HMTlNunmNjY0sUzCR0KzK3uZKq0QChzKEQY49PdHGFtUGOqfIpieZPV9jRFp0/JUZxrTzJWOX0ecuHgSImdC5Y6Y9Sr81iOizGGdKhoxiVF5BLlGKx8yNkwriZJg+GOq8zRWtC3BFKAFQ+rZpI0IEgjNCViHwp2i0xpMg1VrenLMpyH+Nh2Qoamm4SYjTGkbzE6coygryBzWJdTBKVVrDhFeRZSlzC5RHnQlzEuMVYO0tJ0umPY/oBARNjkYAmEgjQVrOgxstxnW+UsRkDc3knmDbD8FUKjsWKLVVEk9Np4KmSxM0G/X6VqW7hS49QPIo3CdnPizKM1qFDWLnFuU6ssstHeggDGRlZB9EGAGpTxxIAUTeJASeshEAfBelRnIx5jV+MQQjA8PzTItEwkXZajImP+Opmf4ScSnz5tRvDtmJtedeiHzkf/ahK0zWSDt377jWymm0ghuf3Zd/BXd9xOnES4vsf4+nXkA4PR4BYsXlR3Sdod/n7+D3jdtsdxp66lvPF1Vg7Vueflv8N/nr2Agdbsled4l3oHV83tpHTucbo3/lfSPa/6gWP4xp/9HvNPPoblOkxccDE3v+XXvu81xmjSdIFu90GWlj+EMTFhcAWzs/8Vx/l++e3ixhk+/IkPs3/1pzCVHv5Ih3Z0lr5OEVlCMHcMaTQbXoO1xiX80pdvQwAPXrmTpV0XY4yNt7PAG1/8VowxLJ/r8Xi7R+Nr7+Il9l30rIBX7/sQNzwwydaix55rJ9h2WeP7xvEvCWOG1K4//NYpPv/kEr1UMYvgF9DcRPm7VKmqCzNF5J4K3/r0Qbbd/ccsXlhgIT/KDQeGCOXP/uJe3vzTH+XpBN67sMpypnjfllE+t9llZulePnjw3dh5TG7Bo1fOMLb3g5RK12KMIYoG3HnnlzHGsLg4/8z4pqa20Gw2UZmi7pW4eK3OVmuaxegMn7lwC2blMG9ZqRG4VYQbnidJWXRFxBFOY058nT2HD+HMzCJvfCuL504zr0+yunFySDsy33WdCCRYNSK/QO5PU1VXkwsLD8HDbs7dYUZlr8fLLpzmE/0EB/iZ3OVz951jM8oQwJ7+Eu8vSnobHbZVL8UYTUe1WN3R5cKXvYTo3BOU7/0VyAaU8gH3NJ7Fze3HmT/6bJqXPBfvLz5GfzTk8utO4LiKTsnh2I4inZJFspDxl1mJI4585nupuBX+94t+levGb2Cud4YdpV3PPHjQywPO3fsQ3rGUuf4RLh65DrXFI3VzwnmwX7INubvCY08+xgP33UMzKDLSa9PzQ7Ze93xeuXsXDrC4eI6gEPKtb3yTpdWz508csIWm1jjN9m2Pce70ftyvx3xo++vIbJcEyatXT/CmYBqvNM53AAtz0vCeXU+wZt2GQWLZP8Yvf/Ygn7txlg+KjPprfg/kcAfszGMPcu//+DA6z5C2zWU//houfsHL0Nqwca5HZy2mv5mQJYqlY22idopWhkLZoTYVsni0Rbnh099MULmhOOJRnQoY3VZiZCqkMhFgO98V6rhnvkrw6B9jrR9BGIWREiyP3rX/GeOWyGZvxLjf6yn8UcW/5QTtAx/4AE888QRCCN797nezf//+Z35333338aEPfQjLsrjhhht461vf+n1/f+/tFxM5OaHIwD4vnpWQJj6eSJGWRlmSsKPI/OGCwVhD1LqVC9R555iyBMYCKwdUdejYcTYhkygc6psxnbpAW0Pqs7Jh2OE/nGPcnkHiYWyHTPY5u7yfcmmFamUNf6BJwiFo7zsONm1D2Da4PUFrEpQFXgS2gn5BYGxBX0ItUuSOwO8P6YbJdwpAcot+FBJWuuRJCel1h4CABPLAwko0mRtgpwOUAwkBXhbjxxrlC0qbhkFZDkXSCrRtIygCHTBDhLW2zgtxDSy2tjNaOUtqC9y0hCe7ZM4QYuDFwwb63JXYfYsocLBNRDDQpJ7AyiB2LI4uXcWIv8oeeYp+YJN6AlvnOLEm9YfuNOUAapiskVqoQOE2JakyuCUNyiIOLWyTYeQQxpgbC5HbuCLBaEniuPg6Jju/+Z64YOcGLIE1ZF6wISGwIRgY7Az8SLDZ4DvQSIwZvrcAckCIYQmonUHuDhd04vz5JlMwsUPXVCiW10nTCr5s4+SQ22AlkoFfHPY42ptYWpN4oLREZyHltIvUQwKk8jS2lizYMJrkuEaQBAKMRBiNnWmUK9G2RGuNkZKeA8VYYRuBHRsy6ZHlHrLUodCFuCKwY4nbA1VQDEILK4fKOvTqGmVBfN4G4QiJBPz+UK/stQV5WTEoCezUkOQ+tpLktovjtM7zdr5LXpTooePOWAx0EZsBzd40k8EZtGNwM0PmCBIHMiOpZENRvMkMyhteT1lq2LKY05y1EJnEjYuYniQKXZJCQup2qaBx4uF3IYzE6CEB83zujgDiVoVMOhSr61iZREhInOEY/a5BZoZBVZ4HenoYkZH5UN5QSA29isBgEQkP48RYUQnba2OnDDHstsKLwCibODQIqSm2DL2ahZ2BQSMjjzjMsKSm360xIlvkhaEHMLdDgo4iCVKk0SgHpJLI7DyRM4Hc06TBEMBqJwwfCMnzKgnr/P0uAxwotTWZJ3CS8/BJHBIXWqHGOf//KWTmmTWF0M+Y7lAM703G8bB0gpUZcg+EkkglcFKFkYI4BK87Suo79Kwujt2lsqlxMuiXBcq2sLTmOywmO5HYmaKnimyqEab8OZKieOY+bZ+v7BeZIQuGKyEr8dhMStjk+J7BFhluHGMsRRKKZ65PPzLklgUoljd3gKWZKs7jRTmJJ7EyiSpoCj1DUhAoe3hMN5GkbcNy0WGsnA6Lz/LhmlFmPpiQlkwZDCqUa2t4WU5pU9EteShd4IbXP/pD57MfeYL2gQP/hSsbV2Nh8d8O/d+U0hJvn/wVDh94ik29gZM5BN4Wauf2smd7iSMnutRtuLbs8NTGAzzefpDXzh5kZ2GdleNbWFia4E2//SF2ew539yLeYT7AjeUalx44h9U8gky7bLzu6+jK1h84zpMP3cv9t38UrXJGprdx4U0vZcdV136f/ytJ5jl+4qfxvZ0MohM4Tp1a9Rbq9VfjOMMEKUtimnOnuPuTH6HXcgjD15DIPqL9BYpTRVbKY2ijueSSyxnduZ+zbcUX//Jz/Ob9f0Fm2Tz56iKnxc3Dm1Mx4unpMzz95M+Sa5gVFq/gEG/z3k/PKvDWC36DnU/uYGrTYmQ6pFB0ufLlW/HCH94r949FpjS/+MnHuXFXg088co5eFvEf3A6/kMwiLYkVuLCjguhmmNMd2sZwYP4k+576GFljLzpMKR1/DON71H7n95GXX8FckvKtzoC/a/eYcC1Obs7xyVP/F7uWniC3h+6PU5fcTLbzA6RZxv3330O7vUmWZRSLJbrdzjM3g0v2Xo1qu8jBgMsWAxxhI5Asp4usBAUuUCUKxgat0CriUHKQUzWLlhyw/9GH2HnqFM4llxLc+mY4GpJ1UvTOMqUf38b9n36ahaePkUWLqHwRky0AMeAAgg27yGe2vIKSktziVHlkt89TW120FNQswa9MjvLyaglLCIwxHFhoc/u3DtA49ikmm20ymbNb7uKq4rORlWmEtJFlw1j6NszUBGblIL+0992syipecYQ3/P3X2fW1O/EaPjwv5j6u4DV8GZ9hj2hUrHNsV4l2zacw/m4+t/gw9y5/i3bWAoZoVyksfvmiXyWwA0pOmatHnzVMeO97lMp9CqVzMpNQsIpYjktuMgo3bce6tMH6+hpf/do/0NxoMrBsgixhMyzzquuuZ+vWnRRdB2MMa2urPH34EEePPo3KFJochMa2B4RBm+nWHEeTyzi4XGOuMslaocJsf51fnz/E7sY+8vIEHSfgiZEj/MHkX5wXuzqE+TZScZxp/3pecenbeKUTocozrJ85QZbG3H3bH5JGfaRtc/VP/Qy7r70Z+QN8fUk/o70aEVQ92isDjt+/wsa5PnmqsRyJzvV3PbYGgorDyHSR8phPY7ZEdbxAqfs4hcc/ijv3DXShTrznp5CDVbyTX2Zw5dvJxi8jn7wKrB9dL9W/1QTtoYce4rbbbuOjH/0oJ06c4F3vehd33HHHM7+/5ZZbuO222xgfH+fWW2/lfe97H7t2fW9FxdFPX0XHa6Fzhd81RCULJ4OkoHFTiczBj22MUih3SD6UysOYhGJfklo2USVFahgEEj/S2MkUMhdElVUslZGEktElWJsUSGUwZkh99PKh5NUZgJ9C5mpy30OqDL8zZGdkLggp0IkhLQ29ZbkDRkNjSZMQYNyYqKYptG2UbUgKIO3hcaSWGGVTb6YkxiF3NFFNYZ+XHgthCNZtOmMaGQuMp3BzyUjLolnOkMoglU3uGoxRCMsnszP2HrNZnvboiz55AbyuS+5WMd4q2lgoR+H1QSaCvCTJLAVS4vcNpZULSCpHaY1YeJHCEsPEcXJZsNawQIOnBIVE0/E0sW1j5YLe5gTj3mkqmyXaEym5UkihiJ3hQsrAEHUtzktvlQUiJWhJwlZGWnBJKoZMgnL1UHBsJF5fY2cS10CvKDAKgkTQKw0XpcMFuyZ3wOvbYBzSMMPvpvQKHvUVa0glLBjKqzYrdQmFhMQDkYWUul200CjbBnK0a5M6Aj8xKA3S5NixTXd06L7y2gJtaeKKxk5gZODQZxp0Shws4RiJE6fk2sa2clLPxxkoCrmkVxMktsLvQ1YYkucSCZbI8QeCkQVNb0TQq9hMzOWszQoS1yAyiUwNtgYvHZ5fraokzHJSx0IJmFowpKHFZsFQyjTFviBybAa+IiloLKNQlkBkNiMrmtgXeEYxKEuEHibydl5gUBy677xeTFqwicIcW4FyodAShGtDyH0/0FCDVFpUexlKpPhdh9RR9Ko2QaaxYps8UOQockuiCg6FxOBv5LTGHawko9SDXEG/EOAMJMlYByuD0UWH5ijYUqNtQ21e05yySF2BrTRuDtoMFQ6OgdgbCsq1BdVN8GPJyugwuQh6BqkM/Ypk+pSgP2JYK7sYN8XPh/h+PxFsVHNKyxJHCDbGFX4scdqCHEFeMpQ7PqqYkEtJKsDYKUpIhBK4HYMrczLHxkhNaTMgcjP6dYWV6yEoFBuEiztIEEaRekMUfmNJkrvQHIVi0ybzDXEFhDLIyAMTUewOUfDGGLSfUYgtehVQloZsmMzYqcGPIAkE2tVDeE9mQNj4ObRrGisdahZyBwo9QAoqqzaZk9OuG4KOoj1uY6UCQU6xI7GUol2ykC6ITJG5Fk4KxT4MCpIsMKAUdiLPu3E1Tm6TCk0jCcl0n14Ilhri/O1Ek5UtrAiUo4ZwTKHJzRCoauU2MjU4Nmgp6QoH7eQ4IqeyYpEEIJ2hOoVYIC2LyMkI+lDtwVwyweJUk8lKjpMYCj2NI8oMChF+L2cQShLLRjsaN1XMHs+Zny6QeD7Pff2BHzqn/UgTtIX+Of7y2Mc40HyUjXSDqlvjVas/SSksccI+wenNk8x2t3HT4NnsMXW+2s7JgZvqLqfTRbZkv8GxdoNXzh4ibpWY/0rI7/3+x3ggLNNUmhc6p/i59NfZtfN2Am87Iukw8onnIlTGxuvvQZe3/MCxaqV44suf5cjdXyGLBnhhkate9QZm9l+FWwieeV0cn2Jp6YMMosP43g76g0cBQd66kLP3GrqLQ/GlsB28MCTPr8NydhE7PcZ3VyhPKQ4cvn84cUrJBRdcyB1nHaYOH+TKM49xxeox7nn1LjqFXSRJkZiEQ2GXs5bPy3bdyFuuuh7baA5/+894/uHfwQBfit/CWvoSVK6xXYsdVzRACC55wQ8uw/yf4+8OLXOuFfPw2U2eXO4Seopd7gbv741T1iHGEjg3T2NdVGc1WeHRxUd56u8Wuf7RVbaf/Qfa47uor59FOAHBtb+McEvg+PRtuHuLw1qY0q4+xutan2TP2aNIIThXK/LI4GaCnS9hbnGD9fXVZ24MrushpSSOIwBK1hi7q3uZiX2KqwN86aLNEO8sviNvNBqddjlx+tMcuHA7sWOjdEbQ7/Nct0j5+pfRkzU2jnVpn2xTloJ1IehnQ5StVsNLwi5YnKtKjrT6WE7CXLpJ6sCaUyebLjLZnmfpqn0YYVFINdcdOMIlBz+LpVPcICSsNbBcl+biGfIkJfY1B3cndAmYXdHc9Ljm0k6T4Mb3IAs1hADLWWOk+hFWRn6M5Y/cwcByGdvc4JGbLubW8Xv4+uyPM+1N8aUzPlend3O9eJTcl9hpghZwantIa2Y/W7a9nzZF7jr3Fe5auJP5wVl8q0CiYi6vX8Uv7vmP/Pbj72FHaRcv4AYufaCBl1jDp4dG08ta+HaId8kk7s0zGFtw6NATPPDQfUQIukJiOS537rqUarHE/zFa5rnj488k0Hme01qKeOixbzG3eBKlM4QcosAtFEkq6doBj/en8CxFX/g8b/EIL557lMXJ5+Dv3cIj5WN8bbRLVz+AFCFGWGjp8raFcT5/9Zt592iJS6yU46dWSXodjtz9VdJoAMbQ2LaTa37qZymP/ePEVYA0ykmjHCEFJx9eY+Ncj41zfbQ21GdCmnP94VPG7PxTw5LD+KzDlHuILZufpZYdQhRKyMEqQiUYO6D/nHeRV3YMkzU3/Cdde/9/xb/VBO0P/uAPmJqa4tWvfjUAL3rRi/jsZz9LsVhkfn6ed77znXzqU58C4CMf+QjFYpE3vOEN3/Me+V3vZ3ntK6zJLqWlOkmlh7I8crmO63p4acB4PosZrNCsPYs0f4RKvgM9dSlm8wyZU0CJhyimHs10ASePSHONRYEs3EI51jQbEdtXbNbcTYznEesBiISKrJE0NTpNmBEOmUpwJvagTIhMWmw6x4gLIXZhivJSmzMjbfxI46ZbaY5fjmxCaL6FTUZ/rY5rJfhZm/6YQhQ6+O40VisirxQpzg93FzrugNRepuBM0XcU5Y0lGpO30Nl8mKqps8IxhHEoJbswluBEr8CuXTvZaC/R9xbxVZOk4HJBZxLtZsz1JEKcAZXSLRSpBz5+qrGcEqvZPjTHKTo5sVQIc5qR/iRhs0OnUmIh7NDouwTeKMtehz32hcwVTxImRYpphTQ+Qt/by8raEcLKGOXaKJXjj2LMJLkfoa94E8tPfIy8n1OtOXTc04xtlqjUL2W9mGL6LeTmMfq1bdSWl+mUJ2goWJ5sELZOIfwxsmiEIAtw26dolSOMF5KcU5ipIgUUzXCVQmbROJOTBznVYIYoyvC2XMG5E18lnSwxZV+PPPkV+pMt6h2w9QhZeYR1a4ks30IgFmhHClPdRi9ts7NxAXbpMjYf/QpqTCLVSYQOUIOM4o5riBYXSXVGbEdYYpNqGhHmO9Cxw9rkJZSb91Ny1tB9gckD1pwttLXmorBDvxrSUydxeg6l6uWsO+foahuxeJadsYulE1qNAmG/SKerqE8GLFe7pK02od2gHHWJKgVsexsb80ewrQKq0EdPv4ZEbacyErOx8OdcuDhAGpsMm9hv0tx2A7pzCMvqo3XGaGcbG8vncG2LfuP52N5BRN5FjmzHbw4o61XyxEfXfOb1PEJewPjIFtrrx2mcXmRV1Vmf3seW4mEanQFd61JE/wRCSGy7zXJ5C0JoqoGkO3cW6bRRBZvSznfgHf4i8fIabmMcB8Vg0CItb+L2HDxdY22mRHmjQ8AIG1WNF1jYskx47AnS2ixxrQChjWmehLiD2wrY3KoRqU1lM2KjYRihzmL/eeThNyhk+wg2n0BMCjyxk/rCIrYfcFCnSFtQCj02SwG1tE+WnWP2eJdOeAHpeJOBB3JlgKM90lmP2Y0SSXk/onExc2e+RGjWyOQu0sLThK2Y7tIUlWIHYyfYZgvKEbSLCXKwjBq16AtD2WoQ6iqicxaRD9DZBLZ/Cf2NZeT4IlmtQ3EgScf3E6wcxaleTnUzZlAeJz31APbmBqZewe0O6JR3ozbmSKxNokadirwcZ+2bdOU4vreIbns4foFOzUZ6GbbeSWSaFPs9hLWOKAd4qkDZvhS5eoj1ribfGuKoMxjLYUn3KIkSO+Mp1iZn8Pxx5o98iVogwBmHrEU/9VFVid2ax7bKDLRH4K7iOmOkHYvtCDq5pH3hi8k738TrueSyiS3adB0XEdVBr4Ozid3LkIziOxfRtM8yYmJKwTRzos/A0ajIpq4HBEmE1H1sJsmSBC8YkBdncBaXWS6+hEZ2ko3yMUyhhehlTKS7MPveQvPBv8CNV/Gu/DHWRYS99HWK+TVs6T9FrzrNRtxi7y98/ofOaT+yBO0LZz/HNxe/xsHNJxAIfmLrT/Kzyy/ny8F9LDw5h9Yaxzi8KrqOhgl5IFasJYatFZu88QjXtj+EyRWj3oAz8ZWkf7uAvOJa7nnv+/ithTX2yjO8U/06u3b8OcXw0uFBdU7t49dj9RYwTkD7FX9FPrb/h4wYVJbx2N9+huP33EWeJghpcf3Pv42otcH2q59LnmYcu+ertDfvwx55muJ0E4HBYJA2ZJ0aYelyKo2tNEZ/jr/5jV8jTQ3YV2N5F9OvrfPCV17J8eMHOHb8CKVSmTiJsW2HTFR40e0foRDHfGH/tWTPCpGDIkpZZCLnxMQp3v1jv8lStMRNu27g8UfZSTpiAAAgAElEQVTv5JKvvYkg75MJmzPbXsN9R24lSzRZogirHl5gM7Wnyt4bJjEapDVcTM9tRvzJvadphC5fOLhEnA9PievG5vmN9R0E2kej6ey2uGffYdbSNe48+xV2zV3Ds04/h/2HPk4YLWJdfRnOgw+CbeNcdCnyF9/DB+M+e042uSl7lO74A0TJGWaXOtipzR3cAtLQ18NFmeu47Ni6i9WNFVqtTTzXw80l7bzPVrWFfckMFekRmO+W8SmT852f8s4Cq4MTHKxlLFSGPVBSDx1F5Wg3djQFWjyzQ/KdsG3B6M4yjmdRmwqIRxz+y72nWOolWBKE6XHV5ALfKl0xLJkYK8L5niUR9RhZ+wxvePhGPFXAGI0tDpN1HsCo4XZ3amscJYm8nENbO1xzrE5WGuOz1RfynNMHGBu0eMXCE4SX/wzO+MWobB29fAzdWSI7/VU+8Yqf5OMveBUvrBR5vB/zmZ3TRFrz9b/7GzpLc+yoCm6Uf8/UxlEyR2JnmuaIy+aua5E7X0el9hIGecSjzYd5YPXbPLz2IN20Q2YyHOlQ80ZoRk2u7e6nYhe58eld7PUvQyBppauspHPse9lPYF8xSpZlPPLIAzz11BOooEjW2aRVKNIKSnz9omt4qY545ewMl5RLeOd3sbTWPP3gGY4dfgy/eB+rg4De4LviaWMgMg5rKqBiJSz2Aq5bOoXlGx6o7GPuok+jLJuW1cE4O3DSY4zp7RybejMTagRV9PlvVodZt879X/kkAAuHn8BohV+qcOHzX8ye574QN/jnJ0rGGM4d2iTPFGunu5x9somUEqPNM4k8gBCKqrNK0SxSCzYZLSwwkd1P0e2gJ/ejylvpXfeb4Ff+2WP458a/1QTtve99L8973vN4wQteAMCtt97K+9//frZv385jjz3Gbbfdxoc//GEA7rjjDubn53nHO97xPe+hO8uk3WV0OEWuXRAJZmOZ5WP3MDUzhTN5OZYsQB5DdQYTtel1exSqDWx3uGuq22eRgxbUtmHsgF57iWj9ONXGFtzSDLk02LmC5kkY30e3u0rUPUhj4gaSxeN4EzsRvTXSzipefRZKw4cMWbqOUAq73wYgL9XZXFuhEE5SrA+rNtKkiTCKfislWjnD1PQofTzS5GnKchJrc45867WIqEXuNmg31xDt+6jvex15bxUZr2ON7ACvDCqju3QEp3uWQeJSu+AaYiXxXUlns0NQL6Eyg+v7yDwHy8UISX99jnz1GLpWxeQnqNsXgFako/vJ9SauUshglP7qMVxvFJIuvUgh5Ca1yiypyukkG4yWJ4nFAHf1NHLqKpTJcIvjRIvHcEe30+kcIBR18Bq0508ysvtS+ptNtBGUZI+UCNsZQYajsH4M7RbJjn8LLriWhZOn2bL1QrxiGWP7iOZx/p/27jxMqvJO9Pj3rLV39VLVKw3dNJuIIBEXBEUFXGJMhpgETTqP49W4QXBcBtHxERIn4oK5M8E8idcthpiricOMZPQSr0+E6AhEFpGWrdmappveu/btLO/9o6CVQBpMGLubez7/9NNV3VW/3+89p+q857znfe1AGNlVBGYWEBjpOGrPblL+OrJmgmDJcDLJLlItWwmWT0QLliFlo0hdjYjwWZi2QFEV0HyYu/9AztyPEhyF21WWb0PNQzKewuvVEDv+EzF6JmkriU8PIrmLIdYKVg5T9SMkDbVnB1LZ2WRzFrrXTzLeAZaBlNiPJ1CDLAm64hIlBSpST2N+Bt+q88ipQcxsBq9bAcvAVn2I2EEUVwDD7UYIibbG9QyrGIvctQuCw8C2ME0LtXgYOcVGS6UxOveSCY7GV1KEnE3T3fAeetVE3OFh6O78fe6mkaKj4VXKqi7GUrwI1YvLipLz+lFzBjmRwkq0ovjH07rmNcqnzEL1FqIqAgsDPIXIkS7kwipS7QfwJ/aQCZ1DRqgEw1XEuzrRonsw9GI85SNRzASSrJI42IAnUIjwhpAUlVgsTkFpiERiD4mmLKW5Bqg5Hy00ARFtpXXHx5SfOx1F95BJpUgnG3FFUuhV41F9hZi9rahFVVh2vu11K4clZEj3gr8UoWhgWVjZJLaQkUUCWfOCLdO2r4HSkSNRvRUkI71EO9oIuLK43DZqyVkoHTsRug+Cw/P7iDBJJSPoLh1V0pA6d2KXTULOxRG6h5bdWykLulE8XuRgzZF7yCXsTAxZ92AYNplEOy6RQEODYDVSsg07UI3dtYesC4TqweUuIpttw2NpKAXl9PT+iSIzTNpViTdYiJnNkMtFkFrfRQ1NQg6OQMmmwBv6dB3Q7kbiiSxuTUIoGroCpjuEuu9txLjrkCSJbFczeENI2S4soaMXV2HlokSjTbg8FWSSnRQV12B27UQvHoHkLkRWXJDsIm2qeHQBiQ7MTCcZ31n4fDqSoudvZ5BV0uk2kEw8nmpEogMjl4ZsGsPIonhlbCuJyz0C0y2h62FEKkJbUzOV48/FMCJI6SSSN0QisoGgVoPwV9Lb3kKwLAx71yKXTcL2hbFyCbRUO1JRHWa8k5yeIZuJ4HGNQNNddLVtpWzYxXD4o/x6hgVVEG0m6x+BK9uBoSnYQkKXNSTFg/CGSEZ68RUUIKkaQliQ7kHyhKCjAREYRrqrlWDdX+6DDFgH7b/a/0h7uo0a30jGNQ9DWtPGy/q7GJJJl7uDokwxPrfG2M4rMEvcdB1MUlLtZXv2P3mQnxPPqoTcaZoTYZJvaqz4+rf57ZVfJSMs7ne9yTmZX1AQuJyamv95bMLJDuRUJ0X/9jUQJkL1kh15FelJt2GVjDvhArVCCBrXrWXLqv9NNhE77nlZ1fAUBBk97TKqz6uioGgy8fgHtB5+DGHnsOz8F6ptKqQ6ddKHbqdr/xggv+MZSoaeiXvJpnTckTYkwJBUrNYk45r2UqyncR2O8MKXr2KsHkE1fYDAUNM0hBroLUgyvmgCJa4QZR2C7+3+ObptkFACuGzB1tTX2Ja4ipzw93XMkpLN70M27gKdHZ0JfAJGeFTSaZslyJSi4kIlLWf59/AaXi16C0vKT1saSlcxsek8zm4ZRSB2kNrOP+KLHEQqKECoGvtuuYPHq6uojW5knP8jypsSJLoqceVMOghhoaJjoMsuvGYAr62Tlg2+kjuPg3I3BgYhO4AbD/rR9dc/s5UKBIZlsKOrEUyIFKhELT+RwsPYqoGlpvOzUAoFb6oab6oKWVJQFJliTSJgCryKoOyaERTIEvYIH6/s7OT1ra2U+DRiVgTb3UthJsaO8onkLBW/EidWmT9Q0iSJKwI+7iorolRSWPn+NrZv/ClV3VEKUlp+RkYZZCGRdpnsrUyzd2SaErWQSw+U4juUxWV0kzJUOqVCNgfPxZWC+za/ToGkoAy7ENf4r6EoOjksMlKMpoIeVvlT7HZ5aSsbTkGojLEyLCry8uv310LLQa5mLVW+GMOTjSR9Gqoh0HMm7aUuEqUjUUbfjK/s75BlD/vie1nX/j5r2v7Agfg+/GqAs4vPYUfkE9xZjUdT9xI+6EKzVYSUvy9mS2QtyvAiJk6/BtfYMLt372T9+vdJp1MIIOL1k9LdlMV6aCouxz+8lli4gqtDRVxdWACAadh0t+wjldtA08E36Y27SaUKSaYKiWd8uD6z+1lAIgMpTyNbhu3CnfMgyyo9nm5MtQr0yZRZY7DoZFJ2BhKCVLGLK1rTFGc6iHZ8SHvTDkwjBwg8wSJqzruYs2deizf4t61vZuQsupoSZOI5Dm3vxciY+Es8NG/rQsbCMD4dYqlgIGOi6RYBdxK/dYBhtTL+qlJcIyehVIw+4aREf63/XztoDz/8MJdddllfB+3GG29k6dKl1NTUsGnTJl588cVjOmiHDh3innvuOeY1DMMasrU7kaG8LZzImZTPmZQLnFn5nEm5gJPPYNbfd96AddCyL++AuJkfDGzDQb/KDmkbv/O+xYToBKZOuZSp7Rv5jy0TSRsuXFKc5oL/y8XKdmZrHyFJEk1t5bzCTF786rfz44kx+a54npm8g893PiNr/9dfPPDxvfcD9KZ3UOItIExs28YqrGNX0d+xvyVBNGGQ7OnEyBnYQmCmj8aeH39q2xayqmIbBoqm4ykIYhkGYy+9inDtKGKuEoZXleJWZT7a/zt89m/IZHYjbCN/9t300Nt4OT27rkbYKraWQuQ89BbuJOWN4RH5mazGn3UODR9u45zdW8AW+BJJDqse3pl4AX5NociVwatmiXo7+UQ/SIenh6zqZQZnM79tA+FcD4VmDBUbA5VVYgbRbAXvU85ucS73SF5ahWCMJKhBxkf+nrU/eRv4t6I/MmHUBazq/C2+eDHjuy5icmMZ5e2fUNa9BXc6f8UwU1zCxnse4KPOPYS6uvD4o9gJD4blBiR0kcNEw5byV7p8qodQsJTCnIfJUh2JSBpPzkb9zJWxzzq6gcqSRJoc7UQ4rPQSsL18rB0gJ5mY5K+4mpJBIcWM89VSV12D7nMhtyShLYXIWgDsLVR5VTGwQm7W9iaQIj2U+jppqptAwbZWomMqMEJHrpJJ+QhGajbV7gA3FxdQfmgPh7ZvJRLvpH33dkQ8jTjSgzw0UmJbcTvVXW56i4PURC+hvWAfo3vHcEm2lTGuLYS1fbhFL6nDLnoP+El3uzAyEptLx7KhagLX7F9HSTpCUaAafdRstPB4JFnGEjaSJNFhRmjK7CaWbubDMh8mNrXtzQgEKZeXkVovMwr3MFJuRsLG0BQENrohSHoVMi4Nw19MavRXcFXOQfKPZXdsF1u6NvJ++1qaEgcwbAO37GGWcgln7Q9R11lGlasW+chd7wYGCVeWiDtC2Tnj2B5p4kBnExnTIJtKYkkypqygWQbd/iDx4XX8ITwcTZIY4dIYoavcPCxMsOUlEp0Bktl/R/XuwTAVDjSfQ0eugMb28YyUYkiAJVkcCBzAbboozBTyQeVHxPVeBCaWUoqhj8UjPAQsLynvRNoCNZwTFfxwW4YPzI8pb9tNR3w/tshvA6riori6huGTL6R01FiKqqpR1L/ufs0TyaZMDnzUSaKtFxKdtB+CTEbBEioCGZn8rKM2KiCQsFEki2Aggy+o4CqtpKimBH+JC3+RG5dXRZJPrRM3lL+8/pYO2vLlywmHw9xwww0AzJw5kzfeeAO/38+hQ4e47777eO211wB45plnKCwspL6+/pjXcDpog9uZlM+ZlAucWfmcSbmAk89gNig7aNbBOOabTXS6enlD/SMdZhRfzo8kSZwXnE6wtJzm97vIGS4KlWa+XvQQbiWJJSSakiFe8F3NKxfXk9N1XGS5XX6NGUqCTLKd4qJv4vdegLsgiMvrp3HdGnoOHcDIpDEyaYoqq0nHojR/vJFcKoFtmeSPxD8thS6ZyLJguDdKSUCisCjIyNFVGL4q7PLJtIgR7Fi7muZtm9FcbnxFJcQ62zDS6SOvItg68lr88VasVIK4qwi3rhLx2BSX9HJJwTpKy3qQVejdN5X4wdkgmQjDh5kpxMYgWbYRzRMhnvnM0CwBMhaV3c24O7PsGV1EQbYbTcjsDI5lY3Iso5QummUvulGOrBmMNkzuRSWXn0MILxXk55JyH3nJ/DDALnU1m7M7KOipQY0JSOUo7j2AJxPBm44jHzm4NWUZS1XpCoVoHl7N4coKDF0n3xkDXQhUZAKiiLOtQH4VdVFI0Pbhk1xI5O8vE0DWFmQEKJJE3LLYRTcBScWQssQx6JWipNUkQs1gy3ZfGWRJwkYgC4kCyUuZXUyNGcKnFZI0oMqWiKnQ7ZKpSZr8oURjo2xS1Wvwm/E+cp1pRpsm2+pcaIaBpIAiLJJuH65smpquw0zqaKIsm6FcVsgke0hHe8jGYgjARmApAs2S2FeV4IMJPYRiKr0+k0LZYmw2Cz3jEIkApakLCOcm9V0FlGyDcPc2ooEa/LFG2kSSg14/71WMI+lxc/X4UvZ1p4g0t7DoT7+irKcVb2A46oiL0comIumeI9srbDWTVMgKQUljtxlFsRIcSu2jI7GL0d4ShnlaqPG3U6x3IUntNLirqFNacWctkEAzIadA1O9GNwWdxaUkfWFchkRTuI4es4v2bIIdIkdRNkZt41SmRKeh1+wh0HEB5DRUOb+YuSUsInYXB/U4e+XDpDQLQ9if2bMkkrqLuMtD1O2lPVhC3O2hx1NAiS/HJGkLe5WLmSd+hTf3PkKoqCLCtsPn8N6BGbhs8FkWOjb7Cj/BcB8m4e4hq2QBHSGZ5Kf7BVCxlRAKFaS9daR9l+KyZKraGrn84914MjH0TAI5Hccmv10rqATdpXiDRRR4wggFCsurqBgxHlHtxR0uRLFVJI/yN13xkhLtyPvXEtu9C6Org1hC55PYZWREAAmBIbyI405U2MjY6J78RADYJmWlGYpGFIOnmKJKL4quofm9VIwoobc3eVqvyn1R/pYO2ubNm1m+fDkvvfQS27dv59FHH+275wzg2muv5dlnn6W8vJy5c+eybNkyamuPXfPS6aANbmdSPmdSLnBm5XMm5QJOPoPZoOygAeyK7OC+P32fymQlZZRzcd2lXDXhy/zw1QZCuxPEJEGVsobC6GZ8pEhbKq1ymI/Hnc+6L81gQjrOwsmTKD64h0w8wifv/CfRthbyKQkKK6uxTYtYRytCCGRVQ1YVsOz82lMFhQjLIhOPUnv+dELVI0ge3MaU8+pQd/4HettGNCMGIj+O2xAyWBky6OygjjEcpFcqpNUIMFluxBQypi2hY5EyFWwhYwqFjpyfaM5FqR7HpVikTB23YhLL6bQcWdSxR6mm9Nwm/FU9tPzXI7gKDyLnNHy9k7GxiWs9xNUovXoXQs6C9Gl3UjpyBFxgF2BLBhkphywkLElgC5uwCJCScghhoQhBkABlhpuIHcHMRbGNNEnZAtukIBHHcGlI2AhLRkgSrlyOYCKK7BMEqtLUuXoolg8jpPz8zqpk0parB/saqvT5xMVYOlz5xUL/j+9/kJYSXJBdQ1bSSMk6uz0h1vvPZnR6O9W5ZmwpfwVhrf989LSJnsugJiIUpJNYskRC95EQGiCwhYQkCfxaioTsRY+kCaW6aK6qJdjZRXm8jZTXjzedQBKCjNtLIB7F1DSaquoYtX87hmrSE/QyqrkDwdHZtPPVtKX8FLRSvgJIQNxjEvMaVPZ4yOg2PYEcnYVZegtyJL0m1T2Cu97xo5oWql6Au7stP248l9/eBZD0VRL3V9NTNI6MN0ypS+GAuwIjP9USAvoOySXEkfbNz+5W4E1iWjlcHTuwMylq968jJKuoobFIniKUojqUohEgbCTNc2SbkOjbtUX+9dLxw6TjLRSUjKEz2oRhZSkO1tCiZBjhiRLEQpXasUQQEHjV98nZtaD0kgxGMMyzkWnCyBl4zPFIagNIGiJXR1Lsp8tdShkWimgnrarkbJ29eytxFWVIpYowAkGQFYQsY0gWTVIHQpGPvSFQCBD52ZIsSSDL+RMSiplCyC5syUXUktluV3LILsFERrMznN/SyLnGLnaMjtFckgDZR0tBJ6ZsHJkj2EYcGVIsZDcCDdnuJRQJk/QMJxQTTNvaiytnI/PZUzVHSdiygiwsJCGQVTey5sVlClTVS0ak0SyQNA/FWjFul5/WdCseS8rPIqe7uHzE14kHLXqMKCPdVXSIKEHNh3dMKVLIjRTpQnM1YfeYENtKsqOXaFeWgNJFJBnkYGIMsuamLTGMrPAd2WKOdn8/81PK11E+skyAbQhkRcLlVckkDTS3gsunkU0a1H4pjEAw8kth/MUudq9r/7Rjd+SlkCTcPpXhE0vobU1iZC1Kaws4vDtCsjdH6cgABeG/be3Fo/7WafaXLVvGxo0bkSSJxYsXs337dgKBALNnz+bDDz9k2bJlAFx55ZXccsstx/2/00Eb3M6kfM6kXODMyudMygWcfAazv7qD5nA4HA6Hw+FwOByOL87xiwU5HA6Hw+FwOBwOh2NAOB00h8PhcDgcDofD4RgknA6aw+FwOBwOh8PhcAwS6ul+wccee4ytW7ciSRIPPfQQEyd+ugjbBx98wI9//GMUReHSSy9l3rx5p/vtz2j91Xb9+vX8+Mc/RpZlamtr+dGPfoQsO/3vU9VfbY96+umn+eijj1ixYsUARDh09Vfbw4cPc++992IYBuPHj+eHP/zhAEY69PRX21deeYVVq1YhyzITJkzgn/7pnwYw0sHvVD4DBqMnn3ySTZs2YZomt99+Oxs2bGDLli34fPnZf2+55RYuu+wyVq1axcsvv4wsy8ydO5dvfOMbAxz58RoaGrjrrrsYMWIEAGPGjOHWW29l4cKFWJZFOBzmqaeeQtf1QZ/Pb3/7W1atWtX3e0NDAxdeeCHRaBRVzR96PfDAA0yYMIHnn3+e1atXI0kS8+fPZ8aMGQMV9nF2797NXXfdxd///d9TX1/P4cOHT7k9DMNg0aJFtLa2oigKS5cupbq6etDl8+CDD2KaJqqq8tRTTxEOh5k+ffoxs7z+4he/wLbtQZ/Po48+esr7/2Brnz/PZcGCBfT29gIQiUQ499xzuffee7n66qsZM2YMAEVFRfzkJz8hHo9z3333EY/H8Xq9PP300xQWFg5YLqeFOI02bNggbrvtNiGEEI2NjeIb3/jGMc9fc801orW1VViWJebOnSsaGxtP59uf0U5W29mzZ4vDhw8LIYT4/ve/L9asWfOFxzhUnay2Rx+fO3euqK+v/6LDG9JOVtsFCxaIt99+WwghxJIlS0RLS8sXHuNQ1V9t4/G4uPzyy4VhGEIIIW6++WaxZcuWAYlzKDiVz4DBaN26deLWW28VQgjR09MjZsyYIRYtWiS2b99+zN8lk0lx5ZVXilgsJtLptLjqqqtEb2/vQITcrw0bNoh//ud/PuaxRYsWibfeeksIIcQTTzwhXnnllSGTz1EbNmwQS5YsEfX19SIajR7z3MGDB8WcOXNENpsV3d3dYvbs2cI0zQGK9FjJZFLU19eLhx9+WKxYsUII8fnaY+XKlWLJkiVCCCHWrFkj7r777gHLRYgT57Nw4ULx5ptvCiGE+NWvfiWeeOIJYdu2mDNnznH/PxTy+Tz7/2DK50S5fNaiRYvE1q1bxaFDh8Sdd9553PPLly8Xzz33nBAi345PPvnkf3vM/91O6yWWdevWMWvWLABGjRpFLBYjkUgA0NzcTDAYpKKiAlmWmTFjBuvWrTudb39G66+2ACtXrqS8vByA4uLivrMOjpM7WW0BHn/8ce65556BCG9I66+2tm2zadMmrrjiCgAWL15MZWXlgMU61PRXW03T0DSNVCqFaZqk02mCweBAhjuoncpnwGB0/vnn86//+q8ABINB0uk0sVjsuL/bunUr55xzDoFAALfbzZQpU9i8efMXHe5JJZPJ4x7bsGEDM2fOBPKLj69bt27I5HPUT3/6U+66666/mN8ll1yCrusUFxdTVVXFnj17BiDK4+m6znPPPUdpaWnfY5+nPdatW8fs2bMBmD59Ops2bRqQPI46UT6LFy/mqquuAvJXYyKRCKlUCsuyjvv/oZDPibaxodA+J8rlqH379hGPx5k4ceIJ84Nj22bWrFlnRP/itHbQurq6KCoq6vu9pKSEzs5OADo7OykuLu57LhQK9T3nOLn+agvg9/sB6Ojo4IMPPhhUQyQGu5PVduXKlVxwwQVUVVUNRHhDWn+17enpwe/385Of/IT6+nqefvrpT9duc5xUf7V1uVzMmzePWbNmccUVV3Duuecetyiz41Mn+wwYrBRFwev1AvkhdZdeeimZTIZnnnmG7373u9x///1EIhG6urqGxPdvKpVi06ZN3HrrrXznO99h/fr1pNNpdF0HIBwO09nZOWTyAfj444+pqKggHA6TSqX4wQ9+wLe//W2WLFlCNpsd1Lmoqorb7T7msc/THp99XFEUZFkml8t9cQn8mRPl4/V6URQFy7L49a9/zXXXXUcqlaK7u5sFCxZwww038Mtf/hJgSOSTTCZPef8fTPmcKJejfvnLX1JfXw/kPyP27dvHnXfeyQ033MBbb70FHNs2oVCIjo6OLybw/0an9R60Pz+4EkL0LXp6ogOvvgVRHSfVX22P6u7u5o477uCRRx455mDD0b/+ahuJRFi5ciUvvfQS7e3tAxHekHayz4T29nauv/56FixYwG233cbatWu57LLLBiDSoae/2iYSCZ599llWr16N3+/npptuYufOnYwbN24gQh30TuXzdTB75513eP3113nxxRdZv349o0aNora2lp/97GcsX76cSZMmHfP3gzW/cePGMW/ePGbOnMn+/fu5+eabMU2z7/mj7TSU2uv1119nzpw5ANx+++1MmzaNcDjMI488wiuvvDKkcoFjj9tO1h5DJTfLsli4cCEXXXQRU6dOJZFIcPfdd/O1r30NwzCor6/nS1/60pDI54Ybbjjl/X8o5JPL5di0aRNLliwBoKKignnz5nHttdfS29vLt771LaZMmXJMLoMxj7/Gab2CVlZWRldXV9/vHR0dhEKhEz7X3t5OOBw+nW9/RuuvtpA/IPve977H3XffzfTp0wcixCGrv9quX7+enp4evvOd7zB//nw++eQTHnvssYEKdcjpr7ZFRUVUVFQwfPhwFEVh6tSpNDY2DlSoQ05/td27dy/V1dUUFxej6zpTpkyhoaFhoEId9E72+TqYvffee/z85z/nueeeIxAIMHv27L6rpbNnz2bXrl0nzG8wfv/W1dX1DZ+rra0lFAoRi8XIZDJA/rihtLR0yOQD+SGBkydPBmDOnDmUlpYiSRKzZs06YdsM9mMjj8dzyu1RVlbWdzXQMAyEEGiaNiBx9+fBBx9kxIgRzJ8/H8iPSPrmN7+Jruv4fD6mTp3a11aDPZ/Ps/8PhXw+/PDDYyZsKisr47rrrkOWZUpKSpgwYQL79u07JpfBvg+dqtPaQZs2bRq///3vAdi+fTulpaV9Q++GDRtGIpHg0D2Bn6IAAAOqSURBVKFDmKbJu+++y7Rp007n25/R+qst5O+Ruummm5yhjX+F/mp79dVX89Zbb/Gb3/yGZ555hrPPPpuHHnpoIMMdUvqrraqqVFdXc+DAAQA++eQTZxje59Bfbauqqti7dy+ZTAYhBA0NDdTU1AxgtIPbyT5fB6t4PM6TTz7Js88+2zdj2R133EFrayuQ7xyMHj2aSZMmsW3bNmKxGMlkks2bNzNlypSBDP2EXn/99b7hZJ2dnXR3d/P1r3+9r23efvttLrnkkiGTT3t7Oz6fD13XsSyLm266qe/exqNtc9FFF7FmzRpyuRzt7e10dHQwatSoAY78L7v44otPuT2mTZvG6tWrAXj33Xe58MILBzL0E1q1ahWaprFgwYK+x3bt2sUDDzyAEALTNNm8eTOjR48eEvl8nv1/KOSzbdu2Y0Z+vPfeeyxbtgzID3fcuXMntbW1x+RydLsc6iRxmm/6WLZsGRs3bkSSJBYvXsz27dv7zup9+OGHfYW98sorueWWW07nW5/x/lJtp0+fzvnnn993lg7gK1/5CnPnzh3AaIeW/rbbow4dOsSDDz7oTLP/OfVX26amJhYvXkw2m2X06NEsWbLEWR7ic+ivtq+++iorV65EURQmT57MwoULBzrcQe3PazkUhoO+9tprLF++/JgTG9dffz0rVqzA6/Xi8XhYunQpJSUlrF69mhdeeAFJkqivr+erX/3qAEZ+YtFolPvvv59UKkUul2P+/PmcddZZPPDAA2SzWSorK1m6dCmapg2JfBoaGviXf/kXnn/+eQDeeOMNXn75ZTweD2VlZfzoRz/C4/GwYsUKfve73yFJEv/wD//A1KlTBzjyvIaGBp544glaWlpQVZWysjKWLVvGokWLTqk9LMvi4Ycf5sCBA+i6zuOPP05FRcWgyqe7uxuXy9V3Qqauro4lS5awdOlSNm3ahCzLXH755dx5551DIp8bb7yRF1544ZT2/8GUz4lyWb58OcuXL+e8887jy1/+MpAf8vjggw/S0tKCaZrceOONXH/99SSTSf7xH/+RSCRCQUEBTz31FIFAYEByOV1OewfN4XA4HA6Hw+FwOBx/HedUtcPhcDgcDofD4XAMEk4HzeFwOBwOh8PhcDgGCaeD5nA4HA6Hw+FwOByDhNNBczgcDofD4XA4HI5BwumgORwOh8PhcDgcDscg4XTQHA6Hw+FwOBwOh2OQcDpoDofD4XA4HA6HwzFIOB00h8PhcDgcDofD4Rgk/h96lwBJwg+xnwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WYxl2Vmo+a09niHmiByrsrJmV9mFJ4q2sJure2nTXHPhYqAlLLoxEvDQLbBkqy0ssLBlgVDzhFpC3X2hjdTu6y5jun3BLmyXDXaVcc1TzkNkzMM5ceazz9nztPphR57IyMipTFVFVnl9L5mxp/WvtYfz/+sflpBSShQKhUKhUCgUCoVCse9o+y2AQqFQKBQKhUKhUCgKlIGmUCgUCoVCoVAoFLcJykBTKBQKhUKhUCgUitsEZaApFAqFQqFQKBQKxW2CMtAUCoVCoVAoFAqF4jZBGWgKhUKhUCgUCoVCcZugDDSF4jp87WtfA+Ad73gHg8HgRzpXoVAoFIq3Auo3T6G4fVAGmkJxDbIs4y/+4i/e9HMVCoVCoXizUb95CsXthbHfAigUtyOf+cxn6HQ6/OZv/iYAX/3qV3nmmWfY2Njgk5/8JL/wC7+A4zh87nOfo9vtkqYpH/rQh/j93//9Xef+9V//Nf/4j//IV77yFUqlEnEc84UvfIGHHnqIJ554gi9+8YvYtk0YhvzhH/4h73//+/e55wqFQqH4cUP95ikUtxlSoVDsYX19Xf7kT/6klFLKBx98UH7jG9+QUkr55JNPyl/+5V+WUkr5+c9/Xn7pS1+SUkqZZZn89V//dfniiy/uOldKKb/0pS/JVqslpZTyq1/9qvzEJz4hpZTyl37pl+Tp06ellFIuLi7Kb37zm29O5xQKhUKhuAL1m6dQ3F4oD5pCcQt88IMfBODIkSOj2Pznn3+eU6dO8Z3vfAcAz/NYWVnh8OHDu86dnp7mk5/8JACO4zA1NQXARz/6UT796U/z8z//83zwgx/kIx/5yJvVHYVCoVAorov6zVMo9hdloCkUt4Bh7H1VSqUSn/nMZ/jABz6wa/vGxsbo/41Gg8997nM8/vjjHD16lG9+85s89thjAPz2b/82H/3oR3nmmWf4y7/8S77zne/wx3/8x29sRxQKhUKhuAnqN0+h2F9UkRCF4hpomkaSJOR5ft1jHn30UR5//HEA8jznC1/4AvV6fde5nU6HUqnE4cOHieOYb33rW8RxTJZl/Pmf/zmWZfGLv/iLfPazn+WVV155s7qnUCgUCsUI9ZunUNxeKA+aQnENDhw4wD333MOv/MqvXPeYT3ziE3z+85/nYx/7GEmS8MEPfpDDhw+Tpuno3L/6q7/i0Ucf5dd+7dc4ePAgv/u7v8unPvUp/uZv/oZDhw7x8Y9/nPHxcaIo4lOf+tSb2EOFQqFQKArUb55CcXshpJRyv4VQKBQKhUKhUCgUCoUKcVQoFAqFQqFQKBSK2wZloCkUCoVCoVAoFArFbYIy0BQKhUKhUCgUCoXiNkEZaAqFQqFQKBQKhUJxm6AMNIVCoVAoFAqFQqG4Tbhhmf1Wa/i6NTQ2ZuO60et2PcUOamzfWNT4vnGosX1jeauN74ED4/vafhDEb6nxuhlvtft/M95O/Xk79QXeXv15O/UFVH9uZ270m/emedAMQ3+zmvqxQ43tG4sa3zcONbZvLGp8Xxtvt/FS/bl9eTv1Bd5e/Xk79QVUf96qqBBHhUKhUCgUCoVCobhNUAaaQqFQKBQKhUKhUNwm7LuBZi08jt5f2m8xFAqFQqFQKBQKxZtIv+4Tecl+i3Hbsa8Gmrn2FJNP/I9MPP5xkPl+iqJQKBQKhUKhuI3IM0kSZfsthuINZNAKGLTC/RbjtmNfDbTS/H/B+6lPIdIAY+vl/RRFoVAoFAqFQnEb0d30qF/s77cYih9Dahf7uN39Mxz314NWf4Hkjg8R3/sR7KVv76coCoVCoVC8ZZFSvuZzsjSnvea+AdIoFK8Pfv/tUU5d8dbDMDWEJvav/f1qWPMaaMNNSif/T7Swi8jT/RJFoVAoFG8D/uzP/oyTJ08ihOCP/uiPePe73z3a9+Uvf5mvf/3raJrGI488wmc/+9l9lPT1Z/10l6kjFSYOlG/5HCkhz/Y/vcDthpTHLXRz39Pi31JoXoPcmgDz1u/5W4k8f+2TDgrF60XoJthj5r61v29fQ715ChDEx/8dRu8SRuMkZGqmRKFQKBSvnRdeeIHV1VX+9m//lj/90z/lT/7kT0b7XNfli1/8Il/+8pd57LHHWFxc5MSJE69b21mSk6X7b+jEwbVzdUI3IXSvnYS/nzPEaZJTu9Cnu+HhD+J9k+Otill7Hi1oveHtpHFGY3HwhrdzNdF1ntm3I74T4ylv4W1H7O+f82jfDDR75Z9AZmQTd5NN3A2awGid3S9xFAqFQvEW5tlnn+XDH/4wAPfffz+DwQDXLcL3TNPENE183ydNU4IgYHJy8nVru9/wcbuvr3IVB6+fYtBcGtBc2qtgCyCN98+wFIDc9pKIN9hOzHNJa2X4I4WC3q6kBx5Blmbe+Hbi/IZV9iI/ZWvJ+ZGu3d30GHaunefzdvWo5llOMNw9nnGQ7qsxoNiLWdIp/Th60MytF0nnHmH8yT8gPvrTkKeYtef3SxyFQqFQvIVpt9tMT0+P/p6dnaXVKrwLtm3ze7/3e3z4wx/mZ3/2Z3nve9/LPffc8yO14zQD1k53dm0LBsnrrlxtXXL2KsXXMS6im7Q9fqDM+IEySZjRWd/JOZOAbuyfB01ogvKkRZb964wmY+vlm0fgSEkwiItOv02QQoc3IT3kZkZtOEx+5AkKmUvkde5/GhceYc14Y1XVJMpGbb0ZDFohreXdEybhMNljtN0qcZBS+zEppKJ5jTetLSFEMYu0T+xbDprUbKK7/xuCn/x99M55Kif+N6zlJwje/z/tl0gKhUKheItytRIppSx+YClCHP/Tf/pPfPvb32ZsbIzf+q3f4sKFCzz00EO7ztF1wdRU5YbtmEKnUrJ2Hde2XDRufu4eshgQoO+dpW1XXMbHy1QmrGKD10Ks/AD5rl/bc2y93adSsRkft3fJoOsaU1MVgnaMlKBlAhkxOiZLckTMa5f7WvhdcNbhyHtu+ZQ4TOkGHiKFqekqY1P2DY+/3J+rEZtNZDmHyva+JABNB90aHSOlxHhYZ3y6NHou9pPr9QWAxIckQGy+hHzg5697DVE7j5x8FF7L/Ut8xOI/IR/6j8XfMgfEdV2Yw05I0EmoVOzrymsJnR7+aP/CS03uec/cLXnA2osuhr13LOIgpdPxqFRsrJK+a38cpFhlg4WXmkweLHPgrvFb6PheZC6J/JT2goumC+593wHgJvfmR2pIQtCDSuHt1FJB6ua7vyHCRQpJb9XnnvfMvabL92MfSzeuK/Pr2p+tU2w5c0wenaM8bt38+FugXXGpjlm3JKPYfAXt4BxTUz/aPX9NcgmXin1rcr1m0gix8QIc+LfXPWRfDDQROei9S1hGieDRT5Adeh95eQ6jc2E/xFEoFArFW5xDhw7RbrdHfzebTebmCkVncXGRY8eOMTNTKEiPPvooZ86c2WOgZZmk3/f3XjxLioIME3diXPomxty76ff10W7fjzBsfXTusB1SnbbQ9EJBFWEfzW+RzTyw67LW4j+CZhLf89/uabJywCRMEuJ+4SHRnBamFxFdQ74gjPH9CCywr9g/NVWh3/dp1Ya7jr8sZ5rk1Jf66NV/vYfCrJ1Ec+tE5QdufvA2WZLj+xFHH5kiFdm1x/4KpqYqOFub6M4K6aH3jbbbXkTsBMi4ON/ceJq8NE02986dttKcxtKAo+bUa+zZG8Ple3Mt7Pm/J6seQvc6RD3vusaTNvFu8nQMbjJuu87xGpgDl6DZBmFRXvkm2dhR0iOPXvP4JMkwxjT6NX+XvGmcMWiFzNxRZdgOiYbpaL/vR3Q7LlbWRVYP3lCeMEqQ+t73btAKcHo+hqmRSGO0X+aS9TNd7nh4mjhNidLkps/N9Rh2QnqbHqYIsLun6d/zEeDG9+ZHQRtsYG69RPTgRwGIkxS9qu1qI0oSsjRnYrz8mtsO44Q4S6973uvZH3vtDO3m3URYTB56fQwX34+QhqTX9Vg/0+XYIzPXzo2VObYXUc6v852+BfJcEnkp5fGbhy6mZMT59cf1X4MIe1jNdSZu8LnclxBHc/M5RBYCErRikIJ3/g+IxIU02A+RFAqFQvEW5kMf+hBPPPEEAOfOnePgwYOMjY0BcMcdd7C4uEgYhkgpOXPmDHffffctXzveXCBaeBUAxzHYmPd27R+bLVGd2plNHrbDXbld1vITWAvf2HWOCPugGUizes02dVMHUSgUa6c6SCkLL9iwhrn6/d3XulmhDymvHR4pJfaYcdUmedPqeXkmd4dUyZy8coC8cuDGclyF0KA8abF5oXfLOXe6s4LurN7wGGmUSRJj1wLHQgjSKPvXVwbMU2Qu2TjbJfaTNyw0TmTFeFhr30f41y4EImIPLXqNoW0yAyTdp59i64WTIHO0sHd9OTQwLJ25u3d7LIQQmHYxSaFbGqUrniMhBFrcw9p85qbilCdMrMq1fQWXxza54tmQgBjWCQbRyGsugg7Wyj/ftK2ruZz/OH6gSnX2X1cJ01r6FsbWK9dpaFv+PNv+R5Jetfh2ZcpmfLbE+IHSru1pnLFxtsvaqc51QyCFuMk34BbCYKWUuL1bC1MtVYr8rNeby+/mdd9Ruf1NFTc2XYJhgnedvni9aE946fVIOg1C99rFi0TQwVx78pauc83zk5vbOvtioBlbLyMA99/+L6OBjt7xq0hzTHnRFAqFQvGaef/738+73vUuPvaxj/Enf/InfP7zn+drX/sa3/3ud5mbm+N3fud3+PjHP85v/MZv8PDDD/Poo9f2GFyLoSPodIrJxMq4zuzRvaF4l71lAEcfmsIq7yidyZEPsMEHSZMrCnIsPMXqqR4h1/boNBYcYj8l387PCb2clZUyIh6gRQ4i7F1X8fKdiEFrRwHQe5eK469CaGKXnAD9us/GmS5eP7ruIq1ZmpNG2UhBti99HeG3ycvXL1ihDdbQOxd3XyeRBE5MOExJwlszdPLSNFAYnJ2VDt75FwGQ+s490Qdr1M/Vaa3seA6FBgfvndjljAq9ZCcnL/ZuqnCJ2MVeeJw8l+SZpLflM2zf+kK22mB9199rpzrE4d57mE3fR14qitiIaIAWF/24OozXaJ8dKf2XScIb51OZtRcg9ohjDRnfXCEfNIY0Tq3QXtnthc3SfPSMZUlO6O70IwpTsujWDG6vG+1d6yyLEfEA/Yp3alQlVUp0r05zySnaHSbo/SXEFWMU3qCgyZX064VnJNdskis8sjc9b8vfU9hEpBEi2e1p0ftLGM1T2xMkOXq3eP7jIC3yIa88n+LebZ7r7brPUoJozSOCzg3tkuvl8QGI8/+w59m7mjyVdNdvviailDDsS2L/iskPv4196eu7jvOd11iVddvIzLN8NDals/8PpZNfvKLx7TZvYqDFfnrNojb+IKa3WUyu3UrVXWPrFRg0r7lPd+to4a1NjrRaDVqt1547tz8GWvNVJKC5OwLnY4cRiUvp9P+9HyIpFAqF4i3Opz/9ab7yla/w2GOP8dBDD/Grv/qr/NzP/RwAH/vYx/jqV7/KY489xh/8wR9c9xrBIGbj3G5jxpqaoDxZzGyb+RA7370/T/NCwdhWEl95fJVBY0eh1bZOkjQ3RzP2AHGsQZ5RW92tTGdJvquQx2Wa64XCIe2JIiWgdQaxJ+KkuL7vxPS3/FHp+hJ9LHkNZUKyp7hDtm1EdtZcuhve3nMATRPonYto0U7lPhH20Pw2kZ8SDPcqZ0bzFEbn/E7TUo70LLt6lQcldHCXFq6QUyL87fBVo4xIfIzmCRoLAxqboggds3Z7Iu+6y+fw/RO7+tVaHiKEYFjvsnm2TXjFTLvIY0R2HaXy8mx3FkOWkA+LIjEH755g+ui1PaB7yFPMrZcx155k0Biw8FJze/O2F8hvF15VILenR/lzaQpZGJB7LvE/f2fXJePj/468emjXNq8fjZZU0DsXSTfO7zbs8hR9uDbyqEqzQj52+LpiT85oHJq6oihOFkMaIGSKIYrxypvL4KwV15OSQSPA7d26gp6lsjDKticRROJh9BauW/glnXsXXn9HAdeHm6P/B4OErXnnustKXIthrU33heeuOyFxNYPNDr3N3e9oNn4n+fhRhNfciQTLksJD6dbQekuIPNnp71UITaCbGofun9yVI2naOsfee2jXBMTVxDcxyuW7fo184tgN+6SbGkcfmsLthmhu/brH+b6GN8iwqkbxLLXPIfJ4x7tF4fXrnjyFNljbc35+I0MS6G76bC0U35W8chC9v3xFR7bb8Ls37EvkJ4Sd3p6ogSsLOd2KATkma5SyGvb83+/Zl29XT9W786Nt7dVhMSl01aRJr9el19sts7xG3vHV7E8VR6MCQicfP7KzzayAZmA0XtwXkRQKhUKh8J0Y7apwIafujQyZfjhDrTm55xy3E2Kt/DPCb1MWXfL5p2guOSRhyvkXAoTXJEvzUbgigJAZ4iovWOheEZ4jJXrv0q79mtdEC9pIs1IogNfgslesNt+nuTTAHrOxZ/Z6t/JcYtq71YDypEV5wmJsxqY8uRO2mcbZyHgTmqCi95FXGDTGcB0t6NBaHtBaLozTxqKzo5BtW2N6bxHNrZFEGbULfeyqURiuVwx53O/jrNQxN5/FWngcbbiJtfHDov9uDZF45HoJ18nItAr2/N+PjGMolGXPvn/XunC6oRXhm1mOf+kkzYuNXR5NkcV7PCBQhJTay0/s/B126Lz0MgD1Sw7tteGec66J0AsFUxbeVrtq7AoT04cbaN4WAObWS4ioCMNqtWz67fyaeWhabxlr6du7tlllfRR6aHTO0zq3tsc7KdJ4dL1g9v2kk/cyaAVsnN2r+OZZzuqFkNBNiMMUozuP2XgVu32SKbfQ12wjHIVs+f3imcjSvQbD1RX4siRHMwTVKQujdRpr7amdY51lRHMnomo0uZHnGK3TJOFeBTsYJghReKh6tWtPLlxGb50dGYRhpJNXDmKWbq0sg9E+t8uIEdEAkcWYq09itE6PJi5EPEALu+hujbMXZ+m1dryAVzNsB7jdAJmmuwzqJMpYf2Udo/HqnrDIy4bAjbxnADTP7Xo/7EtfR0S7l0WIvITahT5+L8CsPY/eW7j6Kpd7S+YOi29BXjwPUrOQ1k4IrGHpHP2Jw/jx7rDRIn+wQ+gW+XZXh1RKKbGrBlbZQEpJNn4H6YFHRoYuUqK5dcSF3d667ZML4xiIvBS2zo3ep8tcWTL/RiGacZiSRBkuh0ffvCtprQyJ1heQQsNonxtt952YoDvEXvhGEZJ+xYRcGue0V4esnW4TRSHSuHn+3r4YaHnlAHlpimzmwV3bkyMfQItu/FIpFAqFQvFGoRkaEwd354F06hFZJiCLmDDaHLoT+k8/Qf3cjgKQpRKEjhQaE3qTnvVuQjfFW2+wuT5GqpX3rDkmIx/h7c4vKvkL9M+eIU1yhIzRu7sNtNyepNO1iBubRXl5uVeB8HpRMUMcu4SOR7ejUV+OCIYJSZShuTWM5ik0XWBXds/kGqZGZUJnLF+jekVVxe6mh9MoDBhNRriVh8msuVHf5aBQvivt5xFJ8TseeelIScmm7qU2OMrWS6cx6y+PjODIS0EyMirSuDC68vIBsql7SQ++m0E35ezZwlOVVw+T29Pk1jR6FFNyNyDxILrCYxk5dDdc+ls7Blee5Ry8b6IwjpyLGLi7S+6nASBHYaNXeiQGA2O0iHBenkPc8RPA5VC163tq9M5F9MtpGzJHC9poQYs0yYmDIqxzZKxHfURceGU6HZPALdo/dE+FmXsOQC4LD9sVyrvZfBUR7DaqwmGya9mF1JjcpSii24XSe7nd/ibW0nexpcfh+3dPPGjDGsNujJvOEIcZgRMjNR1pjpHGEZ6nkWc5rn0/5rGiIEueF89jnkqWl8uj3EIRu5ibz0K646UatEN8JymqPV7xHFtrTyFCB13fkXtHUZbEsdi5d1dMcHQ3XJI4Z2y2xJEHp7blkdf0pmlRv3h/IgeZpER+it/cGcvU91l/5gzt1eK52hOCK3f+NjefRvMbiDRACzpo2zmDWjyEpR9gdC8RxCV67UJoz4mIr7penklk4xKd559G8xpEqxfo1TyEJrDzHuKq9zwYxgyefQIR9kbVMq2lb48mbeIgJUtz6vN92mcv7X5OZI4IumRpPnr+DFsvvHi5Txol6NdYl1hz66N+x34Kuk187GcQ8XCXAdhaGXLpxT7NZa+QZ3six+uE2/m5RSjn1SGVUhaGzOa5HsNWiNE8WTw3teeLMFaZFeGo+V5vot69SPnsfyaPg2IiRjNZuZiSZ/mu618mDVOQkrwXkZ3fHRGxNe9Qv9hHS1z0UhlpT+zaX5mysP0laFwonsWryCsH6G54rJxos3aqgz5cJ+w5eBtrxGFAs9m4aZgm7IOBpjmrmBvPFDM4VxHe+xG0oAnJrcd0KxQKhULxehG5yZ7QPq0ySXLwvdiL38LsX2TjlTUGfUhdlzyXaIaGVdZBZkSBoOkfozXfIPZCtGjIBE20NCycRFKOlKL2YJpGw8J3CuW/2K5jVKscf88sdsVChFctAGyW6bkTXLg0gdFbQLtcMCPdmY0ehc11F9CGG4yVfIx0SJbmZGmO3jhRKDxBh3RjtyIWDBKctRbu8gpePyryMOIBB++ZYObOMYg9+i8/j96ZRzhr6Fsvs3lmi5fmHyBJBHNzMUfv2lE+Lyf8i8SjdqGL2/JAZmiGxsH7JuhseEweLo1mtGsX+nRPneFB4wmkXiItH2IwNPDDEuQZwm+Szryj8MbEkkgcQfPbiMRFRiEyy8hLUxx7wOLw/ZPo7XMYrdOsne6ycaZbzGxX55iZ8ClPmGi6wFr6NiKL8RtNrEuPj+SI/BS9t7BL+SR2ORDuXrM1CTPI4j2hUEbnPKUz/xm9cx5kXoSpCZ2Nsz36jWD7nhfHttd8hLs12ia3i4Q0uxP0OqKIdewswhUFQ+LjPwv27uIdVsVANzXq832yDDpbKc3Fzo6hGPUwas+NioUQu8jQoPfqJv3mbg+iWX+BOXuDg3OFThYHGXp/Cb2/hKZBkmgY688Qn3+aZK14ji6H5wkh0fWdpS7YDu9LvAHrzxe5WNMHNEoVwaAZjBRWv+sy6MbIygFkumNYSQlkMdb818mvsFWqV3R/6kiF7oaL14tYP1MYJL4TX3OR9vTATxR1D9oXmN74f5Fuj2F7J2Q4DSJEGuA7MYkfUz9bG+3Lst2herJUrL+ouXWkpo/C37LqYdbr0/huRp5r+MMi3FHXNcamd5eoL42ZjNsD7j42xOycI60v4HU8DFPj6D0W8iqFPktyPE9HpCG6qSF0wda63C7AV6yj2FlzSVyP4eRPkU8eJ73wFM1Ti4iwh0hcNs/1aHcCwrzw7Bq2jjlYYnPeQ8qiXkSeJCMj2zv9NGuLGkLIorBLnmB0L6F5W2huEWaq9xaLcF5/E91Zwl78R+zFbyLjDHPTu34xkyyFPCMLQxCC0EtI596JPlxHGnbxfMicILZZXd8bVizNCsnRDxC8/F3ClYtMlFw0t7bLKHOa/k7ebPNFjOYJuDyZIeWuyYPQSzBEhJW2Rt7sy/dc5hISD8crszE8glNf376EJM0Nktl3koQZQggO3D2O5jawsh76YAM9HqBjorkbNwwlhX0w0IzOeUTqEz3wS3v2Re/474CiGo5CoVAoFG82lSmLaT9BXpFEXiplWJ1TiHjIoB0y6AnyXJC4IWtPzlOZMEdhhY3FPpNmDdNbQ9bPINsr5GigG+DVsLoRbIdLSt3AsrLRQrzrp7sE3QGzM4VSmQRh4Y26QsvQvCbWxr9gpV2a5zfoNyLwO5i15yDPRqFJmiYgjTg2u8XUVEqlKhmbtrGGy5jNkwBkmUYsi0qXwTBm2A4LxSiFRsOmV/OwL34Ne+kJzn5/k/r5FlrkEAQ6UtPRnFVKlx4nN6pklOiJe1ldLRMMc0hDtP7yKDJPGmWkNYkYLyo9xn7C1iUHmUvWTvdG+XJQhBtu1Q2C099n63tPYhgSU/iI01/Bqr2A2TyB1Aws08TWYrR4iMgz4md+QD5/CpG4uPPnGLY8jO58EVapF4JYF/+BvNegtVUs+XPIXkAKE6mZtNoVkliid+cxg02EAM3dZNJqYduFt0v3ttCWt0PxJDiNIZsXeiOv4bUq0GmDTUTUHynZVtncKfMtJcNOgLPRRfY2ALDtvMjrAsLNNZxmiLBt6v5BnMGOd9donUEMNnF7IcEwJs+K4iWaLqhO2wwGBnmSYEbNUQG2+O4PI+2pkcGUzj2MMHOsKXA7EZvne4U3K3YRUZ8wn8QbJIjtfDCx7aGR1TlKEzZx5U7ivII9NXZVryV33RVi2hoi7BH2h/T7BqKzWhRXSHyCFx4nri8xzQL6dhGL9rpHtyWKohaBg/BbREFKc3mAjANqtRKatjPGzbWQNIU4FnTWXCwtwmydpDJpIaIB7VdP7/Ggef2IYOk8IguRQsOO65T13sjzBaDLYOS1MlafxF54fLQvCHSiK9I/05mHt/MHJWhWsQYfRUinJftobH9Lsoh8+UXaay7dK0Iw5fakjW2l9LZKhKVjTB4/xH32M8RDl+XlMkGg01wesvBCA68fUZ0yOX5HkbMoBHTXXcJQg3CA3j6H1lssjJH6GeS5byGCLrk3IB+20YIumrsFUvKU0+eHjkN08gnqF/usrI6RRRHoBiLo0a+7bF0qJomS1MJxdKQU2x5wgbX4TcytlzE2nqe/sIJoncc0cyayRWa0ZaIH/iPRA7+MsHTEO6awGdBd3luV1GyewF77HuVoDU2H9qqL3l8iH7+DfL5HvNjAd2JMdw0r3Nhzvua3sJa/gxg20dxNZBqjBZ1dkcGdNZc4yEiTjFSvgpRY9e8WoajOCvblcGEpcbsRYWLhutbo3m2+cJ7opW+w+GKL5Y054tjA3zhB9/zzDDshkZ8ymJ/HPfEMY1Ma1Sl7VIykVIK5uYg4gU5tSPPkImG7w/WjV6UAACAASURBVI148w207jxaPETq11jgziwBGvbKd99ssRQKhUKhIBzGBIOYYGNzlOMRtDqI3jqaW2OGJabtLdoNkJsbWN11+o0A09bJogogSAYDpFnF76dULIckk3i9FuUzX0ZkOWznulhaAlk6yjnTGydIWhtsrURsLTisnu5Sb43tyj/K7QnunGtwfGqRcrbFoN4Dr114lLKU7tl5Qi/BrhrcN3OerYUBGxc9Wi2d1sqQ2mpGbB8iz8EwoDpdGApJkO2ExgmBrstCCTNKZNUjRAOPwdlTiNhlIp0Hs0pePURqzDEVXsK2cyy7sCV7zRTN20IPO5BFRW6IUULPXHRnCb19nu7zzzCs9ciyGM/xqZ3vFeOdhGRjR1h37qHtHaZ8/H6GnYg4MZCH34uIXYTfYOuHHUwS5ibrJLMPY9RfYuIOn7Hh9zHXnyZsNEhe+fqoP1IWHpbs8HsxRMyk3SUNQ5prMdHAI+13yBKJ0V/C2HoF2a+T9+oYrbOsLJrUzvdwewl55RCt/MGR0Zw117jzjgBkjuvqbJzZCSWTug1mGbN1CmvjaTw/IE9TdFMbhVAOOxFZLJHlKUgCjMYJaltV6r1ZADRvCxF2kV6XQ3aTcfuKCKM8Ybn7AJeeabD0UovWyoAkTEn6Pbxnvo43yEhTQWcrJ88L41FLQ6RmojuraO4W1vI/oS09R9rPMW0dpxlgbjxD/vLfIToLpCsnCLwcc/2HWHGDdOp+1ldg/VLOpQsWvWAWjjxMaN4JaYDWuYjwGmh5yvJymchPsNaeYnj+LL2eieltkk3eg7H+DFrvEpE3QHQW0Z2V4h1w1ooCcpqBiYfurJLFRUhoLgyi1CBJdt6HzqpDqy4JgsIoai47OI7J2IyNiF2c2hCnNySKincsbfq0T7TpNHIqZgAI8jQncz00d8dLlpfmkIjC03hF0Q9tuLntGdy5DSJoFxMjUiLSgMFqvRjryCGNIOp2QWbobg0hiryysO9TfvV/R4Q9Ii+lv1wjCiVBs8TmhZjBZptLp8Ii9NEaI6rey7AxpHmpTVabJ/3BX7N1ehUpJUGak0cB+nADq/Ys1smvYm+cRQxq9LoG/R6F11rb/pQIgdFfGskdJQnWkfuwKwZJt8GMuU4+fieGswT9VfStV8nSnGR9gUEtIPZTQjeh+tyfk5dnibQZflj7RWovXYIsJdhqsu49TK13FHP1+4igjUxyoot9ZG8T/RrFQ6RZBsMijjUiLyXo+eTn/5naxS5bnZTVcy7DbkxSPkIcZchcjsIXZeMcYrCJNtiA1EMYFnlpjnTuXTtLk2z8ENmtI6WkXw9wNvtoww3cRo+wPs+w5REEGiJysDdf4dCYhyZydLuwVcza8wzrDo5jMDZe5MwGkU0Q6qSxpLfpjUKJzc5ZKv1XMKyc7kphhOXekNOnJ6hd8pko+YUXVt54eZQ33UDTu/NIIdCuVYVFM5C6gbn59JstlkKhUCh+zEnjjNwfQBLgXjrP2skmSMlUqcX0mIO0p8hynXAYQ1TkTzhOjtsakqc5eVsgEolv3UPih8T6JHq1hDYxxPUdEAYik7BdQCHDIIp0vG2PWj5xF7kwqU4ajE1b3JE8TRhbhWdsO5RRhA5rw4fZ6Byh709xzD6FETSKWfs8xvN04iAldbpsLQ4Q/VXMrI9mlZgcMzlgjLO2qNFYi0leeYz4u3+LjCKkBKt1goruoPlt4liQ+W4R9mMWCe1JbpKdfYJh0yXcWGFs6b+Q9GZJB7MkbgDDFnEEWm8JmQRFiXC3hVl/EevSP5D4MW5QRkQ9qlMWE/kyvr+B49fw+wnWpW9QuvR3GK0zyMCFzhbeiyvkegWm7oRoUOgPzjpGfxM9hHbyILExgdFfIF6qkdc3qbenII+J2020jWcISsdJ46wIdfNaJNok0qoih71i5jsStOspZAGmt4ofHiFtdDHdFQCOzrQ4cm+Z8ZkiNEl0V9C78+RpRC41zj27wOqZXmEkSDkyvnKhk9kzRNY4gV5iw5F0hznhICL00sL7tbhAY2lAkhTVCK3V72GIiGFYeKRE7GI0TiIXn+Vs8xiNFy6NwrTiY/+Gw3dpHLx3HMsWRD0H30kwCRBeg6DvkqYaUrdoNXSG7RBz7Sk0r14YrZpOsnGe9cYkcWuVxRcaNJcHZDP305UP4uczTE8nzOkraMmAylS5CAurn2O4skLouOgrP4D1VxG1V9D8DkbrHFriofWXseMtjKjwlkhZrP1ntM9gX/z/EP01tLJJHmxA4iOCQpE1ehcRmYHsjRNoc4RTj2A3nt3OB6qiHbyPbqsoIuF2I0TkYCVNeu0VEI1RrZnG4oC8NAXRgMhv4vsuInaJnnsO2iFbc3fxeOkuRNCmH0zghTZZupPPJlIPNAMQxb+6hUhcjM55gkAn9kI6l2qsne5g9BdJD/wECI219QrdRgr1c2QTdyE1g0Z0H8ic0NfIMoHb8orQz9jDqL+Ede5v0esnMJIBdz6yxT2zZ9BkQjCUDLYGHDwYU6FZFJLxW+iDVSw5BCF46oTLd7oDVkwJ8ZD4yKMkE48gOIq99C3KWR1r9iCkMU7d4XyS0QqDYt3h7TBab5jTcKaQeYLUTNruLJk+jtZbRPP7CFnkjLXS+xBI0iDA7JxBRH30zgU2lxJ8X8cfFms1TmRLpL0mjZrEWH+GfOVpyCUmbBvXoshLi3dy0PTBJsbGc4jqFLqhkdc3aTt3kLoea47kX0o2pSrk/hDShKhRo7FYhB5unhtS684Wjh+h4cVlLvaG6PWXiwmdtecpnfq/MJaeJ3WGTE/DtNVn9WJCFlmQaAybfmGghT2mQp1kbUi5LDH0YoxkaYY4gnq9ROjnSKOMkDmVMsgk3KmKWpphIO5ia8sivvg8x62Xim+nFxA5LiLoEtcucXx2g7HSjddCu7WSNa8j3n/1P2OuPYX/nt+95v68fBDdq11zn0KhUCgUbxQbZ7YYq3+PUmCQzEwRew1EaBObh1laeZbZQzBI54jSMvEww80TjGzIVPUwg5ZPNQzQwmXmUkEtn8Dw6wwakAxsKnNVTC2CHPLtBWdFHlMux8zNeMAsUjPIkhRvMyVrzJNUPYRnIo8UIUa+r7FyCZy2Tq7lBHKKqH8nYvIgmtEtysSnIZVgAUP6eBxGGg6GnpHHMZYOqVdj4DqkQZuz/THukDOMNbv02xrW2ipH9AaGyGhFs1gbL8GdaVFWPbPJwpB6dwa9HBB0LTwOIFJJyhjInNj10TuT2NYlWB+AHGd1rcLhsTuYSC4RpRYly0LEHr6f04mOwqCBGUeErTqDAzb3HlxnaSMgt95L4gwIg4zxco5sPY92dgEtNzCGaxjyfUi3TbrhENWfZOygRDYS8nKKb04Q9AWeKyhTxZrtkQ0swqHGcGWZ1jAkEjblyCTwcpoNk6kjMWGcIxCIV75JPjhE46JN27+DyYpL+PI/kdz/KDXHJhYapa2XCUpDtIFDp+1RGpsgQsBYUclw4mAZc+sVzNYpvnf3f8/yRoWH2gbDVhUOCMqlnP7ZVc7O3cl43Ofe5gatrs/hMZdKKaHfdOg1EqRZRkt8dLeDyGdwkgnKjYDJg2Xs+gvI3kUyr4JsNQkGLfrjP0VdM5kLTAxbJ5MaWurgNTpMvlvQcgVHB5uQHQOh0R1O0vEm0NOYJGyRmxOUX/k/mCvfSznu0nfvpu1YjNs5oruI0ThJbt9HHuUY1XFc16UznGb6wcPklVmSoz8NS8sMhwa251OuPUk+eRxZthDNZYZ5D5iF3hobi7N4gwmiQwmZMYlMBYY7TZ600P0WUZZjZs8waK2gZ8fI6wHNM02OZAMGww6hbiLMMrql063FxP4S4+YEpbGUqbiHMf8kpbCGXQqpVh9FxF3stIHFDCcaPYw0Jc8TktwCLadTX+RgbYFvvPBlHpr8N0j9ILkU6P1FyEykXiI++tNk2QtkvRatEx6Vd7wPsng7n0iSpSC0BLP2HNrsMUwR0AyPE2ZlNN2m104RXot85jgiDRDNixhOj8B/ELc9pD9/mMkZF+s+waTdonf6FP0kRJg2MyWPJJ5Dlmdg+hEmgxfpDTLi/pCWJUC3GV6cx6zPkzONiBxib4J0ZRXXr5GFPlPpBbKqjjR2wj5tfPzTS3S7Zew8xDS7jL36v4JukaWHyNPCyE7ijDgz0eKMrUWXo9MCkadoYRtBCcjRZEKSWBjSJ8emYb+TLeMd3KsJ4qNVymtZ4aHvLRRVUxdW8E5JKvEm5+/0OD8GdwYZbrSMIWrIA/cRO9DPJa8+/izvPdhDxJAsnyBLD6EdPoyvH8DfXOQ+vcswkCRem4UD05iDg9y59i9srMB9cUhVc9gapOQba4STAY3kONLYwLZzjoyvYkQ9GEzQ6UV4UYpll9DyEkb9e6Rz7xyNV9B1MYVJOXEplSYZKwd0V15FP/QImrtJnvTodiaY0ZYYlu+h2bQom4UBp6UuYt1hte0yPTPGjWo5vrketDwrSgRHveuuuxHd9x+KCjP+jWMzFQqFQqF4PfEuvUp3MIbjjxHHAs1rYHQuYAzmMfGRkcusXWO62iWPMvymgx408QcRIOnWG+TtV3lat7EygzwK6LlltMokWvkgUkKeRLidAM2tk2UanZage+IUjcUBZv1For7LcmIyb5bwnRnydIKsvY7va8XaabrF3MEULy2zHB4jFybpcEivDXpnhX7HpudkBIEBYQ8taOP6Nsmgh7NeI0pL6CJnXDQp2QmZYdB1YobLa3hDQXtxFa/VIvUvUTJaaM4a/Z4BSLSgC9vtySxnq1VhdTMljhNkGlEup8zOxpRMk347Y7jZxq/VcC6cp920GXQk5XQLkQbknke5f5IpVzInK9RzHen36HpTlMZLSLNCbOUEZp+g3SVKy6w7xyH2kLrNtL6OpknKtDlQrSHyhOpdKeZddyDSEJFHxIlGlFnkpRkyP8CSPbzlFTobDYxwi85Cg04DhlsDWst9hkGFZjJFwxkUSyBsL5R8qXYX4SCksRrQiA4QTx0CoSGloKwNGDMG5H4f0oDQS3DqfUhDpFki08v06wmZH5I4Es/V0bdOkCy8QBRYtPIML2sjDJNITCJkxmCjRe72aK04iMhBxA6xfqAoM1616F1cxO1FpJnO6qKOV6ujBX2ivIzmNZF+Hy87gN9Pif0OndoCjfYY7RWXwfo8cZwiMoHuhaCXCeIJyjKmUskxkh5SCLpnFwljm3ZTI0zKaJFDuLlGPP1OGt4R4lBnJV8knL0fbXKOJDVg4Tu8dPZiUcQjHrLSPMqp9SnonIdc4jeqnF0wEbHLlnMIPW2SZDUaNUHYd1ldLhH6kKchQWIyYzQZNrp4XooIOpz59hKbiSQILbS48D6kvofb6FJxi7yrijnAc2fx5jc5/3xOFJn0Bib9WgOiIfmwSXP9AnFU3NvzMsIURUGQ1Btn7XvP060FNBwX6XVoL3RwzxYVSvX+EtnCMww62/l42+46s/EKcddlufYe5sqbpNYUXvVBNK9O2Idqbx4zdwk86PctskyQegOaaxGrtWlkuVh8PfOHJGnG+sY6C2cS2q1xyo5Oc3ORqG2R+h76oIbwGqy8WGdjrahmmIYxJDEiGrByesCwZ6D7AVs9j2anheOPUx9Mgcg5ppsE7UlatRy3sUYeBqRNSIdHsMs6paxORQ5xvAphbuHVA4ZOUa1VBgMSTHJp4kWl0TqMpRJYtk4mDbLKHL0gIdSrZHFGtrWCaK8Qt/qEzy0UCz8Ljbw8i7TGCcvHSZo1sjBlc/xeulFMGiQsTdVw9IhqdIGElDR1MQxBMnYYogGa1yhyzOIBc86TyK2LxN72uo96jG7bVO86BmaFQ1MdpDSoZF0Mr07Y71OvpYg8IaREEtTw6i0uPPcim+eHZIGNmeuYBExGxdqN/ae/CzIFmTGrL1I1h4isjOFOE7caDB3QTZ2sXBSI0eI+LWcapy3Jc0nHGUPXBYZI0couKRYnl3dXsr+aN9WDpg3WmPz6bwBsP5B78X/qk1RO/hXG1osk9/77N1M8hUKhUPwYM3B07ChEJhZ6d4k7jk6S6+9mYjwkrTsgpggSm0FfJ8dAJAEij4lXzlKZ7JJGGicn54pKiTIk1io01wIMbYh0a4Rilvpaixk9YehAEA3ZIkRf9Dl8yIFUIvQSmu0ixnRmwjVyrcpC4wCZOYVhSjLPpd8uFdFJmoHRX8ILdFK3it6SBL5FKiVzkyGDbk7WGcc64CGHHbLYoWSPU00OQFADt828eQjsPvfEfYJA5wflu9BDjXfrAxoti/Hpd1I/+QK5f5Qk1SGP0PwmUhwlc4esxSWmpA4iJYlyRB4ybnTxmKDR85Fyk9lDFmbtLELchy8O0A3HWWtfIG8KxifHkLICUUxtfh3TzyhXB8xaF2m7OWEIdw2eoSHHOHNxhp95dxk9T1kfPkiaG7STe5jy72SuHDO46GGUukj9veSajWlEZGYV/eA96Ks1/JUGZS/knvwIp4MxjoktcnEY2wiIXANbczm1GZAG0xytmhi9eTRjHNuMOT6zyqnWMYJhyFFxCmm+hwPGAs1ORDPQ0bILHDrgkSd34G8uoVfniFOLgX83xDaTekCUVDCFhqF1MeM7GA9hcuDjR5u8lIb8ez0lvZQx8C0GfglDDIn1KgYx1X4XxBRaaxGtAtmaz4p3J16rztgRlzBKGPQbVMdjTHsMmQSkuQZ5WKwZJ49g1trYLQ8mPPR8DL8/SWiGlAwfLe0SBEfRZEKeZOT2FBvtKpvuGONWmyQvE2RVZtb/AdP/AP38OLXKMve/CFbpOLIUsnLIZMW0eI+ASidjlgFnrDs5dv4CWc8gz2YYVipsRi0y9w7MUMcIGzidDIeIvpZhujGhcRxNeHiDg4Qixos7zLlrxNYUawenOD4QmImLYQ/p1pfoVRpUKwK/E7ApbYw4QdMN4jTA9TdItDL+0otYk1t4hk+SNyhpd6Dp0LEqTJptomyG9gDC5iGMUsJYqtH3JjHjOhveKhNGFc1ZZ3D6EpVoHMamCPse1c2XWLQ/hM6QXge0tIQzqGEd2WLskVmctItZysi0MrZIyHK7CPe0ygyqHwIkmneOSjxk9khKN5tno7PBwZmDlA2f9a0VNDFEbqzREZOE2hh6+wRj5ORzUwi/QZ5HxPEsWZaT5ib2+BRpV2PW3qBtHgFdx6zE6LnHt8UhZi14sOnTSzvkY+NkRoAmMjJRIshmCIN3IfxNht4aa84SY9lRzGCa5+0mpfE+Zfkgr9o6cel+fqb5fTzvOGNyg7jfRHRKzNub9EsljqUP0FtxyPrnyatz2EGLhpMydkhg6MXi1pOt7+ENDZKkx72ddbryAURmIkSCk95Lo3EQWY4x7QotWlz0bf6Dl1NKA0TqklAhmHiYTlTnwtYjCDNCtx2E16S9KuG/HtBa9aivHmJ58DD2eMiY6ReTXbmkalTIOiZuuYSvH0bfAi0H3x8yXhmSJUWOrhDQCGvo9jT6VgejGkCckkQbuMIFvcXGie8j87uIyyZG2aLUPM9c32KdafTUxtIkXqJRcya4r9omivYukXIlb6qBZvQuIcvTxeKARvnaB1lj5NXDaIHyoCkUCoXizSP3+/T6BnPTMVkFVjolHpze4OSFowjvfu7xBCK1kGmEJkN0GeClJS5MnEZ0HkAL7uXoYAVMFwGkQQLDId0sYXZc0miW0XJw2xGh49OOArrjIcccSX7y7zjTq1I2qzjlKby2Ty8s00/uQi+vkRmTCF2y1gTTL5PkJlIkNJ0qfTdGd7cIemOsxxpGNIkmfURoc3AsRIsdwqiCl0To1p2cMeB97YMEpsV0v8LhpR4n4gqzosO7Oz1kCl1HIzJzhNNBSxukxhRZVEZ3N5G6idMvE3UTItukK8fIUpjbClnZCqg2x5HmBVLz/2fvTmIsydbDvv/POTHd+WZmZdbU4+vmm0GKEiUYIryQQC6slQ0SJumNAa694o4bEtwQXBEwAW8M0AYNL0xwZRimQEkU36Oo9x7fwO6u7q7urqqsqpwz7xxzxBm9KFkwTboJGHoNG8rfLnBPRHyLC3zxRZzzna9AecXVfIIaDwh5RFklnNsZN6UncJ+mbwmhIs06npoDsg7u6Q/oZj8FxSO0uMNqPcR5wXWkuC5X3O0d2nukrtnfako7JBqPuekV3kfku5Y6nvNSa36gXuO/+vRbuKcaYTqCycmTr3K6v8/BVc6wL+i6AT5NydSAYbtHXR9jrebcT3n9/pTeJJzeHKGGAipF0Q0YjfdYrgKlTwnUrLeGSTqn7q8ptxWT7pSgPVO1Y5M4SqnYDqdU6YR/eLNmnp5zFd/lIkmQfsi46dAhZptpej3CGIXIc9aJomkMdfIuHZbJdo2pDT7/K970Sy76b7DLI4ITxCqlM2OC0yRCk0YGEY0J1ZLhYEiWTDm6c5fEP8G7Ct3WFNqw5+8R7IDEbdB+SL52tDqjdwZffkYh3mA2cKyvHR8++ComvktatdxpYqRrgZp8FQjb99DZP37VAMGWSNGx3fQ8232JO8kE1zSsmw15EzM3LxnwDkFbyBvsfkRkSrpuzLn+lDYNDNMR+IIGkDikD7z5osfKQGQ1m0+/R6LGRJuMlinOPaApIl4f76CX1KWnaz02tSQn/xzxta/y4cVTToopw+seO70PdFx273Iwr3iaTxFNxBv+a1z6KUf7A9ZtyWfRkP+k1sjlY7pdhVAT0A1dvaGYfI2vp3/Mj64f0rk5e6Klq9ZsrzreHf4LtP0qbSth2FEnGVmnCF4gnEGYht4P6ZscIefkW8/14g5Nf8y1rnk7OIK2bGXGNEsIfY2Vc7ZVYN0N2JeCSvVEZgN6iE3uYMuWHRU6xFDM6GrBVO14LO4xSwZ88/yE7S5hbRZoISmeVxy9AfRH6HzHILRUwjM2O9p0iHGKOPGI4LC2ZRmlHBWCh8WWd7NTvpUEOlPytjukaiz24884fnAXM4t52KWcMKevX2f/rCQbtiAEWkPWfAL5Bet1j4neRWd7vK42iO2SxnUE03HPP+Mi/ScEJKFvMDuN1hVNrghFhHNbVo+f8/TZkrko8VbyMlgWh4dY7SmU4vH3CyaRojFjspAT+YRtEUGwDIOn0S1tP+IfNf8zVqSo+Gc5qS7YdDn3hadtAsENaWt4OZ1hveKu7uiMQfmK0WBCaw8o6x1m27IXLcGuiUcSr6+5qn8SkVZsPAxtimXAnh+zrhWZ3H5eOvpipziqzZNXe8Co7P95kBCIbsvg0f/4xQV269atW7f+oxfJCZmZ03Qx/3yz4l/lL3m2m+Oqp+RlxZPL18gSzd5wi3URGEvRV9zPv4GN7yJcx1O/z0INsSFmLFfoqKAzN9zg8D6gmyV1fo7vaiITUIsNKTlfnr5Pkb1BHfZoqxJXbDnZKfLmBkOKMjt8ZChGilFSopTEe0lvoK9XWKfYVYGx84xUj7nSzENNXQe2zT5t13OcCf714R4n8ymxMkxH9+il5fr8ezybpnx/dERwkhudsik+pdy9xOVfx1WOsTrn7uSK5Ubg+hp0y3ceHPFRUtO1SyrjePb0gmCgE4rHswNOpKPdLbi5WPJsoRF1QWS2XC5TnG4gc3hb0DXXLOIpDZoqpGhjccEwHqZMIoHRgbqSRCPDtbvD6cJxvbtACIXkVfe+orjDMnvIyzDhTB+S06KdoKsjAuDyFdN0iZgaHIJKQa1TRmJI0kUI17FoJWc9VD4lyAjhLbtqSF5GrN0+/zI+JC80J5sMtXnOvI85QoHTWAe6c3TO4wksXlyzPt8Qi5bUewZWsx0GrDC8GMxodcb35nt0gFQKO7+Pjwb8OT3P7VNEtGFgVnTrEus9u/aC2OWI1QmmWvPRjaLOhvTxnKYMmDSnrTW6NMRuAl7QtpKmbnG6oSkD7uITdsUNF+3b7Po73IiSzkq8V2RRxIPRS2Iatu0Bm22KcxJlStpmB31O1jzHRlOcSWg7T9usacyQfhehmy1PVwfcf7ah21Z4H7GtHnC9uGK5vSZpniJljBCeQTpkMnsNIc4QYcGT8YDdLiNfbjDS0biOm6ZjlC2grHA+pjB7WNvz7J4i2EDd7bjSBc+k5fcPf5pNFEE8QkaSjR7R2IjT4Yyn80OU7jFFhH/5AtM+IPFjqvMOe7XE2AglLF0Dxw/fYBkn/K/unO/XNR8+eY/+RvL3V3cxIeXl4iGtG1P3A7wziHDJc05Idp8wwnEnvqHbSLzfY1vt41WGM7C1Ka1VPE0CvmpR7TXV6fcI6xd0RUNjx1ykMR9xD+0NOsQ8ih5w1R3giOlVjDeSpO8J9SWnyxmPlm9xvkiplKYPEzZS8p6zYEpcn5LYEct1i/Q5mhHLkPDCPsQUc6qwoDWBroNsCLo7woYMZ55z7a95onqelwfklUO6Fhs6zPEPcF4g8Jj+DHf+iOaqZ1MfsnIBa/YI6Zz+8C2ujWarUnS9pO0rlmWOvTb4mwOSVDLSO4QTrKpDmhqwlrpJOHMznjctze4Jnpg/tu9w4tZ422Glw9ZbJnnBxr/B+fWUdT7EVUs+HozZmiF12OOTu/f5cHJASOckE8Ew3TEV50z9BZ0f4dsWZwx535FfP+LptefCrvnh5uts6pQXz7/DdaqIRMrWPOD4xR0+e/GQZvE6eA9K0ac981lJNz/gSo1wtmM0OMB1krwYgQ90XcRKDtHP/oo2r7muY7xuKbuMyvXMlacxh5+fj37sGe//LjhC9DkFGhCSCao4+YICunXr1q1bt8AGsHaJ7RzRWNN0kuMffIAgxoeArhq2PqWq7vPZ/SmzhWFYnxHqlMEHf8pWvMU2HjLzEVFfkXGHhT6DYAgItPbk7Q1hUZHJDma8ejiJDvizJzPee6vmzTLhzW1gLTXCa5Caxarj/t6O2IJsFxTNgIaOEkXajBllK1wTUK5A+hGydrwUAx7pPWbxPVJ3RtoWeDNEyhzyDaXpubg85+bh19i7b4niiqVVPLozDOHSbAAAIABJREFU4bM85ZurmBgotIJoxrbTHKV79OUJWiV01qKWz9HJgLRuKZOGcyLuRQkidCgTGOgNsVkT4j02/UN83CFNgq9jMnuJ1y16fwQkrINnuf+Ar9cLZEgYVS3Hqxs6Ct4ezmjNlM/2bzi4mTN0KWVf4NUpZjzn0FvQht1KUssY054xmx3geNUkI65PCKLjkxvBbBqx1TsW4oDjdMiXm5qlveQur3PgDDudEOQ+Shhi4ZnIG3L5JQ7iBW+fWl5UhlhMePei4c/f3eONElp9Q+q31P07LCMHXc2BtWzFazze7THL1mgkxfQBXZxwR0IkPU4EXo5HfOnFX5CYKbswoxSK0pZkYY9cHTE98GxaRVHE3LWaSkSk0vE8HvFs9zb/tDdMxjuemglxdUWcvOBg+A9wIuXGx1i7o+kL7k4SmtizuprwzMaEbECwZ5Dus/M1Xm84698ikBFUyqKFcfQGs/h9rvMnmMERH2QPMVvHzNasi08QWUMzSBkGwc3W8onwbB8c8A8XS77sOg6TEV2qqESCb3tQLevKsRsvkaUhyK9iTEtvDHXR4uWCXfwuvYtJI82/nPwM890Jqn7Ja/Ej3rdHBP022lgqAassoqNhXO64omdYnBKNE0wS0bmAiyIiMUIKh3dD8uczdJEj4jmNKImCQNrXuTEdx8PnqN01NtzBuYzE7hjUEeu25pPZgn8a3iLomlR6JmFFWY6pzZQrXXJZv0NvZxg3xjLkxZ0hX9qeUbqMTTigSiKmvsbJHu0EkW2wquZ6cYjb3+O6O+SD0bskmeYno2fsRiNUtcIJw0YKLiYD9lY3JCbhw/1L3l5EJMFyke6Rt5IDtaEYHHJ9bcnyhsE84ijzvBkbquhtdqrhfuGhPuP9esNiPuN+bzm0nt5EqFojNzlqu+DqoUHJQwblHUZuQN9WnFQ9b/mAjBXSOU6ngn78kP5ozvLiBVWQjJrnKHWPH1xesLyT8dA6TLegGo4I5RXn7ZZ7s3foQs+w3xGrC6bAZPURjfwKKW/xuJjR9TXGaqKqxol94hDjYwNqDyssC6ZMs33SesokdIzP/5Ko/yrrbMSnkwe0QSOsxJ18zHAzIHrTc7J7hz5otEhIQkBIyVxURMOI3W7F4mBH6Su+JCRaa57fETyoO77U3RDsP0ZXDWQNwg+JQs4P9t9l7/ITdlHPcdMzqAruz7asZI5IW8ZVg5qPqZsSNxOchSFKdCyROEpM13MqNan9m3sm/l99oV/Q2n/w34BK/lo3lL+Nee1nEd7y17aLv3Xr1q1bt36MvjtsKNSKoFuEH5LWBaneYULG9d4+u27Mxe7vMdnUREpQq4qGnrPoFNMXRAHutTWR6CgiiQkxhRtjSdkkA07zNQMr2bcdId/yLJsSEFTao2vH3Ztrsr5DasN+F2idY9v11NWCer3j+NlTXFMSWktJjxEVzfUnFK2h8ZaNFqh6S5l/xHn0l/hIcjGZsgkOq3NUY7hbpYiu5cWmpdMVbX1DeTFku+hodKC2GctW0vQ9xjRomeHU19g7rlkuoWoO2bbfRNshJw8fYoNDe4mUkk0Ele9wSlLpFKPG6DDB9xLj98jNNdvtDbb2LITh5M4OfIoIMDMVGy3Jq5xH459i5OYkYQx9y/KqpcvPKLuYcpuxqw5ovWcRai5Ex6dRxfPVhEJKVmEEHvpaUKUpm3REUcKHd49YHw443gnW3QaxesFNU2L7Lb5tEb1gUze4XuO9wvQdVje0fYb3cLGZYgZw/HDH2TBlEx3SiISbQYQMGusls2GD7D3ejejsIYZ9mj7iB6MZq+aYRSqwEhYy48oO8dJgJOxiRzAl3ns+jXK2cY7shgyLE3ZNigsZtRXosI8Lb6LtBOvGiFYQRMO2eJ3TYHChpmi3GGeRQlHaFTfpCcI4Yr+kaU54EXs2CrxtaX1HLTTaa0q9R+lSgg+025y+6VnfHHOy3GF8xhUHnIgHXPT3+d7BAD25w1QcIoRHx4bOCly3ZZEM+PBwjsOyNI6gG2wbSOIZV0bTExGbGUaXRCFG2wbRlWzHb9BOD0hCwAoQQtGFHhcVICLW/QP2fMw3tqACBCSRcajsiLta4myMMhEDB8EJrNNcjs6wk9f4eHZNZVtO2opV3NHKmm3m2biadJOz7SKQnp5Ap3aM+ojxokVubrB+zaCZ0gTBatOQ2hlmkJA0Vygq8A33Bs+p9ZAaj7eQJ4qNmvPJZ29zXb2ksz3WxXRyRNM1VG6Hb2G5OqM/P6Ha3KN31/TFhirXIGKkcDwxGcZAsIIWxdI1GGHoicisx5WnCNNTuxGTvmEPwX50SO8zrjX8cDDmSi1J2gUPyx0HZWCvqBjWHt8bCqFYOE3wAdWX+K7mtc2IL9dHmLjlTBUsikcEXSDmEySW0LQE13C4vaL55AUq39IbzSpJeH/vUz72HV9ZfINvrt8iG7xGL4AQWIecS2dp9YRFG7hpUv509S6L/j5TMaLsr+jsHYJ3SAdt2ZHmS9J+D0gJXiOtQFlFkaSY8j1C/QmIniLsczx5k4FM0FKwSTJwlnXoWG09iZkTmIJrWHdQ2wG7KiaxC3y/pfMdhYZaCJ7tPaCNJUYFKnfA2Sjh1NZ8Fs5pw5xNq6hdwMQpRybwmk4RxHwgcvI4w4UBOI3pPYWZch7e4XQcOBuMKLVB2YLYzjBLx1x2n5uPvrgCrS8Zffd3ELrCjR987tDuq/8leEv26Pe/oOBu3bp169Z/7L4zvcOfTUv+Ql1w1TqyziO6gOu3iK6iczU33CWOp9TFFcJ1OK+pK0exXuCc4SKJ2QbHB0cTPt2fUExetXq7DBfc1Jdo7wkqJo1nzOuGXRxzPNij8RH13gHOLrhIdmztisrWpCImUnOKZsmFjDgeCC7EXXbTOeuDKWZwFxUiNnHLMoKhGKHSPfZswtt5S2xzNI4m1JiupnMp3kMZj3HOEJUnWF0QugLVLjgeTLhrL4l8Q2waZsGDH1OPBvTuitKm6P6anhXxbknc52hh0aElbTdIv6INihezhCvl6LuS7fop1+LVw6R3FhPH9GmMTwXDYktmeqTpOTj5lMI5qnpJb9eYIPHA8aEEmzPoKioiNnKOsRXGGZCarneEbs6kHSI0oOB05umHcDx+zLfyGWs7og2ex/vvUk0OGTvHvq/YS6dI4OXimGUwdAJ8CBTs86LL+Vf997kqvkv59ANO1wWDdUsbaj7MxjQm0JkVym/xpmV307Oveio74spYvOjZ+IyTiWM9sKSuJwktymn60FK5hjREHOQlHZaP8oq9ZkwUIooxHEc/xYW8pqhe4rolrb7EmhVKBw53hrvXzyiDxJiW104ukboiBIdDUoYxRZ/gXcDaluu6ZV3HhOBoEezoKWXNOl4wF2Pmbkgx1pSDHR/Vc8rqAnxJ16+phuesU8Uy/oS9J99mtHiJ0QWNviZEnqXxXJXX9KriS5cvuXezxuohp7M9dsMxq/GMVedYdRMio0m0YXH0GjczgxceIXqeccNjESN9Q50FohARWYetX7U0f88nvNie8WjUQoC0qjH9livxPlfU3LVDxkqREbMNgT9/YPDtNeSPkaLnIp3Qyzt0QrNOOhQgbYQVY87nj/loMOR0MmE7uiDQsb5ccSoiFnHD3euIHzHk46akbVP+zdEbzJwiYktdGP7t+j9H2ZigY3oz4ulexkfTKZ3dUauWk74m83NG+YplvabUC+quIzUpbnvCqjqnL//dVgoioL3B6Iq17Aj6hunyEmdbNhEYH3ExGrJ2O1xdE9pPWSVnzLcF88WSnV7z3E4Z+hl7xR0uY895+5A/OTjgveGUTiqsVCBhm17Tt+c4FBqN9I5FXHNZP2bnFe/zgjJtGXhB+XJJqGuivkTpGlUsiK7XWBtYyAlnwy2Ziplup4T8Q67Eis3mEW3ToWNJI2Jyo2F9ji1btJ0yAzbdm+xZx+k4ol+9RHnIkEQoVqrnYrrABYtVAq2gT1OMMvTSUeSOD8ohvRgwDopVnPLZ5CXWB3wYM3YtRzyliz2p79iJI3bVNcfDhrV0XG4FXoANHiMyXu5m1MUlcVMRe0vXj3hmz/irw2OuBjnad1xM9vnhwZbL1PGt6et872jFtVzzZFBRcMnjvROu44BRnjbq8KMZVaJpfYXwCa5bs6hfYsOO3k0/Nx99YQWauPghyYt/gR8dYe/+5OeONa//pyAE6Ys/+YKiu3Xr1q1b/3/327/92/zSL/0Sv/zLv8yjR4/+2m9XV1f8yq/8Cr/4i7/Ib/zGb/yt58v+mCIJXOsKm58TpGPdeIRr8Fg+SB7zsX8PG+6wVxeM2habTWgTRzMUdPaaGz5hYz6A9pyJkaTVEhd6kt6wcSXCWxQCj6OQKV4IdsmQ09kEVVywEZd8/EbDepyxGCT86/s7NsLzfHQPGSxJ1UK/ZuFOyN17JPkar2JWWeByPGIdR5xPE+blHoVuGNTFq7VaMgPXcxU9pfU5pVtjZY9Rimf7U2br9xn2Bd57FtMpQUq879hWz4jMki0toz6C4iNMecb1ZIrUzat1496Smg4pEmTnebo/JOpKgj7jxbzBhp7n8ys6NrSqop55jM1Jtjta0aDVkKmc0qVbnC/RBs7zczpT0IeetFjSCHA2sO0dl+maSgVqGp5yTB41nPslH2Q/ZL7+S3yScRHvs44jRL3jUX7G80GM35xi1B62uSbJz9HhhkeDhhZYDlo+HtdYXWJMRR0KGmPYdJbSXLIY9LxejClnM5TpWdqXpMsnUF3TeU8IltalFOsVpr2gti21K5HmhnmdI4yhkzHJ+pzUbHg8+4RF+gmp9SS6QtWX3EwmJItr4mJLFXI8inHtiIQkChXPkmcUFNQ2o1KKNkp4mp7zwj3i/VnLyZ7EJxHnfseH1TXnoWbQdzjTIVzL+fCSxo/pu8BSFlQkZE1GHwLPJxEfHFT8m71TvjtYsc0KKrel9AbKDiE0V+oZa5XjnUbYLd52VK5kMTzmYrxlUOW8nKUMLj9lVWQsR54QZZTjOX8mzqjCU1rVs1SOqqk5HQiC75BdySYaczm9QyUFxuUMvYDWEJBUJFxEFYWCcXfJ0Av6CFLVctjWmCjwLFNYkfDE77iMctieEW93LLmg8S0jV1LqGofHhR4bDxAprOMFC1lynpbMly+ZljWDpqfLhmi/ojcXXO8/4971BaG/4VkwPA+f8MNEcNLfofAtlyKjKJ4zy3e0ZkFa3bAddMR5QDrJ0N5g7AvSbEQz3adLBlzzHJ2BjAfoUBNHQ8Z9R92d0/sc154Tt0sINVpUXI0lo3zD1SjQRzFWtOBq4qrAeotuF5wqwaPRJZX0VDbm+vCQl0c9z0fHrCKPUZoyjWliibOBaRExLUu67oxHs0/IY4nwPcvpkCaKiP2UmCF5X9IYBdoh3Y7UetrhnHrvNUqVcidfMl3c0HcbLtwFul9Q6qc0icRISJxmKwwXYsH7w5es62O0ifDmDN/lVNVTfHHGNlSMy5e0IscDbvAmP6F/ho3yONcSfMDaEujBGU7VivrmmgeLv+Q0LfGyxWtB11cYBK6LuLCHfMstuCiOqdQ5q7Hg5VFClbY8kwnbYYJPFSeHR5xM76F6g2hzbgaKc9EQ8pfsLSsma4uhgThgo9fRZ5bnriG7uECWPfevCqyIyJOGHyQV396LWcSGRaKpBzGDtsRuH+FtAaLBhZq6f/y5+ewLW4MmXv455s7XSU6/jZ+8+XeO99kd1PbZFxAZ6LYhGXzednG3bt26dev/y77//e9zcnLCH/7hH/Ls2TN+/dd/nT/6oz/697//zu/8Dr/6q7/Kz//8z/Nbv/VbXF5e8uDBX5/N0fgNgzig44S4k1wMLSPTE4zGi56+q7Bdx2V3jItWtIBWitg5LtIdmbyhtSWWEVXUMa8uaTJFJwsGlcPFAzq7QYqIVlhMLMH0+KgHamLdEJI9pLVIF6hdyZ2bNa6fsZneY6pLsDVp+W+ZbaecH25RQbHRHVG/4qAcUgjLJIxZjs5wzCmTNVHTM5Ilw15i18d0WuNFRyM8QxMzy1/SK0vSVOydfI9Z2yNDTRsH2oFHZpbUtRw5RU/HSGbkkzFCr4n7il5KKl8QXMcuHiFNS5muWQ4Nh9st3fCI7VDSJ5ret0zzBTKy5BPNUBpmeku3fcaQgknroamx8T51IghtT5tOkIMZu5HkYR/Y9RmZEuBKskZR+YyHmytGs0tCMkfoEhdJor5mf1fi4wc4OeLk8Ih77Yqs2zEINU6l1NGbTIBV1LCOF+xn99g4ILsiaqCKU1oZE+KIJ0c5V/tj3tluaKKe6ze/wt3Tb7FXWWIv+Kz7GDu5TzXLmeUdAcegran8hHG9JkIwL1bsXMqdWFGlMdv0feIDmJcZ+8GzzAzz2tN3H7IVRzSZIa4kUQh44GJUUKkB5xFM/JZxU1OKGmktgSHORyzFjjyNsUVNVJXghkzaGtF4Lt+5x8FxQwjQuwo7jjnlkr88Ckwa+CRb8jOblFRJbtwLZCrYNxnUJWHfo12JlwX55D5pE5Ddliws0VOFiBy7ROCtoWyf4y+njLJT4p3BhJaeY4Lv8CYiKIupHiODJ8gE6oYwbJm2BiVKztuaRn+JkQ+0mQataVTNanLBfpOQbM5QTcFATlkNxoTW8ywK/OndjC8X12TdBoekimpoLYV/C0JNqyzCeIZFQTnLwC7RTkJ0iBMNi8zzYLdhhqUYCFS0z2ungsvXBoTGMEvHvHX2GFlb6sGIUVHxwd4T9h+8y89uAoPgmF99RnXv66ylYuQsFstzuaDsTgnhPmkWE3eGnbjGWIEdTpiawGhVUiYJsTVYGaGjiF4ZbmYCJS4YG8vIHJIVSxqZE5Ql6kfsmTleL7CxQ/UdF/OaSpY4c0bdaBIRUOUFrrhmv+5gLJC2YzNKiXuL7tekIXA1jkjUHt7VLIYNvehRjUfTcdbfkOoNdVCUA8Ves2E7yMjaHi0VqZ2T9xdIkZIS47xkM7vHJgukmxxnc0YhsEktT3zOXxxdMGjGvHEBZ0NBYhQ4j+w6HBEmBDbxjNLXfLY34zT6jCTrGdUnvBwf824ypkayDROkgCRYVAtx5lAyUARofE3bTtkeRLz/5iGjUqHTGU4m5KM9IrfEodEyIgjPoFigPERdTr73gHV0Q2hyYnpObUlaaoJqiMI5ebJjf2WIQgApaEeBLs2was1sHcijJ8TCQX5MnPQIewS+o4syQn/N1EVcH24+N6d9MQVaCMi/+h9wX/sVhC7xo7ufP14IECCbNXgHUv3YQnv63W/x3v/2vxCnGXE25O2f+Vm+/k/+M4T8YvfwvnXr1q1b/+9997vf5ed+7ucAePfddymKgqqqGI/HeO/50Y9+xO/+7u8C8Ju/+Zt/6zW8sRgMm0yx36Y00rOTGtIYG8UE32KQOOFpk4iryYjDzROG7atCpz1ICH7DqPFIfUHoIqTt0SloAe04o1oJLjPPoLLMdjeUo5pQfYL2Kc/vR/zEjSTpFNgcq9Z0tPhswtBXRNKzzq6wc0E+8EyaIdthRhMu2I4sI92h6hUMvsodcZ+b6jlK5Ag/p1IWpzoiP6FIHXoacbTT1G7BxkX4OMarhEH9nMx1OKERMqCcJsfAQDIqrvBRRBtZwuY9EtngnaKRPYQMHXpcWBK8pomukD7BA5gtb7wMYARetDQYhJJ4pVimlknt2e9K6ngEFKzHiqN+wE1WMrICrRxNdM2gnnITeWTXMBD7OO9YR1CIId0b95B9havhNIV8IHkzz1kPN8h6RLfv2KsvaHiDmXCYJMN7hYug72r26wWNEvSuxaUlloSxLZiWEvqWs9kOY/d5cN0xrhoWh3Pi/FOULegijWha8kFAySF1vGIcFIvsnG9epQR7BysEXbTlarxmUCfoomAvG5PfT5jVEYfbim70kj5RSKFQvcF353QyY9hq1GAMqUficLLHxHNoIQ+BEAKz2iFDx8Vsn1l7xUQrdiqnjAWRV2xGih88HPHw5lNu4ikzPcVLQeItwvdYu+VsVPLwqqZzazbqABEyXGZg0CMiy8TPiMwa71ck1uBDzvPpfV4/L9i3gTID4QoqVVD1FVUyI3aOOq7IbIwMDb2C7Ugy6QNRs6UXAYNEhzWvn6dUDPAq0AqD7D6mY0fkZ8QMSDsH2zMeDSU/c9PgYkljK1K7ZikrhrLgTrtHG8YcVAtcpJk1EZHWfO/hnL+fa4QTr+aOmR4fRkhjSHSM6BpCNMGEJX0w+LBA2IiEEYnWXCc3yBCId0+Qg4pCBbztcOmApGmoog9YRV8m1QLVvOAnLgf82eRT3ugcqpuyG5ZUcULqQfaGoDwn4w1y/hqvbw26OmGVSvYbjY89WgqMtzhXMa4VLk5pY9DeIIICbzEi0AwSRsuO2nukdgz7ipF9wfrgkPvLikrFiK5myYfsa0urBK00JIMBm5khbRLifkUrHUfdjot5R9IaBJI0SejDFtVt2IzuEYmYRhgid8EyHZDYDk/8at0gDUYoDgtNl0pkfU3kPKR3ePLwHq+/WPFyrBkVnj4KnByNOFoqOqBJEuIg8W5DFzwTU5FJQ5ss+HayRq9b+ntTWtWi6DEuoBuDHc+ouordZInoniPYo08i3jz9Dr18ncd7h4z3H1AnL1HNllFzQIjWJNYTu4JEN1glyIqWvd2Gzlu870EM6MNLVF0Ra4uVEm802fIzRPQTCLHm23e+zleWT2llYOgtlWqJjeXBpcYFhaw/xcpAPkpZTCVxs8VIaGPHSHsqpWnq5HNz2hdToAmB+y9+nzZ9k9H7/z1+fO/vPMVN30Q2C9TyQ9zdv/djCcsZw2ff/hOy8YRqvaJaL6k3K+rtin/0i//1j+Wet27dunXrP7zVasU3vvGNf398cHDAcrlkPB6z2WwYj8f83u/9Hj/60Y/46Z/+aX7t134NIcRfu8bB9oKjvGM7m9FGO5rBXZo4xghD8AXSC4Iz/NVgQ7ANRiZYEdCyQYQM2a4Rc0GiJLPVGTeTwLT3DLUmCxrlG1ZiBXZIF+2QRmCEZ15aumTIfGdp5ZpOOKpswl6piZ2myTa0o7sc9pc4Bb0q6YRFIjmbvGTqDMpZauGwg4JgP0aEVw9CTmiaRMP4CNmd02AYNBWxVehIUA40TggS4ylHCfduHGln0AqkTNilBssLDjvDi+yMgXNkUhGbNS7q6YPmJhsBO3oJmYs5m/U8uIFqmJD1DbH3SO8JtmA7gYnwiOBJTcygtZxPU0S0pBocsF/nGFGTh2uw7auXtMHhnSHWHZvomjkVLkzwKiH0BSbRnMuPMIMtQ7FHPn8DY3eE8ikHfUlMSbr9DmlT4wYdHSXSWCKvkMsP6HVBnbagAyEIshBovMAHGPXghSeyIFTE5RTuXjUMWugigXElI23QkSf1nqw2IEZATQiSnXTcW1ywt9Fsr79DnsKkNBAUw1YzWz8nayvwFmEUs9YQtMVHMa3sEGEAg4SbbIlOIy5GgTdNRtJJEJIgApF19JHCoSjiHVIbyniMMjnCGnbJkG20ZZivifVD0i4i0TVBBgZFw6I+5e4W9N1Xtcv+ylJMDNXYMOoCQSs+eDDnYTMl8IIgAugbfOwRzSW5akmcJ7YDxm1Dk8bUbY/UNT4WyKDwAVINygWECCQmEARUqqPHYKMJG1mwHQRU0eFjT1re0MoOdIFiivAa5TpsbKhkS6dygktQvuRyKNlzltjtONycE5AoqzFRRBCSm+GWp5OCUS4JeGwkqAcJo6pgXubcv+nZW11jxiOaqCarPUIJbLjmyV3PoLQY6Xg01gTT4oIitQN670m1xdiOP34r5+G1w9eWjblkcxRzsNEc2hLX97Tjji4ZQnVBIju0UCifY52kdx3FwNLEgtg4sm5HFgzKR1glcFFE0q15/bTDZA9JbEBHms5dEPoV0k7olUAmgno0wtmaVrask4aQKe5tNyRW0sYjGvcSfPuqS6LRxO0128Mh+jBimG9ohhnSW9JdiQjQRluUzVjuZcw3NX2WIJ3FC8VQa7rRgEr0ZLVGeIETDkGEj0c4uyDdvUCYAtl4jGyJgiD+dx0MX6SelTomGuzRC0UYGGxcMtBTDtsJMZ6ies4sOgM3xaOxAbRUGNljZMCFmq7+mGBfg3EHdkMQUzaDp4R6A2ZNR0MQkn5wiCeiE1cEFE4o4s2a07t32FOCIFJi3RF1jsh0JFqisxQnI4pU0auUYbjLUfcpqivwocMlMcMeXNwxrsEpUNqTaUNta+7u7hF8S8C/evEWZfTeYmT7uTntC/tMFN75OUY/+G8JMibE479zvH7nn4FQZMf/+48tpr/4n/47oiyj2my4/5VvMpwfYHXHs+98i8XxZz+2+966devWrf+wQgh/4/j/LMBCCNzc3PALv/AL/MEf/AGPHz/m29/+9t+4RhNrXAg8PL9mXIG3G8qkwciAF5rYWpwIeH1FORwwK3YoH5BeUo49ZVojtKGqT2hjQ61KetkShMQqSLR9NUMEhxYaK3sip/DKM9U5B0VF0hQcrdYM2hta2SAJDDpNWh0jbMuoqImcILGeyGmGXYvoNXsFWHtJpB0tObbf4KXFh0DS50h9jZeO4W7DqH3VJbnMerrIMys69oqOg+VntOkEE2eIAME5jFhTDBryyDOpBE4qiiQi9SlJmCJsAXqNahtc6PDOMFvtSDTc2dVIB1nvSbXERRFt4vBSEUSENA4rGmbbNaHpUNUlPjgiU7FUS4pJio4hCvJV0wjXk7pzrLSUqcSJgBOeWAeGdYuOHetMcbQ4Jq0+w/sOFw+JrOe1qydsh2tE/4LI9vSxpRpKrFnSioYQLNJ76kSTDxKyzoBQeCXQMSQ2ZRM1VMoCGZ4a4UpCAKMcVjqKSeBqr6YRWyAQac1m3LEZdQQs+5s1h8sdwrRs7ZrFaM3B8poQeqx89f8QgFEeZXra1FFkHY2D4GOsF2gsG7Emak+R3RYvJX1k8dITOc+gqbA0SJujgsPGMU3UpE48AAAgAElEQVQaELogMgofroj7Bcq2YCtORqcUUU1kNbFtMGKHiR3KW2Z1RGShTiXjzY9Irr+HFw5lNe1ggheeuFxTp4KbiceJlrRe4CRcTSp6c8bhasOkbBn1HTJIZIA+jqhji/CWephglGXeViTmGqlP6SIDweODx8sBl/t3EL6niXpU1xNVn1KkEh8UfQQ66nlnCbNGkXUNHk8QFicDSIsTBtm9JOl7jAJlPeNGk2rDKF8TvOP+UuOlZTmyaGKM8hQjx8m9mIu9ObvRgNhIng+2KC9pUkeXNBhXIrShTg1t3LFLIoZ1he1Oee2yQtmGNinolCQ4AziyrsVLSR0rtOjZpK9eQmSdo45b2shi4oCUnnw4oE9iJkVJk0i6KKaNI3SigAinYkKoUWZJT4uRisHuksluSSsCe+seKzSZhj5WCNcwzxuUV8je4OkwyqJ9IOo7CDBqNCby6FgShMBmGSFs8aEhcoLIOsZtj/CGIEDYmlHb4KSnTT0DHTOpepwzTPINjWr+D/bePNay7Drv++219z7DHd786tVcPVUPbJKWKIER3bJkyZFlKzDiwHZCOUCAGAFsKAYMBEISyIYZBEgCZETgRIkFGBISOU4UW5ZjjXYShaYsiRQ1cugOyW72yK7p1XvvjuecPeWPfe69r0iqZVFUEwHeArqr6p5hz/usb31rrU0SRdXNCAqcSiT3Nkt9SsMcp+aE9h46OOrGUy4TRVxyb0vxlr2H9gq8QEjoCDuTiFcOiQucaOamxXZTFiZSuAmLSqG6B5SNY8oXGE1PKZzm7qUxSzvh4O1P01pQEXR3jJOES5Go5qS0oKMloGh0BL+gM0ucTBG35PqdT7Jz8ipgcGqOF8fpEKZVYG48swEErVFJ5T3ALdk6fout+RmCMCs0Z6ViqWBmZu/4TXv3/PiCo3rxfyUW4/4D9c7ysU9NaVKB3P2d3/Per0VijFx7/ptZnD7k5vs+gBLhW/7s92PLAbdf+C4+9U9+6g+l3Au5kAu5kAv5+svR0REPHjxY//vevXscHBwAsLu7y5UrV7h58yZaaz70oQ/x+c9//iveMVwOKbolxCVRNAcPE9MBJJYkoLVCETziHeX0VUgnqBQxyTCaBZSfMpxFBgvw0pKUp7MQFASd8DrShWMmZoqzQmsTjY00Gk5Lx6xQoGpMCCyLBTqGzFYQKNoJzihIEZU8dWOoloHGBgIwLwy2aWm1sCgMnVHo6CiaFnE5u5/2YELEm4IogapT7E5hbhJRKSRMkDghqQ4vES+B0dJTLhpCXDAZGFqTIDg8LSkc44zOLn4ERguPdZ5FrWjKSMRR+khjE0ElGh0ZLcEZ4WxkaSwQA9PiPrgFo7MZXjydUUxKx2D6EAkRkkOFFhU7TrYCwVi69IDU3SN5n2N1bEA7T6cDreow7VvYGBnNO0x3TJDAlWPF7mSGF4WOFcMGEoFIBAXGA9FzWheo4GmtwhkwUUPnGJy8xtOvvknVLbjyILJz1mFaUGSWqOg8EhWDJSQMNg2ZV4l6+RYvX4PxzDNedEROSXHJ5XvH7E08JoANEOkIOKISGqtYlIkYFzwcTiFKtsovArPksa4FWlJoITpM29GYJVG1BBUgtbQ2ErQADU4pds8WFLMp4k8x7j5ewKVEY6Exju0JHD1UBJUgNiAlwcCyWLJ/fEo9O0ZFB2nJaDHDiaO1keRh7ywyaCNb3ZygIolI2ZwRjGZZas5qQ8ATNFjX8GD7lKVekPwS7RyN7tAhMjclkiBJYmlacBP2T04AR9XC3tRQtxYXO2YDg3aBrbNjFvKQ4+EC7SNnwwgpoBLgWyKBy/cC0beQHPMq0VjHmX7AstYkgagckoTtyRkwR4DCwY3X7+BlTKehMQvscopKkcJ5QgoE09Galpgcu3dOMMsHTAeOSIvxAZRmWVrKTmPagF68RgpnWB8pu0AjE5bqFNNOiNIwK5ckSRADURROGupmSWs7gjHECI3keWq8Yzw5xbYdTnf49JB5URGMZVH1czpqooKIIqVEayJOMlDcnj4k0rGwDcPZ26Tk8Ton9iibgHUdiyLRGQMJAsK8DnQmEAWWhdDqvP8EAjYmqhZUXDK3Db59ixjnjBeOSAcpMmwi4ifceuU1tk4+h1cLZNmg2yVV8xDjA4lEm1puvPFZLt25i0TPlYdQtxMEkAiJzDRGIqRI3SmCm7E9axgtPEU7oWogorEuMpq1sHydrftvMa89SUWK0GKCsKgU9bIj4lBhgVNTinbKcOGwIWB9Nn54FfBqwu7J20jbEFlAUoxnDVXXIMkxbDVlF6maFgCvSxrboaNjWhlMTKiYmJj7tMm/4zft3QNo2pKKMXHr5jve9un/8x8zfXCX5//Vv8TDtM/ZnTf/UKrzxm//Gi999OexZc0L/9YP8J1/6a9x65v+JXav3+Tw8du8/dKnmdy/84dS9oVcyIVcyIV8feWFF17gF34hZ/797Gc/y6VLlxiNsreGMYYbN27w6quvAvCZz3yGxx9//CvesX92h3rpkKRRKQCJ8XRC2UyJeKxPBOVzXBUeFQNeJVRoUD2IiHhs1BQuMJiDdR4VO8SDBEdjPUuzxLiE8ZEknrrtSCi2pi22Oca6gNc1oIgkEhGVAp10kAAi1k8xviXRESQgsSOpiDOWqukovCIFT1SO16/WzOrcxs5EPAugBQKLMpIUWK/Yni0o2wk6LPA6QOYiqDooXVacJEW8amjljLpdYnzEREUCkkpEGogN27NI5RRRBBMg4THBU/RNKNt83lEUcAQ67XBGEWipOs9wKRSuw6uI4wwVPYVLbC0t47lQd55EZHveUTUtpnXUrULCFNKUuvVIiNStw4SOYSvoqJlVOZudhBnQkkiErPEhEYZNYns6o9MeExKFC0hQRG2YDioWZcCLBwK6m+IFOolEBQnNvIo4a4nSEfwJejlhdxp48q2IiUBMFF1gtISzYcGyUiQSjelIgAkOlTwJsB6sFwrfEdUSFSNVExgsEp10LEzC+TMkJDpLTj/voPDglUclRWcjQTXMbGRZdAwbIYjgdKToOg6PPSYKpROMFwaNwXjDrO44HcxIKEZzldlfch8an+hkyaIITMaaJAqUIEmx//BLFH6CCh4dQfuOhEN8S2sSkYj4ht2JUHcaSQAKHTSg2Dm9x7DJv0kMeAHbOYgBpSwQSTQ41VJ2HcMmUnYR2zr2zzwmBnbmCcjvlghFgFm1IKqAhETRZkhx5cGU7WlA5eFHQtODdPDAaAFFSNh2xv7JQyQmOHc8byCPDzGifWI8mTKc3aVuIxIDRUhICnTGUzdLquWErZO3UcnjVMB0np1JwAaFs5kkOpgYii5gg8epCdovUal3EY4dJswI6S4qCV48xkeCRArXUbiWspmzKKFTU1RYIqGjsxoh0BkHqV9nktDBQQqUXaDTmiQFJkTa0lC6OQASI151qLBk/2zGsFEkKZiVnrJrMT4bNqIErJN+v0qYYGjNDIkdZZvd+6JakpLDush47hnPO/RyBgmcbiGcsrQNiZjZvhiY1AbjHdYHouT5U3gAjY0ZyOoQENdwVluIeR8tXEMRAiTHcBGQ0FIvJ6jQMKlOmQwCrW7x2jOeNUyrCaQlCo8Nhmq5xLoAwHghWA+qe5m9szNs01DP3kJHhTeC0zBcGrbm4CWi8OgYgcj+aUvpoRNPoEHcXZZ2SWMCKbp3/Ka9e1kcP/l3UO0Ev/PUV72eUqJbzEkhYIqSemuHvXJGbM74/Od+h8On3zk1/+9HUkr8+j/6X4g+f4CXZycMdvYA+J6/+kN88h/+OEoLr/zaL/FN3/fnv27lXsiFXMiFXMgfjnzgAx/g+eef58Mf/jBKKT7ykY/wkz/5k4zHY77ne76HH/qhH+IjH/kIbdty+/Ztvvu7v/sr3qFQRJVQKaADDBaBIDG7RUWFCRmgBJUtn2XXgopEEZLKmlu9dKiYrc6ShEAg6QgRVBQKF+iKAqInCJhoScpTto4kgqTsfrh/ekoUegU2u+NULRAjUUAliJKoO0GRY5ECjrKNYEHFSLAZZD3+ZkQpSCqSUqIIiqiyMmWCcPVBJIpHR8EX+Ywk20aSQGtTfpeCshO8gEohsxxKYQOkINnVKUUUwuFJrnNKIbt2JiFqobWeqlPoLuK10BUZhKgExgUUGeihDFEBRJIkOpPvkejZO0tk56HMfgWt2DvLroHHhcaE2ANADUSWVlOEhI6JJFA5RSLgdSImQZIjiMaZQEJYFonIEi+JMkSCijmhCYGDkznjRYK+ntZ5Cp8IOrcfEa7ez3ElGUd7EFAhgxuVwATwCOARv2A0DwSBqDUqRkxQJFQP0gwKBUkygIiBttYIkVAaSBnoRQ2SIiaa3CdCzkYXEioEIglv5uydJqJyGA9JCpZmQdBQukhnwIbMurQmsTNVRAw6JSZDg/WZkdIJUBpnFNtzzzxZAgt8EShdXj8megKRDHMyE5XjvkAB80FEB1iUHolQudwvJmSFGYCYMBG8Ib8nZVDpJL8PpSm6QBJBR4HUklBITDid3YghIlHworh0KszLQNnleQUW43MdbcjMstN5jjtj0OQ+UWhGS43X4LXKQAFHZyEqi44diKbooG4WuKLKBp4QgURUIFHotGK0FCS2kMCovMZAEyTmNqByrCMh70MxkFJEgkURCBJwRqHdhKXN/a0wOBPRIaBjJKVAvZzh9ZKEpnAZeM6qyGCZgLwHSXI4URQuj6mJERvmRKUo245Ge6Y1HJySXRkFCp/wonoDUAbKXkUkaiRqOhvyPhGyYUcH8EYg5k1MpYjXkJRAyixzIlC0sd+bAlEiSQlOdWglFJ0jisoAVeV1lGVJACSZ9fjsn06pl3MkQlAKGzRVF0kiKEA7j7Nw821wZgqUSGhISrh212NSb3pTC4IRik6IKhDEY1PMfUlEpQYbFJ1OWBeYVxC0IxIovMKLoJLkb4VE6gZKbwGHV56ibYmSeATtfxV51wCafO5nSOUWcev6V73+z370b3H3859l/9aT7N14nGvv2SFu38R0v8Nr//RHOXz6v/m61SV6x7Pf8b385k//BAc3n1iDs5UYW6CN5fP//P/+XQGa9yecTX6Rwl5hNPq2rwg2v5ALuZALuZB3V37wB3/wkX8/++yz67/funWLH/uxH3vH58czh8RIVJGoBB2z6xkkniif4258i3k6zS5kRILOFmZJggrSs0gAOVAeLTlBgkq0ZaJ2AMJo3qAitEWkaFtA0CmrsypGvM6Kpe4t+/mNWclFslKXEEzYfHcak6iSoHCoCEFyXQYteJ1wylPHXMGkpAd+oVeeM5gKYqm7Jr9Q8v8GrdAYh0Twktk80JRdAwRiD8xIsgZYSSWWRaB2WQHsLFgfqVvp2xGYDjTWg4SYryO9Uq8IyqPo+zV6kgpYr/tqhb5PIglBpayQe4nsnyliDwpGLUQlFD5bwRNp3YcKQSLoFPq+VeiQyy/dCpCD10IUIEDVJbz22W2uV6x0UEBEh5x4osq6dwZVJCKOBBRBSLJSxgQbPEsLl04ihVM50Udc1TICQiIrf6hEpzMLFBTsTDO41CECLvdYUugEEQdIZnoQMgPqc0a+LmRwherdwlpKF5Euq4GtjRnT9LXQQSEiOO3RocF6jQm9wUBlAwYoRosFkYCJCshsqcTUz4PcD6lXfFM/CnUDTWGou01/emnXc1n149tZoXBZqZeU21kE6Ucy5NjAAEE5lMp9VrjMEhc+j7+kvIYTmsInnAZn6Bvi6bSiDOA12dCBp27ye5IoEg5FImqDBJ/nOlC1CaSDCE0ZUDGikyBtSyIAGshzN0E/l1cJSiIm5PFpbMR6haSIBMGZXF9FxEQhKOnL7A0PnUDymD7JRsJhOzgbKcoOhk1DouTBlrA/hag09dKTRFO4SJRIpy2l6w0tfZ9nljuvYx0COkSGKdKZhI5xbRTRMaBjQyKv68JtRtYE1e9ZAW8ShVPoELMxp5/Xiti7hcPWvKEzgg4wHXRUrcWGzELZoGh1y6iBxmQQnyub3+Ol30lUg8RAGRWS7hHx6NQbsZSwM+2fiZxj80GiI+rsbuh0pPDSr13QUdAxro1jdeuAvG+22qGD4CXHwwEMm954YNR6j1vtTy7bu0j92tSp78egSL+HE+O7BtDYukY8/iJxfO0rLr3yiY/x2m/8CtoW3Hv5Jd5+8Xd47rv+NC/svofB5E147bNM799lfPh7pOf/F5TP/dL/xW//7N9Ha81z3/19X3H9yrPvZ/bwAa984mNM7r3N1qUrj1xfLl/ii6/+VaryCZr2i+zv/TmOjv7K16VuF3IhF3IhF/KNER1DtsKnbOH1EklaZ/e3lCiVZUa2okayEp+/0ZltMhEaCyoJNkRCymyNpKxgRBUzaxYgaOld2LIy5vRKkczKWxTY5D1ZITWFF9Axx6VtJGYFpgcvtr9kgu7/zPUNStBkJo2UFcQg9CwKJJpekWLN0iEBswaKqzLTBjiuGD5WICihklC7fFxOEOnfvREF7Mw6JOZ22pABpUSXFaS0Ysj6fvUbIPoIYJWsrNmQMCHhJfVAIYMZSQHpFdsVYKF/70r56tU9dCQDWMCG1b0xK3Q9uCqd5DapiI4rdnOj2J1vY1oVubaS5/uigERF5RIxJIJWWL/qU9W3La6Gm0TM8WkKvEpoQIewuaeX1m7YyFXLMhjN805SdglNZFZAn59bCIXLyjMIVRC8iQQVKILChHxfVIKKsa9XdslDhXN9pkAlgs796yVlRlPlNREl0Fio20jdelZMpEKtld209jfMjF6UPEckkF2KTUJihsCreR50LiePgfQucKBTZDXVk4pIAJE81zuTUCqDTkWk6NsYRHKd5TzY9rkuKiIpM5xRYu4voe+7nCzGaUXdkd0pkwAaE2OOm+rfuepPyPtCWhsd+lhEldmXDOzye3Nbs0JfuIBC6HQ/VwS2Z4LT+XpnHQdnmRVzOjJaCvQAIZGwPvb1i30b89hFFVDrcvO6VSicSYhXa2bW6UAQRenPzfuMwggqr9/SaZY2rxNi3j+9Tn1/b+aehNQDT0UQ37saJ1RUFEkICiqXjWFJsn0qr7sNK6dQBAXGdzmGTieCKGyI67WJbEBiUHk9aZ/7oPD9/EiSx3jteqg3a5nNHFvtx3k1JoLk/X61b2zWZd6XveTyJOW1sNnX3xmgvXsxaLO7JF0QRo8eDJpi5OM/8aOUwzHP/vE/xZ/7j/8WxWDIi//Pz3E8eJZUbfOhK/e48/l3PnH79yNf/PVfJnQd9dYO19/7ga+4fvTUszz7nX8q3/vJX3nkmnPHvPraX+PS4b/NE0/8CE8+8Xe4/+DHWS5f+rrV70Iu5EIu5ELefVmUBq89UUVaG7ERrMuW0tB/ZCH/mRRrBThoobPQadABdIy0dgWkNpKt+VmZW32sV8qRCVmR7ktA4qPuL9m6v1Jke62nl0dL4dzvcf2fDblMiI+wQIocf3ReQq8IqZQVvPO1WNVvpdh/eR2ydTqRlPQM10ZhiYq1ciTrdmSlWs4Vs35Xf29nspIeJZ5rU34uPAKC1Pp36du4YTXjGgABLMocN7ZSML3k5zqT3+H641c7S19GZgFJ8RyYWCl9PZu3BoFhXaeo8rtW90mMK0dOJMZ1uvG0fo61ZT0qWZedyIqvlw2bcn68CpdBkOrL3DBxgiTJxoZ+7CStALas65ZddBWJSGvimj0Oq/orye/Vsu4fEzP4z26luf5BxTVINKGfY71CXXRZqXda8DrfH1U6B/c3lPGqflmxzWOb7Q3qkT5KgIrnFeksuV29HaK/mIGa9AxGoHIZxK2edXpVV+nfkVjaRFArUC9ElV3TGgvLogepZOOHCYqiB9NRnV8rOTHOqv9jjxhWcxVWZWYXzhWQXs1zu2LnyS63kBk/GxQmCIWDSKB0eRwKl/eeDRjczMPsfudJKu9XqzomQu82vbo/bvpwZTjoO9gGRe3yv1eGm86s3F8391cu110nYcWuQjbapN7FOgh4vZlvEntQ3NdDUsxGqcA6CyjE9d6w6jtZlxGxQaPDo3sS5/4uKbv/OrPZdFR61HBD7zaeVFyvuahW47Aat0BUEZU6lhacRBZl7sNN3ejZ8c1CVmz2pHeSdw2ghQ//BHr5gPhlAG1+9hDXtrTzKVefez9FPeBb/uxfRCnhldkh+CXb6oTbf/S7vm516RZzTFXxZ37oP0d+lwOp73/xc5iy4o1PfXL9W9u+wWuv/3sMhx/k4ODfBKAsb3Kw/2Hu3vuRr1v9LuRCLuRCLuQbIW79MS+d9B/hFVuSmbXVd1elDVzRIStFNqw+xitLc1aSo8qKfmKlpOXfvGSFO2SqqldcMhuyBoPrT1RWolcf9/MKAEjOxFfm573O70hqc++jysrmuycxx0kkNvdsMFlWqhrb10ClXiFdPR/XQAbiuj+8SXR2A+La/jxWSdltkATOJPx5BVFtFJ9EBh0q9cpUz0Csykrn2i4RnOQ6bkBer3QrtW77suhV3P7ZQWvX43leYbI+9W5Y+T4TBP1oZ69Bkzqv+Z1Tns/3T37HI49vwMD6ni9X1PpYnX7uLYucQdRE/cjYnO+DdT+yAuKr9+TfVjFOK4cr34PdtdKsoNMJp2UNxrycc7lLMSc+WCnMK5AK63HMADet69YUG3o19bSYSpkZU73Ser6u6/Htf3E6Iily1VzPUDP18Wa9q9wKnEt6FLA2dsPKroZOAa0BUgZXsX92NYZR5XFyOrsdroBJ5XIcXOqZ01XfVw7qLpexqmdP0/SZPxMbI4bqjS+9a+zaQKJYlOFRZV31cVuPGGA25UoSogg6RBRhzXpGrc+tp0SUvNZam+uXVN/vyfcsbt6rFBuQ6fvfV322mhs53iyeG6ue0dWrv6s1IMpzMbEoNuOa1nM8FySx/01BkM2+sTJWJfJ8XK+fmPfP80ac1d6wMUZs7l/te+fXiFvX9dH1tizyfNmAVcH1/a9Snh+rPd2blbFCbcCdynO6cmBidnHcsHyb8qPazFEv2ej0e8m7x6C5BdKcfAWD9vKvfpTdqzc4fPw2V57Oh4w+/q0vUNRDvGt5+WwM0fPFX/z7nN156w9cjbc/9xmmxxFd/Rl+7R++yid+8os59eji0XSXz3zHn+T2C3+Ch298kcXZKSenP8vnPv/nWSw+hZaKk9OfXZ+7c3DwF5lOfwnnjv/A9buQC7mQC7mQb5QkgpHerSh/yDsLszL1finpEUXwK2MIhM5slL3sbpc/8jkWK/RgKGfd0zH/p/rysiIMhReCzhpDVlSyCpNdZaQPtD9fbnalqdq4VpidSRxvJY63ssKRROjMeZYnK5eN7RXXryq9FV2yIhNkpazk36PauJkBzOrMyDidXeYAvInrGCTIyh7krJHZJWgDZlaJQVQP0rZllwN9tHYJS71B9Sn7LIUqWYFCGzMzE9ZKFn1snEJSrnfdZRetjeKUzjFxK+V8Na6s4/9UXOWlg3mdHun7fH+uk+pZu8ZuGKHG8ohFHjStTXneKGFp81gVqgR5dBBW8V5BIEpCqQ3rt6g2LM5KmmLF3IDGIOj1e1YAIEgCleublXNZP2diBuM5/jEDfJ0ipcut2/x/1bf5z9Nh6t0X83vrTvUxnKsYvdyhy0rTFJt5kNmW88B0Bb76R3q2IioozYhSVWyYw43irr5sDSa1cveV9drKLGzu6yBQe41EobErsLd5R+GFyj3aR6T8niB5raRNszABuiKXtyxZr/XQGzLyvakHjKlnanP/QmLQqr6OimXRv2+N6GU9zk1v5IiSGU7FxjCRiBTdKq4tzxOJmU0qHRnQRdZJh1SKdCauGbCo5FxdV+O8GdPVOETJ7epMD0J7ttCZDVjKsXyaImo6K+vnAKb1o5YKSZv9z+sMgKNK/ThlA1ns56sNudxwbriTWpWb+6kz2chwOgg9mPpyLwNBEBZFImgoXKTq6JnUvs0qG1ry2jrPbub7bQBS6t2SMxjr7Iam9ZLdZB91qd7Ue8UIr7I8vpO8ewDt+GXC4AiK4fqndjHjt3/2H7CYnHDrAx/aVEprnvrQdzK5+yVu7gZQwu7JrxH8O6ek/BeRB6+9TTH61zB2wvRhy+y4IbjIP/3hz7CYdJs6iHD9uZw58rd/7u/y1uv/CfbtisHgW9nb+37u3/9xzs5ySmdj9hiNPsjp2c/9get3IRdyIRdyId8oEealyixWrxAlDDoJzsKBvkSp6jXTtbF6S85K2Ccn0Ckn5mhN7/PTX7de9S48OQmBN1kR8TqrREFlcKJSzNnieuWmKTPzYUMGgNaDjhvtPKisqDnbJ+FQJjMDCgZdVixyMpPePU5tQEjlhLrbgKSVMjaSLVZuWKTMFtiwcv0CE0zvVpT7LbvjKRTCrPLrvon9dXp3xFm9sryvlP5IUoogG1eo1mZ6SUyJ1QPA5MxusnHL1Kbq378BUCbkDIRRCcfbwnQAZbENtsrKW4+BgmSW5LysWJdVXTvTW7r7bvY6ob3qsw3Sj8eqhRtmtPArTi63d6W8Zct9QiXFooLjkedLB5mhOzBHjO1uTuyyGgkFZyNDU0gf90ROQKAMra3Y9GBmSsouK+JeIuXogB2914MxQaV83EFhBjxRPQeURLFEFZlXKTNlOrtnoWBeBW7Gq4gqgZzJszN5DieVkzp4rXtGtAc/KrN1XudxVAkWZVor/YMmrMFha7ORISdK6Pu/gNbENXu3YqhXqfK91qT+vjxH9RpAb/o/g53Gsh5fr8+5IerEohJu1s9QYqjcimHMyn1r89xYu9AJLG2uU1JwMo6cbCVUz8I5IzzYzn0Yezbo3g44++hcSz1brqPBxMx2l7062/V9ISlReliWQlvoPp4sA91VlsvUszDzOrGwgomC9TmRCD0rl9cmLKrVDMmHap9sZTARJI/N6dbGmNQWgVmV49yWxQow9efJseo7Q+wBiYJH40r7zSZKLvvIXOWwut7HqskasKXsFvYAACAASURBVOSsk/mMv6bIsWDOwKLcGCRy7KL0ACazwZ3JWF77uAbKqzWy6uOoJLt7Bo23wqLcMJ/rNkh+F6KRCI3NBqXOJlortDa7eQoZqHcm9ntBv5eJpSkzq7wCc/Mqn5M2rXNbXe+5sLrH69x2Sdl1c+WmqeMGdP9u8q4BNHX/s4T9Zx757eVf/SikRDefceP93/LItSc++Md441O/zvHDBSnBjfqEveuP/YHr8daLiuBe5tYfeYxv+wtPsjjreOvFU77nB55nsJV7y/3Ob9H984+xe3QVBbz667/C4PQ6e//lgtH/NqEsr6OU5s7d/55XXvkBnDtmZ/t7mUx+8Q9cvwu5kAu5kAv5xshrVw3TgdDaksJnRaoznmAMIDTimdQ5YF2ljeWZFM8FkOdzgcbzVZavHMjRFpHGZne/pDRdkRWXzioWlVpb3IOKnI4Sjc1AI1vwswK9rCxRVK9Y9SyYgmUtLCvBi2E6yFb2zmpM0CxtoC1WFvKszJ2NdH+AcQaF8zqzO6uYrCEjLpvrTGuLUmatWDdlVmKFgqgzO5iBT06hHiVnRNtaCvd3Nu59SXLKe0kwGeqcDEVZWpvd3lqbeqYo95+OiSiJY3+Pt7tXyRxBxJRD9s0lnFVrUOuM0NqNsnkyTrRFR5DIooIje4PD6jpdr9jPq+wKaoPOYJgVC7MB3Yl8ZllOdpDr5E0+0PhknAEGZGV2I5HORrwRvNb5msrjuixXsTMZQNzfgmA1C3tAAr7kXqdzS3RcKbP0YKjABs0qWUFn89gHUwA6g9beFXLlLhkMtPNTJmECKbvQOgMvPia8ea2kKwag9DqJhQlQhHxcQtCJttB01jCvYVnlNWB9nlOmZ3gFhQ2JZQlRa5a9AcEbw0k+epDOCk2laIrs6thYeO1yvqaARWW4yTX22QVgXhuSLtfvUv1YQc6I2qiWqISqW8XDZaal7nLyhmmd3eOeKt6DL7ILYtezPLm8xKICExReeSZD4WygcDoDwsJngL4soSnTmiEyMc/fRDbanI4z6Bw1IDFROkXhV0xpovK6jxvLgKo1iVmd/XVPx2nd/jXzGuMaQHbW9scjWLyGKPocqE09DtIUvoQe+K1Y7a4HG9lAo6jaDMoVEZ0Ug6XKLo9Fno/jeX4uA4eyzwibmd22T3RUrDkR4WQErmfuWpNYFHC8lY0I03qzHgFaAnNp+zUGtc/n162Y8SSJ07GnKWAyTDibmNaJeb2KOYzoHqA3hdBaxbLM+2Y+3iPXycTsKrgCbN4o5rXlZKzobG5n0+8xUaCzGqdhOvC0Bs7GisWo4GwsLCuYVxlQrbJ/5mQzG3BGCkgQFnWJ1znLqLM6Hz9BiY6w5QZcUUc5XpXehdxI77qd56jTed/25xj/rybvIkB7Eb/3ZQDt4x9jtH/It33432G8f+mRa9tHV9m9dotXzsa0qcQ8+Aw/81/8Dab3737NdfifP/U/cXavxjcf58Gsxreeb/q+m/zWz76OUvDGpx5y/9UpqWlIywXV3gGXdw9xC4/6x2/gr9fYX5vS/cI/4cknfgSlCpSyKKUZj19gsfhtQph+zfW7kAu5kAu5kG+cTMd7vHFlh6rzqBh5sAuLGmaVozOKReGxPseb5QQf+XBdBdhim9Zk18LJoA8h1xvlQXxiNxQ4nTgbWRIWhQV07y6jGDYZEJhoSJLPFeosOFsCgiu2cDanZe8sTAfSp7qO7E5hOrLo2KeQj/kMMm9NZumMwYTQMxIhJwzQmgc7kbOtqleMLJ1OVFKzpw+oW59dqJSwLDWtzQlFJCmWVWbYdEhsLwJtAW/vFXRGA5bR0jCvFYsqrlkO0NSdQauSaAbEnmWaDITp0NJZA30ilIjhUI64Zh9DkTjeTiifWOpAIGTjrhGCsfm8I6+Z1wkThSflKXZdTeE8SXI8jvGwrDK7aL05l3xD0Vrw1jIZZiDx+lHiUtjhKpdzLBzQlJp5lXDW5vTrCkovPD54L0pKosC1eJn50ECfuXN7ETBrt72snE2Ggo4Dqlbz6pUFjVVcKW7x1OD93LJPZWDYH7FQOUFipLMKRYEziru7NQ+3DIsy0doMJLzJwAKE4+3Art6jLPdyAo8Y8TrRmZbXdyOnLEjKMB/s4bWms4qgswHCBkVncozSb+x+iUY6rM9ZF0/GEUExr6GxmlnVZ0JEmFUFr16Ds+E22Mssyp7lUDWPxWuMXYlC5/lUJKyLqOgpiyGqqGkKQ1PuEKTkzm4+Y2xRKpJkYKXUymWuB1BFHhMb8nqb1VDEfDYbKESGZDYzA29nQCcFStPZhKZATE1TKJJSffKPzNQNl4aUNLFne2e1cDIW2sJgY8msNiQFhUssK4WzGmc0TWF4sKP5f28IUTTeZEOPNxVRCo63LWfj3qW40BxvZ+08j3M+Y+10GHJCigRn9YBlNcRrTWM3LpOtSVgfaI0wrzR39jJzVTgIJgPuyTCRlIGUWFQlpRPaoqS1mqZYxQ8mHqufZ6CGPNy2+fDpOrOwUcFkaPHG5MQYKrPvyyoDIm/yO8ZLUBh0TNgQ12zYUO2w67eY1ZogcG14G0PJvNq44b50KzIdCd7kchSs3QV9D2iCWJIIzmS34NZqOp0Z6NbCyVgIOiePiRK5vw1vHI5JEaQ/H+5krJlXMBv2jK+xLKshXalABjxlnuEaV1ApUHmd4zyTgqpexyHmYzkCkgxe5/MHbRCCFt4bbyNHT7Isc1bekdljy+wxG2QXbG9y/GvQCtCgCoaNMOi+0j33y+XdA2hf+k384fPrf6cYaWYTumbJ49/6R7/qM49/4EO8qZ5kZo+Q5QMG27u8+Znf/JrK//k3f4bP/sZrqOIBn7/6Fv+o/Xv8zP/4m/zy3/sCMSQ+/g9eyfVyjuKD30b5L38v/pWXufqpFwHQk47q0nOkyRnz//a/QqWCx2791yyWv8Ubb/5NmuYVquoZZrOPf031u5ALuZALuZBvrNw9HNHWVVaKKmE2sEzGA7zUeK3Zl0O24zZtD3oUkbNRdnm8XNxkOSyYjgSLxRlobKDtLblhUHNLP8mi0jhrEBJ3D2pcdZmm0D1nkM/vaU2iKQKgmNdFThqgFM7UWJeIoimc0BaS2ak+BiiJpikLogj3dhNJDCopklgGjWe0TAxaiLIPvUvQsB1yslXTFAUJw5tX9rD1Hm3qz2dDuLe3AyicGQCaphAebm/lDIcmsagC3tRceqhQqmRZZXaFlLifHwV6xbHe5snyPWzZfYLOLKMrhGVVomMB1DzYrmgqmNolTWpwdkRXFISqopAxwWpu2ifZ0ntUnSOK51b9HPXwMkksyg65aZ7gqH6MN+x9TmzDF64LXZHoihJnFW29TVQGMASlacqaKo2zi1R5naVqmTFnVoOKOXYoaM29XWFZjfFG0xmNREOZDDoKyZZMturMjhrh3t6Q2XCH+XAnJ20wgqZCIpyNIo/dgav6KkFBEAWFQSKUXUAiTAcVzhSULhLsNq9dv8Z0HPFGo2JB0KMcL2kE4zND6o0maaGgxPcxhyZa9mYHeD3mlCneDpnbhukgcToWnAmcDaEtEs7Cg13Hd8yeZ1uOsCEhVkAZFkUiFSWHo9vs1DfQMR+uXnbQWc/JjkHUmLLLCvKDvSFDvY1SmqQSTVkyHVqW1Raz2oDSjIt9ji/VPKxLdBIqZ9Zp2rtiROGz6+5ye4DSJa1VOFv1YN7SGMNkvJ0VeAMRx51tw4Pt3KfHO3XvGikosstmsDn+cFLn/l2WGQiejIVl5VnWHa0RntPvYVlrpgNFomZStwy6ivEiT2kdFG0xIIrG+oQNibOtnCSn6KD2HYtB70ZqHEFv462lM1D4IU1hWFaZ/W0LxWzguLevmVcD6i4h0fGMfZrL8RBvKrw2TEaQqopQjNYufySF748D6axQdbpnAYWmEOZl7sO6jWwvLEJJGFwiKaHSw5zQROWjJt46FGa18PblSywrw5G5yjV9nbLLLralF4bLHM0VjGG4AO01q5g/60HrEl9ZZDBmXF3COhBVULkRpc9Mmqv2gAKTSiTBJbmBYHMypT7uVmLKLqIiNKam7KRvVyJojUqRu3uJO3twMqwovEGiorU7nI6uELVlPszs8NJE2sJyd39AstfRwaA8TIqKeVyQpCCIojWay/YmT6UnGHSRYeOZ9kzuw1HN6WCL0y3N526MOBlGgtXcPhkytw7jAyZmMHm6VTGrNQ92arqiJIoi6pIkFTYIxmejzzvJuwLQ7BsfQ73xK3TXv2P9mxLBlhUkmB3f+6rP3fzmD3L3YYez+3Qucu35b+LNT//+AdrCz/nbL/53vP/4BdrT3+Tx7q/wHa/8G5yM7hCs4/LTW9x7ecL4sKL44b/J8mMf46c//Taf/g//BtttQinFF779Ofb+s7/N4C//u6S2xX3yE5TlLZ6+/VPM57/Bw4c/xXj8ApPpL33N/XQhF3IhF3Ih3ziRmOgK4Y39fSRYlnqf2eAmv/7UB5nWI7pCsxyWnJVjmkI43hJQlrKL1G2gbgW9d4Mj+1R/aKtCsLhqn9b2LnUKZgPLl462OTk8oLMDSq9wRmVXQYksakVTH3D3YMhkGLizZ7izb/AG7u8OCcbibHYppBixP7jBnUsHnO4c0pQJicLrV64wHxqEkruHdZ/ZTHF1+DRNVbCoLEoXmFDw+tVbSNCoGDk4WbBdHrJrD3Pmygi37TPsDK/x9qUyK7pqi9nOFcTUzOqcWKVqPSbAdLhFZw1JFJIURyfCoh70iVOErTSioOAKl9grbnLJXGHgNctSMxsMWdqaKDtEKeiWpxz7e5xtbTMfbGG8ZjHa4t5IM1bbVMUWI72HdYlGOb60N+NkFKi7yLKqGKgdttUB2lxmPii5txu5c1ixrCyPtYeMGfFwZ4yvjthTu7zPPYY3hoe722wXR+zIEfsTYdApkihQuV1eZjQ2sqgrUIrHiqcwWF7Zm/Jwe8DQ18xGNdvdiNp5PB1WldzfNbTWIOKIonmwNaIqtpmnCYs4613SMit0du0ZxuVlJGVW6IAjbi+uMGgSR2cd82obSTUx1Tip0EmzqC0mCA/iCa8Xiz62SXhGP4eSklGouGKvMRmWBDWgs1trJrjyqmcsCozc5KXBnBP9gIEueFw/S91AGTq2GbKnD7jsx4w64eHOJWb1Icg2g9bgXI0rRgglIoc0pSbUNSZmN72tuaduW7woolJYBzemY0xMLAYDgi5wRvOseWZ9ePNLvMQ1dY0r5jFQlmvj93C6d8jZIDNqZReYVpaHWyWfN29jgmO0zO65lVu5uEVmA8/+jAxogPtbRxQ+u46ejTVVlw8lHi87ki0w0bLld0m6RMWAdQZXHGXWUhJJFcwHQIqghGD2EX0lM0cGYorcGx1w52BI4RWRKU5b6uUYE4X5QBjYHdphgUSFYQvrDSY0QGIyrIlikbImak+oa8ZLw3PhSd6fnqfSIy5NFckOmQ0sh/Ya81pxvA2zOiKAM4Gw8z52XImiQAFXh0/xdLqOdjkz5vPqvXiBs1HFwx3DbGvElnk/QUpO3DGv6btMxhXToUYpjRLLtBa+cHVMV5XMhwWT4ZD7W4KOifvhbV6vG67Ibfb1EUHnhB0qRi4Xj/OMPE3SA+7vlzmVhlZcjrtc8iPex3sZqAFRwFlFsCOiLplU+0zKXRDD6Sih0IzdgGZ8la7ImV6jRF4/srw5MrgYmI8PiAKT2hCkpK0OQA+5f/g4XWFZ1IbaXGU5LHjlaMCiLuiqEUlXNKUhpez2XHXCvN7ljf1v4dVL38SLt8dsL2d0BTg8WmkGcXfN1CugxTEZJEgNR6eOtsjfF2c080HNg/0h0ey/8/foD/Fbt5Y4uET4C3+XNNy4MX7if/8xJvfu8K/8B/8pW5euftXnRnuH7F69wW56m5IlTxxE7n7hRVzb/L7K/7k3fprL6gbqZEB0bzKSfZ7/7iv81gf/D978rl/mp679Dzz97Uf86k+8zCdv/2V+/qVtfvijL1OPBnxxsENbWe78VjYBDv7172f01/8jJn/938e98TrW7jIcfoDp9J8xHHzLBYN2IRdyIRfy/1NZ5Sxri5rt+Zyb96ZIowgyhFQQtQE9ZDbcYjq+gWEHrSqC8TTaIwgfv6r56BXHdBQ428of+Kgtt7vrtFahiRRecPUuO+EGyIAyWCYDSFqTlKEzOaHI9nJMkgFfeOZPMB1fQaEZNi2vXy744rV9zkYKZwy7cY9u5xY6nnAYxpTjW9RhQKLDGc3W3OOMwqAQbQhVzagd8rh9kmZrG+MTkoZ4XXF/9wDtDVtqm6I8oqm2EBkyZg+T9qicpa328cVtbun3MVpWJFVytrXN2WBEa3bpBk+yN4WFtTxWPUM3KNDlgNvqCcadwhUFM7vFrKh4bPQ+3rO4xHx7SFdVqDhERcVk65Bvq76dJ4vnibbkg+4xttjjXtXw4uCYgao5SjtcLm+QRNEVmvHCUvkRzpQEs0tnIm1tCbaiHdxkNqpzO23NUX2dm9VjED139zQScyDR2dgQjeZSdY3L9XUUBZerx3nS/BFeefo5Jls32Vpk16xhZ3BFgdeGLx1pnmguszd3tEUAbdidnVJ7zWTwBE/KY5St5kb1LC/wJ7mqb3M2bHBS8JR6kktxh85aOi0gJTfDgKcX+6CyO+ayjqjguTTVDLs5R62mFcNsIEzGltevGpKM8HbMcOtxBvUBkqCtDCa0DJcPKNEEU3I2OKSzGs2I164fcPdwl2Wh2V507J/N+NJhYKahbhUmGqJWVDHSDnIWSIkwUFtcMjeRpBEc6MtEXaBi5N7+JYIpsTEwaAxlV1CkMc+/AXsTR1CWqqt75gLu2o7IAPQBXVnSmcBn+ByCxevIM8UH2GprohQsi5K6TdThgKOJcGkWeKwbY5RlUh1yuX6au0djnDXoIFhXZNC9vcXJzi5aDbBpyM5cGLaC1zVNOSCK5Yl4mVvmWc6GO4gqUAr+GB9ktrWDDYm9Kdw47VgONFEUwToWg4KzsWFRV8yH2/jqOY53d3BmwMPBVY6Kb8UPLiMM2O22oX4PMGQyHuJNSRkMT6QnuD56D6CYDRWdGWGLbXYXFm80ixrU6CaXi8f4jfc9zb6+xoADRlvv52n1fp6wtwmqYlDu837zreyG93LtWFO1icqVHA7fx5XyJkEbFqNL2FRgYuLe2UvM1JLteUc93OczTw7Yny05iiO+eSZga26N3suBvsyWP+R0+zEWg306Y7Fe8afPnufKXDg8Kxg3JZcmnsp5jtqKy9NEwrOoMvMXU2C6ZZnUglJDIs/SFdvc3zskqiqfpff/sfdmsbZtZ53fbzSzn2vN1ey11+73afbp7mlu53uvr21sjB2XC0QoUkWpAqiU4iUVHioikZKClyiJRJAqRIoqTTVKUAqFQFBZpAIpqnACAQPBHb6+183tzj39Obtde3WzH2PkYTtILrCDQnBFyvm9Ta2hOeYcGlpjfuMb3/9vWhAarTOMSjgYdDjNuhiG+KamjXpckTdwQYByMO5c45nqOZZJxqNhzMEgoZQjhK4QckodSR6vR5SBT3+hmCU+i84KQnnMUg/penSXBbG6SB5sY11JLTSSmFaHDJJdYt0jrDTz4KzuslsKkmaDtYmkv/AoaagCn0oElJ7GirNMat9cRxlIC0UZBLhoF8Iu02yIlQ7ftGid/SnWoz9nzPAKbu9f+aPrush56zOfRkjJ6aN7SPWt03y7z7/CNLdYJ4hnb5KtbfD4zTf+1H075/iVu/+YjckehXyIF73IhVvrXPvIBo2r+fT8V7l7epc351/DlBXxQPJfLWf8bHCb4TtvcD4rODED2qphcXwIgP/h74a6Zv7v/QTOOdbX/h2MnXPv/k/RNCfU9Z/dDuApT3nKU57ynUXik1ZDGu2TFZbVmSUP1hF2A6nSM2W6OEXYPooMSUwgJLEJEcKniCKuLFLONSOM7lNpCJwkalqmSUynsvTbNUK2kE6xmVesNBkvxN9NFfYotU8RrZEnimUSMFxavEZg2j5rM0FaOJowYtEZgpdRphu8eXGFWW/IaBkiiPGjIX0xYHVec+GRZXwEN+w1lPDOHIaEZlT2KLLRmbBB2ZAVmu3oAse9IRu54rQ9QjmJ53Vx2sdjgO/6rMxOOO2GaAS7swlWas7Ly8Qi5mBtlawaci7vcjK6RhGDlJqhGXPDPM80jWi8mBMPZFtzEgSM/HM0zuF/o4ZsU4644u1wmF3HZheZyYITe8r6ssJvW8qsz9rC8l2zsyNKaeURVQ3KWpSfkNkhx70eS78HVmKVz535AerJO4zlOlsnW7xY7xAYn9wLmAjFfnqVrO4ilhPq07t0C41u4El7TE3DrB/i64QLdpWXDjfpcJW08pjr8zg1xChJXLfsPXEchA0NFWWqkbpLsXKR2fqzzJMRIMl1yknmc1+eErVw+cEQo/vsewtyYyjUOrO4h0BRtgWzQHLa67IRP8/Qu8xAxn8kCLKpzxNYgfU89gdrXMuvMO0NkHJA4dV4tqHyI8LaRxGjXcbN2ycImaJszJPex1B2jq+6fOVCwHHfIaRGC0mvdjxfbxLE2zjhsSXWWG0i5p2A0zRg7hkCQnpicHYaqo3pL1tCF3Bn/QZKxWiR4FR2JorT5gxPjxi0Ppf967y7cYV3N76fVsKTdp+iHXLcGfN4/RxKXWTWSRnLbZbjTY76KWmVElSGRigWqU/lJaAlL3Y/wkvhd3HR7dAmXR6v7FDqCOP3eHv7EmVnwE13kTJS3Nt5H1fqq7wQvcKGGKGNpAxS3t7d5II8T+ptkug+gfY46mqWaZ9FJ8UoiY27Z8bMMqQNztEEHVopycMNIjMgbH36uaHObuK8PvvjXYqgj4fgSp0SCsmXr/doknUilbEarjLtpsyTGD/skMoBOj1PFWgCeYmtOuFWMWIjfR5URuuv4BqYLR/w0rs1Q/qEOsWKhkYYnD9GhitEziOzCTEprR/yeNTh6+NnkSrEqBBlBaOTGX5bU1jBqH8DE8WAoMeAC/uWwFhKM+NNvyFU51i1GRfbNWrl83Bnm2XUklQV6+oifbVGVw+RrTjLWjYRpjOEMMTZAs8GCFKk85im5+gsLYM6QCoPRIZnuygrybMuuZlTUNIguD+QVLHGrwPO70+YRwFP4nV6uTib/Z0NrFJo41EqRW9WEdg+49OQ4WIBJkNaHxlcZPj4HI+GDXFdYrRgZj0EAd1FjWg7WAu4gs6ywmsgymsEPg5JkXg4HbJMAoSUdIqC3NOoysfKhFY4+q7LjhuRigG16mEUeMLnNLMYlTDvriCkx5XgAnv+RWS4wgXvGs/IZ3D/okHiH1uP/iXw4PUvECQdOsNVpk8efdu2O8+9zJOZpjKK13/rN9m6/jwP3vjin7qvzx9+lof5A9TDDL/YRwcvsHtriJKKf/ihf8RfvvBXQTmK1wLOh+9x/yszvu9wwYMvNLy+fYP6ZsBffPdLOODtL34WAOn7hH/5r2JPjqn+6a8Rhufo9b4XYyZE4VUWyy/8WYbnKU95ylOe8i+B598ueeGrj9hbjrCdPo1K2DwxZLnDtgleHdJ6klsiYt3C49UuXTrs2TU6RcVwlqNdn67NONessTVZY7XQrMwWjA4PEA5eCl5hmJxjNr6OECmFH9MRHWr3LIWfsgxXCe0ubXCZ08F5NB/hpTuSpLZUUYeejhi1l0FEHA0lA5eS99b48miPpN4hm86oDMj4VUK5zlCO2JYbPKueZT26htECv3+By+4iOtkhqmFzf8pYDni/PcfFZZehGlEJw73IcNTvEjUtW23C5UmApzt06orH0uMhd0lsyLDtMZyPaPwhQ6e4dLjPc+YG57lGrzQMREbU2aZJ+4xMl0WccSIhcD4Delgk4TLFq1ZpVcD5o5KX9mHUdhjGG1wJbuCiDExBjz6dRuEZQxum1H5CHac8iQOsNQxkj62TI4QLkbLL+/I+w3rMertJRwx5PRpyZ/c5hO4Qex26M+gsAqSQWNcwMD367Sa2KVmYOckiQiJ5Ik4o65LRomFbnSfwW1ASpKQn+yhnyGYLtFph97TPlfmIW+WQm4uaQXMCQnB39SZ/kJ5SdEb4XsBxlpBoTVNNqYQjrjWDPAcHczulLg4Z5CF78iLdJuZExDg/JW4bCr/DntjhZfUqZfIiXX+X58vzhHaDwaMDooNHDKYFSB9nI1rZQbkO2sF6XlPZiLvbL+OLW+wepXRK8GWfsbrOK4sbfG40pwn7jMJtJuUTqqJi7VQxmFdoq/AJ0Vajk/ez4l3nufkqeycSpzSrZc0ts06nSRnKFa751znqD4jNmZrfOgG+77OSC87ZNbaLlJm8xf74Anlnmw3Oc17vsFZljMsVhHP09YiLdoOB69DRQ6626xhneWIec6pbDrIVlNNUnqAuOxwMnuFBrHjDPmawaOiXloVN0CI4q2nyfcLWsXqyYOxWWZsHrJkRxvMZ1obE9YkKj0aFROpFdGvZPSwYHZ5QiBijBKNZxfgkJ2hACEFSVHTyIecPh1gZc7fXY7+acut0kx96e4ex7GHDLbqM8GSPnSLj0olisIR7zYzF8P082PkA1s+o/IgqyKijLp6FrSncchf5iHiBxtYUlITGZz5coed1uGn2GNQRUWPYVBFOe/TLht3DA7YnS7abLs/GLyO8Dsr5hO5MzXNQB1hr4XjBtcc5XisRviCVHqq9z137gM/Hd6milKK4iawEOM07WY87aco0ctjQo99/hlGwycvTNRLXIZFjAjGCOuC2bkhYh2CTuLPLmryEY5eNOqRKumxXXdajCyiZEIiYuNzhlfo6zy2H7Bwt8Jo+zpMoKpZBxGjSoVfFtDLAc4rr3qs87F0jq3IGS4O1IRpNTBfEHoH9bpRdQbqI8emcvTLmZfUiFo9cJ8xiQ7dQrJ0kGCV5PNwgtRn7iwf0vAHP2XOkuccOHRqZ0bbXqNOAPLrEvajk0Mv50Hyd93OOUKUM9CqNCjjpcQraZwAAIABJREFUepz217BK0gaazbbLB/IB28E5nEwY1t1vux59S3vKP0/ufumzmLalrU9Zv3rj27btjta4H+xi1JRnO+/y4OaLfP23//mfuq/ffvKbpKrL9vQqUh4gZMPoXAcALTT+6wrPV9zZ/SK9+oP8H+qQD7ZdTgfXST+Rs9j7Oe6v/SDiM1/hvf/5f+K5j/4FhNZEP/hXKH/lH7P4+/8FwSc+yebG36YovoaUAcvlFxj0/9U/0xg95SlPecpTvrP0ljlrD04o+wcEVc2wbSj8HFe8B/EKwsHM+FxoY1q/Ry+/Q+xC+vjMTE5UOB6woPIaPqrOI5o3WYuvsN/MWK8EWkqSZUvWHrMtUtrKEoiIw/aAa61kixGPH99hbTmi6nrcEFu8p1aYtwFjeZHF/C6qH3Lx8Sm/3w+4Pt3EqzJ2j0/YyxKComBbnkOXPu3dd1ixKeNoF6tTWiWog4ATN2dsE64sa/xohdfTZ6mDA6qZo2klbSvQoSJ1MQnbbN/PeSnp0DjYbgcEiyX3hyvMfc2a28K2S5LFCfVWxoPNDcaTY8bFQ1aaPke6Yj79GiJbRZqIwWFDIzuEnkcUJqh2gZY+mRzg63XWpM+6zoiFIViWDKSm5w95xAmrdYfjToA8fUBIF+0cfRMg6pLLs4CyNySsFNe+dhcherhCooQlIz6TSBcZ1+5UnGxYZmVBIXrMspjnDmtaMaXobtOzBh0ktEvBSrhO5lJej0+Qh09YrVMWWZ90fib39+rJCndjiVUKG2qe4SWOqglv2xYvjIj9NQQLNhofaxXCTvmux47ek4v04w0eBnfotQuSpWGoL6H9LlG+xDUJs27C7mlD1ttGukOSqmYaCwZthTdbIJqAmJI8HpG6gA8eK4z0GS0c01ywE17EOoum4F67ZBQOWM0XlOoJnvWownXCVnHD7PEVc4o+SVg/rLkYbDFvpgxPHSex46PTdYIwYFm8jfEjdg/mtMESs6YJCGhMzfmHXyX1rrItNlG25XONYHshWNPrXJEd+ssHSJOy03oEswOOAsPl9iY2n5HKkI6/zZOgQ7YQhMczhmXLx0830Ba2l4ax3qNrO0zbHCN9krzGaoURHn2VEQaaUkboxQHvuz+h6wUM/QVFrdldRoSB41Tn9OYtgbsA4g5JYXjWnGP1OEKVhjC0WBfgh2usTR4xXGoWGyG5Z7gbBvQXd9lWWxTlW+SmoETSqw1bjU9T+7yjllgtUKcTYhbcPC6ZmIiqPGGnnvCwM2IWaxK9RdAGeGj25BU2xJQ0f4Neb8itusudGrQssMKniDPazgZ6do9ulWBcTSQTKs9RNi1146i8VUbzI7ziCSsyQGAZtSnhzKNqJEkuibwJKpQo49H4Cd15hO/H6NqhnWQWDeiagBtlh7eyLl2hGJuarA45rArG4hLWDTkNu3z8jd9FlhXShjx37OiF+7zp1eTSp9i+xfjOlxHOo5Garqyo8YnmJwSto+6vE0mfB4ljt1yBScMGQ6RbsDqdk1WagVrFVxlSeviqplPV1A6cv0G6fIu0LBnJHGsmLDo1nWiF9aKlWThWN7pk8gKFb+i4DV5ki6+7BC3gxTszHJdYdLZ45fV3iN2S3XqddXdEG3ncut8wn+wTFYqD8Qqj1mPoNDdWP4k/PWHZttxM1lFiyOumoFq8h3GS0ERcqhyBCqhai9dqxq0mCAy+d5nHw5jv+cPXSQvLxQOPTHcxrYcxE1yzRCT/H6hB+xd58Qd/lDpf4Kylv7n7f9veXP8h5qJPao4Q1ZQP/fUf/1P1s1/s8+mH/4zn1asEMkSqda58+Cw4m0yOkVJy65UXmPgT3os+z+Pla4Qdyfl7v46Whvr2Ls6B99yP0EgPs5zy6D/9OwConV2CH/jXEH5A9el/jlIdLl74b6jqe8xnn/1/PjhPecpTnvKUfyno1kDjiGp4tt6jX0h2jp4gBICju7RcfFKxMSm5cmq58rhGLidI4RFXko0D+L53+7yUr5EYj5HaZJt1UpVQVfto0xJNJ4yXjs5yQTYtuWYyLottPnYckogNtuizPV3S94eYvKK0kmdqy/UJ9Cuf9y2uMHIrRGqM1Rv0jmFYtmwsK67NPWpfE8uMvthkO/fxXEbVWrTThLpL2Dh8p5FlSzA/5uZpzdX5KsLvs+Pv8CH9DOl0inCO9eOC0O0jG0u3aMlcwuZSszGfcvXgAVHV4IuIgc14+bXPkU5OuWH7XKm2WASaZFFx2buJJWLZlKwslpQI+oucC4ucoDA05QIWMzwT0pF9YtVBNZbttmCW75/Vx7WKlccPGdc+V+w25+oVrNRUTUtQFZw3QzbEECE3qRcNfgVpUZLVXXom5lyteN9777EVZDz7+IDL8xBq6B0r9k7mjJuYodjDSkFYt1xe+gyaFI3Pcm2D0crzbHrnuHk4Z3A0RxFRi4DVdoWVpke3iQjp8kSckNY7KNdjo5ZolRCrDhcWFmsEH6wHvDCDIJ+wdqwZTeZsijUy0aEyCwKvw5a/w6vyJjv+s5y6gKnWCBUiS0G/TklnLVFlSauKTt0incfz925zdarp6B6XcoAY7RKysqXTCFpbcbVUuNqQznK2XYdXGo/t+glX3/0MYVGwNRWkj++yYXr0C8lzp5usm5hR4zOWfV7KryCdJGpCxmXAbeaERnOjHuCJAFnm3K8L7jUhjRuicAzzCiVCMplyqR0Rh336yUVoPS5+/WtgHV7bcKsW7DSOeFbTny3wG4N2gp06Zqk7eCLCCh8hFM9P1xjMCkqZMNeaREQkeGgl6BmDOGm49Y7l+t17XM93uVhv0jsRKELCVjINUzxr2bR9xpMCX/rEOkAHQ0LrcxpJjNC8MO2T2D5Xm5C100cMOztciJ7hA0eaYTngXHidFX9MFG6wkX2Qpeth/D6feHKbZydwo+jx/HuPWa0Vo/u3eSPLOAg0frlgXFlEFWKlpuwmRFYzODrkg7/7GT7yxa9wTmwwzdbp1y3pcs6FaUVvss+ynbF6NMUrAQK8umFUQp8UX0WMxIBIePRaSeU0o+x5muEHeChnvK0EHikm7NOrIG2hH4zwdcS7WiLcmRXCePKQqJDUi3fYncfsMuLctOGZScELT6YoARefTDg/l4xLyaZdY5UV1icnRKclWRtjPB/VWs6dFGSNpEPMrbzh5iLhxUmHEIkuDbJt6S4mrB9qJJJRsMud7jonUUpGRL92jO2Yjx3UbDzxUE1MN2+IFx7nokuYRiKnc0ox5IV9wZViQKeoaJo+phxycKC4dvctrp8c0F+e0reSsV5l99F9QgM+IWU7o1wq1vZLNgvLhtg7O1auA6StoIY8FHw5rniQ9JhFA67fX5BNc67dfo/tesha4aHwGIXrdLyVMzEmFfLhN75Gb1kx8p/Hb2LyxlAIn1B1KeMxythvtxx95zNo++98neXkmKjbY+XcHlJ+c4zonOP09FeZzT+D540ZDn6I3edfZf+LsNaTzF77pywrR5Mvufj+j3zbvr4y+TJSSn40/Zu8zmtUZsnlV95Hni/5tV/7Ff7aX/vrvLDzEteePMPX6nf4vex/4y8cnWfn0W/xWxc+ydbpmHL/h8nHIf3tC0zvvc1Ph8/wd8uS9vXXSP/tf5dibYP8l36B8JPfi1K9M/lQ85i6fozvr/85juRTnvKUpzzl/016ec1mcoFOfBXnTlg9vo0UcMN1UVWJtzhivbpPlt4kDjdZlR5P2jkDJTltTxkYnwulT6QyfDHlXDVAaMOmt8mpfIRVEslZHdH4+C5X7j6k3BuTtj71co7QIVFeYXVMw5Ay9Lh+cgJBwsnJbUbbV7lQdviqqjm/zAjLlhWpWa8kr8xnBMEqx/df47Sf4skuQXeNR/GItJygXY9dOyRZ5hwtBWsqoxGOrJ5g3Q6lyihETSmXOJHgmoLzeUu3/yxe4whFwHE5ZxUfX0oWMiI3p2zlCYNSc+LmvPzG51lff5G51GSNJjI+2jk6RvHSQuPZivMuoyWnX1Znxq46ofR3eGah8XBoC35rMc6jI1PC1tKva+QyZ+d0yICE2i3QpsVD09gKK6BXVviLnPdmDapb0GlmhIsYaQz29DFr1RIv6PC1ek4v22ZddBHLQ6KiRnbX6M8aokUDxmFpyPSIslnyycfb0ByzKI9oD97iucGzmHATrAetR0QLNBTFE64uO2RJl2G5oF9MaNtDlp0eixWJ73VJmpbaQmAgnfu8v36WLEyZMmM31+yHAiVThk0IZsGq6LF5+Bg/WJJ3VhlOF2TTVZbyiEkc8WCww4v7U+ayT9DUlGFE3/rcK+/TaRrWRMYFOTqT2Q8vcLI4JvMrEpew8fhdukHKvWLAVrzLSmjxZgd0igjMjHm3RDQCR0gxvUNQVvR7m0g7pG8zVpzDQ+Eta7wgILYel6JVPlIp9mYN6aBH//ghQkRIYB51cEWXsNZsTiY8aBq0EmAhtY7hfJ9NOebG/rtIEYPU+PkxzxQNh6sRSbrJ3FYERUzUVGT5At+GTMwELUd84nDMxWaVY7EgPv4CpzKh559j3x5xybtO7zDjQXNAWhkqoQlp6REjKsGKjhh7Et0WrNkd4jxlPVxlf3GAo+Xa7QWyG9GtM+Ymp6kDIiWIdcbUGWxbsSauYh83DJYHKD1mNF9QlkMeG8vRxhp/87P3adUhx9EQOmNGecneySlxGWLEjDvFCdGywAsaYl3QKxasRNep5znrwS5hVRCZPhMd4AcDwkDiTe7QKUpEmND319D5IWKxj40j9uyIZDFn8/htRivPgvUwqWLTrTAOepw0x3gNjK1HOjsBA3FtOMcup2GIcH1s8x6VW1B4AatktKtDHoljXo0OyFpFnlc4nbChU3bmltYLEVaTFpMz24q6wRpIbEUY+TQ05KTg4OaDN7m/1+VDRzGpeoJyirmJeSR9hJnTdym1t8ZsfYRfNcRC80J6g6ApyB69gakXfGm3g50e0ctL9qTAqojx6YxHvkU1LcIF3KTPovwaZZrxA28+5uDR17GrG1S2JA5CzjcOOSsw1hF3thm2iu2iIg46tEcNubZ0a7jx4JBQfJVP1g/BNey2cGQ01jms0mwFXZSrCInxhc93vzfnD5c9xjYhPT3Cz7oMvR5RYyi1xXNLbsySb7sefUcDNNO2fOa/+y+JegOstYz3rv2xNsv8Czx6/HdwzgGWo6NfYG38t9hJZwgsaX4bur0zif5vg3OOzx1+lta1vPnmXerSgMux0uL7Ad/3fT+IMQatPb5n9EN8/sl/SD66y/35eQ4/8UN8/C/Bm/+D5a3PvsQvD+/yt/cus7j3Fu3igC/+wRtc/o1Poa5cJf97fxeA9t130Bf36Gbfw/HxL7FYfJ7B4Pv/PIbxKU95ylOe8ifw0z/907z22msIIfipn/opbt269cfa/OzP/ixf+tKX+Pmf//k/9tt20adOzrNiQvKqAOdYS/eojIdsl/S9PsfT++ioZTl5lw4lG36MRhB1LtJULYFVqKKgqQtEU6P0AGEbRqZH23p4AuKm4hnbx3cnDEhpqiOE9GiMR+JChp0LmNqwk0PYWB54ln56DmkiamfpWZ+PvnebQIW8tbrK3O7jR0OUtVztf5jTZsnp8k06tabnzYjaEk8EdKuGqrWIvGbilqQiQiHRraHrKQJjaS0EsoMvQ3Z0F69RoBzatJxXI3JzxPVFF6+o2fSeYSXIQcT0T99AmApdN4TSEjufSK/itUsWaHbFBXLzNn2jWeRzJAmqrQjSNQZG4RyE5ZRAdum3DTov6Ga7OAuJ7mLals2FRFOzQOKZ+uzYqNrF6gXL+QJdLlnNZ5CNOQ17PJMX9FpNG65gFkeI5Yy97pCe6FNZReI8vKBP7DR1u0C0IX60zrKaE7QBSkaoZk5nYViaLhM9Anvm3XbmoxXTdRW2XbLtViiSHunBfVbCTayWHLQHDBnz6lHBlklIdEBjWoZ5SbtckugMYQVdPaCiIp5PUK5GxBAVDX7oWPG3CYxh0yhSHdPtnWcxPcZrG849vs2gjcC2pBYaWeFVNVdURqd3nqy1GMeZYbKtudSsc6IlpRPsqT62zLlUC3yjOCfXKH0fnMCzARdOfQwNwk+J0/PYTkQ8eZ1FpEmcZqZacnPIE5Nz+UFF1wimw4wDUeLP57huy2lxwqbrE6guqewhHv0BwWof2xlwmkxpmwocpDLhB2YHzJsJvTalE/YwSqHnByThkLyNKdolG02FMZJcB4xmc/pxD2G7LHXCyMGIio6nSaYLRtUd0q0xgoBTLBuHR+zKlNW2xgQJzkCiPbTzGVQem3mOJyBpLL5OCeuWDeMzqQrs8RFN7GjQNCpgWBfspHsor4MnYGd+whcCuProq7Su5MScsjG4ybYKmfmK7rt3YJazufFd+MLSliXjao4oa9JWI5MBl9NNbnfXiE7eJgktnWhMVluWec4smlBHu6RezEq1QJk5eaO4oxNwFb4IUE2BdII43qDQDSObEDTHXFBbhHTwq4Yq9jiYn0DWJxQx2JLtRcOB6KHtKderDlVzQub3KY2kMut0oxEd26MsGkxV8iNFgfFCRLJChGNteYSxOXnSY2BirKnQzjAuc2ztcM6wWSyRHfDrkp7nc9Ie8vy9r7O5WGeoA/A6eEZxDoksBHJyTKDWiXSKPL2N7/cQukNXp4jWomuHKwKenzXYuaEuHiJ6OywDxatHIe+b3ydLtljoCJbHbBITF5ZY5IyGz1PLikgk3Mhb1oWP33mGw9NjOq3kWhlTK9BILpmIppYcxyG9zjmoW/aXj6k9j9VmlaazQpQbolAx0ZAKiUdA5DyCtmHH22W1KbGqIGgdgSdpjcFKOF8n9Oy3D8G+YwFa2zT84T/5RaKsR1MWmLpifOmbA7SmOeb46BfRaoQQkvWNf5+HD/9jnuz/ZzTX+gzePiXc/zz3br/JMx/9Xqwx31IB8s78PT798NeRSJoHEqc6zFa+zs/93H8NgFIKay0rK6v8ziRlLXSUISz9mLvqJfb050m2FO7+y2SzBb84XfIi8Ip4yM/cfo7/8T/6TxCAiGJEr0f1z/4X9I//LVZHP8bx8S9wfPKppwHaU57ylKd8h/jsZz/L3bt3+aVf+iXeeecdfvInf5Jf/uVf/qY277zzDp/73OfwPO9PvIdWHr1FgUoyel6PpdRsCY/ASErVRdkpo6ohDEaMHCybCScuZFX7BOWcWAZEXkZQ5lSNJfC6GKGQtkIvjsmG19BWsOoNaZsla6OXobHocETuJozCHisbryIn99g5eUI222eSrrI2OyKqGua1Y24aekEHme5S1zO8+VlQs5CKsG7wnWCgOpxjDRsoulVJiCZVEcoafCKWVc7ubIrqxQx1l+3TQ3qDHonwWRERJ8Uh0hsRqgQhPBp35u0TC5+0cw1bHLOXZEjT4n3D7Hmnf5Ns+gDdlgxUhLQK6ywOGJYFw8YRhj1wkoFKmJcFefEYonNQL7lwUiGiMRGaqTHE0qPOJ3hBSqUlyhrCuqGJu0TLQ5ySWCGosdSexmsdUWOZDS7TD9e4eHpC4DSe6iI8RaeX0ToDTU7SKnA1whiCcMgTFdCdnuJEgpQRGg/hIG4tngiJ0h62LfGnTzg9fYTtX6JjodtYPO2hZB8Zg57cRvghVkXUpiWxPSIiVoFBOMJZg3ALyCfY5ZwiOKL2V5DNBA8PX0i61sNzFtUW6KZAljOUCllbzJgpgRWaLhF+2dLPp3S6A/wyJ05WCKzFFafsRxojJFZpNJpcClonQQWEwqN0LZEKqMopq3qIbgW+g7CzQ11NQWmMkoQE1MsTuvGYosmx4Rirz3b9e0VBbn02dBe/LbBNTWsaNtsYnW3h25YbkwW600MqSdRYnDckCtcJW8vVSrLpjWmcwArJvJqTKB8pPaR1WAOpWqW0LUlZgdb0hODIGNSyptfWyEiiVIKanrDlJQgBPopscIVU+8QG/KBLMn9CrjxG0hDhU6CpsXgWIhUTOs12G6B8nyfFPWLZwasfIqSga1pk2aCDEXq5YEWGdOIdpPQxVUGsfU61z0vG55EMwLZ0RcJKuIaSkkcnb5A+eRe9LJGr30XHGQoUF1qPqsqpkz4dC1FT80LeQHKRA1fR2pJTZegaCCpJ11U0FpKywnoS30lunNwn6O8Sypi5renLiKYtzrJqviTSA1TkoYslsnHIfMGKTrFSYS10dY95e4wQLd2iICxLgu4QvbC814vJjmqCRCOQLOuSnpEMsj1KW575uGHY0Gu08/u0oUPmp3REhzxM8JslUbRKLDWz5m2GpsV3GiV8VF1wr1WEpUesDQSSsHWodkk3P0LkDSIFXwWEOsVIn926pK1mBG1JFI0R/gqd0pFbh0jGOFMTzwVaXeCR0PhG8IHZDLGY0u2cQ7clBR5dPCpTI0TFqpdRLQ8wrqW/9iI+gkymtPUM5QzIAIVgnYjDdoE6useHasHj/TtEa+9jT/ZRnP3HLW2FVhW+cSih8I3kRdNlLkB4Zwmlqq1QfooHFPGQarr8tmvad6wG7Wu//WkefOUPefWH/02m+4+4+ckf/Kb6s6Y54s23/hLL/KtcuPAP2Nz8D+ik7+PC+b/H6uq/xfF4yR8812PQbZjcv8Nv/7f/Oe99/ne/ZX/vzt/G4fhY+v00lcM5hw4ccBaceZ7Hxz72SZadHUbNE547+Qi+cfze5m9wMm/58v/uMbr+qwgEr/oHfNm7AECSH3J/UvD3f+8uQkqC7/1+7MMHFL/2T3DO4XkD0vSDFMVr38gCPuUpT3nKU/68+f3f/30+/vGPA7C3t8dsNmOxWHxTm5/5mZ/hJ37iJ77lPSoxpFcXBF5EkGzglzWLYkLmFONWo6ylH64SNS3S66BlhBY+yuucfUx4PawDdEDS2UDqEGEMXd1HjF/G+SkuGdL1R3SDTWTQRdZLTLNEGsN4cUrctCjpI63B93uM65KuTgj9FL9c0vVTEnGmWBjLmCYY0XUB5GcmuKYtUFYytpJYpyRWEMgY2gZnGobdc1wSCYGfEogQ7aWsCI9BXRM3FcY0aGuhKQjDPhGKqClxgLXgixCHj18rvLLEmQq3PKAuZ8xO75CIs2dX0ifwEkQ0oL9coKwj9geEMkB5Kf1ojZ1kj0h4JCqhf3KEqArKJidB00k38KMM4fm01QyvrnHLY7RpCVSI7zTaiwllQBqvk0SroBQjEeLXli05IFEpVT1HTB8ggTBcwShNa0ssLXHUR3sRg8WEUEWk6e7Z81mPIBiCF+HLgKYpMU1FMLxM2t0mbM9k7HWdExvwjEU3FW0QEghJa1uc8vHqhtn0ITqfIZ1FO+jYs0A1XbnK8+EFMjwiEZI0DT1jUTpEcjbXNr0e0u8T1zWRtfTnE4xxhMkO43SXMFpDy7O5ZpB4KES0ylqwi66WSNMicQStw2sNcZkz0B2SqsCXHihNt7OG3n8PoWJ0kCH8LtJ5NCeP0LpLEq9D2yLbiijZIIr6YC2ubYmdz4oNEd0tgu42K36PT1QSJTWoED9cQasUvAQVZgzXX6WXbCKlzyhf4BtJP9xANzlevSStlnT9DIRAtwYjJEF+SlTOyWSEQhFVhnUZglQoJNZBYUusM1jOPuq1EMSdDSzQFT5r6SbDbAcnzjZhpBP0VEjmNH6RY5qawE9BwijcJlVdrJegrIOmJR3eoJvP4PQegYpIdIgolzTOIZZHdOdzugSs92+x6nr0O7uAQwpNU9akg1t0L/1FPC8mkQFKdxFeh352Ca9VtLYlLud0oh6hCshsiCsq1uuWJNpCO/AQJCLEqgCnA7z5Ef0qJyxmgCRTGV5rcNLDGEtqQqQTpMEQ34DnLJ2qZjMc07WauGnwUWz0n2FdJsR+RpBu0YqE2HlcqgI8E2FNi5WajvVoylNaU6Gkf3bEuG2QQOp1GHmrdONd2mrGRrRFJ94gEh5h25AmG2gdUSKwUuJby42tDzAUAbq0OOuhvRg/yOgWFYP5EYEF0xT4KKLJPTzTEEqPpauR6YhQJ/jlkqMwoaNiUr+PRRGEQ8JkzCCfsbY4IYlWKaoZiYqIkFS2RuqQTER0qyUryRp+ucBVc7QXI01NW8+x1ezsdIGDQHXYbCLGw2cI/IxQJyQqQrUtftMgLGy1Lb02oOP1CVXEiojwVIhsDaGTaOnj6wjPWoLFgnHh4fj2McJ3LIN2/aOfYOuFD/PlX/8UUkpufuIHvul3ITysbVFK8u7tv8Hq6MeI4+u8/c4PE4YX2Mp+jIf2HzIdlxx8+U32PvAxHnzlD7n4yof/xP7++3f/EVp6vNh8iNvZ16mDA7pRzI/86/8GQRDy7rtv85u/+RvkVc3W7i2K/3Wf55aOo8vnuLv+O6ztX2bx1geI4pyd3gZ/Y0WwuJMggoSbayk/tz/h3XsR1/7Kj/J9v/Nb6CePad9+C+/yFdbGP847i99hNv99su4HvhPD+5SnPOUp/7/m6OiI69ev/9H1cDjk8PCQNE0B+NSnPsXLL7/M5ubmt7xHQoIyxzjTIm3LYHSdqHeetq2pXEkY9pHlglAFiLYitoIdozEKrBcjuhtQzUFHCEAKgadTFIoAjTAOnMG3c2J75oHjwi7aNAjRoFWMwKFw9JenoEMQksBPkdIjLCe0TYmnJamKmS/vk/pryKakU8yIegN8T9LahgZImvIbnkMSJRWYsyAhs1CbBmsbRD7hnN9BNRXOnb13N1pB6oD/q4RdfiMTBgrnLKnfI3YWl27Q2hqpEpSAdL4P1uDaGqIQqUJk4wh0BEIhlYduSiIdY3WAUAkGCDsbpG1BSkigIzyW1G2J8kKkhUzF+KMbZ+/QWlo/o2xmeCi0n9I2BcaC5wRWaZzUiDDDtiVxMSNYuUrb5EhgPLwOTkKdE6CQWuMX0EqJNA1SR8RaYGyLdo62XuJHA4RYIhFEpkaYFqtDcgEJGqFDtAqRzTFJC9JCIX10skoY9jgujtDW0koJztDzeiADkBppDcI6KtfgghUiFeKEI0yUOANDAAAgAElEQVTWcUhEMUX5CTiL7xwuHjA9PROu6QiFRlBVCzwcQihKL8XTMQEaWy8QQiGijKY4oa1nhA5uGY3D0tcZwlhE/zLSWYSQhGGXyeQdVjdeAieQgEQAFh0kgKCxLYGKqesJdnYPv3cRqXxEU5BYRS9eo0WcBY1CIG1NYn2c76EAZVoy56HkNzYUVMx6dxddnKJUgLAW15Y4PHTYAyTe/ADhp/RVQq0CAtnHA6z0GPl9pLXQ5OTNAh1k+CrENqcIBxZI6ppC+YBAWUAo8EN8oVB+grMNqmkJRYSIUzzjqNqSRCechBk9HaI6m6B8OsKHeAXPNhhrUMpHSI2/PGFhWowUpEIDjp3eJYpqhic8kAIQhHV+ttmQjEjCAUL56CbHKQ9PBUjhWLUgrUH7HUoEoq3AGGRToMMeY93lVC1IhQ91ju+FZ8GpbbB+Fyu9sxNmbUvpQEsfpIdsa5pyirYN4mw4kKbCz7awxZQsXMEDlPRRK9fxhcRaiycD7OAiFnc2Z4OMuK2oTUXRFPjVEu13kINLFG2NaQq00Egd4XsrtG2NMRWyWuJcS+Z8auljooD/k703j9b1qus8P3t6hnc4wx1zc2/MQCYSIBAgKkGxFTBiqSWuZmHJogSrLasNtuVQ1bLspqpxqhKWWsvVtRyqS8tSLIRQDB2IYYxMISSQhMzJnXOHM593eoY99R/7ec+VBqPRkK4u72+trJVz7nueYT97P+/3+/t+f78tZIaMkVIVSFtjzCLWTsiyIS4u0N+9jA41QffZXxikbRCmhwauEItQj5jFSO4DwW1zEYqocmSWs9zfh2hGRJnhqlUW8l3kQuOjR+qkdBflLurNw5h8EQdIH4kayAYIZ2hcRZ71kEicyijMAkoo+v39SFvhbYOTmtx7vAGPTO9OVdDzHqcyshBQISCEQKkc6QN50z7ld9qzpqBJqRBCQIwUwwUe/czHdv6tqh7m2PGfp9d7Lt6vs2fPP2J5+QcQQnD1VR9iOLiRU9M/IXM5j1/W59LveYR6ssKph+4jePc155q0E45NjvCG5/xjRsc3cWYbHPzD1/4wRVEihODyy69kfPErmEZDdfRLfJNa5X/83ICr25fwyV23s7bvy7z4pddx6Uv3MTtcEh8+g911IaPtLY4vblMfKJmtV3xwPOOf/9JvMR0uUP/ZuwAoyysRoseTT77t2Rre83E+zsf5+Hsd/2/HQowxfecAW1tb3HLLLbzpTW96ymMciBmyvxcjJAhFPjyEaLaRdoZBUKgew6VLUVkPqXNMbw+5LpFRksmcntDkqkQKjXd12l/IW6JU5NkCyAxBQEuDNH2CUKi2IsSIDy1CCjJd0kzXqcanqWNH/GJMhA+BUgXYihgDZb7EZU2LUhllVGSuxccAEXYVuxEiXZcLDilNIgQqI0qJ6e9FScWwtwfVgXMpM5QuEUIRhMTZGbbaBEDqkkFvGS0MqIyoDDp4lMoxpiTqnD17n0tWLFMWC2RSIwSp3bt3GF2ivEvqiE6bXQuVgWvwrqE3PEiJwPhIUezGmB4xeKK3FFESpEJmQ2Q2RAhJTy+CkIQYENkQozJUPqRYvpQMSSEMi/kyvaVLQRl0sYhUOXTzREiJVBlSKKyrkd6hhEZLjQkREVxSDbMBEYHK+nhX0U5XKbIBi8UyyzLHuxodIQhBTy6gyl1EoRjKDJMtUMiMPcVuRAxE11KYIa5O3fCcq/B2BiFQFPsZ6gKhNCpGynwBXY/oF0sEmSFjwORLlKrkwsEV7PWCXrZAsBUKgTbD5OKpx9h2Rk7AFIsIU9LahtL0WVy4FIPE+RYdPJkQKERS7VRGDA4tNAuDgwlMppWEkAqTDQGFaCaYDnf1hpdTlhdQdLZHhKRnW4JUZK5BmX5HzHN0DNBOAYFwNWbhEKZMc5RgifU2plxEI5FSk5keWmfMXEOQmihV+qwyKCJ78mWUj+gIWmokAUsgM0NMmfalU7ok1zkKMJBqmITG2Ba8Q3rb3SMoadCmRKqCLAqUVCiZk+mc5XIfSpfofIkiXyBNbI8C8Alk+3aClprFwUFy79M88xale5h8iaJ/Aa5Jz6p0ln6WxiyECMERmikmRgiesp2hhUS6CqKnKJYp+vsoi0V0f29a74MLWMyXyXq7KZSh8o4gBEEaKjsjSgVKg5AU+SINEQ+gMkxvD1qqNCeDQ5sB2IZIRIeIDxFiwPomPdYY8N4iY0TFSPD1zrgJDNFHtMrwvkUpTeYdOnh0fw9kZbLaes9SsYzSiZD5GJBSU/T2MpBFGtPoWNZ9Fgb7MdkCkOyvIDBRUtXrZDJHmT5SZgQE0jV4AkPdZ2j65PkSBIsLARkDpdRolYOryXQfET3BN9huvmYxkBVLDC+4Pr0DhSE3A3LTR8aIjIGBMMR6G+kbiqzHnn0vQBVLZDFShZqoM5TOkKpAiWTtllKjoicrlzDFMipGrKsQMSKlJgiJ7u15yu+jZ7XNfj0Zc+K+L3LdTa/lkuu/def3q6t/yHR6N86tceDAz7Nn9+t3vliV6rNv35u54vJ3cdXaHi5/sEblqyweHJKVPVYOP/o15/nAiVsQCG7Y/c2cmj5CEA39MycZLi591ee+74UX8xF3LSu+x6mLDrH+shv5RPEJFJITy19httlj63EAQfmtL2F5IaPwNS984i4WpODTyuOAsff8qzffzJ+0gaauEUIx6N+Ac6vMZvd/A0f0fJyP83E+zgfA/v37WVtb2/l5ZWWFPXvSF+DnP/95NjY2+JEf+RFuvvlmHnjgAX7lV37la44x8JFC5WihCEITggVdonWPfrYLITpS0YUPHiEUERBSo3RBiB6pTCJERKK3aOfwgNYpZS0RICSSiDR9pMzJersxwuDaMWZ4gP6eq1lauJAyGyBjACEx5TKFLpCmRxQCScSYEmV6lMMLUSoneovSGQSHzheSiidEIjKuJSIS8BDJIha9R5kBkrgDuqTUYCtyXWB6e/BCIaRO9x59IllSJ1WtGRNjQE9WyVSBa8dEFE5nBNcQ2wklAmsrtNQoXRKEJAqZbH86R6sM6y0KgQwOHR0iBnR3XgSJIMQIEYQPSB/SsYJHBIuIkdo1+GoTnfVR0RN8S4geW2+DkAilEbbCN5NEQDoSVhZ70OUusnyQjhc9WhgkyTIXOnBqyl0sXnAdmdAI35K5Bh08EZFIdDHAe4dSOT4GdDYg2Ard5Q6MkOSmTIqcLilUjtElxgwTiBQykWUgBIdRCYTqTseyBHKpKeZAF5IqmQ/wUqLyAXqY9pty9QgAESNDoB8FpreHXpRkUUBweNcQCaQzKmT3TKUZ4F1NtDNEjLRunumPOJmTyQzTqaIxRjB9ZDYkR5CpnGhnoDKy3m6kSvVw5EO0LgHI80WKYhkRPFJmCASD/j5CSEptDA5vK6SQDIqlNJc7kip1SZEvpjkEiQSpjPHGEXrlHnKZYXQPAFWkjYCNLjA6R/gWaQqyfEBmSqQyST2LgRgsRBIw756FyYfpHLqAYPG+JfoW55p07yrHO9uR3B6i3I0pFtHlMtNqDSE1wdcYIYkCjM53FO2g80Q4oyMgEPkQ7xoQEh0FKjiEyhGqSNcgJE5IXDc/iJ6st4RyDUZmDCPpODGSZQOUNMRmig5pPg7yBXKpIHokoKPEkCGFpswWMP09ibhlA2Q2QAK5a3dMeFIXhBgI3qJ0GrPQzih1ya6Fy1ISQxcIadCmoBzsx7dTYjtL5FxpojRp3euCTOfofIAWCmkrpDAgFD2ZlEAJ6Rwk8iukZiD7BN8SY4Dg8d6DMhTFEooIKsO59BwLXSBFeqs11RZSKIqsh5cSGyNaSIKdIYRM/ymV3s3REYXAtRMEiajG4FCmRxQpUaGFwvqUWMqsJdM9CpkhdY6UGUblZCH5D4TMyIkgDblKazatNjDePuV32rNK0NaOPs7GyWP0d+8lK9MCcm6D7dFHUWqR/fv+Kbt3vfbr/m2eX8xiu4DRDkRg272Di27c5skH7vmaz95yJBWGnzm8Cl028cCFX70h3LvuPsnvff44u3OBWms5ePIk9ywMeJX/bl4wvpq9a8/jxNZZajum7is27h2R3/h9GGe5+OwJJloQY+S7y5JLy4IT+w7wJ6/6fl756HGebC2DwUsBOHv2d5/JITwfXbS14/6PnuTW37iP9ZMTvAucfGDjfN3f+Tgff0/jxhtv5LbbbgPgwQcfZN++fTv2xptuuolbb72Vd7/73fz2b/821157LW9961u/5hg6HyK7zLZwFVk2BGkQOiO4OmWghSAES4wxOUMSPAchiSqjyAYE3+LdjCgkSueJYPkWIQ0qG9IG14HrHCckyAQSEApURmH6ZCaBWeaATGqMNMmKJjU6RpQZdJ+JHTjQCSh2fwckAIPEIJJCkOgkgYgNDqRI+7x1GWcAKQ1K5wlYR4cWihgcoZ0SpO6OnwhdpkukyigWDmLKZYTMEyj1Fi0NKhsg8wWMTvs+CSGJtkbEANFjYyAISYYgdOOSLj9ZQAUgZGrqEueJW2lg/v867z4Fvd4e8v4+MEXK+EuDlDplsDtlUOucQucsSJPGHMh7y5TZAHybgLpURNcAkmirZK3szhJjQKmMKCRR6ATmOxgbvSMrlpPSKSTEmAiAmD+mAAg0SZUQ0kBHEmM3njF6gjSJmAJKaoRO45hJk5RZO8OGFu8ahNR4O0MGh4gRHzxBCHS5NJ8aRCGBSCE0ShUpqSB1mpsIZAgpGdH9QYgOqUuULogxkOksXbttKHWOkCrN1e4ehJ0hIBEXW5NLs6NUSpWhYuiIp0DHBHq9rQjeUbspUWqkMpish4oBIyTSJAKINJisT3BJtTH5Qpo7waVxNwUiRpb2XUNws27uOITMUEKl+wkB7xqsTYqlCwHo1huAkMlyCsRuRSM1dEmXQigQmrxcBtPD6DwRnRjoLR5EmRIpBdrV6HJXSuj09hJJiQUlDSDSeqIjah3plSqD4NFCIHWJ1AV51kP/pURQROBdgwwOI1V64wgF2QIyXwCpEL5BBIcUAlxNOz6DzvtESPNEKJIWJVICwOR436R1TQChENIQOtIQYkAVSztzXkBSmObXJSSmSPsKB28JTSI0saMgKgZEjCiTuoxKYRDBEWxFsLOUuDJ9iKREkk7HVdFjo8e5CiEkRmiy3m6U6ZHRkanOkad1UsC9kHjfoJVBRUtu0juwiY4QoVw4kMZIaDKZoVQig0qf6wYfbE2MPiXOlMGYfpesKAlEoszTO1UnpT43Q1TWJ+/vRQZP9C4lr1yd3mNSEYVA6DSvdEwVZ/N3bBTir61Be9YImncOb1vKxWUeuePPd36/uXUrQhRk2QGWl7/3KY/h9l3H/jUHtiDrO+TwKCe/8tUEbWxHbLTrDPQAuTIAEemvWLKi/KrPPbldc9+T24S1df6nO9/HS+76Irv3X0C1PuWS5iCl63FmsMboNYfABnadbnn4Psf+wZTF0Qqv+eLHePWdn+QPVjbZbTRvPXOMOst43mSbH37iJKPBPwQkVf0gITy1z/R8PL3YOjPlo//+QZ58eIvhnoLVI2NOP7rNlz98nM++63Fs478h593YWOczn/kUH/nIB/n0pz/JysqZb8h5zsf5OB9PP66//nquvfZaXv/61/P2t7+dt73tbdxyyy3cfvvtf+Nj6Kx/LvtuSlTWR+sCoRJhmfcMltIghEhgHlKm1VtEB26UyhIwjgn4REDooqNGEdORixActFNETP/iRMpCK1MiTJ8YHEiT/q4DuYkOdjY9kcAoXcY3ektwVbpGXaRaug4QRyEJUhO6a1BCIaVESkMMjihVB+QhRJ+uvZ0SQ0gkSEiUSQA6xoDvSGroiJTvSIDSGVm+QIwJrMWQ9okSxKRa+Rapsw7wKVRIQFd2NrYdyCL1jqYnSBbC2N15GheFDS5dc0dmYkjWOylSAxHRZa511t8hY/NrnRv4iBBiR7GERuoCbTpSJSVSl3hXkdxnbQK03iKFxOiMGH1XoSUwZtARbZGIaDdH5sqRINWgRTrQDSAk3lbdfPKAQnVA1wfbAT2Zxk/nKF1gsn5SlHSRGqDpc/gmNz200CgxB/JJRQvzY8SAdxWiG6vgHUIkJS526mgmzQ5RZmeuyZ35C52lWEjKhQtROif4Fq2ydBxIiqw0OyTIuwYn07hHqVH5AKFTlz7RKWY7RLx75jtkHYHM+jghabvxFkImADsn8jJ1Gww+WX6VzlPXTOYlNpKyvxedDTE679Zu3HkWggAx4l1DcNW5+w821TQKEMqgO3ta2CEj3fXGiC6XEDEgpUIK0ZGb7iyCbu2kw+p5IoiU6InBE0Nq6hJdy7zq08cAwSbFVEik7kG3tuieYYwhNaZxDda3iczkA3xIapAwJShDUBl0iR9jBknNkxpt+knV0fnOMxBdwilEv/Ps52sxzpM/oksOqPQ8g2shBlSnSqmsT5AGFyPWTtLvdJ4Irc7Te0dpxFyNj5EYWnKVrNaRRBSB7h0iEELvrGUfPd5OoUsGCaDo7cG1k2Q5zhaQonvPdHPTdQkRG2xS6JxNCplONaGJ/Kfkke/mmpIG6SokoESaSyF4iEl9FsokIhYDsnsPAundGywIjcp6O++v+aTJzH8j+6D90c//M/LhMiYvOPS8F+38fnPjvxLCmKK4/K89httzDYUuuH79Gr64/0vo3oj9142ZTR6jN7gCgEe2Hgbg1Us3ce9dn0IEg56cRWXfdO44IfJz33k5JQ1/IWZoZ9lcWmLfvgu4/voruO3PP0UWoX245itnP8E/eOULefL/HvNtp47yukP3cNfGIW6Mt3OVfYgTn/tDfu+bf4H/63kv5lvv/CzWaH5KeP6X45Jfy6+h0MtImX3d+zkfTz9GqxWff/dh+rsygovY2rNyeMTDnz6DyRXbKxUf+90H+Y43X03R//qttJ9uhBD43Of+gvvv/zJXXnk1hw5dxObmJu9//3u46qrncuON34H6K7Z7eDoRQySemhI3auRli4jBM3P9f5dov/gF6g+8j7C+BlmWirerGnXoEL03/zjq0EX/X1/i+TgfO/FzP/dzX/Xz1Vdf/TWfOXTo0NfdAw0SAJ9niF0IaCkIyhCRRBFSIwJ2xBvYUXZk1wCgIxLBdwAsgeyd2qdguzqwfMcStAN8hES5hhAsyvS6eo5kkwTwrkaqgiAFqsvGJnUpfY1r00tgXmcJPEefgGFHEmWnWghzDszrKLtsb1LmvGuTPZKkYClTJlAhErmIXR35XD0L0XfAeA4+Y7IHRY+UyQYoVFJHvJ2hTC8RzpAsmwBR56nGhYA2faytyLqs8xzOBG+759IBU2kS2ZC6u5ZujIDYTjGmB0LQRI8JAaHOvUudt8keKlKGO8aktLWuSWpP8KBkItlzwqdyYrQIladaLSC4FtcRHml6CViHdP8hpGNGSMqknD9jiCjmOo0kETndjTNSEWyFVDqprd38IoYEUOf30Y2dIO0zFTt7WCRl5pXO8K5JJKWrLyR4okiKr9ZlsvUBwpRY36KlTqoM81Mmi6gyJdY1qbGBzhPR65od0N1JEAKhi1S3pHNkM0YgduZSEKmGUDuHIJHFtp1QmF4CsZ1iFoJFyKyrIXLJgviXrkkARqRGNY2ryU0v1ft09yV0mbThzrIYEDtJFZTZuV5BTKSgI62EBMaDMCkh0xE3qQy2mSQFea5aAdE3KGnSfcdUQ+aFIOgc1c4QOicgO7DfJjVwvmZFatCjdJ5Upvlxsj7CtwRbE0yBliYlU7qFPh9n7xuMyiEEtCmIvqVpxxTZYtfZsiPjXbJIzBlhcDtKsBcyEZc5+ZnPEc6p1N4li+lftnSLCNY33XuJbn70Up1YjDsqWESA0OndY6copRHZEN8dW8ZEi2Onru6QFiEQ4lxyQEAi7050hM7ifdOp5iBCQJpB5wdI7+EQI6ZY3Dmm95ZI3FljQgiirTAqJxBQ+lxSIAhJbEbobJBs2/PnHWN6h8X0mvfBETvrtM4GxBDTg52T2/l7i/n7OaZkwVz9nFO1MG/D9PXjWVPQbvrJn2f9+BNMNlY5eM0LAaiqR2naY4Dkgv1v+WuP0Vz8Suy+61h6/M9ZUG/AN4reJV9mPP3ozmc+eebj7M73cPHWJRAD+7IrCe4Ez33Fd+985i3vuY83//E9/Jf713lrbxWc4/B11/Gyl72CpaXjvOQlHwABOmh2T9Z43mP/K5dln2HdXcwJfwVXD1e5Xj7EIE7xQfBvvvgz/M9n38u919/AvZddRWkyfuWiffxH8U8YN6c5fuJt5613z0BUo5Yn7lqhGltMpjn0vF0s7CtZPTrGO88Lv+ci+ks547Ua1z4zKpr3nve97xaOHTvMD/7g69izZz933fV5jh07zEtf+i2srJzlwx/+QPJC/y0jxoi7e4X2dx7A3nqMcGRMbDxx3GLff4S41Twj9/K0rsl7xr/1Tka/+C8JbUvxA68lthZ7/32oiy9BXXY5ctduwnhEbM8rxOfjv4+w3uJiwAuJ6mpzIhIfGqRv05dwhx5cO2H+VSxiIHQkI8aQgI9UBCESkJuTCGWICGyw50hFBOtbbL2JUBlyns1WnbJFpyDoMlmSumoxwTkbIADKYDugJJjb2kRSzYTACZnsRiQQZqPHujZZhoiETtFxMRC6bDNA9C14m+pjgk/gT6pEmFT21SCiA5vzMRBzS6PUSNPDI2nrMbbaIrgGoqe1VadIKEJniYodRPZCpvN1IFFwDkBG5qCq+zn4VI9kSqKUCYSqpDrMlU4AqfNkvZwrHELjhUKZMjVZmCt/kS5T7jqrXYYgptosIfFZL5GKLmM+B9+xayAhuicldapHY+eZsAMeBREXbFLLhMRJTTQlUeVdjdU5EiR0AULhXI1zDda1eFeD1DvWPkEkxIBVekcpESKNRaOLpBDZihAcQaSaG2zdkV+xM6beNQnsz9UWnSdg6ttE3OQ5RcVFt2PTdK5BNBOULsEUO+qiiAEjdepGCXg7w0/OYtsJLrhkD0YkckYCtYn0pufvhcR2Wz3QjUiudAK6c+K+8xwEwduO4Oqd8RbeYYNL1lAhidHhXA0hkZOgS9DJmum7c8YYkDKRyyBll6xJazrVcoadhEGIAVuPCLok+jZZkUkkby6bzevmjMq7hinggkvAv1svUheYnWOnqw9AcHVKBiStD6RI7yeVEYXChiYlgEgEbD43AJyr8cGlc7k2WT2DxwaLd22yyfqW4Bqsq7susGLnHeA6ohI6hZ8Yu1qyjOBaat/SdueICOrOvud9mxIwnQ1Ydo4BYmqi4knK83ydg9h53t7VuHaCyocd0U8EeZ5giiRFc/6sbLC0MSQLepr4BCGRQu7UhHpXE3ynlgnR1ailCK5JxFFluHaaEh7ddVnCjt3bIZAqw2R9snIZoTIa1+BJFm3XWRwj8wYnnfVX6XNrtLvmc5m+rx/PCkHbOHmU9/7yW7ngims5cOXz6C3tAqCqHgAECwvfhTFP3c0EgKyP23UlSM3lF9xEbHZjp5LTx95DCI7Wt9y1+nlesvsGjj9+BKJAraUOVHsufg4Ak8Zx36kRj69NKLEs3PZemizj+h+/mSzLmEzvYjDQvOyHbuK55nYGTc2to+vY2gUguXf/v+UPjt7Afw0/ymFxEc+XRzghDvAPjr+X95z89/z0e/4Tvypzhm3LCQ7xVvcTjEafYDb78jdmcP+exOrxMbf+5v08/oUVrv3OC3nZD19OPbIcuGKRV998LbsODvjyrcfZe8mQl/zAJfQWcz76Ow/wyGf+9jbEGCN33PFx1tZWmUwmfOQjH+S+++7hwIELEUJy991f4CUv+RYmkzF33PGxvxUJ9yfG2D95DP/p0wl9TCyhcsSZhUwhFjPa//wI4ejob30fTzdCCGz/7E/RvP8WhNa4Oz/H5O1vwz9wP2IwoPnER2k+8iHc8WPM/uA/MP4//nfi34Ggno/z8d9KTIshcU4Gum5cjW+SfUZq6ABnRHQqV53IRWe3cm0qOldS4ZtJ14RB0JiiAxEdcJfZuRorV6GFwiEJviFEzzS4zh4pz1mtuvoI5xuInbUJsO1sB8jbGPBzZUQoosoQvqX2DV5IatfSqgwnFUYojM4IMjVxiELgTZHaYRMJ3uJtlQiH0OcsVt17znlLDD5lqDtSK+ZXIlIhvgWCyhMQRkJoU3F82XVglBqZD4m+wZgCIQRO6qRGCJ1Aakz33kiFjyERqGCxviW4GmCHNLb1iFYXQNcIJSYb1LmcdhozF1rsvEBfKqxM3SBdSFsPzAg4ncCfUHmnilraZpoy4cEm9SW4zjLKzjwQvsUGt2Oj9K5O9WjQKTUJuLeuYtJO8KpIHe069XFua3IhJBtdnNfizUG+Iph+oiKml/6lq0X0JHLVuCYRS9ipe7IdKI1KM2Fu7Yv4zhIbhMD51GBB6TlB7Ahl9Liu3k4SO+uW70ByhtdFqn/SOa4YEgSdfVN3BFqkPfq6tWNVhlm6FJ0voIUG32CbbZzS1Dpj3nQFIVKzkJgUEC81TfS03tLUY6JvE7EQEtvV/AQi0pQdYay6sYOgc6wAr1JLdxdCWktCYm2TaoNszWx8CtoZqmuIQTbAS4UPDmxNcDVWahpXU8eQSL0QxHqEQCTCylc7alywSSXr1oaTEml63fwzOJHwRrIIJnuxE7qbMjWyq/0KQoIq0nMmNdQRwSGUYSIVbTNiOl3FeoswJU2wifyZMtW5SgOmQEqFlQotU/dBHyzBzvBSpwSR1FAs4DoVdcdSPV9FIq1FHxy+U+mV6XfNO1xS42NMSapuf7qASImOrJ9svSSrq41JXcLO0nwPyZYdzYDZYD9W6qTKuxqiT/Vu0eOUZiwkVahTbZ4wHTlvmTUjat+Ca7qsSRrTIBWNiExnm0ztjIqkhLdCdDW3CqkLnNSE0NIEiwgWJxSxGSf7YvQ0dpbIra1SN8hyMSVhlEmNUOYKfwy4+RxF4OeKXDcvQnxq3PSsEPZ5T9AAACAASURBVLTlgxfz+l/6DbZOn+CqV7x65/dl7zpibNm398f+xsfKztwDSMzGI1zynF9Gaoso1nno4Vcxqo6z0awj11IDj7zZy2zzeFdUmG71s0c2uHi5R+XgzS/eh1xdRV59DfsOXUSMkdHo44TQckU94Ua7Bgi2WMBe/lwAts4anIeTjz3M6Ifez0+0P83F7gix3uY5W/dz0xOfYu/6Gjc/coR/deFBVsQBHhbXsj36+DM5pH+vwrWez/znxwghIC+f8BfL78cGi7645WT/cYa7S77jTVfx/Fcf4vDdqzz4iVN8/s+eYPtsxVc+dpLH7zzLbPT0VZ6vfOVeDh9+jK2tLULwXHnlc3n969/ITTd9Pz/yI2/i5S//DlZWziCl5Pjxo9x7791P777uXcO95wnE3hL9ustRz9tNdvPzERLcew/jP3Ma9W0H0DddjP3gUcJa9bTv4W8T9Qfeh7vni5RvfDPDX3sny3/6Pnbf9kl2veeDLL7j39F/yz8nTKdMf+PXKd7wo9hHHmLyW+98Vq7tfJyPb2R8XgSq7uvTBsf2bIXtdkTbERzbTvG2ogkNbb2dWt6TrD42OJyQBNI+ZLFcxOgibew6b+cdkwJlvWWqM6xraQSp9iEbELv9n0K+QN3ZhGJI7bMJnnG9hVaGIA2NnRF8i5MK39nbamWwpqRuRlSuBgRV9AhlsL4FKfAdMZmDhLYjBzZ4nmzHRKmQoWv+kPWRKktAlgT2GzGvQersWTpLmfrgmdkKJ5K1B9113YMEXF2VFLd8QO0aYgdKAaJQzNoxNjhmSgMS22wnG6HSbPuWEBxSqATaTWpgITuFoLUznFBMywUmneJA9NjQUk/XaKsN2ul6slaGgPA2WaaQWFdRuxrnKmRwbIWGY+12UhKRyb7mG4Kd0eosjbl3ODsldLVdtqsPxFZMJivU7Rgvk5XR2yqpsELipUHI1NQg0yW9bIiQkqgMXkrmDSqSMpRapM9i6KyMAavMTpZ+KzpETNbX0Km1laupZhtMdUmUOhFo19AGz4qU1DES24q+yiG4NP+yXqpDg25uSWLwVNUmTafIjIGpUokUS53qtISgna4yaids2Qm+a4YThaT1Tdf8JZG+IEQC7DFZ7qIuGGlD4zsALTO06dEGTy0EtZslEBwDsU100s4VsuCw0TPNCqaCHbvjpCOMEpGavcQAMksgutomCJAhJqUnJqoY2inOTlEybSlRZX2q3i7q6JP+2RFtV22wVW8TTdltPm9RXc2TtRXTZkytCzaKIafHT7I1W8EqgwWcnSFUkUgHMNNFGkeR6E4dA+NiSJAKFz0Ez9Q1TGarTE0JZkDVTHbqM2ehoZaStiOmzXQFEzwlkjYbYLMeMetT+fSMZHTEEJAhpvq4CEEXBJ3v1HXa2TqV1IxN2r+x8Wl/s2inhEiXcFBMBYzbUTISCIkVOinWQrKuVapxE4ptX1G7tDcY3tIGh1UmPVvf4oWmlYI2BmYidCQuNd1xUjOdnGbSjqmDY3u6hqu2QOfYbm85pKGWGiUkxvRTHVp0VNHjvUuk2pR4AZNqnWm1QTQllS6ofcuk3mA8WyNIhTBpyw/XTghS0JISOA2gZU6UBmunBJ1Rqwx0TiYNo+kaU1OiEOTeo6XBSY3QSdFMSS8Jpke0dfreUIbNYpEqBkJXm/tU8awQNCEEd3/wPey/4rk79sbJ9G6OHr2Z4eDb6fW+tk7grwp74Q0QWvLHPsCegy/lkT+7lsmTC3g/4mOnbsVHzw0XfCtEyWD7CqI/wfKhi3f+/k+/dIIjm9tkwtF+/Hcoq4qN/ZrGN92Xheey0yWXf/iN7GODBTbY2C85/eQx9N4p4zWLVIZgLUvS4S/9Ll7T/iojG3H7nkfcdxm//cfvpG5bPrM14hK5wYfi93Jy6wvP9LD+vYgYI7ffehd13TJjxB8tv4NTf+74sT/9cX7z7Nt5sPkS6/U6j24/wsFrF3nNT7+Al/7gpQx25ey7bIHeUs49HzrOh95xL5/6g0fYOjP7G513dXWFT3/6EwgheP7zX8AVVzyXgwcvQspzS+aqq67hhhtexste9u286EUv5c47P8vKytm/0fH9w5v4TzwJiznq5QeQizkMDOGRLcQgQ+wr8Q9s0P7OA4j9JdmPXo3cUxLdU3uW/y7h11bZ/te/yOy33knv5p8mf+Wrmf6bX0btWqC954tMf+//RF95FeUPvJZdf/weMIbpL70NfdE30XzyY7Sf/fQ37NrOx/l4NqKKtsuSJhVqtPE4osuszqZrzKRCZH28NLiuy2ElJW0I1FIxiS0QUUIibUXTjNAqpwqOmW87YyLUoSGI1Ils5hu8VIz8jLa3i0nwNARsPiCEBi8UTmoakaxD0/FpZIwIWxODZdNNUdHjgmNCqqWZ5gsEKZnGllgsYrNBImQqZ6oNHoUVgto16OhxBGbRIasVgmtoiQSZamjW2xEzpbG2wsWk/nkhqQVs4GntLLXCrrYgWII0jOwUT2reEW0FXYF81U6wzYgtX0PwtG7GqN5ko9nG2woFlCFt8xqkYivl2Wl0uaNCjOZqYac2RiLO1VTthPF0nUBkU0q8rZPyaXo0+RDd2w1K04Sm67yYNqcOuiRIRasMrq3QzlKqklYZolTUQiZVyfQRUlFtHaOSilZoUIZK5yipsd3mt9sytcRvhGTqWxqdMyF1k47dRsWj6GhdS+sqamfxIqlKTkocEdvZKINUeCFwweJVziS0rPuKJ6crPNzrY30NocX6GhEcM6Bux7RKMAMcILI+Lh9wVnq27BgPjEJLq9SOFTaqZHGjs9aljngZCtJz0QVRKrZna4QQGGUF0672bhwadEjKZh0ctavQpkQDbfRpqwRX00pFq7vz+IYw2yC6ms3YJmKiDI3OMN08NVmfoAsmWUmrcqxvmLo2NbVQhhACQipc8ExDC3aGn1v8XEPTbcTexsB2tIxtzdTXSamShrrr5DcTEnSOywYgJBsx0ChNEzqlRggm0qAHe5kKQRAgpMKSGt4EnRFNTjQ5Z4qSR3EczQoOZxnBzfBC4+yUjdNfZtxsM1aSqc4IzRhioFYGgcDLRGxmdoY0Ba63i008tp2Qm5J2vt9a8GlO5gNmBNZNyagdc3a2xqxNtX+VEDxU9Bhrk9Z5s8Wk3uCJeo1tEWl9y5aATSmpQ8uWzqimK6x1xN/rHJf1wfRROqeVkpaICZ6BGRBiYENnVEWPSXCshxrvK6JrCNFRxcjW6CgbwWKLhWQ97pTkxlXUoaFF8BU34YyUtFLTRse6TEpnMbiASbRUMbDVbDP2DVsCzjZbaZ3EgEAmFT54toLjoVCxGi2IuU07T5tVywypspT88S0hNLjeMmH5kkT6gICkGZ9i21ZpjzJTIk2fVoCTCp0NaBHMpis8efZ+jm48RigW6Hd1ga7bzsP7FusqnK+RMRB8sv5W9RbRpPcMwaGEZKYUo+ypm4Q8azVo/8OP/jNe/saf3CksbZrjWHuKpeXveVrHsQdvBASiHQPw/Fe9jtHJkuBgYfyfuExpHv7M/WT1LrSSxLDF0oGLuG/9y3z4+Id58OwG0bdcmz3ORSe3AXj3tdu86Y5/xD0n/yMA+WaG95YgNXfsv5/h2Uiel0yGh4kisvvSq1HGsHrkMf63730+j8eD/EL7YxSPvIeLr7uba665l3f80Tv4/bUtlkyfe8Pl3J795Pk6tKcZR8aH+bmP/wwbX3KQBZ7//QdZGixyw7c/l3/3fb/Jgf6F/PBlb+QnPv0m3vK5H+dn7nwL226TfZct8IJXXcS3veFKXvGPryLrabSRlIuGj//+Q5x8cPMpz9u2LbfffisHD17Ei170Ul7zmu/l4osvIc/zHdtjXZ9Ts5xzfO5zdyCl4LbbPoi1T723RTg7w912HKRAXjzE33kWd8cp/KeexD+0idhdoK7fi3r5ARhm2Hc9ir39BKF12D98mLBePyPj+5cj1jXbP/tT2E98DHn5lRTf9Sr0oYu45Ici2ZOfwbzgOi7ofQQ5OcXk138V+5X7WPy3v0FsasRwyMKvvRN7/73E+pm/tvNxPp6tuNw1ZJ29LkpJALZVhssG1IM9aKkZ2THrWY9xscTxvE9dDHE6w/uGx01B62pa1+KDZVtKxqGhVRKvJFZInEztnVutmEVH4RsmvqbSmm0cR4ohm8FxRmu2hcZ3SSFhZ2w2Y/J8AetqtrXBS8WJ3q4E7pot1tspZ6p1Wt8ghcZ1tTMbsaVxDW1omQZHLQUm+K5zYkYVHEoZ8mwASrHpK8bRMp2tpnoUXSCyIZA6MU6bMQ+t3s/DvsLWW3hbUWcF06yHU5qRnzI2GSOpmCjNVoxYKWiDRUZPMAWb0bIWHcNyF9N8wKToYaVi0xRYb6mjJZdJhRhHy2a9QRUc4+hoicxMyabStAiOuYpgcmjXmWKhGdNKTe1mjH1N7Wrq6Ajecbwds6010+iI7ZjYTjgtSQpCdKktf7TkMRJkt99bTCatZrqKszWtq0GAD5YZnsY3NKFlu53w4MIyR2eniEoRTMk2sJ4VNHZCbCusFNQq46yWHGsnjDr7XBMck+BYm54ltjNm9SZVO0aHQI2gnq1iXIvsbHRnsoL7mzVGtkKonAaZLIYL+zlicu5cvY8VN6OJgVpqQKCzPutK0SpN006plcF31scnth5jbeuJ1KhBZZzO+7TKUAnFerNN8B6nDI6AiDCVgkYK+jpHmB5RpM6nQeU4BBOl2NYZK3gm2YCRa5lGj++6C7piEWtrhrqHiIGTtmImFQ3QNNu0ocWRVMlGwOpgD0IKJrM1jk9WWNcKq0uqyWm2t0+ympWcGD3JxM6YCIGXkkn02HyANn22cKxKmVqxh5YseGbzGsIYMK7GBce2a1gbnSDU20ghWBewKSJaaqp6i7NuRk1kYqeckhopBKsmY9aMWQ+O/YP9VNKxpj3rQlGZgpHSNOUiRIH0jsNFn7GUzIJjzWhaqdmUikm+QAsEAVZJrNY8IqEm1YU21RaVbzluUvMXZXKO+4a/kBKnNFOdUbsplTYMTJ/M1my0W2idEaVBlbvxxULa0Nu16JCsiRNTUhGwvqbOe1TFkNC1oG+abVyWUeUDpuMzBMBKhfING9FT6QyrFK2fsl2tJxt3cBzf+xy2ROSBap0joaaWOqnK5RJO51hleKK/QKtz2naMVRm5a2jaKSfshKxYQuiMLSJjnTFutpiagqMbTzCdriCJeGWYClivN1EyY6Y0p3zNmWqdo3aKa8YEnXG02eRMbIkisj49xbYbM/FjNqNjaqds+ykjoCXQuBnTdkRsJ9S+ZtJsEX3L1OQ8JgKnqlWmUhJdw8jOsHZGzPo0pgCTp30QTUElUgdV65tUpxZabPQ87mc0vqUxGWfdUwsGzxpBM0WxQ85CaFlfezdCZCwuvPJpHcfufxEhG6I3HgHg6u/4HuLsEPffdiELyvFt7hqcc+T1XvY/J3Vi2X/1NfzKvf+aX7vzT1BC0xOaF+oZB0+fwku4+aZ3EGJgZeW3WV5r2Ts6xShb5pcu+wmWr3otZ3sryEIiTSQM1yFewnDvBVz20pfTzzT78sht4Qb+g/8+JI7R2h4u238Jv/DBP+Uhu8ib+F3eXV3Arz95+Bkf1/8eI8ZI5Sr+yxN/zMX3fCtOt8RBy/rWJteNXs67tn+fN37uddy78SV+9gtv4eUXvILLhpfzxOgx3vwXb+D45NjOsXqLGd/5T67mBd99ESe/ssllL97DXbcc4fRj23/l+d/73nexvb1Fvz/gggsOAHDZZVewd+9+vHf0+32yLOfMmdPcffedXHLJZbz4xd9CjJG6rvjsZ+/4q+/NBdytxxBXLyG/8yDqW/YjLxqAFmQ/ejXZ6y5Hf/N+1NXL6BftJXvDlYhLFojHxrDZIK5awr3/CPEZ3EoghsD2v/wZwtEjYAwX/PjL2POB72bpXa8E35A//G6WPvsvUJdfiRyfov/iixiEL4OUDP7FL+JPHKf50PuxX7mfrX/6pvOJiPPx/9uYum3W2jEjWloEW9kQJSVr2nDc5BybnmVl8yglniNZQaYyPIJpqNgEdgFr1SZbLtnhRFZS2WSa1ErThppRPuSUcExFwBFx2YAZHi8jtp2x2weGUoCQfFG4tMcOMG2nqNCwTeCoyXlQRyo7BpNzfPNRVienOS49Z5Yv4u5ewYlMoWNSF9ZyQ1MMCVKzWQwBmQr7TcmGlNQmpxKBh5VkpAva/m6ybMBICGw+xBMZ4alczbheZ8sUmN4+Wt3DCE10TWpK4BpGtuILC/uxCKLOiVKihGLdNZAv4oRkMyt5ohzgjWKS9VnpL/GY9JyansETadopK6MjtCanyXqs9fYw7e/B6AzfjJgGjyBgewts+hplZ9xbDGn7OVIqZsbw/rxgXWdMJic46mom7RYbzRqPDPvo4Amq4I5MczwvOJYJlAyEvOTw0gHOlovMBMgQaH1LVY+TkmlK2qyHJ9lCQwxsuQmtzrAmZzY7RSYlexcu4LComIaamSkIkxVsMyZISbV9kmm9zZnpGe7oDfAi4olMfIME7tOSVW2Y9vZQFMvUKhG6gGRbpP3VVAxsS8tMWM7YDdaDwyvNTAhqZViMgSvMALn2cGqG0bUxb1Rg6moab5k0a1RSMiXweLvK2fETGBlwUjANLcZV+NAyFQIfA2M3o5GKKBWN1lTlEBssZ9oxYztBIvGzdU4Jn+rrhGC77DOTGitBS8lmvQIdsG6DZWNyhkZm+KzPZr7AaSVZjY5Hmi0eKwZMiwFeZ/joibbiuNKcji2PLl3AVmeZK8u97Nr1HKpykaNFjzN2i7XRSbbsDN9OWVt/lLbeZJzlnIotM1czlhorZUc0HK7aZItA1AW7sgEsXkjV340TGjc+hR2f5exsla3ZRmqQUa2jBJj+AjMC20LQ2BmHQ0NsRvTJuZuG4zGpyznQBEsVGhpf02+mjINHZQMKW4MMbCjFqgrURVJVtoMlCIXVgk075pQ2PLS0nyMLBxhIg20nhHaM2zrCC8ZnmGCREYpiN0ooVmLNY8YR2ym2TeTTCp/q6Tpr6ZOhYSIERsJkfKazM7dIPBY4++RdUCyyqSVfDg1VvcXhOs23TJcErVKtq4Db7RmObh9lElvyYNkbBDZ4NkPLUJf4rMcZpdkm0oakNGei4ZTUnLUTGjtjtZ3weF7wUG9IFVqmboaZnWF19UFMjDghWVq4kLGdcCpUbJuMdSU4UwzwAqJU/w97bx5maVLX+X4i4t3PmifXyqysqu6q6uq96R2a7qYRhGGAK6ICgoiKyxV9fNTrdRl0RO84jPuguMyIgAqKNiKggLbNYtML9N5dXd21Vy6V68mzL+8aEfePbJnrBZpRHB4d+/NP5vOcNyNPvHky4/wyfvH5smNSHL+Ckoo+hvt9l2VZsOSFPFwMsBSgIHd92l6AF01hjCbNhxRozgYl1osOqRMgnQCdx/THTc4k2xyfWODE7AGslKRuSNfdLS6NziAdILQmLWK0zincgJFfYWO4xUgYRnmCEoIoqGPckFhZztejZ1yPvqZB1X/P5tZvk6QnaDS+BSn/cSpxG02RHnw55DHoDOU4SLOPR4OMnUKSb+yhUqoSpNOU6jFIwa8l72EnaXLb9LeQF0/35OYZ9e6AYt8CFb/OQmmRG3oNnvNknw97Ab915Nv54MI38MbFWziz7zR3zd3FFVc8h2G0Qr9zkGFnh5P3fBKA77rpAnxyfq94Ob3Fl9DYv8OB6Q/xBvs+XqdT/lp8I4c4y/u6lttbX74weJbd4uw/P/o23nPyv/P5sw8y1z9AaCPuWfgwH+t/kMZUjR+67Ef57ee/i1+/8bd47YVvIDUJK8Nl9oTzpDrhRz//A6z1d4u08fv+APeejzN/pMahJ95H86/vY/7iOp/7s9MM21+82zMY9Gm3d6hUqrzwhS9hz56Ff/C447hce+2NSCnxfZ/6F4Q3Y0qlClFU4tixx1hZWfqS89P3bGJdibBgH9iGZow6VMN98SKi5n/R9UIInBfvRR6qkX/oLObRFniS4m9W/tkKIdPv7epwjWHPixXV+38eGTdxOqdQ3XP4Z/8Gd/nTYAXWq+JcfBGlcx8kvfPjxO/9b9R+5R3kjzyMuuAC9NI5Rr/56/8sz+tZnuVrjTSGsvKpSB/PasrSYViukkpB7LgMozpbjTnOC5cmlhWbs87umaQwG7KZNGm67m57VZ6wlmzgRxMkxRhbFGzpmFjAWlhiTRbEfoVR1sdkY6SF2OQUmw+w2jtHgeV0FDHydq1lw9IEy7V57qxP05YaaRI+Y3t8SKZknmTPzOXsKzLW8i4zTkhd7lr6tI0RFDjCoqXDJhnr0rIp4SyazdEWnyNhSzpUVchfBSEDx6FwXVZ9h81kg/s8wbosWM27rJiYp4IaK9MHaQRlbFgjdwP6RYIBCr/MquOT6RQo6EQ1tIDzlWnifEBruE4qJa5QDPWQntDco8YMwiot1ycUFiMsFb9GLAUDKVnLuowGm/SwWGE5k3RIioSBkAySHt1xm9qoSX3Q43jvDEtplyecEduBpSR9NDl2uIEX1Mj9CWI3IvMjzkcBcThBLB3iYkSmAqTNMRJcBJkpGDkuzdoccR5zipz79ZCudMikSwyEQlE8bU/UlWnwXZanKpxWfWILx4IyT0rL0AuIlU87rPFUBN3aDGfDMonOSdI+jrAMihEDnWCVomYLhM7o2iapH2Arc+QqwDUahWa2SKhoSz1LGOVDdNJFCkkRVqiqFnl9P2ltESFdMiwTpHimg4nqrAVVHi/XSKWktXOCvkkYez6F49HOeri2oCxdkjwllBLnaSFEPx8xkg6xF+6+ARaWvzE7SJ3RHW0RO4KPqz5WuXiOz1O6ww4ZxmhCITFqV8nejDskQpJKhzEFLTegGUTUbIzSazSUz4ROSLA8UJlmyfNI4z5WJzymhzxGhm8tUmgy5TCQip5NSJwCo1x62ZjMamTee/rsW4EEbJ7geSGZSUkch7FUbDkuqVdhqCw5BYMipmv6SAEDqcikpBlVaVYn+UyjRJq2SaUiyXokUpMwpuqWcIQkIONoNMUw67HKiJ1siATWTUrHpqzZjA3HJShiolETazJ0WKdDRq4k21ajBs2nBTClXSELmqpXYdXz8JUilZIumiJqMJYWU1ug71dolSYREvpZizEZSEs7qpBhWU87bJUmOFGu00TzYOSx4rokoc8J3SQpKbquomw0RxmxTkpKxmbUAJ2hiw65GqHylG4xpukpCmsIBTTzPsZKrge6+YjRYINlaylMirEjpl1/t0VQZ0xKgS22OBNYHlYx5xgxlQ5wpcF3A9Y9j6HvM+1X2QgizjqWbHIvG4uX8sjE3NNnSy0noxL4ZZCG3BEcq83ymSAkMQU7423aVqPtrhCJ0TatosdD+Q6fChIGaPrpaawjKEnFmitZFZat8gRpqUbF8Tkzc4ARBUZkDLMOJ8yI91QaZFKwUZ7kI37EcSzraZ9WqcE2Oe3eMu3Beawt6HVO05OCXGekJmWMJHYcOlLSRJOS07cpo79PsP9y69H/wrXuS2JtQa/3CcDQaLz6nzSGEBJdXdy1WgEvestPsr0nZtI6pGkJk3ZAwIm73o3GcGJ4kptmb+GBwZ9ggUvCFleUKwhg7r/+HoEKmMsTDp86SSJ8PjL/vfxe6XIuO7HFY3++SjPZwT/tc/fdn0GTkbtd8ljw+T97D9l4xMsu30uBR9WF3925nhX3zdg8wY1yfuiT/5EFV+DbIcpm/PJmi3Pps1ryL8UwH/LbT/4GZbfKGw99J69V38fQ6zL0O3zzwuv59W/4Fd70vDdwzdR17C0tcqByAbfO3caPX/lW/vC2D7BY2U/FqfL167O0vuN1tN/xi+RPPE7+4P1kb/tR5rxtsqDK6P6HufahX+aB20/u5lc8zc7ONrff/j4Abrzxpn9w3uxLMTHR4ODB3fy9m2++jde85tt49atfhxCCO+74GEVR/IPrTStBP7QN7QR54yzOqy9E7K98xfsipcR95QXIK6cg19h2Cv4X566NRo+ysvpW0nSVouiysvKTDIcPPGMhlz95jO4Pfh/6iceI5jLKe2K63/ghBi/6r+x832nab36c1nc+TD5/A97KJ6ne8f3YYILR836K8IU3s7jnrxAyI/q2N5Hf/Vmcq68l+eCfUiyf+4rzepZn+ZfG8bhNjiUrUgqdkQzWGWtLyJh5U7CV7PC4gKdEQcfmbJNSQpEjaSddRiZHlufoBiVWdo7yZP8k5/IeLb/C2HFoOx6CgglRsE7KMZEwips8Jvs00w06WZ/zImfkCh40ffZah44XsOW6bKZNhOPQ0RbjVjglLYVRlIqYVjTBmoJ2FNBWlidUk/PjM2TJDp14k7NZRqHHWDLutwlnrSXIY/YoH9yQnhD03QgdlDFFE0POyBbk0md13CG2berZkHN+mUHZZygsTzrQsgX5qMlO0qJXnWGnPEnsKAo5ZslxiH2DxNDLR4zVrhigPTvL2BEYkVBiQC5TLjM+wmRsxmus2AEfcGLa0/vwg5QAKBWGyGia+Zgnh6uMqpNYND2bcbY6A6UyLceQB1WGnmW7WqeEpCbKtEuzpDLg2OwCDweS4wwYuAFtAblVNNEUFEh2ldvHA8uqyBEmpQBOjzY4h2JTST7kO5RnL0MqhzgfMUq7tNN1ZNYnLlKCYoi0Q1wDC2aC82EZRyhabsCWyWnZhLXqLJNuhb/14BqTQlDZzW7ShnZYZXrcYrt1luO6xajoMus49CWsmpTzrkeMoOQHFEaxUpunWZqA8jytqM6KF1AIw0nhspN3WNdjdtIOYywShyTdZuyG9JXlhOjySBBw78Jl3OOmfH7uQv6wFnFMGk4OH+OciWkLy0AnOEJQpD2SZHcHaWAMTxZDjkpN5rj0hUPuegjH56wI+Ewp5JyrEeQkOt/tUHIDSlEJdEYgFZkXsjZVI5eSTAhiU2CEZqdkGXkR4kUanAAAIABJREFUo2yAZwsiDUJnhI4gsoDOeSIo0fZrjKTP9mCTdNxm2ijGpSk+6uecYci5dIelCFK/TCyhYzXWCxjv5mIAksSNOOk4rMbbdPM+cTbE6ISRbjE2I7rSslStMfIDtPKZ6awyUJJO3GK5dZqWcbA24yhdPm1z5oVHbLucTrc4kCvKekQ/abLiBzywcBWfn2iwqQS9IGAQllmXhpPWoEVBD8HjTk4/a+GI3RjzxMYM5JiBVOzBMjSGkhAcJ2egBC0HOnq3bbgsFNthg1QZPmcGtIRhemeN8ahF1wsZBRFTWAJgv6pREg7GWCbSVUZmlTyqkgvLPgtjmzFCszbVYKyGbOiC3N1idbxFz4xwsgGb8SaPiW0ca+iZhJqaZWHmckK/RkkP6WZDhAwZm4K7/YB1BefJeCzKOCtSzhVtekVBTY8QWJZLk5jyDGdNASZhKunjaWiFDVbLDdZUjnYkKZq4tIBvM5aybcb4SCdiv/TJPM39c3v5aH2WJ52A2PG5s9IgF5ZNaZlIMpbzlCf2XkBbSDbIWUMw1DGusSTCMqRgwfooYDPrsxmf51NBiWvWHqewili6lKTiZNbhTHWOvnSxpTJLyuK5PsIrEUZTjPM+sY5B53hFjJWWRCnaFAyMRguXnl5/xvXoa16graz+NFqPCYLLCYOD/6QxrF/F6Z4meuAdAEjXYa1ccNfZ3fGcraupXrxFHrfZqWV8x+HvoTd0iZffAggOmB0uTTRiaprcr/LAh5d466OPILXl/dOvpIJGOxdw0zGFXQmpp9Ocm9htTwypMS6dx41eQqk+SfPcKSJPcdVChXNFlTt6M6zd8HLygYsMoOHez6+ETdpMc7E4yXX+mO2s+HJT+zfLmf5p3vh3r+Ge7b9jkPd56z0/Rf+EpioneP4tVzOT7/1Ci+yXYiqY5id4FT9zZ4OXv/sosdQsNZ/CtFpk996NPnUSuXWeG+77eQ4++l789grh/X/Ou/74Ln52dZO3r+9we7PDWTfk0NU3cPjw/7y4BnZ3ulzXffqjR55n3H77+1lfP/+Fa/JPrj4d3iGQvoOs+c84p/8/zk1ziMN1UAJzoot+vIUdZBiTsXr+51ha/iE8bwHHqYOQ+P4FrKz+JEvLP0yWf7G8xCYJw1/4OZzxFuiCuVdOMr7uhynmbyA98ur/EewZTtJ/5fvov+R3UL0lKp/5CbJ9L8CWZtCLz6X0p99B8amPUPmlX6U4eRxRLjP4+Z/9R92/Z3mWfwk8MbXAo+PTfKp3lKeKFnnNYVn1OYNhKFKqKkQ5ZUbFkKO2R6vo0DE5vs3ZmryI3vRhTirL49UKct+NCLdE4ihWpSGWCuM6BAg8WyANJBa2owaqfIDCBtSdiGptD/tUhECwyZhzRYexTrmnFrInSYmyIYnNUKHHTt2nblrUhCEOXBKjmZOKrk05trDBieFplqzLQelTcRSBhIZJOOUqjkcNXGVoxpsgJR00jytBXwW4VuKjqElFWLTQwsFicPJtAiwdxiTGMCEg9kN6XonEDWg7Hg8xJpQppbSHN+4zh+a8o1gqEtKgylDUGGPxRUanaBEbSd1opIVk9gCRcDjiV9hgRGCL3R1AJyCpTJOEIeXpAyS6hysNFSQ9x+VkYz+fM02aw1WuDbo0/BxXeDhC4khQWBynz6ZtoguDNjkOhq4dc58Z0smWSfwSmR/iaEsiJOvDZTwJG6To0RaYjDD02ajMcFZaVtM1Hko3aFVn6UeTKCdgNLZkWcGSDtmwBdsYeiLHF9ArYjaLp0UxwiM0iuNCccyR5Go3Ly4SHlnaYzBaYrMK3WqfYlSwplM2vRDrCHoiw+oEi6DnejQbC7RNzlIIipSWGbGgfWrRDAfjHbysv9tCazPOTEyRupLCanJH8NeMyejhCYMJQm5zNLnn43tTDJXHVuCRColjNGOr8YsBmRS4ZCzqjInOUaybUZDRJ+VjfsEMkgedHYyzhbWS3PGQCFbsiNykpOS7RTw5A6fCiiNxn44XeMp2mCTnyUqVdm2Ss7ZHaMYoaxFGkLol6pVpZuyQvWaIVJrMpvhuiU2RkpgRIhnyZGMvm2ZIZZyxHe8wNgXdYshJE7Piu4yCEj09ovA8GkWCP95io1KhLB3KTwcL+zalYYYMrEFt3s+q7NCcLVGILtZoQicikA5p6FNTQ4LJPfhkCCkIpc8TQpKHDayQHIj7HCo6zDiahISBHjCu1bBRSFMYrHVwrWYgLYOFa2mWQ7qeQqIofM373QEnbW83zsZaXGtYMTmuDCmAzKtwWvlox6PhVblIZ4zyHr2oxnJYppdts+wV9BjiYEiEwEfi2pyNsoevDKnrMvAq9PIx/bTL3XZMy53ACWcpORV6QZ9hdZqdrM9IAGEDLSK6ZkRGyprewroZ2vVI22dIvAgtB/SyDY6S0JYFWkDQbHLWjBgKxYvjJUayR+Y6FNLQReMCBSmBHiDjDrZ3mnUyNgBVGFaiCXZkypOjz9FGM0TwsMn4tBlwr0kxgcd+FIWjWA8i9pqU5bmLySnIlSLcewNuUCU2hgCDLy3Kap6wCU8Jw70MUAiWA4cdoUj8SVrlKhuNMjO6R1GMSUplVqsNQmlIdcwAzVw8QFpDrDw2ozGJ6bAdljlXJAyUS8etUEPhI6jYjJLepj7aecb16GtWoFlrabU+RK/3N4Bkeupb/8ljZfu/bveTp1PRz/RPAxA2L0EKi5tX8EsfR4QZ/lSDbz/8nfzMtW8l14JF0WXvdAP+8i8wozF3vPMY406CtZrtepn/ePEPcvfcrdyWpmxNPkGvtMUFzavQBrb9JmPRIve62GCaUbfHytEnAHjRkVmuXqixToOPPXGGzuYCQu+G+R2461f5YX6DMxziOUFKq9DcNRh9Vffzfye24k3ecu+byXTKdDDLfdt389zSrRxsHKRcC7joebNc+oL5ZxyjOHWSwU/93yxsZbRfeQu/8KaQPzi4SqwK6r/z+9j/9Evc981v4J6rrsfLOwhr2H/6Tl7xrp+he9e9fLDd4/bugDsufy4/Vp3nFSeW+Y/nt7hnMN5tkfifJAhCrrvuRoIgpNNpMR7vHgLNT3Tg/AhcifOmI4jI+QojfTFCCLxXHEBe1gBj0Z9aI//4MoPh58iyFY5c9GHmZt9CXrTodj5OobtUKjejdYdO+y8AGGeaQhv6WZ/eT/4oI73OfbWYyg0hD/4fv8X7Q8HHVj7KHec/wb1bd7Mdb31hBy479HLar/80IhtR+9A3Ubr75xi8+B3Iw1ew/8jdBM42/s0vwOY5ZnPjWavjs/yrY9qVZOUJjk3sBxxiz2U/BVV2LWadyQMc9CIqIud6wAjLeTumk3UpOT5VOqSjNWrrT/Kkq5Cuy36nQsXmaNtj2yZ4NsEruuwrxiQqI/U8JlCsVmfRrsfIK9EcrxOaApA8mm1ytHecHT9gEMJFeswlJmOvdXDVJLGxpCLiYCpYMk2eMhlB5lO2Hq6EHMiE4rwUJCpAmIQJa0kdh1Ujuas+yz0K6gguxuMADpndJEJQqICHpmrUbUacdknMCGUGaHJcdu1nhV+jG1W5l5jHTEoZy3zh4eqM1VGbUT5g5HlMCk2imwR2yILNmLEj3NRgbUFbGNBDCj2gsBohJBcJy8Bu0zJ9qnrMhOeihCWRHhOqxDis0hIZoTA4aoI9yefIphs4HGRf7ODbDN8WnKtM0YkiusYhLJ624D1tf1SknEVQSMWWaWKUIFSKzPUI2Q2AlmGNTlTmlF9QQbFJRjOoYIVDza0QCEUkDENbkFlLkfcJ0ZStRmI5podsuZK+HtMZrtGjT2A+x4LuI7CcRtMe75AWMevWYKb2MRXV0O4JtGtpVSp0RM6kdDC2YDPe2A1OFxKJ4Hw2okuLhIwLsNSspBets+po8tosXZNwWmjO2yF7eiMqBbvB6Wa3gc4VgvK0z7x12MxrREUP25hjMmww5XgYv0ShUzomIazMsu16CGspVEhbDbFasBzVMH7EpKyjrEO1cJguNNbG9D0XZTUeCSMzoN1bRrdOUi9iGJ4ntz3WbM4Jm+FpSwlLTVVRaHJjMSQ8JTUj12fD0eQ+HDZjpHWQso/I+/hpk1IxppMtsVSqoN0B56YOcNQxqOn9CN1h249olqaZUiEz0mFJZZwvujwWBkSL1xOJSbRwKGUx58oXsur79Cqz1ChQ7hplkzGW84zUFOetQNX2UrIWx/G5TgqOFAWRHqPtiHiuxx7doxvV0NUFAltwOO3jaJe5NGYUn8HLUlxnG2v7FCKjhkCRs0ECEmZlQsWsMUdMFUHVNjkiCiJbULWGCSQTMoDyDEk0QR/BMZtyxisoy01KYpslpZkQgky3eYxVnhI9lvU6Iz1mWW+xlW+yrQo27SpFMkYJS9uFrl+lsAVlqxFxjyAbkw9q1K0mIOdJN2Fd9FEqox+fxhiXi0SFqLvGoIhJVJlTaZtgok3/QsWlSPaOh2zES1gRUNgSVZ3jC4eyEuyJBHUrKaxhv8nY0po0j1n1A1ZK+zCAg2ar1qDjKsoUtIpNDpqUQMdclscczM5jSFmMs91/suQD7jVjqlIy72wQ2k1mkqdY100aTpceOUt0qDAmMTlowyU2YJ/1mGRIRUoyW2CtYEHGXBOdoSDD00Ncp0TJ8VnSOV7QYMoExCKmNdztHDqnaoxkQAKUogZuWMV1FCkFQ5OTlySu18O1X3ys5f/LP/5d4j+RRx97LcPhMRxnGmtz6vWXfOUv+jLkM1cBINIhAI+0HqKe1fGIcMflXXWs32bxedvM928GoDnMsMZwq3eWF73gtdh3/iZbs9dzyfMneQ7vxn2iieyXCHXMDiE3PJTwlNchW2jTyla4sXozD5i7eMn6S3HTGkm0hdMSCKnYPN3jloMN3vGZMwhruXOrxL+rXEu42qe0aPC6S7xoPeLUoZN8oLtAebTDi2pVbq08s2Lz3wJpkfIzD/0Ei6V9SBTb8Ra/fO07aP6VS2d7hOMrdG5wvC9u6ft7Rr/7TuIPfRDvec8nf+gBFo9afvNejx9+Y8Z3f+M6r6t5/EbhUbnl69E3v5iFwvD9f/LXXHTfB1A64ZaHz5GogpXZBdqVCQCW84Jmq8n97S3evrnDa5JTvHbvQfz6/q+Y/n7VVdeyubnOzk6T++67i5Xlczzv8Wmk6+C+4SJk9Zl/Kb8S6tY92GZM3l0nHR/DWVukPvsKNjbeQZotE8fHCYJDuMFNnNyZ5NH1RWaD+7m+9xp+5rOvY6VXo374/+EH4ow7X1hwfMHhl2QB934XAoGnPDzhMSgGSCTT4QzPn7mVbzv0JurVfXS/+cNU7vwRwqPvwd18mN4r/wihM0r3vJ2hcwXqe/9Pxr//LrLHHsG76eavaq7P8ixfSyr5Grkt4appsvE2jgip2g6GEopdq6OLZI/NWDYCIUIuR5KbFI1BW8k+KdmuTuGZAlmuM7YJ8yiqIqSuBGPGBCpkS44JbZWkFHKFkMRU2Rk8TFGbpBRdyLwZUxJltsOI057Lc7zjYF2m1HMwNqHAY6B8rvPKNPSINimRUyfWCWUkNZWzNHUhPWeKkrWMTB/fCTggq7hIpoTgAmuYE5IrioBVt2DWCur5Op4oo3zNhjU4xmGPHeEkS1xaP8SCv0OjqPKHDtyJ4dJA0RaK/Umf+4KIAwZqxYiWVyf1DBfLkEmTM8IQ2ZTCJFSLmJ7ooMjxRMGUdXlUQEGNe4ttLjMFZTGLZocd4TNBTlVoHirGGOFyiS1wMHhAIiCQkKNpyTHzVlKTIYf0mHWR8TAxC6JJM20jC4EfVtgkZ2gTQisQQtKXEaWdk1RdKE3PMhMMcONNJIoJTxBqSbNo4vhTXC88EqNJi5QyKS0zhRA5Gomevpgs+zzbTsA10ucx4TISimmdUq3t49Rom8QWzAaH8cYZkxSctRltqZg2OVVdcLpSo+tFrOeWi5UiQnE475NZj54s2FOawXcrNKxgaFPOknGBrSALSSsd4xEzHZfoZ10Kv4zUI2oWOrrGjrfEhhhxVCfMyZA9JuM5TsJZt0EoDE3lUtUuIHFsijExWRFTMgMy16FUWSQVAoNEmpyclNzJKZRDKkOqRqPJWcx9pEhxhEtmBYlO2BAZ+1EshQ38aIJZr85pOc0B7RAqS88mFNalUkAmMnaKlIlkk8jCjBIYbwptY9bcWWzRpiwKxlmNDMFq3meWSY64h2gJwbUmYcmbolPXdGxKMjtFgIsUlh2b4ouAjuPgCxdtR6TDEXFpjhiYEYZL1k8QTO6jHFXRwlJ3pjlVBCQY5osdTticUJWoFx2ekKv0o3muHBuaMuGiLEGZLj0xZGDLnDQjquU6Dd2mahX7lcNZHHxRYli0aBWCEIdJk7EXzaTcAbuHVSs4IBwaQjBhcuadOpYcUQwYOxE1JEWRUAurCOkR2TaGkPm8oCcSfEdw7eYpnHhM1/eYTuv0hWRd1GgIQSQiNtwZpoQgZ4PR3FX0kFxrJE8WO8x6i8QMGEi4n5zQ1Ih5ikREHMhaPO402IlLvD6R4GtsVOdMcAlaTbBTnuBKFRIWZzC+yxQDxmEVVYypliOy+AwtWUVYh8wU9ETEXltwEkPTFhRWYuhQOBPMMuaQPMGjxcW0lMOc1KQ2Y69/OTpvY5wal2QxCQkXWMOammbHpuzB8ioz5rgIiaKY07Fkwq/RNQkzasRZcpQ8wYS5iCfdjFhNkducgRkTaE2kCjaDGrXZEkc4z7QMWNHgmS6H7DyOScA6zAgfJXwKp4KPoi0KLibguB1Rsymh3Q1nl8KhZhJmdIbjCMClLqvPuB59zQo0KUNK0TVk+QYzMz+IEP84Ocg/wI1I93894RPvJb7yO/j0xp3c0L8RgGCwQB7uUJo7jqehERwizjVvev8jKAom6nW6t99DDUHpta/jIu8viR58F6kp8yuLbyHQAbeVQ17//Yd4eEfzK0ffTiftMCi2ScOUTrXDVaWDrK4vUY++jsEOfPaPTnLR8+fY14goipyVruDhhUWmP1Fn8aW34Jz7CHvOHOdle2/nbvFdLOspPtYb8B1TdWrOly88/i3wPfe8CWM0e0v76OUdfuv57+LMJ3rsLLeo74l44ZsvRqovv9GrV1eIb/8AcqKBPnMK57LLKY49wdyPv5WD/l9wetzj19fPUwoWmPU83tSocVXos3XLKxm//JW0/uCPufGxO3j+g312vuFV5N/9faw99F6+aeOvqHZP0p65lJMzk8yvPM7s3T1ibwJ74W30rv12gsrVCPHFz00IwW03vYjlBx/jxEP30z3+WR6R0yRzGel7Psi1r3oDUilqe/bi+rsq2/F4hLWWUqlMlmVfaJf8Uggh6L/wITbWfhUrCtS4jFnP2Yln6ck383WHG3zyZJtfvKvGTGnM4drjXD69hw8017nlyH/hcDjLueXreecr7sFIxVwwyy3zX8fLFl6BxdJKd/j9k/+NqlvlcO0IWPiTs+/jw8t/zrce/DbedPjNDF76O+RH30P57p9j4v230nntHVQ+9WMsZHfSu/l1xB+skfzxH6H2zBO+6pv+WV4rz/Is/6u5gghjYzq+i0DheCOWVIez2RzPx0PYmLDICKzglE2o2iHn9YCDQpA6zu5hd1rc6MzwgMkp1feymbiMi4QFp0aiC7q2R1oMKCkHl4TzaHwLNwv4bNIjnFhgWj3GOXMRXe2yZbsYLbjMb+G7V5BpQWYLXOlxocm52Bh8GfKwTfDwOKCHBE4VD0niV5nKNefpcJUVRLiUbUaORRpDT3nUjAERE1uPYybjCBpflVFI5hU8KAs6uaCeGxBVWrmDsRoHiMyAaeVSWMVBLHcjuI+UgypgWmtmEeQ2ByE4oE7jO2c5kcySyAqoOj4t6kVKTSjuA4ZCsMcKAuUQ2ois2MflNqMtmkRyH9flI1zlsZ4uU/VnGbozRDZlmoIRghoVYsfDt9C2MWt5CwFcqnOgylm7xJYYs1lIJhyfwGbUreEWEmamrqYnyihj0J7ASoXyy8TmLAfMXsQ4Y60y5gkpaNuU6So4eY9FIfGEw7wr6YkOc8ywoyICm5BEkor1UKOUTtbBMwkXWkVqIzyl6FuPoXDo1OYoxn1mLPT1gGEhMfkksrCEeNRsSlMYjCmIynViKwj0DhPWpZRuMFIlvNySmxbz3jy5kZQ9l7B1kmplH6kt6FHQmN+EwSTTA8WK8pgzmoqNEF7AFWaTUOes5xuoYC8nbMx+FRGnCdPCZdsJCFULSRkrXJo2ZnoY41c02k+xeBxLzxK6M+wXAQ1CbhDwe2KI68Gl1keJnGE5IMZhi4w90t3dsdyNKWaEx1bqcLlXMFIJLpJcx8zqMZkSBMJjnxmSKh9pCyJvhI2q2OoMfWsIRUhFGPbJMpMm5zgCicOlOuCU5xBnO7vRCY5HhKQA6k6EVUMCqYhcUJ6BBCIcPOHgaghGfWoYMgvK9cnp4QiXmqqyFqQsBSmXKfClQzIxx5HBg7T8HY6LCymbgulsQEzOYT0E5VMTZUZaU4ld9klNYBUWQz3rsri3oNefxM0DJC2kdLioGDEpq3SKJr6I8KwCAbEdkYoqE2gKC1fLEEfm1HGZTNbpzxwkiYe0zYBChEiTUlaCBtBEs0c6lEVAYXJ2RMwpYqYH56g6BY9PTGKrNV4wVlyfrnHUuszIEgaHA94+HFWhK2DHKVHRGTtFG+vPEApJ7JWwwkNpF6s90D65LZi2LjVZZq9wkM4M83pMRowjfAZ6wLT0kTanwCccwFQomFAekUhpS8us1GTGZVtFqHSDvU4NV+ZcFDxAoq8GK9kSObNSUpM+UTZAOC65iBiEE3SnHSY7LhU5YE6EYKfpMkKWagzkLAqFtoJzuslBpqhpl5nWScp7qwyNxpc+oRUkNqWvQp5rBUM9ZixBS4eBFMznZ/GDq6jJjACHcrVKkWuUcNixhhEJXfrMWEVknzmo+mtWoDUat7K1+Ql8b5GJ+iu+6vGSS16Lv/y3FGmP1eEyVwwvw3EdVCYZihauUeSJIC6/mweWn4eUEJiCq6+8GvEf3g6VGosvvZzK+76TxFRYl4u8++DLUELygwdmALhm6jrec+sf877T7+X+5udo99s8WnmUxvoEoNDVBlsnPkplbpJzDzlcvOgyqgec76UclTW+Tjqs/8kKle/+NRpn386+px7g+y9J+THzdmIheP3ZNf7i0F68ryCj+N+Ve7fuZn10ngmvAcLyaze+E1+GLD92FlNYDlw99YzFWXLfPQx/4W1gwX/xS5B7Fsg+fSf1976ffr3B5tJe+t0fp7H98+TOHn76pt/j8mi3IJr/9/vJ4oJ297U8eNfF3Hzff2HPR/+C2e6HeGF1A1lWxJ6gunOM52493eLnSPpRjO18jNPL91AbukxW/x3RJT+FkB46zWl98jHkyTGlosSsNkzZq/DqEUoo+kmP5niZJ979p5zvPcXU/OWkC7N0iow0S7nmmhu48cbn8/GPf4R2e4e9e/dx5MilLC7u/wfCknNLP8hweB9BeBFFu8cHV2/lweaNdAuPqxZqvOI5l/HcwyO+J2/z8NomR9OYB++7FeVfQHnxvTywuUNH3c1zzll+ZPUAv3vrT3OlP8+B6q6R8gIu5NKJywDITcEPf+4tvPHQm/jjM3/E+8/8IXec/wS/eMOvc+DK7yJfuJnqJ76b+kffwPDmn6XymZ9AFiPK3/56Bu/8XUb//XeeLdCe5V8Na9SYc2eYwWcGSyeLuFY/Qc/sQ8qA640BqylUmSoeFWWZSwqKRoOOzVDAbGmaE9rhNis46ggWJLhsIe0qXsUlyixRVjBUJSrW4iQ7DJ0ynizTVRERCkUP7BI1e4TjqeGi/BRu2iCUdVJTYIXhRlnifpPwsONxiTFcbiwxlhM6Y6gU9e2DWFdRF5KuSJGOZQJJ1Wqa7JoSwaBVsKuvFoqBiFl0ZwnwiE3CGMP+8BAzRZdi9mJKjgIT4UuXbymK3WwoXHLhEjFizqQcdE8T2EtISXCMi5IOrlDEdg5hYxadWXzh0/cVF6iEsQVhUy5GkumUTQQaRSw0LdPD1ZaBGRDI80w4FQYmZ8adZpj32a88JoSPK31O+AFzwYU40scxBYvpeZpKkIUzKG0I3Dpnpw7RGEBqCh43JRaMi1GCU7LEPgPWGqx0adgJVJEx6pxlz5SHKyPwDpGrMoVQOMUYI8rYCy8h7MeMhiMC6RNKnxl/GoNB55rc9dA2xwHm+ttMu3CRXKXnlDiX+eyzu8c/jOOS1fezaAseTso8L+mQRJYeln6xRUWVKFvBlUgisRtAnRZjpp09DMILeCpbx1MOR9warnTZogNCYet7qLsVFIq9zibO1iJ7rKKPoiQrNIDcU2ALHpgUJEmFq3ozCOVSzQoC6SD75yiJKvtrDSryKGsy4Wi2n72iz5m5Cyi5msPuWcbFpexTdVwki9ayVWzjSYdpGTIvHGaxZBieozNOOZaOtPikzDLmLiuoWcM1ts2MN0YhGdsSQ5FQccsAWJuSWUOKQokyxhZ0yRibgpLy0U4d1xrmsnV8EvZTZ78I6ZicrukxLHwO64QLZEbNZngoEptzifDxoxmmLLu2x+p+bJJg3ZB23mOsDF51ir0mY16WKVXmEN0mg9IkuckZiD41sYgsMsrCpz9VpZI1CGQZPwyIc03dGDy9G7Mxljmugjw/x9iZ5rkWyiZlFU2sNV3bpS+HBEQ4cgBM4MkIY2HCmcRauM4OcYViLCxIxaY1lKxlumizZoc0VIk49DlU+CxVZvF1mxtNznkbc3khaTgV2kjmrUAAq6JEZXaCDSMR+gARMS6GoSvpEZPrFllwIaE1zOsET/q4pmBChWR+jVNTVRaVz5G0zP12SGSgJgXaS3gejzK0/54tDFa28AuPKXeKmpA4QpBZiyc8JHJXXCIiJvMuAQX7bULNFvQt+EFC11oahUeFEk8t7mVvC2bCCoUIsd0UKWukZkBkNanNEUqRkiIHe7jUTamsrSFmAAAgAElEQVS7Fep6wGJyjtVRzmqQ0rIg5AXstZoDFjKb4WlJ26+zImIa9QVmGbAoHZpaU1fT1FQVg0XYjKoK8JFMzV1Gkq0z5xX0RY8QSUko5rwqHd+hazWhSZhHIHf/QhDueim/LOptb3vb277cg+PxP59tsNf7SxxnHwsL/wEpva96PHfnGP7Zj/Pk9CXcs7bMvtE+BqpgYnAJanyCrLNDde8Q6QnuXyvxyEaN66Ier7n1JtQf/AbZi76J/JH3MqNOgqP5zzd8A0+6V3FTJeJ1k7UvfB9HOlwzdR23zN7Gn557P4kTM21nqORltMjxBh1cv0SRT2HGhrvSMXtqActjjxu7x6msLBMETarFg1RHOUFtLzLY4gF7FRY4Gme8rF7+qu5FELgkyTOHI/9L45Gdh/iNJ3+V3BQcrl3Ef7r2lwicgDMPNll/qsvkvhLXvGL/l91FstbS//EfQWgNX/8yOpffSj06wnl1Ga0HOzz24AZ/vjPmW/R1zI2bjDjP3kqZi+uXfmGMe//sFJtL21wY3cGxiTdyoP93DI5bmg2PM994KTPiSpov+x3kja/hUzsZiVPjUGuJ2jCnMpzCzcfMP3kPnP4TVp9MKP46Q27nyJJLX7cJVRmjJKtmk4aso/CYduepRAscLF+J79Rp5QPStRMcjPaT+3Bq6Qzr6+d56UtfwfLyWR555AEuu+xKNjfXGQ4fpVzex3B0H1k+YG1Q5tCBN7D9+efwKqfM9758lW+8/jLuPtvjBz74EOAQZzGz05/lW68/wv3ZbyGtxmaG7/x4xEsnfM5+y8+y2vd59+dXOThVYn9jN5fDlR6u9DCjhAviaa7QF7KfOXpFl5VsjY+tfoSF0l4OzN5Acvm3I9IelU/9X6SLLyC96NVMP/gD6G/9RZKPfhQ96OM/96Yv+XP81/ja/dfEv7b7Wyp9de2/Xy0P/+0TSKeEVhlhdZZe1OCy4Az1ZAYrKki9Q0WVQTg0pc9kMWRRNnA9l6qRuHLEAXuGMhnSVnBGLSZtRFm1EKLAK43wTcisWKXPDHU5xpoSqxMTTBBxKqhzgVNCii7bdi+HjWLN6XKr38YfXoWWFiHKeDYjUhG+NSwKsMqwPjGB6m8S2wLhzzBFQlt53GADKnaHI7IgEP8ve28eJdl113l+7vLW2DMiMyMrM2vfVCqV9tXavQsbjG2MMXDANmLcNIZhaWCAtmk3eOgZ2oAZ3GODDQbsNt4ty7IsW5astVQq1V6lWrKWXCor14iMPeIt9/YfxaibAbunDwMc0/78d899590TL34vbvzu797vd4SG7dOSPlekfXxi5oRlkwwIgWLSp5X2kAJCUqZsjBQe6zB40kOicNEoqQmlw4A+BRvSxUEly2jPZ5ucYTHOsYeEqvRwrSZrBVmh6acpF4ZK5BKHmkwZzveJRZVe3GFGOWSkw3haR0mfrHappB6SOlqXqTrTWOHQMwGedFEyxVMBibDsL6bUXcGGpIARGhdNQfg4OsNKAutRCK05XhBc3+vjJBpfOmwwULERWxD4aYzVGc5JSSsv2L7aBhPTKxbJWY9QCoaV5iq1j2JcJXVC3PwQm3oRYZKipGDUPYKhywVdYZcKuRimBERMRiFrfpbrNxwmDrqctzezs9+kLrL0hWRYaHIISli0HXAwO0yKYT2KPIqFcoUR6TGaLiHJgnA4IQQX81msI9hlNDudw+TFThztYYVEG4EwBlcFFIRlQh5iRaSEqkTbwIoQCBtT0S6NTAYtXISATd0efT9hi/FJkhaxaeMpSapjRrwui8LnZHaSu80MdmDZkZshI320zFPrXCDrDrNdaAZiQFEVmbJdRoyhJDVYMHA5YTNgZJdRN+WozRMLwW22R6C6NCKNMRGttEveySGlg4skkC7TMmVD3CInNEM2QyoS6sE6iljqWMYdQ2AMrnDIyBDH9oiUIVAZKsIjEOBJjzkpQTg0qgVMv8X6OGVUn6bmOpzy1rFJKbTQvJiusanX4VJmA5FQbBWCA8phxCtSJGZx7SxecSdKKKqRZkNjwIhaoacs3f46yqnBTfsM0hqj3ihaanIyoKgKtDGMqSKpHTBDSld4jCuPXlSmg8ukmCYUAYHoImwJV/mkNsEoRULC09U8KziIOGGh4HHdIOX5dUVAkuumlFSeIRTDNmKjypBJO1zQOTzp0gbyNiV0FlBygNGTBPRZPxBY7XA1Reolh63NmCH9LNucceZSl8W4zlhugpqAfSbipqBCvXrZRHwh73Jrd8A0CaPWkAmbjOqLlKMNXEhTRuIBqbXUvQIVoRiyCR3TIxGKrBwwL1rUZJGqGSCK6ygIl1BAy1mh5bpUY0uSZplIBN1ChvU9yalKCJwhaRfR/hDLaHwZsMW0IVmjrTSpCbCeR87L8NreYTKJTy+AhA4b7EbaqcYIjy02waGHtSmXpKSLZKdbRMk1CvI8HWqcjX2GnAo3xysMCcFg6CIrocN05GBsg3y2j5NmmTIKoX1KGPpCsqYdJowgb2KG9AAlLI1YsPP7bvm289E/WQVt+7bfZm3tO7tm/48Qrb8TgA+d/hCTndsY3TZO59kREIK0f4j6VJbxlylcd4Qrcn+G4D3sNF0ufOIbDKcJMyfWuO3mGazyOLnZ5wv+m9DAz4wM/b3jFb0id1Xv4emFJ3mi9C1e272P0EkhuBHsNNq5mkkBpm+4NuvxGRPw2OZr+fGZGaLxu2ge2Ud2U5d1pw5y542znC68i5U45VT/csCq/wE1v38JHFk9xEp/ma357fz7G/4DrnKx1vLi4/Mg4PrXb/x7k7O1Xkx/dhb3t36VgRrBvf778bou4UGJcVepOoJLrqSVU4wULPeuBIwmP0o472DPpvR2n8d/xUZMP0b2vgjNW7h26CkuZu7lhde9hT0Pfgq118PPLND6if9AvfMg7Shh/d0/xYWZX+ZYfDU751uU6w0mZuu0smOskXJl/fd4aufVlM++G/oxC81zZIM8GZ2hnCnR7w1oygF79SlWZQdcCwgkAlOd5EXqcK4GAoSUPPDAZ1/6zH/1Vx8jSWLA4rrPkB/q8a3Bv8bqCa6cfIL7XtVk+cE9vPdr8LP3rXBqOeDVu0O84Ye4q3g/Zwav5JPT/xeh43DNiYgffVZxfmQrlxYinnjxi3xp7EfYPRHwaw+f5M2v3cIrkxqdQ88xd+wAndoKXibHXDZLa3WZmy3cHuzior/G/938XU5ddZKfvuJn6N34c4Ahs/8PcC8+gw2G0NfcgP/2n6L/F3+Ge90NeHfc9U8WX9/jf07e//73c/jwYYQQ/Pqv/zp79ux5qW/v3r184AMfQErJpk2b+J3f+Z2/Y6VR0ZaBTbnGdKjnJzHdVUKp2eTW6ZoN9HQRLTMI270sBKH6jDhTzKZX4khNz3FYchKGm3mEOsjSiMdKZwNj3QjlRMiVTfgyBP8CNoJAdYmVTzaK6csE7XosBzHFTpMeO9FElAZNin4edIhVCk9APxEgBEUERbWXS3ICyFFURS6ZNTQpeQHXyITQGkaExhdtUhp00y5GZUhIGVJLvEweoCNez4hpMtAOs+ay6p5EsksoOkpRUEXA0jMxJhoQoBFALW2ThEXWSh7rF6o8npXkhMtdkcO0maUqtxGb+PJZVucYZdnguWCMzWmeUnSBk94eKs06oQhYyGU5nxlw16U8GeGSRn08dQpfneFp93rWkSdOXKRQdOhS1AV8myUxhmtWu2RTQ+AojFBIQGnJiHG5A4vn+lxgmkZ5O5NrEPgvkNocz8kJUusygUfJybKEwkrLZHKckeo0U+mdyLRGqPII22cbDUoWymqNCQLOmj6eAWUFrvARGELVJKMkduRFbhgIUJYhsYdIa9AWYzQnVMp2p0QjVURYZNoBlcMCFelxLx61tIm2CisMLU+xlPQYdk/T1FfgdHIIGbLkphRR2H6GjjVkbR9kQNf2caUhrxSCLq50CLHkKm28dsJkUmJOSdbLFiN2nkvRdlYcn6oj0apGJzTo2KPshDSDJuVwDhu5aEciUNQ1nLI7SdVBCtGArhszKQ9xQQ4hVYhrJK716JkOVkh6OsFRPrHuY62lKPfSi69FSc2M36fUaTFkJIYcnTRH0clweX70OTxWZHu9QzVxkUIS5DROVMTrWvIqxORGWWcsx2xEC8t8OcN1S30cHIxNqboHKdsqAznO3uGADY2EfCxomQRX+WxZi8mkLhnlYlSXmUKTWzou0n2RNTXBrq5gxObRaLo2xcGjNDLBYifhCuughaItYuaKOa7qpDw6nPDytQQXyWLOY2NiyLV6NBiATQmyIclak0DlKBKAEDjCZ0wNWJ9qMv0S00giG1OLtzDheAhxBgukNkJKibQpGZUhI0MK6gztYIyekgihLy+uOAXWS4G0KUJYsJZYRbQGXYZtmUR0MUbgG8sIXUzgQHdASQiyNiSOGwgZgwxAucTpgNDvsSE3SteR+CrDhLaUU4E0hvFegpc4XAg1BAWCqIeOOli/jSNggEDrLBtEnk7S4CbboyALdBH4wiGQPnnnRe6QKQtphYEUuFYT2T4xMbEQRLh0oxLaZjDKIKzBUz1G0jpZGzE3PMZUmGHnfEwRKErJkuyyRxY4hofWIY528LVFWodqxcF2mphOnZos4SsPohisIdBFtquAI0aSyDVKOktWuIQiIKvyGAxFp4IUNTLucQYCxuxGerbHuUyXjEkomgxCXcBNhoilS93L0hMguik5a7HiIsuF71ys+ieroP3/vpKrA4KD/4nfLRS4buUmlpqLlNd2Ip2UpPMsIBipvhU18TKS3jcpDCzXjd5B5vOfIOwsUnnrdUwkj9IdGuWjG2/jOXE7V4U+93+bBA2g4o9grGWqdZpta1txrIewCtk4xq0/8kPMn2wQabiw1qev4Yg7xpvOPYE9dIBOvUBhTxbZX8ZJUiZHGny8fw1dY1lJ0n+QYMh32yr5/qV9fOT0H1Pyynzw1v9EoC9XbeZPrXH+wAojm3PsvH3speuXW32+fmqZ00sdPvbNF9n6+EFGsnsIN96LsfAF32GjcHmKBJVYxmPY3YUfrkGlb/GERyPtM0DDag91qEayb5rJXpaS7nJa7GShv55ea5Liz0W4Cx38p9vEhw7SeVmPHTt/G2UCiuFOsvlbed7tszZc41I5YPvcJbK9FIzHxR0tssGjaB1RvO9tBGctYleJ1u1FHrr0JCfsLAOZUtZ53vRjP87auUs4QrJnkOPW3hVcm6xnKyW2tvK42SavfONbufGW25mc7JDJfIkoTllrjvDF+g10OoY7nAv82dQuitU9jIwXOX/GcFM94BWv3UI1l+fQwhyfmvkjnlt9jG4cUz15A8P2Zj70g+/kazfewYmRnRyvbyYtO4zPHODWmScoP/lFLj7/JGcTS7Y8ihsP8HN53CDk6vvezG1vu5/jX/8yQduyfSYkPjbNQ81HuXn7K2DyDtJMFf/cVxGDNWRvlUy5TfNgjcFXH8S5825U6W+/X99tsfvdxnfb8/2HVND27dvHY489xsc//nGuueYa3vOe9/CWt7zlpf53vOMdfOQjH+Enf/IneeCBB8hkMmzcuPFv3WPvoydp4lGiSzUN2GwFZTWLMTUiM0aKQzfpkVU+AywjqktWNoiYoKjWiL2LNIIqO6OLKJUnTkcpDHKEso6xy3THenhK4pkGS06ZkunxVGmYbf2AFyo+Hd9F+pK7+g+Tk11EPE5ozjPspaTpBnwnxGDIq0UC2SQxRXpmiKbKUg9yrItXOG8k6DyZ1HBUumw2Aim6DLmnUNJB22EqKEIBgZqjqqfZO3w7m+L9YAWhrOIBQ/oCBVnnudGNlKIEbSL60pK3ITOlLMOpZiUbcbRSwWCoNBrMeoqSXGJyMEpJVi7/SSZFCoGhTFOUmQ0yjMcOK6OzPD80wc7VBqEIyftrjPpnqcYDXFkikBk0HZTosHfiRrYkc2TjENQI1nUoCENsL1f7axmfFdFhNM1R9vL48jzSOmgyCAml4AQLpQoXc+MYv8DuThNhEmp6HdMyZJt0yAAi6ZL1PAa5BXxjCJONaGPwRUBWtXGlQMgaSqQ8Ud1CK8xQTBQqaiBsSqAu4aOZ8oaZcFcxXdBxHy9ehycccpkppNTMZ3ZRGqREqSCLJS8NGRxyVmBI8KWDxYLWLAwNcy7nU+xHFPUSpwrrqTkZdndTmsWQSiTY3OtQVPM0bYUXJioU++coMM+oWsSTl8joJo5UtDp7kIMcUoBrDdvVJXoqx3RmiFgmBKlg68Ahlwvxu4rECubcDmOqSUas4cosLwQhK2aIu9JnEfISvhJ4zjAlrYnSCnlZImsiUlKMMdSdIrtEgbxwEMLBmpRQzyMYp6vnGLWneI04i0lG6SuXLe4RJJbUlkhIqfQiPGVIkxitfB7NuQht2RQJpJAs0SAwmvPSI7aGzWnESOKhEbjCUHH3kditaFYYtVMIs5GMcpgTGmEt691FdAxaeLj6Ikt+lkqnyLwcEFvJuDNEkq1SFIIhY0mlgqzHlb2YxHQxrsugMEFkBmRWLjJXKrB7MMdAFrmkx3hl+hQ5UyAUFZTyyEiHftJHWJDax0HS8iMOVjJsaSUMJk5jkhG8BMbwcZRmgIs1Lp52sQIipdDSYzrnMWZehEFAzRviym6P6awml0I5FhTl07j49JFcyAQMpyEF08MowQ6RQYmYwF9gOXQw0Sh97TCS6L8Rg4e1TEq100IzRxpuQvdcQqeEdSX9tE3VCBZKPnn9DF09RFeHtFzBlZ3e5R0F4Xl80cD2tzBLjrwwZGRIZHpkxCLgE0l7+cyrTQlUh0ami0pjPFNipbhEVnaoiz41x+PqzDJ7jGUoCriU6bM+f458PEvVXGA1Hsd3W2xqO+wf89kZn2bc7TDQG1lvNSZQrAQedXIUOxn62uLTphxbzg/tYMzzGe+kaOmSETWyMseMcNilD6GFiyRmQQQ07CR3OhkUcDFI8Pwey85G1ncCDo0VGLHLOIlhJakQ6hXGbEzDKXHAk1SjHhkDPfcEnmrSyws23v7qbzunfVcffjo7vIN17U0IBKtEIGB8+zD8zapocWwbe88vkVrJrZufZOGFlHLjNDIXsqPxh1ivyKlb72FNDKGBfzX87ZMzgN2lq3jz5rcw4o3y/ObnmfJOMch22XLba5jYNcRr3r2bO0eLnHFSXtZSJEJzdNtO4moV9+bbWRz8AP1sjvUXu1T6S/zbsSJ9a/lSvUU/Tf8Jntg/P/OdeX7zwK/gCJc/vOVDhPpyYprGhuc/fx5r4ZY3X/az23uhxsf2zvCvPnOUTx+Yo/+n/5n7H/ksm+UIFzM+a44hzhd5k8wyKwzzxvBhP+YXszFvK0W8VjT5+WHD2ZePwR15ni4e5GTax3ZjZAqWITJZwyZzHZPXHUcrSXfuX+O992dQd9yCOX+e3M+epPvVb6JUnlzuZWwo3ckt8Zv56pOv4z8Gv8YHbn49Jzfn0bbP7S+sMbncYGvjs4w+cT+R0+Kb5jAPP/xlCoUhfD8gm8+xalucO3cae+fddG+7l+v/15+gOVLGVSGFZIiKP8H17VtZ+ciTnHj6F1it/Sq5/DLXXnuJDbe+jlhneOWudTzRLHFyNeXh/WcZuSLPrb7HB5ZP8/JP/xz/y+e/zrfqf0mLGcb9rdy76f2cuvfHeOCeV7G1Weem6Sk+tGOYd42scv9DH+buQ98gFzWZK04yE6xHdJpcmptmJUkpvfu9XPXqNzB98Dm8TI6b3/J2Jq+6nupV12AtbHi8yZ/8zjvZ++AnaG95A2tv/DyNN3wG/9Tn0GtT+G9+K6Qp/S989juFxvf4Hv8gnn32WV7xilcAsHXrVprNJu12+6X+z3/+81SrVQCGhoao1+t/5x6pcXCkA8pydMhn1W/j0iKQbfL6ArEZEOgMWMEmq8gREKcuiUnB9clRZCxeIbKaUJwiEzfwjUIBgfBw+xXUwEUIRUY/yRJZCh3YN6JJzSXuWoh41XwfIQ2O7FFwShR1mbyTxUq4KFYIrcb7myqRReLoAUIpGmFAO3+e4aLkFgYEThNX+rjSxREhCgfFIspYikJgZI++6qOEw5UNi4qG6ApJiy7TQQ+PJVxVJxWChufgCY0junjCoREEtOmwpfssmeSyTY0nXaphQFkrlmQdjEX8TSVOS02CRCQSI6DtSs47V5NJBDqTI7UWP5xnOruReqF72UhYaPKyhyMb1HKjtFyBRDGT9Tg2PKCWP4LnnifVkqm8w3wuYCnrMBUkKO84wruIrxUZFRIiubK/QECAxLLoWtoqR31Y8mPuPJVMjp6I0EJQES0yYpoVP0GZlGa0QGJjjg/XWA06SGOwApR02dZ/mspglY4rWCgWEdIFDHc4EQNXIwoLjLhd+jLLqvDouV3qfpezSY+O16KHYEpItuqDbLRL1FKJliFLOkFLj5zMkkhLogSh9BkeWISQaD9LVsJEcoR20KGkl6g6HQ6sG0NJhwulHQTxFWihQUoUhtQkLJVnWMw1mSlm2KRDsmKNvOngWhA49O2ANjVMEl1WLRWC4djhaE4h1RIDpcgocKRACsUmRzPml4mCDmdyeda58wzWHeJcMeAv9kyyd8MoV6VdKtIllQJrUhw/ixUevj7MbgZ4ThdHDDgxVuTkmENPQJx0iK0hkD7C8Vlx+iy6HXzxIp5pExqLlSnWgaEgZLlao5e7LDwXyCyhCDg2XOTs8DJGSHw5i+ss8mJpmIVcFoxlU26ePfnH0P4LSHc/IYeAFIFAS8GI08OTMGqP4aYpHj6+ctFYGvqymLMnPMqqgkKBcvCzVe652MBDsUGl7OiuUIgixp0vUnYu8Gw1z4G8z+mREr70wTvEqlggJ/Zi0zYd02EqnyEejqmPFBg4iumNh8hkT+EJF6MkSEEgXbS1aAsZZ5GG46DtgLiwgsByuuCw4gi0FfjuIQJ/iV4Yktceh9wCNVVgzXOJTIqwl9+rlWyGhaxGCIGvfVwdsMHsZ+BdpJPLcyyf4fhwgamCg5NKKipH0Rq67uVEN2+XCcwqDUeiXUU72yN0EtwkB/ToW0sgPJSCs6MjpPlVQqeGFuDKHhFFLCm4M1h/GSkkwl/FBGv07SiBFAyrAU6YgOtiHI0VihnnOubVTmSmQ15cIusmaByWvCwdo9CxxifFsZI1x1J3fYrqLNJvUGWKcdklVBlc5aKkRqIp6Bm0mmG3sSTmDoRYwpErDKVtNpIQ0qOfdjhRzHIiHGfWL9IMXBxhEYCQeQqmg6aJUsuU3bNYDa5yAUs5zeLiIeR33sT4XZ2gfXLjdWxpbMWnyRVXbUdaxZYbRyiNTYCULJw+wb6ZMTJOlzBoUtnwTcSgx+hNl8uY7Wt/GiE8zjmvZIvvcXM2+O+OOd+dJ3RCOrbDqFyHlTHHj7WZuXAMP+vw/T+6g90jWbyJkO/vOryw9SbE7CzNQZ/+sy8w//JfwgLb9z7GfYWQawKPnrU82uy+5Df1LxVrLe8//FvEJuZ/v/H3GPLLL/WtLXWIeikbrx1C+pIHjy3wS188wZeOLlAdGP54Ieb7J+5ksrAOJx2wMb+RyvZRyq/ZQPbdV/Hkj2zgj2/NM7Utx4fuv5G3XT/BrTuGCXIu7370FD99sMnyZJU73R9nyH0758JHaLl9vP4mOvkIu3oDu0OXypEVMsm9lN7/QTK/+CvQbrP0G79Bcu4sAPs/91fMfvJRfqN7C7+8bz1/7vwC79v8Kb5yx8cZhEUyfUuifKSYoeK/g/n54xhj2LBhA3fe+XIuWsHRsY08cfAF0nyGejnPo802hR+7gm+8eQNP3FDgUiDRODjX7cUZeY7uSsCg8x/Z1/h9rpgcY6JS4lMn++RcyY9vTkkt3PfhfXzY6XGlzHOViJCTf4gVA35u169wuvq/cWS1hd8ZUGo1WX/6KDftf5hv/MG/wxx4mqFXvAFv63ry/RYj/QVWdZEDw9dz8b638tn7foJ3Ty9wrrqBW976TgCK6yapbttFNiwwkh9DSEG2Cace/jKf+tX7efHMKvHQDqybxZ19kmrwFcjnGXzpC3T++pP/LLH3Pf7ls7KyQqlUeqldLpdZXl5+qZ3NXj7ru7S0xDPPPMNdd/3dLbdXpoYrU8O4PIdHBy1mkLaGEgpLlna+yOHhHLMZyVPjBaRM8ESLjj5Ox9lP3c2z7PjENg+4rJaapPknOFAG3GWKjRFKSUrfaASGJD/DhUoGS8psaJkPNJ/ZBsbp4VmIzRKu7YAp0XE054shxqZMFzq0vUu4uk9Vf4WKOcczI5oUWN+O8EkZkQlV66KEwIgeSnSQ1PHUacASZR5j2TuDtYZzTgPjrHBmuMLR4RwLhQKJDdBCMW6bDMUpZ4cXWc7PklWHiLwlovCrHChaZvMaqRTPrR9COpclpecrG0hIMaJPrC7yjbGAOLOf+dFzjKbHydPk5v6TDPeaqNhQ0G2wDuvj0xjHI8SDMEvX0fjSw00tA1uk7vgkSpAgOZspsqZCFJo7lxpcW09ZKXjM5UJ6TpuC2kfR/zKNwgUQHdZcwTX9F7gyfoZJ/RSl4DBSpSinhRjUyIoQT/pEytLWkp4LU9kWyzkPLRSnw+tYdMr0taXl1AjjJhuT4xTkYV4sapLcQVLRBQTaaKRUbIrO4agV8rJNPgOxUmRExG2Zb7JdPUgaCpY8iTQp89k+J4oeWvSYr6zw4IYcq2aRgamBuuyBdilUxCQkaUQkLL5IqCYN+nYUoduUnLOcySm29JcpO/MMFCRKkxJjSMlkT3OmEnO4OM/ARCihEE6dWEqms5pn1uWIRUSBEtZaDo7kaJs22+sNCkJQV2ABLWPO2ysZKqzDjXoUuETPBqSiwExQ5bSf5cr+YTL+aaKMz/ENqzy3znBo1GffuiKHfUs3OICxsCgrGKCV8SnyEA3Vw5F5jpVDktw+TpQc2kqhpcaRy+yxPSrdHksi5hNjDofzLiuFFWTe5zp/H73CIVbHDrDoK2RoH44AACAASURBVNp+nVSAok1gm6yEHqdzmkMFS6PgsYmTjKanGKdBRvfQRFggUH1i2Ud5A5ZC8JUPCBJpUMqn77sshvqy3IMUxCT4yqWdLfDYRJlYQpB2mSgd5UJm+LIUhF3mXJAw5yvWPE2sDLEC40ZoXLRwuTA2Qd1XCCl4saA5NBKgB31klBCoZXJ2ltDJY0h4aH0eIRQF0SNnuzg2pRYYqqzx8tbjFKIIqRzmshKZZhnrGlzpc40yVPyUI2WP5WKJgRZgU6y7xvbkOXoypZ8M6AJWhzw/spN2EHI+67LmuSxnM3TVgIiErM6wq/8ck/Y05WiandETSCu46CaUwkewNkVYhcbgSIfjZR+joOk5tBwHLTxG9RJ5eYj5Sh1lO7i2icuAbu5Zpr0KTVllD8uEqcDRllgIJAEqo1j1JWPxi2Rtm56r6LiKSGi0UMxns/Qzl3CsQhoPhKIQw1XxQYQU+N0Kvhll0fNxZYhOJAiJQaPRgENZQJzZT0auoESHcemxxUZkxQv40seTEVl1gXZuhUxiUEJjBDi0GNMDMmJAJAR++ARXOufxxBKT3ifp2h5p6qKXr/iOc9o/2Rm0fwyeXX6Rm83NRKLHrY27mJLLjG7O066vgjGc3fstzmx4J18PX8Frtj5C+coHsL6iOHKRqHoj84UaH6577BNV3juc+7aCFP8t15avY7G3gLGGHVdewcX9M/SyHR762P/Ju973cQB++u7N/OZDJ/mpG0b4veM7+eEgJP/E46RKkeXXaGc0uU7C6adv5fdufoofPrfC78wvkdeSO/6FeaNZa0ktaCn49wffw4m1Y+wq7mZrYftL18SDlJPfWkAoeMiL+bkPPk1qYdhRXN9O+Depj1Aam7ZwR69B7srhvvbKl8ye/2ypxkdXG+wZztCylsha7tlW4ZrxAlsqGT74+BSfPTDNnx/N8ef8OTmnyZCuc7Fnec+uhHvjUcqn10h9zVJqST9xmvSVkwQ/+Gb07j2Yr32ZtZ/9aQaVMqPZ3QxveT1CCaJ4P+/o7eHP5TC/4W3g8Xu/zG89+weEy18klyQMHMmeq7/IhvL7eGBF4pw9w03rN1AbJPzJlpdTvbjAZC7LSpJytDvgQNpn5/YiX5yM+cm1nyXj1rGnXk3l3L18cXCaz2Va/Knj8JorRtk5kuGRk3Di/ICd2Zh7MlNMlR7j826XWCSkgw10vB/k/Ucn+T7nIa5+6DgP3nQPk3PHmJybolYYZvWGl1NdmqG5/zlO3vFmTt0V4jh9JnvnOHNqksUTcPV4nszGLDsLBX7z0grZzhL/bv1mKhu2vPT9dddqfOWbf8rCc/uQJuHZv/4oxhj23PJr5B77N3gLexl9y+tZ/Oh+en/xMYI3/hDS+QfYbHyP7/H38P9e4LLW/p3f9NXVVd71rnfxnve8528lc/8PQTDH4eIubu14KNUDFRLbHovBEL14wJmsy+GsZocboq1ByZjADnClRqQZ1kVrtIIOZeckCSW2t5tYXWNIN/HFGoPK4zj9hMPeOlwCquIcObudra1xpgobmckIUtnGKEFTZYhL85QHa5woFkhbLpHsE5FSd0ISNKPqRRadEbpOjY409L0U4/Wopi5xGrNdRZwdOUml12AxyVNIZkiCApFxyIs2q+6Ao7KC43WoDo6zOYrouy9nd++baO3ScnI8XyryhuYRGk4HP5Us+dtY8VM62uAZQ6E1jydKbIoOsqCuoC4EibAEMkPqLuHbBp7sUwtcvl6+lZsaz7Ah/gRzLuieYsYdYynvsTU9Rk1sxE8Nvu/w5JCmEo1yfb1OohXSWWK65GJSjasiemmfVqIpmVUahYP0k9sp90Pms4KuCMgYl5a7RkY8TzNjmQt3IWwXaRuc4wpcUacYL5FIS+jEyHiVvqnT0aOkZAlTl4E3i1ARxmymap+iYDTnwjWEXmQtcxVRV5LVszjBGAserASWhheweVCnkHRZdMfQqeRsYQWbbVDVikpkyKs+kTK8rmt5rWmyzp3mK5ltJF2JK5YYTueYsSMk2VVGxBx102dELHOq4KESRS0MWCzP4ZsWMvFYzGeQjkOVk8wnkwwns0i1TOR1WLFVtg8iWirFq4+D20fSJVY5Bk4dx3YR3QY3qPN8y7uGcWc9ynNIXUHbEXhaMZ/NMxIvs+qv0BcFNtLAlp6g1RuhrFfoSJ9Ff4jVUp9c0qbYOsFsoBiKFdIrUg/OMdxaoOmWGIuOk3fmqcfDFIHKoAtKk0+zBFYT6wW6eoRdrVVyynL1apNzfgesTyJcTg4Nca99CDXYyIX8OhYys/xA/3FqusylfB6lU9aCFI995NsRSsQ4ahktOlSjEgO5B1e1EAxIZEIkBYFuYqN1xFYx3uoTqlO4NibSU5wojDEqUja0+3gmJckIJqJDHC1sZ0v/IA5X4aBpaUFfxNTLK5j4IqLXJ2OHqeFytBhS7MRskc+wt/JabliMeXidx52NDuvlSZp6M6uhYcYJ8H1JqBpoJpgaStmwFnDWlskIhZQeJVPHOoa5oMuokcgkQbuSRGgW5Gaq6Xky8jzNYDcmchlOZ3DdJR7LvZPcoEstuESSrXOseAfZvuCcM7j8e2CaCKfJhfIC25fGMVIzFE0zohTCaqwFpOSa5hEu5JYxuOxZ28H6ZIpY1JlyUqq2zXRBcPf8aSpBnfNDBTAg5BpZ02PJ09Q9yYJzhsWoSwWXQK+RYLiY7bOxXyefLDCVq5BaqOkhSrrBNgxbxBny7gzTy1fiRZAxIS1PUbVrFMwiQ2mZXFJjpdjhmlqffv4ES94Ia4WYfCowKkQhkCbheMmnSJPGIEdfLxPrASbSCGHIqi6GkGdGxqg2XGSgyFooRw7789dT7jhcwqGUabJDnmaQaMJEsFR6ntOla8jVElR4AVdspO5EiCTPghxFJHN4ZDGOx0UFIpA4ztnvOKd911bQBskAb9UDDLdEM5x/fol1Oy+rLyb9HgjBU0PfRwNJbXYbnrMH6/Zw3iiwCPo73sJy/1ke4TU4WN44VPjOA/4Noc7wfZM/wGgwxofX/phQBxinj9/byMLqDLGJuX6ywHjBp1P22JD1+NzVb0CkKYPvezNudoIXb70bK2DPiRqjyuHhHespKsXDa61/xCf2j0utG7H3Qg2ATx+c53UfeY67/+hpbv7Ak9z6+09y8wce47HZvQgkv3HNb/G73zjDWjcmTg1f/5MTfOrcMsV7qnxzaoWMq8hqwQdzRX7F+pD0sXGT6NgDiJtivDfd+FJy9o1Gm99fquML+OON6/j81kkySjIUumypZMAk/OK2GkeKv8A3ht/N7vxxWnGGBbvCtuEsfzSd8H94Ef1XTeJUQ6qpJYoN6ck61licbdsp/dIv048j3PMXCGJDamLszZIb3/V23nHjTbxnfJhWkvJAy/De9G4+Y19LikYbyxXzNXY+8lPY3oP8wfhOHtx4BU9WJhAIFoXicKfPI40Of7GyxqFOjy/WFrim9yFCr87R9Eb+aOY1fFSGPBBOcGccEXRX+PyReT59+BKDlMuy3vFpTo/sZclfpRJVuXnlTmT2V4knr2VoLOaRodt55Oprufn5r7JleoqGU+RseCVHV0Y5OXw3Z7yruTEqc/8gy80LHbb7M5Sv6nHxpjJPuAnXSYeKuryh6uFGizdPzfLl+n+N1bA4xJt+8Je58MZ1fOWeVWpBn+c+/TEe+NqLPJV/O9ZCsfcwxZ94JbTbJIcOYHu9f4Yo/R7/khkdHWVlZeWl9tLSEpVK5aV2u93m/vvv5+d//ue5/fa/30B9XO5l1MyzECoW3QpCzzPQXZTpkbUdutJiYofRToLFMD8+S0d4RNLQVjGHypohc5Y1OUok1thfznMyXM8VvTPkRAOvtQ0nsng2JQU2i1Pcw5d4snqRJXGEYpSysdkhokhsA+aUZi1jiXVEWw/AWprZIWbCHN2hMxwtD1gJUnoattUOY/1LBMEs+0Z8BrrBFzaVqAcpyznFJU+zLDV7Cz57h0Bm5mmYLAvRODl7nsRK6mqYjnORLPO0pOJ8YMj357kUZglsTNEs8mJ+hPOZYVaDUXIiZk/0DLsHj9OKLOvTI7QdGJg+U8LjZD4loc3pnMeWRodNgzNsTE6j7Bq1Xp5M2ibIHWdV96k5IQtqE3mzQiF+gSBewLF1amEHnfYxdPHkDI9VfTL9Vdab85TlAp1wngOlDBccxQUlMAamtUscztIylrg9jD9IGE9O4JpZcvYSq/k6B0eqrDMzxBxgWpzCUmNgLa5YZjhpMdztIgRoumTE00y7E8wUOiTCsJSWWCs20e4qDil5scCAc8zpHKk/j9FHwMwyOThLMV1iu36aK/r7qETzNBxLaJtIb4U/mww4kqkTyouM9Vpo00OrOiPpDDvSw9Q8i7IJlUGNSXuAkZ4hm9YYS55m0R+QNfO0uUTOHMIzK/QlGBIuaM3Augy8Ffq+5VK2xrxeJqtf4Fr1Nfpul8dHHZLMEtJ2yacLaLFCniU8WgjxJCfzbU4XPRIpaaDpK8HZzBhtbVnNpeRdRZqkIBXWWkrxGjvkFKV0joq5xOb4PH034PCQx/rZdXwzfwOnwu009ClqqoYgRcg1VLDEctjAUyeo2LO0/UWWw3Nk1BGOlAO+uj7PbGhR7irn8wmOWSEn51lvzxMOEgqxQVloSZ9BfwgTKzK2TiGKKNkzoGssRJvoW8uG/hmcpIVwp+hl6ggd03UEmkUcsUrT87hQKNFSWVArNB3YsnaRiWiBY6OXcOVxTLRIyjKpbOEEJzg8FtP2OpTtAdq+YSSKyMgFUgkFe56VTIez7hZOVFz2tM9x9docE9FhfNHGS1MWsiHLwSLj7SPs7j7BUL1FLR5jfW4ft3W+xnbzKFHuOJE7zZK6wII8wnz5Wd66/CD3dL9CkvaYKwVcqY5x3eDztFSfBEHJLrIcxGg6dFWffHKGlpxjv/BppzAZnSVR03Q6ZSIDkYWR/gJD/QsYJdAKIlxi2aJsz7Guf4Hrak06CLywwy73GZYzlxCqziV/iERZhO3gyTZRpk0zUAxUn3Z2QKoX2K0PUEqbtB2FFV0mzVHc4DAHhjK8mPexJmafGOOA3MS0zDIdrkPLFtvt1ynIo/i08boBKs4h6JHrzUHUIxEuvqiRD6ZIFKAs7dwyQl9EqgUq+ikK/gNIschwcpilQFKxp1BqBc+doiimKXa/jPAPYOU8a+4ppOhg0zqHh31mgipns0WeGS5AGqNpM128yDO5MmfTYRzjUolbTOUcTuV82lbTky7KPQOixZB+CjeK8JM+I+IgK76iNpSSls7jy3PfcU77rhUJefLSt+gdbeNZh02tAsvxJrbdMoob9HjxsYcY3X49U2YTy8ryg+MRt9/0y6zOfJTt9UU8o6jf9vM8UX+GR8WreVOpwN35/+9S91vy23hu6RmW+0tMRltRERg3z2fmPshSpsN1lRvYMZLhtx85zVtvmuAvVzxeP/0U6bnT9G94DfnxKkvJC4wsNbHz34JdP8anag32dwcoAddn/vtbLf9b/rmEAM6vdvn4vhmyruaF2TX+av8cXzq6wJPnajR6MeWMww9fN05iLGv5jyHdGlH9JjZ6t6Gl4PGpVR49tcTnLtaYcw0L0rDcHPDr5SK/TkixEUMSw8SA3mN/gPOKmwnf8taXxn+82eHXLi4hLOz0XdZ7Lhu9/6qKIwYNSn9xE+GxjzPQA45eF3BlYZrpQY+l1h5S43D/rZuZrfeZEYYN28rMzbQYSQy2GTHXmkGdaPGFj76XzOit5FfnYfEEvcVnSb/5IO4116JGqyzECYUzx+jX6my4dJIHd7yKv6q+mlvaR6n01uj4Lq+Y38/mwgWc6qsZihOqs2e5rdfg1Y7kJyeqvHNshLe5T/G65E+pRgd5ofZ23nL9+9AFn788XyMRUJQuPySylKJpTqkCCRadX2Rxw6fZPbadpg1YluepV+5hbWgSjeEH5h/hVX/9OaqL58mFIcpzueLlr8e26zjFYU70s0wPXI5eanJ2pcvckmBptsC7yx/gTvkYK86N/Oce/Ol8jTuyAf92coSBhd9bXMVYy7WhjxICIQT3rnsFh2sHeXJ0igsjbSbOGC6eW+SU2c0Of5pi8jz12WHiZx5Hr5wgLHVwkwZRZLBOBv4e0+/v8Q/jfyaREMdx+OQnP8kb3vAGTpw4wQsvvMDb3va2l/rf9773cd999/HqV3/7Q9lTzz6A4w0IG73/wt57Rtt63GWev6p60857n31yuOdm6UpXOVjBtizkCAKbjGfA3YBxYzexzcAM3U1opmlgNTOMiQ1NMmHZJFkMtmVbDpJlBStfXV3dnE7eZ+fw5qqaD5d2L6YxYbWHWTR+1tprve+HXVWrqvb+11P/8NB29jNjTlFjnYwSJRMgxSZn1EEODjfwK69QkJfYMSE9x8dTHV6aWsY3ERofI3MGnkNJ50xshmdTui443llOsQw2Y1HsslVoUMnAFZaOWeE68SGmzRpdWSAPxtTMhJEskTtjxnlOWCqxlL3EHK/QUgvM55dIhGTNaTDxatzRjni05uPlIAttFtM1luMdqmYL3xsxEB5jVtkrHyMykgyPqH6B2XyDzXSaBfkSzazLdkkyEWUaaYfImccwoh4P8eSY5+p7uWX0OIEOiVSBhg2ZiADhp0xszsifJem7ZK6kaXcZJUtM+58isX1m0h7VVHFJTZHYEq4bclV+EqtymnqTR8r3MxOfo1I8Tl8VKCUjHipn3Bd+Ek8aarrHDfHTLOgz7IpradctJc7jhhVs0iAtCvYlz7GU7bIjZuipEp4cEvtjeiJnzgj2R5e4JOZo5mMSlbJWqHEoHNOxZdqNAaMgI5GKT1duR5iYQ1HKx4qvwgR9fL2FsgmreRulBQmKVCR0hKIn6+xhnYIRDAsCJ09JcdgyAQUVYTxN24Ni0mEz208xi6nmL7Ng+jzjHSKwIYF3Ck/GRNKnpwUlMSD26izLF9nyGgS5xrEt5u0pQmdCS1Q5GnfoBAVOl1bxbZ+5KGM173HSrdJ251DSUuo2GZsiQbDDwHfZ5TAHOYXVI3Y4QN27hKMsN4zW0O4TbMgKT9WbHO6ewyjDXtOnb3Mq+spFReqPkZUtqmab1JSpm00SJ8aohEIkqaodtt0mO07APvsR5u05HJNwoHuehriM9jS9QJPkGVUvxmGXeXMZ5SS8UtyH62jG/ojH6kdwsw6OM2BanifGYzU9S6Y0Ez9n5MP10XPcMThOL5lHyR5elCDyHZqijWsMXeuw6zj0ywXafsBF9zqq2TbNKEKKiEDDtrOXx+vX8EptnlfKRWYm5wmV5VJxkc8vTLMb1BkWYqLieWbsMTIvojEpcF5dzZQ6yaHkGD1VpVuIuTp6mXo2oe8Lzsk9uCNL1e+TKcO5wjKvGT9G21dEE4WQQ4ybIHOJ74xIfcsUO0SeZiqcsJJcpG/KKNVmUzVpiAkV9yJt1SBIByS6TZIWabgjSrLHi9W9zMXrbOkiLzUazHORhJShMAyVZthw0OWc2WwLkVcpxSMCtU3d7UPapuVakH3WGutc9Fss6HWscChocESPUbHLjrvOmVKZxCswZ86SKs3JwgJ789PoIKOaJFSzEZPCCGWhY33anuaIfoauV2E5fpF5tUnfh5OVRRq6hXYtk7CAZzIir8wt6ePMZ+skSlLWHXZNlVT55KOjdJvH0Xab+cku12RPYFVOLyhhjAvukBnOkhmopgPGXpF2UOB4ZQ9j3zLyM8p6SMPskGHIhEu/OE9N9nDcDmNj6QcdJjSInAp3T/6IGXWGTLtIFeIkVRLRIQ4KZJnCpYtqnOekuI8DyTNMTcbUxA5Tdou+cpnXA87Yq8jxmfK2UWLARlnRNC22ohmO3v01X9Qe/aMlaP/xyZ9mqb2IW3EwuzeS2QJ3fNMB1o59nvXjz6G9e3nUh/2izRv3NWhevEzzTz/CdCOhVy8wuuo+fnp4NR2m+bXVRQp/gyDy/xsFp4CnPC4Oz/GM8xS3dO4i9SZkss1n7NPcv+etLNWq9KKMJy92aYcZ+yY7HGhdRHzsz4nv+h661T9nftIkaJ0kWX0j+xtLPDSc8Ow44uunqhT/HuLV/5CHsF6Y8ptPXObffOQkv//0Ose2Rjx4fJuNfkQ5cIkzzWIt4KrZMquNEqMkZ+y8wCD4CEJI1O638/CpAcc3B6y1JhxvTWgYQSSgl+SsGHjPWCFTg14ISJ5+H+kTD6IOHabyw//6CyFLx8OYd1/axhXw/fNN3jk7xVWB/wW5Amty5Ke+g1LrNJOC4slbpzl//i7Kpe/Gb4V81etn+PSl8zx5zvJ1N8wwycf86jM7PO6s43UD5l2HZksh2jEr/lVssM3SoW8gHb9MNtwl2H+Y8I//kDOHK9jZwzx97hJXX3gJISRnp+e5/tJF/vzu93KdHXFg+2XCks9162fZV8+579qvJ3vlRVZdRSUO2Xj5KW6/5hBS79LrPUhe+Fe8/9j1/NJnz3N2Z8ir99b40Vc+zdtKB1nOQ+5xF7hxdJzzBy6TVX+X0JvhnF0kT15mPPUDNKZu5vpzx7nv6U8y8+xLpFKgLKzecCtpmnLft7+H2+64ndffdJBvvW2Fb7ttmdtXGyxWA3Jt2BkLHr70Kg6ULrIneYEXn96HCHNe0Dl/moZMO4qmUpxMUn5xp0dqLLeUAhypeP3iG2lHOywWCny49grX7RaJhhnHezPc0NjCkwmjsyB1n8b0ZZxTH6Lw9C9QfPoX8M78Od6FT+Bd/jSmNI/xawQn/oB85uiVzfdPTIriS4F/SgRtYWGBs2fP8r73vY9HH32UH//xH+fRRx9lfX2dxcVF3vve99Lr9XjggQd44IEHyLKMo0eP/pU2Lj7xmyxkz7EmZniuUeNAlDBrzuHZHiMOMRE9OmIaVw6Zc06SuzF+MqItZpjSXWpRH3JLKd3BVzFlG4GMGRpJLFxagaAuOpwVCxTcLgc5TSotJZ1RzCImiaSu14knTbrCx3gwp7fIYo9Ns8rIj7nevkBZXKLibuFlBjczrLtl+nGVrwr/hLLaocscNpqlLzzG5QQpIiZZRGDa7LgztL1pruZxMq1I8Sh656nELsRFJpUWia4QyyIX/VW2nUU82cHamIHjEWbzzOo1bgg/T24F2vVJXMGGU2c6O0cjaZO6CcHAR5bOIP1tCumYOLjMlhvgmwplO6EvcsYiIPBHzOg2VTOgZNqs5s+TuikHsxO03Bqz0QVm0y7LzganivsJrcuS3mLNTNNCMa5FNLMddvR+qjrEdVNms+cpypSqDbmo92NVhGsm1HSfWXeXrYIkEmWa2ZCy7ZFJhZEJoZScmC9wMDqFkBO23T2ofEzqpsyPj3GTfRJfDsmygAW7jSPHoIskIkdFKTGKzdJ+5iaakZtT0CE9GXPOW2WaHiljdswKddsnyqtEySLWgGtSWl4TrfuU8zZKDanIDqnt4ZEzzzZdLXFlh/NBhYJ8hSSrUUpHRNJl05kmcFpEruKq3iV2Mo9JsIuZBEysz6p4gXVTYmI9KHXoyDqj+AhVuwW2z0XXYdObJhOG63sXQG1yITvC85UhX937HFNBH5+cTUejcYhUiYPZc2TWYeIUca1lmCYoEkoiw41cAq9D222yZ3ycKGyggj5zyRbpaBXhdxgFDou6z9i6ZL6i5dSQuoebC3xj0YUBNX2ZNXcPzUGLoraMixUKucWVMQEtjtX2MdW9yFX5RQITMVAR3qjMinqZYalK2J9jXU6TKY0rEhwvo+9WWElOc/vgIUp2m4FbJnYsG26TgWepmBZHo6cY5AqpIpTMyX2JFhkl20fJHspk7LizHBxfpKP3sqyep8gu14fP4bpd6tkOQ1kmkjUuUsc1E2bdPlo4OHrE1dE5sCG9fIay2KLtHWHNrWH9jOVxFxkWwO8zFY0ZZAUCkxLbEpGpkpgIyhnxqEQ/rbCgt1iXTVIlaGZdgnyMjEPa1Gn789yWPEPH+mxIj7KJsIHGOoZyHnN+VGZJ7FB217CBw2ZWJNIBZe8Sy84plI4p5yGpbdAKCng2Jvc3uTa5gHLhvLiVQ+kxUiUgGbInucTFxhSz0QhkRM32kG5KHFkGIqGqNFZErCZnSYoxOnHYlQssdRMKImaQFijZjKrYZdoOiKWPZzpU6RIjGQQObV1EcB4ru0g3QVhJaIqYICO1LtvpNLNxj2qS0M4OMO2eZUbvMpJVjsTPsunPslZsspy2GOSGcj6hoFsgtynmMW0RMCfP05LTzNh1qmKTASVmw3UyLDPZGV4oHuLV6cM42lJwt+mUDHkaURjFzGYt9uvzhG6Anw+xmWJTLlEwEUveKcBSsBvUbMowqHDk9q//ojbtH2UOmjY5lY0rHq+33vd2nj3/PA25RbH1JMlkAgg+KRtso7nVWePiI09xwBTZu38MCE4ecJC772dg38Fhp0/DVX/vMbxu6l4+7nyYNblGknShCPuGd/Gdp64iPPEivetLvOeGI7RfGBHJMps3fAf54u0Mt5/mmQ9/nqPXvodjRz7Kdc9cZurPvobXvOEXubt8M58dT/ixtRa/tHfh75QT9w+BfpTxydO7fPC5TS50Q1wpKPmKpXrAW47Mct/hafY3SwghGCc54yRnvhrwyNk2nmP530/+NsoUeNP82/mh+9/A3b/wGF9zdJ6HTuwwH0Pbscw7im/KXF6Pi8by8Z3nmN28yJGLp8inZ2n8u59G/CVp3Uoz3n1pi8xa9nkeWFj2/mtOUx5tMvP+V6PylH7VY/PNP850dhut3UucOnWS1975FRzcfxW/ePb1JMMD/Pyn/2eQEXPNDhe29vKrpTG9geVwYYfb3FWKqsIt1dfx8cKnefCdLiVzkO/63Ys0TU7jx36Rn/oXa1y/rcmUy+cOXM/FuRU2Zhb51kqVPa//Pxgefhvlh7+XsFykNXgQdWbITVfP8NAjVa67+nYmhQ9y4qUP00rG/NYz38vleJpKIaOcTHjXYCI1CQAAIABJREFUZ3+fW3evaKCExUcp3/Yd6JLCm2vQKv4hVt6O0i+QIVgYv52Vfsj+nT9lpvMKk26CtoJKknHDba9h6VX3wup/qy9XcBW3rNS5ZaXOt922AkCcaU63bmF9833cv/djfHb9Toa7MSZwaN+5wOmCYMV1UAJ+dbfHw8MJ/znYYOX0H/MfLjzE5WKdz9cd/vCeFu8ZvYXeZ4/x6xdezc21i8xWM6Ity+YnUpb++ddgL30Gd+d51GQTFbUhj/DOfwykg5Uu1q/jXn4Eb/2zpPveRLLndWSr932hWuuX8WX8F/zQD/3QX3m/+uqrv/B8/Pjxv/X7IlRsudOkasRt3cfxbAspY4wYY/QOIisyJ7ap5CFe3MczE3ZthdxmSJszrTfoyVl2RY1JGrBbdTCizHx2kpH0yDLBWFfAsYTSYZLX0ZlgJmmR2ZSybjMSFVybsytq1OiQKtCZoJRu4suEKf88E6mJpaSnCtjxDMVQsKgGiILDbgDe+BxjW2KhK1nOT7BVq+MJl93kIL4VzITHOV9pEGfzZNksW5klEwlKSfrZFLORw9CZQ/ZcrtFrjGd7VJNd+rrM/rSDUjvUZZ9WukQhnzAftRj6Hn1bJhIF9sSbbIg97GRNRlmBpr/ObCio+FDVZ0kKI0y+zEzaYSHZxhcTIuHQEwHlLCSNDrLhuahE0LEeB805mukYV16grl8kUQ3aaQWcFrI3z3l7gFqYQmmHVecUru4TOzmZAplZ0lwSUcFTgoHrYkyPpewyVpVxdE5PFSknAYmKMMKnrEM0kjvHH8VGYzr5HIlZYhyXcQoDXJvTyqrM2ha+u4Wjp3FzRT1yaKQtFCcYRHMsiAgdLbEsdmjrI/jFTSqyj/VTHBFR031GeYXLTpmAYyR2L10zxfH8Go6Kl3BFm7ZZYdGco8CAE9FhBr5gCgUpTLRPms3iqAHDbJG92SXIAmQOE6dOIjx8fZlt6eGQIaVGZIZIBaxmp5nJOvSzWSK3xLw5y/TI4aycA52i44y3nE/J8gVCO0KoNiWd4JIQmQLxZJYgSJAiwZKQiwrGQjqcw9WWgh2gTAejR1ScjFAJCplkQzbQqsJiuo6PRVHC5OCrnGE6i0ubo/kZuqJEM99lv/MZGlkR31GsdDexKkN4DtvxEvW0xThN8GQKKCbGY050SLMp9o5PM1BL9EWJ3XyO1BEs5afoOrdw2+jzeCLFYUIz3EIol44dE6QBt3p/wYY7zwwddqlgMsE1wxcByHPLvBpxJt5HYZzSwqVoz1FLNthxi6QCCtmYdtakq+a5Jr9AxcwR6SJzyQVa3mGKcY++0ZSTFKkjHBUxPz5H5NZYTLcIkgYDUWVhZ4d+ucciKcpIcusyJCCwloPhcdaTecbUCPUye2yHrWwPYb5AhQ201Wgx4nXJA+wm04RuTjMPUTZgihbVyNDJazTyCXHWpOqegnRCFq8gdQXjbGOMoCOblNMJG8kCAR0W7WVsnFJKx+yVOUvmj9mNDzEohoQmQ+MwFbUZeSWUjmjqAcWRwxm7h9AocF7kUHaeC8USC0lC32To0JJKyWQ8y0QpAjR78jWgTWJiRtZjXkpiJKVsQF+uE+icSAtix/Cyv4K1CYf1BtWsQzxeJAjGdNNVrPYp2zG58ZntjLDS4YjzMgvpNr5MCHWVjq4xby4gTMpIuPTiBUZKYJwuiasp5B0mdolOvkJqBpyQVzGdnSQzIZlxmVZb2KHPWXEne5LnqJghGSDyBKuvFPWp2DYVNaGme3Rp0BneiFAXKDntv8kc/eP0oP3g4+9hdW0PEsmrX3MPpx7b5YD3GNOvvpcnPvQAySTnM43rSIXlHnMSsbPG0Y3HqO+NiPd/JRuLRUbxGZ7hVv7l0i3sC4K/tU87yTBnBmRPbqEfXsc8scNmssGJwjk6fsye0R5yL2U2cZgRMzS2XXixQ8FC1cAckqLfpFE5QDMcsi88TPHCzfTrE6bClxHtba591T/jk6MJx+OUVd/lcPB3u03+/+qW/MT2iP/rkfP8+4+f5mInYq0fsVgL+Mh338E33LTIgekSb7tunm6Y83OfPMsbrprhoZMtPnqixWsPNjnfCfnD9Z9iJ73MfbNfxxsXvolGwefZ9T6PnOtQNILcWv55pc6/ecMBDq+HOK7i91Zcmp//M64++RQDt8APvOZfcvjAIp6SBK5ioDUf7A4pSMnPLM/iS/mF0Mbdnfez+Bc/iBsNOHmgSP+uH6DTuZPHH38K5Tu84D3PseAYf3H5AXbibaTfQdaeIo8XGAzmCRzBRHu84mn2xFWOelfKzmphkI7P54snOCfX2X8xZXnXgjUcvbDNywcbvFw/Ti09Qzp9I1r4PBdGdDYmNHamuVS8nenxg+xfHzBz/hXspS7tznV0h89SLO7yQjzDrzz/Try+ZnHSgWjCwC1wS2+D9eXbWFt9FSObMXSXeGEFfmb1V8hVEew59kVv5V+8uMw7P/k5rj3+HP10kyiy3NTqcPjyLv3ZeVauvRG/1SK48WYmv/bLoDVqeeWLrr2jJHPVgENL93DdbMTZ1nE2RvMonbN9YUJ1K+SuPVN0lCHJU3ZzzSP9Pt/q9Jjc9W9wbv8RWmmXjWiTR5xj3LD3EPJyztqoyEazxNJ6m0D1KC0asgOvwwRNJq/+CZJ9byA9cD/j1/0sprQAXgn/4sN4lz6F8avIdETxhV8nOPVHkE1Q/Qvo6Wu/7F37Ivin5EH7UuDyZz5I7iZ0dJN+tswkKzGltvHUiJ4a04uP0EWyHK9TjVPWzBKZ0bhSo0yKYzNyXSbWVSLpUQlbLNmXqesRYxEwzHxiK0mtS0SNICrT8Ry8pEFoqoT2SrWxko6RGFwnJkw8jPXY1Yso6dBIe1yeHGY17hKm8/h5ijQRjtEcUqdRWEY6pZo4ZKaEa4eUgjaFJCbOphjLOp5NCeyIoS0xNFWKqYPRRYSRhIEgT2r4JiLMpijnFt+9wJgCiSnga8FE5leS3+0iUqfkWZXMBkiZ4llN3RsQxXNIk4LW2KSOth6pmxDmVQ6KNQa6xMCWKWdQFQMUll09TUKBYmYJRJe+DRjoaSaiSCYgMQWm9YDpPGFsfYauh4wL5HEJV/ukElJ3gExzUmMYiSodvUgiJEZppJY48RTlOGY3OoSwCVZCHk1TMRO0DFmV56hNMnQOpAmejtFIEt1g0T2PUZru+CrG+Rw6q7NXnaaVz6GNJdcVPAsDJcncgEXdIdOCDbNCltYwJmeS13FUSGRqNCcRQ6lBGIzxUBJy66IxZNajYncYiRrzokWYLtAWBZbNBlN5l7GZopzH5LlPlpbRGAbxEUr+JUpyQKzL5MalIEc4coLOGggBbaospz1EXsEf+/RsnaFymdIJN3jP0nBabJsqbVNnMQ4pao3vrpF7Id10noLNkCrHyVJ0Mk3NRBTEiL6p4ErNwNQYmTIRmqvyMwzNAtXSmLn4EipP2TFVyuoMi3ZA6PqcT/ah8wWk0ydNPSJdIZUumQFw2TbLxGmDyJd4kwraBFwwtxDkKf3SGtcmG+RGkpoGW/ERTD6DoyZsmQYDWwcTYJ0IgWDa7FIQIbV0je7wWi4zj3RDuqJGZ3KIOJqhVrjIOHMp5hMmIiDLChxOTqBERjurMGU3WY8PIbQgUgaBZYwk0B3yvIhJKrTsFA27RWgV63oJzxoCk5OFC4wYYZMZbOaQWpeYGiPj4TCmKbrUdUSSl5gIwWp+kV29wG62ghQ9YqFwrMFVCbvZEsZ4NG2boZmhb5eoqh5xENM3FVLh0rB9tqPrMCajY+fYI09DojgXuNTCESIXSJky7W6yVakzGsySmzJjPBp2QMCYgS5i1IRZvYMTZBT1mFbWoCh6XIqvR4VFDshn6bk1lu0mSbbABTtHK6lj03liXWVTz2JUSiIl04wIbY0p+gyo0M5rVI1Baoe+DRAWCjZnnzxHLznKUJdpuD36eYUeTSLjU8lCOnaKsS6xbNaomDGemzEIFdv5CqOszCQ+jEolC8EL7KiA3eFNJNogA5hM9lGTa+xGqyAsFafNdngzUo0YpEu4RHiqjXI0jXCHrfAGKjon9iyRrSJNzi5VAj3CSy0yLXNKXEsx36FIyPrkCO3BbUx5JxlQpGMbVAnBjVizy+RpCSEMVsYcfM07vqg9+kdH0HajFr//4u+wf7Sfe157H6ceGjHqGl5f+3lUY54nHnkGnAqP1q9l1c/4yXd9M+M/+gNuvPoSTtEyvvc/kJdmGE2eIKTM/TWJFC6OU/9v+rL6SrGI7NPr6E9tYC4OoZdCZsCVBPN1XlAn2CysccvGHWReTNtG/P6tH+GcvMz/vfw57nrz17AduDyw0acY9amON6kWZhF+CWMlanIDnlgjSJ+jeuwRXr9+gA8uN/jsKOTtU1W8v4OX4Et9CPv8pR4/+dAp/uDZDUquwyTVSAHvvGsvrhIsVAPmKwE/+dAp7js8QyVwmK/6XwhtfO3BK+Xza+WY3zz9Pu5feSvfedX38J4/Os4Hnt/gYjfCNbCcSH740CL3ZhZ1rItcKuG9aZpb6hkLp19Etnc48yM/R6fc5Jcfu8QfPLvB7693GSjLS1bz3TN13lyvsDfwMCZj0Pkw+x783/DCPuf2VVB3/2fW4v384ed+h881H+fT9pNsOBv0kg6vXbiXOI/opl2EzJif3mKpVmW3vcC1ZpvVtMGDBU01h2vfOMP27Qo1Nnzz2dcxCa6hU52hNuhQH0yoDydcqO/w1ME29WyVc9Wj6GxCKhXn4mNMLnwCfWGZU+Fb6Nc7tNMpVuwFthohoRvwmfB61rcP8ZWjYzRLOctlh9uLDl8vUlYWj3Kktp/DXpPQg3/7DTfxWPF9WNVE5ZvcM7iFn7j8FvboChdKGS94uxgcqjm0HcU1C2/mxVmX9uYO/uefwNvaAJ0jl1eQtTqD934f3uvuRbhfXNG+WDzMq1YLXF34Mb720Cf5zPq9DGPL2TMtbj33Wd5rP8XJ+lWc82bp5YaX2mvc9+j3cu/ZT7FpU054isvmMm9/8/fRfe5FEiMZzgaUthPMqEl+97dSufQB/DMfonDmQwSn/4zw1u9HJn38iw+j63tJ972ZfP5mUC5quAE6xW2fIDjzIPHBt6JG68jhZUxl6Uv2O/gfAV8maH8/vPDwx7FktPMlrJFEwmWST7MgegylC9EUqQV0kYJJ6Iky2noMbEBqimS6RiYTlHYp5GPW7CEKiUSbhC2ziitCNA7SGqzxkUmJ2Coy4bCVz5BaD5s0cOyYiaiRG4fQVnGEZmTLOCYiHR9gxzaI4j045ORpQFv5KCckzkt4aUBui0yig4SmTldVCMQWY1PF5gGx8HBtSpB7iMwnFR7CePjkVJwusZYoe6Wq20RXCPHRTkgCZEbiaBdrFUm0n6EJ6JsGfRlgjEND7VLQEUEas54vECowMkfmFYbSwXo9JIaqGrCVHCZCQFrDjaqU1QZ9plAipJkZhIyJhUeHKgVCEn1ljGOp8Yzkgt5DIU9x8gKp9aiLISL3sTokNiUS3cCXE4bpMrEAk01RnszQkB1SIQiFSxYvU/RapHmZsXVIkMyZNSbJEhvR9bSzRSZ6CoslFxrfTmhmA3bSI3iZT0EbGsXLbEeHyEzKRFRpZAnCJoyyGiNcrM1JdBNylySvUFRj6rJDEs0xzKskwkHKCMfmpNk8sdQINDUxZIR3RbYgWyXWJbRI8MnJ8oDclFBZQCSK1NUmWtfIdI2RmWLXzhDZgJGtE0oPEy0yTPfiqi4TSvjG4EQNUhMwtjWMTEAIitbQHh9mKErEtnClKI0DdecynXg/ST5Dni3g5glCRjgqx3evENiRCSgS4yY+vXwfruhhTZ0sLbORLLKbzeOLHiaeInQSOmYWZUtsJ/uIsipXZS+RIsjzGmK8TNnd5VxyE0ZXiI1LWe5AXiaSKZU0QhmNSA01MSa1AWG8wtDWkdqlIPtU1BqbrNIys5RUjyyeZ6hrVNmipWcZ6HlCPcPFfC+7+TwTXcMVEXudk2xEB5AqYhzvRxmJFpYEnx0zg5cF9PQsibAoNMY6KCMpuzvsZAdxrEtkHUp2xASPVr6fVBgKNkNklr6t4xnNtNxhaKawQtMTZUKpqNldWtl+BuksWkxwSamnllgUiKzPrOniiivn8kF8EIlByhEDWUJkAbNsIuSYzATE6TKJgiyrgIiIRcDITjGkxFUDTWQFYbqCsVUK/g6LWZdR3iARkMqcku2xmy5ikynGegov9zigj4Mu0M9n2TZ7EKaEn0tSp8PATDGdjdhSy7TDJdzcUM8NGoeuKBDIiEoeU5Aho3gvu9k+Lpk5NJJU+zQyGAqFtpI0m8bJXRrF8/iMwAjado5QT2GNpKgzOqqMKyNG2SyJrdJO5tnI9pFbiWcn9HWDUEls6pMQEmVThI7GISO3RZw4JcayYxboZAtEtk6EJcynsM6YiZmikmWkcZNzrELWoOJeoMs8u1TJrKJmYnS8wnTzafZNzpNkDlOmS5zNkuPR9M/RDa9maGaoiCEVsUPPLhBmRXyjWTB9Fu799i9qj/7REbTvefy7mGvNYV346ru+kRc+vIaQcHfjA5x+OeP8wNA7cCfHTJM3Vrd4za03Uf7A+5g7NOBCtBf1hh/lL3Zf4GJmuVu8gNBdWq3foFK5G9dpYq3FbE7QL3XIH7iAPTOASQ6uBFfi/k+HUbfMIJsB8689yp0zd/FU50nKuowX++SO5rvf9H38p/5vsmY2eH78PN985zfznDX8u1aInbVc9eBP8oJYo33gKLs9Q1o4yLR4HpmHZJM38fhUkcuBYP14m3sTAa5C+OqLhjx+qeb25e0RP/HRU/zJC5s0ih5Xz5b4rrtWudwLuefgNN922wolT7GnUaDkObz1ugV8R+I5ksXaX/VCWmv54ae+n4Ldw26vyWZrnhM7I8LkCtl7AwH3Gp/XzAXIzQimfJxvPMDwB99D9Hu/jRkOqP/yb3DwlqO86cgcd+1tcHp3xOWFgJelwb0wZhhI7p+ukacXufzKO7j24Q+gsoTeVJGfWbiT/3j6j/nY9kfYKm6R2oR3z30vbzr8lXzF4ht5296v57aZO7i5eRuPbn8aYzU/ffcPcsfly7w8WeCsMmjgCaW5/VX7WJ1f4OE+rG7G3N6v4okqzy0XmW33KEUpK70ZKld/K2lxTBJ/nMLwM+zvz3PddpuFYUbqbDNR26yli3STCjtqljP5EeK0REU7TImI1F2h4cagQkI1YlsNacsRwmvy7a+d4gM3HsIZ/SfcbA2hd/nq3a/gO7e/ljyb8GT7w2zHFzAYDlZu4o7iHexlHrXnVTT8Ocr+PCsLb4aNCebsJZKPfIjwd34FubIHtbyH+CN/gdnewjl0+K/dG4E3z5Kd4gOncl7aPcicbDOwFTbkAo929vCTPMm7ksf4gFrhwcpNfGjmK3iTG/EVc6/GLS+Rlxd4//afUbz9eo5mS+y2O6xXqpTPreG3O/A9v0V8/XcQ3fRuwpvfA1KBdLFeFYFA9c9iyguEd/6vOLvHkDrFehWETiic+ADu1pO4658jOfItuJtPYgpNUF8u5f9lgvb3w2OfehiJYGyKiLxAICZkUrFXnGdoy6i0gAFykSKEZtOpkKHw1Zhiqsh0AyFjbBbgpw4jGSB0lVE+T5cqiAjXZuzqVWQe0BU1YuuR5BWslYS2SmYK4IUY62CEIUPh5B4j4WONSy23GFwcmzIUAXUxxHH67JeXmCQHaCd72REB43yWRGoCk/ylB8jFsRJrBdVcM2SasXTpiTIGl8SUGeMztg209klMQEeWUCJlXp5nJAuE2SzaesS2QJZOE3sRVl459AhhGYmANrMUEp+eqGOxODLH1RmpsjSSGC0Ezniei3IeaRwCqxlQ40R6C0MlOWzPYPIpuqbJRr6PkSiQWQ+NQCYNlLFspocZ2iZzcoetfB+SjEwX0STMO+eZpFPkwkGhGelpUmkQVoDxmHLaRHmFNbMPqT1KzhpRXqVPhRE1xrZGrIskWRUtNNZKxrZOKh1yNKEoYawltFW6ykWT0UlXiWyRjACT1xnIIlYXcGVE187jaogoMVQusTSMzRQi9xmKArn1SWyJ3AZYqzAiIyFApBUSWyQSRcqyg8o9tpgmwUdlZUamQmYFRk8hLYRUGQoPRw0QImYoymjrokgwxiPGo6La9GWZkonRWYm+CoiVwKiUGA+d1UmEwsqcyBRJhEfkaNK0wVBUyaWkIBImwsclosoITIHEKLpmnho9OnaOXFcBAXmNUHgIe0WfqqjakBfI3ZSxnUaOVuiKApG0KF1gR9XomXlMskBmr0hdyLTASHo07RgvBdcI8nSegW6ipaVoYtp6AStjRqZBMRNs2WVcOWRs68TSJTIBDdNhV0yhsxojO4UUOcoowryJBmIlUcIwyqbpUcZXQ4bZAtaaK2trXbSQ9LM9aOGQCheXK2sFBrSkly8AORPdZGSa2NwjMjUEkkxXUQhiW8IjwskLtH2IbYXYFEiEh5sFxHmTXCikM0bj0kn3kJsiRmg0Am09EJpM11AiI6WEtRara0ibESvJwNYJchefkEg3iEXAleDUIgCZdemLBrkNCLTLyLrEo1UmUpDagERKQlMnzxpgFcLConeSC/GrSHWVTWYYmCYFcyV0dccsEMVLpPEe9qvn2MwO4OU+FTtm00wzVGB1gYrs0aPOYHI1A+sh4C+JYxmpHQYKtNTEeBRTD4tLRxXZZobITOHmARgYOlfmPzdFfGOpELFNBWk1U2JIbnwm4ooUiSc0JdUizaYZOJK66aIil75eIpKGPlPEpoybKxDQ1wtkToxLQkH2sCIny6fRQrPrSDyTk+oCWqgrFapzB6XHnIhuZywCKqZPx05fyZ+zEf1slVQ4LDinGeh5orRGbhWhKDLQ8xy97y1f1B4J+zeoI+/ufunKvtfrRfr98L+rjTCf8NUPvZG3XXobUkped+PX8fJH26xc0+DV0x/g9z5aI08e508PvIOucXnvgR5vfeNXUf0/j+AUDb97/nbqN9/Dj912O2Nb5LedHwHdoVS8mSg8ycrGT+CfnoLUQNNHzhcx4wzntlnknr9eJ+3F7vP8+iu/wsXuRb7l2DsYVlvcd+ddZKtF/pdnf4DMpMwEs/zG3e/nG3/pSX7+4z9PXWXEArxf+y1e/tgnmGzv5cDUE7ze/jrGq9BufhU3HXwXRkh++1jMddsZCGCpiDhYxz1cR1T+q8fjv3duX9wY8GcvbvHps7tYC76jGMY59x5s8rNvvRZjLVIIjNaMu7sMW1uMWttM+l3i0YBoOCAeXfnkWYrJM3SWYbGcrl7FJJhhP10eLt1CXxR4e+6wOA54dcWlJAVqfxXnbfuYvO/nif/kj0AI6r/3QZzVvV8YYyfP2c1yvuXcBnuMQDzVYnOYMl/q8bM3/RR3Pd9CWMOlus+31WcYWYlAsDJa4RrvWg4VDvO2N33TX7uGP/X8v+Xl3nF6cYf3n/gpKqLCh+YcfnmnjzKQOVC8fYZxRXH/84/xTf397MlrdBjhW8n6HofK7/17nCTkofvvRysDFrQQZErh6RyjodFrEVWqzI53SKaXEDohECGhXSHHoIUgIsUIi0SROz6fuPYWLtSmEMCezd9GJk9TTarc7N5KYctHDjoU1i8gpaTsRezLC2T2Wva3t+Do1zEsVWjkFt9KtDWMZUQ51iiniM1C8vWnSc9/EitiEAJZqyOCgMI/+078e+5FSEnxyZ8jOPUniGxCx7e8W7yLVjjLVYWAT7SmEWiKZHzL8oB33nM1v2zn+OPemKGxvGOqxg8uNOnGLd7xyLdgsXzt6jdwx6OXePmli0z1Y2pZxsK7/xV7X/fGv9N+lcM1nNaLuDvP4+w8T3TDu/DOPkhw7iOYwjQimxDe+C6iG9+FyGNscfpvb/R/UHwp/nf/ITEzU/n/tf9f+dF/jcuVXARrPaTI8W1OwWthTMB0bEiVps0MZZ3T8RykkZTVFqEtE1PBExFZNoWROUZa5iZljDOk7SoCpwMmIDMBBhdlLUYYrL3ynEuJMIJpOiATJrKAsjkyrzJWICxMxTW6rqGgLambsEyLSF45KA7MFL5RKBIc7dHzoJYJMicitwGOiK/kDFmXlCsXGInSNESXoZlDopHkCCRu5hEKH09OqMtNOrJMQplAG1wLERUcMUFbD0+GuCRoZcmty2yeMqCEVjETCqisipQ5Qia4TpdyOEXX02QoJJKZvE9LNnHVhNk4ZVZ1MG6P3fwQW6KG6/ZQIqYc13DcFj29wFh5TJmQofTxbU4mJI52CPwtrHaYmCaKHGMDUCFS+/hJnTn3NFtymokSWK1Y1rtoKRjQIMMBFdHMY9J8DitCHDFirCokEhpqnYQyJquQUcDIlAX6jG2JgfCBnErqE3kJykiUu4U0VaQ1oCuMlEQ6YwRQyzImdopECAxXQtd8EpQICWWAFYKiiXBkSiwCCqlL37W41tDIYCxdsArPpoxFkdAV+NriqSElMaSr5zFC4pAirIMwDgVGTByPEhNs0iB2DNYqtMzR1sUXOSWbECuN1AUSHBA5Ndv7y2JTHjavo9xthJWMRIlSUmO68DyXzF6maZGIMkm8hCdGaMegLQhpCaVkL2dZZ5U9ZgejJO18kYG6MraAiMzJUAZkNIvr9tBehJ+UGLqKithFpgU8MSGxM+RZlTjoU7IxUmhM2kBhSHWZzBuA0hg8rMhJpcTRUNcJUuYYFZPpOgZBiIMRAgtI41PRGdqNcZ0+XT2LJxIcEqTNSJWLnxVITAWtIpRx8NQIsDTzmJ6oIJ0R5BVKIqJDmVgEKC0JLPiiz5gKrhzjGUniJpi8SEaBzEnxjcU3GikjPJVgjcfQNHCtJVKGgklApUwzoJevYrWLT0LkZKS6hpRjHGHInBxPS1KVI7IyVsXkuAiRI0RGQadkIiAwAiuukCInu0LijHBInYgiE3JdwhE5RpdYcY+zk/4/7L15mF8pflLJAAAgAElEQVRHeef7eavO8tt6VUutpbUvlizZsi3Z8o7xwmK2QFgCTiAEEnKT3DCZCYEhGUgCQyDDzQwJkAeSQIgJYHaz2o53yza2Zcmb9rW1tNT79lvPOVU1f9T5teQE3wmTPM+FO5Sep1v9W+pUvfVWne/33c4FlNUQ47qTTlenSZEwK5LpGpFTFK1llhIzoSE2IfNaERPFGllQR1tNh1RxCK3GMrKgiQR1WjbCoenIYoyeoUYZJCMymhVpE1M4iYmqTKfLwYUkAi0CMheCSlFOWGNOcTLoxqJIiCkYTYMAbWIGZAinZphJVzBRMMQGdFagiylGgg4ynVGkRuQsoGgSU9BTBCRYpwiSIk06saYDiif8Z7JelECHyehqVaiGTaYCIXBNitSpqg7ExATBNC3bgRMQadKTWTIFFuhVYySml7d+9M9e8H70M+NBM86wf3Ivx/YcYX6zj7f92rs49MAktYmES1+3kp17ljJ+8n5wDe7p2sZqNclrL19P171fpIcfcby2iOkNr+ORqSmeWXkBv81f8aLV/5Xx8a+Ttk5TGdpCONxBVFsAsSZ623r0+h6C83tR3fELeq96o3lctuBy7j1zJ0fj46ya3MihMwews4YXXXQDR2cPc7oxxINn7uedl7yJT88uZPG2rax47D72nBhktLyWSrHK6MT5qM6FLE4fplzbw+p1L+UO28HOgZg3L+1FIo07WYMjM5gnRzFPjWKGG0hnSHFeiVYr+4nkeXKqwUQ94b6D47zvu3voK4e8ectSHjw8wdLumE/dtIit4QgHHrmHPf/0XZ763td48vYvc+jR+zm9fzezI6dp1WcRJazccgW9AysodXXTv2YDfevO47PFUzy3eiljxRu4etMq7kiXMr8S8/tLZ9HHy7yoHFFSwp76YxzgKcyunYRf+TIUi3R9+m8J16ydG2vmHL917DSfHZ2iSysqhZBPXrWGZv1x3tfxJ1y+d4ypTs331vTxp4XVbF14PX9+6X9n/r4+esd7ma8W8AuveANB8ONr4mzo3shXDt5KQspzlUNcWdzCFb+8lcuXdLH92WEagBtuQdKitxCRTQ6ylj4iArQodjSfpXLmMH0TY8ybnqTQ2YPMzjBwdJCLn36GW298NQ+vvYArz5xiSbyCC4oXcklzM2vNGhZLjc3pRjaZAYo25ng5Y8WadZy+8jo+17+cyUKRosArxu/iSPIdBOFlYy9HJh3FiWHCM8cBi3OOqYHzWRqvZ388SmHqJPP/+F0cKEzz9mUFys1Z7lgc0zc1RL9egMWighK6dxXB4ovQncsIV7wYWx3DDO4nufcuGrd+juadP8RMThN2CqGZJCov40WLqjyeRjw3NY9tyxdTDAMaNuCJySKPjYX83gVLeWt/L1+fmGZHvcmd07Nc2dXHpb1ruWfoLvZM72HLNW/n6tEHeGa2wni5yMnndjJ1/CiLNl2M/l88xNrFXZjedaTLXkRrw5swvWtIl1yJiyromRPo2mmioUcpPfUZCnu/QnPdayEo/B9Zxv/nHrSfrG2/+xFqEpMpjViNRdOQiJJLGHO9ZGknLddBgwDE0ZAYg6buenwOllNYAZygAEvgy9hrSEVRVlXA0bIVxGmssmTiUE5hFGQCggMLNV1AWaFOB6mo3GJbIDaWamRIlCVVjhlipqWDmhTItCV0hqr2YVeZEgrOMhkEGDQWqOkI60JSpXBoMvGgRjlNohSIw6Go6wCrLOBIpEjLdSAOEB+2ZESREWKCDJdWaFHA4UhdgURlJARkRFgl4BRGOazTGAJmpIQVR6Y0OEWiIROFI6SqCpzWnczYhaSug0Q0ThyJK+NsiVBapC6ipRWZ8/l5IY6EECMWS4S1MS2lMYQYF2BEsCicDRjTnSQEOMAoRUjGhPRg0VgX4cRiCKkFUNMhSeC/axU5oK+QuRgnDqstqVNUpYQFENAuwihD5jQtVSS1RcSGmFwOVlkiMqwLaUpEpi0COECjaSkhE0HZiEx7eaamTEsCnHI4F2FMRCMIMMpQUxEmMFincAiZBDQpkonXUUOAxcvAOC9jYwsYNKkIDkWmLU4AFJkr4pTFmSKZ4PN7TYGMAol2NEVTVxHKCZkt43SDNOugqYWGlHBpBw2taITW5w3qAOc0qXjw2zTdVFVMPZtHhiZVghGwOBCFZAUyCWmFKZJVyFAkKJquA6ubZNqH/YqkpAoSV6ZGBes007El0Q4rXs9SpXJPtGBdjCGmqgJaaT86mPHyR2MJ5tYgUxkt7eUoKAJaWBcgNiKRiEwJuIBEQaYE5YSmClBOaBGTiMMSkbkI5TQtDVbAih9bqhxiYlIJEeufmaVsgFEWXAAEpNqBCUlEkxJibQErBhFIRJOZIqmNMfktLQmgpS3KaiBEWw1YEqUxLsYBKIN1IcoGpJRwLsKJ0JIAcYqmChCVkIpCJPNhxa6TllZYNNN0kyhHQ4qkElCnhKgMZwNqKsQ5QUxEXVtS0QQOis5RDVOMKFoU6ctSZm0PxsW0ghZKMlJXxIojtEJLIrKghQPERJSsP8vqZh6zOiAhyM+QkEwUFdskU/jPUCElRJzCIP6fJGQi1HRAPVAEkmFESBSkosly+VlRpBKDjUhcidSWqEmFzBVIiagHGofyOmW6/BkpjpSQRAytsI4RaKmAAEglQuP8+pjInx0CkcvIRFOTGGNKRFax+SUvfsH70c8MQfviob/nY89+mG3Dl2HFsWXTpQzvr1KbbDGwqZfn7hnCtHYR92seCTZxdTTIq266kXl3vRPBMLHgN3hs5w6+cdMbaEUxr5FJVj9zIaV9K5lZ+CNanceIWitwWxXB9UsIi/86q7tWmlgXqGU1flTdzsVD15JG08zMTrNl2aW8/eJfZ6C0lNONkzw4/lWu3/AmfvDIMW4a38uCwUHsJeuZnliKBE1OTG4gUI5FwR7OO/FD4tU3c0cas3RZFxs296MvXYD0F3GBwJkGjDWxz05Qe+AkZriGxAHSGSHqx5NJ5xwnp5p0FUNufeIkf/PIMZ48Mc3GYo2ugw/R3HEH180+wdpTj3D6qYcZ2vMMI4f20pydQQcBW193C+uvfSm1yTHSZgPnHDoMObN/N7WJMUaPHuTk7p3sHD/FUTaw5dAU3eUyXz9dYMHkYW448gPK4wO8uHMhoQi7zTO0Vlq6u+fR+7nPgbXs2ryeiVAQpSn39KGU4q+GJ7h/tk7qHN9cs4TK7J18cf+f8EczX+b8k1WcwGdX9vORXR/lhv43cMuGl7P9ru8zPjZKFEW89rVvpFQqv+AaTjzwNDcd2MqCVg8P9Ozk6NJJ1sx7MX84Ncm6LGDecIuTKqVzeobCzCQ94Th79HEqrsAi18Mas5COniIzo4fpHRtj0eGDrDx+nMWzdSrdG7ig63LWtQJe3FjN2mQ+1pRQGGZ1lXsrQxjuZ4P+OIvC7zOxSPjgops44jyAuLpS4gPzanzu2J9RCsp8dNv/4MYtN1Dd9QjN04M4k9HRGVAYWEAz7OVoIaFZKDA4sITxyXHGR09yweaLCBfHPDQ7zLQZ44A7wNPhcWrjdUr1hDOS0BF2EHYOEC7YTHTezYTrb8IsWEpt6Awzg9OM7AkZOb6Y1liVeMEmrrrqAjb2/jkvWtWC6GqePDFFah3WwT8+eZLz+sr8yXlLKCrhhzM1vjY5QylazBv6N7B9+F4eGXmIm677L1xZ3c7BE0KmFa3ZGQ4/sZ0Fq8+j1NXzkx0QYZFs8TaaF7yV+iW/RWvlyxAs4ZknKT31GUo7P4maOECy+uX/RxUU+TlB+8naI/c+6ImCkOcdaUQcTVsGp6mrkIaKcsAvZMQY0WgboEyUkwwBNJlECI5UWywCIqQ+cAYjAU4URsSHEIlgPPvxITVKexAoIU78OIwIRllioKGtJwgCjsBTLxegEFoaDJ7QZcrmvw1WOU+4BHDKh12p/JoowD+M3uQkzYgHrFYUOIWSlExpMkIy0TixiMsRjrJkypFJiFEK44p+zGhwIQ5wePJqCHACFoWI8aTCBZ6AKkOJxIM2V6AljjRMsaJwomkpaNgKqfLhZhpHJtDSkl8jABtiCHHKYvDkTpwnWAIYlWG1weYUOsoCWiog016emSiMKFIf8ZSvZeDlY4tYgjlZWjTGhVi0JzhOkymHwYM/ZT2wb2kFCEngsCgyIlJCQLyMEJQLcc6RBs57NQixojy5UoATnIKUAEOE0Wn+mu/TGwc8uW4fccqBc/7aVhzkOpSIxrmATFtvHMjJmYAH2soTvkRbrIKWEpyoXD6CMhFGPMF3onMyHtPCr0uqrNcpAbEKnRXIxANX8ntbU+ucHPnBWtrAW6PwOpzl62SUwyIoG4IYmjqgJQqDJrBCqhwm9JFGXmZ+vAJz6y7OYUXmdKJFiCXE4Pc7yvk9JgonguDX0booB+IRhggrnpQ5vyRz12wRk2i8h1xCWhKgncrPBBAEI9rrnTivR3id9/vee3A8kQ5JlSbN1wlxnjQ7P+ZMO4zyZ1CiFM4FCI7AxmTakCnn964rAhanLc76sXsiLt6TIwocZIQ4bK5n3pjToghO+zHlsvF7Bm8oyP8WG+V9OU9GNWRoXH6upBLlRh1N05ZRYshE5UTK65DgPElSFpefiQqYiKBJkYZWuVFIg4m9IUtcbiSKyGzZrzka7fz55kSwIt6QY0tkyuuLkeCcNdBY8Wdz5gKcuPwc9eSqTQSVcxhl5/aAVV6G4gKcykgoYEXl+0aDKDL8WeBJvN+bmWiKWYFMGZpaUVURV99wzQvej34mQhxP1U7yjod+hSDRvOzEy5AOxeuvexuP33aCecs6mDxVozoxQWvqM+zvXMeD867hgxcm3LR2EfO++ypSNY/JN9/L5/fv468q81BO8YU772FV/zUEoxnZlZbBzveS2VFKpYtIkhOsWvV3FOIV/6rxJSbhI0//MUO1U/Q/XmBN/WaqPYfQgeatb/0NjrQO89m9n2KwOojMVnjvFwyjK8/nip13US+V2PnWmym1Ylqz80gmz+O67s+yPvwhSe8m/uhFt/KPEzPcumoJF5bO5nk55zAnq7i9k7iD07hKCDOJD8+shKhNPegt/ajC2UcIDI7X+H8+/02uiEYZOXbIP3CSiLKpgo4IldCzeCml7h6GD+xm4IItPpxxbJg3ffSzPP61v+fMwb28+v0f497PfJzx40fo6FuA0gGdCxbR0dfPF49UuafaR7n7YfprWzicdPKG1RFbhh9iSeEGlo/6iohPcZjR6qNIrc4Vjz0NIozfdAPHiwFTZ05iswxrDfHqDXx7yXoGl6/DhA1KQ+9nsczw96Oj9E8ntALh2E2/R/fKd7Pz+DS/+83drGCYq8JBRAe86Q1vpq9vwQuu3fhXdxAPGg5O76L68n6+YL/JseoJZjtew0J9DW8fG+bUsQOM2yJ3Z2toENKLYZU6w6/MnGZjtpi4az3YjHRwO61nvwrOoAe2UbzkV3HZDMQdUIxJGobTzvDgfMVT9YQdjVFKHafoqIzyDvsk31zxVvaUz2NZ6wSDxWW8d+E81qvT/KfH/28C0dx2/bdhqs69n/k4pe5epk4do59TvG7gWWY3/g6jD1aZefhBRje/hMNL+pkKqyQYlFKUSx3MupDnOlaxbmQn2ho0jkXqIsyZTrpaMxBEBEHMZWXvwdLib2yJtZxoNhlMLHU0VvL3dcaJ4jRfDYqEolgUhQy2EpakikzDKy5dzNuvWc5D1Qb/8cQwDiiL8JbiIb69/0MUdYnbr/8c+k9fxg+OrmCks8RAuYszJmXLL7yFdVff+G9/1IQ1FHd+kuJTf4NqTZH1rkNas8y89NOYRZf+2/r+GWg/D3H8ydrH3v9nONXCEALWExMnWLGAZyy5gwzlHOSAxYqnB+03NRlGAhQ+3BnwgEX8dwSLth4gnP2+13URS2BzwCrOxzXiPKnKSZEVUDZ/5iMOp1x+nbYfoN3O7h/lBG01qc5QYjzAtNqHHtoAk3vy5uaSf0c5BSrD5h6/s9f5583PQUmGOA8anaQ4FCoHXJkyCA7nUSJKHFiNVQacIrDMWbUBFA7rBMShnOTAqz1fh4jLCTEoi38PydcMLzvniYo4jVEmXyIBl8Pmc8QleEu3nzv52oA4QeHvXeL8+gsO5TTiPPmxYlFiwQZYyUD8mGxOVJRYL3OXMwbnCI0m1Sb3ePh+va5lKBf48eHmyLuIQWyQrxFoK5j2QPOlD6yftxXmyI+S1Otq7lmxIii8bKwIksvJCSircCon3+6sPASLw+uQNw7ktNtqIudo6rOClHwynkCf1Stx5GAcbyib+4pfS8HinEKbiCzI8msqlHV4+gJW+T2krMzJ4WxHkvfl967LXxOxOCcEJvThkGJy/XTn9MHz+8qJjL+O9X0gnnA6jdGZ1z3n8NL08/TnhuTe57wPh98TYnN5tilbW18VVszzxu/a7C/XUXeOXlo5u5+NTnDOk0ztvB8WLC7XN8GAiPcS2nY/NtcLR2AdzsYYlZ8J+ZmjbABkXm1Q7SEjLve2tgcE+f4E61RuFfB7VpzkxPjs8ihnc9Lp+xErc11p54ngWX1TRCYk0y2vp1gvNevPQL/ObV1y7SWbk53gjTPaOYw2GKuR/OzIJ4PKdc6JQlub00W88aptgJpbL0AMzmlEDIGFVGm0BassYtXzT2DJjXPtV0UIrD+bnPiot/d/+AO8UPupJ2jOOX7/sXezb3o3m2ubWXx6Mbf86js4fPc0R54cZdmmHk7smaJj3iAj+7/O55f+MiuiGf5i0d0sm9pP2Bxk5DX3Ypet5uZ9Rxm2lt8YHOad+0s4Z5Er5lO4chkAZ4Y/yfj417C2jlIxq1Z+hlJp0/9ihGfb3snd/M4j7+LXHnkvUwsPIlpYvnwlN9/8GgAeGd7OB578z9QG30Wx2s+HDtzOitP7ObB8OdEtQ3R1zdA49scce6yLG7r+klXFHUyuvoFLF/8OF1Y6+dzKxT8WsLZlmx2fwT54GpdZmGjhHMwyyYnWEEfqz5Im47QadcRZRGlGetYwkI6wYutVXP66W/jex95PsbOLQqUTROicv5C4XCGudLL8ostIGnVMmlDs/DEVL53jM48c4nOPH6PQvYv56iKazU7+801ruWplL+n9pzA7x2jiMK/ppm/NSn70+U+y+rZvIK0WR6+8jKVv+w3GTxzl6I6HaVZnfDjO9CTK+jCbVmgZWTjJH/cdpLuZMTIvonbzl+no3DY3jif3H+aRu2/HOfh2solEl/jDm9bysg0L/oXsRv92Ox1TZawzjG9NqG5Zygd33cHykzAwNYFCo4zO77IaSUs8kS3jOV2kYBI+/08foW/davTq6wndBsDhbEb9R/8NNz5EsObFFDe+HllcZG94Px86sY4zyyKqYYng0CyBCH/+6g3cF87wzekM64QNjT1846n3MBNWuH31Ej5XnWRlxyredd7vsHi8wH2f/Qucs6y68DqWj+9kNuullS5nRi/mvDv/hGzBMs687kMc2jvDzR3wZFLnSDhMo3gGp3JPihPEhDidgEDUmE+ltoJSGNNqSH6UOHqVZWslIlZqDo5NZykj6QydT/89hxZcT7VnAYe7FN9SZVCK1Pmb8CtrEWsyRQb09peQ7ohPbNAMR6AEttkd7Dv5l2zs3cgnws2kn/pbnhvrYe/S+bggJIiL3PCb72H+qh9ftOR/q6V14v3foOOhD4BNcUGZZMk2qjf9FS7u+ve7zk9R+zlB+8naR/7oQx6E0Q4X8p4t5YOCfQibaQN9b1H1LScnVuUAG7RTedgSZ3mTPO/j5wAFzn73XNyTgxRwiG1bmu1ZL7Bz/4wrnfOH8z+UOKz1HhaEc4Bj/qE2OhKbA0btr+c8MLTnEiarsJJ5L83zJuJ/tQmp9+x5y7MnN47sXGCt3PP6RIzPvbX67HvOEjjOejhwvqKecvlYycmZ4Kek5s64tteoTdByV04OuFwuP49WJfdMnZXnuZDIg/z2+s9ha9w/E3UO3jDeI3DumjtPztoXsYrnyUDwBUzs89bPkz+r7BxpaYtbzc0z/2xOqNoGBN9NfnFHThqYC1cVq/KcmLzfOfTvztEr5mR3lvqcqyc5cXKSEwHVZq1+7Pbsmp3l822DR26QaHv7ct+HcxrBk07v4bEo5wmoOId1CiUGLf5+7JQjD4zEEeS6ac7qovM0RHIvY5voWGl71Np7K5+rFQK8R/as7qg5Ocz1k++5NrkiB/Ttn2I9MfDGjPx9aavVOYohFmWDs8afdhNyKix4p5o9Rytkbp3n5JiP3xNrT+C11b6oiHbP219+r2hsrm1++rkv2Ulu8FBzMzu7vfOzTZlz1jnvwp5zRnjlPju+ObnnEsrPxucRn7auclZn23oYGPJzo63WLte19vB9f3aOmbWJsKEdEaCcPzdN21NJ27iicLkxCZefO/m2FvEeW9oBB7mcC0ZIlDcMSE7UAJRkZ0msl1bujZtT/rN61l7k3If63g9/kBdqP/Uhjk3T5O8P/i0zyQyXnLoEK5bz11zAs98fRglMnWkgAoXCE9QmR3ikZxtvjJ7gJYVniOuHmR7qpD6znC9Od/JYZEmV8PFdGVU9xk61nUPHHmPVpVejg4COyja6um8i0J00m4cYH/8aYbSAQmHdv8qS//0T3+F47RiLjwzT3byerDDNTH2SOIrpX7iInriHneM7mHC7+YXHZ5iwigtGDvPY5ds4M7mOgYEZegdG6Oy4kScObKQiZ1hZ/SG3jN7NB+e/mh9M13hld4X4n5XeLxRC9jx4L0FvmdrChNu/+acUVywgm6xRUT0sDBayrrCJVcXN6NIqBpeu57X/1zs50ruJN//ym1m+cTMA666+gVWXXs2yzZey7MKt9K9Zz7xlq+he6EuX6zAkjP/lM+NqScbvfuM57jw4SNh7P62Ja9m2dDGffuNmVnQUSG/dT3p4hv1Nw1MpnPeiVQS2RfEDH0CspfArbyPYdCELL7mMcm8fJ57bSevN1/CP8QoyFfHURRfTVd3HsgVNfr/8HKXUcmBFmfsGr+TEjmFmRk4TlzsgjLjzu7ehRLjiJb/IogV9nJxscPtzw3zpyVMY57hkoJvq2DD1W/dQnikwLjNMbsh4wE2z7/4HWDHSorvZQhBqqkYkAYXUsejM+ZRrC3jjrn9kwexpdvSv5fbV1/BEsIBXBavBtBAdIkoTDVxFNrQLM7QL2drNPevv4Y/2XsKiroMMnZ6PmkhAgbloHk8UYcZqBuKYreUiNjnKWwa/z9dLis8oi4jjFQs20/WI4slvfR6lhWJlgHRqDSPpeoazdaw9dge95gytaot9L3ofTacJtLB/2jBrQkpJNx1mKevWXABiaKQzGJW2jXNkYZ3p3nGCcISw1kccpWQ2QiUTmFMPMj64g2pQIQoiahOHGegaoGPZVXTHRWbpoNBybMQwZX1YQ8kKu2JDVhQGWoo7bJ3uBC57qsblexusPdHiuytXYgmYmtrOV2cPsfX6TzHw4A9ZNDTB8PwyzSSj3DMPkyS5UeDfgUDpELNgM/Wt76a16hXEx+4iHHma4tOfIzizy1uve887C1L+f9B+HuL4k7VH7rsHSzAHUnypIYG29bbtRYI8iAfILbQqv1kLFqc8MXFiQXwWkDjv+Wgbn8UqjyGUBxNtyzWubam159za5Z+BMU+i2rqqcWgrc54il5M4J23rLTgxOZD3sxPnznnf05CzJmiZs3B7xNj+24EoT3bEAxnl3S7+GogP9UEj+DG0wyBde1+JyYGvv2w7XMoDuIzAkZPRyBPcPDQPAVEp4gIPrvJ1IZenVQbQKBugcflYBSVngTTneiRR/n38NaIc21tRiFUoAec02vkcqTlJikW3iUD+quQguw34z/Ici3Yaq7xs2kSh7cUQPMhrwzYtBml7MvK1Jg8F1S7wYW5iERvkYFcI2h4Vq3Pc2x4Pfh3EzAFoZXVO8IwnOUI+Fz2Hu9t5hi6Xj+Rkrg14vRC0H7voOf1pexN9xpLLiXSuTgjC2TVXKM6hNChyXRUP6t3c90CL9X05Qbd7V3PcNwfsOZGSnEiKB9Ui58gQM/f/tpdV8h3uJNdBMbl+txmVzeec63wu2xz6+xnk+UguX3E/RzW37/S5up+PzXuw/Roqsf5Tc8YZyUOivf6G1nulnVPeq+oElPEEW8CJIsgJtsKBMt6AlBc+kbYnLQ+V9F5gfzZJe9/N7Q+/mdr7UaPmPH8ml+1ZZ7/LCXq+N51DzvEaOuXPKZWfJZ7UB4Q2mjNiKc56wtqn7fPvv4KoDFFt45Efa/vYas9f8jhW/7rNw1pt+wr48Gq/Rqq9V+dCygUk88aDtt7khhY716cnYamSOd1sK2Egzp+5zhvznaizZ4yAcrkxoU10c2k7p7CiuPb6a3mh9lNN0BpZnePV43z92Fe4JX4rdiyjsrGLDV2XcPTJMUQLSguXvHI5e++9laZEpAPn86HzT1I+fjc2g9m+3+K0uYr3rwvpTRxrWuO84toGe47tpjo5QlgoMbT3aZZftA0RIdCdKBXhXEaanWZmZjvV6iN0d70EkR9fZKLdVlRWsqZzLXeOfoflI31oltCMxjhx/AQXbd5KMSryiqWvplRIuGc44XBxLZef2cPizk4WP/0su4PVLF0DUe8DbLziLTy8azULw930myNsao3yj92X80y9xau6O8A5nrnjW+x74A6e+PZtHNh+DwcevodjOx4BpRiZPMZDbobC1nl8SxSjdVisQpYGnVyU9RIPJlzUgGBRGSkF/6ZQsvfcvpvBmVPMmknMzCVcvbqHj7xyE8Fog/Tz+3D1jKHEsidxXPmmNfTOD5j5L+/DTk5QeO3rqbzjN+lacx5T2SSfOPgJ7ux6hu/bbdRKS2kVh/jINdfyovozvLj5ANrB4xu7GZx5B+lMhdGjBxk9coCDD9/D3vvvQE2OsLRSZn455sWXXcjrLlrCUyenODHV5MkT0+wanOSCh47gUtjHMUXt7FAAACAASURBVB4sH+TA5CmSiTGMDpkodVB3NWJrKbgCZ6JTtOyTvPT+H3Fq6U3I0m1cOX8Vbw4q3IvlUKGTIwqusgnh+grSDBArhCuuxrmE1n3f4t6hdYwMdHN4ZjXlULNuUQf1K+ZTLQW0rKPlHB9YPJ+3dHdxWX0xH8pG+VZxjMA53j0yTcf2hFOHjuMQLrhyIQtqPWSFhVQq0L2oi+4HvoIaOsYTW/6Auikyb6BC/9ouuhcW2VqrcV6kqc0+wKbXbeXireu4fFU3606XWTm9jJ3dVaKkhTaGFilDS5uU+ntQU5byooWMxCtJwgrz936V8NgPiU8/jqRN1MASYhuwtFhitTYsjb7L+SuGuH7h33Df1NXUJGAIy0jo2GIjbpMafWiW9hWZv7aDHQWHidZizGmcPcJDY4/RkbyPVSfuZ2C0xuy8FRw5tIvBp5+ge/EK+pat+N/Wz3/RRHClPhqb30m6eBvh8FOEZ3ZQOPx9Sk9+Cj3yNNnCrbi489/vmv8ftZ8TtJ+sPXzfveAiUDYvWpBb0VXm81KcAp0CHkRGVpEpn0cSkqJ1Yy6HxipDgQTrQrSkPu+ibXkVT2oCcm+TuNzq7T1vkQlyS3Seo6I8kA9JCQSsiwFHYIVYNX357Xaui1NYbQmsz7mJjMaKI3CSkwEPNp3KAZ1YT2JE8B4uhUIjTqOcpxwi7qy3MA+zdCKEZLnnIwczOLQTnE4RE4EkOWDJ8owvQanUA3/va8KKz2/zeT+awIYY8Q9vJvcMWQQtCYJgde6NaoO8tldGW7SzOJV5gizWFzHIganyiUZo52G+lRxsKoNyijAreVCrMrQymDwEzukUpQ2S5z+1vWqgCaxG6ya4YC6csJ0NBw6lTE58BKUd2to5oq2sykG0zBFfAYzyfQQo4iAFq3LrvKB0k0hSMnxuUIDxeUnKzoHgs4Q0X1PtK92JE+99csEcgPfkwa+pKsygsngufM7J2Zl6vfWAV3IypKTtRYOCns6LavjQvsi1PTWeIIPOvUKeDGsHgSlglUVLmldRFFRe0sTlhDGUzOfoKYNWWe4N8fulYMQXWFFCTObzk/I9G6oW4umxz0nKCZGXiqBUhnaCKIsRm+erWQRFYNsknjnCq1XiI04QVBZ5Hch1QaTt2fLriTgCyfAhfiFW5WF2mFx/hND4wiwiEOBI873rVAYoT8CcRukMhUEkw7jIe3nEoSX/nPWk3YdCBzjtSajYAFEpjnyNlcPqnNQ5n1ypEGIHRmdEJpgrghO6EBu2PCG2niDbnGCEDrQ47Dl7zKHo0FMYF/v+crIZ4OUTqAwjPoQVfMVQz6byMFqxOCVo54itDyP2umARNKFkBLoFNs6/52jTLxAfEZbPTSQPgVQ+kkc5n+/qVAYuQEQR5LszdBYrmkA1fQ6nDQmdIrCCCuoYQk848wgDyXMz27l1KIuI9prdJsVOI2IJTYByQX7++OgFp4y3x2HzqAx/Llzzs0rQPrPvk3x6zyeIdMSqo6vIXMqvvPrXqI9Zjj89gbPQt6yD1VtD9j1wJz/qvpRta/q4KtxNOLaHM2d+FRO+jA9uLLKkYdnfDf8xej/rV7yH/lXrGT1ygOGDe8iyhObsNIvO8+GMYdhPZ+fVlEuXUq09TKOxh8nJH9DV9VK0Lr3wHIMiA6WlfHbsH1h8fJQKF6NdhSSe4NCuU6w9fzVhFLKp90Ju2Ho+f3f4CMtGZlm79wlaXZ3MOzHFrribefN20tN3PudffSk7Bi+HyUEubd7LksYoX+7cwtMP/hMzX/gEwwf30KrOUp0YR5Rmwarz6LroWqbX38gtv/kuRuadx0efatK3eB5HuwP+R7VKeEU/F758FeybhJEG9plxzI4RzK4xXC1FemKk8P9ORNtt7/AsM82UvROHeOb0GCSL+KOXrOZ3r12LffAU5s6TOAdHEsszLcv6axaxYiBh8pY3IqGm9Eu3IGnCwRUxf7zzD/n03r9ksGUYmv8HiIpZWXJ8ZctLkdEvsm7XP5CEiqGr3k7lvE+x7PyrOe+aG0lbLVZfcyNHjx1F6rOoLKM+NcGp3bvYffd3IE25vDLLtctLDBx5gtc2CjwRH+KZYJDT4SyzYcSBRau4a8M2GraPjacqlNQo4oT9nc8wHO6mP95IsmiAG/QaBgoFAhUSJ1Ve12qw287yaFjgVq1Yftlyzrt8MerqhcwcPUWpuAk6F7HxmW/zWMcm+teu5F2v38B3y5ZAKRrWYZxjXqBZ/9Aku79xlO+Pf5MnytvJlOEPD5cYfW4ltWbM1hWDRJsXcmLPLzGerKBpA5bsu5tF27+AThvYd76Hi959MxfcsISlm3pZsKKThWu7iS9bxPiJYwykK1DPzDK8/X569r2bnsIIUruOYtTLK/QZDvX00Kw3KDTrNGtDNEtDmI5pllxcwskyjnVexomBFzO07DoWHf822VPfIx16FN0xgO5aTMGsZ8HsRjqTjVy74D4mT0acLHQxoeBwyfDr16xkMLJ8a3yK/TblAwPz6est8kS0GZfNkHEafX4FF7yEJWMHWHLiKOP9v0iDJqee3c4zd+1g3wOPMjXcR1gIqfTGpE3jDZsvUBTnX9Ns5zKaF7yVdMk2golDqMYYweRBinu+iBOFC8u4Qo9/LtvPYPs5QfvJ2qMP3ecRctjA38qhZMEFDZQkhMqgIkPQ7MQpSxzMYl2MhCnFYNIDBeuT7AviCKMWLVNC6SYOhY6qudVc8DllHsCjLSonJYIQObDKkxh0OhdmXZIEhU+M17pF4ITQBbhwmszFBEEjJ4egrSZwEd02QQc1tGS+gIfgAWAO8hHvqRdlsHnRiAgQlfkwKVGARitvVfaEzoByOLEUnBDYEKcNKkjpDocI0SQqQIcNQmeJMDglOG0IpYm4oieP+JwuAotTPuQndvgiJPnfARblIJI6KvBEV4tD6RbOFtA2pCAGFzY8oQiaIJqCnsK6EtqBSOaJoXIolWKUB8SFNCRQLZw2FCQhCVNU2CTUdcT6Z94pB1qloDMKqoZKyjhRhJIQKf9ogXaeSWRzwGs12kY+bFMcBZWgizPo1Bc4KEXTOOvBO9oAZ71jba+CVpqgNIqzvpiGwqHiKqrnBFHShdZNwtIY2sR5YQKHBGkeqqXz0Djl1yU3+xfDFhniMyyDBO0CT7QEdJgCmhIWyqexaQ8OR6QgzHMJA4sH00GdUjwGLmRh1qQR+uIbISlCgI5msYDR7Vwoh1K5d8LlxC1oAiAq9ZmYuYchjGpYU0YhhEFCoAUbTROVR9GtClYL2ml64zOkyuAkQNuIQFKUMmBDtAvIlAEX5PMHhyc81mm0Toh004N4G2AlQMT7W5ROPNkPZnGmCMpQUHVEvMfD02WLCj2w19oSRXXvmWyvg6QEkhDlJFGFKZ3BBIktoVULEQVB6h8F4Py1XZASKOONNZL7f5QliCfQzhHoBGejPKEyo+As2Bir07kQWi0pEiQ4G6NV6vU+p/voFKUS0MY/AsJFFLGIDdFRFWwRb5qx2KCFEkfRaE98xRHolFiys8YA5dDaoFRKoXOEZmN+nuvl91lR17AuJjAFXNAk0nWcys8PFEGQEOk6mAJKCYEEBMEMab6XlAtBW2LdIFGevKu5vEGFBClapQS6CQToaJoCTQwxKIs2IQUboOMEowyRKWJ1E8k94IFyZNpQULOITojSTkI0mVPYMPNGgbkoAUXoHFocBl/8ySqLDusUnGCCZM4jGusmoQ0wLsZELXABoQUVpDmZBsQR41CiuPJnkaDtndrNX+3+C5q2ySu7X407aXGh44I1F/PwrUexmWP1pX2UewsMHrifqcGDPLDwRv5gc4uBpz+OI6aub+Gu/j6+taLA0U5hA0/xSz0VurpeTFgosnTzpey7/4eEhTIjh/dR6uqmZ8nyuTEEQRfG1qnVdmBtjbHx2+jqup4geOEKcyJCNZ1l/9hzLByaoqCuwEpCLTjNqcFhNl64EYBiUOTqlQv56/0pN57YxdEOy4rhacZ1PyPRAoqlHzJ/wZtYcn43I+GlBEe+yrbWc1w+tZOPb3w78cwk6xSsu+ZGrn3zW1n/irew9orrKC5eyfGG5sP/dJDv7R5h/YIKxyYbFELNf3/tJq5b20cQa4KL5yOrvYfATTQhtbihGvbJMcyuUU/W5heR6McD08xY/uD2PdxzaJDHjlg6evfxtVtexZbOTtIvHcIdnYWFRXZOZxxLLRffvJRVXaNM//qvgjXo5SvZ/voNfMh8la8d+zLjyQRBuISxRf+VSJe4a8MG3pEO0vuNV9B1+CHEwTPXv5wFG/6CqFBGB75QRTR/IY8/8zSzQcTiLVdx89t/m1JnN9ZarDEMHtrHqckJTk+MYkuK48EorjbBpNXsWLaWh8+7jIliHzceyLji8PdJyuPg4FWjRa5JruSNjTdxRe1iykEfhwqH6Wh286O6Yq8RFl4R84a338gvbl7Mj45N8L3dw+wYnmVq5i66RidJmvOoVBbRXHUDNzx3O+VwmP+2ZA2Lpizj4qPAb366wdJjTcLBaabiExgyhkq7ef0Dy6iNlnAotq09wWXl46zMjpJcfC9n+n/Al+bdx/WPDtJRTeE1r6L/t34TpZ9PVNTMCYr7v0b/+F8zm9Rw2RoqwRIa7lWE6R7i7qP0TF4ErRVMXrye05dsptcZ6hNjCNBs1TkzPMS0HGfZxd1QaVIfLTO+8gpMEFMePoAdeox06DFcWkd3LiG0fXTNbua6wjyubz3CGTOfMwIrOgNeeuESDk81mGll3LZ3hPp4g09du46X91/Bnafv5mRzO48v2smW8zuZ//g4S888ycL1qxiNy6SNQUw6w9Sppzj+XMyBR2c5+OgwU2ca1KZa7N9+hu5FJaJiwOjRWYpd0U/kFbadS2me/2ay+ZswPatoXPCrVB76IMVnv0Dpqc8g1dPYrhW4Yu+/us+fhvZzgvaTtSef+A7WgC7WcE6wLmA+CTasoruHsRITFepUMsGGBhNmiIsIeo/QEU+gQkslNRgiCh1jVCpTlAs1tLK+GEQ8QxTVfdW1rARiEG2JtCXLyVKIYwmnaYUBUVAllcCX2FZCVzCOMiVSCQgrIyQuomgiyj0HIVBEhTqSqZxMaJyNKWcFVi26k247TkIRowOi4jQkFZDM51toi3YK0RlBYRaVdkJQxVlfalzCBqIMgqEU1jHa+29CMfRVhmm6MlleNrsnqpH1jtCq9yDaEJBRKsxQj6pgSthCjZINsQ5EacI8oiyM6ghNIqdQWcXnX4kQxOP0Fo8TqoTEdlAMZ0ldkZKqUpCMpgQQZAR5aJqtTBEqhypVoTiFapXnwrkq8SQD/btoTC9HExCWx7wXSBQF3URCi7MhHWSYsImkZSralwlXYUKxMOMLp+gEa4sUSdBBHRtmhJJ40igKXaiChPR17MXaACHAmTK9tkUSGLLAonSKCjNUVsKJI1SWQDJUXilOAcXeI9ikiA5a9Mzbi8nmIUFG57wDOG0xUZOOsEErK3oCF2S4qE4hz5kLwpYH/Tgi1SLsmCRrdqKBULWIlCMMqygxGCWUu4dRLiYNm4S6SUFZwuIssZpGxBBbjeoYpdA1TKJBB00u7r6frNmDlYggmkHZmLAyi81KiCkR6ipKOQLRoJs+7y1sECmDUv65n0UHWtcoqCq9qx6D6ZWINmRhgyiexihHpTJJlhUxLiS0MWFYp6t3L03TgcZRLA2RmQ5wmkppnEwLsYVAT+OpV+QNEwo6yqOI8qaOomoSxQlONNZBXJjCAkVdI3MRiKOTKirKyFCIaOK80EhQaBIGKVHYIouqSBaiwjqxa1FQdWJdJ5UiQVyl2DOOSUPizlOUMl/RT8dNX/o+bKJLU0SVMaTZhXIBBd0g6D1FEM8QEGLCFi4rQ9CkOxpD204yW0AFCaFuoURQyqAKVSrFKYimcOIo2RCRiLhjlCz36hSLdSRI6YnqaGdoCsRxggsbhKUJjCn4MMwwRRfqqMI0kWSU1AylwjBJqYGOa4CiUpmGuEHqJPfgWV8dMqqBK9DrErLIQKGGhC3C4jQdlUl03ERJFaNAEVKMa1hJiMNJrAsJwiaWgCBqgDJ0SBVLiZZOieIqiEFHDSKliEhx5Sk69QQN24MWn1OnbEihYwx0giFA6YTOYJr5wQyioa4saWiQQpWIImGQ0FQOF9WIOocRlREbQWUxxXASow1RsYYyAShH3HGGuJBQKE57w4OzKNEoAXEFKI6ilD8z495BkqTivaZRFTEBTgtXXXfdC96PfioJWmJavOfx/8BsOsMl87ZykbuEwbGjvPwXX8PYwzA2WEUUXHXLOgbO7+G+v/4oAqzddgM3T92Nnj7GUPPvON3Xy3/cHLBlZhelwhS/Lx9myeL3EkULAVBa07tsFfsfuou40sngrh+xYPV6Kr2+xL6IplK+hO7ul9Fo7CPLzjA+/jXiwhoKhZUvOP5L+i7l9ubdLNo7jbKWuGMlPUuLzNTHWThvgGKxiNKKeaUy8YI+7j4yzSsPPcOzyyt0NwyHK+dhWi0O3P4g+x74J4b2PcSuM530FRI2u8PcMPkYH7vs9/iVK29m80UX0rdoIf/pm8/hnGN4psXH7jmEEuGXtw7w6LFJfvvqlfyHF62iu/j850upSohe3YW+dAHB5QshVLjjsz6293Qdu2MUM9nwkSSVCAkU1VbGbbtOcWKiznd2DzE66ygvvJsvve4dLHSdpLcegEZGuqTEE03H6GSLsKC5ZH2dmd/5DSiVqHYXOJAe58/mPwRAo7iF1vzfZrLztSiE9/Z3c/Xj76Pj4Q8jJuHU4jKnLr6RJes+jchZwjg5OcFtt/0DrVYL5xyvfs0bKHd0UVqwmEapE1m4lNPGkRV8AQvdqBOdOYadGadrapi1R3Zz2e5H2XTqAJXWKVbHa7m8vpQr0zVUCisoSQeIMBNU+eKCH/CtJQ9yX/d21jduIGkIpVUD9K/qohRp1vdX2D88yZ7hGR492cvtzQ4me55jstXPJbpIYeAyVozWWfngV7l96zbmTVve9kiVTYliVW+JLy35EqcL3+VMeTev3LOWqNaid+lKXntNB6unHyZyjsDAsrEm4fgyXnVrSkfTcfeVFe5/9Qoumfc/2XvTaMuu6r73t9bu9z79Obe/tzpVqaSSSn0HAgmsDkRvMDZgsEOMHQc/x5CE2DjEfjYmz4lDIC/YxiDbzzbNiyD0hAgDQiCp1EslVamaW93tu3Pu6Xe/Vj6cErYCeNh5b4wwhj0/nXH2Pvuuu/bea6255py//7XM907SMEsIaRJ8599Q+uY/x2ydwOyeI5gAY6zJxmoFKRwSriZSBzFmStBL2LEYc0O9RDDhcursaQDaXgE7S9hyffqdFtvtBQbBAl1ji01/ltXx1zIc24u87eU4S/eTHvoLss1jJAcskmKLgjPGy/JZfjJKObSZ8OVn1/nJAwH/+rVX8exaj6eWu3zm4SVKwuC1B1/PfZv3IlSHb1oDmrsv59rDK7iLp7nuFbuQV72S1eOHgQiVPoPlmuy++hLiYc7pRzbpbkbMP7TB/EPrnHuqiRCQDFOO3rvC7CU1+tsx8TDD8f+G6LAQ5JU9pDMvIK/swTlzD4Pr/gWyt4Rz9h68o58m2n3HKJqmFBj2D7/Wj4j9g4P2d7MTj93NmHmWzDQw/DYqCajKiGJtmaFp4GuDgtfDCvoUxufx/CYiaFEur2AaioqbIfsOyJxyuc/MzFPIxCVVFkZ5GQMLx0gwjBDDHtCgRyYCSv4WKSCVhV/YpEBMVowoNpZJ7QEmJr7TJrBbWDIiwqZc2MYwUqaDFczyAgkeyITdu+9FWRmO2yFNi5Qu+TL52AZaapJsHM+NscwUq7hKjsBytpFSYxU3sNw2gddDpAG+vYWhJdrKCKrLo2he7jFe3EJ7HUxtkuUWlQu/BUYMImWucAaLGHNsC4bjOGaI1Iri2DyWH5P0xxD2kDG/hZHY5HZMobDG3OzTaL/LeNqCvIglHdyJp8HuUvDXEaUeZdEntqGx4wgFIyJKXByvSSIMAq9NsdzE1wmevYlwEkqNs9hWRNyfJDFyTH8bt7JKudSBpIgyhzhj55BZAcsaYGJTcbuMjz1GQ2yj7RzTUYjqaTIsKtVVyhPzVNwlKLXQSY1qZRPDW0ebCre0grJjfL+HXVhFIZkunKFERM90UAjswgaZKXC8IUpbWH4Lx2tjCoXjdjGMnILfwnQ6uP42hWAD2+sSuFvsKyygXAEkBHaG9rdx3CGV6aMIkeCnktLEs6MMuWiCWnEdz2+RyQSlTWyrP0I8mjGGM8QSKaapcBuLJNrHKawxPr6I2dqNW1zEDlr45U0qY88yxSbu5Cn6w3FwUvzSBuQmKqpTcTZItY/ltRGVPpYTUqmsj6Jog0lkYROBgev0UG6bovYYn3wKJ6vh6x6W3WFcDRBBiPYEVnUBR5gY/iZB0ESbKSiTktvDtBNst8fkrkdR42dRXkYcO7hyQMNbJnQFgZ3SqC3TBUgKCK9LbmhsJ8JxehRLK5THTmDFPqkOcIIB4/u+hW/30MrGDFoUSltIN6JWXkernLrO8L0I6XcJlEsuRvWRntfBs2NcmVB0+0gnxC9tIPwmTmWT0vQpev0JtFTYTjKq/XIGBLlA2QaWmRKU1hHKxPFaFMoriMynEixiRGP4E0exnRCcIcLMsIwYQ5qMV4+TSBOw8epHSOMSWuZMTh9BFLZxvU0cK8cyFLY3IDUjnPoZTG0gtEmxvECpcRbDNCgwwLQ3GZ88xiBqYJopwulQK6/iltfRuY1rDcmVS2niKJY/JM7dUeqwklgIgsIySgiKlRXM3KQoM4Q7hOEkhp0SihzH61B0e0xNHUNmZbSyyUVGrh1q2iVwYmKRU7I2cEyN3VhAJAWEoaj7HYRhkClBhsS2I6TdxTBGdW8xkh17HiKxNCRFXJljGAlucQunfpwsLSEyF0No6m6TmdJTWJMniS2NldmMVRYoFzpYpVXMwgqGmeAGbQqVJYruJlbis2fquxiGJtEewlC4hS28xhlUXKZcWqbsLxBpi6K1jTBsVFyhPvsoVmED5QyxCk08q4c0clx3GzMuoKyUF9x02w+dj34kHbRc5xzdfoaz/TO8cepNnH1gntAKuf3i1/DIfz03OknDRS+eZGnxHGcPfYPQDnincYpy9y+IsmvZOrzIr77yag6k57infCW7ogVe5J9jevrdz/tbxcYE9bk9zD94L16xzIn7v8H47gsp1Me+d45pVqhWX43tzDIYPES7/UU63fsol29Hyu9fUAghuKR2GXdvfJaZ5W0iewa3PUaoBzx98mFOHD7NpVccRErB/vEizdm9yO9+nalWxD1XVKgurBKeToh7PdJwSG1mJy99xz+n9rJ3I058jbn+cV6xeS/vym5g/RtbXDgRsBol/MWjSzy62OaK2TK/9fL9vOiCOm+4fJpLp0t/YzThuWNyOkBeVEVIgd6OYcJDWAbqsU3UQ+vMr3Z553fmObze46vHNtCyR3Hvh/ijH3sPk/8lRD26PqLeTPgsTgQsn+yS9YfcdGWb8Pf+T3qBZMMc8L63mbRvvo58+j28feZ60vLLOZL6uELwqUbOq+95I+7ywygg9Tw2fuy9TOx6H/KvpZktLJzlnnu+jGlaeJ7Hbbe9gpMnj/Gtb93Dww8/wNLSAs2tTaoq4OJ4jNLqOmvxGp+/9U2YwuXg6iYFJdkz8VJeWHgR18n9zKo6trAR0iTM+ywMj9Pdnmeh8wUWry5zWq2wf+Iy/tL7DJe3bmbjZJ/V+Q6PqYj/+vkT3OA8zNFwjESbIASnozGeLUgGFZuDwxyrNM3OymW85uuf4q0//TKuu3U3jcstFuT9PNL5Mjc/UmPHWpnEKPHSt7yd262vU+gcJc0NernNqqxTHAyIvmxgZHD0XTW+ePk0C52H+fP5v+C7C1/iLU9/jsWpK4iX7qPWPE5e2okybczuAuy+Fn3lDZx79hgVOUYn2cJKLOT5Wgx9pk99YpxdNxxgfXUZOegRGxZPzl3It/Zdxl7HZu/MDGF3i8jYZlhcYqM8ZLE9JJk4yMRYACceRx07zMad99GdPkRx61qUM+CFeYNX4vDYUsS933yUg3WDs8LBNiTPrve454lVXlB9GR3nSdK8zelSlyMX/xQXnVtB3HuUnbtydvzsr1OdmWXj9AnyeInO6sNcevs1jO2axvIMsmQUZbBck+Wj2yw8vc1gO+bcU1ssHdmmszakNhMw/9AGWmuCqkOW5EhD/qCXgujiN5KPXwamj7V1hKy2j8Khf4dz6isUHv4gsreA8uqoYOp/Kmz+0bF/cND+btZc/lXKYkBQaiLNhEQ5VBpnUBMLWO42UzrE1C6mgPLYMSp+kzi38USCCUxWF3HVgFQXmNj1CLbIyb1lpNek7jWZKPVBGzRK58i9IZY/hMwmMBJq5WUqQQvLa2NNn8IIuuTCpmC1qZQ2KLnb5KHLlH8GUW9SLrSYqxyn7q0QBFuY1S5lZ4AyQWYWnr9FQVhU6mexZYxvx8RSMD12gmL1NIXqAlIqat4W0o0RwSaeFVJ2t6mXTpEXN5HFLabrxzHdAa4REiKoVNbxjAxL5uBvMF1ZwHc7WLmFGwzJTSjaCtGZwfG3KVaXsMyUcv00cVjC81vMzDyK9DsIkTBWn6deXiDUBbRtMDb1NBMTj1GtrmLIhEl3lVB4uGaODLr45RUahVUUCqeySTHo4zVOEigDpQyCYBPfi3CsDko5lKwYUyqq1Xkmi5tU3Q26QmP5PSb8LfSggeu38WVCQfTAazPnnMAbX6ZcXcUprkFcpVBeoeYt4bo52EOCoEll8glsoXFMTW5EeP4A3+ljmwkFs0O12mZoWGgrwjRTSrseIw6L7Jx+DEPZVOpn0LmD7bYJvE2s1Md1epTsLlNjJ6gGa/SHdQIzwitmWFIhlMAWCU5xlTysMhV0GB92MHJJqdRkunGKarBG2e8SGXeopgAAIABJREFUhxXwuli5S6l+FEMauP4m9bF5fG2zq3oES9fIMgvT7jDnbWHlOabfZKy6RqnQBJEQCwtZ7SJShWEoApkRpw4z40fYwwoL6YXkbkZgRVTcIeXiAmQaNylglRbJ0wL7xh9BVLYoWQkT9VPU62coZiHF8gq1mVOUG0s4wfZITsfpUa6fplRqYtsdsqhEwd/GkCnS7TBeXMKyMkwzZMJfJbc1RrlNZsaMzT3OlLeE6W1Q1A4lfxO/cYaxmacQZkKpsEmpuE1QPkvJSnGVxVh5GW330WbE3PhJokziaY1UFlrDHus4pbl5rMI2XuajrR4zU88ipKJaWqJWPYdsnKFWXiNNTFw5oFDdoOF28NyQJCowMfcQ0+VzmEGP0uQRhMzJowp+aZFiaZmxwgZZ6mCYA6bNBMtQFOqniDIfS2lmSou4dkKW1mjsfBZb5Qx6M5hS05g8gkHO3OQpilaHqrFNrgMsJ8KqnMOxQiwtKJkdatUFTDNCxR7jlUW8KEKJnKDUJvbaGF6TemmdmeI6VnEJ1duBa/XZNX0IMCg6PcYr6wRmRIJgduJpikCe+hT8bWarx5CqxCB1cSrnmBibR+c2jZ2PUKotEZhDUjsk7deplM7hKhuSGoGzQeo26Wsft7jB2ORZxr0tssxhvLxOyd1Cez2SsEi9tInjt8iFZrp0FoIWjdIy414Xx07w/DWcgYuyNbPlY3jWNp47QLhdCsEaQaFPUOjhGRFS5tTrZ3GEIvBXyUKXSPlYhsKRmr3FFcrlE3TLGWF/DgMLq36SstmnUF7HtNtUvS2yNCBNXWaMTaozx6l6K4zVVjGNEKUkhlCMFzpkSmAWmkw3TmIVW1x2xdt+6Hz0I4fZP9Y+yonOce46/oe8++Cvcv9ffougG7Dz4D7EA7uJByPtgBf+1AXMHKjy8fe+F6d3lqvG9nNz/f8hF1XOftnk4x/4Yx70At411eDQw3/Ee8/9Pt0bfwX3greD/f2ixWcfP8R3/+wjqCxDmhZXvOINXPzSOzHM5++4K5WwuvYhms1PImWZudnfpFi8ASm977vm589+hsc/9Wfs2Chh1H6SWr3Etn+CwaCLZ5Z43WtfSR6HrJ04yuOf/8QI3wr4SYL2A5pTs+y43uHOl/7m865buOeXcE9+ng2rxjurH+PyeQMZ5jQbJu9440U81Oxz+UyJ2cr3t+lvazofFYXq7Zj0Eyf4L3nER1SEAg4ieIMR0i8c4cq9L2THSgW9FkLNIZ8psFq2iQYZ577wEJfPfxTZ22alDoXM5Fzd4D//7GX8H3tfxaZ9PR/batPMFT9TL/MvV+6m8sjvkho5WsPmy34Pv3EL2n++aPji4jm++MXPYBgmtm1Rr4+zvr5KmibYts3FU/u5/GSVWGWINOEryx/nwctfyHQ2xs89cj/F2hXIiUsQCJqiT1l79HrnOHbq0zjjB1hTWwyzLhpFjhzlwCuFKBYYxG3OXN2gnafccvJn0Dho2ecB0+KQOypbHTME24YgzRXFskO/G1N3LT6pC3jbW5ArsBx6NxX5vRMfYO/Tgr6d0Og5DGb38I2bXsInnv3X1PIOThaiq3v5dvVNrH7rGa586EFEIDCThLk7mmze9CoezO/nkb7Df08lDSxuGA74umdxUZzyctngxXvfhHfRG8EcPQ9aa05/9MvUO1Uc0yclQZsCNxstjsXFVeQlFU4OF7n//m8TJzGt6hherw3AiR0XcvullzK9cIrDhx8nz88TzTQ4gyr79ZB9L7ke88t/Qrh1mN4dfRz3IFNHfhGN9xwLjEFvkc5smd+SPie6EVprNAnjF32MWKwhzFmapVfz0sMd/snnP82FL/JQ7/kcC888xb0f/xBozYUvvpXLX/EGdJbiV+rfe0ZaywNWT7bZXhrQXB7iFkykIdheHo1Bhi0p1Bx6WyHXv+ECxncXWT3eYecV9e/fzMhjnBOfx3/yj5DDDfLiLEbzBFgeaEXvtv9EsvMWRNwe1av9CNk/YPb/bnbo7gvIbAuhLMxuyHyyj7LbQlW3KWQ5XpYjBxZJoNGmHtV2hD5DKySPPWpOSm5mNOMaRRlRSE1CdxNzxBBA6wIq9jHcDfpSYuSSPHQJdIY0EjInQOcGdq9Lv+hiS0UcCkw7Rw8rhJlkzNogKymM7DwSX+b0pCTRLhVikjzAjwckNghhIXMwjBgjh0Qao0p/FLGArc2LMGSCU15HmDFZcwJXJFSCDVJLcLa1h4nSMr4V0+5OsNUbZ2rsDMU0YTEbI89tdpfPoNHkuU8vHmOYmkyVTpPFPrgZYXuWgVbUywtESQnX6ZORkRiSsLUTR4aUqxsM8TDTAEc0MRjplaWmRGvBoFcllxb91Ge8dApHQrM3QcXdZqO/B9Nbp2pvozHx04yh2WBotslzm3KqGAgX12kzkvKG7ahEYCQYStFcv4HAPUdQWkKZijgqUrQ7aKnp2BIvVihdIJMK3xiSYRLKjMKoFIc8NxkmVRKnSzmOkb7B9mCCJHWYdc+RCUhw2U7LFCvr2ANQjkkQO5C6xE5G3+7Qbe1ExVXG6qcJ6CGES24NWG3uoWh2KLkGQhhsJRZZBrXyMt3Mp2JH6Cyn1dpBsbSOZ4fIHDJToDIbQ0m6pkFuDCF3UMpEygGeqQgiSZb5dPIxLK+Da0aYekiSFjHs0T1I8gikoovE6I2RpD62o+iEPhO1BRwjgtRgoz/DRLA4qgk2c5LMoRQNaMsCm/2dzFaO0cwaWIUmbgbFxCdOMzaTKSaLLdA9tnyLRKYUEnAMTZb7qMhiaetCGsVVSqU2yAxHxSRaYecCJ1KcVXOMldso2UcisZQaCY3rES2vJy1QKWZs49kpz2mxSQSiVYRqjJKCHgkFpTCkYhCW2W5PUYgSxqZPcx7SSmZKlNZIfDa70+hcU7GXSTyBmwXoOMLOIPZHKZBZUifMMhp5izQY0U3NFLqyQKs3TsXfxDGHNMNJ6s4aSmsKfZOh52J4feLcZLs1y7izjuXGDFUZx2uhlEmzO4sstHBVj2oOiWmRmz5O0mEznsK1I4TdoducJRUGlaCJZXVRwqAXe4y5XSylWWnuolFYZyktE7gRY6bCSAV9t4/OCxTjGG3E5AYIQ7MtTHyVs9WbY9JfRpsuUWJgOD0cAUlYY7k/jTaH7KwsonKLgY7QtkcpNWnJhEwkzKUZqRojSSWut0GEwTCqkigbv7xNMdVoI0KKEWJIJQad9iSqFCNigyRxGRtboKNdSiLCSRWZZYAe6Y9luaSgcnKh6fYm2IincZwugRjQ8FaJkgDXCUcgkVSiPIXM4ejWFZTdLr4dUhNDjCxh6MVY/YDEzxnmgoIbIhH0LD1Kpe069FxJUUmUnXwP2CN1NpJ7EKBDj4HhknsdiqmBJOdFrzv1Q+ejHykHrRU3ecd9b6OTdthXvoirxdVETwzYNkMOrL+cPBvpCuy6ss5V+8qE957h88f/A1dUFC+cOoMj1jnxxSm+csMd3PXGn+G2SpGBUrws/iKv+sZvI0oXooqzdF9+1w8s+j/7+CHu//M/QEoDy/MQ0uDyO1/PnmtvRBrPd9TCcJ75Uz+NEA6F4AYaY2/E965E/jUEvtaa/3z0P6I/eQhblfDLb2KibHImOkJuhcg0xz/zFLbjkkURstjg0sOHcSNBkA946jUXcdY6SGt2nnfc9htM+lMA3HXoHAdOf4w7tj/BA+XLOFS+nC8MXsdrTmeUIiiPe+y9fpydl9cxf0gN2d/Wnlzq8L6vPstaL0ECF1lNbrL6/FR0CYY6j6AG2BFgvmSWU/NdTj26TvnJ/8buU59Do3hml2A8cjj8r95I3riFrjVOICX/aaOFAP5o0uXgqd9k7rH/hgI6ZRtZ2k/yis8/L0KZJAkPP/xdDh9+Cq3V89q5Z89erq1dgbhvkUAG5DrnUOubLPiaPXIH+6yAmpiF52CtQrAu2jyY3Met33oA5/U/jq2ugaEkI2P1BQZPnz3FqWPPYnbWqWat58DMgIswd6Gy0wyqP08Ni5ZQ3F3tc8mLxnnAC3CFIN8McY93SYYZSmt8U9KwJP9seJyr1WUondHNWrTidR7r/iUvfss/5cLxFP+r70DmEVoIPnHjR7j94J187Y/v4oY/+zj9iXGs7TZTt7SYKHUAiG2D5Zk6SR7wjeKAT/YdelJgYjBX2MniYIELSnu5c+7V3DHzcmxj1Kfbyws8+8ef5UrvZgSC+cGT7PQvxpYu4oIi5st3ghQ88vghnn76CQrVBoNShfap46yX62xf/1JeUPD4cd/mqccOcfLEcfJEkKlkVFujJFVvnck9h5lYWSW/SFD67jTR4iupTF9L+XxvojKGtDhTqPMRlXFGR4jJv0AGp8nJUGaDXu2fccdDz/JLa19l9t0fphWafOdP/286a8vYno/Wmp/83Y/9jZFilWvOPLHJyrE226tDkmEGevQ9gJBQnfaxHAO/4nDZbbMYlsSwztO5tMZa/Dbe4T/GXvou2vBAKbLqbtLZF+Efvot49+1El76NdPqGH4mo2t83B+0DH/gATz31FEII3vve93LZZZd979gDDzzABz/4QQzD4KabbuKd73zn9/3+yB9dQLcBGpugFdJ0y3h5SL9gUCTCGEqEzHFCjcw0nTETry0IawqvrxG5jTZMUnKSYoaZ2nidiLQkSQXkloXMHLTRpW9KPDWSqva7kLiQ2gFmIqitdWjWHaShEHJUr5pEDSqDTXIfBmXxPfq8zGBwngVdiiH1RgtAr6fpFHzMZpHA2SAsAgpyQ6INNQIhDmy0qRBGRmaOeBXn10JYQ0UmLQyZk57f69tozTHpLeHFOa2wSFdNMDl2FiXBShVhVKSZNZgpn6G8rkgtaOZzNG2bibEz3+vnPIccyLICthlji1Gdl5EFGLpHakuMBDJbIRX4HU1UMHCiEaEytkGZCjuE0ClgZ328gWJYkVh9QVzQpBqMDOzzxHPFeR6HkEiliB2whxA6PoYRjjTbcoGRj8h0RmqQigraaZFiIxDUWkOsBIYFCMvn8fhakXTGSKwhNRWh7RylDCLTpBSNAC8aTVQY8R3dvkCZGi0hliYDA4qpYq23kwlnFZ8IK9b0q+ex5zk4CaRmgFAOiDZGqvFiTack8QcZsX+e4AmYmSS1Rv3jDEBmmtgV9HIwBVRyaBbBVeCMAJRkZgGnJ0i8PkJqMnOUbktuYidDSA1EBqlpsB7PEFiKQVSgNnkMSymsUHEmuYCJYAlp5+f/Z0ljWdOpCtp5hcmwxbAsyZ7Du5sjSmCSWxTyGHIY+pALRngeAXniY5kRSeJi9h2o9BCWwu1rNBoj0xRbmuakibZAZCMYzXOgHIXETBWZw19p+kkJWo0gobnEinNS20ZmDonsI0aAVJCwvbWDMW8BN4V+ZfQ8AeQmGHGZgTNAJ4rxJgxqCiuBxJMjpo85WqNk3TqVqENWVOSAskZImdSG5spuikELq9wBJbGzET3WHxqIUJAUM8KCYK21mylzFduJQIGRa1JbkEcBphGirZFIcmQ7KEzKvQGZrchtiYg0p8NdNOrnRpsKegSqSGOwXVBSojJBMEy/1z/KkGQWI6BHrpG5gR3npK7A7yj65RGoJbMUWo0GjLX2bmatM2SF0cAURiVwUjw9BCGw+oquU8ZxhnRSk7EwQjsjDUIlwBpopBAYGSS+JnEFzlCSBKN+NFPILDCS0ZhnMNrAkQpSU2BlGc5AM6xIRA7qvCKBlYCZaELTI1E+4WaZ2d4merpP7Gm0MaIy5laOHYKyBLkJdghmrEmjWWzVIpwYIrTACSG1NIkvMCNBagrsfAQ7ih15HkiTI5XADjW5LZ6DVpLlHrFlYdPFyiBz4QWv+6tx8X+2HxkHrZ/2+cX7384wHbK3dCH7/AsZ3tcFwBuvUj58BZ4tUBpuv2Ua+cgmR5sP0rA/wf76Bq5l0kku40vPFPmtd/wKby0H3BVmeCLm36tf4hr/Z5n+2q+jTY909ka6r/iTH9iOrXOncItlnvnLLzHc3mLr7CmkYXDZy17HBdffjGH9VR2XUilr67/P1tafM5puDBr1n6LReDO2PQ2MnLQ//Oyv4917ms2aybR6C2hFv7pC5nbxHAff97jxRT/G3M7dbD1zlHPv+VeMD5pIKfjGLS+lV62wUjzFmeosVwZv5EvPrJMrzevsR3i//hAGivfv+nnmjVfzmk2P9fkulmegUs3uq8fYe904xcb365f9MBsmOffOb/GFp1d5crmLFALTyNhd+xI/F17F1b2LMIV5XgVy9Ju20rRTRZQlnIglB+Y/TH31FA/cvJu9uw/yUOkAL7zzTg64Nu9aWOMbvSFzpuCT/hNc8OVfAa3JLZPlgzfjXPNBTKMM0kQpxeLiOZ555inOnTvNX39cK5Uqe3deRF0FNJ7IcFNJJ22y2DvORHEfRbuCqy1Ao8/voiwZ25wzttjM1riyVuLit/4j0jMrpEsS84lNzuQQewb9isvqyQ5CCFSuyclY1uuUkmXSbIUniw2OBQeIhMvrYocz+wMe3euQGyNdjXrY55ZTh3nDRRdxmBnuObpK1t5g39lvMW70uNK8hB3eXjyzPCIaVQNsf51i+w8x5mxir8EHnCv4VOF6/uPHP8Te+RMUXvNj9B/5Og9f/mKssosfLfBq/hKbUQRr6ErmL7mQ+pWf5hvLn+fTC19nabiEK11qTh3XdLiguI+9pQspO2X2Fi9kXNZ55GMfw1hPcQyPcXeOgl3DN4qY0oLAxHrHAZTKefzxR3jssYcoVeocveASjoVDrj11hGz3fm68/ApSw+KWgsfqyjL33/cdBr2IMGufp8TlmEZKrbbKpDrNrk+0+P2Dv0CpejHNPOHWJOZmb5zntENWyfmKSLi3ci+t8a+gpWRY+gniwh28+Myj/MrF4+zZfxtnH3+QzbOnOH7fPYzv3ktnbYXd172Ig7e9Brf4t8PkN5f6nH1ii7CX0lzoo3KN5RoM26MUb8uRNHYVCao2u64cozrpY4Qb2Ke/RnTh6yl97eexVh9CFXegLQ+jv0x04esZvOjfgMr/txIg/z45aA8//DB33XUXH/3oR5mfn+fXfu3XuPvuu793/M477+Suu+5iYmKCN7/5zbz//e9n7969z7vG6gf3cXaPQiZilC4bK+yBYFiSiNxE6Bynk2OpSYLhCpuTUF4xySyHvKCJg5jcEdj9nNRUZJbJxHKGNsEJJUu7HKyshsxatMsxtgYZQ7mVkdqSsGxSWzQoJB5b422GgSSXAgyN35JUFgx6u1PaYwojGS1EBGDkCisUhGUBucBuSoJWlfbsgJlFh0G5Q6cBxVVBcw4claENC2eY4/QMhiVF4grc2EAbKbmGxINSbzSzCaVGxfyhRElGtMUox8wC+hVN6sYYmUl5Q9Me10gk42fBShOaQYWVMRu/NAJymJFASk3unn89Uo/UjUGPdKtkblHoJWQip1s3kLHB3NPQm8sRroSepD2ZIDQUu5JeTZKhqK/kRLaJdjXDIgRdiF0odHxcFdEpKhQGrgIryukVwW8JsiJYsaRfylEI6stgFCwys4CZKNqeIrX6KA07T3g05yJyK0dJTW5LFDlmamCmGmvLpj+d4sQaLTVWIilu57THwYgl/TJUB5JWQZ0nzUl0NJJhSD1wYoHblVRCm9WJAUiJ1jl+ZBC6BbTwyY0NGkugHMX2mEFhW9IrjfD1VmpgCU0uNFmmmVjNCEuSdlli9jOSkoElJKnMEYaNN8iwuxq0jdX3CWsdMg96voGTpVS2NJgWpa6iWbYROqLn2UgyrL5BVMkJumCIkcNnh5Cg2JoF0TUJMkHmaPpVhb8FylOkrsQOBcOixorBsF0SHWP3NDkCP8/JpMGgrDEyhZdIcm2gEgWmRpsQpBZWNyEKXXQ9HkkTCEAqcmmiZUZuSQwNMlTkFmSeROaQW6BjC6+vcT0LczNBGCmxNYatmmwXwRh65H6IMEb+nBVDosCNIHIh98HKRp+9rkJbEqEURibpF6HYH5XqRJ6BEUGQC2JP43YVYRFyIRCJPUoD1TndcQ0Z2LmNHKZUI4eBk2IozdBUJELS6I1om6E/wrnHvsaJBVqDlgorKzMoDnG6o9q2TOUYsY+MU2Inx5EGsTMitZqRgZVlxL7BsKAglVQ3c6KCIHPAiSR5DpmnSDxJaQuyAMgUlnBRZGihGAQKI9GMbRho12HbjjEYOdmR75ArA0cPQYA/yInwEEGClYEZGuTWiGLr98Ad5IQlj8hLqDWhPLBY2lmg6/SwomQU5bJAS4kdK8g0/tAn9BNkpkmKBiLNib3niJbn3+9hmYkoZGk6Q+oUr2Mz2UzYnLUYlH3spQHJhGRYyCAVeKmJJqfQyvB7CicRkEriYk6vDOU1ycaUQVbSSKXITCj3LDJsuqUUf5CR2wplSbw+JLYANZJrUakgD3KkhFyPhLivfdOPcAQtzIYMsgEfPvIfuH/9PhrOGIEIOHDqYtzEZW1qix8/+gaWEkg0/FjZpCAEJ8QKk9Gvs6/YRJoWzVs/xZc//Kf8zs/9MgfLRZ4ajhCu71K/wRXmJhdf/N9xjn6Kwn3vAwS9l/5f6GCSdPbGH9je+UPfZvnIE4SdNhunj+MERYSUXPay17Hvxluel/oYhic4e+49pOlZhLDQWiOpsnWkQfOYx2ArpO2nFIcm3aJBXr2VejgLQY++ewbTsDEswfj4JFdfeyOff7bHJX/42+xfO8mpxg6efMGl7Nzc4okLFQ+WNsiTGxk0L+L2/bt4y17NNY+9E7l1goHh8pHxf0Kj+BqS77ZpzAW4BYuV420aOwrsu36Cqf2V76P9wUhs+uFzbb55cotvntgABBNFh4OzsOr/IS8/+UJua18xwtLaJuaeCmImIN7v8pWVL3P2C0OuOzZk7/wXSSpzlHpLkIa41/xjrB1XoXJFYsCRssm5AF7S+BSN5mcJ+kMKfUXnqp/BCvaSTF3HljHJ/PwJVlaWWFlZfJ5TNjk5Rb04iWoW6W5pbk3M81o9I2HZOBvgGh6gieM27eOfZW3nPppOxpmKgaM11+2/mJlLXsz8oSb1wOTEoXWGCv56TE4aAtORjF9a5YEwZCWN+c5al5fvvIdH129gMypRrG/R32MSlveDNLEzzY6NlJcc+hq1rccQpkFtZidBrc65xx8ir03B9grPCcy3y0Ve5b6eWadOPthEFjyk9DDnMpQ9iWHfx9qH/xQRp5zesYv73/4KdnWe5ISxm8a5PqApyJxJN+TSg7u44PC/xQtjhq5kZbIA1/17rMpLONk5zrfXvsWXFj+H0grXcJnwJumnfa6oX8WEO0l87Bzj97fZXb2cvdZBbOEyzHoUrDLCMxEHa1hXjRMbGU8++RhPP/0ESZKQmRZdy8FLYo5dcAm/cMMLWMoyDnoue12b9YUm3/j6PbSjVTTqvA7LKHI2WTtB+ZsxX9l5I8+6c0wplyu6m7whmKZuBZAnLHgtPtP4OsvGJseCM2jnhXRKl5O4VzGTdfinbsgdF93E2uFHeeATHyWNQizPJ0tixnbt45of/2kaOy/4O45WIzv67RWWnmnRb8VkyfMjtoYtmN5foTZbYGasRcVaw0i6FL71LxFZTDp5NXlxDmvzSdLpG4gufRvZ2KX/S+34/2J/nxy0D3/4w0xPT/MTP/ETANxxxx189rOfpVAosLi4yHve8x4+9alPAfAHf/AHFAoF3vrWtz7vGic+9suIyiNkShPqmKAtMPujBVRSuobZ1gbR7hsp7HoD3PduWtkZGouKsLQXxzEIih6hFdJpW6yPX4od30cQbeMmB6nbKcv+MXwOYCjJgv0QnrAxOib1pkIaAYULbsJQGVHtUlpba4TNz+IONMqF1DBJuxcTzJ6j5bQxMwXDhMogJvJNwtZViLkIkbWY607T8/fQby8xTocsPAlSI0rXs2U/gyjbOMIlW5+jMXiAWHucDW5lJy18Y4HTXoNqXVM+ugHxEMcxWRpW6DlTNHZJ5GaTSriB2vkStF+kt/kJ+uLVTC99kbUxh7FkgtLgDIv+DVQHRzBKY2z5LZRhMtZsEbpVhoVxGCwgJ28g2gqZaj2J5ZnMT13JjtaTtNU2kTONcIo4SxqjPD+q9+qO0xxrEtoJ5aGN6QXkejf+9oCVcp8Zs45R2EG6+gQibiPUGFvjVzIUX8MeeIhykWDqesonHqKT1+mUuzRql7DVfxKr16G+kBJfdjHScqnEu5BL99NONhgEOWP113Bm+F1m2wPSpEHUqNEunqIQD6llc6zol+Dor6L2HqB0+CRZFOFub2M4Gd3pV9Ks5oxVTTqde3EGCWxU0GmLikhYr9QYKotGVKR+4SvpD5/GUmvEnZPkwmdgWNTLB1Bnlyi2T5GUfc4Vb2dMh2TW0xiZxjVATF7DZneBenMDe7NNtGOGOOvQzyN0uUExbdFRPqqkKDo1Or1raHRbeK0nsANBU08QTVm44SqTcRU2T2EYgq0xA3ejx+q0oN42WYhvxe8couLZuJNlXFlGdzawe6dp5h7dPa+hLLrItE13Nqe8vETHbeGFF1KsXE6vd46efAhfSCxvH3rVY91YYyxtkxZ6xL6DmcfYeppK22C908PdczVlf5zB1in8qI/QCpks0TJCgvIBVu11CmmXLI3xHAOVgTk0afkGgTuGky3RFwnh6s3MxE/BXh8vLzFoBaSFaUqdp8mynEGwh5QQy3qcXETUl2wGxVkybxo5HtNK1wl6QzJfUm72CSeKtJMeBXsKIxOo7VVEycfWFmmhAltgR026jsaPITQGlKffitE5C3KeViOi2I1Jnd1YJx8im9uPF40Tq2fpGjWs6jVUTj2Ek6ziJH06wTRhNcSrXUC+eph+34eShbAMJromW5WMWFp4A0kt7jDcux8vH4eVZ2ib25S2cowM4qrBeiBIfI/ZdkTf6LHtSKbCGbbDhLikcdwmxZUcZVu4QxuqV6Inh2AGI/DW+n0Ir0It381GdoJDfWf/AAAgAElEQVRMg7eh2d4rSUMTQ5vM5AamnCHtL9GpR1RSwVBUWa/vZjI6zfi2QXNzDfvgq4g2juJnmq3qjRjdr5M7IaFVxRseo1/1yXOHwpaP9jXKfBlan0aJ+3Fsi8pgmn62TLEj6NsTGLFAlfeQBVP0Wk9hyHlqeQV7kKB2FkntCJ5NsKZdWmOajriY0tYjmOWMSnQ5hXCIbp4iUjaJ8BCmg7YCusUqpaxFKguEpWdQpXHKC5AnZ0lcTbJWI7+ggYVBLtdBSNzEoXx6k86uOla2TdKfpl9f59q3PPZD57T/rQ7akdbT/LunP8DacIVUp/yL+BdwEp+nt+cxcpOu2WVi+womwx3ECsom3HpNh6Xt77Cz+SkKMsIUiv7ca/jdo3N8+tZX8K5H7+dDN98OaF6r7+aVfJV9+z6DbY8DYGwdpfK5NyCSPioYp3Pnn5A3DvzAXW6tNXmW8bnf+GW0VrjFMkkUkoVD9t90BwfveC2mbRN2O6yePMJg+CjD/P/FLg3IIgs7SEkGJuFajbELDnDmmyU2T58cCaC6l+K4LyW3BoTBMqm7je97XH/9i4iLO/jMw8d49ESL3/7OH7Czt0ZsOyjL5PGrruTkjjKPTD9K5qUcqFzK2w/+I/avLJHf+z4a4QoKyRl3lrvlr1NdnBzV9iiNYUmkIdh3wwQ7LquxieKRc22+e7rFowvb1IMRlW6jn3D5bIEbJld58VMuqRVywXBmlBq4q0jn9oAvLn+Rry19hR2nr+CitRluevwQlfYZTBUjpKDyyc+w3FN84/SQWzdy/O0YwzuN53ySyehhzFyTC9jwL2Yw2MXj1u2cy9YJdYI+L47p+wGgGQ6HFIISeiDYo67ikkRj5CmutPleCG90xwh7iyTf+SDHLjrIiQtmSFwbNEyW5iiZO9g+ZuD6JtFgJJxaMaGVgWEJCp5J7bIax0uae8+2OLE5IEwVntFH4xLlBoaXcuDSBY6UrmJoFhAIGr1l4u6fM7M95M5j78DLfQbpKSTPYmeLJFHEan1IsW/ixyYb1ZjT8jqeLVxDJByubJ3hHycxl09cDUISGgo30+iwTd48ASrliHyQX3rb+5igz61Gj0tC+Leizk+fPsyeqWnmjz7Bq50HOZAeJnMcZNxDA5FvszUxgfnCP8Yq7OOJ5uN8c/XrrIfrCODJ5hOo8xE4L7O5/sw4c6cN9tevZ591KZ45ikIZwkCUHKzX7UE2PJTKOX78WR577GG63fbI4fQC7r3wCsp5zuzsHO/fNcNdm21+cbyKoTSnjpylHS5x8uRX6PVr2HZIkngoZT53+1hWRR5KdlKQKQeSjJ8IBRc5DaQd8M49H+CMszw6VzgMyq8i916CIxz2WfDTM7PMPfs4R7/+RfqtTSzHJYsjbC/gwC2v4NLbXv2/PH5prclixeqJNscfWCPsJqPU1edSwgDDlBSKir2VJ5ntfoExcRzLzFBOGRm1SaeupfOqPwNhgfE30CT/f7S/Tw7a+973Pm6++WZuvfVWAN785jfzO7/zO+zevZvHH3+cu+66i4985CMA3H333SwuLvLudz8fGjXsdrG8AKI22fYyibKwZYqozaANA9P8a+1LI/TWMUTYRgw20DPXgFbgliEYQaayJKHf2qIyOQ15Snbumxi7bkPnIc3tBynpCjgzDAYZtYKAwgQkw//R3p2HSVXeiR7/nrX2qt6qF5puutlERcAIKgHEBTTGkIzRGTB2HuPVGLfgxGQUjCNkkkhUdGbETMYxmhhjnixe7pW5IY5ZNGNGQGgQaZBFoKE3equurr3O9t4/Clo7YoMOsbuZ83kenoeuU9X1+73vOafP75z3vAdUHVQPdvcuRHg8+a5m1P6DxPM65TMuor+3E82XwpsROGYKp6gcj6+qcLVLAtkyEI4g3tuLiDXjr51Oqnk7ZWOqSDdvQZsyD81fhRlrRyTacCLj0CLlyEYKOdmGXVpPJn8IXa5D6dqGJGskU3n0mhn4wxEARDaOpHpA9UL8MBTVYmYSmDb4NQH7fw9nfx4RP4xkZRGyBzvVgxKpQvhKEJKESLWiBKsxTAdrz+/xjplMwglRXFqEk+vDtBWcfAIdGylQhK0GUDQ/6eY3UZPNmE4/oTEzkYrrEaoPw+jAo0UL94eme8DKY5kGcmkd/e0teHw+hGjHVzwVWdGwc2mcXBuON4wWa0Pu7yBfejZSUEfzjUESDggbYgdJxWMEaqciyRr0HYCSCRimg2G3QaKFgHccUsl4HDuPwMFM50FWkPf+BnXifORwBdlsM6paTLp/B7q/DF0bT2zvVlRhEK47m5xhoaQ68dVOK5yYTHcjmVmcQDFmvgdZDyPJEVI9HWjeILl0iiD9KOFy5GwMpWMrYsoiuo50Uea3kCK1SMICxySVs9E0DY+mkLMFsf0biI49A62kvrDe9jVDoAxL8iBsCxJ70KLTSXR3YRzZS7i+nlQsg1AVVJ+EppVhxjsx+9ooOeM8NBl62o+gSwaBsVNAGTxrNEJg5ftQtSCkuiBcjdmzE8mw0OwMoqgWy1OKtee35ItlAuWzUSUPdrYbyV9J9+EWympqURQZy5GQk23IwoZgOcgKduderOKJaB4Vo3c3XssGVUdq3UKmbg56UQ3ytucxy6bglE0n09VCsERFi0xAsvLYkkZv816KisPIgVLs/iOoXZvJ6AahonMhOgXTsNA8OpYRR/R1ovrCSP4SbMemfe9GisdOIBAZS/e+zYTKi/AKHxk1RSB8Dr2thymqLKe/eQ+B3EE84y6EQBRhpLCxUczCg7BzW55FK5+AWjWDNDqaP4zujeCke8h0t6OGy/AEi3C696H4wjhmDtMbxYp3kLZ0itV+hGVg+SqQ8gkSWUHpmBAqPsj0YGlhHFnH0cJ4yJBXfGSzh/BkupANjaQ8lmAkR8ZUCIQqcUggGR6IHUbzerGFjFo6pjAztmUj2t/ErpiEGqol03sE1clgxI/gs3oxy8/Bm+lC6mhETLqSnBRA93mQPWGIvYMZCGNk2wlkHcyug6hTF2E7oBz6E/nKmUj5BHa6D2/VeESmm4TRjpkV6J46wtEKHFsgmykyfc34KiYj2zaOZZE9uBW9tBpK6tF0D45joygKRrwTK5/BH63FObIdx1+EqkcQioqtKphmH9buRry1Z6OFayHVVdivpPpIpfOEpARaSQ2SvwQ0HyJ2ACdUAV3bEcVnY3bshfIpgIRj55F1Hcm2SOfeJugfg+jqxVM/C5FsRQrXkI73UVwe5YMMS4HWFHuLx3c+xqF0M6ZjUOOr5TvRB1j/2m9xHAcbm7yc4/Pp+byV8KKrEmgSUz7tpeiNu6lIv0NIzSOA/+1Zwj+O+wxZ3YO3PMoXtD6eMIJ82vkVi1jLxAm/wu+fNDgYx8G/+R/xb/0+OAZCUknN/Rb5aTccN3bLMDi8fTO7/vBr4u0tqF4fRrrQNrKi4tjWwHuj9ZOoPKsab0UnQn8TSxwEVCRJweebRqKrBSF3EY/7ONLsQzowA1lfRDrYRibQAZIgg4ZPWPQ4AaQjaYJ9KRqa1oMElqJyqGwMmz4xE0pM9gf20x5sRwtqzIxewJRUjit2v8zYXDsAGdnHLt98WmPz2JkeR0vQT4vscNAwsGWo8GjYmsyRdJ7qkJcbwz6mdaVISt3U5ceQlwx0j4+3yw7zs6L/R5P9Ng4OqqVzcctCZuw7g0n7XqAocbDwpPlzZvCbm27HW1/PdJ+Xx3e9wpKux7mw+230hEYXZWzjTFoZS4YI1nvuJZOQiIoQJXaYOqeUalGKhU3ezuLBUxhy9x6mkyOb7yeePILVtZN9pRW010pHxxQLZNuDnishkKovPHT26JD+oEfBb9lM9CkcrNDRNBlndiUP/GY38eyxvrQJajkSWgirNogT9YG3MI5CkgSLgoJ5RVVcEPBSrGm0plpY/vuvcmajoCQ3Fn+mH4ENCAzVoSWaoyNUTp0zgxmePNLhLRjZLP/pO59tkWkE7AwLu7u4QQngrTwHM97CocN/IjL5Soq9xTiaIKMJfhfVeKZWo8evM86j8dl0jMMth+i3LKZ0thAQSWZL26kuL0OfMJ6Sxn/DkzcQQCocJB8qoXfWrUQq/wpVCRPL9fJG90a29LzB2/Fd5O0cdjzJlIMBJrYECYYrmBO8kjKtkqM3XNCTbyc9UVB75Tx84SLS6RRvvPE677yzB8MofJcDxPwhDlTWQk0911RXsT2T4/rSIqJSL33tPyMW/79IwkNb63iEnKG7cwKZXAghCkX3sXsqTGTeyUS4qL0XRXqTP03o5K36wr5EFwGuj32ZR8+pxlZKUYVKmSm4yrA5N7aHI39aTz6VQJJkSmvrySb7+eT1t1Ix6UwQAln56MMPhRAY2cJ9bDt+28qhHTHsP7vSJks2KhlqPDso1loI6HnGBvfg9wtEUS25Kddi1C0E+S9TsP1PKtDuv/9+Lr744oEC7brrrmPVqlXU1dXR2NjIM888M6hAa21t5Wtf+9qg32Ga9qhqrxMZbf1/IqdTPqdTLnB65XM65QJuPiPZUH/zhqVA29u3m81b/0CxUsQFRReS/a8OXuVN+skCEigmM+zJVJWew66WFI6RY17lv1CffRUhJLbFxmDJQdYHL2Dj5PnEi0pIah5mBRqpopOxUjfnStsoLv4sVZV3fXBQQuDb9AiBbT8Ax8QO1WBWzyFft5AWq4pkXx/eQJAdL7+I5vWR6u4k2dP57uePThyAJOEJhcF20IMhZl3dQLhyDL5gGNWjkcsfJJXcQKxvHZajY+b3IEmFqxaWodHReD16dDfx5gsxEmOJRbchS2rh7B2gaRqarVG2ewcVPZ3kLJVxPe1sK53ET2deSbknR63ch9fbyT7vEdJqjnZfCQ0ZwY3x3+MIibBIo2GTkTzsUibTZpbxplFLDzOY7lQzT9bxF+Y0KgwVxODnZS/xQunvAAlHtvEqXmb0T2PRtgiB/f1UdmwASUZSZERpKX+8/RakcIb8gc1U9fdwxBxDWgQwURFHJ4TwqJC3JPw+PyUlUZykxTjPBKyDWaolBb8k45O8R5tXGhjeeOxg/Zg+UuxW2okraY7I8cJVSUBBoVQbi9JbhdcfJljqYczEMMG8yZGdPbyTNXlBypOVJRY7Kv+CgSE5eEM58uEgRiSAFfKAVy0MrD82HFSCCsVmUVjlmrIafJ2tCAQ9zfvZsvanADiWiQAyHou+oEFncZ6Ocp1ZbdcQzHu52LOOCzyvo8tmYYZMB6yMQn+nl962EK2JMr554S3Mindw4/7/xNN3kMD8+5AkmXQ2hr/8LBRZO3rfuKDVSbFXSbJP6uNwVGJKopWe0ioCjoM/1kNc83KN8wfOFTtQJRMkB8UurFM5TSLn14hXn4FU8xmc8pkEgjOQZQ9CCJr6drCjYwt7N/+RogNZon0+Jpd/kones9HQUSQFyzHptbro4DDJKoe6OfMIhcvRVJ1NWzbSfGAfDkevRMsySY+PtuJy2oqipCIl1If9jNGTfCI4jnP7V5BKvYpje0ml/bR0nEFH3zgCpoThqAgkGFiLIK7G6PW0cyDSTNKTR3V0bNnGL02iq/gSDP8srKNFT0V/gtnb32DskQP4k10IK390bRL4i0opqamj+uxzqT9vNrrPf9L7tA+Sjhuk+3LE2jMceKOLXMZE2ALbFBTulimsqeDgkVJ49Twl0kGKKzwoxZWU+VvxXfol1GM3tCsffer50faH7L9ToK1Zs4ZoNMqSJUsAuOyyy3jxxRcJBoO0trby9a9/nV/84hcAPPHEExQVFdHQ0DDod7gF2sh2OuVzOuUCp1c+p1Mu4OYzko24Ak0kDMxfHwIJcpbF04Ff0p7vokPuYpp6PhN3XYosS/jCOi2JPXw1eD+6lMFyZJrTRbySu5j2cA3zX3+F5X//EEUBL235LE+FfoyRfAXbgNrKp1HVaGFyCNOgY/dObMtE9/nxBMMku49QXFNHc+MG2nZuQ3ZMHNvCso4d6r9LVxXCEQ9en49wRQ3V5y+gfPI0QMJxbP704ycwjDzxtsPkU4mBzwmkgQPLvKzRpZcjAHWcTciTpjSeZPz5+xGKjMeXp3fXIhItn8TOR0BImP428uFDCNkkL2QGekoUyhXVNFAMEydr0SUVccBbQZ8cpE/yYUgqGjblEtSqac5ydP7KaUEVPnyUISgGfMcCRXJ6EcZmcimL7tQ+8rFOvP0ysiPQjDyysNg7aSbj9zfiy+cwVRXFsmivrmLPmWfQW1Yx8JgACYHK0ZmwkIkIH7Ljpc4uo86JoqEiG3kkzY/ynpnuHKDPsvHIEv22TZtt0CXSxPVuhGyCUDC8PSAfK8ZkNFQEDlVOCZ+w6igWISwKs0DZOPSo0KPLHNahQ4eekGBjSOVIQMXSFYQqHz1WFwNVoILNlOR2bElnauoIMw1BfbiO5v/6A+l4H6aZxzLswkRPHgdhSPT7TA6XZ2iqT2J7bealM9wS7+fvi2tImjWc33I5Y1JngRDouQN48llKe/dRGmvCkmyEEIQNg6byWn5fPYv/rJiCX1h8MXOABc37CfnK0YpqyDW9QH/tHMbUX1So8GSFYzNTJoWD5likkh1YjkUq1cZmtR/J66fO7CMUtenIhBhf/Efmq28PFL3HVitbkXBkyHh1jFA1qaBCzqdj+IvJBSvoiaVofydNbK9NKOPjgujnKJWrUCXvu7N5AiYmOTlH2s7QI/ewxX8A2/EfjfNdliSR0XT6AhHSfg99QYVxgR5mB1rISTHqpH34RDd7YuPpSpdhmQE2HZxNuUhToqdRHNDJEw+0YcgG20vfwpItQMFv6thKEUlvGNRasr6zUJRxhC0veSvHmfu2c0bz20QSMVTLGhSZovooLq/DTmcYM+5cSipL6U90MX76bPCrhCoqQQFJlgvTekrS0XFlDDmLpGnYaLpC18EEe/7UTqqtCzPvYNkKjlBweO9VtEIZHlGPkLTLQYBXSePz25SF+vB7DbJOhEAIvNESiurGEPH00W9WgKqhBCOoPg+l0SD9/dkPjGmk+e8UaFu3bmXNmjX86Ec/YteuXXz7298euOcM4KqrruLJJ5+ksrKSxYsXs3r1aurr6wf9DrdAG9lOp3xOp1zg9MrndMoF3HxGshFXoL3Xb9a8xR88/4cSo5L6/FnUT6ykzdhGV28H+v4m9GyCUm+avK1xRC7i7YnT2X72BfRHSlGwebBc4aJiL5s3XE+22cv4i8aye22E2OEuZFkZmI5dCFGYJUqWkWQFxzr68Naj0+J7/AG8oSLCJcUUiW6iYYeA2cGE7BsowhxctAnIo2KhIJBICR95CsPvHCFhCoV2q4RiEmw1J9JlhjEdBY/mYHgzHPEJOrIhHAFBWaLaqUYSOrUBk3i/l5Djo0Iaj2L6QYJSWUWSTEzZQEJmr36AtJphevZMNvi3Ycs276sqjx5519lReuUks80zyEg5Nur7QECxgKmeHip/uw8j1olqZN9NbtDvEQOXrnxlBnhAhGX0SoFZriECKhErixAytlOKZE1CNkLYgU7UXAlYXrKhw/jSNSTFTOLRTrwd59OUtnG0DLonRbscIyVscnIOIVs4cmGYYY/jJ42OEBI2hUJq2zlnEispLkQpURgOJ0kDMQbSSWo6DiIJgSwEiWCE9vKxXPpf6ylKxMj4A4SSCeLhYrqiY5i2cwt5rRuPZRFJSewbm+as5tBAuSHe0x6OBGmfRSxs4MiwZXKMjNchYurotsKszgqu2OVjbEcGNRTB7j1YmFwi249AIhaZTHv1XOKRCViaHyGp7/bVoFJJoKmF8ei2N4HXCBKWdVKSjRVvRzXjVPS8TZlt4XgjRPJJ7I438Z33v1CK68HKI/mKB26Oeu+VSCTYLEx6hMklko9fOr2MEw7TlWL2ygfJSF14MPBgoGIiY6MgUKXC6QZFckgHVWS58KiChKeTpBIDIZHVVOLCT9++IvIxH6qs4wgHSVaO1u4SsjdMJuBFsR2qtCyObiOEg5AL04RjW/DeYYcSSNhoWgZhq+StFOXSXnKeCn6dvxDZcOgUlaTxcV7fHi7MvEXG28or5/TRFxTYsvOepj36HykI5AEbSykDAcFMltojGuOOePHnFSRk/LnCNTvddv6skFWxFRXdyCEAoai8c86lOKpGuvIMIj1tqMlONCExMWVQ5lXw1J2N/1CctPkOEWSyUgRlSinh6hrsA+8AEsI0kKUU3ohJVyyCmUrhNTvo7plBxihBwsEWOs7R/Q4D/xxA4JMT5J3gewo9CUUBXcmSMzwIJFRNAkmmtDSPEgjRedgA20LRNVSPjE/NkHOCWHkbb1DDthzGTCmmuMpPx944JWODePzqoCcI+Is8lNUGORX+u9Psr169mi1btiBJEitWrGDXrl2EQiEWLlzI5s2bWb16NQCXX345N9100/s+7xZoI9vplM/plAucXvmcTrmAm89I9pELNJfL5XK5XC6Xy+VyfXzkE7/F5XK5XC6Xy+VyuVwfB7dAc7lcLpfL5XK5XK4Rwi3QXC6Xy+VyuVwul2uEOOUP33nwwQfZvn07kiRx3333MW3atIFlr7/+Oo899hiKonDRRRdxxx13nOqvP+0N1b4bN27kscceQ5Zl6uvr+e53v4ssuzX4yRqqbY959NFHefPNN3nuueeGIcLRbaj27ejo4O6778Y0Tc466yz+4R/+YRgjHX2Gatvnn3+edevWIcsyU6dO5Zvf/OYwRjpyncz2PxI9/PDDNDY2YlkWX/nKV9i0aRPbtm0jEAgAcNNNN3HxxRezbt06nn32WWRZZvHixVx77bXDHPn7NTU1cfvttzNu3DgAJk+ezM0338w999yDbdtEo1EeeeQRdF0f8fn86le/Yt26dQM/NzU1ccEFF9Df34+qFg697r33XqZOncoPf/hDXnrpJSRJ4s4772T+/PnDFfb77N27l9tvv50vfelLNDQ00NHRcdL9YZomy5Yto729HUVRWLVqFTU1NSMun+XLl2NZFqqq8sgjjxCNRpk7d+6gWV5//OMf4zjOiM/n29/+9klv/yOtf/48l6VLl9LX1wdAPB5nxowZ3H333XzqU59i8uTJABQXF/P444+TTCb5+te/TjKZxO/38+ijj1JUVDRsuZwS4hTatGmTuOWWW4QQQuzbt09ce+21g5ZfeeWVor29Xdi2LRYvXiz27dt3Kr/+tHei9l24cKHo6OgQQgjx1a9+Vbz66qsfe4yj1Yna9tjrixcvFg0NDR93eKPeidp36dKl4uWXXxZCCLFy5UrR1tb2scc4Wg3VtslkUlxyySXCNE0hhBA33nij2LZt27DEOZKdzPY/Em3YsEHcfPPNQgghYrGYmD9/vli2bJnYtWvXoPel02lx+eWXi0QiIbLZrLjiiitEX1/fcIQ8pE2bNonvfOc7g15btmyZWL9+vRBCiIceekg8//zzoyafYzZt2iRWrlwpGhoaRH9//6Blhw8fFldffbXI5/Oit7dXLFy4UFiWNUyRDpZOp0VDQ4O4//77xXPPPSeE+HD9sXbtWrFy5UohhBCvvvqquOuuu4YtFyGOn88999wjfv3rXwshhPjpT38qHnroIeE4jrj66qvf9/nRkM+H2f5HUj7Hy+W9li1bJrZv3y5aW1vFbbfd9r7la9asEU899ZQQotCPDz/88F885r+0U3p5ZcOGDSxYsACAiRMnkkgkSKVSALS0tBCJRKiqqkKWZebPn8+GDRtO5def9oZqX4C1a9dSWVkJQElJycCZB9eJnahtAb73ve/xta99bTjCG/WGal/HcWhsbOTSSy8FYMWKFYwZM2bYYh1thmpbTdPQNI1MJoNlWWSzWSKRyHCGOyKdzPY/Es2aNYt//ud/BiASiZDNZkkkEu973/bt2znnnHMIhUJ4vV5mzpzJ1q1bP+5wTyidTr/vtU2bNnHZZZcBhYePb9iwYdTkc8z3v/99br/99g/Mb968eei6TklJCdXV1bzzzjvDEOX76brOU089RXl5+cBrH6Y/NmzYwMKFCwGYO3cujY2Nw5LHMcfLZ8WKFVxxxRVA4WpMPB4nk8lg2/b7Pj8a8jneOjYa+ud4uRxz4MABkskk06ZNO25+MLhvFixYcFrUF6e0QOvp6aG4uHjg59LSUrq7uwHo7u6mpKRkYFlZWdnAMtfJGap9AYLBwrOIurq6eP3110fUMImR7kRtu3btWs4//3yqq6uHI7xRb6j2jcViBINBHn/8cRoaGnj00UfffW6b64SGaluPx8Mdd9zBggULuPTSS5kxY8b7Hs7sOvH2P1IpioLf7wcKQ+ouuugicrkcTzzxBF/84hf5xje+QTwep6enZ1T8/c1kMjQ2NnLzzTdz/fXXs3HjRrLZLLquAxCNRunu7h41+QC89dZbVFVVEY1GyWQyfOtb3+ILX/gCK1euJJ/Pj+hcVFXF6/UOeu3D9Md7X1cUBVmWMQzj40vgzxwvH7/fj6Io2LbNz372MxYtWkQmk6G3t5elS5eyZMkSfvKTnwCMinzS6fRJb/8jKZ/j5XLMT37yExoaGoDCPuLAgQPcdtttLFmyhPXr1wOD+6asrIyurq6PJ/C/oFN6D9qfH1QJUXiY7fGWAQPLXCdnqPY9pre3l1tvvZUHHnhg0AGHa2hDtW08Hmft2rX86Ec/orOzczjCG/VOtG/o7OzkmmuuYenSpdxyyy388Y9/5OKLLx6GSEefodo2lUrx5JNP8tJLLxEMBrnhhhvYvXs3U6ZMGY5QR6yT2beOZL/73e944YUXeOaZZ9i4cSMTJ06kvr6eH/zgB6xZs4bp06cPev9IzW/KlCnccccdXHbZZRw8eJAbb7wRy7IGlh/rp9HUXy+88AJXX301AF/5yleYM2cO0WiUBx54gOeff35U5QKDj9tO1B+jJTfbtrnnnnu48MILmT17NqlUirvuuovPfe5zmKZJQ0MDn/jEJ0ZFPkuWLDnp7X805GMYBo2NjaxcuUngdhgAAAUzSURBVBKAqqoq7rjjDq666ir6+vr4m7/5G2bOnDkol5GYx0dxSq+gVVRU0NPTM/BzV1cXZWVlx13W2dlJNBo9lV9/2huqfaFwMPblL3+Zu+66i7lz5w5HiKPWUG27ceNGYrEY119/PXfeeSc7d+7kwQcfHK5QR6Wh2re4uJiqqipqa2tRFIXZs2ezb9++4Qp11Bmqbffv309NTQ0lJSXous7MmTNpamoarlBHrBPtW0ey1157jX/913/lqaeeIhQKsXDhwoGrpAsXLmTPnj3HzW8k/v2dMGHCwPC5+vp6ysrKSCQS5HI5oHDcUF5ePmrygcKQwHPPPReAq6++mvLyciRJYsGCBcftm5F+bOTz+U66PyoqKgauBpqmiRACTdOGJe6hLF++nHHjxnHnnXcChdFIf/3Xf42u6wQCAWbPnj3QVyM9nw+z/Y+GfDZv3jxowqaKigoWLVqELMuUlpYydepUDhw4MCiXkb4NnaxTWqDNmTOH//iP/wBg165dlJeXDwy7Gzt2LKlUitbWVizL4pVXXmHOnDmn8utPe0O1LxTukbrhhhvcoY0fwVBt+6lPfYr169fzy1/+kieeeIKzzz6b++67bzjDHXWGal9VVampqaG5uRmAnTt3usPwPoSh2ra6upr9+/eTy+UQQtDU1ERdXd0wRjsynWjfOlIlk0kefvhhnnzyyYEZy2699Vba29uBQnEwadIkpk+fzo4dO0gkEqTTabZu3crMmTOHM/TjeuGFFwaGk3V3d9Pb28vnP//5gb55+eWXmTdv3qjJp7Ozk0AggK7r2LbNDTfcMHBv47G+ufDCC3n11VcxDIPOzk66urqYOHHiMEf+wT75yU+edH/MmTOHl156CYBXXnmFCy64YDhDP65169ahaRpLly4deG3Pnj3ce++9CCGwLIutW7cyadKkUZHPh9n+R0M+O3bsGDTi47XXXmP16tVAYbjj7t27qa+vH5TLsfVytJPEKb7ZY/Xq1WzZsgVJklixYgW7du0aOKu3efPmgYa9/PLLuemmm07lV/+P8EHtO3fuXGbNmjVwpg7gM5/5DIsXLx7GaEeXodbdY1pbW1m+fLk7zf5HMFT7Hjp0iBUrVpDP55k0aRIrV650HxHxIQzVtj//+c9Zu3YtiqJw7rnncs899wx3uCPSn7fhaBgG+otf/II1a9YMOqFxzTXX8Nxzz+H3+/H5fKxatYrS0lJeeuklnn76aSRJoqGhgc9+9rPDGPnx9ff3841vfINMJoNhGNx5552ceeaZ3HvvveTzecaMGcOqVavQNG1U5NPU1MQ//dM/8cMf/hCAF198kWeffRafz0dFRQXf/e538fl8PPfcc/z7v/87kiTxt3/7t8yePXuYIy9oamrioYceoq2tDVVVqaioYPXq1Sxbtuyk+sO2be6//36am5vRdZ3vfe97VFVVjah8ent78Xg8AydkJkyYwMqVK1m1ahWNjY3Isswll1zCbbfdNiryue6663j66adPavsfSfkcL5c1a9awZs0azjvvPD796U8DhSGPy5cvp62tDcuyuO6667jmmmtIp9P83d/9HfF4nHA4zCOPPEIoFBqWXE6VU16guVwul8vlcrlcLpfro3FPUbtcLpfL5XK5XC7XCOEWaC6Xy+VyuVwul8s1QrgFmsvlcrlcLpfL5XKNEG6B5nK5XC6Xy+VyuVwjhFuguVwul8vlcrlcLtcI4RZoLpfL5XK5XC6XyzVCuAWay+VyuVwul8vlco0QboHmcrlcLpfL5XK5XCPE/weo+ZY7oWGILwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -588,7 +621,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 18, "metadata": { "scrolled": true }, @@ -632,462 +665,462 @@ " thetas[0,0]\n", " 0.300\n", " 0.064\n", - " 0.187\n", - " 0.423\n", + " 0.184\n", + " 0.424\n", " 0.000\n", " 0.000\n", - " 20339.0\n", - " 17763.0\n", - " 20322.0\n", - " 6069.0\n", + " 16693.0\n", + " 14799.0\n", + " 16701.0\n", + " 5847.0\n", " 1.0\n", " \n", " \n", " thetas[0,1]\n", " 0.600\n", - " 0.069\n", - " 0.470\n", + " 0.068\n", + " 0.474\n", " 0.727\n", + " 0.001\n", " 0.000\n", - " 0.000\n", - " 19390.0\n", - " 19180.0\n", - " 19552.0\n", - " 6245.0\n", + " 15018.0\n", + " 14778.0\n", + " 14982.0\n", + " 6380.0\n", " 1.0\n", " \n", " \n", " thetas[0,2]\n", " 0.100\n", - " 0.043\n", - " 0.029\n", - " 0.180\n", + " 0.042\n", + " 0.033\n", + " 0.185\n", " 0.000\n", " 0.000\n", - " 18595.0\n", - " 12076.0\n", - " 18709.0\n", - " 5858.0\n", + " 14612.0\n", + " 11216.0\n", + " 14513.0\n", + " 6030.0\n", " 1.0\n", " \n", " \n", " thetas[1,0]\n", " 0.490\n", - " 0.070\n", + " 0.071\n", " 0.362\n", - " 0.622\n", + " 0.623\n", " 0.001\n", " 0.000\n", - " 19511.0\n", - " 18547.0\n", - " 19485.0\n", - " 5735.0\n", + " 19890.0\n", + " 19890.0\n", + " 19769.0\n", + " 5557.0\n", " 1.0\n", " \n", " \n", " thetas[1,1]\n", " 0.469\n", - " 0.070\n", - " 0.333\n", - " 0.591\n", + " 0.071\n", + " 0.341\n", + " 0.604\n", " 0.001\n", " 0.000\n", - " 19212.0\n", - " 18708.0\n", - " 19202.0\n", - " 5792.0\n", + " 18397.0\n", + " 16708.0\n", + " 18280.0\n", + " 6221.0\n", " 1.0\n", " \n", " \n", " thetas[1,2]\n", " 0.041\n", - " 0.028\n", + " 0.027\n", " 0.001\n", - " 0.090\n", + " 0.089\n", " 0.000\n", " 0.000\n", - " 13816.0\n", - " 8597.0\n", - " 14282.0\n", - " 5384.0\n", + " 13983.0\n", + " 8384.0\n", + " 13998.0\n", + " 5573.0\n", " 1.0\n", " \n", " \n", " thetas[2,0]\n", " 0.465\n", " 0.038\n", - " 0.395\n", - " 0.538\n", + " 0.394\n", + " 0.534\n", " 0.000\n", " 0.000\n", - " 20807.0\n", - " 20050.0\n", - " 20958.0\n", - " 5981.0\n", + " 20043.0\n", + " 19863.0\n", + " 20038.0\n", + " 5672.0\n", " 1.0\n", " \n", " \n", " thetas[2,1]\n", - " 0.411\n", - " 0.037\n", - " 0.343\n", - " 0.484\n", + " 0.412\n", + " 0.038\n", + " 0.344\n", + " 0.486\n", " 0.000\n", " 0.000\n", - " 19349.0\n", - " 19002.0\n", - " 19357.0\n", - " 6140.0\n", + " 20367.0\n", + " 19791.0\n", + " 20372.0\n", + " 5545.0\n", " 1.0\n", " \n", " \n", " thetas[2,2]\n", " 0.124\n", - " 0.026\n", - " 0.078\n", - " 0.172\n", + " 0.025\n", + " 0.076\n", + " 0.169\n", " 0.000\n", " 0.000\n", - " 19153.0\n", - " 15896.0\n", - " 19292.0\n", - " 6033.0\n", + " 19117.0\n", + " 15634.0\n", + " 19928.0\n", + " 5515.0\n", " 1.0\n", " \n", " \n", " thetas[3,0]\n", - " 0.458\n", - " 0.059\n", - " 0.349\n", - " 0.566\n", + " 0.459\n", + " 0.057\n", + " 0.355\n", + " 0.570\n", " 0.000\n", " 0.000\n", - " 20735.0\n", - " 20200.0\n", - " 20643.0\n", - " 5127.0\n", + " 18824.0\n", + " 17674.0\n", + " 18744.0\n", + " 4945.0\n", " 1.0\n", " \n", " \n", " thetas[3,1]\n", - " 0.514\n", - " 0.058\n", - " 0.408\n", - " 0.624\n", + " 0.513\n", + " 0.057\n", + " 0.404\n", + " 0.620\n", " 0.000\n", " 0.000\n", - " 20660.0\n", - " 20058.0\n", - " 20471.0\n", - " 5836.0\n", + " 18301.0\n", + " 17842.0\n", + " 18333.0\n", + " 5361.0\n", " 1.0\n", " \n", " \n", " thetas[3,2]\n", " 0.028\n", - " 0.020\n", + " 0.019\n", " 0.001\n", - " 0.064\n", + " 0.063\n", " 0.000\n", " 0.000\n", - " 16074.0\n", - " 8880.0\n", - " 17187.0\n", - " 5629.0\n", + " 14944.0\n", + " 9113.0\n", + " 14491.0\n", + " 4950.0\n", " 1.0\n", " \n", " \n", " thetas[4,0]\n", - " 0.400\n", - " 0.068\n", - " 0.269\n", - " 0.527\n", + " 0.401\n", + " 0.069\n", + " 0.277\n", + " 0.537\n", " 0.000\n", " 0.000\n", - " 19289.0\n", - " 17810.0\n", - " 19171.0\n", - " 5725.0\n", + " 19545.0\n", + " 17552.0\n", + " 19733.0\n", + " 6137.0\n", " 1.0\n", " \n", " \n", " thetas[4,1]\n", - " 0.480\n", - " 0.069\n", - " 0.348\n", - " 0.604\n", - " 0.000\n", + " 0.479\n", + " 0.070\n", + " 0.350\n", + " 0.613\n", + " 0.001\n", " 0.000\n", - " 19313.0\n", - " 18659.0\n", - " 19046.0\n", - " 5533.0\n", + " 17495.0\n", + " 17291.0\n", + " 17387.0\n", + " 5666.0\n", " 1.0\n", " \n", " \n", " thetas[4,2]\n", " 0.120\n", - " 0.046\n", - " 0.040\n", - " 0.206\n", + " 0.045\n", + " 0.041\n", + " 0.204\n", " 0.000\n", " 0.000\n", - " 17300.0\n", - " 11240.0\n", - " 18923.0\n", - " 5570.0\n", + " 19618.0\n", + " 13669.0\n", + " 19556.0\n", + " 5868.0\n", " 1.0\n", " \n", " \n", " thetas[5,0]\n", " 0.444\n", - " 0.050\n", - " 0.354\n", + " 0.051\n", + " 0.349\n", " 0.538\n", " 0.000\n", " 0.000\n", - " 19699.0\n", - " 19109.0\n", - " 19641.0\n", - " 5723.0\n", + " 18114.0\n", + " 17289.0\n", + " 18174.0\n", + " 5259.0\n", " 1.0\n", " \n", " \n", " thetas[5,1]\n", " 0.443\n", " 0.051\n", - " 0.346\n", - " 0.536\n", + " 0.348\n", + " 0.537\n", " 0.000\n", " 0.000\n", - " 19750.0\n", - " 18989.0\n", - " 19720.0\n", - " 5892.0\n", + " 17550.0\n", + " 17392.0\n", + " 17511.0\n", + " 5927.0\n", " 1.0\n", " \n", " \n", " thetas[5,2]\n", " 0.113\n", - " 0.031\n", - " 0.060\n", - " 0.175\n", + " 0.032\n", + " 0.057\n", + " 0.174\n", " 0.000\n", " 0.000\n", - " 18568.0\n", - " 14734.0\n", - " 18817.0\n", - " 5704.0\n", + " 17665.0\n", + " 13440.0\n", + " 17741.0\n", + " 5767.0\n", " 1.0\n", " \n", " \n", " thetas[6,0]\n", " 0.504\n", " 0.045\n", - " 0.421\n", - " 0.592\n", + " 0.422\n", + " 0.591\n", " 0.000\n", " 0.000\n", - " 15921.0\n", - " 15025.0\n", - " 15801.0\n", - " 5305.0\n", + " 19771.0\n", + " 19385.0\n", + " 19826.0\n", + " 5891.0\n", " 1.0\n", " \n", " \n", " thetas[6,1]\n", " 0.387\n", - " 0.045\n", + " 0.044\n", " 0.305\n", - " 0.471\n", + " 0.470\n", " 0.000\n", " 0.000\n", - " 17919.0\n", - " 17298.0\n", - " 17932.0\n", - " 5535.0\n", + " 18517.0\n", + " 17144.0\n", + " 18586.0\n", + " 5444.0\n", " 1.0\n", " \n", " \n", " thetas[6,2]\n", " 0.109\n", " 0.029\n", - " 0.057\n", - " 0.163\n", + " 0.061\n", + " 0.167\n", " 0.000\n", " 0.000\n", - " 19968.0\n", - " 15599.0\n", - " 20069.0\n", - " 5625.0\n", + " 18652.0\n", + " 14589.0\n", + " 19016.0\n", + " 5561.0\n", " 1.0\n", " \n", " \n", " thetas[7,0]\n", " 0.547\n", - " 0.041\n", - " 0.467\n", - " 0.621\n", + " 0.040\n", + " 0.472\n", + " 0.623\n", " 0.000\n", " 0.000\n", - " 17353.0\n", - " 16819.0\n", - " 17435.0\n", - " 5160.0\n", + " 16515.0\n", + " 16360.0\n", + " 16472.0\n", + " 5739.0\n", " 1.0\n", " \n", " \n", " thetas[7,1]\n", " 0.338\n", - " 0.039\n", + " 0.038\n", " 0.266\n", - " 0.412\n", + " 0.406\n", " 0.000\n", " 0.000\n", - " 18694.0\n", - " 17352.0\n", - " 19000.0\n", - " 5645.0\n", + " 17604.0\n", + " 16743.0\n", + " 17693.0\n", + " 5599.0\n", " 1.0\n", " \n", " \n", " thetas[7,2]\n", " 0.115\n", - " 0.026\n", - " 0.069\n", - " 0.166\n", + " 0.025\n", + " 0.070\n", + " 0.163\n", " 0.000\n", " 0.000\n", - " 19354.0\n", - " 16324.0\n", - " 19387.0\n", - " 5943.0\n", + " 19374.0\n", + " 16772.0\n", + " 19152.0\n", + " 5998.0\n", " 1.0\n", " \n", " \n", " thetas[8,0]\n", - " 0.542\n", - " 0.102\n", - " 0.351\n", - " 0.737\n", + " 0.543\n", + " 0.097\n", + " 0.367\n", + " 0.728\n", " 0.001\n", " 0.001\n", - " 18059.0\n", - " 17100.0\n", - " 18191.0\n", - " 5359.0\n", + " 20286.0\n", + " 18361.0\n", + " 20174.0\n", + " 5683.0\n", " 1.0\n", " \n", " \n", " thetas[8,1]\n", " 0.291\n", - " 0.092\n", - " 0.125\n", - " 0.466\n", + " 0.090\n", + " 0.124\n", + " 0.457\n", " 0.001\n", " 0.001\n", - " 17529.0\n", - " 12773.0\n", - " 18116.0\n", - " 5361.0\n", + " 17542.0\n", + " 14385.0\n", + " 17443.0\n", + " 6252.0\n", " 1.0\n", " \n", " \n", " thetas[8,2]\n", - " 0.167\n", - " 0.076\n", - " 0.034\n", - " 0.305\n", + " 0.166\n", + " 0.074\n", + " 0.042\n", + " 0.304\n", " 0.001\n", " 0.001\n", - " 15880.0\n", - " 9583.0\n", - " 17401.0\n", - " 5565.0\n", + " 16485.0\n", + " 10657.0\n", + " 17427.0\n", + " 5949.0\n", " 1.0\n", " \n", " \n", " thetas[9,0]\n", " 0.465\n", - " 0.050\n", - " 0.372\n", - " 0.558\n", + " 0.051\n", + " 0.371\n", + " 0.560\n", " 0.000\n", " 0.000\n", - " 21250.0\n", - " 21134.0\n", - " 21235.0\n", - " 5933.0\n", + " 18596.0\n", + " 17819.0\n", + " 18577.0\n", + " 5670.0\n", " 1.0\n", " \n", " \n", " thetas[9,1]\n", " 0.404\n", " 0.050\n", - " 0.310\n", - " 0.496\n", + " 0.313\n", + " 0.502\n", " 0.000\n", " 0.000\n", - " 19513.0\n", - " 17659.0\n", - " 19842.0\n", - " 5706.0\n", + " 20028.0\n", + " 19170.0\n", + " 20068.0\n", + " 5357.0\n", " 1.0\n", " \n", " \n", " thetas[9,2]\n", " 0.131\n", - " 0.033\n", - " 0.070\n", - " 0.190\n", + " 0.034\n", + " 0.071\n", + " 0.194\n", " 0.000\n", " 0.000\n", - " 20408.0\n", - " 16101.0\n", - " 20676.0\n", - " 5468.0\n", + " 19738.0\n", + " 15885.0\n", + " 19949.0\n", + " 5384.0\n", " 1.0\n", " \n", " \n", " thetas[10,0]\n", - " 0.509\n", + " 0.510\n", " 0.049\n", - " 0.413\n", - " 0.598\n", + " 0.418\n", + " 0.600\n", " 0.000\n", " 0.000\n", - " 17902.0\n", - " 17320.0\n", - " 17983.0\n", - " 5648.0\n", + " 16846.0\n", + " 16372.0\n", + " 16865.0\n", + " 5435.0\n", " 1.0\n", " \n", " \n", " thetas[10,1]\n", " 0.402\n", " 0.048\n", - " 0.319\n", - " 0.495\n", + " 0.312\n", + " 0.492\n", " 0.000\n", " 0.000\n", - " 17150.0\n", - " 16781.0\n", - " 16879.0\n", - " 6083.0\n", + " 17349.0\n", + " 16466.0\n", + " 17378.0\n", + " 5289.0\n", " 1.0\n", " \n", " \n", " thetas[10,2]\n", " 0.088\n", - " 0.028\n", - " 0.038\n", - " 0.138\n", + " 0.027\n", + " 0.041\n", + " 0.141\n", " 0.000\n", " 0.000\n", - " 18132.0\n", - " 13925.0\n", - " 18017.0\n", - " 5951.0\n", + " 17139.0\n", + " 13514.0\n", + " 17179.0\n", + " 6125.0\n", " 1.0\n", " \n", " \n", @@ -1098,10 +1131,10 @@ " 0.623\n", " 0.000\n", " 0.000\n", - " 19232.0\n", - " 19113.0\n", - " 19204.0\n", - " 5712.0\n", + " 19784.0\n", + " 19560.0\n", + " 19790.0\n", + " 5414.0\n", " 1.0\n", " \n", " \n", @@ -1109,13 +1142,13 @@ " 0.351\n", " 0.035\n", " 0.284\n", - " 0.413\n", + " 0.416\n", " 0.000\n", " 0.000\n", - " 18706.0\n", - " 17851.0\n", - " 18777.0\n", - " 6028.0\n", + " 20817.0\n", + " 20046.0\n", + " 20778.0\n", + " 5549.0\n", " 1.0\n", " \n", " \n", @@ -1123,181 +1156,181 @@ " 0.097\n", " 0.021\n", " 0.060\n", - " 0.138\n", + " 0.139\n", " 0.000\n", " 0.000\n", - " 18493.0\n", - " 15312.0\n", - " 18919.0\n", - " 5995.0\n", + " 17024.0\n", + " 14273.0\n", + " 17452.0\n", + " 6258.0\n", " 1.0\n", " \n", " \n", " thetas[12,0]\n", - " 0.487\n", - " 0.082\n", - " 0.339\n", - " 0.647\n", + " 0.486\n", + " 0.081\n", + " 0.337\n", + " 0.640\n", " 0.001\n", " 0.000\n", - " 22491.0\n", - " 20669.0\n", - " 22470.0\n", - " 5516.0\n", + " 17963.0\n", + " 16518.0\n", + " 18055.0\n", + " 5405.0\n", " 1.0\n", " \n", " \n", " thetas[12,1]\n", - " 0.459\n", - " 0.082\n", - " 0.305\n", - " 0.610\n", + " 0.460\n", + " 0.080\n", + " 0.307\n", + " 0.607\n", " 0.001\n", " 0.000\n", - " 20397.0\n", - " 18550.0\n", - " 20367.0\n", - " 6181.0\n", + " 16284.0\n", + " 15271.0\n", + " 16295.0\n", + " 5535.0\n", " 1.0\n", " \n", " \n", " thetas[12,2]\n", " 0.054\n", " 0.037\n", - " 0.002\n", - " 0.121\n", + " 0.001\n", + " 0.119\n", " 0.000\n", " 0.000\n", - " 16547.0\n", - " 9079.0\n", - " 17300.0\n", - " 5684.0\n", + " 13424.0\n", + " 8281.0\n", + " 13513.0\n", + " 5758.0\n", " 1.0\n", " \n", " \n", " thetas[13,0]\n", - " 0.524\n", - " 0.055\n", - " 0.424\n", - " 0.630\n", + " 0.525\n", + " 0.056\n", + " 0.418\n", + " 0.627\n", " 0.000\n", " 0.000\n", - " 17157.0\n", - " 16845.0\n", - " 17150.0\n", - " 5982.0\n", + " 18347.0\n", + " 17793.0\n", + " 18365.0\n", + " 5434.0\n", " 1.0\n", " \n", " \n", " thetas[13,1]\n", " 0.350\n", " 0.053\n", - " 0.256\n", - " 0.454\n", + " 0.252\n", + " 0.450\n", " 0.000\n", " 0.000\n", - " 18818.0\n", - " 16504.0\n", - " 19076.0\n", - " 5748.0\n", + " 17740.0\n", + " 15856.0\n", + " 18049.0\n", + " 5701.0\n", " 1.0\n", " \n", " \n", " thetas[13,2]\n", " 0.125\n", " 0.037\n", - " 0.061\n", - " 0.195\n", + " 0.060\n", + " 0.194\n", " 0.000\n", " 0.000\n", - " 18228.0\n", - " 12811.0\n", - " 19014.0\n", - " 5243.0\n", + " 15347.0\n", + " 12565.0\n", + " 14960.0\n", + " 5493.0\n", " 1.0\n", " \n", " \n", " thetas[14,0]\n", - " 0.536\n", + " 0.535\n", " 0.044\n", - " 0.454\n", - " 0.619\n", + " 0.452\n", + " 0.616\n", " 0.000\n", " 0.000\n", - " 18884.0\n", - " 18702.0\n", - " 18899.0\n", - " 6359.0\n", + " 19003.0\n", + " 18991.0\n", + " 19087.0\n", + " 5799.0\n", " 1.0\n", " \n", " \n", " thetas[14,1]\n", " 0.370\n", - " 0.043\n", - " 0.293\n", - " 0.452\n", + " 0.042\n", + " 0.292\n", + " 0.449\n", " 0.000\n", " 0.000\n", - " 19833.0\n", - " 18709.0\n", - " 19859.0\n", - " 6530.0\n", + " 20079.0\n", + " 18987.0\n", + " 20118.0\n", + " 5816.0\n", " 1.0\n", " \n", " \n", " thetas[14,2]\n", - " 0.094\n", - " 0.025\n", - " 0.049\n", - " 0.142\n", + " 0.095\n", + " 0.026\n", + " 0.048\n", + " 0.143\n", " 0.000\n", " 0.000\n", - " 18242.0\n", - " 14272.0\n", - " 19906.0\n", - " 6134.0\n", + " 19411.0\n", + " 14268.0\n", + " 20703.0\n", + " 5823.0\n", " 1.0\n", " \n", " \n", " thetas[15,0]\n", - " 0.547\n", + " 0.546\n", " 0.054\n", - " 0.449\n", - " 0.650\n", + " 0.444\n", + " 0.646\n", " 0.000\n", " 0.000\n", - " 19939.0\n", - " 19867.0\n", - " 20079.0\n", - " 5596.0\n", + " 21369.0\n", + " 20947.0\n", + " 21393.0\n", + " 5278.0\n", " 1.0\n", " \n", " \n", " thetas[15,1]\n", " 0.360\n", - " 0.052\n", - " 0.268\n", - " 0.459\n", + " 0.051\n", + " 0.264\n", + " 0.456\n", " 0.000\n", " 0.000\n", - " 18711.0\n", - " 17012.0\n", - " 18923.0\n", - " 5642.0\n", + " 18968.0\n", + " 17477.0\n", + " 19048.0\n", + " 5636.0\n", " 1.0\n", " \n", " \n", " thetas[15,2]\n", " 0.093\n", - " 0.031\n", + " 0.032\n", " 0.039\n", - " 0.152\n", + " 0.154\n", " 0.000\n", " 0.000\n", - " 19422.0\n", - " 13374.0\n", - " 20231.0\n", - " 5770.0\n", + " 17638.0\n", + " 12620.0\n", + " 17873.0\n", + " 5377.0\n", " 1.0\n", " \n", " \n", @@ -1306,107 +1339,107 @@ ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", - "thetas[0,0] 0.300 0.064 0.187 0.423 0.000 0.000 20339.0 \n", - "thetas[0,1] 0.600 0.069 0.470 0.727 0.000 0.000 19390.0 \n", - "thetas[0,2] 0.100 0.043 0.029 0.180 0.000 0.000 18595.0 \n", - "thetas[1,0] 0.490 0.070 0.362 0.622 0.001 0.000 19511.0 \n", - "thetas[1,1] 0.469 0.070 0.333 0.591 0.001 0.000 19212.0 \n", - "thetas[1,2] 0.041 0.028 0.001 0.090 0.000 0.000 13816.0 \n", - "thetas[2,0] 0.465 0.038 0.395 0.538 0.000 0.000 20807.0 \n", - "thetas[2,1] 0.411 0.037 0.343 0.484 0.000 0.000 19349.0 \n", - "thetas[2,2] 0.124 0.026 0.078 0.172 0.000 0.000 19153.0 \n", - "thetas[3,0] 0.458 0.059 0.349 0.566 0.000 0.000 20735.0 \n", - "thetas[3,1] 0.514 0.058 0.408 0.624 0.000 0.000 20660.0 \n", - "thetas[3,2] 0.028 0.020 0.001 0.064 0.000 0.000 16074.0 \n", - "thetas[4,0] 0.400 0.068 0.269 0.527 0.000 0.000 19289.0 \n", - "thetas[4,1] 0.480 0.069 0.348 0.604 0.000 0.000 19313.0 \n", - "thetas[4,2] 0.120 0.046 0.040 0.206 0.000 0.000 17300.0 \n", - "thetas[5,0] 0.444 0.050 0.354 0.538 0.000 0.000 19699.0 \n", - "thetas[5,1] 0.443 0.051 0.346 0.536 0.000 0.000 19750.0 \n", - "thetas[5,2] 0.113 0.031 0.060 0.175 0.000 0.000 18568.0 \n", - "thetas[6,0] 0.504 0.045 0.421 0.592 0.000 0.000 15921.0 \n", - "thetas[6,1] 0.387 0.045 0.305 0.471 0.000 0.000 17919.0 \n", - "thetas[6,2] 0.109 0.029 0.057 0.163 0.000 0.000 19968.0 \n", - "thetas[7,0] 0.547 0.041 0.467 0.621 0.000 0.000 17353.0 \n", - "thetas[7,1] 0.338 0.039 0.266 0.412 0.000 0.000 18694.0 \n", - "thetas[7,2] 0.115 0.026 0.069 0.166 0.000 0.000 19354.0 \n", - "thetas[8,0] 0.542 0.102 0.351 0.737 0.001 0.001 18059.0 \n", - "thetas[8,1] 0.291 0.092 0.125 0.466 0.001 0.001 17529.0 \n", - "thetas[8,2] 0.167 0.076 0.034 0.305 0.001 0.001 15880.0 \n", - "thetas[9,0] 0.465 0.050 0.372 0.558 0.000 0.000 21250.0 \n", - "thetas[9,1] 0.404 0.050 0.310 0.496 0.000 0.000 19513.0 \n", - "thetas[9,2] 0.131 0.033 0.070 0.190 0.000 0.000 20408.0 \n", - "thetas[10,0] 0.509 0.049 0.413 0.598 0.000 0.000 17902.0 \n", - "thetas[10,1] 0.402 0.048 0.319 0.495 0.000 0.000 17150.0 \n", - "thetas[10,2] 0.088 0.028 0.038 0.138 0.000 0.000 18132.0 \n", - "thetas[11,0] 0.551 0.037 0.486 0.623 0.000 0.000 19232.0 \n", - "thetas[11,1] 0.351 0.035 0.284 0.413 0.000 0.000 18706.0 \n", - "thetas[11,2] 0.097 0.021 0.060 0.138 0.000 0.000 18493.0 \n", - "thetas[12,0] 0.487 0.082 0.339 0.647 0.001 0.000 22491.0 \n", - "thetas[12,1] 0.459 0.082 0.305 0.610 0.001 0.000 20397.0 \n", - "thetas[12,2] 0.054 0.037 0.002 0.121 0.000 0.000 16547.0 \n", - "thetas[13,0] 0.524 0.055 0.424 0.630 0.000 0.000 17157.0 \n", - "thetas[13,1] 0.350 0.053 0.256 0.454 0.000 0.000 18818.0 \n", - "thetas[13,2] 0.125 0.037 0.061 0.195 0.000 0.000 18228.0 \n", - "thetas[14,0] 0.536 0.044 0.454 0.619 0.000 0.000 18884.0 \n", - "thetas[14,1] 0.370 0.043 0.293 0.452 0.000 0.000 19833.0 \n", - "thetas[14,2] 0.094 0.025 0.049 0.142 0.000 0.000 18242.0 \n", - "thetas[15,0] 0.547 0.054 0.449 0.650 0.000 0.000 19939.0 \n", - "thetas[15,1] 0.360 0.052 0.268 0.459 0.000 0.000 18711.0 \n", - "thetas[15,2] 0.093 0.031 0.039 0.152 0.000 0.000 19422.0 \n", + "thetas[0,0] 0.300 0.064 0.184 0.424 0.000 0.000 16693.0 \n", + "thetas[0,1] 0.600 0.068 0.474 0.727 0.001 0.000 15018.0 \n", + "thetas[0,2] 0.100 0.042 0.033 0.185 0.000 0.000 14612.0 \n", + "thetas[1,0] 0.490 0.071 0.362 0.623 0.001 0.000 19890.0 \n", + "thetas[1,1] 0.469 0.071 0.341 0.604 0.001 0.000 18397.0 \n", + "thetas[1,2] 0.041 0.027 0.001 0.089 0.000 0.000 13983.0 \n", + "thetas[2,0] 0.465 0.038 0.394 0.534 0.000 0.000 20043.0 \n", + "thetas[2,1] 0.412 0.038 0.344 0.486 0.000 0.000 20367.0 \n", + "thetas[2,2] 0.124 0.025 0.076 0.169 0.000 0.000 19117.0 \n", + "thetas[3,0] 0.459 0.057 0.355 0.570 0.000 0.000 18824.0 \n", + "thetas[3,1] 0.513 0.057 0.404 0.620 0.000 0.000 18301.0 \n", + "thetas[3,2] 0.028 0.019 0.001 0.063 0.000 0.000 14944.0 \n", + "thetas[4,0] 0.401 0.069 0.277 0.537 0.000 0.000 19545.0 \n", + "thetas[4,1] 0.479 0.070 0.350 0.613 0.001 0.000 17495.0 \n", + "thetas[4,2] 0.120 0.045 0.041 0.204 0.000 0.000 19618.0 \n", + "thetas[5,0] 0.444 0.051 0.349 0.538 0.000 0.000 18114.0 \n", + "thetas[5,1] 0.443 0.051 0.348 0.537 0.000 0.000 17550.0 \n", + "thetas[5,2] 0.113 0.032 0.057 0.174 0.000 0.000 17665.0 \n", + "thetas[6,0] 0.504 0.045 0.422 0.591 0.000 0.000 19771.0 \n", + "thetas[6,1] 0.387 0.044 0.305 0.470 0.000 0.000 18517.0 \n", + "thetas[6,2] 0.109 0.029 0.061 0.167 0.000 0.000 18652.0 \n", + "thetas[7,0] 0.547 0.040 0.472 0.623 0.000 0.000 16515.0 \n", + "thetas[7,1] 0.338 0.038 0.266 0.406 0.000 0.000 17604.0 \n", + "thetas[7,2] 0.115 0.025 0.070 0.163 0.000 0.000 19374.0 \n", + "thetas[8,0] 0.543 0.097 0.367 0.728 0.001 0.001 20286.0 \n", + "thetas[8,1] 0.291 0.090 0.124 0.457 0.001 0.001 17542.0 \n", + "thetas[8,2] 0.166 0.074 0.042 0.304 0.001 0.001 16485.0 \n", + "thetas[9,0] 0.465 0.051 0.371 0.560 0.000 0.000 18596.0 \n", + "thetas[9,1] 0.404 0.050 0.313 0.502 0.000 0.000 20028.0 \n", + "thetas[9,2] 0.131 0.034 0.071 0.194 0.000 0.000 19738.0 \n", + "thetas[10,0] 0.510 0.049 0.418 0.600 0.000 0.000 16846.0 \n", + "thetas[10,1] 0.402 0.048 0.312 0.492 0.000 0.000 17349.0 \n", + "thetas[10,2] 0.088 0.027 0.041 0.141 0.000 0.000 17139.0 \n", + "thetas[11,0] 0.551 0.037 0.486 0.623 0.000 0.000 19784.0 \n", + "thetas[11,1] 0.351 0.035 0.284 0.416 0.000 0.000 20817.0 \n", + "thetas[11,2] 0.097 0.021 0.060 0.139 0.000 0.000 17024.0 \n", + "thetas[12,0] 0.486 0.081 0.337 0.640 0.001 0.000 17963.0 \n", + "thetas[12,1] 0.460 0.080 0.307 0.607 0.001 0.000 16284.0 \n", + "thetas[12,2] 0.054 0.037 0.001 0.119 0.000 0.000 13424.0 \n", + "thetas[13,0] 0.525 0.056 0.418 0.627 0.000 0.000 18347.0 \n", + "thetas[13,1] 0.350 0.053 0.252 0.450 0.000 0.000 17740.0 \n", + "thetas[13,2] 0.125 0.037 0.060 0.194 0.000 0.000 15347.0 \n", + "thetas[14,0] 0.535 0.044 0.452 0.616 0.000 0.000 19003.0 \n", + "thetas[14,1] 0.370 0.042 0.292 0.449 0.000 0.000 20079.0 \n", + "thetas[14,2] 0.095 0.026 0.048 0.143 0.000 0.000 19411.0 \n", + "thetas[15,0] 0.546 0.054 0.444 0.646 0.000 0.000 21369.0 \n", + "thetas[15,1] 0.360 0.051 0.264 0.456 0.000 0.000 18968.0 \n", + "thetas[15,2] 0.093 0.032 0.039 0.154 0.000 0.000 17638.0 \n", "\n", " ess_sd ess_bulk ess_tail r_hat \n", - "thetas[0,0] 17763.0 20322.0 6069.0 1.0 \n", - "thetas[0,1] 19180.0 19552.0 6245.0 1.0 \n", - "thetas[0,2] 12076.0 18709.0 5858.0 1.0 \n", - "thetas[1,0] 18547.0 19485.0 5735.0 1.0 \n", - "thetas[1,1] 18708.0 19202.0 5792.0 1.0 \n", - "thetas[1,2] 8597.0 14282.0 5384.0 1.0 \n", - "thetas[2,0] 20050.0 20958.0 5981.0 1.0 \n", - "thetas[2,1] 19002.0 19357.0 6140.0 1.0 \n", - "thetas[2,2] 15896.0 19292.0 6033.0 1.0 \n", - "thetas[3,0] 20200.0 20643.0 5127.0 1.0 \n", - "thetas[3,1] 20058.0 20471.0 5836.0 1.0 \n", - "thetas[3,2] 8880.0 17187.0 5629.0 1.0 \n", - "thetas[4,0] 17810.0 19171.0 5725.0 1.0 \n", - "thetas[4,1] 18659.0 19046.0 5533.0 1.0 \n", - "thetas[4,2] 11240.0 18923.0 5570.0 1.0 \n", - "thetas[5,0] 19109.0 19641.0 5723.0 1.0 \n", - "thetas[5,1] 18989.0 19720.0 5892.0 1.0 \n", - "thetas[5,2] 14734.0 18817.0 5704.0 1.0 \n", - "thetas[6,0] 15025.0 15801.0 5305.0 1.0 \n", - "thetas[6,1] 17298.0 17932.0 5535.0 1.0 \n", - "thetas[6,2] 15599.0 20069.0 5625.0 1.0 \n", - "thetas[7,0] 16819.0 17435.0 5160.0 1.0 \n", - "thetas[7,1] 17352.0 19000.0 5645.0 1.0 \n", - "thetas[7,2] 16324.0 19387.0 5943.0 1.0 \n", - "thetas[8,0] 17100.0 18191.0 5359.0 1.0 \n", - "thetas[8,1] 12773.0 18116.0 5361.0 1.0 \n", - "thetas[8,2] 9583.0 17401.0 5565.0 1.0 \n", - "thetas[9,0] 21134.0 21235.0 5933.0 1.0 \n", - "thetas[9,1] 17659.0 19842.0 5706.0 1.0 \n", - "thetas[9,2] 16101.0 20676.0 5468.0 1.0 \n", - "thetas[10,0] 17320.0 17983.0 5648.0 1.0 \n", - "thetas[10,1] 16781.0 16879.0 6083.0 1.0 \n", - "thetas[10,2] 13925.0 18017.0 5951.0 1.0 \n", - "thetas[11,0] 19113.0 19204.0 5712.0 1.0 \n", - "thetas[11,1] 17851.0 18777.0 6028.0 1.0 \n", - "thetas[11,2] 15312.0 18919.0 5995.0 1.0 \n", - "thetas[12,0] 20669.0 22470.0 5516.0 1.0 \n", - "thetas[12,1] 18550.0 20367.0 6181.0 1.0 \n", - "thetas[12,2] 9079.0 17300.0 5684.0 1.0 \n", - "thetas[13,0] 16845.0 17150.0 5982.0 1.0 \n", - "thetas[13,1] 16504.0 19076.0 5748.0 1.0 \n", - "thetas[13,2] 12811.0 19014.0 5243.0 1.0 \n", - "thetas[14,0] 18702.0 18899.0 6359.0 1.0 \n", - "thetas[14,1] 18709.0 19859.0 6530.0 1.0 \n", - "thetas[14,2] 14272.0 19906.0 6134.0 1.0 \n", - "thetas[15,0] 19867.0 20079.0 5596.0 1.0 \n", - "thetas[15,1] 17012.0 18923.0 5642.0 1.0 \n", - "thetas[15,2] 13374.0 20231.0 5770.0 1.0 " + "thetas[0,0] 14799.0 16701.0 5847.0 1.0 \n", + "thetas[0,1] 14778.0 14982.0 6380.0 1.0 \n", + "thetas[0,2] 11216.0 14513.0 6030.0 1.0 \n", + "thetas[1,0] 19890.0 19769.0 5557.0 1.0 \n", + "thetas[1,1] 16708.0 18280.0 6221.0 1.0 \n", + "thetas[1,2] 8384.0 13998.0 5573.0 1.0 \n", + "thetas[2,0] 19863.0 20038.0 5672.0 1.0 \n", + "thetas[2,1] 19791.0 20372.0 5545.0 1.0 \n", + "thetas[2,2] 15634.0 19928.0 5515.0 1.0 \n", + "thetas[3,0] 17674.0 18744.0 4945.0 1.0 \n", + "thetas[3,1] 17842.0 18333.0 5361.0 1.0 \n", + "thetas[3,2] 9113.0 14491.0 4950.0 1.0 \n", + "thetas[4,0] 17552.0 19733.0 6137.0 1.0 \n", + "thetas[4,1] 17291.0 17387.0 5666.0 1.0 \n", + "thetas[4,2] 13669.0 19556.0 5868.0 1.0 \n", + "thetas[5,0] 17289.0 18174.0 5259.0 1.0 \n", + "thetas[5,1] 17392.0 17511.0 5927.0 1.0 \n", + "thetas[5,2] 13440.0 17741.0 5767.0 1.0 \n", + "thetas[6,0] 19385.0 19826.0 5891.0 1.0 \n", + "thetas[6,1] 17144.0 18586.0 5444.0 1.0 \n", + "thetas[6,2] 14589.0 19016.0 5561.0 1.0 \n", + "thetas[7,0] 16360.0 16472.0 5739.0 1.0 \n", + "thetas[7,1] 16743.0 17693.0 5599.0 1.0 \n", + "thetas[7,2] 16772.0 19152.0 5998.0 1.0 \n", + "thetas[8,0] 18361.0 20174.0 5683.0 1.0 \n", + "thetas[8,1] 14385.0 17443.0 6252.0 1.0 \n", + "thetas[8,2] 10657.0 17427.0 5949.0 1.0 \n", + "thetas[9,0] 17819.0 18577.0 5670.0 1.0 \n", + "thetas[9,1] 19170.0 20068.0 5357.0 1.0 \n", + "thetas[9,2] 15885.0 19949.0 5384.0 1.0 \n", + "thetas[10,0] 16372.0 16865.0 5435.0 1.0 \n", + "thetas[10,1] 16466.0 17378.0 5289.0 1.0 \n", + "thetas[10,2] 13514.0 17179.0 6125.0 1.0 \n", + "thetas[11,0] 19560.0 19790.0 5414.0 1.0 \n", + "thetas[11,1] 20046.0 20778.0 5549.0 1.0 \n", + "thetas[11,2] 14273.0 17452.0 6258.0 1.0 \n", + "thetas[12,0] 16518.0 18055.0 5405.0 1.0 \n", + "thetas[12,1] 15271.0 16295.0 5535.0 1.0 \n", + "thetas[12,2] 8281.0 13513.0 5758.0 1.0 \n", + "thetas[13,0] 17793.0 18365.0 5434.0 1.0 \n", + "thetas[13,1] 15856.0 18049.0 5701.0 1.0 \n", + "thetas[13,2] 12565.0 14960.0 5493.0 1.0 \n", + "thetas[14,0] 18991.0 19087.0 5799.0 1.0 \n", + "thetas[14,1] 18987.0 20118.0 5816.0 1.0 \n", + "thetas[14,2] 14268.0 20703.0 5823.0 1.0 \n", + "thetas[15,0] 20947.0 21393.0 5278.0 1.0 \n", + "thetas[15,1] 17477.0 19048.0 5636.0 1.0 \n", + "thetas[15,2] 12620.0 17873.0 5377.0 1.0 " ] }, - "execution_count": 19, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1424,34 +1457,34 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 10000/10000 [00:16<00:00, 624.90it/s]\n" + "100%|██████████| 8000/8000 [00:12<00:00, 638.87it/s]\n" ] } ], "source": [ "with model_non_hiera:\n", - " ppc_non_hiera = pm.sample_posterior_predictive(trace_1, samples=10_000, vars=[thetas, post])" + " ppc_non_hiera = pm.sample_posterior_predictive(trace_1, var_names=['thetas', 'post'])" ] }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(10000, 16, 3)" + "(8000, 16, 3)" ] }, - "execution_count": 21, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1469,7 +1502,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 20, "metadata": {}, "outputs": [ { @@ -1481,7 +1514,7 @@ " 0.05711423])" ] }, - "execution_count": 22, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } @@ -1492,7 +1525,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 21, "metadata": {}, "outputs": [], "source": [ @@ -1505,28 +1538,28 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.37152868, -0.39270884, -0.27711763, ..., -0.38311389,\n", - " -0.16197354, -0.0759135 ],\n", - " [-0.09074752, 0.1115859 , 0.00146911, ..., 0.01069888,\n", - " 0.02267581, 0.07319762],\n", - " [-0.06447657, 0.13304329, 0.04881421, ..., -0.05086837,\n", - " 0.17782086, 0.1470372 ],\n", + "array([[-0.12250978, -0.42556044, -0.15966997, ..., -0.22926153,\n", + " -0.24760069, -0.24930177],\n", + " [ 0.07019904, -0.02395537, -0.06649436, ..., 0.26462965,\n", + " 0.26716916, 0.29235914],\n", + " [ 0.05685179, -0.03017662, 0.13384658, ..., 0.10394146,\n", + " -0.00056104, 0.06779968],\n", " ...,\n", - " [ 0.22232482, 0.04534385, 0.12250542, ..., 0.21818491,\n", - " 0.12880619, 0.17687064],\n", - " [ 0.23422029, 0.29562229, -0.01020674, ..., 0.10753941,\n", - " 0.21011965, 0.22453465],\n", - " [ 0.12189831, 0.05450111, 0.13657609, ..., 0.22938518,\n", - " 0.18281768, 0.21130112]])" + " [ 0.25018806, 0.11635687, 0.2790056 , ..., 0.16693184,\n", + " 0.16900893, 0.21247109],\n", + " [ 0.09925011, 0.25388441, 0.16680238, ..., 0.08845875,\n", + " 0.12992982, 0.15282509],\n", + " [ 0.12496571, 0.22629916, 0.21195712, ..., 0.17396249,\n", + " 0.16813381, 0.12199068]])" ] }, - "execution_count": 24, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1538,7 +1571,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1547,12 +1580,12 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAARbUlEQVR4nO3db2jcdx3A8U+6tGn6J4zKbSJt7eoeDItV7LQdDmahLJkJ6gLT0ieb7IFSnIooFKT+6VYN084nMmrZsLOO4Zi6QrNNpmxsg6rTicMHKdYZLJNWrbRJ1mtstq8PRs+dXWqW613az71eMFjv3+93n/7y7bv3u951lFJKAAAkNm+udwAAoNkEDwCQnuABANITPABAeoIHAEhP8AAA6XWe78p//GP8gm9wyZKumJiYvOCPe6kxBzOIMIMIM4gwg7PMwQwiGptBpbJ02uta/gpPZ+dlrd7kRckczCDCDCLMIMIMzjIHM4ho3gyc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNc51zsAtJ8lPd3R3fXf5adSWdrU7VUnp2JirNrUbQAXN8EDtFx3V2es2jbcsu2NDvXHRMu2BlyMnNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApOefpQPnfC4OQDZWOGBOPhcHoJWc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIr3OudwA415Ke7uju8uMJcKFYUeEi1N3VGau2Dbdse6ND/S3bFsBccEoLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHo+eBBI7/SZV6NSWdrSbVYnp2JirNrSbQLTEzxAegvnX9bST66OeP3TqydaukXgfJzSAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9DrnegfgUrCkpzu6u5rz41KpLG3K4wLwX4IHZqC7qzNWbRtu2fZGh/pbti2AduCUFgCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6XXO9Q4AZHT6zKtRqSyd8e3fym3fTHVyKibGqg09BmQmeACaYOH8y2LVtuGWbW90qD8mWrY1uPQ4pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqdc70D8FYt6emO7i6HLgAz508NLjndXZ2xattwS7c5OtTf0u0BcGE5pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpdc71DgDQuNNnXo1KZWnLtlednIqJsWrLtgeNEjwACSycf1ms2jbcsu2NDvXHRMu2Bo1zSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS65zrHeDSt6SnO7q7ZncoVSpLL/DeAMC5BA8N6+7qjFXbhlu2vdGh/pZtC4AcnNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0fA4PAG/Z6TOvNuWDQ6d7zOrkVEyMVS/49mgfggeAt2zh/Mta/oGjEy3bGhk5pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQ653oHuPCW9HRHd5ffWgA4y5+KCXV3dcaqbcMt297oUH/LtgW0p9NnXo1KZWnLtlednIqJsWrLtkfzCR4ALnoL51/W8r/ITbRsa7SC9/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASM8HD7bAdF/10MpPDQWAdiZ4WsBXPQDA3HJKCwBIT/AAAOk5pQUA/8O3s+fTlsEz3ZuIASCi9d/OPnJnXy2wWhVa7RZZHaWUMtc7AQDQTN7DAwCkJ3gAgPQEDwCQXkPBc/Dgwbj55pujt7c3PvWpT8XRo0fPuc3IyEhs3rw5ent7Y/PmzTEyMlK7bnh4OAYGBqK3tzfuuOOOGB8fj4iIUkp85zvfid7e3ujr64tdu3Y1sptN1egMHn744ejv74++vr64/fbba/ffv39/rFu3Lvr6+mr/Pfnkky17Xm9FIzM4evRorFmzpu55nv39bpfj4IEHHqh7/ps2bYr169dHRMS9994b69evr7v+xRdfbOlzm6mZzKCUEvfff3+sWbMmfvvb39Zdl2E9iGh8Du2yJkw3g3ZaE6abQTutCb/73e/illtuiZtuuikGBwfj+eefr113wdeEMkuvvPJK2bBhQ/njH/9YSinlvvvuK5/+9KfPuV1fX1958sknSymlPP7442VgYKCUUsrLL79c1q9fX15++eVSSinf+MY3yo4dO0oppRw4cKDccsstZXJyspw+fboMDg6WJ554Yra72jSNzuAPf/hD+dCHPlSOHTtWSillaGiofPGLXyyllLJv376yffv2VjyNhjQ6g0OHDpUbb7zxTR+7XY6D/7Vnz57yrW99q5Ty+jGxe/fuJu35hTPTGWzfvr185StfKddff315/vnna5dnWA9KaXwO7bQmTDeDdloTppvB/8q6JkxOTpYPfvCD5eDBg6WUUp5++uly/fXXl1KasybM+hWeX/3qV7FixYpYs2ZNRERs3rw5nnvuuZiYmKjd5tChQzE+Ph6bNm2KiIi+vr44fvx4/PnPf45f/vKXcd1118U73vGOiIjYsmVLPP744xER8cQTT8TNN98cCxYsiK6urhgcHKxddzFpdAbLli2L7373u3HFFVdERMS1114bhw8fjoiI8fHxWLr04v+urUZnMD4+Hj09PW/62O1yHLzRP//5z3jooYdi69atEZHrOIiIGBwcjLvuuivmz59fd3mG9SCi8Tm0y5oQMf0M2mVNiJh+Bm+UeU04c+ZM3HnnnbFhw4aIiFi3bl38/e9/j7GxsaasCbMOntHR0VixYkXt14sXL47LL788/vrXv9bdZvny5XX3W7FiRbz00ksxOjoaK1eurF2+cuXKOH78eJw8efJNr3vppZdmu6tN0+gMli9fHh/4wAdqlz/zzDPx3ve+NyIixsbG4oUXXohPfOIT0dfXF0NDQ/Hvf/+7yc/orWt0BuPj43HixIm47bbbore3Nz73uc/FsWPHavdrh+Pgje6///4YHBysLfhjY2Pxi1/8IgYHB+MjH/lI7N69O8pF+EkSM5lBRMT73ve+ae9/qa8HEY3PoV3WhIjpZ9Aua0LE9DN4o8xrwuLFi+PGG2+s/fqZZ56JVatWRU9PT1PWhFkHT7Vaja6urrrLurq64tSpUzO6TbVajQULFtQuX7BgQXR0dES1Wj3nfgsXLoxq9eL7cKRGZ/BGjz76aDz77LNxxx13RETENddcExs3bowf/vCH8eMf/zhefPHF2LNnT5Oeyew1OoNly5bFxo0b4+67747h4eF4+9vfHl/+8pff9H7Zj4Px8fHYv39/bNmypXbZunXrYtOmTfHwww/HD37wg3j00Udj//79TXomszfT4/x897/U14OIxufwRpnXhPNplzVhJtppTRgZGYlvfvObsWPHjtr9L/SaMOuPG160aFFMTk7WXXb69OlYvHjxjG6zaNGiur+dTE5ORiklFi1aFN3d3XX3q1arsWjRotnuatM0OoOzHnzwwdi7d2888MADUalUIiLiYx/7WO36hQsXxm233RZ79uyJz372s814KrPW6AzWrl0ba9eurV2+devW2LBhQ5w6dartjoOnnnoq1q5dG8uWLatdduutt9b+/8orr4xPfvKT8dRTT8XHP/7xC/00GjKT5/f/7n+prwcRjc/hrOxrwvm0y5owE+2yJrzwwgvxhS98IXbu3Fl7c3Yz1oRZv8KzevXq+Mtf/lL79b/+9a84efJkvPOd76y7zejoaLz22msRETE1NRWjo6Pxrne9K6666qq6l6D+9Kc/RaVSiZ6enli9enXddYcPH46rr756trvaNI3OICLipz/9aTz44IPxox/9qO7lvyNHjtTekR7x+rvSOzsvvq/DaHQGx48fr3vnfiklOjo6orOzs62Og4iIp59+Om644Ya6xz58+HDdD/alfBycT4b1IKLxOUS0x5pwPu2yJsxEO6wJIyMj8fnPfz7uueeeuufajDVh1sGzfv36OHr0aO2f0u3bty82btxYV1lXX311VCqVOHDgQES8/hLt8uXL46qrropNmzbFb37zm9pA9u3bFwMDAxERcdNNN8UjjzwSp06dildeeSV+8pOfRH9//2x3tWkancGxY8finnvuifvuuy+uvPLKuse+995749vf/naUUmJycjIeeuih+PCHP9yy5zZTjc7g2Wefja1bt9beyLZ379647rrrYsGCBW1zHJw1MjJSF0ARETt27Ii9e/dGRMTJkyfjZz/72SV7HJxPhvUgovE5tMuacD7tsibMRPY1oZQS27Zti6997Wtx7bXX1t2/GWtCQ9+l9etf/zp27twZ1Wo1Vq5cGUNDQ/Haa6/F7bffXlvYDx06FNu3b48TJ07E2972trjrrrtqv4GPPfZYfO9734upqal497vfHTt37qy93LVr1674+c9/Hh0dHTEwMFA7j32xaWQG3//+92P37t11C1tnZ2ccOHAgTpw4Edu3b49Dhw5FR0dH3HDDDfGlL32p7pzmxaKRGZRSar/X8+bNi9WrV8fXv/712kza4Tg46/3vf3888sgjsXr16tplR44cia9+9avxt7/9LebNmxcf/ehH4zOf+Ux0dHS0/Dn+PzOZwcDAQExNTcWRI0fiiiuuiK6urrj77rtj7dq1KdaDiMbmcPDgwbZZE6abwXve8562WRPO9/MQkX9N+P3vfx9btmw551WfXbt2xZo1ay74muDLQwGA9Hy1BACQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkN5/ANnMp9I5M/AUAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAARi0lEQVR4nO3df2jcd/3A8Vfaa6/XNkEqt4m0Nev2h1isYqftcDALZclMUBeYlv7jZH8oxamIQkDqj7pqmHb+I6OWDTvrGI6pKzTbZMrGJlSdThz+kWKdwTJp1UqbZL3GZvt8/9jXc7csMVlyl/SVxwMG5nKX9+fz8pN3ntxd0raiKIoAAEhs2UIfAABAswkeACA9wQMApCd4AID0BA8AkJ7gAQDSK033yX/8Y7RVx7Hg1q4tx9jY+EIfxqJiJpOZyWRm0sg8JjOTycxksvmYSbXaPuXnPMPz/0ql5Qt9CIuOmUxmJpOZSSPzmMxMJjOTyZo9E8EDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEivtNAHACy8tR2VqJTf+HZQrbbP6v618YkYG6m94fUAZkvwAFEpl6Kzf7Bl6w0P9MRYy1YD8JIWALAECB4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0ist9AEAk63tqESl7NsTYL7YUWERqpRL0dk/2LL1hgd6WrYWwELwkhYAkJ5neICWu3jppahW21u2Xm18IsZGai1bD1h8BA/QcqtWLG/5S3ZjLVsNWIy8pAUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6ZUW+gDgcrC2oxKV8ivfLtVq+wIfDQCzJXhgBirlUnT2D7ZsveGBnpatBbAUeEkLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOmVFvoAAJrt4qWXolptb9l61Wp71MYnYmyk1rI1gekJHiC9VSuWR2f/YEvXHB7oibGWrghMx0taAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEivtNAHALO1tqMSlbJLF4CZ81ODy06lXIrO/sGWrjk80NPS9QCYX17SAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgvdJCHwBARhcvvRTVanvL1quNT8TYSK1l68HlRvAANMGqFcujs3+wZesND/TEWMtWg8uPl7QAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgvdJCHwCXv7UdlaiUXUoALF5+SjFnlXIpOvsHW7be8EBPy9YCIAcvaQEA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6pYU+AADm7uKll6JabW/ZerXxiRgbqbVsPZgrwQOQwKoVy6Ozf7Bl6w0P9MRYy1aDufOSFgCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC90kIfAPNvbUclKuX5+b+2Wm2fl68DAAtJ8CRUKZeis3+wZesND/S0bC0AeCO8pAUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6/rV0AGbt4qWXolptn/H9Z3Pf11Mbn4ixkdqcvgZLm+ABYNZWrVgenf2DLVtveKAnxlq2Ghl5SQsASE/wAADpCR4AID3BAwCk503LLbC2oxKVslEDwELxU7gFKuVSy3+bAQD4Ly9pAQDpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEjPHx4EYNG7eOmlqFbbW7ZebXwixkZqLVuP5hM8ACx6q1Ysb/lfrB9r2Wq0gpe0AID0BA8AkJ7gAQDSW5Lv4VnbUYlKefKpt/INcQBA6yzJ4KmUSy1/8xsAsHCWZPAAwHRa8Wvwr/76fg2++QQPALyGX4PPZ1EEz1TvqQEAmA9tRVEUC30QAADN5NfSAYD0BA8AkJ7gAQDSSxc8x48fj5tvvjm6urriE5/4RJw+fXrSfYaGhmLXrl3R1dUVu3btiqGhofrnHnzwwejp6Ynu7u647bbb6o8/evRobN26Nbq7u+v/Pf744y07r7mYy0xOnz4dmzdvbjjvAwcOREREURTx7W9/O7q6uhpuvxzMZSb33Xdfwzx27twZ27Zti4iIu+++O7Zt29bw+eeee66l5/ZGzWQmRVHEvffeG5s3b47f/va3DZ8bHByM3t7e6Orqittvvz1GR0frj8l8nUw3k6W6n0w1k6W8n0w1k4z7yUzm8bvf/S5uueWWuOmmm6Kvry+eeeaZ+ueatpcUibz44ovF9u3biz/+8Y9FURTFPffcU3zyk5+cdL/u7u7i8ccfL4qiKB599NGit7e3KIqi+MMf/lC8//3vL86cOVMURVEMDAwUn//854uiKIojR44Ue/fubcVpzKu5zuTEiRPFjTfe+Lpf+9ixY8Utt9xSjI+PFxcvXiz6+vqKxx57rElnMn/mOpPXOnToUPHNb36zKIpXrpmDBw826cibZ6Yz2bt3b/GlL32puP7664tnnnmmfvsLL7xQbNu2rXjhhReKoiiKr33ta8W+ffuKosh/nUw1k6W8n0w1k6W8n0w1k9e63PeTmcxjfHy8eN/73lccP368KIqiePLJJ4vrr7++KIrm7iWpnuH51a9+FRs2bIjNmzdHRMSuXbvil7/8ZYyN/fevG5w4cSJGR0dj586dERHR3d0dZ8+ejT//+c+xbt26+M53vhNXXHFFRERce+21cfLkyYiIGB0djfb2y++fnpjrTEZHR6Ojo+N1v/Zjjz0WN998c6xcuTLK5XL09fXFo48+2vyTmqO5zuTV/vnPf8YDDzwQe/bsiYjc10lERF9fX9xxxx2xYsWKhtt/8YtfxHXXXRdvfetbIyJi9+7d9Wsh83USMfVMlup+EjH1TJbqfhIx9UxeLcN+MpN5XLp0Kb7+9a/H9u3bIyJi69at8fe//z1GRkaaupekCp7h4eHYsGFD/eM1a9bEm970pvjrX//acJ/169c3PG7Dhg3x/PPPx/r16+O9731v/fannnoq3vWud0VExMjISDz77LPx0Y9+NLq7u2NgYCD+/e9/N/mM5m6uMxkdHY1z587FrbfeGl1dXfGZz3wmzpw5U3/cxo0b64/ZuHFjPP/8800+o7mb60xe7d57742+vr76Jj4yMhI///nPo6+vLz74wQ/GwYMHo7gM/vLDTGYSEfHud797yse/9lo4e/ZsnD9/PvV1EjH1TJbqfhIx9UyW6n4SMfVMXi3DfjKTeaxZsyZuvPHG+sdPPfVUdHZ2RkdHR1P3klTBU6vVolwuN9xWLpfjwoULs7pPRMTDDz8cTz/9dNx+++0REfH2t789duzYET/4wQ/iRz/6UTz33HNx6NChJp3J/JnrTNatWxc7duyIO++8MwYHB+Mtb3lLfPGLX3zdx61atSpqtcX/p9Hn6zoZHR2No0ePxu7du+u3bd26NXbu3BkPPvhgfP/734+HH344jh492qQzmT8z/b6Y7vErV66sf7xy5cpoa2uLWq2W+jqZqaW0n0xnqe4nM5FlP5ntPIaGhuIb3/hG7Nu3r/74Zu0lqf688erVq2N8fLzhtosXL8aaNWtmdZ/7778/Dh8+HPfdd19Uq9WIiPjwhz9c//yqVavi1ltvjUOHDsWnP/3pZpzKvJnrTLZs2RJbtmyp375nz57Yvn17XLhwISqVSsPjarVarF69uklnMn/m6zp54oknYsuWLbFu3br6bR//+Mfr//vKK6+Mj33sY/HEE0/ERz7ykfk+jXk1k/P9X49/9TMU4+PjURRFrF69OvV1MhNLbT+ZzlLdT2Yiy34ym3k8++yz8bnPfS72799ff6N2M/eSVM/wbNq0Kf7yl7/UP/7Xv/4V58+fj7e97W0N9xkeHo6XX345IiImJiZieHg4rr766oiI+MlPfhL3339//PCHP2x4Wu7UqVP1d4pHvPJu8VJp8ffiXGdy9uzZhnfYF0URbW1tUSqVYtOmTQ1PJ548eTKuueaaFpzV3MzHdRIR8eSTT8YNN9zQ8LVPnjzZ8A2Z6TqZzlVXXdVwLfzpT3+KarUaHR0dqa+T/2Up7ifTWar7yUxk2U9mOo+hoaH47Gc/G3fddVfDeTdzL0kVPNu2bYvTp0/Xf+XvyJEjsWPHjoYCvOaaa6JarcaxY8ci4pWnmtevXx9XXXVVnDlzJu66666455574sorr2z42nfffXd861vfiqIoYnx8PB544IH4wAc+0LJze6PmOpOnn3469uzZU3/D2eHDh+O6666LlStXxk033RQPPfRQXLhwIV588cX48Y9/HD09Pa0/yVma60z+Y2hoqCGAIiL27dsXhw8fjoiI8+fPx09/+tM018l0du7cGb/5zW/qG92RI0eit7c3IiL1dTKdpbqfTGep7iczkWU/mck8iqKI/v7++MpXvhLXXnttw+ObuZek+7e0fv3rX8f+/fujVqvFxo0bY2BgIF5++eW47bbb6j+8Tpw4EXv37o1z587Fm9/85rjjjjvi6quvju9973tx8ODBhs2pVCrFsWPH4ty5c7F37944ceJEtLW1xQ033BBf+MIXGl5rXKzmMpOiKOLAgQPxs5/9LJYtWxabNm2Kr371q/UZ/edzbW1t0dvbW3+PwmI3l5n8x3ve85546KGHYtOmTfXbTp06FV/+8pfjb3/7Wyxbtiw+9KEPxac+9aloa2tr+TnO1kxm0tvbGxMTE3Hq1Km44oorolwux5133hlbtmyJRx55JL773e/GxMREvOMd74j9+/fXn8bOfJ1MNZPjx48v2f1kqpm8853vXLL7yXTfOxG59pP/NY/f//73sXv37knP+hw4cCA2b97ctL0kXfAAALxWqpe0AABej+ABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkN7/AWV3ygjx+FEEAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1569,16 +1602,16 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.09751035970690071" + "0.09773008630792071" ] }, - "execution_count": 27, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } @@ -1610,7 +1643,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -1634,7 +1667,7 @@ " [ 46., 30., 7.]])" ] }, - "execution_count": 28, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -1645,7 +1678,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 14, "metadata": {}, "outputs": [ { @@ -1664,7 +1697,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -1685,7 +1718,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -1718,7 +1751,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -1728,7 +1761,7 @@ " 8., 10., 6.])" ] }, - "execution_count": 32, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } @@ -1739,7 +1772,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 18, "metadata": {}, "outputs": [ { @@ -1749,7 +1782,7 @@ " 277., 49., 114., 187., 126.])" ] }, - "execution_count": 33, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } @@ -1760,67 +1793,224 @@ }, { "cell_type": "code", - "execution_count": 554, - "metadata": {}, - "outputs": [], - "source": [ - "with pm.Model() as model_hier:\n", - " \n", - " packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist=pm.Exponential.dist(5))\n", - " L = pm.expand_packed_triangular(2, packed_L)\n", - " Sigma = pm.Deterministic('Sigma', L.dot(L.T))\n", - "\n", - " mu = pm.Normal('mu', mu=0, sigma=0.01, shape=2)\n", - "# mu = pm.Normal('mu', 0., 10., shape=2, testval=new_values.mean(axis=0))\n", - " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=(16, 2)) # testval=new_values.mean(axis=0)\n", - " \n", - " alpha = pm.invlogit(beta)\n", - " \n", - "# alphas = pm.Dirichlet('alphas', a=alpha, shape=(16, 2))\n", - "\n", - " post = pm.Multinomial('post', n=np.sum(new_values, axis=1), p=alpha, observed=new_values)" - ] - }, - { - "cell_type": "code", - "execution_count": 555, + "execution_count": 21, "metadata": { "collapsed": true, "jupyter": { - "outputs_hidden": true, - "source_hidden": true + "outputs_hidden": true } }, "outputs": [ { "data": { "text/plain": [ - "packed_L_cholesky-cov-packed__ -6.49\n", - "mu 7.37\n", - "beta -29.41\n", - "post -105.64\n", - "Name: Log-probability of test_point, dtype: float64" - ] - }, - "execution_count": 555, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "model_hier.check_test_point()" - ] - }, + "\u001b[0;31mSignature:\u001b[0m\n", + "\u001b[0mtt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnnet\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mh_softmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mn_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mn_classes\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mn_outputs_per_class\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mW1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mb1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mW2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mb2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", + "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", + "\u001b[0;31mDocstring:\u001b[0m\n", + "Two-level hierarchical softmax.\n", + "\n", + "This function implements a two-layer hierarchical softmax. It is commonly\n", + "used as an alternative of the softmax when the number of outputs is\n", + "important (it is common to use it for millions of outputs). See\n", + "reference [1]_ for more information about the computational gains.\n", + "\n", + "The `n_outputs` outputs are organized in `n_classes` classes, each class\n", + "containing the same number `n_outputs_per_class` of outputs.\n", + "For an input `x` (last hidden activation), the first softmax layer predicts\n", + "its class and the second softmax layer predicts its output among its class.\n", + "\n", + "If `target` is specified, it will only compute the outputs of the\n", + "corresponding targets. Otherwise, if `target` is `None`, it will compute\n", + "all the outputs.\n", + "\n", + "The outputs are grouped in classes in the same order as they are initially\n", + "defined: if `n_outputs=10` and `n_classes=2`, then the first class is\n", + "composed of the outputs labeled `{0,1,2,3,4}` while the second class is\n", + "composed of `{5,6,7,8,9}`. If you need to change the classes, you have to\n", + "re-label your outputs.\n", + "\n", + ".. versionadded:: 0.7.1\n", + "\n", + "Parameters\n", + "----------\n", + "x: tensor of shape (batch_size, number of features)\n", + " the minibatch input of the two-layer hierarchical softmax.\n", + "batch_size: int\n", + " the size of the minibatch input x.\n", + "n_outputs: int\n", + " the number of outputs.\n", + "n_classes: int\n", + " the number of classes of the two-layer hierarchical softmax. It\n", + " corresponds to the number of outputs of the first softmax. See note at\n", + " the end.\n", + "n_outputs_per_class: int\n", + " the number of outputs per class. See note at the end.\n", + "W1: tensor of shape (number of features of the input x, n_classes)\n", + " the weight matrix of the first softmax, which maps the input x to the\n", + " probabilities of the classes.\n", + "b1: tensor of shape (n_classes,)\n", + " the bias vector of the first softmax layer.\n", + "W2: tensor of shape (n_classes, number of features of the input x,\n", + " n_outputs_per_class)\n", + " the weight matrix of the second softmax, which maps the input x to\n", + " the probabilities of the outputs.\n", + "b2: tensor of shape (n_classes, n_outputs_per_class)\n", + " the bias vector of the second softmax layer.\n", + "target: tensor of shape either (batch_size,) or (batch_size, 1)\n", + " (optional, default None)\n", + " contains the indices of the targets for the minibatch\n", + " input x. For each input, the function computes the output for its\n", + " corresponding target. If target is None, then all the outputs are\n", + " computed for each input.\n", + "\n", + "Returns\n", + "-------\n", + "tensor of shape (`batch_size`, `n_outputs`) or (`batch_size`, 1)\n", + " Output tensor of the two-layer hierarchical softmax for input `x`.\n", + " Depending on argument `target`, it can have two different shapes.\n", + " If `target` is not specified (`None`), then all the outputs are\n", + " computed and the returned tensor has shape (`batch_size`, `n_outputs`).\n", + " Otherwise, when `target` is specified, only the corresponding outputs\n", + " are computed and the returned tensor has thus shape (`batch_size`, 1).\n", + "\n", + "Notes\n", + "-----\n", + "The product of `n_outputs_per_class` and `n_classes` has to be greater or\n", + "equal to `n_outputs`. If it is strictly greater, then the irrelevant\n", + "outputs will be ignored.\n", + "`n_outputs_per_class` and `n_classes` have to be the same as the\n", + "corresponding dimensions of the tensors of `W1`, `b1`, `W2` and `b2`.\n", + "The most computational efficient configuration is when\n", + "`n_outputs_per_class` and `n_classes` are equal to the square root of\n", + "`n_outputs`.\n", + "\n", + "Examples\n", + "--------\n", + "The following example builds a simple hierarchical softmax layer.\n", + "\n", + ">>> import numpy as np\n", + ">>> import theano\n", + ">>> from theano import tensor\n", + ">>> from theano.tensor.nnet import h_softmax\n", + ">>>\n", + ">>> # Parameters\n", + ">>> batch_size = 32\n", + ">>> n_outputs = 100\n", + ">>> dim_x = 10 # dimension of the input\n", + ">>> n_classes = int(np.ceil(np.sqrt(n_outputs)))\n", + ">>> n_outputs_per_class = n_classes\n", + ">>> output_size = n_outputs_per_class * n_outputs_per_class\n", + ">>>\n", + ">>> # First level of h_softmax\n", + ">>> floatX = theano.config.floatX\n", + ">>> W1 = theano.shared(\n", + "... np.random.normal(0, 0.001, (dim_x, n_classes)).astype(floatX))\n", + ">>> b1 = theano.shared(np.zeros((n_classes,), floatX))\n", + ">>>\n", + ">>> # Second level of h_softmax\n", + ">>> W2 = np.random.normal(0, 0.001,\n", + "... size=(n_classes, dim_x, n_outputs_per_class)).astype(floatX)\n", + ">>> W2 = theano.shared(W2)\n", + ">>> b2 = theano.shared(np.zeros((n_classes, n_outputs_per_class), floatX))\n", + ">>>\n", + ">>> # We can now build the graph to compute a loss function, typically the\n", + ">>> # negative log-likelihood:\n", + ">>>\n", + ">>> x = tensor.imatrix('x')\n", + ">>> target = tensor.imatrix('target')\n", + ">>>\n", + ">>> # This only computes the output corresponding to the target.\n", + ">>> # The complexity is O(n_classes + n_outputs_per_class).\n", + ">>> y_hat_tg = h_softmax(x, batch_size, output_size, n_classes,\n", + "... n_outputs_per_class, W1, b1, W2, b2, target)\n", + ">>>\n", + ">>> negll = -tensor.mean(tensor.log(y_hat_tg))\n", + ">>>\n", + ">>> # We may need to compute all the outputs (at test time usually):\n", + ">>>\n", + ">>> # This computes all the outputs.\n", + ">>> # The complexity is O(n_classes * n_outputs_per_class).\n", + ">>> output = h_softmax(x, batch_size, output_size, n_classes,\n", + "... n_outputs_per_class, W1, b1, W2, b2)\n", + "\n", + "\n", + "References\n", + "----------\n", + ".. [1] J. Goodman, \"Classes for Fast Maximum Entropy Training,\"\n", + " ICASSP, 2001, `.\n", + "\u001b[0;31mFile:\u001b[0m ~/anaconda3/lib/python3.7/site-packages/theano/tensor/nnet/nnet.py\n", + "\u001b[0;31mType:\u001b[0m function\n" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [] + }, { "cell_type": "code", - "execution_count": 556, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true, - "source_hidden": true + "execution_count": 101, + "metadata": {}, + "outputs": [], + "source": [ + "with pm.Model() as model_hier:\n", + " \n", + " packed_L = pm.LKJCholeskyCov('packed_L', n=2, eta=2., sd_dist=pm.Exponential.dist(1))\n", + " L = pm.expand_packed_triangular(2, packed_L)\n", + " Sigma = pm.Deterministic('Sigma', L.dot(L.T))\n", + "\n", + " mu = pm.Normal('mu', 0, 0.01, shape=2)\n", + "# mu = pm.Uniform('mu', -0.5, 0.5, shape=2)\n", + "# mu = pm.Normal('mu', 0., 0.01, shape=2, testval=new_values.mean(axis=0))\n", + " beta = pm.MvNormal('beta', mu=mu, chol=L, shape=(16, 2))\n", + " \n", + " alpha = tt.nnet.softmax(beta)\n", + " \n", + "# alphas = pm.Dirichlet('alphas', a=alpha, shape=(16, 2))\n", + "\n", + " post = pm.Multinomial('post', n=np.sum(new_values, axis=1), p=alpha, observed=new_values)" + ] + }, + { + "cell_type": "code", + "execution_count": 102, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "packed_L_cholesky-cov-packed__ -1.71\n", + "mu 7.37\n", + "beta -29.41\n", + "post -105.64\n", + "Name: Log-probability of test_point, dtype: float64" + ] + }, + "execution_count": 102, + "metadata": {}, + "output_type": "execute_result" } - }, + ], + "source": [ + "model_hier.check_test_point()" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, "outputs": [ { "data": { @@ -1875,13 +2065,13 @@ "\n", "\n", "\n", - "\n", + "\n", "beta\n", "\n", "beta ~ MvNormal\n", "\n", "\n", - "\n", + "\n", "packed_L->beta\n", "\n", "\n", @@ -1893,13 +2083,13 @@ "mu ~ Normal\n", "\n", "\n", - "\n", + "\n", "mu->beta\n", "\n", "\n", "\n", "\n", - "\n", + "\n", "post\n", "\n", "post ~ Multinomial\n", @@ -1914,10 +2104,10 @@ "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 556, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1928,22 +2118,22 @@ }, { "cell_type": "code", - "execution_count": 557, + "execution_count": 103, "metadata": {}, "outputs": [], "source": [ "with model_hier:\n", - " prior_sample = pm.sample_prior_predictive(samples=1000)" + " prior_sample = pm.sample_prior_predictive(samples=5_000)" ] }, { "cell_type": "code", - "execution_count": 558, + "execution_count": 104, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAegAAAFkCAYAAADrIqivAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdWYxlV33o/++ez9lnqFNzz+3u9gBtNzZT4JL/n8gJBBSRCCIULAWk5E9eGCQEhAceEhCKlAEUpKsg8QC51yL6P0QKsYIfCPrfWHGwcS4OF9Omsd12z0ONp+pMe957/R92neqq7qrqqjo1nOr6fSRb7uNz9t616vT+7fVba/2WppRSCCGEEKKv6Lt9AUIIIYS4kwRoIYQQog9JgBZCCCH6kARoIYQQog9JgBZCCCH6kARoIYQQog+ZvR4gjmP+9m//lr//+7/n3//93zlw4MAd73n/+9+PUgrTzE83Pj7Ok08+ecf7pqdbvV4OAOWyQ7sdbsmx9htpu82Ttts8abvNk7bbvH5ou9HRyqr/r+cA/elPf5pHHnlkzfc0m01+8IMfMDY21uvp1sU0jR05z71I2m7zpO02T9pu86TtNq/f267nFPdnPvMZPve5z635nna7TbVa7fVUQgghxL7Rc4B+7LHH1vz/nueRpilf/vKX+Z3f+R3+8A//kJ/97Ge9nlYIIYS4p/Wc4r6bLMv46Ec/ysc+9jHOnDnDD3/4Qz71qU/xox/9iIGBgWXvLZedLUk5GIZOreb2fJz9SNpu86TtNk/abvOk7Tav39tO26pa3A899NCqk8Ru97u/+7v86Z/+Kb/xG7+x7PWtmiRWq7nMz3tbcqz9Rtpu86TtNk/abvOk7TavH9purUli277MyvM8Lly4cMfr3RndQgghhLjTtgfo2dlZnnjiicUg/dxzzzEzM8Ojjz663acWQggh9qyeurEzMzN8/OMfX/zzJz7xCQzD4Mknn+STn/wkTz/9NEePHuUrX/kKn/3sZ0nTlIGBAb71rW9RLpd7vnghhBDiXrVlY9BbQcagd5+03eZJ222etN3mSdttXj+03a6OQQshhBBi4yRACyGEEH1IplILIZhsBpybbDHnJQy6JqfHK4xXC7t9WULsa9KDFmKfm2wGPHuhjh9nDJUs/Djj2Qt1JpvBbl+aEPuaBGgh9rlzky1KtkHZMdE1jbJjUrINzk1uzaRNIcTmSIAWYp+b8xJce3mJXdc2mPOSXboiIQRIgBZi3xt0TbwoXfaaF6UMujJFRYjdJAFaiH3u9HiFTpTSDhMypWiHCZ0o5fT46uszhRDbTwK0EPvceLXAe08OUbR06p2YoqXz3pNDMotbiF0mOSwhBOPVggRkIfqM9KCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiQBWgghhOhDEqCFEEKIPiS7WQkh+tpkM+DcZIs5L2HQNTk9XpGdt8S+ID1oIUTfmmwGPHuhjh9nDJUs/Djj2Qt1JpvBbl+aENtOArQQom+dm2xRsg3KjomuaZQdk5JtcG6ytduXJsS2kwAthOhbc16CaxvLXnNtgzkv2aUrEmLnSIAWQvStQdfEi9Jlr3lRyqAr02fEvU8CtBCib50er9CJUtphQqYU7TChE6WcHq/s9qUJse0kQAsh+tZ4tcB7Tw5RtHTqnZiipfPek0Myi1vsC5InEkL0tfFqQQKy2JekBy2EEEL0IelBCyF2TbcISYiGg5IiJEIsIT1oIcSuWFqEZLjsSBESIW4jAVoIsSukCIkQa5MALYTYFVKERIi1SYAWQuwKKUIixNokQAshdoUUIRFibRKghRC7YmkRktl2KEVIhLiN5JKEELumW4SkVnOZn/d2+3KE6CvSgxZCCCH6kARoIYQQog9JgBZCCCH6UM8BOo5j/vqv/5qHHnqIiYmJFd/zyiuv8MQTT/CBD3yAJ554gldeeaXX0wohhBD3tJ4D9Kc//WkKhbVnXX7+85/nT/7kT/jXf/1X/uiP/ogvfelLvZ5WCCG2zWQz4Jnz03z/pZs8c35ayo+KXdFzgP7MZz7D5z73uVX//6uvvkqr1eJ973sfAB/84AeZnZ3ljTfe6PXUQgix5ZbWCB8qWVIjXOyanpdZPfbYY2v+/0uXLnHkyJFlrx09epQLFy5w6tSpZa+Xyw6mubz032YYhk6t5vZ8nP1I2m7zpO02r5/a7n/faDJWcykX8ttjBWgHCZfbEQ8dG9rdi1tBP7XdXtPvbbft66B938dxnGWvOY6D59255rHdDrfknLKmcvOk7TZvv7ddd+vIOS9h0DU3tHVkP7XdtekOQyWLTudWGVKlFNcacd9c41L91HZ7TT+03ejo6pXztn0Wt+u6hOHywBsEAaVSabtPLYTYIfdSWlhqhIt+se0B+uTJk1y6dIksywBIkoRLly7dkd4WQuxd99LWkVIjXPSLbQ/Q999/P6Ojozz99NMAPPXUUxw5coQTJ05s96mFEDvkXto6cmmN8HonlhrhYtf0lLOZmZnh4x//+OKfP/GJT2AYBk8++SSf/OQnF4PyN77xDf7sz/6Mv/u7v2N4eJivf/3rvV21EKKvdNPCZefWLWUvp4W7NcKF2E2aUkrt9kV0TU9vTTqsHwb+9yppu83bz23XHYMu2QaubeBFKZ0oXXfPcz+3Xa+k7TavH9puVyeJCSHufZIWFmLr7c38kxCi70haWIitJT1oIYQQog9JgBZCCCH6kARoIYQQog9JgBZCCCH6kARoIYQQog9JgBZCCCH6kCyzEkL0tBOVEGJ7SIAWYp9bWgVsqGThRSnPXqjvSKGR7oNBiIaDkgcDIZaQFLcQ+9xu7US1dIvK4bKzp7eoFGI7SA9aiH1uzksYKlnLXnNtg3onBrYv/b3Sg0H3delFCyE9aCH2ve5OVEt1d6Ja2ssdKllb2su9l7aoFGI7SIAWYp87PV6hE6W0w4RMKdphQidKOT1e2db091oPBkIISXELse91d6I6N9mi3okZdE3efmSA8WqB5y7OrZn+3qzJZsC8F/Efb9TJlGJkoEBB1xl0LT50erynYwtxr5AALYRYdSeqbi+3Oz4Mvfdyu2nzJM1wbYP5IOFa3edwtSC9ZyGWkL8NQohVnR6v8OyFOpD3nL0opROlHK8VeOb89KYmjnXT5hdmQ4ZLDodrLkrXUWnCwWpRJokJsUDGoIUQq+qmv4uWTr0TU7R0To+VODfV2fTEse7ksE6Y4Jj5LcixdNphKpPEhFhCetBCiDXdnv5+5vz04sQxYEPLoyabAdcbHi/fTGiFCUmaMVRyCOOMsmNsKn0uVdDEvUp60EKIdZlsBjxzfpp/e22GCzMd5r1o8f+tp+fbHXseLTmYukbB1Lg463Oj4eNFCcOuvTh7fCPXtF3LwITYbdKDFkLc1dJyoOMVm1aY8PJEm0cOlKm59rp6vreWbDm4tsHVeZ84VfhxwsNDNcaLG+/9Ll0GBhvrzQvR7yRACyHuamkgPDbo8suJNhqKK3M+pqHTiVLefmRgzWMsrVhWc21qrs3DB6vUOzH/z3tPMT/vbfi67lYFTYi9TFLcQoi7Wlr1q+baPHygTMUxmGyFFC19XRtrbEdhEil2Iu5lEqCFEHd1eyCsuTYnR8r85oMjPP7A6LrSyWtVLNus7TimEP1CArQQ4q62IhB2l2yFccJPLtZ56XoDU+vtulZaBrYT22QKsRMkDySEuKu1yoHC+pc6zbRDzk20SRUMuSZhks+6rg4UKfZwbRKQxb1IArQQYl1WC4RLZ3gPlSy8KOXZC/U7erKTzYCnXp5A1zUGixZhnHGx7nNiqMjZ6w1+7VB1J38cIfqeBGghRE/Wu9Tp+YuzXJ0LsA2NeT9htGRRMHVmOiG1TrTisYXYz2QMWgjRk/Xs6zzZDHjxapOipWMaOkmacXk+IM4y6l7CUMne6csWou9JgBZC9GQ9S53OTbYYck2GXZs4zUADS4Mrcz6GBmcOr72GWoj9SAK0EKIn65nhPecl3D9SwjB0xssOhq4RxBlBnPHhMwc4OLDZKWJC3LtkDFoI0ZO7zfCGvJftxxkPHyhzdd7HMnXGyzYnh0s8fEh6z0KsRAK0EKJnd1vq1N1XumQbPHywuriv9HtODO3gVQqxt0iAFkJsq8lmwPMXZ/nFtSbzQUytaPG2I1Xee3JY1i8LsQYJ0EKIbTPZDHj63CRX53wGSxaDrkUzTKn7spmFEHcjAVoIsW3y6mIxAwWLgpUvxdI0jXkv5vmLdWquxZyXcGS0xPGyva4e9Xqrlq3XVh9PiK0is7iFEHeYbAY8c36a7790k2fOTzPZDDZ1nDkvIc4yHPPWrcaxdBp+wovXGvhxxlDJwo/ykp93O0+3atni5+L1fW6njifEVpIALYRYZiuD1qBrYuk6YZItvhbGGc0oZrBoUXZMdE2jXDAp2QbnJltrHm9p1TJd0yg76/vcTh1PiK0kKW4hxDLrLd25HqfHK1yY9bg656NQoKAZpujo3D/iLnuvaxvUO7fGpldKPc95CUMla83PbcRWH0+IrSQ9aCHEMusp3ble49UCHzo9zqOHKoRJRphmPHqowv99chDbXH6OpdXHVuvFa2R3rVq2EeupgibEbpFvoRBimW7Q6vacYWNBa6We70cePXzHe569UAfy4N8O8upjbz+SFy1ZrRcfxvn66e7nuuupu5/bqO767K06nhBbSXrQQohl1lO6czXrHb/uVh8rWjr1TkzR1pdtT7laL16hLf+cpd+xreVG3HEdPR5PiK0kPWghxDLrKd25mo2MX3erj002Ay63I567OLfY416rF3+3qmWb+XklIIt+1HOA/slPfsLf/M3f4Hkehw4d4i//8i85cODAsve8//3vRymFaeanGx8f58knn+z11EKIbbLZoLXRSVfdHvdYzWWoZOFFKc9eqHN6rMS5qQ4AcZLy+kyHupfwjqNVJpuBBFSxL/QUoD3P4wtf+ALf+c53ePjhh/nud7/LV7/6Vb797W8ve1+z2eQHP/gBY2NjPV2sEKK/3W38+vbx6XkvznvcBZNOJ833ia57nL3ewLV1ZloR80HC8SGXdx4bwDYNnr1QlzS02Bd6GoN+4YUXOHr0KA8//DAATzzxBD/+8Y9pt9vL3tdut6lWq72cSgixgq0qKLJV1hq/Xml8+sVrDeIkn/Q170W8PNEmiFNuNAMUGkGqODjgYBq6rFMW+05PPehLly5x9OjRxT+XSiVqtRpXrlzh9OnTQN7LTtOUL3/5y7z66qsMDg7yxS9+kbe97W13HK9cdjBvW3qxGYahU6u5d3+juIO03ebtdNvdbPj89EabSsHi6FgBL0z56Y02vzVQ3PD+yjcbPmevN6h3IoZKNmcOD2xqj+ZazaU6UFw81kityOMLx/rRuQnGai7lQn7bqQAH5wKutiOOH9CYChJqZZvLsx2GKwUODLrcbEcoTWeg5DAdJBwerVB0bWbboXxPF8jf2c3r97brKUD7vo/jOMtecxwHz/MW/5xlGR/96Ef52Mc+xpkzZ/jhD3/Ipz71KX70ox8xMLB8KUO7HfZyOYtqNZf5ee/ubxR3kLbbvJ1uuxfOT6NnGVqq4XspGqBnKT/8+fXFGtfrqS3d7dmWbAPXNpiZ93l6qs3psRJTnWjDNaqLwK8dWpIxU4r5eY9r0x2GShadzq11x0cqFj+90qDhxUw3fNIk48J0h6Giyas3MrQ0pd7OOFR1mGkkdIZC2mFC0dLle7pA/s5uXj+03ejo6qsjekpxu65LGC4PqkEQUCqVFv9cLpf5i7/4C86cOQPABz/4QcbGxvj5z3/ey6mF2PdWWooUJ+nyGtfrKNO5UrnLJE156uzEpsp9rpZ2X6koiG0aPDhS5NXJJq9MtDh7s0XVMSg7FnGqaIf5uHTDjynZ+oaWfAmx1/UUoE+ePMnFixcX/1yv12k0Ghw/fnzxNc/zuHDhwh2f7c7oFkJszkoB7/WZzvIa1+sYs10p0M92YlLFhmtUr7UOeqXx6ZvNgAR4aLzK6fEylYKFUtAKYuI0wzJ1hlyDTCnKjrVt65T7bSxfCOgxQL/rXe9iYmKCF198EYDvfe97PP7447jurZz+7OwsTzzxxGKQfu6555iZmeHRRx/t5dRC7HsrBby6l6xY43qtMp0rBfq6FzN0W+Ww9ZT7XGvziZWKggwVLUqWyevTLS7M+pRsnaJlgK7hWAajFZsB1+FP3n2cP3rXMR5/YHRbgrPsaCX6UU/d2EKhwDe/+U2+9rWv4fs+x44d46/+6q+YnJzkk5/8JE8//TRHjx7lK1/5Cp/97GdJ05SBgQG+9a1vUS6Xt+pnEGJfWqmgyDuOVtescb2SlcpdGjqMlJbPL1lPuc+7rYNeWpzk3GSL5y7WCeKUYyNlaq6JH2dousZB1+a3HhqjHSaEcbLw3rlt2a95KzcHEWIraUoptdsX0TU9vTVLJ/ph4H+vkrbbvH5ou9snfHVrS98tLXz7+uSxks25qc6Gj/PM+Wn8OFu2Dro7qevxB0bvuMZnzk/RDlOKjsWArTPrJcRpStk2efzBUW42A0BxsFrc0HVsxPdfuslQyULXtMXXMqWod2J+/9GDW3KO7dQP37u9qh/abq1JYjIQLMQ9ZLNlOleqHDZSdjZ8nPVsPrG0x+paFkGc9xE6UcZ42eZmM0AptZgCd6zt7d32ujmIENtFvoFC3GO2qrb0Zo6zngeEpWnwsYqNZWj4mWK6GXBsyOXkiMuBaoHHHxjl+y/dXHHTjK3cr1l2tBL9SgK0EGJL3S2wd3uss+2QVyfbXG34lB2LgyWTME746eU2YxWby3WfVhgTJQ6HareKpmx177aXzUGE2E4SoIUQO+r0eIXv/uQyP73WwNI1CoZG04+ZbgW8KVWUCxYKjRuNgJGSxUs3mwAcGChsW+92q7IOK+2FLYFebJYEaCHElthIcLow28ExNOI0oxGlhHFG0dK43gx5z3CZgmUQxClxpnjLwQrTnRDbNPq6d7t08tvSnblkYw+xWT2tgxZCCNjYWuJzky3CRJFlKl9XrcA0NJIMJlshTT+vTuhYOu0w5eBAkcMDLr//6MFtWQe9VdZaAy7EZkgPWgixad1e8wuX5rAMnQdHS+iauTgj+vmL9Tvqgl+u+yQqo+7HWIaGrmtEsUKRYZs6r9d9xqouYZxRdow9M6N6o3th9ytJ0/cP6UELITZlaa9ZA3QNXp5oM+9FwOp1wSeaPsNFiyBK6UQJ7SAhiFP8SKGpjKtzPi9cmuX16Ta2oe2Z2tsrVWTbKw8XXVJVrb/snW+OEKKvLE3pVgomUaIomhpX5gNqrr2sLjjcWsM80w4JEijaOu0wQ6FQCiwN4gxMHeJUYZsaU+2I99y3PbW3t7qXeC8s15Kqav1FetBCiE1ZusnG0VqRIMlQStEK41XrgkdJyo1mSJyl6JqOrmsYGjgGaKZGwTI4NVLinccGOTVa4a1Hakx1oi297qW9RENT/OzqPP/92Yv880vXe+oprlRrfK9NEFtp45T11GAX20N60EKITVlagavm2jx8oMz56TYoKFr6HXXB572In19vUrRMdE2haVCyNIIEMgVkipGiyXyQ8OKVOeJM0Q6rHCgX4YGtu+5uLzFJM85NdiiYOsMlizdmfRLV26zrrVqutVs2W1VNxq23hwRoIfa5zd5cb0/pmoZOzbUYKuaTwjQ0zk+1iDOIs4zJRohj6jw0VuJy3aNoG8SJjmFkDJYcWn7MtJdgGzrVokXB1Hh92qMVJEw2gy274Xcnc/3yZh6cC5ax0PNPlu28tR9tJk0vy8u2j6S4hdjHepkUdHtKN4xTQMOxTIZKFkGScqnu4UcJmoIwTbENjYPVAu0oxTEMkizFjzJmmiF+HDPvJ7TCmIlmgBclZAoKprmlS5W6vcR2mOJY+S0wTDJKjrnv07mbSdPL8rLtIz1oIfaxXicFLU3pPnN+etnGFrNewlilQLVgcrRWpO5HTLQjptqzNPyYzkLvLM0gjDMWw6JSZFm+DCtVMFw0tzRodnuJpg5BlKJpGn6ScWrE3XOzrrfDRtP098rysn50T34TbzZ8Xjg/LeMhQtzFRm6ud0uF336sTphQLZhMtSKaQcqAYzHXibg0F2AbOp0wJVZ5Gi9b+IwG+Ak4psJUGq0w4Y1Zj/ec3PyuuCtd93tPDvG8Bi9eazBYtDg9XsI09D0367ofyG5g2+eea8HJZsBPb7TRs0zGQ8Ses12TbVY77npvrusZZ7z9WCXHpBnE+ElCrWhRsCxuNAIsUyOMUxIFBoC2MEkMUAv/RCkkWR62TU2j6W9uJvda1/2RRw/xnhNDi+1StPS+LSPaz+6F5WX96p4L0OcmW1QKFlqab74u6/jEXrFdk23WOu56b64rpcIbfsT/+M/LKPK/a4erDrGCg9UCUZLvVvX6TAdb1xhxbQCiTHFyuMS5iSaGDoYGGhpxqsjIg7O25LyWruE6Jq/Penf8TOt5kLlbCn+vz7ruB7Ib2Pa55wL0nJdwdKyA792q6CPjIWIv2K4iEWsd9/EHRtd1c53zEnRN8YtZj06YjwdPNX3qQcqZgxVQcKEeMFg0mcbntRmfIdfk/Q+O8LNrTX412eHN4yXuH3GJE8VLqUJlEAIay9PXOnmxEl3TMHSNiq0z59/6+7vaA8fpsRJTnWhZ0Jbx0Z0hDzrb454L0IOuiRemy57CZTxE7AXbFUzudtz13Fw1Mn5+vcVAwaLimLw+3ebKfMB42aZo5X+3NE2jGSRcnfewdIPJdkgzSDk44FAwdQxd4/6REv92foYoVnQfoW8fXVaApvLNMmxdoxVmjFVurae+/YEjSTNemWjxr7+a4k3jZe4fcRdno5uakvFRsWfdc9/S0+OVhTHoVMZDxJ6yXZNttua4GovJZw2CJC/Paeq3VmomWcblOY8wzhgomui6hh9F2IaDaWjM+wlzfsJUM0DTuDMyL7B0KBdMDF2jWjCxjLyQSDet/W+vzTBesTk2mFcp++VEm7oXYusahqbxs6sNSo5BmChsA0YrDgerxS25H0hBDrGT7rkAPV4t8FsDRV54bUrGQ8SW2Kmb8nZNttmK4yo03nq4wrVGQCtIKDs64BBnt6LszWaArml0ooQozSg7JkXLoBUmDBQtyo7B8aEiGRqOpZNFGelt59EB08jHqo9VbAZLDiXLQEPjOz+5TKogiBOmWtAKMwwNCqZOmCjKRZM0y5juRLRDnVOjJWY7MaAx3Qy40cq3sXzTWHnVn3Ot37UU5BA7TVNKbX79whabnt6ahe21msv8vHf3N4o7SNstt/SmvDS4rXRT3oq22+lZ3Ov1zPlp/Dhb7IXPexHPXZhlqhNTKxoEseLGvI9r65i6ToaGBiilKFoGB6vOQgdc47+uztHyE1IF8Qp3H9cC17KoFEyOD7kcrNi8MetxpFZkoGhRb0dcmvMZLJrcaARUiyaNIOHEYJFUQZTkgf++QRfL1Bl2TS7MeLz1aG3Z7/D2Meuxks25qc6qv+vb2wCgHeazvx9/YLSn308v5O/s5vVD242Orr5T2z3XgxZiK+307j7bNdmm1+OuVNbz0IBDkmZ4scLUNQq2jlL5mmYvTAiSjDCJMXSdVhhzsFrkYNXGNnSi7Nba59v5MThGlpcNdS1+OdGm4hgMFCw0NIbLDl6UcGnOI0wUY6bB4KDFZCeCDKpFE0OxWHzkypxPqlj2O2z6MU+9PMFbj9QWe8NPvTzBqeESZcdZfB/c+l3LhDOx0yRAC7GGvXZT3q4e+EpLaY4NujwwVl0MZE+fvZkvh0pTwiQlAzKlo2cQp1CyDa7NB4TJ7Ynt5TTyVHe30MlY2SHJMuqdiFaUEiQpTT/GMnQePVwhVRpFU6doGbw63Sb18zT2m8fL1Fybn19vMnTbePtMJyTNlgftNMtfP1QrLr5v6e9aCnKInSbfLCHWsJduyhsdI91oML+9F/79l24u35pQg5GSxUQrwjZ1mkGKUooEjSHXpB0lTHdiKo5FGKe0VnnGsQ1A1zhcdThzaAClFK9Pd7g05+NaeSC+HiQo4FC1wEDR4sp8gJnqnBgqcd+wy8FqAdc2aIcJhg4jJWfZOepewpC7/MFryLWoe8svaunvWgpyiJ0mm2UIsYbT4xU6UUo7TMiUoh0m+fjl+OrjRrtlrU0LJpsBz5yf5vsv3eSZ89P88kZj05tkdHUfXrqKloGu6diGRtm2cCwNK69EwkQ75Nq8n/eONY10YYx6JY6pUy1YBIni7I0G1+dDJlshg0WTom3QilJsU+fUsEsjvHX+OFGMVWzefay2bLOHDz9yAMPQl/0ODQ2Gb8uMDJcsDI1Vf9f3wn7PYm/pv26AEH1kL1VJWi0df2nGY6YTL+tZP3V2gpMj7qrjretxe4+yUrCY9yPiJKPhJ8RphmPplC2DTpgw34kxDZ0kywjXyHKnmQKVcXXeJ0gybEOjVjTx4pSRksOxwSIDBZMrcwHX5jwmGj7zQUIQp2i4vHBljg+dPsB4tbCYJegECRNNn4pjcXyoyHtPDvHsxTrnpz2GXIvhkoVpGHz4zAGmOtGqv2spyCF2kgRoIe5ir9yUV0vHt6KYsaqzfLxVwWwn5nDt1uc3OrZ++8PLqGtyfV5j0LXIOhGGrhHGGY6uE6cZUQZhlmHc5bgaink/Ic4UqVKMlSw03eCAa1FaSKlfb4SkC+PSnTjF0DRcy6Dux7SjhOeLdd5zYmgx5X/fwk5VnShdnK19arjETCek7sU0/JgPnznAw4cGeHjdLSDE9pIALcQ9YrUx0opjLR8rBoZcc83x1vW6fbtJ2zL42bUmDT/BMQ0KRkYjiAlihbGwKYZjwlq7R3ZisNOUcsFCKZhoxZTMhChO0HWdMwerWIaGH0MrTChaBoOujWXkDwINP+b5i3WuNXzmvIThksXRWpHaQj3wf3t9hlMjZcqOszghrB0mTHUiCc6ir0iAFuIesVo6/txk646e9UjJoREktMNkQxOelk4s01A0/YgbrXynKS9KeWDEpWRp+HFKnCksA7w43wjDBHQt36lqLRkQZ3nQNA0NpQZXvG8AACAASURBVKAdghXEnBou0whivDjDtXRaQT5e3H1IsE2ddggX6x6VQp66nuvE/GqyzbBrMVp2uDzrcebQ8p+zn2fmi/1LArQQ95DV0vG396wNI588tdZ46+2zvJcW8jA0xfMX55hsh5waKVGyDM7Pt3h1qoVtaDimThwlzHvZ4npnpUDTIVltAfQSGRClikwprIVx63wts0Gq8tnbjqnjWDp1L2Y0iCk7JnGmmA8iKo6JY+r88kaTGT/G0jV0FAXLwE8ybjZ8DtfcxfP168x8sb/JN1KIPWq9y6TWmui2Wkp3pSVbSyeWnZ3tEKcZVcekHeaTtzRNY6YdoWng2iamtrwYiYLVq5PcprsvdJyBIkPXoGQZBKkiCxMOD+Sp6fFKgSTzaYYJuqFhomFqGkcHHTphwuxCcDZ1jevNiAHX5rHDVS7MegwUbeIk5fWZDtfnA8YqNpfrPseHilJjW/QFCdBCLNhLGyFsdM3zRie6rVRBbenEsnaYkpCX8QzilE4Y0wxTTF0jzhSdKCFO1eL+zmrJPxuhyHvcJjBQtAjilEzXUSjCOGO4ZONaOp045VClgGVoFG0dUzeoOBaDRYsoyQgSRcnWqdgmD4xVsAyPME558VoDW9dwbQOFxo1GQMHUmenEsoRK7DoJ0EKwNzZCWPoAcb3hMVpyelomtZaVlmx1J5bNexGznZCpZoTKMizTYKIZMO/FxGkGaBQsnTTNB5u7QbkbrDdKX/hXGGfcP2zTidOFDTsM3nmsRidKmOlEHB5wGXRNTODJF69hGSFhkmEbOuWCwdFagUzl6ezjQ3kP/NdPDHFh1iNOMgoLDxuzXsSJ4dK2lXMVYr0kQAvBztfc3qjbHyBevpnQCvItVbuzk7dyotNKS7YcU+dKvcNrU22SLGOuE9KJs3y8OVXoGoBCKUU7VCTJnf3lzezMowEG4MUZ1xoBRwYLHBssULQMXpvuMOfHHKrYvDbVZKYT48cpZdtA0yFKNGY7EQ+NlzE0DV1Ti5Phnrs4x1DJohMmVBZ+Tmdh4tlOTxrbS9kbsXMkQAtB/9fcvv0BYqhk0wpirs77iwH6bhOdNhIEli7ZipOUX9xo8dp0G5VleEm+OQZoOIZOlGRkCizbQAPSNCNOFQm3dpFe59DzyjRIFBgG+fjwgSpnbzTwY8XhmsORis1/XJojTjI0pdCN/DoODTg8crBKO4i52QqZbIYcrBY4OZw/JnQfQkqOSbjQgw7jjLJj7Oiksb2QvRG7Q0p9CsGdZSuhv2b2znnJsrXMx2oF1MKY8HpKkHaDgB9nGJriZ1fn+e/PXuSfX7q+YnnP7sSyME7531cbzHZCHhwpkSqwDI3DAwVsy6BasHAXHhriJCOMU8JEYelg6jDsGptKay+laSzsZmUyXi1wqFZksORwuObwzuND/Gq6Q5wqDE1nPkjwooRmEDPRDLjZ9HljtsNUO+TXjg/wW28axbFMnr1QZ6xk04lShl0TP06Z9yP8OGXYtXe0nOtaJVrF/tYfdx8hdlm/b4Rwe8q55tqcGC4ys8YyqaW6QSBJM85NdiiYOsMlizdmfRK1cm9tvFqg5lr8+okhzt5oUimY6DMddKVoBgm6phEmGX6U71xV0DU6kSIFVJL3mjNA1yHtoQudZmAZ+cS0X9xo8spkmzBJOVDJr3eyGWLp0IkSlKZhGTppmnBtPuTNB6rEWUa5YDLjpRzw48WMw1QnWpzdHsaKVpRv5OGY+SPFcxfntjzdvFIWo9+zN2L3SIAWgv6vub3SA4RpGPzBY4fXvMZuQPi312YYr9h4UUrBNChYBkopWmGy2Ftb6Tjd4FF28vTviGtxfT6g3okI4oxgIb2tke+/nJKn5QwdbA3CWPUUnCEP8vOdlJGqTskyQNe42QyI04x5L8I0NFphQpYqNGDOz68NBa9Ot9GBhw9WsXSdK/MBNddeDIBLf+Y5z0Ijo+7ne1d323mr0s2rpbJNTe2ZHdPEzpJvwB4lk0q2Xj/X3N7MA8TSgDBecWiFCRdmPR4YLVHAIEwySo65Zm9NI+PFK/O0gphZL8bSwYsSwiTDMvIlUGG6sIQqu7WkKszyiV16mtfe3swSq6UioN6JOVxNKNoWlUJ+6zo/3eb+4eLCw4tG0dQIU0WS5Q8Kl2c7OGa+WcehgSKDrgVUudnwmelE/M8XrnC94XNqpMSBgQIvXpmnHaaMlhx0zdzSyYKrTUQM4zxbA/2TvZH7S3+QAL0HyaSS/amXtczHBou8PNGmYOZrfY8P6vhJxqmFTSQ0FM+cn152QwbyzSfCFFPTyDLFr2byAiWDC2UzW2HCjXkfP1Ho5EExVreWVCX0FpiXClL4r2st7hsq8ubxMimKKFWcGKnw0o0WYZLixYo4U4sPCnEGDnn6+1Ld42ZTZ7oVMtWOGK3Y+AuB8WYz5N331UgzRdUxlk2+W2+6+W5BbbVUdhBnvPfkYN9kb+T+0j8kQO9B/b4kSKxPL72U9Xx2aUCouTaPHChjaBm/nGhzpFbk9HgJ09C52fQBDcdafkP2gph5L8YLY641Ayw93+0iVQo/zsPug6Ml/Dgla0fEWd5z7Wa019gPY9MyYM6PuTrnc99wiXffN8jjD4zSDhN+fn2e81MeCxPM8weFLB+7Vgp0PUXXYKYdMl4pMNOOSDKFaxnEacYLl+c5ViuAptFesh/mRCNguhPy/ZduLnt4ub0M6gtX5pnzYuIsw9J1Lsx6fOj0+OLvZbXdxgZds6+yN3J/6R89z+L+yU9+wkc+8hE+8IEP8Md//MdMTEzc8Z5XXnmFJ554gg984AM88cQTvPLKK72edl+7fUYv5E/ic2ttEbRJk82AZ85P8/2XbvLM+ekVZ/zuRbv9cy2dVT1UsvDjjGcv1Nd1Hev97O0z02uuzbFBl9PjZRp+xP/32jQvXJxluhXiWvqyWcRpmvEfF+fQ0EDXqNgmjYWNKVQKQZzw+kyHS3Wfsq1TtA3SDO6yD8aWmPMTXp9pM+eFjJXshd9fSDtMibOFMXENDG2hEpnKr8syNOI037zjRjMgSvNtKpNMcbMZ8MZMhxevzHP2ZosoScmU4sa8z0s3m4yU7MW2fvrcJE+fm1jW/v/vz67x2mQLQ9MYcCwMTePqnM/zF2cXr/v0eIVOlNIOk3XNvN8tO3l/EWvrqQfteR5f+MIX+M53vsPDDz/Md7/7Xb761a/y7W9/e9n7Pv/5z/PFL36R973vffzwhz/kS1/6Ej/4wQ96uvD9bK0n8a10r6a6+uHn6qWXcrfPdnvXl2f9ZeOrr002+c8rDaqOQTvM09o34gyVZXTClJKdH+fqvM8rky3aQcxsJ+TGfEAriGmF+diztpDuTpOMV6faQL5L1ValstfDT+BK3ePv//MKdS+m7kV4UYrK8lnjkG/OsVSw0OvXgChRTLZiynYKSpEojVrRJMkyZlshQZQQpxmubfCWg5XFjTXKjsmcF6OheGC0svha3YsXJ98B+SQ8FK9MdRbP3+8TEbt26v4i7q6nHvQLL7zA0aNHefjhvOT+E088wY9//GPa7fbie1599VVarRbve9/7APjgBz/I7Owsb7zxRi+n3td26kn8Xl2f2Q8/Vy+9lLU+u7R3fd+Iy8kRlzdmO5y93uClGy0OVwtkmaIRJLTCDMfQiTO42Yr42dV5fnp1jjdmOlyZ85n3I567OMtE02fej+lEGXEGpq4RJXk6O174J812NkAr4EYr4tXJFtfnfVpBkqfayfecVtxZHCVb8k93jDyIMxKloWkKTddIMjg44HBgoEC1aNOKMpI04+yNBj+5WOfsjQYtPyZOl/+0pq4Rxred8bYG2SsTr/ZKT38/6ClAX7p0iaNHjy7+uVQqUavVuHLlyrL3HDlyZNnnjh49yoULF3o59b7WfRIvWjr1TkzR0rel93evprr64efqpTDKWp+9/eHjcM3lrUdqoOU7Px0YKDDRjojTlHaUMNkKsAwNU4ezN5tMt2I6YUqS5mPNCp1UKcJULQa2IM4wdLAW7h6mlpfI7LUgyUbFGUx1EuaDFC/OUAvxMVVQsu+8nu6fFXkKHPIHC01TC5tumBwbdBl0HdJUkWaKLMt4+pdT/HKiTd0LudkI+NVki/NTbc7eaDDv5Xthj5ULpEAQp7TCmNem25y92URDMdkMehrS2Gk7dX8Rd9dTzsL3fZyFYv1djuPged6G3tNVLjuYpnHH6xtlGDq1JXu93otqNZeHjg1t+XGXtt2R0RJ+lFEq3PqatIOEI6P2nm7f7fq5NvK9e/eDY/yvX02jDAPXMfDClExXvPvBUWoLWylu5rP//to0o4MuunYrPBVdm/+63uDQUJE5L8aLUixDp2jr+HFKrDSO1opcqnsUoiRPbxZMploptqmhoZNkCWmSP9FnsKx7mqmd70F3KfL0ukY+ztztGVuGgbZwkUs36+jSNShYGgXTpFwwsU2domUQKkWj6WMaBqmWj3cnSlEpWoRRwhsNj4JtYNsGYabx2qzPA6bOyQMVRmsFGl7MxVmPom1wYqzMmw/X+OmNNpYBYzWX8sJ3rkL+nbvcjnr+e7wd97vtur/0m36PFT0FaNd1CcNw2WtBEFAqlTb0nq52O7zjtc2o1Vzm5+98ABB3t7Ttjpdtnr1Qp2Mby9Znvvfk0J5u3+36uTbyvSsC7zxU5txki6sNn0HX5J2HKhSVuusx1vqsg2J6zls2ftgOE2qOQdnQ+fl0h6Jl5IE5zdCAoqFxaaZN0dQZLlpoSmHo2mJd7TTTcG2TLEtIF2ZpL+2/Z0CU9FiNpAcLk8vRF1LbjpFflQ6LC7OX5kZMDWoFkziDdx8b4NXpNpONgDRTOKZG0TYZLGhcnO4QJSmHqwXIFDPtCMeA4YJJzbWx9Xxt9pXpNn/w2GEA/vHn1zlULTBUsjlWK1BzDNphws+uNvhvJ4bodG61nFKKa424579Lvdzv9krafbv0Q6wYHV196KCnAH3y5Mllk73q9TqNRoPjx48ve8+lS5fIsgxd10mShEuXLnHq1KleTi12wF6Z1LJRO/Vz3e3m18vSmqWf7Z7nuYtzK1bC6kQpv3n/COemOlQcE01TXJnzSTPFcDmvquV3Ut48XmYuSNF1HciXH7XjlJJjULIN/DDFtCBJFNFt3eXdC88LqeslG0/ruoZrWUSOIkry0qO2Al1TBOlCj1uDkqXx4rUmaBqlhfXIfpzhWIpjg0WuNUPiNGO84jBUcgjilKKl0wwSRisF3nKoSqbUsopkhwdczhyylmUwusMpSydezXsR56fbRKnimfO9B8bNBNp+mCwp1tZTgH7Xu97FxMQEL774Iu94xzv43ve+x+OPP47r3koZ3H///YyOjvL000/ze7/3ezz11FMcOXKEEydO9HzxYvv10/rMrbTdP9dO3fxWOg9+QhinBHG27OFjpOww0fSZ8wyO1oqohVHZIE7pREme1s3yamGtMKNo62QoKo5Jw48YLJmECQSkFI18f+YgZbFS2E4G6aKZz+QGFquG2YaGBRypOmRoWLqGMkCliljlO3BVLI3RskVKPu08WOghz/kx9w25JBnMeiGvzXRQSmEs1BsP4hTH1GkEMaam5+uluXPewGozoN80VlqsFhYnKf/negtQPHa4ujgevdnvxs2Gv6nv2k6ud97vPfXN6mmSWKFQ4Jvf/CZf+9rXeP/7388vfvEL/vzP/5zJyUk+9KEPLb7vG9/4Bv/wD//Ab//2b/NP//RPfP3rX+/5woXoZ9sxU3yltdtLN8F4+WaL/7xU5+z1Jv/n2vwdN8LxaoE/eOwwbz5Q4ZFDAzw0ViJMUl6f7WDqOpapc3xh/Nq1dAzdYLTs8NCYy2DJ4eRQmf92X42KY2LqOgMFC1vXKFg6hp4H6qIBtr692+RpLEzuIj9nwdKwzXwgeqxkcf9omVRBmOap+qGSTcHSMQ2NSsHEtU3eeniAsUqBWtFi0LUoWDpzfoxl5DO5B4o2pw9UcR2LMEkJ0wRDgyhVnDlUoVq0VpzdvNoM6PecGF6ceHVusk3ZMXjbkQGGSk7P342z1xub+q7t1GTJvTRBrt/0vLDtXe96F//yL/9yx+tPP/304n8/9NBD/OM//mOvpxJiz9jqHYommwFPn5tg3suX+FiGxoXZDgY6NdfkxasN6u2QGS/CNHTqXr7L00wnXtaT6qb3n784y4tXm3TimIdGSoDGpbrPeNnG0DUKlsmD1SInhouYhsGp4TIzXkQzSKkWTRpeQiuMMXRFslCxSydfe5ypvEhIto2zxhb2wkAHBhyTStFmrGwy10mo+zGDRZMwSfGjDA3FiGviJwqFYj5IuDbvkSgYKFjEmWLItbjRCJlqh1i6hmPq6LrO/3VikKl2SJQqfvvNY4yVbKbW2EHsbsMn49XC4nfj9jT4Zr8b9U60YqC92/F2ar2zVCbbPFl5LsQ22Oqb3/MX61ydCxkomFSLOmGccXUupGDC5TnFbDuiE6cUrbyiV5hmvDLZpFKw+PvpNu++b3CxN51vI2nz6ydvbSOpLaS7X5/pLNzsNR45WKHm2rTDBFODBEUrzHjTaJn/ujZHkil0LZ90pZkQJ3nPtmjpJFmGnm5d2rtbW7v733pe4AxT1zg0UOTkSIlr8x5BnOI6JmXH4oiuc70RkGYZrm3hmBnVos2cFzHdiTlYcSiYOu0wxTI0hl2TyVZEpWBysGLzpvEyNdfm6JBLvRPz+AOjADx8l2u92/DJVn83hko2M/P+ho+3U1us3ivbae5Gmn47M1FC7FtbXezhlak2VSevVKWhUbAMqo6BF2Vcnc/XMqvullEaVG2TX0528sCrcUdasZve7G4jCfmN3rZ0DlYcipbOrybb/OJGkyhJUWgMFfNtJ23LwNYNDlUdKgWLStHiULWQp7m1vIekaRpLOog932i02/5bWwjQANebARUnD65KgwMVB9PQMQ2d+4ZdDg4UePvRAd5xbJi3HKrx9qODjJYclKYxUrY5UHXw4ozRcoFfO17jg28e490nhhc3y1hPsNtI6dit/m6cOTywqePt1HrnXtb894vdStPvnRYSYg/ZlpniCwGpE8bMdCIaQZyPsRbNxRrUug6jrs2sF+U9W01DR+PCrEe9EzHR9PmDxw4v3jSP1or8ciKv/KdQ6AreqPs8MOKio7gw0+a/rs7z0KjLgWqRdxyroWsa1xs+pqahlOLyvE87TPN9nzWI0pQBx6ATZ3SibEvWR6/UE9c0DcvUSZKU16fbNPyYgYJJ3Yt403gVAD9O+NVEmzhVVIv5Y0LZsTgx7HJl3qMdZfzmgyOLvaHujbgdJuvuVW50QuBWfzcODhQ3fbydmAS6Uz317bRbaXoJ0EJsk628+b1prMRLN1r4UcpEK8xTvgpGS06+njmDN4+VmWyHpJmiHSQcqDrMetHCDGed4ZLFbCfm2Qt1To+VODfVoWQbnB4v8fpMh7qXMFa2CbM8HF6ZD9A0cAyNKFVcb/gUTJ1DtSJHBgpcrPv4UUIziMkWxqDRoB3ku0YpdSstvZUzvFPAWXhY0VQGmgEanBgqMuvFXK57KAXJws5bB6sWlpGX4uzWyrYMnfuGSrz96MBi6ho2Fzw3c/Pe6sDYz6st7oXlmruVppcALcQe8J4Tw9T9hLPXG6SpomDpVIsObz0yQCdKePlmk6KtM1g0aQYJ5YLJgWqBgqljGXlqPIhThksWJdtgqhMt3jSDOONtR2ucHq/w3MU5DE3x3KU6qYKKbXJ0wCRD49hggTdmOlSLFg+Olal38qpZcZyh6Rq6DmE3Eqt8hvV2CVMwdIVjGrz9WI0jNZdOGNO50aQTJUy1Qw5WCtimznCpAGTM+QlKKdBgqhli6HB51uefvRss5A8WxxaXBu27uRfGWLd7fLWfHyDWY7c2EJEALUQfW3rjHCqaVBwLd8Cg4lh5pSrXplq0CGPF8eHisv2Jz011+NVEi5KjEcQpQZJxaqS8GDxWumkOuiZ+nDHsOtw3lE8eC+IUy9Q5OFAkjBVFSyeIM951X41Xp9skiU6UKQxDw1b5rO6MvEetA2qhFGemNrcdpUl+vO7ksGxhnN2186VTRVNHoTB0nYKlc3ywSIrG/WMljtaKmIZOGKccG8zH8r0oxTDgkYNVXMvoeU3yXt/9SQqW3N1upen3xjdIiH1opRtnwdK5b7C4uP0h5MHg+HDxjl5ftzDJbCdmuGRxaqS8OCt7teDRvRGZOgRRiqZpzHoRVcfg2ddnF3pXY4s37v91foZXwwTH0EnSDN0APVX5UisTSraFFyVYho4Xb2xat87CsHu3lOfCfxdMHV2DNx+o0g4SZvwIy8wnvB2qFhkomtimwZlD+Th0phRBnPH7jx4E4Jnz0/hxRtkxOXujwcBCfexrjZC3LHxmI2OLq928j9cKPHN+uu+Lc8gyqLvbrTS9BGgh+tBkM+Aff359IX1qL/aWT42UeGO2w0DRvuuTfLcwSTfIu7axOMN3tSf/xXXSGrx4rYG9MJicqnxJ02jJWRzDnupEFE0dP0oxDdDI94nO8iwycQpJkpFmClRKtsGBaBPQDY0kU5havktVkoFtwGjJJknhobESzTDjzKEqrm0QxHM0g4S3HblV6//23uzSlHQ7TKkUTFDQCvMCHRtNT6908z5eKyyO8a+nV7qblbbuhRT9TtiNNL0EaCH6TLfnPOclDJcsoiTj5Yk2jxwoc2CgQJBki0tj7vYkv5kn//FqgY88eoj3nBjif/znZSZaEc0w4chAXt+7EyU8dXaCUyMlRkoOpqERxAoNdWs3KT3v9WYoXMegE6aLaer1zOq2dBir2IyUHS7OeERJSrZQR7vsGNRcG12H40OlfIMLS+fSrEfTz8fFr9Z9XEejbNuUHYMPnzmweOylKenuMrNOmNAIE35ysY6ha5waXntHsZXabGmbPnN+et290t1OMe/1FP29TH4DQvSZbsoxD85qcebxlfmAk4bO8aE709lr6eXJvxVlPDBSpmDngeyXE210LaMdplys+2SZ4vBAgWuNAE3Li33UOzFJphiwDXRDxzENDE2jEyZE6Tq3pVT52m3bMHhgxOVqMySIE5JULWwnqfGWgxUMQ+fB0RKvTbf5xfV8gthI2eZGI6TuK0bcjBPDNc5NdRgpO4xXC8tS0kcGCjx/cY7JdsipkRKWrtEMU+p+zGQz2HS7baRXutsp5nthGdS9SgK0ENtso+nL7s196Rpl29SY7USMV5wdu3Gem2wxWLTyoiMLxVEAXpvqUC4YFEyHyVbEgWqRasHkaiPE0A3GKgbjJZNCwWKqGaJpcLRW4Px0m1kvweDuk8WGShZF26AVxAy6NqeGDZJUEST5BiCPHBjg+HBxcTLc5bqP0hSOpTPZjhkpOziWjsoUUaYt1qbuPqwsncE+6JrommKqlV/rkYECrmX0FCA30ivd7RTzvbAM6l4lAVqIbbSZ9GX35l5zbR4+UObqfD7Ra9A1e0p7buZB4f4Rl3OTHQCchdnScQamZuBYOn6cUbQNXM3i9LjNcMnGC2POTrQ5oBmMVwtUHJNWmFArWnTChHAdU7lVpgjilDSFB0ctXMdkqhnimClBmPKjVyexDZ1KweTMwQpppkhThWubzKgYP04oOw5emqevbw94S7MK//OFmExpjFUMHFMnTDIuzvqEsYIHNtXUG+qV9kOKea8vg7pXSYAWYhttJn259OZeLVqcMHTGKmnPwfnZC3WSNGW2E/PyzZjnL9b58CMHePjQyj3y7pKrowMOZ282mQ8SXFPnsYNlGmFKw48pmBpemKCA8bKDRl5ZzFiYbR0nGdeCgLYf04nzIBQFyZqzuXXynagGbBPLgNdmOoyXHdIsoxOmTHsxtpE/HMx0fBp+wolhF8PQidN8fN6PM+JMYWoaJcdcM+C1ohhNYzFDULAMgiSlFW2+B7uRXqmkmMVqJEALsY02k77cjpTjuckWSZpysR5QNHVGSjaNIOapsxOLY7O3Oz1e4elzE1ydCzlQKXCgCs0goViwePTwAM9erKNrOplKGXQtdF3DjzO0hY02vFgRJCk60PAj/CSjYBq4lkFzjW60AgxDY6Rkc7RWJFGKgqlhGgYvXpkjzTICFFmqCJOUmY4izRSHBgrUO/mEtlaYEKX5Uqdh11wz4FUci1aQ5ns+W/lGJErlr/divb1SSTGL1UiAFmIbbTZ9udUpxzkvYbYTUzT1xZ7iQNFiph2t2psfrxYYKlrMeQlxpig5Jm87UsI0dBLgT959nHOTLS7XfVphTMW2uNkKeNNYGdvMx6IBfjXRJFJgahqGoVMEOmG66ji0CRyuOBwacGhFKTPtgJvNkFrRZLIVUrZ1TM3AT7J8Ry0yvCQlyzKCJCVVcLDiLKTkNQqmzntOrJ59OD5UpGDqzHoRrSCh7BgcrLqMV53eG36dJMUsViIBWoht1C/py0HX5OWbMUVT43IrwI8zDD1PS895yaqfU+iLG2R0ZUqtWoks38kp5GLdpxPlPdlXp9pkKsXUDcI4RdM1bBP8FU6rAyOlfIesmU5MECVMtEL+//buLEau6twX+H/PVbvGHsttd9vYxjix8TUJ98DJcCFOgnEQEYcIhBEhg4iQGKQoZFCch4AIUSAkOdKNjHhIIllw8pCrJEg4CViJCD4YyAnhMB0HsLGNsd1d7u7q7hp2DXtY96G6yl3uyV1V3TX9fxJCvb2ranm5ur5aa33rW1nbQd52IYRA1vGgTG+50hUZqiwhaqiwHA99QQOfvqSvfBJVOu/Ar8kLBr8tsRDGMjbW9wQq/o2qPV2qGTRyXzXVDwM00TKq1/RlrR+4W2Ih/OWdUZycKCDiU6HKEiy7uJ1IWmDj01JnAErBrjeg4rVTSRQ8AQgBXVGRdz1kC27xWMzpeK9KQFCXoWsqbNdD3nGRLDiIpwroDWgYTtvwBBAL+jBu2SgUHAhIKHgOdLV4pKQsA5++pA+np3IQEsrBGTi3nLBQ/7XbTR4GqQAAIABJREFUFHOj91VT/TBAEy2zWqcv6/GBGwv7sKnXxGimgOx0stZgxAfbKx0iPbelzgCUgt1vXjuNWNgHQ5Uxns5jLJMvFi7xAEUGpo+ghhDFCmGeEMXzowWQcwTG0jmMp3PIOR50RYajyTA1GZAUyEIgKyQosoyu6YM71vUEcDadh6g4Obr4ZUJCsb6263oYy+Tx1rCDF48l8G/bziXItdMUc6P3VVP9MEATNbl6feCG/AY+9+F+nJrKI5N3EDBUDEYMeEKa9zHVViJbEzExFBV49YMp5BwXjgs4098DVAkwNQmWXQzK+em1ZNcrbuFSJAASYLsCkiRBkSU4HqAqEjRPRn9Qx4dXBZG1gdIhF+m8g6ipAZBmneWsShJc18PxRPG4zN6gjqmsjafemj9BrpU1el811Q8DNFGTq9cHbmnbVOlACODcGu1CqhlddpkqXngvgdFMAYosw6/JsGyveIiGIiNkqLDdQvF4SgHAK459JQABXULY0JHMFaAoxWIjricgBNBtasg7HmLB4qEYgIAniqU+r99SLOd5/peJQ8cnMJbJwzczQc6nYSwzf4JcK2uGfdVUH/wXI2py9frAXcmEtS2xEP7j76fg12VEfBqyBReQAF0GIIqjZg8oVxWTcW5rdMGVIEuimEwmSygIQFckuAKI+jVs7g/iK/+6dt7XnusIzbeGiyVAS/KOh25TWzBBrlU1S2Ii1Y4BmqjJ1esD90Kmq+dKpgJwQQlq5z82aqpwRfFwi7BPheMVi4dIQqDgelBlCX6fjHTOxXQuGSQArhAYzRRgagpWR/wouAJ+XUHQkPHRNdElb3/aEgvhxWMJTGVtRHzFEXjW8bAq7GvLUWW7Jb11svZ7dxK1mXp+4C40XT1XMtr+wyMAJAyEfQsmqJ3/2OGpLCYtGzlHoC9k4H+tNnBq0sLxiSw0SMi7HnRVgiRkQBR3RJeOlJQgkLMBz3Uwningom4/ugMGNkxXC1vq9qdY2Id/27YKT701grFMAd2mhlVhH1RFmfVc7bI9qZ2S3joZAzRRC1iJD9y5ktEmLRsCEjb1BcvXSvfObM/Mx05aBRxP5DAQ8WN4KgvbdXF6ykFfyEDYV6w4dngkBVkqnh/tohiYZRRH0JJUPG5SVWQMRn3I2h7CPhWxsDFnwLyQoLp1dQS9QWPB+7g9iZoNAzQRAZg7Gc12BYRUuQ1rrgS1mY89OVksJxr1+yBLEvpDOk5N5JDM2vg/G3swlimg4Hg4HE8jqCtQZySRm6qEaECHLitQFOALl60pJ7LNdcTmUoLqYl9yuD2Jmg0DNBEBmDsZTVOkOfcWn792O/OxmbyDkKEib3voD+nYtjoCIQT8loLVUT/en8jCrykYiviQsApQZMB1i4lgfk2BX1OQyjsY8Ol46Xgx+AZ1FfHY7JFyPYNqK21PmjlrMNgXwLqgzi8RbWjh/RVE1DG2xELIFFyk8w48Icp7i7tMreLaXGUwZz42oCuYytnIOR6Gon4AQMJy0G0Wg1/AUJHKu/BpMlwB9If8iBgKVEVCMu8gnswhk3cwbjk4PZlFPJXDkdEU9h8eQdb20B3QkLWLxUfeT2Rh6kpFW0xdqSo7u/QlY6Zm3J5UmjUo90Wh2BfxZK7RTaM6Y4AmIgDnktH8moxExi7vLb5+S6zi2nzTx6XHCk/g1GQWyayNkxMWzkwfP9kzPTpdG/XB8QSOJ7KQJcDUZUQCBgKagoCuwhFAUFfgeAL/jKfxtxMTOHo2gzeHk3BcD7IkIWioCOgKUnm7bkF1ri8ozViTe+asgSxJCPqKfXE4nmp006jOmuurIRE1VGmdtjSFeuj4xAVnM5f+fCxjozekYzxjI2HZmMo5uGpDN0YyNtJ5B2G/hh5TxdFRDzIUjKcLUFQZWUfAUCSYsgJAKq5/T0+wj2ULyI0JHHBHceXaKNZNH2wR0jVkpgN0rXt+W2V7UitNxVNtGKCJqMJiiVcLZU2fG90ZWBMtPl8678ABysHvxLiFsUwBQUNBwRXFAFsAXE8gVwA0VUYoaMATgGwLZG2vWC1cEpAB/Nf7k4j4NaiKjHU9/vJadD2CaitsT2KlsM7Bf1EiqrBQ4hWABYP3hOVAlgTeGLcq6n3nbK9ihB3QNfSYAkfHLOTd4ii5VElMFsWgrsjy9GEegF9VoEoSNEWGZTt4dzSDdd1mORg3e1Ctp/ML16RzDiuFtSkGaCKqsNAU6mLB+92zSbwzaqHLr2IgZMB2PLx2Oontq0OIJ3P4zWunMWE5sBwXCauAgisgUNz7XNrNZTsecpKAqsjFZDJVRm9AQ5epwwOgyhJs1+vY/cnnT8UP9ukd2xftjgGaiCosNIU6X/A+MWZhLGOj4BbXkR1P4ORkDqtCBgAJqZyDg8cSmLAcGKqEpFXASMouj5ohAL9WLFziuMUjJ2N+FbIE+DQFli0waCgIGjrWd/sRC7ffKVRLMXPWIBo1MTlpNbhFtByYxU3UoeLJHJ47MorfvT6M546MlrfpLJTNPN9WpFTBRkBXYKgKNvaY8GvFOtxTeRsfWRPC6WR++s9lvBNPI2t754IzitPbOVtAkyXIMrC+x8SnN/dj20AYfk2FqcsouB7Wd/urKvdJ1Io4gibqQIslgi2UzTzXwR0hQ4OpKwgYKmzHw0XdOgQEUjkHmqqU75cgkLFd5G13Vps8FEfOfl3GtoEQ1kZ9yOQdTGaLXxDOpgowVBkfXz//dG671NImAhigiTrSYhW45ku8mi94H46nYBVcrI368NZIGgAghIAqA5mCiw/1B2AVXAhI6PJriCdz0GWg4FU+vyuAvqCOkVQeR8dGykdMGpqMgiOQyBbm/Tuxlja1GwZoog5Uy17a+YJ3KThuiQVwdMzCRNbG/x6M4OPru8t/rsjFcp4QgCwBulxcd/ZQTBRTZeDKdV04OmYhlbcByDA1BbIsY22XjknLnreMJ2tpU7thgCbqQLXupZ1rKrk0ss7ZHi4fisyaXr5qQzdelASOjaYhJAmeK6AqgJBlqIoEWRLo8uvQVBW9AQNTWRuuJ2DZDrbEQjANFcmsPW8ZTxbwoHbDAE3Ugc7fS7uUClwLTSXPdeJUSSzsw43b1wCQYKgyXjmdBDwBXZXg0xTkHRdbVwWRyTvoD+lI5QxAkuB6AgFDw3g6j7FMHgLAc0dmry+zgAe1G2ZxE3WguepuX+ha7axa0MbSakELSLhh+2p85uIerOs10RPQsSrqw5qoD4amImCoGIr6ETBUJHMOZBkYS+VwdNyCocnYEguWD8uYeUBEq9TSJrpQ/GpJ1KGqrcBV61RyaaT70aEoXAhk8i4cAI4EnE3lcFG3H2G/hq2rQvA8D7IkI57JY2OPie1rwoiaevm5Zq4vr2QtbWaL00pggCbqEPUKKudPJU9aBRwZTaPgijmnns9Xml53XQ9CAAVXwHI86ADyrsD7CQt5W2Bdjx87Nm1ELOzD714fRndAgyydO5t6ri8FK1H2k9nitFI4xU3UAWadITzHFPGFmjmVPJHJ49VTSZxN5SFJAv/5XgK/ePl9/M+ZqXkfXxrpjmby0BUFa6M+XNRjYnMshIt7AtAUGQFfZaBvprOaa53iJ7pQNb27X3rpJfz4xz+GZVlYvXo1fvSjH2HVqlWz7rvmmmuKeyLV4svFYjHs27evlpcmoiWo5xakmVPJr5+eggQBQ1VgKCrChoypnI2n3hxBb3D+cpyxsA9rIia2rdbw1nAKQVWGNH28ZCrnlANe6fEXktS2UtPOzBanlVJ1gLYsC/fddx9+8YtfYOvWrfjlL3+JBx54AI8//vise5PJJJ5++mn09/fX1Fii5dKqa4oX2u56B5XSVPKE5eDMVBa2K+DTihXDIn4NY+nCosG/y1QxPJXFO2dT0FQFmiQhZCjoMrVZbVtsfXklp52ZLU4rpeop7pdffhlDQ0PYunUrAGD37t144YUXkE6nZ92bTqcRDoerbyXRMqrn9O9KWkq7l2uKuMtUkbBsGOq5j5K87aF7+mCNhfQHdLwxnJquOCYjazs4MWEh4lPnbFss7MOOTX34wvYB7NjUVxF4V3LamdnitFKqDtAnTpzA0NBQ+edAIIBoNIqTJ09W3GdZFlzXxZ49e3Ddddfhtttuw6uvvlp9i4nqrFXXFJfS7uUKKltiISgyMJWzISCQs13kHA+9AWPR4H82U8D2gTCGon6kczZUWcJFUT/iqfyS2zZhOTB1peKaqSuLfkmoRi1b1IiWouqvz9lsFoZhVFwzDAOWVXnsmed5uOmmm3DLLbdg27ZteOaZZ3DXXXfhwIEDiEQqiyIEgwZUtfKXrBqKIiMaNWt+nk7UiX2Xh4S+LrMiQ9hv6hhP55fUFyvdd0tpdzRqIhzx483TU0hkCuiN+rE1ZOD9VB7/HU+jO6Bj25oIBiL+JbUhGjXxRUnC//vHaSQLLnqDOjaEDCiSgn+9pA/RBZ4vDwkbV0ewaU0UU9kC3jg1iffHLeTTBVw61IVwxL/g42ca7AsgW/AQ8J37SEvnHAz26cvybxKNmti8trvuz1uNTvydrZdm77tFA/SBAwfw6KOPzrp+6623Ip/PV1zL5XIIBAIV14LBIB566KHyz7t27cLevXvx2muv4eqrr664N52ufL5q8XzU6nVi3xkQGJ2wKtYU03kHfk1eUl+sdN8ttd1+AFesLi41xZM5HHxvHAFdgakrGJvMYv/ZdFUjwXUhA7d/dHV5LTysFouJ+IVYsD9mtt8DYOVc9Ad0hAwFru3i1y8dR7dfg4C8aF7AuqCOg8cSyEz/fUpJZFdt6G7793Mn/s7WSzP0XV/f/DNFiwbonTt3YufOnbOuP//889i/f3/550QigampKaxbt67iPsuyMDIygg0bNlS+sMqECmoOtZS9bKRa2l3vgyWWuv84nsxh0rLxyqkpdPk1KKoMCQKAhKhfw1tnpvDPeBoRn4odm3rL6+vzfYFYySIlnaBVkybbTdVr0FdeeSVGRkbwyiuvAACeeOIJ7NixA6ZZOV0wPj6O3bt349ixYwCAQ4cOYWxsDNu3b6+h2UT106prirW0eyXXbM9XSm4zNAVXDEUgQeCNU0nIEBiKGvhgMo/hVAFdfg0FF3jl1BTeOpPEP0dS+M1rp+dMgmNAqZ9WTZpsR1UPY30+H/793/8dDz74ILLZLNauXYuHH34YABCPx3HHHXdg//79GBoawv333497770XrusiEolg7969CAaDdftLENVqJSpQLYdq293IrUIvHk/gZCKDZM5F1nHgV1X0hnQUXGAq58CnyvA8AUWWoCsCY+kCMpqDjb0BjGfsWSNpVvaqLx7b2TwkIYRodCNKRkfrkzXbDOsKrYp9V71W6ruZQe38Ndvl/BCOJ3P4v/95HD5Fwtl0AZIECAH0BHW8N5rBYMSPwS4fjo5ZyBVc6KoEVZbheAIXdZvQVBkbekz4Nbl8ctZzR0aRtb051+IXOl2rXdT7fTdXWVVPCCQyNr6wfaBur9MMmuF3tqY1aCJqP41asz0cT6HLr+H0VA66IkNXZRQcD1lHYDDiw5lkFqcms/CEgCc8CMjo9qvw6QqyjoeNveasIias7FVfLMTSPNjjRB2qEdP6E5aDi3tNvHM2jZChQggBIQFjmTwGAjp6TA1TeQe6osB1BCZyNk4l8/jImjAuXRVE1NSRzjsVwYIBpb5aNWmyHfGwDCJaMV2mCl1VcHFvABACWccDPIGIUTwHWlVkbOgOIOLToKoyBsIGPhwLIOTTEPZrcxZYYWWv+mrVpMl2xK+YRLQiilurCnjlgyQMBcX1b0OFEEDeExAC8GsKugI6ugMGhBBI5R18qD+Aw/H0vFPxnbDFaqWz1Fs1abLdMEAT0bI7l5Sm4l/WRnB0zMKZqSwChoKBiB8FACFVQsKykbc9+DQFecdDwFBh2S6CxsIVBts5oDBLvXMxQBPRsqvYumOouCJgIJ0PlTOts5KE/f99Gj2mhGPjFnKOCyGAgC7hjeEUtg+EOzY4cdtT52KAJqI51XNadbFM64GIvzxNnXM8pPI2QrqGVMHG9oEwVkeLNbk7MTgxS71zMUAT0Sz1nladmWk9aRVwcjKHRKaALlNFPJlDNGrOOU1d2pM7U6cFJ2apdy5mcRPRLPU+grOUaX160sJbwymkpo+X7AsYOHgsgeGp7JyPO/8c60mrgH+cnMA7Z1N47shoR5SfZJZ652KAJqJZ6l2ru5RpPZYpwPEEwj4Vlw6EsDrqR0BX8ObpKcSTOTx3ZBS/e324HHxnBqeJTB6vnkoilXfx4ViwY2pEc9tT5+IcCRHNshzTqrGwD2siJratriwjaeoKjo+m8f5ZzDmlXlqbfv30FIKGgkv6AoiaevnxnbAe3c5Z6jQ/BmgimqUe1aTmSjI7P/BPWgUcGU3jVDKPwbCBTX1ByJJakQy2Y1MfYmFfOVnq/ODeSevR1Fk4xU1Es9Q6rTrfkYX9AX3OKeueoA4JEv5nJI1JqwBg9pT6+evRAJOlqL3xnU1Ec6plWvX8vbuO6+H9hIWjo2l8qD+IvO3g7bOZ8pT12ZyDVLoAnyrhg8ksoqY+K/iyRjR1GgZoIqq7mXt3J60C3hpJw6dKkAAYmoJMwcVAyIeLek3IkgTT1PFfkzn4VAmpnFvOVJ4ZfBcq6bnSpTAX0kxtodbGAE1ENVlsrfnkZA5+tbiaFvKdW18eSWbL93QFDFy6Koh3RzMQAPyaPGc97blG9c1UCrOZ2kKtjwGaiKo2X0Da0h/A4bMZAEAqb8OQZeRdgY29QQDFKeqQoSEzvabsN3Woiox13eaSg1kzlcJsprZQ62OSGBFVbb6CJmczhXKSGQQgILB1+jxnoJjcta7bX75nPJ2ven9vvfds16KZ2kKtjyNoIqrahOVAlgTeGLeQyTsIGCoGIwZytleeji4ld6mKDE+IiuSu0j3RqInJSauqNjRTKcxmagu1Po6giahqEjy8djoJ2/EQMlTYTvFnCV75nuWuhNVMpTCbqS3U+vi1johqIE3/d+5/FdemLWclrIWyu1daM7WFWh8DNBFVTUDCR9aEcGoqh1TOQdBQ8JE1IbhCWvzBddRMpTCbqS3U2higiahqXaaKrO1h2+pz+5XTeQdhjatnRLXibxERVY1rrkTLhyNoIqracqy5LlaJi5W6qFMwQBNRTeq55rpYJS5W6qJOwiluImoa8xU+ORxPXdCfE7UTBmgiahqLVeJipS7qJAzQRNQ0FjvzmWdCUydhgCaiprFYVjizxqmTMEATUdNYrCzocpcNJWomnBcioqYy35nP3FpFnYYjaCJqaqWtVVnbQ3dAQ9b2cPBYAvFkrtFNI1pWDNBE1NS4tYo6FQM0ETU1bq2iTsU1aCJqaqWtVUHj3MdVaWsV16apnXEETUQrJp7M4bkjo/jd68N47sjoBa0jz7e1qj+gc22a2hoDNBGtiGqTvebbWnU2U+DaNLU1TnET0YqYmewFoPz/w/EUNq/tXnC6eq6tV4eOT6A7oFVcM3UFiYy9An8bouXHETQRrYiFkr2Gp7JLHl2z7Ce1O76TiWhFLJTs9ebpqXlH16X/nz+y3hIL4eCxBIBioLcKLjIFF5cPRlb4b0a0PDiCJqIVsVAd7USmMOfo+v3E/CNrlv2kdscRNBGtiFJAPRxPIZGx0WWquHwwgljYh+50AWOT2Vmj61TeRn/ImHNkXVqXZkCmdlXTCNq2bTzyyCPYvHkzRkZG5r3v7bffxu7du3Httddi9+7dePvtt2t5WSJqUbGwDzs29eEL2wewY1NfObhuWxOZc3Qd0jUWKaGOVVOAvvvuu+HzLf7t9Rvf+Aa+9rWv4dlnn8VXvvIVfPvb367lZYmozQxE/HNOV6/r8TMRjDpWTe/ye+65B5dddhkee+yxee955513kEql8NnPfhYAsGvXLjz44IN47733sHHjxlpenohawIVW+5pvupqJYNSpagrQl1122aL3nDhxAoODgxXXhoaGcOzYsVkBOhg0oKqV01nVUBQZ0ahZ8/N0IvZd9dh3sw1PZfH3M2mEfBqG+n2w8i7+fiaNz0T8GIj4y/fN13fRqIlwxI83T08hkSmgN+rHjjWRisd2Or7vqtfsfbfs80TZbBaGYVRcMwwDlmXNujedztflNaNRE5OTs5+fFse+qx77braXj4xC9jxIroSs5UICIHsuXn73LHZs6ivft1Df+QFcsTp87oIQ7OcZ+L6rXjP0XV9faN4/WzRAHzhwAI8++uis63feeSduvvnmRV/cNE3k85WBN5fLIRAILPpYImptE5bDal9EVVo0QO/cuRM7d+6s+gU2bNiAEydOwPM8yLIMx3Fw4sQJrj8TdYCFipMsN550Ra1u2QuVXHzxxejr68P+/fsBAE899RQGBwexfv365X5pImqwhYqTLKdqD+YgaiZVB+ixsTHs2rULu3btAgDcfvvt2LVrF+LxOOLxOK6//vryvT/5yU/w5JNPYufOnfjtb38755Q5EbWfRlX7mnkwB0+6olYlCSFEoxtRMjpan1+eZlj4b1Xsu+qx76pX77773evD6A5okCWpfM0TAomMjS9sH6jb6zQDvu+q1wx9t1CSGGtxE1Hb4UlX1A4YoImo7TRq7Zuonhigiajt8KQragec7yGiplDvbVE86YpaHQM0EdWkHoF1eKp47nNAV9Ad0GAVXBw8luColzoap7iJqGr12m/85ukpbosiOg9H0ERUtZn7jQGU/384nrqgkW9p9P3CiQl0GSrWdvkRNXUALAlKxBE0EVVtwnJg6pUn0Jm6ggnLWfSxM0ffAxEfUnkHb42kMWkVAHBbFBEDNBFVrZb9xjNH3xf1BgBIkCBwciLLbVFEYIAmohrUst945ui7yzSwdVUQIUNBPJXntigicA2aiGpQ2m98OJ5CImOjy1Rx+WDkggLr+SddRU0dqiJj64BccVb0+XhKFXUKBmgiqkm1+423xEI4eCwBAPCbenn0fflgZN7HlNatuR2LOgGnuImoIWZW+xpPX9i0Nk+pok7CETQRNUxp9H2hpwpNWA66A1rFNW7HonbFAE1EDTFzLXmwL4B1QX3Raerz160Bbsei9sV3NRGtuHgyh/2HRzBp2bBdgTOZPN6Ugeu3rFowSM9ctzZ1BVbBXXTdmqhVcQ2aiFbci8cT+GAiD1mSEfZrkCHjg4k8XjyeWPBxPKWKOglH0ES0ouLJHP5yZBSeC2RtDb0BDb0RDWFDwdtn04s+nqdUUadggCaiFVPaJuV6An5NgeN5ODmRhWGogNTo1hE1F05xE9GKKW2TWt9tIut4gAA0RcapiSySOQcf6g80uolETYMBmohWTKm854diIfQGdXgAbNdF1vYw1OXHx9f3NLqJRE2DU9xEtGJK26Sipo5/GYrig8ksxjM2VnX5cf2H+7m2TDQDAzQRrZiZ26TCfg3rFRn9IRfXf2QN/EI0uHVEzYVT3ES0YubbJjUQ8Te6aURNhyNoIlpR3CZFdGE4giYiImpCDNBERERNiAGaiIioCTFAExERNSEGaCIioibEAE1ERNSEGKCJiIiaEAM0ERFRE2KAJiIiakKsJEZELSWezOFwPIUJy0GXqWJLLMTKZNSWOIImopYRT+Zw8FgCWdtDd0BD1vZw8FgC8WSu0U0jqjsGaCJqGYfjKQR0BUFDhSxJCBoqArqCw/FUo5tGVHcM0ETUMiYsB6auVFwzdQUTltOgFhEtHwZoImoZXaYKq+BWXLMKLrpMptNQ+2GAJqKWsSUWQqbgIp134AmBdN5BpuBiSyzU6KYR1R0DNBG1jFjYh6s2dMOvyUhkbPg1GVdt6GYWN7UlzgsRUUuJhX0MyNQRagrQtm3jZz/7GX71q1/h+eefx6pVq+a875prroEQAqpafLlYLIZ9+/bV8tJERERtraYAfffdd+PSSy9d9L5kMomnn34a/f39tbwcERFRx6hpDfqee+7B17/+9UXvS6fTCIfDtbwUERFRR6kpQF922WWL3mNZFlzXxZ49e3Ddddfhtttuw6uvvlrLyxIREbW9ZU8S8zwPN910E2655RZs27YNzzzzDO666y4cOHAAkUik4t5g0ICqKvM804VTFBnRqFnz83Qi9l312HfVY99Vj31XvWbvO0kIIRa64cCBA3j00UdnXb/zzjtx8803AwA2b968YJLY+T7/+c/jW9/6Fq6++uqK66Oj9SnXF42amJy06vJcnYZ9Vz32XfXYd9Vj31WvGfqur2/+PfyLjqB37tyJnTt3Vv3ilmVhZGQEGzZsqHxhlTu8iIiI5rPshUrGx8exe/duHDt2DABw6NAhjI2NYfv27cv90kRERC2r6mHs2NgYvvjFL5Z/vv3226EoSnl/8x133IH9+/djaGgI999/P+699164rotIJIK9e/ciGAzW3noiIqI2tega9EriGnTjse+qx76rHvuueuy76jVD3y20Bt1UAZqIiIiKeFgGERFRE2KAJiIiakIM0ERERE2IAZqIiKgJtWWAfvbZZ3HDDTdg165duPXWW/Huu+82ukkt4y9/+QtuuOEGfO5zn2PfLZFt23jkkUewefNmjIyMNLo5LeGll17CjTfeiGuvvRZf/epX2W9LwPdb9Vrlc67tAvSZM2dw//3347HHHsMzzzyDXbt24Xvf+16jm9US4vE4vvvd7+KnP/0p/vSnP+H666/H97///UY3q2Xcfffd8Pl8jW5Gy7AsC/fddx8eeughPPvss/jkJz+JBx54oNHNahl8v1WnlT7n2i5Aq6qKn/70p1izZg0A4GMf+xiOHz/e4Fa1hlLfXXzxxQCAyy+/HEePHm1wq1rHhR6/SkUvv/wyhoaGsHXrVgDA7t278cILLyCdTje4Za2B77fqtNLnXNsF6P7+fnziE58AADiOg9///vf4zGc+0+BWtYaenh5cddVV5Z8PHjzIkqxLcCHHr9I5J06cwNDQUPnnQCCAaDSKkydPNrCMlibMAAAB40lEQVRVrYPvt+q00udc255YsW/fPjz22GNYu3Yt9u7d2+jmtJyXXnoJ+/btK5duJaq3bDYLwzAqrhmGActiVSxaGc3+OdeyAXqxYzC//OUv40tf+hL+8Ic/YPfu3fjjH//I9Zppi/Xdn//8Z/zgBz/A448/Xp4GoqILOX6VLoxpmsjn8xXXcrkcAoFAg1pEnaQlPudEmzl69Kg4dOhQxbUrrrhCHD58uEEtai2HDh0Sn/rUp8TRo0cb3ZSWdckll4jh4eFGN6Pp/fWvfxU33nhj+efx8XGxdetWkclkGtiq1sP329K1yudc261BJxIJfOc730E8HgcA/OMf/4Bt2xVrXTS3bDaLPXv24Oc//zk2btzY6OZQm7vyyisxMjKCV155BQDwxBNPYMeOHTBNs8Eto3bWSp9zbXlYxpNPPolf//rX8DwPuq7jm9/8Jq6++upGN6vp7d+/H3v27ClnwJc8+eST6O3tbVCrWsPM41ePHz+OtWvXlo9fjcViDW5d8/rb3/6GH/7wh8hms1i7di0efvhh9PX1NbpZTY/vt+q10udcWwZoIiKiVtd2U9xERETtgAGaiIioCTFAExERNSEGaCIioibEAE1ERNSEGKCJiIiaEAM0ERFRE2KAJiIiakL/H5Cq57wG//oVAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFkCAYAAADmPNjoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9a5Ac1X03/OvbXHouO7srYSEhbwlRtmJBhJAVkEuAsbABO08Z563wkHwgcXDKqefLW0A5n+IqymWXie28fpPXTx5XbFwx2HkSPRVbNmDJ2BCQFGS0llfYwSxYy+4iJFZIO7tz6Z6+9/vh9DnTPdNz29n7nl8VJXamp/uc7j7nf//9Bd/3fXBwcHBwcHCsCYgrPQAODg4ODg6O7sEFNwcHBwcHxxoCF9wcHBwcHBxrCFxwc3BwcHBwrCFwwc3BwcHBwbGGwAU3BwcHBwfHGoK80gPoBpcvV5o+y2aTqFbNFRjN8oDPb21jPc9vPc8N4PNb61hP89u8ORf7+Zq1uGVZWukhLCn4/NY21vP81vPcAD6/tY71Pj9gDQtuDg4ODg6OjQguuDk4ODg4ONYQuODm4ODg4OBYQ+CCm4ODg4ODYw2BC24ODg4ODo41BC64OTg4ODg41hC44Obg4ODg4FhD4IKbg4ODg4NjDYELbg4ODg4OjjUELrg5ODg4ODjWENYEVzkHBwcHRxTT05MYGxtFuVxCPj+AvXv3Y2Rkx0oPi2MZwC1uDg4OjjWG6elJHD/+HDRNQzKZgqZpOH78OUxPT6700DiWAVxwc3BwcKwxjI2NQhQlKIoCQRCgKApEUcLY2OhKD41jGcBd5Rwc6wjcfboxUC6XkEymIp/JsoxyubRCI+JYTnCLm4NjnYC7TzcO8vkBOI4T+cxxHOTzAys0Io7lBBfcHBzrBNx9unGwd+9+eJ4L27bh+z5s24bnudi7d/9KD41jGdC34D516hQ+9alP4a677sKnP/1pzMzMNB0zPj6O+++/H3fddRfuv/9+jI+Ps+/+5V/+BZ/4xCdw11134cEHH8Q777zT75A4ODYkyuUSZDka/eLu0/WJkZEduO22Q8hkMjBNA5lMBrfddoiHRTYI+opx67qOhx9+GN/+9rexe/duPP7443j00UfxzW9+M3LcQw89hEceeQR33nknjh07hs997nN46qmn8Ktf/Qrf+c538O///u8YGBjAl7/8ZTz22GP4+7//+74mxcGxEZHPD0DTNCiKwj6j7lMe+15/GBnZwZ/hBkVfFvcvfvELbN++Hbt37wYA3H///Th58iSq1So75vXXX0elUsGdd94JALj77rsxOzuLiYkJDA8P4ytf+QoGBkhc5pZbbsHkJI/HcXAsBK3cp9u2beexbw6OdYS+BPfU1BS2b9/O/s5kMigUCnjrrbcix1xzzTWR323fvh1vvvkmRkZGcNNNNwEADMPAU089hUOHDvUzJA6ODYtW7tMLF87z2PcawfT0JI4cOYwnnvgWjhw5zJUrjlj05Sqv1WpIJpORz5LJJHRd7+mYr3zlK/jXf/1X7Nu3D5/5zGearpPNJiHLUuQzSRJRKKj9DH9Vg89vbWOl5lco7MaePbsjn5048RxSqTQEQWCfiWIC1WplQWPkz25pMDFxDidPPg9JkqCqKgxDx8mTzyObvQc7d163aNfhz2/toy/BraoqTNOMfGYYRNPv5Zi//uu/xsMPP4zvfOc7+PSnP43Dhw9Hjq9Wo78HgEJBxfy83vT5egGf39rGappfNptvin3bto1sNregMa6muS0FVmp+J06cBCBCFGV4ng9RlOG6Pk6cOInh4a2Ldh3+/NYONm/OxX7el6v82muvjcSki8UiSqUSRkZGIsdMTU3B8zwAJFlmamoKO3fuxK9//Wu88sorAEj265/+6Z/ilVdeQblc7mdYHBwcIfDSobUBXhXA0S36Etw333wzZmZm8Mtf/hIA8OSTT+KOO+6AqtbdFNdddx02b96Mp59+GgBw5MgRXHPNNdixYwfefPNN/M3f/A0qlQoA4D/+4z9w9dVXI5/P9zMsDg6OEHjp0NoAJ1Xh6BZ9ucpTqRS+/vWv4wtf+AJqtRre+9734rHHHsOlS5fw4IMPMmH9ta99DZ///OfxjW98A8PDw/jqV78KAPjkJz+Jqakp/PEf/zF830c+n+elYBwcSwBeOrT6sXfvfhw//hxsm1jajuNwzwhHLATf9/2VHkQnXL5cafpsPcUx4sDnt7axWue3GPXcjXNbbzXiK/ns4u4lgEW9v6v13VwsrKf5tYpxc8G9SsHnt7axGudHucxFUYpYdL26zcNzW6xzriaspme3FPd3Nc1vKbCe5tdKcPPuYBwbDsth1axGhLnMAUBRFNg2+Xyhc12Kc3LUwe8vRxy44ObYUAhbMJRF7LnnjkEQgEQiFWEWW8tWYxyWohUkby+5tOD3lyMOvDsYx4ZCXAct27Zgmua6ZxZbiqxlngm9tOD3lyMOXHBzbCjE1cp6nsd4BijWo1XTSz13t9SbvEZ8acHvL0ccuODmWDfoRtjEWTCiKEIUo0thPVo13dZz03BCN01JeI340oLfX4448Bg3x7pAXOw6Lk4dVyurKAkIAqEBXe/1s63qucMJe6ZpQpYVZDIkttouIWq9lYKtRvAafI5GcMHNsS7QbfYttWDCwubgwQ+zc6w2AdQoGLdt244LF84v6jgblZ5qtQLHsSHLEkuMigsddKsscXBwLC644OZYF+gl+7aVBbPahE2jYJybm8PFi29DVTNIp9VFE5SNSo8sy3BdF7Wazu5pXOiAlypxcKwMuODmWBfI5weaOmCtxTh1O5e1bZsQBAGWZUJVM4smKBuVHlXNoFwuw3Fc+L7fMnTAS5U4OFYGXHBzrAusB57nTi5r13UhCAJc12W/6UZQdopDNyo9iUQSqqrCtm2YptHSJb9elKXlBM8J4FgMcMHNsS4QF7tea5tiJ5e1JElwXReSJLHfdBKU3cSh45QeSZJwxx0fa3v/FkNZaiXI1qOA4zkBHIsFLrg51g1WMvu2UdDceutBDA9v7ekcnVzWipKE42hIJJJtXdhhdBOHXqjS06+y1EqQ7dq1G+Pjr647AcdzAjgWC1xwc3D0iTgBdOzYURw8+JGeNuROLuvBwUFcf/3vR7LKt23bjrGxUbz44s9jBWe3ceiFKj39KEtUkHmei1KpAtd1IYoizpw5jVwuv+4EHM8J4FgscMHNwdEn4iwpz3N6FjTduqz37z8AoDvX62LGoalXoVotI5vN912aRgSWAE2rQhAAQRDg+z5c14XrupExrwcBx3MCOBYLnDmNg6NPxNGoyrLSs6ChrmdRFDE3N4tKpQRFSbQ8Po53vZFjfbEoM8NsaqlUGvPzcxgdPYW5ubmO7GqtkM8PoFbTmNAWBIF9V6tpkWPXg4Dj9KUciwUuuDk4+kR8Iwh7wYLGcWzkcgMYHByG67otBWK8whC1TBeLMrNRSbAsUppGS9QW0phl27btcByHWdie58H3gXRaheu60DQN8/NFXLlyGZVKCdu2be9pzKsNnL6UY7HAXeUcHH0izsUNeAuypHpJYOrW9boYSXuN8dl2pWndZIRPT0+yBDTPI8l3vu9DVTNIJJKQZRm6rsHzPEgSCQWMj7+Kq67asiSCLjzmoaEh3HDDTUtyHU5fyrEY4BY3B0efiLOk7r77ngVt0HFWtOu6mJm52NQ8ZTldr41eBUmS4Pt+U2maoiS6alBCFZRsNgtRlCBJEkRRhGka8DwXipJALjeATZuuwuDgMFQ1s2StVhubqlSrlZ7d/hwcywlucXOsOqzFGt5GS6pQUDE/r/d8nkYr2jQNaFoFgiDEJqAttByr13sc9iqIYgKJRBK6rkFRoqVpRAB39hhQC14QyHG1ms6s99tuO4QXX/z5smVgN9fPJ2AYJp599hkkk8kleQfX4jvOsXogPfroo4+u9CA6Qdetps9SKQWGYa/AaJYHG3V+1PpxHAeJRALVagXj4/+FV175Fd56axLptIpCYXAFRtwbFvr80mkVU1MT8H0foiiiUinD83zkcnnIssws3dnZy9i1azcKhcHg3yHMzFzEG2+8hsnJibb3qfEem6aJqakJFAqDLX9Dv5udvYxSaZ5lvHueB9u2MTBQwC23HMSbb/4OiUQikmgmiiJ0XcOePfvYZ5OTEzBNE5IkQZZlpFJpKEoCQ0PDuOWWg5HvKRzHQS6Xw65du3u+r+1w+vRLkTHbtoVKpQLP85DL5Zvuz/T0JF544Wc4ffqlru5147Gl0nzP978fNI4hl8tCVXOLfp3VgvW0d2YyydjPueBepdio83vhhZ8FLlcFtm1B0zQAfvCtsKQbXCf0smEv9PmFBaSua7BtC9lsLmJ9NgrCXgVx+B4LgtCkDLQbWzqt4sKFt6AoSaTTKiRJhiiKuOWWgxgZ2dG1wG1UUKjFfsstB9l12n2/mGgcc6VShu97kGUpmGP9/qTTatf3utVzuXDhbQBCz/d/IYgbw7lzv8PAwMqsoeXAeto7WwluHuPmWFUIx3h1vV4qROt6lyrO2QmNcdCFlD91i5GRHbj33vvwwAN/iS1btkIUpcj3jQlo3ZSFhdFNNnorjI2NQpJaX6vbuHunDOulysCenp7EkSOHI/kCjWOmsfx0Wm26P73c61bHlkpzC77/vSJuDJK0MmuIY/HAY9wcqwrhGC9l0gonQa0UEcdK0VV2wwfeKyMXvcee57LYsiiKyOcLkePi4rDlcgmqqsLzfHZc+Fq9xN07ZVgvdgZ23fp0YdsmqtUqZmYuYt++myNjVpQEJEmO3FOqLPVyr1sdS8+3HEQs8WPonWOAY3WBC26OVYVoEpQIz/MACMz6WSkijpWiq+xGEIaVHdM0UKvpcBzioZienmwSfnv37sdzzx2DaRosruu6HgxDZ8e3YmVLJJJwHBuiWN86Gp/JcpY89ZLkNTY2CsdxYRg1CAIgioSp7cyZl3HPPZ/EvffeBwCYnb2In/zkJ7Btu0lZGhsb7Zr9rFW5XqEwBNu2lqWTXfwYFs4xwLE6wGPcqxQbdX7hGK9lWfA8F6lUGqlUeknjnJ3Qa7LUYj4/moC2Z88+lpAWBo0Hm6YJXdfg+8QalmUZb7zx26bEvkJhEK+//hpM02DejGw2B1lWWJz1hRd+hlpNh2Ho0HUtENYiJEmG57nwvKWPPXdCr7H906dfgmUZAHzG1CYIAjzPg6ZV2XPcuvU9SKWyLM8gl8uxGH4vsfdWxx48+GGMjFwbe/7FRtwYfN/DzTcv//NaLqynvbNVjJtb3ByrDmGLjVpUs7NX2MZ39OiPMDAwiA996LZls+yoJ0DXLZimwdzLV131Hhw5cnhFy3qoVf7ss8/A933IsgxFScAwiJByXaepjMyyTAwODkeyv33fZx6EYnEWhmFAEADP81j2uG3b+KM/+iM8++zPMDc3CwAoFIYWdT7dWtG9hi/y+QFUq1WIYnTOkiR13XSl11BAu2OXmkiGXq9xDAvpXMexuiD4VD1fxbh8udL02ULrZNcKNvr8whuQopCyMNu2I80okskUDh26e9kE5ejoKZw58zI8z4csSxAEEbZtQVUzSKdVpljcdtsh7Nmze9mf3xNPfCuojRYwP18MwgxEOA0Pb4Zt28hkMrj33vtw5MjhJheqphHLOplMolqtoNXWcNttt+Ps2bMQRSni6l2s5DHqou907vB8KXzfh2kaeOCBv4ycc2xsFMXiLGo1PZLJTShW04FXJ7XkzGlLiW7v3UbfW9YSNm+OL9vjFjfHqkNjfHV+vgjHcSCKIkSxXghh29aytnq8cOE8crkBJuzm54uMt1tVMxGLb8+e9mU9S0HA0UtiX2PSm67rqNU0qGoGyWQKlUq55XVefvllpNNqz4l63cx5sSlfw+9SJpOF57kwTROO4wT14yn4vgdd1+C6boQ5LU5ZWM3EKbzf98YBLwfjWHVoLGEJW45heJ63rNmxjWVUcXzdlJ70G9/4hwg9aRjdlJbFlS3FIXxcrVaDZRmwbZsl9tGmHUBUqDWWWzmODVXNQFUzrGwoDBoPVhQFlmWy+2BZJubniyiV5jAzc7HtOLspp+ulVK2b0rNTp05A06ool+dRKs0hlUpDVbNIJJIs5p9KqUgmU6GSqURsiddylgQuBP2U+XGsLXDBzbEsaBREExPnWh7buAFRi7FRcJMSpuXLju3E103pSQEglUp35Omuk8xUUKmU8eyzz2B6erJrAdF4HBXUpM6aMIGlUmkkEslYoRauF08mk5G6ZVXNROYpiiIEQYSiJIPMcgeWZTKGMfK90FKQdVv/HN9pLT5ru1Ot9/T0JIrFKywxy/M8VCoVyLKEZDKJBx74S9x7732wbasrgddrvfxyo5d7x7G2wV3lHEuOuNKiY8eO4uDBj7RMIgq7QEn8uAzf9+F5HotxJxLJRS+haecKbXQvK0oSjqMhkSB83SSjG8jlcmxjb8fTTQUfKU0SYds2jh9/DrKsdOXyjHONAkAqlcL99z/Qk1u38Z4nEkkkk6mg6QeJ6StKErIs4YMf3IezZ89C06ogrHYCfB/IZOqNQBqvE54zdUvTpiJhdFO3Hka70jNKFkMVPhIL96FpVWzZUk/Oapy7YRgsxn/kyGF231aqJLBb9HrvONYueDnYKsV6ml8cxaYgAFeuxFM8Npaw+D7ZdNPpNByH3JNCYQi33764vYw7lRc10pEWCgXs2rUbtm010ZPatoVyuYRaTYemVbF583tY+Q0tLdN1IvhochVtX1kuzyOTyXbk+6Yc25ZlolotQ9OqcBwbhmHgppv2dywja3fPCRe5GFzPh+u6KBQIH/kf/MF+pFJZnDv3Oht3JkNi43HjpHOen5+DplUjoQ/P8yL3pvEe91Mqdfr0S1CUBCwrun94noddu3ZjdPQUTp9+Cb6PoLabKE/VKuGHz2ZzcByHvQNzc7NBfNxm99s0DahqBjfccGPP41tsdHvv1tPeEof1ND9eDraBsNoSaHplb4oroyG1r82JQotZitVNck+chbd//wEAYJnamlaFrmvse99HJNmJWkY04a6e3axGmLUosxnJpicx5rAFmM8PYG5ujhGK0Hi753mxxCvt0K50ic6v8fgtW7Z2TUaybdt2XLhwPnRPiBUsSXKThd6JwKXb95ta0tlsNsIQl8lkWS/wZDIFx3GY16NSKbFjEgmyadJ3oBvimpUG7/e9McAt7lWKhc5vIZ2flhpx5CWu6yCTad3pqZO1uBTzbOwSBcRbuq2QTqs4d24cuh4tRSElShampt7Epk2bMTKyA4XCIKam3oTruhGL1XEcqGoGhlFDraYz65TCdV2cPz+FQmEQV1+9DePj/wXAD2XbE8/E/Hyx54YV3Vro9N3shYxkdPQUKpUyu7dUERFFomw03t9WDV16ee50fKIoBVn/CciyzARy1AMkBlSuHgYGBiL88PQduP32Qx2Ja9YC+N65dsC7g60xLHR+C+38tJRYCvYmOk/Pc1GtVmAYNTiOg3ffvbRgt2W/rSQLhUGMj/8WtVp8DanneZiYeAOvvPIrlErzeN/7dqFSKQUZzYkIs9alS+8E8WUiuIlwIRn2yWQKs7OXccstB/HrX4/B9wlBChEkWSSTqSZlo50g7LbjGQV9N+Ncs9deex3eeOO1pvOdPv0Se+5h+L6PTZuuitzfdsKZ0JZ29363Gt/k5DkYRg2WZTI2OCqc8/kBWJYJQajn7eq6Dtu28Oqrr6BSKSOTySKXG0AqlY78thvlbjWA751rB0vmKj916hS+8pWvQNd1bN26FV/+8pexZcuWyDHj4+N49NFHMTc3h8HBQTz66KPYtWsXAODw4cP47ne/C9d1sW3bNnzpS19q+j1H91iNCTRxbth+2ZvIfARoWjVCyjI3N7tgt+ViJPfYtgVFURjbWDgTnrjE60xm4+OvYteu3bhw4XyT2/fFF3+OwcFhFItXmHUKEIs7/DyHhoab3NW2bbesZQ5nqe/atTviMm5kV+sGjSx3cde57bZDSCSSsbXhvu9j27btkbE+++wzAU84aatJcgbA3p9e3u+48RFLv55lnssBgiCy+3/y5PNwXT+2vr1W04OEQoFZ7uspc7vbMMRqC8dtNPQluHVdx8MPP4xvf/vb2L17Nx5//HE8+uij+OY3vxk57qGHHsIjjzyCO++8E8eOHcPnPvc5PPXUU/j1r3+Nf/iHf8APfvADXHXVVfjbv/1bfPWrX8Xf/d3f9TWpjYxuSClWAo2xt37ZjfL5AVy69A4T2gCYRd+KcKLTZtMLnWWrcyYSSbiuB9OsxTKP1QW6B1GUcOHCedbconF+mqZBkqRIMpckSZHn2Y2y0Sp2f/bsGUYcE/58oYQd7XIE2hE0njnzMi5cOI9t27ZjfPxV2LbFBGu1WgVAstzpPV7o+03Hp6qZoOc2GVOpNA9VVVkeRTZ7D06cOIlyuRSpbwdImVy1WkG1WsHgYGJByt1qRTvFK/w+NDIIuq7Xs8LH0R/6quP+xS9+ge3bt2P3buKiuv/++3Hy5Em22ADg9ddfR6VSwZ133gkAuPvuuzE7O4uJiQkMDQ3h61//Oq666ioAwAc/+EGcO9e6vpejM7rth9wO3ZJ/rCT27t0P13XZ5ksTvDKZbKz11W1tdLi2+d577+sotBvPSZLSPKTT6UisvBGl0jzK5RKKxdmW8/M8F4qSDKx0F65LnmulUmJW6sjIDuzatRu6rjGXMHUZ02c4M3MxQhIDECFvWSY0rYLZ2cuYny/CNI2+vDPtCEBsm4S74u4JafKh4cyZl5lHgR4rCAi6nTlMkbIsA8XiFVy58i6KxSuwLKOr9zs8vkY9Ivz3zp3XtaxvTyZTyGQIDeVi9glfDeimTn16ehJnzrwcKMkkdEPCVO6qqWffCOjL4p6amsL27XU3VyaTQaFQwFtvvYUPfOAD7Jhrrrkm8rvt27fjzTffxEc/+tHId8ePH8eePXv6GdKGx0KsxjC61bpXGiMjOzA0tIlxckuSFLB+ichkMk3HLwUdZKs6alEUkctlg77PFnwf8Dy36fee58KyzFjXfvg5vvuuBdu2IAgCqx8fH38VV11FQkrj469CVTOQZULA8V//dRa27bDYN3EJlyAIYG5mmkBHlB8EDUSIwJZlBU888a2e351O1jDNtKfZ7+EuZiS84AfCMItKpQJSIw44jhtRPn2f/kcUmlqthnffnWnpZXnppeMolebgui40TQti4yILr4iiiGQy1ZFWldagkxh7ArfffueqWhP9opswxNjYKFtvdfiwbXPV1LNvBPQluGu1GpLJaPA8mUxGsmq7OQYAjhw5ghMnTuDf/u3fmq6TzRLihzAkSUShoDYdu17Qz/wKhd0dubJb4emnfwVFId2lAECWJdi2hd/85lcLPmccFuP5ffSjd+LYsaOQJAmyrMBxbLiui1tvPdh07mq1jFQq3ZAxTpqXLHQcrc5pGAb+7M/+DK7rYWLiHP7P/znMhEQj0ul0y3tLn+P3vvckqtUKeyYA2DMB0PS8yuV5trkKgghRRCC8y6jVasz6BdCUtQ6QjH9JkmAYOk6efB7l8h6Mj7+G2VniHchmSamUZZkoFAZx4MAB7Nx5HW699SCOHTsKz3PY8wA83HrrQQDAU0/9GLVajcX6ASLEs9kcJEmELMtwXQfpdBqiKAZ16SRB7eMf/zh27rwO3/vek4HQpYx6Anzfw5kzp3HttSPYufM6No+JiXN4/vljQZczIZivGzynurMxm80hkai/C+F3k87JMGoB4Qz5bSKh4OTJ55HN3hO55lpAq7U3NDSEarUCWY6+Z0NDQ+z4arUMWZYDIqT6PXRdN3LcSmK9ywagT8GtqipM04x8ZhhGxOLp5pjvf//7+Od//md897vfxebNm5uuU62aTZ+tpw4wcehnfv0kjhSLRSSTKbhufUMXBAnFYnFR7/diPL/h4a04ePAjTXMdHt7adO5sNh+bxJXN5mLH0c09bHdO1/UwP69jeHgrq3emTUmo0BJFEamU2vHetnsmAJq+o8K4XnolwvP8IHTSXKHRCCo0C4Uh1GomTp48EZDgEEu3VCKWVS43gFKpjJ/85CfMI9PqeQDAHXfchVOnTmB+vsjGl88PQJYVuK4HRUnA81wYBuFCV9Us625Fn2mxWGT7SXh+ruvixImTkYTHEydOwrIsds/D997zPCiKEngqFJimxd6F8LtJ3zHSMhUNCXN20zW7RdgTABBCoQMHbl0WC77V2rvhhptw/PhzLDGPxu9vuOEmdnw2m4fjEC8HQFkMyb/h45YTjWt1PbUtXZLuYNdeey2eeuop9nexWESpVMLIyEjkmKmpKcZnTJiIprBz504AwA9+8AN8//vfx/e+9z285z3v6Wc4Gxrh1oWWZSKZTENV1Z5d3aspua0b4dkt4UQvGePdhgu6PSc9jpYuUTa4bDbb9t7S+es6iZ0Ty7A5k7nxeVEQYhEhsIyIwGqV8R4WatSVbVkmajUtpGhIkXIuw9BRKAxFQg7tnkd8hjchoCHduiRcf/3NsVn2FI09telcALAmJ/T4crnE5hnn7VCUJBQl0TEPZGRkB5LJJPL5Aei6hkqlzNzCYaKdbjE9PRkhcvF9H8XiLJ5//hg+8pGFt6ntN9O7mzAbfZfT6XSkL/2+fTevSNigVzrl9YK+6ri3bNmC//k//yf27NmDrVu34p/+6Z8wMDCAT37yk+yYoaEh/OhHP0Iul8P73/9+/OAHP8D09DT+6q/+CpcuXcJDDz2EJ598EldffXXL6/A67vYI170ahs42QkmSGI92t3XcvZBq9INO81tsgpVeqDS7rYVvd87w/EqleVy8eIERqpBSIsIDXqvpUJQEcrl8ZF7h+csyia/SGnNCFUqeydVXb4s8r0qlDNeNNpqos5RJ7Prhz8OgpWeCIMI0zYigjjteVTMLqmNude8+8IEb2pLApNMqJiZeZ8I47F0QBAHvvHOBnXtycgK6rsWGA8IEK43vQty7SSlbDaMW+Zx2iAuXtHXCCy/8jAn++v0m56pWKwviW+hlvbRbe51IeOj5aG7Jpk1X4dZbP4IPfOCGnse8GOiVTnmtYUnquFOpFL7+9a/jC1/4Amq1GjmCaXYAACAASURBVN773vfisccew6VLl/Dggw/i6aefBgB87Wtfw+c//3l84xvfwPDwML761a8CIHFtTdPwF3/xF/UByTL73VrHctU6hpOkqGfD933UajqSyVRPmcL9JrctFpYimazRGmxFmdpLrXA39JzUIhga2oRaTUetpsMwdEiShFwuD9d18fzzx5BKqbBtC/n8AGq1Gps/2ZSIdadpVQwMDEKSJLz44s+Rzw+wWvBicbapaUcYyWQatm1G3hEii4kbOZlMw7JIUxEi21uXcAH1rm1h67/TO78YVuG+fTezDHSAxqsFxi1+9OiPAfgtLW2AWOqu6+D22z/Rtcfm6ad/EPvd2bNnYmlhW4F6AsK5EdTLsdAEr/B6CSfRPfvsM/jYx7qbY7dYTbSqvdIprxf0TcBy880348c//nHT52Hh+/73vx+HDx9uOuazn/0sPvvZz/Y7hFWJ5czODr+84bpfurH16upeDQtzqYlk2j2ffsMF09OTePrpX7F4rKIobC6UzlSWZQwODgNA4JI2YFkWCoUhaJqGUmkO2WyejSGZTCGRSKJarQT85RY8z0OtpqNYnMUNN9yIS5dmWo6J0H1KAJIwDD3kKidkJLQPt6oOQRAEFItXIMsykskUDCO+Jp0oGnU3c6d3Pu775547BlXNwLLMrgX5/v0HcNVVW3D06I8iFQUAWAJZNOs5Dn4Th3w7NH5ft5SFrvIGwiCKmd5EztNPm9pOHed62XfWErlK/Fq1VyS0t5zgTUaWCEthMbZC+OUl5BKklEaSpAXVcYexUot4qWPt7Z5PPwxqVDgpChF61Wo1YAGrc2Q3Wlu6rkEQ6p+T+lkRtZqGVKquvDiOw55nOMnKcRycPv1S23GRmvAEZJmU7tDGJbS8TBTFyOZOG6ZQi1/TqkwRHBgYgCQpjCiFWv+maUKWFWQyqaZ7OjKyo+mee54L0zRgWSYGB4dbKrf0HZydvcIE9dDQMAqFIbiuy85Hk96AumClXoX4cjwPrut2vSZJH3I7kpFOktwSbX7VjHCzEqDOQZBOpxa8Tul6oe8SnbssSy1brcZhrZSDUsStVcBbF4Q47cAF9xJhOalHwy+voiSQTqdhGDVIkoxMJrNgYbuSi3ipewvXKVMrrNFHKqWiXC71FS6oC6cEXNcLmKVc6LrGBLcoihHBTeOkYYFAapnLTOjT+YeFdi/IZLJB5zAXudwAy6oGCJGIrms4evRH2LJlK/bu3R+5/4lEEqIosQzvPXt2Y35eb3o/qtUKHIdQldJ3P/zON66JWk2PZHzHKbd1lq56Mp0giJifnwsUHbDrkE0bkTIl4oKOxvzrIOGk8H1vRFhxTSZJCRw9L3XF33jjvtjj2yVUHjp0N8sqFwQBg4P9ZZV36jjX7b6znAbHYmAp6JTXArjgXiIsZ3Z248tbKAxi796P9b3QVnIRLwaRTLvfKkqClWfR5h2aVkGhMMSu33ituHMCiHxWLM5CURQUi7NMkJAyLAdzc7NMSFNviCzLTAiEGbpoTDyVSkWu1yrOSiAgLi5NCUYA0qKyVJpjbnrTNFCtVpnFH1bOOt3/xveD1GG7LLcCiL7zjWuCNB0h452fL7IOXlTIhFm6osqKD8sykcnk4Dg264VeZ9Hz4Pt1i7sd2lnMjYoJSfxKMgVIURK48cZ9LL7di6K72OEoul7ied67dx2vxl4HnbDYdMprAVxwLxGW2mJsxFLEpVd6EdP5UOFBKRU7zbObDZRs6oi4Fcnf8TSlreKzggAkEin2GckUr0GSRGb5NOYceJ4H27bhuk5QEiTCde0QwYfEuoQ1zpVyeMeBzCX6vSAIyOXy7O9wv2/iAteYG5nW5FLXapjylSotL774cwwNDeGGG25qej9UNRPQm9q4cuXdQGFI4uDBD2N6ehK1Wg2l0lxAYJKMlJl5nodSqRR4I4irvlarMdd4eE6Uytc0DRhGDaqaCVz/9cz3RorXdmj1zOMUV1XNIJPJxPLLr6SiS5+PKIoQRdIAJZFI9hwqW03loBytwQX3EmG1ZGf3g14X8WLHwxfqqu9mA7UsE7lcDrWaHuqJrTJXaOOcZmYuBslbGQgCiftWq6RRBeWuVhQlEBx1/vQwBEFkrl3f96FpVciyzEquaFaxLCu46ab9TUKzXC4FbuB4wU2TtDStGmSOS0ilUsxFD5DnR2qvLei6FXEjC4KASqWCbDbK9x7nEj9+/Lkg5utE3g+q/NRjzMAbb7yGiYk34Hk+whUPgBAoG5Q0hpS50feOupFbWc3EzS0F7TmFQAHyIiVstOyLWOFxzHXNz5yik+La+L4Xi7PIZLItj4/7zWLsCeHnk83moOs6DIMoPUNDwz1dY7kNDo6FgQvuJcRqyM5uRC8bx1KQlvSChVow3XgKqHCgrnGAsJ6FGf3Cc6IlVJVKGdVqBUA8XSgF7eIlSRKz/sKdzARBgOM4sCyrKcbqeV6Eizx8X4k7u4o4UM5xGqemv22Mkx88+GEAwLPPPsN+K4oSRFFgCsWWLfUYYbNLPAHXpXXULns/aFIkYRiTA0vYwRtvvMYsQQIhuKYIz3ObrGP67ChRTTtvN4n517mzyRzEIBThQJLEiEs+jEQiGTQNaea2B9orrnHvO+3vTTPcw8cDS5cz0vh8MpkMEolES89AO6wHg2MjgAvuDYReN45eFvFSuAkX6qqnG67ve9B1jcWVw0K613aYNH5L463hciPLMpsSz4aGhoP2ngYcp8waYoQFJEWjUPE8N9KVKXxfqVAwDIM1ERFFCZlMNnApu5FntGvXbpw9eyboE05isvS7ZDIZvAfViJvZ86JZua2eg2kauP32OxljH3W5Uy5rWpZE70sd9Drx7uzZ2cvB/xHXPfUitAINR9BrUKWJWPAeU54a77NlmZBliSkyjWj3jsS978lkmhG0hFnF3ve+XQCWzpW+2CGt1WhwcETBBfcGwkI2jm4X8VLEwzu56lt5D/bu3Y/nnz+GWs2IxLB1XWOUmN0oJeE5qWoGpdI8+65uRQuR3szJZDKwfC3oei1wCddBMsMBanUC8Yxk4XvXeF/TaZXV/DZzpdef5/T0ZFPnMGrJj4zsYL/PZrMsZCCKIgYHh5toRsOKEPU0FApD7F4eOXIYly5ZkbmEBXNYsHaTMFZvZCGwWnKaREjd8FQY088pFCXJyt3ascQBRClq9+63ekdefPHnTc9FVQmBDnFT+02d3NqtkX5c6Os1Lr2W6smXG1xwbyAsZbLZUmwe7SyeTt6DVEqFZVmsjEgQBBiGEWGS6qSUxM0pDEEQg6xdE6ZpIJ8fYNbb6dMnQ0K7OdubNuxoBV3XMThI6CYbx6DrOhzHxsWLbwNApIGGIAiYn59jyV1xitpLLx1nVjIRiITLXBRFKEoCH/rQbU3PoZMiVC6XkE4Ty5h6AsIIE76EY9CtQI9NpdJIp9P40Iduw/HjzzErnsxVRDpNhDQpg5KChL8aOwfN7A+j3pPbb1KsGtHqHWn1vpNkwIGmxjNjY6Mtf6Moib5c6Msdl14OgbrW6smXG31xlS8XOFf54mBycoLxXVM4joNcLtc3r2+vHOfdzK8dF3gnPvGxsdGgXaQEy7KZwHFdBzMzF7viPA/PSdMqTdnaNAt7y5at+O///QHG7Ux4ss+hXC5DkuoNPsKQJImNr1G4kPi3jV27diOfH8DU1ASLoZqmCcOodcyapj24ST25g2q1DE2rspptXddgWWRdhXm/HcfGlSuXYRg1jI6ewunTL+Gddy6gWq2wBC9RFJHN5qAoCXa/Jycn2PNo7AYYRXc16LJMOAhSqTR0XcPttx9CoTCIqakJ1nY0m80inVYhSSSeThWGdvcmXC9P533hwnmcPv0SJicnkE6r2LLlqo7vZtz7blkGDINkuuu6FuKW9zA3NwvLslCrafA8H4qisDUiSUSRCL/Lpmnid78bx6uvvsLG1ep97YWHH+hvb1nsHgKt0G2/gDisJ9nQiqucC+5ViqWY31I2EFmqzaOx6UGpNI8XXvgZLl58G45jQ5IktvGFm11QJYV0b/KZy1SSiAbfzQYQnlOcV4Ju/Lfddqjp/v3nf74Ix7FjE9gURQlYvxzcccfHMDX1Jly37gKWZRmpVBqVShnvvjvDYteu67YhE6mDPFsbvu8zYd+uS1YYpLmIgQsXzjPXeak01xSTtyySkW4YBm66aT97t0RRivClN5LNdANVzQTtPuWIYlkoDGLTps2YmbmIZDIVEX6E5EZn4+t0f8JxcVGUIkJo06ZhqGp8O0WKxvddUZSgfK2uNPi+F2oOU6czNU2ieA0MFHDLLQfx5pu/QyKRYPeJKleuS8hyuhGOnZqDhNHP3tKPQO0Fp0+/FLknQHR9t8N6kg1L0mSEY22hm7huP26wxU5qaRzLtm3bMT7+KkRRYslilUoFuRxYaRLdHOtMUi5LBvN9IhQ8z8XMzEU88cS3Os6Rzulb3/oGHMcGdfXWO27JLJ5Mx2pZVttmH55HXLSFwiBGRuotIwVBYA0iaEORTCYLVc2wpLTLly91de/aZbwDrYUbmRsCylUdnlcvb2v8PSEi8TA6egoXLpwPatPr8260bjt5CYggkFnXNOrCN4wajhw5zFy/sqxE+lgfPPhhHD36I5BktM4WfdTDUe8nrSgKdN3CD3/4QyQSici70WpdhCli6Zga7xOAEBc8IZkJZ3w3utCp+56S86wm9rLl4nZYr3H7xQIX3BsM7YTrUsaVem12HzeWM2deRjKZRiaTQjqtolol8dRSaZ4JCZrBG2WSslh5EgBUKhVIktjTHKkAoiQnAAIuaDkyVtt22gptKih0XcPu3b8PIJr8FW4QQa1IGpPttvdzJ6HdDbqxzkkdtojTp19i1hfpRiehVqtFEsM6nSqTycL3Pdi2A5q4R61XRUk0Ed4MDg4H3O11b1y3VLB0rESR8JnyB5D8AUEAcrk8ezd27drNFMZW70y5XIqNp1OEhV1Y0I2OnsKlSzOBUki8Yo5D5h0uK1st7GXLJVB5PXl7cFf5KsVKzG+p3GBxcbFz536HgYHWrj86Ft/3UK2WGaGE6zqB+7HeoAEg7udEIoVi8QpzKca5VstlkhmeyWQhy0rX8cS33pqE47gsjkqEVBpDQ8OYmbnI7lul0n5zpU05SItNC7t27WZuZlLyRBPNaBwdAUuYCdqqcrUgnVbZcyCJYS5s24LrekilUkEGPXFHp1JpOI7NFKzwPARBwMDAIKrVCjs+nLXveS4ymSw0rQrHcZDN5preT9d1Wcy+FagFXygMIZPJhnjH6w1cqDKWSqXZ+c+fn0YikWy7LiYnJ1h9fxxkWWYldISD3sJvf/sbTE6eo6MD4AfhHxHptIpUKs1+v1i5KABw4cI0nn32aCSu322obCnDbWH0GnoLYz3JBu4q5+iIpXKDxZWheZ7T5PoLW+W0KYdpmswC9TwviNUSoo1wP2Zao00zeOl5G8MDVGDQ9piyrMA0Dfi+z6yJOAucWgBAEoAJx3HheTVs2/b7eO21/2L3rZNgHR7ezI4L31eSRFafTyqVgmEYgfXcvwW9EHTi+g5nZEdLvwhf+dat1+DKlcuwbQu2bSObzcGyrAamMoF5FMLCmoLSm87OXo71JMiyjHffnenCDV9PEiyV5oJSLQWGYTLBTa9N24zSnta+7wdd2upWZuO62Lt3P8vyj4Oua/B9QNMq8H0gl8tFfk+SGCldbZTLfjGtzenpSZw8+TyA3jxOFMtJ0MLryVuDC24OhqVyg3XT7L7RNV6r6axzU7jbE4AgJll/dcPfxykadAOYnp7E0aM/itT+0g5VneKJIyM7sGvXbtapirqFx8dfhaIkIp6K1sKuLpDiGLho7bLvA7peCzbz7kCtwMVwk1Mlqb0S0rmBx8WLbyOTySKfJzXkxGK2G+4RiX3XSVfiy+TCwjxMeKPrOmw72mozdrShWm+qDJBa7zq3uywrSCSSEAQB5XI5ojCSEIbArtu4LkZGdmBoaFNkHgANsdDyuWpQLpYLzlNi44mO0+1JOPaSlzI2NgpJkiCK9Uz2XuPnXKCuPLjg7gIbhQhgqeJKiUQSc3OzjHGMEIJIkY2v0SqnDSsae1dThD8P1wW3UzTGxkaRSqWbWLh8328ZTww/e9M0gxh7/VhK9EGpPwl7VqvaYL+p+QadN00Ka2ym0S16FdqtFIx0WoUgiDAMPTbOTV3d3Tbx0DStLesZ0ByTb9U7m3KbEz53mYUugHqmeON46b1txdJGlEARqqoy70alUgaxzknIIpVKB13U6kQ7ceviwIFbmWIYba2ZRqEwyBTYMO1t45h934eiJLoWju3yUgA07VvlcimYa/2aqyV+ztE9uODugNVABLBcisNSuMGmpycDN6HP2K7K5TJUNY0DB25nxzVa5clkCqJYYZYftSgBYl0WCkOwLBPlcpltkp0UDaoIxMG27SZrqtt+02HqT0IAIrYkGQk336BjIuxr1cDCk5iQocpJNwK8k9AmClMW1Wo5tna8fh8sJjxIzDh67VSqTuvZCo0WdSMWGqcfGBiAaVowDGJlhxF3r2ipYKsmIhT5fJ510hJFsaEO3Q86uBGLnRLtbNu2nXVLC6+TfftuxpkzL4d6vKcgSRKjSaUeLcsyI+OltLy+H+3v3Qmt2BBfeuk4HMdu2reId8hmFjfAs7XXIrjg7oCVbiy/3IpDJ02/VyVibGyUJYbVO3GRRgxxtJphN306rcIwasjlSE2vruuo1TTWEpIwZ6WQSqlsQ203nnx+ABcunI/9jvZ0VpQkZLm+0Xbbbzp838JxRFmWMT9fhOt6TEAAUTYt0nmsnowWlsGteLZ7RSaThShKrA93sXgFAAkzNHosSM9pJ+i4RbYIml/QiWkMWLhgbgWq7CQSycAaBiMRCrdKJS7guuu7UBjC/HxziVYj6DOhStg112zH5ctXUKtpkbmIoojbb78TAFquyf37D+Cqq7a0XCPHjz8HXbdY9jpNSiNWuoQPfvAPWH/vbtAqL2VubjbC4Eb3LUpC5Lo+z9Zew+CCuwNWuif1SisOYSxEiai7B5VIAldjBnCcm16SJOzbdzMuXDiPcrmEwcFBXH/977O/KcVoLy0LWwluAMEm5uH6628GAMzMXGS82bSWulwuBy7a1hb+yMgOZLP34MSJk5idvcKoMKnngZRMkXfo937v+siYaEyfCtNerO52cF0XmlaFoiQwPLwJ2WwehqGHkrLECLtc2AJcWQgsk5v0lvaCsYY7jJF7Ra1i+t7s338A//iP/0/bs1PyHqCuhB04cACHD/9b09x938epUyeQSqXarslWym+4RJFcW0I2q4Ly3QOExY1yyXeDVnkpQJ3alYIqJp/4xCdw4sTJRfWqbYRQ4moCF9wdsNJEACutOITRrRLRGBd2XS8SFyY9oQuRc7dz0zdaIGGLhnbQ6jYjVpYVVjMbhiAI2LTpKti2jYmJ32F8/FUWz6XJSalUksWz5+ZmMTAw2FJx2LnzOlSrZqCMWCwGXa2SeC9h60oG9cF14eN5HlRVDRjMTEbvSb9bKAyjhmQyDVVVoWlaYFFLAMgmT2O92WwOtVptQVZ+uKnHYiTJybLMGoxIEqFApeV8FOF7pygJiCJhe2unoDVeo1EJ27nzuqZ50XDM/HwRqprp2Kf71KkTmJ8vAgAGBgbxoQ/dxgR6I+EObYcKYNF4yguFoaZe6XTf2rnzurYcCr1gNYQSNyK44O6AlSYCWGnFIYxulIjGhex5HiMOUVWV3b8DB5rdga0slbAikEgkoesakslUVxtFozVw7bXX4Xe/G49kGQPELU/nQ92MqpphsWfPcwP3JqGuFEUpVgEIgyo62Wwu2JxJzbCua1DVDKPbzGZz7Dq+78M0TWQyWdx993/Du+/O4OzZM23JPVqBCFHifpckGbZtolgkru44wUrldKd5xUGSSGtR+n7Mzl5pmRDWLei7I0kk2/7y5Xcj46bClCgc2UBxEGHbJi5efLuj8Cbr2YamVTE0NByxFKmVT9+TcJZ9uIqAIpwX0diQZX6+iOeeO4ZDh+6OdGUjTG0ac5mTJi+dleFG5rY4hRfAsuxbi+kR5JZ79+CCuwOWs24xDiutOITRjRIRlx0OUBKRehx6587rMD/fOV7aqAjQ7HRSeqW03Sjob13XZVnBoiji6qu34cqVyyxpSVUzyGSybD4ApZusU1DSWGo6nWZ/C4KAU6dOxG6w1WoZ1WqVCbNcDqwuWBRF3HbbIdYaMnwd6q63LAunTp1gQp66r3sHoQG1LDPgPI+nMAXAWOh6hSCITR2x0unm7P1uQevYAZLd7roOHMcPJfb5TJhKEnnXNK3ac1Y9UZ6kCP1offxqLKGKKEpBxj35O65Pt2maQX5AvRrCti32jobXdGOSnWkaSCSSbZXhRmW1lcK7HPvWYnkEueXeG7jg7gKLWbfYq1a50opDGN0oEXELmfSPNvDAA3/Z8zUbFQGanR5OEGu1UZAsbzeg30QguDxcuvQO7rnnkwDqSUZhd+nAwGCTRUVRq+kRF/Ls7GU8/vg/Ynh4U4RLnZSdaaz+NwwaV6WKECUsoWQfgiAgm81FlJSFxJobf+O6HrrtzhV2QXdzHcqgRpMITbOGRCLZMaM7DEmSMTg4hGLxShAmiCoqzaVeJMmRJqz1BvIODQwMNr07ExPnWnoLUqkUc3HTuYVDJi+++HOmUITheR67Dl3TL710vD6agIugWq0ilXJZS1dg4VbtctRbL5ZHcDXl8qwFcMG9jFioVrlaCA+6USIW27XfqAjQLOvwpt7q/CTGXndZAjSBycfY2Cjuvfe+pvls27Yd5869EdswAojPmLYsk3GpS5IM3/dQLlMhSbiwiUBGQPaiMA7s3/zmLCs3ouf2fR/F4hUmOOmG340wbZ9Q1j2Xd5gspjMIoQkJLVRg21bQR1vF3Nxs154CwtVe7lphIDkDrWlGO13LcfzYd+e5556DZVmx95KGfQRBxPDwJjiOEwkt5PMDkfJHClEUI9cZGdmBsbFRZDJZpljSNrGmWcPevR9jx3Zr1Y6OnsLZs2eC6ogEbrxxX08Z6gtxVS+WR3A15fKsBXDBvYxYD1plJyVisV37jYoAzeyWpM612/n8AKrVSpP1I8tSxPoJl3FRxSqbzaNaLXddQ60oSoNCIbCYte+7QSY0yRY3DMLWNjHxO8iyjFqtWVDFCa9uBFov5CjNv5WCeL6HXC7XtdtcEETGU57JZGEYtUCZ6c1V7vvo0KAl7jcLz3onLnfy7lChNTt7JahTJ2Va7X6r61XYtg3HcfDss8/gYx/7BPbu3R+KcfuMYEUQBBiGgenpyUhjknRahe/7EU+OLCusRjyRSKJWq6FarbDqhsZOeAAR2qOjp1ginePYGB09BQBthTedd7E4C8syIwmMrYyKRgG/a9fuSKXHQjyCqymXZy2AC+5lxOzsFRarlCQJ6bTaFM9a6+jXtR/eSFzXDfW0FhjxSbe123v37mclXXWWNUBRkrEbQlixInHTSmgzldsmiDULnGhHLMLe5bP+1J7nsVpqkqQmLigBrRH9CLJcLhd0N6s10cy2Aw1DiKIUuPeBbq37MFqR1iwU3ZSz2bbNcgmSyVSo33mn8ftBsiIRlLZt4/nnjyGVIqxkhOSGWOJEEczCdd2IMMznBzA/PwfDMNh7Qd/5d965GLDpldlc6uRFKiN1oTh79gwbCz3e8zycPXumpeCOdrUjlQ+GUWPrrFWSXKPXcHz81b5j0aspl2ctgAvuZcL09CRbHHRRxcWz1gMW6toPJ5MZhoFoNyw/+LzGanTpb+IYrOg4KJOV5/mQZSlCsNKIOLd8N1auJEldE5PEWcOdeLZ7wULLsEgynghZlnD99bR2fr6r81F+9VJpbhXUfdchSXLHDHnHsRm/eDfPsBVI/3IDlmWxUqxKpYRUKh2h0w0Lw71797M+4pTPnN6/xhg77VrmOC5s28Ydd3wsssZs22p6jwRBiLQ9bURYUaVd2aj1H+YaaPUbYPG8hqspl2ctgAvuZQLlya7VCF1kq3gWQITR00//CsVicUO9wHRTIM1FBManTC0JURSRyeRw4cJ57N9/oKucgU5MVmE0JouFM35JYlc8CJUoLffqnbSkc0OP3lDvNd09FCXBqFDPnHkZAAlLaFq1q7H5vreg6y4VKNMayT5vPaZ+x1vvNe6xMAOt9aekN5ZlMhd3WBiOjOwIusLVvXDtxlMoDLFEwMb3l1KZNnZWU5REy/OFFdWwkkrH0Oiqnp6ebCIlonMqFmdx5MjhvoTuasnlWQtYPFWfoy1oPCuXy7EkI1EUkUgkY11R1WolIoympydXcPTLA8IlTiyKMAEILf9xHCey8YW1f9rZSxQlRsoSRq1Wg65rmJm5iFOnTsTez71797OyMfp8KNq5catV0pRCURI9uZjr515cK7VXYfQHf/AhHDp0N2o1DdVqmcXqq9VKT2NbaaFNFTwqvHRd61hLvhhEMbTvOFXAqtUKI9qh16hUyigWZzE7exmmabL3b3h4EzKZHIaHN7PWtHQucc11WsV9b7xxH1sn4X/b8Z7Trm0AUdJ8H6wvAGGpq7uq6b7USEpkWSZqNZ0laG60PWulID366KOPrvQgOkHXm909a61Z+uTkBEzTRCKRYO4zWVYwMECSOyheeOFncBwHyWQSvl9v1zg7ezly3FpH3PN77bVXg4So1sKC1PS6ePXVVzA3V4QsKxFqR9u2MTc3i9/+9jeYnJxApVLGf/7nC0wIUVfgG2+8homJ3yGfH0ChQEIVhcIgXn/9NdafW5Ik5HJ5UDd9K+RyA0EzCwOJRCIUJ13dEEUJ6XQa119/I8bGRjE3V+zrfOGe10uNOMFGCViiIZaluHbreRICGAs0OZGOiwhSqqyncP78FAqFQVx99TZMTU2wjmKGYbD/J8mM9cY6sqzA81zccstB9s5SbNu2HQDw7ruX4LoOEUed7wAAIABJREFUFCWBffviec/p2kunVXZt6vp2XSfYlwq45ZaDzKig+5Isy0HGPUCqCaxgv0qzUrmV3rPWmmxoh0wmGfs5d5UvE7pNvtjIZRG0ZKpdr2fKKpZMpqDrGjStAkEg3cRM0wj+Fpjm/8tf/qKlVVUuzze51i3LxODgMBMKpF63dZwQAAxDZ9bSQljHlhuU3hWoNzspl0t9CTsaynDdpRWaFLSsLwxy3aW/frtWoqIowHURCGkJ6XSShccAIJvNBYlfdmxJYqEwiGq1Atd1Aq+PBOrNyWQybV3Q+/cf6Kn8qzGuXCgMYu/ej8WeP9xzAIiSEilKAqqqRo7fKHvWSoEL7mVCt8kXNM4qy/USpoWWRaw2CsHweIaGhnDDDTc1JdhkMrnA9dwaNNknm82hXC4HdbNg5VuE3pMI23auUNd1I671sbFR6LoGXdeQzeYAgNVgtwIthSLjUln52WLHrSloHLTXWHq4Bjz8O7rB0g5ZCwV1FS8XWl1rsTPTW0EUxYCqtsLc85T1jiKVSgXlcQZoeVm1WkGtpiOVUmNLEoHmygpRJDXji7V+JybOtW0yErdvhMu1KN2wbdusBwEv5VpeCP5qSgNtgcuXm0kWCgW1K8rMtQYaS1IUGYIgMcu813KLcOJW2MJfagrBVptOmFWMNHZwYdtOZDxHjhyGpmkol+cjlgx1v1FXHW1NGY5H1yEEiW2dN3BBEDA8vDnomqXAcdymVo6dQFtJFgpDsG0buk42MMOoLVrMNyykJYk0JzEMQiyTSKRgGJ3XQdg6FAQhqHGvrhq3frgP+VqAqmaRyWQwP1+MxLfDCWaECpbw0HueGynX8n0fhcIQ/uRP/iz2/Eu1fhtbzjaet9V1d+3aHVm/4d8BWJG9phXWk2zYvDkX+zmPca8yFAqDKBQGMT9fRLVaQS6Xi8Sapqcn8cILP8Pp0y9hcnIC6bTaFO8C6jEpmri1HHEnuuhrNR21Wg2+7wV1qS7On5+CJEksDkZ6W3uR8Zw/P40LF843Cc56DbaPdFqFoiRgmkZgDcc1y+he8JomKeGxbacnes7wtYgLUYTnkYQ6km2bCIg8ekNcQhJABO/+/Qfg+4SlLJvNIZVKQ9er6Ga6jfeExPGXz0LuhKGhTUinVZimuapKylohnU4z745lmaDNTmicnXxPOOept4M2LQEIn4Cqqrj++j2x529cv67rQNOqOHfudbz99lst130nvPDCz+B5LmQ5fl9otW/Mz89BFEWUy/MwjBpUNcNoXumeNTt7GbquNe1Zy431JBt4jHsNYWRkB/bs2d2kNfZCmboSsfLGci5qKdq2Cc8jZSzhmtbweEZHT7GuXc0bNznX+973e5iZuQjbtgOmqcXICKbtNNtbe4TPPOr+pptaeCMbGxuFpmlIpZKsPrY7y5t4CoB4xUNVM7ExzMcf/0e4bu8KwmpCKkWoUZfS1d5r0pokyS29EYqSgKIkWNtOVc0wmlNRlFiZlKrWOdwFQWVxYdJJTYVlmRG3NKlKIDzouq4hk8nCsryIZ0QQhL4acJTLJaiqGskPCK/DuH3D81yUSnMYGBjE4OAwHMdpqg/npVzLi77LwU6dOoVPfepTuOuuu/DpT38aMzMzTceMj4/j/vvvx1133YX7778f4+Pj7DtN0/DII4/gAx/4QL9DWffopfwpXOpBsdRxp3K5FFjSbsRydF0XstxcoxoeD2V+issW3rp1G+6555P46Ec/jttuO4RMJtPUVWmhIJn7nfVXUYyyUlEXOVAX4CMjO7Bt23ZUKqUgu9eD63otregw8vk8PvjBW2IzpVMpNfL59PQkjhw5jO985391tOq7ufZKwzD0JRXaJHGurhB2c0/a50aQuuvBweGAm0Fn16FCG6i/37QNbKEwxMq+aD/248efg6ZpAEj7z2Jxlq2BcrmMSqUcUSAoTWurdd8JZF+Irp3wOozbNzStyrqwddp3OJYHfQluXdfx8MMP44tf/CJ++tOf4uDBg4jzvD/00EP4zGc+g5/+9Kf48z//c3zuc59j3/3Jn/wJtm3b1s8wNgyoYAyjlRW9d+9+VhNN3atLTSFIFz0VZBRk0ScZNSQZjwXTNGAYBp544luwLLOp73F4LmE2tL179zfxjy8U1MrthGZlxGNkG77vY25uFqOjpzA+/iqSyXTgHnVBWbGoNQUg9l/LsnDhwnmk06RPtyRJTDmwLIMRaVCvi6ZpsG2roxBaC27npYMQZDtH71G3hDJNZxPEwPNCGcOsICRE2c5IW9TLl99FsXgFlmVg7979LdcitdBJTgSlTyVdy4hnym9SIGhnvIV6z/bu3R/wysfvC41j1XUtCHc5mJ8vRrrA8azxlUNfgvsXv/gFtm/fjt27SYzy/vvvx8mTJyPkA6+//joqlQruvPNOAMDdd9+N2dlZTExMAAC+8IUv4L777ms+OUcTurGiqTX24os/hywrkCQJpmkgk8ksebIIXfSEsapOAkFpRvftuxmZTAamabCGFq7rNrnmGnHq1InI35SFrhVVaJiEo9P3xJXttKUdfd/7fg9bt17DuOVp2ZHr1ok3RFHE2bNngo1YZolKVMGgdLcALXsTI39blomLF99GtVrvjlUfo49yuYTvfOd/4ZlnfohyuQRNqwTKBOdQagVRFEI1x2BW7kJB+OY9VvGh6xrr6kVpX4MjA4WO/EUrSui7T9eibVtMEa8ntAkt10S95M5dsPdsZGQH7r77nqaxhBVjOlZNq8IwahHSlWq1CtM0eNb4CqOvGPfU1BS2b9/O/s5kMigUCnjrrbeY63tqagrXXHNN5Hfbt2/Hm2++iZ07d+LGG2/E22+/3c8wNgw61YI3xsDp97fffueyxJ/CJW80tiuKIgYHB5nVTGO0Tz/977Dtes9rGieMw+zsZXzzm/8vAEL7qGlVZLO5wCLQQckwBEHAJz7xKQDA0aM/irhGKZsUQGkqu+1LLeHKlcss+3d09BROn36JfU/PQ9nGUqkUc53STTjuWo0WXaNl1RxWiLLJ0d7dvr92MrGXEzS7m95XSZKRy2UjRkUjuiuxI1bq5cuXANQ7qoVZ2zzPw+DgMKvVpvHfVqWfiqJESgipskeqL3xks7mgrzuCa4p9ec927rwOw8NbW35Px0qrPEi7VUrpSxQWVc3wBiAriL4Ed61WQzIZ1WCTyWSwmXZ/TCdks8lIXTMASJKIQkFt8Yu1j7j5FQq7kc0mcerUKczPz6NQKODAgbogfPvt8xAEAblcHrIsQZZJ15/f/OZX2LNneRiMCoXdXV2rVJoPsrHJbpTP55sEd+NGSl3SAFCtIsgC9yPHZ7PkXZNlhVk0qppBKpXCzMw77DyNiPuMxL7JNQ8ffjJIGmr93gqCEGFoW2yEhf3GdoF3BlV8KIEJ8ZA4bcvfFtISNZzUGG7p6jg2kskEqtVKy33q1lsP4tixo/A8B6qaQaVC+AsymSw8z0EikQgqMCTk8/mAmMXDpk3DOHToEHbuvK6nsVJ0u3dWq2WkUmmmlGhalXn8Pv7xjy/4+kuN9S4bgD4Ft6qS8o0wDMNgRfndHtMJ1Wpzmc56qtWLQ6v5DQ9vxR/+4f/F/g5b2VRglEol5HI5JBJJCIKEYrHY071aDuKWgYECSqVyhLSB1vJSiyO8idKEHdrUIS4py/M8PP300xBFkVEzOo6DcrkEy7Ij52oUfHGCkMYhAWB2dhaZTLZtUpyiKB1Z1sJYSEOS5cZSksksD0iOAXXztkO7RjK9XnN+fh6qqgalnfFrb3h4Kw4e/EiIuWyIZZVnMlkcOHA7ALDv3/OeqyNrcaH7X6e9k67/arWKapV4txKJJAYGBhnpyvDw1lW7/64n2dCqjrsvwX3ttdfiqaeeYn8Xi0WUSiWMjIxEjpmammJxQMdxMDU1hZ07d/ZzaY4A4UzzcIcfXdeQSCR7jkV1W3LWr3A/cOAAfvKTn0Tc/qlUErbtsFhiHXWXc5ywC2ejEwuH0I8SC4pYCKZpsE5M3WYwh6/jeS50vf3Gv1iZ7qsJK904pB1InkD7Z+l5HvL5AWbNtgNxdS/OnH3fg2HEd/5rXDf33ts+x2cxlOZOrIXh4+j6V9UsNK2CcrkcNEeSWrroVxtL43pHX5ktN998M2ZmZvDLX/4SAPDkk0/ijjvuiPDWXnfdddi8eTOefvppAMCRI0dwzTXXYMcO/lAXA+FM83RaZQkxjuNA1zVUKiXMzl7BkSOHu+rW003JWTizeaHdgHbuvK4pYecjH7kbd931h3jPe65GJpMNPAaEKjKcyEVBLWuafR2ONxPrqp4g5nkk4aefsqNOG3qvVunatWJXBygfeCeQRC8h6DneOmmRtuJcrIQ/UZRiO/9pmgZBEDAzcxHPPPND/O///V1MT0+yxNInnvhWy/XazTFxvwmv12q10nK9jo2NwnFcaFoFmlZvVatp1ZYJrouxH3D0hr4pT19++WV86UtfQq1Ww3vf+1489thj8DwPDz74IBPWr7/+Oj7/+c9jfn4ew8PD+OIXv4idO3fi1VdfxSOPPALHcXD+/HkmzI8dOxa5xkaiPKXodn40gYS6nE3TCNoZekGzjTRUVe1IQ0g15osX34Ysy0inVZbZSpp3VKGqGeTzAzAMA67rRtzc1IXWyXponF87TX16ehLPPPPDlha27yNC9OJ5NLGnTu0J1Hsm90OpuZhu7UQiiUQiiVpNW9UW7VrApk1XYXb2cttnE+ZpX05Ikoy/+qv/m/195MhhzM/PBeuHEqqIkCQxKBckFLataEMXSoPauEdIkgjDMGPX6+OP/yMsy4woOL7vI5FI4sEH/0dX5wd63w8WE+tJNiyJqxwgVvePf/zjps+p0AaA97///Th8+HDTMbt3724S0hy9oTHTnDI3kRaAHltMpO4ULMs1jPCGQDnBSY1mKWCQIgQqVJsuleaCdpf1hbqQus5Gt/z8/ByOHv0RFCXBmiqkUmmYphHJDlbVDGzbgigKME0zUkpD6p5NNqbG8rmFYjGtY8dx4Dg2hoY2YW6uuGr4wtci5uZmOz6blRDaACFqmZ6eZOutWJwN2naGkww9uK4PgJQLZjJko45br6dOnYCmVVnmuapmmDcsLNwbFeFyuQRBEDA/XwnWsoxUKh27XhtLEckYm+vJw9jIHQ1XCpzydI2jVdexF1/8edeLaWxsFK7rMkrG8EYYtgxKpTkmJKvVauT8C6nrDLvlLcsM2h/6AS8zcbepagbJZKpJm1eUDASBCG5qDafTKtJplVlgiyW0O6HRGu9k4VHLf7FoWzcyGht7REHCLCsFQRDw7LPPIJlMIp8fgG3bEATEcsvHJQA2UgLPzl6OfF+pVJDNZtkxrfJT6LGU/c91XVQqFQwNDbPf0f3DcWzmrQsng7YjPEokkkyBogqFIIi8znsJwQX3OkCnGlGKVsKVWgJhWshG2LbFmiRQ2kVd15BOq0315N0irKlTMguaiKYoCjTNgqbNBRSPIjKZLESREMpQt+Lg4DDbNGo1nXFGLyfi+Mu7gaa1T3bjaA8ioJKxFQarIWOfMpPRteg4dmyMnQq8xvHS9To9PYkzZ16OfEeFq6ZVsWULqckOK8JA3WqvVMqsBrx+DdI45PHH/xG2bSGVSiOdVoN1SAU2GZcsE2H/xBPfig1n0TVHeQvK5TLS6RQOHvzw4t1Mjgg47dI6RS+UpyQhp5nDmSanhf8OE03Ytt0XK1uYCS5MKUrZ3giHtYtsNg9BEFCplJlGn0ikWAKd5/kd3XntEK4n7xX0d6SpRBZDQ5tYL2+OpQV5T8wmpjxCirI0HO2CICCRSHR9vO97KJXmWJkj4bmv20u0U56iJJBMJiNUozSx9Nlnn4n1KPi+D9f12JqmiaqmaWB+vojZ2csBw56DTCbHEjjDhESu6wRKbw22bQXvLlnjQ0OboChJWJbF+nA3Jp6NjY0imUwhm82FuPtFpFIqzypfQnDBvU7RimYxbjGFewSHQVtUNn7m+0Aul0cymcQDD/wl7r33vgUt0rByQd3Lvk+y4yn7GInHEct6YGAQqVQKlmUGddom5ueLfRCTCEHJnB3ZQHsB4ZsWgw3Pg23b3JJeJhCu9rimIQtX4rpBL7X6AOA4pMqB0uXmcnnk8wPM/ZzPF3Do0N34yEfujlCNJpNpZLO5pk5cYUhSPXM9nx+AruuoVCqBou6xEkXXdVmTk3qFhscUBcqIlkgkkcsRVkJCbWpDVTOB+7u5yqRcLkXCbJIkIZ3OtB0zR//grvJ1jG5b7Q0Pb8Lc3FzQfrMeayMWrRgIdoH1FKYxrEwms+D6zYmJcxgbG4Vt23BdA6SXsY9kMo1EIhlQLJJM8dnZy8GGoLLrXLnybhOxz0JAS8WoazCRSMBx7J4UAM/zgqQjtIm3Li2I4kMYwpYXKxtHpslWdXpbkXFGLL7wrseIewFRLEXUanqQJFasnzHgHnj33Rns33+AUY3Oz8/BskwUi+2zo8Mesb1798dWYQCkA1sikWDUvOTapA6evvuu68KyTKZ45vMDKBZnkU5HWcjCsXfa3pR64zzPg6bVuRQ4lgbc4ubA3r37IcsSMpkchoc3I5PJBvXPMjKZDD74wVuQzWaRzxcwMDAYbI4utm3bvqD6zenpSRw7dpTF4F2XZFmn04Sa1DSNIOYHAD7bhCuVChKJJLZt296X0CbZ96Q/c62mBzF6L8hgr4WEQPfuVtLdSeyK6GMpQITU8gvQ1dA1NJyESL0v7ZrGxKPzRGh/9YUgmoQYzdi2bQunT7+Ef/qn/w9HjhzG5cvvQtd1poC0Q5xHrBH0Pc5kMoxEiHSgE1kdPJkXaSVKGwNduvQOajUdxeIsq9QAorky4WYq9fLLtdFOdi2DC26OJrd6oTCIe+75JB588H/g3nvvw/79B2Ld7hcunO+6P3gYY2OjgWCu01CKogjD0OE4Nm6//c6gh3G9DhtAkJHr48KF88HfzZtDuJ+3IIhQFAUDAwUWByWKghu7ARM35gASiSQymWxP99DzPNRqWlCmtnGW1UongMVDWIDXo/M8iPu3uV88u2oXxC2UZyByZdY4xoamabAsk7EH0mYyrRAeS6t1R+Pa9957H1Q1g0JhEIAQhHnC8/EhSSKSyVQwBtqulCScmabRlCtjWWbAqlb3dORyuYig51h8cFc5B4DObvW473spOQujXC5BVVWUy2UWo6TJMlTw27aFTCYHw6jHzlIpFbZtseYhYZIV1/UCJi0RkiRDUZRYa6TdRki7HtF+2L2CWCrkuuVyadmFWjcUoBsDfmzJ1aKcOWBrSySU/5+9dw2O47rORb/unu6emZ4XZkgKIkQjFGWZMSVLNM1I9KUlW5IVyfJ1eHKqdKz8UHzKcdU9J8mPxJWfdliqVJyyU+V7Uzknrmv7VCz7l6piMzYl0bKpK5E8hCSYhmKHMSwLAiAKFGVyBphXP6Zf98fuvad7pnsewIB4sL8qlYhBP/Y0eu+111rf+hbrTe3/XS/0M+z0/fH/3H2NIFt+ZaXCasVrtWpkiiCfHwMAT0BJRTabZb22eZ5HoVBEq2VAlpOoVpfZvKRaCILAMwa7Px1GGfP+0DgVX4mxfogNd4xVY5iSM6BdL6qqTRaipnKtALzSkwTLY/daEIiHS+q+iZdN2MSPPvoHAOCJ0phIJBJe2NFl3ngvg7qyQmrVw0qMBgHdLFAhm+sHDq7rbIoyqO0OavSGfdaDRI8rlbLv+HBd/s7PaC+BXC6PVqvVtaHgOA4f/eh9AEha7Ny5F8FxPPL5MVbKuW/f+/H66xfQaDTYe0RL1EjUagyGoXcpofVrNQwMrmMe650PDuH48ePHN3oQ/aCq3QzFZFKErm+/pg4Um+X7LS7O46WXfoLXXjuP+fk5pFJpL9RG2N8LC3OMWU0n7b33HmXH+K9z5sxpWBbpwW0YBvOyaZ5MURS0Wi22+GhaE45DFg7/tW++eQKXLi0wIhj1Gg4dugcf/OCdKBTGUCiMoVy+ClVtenWqSaRS6b5NRobPFbdDjTwvgOcJ2ah9j+uT6/NrtcdYP4iiCEXJMgWzKLTTNYMrkJFj2r+nGvx+Y90p9JPN5sDzAsrlq5iY2IO3317ouubtt/8uPvzh3wMAFApjmJgYx7vvXoGqNpHNZnHrrbdhdvYiK/Gk7z+5F4dMJuOlkbLYvz/YsrdzrmWzWdx779EumVbLIm1KDcPAwsIcO49i0OMGwWZZO0cBRZFDP1+zVvn1QKxVvjEYRBt50F1yp56xZZmoVqtwHNvTRld8oi4K0mlSEqbrWkAC1X/fqamzWF4uB+RQJUlCsVgKHPv0099ktdqGoaNer63JyNFadipasVHCLzGuPxQlE1DniwKt2e5UIhwGlI9BDbhl2UzJUBASyGQyrMSMdr+rVK51XadY3IEnnvhj9nPn2uKfm62WgUajwe5DuCbCQJroYei8tqo2vc27hIcffoxdb5R655th7RwV1k2rPMb2RZQSk18bmf7//PkzuHLlMp5//l9RKBRx5MjHApO8U89YlmUUiyU0mw0UiyXUalWYJmGW03B4Oq1AFCUoioKDBw9jZmYaL7/8U+RyeUxM7EG9Xgt4MLZtQdMsrKzwOHPmNPbvP4ClpUssNJ9OK9A0dVUlPX5wHIdHH/0DzMxMM8ZtKqXAMLS4acg2xu7dt+DatatQ1V5Gm2MhcX+qhG72XBdIJlOsPrpWWwFA9RGC16SpHkmSIQgCPvlJIm0clZ66cuUy2zBQuK6LanW55/eqVMowzRYr96QeNo0q0Pm3mrA1nffNZh2q2jamrZYRaBcc650Ph9hwbxOsR35okMm0uDiP06dPeTKkJKRXqZTx4oun8MADj3SRWNq65KqnOS6xsVLPuPN+5fK1Lg3m1147HznuVsuAKMq4cOFVJJMpuC4x6rTZwiC57l5wHAfnz59hEQFS0mNsWDOLGNcHly+/A54XkMnkUK9HGRQXxeJOJJNJXLlymaVxaKUBrT6g76SfYEkQrIsnZEoNhw7dw+aSP6dM30Fd15j6oJ9Y2X39IBYX5xmD3F92mUqlGBHNv2Eedl3J5fJYXl4OGO32d7OZEzAsX+ZGR5zj3qQY5vuNMj/kx/z8HAzDCCwElmWxXNfi4jxeeOFZGIbOJj7JydGe2HWWE6P5cBqKowQYSUri0qUFFApjWF4uh96v1WpBkmRWdmZZZt86btclpTRtOddgDjjKcA9af2oYRoChHhvtGwNUPrgXD+LBBx/BvfcexX/8xy9Zj2/HcQL8Cb8eeNh7SOdSIpFAJpODrmvYv/9AIKdcq1VhGDpkOQVFyQQ6j5GNQTtM/8tfvo7FxXnU6zVMTf1vvPLK/8b8/BwWFt6C66KDSOmyZiMXL/4CzWbDUxi0hl5XUqk0Zmf/PYRkxwNwYNs27rrr0FB8mX7YTrYhKsd94xScbmP4Q9rD1FP3Qy+9c7pZoJKKQHuhoApKfs+c1orT48mClIWitFsTRt2Pss0pqBxqFAijm6pD0TBl2xPpRRIa1At3HHtTiI/EuP7oV/Y1NXUWi4vznrcY/pLQ96xTZ52CGHqXKcPValUsLs7jxIln8PLLPwVAjGI2m0ciIWB5ucK6zpFzgykbXddx7dpVr8vYNRa5qlSuIZEg4XG/lrnjOFBVlSmq1WpVtFrG0OvK5OReSFLb+JC5SEiclmUzj3oYieYYcah8S6BfGHy98kNRLUOpLCMhrQkwTX+euR0a7AxzTU7uZS0OEwkBtu0Extp5P1GUIAgCms0GTLPFWnz2yyNLkgzH0WDb3WIZawmR03P9deejRFzKdX2QzxdQra6s2/XL5at47rkTuO22D8Cyoj0/ytqO+puTDQIHVVWRTCZx5sxp2LYNw9DRaNS9Ui3Ji/yEvYucFzonBrnVIi1wW60WUikFoiiy+VUs7mBrSKVyjRHS/FDV5qrWlWKxhJUVHpqmsY000WzgAmVjg0o0x4gN96ZHVI9d/250PfNDUZOJbhYSCTHgdQNkxy9JcmgnMjrWRCIYDvfvvCcn9wa+t6JkUK/XvcUqWPoUtuglkykcOPAhXLjwKis3I8eS39PzhzGSpK1oFo3G2hjpvRAb7fUGyR+vp9GmcBwHc3Nv9D2un/dOOnc1IQh8aI1272Yerq+BUJsAR0ouDUiSjFRKQaNRY0Q4Kv8blTLytxEdFLTWO5VKwTD0QPlmbKhXhzhUvs6g4a2nn/4mTpx4pq+OdycGCYMP08JzVKAtOcN6DBMCTzZ0UrbH2uo5Vv/3luUkcjnS2lNVG8jlCkilUp7KWXsDkEymUSgUYZot7No1jn37bvdaF5IcIw239yPshEEUJahq79rdGJsX5O99ff92o4jIUCW+RqPeZbQHBYkOBb3ner2OVovwScbGSoEQ9dhYKfI9dxxn6HWFRtIKhTGkUmns3n0LHn30D3D48JFVfZ8Ysce9rhjEW+6HQcLgvULaaxl7r+vRXbRl2YFdfTabhShKkYsMHesvf/lzVCqV0GsvLs7jypXLzNiS/tsyxsbIdZ944o/Z+HRd84y3i1ZLh22bEEUZ58+fgWWZUJQM2+XbtgVZTsIwjKEN92oXzRibAxux4VrrPTmOSJFS8ucg6AxxB9NKZPNCNzGNRh2KksHRox8PzL/p6anQqg2O4zE2VlzVuhKHwUeL2HCvIwapg+6HQcPgo5wYg2w4qAF+4YVnmXY4NbCmafYM009O7sVddx3oEklYXJzH+fNnsLxc9rzidnlKNksWjs6Q+re//T9Z7o4+G9M0oaoNryY1i3S6BIDUxdbrVWSzWdY/eDMhkUisSbAjxvaC6zq4du23Q70P/tB70IhzEMUEEgnajY+wyMOciKWlS5BlOVC5QQmeVDo1xsYiNtzriFGQxgbRAh41wjYcqtrCCy88y8hl1Et++OHHAupqnaHvYXSKz5w57ZWK0fy1A8fhWM9iRcl0fW8ajiRlYjb84VC/0ZckmYXKeV6tDnRYAAAgAElEQVRAoVBEpVJmClGbAddX2/zGwPr05b5+GHYTR8qpBGSzWcbmrlSugeM4pvsvCDx03YCiKJH8lWw2D1k22AaXtvldzyhejMER57jXETQP7MewpLGNKJOo1aqB8isiVUgEUzr7bvcaHzXGg/TrnpmZhmXZXbk4P4ks6nvT9odh7RJdl5SllctXWQOHanUZlcq1gMfNcXyX6lSMrY9kMtn/oE2OQdrESpKMT3/6D5HN5lAslgIlWIqSgW37OTCtnpt/um7JchKFQhGl0k4oShal0o5Vf4dh1oIY/RF73OuIUXnL1zs/1BmeJ52Q2vrLnSH/qPH1ShXcdVewWUG5fK1nR67x8d1d91hcnIdtWz3LqKLY59Rot6UoCQNXkuS+deJRkCSZhe3jcPfmgK5vfW5Cv3eJ5wWmURCWWqNkUdpwR5Jk3HXXhyPXFP+6Zds2NK3JvG66WR8Wo0gbxmgjNtzriPUgjV0PhG04OI5DKpVmxwzadzssVVCplPG9730X7733HvOWOz1tP1zXxcTEnq7PZ2amIcspT3Z09fnqYrHtSZTL3U0aBoVptpicqiAketbwxrg+2Kxh8mE2d/S4TqneRCLBwt+maWJmZhoTE3tYGaQgEI6K6zpwXaL9n0jk4bo2ZmcvYteu8dC1iK5b58+fQbW6zLqQ2bY9NLmWYpi04VpC6ouL8zh5Mpr4ul0QG+51xmZkU/abGGFCKImEGJh4nSH/sGuG7f41TUWrZaBcvoZWazB9b54XsLR0CYcPHwncR1WbSKczyGQyqxabcV0X5fK1nhuHQSFJMmszGhvtGFHoNL6Dchuo4hjVTaDqgPQ6lUoZ9XoNspyCaRqwLNJXPpGQYNsmDEOHIBBdBFpSGrU2TU7uxczMNBxnrKNj1+q85EFJtmupxKHnimJi1VU8WwVxjvsGw2pyTdlsDqbZwvJyGeXyVU9TXA8Q0MKuOTGxp6u+XNc1yHIKrVbbO+0Hapg77wMAzSZp+TpIHjAKgxptURSRSIiRvzcM3atrX/VQYtwAaHva3FCERNpLvi0o5KDVIsxvqstPBIsUFApF7NixE7KcgmFoASnTer3GZEx7oZPrAqxekXFQrYm1yDe3z5VGKv28GREb7hsMg0yMTgOpaZrXdKDdFMFvnKKuubR0qYu4JooS0uk08xb6hwvbmsb0Pq7roFpdhuO4TBP9eoRE02llIE9aFKV1H0uMrYu2aNBa67w5Tw6YGEHalMQP0wyWdFFvv14nEateolCjINdSDEqyXctmYZQbjc2OOFR+g2GQXFMnkcQ0DaZ5XCjs8D4zWcis1zU7UwUnTjzDJE9pG8JexpvjAE1r4o47PoRf/GJmKDGKUZLE0mll4GvFYi0xwsEhn89DFCWUy716ekfDdV0kEqQe27JMWJYV6FffbDbhODYr46IeOrmVC9cN5v0vX17ClSuXcejQPV1KZgcPHsaLL57yNsZko83zPG6/fX/fcUal4zqFlk6ceKZvem3QzUI/OeXthNjjvsEwyC66c+dKRUFM00S5fBUrK5VAqG2YnfnExB7U61W0Wq2+YiMcx4PnBXAcj+npKdb7OgyiKGLnzpuQTmeQSIisL3E2m19ziZeiZCAICdTrtTVdJ8aNA57nkU5nWCOPRCIBQeChqk1G9hwWdCNqWRY0jXTuGhsr4dixxzE5uRcHDx5mDUg6I1DJZNKraQ+qqrkukQT+2c9eCfW8O4mjjuOwFqFRGCQdN0x6bdBKnEHllLcDYsO9zdGplT7IxAgzxH5mq+M4aDbrLCRMF4yoHLh/LLOzF3vmiQHSrnDnzpuQy+VYLXY/74SWd6XTaaRSKTz22H/CTTfdDIB0UFKUDHbuvGmgZ0a/pyAI+L3f+yhkOYl6ff2ai8TYXqBzRNOaME3TIyySftymaWJlpbKK1E53/27LsqDrKjOIk5N7kU4rzMALgoB0Og2O42AYOvL5scgNg+M4mJo6y35eXJzHCy88i1aLNDGhYXhBEGCarZ5540HSccOk1wYll9FwfCaT3fatQeNQ+RbFICUTYQzN2dmLGB/fjYWFt2CaLYiihLvvPsQEU2ZmplGplNFqGZDlFNLpNGhPYdo7mCweCCwCHIfAwhK2PtDJSntscxwH23bgug5rBQqQ2ltJklj9uOP0N5i0jpV6+v6wHH0Oqtoc6NnS2u59+27H0tIlLC+Xcb0bVMTYuvBrB3Ac720824aafjYI2q1k293t/NdptVp4/vl/xfj4bhw8eBitloGxsVJgbgqCCFVtwDB0iKLECG2dWFmpAGjPF3/nMb9CIeWVRGGQdFylUvaEYBxvg0H4L2HptWEQJae83RAb7i2IQUsmwkQPms0W5ubeQDabRyJBPOvZ2YsAgNnZi6yNJs/z0HUNjmOD44gXbFkmE2JQlDRbAGZmpiFJSShKlt2b5sDp72n5FtUyB4I5aCpNmclk0WjUUa/XhyrRSibTgejB9PQUXn/9Atuc/M7v3IqFhbciz6cetuu6GB/fjYmJPZidvRhrh8dYE8IMNM9zcJzB+BdhAkJtTXsHrksjYE2vFIr05/bniAVBwPj4bhw79rhX5/z9rvtwXDv4StcNKmHsHwvd1PbKG/fLUy8uzqPVMpjoEZUmTqVSKBTG+j6TGHGofEti0JKJMJalaZLa6c5zX3/9QuCa6bSCbDaPUmkHxsd3M/nDbDYHAKjXazAMA4uL84y8srJSYTlwx7FRqZQDeSzXRUCVzL8Y0dCeLCchy8mBjTbHcchksgBcFhr77W+vYHp6CpZlgud5WJaJ3/xmFq7rYMeOXaGsb47jkUopSKcVHDv2OJaWLoHnhUjvJGwcaylJi3F9QTdqGyFx6zhO4F2h+fBhzqdzh5aA0XlMPOLoVNjk5F7k82FG10U+T4wmXTdo2J0d4bre2iH1zBv3K/2iwkkAibgREp2NZrMRKrQUoxvxSrMFMWjZQzhpzGZhZf+5tMNX2DXpRFTVJmq1GizLguu6aLUMnDz5fTQaddRqVS/PTAQiarUqNE2DbdtsM9Ar3EyVnQCijU7zaf3w/vfvx8c//knkcnnUalXMzEzj5z+fZqUvjuOwhY70D+/WNCfHEvY69QroZsTvcUSBitMkEmJAXS7G5oXruhsWTaH3puA4DmNjY6z+uB868+OO47A502oZfXPEd911d+iYbrvtdgCd60b3eO688+6eoeyw0q/9+w9gZmYaTz/9TVy5ctnbpMtdEYnZ2YuxfvkAiEPlWxCDlkyESZfyPNeVfyKhte4Qmz9fTFt4hoX+6OLXTbhx0Ww2oOtk8gLt8DjVB6fnplIpiKLk7c4dZDI5NBrRLG6O48FxwBtv/AoLC28hnVZY2oDUWnMAguNxXRe12opXIuPPM3JsIdV1HdPTU6x2fRA88sj/CQCYmjrL8oSxXnmMQcBxHA4duge7do3juedODP3OUN6JqjahKHwXvyMMi4uLUJQMWi2DddRzXRevv34Bu3aNs3Wj2WyA4+BpJxAhJL+KYS+EcUxoak9Vm2g264GoB10T+im6xSCIPe4tiEFViMJ2vocO3eMxQ4Pn3n33ob4htkE84DDYtoVGo8G8YFEUsWvXTdixYxcKhSKKxR0oFMbYGMfGSl6+OfqagtAms5F8GRFlqVaXvSPCT6abC0qIo/8GyCJYr9fw2mvnh5IsPXXqRzh58vsol6+yDUBstGP0AzG6PC5ceBWnTv1oKKY5fXfpOcM0MFpZWUYqlWahcJ7n2Zpw5sxpAKQTn/9emUzGiyoNL2jSmdrLZLJwXQTmSltLfXsKpowaa/a4p6am8NWvfhWqqmL37t34yle+gvHx8cAxs7OzOH78OJaXlzE2Nobjx49j/35SxP/ss8/in/7pn2CaJm6//Xb87d/+LbLZbNitYngYpnlJ2O57167x0HOjPqfwh/d6Iczb9LPOJUkObA6OHv14lzADWUAGN37V6srAx1J0jpGGHIdFrEseoxeCPcGJkFG7UsL1jNjg7xDRN2gbbsdxIQhElOXll38aOnf9FSO6rsN1qz7Gevv/lmVjZmYax449jvHx3asWQ/Gjk2UuSTKy2SxTPKT5dEpc3Y6CKaMG567BNVBVFQ8++CC+9a1v4cCBA/j2t7+N6elpfOMb3wgc9+ijj+KLX/wiHnroIZw6dQr/43/8D/zoRz/C5cuX8Yd/+If4/ve/j927d+Opp54Cx3H40pe+FDj/6tV6170LhfS2pvxvpu9HJ/3S0jsYxpi2Pdo2c/zQoXuwtHQJjUYdmUw2csMRxX6lEARh4I3EoGPdrJ2kYmx9EM9WAJ0/wXe3N/+j8zo0TUSNLckVI+AR0/aytKLiypXLsG0bqqqChsa7r02uK0kyPv/5/x4IcfvbEg9bG03VEoPNStrE0bVevxObae1cK3buDHdi1xQqf+WVV7Bnzx4cOEB6K3/2s5/FuXPn0Gg02DG//vWvUa/X8dBDDwEAHnnkEZTLZczNzeH06dM4cuQIdu/eDQD4oz/6Izz//PNrGVKMEcOvcOSXEuyGv6ab8zUQ4ZDL5ZHPj2F8fDcOHz6CY8cex5/92Z8zxacwTE7uRbG4g4XxOsP0ozTaMWKsN9qlT27Iu9vfaAc3wS6TMyXXJbljUu7ZYFEjQsg08cYbv4JhGGi1DPA8aTnbWQFBenoHw++D6ov3Q1Rq76MfvW8k178RsaZQ+cLCAvbsadP3SVeaAt5++2188IMfZMfccsstgfP27NmDt956CwsLC3jf+97HPn/f+96HcrmMarUaUbIQYy1YTZ9bf35KUTKh9dWUZJLLFfDRj96H8+fPeKIlhNDCcXxX/m1u7k2cPXuuayz+MUqSDEFIwHUdFlIjjU76K6kNCkpSi73tGOsNv6DJ8OCYPnlbDIUY2kajjmw2D1EUoeta4CwaSTIMPSBy1Mle5/m2sJJ/k7wWMZTOuey6LgxD71p7YkM9PNZkuDVNgyzLgc9kWfbCMf2P0TQNxWKRfS5JpBxC07SA4c5k5C5vjzS82L6lN6P+fnNzb+LcuReZDKKuqzh37kVkMo9i377bIs9rNGpIJlPgOA6pVAo8z7PSLzrBaX2nZZk4e/Y0CoUx3HHHASwuLmJlZQX5fA5Hjhxh95mbexOnTp2CbZN+wc1mA1euvItbbpnA0tKSp6ZEDLYkiUinFbRaLRQKBRw5cgTPP/8ckskUlpcrTJIxDP3C3yS3FxvsGJsfiqJA09SOd9oFwHlrZhOKku7a0IYJtxAjHTTebYnUJIrF4prXns71hmw4bDz22GM915tRYLvbBmCNhjudTsMwgmQef+lPv2PS6XRg4TUMoqZDZDbbaDS6CUPbKY8RhlF/v7NnzwHgwfMJ6LrOmh18//vfx8MPPxa5681kcoH8VCIhIpvNw7YtqGoTjuOC50k5VaNRh6JkUa3W8Prrr3eFvej3OXv2HHRdZ94Bqbe2sLi4yFiupG5cQzKZgm0TRbVKpYKzZ89BEEQYRsurW4023IIgeGIXQqigS8z8jrEVwHEk3WQYRkCXoVO3vFbr5gL5w/Kk3FKF69q+n1tIpxVPGZHkmO+888NrXnv86w1ZIxKwbRdnz55DqbR7Tdfuh+1kG6Jy3Gsy3Lfeeit+9KMfsZ8rlQqq1SomJycDxywsLDC1IMuysLCwgH379uG9997DK6+8wo79zW9+g507dyKXy61lWDFCUKsRFmmlUoNtk8nPcTwrAYnKLYXVgjuODVGUkM0mIIoiq10GAF1XUSgUYZqIrMcsl68FQnrdDPS2cIqqNqCqDdaHm+iX87BtayDDKwiJoaRTY8TYLEil0pDlJBSFqPl985v/GHksz/M928nu3n0Lrl2jrUQ5JBIJ7Ny5CxMTe7C0dCk0fTZsas1/PKkrzwBoE9LiUq/RYU2G+5577sGVK1fws5/9DB/5yEfw3e9+F5/4xCcCHvNtt92GnTt34uTJk/jMZz6DEydO4JZbbsHevXuRTqfxD//wD5ifn8fevXvx3e9+F5/+9KfX/KU2CqvJIV+ve0uSjEqlHAgNuy4R+O8lehBVevbyyz9lJR4k/MYHFKF6TdJe4Wsadu9Wh7I94+3Cts2QHB0PgAtpWxjOoI0RY9QYpnnIICA6+yLjhvib/HQilUpD1zXs2LELqtqApmk+bXEBjUYd6bSCXC4P17VhmhZbI8LEVAbthxB1vKapqNeJyIokkVRpWCnZRq6ZWxlrYpUnk0l8/etfx1NPPYVPfvKT+MUvfoEvf/nLeO+99wIG+O///u/xve99Dw8//DD+5V/+BV/72tcAADfddBP++q//Gn/6p3+Khx9+GIZh4M///M/X9o02CIP0oN3Ie0d17HJdt6eRjZpYfllE2pyD/hvobirgby3aD1GG3U9Kozk5/zl+o01zge1StNWJx8SIMShGzZdwXZcZysXFecbK7gT1tm3bxvJyGaIoYceOXdi58ybk82Nsc97uTyCF9jbwY9B+CFHHE3EXQpyLEonayDVzq2PNAiz33HMPfvjDH3Z9fvLkSfbvD3zgA3jmmfAF+1Of+hQ+9alPrXUYG46wTly9wsXX+96m2YKiZNFo1NhOnCJKVIFOLNu2YRg66vUalpYueQIKORaaS6XS3u66u0uXfyfOcRyrJ/V7DoPKg3Ye06skjDLd6XEkHx6HzGNsfgiCgGw2D0VRMDm5F9PTU5ienoqovSZEM9oek8j61pDNZhm3g/bS9iNqs0436pcvv4NEIsHC9b3OAbpFVmhTIdpONMyb3sg1c6sj1iofEQbpQbuR96b65rlcnhlZgOaTw6USZ2amYdu2F3ZrexOtlgFd1zwdY5JvLhZL3s66BUVR2CQ9ceIZlp8msqfkGp2dwciYRQAu8+QJ+11fVakW3ZjQOtfBFdHaYhix3niMjQApe2xvfC9ceDXyPSTvd/s9JTr8HBqNOm6+eQIHDx7GzMz0QApo/k02FTiimhyynOypmhbWP8HfTjQMG7lmbnXEhntEGLTxx3rf2zB0aJoKyyJduRYX5zE5uZeRzHheQCaTQbPZgOM4GBsr4aMfvS90h1urVWEYuqfSFPwdLU0xDAPj47sjc1N0clary0ztKQySJCOfLwAgG4NarYZWq4VMJrvqibya7k/pdBqapkEQeE8CcjAS3CAYdQ40xvaEYRgwjBamps56nI/e7x/ZfLueuAqJMjmOE5iTfoKpabZCN+thmg2A6811oacWehSJtZd2+kaumVsdwvHjx49v9CD6QVW7S36SSRG6vnk0olOpNBYW5phCEn1x77336Kqaww/z/ei9DcOAqjaZoUkmk7h0aQGFwhgmJ/eiUBhDuXwVhqGjVNqJ++57EEePfjxyfPPzc6jVqqH10DTcTsutFhbmUCiMoVpdwUsv/QSvvXYe8/NzrJmApmmBnHPU9wAIE1wQBLRahJxD7s0xok2vDQDFagVVLMtmJCDaAnR0PZtj7z3G4NA0zetfH/7eCILg9ZZ3O9QKwbzu/fsPoFAYY3NfVZvI5wv4vd/7P7o22q+9dp5paRDtcwGWZcK2bZRKO3DvvUcjQ9id98hmsz2PB0a/ZlJsNtuwFiiKHPr5mrTKrxe2ilb5KBmSw36/xcV5vPDCs6yvtl+0n5aTDIvFxXk8//y/MqZ3GGiNKcfRDkOtgPYwJc1Ehar94eh8vsAYqP5xP/30NyHLSZhmi4X5qYLa6EFC5f5+3jFibFb4G4TQHDdtwem6Lp588gtd5/jXFv+aZRgGEgmRSZD6I3e9tB7WgvVglW9G27BarEsdd4wg1iIPOIp7y7LsGdG2h7iWnNHk5F4cOnQPLlx4NfIYjuNQr9eRyWRQr1eZ9GKrZTCRF38Hou7zeZCmBw4ajTrGxqSuMBsNqZEabtqwAQASrCadgoiutI162wATjedekCSZbTAEQQiIXfgXxn6RgxgxRo0oFUB/lYVlWWzuq2oTuVyBHec3kMViEXfe+WEACJRwEd0E0s/e3/FOFMWepWBrwUaumVsZseHeRliPnNHhw0ewa9c40x/3GyxBEJhBbjYJiYWwtw3mGRPymg2AQzqd6iKbkXWGgyynYZpGKAOV5s+IIeWY8pO/UYKfNctxxOvwazM7TtDAh6EXgS2MTBcjxvWAvwFIf10CDhwH2LYDXVdZaZXfQDcadZw5c5qVhdH1Ip0mipeq2gSArsjdqNjece322hEb7m2EXgSRtU4WyzKRz4+hVlthhte/gFCiG9GgbwZKzojXS8LfpdJOlMtX2TV4nkcqlQbPCyiVSjh27HE21pdf/ilrTkClTaknTfPQFH6v3nXbghSUZTssHCcYJQgTfInD6DHWFxx4nvQIoEa1XL7a03ATrQPCE+E4ntVd+w10IiHBtl2srFQwNlYKnJ9KpaGqTZRKO0cWufNjWGGXGOGIyWmbFKv5flEEEQDMY5UkCYZhMDLZICSQl176CSzLYiHwMCNWKBRx2223Y3Hxra6FRRQl1oGLEtBs20IqpSCbzXl1qISUUq2u+LxrF9XqCgxDQzKZ9nnEXJfnQQ0px3FIJpN48MFHUCiM4be/fa8rnD4IwhZHf4icNEGJPe8YowNNG1GUSjtxxx13oVK5xghchtG/PJJEn1y0WiZMk/xHSWcA6QQGcNB1DaIoBYSMyGbfYQRR/+fZbBb79x9Y03f0ryX+9NPS0iW8+eavGak1lUoPTVBbXJzHSy/9BOfOncFbb725qmtsNsTktC2GUX6/qEb2g5LWKDmM4zgYhs7qsR3HQT4/BsexmSzqysoyY7bTftyJhABRlGFZJsvD79t3K+bm3kK5fI2JRxSLJeg6IbNRDXS/Z057EIehVNqJVsuIjCZ84xv/T6QBj+u1Y/ixUe8DLYdsNMh6R8ssAbBomShKXSkrP6gxdByXKQlKksxIZwDpnqXrhsfkNgNkUsexsX//AczOXuz6PMwrHjaS519LKKi4Uz4/1vd+UQh68hIMozX0NTYjYnLaDYy1Ch34c+f0OqraBM/zAbGVl1/+KVKptNcMRPUWFxemSTztBx54mE2iQiGNXK7EJlsikUCz2US1uoxsNgdADNVADwPPC0gmkzhy5GMsxN65iIiiGGm4w5qc+D+LDfuNhY36W1erK+zfPM9jZWUZL754CjwveGVhQKEg4+abJ3D58juh1+A4DrbtBCouRFFkeet0Os3quI8e/TgAhBreXbvG+xrksLD36dOnvDa84ZtoSZLZxoO0/FTQbDa80rbVK6iFSbRuZxW22HDfAFgraW1iYg8uXHgVjuMy7zmdVrp2s7lcHsvLy2w37/eO9+8/0DWBwiQPBUFAs9lgxtLP7CalWuGoVMo9c2el0g4sLy/DNI2enjvQzSiPjXaM9Ubn5tBxHEb49KNcvgqAGEDbttiGVhAET3HNgWma7JqUYAaQKJth6IxVTudjVHOhzi5hnRvizvlLS8g0TWVj8c/BxcX5QDTOtm3UalX2vVdWKowMN2xO/UZTYYsN9w2A1agaUSwuzuOXv3wdrkuIL6bpwLIsHD58pGvCHzx4GM8//68AXF8nIyCVSmFp6VJXFyL/ZGvXjRKDWa1W0V2+1e0Z045gmqbCNBMQRQnNpsm89fPnzwSU4yQpi0QigZWVCmOpd163l3cfI8Z6YNjNIZEZ3gGAGGR/2LtWW/GuSUiW5fJV8DwPUZTw5JNf6JmG6wx9T0zsYWHzzg1x2Pz1fx9N05BKpZjXOzMzDVlOQhRFNtf9zYkcx0G9Xkc2S/L9w1TD3GgqbLHh3iIYJpcUdmxYa85BQkjnz5+BrmtdC8ubb77RZYgnJ/d6pSMt2LYDahANQ0elUu66Np1sjmOzvHnbU++9kIUdZ9sOLEv16rxJTrxSuYb/9b/+CcViCfv3H2C9hymRjW4w/PKosYcdY7PDv7lMJBIwDB333/8QZmamUa9X4bqkLJJuoh3HQatlYHFxHoVCOMEsLPR94cKrSCZTzED7Q9B+Y+k32m0FNxeGoTOvlxp6jiMpt5WVCot+kfECgItGow5FyQzkWFD4nROel0K7kW0nrKmtZ4zrg2Ha30UdCwDHjj2OJ5/8Ao4de3zgvM/KSqXLkLkuKSUJQ7FYYuQTnufZTpouGn4cPHgYjmMzYRUCDoOUb4WLUfh7jbdZ56bZQrPZxOzsRRw8eBhPPvkFJBJil0RkjLUgfn4bAcPQsbJSQaNRxwsvPItKpYx8fgz+DS2ZBxxkOTVUK0/HsWHbNprNBlZWKqwboG3buHLlMiqVMur1KprNJgvP0/vRjbFt28zr9bcCpteh+ehMJhPQZRiWVDY5uRf33fcgFEWBrutQlO5U3nZCbLi3AIbpjTtsH91+iMoFR31+8OBhaJrKJj0Nh4UtGnSy0YnO8zyy2WxXC8IwkNKZcPglWnme5KubzTrqdbK4LS7OMy/EsixWAhNjdRAEIVA6dCOjU19gPXHt2m9Rq1WZMbQsE7qus5IxmjfneR6ZTAbpdLpnzrdWq7K5R6tHKByHdPdrNOpoNgnrXVEySCZT0LRm17Xo3OJ5nnm9dKNO+4rT8dHWoYVCEblcAePju1dlcCcn9+LYscfxZ3/250M5J1sRcah8C2AY4sWoSRq9hEZo57FOdDckIYt72BgmJ/cyYRfbJt43Ccf1rmHPZNq9xaNAvQaA5AE5jodptnDmzGkkEomYLT4ixJyANq7XBjDs3aXpIcogt227S/8/rJWnX6vccRyk0wo0Te1IXZFQtq5rADhks1lwHId0WvE2CnQsbiDadejQPQESnD9lVygUveoUgRFRt3N4e5SIDfcWwDDEi1GTNAqFYmjdKMdxoYpHMzPTzPvy98TWtCZuuunmrusvLs5D11XYtsNqw3VdZyH2KMNar0dvRPw5bj9c1/FkUAWoqgqAC7TvHB7dxLYYMYaF3zj623JGlSTSFriUdEajWv5z6PG1Wg3ZbDa0LWdnTtu2nYDR9+6MdFqBabbYfXK5HNsM0GP9SqPDG+EAACAASURBVIlt7QYplAfjXy9i+dPVITbcWwDDsMLpsc1mC6ZpeG0qOdx++/5V3fujH70Pp0+f6iCotTuC0fA3nXyq2oQkyd7unUx+et7ExJ6u68/MTEOSkhBFCaraZIsAqc2WA6SXfiCtCImimWl2q+0BZEEk5DQbPC+s0VuMjXaMtSOo3U+Mn78kked5lEo7AZDwOOVy0M0thd9oU/0DnufRbDaYmEvnJttfzkUFWkh0iowjk8my5juNRp3lvDmOY5/7meFUcpiEvvurlsVNRlaHWPJ0k8L//YbpdVsojKHVMnDp0gJs24YgCEgmU6hUroX2y+4nC1gojKFY3IG5uTcAEFZpNksmM8/zqFZX8M47bzM5VV3XvBxWMGRIylSq7LvQ70d7ACcSCSSTKdYalLLS22G63qQ1nheQy+UhCDweeOD38e67S7AsM9Rjv17scSKLuvrQ6VrPj7G10Pl+Uy+Wzg0AXptcEs4mEqjdayMheXHIZnNQFEL6+i//5Uk2zzvnnv++hEiqQxQltrmlZVoAIMsp2LYFwzCY5gIdZ/s6Lmzbwsc+9sCGSI5uJ9sQJXkae9xbBMPsTJeWLrH2mhSmaeL8+TOs1pMyzl988RSSSaKmFBWqmpzci/Hx3aEheEIqa+/aZTnJwm1++ElynUpKlUqZeef+8PMwIiiu6wRU3HK5PBqN+oY2A5HlJARB6JuLDwMlFPnVtGJsffjTRxSiKEKSZHAc5xE7idARJZhRfX+AvFN0cyyKElKpFHRd84XMwRTJaFevqDSZKEpMVpgIuIgwDB0cxyGTyaJWqzIRGI4jrPRMJgvDIEps9HfZbB4cB2iaypwFQUiM3JOOw+ptxKzybQg/O5QikUigWl0OMM5d14Gm6ajVVvqWmXUyQmmdJFVsoogKURMCix0gqE1PT3mdwvzh6tV7wRMTe9hEnpjYE2CXd6IzD9/G6BjBrZYByzJ7RgqiQAUsYowOvSoRrheod0q5Fvl8AYVCEalUGhzH4dFH/wC7d08gmSRG0nVd1Os1LC+XoapNCIKAQ4fugaIQUhhlYyeTKRSLO5BKpaAoWYhieC3z4uI8vve97+Lb3/6fnggRmXuO47BNQyaT9d5di5VoEe/eCNwznVYwPr4bgiCwz0qlnVCULEqlHSN9bsOUxN4I2Pg3OcbI0VkvCbS9V7+RpfXTdGffq3TMXydpGO06yWKx1FWbGYVms8F2/3Nzb+LChVfX9D07MT09henpKSwuzmN29mIXux6gvY0THQso7/s9P7KSHlKeo7FSt2GuSVqZRvcHjzE8NjrtQDcONKxMU05Am0BKS5ruv/8hz9tWmDfdbDbgOA527Rpnx1gWUQkk5DKbMcH9c9QvXXrmzGkvV03z5xw4jmcRAJ7nIUlygFXeHj8Y54SON2pDP2pm+KjLXLc64lD5NkQUma1QKLKWekBbAME/OXuVjkWF6/336mWcHMdhE3pqampVIWwqc9q5CFOizuuvX8DOnbtYzrvVSqLRaLCFKpPJsJIZ2uI0OEYbAIdMJsO6NK0FdEEM+65xOdr1x0amTjgOEEUZDz/8GM6cOc0MZhjZtG2oOOh6O0Kk6xqr5gjT+geIxPATT/xx1/3bx0ts7gPEeBcKO30ywO21gTQDoS1sSbMfv3HuLPHyh7BHGdq+0bTI+yE23NsQUZMJ6DayVACBYtjSsbDaTNoIoRN+I7WystzVzKMfyELXLYfK8+2wt2m2ApNckmQUizIMQ0ez2YBpEg8lkRA9mUUuIAZBPeOwBg++kXSNYTWIjfb1x+qMNikb7FWeOAhc18Xddx8ayNhdvvyOp0PQJmfSa6hq0+sJAKTTmQDvpJcx888LutGl6mYA2VTQJiWCQCsuOGSzGQDtdqN+LgkQvqEPk08NKx8dFLSBEW0SRLqJyRgb29r9tleL2HBvU0R5x+shgNB5r2984/+ODJm/+OIpPPDAIygUxmBZNmxbDQ1hynKSSSxScBwRc4mC67oQRSm0lp3nBRQKRZhmC7KcZJGIapWQ8kh+r6021butp+vbRMTYrqDlTZlMFpqmBtjTqykjpK06T5x4hhns++9/qCuUzfNCwGgDwU2eX2mw2ayD48AMsn/j3enxiqIEy7KQSAhIpdJoNBpM28A0TSQSAu644x4sLV1iKZ5kMsXOU5TMwIY3LBqwljabExN72GaGPn/LauKOOz409LW2A2LDfYNhtQIIw4S9iAEMN2yqquK5505gx44dcBwHkiQGwtVt7eIsM9w070wXS5L7S3kiKjS8zTOPZteu8UBkQdNU6LoWOJ+2O+Q4vstDaXc2C4pZ+BEb7e2NdphYCPSgdxxn1bX/tm3jjTd+BUmS2ebS74UG87g8gOh3jL6/tVoNjUbD67bV1mwI83hbLd1jnZMa7GTShq6rXrlXFfn8GHbtGmeiKWsJdY86tL20dIn1+aYetyTJoV0HbwTEhvsGxyBlZsOGvcgO3Yz0junix3GAZdkBQ0pLWJLJJJLJFFoto8sLdl0XipIFAGgaEYZJJETcffchNolpZKFSKaPVMpBIJNiCS6MLUaVWneHUWMf8xgN93xzHwdWr74302q1WC9XqMssjT02dxeTkXpTL11iP7V7vnOuCzZVkMulFAxy2yZidvYg333wjNP9t2xYajSZaLQOCkIAgJKAoGRaB8s/rtYijjFrBsVarIpVKs97i5Dm4cY47xsYhbGcb1XpvIxAV9jp//kzojvzuuw9henqq5zUJQcaFYRgolXYGSG10Z14q7QjktagBF0URrZYRaFYgCALm5n6DN998I1CTPjMzjWazyRojUIw6v0zy7NHlZzG2P26//Xdx5cpl8LyAZrPeQ2+/Hep2HAfl8lV85zvf9HTAO5ncHHheAM9z7Hp+NjrdlI6Nldg5pmmiWl0OfAbAa59bR7FYBMflsLxchuO4cBwbHCeuOZztxzBqj2GICvPfKP22+yFWTttgUG+WKo8ZhoGFhTns2FFCOp3d8LG99NJPcPnyO7Bti3nGAFkcarUV8LwQGHehMIYPfvBOACS8FYVMJguAg65rEEUp0F3Ksixks1kcPHgYly4tQJaTUJRMwBuhHZAASkqzoOsqDEOHJMmwLAsLC3NoNOpIJlNe6dvwLO5+im3+44DghoAqWMXSqNsfiYTIyFyiKPatSKDvO40C+Uv/yGaUB31vstksa5UrSSISCZGViOm6BkUJdtTjeT50XpH5yiObzUHXdSZjbBgGVLUJ02xBEEhv77vuOrSm5zGM2mMnwtZEw9BgWRY4jmff3XFs3Hvv0S51tu1iG4BYOW3TIsqbnZqawqc//Z83bFz+8DhlmNI2f7KchKY1wfN8Ty+8l6GsVMoQRQmFQhGa1kS9XmVeiCzLOHr04wH2bbl8DZZlhZDWOMZOpyzxRqPGDC7HkUlOWbTDlgNRpnk/gx92TXq/mDy+fUHLE2VZxvJyGZlMDo5jD6D01zs6Q0hjJIpDUkMKjh79OABgauoslpfLAMCahwDE+Ktq03vfE2yetD1eB5kMMdr+lp0UpmnCsmpdnvpqsdpQe1SZG5FvTsbKaYgN94YjisSxskLyrxsl8+efPIqS8bSKXWiayppzZLO5wDm2baNaXYbjjPX1bi3LgmmamJjYg0uXmj5DywUMHZ38J048w3Jm5XKL7bo7vVl/lyXHceA4Flot4oWrKhGVoBiEGU7r3FcbAh/2POqlB9XkYowa/nA03Ziu9m9Mu2XpugZNa/bdqCUSiZ6lZXQe5HJ5KIqCY8ceZ+tAuXwNptlCMplCKpWGqqrMWLdaLXAcWAMQwGFiLESUyYSmNXuWYPZq0HO9ELUmGoaOz372yQ0a1eZCbLg3GFEkjkKhMPJayGHQWQudzRLlM1IWokAQBGiaBk2rMJanbdueh+mgXq9FXttPNvvNb2aRSikYGysxj0HTVDz77A88GccSDh48zDz4lZW6Z5CjF1katqZGN5lMe5rOOhNiAcjirShZ1Ou9tMRXV/qzWpDnEufJ1ws0VFyv19h7WCgUAWBoEhrH8eA4sHwz2eD216W3bRuplAJVDdcKoFEemhP2rwO2bTE53EQiwTp6aVoTNPqUSqUhy0mYpsnEWBYX5/Hii6e85j29vhMX2mvgemLUxLbtiFjydIMRJRl45MiRVcv8LS7O48SJZ/D009/EiRPPrErPt1M2VZJkZDI57N59C44dexz79r0fmtZkpDHqsfC8gHq93sebIHkqWier6yqazTrq9Tq7J/lcx8rKMs6cOQ3XBer1OruHH8SId3dWcl0glSK9hCcm9njdjsh9yZgtaJqK3btvwe23/27AC2tfZ22iG1HPQJJkrxmDgImJPaE58hsVo5Cb9YPOoTbnoF2j7c8Bd75X/UCZ3P7zi8X+Gt0kr9xbhz6dVpBIiHj55Z/ihReehW3bEEWRzTeOI+VprZbhlXm5EAQe6bTCNtz+8ivaPjeXy0U+304VxY3C9ZJR3cqIPe4NRpSK0r59t+HZZ58duhZyVF76wYOH8eKLp0Jzz0B4XSXAeQQXoStU3g6Du144j3jmdBHRNC2QDyaLCIdWy4CiZNForMB1HYQ5v4mE6LUDNVmImed5pFJp8LwARVHw+usXQsPelmVhYmIPLlx4tctoUk8qnVbQbNYjw6m09WE/EloulwfPCwGW7f79B7C0dGndDHYiIcKythZRZ/TPwmWCI4CLZrPButiJouzlfIfv4AaQd8QvXnT06Mfx/PM/DER2wuCvkugG2VQKQgKyTCR7iUBKIqB4Zlk2S2FRwZZ6vY5sFoygSb1UGkHrFwb3RyBGDX/aTxRJO9FWy+hKAfZSlotBEBvuTYAoEsdqQkajVCyiZK+w3HNYXaVh6L5NRZtN3T7XX4vteB5xmtVik8/pOTzz5KPzjxySySQ+//n/DiC4aeksQXn22R8wo92pSHXhwquh4XDC9CW5Rrrwdxp+0p88D11XoetGz9w0NdJ0MZqY2IN///fXu/TSR4mtZrTXA/SdovrzlmXBshpM1CcqZN0PmQxhe1OiWD5P2M2SJEHT+kv5Rm8UCNObahUkEgLT1/crnpGUCtc1d6rVFShKBoIgMC+VriVEKZGPJMfRTcHi4vxIDaV/bgIcVlYqcF3CmA9zLtZSQ34jYOPjIjEisZqQUVRLz2GFCmZmpiHLSYyNlVAq7cTYWAmynGRh+rAOZMRgiiyUJwgCC09KkoTDh4+wshnqcYiiiHQ67XkMVFKSB8+3latI/i4MwcUnqoPZ5OReiKLUJWVK0TuH7aJcvgrSj1iG4/ijCDwSCRGpVAp33HF3V1lKEByWli7h2LHH8eSTX8CxY49jbu43UFXtuubQtxcGC6mTSoMG665FMUjIuhP+cLqqNlGpXAPHcUinM3AcB2fOnPY2s2sL9/tz0alUmmmI0zKzTmPdCV3XsH//AWb86FpC5yytDydRqXbrzlwuD9u2R94y0+9Q6LrKImqapt7wnb5WgzV53FNTU/jqV78KVVWxe/dufOUrX8H4+HjXcbOzszh+/DiWl5cxNjaG48ePY//+/QCAZrOJL3/5y3j++efxH//xH2sZztDY7I3ZVxMyGhWxI4rZWamUceLEM13sVurdfvjDhzE7e7HL673vvgcBEA+VCD6QDl+1Wg2pVBKHDx/B7OxFWFZbhtF1gWRS7lmD7c8x0mcW9nyoKEznNQap7XZd11NZC9Zkk37mKlZWeNTrNdx334N4441f4Y03ftV1jWw217V5Ip5anNNePQZ/dmEe5qChcVL2KAVSMUC7YsCyLNTrVSYElEw64HkusMnrhCTJfdq2hr+nhLjGIZlMQdP0UCIjaRmaD8iB0rXkhReehWWZjMQGICD8Qudls9nAc8+dYDXjpdKOkXX3aufp28TPG7nT12qwao9bVVX85V/+Jf7mb/4GP/7xj3H06FFEabn8xV/8Bf7kT/4EP/7xj/G5z30Of/VXf8V+98QTT2BiYmK1w1g1tkpjdtqfl3pp/SbOqIgdYR61pqlotQw0m00vTJiCrmtoNhvMuz18+Eik10u9+EwmywyuIBDWNz1vbGwMkiQjkRCRTCZRKIyhWNzBvHc/sYaQgQarOT18+AgOHz7SRczp7MfdG+ELcatlgOcFnD9/hiln+ZFKpSEIQtfmKVZZuz4gm8DVPetEIsHeWY4jP0e9L67rwraJ0RPFcOEMAEzWt997R+cwYXlzyOcL2LFjF4rFHT1LGck4bFy5cjlAUJ2c3IuHH34MuVwOipKF65KOX1TwheTIa6jVaiylZFkmWi0Dy8vLa1of/esJnft+cmDMGh8Oq/a4X3nlFezZswcHDhBpzs9+9rP4+te/jkajgUwmw4779a9/jXq9joceeggA8Mgjj+Cpp57C3Nwc9u3bh6eeego7duzAt771rTV+leEw6u41mwWjInaESRbqugZZTrFnpigKJElitab+Mfg7Hs3MTOPll38KVW0inc4gmUwinU7Dth0vXKl3nefH4uI8Tp8+BcPQWX6OeuPDbEh27Rr3PBWVfUZL2AYFfRZ+UIlJIpSRQTabDShnmWYLoihiYmJPoDNUjM0ODum0Ap4XvHeWMLavXftt5BmUaW5ZLRb96iSqtT3t6PeO4zgoioJarQrXdQMypwC6Oud1ol6vMu3yzhxyJvMozp49hytXLntRggQowa0zbUPnm2kakKTsqtdH/3qSTKbRbNbhuoCipGPW+CqwasO9sLCAPXv2sJ8VRUGhUMDbb7+ND37wg4HjbrnllsC5e/bswVtvvYV9+/bh7rvvxjvvvLPaYawa27kx+yiIHWEbAF3XkE6nA8f1emadDHdVbbI2hPQ6g+y0Jyf34sEHH8H582dQrS6D4ziMjRVx5MjHhvqeMzPTnpRkEBzHQ5alnoshDVVGecltopOKXC6HXC7PiFA8z2P//gMshUAX00FAmfZxbff1Bc/zjHxGm1lQQ9wvvaIoGTSbDaYxDgihPIawvylhjbsoFktsM0zFh/zwaydEgUQJuC6nZN++21Aq7cbTT38TspxEq2Uwxn3nM/Dfby3rY+d6UigUGau8s7/3enQs3G5YteHWNA2yHAwHybLMWi0Oe9z1Rlzk3x+dGwC/ehlFr2fWGdXIZLKo1WoeOzYF0zRhGDoEQcDTT3+z5+QbxWakXL4W6DZGQTTQe7OA6fFhhpuy5mltsKo2USrtQCIhwjRNKIqCN998g7WFFARC4usFyl6nYfZarYYbNR9OKg/Wb73wt3F1XReSJMFxHDQadWiayjZ7lUqZ6XtHQRASgd7vvVTKopBKJXHkyMfYz2HRL1KemfKU2rrHQ7/PykpbIInmsinoGkgdGE1TA/lnf1qJygqvZX0cZSfCXsdtpgZN64W+hvuFF17A1772ta7Pn3jiia4yFl3XmZIPRTqdHui4XshkZCQSwbyhIPAoFNIRZ/THxz52FKdOPQ/HsXy1rg4+9rGja7ruqLDW79cLc3NvYmpqCisry5AkGRwHGIaBQmEMR44cwb59t4We1+uZlcuX2TXpdRqNGpLJFFsAUiny73q9BsPQPcIPB8BBOp2Grqs4d+5FZDKPRo5hLYhilVNQDyO8Vjta9pRc02UGnHhBLhzHAuBg375bcfbsGc9AkOv0M0SO42JychLVKgl55vN51Ou1NefFV9NoZaOxnkabaA5Qz5I8W8MwmDH3d/gieeXez45Ekhx88pO/DwD4wQ9+0DesTSFJEm6+eXfXHCwUDiCTkb35tYJCoYAPfehO/OIX/4ZWSwiMKZfLM/W2ZrPBxk1KKl2Uy5dRKt2OQiEdmM+pVAqimICuUzGXBJrNBmj3PeJ8rf/6ePLkzyGKCYiiBICUwplmC7/85c9x110HBjruwx++c1Os4euJvob74YcfxsMPP9z1+csvv4yTJ0+ynyuVCqrVKiYnJwPH3XrrrVhYWGAiHqRr0wL27ds38CAbjW72ZaGQxsrK6id0qbQbR48+0BVqKZV2r+m6o8Jav18U/DtVxyFeKK2nrFZreO655yLFWqKeWaNhsGuKosyuk0iIMIxWwEMHOIyP78bnPvc5/PM//zNM0wLPJ+A4Lng+Adt2cfbsOZRKu0f+3fsZbuoNUyIcEX6pMy+k97Xb4jA8L0DTdGQyWdZalG4KyGX6lwrxPI+3337bq8cV4TgmCoUiGo16HzZyOGiZ3eg10Ld29zOyyep+JtTD9GOQdIV/HQGAT37yUzh58vt9z+M4Djt33sQaC3XO/VJpd1fToVyuhPPnz2B5uey9rxm4Lq0j15jgEHnniebB2bPnsG/fbVhZUUPn85Ej9wMg0TLLshgHJJ8fuy7rY6VSgSwnA+VwHCegUqkE7tvrONt2rusavp4h+507wztErjpUfs899+DKlSv42c9+ho985CP47ne/i0984hNdOdDbbrsNO3fuxMmTJ/GZz3wGJ06cwC233IK9ezc+F3EjFvn7w9ck30xqrjVN9cJ7vQl6Yc/sxIlnQol+pDbbjuzJuxE8g34eJw0r0rHSEHo/jefOa1CFqt/+9gquXLnsne8OzGKn6nK6ThTl7r+fkDtfeOHZgccRvN56NS5Zb6PNeXni68vCp+H56J7a3ZAkOUDSBMh86RWtoZ49z/Nd730/g0Dnov842kXs9OlTMM0W24ym0wpEUeq6R9QauFHr4qApzM2S6tyofhKrNtzJZBJf//rX8dRTT0HTNLzvfe/D3/3d3wEA3nvvPXz+859nHvnf//3f40tf+hL+8R//EaVSiYXeL168iC9+8YtsZ/fII48AAE6dOrXW7xUjAsPUUw66k+zVzef++x+KvEYul8fy8jJMsy2bKooyxsZ6CZkMjs7xU4nV/i06XYiihPvuexDPPXdiVQZD0zTY9lUsLb0Dv3GjXaH6jcNPhrMsG88//8OB2kVGXG1Llp5RIR4izDOaMH8/QhcFzfcOA8syQ7katPlIGOjfhYoSnTjxDNvYnjlzGrZtwzB0NBp1XLlyGYcO3cNqsynofei7PjMzzRqN+A2baZqbhsMTtbaE5fPDGOeDHrfe2KjqpDUJsNxzzz344Q9/2PX5TTfdFAijf+ADH8AzzzzTddyBAwdiI32d4d+pUt3jsHrKYXaSvXa/vaIaExN7cPnyO4HNg2U1cccdH1rz9wwbv+M4SCTEvqHmVCqJBx54BJOTe7385/BGz1/m1gmO4z1hmehwnl+adbWSnL7RrPH8jQHPc543Gq1uN6wxH9QYW5YNQRi8nSt9hzvnCrmWNfCGkTbVoQqDhE3usrFPT09h167xvkQt0niE/D7MsG0kI7vf2jJIOetm0TPfqOqkWKt8xNjsJQqD1lMOs5Mcdve7uDiPkyd/jnfeucQ0yWn9qyTJAcUn/znDPNew8SeTRDAmkUh4NeThDUOSyTS79qC608PAcWwkk2nouh5pGLaihzxKtBvOuJHGVpZTkCSxS8p0raAlVAS9//apVBqm2YJtO6HlV2ScxPOlXjwpHXQgCDzLo/O8AI4Da6pDdQE6N12u6+L8+TOBdz/sXQfgqbglu+bM3NybG9YuOGq8/rVl0BTmZkh1blTI/oYz3OtpWDeyf/agGLSe8uWXfzrwTnKY3S99RqKY8OktE0lQ2mkpLNc37HP19++mYfhUKg1JkpFKpVljCD/S6TTS6UzAUy4WS1hZ4RlDd1RYT6b0VoVfDYySWXsR+QxDg6IojHw1SGTBH2WKQrsftuOROLs3Drff/rtoNhuo1apotYwugRT/XJHlJDhOhCwnYRg6NE31moRwvns6AHhWL02fQRhWViqBn3ulqj772Se7zp+amtpQ8anVeKmb1SHaqJD9DWW419uwbhU1tkF2qsPuJAfd/bafkcQWUYA0bOhsRUgxNXWWlaZQog1tShB1T0mSUamUwfPtVp71eh3FYglHjnwM58+fQaVyDQCpvVUUxWt7GMwD0olJRTU60Ut6sheo4e5FXLrR0PkcB3kuKyvLXgTFBkA7yrUbaYRp04cxxv2QZRmZTNaruAjvStdsNnoKpPjf42azCdd1usr5/JEEUvFgQxDI4l8oFFEuXw0dX+dzGXaurqwsd0myXk/xqWHHu5kdoo0K2d9Q3cH8hpWGtEbZlWZUnbk2A9armb3/GaVSaZaHsywr9B6Li/OoVK4FvKB6vQ7HsXs+V9r3m/4bAKtXP3PmNBzHQTabDxjOsPvTiWmaJjiOhyiKyOXyrDxstYpm7fODhoX2Mt8OIFKag4F+Z1mWQ9XtouA4ttc9yw1UAQDdz5beo9eGQJJkjI0VWbVFGHieQ61WxeLiPGu4U69XoarNrrly8OBhtFo60//uB0JItHHkyMci34POz4edq4XCWNfG5Xoysocd73qv22vFsP0kRoEbyuNebyLBZilRGAXCdpITE3uY7vhqd5b0GSUSAvtb0B7BndKHAJm0VJEMoIsWEZcYH++u9aYhtUol2HlLEASvLrvGPH2q5WyaLXa9KCIMz/OsLzJR01otw5mMn3p9vVSvBkVUOHeoUXlcg1GWjPVTo/PujHw+D47jUa9XvfA0B8cZ/BlYlgmOA/ofzjHSHy3BoqTIYnEHarUVuK6DK1eueNcLv6DjOFBVFS++eAqSRBqQqKoKXdfgOA6KxVLgPUom02i1WrAsYrjD/l7UGHMcmCfJ80LoM+xsYhPl9QEIaOPTMR05cgTPPffchjGyh/VSt7M89WpxQxnu9Tasm6VEYVTobBYyinBV+xm1wHECeJ6EvqOuU6tVkUopXpg6WFbV+Vynp6dw4cKrnmfj75tNFM0MQ2ciLMRIOTAMA4qSAeB21eBSLC7Oo9UymMc0TGjbH0qn+teapgY8Hn+Jkm3bEEURoiii1WqxcfZCJpNBo1FfdcidRhKo8Myo8/m9wPO81zKVYDW9yTVNY7XxtF4+DCSv3BajUZQMS4+4rhvYSPXbBLiuC00j6n+0IUhYwx2ANJkpFIqoVpfZUa4MPAAAIABJREFUpsF12/3meZ73NBSIPC6dB6Iohhpux7G7ys46U1W95utddx3A/v0H8PrrF7wGOBLuvvvQdQ07D0Ms204O0ahwQ4XK1yv8S0F3kmEtLbc6RhWuos8ok8kO9IxyuTwEQUAmk2EqUKTJSKlrobpw4dUe6mgua78JtMt3iPhMs+ciMDV1dlXeNTUmkiSjWNyBXK4AWSZdpoIRBLAFVpJkJJMp7NixC4899p/w3/7bX6BY3NHzPpIkI5crDD0+CppWSKcVlhIYBKlUek2L56g8fNrGkkrNDpJqkGWZeXGJRCKUrNgLZNy05SbYdcK8QNrSkqaG/O+S67pIJrs7ZC0uzrONGH1Xackm0Snv3Yq413ydm3sTs7MXkU4rKJV2Ip1WMDt7ceiWnTRV4G8duh5Y73V7K+KG8rivB5FgrSUKNNTbaNSQyeQ2DXtylOGqycm9uOuuAwPJElIPnecF5PNjUFUVhqFB01QmVkF7fdPwd6fnST0b13U975R4736Rk16la1EkoV5IpxVIkgzHsVk9L43GUH1lOjbaTCSdJhu+J5/8QuD+ut77OV279ts15sVdGIYBx6kimUxClpOo1/v/XUl/9gRWK3u6XpLp/TZZxFvWIIqE6U097UHFWfzX8UdOorxA/zusKBloGjH2yWQKlmWh0agFvN525YXobaTo/Uh0JKrrlx+95usoWOXXkzC2WWq2NxNuKMMNbI7avyj4J0MymRrJZBhVGcX1Dlf5x03DkY1GHabZQjKZQiqVDjyfWq3KjHNnjlgURShK1sulC8hmyb+pcpyiZEJz9/TvsRoYhoFkMoWjRz/OnjddfMplwmanXpTrutB1HRzHoVAIqsbNzExDkpIAuIB314l+xorneeRyBfA8z9j0nbAsE7ncTXj33aWBv6dtW16zmBb7ToNHJzZSGMZFo1Fn+eawXtRRoB4wLSujBtxx7K6e6/Rd8huem266GRMTezA7exHJZIql1WZnL2LXrnHmLctyEolEAqra9DYXDnK5fGTZGcX09BQajTrq9Ro4jkMqlYKiZNl8HQWrvFcFDf39KI3sZl63NwLC8ePHj2/0IPpBVVtdnyWTInR9cB3hrYCXXvoJLMvywlo860ZULl/F/v3Dt6qjhseyLEiSBMMwsLAwh0JhDIXCGBYX5/HSSz/Ba6+dx/z8HFKpdJfhoKjXa1hYmPNUmQzYtgOOA+6992jkOb3Q6+/XOW4SBrW8LkcWTLOFVstAIkFaKJbLV5nnZJpWF7EokRCZ5reua+A4AdlsztsQUJUyt+sZ0UYLrZYxVKg8lUojm83AsixMTt7Knk+hMIb9+w/g7bfnYdsOLMsMLP62bXltCdvP87XXzkOSJEiS7OW9h28wAoCFv23b7Km/ffPNE7h2rX+Ewb/pWB8N9PWH67oolXbg1ltvw7vvLkX+jduNOoLnAv7n4KDZbOCdd95GvU4JkC57lyYn92L//gO4665D2L//AKanp9hc9z/LcvkqyuVrMAwdzWYDtm1571MOhqEjmUyxkDlANs/ZbJatD9PTU5iengqM1TRN2LYFQRBw771HUautQNO0ntfpB/pe+iM9lK/wzjtvR6451wPbyTYoihz6+Q3ncW9mjJo92W9XPGioa3FxnnkHhqF73oWDO+64ZyRpgc6dedi4m80WVLXByqVIv+QGFCWDWq2K++9/CGfOnEYqRcboOER1iqhUWcxL1zTK/rVRKu1g5WBhz4j+PbLZXIBARUHODapbcRznedvJyFrzdnQgeD3HcXD+/BmcPn2KKWxRFjQNvVM29LAkLqJMl/A8uOjQ+5tv/nrA621NGdVOUJXAZDId2ts6k8lBkiRGLPP/nv4tbr55Ar/5zWzgd6TyAJCkJHsH/O+7qjaRTmcCEaxEIoFy+RpMsxUgUDYaDSSTNvL5MViW2ZP8+vrrF9i4aIkcQCJAmUwOAEbCKo+KwFHRmuvlid+oiD3uTYT5+TkYhuExTTkWghtmJ+xH1K5YVZtYXi5H7vg770UjAclkkuViqRe7mnEBwNLSIn760xdCd+ZvvPGrrnGraoOpadFQJUDCu6XSDub5v/vukuddcygWdyCVSkMUJSSTSS8vKCGREJHPF3Ds2ONeKDr8GeVyeRiGAUkiOelOTzXKeFERkFQqzep9aVSjXq9haekSy3PyvMA8H5J7VWFZpqfbbkEQEkzJLZEQoWna0B5uOk0U45rNOnRd63nsMAa5X3/qtdaj+//O64UrVy6j2WxAURQkEgmPH8EhkUhAkmT81//6f+HOO+/Gzp03YW7uDTZXyLhIGPq9994NTRFYluWVijVRKBQDUSRd19BqkblOdQ1IdKcFWZY9ffN26sG2LTzwwO9jcvJWlMtXoapNZLNZ3Hvv0YDxe/XVc2yOdBLhZDmJhYU5vP/978fNN7+v53X6IZVKY2FhjukrUONPyHbJrvlUq1XxzjuL18UT3062Ifa4twD85WQ8L62ZPdkrLz2Md7/aSECv/Hovgkz4uG3wPPVSo4lluq4yz4iSymgZlp9FTMfe6xl1lvdFkbCocle7lMhl9d6tloFmswlZTuLatd9iaelS4FzHsdGrisuyTKRSivcuBEviBgFltvfystcLa/fKSUvP1ZSIDQrKRrcsi70fuq55KRcei4vzLL8qSXJoq8xms+EzlkHGOH2XOqNImUwWtVotoBjoOG1pXprbppEXUZTY3OllYEVR8urauYA4kJ/MNjU1hU9/+j+vyduNIozNzEyHzifbtgPdyjarquRWwQ1VDrbZ4S8n0/W1l5P1KqOgJSp+RJHNhjmWguapqdHqLF2hUpV+UIMaNm6eJ95NNptlIWSOI151ezNwFqqqdhkMqrZGPVf/2Hs9I//fo9lsIJEQkMvlsXPnTdi58yaWN6ZhTQr6s65rkOUUy00bxvD5acdxYJoGeJ5HsVhCLldAPl8ILIz9zifPxAnkNEeBTs+/UxhkrXDdtljKeoG+L45DOnE1GnXvXSdG99lnf4DvfOf/xXe+801Wf08IX2lmcKnBDiujo+9Sp6qiJMnIZrOgXeToXC8WS55XKqNQKKJU2olMJodisTTQ97n77kNsQ+ufB6lUCgCZYysr3Wmf1SBMMSxqPhEBo+2hKrkZEIfKNxkogem++47id37n9jWFkWgYKiwkFhXqCiObDXMshZ9oFxaKn529iJWVClSVkN1oaI+OsXPcH/jAB1GpXGOCLaIoQRRFHD36cTaGc+f+vx5enut5Sgk29mp1xSu9q3vKVhby+XwgbEj/Hv/2bz+HbdvQdQ2q2vRIbrREpztMmkwSYQ/LMtFq/f/tnXtwHNWd77/T3TM90/PQSLKMsS1Uxl5wMF7beBUjMGzAIBlsslB3yRr2hltAtqhblWS3SBV/JZssVdmwEOLdraQqt2BTYAy766rkKgFjr8FOLBuLtTE2D98IsC0JY1vG1mvePTM9ff84c850z/SM5q3R6HyqqETjVs853a3+nfN7fH8q4vF42fKopCd3EqFQEA6HA7LshNPpSpcWFb+T9np9edXaiqWQEa123Js8NxKcTpntdvNR/qJEhyRJuPPOPnzyyf8zeU6oO5zcv8yiS9d1xONxJBKJdFhGZL9HjDf5fY/Hhz//87vQ1bXMFAYznqetrR1/9VePYOXKVfD7W8v6WzOyZEknAODLLy8xT4WiKHC7vQCQ1kFvwXXX3VDm9SpMvnfO9PRUzvwrCQMWoplsA3eVz1PylVGUUhtZTh1lIff66Ohw2g2YYlndoVAQsuzExo1fyztuWipTbnJLMplksqpffjmWVlnTIUki7HYZkiRanjNbOQ3IqKcRF6Rk2k3b7Q5W3kUTjKrh7qWd0xQlwV7ENF5YDNXY3cwU0y6k9EYToYrF6XQhHlfhcDiZ1yKZ1CwXQJl4rq2gXKkVGdW1JMsgp7vWfBDjTVT3XC4FwWAgrcyXgsMhY+3a9abWtMWqKhbztzZTiWd3dw+6u3tM5aXGkrWenp6adtvK987Zv38vQqEAy1Wx2x3s751TGtxwz2NKqY0stY6yUOyYZPE6IUl2Uz21orgLfsdMY2hpac1boyyKIhYtWoz77/+GSWWN6GKnEItF4XS6LGNuJCPWeqdJFOCIx0CSJCiKm9VbUy9CtT29kUgEqRSQTMahaRrLlp9NiCvUDo/Hi8nJcUvDWYrRBjId1AKBqXQSl92UIGhsECNJEnRdTJcNllaT3d6+AEeODAAoXc5WUdwAyPOeSCiWkqdA6QvlfM95KcInhTTMZ6PbFl1QZWSHa/ZVTQ833JyaUGiHcfDg21AUBYIgMTEJGuurhFtuuR3/9V9v5LhUbTYbZFlmLy2jyloGHYmEmjc5T9dT6Z2LOXYYDAYAkHCCx+M1fVbLpCqqpmaz2dh8Z9uA6zrxnFTbZU5L4rINP5HCJX2wVTVWVg6BzWbDkiWdObXPxSBJYtbPhWO21RARKbV1sNV3vvHGr+vefpgKCVFPEUCqNHhyWnlww82pCYV2GD5fC2KxCAQh8/hVQ4Wtq2sZ+vq24siRAbbrI13HPLDbHUwZbXz8ikllLTMGLW9yHt1FE6WtVM7OjHYMc7s9TCgGKL3TV6kYXbqlGG2jS9j8OZWMLc3V7HQq6TK2ZM16jGdizwJ8Ph9b9NEe6hMT4ywZqlgkScKZM5+VNeZs9TH6DNfSDV0NrYfZ6MfNO3xVF264OTUj3w5j3bpuHD58AJqmV72LWr4uSWRHFmM7Qkmypw1BprRMEGyWY1i3rhsHDuxFNBq1MHQkPkqyt8OIRiMwJzch5/hqGzXj+YrV26bZ2sbuZQBxZ8py8XFzgMSXVTWaTvyrbRY4ALhcTlZDbnx2Tpw4hitXvix67D5fCwRBxNTUBBwOuaSFDxGzEZFIJEzP8JIlnTV1Q1dDetjvb8X0dKCu3baM41bVWDpDn3TCoyV3nOLh5WCcutPVtQybN99TsItatToPnThxLF1THWWNJGw2G5LJBMt4p4pPoijhxIljOd/V1bUMN9641tIgWTU0oVjttmuxEzUiCAIrvZFl14xGNDvRi2ZMF1t+BACiKMDpdEHTkjMmdVWKKIq4887Nls/OunXdJcXRQ6EgwuFguuQuzhZhRmhmufHfBEGE399q2Qnw/PlzVemil49qdMrq6empe7ctOm5ackcXl3a7PW+HM05++I6bMyssX74C7e2LTZ9RF+PExDjicRWy7IKiKGXtWui5Llz4grnMaZ0t3fUad95WjUuAjESjqqqQJDvbWRkxGipj5jR9cVcrq7wYiAQrzfAmGcYnTx43lTORXXkqRzqVlu05HDICgUDe76Ad2IwtVgGkd7qlz9PohaB5B/muV0tLa8FKCYdDRiyW6xmxgoY8aDJb9iKHlnbRygejyAoNnWQnoh08+HZNXcLV6JS1fPmKunfbouPet293+u9OYjK+PNZdOryOu0GZb/MzNhaJxSIGN2gKqhpFLBbDyMgZLFjQMWM96+joMPbv34tAYJoZhEypEHk5i6IIp9OJ1tY22GwCk2mkse8vvvgcw8OnmUQj2SUkQdW8rAyDlXKWw+EsWH9cbXQ9Y4iSySQmJsbh8XjhcimIxaKQJCmtIidD05IGg0nW8HSBU6iZSfbcE4l4uiFGeYsT43Vrb+8whRuyWb16LY4dG8zbGGd0dBjhcKgkdz3V9s4IqdggCER2mD4P9HNRFFnOhJU8sFW9NtUzOH36k6Ia+swE1Rbw+9swNnYBn376x5LO6XTa4XSSMrbJyXEEAtOYnByvaEzFjvvUqQ/g9bbA5VJMz1wkEsaaNeur8j3N9O7MV8fNDXeDMt/mZxRsIe03hbQLM8HqgzUtibGxCzPqG+/Z8zuEw8GczzMtP4lus9/vRyAwbalVPjlJEp1UNZY2YlRCUjdpi88EVdbK7jBlFOqoNsYYu6alEI2SHubUMMXjKhKJpEldSxAyNdilLjQyTS3Kc5HTMdjtdpYZn+/aXrjwBcLhEFMt++yzIXzyyR/x/vtHMTx8BkuWdKbd1QIbF11sWY070+HMLA9KFmdIu8LjkCQRbW0LWBvOfMbGSkAlHo+l3dG5HejKNZQzdf4rhNNpxyeffFr271dCvoVNNYVYrDYFxXZBbDTyGW4e4+Y0BEZJSOMuB8gkedE2njPFC6enJ5mxzzSEIJAMaBcTW7GSc41GM3rnxg5dVsy0sxNFAQsWLER7ewer+SVzyYzLZhNgt9tNfZZngu5WCmGzCWm5SRu7HrqOtOs+mSPTSv9t5vPmzrnYzHlJssPpVExjNJwZU1MTOcl25vgyuR+BwDSmpycRjUYwPn4Z4XAIly5dxEcfnUxn9tvY/fN6vfD5/Fi8eClEUWSNPbIXYB6Pj4mVEKPtYTvvbPd3vmQuo0wujX07nQrT6Sba9UEEg0Hs27e7otyNSmLplf5+uVQjRl8KM0kvz1V4jJvTEBizThXFjWAws2OmL1LSlcwcL7QqvaG/Y3SLU0lKp9OVE9PLrjenMpbUPpEdGKBppMmI0dATd7gD8Xhu7ThgNoRutweSJCEcDsHpdKUV1iJwOJzsu2nziqmpiYrj4jQWT40YFb2gNta4Syb/XtyO2SrhjhhCKa+L3edrQTweR3v7AoyNXWDuaPKdtvRLPJ4jXZq9GzZ6CbLDElQLQFE8UBQ3BEHMqVo4cmQAU1MT7PfoNbbZhHRtPE1gJB4Rt9uN665biaGhU6YM8ng8BkEQsGPHCznPU3YMfseOFyDLznRVQwg2G/FwJBLxsjPOKy2vmq3yrGrE6Euh1Lr3uQI33JyGwCjYYrc74HK5EA6HABADY0xkoTudfCpSiuJGKBQyuMZJfLu9fQG2bXvE9L1WL5JYLMq6Ppl7bQN/8idfwZkznxpe+DYkk5qprMput8Pt9liKkQhCRsGNzsH43Rs3fo31bt6z57d5jTfZSYsz1iyLomRSq6LjEUUJfn8b2+Fm9xXPB9UPNy5gjC1W80FCEjIT4JHlTOvHeFxl/c6zd/OFsvatxgaQFrB+fxumpycBAH5/G7uuAJHepF2+MudNIZFIsR13KpVkOuOjo8M4ffpT1pObLnji8ThcLveMyZN0UUp7dNNn0uhBsvq9QvXglZaFVaOsrJhxWlGKEE2lNfHNWj/OY9wNynybX3ZzgpYWP77ylRsRDAaYmzG74UK+RiaSJMFmI601adaw0+nE7bdvsoxt0WSfNWvWY+XKVfj882F2XprAJQgC/P421kiCupqpG5e6fCVJhN/fls5EpmMR8jaMyP5u4+e6rue0ATUyk5teEER4PJ60hrbZ4Om6DrtdgiQR9+1Mu216bTM7YvNuN7sbFS2hMn4myy6cOzcCh0OGpmnsXKIosbaj2bHmUjBWC8iykyWRaVoSXV3XsmesrW0BgsEAawKTfV3osxQMBuByKRgY2A/So9vODD4NPcTj8fSzqeGzz4Zw6tQHOXFUGvem+vXkewCPx8NyOrJj5TPFsItpRpIvtut02mGz2TEyQuLNkUgIoVAIqkqy8T/44P2iY8GVxNpnotxzG98t9Yip1xKenDbHaNb50ZfJ4cMDOHv2tOnlkG3ElizpzNvdDACOHj1imVgWj6u4445eXL78JXPder0t6OzsyslAtnqx0ZeisROZJEnYuPEOfPrpH+FwOCCKIlSVPJepFGkLSVygIpLJJNra2nDzzbdh2bIVecef79rQ8axYcT38/lZcvHg+x/CS1pIkdOByuZBIxCFJEtxuLxTFDZvNBp+vBZqWhKZlGqIQY0pctclkArLsSs8h/87d5VLQ27sVV65cTht5HaJIFOmMIYLs+2AcsyAIaGnxM8OoqtF0HXUoXb6VMuUkZNfDW50z+3rQ5DqyYPGy86mqajKqV1+9BDffvBGjo8PQtNxkPF3X4XZ7oaoxTE6Os0VcKBRg/25ctCUS8bRqnAavtyXHwND/RkbOQNOSaalWD0uwszIiM3XXK9T5jz5L+YzeokUL4XR6EI+rOHduxFQKF48nIMtkXMUYyZnGWQnlntv47qy029psw7uDcWYdo2vb6XQVVZ9dyK02k7svmUzA621hcUnjd1m52ffv3wtFcac7UsksZmqMnauqilAoCEmS4HQ6oaoqdJ0YPa/Xx9zXPT09rE69kKEeHDyEqakJ5sZWFHdOPXlrazsmJq7kxHSj0TAAkljU3d2D8+fPIRCYhtvtznG5U08EUa5SmTdCEARs2rQZJ04cQzgcTotkZEq7RFHCpk2bTfkAdrsEm01kLULpS5WOi57bSCqVwsTEFSiKJ90S1ZwwZ/zdbGhtOakTN+/IreLdbreH/X9VjbHyQvq80OtKOq0piMUiWeOlZV9uk6vVaOCM36dpmX7TNNErO47a1bUMvb1b2DMnSVLBxKx8Lt6JiXH09++a0XV85MgAIpEw0+R3uRTmll+zhhi98+fPwettgd1uNyUFRqMR+P1tRcWCa+mKJhK2cTYHuogu5dz1jqnXC264OXXDKpO1nESRfEItxiSkwcFDCIdDzL1Lk5Xod2UnraRSGiv9am1tZ+cyxjkHBvanRVgS6TrpKNt5kdpo8gJLJIDBwUFs3fo/Cs5h377dOclc4XAYkiSl4/lIG9SQpQoblWyNx1UMDZ2yVJ8bGNjPxphMJpFIJJi6GlWQAzI5BoIgmuZvPGdX1zLWmzweV2G3U2+HzdCPmvxsFS/XNA2hUACCIMLr9cHj8SIeV02JiEaoYfd4fOlnJQ5AZAaGSraSznIKfL4WRKNR9u+qGkMwGGDjojvrcDiEPXt+yyRavV4fgsGgKRnRKKNKF4dUeMboks/cC2RVDeQar1KMiNWiNBqNpLPSwwXlVEdHhzE5Oc7uMWmbG4Lb7TGNyWpRYuysVowBrmas3AhtpWus7AgGg3C5XCXvlKvR3KXR4IabUzeqsTo37pRJuY6AWCyKVEpDe/sCtnuZmLhiqi8OBoPweDIvruyx0CYh9CWfvaight7tdkKSRKa1nEoR96jxXJIkYWpqquA8BgcP5cnAJqpcDofMro3RUOVzFWuaxsZKFzY0e9tud6Q9A+R3ze5kAUeODKTd7QloGsmWptfS+MJ766038emnf2RjATKLBzZ6VhdOXPJWkqq6nmKlf0SBLH/CGfVgJBLEIFCBGI/HA1l2Mq/II4/8DQBj+U+c7bQpNAGOjl8UYRJroapzdrsdK1euQlfXMlPfdhvr822Dy6WwHu2iSLwvxnK+QuVixRgRq+56sVgUsuyaMUOaPKs094KGL4iH5qqrrmbHGY2uUQ2Pek+KMcDF9hkvlRMnjkGWXVkqeDpisSjWreut6NzNADfcnJpglQ3q87VgcnISiYQKTUtBFAXY7TJaW4tfQWfvlKn7jL6oDh58O90fWzDtoAAdwWAAdrsDO3a8kHYXp+B2k11SxjWcSWIxuiYvXPiCqWbJspMZjcnJ8ZwSpmQyCb/fX3AexpKkbOhY6IuTdr3KhyAIUNUYAoFp08KG7g5VVYUsm5to0Be6pmnpbOlWuN0e04vXGC/9wx/eQihkLtErpK5WqB6cquKR5D8t72KEJL1pWLlyFc6fP4dgcBqkA5ubLZRIDFc2uY9XrlyFkyePm0oCrbwV8Xg8ZzHkcilQFBeGhk4BAIaGTsHpdEFVY4YsepIJ39LSiltuuR0ALSlMVM145at2UBTFdJzVwpeESzwIhUhVBJ1jKpUyjclodJ1OBeFwMF2/rhRdX10rVzQNY9BFMk1mFEWp6XbP5cANN6fq5CvTWrRoMS5c+MLkkksmw7jxxj8t+txWu3aj8ZFlJyvDMiYQ0d2E3W6HLDtZN69kMgFdzwisOJ0udl6ja1KSJGiahmAwCK8XLLGopaUVyWQiZ8fR09NT9vUTBMH04iRdry5b9iunbm9NIy1JjQsbSZLYvHM7X+nMRS0IQt5dHL2XRqOdb8wZz4CQs9M2fbOuY2pqgu26C4u32FgYAAB7rqjxj8dj0HXyDNBnbWjoVNpr0IF43LrHOr0GNpsIXdcMu8wE7PYWaJqOkyePQ1HIIkEURWYISWjEx8IMtTJe2bvz/v5dRbmlHQ45nTeRSucPECW41tZ20/myx02qIWyIx1W43e6i51ALVzT1BtBFMkDat9KF9nyHG25O1cknejAycpYlf9GEE4dDxvnz59DdXZyhs479hU3GhxpZAKZGGjRLHCA79WQyCVWNGbKtdUSjUVZfa3RNulwKe3ET9ypRJdu48WtszsaX9vLlKzA1lb9NZEtLK+sZno3d7sh5ce7Z81tLWVH6syAIWLeuG2+/vSedSa6ly9ass8WNbvPsF79xF3fixDEkkzPViossnkp3d8Vox5BdYOHacSrUcuLEMdx//zeYoRkfv4JUKoVkMsHuvc1mZ88a+bdk+qWfPxRjzKbPju+STH1ybTI12OQeZC9w6hFHLcYtPTo6jEgkzGLDVLxIlmX09NyWc85Gjf/WygXfLHDDzak6+WLZiUQcPl8LFMUNURSgaWQ3WEqM2+oPmpTh+NgxiuJm3a3IjjiJ6elJeDwe07lILbaABQs6AJBkpkgkjHA4hEWLFptck3Q+JLadzDGspb78brnlduzfvxeqqpoUzrq7e3IWMV1dy1g9slFEhWKz2bB+/QYApDQp4yLObxSNtciCkOvqp8Y8EJhGIlG4v7Usy6wOOzMmojxWaDfd1rYgHVdPIhjM7UZGd+7Z2dQkNGKD0+nG9PQkdF1PL6rIfaJypjQ2Toxs/lADFZTJju/a7Q6TS58uSugx9RbyKGZnT2LDRPcg42IW4HQqDWmg89Gs2eDVoiLDPTg4iGeffRaRSASLFy/GT37yEyxatCjnuKGhIfzoRz/C5OQkWltb8aMf/QgrV64EAOzatQsvv/wyNE3DkiVL8OMf/9jyHJy5Q75MU+OL0Pi5ccc3k1KS8Q+a7rpsNhtLMnI4ZDgcMhRFYU1CfL4WJntqRNM05q4FyEuflB3FcP9kbiavAAAgAElEQVT938hxTcqyM52g5s5p51gqXV3LWBlWMS8mshiZMpVRpVLE9d/buwVdXcvQ378LTqcL0WgUgHVddXZ9NIn1Ehe81c7G52thRtGK6677Cvz+Vhw9eiTru4pTOSPekSTa2ztMMq/UOAqCYApZADbmqYhEogB0Vo4VjUYgy850HX07CzPEYlFTsxqj14J6Yczx3ThSKQ1r165PS53C8PzYmNemGtnTpTLTDpkumm02O1ts0gS+uUajegMagbIFWCKRCP76r/8a//zP/4wnn3wS4+PjeO2117B169acY7/5zW/i29/+Nn74wx/C4/Hgxz/+MR5++GF8+OGH+Pu//3v8+7//O5544gkMDQ3hrbfeQl9fX9Z3cQGWuUQ+0YMbb1yDy5cvsV1LPJ4wiSEUq5RERVK++OLzdPY1Uf+iCklUk/vOO/vw53++CStXroLX68sZUyIRh8PhhMPhYOeORCJIJOI4deoD6DrSNcf5lc/yUcz9y6eals3o6DA+++yPiMcTOZKZPl8Lzp79DMPDZzAxMc703GlLVLr79np9OS9vm02AoihwOkk5HRXyuPbaFfj00z/i6NEj7BpY4fF4sX79BrzzzkFTaILkFejphZQz3Q7VDJGwdTABku7uHly8eB6iaGfH6zrJOaAhC5sN6RK/3Pg5XZTY7Q52j2j52k03dcNms2Fs7AJ0HbDbJTidCrt+mpaE2+2BoijQtCRaWvz46ldvxQ03rGYiJ7FYDKlUCi6XC7LsRDQaQSQSgqqq+Pzz4YbpOFWMUthcfrcUQzPNr+oCLO+++y46OzuxahV5GLZt24bt27cjFAqZXJKffPIJgsEg7rrrLgDA5s2b8fTTT+PMmTNoa2vD9u3bsXDhQgDAn/3Zn+Ff//Vfyx0Sp0gq1f+diUJuroULF+HEiWMIhYLweLym7y6lIYDxWBLfhMnNXWinTseU3TwiEokgGg2zhCTSkjOTte3ztWDJkk6cOHEMBw++zX6mwieVXst89+XEiWNwOJyw2x2IRMJs50dj2TQpKx5XTbruALkmmaYpmQxqUZTSkpsOqGoMDz30vzA6OowjRwZw7NggBIEoo1EXsZUU6eLFS1k2tbE9pq4jXTHgwGOP/W8cOzaIkyePsyx0WXZCUdymBDx6fwYHDyEazcRonU4XNE2Doijprm/5rx9RPMtNqhodHcb58+eY1KogCGhtbc17r/x+heUnGHd9+fQDihESqhc8Njw/KNtwj4yMoLOzk/3sdrvh9/vx+eef44YbbjAdt3TpUtPvdnZ24uzZs7j77rtN/zYwMIA1a9aUOyROEeTL+K72Syefm4t+bnw5Ukqp884+NtvNbSTbIFJRFQBsIREITCOZTEBR3MwVShcQLpeLGTZ67QAbLl48n+79TCQsjdfS7y9N7rHQfcm4P23MII+PX063t5xiyli07pVKtNJuY+vXb2DlVADZKdPz0KYt9PtJXTUJIwQC0+kmJQBgM9QxAw6HgyUbSlKm9Iwm+rndXoiiyOLSHR0LmfEotGhMJOJoaWll408k4iyR0KhcZoXT6bK89/S60raaiUSKhRNKgT672SEUqwVmrRfHhcbIY8PNT9mGOxqNQpbN23irJJVij+vv78ehQ4fwn//5n+UOiVMEjdzmrhQVpmKPzTa2ly5dxO7d/xdtbQvQ03ObaYFB2y8ayc6wpoIg4XCI7UJTKS1dd0p2ukZZSSusXuqF7kv2XFU1ZhJlMSpj0Yz07Jd2d3ePQUlNYOVUxpIzqrNuxOjmNu7a4/EEAB2S1MIy7sluO5U2+lMQRcnkEaALkfvv/wa7Bm+/vYdVGJCcAzvcbqfpGlAls0Ja5QBx6b/wws8hiqIpxk3bh2ZaagoIBKZmXLDmM74zLTDrtTjOR75FM51PKBSAx+OrmUGn30NzUIz3Y7bfMc3CjIZ73759eO6553I+f+ihh9LawRlisVhOnZ2iKDMe9+qrr+Kll17Cyy+/jI6Ojpzv8nhkSJI581UUBfj9Ss6xzUKt5hcKBeB0urISlxwIhYJ1vZ5W87vtto3Yu3cPUqkkkxYFUrjtto1lH/vGG+/DbpegaSlEIiTJymazYXp6EocPH4DHcw+WL18BAGhra0vrkGdi3olEHG1tbfD7FXbtJicnYJWxTRTPyLXMd//OnDmNw4cPpGVYiU724cMHEI/H4fX6LO/LPffcY5or3RUDZqnKaDSMJUuW4n/+z29aXnO/fxU8HhmDg4O4cuUykkmScfzRR+9jcnKcfT9VB8ueI+2AJgg26LqGVEpPa1zr6ZphnV1fMrYkiHEXIUkiEok4PvrofXg8Mg4fPsB21GQRkUi3ylQRjUZgt0vpkIWMWCyGe++9F/v378eVK5ct50ah7viLF2NM5Mbj8WJycsJQzqWl5VeDeOutN/HAAw+wZwAgz+b4+AXL++Tx3GN6TlRVRTgcYsmX4+MX8NFH5Jmz28lzZJx7oQVdLTE+dy6XyzQf49yr9T3Z9zYQmK7J91nR7LYBKMJw9/b2orc3V2Lu4MGDeOONN9jPExMTmJ6eRldXl+m4a6+9FiMjI8yVRrrOjGD58uUAgN/85jd49dVXsXPnTlx11VWWYwiFcstRrFytzUSt5ufx+HJ2qolEAh6Pt67X02p+7e2LsXHjnTm7nPb2xZiaiuTsgK677oac+DI9ljIxMZHe9ZByI3NmsYBDhw6zZiCrV9+EgYH90DTdFB9cvfomTE1F2LWjiV9WTE1NQhRFvPzyy1i9+qacHcahQ4cBCBAECamUjkQimRaCSSIej7P4OpC5L9nXxapHNf3vqqsW46WXXsrrJm1vX8zmabcTWdXp6UB6cW3MHs9dmNCkMF3P1I9rWsrkQrfZBPh8PgSDAZbtTw2YzSZiYmKCXQO6oDfW2tPvIbt2slBqbW1Fe/tibNiwEfv377UQk8mFCOxEIIoS7PY4k0slvccz3op4XMWbb75p2g37/UrOfRIECZqm49ChwyyOHIupiEQiLO4uihLefPPNtFCIh3VlM859tt5ZxvkQQZbMfOjzX83vMd5bXSdSpW63t+rfZ0Uz2YaODq/l50K5J9ywYQPGxsbw3nvvAQBeeeUV3HHHHTmSfCtWrEBHRwcz8v39/Vi6dCmWLVuGS5cu4Wc/+xlefPHFvEabU13WretO17cmoOt60dKG9aKraxnuv/8beOSRv8H9938jp02hscHC0NAprFvXnXOsEZ+vhcVHKTSrPTt+TuODbrcbqkq8QsYXOr12VI0tH4riQSgUxMDAfoyODpv+LRCYZiVoqhpDKBRiO1xNSyEUCiIWi+XcF+N1kSR7OntbzCn5Gho6ldOEInsMVs1eiKxnNN1WMzM/USRiNDRbnF47QRAhiiJ8Pp8pg1kQBDgcMktWM153Gsqg14D+G9mx59amAzpUNWqKjZNFTXF9usn3J9MtV21po53JfgfAxHZOnDiW9z5R6PNCnxNaG07adHrhdpNGNkQR0BxymI3SMSOF5lOL7zHedypsU++692am7Bi30+nE9u3b8fTTTyMajeKaa67BM888AwC4dOkSHn/8cWasf/rTn+IHP/gBfv7zn6O9vZ253vv7+xEOh/HYY49lBiRJpp08p7rM1eSVcmPzma5XgmFnmlFOy36ZFqodpdfuyJEBTExcsTyGZEI70wIzes74jPFqqsZFfs+WVjpLIhicRlvbAtaa0+o7ADDXL0BVyFJFXSOrGK3LpaTLnRSmv06auIhMVpSKm+i6homJCXg8PlY3T9tC0l05FcERRet4ejgchiiKSCY1y/Iuqk1ttzvY2DPjLqy2ln2taLY6vWfGdqK0fC7boDgcMqsXp93liDeBPC9dXcsgyzJ8vhbT4oksBAQm/tIomd216uKV73to0xIgs1Ce7cVLM1GRAMuGDRvwu9/9Lufzq666ymR8r7/+euzatSvnuCeeeAJPPPFEJUPglMFcFDYot7OY0djSVocej4fFOunLtNgsYHrtjh0bZF2jSAwzwdp7FhqfsVzHuOMkxkRnLzyqg21Fe/sCQ7MWauBkqGq0qF1Vvpd4W1u7KXHM2NsbALuGAFjiGYUkqAVZjJyW0mmahsnJcfj9baaFCHXVJxK54i6CIKQXDl5TLozP14Kpqcm818WKlpZWds9oK9VEIm4qm6OZ9ZQzZ04z2VC6WwwEAnC5nOxaAESali5YjD2vaWe1RlocG587QXDUzNNGv8dul1l3NlKPL8/64qWZKFuApZ5wAZbmo9T5FSMskQ+/vxWrV6/FwoWLEAoFoaoxeL1eJtJRrPCLkSVLOtHRcRXC4SAzYA6HEy4XCRUJgg3xeCJnfPSc4+OXWa9ogs46mokiyUYeH79sOTeXS8G5cyOQZSfcbg8kidSx07rrfNeIdvmamBhHNBpmymvZwjJWwjDT01MYHj4Np9MFn88HTUshGiVJcpJkTzf6SAIgce14PA673YHW1jYm19rVdS07v9/fiqmpCRYLpxCxG2IsHQ6HSewmGAxgdPRswXttxOFw4Gtfu5v9vt/figULOjA2doHJglqJ6hw4sA/JpJaWOk2md4ykxI0a7mxRHCCTGLdixfX49NM/NozRBszPXSQSgcfjYc9/Lb5namoi3X1NgMNBnoNafJ8VzfTuzCfAYtMLt+ZpCC5fzu1M1EwJCFbw+ZkxltgY3Y/VKLGx6rpEOxEVK22aPT5d15BIJPOOb3R0GAcO7EU0GjO5imlyl66TZiaK4rZ8+Vt5CADkvUbZ/xaNRljNt1XvbSrGMj09ycblcMhwuzM68yRRLwFZJu7ySCSc7s4WSLtJbaxvdr7rabz2qhpjfc6NUq7GYycnJ6Gq0Rz5WofDAYcj07rU729j5X5W177Qbnjnzhdht8umBUV23286bl1PMVEcm82WdqnbynpO61X7zd8tc4d8yWm8yQhnVsl+WeVTIqtlbL5cN7yR7PG1tbVZZpVbqYjF4yrbedP4dTBISsry1QHnC3fku0b/8R870nKhmZit19tiaUxHR4fTDVBihm5fpBmIJIksAZWUehJj1t+/C5pGDC6tIKHtRGls3NgohI7N6MJ1OGRWJ29l6GiPZpo8SJto2Gw29PZuLfpZmClURDwMgYLxYCtRHNqf3ettKTkXY7ZrvzlzC264ObNG9stqamoSFy58AZfLbSklWavYfLUSd4zjs1r1Hzs2iGPHBk07OVWNsd7eNhsRcyGxYrDdWykiOVbXaHR0GBMTV5iqWSqVQjAYhMfjsVycnDhxLF2DC1N9NjXE1HBndxGjix9jYhLdGRsbhWQbpmIXZMb7RPs00518qSIqhejp6UmXdeVPLsv3zAAoK3u7kYWROI1H2eVgHE6lZJclxeMqbDYbEgmVGSyrUp1qU68SuZMnjzPjaTTeiUQ8nTBnYztut9tr8gJUUkpz4sSxdJkX+U5aahUITCMSCaO/f5epZCwQmIamaSajTUkmk5bXiJbdAWTBQWLeGnRdx5UrlxEOh9I11face5uvBDAbep/C4TCmpiZw5cplBIPTWLKk0/J4qxJCq/K4bJYvX1GwLNA4luxnhraRzb5mMy0C61WuxWkO+I6bM2tku6ip29MYv6zHy6sabvjsnd1tt23MEZqg2cxApsMXgHRDDeK+puMgLSwzVFJKEwhMw+VyIxwOgfadNpbqXLhwHmNjF7B+/QZ0d/ekW3nm5pVQYrFYToMYo8vbbnfAbpegqlq6i5mIZJJkyqtqjN1zSZIwPn4lx31eqBxv5cpV6Wz+FEviGxo6hYULFxVsRAOUtoudybuT75n58ssxU7UBEbkRCy4CR0eHoaoqQqEQJInqzjt5+RQnL9xwc2aNbHcj1avOzoqux8urEje8VXxy79492LjxTpOADJBZnFBBE2pAjV2tynn5F4JeZ4/Hg2g0woRDAFrTTAz48eP/jYULF2Hdum6cP38u5zw2mw2y7MS3v/2dnDBAtiEjva09rGEL7bVNY95ApoWqlfs83704f/6cKYYMkERCK2NcjdyFQmQ/M6OjwxgaOpUWs4kxhb0bb9xQ0JVPyqfsSCQSTIo1mdQquuec5oa7yjmzRra70eGQ0z2V5YZUdcuHlRKZKGZc/JmXM5H+pIpitE74q1+9hbmIjS9/USQSwaoaxcqVq3KMRH//LuzY8UKOqzubjOKbiJaWVoPLXGBiJHQRQQ1ge3uHyZ0vihJcLjfa2xfk/R6jy1uWZVYaB2Tc50RwhdxbVY3C6XSx65ZKaYhEwtiz57d551SKS9novqfUciFInwNFcaO1tR0LFiyE19tiuQiy+h2qQkf1vXliGicf3HBzZo1siVG/vxXd3T1obW3NG1tsRKyNiT2nq1hLix8ul2IyiN3dPeju7mE/F/PyLzV2m32d7XZH2liby51EUWRj7um5DV6vD35/W3oMvpJ2gNlG0+GQoSgKK/tyu4n4CTXuRvnXVCqVd07FGuPR0WHEYjFMT09icnKcycjG4zFEo9GiFjylUk6c2vg7DocMv78N7e0dkGW54Z97zuzBXeWcWcXKRW00ZHMB6wzjhGXGtcfjhcfjZXXB2XMlL3kbE3YRRRFOp2J6+ZcTuzVe59HRYezZ81u248+oWzlNkp4rV67CyZPHkUgQMZW1a9fn9JvO17rRGPM29ga/445edg5jDbdR/lWSpLxzsjpvtlfGGLrwen0Ih0MIhQJwu72sQUotSq7KqU6olxQpp7ngO24Op0KsMow1zTrjmpLv5Wy3OxAOB5FKpVhjjHA4yNzsQOUZyF1dy7B+/QaWCGiz2eByuSCKmR01ddkrihvt7R1QFDeGhk5hdHQYZ86cxsDAfkxOTiIeV5FMJhCLxTA1Ncl2yTM1bMm+bjR0QPXD882pmPMaFzay7ERb2wK0tLQiHleZYlotqhbKqU5o9KY/nMaE77g5daGYrOu5ilWGsXF+xewSKbT5BWkgktkNG93r1dildXf3YOHCRXkz6Qvt6iWJdAdLJCKGhh064nEVbreX7ZJLycwOBomB9ni8TNAk35xmOm++pLREIg5Jasn5vJrJaqVWJ8zVpj+c2YUbbk7NKSbreq6TbUyMAiylvJzjcRVer5epgpFmGwpTWgNKWwiUMmYjhTKyBcEGu11mu3Wg/NaNxgYgAwP7YbPldhMzUoygSr6Fjd3uSP9v7dzS5VQnzMWmP5zZhRtuTs2x2r2lUsl5pQpV7MuZGh2/v419RtXBjOeq9S6t0K5ekkRMTwcqbt2YbYRXrlxlKXdrPD57AXjgwF44nQoSibiljKpxYbN27XoMDZ1qqHabc4166alzCsMNN6fmWO/e7FVzUdaCYl9Q1X6RFbubLmWXVs4YC43D45Hx5ptvVtS60coIDw2dKpgolr0A1PUUotEY4vE4/P62omRUrcIDAEwiMNUI4zSjgeN66o0Db+vZoDTT/KxacmpaEm73zC05Z4Ni23wWOm7RooVl3T9z+8Wwqf1oLedSyjgWL74KTqenrNaNtLXoyZPvIZlMQJIkSJKd1S/na2UKAEePHoHD4WDuedoWVdd1KIrbdI6bb96Y05qUzsv4+fT0VM71OX36M6iqimPHBnH06BEMD5+By6UUvF7VuOb1otx3yx/+8BYLNdhstqLu2WzQTO/OfG09+Y6bU3Osdm9AqmFdlMWWWxU6bs2a8l9k1Yh50h3f2NgFACTpqxoNSyoZo3HHRjuIhUIhAGAdxAp5YbLd90YVOkqpMXarexiLRXH8+H/D620pa2fZrA1Daq1Exykebrg5NWemrOt6UIrrstgXVKO+yIwGkuqhB4NBeL1E5GO2xmg0aJIkpUvewGRQZ4qPZy8AaTa7UaGt1GQzq3sYi0WRSuk5hvfIkYGinqFGfS4qhdecNw68jptTF7I7QC1fvqJu312q0lixddf1ltQsFqOBpF3BbDYgEgnP6hiN9edUApXKvxZTv5yrtNcGWXayBUo5NdBW95Bkx4s5n01Ojhf1DDXqc1EpvOa8ceA7bk7TU6rrstgEsWqVZVUb447P5VIQCoVgsxHjUehlW+uEKuOOzeGQ4fWCdSEzNlkphFVjj0rGbHUPbTYBdrs5thiNhiEIQlHPUKHnYi4nrfGa88aBG25O01Oq67LYF1SjvsiMBjLTiYsYnnwGsh4Zw7mubgFut6ei76g0H8DqHv7pn67GyZMnkUgkmOHVNA1er8/0u/meoXzPBYA5n5XNa84bA264OU1PObG5Yl9QjfgiyzaQxl7fxZZa1SKhqlYLnUp3sVbiOT5fu+mctOWskULPkNVz0d+/qymT1urFXPZWVBtuuDlNT6O6tGtFOQayXglV1V7o1MpTYOWSr/QZataktXrAa8jNcMPNaXoa1aVdS0o1kI2aMTzTLqtepVfVeIYa9RrPBZq1xK5cuOHmzAuqWRvdjMa/lISqepXyFbPLGh+/Ak1LMl13l0uBwyHXZBdb6TM03zw/1YR7K8zwcjAOpwhKLSmba+RrlwkgZ9579+6paN6jo8Po79+FHTteQH//rrznMu6yrNpwjo4OI5GIMyGWVCqFUCiESCTSkLvYYlqScqxp1hK7cuE7bk5TUu3d8Xxw1RWbUFVJg5hSYpUz7bJOnDgGp9OFaDQKgLZBTUFVo1i3rrfksdWDRkxmnAtwb4UZbrg5TUctElnmq6uu2g1i8i2ArFTJZooJBwLTcLkUSJKESCQMTdPStdYObhybjPmYp1IIbrg5TUctdsfzMbFodHQYqqoiFApBkkj8mEiTJsqet9VCQNM0TE9PIpVqNS20Vq5cVbANJ70nDocMh4MIpmS3QJ2vNGM+BvdWZOAxbk7TYZTWpFS6O55vco+jo8PYv38vkskkdD2FRCKBQGAa4TDZ2ZY7b6tYpVGVzBjLPn/+XMGYcC3vSbFx+Eak2fMxOHzHzWlCarE7roerrpF2SUeODEBVY6z7ViqVAgCoagxf//qDZWeVW8UqC6mSzdShrNx7UuhanzlzuuFqhkt5NuZDPsZ8hxtuTtNRq0SWWrrqGk1gYnp6Mt2cxMaMN+k0pmP58hWYmoqUdV4rY1uqKln2+SppL2p1rQcHB5nhi8dVRCJhJJNJ7Nu3G729W+p+P0p9NuZrPsZ8grvKOU3HXCy7man0aTagLUHz/Vwu2Z3ienpuq2sYwnitE4k4wuEggsEA9u3bjdHRYUxNTUKSJMTjKoLBIOsdnkgkZsXlXOqzwUunmh++4+Y0JXMtkaXRdkl+fxsmJsah6zrre63rQGtrW9W/q94Zw/RaU8Nss8FkmJ1OGfF4EpFIGDYb2PwlSWQGs57PVqnPBi+dan644eZwGoBGy1rv6bkNBw7shaqqrMzK5XJi+fI/wQsv/B+Mj48DAFpaWnHLLbdXbMjqudCi1zqfYdZ1IJXSkEwmWYhA18FKz+q9mCr12eClU80Pd5VzOA1Ao2Wtd3Utw513bsaiRYvh8XixaNFi3HjjWnz88UlcuXKFuc2npiawf//eOZWxTK81dSdnG+Z4PI7bb98Eu92BVEqHIAjweDzpUrj6L6bKeTaywxHcaDcXFRnuwcFBPPDAA+jr68Ojjz6KsbExy+OGhoawbds29PX1Ydu2bRgaGmL/9tprr2HLli3o6+vD448/josXL1YyJA5nTtKIcfnsl//58+egqipLVqOJa4lEfFZj8aVCr3U+w+z3+9HVtQy9vVvg9XrhdnvhcMiztphqxGeDM7vY9DIzTiKRCDZt2oQXX3wRq1atwr/927/h2LFj+OUvf5lz7D333IPvfe97uOuuu7B371784he/wOuvv473338fTz31FH7961+jpaUFP/nJTzA2NoZ/+Zd/Mf3+5cvBnHP6/UrZma1zAT6/uU0zzm/HjhcQCgUhiiL7jOxWdbjdHjzyyN/U5HtrVSZnzNY2xoLvvfdeVu7WSCV61aIZn00jzTS/jg6v5edlx7jfffdddHZ2YtWqVQCAbdu2Yfv27QiFQvB4POy4Tz75BMFgEHfddRcAYPPmzXj66adx5swZtLe349lnn0VLC3E93Xzzzdi+fXu5Q+JwODXE52tBJBJmCWsUQRBq5j6uZZlcvliwsdxtriU5lkMzLk6anbIN98jICDo7O9nPbrcbfr8fn3/+OW644QbTcUuXLjX9bmdnJ86ePYu7774bXV1dAIBYLIbXX38dmzZtKndIHA6nhqxb140DB/YiFouZss0dDrkupVtA9cVE5oNhLkSj6QdwiqPsGHc0GoUsy6bPZFlGJBIp+bhnn30Wt9xyC4LBIL71rW+VOyQOh1NDaMLaggUL2I7b72/Dpk2ba1q6VW352vmIUcJ1585XWDJhI+oHcGZmxh33vn378Nxzz+V8/tBDD0FVVdNnsVgsR+BfUZQZj3vqqafw5JNP4le/+hUeffRR7Nq1y3S8xyNDkkTTZ6IowO9XZhr+nIXPb27TrPPz+1fhpptWQ9NSdfm+trY2hEJBSJKDfZZIxNHW1laz69ts9+7MmdM4fPgARFGEoigIhYI4fPgAPJ57EAoF4HS6skIfDoRCwTl7DZrt/lkxo+Hu7e1Fb29ub9uDBw/ijTfeYD9PTExgenqaub4p1157LUZGRpj6UDKZxMjICJYvX44PP/wQuq5jzZo1kCQJDz/8MJ5//nkEAgH4fBnt4lDIbPiB5kpAsILPb27TzPOr59xWr74JAwP7oWm6KYFs9eqbajaGZrt3hw4dBiBAECSkUjrsdgc0TcWhQ4fh8fhyasQTiQQ8Hu+cvQbNdP/yJaeV7SrfsGEDxsbG8N577wEAXnnlFdxxxx1QFPNKZ8WKFejo6GBGvr+/H0uXLsWyZctw9uxZfP/730cwSLLGf//73+Pqq682GW0OhzN/4aVQlVMo3NBo+gGc4ig7Oc3pdGL79u14+umnEY1Gcc011+CZZ54BAFy6dAmPP/44M9Y//elP8YMf/AA///nP0d7ezlzvf/EXf4GRkRE8+OCD0HUdPp8vpxSMw6XFu1EAAAfqSURBVOHMb+Z7AlmlFFJe4yprc5Oy67jrCa/jbj74/OYuzTw3oPnml12vrusaEolk03oumun+Vb2Om8PhcIzweuDGJHtX3dbWhtWrb+L3Zg7DDTeHw6kYXg/c2BjDDc20I52v8CYjHA6nYng9MIdTP7jh5nA4FcOFUjic+sFd5RzOPKWaMelG6yfO4TQzfMfN4cxDaEw6HA6bYtLl9tXm9cAcTv3ghpvDmYdUOybNhVI4nPrBXeUczjwkEJiGLDtNn1Uak+ZCKRxOfeA7bg5nHuLztSCZTJo+4zFpDmduwA03hzMP4TFpDmfuwg03hzMP4TFpDmfuwmPcHM48hcekOZy5Cd9xczgcDoczh+CGm8PhcDicOQQ33BwOh8PhzCG44eZwOBwOZw7BDTeHw+FwOHMIbrg5HA6Hw5lDcMPN4XA4HM4cghtuDofD4XDmENxwczgcDoczh+CGm8PhcDicOYRN13V9tgfB4XA4HA6nOPiOm8PhcDicOQQ33BwOh8PhzCG44eZwOBwOZw7RsIZ7cHAQDzzwAPr6+vDoo49ibGzM8rihoSFs27YNfX192LZtG4aGhnKO2blzJ66//vpaD7kkqjG/1157DVu2bEFfXx8ef/xxXLx4sV7Dn5FqzG/Xrl3YsmULNm/ejMcffzzvOWaDaswvHA7je9/7Hm644YZ6Dbsgxcyp0Hx2796NrVu3oq+vD9/5zncQDAbrOfwZqXR+jXa/sql0fo389wZUPr9Gfl+WjN6AhMNh/eabb9Y//vhjXdd1/cUXX9SfeOIJy2M3b96sv/XWW7qu6/qePXv0rVu3mv790qVL+n333adfd911tR10CVRjfsePH9c3bdqkT01N6bqu6//4j/+of/e7363D6GemGvP74IMP9FtvvVW/dOmSruu6/swzz+hPPvlkHUY/M9V6Pu+77z79+eef17/yla/UftAzUOyc8s3n/Pnz+oYNG/Tz58/ruq7r//AP/6A//fTTdRr9zFQ6P11vrPuVTaXza+S/N12vfH6N/L4sh4Y03Pv379cffPBB9nMoFNJXrVqlB4NB03FDQ0P6rbfeavqsp6dHP336NPv5u9/9rr579+6GMtzVmN/IyIh+/Phx9vmBAwf0++67r7YDL5JqzO/cuXP60aNH2edvv/22/vWvf722Ay+Saj2fJ06c0M+dO9cQhqCYORWaz44dO/S/+7u/Y59/9tlnek9PT+0HXiSVzk/XG+t+ZVPp/Br5703XK59fI78vy6EhXeUjIyPo7OxkP7vdbvj9fnz++ec5xy1dutT0WWdnJ86ePQsAGBgYQCgUwr333lv7QZdANebX1dWFm266CQAQi8Xw+uuvY9OmTbUffBFUY35Lly5Fd3c3+3xgYABr1qyp7cCLpFrP59q1a2s/2CIpZk6F5jMyMoJrrrmGfX7NNddgfHwc09PTtR98EVQ6P6Cx7lc2lc6vkf/egMrn18jvy3JoSMMdjUYhy7LpM1mWEYlEij4uFovhn/7pn/DDH/6w5uMtlWrMj/Lss8/illtuQTAYxLe+9a3aDboEqjk/AOjv78ehQ4fwne98pzYDLpFqz68RKGashY6JRqNwOBzsc4fDAZvNhmg0WtuBF0ml82t0qjm/Rvt7A6o3v0Z8X5aDNJtfvm/fPjz33HM5nz/00ENQVdX0WSwWg9vtNn2mKEre437xi19g69atpl1Avanl/ChPPfUUnnzySfzqV7/Co48+il27dlVxBoWpx/xeffVVvPTSS3j55ZfR0dFRxdHPTD3m1ygUM9ZCxyiKgng8zj5XVRW6rkNRlNoOvEgqnV+jU635zebfWyGqNb/ZfF9Wk1k13L29vejt7c35/ODBg3jjjTfYzxMTE5ienkZXV5fpuGuvvRYjIyNIpVIQBAHJZBIjIyNYvnw5tm/fjsnJSezcuZMdf+utt+K1117LOU+tqOX8PvzwQ+i6jjVr1kCSJDz88MN4/vnnEQgE4PP5aj43oLbzA4Df/OY3ePXVV7Fz505cddVVtZ2MBbWeXyNx7bXX4vXXX2c/W82p0HwuXbqEd999lx372WefoaOjo27P4kxUOr9Gpxrzm+2/t0JUOr9GeF9Wk4Z0lW/YsAFjY2N47733AACvvPIK7rjjjpzV+4oVK9DR0cFeov39/Vi6dCmWLVuG3bt348iRI3jnnXfwzjvvAADeeeeduhntQlRjfmfPnsX3v/99VnLz+9//HldffXVDPITVmN+lS5fws5/9DC+++GLDvUSqMb9Go5g5FZrPXXfdhaNHj2J4eJj9/tatW+s/kTxUOr9Gp9L5NfLfG1D5/Br5fVkWs5wcl5d3331Xv++++/S77rpLf+yxx/Qvv/xS13VdHxsb07ds2cKOGxoa0h988EH97rvv1rdt22bKKDfSSFnlul75/FKplL59+3a9r69P7+3t1f/yL/9SP3ny5KzMxYpK5/fLX/5SX7t2rd7X18f+M/7ebFPp/D7++GO9r69P37Rpk37dddexOc4mVnMq5e9t9+7d+j333KPffffd+t/+7d/qoVBoNqaRl0rm14j3K5tK5tfof2+6Xtn8Gv19WSq8yQiHw+FwOHOIhnSVczgcDofDsYYbbg6Hw+Fw5hDccHM4HA6HM4fghpvD4XA4nDkEN9wcDofD4cwhuOHmcDgcDmcOwQ03h8PhcDhzCG64ORwOh8OZQ3DDzeFwOBzOHOL/A+xB9wRPBSPqAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1955,18 +2145,18 @@ "source": [ "plt.figure(figsize=(8, 6))\n", "plt.plot(\n", - " prior_sample['beta'][:, 0], \n", - " prior_sample['beta'][:, 1], 'o', alpha=0.3);" + " prior_sample['mu'][:, 0], \n", + " prior_sample['mu'][:, 1], 'o', color='C7', alpha=0.8);" ] }, { "cell_type": "code", - "execution_count": 559, + "execution_count": 105, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAd4AAAFkCAYAAACOz1rQAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3de5BU5Z038G/39NjtwFxYnB0k3JQRpFjf2S0oQCgwog4ZBFwqZSkptkrKhCQk7tYKmxcvK15KVxdnZSFSFF6yJLPJJsZKoTHjjuDLZQdCTJXFFmRkQJwYIzMhchuYnmYu5/0De+zuOc+5n+c8p8/38xf0TJ9+ztNnzu95fue5xDRN00BERERSxIMuABERUZQw8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJlPD7A06f7hb+bOTIJC5ezPhdhNBi/Rhj/Rhj/ZhjHRlj/Rgzqp/q6nLh+wLt8SYSJUF+vPJYP8ZYP8ZYP+ZYR8ZYP8ac1g9TzURERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJxMBLREQkEQMvERGRRAy8REREEjHwEhERSeT7Ws1ERBQOzW1d2Lq/A13dGdSUJ/FPi6ZiwcSqoItVdNjjJSIiNLd14ZmW4+jszkAD0NmdwSM7j6C5rSvoohUdBl4iIsLW/R3o7R/Me623bxBb93cEU6AixsBLRETo6tbf3k70OjnHwEtERKgpT9p6nZxj4CUiIqyZPwmpRH5ISJXGsWb+pGAKVMQ4qpmIiNAwrQYAOKpZAgZeIiICcCX4ZgMwAFRVleHcuZ4AS1ScmGomIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIok8C7x79uzB1KlT8cknn3h1SCIioqLjSeBNp9NobGxEVRVXOCEiIjLiSeDdsmULli1bhhEjRnhxOCIioqLlOvAeO3YMBw4cwH333edBcYiIiIqbq8CraRo2bNiARx99FKWlpV6ViYiIqGi52iThpz/9KWprazFz5kzh74wcmUQiUaL7s5KSOKqqytwUoaixfoyxfoyxfsyxjoyxfow5rZ+Ypmma0w/9xje+gSNHjiAev9JxPnPmDCorK7Fp0ybMmTMHAHD6dLfw/dz5whjrxxjrxxjrxxzryBjrx5hR/VRXlwvf56rH+9JLL+X9f+HChfjhD3+IcePGuTksERFR0eICGkRERBK56vEWevfdd708HBERUdFhj5eIiEgiBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIokYeImIiCRi4CUiIpKIgZeIiEgiBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIokYeImIiCRi4CUiIpKIgZeIiEgiBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISCIGXiIiIokYeImIiCRyHXh3796Nu+66Cw0NDVixYgXa29u9KBcREVFRchV4u7q6sH79ejQ2NqK5uRlLlizBY4895lXZiIiIio6rwJtIJNDY2Ija2loAwIwZM3DixAlPCkZERFSMXAXe0aNHY8GCBUP/37dvH+rq6lwXioiIqFjFNE3TvDjQwYMHsW7dOuzYsWOoBwwA6fRlJBIluu8pKYljYGDQi48vSqwfY6wfY6wfc6wjY6wfY0b1U1qqH/cAIOHFh+/atQtPPfUUtm3blhd0AeDixYzwfVVVZTh3rseLIhQl1o8x1o8x1o851pEx1o8xo/qpri4Xvs914D1w4ACefvppvPrqq5g8ebLbwxERERU1V4E3nU7joYcewosvvsigS0REZIGrwLt7926cOXMG69aty3u9qakJ11xzjauCERERFSNXgXfJkiVYsmSJV2UhIiIqelwykoiISCJPRjVTeDS3dWHr/g50dWdQU57EmvmT0DCtJuhiERFFBgNvhDS3deGZluPo7b8y76yzO4NnWo4DAIMvEZEkTDVHyNb9HUNBN6u3fxBb93cEUyAioghi4I2Qrm79xUxErxMRkfcYeCOkpjxp63UiIvIeA2+ErJk/CalE/leeSsSxZv6kYApERBRBHFwVIdkBVBzVTEQUHAbeiGmYVsNAKwmnbhGRHgZeIh9w6hYRifAZL5EPOHWLiEQYeIl8wKlbRCTCVDORD2rKk+jUCbKcuhUtfM5PetjjJfIBp25R9jl/Z3cGGr54zt/c1hV00ShgDLxEPmiYVoOH62/AmPIkYgDGlCfxcP0N7O1ECJ/zkwhTzUQ+4dStaONzfhJhj5eIyAdcopVEGHiJiHzA5/wkwlQzEZEPuEQriTDwEhH5hM/5SQ9TzURERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJxMBLREQkEQMvERGRRFxAg4goArg3sDoYeImIbAhjAMvuDZzdpjC7NzAA5ctejJhqJiKyKKyb23NvYLWwx0tERcevXqlRAFO558i9gdXCHi8RFRU/e6VhDWDcG1gtDLxEVFT8TKuGNYBxb2C1uA68Bw8exPLly7Fo0SKsWrUKnZ2dXpSLiAo0t3Vh6fZDmNW4D0u3H1L+uWJQ/OyVhjWANUyrwcP1N2BMeRIxAGPKk3i4/gal0+PFzNUz3p6eHjz44IN4+eWXMX36dLzyyit4/PHHsW3bNq/KR0TgqFQ7asqT6NQJsjXlyWHPfv9p0VQsmFhl+dhh3tyeewOrw1Xg/fWvf43x48dj+vTpAIB7770XL7zwAi5evIiRI0d6UkAiCu+gHjusDogy+7018yflNVKAK73SedePGtZ4eWTnETx8h72eHwMYueUq1dzR0YHx48cP/X/EiBGoqqrCxx9/7LpgRPSFsA7qscrqgCgrvydKq7aePDu88dLHKTUkn6sebzqdRjKZP6ggmUyip6dn6P8jRyaRSJTovr+kJI6qqjI3RShqrB9jUaqfaytT+PR8r+7rojoIU/1sa/29bo9+W+vvseLm62z/3oqbr8v7PwBs+NUx3c/u6s6Epp5kC9M1FASn9eMq8JaVlSGTyW9x9/b2YsSIEUP/v3hR3CKvqirDuXM9wp9HHevHWJTq51vzJuqmT781b6KwDkT1o+LKS3qNiuzruedwSvB7pwp+T4/Rs9+oXEd2RelvzAmj+qmuLhe+z1Wq+frrr8dHH3009P8zZ87g/PnzmDhxopvDElEBr0alqrryUjxm7XU303l0RySXqj8imYqPqx7v7Nmz0dnZid/+9reYOXMmfvSjH+HWW29FWRlTE0Reczuop7mtC483H8Oglv+6CoO0Csskel00cMpK8NQbkWx3VHMxUDHjETWuAm8qlcILL7yAJ598Eul0GhMmTMCzzz7rVdmIyCPZnq4owAU9SGuMIA08pqAn63Y6T27jpbmtC43vtGPd+d7IBCBOS1OD67WaZ8+ejTfeeMOLshCRT/SmI+UKeuUlOz1ZL6bzRDUARWFaWhhwyUiiCDDq0aqw8pLslZWiultPsU9LCwvuTkQUAaIRvfEYlFk6UNST9eOZZFQDkNHIbpKHPV6iCBCtMfx4w1TPgq4fa0n7NQo7rJsduBXWtaaLDXu8lCcqIx6jcp5Zfq8x7NczU7+eSboZHR1mKq01HbW/wVwMvDQkKgNOonKehfxcY9ivAOlXSjhbpm2tv8epCI1qBtRYazqqf4NZDLw0JCojHqNynjL5FSD9fCbZMK0GK26+jiszBSDqf4MMvDRE5QEnemmpwrV4rVL5PIPiNu3nNEA63Wmo2FPCxS7qf4MMvDRE1RGPorTUiLKko1WHVD3PoHiR9nMSIK18rkrPJMMiDM9Oo/43yFHNNETVEY+itFTjO+2OjqfqeQbFizmtTubhWv3chmk1eHP1bPxm7QK8uXq2ckFEJXqjwJ96ux23fb/V09HmbkX9b5A9Xhqiau9ClH4S7VRjRtXzDIpXaT+7g3ZEx+/szuDZXe1oPXmW349Neo2ZvkENfZkBAOoMYor63yADL+VRYcRjIVFa6trKlONjqnieQQkq7Sf6XAB4/XDn0L9VCRZhYKWxpMogpij/DYYq1ezHBH1SnygttfaOKQGVqLj4lfYz+3vV+1yRKCzn6AWrjaWoDGJSVWh6vFGf9xVlorTUsrqxgU4FUX0QyxuHP8XG/z5mWj4/0n5WB04d/uP5vN6tEVHvmL6gN8hNT1QGMakqNIE36vO+ok61tJTqDcHmti48885x9PZZK5/X9Sv6e31+94m8z2k9edbWcZ/d1Y71t0cz02GloVfYiKpIJXAp04/+nO0gozSISVWhCbxRn/dFalG9Ibh1f8dQ0M2SWT7R3+WFzACa27qGymD37/f1w52o+1KlEnUsk52GXmEjSvXMTBSFJvBGfd4XqUX1hmDQ5TMaOJUb/I1+T0SVxo1Mbhp6qmWLKESDq6I+74vUovruNkGXz+jvMjf42xlgpff+IMkc7Bl0Q4q8FZrAK3ujbCIjqjcE18yfhFRpcOVrmFaDypR+Qi03+Bf+XVuhQuPG7XaFdoN20A0p8lZM0zTN/NecO326W/izqqoyLlBugPVjLOj68ePZmZfH3Pf7c0OjmitSCWiahu7MgLTnfIXPJYErwd+owTz73/Zh0OCOZPZ+u5xeQ0u3H9JNkY8pT+LN1bOH/q/3fQIQjjweI/hunNSlF0T1w+fGVxhdP9XV5cL3heYZL5FsZjcXr5+deT1SelndWCyYWOXpce3ccJ1MUzIKuqKg5Aez87SS+hXV+1UlMeF0H9F3o9JKT6qP6A8DBl4iHUHcXPwaKe3VcZ3Uid3GyRjBYKvCnqRX9OY6AzA9TyuDPUX13ttvXCbRd5Nbl9mGwYZfHXMVhJ30XFUf0R8GDLxFiGkg94K4uVjtRdn9br0amCOjTkQLQKT78qcheUE01zmZiJuep2g3pnnXj8LS7YfQ9fmzX6eMvhurDSCza8Vp45IDvdxj4C0yTAN5I4ibi1kvyul3a3cqnuiGLaNOsufx/O4TuPD5wv4AcL633/PrWDTXWZQGzj1PvdTvvOtH4a2jfzJdNaoylUDG4HMA40FTVhpAVq4Vpw0pTu10LzSjmskaL7Z4o2BGkZqNlHb63ZodN3eE7e0vHsCTzcd0R+vKqpOGaTUou2p4n8Dr69hug6HwPAu3K2w9edY06KYScaxdOHloJLfod6xOxxK9buVacdqQUn1Efxiwx1tkmAbyhtHG7n6l8s0G0Dj9bo2OW9gzOq/zADJ7w3ay2b1TMq5jUc8tVRJD78DwRPG860cZHs+obLHPPy/3+yx8Xmv1erLS47RSf057rioN9AorBt4iwzSQN0Q3F8B84I3bzxUdx813KzquXs9IT1d3RuoNV8Z1vGb+pLxnvMCVhkQyEUfvwPAGiNm60qIymw0MszsAzUoDyEr9uWlIcTUsdxh4i4yMXklUBm/p3VyWbj/keICR23rz47u12oPM3rBl3XBlXMcN02owoiw5bFTzhl8d0/19KynYwjInYlcGhs1q3OfZ34qVBpCV+mPPNTgMvEXG7z+mqA/ecpoC9aLe/PhurayVHMTzO6OMQ3bUsGikrp36yc51zrV1f4cnKdjyZAnSfYND6fvO7gwe+9UxPL/7BNbdVuvqezNrAFm9VthzDQZXrlKYivVjdcUeGYKoH6fnH0S9WakfvRWRSuMxXF0al7rKlRVmqzc5Wd1Jr468WiVK9J3bOZ6TLImXGSkV70Eq4cpVJEXUB285TYGqWm9hSjeKRuo+3nzM8Od25xnn1klndwbxWP6IYKvHMvpurZTLSZYk6hmpsGDgJVuiPnjLaaAyqregn5mrmG7UqxNRIBvUxGsfA84aN9n6cBPEzNL4ZuVy0pDgqlLhwMBLtsicUqIqJ4HKaKWjKPRQ7DQuRL228mRJ3qIauXr7BxGP6a/17LRR6DaIzbt+FF4/3Cn8uVm5nGRJVM2sUD4GXrIlTKlJlYjqzYseStA9ZjN205+iOkkmEkjpLOeYNahh2M/dNArdBjGj6UeicuV+l7EYoDcCxyhgRz0jFRYMvGSbiqnJMNCrN6dTV7KMgtqKm6/T/X1RkPYqgBceJ903YKtxITr3C739eGLxVDwmqLN4DHi4/gbbI6FF3AYxo+9Qb2BV4XepF3TNGhLMSIWDq8C7e/dubN68GZcvX0ZVVRWeeOIJTJkyxauyERU9tzd3ox5zYeA1CtKANwuD6H2GiCgwOa2TQW1448bNYCO3q5cZLahhZzGT+Oc93/JkCWKxGDb86tjQSmJ604Oyx1I1A0IuAm9XVxfWr1+Pn/zkJ6itrcV//ud/4rHHHsN//dd/eVk+iiDVU6decttDsZMONRoVrPds1MmgHKsrYQHiQGr2PFxEb+1jN6l8t6uX2f1ujQaPfbVuzOcbMAwYfmb2/8X691IsHAfeRCKBxsZG1NbWAgBmzJiBF154wbOCUTSFbTqE20aC2x6Knd6h0Y1dpLM7M2zVJaNztpoiNwpAdp6Hmx3P7XNaN6uX2f1ujUZB6w3S4mjl8HIceEePHo0FCxYM/X/fvn2oq6vzpFAUXUFOh7AbRL1qJLjpodjpVVWkErqbIJjJ3aXo8B/P5219V3jOouBRkSxB2VUJy3Vr53k4AFxVop+C9WOwkZ1gbue7Fe1F7KQsWYXX9LzrR6H15NlIZJNU5sngqoMHD2LHjh3YsWOHF4ejiMm9OYg6X35Ph3ASRFWYM2m1V9Xc1oVLGftBN1dv/yB+8b+dw3rIuecsmkJzx43VWH+7vfEfhUHDqOGQnWZU+L35MdjIr5HD2e9MNHhMVBYRvWs697tRPZtUzEyXjGxpacHGjRuHvb569Wrcfffd2LVrF5566il8//vfx0033TTs99Lpy0gkSnSPXVISx8CA9dZd1EShft44/Cke2Xlk2IbkhcZWprB33ZfzXvOyfm55fg8+Pd9r6XOzpvzz27oNhRiA9qe+4km53MitH9H5eWlsZUr4GUb1mPXG4U/R+E47Tp3vRVVZKbp7+5DbrknEgVgshr6cLftigO53MKqsFFeXluDU+V5UXp1ALBbDuZ4+XFuZwto7pmBZ3VgAzq4hvWs2VRrH03f91dBx3RB9V4XnavaZVr9zo+8mCvcgN4zqp7RUP+4BFnq89fX1qK+v1/3ZgQMH8PTTT+PVV1/F5MmTdX/n4kVxT4XrgBqLQv1s/O9jpkE3lYjjW/MmDqsLL+vnlOAGdep8r/AzjHo+5871BD5ILLd+ROdXKLuGsGijANEiFQAMb/JG9QgM752d7ekb9jv9g0BFMo7RZYmhTQhEC2qc7enDWVw5xrl0P1KJOJ5YPHWo/rNlcXINLZhYhYfvGD5tacHEKk+ux2/Nm6jbS79z+l8OSxMbfabV79zou4nCPcgN6Ws1p9NpPPTQQ3jxxReFQZfIjN3Nw/3iJH1oNt1EpUFiVnYhGlNQ16Kbf+4zXjufb8TqaOjuzAB2f3feUP1a5fUjAC9HDus10PTmI9v9PCvfefb3SC7HgXf37t04c+YM1q1bl/d6U1MTrrnmGtcFo2hwunm415w8CzR6vupm314/mA3ciQF59W10bnVfqhx63cqALTebSBTKBgk705bsfoZMogbaw/U3uL7+rQzW4uIawXAceJcsWYIlS5Z4WRaKIJkr7Rilfp1O6xH1fFRYM/eNw5/mbfJ+5/S/1B0cBej3ekTnln3dSq+zsBctYndfYKN6rBCkoP3u2TlZFczPAXp61zRHNauBS0ZSoGSttGMl9etl+jDoNXOb27rwzDvHh56fd3Zn8NbRP2H5/xkzLFXstKFjpddptdem1wAz2hfYKFMSxLKJTlcF87uBxsU01MTAS4GTcXOQPfUn6DVzt+7vGDZorbd/EK0nz+Y9P6xIJaBpmuEyhCJmwUFvJalchb1AvcFDemVpbutCz+Xh6e1s/TptzLkZDGd0fWX/Xfiz53efCLyBRsGslMfAS5EgO/Ub9Jq5RudbmCr2Y79Zs0aG3me/dfRPupsHGL0vqzKVwNqFkx1nL9zWhZPr60JmAHfcWO1ZBoLsC2oQZNy3IxMpRNSD8LNn0TCtBm+uno3frF2AN1fPlprys3K+Zr00M2vmT0IqMfwWUplKmAZQp58tSm9fXVriqn7d1oVRfRtdY9kMxJjyJGK4kiUwqzvyjtvv3Sn2eCkSgk79yrZm/qS8Z7zA8PMV9cY6uzNYuv2QpWUdAWe9eqcZCL8yF26Pa3Z9iVaj6szJQFgR9NzwYhPUIEgGXoqEoFO/sjVMq8GIsmTeqObC8zVKFVtNueltw2dl71unzzb9eibq9rhm19eGXx3TXWErHrNeRtXmhheDoJ6xM/BSZERthOeyurFYMLFK+HOzeZ52B5/ZCQx2MhC5vbyKVAKJGNCfE8W8yFx4kRExur5E6/IOalfOz0odq7A2eLEJKhPGwEtFh+k4a3J7aaKer52Um53AYGdzh9wb4/nefpTGY6i4Sn+akVN+Z0TGGGQX9BonetewCnPDi01QmTAGXioqTMfZk+2l3fb9VteLTtgNDFYyEHrBvG9Qw+irEtj93XmWy2aF07S5FUbZhcLGiegaFq1NzalH7gSRCWPgJeXZ6cFGIR2XrY/O7szQpgVWV4jKfX/uakZpnY0qEjEMS7kZfRei52XlyZK8AGZn9aSgenleN+DMtvzLPR/RNZxMJJBKxH1JizJLJBcDLylFLyiINl5fcfN1w95f7Om4woCQXf7RamAw26M114hkYlgPUC8YHf7jebSePKsbdBMxIN03iAuZjO7nmZU7qMEvfjTgsktEmp2P6Fq90NuPJxZP9TxAGjUy9P7GVBLWBgPn8ZIysjeAzu4MNHxxk7Yzzy6I+boyGS3T6GYerJ4LBZsfiILR64c7dYNJRbIEI5IJ9In2EbRQbtFc4Z7L/Whu6zI5A3NvHP4US7cfwqzGfVi6/dDQMf1qwOmdT2Gv1ega9mNueFBzWd3Su18803Lck+vCbwy8pAw7QUF0A7RyYwszp/Ncrf48lwZYCkYilwc0052LzMrVMK0GD9ffgMpUfnLuQmbA9U22ua0Lj+w8onvj9qsBlz0fowUzZF/DYc0ShbXBADDwkkLs/KGLboBWbmxhZmWeq5ufF7ISjER6+wctz1M1OnbDtBpcXVqie/zCm2x2QFRhD1aPaD3r7JrVfgW/hmk1WDN/EmrKk+jqzmDr/o68csq+hsOaJQprgwHgM15SiNWNu63sk1ssgbaQ0ehYK4FBNG8xu0GBXv3nBiOz/V0LDWoYNiDISbmt3GTtDogyW88a8GeaieydssyEdVW3MG8wwR4vKUPUy/hq3Zii7cHaldsbAr5Y+chqvYh6U+tvn4I3V8+GqIOaDUaF7/1q3RjdZ7BZ2eMXvsfu9ym6meamw+2mHs16en6tta1aijSsWaIwP1aKaZpmPPLBpdOnu4U/q6oqw7lzPX5+fKhFsX7sjFJUpX5UHVnppH6Wbj8k3OdWtLduc1sXGt/9cNjz3FQi7tkNXLQrUe5niX4WA/CbtQv0j6mznrXfQWdW4z7hSlYxwJdryOk1qsrfmEjQf3tG9VNdXS58HwOvwlg/xlSoH72AkJu6DTIYO6kf0flYCUZ+3wRz5y/ryc5pLmTUaNj3+3OG61n7QdS4KfTVujFYf/sU15/n5jtV4W9MZQy8RYj1Y0yF+rF6E5XRkyrktH6C7kWYMeox6jEKYEFcQ2a991xPLp7quu6dZDGyVPgbU5nTwMvBVUQuWB1BGabVs1QdnJZtENjtKew69mdPeo5eKRy4ZXQ+XlwzYR79W6wYeIlcsDoSG+CNzg07vcRCVucSy5TbuDHKmji5ZgozFhWphG4dhGH0b7HiqGYiF0QrK+nhjc45O4urhI3RKFy714zeak6XMld2dMoVltG/xYo9XiIX9OZ7Fq4vDRTvjU7W82BRzy87Ctgo61CRHL74hkoaptXg8B/P666Z3dmdwdLthyxvLKHXQOnXgIqr4hh9VULZ5/ZRw8BL5JLeM9G6L1UqPUBJxE4glbkFo9HOR+m+4VvlZSViwB03Vnu2vZ9f1t8+ZeiaKTxPOxtLiBoo3ZkBz7dRJOcYeIl8oOoAJSN2A6nMLRj1VlfK7nwk2oShIlmCO26sFu5uVVjGoEdzZ68ZKyPlRfUc5tWcooSBl0hhMoOB3UBqd7Ssm3PRS+mn+wYMB05dHtDwzgenLZ2TzN67GasDqgp/r7mtCz2Xh9dHsT7mCDMGXiJFyQ4GdgOpnd6VF+eSm0VobusSbiqf1ds/CFFcLjwnmb13M1ZHyufWs2jUdwz5y1GqkIUJOrOgAgZeIkXJDgZ205R2Ftf38lyyQcaN8mRJ3nNfL6fzOJEbjMqTJSiNxwz3MS6sZ9Go7+wRguzB51IpsxAkTicissnO1nNuyF74wO6i83YW1/fyXOxMLbo6MXzbh+yz4dwpNyIyno0WTgG6kBmApmmoTCUsbyxhpR5V2KtWtQ0igsIeL5ENKozk9SsYWNkKTy9NaLbsYLbMXp2L1WCdiAF68bm0JIZ0v/n6V7KejYqmAF1dWoJd35krfF/udxGLAVYW/w16EReuonUFAy+RDUGP5PU7GBiNxrbS6BA9vxPt5Tvv+lG2y2iUGo5/HoCMBl8ZBd0xn29OL/PZo5NgVPhdWF1xP+jRzRx1fQUDL5ENMlvsfm7G7oRZo8MsMOstEvHW0T+h7kuVts5pzfxJwoFVmvbFFoCzGvdZPiZgbdMArzW3dQl7q0bBSJRuzzY8KlIJXMr0I7eNocLo5iAakypi4CWywa8Wu6inqNJ8YLNGh1lgbj15dth7nWQLGqbV4PndJ3AhM3zhjNzvQfRdVaYSyPQPBn7zzzZU9MZQmZVH9F3kNjxUHD2sWmMyKAy8RDb40WIPy0hPs0aHWWAW/byzO4NZjfts3YTX3VZr+j2Ivqu1CycDCP7mb9RrzR08pRdArTQAVWq05VK1XDJ5Mqp5z549mDp1Kj755BMvDkekLDsjea0Ky0hPs1HPol5/9nWjrEB2dPEzLcctjRK38j0Y/U7DtBq8uXo22sgn/s4AABSVSURBVJ/6Ct5cPTuQQGDUa80NuoWbHjzTchzzrh9lawQ6qcV1jzedTqOxsRFVVVVelIdIeV632MMy0tMsTWiWDRANsMplJ/Vs5XtQuXdlpdcqapS9frgTFckSJBMJXOjtj2zKNqxcB94tW7Zg2bJl+MlPfuJFeYgix2gDANUYBTKzwGy0C08u1RocfrHy2MKoLi5kBpBKxPHE4qkMuCHjKtV87NgxHDhwAPfdd59HxSGKnjXzJ0FnnQek+wZ9W5zDL9kU7m/WLtBN4eoNsCoUlaklVtLlZnWh4iMJMue4x6tpGjZs2IBHH30UpaWlXpaJKFIaptWg8d0Ph8057RvUAlkr2E9mvdmoPac0S4VbSc9HJUNQTEwDb0tLCzZu3Djs9fvvvx+1tbWYOXOm4ftHjkwikdBPmZWUxFFVVWaxqNHD+jFWTPVzQbCaf1d3xvE5qlQ/bxz+FI3vtMNonYexlSmsvWMKltWNlVYulepIz4qbr8OIsiS+9/r/YkBQeddWpnw7B9XrJ2hO6yemaVbXPMn3jW98A0eOHEE8fiVbfebMGVRWVmLTpk2YM2fO0O+dPt0tPEZVVRnOnetx8vGRwPoxVkz1I9qD1c2iDqrUj2jnnKxUIu56ZLhTKtWR0fSmWY37hI2WJ318xqtK/ajKqH6qq8uF73Ocan7ppZfy/r9w4UL88Ic/xLhx45wekihUvFygwK8VfZyW0ctzM9rUYIzJsb1eBKLweP+0aCoWTAx2RoaVedyiAXgVyRLfGyxWvwMVF+xQVcnjjz/+uBcH2rFjB5YvX46Kioq813t6Lgvfk0qVore3z4uPL0qsH2NB1k/2Znnu8xTxxcsDOPjRWVxbmcQN1SNtH++G6pG4tjKJts6LuHR5AGPKk3hw4WRXN66WY6fxxFsf2C6j1+e2ac9J3ddjAP7fA/OEx/S6HHrH23f8NK6tcHY8rzz4i6NDZcrqH9TQ1nkRX5txpSMzqqwUBz86i/6cZa5SiTj+7x03+Fp2q9eQle+qua0LD/7iKDbtOYk3jnRiVFlpoPXuBaN70IgR4oFxnm0L+O6777K3S5Hhx6IXZiOC7Wp8p91RGb0+N7OFNWSVQ/d4fcGPCrYyj9uPhVussHoNmX1XooVAwjZq3ytcMpLIgTAsenHqfK/u62a73ni9KbzTNLrXdazqd2Z1/W8vFgOxmw62eg25Xcc7ahh4qejIeNYUhu3Nrq1M4VOdG6eojNleiYjTc3O6ML7XdazqdyZjx57mtq5hG0tYWRPc6jXkdh3vqPEs1UykAlkpLbN1i1Ww9o4ptspoNAgq933NbV1Yuv0QZjXuw9LthyyvrWw3je51Heser1Tud6ZXd36nkbN/E3q7OZml7q1eQ27X8Y4a9nipqMhKaYVhe7NldWNxqSdjuYxGvY9sIJC5k5LXdax3PJmjms3qzu55Wc3sGDWoAOPv3eo15HYd76hh4KWiokJKS6VpFXZu6KJ04ZjyZN6NVeazOq83OSg8nsx5ql7WnZ0GkNm1b9brtPoduFnHO2oYeKmoyHqOJ7rxHf7jebx19E/K762rx82i/cXyrM7PRpOXdWcniIv+JgC5vU6Vd4qSjc94qajIevYquvH94n87Q7G3rh43i/YXw7M6v8cHeFl3doK43t8EAFSmEoGtGBZ17PFGlErpUC/JSmmJbnyDgnX9wtIjdLJof7E8q/M7je5l3dnJ7DDNqx4G3giSOUAmCDJSWqIbXzymH3yLoUcIFPdN3Ov5y4W8rDu7QZxpXrUw8EYQJ7O7J7rx3XTtSLz3hwt5v1ssPcKsYryJG6WTvWw0eVV3xdwAigIG3ggq9gEyMujd+OZdPwpvHf3TsN+9c/pf8oZoQxCPQZ7ffUL4M1UbTcXYAIoKBt4IUnUFH1WJAkHhjW/p9kO68yVbT56VWdzAeBEwg3oMore4RBaDG3mNo5ojKAyrLqnCzkhXo0yCk9WewsSrEcF+bD5BpBoG3ggKaqeTMLITCEQZg4pUouh3ZvEqYAb1GKQypZ/8E71O5Aavqoji8yFr7M6X1BtwpWla0Q9m8ypgBvUYZO3CyXjq7Xb05QxJL43HsHbhZF8/l6KJPV4iA3YWPRBlEroFzw+LaTCbV4tDBPUYpGFaDf75K1Pyvrt//sqUomkYkVrY4yUy4MV8ya37O4p+MJvVejIbgOXFNBmng7yYBSJZGHiJDHgRCIp5tacsK/VkdcSymwCoyuIwxboyHHmDgZfIhNueUFQWOzCrJxkLt6iwOIwqwZ/UxcBLJEHY0ph+9NhkjFi2+xlvHP4UG//7mKfnKSv4s1cdXgy8RJTHbo/NagCQMWLZzmc0t3XhmXeOo7fP256pjAYGe9XhxlHNRJTHzpxcOwtnyBixbOcztu7vGAq6WV4s1iFj60QuNBJuDLxElMdOj81OAMhOt8pdlOKqkpi7wgo+w8riMH71TGU0MLjeergx1UykoCCf39lJ1zoJAJmcQH0hM+B5itTq83S/Ut8yBtNxvfVwY4+XSDFerXvslJ0em920qkop0jXzJyFV6k/PtGFaDd5cPRu/WbsAb66e7XmjieuthxsDL5Figg5OdtK1dgOASinShmk1ePquvwrlmuVcbz3cmGom8pAXKWIVgpOd6U/JRHyooVCRLMG622qF71UtRbqsbiwWTKwK5LPdCtsUNfoCe7xEHvEqRSxjVKwXsud7vrd/6LXLA5rBO5giJQIYeIk841WKOCzBycn5MkVKxFQzkWe8ShGHZYlJp+fLFClFHQMvkUe8fH4ZhuAkOt8KB5vHc/nD4LDu5WOqmcgjYUkRe2XN/EkojQ9fAONSpt/Wc+2gp09FGes+GAy8RB6J2vPLhmk1uLp0+C2kX4Ot59pmz4qb27qwdPshzGrch6XbDzEoeCjoqWtRxVQzkYfCkCL2UndmQPd1O8+1jZ4VczMAf6kwdS2K2OMlIse8mPpkdAz2yPwVlqlrxcZV4O3q6sKqVatwyy234M4778R7773nVbmIKAS8eK5tdAz2yPwVtXEJqnAVeNevX48FCxZg7969ePTRR9HU1ORVuYgoBLx4rm10DPbI/BW1cQmqiGmaZrzUjMCpU6dw1113obW1FaWlpcLfO326W/izqqoynDvX4+TjI4H1Y4z1Y6wY6qfwGS9wpUfmVXAohjryE+vHmFH9VFeXC9/nuMf7wQcfYNy4cWhsbMSiRYuwcuVK/O53v3N6OCKiYdgjo2LkuMe7c+dOPPLII9i0aRNuv/12/OxnP8O2bdvQ0tKCROKLwdLp9GUkEiW6xygpiWNgYFD3Z8T6McP6Mcb6Mcc6Msb6MWZUP6Wl+nEPsBB4W1pasHHjxmGvr1y5Eq+++ir27t0LANA0DTNnzsRPf/pT1NbWDv0eU83OsX6MsX6MsX7MsY6MsX6MOU01m87jra+vR319/bDX29vbsWXLFgwODiIejyMWiyEejyMe5wwlIooWLrtIdjiOklOmTMGECRPw2muvAQCam5tRXl6OCRMmeFY4IiLVcdlFsstV93Tz5s34+c9/jttuuw0/+MEPsHnz5rznu0RExY6LfJBdrqLkuHHjhnq8RERRxEU+yC4+kCUicoGLfJBdDLxERC5w2UWyiw9kiSj0ghxVnP0cjmomqxh4iSh0soG2szuDGIDcxQiC2DowattBkjtMNRNRqORO3wHyg24WRxWTyhh4iShU9Kbv6OGoYlIVU81EFCpWA6rdUcVcfYpkYY+XiELFSkC1O6qYq0+RTAy8RBQqetN3clUkS2xvHcjVp0gmppqJKFRyp+90dmcQjwGD2pW9ep2mh7n6FMnEwEtEoeP19J2a8uTQKOnC14m8xlQzEUUeV58imdjjJaLI4+pTJBMDLxERuPoUycNUMxERkUQMvERERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSMfASERFJxHm8RBR53BKQZGLgJaJIy24JmN2dKLslIAAGX/IFU81EFGncEpBkY4+XiELPTaqYWwKSbOzxElGoZVPFnd0ZaPgiVdzc1mXp/aKt/7glIPmFgZeIQs1tqphbApJsTDUTUai5TRVzS0CSjYGXiEKtpjyJTp0gaydVzC0BSSammoko1JgqprBhj5eIQo2pYgobBl4iCj2miilMmGomIiKSiIGXiIhIIleB9/XXX8fixYvR0NCAVatW4aOPPvKqXEREREXJceD98MMP8a//+q/4wQ9+gObmZtTX1+Phhx/2smxERERFx1XgnTRpEmpqrgxomDNnDo4fP+5ZwYiIiIqR48BbV1eHjz/+GO3t7dA0DS0tLZg7d66XZSMiIio6MU3TNKdvfu2117BhwwaMHDkSqVQKTU1NmDBhQt7vpNOXkUiU6L6/pCSOgYFB3Z8R68cM68cY68cc68gY68eYUf2UlurHPcDCPN6WlhZs3Lhx2OsrVqxAU1MTdu3ahbFjx2Lnzp349re/jV/+8peIxWJDv3fxoni91KqqMpw712NWhMhi/Rhj/Rhj/ZhjHRlj/Rgzqp/q6nLh+0wDb319Perr64e9/sorr+Bv/uZvMHbsWADA4sWL8b3vfQ9nz57FX/zFX1gtNxERUaQ4fsZ73XXX4f3338fZs2cBAHv37kV1dTVGjRrlWeGIiIiKjeMlIxcuXIijR4/innvuQSwWw8iRI7Fp06a8NDMRERHlc7VW8wMPPIAHHnjAq7IQEREVPS4ZSUREJBEDLxERkUQMvERERBIx8BIREUnEwEtERCSRq1HNRBRNzW1d2Lq/A13dGdSUJ7Fm/iQ0TKsJulhEocDAS0S2NLd14ZmW4+jtv7JGbWd3Bs+0XNmZjMGXyBxTzURky9b9HUNBN6u3fxBb93cEUyCikGHgJSJburr1Nz4RvU5E+Rh4iciWmvKkrdeJKB8DLxHZsmb+JKQS+beOVCKONfMnBVMgopDh4CoisiU7gIqjmomcYeAlItsaptUw0BI5xFQzERGRRAy8REREEjHwEhERScTAS0REJBEDLxERkUQMvERERBIx8BIREUnEwEtERCQRAy8REZFEDLxEREQSxTRN04IuBBERUVSwx0tERCQRAy8REZFEDLxEREQSSQ+8fX19eO655zB16lR0dnbm/ew//uM/0NDQgEWLFuGRRx7B5cuXZRdPOa+//joWL16MhoYGrFq1Ch999FHQRVJKV1cXVq1ahVtuuQV33nkn3nvvvaCLpKQ9e/Zg6tSp+OSTT4IuilJ2796Nu+66Cw0NDVixYgXa29uDLpISDh48iOXLl2PRokVYtWrVsHt11Lm+bjTJvv71r2ubNm3SpkyZop06dWro9ffff1+79dZbtfPnz2sDAwPaN7/5Te2VV16RXTylnDhxQps1a5bW2dmpaZqm/fjHP9buvffegEullvvuu0979dVXNU3TtAMHDmh///d/H3CJ1NPT06MtWbJEmzVrlvaHP/wh6OIoo7OzU5s5c6Z2/PhxTdM0rampSbvnnnsCLlXwLl26pM2ZM0c7cuSIpmma9vLLL2vf/OY3Ay6VOry4bqT3eL/zne/gH/7hH4a9/vbbb2Px4sWoqKhAPB7HihUr0NzcLLt4Svnwww8xadIk1NRc2XB8zpw5OH78eMClUsepU6dw9OhRrFy5EgBw880349///d8DLpV6tmzZgmXLlmHEiBFBF0UpiUQCjY2NqK2tBQDMmDEDJ06cCLhUwfv1r3+N8ePHY/r06QCAe++9F//zP/+DixcvBlwyNXhx3UgPvH/913+t+3pHRwcmTJgw9P/x48fj5MmTsoqlpLq6Onz88cdob2+HpmloaWnB3Llzgy6WMj744AOMGzcOjY2NWLRoEVauXInf/e53QRdLKceOHcOBAwdw3333BV0U5YwePRoLFiwY+v++fftQV1cXYInU0NHRgfHjxw/9f8SIEaiqqsLHH38cYKnU4cV1k/C6UE6l02lcddVVQ/9PpVJIp9MBlih4NTU1ePDBB/G3f/u3GDlyJFKpFJqamoIuljIuXLiA9vZ2rFmzBuvXr8fPfvYzfPe730VLSwsSCWUu7cBomoYNGzbg0UcfRWlpadDFUdrBgwexY8cO7NixI+iiBC6dTiOZTOa9lkwm0dPTE1CJ1OX0uvHl7tTS0oKNGzcOe3316tW4++67dd9z9dVX5w2mSqfTKCsr86N4yhHV14oVK9DU1IRdu3Zh7Nix2LlzJ7797W/jl7/8JWKxWAAlDYaoflauXInRo0fj9ttvBwDcfffdeO6559DR0TGUBooCUf3cf//9qK2txcyZMwMolTrM7ke7du3CU089hW3btkXquhEpKytDJpPJe623t5ePKgq4um68f/RsTeHgqueee077l3/5l6H/v/3225Ef6PDyyy9rDz744ND/L1++rE2ZMkX77LPPAiyVOo4dO6bNmDFDGxgYGHpt5syZ2ocffhhgqdTx9a9/XZszZ442d+5cbe7cudqNN96ozZ49Wzt48GDQRVNGa2ur9uUvf1k7ceJE0EVRxp49e7Tly5cP/f+zzz7Tpk+frl26dCnAUqnF7XWjzDzehoYGNDc347PPPkN/fz9+/OMf48477wy6WIG67rrr8P777+Ps2bMAgL1796K6uhqjRo0KuGRqmDJlCiZMmIDXXnsNANDc3Izy8vK8sQJR9tJLL+HgwYNobW1Fa2srrr32Wvz85z/HnDlzgi6aEtLpNB566CFs2bIFkydPDro4ypg9ezY6Ozvx29/+FgDwox/9CLfeemtkMpBmvLhupD4I+/Of/zw0AhUA/u7v/g4lJSXYsWMHbrrpJtx///342te+Bk3TMHfuXKxYsUJm8ZSzcOFCHD16FPfccw9isRhGjhyJTZs2RSrNbGbz5s34x3/8R2zfvh2jR4/G5s2b+XyXLNm9ezfOnDmDdevW5b3e1NSEa665JqBSBS+VSuGFF17Ak08+iXQ6jQkTJuDZZ58NuljK8OK64SYJREREEimTaiYiIooCBl4iIiKJGHiJiIgkYuAlIiKSiIGXiIhIIgZeIiIiiRh4iYiIJGLgJSIikoiBl4iISKL/D3qoCx7DeWZQAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFkCAYAAADxHkghAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdfWxc533o+e9zXueVHFIkRcsSLduynUSJ4ySOmqTdtGnvok7Spovd/NG8GJsixbZI/gjQP1q0+SdAW2QTFNteoIuiF8jdNgmCptd7L9a5uXGbNq3TpHFU23XsKPGLZEkUJZEacjicl/N+zrN/nBmKpEiRkkhxSP0+QOBwNJw5czhzfvP8nt/ze5TWWiOEEEKIXWXs9gEIIYQQQgKyEEIIMRAkIAshhBADQAKyEEIIMQAkIAshhBADQAKyEEIIMQCs3Xzyer297u2VikunE97moxkscg7kHICcgz45D3IOYP+cg/Hx6rq3D+QI2bLM3T6EXSfnQM4ByDnok/Mg5wD2/zkYyIAshBBC3GkkIAshhBADQAKyEEIIMQAkIAshhBADQAKyEEIIMQAkIAshhBAD4JYDchzHfOELX+Chhx5idnYWgGeffZa3vvWtPPbYY8v/++pXv3rLByuEEELsV7fcGORTn/oUb37zm1fd1m63efTRR/nSl750qw8vhBBC3BFueYT86U9/ms985jOrbmu321Sr63ciEUIIIcS1bnmE/Mgjj1xzW7vd5ty5c3z0ox9lYWGBd7zjHfz+7/++BGkhhBBiA0prrbfjgR566CGefvppJicn+e53v8tzzz3HJz/5SRzH4fd+7/colUp8/vOfX/U7vh+t2wrNNA3SNNuOw9qz5BzIOQA5B+fmO3z/TIN6J2S84vKz949ydKyy24e1K+709wLsn3Ng2+u3AN2RgLzWqVOn+M3f/E1+8IMfrLp9o80larUSzaa3HYe1Z8k5kHMAd/Y5mG54PHlqlqprM14rUm/6tMOYDx2fZGq0tNuHd9vdye+Fvv1yDm7r5hKzs7MsLCws/6y1xrJ2dWMpIcQec3K6SdW1qRYsDKWoFiyqrs3J6eZuH5oQO2JHAvITTzzBZz/7WaIoIk1TvvKVr/ALv/ALO/FUQoh9qt4JqbirU3sV12S+E+3SEQmxs25p2Do/P8/HP/7x5Z8ff/xxTNPkS1/6EpcvX+aDH/wghmHwyCOP8Lu/+7u3fLBCiDvHeMWlE6ZUC1cvU50wZazi7OJRCbFzbikgj42N8dRTT637b3/8x398Kw8thLjDnZiq8eSpvNlQoWDTDhLaYcz7jh3Y5SMTYmdI60whxECaGi3xoeOTlB2TuVZI2THv2IIucWeQSishxMCaGi0xNVraN9W1QlyPjJCFEEKIASABWQghhBgAEpCFEEKIASABWQghhBgAEpCFEEKIASABWQghhBgAEpCFEEKIASABWQghhBgA0hhECDFQphseJ6eby3sgn5iqUatJdy6x/8kIWQgxMPp7IHejlImqSzdKefLULOfmO7t9aELsOAnIQoiBsXIPZLViD+Tvn2ns9qEJseMkIAshBsZGeyBfaYe7dERC3D4SkIUQA6O/B/JKnTBPXwux30lAFkIMjBNTNdphTDtI0Fov74H8s/eP7vahCbHjJCALIQbGyj2Q6+1oeQ/ko2OV3T40IXacLHsSQgyU/h7IQtxpZIQshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDABrtw9ACCFuxnTD4+R0k3onZLzicmKqxtRoabcPS4ibJiNkIcSeM93wePLULN0oZaLq0o1Snjw1y3TD2+1DE+KmSUAWQuw5J6ebVF2basFCKUW1YFF1bU5ON3f70IS4aRKQhRB7Tr0TUnHNVbdVXJP5TrRLRyTErZOALITYc8YrLp0wXXVbJ0wZqzi7dERC3DoJyEKIPefEVI12GNMOErTWtIOEdhhzYqq224cmxE2TgCyE2HOmRkt86PgkZcek3o4oOyYfOj4pVdZiT5NlT0KIPWlqtCQBWOwrMkIWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoBUWQshbslObfKw8nGnxqu8ZVyqqsX+dssj5DiO+cIXvsBDDz3E7Ozs8u1/9Vd/xfvf/35++Zd/mc9+9rNEkbS0E2K/2alNHq593EQ2jxD73i0H5E996lMUCoVVt73wwgt8+ctf5utf/zrf+ta3WFhY4Ktf/eqtPpUQYsDs1CYPax93qGDL5hFi37vlgPzpT3+az3zmM6tue+qpp/jABz7A0NAQhmHwkY98hG9961u3+lRCiAGzU5s8yOYR4k50ywH5kUceuea2c+fOMTU1tfzzkSNHeP3112/1qYQQA2anNnmQzSPEnWhHirp838dxrn5wCoUCvu9fc79KxcWyzGtuN02DWu3OLt6QcyDnAAb/HPyHN0/yX56/SKIUFdeiEyZEwK+9efKWjnunHncvG/T3wu2w38/BjgTkYrG4qojL931KpWtPYqcTrvv7tVqJZvPOLt6QcyDnAAb/HNQsg18+doCT002mr3QYqzj88rED1Czjlo577eMeGa9wYhsedy8b9PfC7bBfzsH4eHXd23ckIN93332rUtSnT5/m2LFjO/FUQohdtlObPKx83P1yIRbienakMcj73//+5erqJEn42te+xgc/+MGdeCohhBBiX7ilEfL8/Dwf//jHl39+/PHHMU2Tv/7rv+aTn/wkH/3oR9Fa8573vIePfOQjt3ywQgghxH6ltNZ6t568Xm+ve7ukp+QcgJwDkHPQJ+dBzgHsn3Ow0Ryy9LIWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIA7Mh+yEIIsVOmGx4np5vUOyHjFZcTU7Ud2Y9ZiNtNRshCiD1juuHx5KlZulHKRNWlG6U8eWqW6cbe3wFICAnIQog94+R0k6prUy1YKKWoFiyqrs3J6eZuH5oQt0xS1kKIbbPT6eR6J2Si6q66reKa1NvRtj2HELtFArIQYlv008lV12ai6tIJ83Tyh45PbltQHq/kjxunGecaHu0wwTYUD45XtuXxhdhNkrIWQmyL25FOPjFVY6bp8+z0IkGc4hiKdphQ74Yyjyz2PBkhCyG2xa2kk7ea6p4aLTFedlj0YuIso+JavPNgBds0OTndlGprsadJQBZCbIt+OrlauHpZ6YQpYxXnur93o6nuVGvefe8ISqnl27TWMo8s9jxJWQshtsWJqRrtMKYdJGitaQcJ7TDmxFTtur93I6nu6YbHTNPn26/Uee5Ck0Y3BLYW+IUYdBKQhRDbYmq0xIeOT1J28jR12TG3VNBV74RUXHPVbRXXZL6zesTbH0lPVF1sA9pBwo8utphueFsK/EIMOklZCyG2zdRo6Ybncbea6l45ki47FucaHgvdmHon5Lfec1Tmj8WeJwFZCLGrTkzVePLULJCPjDthSjuMed+xA6vut7JobLTsMFp2lueOJRiL/UBS1kKIXbXVVHd/JL2SzB2L/URGyEKIXbeVVPdWR9JC7FUyQhZC7Ak3WzQmxF4hI2QhxJ5xM0VjQuwVMkIWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoBUWQshdtxWt1cU4k4mAVkIsaNudHvFlb/XD+JT41XeMi5LnsT+JgFZCLGjVm4KASz/9+R0c1WAXRmATaWodyMO14pYhuJ7p+f5f5/zedc9Izx8qMrMUiijbbHvyByyEGJHbWV7xf4ouhulTFRdXq13ubDoMd8JeOlyC8OAAyWbFy4t8Zf/Os3FJZ+Jqks3ykfb0w3vdr8sIbadjJCFEDtq7faKjW7Ey3NtojTjiRcu4RjwX350maafUCvZvPWuCnGWUXEtXrzUZqLqUrBMVKY53/SZrBaodyKOjJQ2HG0LsRdJQBZCbMnNFmat3BQiSlKeu9BEA8fGSnzz1Cxn5rtYpsFE2SGKU/7l9UUmh1wc16IVxBwoO5xd6LLkRXhhyt1VvWrXp4qb97YWYq+TlLUQYlNrU8o3kipeuSnEjy+3qbg2D4yVmF4MmGuHFCwDDSz6MYahKFgGi15MK0wwDcW5hS5BlGIqRck1eL3ho9DLjy9bMIr9QkbIQohNbbUwayP9TSHqnZCJqsvzM0sUbJM40xQsA9I8wLaChAMlm6afMDVSBODSUkDZVBysFIhSzfmGR5RmaK1lC0axr0hAFkJsqh9IV7qZVHF/PrkTJlRdi4JtEEYZBcek7Jg0/YRWmDJctHj80SN88ydzPHqkxmsLPucXuoDm7mGXKNXU2xFjFYf3HTtw2+ePZV212AmSshZCbKofSFe6mVTxiaka7TDGNgzCOGW85BBlGtNQgKbqGowUbT79c0eZGi0xXnHx4pQky5gaKfLgeAXXtnAtgw+8aYIPP3JoV4LxzabvhbgeCchCiE31A2k7SNBa0w4S2mHMianaNfedbng88cIl/uJ7Z3nihUurAlV/PvnB8TINL2a07PDe+2oULIOlIOXQUJHfes8U77r3wPLzvlbvohS4lkGQZPhRQpZp/uSfTl/z+LfDyvS9UopqwaLq2pycbt7W4xD7j6SshRCb6gfSk9PN66aKt9KVa2q0xP/xs0d57I0TnJxuMt+JePjukXXTvlOjJQ4PFwgyWOyGGAq01pQdkyjVy6PTzbp+baftSt8LsZYEZCHElvQLs67nRoq/tvJ4AMfGK2SmgaU1z11oYhlG77HNax7/dszt9tP3cZpytuHTCRNsw+DB8fK2Po/YXbtRJyApayHEttlKV64bdWKqxpKfp8s7QYzWmjBJOdq7OPYf/3bN7Z6YqjHT9Pi36SZRnGIbik4YU+9GMo+8T+xWnYCMkIUQ22ZtVy64+XXCK0co5aJDEMSAAuDhQ8OMlp1Vj3+rS7O2amq0xHjZZdGLibP8C8EbDlaxTUM6hu0Tt+u9tJYEZCHEtlnZlavimje1Tni64fHUT6/wzPlFCpbCtUwSFDrLeMfdQzx3scVzF5qMlvJ5atNQvO/YAb75k7nbNrebas277x1FKbV8m9Za5pH3id2qE9ixgHz8+HGOHDmy/PPDDz/MF7/4xZ16OiHEANhq8Vff2nm6w8Muz84scW7Bp2gpLrcjlMrnkRe7Cf/tx3M8eniYMMtodGOWgoSPv+Pu5SVS2zU638ztfC5x++3W33dHAnK320UpxVNPPbUTDy+EGGBbLdZaWZFtGYpnzi3yWr3D3bUCcZoRJpqinc9H17sxaZJhKEWYad5xZASAdpAwsxQC2zM636qtPpc0ENmbbud7aaUdCcidToehoaGdeGghxD7Rn6eL05QXL7Uo2CaWoWj6MXGqCaKU0bKDUhDEKVGcMlQw6YTJ8mNEScrzF64GvEcPD+d7JW9TF6+NAupWMgFbWQImBtONZnq2y44E5FarRZqm/PZv/zbnzp3j7rvv5g/+4A+4//77d+LphBB70NW+1h0KtknBNqm4Ft0o5WDV5fR8hyBOMU2FaZoYClwzvw/k2zg+d6FJZUXAe3ZmadsC3mYBdbNMwG4VBontsdVMz3bakYBcKBR47LHH+I3f+A2mpqb48pe/zKc+9Sm++c1vYllXn7JScbEs85rfN02DWu3OfsPKOZBzAPv7HEyNV+lGCWGqGSraKKUYrbhErYDhss2huEg7TAiijIcOlhirVHn1SocjB0oUCjZnLixhWiaP3DNCueRSLkExiHmp7vHwfWO3fHzffGWeiVqJoYINcMOP304yDtaKGCsKvwoFm7lWeFN/0/38Xtiq/X4OlNZab363W6O15tFHH+XrX/86x44dW769Xm+ve/9arUSzeWev55NzIOcA9vc5eObsAl997iKXlwJcy2C07GAouGekyOVWSJxqjk9WAbBdm6qlcAz44XSTuXZEK4h559Qw949Xlx+zX+n8gTdN3PLc7V987ywTVXfdSurf/rmjm/7+Ey9cohutLgxqBwllx+TDjxy6oWOB/f1e2Kr9cg7GV7xnV9qxlPXS0tJylbVSiizLVo2OhRB3rumGx7MzSxwbK2MZcGbeI0gy3nO0xlilgGubfOj4JJCneNtJXlVd70Y8OFHl7UdMfnC2wel5j5GSw2g5X6LSCVMMxU3P3a6cM55p+oRJtup3bqTSdrcKg8TetSOdul555RUef/xx5ufnAfjbv/1bJicnVy2DEkLcufrzq1OjJd57bJxfe8sk9x0oc6EZUnauBuN+t6SDQwVerXd5rd7mhZklvntmgTSDMEl5ea67asML4KY2f3jm7AJf/M5p/vHVOjNNn6Jt8KOLLaYb3qYbaqynXxhUdvL1q/3XJfPHYiM7MmR95zvfySc+8Qk+9rGPoZRiYmKCP//zP8c0r50vFkLcedY2Xhgtu7z7XofT9S4A3/zJHDNNn4mqS7VgYShFK4hp+QlRqrn/QJkgybAMg6UgXlUJ+82fzK3bvvN6TR2mGx5ffe4ihlKMlG2CJKMdRtw/VqTeCSlY5k1V2u5GYZDYu3Ysh/yJT3yCT3ziEzv18EKIPWy9xgszTZ8LTZ/JoQITVZcfXWrRCmLKjkWp6OAnGbapyDJAKQq2ScmxqLrmqjndm2nqcHK6SZJpxsr28mMD+HHGkVppS3PGWyHrksX1yOYSQojbpr9X8pl6h3+bXlyVDn7x4hKZ1jw/0+T5mSUKloFSBud6Df2V1jT8mIYXcb7RpdGN0Foz5K4eV9zI3s199U7IgbJNmGTLtxUsg4aXbFt3pt3asEDsHVJlJcQdZDdHaCvX9R6bqFBwTF6rdwnjlJGSQ5BoRksmrm0SJhkL3bySOtN5d65FL8Y2DIaKNt0oI4hD3nJXlfvHK9e8NscwCOMUP0q3lGoer7iEScaZ+Txl7loGrSDBNNjynPFmZF2y2IwEZCHuELvdOWptQDoyUqJWdCg7eXr4riEXlEIpRZppulFKloEm49+nmyRZhmso4kRTdk1cUzHXifjfp2rrvrZ2GG/5tZ2YqjHbDrh/rEy9G7LQjTANtdwnezvs1oYFYu+QgCzEHWK3R2jXC0gazUMTFV663AJgwYvIMk0nSjl+V5XZdkjTi0i0wjI03SjBV4rDdr7l4XfPzOOYBm84WEUpizjNOLfg8Sf/dJr33j+2aSZgZavEgmXytrudbc8eyIYUYjMSkIW4Q9zKCG07Ut2bBaRulPLwoWHONbxeNXVGyTY4v+ix0I1Ba1xTUXAKTI2UmF3ymWlHdKOUfuuOFy8tcc9IkfOLPo5poFDLc7WbjZZ3uiJa1iWLzUhRlxB3iH5AXGkrI7TtKka6XrFV/99s0+CekSJF22DJj1n0Y5peTJZp0gz8RNPoRARxSjOIqbgW1YJFpZC33nQtkxcvtXEtE6UUlYK15XXIO03WJYvNyAhZiDvEzY7QtiPVPd3weOqnV/jRTJOlIGW4aPPOI7VVAelDxyd56qdXeOb8Iq5lkGaQAml2tbtvquFKJ4LZNl6cEScZz19oMlKwOL/oU7DyQD5RcQiSjIcmysuvdxDmamVdsrgeCchC3CFudku5raa6N0prTzc8vvLsBaYXfWpFB8dKudwKefrMAgCPvXFiOVCNlh0ePjTEqctt+mG4vxBJrXiubpSiyUi1yaKXV2PfM1Jkth3hWAYaxVvvHlrVUlPmasWgk4AsxB3kZkZoWylGul4F98npJotewlDBJs00890I2zTQaF6td6l3LzBedkm15qdzbcI4peHHWKYi03mqWgNKgQlkGixDgTLpRglnGx73jpaYbYccPVDiw2+d5NmZJWzTRGstc7Viz5A5ZCHEdW2l0cbKtPba/tH1TkicpriWwYIXYRkGBdsgSTVLQcT0os+r9Q4TVRfHNHjlikfbj1GQd+Uiv1D196UzFIRpSqZhouwQxRmvXOnw8lwHxzA4NFyUuVqxJ0lAFkJc11aKkeqdcN3+0fOdiPGKS5JpXl/ocmkpoB0meFGKZSqCJO+0lWT5rnB3DblEaUqYZAwVLDLy0XH/v4kmb58JxGmGn2RYpmK4aDNasvGTlC9+5zRfe26GRjfCUPmxnZxuSkcsMfAkZS2E2NRmqe7rpbUPD7s0ujFenGIbiiBOWPIzqq4NQJJmTPbmqGeaIQXLoBtleEm87nP5icZSYCrNlU5IxTFJ0wxlm5yZ72IoxWw74GzDI0xSagWHFy+1+OfT83z8HXfzrntXp663sqRLelCL20ECshB71CAFietVcJ+cbvIzR0c41/CYbvgs+immytPWtmngRSmdMOX1eoezjS6OZdCOsk2eEWzLII4ykkzTDFKCJKNSsBgp2bxW7zJWdpgPIqI05P4DZZaChK8+dxGAmaWQeifEVIp6N+Jwrbhh97Ld7nAm7hySshZiDxq0jQqul9aud0KOjBR577ExPn7iCI8crjE55JJmMFnNd3YqOiY/utTCMQ3aQYKprv98Jdek4lhYpiJMMsIkpRWkvHKlw4sXl1jwIs43PAzF8u5QpoLzCx6f/4fTPHOugWUoXq13ubDoEafZhnsnr5wfX/RiXqt3OHW5zV/+6zlJg4ttJSNkIfag3W6DuZ6N0tpr09ndMCFMUoI45VLLZ6RoY6BpeDEPjpc51/DR1zzKapaCZpCg0GQoLKWJ015FdZB37loCTAUTFYf5dsiZ+S5hkuFaJn6c8dLlFkGcz1Wfa3iMlvOq8bVLuvrLvhrdiBcvLeFaJgdKNgteLCNlsa1khCzEHnS9IqpBs7JKe6ETcnkpYMFLqLjWcsp4MUh4YKzESNHeNBgDtIMUy1BYpoFjKgxDgcobh/ST3Qb5z7PtiB9dWiJIUpQCy8zPX5pBkGQoWNXBbO2Srv4XinMND9cyKdgmYaoZLTsD0QFM7B8SkIXYg262DeZW9fct/ovvneWJFy7dUmp2ZTr7x5fbOJbBkGvhWCa2ZWAZeZp6qGDx9OuNLT1moiFJNVmvi1em89GwIr+oGYbCMvKfNZBm4JgGqdbL/a3PzHdpBzFXuhGWwYZLuvpfKBa6Ea6pCOJ8dH/vaHFgvwSJvUkCshB70GZrg28loO7E/PTUaIkTUzU0miBJiZKUK52QuXaIAVRsg5mlkDTbvJgL8gtXnGXEqSZKMtJME/caiDiWouiYFBwL11IYKm8q4tomQ65NO4xJM02WZdimQRRnHKw6Gy7p6n+hGO2lqR3LWO4CJh3AxHaSOWQh9qDrtcG82argftV2vpWhyRsOGihlLc/9PvXTK4yWnVVV3cCWKr37x5SkmijVKA2mAVXXIkozvFhjxZow2UrCOm8OohU4hiJMNKlmOdUdJpqiBWGaoTS4pkHRMai4Ju0gwTLU8tzz3bUC94yUOFwr8uFHDl33fP/We44un9f+Y0kHMLGdJCALsUdtVES1UcHXegF1vaU9AArNjy62lkeCUZLyw/OLvPfY2HKQ/8qzM4DmcK20aeDvH5NrGxRMgzDNAEU3TFBK0fRjTKXZ4gCZWINrKMJUg8rT1f1uXonOC8cc20AbCtcyOFgpMFS0WOxGKMMgQ3HXkE3ZsSg7W0s732wv8LUGabmaGCwSkIXYZ9bbDCJKUp45v8jPrwioK4PnyiA+VLAJk4yCbXK24TNadnnlSpeR0uogv+hFgOKNk6tv+8t/PcfhWnFVsOkfU6bh2HiZy62AJT8hzjRVxyBNNcpUeVDe2iAZrTVa5+logNGSjW2ZpJlm0Ysp2Ra2qXh0apiD1QKvXOlgWyYuMDVaZLSU7wj13IUm9x0o8cQLl5aD5OFhd3mt8npBU2+p9Oza4Ht42OXZmaWBWtMsXxAGh/m5z33uc7v15J63/rfSQsEmCNbv0nOnkHOw+TmYbnh8+5U6T5+e53zDp+KYDBft23iEO+9m3gfnGz7dKO8d3ffCzBJF2+LYeLm3b7ABKOqdiDdNVnn69DwjJXv53y4t+ZhKEcQZB8oOL8+1OTpa5GzD57V6h4VuRKMbYhoGRw/kF+9GN+Sncx26UcZbDg3RjVJeutxisurS9BO6UUo7TNDAwaECo2WHe0ZLzHsRXpSQ9ka3W7UycGsNfpI32BwuWhwaLvI3n3iU99w7SphqumHKgxMVhgsmidZUXBvTUKSZ7u27nHBouMhIyWam6fNfX5zlciuk4UVcbgW8Wu/iGPBPZxZQSjFSsle9vvXed/2sw8r7P/XyFUZKNuNVd92/w/XsxDVhvWO83mvabfvlulguu+veLiNksSdJ96SNrdc1q+HFvPvoyKr7rVxvu3KtcL4F4jAvz7UBKDsmb5goc3reY6hgU3UtwiRjwYtJMnjuQpNOmDDbDgnjFIXm/3tploJlMFSweeqnV3jsjRN85dkLLHoRl5oBCkWYJtiGSb0bEm8xVb2SZfTmjXW+vCnJwI8y6jrCVIrphndNWv///ParlGyTM/MdvCilaJs4lkGp1xQE4PyiTzdKQMH9B0oEScaFRY+/eT7kbUdqW177vd7UQZJprrRDjoxcvf9u7tU8iOvZ72QSkMWeJBeSja031/mue0ZwrNXrlldWCPeD+KIXUe+GLHRjLEMt937+T98/hyKvsvailNl2wJIXM9cOqXciKo7JbCtEkzFUdGiHCXOthIJl8NO5NhcWu5xtBGRaUzAVV7yIONVMVExMg5sKyK5lEKXZcnU1QJRqXAv8KOH/+qczPHSwsqoA7bX5LgteTMdPsMw8onfChCzTNLoRo2WHS0s+JccgzfJ8eMHOt3E8Pd/l+F1Vnr/QoR0mVF2Le0aK+FF6zbFNNzy+e2YeBVQKNveOFhktuxwo2zS6yYZ/h9ttq3tdi9tDArLYk+RCcn1rR4b9jAJc22u6f/9HDw/z1ecukmZwoJRnHp6dWeLQcJFUa95xpMZPZvN+05ZpoBQ4pkmSZcx386BkmyZxqknSFMMwCNJ8SdIPp5d4YLxCyTE53/A4UHYxgEbpgVsAACAASURBVIJjUu/EXG3nsXWdKMNa02JTA5nWzHdjojQPoM+cW+R//GQO28yLyLwwD8amoWhHeXC8e7i4oluXIssyCs7VLzB+nNENU5788SzVgsVktUDYm39+++HaqmPon2vHzKcMoiRbLpAbL7ss+QntIFn373C7bWWva3H7yDpksSftdGOM/WYrWyjOLIW8c2qE//kN47xjaoQjI6XlTlTjFRfHMim7Jg+MVyg7JkrlS4kOlF1sy2C8mheDtYIYP0oJ43zTCENBN0qZbnikWb5EqR0kuHbeECTeamn1OpIVy536/CgjSjXznYi/f6WOH6eMlmzOLnhESQZa040SGl6EH+VtNl3LYKEbs9AJSdKUuXaEFyZ0gphGN+L8okfBUtimIk01M00PL0rXLe3qZ2/ecLBKlOavrWAZvDzXxTLzrMOg7NW8lb2uxe0jI2SxJ11vd6E71WbVspttoXi9rMMH3jTBk6dmWehGHCjZdMIEo7ekyDYVeU8sRaZ1/v8MSLQmSfNK6IJlECQZF5d8HEOxlGlmlwKCRJPefDxeVwqg89FGsxsy2wop2AadMCFKUrxYYxqgenPP7TDFC2M6UcZ/e2mWomUyXrFQyuBsw8NUigMlG9cyKTsmDT+mE6bMdyPuqjqcnF5ktOxcU1GulMXDh4Y51/BoBwmgB67GYbuWcontIQFZ7ElyIVltO4rcrpe+7Ke0f3hukZlmgEZzoGiRaPCjlKKlmGuHoME0Faah0KnGMfO1wrWCRZTlw9lunBDGKXGmMbl2hLtdMiBM8yYiQZSgM+j2SrPTLP8KAXm19o/nukxWXe4dLVJyLJpeTMU1CRLNQjfk5+47wLlFnyjJmBop0Q0TXl/okqE4OHS1m9mHjk9eUyA3WnZoBwllx9z19+dGX9p2+7hETgKy2LPkQnLVdhS5XS/rMN3weHZmiUenapyudwhizZVOyJBr0vAiOnG+L3HFNVGAn+Qj5Ypr4sUptmVwV8lmwUtY6MYYhsYgH0lzbU3UTen3rV75s2GAoRRxqii7Bq0wT1GbhiLLNBl5tbYBBHFKvRNxuGZSK9k4lsHP3T/Md08v4Fgm944W+dHFFgCXWz4oxeVWgB9bgGK87HByurml7M1urP2VlQmDTwKyEPvAyi0CzzU82mFCxTEZKuRrSVcGAFMpmn7EzFIAwJsnh3jsjRPLo+BvnJpjrh1xsOrwq8cPMjWaN83oB/yyk29XmGQZTS/CjzWOoSgWbYq2iW0oJkzFpVZImGhKtsl42UHrvODKtfI1r/VOTHAjC483sTYYayCIsjzok7fqNHv/WLAM4jTD6HUVsQwwDAOlFJeXAmxL0Qrykfzhmks7jKm6Ng8fGuKVK10a3ZiibTAxVGSk5BAmWb69Y5zy4UcOXTd7s1uBUVYmDD4JyELsA+MVl5mmz5n5Lq5lMuRaLAUJS0HCM2cXlrtDWYbi+2cbzHcjpmoFyo7FczNN6t2QX3pgjGdnlnhwosrbj+Qju36V9cr55X4a9p6RIv/91BxDRZvhgoUXpyx6eaBaCjJKtolpKIZckwUvIkw0dq+P9FwrItzmueOVFHmq2u5tyxinmqaf5qNywFSKpLfpRKY1Zcem4loEScqiH+Na+VKn1xc8LAP+l/sOMLMU4kcp7zo6QpKmZKjl5hkF28wL2sK8anuj7M10w+Mv//UcC17MgbKzvBwKdj4wysqEwScBWYh94MRUjS9+Zx6j1/0pSDK01hwbK/ONU3M8OFGlWrB4/kKHKM0o2ybdOONAxQKlWPQSvnFqjomqy2v1q+tsxyvOcpX12vnlV650sAyDsmuQZJqyk/9bvR320tdwoOyw5OfzxUtehG0ZdKKdmjW+KgMMDanW2ErRm75eLvjqF6UVHcVY2aUbZ4yWHS4s5pXgcZoxXrYZqxS43Ar5f354gQxY8mOGCyZhrHGs/FwnacZcO8Tr7Y7Vb0iyVn9k3PBixkp5RXp/OdRIydnxwChLnAafLHsSYh+YGi1xeLhAtWDSDpPlLQKPjBSZa4dU3HxNbTtMSDNNwTYIe9043F76drrhc7reIUwyhnrduE7XO5yZ7667PGa2FWIZsOQnXOmEXG4FvRR2hmsZvPFglTiFNNMoNFopwmQHh8UrWApKjoFlKIJ0dedpQ+Vz15MVm6Jj5UVnRYvZVsB8N6bkmDw4XubBg0M4lkHDi3ml3mGhExKlmnOLAeebHjOtgCstn7MLHii4u1ZgqGBtuFVlP2V8oOwQppqCbS73C78dgVGWOA0+GSELsU8cG6/QjVaPgNpBwsHq1ZFR1bWoG3mP6n7ji0UvouHFLHoRYZpyuGYud6jqrytePb8cUnEsNJqhgkXUjUjTjDDTZFpjKHBMhVKKdpjQ8CPWaWa1oxJ9tXGI1vluUAqg/18NrTDjV99ykLPzHmcWutimwVDBRGs4s+BRb4d4SUYnTEh1XgAWxClm79zEKVxqRzzYa3gSJilvOFjFNo1108/9lPHR0RIvXloCwDUVC92I9tDOL9mTlQmDTwKyEPvERtW9v3r8IP/42gKLXsSSn4+QkkznbRw7AeebAWNlm4mKy6If8+NLLcquSdExMZXCjwy+8O1XubAUcGyszNuP1PjB2UY++kzyDlb5WmKFRvPgeIlOlI+um3687euMb0S/Zqy3SyNKr/y3jHon4nI7oFqwKVqKVn/jAq2peylZls8x54VweStQ21TEKQwXTBrdkDPzHYaLNoeGi4DecF7WVIofnG3ky72UQZJqOmHetOR2VTrLyoTBJgFZiH3EMQyeu7CIQnF8ssqHjk/2/kUDipJjcWTEYMmPiTNo+QlTtRJvPzLMqdk2i36MVrDox7TClCRNOTZWphUmGEpxZr5LxTV7QUUx0/SJ0gxTKSwDkjjv+GUoRSdMcCyF3vkp4y3R5CPlVPfPBsspdIXm3IJPRr4uOUwyMp1XXyug7Jp4cUacakwjX2dtKHAtk4Jt8cB4ZXlO+P6xModrxVXPPd3wqHdD2mHCkJsXwF1uhRRtk7fdPXSbz8T2ka0bt5cEZCF2wXZcyJ45u7AqhVywDd44OcTPHxtbHh1DPnd5uFbiYDXl1GyHhXZEkmrGywbHDgxxbKKCUnluVymF0hrHNLANA19rFroRlmEwUXUJkowfX25zoeFzuZUvm3KtvHI6SCDL8s0nDCMfnSbx7kVjU+XzxSs3rkj01YYgrmVwpRPSCvLNJfw0wzYUtmkQJvnvFy2DMNX58qgsI8oyTMPCNfNiroO9cxImGQXLyOfd57v8rw/ftepYrv4NXJ6dbnJ63kOTB3wv3pvrgWVd8/aTgCzEbbYdF7Jnzi7wl/863dvowOXVehcvThkrO1QLlVVrTOudEMtQnDzfpOFHuKaBaSnOLHjMdyPOLwakWcb5RZ8wSci0wrEUUZZhG9AOM1IdYFsGtqF4rd4hiPMRpNkLvHGSz7Eq8jnb7Wr2cSv6ldVraXptNf0ERUDRNpjvJmQpxFqjVN5MxDLBtgxqZRPLMFEKWkGKaeQFY+0wxY9Tjk9WSXotOKtuvvZ7o/njRS+j0Vvy5FqKbpSvX75/rLzn1gPLuubtJwFZiNtsOy5k3zg1R7VgLa+DVUpRsg1evNzmvvEKcHWN6XjF5Zlzi3TjhIJlYpt5VXXBMljyE5aCFNvMU8tRqilYBq6pCBONRlFy8oYZFxZ9skzTjVKSLE/dWkb+3HEv9A1IdhrIj2VturzQS6HHab7JRdNPWPR7a5bNvNWmrTVV18SLUtphytGRIsow+J/uH2VquMDfvzpPmmkcO6Fg5r2tHz40vKpF5lr9JUfnGh6ZhopjEKf5fHPBzveELljX/t4gk3XN208CshC32XZcyObaIVXH5NV6hyU/xo9TXAMMI+X5C03aYYJtKB4cr3Biqsb/+MkcYZxRcS3iNFvuUuVYRr5HsZWvgPTjvLVkpkH3KovzoKYJk4ylICG/a94LK0zz+dddrNu6Yf2WmXB1XjnKoFfORZJpkixP2yda89q8x6HhAo8eHl7eEatasGh0w14rTcXZXpX2TNNnvOzwF987i9nrApb2isLq3YiFbkTJNvB7O0VNVIu9naYi7qnBEy9c2jPzsbKueftJQBbiNtuOC1nFMXm13iVONZapKJgGrTBB6YxGN6TsWLTChHo3BOBd94zwz6fn6UYpZdfkYLXI+UUP0ARximMZOJbBkGuwGKQEaUbRMpgoO8x1IiqujWOBa+YB3DIVQZzv5LSXgvHaVp1Zb8enlZJU001TXFsxWnIIkxTHVHz+H06TZBkPjJd5811DjJZd3nr3EGcbHnOtiFrR5/X5DheaJkXLoOHlX7BGSw5NP6bhRaQpZEoTJZqind+nExhkQL0b4trmrszH3kxNg+y4tv3Mz33uc5/brSf3vPVHBIWCTdBffnCHknOwf89BxTF56XI+snJMtXwh+8UHxpZT0H0bnYOXLi/x49kOaZaPwBINWa/ZhDIMxqsuxyerjJRc6p2Inz92gMvtkHYQE6WaRjei4UXEiWaoaJNpaHoxcZana+NUE/a2ThyvOpRck4VuTKZTDMPI55AZrBT1jVIb3Gaoq1PgWabpRHlL0AyNzlT+czfiQNlhtOxSde3leXzXMhkp2cws+Sx5CX6S4UUpcZahlCLJsjzdbSrKjkU3yuhECQ8cKHL0QD73r3rd1kBR70S8abIK7NznoV/ToFTeY7wbpbx0ucVk1b3m/bjScDF/3fVOxHwnola0+cUHxnbsC8R0w+MfXp3nH1+e43zDp+KY1z2+QVYuu+veLiNkIW6z7WjQkGX5BglRqomzDHojVdOAWsHiHUfy7ktaa+rtiKnREr/0wAFeX+jSieK8x3TBIkw0QwWbi0s+ygCdavw4o2wbBGnGUhDTDmNGig62CRqTNM1IWT+g7SUbFXz1R8xxBjrOsCwDrTWdIEWT4sf5TlFnGx62adIOY/wo4XIrwDIU9bZi3ouI4gzDgDAxGK+4FE1FO0gZKlhorWkFMdWizVjZZbYd8siR1XPIt2s+9lZqGm7Xuub+l4aJWmlfV3RLQBZiF9zqhawVJgwXbTS9vsxK0Y0SokTT8GMa3ZDRcn7hMlQ+N/ndM/OMFB3efXSE0bLL06fnSdKMTphim/kccpTkBVsaA9s08KN84+B2lHB0tMTFpQAvzCPW2u0O96NEA0m2Kq0da828F/HalS5vu7vGQ+Ml/tMPpvM550zT9COiJCPJMrIUgri/1jmfo9c6n8svuxYPjlcI45RXmwEXFv1V74nbNR+7XcVZO7kmuf+lYahg4/nRvq3oloAsxA7biQtV1bUYKlhMN3yMXp7VVIqYjFrBWh69zTQ9QOHa+ehLofnhuSYV12S2FWIqqBZs3nr3MItexE/nUiwj35UpTPK0dH/cttCJ8MLkajr3ll7B3rF2h8gsA7vXMOTDjxziiRcuUbANFrohVzpx3hEMTZxd3Sxg0U/ydc22Ik41nTBhrOzm67+V4u7hIqfnu4yUnNsyH7vyPTnT9AmT7Ja+DOz0muQ7paJbArIQO2inLlTHxisUbJOFbr6ZQ6bzDRIqvU0hXphpgYZa0WKiWqRasBgq2HlxkR/RjQwODbm8vpDvnYzOOD3v5RXYiaZLtjz6jVJIdUacRNcEpzuRBtIMGl7EEy9c4m///SJX2n7eGGXN2udeoTWq1/UrSvNe36ZW+X7NcUqYpLzt8BANL6bsmDveZ3rtezJKe+8X4MhIcd0vA5t9qdzpNcn9QsjyiofajxXdEpCF2EE7daE6MVVjth1w11CRRT8iSrO821QUg7IouyZhonnhYotfOOYAFkdHS/z9y1cwlSKIU+baIUGcp6gvt0KGCxYL3fCanh4aevsZsv9z1FtkGHnF9sUln4VOiB+vzhj00/llJ28z2u/KpXU+99//4uRaBg9NVLBNg/vHHD78yKEdP/a178kjI/n78Eo7Xwu99svAel8qv/LsDONlh1RrxisuZ+odjk1UVj3Pdo5g+xXdxSDG1HpHMwi72Q50XwRk6acqBtVOpdr6uy/9+0yLTphQcS06ccyinzHkwv1jZZQCP87495kW/+EN40DeEKMVRkQJHKwqakWbfI2xxrEMvGT950vgzslRb8LqteN0LPjn1+r4vdT+Sv3vLUGSzxdXCxaOmW8H6VoGSuXTDm87PMxM0+e1epfDwwWeeOHSDV+/VrZQPVh1+dXjB3nXvRsHqvXek4drRVzT5Ld/7ug1918bwOM048Kix6IX8+57R+iEKReWAgqOuRzcYXtHsP1CyJfqHhfqnZvKIGwlTux2O9AdC8g/+MEP+OIXv4jneRw6dIjPf/7zTE5Obv6LN2i3T6AQ1/ugb7TmuF9odSNfItc+T6Mb8d77DxCnGacut3iumfeWDpKMy60AjSJJM16ea+PHCZ0wydtGKoPhgkGn1/rRUIooSYkk4G5JP20fxxmXo+i6XULjVHOwatMOM/wsZbLqUHIsRko242WX0/UuF5p+vt67HfJv00t85d8u8LP3jvDrbz+86XvimbML/Menz/Z2s9K0gpT/+PRZgA2D8o2ug18bwM81vLzBTG8pV7VgcWyszGv1LrXizs2BT42WePi+MZrNa/ea3sxW48RutwPdkXXInufxsY99jD/7sz/jd37nd1hYWOBrX/sav/Irv7Lmfre+Dvnbr9SX3xQbrd/bi3ZzDe50w+Pbr9R5+vT8rq732wvrkDdbw7nemuOZpo8XJxRta9N1n4WCzauXlvj68xf56nMzLHRjJioOmYbvn21waMhFKbjcClkKYixD043zlo8tP6YdpqSZBqVpBintIMGPMvw4Xxsbp3lXKpkbvjmbtezWwKIXU7ANRks2qYa3Hhrmf3vrIX7xoXFmW3mf8dPzeWCO0owgSXm94XOx6fPgeGX5PbHe5+FPvnOaejeiaJs4vZF3N0q52PR57E0H1z2mG1kHD3C+4dON0t61FV6td7CUouhYHBouADBUsEjTjINDhQ3XJG/HdeVmrwlbjRNPn55npGTnxXY9jqmY70Q8OlW74efdyG1dh/zMM89w5MgRjh8/DsCv//qv86d/+qd0Oh0qlcomv31j7pTqu9tlkDIO5+Y7/MOPZwd6KmKzb9T91HKeUow4WHUw0PgJnG8s4CcZ6AwvzvjHV+ocGSny5skhHnvjBFOjJc7Nd3jy1Cw/udzBjxPONmJenm3hWCYNL+JMvYthgIEiylKiXspZkW9rZORFvMx3YlzLyNtEAmhIB2ADiL1sq6cv0TDbjgiilLccqvIvry/wX1+8hGkoHMNkqGBwuR3jxQmOaVCwTOI047V6l795foZa0eHHsy1sy+KhsdLyewPgXMOn7JjLy9ZsU1F2TE7PextmYNZbB//QeImT002++ZO5a+6/tiOXbShaYcI7D169lnfClPvHKxvOgd/MdWW9zFMzyW7qmrDVOLHb7UB3JCCfO3eOI0eOLP9cLpep1WpMT0/zpje9aVufa7dP4H6zEymbm5njn254/N3pBRzYkS8GN1t3sPb3Ttc7PDBRodENOdvwe/O5JkOOtXz/Z2eWeHCiytuPmMw0ff77qTmKloEXpSh0XnlrKBSKQ8Pw3EyTejfk8UeP8FLdI800l1o+JccEndEMEtB5cw8/0cvzlaZaM82r8yVLWa9pSBJnmP2qX3XtxgtiZzXDlH8520SRF3jZpkKTcLmtURocK19q1o1SDCBOE/7x1XnuPVBaThE/9fIVnj4zz8/fP8bDh6oESUonSlBAnGmy5TdA/jgbfXZWroPfLFiuDeAPjleod0Ns08wbpmwhPX2j15X1C8ku4Lo248UbHyxsNU7sdjvQHQnIvu/juqu/jbiui+fdeO5/M7t9Aveb7c44bOWb8XrB8eR0k+GijdWLGts5l3OzWYD1fm9mKSBKMurdiIJtUnUtWkHCkp8sv67+hajRjfjB2QZelNCN8tRhnPa2Oey9xk6UMFFxWfQSTk43aScZV9ohJcdCAc0gxTQUSQaR1vn2h3nvDkzj6qi3XxC9tr1lv8GFBOPbZ20DFUW+Q1bU25y5v1Qq6325UoAy8p2nojTBNAxSnVdB24Yi0/DCxRY/OLfISNHmQtPP93zuPUkGuKai3vapFqqbfna2EizXNrJZ/sxucYnWjV5X1jumRS/BjjX3jRQ3PM6NbDVObEcXvVuxIwG5VCoRhuGq24IgoFwur7qtUnGx1tlyzDQNarWtnYBarcTQUIHvn2lwpR0yMVzk1+6/m6Nj25sav91u5Bxsp6nxKt0oYahwdW6nFcQcGa/c1PF885V5Jmql5ccrl6AYxLxU93j4vjHOzXf4u9MLDBdt7pmo0gkT/u70Ap0g5o2HhlddyQoFm7lWeMvnZbNjupHfe0um+c4rVzg8UqRazDcisCyDhw5Weanu0U4yDtaKLHYjfnKlQzNIGXLz9cBhL3j217WOlBziDKpFO29ZmWgmh4s8P73I4dESFxo+cZJhGYoETZrmy2rCJCXNoGCZJGma70vcGwFL3N196/0NTMNA6zSv1jbztd79/aQNBRqFgUYpxaIf043S3jIphY1BM0i4q+ZiKJfZdkTc+yZmGHlWRKH5+1fn+dlUcWy8zHituOFnp/8eNVbMm272WavVStf9rKx1o9eV9Y5JK4izjFLx6qh2q9eEG4kTN/rattOOBOT77ruPb3zjG8s/NxoNlpaWuOeee1bdr9MJ1/4qkJ+QG6mkq1kGH3xo9Qm8mUq8QXKj52C7vGW8xJOnZvFde9U3yQ8dn7y56sZ6m4mqi+df/SZsas2Feodm0+MffjyLA1haEwQxFuAA862A1khpeYQM0A4Sqo55y+dl7TE1uhFnF7rMtUN8P9owfb3eaxkrWjiGomAoGu2QimvypokKI0VreXlGvenzWr2zfKHUQME20eRLSEzANBRaa2xT0fZjlIaqpXj3vSN880cXCcKEyYrN7JIiTFMspcjUisYTKm8y0R9hyQh4cGVAlKboXnrZNAwKShP3NvPINLgWOKZJkmnmej2yC45JFGf4UUrZySgaBdpRilJQtPM9qzOt0VoDmiDK6PgRP3zd5/6xMncPF9f97FQtg3rTX5XO3a7PWt+NXlfWOyalwTaMVZ+/GznOQYoT4+PrFxwb6956i37mZ36G2dlZnn32WQC+8pWv8L73vY9SabAKcsS1+imbfsegsmPe0rxtf+5mpZVzN/VOHsRWqrgmQwWbJT+mHSRorWkHCe0w5sQ2VDquPKZGN+LFS0u0w5SDQy7dKE9fTzeu/aBu9FqmRoo8OFHlvccO8PYjNUbLzvJrPDFVox3GLHQjXFNRcUyiNGO4YFKw8ipX2zQwDfCjhIpj0QpiRkoWJ6ZqHB2r8PF33E2mNUGS8eB4iaqbd+Qq2AZBnI+ydG8bQUX+oS46Jq6lMMjXze71jSD2mzS7Ot+fZRrHUNimwjTyqYe7h4tM1YqYSqFU/oUtTjVpb+9q1zJphSkV18I1DQq2SckxsQ2DkmOhdf4lrV9N/Fq9u+Fnp/8evdnP2nQjLyD7i++d5YkXLq372bnR68p6xzRSsjhQcXbkmjAodmTZk2VZvPnNb+aP/uiP+M//+T8TBAF/+Id/eE3KWrZf3NhunoPhos2bJqs8OlXjTZPVW1rytNkSi7VLKiAPcgerLr/61kPMLHjbvrXbymM6M98hSvNRxRsOVqiVHDZaNrfRa3nfsQOcW/TWfY1ToyUmqy4/mW3T8GJGyw6WUliWsbxxfa1oc7hWpOhYuJaxvCxmarREoWDj+TEXFj3OzHu0wiTf9q/kYBqKdpAX9Nhmr6KavPrXMeGNB6u0gnxLxTthI4hBkofBq+e8P6dvrSm8K9kGh4YKuLZFlGRonW+heaRWQBn5iPdwrUiYpASJplbIO655UcqVTkScZiRpRitIV1TWKzKtGClaFB2LasFkouzwwTev3wfiVrZRvJGtG2/kurLeMX3gjQd59wNjO3JNuN02WvaktN695Fa93l739t1K1w6S/XQO+gUg851oedS4XoXn2lTWzTYBuJFjeuqncxwccrl3tMRo70PS37Jwva5FG72W673Gta8zSlJeudKl4UW8656RVctY1momGf/3d15jetFnyLWWd3c6MlLi8UcP80d/9yqdKCHo7btbLVgs+QlBnDBadhguWJxd8PL1xis+6XavGEyTV2ev3M3IVDDkmiwGsi7qRinAMWCoaOOaitlORMnOU8+GAsNQREmGZRi8974RXrjc5p6REkMFi0Uv5lLTJ9Gakm3xSw/m6VXXNqkWLLxU89NLS1xq+nSilIfvqhIkGReXAi428yr8bpTXGIyVLH7hwXFGyy7tIKHsmDvSlvOJFy7RjdJr0t079Xz75bq4Ucp6X7TOFIPtelsN7lZV48pjWntBud6yuY1ey2bbKa58nX6U8q6jI1taavX9Mw0WvbwYptDbscmPU358ucWf/NPp/7+9ew2S6ywPff9f975Pd89F8mhmJEuyDSjYxjbGGDAhyfYF9k4qZ+NKTDCBQBkKPvAtJwSqEiqHXQF2qlJFqmBXJSkuDjmwXScViGOHHUjC9sbGsYlJbPBFsuTRSJ5rz/S91/U9H1ZPay49kizNpdX9/Kpc1PRoulevbtaz3vd93udhpeWTsQ2qbohC4QYRSUsjUgZThRRZx8DQNV5ebEAQYRpauxhI/PwJUyMIFQbxyNrQYDhtkU/aoLksN7eopSnWWZ3gsTQwDZ1y08exDIpJi1YQN/8wdZ1iysYNIlKWznzdR1cKQ4OqG5BPWbxpIkchZbNQ9XjgbYd44uQSDz59hjBS7BtKMpaxKTd9bpwY6pSpvBl49kyZlxbr5BJxpbZrx7IUUnZnWnendp1IHYjtJQFZ7LndanLezW5umzvf+9xqX/R8tYUfhmTb2ak1N2Ch5hEqhYZG1omLQBi6hqnBUt0jCBUZx8D1AxpenNV9sJik5sVVH0+IOAAAIABJREFUumpugNseLqt2QCikbZRGZ23OCyIsQ2c0ZbHc9AeukpfO+Ut3a5zLiE5YOuNDSSKlqLQCGl5Ayja5ZjRDqBRz1RZRpKh5ISsND1PXyWYcTF3jqqEkTT/klqkCxXR8E1htBYxk7M4e9qMjaRbqLkt1j8Vq3F5zIp/sHEup7rJQ98g4Fr9y3UinNrYzX+PIaGZHb3ClDsT2koAsBtp2j9AvtQjKVvuix7IJLMPADSISVlydSyNO1skmTHSNTiJYPYz3JVuGRhCGPDdbI20bpGyTrK2jIo2aFxAqyCV0tHjVEdPQeefRYfIpi+dmazx7dgU/UthmXGxC1yCha7TC/o3KG9fYV4OxvqaAytrfK+KgbRoaGSe+jNqmTr49Ve2Gil++boTlhs9zr1Y5W4n7Vte9iP05h7Gcw9XFOKj+6/QKz89VeevVxXU3hGv34k4VU6SSNnPLDV6cr64LgidLTTRNYzgdl4WcLKTIJ+0dmzZeS+pAbK8dybIW4koyVUzx3hvH+djbD/HeG8cvKxh/57nZToWk82Vsr7X2wrtabzfrWDw5vcLbjhQppOKA2/ICaq0AP4xI23FyTwRcO5pC0+IsXcc0MHVoBnFjg4YfsNL0mC67jGVtkpbR3ueqYxgGmhY3oPj+i4s892qNU6U4OS2XsHjTRJ6sY2EaGpqmkbYG63JhtJPkEpaOY2qbM9W1+AI6mrYxDY2WHy8JXDWUJGObzKw0+fezZUxD49rRDFPFNCnb4A37472v//FqlZOlJkdHUvih2pR9vOUOBMdcl4G8VPdQKuLQmu9txjFYrO38tPF278oYdDJCFmKbXGrZ0fOtwx0ayXD/LZM8+vN5nputYuo6w2mbmyaHKKbtTmUw29QZSVlUvJCletxNKmHGIzXbiKs7Ta80CSNwdPDa65pKgU5ExY+YXm5Qa2dte0FI3QvJJAzqnkkzCBnNOBgNj0ofJnutHf3qxNuMdE2Rtg1GMwlmyk0ShiJScW3qtK2TT5qsNEPm6x4HC0km80ncIKLS8rl5MsdLC3X0diODVjuDupiyePzUCkdG0mTbPZGPL7rcPJHngbcdWndMW00HHxnNdKrZLVQ9hlPxzMrqlPfqv9utaeO9XHLqNxKQhdgmF5vgsnFa29C0867DTRVTnYv1apLP06dXKKYskpbOmVZA0oqrNzX9EKXiYIymtdc4DbwgoNYKCaOISIGuKzJm3H2o3AwxtDhZrOYGWKZGwbIoNTyKKZtS3aPuRizW4tKN+WS837XhBkRocYOMPmLpkHZM8kmTXNLiyHCK2WoLNANfKdJGnJwVKIWuRwSh4uWlBpOhIpewmCok+c2bJvjm0zNUvYBqu1/1dWNpnj1bZbEefx9WR9xb7RHfOB1cafmd6eButairrUCmja9wEpDFwLjUhhIX62ISXLqtFy/UXUBjIp887wV1Y5JPqR43mLjjcIF/fHGBM2WPKFKYGriBwjQgZRsEUUTTj8glLRKGxWzVJYwApdDRWC3vFUYqLlLSDs5uucVC1aXmBvHIMIxoBfHIcV/GpJBMUHEjwrp7RfVStnXiYipb/N7QdcayNoYOQwmL4XQ81V91g3gPua4xX3PxwoiUZWBoipob8Uqpwev3Zfnl9t7Yo6OZTRn8bhh/fo6pU3VDMo7BtZP5+PPYYGN+w+Roput08F7XXxbbRwKyGAi70VbyYhJcuk1rT+RTuH7YWYfb6oK6MckH4ozcF+ervPlgkcxchefn6gTtqWjLgOGkxUy5hUJjKp9koeZTTFlUvZCqF7Ybyutoms5IxiGKFK0gpFR3ccN4P3LWiatChZFiLG2RScTT5MuVFrZhkHJMvCtke1S8JmzguVtPu7thRBRFpGyL1+1Lc7LUZKqQ4vRyk6obECiFF8VT/glLp+lHJG2DlKXjhYqnZsqMDyW7fh8MXePghine1X273awdCZ9vD65MG/eHwcrSEAPrfIlT2+ViEly2StSJFBdMLNvqb18pNTixWCeXsLlpYoircgkKKQtD12n4EZahcXQ4ScIySTsG+7IJxrMJTCPO1LYNHTRoBSH7cw7jQ0nQdBxT56p83DTD1HVMXaPmh0QKXD8iUhqGrjGatrH0c9WpepUGmEacVX6+44xU3Gd4X8aimHaouQGFlMXR0TT5pEnSMtBWm3m0uywVUhYJ22Cp4XW+V92+D++/+QCmofV1+Udx6WSELAbCbhUwuNBI5XL2bW71t5oWZ0EnLAMsg0NFjZmVJhoa975pnJNLNeaqHn6kSJoaMysuCVtnLG0ThCGNQHFV1mL/UIpIKfIpi7RtMJK2mSqkeHG+hoYiiBSeGzIbtQjCiFBBy9dIZONgHUWqp8tz2u0iKNVWcN7jtHVA0/i3mSpTxTSZdvKVG0RxgRZTp9TwQEGoFMW0hWManY5La79X3b4P40NJmV4WXUlAFgOhVwoYXM6+za3+9mAhSbnl0/JDEqaOF8YZvWiKx04scabcIlSKq7I2lXZFryiCfMZmJGvzxqs05moeNx4Y6jzvi/O1TmUwTYszi/V2o4OmHy94ph2DfNKk5oUMJUzma37XQLc6Dae3e//u1XKz1+43bOkKXQd3iwOJm3QoFhse3/mPOQ6PJJmtuNTckIPFJCnLYChh44UhGdtA1zX8MKLlR0wVUhf8Xsn0stiKBGQxEHqlgMH5EnC6JZ3l8+sft3Ud1w9pemHnb5+cXuFMuclCzWO+5rHc8EiYBq0w4mylRRhFFFI283Wfhhe0C/cneEf7vSulsBfqpG2D4/M1Km7AxJDDiaUmSilUFKFrGoGKSJo6oRGPNDUFo2mHxbpP3Y8opuIm8htXZ9Wa/10NyntBEZe4TFgmh0dSuH7E83O1dcerEQdkXcVFP+peQLkZZ6/nE2Y7Q1pjPOdQbnn4oaLuxs1RCimTQ8NJyXAWl0wCshgIvZSJ2m2EtFXSWSWM+Ofn59c9vtp8Y+1zfOe5FteMZlCqimPqvFppMZZxWKx7JGyDQCkOFVPMVl32Z2z8NaPDmhtyZCTNrVN5Zqst9g/F2d7D6Qo/PVul0gwYy1ik7ARnyi66AkOLsE2DUsOn5gag4kpVhg4GcdANVRwEVwOhpWu09qgGp6WDhkY+ZeEHESutgGtHM6w0PeaqXlw2NIoDckRc19vSwLHi6lvxeQo4NJwm0d5XHCqFpmkcHU5RceN64wfayVwyAhaXQgKyGBi9PFW4VVGR//mTsxwuJM9bbGTtzcZc1WVfzqHlWxRSFjUvIAgjXD/CMXVSpk7FDcg6JkqpLUs1ArzhqiEmC2lenK9y7ViWbMLkJ6dXcIOIhhfwynKTUMWtK8eyNiutAE3TCCOFYWhEwbk15TCKR+K7abXloW3E+4qDML5RMA2NcjNubdoKIjKOQcIyWKh5RIo1x6wIQ3hpsU7aNvEjOtP4cf9hk6xj8H//p2u7vv5Ob7MT/UcCshA9YKuks7lKi+vbpRbXPr4xGW1j9yqo4QYRwymbV0oNHCue6s4mLAopk9G0s2mm4OGfzTGWdSjVPU6VGnFBC9tAA6puHMAOFpI8fXoFBYznEuQSJscXaoQKGm5IEC/AYmigjHh+2msHud0ohb22JnU7eRzb0EmaOvmczcxKq12JC8pNn0jBvqyNY5osN/1O0w2IWyVGKDxfEUY+Gcek5cfT02678lbO6X4J3Y1tdqL/SEAWogdslXS2L5d4Tcloq2vlo2mbE4v1duN4E9swKTV83nKe/sujGYeZlSYnFus4ZlwzudwKiJTiPx8bYqbs0vRCbpqIt+g8N1ul4cVTtXU/JGFqtAJAxQlUpgGaoWFHCi/a3MBhJww5cZJVpOIbl5VmnGhWTNmM55MYusb0chNd08k6Bv/puhFs0+Dxk8sYnDtGDQhChUtIMWVTXe0/HKpO5a0DQ4l1XZfW2mrG49Gfz1NM2zJqFl1JQBaiB2yVdHbvTeP88/Pzmx7fKmlo7fS164dU3IADQ4nOGvH5Lv63TuX5wg8WN9VfPjqSZqbsbuoc9MTJJf7kn1/GDxWGpjrJWueCWvw8Kdug5cfPVfVCdC3uybzdwdnUwDINwiiiFQQkbZ1C0qLphyzUPExDp5C0OTyc4v5bJjuJdN95bpaGH2KbOm5765JaM6pPtRs6FNI2Wcda9zlstX+424yHF4T8+JVl7jg6IqNm0ZUEZCF6wFZJZ9cfHiFn6K8pGe1S18qniikmhhKb6i8rBf/7xNK6UR3AUzNlMrZB0wtZqPugwUjKpOIG+GGc5JW0TepeyGjaYqnuk7IMTEMjDCLK21xvM1DQ8Px20wyNlheSS1pYho4fKRaqLglLZzSdXveef/XYfv7u2VkUcWcnP4xwTIOwfYdh6TqFpEmtFfBqudW54cg6Jk9Or3C23GSm7K47P91mPF6Yr1NIvfbmI2JwSEAWokdsFUh3MxltY/3lUt3j6dPLZDashdq6TtaxGM8nOblUJ5swWW74BCEkLYMwCmn6EfmkhmbrvFp1SVoGBceK90xHivYS87aNlDXi5wuiOFiahoYXKhzLoNXw0S2ddx4dYWalyRd+cJyJoQRH252TJvMJlho+hqZRqnsEkSJUCkPT8IKIq0fSTOSTzKw0eWamwg0HckwW4p8ffm6u8/Pq+bllYoinZsrAuZmNUsPjrYcK6455J4rTiCuXlM4UQnTcOpVf12v3+bkqCnjdvvS6kqPPzlbIOAZXF5OUmwFLdQ9QKBQNP0TX48QuN4iIorhhQ8rSuXYsQzFlM5Qw0bW4gKWxTfU2NeJELFOP86tdP2Kl6VOqe/hRhGnAcsPnxGLcFrHqBZ2e1deMZsg6JpahM5SMK5VlbIP92QS3XV1gshD3nF6oeWQTJgt1r+vPq+dnpuxuKpt528ECtrm+9OleFKcRvUtGyEL0udey/Wbj1LkXRtwymaeYPrcemnEMNOKWkcW0Q9o2qLZ8IG73GKG1AyM4po4fKo4OJ1lpBVTdkFApMnbcoCI6T9el10IjrhzmBSGhgtCNME0dS9c6lcsKSYtTpQaOabS7LQWdmQBbj28WlhsBfhhhGXGhj6YbMF9zeXmpQcYxmS7V0dCYXo6bPMxXW+zLOFTdc801Vke9G2c2VterV/9Nv7RJlO1d20cCshB97FK236wNJA89c7a9jeqcmhtyYMjhX6eXCSKFH4QYOph63JqwSbvnMhppx8QPI+arHpmkhUKBpjFfbRKGinYXyEuyun1JQ1vXPjL0o7i4RxChGzphpNA1jflKi/mqh2VqGJrWSbrKOPE6+P23TPLk9AqLtXitfmLI4cGnz6BrGrn2lPzZskvKNiikLLwgotyMi6KM5RLrzk+3UW8vFafZLrK9a3tJQBaij221/eZiE4m6ZX/PrDQAjWtG08xXXc6sNFHE67WtQOEYGiHx9PFwymal4THTaDGScdCBWtOn6cdR+HJHx6GKa1OnbQOltHi6XIO0beCFikApbFOHKGKxGZAwNNLEHb/qbkCp7mIZBiMZe9OI9qFnznLNaJoTi3XcIKLmxYluNS9kyombTOSTcX/pY1flNhVa6aaXi9Ncisv9fon1ZA1ZiD62VcvGxdrFJRJ1ayE4mnaYyCdJ2yYNL27HqBGXx9Q0RSuIsA2Nw8MpIhVXw7pmNMW+nMPZistQyiKfNC87Gmu0S2JqGhU3pO6HWEY8mj06msE0dMZzCQ4WUlimASgsw6DpR1yVS5BPWjw/V1+3fWm61OChZ87y5cdO8sMTi6Qsg+vHh3BMnUozYChhMjEUt7esuiGjGZvrr8oykU9u2XKzn13u90usJyNkIfrY6vYbPww5WWpScwMsXefa0fSF/7ht7ahuutTgv//TcVpeyEorIFKQsnRafrxWm2/v+7UtnZsn89imwb8c97ntUIHh9lprzjFZqHkYelxS81KZOnEWdKdbhcL14+zt0yvN9jYmgyCKp8nHMg5pxyRh6HFAbVcxWQ2gG6dfTyw2ePr0CrdMFbhpMg7YlVa87rz6c7UV4Prtvcs93XxyZ/RKF7V+YfzhH/7hH+7Vizca3e+iEgmLVsvf5aPpLXIO5BzA5Z+DjG3w2MtL/Hyuhqlp6JpGzQ1wg4gTi3WenF7mlVKTjG0w1G6isJXVgFVthSw1PBQaizWXuhcSRmDqcaAbz8UdoE6VGhgaTAwlGEraOKZOqe6x0vQ5vdygHScvOYyFirhJhorXoXUtfj7T0FEqDtjLzYAIRdLS4+1PfsTBYoqbJvMMp22KKYtS0+dfji/yTy8tkrQMxrIOmqaRtnXOlFtUWwET+SRhpJguNTk8nCKXMNvT900afkDSMimkLOpeyH+8WmF/1rng+XytevH/Dxnb4D9erQAatqF1pux/6ZqRbX//0Jvn4FKk007Xx2XKWog+NlVMMZp2yDrnmiNcM5qm1PB4caHOWNbpbP2ZLjXO+1yr64Wv25duB+GQMIqnqDUtrhk9X/M4U3YZSdscLKS4diyLHylmVppUWwEHC0nOllugwNA1tmnHE4pzfZbjYKwxWUgxnDZJmQYqgpVGXDTkYCFJtRUws9JkoR7fUIxlHUrtLVGlugtAMe1wy2QeP1QsVD0ODCX56O1T66anR9M2E/kU2YS5btvTk9Mr2/TOelu3JY1BmrLfbjJlLUSfC5XirVcX0dr7fn9yeoWMY+JHUSeIwIUTcVbLQWqayeHhFC/M17BMDT+KE6dMI26v2AojptoVqbIJk4l8CtcPSdsGs5UWKoow9bin8nY0gFoNxEEUjzCCdmEThWIsm4inlUOFhmI0Y/PjV5bZl3UYSpjsy6U67384bVNpBZwsNTvbvGzT4B1HhjeVDV315cdOdl1DHaRiH/2WqLaXJCAL0ec2rvNV3QBb18is6VR0MUFk7fMcuyrHyVK8NzefiKi6Ia12UlXS1DF0jUPti/TqtqLVfstHRrMky00qrYCFbU7+iYiDcrXl4wYR+aTJUMKiUEiyUPe4/erhTrb4vxxfpJCyWb0MHiqm+OmZFUp176Iypjeek1UXu4Yq+3fFRhKQRU9Ze5GaGs3yxlG5+1611QX8Qhf2jVuXLF2j4ga8ed+5to4XE0TWPo9SClPXWKx75BMWh4dTJC2T6ZUGtqFz/fgQxbS97rnPTXnrrDRc5qrn9jdvdyco0zAwdI0gguWmz6tVl7Rt4IchmhaP3BOWzj+9tMhoNp7SP1RMcXQ0w3zVveh9wls1BblQsQ/Zvyu6kaSuHjWI52D1IhW3DLRwI8VPTi/vSILMlWL1e7Dx3KwmD0VRxD+dWNr0+NpzNpS02J91WKh5cdGLtI1laBRSzmtKxFl9nhfmavz4lWWGEia5hMVwxkHX4PBImuG0w1jWppCyNz33M2fKFFIWKdtkOG3z3GyNMIqLiJj6pRcIWbW6Hu2Y8Vq5G4S0/AjH0qm2AibzCeZrHkMJk6Yf8spSg1IzYF/GJogUp0oNkpbJ77xlil++bpQ37M9e8Hs3lLSIoojHT5V45kwFNwh519Fhjo0Pnffv/tcLC53lAq3dXQviUpxv2J/t+jeDeE3YqF/OwVZJXTJCFj1jY5GBXMKi2U6QGfRRw1YFGL773BzXjmUvWJihWxnHS6kYNVVMUUzb3HF0hGzCpFR3eW62ynTJY65a4leuHeX68Wzc/WjDcxuaxuMnl/GjiIxjknXMzp7Vy2nHqBFPU+t6vI6ctk3StkHDC1FK0XADNEDTdRKWwclSE4CUY3E0YWFbBjU3IONYjLZH9Q89c7Yz4zAx5Gzq5rR2G9hTM2WuHcty02Q8Qn5qpsz4UPKi1uPXGrS1Z7GZBGTRM+QitbWtzs1c1eOmydeeVHQ5iTgnFmpU3IDFmke56VP1QoYSJhnHxLEMnpop86vH9gPxjcHDP5vD0DReXqpTc30yjonnhzT9gJYfoeugwgu86BYM4hrWLT8kUHFP5KRl4LU3OI9l4+1Wbqg4vdxkIp/AC3TcMMLS4dh4vjO1rpTi+EJ93VRyt25O33jqNKNph1DF2eNjWec1V6qS/buiGwnIomfIRWprW52bfVl7V8/ZdKnB6XILL4g7KVVbAWGkaPoRQeTjhxFZx+LRn8/jRVEnsD1+skTVDbhmJM1KK2C+6mLpGlgGkVIEYRDvKb5IOpA0Na4aShACTT8kbL92K4ywdIORtI6hafihYiqfpNz0ObkUr3FnE3Gv59VgDPF5q7R89ucSnfO5UPMwdXh6pszJUgNdi1tSLmd83np1kZ+erVBp+aRts/NcF3NDdKlrz6K/SUAWPWPjRarS8uUi1bbVBfy/HNu3qe/uTp6zJ6dXODqS5kcnS2hAoBReGNGoxUlTD/9sjjfsyzBf83j74eFOYPMjRc4xWW4F3DyZ5+nTKwwlTMqtgGYQ4S41MA0Iggj/Iuau/+sN+7njyDAzZbfTDGJtktt//6fjNNvVxMYyDkoplps+hq7znmP7qHshPz1TIZuwmMgnO+dtdRp91Vy1RbkVELb3L7+8VKflhzimgaZpDKdtqq2AU6XGpiS28+nHRhPi8klAFj1j40VqcjQjWadt57uAjw8ld+3CvlBzmSwkGZo121udItDiCKpr8XajmZUmM2UXlGJfLsGhYoqsY9LyQ2rtNoVxCc+449KhYpL/r+bS8AKCiwjGSVMnm4h7DnfbKjRVTHHHkRHq3rmSoS8t1DB1nYMFh+GMw+rtynzVxWk3l3jX0WGenF5ZN+PgBipuF+nEyVdxRTKNVhAP568uJvnpmQpLdf+it0qtPU75bou1JCCLnrL2IpXPp1hZOX/1qEGy1QV8Ny/sq1Pn+7IJ6l6DfVmb+ZqHYcRNHjQUMystso5J3Q9xg4h/P1vmYCHJSzUXQ9d4enqZlxfqtMKI8VwCBYymLY63/E5i1/m2QQXtwiJPnCrx9z+b47aDBe5+/VjXrV5Zx+KmiaG4xKUXUPdCnj69wtXFJJOFJAnT4GNvP7Tu+dfORBga+EFEJmuCUhi6RstTJJPxKLqYdjgykmahdvFbpYTYipTOFEJctFun8lRdn9GMTd310TUwNIVt6PiRwtR10rbB1cMp6m6cqWUbOq9WXIopm5YfcqbcwtA1bF2n2vJZafiUWgE6cW3klKVhnKemph/B/z5RiqeMUxYvthOx1pb+XJ1RcP2Qf/jZPGdWWgRhuy1jEPHTMxVOLzc3TS1vLAU5PpTg1oP5TnenfRmHXDLOdldKUW0FmIbGR28/xMfefoj33jguwVhcMhkhCyHOa2PhkVsmhpgpu4xlE9TcgHzSJmkb7M8meGU5blRhGjpXD6ewTZ1aK6DphaRsHcs08LyQA/kkjqkzW3VZrHvYetxbuOyGoDRSjk6ltXXq9VLD4+BwKg6KbtCpH70xGHpRRC4ZJ3DNVl1eWW5ysJBE0zSOL9b5v66/qut7XJ0Kf+LkEg8+fYYgUgynLUbTDiOezWjalhGx2HYSkIUQW+pWUWp1W9PqtHAQKk4s1gkihY7CMXVafsgNB3IU0w7TpQbHF+u4oWIkZbFQ9Wh5AZOFFPuzTmfE3AgiEoZGK1R450m5NjXw2mu4bhDvae6W2fzoz+c5tdTgxGKdXMJiLONQbvmcrbgcHUmRS1hd2y6uVs26ZWKIp2bKXDOaZr7qUqoHlJsB77/5ALddLYmGYvtJQBZCbGmrgiRPTq/w3hvHO4lmrh9ScQNyYxlerbQIlcZ/nK1gGQbLDZfrDwyxUPPiAJowaHkhZ8st/DCupJUwDM6UI6JIYejgbxgcm1rcblER/2cZGi0/rp993Vh6U2bzdKnBE68sU0xZ5JIWLT+iFYSM5xJEwLVjWdK2cd73uLboymQhHgFXW0GcsLaB1KUW20ECshBiSxcq1tKtAtg3npphuRFX3wKFGyhSlsGhYop/P1smY8fNJkp1l6xjkjQNFuseCUMj0ABN65TUXBWocwkvpgYZx0QpuH48h2UYmzKbn5xeoZiy0TQYTtnMrDTRNI25qsv4UHLdv7/cois7VZd6Y5D/lV/YT96UtJ9+JgFZiD61HaO2CxVr2fgapbrHRD7J69fUY/7Ry0u8MF/n9sNFrh8f4lSpQd0LqbQ0RjIOzSBiIp9gtqJRb299coNzU9ar+V0RYOvwa9fv5zfeNMGT0yss1uIevBvXcRdqLteNpfn3sxUSlsGBoQRzNZeVRsAvHk2vy8q+3KIr55tFuNSA3C3I/8+fnOEuWa/uaxKQhehD2zVqO19FqW6v8cQry7z1UIG1l5brxjI8fmqZaiugkLKwjAz7cw62ruNYBj+ZWSHrmNS8EAWUmz5he3Sstf/T280nErbBOw4PX3Cr12jGoe7F69gnS028MGI8l+QXj6R54G2HLuo9XmzRlZ0o+dotyAeaJnXd+5zMfwjRh9Ze0Fe7Cq1mIr8WG7cBpW2jE9S7vUYxZfPCfG3dc9imwW0HC5ue4+7Xj1F1fSxdx/VDojBioeZSc8NOINaIR8ZhBCgoJiwefPoMf/y/XuShZ86u2+q01ur2LMswuGliiJsm8hwaTnL368cu+j3edvXwlu99rdUR9lqXW750oeauqxgG8TT94jb3jxa9RUbIQvSh7Ry1bTUa7fYa142leaI9Gl47qtxqZP6rx/bz//5khu+/uEjVDXAMjVCP9xprgG1q6JqOrseVwDRdQ9c0qu0iH1uN+l9racrLKbqyE3Wpu0+jB1LXvc9JQBaiD+1Go45ur2GbBm9ZMxq+mH26qfa2JU2Lp6X9KCRpKiLiUpXZlE4YgRdG5BImc5UmP5sNOL5QZyRtY+s6D7ztUNc18/feOL5t73crO1GXuluQ94C7pK57X5OALPraoG5H2Y1uQlu9xsYR63Spsa6/8NrPIN4r3KTUDMjYBhnbxDSCzp7m5WbcTaqQtKl7AYvtKW3HNDA0jVcrLuXmEtePZ3lqprztmc4Xa7vLl3YL8r8mWdZ9T1NKXWpf8Mu2sFDt+rjUMJZzAJd/DtYmHV3M9GkvupxzsHrUfUL7AAAUFklEQVQzsrEb0na60Guc7zMA+MNHX2A4ZfHzuRpeEGEYGklTo+JGDCVNTA0KKRvDNDhbqlNqB+hswiSfsIgAQ4Orh1OdPcOrqq2AtG2sGyVfyTdock3on3MwOprt+viOjZCPHTvG5ORk5+frr7+eL3zhCzv1ckJsshPbUa4ku9F04kKvcb7PACBhapwpt9A0jWYQYUWgoZOxdfxQ8fqrskwVUjQjxfG5KlGkSNk6uqax1PBIWTpjGeei9gzv1H5hIbbLjgTker2Opmk8+uijO/H0QlyUndiOIi7edKnBD08sogGZhMXVxSTFtNP5DFaaHl6ocMOIrGOga7Dc8Ki0Am6ZLPCbN413SlQ+/MIibxyvc2q5SdMLiRRYho5pGOSSFo6pX3DNfNBv0ETv25GAXKvVyOVyO/HUQly03UhsEt2tjkZtI17zXO2wdMOBuLLWSMbm9EqDlG2SS1gsNTySCpycw3guyZ/+1zeue775aovrxjKUWz4qUiQsnajdf7iQsvnla4YvuGdYbtBEr9uRDIFKpUIYhnzsYx/j7rvv5sMf/jAnTpzYiZcSYkure1GrraDTKq/q+tw6ld/rQ+t7q6PR1+3L4oVx1a2EqfP8XL3zGeQcE6UiDF1jKh/3J845Jg0/5MuPnVy3z3gsm2hncBeZKqQIIvBCxZHhNPffMsH4UBJb13n69DI/PL6E64ebpqJ3Yr+wENtpR0bIiUSCu+++mw996ENMTU3x9a9/nY9//OM8/PDDmKYkdovdsRPbUcTFWR2NaprZKZdZbQWA6gTKQsrmleUW08sNQCOfMPEVjCZMxrIOMytNvvCDRSaGEowX08ysNJnIJ3n7keKm5LDVteF3Hh3p/G6j3cg8F+JyXFaW9fe+9z2++MUvbnr8gQce4N577+38rJTilltu4Vvf+hZHjx7tPN5sepimsenvDUMnDLduvzYI5BzIOYAr9xz81Y+nqXsBuYQFwFLN5dmzFbwg4pdeN8bBYoJHnpvj1FKDoaQFKF6cqzOUNPml6+JqWk9PL6NpkHUsfuHAECcXa+zPOgRKYyzrcLCY4JVSi+8/P4djGhwbzzGSiaekKy2ftG3yW2+ZWndcpxZr/J8TJear8Q3D244UOTSS2dVzc6mu1O/CduqXc2BZm+Me7NC2p0qlQrlcXpdl/aY3vYm/+Zu/4dChQ53HZNvT1uQcyDmAK/ccrM1o9oKQp0+voIBbJvPYpsG/Ti9zdCRNxjE4WWpScwNmlltM5hPccc0IPzm9ghtEBGHEmUqLqWIaIsW1o3Et6idOLvHg02eouwGvVlpYhk7SMrh1Ks/h0QxKKRaqHh97+6G9PhXb5kr9LmynfjkHW2172pE15BdeeIH777+fxcVFAL797W+zf//+dQFaCNG/1taHfvbVKhnH4s1TeYYzDtmESRgpFuouxbTDzZN53nl0hNftT+O2u0pU3Xi/8SvLTUxNI5cw0VD8+JXlTjD2goi6FwAabhDhByFPTq9QqnuyNiyuSDuyoPvmN7+ZD37wg/zWb/0WmqYxNjbGn/3Zn2EY3YfpQoj+s7pH+dx6stb5XTFlUaqvX+cdTTuUm0FcB9s2eGmhDsC+XCL+W02jkLL47nNzhJHCDSIsw6CQ0lmqebihQtcVz89VOTSckrVhccXZsQyrD37wg3zwgx/cqacXQlwhum0/G8s6lFvBuiYUpqHx/psP8O9nq8zXPBZqHsWUiQa0ghA3CHnjVTl+/Moy+7IOCzWv3RFJp5i2KDV8TD0uKNKt2MeVXKVLDAYpjCqE2FHdtp8Zehx8N7Y2HB9K4kURbz88zI0Hchi6xstLdfxAcf34ELZpsC/rMJZ10DVo+hEKhVIwlLR469UF3nFkcyb96pp23QsZyzqdTlFbtW8UYi/IHiQhxI56LdvPHnrmbKea1rGrsgSRQtM0UraBZehUXZ//cmwfT82UuX48y0/PVCg3IyxD4437s5iG1nWfuVTpElcCCchCiB13sXW111bTKqYdbjiQ42SpwWylxS/sy3QC+fhQkienV7AMg0rLJ+eYHBnNbDkNLVW6xJVAArIQYttc7jrtxvXmYtrBMgx0I04Ie/hnc5fU61jKqIorgawhCyG2xXas03Zbb55ZaTJbdbf9eaWMqug1EpCFENti7TqtpmlkEyZZx+q0WrwYa/cvryZ7jaZtDg6nt/15pe2i6DUyZS2E2BbbtU67cb35y4+dJOOYtFrn9i1vx/OCbIUSvUVGyEKIbdGtm9Lp5SanVxqbuje99ucN1j22Heu/shVK9BoJyEKIbbFxnXa61OCnZyqMtfcNX2rAu3UqT7m5/eu/W02xP/rzeR565uxl3UQIcSkkIAshtsXGddqFmsuNEzkmC6lNa7/TpcZFB72pYop7b9pcRORyp5YXam670tc5XhDyxCvLMmoWe0LWkIUQ22btOu2XHzvZdU35+EKd2WqLrGMxlo2nub/z3Ox5g+yhkcxr2uZ0MbpthXphvkYxZUsBEbEnJCALMaB2OqFpq72/lZbP/lyia9Bb/d/dSLK6dSrPd56bBejU0y41fN56qLDu30kBEbFbZMpaiAG0GwlNW+39zTrmpqnijGNwYrG+q0lW3bZC3XawgG2uPzYpICJ2i4yQhRhAu1Hbeasa1k9Or7zmkfP1h0e25Zi6HePa97t6owLnRs1V15dWjmJXSEAWYgDtVm3nrWpYdwt6G0fOpbrLyVKDuYpHMmnzxtGLq4d9ucd7sY0whNhuEpCFGEC7Wdu521r1hUbOpbrLT89U0DSNfVmbuhdcMPFru1xsIwwhtpsEZCEGULeEpp2Yml2dAu6WUd0ta/o7z82y3PB4emaFSivEMTQOHsyTS1g021umJFiKfiUBWYgBtFtTsxe7Vv3EySW++9wcL85XqbRCFLA/65BLWryy3GR/wZVsZ9H3JCALMaB2Y2r2Ytaqnzi5xP/40TTZhEnSMonQWGkGWKZOIWXT8kOOL9Q5lE8MfLaz1N7ubxKQhRA75nxr1avB5dv/dgbQyKcs3FCRsU2iSHFmpUUxZeMYGos1l+GkMdDZzqcWa1tO//dCUJabhcsn+5CFEDtmq73IE0NOZ8+xF4SYOpxZaYIGQaTIJSxMXcM2dZYaPsW03TOBZ6/8nxOly25vuVOkUcf2kIAshNgxW/Uhnim7neAylLQJFViGjqYUfhhR8wKKKYtrRzNM5BMcHUnx8M/mBrrZw3y11bWgymJt79fVt6MXtpApayHEDuu2Vv3wz+Y6a8vXj2f54YkSjqmjAUMJk7max9RYEtcPAQ3HNkmZes9N0+6msWyCxXJzV7aqvVa7ta+938kIWQix69b2Tr56JMMdR4qYuoYbKMayDr//K0f5f/7zGyimbSbySXIJa+BHXm87Uuw6/X+5bSi3Q7de2L1ys3AlkRGyEANqL5NwNu6DHskkuP3w5raKMvI659BIpmeriO3WvvZ+JwFZiAF0voIdO32BX70RqLcCXi23yDkmR0YzXYPL6sgrvebhQR559WoVMSk5uj0kIAsxgHajuUQ3a28Ejo5lOiOprUbnqyOv1lKd6cUapYaPoWu8/+YDO3aM4tL06s3ClUTWkIUYQAs1d08ydl9rNu5UMcUtE0M8P1ul1PAppi2OjqR5aqY8sNnWon/JCFmIAbSbzSXWupQ14Zmyy1uPDGMq1Xms2gqkrrXoOzJCFmIAbVWwY6czdi8lGzceza8fO/TK/lshtpMEZCEG0FYFO3Z6xHkpNwJxEA/WPTbIiV2if8mUtRADai+ScC4lG/fWqTz/cHwJG9lSI/qbBGQhBtRe7UN+rTcCU8UU996U4B+fnZUtNaKvSUAWYgDt5T7kS3FoJMN7bxzf68MQYkfJGrIQA0iaAQjRe2SELMQA6oeSlNJ/V/QbGSELMYCu9GYA0n9X9CMJyEIMoG7bj2ZWmpTqHl9+7GTP9x2WKXfRjyQgCzGANu5DjvsOKxzLuCJGnHtV+lOInSRryEIMqLXbjx565iyOZexas4nLXf/dq9KfQuwkGSELIXZ1xLkd6797VfpTiJ0kI2QhxK6OOLej9aP03+1fg5w9LwFZCNHpOww7X55yu7ZcSf/d/nOlFazZbjJlLYTY1WYTV/qWK7FzBj17XkbIQghg90acuzkaF1eWfihYczlkhCyE2FV71fpR9L5Bnz2REbIQYtfJ+q/oZtBnT2SELIQQoicM+uyJjJCFEEL0jEGePbmsEbLv+3z+85/nuuuuY3Z2dt3vvvrVr3LPPfdw11138elPfxrPG4xFeSGEEOJSXFZA/vjHP04ikdj0+DPPPMPXv/51vvWtb/HII4+wtLTEgw8+eDkvJYQQQvS1ywrIn/jEJ/jkJz+56fFHH32Ud7/73eRyOXRd57777uORRx65nJcSQggh+tplBeQbb7yx6+OnTp1iamqq8/Pk5CQvv/zy5byUEEII0dd2JMu62Wxi2+f2jSUSCZrN5k68lBBCCNEXLphl/b3vfY8vfvGLmx5/4IEHuPfee7v+TTKZXJfE1Ww2SaU2Z81lMg6maWx63DB08vnBzLJbJedAzgHIOVgl50HOAfT/ObhgQL7zzju58847X9OTHj58eN0U9fHjxzl69Oimf1eruV3/Pp9PsbLSm43Rd4ucAzkHMFjn4HxdfgbpPGxFzkH/nIPR0WzXx3dkyvqee+7pZFcHQcA3v/lN3vOe9+zESwkh+sB29EgW4kp3yYVBFhcXef/739/5+f7778cwDL72ta/xxje+kQ9/+MO8733vQynF7bffzn333bctByyE6D/b0SNZiCvdJQfkkZERHn300S1//4EPfIAPfOADl/r0QogBMuhdfoQAqWUthOgBg97lRwiQgCyE6AG3TuWpuj7VVoBSimoroOr63DqV3+tDE2LXSEAWQuy5Qe/yIwRItychRI8Y5C4/QoCMkIUQQoieIAFZCCGE6AESkIUQQogeIAFZCCGE6AESkIUQQogeIAFZCCGE6AESkIUQQogeIAFZCCGE6AESkIUQQogeIAFZCCGE6AGaUkrt9UEIIYQQg05GyEIIIUQPkIAshBBC9AAJyEIIIUQP6JmA/P3vf59f+7Vf45577uG+++7jxRdf7Pzuq1/9Kvfccw933XUXn/70p/E8bw+PdOf4vs/nP/95rrvuOmZnZzuPP/XUU9xwww3cfffdnf8efPDBPTzSnbXVeYDB+S6sdezYsXWf/e/+7u/u9SHtmscff5xf//Vf56677uJDH/rQpu/DIBjUz3+r60BfXwNUD5idnVW33HKLeumll5RSSj344IPqN37jN5RSSv3bv/2bete73qXK5bIKw1B99KMfVX/xF3+xl4e7Yz7ykY+oP/3TP1XXXnutevXVVzuP/+AHP1C/8zu/s4dHtru2Og+D9F1YVavV1LFjx/b6MPZEvV5Xt912m3r22WeVUkr9+Z//ufroRz+6x0e1uwb58+92Hej3a0BPjJBN0+RP/uRPOHr0KAA333wzx48fB+DRRx/l3e9+N7lcDl3Xue+++3jkkUf28nB3zCc+8Qk++clPbnq8Wq2SzWb34Ij2xlbnYZC+C6tqtRq5XG6vD2NPPPHEE0xOTnLs2DEAfvM3f5PHHnuMWq22x0e2ewb58+92Hej3a0BPBOTh4WHuuOOOzs8//OEPueGGGwA4deoUU1NTnd9NTk7y8ssv7/ox7oYbb7yx6+PVapVTp07xvve9j7vuuovf//3fp1qt7vLR7Z6tzsMgfRdWVSoVwjDkYx/7GHfffTcf/vCHOXHixF4f1q44deoUk5OTnZ/T6TT5fJ7p6ek9PKrdNciff7frQL9fA3oiIK/1+OOP87WvfY1PfepTADSbTWzb7vw+kUjQbDb36vD2xOTkJO985zv5yle+wt/+7d9Sr9f5b//tv+31Ye26QfwuJBIJ7r77bn7v936Pv//7v+cd73gHH//4xwmCYK8Pbcc1m00cx1n3mOM4NBqNPTqi3TfIn383/X4NMHfzxb73ve/xxS9+cdPjDzzwAPfeey//+I//yB/90R/xla98pTN9nUwm1y3aN5tNUqnUrh3zdrvQOejmjjvuWDeD8MADD/CRj3xkx45xN1zKeei378Ja5zsfn/3sZzs///Zv/zZf+tKXOHXqVOf/I/0qlUrhuu66x1qtFul0eo+OaPdNTk4O7OffTT9fA2CXA/Kdd97JnXfe2fV3P/rRj/jc5z7HX/7lX3LkyJHO44cPH143JXH8+PEr+ot4vnOwldnZWSzLYnh4GAClFKa5qx/dtruU89Bv34W1tjoflUqF06dPd6ZuNU0jiqIr/vO/GIcPH+a73/1u5+dSqUS5XObgwYN7eFS7q1KpUC6XB/Lz76afrwHQI1PWzWaTT33qU3zpS19aF4wB7rnnHh555BGWlpYIgoBvfvObvOc979mjI90bDz30UCe9PwxDvvGNb/CLv/iLe31Yu24QvwsvvPAC999/P4uLiwB8+9vfZv/+/evWVvvVW97yFmZnZ3nqqacA+MY3vsG73vWuvhoRXcggf/7d9Ps1oCdqWf/d3/0dn/rUpzhw4MC6xx988EFGRkb4+te/zl/91V+hlOL222/nM5/5TN/dIS4uLvL+978fgJMnTzI1NYVhGHzta1+jUCjw2c9+lieffBJd17nxxhv5zGc+05eZ1+c7D/v27RuI78JGX/3qV/nrv/5rNE1jbGyMP/iDP9h049qvfvzjH/O5z32OZrPJ1NQUf/zHf8zo6OheH9auGsTP/3zXgX/4h3/o22tATwRkIYQQYtD1xJS1EEIIMegkIAshhBA9QAKyEEII0QMkIAshhBA9QAKyEEII0QMkIAshhBA9QAKyEEII0QMkIAshhBA9QAKyEEII0QP+f4ayGdhXtFxlAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -1978,30 +2168,52 @@ "source": [ "plt.figure(figsize=(8, 6))\n", "plt.plot(\n", - " logit(prior_sample['beta'][:, 0]),\n", - " logit(prior_sample['beta'][:, 1]), 'o');" + " prior_sample['beta'][:, 0], \n", + " prior_sample['beta'][:, 1], 'o', alpha=0.4);" ] }, { "cell_type": "code", - "execution_count": 502, + "execution_count": 106, "metadata": {}, "outputs": [ { - "ename": "KeyError", - "evalue": "'alphas'", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprior_sample\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'alphas'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mprior_sample\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'alphas'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'o'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", - "\u001b[0;31mKeyError\u001b[0m: 'alphas'" - ] + "data": { + "text/plain": [ + "array([0.89705107, 0.4222884 , 0.01865691, ..., 0.61285104, 0.3037912 ,\n", + " 0.08469206])" + ] + }, + "execution_count": 106, + "metadata": {}, + "output_type": "execute_result" } ], "source": [ - "i = 0\n", - "plt.plot(prior_sample['alphas'][:, 0, 0], prior_sample['alphas'][:, 0, 1], 'o')" + "softmax(prior_sample['beta'], axis=1)[:, 0]" + ] + }, + { + "cell_type": "code", + "execution_count": 107, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFkCAYAAAAXN4NlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3df3CU5b338Y8hD4sJYE6ZODLNDwlg0LUDPf6IR0EGBBN7LC1MfRJ7yplEOqblQEODZfJEgSghXS148OhxCqOF50SreTrNOJaWZjg6tlB+CQJOg+E0kBhkXEnDSciSX8a9nz9ykjYNsHvv3vfuvbvv10z/2M19ha9Xl3y4rlw/rjMMwxAAAIi4pGgXAABAoiKEAQCIEkIYAIAoIYQBAIgSQhgAgCghhAEAiJLkSP+B7e3dln6/iRNd8vn6Lf2eiYY+DB99GD760Br0Y/is7sP09ElX/VrMj4STk8dFu4SYRx+Gjz4MH31oDfoxfJHsw5gPYQAAYhUhDABAlBDCAABECSEMAECUEMIAAEQJIQwAQJQQwgAARAkhDABAlBDCAABESVAh/Pnnn+vZZ59Vbm6uvF7vFZ9pampSUVGR8vPzVVRUpKamJksLBQAg3gR1dvTKlSt1++23X/OZH/7wh1q7dq0WLVqk3/72t/rRj36kX/3qV5YUeSUVhY1j3lu7bYbSp7ps+zMBALBSUCPhf/mXf1FZWdlVv3769Gl1d3dr0aJFkqSCggJ1dHTozJkz1lT5N64UwJK0dU2zniu78tcAAHCaoEJ4zpw51/x6a2urMjIyRr2XmZmps2fPhl5ZiC56rx7SAAA4iSVXGfb29srlGj0N7HK51NPTM+bZiRNdEbmhoqKwUatrZsh9x9/Z/mfFunHjkpSWlhLtMmIafRg++tAa9GP4ItmHloRwSkqK+vtH373Y19en1NTUMc9G8p7LFyub9eXpyVpdkxuxPzMWpaWlqLNz7D+YEDz6MHz0oTXox/BZ3Ye23yeck5Oj1tZW+f1+SdLg4KBaW1s1ffp0K759WM6fGdSGYqanAQDOY0kIz5gxQ+np6dq9e7ck6a233lJGRoamTZtmxbcfw1PnNvX8QO/Q9PSbL31sSz0AAIQiYAj/+c9/VkFBgQoKCiRJy5cvV0FBgT777DM9/PDDI89t2bJFr732mh588EH98pe/1E9+8hP7qpb5IJakE/t82v70n2yoBgAA864zDMOI5B/Y3t5t6ff72Y/P6r9O9JpqM/56afWP2VM8jN8hhY8+DB99aA36MXwx9zvhaCp/9nat3TbDVJuB3qE9xadPWvsPAgAAzIj5EJak9KkueercSh5vrt3OmjZtepxFWwCA6IiLEB5WXevWrDuuN9XmctfQoi1GxQCASIurEJak4nU58tS5lWRyB/TOmjYWbQEAIiruQnhYzetu3Zhp7j+v5dQAR14CACImbkNYksq33KrFhVNMt6sobFT7p5E72QsAkJjiOoQl6YFlN8lT51bqDebabV3TrHfqr3x3MgAAVoj7EB62fodbX55u7hfFe+s69PwTH9lUEQAg0SVMCEvS6ppcLSu9yVSbC+f8qihsZFQMALBcQoWwJN29cIo8dW6NN7eTiVExAMByCRfCw57Z5da9D5n7RfGFc35VrWD1NADAGgkbwpK0pDhDa7fNMLWnuM83tHr67V2f2FcYACAhJHQIS0NHXta8bn719IE9XXqujFExACB0CR/Cw9bvcGvabeYOn77oFYd7AABCRgj/ldKNM0O6CILV0wCAUBDCV1BdG9qe4g3FjIoBAMEjhK9idU2uSiqzTLUZ6GVUDAAIHiF8DbmzJ8lT59Zkk8dP763rYNEWACAgQjgIlS+HtmiL6WkAwLUQwkEq3TjT9JGXTE8DAK6FEDZh+MjLUBZtcdIWAOBvEcIhWF2Tq1l3mDt8evikrSPvdthUFQAg1hDCISpel6O122boOnODYtVv9zI9DQCQRAiHJX2qSz9+3fxFEHvrOrTpcaanASDREcIWWFKcYXrR1uUujrwEgERHCFsk1HuKuZEJABIXIWyxZ3a5NWfeRFNtDuzpYk8xACQgQtgGRauyQz7yklExACQOQtgmoR55eWBPl2pWMioGgERACNus8mXz09OXOqSnlhPEABDvCOEIKFqVrbXbZijJxJ7iwYGh6eldz521rzAAQFQRwhGSPtWlmtfdpk/aajrWy/Q0AMQpQjjCitflmN5TfKljaFTc/mm/TVUBAKKBEI6C4T3FN2aa6/6ta5r15ksf21QVACDSCOEoKt9yq+lFWyf2+fRcGdPTABAPCOEoG95TnPy/gm9z0Ts0PX36ZLd9hQEAbEcIO0Du7Emqfs38VqadNW0EMQDEMELYQYpWZZu+kWlnTRvbmAAgRhHCDrOkOENrt80w1abpWK8qChu5pxgAYgwh7EDpU13y1JnfU7y3rkPbn/6TTVUBAKxGCDtY8bqcoYsgTPy/1HJqQBWFjTrybod9hQEALEEIO1zu7EnyvGH+Ioj67V5GxQDgcIRwjKh82fz0dMupAVWtYE8xADgVIRxDQjnyss/HPcUA4FSEcIwZPvIy1dxOJh3Y06UNxYyKAcBJCOEYtX6H+bOnB3q5pxgAnIQQjmHlW27V4sIp0nXBtxkckJ5czo1MAOAEhHCMe2DZTfK8aW7R1hcDQzcysY0JAKKLEI4TxetyTK+ert/uVXVpoz4732tTVQCAawkqhA8ePKilS5cqPz9fJSUl8nrHHo/43nvv6Rvf+IYKCgpUVFSkDz/80PJicW3F63LkqXOb+qeVr1Pa+Ngf2VMMAFEQ8Md1T0+PysvLVV1drYaGBs2dO1dVVVWjnrl06ZLWrl2rZ599Vr/97W+1cuVKrV692q6aEYDnDbcmmLuQSS2nBlSzkkVbABBJAUP40KFDyszMlNvtliQVFRVp//798vl8I8+cO3dO119/vWbNmiVJuueee+T1enXp0iWbykYgVa+6Ne228abaXOrgnmIAiKSAIdza2qrMzMyR16mpqUpLS1NbW9vIe9OnT1dSUpIOHjwoSWpoaNDtt9+uyZMn21AyglW6caY8deZHxTtr2riRCQAiIDnQA729vXK5XKPec7lc6unpGXk9YcIEbdq0SaWlpZowYYL8fr9eeeWVK36/iRNdSk4eF2bZfzFuXJLS0lIs+37xaNsv79KPy07q46aBoNvsrevQf53s1v95YbaNlcUPPofhow+tQT+GL5J9GDCEU1JS1N8/ek9pX1+fUlNTR15/9tlnevLJJ/WLX/xCubm5Onz4sFatWqWGhoZRz0mSz2ft/tS0tBR1dvYEfjDBff/pmTp9sls7a9oCP/w/Pm4a0Pfy39fiwil6YJm54zITDZ/D8NGH1qAfw2d1H6anT7rq1wJOR+fk5KilpWXk9cWLF9XV1aXs7OyR944fP66MjAzl5uZKkvLy8pSUlKQzZ86EUzcsljt70tDqaZP21nVw5CUA2CBgCOfl5cnr9ero0aOSpNraWi1YsEApKX8Zqt98881qbm7WJ58MXRLQ2Nio7u5uZWVl2VQ2wuGpM3814kDv0KItAIB1rjMMwwj00OHDh7V582b19vYqKytLHo9Hfr9fK1as0O7duyVJb7zxhv7jP/5Dfr9f48ePV1lZmRYtWjTme7W3W7vylqmX0B15t0P1280vwCqpzFLu7KtPryQiPofhow+tQT+GL5LT0UGFsJUIYed5oeK0Pm0ZNNVm2m3jVbpxpk0VxR4+h+GjD61BP4bPUb8TRvzb+NOvDl0EYULLqQH2FANAmAhhSBq6CGLtthmm27GnGABCRwhjRPpUV0iHe+yt69Cu587aUxQAxDFCGGNUverWnHnmkrjpWK8qChu5HhEATCCEcUVFq7LlqTN//nT9di8XQQBAkAhhXFPpxpm696EbTLW51CFVPEoQA0AghDACWlKcoWWlJo+t9A8d7vH2rk/sKQoA4gAhjKDcvXCKPHVupZobFOvAni69WHnanqIAIMYRwjBl/Q7zvyc+f2ZQFY82qv1Tay/vAIBYRwjDtNKNM00f7iG/tHVNs9586WN7igKAGEQIIyQPLLtJnjq3Zt1xval2J/b59PwTH9lUFQDEFkIYYSlel2N60daFc36mpwFAhDAsMLxoy9RJW/8zPc3qaQCJjBCGZapedZveU3xgTxdHXgJIWIQwLLWkOMP0RRDDR14yKgaQaAhhWG74Iojx5tZs6cCeLm16nJO2ACQOQhi2eWaX+enpy11DJ20BQCIghGGrJcUZ8tS5TX/SmJ4GkAgIYUSE5w23vmTy+OkDe7q0oZhRMYD4RQgjYta94Da9p3igd2hUfPpkt01VAUD0EMKIqOE9xWbtrGnTc2WMigHEF0IYUeGpc+vGTHMfv4te7ikGEF8IYURN+ZZbQ7oIoqKwUe/Ue+0pCgAiiBBGVA1fBDHZZBbvretgehpAzCOE4QiVL7s1Z56Zw6eHpqdrVhLEAGIXIQzHKFqVbXrR1qWOoelpzp8GEIsIYThOKEdeNh3rZdEWgJhDCMORntllfnp6eNHWkXc77CkKACxGCMOxilZlq6Qyy3S7+u1evVh52oaKAMBahDAcLXf2pJD2FJ8/M6inljM9DcDZCGHEhPItt5o+8nJwgCMvATgbIYyYMXzkZfJ4c+121rTpzZc+tqcoAAgDIYyYU11rfnr6xD4fq6cBOA4hjJgUyvT08Opp7ikG4BSEMGJWqDcyHdjTxUlbAByBEEbMC2X19PBJW+2f9ttUFQAERggjLoQ0PS1p65pmbX/6TzZUBACBEcKIG8PT02ZHxS2nBpieBhAVhDDiTiij4uHpafYUA4gkQhhxKdRFWztr2pieBhAxhDDiWqjT0xWFTE8DsB8hjLhXvuVW3fvQDabbcSMTALsRwkgIS4ozQrqnuH67l+lpALYhhJFQntnl1pdM7mRqOTWgyn9iehqA9QhhJJx1L7i1uHCKqTb+QY68BGA9QhgJ6YFlN4V85CWLtgBYhRBGQvPUuTVn3kTT7SoKG/VOvdeGigAkEkIYCa9oVbZKKrNMt9tb16EXK0/bUBGAREEIA5JyZ0+Sp86tpGRz7c6fGWR6GkDIggrhgwcPaunSpcrPz1dJSYm83rHTcD6fT2VlZZo/f74WL16shoYGy4sF7FbzulvTbhtvut338t9n0RYA0wKGcE9Pj8rLy1VdXa2GhgbNnTtXVVVVY57zeDxKT0/Xe++9p5/+9Kd67bXXNDg4aEfNgK1KN84MedEWW5kAmBEwhA8dOqTMzEy53UM/lIqKirR//375fL6RZwYGBvTrX/9a3//+93Xddddp+vTpqq2tVXKyybk9wEE8dW5NNreTaWQrEwAEI2AIt7a2KjMzc+R1amqq0tLS1NbWNuoZl8ul+vp6fe1rX9O3vvUtHThwwJ6KgQiqfNkd0j3FFYWNnLQFIKCAIdzb2yuXyzXqPZfLpZ6enpHXly5dUnd3t1wul37zm9+orKxMP/jBD9TZ2Wl9xUCEDd/IZHbRFhdBAAgk4I+VlJQU9ff3j3qvr69PqampI68nTZqkL774Qo8++qgkad68eZo6dapOnjyp+fPnj2o7caJLycnjrKhdkjRuXJLS0lIs+36JiD4Mzsu/vksvP/2RPjzgC/zwX6kobNTqmhly3/F3NlUWH/gcWoN+DF8k+zBgCOfk5OhXv/rVyOuLFy+qq6tL2dnZI+9NnTpVSUlJunz5stLS0iRJ48aNU1LS2IG2z9c/5r1wpKWlqLOzJ/CDuCr6MHjfLsvW4v/dr61rmk21e7GyWTdmJql8y602VRb7+Bxag34Mn9V9mJ4+6apfCzgdnZeXJ6/Xq6NHj0qSamtrtWDBAqWk/OVfCZMnT9bChQv1s5/9TJJ08uRJnT9/Xl/5ylfCrR1wnPSpLnnqzF8EceGcXxWPMj0N4C+uMwzDCPTQ4cOHtXnzZvX29iorK0sej0d+v18rVqzQ7t27JUmdnZ1au3atWlpaNHHiRK1bt05z584d873a27st/Q/gX33how9Dd+TdDtVvN3985Zx5E1W0KjvwgwmEz6E16MfwRXIkHFQIW4kQdh76MHyhLMBKHi9V15rfjxyv+Bxag34Mn6OmowEE9tOGu5Rs8qCtwQH2FAOJjhAGLFJda/6eYmkoiN986WMbKgLgdIQwYKFQ7yk+sc/HqBhIQIQwYANPnVupN5hvRxADiYUQBmyyfkfoR14yPQ0kBkIYsNHwkZdmMT0NJAZCGIgAT51bEyaab1dR2Kj2T609ZQ6AcxDCQIRUvRra9PTWNc16roxRMRCPCGEggoanp83uKb7oZdEWEI8IYSAKqmvdmjPP/Px0RWGjjrzbYUNFAKKBEAaipGhVdkiLtuq3e7WhmFExEA8IYSDKPHVuTTZ50NZAL9PTQDwghAEHqHzZrXsfMn+6B3uKgdhGCAMOsaQ4gz3FQIIhhAGH4chLIHEQwoADrd/hVklllul2FYWNLNoCYgghDDhU7uxJIU1Ps2gLiB2EMOBwoRzuIQ0F8du7PrG+IACWIYSBGFBd6w5pVHxgT5eqVjAqBpyKEAZiSChB3OdjehpwKkIYiDGeOu4pBuIFIQzEoHDuKX5qOaNiwCkIYSCGhRLEgwNMTwNOQQgDMc5TF/qNTM8/8ZENFQEIFiEMxIFQb2S6cM7PqBiIIkIYiCPh7CnmnmIg8ghhIM5U17q1dtsM0+3qt3vZUwxEGCEMxKH0qS72FAMxgBAG4pinzq1pt5mfn64obNQ79V4bKgLw1whhIM6VbpwZ0qh4b12HKh5lVAzYiRAGEkQoQSw/09OAnQhhIIEwPQ04CyEMJJiwpqcZFQOWIoSBBOWpc2uC+YO2VFHYqPZP+60vCEhAhDCQwKpedWtx4RTT7bauaebIS8AChDCQ4B5YdhNHXgJRQggDkBTePcUAQkMIAxgR6j3FFYWN2v70n2yoCIhvhDCAMUIJ4pZTA4yKAZMIYQBXFM49xadPdttQERB/CGEAVxXqPcU7a9r0XBmjYiAQQhhAQKHsKb7oZU8xEAghDCAoVa+6VVKZZbrd1jXNjIqBqyCEAQQtd/akkKanh0fFAEYjhAGYFs6RlyzaAv6CEAYQkqpX3SEv2tr13FkbKgJiDyEMICyhjIqbjvVq0+NMTwOEMICwVb3q1r0P3WCqzeWuoenpI+922FQV4HyEMABLLCnOCGl6un67l9XTSFhBhfDBgwe1dOlS5efnq6SkRF6v96rPNjU16bbbbtPhw4ctKxJA7PDUuZVqblCsi17pew+9b09BgIMFDOGenh6Vl5erurpaDQ0Nmjt3rqqqqq74rN/vV1VVldLT062uE0AMWb/DrbXbZphr5Gd6GoknYAgfOnRImZmZcruHppmKioq0f/9++Xy+Mc++8cYbmjVrlrKyzG/oBxBf0qe6Qp6efmo509NIDAFDuLW1VZmZmSOvU1NTlZaWpra2tlHPtbe3q7a2VuXl5dZXCSBmeercujHT3PKTwQGOvERiCPg3o7e3Vy6Xa9R7LpdLPT09o96rqanRypUrNXnyZGsrBBDzyrfcGtKoeOuaZr350sc2VAQ4Q3KgB1JSUtTfP/pfo319fUpNTR15vW/fPnV2dmrJkiUB/8CJE11KTh4XQqlXNm5cktLSUiz7fomIPgwffRicnzbcpe/lm1uAdWKfT62nG+WpvcumquILn8XwRbIPrzMMw7jWA7/73e/0wgsvqL6+XpJ08eJF3X///Tpy5IhSUoaK3LBhgxoaGpScPJTpXV1dSklJUWVlpb75zW+O+n7t7dYeWZeWlqLOzp7AD+Kq6MPw0Yfm7HrurJqO9Zput7hwih5YdpMNFcUPPovhs7oP09MnXfVrAUO4r69PCxcu1L/927/pzjvv1AsvvKDm5ma9+OKLV22zfPlyrVq1Snl5eWO+Rgg7D30YPvowNKFc6jBh4tDhILgyPovhi2QIB/yd8IQJE/Sv//qveuaZZ7R48WJ9+OGH2rBhgz777DM9/PDDlhUJIPF46twaf725Nn0+qeJRVk8jPgQcCVuNkbDz0Ifhow/Dc/pkt3bWtAV+8G8sK71Jdy+cYkNFsYvPYvgcNRIGALvlzp6knzbcZfoiiPrtXtWsZFSM2EUIA3CMqlfd+pLJdVeXOkL73TLgBIQwAEdZ94Jby0rNr4CuKGzUO/VXP9cecCJCGIDj3L1wSkiLtvbWdej5Jz6ypyjABoQwAMd6Zpdbc+aZ+0XxhXN+Vk8jZhDCABytaFV2yDcyceQlnI4QBuB4IzcymfyJdWKfT5X/xKgYzkUIA4gZnjfcmnbbeFNt/INDo+LTJ609owCwAiEMIKaUbpwZ0o1MO2vatP3pP9lQERA6QhhATPLUuTXZ5GFZLacG9FwZ09NwDkIYQMyqfNn8nuKLXvYUwzkIYQAxbXhPcVLA29FH21vXoaoVjIoRXYQwgLhQ87pb9z50g6k2fb6hUXH7p/02VQVcGyEMIG4sKc4wv6dY0tY1zSzaQlQQwgDiyvCe4mRzO5nUcmqAiyAQcYQwgLhUXWt+elpiehqRRQgDiFtLijNCOmlr65pmbXqcUTHsRwgDiHuhnLR1uYt7imE/QhhAQijdODOkRVsVhY16e9cnNlQEEMIAEsjIRRAmHdjTpaeWMyqG9QhhAAnHU+fWjZnmfvwNDjA9DesRwgASUvmWW0NatMU9xbASIQwgoXnecCvV5E6mE/t82lDMqBjhI4QBJLz1O9yadcf1ptoM9DI9jfARwgAgqXhdTsjT06yeRqgIYQD4K6FMTx/Y08X0NEJCCAPA31i/w/w9xcPT00fe7bCpKsQjQhgArmD4nmKzF0HUb/dyIxOCRggDwDVU15pftNVyaoDDPRAUQhgAAihel6OSyixTbYYP92B6GtdCCANAEHJnTwpp9XT9dq+ef+Ije4pCzCOEAcAEzxtuzZk30VSbC+f83FOMKyKEAcCkolXZId9T/E69156iEJMIYQAIUSh7ivfWdahmJYu2MIQQBoAwrN/h1r0PmUviSx1iehqSCGEACNuS4oyQ7ineuqaZG5kSHCEMABYJ5XCPE/t8HO6RwAhhALBQda356emWUwOqeJQ9xYmIEAYAiw1PT5tatOUf2lO867mzttUF5yGEAcAm63e4tbhwiqk2Tcd69eOVp1i0lSAIYQCw0QPLbjK9p7irw9DWHzbr9Mlu+wqDIxDCABABnjfc+vL05OAbGNLOmja9WHnavqIQdYQwAETI6ppc09PT588MqqKwkVFxnCKEASCCHlh2k9Zum6EkE4NiaWhUzJGX8YcQBoAIS5/qUs3r5vcU763rYE9xnCGEASBKqmvdujHT3I/h4T3FTE/HB0IYAKKofMut8tS59aWbTDTyD01PMyqOfYQwADjAuhfcmnXH9abatJwa0FPLuZEplhHCAOAQxetyTB95OTgwdCMTR17GJkIYABxk+MhLs6un67d7taGYUXGsCSqEDx48qKVLlyo/P18lJSXyescukz927JgeeeQRPfTQQ1q2bJnef/99y4sFgERR87r5iyAGeqXv5b/Poq0YEjCEe3p6VF5erurqajU0NGju3Lmqqqoa9czAwIBWrlyptWvXas+ePSorK1N5ebldNQNAQhgeFY8396ti7axp09u7PrGnKFgqYAgfOnRImZmZcruHLqwuKirS/v375fP5Rp75/PPPtWnTJt1zzz2SpDvuuEMXLlzQpUuXbCobABLHM7tM3sgk6cCeLj3/xEf2FATLBAzh1tZWZWZmjrxOTU1VWlqa2traRr334IMPjrz+/e9/r5tvvlmTJ0+2uFwASEzrd5ifnr5wzq+KRxu5kcnBAv7qv7e3Vy6Xa9R7LpdLPT09V3y+qalJNTU12rp16xW/PnGiS8nJ40Io9crGjUtSWlqKZd8vEdGH4aMPw0cfBvbPa27RP6+RnnrsmP583h9cI7+0dU2zlpTcpK8VZQZ+HhH9LAYM4ZSUFPX3j/5XVF9fn1JTU8c8+8EHH2jNmjXavHmz8vLyrvj9fD5r/0WWlpaizs4r/4MAwaEPw0cfho8+DN4Tz9+qFytP6/yZwaDbvL3Tq/17vFr3gtvGyuKD1Z/F9PRJV/1awOnonJwctbS0jLy+ePGiurq6lJ2dPeq5pqYmlZWV6fnnn9f8+fPDKBcAEMjqmlwtKzVzzJZ00Tu0p5iLIJwjYAjn5eXJ6/Xq6NGjkqTa2lotWLBAKSl/GaobhqGKigpt3LhRd955p33VAgBG3L1wijx1XAQRy64zDMMI9NDhw4e1efNm9fb2KisrSx6PR36/XytWrNDu3bt1/Phxffvb3x4zOt66devIquph7e3W7l9jCit89GH46MPw0Yfh2fXcWTUd6zXVJvWGoQVfGC2S09FBhbCVCGHnoQ/DRx+Gjz60hmd1ozovmGtTUpml3NlXD4pE46jfCQMAYoen9i7NmTfRVJudNW3sKY4SQhgA4kzRqmzTi7YunPOropCzpyONEAaAOHT3wilau22G6XYVhY1686WPbagIV0IIA0CcSp/qkqfOrRszzf2oP7HPxz3FEUIIA0CcK99yq+np6cEBcTViBBDCAJAAhvcUmzHQOzQ9zY1M9iGEASCBeOrcmnabudM9Duzp0qbHGRXbgRAGgARTunGm6UVbl7s48tIOhDAAJKDhRVuTp5hrt7eugz3FFiKEASCBVb5sfnr6wjm/Xqw8bVNFiYUQBoAEV7pxpkoqs0y1OX9mUBuKG9X+qbXX0yYaQhgAoNzZk+Spc2uCiRMvB3qlrWuamZ4OAyEMABhR9apbiwvN/aJ4+MjL0yetvaAnERDCAIBRHlh2k+lRsTR0EcSu587aU1ScIoQBAFdU9ar5Iy+bjvVyEYQJhDAA4KrKt9yqksosXTfOXLuKwkYdebfDnqLiCCEMALim3NmT9OOfm5+ert/u1fan/2RPUXGCEAYABKXqVbfmzDOXxC2nBlg9fQ2EMAAgaEWrsrV22wwlJQffZnj1NIu2xiKEAQCmpE91qeZ1t2bdcb2pdk3Herke8W8QwgCAkBSvyzF9T/Hw9YictDWEEAYAhCyUe4qloZO23nzpYxsqii2EMAAgbJ46t1JvMNfmxD6falYm9vQ0IQwAsMT6HTVSg0cAAApiSURBVOaPvLzUIW16PHGDmBAGAFhm+MhLM6Piy11K2NXThDAAwHLrd7j1JXNrthJy9TQhDACwxboXzE9PD6+eTpQjLwlhAIBthqenze4pTpQjLwlhAIDtitflaO22GRo/Ifg2LacG4n7RFiEMAIiI9KkuPfN/3aaOvBxetBWvh3sQwgCAiKp53VwQS0OHe7y96xN7CooiQhgAEHE1r5u/kenAni49tbxRp09221RV5BHCAICoKFqVLU+dW1+eHvyweHBA2lnTFjdHXhLCAICoWl2Tq2m3jTfV5sQ+n6pWxP6iLUIYABB1pRtnqqQyy1SbPt/Qoq1Y3spECAMAHCF39iR56swv2mo5NaCnlsfmqJgQBgA4SiiLtgYHpIpHYy+ICWEAgOMUrcrW2m0zNM7Mr4r9Q9PT79R7bavLaoQwAMCR0qe6tLnWbXrR1t66Dj3/xEc2VWUtQhgA4GihLNq6cM6vikLn7ykmhAEAjpc7e5LWbpuhZHODYsfvKSaEAQAxIX2qS9W15hdtndjnc+z0NCEMAIgpw4u2zBiennba+dOEMAAg5qRPdYW0p/jAni5HnbRFCAMAYlbN6+ZXTw+ftOUEhDAAIKaVbpypZaU3mW5XUdgY9UVbhDAAIObdvXCKPHVu06l2Yp9PG4qjNyomhAEAccPzhvnp6YHe6E1PE8IAgLgSyuEeUnRuZAoqhA8ePKilS5cqPz9fJSUl8nrHnsvZ1NSkoqIi5efnq6ioSE1NTZYXCwBAMIZvZJp1x/Wm2rWcGtD38t+3qaqxAoZwT0+PysvLVV1drYaGBs2dO1dVVVVjnvvhD3+o7373u2poaFBxcbF+9KMf2VEvAABBK16XE/KoOBK3MgUM4UOHDikzM1Nut1uSVFRUpP3798vn8408c/r0aXV3d2vRokWSpIKCAnV0dOjMmTM2lQ0AQHCGR8Wm+e2/HjFgCLe2tiozM3PkdWpqqtLS0tTW1jbqmYyMjFHtMjMzdfbsWQtLBQAgdJ46t1JvMNnIb0spIwKeNdLb2yuXyzXqPZfLpZ6eHlPPDJs40aXk5HGh1jvGuHFJSktLsez7JSL6MHz0YfjoQ2vQj9e29f/dpd+8eU5v7wz+zmE7+zNgCKekpKi/v3/Ue319fUpNTTX1zDCfr3/Me+FIS0tRZ+fYsEfw6MPw0Yfhow+tQT8Gdm/BFN1bMCXobUnh9md6+qSrfi3gdHROTo5aWlpGXl+8eFFdXV3Kzs4e9Uxra6v8/qFx++DgoFpbWzV9+vRw6gYAwDZBTU/bvJE34LfPy8uT1+vV0aNHJUm1tbVasGCBUlL+MjyfMWOG0tPTtXv3bknSW2+9pYyMDE2bNs2msgEACN/6HW4tLpxy5S8mDR3+YafrDMMwAj10+PBhbd68Wb29vcrKypLH45Hf79eKFStGgvf06dNav369Ojs7NWXKFFVXV19xJNze3m3pfwBTL+GjD8NHH4aPPrQG/Rg+q/vwWtPRQYWwlQhh56EPw0cfho8+tAb9GL5IhjDHVgIAECWEMAAAUUIIAwAQJYQwAABRQggDABAlhDAAAFFCCAMAECWEMAAAUUIIAwAQJRE/MQsAAAxhJAwAQJQQwgAARAkhDABAlMRECB88eFBLly5Vfn6+SkpK5PV6xzzT1NSkoqIi5efnq6ioSE1NTVGo1LmC6cNjx47pkUce0UMPPaRly5bp/fffj0KlzhVMHw5ramrSbbfdpsOHD0ewQucLpg99Pp/Kyso0f/58LV68WA0NDVGo1NmC6cf33ntP3/jGN1RQUKCioiJ9+OGHUajUuT7//HM9++yzys3Nverf5YjkiuFwly9fNu655x7jj3/8o2EYhvHKK68YpaWlY54rKCgw9u7daxiGYezZs8d4+OGHI1qnkwXTh/39/cbdd99tHDx40DAMw3jvvfeMuXPnRrxWpwr2c2gYhvHFF18YhYWFxv33328cOnQokmU6WrB9+OSTTxqbNm0y/H6/0dzcbHznO98xPv/880iX61jB9GNXV5fx93//98ZHH31kGIZh/O53vzPuv//+iNfqZN/97neNbdu2Gbfccovx6aefXvGZSOSK40P4nXfeMR555JGR1z6fz3C73UZ3d/fIe01NTcZ99903qt0//MM/GM3NzRGr08mC6UOfz2c0NDSMvO7u7jZuueUWo6urK6K1OlUwfTjstddeMzZu3Gh85zvfIYT/SjB92N/fb8yZM8f485//HI0SY0Iw/fjHP/5x1M/E/v5+/j7/jePHjxuGYVw1hCOVK46fjm5tbVVmZubI69TUVKWlpamtrW3UMxkZGaPaZWZm6uzZsxGr08mC6cPU1FQ9+OCDI69///vf6+abb9bkyZMjWqtTBdOHktTe3q7a2lqVl5dHukTHC/bvssvlUn19vb72ta/pW9/6lg4cOBCNch0rmH6cPn26kpKSdPDgQUlSQ0ODbr/9dv4+/5U5c+Zc8+uRypVkS7+bDXp7e+VyuUa953K51NPTY+qZRGa2f5qamlRTU6OtW7dGoryYEGwf1tTUaOXKlfywu4Jg+vDSpUvq7u6Wy+XSb37zG+3bt08/+MEP9J//+Z9KS0uLdMmOFEw/TpgwQZs2bVJpaakmTJggv9+vV155JdKlxrRI5YrjR8IpKSnq7+8f9V5fX59SU1NNPZPIzPTPBx98oMcff1ybN29WXl5epEp0vGD6cN++fers7NSSJUsiXV5MCKYPJ02apC+++EKPPvqoJGnevHmaOnWqTp48GdFanSyYfvzss8/05JNP6he/+IWOHDmif//3f9eqVat0+fLlSJcbsyKVK44P4ZycHLW0tIy8vnjxorq6upSdnT3qmdbWVvn9fknS4OCgWltbNX369IjX60TB9KE0NAIuKyvT888/r/nz50e6TEcLpg/37t2rU6dO6b777tN9992n48ePa/Xq1XrrrbeiUbLjBNOHU6dOVVJS0qiwGDdunJKSHP+jKmKC6cfjx48rIyNDubm5kqS8vDwlJSXpzJkzEa83VkUqVxz/yc7Ly5PX69XRo0clSbW1tVqwYIFSUlJGnpkxY4bS09O1e/duSdJbb72ljIwMTZs2LSo1O00wfWgYhioqKrRx40bdeeed0SrVsYLpw2eeeUaHDx/WH/7wB/3hD3/QV7/6Vb344ov65je/Ga2yHSWYPpw8ebIWLlyon/3sZ5KkkydP6vz58/rKV74SlZqdKJh+vPnmm9Xc3KxPPvlEktTY2Kju7m5lZWVFpeZYFLFcsXSZl00OHTpkfP3rXzcWLVpkPPbYY8aFCxcMr9dr/OM//uPIM01NTcYjjzxiLF682CgqKmJl9N8I1IcffPCBMWvWLCM/P3/U/4a3QSC4z+FfY3X0WMH04X//938bjz32mLFgwQLj61//urFv374oVuxMwfTjz3/+c6OgoMB48MEHjYcffnhkqw0Mo729feRn3C233GIsWrTIyM/Pj0qucIEDAABR4vjpaAAA4hUhDABAlBDCAABECSEMAECUEMIAAEQJIQwAQJQQwgAARAkhDABAlBDCAABEyf8HuFXVY/g4Ru0AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(8, 6))\n", + "plt.plot(\n", + " softmax(prior_sample['beta'], axis=1)[:, 0],\n", + " softmax(prior_sample['beta'], axis=1)[:, 1], 'o', color='xkcd:bluey purple', alpha=0.4);" ] }, { @@ -2020,7 +2232,7 @@ }, { "cell_type": "code", - "execution_count": 503, + "execution_count": 108, "metadata": {}, "outputs": [ { @@ -2031,11 +2243,12 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [beta, mu, packed_L]\n", - "Sampling 4 chains, 114 divergences: 100%|██████████| 24000/24000 [03:46<00:00, 105.93draws/s]\n", - "There were 30 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 48 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 13 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 23 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "Sampling 4 chains, 261 divergences: 100%|██████████| 24000/24000 [04:03<00:00, 98.74draws/s] \n", + "There were 15 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 26 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "There were 217 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "The acceptance probability does not match the target. It is 0.6731413512132158, but should be close to 0.9. Try to increase the number of tuning steps.\n", + "There were 3 divergences after tuning. Increase `target_accept` or reparameterize.\n", "The rhat statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", "The estimated number of effective samples is smaller than 200 for some parameters.\n" ] @@ -2043,12 +2256,12 @@ ], "source": [ "with model_hier:\n", - " trace_2 = pm.sample(draws=1_000, tune=5_000)" + " trace_2 = pm.sample(draws=1_000, tune=5_000, target_accept=0.9)" ] }, { "cell_type": "code", - "execution_count": 504, + "execution_count": 109, "metadata": {}, "outputs": [ { @@ -2087,479 +2300,479 @@ " \n", " \n", " \n", - " beta[0,0]\n", - " -0.515\n", - " 0.264\n", - " -1.078\n", - " -0.098\n", + " mu[0]\n", + " -0.002\n", " 0.011\n", - " 0.008\n", - " 592.0\n", - " 592.0\n", - " 595.0\n", - " 1330.0\n", + " -0.022\n", + " 0.016\n", + " 0.001\n", + " 0.001\n", + " 115.0\n", + " 115.0\n", + " 121.0\n", + " 2472.0\n", + " 1.03\n", + " \n", + " \n", + " mu[1]\n", + " 0.002\n", + " 0.010\n", + " -0.017\n", + " 0.020\n", + " 0.000\n", + " 0.000\n", + " 768.0\n", + " 768.0\n", + " 786.0\n", + " 2194.0\n", " 1.01\n", " \n", " \n", + " beta[0,0]\n", + " -0.457\n", + " 0.489\n", + " -1.347\n", + " 0.300\n", + " 0.066\n", + " 0.047\n", + " 56.0\n", + " 56.0\n", + " 61.0\n", + " 142.0\n", + " 1.05\n", + " \n", + " \n", " beta[0,1]\n", - " 0.390\n", - " 0.312\n", - " -0.109\n", - " 0.930\n", - " 0.017\n", - " 0.012\n", - " 345.0\n", - " 345.0\n", - " 385.0\n", - " 487.0\n", - " 1.02\n", + " 0.374\n", + " 0.466\n", + " -0.410\n", + " 1.272\n", + " 0.034\n", + " 0.024\n", + " 183.0\n", + " 183.0\n", + " 160.0\n", + " 1617.0\n", + " 1.03\n", " \n", " \n", " beta[1,0]\n", - " -0.433\n", - " 0.214\n", - " -0.871\n", - " -0.019\n", - " 0.007\n", - " 0.005\n", - " 1011.0\n", - " 940.0\n", - " 915.0\n", - " 1237.0\n", - " 1.01\n", + " -0.284\n", + " 0.376\n", + " -0.986\n", + " 0.391\n", + " 0.021\n", + " 0.015\n", + " 324.0\n", + " 324.0\n", + " 276.0\n", + " 1405.0\n", + " 1.02\n", " \n", " \n", " beta[1,1]\n", - " 0.339\n", - " 0.258\n", - " -0.104\n", - " 0.855\n", - " 0.012\n", - " 0.009\n", - " 437.0\n", - " 437.0\n", - " 461.0\n", - " 604.0\n", + " 0.234\n", + " 0.372\n", + " -0.418\n", + " 0.952\n", + " 0.020\n", + " 0.014\n", + " 363.0\n", + " 363.0\n", + " 349.0\n", + " 1316.0\n", " 1.02\n", " \n", " \n", " beta[2,0]\n", - " -0.446\n", - " 0.183\n", - " -0.848\n", - " -0.143\n", - " 0.009\n", - " 0.006\n", - " 427.0\n", - " 427.0\n", - " 444.0\n", - " 486.0\n", - " 1.02\n", + " -0.252\n", + " 0.351\n", + " -0.865\n", + " 0.404\n", + " 0.016\n", + " 0.011\n", + " 480.0\n", + " 480.0\n", + " 391.0\n", + " 1437.0\n", + " 1.01\n", " \n", " \n", " beta[2,1]\n", - " 0.355\n", - " 0.255\n", - " -0.067\n", - " 0.831\n", - " 0.013\n", - " 0.009\n", - " 396.0\n", - " 396.0\n", - " 423.0\n", - " 603.0\n", - " 1.01\n", + " 0.221\n", + " 0.352\n", + " -0.398\n", + " 0.881\n", + " 0.017\n", + " 0.012\n", + " 412.0\n", + " 412.0\n", + " 281.0\n", + " 1412.0\n", + " 1.02\n", " \n", " \n", " beta[3,0]\n", - " -0.488\n", - " 0.221\n", - " -0.955\n", - " -0.116\n", - " 0.009\n", - " 0.006\n", - " 585.0\n", - " 585.0\n", - " 531.0\n", - " 1175.0\n", - " 1.01\n", + " -0.342\n", + " 0.386\n", + " -1.065\n", + " 0.362\n", + " 0.023\n", + " 0.016\n", + " 285.0\n", + " 285.0\n", + " 272.0\n", + " 1259.0\n", + " 1.02\n", " \n", " \n", " beta[3,1]\n", - " 0.382\n", - " 0.311\n", - " -0.074\n", - " 0.969\n", - " 0.016\n", - " 0.011\n", - " 372.0\n", - " 372.0\n", - " 403.0\n", - " 536.0\n", + " 0.284\n", + " 0.393\n", + " -0.380\n", + " 1.058\n", + " 0.026\n", + " 0.018\n", + " 231.0\n", + " 231.0\n", + " 176.0\n", + " 1405.0\n", " 1.02\n", " \n", " \n", " beta[4,0]\n", - " -0.440\n", - " 0.220\n", - " -0.903\n", - " -0.061\n", - " 0.008\n", - " 0.007\n", - " 674.0\n", - " 539.0\n", - " 730.0\n", - " 561.0\n", - " 1.01\n", + " -0.293\n", + " 0.391\n", + " -1.045\n", + " 0.349\n", + " 0.029\n", + " 0.020\n", + " 183.0\n", + " 183.0\n", + " 165.0\n", + " 1158.0\n", + " 1.02\n", " \n", " \n", " beta[4,1]\n", - " 0.340\n", - " 0.272\n", - " -0.065\n", - " 0.863\n", - " 0.011\n", - " 0.008\n", - " 603.0\n", - " 603.0\n", - " 661.0\n", - " 813.0\n", + " 0.255\n", + " 0.383\n", + " -0.402\n", + " 1.005\n", + " 0.021\n", + " 0.015\n", + " 322.0\n", + " 322.0\n", + " 242.0\n", + " 1566.0\n", " 1.02\n", " \n", " \n", " beta[5,0]\n", - " -0.451\n", - " 0.199\n", - " -0.877\n", - " -0.111\n", - " 0.007\n", - " 0.005\n", - " 723.0\n", - " 699.0\n", - " 705.0\n", - " 1303.0\n", - " 1.01\n", + " -0.286\n", + " 0.362\n", + " -0.956\n", + " 0.341\n", + " 0.035\n", + " 0.025\n", + " 106.0\n", + " 106.0\n", + " 95.0\n", + " 764.0\n", + " 1.03\n", " \n", " \n", " beta[5,1]\n", - " 0.359\n", - " 0.278\n", - " -0.035\n", - " 0.926\n", - " 0.014\n", - " 0.010\n", - " 422.0\n", - " 422.0\n", - " 533.0\n", - " 537.0\n", + " 0.246\n", + " 0.355\n", + " -0.331\n", + " 0.962\n", + " 0.024\n", + " 0.017\n", + " 214.0\n", + " 214.0\n", + " 152.0\n", + " 1574.0\n", " 1.02\n", " \n", " \n", " beta[6,0]\n", - " -0.406\n", - " 0.186\n", - " -0.783\n", - " -0.072\n", - " 0.005\n", - " 0.004\n", - " 1147.0\n", - " 1147.0\n", - " 984.0\n", - " 1344.0\n", - " 1.01\n", + " -0.216\n", + " 0.321\n", + " -0.877\n", + " 0.331\n", + " 0.013\n", + " 0.009\n", + " 635.0\n", + " 635.0\n", + " 531.0\n", + " 971.0\n", + " 1.04\n", " \n", " \n", " beta[6,1]\n", - " 0.329\n", - " 0.247\n", - " -0.067\n", - " 0.844\n", - " 0.011\n", - " 0.008\n", - " 477.0\n", - " 477.0\n", - " 564.0\n", - " 536.0\n", - " 1.01\n", + " 0.194\n", + " 0.327\n", + " -0.383\n", + " 0.847\n", + " 0.017\n", + " 0.012\n", + " 373.0\n", + " 373.0\n", + " 321.0\n", + " 1381.0\n", + " 1.02\n", " \n", " \n", " beta[7,0]\n", - " -0.367\n", - " 0.175\n", - " -0.690\n", - " -0.022\n", - " 0.006\n", - " 0.004\n", - " 992.0\n", - " 992.0\n", - " 937.0\n", - " 1052.0\n", - " 1.01\n", + " -0.194\n", + " 0.306\n", + " -0.742\n", + " 0.381\n", + " 0.030\n", + " 0.021\n", + " 106.0\n", + " 106.0\n", + " 86.0\n", + " 1025.0\n", + " 1.03\n", " \n", " \n", " beta[7,1]\n", - " 0.294\n", - " 0.207\n", - " -0.106\n", - " 0.661\n", - " 0.007\n", - " 0.006\n", - " 1001.0\n", - " 635.0\n", - " 961.0\n", - " 913.0\n", - " 1.01\n", + " 0.158\n", + " 0.298\n", + " -0.353\n", + " 0.763\n", + " 0.014\n", + " 0.010\n", + " 461.0\n", + " 461.0\n", + " 275.0\n", + " 1472.0\n", + " 1.02\n", " \n", " \n", " beta[8,0]\n", - " -0.338\n", - " 0.224\n", - " -0.771\n", - " 0.106\n", - " 0.007\n", - " 0.005\n", - " 1028.0\n", - " 1028.0\n", - " 923.0\n", - " 691.0\n", - " 1.01\n", + " -0.106\n", + " 0.347\n", + " -0.815\n", + " 0.515\n", + " 0.008\n", + " 0.008\n", + " 1727.0\n", + " 991.0\n", + " 1283.0\n", + " 1540.0\n", + " 1.02\n", " \n", " \n", " beta[8,1]\n", - " 0.266\n", - " 0.239\n", - " -0.192\n", - " 0.728\n", - " 0.006\n", - " 0.006\n", - " 1544.0\n", - " 723.0\n", - " 1249.0\n", - " 971.0\n", - " 1.01\n", + " 0.103\n", + " 0.352\n", + " -0.529\n", + " 0.830\n", + " 0.008\n", + " 0.008\n", + " 1758.0\n", + " 918.0\n", + " 1493.0\n", + " 1518.0\n", + " 1.03\n", " \n", " \n", " beta[9,0]\n", - " -0.416\n", - " 0.183\n", - " -0.771\n", - " -0.081\n", - " 0.006\n", - " 0.004\n", - " 1066.0\n", - " 1066.0\n", - " 974.0\n", - " 1495.0\n", - " 1.01\n", + " -0.259\n", + " 0.364\n", + " -0.900\n", + " 0.330\n", + " 0.043\n", + " 0.031\n", + " 71.0\n", + " 71.0\n", + " 68.0\n", + " 656.0\n", + " 1.04\n", " \n", " \n", " beta[9,1]\n", - " 0.330\n", - " 0.236\n", - " -0.059\n", - " 0.765\n", - " 0.010\n", - " 0.008\n", - " 507.0\n", - " 476.0\n", - " 678.0\n", - " 586.0\n", - " 1.01\n", + " 0.210\n", + " 0.345\n", + " -0.370\n", + " 0.879\n", + " 0.019\n", + " 0.013\n", + " 331.0\n", + " 331.0\n", + " 252.0\n", + " 1228.0\n", + " 1.02\n", " \n", " \n", " beta[10,0]\n", - " -0.420\n", - " 0.189\n", - " -0.826\n", - " -0.083\n", - " 0.008\n", - " 0.007\n", - " 495.0\n", - " 410.0\n", - " 542.0\n", - " 271.0\n", + " -0.237\n", + " 0.356\n", + " -0.953\n", + " 0.374\n", + " 0.014\n", + " 0.010\n", + " 655.0\n", + " 655.0\n", + " 429.0\n", + " 1417.0\n", " 1.01\n", " \n", " \n", " beta[10,1]\n", - " 0.338\n", - " 0.263\n", - " -0.058\n", - " 0.805\n", - " 0.012\n", - " 0.009\n", - " 470.0\n", - " 470.0\n", - " 491.0\n", - " 668.0\n", - " 1.01\n", + " 0.208\n", + " 0.358\n", + " -0.411\n", + " 0.901\n", + " 0.018\n", + " 0.013\n", + " 381.0\n", + " 381.0\n", + " 268.0\n", + " 1512.0\n", + " 1.02\n", " \n", " \n", " beta[11,0]\n", - " -0.384\n", - " 0.162\n", - " -0.676\n", - " -0.057\n", - " 0.005\n", - " 0.003\n", - " 1141.0\n", - " 1141.0\n", - " 1002.0\n", - " 1080.0\n", - " 1.01\n", + " -0.201\n", + " 0.315\n", + " -0.766\n", + " 0.390\n", + " 0.019\n", + " 0.013\n", + " 277.0\n", + " 277.0\n", + " 179.0\n", + " 1514.0\n", + " 1.02\n", " \n", " \n", " beta[11,1]\n", - " 0.310\n", - " 0.217\n", - " -0.044\n", - " 0.752\n", - " 0.009\n", - " 0.006\n", - " 634.0\n", - " 561.0\n", - " 730.0\n", - " 677.0\n", - " 1.01\n", + " 0.175\n", + " 0.313\n", + " -0.390\n", + " 0.765\n", + " 0.014\n", + " 0.010\n", + " 471.0\n", + " 471.0\n", + " 228.0\n", + " 1435.0\n", + " 1.02\n", " \n", " \n", " beta[12,0]\n", - " -0.411\n", - " 0.212\n", - " -0.851\n", - " -0.025\n", - " 0.006\n", - " 0.005\n", - " 1239.0\n", - " 1096.0\n", - " 1100.0\n", - " 1703.0\n", + " -0.261\n", + " 0.361\n", + " -0.976\n", + " 0.388\n", + " 0.018\n", + " 0.013\n", + " 387.0\n", + " 387.0\n", + " 320.0\n", + " 1358.0\n", " 1.01\n", " \n", " \n", " beta[12,1]\n", - " 0.330\n", - " 0.262\n", - " -0.092\n", - " 0.889\n", - " 0.011\n", - " 0.008\n", - " 589.0\n", - " 580.0\n", - " 724.0\n", - " 577.0\n", + " 0.223\n", + " 0.359\n", + " -0.407\n", + " 0.973\n", + " 0.020\n", + " 0.014\n", + " 338.0\n", + " 338.0\n", + " 307.0\n", + " 1609.0\n", " 1.01\n", " \n", " \n", " beta[13,0]\n", - " -0.375\n", - " 0.183\n", - " -0.732\n", - " -0.030\n", - " 0.005\n", - " 0.004\n", - " 1229.0\n", - " 1229.0\n", - " 1096.0\n", - " 1529.0\n", + " -0.178\n", + " 0.322\n", + " -0.798\n", + " 0.399\n", + " 0.011\n", + " 0.008\n", + " 904.0\n", + " 811.0\n", + " 669.0\n", + " 1168.0\n", " 1.01\n", " \n", " \n", " beta[13,1]\n", - " 0.301\n", - " 0.226\n", - " -0.074\n", - " 0.739\n", - " 0.008\n", - " 0.006\n", - " 866.0\n", - " 746.0\n", - " 863.0\n", - " 757.0\n", + " 0.165\n", + " 0.323\n", + " -0.382\n", + " 0.817\n", + " 0.012\n", + " 0.009\n", + " 710.0\n", + " 629.0\n", + " 497.0\n", + " 1371.0\n", " 1.01\n", " \n", " \n", " beta[14,0]\n", - " -0.398\n", - " 0.175\n", - " -0.727\n", - " -0.065\n", - " 0.006\n", - " 0.004\n", - " 937.0\n", - " 925.0\n", - " 851.0\n", - " 1355.0\n", - " 1.01\n", + " -0.220\n", + " 0.332\n", + " -0.779\n", + " 0.432\n", + " 0.026\n", + " 0.019\n", + " 159.0\n", + " 159.0\n", + " 126.0\n", + " 1193.0\n", + " 1.02\n", " \n", " \n", " beta[14,1]\n", - " 0.315\n", - " 0.237\n", - " -0.089\n", - " 0.746\n", - " 0.009\n", - " 0.007\n", - " 727.0\n", - " 664.0\n", - " 732.0\n", - " 811.0\n", - " 1.01\n", + " 0.176\n", + " 0.326\n", + " -0.378\n", + " 0.867\n", + " 0.016\n", + " 0.011\n", + " 441.0\n", + " 441.0\n", + " 228.0\n", + " 1225.0\n", + " 1.02\n", " \n", " \n", " beta[15,0]\n", - " -0.391\n", - " 0.186\n", - " -0.794\n", - " -0.042\n", - " 0.007\n", - " 0.007\n", - " 627.0\n", - " 403.0\n", - " 722.0\n", - " 332.0\n", - " 1.01\n", + " -0.214\n", + " 0.320\n", + " -0.843\n", + " 0.324\n", + " 0.020\n", + " 0.014\n", + " 265.0\n", + " 265.0\n", + " 189.0\n", + " 1440.0\n", + " 1.02\n", " \n", " \n", " beta[15,1]\n", - " 0.305\n", - " 0.237\n", - " -0.082\n", - " 0.764\n", - " 0.008\n", - " 0.006\n", - " 861.0\n", - " 861.0\n", - " 848.0\n", - " 673.0\n", - " 1.01\n", - " \n", - " \n", - " mu[0]\n", - " -0.329\n", - " 0.102\n", - " -0.507\n", - " -0.133\n", - " 0.005\n", - " 0.004\n", - " 416.0\n", - " 380.0\n", - " 397.0\n", - " 543.0\n", - " 1.01\n", - " \n", - " \n", - " mu[1]\n", - " 0.247\n", - " 0.095\n", - " 0.059\n", - " 0.410\n", - " 0.004\n", - " 0.003\n", - " 482.0\n", - " 384.0\n", - " 464.0\n", - " 590.0\n", + " 0.173\n", + " 0.321\n", + " -0.421\n", + " 0.781\n", + " 0.014\n", + " 0.010\n", + " 516.0\n", + " 516.0\n", + " 396.0\n", + " 1720.0\n", " 1.01\n", " \n", " \n", @@ -2568,216 +2781,97 @@ ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", - "beta[0,0] -0.515 0.264 -1.078 -0.098 0.011 0.008 592.0 \n", - "beta[0,1] 0.390 0.312 -0.109 0.930 0.017 0.012 345.0 \n", - "beta[1,0] -0.433 0.214 -0.871 -0.019 0.007 0.005 1011.0 \n", - "beta[1,1] 0.339 0.258 -0.104 0.855 0.012 0.009 437.0 \n", - "beta[2,0] -0.446 0.183 -0.848 -0.143 0.009 0.006 427.0 \n", - "beta[2,1] 0.355 0.255 -0.067 0.831 0.013 0.009 396.0 \n", - "beta[3,0] -0.488 0.221 -0.955 -0.116 0.009 0.006 585.0 \n", - "beta[3,1] 0.382 0.311 -0.074 0.969 0.016 0.011 372.0 \n", - "beta[4,0] -0.440 0.220 -0.903 -0.061 0.008 0.007 674.0 \n", - "beta[4,1] 0.340 0.272 -0.065 0.863 0.011 0.008 603.0 \n", - "beta[5,0] -0.451 0.199 -0.877 -0.111 0.007 0.005 723.0 \n", - "beta[5,1] 0.359 0.278 -0.035 0.926 0.014 0.010 422.0 \n", - "beta[6,0] -0.406 0.186 -0.783 -0.072 0.005 0.004 1147.0 \n", - "beta[6,1] 0.329 0.247 -0.067 0.844 0.011 0.008 477.0 \n", - "beta[7,0] -0.367 0.175 -0.690 -0.022 0.006 0.004 992.0 \n", - "beta[7,1] 0.294 0.207 -0.106 0.661 0.007 0.006 1001.0 \n", - "beta[8,0] -0.338 0.224 -0.771 0.106 0.007 0.005 1028.0 \n", - "beta[8,1] 0.266 0.239 -0.192 0.728 0.006 0.006 1544.0 \n", - "beta[9,0] -0.416 0.183 -0.771 -0.081 0.006 0.004 1066.0 \n", - "beta[9,1] 0.330 0.236 -0.059 0.765 0.010 0.008 507.0 \n", - "beta[10,0] -0.420 0.189 -0.826 -0.083 0.008 0.007 495.0 \n", - "beta[10,1] 0.338 0.263 -0.058 0.805 0.012 0.009 470.0 \n", - "beta[11,0] -0.384 0.162 -0.676 -0.057 0.005 0.003 1141.0 \n", - "beta[11,1] 0.310 0.217 -0.044 0.752 0.009 0.006 634.0 \n", - "beta[12,0] -0.411 0.212 -0.851 -0.025 0.006 0.005 1239.0 \n", - "beta[12,1] 0.330 0.262 -0.092 0.889 0.011 0.008 589.0 \n", - "beta[13,0] -0.375 0.183 -0.732 -0.030 0.005 0.004 1229.0 \n", - "beta[13,1] 0.301 0.226 -0.074 0.739 0.008 0.006 866.0 \n", - "beta[14,0] -0.398 0.175 -0.727 -0.065 0.006 0.004 937.0 \n", - "beta[14,1] 0.315 0.237 -0.089 0.746 0.009 0.007 727.0 \n", - "beta[15,0] -0.391 0.186 -0.794 -0.042 0.007 0.007 627.0 \n", - "beta[15,1] 0.305 0.237 -0.082 0.764 0.008 0.006 861.0 \n", - "mu[0] -0.329 0.102 -0.507 -0.133 0.005 0.004 416.0 \n", - "mu[1] 0.247 0.095 0.059 0.410 0.004 0.003 482.0 \n", + "mu[0] -0.002 0.011 -0.022 0.016 0.001 0.001 115.0 \n", + "mu[1] 0.002 0.010 -0.017 0.020 0.000 0.000 768.0 \n", + "beta[0,0] -0.457 0.489 -1.347 0.300 0.066 0.047 56.0 \n", + "beta[0,1] 0.374 0.466 -0.410 1.272 0.034 0.024 183.0 \n", + "beta[1,0] -0.284 0.376 -0.986 0.391 0.021 0.015 324.0 \n", + "beta[1,1] 0.234 0.372 -0.418 0.952 0.020 0.014 363.0 \n", + "beta[2,0] -0.252 0.351 -0.865 0.404 0.016 0.011 480.0 \n", + "beta[2,1] 0.221 0.352 -0.398 0.881 0.017 0.012 412.0 \n", + "beta[3,0] -0.342 0.386 -1.065 0.362 0.023 0.016 285.0 \n", + "beta[3,1] 0.284 0.393 -0.380 1.058 0.026 0.018 231.0 \n", + "beta[4,0] -0.293 0.391 -1.045 0.349 0.029 0.020 183.0 \n", + "beta[4,1] 0.255 0.383 -0.402 1.005 0.021 0.015 322.0 \n", + "beta[5,0] -0.286 0.362 -0.956 0.341 0.035 0.025 106.0 \n", + "beta[5,1] 0.246 0.355 -0.331 0.962 0.024 0.017 214.0 \n", + "beta[6,0] -0.216 0.321 -0.877 0.331 0.013 0.009 635.0 \n", + "beta[6,1] 0.194 0.327 -0.383 0.847 0.017 0.012 373.0 \n", + "beta[7,0] -0.194 0.306 -0.742 0.381 0.030 0.021 106.0 \n", + "beta[7,1] 0.158 0.298 -0.353 0.763 0.014 0.010 461.0 \n", + "beta[8,0] -0.106 0.347 -0.815 0.515 0.008 0.008 1727.0 \n", + "beta[8,1] 0.103 0.352 -0.529 0.830 0.008 0.008 1758.0 \n", + "beta[9,0] -0.259 0.364 -0.900 0.330 0.043 0.031 71.0 \n", + "beta[9,1] 0.210 0.345 -0.370 0.879 0.019 0.013 331.0 \n", + "beta[10,0] -0.237 0.356 -0.953 0.374 0.014 0.010 655.0 \n", + "beta[10,1] 0.208 0.358 -0.411 0.901 0.018 0.013 381.0 \n", + "beta[11,0] -0.201 0.315 -0.766 0.390 0.019 0.013 277.0 \n", + "beta[11,1] 0.175 0.313 -0.390 0.765 0.014 0.010 471.0 \n", + "beta[12,0] -0.261 0.361 -0.976 0.388 0.018 0.013 387.0 \n", + "beta[12,1] 0.223 0.359 -0.407 0.973 0.020 0.014 338.0 \n", + "beta[13,0] -0.178 0.322 -0.798 0.399 0.011 0.008 904.0 \n", + "beta[13,1] 0.165 0.323 -0.382 0.817 0.012 0.009 710.0 \n", + "beta[14,0] -0.220 0.332 -0.779 0.432 0.026 0.019 159.0 \n", + "beta[14,1] 0.176 0.326 -0.378 0.867 0.016 0.011 441.0 \n", + "beta[15,0] -0.214 0.320 -0.843 0.324 0.020 0.014 265.0 \n", + "beta[15,1] 0.173 0.321 -0.421 0.781 0.014 0.010 516.0 \n", "\n", " ess_sd ess_bulk ess_tail r_hat \n", - "beta[0,0] 592.0 595.0 1330.0 1.01 \n", - "beta[0,1] 345.0 385.0 487.0 1.02 \n", - "beta[1,0] 940.0 915.0 1237.0 1.01 \n", - "beta[1,1] 437.0 461.0 604.0 1.02 \n", - "beta[2,0] 427.0 444.0 486.0 1.02 \n", - "beta[2,1] 396.0 423.0 603.0 1.01 \n", - "beta[3,0] 585.0 531.0 1175.0 1.01 \n", - "beta[3,1] 372.0 403.0 536.0 1.02 \n", - "beta[4,0] 539.0 730.0 561.0 1.01 \n", - "beta[4,1] 603.0 661.0 813.0 1.02 \n", - "beta[5,0] 699.0 705.0 1303.0 1.01 \n", - "beta[5,1] 422.0 533.0 537.0 1.02 \n", - "beta[6,0] 1147.0 984.0 1344.0 1.01 \n", - "beta[6,1] 477.0 564.0 536.0 1.01 \n", - "beta[7,0] 992.0 937.0 1052.0 1.01 \n", - "beta[7,1] 635.0 961.0 913.0 1.01 \n", - "beta[8,0] 1028.0 923.0 691.0 1.01 \n", - "beta[8,1] 723.0 1249.0 971.0 1.01 \n", - "beta[9,0] 1066.0 974.0 1495.0 1.01 \n", - "beta[9,1] 476.0 678.0 586.0 1.01 \n", - "beta[10,0] 410.0 542.0 271.0 1.01 \n", - "beta[10,1] 470.0 491.0 668.0 1.01 \n", - "beta[11,0] 1141.0 1002.0 1080.0 1.01 \n", - "beta[11,1] 561.0 730.0 677.0 1.01 \n", - "beta[12,0] 1096.0 1100.0 1703.0 1.01 \n", - "beta[12,1] 580.0 724.0 577.0 1.01 \n", - "beta[13,0] 1229.0 1096.0 1529.0 1.01 \n", - "beta[13,1] 746.0 863.0 757.0 1.01 \n", - "beta[14,0] 925.0 851.0 1355.0 1.01 \n", - "beta[14,1] 664.0 732.0 811.0 1.01 \n", - "beta[15,0] 403.0 722.0 332.0 1.01 \n", - "beta[15,1] 861.0 848.0 673.0 1.01 \n", - "mu[0] 380.0 397.0 543.0 1.01 \n", - "mu[1] 384.0 464.0 590.0 1.01 " + "mu[0] 115.0 121.0 2472.0 1.03 \n", + "mu[1] 768.0 786.0 2194.0 1.01 \n", + "beta[0,0] 56.0 61.0 142.0 1.05 \n", + "beta[0,1] 183.0 160.0 1617.0 1.03 \n", + "beta[1,0] 324.0 276.0 1405.0 1.02 \n", + "beta[1,1] 363.0 349.0 1316.0 1.02 \n", + "beta[2,0] 480.0 391.0 1437.0 1.01 \n", + "beta[2,1] 412.0 281.0 1412.0 1.02 \n", + "beta[3,0] 285.0 272.0 1259.0 1.02 \n", + "beta[3,1] 231.0 176.0 1405.0 1.02 \n", + "beta[4,0] 183.0 165.0 1158.0 1.02 \n", + "beta[4,1] 322.0 242.0 1566.0 1.02 \n", + "beta[5,0] 106.0 95.0 764.0 1.03 \n", + "beta[5,1] 214.0 152.0 1574.0 1.02 \n", + "beta[6,0] 635.0 531.0 971.0 1.04 \n", + "beta[6,1] 373.0 321.0 1381.0 1.02 \n", + "beta[7,0] 106.0 86.0 1025.0 1.03 \n", + "beta[7,1] 461.0 275.0 1472.0 1.02 \n", + "beta[8,0] 991.0 1283.0 1540.0 1.02 \n", + "beta[8,1] 918.0 1493.0 1518.0 1.03 \n", + "beta[9,0] 71.0 68.0 656.0 1.04 \n", + "beta[9,1] 331.0 252.0 1228.0 1.02 \n", + "beta[10,0] 655.0 429.0 1417.0 1.01 \n", + "beta[10,1] 381.0 268.0 1512.0 1.02 \n", + "beta[11,0] 277.0 179.0 1514.0 1.02 \n", + "beta[11,1] 471.0 228.0 1435.0 1.02 \n", + "beta[12,0] 387.0 320.0 1358.0 1.01 \n", + "beta[12,1] 338.0 307.0 1609.0 1.01 \n", + "beta[13,0] 811.0 669.0 1168.0 1.01 \n", + "beta[13,1] 629.0 497.0 1371.0 1.01 \n", + "beta[14,0] 159.0 126.0 1193.0 1.02 \n", + "beta[14,1] 441.0 228.0 1225.0 1.02 \n", + "beta[15,0] 265.0 189.0 1440.0 1.02 \n", + "beta[15,1] 516.0 396.0 1720.0 1.01 " ] }, - "execution_count": 504, + "execution_count": 109, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "arviz.summary(trace_2, var_names=['beta', 'mu'])" + "arviz.summary(trace_2, var_names=['mu', 'beta'])" ] }, { "cell_type": "code", - "execution_count": 571, - "metadata": {}, - "outputs": [], - "source": [ - "prueba = arviz.from_pymc3(trace_2)" - ] - }, - { - "cell_type": "code", - "execution_count": 576, + "execution_count": 110, "metadata": {}, "outputs": [ { "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9d4zl13Xn+bm/9FK9yt3V1TmxKZKiKAaJI1KWZItykO2xxxaW9Ng0vPAA89fOGisPFhivVgJEaNde7Sy8HK1twNaMAY9l2gYtSzIlMUtNNnPo3F05p1cvx1+6d//4vXpV1RW6OjfZ9wMQ7HrvF84vvd8995zzPUIppdBoNBqNRqPRaDQazQ3HuNEGaDQajUaj0Wg0Go0mQjtoGo1Go9FoNBqNRnOToB00jUaj0Wg0Go1Go7lJ0A6aRqPRaDQajUaj0dwkaAdNo9FoNBqNRqPRaG4StIOm0Wg0Go1Go9FoNDcJ2kHTaDQajUaj0Wg0mpsE7aBpNBqNRqPRaDQazU2CdtA0mi3yxhtv8Pjjj/OVr3yF3/iN3+B3f/d3eeaZZ/j93/99HnnkEY4dO8bjjz/O888/31rnwQcfZGpq6gZardFoNBrN1UW/DzWaa4t1ow3QaD5InDhxgm9+85v09fXx8z//8xw/fpy/+qu/4jvf+Q7f+c53brR5Go1Go9FcF/T7UKO5dugImkZzCezZs4e+vj4A+vr6uPfeewHYsWMHhULhRpqm0Wg0Gs11Q78PNZprh3bQNJpLwDTNVX9b1uZB6CAIrqU5Go1Go9HcEPT7UKO5dmgHTaO5inR0dDA7OwvA8ePHqVarN9gijUaj0WiuP/p9qNFcProGTaO5iiwVTT///PPce++97Nq160abpNFoNBrNdUe/DzWay0copdSNNkKj0Wg0Go1Go9FoNDrFUaPRaDQajUaj0WhuGrSDptFoNBqNRqPRaDQ3CdpB02g0Go1Go9FoNJqbBO2gaTQajeZDxTe+8Q0effRRHnvsMU6cOLHqu2PHjvGlL32JRx99lG9961urvms0Gnz+85/n6aefvp7majQajUazCu2gaTQajeZDw5tvvsn4+DhPPfUUTzzxBF//+tdXff/EE0/w5JNP8p3vfIejR48yNDTU+u7P/uzP6OzsvN4mazQajUazik1l9jOZ8vWyo0VbW4xKxb3u+71StN3Xnw+q7dru688H1fYPo93btqWv6b5fe+01HnnkEQAOHz5MqVSiUqnQ1tbG5OQkHR0d9Pf3A/DZz36W1157jcOHDzM8PMzQ0BCf+9znNtx2ve59IK/HzcQH9Z6+mdDn8MrR5/DK0efwytnsfXjT9UGzLPPiC92EaLuvPx9U27Xd158Pqu3a7ktncXGRu+66q/V3T08PmUyGtrY2MpkM3d3dre96e3uZnJwE4I//+I/5yle+wne/+90Ntx2LWR/Ya3KzYJqGPodXiD6HV44+h1eOPofXlpvOQdNoNBqN5nK5sLWnUgohxLrfAQgh+O53v8vHP/5x9uzZs+m2w1BRKNSunrG3IJ2dSX0OrxB9Dq8cfQ6vHH0Or5wPVARNo9FoNJrLpa+vj8XFxdbfCwsL9Pb2rvvd/Pw827Zt4+WXX2ZycpKXX36Zubk5HMdhx44dPPTQQ9fdfo1Go9FotIOm0WxAbPB7CL+Ce/CXUPGuG22ORqPZAg8//DBPPvkkjz32GGfOnGH79u20tbUBsHv3biqVClNTU+zYsYOXXnqJb37zm/zO7/xOa/0nn3ySXbt2aedM86HEDyUnZ0vct1uL4Wg0NzPaQdNoLiRogBXHGf0xRi1D29GvUfrCk3gHf+FGW6bRaC7Cfffdx1133cVjjz2GEIKvfvWrPP3006TTab7whS/wta99jS9/+csAfPGLX+TAgQM32GKN5vohFRiIG22GRqO5CEKtl5Tf5EaoOH5Qc1q13defa2G7Nf8ebT/9CoUvfR+adSv25E9xJo9SfeiPrso+Pqjn/INqN3xwbf8w2n2tVRyvJb4ffiCvx83EB/Wevpm40nMYSoVp3NpOmr4Prxx9DreGlTmJcEv4ux9e891m70PdB02jaSIaBdp/9O9p3PlbLecMwN/zGaoP/RFGaQpRz95ACzUajUajuYDQxxl9bkuL5msez5/PXGODNBrNEmZ+GKN26c+cdtA0mibJt/+UYNvdNO78t+t//+5/oe3o/36drdJoNBqNZnNk246tLbdhzpRGo7lWKCt+yetoB02jaaLsJJWH/rdV0bOVVB/8jzhjL2AunrnOlmk0Go1GswGGRdBz5422QqPRbMilz4xoB02jAQjq1B78j8jOjQUDVKKHxt2/R+rN//s6GqbRaDSazXDGXoDQu9Fm3DCEVyI29H3YWFJAcz0IfZDhjbZC8yFBO2iaWx6jOk/PX38S4RYvumzt3n+Pe9uvXQerNBqNRrMVhFcGJW+0GVeFUCpeGMis21R9Q66DYzZXavDqaO6a7+eDjD33NkZl5kabofmQoB00zS1P/ORf4+16GBXruOiyKt6Fe/hXMUpT18EyjUajubUx88OY2fMbL9B0ToQMrpNF15ZAKoJQ4Yc3VzQsW/WoND4c5/haIePdKDt1o83Q3OSEUtHwLx5p1Q6a5tYm9Emc+Vvq9/z+llcxSuN0/d3nEW7pGhqm0Wg0axGNArGB795oM64bVuYkVvbsxgsIAcJAGeb1M+oaslQB7YXLEUHRyG/xml/cqbtcdf2upENvm3N5K98qCMHl1BpdCmZhBKM4dk33obm2nJkr85OhiyuCawdNc0tjVGbwd9xPsOOBLa8jO/YT9N1LbOCfrqFlGo1Gsw7CQJl6oNxCqSi98UNWf7XKQfMqF1l668fembB55PZtl2xP0jE30s+69vi1LZyDG48I6ojAvab7UIYFwrqm+9BcW+p+iCE9YoP/vOly2kHT3NLIjn2UvvhXGyo3bkTj9i8RH3j6Glml0Wg066Ni7XiHvnijzbhuhO17kPGujRdo1p6Jm6QGTTTyV6T0u+RqecHy8ah459ac8i04qX6oODFz6dkfMcsgV/Uveb2rgT33LvbUqzdk35eEDCMH6hqi4l3IRPc13YfmGrDi2VRAzC9c9HnVDprmlkXUs7T/y/94WapL3sFfJGzfF6k2aTQazSYEUiGvUoRHVBcuK8XRqMxgzb51Rfs2KjPYk69c1rqXmxKuYh0op22zJS5ru9cKo57Dyg1c8XZW1aDJEJnqA6IUVy6stxNbT+9sBCEL5UuP8iyUXUKpLk285CohU9uRqe3Xfb+XinLSIK7tsNqafw974f1ruo8PGsIrXzQadTPRlbBpj1/8mdUOmuaWJTbyI4Rfg8uoXVBOG+Uv/L9g2tfAMo1G82HihfMZ3p++uErsVlBOG2H73ktfz0oiU1trZrwR0ukg6Ln9ktcTXhln/MV1Nnhx0QkRNFBWYuMFmg6DspOXbNe1IOw6hHvk1y97/SUHaKUbJIJa9K4CrMwpqGZWrxNrj/a5hXdZe9zmF+64fGcnuAGdro3KDGZpIlJIvI6RUrMwcunR0GtsX9BzB2HnoUtaR6kb41hfKtbcO9EExCUiGvkPVIrz/u4kH+lLX3Q57aBpblliI8/gHv7ly17fLIzQ8d1HP1A/DBqN5sZQql8lBTw7SbDjvkteTdkp1DqpgkZ5JpKp3wKGW8AqjKz6zCyMYM2/t/m+N0jPiw394KKy5GHHvlb0aD3sqVfBr15yJkQQXpuBtFGdw554ee0XSmKUp7e8naUBtVGZxVo4iVGPRAVE6ELQWL1wUI8c4C04BzUv5MdnFy4+YPdr677bbkgZmjBRZhx75k2Myux12621cOKSoqFGdQ6hrn0fNGXFL2n5V0ZyvDO5zgSRkhjV+atk1ZWz6UTMpit+sMZgCxWXk1tIM9YOmuaWRLgl7OnXcQ/84mVvI2zfi5U7h6XTDTQazUW4Wu6AUZq8rBRHK3MCZ+z5NZ/bs29e1MFaQhn2mqiXmTuPWRzffEXZPPp1nCjh1zdd1ahlMC9wCld9X1/EaBRAbj3dfL7s8sLA4jWJBhnFyQ2jAGZp/JIbaotGHhE0z5FSCK+MWLhA1VLKKIV0Cw5aI4iuwaoIXW0Re/LoquVio89iFkdbfysFOzviWObWh43O0A+uSksameghTO9GWfGLpLtee4JQMplf/56V6V3XvAbNyp6LoqiXQM0LyVbXue9CD3v6tZumVCPs2H+Z1/cynmMZRr8rlxDxNHMDGOUr73PnBpLtbbGLLqcdNM0tiYq1k3v8VdSV5LUbFo3bfo3YeS0WotFoLsJVmuWVqT78/k+u+dyozGzqyITdt+Pt/dz6pm21d5PpEHYdvuR1hVpy6i79HAivEtX2XIxLSHGsuJE9VyXt6wKnU4R1gu33rFlMeGWU3QbNaKKo5zZ1tJcsM1dGjJSM/ruwns9JNVMcI+fAqMxgZs9F+6kuXPQQhPRbEbrWrpw00mlv/b2nK0HND6l5W48QCRkg5KU5pOthVuew8oOIoIG4MHp4NQga2NPHALDm3kXUFjdcdLHqcWZug4izkiBDrJk3L9+W0N3YqQ09gu33EPTeefnbB/DrUYTUiuPueqh139xoYqPPYuaHLn3Fy3iOhVfCWjix6bVeu04Z4VcBomvUTDteD6M0teG293Qm6E5eXPRHO2iaWxJ7/KWr0lDSPfIbOBMvfeBC7BqN5goJ/S3VUC1x1X4hhIlM9qz52MyPYOYGonqM9fZvWIhw7eDW2/8IwbaPbm3XXgWjNLG8z+x5ECZhx/6LrqtMZ4OB4OZnRnhlrLn3Nk7DFEYUtQi3IHwRuuBVCa9S5EzUs8SGvr/qMzM7QPzsU+vs28MsjCDcKNVMWXFk244V653DWjixyc5MUBJlxRDZwdVfeeXI2Wvej1bmNFbTQXOmj0GwNuKz8pVllKfx10mbtTMnIsdSKdxAUqj5LbGbQs1vNdtVSvHGWH6NEI6KtSO34lxfhDC1Y/P0t9C9onewkH4r6mmWJjDzg2u31/w7bpkknfVr/YzqPMKvYF4kbXcVMlyVsioaRaz8+mmVseFnMOffu+I6Nyt7BmvxDGMzM1Te/pvoeJdQCtEoYJSnEfUcolFYJfDz6khuS02WUXJtKu4WUIHLXOnS1hNX8Ot6SSmpSrL0eyX8MmKTqL2QHoa3fhrjRKG+pZpk7aBpbjmEW6Ljh//uqvRVCbbfQ/63XrhkmX6NRvPBxsqcuKTZ3quVTWeWxokN/xAAUctgzUcp1ireCYaFc0Gq2hL2wvvY06+v+dyozGLUc1vat3JSq1TqrOzZKAVxhdO2ESL01nUURD2HUZ3beD2vhLV4Gmvx9AYLGICItn8RnKlXiY0910ptXG9Mb+aHl1M+ZbjpwH9pNh2IBqMyQFkOMrm2z9hSG4AlsQ+sOP7Of7X8fehF6y990PxHmN4Zbb77tkiUyq+vFadqHrtwi5G9K99HQrCycmy9N5WVOUn89H+/4FOFTG5HGTbPnstwbDTH/rkfgRs5ym+M5zk+NoNoFAilolD31zi+wi1h1DJshhvIVkRzI5aUPJVprzuxGhv+IUb58lMphV+Lzn8z3daeeX25XlAIkGGkEhj6rSiiUZpcc9/K5HbEJUzaADgjP1yVhaNS2/H2/dwGhpqYjTxW5uQl7eNCgh33E/Q/gO+5GNVZrLl3Wt8Z5UmciZexZ9/CXngfszy16tz2pWOIDcY7ZnagdQ6txdPERn50ybbV/HDLbSAafrhhuulFWXquL8GxX9nKQ8hg9fN/AWGyjzC9e+UOW/+aKTa25FJqB01zy+GMPU+w7W5kW/+Vb0wIjMocscHvX3xZjUZzXfjGN77Bo48+ymOPPcaJE6ujEseOHeNLX/oSjz76KN/61rdan//Jn/wJjz76KL/5m7/Js88+u/HGgzpmfpiw6zbC9B6Q4YZRq5Wsm063lajPhat0HMDd+7OY+WGckR+zNOQ2ytMIr4J7279edz2/717cQ7/UOoYlrMXTq2fQN0GELjK5VrAjTO9a/mOd2f0lkZD1nChr8TRmIap1MiqzLYdzxV6jbRgbpATJACG3GEEJXJDhprVnRmW6VVMXG/r+5oPhFcfqjL8QHUesk6Dv3k2WVZj5YWKD34uiXk27g57bCXrvWB43Li0d6wTALI6BDDG8EmrFu0tUF7CnotYH9tQrCLdAyw1TKoqIrDPTX/dDpgrRfRB2HCDsPLDG3jC1A4zIGTS8MiBXHXPl/Is0Bp7DNKL9rTdsX89ZXcm7UwVeHdl8gsBaPINRyyBCH7FOVMI98uvI9j2bbmNTms+h0+y1Zvg1lqtGjeVee36VmBUNm+25d7AvTGVUcuP7dANEUF8VSTVKU63U10BGkcslZCyN33cPfv+Dl7SPCzEXz2DNvs2Rnb10HX4YlVxR6rHi+sp4NzLetSqyu78niWOuc6WVJDbwNFbufHPlLTiqSjYjv8tRrJRj8dnDvasWE43COr8LUKj7UbrpZUVPlx60S4lGqta+hF9DmRvXkTlTr6xb8wtbN1c7aJpbjtjIM7hXsdGr4RZo++kfXVK6k0ajuTa8+eabjI+P89RTT/HEE0/w9a9/fdX3TzzxBE8++STf+c53OHr0KENDQ7z++usMDg7y1FNP8Zd/+Zd84xvf2HD7hlvCypzEqM5j1uYRQR17Zm1k6kLWeynHhn+IcIs4Yy+sG11al6CBM/lT4if+K1gx8KNMANEcZMYGv7d2Hb+GM/psyxGKjfx4S07lhZj5EczC8KrPwvY9BDvuj2yoLqy/fzMWFf+vIxLi938Sv7m+Mp11mvA2B4MbNWpuRfQuPuoxqjNYmeMETdGSuXX6gclk36oooWg0nYfQXzOYXDmjLgMPNzeJEhb27Nvr7H3Z81J2gqDndvwVtWpmbghrYa0zuJReJoIGhC5Chqs8IbM6h9FYSpcyAbEmo0OtM9T76VCW07NRNEzFO/B3fuoCcyXxU39N7OzfA7Br8RW2yQUSieVUQ4EkkAovXNsaIFpAXLS+abN0UytzCmvhBDLRTdi2E4SIhGouXG7+PYziOEZhdJ2tbIFmHzlRb9YM+fUVUaNl+4RfwzENYpaBTG5b49QKv7Lc6mCdB97MDbQ+r3lhKyVUOenoeQwaqFh7a7vvTxV5eXC5jsloFLCygxjupUvRr7IzdFF2kpNTeRZG31u+x2F1Tz3DxMyeW1Wf+ML5zPqCI8LA3/kgqlm3uCVFxqXnZ0WdohdIXh5cXDWhZRbHogmKC+hLx/j87dsAFV2zdcSKRC3Tqi9cve+l7V/EQZNhNAGvFH4QEjZ/O8LkdpTVrHtdZ+wnQnfDqP5Wa1+1g6a55fB2fxr34C9dte0F2z6GslPrpg9pNJrry2uvvcYjjzwCwOHDhymVSlQqkRMzOTlJR0cH/f39GIbBZz/7WV577TU+8YlP8Kd/+qcAdHR0UK/XCcP1axOWUqONynSz9iWES5w1X4WShG39UZraxWZzQx+jOIZZniLoPoIIGpj1xUgIYikat842jHoOa/HsKhGRS53pR6korctdrp0I2/dgliZbTWINf/20ceGVo/O2Tr2HkF4rSmXUcxiVC9Idm87GRlL9CKMV5bkYMr2XoPfO1uD47Aqxh9jAdyFoIFPbUVY8KvCX4bIT1hp4rzi/K5y1qUKdM7N5VKwdb+daEZflkJhEtu1Etu0kbNtFqx+1YaFiHZyeKzUXb8rsNwfjCsWb41mo5xCTb7QGmCtVA0VQx2jkUEsenBBrGicnHYuDvUmMFT6cUZrAGX1u1XJh+16EilQkczUPBCQMxYnzA63I2/S2n8W/7VcJpMQ2BfYKhUcrczK6Xy8QH7kQsYlwvxJGZL8wwYqjNmjIbRbHMXMDWNkzGJWZi0rxC7eEGFwRJW+dQ4mZO49MbcfMNaPKK+uOgjq5mocbSML2fVGEcZUhsVaN4bJDvvx/a/EMNOtAjw5nKb7791F0aOE4zsRPMObex7faWiIzF6Z+qlg7yjCj7VwBQd+9hD130J2wSNFYXSt2wTlWdnLVc/vg/i661hO4UApn7AXMZv3ckqO2afuLpXMjl5+pUCm2pZ1VaZRrJ20iSo2A07PNCQy/gpVde15E4GKsI5QzX3bJ1/yL/+YGjebxK96fzHOm+XwaXrmV2h0b+sGK6w7HRnO4wcbHvdV4n3bQNLcWStG4+/euLB3iQoTAPfzLxIZ/cPW2+QFjLFfjufMZfjKUvWb9hTSarbC4uEhX13K/r56eHjKZqA4mk8nQ3b38su/t7SWTyWCaJslkNBv6D//wD3zmM5/BNDdv+uvv+hRGdRH8OkH3kXWX2XCgqBSinkPGO1F2Ctm+h9jYCxvXWQGELs7oc9i58zTu/C2IpVEIlJ2KFO4uVPZbuTsrTth9BH/3p4md/6do0LHkcMgAmVgrOnIhojSJ0cgTrlhWmXGUnUSZm/dlEs1B+npqjGb2PCJoEBv4bpReeIHAglyS3d4oEhN6kcT+FmalhVfELI7z3lRxzeDX7/8kGDZmfiiKlEy9soH4xIq/VwzuhjJVCjUPo764QrWSdZZVGMVxnPGXKBx/mhfPRrVOYfse8kYvuapPvLFA+8j3mzYvOZEC3w9odBwC04miNa3zopoD46ZTV56KIkrFMVCyZc8b43mCwWfZk1499BOhh7JXRzzC3jtRpoMQBvu7k9yxPUXZC5nw25lvRh632XXa/BxSgh+qVjRMeGXM3CAy0bPasW62CVi1703Kt436ImZ+qKVQKmSACNZGPd0jvw6xNCL0sWfexJ55Y+ONAkZtAVbY0Yr2qGhAX7//f0KtO0ZQxO3ouTHcQqu+zg9l1AxaGKhYR+tYjfJMa/IicpajekAzc5r26li0jtNO0PtRkD7TJY+R4TOt1NcL36TCLSFTfRvXqG0Ra/ZtnLHn6endjrP/07Cyr5qx+t5QsQ5kYkWaqtrAwZA+Kt5B0B01spfpnauap3uBpNxYP8tIrDjSRDzO/u7kqsiqspLr/nb4oSQ+8M8MjgwiDYcLk2wXKy7Siq+7riHAMsWqKPi6ti05p0qRjpt0xqPfIeGVV6WmihUZEF4gkXLj7Tafkk33C3BzaGtqNNeJ1LEnkG391O/5d1d1u407/+11baB5M/HqaI7/9P2z3LGjjWzVYzTbx+89uPdGm6W5RbkwfUQp1ZqNXS+1ZOVM7fPPP88//uM/8u1vf3vdbZumIN3dicjWSc69iPCKyNg+RHYQtff21Qt7FcT0+6hdB0imokFqZ2czJaY8h8i9gdp9L7THEedfAMuFpIVKSlivF1C5hFEfQbXtIFk+icgfR+77NKIwgbrndxBxWvLric4LJOc790L650hmB1FHPo2YfI1EmwnxJBy4H5LdkN5cpl6MvQXJGHEKqM4kYvh5WDgBThuV9tuiY0sdQlTPk+hIrBp5i+mzkLRJdMQxTaN1HkQqhup7AHoOI878E8RsMGOr7Ve3Ycy2Ybcn4cLjAkTSgdAm1pGExCbHkB9DJJNg72fv2DAJv5NEz23L18RKQyKOqDggm7UltQokbZKdySiFKv8+yWw36kizf6brIBqRvQs9D5A0PJLBccT0OeRHPrN6/8ndCG8c1R4HMwa9P8/MZIO41zwfU6ehmieZ+iiZoIuF+QxH3v0mau+nwPWhcy8fs/pI1m5DlE/R0ZGEWBJkGpFzELUaKt2G6t2GmPMRMk+8eh5SMRLdHWAnSWaqiHKV96azfHTfDkazVTo7k4hUEpyeVeddTL4ODmBZCMeiUArBNEgkbdraYtQUMPEOsfY01p2/STLl0JaOE7NNxKlnwF9A+LPI3bcvX7fyHGLmVdShL0A8irCk26qEK+6JVdf2dLPfW8cRMNKRYmd3J7StXlacfybK7kwt1wSteQZWYu/EmBiiU+SgYzf4IBZj4PmQ+AhO/Tyk4tEzCSQ6EtG9mo7RFUvQ3whIe5MQa0d1Jvn+iRlu70tzpC0G8RSi0ryHwwCRWvq3h0g60bNR9UjbDdSd/wPJuX+B6gDsvIf92+9DhgGJcBeJdJJEoowt5arnhdIpVNKCRAd0H9r4GEvTUM9D30fX/v54vZA4wrmZRXYPPUdnZxuJ9G9FacRWClGIzqNqi0Mti6DUOp9HJ2Z46GAPnW2xVc8yJBH9t+OkY9H1rhcQoy+hjvwSWHGGFiqcXajwqx/buWxj6EXnpz0e/Rbd/yUaAZw+v8gjH+kjsaSW6ZYRYYZkRwJq0aQYnXvpbI9x2209DC9WSBg1jJiKntUmRycKPJzKkLK9VZ9LqRicCjnUmUQs2bsRDb91DVNxi2RbPDpm8RGIt0Es2bw34tAebceMWRjKIplySHRG32PaLRu62uM4dpykvXkvNO2gaW4pnLHnqHzmiau+3bDzIGH7vkiS+CrICn8QcANJ2Q14YE8nT/3e/exoj6OUwg8Vk/k682WXB/Z23mgzNbcYfX19LC4u120sLCzQ29u77nfz8/Ns2xbNDh89epQ///M/5y//8i9Jp9d/hkdPv83ZYpKH2w5gVmYR1TzB4jzQzk/eneITeztxmiIC2XyB/moDL1+hVvXwQsn4bJGOhI2ouTiVOpz+McHOB7GqDUTDJah6mNPfwz30y2uU+szMOPHFKcTsWcKu25Bd96CKZazsHPKtvyXoPIjZiAaUbmF1fx7RKBA/8W383Z8mSMRwfAu/WEc1bBJnniXsPIh34AsbntPZUoNd5QaOhCDVQVCoEcsuYDRCZGGCU1OSQ9s+iRU2sFU7fqG6KrUuVnUjVbyp/4vYI/8rhYqMZOWrLuHCDMb4CYT0kaGP0XBX2W/NTWCrOF6pRmis7TsUq7kYDY96TYG79vuKG1Co+xxaOIZRHCPsvYve2ii99TLjqV0UmvuKDbyAt/vTmFUPs1gCK4a1MEzgW7jba+DXSTUC/GIJb2md4TeiCMFbf8eBwizZ1G00zAay485Vx/DqSIYHKy9hH/g0KmgDEhj5KRqZLDWzj0KhRnzkLfx6nVr7EebzNT6aPU893oFr7yVx+i9YvG03xxt1tmdfRtVyFIs1lGNiVALswEHEd6NqPn6xhuXsxG6MEFQboBRuRYGocUfhGJYh+Nj2Nl6ZyNOesKJ95+cxallq2z/Xum6G6ibmSqTvkVuqzJ8AACAASURBVB19hkp4CmklcbLDVFJpalUPyw/Jl1wSdY9a1SNfqBG3DGzfIj7+FsH2j+GVG4RmdC6MSgW76uIVyqhmJKJadanVAwqFGrPFGrusErKZOhiXSYRXIvBsjGZ9mJ+oIIPVExhOPSBMbseqNhsPC2PNM7CK0KJzz6epn3ke9+AvYpansKoueC4qlkZMnUPJANGM2rqFKrGqS1CqM0OF2cUqNdNFudG9UKt6ZAs1KpQhn8MslXALVcyKh1Vt3s9KRtsYeZ+T584xve1nOXD6H6mbDRACz48zNTmLbyTZ15mEQo1ypYFStO5RW7VDvBNz+FVUvAf3SCQWIxr5KHK34plzxt5FNHL41ZByuR3TEK3tYO1G1Bt0ODZWLI3XaFDNZFDxLkS1jlONfkdCp4GiDafuUW+u+9DuDswgpFCo0ZlUFGpLIkUzJEbfxJMpfHMnolZiLmvQm29g2pKUUNzWGW/ZkK16xIRPT9XFy5dRCRtr7h1Kyf3ElEG5VMdt/paKME1y+hS13XOtxu0hvdRPf4/y+Hukdt5BzdyGUXVx85XWeQjdgMDyqVVX/6YopfAbHlOlCp2pWuv+XBfPw/ATNF75GxaKJkZ9gfb+GmY+jwhmCLbdTazq4vrRNQOoVT2CMKCGwi3UiFVdlClbvxt9cYtuoagVXNo33rNOcdTcOhiFUYzqPP7OK1NA2ojkW/+Z1LGNxQU+TCil+PqPz/Nnr4wSswx2tEcpEkIIHMtgeLHKf/rB2ah2QaO5jjz88MP8+Mc/BuDMmTNs376dtrZoQLd7924qlQpTU1MEQcBLL73Eww8/TLlc5k/+5E/4i7/4Czo7N55U8GdPUfEUhpvH772jWYMQpRn2tjmr0rXenyqtqnEYWKjw+lgeozKDlT0bfe6VyGQXoxQ9QIlm+sw6IgD27DuY1RmEXyPYcT9GdQEjbCCCKmHbznXT6k7PlRlarCL8KrLzIGH3EVJv/mfsyaO00uFKkxjlySgVboM0yRNTRRZKDURt4YL9RNuIeVmUUhi1BZSTZrHqr332pY8IooGqUZ7GmfhJtP/qLGHHvkgEYp1aMuUkN1cCVERpfusoqpm5QWZzJaYGI9l8o5HDnvgJXggT6ftZKJR4cUmEQfqAQgQNrCVVSxm0xFfWS+wS1XmUCvF2/isCr8bts09jVOZoiNXpgvVajUZ5MRI6MONY8+9hz71Ne+44poy2v9QnzgskFCfpChaoukErEtleOkc8rOJ6HqS2tRQakdEyyk6jhIWyk1jzxyPz41E675Ic+NT8PDUvIN/sZ1aqB5G0v9OBt+tTOCM/wpp7N1q3fXczPU3Ra1RwZI1KYjfGqsS7qAOVbRoYS0qOboH46b9FBFVEUF+uh1t1zVbIlSPoqAwjStOcG59GDf4QqymyItw8Rj3bcs4ACAOozK2qp/T2P0K47W7C9dIS1xFqMGoZxExTWl6Gq+yxcs0eZOulzCrFtjYHu6liuFinlbYXDyOBEJnoicRepLyg/k+AMDFqC/QWT7B/9gcE8S5AEnYeJDb+IgPnT3Pi9PGojUZQX2OCUcsgEz0E21Y0Qg8aUf3aUluAZWMBxZmZLOcXlmtDzdwg8ZP/DXviJ8QSaczuQ8hkb+scGI0cZrPGzcwPY9TzUQsPovf+SLYaKUv6dcRgJKMv3CJW7lw0Oe2kGFioECZ6eN+6h3KwlL0AK8Uf354oMJRpOkbNNEKzNElaFhnJ1nhlJMdMMaqNU7E0tfv/A8ppR6b3EHZEIiqO8rGDEqO5WvRcoFYp47qBxA8jJczTs6VWBoUQAqEUCcdgvRo0szDCaydOUvUCcFLkF6cYW6zQa3sckiPNZUYJOg+BUijDwq1XWuUdtmVAsqlEGa6tgetM2FTPv4CVObVm3yvRDprmlsFeeB9/z2fWfZFfDbz9jxAb+eHmRbEfEn54doH3por8z589uO73n7utl4cPdvN/Pr/1PlEazdXgvvvu46677uKxxx7j61//Ol/96ld5+umnee65SATha1/7Gl/+8pf57d/+bb74xS9y4MABnnnmGfL5PH/wB3/A448/zuOPP87MzNpmswlLkXTnEcUJnJk3QYXkikXKc8OEcrkGh9DDCuukMu+2fg9CFb24lZVAOh1RZMPu5kS9t1UkHwQefihX9WgUzToXZcXwrRTVeD/W3LsYpUmkncKoLWLUc8j03lWCEQAJ2yDXVFwTlVmc0R8RNAc3q5QK/TpmcQxn/MV1z6lAolCoRA9meTmV26jMIWRAuj6FCgNkxz6QPu+PzTO4sLpHkPAqkRKhnWSmYSPtFIR+U+L9Nszy9BpBC4jq3KzC2Lp2QSQygozEUy7EWjyN8sp0VaLfIWW3gZXANRIk69PI6gJ+IKPR49QbvP/Oq5GYSm5w2QEKokHkmloVpZgu1MlPnELFO3CNNmJ4oALGh8+QqSwPFA0V4Md7AIWRH0SmduAe/EVGtv8ioRk5c0Y9i9HIYQiYEv3M2ftACEQjT80PUcrgYKdJzM0gcsOAolTMEQw+h2gqiwq/HImbEDm+S5EoZdoY5WnilqDuS87Nl5DNezUMA8zSOCrRgwi9ljPkNN9lCoO6H6k13tZ4n3bVdOKVxDfiCCtGpuIipcJoOpPCr6Finavv43oWloR3ViphCuiqDGIsngYUdrITe+YNzOw5spUGgZVEGRZBzx0AzIRpRl77R4zyNEZ1HmSAee6fCIeeRSZ619xDsZEfQ1CPat+WBuheGdym+qkKV9Q3qlaNW6v5sV9bodKq8JqDfpno5bi3i/lK5ET0zh8FtwjCQLbvwShPrBI1EX4F1/c4N18m0VigP/8mc/HbCDLnsadexShP05lKkO4/gnv4V8BeTruzp16NajSL45hz71JanFx2RpXCKI2vEddZuva1comd1VOtWiqjOg9KEfTewcT4MNWJtzFqi5yYLjCWrUV1gv5yRMksDEdCLyqSrRlZrOEG4fJEjVKoWAfe7p9BduzFnH2b0WyN6uIU++d+hNWslcwtzpJ7++9bioc/e1svH+1vW74GRLWEhfgeJvN1VG6QQq3Rsjn53p8jmj3gYqPRBFysdz+7utMkc2epTr7bPPDVz2m+ETCyUGBucVmsJgglb0zkmi0TouUjkaCojkzGu/GUhRtIRD2H7ZVQCMqBQdWMnFW/7+NR3ZkQhF2HGZrLka1FE21+IJnpuB9v10MY5dllddAm5xbK1LbfFynbboJOcdTcMrhH/g3u4V+9ZtsPtn8cZcWxZ17H3/3wNdvPjSZb9fjmi8P88b++g/b4xupp/8vnDvGl//oWZ+fL3NF3a6R9am4O/vAP/3DV3x/5yEda//7EJz7BU089ter7Rx99lEcfffTiG453sWv6p4R79mLJKH2M6gLlrjuYzNc53JsCv0Zs9FmEPIgQAtWUkN7dEacrYaMMq/liVlilcXa5NeiPmu+emytiFCrc2a9o+CEWktTUq3j7H8Hf8QDe+eeRuQGcnoMEO3ZHDXb9MvbsG4Rdhwi7DqHiywIpMcug7oeAwCqOEqKQVgxMZ00qtnTaN1ZsUIrQbkc5irB9dX2pv6SUjUDUc2DYKGESXjj9HzaiSE6jSG70HfqMGm3uOEZpFJkbACSh0x4NIAFr7h3M8gzSTiDjnetGNIzyNGb2PDK1DXv+fdyO/dHgP/TATkBQwxBlWu5A6KNMm3hYIe3VWUw9SB9Es+jVRXZVXsFQiWavrWaEsZ5HNApgmAR99+Dt/SxGeQZpxkjZgrgfEBv8Afvc0whhgp1iJvVJVsrGGNLHCOqEHfsxS5NI08EsjtOXHyKX/gixgWMop41AJZCAIxu4RoJGeiexyhz5uo9VrTJr19nnFqOIg1K8PVnkYL5Gz95DGO1xumk6JEiEDLEWji9HFw2LrlQcPwix/Cod9fO4yV1g9KBMG3vqlVakBBU5KjK9i9CMk10QxNvKWIXj9Llvku89REelSDpeQ932bwj9kK6kHaX3+grZvg+jPInq2B+1ggCs3PmWmEzk8Ecs3XKhESPRyGDl30G19aPiXUyq7SSMOnEZtBTzKg2fWFDBqM5h1LMEvXdx1tuGW5znAfVeFAltRmKDUNIw2kmEPs74i/g7Hogig83oUnSsKydUVVPK30KZMYzQjaLPyT6MRgFRW6QURD3Dws4DPNRh4MbjDGdqGAKEW8YwFzFKU+BXId4U1FESZEjdl1QCm6LcQX/Swpk4SsOXxJpOTCgMypUKRs1fJcwhUzsiKf56jlLXPcycOUpXTDTbW0TXysqeRSZ7kak+zmRDesIEuxO9xOfn6faLmEGNUCoWS3V2xbtwJn7K4fhOrO69KMMjV3HJUedgfxdB/wORo2/ayHj3cuTbMPmFO7aDV21F/UFB4EZNqedP4Tcdw6DpABtEAirbtu8k3flYyxmeLjbosAJSAG4FYeRwpo5S6vw4ezpjfC42jbE4gZH4ZLOPn0SZMYLUDmSzb9uk6iPI1PGVgRc27VmRGp4SDTqskKRT5khfiaB5sxkCPrMDZgtV+nsVRmUWozTJwHSG3u5uemSJhtNDm2PhDL5APrUT3BIp08dcansRetH9F+uMouypna1YseMXaZ97F7Orm1K1xll3N3cvGRU0uDMYIBWMRVkDm6AjaJpbA69K/MS310jIXlWEiMRCmgOMDysdCZv/41fu4BN7uzZdLh23+O+/e792zjQfGlKzr5FszIFfI+zYB0BvOkG/U+euHW04ltGaDW6zQkyDqG8V0Df/EqqWxSqOYk+/BsIk1/kxRtseYK7YnLGWIaFShKHktbMjnJhuSqxbCQy3hB1UscIG3r7P44z8KEohExZhejciqGJlz0cDqdIUopZhNFuj4UukkyZs24mMdWIVxjDquVYEQaZ3EXYdjiIPGyiaKcPCjfVgFkdbg7UlJosuY4m7UcLALE9GvcwMu5UGBuBLhQyCqG9QLUPe3EallEM6bQgF3q5PUW5IXpo2ms6YjJoAB/XmbP6KAfUqw5pRoEAynq8RG/gu1tw7rRl2w6vQwbK6mtHIIdwSVbOT2fZ7cYJlSXRlJwmFgzJjKLsNozSOcEuR5H5QZzxbQ1ayxAf/mcS7/x/Jk/+N9phJ3DIBibJSxP0CRmmC/cXXVknO9yYgpSpYi2cI+u5BduxHxdI4fgkUUdq9YWGELqYQ9JlFekQRKRyECuhvj9OxfR8qDKiazT5TShKLJwil5OR0jnI2avtgLp7BqMyiDLulTrjUY6swP8bwYpVUZYiPll5mW/EEKvQQQZ2as41yKxtwSVa+gRnW+MyhTvpSgvmOe5hMf5yO/EmcoEzVC2iffw2pIF/zafghRmkcpaK0S7M0gWzbCTLE3/mp1sA6SnOdiRQzFXRWBpDCxFABoeEgYx34o6/QWzzZUvUUXhmkT5/IY3ftBcNCxjqiZbd9DN+KohHW/PGW8zCdK/NuIbl8HuRSKwtj+X4KGlEaporkCZXp4B3+FVRqe/OeybeUJ+3Mcdobk3SnbIxahpnpUaYLDYQKMYI6zsRPkLEOjMoMQrEczZMBoAitJLZfot+fJOFladt1B6k99xJsuxs3DFkMEuwyctgzb7bSUqP1PcK2nahEF46XpZzcg2gUmqmIUeqk8CvYC8dxZl5nMl9ndm4W2bYbo+8ubEOAgHzNY7pQx8wPYlRmUG6JskjxnrsLgUI2lSet2bcRfhXhlTHcQrPfV/T9s+cWYOhHrTYEscHvYc+9gxImGboYT98HgBtEkTIhoOKGvHJ2nGDuBMeG5xnJVhnMVJgt1pvPaRGjNo+oLtA+9SJxd4GpKlTqdYxaBmUl8Ps/SfX093huPEQ1nf4djSFCr06+7lF1Q8L03qiFQnkGL5Cks+/jZ0cYtQ/zYq6n1XdOSkV5YZCuWBS9U3YKZSeihusyxMgNsiP3OlUvwN/7GeK1WQzp4SCjtgOAPfc2QU8kDCXqOXLzE5QbHqKRp6d0ilhQxsqdJx5W6K+caP1WGbUFYrVJxuczqxqAr4d20DS3BM7UK8TPPrW5pu9VoPbAf8C9/Teu6T5uJMOLVYYXqzy4f3PnbInelMPR4SzHp4sXX1ijucmxS5M4QQVpxjEqc6hYJ2/nE5wdm2C+7FL1glZTYK9Ri3o8NVN6pFfDqi8QdBwg6LsXDJP2uI00jCiVJawTk1GfpUylwR3BWbrjiunpcSZGTmMuno7SAgFn8J8RXhVRzxJu/ziybSfCr1FWCeTEa9gzr2Pmh9k980OE9KN+wdUFrMUzeLs/jUx0tfpryXgXrdqr2XcwymtTO4X0acyeIlN2EYVR3hxbmbIjsCoTyNADGWJlz5FwM+zsWJbuXii7VGp1zNIEYuRlfCtN0epF2UlkagdCSeTsO+zK/pSw8zAELkHnIZRhIUJ3bW+0JkqFmMVRzNxZjOZ5NpYacCuFMmy2mRUO9DRrwoSBctqoO130qBx9ccnD+9MQBlh+maQsEHYcQJk2YEaS+YGHMh0Gsg3U/PHWwFQZJrPlBvm6B34N6VXxsQBBZ2WomT4VsTttkrQMjEa+2QvLQ7btZLrn09hBGRHUEY08hl9DCJhQfRhOikRpgNDpoF6cR8mQ2/fvJZbupuIGjGar3N8fY2c6hlspYFdmsIrjhB37UIneKPLjpBHVOYzyDCKoE2vrZrrjATynm87Ekvy9gWiUmJqd4vXw9qhp+JIDHtTBrfLThSQD8yVihSFiftTU2LfaaPiKgdGx1sA3CCVGbZGKD7OyK6prrGeJDfwT6s3/Qnkhqt/JV13OH/8pVuYUBiFWWCcIQ0zLxJIe9txbDGUiB8X0CshY5JQa1Tm6/HkOMAUywHCLiKDOkeyz7I+teMc0J0XiqsFOtYAz/gL+jvsJU/2YucGoCXUsmjg0SxPY08cw84NR4+3Ow8QG/3nFc6Aw5o/TCEKM2iLSb5Cr+pjFMYrZWYJKBscrEFoJaD6fMt2P1ewHFm0iBBlSKBVIlIaxhEKogLHJcXKDx3DGX6LSex87nTqfbM9TO/xry9FMokbNidN/g5kdQGXOozCpH/l1ZHo32Imo4bkK8aVislBjdKFAJb4DVMDtTo5t6RiBEW9OIClkqp+w+wjlwiLB7En6828Aqin739acECo273M7akugJFIq3p8uUXH6IkfFa4q/1DIgfXxh0zb3GihJw4uugZKKmGVgSo/F8TOkjYCEbfLzH9nOXf3RdRWNAiKIIlJ+cZb0wtuUKpVWQ3mkjz3xMvh1eusjOJNHo213HaTLqNJjeZhCYC2ejPr5Tb3Oy0OLNJxubCeGWRyjd+GVaF9eGc9rcL6ciiJfSkHQiCbATBPsBNWdP0O2/aMkbBNz8QyWX0IoxaJrMpsvceLcWbxdDxE/83cgfWSqj5iXo1DIIkZfwmrvx+84hLvv5zA797Ctf9/yvWDGGMxU8UIIO/azGdpB09wSOOMvXHHvkK2SfOv/aRU5f9j405+McHR488ajFzKWq/HtNyaukUUazfWjYqRYoJNG/4OoRDdh+y7uNKfo72pjseoTMw3OzZfxlMHhvXsxYwnsmdexgzK7O2LcbwxEzZyXBgUTr3Bw8SWGOh7CLWYIp9+hK8xiE1JQcWZrJr292+mVi4Txbqywjh1WkApkojeaLS6OYs+/g1kYYWChwkT3z4D0WZgdZbrYwFAhRmUWszxB2HmQkZEBqrUaS7UXzsTLmJmT0eSVFcMoDOOMvbDquE3pU/Mkbr1MKX2EYlMARCoFKsSuLRCGIcIt4gz/gE+lM+xsX3bQBNDw/SjtUSk+Mv13mCISrzBKE8RP/w1Vq4dqvB/hVzELI9ijz0ViKa1B2traXqswAkphGYLd7TaVaolGufn7pCTFYoG3xhZ4a6I5eDcsVKydrtoYZS9gjh7kwA8JR19GIQiUSWzgnzAaOaSdQjntUb8xpXASbci2/uVJPmHSHrNJxy2s3ABm2MDHBMNmlH7emYoc4FzN4wcnpqj5ASiFWRhjeHqeSr3BvoXn2bP4E2Jn/56gnKFg9eCHkvsLP4bKPKZXIkjvRjUKWItnqIQ2ojyLn+xDKkW57kVCBksm1RcjZ0AIlNNGbOxZzMIoVu48Mrkd23a4szOkmDrIoH2Ee7YZOG6WYNtHiXl5pHAiNUClQEmU044b3xbdEyJA1bIkvRwF3yJc0eh8Z0c0+EeISMm4NEuqNBilzTbvgCopimG0TqHmknd2Rg2IDREpHGbP0LP4FkZhGPw6jTBk1E2Rr8tIZEEpRHWBxpnvc7KcJqyXkc3eY5nO+/B2/cxyhozpIBpFsmGCaq2KpwzGiz4nFhqEHfsIuj+C2v7R5n0CImxEqbsqmoyI6rCiqJkyHTyvwcBcCRV6JGqR4+aHkvt2d7Kv9Db9+bco9z1E2LYDwy1gFidavf+gGUVXkrGy4D11J0VSSOFw2DtHl6hC6BLPneW9M6d45dQA77x9lGw2qj0VAoLeu5GGg/BKVPs+iRVUiJ2P+gaOzOUpD78CCGaKdTwv4K7ST+hZfAOjUeC50+MEXgOBaoq5RJMyRi3DrvoA1Xg/hpNASIkXhKj5k4Rdt0VpwkqhYu2tSRzLNHhgTwc9E/+CnTmFWDgZpTUHdeyF4ySqU1QTUdpeKCWNIGQoU2FgocJ9tx9k2ycfI7RTZCouL71+jNPD0WRHeWGcyZlJslWXuhdw/55O7tnZjgwkE5kcC+ePsejHEF4V04kx1/MpAOZzRea8BHU/pBHIqMbUdFDN34RUY564AXu293L33Z8gNvMa9vQxUtnjfDp4halsBeGWMLwSoRLMl91okiQ/hHASxG0TK3ceo9moenvMQ0pJsd7sd9goIKpzWLkBhJIs+gnOd/8cfjmDyA0RH/oB6tz3OFHuYKk8WSGokcBpLGzc27GJdtA0H36Uwhl/EW/f56/L7oRXIT7w9HXZ1/XkvYk8p+fKPHbfrkta71c/uoN3JotMFeoXX1ijuYmxpUtSNUhMvAgywJ4/TtpboN2GB/emsUyDyaKPZ7eTLRaopA4Q1AsYMiBX9XAreYzKLPb826BCCtY23jE/Tv3Ud5Hzp7DdLLHaNCXXY6YUMjA1h5/azeBCmUy+iEBRd3qRoY+VPYNM78R0i7zR9ggLYju3dyms8gSzmQWq+Xn8cHkGWpkxqq6PUxzCrVWWa7pCLxpAhh4EDd4fncFr37/quAWSDivACuucGZ+lP/d66zvPShP0PxAN5swY0unAGPoXhjNlCBqYuUFy5QqeiFFuBLhunY6OXtoas830RUHYeQgpTAIzQcbq541SN9nMDNGopmmnXKfJremg4p3UpcWp+RrDqU+w2BAo08HMD+LNnSUfOC2p/aBRjiIjQuCLGPH6PEPzBWrVEnLHx4nF4pHTIAOs7GlQfjTolx5WfhDfbURpa8Kg5AvydQ+BINh2N36ij+3uGGVS+LlxpvKRwEGbY9GfjuHWqxDWCXpuZ6gaozTyJnEvS2DGUYlu/NIMYxPRRFZSljGNKLXUrs3Slkhilid54c23qXgBs+YOFssNTs2WyVR9Uo6JY0VNd83SZOTYhj6iqWBozb8Hps2cF2d6dhq7NkOQm8CbP4s1+VNEUCfXfgf9+TfJn/4xA5MziLGXsWbewKss8mDtZbYV3mfe3sNY/xepVUskilE6bXf5NN7saboyb4CSmPlhhAowpBeJj8S7wTBJ77yD/u07WvdTaDgoM87QXIlQhiQr43jJPurbH0C27aRaqyHNBK6KoqgIQabsMluIJinczBAnZ8o4Ez9huiIZzLkE2+5qHu/7yJN/R+3MM2TDBK7RhjvyCuX50SiKmTuHGH81uodUGKXwNRUrW+qQrYxag4QJh3oTCCCZilIpz85VOFVKMF3yiLuLbDv7bazCMKIyH6Ue222tjQSBz1yxivTqHKi8Q184T6IxS2n/ryC7DkTy9kGd28MhdtbOsSP3Jm0Lb0Q1cEJg1BYw/Ci12C8vRhMvSIxqhmMjGQarUZ81qcDovY3elEN38TSilqHaeSdlXyBUSNULkVIi504ggjolN6TdnaMhLSBkeC7P+ZFhrMwJZHonoZQY5SmUMPCDkLFcladPzBLmRmDxPIOFKCJVrrs0nB5G5DbeMh4AYbBY9cjWPEIlCZXinYFRSmefY2g+R7bi8/+z955Bsmbnfd/vvPntHCbPzWn37i42gBe7AgmAgEyJpEiTlESZkmnackkllcolmbblKle5ylU06S9yyVZwFUv6YtAmaYoCA8AgBhBpsQB2sfHmMHfu5JnO4c3hnOMPvYRMEQIpggJN6P6+TU13vz09Vd39nOcfcqtOgbvwryVHuDrFMATTKGZ/knDjeM4szXHIGSWK0O6QRlPMwy9ysPUWt04CjP7b+IYiKxVhVrIbmhzMc2ZJybMbDWalyd1BxCfml/mpmzHxwTvEwYw7coOJ9BBek5OTA6RdZWsuOJglSA2mzlk//iQH04Ri48+8q1zQpHFIZNRxyhBrdBfVOI0qSpJCLqTtuiQ+vkMazRjFOSdlhdiocDa9SV5kbPVn/Nyr9xiMRpRSEx/f+ZqfN48HtMd886NK4ms/upAVfQPILn7PIib3myzN8Z9++iE//C2nqLn/btlCLd/mO55Y5peu/4dZ5P2Ybx4slVHVIdLyMed7aLvCZ6wPcPMk5s7RFHn3V1GmS1kWGPtfoDq+ycnOHTK7ST3cYhwmlJ3L3POeIzy8jZnPaJsJl/TeV4apSFSZpQqvUmOTEwb3Poc6eI3m/DYpDraMsYaLeGZRJJTNc6g0IglGSKU52HqHcnKIKDMEiy/t6IX0b3Zwi3v6LKlZ+4qPQ9tVMAywXJSGZriDGj741wNcmbA6fo1ZYTKoXeU9Xg/7XR+aWQScW2mTjXao3fq/cfY+TZkGvDNxmCYS99FvYQ1uYIdHaK0pleZ49x5HYgWvcwqRzcmcNgfDCZX4iHq8x+2HD4lnA2JvBSwX8buD2VfxxxWb70c2zmC0g0FEjQAAIABJREFUztK+/AEuZLdouVCsXcOIejiOxdrsDcp4xN44YVh6gGK5YlATGZ2it0jpR6F6N6mZBdhVtFNHV1YRqkSUIcnxbZy9T+OXU7RpI5tnOWq/yHQyQg4f4By8TCV8RIoHpv37YvbHUUp9fAN353dwH3ycpgvu5nMgBHYRILI5M+mTv+vbKawKrmWhLB/z4FWiNMWMeqzXbXSe0ZncpKOndII7gKZqG9Q9G7RENs+SnfkwQmWg5ULiKlOKwRZe5xSD5rN4+RR/codJfw+dBhiTh4sv9LpElgW/cafPYSQWg9HuK/QLn8SosaTHnJ++yjSKKQ7exrNM7DMv0TNWiTtP41kGQmZI0+NQrJG7y1jHryHygNn1j7P15m8xSwuElnSC+5jhEWEUMYtTAqrkkwO0lghV4skAQ2Y45fxdCV1JKCpoVdCMdzDSIYbKMbIp7cNPs3r4W2jDWYREGBYKg0vTl3FHN4lHu4BCaIlIxguZKb9bU1Agoj7W6M4ile/ddaQZ/q4XK6Q4uYUsC+7ZTzIxFxUHbmuVsHIKy/UpTZ+o/RTSaSJUuaiFeHeLZ47ucjyNeHR4jBkdMxYNIqOKylO2tq5zb3cfEfUx/TYdT1C1JL2VD2FUlzkz+DS1+ABztouIB4STE9TJO7SibQrhILIp60ttnPoyQpcUZo0HxRIHsxRLZYx2b3CGY4IL3480fSq2ST3e517epWye40a+Thn08IopQiueWHKQ/hLK65BNDtnvDdFuk2Cwy2cfDNgZJViGgVp+mtKuYRURcTTn0dzg3gxWymOuzf8VpkxYViNaDlxaqvLMegPPsYnikOfWqzx/qsH3nMq51skQeUCNlHUno+1bJNplZxIT5ZK1msN6zWajZrFZHDCNMxqm5Gp+Hd/UNGd3qaVHVBwTw4BqdoyvIoSANw9mFHaDWq3B5fHvcC36LG6ww/zhF/GiQ+aFwEtP0IDKE8w8QCqB6VSx1p+nuPx9lEpjzHYw80UwiDPfphLtg9YUK89jzPc4HA65cTynlAUUCb1H15FaLLa7WUiqbbzVq4vh/vhLVD2P1XYL4bUIza/dE/t4QHvMfwAo0mf+s3dPyP79U66+gDYd7ONXvyHX+0bxd779Av/JC187dejfxt96/1n+yvN/tPs+5jH/f2FoLjNPS5TpUay/iKqscG2zyoWWgS4SfKPg3OQVKsPrGEgECqcMqCbHKOFwbv5lvOsfRex+jkcBqGjAU06Pw86imzEVVfr2aUSR4k7u4cVHnG+7tO2CYnZCP/dRwiRpP412Gws54HyfzdHL2MWM3VECAuLu00TuKi4ZL+q3AI22fKzlS2zSoxA2mB5vHkwZRBlaWKjKKgCV7JjK3f8H++DzJMGUj73yDmU6Z+CdozBsep0XFy+GLCikJnz4BbpqiB0dYoQ9+rFGoJiFwWKokhmpVKjaOkP3LLfyddThl6mNb2AkQ2a9R8wnA6rxLlaZ4udDnt77KLXkCFD/Oi1OfxWJ49GXMafbOPMtDh+8zmzcx0Ti3/goRjqh4xk0Lcm6sZAbhtJiOjohLyVzXaUj+wRpycEkol/WGMYaY7bYsmixCJIQssRP+mzqHkXrMsgCu/cm5/URnudj+3VEOsPWGSVgpiOOnHN8x9b/jDHdYW+SYIWHWMV8EUCQjIjzEhHs0wi3sWW0KBJvdAjcFUCwnO0RJRF5NMXIJwsVIILu8Ev0S59ImTTTfZrhFlI4nEQlhVwMHCIPsGa7aLcFZQayRNk13oiWONh6G2dyl/evaHwVEDtdivYV8vppSsPBUAWrdY9Ou83Dle9ENk5RSIkqUmrtVYwyojl5C1dnlMKg5lm86nwbpVIsuxLLNBHBIaQzPBWjKl3s49fRlk+j4tFhzsE0pSwVo9oTqNoa51oOFa/CXtmkOruP138La/KAUw2bib1ChosRHWOdvIXpd4j8TVKriS0TbFOgTZfD7rfCeAtr55MgCygziiLjdfE0hswoLR8w8LLhYhO69l7EydtQpljjBws/pioX6YuqoFh9gWLleWT74uIQRJZMDu+zMr+JDk7YHH2eXu7zVC2BPEQDaeMcurKEkfQxx/cXHlXDRHtttNbU0mPWzYDS6xJQQ5s2m9lDmp4NTp24epakkJTRlLWTT1H279Kd36KS9ck33odqnGKuPEq1SFPU8Qhzvg9FzFJ0F9TiwORKcY+qbVLJeuTRBHf/c2xs/9xi2DWgm+0hDZfp4T029TGqugJug+XZO1TmW+R5jnabKCWxZAwyJ/JP0Z+n7E8TztbAyGYU2mCaFAzGY55bFvjTLcZxwavFRR6Mcop5D9/z0ZaPVJqLmxs8/aEfYqXdwbEM7t6/Te9kccil6huLQyKgZgsuLVU51fRpeAbW+B4WOWV1lVPqiIopqWw8w0bDwVUJI1UlLxWhs0Kj2WGp6lD3LBqOZr04YNPNuGY84NlTTWzTws9HGI8+xWbdJsJjs+nROzlgkGhuncy5vbPP8OFrjIaH3Hm0y9H+FseRYhim2GVMZjV4EFjc295iNxRM45QwLbmxc0QWDAgvfh+NisulpSprDY9O2WdrXCCAszWJ21gjq6zSirbYsL567+Tv8nhAe8w3Pa2P/zWcnU9+4y4oBNMf+BcU6y/+ke5uju5gHb0GgNV/B2P+J+/funUS8MLp1r/z9ux32Wh6uJbB4eyxzPExf3rZnL5OzTGwwkPM0V2008AIT6iNrvPcRgUxP+DhOObeRBMaTbJ84WdZH30eW0WkyqA4fJPV4nBhFl/682T9LS4dfwIAx/NozW5zfxCT4CKSIfNM8rrxHKF26GR7xO4q85X3QZGgnQYYJvvdD5HXz3B1vY6VjNCzA2rxPnU9ZzYdoipLlN2nSJKYspQQDxkOe8xHPSLRRLYuLbxWAsbmMvfUaayTNyh3X2Z3MMUc38MO96B3g8PjA2CRRqaaZxg1rpI1LmLN9zjKXSalQ6sYEqQFUV5iTbcxhEDPDjnKHJTWHFlnGAQ5sn2Jk8LnHedbkKaPod+NEdRqIYE6/eGF74uF1806fh1jtvOVbjhrdAeRh2S5Ip2doNIp+dE7GOExZDOSaMZENEnxcG2DQkqKomCWCzxyzrohliFQwiJoP7P4Qu120Ja3KJXWkLptckyGdNCTh4vut2TC8f0vseQbFP4qsnmOLecpbJmQxCHvS79AtRhizrbxpvd40jjAVsm7G64L2LaLO7qNUpJR9Qky4WEF+7SzI+zZQ+pqTp6XlIaLIUwqjk2iDHZil/nq+xG1FeaZYj3foVKMUEoxCDN6swir9w4iWSQPytZFVHUFWVvHtU0SdxkVjTi+8zJ1I8fVGdb4Dsn+24hoiFPO2ev1kMc3uNT/DUZ7t4kLxaYb42ZjhnRIDZ/VdJdY1JgGAdfu/wMaB59C7bzCdD5lO28TSgONwB7dXmyphInleHQb1XfTPRUboy+gZcnuJCROY4p4RmR3KGqnUKbLce6zlB+S4C5kppaL51hUN5/hfE2BzAnNNlgeT3kjUm2TmvVFuXgeUEhNrRhR2B1Mv4OhciJl86VkAzlbqDmEKhDZjPSJHwSlkI0zaL/NyF5nQg3tNCg7l6g1upzzYsKsRCVj+q3nqSf7PHrnU5i7L1NP9lm99zNYg5to00NVVhblz5b3blm4JrUaFFLRDe7QzQ8wshnb/jOEldMo22OcLeowlqoWDTMFIQj8UyjTxtn7LOZ0G0NLqskRbjmj9LoY8z26zKg7BkKVzGsXiCqbNHwLQ+UILRnba0xyk05wD3Hjp8m0RT05IMJnLl3mukquoGee4l7kEk0HWMObpEVJLiXF4AGmzulHGQbQn4wYHW9zY+eYXpCShlPu7ewwcTc4ME7Tt9Z4sfgShlj0I1Z3fpOsVNx9+IDtl3+am7vHHM8zOhUb29AgDIyoh9AK2bpEYviczDNuTwUHqYusn+am+15SZSA1pKM9xPAeLz/oI50mjldFao1XznlwcIxKRrg65VK5kKrO0pIHaY1Xt47ZnUtip8vQv0iMz/ryKlEuMRqb+K7NmaZPo14lsbvYB69wpbyPdfE/olqpUXcEhmVhV9usuCWnxZBGc4m2rWj4NhfFEdXBW9jv/F/cn0jSoqC06wyiklP5A5LsXSWAMGjE+yjD+Srl4r+XxwPaY76pEekEq/fWIpnqG4hqnFlEaf8BMkfxbqeG1X+H5i//0MJsu/8K/q2fpvL6P6X6yo9T/9Tfp/7J/5rWz/8Fap/5H/Df+D9wHv4a5mTrq/sy/pgZhhl/+1+8Qy/I/uAbfw0+9s4xP/n5nT+eJ/WYx/wJkDkdYm+NePkF0lPfjmyeYXtvh/3M4/XjgmzW44wd4JVzKv03CNMcgaKSj1nNdxmkBkGccmydpigLlidvsin6VB0TyxT4+QjP0mhdUK23sQ3B9jDiwvgzLMXb5Fi0oi0693+WQoNWBdqu0YwfUQ0eslV7H3Z4AHlIJd6nqmPq5sKrYo7vUSsmTFtPMaJNeufXef/s4winQjY/WQSOmA4XxQFLZkSSl8S9LTwyKraJrTLiyhneVxsTFiWPjntw/DYyS3HHdyidBipPKDBx/Cqdhx/jra3FCb8oInQWsCz7rIoxTjFlkAlEEVGRc66NfundOgJN7K7SL3xCo4Y530VMttEqx9r9HAzvYffeht2X2RmFX9mquaam64lFL9nyZcrOE9gnb1FGU9JcMrNXMA2BYdiM61dxdEatHJIJn/UKWGWKs/c72OkYyghtuuypLlJrDqYZ+uQd2skOjowRukQ7NSbUmB3foxxuofOQSnrMvnWOil9hbtQJq+fAcOjs/iorwY3F1sNtop0qB3e+wPEsZZTbtI8/y/TwJrMoIxUu25HLgXmGmqPxPZ+yLJgnGYH2adSqrAfvwGQHJ+7RPP8iaE0qPFSRoYXBuLB4vThLJhen/r2TA3Q4xOjfpOZapFmGXakTeZvUdIiVjknzgkp8wHH7Jez1Z3laPMLLhxiqQEmJDnpMogQjGdEKHrChj/BkhBQWk/oVwvPfjRKCxv2fx89GuDpjaG0uvDuGydHBFuHeW5xsvcH84CZCKxrxDs7eZ7CjY6JcMUwUzaKHUorScNHxmFo5JiigqJ1aDO3TA4zeTYo8wUbSDu5gju6yNnuTjl0gK6tgWAiVU3pdGnLIsj7GSoYElbOsj79EZXSTIo/RtXXuzuB244MIy2WSFKR5hmxdoP/qzxHf+DhW7y2+OG3xIKkT5ZJBmBOkOabKuRC/w9nkFo4lKKwaub+KtvzF9snvLKoaopNFF52W5HaL0vTInBYj9xTKrrLWexln8DY6DZn6ZwFNaTeICkFqtReeQlVi5Iukzw2/wDYEm9kDyjymV9ZZTh4yTxb1AZlZo194HM0zhNZkdpOqmlEaNmcGv40zuE41OWLmrPHWzOdENWjGj0jnfcZhgIPinD0CLRmXPkmu2E9s8uEjHDTtikPLMZCtC/hLZznHCavmnKX8kGlactk44nvlp6mZmkY+opr1QJdUXZOVpSWS6ianO1XW6i5rDZe4UBzsvZt2KTOGucleKAjzkrqRs2zMcQ5e4T3JqzSyIyKjxr6xQaEUpkzJ0pBGMSCsX6RpKzzHgSLF6N9mdxyiWSRIemXAElN8UqrpCV4+wjdydDRglAnKZEbNkNQ8g1lhExaa0qrjVxusBtepeA6W32JcejSmN1kyYyrnXmL55FNsHv0aHTPh6oWLoEs2yx3Mladw+29zdPeL9HWL28YVdoYTjMkWtWQf34buxsXf1yn5b/J4QHvMNzXO3mcpV577PeWt3xgE9U/9fezj137/r7ReGPJlQednPoRz7xdx7/0iIjph6Z9dofLWT2JEPYxgn3L1BYpTH6Bcenrx4S4szNEdqq/9Q1q/8P0s/bMrND/+V/Hf/ueLge2rlLl+vfzLt4/40MUumy3/D77x1+C7nlzhs1ujRerYYx7zp5A4l+xlVU4yhzuDBCOb8eT5cywtrdOpWIjuJVbj+6z5imOxzKCsUWJg6IK52cXLhjgGdNJtHJVgRANqcsY0zsnLRYqaUnCuInGDXfJCUnaeoK4CZqWFrVKUYZPbbQZihd7BQ4rxDpZMOJYt7o41hhCMKxeYSJd+7lCtd9h/9WNoWZBYTVbnt1iz5lzs+nT0nPr0FvOTLQDE8C6JdmikhySTY9q2pClikjikbkkslfKQTYqiILHbHJU12pM3qRkZZniMFx2RC5/UXeap8Is0+1+iVNBJHmFaBp38CN8WtIwMV6WIZEQ9O8FSGVHlFAfdDxK7q9SNlHa6jzm8Tf9kl72szu5cst0bI5Ih4+Mt7p/MFhJKw6RIQ+xgj2OxihkeIuMJR/MUU2f4tqBeDKlYgi5jWtFDMCz6YplhYeGMb9MIHwACJTOKeR9RJjTMAhCUVhVDprStHKGyxXtzPKCS9SmwmaWSMJyzUh7T0ItkwUfmRWrRDpQpD8UZEmkQSotSSrTXpiLnZFKxYYdMrCWmskZuVJiZbXKrykXjCK+YUU72MYTGs00MmdCZ3UEkE0bmCjXXZHS0RWy1iMwmu41rCK0wypSV2dvkVoNq8AhblBz1TrDSEfbwBhVSNryCE1WnbhTY0SG99jUyHDrhPTbECHSJEhamWshYY7xFYbjbRBs2qTJx/DrNYgBasWbFLM1vcnS0i1PO0UpRTQ+QeYosM6zWKayly9TrTXydEmc5pi4wgwOuqG1atiS2OsRGg1mccFA0COxlKmpOVU7Z277FLIpYLg6pygl7ZZtECpZnNyi7T7EbO5w034usrlJ2n0RNHjHt79Au+tTDbaI44NzRJ1DCoB0+IGucB7sC0RjVu4nZv45K56SPvoga3AcBob+JbF1gZfoWh9Zp7s0E63pAw1asjb/MVHkM3dPE2sEtZhS2j5A59vFrWKO7aMPBfPv/ZJc1UApLpXSKPk3XYG4vESubJ/RD1totTF3gTx4wljUG0ymd4C7No89QT/awiznphe9BuS0GuYsIDpnYG7iiRMuMrZMx06TACI/oDl/lSnqdlruQ5waVszysvMBSto+hSmTtFIbKiY0GZ7L7LJXHqOoaZf00L1i7PMUjdJGiTZd1X9L0bU63a6ilp6i4JhcGv8UH9Ov4KqaSjxD1NWJvjU7VZT25T5CXPHKucNx5icRdYlK9wCxVhINdNvqf4+oLH6biV5DxlBuHAfd6EUeqi2yeQxQx+cHbnDKn1Kt1up7AC/YRZUqJzWj1g9SKMc1iSFk7zdr0DebhnBPVop+aTN11uu0OllDklRUydxnHMlBaU+QpSfUM7apPaVVYju5hAAP/IiAwswm5MHEf/jrp5BB357dpTq6zNZU8SqukrScxZUolHxD7pxiaK1jj+xSN8/h+g1NVwaNRgu9VyJae5UK5hWcZgKCVHS5CZCoWSQEj9yznWjaMHyw8nl+DP5pe6TGP+VOCOd8nO/+d3/gLC0F26Xtx7/8yxeb7f8+vjE//GLXZaOGJkznV1/8xxekPEn/r/0ix/r5/6zCZPP+3ABYR/g9+ifCDP7FIhDt4GXf3U1S+/L8jG2dJ3/PXSa98P1hf30AFkBaSX3jnmH/8l575uh/rdNvn0nKVlx+O+a6rK1/34z3mMd9o3GzEZfuA1tGvY3l19PJFpoXAyqZcSW9S9u8ziTMiZ4nVbJdG3WUUa2aVC5wvb6IwcaJDStOn4i7jei3uzCrUytskVgVXTgmyGoeTjLXuZTb7P08Z3SXUHjF1znNI5HaxUVTyAQNvnSLbRxoeaWWT5043CW/Bar5LVY2Jccke/CbCXkGZHv70Hj3ZwZOSk9yDWUKZlmRGSLWUVAUoKdmXS5yTQwK1RKkElluhkx8SaJf63icpRZON7DYjZ5M+q5wpBigZEakWeecMRj5BFRlCQ1ZKBCCzhBiPWLnsLb+fK8efAJ2TOEuU2Ahd4JQRK3s/h5odEtoW/pW/iDf4R1TknH4hyJ0a5mSbzdkjJvY6R0LSsteJ5rsUSR/7TJ1gb28xtFlNptULGEXCueQWZwqHRAYkpWRuV7CKkGbRY9e6SJnFXFF7GFogK8uoSpOqnGGqAquMMcwCmUdIt7boUrMq1JIREwWFLomrp6n1H2IgGYvznCm2CYRJMx5gv9uHdeQ/ga8s1pIhvpK4ps9Ieuyby+y7G7yUf54nkutUJgKhJLF2KOwl2lrjmAZWGiLzCW5VsaQjhKFJoxlnojsMmi0ux2/jljNsGWLoEjubMGo/jzPdomFmmOqYITn1YkC0+yaXdUzqrmMVGY3yEXOjQWf4KneLiOXx6/h2QGnVEYaBsBzMIsY3TAqrTlQuth/r6oRKOKPc/gzN8CF3xEWWdYmtMwyrjlkmHO1vodeqBO4amgCRBTRdAyUcAtOhnDyiIkd08kNip8uotUm7/0VaxiEVFZFri7DwiBKftaxk3ujSibd5GPusmCGiCKmOrnOin+eZPMTd+SSxWac5uwMqJjKaKKNKN+3TtCRJ4xLLx19A2AnQRhgW2mtiJCMe5i2u5AlHM4/L9DACm1qtzrn5TXxjiFA5TmuNN/QLPLVzwNsTm9OlSUeGuNERRnoMWi9K7E0TkU6w49vQOsvG4efxsh61UrIqZ9TkhIFzlmqcUTWnVNimsFpQKDK7RZeQ7dp7yd0W1ugO5nyHXDaJ7GWE6ZGtXkMe/SxNT2IASalQGKjpPhULlLBwijlz8wLSsKlkO1iznMhdwY4P6aUWhnToMqRmOzzovMhJUNAtXsEMDinrT6AMRSXr03AdztQ9ioFkGETYzoCq0yLGxitDjuMmpXA5cc5S9u6zUfYxRIxQJYfThOaDz6PCAcef/inC1hUuc8DZro+TOYjJAHVyg7x7laPKVQazbcqyx1Hms9Lu0DRdbhhXuTb5DHNcNoodqj2Noy+TGnVWqlPqUnJu/joHhwataoylI4L5LueyLWbyNH3ZRI1PuNk6zYojGRpLlKVmveKjZ2Oi5iUq+YDLMuB68t20nA0KY0zWegLTOSS7/yuYzhrSqjDMYGccIWozDmOLqICJuUE3/Dxl5zLto1eYVz9C4HaJnRxlSVblEIs2STRH2iHHEirSx/8qvtr/L48HtMd8UxNf+7t/YtdOn/jLtH75rxB+8McwkhG1l/8n0is/gPHgt3GDY9In/jLTH/iXyHejgf+wlOvXCNevQZlQ/8x/T/Dh/5Xs6g9BmeI+/FX8Gz9F9Qs/TvLs3yB+/m+DU/0j/w1ZqfgvXzrzlULJr5e/9t5NfPsbE9bymMf8cbPjP8NENaGwKNw2F8b3SUchlko4mgHzgiXmNOKQ0ojxG08iwnssjX4byzRAaQqpuKdOUQYRT1sTkGOwBJECswwI/CucchNa0+tcd6/xkeDjlLpESg+jUqORHGCoEX3p4uSjRdy/DJAa3jmKaTpnqRohM2oYMsXOJnjawZB9HLNLTo2pVaPo91kuJI4A0xTEVOkAS2pERWWkqcnEVdzU53hK3WKsPDqO4py5x9A+S1x9hlb/bVJlIVWOdiDLEswyxjYXnUkmPuNEIpXG0jGmKDgoNM7gFjXXQCtFt+ETzGf4yQw/fISOBkyNFhmKtcEtdDpDGjarDZfiqe+mGH4ZRg/xZMhQWtjBgEY5pDCqVAefx167zMloAukcT05oqBypFIepjaRNjQH1YsipeJuT+nuo6IREJlgyRhgWaRDhW5p94yIbxiK0xKj6GEJgGAbKX0U2ThPnA5ai67iiQBchpWESU8VXKbHZoEeFdWFTYmEiqScHWO5p9gKNjUIqTViaPJ29il/OqFia0F6j554jSDI26iFPqiOKsCBKCjBMLEMwnU0xhWY0i1lWBaYuqPh1DFHHihPmZodcarTtkqcJet7HtW2MJEZ0r9EMt8mtKmGssXITr7lEJw4x5BCtLC7KbU4sYxGDb5goBHYZMGg+iTnfx4xOqJpVKoaF2/aJn/0bzA2X5dqX8aOM0vQpzQaFcClsH8oUffwmS+kOpVSM7EWPXl2noFyU0pzoLqUwuZLfIStr2DLBNCAxKtgyA7tKNDkiMAvM4y+DrYAmhgD76FXa4R4d5WL1HDQC07IY+E/jyAdMrRVasmCoqji6pG2mWIYNQG7V6GSHGFmDwqyi8oRRkNLyHaqzASQeaSGI4gyVxIROl1sPZlTrbzJOJV0jZNkIKe1V4uYF2mqKkCnK62LEA4TM8fMe2fSQLJzia4Mj7wLd7ACfnGreQ6oKhjWlq+/zBMsIyyGzWxDcpGrVsITCTo8x4jG1MqBw1liJHlDcrxPaK7SrFey5QVCa7Iwi3uOPyeeSo+YLYJi0sj6JWScXLSapwswCEnEOx1CYusTUOU4Z0Ej3Mf0O1XobVQeEjaHmqMoazuwIo1JgGYKKV2Feu0KvcpWl3i9guyauX2Wmc86rA5xsRBQ9geOCk42pyG1c5yLO6jqH1fdwauk0bv3P4Nz/JaJZyemTzzKrr2A2FetOzG6h8CsGVzuCliMYH/W5VnwCkQUMKldoZNeRSiMNC7u+jurt4jcqxHGTSZJRdlqI8RaZinBtAabBspjh1lepF4+wkkNsuU9RP0P74S+SGz55ZQ0pHKpyzqX9n0V1rrCme3y78Qpi9zUe5Aa57yKw6ebHrIkG5er7aN38OFK0WLvw7RjWs7jxEVJkhDIn0RaWmjMqHSaVp7msIpa9xaFGkWd0l1YhG3/Nz5vHA9pjvmkxh7exT94gfeZH/r1eJy0k9wcRz240OJ6nXD+cI7Wm6a3x/rWPoA7foZL3sAY3qA3vID/03zE5/b1gulAkUMRg+dR/578h/NCPY8z3af7afwEYi7jg6gqytoFsnCE/8xHKjXfDR0yP+Nm/uTDRlylYHtkTP0j2xA9i9d6i+qV/QOfWTxO/+N+SXv2rf2Ap4r+J0hrTEPzwtVN/bK/Vn3/y8ebsMX96KYVFNT7AM0weZQ1MM+B0wyacxkQFBHTYLyt80NzCUDlXVriRAAAgAElEQVTjYY/9os2mFaDtFn7SJxM2Xab0s4hbwQZ1r46ISzwDpFWnWmtxsa6JTwacDu5TWFX61hK5LHkq30daLoW3SliUTNQyjfIRlsp5O2zgVkuaXhNFyqF3hTiYcKqSUJgVisYV7DxntXeLsnkWncyQhoHUmnEKyfEDas46eT7G1jE91jgqG2hZUot2OKw9z+nkHSZliUgOaJa3kUqxbFoI00PJDGRBEs5wqi52GVAIn0kKda1oqjED2aAS7bOu79Jkgtp8GmOwRcYSZmUNkS8i500hOJPeg+kjZJEzrZ7mnCFheBNrdJdYwqo8oTXcQSZTMrtBXkjM2Ql+pYqvM1TSoy6mTJrnIJtyFJSslilCS9azLao6xDItTuUn9LMJVFew5ISikEyChPV1ELJJZDTwjZzSqCCdJjIZYMZD1vKSmV1HaYmVBmDYeDKhFh8iymW6ZY+9Xp9B7rBmwFw0OF/12C1c1pKbeMqhZsxQusRRCWVpkcoMkz3+bPQrXPe/FeJDwrxCt+owkT4qUyTKxBXlos/KdFEYzKc9JtUVavYSuiwxdYkyXVb1gLHpkjtt8vkJc3UIRYoopmgNY11nPerhZiHKbeEKjYnERmLLmMKw0WaTwF7mqeUWD/OErJiTa5u6mZEWJtadj2E5VbLJISsywqi0SIwqdh6Siy41FZAuvw9jPMFDo2JJfnQdhYWTHOE56zSUQSHHzLRPJTqhV/o4q6cxw7uApqGmWHIMwsQ1FnH59WJIKlwmGQT+WcbZKqUCITOsuE9X3KKQBRUxxyoC6mpOKTp0zZS48STN6DqV9ARfDUE/Qep0cDhgHqdML75IWBxxUqYcDkZ09BSpSlbNEC/8NNs8T1930Y6Bk1zHzw2UOrt4k0hn2MEhxfJ7iKXFTesp3M6LdB/8K+ZmgzyNKfKUkhzHdplVNjmMCo5Vm4G9yrouuBLdpChDlO7T1QEsrVIuPYXs71IRObnlYwSHWMrHCQ8JlUWQBnTlTap+i3UzpTnf4sb5v0OcR3h5wm7jGs34IV0jIHSXeHL0ORQmurrCcecF2sF9Ut1lu2xj2m18FiXoeZYStZ9CGyaGENRNSSvv4fh1HtSf55QxZt3SVOWUw6JNIE4jKpdp5rdRhoVjGpgqZZ7kbFy9QjDpYd385xwFOVs8Bc2XOCt6mOEJ03HMWStn2HqapnUI8yOWzYAg8zipPcuTo8/SF1CuPk995z7zNCNQTcZBhGNJzpfbmOIqShZc0LvEokKpBJHZYmys0TVCMquGXQ4pZc5g7f2LJMlhH99aohRDusUJ9nRGWBrcOp7TLmqETh1HpnRFwI7/HNP6M1i9N9lvvAedTFnKj3j9aMRmxcFbfg6/DPCPbxDZaywnB+RE4C2Rlwm5Cllv2IxmmlX9te0ejwe0x3zT4m79KkYy/MrPWmt2Jwl3eyGjKGccF8zTAtcyqDomNddiveFxuu1zuuVTcX7vpqdUmnv9kJtHc+4PQh4MIv6X77mKbQr+t08/5KM//AJ7k4RfuXVCTYcc5z7hTHLt0d9DGwW3nv67XP7Qj1Cxc7zrH8N98Ans49cI/uw/JHviL1GsPg+AbJ5n9hc+ikCBLDDiPmZwiDl7hD24TrnxItUv/ATZ+e+iOPsRAJq/+p8Tf8vfozj9gcVzXX2B2ff9LPb+Z6l94Sfwbv40wXf8I2T3yT/06/fK9piffGWHn/mR9yKE+Hr/HV/hx37jHt/15AovnftG+wIf85ivj3PpXSJtUIlyTisLKkv0phmVsI/rbzCVgthsYCc9+rRp6hjPrNKjTTvYQ2sHhE1QmvTFEqfWnqSYH9AlJFNVWkZCNusxLHucNWdEZUAMDJ0uLWNOVtq4hsCOe6xkAdJpLfxD7ioX1Anrp17Cuv1FfDXF9p9FI3BkxLR6Hi3mZMERSoMO+oxEi64vkNpDCodi7zVk2CcqbShMzGJIq7zDn5MjTjOgG38BW2coq05VTnAMRagtci3wipTC9smshcfD0DmDymVq+QStE6o6ptAm0+o5KsWUzPQxsgPIZoTKITQqVGTKUrFFJDQZgpG9xvZQclYrGskBw0jjBAGmOkZpRTQfIc0KDkOsPCU3lqj5bWajHmkS4ZgOc9UgyDSegkayh8qmCFthoCkwaccPqZ+6xL18wnr+DjINKewOod1gLTjAURHSfx/aNomFx2rcY54WOI1lyqiHUgWlglnhUMXB0QUIuKJ3CNw1shI+bN8iyELmVp3DXg+j4mMJTVEqepnNhpViORWMMqapA55K30IrxRP6IUl1E1suYvZLpwm5IDQ28PN9ojTnqhsSasml+G1a0RTXSDCLjNRpYpYZR9VnCA3FKd/BCCU1YlQ5RxgFLVEQZxMSQtIsJbXbOOWIO/5LLJV7pG6DuDBwrZSZVWd48ogTucw5q0KJxVTVqcmEpdl1hrLKhBoeGk8XVGsdZFmlbmQc4jDpHVCnxEyHdCwLXexQyU4wPBsv7bMsegSiSt64QKBdzDzgpHdES6UIYXKs2yhT45cnNIwEiUdm1rAxmBUGaE1EBalAyJTcajDKKizJI9Y9l4f2Bo7ZoJKM+NJwk1b8gNWOprDrEB+hhYmXj4iNKtI/Q3B0h2x2jCx7ZFkX0xOsugpfjqi0uhxqxan4LYosoac9rqicYniPvJzjqQLtNhmN+tilxLAKzOPXsU1BqBSX0us0jAJLl2xzHjPXGNLgyFojjSPOVQ0O9Rqr9ghpLUG0g0WfsDQxVcakqOOUOTfMq2zOX2O522ErXuH54h497XCgl2mXt9HxEBGdULcbIJusTL5Ms+hzyCorekzgrlFmCd1kwvLsLUZLL9LTZzgz/3Ws3iPU2nMkhWKsKuiwhzJL0rJkP4LnGjbN9AA31UgHdtUqs0aDbc7z5PwVrPA22jXJrAZlOqZWZvgHL9Of9Tle+iBN0+XUSoNk+AhBihUdMmtcoGlNCaMMu3+daXGH1toFLG+ZNM5Ym71Fv3ARckJ897epWg1ys0rVKdjFoKoC9vQKS+EYHQcUcohtOOT+CuPSxR7vM3NCpLuKKg2KXGInUy4W99hRq7TTfYQasKfXCe1TrHFEpVKjpTVy8ojUOs9IVWmmBzS1jzqzhIreZC4dDvN1TsvXIG9gD99mvvmdHDbey8PAZK3aZVUPgEUPZDPcYo86XjBnuf211U2PB7THfNPi7H6K+H0/yr1+yMdvnPCZrSFxLrm6Vme15tDyHTaaHlmpiHJJL4h4eXvMwTRhGOZsND2eXK1hGYLdccLuJKbqWDy32eDKco2PXF6iW3WoOCYf/eFFCfZLZ9u8vx3Q+qW/SXb2O/DC3wHL4JUP/AwrYk7tN/8rjO3fIl+7RvLE9zP/c/8EXV30D6Xv+etfee5/kOwx3/w2VH0DkYxo/eJfJD/97ahKF5FO0E59sS0TguLMh5mc+gCVN3+S1i98P/G1H1142f4QnXA/+8YB//Eza3+swxlAp2Lz6a3h4wHtMX/qUJU2eZAwqmxyX53lSt4j85eo6ZL1wct4osspY4CyHEqrRdZcJx6nXGIf0yqRBbikNNSYTik4H76BEe2TehWUEvQym03jhJVSguFSWj41Qq4mb9C0ChJRwZIpaZ4yN5o4OkPkiqTxNBeDu7yy/228z3IxdA2/nDMSVSSCWnKAHR8zLltolTLVFrnfpFAhSwTU5B6ReZbY28AODkkxybXgJBHIWgdZGAx1gyUxJyhdKpUKuXUa3buDI2wQBuOiTlmWUIQIHdMmQNU7IApi7WAZJhvqhFwYUEYUhoeRh9gqoaKnVJIJuXcGUxgoDFK7jV3MGUsfz/JoZDukzVMoG7K0zzDMWWpUcPwGRibZyI8pzTa18y+RPbpO3ZSk41385BgsD78MMHSJEjbVcoZZJkxpYBy+Slc28eJDFBZuPmKa5xzJNiu2RTPapvQvUS/H8K4829Q5hTYgT6kZGV56QKxg4l/CNUJCIdBlTiN8RGg2SfMJnh5TiBpLHvQDzdyoc0bdw1Zg5zNiXDwjo6/qNMwuhr+OK3KEhGlcYFZz/PomXrBNaNRI50OOqwamtpm6a5h5TktOyawGZplRtlcZ9Pd5stzGmggCbdMVIbFVcmKdw1QpvmUiTJsYQaoMtLnEenIfx5Sk2iLFIolTLJkwFMusptv45QjD8EnNDVLhEvhnsbRiFluUhkvTiCniKYnwUK4mnAfMhEnSbWMmATE+VjJ7tzQ6wDI2FhH5RpXUXaYebi9e5jykVk6Y0sARY07Lh+TKQAGxt4wuS2ydUC/HuCrmqlln0vpPaQ++QJn0uP3/svfewfYmZ33np7vffHK66ZfT5KSZkUCMJIKEZZAAgZBMKBaMWVPGaxa8W4vt2qLkhdKaNS5RtRi0XjDGUAslS8JgERSMEhqFkUaaGWlmfjPzizffe+7J57yh3+7eP85ICIRGEcrCv89/9/TtcN7qe/t9+nme79P7Nm7f+z3qRhKm+1xXJznnnqZiJgyCs5iux97RlJq2dEeXEc6wVh5wDZ+bKwvWR4f4vmOcJoSqQS0/YorPcDBjNXqGmjkCWUBZksX38rQ7zlksp2p1bDbCO3wUTxhuM08yHx8xoMZOfI6z7LFVlJzggFV9Hc8IPAo2yk2MSYnnU+Z+hyIbkngOIUuyUlGUFg+HlQGRnXHHwe8z91rMjE938TSjQlKpKFRSJ+trFtVb6eZXCcdDapUKud/E6j41M+RD5iy3uSsgLFJaQqFpzi9zrFqhGofkok0z3QfA+DUmB1dJwwWBkjQrCa5ximu5YKX8MEI76iunGCxy7rSPk6ic3FM4ICn6yGJMnOdUuiv4nsdaKyfuC9TOh+nlkrQw7NGkrmfYfErVzPEa63TDDYLmKv2dZ+ioFFMWlGGdSRHTNzEr5QFH/ik2TQuikFytEM/m2OQcUzbRugAXEERVzqkDJrXbqIkpcvoUhbHMw1XSax9ExIKW3mPutXGij3SGVr5JGPtc0E9i5leZlJLcLhU0YzNlPXsGbzQmXOwyjO6ikh4SSIjtkDKsEpUjatkuq4WilQ3Zr93M2cUek9LSkSPytETgEDp7zvPmhoF2g7+VyPkecvAU//ihFp84fIRX3LbK//nKW7ljvY6Sn9/g6M8L2onPI9sTfuk9l7j3eIP3XzpikBbkpaUVCzwpqIaKdhI8W9NlSXD5j0EG2KiFkx7e9BpHr/0Tyvf+Avfu/yeia+9icP7vYX7051Fxjz9+Yp/f+b1t/sHXK15yrvMlGUKf9pxhS2Yv/jmip3+f5lu/B4REH3shswd+FvtpCVfpsbj/n5Cffin1d/0kwbX/yuTlv4pLep93/IsHM57Yn/GLr/rS8uO+GF5yrsO/eNsT/MxLz3/Vjb8b3OCvk8woEjMhmA6pRk1qcky8OCLwBEL5bNfv41o6wm+folX2EfN9oukOYm2dqd9lNb2I1o6O3qewksujOmdszjQvkfU1SmfZt3XacsiObhLYHeZBg5kDw5y2GbKonyW1A4TRjOMTnB28l6OVF/OkXkFKj6oPkd9gfXiFgT3Jpfa3sDF7DBt2KNOShhsjVEAQTpZiRk4ypcHl3TFnyj26sce1+AJycp11s81h2mNWSnpxjl/MKDPNJk0yMyN1K7SUpukVtM2QQsaAwsuHiPSQ/UxSjxOM9WnaGakRDIJ1WqGFbI5TAY4ULSMy1WLqdTDFkB5DGi7n0JxC6gVlpQkIKpOnkHFA1U5RJFDMKCxYGTEzhtncMdu+hEtHZGZGYFO05xGUU4TvgZ4jgho4iXOW1WKTKTG+U+TxBgsjSIpDWnZAWOYElTXC+ZCjwS41DNu2S2wOqeRjPJMyCXpou8CqFhW9Q5JfxYYryzw837KvQ1yuOaEkFkNuHHuDlAQ4YTZpKE1pILeQeRWU02gLFTNmNt0jkVNIGjRaHXbLKvlsyBpjprLFyfwy83mdmp5w1jyCdZZF2CQo58yqZ/GKESfyLVRcQUrLljtBqxhy5K1xXF+lT4tqIIjzPlN1jolqc9LukFsPLSpUyjFH3gkyXxKYIyrFAXnUYjO4QDO9Tic7wM8FiedxtChZNTmRnSG8NuRThF0wUSEIwWPe3VTaLTYaZ6lvP4xVFbKgQzIfEtsZxotRymNHVziHJMjHlD4cyRU8l7OqtyjsUhVvJGr45RxTKpwEiWNAk7CYEG6+jytHKT095V79VoJ4Wdj51P4fo53PQtVIyjFGH4FpUs+2EHqB7j+DFzdw4z4nF48R5KCDGkYItF9lNXsCZ0uiSoXj5SF946OdIPN61IpNwuGT9JoxUlpsMWcxGUDQZk7Cvmvjl5KJExRFSaO8TFPK5WVGska1WmE22mdSelhVp1WO6Ik9fFk+Wzx8QVZ4FCIi1Q5P99FBC2kLApuyOLpKbAUBBYt8ggjqTNZfRHvyOPv1O5gNP0Zjco16FOAriZIx5+YPc0xfReCwwTEWXhUnFPboEteGKY2V04hak8Fom1OLLeTGBaphgphl1LJNouEuvuxysfp19PItzk6v0ZvtcVmeYUs+nxMy4py5TilD1tsdhEl5sljhjF8wO7hIduW9pIXhau1eVsIjVDahMXqM63TIohrNOMAuphTDLda9GQeiS+ZJVu0hE5NzMb6fSDyDTEfs2pOU2YRSTABFlB6gpaMdWIZlgHf5fexX70WJBGM2sdLHmRzf89jyN9DllOboIvPqLYzUKqE0tOwRo7zOg7NVjukjCt8nyg8J3Ixh5QyicR4bTEirx7GEBPNdxmmBjRRFsMI8OUEt20G5kkCUnJp9nCCOSVWHcZ7RVUdov4maXn3O80a97nWve93na1wsiq/eyfZFEkU+Wab/xuf9Srmx7r95Pt/aJ5nmDe+5zFsHp7jt9nt5/Stv4xvPd1mrR8i/ZBBoY/n41nipVPjey/zqB67yrTf3ONVOuOtYg2883+Xbb1vlB+87zg/df5w71+sY5/jE9oTfemiLf/fBazxy6ToXByWV+XV6W39M86Ff5Hfi72f8Da/j7Cdez9u2fJ43ficPffs7+LEPNvhHf+cePnFtwKIwnO1U+JU/u8p7nu5zoVehWw2/tIcgJLZxmuLsy0nv/jFM/RRqdIna+1+H8xPKtXsRxRRUiEt6ZLf+PfyDR6l+4P9Ar92PrW78lcM+dTDjdDvh/pN/7uX6au2VXjXktz+2zQNn27SS4Cse74vha3Wf/21cd6XyJe7x/4aY/dm/w7c5voS6m5Ml6xzVb2dKjEhHDE1IICxtfUDLHFE/eRfz0QFP2+NUpxcZFIrYLoBlyHUer1AzI0qdMy8cVd2nbxLyssSqiKruo0xG5DKUzdEiIAkDzOyQyOUUMsYPE5yKiJSjcur5JJ/8TVyZIcs5rbLPhr7CLD5GN79OlqcYJ8Aa8jyjovsEegoqYESdY2YTUyzw9JTETPGF5bS9TlulSCmWCoZOUAsEfbXCTIOtrNHJr+OkR+5CXPcWssWC2EyosaCMu6wW1zBhi6mr4NmUa8ldHM+eROiUNGgTSkdo5oyDNQI9gnxGKiOK+kna2TW86goqH1KVBb7TKCnY1QnX5Ek8p4ldRmBm0D5PfzxD64KAgll8HE9P2bRtVuUUZzReGDM3avmCKx273gaL2nlCMya2KVI45i4idgsiUZCKhLaYQTpc1hsrc9ITL6WfOVgcURE5Zdgk1iOcMcS1Fjqdcpic59DVuZ9PIYsZR/46C69NiY/2Ijw9QevlxV9KRKAUYyrUxJzYZdRiH88Psc4RhgkL67FXRFSLA6TVpCVUVElsZ/hhRGznJKSkVnHQeB6VbJdxbgmlwbcZlXSXvrdO3Q7xTE7P7NMXHbAFFBM8k0IxZZcu9WwH6UXgNKXWHMoORnqkhWXD7uEpiSlzqp5lveYxGx9RoiisohYpjLWMXJVWYMmMxTcLAk/S3n4Xc79LRZXU5tco/BoiHSAw5LqkEBFGxfjFCF8Y2gzRwqdwksz5eMJQsVOENYxEa7l255gaj7CcYMuCZr5F3z9OZEY4Z3FliecFGCcIXIZ1grX8EvVIcSBWaJaHLHJNahRZnqPiGsPZArMY4ekZWvjUmJGQEboMk6yzVdYJsiGRXbBwPmVlY3kJMN2joTQkHcbzBYmy+CYlKQ7w9IQVu09gM+pKk1qPS2WXcL5LaOfkIiQUllgY9qKz+DZnv/sAQXFE2y9QxYTcSvq2ivRjjNEIIZh6XQoVk6sajwd381i+zh3ZQ8jJFtveCRr2iHnlDKdHD+JsQVlZQyRt5gXkBLTcEE84xvWbCYohleKQXvoM1mgG0UnO1iz9a4/xlDvFanGFqwuftapC5BPkfI+WOST3W1zxztHOr9FxR7S8kgoLcr+5FA5qHEOOrjHfe4Jt28EvBgSNVdqmj0EQ5UeIpEtkU/qZxZvvYPM5URSTEZAuptTFgr1UIsqUmhlCVMX3A3yzwCY91rKnmdgEN93BWstemdCNBXU3YzCZocopvewaBgVRi0Euie2UY2KA8kISN6GWbrJn28RRhIm7hEmNipuxFuSk1meTVYJ0D89kbFQF/f4eaa4pVUJXjgnRxLNrFFEPHXRQiwPKqEWVDOkHFE7hUyBUiJUBrcAS3PWqz3ve3DDQvkrcWPffPH/V2j+xNeYn/tOjHI8L/smrX8k3nGnjq88t9/exzRFveM8lXv/Op3no+oi1Wsir7lznn73sPL1qiK8k3cpfNB48JVmrR9x9rMG33tzjB+87xitvbvI/PPYDPBPfwbmLv8riaJN/K76f59lPcbH+AJ2bX8wdL3o1/v7D1I/fxWseuIc4DnhyZ8LBrOB77lqnHnkoJfjFP73EJCu553gD7zm8fJ8X6WE6t1Cc/45lqCOWcuV5dP7jC8hu/X6EKxGmoDj/SlxQp/bOn8RFLcqVu/7CMM45TrYS7j7W+ILP+8tBCsGr715n5Us1Rr8Cvlb3+d/Gdf9NGGivf/3r+eVf/mXe8pa3cNNNN7G6uvqZtgcffJCf/umf5i1veQsHBwe84AUv+IJ9Ps1jH3on2ALrVxmrJkPRpGydxc8G5LMjRrLJSfboeAsGogF3/yizS+/jmL7Git1HOAilQ2EpSsvYxhzzxkyNT+oUVTcni9c4yyYxBZnzWRNHZDJGWU0/PM26HDLOHSKsUEQ9kvwQH40oMx7MTnFh9H6uxHcgnGHufI4HKcJqqnaKNpbcWHIiJsEKgZlhnKTpRjzBKTq+pmbGeFKwRxcd9zDWIUzBpjjOvHIaIwQlkkluaJtDNuweVioWLoQyY4v1z9SvGvur+GEFXWR4EuaEaK/CSrmL70q0dVR8QY5PUo7Ik3XE5DoHZvnydfNKjXI+xEZtViNNni2N22nhmKsGrN5Dr9gkKYeU1hKUE+zGCzDFsgC2Vy7QFoSDTlAy9To0mONMQWoE16NbqWfbdNPLy3pThLTcmNQq9mmBLRGuZOq1wTliUvbo0ooV29EFvNElunJKXI6ZkLBwIccTzZNZC2lyzrlraL2sJYbyMTrHlimJtMt1mYKGmxK4HCUlTTNAlRlzVSfxQZUpVnik6ZzIzpiWy6K7ylNMygAlfTxp0EGLwkAgDGMbMQhPkM5G+OUMJRU2nWCswUifhp1A0iHTlqHqMKufJ8wHPCXOYGTIermJ9AJEpYfTObEeoJ3AJSucMtcIiz6FASc8pOdTO/sAzwxysCWRTQmDiFRbhClIAoEpDTvxBRpKI/UMVMBCO4TJ0H6DUgRoJxhRR/khsZ0hiwkVpVFGo0uDLywtMcXHkMuEJIqIPYE1JT0vxXMF+3Q5bNyFLVLqKkcHLXZdl1A56m7CUDYwrQv0ik20X6Ppxnxi0cXXU0JRkvp1atkuk+QEqd/GyJA2Y4YuRkqPtJSMXY1Cp6zYQ45kl1iWlCj2mvchkh5becKKnzGd9KkoEM4SuwVTF+KXC/Ai5n6LeSmYkVC1YxSGUFhyGdO0I45kG+cclWwPzyywIiSQlry0FG5Z6jRSjqToU8oIKz1q5YjAzCjjFVbKbXIrmYgKSXGEK2Z0w3IZIugUkdBMgzWK+ZCazLEqpBL6BOWEBRWc1WSEeHEDrWLidI/pcJ+42mRF79D3j3EiLjica5rlAWVpWMRreHpCxxwSownjBN8VlDIkXmyilKR95l4Gs5RJtEHVjknSPXIj2EsVw+gE9cgjX0zRVmI6N+OCButyQJbO0aZkFJ3EL2dop8hEQrfch3zCNdOl2lqnFlh8PSGVVayzzGxIUy7wywWdQKOrx4miBJEeEZkFNqyTLeZLI5qcfnwT8zRFWY3EkCXHWNXXaea7jHKL9SLGBbT0PkHeZyXQDIYjrnCc2I6pymJ5caEi6tkOqhjhZUcoUzD2ezgVExZ9lPQpVYJyJfVKRHj7t33ec+yGgfZV4sa6/+b5y2t/08d3+Ll3PMVPvegE/9vFVyNvexUuagJLo2NvmvP6dzzNy27usTlKCT3JT33TOX78gdO86GyH0+2E4K8w5v4qRDYkuP5ujpLz/MoTHj8z/9fUTtxJu9HmpYu3cXnl7/Km3RX+zQcOeO+lAdfXXk6ts0GnEhDHAe1QcetqDYD/+nSfb791lVffvc7vPLzNw1tjXnrT5w8//GLQx19EufFChJ6Sn/8ObP0E4eV30Py978HffQjTvkB22/dT/bN/icyO0McfgGe9i7/6gas8fTjnzo2/KK3/1dwr2jje8eQhN61UvyrjfSG+Vvf538Z1/3UbaB/5yEd497vfzW/+5m9yzz338LM/+7O89rWv/Uz7j//4j/PGN76RH/7hH+YNb3gD99xzD88888xz9vk02Yd+gyTbR+gFpQjYSW4lPvoUq2qCLnIeU3cQuRT8mFmW89TWPsfmj1FJqkuvgHQoJfFYqvA95L+AdTWBYkwiCmbxOrvqGEk5JiLHlTl1FjyV3MdYC85wHdc8zTNZlSYTxslZVhYXyZJjXNUN1oMF1XwXFVawRc7MBqxGBdvqOJ1YkGwpCNoAACAASURBVKVz8pKlQIZK0VozIcEJjziKlrLbWLSM8Slo5LtoJ9hzHRq+wRZzylJTOEXFjCllgCcFpVMkyiGc5Yo6zYY4ItFHjE1IIErWggzKlE3XA+WjEHiuoF+9hVgPGIsGkTSkzmNiYxrFLsoZFrXTlHYph+7aFxgfHeC7nFSXxNIg5/t0Zk9SqAp5tkD6IVme4k83cdInchkz1SYmp1rsERVD8qDN1HhELiOJI1JtEEKyF99CN4ZxARVlqAeSUiU4r8LCaxLmfeaqSUUP8Bb79LLLOAe7YnWpcGdyqsxRAoJiQJsJUxezMBIrPTw/JDWS2M1J4w3a5oBIOqaigl8uUAKs8Jm4hIqdcUiHmpsyrpyn76rMXcwod2QipivnVIpDUiOouDkOSUCBUxEjV6FtB9T0AbE0COUzjTbItUUbR4mk4cZYByEFTqcENmMkmpwwVymdRxr0aJkhqayQGoiimF5o2HMdrBNo4aORxHZBHrZJ+o8wku1n89oE2pRILCqsY5zhYXEXayurBOkhh6ZKEsdMXIQMYmw2RrjlpYELGxRWMs81vtVkqkLoMkaqjW9TEALnV3FSsbAeSoAAFi5gTJVeUDJJU9bUjCKbUjcDoighdBlCCBbWJzZjbFCnaYfkpUOWcw5sncTlqKxPN5ZcF+tMey8gPvw4ExvSYcqaP2WpKDlFSom0GamBzEgaxR7BYodGtk2oHCZfsBARQiouejcRZn20jPE8RaPYRzrNwnos/DZz1UTanMvuGCfsFgJLzSup6AFCeSQuJXELJjbAd5q5qDKvnMIVUwIFdd3HJ2NhfEbGx1eSVquDmx3ivIDSWJKijyhmOD8hUwlF2EEVU4IoYkaFaSkg6SGPnmKRZTTEHBlW2MlCeuUu2qswWnsJxlrE4BnWs6dJS8fI61D4DSr6CExO3zV4Mrgd5fmosMIn9QYNMcd3BVfSEGb7kI9J5lsUDo5kGz+qsiCiK2cMTEShKgTCMJzPya3H8Yrjcf9O6q0eIp8gFn2GooEOmhROsckasVsQLPYp8TmZFJTGEZKRiwoiHzPyVzgSLSJPEdtnw6KDKkcmoUSCVCinKXVOGrRoiQUGSVY9RZbNMSpGSYjTHfKgjYs79NptLo4g9AX1JF5GR7ic0llmxmfuNUnCkKY5wgU1tN/ACMVEAzhM2KTt6ec00L64t9Eb3OC/YZxzvOE9l/gPH7nO//Pau3lV6xo26bEr1/mthzb5gf/4MR7eGtOtBHzT+Q7WOb7uVIsfuO84J1tfXjHnN779w4yfeBfnrr+Jn9f/Br12P9XNP0XW1xn/0J9x93f+L/zq993LO3/ihfzo15/kaK751Jv+Ob/y6/83b3zvJQ5nf15B/h89cJpz3QqTrEQK+F+/+SzGOt7yyA6ldV/eQ5EeSEX49B8QPfUWAPIL38Hghz5AfvplhE/9Zxp/+KPY2nHCJ99M7R3/GEzBojC8+RO73POXvGdfbaSAf/Wup9kep3+t89zgvz8++MEP8rKXvQyA8+fPM5lMmM1mAGxubtJoNFhfX0dKyTd+4zfywQ9+8Dn7fDZ+c4OxqDOTy5yNEsU2Kzw9jxiINh3Xx1lDNdul6glU+/TyFtksRSBmZqk6VzpJLkJOe0eYdIT0Qpy1VPURa4snGWmFC6poBwNqZLrkuNkmtQFxuscZfYnYzvFGTzNLTlD4NW6W12kGME0L4ulVKOescshsNmVUSJzO0Nay6zosrMdUC2Jl8aXEIkiyXcJna4GZsqRV9vFcSZ0Zx8UBcTkhEpoWUxoywzZOIZVCJi38cooRHplVHOYeU2LGwRrH5RFdOUcUU2RQoe3ltPUe0hlSIyjmI8ZlQKxHCEABdbn8n5B6TTKvzqR+Czv157E7XODpIcOFpnAeeaE5KiMOdITVKbEoaCUBBkXociqBoAwaOFviYXFOomXIwFVIZYInoO0mNAJBTMZ4PmM27pN6LUbhOrOixORTDrXHRnGV3AVkWmOlT1FZ4yHvPjKZ0GZM4bew0mfid8lLC0Ix8do4L2bN9WnaEU4GSOHwpMRKn/2yxqHsENmU0ktQtkC6gsCTjOOTtJhgozZ5NsOmQwonmCRnaLsxh4VHSsiaOKIQwbNhqxqFplKOuJ7FpC4gcxEjbwWrM2p2TOlXqdrJMmdLlOCFNPU+fjlhQ1/HWUshPNp6h6m2lNmU0GVE5Zjtacm1LMI6R4sxmUgYUaPUmhDNiprwRHgvzhmELRjXztPzZ1SU5Zx5hnD8DLXJE9Q9gy80Hb1PGPpMSh/f5syJOYxOI50hlI5EZqzYfcaqicAu6+05QWQmeGWG1gUTrZgUgl2xju8HlGGNKIpZyAr7chXf5njlgixeY6Za1KZP8ZA5j01H2O6tLGrnyKMVtBUYoJAJW/EtuMUQrr2PoJziYRn5KygVkOmSXCVclqewCCpugRXe0ptbZvg2Q5Qpw/gk4PClo6k0PS8j9evEdo7xYuaqyUh1yK3AK2fgJ5xgl0yE9IMNntIrDEWTSNmlgqU1UGoKAwtiwnQHYwyjYAMXNSjxkUpwpfYCUm2ZzGYMbITTmtjOGIvGUhUaGLoGFoGxjk3bpT6/QpwP6GufI28FEdTwbUac92lEPlI4wtkm1at/Qmv6JPuuwTBYI/WatPQ+zfQ6qkxJVY2uPeL+7EFW7R5ydJUL84+S5pqdLGKgI7azAKwlC9qEUZVm7ONJxy3mIoWqMicmKwqy0R7GWCr6iGEOF+xlWuNPcVGvMKRG1x0Rk1JLIs57h8RJlZoZsqU22J87rCkYlAkVzxAGAUU2p8YCMbrMoAzIXYAUgg0xoB2CH0QoAQ03QRYTwmqTKFyGVlbiiNDOSYMul5O78Ysx1cUWzq+g9JRFljPIQXXP0/BKwuwIWxYsKidYFJaJ30X7NZ4wGyibU/EcQnn02m2+UAr+DQPtBl/TWOf4V+96hgevDPiNH3geF1Yq9B99G+/Ud/Pqf/8Qj+5M+LGvP8kd63V8JXn5rSufk4f2xfLglQHv/aP/QPSp3+aB+15Ao1qh8rE3QHUVNdtm9Or/zPwlP4eL/jxvqxp6fPOFLv/7y2/ie1/6TfxT9SY+tT3ku3/9IX7mDx7nI9eGOLc0wu7cqPP/ft89tCshP/tHT/KBywPMl2ugPUt2199n/vX/DJEO8A4/ia2skd35I4xf9SaOfuSjZLe+FltdR46v0/j9H+CDH3kv53sVblurfUXzfiEiX/H8k00+cPm5CzXe4AZfKv1+n1brz/8GO50Oh4eHABweHtJutz/T1u12OTw8fM4+n80o1RyoVZ6RZzmSbVICpFTMRYWh16OQVda9KZnfZK4dj7uTbMkNIk9h/TqJXHp+hqqHtpJ2dpUVb+mNy8I2ptTURE5PzekGJYHnUfWgU+7R8TIqniGgIJMxz3CKsWzj0iE5ipGt8L75CTyXM/JXcSrkQPSw1XVuLj6JLMZoK5n6beLAJ6k0yUREhqJuR7gyR7tlrTcVVkhFRCYjND5zF7Dvmjxiz7FDl03Tpj8viIohcrIUcNgrQip2yoKQbmDYMFvMgh6LQrNTREwLgzMaKSRRtk9hYKYtKcGyDphchnJl1uMD/ouoepZz6aPE2Q6wlMnHgVsKc3MkO0y8NjkBRiisCrk6dTTWb2KzcS9bboVhajBOkOKzE52n8KoYFG0mzK3ioFDUigMmNuG428d5MRv6Km6yx2bZpnSSssgZLgqmfpum7uOMRmUj0sWM3HkY61DlDGMdl9Q5lFJclccJ9JSGm7AjVskJ0NJnISpkfotDW0NSosqMxM1RTmOEWr6QmRxlM6QAazSt8oBKOUaUGR3Tp+bG7IlVfAxz1WAWrjIyAU+JM2SlIMdD6BmljFBmQaU8wpYZC2KUK1mEa1yr3sOe6IH0+bi8g0+KWymlh0BwFJ3mMDrLFbvOrBT4rmBaOAIJp8UuymZYJEpKyqBOKivkXo2BrbEwgkXpEMKjNr3Ebrr0bD3q3Yko5qQioar3mQ77OJMRTHeIZMlYNsllRKFL6sUeseeY2xBpCq7ZVSpmRFPOidDL+eJVIpfRFmMaKiPxBUop/nS/wqbpLkPSgjrTcI3AzDiaphQiJPWbCOlRCg8Wfbzh0yzygipzhBAkpOwcjaiGgkBaiqCB8AKueyd4ZhEzCI6jypTj+gqF8xipDsppYqHZjG6nUBWywuCXc+IgoETR1juMTEBNHzInQgUJfdmlEBGRy2gwoxEKRFRHYZY1tMyUyM7xsiEH9NhWxxnamCF1Yjsj8iQdOWUiW4y1Yuoi+mWV+4uPsJZYfJsTJXXSygYKR8cekQVdZFDhDNs4JFlpaHiGmddiRsRGuc1K5JBSchQcY5icwQnBgoiFqrGuxpi4S9w6gVUJSlhKv8pA9bBJlykVjrxVjsKThFhSr7EM2yz2cItD1uo+Wye+l6h9EuNXGeaOhVHs6BpblbsYzlLatk/d07jKCvvN+/Ap8W3KbD5lUxyjVwvZVRtMZZ35YkGoR2y5Hjk+WetWVtWcQfXCUqwoquHpMc4UrMkRjUqFefUMoZlTsRNCTzFyEYPpjDzXPGk26MsuEZrBZIouDUG6Tzzfoh9sEOshDX2IQ6CtRRRzVmNHM/LYaNXIGzczlnXM6vPwbcrO1OLnfUaTCfliRoaPRTBNc/xywXD/EtdH+eecMZ/NDQPtBl+zGOv4+bc/xSM7Y9742rvJtOE1v/FRHrl+yOTky3nbP/w6/vV33c633NQj9L60rW7ssmbFNCv5qbd+Eq01J1sxx05ewNRO8A0f+59Idh9k9L1/yOL5P8Xo1X+A6dz63GPe8t0kccwv3/o4v/cPns/5XoV/+ScX+cHfepi3P3FAad1nFCZfcfsqP/eKW5jnJf/zWx/j0Z3Jl/2cEBJ/98NET/zuX/jYxW2y23+Q0Wv+kPH3vAVcyXc++hP8/Tsry8LXf808cLbNB67cMNBu8NXl0xcen/3zp9VC/3IbgBDiOft8NpKlaMat7mnW9SbH1lY5IXZZiS2raxtMWreiwyZXvLPMgx7nJw9SlykH4SmcSfElKBzKFTgv4kj12KbHnqmjrcALQp5UF9j0jrMfHMcAOYqZrLNHBy1jdLLCONwgcTNmqkpYTsnxsLbk787eTM9bUEueDS10+xT4XGONK+HNCAyZCIldiq8HeDanbiekfgsZJihXkOY5MyKkzamaEakI0X6VE3FGyx7hmZSOPaBb7jP01xiIBpEH6+II60Wc9w+Z+R0QsMgLUqeo+w7rRcxVHYtgGB1nT3TxFUg/opAB29kybE5HbU6JLeJywCXWGWmB9Tz8QCGlIPAEvlngnOGY2UQqBdIjtYqd6Dx2/xHOZZ+inu8xD3oUyQqxKDAsQ70OozMUSAJKar5gnJxEhTFSSggSpn4bTwkqnuGg/Tx0/SQVkZIawSxaJSEjimNu149hEex6G2zTw3cFd5aPsQg6dOwAT8G1ok4pPKzyGFADqRiIGmVQocGUlQSuyWPs0GGqamQqASTYEuMchfCZeC2sH+F7ioVxxCLnrNwlYYEtM2rFIZHL6NlDEIKKndGIPTpeRhDGBJ6HqK8x8jpEZs407HFi9nGk8lFBSNceUYk8tsQGnhLMtSO3gjV/ggpjSuGThB4NJtigxiRYY9s/TUDBut1DmQnaWsbBKk0xReGoijm+gtRJbFkwD7o0Y4lLumgH3VDjpM/cKUI0DTGnKhbUvRwviFkYj5YbM1Yt7uASCI+BaFHIEE84fD2iL3tIKdHCJ3cKEDRjxXowpcGc1fRpGkyZqTqRndBieeHpEBg/QZicDXG49GoqSa0Ss6dWWbEHBHpKJisI6VHzHTcVj3PSO2Ld7tCMBEfRSUIFCyKiKCHOD+kU12gxxE+qBC6lbwKskExcTE0s2PVPMY6OcajD5bw2Z1i7CVfpkWYpMghZqBqlKfF9j1oSYL2YlhgjcHhocjx2vWMs/BYHwSlipugiI3U+M1UnTHcxpqRXgVVvxqlKgVU+Tvm0zR4qCNh2bZxUjLr34uqrIBxX1Ek2bYujzDEvDW29TSxyZtpRKYfEjS5l0mHcuJnW7Ana6SVabsSgcTvXKndSFgtcVOOifzNDUWNhJdaP2DNVjsLjpF6dK/0pTXfIaNJnYj2EH1KpJnidk+TzI/zAY1euEgYB1o9Qiz32TZUJMZ8K7yJIYkJl2fDGBKJkHK1TJD3syq2Edo4xObWg5GZ/lyT0OOW2mcsaGT57ap3NmeaKW2Xsr9Cv3cTutGC7eT+ZCJl7VW5TW1RlRj3xqUQepfSYhT02vZMUiwnCD+iYA6wfswg6SAVXTAc/rhBUqowOLqH9CpXFVeZ+h6fFCa5V76TiGdpBQexZhB/Rr5zncvclPG5PcoXPzXP+i+fNDW7wNYh1jn/+e49x8WDGq+5Y/0zdsp98yRke+PFf41te+p00Y5+9SUZpHZk2vP/SEQB7k4z3PL0sYP2p3Qnve/bzdzx5wEevjwD4sd/9BB+9PqQaKl5x+yrNP/0pzg7ex4Xzt1H58P+FTPuUq/dia8fIb371F1VXDCGZvfBfIJ/+E3rVkP/xhaf4/R97AT9433F+/cPXefW/f4g3f2KHvLR8w5k2lcDj0Z0Js7zkJ9/yGG99dPfLfl7F2W9j9pKfR2RD/Gvv/txf8CLG3/1m5IW/w7d/4h/SevN3UvnAz4FefNlzfiFecq7Dt1zo/rWNf4P/PlldXaXf//MC9QcHB3S73b+ybX9/n16v95x9PpsPdr6LA7XOxFWoBpJ80udRfYIPpyd4cNyh75+kyoJb049xXu1x+tavJ0ka5MNtcqdY6GX4jbaSROSsihGUOXHgUZQWUxq6DCmMpBgfLMPqSsEVeRKs5mrRIJ0MaGdbROWUZrpJpqr4xYy40kRIyb5tEeZHyDIHoVCzHVrMWM2uM/F6aAPb9OhnCs9pQmGIRYHSC3wp6LohXnpITI5REYWs0mHCh9wdVH3QXpVAWPaiC1hTUjfL71A6SWBz/CDBzg5JVQtPSpyqkBLiRS102GUoWoxUjyQIWDGH+GVKRZYE+ZBhrvBtwY53ml25xmiwlOC2RhBJgfVqpEaBA41HJirMVZuJjRh7PZrlAKsLUlUnN3DFrbOYz0GnCGvYVieZ2wCrC6wM0V5CaQXClhidU85HJHrMQHUYmZjW4DGq+R6pqD5bL9Oy5zp8vPIS9rwTtMwAJQQRmr5aZWEDyrJkGqwysgltMSESBc4JIj1BAlJ6RLNd8sIwyCyxnlA6hShLUlGHIGFUvcDM77JVNsiLnNAWZIXBMynaCIrSMaRG7DJGLsGpgMhMEdmy1EGS99nMQg5MBessae6ol32UJzk2+yRlaYmEZpFbpkGPjfwKNTvmYXcLu65Lku8hhAc6R9qCsWyxY5qgF8xKRdscUjhFkWcMXZu+fxwbNbhYexGFFQx1wJgGej7CFAu+M/sv7Ip1RDpAGk1hHb6Zc+jaTI1PbiXSi4gl+J5HUxXkfp2Km3MkmziW+WPSaqZasBBVpqJKbiS5kYwXOUPZIqi2cSJgW6xz1a1xSV1gTyz3/MxGeKbgIPfxZ/uMBvtoAq5U7ie1HtfnAU+L8zzh38nV9otp51sMcxh5q4Rhgi1LBjriYrnOLC/ZUccIyikgmMYniIXmgA5j7XHgHSdZ7CCzES03YeL1oMxoZjs8Ft6/9L7JNsl8k2i2SdMMWFlcIgxCcr/FjjzGpAwwIuAZdROhhJBlfmisHG7eR+cpI9rshWcZyA6LaJ1ZtEZ1fp2n5lX+S3YPV/bHVMoJC+NRlgYx2aXvn+SK7rA6eoStsaVa9Hl++XHU/JDEczjrGNkabtZnNNcMypjF6BB1+CTV/Y9ylQ12vDPsqFOEw4tszD/F2FVYyCYXzFVWii1UMSWabnHC7hGbOU7GENTI9p5CmZK9+n34jeOsVwLUdJfT5RWEc7jSEGSHxItdMhdQtyOuLWLuXnyIsH+Rq2OYaUHbjugx5erqK2n4km6rTYTmct7mcG6ZL1IuFw1skUPUXubOlUvlzJHsMNM+zlpunX4IFVQwuuRwURKVM8o8pbABuawz7z4fJdUyd3MxYSbr+HpGI9thqz9lxexjHTx1kLHebnPSX9AfTfFNSlhbYSI6PCzu5GpaIcoHuGyGKzL2xznrMbTN6DnPshsG2g2+Jvm377/CQ1eH/Mpr7iIJFaVzCODl+dt57x/9Jo8963H6kf/vExzOchba8DsPbwMwTkseebZ9XhhG6VLM4LMFQn7pu+/g6061EGXGt97cI3vBT1PWT9L+7Rdj4y6j17yN2Tf/wpe8bn3qmzGv+e2lFBNLZchX3L7K7/7wffzTbzrHHz2+z3f92kd408d30MbyTRe6/Nr33cMvffcd/OKfPsPPv/2pryjsUY0uE1595+d8bqzjZ972FJe+7hfQx1+IyEd4+x+n/Tsvxb/+3i97vueiVw35rjvXv+Iwzhvc4LN54IEHePvb3w7A448/zsrKCtXqUozm+PHjzGYztra2KMuSd7/73TzwwAPP2eez+cCoxx9Fr6AvWsyJ2cxiVr2UDdFnEa6QqwrXvdOISo8j2eFdz4w48I/hBRGZ38GXjrHXRQQJu2KFfe8YfW+V6+oEU69NSsypVswJ0afDmLqb0fVS/KSFlBITVJmJCpvRTWx7J8nDHqpcoOZ7fNKc5NHyDP34HM4JZqLKE+oWirBDqIfM0jkz2SDzu1z1z+IrmLgKC+fju4LA5WRumbsqpcdMNnjKu41NscpMCwoj2ZfrvD94Mc4aGvk2HXtEqqrkMibHp5ARC22oKk3pJEPVRbocZ0qmxFwqe2RGcGb+MD27x45cIxURRVGQywRbTBmnJVBSL484lj1Fu9hkMR/TbPc4pMH1+HbmLqQZKo7iUzSLLRaqycDVKIqUud9BOM2hqeKMYVY7w1RU0S5gqmpckafYkRvMvDYj7RFne2zHtzKIjhEmDZQUrJk9QqERCA5TSWGhGgbkQQvjLOuDj+CVM4QQhGjGssnAX2PsEvzFAY+Jmyich3Eel90xtr2TKC9ASoj0mG1dRUkIKEl8WHVHNGSKchnDQmGzMc4JpLOsmz1wjswKmna49GgicMJn7HWZyga7ZY3L8gxTUQMZoPHYVKdouAmlsaQyJpVVImGZiSqHosNcOz5qb/7/2XvTaNuuszzzmXOufq3d73P2ae8599y+1dVVh2XJsmXHlh0jbMdgHNOYmFAJZBQhkBEqIykcyEgGoQkQqoAUKTwwGNsUtoMrNmDjVpYsy5LVXF3dRrc7fbf7bvWzfhxhYGCZQjYUjLrPr332XnPOtdbYZ6z9ze/73pd1Y55+bpEol44zB14Vw7Dop4K+8MilTT8xiAsLtK1ZImER5RJbRyjTZcta4Ip9nIfz07h6RJ4lKAFu2qalJukak3zFv4fd1OW8PEQfn15q0aVAmElcQ/CcezuBHrITwnjYwcr6rOsGy3IOMx1R1D0qck9IxRAakQwpmppAhgRyjFWc4Ho2waeaVXQ0oJJsoaSgIIY00g2GVpVE2HTtKQ4bG2ROhYJMUGGTRBgkhXlEPGAhvcKsXmdgVNmq303oz6GFZCWtsJZXSZWFlfSYFB3Oi8OM8DEke0I5To2+duhnFq4esSMbdGNBhqSbGViGZIBDSY55VhzE1hFl3SfSBqEqEmuDcrpL2TXZZ/VJ0hQRtQnEkCu1V/KMeQuJsDFNi8go0tC7jJRPoHsYQmMlbcrJDr3yCUhCsuICW9YiHQpUdYvtwmmWnaOcTp/CH68zSlKmPEEubVaYwnJ8NuU0A3eOVfsQl9USGogxueYcQ8/dxXlxiOlyEZOUSFj03H1ERpGiCLGTNj3t0LdnsNwipuXgyJQga6OiDkE+ID38RrxijdroKssjkxUxxRCbbTVNc5QSpC1C4TF2GtSnFjFMhwW5TaiKdEXAPjdiW0yyZi/RM2s0iyf4UHuBh8eLiCymZoTsFE6QS5OKBa4ekkQjXLfAbNHioFijmm4S6C6GlHSsGS7lszQzl3Vriav2cax0wHPpJM3gKJ1xyuPJfprOEqZhUJIRXaNOpHxi6SKCaaZcQc1TbOkyj3mvYDT9sj1/2vYWsr9CNd/FijvglGm6S6TS4mB+jY2xopuaX/dZdjNAu8nfOX71C9d53+Nr2KbENiQPnpziiZUO//kzV3HO/SaLVZ/aCxL5f/BPvoXpokPVs/jfv31PTv5II+CH71sC4M6FCg+enALglYfq3L5vT/Wx5JoIoPyRt2JsPoFqPkf1g69HWwGD+/4jKAvES/33EZR+/+2YK5//6jtSCO47WOO/vf0M/+6BI/zfz27y1t/4Mh87v7dDc8tskX/16kNc2O7zg7/7NDdaw5e0cjp1G4P7/gPEQwp/9EOIqAvAH17Y5lprRC1wGNz774kOvwXVvcH45PdQ/KMfwn/kP0CevsTrfXHe9/gqP/fpK9/0eW/y/1/Onj3LiRMn+M7v/E5+6qd+ip/4iZ/gQx/6EJ/4xN7GxLvf/W5+9Ed/lHe84x284Q1vYP/+/V9zzNfi3vQRJtJ1qrrLMIzwCZnUOyyKHQ4b20gpeF4eZJQZrHrHqbSf4pmwxqZzgEEqGeOymwfkUZ9Mejzn3kaWa2bTFebMHkGxwlPpPkbSJReKcQajFK74t3FN7SfE4aJ3O4qMqWyDSEtCFdC3J5kKn+e4WmYuucpgNCZPI/aJTVQ64opc4mHzbuIsZ5BLytE6Rd3DM/ck/6+LfUi7gCEFsbDJdU6uNSs0GOUGGC47lTNcSatkdgnLsvH1iL41waac5praj6kkuV0mywWhcNk16ngyZkPXaYkqUkAiHVaMBVAmeZYhvBpaKtqZQ5YmWDomMgt4xHtqk8IkSjW7w+SFMs2jtKxp7HxMRQzxiABJlGbkeUZLNXAGN6glW0ypHg1zyFbsEmIS5YK5+CqDOKct62ghEGGHK4W7qKoxgeuTuTW6skRuixWdmAAAIABJREFUFSnZgqFRJnfKjITPauyTYBPkA8y0z4TsYyiJaTtcFEs0sg0aok2K5Gz2FEKanBdLzBh9LMcnF+pP9uVwFIQ4jHNFMwvYUpPoPMPUKReM47jZYC8jRk5XFFFK0JVVYruOlw9xLJNBbmElfUSekBoBi2aHgoyx4jZIxbTcpe/MshqcYXb+ALZfJc8zvqxOU1Yhvm2xQ5F6eANPxoxFwIzskIRDmuYsRdtgsSCQhqLqSirhChtqlm5wBKHsPf+5rAO9VU73Ps1Ess7B8Gky5bLtLFKwDHxLUnYketTiae8ucuURSRfPVNhKoGROT5apiD6ptBnKEle9M2zqKiUxYMVcomhmDPF4XJ4iEjYuEY7M2KDGUBbZyKtsGnN8kVMEro1Ox3jGC20K0QgpFZ4eo9IxXryDaRf2/EP9SVyZU5dDvLmzlCy4YJ5imzql9c/SFhVaIRCPKaoE38hYkFsEjsHTxhmWzCZDs8yGnKY/6JL1t6jlLRy/hLQC7GyAlIp+7tCQA3reEj1ZpjS8Qp09wZ1N9yBX3FOMc0HXnmZHl2hrnx05gTRMtozZvU0autywj0Ce0Y7gCXULX7Dupjheo5S2kOkYke8pcrbGOcW8RWVwiRmxQ1JcIJYuE+EV4jRhNS1iSEFgKqLRAJOcPM+5IJYYygAd9hhnEGkDTJtZsUNRxuxEBh3tMdq9jhs3OZFfoKd9BrkDYZdqoUCqNYM4IxoPsIZrdGPBJfcMTXee7WGKWn+MVnObZ9RRxtYE49zGK9bww01y5ZJLk0y65IZP1FnjajaJcCukak+cZpAK5sU2pXiTMN8Lbo6WNfs6DzMOx2SjDjdCF6VMSlmLWPmIPGYnNujtLtPp9VmTs2wZ80Rpjg6mMUROZjgcNHfxVUbiThLYNq3cIwv7pGnIIEqI05w4B4EgNIosRy5fiPbjegHjBKLty6zvtinsPIHlVzC9MhuFU6RWGV+McQ1F4k9i50NWncOseCfYNae+7rPM+GY9FG9yk79uxknGuz9+kU9d3uUtp6f5x/cd4G3veYzfe9edPHhyCm+8jvG7V1h6y98H0/mG1pLDLXK/Qe91v4r3+H/BOf87xAuvoveG94D8Bvc1hCA8/nYKn/xh2t/xB2h/8s98JLhrscKdC2U+dXmXX3noOu99bJV/es8iD55s8NqjE3zf+77Cv/kfF3nvd5990V6ZvxRlEs/fh7aK6M4y731kme9/+eGv9sANX/bj5FaA9+Sv0nvNL+I/9vOo334TvO43wPK/sev/MxxtBHzgiTX0/Qde2nXc5CZfgx/7sR/7c38fPXr0q6/vuOMOPvCBD/ylY74Wninphi4frv4AQbxDMROki99NvvwFhmGONmGWbbzRKq53nNH0ywkTzWTnEyg7ZTCwiE2PTXuSjazIYXfARLfLQNXpWzPoUZP1iYMEgxsMK7Osjzax5Q5W5wqLcpPLLHJ4+BQVdtFGRJSsMqwdJ5MFZvMN+hHEwqXCLju49OQEfrjDvNXicLrKI+p2osykRpfdvERgSjpGmWreZZzF2EaGRUq+V4zHspzlHv8GlUGX1mDEhGXSlGXaqctEyWGjH1HJmmRIvmzfzlS+SaRcBjEkZoXTtYwnWyajRFCSgiNimablYaOwlE1CF8+AobQhjUlRlCzB1bBEz6xjZtuM3QkibTBKEpbdE8yHF9hVk6SqwtCeZCADsixDKZMZa0AsGgxjjek32I3L7I/OUxcD+obDUFdYkLtYhHt2AlpTjjfQWrM2Npl2YiI5h8+YdiLwdUjVGJFmGVbepqJiYqOA4U7QyYYsRpcpIjnqTrGbVlEmuEQYbp0noymO5Jcp6iHXBy6OJTCUidQpa2KajmFxhgsMhGIi34U8Y2QX0dpg1z5AyWqR9COEVNhKMyM7lAzNtneEVdEgkNexaKN0gi33frj7ecRIlhjisBM7SKXpmw066+eoRFuUJubY6S3yTHqMd/FxxjKgKRoczS5SliO2I0nJNTCiHk1MBskARxXYybw9Of5shx4BRRs6ucVGUmLSjjnn3klBjHmy/m0sbv0ixbTFcuEY06OLEGnMvMUoSjHjNl8OXsap/ByVOMaQgpEoYygDB4mnMhLt0XNmSWyTdjrNKD7P0KjikWBlI1Ll0TEbDKiQRBppWHRjgfTr5OMtMqfGZuZzRc9ym7gIUpHGKcKSFEXMl0YVXpk/R0u4ZNJjYXoKx7FoxhkBA7aNRfzCPl7W/n1CmRO6B3CjHXSeM8wNropp2lqCX2Wp9wxx5VYeM09xe/djLIuDLIQjfD+gaMSYEjASkhQK4SpNo84Rr8nmGBJzkkK8zrTexrcMRNrBynuM9IB+7rOVl/AsgzYF0tjiWH6ZopkSOy4Hk6u48Sodimhnjq6q0c48JqQmSJusqxkuGMdpjFdZGl9CFkqs90zcZJ0Zs43MbArJGs96d7FfpxzVV7GHGfb0ScLhEEWfivJ4Whzm+WGJILtGObmBo27DtG2y3COP1jmUfom2rPCodx+Vxbfg9n+TUriM1AmGFBRMyPSItjnPUJu0RwJp72d+3wFuDbepxjd4pG0h0Ig8opS1sND09ByebVEME8IopqIHoGw2c5dJ06SSDhnrDk2tqes2tXIFMY65MaoTxgk67HBd1qnlfcLaceqj7T2lTsNDSYEbbZLpnP2dhxl6p4gjSZTmKKCTWQRso7wKh8wt8nATV2kC3WdXFinFWwzjjFFW4ow/4FJ8iM1+i4UJFzdpUmi16CYOxYJixzyIHneZZpXRqIcRdSilbUaDFW6Rl2Hc/rrPm5sZtJv8neDZzT5v/Y0v89nnd7lzX5lXHapxYMLn1952C4YUlFyT4soniedeAab3jS2WRZQ/9BbM5c9R+uh34Tz3QUZn/id6b/zNbzw4e4Ho0LcRL72e0v/4XkT8F+W8hRC8+vAE73/n7Xzn2Rl++pOX+f73P8X5zT7v+57b+N/eeor1Xsjb3vNlwiT7q5+AsoiOfQcIQfTIL/Og/vSe91r+p3ONb/tnDO/4EYqf/J8Z3P1vyU+/fe/e5i9hvRfh9HSRXpRyrfXX1+t2k5t8sxgnGZKUNE24bu7Hrszx8tEnKKa7LPopCxWXoT3Bcu1uhs40unmR0vgaFKaZmphiPgBbwfbsa/mk/61cH1rYIqZHgdl6idQMKNTmqOkm23mRgpExsup7fk46xitNg7JpGVMMcwfXdvB2n8ZPO2yHkmaYs1U6w8CaILcqPFN7I1fdWzCjzp4ptEzwTMXInsQoz9EUNfI0QmQR3dxnkCmaFFmxDtKRZVyZcn7g83luxdA5/Shn2O/iZ202ukO2sgIawdgocCR8knVzEa3Bdn3q0QrXejlOtIOVh4zjnF6UEqXQFiXGqcC1bAa4rJgHSP0ZrhuHeCScRwpBRfQoyojAVuRIdgcxtXiVFfsQA1kkSFu4aR9fpgyMMtflAv0ww1awbi6ykZcwky5r7lF6ssxYuFwQSzybzdLJfca5oqQivLRNpjXCKQGSiegaOhnQs6bZUQ2iLGcrL2EYBmvGPlItqMVreHpMU9ZYZZJQBlzLJ0ELSskOK6HFZLpOJd5iNQ7IhGJT17iuFlFCUrBNDnODggjxjRRPD8nlXunaVT3NOI7ojROkEEidkcZjHCUZqDJS7GU9Cwx5XiwSC4cOAa4p6ckSWkqEXaJoaQ7rq+wfP8Ul7yzb7n42k4Bm4RhX9CytWDFjR9R1myvqAGtqH0pITCkJc8kwislMH601Mu5RFkOmSj4b3lH6mYmtBCNZ4Jxxii1ridW8RqX9NDoa4GV9Gv1zbGcB58UBWoWjBOU6u4Vj7HeHVOJ1EumAMDlhrtOu3c6zxgk+kZyhGRvYOubK0GUjkvS1y1y6zJH8efqqyqaYJMkyhs4URRtckbAupql6JoMoo5uatCiyqFdoFk+yoieRhkNilJBScZpL5E6dwNSkGtLuOo5tIAA/H3BKXiMd7CBLs5huEdc02DKn2dIVuqJIYlco2ZJxKnjGvZNw7h6O6itsmov0VJkVJpHJACcfsZKV2ZETDOKcoSiy+4LEvZVH1NJNZss+HhEjVWKIi0GGlQ+xkjauDgm1RTlrMhr2aasyvczGMBShU0MqiWVI/GgXK2rTSQRGPqJTOMy0bDFnh9SSTXZ0gSDcZFg7TcPVuMR0EpMkzXiZfJauqrAmpigx5lLfJJUWeZ7RHIyYGZ2noYZEToNB/RQ+IybkCMs0aJrTrBRvpWvPcIu4TL7yGM3M5bJ/J93G3cRWGTtuMzm6xOnRw5wNH8Xzi3u2HSsfprt5hU5rm6noCi1jApGldLWHlYfM5Ou4+ZDYqjFBC51nqKjNbemTjFVAx1uCyn60hk83K7TaLTaZwDVgGBxAWj5lFWEQk7RXqM4cpuAY1DxFNVpGZgmWUrRknS4+OgkZmJNsGjMYeUwWh6Azmrub7MYGjxtnyEyfSr5D09nPjnuQrrefrclXkgT7cEzF9iDmxshgUD7Gri6x0H+co/2HWEouUE63mUpXqSbrhNJjgMcoSuj/JRanNwO0m/ytZxin/MiHz9EbJ/zIKw/wrpft42DdRwjBVPFPM2XhsbcxuPfffUNryeEWKJv22/4Qc/XzyP4qg3vfzejl/+YbvYy/wODenyQ6/Ga0fPFEtiEF33Zqmg+9607uP1TnX/3+eX7kw+fYHsSstEaUXRPHVDxz4Tydpz6C+/gv43/hpzC2nwbA++J/wnn6NzBXHkKEX3u3xnngp3nr9/445nib6m/fu6fg+EItTnjqnQzueTelj/0jKO2DPKbywQeQvZVvyj0wlOSepRqXt19ayeZNbvI3iRCCwDZZSK9xOL7ARKlA2rgVKRWNwEZJwZp/C08kB1A6pZy1wK+znle42FWsxAGRNvijNZOGo+mmcFnPYqUd7NEGSirONXOezRfY0nt9buM4I0WQpgnpuMPn0+Ns5yXcvE+CRBomZUfgELOg15ntP0UUhxTzNof6jzIRr3CJRTbzEk0qREmGz5i58XNUXLkXBCiFMC0CQxPkffI8Y11M0BdFEAJhl9hXMlFKkesMJXKWnaOcs87wx97ruGyewFGCxZqPUhI762ERU8ladDNFjiB2JwlMRYYgNgqEuaDmW5RswWK+QiVeg3TMvN4g15qxLLBt78MzwLVNrjVH9Iw6uVvDJGHsLTDSFsvWQVruEpkZ8Kx5kuXQJcrAKUxg+lXC8Zjt1GNTNNgxZhhhoxyPgqEZZ5I17wRKGYzsScZGkQzF88GdtI1JzomDbPinmJAdsizDSAbIPCaxSpiWS9+apG3NIWoHmPMFQd5hzdpPXfTITZ816lSMmFi6dN19PGud4Yp1BNs2KYohuYaL+RyPOy9jIHziXLFjzbOrJlFKYhmKXV2gJaqsigZbTODGLQypUVlELdtGI0mKS0jDxhEJlk73hEKyHlIIetoDM8DNRuSDLZI05h6exNIRPTxCbVDO2xSTbTSCbpTQo4BleZREiBQC2zB4Nt3HblbAmz2FZyrQOUOrBuMmur/Cun+URnQN33NIMPak+NG0zBmk4XBqusgd7jpS5NhuEewSWf0oa3mFo+0/Zr5o0pio4xgKR6Sczp+laqY0zBEtUebD8rUMZIFSuoPMIprdHtf9s5zX+1lJC+wMYwLHBMNlkJu4MiGOQ7q5wwiLzd6YkfAIZEjTnudc6RW0qLDWjwhTQAhSYeLnA3ZHObuxRI62cVVGIh0Mx6coQ7ozr6LnLZAaAQWZMIgSknjM/vgiM6IF/iSR9Glrn0wLkizDyUcMkoyp6CqXRi5VYwxKYdeX9uwAopiRCBgJj5EMMLIIywkIvXlaokKzcIy2OYfWms9Gh1mJPJ6UJ5HKYGyWedo+y1TRJcwEl6MSFQt8RmyZM6xW7qIlqsyEl2knBp3cJXEnGbqzPB+VsaSkL4IXgnzBjaxGhyJds8GmuUDkNjAMxbl0Hx1ZYzzqs0adYtIkTxO62mPF2M9ErYqSsBlb7EYQJzktipzz72Gr+i2c1/txB9cxwl2+Ei+yOvkqhF1gWLuFSd0iMQM2nMN7vbgpDLRDK5b0nRlCf4aBUeEzhQdZaTxAlAlaqUuc5czaA9x8wDCFSAuKo6ugLIwsJFMu0inQbm4yjDKSNAerQNOaI9eagh6wpJdp0MZwAjJp4RqCRavPK71rVJN1XD2iFO+g+qvEaU45XMF3HEr+njrnYnyRSrpNI1lDpSP83mXqnuBS5X4c22VsN9g297FmH+aad4Ztcx8V3WYyMDGNr1/EeDNAu8nfWnaHMR89t0maaQq2YrJg8+23znB2rkw9sP/csSLqIXvL5MX5l75gMqb8e2+i+PF/jP3c+3Gf/S0G9/8s4al3/pWn+hPZ7vYopjmMSbL8Lx4kFeMzPwBoih97F+bqF150PtuQvOP2OT7y/XdydNLn537nQ2SP/BK/Mv8pwiQjevw9VM/9H6judRLUnwZ90sBa/yLBQz9B9b13QxYhe6uozlUAPvz0Bn94YQfTNMm9SbpvfC8YDs4z79lTcQSiQw/Sf9V/Qv1f34W18hC91/wieWHuRQO+vyo/+fojvO7Y5F9+4E1u8v8x14p3sBubGFLg2iaf2vb4ZHILl8R+nk0arHRDLFNRjVeZyLcYzt3HO+67g7KRoJIuMumRCYVhONxqXOeOeopjWhhS0hYVnsr3E3g+RTFmMtvClRmeTFEItIbdPKAqengiRJoONd0mVAFZkiBLs7RVnS1qALREiQv2CQAOi2WqYoztBUwUbBy/xHPJFJ1IMpIFLquDFPMeIo+pyCFz2QrPWGdxXRejssiKnub5vmRUPkwx8FBoEkwW0hucNfYyTptqmit9xVP6CLG2CIWHNh0wfRJp4aY9hIDALyAtl9RrsG0vkOWahqcpuDZWPkQKCJOcLXsR17IpjNewFEyqPiqPaec+lWIJp1jDtwzQOTrskDs1KqJPEszhzhwnNgIuqEMcEssI0wavStU3mZEdZvQuy9YhdtUkVtLHlJB3V3nYfTWRWWKEg510ebX4EvvdIVfVQXIEddFlnQmauszT1lnGGUyzxd3WNRLD5zl5hLpn8GzjzfTwEIbDuphgSxepZLvUR5ewol3iVLOduPi2xSIb+Lq/5y+mM45mlznsxxQdg0g4BHqIl3boiQLFZJPQLGF4JZ43j9AypzClZohDO9zzyEuRrCYFrmRTrMkZWvYc3fEYO97F8stU0taeMp2G3cTlUunluJaiaKSMU41nGrh5D5TJMDMx8zGJhoFVo5h3uLQzJBcSoTOmRZtw4haeKNyPEIqeOYnSOQPhM8TDz/tMJKtow2Z1a4veYMzlpMFyVqEZG2SGz445z8ioEGlJrqHkGtimJJMuFpp+DF189hu7e/2RwuCGewJRmqMYrtEtHAVvgsBUSCkxCpNEVg1bScIMpthFJCMKeZfQqtHURZJRh5WkyhPGLfQTieGWGBllAtdjNB5TMjIa0Q0cERPMnWKgKoSJZjWv8elNk0rvPANrkqpuQjImOPxqhqpAS1bxB9cZRjHYBar0mREtNmVjz79M5QydWQapInJnyHcvI5wK077C131yy8Mho2JlRPEYO9xknAmS0hKz2SqRcNnvR5zWVziQXuG6fYSxPUmxVCVD4dk203ZGmOTk/hTXnOPY4S5pMMNqXMCKWziGoJptk+cZz/l3kuYpU7JLkT4LgaDgudTUkCV3xEytSmc45gvZcUQ8ZNU7xqB8jPXGaxi7DSajaywmV8AOEE6Zpewq96aP0KDLdnAE2/aYztYZCZuxVWXNOsCmmuX2o0tUZw5S9l2UXSC3C3uluvkINxuQKofJUoH9zoARDloYjOwGXX+R5jChpncI0hZppikaOX55krmig6wdpJ3ZDJOMG2ofWZaRFBb2+jZNied62EpSjDcxlaRujKG0j88W30iYS6ayLfq5yZcKryU/+Aa2nSUmPINGpcjAmeGGdxpBjtG+xEazQ8Wz2EqL5GGX6WyNsrUnAjVKchQ5mYauM8eyf5JxmuNlXabjq5TTHarhDfa5N33QbvJ3lHGc8f4n1njX+77CgXrA737f7S9qMm0//1GCh979kteSgw1EMqD19j8mqR3D/+LP0H/NLxIdfvP/q/EPXW3y7o9f4J2//RVe9yuP8ImLeya3b/2NL/P3f+2L3P0LD/Gt//VR4jSnOYhY7Yz/dLByiPa/luIf/ACl338H1o1P/fnJswS1ex4R9ymmu/ybi2/i/f7PMptc5+eeSPi5T1/hX/fezC/t+2WePP1uvvXi3yOu7nmyje78F/Qe+DXab/9jmu98ApSNsf0klQ88gP+ht3H+8x+gEbygJCQEWeUAANHRtzI+9b0AlD76XWC4ZG/6dQp/9IMvBHea8ke+A+/Rn/lqtu0b4T2PLjOIvvkiJDe5yTeTmiu44p9lnGRE2Z6Y0L0Hq5zUl6m7EKc57cGQmm/xfFzHXv4MF555lEq2S6E8Sck2sPwaY+WzM0oIRIItElbMAwSOBUEDKSQLVp8GTUp5F6EMRGUfm3ISw6+zai7xePF1DDOTpqyTJzFb1LgUVbkhZ7GPP0huVxH1IziFOr6lyPKcVWOBLAcNeLbFrNllWxfQQhLZdYQdEOUGqTOBlAZDs8I6kzza8Um0Zt9EjWtRgV5q0RYl3HzAQBVJ44hUuTwf3IFvKbbzgMBISbVmMwlwsj6BSNhWk3xMvIJxrsiGTfqjkFZs0BwmfDFaJMRGOxUGqcJUkhtRwDBTNN1FEm0ghCLOJVprFvyEGdkiRxPEW8ymK+z0ekzFq0xn61gSHMdjwta0q7ei3QlGKTwk7uBpDrGRl3DibebFLma0gxRQL7ikxX0gTe5IH+doBUrVKbLOCp9Qr8AxJKE28UVIliUs9B7lqnOS63qa82GFXpRj6ohhr0m9d46ZdJ1VNctFvQhaI4REorGkxiTGEwlWfYlt7wg1eiTKR5oOZTlkZxDy7LjOhXyesfRJpEs3Nemak4xFwECViITFOXmUXNk0U4uCqRmKgEh4LIgt5p2IauDSSJbJJk9zpfb3uJpN0lZlblgHsZSirEImRA/h1dm25yk6BqaC/x68ne3UI3InkGgMqZhVbQqFAMeQfN57NY/JMzQpIJMxM8kyUQ5T0RXW0gIlFVMUQ64YS7R1Acu2WQ0d2tUzTGWruFkfyxR0xymFyQXcyjTSMBnGKXGWcy1vcF3MoNFYImFOdTicXsYjpKtqjIwKTlCjaEsOeQNOzRQRQtCLMlqjBNsQPJYfYiwLpEh8leIRs6tLLPoZ+f77OS0uURlfZzwaY7kFdqw5hGFT9UxaxgS9idvpmg1ip4YQAiEEptAc4AYTok8/U9wwD7BTOMEK02AW6Koq5ybfvCezrgRXmeFcMs1z1ikGsgRAOdshzBXBeIWgWCE0PEZWjQ1jDiftU4rWMKTGEBDGKdN6m26UEUsXhzF+0uFK8Q6m61VunStRoctidp2dUcaqnKEk+mRac9AdMKmGxEmKPd7EcjwSs8S1ysvRyZgkzTlVgyhXXGEOQ8IwzhklEGWCp/pFdgchgYw5NFVl1s/YP3wKQwgGYcyGucRy4TbawRGqnonZv8E5DvNc5dXETp0dUedCNsP7jTcikxGTepfQbTAtWjy30eML1zo8s9FnkGo2/eNM2im7okLHbOCUGtwofwtN7yDUDtI0p+k6s9yan8cwTTqyyqhyHNuQPDcq8HxY4CnrFKYTkNSO0yocxzUNjDxB75zDmj9LyzuAbQgcPUKRE1iKpLSftjGJUDZBvEOcaVbd42yGkp1hAlrTG0c8NyqwIyZZjC8RSp/t4il81yOtn2Srdgf9wiHOe7ej+xu0yme4Ig4Qa4EEDsbPUcma5LVjhDLgef8sPVkmi8eMk6//m+emSMhN/lahteZ3n1zn8ZUO//GNx1ioeqx3x/zk64+8aHAGewFadOjBl7Zo1Kfy/teA1gzv+pd4T/06vTf8N5L5e77m+d1ojXn0Rpsv3mijNfzCW04SJjn7az73H55gpuQwV9orvfzjH7obrTX9KGWjF2EZkifWuvzw+5/k5HSBd965jzsXykTH3ka89ADOcx9ANS/Cwv0UPvnDmCufR4YdtF2g+/pfJ526nc63vZ+sdpQFIXlrc8gvf+4aaZrz0XObrHXG/Je3nkJJwQe/ssbJ6SLHpwp7J2+6AMQH30hz/l4+/ZFf4V8b78POThHr+/eO+RNDX6uAtvbG9d7wf6Klgefv7ecUPvUvGYxb9F79nyn+0Q+iBhv0X/nToL6+ZOyLIYTgU5d32Vdxuf/wxEua4yY3+Zvgdf4V9hcPs32lxK6s7PkhdUN8lbHS3GJ5UEZGIypZSLEYkihJJhS2kgyzlEtxlc+V7qM1yHCrNsMwZBDBvHmViqpyojDmDzK4kM1y0hSM4lUSFGEKdjagGK/TD27hWPgkZXr0Mw+rXGHHqVNKU3x2iDa/Qma6fDE/gUwhMkt8RU0TyQIemlGcIUZXMJMhc84O14xp9ufr+CrHtSI8u4Rllim4BUa5zYJsMjQqHCs6nGleYMWYRbllVgp3QdhjxyjxVH+KbxfPkszcix4Kev5+rmaKQ1znup5gSbTI7TLzhBRIqRSL9IYGE56JthXn4ho7xj4a+Toog3VjAVPBNcNgXJ/ixrZCZD7XQpdWMqZZrBG6s7R3+rgaxth4eoxVnmY0WKfQvMDUzEkGAqzU5tl0H2U5wDAM7BzqKmc67aFzSYrBIDNYDRWdccJVtUCj1qCkQrq9EWv2UU7l19lIykyrIXW9RSqqmH6FoDBB2INiZZKDo02cuEM7sTiuVrhoT+MKC18ppuIOKVOAZsNcwDMl67JBOPB5LJxC+CYH2+cZZyFFx0JHI9IkQmLQpETBLpNrKFgSmZv0RJE4g2NcwjLh8IRPL5kmyAe4Em4Eh5keXiCWJTasBQ7ONCh1RlwOjjFKyuSOjzFM8C3BRLaNkhKnwQG1AAAgAElEQVRXCMIcNmKH0C4wEdhUA49+MkkjcNgau2yPJdWyiajfS7/fZjWVpGEfP22xOHOaZFijnu1wwzvNYrZMkICQOSuxZL5iMLv7DOvWbawhMU2LLzn3YfZ3+H77UxhGgfmyS0mbbKYVyumQNeGhhcnzWY1lMcMptYqb7uClHYytL/PZ4t3obhdnUmEqQSOwqRgmriV5KD5IKj3264sMjDpajzCiFi0SCs2nuDD1Cp5rb2FPHEQVJkmEveexpQW9zCJqreDGAzqxQaah6pswaDE3f5DWTp9Sukslb9MnIktDivE6DadEd3KOOD2GqTeYSHZ53lxkgTapoVCJQCYhyg7IpWAntuiOwUt2Mc0ZhtphvXiWUrROwSuwLhfZCgEhqNUbjAYVcqEopC1a2iMaxmTBEa73NAVH8hnntRTHq7xCbLHKBIZYYcKMWM1qCKV4r/EPuH94Ad+doS5WeCIscUb61HWTjjlB2Xe4uBuCzjnq9biq63h6iKEjTCnxLMnOMMJ1x0ynNxhlkzQpkQ1jDlagJjoMOkMMv8dC3KdnOMwGBgWnymq/y9HeQzhEbA4SGjMWgaVIDYOpcJPtidtIegFO9yn83aewKvdzzjxBIK5StIZU9Sp/GN5F5pcpxevsdq4yDG7l5cYFFuLnaY1trGxEoQWOM6QwvkYh7yByQbr6BGvGWRI5Zikfspb6FKINjHSarcbdNIIe7s5TBJagXTnNSZUzW3ZZFZLx5K2EsU8rBlk8hde7jK8yUgUXdsZ4toWpY8pZj2mjS9Z5jN3qAxyYnWJm06bVLBJKn4ojGRoWY1UgMgK8LCKRX6Oy6s9wM4N2k781xGnOT/3hJX7zsVV6YcavPnyD85t9fv7NJ3HMFzeCFqMdzI3HiJbe8FdeU+2cp/iJf0bu1hif/G78L/0c3W99758LzrTWnN/s0x7FdMYJ3/c7X+Gx5Q5376/yL161l3F6zZEJvvfOeV5xoMbBuv/nzlcIQdExOTK556t0/5FJPv5PvoV7D9R49x9c5JOX9gxytV1ifOYHGJ/9pwAMXv4TdB/8bVrf8wjN73uSdPqOvSxX/fhXJf6Xaj4//+aT/MybTjAR2HzuSosf/r1naI9iHEPhWYo016x1/0zGDmjnHr88fDWtf/gZ4oVXYa5/kfLvPYix/dRfuEfaKoDhgluh+a6n6T74WwQP/3sKn/4xOm/5CKp9mdLH3gnxS+8je/n+Kg9dbb3k8Te5yd8EO/2QfO0rPGHfxYZzmM1+xCPX2qwYi9SLBQ7WA07PFkhyjY4HPF96GZZlYxkSR2Y09A7zo2c4OVVkGOfUfIuC5+HZBoZfYasfsa/issQarsrpmhNI08EbXqdmJpTEiCPDL1PRbWJvEpsxZQuS8ZBmqLmuZ7mqZ/H0mMb4EmkO/dzijLpC4BewDUXRdShagm1qrJkHWFb7MJWkn2gsw8TxCtgyp5TuUIk32Cf3TKt3YsUN+xDKtNl0D9Gy5tlNbLzROrdnj3PNOswX2mU6MfhBGYcIggkMyyHKJYYUzLCNeiFIdEyFFgZpDsPJs2Szd7KTV9hyDnIxn+W20oijwYhitMmEC74l+ZNc/czp19D0DjCKM5aN/azYB6g4EjPqUPIc0toxGtUSl+IaGs2xKuwruygpsaNdyqPr7FDmoel/RNWzSIyAKN8rsQuFx1A4dCIBgw0CRlRsTVvVGGFhSfBtk469SBhHVLJdJrtPYgVV1rzjlD2Hpn+InioxUS4QpTkyT0AIcgTjFJblHF9Ud6AMk2NqDW+0yqauctU8SDs1KFmSGdGkKCM2zXnMbIgrYqZEm4IYkzevYZkG4/JReqLCVi+krT1iZTPUBumwxS4F0jSlMX6ez11eh+4Kfn0fh2YaTAY2IQZCWoy0hRCCedVioCoE+78F2zRoqgme76QMM8V6LyJKM6y4w3JnzHDQZcLRLOplSkFA4dB9GIaiI0uMnGl25CQ71hzScmhTYjMvYYmESDhE2mI8HmElfbSGnqqyOvMAaS5Z74aM44yKb3Nx4gEumCdZVXO4ImZatBB5CtJiwzlEkA/ZP3gS5N53q+5Z5EJxerZIlmsS5ZMql747y42syhX/NuTULaw4xyjQp9S/zEV5kFk3RUiFqSNc16MfZcyZPSZdqE80mPYyJJr2KOFJ63au9gU32kOiwn5m8i3mZIu7pg26qkZXVYgvfZy29hknKUURMs0Oyp8gw6RvlPH8AitiksidxhqsYOgYv1ijlLexRcqB+Xk826QdpmxRYk3X6WsXPdjCJiQ3HKaia8zE17luHaIZSXxLMYwylsbPcLphEcUhvmMznH45fXOC3LDpiBJl3cMTY9rmDONcUTQznHxAWYwJHJvpkstU2Wex5lHyHSYDiy1d4Uo7oZMYCARzJYdGuUhUPQ5OAVNJTCVZL53FNEyWWMEt1Ola01imTZplJHFEbhbZmnoVztQxGuWANE1xTIkhDQbOLLFR5LjbxtAJpmlycnEao7LItcYD+GmbxJ2gHPi0I8GgcJBxbhKnOSvWIdLSIqP6GYonHuCGfZiV0h1cq76KsVWjUziMCiaJKke5XLqX5fLLCL15zEKD3C6hDIsnmopm6mAbe9/1i7tj0JAjmfBtyq6i4Ad0cg8jjyi2n2GrO+BWdRV/vM754iuRyibRkrXCaYJ4i0Frm06Y0nfn2FcrEMydJLcKZJiYbpko2Mdc5esL2t0M0G7yt4JemPDdv/UED19v8d7vupVvOzXFh57a4BfecpKqZ33dsSIZMrr9n6Pd6l9pTWPtYSq/+3q04RId/Fbc5z5I500fJJ26DYCrzSG/9NmrvOnXv8Q//9A5Lu0MqXgWn/zBu/nZN53g28/MsK/ivqTrDWyDf3jbXk/ZKw/WuLg94H/56HNs9/+0Jlm7VbLaMXK/8dXM1otx23yZ937Xrfzb1x5iux/xxv/6KLYhWax6PLvR43/92MWv9sWluabsmnzgnbdTK3ggJMnUbURLb6D037+T4DM//lV/tL+AskmnbqPzDz6C6m/gnH8f6Hyvf+8j344Y7byk+3HPUpWHr7fJvwnlkje5yV8XrqUouxb3JA8xma5w/6E6P3D3IvXAxvMLe5lzw4eZ25k7djd3ZY+zO0yYDGymygE1M2Pe6LA7jFCGwY6zRJRLshwwPNygymo3IlYegzjDESlDWSKRLluyQaFQ5kb5LtatJT5nvpJnzVPc6OcondAepyhyZg7cQmoEjLx5HMsgeqE3Zk03CJOMK/ZxRHGGejmgYObMpjeQEp7172aZBtn8PTRKHqFwMC0HDdTtjNGgx1Y/5vrQ4JPqXlb6GQMcsiwlMCRBuMZ8xcMyLS7nU9TUgK3Epxiu4RIxMsp4pmQUp6RZTnuckeU54yTl8bYLdoXW7Gu4bh6g5tvs6CK9RFCId1BCUnRNar6NZyou3VhGZPFXFWwdQ3E+mebp/4e9N4+yLLvKO3/nzuObp4h4MWZGRuRcOdSQVapBU5VAU5UQSOCWEFhtI2xYblgLG4O73asx4KZXNza0aaChZQYBRoWEJDSALKlBQ5VUqiGzsnKqrMyMjHl683t3vv3HTSUlSipJGIHW6vz+iYgV775377vnnrO/s7/97WSWkbBoqD6nV/vskKfu6vitZda7Pn0/Zp0S58QcajxkZvA0CjFOfQ/FXA5DlQmTlKW0gaarXCw/xLqxB0XTSSUVJQmJ05ShPcl8+CyTbNJSqpxRDnG9GxKhsZW6jNprFINVdn1QZYEiK0gkPOfcTd+Zo5i0uSN+kplqgS+b9+JJFkO9gdAdzkqLfDq5jTBJSNMsSDPlhKmSxbI2xxXG6TfuZEeu8mnlPtakBgVT4aA7QhEyipb1RBsTLYqiR9m1aOYNVp3DnOtIrPd8BkGMoWnoqkw9uEbbnqPnzlHRUxpbn2Xkh7RDiY4+gSIJzsn70GRIFJOiqTJIdQZKAVtV0EVMFKd0vYi5+CohEmPxCoq3y6e4g2vUUA2HfqqTn1jE0GQKss+k1kNVJKqOjqpka3ycpMRJgpTGNFwdTTeRFY1JeYcxNqmqHrFq0RDbFB0LU07Il8comRpBmqIrEgVTYRQmtP2U+ZpLPmkxo7TppzpXdofIScCOvY+xcIn70ifobF5hMBxQtVU2RlnfwXZiMXbkQSxdJ4piQLBsH2ZMHzGl9Fg2FtkcpfQrx9m/eIQvrgZ4woQ44nz+PqJhlzRNeD4s4fk+ozjlMhNcSmcQioYRdtH7yzgTB+i5e/nzxnu44t5OF4f+9jUsVZC3TcywS44Blzc7qGlAngGJUWDH3sewchQn7jIKE4ZBjB/FyGlAwxbIQjAKU/xEQpMSyvE2R/I+r6118bUS152jXFH20LRSEgQv6It0Yp0Lm0M6XkoYw0grszWMqKgeB6s6l3J30RE2jqGwrU2SBgNO7BlHItvETmSLx7RT7NiLrKuTxJKMZOW5EFQomzLTapvDkxXypsaFrsraMGFlpNALEiLFIlAcdEUm0QsMp16FlSvhhdkm1oYyzrWRxWS8RNGUucokV439yJKgg8OWr3LVd2mqfRquhjt3F0fHLSRiosEOlm0TJeDmCggifMVmN5AIKkcYhTHVZIuiv8wgTFDqBwjL+9keBKRCYmmnx05k8Fj+uynToh0qtJ0FEiFzzT4MxVlKhRKfUu/nM4W3UswXWUkq7IQKJVPlbv0KR502B8cLXHbvoq8UKZgqO4nF6tb2y643twjaLfyD47Mv7PDD73ua6ZLJLz9yiCu7Q37xk5f4pTcfZKb0jS3zk9w0w5M/9i19pvHMb5H/sx+mf/fPkjjjGOffT+uRR3k2nuQPnlwB4OLmgEEQ8zMP7uOjP3IXd04XAW72Cvu7gK5ku09jOZ28qfB9732CP3xy5W9FVIQQvO5Anb/40VPcPVvif/3U8/yLP3kWW1f49e/LmnT/4l9c5Cc+8Cx/embtq69D1hgdfw+t7/9UZrjSW3nZ2rK4coD2Wx7FPPNewtoxOm98H3FuCvdT37iX1NfC/obLj983S5LcImi38J0L0zBRNA2JhDsr2Q7wUmvEllyjE2sMw5iKa9EYXWYyvs78wbs4MV1hteNxuQfdVMcLY3YGAYs1G613FT9OSVMQ0YjbKikpsKU12fYVJFJ0f4sL6iKf1l9Fr34ntXyO8WSNI/6XCVINrdBEc0qkacykWOdayyMRKlu+jKWr5II11oy9yIpC2daIUrjcg+1+gGoVMsMTVaaebHDA9fBaqzwxqjMSJoGUSbWX1D1UzZT7nFUsVSJnO6iyRBhGCMgyhggKls6+qsWk3Kat1CmFa0Sqk9VJmTMMwwRTU0nG70CrLWDIAqk4hyoLzm31We2H3Bt/ES3uU0rbGHaZsLAHSTOQhSBJJdIU1sunCMv7KVoaE0oXWYI5rc0wN8dynCcMfTytRN2/yjCI6QcJUZqyp+JQsTSG9hQtc4aqFpIIBUWS2PAUbE0mSVJa5OnZs+z2+ow5MpaUECYpg0RhQ21y1r4TP1Xw/SFxkmDrKhN5nTgcYccdFqoucW6anKGxOvF6UrOAJCRyaZeBOYEsUlQZUr9HiMJZaZGJ+DpJMMLNV9jUZ7gg5lAkQSe1SMwqkhDIfhvJrlKtNtAVmQdbv8+CssptEzl0bws9GaIQoWk6I8ll5M6ArBKmCs14iYlyES9KkCSBQkit4NIxp8gLD02RCQKPF5I6/SglnXkliTtJlKRMlvOkVpVIqBiKzGTRohUqRGlK3tIZhAnftb+ONHkHrfq9nA3HGMp5cuEmdrBNWerzqhkbafM0UZxgWg5jeYNREOFqCqqSjcG7ZkoUbI0wlQiDIVLQRpYkrjPOpbTJspjgfDKFoUhM1cusFO9gY5DghTFhnOIaKqMwk40JWQEhcV2a5prcpBhtMamP2JCqmMEO23KNs8YxVvO3UyoUiYSCpsh07Rm25DGefeE6vVFAmlEQJLvCZpxDskpcl8bpyQW0nWfZ2VphTB1gxT0EkItbjPQyXXeeprRLorqkQkWvzbOhTrCW5JlS2oSay2qrjzZcpb7xl5RFDyHrrFbupVafRJ/IzFdKlkbNlukZ47TUGluihpcI1op34Y8GKFKWWV6sucyWLD7ZmWDD3k8Yp+wOA16Qp4n0PJvDhBEGTzqvZHJsgo36A5xrxRgEzAYX0cIu40UTSRYgwOxdI44yE6NRqqKoOsKu81ivzDCEiXSNctoiiBP6QYKlyhwSVykNLtGPVZrJKjIpk0WTVDFo+8CljxP4Q5TyDItlnZoeYmkyhf4lfK3ISuUe1HiI6rcxWs/TDyK6XkhFdNmbXOHCwLzR4iHFEAECONbM4xoK98wWGClFcp1zXG+N+MKWwjCSQM+x0w/RVZnWKCLc+0b8KCFKQIsG6IrEvoqFRIKrK7zlyBj76zkMVWKiYHGwYaEpCkbrAmdqjxDoZfLRFopICYcdRsMedbnNVOcJ5tMrFFtP07AFrz08yXrpLq7m7iBxM/M6SRakInPOVWWJSu7le8reImi38A+KJE352T87z2Ld4RffeABDlfmpP32On37NPMea+W94vNRfo/gHr4bkmzSYSFPEaBfry79C97W/gtK+jHbtk/zK1H/gTY9u82PvP8OVnQFRkvK6/TV++rXz3DFdRPk7JGVfCzlD5V+9Zp5f+Z7DfOD0Gs+t9/7W76UpMr/05oP86bvvYLPv867fe4pf+OQlNno+vSDmyu6QO2eKX7N/WuKM0XvoPxFXDmCe/m2cT/8UhKOv8SkQF/fSfsufoC99GvuxX2B4/J8RTL8KqbeCsvqlb+mcJSH47gNZz6FbuIXvVDzJfnyzAUDdNQiilOX2CM3fYWsY0/ZC1HREXg1xhEdtbIqcbaHlG5SLVTTTIUiz9iAvDHRKpoxraAzcOfzZB/mSdJSTk3lCLce+ksyaqNIVOYqGzH59G1VSKA4uMNGYwJt+NSYjYr/Hc2KeKJV4Ip6nbOuU6tNouTF6oxA7GbBPXKdkZZtAuiKTuFN0hcuz7n2kaUrN0SjoWU2MadmEcg5FlmmUSwRCJxy2KUTbTJVtqrZGSkoUJ4ynm5SjDWRJMFCKXNzs0fFiVFlmaNR5vPQwsWwAEqVh5hx71rmL4fZVXDFkGMHnksPsqeYpmRp+mCAEhHHChCuj+Nu4209i4eMaCpoiZcHY3jqOoeFoCnGaghCMjCqtTod8rsjF2R9kvXQHchox8GM82UUCel6MJAniJKUnuTym3E4sJMbzOmul2zHV7P1tOWBNnSUX7xIpNl4MqiToKSUumiewNZl+qhL4PpIkcA0Fz6gThAEjDPp730zZkFCdCutdj0vRGJGsc7f6PPcpZ6iGy7SMaSp5l2bB4C7lAnGandfWMGQsb6LJEpppY+OhJl6WIY0GKAKu7A6xdYXuwtvoq9kGgK/m6SlFJKdM2YCtfe/EDHYZmk0Wx8v4hXnu3lvn4cMN0jTljP0KSqUa4fhdRHJGgD1h4pQaaJJgY5jSk/OkKbT9BDduYyZ9doYBAIaVQ1V1PMlmX9VmredxKZlgWxnDdQpIxFRLBQJ7HPQ8n3lhl5YoUbQ0UrPKSu1VOLpCzlRQJEHOUIiSFC9MkEhR1ayBsUxMXhohuQ1asU5Ji7mk7GPJPIRSnCaVdSRJEEQJK52AfhDjhTGGpvPCrkddbKOrCp/R7ueMtMjAaGJFbeLNi6wPs42FYRCz7DsokmAi3WCvPWRC2mE8b1BxTWQBS+0Rn1BfxSXPQRYCEXsgyfhhTGPuGJu5Q9Q0n4n+GZSwh+zt4qcyebr4uWnmxysk7iSSrHJFTJJoOfKjJdTEZ7qokcQxieYyXimjJCO8WGZm9zPECFJZZ1MepytyzCeXOWRscvjabyHyE2iqCmNHiVUT11CYKjs0iwZRCpMFk5a1B69xO9esQzxh3YcvTNqjiOXAomwqeGj0tCqaYWKoKq6uYKgKI7UICFZLd3J9qHJwzEUQc9zpkLNNVoxFLvV0SpbGeN6g7YU0XAVUi/1lCcwqmqLi6jIijSg6BrtTr2dmdpET+SGSoiGLTBzUtWYAmNj+HF4Ey9occmmauqNnbR6CXQKhUCmW8KOExuLdLDZrLHc8nt8Z0S8dYbxgYxbq7NZOYWkykzkNRdNJjBJVV+dYM08jp1NzNCKzhtHYTzh2HEkIlkcyQRTTCQS/8YWrPLncRpMlZssO465GkKSUy3WUeEigOMixx44oMiNtYQQtcrk84+MTbNr72Zp9CwV6+N1tbG8NHx3SLNbKGyplSyUlxUoG9OJbNvu38B2I1Y7Hj73/DEkK7/+hk/zc6/ezMwj48UfP8I9ONr9p23X98p8R56fgZXqJvRi5D/8j5N0LPPbgx1j6/O8zvPo47UceReSa/PRr5/n4e07xr1+779tOyL4eDo/neN87T3BoLMdfXNjij/6W2TTIZJQ/+co9/N47jpGm8D2//QSfubTNz79+P39+botf+9zVlz3em38Tcm+F4vvfkBmXfA0kuSnaj7wf7fpfYp35f/AO/ADK6uNZA+5vUe74/z6/w4+9/8y3dMwt3MLfJ6a1DoE7iyzghZ0RXS/k/r1lGsU8s/UKXphwermDIgnsPa/g89dHXGpFFOozFAplurlFZElmGERcjMe4VrqXYaIwXXGR++uc3DfHetdnVd+Hp1XIp23WpBrlQp5VT2O15/E5cZLt/CFCyeCKcYAo9OmkBkma4mgKr5wvsxsqpKpOGvn4ksV/Te/galggSlJAUNd86nKX8f4zmIqEFybsO3ASe+4eYqsOmoUuK6SSxhPGKSpSHyPYZb0bcHDMxdZk9lQsFFUmkXSGicKuXGVv1aYzCtkZBGyLMgVTJp8rsm3MYkRdzjp3s5EUyMe7lOMdmkWTy2KSp1d7pKSMF0y8KNukebxbwk8EsdBojUJqrk7N1W/W99ZzFjlTIWdoSMC1TkI+2mSIzj7/WeQkwC1PMJ43kNIIL06wDYWipRDHKXIS0Ox+mVy+iqUp3DVTwVRldgrH0Nw605bHQs1mmTpCNUhL84wKB4jsBrosM1cpUrYUdEVCVxRsfzOrT4vaNK78Fyqiw97F45iqjJ+fBcUgVByqyghFEhiN/aiyRNnWaLgawsihGzaNnMlmz+Nx7S5UwwUBXqoQC42hUqAXy8xMznA5bfL0jsCyHEZBTM6y0VUFs9AgSiUK4SqxlidUbHKmyuXKQ3zkfIenl7tIksRu7iBtuYzoXMP2Vpku2+zJxUz1z6BIEMQJM0UdxbCYKNpMFCxMw+REs4AqS2zoszyeexChmjy/3We+YnOi/2nk0SYL0nUKYsimc4ji3ruxDZW1fkKjXkdIKdXbvxd54gRxmgk1NEliPG/QGgZYqkScn0SxKhRNlVC2iIWMgc9UskS+WCEq7MGqzFCKtymHq9nzpknkTAVHlSg7GqqiYKkyu7HFbYdPcjfPYA2WsMWIZWOeLQrcmzxBwxb0/Ig5vYOpymxLVZ4elokn7uKiNEdfcoCU+YrDw845TlrrNHI6Dj5e+TCePUkkaTyp3s7l2neTP/59jGSXtHGMq2mDbmLgq0VURaPtJ0gCRkoR2dvFHttPO7+fT6v30yse4nl5jme8GqkzRiTpbCR5ZBJUkWKWxikmO+R1ickjD9Juvpq92i77KgYbvsH2CHYGAaMoxdZkWsOQnKEwlssagk9WS+StTLKsqxJ5Q8XSVUaSRad4mC/qd/PC7ojWKGTNWsR3p0GSmBRb7C8pRHFKbxQShj6jIKIUbzBdtrBUiVEME3mDi9Je1rRZvjgcI229gBHuMle2EYCSBJysxjx/+RynN3zWkgJPsUgvgO38QdSwD8BO6ThOfQ+porM1CLBUmSBK6XgxpWiDuqPyZEunq9aZr9oUDJXHuwUubo3Qd85yzO1xz2yJvU7AUNhI/XUGQYwiK5yaKeFEO5TSFl8qPwzVAwAEsg2kRFad8ZxBI6cjBCy1fS5s9rFUhctJDbN1getyk09W38Ul7SD6+BFecfw2CvkSnxzs4fmggJ30WLMPsBEayIlPfnCZ2BkHMqXBwI8QCK6bB4gmTr3senOLoN3C3yvao5DNnk/OVLi8M2C771NxdHpexI8/+iz37Snzrju++V5m+sUP4O/9xu6N6WALMdgk3brAD354l/BPfwTXW+XZB36H1KryAyea3Pn3kCn7ZvAV6eF43uDRZ9Z4z385/dW2/N8CTkwWmCnbpMDds0Xmqzb/wweeRZUF//iuKbww5mPnNm7Wp70YqVWl88bfxdv3CLmPvfvrZikTZ4z2I48it54n/9F3Ec4+SOttn0AKelhf+Pmvm4H7mzjWzHFuo097GP6trvUWbuHbDat7Gad/mWVtjr4zgyQET610iIYt6FxHlsBUJdqjiJ3Lj/PQnMn++QWQNaR4RNuY4NPWdxGncERbY6r9OJ4wKfSfhzSmPQqRJEEia6y0hvRinetxma4XYxXq3D5Z4LhyhdzGFxjf/Tx3KZdojjVpk8fRFBxD4dHTG6SkyJKMVmzStmaoykOmJ2coGCrzNYe99oi8bdEwEm6fKhDECXI8wvLXiLafR4qGDOMUU5Op2DqqIuOFCRXaHB3Ps6/qsFhzkYTCINV4Rr+D0sQiO4MQQ5WIVJuBWuJ+c4mV3Al8xaHjRRzsf54x3cOxHVIEuiIzXTSxNJmpoolraOyt2MiSQkl00VWNkVkHIIoTkheHLEJwcrLATpojEQrCruPmKqwEJp1Y5oGFBuPJOssdj7IBeysWcxWHhZqLmq+jSimhZNJNNVbaHh8/v4UfJVwOi+ypuRww26QpzAyewR/2OJNM09QGHC3f+Pz6AT5bfhuyJJAlEAgUzWBdaiBHI5yZkziVSd59appSsIwfxXSrt+PcCI53I4PdYcRWP+AJ6z7acgUpHuHHKQVT436eRA67eInKWGMcR46Yiq5StRX2NApcEtPcLp6jMLqKpkpsijIXzWOs+iY+Cnfck0YAACAASURBVAOtSpCbYW3sNcRJyt3eZ1gsyTTyOnVXwy/sYcdP6AUpPWsGxSqx1ekTxClBkpI3VcLAw091Do6XuRCUaUUal7b6pGlKhMRTfpM75uq8/XiTiqMT1m/DrUwSlhaR3Qa36SsULZ2eHyHFEZ3rZ9Ekiapr4ccJnVHI6CtKDpFllqN9b2JYOsxmqGHqGn1znGfcB7iUvycjRHqVvKEyltOJ4mxNahbMLDOagiwLSqaKpsj0/Zh8Ls/5tV10KaGkxQyDGHdwFT9VeEI6ysmZGnVXZyfOyim6wsbUDDavPENlcBFTREwWDMqOThAEFCpN4iQlSVMKW18i762gyoJrcUaeh0tPcrbwaiYP3s9hdY28mjB/8A4KjRmiVCAJmJxosm0vsNWPmPIvctTcRrWKlMtV7KRLMtxhsjlN+dBDmJqCoyuoYQfdrSEkGXm4gWnaRP0d+kFEuZAjcSfJGyqrvYieF2WZwTChaCp0hcu5a9dvKlQsVUZTBMs7XSpJi32dz6HHGcl+3WKNw9I15uOLaPGQYaqy2guZKlosa7N8IjpBzlSxoxay30EIwTBIKJgqt6enqUfXqTX3YloOkZo5QY/sSU6rRwm6W6RxSLNep2iqTBUMcrpEbrhMKmXPtjraxlj/EkrvOnGS0vEiTFWipCW0vYiNQcSh8DTl0WUsVeZV+ypMFgzqOYOWNs65YY4za10+smqxShVz8jYGfsIL2wM2ej4p4ivD7a/jPUmBJKEsuhwZz5PTMynvsakS++sOzaLFIW2TkTXGVLrKwvDLVBydMh0+99wLbC89y9HwKWaHp3E2HudO7SqWrrFVOEb5wGsyY7cbc1gQZWNWkQU15+X9FW4RtFv4e8UffHmZX/vcFWxV5kPvvoNGzsALY37yg88yW7b4iVfuQXwDQ4yb6G8gDTfx577ra//bj/ivF7f40B//OvZ7T7G602btLR/lvfnf5FTTwnnHBzgw89/Q2PrbjIMNl999x3EOjeX4J3/0DEH0rcv/0jTlP3/xOgVTYbntMZYz+LnXL/Lx81u88/ee4gOn1/jStTZft/RLSIxO/HNab/sESAr6hfdD/NLmiqlZov3mPyKVDfIfeCvIGsQB5un3kv/IO78pkpYzVA6PuXz+6i03x1v4zsRm12dcapNrLHDvwT2ESUqSwCiM6Xs+shA0iw4lU6VqaSDJ2dgPhyCrLLghp4LPsVB1sHSNqUqewdzrSZ0GYeME5zb6HJ3IEacCw3bpWFNsl29n6Hkct3bRG4vIikbJdQhlh1CyiIe73D3GTfnfeN6g6ugoioxjGuyQY74ocUBbZ6PvocgyqWISlxc5Y9+NqUrk80USu0FijxGbZWzLZrKUQxYgCVBkGUUSdBONpfYIP0qI05RYUtAJ2Kes4xrZrn2SpFnWJtzgtHUX+biFKv+1A2Ma+5wOx7nuHOILwwme3x5gqTK3NfOs9wI+PNiPL9tMLtxFa/JBAq1MLBRMVSF90doQJdDxQkwpRFYUdkWOs+btJM17WLEOo6gamhQjAbVqnZpjoEgSmiKx7mtsKBMoIkVqXyNMEgxVxlRlBNn9NDSVthcxEgbdykmON/PMHLiTA0dPce+eEi0fRmh0cgfw8/OM9DKjVMeTHcLSAkU9RQjB89t9RkFGQiZKLq6h0vFCxqyUmqNyaMxlyr/IknWQ8aJNP4jRFIkojjFFxFV1L0FnnQIdPKuJJGRqrsF81SEOAwwRkcQJiSRTHF4lVhyi2jH61jR29xLF3WeIU2iXjmJbNnXHoOFmksY7p4oIzSKWNIKxO7lon6RgKlRsjbypsumrmCo8s9qjp2U27LIsSIGJnEGYJDy92qVoZS1WvtzNsd4PkZIQI2yxrznOwTGXkqXhCZU159BNWeN618dQsqxXpGZZljhJWetHaHJWpzOU86yrMyxE5zgZPkUp3qZhJViaTM3VGeh1PMnmys6ABxdrHBzLIwsJirOYqkyQJLTsPWz72b11K5MkuSaX3btwhMek6eOaKtuDACXoEsQJYZxSNRIWcxEVW0ON+khpylLLI5y8l+1Qp+tFyGlI4tSpVavoikTRVBnXPNTuFYIowZMdBnIOKUlQJMHVnSE5U+eBvRWe8ytcrDyI6a2RAodnJpgo2hD5TOcUlKiPngzY6kc8ZjxAKmTao5hANtl/o22Ov3qanhfTMyYIJIuLSYNrjdcxX83MNlRZ4lprxJXdIVNTe+gXDnBysoAuCxRJICEYy1u0hcv13DEwywQ3NmXC0jzr+hyhZDBSyxSr4xQtFSHrVIt5jkzkuWYd4fLIJG+oTBQs1ro+SmUfAynPTHyVHXeRzeJJAFqlY+T2voLxvcdRDYcHSrvEScoojImTmNXyKRKRkRVfdQmbryDJz9DMG1iaTJxCX9jUG00EIOqHGB+fAmAYZpLWOE3JF6ukep6VjsdMuoyjplzo29TGJjk24TJRMEhkk5HkIMh6252cKmCqMo4hEw7aXN7O3KglCRDSjYy+YGx8mu3ekC1RYdlcyFxogz5xMKSljtEzxonsMVrmFJv9CCvJylQqjSlSI/MvmCyY1OzsOsdzBpr88hTsFkG7hW87vDDmn7//NJt9n+ttj7Nr/RspZ4kwTvjpj5xDlSX+7etevtfZS+DU2X3HF27290rTlIubfb58vQ3Az338PPFf/nt+YOeXkawyjYJN889/EKvYoPuG94L28gWa3wnQFYkfu2+W973jBJoi8btfus7Hzm0QfRO1Wps9n3/xgWf50LPrvOFgg998+1G6XsRvfmGJ/+3NB/hn987yR0+tcnlnyJeWWvziJy99/eyVakHkYTz3hxQ++H1fW76omnRf9xtEjRMUHn0zCJnddz4Gskbxjx5Ef/Z3v+E5v3JflZ1B8A1fdwu38A+BWk5HkuBA5zME688xnjM4OVVAMVysYoOFmsPlTsIzziuI57+bVM8j0ohUtRGKCUYJhMTzOwPaiclGaDBMVbYTB2X3Ig/tr5EzFFIhQRzhKOmNuiyJa+0RYeCxVTiGn5slklTODhx2Bh7Pb2ekSZHgQMNlresx5hpIQtCTS3S9mC+9sE7eUAGBiEMKSQtFNdgsnGA5cEDWiIp7QTHYqN5HT84RpSmbfZ+9ZRNVFjwtDnJ1Z0Tfj1FliYFeZ02dAiGx2fN5zUIFP04IlTwiTdnpjggG21wVkywbC2iKQi8xyOfyxLlZOtYswyBiZxjy6YvbhAm4wRZ7iypXhyrN8UmWxx4kknRUWZAimLjRYzJMBavyBFVDUDMSWqOQ9Z7HUmtEe5TNY9fyp+gpJZ5aG3JldwBCsDsMqAQr7JE2GBc7xHoBWRKcmitTd3UWazayEGiajufOoaQxbtqlZGl86HyXv7rc4umVDmOuzr6qzcidpVoqE2p5XFNlaE+jty+BlJGWw2M5JmoNposWoyDmUv4+nnLup2pnsrHuKEKeOkV+fIHlbkjJ0gFwDYWcobAjSiwHDolq0RNZlidJUy5vD4iT5CbxVaIRkaQhy9APExACKQmQO1dZbo1YTqt8/MI2Hz+/CUDF1giTlFq1wXS9hCQrpGYJXZFxdYWFqkPTlXCVlHreYkuf40r1NRweyyEJgaXJKELghclNP6nDygpu0sEIdhBpTGLXaRZM9lZtFmo2h8YLlCwVSQhunyowV7GI4hQ118Db+6YsGynA1uSbwetAyTGUcrQjCS1oo9zY7JMlQSobJIqdGS7YGrae1fe8ENdxDYWTzTxtZ56hMAnihBptmnKbJEkYKkUCNC5tDYjihPmqTdnWGM/ppEaezvi9CFkh0XMATBRMHtaf5P5yB1uTUVUVszKDpxbQFYmuF7GtNxnNP8zrD9YQksRl+xhRcZaLWwP6fkTXjxECDBnaXoQxfQdr+36YxKyw1gtQZMFSJwRJQ5CRhLypIInMBGwrLUBlkVTPoedquK7DykhlIm+wv+5QsTWSNMU1ZBq5LC4ahSlf/PLn2SOtsdrxCeKU1o1MfYjCJeMIK7mTDCK43hrRGYXERpnV4p0gBJV4i3v3T914r4j2KOKL11pstDvE/pCtgc9a12eyaHJBWaC1/x2cX9kh2bqEnGRruUBwaavP1vXzyFtn+OSZK9zWzGfNoIH9M5PISbbx21WrpFF2nK0rGKrEjrPAitwkCBMmCwYXdmNQs/htpeOxNQhZaY+QJEHN1Zkr2wROEzWNsPovsLLTZqPnMwpipKBPSR7eVCqVbQ1ZEvhaiUDN3ZzrVUkCIXNtZ0THi1kZytS0kHO5+1DrBznYcNEqe8i5eSw8Lsd1lpMycSrYnnkDbj7riftinJjMc8d0Ifvjm4h1bxG0W/i2Ybk94sxqF0OVecPBOj/zkXPsDgP+7+8/iqMrGTn78DkGfsQvvfkgmvItDMfYR/rUv4U0Zrvv83OfuMgbfuNxfvSPT/P4tRaEQ35V/WXern2O4ds/yvCRP6T0obcT1Y7Se/D/BFn/tl33twOFGzuUU0WT335sidf9X4/xv3ziQiZleJE8MU7Sm8HJT3zwLOM5g9/9746zp2Lj6Aq//JZDzFdt3vX7TzGe0/njHzrJd+2v8TMfOceTyx02+v7XlDsCoBh03vQ+otICxT9+A/LOuZe+RpLp3/dzjA69k8KfPIKye57OG36HqHoI5/P/DvX6X72sO+T3H5/gHbd/52Y1b+H/39i3Zy+xkvUzFGnM1sDn05e26fiwO4xJyeRWlZx785hUcxF+izQacmljl6qro0iCo9YuLgMixaanjyGiIWfXung3XOj8MCAWKtvDAATMlkzycZZdDoSGrQhOaleIzRrXRwaGIqFKEk8sdRgFMZv9AF2RyMc7qBLsLZtozRP4ah5kjd1uD9dUSOIIEflIwy2U1mXU3nVSsgAlp6tMFS0ubI1o+wlTZYe7Z4tUHA1FEgxjFd10EEmArSlc3OyTM1Sqo8vkoy00t8gz+VfjWw18yeKL1v0ohsvW2GvY1SY4MOYyXbI40cyRM1SCOGEyvsZoNGSmlJke7IwSbC0L1CAzkwAwVZl9NZeWlKebX+ChxRqOnjkxWlpWp+Y4NruVOwi0MqRZQHRkLI+z5x76Y69gkJvnefM2FElwYXNIEKfEaSY/ioWC6m1RUAIq/hJn1nrMDZ+mMLhEz4tuBnhhnGQtAGaPsWIdZEFZw6seJRzLsgd+lLAplVlVpwFQgl0qSYtY0vHSrF7qtj3T6FunUWOPQRBTsTVKtkbZUgmFjC/bjDA4bd7NUu1VmKpM2VZp6U3M6h5OHDqErxUZyDk2ewHdG2tAohcYahUg65k5UzIZz//12rfUGuHky5SkrC5uujnD0th3ccd0kaqrE4QBYRhSLxUQQnCtHfC5G/0qr7dHuDfuxVdiTVOVKZoq/sEf4PLYG9G6VwHYX3d5w8EG11sjLCPLIGwPQnYGIQ/Ml2nkjJvKmQfmK9RzBsMb0seBWmVbHccvLNBNLaQbxE2WBEO9SqF5IHO4lAQgspptkRH5es7AUGTWlUl26/cRSypdP2Y7VHnSupu1tJyZTuQMpqZmmK/YrPdD+kHExc0B/dIRUG0Ojrmkacr5oMJnNw0OjOU4PjOGtX2a3Wun0eSM1M7rbZzlz1B1dOTEx5ETUqtGmkLN1VElQRin1F0NS5VZ6QSkS59n48ozJEJlpnSjbU80gjThxGSBiqOTN1RMOaViq4g0RgQ9aqbEjCt4ILfOgYbLW2+b4PbpIh0vJk6yMQxZm4dGpcpuf4SlychS1nM2SVM2On1yaRdLjujKJRYbOQqmiiYLDlkdktI+1qbfDJqLoysca+apOzp5Q6GScxkVFrBuOJ/6Ucyp3kc5eeVXSSWJgZLHV7PMESK7X0JRSAszHKppNHIGk0UbW1No5Iybg8gaXGez89VtfgzToo/FmWSapbbHvug8W8sXaBYMTjYL7K3YLNQctvoBZ9d7LLWGPBYf4OrEw9xz7Dhy5NH1smciBVRFomCqN99fEgK5NIeez+TUzg1DIoTg8IRL3tIRksRpaTGri01SJAFyf5Vw+zJiuMmU2mF+8ATOaI3C8ApxmrLe+2q10VrX58p2/8bC8I29Bb45Z4VbuIVvAX6UoCsSZ9d6bPZ9yrbGbz22xELN4X98aOGGfCPhX3/kHB0v5D+85fDNBfUbIYoTzqz16D39fo4tf5iV8R9hqmRTdjR+4Y0HONhwUfsr5B99mERzSKwqIvLIf+Qd+AtvZXDXv/ymdi6+U3H/3gr37SlzcWvAX13ewdJkPvvCLv/mo+fRFYm+H/G6/TX+zUML/PrbjmBrX/2Iq7LEv3rNPAs1h//jMy/wm28/ytuPT/CGg3V+50vX+e//4GnypspPvWYv986VX3oCskb/gX+P8ex//vokVwhGx3+UxG2S++g/ZnDqp+k99Gvolz5M7mPvztwf3/rhm822/ybe9+VlTjQLLNSd/9av6xZu4e8UV4xDKM4yW16Z+clF9isejqbgz52gk1osbQ85MVlgT+VF2fnIQwp6JEaZhYUjLF25wELeodW/xuGGSlXVkcQYia3gB5l8S1NkHElnStOY9S1UWeLQWA4/N8kJNUEXh8hFWwzWCsi7l2iWAsZlg2bBxK46tNayAE2RBAmQAJIkc9avoMkSiVXGdbts9HzmLIPEGCOxqiSlfSTJ4yAkbF0wVbR4bqNPkErsaOMIIVF2dNa6PmGSYkUtKv45fPc2XjFX4hPntxj4EYorECSstEfsrdhMds6z2upywbkz68F16YMEtWM8szLJSsdjb6WMayg3a0IkRWG6aGZui14mmzQUGSSFr8zePS8i6AWM5Bwtc4713RGGIpE31RtkDk7NlPjEuU1yuoR6I2D144TTWyGOYvK96TZyBA13mn9yeBZJktju+3T9iFhxkBWNar1OTJkFbIp6E+8G4YFsPu3fkC8O/Jh2IMgpKeguUm+FpLSPqaLJ4MBh2qOQQRBzUpxnoujzpDSJW6jywESZz17eheIxxvSzBB5sDwJ2pCqqt0FBidivrLHu9ZHtiETKyNsjR8b42DmZpT33s7zp8YA+ohv3GcmVzNkSQAhsfwPI6r+vtzwmiyb3zJX40lIbW5MZyxXx8w9DlNwknckNNcqBkoK1nvLkekSzaLDR8di5obKQROZsmf2e/RyGEbqjslh3eXIJEi2bwx1dwQtvSNnyJepAZxQwWcyah3/lXCHLtji6jGsotEYhpBE1LSQ/+DJluU9wY92QhCCWTWLZvHEcpELCVBROjBd4YjP7DqZLFu1RSCAZjJQqJd1mIDfRhiGNMKbvRVzdHbJvtIsXxTylnWSx6nBqsojUbpFZOsBK10cfn8IWBiKIEKT0zEnkwnTWhD1vUDASAlIcXQElM3UxwyxIN5SMVBuKxAvLfSKzyrWx1zHcusLR6b1cWoooqhvMOzlEW4CQ2O0HXNzsY+sKzZyLESko7edJjBKqvEWutoA86HG263Fhs88dU0WmSg7eauZW2swbFG2V0u5zaHqMqcmAQFcyCeneosZoM0TxdlHc23iuuMjh9idJ44Rn9QPEFZ/QNEFS6HkRkF2nEILLtYco5gxqrSvk9IzsV4u3M1WcJt2S2dSmMLXSzXszX3WoNsZ4buck5Yl9eGHMSugyJboAN9oZwCi3h6nm4lfNu111jCWRY87R2BkExLXb2DdeIlQdnl3rstn3aI1C9lZs3nK4weWdIX6UYDvjPL3+JMcaDeaaOVJH55o/ydOKR/NFSh1TkxmODFQti2n6Nza+ReSx2vEZ6DZ1U0WWJASw1sviWiHLDIwGLfIEox2WrINMKxKDwQgtTV/SNiiIUwLVpexolCyVb4RbBO0W/k4Rxgnf994n+E/fe5iH9tc4t9Hjh973FA8fbvAj98wghMALY372z87TGoX8x+859LLkLE1Tru6O2BkEnJwq8O/+4hJPXm/z28qHGBz4fppFC0uTec89MzePUTafIirsoffgr6KufIHCB9/K8MSPMzr2T/8evoFvP4QQLNQcFmrZ4nf7VIHfe8dx/CjB0RWqNwpP/yY5ezEeOTLGmw41iFP4wDOrPHK4wY++YpbvOTrOz//FRf6nj57nn949w1tvG39p3zch8A6/CwDri/87iTOOd+DtL/kMf/5NxPkZch/9YZSd8/Rf8T8TVg4iDzeQukuQpiSF2Zccd3V3SHsU3iJot/Adh8PTVZ55QTAY9JEUg+NNnSSFrjvFrCTRCbc5t95n74sJWpo5JyIk/PIhtnY1xlQD1znEpWiHi1sDjtjXkGWF4/NHWe14jOct4p0UIckISdAs3thZjwMqjo0YyUjDLUaYbEZVDLtA4gsMRaZkabQQN6VyilngutFkvVfi7jEjC3CcCSIP1BtStT4gjXZJ05S0cRtpW8bRYK5i4eoyPTnHvvAsqnUcP8oIiaZIHCxKDLbyXNYOcFeScnTc5fRqF18vs6OqhHFCkoIZ7mDekDApkiBvKOyGAzRZImcoPLfRp1kwsDWFnfFXUdYdvrjU5sHFGiVLZXU7xItiQslAFnB2vUfJUlER3DaR55KfEkQJ+2pOtrP9ojnLNRSEIcONeCyME1xNpqkPsVvb5IrNLNNoZfPmzjAjDubOaV49KSH0lLSzzrY+xmj7GqVaysBo3Li1KcUbO/FCQLOcZ3cV5pb/isQukJDN1wcaLl0v5LGrLZBVhGmRSBqbpdtZ2+jzirkST+/02ej4uIXsPC4o+ymELXqRTKtxlK3aq1i0HTYGKV4Yc2a1R5xkbosAy5GLXC6gRFkWEACrQhpk/x8EEWGScmVneDMLtt0PkEUWdL84lJy4YfM/rhWIDYXD03WeG+pc3R5Sd3RURWIYJuzeyNR95dved+B2Ovo4QkDPnCQx/loyZqgyx+dnWOt6AOyt2Jzb6POVW/XiVWY8Z3B4zMWPErxRhBJLbKl7KDKgo9Zf8lwqssDSFCAz4SiYCpCdW5RkzomzJYujfocn2hHjpb2Ypka35yFLGYFE1tFthclqic4o5OJmn/1adlayJPjuAw1y0dOE9eNIag5NdmnuezeKqpEKwZ6KTeyWmL1z9qbz8nrhNqYKA6quRsVRSdKM/FYdhZUgZX/d4ZlompHsokTLbPVbtOVsoKaKhWPIFEyFMIGZWh7Vy0iMiDyCmVfTH/ps717DncrcRLt+xEovwp1+LbqvoGvZGE2H2+RliZV+gCSynnOnZoqcvrCFqo0hzDrDUcRSa8RcGKNrBuutHiu7PY6MLkLltaiygalKbPZ9Nno+u8OAEzmDSyMTNexz9505vnjRxRobI90+Ty24hh8exSlWgYzQy63L0FtjOzqCGic8JfYTVyz2AbftabLy7POsyE0K3lcbknlWnbodo8qCmaLJ855MPrQ4fXUbWcraZ+z0A2ZKFo6hcGq2yKPPePT9gGR3g+UgZXwswiQjgna+ytiL5Ievmq+w3XsQVVd5tW1wdXeIEIKwepj1uIcYCjb6Po8cafCRs5scarjZHOOMMae8wKZqcGnbwFJS1NRHImamZL1E4li2VcK4TGXy7egXP/iScfyScf0NX3ELt/BN4KnlDtd2hzx8ZIzfeNtR6m4WHCRJynvumeHhI2MAdEYhP/nBs+iKxH/8nkNfl0S0hgG/8pdXePxai0EQ84aDdU5OFfiXr/7/2HvvMDmqK3//rdw5Tg4azWiUc0ZIiCSiAbNEg8Es6zU22F77C+u113mdN+CwxjisA9gGg+FnggGTTRYYkJBAKKE8kiZP93SurvD7o3p6pmda0kgIMNDv89houtKt6lu377nnnM9px53eS/S2DRin/JFYbvh4bfOfsCUVy1OL7QqhbfkTvqe+QuKk/0FvP+utfwjvEC5FoinkPuzjJFEo/hAZlo0sQa1f40fnzWZNR4zr7trArS938N2zZzCjzl/2HHrLiQTvuwIh209m/tVjvJNGzRxiF95P4C//TPDPlzJ42s/Jh9vwPvstXBtvY+Dih7D8jSXHLG+N8IvndnHNirHGW4UK7yT9o/IjN3cn2dWfocavMZDWaa/2MpDJo8kjFp2cbHMQRFSXGzE8EXfOpLmhCUFoYp4UJ5w0wXYmX4Zlo5s2OctmAI36gMay1ijERlxYEMCGma5elLAXu9rPPHcQ0zRZ3RGnQZN4LaHTFHWhoNOib2Fi/UIUyUmMR9J4La7Rp+pMmOAC0w+2iZjpRQqHh5suCCyeEGa7mMIVc3HS7DoEQWBrdwrBhu1ZjfmigISJKAjsiWeZFPVQEwpgxbN4NZmuRI7Zolj0tiiSgCKLTKsP8rrpTMYXNYfYMZBmIJOnIRph/f4Ex01yVt+396VR9Qy2BR2xHNU+jahHIeRW8AZcJAYtqnyOFH9z2I1pgTRiHEpkDWaGXZBS6cSRA9/h04hldLrCC2mkq+Q73RfPYlga1Z4aRNWHFN+FtyCMVBdwMcGfZ8DnhjxYNkVvVXPIzXbNQ8Dvw3SLWIGWkvOalo1HldBbTmOwPwu9GWwcaXRJFHDFNlMbFNioSkgIRDWRme4A1Tk3LjtLk8fA8nrpSiUxbZspNV7qAo7gR3dCp9s/m5ToJ9T9AnqhTamJZ9C7Yw/ghBnuH8wVI1xyhsWiCSG8hQVSVRp+ZrppIUsC+9ICKXUqfnc967d1Mpgz6EzkmNsYQBSGPWdD/82EphBSHS+nP9uBmgxAYYKezBk8v3OgWEJndyxLT8FgGOrSQ/8VBAHdtKnzawheEXsPJNU6dGMnsntsfdSpNT7HECm0ZeTPkIBAXdBFc8iFHDqTF5/ZjbsvzawJYUyPTHPYQ5VXBdviqXgVr3WlmVzlJeFqwvRqxYZlDZOsZyodMZUNXQmOb4/i2/UQZqgVo2Yu4Bj/W7qTzKjz41VlqqO1xDwKc+scwZ2wR8G0YEGTn1ZfHS5F4vWuJJOrfbhEo+ApD2LkF2F7qmhU3HQndGKZPCG/j4Bfdfx5RgYxn0L3TCAXlZlVHyiG3eUMm/68AgWTAdonvAAAIABJREFUWxAFdMPJJTVrnX0GMjoNQY20rtOsdzItOIec18tp02sQjbPImODZsIEpSpqBmmOoV9y4BLFgcAiYtl2c4xmNx9IxmGZqSud0bR07XtqEHVqJIWhMrw8QaQzz0u4YCAK2O8L0uSvA50MQBOY0hooL9B5NQZEEwvp+LHt2yffnS+/ByHjpSYTpS+mcM7uOvpTO1Bof9QGNgEthTkOAeCbPur2DGJbFQDqP6rKZHnIj6U5BbTfOwlLApTCtZngBWDctPJpGVeGehhbYbG8NsybVsHdjN4IAyZxZ0lcBJjY2kEh4aHL1UN39HIIf8pIT9aCMEgHpTer0JsefY1/JQavwptjel8KybTzKcNx/rV/jvg2d/HHtPmbWB4rGWedglo/dvo66gMYPzxs2zizb5vXOBL96fhcf/cMrrO2I41Vl6oMuvnv2DB795LH860ntgGOM2AVZd9yFiUThx0hMdSLFd2PUL8ZyR/E99y3i59zynjbO3ixBt8KXTp2CLIl8+f6NbOpylIcWNIW45SMLOHdOHVf/cR3feXhLMa9hJEbtfGLn/Qn3qzfhefnHZa9heWuJnXsHlq+R8J1nIXevI3Xsl+i/fDVCLo73mW8gxnYU9188IczO/jTdibFqkRUqHIx8Ps91113HJZdcwmWXXcaePXvG7HPvvfdy/vnnc+GFF3LnnXcCYBgGn//857n00ku56KKLeOmll8qevz+lF/NuAKp9GrMbAsxvCtIa9WJaNouaQ7iVET+toorlqQJBwqvKHNsaKW7yaTJeTSIenU++dj7gTJRDHhW3y0fb5PlMqXYK6ObaTisKG9muMGZ0Glb9EtpbWljaEsbvUnCrEjPrA/hUmeaC1y3XcCwTw27k3td5pWPQCQVTfcyZPovGoJuMbiCLAmagGbNmDmb1TE6Y7ITxDXkCqnK7yeYy/OX1bhK5odVtm66shF/fz4LM07hVieMnRZnZEGCL3Ygr0oJHkUjpJnnZi+pxkuMDboWuhE7E50YseB6qfBrTa/w0BFwE3AptEQ8tEUcQY0qNj6BmI4hOKFLetIfroQkiqiwQcikkciYeRaI16in5jmr8GpZl4S7UT+tN6WzsTpIyJSQzg6mUeuoTWYNtPSnM6FSM2vnka+cRqZmASxGJZ/NILl8xV2hpS4i6gDOpS+dN8iaO8lvzSpBLV8910yaVM0FSQHLaEvGonDqtBpciMWn5Jbgb5lDrU2mvdsL2VVFkUUuEkGLQEvEWQzf9LoXmsIecaRYni4PeNlonTMSrSliFfDvTU82gt5XWqAdRENjak8LGZkFzEJfi1GAbqisnCEIxakEUCkp//jo6a0/muR0DALhlibZC2Za2iIdVU4e9IwCrdwzw4m5nX1PUsNRQ8f5VSaQpNPxMFGlY8AVKPWhAURnSFiQiXoWAW6XFnSGY28toNuxPOKGmQ+GPI/yBNX6NE9uraA57QHEjSgq7+tMMpHVkUaTKq/DE1l5y2SQNapaApnB8exVz21swCnmEAB2xLPvlJtobaqj2aeiGRW7SBzCqZhX3SenDE3hNFplc7WUgnUcSBSy7kOskQk8iR1o3CbkVfJqEjY03WEM6MgO70G9sUebVfYNs6U5R69ewJRev5RsdT3zraRhVM6gOBZjR7syNHt3cQ19K56IFDSxqHn7usiiQqV+K0bSCEydHEUUBl+KEUV8xJ0DEZTMY60aWRJ7b3k/MkBEklaRnAnH/FATBWWBKZA26k44YiFeVSOkGUa+GKstMqg7yRm8Ko3YOnuqJ2ILIgFKDpYWLz0MEbMWDJFgIgkAyZ7ClO0l66Jnl0wgItHuyLBzRfgDdFSWrOmkP1X4NTRYxTJueVI7ndw3w/M4BdvSlqfJprJpaTUvEw3lz6mkKafRndOqrI4Q9zpjQEHRR5VN54o3e4vktGzZ2JQphnOVxyWJxDBmJFWolHPATCYTY5F2CK1SHSyov4mYcUC67PBUDrcIRY9k2X3tgMzv60kyt9XHqtBos28a2babW+JjbMBze8EpHnCtvfYVjJ0b4xpnTkEWhGOrwwye28//ueo09AxkumtdAe5UXVRb52LIW5jQESmqTCXoSpfOl4oqVkBskcN9HULc/iFE9CzM0Ef+j/4L2xp8ZOP9ejLqFb+9DeZciCTCnIcgn/rie+zZ0AtAQdHPl0hbOnFHL2r2DnPqjp3lkc88YEREz3E7s/LvJtZ3uGMt2mcFJdpE4+Qek536M4N0X417/K2zVh2DquDb+Ad9TX3ISowGPKvHjC2YXxQAqVBgv9913H4FAgD/84Q987GMf4/rrry/Znk6n+clPfsJNN93E7373O375y18Si8W45557cLvd3HrrrXz729/me9/7Xtnzt9f4iHjUohcg4JIJup1+Wh/QmFTl5fEtvSOMGEAQMGrnD+fYjFh+3diV4NHNvWzNhbGCjscl6FYIelSyhsnGnvTweeRSL7nljmLLWnEyDc4EUCxIyQM0h90YSoCku5ntdh3zGwPOZCnVhSu2iRPao0Vvn5ToQMg6k2utcLwsOt6IhFZPTvTg1SQGC5MYRZZoqq1DFAQsywkxDHtUwm4FSwtSX11VvNd+/1T6/dPwqRIht0KgeQ6+6hZOnVbD6dNr2Nab4qU9Md7oTZHWDScssXCfx7dXEWmeTbZ+GQ1BJ0Rza3dq6OHiVZ2ampLoTMZbox7aosMhpvObggykcnTGnd+bpqCbGp+KxxwknNqGnE+U/a6HEPUkubQj3vK8soyX7OnFbUG3wuQqx6gZzBrkZS8x/1TUxO7y42Cx1Q6xtM5DG7vJmxau2BY22i2FUD2HvGWhyDJKuAnbM5wTnMwZPLu9j/Udg8SzeaIF6e6WsLv4fYy8jiQW8ro0ib2xLKt3DDgFjEcxNLTPbwoyudpH1KPSUF3FssKiwrQ6H585vg3bdgxSWRQ4tjWCXPAUnDi5itn1AccDJvux5eE8ZVUWmVk/PCcIuhTSulnsu6PL6xQVnQVHwl53RTEWfoJk9YLiPiPTI6q8KqdOry0518IJIVqjnoJB4rSxNqDRGHIzuyHIYC7P1p4USyeGsdtPp3HKImY3+NnWN+K9KzzFhc0hZtYH8KgSiuj0OzHTC6ZevD9ZKr2HvrSzTRYFRNEp32BZMG1iC7MbnOdU43PCpLsSOeLuicOGvaQS8ih4VBFRcOZbGbWKfO0CR7l6VA73xIgHWRSdfEbgmIlhjm2NsHRCiE4rTEtzM25VxqtIZHQTryryXCekI3MJtizgtOk1pHQTw7QcL6RlkOreRrTraTCyuFUJRZKcsF6PwvQ6P8dOirK5O8mGzgTLWsMICAxmDQbdzYRI4jYGhp+iICDFtiP1byn2tUIgAACmv4lIXQtVQQ+j8SgKrV6L/pRO2K1gAxnDpD+VB5wwbRtHMXxDZ4Kp1V56Uzo5S8ZUg+wYhJg1PCZoslii0VHlVZ2cxoMYUL2pPFphgWT0YsJg1mRzfw6PZKOl9mFny48pcxsCHDepTG7/AajMgCocNuv2xnl4Uw+fO7mdmz48vxjvn8mbfOX+TRzbFuG8gtfMtm1uW7uPnz+7k389aRIntFfxx7X7uPOVfSiSyK0fWcBVx7bw2RPaxiWx79p4G+qOh4g33gHdrxO64zIEU8cWVcxQO4EHr8JW3MTOv7tYe6LCoREEgYvmNzCl2ssX79/Imj1x/u3kdlyKxGdPmIRt26ztTvKNe1/n4U3dfP7kdqp8wz++lq8BANdrv0PZu5rEqh85K8WlFyE750qM+sX4H/oESsdzJE6+nv7LniHw8CcJ33YKRnQmiTN+zvzGILsGMkyMjB2sK1Q4EKtXr+bcc88FYMWKFXz5y18u2b5u3Tpmz56N3++E7C5atIg1a9ZwzjnncNZZjqc9EokQi8Uox/54lpFm0taeFHsGMpw2vYatPSlEAY6bFB2TV2sGW7GV0rIeogiTq7xMq/UWkvcdDNOmI5alTRKpDXjoobyuka0FEIxsyWe6abOzL80xAY3XbPBrjgEpBhfilhME3Ao9KR0z0MxrezcRdyVYWVuDndyDUbcQWyn/vinoTI7KtLVXIQqwsTOBAORTTt6aqLiK3rb5TcMhaA9u7EKRPEhGHMXUyZteZtQH6BmY7JTuwBl7lraE2d6XIpk1cCkSqZxZnGRLosCU+jBywEXY3ctF8+oRRwhL9Kd1Wquc+mF741myeYuoT3XC1goItoVLlVjWGibgUlg1pZrHNuXZF1hGm7mt5F7DHqUkH0tMdZLPxEEDQ9SwRYWhhDYbisV/a30aXlUmY0fJNbahjvr9qfVrnFj0TDqfeVTn+5FEgVjvbkL+GrqSIlVeZ2wVgaAm4bIkciNmlJIgMLs+QDxjENRkol7NKU8iCHg1iQZVo8clF/uNJAiF3GU/Axmn7eUWwJpDrqJxDo7ww7beFG1VHlyyVFRLtGybRM5gjk+lI55hust5n/rTelEdz53rQc4YQMOY6wCOFyuTL3rwhhi6/pAaccitkE0q2IKE7a2lwVODVgg1HvK+DHPoOcTMugCPb+2l2q+xwYLupM7cRgnw8vwbXezqzxTDa51TOud8ozeNpaVpjXqKnm+l4wWMyBTMqhkcNymKbds8vqUXv+Y827kNwWIIrCQIBFwK6fZz8LkUBCCVM9jel2Z6nR+XIlFfUNjMNy5zRHv29iAKAsdMHG6PFN+JFWgac18NhZphVT4VUXTqioLjtVEkgUwhF7El4iGTNwi4HEXIDjtCY0FtcWjhKW86ZRr8Ri9W+xmguJGBWXV+Ai6nv27pSbF6ex/Tan10J3Psj+fwef3k8hY1HpFan4LqjRQfoSiAGZxYbK/fJTuhnUPRBpKKv7qFkEtkdKyOL74Rbz5K3FcPtu2sAxdeh5WTImiyQGvEWZwwLIsHN/XgUSRsUSbVeDwpoF4bsTjgVkrmm90Fj+ZoA3skmizQmygY44pEfkRd2mzepCXipmX/E1iKSGaEkNBIZElEHp8enrP/+Het8H5n90CGap9KS8RTHMCGjLPelM61d73mrC5Pc8Ie4pk833v0DTZ2Jfj5xXNpr/JywW9epD7g4pPHtXLcpCiCIDgJuuPBMnGv+xXJld9E23IX8hNfILXkOvL1SxCyA4TvOIPslPNJLfv3scZBhXExrynILZcv4KsPbOYfb13L986awcSoM5EaSOVZ1hpBlgQuvvllPnN8G2fPrC1Z+cxNPgfX5jsJPPQJBk+7sazSo1E9i9hFD+J78t8J334ag6fcQPzsW/Cu/g6uDbeg7niEuGcCH/5DN3f/8xKqfe+ukggV3jl6e3uJRApjkyQhiiK6rqOq6pjtAFVVVfT09KAow+PFzTffXDTWRiOIEPIPGzGzXSpTm0xCPo0JliNf3VBzAHGbyHAe51kLmvBqMpZlo2gKoYCbUMg5b09XApdbxa0rTGiOkOpXmNQQIugeNaaFZiHsWwMM4A55ELwaHo/CGdOayaxX8QgaOxM5NJdCIOAi3hGnM52nJuLFHzE4bk4rZnOTM4Y3luZ72raNx6sSDnvxJXVcngw1gsxDb/Ry/JQaPF4Vv0sh4AKXIpNQotREvYT8pV4Zr1fD64W6fduplyxmzF1EXchFImsU7xcgFIK5/WlCfo2qkBc7mS3ZXhXxohsWXq9GJDLi+Rpu1KCbsN9F0oghKBKCJhMMuAn5h8cNl0vGZSlMqHOMR08si0sVqLL2IYUb8Xhl3IXrTbWc3Oni9Zun44oM4I9raJqE16sRCFgISQ0r4EaM5wiFPAxaaURVxghOI5LdgFwTBlf53F131sTj1WmpD9JS77RJWH4ZA91Joj1JPJqMaILH1NBlmWz9CsJVEdKxDJ5YFo8mEwp5aKvLEwx5eWlXP6fMaSDiVfHUBZBcPrQZTQxm8ni8KQIBF6GQhzmtEf66qRuPV2VrLMu0CZExbasascDfqsgkLJv96TyfXjUF03Y8RV6vhhjP4vG6WNQybIg+uyeOO2Nw0tQaxGA10YZ61FB5o3+6INCnW/j8rqIH7uJlE4vbJwsCikshls6jSiYet3PPkihQXWjjOQubeXRTV6EPFQx+r4Y74MLjFZz7HtUnq3ULU+ijL51n4aQqXIpYPHZGc5iYbjK3NUooOLQU40FIaCi2guLTCIU8yNogbq+Ge8mlY+5rxXSJ+oALcZS4lm3bTK4PUFvtL+YmuQ2L5iovXq9Gv26CqjhtKYhn7YjtwRYF6qudfjSwuxefmMAu80yfXr+PlZOrWTGtFkUSi9c3TIvqsIcTZ9UjiQL/sLgZy3bmbo1CiNtf6CMwYvwZOsbtc9O49FSmhTPgj5DImezcl+DEhiDxTB5Rlanya/QmNVRNwe3VCDZU0z3pHPTYfmKijwX1tSBr+GNZRNUk6DXByELIw0BaZ1NfijmNoeHvbqATiBfvz+NViYTcuOMqPtFm7oxaXtjRjz/gwqebmJJIMOhhS/8+Gqv9zG70cVKVj119KUzLUSK1bThjVl3Js8r0Z4gZVvG6vbqFx6tSE/WVLffkKdRKawq5ifSmCPg0MnmzePwkG/aldZ52r+RDS9tozJWOb+UQvIee11QMtArj5qfP7ODMGbUcNylasqLzRm+K//en11jRFuG6k9qRRYGnt/Xx7Ue2Mq8hwKnTqrnn1U7+7eR2fnfZgvEbZKNQt/8FW1RQdj+Ja+u94ImSmfFhPOt/jXvtjSRP+B65yR88Wrf7viXsUfnR+bP4zQu7+f4T2/jf852E3UsWN7OqLYJl28ys8/Or53fzyKYevnjq5GK4jK0FiZ19K8EHrsT/+L+SOKV8Xpqt+kis+l+0TX8keP8VZGdcSmrpv5JvXIb/0c/gld2savoBj23p5UMLGsueo8L7mzvuuIM77rij5LN169aV/G3bdskCwujw3NHbb7nlFjZs2MDPfvazstes87uIxYbDn9K6SSZvIhkm5PJoAiXbD0Yso5PJm+zoTFDvkYnFnB9s1bLAtNGzBpmMwYK6MHYuTyxXpoi8NgkhWosdSyNpExHyKYyEwTZtMam4BegsaY8iSQKSZdMWclHt08hsfYT+VA5DnTXW8Ctw3IQQmWSWZDJHt9ROl91MRJFJJbKkUzqiaYFhstc3mw3qfFalcsTM0rC+Zq/KYM4gq1sItsVUj0znYI7YYHbMc/KJAhFVwtbzpFN62ec4t8Zb8rmU0Mkkc3QYSdpDbiTLQjUtFNMs2c/M6eQxip8FJQElEwd6SfjqSafS5Ia2iYAoFPeVu/cR7+8iIdbgEgRCssjgYAYllSOf0ZlV5SEWSzM4mMErCaRTOgl3BCFlQ7Z8XxiIp0mndNbv6GNrT5KTp1TTncixY/8gumkhGBY+TSRpupwcPqmmcA3n2cfSOs9t6qInpTMt6iGd0nlk/T5Om15DZ08CzSMQjqVJ5gzSKZ1kMkdMEXlmYxe7elMEZJGZ9f5D9lUJmF/rQzcsntnUxZyGAGlBIJXKkUjqbNsXp31EXbVlTQFs23kHFtf7yKYypMXy1xgczNLZnyIez4xVCgb29qbY3eOEsm70rSCVlxmMp0sXBA2LdEon5FGK96KlcujxDOmUQTyeQR3VJ5OJLBNDGooIVWrBW1c4NiABhsUj6/dz9mxnUi8WvusJgSoMTSIWS2PnDZKJLMnuVzH9jSXROps7YugRD2GPymhmVXtIDmZK7iGqSViFPr9jf5zACPvgwtm1PLall8RgBq8qUS3lSadyxb46kqUNAexcnrtf6WZxS4hI4fqWbZPP5unsTZSIstm2zcPb3VRPnE+VIpT0Bdu2CUgC2WSaZGobRn2InAmxwQwvv9FDImdQH3AxudrHmjd6yRoWXsEmFnP6tcsVojXkIpbIg2CSSuZI5U2Se3cg5NPkhRpyeRO/LKFn88VrS0IUyUigF/6eX+vDpUgksnlyuXyx/8fjGRLJHOmsQTyeJqJK+LCL5/Fg8/gbvSiyyKw6P7ev3snCCaGiV70vliadGx4jYvEM6ZROOpmlXG+dEnbTk8ixo3OQiEumWpPYFMsUj9/bnWBXdxJvsoP87hTumqmHfLe0lJNjHzjIPhUDrcJBSeYMfvHcLj69spVvnzV9TBji41t7+eZDm/nYshYuWdBIX0rnhqd38NyOAS6YV89fNnYzkMnzL8e3ARyxcQZghieRr1uIuvuvDFz8IAGfSvDuKxEzfcTOuxszOvVN3WuFYURB4KPHtGBYNnnT4vcvdXDNSZNRZZFnd/Tz/M4Yt12xkJ8+s5NLCt60cwsKb6he4mfdjJTY55zMzJWvmSYI5KZf7Bhlj19H+I9nkDjpegYueRzLFWHV2nV0vPJ75IZVlVzCCmO48MILufDCC0s++8IXvkBPTw/Tpk0jn89j23aJd6y2tpYnnnii+Hd3dzfz5s0DHIPv8ccf58Ybbyw5ZiS7+9MlE6iBjE5HLEvUq7In5uRQzqofv/ferUhcvKCxqKQHTqh41iiERUnyQctlICnYkjM5HDn+VYWj7EnFyRkWNk4OzAdn1xEvhI2Z/iY29sWQ+9LMaxqrijcSWRTIIyMqKo0hrVi/RxRgZVuQ2HaZhpC3GFI1Ep/miEeti64AYIYoMKXWh6tMftbkai/P7+wnWmZiO4R/VFieGWjC3Wgy1xVkY2eSkEthc3cSryaVeN5n1fuwc049OHAC4dJKmH7XdBrzg+TmnH/AaxrRGXSaDZCAjw+VcxnsH7NfWjfpTer4NRkzMrXoFSp7zoIOfmPQRU2hLEo8k0cQnFy2aq/K8rYq+tMnoO0dLNZwG8KtSCxqCfPavsGSvgNQ49OQXGppmGbh8JWTokyu9tERy5QJDyxPX0pnR3+avqTOnEK04pyGQFnBA1EQilGGgm0eLA2P/YNZ4tk8ZWwzAKdId8RNc8hNLm+yoStZJk/N+W+tf+zvy4SIu1gCYSSaIqJJjkjGaJ7d3k9HPMsHZtaM+NS5yOudSQTZUVyMZwwG0nmaYm9gy27MEQZaT0Knzu+iXIJFOaNtZr0fnyoT9xvFXMIhIl7VqbeFU2cvmzfhAMPLkOdnZXu0RMxCFARaIp6ydZEjXoVs3hrzXIVCKKsgqhi1S5zzSzYr2obDt5/b0c/Owf0AJHJGUfQEYEoQ6nCRK+TJDYU4GtEZxdxMlyLRGCz1NJqhNsxQW/HvofliuVIMIbdCcigfVhJRRni+hu5VlQQyeZMqn4prxPYFTSGyxnD/b6vyFEWVylHr16jxqXQmcqzfOzhGnbEnqSMIoGoekrbGzr2DTvHtQ3GAWrBDVERCKhwQ27ZxKVJBGtYeY5zF0nl+9MQ2vnfWDD44u46fP7eL83/9EoIg8IcrFvB6Z5Irl0zgZxfNYeYBZNrH2RDcf7seuftVMvM+RuLUG5G71iL/+kTMyBQGLryvYpy9RciiQFo3GcwaSKKTRLu8NcJ3zpqGKAgsb4vwo/NmcdPf9vC5e14nVihiiuzGDE9C3XY/obsuQMiWz+kBsAITiH/wdjKzriB474fxvPgDhHySU/p+yxx5N4ZQmJRZ45tQVHj/snz5ch588EEA/vrXv7J06dKS7XPnzuXVV19lcHCQVCrFmjVrWLRoEXv27OG2227jhhtuQNMOHHoyeoGpMehmaSHEq6owmTpcBtL5ksluPGsUf7gl6cgWtAKuUrVIgNf2D7Kjf2hVV+CY1sghjTNwjAFNFnEpEi/tjrNv0Fn5FRGYOnEipm0XhUNGk8yZ6KaFJSpYojN5UySx7HPqTeo0h9wHzQMZg6RhRqYg4qjC1RUm6kNy2EN0DmaLCnsAPSkd0UhRO/Ayom2UT/IbQvViac5zWr/PKapr+ZvQm1aU7ObIww/9++D3kLecSapUUNQDiHpVgm6lmL8EjvJhzrBK2g7OhLUn6XwPhlk683YrUnECOVK6HpwJf0dhIWFH3/g8vYIAZuEaQ/dVF3AxtzFQVFoshxlqKwrflKO9ysvEsIcDyTKEPSrTa/34NBlRFMiUMSiHPG+bu5LFz/TGYx0591p/WSO5PuAi5FFQy2ybXe+nIaARKWPYtUY9TAh7iv9uDLnITTkXMzzpgPc4HjoLpQ/60zrZfKlFO9SLREEgY5jsM4NYnuqDnm+00qBt2/Sn9TG5foIgMLnKR1o3i/mjI9kby5Ib0R6hUDMxpRts603REctgM1RiwlWs+eXTZLxCdsz5RARH3KSgRNuf1lm3b7CsOvRoBEpLMdg21PhUgm652CdHiskN9YtUziSWybOwOVQydntUqehhBOf5amVCG0vaIAgokojfJVMf0FjcMqw0We1TkUSR/XaEhGtsnb4Dc3BVx4qBVqEsL++Jce3dG5BFgSuXTih5uZM5g4c3dRPyKNx2xUJ2xzKc96sXeb0zwVdPn+IUAtUUfvAPMzlnyKtypBg6GFk8a25E7Xgay1ONe82N+J76MuZZN5Bc+a0x6mYVji5Bt8Jnjm9DEgWuuWM9v3txDzZOQem71u9nTkOAWy5fgM8l86HfvsxzO4ZXl/XW0zADLQTvuRgh03fgiwgi2TlXMnDp4wi5OJFbVkLjYmZe/mNkLFyv/BL/I59+62+2wruaM888E8uyuOSSS7jlllu47rrrAPjFL37B2rVrcblcXHfddXz0ox/lyiuv5JOf/CR+v5877riDWCzGVVddxeWXX87ll1+Oro+tVxM5iAFWF3CVVcY7FNt6U/SOqK/WEnYzudrJszpSA00QhKKhMzT+NgZdRWVdKbGHfbs20Tk4diI1GrfiKLdl8yaTa7wEhiY6ghOqnJp4OpOrvWWPnRj10BRyF2ufHYxqn6OkNh6xqNEECkqaHlViep1/jEelezDL7v5M8e+ZdX7m1HpIuerIecqLWIxkaNLbUJDURxCwPVVj9hkKoTqQV2iIKq9WIgwDTp2tWDpfnPSCM9k9bXrNCE+Cc+JkzqCrYCgrssCiCaGi5H2hgYX/L61TBhTLAoyXiEdlUtXYfJpM3qI/dFaWAAAgAElEQVQxdPj9fYhY1qCtyjOu73u0x2KIcsfa3poyew6TzTvPuWyukSpjWjbr941Q4Stcw63KxUn8lBrfQT3bh9OFZ9b5iXhVJlV5qfaVH18Ewamjl1XDmKHWsvscjMGs4XjfRvHCrgFCHqXsc5xW66OqTHt6EjrJnFHi1R15fDJnsM8MYVSPqGU2qjYdOAJGLWF3Wen6AyEO9WfRWdgaWps4vj1aMkcdMtACbpnW6NETGsubFomsgSAIJQaeS5FwFfqoKkqEDrJwUUI5t+YIKiGOFUqwbZucYTGnIcA1KyaW3ac/neeFXQNIosCNz+zErUh848xpdCdyfPOhLXz0mAnIQwVR3wSutT/Hu/ZGMlPOw/ZUozceS+QPJ6FPPIWBSx4nWNcA48z3qPDmEQSBa0+cxFfu38TqnQN8/fSpfO/sGeiGxV+39vK106bw2JZevvrAJk6fXsOnjmt1BARW/Qjfk18g+JePOfXrDtIvLF8DidN+irLnGXxPfwXh1Vt5Up/GGfpDJFd8HQAxvhNrhBpUhQpDSJLEd7/73TGfX3XVVcV/n3766Zx++ukl26+99lquvfbaQ55/R2+KsPzmxrXRDCmnDeFSJFoiHnYB0uFIfo1iyMM9NKn0aTLdSZ0JYTdGZCqdg114xxHmVh/QyFs+tnan8GqyEyImi9T6NMTEXib2PsG26tMOeo4VbdFDrBUPr4AfXqUgh1TBYyZLIhPKhCoJlHomOmIZXo9LRNUokfS+Q56/KeSm2qcddJV9MGvQl9LxqvIhf/smhN1j2llwqpHSTdwH+N5r/BrLWp2adyPVQkeuG5ihNizXcP0pKA0Nm1LjI+pV2TWQYbxoZdozVMz3SPGqUonX42C4ZJEpZcR3RueUHg6qJGKOct6s6YjRldRZOXmk8X3477vvYGHJoxgyLMoqFo/qR2p+EKm/o6iaPB4EQUAShLK2QGvUc8DaXC0HUFAeEg3rOkCd0okRD/VBrSTsU2CsMa1IopP/Oo7v0NICpOwqEODY1gg+TSKRM4oLMaO9g0MMZgz2D+bKhl8fCQeS4c+bFidOqWL1jn500xyOJHqTVDxoFUq497VOvvfYGyiSWFzFHeLRzT386vldDKR1dvZn+OET2/nnZRP47WXz6Uvp/OSZnfzovFlcvrj5iFZBAbBttK33oL3+B7wv/ZBs2xm4ttyFLcp41vyEwVN+TOLk72O7Qoc+V4WjztQaH7+9bD4tYTeX/vZlHtvSQyyTZ01HHMOyWTW1mls+spBtfWmuuGUtW3uSIEokT/hPBlf9CAQBQT943SGAfPMKBi5+CGPy2axIPEDa34rv6a/gXvMzgn++vFgzrUKFt5Paw/Q+HClCQUZeEo7cQIPSkMytPSn2xZ33RszFWFgjMWkck2xZEmmLejluUpTOwSzxTJ4TJlcxMeoZ17sMTn7MoUKIZElkbmOgJMRvvBzy52bUJDCZM5D0QSKJTQf0zozmUO13JrpHbrw3h92FfKSDf+cBl0LetFjTUT5s3KiZgxVohhGtGWkwPrejn66CrPh48bvkMQsJb5awRx1fng5O3yjnCREEgTmNB5NZGIuzAOIelncfwYw6PxNCLtRxGo7lOGVa9ZhcySNl+PtzwpZ9mb2I2YGDHlOOnGGVNS6CbmVcY8BIBtI6L+4eKOazQmkB5qm1vjEG0cjw3yH6Ujp7BjLjKt6cqZpDRqtGFJy+KAgCedOm8wBG4kh2jjOUdzyE3EpZz6tbkcgZFqumjv+7tyUVWz2A4m+BigetAuC4/U3b5vTptWMK6WXzJt9/Yht/3dpLS9jDLS/t5cqlzVw0vxHbtknlTE6aXMWCpuC4B9yyWAZCbhDPC/+FqCdJnPjfaNsfRNCTZOZ9nMzcfyovNlHhbcWlSHx+1WSWt0X49sNbmdcY5KunTwHgNy/s5tKFTfzkgtnc8lIHH7ttHVcvn8hF8xuwAs3I+/5G4JFPEf/gbSXJwGWRVPKLruG/uxZzTvJ2llub8P7tf8hMvxgkF+rOx9AnHA9iZRir8PbgUWX09NjQx6ONIMiYooIkH71yIZOrvUWPheWuPmgh5XJ4VIllE0vz2ixfPVU1jZhHqV6hKAhU+VT2xA4dejmSoVDAA1HjUzCM4YmgS5Fwaxqd3kU0zD3piNs7krBbKebqHSmOxsahjYOcYRW9huNhpL1hmDa9ycPrw4mswXM7+o+6kXY08GsyTYcZajmt1l/WMPdrMpYNm7uTNIYKHs5iItj4fmeOeHH6EOdUFZHm1mlYVtcRnaNcs17piLOkJYQmjz93Np4x6E/li95blyJhWgcfS8p50CIehSuWNI3Li+qObcGtBxAYVnTuSeYYGEf+2tEkZ1joxth7FQRnfAx7VAIuhYbAodNu9ImnHHKfigetAgC/+dsefv9iB5oslsTWbutNcdnv1vDs9n6yeZNZ9QHu+uhiLl/cTFo3uOaO9dz84h5civSmjDNl72pCfzyT8G2rMKMzyEy9EP9j1zoJrh9ZTWbB1RXj7O+MFW1Rbv/HhUyp8aLJIv3pPINZwylcKwhcvriZn140h9vX7uW6uzcQS+cxGpaQnXkZoT+dj9y1dlzXOW3+VL6Uupi+S58i13Iy7td+S/jWE3G/8n+IqSP7sapQ4UjY2jU+j9GbRVUVJh17EdI4vTvjIW9aRaVJMzwJMzL5TZ/TdoUJTTuJqQeq/XaYrO2I05/Kc3x79NA7HwZ1TZNobhgu7rt/MEtPViDvqUM4wjy/0WiySJVXfVNtbwy6x+SmlSPoVg7LWBrpQXOrEu3V3sPy8oxUvPt7w6fJzKw/PC/agRAFAa8qMaNE1Mx5duZhhBUebQSc0Nd1ySD5puVHdI5ynp95TcHDDv9rDLmYWe8vLkQsbw2zvO0QfV4Yu+wgCAI9KZ38ONaJsuGppLWakrw3VRaH82HLsKTl6EdZ5coYZ+A46IcMUEkUxvduScoh6/VWDLT3OXsLcrv/tHQCHz1mQvFz07K56YXdXP77NewbzDKvMcDt/7iYz57QRtCtsLM/zZW3vkJblZdPHHtgpaZDob5xH1LPa+RrF5Ba8GnyjctR9j6H3L8Zo3YetrcG+xCqRRXeOQIuhSuXTkAUBL710BbmNwVRJJH/fHQrnYNZptf6+d3lCwi4FS757cu8uHuA9KJ/IXXM5wg8+AmnaOUhmF3v5/eXL8AONJI44+fEznNCXuXeV9G23IP2+m0ImbGy1xUqHG3aqo+OITIetDfhiSlHVyJ32J6pd4LxhDwd9jlr55NvXln827JAsXOEE5uO2jU6Ezlib9OKfiJr8NDG7kPuN2SYjXRSZHSTjndBP3gnCLoVTp1eU36x+R0QIxMFCLplVFkkpRvkzSN7N06eWl1WjCOjOyqrh0N/Oo8sChw/KcppM+qQpUOHLwuU9+Bt702TH8f1c3IQS1RLrrM/njtoP45lDKbW+ErUFt8sXlUq6yHPGhYDb0FkRSU26H3ODX99g9m1Ps6cUSoN+tjmHn75/G6aQ26+etqUMStUv1y9iw/OruMflzQfmRiIkQHZjRTfieflH2NUz0Hb8RBG1UziZ/0Wufd1J+fs9F+8mdur8DbynbOm49UkNncnSedNgi4Z27bxqjJfP30qD27s5t/ufZ0L5jbw8WM/RK79HJBdKHueId907AFrggiCQDpvcue6/Vy2qAmjfhGxSx5F2fEIgUc+DbZFOt1DZsE1IB7dSW2FCiM5UJL4u4H2ah/tb6OBeSQsaQnhP0oJ/QdjYtRNJt9EuG7KUTtntU9lMPv2GGg+TWL+OEokFKPzRvkvsnmTGn9F/bgcB1IVtA/h7XgrEASBYwphxcE38V4cKIxwc3eSkFs5LCXFWCZPVyKHIonkZZ3x9CKnDtrYNoxOpzkQQ0bkyLlmudIAI8kZJjV+rSQi7M2im1ZZNUyXLCKNw/N9uFQMtPcp6/bGmVrj45vnzCSZGF6FuGvdPn7/8l4GswafO2kSZ8+qK3mxntrWx8LmIP9xxrSilOnhIg7uJvSn88m1noIVbENMdSEp2xk8/efkG5chxbbjfe7bxM+9vSIG8i5iyK2vGxbr9w3ymT+9hk+T+eDseo5vj3L69Bpm1fv58v2beGlPjG+eOY0mMYPvma9h+eoZXPW/2O5I2XNrssivnt/F4gmhYjhVfuIqBs/4JYKRxvvst3G/ehPphZ8mO/uKw9M5rlBhnOyPZwgeTp2uvyPGq5j3TlKukO9bQWPQTWPw6Bootj0uQbqjgiAI1JQpzjx2v6F/jN22uz/D9Nrx1ScNuBRaIu9Tg84q1PgT356+eSAOlWd5JCxvixRzycbLxIiH+oDGQDpPTtRxuw9tRjg5aEfYSJz+N/onvcan0ZU8sEjItHH27cMh6lWLdS9HIpYJ4TwaVEIc36fcvnYfm7uTxUKOz+3o55aXO/jBk9uZWuPj//unRXxwdn3ROLNsm589u5NvPLiZjlj2iIwzddfjKDsfxb3+14iZPlxb/oS29W4Sp/wv8X+4k3zjMgDMYCux8+/CqJl79G64wtvG3MYgt12xiEUTQry4O8aajhh9qRwp3aAp5OaXH5rLwuYQH/n9Wh7ammDggj9juaOE/3g68v6Xyp7Tq8qcO7ueP7zcMfyhIJBvXoHechKCbWC5wnhe/AGhu84/4HkqVHgztETfnLR4hfcuVV51VO7SO89B7LPDWsPSZPEtmfC+GxCsglf0Pbjo90ZP6rDUPMER54hlDFoiHmaMM/dP4M2VXar1a5w6rdQ4nVrrY+U4PXBHC1EQytY4S+dNEjnjqF+v4kF7H2HbNn/Z2M1Jk6v4zlnTAaeuz5fvepU1HXGqvCo3XDCHOQ2lL10mb/LVBzaxayDDTR+eT1Po8FbShFwcW3ahbr0X17b7sAUJ099IasXX0FtOLg58gp7E/9hnSS7/OmZ0+tG56QrvCJosctWxEzltWg3/9dgbXHTTy8yu9/PD82YjSyKfOq6VJRNCfO0vm3l+V5jPnXg94R13gaw56nJGDpTSfnbx/AYu/M1LXLMiV7p6LMrEz/4dgQevwoxOxZI0gn/+MPmmFaSO+cJREUOoUKFChYOhyiLRw1DDOxBH1QwY+m0dcdL2ai/belNU+yqiW+PCOvoT778XuhK5Yl2z8SKLwuHniQrvbW+QJolvif1eMdDeR5g2vLQ7xrzGILJo8H+rd3H/613YNlwwt55PHtdaNgFSEgRaox6+dvrUkro640JPEb5lJSAiGGksxUNq2ZfJTT2/JF9IyMYIPnAlljuK5a098PkqvKtoiXi44YLZPLypm5xhkTMsbnmpgyuWNLOkJcytH1nANx7awuW3rOVbHzid6dV+1Dfuw/fct0ku/wp62xnF2UVdwMX/fWgu1b6xkyAz1MbA+X/Gt/pbaJvuJD3/akQjTfiOD5CdfA6s+hIwNjShQoUKFd6rDHvQhmeP+wez2DZ0j6OGVAWwtPdumsWRhEweiVp3wCUfMmfs3UzI/dbkJ76XjdoKBdK6yY3P7MCybL582hTufGUf5//6RZ7a1kd90Jn0XndS+xjj7IWdA1x712tIosA1K1oPyzhT9j2P95mvo3Y8jVE9ByGfIr3wX+j/yAvkpl9UapzpSUJ3nY/pa2Dw1BsPKT1a4d2FIAicNr2Wc2bXs6s/xU1/201KN7Bsm7BH5fvnzuSieQ1c/cf1/P6lDrJtZ5Ja9u/4nvk6wXsuRhzcXTzXtFo/f9sdo3OwjHqT4ia58tskTr0Rz6s3o3Q8R/KYfwNA/vkyvKu/i5CLv013XaFChQrvLEOr+iNX94fqODUeZu2w9yu2t4bclHPf6Wa8JTy8qbuk4PRbRX3AddRzPv+e8Lvko1acfCQVA+19gCwKZHSTNR0xbBt29KcRBDh7Vh0PfGoFs0bFEecMi+//dRtfvH8jZ8yoPax8MzG+E7lrHeQzqLueIPDQJzEjU+i/4gUyCz9ZKlVr24ipLmzFS2rx/yNxyo9BemcTcSu8tUyp8fPINccScCmc98sX+fy9G+hL57l4QSO/uHgu97y6n8/ctYGO+tPov/RJ8k3LsRUvQroXuesVAB7d3MPPntt1wGvoE0+m/9LHyU08BaPhGDKzr8S4/H6k/q1Efrcc9yu/ALOyelyhQoW/P0JupaTe05uh3FnmNgaZ1xQc87tf4f2HIAhvSWHtCkeHSojje5idfWl++OQ2rj93JktawjyzvZ9fPLeLTN7iZxfNZUadH02RyIw67lfP72JrT5JbLl8wfne2ZaK98WenuLTiBjOPPulM4mf/HivQNGZ3qX8L3tXfRcwOEDvvLvT2s978DVd4VzBUy+TfTm7nvte7OO9Xf2PJhDBfPnUKv71sAT96cjsX3fQSn1zRynkL/wVREFB2P0ng4WswI1P4XPulfODJGjbObzigCpntCpNZ/BmwbcK3nYzQvJjYGf+HvO8FfM9/D/f6X5Na+jlyU/7hgPL+FSpUqPB2s6A5eNTUIIfroA1PwgcyecJvUUhWhXcXq6ZUvSnxjgpvLYJtH3go6OlJvJ1tASAU8hCLpd/2675Z/p7anTctHtvSw93rO9nQmeCWjyzksS093PTCHj68qJErl05AKag3DrW7N6Xzy9W7+MTyibhkEVUWx7eyYmTwPP/fuDf+AVvSEIwM+bpFpI79EmbVjLKH+J78EtrmO8nO+gjphZ/C1g5dz6Ucf0/P/HCotLuUB17v4qYX9tCdzHHOrFquWDKBPQMZvvPIVnyazBdWtTOlxgf5NK4td+F+9SYeDFzIb5JL+dXyNPm6BSAdOOFdTO4nIKdI792M77lvk5l9JaYrjPfl/8WW3aSWfZH8hOOP+n0dDd6LfaW6+t2rBpfPm8X7euqpJ1i/fh3bt28rbt+/fx8A9fUNALS1TeJTn/rM29/Qv2NG9o2hZzhnzlxWrjyhZL+nnnqCu+/+U/HvDRteLf47EomyfPlxbN++7V31jA92v+X2BVi58oQxxx3OuNCf1ktqQf3wrifwyHDV2Qe//njb9m5ldD+Et+Z+3s5nNbrPDPHTn94AwNVXfwqgOG6t6bOpMQdYeczi4ru0ffu24jgGpWPZs88+za5dO2hpaaW+voH/+I+v8rWvfaO4f39/30HbN3PmbMB5lyORKPX1DcX3OhIpVWQcOtfQ5yPPPfrY8TL6GuNp88hjD7Tv0LZIJMrVV3+K9evX8eyzTxc/G2rr0H6JxCDHHLOctrZJrFy5jJNPPrnseSsetPcQvckcd73aya0vdyAAHz92IpctauILf34dSRD45SVzmTyqUGksrfPTZ3fyx7V7OaG9CmzKCoWMwbbx/O163K/9Flv1YSNi+RpIHfsl8k3LS3YVU52oux5HyKfJzP1n9OaVpBd9GstbdxTvvsK7lTNn1HLmjFo2dSX4xB/X05nI8Z9nz+BnF87m7te6uOr2dZwytZqrV0wkMvPDZGdcyry8wRe6u/D99VNIqU70xmXoraeSnXmZU4xoZEFLXz2EPNh93ViS5pR76HyZbPtZ2IqPwCOfwYhOJr3kOvINx7yDT6JChQoVji6jC/W6JPBWZn4VAKV3G2Lg8FQcK7x9VF7Tdzm2bSMIAq90xLnmjvUsaw3zzTOmURdQ+c0LHfzf6l18fPlE/mFOfUmh0r6UTtSrcv9rnWzrSfHTC+eMr86JZeJ7+qukllyHsnc1luxCQCB1wnfJtZ/lhIsZWRAkxHQPwfs/gjSwnXz9IrIzLgVAbzvtrXocFd7FTKv1c//Hl+KSRV7cHeO6uzfwu8sXcOaMGn767E7O//WLXLaoiYvnN+LTFCY2NfHTGbdxfFWC1sGXELIxALzPfw91x8MY1bMwojOc/haaRb5hGYNn3YwVmIC28Q7kgS1o2x4AO0++diGBBz6GEZlC+pjPVQy1ChUqvCdxS87/KlQQjQwCFQPt75WKgfYuZcgwu+aO9XxyRSsz6vycOKWKM6fX8PyuGPe8up8zptdy55WLi4X1DNPime393PXqftbsiXP3Py/h0sXNfGBK1SGvJ/e8hpDtR8zGUXc9hty1FjHdTXrxZ8lOuxgpsQf3ul+h7nkCZe/zxM/+Hfn6JaSO+Xf0xmWgVAaBCofGqzpD0pyGAD86bxYTIx6+eN/rbOlOcdG8BtbsifOHl/fy4UVNXDivgZRu8NnHk/zm0kvwqM6sI73gGvSm45B7XkXu34RRMwfsmUR+vwLT34gRbkfd8zTxc28nteyLSP2bMCPTyNfOx//0Vwn85SpMfxPZ6Rc7HjmxMpupUKHCe4MBHWL6O92KChUqHIqKgfYuwrJtXt4T455XO/FrMp9fNZmL5jfwP3/dxjfOnEqVV+WL921iZXuU31++kAlhN7ZtF2PQv/aXzWzuTnLe3Hr+44xphNzKwRNEbRtlz1N41v4UZe9qcu1nI6a6EPJpcrOvwAy2IWb7QVLQNv8JuX8zubYzSBz/PaxAM+Ao6lWocLi4FIkFzU79mZMmVzG91s9jW3rZ0pPkuLYoz+7o5+a/7eHsmbVEPApf+8smvnv2DGRRwNaC5JtXkG9eUXLO+Jm/Ru7biNy3CaNmLpavAf9DV6PuXU2u9TT0CSsZOP9ubC1I4KGr8T31FXxPfxWjZg6ZGZeQbzmpEpb7d04+n+cLX/gC+/btQ5Ikvvvd79Lc3Fyyz7333svNN9+MKIpcfPHFXHDBBcVtvb29nHHGGdxwww0sXbr07W5+hQpvC+/dilQVKrx3qBho7wK6Eznu29DFPa91Ylo258yqJeBS2NSVRJFEFEngw79dw6qp1fzq0nlMinrY2pPiJ0/v4OHNPdQHNH520Vz+7eR2Ai750Ko9RhZt6714X/w+Qm4QveUkTH8Tyt7VZGZehq368f7tB5j+JkcFD0gv/de34UlUeD+yaqpTTPODs+v4+bM70U2bZ3f0U+NTGUjnWb9vEI8q86dX9nHunHpUuYwqoyBgRqdiRqcyUmA/teiz6C0nI8W243v662RnXEJ6ybVkp11IcvlX0bY9gPu1m/E/+SWwLcxgC7EL/owtqc4sR3nv1nZ5N3LfffcRCAS4/vrrefLJJ7n++uv54Q9/WNyeTqf5yU9+wp133omiKJx77rmsWrWKUMhZDPiv//qvMQZdhQoVKlSo8HZTMdD+//buPD6qKs/7+OfWrSWVVGXfwy6rgoCAGhIEw6YotCyRZWJPO26tOKJjqxEZcab7scHHx5YRN1qc7qEZURYVB0VGJTRKiCJ2EJBNloTsG6mk9uU8f4QqkhACiVCp2Of9euX1qqq71Ld+VedWndStc0Lcki0/kHeshoy+sTw8rg8Rei1hOg2rvjrFqq9OEh2uY8bQZP7vjGs4Y3djMqhYXV4e2bSfzL6xLJ48gFFnv4mIutjQuj4vivMM0ZtmcbqklGKPypA4gftUPhZdLEfjZ3Hn/W9y73CF2DEL+Oij/aSkHOUOW955IxStXLkCgIcfXsTKlSv46KMPuOaaYbz00n8Elvm1HoHrYiNd+Ucnysoax1//upN9+woBuPba4YF1HnnkQRobG7BYLADExcVx663TgXMjq40dOwqbzUZW1mTefXctPp+P+fPv4i9/+VOb5dHpmup300038847GwBITm6qbXn5mRbZLveITe3td/78OdTW1lBUdBKAhQsfDdSu+UhOQKBW/po3r/UHH2xi8+ZNmExmhgy5hpSUVO64Y1Zgu+nTb2Hs2LG8885GHnjgbgyGMEpLSwB49tnfcvz4j+ze/RVmcyTTp9/Bv//7vwIwceIUMjLGBa5XVlou+pjaGo3qppsm8MTEAQBk9Itl14lanp40gOc+OUxpvYNN35fx6pcnmHZ1EtOHJlN1+FsUpf3nwhc3CGfcIHBZUTwObKP+GbXmMMZ9b6OrLMQTfzX24ffhSRyGsfAt9Ke2Y/7sMTyxA9FVfEf9He+i1hzGF5GECIu+4P1IwZGfn88ddzRNKpuZmcmSJUtaLC8sLGTYsGGYzU2/tx09ejR79+4lKyuL/Px8IiIiGDhwYNBzS1KwxF14wFtJkkKI7KCFEP/vyj4+WMGxKiuPjO/HjKHJDEs2Y9CqvL+vnO9O1xMXoSdrQDz/PL4fsUYtWw9V8dCGfZTWO3h26kCyBibw8QM3XNow+UKAEJjyctGV7sZ51TQ09hoSDA7KHFEIgxGd00aZsQ+NYWmAwn8fDWfBmJgrXg9JupAJ/eObRh0FkswG0vvGkN4nhlveKODTQ1V8crACvaIwNBqMRXVMMF9kPj99BNbMZwHQ2KtxXTUNy+3/RcSXz6Gt2od95AMoLivu+KEoXieGH7eguG1E5C9D01CM4fhWXD3H4xx4B84+k+U3a12kurqa2NhYAFRVRaPR4HK50Ov15y0HiI+Pp6qqCpfLxauvvsprr73G888/3yXZJSkY5KxXktQ9yA5aF2t0eig4Vcdff6zhb6frefdXo+kRHcbe4jM88eEBTtRYKapzMDTFTNbABP5lQj9cXh/fFtdzdZKJ7cdqOFJp5d703oztExMYIv9inTPFaSHir8+gLcrDnDwKfek34HWiKy3AG9WHu3aoRKherv7Hf+HzkwKhyIESpND00Li+QFNbuv2aJPJP1lHR4MGtgdM2eHbLIVwf/UB6nxhu6N30l2i+8L+R3T0yAlNFuNNuxBM7BISPiPzn8ZnT0JXk443qi23E/WgrC9EX5eE1pYDXSfg3L2Pa/iSuq6bhGDjrvN/BSZfP+vXrWb9+fYvbCgsLW1z3/9Or+fW2lq9atYrs7GwiIyPbvU9VVYiObhrwKCtrHDfeOAqn89xJs263Gzj3bbvBYAisLzVRVc15NQwPD8dkalmnrKxxjBw5NHDd4bA324cWk8mE0+nsVjVu7/G2tS6AyRR+3nbNa9hRSf0HA/ykmjXP1l21fh3ClXk8waxV69eM39ChgwBITGz6uYD/uOVw2M9rS06nM3Acg5bHsgUL7sTlcqLXG9DpdGFGwPQAABYkSURBVKSlNc2F5l/f6/W0my8srOkfl/771el0gXatqi27I/59+W9vvu/W216q1vdxKZmbb3uhdf3LVFVLYmIiN944igUL7gzc5s/qX8/r9RIRYcJgMHDo0A8XvE/ZQesCJfV2vjpex84fa9h7+gwpkWH0jDESZdQx9fV8vAKSzQYGJ5p4YuIAhqWYCddree3LEzz2/gEcHh83XRWL0+Mja0A8WQMuPgqj5sxJNNZyjPvexnDyM/C5AYEwp+CNHYQzPAnDj/+DxtWIY8hcXL7/weLR4eqdhTiVd6VLIkk/mcmg5ZkpAxFCsO67Er7ef4wzboVT9W76xUdwVXwE//l1Ec9vO0LPmHCu7x3NdT2iuDY1knhT2x0256CzA0gIH403/Q536o2olfuI/N+FuPpMwheegP70V7hTrkdjrUTTcBqfMQ619ijh3/yB+tTr0VbtRxii8MZcFcRq/PxlZ2eTnZ3d4rbc3FyqqqoYPHgwbrcbIUTgAwZAUlISeXl5geuVlZWMGDGCTZs24fP5WLt2LUVFRezbt48VK1YwYMCAFvv3ekWzyW13yomqO6HlBME725moeufPcKLqCz/ettYF/2neOzs9UXVrdScOAXBmYOcHPGqerbtq/TqEKzVRdfBq1fo143ehiar9kyc3b0tyouoLb3ulJqq+ENlBu8L8/6E9XNnI307X84thyby+8yTfFJ8hxqhDp1EoqrPTIzqM63tFM31oMlkD4vmhooHvyxp486tTjOkVxYOZfekRZeS5WwcxPC2qxZxmLXidqPWn0NYcRndyG2pjBZqGEtSGU4CC0EXgjh+Ks89EVEctBq3Alv40uqI8HEPvwpPQ9B9Lh++T4BVJki4jRVGYf10P0hqPUWYTnHbo8PgEUWFaEAr3pPemb5yRpR8f4fvSeg5XWjGFaUnvE0v/+Aj6x4czPC0Kk6HZ4VHRBL5V8yaPpO6uXQD4Gopx9puKxlqBvmQX3qg+NGYuJWL3ctQzx4l7ayg+c088iUOxD78Ptep73L3G4zOldkVpfvYyMjLYunUr48aNY/v27eeNxDh8+HCWLFmCxWJBVVX27t3L4sWLufnmmwPr5ObmMnPmzPM6Z5L0c5Asz76WpG5BdtAuI49PUFRn43BlI0cqrRyqaORQZQO3X5NEZaOLXcdr+X/bfyQ1KozIMC2TByUSF6HF7ROUW1wUn7Hz0Li+5J+oY9WuUwxJMjN/VBpjzg7yMWNYMngcaBqLUS1Nf5qGs5frT6JpLEVjLUdodHjihqAoKmrtIRomvIA3sheKosEb3YeYdyYR8f1/4ux3K+LaOwFw95rQhZWTpCsjJRy2PHAjBaUW1uSfYkL/OHJG9+CTgxVEGFSOVtu4Kj4CVVEw6VU+OVhOeYMLu9uLUaeSFhXG2L6x7C+zMHlQAhn94ljzTTH3pfdGUUATex2mlOsBaPA4UKxViKieiD0rUIQXxedGrTuCLzyOqPfnoribBkjxmVJxp1yPfWgOnpTr4VJ+Lypd1LRp09i1axfz589Hr9ezbNkyAFatWsWYMWMYOXIkjz/+OPfccw+KorBw4cLAgCGSJEmSFCpkB62DhBDY3F4i9FoOlFk4Vm1lUJKZ19/fz+4TtagaBURTZ00AWg18faqOtCgjSWYDPgFWl4f7x/Zj2tVJPPBuIbE6DwNNDqbH2dEeL2Kio4bJg6vR2KpQTlSjOVCFxl6FxlaNxmVBaMLwRvUCnwtfeBKKx4G25gd8xlhQNIiIZOyjFoIQhB3egKngBTS2SuqnrUaExWC5/U944q4Gjdp0DnYnT5WQpO5Ar9Uw/dpUxvWKxusTqBqFk3V2UqPCKLc4OVpt5eb+8Ww/Wk2tzU1MuI6rk80IIRiaYuZEjY1TtTZe//IkL3x+DCFgx7FqIvRaYsJ1pESGkWQ2EG/SExkWhqmuFnP6nzDpVKK91cRWfonvqlvQNpwm8uNfoXFY0DSWYDj6Poaj7wMgVAPe2EEojjqcvSfhGPkA4d/+B0rfdPQuBQUF58BfoDjqUM8cx5M8CsVWheKx44vshaaxFKHRI8Ivfrrzz5l/7rPW7r///sDlW265hVtuueWC+/B36iRJkiSpq/xdd9B2nahlX6kFr8+H0+NDVRRqbG48Ph/RYToOlDfQ4PTgE3DG7sbl9eHxChQFzAYtNpcX99lTp+LDVXqHuxmbqsXaeIY41Ulvk5e+Ji8j4gSVlWV4tNWYvfWEe+sxfn8G7Td1bHTUoHgcCK0RX3gCHPOC14ni84DPAxq16fdiGh2WiS9j+urfUC2ncPW+Gf2xLQhtGN7InmjsVSguG4rw4Ynpj+uq29Cf+F9cvW7Gdt3DeOKvCYws50kY1sWVl6SuoZ49NfixCed+D+b1CTQK2N0+dp2opc7mwhymY/vRagYkmBjRI5ofKhow6BTCDQauSTZzdXIk731XQnGpnT3F9QCM7RuDxe7mWLUNAfh8Ao8QCNETVXMAg6oSYXgdo15Dqt5Oot6JQx9LdsMa+rkOo2twk+ooR3NwA5EH1qIVLsTBdZgUDT5Fj3PvfyFQ0DnKKBl4PzE1ezA6KtFkPIHpu9cQWgOutAxQmjp0CB8ID564qxGqHn3xTtw9M1GslejLv8UTN7jpmCO8KD4vQtHg7pEJ6kWm45AkSZIk6YoKSgftWJWVr07UBkbQaj6O1nU9ohieFsUH+8oY0zsac6SRP+afAgHi7JpCNG0TY9Qx97o0/na6nlq7m6wB8Xz6QyXHqq2Is+vR7B7mjkwjwqDyVn4Ri8b3Y3+Zhd98cIDocB1GncrB8gYMWg1ur8DjE+SM6sHfSuqxubzcOTKVM3Y3Hp9gUKIJt9dHQpjgd5UPondb0OJFVT0ooqkjpdjOZi0z4tObEXoTwmZGuCMQ9mhSw2LxJSYgwgbiC4tF87c3aRz3b3ij+hL10T9Q+8sCtJWFmD99EFvGv2I4vAltzSE8sQPROOtwJ16Hu0cGrt4TQXhAUXBeswDbtfeg+Ny4yr/Fa07DZ0pFGJpGInP1nXzln1xJ6ub8nbZwvcqkQQmB228Zkhi4/NvbBnOq1k5pvYPSegefH6kCIN5kYNM/jeHD78s4UN7A/7ltCCt2HOdgeQMoEK5T6RsXTlGdneI6O3qtBpvLi8VgZurQQfxh+3E+d80OjDTYPz4cp9tHqcXKfOVz+mgqSKGaHtp6zDWnMAgH9Wio2LOBCE0ZRqx4PlqIz1dPGA70P36CEE0dTiHAB9g1EXjQoheN2Pf8GY3iQ08jhvA4Shx6EiMj8KJQbBG8HqtQo4k/e8wV+AQMT43k3vTewXtCJEmSJOnvXLsdtISEy3NufkKCmfSr2x8x6L6J5+5r8Yyh7awJk5vlyrmEjL+b0zRn180JZr69Nq39dZtdfuYXbX3T1P6oMQpwSQPSZ/4jUf7Lgw+TAJA0HoYdJBIg81fQbF86IBxg9h9a7CbCf6Fnz0u51za19Twbzg6QkJBgbjEcr0ajoKoaTCYDBoMWo1FHdHT4efswnR0VLyHBjMlkQKdTMRp1gevt3X90dDgmk6HN/fqXA+zd+21g3ea3+3M2pygKxrMTdZtMBhISzKiqBo3m3O1Ai8sXYjBoz8vlv+7PcLG209G21d5+DQYtOp0a+JDfvHath1Ju/rz49+tf3//YNRqlxXPr3+6GG25AVZtOi1UUpUWNTSYDRqMOVdWg06ktnmODQdvi+qXUqvmyS61pe/vozPbNTb3Itg8knRue/eV/GHXJ+717QnsDUUy/4JILHcWUVpc1QPPkCS1Xp1ezy4OBFVw+l+v9I5TodOp5baf5McN/3Gx9rJFaauv409b7QPPa6nTn3ln9xxSjUdetanyx97bW68K5Y2Dr7Tr7mDt7PL3c+wgFHX3f7oxg1qqt9004d1xq/n5uNOrQ6dTz2pLRqAusDy2PZQaDFlXVBD4fLFv2+xbrN2+jbfHvy3+//gzNM/q1vr11+2++7aVqfR+Xkrn5thda17/MYNAG2mrz25rXWqdTUVVNoN7tUUTriWEkSZIkSZIkSZKkLqHp6gCSJEmSJEmSJElSE9lBkyRJkiRJkiRJChFB76C53W4ef/xx5s+fT05ODsXFxeets3nzZmbPnk12djYbNmxosay6upoxY8ZQUFAQrMgBnc1eU1PDvffey1133cW8efMoLCzsFrk9Hg9PPfUUCxYs4M4772TPnj3dIjfA119/TXp6Otu3bw9mZACef/555s6dy7x589i3b1+LZbt27WLOnDnMnTuXV1999ZK2CZbO5D5y5AiTJk3iL3/5S7DjBnQm9wsvvMDcuXOZPXs227ZtC3bkgI5mt9vtLFq0iJycHLKzs7vk9Q2dqzmAw+Fg4sSJbNq0KZhxf7JQaJ/dSev2VVZWxl133cWCBQtYtGgRLpcLaP+9XmrZXmQNO27z5s3MmDGDWbNmsWPHDlnDDrJarTz88MOBz647d+7k0KFDzJs3j3nz5rF06dLAum+99RZz5swhOzubHTt2dGHqnxERZJs2bRLPPfecEEKIvLw8sWjRohbLrVarmDJlirBYLMJut4upU6eKurq6wPInnnhCzJw5U+zevTuouYXofPa3335bbN68WQghREFBgbj77ru7Re4NGzaIpUuXCiGEOHLkiJg9e3a3yH3q1Cnx61//WixcuFB88cUXQc1cUFAg7r//fiGEEEePHhVz5sxpsfzWW28VpaWlwuv1irlz54qjR49edJtQzW21WkVOTo5YsmSJWLNmTdAzC9G53Pn5+eLee+8VQghRW1srxo8fH+zYQojOZd+yZYtYtWqVEEKI06dPiylTpnSL3H4vvfSSmDVrlti4cWNQM/8UodA+u5O22ldubq74+OOPhRBCLF++XKxdu/ai7/VSy/Yia9gxtbW1YsqUKaKhoUFUVFSIJUuWyBp20Jo1a8SLL74ohBCivLxcTJ06VeTk5IjCwkIhhBCPPPKIyMvLE0VFRWLmzJnC6XSKmpoaMXnyZOHxeLoy+s9C0L9By8/PZ/LkpuHfMzMz+fbbb1ssLywsZNiwYZjNZsLCwhg9ejR79+4NbBsREcHAgQODHTtw/53JfvfddzN9etOIbGVlZSQlJXWL3DNmzODpp58GIDY2ljNnznSL3AkJCaxcuRKTyRTUvP7MkyZNAqB///5YLBYaGxsBKC4uJioqipSUFDQaDePHjyc/P7/dbUI5t16v549//COJiYnt7Trkco8ZM4YVK5rGK4yKisJut+P1ertF9mnTpnHfffcBXXMs6WxugB9//JFjx44xYcKEoGf+KUKhfXYnbbWvgoICJk6cCMDEiRPJz89v971eOr+9yBp2TH5+Punp6ZhMJhITE/ntb38ra9hBMTExgc99FouF6OhoSkpKuPbaa4FzNSwoKGDcuHHo9XpiY2NJS0vj2LFjXRn9ZyHoHbTq6mpiY2MBUFUVjUYT+Jq59XKA+Ph4qqqqcLlcvPrqqzz22GPBjtxmto5kB6iqqmL27Nm8/vrrPProo90it06nw2BoGgb0z3/+M7fffnu3yG00GlHVjg2/erlUV1cTExMTuB4XF9fiNdBW3va2CZbO5NZqtYSFhQU1Z2udya2qKuHhTcMNr1+/nptuuqlLXi+dye43b948fvOb37B48eLgBT6rs7mXL19Obm5ucMNeBqHQPruTttqX3W5Hr9cDkJCQEDjutfca/3vXur3IGnbM6dOnEULw6KOPsmDBAvLz82UNO+i2226jtLSUyZMnk5OTw5NPPklk5LkpZWQNr6wrOlH1+vXrWb9+fYvbWv/+SggRmL/Jf72t5atWrSI7O7vFi+NKupzZoemFvHHjRnbs2MHTTz/N22+/3S1yA6xdu5YDBw7wxhtvXIHETa5E7q7QXqbWy6BpfrZQeBydyR0Kfkruzz77jA0bNlyxtngxPyX7unXr+OGHH3jiiSfYvHlzUJ+PzuT+4IMPGDFiBD1/wnyNXSUU2md31Lx9TZ06NXC7v56yrhfWVntp671P1rB9FRUVrFy5ktLSUn75y1/KGnbQhx9+SGpqKqtXr+bQoUM88sgjgX++gKzhlXZFO2jZ2dlkZ2e3uC03N5eqqioGDx6M2+1GCIFOd24yyqSkJPLy8gLXKysrGTFiBJs2bcLn87F27VqKiorYt28fK1asYMCA9iZ6DY3sX3/9NYMGDSIqKorx48fz5JNPXpHMlzs3NHWcvvjiC1577bUW24R67q6SlJREdXV14HplZSXx8fFtLquoqCAhIQGtVnvBbYKlM7lDQWdz79y5kzfeeIO33noLs7lrJlvtTPb9+/cTFxdHSkoKQ4YMwev1UltbS1xcXEjnzsvLo7i4mLy8PMrLy9Hr9SQnJzN27Nig5e6s9h6v1LbW7ctoNOJwOAgLC6OiooLExMSQPH6Hirbai6xhx8TFxTFy5Ei0Wi29evUiIiICVVVlDTtg7969ZGZmAjB48GBsNhs2my2wvHkNT5w40eL2UPmM0J0F/RTHjIwMtm7dCsD27du54YYbWiwfPnw433//PRaLBavVyt69exk9ejTr1q3jvffe47333mPChAksXbr0inXOLnf2bdu28f777wNw+PBhUlJSukXu4uJi1q1bx8qVKwOnOnaH3F0pIyODTz/9FICDBw+SmJgY+C1cjx49aGxs5PTp03g8HrZv305GRka724Ry7lDQmdwNDQ288MILvPnmm0RHR3er7Hv27Al841ddXY3NZmtx+l2o5n755ZfZuHEj7733HtnZ2Tz00EPdonMG7T9e6Xxtta+xY8cGarht2zbGjRsXksfvUHGh9iJreOkyMzPZvXs3Pp+P2tpabDabrGEH9e7dO3AmU0lJSWAMCP+I3v4a3njjjeTl5eFyuaioqKCyspL+/ft3ZfSfBUW0dU7KFeT1elmyZAknT55Er9ezbNkyUlJSWLVqFWPGjGHkyJFs3bqV1atXoygKOTk5zJgxo8U+cnNzmTlz5nkf2EM1e21tLbm5uVitVlwuF88880xQ/0PT2dwvvfQSW7ZsITU1NbCv1atXB87hDtXceXl5rF69muPHjxMbG0tCQkJQT2N78cUX2bNnD4qisHTpUg4ePIjZbGby5Ml88803vPjiiwBMmTKFe+65p81tBg8eHLS8nc29f/9+li9fTklJCVqtlqSkJF555ZWgd3o6mvvdd9/llVdeoW/fvoF9LF++vMXrPFSzOxwOnnnmGcrKynA4HDz88MNkZWWFfO7mXnnlFdLS0pg1a1bQc3dWKLTP7qKt9rVs2TKWLFmC0+kkNTWV3//+9+h0uou+10vn2ktmZiZPPfWUrGEHrFu3ji1btmC323nwwQcZNmyYrGEHWK1WFi9eTE1NDR6Ph0WLFpGQkMCzzz6Lz+dj+PDhgYHk1qxZw0cffYSiKDz66KOkp6d3cfruL+gdNEmSJEmSJEmSJKltQT/FUZIkSZIkSZIkSWqb7KBJkiRJkiRJkiSFCNlBkyRJkiRJkiRJChGygyZJkiRJkiRJkhQiZAdNkiRJkiRJkiQpRMgOmiRJkiRJkiRJUoiQHTRJkiRJkiRJkqQQITtokiRJkiRJkiRJIeL/A55KSklm5y5qAAAAAElFTkSuQmCC\n", "text/plain": [ - "\u001b[0;31mDocstring:\u001b[0m\n", - "Run a statement through the python code profiler.\n", - "\n", - "Usage, in line mode:\n", - " %prun [options] statement\n", - "\n", - "Usage, in cell mode:\n", - " %%prun [options] [statement]\n", - " code...\n", - " code...\n", - "\n", - "In cell mode, the additional code lines are appended to the (possibly\n", - "empty) statement in the first line. Cell mode allows you to easily\n", - "profile multiline blocks without having to put them in a separate\n", - "function.\n", - "\n", - "The given statement (which doesn't require quote marks) is run via the\n", - "python profiler in a manner similar to the profile.run() function.\n", - "Namespaces are internally managed to work correctly; profile.run\n", - "cannot be used in IPython because it makes certain assumptions about\n", - "namespaces which do not hold under IPython.\n", - "\n", - "Options:\n", - "\n", - "-l \n", - " you can place restrictions on what or how much of the\n", - " profile gets printed. The limit value can be:\n", - "\n", - " * A string: only information for function names containing this string\n", - " is printed.\n", - "\n", - " * An integer: only these many lines are printed.\n", - "\n", - " * A float (between 0 and 1): this fraction of the report is printed\n", - " (for example, use a limit of 0.4 to see the topmost 40% only).\n", - "\n", - " You can combine several limits with repeated use of the option. For\n", - " example, ``-l __init__ -l 5`` will print only the topmost 5 lines of\n", - " information about class constructors.\n", - "\n", - "-r\n", - " return the pstats.Stats object generated by the profiling. This\n", - " object has all the information about the profile in it, and you can\n", - " later use it for further analysis or in other functions.\n", - "\n", - "-s \n", - " sort profile by given key. You can provide more than one key\n", - " by using the option several times: '-s key1 -s key2 -s key3...'. The\n", - " default sorting key is 'time'.\n", - "\n", - " The following is copied verbatim from the profile documentation\n", - " referenced below:\n", - "\n", - " When more than one key is provided, additional keys are used as\n", - " secondary criteria when the there is equality in all keys selected\n", - " before them.\n", - "\n", - " Abbreviations can be used for any key names, as long as the\n", - " abbreviation is unambiguous. The following are the keys currently\n", - " defined:\n", - "\n", - " ============ =====================\n", - " Valid Arg Meaning\n", - " ============ =====================\n", - " \"calls\" call count\n", - " \"cumulative\" cumulative time\n", - " \"file\" file name\n", - " \"module\" file name\n", - " \"pcalls\" primitive call count\n", - " \"line\" line number\n", - " \"name\" function name\n", - " \"nfl\" name/file/line\n", - " \"stdname\" standard name\n", - " \"time\" internal time\n", - " ============ =====================\n", - "\n", - " Note that all sorts on statistics are in descending order (placing\n", - " most time consuming items first), where as name, file, and line number\n", - " searches are in ascending order (i.e., alphabetical). The subtle\n", - " distinction between \"nfl\" and \"stdname\" is that the standard name is a\n", - " sort of the name as printed, which means that the embedded line\n", - " numbers get compared in an odd way. For example, lines 3, 20, and 40\n", - " would (if the file names were the same) appear in the string order\n", - " \"20\" \"3\" and \"40\". In contrast, \"nfl\" does a numeric compare of the\n", - " line numbers. In fact, sort_stats(\"nfl\") is the same as\n", - " sort_stats(\"name\", \"file\", \"line\").\n", - "\n", - "-T \n", - " save profile results as shown on screen to a text\n", - " file. The profile is still shown on screen.\n", - "\n", - "-D \n", - " save (via dump_stats) profile statistics to given\n", - " filename. This data is in a format understood by the pstats module, and\n", - " is generated by a call to the dump_stats() method of profile\n", - " objects. The profile is still shown on screen.\n", - "\n", - "-q\n", - " suppress output to the pager. Best used with -T and/or -D above.\n", - "\n", - "If you want to run complete programs under the profiler's control, use\n", - "``%run -p [prof_opts] filename.py [args to program]`` where prof_opts\n", - "contains profiler specific options as described here.\n", - "\n", - "You can read the complete documentation for the profile module with::\n", - "\n", - " In [1]: import profile; profile.help()\n", - "\n", - ".. versionchanged:: 7.3\n", - " User variables are no longer expanded,\n", - " the magic line is always left unmodified.\n", - "\u001b[0;31mFile:\u001b[0m ~/anaconda3/lib/python3.7/site-packages/IPython/core/magics/execution.py\n" + "
" ] }, "metadata": {}, @@ -2785,29 +2879,28 @@ } ], "source": [ - "%%prun?\n", - "# arviz.plot_trace(prueba, combined=True);" + "pm.traceplot(trace_2, var_names=['mu']);\n", + "# arviz.plot_trace(trace_2, var_names=['mu']);" ] }, { "cell_type": "code", - "execution_count": 573, + "execution_count": 111, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdd5gceXno+2+Fzj0zPTlrNMrSahObd2FZWJIxBq99SbbBcADb4HiOOddwsX3BGHiAsxgfrm2wMfY12IB3CWbZrI0Su8o5zWhy6J7OuaqrK50/RtqVVmlGOzMtjX6f59nnWUldXW9Vp3rr9/7en+S6rosgCIIgCIIgCIJQc3KtAxAEQRAEQRAEQRBmiQRNEARBEARBEAThMiESNEEQBEEQBEEQhMuESNAEQRAEQRAEQRAuEyJBEwRBEARBEARBuEyIBE0QBEEQBEEQBOEyIRI0QZiHHTt28K53vWvOjzcMg4cffngRIxIEQRCEhSd+7wShdkSCJgiL6OjRo+IHSxAEQVj2xO+dICwctdYBCMKVxnEcPvvZzzI2NkaxWOSrX/0q1WqVL37xi0iShGEYfOxjH+P222/n05/+NNlslr/8y7/kc5/7HF/4whc4dOgQiqIQDof52te+RjgcrvUhCYIgCMJZxO+dINSG5LquW+sgBOFKsWPHDj784Q/z0EMPsXr1ar7zne9w+PBhBgYGuP/++9mwYQPpdJr77ruPxx57jMcee4wtW7bw93//9xQKBX70ox/xoQ99CEmS+OQnP8mNN97Ib/7mb9b6sARBEAThDOL3ThBqR4ygCcI8dXd3s3r1agBuvvlmHnjgAcbHx/nCF77w0mMCgQDRaPSM7cLhMMVikfe///2oqsrk5CR9fX1LGrsgCIIgzJX4vROE2hAJmiDMkyy/PHXTcRwMwwDgX/7lX1DVMz9SBw8efOn/H374YbZu3cr3vvc9fD4fn/3sZ5ckXkEQBEG4FOL3ThBqQzQJEYR5mpqaYmJiAoCdO3dy8803s3btWh599FEAUqkUf/7nf47rusiy/NIPWjqdprOzE5/PRyKR4MUXX6RardbsOARBEAThQsTvnSDUhpiDJgjzsGPHDr785S9zzTXXMDExga7r3H///ei6zuc//3kcx6FSqfCRj3yEt7/97QwPD/Pbv/3b3HDDDfzFX/wFH//4x/H7/axYsYJ77rmHv/qrv+L+++/njjvuqPWhCYIgCMJLxO+dINSOSNAEQRAEQRAEQRAuE6LEURAEQRAEQRAE4TIhEjRBEARBEARBEITLhEjQBEEQBEEQBEEQLhMiQRMEQRAEQRAEQbhMiARNEARBEARBEAThMnHBhaqTyeKr3kE47KNUMl7181xJrsZjhqvzuMUxXz2uxuOuxTG3ttYt6f5O0fXqVff6Lpar8bOyWMS5XDjiXC4ccS4XxoV+7xZ9BE1VlcXexWXnajxmuDqPWxzz1eNqPO6r6ZivpmNdbOJcLhxxLheOOJcLR5zLxSdKHAVBEARBEARBEC4TIkETBEEQBEEQBEG4TIgE7Spg2yXS6QcxzXStQxEEQaiZSqXCvffey49//ONah3LFUhMHwa7WOgxBEIRlTSRoV4HJqf+XZOq7uG6l1qEIgiDUzD/8wz8QiURqHcaVza4iiQRNEARhUV2wi6Nw5atURimVtrNhw6MocgDLyqCqTbUOSxAEYUkNDw8zNDTEPffcU+tQrlxWBbtxNa43XOtIBEEQljUxgrbMGdUx1NDreHD8IfaO/TX7Rv5nrUMSBEFYcl/+8pf51Kc+VeswrmhStYR34jkw9VqHIgiCsKyJEbRlTvLfxGeG7iekjtEiF/hgU4nt8V/QE15BT6i31uEJgiAsup/+9KfccMMN9Pae/ztPUSQikeASRnUFiqwA780EGgLgOf+5UhRZnMsFIs7lwhHncuGIc7n4RIK2jNl2iZ1Df8zGyEbW1W/km89qHDT6uO/246grPSJBEwThqvDss88yOTnJs88+y8zMDF6vl46ODu68886XHmPbLrmcVsMoL39StYRkyDgqwPnPVSQSFOdygYhzuXDEuVw44lwujAstVC0StGVM14+iVI9wU8v/TcHMs3n1MEpmki0H38onbr6l1uEJgiAsia9//esv/f83vvENuru7z0jOhDlyTDyxnVS9b8T11dc6GkEQhGVLzEFbxuL57YxWHHbF9jB+6CauHbmV0dAeyhWF/7n1q2SMTK1DFARBEK4Qrr8Rs+s2XNVX61AEQRCWNTGCtoxNJrYyVVUwt9/CTilPRF5BufoRPtr6MK0d96BK4uUXBOHq8od/+Ie1DuGKJVWySKYG4c5ahyIIgrCsiRG0ZUovVHl0ymSgGGJCCaF5MzT5PbT6TLaU1rJ1F9R7L68SFdd1cXXRHUwQBOGyJCmoyUNIuqi+EARBWEwiQVumhnbFOSqVeY36q8TcAKbZzIRlcsd6L6OFFTw1E+B/bP3LWod5huqzT5N+y+vRf/DvtQ5FEARBAI7pBhOGCYDrq6e68l5c7/kntguCIAivnkjQliHXdRmZepo/6krz+/f+HvUejYhk8SkpyPZDQTa07sWnlrmj/rdqHepLXNfF94Z7iXzne2jf+SfsifFahyQIggCuO/vfVUp3HMyTxy+X4yj5MZBFebwgCMJiEgnaMpSb0cnV7SZjyaRmNLK2yy/1/4Q1Kx7iwx0lSoEhqo7KiUQFwzZqHS6u45D96G8zOTyMtGYtvre8jcqTj9c6LEEQBJT8KGryUK3DqJl1fh9d3tmEzPHWo2SHkbRkjaMSBEFY3kSCtgwlRgrQPEy66uNjPzmK5YRoyt7FofobqK97jF9K3Ynr+Hkh9iOO54/WOlwqhw/xmbfdxy/r8MGRaaTf+wOCH/5orcMSBEEAxwbHqnUUNTNsVJmqzpY44glgrPkV3GBrbYMSBEFY5kSCtgylxotInjxVu52UWaZLLaG5KX5wWGbIXYsWSLKyfpyNM7eyuf76WofLdyejxLt6+cXGldQpMn9XrGDu3ok1OlLr0ARBuMqpqSPIWrzWYdSM7bp4JAkAuTCJZ2rbVZ2wCoIgLAWRoC0zruOSHC/xvYzKk+k2cL28xfXxzroqX+o4xkP6fraH6lgTGWGr6uHRQ7tqGq/puHy3vZf/6VaoUxQ+1dnCg5kC8W1bqT77VE1jEwRBmCXVOoCaWe/30eY5WeIYagdcJCNX26AEQRCWOZGgLTPFdAXHNbilziA99QZkYMOaRyj0PkWi+xn+rF7m09NrWROewUXm6YmDNY33uWKZxrow/ZF6fvbCT6l7+MPc6TF58pY7MQ8eqGlsgiAIAHbTulqHUDMnTi9xlBTM7rtEiaMgCMIiEwnaMpONalh9J/iVSIU1AQ9ByaG5Yxe5XX/Kz4++gXGjiS3BKG2+NI6rsib8+prG+92hET6y6+usev4+3nT485jZKL9z9H6eb+3EPHII1xKlNIIg1I6r+nECzbUOo2Y8EoTl2UsFKTeGeuJhMMV6lYIgCItJJGjLTC6mkWzYQcqUcYv1dAbjDJc2MbBmB3sbhmmO30i4fTebD/8usmTzyIkjaFa5JrFOZzK0FvbxgexPmPK0s8N5Dav1ce6afoJCcRL7wx/Drda+y6QgCFcvu6EfNX281mHUTLfHQ0iZvVQoSRGSJQnJEgmaIAjCxdi2zeTkOIYx/2tZkaAtM9lYmbJvgpTpY8pVaQ3HIN3LkdE13Oi0MmTI3NCxl2xohn5PmXorhm5UahLrj48e5EuDf0PV9TAy5mcm4eGAs4G0FWRtNcH+t/8qcjBUk9gEQRBmuVd1U4yxqkncnD1+xTWpeFtxA001jkoQBOHyl8mk0HXtkrYVCdoy4rou2ajGKBkOZlvRkLheMdg0cS99viJv7T5AY/ceiN3JJ8uNtLccomh2Q9a35LFWqwaBmedxHbC9HrTr30hzVxPPcxsNis6Y3MBjAyco/c1Xlzw2QRCEU9T0cSSzNlUGl4OQLNGkKAD4XI0uOYpk5GsclSAIwtz4Bn+KpGdqsm9VVenpWYHPN//rbJGgLSN6waRk6RyvOpSm3gTA3VovjzTvJurP42u4Eyc4hi+7jr++9X7WNkwy40T4wfGHljzWkZFh3qi9yHOe6/n06j/i/1n5Dp4KbUBxqxyt9vGdw5+hbM1gHty/5LEJgiCcTjI15PLV12p/QDcYNUzck3/W5AZSZh247gW3E4TLmaRnyR7ZQjaTrnUowiKLmxbbpUZcZekHIizLRFE8mKZJPj//zrciQVtGCkmd4a5RPtOpc3P7GCG1zOeLbQSGb6J76A7iuxroL61iUA+gI1MyGpFwUe0VSx7rwSMvcn3pOF/d+FHGPN3cN7yVLRtvJtu+gZ3qzfRU49yc3Uk2kcA1zSWPTxAEAcA9Wd6oJmrb8bYWJAks1yVvOwB4qWLLAVx/pMaRLRLbFKODVwElc5yW2FP4PEqtQxEWWUSR6e29CVT/ku/bcRwMQ8fn8+PzzX//IkFbRgpJHbvrMVpVF63Uw7pQlDdveIC3NFXobklhmBJafhPHlALV3CqypXZcJHRjaecTuK6Lr3SY/YH1PHX4d7k1c4jPZ7/Onx/7Fs+095GgCc3xcl/8KY5vuhZ7fGxJ4xMEQThFzY+BWcYJd9Q6lCW3zu/j2oCfVnX2QlaydVqlGSQtVePIFodcnMIz/WKtwxAWmdV5G8nr/gDLvXrXN7xaFG2H0bHtSJWlL3H0en20trbj9/vx+0WCdlUrJHRe2z6AA/xX8hoq1TD+A7/BH6h5/rcVwKysITVwGxvCMTZW2rivYxcNSDyU+gnuEpasjIycYIM7hGyYeI0KJ8w1/JX7IT6Y/i/uSu7BdmHAXME6fYzDn/hj1DVrlyw2QRCE09mNa5BsE7uup9ahLLkXSxqH9AoFZ3YErapGSNFek7vRS8GJ9FNd9bZahyEsNksjcOInuLaozlnuTNfFE2jE9S39qH+1apDJpMlk0qTT87+pJRK0ZaRYPkTEY5LRg5RsP/1GMyXT4v2Rw6xp287TjpdGr0NTIEfZ9rLLaCLkzbE5tRmjvHRfVEcO7uZG/RiZcBOjai+f+buv8b4fPMTkSAt/kPg+juJlj3IjmuTj6aKONXBsyWITBEE4nZIZRDJLSNWrp1GIk0njpFJ0ezzA7EUOgB8dVZZwveFahrdo5MIknvFnah2GsMiU3AjBagZFEiNoy80rBxuaVZWOpj7AqUE0ErIsU19fT319w7y3FgnaMuG6LqXQUxzQPDw1cB8Av2xGsNdvIRq0uK93D/tch0idxszuDxKLvoau+knqwpMcVD2kEktXdy/P7CPpieCaLrvkzZSagjz1njfzQP+7aJEyHF/fw4zcio3C7YmnKH/r75csNkEQhNNJRgEcGzU7WOtQloy5fy/m/j3Yh3dzrWvRoaoAZCs6xcoUcjFa4wgXiWuD7Kl1FMIis9uuI3Xdx3HNS2t/LtRW1XF5JFc86+/z+RwnTpy5ZmXRMpmY3o9ULS1VeC/xer1EIo0oiop68jt0PkSCtkwYZYuGyARDuV4GCmsA8NpVthfXcOP4GwgHUlwfTLPdU0aSHJTubazyZbg2MkbJDbJlbGnuGhaLBZrUBJakMhnqRNmrs+G2KeocjWONvQzrvfzZoe/guC4ly8/vT/6AWDa7JLEJgiCcixtoBseudRhLRuntQ+nr5znJy85iiemTjZpMfzPjnlU4y3QdNKdhJWbva2sdhrDIpHKCyO7/hT/6i1qHIlwC6zxTclz37FEy07Zo9Hhx1eBih3UWXddIJGbIZFIkk4l5by8StGWikNTZMXULq4M5pqsRVqtlspLBTdF1tHe0cSh1D+3tu3jCCNOoKmQS6/Fm1/PE1OuRgE1Nr1+SOKenJ+kmRkc1TSbQQI+SQA/VccvK13JNqcBR6zq8kxoBU2PU7qG/EuVApBlXE3e6BEFYemZRpxzLgHT1/Fw6pSJOOsV1ThWvBL6Txx5xcqypjCzbc6FkBvEN/rTWYQiLTNYSOKFOyj1vqHUowiVSz1GeqqoeAoEzE7Fmp4y3HEPWl35JBY/HQzhcR1NTC62tbfPefnl+y16F8sk0z0kxMqXVhNQyzbbM5PX/TlNTjsLNU/xKx6/xlr7nSboSPfU65vQ1NGY28+61PwTguaGBJYlzYnyU9dYYAB869lOObriOPcrNvDCynyc6V/FXr/8g//umD/Kft7ydA55r8TsG+o0bRYImCEJNPOmuZ08+v2xHjc5FaW1DCgapx+E6j0L7yXbkSd0mWppGzgzVOMLF4XrrsJo31DoMYZEdrVvLTP87CEa31ToU4RKcWv7DcM4cMXNdF10/81oxrwSJe5txvaGlDBGYTRiDwRC2bWNZ1ry3FwnaMlHUHuXXOqfIlXuxXAXNDpBKrWNQb+I/jv0rwYFRZKuRd635OYX6QSQg3f8INzYNIwOD2ecXPUbXdcmO7MTrmiTkCJWsj5ITovdnBymkqvR4kvzSoa28J/4kn0h/nxma0SQfuXYTuaVl0eMTBEF4pUDIizcSxGpaX+tQloyradiFAjtDTRxU/QwZVQBaGjspRW7Dql9Z2wAXiRNqx46srnUYwiJKmhb5iRfo3vc1VLda63CESxCQZVRJwn5FpaOiqHi9Ly9IbZomI8MDdPsCSJa+xFFCuVwiGp2iVCqQz89/qo5I0JaJXaPr+GFa4d0rn8S0PayVoUlr4J4GH6/b+Ca+tPIJBnNvx1FzfMey6PBIOC98kt3pa1Ekg67E7ZiVxZ1jUSoV6XSiGLIXV5J4bMPd9KXH+OJv/gH9U9N8bOcgeze8hn9b+ev8W+RXSNY3scuzicbqDJWHRNmJIAhLzHWp00bw2QayvjzX/joXOzaFpJd5Z98KIqqHRmV2BM0tT7IutwNLz9U4wsWhJg/hG3540Z5/enqSQkEshF1LTVTZbOTIq91kOpZmasdSUGf2IFWujvn6mWQcIzmDzZkZWrlcpFo1XvqzLMtsaK5nSstT0pb+c+f3B2hpaSMSaaKlRZQ4XrXSDT/EliQODv4qpuuhb83PeFrvYXDSYu3jvUxmp7j2NW/koYm7mKx2cE3YpqSHubP5GJ2hBM8FbKZj8UWNcWJinDY5QdjWeDR8Fz7XYOyGLvbfchf9v/NR1v3ybfwvdS87+jZxQ2yAqk/CqcB9yaeI7tu7qLEJgiCcxXWQvTJq2UBNL00Z+OXAKyVRnDjDRw/QXdWInEzQMprEfg3isZEaR7g47PoVVHtft2jPryjKGReQlwu5MLFsFx9/JXfsF+zNqET1DjxDT4J9+b0el0IpTiMZV0fynzj6Itb02FmN8+VynOaZ5176syRJpOQABTnAoHf+CdKrJcsyqqpiGMZZpZdz2n4RYhKWWKVc4O1rdtHsNnLU8eDFoenQu1ihNXD3rXnalQbuXfk2Hos+yD3NaW7u/xF+ScL0ZVAVk6CqY7h+ytXFnee1Z892WtQMTzbezv3rPkJwX5LSoM0Hill2b/kpP3vghxz5+UEClsaHS//FdQxQpoE+PcrzvqXvwCMIwvLxla98hfe+9738+q//Ok888cQct3K5Znqc/pKyqLFdbuzG1RR7r2ef7GN/sczIyRLHzq5+5EoDoaYVNY5wcbie8KI2QGlqaqaxsXnRnv9SyXoaWU/WOowlkfC14E3soz/6IxzZA9L8259fjoxVb8OpX56fy1eyJ3ai5GI0KGd+LwcwUKSX56EZRoVCYpImX4A2c+lH/YvFIrHYNNWqQaUy/xJLkaAtA5n4YXKWws2Nw6xqOcZGVSfRs4VNnXuwVn2Dwq1/zJ2HNnLT85u5ptLBoel7+WFwkpDRTmTkHWi2DwuoD7YvapylYoFeK87zgev5xuAXGW7sYceGm3jHsee4Zw20NyuUShpve/LHxO0W1jLJcXk1Cg71xQlcc+kW0xYEYfnYvn07J06c4Ic//CHf/va3+eIXvzi3DV2XGSVCTK7iSFdPkiY7GvWj+7knP0X/ru10nCwlOji2kx7/NJXs4lZb1IqaPIh34rmLP/ASxeMxisXCoj3/pXIVH5Iz/yYGV6LWpl5WRrpJtL2RbN0mbLsWCxgvvMCBbyPnxhZ1H65Rwdjy+FmLQS81ySzjOAaVVzQJcRQfVTnA5OQ4AD6vl2uawqSrFVRn6UdK6+vr6erqoa6u/pJuzIgEbRnIpo4wXvGya/T9HExvICdZzKgN7PWsoGPvX9C550uEJwNsXv8abuFGkqUevqs10uq1qZhefm3V43iR+PcXfr5oMVqWSQN5/I7B66M76UtFKbY28hvPfJ/cxLMM7owxFe7Fq1borUQZCXRzd2o3WRqwkalfL8+27hEEQZinW265hb/9278FoKGhAV3Xse05zLmVVRLhMIY7hRVoXeQoLx+ekINpFYlbRQJrelG9Xmzb4ni0zH6pA0tanmvC6eF+jJVvXrTnb2hopFQqUq1eXs0p1MxgTRbyrYVK7AC7NT+lQpnKgUfQE2O1DmlByMkjOFO7zvvvklGAV9kow0mfbFVf4/ev1NhLW/kIOevMBK0hsR2/Nv3yXxh5TsROILkuiUAXj+SKZFLDKLmlKdG2LAvTrKLr2iXdmFkeY7tXOa0wyHGzh3ylFb3aRJ1VR/2JO1E21fPtWJEPuw38qVzmfW2TRJUs/63rB/zzoQ+RUySUahBXtrBwaI95Fy3GZDJBh5xm2NtDyDA4EeinUA6RaWgm2qSi3vcx0keOceuufezatIqeaBxfvUlvZZqtzTeiBZn9UriE1dgFQbi6KYpCMDhbJv3AAw9w9913o7yiPEZRJCKRV5RS2yZ1boF8Yyfhvs2o/quj1NrwtDE+mWD6phuo9Kwh7JXp8nu4rrebmad/QcXnJ3LbG8+7vaLIZ5/Ly5yu60xPJLmmrwUaFicZV1WHUMhDpVKmrS0yp22W4lxKIR/UBXCvsNdsvhRFRu3qZ93R5+m2DlNY+X7a+lfjDV7hx+26lLtvQ/M20XWe11A68ijUd+P23n7u5yhEob7rgrsx4jbVoI+gX67pZ7w7WMSnuoTqfEQCs10bbdvmRMmiIRBm8+aNBINBstUCpXiW1RtC9JcPclPbOnxD21A6rluS93o6mSAbi9KzZi2mac77fImr3WUg49/PaPIW1gWT7M31szY8iRzUcd0Sn/C9BenuLlY/dQJ18GGaR+/mcN8mVkXGeCG3jjunbqNh1eO4OGT1NhzbQVYWfmB19+4XWeXE2Nmwmduyh/iF/2acfAkfJvFcCysf+S/+2x99kpGNawn9+B+p5JMMNPeTbw9xotjPDeVjJH/8AG2/9dsLHpsgCFeHLVu28OCDD/Kd73znrH+zbZdc7hXzcKtFfGSZqNaz4cR+1N4blyjS2pGMPPbIIeqMUfLJYXqnxgm/492ULZdkaohIxMLRpbPP1WkikeAF//1ytVJOkdyzC/n695+VwC+EmZk4kUgjoVDjnM/PUpxLX9nAkSqYV+BrNh+RSBDZCqLSSax3HVL9KvI5DU/1yi4m8448SmD4MaS+t5BNFZDOcSPbVzZw3CJm3dmvsVnKEJp+juraXwH5/GmBmS3haAbVeIbmhoaafcZz8RmiVcgks0x4fFwT8GFZJtlckbCSIZXKU18PpqVQXy4xkC5A2KS+3kd919vw1rXDEsRuWzJWScM0JcB7zvPV2lp33u2v7HelAECz12QmfRN9/ixVV2W1p8yDpQ3c6L0dpclPYFMTn3vtKsL1v4WpN3Bz9nXc0bmTx5UyaduhL5ygwaOzNVCkkF6ctSLq6iKslia4qXicD679PA3ZHBucLPV5BX3TtRx1qswMHKatPkxvexclqY640ch7Bh+lrxLjNcVjHMpfHR2KBEFYeFu3buWb3/wm//RP/0Rd3fl/FM/ggqbW4RgWSnH64o+/CLkwCeblfRHsmd6OrE2SUDxIRZN9gQAaUNE1JqJlDqtt1DUuj853pzMMgyGzjdHgDYvWabGjoxOfz0c+n5tbie1SqPF8olN0y+L/PzGMvshzzY3EYY5IdWQHXkA/8AhmcnRR93cxSm4EuTzz6p7EqpD39TC15zjmsaPnf9x5pomMjxynULEu/l449Z6tcYljRdOwLZdCVWP8ZAMjXdeRrAqO6mNmJgqAVEozVDSxPPXQdi07Kw4z2XHUmT1LEqcjSZi2TamQozh1aN7biwTtCmcWDKYyPRjVCKHGYdokm+ZMH68zVP5zQuJ9+QyDyTLB17Rxz5vWUmg/SknL0+LLMWMGOeo6qOUOLCSKdgiff+HvGjqOQ7FYoEEqMuzros5bZWN2BLnOxw26jjk5xvUNJczxXaTHBnhr4x6q9Y0MldsY1NoZMzuQcElbV0cbYEEQFlaxWOQrX/kK3/rWt4hE5lZaBuDaJsQ1yhmbqOy7+AYX4ZnZg6ynX/XzLKbqyjdRbryRCU8XSr5AS75EybaRJZsb165i/eQw8YForcNccK7rUNWLrAyU8HoXp9w/l8ti2xaWZVI0KqSsy6Exx+WRoOUKBSTXQZYX+bI0UM/N5m4cp8IBfy++7o2Lu7+LUBMHUeP7XtVzmFWTg7afaFsb7upV53/g+TqU2lUcx+Wi74WT79dyLkNyvEZLbbgupu3gRWaFR6XPN/tZ1TQNzTKxKi/P9dLVAK0RH5sqU/Sn9vPO6gjrU7tgiRo+aYUceLyojoF++FE0bX4350SCdoUbicb4btmLB9BMD10NIxzveIaezT/nS+EGNMOmwT87ZC1tmWLtyiqBQgv65C30hOKsCsuo0VtZEZqiiESlUF7wGLPZDLHpCcJOmYrt5W+OfIWxsspDHbcy0N+JbGj0b7qNNW96D63/8WOKt/8NK3we8pkK99/+YV5ovwEZl/XlC9wZEgRBOI9HHnmEbDbLn/zJn/CBD3yAD3zgA0SjZyYZ1jkull0U0sEgqlRhoOKe8zHzUe19HU5ocbvlvlrywE+puknCdpKoqtA0M0SkalA99giZoS04K1qJrOg/Y5vZVtKXV+OL+fL7A2yKVKmmx4CFb0jlui6lUgnXhUhTCy9UTA4ULoOOjidHTazImpqG0dnUxAfXrcW3CKWlMNuB0M5kUIPdZN0NuNf9GkrvKsxiZlH2t5Q8ToWb0i8SObQdt3gJzTI6nHsAACAASURBVF5cZzY1cy/c0dK1bUBCkWU8/sClhPrquS6yLFH1Big7NuNGFdd1kSSIVx3SehHpZDOUoNdPaGYGs1Bi1FU5VLeexIbfwGq/YUlCrauP4JMlUAKMB25E1+d3fS0StCvc8Pi/c6PSzIZgmuH8ao7kVlOZfCda6DcoS/C2Ta389RODsw9WZe7yvpFg8wnqUqv4k5u/wZgyg+643NR+kC7gwacfXvAYJyZGaZaySIC/omPlFca67uBbk1+h93U3UCdD+cUBBqdTOL/zcdTePja+47cYvOe1/Hnyu/Qr0ySVRuxe0cVREIT5e+9738u2bdv47ne/+9J/XV1nTohPJl9eB8q2bQyjgqP4sQJdVP1hgoFmRkZOYL6KEixZzyAtYIljuVxa8JbX8XwFNbOXLmmMiFRguK2RsclRjOBqnGMak7qERz5zzaxisYBtXw6jQfNw8nWwXZeqM7t20vHxGWY8Ky9pzaKLsW0b27bweDzECwXkzDhmZgjdqXGb95MX5W6gaUGfdnx8lEqlMufHxyoV/vnYAPl5bDMf7sh+Ko/+K5WZfUwHAsi7H2Dz0UdxJ3csyv7mF9yr+wybsp9jgeuJV/0Y0clzPP+p99jZ11C2684maLMZ2oV3ZFng8aB4vATqGl5VzBdzdOAYlnWO71oJGpsaafcVCJ5cGsJyZxelbvKD6tpoO39EITmDU0oxEGpF672B5o7rGdN1tOhevCOPL2rsp5iOiyOryMce4HrlCM3N82s+JBK0K9yBUplRs8B/X/sQU8UemlHoReN9RoDHNob4+N2rGEyU2T2RQ+6vIzhtkW4bJaG18GIuwqDsYEzfTMEMkZQsbk1eu+AxZjIpuuRJTEmlRSmxL7IOw8wT3d+OdehnvO/Nm+j7758ik0lj961EUhSknzxIlE6eyaziRz1v4t/q30WdpFEardGwuiAIy9rpiU4sNs34+CgYeeqMCYq+Znoa2nBdXlVCpKaOIJkLV6UwPT1JubyA7dFdl9Zb34vV8Fp+2PRW4uEWVkoBlEKRYrFIZ8hk3dQosRPFMzZbt24jgcAV1AnPquAbfQJchxdKGjvLGk9pBnIgzFpvCv8ijA64FY3K849hWSZhr4dVXoVrIi0EFrukj9n37PSR/TjnSgYVD1rrdQwNb53Tcxnl0rmf5xwcZ+7z7NyKzrq6MMH5lJfacxu1dbQyli7huelegoE6rnGHGG7tY4fcjpGp3dQJe2oSdx7n6Jwcm5GZNMlKlXJHF1PnmmfmOsQ0k1cu+Va2HR7Pl1AtbTZJPMdX236tQunUhraNa1TIjp5gbP/uVxf3RbzoyFTsVwRk6mCZNNtxvKpL/GRYLhAMhpCzJuFyhValRLi5jYqvnrVNCmvGn6NuejfvrAywMn8Mu3H1osZ+ipZN4ToWXrNAbCrG6MjQS/Pj5kIkaFe4tG8APbsOudRBqtJIeyDJRNCgmtP4aF8rAY/CZ96yjqaQB7k3jJsxaOhdyTaPxNDMGhKqS8Ru4ZbWQxiuxENOcsHvyGazWTqIkvQ0MuHrZNxu4ljnNey57lq2pbuprnwrex99kI2rVtMckNj503+h45Of5o4bbiRkVGi3M3hMi+uLxzl+6PCCxiYIggCzc5BOMYwKkl3FO/k0JUUiosV4JDpMbPaRl7wPY9VbccKd5/w3x3XnNZpy6nt6Qb+vTY3i9n/BGXmaHiNGwfEyk4vSVRemHN3LrqYAmd5G2tafOc9lZOTEvOdXLJTE8ACju38xv41UP8bqX0bS06z0yGz0+6hIMsE6D9HC4jQIsY4exA26gER9IEhzYw9PlqUlGUGTJAlfKHzuEjbXoaIGGA/OrcQxenQfuckTF32cYVTmNdrcFWnktrZW1Hmsd+obfgSpkr3o4wpDJ9iWiCK5BjP0MBQNEmquo66hkaJdo1I9wBoZxi0WOStzmivHwjf0EGsicGN1kM6ZE3i08tnn3XXYNp5jqnzm6KRx8rsjkt2PYmRm3x+veI/ECgmiJ0eUXcvCHhnGPXHx1//VcF0XtZpHKp45Ghh64Quko8MMFfxMZlXyiSmant2CY5kEAkGKjoWu+snYAVLxGEFF4lDK4IfeDew1FZ6VuphuvBm7cWnKeSORerweL5Wu16KvfdfJJi0vv78vtvagSNCuYObeJHe0xKC6klgwjuMqdJXacCst7DEAZfaN8Po1zfRGAhRsB6krxJuDb6YUmaLDbebjt36dDr9GRzCNBMwoEoa2cKUqtm0Tj8/gk6scCK/jc6s+QdbXzXuOHiIrhbmtswF/fQP1bV2E4i8Q/OfbGN/xDO7334ln33Mke1fz2IGPE7SL+ByTgdTQgsUmCIJwyumJjqp66G5rQrYssnInriNTSqXIjw2fnEx/adTkYWTt5fJA13UpnuyMNmNaPJkvU53j8zuOg7vQ3Qa9IUqhfnxWik47QcDQGGxoZWBihIaeO5BiCgf0NqatM0cBbdtGWYTlWS5mZvAotmXiC82xK+cppo4nugNP4iBdko0LdMSnePbIMDHCFxyVNIwKw8Nzv0A1Kzqju39BtcGD27UZWZaZzGV5/tguwvEjqNnF/03Tc3EUVUFWztFC3TFhchel4wfOmew7joPjOFSrswvuSnoaJTm3+eDzmbM5lC/wvYETZOdZ4igZ55nH5zovdeurrF3DKn+RzKPfZ3r7T0i5FtcOPE7L2G7GzMXpXH0xrqaBaWINDWKNXVplkKTPzp/TczOM+PrJeBsJKcrZjVZcB8W1cNwzk986WSasyLOjeI6NZBv4TvwMrJdfAzU7jHIqUXIcUBTylTLTi3hfwXVdXD2DlRo4/S9BkpgYOEC24iKZBs3jg/TldqLaJul0EluVSKuzpZfxyTEKuSQJb5ie9g5W9V5LMTGJu28LvsGfLl7wp8LNTSLv+WfcQ9tRj/8nPblf0L+il46Ol2/Qece2XPA5RIJ2BcsenqTHr/OHksmkbNHnKdNbv48PehSue9dq5I6XS07+8YVxvr93GnllHf7pKutNha6pW3hg4nr+P1PBk96ILLnEXD/e1MLVgKfTKWan2tsc8K3ld5IP8kLHWrypGJJpEi05VKaPsnF1Iy2Hv4n17v/g3Z/7B+o2vpm+1BQ7WjYRV5so+UM4ksyK+N4Fi00QBOGU0y9ObdsmlSsgmSaBYg5v1aC1mKWuqp8x0jZfSnEas2oyeXC2PGjUMNlanB15KjsOh/UK+Tm2X7dtG3tgAGd0AVtGOxZd627CWvl2jntWU1VV7h3bTvfYBOVCnHWBLDeWp0hPlXFSL5eGrV27AZ/Pv3BxzFEhk6Scz8yrlA4AWUauZJGqRQZ0nW1FjViwjjVqgWvNA9TV1Z9302q1Oq/5dm6xiDI8jFpOou3biq0VaPOprPUH6DNkMp65dxWdr3K5xNjYCPGDTxAfOox5rrl1ig+jaQMrJ/Zhn2M0L51OkUjMYBgVisUCgfZ+5M7rLrjfU58ln2/unU8jqQRvTMZo8M/vfXShkmGpWgTHpnz0EOVYEeu2d9KHBGGZZ3rexmDjWhoa5pncLxAnFcO1TXJlA4xLu+aSXBvXdRkfi6LmZzADMk/J5llr+DmOTZ9+jHJ8jEIi9tLf27hs8vsoppIYuo6SH0cuxVAzs4mRZLy8tFFV15gYHkRK7UObOUA+Pn5JMc+FK0kQiOCET5sn7NrgunisCnJKBwJ4FZV6PY9SKWJZFoar4jFz+LwSmq6hBCK8LZSmfegZzJEd/HKLh+6VzVS771y02E8p5FJEsza2Y2PoTezMWxw+coTJydPOm3Xh110kaFco17DRijO8OH0nL1YCTJe6cNUyU1YzW/w2XbvOrKv+6B19/O6dfcgr63B1C8+K63goGCKpTvIzycRJbqQ/HCWPy1h+4dpAO46Ngs36yhgrC1O8dWwb797zGDeuG6E9McUNd99B1yPvwTvyOH929/fYG7kBpRTl+ViS9EQU1x9gyu1kdX4Sj2vRFYwvWGyCIAinvHJkzGfmKMkBih4fSFUUXSPkVAgMP3TJ+zDW/SrUdVDXNnsX9fRqLglY6/Pin2OJl+M44JhI6dEFW8tKMsuYu/6J+vSPafdkaJEKHOpZi9XUSDk7yqH6Root9axYUY957AgA6vSLxLf/B4XC0q5TaVUNkrkcyZkYpj7P8krFh7bq7RRCq2n113FPdJzS8QF0j0lUU3AKsdnSuWr5rIsovz+ALM+906Dq99PW2Ex+9w6k1Svwxneh+sNYcogD0Rn2FBZvBEfTNKpVA0VRkJs60HSNaHSKkZETjIwMzd5Atas4YzuxRo8hn2P0KhJppKmpBUVRaW5uRYtPYE4fuOB+o9EpDMPAMM49wqvlMlivGP2NtrQjr91wslPg3J13BNJ1sdquB1lhPJFiXJZpcYvE2jejZW06nRh+4MjQ0s9Bs20bN7MdDzEy5eo5R+XLpRLJRAJd14jHz7dOmovrurSls4RKZTork6CbZDNnXsOZlQq2A+V8honBo5RKRUpjIyR272JnWQdTxy3EkMsx5HIca3IfpVSU50b3MJOvUKmaxIeOoeWz2NU4XqnMSrvMzNgQU+MLv46cadu4VY2Afdpn4+TNg6ZIAx7LwTErFCtlJswyxug2RgwTN6ggyxIxM0KxXKaqZ3m45OXFxuuYsMv8rBhiSOvCDTQveMyvVN/YSvf66/GpFUq+DgJr3kRLWwfhcPilx1xsPrJI0K5QzkQRNVDmxZmbsNoGmCx2M6Z14MmswlsXRrm25YzH+1SZnRM59lQMvO9ew93rm6mzNHrKnbSG4pzQ22gPT7NGqjJ+YGrB4tR1nWAAZBya7BJTbgur9DhyqJnXffij9Gvb2N5yG9ptn+TNM0/RpU0Rr+/nq9f+IW/8xJ/xvqOPk9Xq2GiM8kTdHRjNQcp6bUoSBEFYvlKnlX+1tbTQ7UQxcwkCuRJxXyfpUCsFu0L5PE0Fstn0RRcf9o48ilKcINjQCIAqSXR5PQB0e1TW+r2o8twSNNucbZBgw+zd5QXg+how1r6LqNuEx6qiKA71Ho2J2ATBhlXUxRSGcg1EdXA3bZrdRvGRsxrQkq9ysV2Aahk5P45tVnEuMkqlen34w/U4l7Dgs2QUqD7zr8SH9tOqOGRdkxVD25kZL+NVFSrxQSRTxxPfi1I88/ewUtHnNWJnyjKxhjBGfw9D03mqyRST49t52DRZ0e1llZubd/xz5bouzU3NhFTQ8hkkWcbv9dLV1UNraxuKIs/OtTTTVLx+Sqe1/XeKRRytTLlcQtc1pqbGyWYzWNlJtMQ5OgWeRpIkbLNKOp0856LfxVQC67RlGWzX5empaR49cYJtxTIZaw7n99RNiZMj2tVqlVjstMXkbQPvxHNI1RI3XHstq0ISied+jvuLn9Dkg5WxIzTnTlBtWvrmNkalwtih/Uj5CVy5SOEc65MdPX6cFwZPkI7PkM+fZ56dC7IEUrNDwRNmOtBKIhYjt+d55MLESw8bTMwwYStYFhQNg2KxQHlqilK5zBPZPHlHQp/Kk9fymIFmUjmdxNAxZrI5bNvCMEwso4LkumSUIDPBdnYGmkmMDTO898U5N42ZK7eSR7IMJP+Z17GOGiSTLNHld9jcVEJxbfJBlSoVEqaJ5PXRZOao18ep8ysYpoPsb6ZJM+g1/XQYSRpjO/ANXfpNtrnSJ/ZQGngc4lP4B5/kwPQR2hoCNJz87gdwL3LeRIJ2hXLGi+xa+a9MFXq4PZxnvNCLT3Jp6NzK7/36JuTu0FnbjGc0vrtrCnskzy2yl5ZKmFtH382q+gkOmWHCHo1hxWBdIrRgE8+3bn2aOiPBSKCXTinN/vBqDrSu50epVaQPPkNy6Bm+tOFPMZG5ValSmhynrTzNz3d+lPKeHzLp8zEkddHqy/Hj+jexTh/jkWefWZDYBEEQTvF7Xr4oDIeC5NNRpoaPU5WrlPwRfIqMVdHQTr8IPM2cGiLIHqoEmT6yD9dxCDsW+ZOJTdS0mDYtqnO82LFNE800yJSNBUvQsHTqPTYFu4MdykYcJNZnx2hK5Skf3EF7JMmd1RGsWIaJhx4Eu8qIXU+9T0JdgPWr5EoWT3wfEwd2kbrIQrhVXUPCxRuL4uRy5C2bocrcuvq5agA9b3E8XmBbdIpnSxrT6zfR3NZIdmyY4vQkRSlEufVmJD2LnJqdc2Xb1ktJwFwuSpX0AOrYHuoPH6Eu5dCWmsENdRFuXkuvBG0jSTx1PXOK+VJEIo3Uh4MEvSr5mSkObX2KzMgAHo8HRVGZHbd1edyqZ0/HOrTSywmaueMFzB3bsSyLdHp23mQ6EcOjTdMQUsCuImnJc+63GJ3GGTw0ew7OMe+tbdU6vKd1/SzZDhsb6nh3OU+PJM3xwvTlaxTXtjGefwbl9LlXniBWyzXgWIwMbGW45CP8f/0PGtZcQ8zj47n172EssoHNdZ4L78auXnR9sPkyDZ1yQceqVsDKMnHawsne4UeQqkVU2wbXRqvMJrhOKkV1145XXJu52LZDoqJSdSXSTj1uOUdy725c4+VOq9OmgyFL+BwNOxAkUyjiAqY2RrmYJ2tKpKs2j6Y0JotZwpXsS4tSU8nByZEex7bQVS8zda1IxSyR7DBu9NDCLkvh2ARiu5EkMO3T54K6mJ5OvEf34Nh5yrkS40oQHIdYucA1He3IBQu/bdMYUPH5VFSfh1vtQZqix0jGCtzaVk/T5uswVr/9/PtfoNc6m4oxnlYptG/mYOP1WJLN3sNHmZgYw3UcjC2PMzR44Y6OIkG7QjljRSyCgEzQHyOpN9PuSvxX4VaG//UoTvrsUoV717WyZzJHWTOpUxV610WQKyGC3hw7LS+bm0+g2X6+r04izaOT0oVEIo3ca2/FkD18resDHPWt587iUexgE/2NcZpv/Tg/PvSneCQo9L2did0PYXvqyF73CRxFZdv6t7Cr7y58TpV3Jp6mrZphaGZ4QWITBEE4Rd73fSQtRbVc5PCO5ylKDeiWS1EK0Fc6gZQewMrncXLnvpttWdZ5S7pOqfa+Hk99C+1rN2ENnSCZTpONz84JOaEb7CuWKVyko5uua7MNQkwTU59Az07gvMoFtE+R7CravgeITG3jusxRMG0GIn38+113sXdlN7vDPYzWNdPX5cPs7sdNHSc3sQNjchtuMHzxHVxs/2bxpQvQupa2Cz5WT46imDkMWcG1LA7qFQYrc2uaYjsuM+0bWCtn2NQQ4V1GhfaRY0TVAFG5n6xTR3rsEM74NgaOPUwheRw4s+nFXBI0x9eAGvQSavLyE79KqsNPLn6E0sgwrwuaHPZV2RabuOjzXCpVVfFILnUBFVf14Gtowt/cTrFYJB6Pcvz4ESyzSncli4RD9bS5UGWtRKWi0dTUTPfJhcm1XBYzHSWTSFFNjyFPbDvnfv36BK2V2XmW55qzGT1+kOixl8skA7JMMRhm7KbbKMSnqZSKZ23zSloiTj51MkF0bLy9K/D6fBRtm7LtgFXB9QQZIcBe02TGa3PsgW8T9TfSls+zafJZOmNjHD184Yoh3/AjqKkjF41nXmQF1S7h2GWwDNzTbrBIdhVZS6K7oOTHqRzcgx2NYg4cQ+nsAtOkunvn7INPNs6QDRXbMel2krQ7SXJ6CSO04qXnPDUa7WJzQptmMj6BUy6SGR8hkI5CXT0+qUxec4gWHeSdW5E1HVVPgG3hnhzhq2RSjAeamGloocXSedgNMOMJMZeF3QuFPKVScbZ0+AIDALIWx62WMV1wy6dPaXHw5AYwqgamx8U0LWQjSYOVY9JyKB1+jqQDyWATaTvIRKKAnS/yYqaJ/OY3sXt1L3835XDgSOG8jWXk4jSe6KtbF2+/VsF0XOi8FdmWmAmFGejcSKh1Mz3drbQHHLBtLMuiaIoRtGXH1SwsxyShtdGomKT9RfySwx2myu93t7HyQ5uQGs+enNsc8vKangiPW1WU/nq6V6dxfEWSepmMGcJjy5iuQtVqxEm9+jsilYqOaZpE1BKTnjZ+0XojE/U9DKZ8tDYE+NWujzK89t0cvvsf2fP8QyQCDTz2ho8j+eoI917L9aEC3xz9Br87/m2eK21CN2V02U+LlDhn2YQgCMKlknCQ9RTxJx/Es/vnePU0UlEnbQRo1gv0GxOstfZh2WePlJnpNLm9u7EucmHpnHgIN30CXBc3l2Uql3vpYiV9YBvV6RGsi3RxnJycLTVzbQvLNqhYNiOxaeLmq0/SXF8Ddts1pOv7GY2sxLEc3lDYSWtqnMa8RUu0ihZzGY+bmP2rGa1bTWff69D0VuznF6KyQXrpDrY/PNu8QXMcRs4xMpaaPIpZTqO5UL9yFSXboX/s4dnGEBdim1SmBjEOPkVpaIyZrVvYeXgPxmQUz+gEdUYSWyvwgqeBWFVjdeIofnP2Uun0Eta53MR09Ar57Ycoqlk2eCvoRS8KjRgdK9gay9CoVmgwCwwOHpvrCZqXmZkoM5Oj7N11DDsxwuq+dnLFPHYxR9A20UoF7IEXkQ0dUwpSLL48YmHVN+B0djGRiLNlZvZCWXUcqqk8WrHMeEInq9mza1O9QoNZQjk5d688Po7x/LNn/Hsw0kzb6g0vlafmbZuB4REO793LqOIjU7r42n7Rx3/O0PGTpZa2hTYzQSIeZ9gwmazoSI6JZ2Yv7UaK11/7FrpzKRS5SsPhJ2gr51FKGvWZcdSOxvPv5ORCyK706keHT2caBpKiYjf1UMGH+8r5m7ZJxbEwLYeqaeJWDXx3vQ6lpxdUFaW3D9eycG0TBZtyWGJY6SXua6DJTRMkS/nQ4xSTs6+bW5zBdl0Mx2V1dAr/7p2UJwcxCln6UmMoxSwxNwKFDIWsTroCVnKcvvRBGhKDWImTSayhYzkOPsnGxcUKBIgHQijlc5c3u+7sHDl98Dj7n3iEmZkY3onnUPJnzltzcik8+38we258LVSQOKHWkWa2Emx2XqKEnddwyiUsFGTHoa0ch7KL429lbHQQpVjGzFXw6HnCxRx21aCjyQd7nuP2dJI3Jo4xpGVwJs9clqNUKs52KLUqs6Our4Ltuti4xIdfYMijoGQmuGbyaerGHqI49QJBMwn/h703DbIku+77frnn25d6tVd1dXf1Oj09M40eYAACGBIEuIgEaS4Rok1bDsmyraBt0TIth0MOR4j2B4f1waEQLUsh0bRkMkiIIgkTAAfAADOYtWe6p7eqru6qrn15+77ky33zhx4QGMwKgAgFhP59zKq87577buZ9595zzj8KGYwGFML3DhV+6KD9ECIkZV77aJ3XG4/yIV+n7KdZ1IZsLP8u05M2shcivEsew0+fm+Tr91t4f7yN0Z9lkO5xofpZTmaq9IYPdsmaiETV719MdXt7E0WMKYQjLDS+cOs3efJgleXSkF/2/5AX3/gbLJplfqNrkqt8nuPrv8/PTi+AIPD7UYmXHv27FD72t/jjuV/gf/joP+D/fvzXkYj4ydq1f2eaOw95yEP+/USXYoJenVGnQSuA5mCEGAcUVRPsgIw9Iu+2qcZvdYSq1TLNfhc8l8B4l5Lfb3JbnqKqTtHc2UB49AK+beCbY+I4Jhw1wbUginCtMdag967tyJJEMB6jyAoIIrcdn5vm97+pFrkjvlxu8by2RJ0CLXmK7ihD0bUwh30mMzVOqR1Ex0J95vc4Lgv41RuczFYQT574vj8/VrMIosREKUt4/V8BsG173H+Hk7FVN8thIKFHAa97MW4cEwkSgmu8Z4i+tvsMvcoOvpiiUVjgVnGGlx99inuXP0FSN9CcA5LFSc5NLnBVf5QX85/GLj8IRfrmqdlQVmF08L7hUHrrdfZnC7QaKRalObTSBJbfJdO4yod3X0fqjkHMMzn53qeF3ytxHNPq99kZj5DGbQ5uvU5/b4vAdWju3EczhgR3rrIfyFwI1jGPrgOwvX2f2HMRWjWye3eZeDOETc7mEEqTqJFH5s4NjF6PyHm7Q1wVwHoz5DXY2yXYeOsJVHZqlsb2Oq29B9UCM527PJmKeLxeIV/e43B9nevj957PtmMT2A8cd0GMUY5uU8rnuCTaPF79OqGgcbB9hDsy2Ln6h+ykZrgx/QTS4gyt2Sw3ln+O4VSJS947hywDDyQIAMR3kCf4gIRB8Jf5on95LfQoj1O0Kh28MEJvb4DxrXDRwPewTYP+aEjQWQHPIzg8eNNWEWl6Gn/lFlGvj+eFjEcxM16HGb+Do8r4EyL1tsmwUaVy7zXi3gB9bNPzQkzBR9g7YO9gk2oqh2QbhGFEpZjBGZukrRqeLJE+eI5gbCEFDjOdG+COcQAfgSASsAURodlBsB2M9XfenKlWy+zv77Dx0rMcdpqk0hnaY5dy5YCK962Nruhol6D9IBezs79FL8giyQqypBLaNs5zzxJ7FsHuPovU2Sie5N7EWfpGwF3tJL2Rji2LqF6AVDYxKmOMXpPANimOKuiuRb1rkTMdfv7cAsLZ/+At/bRtG98PIHQ5skYfuJLuO3E5lUAXRTQ9TeDEtMUJKvmLOFKCg5HG7kgg8gPa9S2k0Xuf3j500H4ICe902a5/ATfI84RmUh3P0XOzJA7+Nl8ti4T33z3p+JPLE9xtGAQx/JczE5Sm71AI4PHCPZ6cXqGgDdGJ2TbfObb8u6FcPkSprREjoHs+jq3z39r/L9GHPsEfLvws1af+AdrX/jv+4NRxzn3m76HMf5inMynyf/7XudhbYUKRkU98ksuSy69UXuV/3v8XaJEH0yK56Pt3IB/ykIc85Ju0hw73rq6x0RzTMwVqXhIyk5ynwV7pOHcyxzHCJJJl/2VydxzHlIolCrNzCLk84fsUMJr1dGatGkvLi2w++8f0mzskzCGj0ZBF0efJREzRqTF45fe5ffUVnumP3nIy1um08H2f+otfo/zKyzRklbqa+ivLmxj2B+jrt/i5xnM8EWzxiHvA3cVHGKSTRGmRO/pJ7peOM388z9Hln6ZdvcmR43BkJaFQN7xbTwAAIABJREFU/L4/P0oUGPg+g+oqZhgyCgKu728j229/3/dNk6DZJwwsgtohnxDGnBnvIjhdyndu4H6HllkUx4RxTJSYQEnniabmuGDu8rQq8mONA+b379KQ0qxPPMpBKOFc/wrHBrssGFfxMg/GN53OMDs7T/eVV9hZef0tmnbfie95VMTTGPk0zbzKnxBT0QO000+i7N/Enz9FT1cxnTbp7PdZaj+OwH/7pqVrmQyrFRJmF0dNoOVnWXzsSaZPnWf5qacRPYv2eIjlKcRBhPJmSJlUvUb/6Br1m68Qb7yAbzcIyzv0d7eRhy3E/j7rY5NVWyHgWzlc1pvPRVtSaamTtPe2CJJJ+I78xMrdWwxtm9KJMw8upCbZjFSee+wy5HLIkyVS76Orp4YVQmtIv17ny1vbbJ18jJV6k5fuXaFtdIjMFvbqXXY2DylHefRhlZmNKwwtjVO9Mj++8wVSI5ub7fdwvgT5W+P7PVK/f4ej1TfDPcOQThDgR9CKE2z4Mh0nha/FjCtrf3mPYYwwrTFxGBDFoMQRUv0ufFtxGuXyh5FKRYJql1xtSCEYkpUcJtwhY0Vl2OrhdquEu68S9WsosU8z1rmRmWdcVKins3RTeXqJNKPCBJISo4YuEjKbE3O0J3XSRgfdH+IFAZ3yPgNCXEEkCAQmdw7oI+AH0Gz03nFTJHjtCoFpEqgKQ0mk73p8w9b5C0dmz/2W0+p5HmuRDlHIvm2w0+0g+i6jgUXz9Zc5un8XYzRkGPqIkofnaUhxwFBTyUpDMLbQFBFNsLEVjUi2kcMBfqfLjXgeY+YsW6LCv0rN8Wf7NkHrPp71rXfK5OQUmUyGsHAas7ON/b0KhwNfHhhsOy7pMMX8eMhsScHIFbksDDk5X2CqkCYKfIaBzZj3Fkl/6KD9EBIZHpK+x68nyjxR3KQynsWKVY7LJv/r37yE/NT0u96bTyhcnM1ylBCwKwbPBSfQvARvtJd59v5nyasDaqKJtu4QB9/fot/ptMkIdUQisoLNbljiq4fn8Lp1lhSRvyF9iK8PZ9C6ewTTTzwoiQuMPvM7PHby45wKOvxpq4U+ucRE1OWfTv0av3Hyf6IkDPmHLz3/vhXTHvKQhzzkg9Icy3SFBIHnoWR1Bk6M5vUZ+yKP2hXUSEDGR7XGxN6DH//R1a/i/uk/w9neRDi8TWS/R2hWHFMvX8O483m2nv3nuLNnyJx9EhEwmnWmhQBh1CeyDFzXI70wixfHbxGu7nXaGEeHHAxb7EguZhSza8nkDq7RC8Lvu7hT9uhlUsTsz5xhM3saSYbieMBITDNtjDnTGlE8aHO40+KSHFKdepLTp56m0K+j/uH/TvwBc+EEu4vcXnvbddEdsuP43DNHlAcVOt0mXqWC+x06UY2te+jVAyTLYVKuMHl2gcnD5wkOb+J3D0lPzyGrbw3zb/gBm46HP2rR376Hv7PCa+oiW1ev0dq7w3G7zJlulWODXXy7wdr8I0hOi2V7SCF/hqjXxR4MHhQJGfYQD+4g1d9dg65VPaJ99RlOXf88+eCAj3ZXOd8f4K5XaZz5LPvdPpOeT2Lgsbez9YHG7d2QOhto+1972/XOxlUGnUNGgo7T7qF22xRLDyrjWZ5He9jmucQiTpQgG9uo8YNxXo9iDjI+48kUVVHF8ECRPPRuF52IOPTZmJ0mkDUi+cE494OQr1Rq+K5DMKqzKZYQRIGo3QSn+5aKdaKskExnGdQfnCCMIgjrDRIHu2wjI1X2OSO9dwhpIx5xN5+ndmeD0aiLdu/fEt99juLqi4yr2yiKRv3EEquiy7HUBIM4QXVylqFkIkUCAzNBzm6TWJp5W9uxOSS2DSIE7g8nCYpnP7CUxXdW5nugPRcTOQ72M19i+/bL3HjjCkW9w63SHAfJaeKhSdc0IY7Z3ToiMAeo/pBC1CeOYBQESKdOwbdXe3QcItOid1hnUEixkj/PVmGJll5AFT2U9euMX3sezwsIPQspjvBiH8WKcBIyRwszIApkgyGCZTAkyZTdohj1yKgjOmIGUQqZG9YZ16rc73SIACGMEeOIfUGgpyVxJIVyx2Q47GP2v0OiyfcRPI/s7AJqFNLdv4cbupiCwLdHcveuXmfr7i6HrsPm9hbjnRV8e8xQzSJUy2xmVdTDF1ibPEWYEFnya0SxRC+ZJcoIPGau4/Z7iDkFccJHTgSMEgXiTJZPJnqk12/waHmdTxyuEjh9rPq9v5x7YRhSLh+ye/8OQvse505/ipk3K+saYUgYx8SO874VF7/Jk6kE87KIevglkmGTbP2rPDK4xXVXJzxc526nQuC6DAJw/Pee4w8dtB9C7h9LEvsyTvlp3Nk3qIwWMIH99A6dV2vvu0j/o198hNOPTSHXLFa7p+hc+tfo6Rrl0VlKyQ4d0Wc49uF9EhjfC9/3GY9HzEl1xmKCSBC4n1zm1AWfzziv8rP1Z/nzM8f5ib/+P5Kce+Qt90bZBZAU9Lt/wNPlLzJ76WdYly+wr87hiCon7AodQaHReO8KOA95yEMe8kFJHtymUt57M+lewHdDymOfTqpAHEUcN8voeEiRx2j9JbzXrxDUdzBGW7Q2b2KLElf75fd8/473xtyI89z2VdTNF8l9/ctYno+/u8ludpqNMMlhZ8DYj1hp1Ki5/rdq1QU2aueQ9N4WRmuIPxojdgaogYvfrrPRbGJ/Hw6abQxRujcwUyLK2GEopJGEEEL45OANYt0kmW9SKvgUlYCD6y/xRNjHf+NfkphV6F14CkH+YKFggm8h9Xcf5PiEPtLgQcVGwTPRPZvUoIzb7rB1sIIajDjefP0t92vpLLLkMe8auLKGs3mHP7IyXEmcJNx5nsrmKr7z4EQpGo+Jel08d8yKadO9tY0bSWjqBJ6YZGNpCbuo8PKpy5iajmqNyG+/wezhCopV5fXUOZrbN7h+8xbb9+4+aFOX6QcBcW+XuucTvcO4J5JJlKTD//mR/5qOHVGUHDYLE4zEAUU5wwWzjuf5dPb3WUp/d+LMyv3PPyi28M3xDN9Z8HYxpzIrV6keO4Gnp4msfbIrf467uoLx+l+g0iZpWrihTdowEY0A1zJYl6bxfB+za5Krdik2D7Dpsp9JoRJjoRDpHtn6VZ7/8z8BQA48jE4To9fBtIfMOPtIvR1S/W3q8SEbvQehhObYYG9jjfLaLew3w3inuneZ9LpMj1ZYPvwyhizxovXueeZBHOOFEcQxcrVObvs+yXqZyeE+53KgdLsYnsQLcQml12Onf0iQTtLKztObWaKez/CNcz/JldMfRyjvEjpvPaGNnvldor/4PWJ7SK53DX/U4mj/ZerlG+/73RyuXHuLhIBjHmIZuwQ3XqH3xjeYXP0iie5dyn6RQr/OPF3GqOyuX6e1v/Ygr6z6BonBPaajBowcbo1s1jePENv3iJ0xYm8b/9YNwkaDa2qRtbnTTEgjZC8gH5rIYUjbiRjZDl4Y0wpUAlFCNRzshMdcssUj3g6R6yOGAZnAIC1YCGmRotMgZQ7RWwYFd0DgCSR6A4TQZ3f2GCM5gS9J4JokQhPNcYj7fTrNGs2dDfzDu7jdKuLBqyR9EywD785VzteuMWjfY7G3hhi4vOXXpefTSRa5a3sQRghhQMYb43bvEIxrdOQEpmmA7GNGAmLkITgeTqSRa42oBRoXzVVsRcMPY2QNLD+gG9qYQxuxVKKWSKMFR1yeneDG1MeR3xRRFwSBfDbLYipF2LJ4bmOVV2s14ijiVcNizXYxbt8iflOCwrt1A7f9dj1e0WwiOH0U20KJIoLkBIf6FH8kfJTr0hJzTotaL6BaMWjsbuF4LsPBez/333tg7UP+nRBcbXC0dZ9y6jjrkzuc9RN03AKZGDLxR3At/32Tl3O6zMu2w1N9l9OTaSTSFGWDXzz3x6zFMivtx9kV21xKfO/To9NpIcsymuRzIM3xd87+Qz5282WePfNb5BcW+SVrl/wXfpcf/+W/865tWB/5+0wLIgWzx6Ln8p9s/Q5qwsWUEpz0Kuxs3WF+fvF77uNDHvKQh3yTL8x9isiKOdvaJt3cxlYXaMpp0rFAK5tjtl8BERxBpW66nHTHbI8G3EzPMC0GTEYhZiwQRDHKO+3+CwJWLktFBFFJcr+yTzeeYpaYWBdonb3AmBAzDumZIWLQJR0F+G/++Fcrr5EcrCJLA0RbpaOnKQpQCAbYBrRHA7woJvku264dP2DL9fix9LfpPsURQeMerppmcHcHy1TItdosZ1p8cnyD2Ivop3JIakRxbNCV89TTMzyZ6/Hy8V9htrnB3fxl5P03aOkBJ6IIQXz/fd8ou4ibffDulgZ7SJ11wvxJBG+E2N3l5NEaHgJG6g45Gwx7THDJQ1ZVxr02jXtvMBl2ENM6kWMyODzk0dk0C8YW3cVPYu0/jzs7gZ55Cv+N15HtMsasTj/3ONXpRQ47I6aKSWb6u5wbzfJa0+fpxisoRQU5JTN0wKltU8jZCHYVNXWeVPWImYVF1JmLDMxDkEYErbusDLpcypeYUd+6XnaHA3bFRRbr17mXnycc75DwO5iPfJrUtS8TaDYdYYJC3CXefQHmP1gO37BZo9fPcuJMhruWw5KmIOhTFN8p3FIISCw/xahhMa0niccyr2204ESVc4FBK3OMlurTTGapTM+gSQXG/+afsHxshpzTJt+2kWSXcJzhBfsM6qiFanSpZRdYWluBnMs4dHCiCFlW0FJptns9GA4R5Yh82CRyx7iZkKNQIj0aIfd7DHfXOV5MM585BUB/5sMcdbc5b21xOhpwoEFx1Id85h3HwPQshDhEiCOIYkTLZMY0sMMDPqd+nKe9DTKVa1hBjCyVeXR8yGawRNYYsbP8CI54kjOjdTRChHGIdeNzZD7xn3/rsVByREgIkkrdkZmprLORzCEIKWbf47vxHZsojAg8B1lVAUi3XmSgTqKKHRJRG1yBhY5JN5hnGGfZUJb5CCskvRb97ddIjSrE+TQ9QSMRGYiEmEJEvV3nhOGilsooWRcvPYMy2qSWjXi0vUvKHKEIIfXMHBORQU7vYIcuQ2+WvqAzI6nkhgYzbocYEd11UPCISaCEPvnYwI4VxraCEwmkBINqNEGUkgkiEWVsEqcyGKpGjEB6bPDJ4So7+iITQYPE/vOYDZXmvSGRMGI2l2a4u0mclTkadEmEAsFumXIuQWHjGY5yS5A9TRyGBKMBCUcmh4iby1HwfbxIxpIlhGjAWbuNGX8IddRjJGqEkkomsvlIdwUxiKlRpESDROSg2R5GOonq2wS9FntCjo/2mqydOMX1VAmpNyK/8hLCYx8FQBQESnufx02fxSwuceHms/S0EoKh8encLDX5OE13laBbopDLIRYLlDfvspjLv/WUvnqfOClzZb/J3MXPEFhFUvGQj7FOw5yiJCv4y4tklQSBY+AEEQnlvWspPHTQfsgI7g84TD3Dx3MNjnOfTdWkpBj8p77ATzw9w+z5pfdtQxAEnt3rcjmvcTYV0Wlc5mKvyB/rIUGujR/JHEUpgpdryE/PfU/9rNdr+L7PjfxFilGPnzGucKp5h38c/TOc8WV6l/8+qrH53o2ID+LWJ77xd1nwZmlE01wIN3BFlY+213hFnOfHv6fePeQhD3nIWzFFhaQzpjc/hZDyWHQ6WGKKjpqnENiMkg8S3HfmTtL2VI4FPmL/AEkqMine4ZRdRh7WMYJfoCi9PbcgDn2Wu1/DZBnbilECUCWwXBdf6jO9vsvh1MfYEE4ghAFOYNL1Ai5HEb7rIPgOI8PAC136yQSDpMaiM8YPJRAlCoNdHP8iyO8svCsIYH97mE7oEd39/1i58hLjWGT55GeIBxVwVW7PXuCOeIqcZPDx+m3uHz+L7esst/ss2luUs1k+MXyB4ad/iZS2TqyEJDvbGM0K2dlj7/j5b+nL8AjJ6VIJsximyZmFjz247hlQvU+gOChBSO7+LTQni3RKJmysIx97AqvfIzy8TlaDTvEUk+MDBpaH2a1S1fIUm/uky2WEN6ttRoKIgUQcuGjtPcrlTazqAFuWuFc6RvFgD1EMWJ87y+XxNknHJkhIbOdOsCWPyMUFEuYMLa1GIjFHr17jyvwys71DFkKD1vqLbM0t486c4KRTB1kjzCxyM5boRgH6cMSTzgaTXQFZm2Sq8jrh4jTVvYggVBlKMdttgcc+wBz1fZ/Dw32ifpNy+ZADJYNezFPe7fLT0tvzH3fWblOWJpgUXeIgpCaprF+4yMXiIuX9HeY21ujMLOPGGqIvsZ9OIkQyY18i6yuEWYNXlp5kIqGy4Gyi9yzkvoyQ1BjkdU54e2SSB7zarlFI5NlF4uT6CmLNRJ0W8eIaW/o0lufQ6jWokWJh1OOSt07CncPcfJV8qsihL5NuHqIOfTZ1lZTQQWjXCOZmkeW365RF4zZS7COKITmtiz7qcJjM0jKSnKpfI9bHhJs3GMw8wdmDrzFndbiVPI+ZVzk9usup8ZBez+WytsP+6Z9AS2fwPBdZVrAsk6QiIJVvEfcu4WeXGaszEI3hzWdR0d755MNzbBqNGhPHTyEdlRGSSVa0CUw5xdkggsDGswJCTSRZDNjKTfPh9iqTwYhbw2WyuSaC1SHOpgjjiCgKwI8JXYe6PEFqxobpk9j3twmTO/xed4w98pCCACOdoxslCRJJYi8mIXRJxD3ujQzOaB1cSSVURUr9JnLgE+opBnqec9UD4iigMTXNonVEHPoUYgNPS1BTCpxzj7DR0D2b05kRgiCyIp4jL/aRUdB80F2L+OgOY/FD7M8tcb5xH5wKYsZj17OwidDsACU08a2Q0IfglS/iLf0G1bu3uVEqQa/G0d1XyfSHJAZ99KDO68un0SZOkDTWqO6tYaGhEdPOlkgHNqNMjj3vFInIYSA9cOZHqQzNdAnTUik5FX5B3mdTSlNsVzjvHbIrTjNt9AnOXXrwnbk27W6I7pkY/SsIkUlez/BMdIqUMMXTWop++nHu3LrKh7WAdPMmQpQjjiKazTql0hSiKGIfOdiPnGWpf5ULo3Vq4iaHfkzRcpBGQ67l50msrfEpdw1Rjrm3/PN0hTl+6j2e94chjj9ExCOPqO8QJPrc6l3khhtRNqcoySZ30kf82cuND1x98X/77Hn0ExlOqwr33RM8f/wrrMZp1ofHgRgJcKe/d/9dEGAy6vIT/TdIeQ7/1b0/Qngky53Uacxz/xnpyfPkfuLvfaC2xj/1T9FOfIamtMgJq0IicFiIWvza3nPfc/8e8pCHPOTbOdk7wJZg2TngtFhhWuqRFUwShFiKjq9oKBoIqojY7XNoNLE8g8lhAzsAS0tSTk/ywsigsr5Kb+cOBA6HrkfXtmgZI7aFWab8JieCCtWpInmnyaGe4Yam48cCicGAjh3gCAFPdFf4qH1IHMfcf/UrvHjnNo12nbhRoawlOSxNs5edRTRd6DlEpkOr9e4V6To7a1jNb+U6Cb5Jbe0alZ6D2fIQug0Sw00ixSPT7qIELlnZ5o1jT3BqdMAEXbolgfJ0lpI6ZMcfcOL136Gz/iKy5KFlVOTWLXq9Lpb55jr0LiK/7tUbRKZNEHkEqRLS8BCikEjLI8gShp5lo3ASRxIZeR6WGSC7D/JbgjDElaAeSHhGlVvKcQ5y8+yJMjtenoan0ffThPqDoiVDq8/XlCJ9IyI4qjGzs0LG6pLOLVC0hhjnjuNPJpGyIiMlw74yhToe8sjdO7RNgYGaody4Q68RsdY12fVM+hZ04iT9RhPJrBHd+wqD7i71lklv5GOsfYlk5QZptcXXZz7C9egc9xYfpz2jcmPhLNlUlumkhiz06cgRh9PvfFL0TYxOk7Ln84ppEwwGmO0Kmzv3uX5wgCYI/GRgILxZdEHo7hIbA+T6dcaeh6EG1AuzCD54wyN+/vV/gdHeZ2h0yPkt8Dzy4y7pRpfJRo1Zp4XU75NxR3SFaU6XGwwNn4n9MhNbNUZJmbGSYCZokokMzMjm4Paz/NnaKv1amUeTIol8TGo0whiF7KUnaep5dgYt2sMh3tYGCiPMVp1yF6JEibrRYSSDGnQo+C3UTpd9xyR6N8kJx0SMQ3KxiSlAbDaQpJiFTA/ZDhiGSZzNG4j9NsnA4Eb+LIEskhE8EgJ4uspheo5byhnudVTaGwbdapl+r0utVmEkgz2dYrt1RBzu4Nl1Cle+QbC3ypVn/4zYbL+jvIDvukijMuaNL+LfvklYKWNEMrJncNjex/UMTEWnWphhQjO5FG4jawKNUYqD/BxOGON6HkajTSyAKauMPTA8n9W+yRVjRDxuIdde5ZmjDs/mzkBo00tk0RWfaQYUfAMxCNlfOEU9O4E3tBGjmEBWsFWNTrrAUE/haxqhJmPlUriiSsK16ehTVBNzaHgkNIcFscPaxFn6Wg7RGZMIHSJRpCCYuKGMgc5sskFOGWM5Nq16heztV6kqETueSjcUkLv3sOcT1CZmSQQ+QznDaGGC3LBCv9Wk3Wow1iGtuuxXO+j169RcjSASyO5ucuRH2GGA0+ujd0yUMGBIGl9OMJZTeIiYkoasghhHGIk0kS1wXGvyolugNtDo5Yt0C3mGSsi03yM0IarWcNfXUWKXyeWzaK7NzCNPYg2OsLdexzrY5ODua9y98n/Ra61zLm+QMOs49/aQD+4Qd48Y9VoPdClHI1KTPYqVZ7A1kZcO9tjsyHT0DK0oTyVT4tT4iEmrQzlK8WXrJD/m3GGspd7zuX94gvZDhL8/Yk2IEDY/y5fFDL9ZvEHZyDD28jgc49wTcwiZt+82vRND2+cfjUf8h5fnae21+aQ/RRqbcbbLzmiegmRw2Gxw/vTku5bsfy8URcUTRfKMyAYmnhliiFk+d+5v8subq0g7Gzz2C7/5gdqKE0WOFxXO7lwljkT2UvPoOFzviBTWn6PwyGe+6/495CEPeci3E5suRlGFyEMQInxB4lzc4I4zwbZ8gk4hwww9IknAGfVJRBvcKi6AFZEw2vTTGYTQJQ5crlcqfJgDrisCx2KXo/KA6TCg62pMay28QCGQNIw4wazVQkm4FJwRT9ZfY0d20AY2tgUpLY/qdOk172I4NQqhQ11JMsqWUFyPkaARd106C/OMPBFt+xWEYhJ5sIe/+MkHdrkugqax3djHVETiU5ceyMpGITmrjScksEKBYfk6vqcz4fRQ0zI/H11jx5+nn86yJy5yrFWjJhapiZPYqoLn6hjhgK5+nKo9ZsZr0TQs/HqZ2q2vc+6xS0TX/4DQ1NB+6b9HlBSQHqxPR7lZDoYC08ImI18hPnkKL4qJYhFbkAgVkaYyQaCCl5FRXZOV129y+fSnKe9uUglVOm6ElU6Rjw1mnSahDpago/llJjIV1ju7TM4s84YYIrg9Rp0WoQXjUoa2Nsve0jyFXovp4TbquM6Hw32aWolNYQFx4GEvicyPj8iYfZxBjlLxEMlJMuyMkBSIbYFWkGK5t4JjqnTqm8hBkYxtofjTZPde4qS1xoU7G2wvn6U42GQgH2Om0eO1k08wndzCs5N8fHyH9Mur9Pa3iX72b5PN5VFVlahjI6gSrxES726QP/sYrW6f/sprhM6YUaqA5ca0h31WU5P8lFlFGfSxv/A7CMs/gzZtYYppLof7tP0sKdci0TdJLFqorZfI2UN6qRT+KORpbjKYzWJGCnNRh1nXpavmyDpDmokEbn9ML5MjtzRGp8lA0TBSOkM3g6ukaToW4+EhU16fdcHFlmXu6Rc5G+wz2dqm7yUI2mMK7i4LxmtEhFRy07SOL/BoHHIyMcuVpE8/s8h8/z59x+H8uIb6ZpjgoesxYZmogY86OUXoOyBABLS1NIloyFHiGEM9QabdQUyrFFv7BJKOraU56VW5k77E453rdOMSQ7vExe4dJBUSwi6O1GeiqiCm8oSjkGcmTzNoqtgDmTO1HtXWJn/NaDE90LjdatG9PaKweBnmP4RZPiR7YhmA/tEOtWiIPmrRf+RXmNy8jSh4BCKUtrfYIIOdyiOHIQo+chSQ8FzsZJLjUZXb0RSXbZdDTycoCCihh60JDDUV3bR4bjxL+9orfMqrcTd9kbRrMFYzTFgjelqOhbjOMCiQEV00ISRnjxjoS6CKuIqKkdTJ+A9kEQJkHne2CTIqB6lTiEKMq6gEGQkkhbI4R162mKbPKJckMgXMZBZBjFmKqmQlGw2HrhIjpAR6boLtXI4nNreRG22qc3k022JR7nE79xRxBuZ7IwgjluI6c8MKOzeuMDb69BISoqSCOWRKarIZz5PxBmi+ixr5ZIMeNUpMJyKUkc+M12PS9hgnZRKShyJE3Eue4lx9kyChohsW8USCVqTy9dJlfrX6PK/IH+Za/lP4rsG5uEEs2iiiROnrX2bZuc3Qixn7bUZOSDySeMz9Go2FY0h+iGntUu88yD+Oi1mMVgvxq/+W0jEFofTr+FdvMdp+AVMJyY57bCx9FFkpMsyXOCEc8VR3jTVlmYVEi0mjzpo1jZwMOGfvvueaJP32b//2b7/bHy3r7eKQ3y26ruA4bxf2/PeZH5TN/Zcq3KIOx/+MjeEZ/tbJF/iL9uP4TpFSdpX/4hc/g/gB88ZUWeQff2OPXwhkPtcY8ItxTGE4jTa5w4FdohPH/FovizqhIxY/WALzN+12XZevfvWLNAKJvxZfwRVVemqBXxq+wM/kk5Q+/VvMHDsFWvYD2y6qaXbuvgFSxDMzn+SzvVf4X878Nyi7qzzyxCc/cDt/1Tyc3z86/Cja/e/C5lRKe/9/+gGw+tIXyPYc8uqIlOKxmT5JS8njpHWme0e00pOcCOqYUoKlcZl2nOdmYgk1DskkXJxQQCfiUJnjTrfPws1rhH6TKc3loDfm1e6QUVph2atSUaZY05bxFZ0pu4cuuWSCMfulJYpWkzCWKGRG3Ms+inj0IscPXyIzbjFwE0iWz/rMORxFYZDNMycNmVEGbGgnUNt7XGIXrXMXf+lTjOp7XP2T/4fJ2/eGbau6AAAgAElEQVT409wEchzwkVIObf9ZYkmn9upX2Z+YQtcjPGeMPg1rxXP0M5MYappCOEIxXQRJZD15gsl6i6IxZCs7x0fMGzjpY+jVJoEWko6G1LyAZdFguzMmk8zyxdV19KMV4mEZOZNBysyw/cIzhDe/xm3Dpd9vkGrblAon2JNC7q08z+iwRknqUVOnyQ9tzESCTNolb5cpfuiX2X3+T7HdIcNcCjtdYNnewQoTKHqMTYqs0yMcS6jtHu3ZU9x3HfL92+StKuEgpJdMQxBwqX0DU5bpyxqPywcM9SxVdRrV9OnkSvSCAn5BwwjTHMozGBNJotinZ0HK7zCMkkwKXXRsnGFM2zLIDfosVr9Ca/5RKuM+u5ZK5Ac8Fu+SigWk07/IuctPU2vsEays0hCSlMZtDo0s2dDByiSRelskZs4QH42JhgbxfJ7g5pfZW1lhazQm0T8kkxrSNBVKtUO2bY/JRJvp2vOken3i6gqerDOYfZL66svMNA+Z9LsYmRSvLl9g2T4ktiIEe0CIwL3UKZajKlvxAnnB4GbyPDoek0afMBJ5deoSOadPmFQRHJFU3MLQC5xQW8xbbXpxilqyiO66XLbWCKwBsRwyDnVCSeZEVOXM4BDPHDPpNSiZbSatMeOEztdz5/kppcuNozrW/i6ZXgc3I9BVshT6LQalJTxFZGPvNsbWEYMbr5DLpKmN2hiHd7C1FFmrjx7aKIJHV0qDLiCJIDkBs8UR03YHzxa5k7/Eh4I7TEtt2vISfq1LLuWSzvgcBVlU74BOfZ1MfwdTERnaMTPDFlGliaeI9IY+RjzGa7ZJySFR8Txh5ZCdP//X6KU5Etkkt55/lqHbplUx2LTGhGuv0Z3JkxiOMNwE3XQaIS0gRBGiLjASk5SGA5rTU9zTTiHbHulKl7tzZ5mIhhT8IarroOVgICRZPlwlECPOO1v0UxIZHBpekbNeFUmJ2UwcR1CBKCLTH3E0uUgnM4GsCmi+iyhGTFh9dM/FzaTQBB9T1YlECV9SuaOcRItdJoQxc+MGZjJDKCl4sUInzkBKQYl8xCiioFjoUkAjMUGfLOVkiZdmL3Ewt0jW65GKbcKsQj+dZU7tE3sRppPGTUnk9DGaHNO1VILOmIzWY8rr0FKz5N0Rd/JnEURwQ4Gf818mcESaiUnauRI5xyCSJIZKGoCxmiTtGuiWjeRAQnJxMjo9JcdEZPJp9xab8QxaHPNx4TX02KY0HHIiB89pxxC211gPkrROfJildAKzsoYqd0nEA5QooKhfYL9pYyHRGzjkoy6Lxgob1hzChIavpxm9fh2p1qGpykSYZASDU71DkHwEKWbKaNFJ5EgKPqphs1J6lGOJDrEEH/rYr77rmvTQQfsB8IOwOQ4i5BdrxJe+yp3mBI4g8rHJFf7NwU/jxTIDN89PtyB9/oNp0QiCwFHfYrHh8ukfX2LhjsLIkRjmt9myF+nFMqf0Cqc//cT7Fh35Jt+yO2ZjfY1fM/+IjGzzL6d+lX9+4j/ievoJSvlLeEFEZvb0d2W/lkjy3N0ak36Fp8xVEnhUvAn6gs6Hzl5EUr67Klh/VTyc3z86/Cja/aPkoJlf/ydMhz3G6QzLcRlJiFhPLpMUPJLWkOmoT1pwcQSVvD2ka2vcXnoMQ0ijBTaBKLGduES326ZkH3LqaIWEMoZ8li+Js1ixQMIbc87dZU9fYMmtcCE6oJqdYi8xz4Q0wpFVUCKcVJI0FidrV5CbA2aG28hqSFuexEyn2UvN00sVmIwGPNVdJZRkWl4GLJ+u6VAtTtOLCmzsbVK2hkxtrnLXDwkyGS5IEUblFrUgZu2gy93pUxSFMdNuj0CUIQg5YdSoZmeoM0FFnOays04/leOY3KGamOUp6w4HiVnmmyu8PHsRJbK4oBzRIEnS7dJ2MlQONtnJlVC0ACuwscRJpFEL/+6LTNkDVrNLjAKJxRMn+cbuJvb9FykdrYNoM+n0OJJnMd0koS6RFUzGUpb5cz9G9cXPMyhkKdFD8AMK4Qg/FCkGfTLxGM21yccGUm9I0x6hOH1Et48muMykuoSyiKmkmYy7RAkFHY+ZcEAki1S9Er6iIfse53fvk41tLEknm7AQibiSeBQrFDhr7xEgkpYsEqHPmDSSHCPZDb6UvMhCbx21fMR03GEkZ7FdkbTs4aVl6nGRxaNVyr0Gkh7QU3PcnjtLs5TBiS30e6/gq2kIBbi3SVY6wnjja6waOk1VYDJosBQ06Qc5rFiln8zyk40XEd0D4m4D0ejT77roB5/jTuIkB0tL+KLCbMpi6OkISFi+TAz0Uzk+0b/FtGRQN1Mk0zHBOOZitIfoBtzLnuFXb3wNcyLJjDZgJX+WZL2PWFRR5RBLSjIWU/SENMfdGt1snqadJC+ZTEpDQkFCcy0OcnPU9SlESaDUb9GRCrRMnUW/xmzxLHsjk23D5WK8RTEaYql5diKF1YMK4WCV6Z2XUe/eZ284xli/RjuXQOgdARGumqCRn2UyMMhpFlIg4EsSeWdInFUoeQNaiUkk0WUQpTEDlWZYQO10CCWFm4nzJCtj1oQCKyxSHDYxnIiie4Ay6GGJIjl5yMBSCQseB9IcC901djd3aO5dJaPWSG58kdX1VxnSJ6OaBCmVk/Yew3yeZOCiEKGLDmFGwVJ0DDFNVjHpSHmiSGDW7TIrdfFkhVCVaSezzNMiG1rovoMgCMRuzLJfJgpiXo7OU0wPkAhJux4LUgtRiMkHI2JZwkFlrKVwEyrH7SqCJrMUNjhhVzkqHCMiJlYldMHDEXVmgi7LVplaWGBSGnGYXsSQs+hCQCw+cCiLXh8jkUNCQBQj8uGIUJZJiTb5eMyRNsNm5gSXuvdpZ4q4Ajh6gnPCEZoUYMlJ6oVZVubOkk4EFEcDauMsM+4Rg1SOvfQMogBKIkYKQnxFQ/Q8JBmMRJYSIwJFZqTlKDkD3KRO5HiEksxq/iyTQQ9VijCkBJoSYIk6R+Ek6U6LkZ5lKtmjpaVINseIHZF9N4F5tIWWruMqGhcbRxwd2QzHHUxHYiYxINLP0euvUZ+a4EJWpOkr1GONXL9Ct2cTJxWMyKG2tcdwImRR2MJUdDqJLGEQE2Ykbkvn0COL5biBHAfc009y1j2iqBpoYsDZj/3H77omPXTQfgD8IGy+ttJA67nwyC6f2zzGvOSxkDvi+fpHmIskfuvCMc7/+CKC9sGjVkVR4P/Yb/FbnzlF+dY91iOLbgRlsgjA5SDF+dMzCKkPFjb5Tbs9z+Pm9St8Vvg6u/oCF9w9/KrP094RM4pHNh6gLVz6ruwXBIFer8tF6zU0u4erabwy92Hu6ae4PNggf+zid9XeXxUP5/ePDj+Kdv8oOWj3r3yOoZhA8T3yismU08OVVAw/RehFRBkdRYqYcAdouCQDm+NSg45eZCIcYUk6JbeF2DG4IB2wOXcaqxkiZQvo91aRvCE/5bzOC/plXBKUYgMxETMddbESSUJFZj5soccep/wKAyVHizS5cZNSbNBMTWKRYFHqct7d4clwk8WgRS+RJ+E4NFPTTBg9BqrMbh30gyOuRCFPuBUCXcXJ2MyYh+yOYrr1Cl+Sl7iWW+Ssd4QiRkxHXcJARrE9knpAUnbZkhY4EdWZUE2kMCLnmGh2gJVJ0EpNcipuoLSGTKUs8pJJiIizazNj3Oe+OkFRHrIhHmdqXKU8bCOOD5lXh9yyZhCtPabtGkPDoSMqVMMYsdHHzqXwQxlb0qlKeRAUFp0mAjAo30WJatyzj7EkNwiciCW5jSb4pDWXIJSxXIWE4rFfmGGuu0UsmPSELMVoyGzY4VjcJCeYmGKKdrrIvNHEkzVcVEQF8v6IllokF4zwUwlEDSrZOS7Z99FwmXMaXPB22VPm0aWQjD9GdT00JWCGHheiXV6xlsjUe8SlJFvKAkczi6Rdh444w3zL5BuiyHlhlRvaoxyPKpwe7BG0Q5aHm1jWmJ3aIYNqlZGwQ7dzn+tSmkMxx+PRNqeDKlnJRLc97LFKO69xImgz1mQ0z8Id2xw5SRqhzrWFyywGDRxJ+//Ze7NYy7Lzvu+39rz3mad777nzVHN1V3X1xCYpUgOpKTKlxKLtyIith1hwYvghAjI+GAgkCDCQRyFA4hhxEgSWLFOCQg3URIlkk032zB5q6Lp169adzzzseVx56NCRIlOiOASCun5vG2fh2+vbZx1857/Xt76PK3KfpV6PuVJi0ZrSK7WpqRGRYSINlQfmCjgG951N+mGTwlJICwWnGrEkxlSs6H0B3zIY23UamcvL5Wtsjx6h6TkXg0OW5JjEsHiteokWc1b6ZzjlDCyVcV5GKioylbzSvU5et1CygNnpFI1DRlqJUt/FmAQ8xOSCdkAkMwJ3zkJ/n9D3GOtVojgEZYQscow8xTcdNJlzr7nN2G6S57BqjdBMSDWLQgGpwqGzzZI3JBiC46ccdRap6AlrxjmGGnC2tIShCnbG9xk06ky0Er5m0KsvkmkqJTegUfPRSoKm4qKpAVnJoGV7TOwSgWEQFSYTvUyQGggpGDbbFECsGsydGq5dwcwzzCTGsAqC3ESVOUHJoS58yjKkUDTeqe3yXHYXNcsoHB2vWmFuVSkXEV5hQddkKz9jIZthypRmOCOVKh1mhIpJrqpspD3W4h5Cg0eVFWwlJdJNKr6HlqUUqUZFCQkNi0vhIzQy2qqLEkra6oyHpVVs8X6KoUAhjFR8u4Sm6iwpQ3JVxSxSXLPEhDJe7rAmeywlQ55O3yN1NAyZoCs5oe7QyqcoisDRIlaLHmaW4GUqS0yQNtQMn9O8yRp94tzkUviIuuIiDY0ChUi1ULKUVDeopgFCaMylw7Ra5c3WZSwlZSkZ0YlGpLZOW86IUHlt4Safcr9AS075LePj+DWDy2KPpFXQazVZ8Y+50X+LuR9we2WD+aCgKKV0GdDLTA5Zoj0/YDiIcB0dudfHGUxRV1RyGXN0NOe8XuXcqmGJmLxuIkRBKQ+x8ph5XubJ07t4VgVMSQP3/QyJbEaNgJXv+0ffNCY9FmjfA74XPs8FjNYLzk9/md+//xP8VP2Eod2j563wkdqrdOoWW1cufcu7XQCLFZOXvnTI0YMJnw8EiuZiecvEzWNmSZW1wubpswjtRudbsvcNv3//93+HC9P3WBH36GtNekaL/2DwIvULH6bzI//1X1mcfYPt7V3E9U/zL07H3Izv0Zh6DLIy16Zv0rjxE9+Wze+Ux+v7g8MH0e8PkkB75dXPElsGjppgiRRN5syMCud6h6Fao674mLKgmriMKw2GVhNTT7me7nEt26ckQ6qjAUWW47WrqKrEVlKmaUDqGNgixLAF++U1LniP0Ay4kd5nqDe4Fd1lLTzDTR0WxYxAGNhFzJIckQuF0CkTKBZxbqJ6KbNKlabiosoCD4fd9P9JcXLWWdZHlGKPVfcdKoMhZ6HBTIQsK0O0NOM0ySmlQxI3IjF1fmj0VcZ6hZ6zQFNzyU2LE2uBrhzSN5psh6cYWsFYrdN2x7SZcV5ps570KAyFZjVkM+sxN8oMjCaBo4MDddUHXeAEHrfYQ+Qp9zKH9PQUxR5iajEX1UNiGVBPzngheovD7iodw2U161P3ZjRsl1cq11kthlSUGWJ+xp3SJoFp8mx2B1/YpEJnnjmkmo6rlwgynVO9y444JTc1msWcB+kqup1TFT6lLGSm1bjk79NmhitLTPQakWnRM5oEocHUqbJf30S1wVFichRczaaZzrDyhKViRGFq/L7zEcw0JjN1LDMhQWNqV7GUmLDZ4ry0RoDk+9S3OFWXqA1mlOWYmTulY4zoxCNGSoOKGrCkzDlrtXGdMt3ojImxyIEjOEgqLPkn7JXX2R7v0THmVJUQtcjITIGhp1giojr3mMzh3KgyTjRkx2BJGdIKJywmI8pazG+2P84V6whLTTksdbkSHnCvvE2XMZ5RoSRiVvMeO8kxb5UukloaC46LlJLAKlNWI4ZZBQHUhc8l7yGVIOCsskRDcbGKhNV8gCMjnkgeMBZl+qJNYaiYIkOTknrJJ8RgSJO66jPTM/qZTXs+BlvBbKSUqjle4bAyPSetmrRUn0Bo2HZKoqisBMekdYsiB8WQrNKjnU7whUk1naNpoKsFFRFg5BmRYjGKbVbEOYvmhP20xVl9kYblcWo0mSwucJkjdJni18tEXo5nOCxqcxQFMlVH1QtazKjHLqmuspRPuFd0EabKkb7Eshwyi0pURIhFzDv5Fs9ym6YSYCgJgeFQzX1a0YiH6jKaI0lSlQ3RZ6ZUqMiATNGZixJWGvJseo9js0NPbxMpFgvpmNC0qRKglQXNYo5dxNRyj4msslWcc9vZZr3oUckDRmadTFepiwBXLb9/dlQ1eT55F9tIKSSEhkUnn1KJXM7MBXS1YCRqPBPeZiM/xVccFAlIiVupsU6fzfyYjeyMsVKlLWcMzTozWSLRNGwtpVlM2U7PkZrAU0us5X1UpaBI3/9OUkNhKzjFs8vsiS5pyeEp/zY7+imrxhBdkxSJ5Fi2iXSdC8UxBYJOMWFSbnBaXWJhPkBaGvedTY5rXZ4P30LLclAEtpVSTVzsImLZnNFmzkCp8aZxmY/Il1guhmDbzMwyM61KWNhEqsGXW9dJC7D1OSUlQk9jfLnOK6Uuikzplxtc8u4SFzojwyFuO0yNMmY5wzJTapqLYyUkik6ewmoxwNJzqgTM23Wko9EoXCZFiVGlSVP1eMvc5ZkX/sNvGpMeC7TvAd9tn/dHPpt351jtL/HaWyYveVv8rDPkVakw9BY496/BwOaFp1cR6rdemFNTBPcOZ/z0oODKbpMH6eusTNa5cuk3eXN6kWsoVJ+KWVz9y8smw//r95e+9Md0xl+lVfaxipTXzKvM7QrvRruUkgHV5Yvf1nPIsow/+cIf8rGzX2E7OSIRGnvRCteOvkDthU+D9udLW3+veby+Pzh8EP3+IAm021/5VdbTM2r4TNUaUoJJilNEVHOfC9khUypU8gChC2aUuZQ/Qk1zjtUFekabjjanVo7ZTs9YSfr0nRY3ij3W6DEyGuS6ypX0EStiSKqorGfnVFIfT3OwREK58HE1m/Wsh4rE0x1MteDUXqBA5VRv0yzmNDSf0HBINEGFmIf6Mo3co8hhS/ZwSxXW6GGLlK/WrrC3vM1S2EdRCyxTclpdZnE+pKm6SKFhGRkqOT29yYI7RFAgbY2B3iLJNZYYYyQJdT2gJ6rcLPZQlAKZCiZOnUKq1AuXsgy552zSlnOMNEGJM7JU46yxyHvVdVajHqhgioxzbQFbScgzSSmN6CltNsU5nmqjyZyz6iLtdMZBtYseZkhd0DB8pKFRliEdMWMubSLNwTFTCimoKD6ZYpCpKg4hiiYpyYgLHNMs5lgkTPQKO9kxqakTqyb71grnepvN5JRKHBBGGi3h4pkOzXBKhxlPxfcochioDe6JNZoln6lWQZgKN6L7HDmLJLrFmb5ALfdYCgacmYscsUE3O+ZSdkCeCN51VijH5xj4dNURr5av8lxxh4flVWLbwNVtLstDFrIp7zbWMUSCJjJULcPRM+qlkLFZJzQsFtQpSd3C0TI8xaKazRgbFbA0tIqKXy1xLdqnJVxi00YqKtUsRNMkSpoTYfJkvEermKGLjKDQKcuYVNFw9JheVmdUNGkZc64UBxjkTI0arWLKhfiQTNGY6WUyU0OYUFN8pkaVSuYDAktJSW0TzZI05YwSEftGl634lHeUba6LPXayUww1556xg2MHXM736WgzGoVLqhoUNR0pFXSRI2o6tpbgODHl2CNWDApT4cniATMqlETEjjxBGhrtdIYhMlQKhBTsl1ZQs5xJUWOmVLinrnFLfcDl/IDXFp8kNEsoFDQUl5oI0Mi4Ee3Rzqc87d9hPTqjKGkcOMusBGdYUcRtc4u7xhZb9NjxH6FmkkriYtoFd61t2kZApQiQOpRkxKI/ZDc7QgjJZ1uf4Il0jxX3nIoaUk/mnNKmLafM1RJ5DB0xZa5VMEXK2Kixmx5TEy6paYBQqOBRLkJCbGw1pZ651PM5hsiJVZNEaqzlA0wy1CxnIR3TzYY0cPH1Es1szsBsspGekWgmpSzESSM281PMLEGqChoFoTDJNI0Ai0Y8w9RzCqFyR2wSOg7NbEq3mFCWIZv5Oa10hkHKwGrQxMMTDoWqUks9NmSPnfQET3dQFElTuLSZkTvvC0kfm4fOCrFq0SpGdI0ps7REZFqsK31GVh07C1kYDqm6E/pJhYvWMc9Ht/E0h046YShrrCgjTkWHbjIkVxT2vAXK9Ywjo4sz9rhbukhkOYi8oJTFyAK2/CM2T9+j2smpahENw2fiCD4avUbLclmQY1b0MfvOCvftFZYbPk3DxVAypKqwWgyoFgFOGLJX3WSi19GUAplL3HKFVjzBVHP29TWOK0v4hc1yPuLyR37mm8akxwLte8B302cvzvgH/9vrfLLiMDD/FW+/8X18cvNFNtWY3/O7JOECN+0a/9k/eg7D+KsX5RwVOTv3Xe5sOCju2xSTVRLnlK95F+mQ8HygUO+0EVXjL7VlWTrD4ZjXXvsaN427NMWMWu4yvm9xszLgykd/ilpnGcpL386jeP/c3OFDVMXiD8urfMR7k5+/9d/QHPsslHTKf8Vzbd8NHq/vDw4fRL8/UALty79CK5miKwWBMOklVY5LK8hEspwMmOtl3KzEkbWE1BXa+RizyHhR3KQf1hFC8mSyRy9vsC+7mEqKIiRlQqppwF1zg+VkyF1ji6HSYDEbEak2NXzO1Rb13MPPTSpFRFWGaLJgqNdp5nPeLF1iXJSp5QGWldLWZogCPN1C9WOaeDTlnBIJdekyMBtUtIih0eRKekAl9rDVjNSxuZQ8YiXuMc0rNNU5S+mQ3fyYoDC5NNojc0xUQ7CYT3kkFrk5v82es42dJtjEzMs1LBJSxWCSlJCaTqDbHCqLXMoPMYqMlXzASJZxipjD2jpmHLEjT9n1jqhKn2lRouxFWGaE59QIDZNzq0NV+hhklLQEkwRLSVlgxo44ZkFMKFSFWuZyljWZm1Vi1aKjTBlbdQ70Few4ZG6XKXkz5kaNbXmCZzpUZYBQBRYpJ9YimszRRMZDa41E6KzKAdvZCZXEYyJqpBWTreKc3ewIK0uYaRXWij41fG7J95hqVSZGnVvBHUwlxVBSxqJKN+mTRwWqLcgVna3wEEfzaGo+iaahKZKa6zOqVsh1jSKBzewUW0m4Ed6nJedICUFhoGqwHh9TzyZczI+4r6/QzmZkmo6vOpRkSC3zaGYzCkVhszjn0FlhU55zZC9SV3xqhc9MqaCRE6gWu+Ehc+HQymZ4hU1JfKMaouDQWOBa8hA0QSmPWGXAtjimUNT3d0HynDNjAVPEPCytoqrwpcotrmYHdPIprnDwFRshJaFuYhQpnXzKatpjqlax05h+UiI3LVbVPk9F95hYdaayxFrcI7UMTC2hkIIoNamnLlqaESQm42odR0RspSfM9ArCEOhConhQVQOmWoVM06nEHgY5I62OTkaGRkmJELKglbtMkwqmFnGncYGPpm9RD+dsinOe8PfYjE7YiM9x8og6AZluUi0C5qLE55ovIDSFm957FJpGmOocml0+krzDet7jDtvU/DH91iJf0W8wE1WO1QXSXEWi0pAufmTiZyYlGWHIjKVoQKja9KwWQhFM1DqrjBBIdjhjbNVBU2lKl3Y2Q2ggpKSkJbyqX6GqhSDfr3xakiF5Kkg1g71ihVzVEEFBYuhUiHi9dBldZLxceoJa5LKWnXPb2OaetcmF9Ji+2kLJJL5i4CgpRpGyb68y06usBH1yVcOTFiEmLcXjobbGHyjPMrBaNAoXmRW0ijkeNnFhEAsHQ0lxipB3xRYjp0EF//3fYSEZKjVaco6p5syUCsvZgPv6KuUkpK+02DeXeS69RyINHCuBIic1TYSUXEoPMZ2cmajSsxe4Ke5TlT6uWmIjPWOuV6gUISO7hiigoXl4ogSawmlpkW27z1I8YDEbcz3epxrPOVC7JCgsVj1qakQrm1OWIZrMMfQCSybsl1ZYkBNMK2dVfV+QbmWnqLLA1xwSzWBGidzQMLKEfqmFn5vsckpJRsSqSa3wqWY+D81VVooBO8EJ3Y//3DeNSY8F2veA76bP//JrhwgBn/5bF3nlvX/B5N6Pc6k8RN/9PX59/0chddizX+Knm09ifIvVFv80uwtllCOPf7J/zo/HVf73yiOiRKFfNFGVjL8XNNE2qijtv3x3yrJ09vYeMDk94YXs81QKH0XAb9nfj7/wPJ2nfwqj+a3txv37EEKwtbWD1rnEfxt3+E/Pfp19fw3pCPK8yc6FK9+27W+Xx+v7g8MH0e+/SQLtl37pl/jlX/5lPvOZz3Dx4kUWFxf/zOdnf/I/4WQRiiLJpYIiJUO7SYZGV4xQ4xRVFuwmx8S6QaIYxELHlzbrSp9y4lISMYaa8wZbbKpDgsxE0eF15zJL+YQiVykSyVwtU0vmnGsrdIopukyxwpjXxS59q01iWXSzIUmho+cZy9mAJNV4Q1zksjiiJgNeMy7RlBNMAWtyQDOZ0RFT9sur1DMPEGSRYIUBYcmmSAWaKIh0k2Y2Y7noo+qCuvRQRUFVBASlCqZ4X4gdWx3+oPo8nfmAdjalobvEmomqFQyNJveTLl1jSigMAmGhBgWOElJRYpCS5WRE3+nQGQ7piAFTo0lHnzGx6sS2xWFznb3qJZ7wb9PXGoh5ztip0yrmBIqJr5TwsbFkQlUGOFHIQG9iZCkmGVvZCUMqzBOTNyuXeTJ8D3QFqQguZUcsaDPui3VyXSNOVFyzTCRMhkodIWAhGyER1KXPVK2QKDooCodOl7aYU5EBlTzAFw6RYqGoknY6pUAlVky66YhHRhcnjUARNHOXWupyqKzR1qZs58cYRswSYzrpBE9xQMJIqxOYFkmqsuUdY5oF3ez9Hm+hYpFkGpFpc6x3iRKVXctpTnsAACAASURBVHlCohjkUmUpHLJnrrMxP6GnNdHUglrhAyr13EXXc5ayEVIRLKYTAsUiwmKo1kh0k1BYSCkIVBvFTbnnbLBWDLinbrPpn2KRgwIr2YCvVG7QljMupkeMqBFKC02TDOMymgabySlamlKTPrnQ2A6POVTaXEyPKRQF1ctx7TJCSASCEIvAdNjgHCeNUISgmc/JTJ3INFnJ+mxHJ8yUGraMGDgtzDyjF1eRtsYF94A37Ev08waBXuK+uU54roAKUtU4LjrMlTJdOSYxTc6iOtvyFF1kHGuLVFOPTFVY0UbUi4BmMWNm16gUAU4SUpUhSpLhFjZ9tcU9exNNyZmoNWJp4gmbShKgFJI40SmETs3wedW6xkBpUM48Sk6OMk9YFiOW1DFGkrEcnnItPIAZzCljGDmTqEyY6QhDpVG4nGYtap5PTST4mk4jnXPsdKnGEamiYscRRhjzSF+mm45wA4PcgnY6wctLWEpKI54xEnUUJGO1zoZ3xLHVxS4irsQHNAoX16i838ssF/ye8wKNxMVWEnp5k9DTGJSahJrDSjSgnrlkhUo58dG1AikESaGxxAQ1K4gSFS1MeaivUqTQUiJmaoW79haRarCWnpPkOhWRUMtdUFTOtRakBT21g0VKq3h/p7Oee+zJLtOkhqZnbOTnFJrKUjGiLAM283NcUaKVzChnAWNRpW74WCKhUFWmepWiEEyLKkIRKHFGgYZThKymQ9DhWr7PihySo9DJXCQKuaq+/8JNwrnSIS1brMZnOEGETAVDq8VYr5DlCufWArXMpRHMmepV3kgvMreqrMU9lCTnPXuDjfQcJZFUCHlgrbGVnVER7/fLW037GEmGjBWWRZ//tf1TtCZTbnz/p79pzHrcqPqvMUMv5ldeO+G/Dw2Cvdf59Xs/wknngK+EXaK4Sj+uMSh0GvOPoCX5t3UPRQjOyypbmsZJ2iJ3hviFxaXGHnuFzW+Vvk7Q/dbtnZ+fko+OaDJHI+Pms7/GsbVIGoyI3/mNb2uOf5qzsxN+5zf/T15+4z9BJadjD/mdS9/P6cl9lPnhd2z/MY95zN88Xn75ZR49esSv/uqv8ou/+Iv8wi/8wp8bU0/nBLaDWSREE4X8MKMUxNyID3G8CLUQWDInyjUqUYCT5MTSYR6XkLnCUK5xPGmzX3QZtK/Sz5uMlDrvJSvc1Xbo0UKZSFSZ0PXPeah0iZIGERY6GbfNbTb0MfNyFSuNOFY63MtX2UuWGOVl1vI+y2KIFCCBeuZTyQP2rVXe1TYZRDWO8g5uUSLVDUaywllS5W3zAjka+8USWlKQxgq+YjMyG4yVCi8rV3nL3kWlICo0POHgFDGlNOVj/bfxFmxa6px65jIyq4yyCpXMo224fL54lveCTR6ma5C3eV1ewZMWUaTyYvkGD4x1LEXBz+qMPIevyx0eiBWSWCWQOkuPegxdh/6kRmc44dLJA5Q8512xyR8rT8NcJ/d0RmGVl9PLzAOHmW9zNG8wU8psyD5H1VWec9+mft7nnCaVNCTSLJIY1KJAdVM6ckYnGDPNy8zVCtVkjlGkaHnBVKkgUslcKTGXDp5eIoxUXuEiXyjf4kxfwCpiHqULfIXrFIXgtGiRpDrKPKYU+jhZxJHsYKQJm+mQ3fCILFMYyBoPrBWmShlTZLTyKWd6iwZzltMeDxqbeNLC9UwmWYlMKoy0GnfzDZrjAYmmM9IahMKiOppR9eaoewHqPOe2sc1Qb+LlZWyZ8kjr0kknnKiLbLnHjNIy52mds7xOqBooqDSnM0gkMoaFPGA7OqJHgyQ3KBSL83wdtciZUsZzDf5IeRolzGhHY96wrqEiqRgRS1GfQ9EhwcSjhJ8bjPMKBpIhNbr+kE7sEmcakTSpJB5SgT17nQSdPNN4SbtKKxxRT13qqYtRpPTTEkvugMzVKWc+clSguzkyyjinzdv5Lt10wHLcZ2LUqeQpx/E2d7hONxjjTkuciybvJcu4WomH5jKuKFGRIUNqWCLlHWOHO9YWU6XGLC3jegZHxiKntBkndd6KdzmVLV7nGsfqAjkKV/x9docPedW8xnvmNufOC7xpXuXz8lmsWc66HzJ3W0zSEh2mXIgOMNMYEeTUx3NCz8RVV5FTnZPjOm9oF+ildTy9wtvhDqWRSz2Ykw7aTEWN++Ymc82kHg8JMhs1zuhPm7xXbJCHgifO7tD1ehRxCgLOzTZH5iJGmOJLG4sI36myWZwTCpO+1qCaeTw3fwdDZPxa9RM8F9xhl2MqsYcZhizbE25577EZnuALG5cyep5yx97hvrHGmDJ31XUm1EgUgy+Zt4hMizV5zNhpITOVY7FEd3TKZnRMgEnqSorCxEkjDoxltDAlGKsEhUFPaeBmNiNRpae30JOUdAJv5ZexsoSd6BiniNjXl8kKwbywqKQepSSgMZ6wmE5YSfrIOOM9bQ1r5lPNY8LUIBoquGObd/wP8ar/CWIcXOFwKFb5svEUBim5gC+Ub3KneoGm4dHVxhQF3M9X6ZvrzI0mrmgiA4EMIZsVRJlBLgWZplG2I/p6k1cq15nJCtdne2SZSoBJ32hwy7tDDY+h2mCqlHELh2KWoRgZZpZQnUR4/MUN6h8LtL/G/C9fPeQnNptYw4jB+DdZzVT+o6u/xt9ZeZmD3KBjzPmHasL/8GOrWN9ief1/H/2KxpVc4T1dYuQKz04u0VQjpBTc8y6if3mKnMbfkq3j4yNmWpn/bvOf0tNbLOZT/uH8s3ziP/55Wjc/9W3P8RtUKlWmkWSi1plrFTajc7YGh8RayL3bb33H9h/zmMf8zeOll17iE594v6H97u4u8/kcz/P+zJgHbNDPWrzFDn7sEBYm5TwjEXBPrDKqNJhEDTJ0Cmmw4Z7RDqZMkypmVLBAl1V1hpvZPHnpBpdLHda9HifqEvVgRmDYbOgZlczn/9I/xr65y7m2yR/oP0SYWxhSUsFjPT4nyQUTWeKPsmeYS5tZVuMVcQshJZHQ+DeNT7I4PidTNZbyMV/Xd/mKcwspddqzEXYW4YoS3YmHVsByOKSZRTDPkZMK0cDEH2vIacHG4IhyGPBmvMvCqIcndXpGBSsLeKuxTbUY88BcoZfVeVPb5o/lBf7QfYI8lnzq9Ou84MYY1iJJeY1ryZzGeEaaaUSag5oXzCobrJSXuZifoGUZbr9EJQzJQkFoSbQg5dZZj21tSmHAYbrAOOhSZCYys6nLEDsquJInNMcj7jeeQyuVmUc2Wp5zaf6A3BX4A53+uIbh+7gzwevDbU4PGjzIu/SKOgSSCJMoNphEJoeywRfVG7wir+JLm5ofYmUplcDjyFxirpapTyYsBGOimWQU1SjlHp5qU0QWudukEfocZgucp21Ko5STZINH9mVO1S5nbofDbJdXtev8ivqDeKlFWYloa1OueXu05QwniUgnJY6sDfpuk5FXYlR0SNyQ6onOYV6nJzt4icNYa/NOdgvTrqEj8Yoq+0GXfbmKmzTIVY0UnXusc2h2uZet0i+t8IZ9HTtNOJVN3KJKkFkoKDiqyki0+KLzAnFhU4piJAb3RZdgqnEjuc/fDT9PEQtmosEdLhGnVZw85FhZYKC3caMqZ1qHN40rvFK+ziuti3xZucn5ZJVxvskwbXLb3OJcXSQVFrnUyIWKEYV0RiPeCS+xr6ygRxmDeZt/a/0w99QVqnlA0bcoazrX4hPWUokz9Pih0VsMlm+y19jBtEwc28GJFZYDjzCpMVUX8NIybmrTLubEWJzIFuXU4217h5la5lJxRCcZc6fYQBSSBh4bSQ+Jitd5ksPyKi+WnuHW7Ih9Y53fXP5RpAsiEDzSljGMTZ76Oz/Lx68+xY/7t3laS/nQ4lNYn/wHFOEzxPMK/aLGpaN7bDgG5kf+Ccpzf5/5zjJ3jC2sXspZ0eK+3GVofJxCaYMiSZLnuF+/ztvGRd40L6GTUy4S5tk2FS/CkjmN2KURudQDj05wzl2jy11tjfpsSjqBnmwxN20axQwlLzgxFhloLbyRwXnRYFRUmA9UNmYniCIlDkysNKblz5gUZT5X/TiPZJdS4uNLg5fMJ/lCeA0z8elT416xTpEYfMn6MO1gRh6rTJUqZ7R5pHeZajX6dou74bP8W/OHeIeLnOcOWaFDoWAP50SaTcebUEpDXhFXuK9voichlTxDajWUc5CxQRqpTJIKw6zK/azLHW2T+1mXz4tbfG3xJrGu49YqOGbKYn6Kpqq0g4yjyTb3q8+zX7vMK2vX+IP1Z5hS48vFdc5lg+ejtxhFLQ6MBUrSQ+u3eRTsMJqW8YaSWC5y/bmfoCqh4lks9QZoSp19a5P/ufPTPBDLBAOVpjflQFshjnWO1WVEJjhhgSyTLERjtqJjqrFLPZ0SSZ2h0kClQUUm3CmtY6sBS3H0F8atxymO3wO+Gz4fTkL++R/d559fWMZUBF+zfwPtfJPDks9i+ZA3x1fICsG5OkX2Pa7fuPxt32t5qUz4So8/VnNqhc/nVYObzim3/XUuobBYnrNwaQ1hqH+hHcvSefPNN7k6+iMW5YTN4ozd2w/xjFWM9cs4rbVve47fwDBM7tx5m1Z2ylpxwmp4Trvn8kPui2BYVC7/IPwVKll+pzxe3x8cPoh+/01Jcfzt3/5tLl++zPb2NgC/+7u/y4c+9CEajca/G/Pllz7Hkb5MmulkoUJYWuJKcsies8m75W1KliTe20QvBeR6lTirYqFykK+wUddYyGuczQI223U++SN/l87wDoPhIyypsXX6CN0WaGobP/O4r19hV4FLKhyNCzbklKIecyrafFa+AF5GrYjoz5pcSw9oGxq/Xfs+7CCkno9QFYEa5oyaTTr+hIHaZitOiNJlDpRFtuIj3vYv4Cg+72ibtJmT5ItU4inlyhWc+X06tZRz1lFiF1+x+Xr5CRZMF42AmS/pawscOF16oy2OtEUupAFfLG3TmUraSUo3SFl76jrrqzFqtM56UGOxtMXrqklrnBKY2zwXvIJTvUGh6ljpAbFh8X3rlyglBYloY7V87l94moVlm5JZ0JAP+UrjWcLFDZ7wIq4YB8i8i9vYIL/ycR48HFP+gU/R8s9ZvPYx0v67NGKP++yga2tUlq8y00u0kjFLF38A1V4l8ieMhY3IbD5XeYHOZM62dYotQrJE471oA9tIGYoFVpI+X9ZusBEeMUnLPOXew9fbHCTLqKLJ3NZIcoP9uMOWHtDX1nkzvUpz5yn6FZOK8zE2nEUa0WvEwuXJ4AF/LG5woXdAljQ5c2r8Uek5SocnpI3rhMJB1iRLTNEsncW1j7AkrpF3CprrV3hQnHPsPIe9cIOFhsRKNIRWIjLW6CQhjXCArYVYhWBgNqiGcx6KJXQ34dS6StX/CJFSpmcIHpSfJM0dylHMqN7lLf1Jdr1zKvGEc6tLP6iyNj8FO8UyHWLTpuNPiCIdr9JiX92mosJt2WHTP+Oy/4jYM8mkwlPhu6SmTq/UZCSuszBLaCkGjtfjXy9/knY4oSQi6nJERYZ8dXyNueywGamMVZ3PtD5BXcxYM+d4WQvHXGOwfAPLsNhozWk6JpYboOkZh7c+wrCosOONMSYxmZNTa8/R4pSx0SavWxRxxkhrkhQ2ryRPEVgqn+GjdMWUZ7N7jNIye+EtyvoMPU+II5uSXqK8/lFmJxOSSosnkyktec6j6hPcPH6VQdwkFTZ/68kn2dy6yO7KCp21pxgaS3Blh7XlKsbBI0zOGZ1qxKLC8o/+NJ1kjcJSuT875N3hFte6M05SA1sYbDY6TAOPanhMU6xQqtc5z3K0WHDZHqGywjRbJUnBtUyqAmSmYUQpaS1laLWZqytsJicYecpEK9M0PTJToA1y7je2OdGW2Jkf8IZzmYnVYCwWmEZVnklvE1g2uZmjxwbHcoFqXmIqbBbzIaGu0yrm6AroZQFpgn+QEekLfH3pOs444Hpxl8ViwFfkTVwchrUK77Sf5bbZ4icHX0Qt38JXdTb9gCO7gxxMObLWUZwmWZGT5Bo5Gp5isjl06RUdxqLKRX/CIF3Bdwy8zGRj4GEJhT8pLtNSIjQ/Y8MY8EhfRiiSu+WLaL7NXOsSllqocoF0aYKPSW/epl6eo/dCfix/ETUWPMwukuUOvfIGH1IUNs1bOEtlNp75YXZrazT0Og+OQ4S0ca5nrD/zM5z1z1ic9FhXhuSnCV9rP8VRZ5XGaMK9bIMLxRGFYdGXXaSnUFfGnCtNvly9wU15RiUY0Q+WaRszvmKvcWjvULg1Pv6DH/2mceuvXlXiMf+/8Nu3e3zq+hKVYx/RMDl++9N81Rhw+vCTPNV9kUfzDYK4RppucOvyt3+uC0CYKp/fsniw5/OP5RrnucDMC1SR46shX/Be4iLP8ZeXCQFFFtwy73KWd2glMy69tIf/c9epR4fAte9ont9gY2OLd97d5Zq4jaFkfL7zLD9/5b/kv3rlf+RHDl7C2vrwd+U+j3nMY/5mIKX8c9f/35Yk79obBEWF5UlKUYy5sWZC7xQjKzBUGyVW2G6M2ZNNbHTK6jmZZuAqbWLh0ZEqWeUCeTmnXncIqpc5XwiIEoUr9SdwGzoLx19GY8aimNAJFnAW97jcn9BQq3higqeUcHMb3ZWkjcusra+RjB5i6SbLicXiBOxageVFyEqbY8OmCBXWEp3N5o9y2DtlZNjsaxpXxhZnlSZXp0MWl+ooqk0rilEdaNllsvYmniFRHrTxc5ugvktp72v0TYcd/T5DaWOKKkrzgJ1gzpG1RmZVEWXY8M7Qqw2mm89ihj6Km2PZTWaNMk+vfYz1UsT1ZMTbt3coxuvk3Yi7sxV2F0K2fvRn+Mrn/hnby8uU/RuU8gZa7ZTG5Dp7dY3qsEextMbUWkHOVvHFGp3uc6zfaOAfHcLyGln5B3n+wgV+f/9F7lefxhn7VLMCM7QYKTt4xhntjSYrU0lj1WUwh5H+LHqqUFJsamkEGrylXmXbjdHtFD2LCZKreOUKL/WeYNHSeXfzZ5kNdHqlIVudA+pZmTfnl6kyop7Vebu2QQ+LLadGzZ1y9WKT6SOd4aWP8+bROfrRPVaiAXbNRbM/iche5sPT+7y48vf4gY5JosU8GuzRVs7R0w26ziZn3XXWixr1ZMCNRodUFlzZqbI0WWUUHzKa2aRVh9rYw3AWeVPZYmF4HyMWjPMGry09D8opi8dD7Jsv8olTnUK9z7vhFgtJHSOOMHp1RO5QshVe1q5w0Nqk5p3zMfMOjTzgpc4zXJ3dw7XqhJlGPUnIVJtFd5Fx/IBqkfAgX2RIGz/Kqes6n619DJ0alqdiVp5hT7xKtxqzxhnLp5AvK3TllFBajLUW5cLkrF7l7fomkyhnUKvxhDLly94WQbHDzYtlvnZ0iSX5ELVmsbP8UebFI0oLh7w8avEo6NOo1OgsXOA2IxbNkG2ngmW2OUtf50/E87QbLvXRI87sBuU4ZyUfciSbqCJjRX2IEk8YZm1sXcd/4VPc2rnBQvxVZqbOZHWNxkKda+MU2yyxppg0F1t0rj2BUQJHdyjMXS6HZU4nx+CUqHbqZMYqbVVhdXWNQXiF/MGI7prFg9RCtcoktQYmAUpoo+t3mKgNVgyDApUnN7c5PLqNPwO70iIm4mK1y6t5hcbsNlcrcxTbQWm0eFsskSs6gVjA0xxKFiyKEVOliq84VFUVc9Cg2qkxrj3NUdfg1uFDTlo1VBnizHz8ssFpusyHDNjKMoZ+j2B5Ez9aZJpVUIiohw7ryjmTyOd+bYFdcUb99F2+WL6Cm5eZZRaZUJFSokUKVwnwvAMSu82G5fNv/EVmScEsvUwmQ4K4xkLlAodGyIEf8zBZYlm7T11/B9XYJnElf6L+MH8//jyflZcZlRWWytto5bdZndgsWi4D7yKZcw89SqlrPs+GZ9yv11kuD9EGy7ybG6TBAisllY/O4KHSwFzOeT36KHOZg5qThxLHm+KrghqrPPnEBVavPoWhqkghOL7vE0U5/m6bn9z9QS6cvEFDKRDDDGvlKs9rKWUvgGqTVi/lt9ov8MPJu1wUDo69xW/Q4UxpYI+3WDUKpvYdznyNRTWm7Lq0sgdI4y/+7/5YoP015R9/eIPYS5H/8g7+1gEbO7/G8egKlpZSb+/z8OyjNKXGVvWEix/7zgXJZdPgJUVhMatQ1c+oHj5DXlL4Qmbxr4c/ifzVBxQ/ewlF+eZZsW+//RbDQY9/pv8c/1T5DKnQ+Myzn+Rvf+y/QK9Wv+M5foPNzW3+8O4GRaHgyIijVpe/ffA5vt99k7df+hzPPhZoj3nMY/4Ui4uLDIfDf3fd7/dpt9t/dlAtQ55nuASozRn91g7z4Q6X9ANeThTqWpeeskEo3iDEpFwIXlefJbIr3FOWaRSSOKvzyE6YvvhFNmYXKPff5tDs8EplyLG7jB0tUmJMJYsQqcMw8DCVNQ7K+6xlDkVi8NTRkIuhj71xg2N7i0CR9Es2rd6UE7OLpwZEfotg94QHlUXe055gM0tZOc/p2FXMPKFz+SZVZZNZueATK03Coz0Grw850kza2TrJ5RdQDcE42qdQCxqEdI4H3FYvM2x4XAtHJHGKUby/g3IiLBpKitKb0stN9pILLNQfcWHkMhMB0q1wlB8xGtochzH/+fV1imqDKO3zctqnNTdImjX2L73AyedeZXVW4bSYcG3pwzynabw9GLDXHZCMY7aMlDc0GOZDMqmg5pJj7x5WcZP1K08zLDUYGBWmsgKLn6YzM/CDr9GonfBFX8M3Db7QNKk8nPBjbge13iBO1yizRCl5REONGLHEvqWS25LxMOKZbMKRscAbyRYr40dYl+rkpQ6H4zIicXEqc2rqDOf0QyyFJmnZxSvPeNi7QN/weeMgoBxVeOZRnyyQhIsrPGnU2Snf5lRrMtE9HE7wrcuYyilGnPFrRwqmOWMFle3DW4QNi1GeMMn/D1aSZxFhlbOsz0gZkD+K+Go/+7/Zu7NY2bLzsO//vdaed82n6tSZ73Du2Ldnskm2mqSokYmGyDYgi0JGII7jByNAACFBkARK4CBwABsBJMSG/WY92IGs2HEgKSRFSxRFstlkN7tvd995OPfeM59Tc9We91orD60EjiXRsthMaPH+Xqt2re8DNmrVqm+v9bHRntBffQXz8H2Kepu8cmDh0iwsDhp1Bp02P3ykmV19mV72eb6RtDk2y1ybTjBn30AtLuGvrZMMHB6blEvVOpFzBlFUiNqCd8VrZNYpt5TDKj5eadNkQpn38V3NG2Wf1XzIvrfNQBjavQNYLHMYv0Dlr1IdQ7lIeN+t8NwaK3aXT2T3qLPNIHawnYT92hp15bHjrPJmOOQlNWLFUvRLwxfKVzhVET0RMjxucWd8zMgVLJ1bJ3U+S2x9jZNHT3heNXkjvYBtCQKmWNUeZdZirltMiwWFSBmaGnbS5vn8baxZyk1P84/4aerJKa/69zjWDV6qEuJCkLb7fGLpIqexxc2B5MefW+P+uU3SwQnhUkgvOiAeRqhWn7f332c6zPmR1R+mWsw43r/HcZIxvD/hUlmjVfVorQTgBvzuo9/hI3lA8shhjyYdL2DPaZEWCf2qzkp8hBYtbiQvsuwV3Bkk1BOXqnT4ZtbnBXnMwUCgdJeBXME1L+Kf3+f3lp7h4Z13OOe+z4NMcoE2nivZF20aBkYy4qJ3l9hbp7Qc4vYhVqC57ZznQjnhljHcqXWxC5dp2ieTOW8tv8KezLm0eI/Uc7iajnioz3KwGuCnDQLLEARNdDWlrlr49ZDueETmgQtktkfLSdkxku68zp3gEhtzm4nxcfQGTlVDlS6O7fNw0WYWeGQqJ5Me59SQFnXmNc2BDJC6YCQ0J4sua+Ftaudj2PkMvWqI1IpY9XnXPEdmEkIjmRXrnCJoNkdM3YRJqnlF73GmLCkaMWQ+l+dvsnBrZF6D++lVXgpvUwYGb/oc9y3FO4N3+MXsZe6N9jj5/HVunGj88JT62zH/01v/AL/f5dWsxbZvsTO7St8/IalgoNYxbsXFgSJrdyiLjHhri/b9MavlMe1Gyh3VQy8uEcg5e6rArhzmeolW+Z17DD9doH0f+s0bR5zrhFwZV6h+wF3x6zwen+W0aLEiY+LwhOOswxwIrDnz44R6P/yuxny1U+NdBmxakrGjcFXEcnDISbrMsTjgPZnxsQerrFxs/YmfUQ88Pqd+ncOixTpH/NryzyDHgsXD12m8+NnvKr5/0draJrmCfdmnw5gfz17nEydv84Xzn+TM9CFU6f8vPdGeeuqp70+vvfYav/qrv8rnPvc5bt68yfLyMrVa7f/1niiLOUk3EE2HrfaY2NriTW9GN1tioQS/V/bwHJeLEoyTYydNjHboVqe4FdwJSwqrjRGnfO3GDeKDZ1hee8KrYsENRqjRCm/aG8yrDoEJKM2YUdFme+kJw0Cxmpa85V7gYO0KH3FPeGIdYKbr3MvbrM4sECP6S1N2ix63xRY/O31Eo6qoKkFcNXngx6yvvY46eIHDPGXe9fnpy69wb3abR3sJ97I2Ri5w9YJP5k/YmR5ix8v0HEWpY45tOHTWSeoJ88FddmrLHMd1vNxFZjZT0UGINs+6R3TCUx4Ma6w37lPXv4tSP8qXcGhk65ymUx7tjDD2nMfW19mX20zzNs/VXGa3d3CPDFW1xGFvh2Vxg1uPA/T4kL7u4OhznAiLw8pmRRyhew/I82Ms3eTL377La+v/IUuPEoRTcmtnTsNp4B8veGjViWsxszxBGsOFaZ/3igZfLwzucJktuUFbzGiJnIdFl92yzqCcceRc5JnWhLF7xBvuOdpRmxcGEJkHfHswJx1cIZEe43SDZ2sjrksX45d4kcXDtkcWH+LqgN2py5KqsS/fQ3lzTsdjnnFSJC79PGDqdHmcrrFGwNiVWNEYFqvEVou4PSa/dItq+in2Jk32si6TNGVRu8fD2Sphpbmx1+dV5wkLZbHRmdNZXuLvPUlYmjc4mxq0cLrQsgAAIABJREFULhFeSq0zIT1RbOtHqIv7fDJfoNyHPFm0UUWd0bTLLSM5Z6WU2PhobGvElXJKZklUa8H7KLbGMFB91uWQYdkhM69SNSsKcgKrjm+NyLNziGDOw6rPRAWYWNCXO+DDvaJFzfVR5jInaZ1L0ZD+QvBu70e5Ur9B3rQYJz5mIWmWCcEze6jc8DPqTX7D+gkKVXHrwWNWgkfc1+cQBwanUedUZRwmJW/PetSqAX3bYLvvslUGHBqb3WwKS+/yctnEDRJKL8TyrzErIjb9m9yonmXfrLIvJoh6wReT13jFvsOqd573Dr9O4X6SuhWxtNTjTqkwokAP3uNoa5XcfoZWGPG1yftcDs/z5qN/Ts0sGJ7uc6e4xnM0eGdRccGfUp55G9X+RfpfvgOt20zSVWwN/c49VNmgJ5ooT7JThGzoA45FncdyQnt8l6Q0ZKaBshTvlWs4zUfMyojz1VWOgn3qjs3do+tIXCoZkOCRhxYX8zHfKq9y4rhMTMRJe0ItG/Ag3uKd8gIb4ZBU1vl9u0tQHjAyy1xJ5ty3z3FoXGqTQ6JoxOPJNjtyjU9xSsomq9F7mFQDNo4FO6EhYc5pXLCwNLr0cLOE3KpYa+wT2SWPvRbnpwW/F9bwC0E9CBhFU2hs0xEh15XBSkrOcsoFW3BEj7dFk0waUgIuyANsp4tbaTbNIbdMlw6Kb8t1zpkp11supd/hoDqPqB2Rx2uErZsc5y3uJxvEjqLe2uXJbJVSW2Ruztemr/Dz/uu8HW9hWRox9fDKS1QrN7g5eI7ZYJffffAVHt97j2qwzA182nJOd77ERHv0aiP8ZEGsC/zeZQ7Onued2/tMi2POZHWUKFnKh7wvLnMmvM971lWu6QNU2sOIGlHnAY9mhv3ix2k6mqBsENuLP37C+kNP96B9D3y3Od89XbAUuSylGnOSsh++wd++82+Rao8fynzycMqDk+cpEPw3LzzH5jPdP/K4zr+u5mqNv/X2Hr8YhHxe3iWqJH7vEXvxKtKErDuPeO7Zl5F154+93hjDvdvXaT75EntLq1zNH/GXX/if+XQx4hMfexXL/5MXdv+6pJTs7+/Sqg7oqGO+1bjGm/sb/J2P/kdcO7mLPLxH79KrH9p438nT+/sHxw9i3n9e9qCtrq5y//59fuVXfoWvfOUr/PIv//IfqaC99fo/YajaIGyyqsVzRy4Lr0TJEY91n9hRlE5GV5+CzHlHnkH5FZY/wisDWu0HnMiKW1lOnwHluIcdzrhZ1tiQimnhsuGkJCaktFOm9UMelG2GJuD67CI9M+Ru+SzKETScEa5MeDfukOeKzcKj8MZEsqBKVphIeEncw61i5vkKQR4yJGNH2xRpnXdnCt/N8I+gu6t5PHqIUDMay7dxKp/Hcodvjja5rwWW+5h9L+WRs0E8ryHGHYT3GGU3KVWEwGJFjzgyLWRb0xAKRzzGtz3s+Vnu2SNOjcU7WQ8t5ziJj6seks52OIlO0VkbPwnYdqYUJxXHiUNg2ZRLQ3b3QubxCMs+JJ13+Xb7gMe6x6D0kWXMSpQyrbrsiYyO/4T3HvQ5uHfC68e/xdHDA1bMDtMs501vzt2sxVFV55PNxzzCY5g0ce05Uf0RW9EO14uSx6XEslzissOQiqrm0Kjv8qjosh/3WHH2yOpD4ngZnJKFXZDjkGibw6LFWulzjYDrwmJaeQg7prSgr2wW3owovEdeeihnysIS7AxeY6JaXI/mXLYy7lV1Au+AvUpzmrXoNSdM0zZr5BxKn4NUseTtMBu3CYIhlb5ElQU0xAFngiGfH5/h/XEMA593Uo+abvOSFNTMiKxK8Zslb0dnYbYgsHO+MdviOI2IOOZbZotmMMAKZnyjajOkouGe8hXTptAOy/4+rhBQLJOWXQ6sCK+VISvF2/VV7rs1Vsk455+yVN/hy/oKC9kg1i3qQtA0E+LKYMmc47yOEYa8CsiN4qr3Lmngcn1plctmziR3iBGUMuCJXef+vEdbTDmRXca5onCGjEoI7DlxXuOdsuTmjsVM7TBcdKhl55kXc8LaCY/KNo5lYxZXmFktysDivewqc0fS7+7xcLyMyruE3pRceoR2wg+3b5FJoOiw0XlMLjQ7szEHTybkYkF9aiPu3uFOfof98gA/L4kjzSSMefwk5Nb8Pm/vt2gdOLyhNFqXWIsuM50hvD3ujeE3rgfkSZeFqGh6E46NDcJgygDfUgyBovJxch8dTikbknu6zmp4yiSWlK0P9n/ZZUiBwsnq3AxPmcsh09QwTFY5LBtEszrKVSQCVso579Qu41gFP9Z6wq35Nvs4JKXLejUmVDYzy2aw6LGmZvSqU/6Z/gj3TJ8d7bEkFZGv2NNt5r5Dy23zVuGxVE1wgN/XV7nEISUWt6rzrKtD+s6IR7KPNJpt/4hubhDWAi19jpMlYgssJ8XxUgaJQ9fNmIYxPSUYmZTXRZ1nOWDDypgGDsrO2Ct7NKsWSb3iul7DF5pWvM1tFTBLl9mKcqaWpHQUR8Zlahds10fcXiyzKFqksiCQJSpfIqkCjozLaKXFm9aL3BAXOafuM6kLcidjLCzupH16SYf5w4oNeZemNyI1hpdae0yTiPfzGqviCX0vYyr7dAZrfCN5yL0qppa2aDglrZU7XC8vclh18NWCm/kKU+kRm5BbXsJxKWmEh6x5ilvSZ+4YrHCfn/2hH/sT562nFbTvM1mp+Jlrf9jIuQ/z5k1e/1bET2bwm6rDy1f/Mb87vMJm9xbP6hHOub+AEN/9oRhSWPwnbsBfX0x52Wzw0BJcEAm2qHhTS/7L+SeovrLP5OMr9M7+0aNBR4Nj7r79Oi/qKfeaW/zY/A2eHd7l2oXnsVpnv+v4/mV/8S/+AmrwEtGv/ySfGn2b32l8mv/1vf+C1fyEw8dbwH/+oY/51FNP/Zvrl37pl77j6zfyM0hZ0i4EhCPesGOmVcAmGRvukIXnUGLYyTcwpYtnC0xlkI7gsbfgzvgSLorSwMB2eNAYcCNbpm4VnKTnEJXDjbLGlsgJvSm78RanVUjNHxAXdRwrYNO+xWm1zBfKM2CgZmWUnuCxd8jQWJzDsO9mmLyJbSqO0xVuCYeVcI5nJJOsSzcY03Vj9m9fw5anXNMWh9GcyDNM56vcyZbI0yU6ZQRG8shewnMSatWMfbPKpjeiXTbAyki9kpe9AV+1uwhVkscwo+SxfhHhzjmexXzEm/FFdYlZGdELD1lfus29+RKhVzCPV/DcOb3WDomc0+mfMhldRhRN7py2mJRHxPkKgbOEHZ7iLzYI/RjPqhgmHW7MGhzYgkxUvGylHKi3aLstzomSaRXxxcMW2hhkM2VWrFB6GbcciztJF1dqgmjEduMRuyevcNcItJBkxqErwHE8clExXtQRsiJTDrOyzlrziGMpeNafkmdtQplgK5uzdsascpg5U0oLSuMgRUlpgVc7oVm63B1dInJSXvCHTGbrPHSaDLQkLpbwtOYYi5aU1LSh4SWQKq7WHvG10TNcbD5BZ3WKvEHDmfGN4Rpl1WJJn3BUtXmgKurujN2kze+XDknlMvYmPHAGzLOAIWe5OJtzX6Wc8QR3Zhc4mK9SOTnHukdNlpxWgr43JTCbOHbJV5xtToo6g6LEtrtYRlAoByE8Ei/DlDl2tGBgGzJleCArjGuxXLZRzTlNJ2NcBQh/wX7WJK5qtJwZq96MoXLI3Bl50uVRbR07CLDKGreTDb4eb6GVoNu9i5yu8nFvgmU2uWsclBLMLUHHn+Eoi7ElubH4oJqXJR2sKmCkj3F0yMgpyIs230o7nPMKnl/+Jm+pBk50grC77AxWWQ3GSONh1BIjO6BC4GrJ9cl50qLOfPY8wgoopOJyeI/T+Tonu09IV97mcG8L4UumIUwWEc3iCTvHz7PqdOkVKUd2yiD3aciYN+MxjeCUW9kStufQDGYUQcJJvoRxZ2BcRoX84ERDI4hlhWsVJEbx8eiYh54hKS9yYkVUDcFe0eGMTNEyBuXhiZxcWSzKlIN4E8fOOC7arPgxoci5l/SJRZPTOKIQ8AfTV+l7KXulh+MapBtzq+xRlRaOm/DV/BqVa1EWAUpqjHa5XzZ5pXZIT2bYsuCt2CfOlxBCI5yStk4pNUxKDyUzOl5O7jvUEsXC0cRIbs432bBT9nXAoXbwZcG+drhaHNOs1zm150yKJTYaR8wm60TK8MBe4lJrB9+fksUr+NEcURuRVXWUkNyL1xhbglzCyK9o+xMeVnWCsqQpChra4WtHzzNB43hzIiUJ7YTcjRkITbMIKOcRUjxhxapYay8YVS6yanKlfh8ZfYV74ytkkws4tYhh3qQM5mxEAx7O14kqwyzd5AuVz2vBMZIFK+2v8K39V1Ha49ibMZydBwsOVINJ3GNdTFgVISN7Slm02HccKnOGK24OiccMm9Fi+zvOSU8raN8Df9actTH8u7/2bbZ7Ict7CfrGiHeKv8vXrv8Yq0v3GBRL/Oi53+HzBx8jqXxuLS7zw0VE/3L/X/3hfwrRrQm1THO2CPgDb8HVwRq3bHjeW1CFNxjbMarosXz+j+4nO37rf+fVvb9HW87YCdZ5fnGfl/7+2/R++iN4K3/2Eyb/JFpr/slvfZ4Xki+zWg74bevTtOZD/ta1/5hYGz7a8LBa393hKX8aT+/vHxw/iHn/eamg/Wl88Utv0Q4WCC9jlHXIjGCiPVp6wbHosGrn3MmWmdo+UhoW7oIMgS5rHCgfkbUpRIFlCVRRY2Js0iokNB7zKuDAeAxxmYqKQdUmRKOF5op/SopNwYKRWqYUNqklSYqI0ElpODGzokZifE6qCC1z5spn1dpjYfsMaWJbisIyzGTFpGxiqhpaV5ThLqdWxhNpcVLWWXVjClFhy5xGbYCRFQsk27UT5soDodBoMmOz1BwirDY3kxVmZYhBsmzAFA7Gj7mXLLNwK5SxGVh1pFAU2Cij2TMBx9pnogLqSYcHzpD9KuK98TO8H68xTSJENOIobxJnPerBmHkVMqoifCchiATLU5+7wuVisMeBqrFI+8yl4bRo8bhoM/Nn1LyYgV0Saw/fzbDsggJBrl2yKiSzLB4kPZRMSfEotc2wChmpAGSJjiWxcSksQygqhkWbo6LBtKrx7nwdjGSOZLdoIYIhuSx5iM1Yu4xVwLRsMNY+U+MgRUFWRhyrGl7lcpgvEZQBSf0A1zKcjTscKQ9t51ja40V3zlY44rhoILwp06pJKSTTssFcu9S9CWWVY6UNdrXDvgo4qWoIW1FYJTU/xpMlDy1JLFokeCRCsVu1kKJit6yDKLlc32dXL3GS9vFzj5uqwXLtkFYwoZIKz1ngIGjZC4qqzk7VwJc5sXbpZAuGZYNhuUmqwLFKnEIS6ZKB79CwMhaqxtQI9vM2oVXhS8XIAi0UTTtlrEN2ij79/ohHixXKqmIODKVG4ZIj2fRHtBR0K0WatZnbJal2GRuLhQpJjYPvzVGWxcAIqkWDUBoWWZNDI9BYdBpPeCtew1qs0LcLQnvOMK3RcuccC01qaWomx6eg7iQcl3UqbVMPTzjIuwhh2C8iRsql3bzP7y82OC1anOZtTvIlnpQtpmWDvaqFdlKkn5DKiqHymViAzBgah8MqxP/D3CeVi2N9UO2ptEWsIlIEvptQGpuxcpmUbURtwoNkHcdJWDgpWVFjbnw8oZhJTSsY81gaDpRP37jsqoBEe6RVhG1VxKXHlh6iI4nIJJ3KZao9XDsmNzApa4yqGqGsODU+69YcW+UsM+fIq2EsQ176LDsxXSdhnKzwftpHyQJXlGxxjC1LhtR4R5/hsVmhEoIL4pB7ep2RbjDIlnmcLWNZmsdVQCkKCiEYaQ+koTQ2t8smx6rOqKoxr0IyGyonY2ia3FdtHhUtjHJYdha0/QUTu/yg7UfRArsk8Ea4TsXUuCwqlzVRMdIegSiYVxGDqkaiPCwsFsamrFwOk2W0sTnUTc65T1hjSuy4jFKXt6tVMlkyKAP2Rpfo1fe4Eg356mwNZWli5TCpaoy1T6p9Qqukcmfs2gVK+VRVRCkNoTehkppZ3gInY0sUVF7Fe7MtJhbkQiMsA1JRGEWFZqp9Gk7Mz3/qT37a62kftO8jr++MySvF82tNxHqEXuQ8mMxYWnS5tP4Wf8WdY+r7PEz66KLOz107z3M/+9yHNn7/YptVy2JDCo7lDKE1hXZIRMpodp4zwxZXt//4xnrXRy7fUC/x0Fnn5fltDs0Sk7NrNJ77tz+0+P5FQgj6K6v8o/CnGNt17l7b4IE+y6nb5LOLN/jHX/gyWuvvydhPPfXUnz+uqbMXL/PeYoVB5TBSEYV2mIVNGl7OQb5Ex0mRaNZqByjtkSqXY+PgWgrLHVPIiolyCMIJPbukEoo9LbD9MfVgRMcbcbH5hLpVEtgpcRHx9XiDgfK4xTbHos7NbIVIZvhuyqQMmWqHlqhQeYOs9EmVT+DMue+us6NXSJRPqgNi5RNqh747Z6xcgmCOshWPhSDNm0RKsLALCu0ROAtuLFY4QdD05pwUNRLlkJR14qxH1ztlnnqoooaQCQBpGdJp7PKR1beJtUtbVNg4iJrGsRSvte8jjIWWBiELtguPF5M2l4IpZ02dsFrCM4LQzlnxY/p2xpa2+SH/hK6GurE4bycUyiUZaCZYbHgDhkKSlSGFpUF5FMrFtwwtmXJsJKOiTWAnXPb20EWNuQpoOQk1J6EfHuGpGrnlMCojpJGsOwtW3DnKuMTCkGlJWoYYYyGdlHVvSlb6VFWNJoCT0qvtEciMQhSESmLLggyLAoumzFnxhgihEDLDAmZVROEmHARTbKGZlnV+r3XE1EhmVcSobPL5osPcW/Aw7bGXrDPUAcqJGRY1Rlhs+ftY7pRh7QATjQjdGJ8KaQyzokFgpxR2jpEVTmuXSW3EdS2ZlXXuzTdxgUHR5P50HcvOqGSO9Bf0ZMpxUWevaHN/vsYob5Mrh/t5j6GRaCxmZY2pcvHcAikqjrRLS2Qk2sVxY+Z0idMup1WNMu2wQkldFuRGcpK1mJURhZGcFBG2TLEs2J2F+N4puTvnmcYuTbvANYbKMvze9CLHpcdDO2XPzdBCkRiJ5VTEloUwFjVZUGgLoW1OhaSqH7EcTAgsuOhNias6k6rJwi55N11imNZxTIUqIhwN4zIiQNN2J9xJVmk5GQI4SNaILcFuUeekaCOF4HbRoShDmv6YlrPAd2ICmTOrAl6xx9RTj1DZ7BdNxti4QnGMjZE5DTujpl2W8hZn/Qnb7fvUK58Eh0DklFbOw6SHpWxWgiEdf0I7rdMwEikUiypkYmscUZCKkr5RvB8vc2os1vwpwyrEMi49O2PVzvCFJhcO3+A5niRr+MZl0x1zubHL9WSFQdHEtjSp8pjnIZtiSCokNScGZVhSkppWbNoxy1IxqXyC0kWhSbVDXNR4l6vc4BIH+QYLU8OVCm08RCbZKk4RlqHvzgntjKSKKLTHomzSEwVL3hREzlA7RHaC1g51b0bpz7HtjMLYBJZiZDwCkVLzZsSWxT8bX2VW1kmNQ6kd1hqPOBWSqVWhREGFhW2nxJXLIx3Q9id0nAVtWVAXGUncI9EBgR0j/SkTYXiHa7zRuMpRHHBf9wmdmJ14mUHaJzYut+IVvhj3sJyMTVlSVjVSUeHIkr4/pB2d8CDvc0N5PM6b7BqHY2CkPJzSIxAZpSi4mS7jyQLjxcRGYguFsAxT5dDwZhg3xrE0guo7zklPK2jfA3/WnP/ml+7xU8/0eX4pAinYd27zv93WPHe6SePsV7ncPOU0b/Jbhx9honxs/zf57DM//F3vP/u/SSn40s0T3tAVI/+YO62brDg2C+XzQtXleQJUDl9//ZgzLyz9P+Paj7/M8Tu/zdXJO3xx+9P8yPhb/Eb/J5hZ61z69E9+KLH9cc6cOc87cZMquQcWDJIl/sb476CEJGw3Wb38GRDf26d4n97fPzh+EPP+Qaqg/fbrf4CrbYbpEk2pyZWD0i6RM0YWDTJAaJuFcVj2RkSiIKl86hiWRIVn57zaeMJOskZL5pTaYWHAdjKmyse2DKVyebHxmMBI2nZGailmWYfSMsQq4MXWA1bcOXuLdUpLIzBIYcDYOCLjBBsFIEoSHeEYl3Yw4bn6HmNjE1pwsX0PIQu2vBmDvMPE2Cg3xtc2qSVoRwfkZYtRFRBWPkVRY1QFlGUdISpWoxOWpOFUNzDRlHWVIWWKloqFEfT8Mfcm2+RZkzWhWMicTAtaIud4scFEO6xaObEX41Nwp2jTdicMZcnLwRDLTfAsuD/doGstEM1jqDzWGwec92acCk26WGEVcOySaRXia4/SznGriI9YFRJFN5hyP+3xbHTIlfYNIqdE5k0Kqeg5C6y8SeRN2Cs6zMuQwM5pe2P6lqZnbFIVIJ0546LJxfoTRkWTpsypCY1dCRxjU5eKXLtE7oJUeTxMlzmDprBzKiNYt0o2ggknWYsrtX0uUNB1FzzKupxqByELjJYEdsysCnG8mMpJSC2oiRy7iCidFM8pKbVAioqZcSiUx7BsM1I1Eu2RVAGbckYuDU000hg26o9JlcNxtsRx3qYmNN1wSKZsHCNRRiCrAFtossrl49FjMpkzKWt8tPs+aMm4rFNgUSkXY2lWaocAzKuArjMjFBkhKbuyC6Ki1C7r4YR72SaOpchVgLEMdaHZUz7d6IQGAi0Uy/4JILGxURgWRcCSKvFkTlL5xMal4Y2x7RxkxcIyZNrhqj+h6WQsG0Oc9DivDMvRKf3ogEz7DIsaHXfC+dohoVGMZU7bXXDVUtwrmqyHp5yUNcY6QCBIgKaXYAmDZwz9YMRx0kNaGs9OWfdmnAmPqYyg4c6YlXWyMuKTwQm91m1UEWI7BT0UPoYVHGxRo+4f0gqfsOHFeNrFERWZduiKCtdNWKkcdDgi0S5F3sZ3ZthaYIQg0i5O6fCKTKiJEQsTUcarrPojPCzaskI4CbOqQUrFTtbFE4qz4SnvZl0qAw0UadrGDY+ZqhApNE7a5Ep4xEJLcgGjsoZjaRpOQiAq2u6CLS9myR/juhUndo3RfJ1nMkl77S12sw5jDHXmdLyCNG9gYzHKlwjDKbaRWHZBVXm86Mw4spoMhc+waiGFxtc2nhMjnARtJA2RoC2NoyXPNh/yYmuXpqyQToyqHOpOirKgxOKMP2ZURvTtlEoUFJVH3cm4IGPGKuCZxmOmRQOpHUJ3TlbV6NWOSI384Hs7bxNWDoFdUBjJNG9hqgBjF4zLGpGVAxmzpI6XQcuZM0jXGSXLnHcX5LLitKqRaJtAZhgjAMmTooEjKlzLkJV1xmWNqfJwZUYBrHsT9rNlToo6K8GQw7yNMZIXW7fZzbrY2qeLwfYm+LIgy5tYlmA7POE0b/Dzn35aQfu+d/dkwc2jOf/OsyuotweU//QhX3n7DxjufZT1T/4q/917f40jZbGz/0NsYGOQ/OXyJz+0xRmA1Qt4UQneQnG5ajEremxF+wyqkFVvxn969m9wMHrI1U+vwr8w7NHpKUWhqEcZ32g+j68z/u6Zz/HcS89+aLH9cWazKeU7v8NPTN7gs8Ovc7+1xOfvnOXfu/I/8jv2Grf/6f9AWf5g/aB+6qmn/oxERoDGcWI+ltX4UbmgrS0sq2RS1lnD4GGwNGRFgw1/xFJ0Qscb0BZzPhqdMl6s4yZtvMzHsYfUZcFWMOLZxkPadkadnHtJh3tZB6qAC96UZW+CayyW7ZhG3OBj4SnPRQc8Hw5Y9aa0rQJFyWZ0RF3kSFHgGgFlyJKzYNmdcjfuU3NnbHpDennIy507fHO2RWiP2LZj1ilZNzmXS5tnS0mDgk8Ep7zmjfjU8re4HBxwQSy4LKe084g38y28xpw175SzzSmvdg6Y5W0mRZ0nZZOuO2CKxYkxGEshhEFUAU17hK9s2rJCOzPC7m1Cd85gtopbOrxZ1jjJGhxqh0kZMEubHMc9RnnEhdKh7p/ScxesVi4rqcO6EhRVQFdkLJSPyuuMK5uzWUCtjGhQsVl/wGh2jnvDa7RTh8vCMJxtsqbBxeZscEzDm9D1xlDUiBAcG0NbFITaYTM8ocprmNKlIwpqzoxI5CTGYubGSAxWGWG0jSsKJrLEszSbWcRKMMRx5iyQxEYzVIZtmSEtjW0ELX/Ahj9k1UDTSZhpQaldbBRSebhCEWjBhlXwlzq3UEXEBf+USAss7fBiYbhgJZwVKXN/jxeCu1zWJb6dUAQjtqMDIuC8N+KyMyY2gtXgFCxDCXxy9ZusBvs8a8ecb+wyTvs0lGRNpFhasl3b51L9MddqD7lY20XkIWnRpGMvsOMuj6tt7ofr2KJEWIaNYEDPnrEZDGm4C0J3inQXzGSB6yS4lsL2Z3TtBd1wl20xoCdzOt6cnj/mMF3itIhoG8MZmXDOH3LBnfBM9IgX3DEfqz3hUushPW9MlNdB2XSiAy7WjlixFKt2zEV/wEY0wTgxdXw6f1gVfmxJzokUVTlcio54JTyga6cIC4aljzGG3LJYYKEsTSBzzosCIXKMpbnUvk9f5lwOD/lLvfd4lIccG4ug9PDHZxGl4Cdqp1QaLNtmQ22j8stsB6dYYoZvNGuiJCxqNJ05I8tQKUFehNgip+PGSC3QeQNjadaVRUu3iBwfJQQzrYiVAyJnkdfppQ1+zD/ieXfIBctwSUzYmW/gVx4dy2BpQSRKKEOejQ5Zc0dkGla9IVpkDMo6nvlgAbHkjfFEiTI2Z6N9lsSClpGc9+dccSqKrXd5MF8mzlzG8w2sYpXxoo8xMEdgvBm30xUcFKGxqVUBYaWZG584X2HFnbBiDMO0TWTH9L0Rz/jHOKJkN+/yTO2YF8Mx4/kqIgs4L6fkymZfeZx1ElxL42J4KTyhKCVpHmIh2UuW2Nf2B/nELXxvQGBprMpmiYph1iaUFZfcCef9IRMtaNsL8sqjaWeUykFqF6EkK6WDZ/nYVKy4MZ8UC563Yn6MSMOxAAAgAElEQVTEPuWMndE0gk+077COYin36LkJuggRRY11/xTXWGzW9+k5c5ZkTFV5bLoxP7X+DT7TfZfN8JiFllzyTni28w6JMOTaBqvCtkouAB8LTxmWPl13jJIlG51733lK+v9i3nvqX+0ffnufv/DcKpEjUe8NuU/BcXDMq94J7f4t/nb7FuHqN7mxWOaZ+i5/JdB87HMf/1BjsKTF5eUaU6M5l/cIVYelQmIM/Fe5z382+2/ZYp2utJgPsg8uKmJupUvcNmf4a+v/NSvpKRPRwI9zNn/iFz7U+P5l9XqD1O0SWwEvLO5y0lrGWVvjr+/+Bv/9/v/C6tE/J52efE9jeOqpp/58GFmaYzemEjkTKjxPIozmTtymkiXGmbM2O8tVf4Rnz8m0gy0USnuI+AxKC55tPaLpjrmDxdnpJTbDfRSKj/du0G/epy4yvFmXIq2xu1jCqSJWKfhU8yarpmIgfO4ah/3KQsoEUwV0ZMpCe3SCQy7JOQ27oClLrMoHC+LKJ1I+7TLE1xUb3oT9vMXzjSe8knVYZ4ZlNFq7+LM2u/Mut0ub49k6jUWbYdolKupUwYLzqsJZbGLlDe5PLnF/ep7fPvwk/+f8LM36Dk1vjilqTC2Li8ERUfsem/UD2k5OLT6DbxxW7ZRO2uU5t6ARn4Gizb7QzEVOoqAfnbBR1GnpiIu6T1MYzgRjWskyJlnhUm2XdW3xWM55kjXReZNLpsIhY6ZsjosQzytIqpyPhYcMhtco8iVUBSvCIs2aFDInco/5WOMhLy6W+ZHldwmMYlXkPKMFm533WCnH/OzqN6lriyBt83LrJsvemL1khbB2woY/omXHGMB2ElTpsx6eoEVBqmwGTsKTvIVt5fSdmE87FaFIKPMmG1ZFpDQ9O+dwdpbJ+Ar5bA1HG5pySNvkLCg5secUcY2DwfM8WDRoRsdc1BY/179OTZTEeQc9WWZ92mSx2ObYPcM8iGlYgqpoEmufH3IXbLoxNW9BX5T03QVXGru07IT54ByL8CETO8eWCavegG5V58neZ9AygbyGO2szzQKsokZW+tSSCKeIuNDcox73iPMQbSnadoyjHMbahypgvYiwlEOqbJ71T+mWHlkZUGlBrF3mh6+xrnzOpiFSC2ZJl5ZMaYqKrAy5qg2b9YfsFnX2kzWWsxrbsuDuZIMjVeJ4R0RLX6eVdPn2wUvsp0ssCh8bF501QNXpdz+LlVucVAlhEbBqp9ScFGFP+czqdS4FJ3zc2+N5/xRPuYTehFncJ1IOTmUjsxJHC7oy5u5oGyUUPiXl8DxX+0+4uNzFBBbCsjDNXSaNfc71x9Q7DTZaKbVGRDN6Bk8IVizNonGXJ3KEpxWldujbGWtxg56co7Mm6zLDVzaxO0Q1DhHaw7YshGWYYLBNiYqXiasAkzZpKI+IgLNiwbKAFXuOKTRR+kHbhCtixvP2grVS4HlDGpTYSBLLol55fJaSpsjwtOGMFlyQH/zhc5J3kUbxzcoQrr1LM1ml52fUxYKekRw4OTES27isaINnVWwFhwRyij/r8lPekFfaO6xE+7QsQ1dWJJZF10gCJfgoinbR5GWrYFul6LzJYVGjffoMRbyGjNuEeY3CynErOOcNse05kVC8aOf0lU8vr3NVZBwXHSpsmv4MowVj5dCxYLO5Q3O2yvOpQ9M/QDunBP6QhZcS5D5zbSPtgs3ghKv1PUrfUFKn0c7QpcskXWKlqlHThpqdUY+OOa1CLjoxF5beY7v+hDju49ozxtqiZipsIzhbO+RaeMrF4JRCCW4MrtCyUlrukH4w4YLMGQnF/ekWTTsmEhmb7piP2wnngzEbVkEy3mYYtzio5Heck54u0L4PDBY5X7pzyi+8vIbemZEozZPpDe6MLnJx/U0eDC5z6J8giibXtWBPC/6Pjb/J7t7Rhx5L7VyTV0KfHMF6OOSbvc+TKh+DQSmXd9S7FIOMP/i1u6hK0/j8X+VM+j6r3ilrYsx/cPSbJHj8+1/9wndsav1hsCyL7e1LvOlfw0bxV7/+DzhyVzn36AFfL57l76/9HOtf/SWUUt/TOJ566ql/86W5RyEStqw5duOIpOhT+ANWvIrSPkZTEAQjtv9wn850skUVt6gsQaOoU5ttksYN3N4brAQh3hrkVUlWKUaPP00jaeCagED7bFkZvh3TCncxesKKcslUHVtUbEXHjIo6VdoiKiNsYyOUw5P5JgvtIrTNtjemZxZ0lIvOIsK0RqtoYIXH7JJQTjfoKY8qmDKrXLb9OaknOZWSWn3MmjembWDkrBL4P46vthhZCVb/Nn54yIr2sYsWnzi7RCvKuOzP2RY5NRQXRIpZbJBaNpFjsHWTfq1DKLtUSR81XaMwkrNSM0Mwb8e4CHJ3QqhdEmfCfWdIZj44VGSYtPDKJWZFHeINFlmXuluy2Zuw1RnRjgbkjV364SHt8IiOsblvK5oBSGW41nlArzSEaoo3nuIIRc+Z8LbQJA8+Q7ds8mSyiVXZVGmPG5amV4aY2glP5iEDDKksGJcOdt7CVD4KQceUbFc23ayOVQlqlYPIa6yKjP+LvTcP1vTK6/s+5zz7+u7rve/dt95vL+puqdWSRjNCMzDMGIaYiQdjYlcIBFOOXTgVyknAULaT/OFyyhWSUC6cShEcAwaGwAwMBBDMaCRGUqs1krrVrd7vvrzvfffl2fLH7VGrtQ2YGQGp/lR1db3Pep5zzj3P7/v8fud3jri3OaxvcsK6Thgr1DsVBkOPYewzUBIcdcCM0kf0CoSRwihOIElQlJhZo8kRbwUvcLCEQSl2qMoBXuMgS9ouf9ovIho1Hte7uJaBYgZsGBFj5gRPHZzGd0N6/TTVBAbAhPc6VWuX+jCLNfKJe3k2G5OstlP0tR0m3TpdpUtgaOzIIT21jZu6zAF/nfP2LlavwAklx7I+YLpwhbPuJicyLxOR4Njb6AMfLUk4mbrGUdFEdItcH6YZRTprSZOHM5fJRwkPO2uUtA4FQuJAZcFaYyXxCIIsszJBiRU0ZUSIpCdgk5hnOmNkzQaPpt9gfVCi302xuDuH2S/S0mMMr4qsrpHP3WJEwMLYBRxlhCLAVFyOPj5P4inIcJz83jSX8YiZIBeYtOtjHJMjeloP2c1SMNqEicJMrJI39khpbUJnh8XiZR5SshzyTQ7m+hxKhYzZMxSy38Pi+I9geyU8RTDdrzKRf5LQCjhZ6jCmFXj8sE3l8HEemlXYTOx9UTL+Eh27yV4kkf0C2SBPWh8wk7mBLzUKoc54mEbBZ91ok3QLxL08mdwetsxyapDDG9k0RZON7JtsuhuslF/hRmaVJL1O1qwTJzpOorNlbTNIbbLazdDpp0mUIaNBCgWF42aDnY5PRm0xUCIikTC077AewzF9j5VOBaM3hhs+xQ1tmuKYxbin0IsUloyYMSfmqNbgYa3LuNbBBArGDmWzjirBsndQjCa6EChmi14CitliKb2GatXJuauEWg95dy7beCKpCsHR4gUy+VtMxwrpKKap75FS+6R6JQbDFGWzTSh7VEODQ7LDNF2KyoBZdchi9hKOHNIOLQaBQcXfJBBphuERer08mYFP0C7TTnxKgcmk2sPWWxS0Do8OG5TFKpnBkJQcEho2l71b3NHabIUJE2LA6ZFBvm/jZFeRoY10VhnThyxkX6MTmTRbJSSCOFGIEpXFaIRPn7C5QGtvmmE/gxSCzZ5PpWuRtzYoaW2URNIy6zQHDjNDlbGBz87AJ+G9l636Bg8E2l8BTE3hZ79ziYpvsvblVbY6I070pnmtPkdq/g/59de/n5cTDXX1PLsjn+v9Iv/c+XnKueK3vCzKqSK5SZ9rxChC0u3nKJoNfGOP5+o9/o/s5wlf2+TjP3YIRZVcO/HTfGXTYGy0xcLedZb6NxisKHyX8sFfBr5VLC+f5JX4IIFQmR+r83q2xLZI898v/SinB6+xsnqLV15+4UMpywMe8IC/vkj7KguFlzH9DppM07TSSMZptsv0Rh5vDH1uhBHXRzojEdHVm2wypNkrM504pEOfttbBys3jlEvkJnqsWXu03de5qe8Sa10OZXocLTQ4U9rkYaER9FMY2oCq1Kh4W8zYXbyhS3ngEndLnE0EQWsCs5/C6o2R75YRoY4qh0wVbqCKkFPFl5muPUO2r6MHHs+FNmP5y/jtMlcTg5y7xc4ohR8XmE1JTkRnOZ0KUXI77E1mWZgpMj5ep6pp9AOH3rDElrOLk7lEIEMeXb7GYkmhWL3DeGadRLUwEw05KmHkxmn7M5QqRdoFnZYiEJqNMZND2znHSlhhebrNcU9yyDhH1F8gDlJUsDmT6BSsmE2pE1kpLpa30MpDAgOyvsuBdBHXy9GzTNb8Hkp6kpzXZbxkYqR9rushgabhuYKS7eENiwySJu3EILFCDpc0bloRLxkDelvLVBKNvBpRkSNGQiFBIZZQ8W8wUGIcGTDoFFESDRWFzihPY+RwWw7Z7KfZGymM2WvshTrByMSJFepKQm/kkTN3uRg47AmfryUuA6XHpLvFlkgoBhYLeg87FGgkbPZLrA1yqKQ4UfsM6liLrN5gIEZkkgwFs8WmdPD6hzEDA0UxSPJtgo6OHh6lUsghtYSkM8eon8LcPcyl9eOsjHT+YG+S3fo8mjrktN1jK/bod8s8qke40mJK8/iENsWtIMdulJCYLbA6eBlJYGTZjse42k9zqT7NbnuSemSTDB3iQCPpFvCESlUMmYs01GEWU5gYgwzNVhXLbGDHGpESIgdFlCBLWuuQmvZYDGeZcm8zUgcosaDfrTDRHWdld4ELzXG+Hibk09fI6CZDK6BrdMmnyzy9dJh07RCPWionzQlycgJVSpLQoc0YpqOhT5U5NNHhpkhIuwlGaYZO4xj6oIyBRm+QZxjqRKHKMNLZDm30RCEeZImax9G2HuXN1kE+Wl7miYmneeg7Psv03zyCPTnNUOocWlykYO6gqQYT46epTY0zWZVkSsuMhzlMzWHNzBIKF9mvoIxOcEfVSUmXXnwUxc6CZqAkEi0oILQ+3+F2aU27rOk2e0OdXqjjp0KSaYml6hyQA2zSRGIJxRZYrsNOMM2trU9RkVlaWoJQ+hDYeO0q03GJO4kD6oigOcG0vofur9A0AwaRxkGnQzfU8ZUYS2lzZWix06viKipKbo3D00VCSpjxFDNqQEOPCPVVbLvBn0Yu2dAjG9mEQZqMatAVLoNhmWZrnCTWaAWSSLZZjXQ27A4Xu1OIIEVaS5g0OmTVAZnUCqaSkLQW2dp5GkPGmCMfR48oWXUG/Qy93hi3dw8z6I2zKUKyiUmmm0cbGrzUmOJGp8AgsJhTGmgDlaY6oFJocHb+JKtqir7TY6nwJmNWj+83HJp6B012mCCm67TIldpo1T1sr8WeeQXb2KJgjHi5XeHqxiksIdk4LlmePI/ZH8PUO7QDk0uDx5gwfMaJGRcDWr0sfRmSExH25iMU9YSScwuznyEfw8dUndAeMIwlaiKxYwOhdhnYW4xUsR8ebNQRybszor+dB+ug/SUzCCI6w5CPzOf5zT+6wfmdIdvWFi/P/gb/sF5FESE3A5+/PfUsL734IxTNBsnIw3ooxLC/9c0nNMn3VzL8nUtbnB2keVNM82jqOneGaX5lmOX3bvxjdCMhuLpH7/ov0l54jDc0i1+b+xwz2jrKlYj/4fQP85P2tz/FPUA2m6OvTPC7mUc4v/cSL08f5OHV13mq+SKf3n2GK+YEj6z97/RPfmvDQR/wgAf8/4sjpsQMTWyzgSyYFDNpXroWsCskZRmhBBncSIWRS6c+RTR0qY6/xmq/Al4fYRRokGGiKpm2jyK2dslvCgxnlbCXw1YjjPwko9E61fyIr7YC1GGBY/Zz6MkxDhWHBGHMbr1Gy2pzXhuRDyrY6Tso3QItQ0fKBvbIZxAZqCLA1EYoI5+4OUM/Evgjk+XkKI2yzlfGbjGRSjAbgmSgYSuCtp3w4o5PRy7hJTE1FB5ZLhGtPc6R4S/ytVfyVP0VGmnw4iNoeoYTM4tY4TL/4eWf4tbWMpOzO9gti0Lk8ffOPMIvXf4ijnOcVnWVweYuSzM5Fg7Pwt4tPuvWyB1/hAvWJicreb743Dat3e9mRh9wx1lj3LY4ENs8PH6QQJ1Fc7u0Gh61ynGuySGjuM9M+yozhQlmSp/mtdtrTGRDdtrjbDS7VNMpKsMs9X4BZ/MqhmwRJ2No7RoT1XVWcyGdjXEsvYFh9Jlz9wiigM3ApZBIHLXHndhE1Ya4WkTH7GF105S0Ol3DYYMUUgvxOz6CLsHIQigBBA6xu84uGq29GrVEZajbZPwhpmqx0owo2QpGoiH1AaowGMYKY0ODeXfAxfocfm2MT56b4D984QB+kPCytsLX6kexlIC83kOTJrupHYZJnyVFoek1iT2VZeUxXP/rXKsOuHMrjUwc4lAjEBJVJmSdW/S9dZq9IpOLJxhve3hJnuHeNRa8AM/OcqZnMNIU7JGFZ0UUfYue6tNbOciEtoGCoGKu8WpjgU40xDFajCKH4cpxcmMXuCWHRLFDK/GRrQJGz6chXZKhTzNIGEaS5miaQ2qeq0nI+eMLfOHqMzBwUZOQETF+oqHFPaQWUm0fYz0JKLttVHeTtKIz6ysczZ3iir3DGn+CHz/M/Pyn2Xzuf0F28jiFcQCm7Y9SynyZdmeVWSvEqk5w8esjiAwUesyaHYJujbUkIAhUWiLGimy0IMMb9k0O+GUWoglmjywhXB2h7fstDpVDLE3S69/mV1d2aA8jDC3NgdmPEYS7KGN5rMChpCsU6wpPT7/AysY2jnoIx6iRKVfZa0V870fL/OnXL7DTmmAhrHCLBjKb5/icgyUlv9p6lTDMsaxWeXr5CO3bN7kxaDJUJ3GMPorqYnOYeVdBSUzSfYUdTdIWdcJAUtSOsFp5CVWrc+rOcTyhsdWr4dAhM3MFU+xQHE7j+A22Ao+wN0snfxGld4Y7wwxPuhGa3CAZVJGiwZVMjhlvklq7zrBbp+Rs0e7UGPQcPFUnbWoMvNtEIqLsbpMZTXKrvsSuuQmyDzufZTK8zZjvs7tr0RaXUZSIWCi4rsdOUqWhx1yL/oQ4cqmOHG6GEt+/TnM0gysdcuZ13mzl+bqyR0fo5PQ2oWlT82PS7SbFMEdv6HJFJDw8tobpK9hZhe5I5eqgRjXI4MsUh80+e0hUNWKY7rEbjNPvhtxoZchFRSyjTreXx0/fYjvxeNPscWryLGUvZku7SG8YcM2uc9J/nHm5Q7zZpxeb2HJA0Wqw7bUxglOY7hzRzisEA5dWMM1cesi1ZAuSLilvl93OOHanykAfoCYOnhIirSGa+t5Z0b/BA4H2l8zFtRY/+7tXODuZ5vSlNru6St9M+OruAp+qPsultZNYckS5n+L/jGFvlOWwscXzL7zC9JMz35YyzQwTvk81UbsT3LJWyJgrPLtzkISY2+k2r8iv8ZkXnkTjMmH0GB/d/H0+UR/y+5VHAbiu1vAeOvttKdt7cfDAES7fWuWT8R9TTur0hiOu9Sf4bwY/yBce+T5+/4X/gmsXvsKB4+c+tDI94AEP+OtF1Mtzc/0IwptEkybnZ2pk3BeJtjxsvc0KktnYwomH3MSlRBddGFjZDjtSkKgq7bzKWX2BdhAS1COmQ51VE0ZJQrc3RtYeZxjmyOiCcfNF2qFLjAJKhYm8ytB8nTt7kgk7pF9dJZQOB7ctHNXnshBYMiHFkCTSaQmNx9J3uNIYx9d1+lqCl91j0m9Qnj9C6Q2FI0tzbH35Kp3ugOkZh/VqCsVUONueoduHSdPA1BQupfZwlc9S3nsOWUlx2pnGTG5weNJDKB1Y7XCi+IPkm21ymQkmcjm26ze5sgfTORsxkHx86SB7N0ZMF6s8Mlvi5UsXKaVyZO0c54+k0RWJlu/RCJ7nssijalVWlZB62EEcjJjbynDbbDCV9Jg5VsDrjrB1BRmHDIeSTDrNbC79thZbZKN9BXNwnYdmz/NCZ4WgZWDYCmmvwMOTXV73LrFpjljpN9mwd8kIk7hvUBgO6ElJrAaE0SKxMsLBxtU1DocBF9tl1pyAfG8SQ7lDYezrzOzWqKsJe2FIp1uAUpdxr83absitbo6Z3DVa+hiBNknPeAU9MujTwS33UMOAM80QNx7RJMN8ocJ6xiQcRjw8M8ud5m3O5Wu0HJ/1nV0O9l9lQ+txNDXizsYMxsQASxlRzNlkDI1yqs6KJTH1cbrdDczYRezNM57EjFSFg70pNMtFr3o8/2aBxyePsnV7l2aQZmB3ubAtmTMlJR+WzUlS5hzX9jqM6V0qhTq9rkCIEV2GaNYGM5k3GRMqe9ohOumQendAR22RwmdLiZD+bQrjBxl1MzSaX8bplEgUF2KVOEpQEh0nKqCKAZVEcklrcKdfYaQVcL1XyPWnuMU2geexa15nAgPhd/CKNseicaayP0rGHaM5iHhJHAQyfDQ3B8D52RKjnk8zfRNVKgwUieob1M09VDlifVigo6uYMVgoDIc+jHym0w1edBQaXVjQXUTKQMh72c88c988VhWNsUyJcEdFNQ00LY2mFWm3v4rjLGNIi4cni9xqu4w2F7GVIqdrO+i3XXpKhJ1Pc2BcZW1vDD3OcX7PYSsUGOoW80eO0X/jAlakkc4X8PQS/VQPM9rkWD5DJK5TraSp71So6IK8DdnaMisrN7E3YnaTPU7Pz3BN77HReI50w6DcDWm7HcLAZ8obxwgLqMMsLW6jKQYy45HJPILX8Dnetlk2DmBM+BxWBRdHqzwetVnZaNKxfdKig2d7vGnorG2MOBDriKGLnTjo9hpJ1OPqVpMj1YCvt/sIxeBTy5s896dtNH+WtGojtc8TDC36wSSVrI5SymJZCjeenSU36CO9NSQKJWNIyVglCJbpRT4y8THcFrO9EsreOC+Ol1iNbjBrbRMqAf3GLL4U7BVCzi4c5B94fX7v6ibNO+BnDTKOR6ubRqqb2MSInkE1WiMaTdFTVeqezliqh7arsCUEAyUhICHn6PipI4iKz63Lz3A8PkPNLzAz1+PqK022gogwLpJR6/iqw8SEy4mHF+h9Jc/LnVVaUZpKIjidvsBu3+PK1kFCaWDY6/giQNUGZKXgb9Zeo51KfeA76YFA+0siiGK+cr3OE/N5npzP8TuXt/k7syWUN7f4TWkThCaqvctLr/4tjuQvk155nEaYooLkB4+c5dRD1W9b2dSzZY7WOxiXGnypPcHN3B8yir8bUx3w+ZbP/JRBsilYT/0Qv7+yzufUN3k+WWRga1zXxijWJpDp9De/0beI5eUTXLn+VWIET6/+Mb9z9An+1s3/lwsHF/j3r/xD3GiX6ef/a1j8PNj5D61cD3jAA/76YOcvosQWJw8XEa0yx8odrrWKXN/p0R4lmMAABwMNN07YdhtkhnNE+pA9Y48Ws+ysnUAbmyVnabw+uknFHWd8XOXS6322zJCyVDh9zsTLjvjItSf5o0tN+t023fIS6WITMTLouStErTJlO8IAwiK41hRTYcKt1TbF/gZxaIHR405njHac5eQBB/8lBTuxGCVL5PJH+Fh6QMr16B+9gKrdQdQKTEYlNCfBdp+nEB9DtfbnQOSNApZqc1E7hOs5aDsKUlaJRAXXyRAWdjA2tsno0/ibCt8xrvP1aYtXtl9hqWwRDgWqVHDUFFJKTE2hMTZHuZxHCIGjq8RJQqjExF4TW0qyusO1gaSsj9gI3yQILOqpAQuVpxBSUPT2l1tIkiUMffw926zsLZC4Mwih4h5yGLyeQ/VMlnMeSaeHSGLC8CjDUCEVPo/uR/QGD9GXz2LoMXXNxTN8UsoaQhbJWpvc2i2SjwPKJZNXd7PQWmcqdGlk1on7Hs2hRThMM+BV/JGKg0mkKKSSJQqWwVVFQ9UymGGDcb2Bpecp2Auow5v0210uRgmHcyb/+GNzJDFY4zaXr40Y62l8LOvzzLxC44pFVwwoOG3IpVEzLuuNLqMwQZRcWqVd5pQcg6UM4pkBJXONZpRjr/gM+eYJjMwltruzDLddzmYe4s7lDsH4PGMrJSbSDmZuDUsusRvGFG0V09BYLqf4SnM/82WzV+Er4iVMPSLj9eiHPoPGNJn8GmuZBu5GgbaiYBoh20mMHw9YLJbw3Cx7X+8wp0QYSYa645D1snQUwbidZ2tvDyVJiAm4QIyierT7s3S1IietEdNBns5Io2PtEMlJhBBoqkLe34/I0WRCKGHkaEhl39PlmxqNgWAvmiTWcsx5BvmMiRgJWkabhwqPsdK6zOqayZjZ5ZYyIlEHVCywYw+/l8FcSt0nzt6OFDqHx4sk4SlU694SIKY5j5QWSZLw5etdllIGtjOFoowoZXxOTtQQAnRbZXzqPyMr9qh3h7zU6KMq+v6Y49gEcUjBu8PS/CFsTSE7luZEvkarlGIQf4Kj03lMa0TSHHFc0ZBTGb64cZO6DVpkcnC5gtGIeKn1BkLsJ3WTShYzMmm7NRpDiWMeRt+qY4geO2aVsjdLclgj1Ui4bku2V/Y4VPU4tlxmdX2IWS7z8pXL7IkR2cEiVUvlttpEGirDlIdhp4i1GGUwR6jtUVmqoFxcpTmEfuEsV3Iv8mTeY7Vhcqh2iOJeh3yzgMhLFg8WWfI0fuvlFpXQ4Hj5Jp3OCfQkYWTYsOeTs6fZabUI4hRelCWwI1J+lj0xTiNuIQclXDECTOZyTyGFZCw3zdF+jlYoOJVxSI0SxjfG2ZNv0NXbxJHNtpiga0E6aJNSVtB7ebajLtXUgIOp6yTlPAfShwDIlHIob2YwJxS++3AJkdgM2GCPPhuRw1FlgtKwRt+w+b2tFqF2hS0rYCaq0RmNUHxYyG2wunWGoWNTCaYQ1p/Qmt9kZF5EFeNUslMf+E56MAftL4nd7oh/+/xt/tUfXeP/+fomv1QpknuzxT9ytrixLXh0ZQFFBtxSYTn7Jpd2DtIQET81/UUupb70bfJC/n4AACAASURBVAlv/AZJknCkE/PTSZ/WMM+lgceUf4swVrgUR3y2ViQ3+me0txps760xwSrPzZ3gp2//rzybPs5njA+e+PitxjQt/pPv+S/Z1HL87e3fZq06yXVjlnQ95HdHx/mp4g+zqeioL/3Cg8WrH/CAB7wnJjooPbJOl48vlQniPludbdyM4KivMOU6nJhu40mLtJZgY5DxZvi7ZxyePn+eqiwxLjwmq1mmcy7HTx9ku2iTJBETnk+KNDJO2FrfRYgRju5SXMiBOEUhmyWtd9C0iCopTmZ1fC2GxMWVxzg/U+VzJ2f4rhMTZIWOaQzoo7IyLKJbHtmpGSxFo9eZY8Kp4Vk6ac9HCIGZL1A4KunaLjveCi8PB0j1EX5vKHg9uz9XuGAVcTUXKxH4asSByRQzVgW5o9DeGaDm8uQnHkUgqS6mKRdtxjyfT0w9hiruvYu6nkbkaNzc7dJNdKR+z8SQQmAJlYmwSE0pc1l/k+rsgAPVczycf5Jjy49yOH+Molm6r12EkCjK+8/VEHfv3yul6Z4+RGoEwpSoeoau53LFixhkDGrTabJ2mnIhR9ro0dcDNtuf5DsXTjLp90mEYKTGCMslZ6ocSc+Sz9rcVtMoKQidhEBVqah7TIkRVSXN8fEKndIuNVcnJ/eoD+ps9UZUSjXmvRKN2KcT2sSFMr67hGnr5IwcjV6EEAKpCDpxTHpg0M4aiGN5vuPIHH53kfzQY+JghcqhO2jWLp85VmEmb6OoEmIDNclTNi/TcndAC8hJyVnT4tGCTmR5bMcpPnW4zCNHSzx9fgJ3fRw9e4fE62MbHfZGWTqqj4KHoqvMjKd47EAV1XqCvDPBsj7HAXeXodnGFGNcTPdZszaJ5YiK1uawtctsrklRn8Yc1ljIV9EUgeUdohceItCKKGYOS9FpFU20ahVHGTHojNGLXerpmKcOTTGrpalagtW2T3ug4tmCZuYour/8rrbWFEHFmMdJ+/jWPTsjk/4Et1MavZTO8fEUnz5YpR+6NPSAxVOLzGdURKIhhz4FEdI1hzRLZc5lUjSNIXjvb7MYxjSlwqOMHS8i1Hv9WdPyd/uf4NxsmTCCnoRYhLSDJpanYbrafjunHdzUGBVTZyxtsJtyeLz8JKaqoiQJ04MeqhSYmkJ+OsXU7GGOTM9xfHocR3PQFYlpKEghUKRACgUpJSV7DlUKFnM1/unZHwMkERr9bIlg3OR7jh+nWDzD6cNVzOA4WmuZ08WTHKeA5q3SiEccGEth2xq2qeH0A1Y1g5WtBkvuPNLXmbA3CJWArCpQCjGxlqVnJDTSgupUgJ1aY7ApkVZMwbLIWFk+Vz6MVZugmTFoJxXuqAGuW0GZn0X6OkGUYBUGCH+P5t4UgVGlm0wShymkGaLpbzL0FDaTkwyVKuXZAyxPZxg3j1AezRAoYyAy3BzlEHoNAMvIc252BtNUkIpAPVvi8fECj9byVKdNalaZYOQSDg3u9HO82TrGjeAwq6MxGqMqU/kJlmYPI8V+G6d0lQkdCknCK2stNC1FyVpEGx1jbiygk/Zp2hlaNYeZvMPjS49R1VJkVEFaNXCMWVqpPI4tqaZczh6sUilojCUFunpMz67hpT/1vv0OHnjQPnSiOOHZG3Uemc7SGoT8xtc3+NdzZbw3Ovz6dJdrb/r8SBgw9dQ/Y+X646wPMhxrTvG/qU1sCbfbS2hrFrx77PqWIYQgZ2j8nHT5N+YVbiUZfOU2o3iGn5j9Lb7yxjmey+UptG7zA9d/hSvOGB/bex49GnH6Cy/iLvW/fYV7H+I45pdTH+cf7Pwi3/fGF3i+doxHrl3g9tBl1tqiHdv0X/kV1lMPM3Hk/Idevgc84AF/tdE2z+IPZ9gJ50mqDgV5mIfm1pHXUyTDx1GtmHJmj9d7LQ50htwa5UnSNkvVfQ/P3PgmK3WNnLM/r0BVqowKW0zUTvPF1r9jwT+KYyg0gnEcZ5ykMuSMn+aZKy0IIzo7MemJE/xp8BIrjMhah+jby8SJQc0zyDo6H1kscetZyTMSZvx17FAyTD+EnaqxffgVgjhGLmXue67F3Hnmso9wdbtPPbrEzGKKrVtDhBCE73AaHJibQApBZyC4pvWZ0RKS7QHNzT6KJpk9XcQ0FeKNHk59wKWojZeS5F2dtKURqhJFCmbyDq/eaiDfsU7np49UWP2Dw1yN+3hGl0fHznBpLQYEQgiK1v3i7M+Dr/mgN5moppmdy6Gtn8DwTKoph6ubCYp6hkpK4JcyrP3eQRqBh1ZKc2BqkmYjxbVuQtvtMFQldjdNp7+f/XepqlKITzAKNPZGqyQiZmdxgO5N83TxCV54ZQ2l6iAybWoyz6FcyGxa0v4DlYcMg5E6Qbnk4BvQfHOapGdSy9tvlXsqa+MvlBE5C93cFwoyleVA1sKujLE++gMO+ik6QbKf7p0EERYJjEPU0iOuOM8yCkO0aECvX8OeDeluHGDeP0wSGwgBe6MQp2hiGAU0XK5FGQpiG18/gYhSCEUgUzoHHId5U+eFwQbmrWkU9Srt0i1EPMtYvcS4NFFyl0l4mJsovB5GnFyMcTbWUE2FJ6cLXNw1aDQDTE0lNBXslMF2e4QQdQrGkDuJjRfZDDQTzTIxnAy3hEUtGWJUTSzlEkuFCucms+9qY1UKVKlztGpwonZ/lM6i8zC2vl9/2pRH8KJKLFUs3WTh4Cf50uU/RI5MHGeTkZUhW5lmsVPhZmcP0X7/9VKFUFDV7Aday66hsjYIsXsb9Es+7+OM20dXCBWBKvcvOOvcwVNnEHcXl5U5897z3s21pimS2NWRRReA45OCr3YCDDV561gpJWpeMsCgWp0gSiIUqfDkXBmAK7gQR4S2SnUiTSE+A/YITZOcm9mv6yQTo4QBWdXg/IyDe2EMme3y8cUiv/WlqxiKybHlIi/dzFHQs9ySYPWz+FmDSmccPyXRFJCpF0jsx5mbyRB0DNJ2hnCzyiBSKABCQNbySSc2q70q3fwcBfMmRW8VIc+QGz1OJX6NTCWhkE8TIlgeT/HGroNl6fipDM26QsFoMO7r91XvE2drkOzXi+k7ZEYz2BOfQgt0lOCXUJRFng9iEmvAfDHNnc2E2I/ZyO/xdPre2r1WyeZQ8SiLvsfSeBrf1Kh4Oc5pDrnsJbxczJXbPjJlMJ2zuaXuUUqP2GsqvJLz0AvfRRB9AadscriaozmIGMUplCTLBhOk3TRF84MT/T0QaB8yW50hv/bKOs1+wFZnyL/IZ5h/s8OvxwH/8lrAcqCQUnrsJAOsUOXHDv8ipdd+iB369GKViYfP8F0L3/rsje9EHsiQv91C7dXo1o8wqnwerfEol7b6rHb6PKE/xc9N6nxfXOfz9jn+3u5voyQhzyaHOX3o27tA9XvhOC5h5gmudP4YRxlwZWyWM7ff4LP6s/xRsMxydI0Lhac4/8I/olX7ZeL09Idexgc84AF/dclbh2j7PZ6aL6PetbCKVpHYtlB1g2Gnz+GFozz78htoqSajnuRoMYWh74uK5eNFDkX3PPSuoXLoVIlIDTjxxsMo7TRXRhGauf+FVqT3w6UOfXKKqDki5Z6nO9zEkg3SZp6FWp9Iy/PSne59Bp+qWmR16GgDJqxt6raGpkiyQqe7FzO83oKT9wSAEAJVqBwoecBpdje75GtD5qoOyjssyfVmhKUptAcBcxWPjKWR1lWiMEa39s2FZBhBlJAqOYzpNgcL0+jK/rMsFhyKnkGc7CfAeuf1B2GMLlRcZ0BWq+JrPmHUICHhL0rZqlJvt9BjHd3RSBLohx1Mw+JUrUw141Ape4g4ZC2wUVSN//yjc0gpqdgFyCoMUnUM3cLs1XDMKkcyHl9ZCwiTFOlshe7WLhm5wHhuDjtlMurozGoOznQK1zA57NWwsyGd5gWGmoGlPsnRczXKGYttXTLYMDjouZyZvCei11sD/vBOg1O65Btbu7bC1d6IfP02QdAgjOHGbo+FoosQAn/SwvZMdvo2lszyrL9DpK5wzGkyrC4yXC3QHIWMooRhN+TGa3WCkoFDhbRl8qkD4zQHAWHKwncL2LF4KypHcTRKaYvhoMPlkQbGAbKZNErbIeqVuNXd5IBbpWvfJG+75FI6vU4XmdrvAycmLNYzLSa3PXquRHE1hmGMr3WgcJvU5lnWXJN02mKj3WQt7vHQbIUxZRdl4JDtHWStkryr7wCoiiTv6JQ8462/0W+gCA1X3zfWDU2hKGzqMkSTGrZtccBMczPqMtBH5F0o+wbpkkugmMi8+a57/XnJVFRWOgadlI3/fuGSUx6BEXNuar+lValizT5C07QQ4v1VnalJgih5y4OnKQq1TJ2xd3ibkRAqYBom3dH90UIiEljSY7U55IQQ3GmMWOsMOF9y7h2TMphTUpiGx4tX1rmirXBe1CjteaTKLi2zz6FamuduOzSHJqqVw7a3mCxOkdnskCQRMYKN1gEm9BS+Y3ClJ3Dtc/StSay7CVikECyVH6IkA7aau7wWJxh9iesbtG2VlK1ytmmQrpk0L4LiKpQ8A13YqL7LKGgTKWWmyxGGen8goFAEfEPsujZipKHrEzRHF3nVrpBNGrSKq8wlNnqvwqbT4CfPnUdVFCzVeus6qhQ4RZe6ptAahqRtDc9Q2Q00hBhh2CaPPTLGZnvIH1zZYSLe5MyYzR3Lo1G0eaKcYrvzKbLFIdPjHnEMV14t4qiQN47wUOWpt8bN9+OBQPsQ2e2OqPgm/9OnDvLUz32Vn1BszmyGPEfMvxZt3DjhyaFO+/hvUawvEY6/yrHtU/zzOOYmBrPmHj9z7Yf5v2Z/GV3Rv/kN/wLIaR8nhksixldMYm3AseJFtE6PY2KIkspwev0rFJI6FypHubB9DSMY8tJHPsmZDynF/jv5zCPn+M3feZS/v/Xvaayneak4zsLqNFpri3/nPM5v5D7J0cbXuPylf8P8Z/4pUnnQ/R/wgAfs0yq08GQO822hU1uDTbKVAjPeJEsrXXo324yXbUqhYKRBOXXPsBNCoKv3j32aoTAM+gzzI6ZOjHH19QbKO8KpCq4B7v6LOmxplPRN5ue3SfkfoTPSgS6Se8bbRq3HVmePgneGQsqiITR0RXJt9QBmCBnjg8e17UGA3OrR3+xy7LHafftqaQtdlaTLGnu9AFOTKHf/vYUukWMOZU+j8g6j0tSU+wzNd3rQekHEKDCYSR2kpQp0RcG3VAz1L/7OqLkTeKLM5fXNfY/QgQxPRE8QVxR+8YUVck4GTZFEiULJbtPXYrS785iEkFhKnlgVpC2f3KElZgoO9RsN5lNz9G0XIRQKhRoHsBmkTHaHAVbZRZ9y6e4MePrxx0m2+yQR0AowNZ+8aVDO7Bt9QTxgp7+GrcyxoUL5bXVUUlVqY/cyurXTOm4r5PLGOsdrHld3RsA9Yy7rGzi2YH33TfqZG1jKcYbdNxgTNvXdSTyR4GY1Snfn8Z1+dIznbtZp9ELKKVjbfJaBOs/Z8bl31aOwVCrHClzUhwz6Jgezn2KoXqGj9YjRyGqfJsw7WOZVTlVjjk49RL86h7gr4M9VzhCXY7p+wGYS4bkaAkG9tUir3WXL8JgsO3hpk48u+fz2tS1qRUFqO0fXVlgdtsmaS+/bzgXXYPGuJ+ntPDGff0vUqVIw76vsWQaK1EAkWNJDMYcM1YAxM0QA0jcQRh8n88GG8p8FxX6EUaqDq6p8bGzxvY+ZTXFiwkV/m6hYGC+gSAm8v0Cbytr3/VaEpOIbzKXu354kECUhQfTuDx65KR+j0ePEoX1Rl7I0eqN3rxHbHLS4drNLySiwY9XRtQ76XJrojkJXSVClYKFYZqv/cUaDK1jWCD89zfHqS6w3RxiqJKPkGIQCR4MnKh9F3PWQfwMpQJMGRsbAHCRAgtASBrK1v18KFh+ugYCGIsDYHx9OTxaw1RHPd6+RUS3Gq+pbIc7vWd9FF9ExkNLAFA6DYYpstMpuPY1QZjl/fJKb6zmiyMB7x9QcKQTtQUja0rmy1WEiY33DMUd+wgSx/0xl3yTv6CjtFFExYmN9j78xXyBladxu9BlPW6RcndhUyOcPMm3pvKwkWPo3z4fwYA7ah0ScJPzYr77CG1sdfvaLl/mpkc4nRgq3KhY/I+tAyPcGI8LqRZanvsru+lF+5uIPE9x+DFv20ZF8nzbJj2f+22+7OIP9dPvqQprPYTDp7NDoTLPgXOZ/7P4ApRO/zm7bYn7nNZ4bHuBL5UfZw+VLxXN8zyMfXvbGd+I4LleCGVJJh39x/X/m+uQcd5IU3+1dpDjs8POv/RNuqQ6ntv9vsr/0EcSw+ZdW1gc84AF/tQiMQ6Sqk/cZEgv+EvOFOSxvf8zVbJVjRwskgaRqGByufPA6NgCu5hKNQqJWAzVvUCzY73usMBRuJ3lWd5ZRFP8tg/PtOmcrv4CUs5yqHcadPYdQFVRF8Nm/cYBTT01jL2Te5+p376ErNA2J/x7lKHoG6bsC9Y2tDjvd0bvPFwLh6+/7xV8KUKTgowt5bP1+4SVUSdtR2HQ1fEtFVyUPT2Xf5Q35j0XTJM2s8VbZDMVgtTVkOmdTvSumpZRYZoqF2r0oCkN5ElVWGGnz1Ps2Wc/A1FWemM9ztFJESnX/moqLmTZ5YqmAZ2joqoJoBpycSO/Xi6cjIw0GET2hsZ7T2GgNAEhkgpuIfcPubYK35Bl85GgZo3fPWC5UXNxpn5Rlo+plDlUnOVm7l/Hta2tLPH/bYDwVM5AJO4MmW2aPriqYKhWZXMrRSWus3733emuApSmcX8pTq7hs2lNE2g3C8L3fgc+8uUvecVnyT6GQ4rHqE3i1k/S9EoYoUsm4FLNnOTL5FFIqONY9Y1OVKrqi07Ulqq4wlrKopkwWKseRwRkmbQtdVVEUwUQ6zafnznOkOE/WLGJ5BrEaciJ/6gPb2X2PjxCGKt/qR4oU9PSDxMY8qpQgBJ6t4Bl5gtimZJSRuoK8e7zt/8Vtqm5LkqyP+Ohi4Zt4w5T7PlxYuoKufnD/l0Lcd44iFKQ1RTF99L7jpv1pfDXHQsllNu/cty8/49MUCV++Ud//7egcqb57/KpYEyyMTbAwk8HV5mjaC0hTYWxhHsfd74OPzU/xQ+eWkVJj3PeJkg1Kno5rChRFoM/4aJp6t+zyXfUhhMA1VdJ5k/LdbJlO7QCHFz979xxQpIomdbyqjfT2j9npjGDkMG0eITu7wmIh5oP8TEJod/9XmT08x9liiJue5mSxyGOL20zPpPn7j82Ttt89B9HSFKZzNrauEMX7yiwhIdTkXXF2b2xTFYlIG6wq7Pc3IIxieqMI09XQDBUpBAEwuCvy3stD/E4eCLQPgSTZjx3/hc8cRXu1zo+9MeCPCfnqlMVPrGwi1QE/XnyJigypHvlV4qFL7eiv8Qv5KzyL5NXE4D/Nv8bCd2ucO3P8Qyu3cijLx6XOGzsH+H5rhf9q50sIYn78wo/yk7HgNecsz+Qe4iev/zxPtF/gq+7DlBfe+8vRh4EQgkfLczzjn0JNIn7nqz9ME59fld9Lxajz+m2Pf1n9AX7D/S46kcLa7WuQPEga8oAHPADGChfR44v3bau5E7jaPc+GHsNU3sHN+XhZ68/0ko2SCCvrkxI+vqVSS79/OJUqBUHBAM966zfc74l6bH4ML5PmxeASG/2Vt/Zbusr1nR713rtF1duZ902Wcw4Tix8s5B6aTDOW+vOFfp2eTFO76zFSlXebF1KXrE262K7Bw1PvnmP0F8XRVR6by9237dp2F1XKe3Uo4JqMuGLeb5QpUiWRLgLxlgBQpXhrbpAQoBYMmNwPM5wtOOQcfX/7N8JWLRXhavjlp+m4FYQi6Nz1UhSyOZYOzuO52rvqRmQMhHPP0FzrjYgclaNjOUyxg2uo5N17Xp5EOAQJaJpCyUyoqpMcL30UZfzjqLpKZTbNyfkcOfue8Gj0Al5bbyOF4Nx4gWPjyyjKuz1RAIcqHg99IwwzSbBUA1WzsRybjFQo+CZSzb3v+QCeod4n0DVFJ1bzSEC8bW7VZHY/8Uk8toajasy1PniC/dMHim99RHg/hBB0/RSMPrYvDgSkdZuHrDQzWpqd3CGEp98Nh4Nec/iB1/uz4Gd1xJj1AX6wD+bPc54UCrGSwzAm79vu6TbTWY+xlMVc4X6Bls6aCF35pnfKOgaVmSxxwaJUvobZuQ5Azigza+8L5zuNPi/f2WPGOsHhY2VM22Mi41ByDRQhuFX/5nkIkiRBjZP9pDfAozMFik4B2G+/aW+GSXeKc4cKPLm4v30sZaL7NrVKhpS7hBTaB4phRfFIp74DgO5ghbRdoBknCKNJ2W988LlScG4mR/dtXsb+pEcrreF7j+F7785lIIXY95hZGt9wYmbHXDRTQQpw2iFRe/TWM34zHgi0D4F/++Vb/PKFNaIvr5Nc2MYQkrPnC/yr9SsYhsAJLF7VB/xWYY+svcfeyjK/cf3jXNip8juiQ52Q8/kr/MwL/x2doP2hlVvUXMyCxXeGZfyUxd+tlkg5qwSJ4J/Iz/O48jU+1/1dsv9fe2ceHkWVLu63qvct3emksxJCEgKEJWEJsguCwLihgggy6GzqVQeX8Y7reMc7uzqOv3FkHEdFx4vOoKiDCyqIIQSRPcqSEAiEkH1fOp1e0kv9/ggdEkhCCCRhoN7n4aFy6tQ5X311zun66jvnO/5GGnxGbtpdhOQbWINn5vQr2Smm0agwkiSVM6Q2B7tSix+BZtHCTw7/m3GOnTR6XSRs/Smha+bKnjQZGRlE3SDiI1K6z6RtfbM0h47BaOp6GlaHchFptvjwx2mZMsRKqL7rr/ValYKlU+OZPap1nXFnniWDRoWgFkGpRKWEOSdfXqDVqAo3dO8NEA0qyvx+cr8p6z6fIPToJaI9oXr1GdMaO8quRBQFxD5889CpOnrt5qdEMLOd0SYIAlEmKxGmU0EmVBpF23qQecNjO3hogpPFrkwKQzSq0Jw0OoaGG1CKAgqvhKOs4wupMsyEObbjJrQqUcSmsZGcYGFkZEfDRjCoEMynDDCvv3VVnlJpIyRkfKf36Q9IKJUmQrUKJg82M4lQwu0K8iqaCBxtJNQdaJtKZ9WrCDOo26YG5tcfoM4X6OAFaM8giw6NUmRSfChTE6xtHyKuiLUwUqFApRKZM8zW6bVBzDpVm9cSWvXeFKomZpgVTSfGuyLCghiupUBvOOd21xluvQKnQdm6flOC6DgdhkEmUnQTCYgCAUlCFAWihpnRdOJBOVc0SgWC2DotrjcI52CiqcTO5TWGa9GZu+j/ooAvxsCMpJ59GNGpFKhd8aiUrZNxE8L0DAlr9bpHmDQMjTSBIJJXl4JSGYpKoSY1NgStSsFVyeEdpnF2RrPHj9qixROixqpT8c3xOgJS6z5k7T9iKRViW1m+gITo9CG1+JECTgJS18FdggTbuEIZzbeF9ajtXvYdj6e8ZRGi2PUHKH9AIuNIDYHAqemiktjqAVcoDIii7oxrBAEqmzz4/IG2pxkcwpWiQJNZhdvSc2+tvAinj5EaPCzNcVCxaAhvf5PHZtw8e0MK67YV4vCruDPhA1QHrqNQHUAfthOf00Kxyc62Azdzt6TkHQIYNI1EpCxnVchIQtRnNoq+QhAEVN8fxt0v3c/q0lgq1Qa8sZX4jsbybksa16tUjBf3E+2oRsoNMHt6GoFCO2J8SIcpHP2JSqXGakih1hNKiSqK5GFucsxqsnInMjyhGKGwHKdV4KXIW3k8dTwtR97F3tSESVSBquupRzIyMpc2E5LGomz3genhhx8gJ+cAVmsY0dExLLxhIYEqQID9+/YDkNqQyt/+tpK6ulqs1rC2/6OjY0hMTGLFigf561//Qq2mhlE/Gk1W1nYArrxyVpdyVDZ5OFhuZ84wW9uLceDk4oesrEwAbph6Jc1+FwaVsc2IC55rX3ZnaQCxiRaiBnc+PTMrK5N16z4kMTGJ1NQ01q37EICbblp4Rt7O7iMrK5PZs2eQlbW1LU9WVib79+9j27attGgs/HD5chKvntWlfKeXt3//PlJT087IFzxXUHCsTd+dcfoL/3BLAlhOeRjCBhmwxuoZqpjXpRzak4af+jTjYkiY/oxABQBJw8M4eqjq1Gu3X+L4iUY+y95AhNjcJmtnOgjRKbEZ1IiiCq02BrfbeUb5gYCE0ZCKReFjxNAoSvfWtxoHggBKAeHki2BWViYVLogbntrm0Yq3LSB7xx4Khcy259NehuDfQYLppUpoOZRHfvExSsT6s+r9dOaMjKA0t54YjY6o8I7vMt9+W4LoLSdMKCArq6lHbaKg4Bjl5WVMmzaDFSse7HAfV4y0tQbWEATQKwkfNQT/YTteg59hQ0LbwvSrtV2/BgfL27+/1bPe/j5P11lwPaNJq+xwbuXKFwFITU3rvK3mC+T5colLb93r7eGHHwDghRf+ckYdK1e+yLZtW4mMiSIuaTCq0eoOejIPNiJ1Yed5To5t3X1AaV+f1x+gTNQTE9v6nCw6VZvnUq9WYDGoQZJQ+Tbj8UxFq7+CLfnlzAnpPMDL6WiUImq1iMeixir5T9a/BVEAJ1B+iDPaZqPbh94faN38XFQgCt0b1u2vNagFRsRB6bEW1I21lH77JSu/TARan02QoD63fb2Fb/flEjd0JHolZFXnkjpxWqd9PUjw41BGVhZqEcISxraNz0qFiCJUg1ejBHvPPLayB62P8Oc3UJ5dyT8OVyLclsxnnx1liVvBjycLPLllC5UNLh4YncPaiok0TMsjOXwPV0bkIajcfHn0GgySkncUzRQj8KMhX/Fe/VZE85kLOvsaQRDwadJQNoxijqWRofpdLBy0gXpMJFHIPyOu4QrXQVaO/S+8jXr839Xi/dcR/DX9H2o/yOxZc9nCRPQ4SXfk8mLhc8xwbSHPHsE/Rt/Ogfw4atSDyN/0HJ7i7YT/+yZC/zUXRUPBgMksIyMzsEiuDByOnV2eD7SfHSRI/95J5gAAIABJREFUrf96SJgnHL3ScPaMQJhBzYRBrd6dtrVUp70UqJRaLJrQLr+knw2lUkTTzYtpX+FXaPCpDXT1kb+/yDcpKHCcekkSRKFt4+PTOT3CpE7dMV9YmA6t7uy6FFQiYpwRBWefZWJ3+WjoxhMzb4SNuSNsCIJI6JgkNBodQ6x6Ik0nPQI+CclxyrtgULaWubuoAQCrxopaOPeHYIoxUBfqpULo3awT4aRXVqEQzvB0KhRlrbalq3OP4bliUCs7TIUU1ArihocyLDoEs77rNZS9JWiUNLecmwdNddLIMKstZ8l5ClES0QTODGwiKEXEhM4/vBg1StIH97wOgIgIPc1SN+OcICDRGmRHozIyMmZQj4wzaDUY65zeVoPx1OzjbpmeaCVpcgzDUsIYNzgRs/nqHtUF4Gmpx+NTYbPkYwo7iqPl7NO3FUjE6CHspKotOhWzkrsO7hFsbwKtnrP0k2tTgzR7zoxs2x2ygXaBkQIS9vXH8W0qaV2EKsBTaw+QWuNj1wQL/zyupaDRyg1DPqBy20TixThU4peoauMQCfDekRsobo7mRWCjX8doRIZJN+OplTqEAO0PFPVHUZVux3/FjYhSNC79FVTW13B/4+fcIGznfxW3ogu08LllBsM1yWgtWiQlSE1epMMNSN5Aa0jmfsZisSKZJ6L0B/gw9CruG/4UaRHlDLVWMe/bDGInwkR3NoOc5axSzEWBiEMbSVNdJYqaXAR3Q7/LLCMjM7BYLJMwGPpwg8keohSFDovW56dEtHlv/vMR8KsMOHs3C+yCkTIohGGdRALsjPbvp9MSrcSEdHyxsw0xET2s6xff9naARiki9mBLgQlxZuIsXf/e1zS3UNXUamDurd2NL+BFUIoYNYq2+qSGU2sRTSqYmmBl3CBzZ8X1iNnDwok0aZBE8Am9W8rQpotO3lF9vpH4FCYarH33zqC/ANEaz8a5TFUMMkaVRqQu6uwZz5Ows0x/bo9SFDDrVEwe0vVa1SFWPWqlGUFo1eugbtrs6aQPthBn0ZFsM5B4cl/As9nMoiAgKs8MOtITVKow8muh3pVEcW0q5Y1JZ72mPGCi7hyWJypEgZlDw4JBJzsl0qQ5Y51sV8gG2gVE8gXwrT+Bq6CB9WkmNrldvP9NMQ80ipQn1fJi7iHyKh3896g3+ebIArLUIpOSXuXDAz/k0PHZKNR2dpRfwY0KL/sUHhD8PGyrZcT3ruCReT9D0cV88b5C0XCcpsObEUZZiNaNYLdrHgvrbYR7HaQJBYQ0O7ml+kvWOr/HhPhRhC5MRqp0Iw4x4f+uBl9mCb6Nxf0qc5ArZ81ni3cqt9ZtoigQQU5gKNOkfewdNZaNzvGMzqpiXdVkigcnc8KnpsTeRHjG/Whz/4W6aPOAyCwjIzNwKBR6zm2pvsy502qcdBIFvF9RKsReRY40apTn5XmpsHtw92BlSbhR0+1Uqm9LGtlX2hqSfGbUbNQKDWK0AVN8CPNGtK5fDAbACGLSKs/wWp0LKkXvXow7MrD9S1ApUKR0HxznfJifEoFpADzTfYHXL3GsurnbPGadEqXoQJLO/YtLmEGN4qQRODoqpG19W18hCH4mxkeiII5RygpSwg/36DrvOX6L6O5jmlYlolGKPe6Hl0ZLugiQPH486wqotHt4Wukmd3slauBVpYnmeC3vVJmpdbkZa81F8+1tJCl1NA/9gjCvxG1SHVET3mft/h8Si5J9AfhI8HHbiLXk2Efx1o5f8PyMP/ffzfg9KOvy8Qy5mi3HfOQeL2KCeIIbN3zCsujD5OgTSKaUH7KR3coUFoS6UGdXk++TsDi8CMUOxHgTgbwGlHMGIUkSvg1FKKdGI1yAcLY9ISwsHO2I+RQdPsgT1W+yPnQSVT4bW4Zdwd371pGngavVBxlU4cVR4+eNYbdwkzWcyUV/x1l+DF1IPJrjG2me8ni/yCsjIzOw1NZupqXFhNE4caBFuYRptcwGaIlyv5MUbiC6ncdNFAV0nL/70KxT0ehqncKoFFtf4wTjKa+rmGweaFuoUwQRNAYVI0N1RJj63psl03uUCoHRMaZu16ztK7WjDfi7DDbT87pEhkcYqcw7r2K6R/Jxos6DTpUNpiYanNZ+91BZdKpz2vPxMhkm+5bffZFH0aoctpfbWW6vQ9AqWTE9nk+HxGJJKOSHJyopb3Lx+Og3mF+ZjDNiEDtMJYxR1lC59V4Gjf4UndJDfWMi9UA1EiOtedQacpg1dRm/nPibfr0fRXk23i//B5/Xy/iZc/l3S4AtgQoWROxHo2whxVfEm5E3sUjcym8ctyK5m/gbjfzfgTKUUyPBGyBQ4USI1OPLKEWq8yAOMoJBhWRvQbJ3Hwb6QjF16kw2CHMZ13iYaFUjn6XN4Q8FK3nI/39EDfHxhXI8U4/vIL9wMAdDkggt+jvb/SEoanJQHFyD/+QPn6ImFwL9P1VTRkam/wgLuwq9fuCnOF7KiIFW40R1ERoPXZESaSIt9uz73XXGIIu2gyds7nAbFtF93jKlx1m4qpu1MIJSROhiTd1AIggCkUkhDLbqL6Fpu5cmoiAQa+5+yuK4QWZiwsajVPZsyt5AIghK7G4nDa6R5Ncl0egxnfUaBQGM5x/gs420WHO3nvHTuSw9aD2JHNXdNZIk8fJHW8izQ3lNEyd8Bmp9TWzf/zluZxO/+OvvyPr7Tsot8fy0qgJllIkbEzbAjjsp8WbwjmIa6dpqPNm3oU/cxubaUSR7Rer9RgxCCxqFl7tidvNIiZ+VdyQScPVP6HqtEkZFKNhb5mfeNd9jb/YThO7Ywm1XzyRUB0P0lXwWNoMmn5EH6tbw0pAlqCpd/LZqJKtsh5HckTRlCXzdWI2n6ghRBisGtZ57Jt+CUWPgaO0Jbh41jyRrHL/PfKVP70WhUCCKIpMmTUY76wburPoApc/L/wz/Kcn7TrDYtZlPoqbzmuk2Zhj38qu9f6CgxsD69PmYNQ6qTpQxy/URn3+xmVlhlfz62whazEkkJCZRUFDQFoXJ4WgiK2trW3QmoENUqSBjx6bg8bj56U8fakvrLAJWV22zfXpv2m9P6Gm5wXu+0PXLyAwkPp/j5HqjC/iLLNMRKYDWUcZFaDt0iV6tOGPD7Z6y5Wgt6YMt57T2pycoRAHFxegik7msiDBpiDAlD7QYPUIQdIwfMpqiQ4cYry1Gq3PQ2BDT7TXxikZCBvDn4D9omLw4yC5pYOlbe1ldIJBbK/AnKYLBzdXUOPIQinYjaIy8934FYxPs3K+uxBuVzDNjX8O5/TD/4hlSb/iUm4Q6plWn0RC/m7ixaymvS2ZE6XXYAEFs4RmvlZU1dhredfSbcQZwc3osf72ttbN9+c1OjAuXMe/Hd6EX/Iz0fMfXlvF8ar+CEf4Csk0j2aw4QXJoPog+/uJVo7Tm8KlQxzdWK3lVR1nxya+odzWy/oev86drHyc9dgzv7l/P7zNfIVRn5hez7u3zdXUFBQV8W+zkTd+N3Fb7JW/veZQfj/o175nncYPva26r30hG6CRKavSU+w2ENNXQ6FCRUpvLuqOjaMBCM1ruHVrGZEMxC1nfp/LKyMhceHw+H4899hjLli3j1ltvZc+ePWfkcbmL8PvtAyDd5YMAqFocAy1GvzE/JeKCG2cyMjLnjiiqGBk9GLPuICZTLfbGvg/Kcr5clh603lDmhA9OCJTsPYBKIXBDONSLsKVuH96KPBpjRiEhsCQOFoUc43f1BlqUapINZVRtXcHsRY9zbOtTHFtvxoLA55Z6atzxbNrxc3TOaB7DQ1RoLk8P+Zo/H1aT8devceX3T6j6hxZO4eiRXN7bXcFG/yAs//s8M/ZuYeymNag1WiyuChIHNVPgD+Me5ae0KFS8GzUX0b6eSuM3mDVj2d6YQJg9hptnPcPkwquIvfJOpNFzCfMHKLdXYVQbeHLWf7Hl+C6iTBG8/e06Khw1+CU/oiASkPrOED1w4CCimEp9xEKuZxc7dy9jk3kSDwx7jAXFGfzK83c2hKVyJHwClsZqkmqKeDNpMbnjo3mp8gW2FcajV+gYFKlC3dLIaF0T492b8R0ZhSJlVscwXzIyMhcdH330ETqdjn/+85/k5+fzxBNP8P7773fIYzFPpKHhzP2mZGRkZGQuDbzecdTUiPwn+KcufgkvAlZmHef/5QiUNMO8JCvvJsVwf72J6mZ43ZtIVcI8RplrePrx8RwaM4H/cphpVBq5VZtBuPFzjkUf4LuNv2duo5VKBfzb0ozbWIujxYDfGUk1MDvhY36QuJrVh8z8e9UXfW6cxcfHM3bMKAAEZxVRMaH4FUpwe0hIHkryqJGEtDQRKxzlx3Hb8QpqEt3FODQGdoojcYuJ/CyyFLdPS9iQl9Eo3Xwqafn4wG14kz9j3/B/IIWH8cL2f5Jx7BtsBiu7Sg6waPT3+F7yDN7//koWpMxmyZhr+ewHr5McFt9n9ypJEtu2baO0wcs/ndNZyR0MslfzaOGbzHRn4xNErgvdyy2q9cQnuHg++ceYfB7uc66jvkLH7xY9jTvKQkpLPoePhWLxOMgp1vKvv7zOhhd/y7y8h9E0lBMdaCJRUddn9yEjI9M7FixYwBNPPAGA1WqloUHeSkNGRkbmckMQ7KhU5xA7fwCRPWin4fD4EAUBh8fHXWu+I9yg5nBVE3olpAYULMl349D7KBruYFGtgnjlMcqiv2JTYyq/ObYEW8BHuheOokdtv47h5VrUUoDjejtbtX6qFX5SI/dxomkQYkDNWKWDGyMOogs/zq+qQ7ALh3GW981XXJPJxMyZM/n0009B8rN2Tjk31Bt4adMJJvz1H8xeIpKSvY2hm/6By2gm0ltCuEHNxpCppLty2GSdQg1m3rNcTfo764gb+3N+NvGPvFenpTLhTyjKfsKnjUM5+PVjPDniIxbN/jkhmsd5sTmC/zu+l2c2v8z6vEzumbSUgCQxNX4cz13zGALw7m0vknH0G/JqCskuO8jR2iLsngs3FSYQCLB79x5iY6MRRozgTe8MQkJC0AYaqRhsY7JrH9dUZZHmyedmVSj1WiNqt5ui2Gie2PoiMY4SsnWjeX7xXby089dU+vTEa+sJeEt4u3QY43XfcjBgRXRLXB2qJLVoC+pvvDQmLkOb8SozYnzsLhSY3LSLPNNwGjAz2VhMHYPB50ZZewhf5DjEQAtCH3oTZWQuR1SqUwsJ3nrrLa6//voBlEZGRkZGZiAQxGaUyha83v7dV7g3CJLU9fys6uqm867AYtFfdNNGsrIyCUiQmDqJo9UOjlQ3k1/dzJEqBxVNHgxqBc0tfkQBfnblEGz1PkJyahmOAFNFfL4TuMsOkW3JY33ZBHTF41Gpm4hqtiAiEiJJqAMiRdpmAupmKj1msvUtaJUeGr1GovRVXCt6uE7tRxFQ8m7BfjZP2Iu2MJysP36OdAE2iYmMjMTtdtPY2Mg999zDhx9+SG1tLSvmJyN5qnkpo445ty2g/tofck3+d7h9XjRuB5qAiytteUxpyeGgYii7I8bw/YpP+WXiT1FJPnKaI6n468uERyfwqxH3YbY2UjJuJcW4WFUvoKtaQn5dCiIB0s2FfH/0O5Tl38D05sFkVRoRXY2EW6IZL6rYVbyfldvfxqw1Mi95OnHmaAZbYrBoQ9AoVVQ113G46hibj+9id8l+ciqP4pd6Fk0xGCTEZosgMjKKpiY7JlMIRUWFREdHM2/ePAIBCZ/LSYRBR+GgJHYmjcKlVjOuLpfXCn6FQvJj8DvxI/KJ7SpWRt/GgyVvg9tHqSKaT81TeK3o9/wl5FbGew8TVVlOljSMq9U5fOJNx6dXE1VQgEero8EWjuPbw4RcmY5GoyRpXxHR2kJ2xM1ieFQ0mrpsLNN/jKrgS4wV3+CY+Xus1d8QpnDApPs5/tFvaVZHMPqau8n9/BUaNYOYMvt6hBYHkspw9h0ee0BPg4QolX4yMi6/ICEX41jW1wzEPdtsZ4+u1R1r165l7dq1HdLuv/9+ZsyYwTvvvENGRgavvPJKB6MNWj/i+NuNvcXFRbjdLhQKJSqVitDQU/snOZ2tOtHr9VRVVeH3+1AolG3/q1QqNBoNERGRVFVVAhAREYnD0fqbajT27h67u76zc72pz+Foor6+Ho1Gg16vp76+HqDD/QfpSg6TyUhTk6Mtj8PRhNPpxOFoTYuIiGhLP5t8wWv1ev0Z+YLnPB5Pm74vdtq3Bzj7M1IoRPz+3n+066r89umn5wn+HeT0NhVs/xdS793V2Vne4HP3er0YjcYe9a9z1WWwvOD9tr/PnvbF4PPW6/WdttXTyykuLgIgLm7wGeeqqipxOBxt40tnfeJ8OJfx4nzbZXf1B+npGHG28rpqv0H0+lN7sLXvA8Fx5/Rzvam3K1TdRDO9LDxoDo8PrVKk0e1jTXYpY4CvyuEX3+5BrRDx+AIYlAqkFh9WEUbaDNxnNfFp00GulPLxBg5QnVrJthYV6loFnzcOY0z5UKTCURxRqFjqUSF4QjmhlPha20I8bpJ8SnYpVRgVagp1fpBE/Aj82HKc+UoHOxP/RaXew7bM8fxp9YdMLZ/P1599jhQ4u3EmCAIWi4X6+nrMZjPx8fHs37+f1NRUwsLC2Lx5M6NGjaKivIwmu53dmZ/zxjIrzx2dhC5SQWDsLfzkmnBCHY0UlRzB6ipFbXQxw5TLaNcxXF4tB1VDSWwphjq4dtzfGGEvQLHrMDvffB5LVCyWQAtzVy1hyaS7+Jn7KWyGcsptO8mJfY/EmBC+K1jGrsYECnc9hFlfzQ5NFXqriqMBLTe12MmQ1KQPHsubg1I5bq/F67GzcvtbbC3cS7jewgff/yuZx3dy3fBZTBuSTiAQQEIir7qAr45tJ6twN/vL8/AGzn1Pmfz8fBob7cyePZuoqCgckkRcXRURR3Opix3C7hFjmTfuVe4rXMN19VkY/S7mVm/nxurNeFDR6NNhZA93NH3KgtF/Ib0lF2+DhiRPFXde8Qyh217hRsV3vGm5gZus31DQbMPY5EOVEIIz9xAhMQpqlGqOapII1VfzXaEfpVLH8KM7qNpnJzpgpHF3JlVON+ll36DTTkVssFPe3ICYewBN+XY8IRMh4Ef92gSqF2/EopEQv/ofmq97DYM9H3/JHnypd6BuyCfg9yNFjEJw1yMpdaDUnl1JMjL/oSxevJjFixefkb527VoyMjJ4+eWXzzDOAPx+qYMx+vTTvyYn5wBWaxjR0THcdNPCtnP79+8DIDU1jb/9bSV1dbVYrWFt/0dHx7RFaH311TcAWLHiQbKytgK9j8Da3fWdnetNfVlZW1m37kMSE5NITU1j3boPATrcf5Cu5Jg9ewYZGafqDka63batNe3ee1e0pZ9NvuC1qalpnUS3PRVB9/SIuBcr7dsDnP0Zne9Hkq7Kb59+ep7g30FOb1PB9n8h9d5dnZ3lDT739lGTL7Qug+UF77djxOWe9cXg805NTeu0rZ5eztNP/xqAF174yxnnXn31DbZt29o2vnTWJ86Hcxkv+uLjXWdt4HzGzK7GxODzDJKamtahzvb5OjvXm3q7orsPkhe9gbZ6dzHQGlZWKYooFQJKUcCoUTI7OZyyRjf1zhZGRYdwoMxOfrWDyqYWDlXaqXf6KLe7aXT7SAzVoG2pIT/QzHRBybUuK0uVHnSCE7+lHL+xlubaaHaq3WTURLL+uAmVZOSTAxGEBEajkILL9STSBIkGwccObYAIr8C/TC04BNAh4RMkDqEiRyECAa6L2cPy2G00OWNIK57GceqoTf0n1c0CG3MTCC2KxefxUnIol3Hjx7Jnzx7S09NxOp3kHzrEtddcw3c5ORSfOMH9Dz7I6tWrcbvd3HPPPRwvKECtVhNpMTFz0lhaJDUTzA3MmnIXN7GLocpajinT0Dj9KHRefn2lA12Dh79IkczjGxIMZTiUBsaYj1CusdGMnj260QxzH8cguPjvlEcpVkYw/rudlH/8ER9mH8EXCGA5qYkWfwtvff0Sfm8FT0z6Md93JFA6qpkjyhqsyf9C5wul1hPG1yVTyHdbUQlevJKaP55UpUFRizGgwmzVkCSYWXzdL7hdVKHAR1l0FoEGgV1Vxxiks/BFfgbpsWNJDovjoWk/YFnadVi0IZQ1VfNhzkYOVx+nuLGMCkcNLq8HQRRAAKWoQDgZjljZPmJkAEpKyigpKcNsNjN69CgCxhDCm+3cun0T/oDElthJvDXkZsIVdcQGKkl0FRPuaUDvdzOrcRcGv4s/Fb5ArKeCML8dBX7ydy3AodFTqongR8rPKRseS5TTya7wcVzb8DWbwqayxjiWe0ve5auIqxifu4N0IYd1YVcSUZILBoEtpvHcUPsV5dWRZAwawVWZb7KjXo01pAXPhn9Q1mgm0nKAvX/8Jd8J1xO17hUaPeE0K4dg+/pT1IUVuIXjIO7FULKP5uojTL7mv6ncs5LC0hYW3PkMxz+4jyLPIK5c9gRl7z1AmWUqanUIYlEmB/UCqSkj2PXlu9hSv8eQSAtbvt7KuAmTMUpN7DiYA4IZt9NBZVUV8UMS8Xjc+Hw+DAZjv4wLMjLnQnFxMWvWrOHtt99Go5E3yJWRkZGRubjpNwOtuuZtrKELAT8NDRsIC7uFlpZSXK48zOY5uFxH8AeaMBomUNOQzaajCqYOMVBZ8SLFjlE0tIQzNiyLE85ZVDU1Mzd+A/fuSMfmh7EhpXxVMhmbtgad5QT2Y9cxLWI3Co0bT9M0TDFfY/eEUFs9jlus5Tg9RvbZtUyK20OVPRGhKo0o/WYamhMY3aRgdsJmchzzidQ20hK7h5WOWASdF7XQQr3TiNbghRYfNc5w1JoASl8Lap8GZ0DDkJBiosxVmCOcLDSt57h6MNVSFIm6ffzfQTO1CoGr37oCR/QIZjaXklzyBZrfPk1CYQGDtdXk/eBhfMe8pOlPsP/um7AeqWPFeBebdN9ndFEBSx8YwWrNDaQXb2POOCf/Dszj+tr1VCXb2NY8ifCWXWxLHsXWKpHNWpHr67cQq61EIQUY0lxOlnE8d/r+zRWO/bSIKloEFbqAh6iWGk5oYthvTOZ962xqGnVEbtxK3d5vWXW4DIe760WVGwq28Fnul2S8+gmuDfOZaY4lzppD/fC1lGoaMSZVoxDdaEUI+PUU2WPxS0oK7fEU2QdRiYojko5NWg8+yYuECDVTIK61/BiVE3PCFXzXYsSsaERSFePXm5CwE7D4kGJmI4levmeoYontMD51ExAgNPd27OpaHE0mPA4T2rjDVBVoKCs/QcpMFaElUxDV9RTbjuAonIYUUojOVEp8wxUUOkr46tMPGT40mWhbOI0VZZSZTJwIGUGj1sDfohej0vkZ6i8m1lfFYE854Z46oj01hPoaiW6pZpirkFYzHa4u3UWefggPVP6T54v+HxJwh/0LHDodIjDFfRCN2IJR6yLgFck3DiJVexS/oCBM3cDMSAmnQocbNbWhZiQE4p1ZhGsG4VDqGBc4zM6QMTyvmcQfne9ye9qzTKg4yE0VmbwRu5yJf1tIRcRINkbOZswfr+PLmCmUSaGM+t1kXh32Q8KOn+AW11f8z4j7ufbLNai/PMJv0p/knnf/yDFTgDeG3MTP/ngX+YOHkq0bxs++fZbXjt2Av87NNeVbeWfcLQw7nMf4kEJeT1jEoqKPCPM5+ePIu3ki7yXK9PGsi76K2/Pe55A+joPhKVzj/o68QCQtkpJYoYlvDQmMUxZiDXjJkIYzzXmI5oCKLyMmcptjCy5JR7ZyOPOdh9iLlVpzKGn+IuqaNYRLPtJLC9kQFs84cxnD9WreFMZwjdGJ0etgrcvMDzw7qcPIvyyzuT/My44GNzlukftM1bzbZIaAj4Wj0vjbgcOk+Y4z3mbjs+NOBo+7hcHOnbybV83EITEovZVsqArnhunTqcrPYHOBnxWpIruqnYyadQch/ma2FuxmtsaLp6mMndpEpqR/H3vOexS4W5gSqKXIUUdt3GxSYsdwNOffGARIcpeyzW9kcMr12MQAnzt8zIwbiVSxl68J4+qYRBoKMjhgHs0Mi5nyY5spjZ3JRIUbZW0e3tgpiPYSRHctvog0FLV5ICrxhw5FWbGXgDGagDEGVdEWfJHjkJQ61Mc30JJ0LYK7AVX5TloSr0HRUIDYeAJv/FUIJTtR2l34Yq5Afewz/JYE/GEpaPe/SUvifAKGKAw7nqN54kMXtWd27dq1NDQ0cPfdd7elrVq1CrVaDoEuIyMjI3Px0a2Bdr5rAdqXY7Pd2/Z3VNSPTh6NOPkPYEK7/DNJObn33YSUf7Qr6Uftju87S63fa3d8bYf0r776ihRgzpwn2qXP7ZB/Rru/lgBfffUVAHPmzIF2f2dnZ5OZmUlsbCxZWVkca27GFdO6+d13GDl4MAu3200gEAAOA7DuNEmFr3M5tRTw83ZnPm53vLnd8Te83HacwV/bjj/kzwB8wFsnUx7idDafkXKKBiAX+KhDqih2DPapUIhoNMp25wUcPg9TfjwPtVqN0+nE5XLRzfLGc+JED/NtAP7UJqMCUVxPZGQkMTExNDY2YjabKSgooKmpCdt3NlJTv2u7dtasEPLz86EWkpP1ZB7IpLm5CQk/BksIu7/LJlahIDk2Fkf+EeaqJB6585EO7SAjPx9IoLS0lFmzZvHII4+06geIi4vD7S7j0Ucfbet1+fn5JCcn88gjjxByUo7T2xmdpB85eTxuzhys7fLMO/mPm29jPwDzgQe5EeD2WxkP3AHAfzGl7arH+Xu7Oh4G5vzgbQC+AVh2E9DaB/jRMr53Ml91+hX8up2M09vJMRMItrzWfvQTABadTJ/H2VnU7vguAFYAsOxk2lw6Z1i740c7OY4Efn3y+IaT/07V0cpT006vG2AOKe3ytI1Wk6cT1MKCducXplzRdhxMt836CUknj0e2yxs++FQvbX9f3w8eRM7mtmAZthsJbgtqi1pMajBP3OCTie199PhuAAAJaklEQVSktE1sdzyr3XG7ABlRwZLNMPhkJFVbGnByWodtKm0rj2xLTl0354FTxwt+x6lZ+hcnDz/8MA8//HC3eVQqRYffPJ1OhUqlQKNRotOpsFjar0Vo9cJZLHo0GmVbvvb5jUYNNpupLa/NZmoro7e/rd1d39m53tRnsejb5A8ety+rPV3JkZ29t0PdFoseo1HT9rthseh7rI/gtcFrOjvXXt8XO+3bA/TsGZ3PfXVV/unPpzOZOqs/qHPgguq9uzo7yxt87hqNsk2GC63LYHmnP7P2587WF9uPFZ211dPLCfa3zu4n2Ifa988L2ebPdby40P2tszZwPmNmV2Ni8Jl0Vm/75xLU8ennelNvb+g2SIiMjIyMjIyMjIyMjIxM/yHvgyYjIyMjIyMjIyMjI3ORIBtoMjIyMjIyMjIyMjIyFwl9bqD5fD4ee+wxli1bxq233sqePXv6usqLgl27djFlyhQ2b+5uzdelwe9//3uWLFnC0qVL2b9//0CL028cOXKEq6++mrfffnugRek3nnvuOZYsWcKiRYvYuHHjQIvT57hcLh588EGWL1/O4sWLL4v+3B63282cOXP48MMPB1qUPuVyHcPOh9PHgvLycm6//XaWLVvGgw8+SEtLCwAff/wxixYtYvHixbz//vsDLPXFS/u+Juuy93z88ccsWLCAhQsXsmXLFlmXvaS5uZkVK1Zw++23s3TpUrZu3UpeXh5Lly5l6dKlPP300215X3/9dW655RYWL17Mli1bBlDqSwypj3n//felp59+WpIkSTpy5Ii0aNGivq5ywDlx4oR0zz33SD/96U+ljIyMgRanT9m5c6d09913S5IkSfn5+dItt9wywBL1D83NzdLy5culp556Slq9evVAi9MvbN++XbrzzjslSZKkuro6aebMmQMrUD+wfv166dVXX5UkSZJKSkqkefPmDbBE/csLL7wgLVy4UPrggw8GWpQ+43Idw86HzsaCxx9/XPrss88kSZKkZ599VnrnnXek5uZmad68eZLdbpdcLpc0f/58qb6+fiBFv2hp39dkXfaOuro6ad68eVJTU5NUWVkpPfXUU7Iue8nq1aul559/XpIkSaqoqJDmz58vLV++XNq3b58kSZL0wAMPSJmZmVJRUZF08803Sx6PR6qtrZXmzp0r+Xy+gRT9kqHPPWgLFizgiSdaoyVarVYaGhr6usoBx2azsXLlSozGS39PqO3bt3P11VcDMHToUOx2Ow6HY4Cl6nvUajWvvfYaERERAy1KvzFx4kRefPFFAMxmMy6XC7/fP8BS9S3XXnstd93VGsuxvLycyMjIAZao/zh27BhHjx5l1qxZAy1Kn3K5jmHnQ2djwc6dO9uiz86ZM4ft27ezb98+xowZg8lkQqvVkp6eTnZ29kCKflFyel+Tddk7tm/fzpQpUzAajURERPCb3/xG1mUvCQ0NbXtft9vtWCwWSktLSU1tjR0c1OXOnTuZMWMGarUaq9VKbGwsR48eHUjRLxn63EBTqVRtG4O+9dZbXH/99We54j8fnU6HQqE4e8ZLgJqaGkJD2wJxExYWRnV19QBK1D8olUq02ot336e+QKFQoNe3ho9du3YtV1555WXTzpcuXcrPf/5znnzyyYEWpd949tlnefzxxwdajD7nch3DzofOxgKXy9W2r5zNZqO6upqamhqs1lObgYSHh8u67YTT+5qsy95RUlKCJEk89NBDLFu2jO3bt8u67CXXXXcdZWVlzJ07l+XLl/Poo48SEhLSdl7WZd9zQTeqXrt2LWvXru2Qdv/99zNjxgzeeecdcnJyeOWVVy5klQNOd/d8OSCdtkuDJEkIgjBA0sj0B5s2beL999/njTfeGGhR+o01a9Zw6NAhHnnkET7++ONLvo2vW7eOsWPHEhcXN9Ci9DnyGNZ72o8F8+fPb0sP6lTW7dnprK+115Gsy3OjsrKSlStXUlZWxh133CHrspd89NFHxMTEsGrVKvLy8njggQfaPsqArMv+4IIaaIsXL2bx4sVnpK9du5aMjAxefvllVCrVhaxywOnqni8XIiMjqampafu7qqqK8PDwAZRIpi/ZunUrr7zyCq+//jom08W/Kez5cvDgQcLCwoiOjiYlJQW/309dXR1hYWEDLVqfkpmZSXFxMZmZmVRUVKBWq4mKimLq1KkDLdoFRx7DesfpY4FOp8PtdqPVaqmsrCQiIoLIyEgyMzPbrqmqqmLs2LEDJ/RFSGd9TdZl7wgLC2PcuHEolUoGDx6MwWBAoVDIuuwF2dnZTJ8+HYARI0bgdDpxOp1t59vr8vjx4x3SbTZbv8t7KdLnUxyLi4tZs2YNK1eubJvqKHPpMG3aNDZs2ABAbm4uERERl8Xau8uRpqYmnnvuOf7+979jsVgGWpx+Yc+ePW2ewpqaGpxOZ4fpcJcqf/7zn/nggw947733WLx4Mffdd98laZyBPIb1hs7GgqlTp7bpcePGjcyYMYO0tDQOHDiA3W6nubmZ7Oxs0tPTB1L0i46u+pqsy3Nn+vTp7Nixg0AgQF1dHU6nU9ZlL4mPj2ffvn0AlJaWYjAYGDZsWFsk9qAuJ0+eTGZmJi0tLVRWVlJVVcXQoUMHUvRLBkE63T95gXnhhRdYv349MTExbWmrVq1qmxN8KZKZmcmqVasoKCjAarVis9ku6elgzz//PHv27EEQBJ5++mlGjBgx0CL1OQcPHuTZZ5+ltLQUpVJJZGQkL7300iVtuLz77ru89NJLJCQktKU9++yzHfr2pYbb7eYXv/gF5eXluN1uVqxYwezZswdarH7lpZdeIjY2loULFw60KH3G5TiGnQ+djQXPPPMMTz31FB6Ph5iYGP7whz+gUqn44osvWLVqFYIgsHz5chYsWDCAkl/cBPva9OnTeeyxx2Rd9oI1a9awfv16XC4X9957L2PGjJF12Quam5t58sknqa2txefz8eCDD2Kz2fjlL39JIBAgLS2tLQDg6tWr+eSTTxAEgYceeogpU6YMsPSXBn1uoMnIyMjIyMjIyMjIyMj0jD6f4igjIyMjIyMjIyMjIyPTM2QDTUZGRkZGRkZGRkZG5iJBNtBkZGRkZGRkZGRkZGQuEmQDTUZGRkZGRkZGRkZG5iJBNtBkZGRkZGRkZGRkZGQuEmQDTUZGRkZGRkZGRkZG5iJBNtBkZGRkZGRkZGRkZGQuEmQDTUZGRkZGRkZGRkZG5iLh/wMb+GgcpMJClwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "array([0.49950145, 0.50053649])" ] }, + "execution_count": 111, "metadata": {}, - "output_type": "display_data" + "output_type": "execute_result" } ], "source": [ - "# pm.traceplot(trace_2, var_names=['beta']);\n", - "# arviz.plot_trace(trace_2, var_names=['beta'], coords={'2':2});" + "logistic(trace_2['mu'].mean(axis=0))" ] }, { @@ -2819,7 +2912,7 @@ }, { "cell_type": "code", - "execution_count": 506, + "execution_count": 112, "metadata": {}, "outputs": [], "source": [ @@ -2828,17 +2921,17 @@ }, { "cell_type": "code", - "execution_count": 507, + "execution_count": 113, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.05553475, 0.00057874],\n", - " [0.00057874, 0.07489045]])" + "array([[0.24829784, 0.04870112],\n", + " [0.04870112, 0.20169156]])" ] }, - "execution_count": 507, + "execution_count": 113, "metadata": {}, "output_type": "execute_result" } @@ -2856,14 +2949,14 @@ }, { "cell_type": "code", - "execution_count": 508, + "execution_count": 114, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.23565812063092312 0.2736611968654907\n" + "0.4982949349217773 0.4491008335858505\n" ] } ], @@ -2881,7 +2974,7 @@ }, { "cell_type": "code", - "execution_count": 509, + "execution_count": 115, "metadata": {}, "outputs": [], "source": [ @@ -2890,16 +2983,16 @@ }, { "cell_type": "code", - "execution_count": 510, + "execution_count": 116, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.008974016733377305" + "0.21762489903736582" ] }, - "execution_count": 510, + "execution_count": 116, "metadata": {}, "output_type": "execute_result" } @@ -2917,36 +3010,67 @@ }, { "cell_type": "code", - "execution_count": 511, + "execution_count": 117, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "/home/rosgori/anaconda3/lib/python3.7/site-packages/pymc3/sampling.py:1247: UserWarning: samples parameter is smaller than nchains times ndraws, some draws and/or chains may not be represented in the returned posterior predictive sample\n", - " \"samples parameter is smaller than nchains times ndraws, some draws \"\n", - "100%|██████████| 1000/1000 [00:00<00:00, 14674.07it/s]\n" + "100%|██████████| 4000/4000 [00:00<00:00, 19663.07it/s]\n" ] } ], "source": [ "with model_hier:\n", - " ppc_hier = pm.sample_posterior_predictive(trace_2, samples=1_000, var_names=['beta'])" + " ppc_hier = pm.sample_posterior_predictive(trace_2, var_names=['beta'])\n", + " \n", + "ppc_hier['beta'] = softmax(ppc_hier['beta'], axis=2)" ] }, { "cell_type": "code", - "execution_count": 512, + "execution_count": 121, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[0.33582516 0.66417484]\n", + " [0.36164233 0.63835767]\n", + " [0.3054917 0.6945083 ]\n", + " [0.3391067 0.6608933 ]\n", + " [0.31359315 0.68640685]\n", + " [0.28545371 0.71454629]\n", + " [0.25450457 0.74549543]\n", + " [0.29067865 0.70932135]\n", + " [0.24731029 0.75268971]\n", + " [0.28260285 0.71739715]\n", + " [0.29444538 0.70555462]\n", + " [0.26837252 0.73162748]\n", + " [0.26837252 0.73162748]\n", + " [0.26837252 0.73162748]\n", + " [0.26837252 0.73162748]]\n" + ] + } + ], + "source": [ + "print(ppc_hier['beta'][:15, 0, :])" + ] + }, + { + "cell_type": "code", + "execution_count": 122, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(1000, 16, 2)" + "(4000, 16, 2)" ] }, - "execution_count": 512, + "execution_count": 122, "metadata": {}, "output_type": "execute_result" } @@ -2957,7 +3081,7 @@ }, { "cell_type": "code", - "execution_count": 513, + "execution_count": 123, "metadata": {}, "outputs": [ { @@ -2969,7 +3093,7 @@ " 0.60526316])" ] }, - "execution_count": 513, + "execution_count": 123, "metadata": {}, "output_type": "execute_result" } @@ -2978,16 +3102,6 @@ "values[:, 0] / (values[:, 0] + values[:, 1])" ] }, - { - "cell_type": "code", - "execution_count": 524, - "metadata": {}, - "outputs": [], - "source": [ - "ppc_hier['beta'] = logistic(ppc_hier['beta'])\n", - "# ppc_hier['beta'] = ppc_hier['beta']" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -3004,7 +3118,7 @@ }, { "cell_type": "code", - "execution_count": 525, + "execution_count": 124, "metadata": {}, "outputs": [], "source": [ @@ -3018,56 +3132,78 @@ }, { "cell_type": "code", - "execution_count": 526, + "execution_count": 125, + "metadata": {}, + "outputs": [], + "source": [ + "th1 = np.asarray(th1)\n", + "th1.shape\n", + "th1 = th1.T" + ] + }, + { + "cell_type": "code", + "execution_count": 126, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "(16, 1000)" + "array([[-0.2180816 , -0.2583519 , -0.23294731, ..., -0.07233225,\n", + " -0.09611557, -0.11400131],\n", + " [-0.17664335, -0.18725471, -0.13093216, ..., -0.02297447,\n", + " -0.17385674, -0.13187119],\n", + " [-0.27017526, -0.11269503, -0.09072602, ..., -0.13748094,\n", + " -0.0858593 , -0.17488378],\n", + " ...,\n", + " [-0.15250138, -0.02704045, -0.06015266, ..., -0.1388382 ,\n", + " -0.07947211, -0.10776233],\n", + " [-0.41835618, -0.23290852, -0.24437551, ..., -0.05594035,\n", + " -0.14824358, -0.08808137],\n", + " [-0.38614573, -0.22197272, -0.23666338, ..., -0.12101195,\n", + " -0.15251382, -0.0698187 ]])" ] }, - "execution_count": 526, + "execution_count": 126, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "th1 = np.asarray(th1)\n", - "th1.shape" + "th1" ] }, { "cell_type": "code", - "execution_count": 528, + "execution_count": 127, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.13474574, 0.13206396, 0.12006383, 0.14417826, 0.13744859,\n", - " 0.12955934, 0.13110731, 0.13301547, 0.13427609, 0.13036162,\n", - " 0.12951439, 0.12993904, 0.12792267, 0.12701882, 0.12755265])" + "array([-0.13382952, -0.12666883, -0.11288486, -0.1406659 , -0.13906812,\n", + " -0.12450764, -0.13903533, -0.13287531, -0.12785005, -0.15845967,\n", + " -0.15170453, -0.15352308, -0.15352308, -0.15352308, -0.15352308])" ] }, - "execution_count": 528, + "execution_count": 127, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "result2 = np.sum(th1.T * proportion / np.sum(proportion), axis=1)\n", + "result2 = np.sum(th1 * proportion / np.sum(proportion), axis=1)\n", "result2[:15]" ] }, { "cell_type": "code", - "execution_count": 533, + "execution_count": 128, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlMAAAFkCAYAAAAE1r5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAASTUlEQVR4nO3dfWydZfnA8WttR1fYFt+KSsZggJKxCEoCuNW3idi5dgajJKjBbJlKJLKoi8uiEEFljJmZmEiiBg06MIE/xEQLIwgotS6skGVGky0ss7oQuxh0dMW2W8f9+8PYUJlr/V3POX3Z55Pwx2nPuc99Ltqzb/uc02dOKaUEAAD/Lw1TvQEAgJlMTAEAJIgpAIAEMQUAkCCmAAASxBQAQEJTlYsNDR2LwcGRKpecFebPbzaX/2AmJ2cuJ2cuJ2cur2YmJ2cuJ9fauqCSdSr9zVRTU2OVy80a5vJqZnJy5nJy5nJy5vJqZnJy5lJbDvMBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEhomuoNAPC/mb+wJVqa//X03dq6IL3e0MhoDA4MpdeB05WYAphhWpqb4vzNXZWt17e1IwYrWw1OPw7zAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACDBH+0EZoVX/lXwKvir4MBkiSlgVvBXwYGp4jAfAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASmqZ6AwDT0fDxE9HauqCy9YZGRmNwYKiy9YDpQ0wBnMS8uY1x/uauytbr29oRg5WtBkwnDvMBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQ4Nx8wJSYv7AlWpon/xRU5UmHp0LVJ04Gpg8xBUyJluamyk8kPJ1VeeLk6f5Y4XTjMB8AQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACU1TvQFgZpi/sCVamj1lAPwnz4zApLQ0N8X5m7sqW69va0dlawFMJYf5AAASxBQAQILDfACnueHjJ6K1dUFl6w2NjMbgwFBl68F0J6YATnPz5jZW/nq4wcpWg+nPYT4AgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASGia6g0AMLsMHz8Rra0LKltvaGQ0BgeGKlsPqiamAKjUvLmNcf7mrsrW69vaEYOVrQbVc5gPACBBTAEAJDjMB7PU/IUt0dLsWxyg1jzTwizV0txU+etWAHg1h/kAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEsQUAECCmAIASBBTAAAJYgoAIEFMAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkNA01RsAgFMZPn4iWlsXTPr6E113aGQ0BgeGstuCMWIKgGlt3tzGOH9zV2Xr9W3tiMHKVgOH+QAAUsQUAECCmAIASBBTAAAJXoAO08T8hS0xd27j//SuJQCmnpiCaaKluanydywBUHsO8wEAJIgpAIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJDg3HyQMH9hS7Q0+zYCOJ35VwASqjw5sRMTA8xMDvMBACSIKQCABDEFAJAgpgAAErwAHYDTyvDxE9HauqCy9YZGRmNwYKiy9Zh5xBQAp5V5cxsrexduxL/eiTtY2WrMRA7zAQAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJIgpAIAEMQUAkCCmAAASxBQAQELTVG8AAGay4eMnorV1QWXrDY2MxuDAUGXrUXtiCgAS5s1tjPM3d1W2Xt/WjhisbDXqwWE+AIAEMQUAkCCmAAASxBQAQIKYAgBIEFMAAAliCgAgQUwBACSIKQCABDEFAJAgpgAAEpybj2lt/sKWaGmu7st0+PiJmDe3sbL1AEBMMa21NDdVfgLRqtcD4PTmMB8AQIKYAgBIcJgPAGapV77utLV1QXq9oZHRGBwYSq8z24gpAJilavG608HKVps9HOYDAEgQUwAACQ7zAcA0Mnz8RCWvb6J+xBQATCPz5jZW9jonfwuvPuaUUspUbwIAYKbymikAgAQxBQCQIKYAABImFVO7du2Kj3zkI9He3h7r1q2L/v7+V11n3759cf3110d7e3tcf/31sW/fvrHPff/7349Vq1bFhz70ofj85z8ff/vb36p7BFMkO5Mf/OAHsXr16njf+94Xd955Z8yWl65NZi6llPjhD38Yy5Yti2eeeWbc57q6uqKzszPa29vj5ptvjqNHj9Zr6zWVnctLL70UGzdujEsuuaReW66L7FwefPDB6OjoiFWrVsX69etPevuZJjuTn/70p9HR0RHt7e2xfv36+Otf/1qvrddUdi7/dt9998XFF19c6+3WTWYu/f39sWzZsli1atXYf9u3b6/n9msm+/Vy4MCBuO666+K9731vfPSjH40DBw6c+g7LBF566aXyzne+s/zhD38opZRyzz33lBtvvPFV11u1alV57LHHSimlPPLII6Wzs7OUUspvf/vbcs0115SBgYFSSinf+ta3ysaNGye622ktO5Nf//rX5ZprrilHjhwpIyMj5ZOf/GR56KGH6vcAamSyc7n11lvLV7/61fKud72r9Pb2jn38+eefL1dddVV5/vnnSyml3H777eXrX/96fTZfQ9m5lFLKmjVryvbt28vSpUvrsud6yM5l7969pa2trRw+fLiUUsrWrVvLl770pfpsvkayM3n22WfL1VdfXY4cOVJKKWXLli1lw4YN9dl8DVXxPVRKKYcPHy5r1qwpb33rW2u+53rIzmX//v3lgx/8YN32Wy/ZuYyOjpb29vby6KOPllJKeeihh8qWLVtOeZ8TxtTjjz9errvuurHLg4ODZdmyZeXo0aNjH9u3b19pa2sbd7vly5eXAwcOlB/96Efli1/84tjHu7u7y4c//OGJ7nZay85ky5Yt5a677hr7eFdXV/nc5z5X+43X2GTmUkope/bsKaWUsnLlynFfwD/5yU/KF77whbHLzz33XFm+fHmNd1172bn8+3OHDh2aVTGVncuhQ4fK7t27xy7/6le/Oi2eW0r57zPp6+srzz777NjlJ554oqxZs6bGu669Kr6HSillw4YNpaura9bEVHYuzzzzTPnYxz5Wn83WUXYuvb29paOj43+6zwkP8/X19cW55547dvmss86K17zmNfGXv/xl3HUWLVo07nbnnntuHDx4MK688srYs2dP9Pf3x4kTJ+Kxxx6LFStWTHS301p2JnPmzImXX3553O1feduZajJziYh4+9vf/l9vv3jx4rHLixcvjhdeeCFefPHF2my4TrJzmehzM1V2LosWLYorrrhi7PJTTz0Vl112WW02WyfZmZx33nlx+eWXR0TE8PBw/OIXv4irr766dhuukyq+h5566qkYHByM1atX12yf9Zady9GjR+PIkSOxdu3aaG9vjw0bNsThw4druud6yM5l3759cc4558TmzZujvb09PvvZz8ahQ4dOeZ8TxtTQ0FA0NzeP+1hzc3P885//nNR1li1bFtdee228//3vjyuvvDJ6e3vjxhtvnOhup7XsTFasWBEPP/xw9Pf3x9DQUDz44IMxMjJSl73X0mTmMtHtzzjjjLHLZ5xxRsyZMyeGhmb2Gcqzc5mtqpzLz3/+8+ju7o6bb765qu1Niapmsm3btlixYkUcPXo0Pv3pT1e5xSmRncvw8HDcdddd8bWvfa0W25sy2bm87nWvi5UrV8a2bduiq6sr3vSmN8WXv/zlWmy1rrJzGRgYiN7e3vj4xz8ejzzySCxdujQ2bdp0yttMGFNnnnnmq/6hHx4ejrPOOmtS13n88cfjN7/5TfT09ERvb2+sWbNmxv/Pys7kPe95T9xwww2xdu3aWLt2bbzjHe+IBQtm/qkDJjOXiW5/7NixscsjIyNRSokzzzyz0n3WW3Yus1VVc7n//vvj7rvvjh//+MfR2tpa5RbrrqqZbNq0KXbv3h1XXHFFrFu3rsotTonsXO6+++7o7Owc95vv2SA7l0svvTS+8pWvxNlnnx1NTU1x0003xe7du2f8D3rZuSxYsCCWLl0al112WTQ0NMS6detiz549p5zLhDF1wQUXxJ/+9Kexy3//+9/jxRdfjPPOO2/cdfr6+sYOXY2OjkZfX19ceOGF0dPTE+9+97vjta99bTQ0NMTq1aujt7d3Ug9ousrOJCLiM5/5TOzcuTMeeOCBeMMb3jAr3l0ymbmcypIlS+LgwYNjl5977rlobW2NhQsXVr7XesrOZbaqYi4/+9nP4v7774/77rtv3K/1Z6rsTH7/+9/H3r17IyKiqakpPvGJT8TevXtjYGCgJvutl+xcnnjiidixY0e0tbVFW1tbRES0tbXFn//855rst16yc3nhhRfGvcutlBJz5syJpqaZfaa57FwWLVo07p3kjY2NERHR0PDfk2nCmLrqqquiv79/7G2DO3bsiJUrV477bcFFF10Ura2t8ctf/jIi/vUr90WLFsWSJUtiyZIlsWvXrrFDNU8++WS85S1vmdQDmq6yM3n66afjhhtuiGPHjsXg4GDce++9ce21107JY6nSZOZyKh/4wAdi9+7dY98EO3bsiM7Ozprtt16yc5mtsnM5fPhwfPvb34577rkn3vjGN9Zyq3WTncnBgwfjlltuGfuH4Mknn4w3v/nNM/4Hkuxcurq64ne/+1309PRET09PRET09PTM+B9osnPp7u6Om266KQYHByMi4t57743ly5ePe7nFTJSdS1tbW/zjH/+I7u7uiIh44IEH4vLLL4958+b919tM6tx8Tz/9dNxxxx0xNDQUixcvjq1bt8bLL78c69evH4uF/fv3x6233hpHjhyJ17/+9fHNb34zLrzwwjh+/Hjceeed0d3dHQ0NDdHa2hq33XZbXHTRRZN6UNNVZiYnTpyI22+/Pbq7u2POnDmxdu3a+NSnPjXFj6gak5lLZ2dnjI6OxqFDh+Lss8+O5ubm2LZtW1x66aXx8MMPx3e/+90YHR2NSy65JO64445ZcTgsM5fGxsbYuHHj2OeWLFkSERE7d+6cyodUicxcdu3aFd/73vfGhVRTU9PY7WaqzEze9ra3xXe+853YuXNnlFJi4cKFccstt8z4F+ZH5J9bXuniiy+O/fv3T8XDqFz262X79u3x6KOPRkNDQ1xwwQVx2223zYofTrJfL3/84x9j06ZNcezYsTjnnHPiG9/4xikPEzvRMQBAgtPJAAAkiCkAgAQxBQCQIKYAABLEFABAgpgCAEgQUwAACWIKACBBTAEAJPwf6CLa6JKTCPcAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAFkCAYAAAAuZk/PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQhElEQVR4nO3db6jedf348afu6NnUrSJOgUybaYoNKqI0mxFGOXUr+oOg3RMh72RZkQxCLEtbSXWnoJFFpQZ1o7zhkjIrXWvlKgkKJkodEsEhZW4nz+aOfX43vnhov2at7Zzr7GyPx73rj9f7fV6eXZ/nOZ9zXddxwzAMAQAc445f6A0AABwJRBEAQKIIAKASRQAAlSgCAKhEEQBAVWOH+wBPPrn7BW875ZTxpqb2Hu4SHIDZzh+znT9mO3/Mdv6Y7fwa9XwnJpa/4G3z+puisbEl8/nwxzSznT9mO3/Mdv6Y7fwx2/l1JM3X6TMAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVDW20BsAOJBTVixr2fjonqKm9840tWt6ZOsBRx5RBByRlo2PtWrD5pGtN7lxXVMjWw04Ejl9BgCQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVDW20BsAFodTVixr2fjhP2VMTCyfg90AzD1RBByUZeNjrdqweWTrTW5cN7K1AMrpMwCAShQBAFSiCACg8jdFAFXt2ffcSP8IfHrvTFO7pke2HvDfiSKAaukJS0b+h+RTI1sNOBhOnwEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqGpsoTcAR4NTVixr2fho/zlN751patf0SNcEOJqJIpgDy8bHWrVh80jXnNy4rqmRrghwdHP6DAAgUQQAUIkiAIBKFAEAVKIIAKDy6jNYtPbse66JieULvQ2Ao4YogkVq6QlLRvo2AJMb141sLYCF4PQZAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUNXYQm8A4Fi0Z99zTUwsn9PH/G+PN713pqld03O6JhxNRBHAAlh6wpJWbdg80jUnN65raqQrwuLi9BkAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAFWNLfQGABiNPfuea2Ji+cjWm94709Su6ZGtB4dLFAEcI5aesKRVGzaPbL3JjeuaGtlqcPicPgMASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAqsYWegMwH05Zsaxl44f+7T0xsXwOdwPAYiCKOCotGx9r1YbNI1tvcuO6ka0FwPxw+gwAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUNXYQm8AgKPTnn3PNTGxfGTrTe+daWrX9MjW4+gjigCYF0tPWNKqDZtHtt7kxnVNjWw1jkZOnwEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFDV2EJvgGPDKSuWtWzctxsARy5HKUZi2fhYqzZsHtl6kxvXjWwtAI4OTp8BACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACof8wHAUWLPvueamFg+L499oMed3jvT1K7peVmPhSGKADgqLD1hycg/Y3FqZKsxCk6fAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqH/NxzDplxbKWjfvfDwDPc1Q8Ri0bHxv5ZwQBwJHM6TMAgEQRAEAligAAKlEEAFCJIgCAyqvPAGBRGPVbqUzvnWlq1/TI1jsSiCIAWAQW4q1Upka22pFBFAHAIdiz77kmJpYv9DaYQ6LoCHEovxb1jxFg4Sw9YYk3wT3KiKIjhHeYBoCF5dVnAACJIgCAShQBAFSiCACgEkUAAJUoAgCovCT/BY367dQBgIXlqP8CvG8QAMeyUb5j9/PrLPTnrS2KKPJbGwAYrVG/Y3ct/OetHTcMw7CA6wMAHBH8oTUAQKIIAKASRQAA1WFG0bZt23rPe97T2rVru+qqq3riiScOeL/f/va3XX755V166aW9973vbfv27bO3bd68ufXr17d27dquvfbadu/efThbOmoc7GyHYejrX/96q1ev7je/+c1+t23atKlLLrmkSy+9tA9+8IM9+eSTo9j6EW8uZvvoo492+eWX99a3vrX3ve99Pfroo6PY+hFvLmb7vDvuuKNzzjlnPre76MzFfL/3ve+1bt26Lrnkkq6++uoXfIxjzVzM1vHswA52tjt27OiKK65o7dq1XXHFFe3YsWP2tpEdz4ZD9I9//GN405veNPzhD38YhmEYbrvttuGaa675t/vt3bt3OO+884Zt27YNwzAMP//5z4cLL7xwGIZhePzxx4fzzz9/ePzxx4dhGIZPfepTw0033XSoWzpqHOxsh2EYbrjhhuETn/jEcOGFFw7bt2+fvf4Xv/jF8I53vGPYtWvXMAzDcOuttw4f+9jH5n/zR7i5mO3MzMywdu3a4Uc/+tEwDMPwgx/8YLjlllvmf/NHuLmY7fN27tw5vPOd7xzOPvvsed3zYjIX8/39738/rFmzZti5c+cwDMOwcePG4aMf/ej8b/4INxezdTw7sP9ltpdccslw7733DsMwDPfcc8+wfv36YRhGezw75Ci67777hssvv3z28tTU1LB69eph9+7d+91vampq9uAxDMOwe/fu4eyzzx6efvrp4dvf/vZw3XXXzd72yCOPDBdccMGhbumocbCzHYZheOihh4ZhGIaLLrpov3+g3/jGN4aPfOQjs5e3bNkyvOtd75rHXS8OczHb7du3D+vWrZv/zS4yczHb533oQx8aNm/eLIr+xVzM97HHHhsefPDB2cs/+clPPC8MczNbx7MDO9jZ7tixY1izZs1+111wwQXDo48+OtLj2SGfPpucnOy0006bvXzyySf34he/uL/85S/73e/kk0/u4osvnr38wAMPtGrVqlasWNHk5GSnn3767G2nn356f/3rX3v66acPdVtHhYOdbdXrXve6Az7Geeed10MPPdQTTzzRc88917333tub3/zmedvzYjEXs92xY0ennnpqGzZsaO3atX3gAx/osccem7c9LxZzMdv6v+eIqampLrvssnnZ52I1F/NduXJlb3zjG2cvP/DAA732ta+d+80uMnMxW8ezAzvY2U5OTrZy5cr9rjvttNP605/+NNLj2SFH0fT0dOPj4/tdNz4+3jPPPPOC/82OHTu65ZZbuummm2Yf48QTT5y9/cQTT+y4445renrh3s3ySHAos/3/rV69une/+9297W1v67zzzmv79u1dc801c73VRWcuZrtr1662b9/elVde2T333NO5557b9ddfP9dbXXTmYrZ79uzpc5/7XDfeeONcb2/Rm4v5/qu77rqrLVu2dO21187F9ha1uZit49mBHexs/9P9Rnk8+69vE/3jH/+4W2+99d+uv/LKK9u7d+9+1+3Zs6eTTz75gI/zu9/9ruuuu66bb765888/v6qTTjqpZ599dvY+e/fubRiGTjrppP/pi1is5mq2B3Lfffd1//33t3Xr1l70ohe1adOmPv7xj/e1r33tsPe9GMznbJcvX9655547+xP2VVdd1aZNm3rmmWeOie/d+ZztV77yldavX7/fT9zHmvmc7/PuvPPOvvnNb/atb32riYmJQ97rYjOfs3U8O7zZnnTSSS94v1Eez/5rFF188cX7nf563v3339/dd989e/lvf/tbTz/9dK94xSv+7b47duzowx/+cF/60pd6wxveMHv9GWec0a9+9avZy4888kgTExOtWLHif/5CFqO5mO0L2bp1a295y1t6yUteUtVll13Wpk2bDn/Ti8R8znblypX7vapkyZIlVR1//LHxDhfzOduf/vSnPfXUU91xxx2z161Zs6bvfOc7/9PjLGbzOd+q73//+915553dcccdvfzlLz/s/S4m8zlbx7PDm+0rX/nKJicn++c//9nxxx/fzMxMk5OTnXnmmd1+++0jO54d8rP4+eef3xNPPDH7ksTbb7+9iy666N+qeBiGNmzY0I033rhfEFW9/e1v78EHH+zPf/7z7GOsX7/+ULd01DjY2f4nZ5xxRtu2bZv91e3PfvazXvWqV83LfheTuZjtmjVreuqpp9qyZUtV3/3ud3v961/f0qVL52XPi8VczHbz5s398pe/bOvWrW3durX6v8A/VoLoP5mL+e7cubMvfvGL3XbbbcdcEP0nczFbx7MDO9jZnnXWWU1MTMwG1F133dXKlSs744wzRno8O6zPPvv1r3/dzTff3PT0dKeffnobN25sYmKinTt3dvXVV3f33Xf30EMP9f73v//fntS+8IUvtHr16n74wx/25S9/uZmZmV796ld38803H9Kvg482BzPbqvXr1zczM9Njjz3Wy172ssbHx/v85z/fueee22c/+9m2bNnS8ccf38TERJ/85Cc766yzFvgrW3iHO9vXvOY1/fGPf+z666/v2Wef7dRTT+3Tn/70MX3K53lzMdt/dc455/Twww8vxJdyRDrc+W7btq2vfvWr+wXR2NjYfj/JH6vm4nvX8ezADna2Dz/8cDfccEN///vfe+lLX9pnPvOZzjzzzPbt2zey45kPhAUAyMd8AABUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFT1/wB4meQ8i0vHDAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3079,7 +3215,7 @@ "source": [ "plt.figure(figsize=(10, 6))\n", "_, _, _ = plt.hist(result2 , bins=18, edgecolor='w', density=True)\n", - "plt.xlim(0.08, .16)\n", + "#plt.xlim(0.09, .16)\n", "plt.yticks([]);" ] }, @@ -3092,12 +3228,12 @@ }, { "cell_type": "code", - "execution_count": 534, + "execution_count": 82, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj8AAAFkCAYAAADPDVqeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAO60lEQVR4nO3dXYiUdfvA8cscXdc3QtgyMl8ilJQ0giirEylcabcgqAM7SuxIUEIpPBAUStgMo6IgosxKPfAggtrYjTJS7MUswbMQckko7cHK3c3ZzZV5Dv7/lscn3WfVuWd35/p8wIOZXe/fTy+c+Tr3PTvjKpVKJQAAkrhmpDcAAFBL4gcASEX8AACpiB8AIBXxAwCkIn4AgFRKQ33xX//qqdU+Cjd1akP09vaP9DYIsxhNzGL0MIvRwyxGj8udRVPTtGF9X5pXfkql8SO9Bf6fWYweZjF6mMXoYRajR1GzSBM/AAAR4gcASEb8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUSiO9AYCiTJ3eGI0NxT7MlfsHore7XOgaQHWJH6BuNTaUYu7G9kLX6Gprid5CVwCqzWkvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASKU00hsAGMv6zp2PpqZpVTnWpY5T7h+I3u5yVdYAxA/AVZk0YXzM3dhe6BpdbS3RW+gKkIvTXgBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKn4bC8YI6ZOb4zGhur/k/3vD9P0IZpAvRM/MEY0NpQK/wDNCB+iCdQ/8QPUXFGvYgEMh0cfoOZq+SoWwH9zwTMAkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFW91By7Qd+78P37qM0A9ET/ABSZNGF/4z+Dx83eAkeS0FwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUimN9AagHkyd3hiNDf45AYwFHq2hChobSjF3Y3uha3S1tRR6fIAsnPYCAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIpTTSGwBgaH3nzkdT07TC1yn3D0Rvd7nwdWCkiR+AUW7ShPExd2N74et0tbVEb+GrwMhz2gsASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFRKI70BAPKYOr0xGhuKfeop9w9Eb3e50DUY28QPADXT2FCKuRvbC12jq60legtdgbHOaS8AIBXxAwCkIn4AgFRc80Pdq8UFlgCMHZ4RqHu1usASgLHBaS8AIBWv/DBinI4CYCR45mHE1OJ0VIRTUgBcyGkvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASKU00hsAYHToO3c+mpqmjfQ2oHDiB4CIiJg0YXzM3dhe6BpdbS2FHh+Gw2kvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEhF/AAAqYgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJBKaaQ3AABj0dTpjdHYUOzTaLl/IHq7y4WukZH4AYAr0NhQirkb2wtdo6utJXoLXSEnp70AgFTEDwCQivgBAFJxzQ8XVfSFfE1N0wo7NgAMRfxwUbW6kA8Aak38jEG1eHslANQrz6BjkFdlAODKueAZAEhF/AAAqYgfACAV1/wAUFf6zp2/6h+n4cdx1DfxA0BdmTRhfOFvConwxpCxzGkvACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKmIHwAgFfEDAKQifgCAVMQPAJCK+AEAUhE/AEAq4gcASEX8AACpiB8AIBXxAwCkIn4AgFTEDwCQivgBAFIRPwBAKuIHAEilNNIbqCdTpzdGY4O/UgCqo+/c+Whqmlb4GpMmjC90jYiIcv9A9HaXC19nODxTV1FjQynmbmwvfJ2utpbC1wBg5E2aML7w55WutpaaPXf1Fr7K8DjtBQCkIn4AgFTEDwCQyqi45qcWFwrX4qIxAGD0GxXxU4sLhWtxQZcLkQFg9HPaCwBIRfwAAKmIHwAglXGVSqUy0psAAKgVr/wAAKmIHwAgFfEDAKRSV/Hz1VdfxSOPPBLNzc2xatWqOHny5EW/r1KpxFtvvRWLFi2Kw4cPD95/8uTJWLRoUaxYsWLw1/bt22u1/bpytbP4T7t27YoFCxYUud26Vo1Z7NmzJ1paWqK5uTlWr14dv/zySy22XneqMYu9e/dGS0tLrFixIlavXn3JYzC0aszizz//jA0bNsTChQtrseW6VY1ZtLe3R2trazQ3N8fatWujp6dnyDXrJn7Onj0b69evj+eeey46Ozvjvvvuiy1btlz0ezdv3hzHjx+PGTNmXHB/d3d3zJo1Kzo6OgZ/bdiwoQa7ry/VmMXffv3119i7d2+Bu61v1ZjF999/Hzt27Ig9e/ZEZ2dn3HLLLdHW1laD3deXaszi6NGj8corr8Tbb78dHR0dMX/+/HjhhRdqsPv6Uq3HqJUrV8aNN95Y8G7rWzVm8fPPP8ezzz4bb7zxRnR2dkZTU1O89NJLQy9cqROfffZZ5bHHHhu83dvbW1m0aFGlp6fnH9975MiRSqVSqSxbtqzy7bffDt5/+PDhyqOPPlr8ZutcNWbxt3Xr1lXa29sr8+fPL27Ddawas+jq6qp89913g7f37dtXeeihhwrcdX2qxixOnDhROXTo0ODtTz/9tPLwww8XuOv6VK3HqCNHjlROnDhRufXWW4vdcB2rxizefffdylNPPTV4+9ixY5WlS5cOuW7dvPLT1dUVN9100+DtKVOmxLXXXhs//fTTP7739ttvv+gxenp64o8//ognnngimpubY926dXHq1KnC9lyvqjGLiIj9+/dHb29vPPjgg4XsM4NqzGLOnDlxxx13REREX19ffPjhh3H//fcXs+E6Vo1ZzJo1K+68887B2/v3748lS5ZUf7N1rlqPUUN9jeGpxiy6urpi9uzZg7dnz54dp0+fjjNnzlxy3bqJn3K5HA0NDRfc19DQEGfPnh32MWbMmBHLli2Lbdu2RXt7e8ycOTOefvrpam+17lVjFn19ffH888/H5s2bq729VKoxi79t27Yt7rnnnujp6Yknn3yyWltMo5qziIj44IMP4sCBA7F27dpqbC+Vas+CK1eNWZTL5Zg4ceLg7YkTJ8a4ceOiXC5f8veMig82vRyffPLJRc9xr1y5Mvr7+y+4r6+vL6ZMmTLsYy9evDgWL148eHvNmjVx9913x9mzZ2Py5MlXvuk6VeQsXnvttWhtbb2g5rm0Imfxt2eeeSbWr18fO3bsiFWrVrkW6xJqMYvdu3fHzp0745133ommpqYr3mu9q8UsGJ4iZzF58uT466+/Bm/39/dHpVIZ8nl7zMXP8uXLY/ny5f+4/4svvoiPPvpo8PZvv/0WZ86ciTlz5gz72KdPn45z587FzJkzI+L/riwfN25clEpj7q+pJoqcxb59++L333+PXbt2Dd537733xp49ey7rOFkUOYujR49GpVKJJUuWRKlUiscffzy2b98e3d3dMX369Krsv54UOYuIiPfffz92794du3btiuuvv/6q91vPip4Fw1fkLObNmxdff/314O1jx45FU1PTkI9PdXPa66677oqTJ08Ovv3tvffei2XLll3WKzYHDhyINWvWRG9vb0RE7Ny5M5YuXXrBy2n8b9WYRXt7e3z55Zdx8ODBOHjwYEREHDx40IPTZarGLH788cfYtGnT4FtHP//887jhhhuEz2WqxixOnToVL774Yrz55pvC5ypUYxZURzVm8cADD8ShQ4fi+PHjg8dobW0d8vfU1Wd7ffPNN7F169Yol8sxe/bsaGtri6ampjh16lSsXr16sC5bW1tjYGAgTpw4Edddd100NDTEtm3b4rbbbovt27dHZ2dnXHPNNXHzzTfHli1bPMhcgaudxX+efoyIWLBgQfzwww8j8UcZ86rx7+Lll1+Ojo6OqFQqMX369Ni0aZMLba/A1c7iq6++itdff/2Cx6RSqXTB/5wZnqudxfjx42PDhg2DX5s3b15ERHR0dIzkH2tMqsbzxccffxyvvvpqDAwMxMKFC2Pr1q1Dnjqrq/gBAPhf6ua0FwDAcIgfACAV8QMApCJ+AIBUxA8AkIr4AQBSET8AQCriBwBIRfwAAKn8G8Qw3bffSmTBAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAPj0lEQVR4nO3dX2zd8//A8ZfuzNmZbfEnh2TZZvM3M0GEbZQIQccq8SeScScSXHBDSEUW/zaKhBsSkrmQzQUXuFCLCMLMUMkiIdn8LSLZIv5tpat1Pr8L0Z+G+bb79HO6vvZ43J32nL7f57W2n+fOp+ecg4qiKAIAILG2id4AAEDVBA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOnV/uuT33+/c5+/8IwZ9ejvH9zn2zN2Zt56Zt56Zt56Zt56Zr5vms2Ze/1cZY/w1GpTqvrS7IWZt56Zt56Zt56Zt56Zjz+ntACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegPA/mXGrEY06tX+ahgYHIr+HQOVrgHwd4IHGKFRr8X8rp5K1+jrXh79la4AMJJTWgBAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASK820RsADjy7du+JZnPmPt9+tLcdGByK/h0D+7wOkIfgAVpu2tQpMb+rp/J1+rqXR3/lqwCTgVNaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9bx4KpFX2XdlHwzuyw+QgeIC0WvGu7N6RHSYHp7QAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegPA6MyY1YhG3Y8swL7w2xMmiUa9FvO7eipfp697eeVrALSaU1oAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegOQwYxZjWjU/TgB7K/8hoZx0KjXYn5XT6Vr9HUvr/TrA2TmlBYAkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANKrTfQGACazXbv3RLM5s9I1BgaHon/HQKVrQHaCB6CEaVOnxPyunkrX6OteHv2VrgD5OaUFAKQneACA9AQPAJCe4AEA0hM8AEB6nqVFejNmNaJRr+5bveqnJANQnuAhvUa91pKnDQOw/3JKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAerWJ3gAA/23X7j3RbM6sfJ2BwaHo3zFQ+TowEQQPwH5u2tQpMb+rp/J1+rqXR3/lq8DEcEoLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegMcuGbMakSj7lsQgOo52jBhGvVazO/qqXydvu7lla8BwP7NKS0AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0qtN9AYA2D/s2r0nms2Z//q5vX18rAYGh6J/x8C4fC0YC8EDQERETJs6JeZ39VS6Rl/38uivdAX4d05pAQDpCR4AID3BAwCk5294+FczZjWiUfftAUAOjmj8q0a91pI/XgSAVnBKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkF5tojfA2M2Y1YhG/d//6ZrNmS3eDcDo7dq9p/LfUwODQ9G/Y6DSNZh8BM8k1KjXYn5XT6Vr9HUvr/TrAwemaVOntOT3V3+lKzAZOaUFAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID0vPAhAKq14NecIr+g82QgeAFJpxas5R3hF58nGKS0AID3BAwCkJ3gAgPQEDwCQnj9aHkczZjWiUTdSANjfODqPo0a91rJnBgAAoyd4AGAfVP16P83mTK/1M44EDwDsg1a83o/X+hk//mgZAEhP8AAA6QkeACC9A+ZveDxlHAAOXAdMAbTiKeOeLg4A+6f9Ing8+gIA/1T1U9//WmPa1CmVrhERE/4U+4OKoigmbHUAgBbwR8sAQHqCBwBIT/AAAOmNOXg2bdoUV1xxRXR0dMR1110X27Zt+8d1tmzZEitWrIiOjo5YsWJFbNmyZfhzTz31VCxbtiwuueSSuPnmm+P7778vdw+SG828i6KIp59+OhYtWhQffvjhiM/19PREZ2dndHR0xC233BI7d+5s1dYnrbIzf/7552P58uWxbNmyuP766//19vxT2bn/Zd26dXHiiSdWvd1Jr+y8P//887j66qvjvPPOi6uuuio+//zzVm19Uis7d8fQEoox+PXXX4ulS5cWH3/8cVEURbFmzZrixhtv/Mf1li1bVrz22mtFURTF+vXri87OzqIoiuKdd94pLrroomLHjh1FURTFI488Utx2221j2cIBZbTzXrlyZXHXXXcV55xzTtHb2zv88e+++65YsmRJ8d133xVFURT33ntvcd9997Vm85NU2Zl/9NFHRXt7e7F9+/aiKIqiu7u7uPXWW1uz+Ums7Nz/sn379uKyyy4rTjjhhMr3PJmVnffQ0FDR0dFRvPrqq0VRFMWLL75YPPDAA63Z/CRWdu6OoeWM6RGe9957L+bOnRuLFi2KiIgVK1bEO++8E/39///WZlu3bo2dO3fGhRdeGBERy5Ytix9++CG++OKL+PTTT+Pkk0+OmTP/fIrd0qVL47PPPhuvdktnNPOOiLjyyitj1apVMXXq1BEff/311+Oss86K2bNnR0TEtddeG+vXr2/N5iepsjM//PDD47HHHosjjzwyIiLOOOMM//MdhbJz/8vq1avjpptuqny/k13ZeW/evDlqtVpcfPHFERFx+eWXx5133tmazU9iZefuGFrOmIKnr68v5s6dO3z5kEMOiUMPPTS++eabEdeZM2fOiNvNnTs3vvzyy1i8eHFs3rw5tm3bFnv27InXXnstzj777JJ3Ia/RzDsi4rTTTtvr7efNmzd8ed68efHDDz/EL7/8Us2GEyg78zlz5sSZZ545fPntt9+OU089tZrNJlJ27hF/zrq/vz8uvfTSyvaZRdl5b9myJWbPnh1dXV3R0dERN9xwQ3z77beV7jmDsnN3DC1nTMEzMDAQ9Xp9xMfq9Xr89ttvo7rOokWL4vLLL48LLrggFi9eHL29vXHjjTeW2H5uo5n3/7r9wQcfPHz54IMPjoMOOigGBibuhZ/2d2Vn/ncvvfRSbNiwIW655Zbx2l5aZee+a9eueOihh+Luu++uYnvplJ33jh07ore3N6655ppYv359LFy4MO64444qtppK2bk7hpYzpuCZPn16DA4OjvjYrl274pBDDhnVdV5//fV46623YuPGjdHb2xuXXXZZ3H777SW2n9to5v2/bv/7778PXx4cHIyiKGL69Onjus9Mys78L88++2w88cQT8cwzz0Sz2RzPLaZUdu5PPPFEdHZ2jnhEk70rO++ZM2fGwoUL49RTT422tra47rrrYvPmzfv0H4MDSdm5O4aWM6bgOeaYY+Krr74avvzjjz/GL7/8EkcfffSI6/T19cUff/wRERFDQ0PR19cXxx57bGzcuDHOPffcOOyww6KtrS0uvfTS6O3tHae7ks9o5v1fFixYEF9++eXw5c8++yyazWbMmjVr3PeaRdmZR0S88MIL8eyzz8a6detGPHzN3pWd+xtvvBFr166N9vb2aG9vj4iI9vb2+PrrryvZ72RXdt5z5swZ8YzPKVP+fFuCtjavdPJfys7dMbScMX13LlmyJLZt2zb8NLm1a9fG+eefP+IRg+OOOy6azWa8/PLLEfHnw/pz5syJBQsWxIIFC2LTpk3Dp1TefPPNOP7448frvqQzmnn/lwsvvDA++OCD4R+wtWvXRmdnZ2X7zaDszLdv3x6PPvporFmzJo466qgqt5pK2bn39PTEu+++Gxs3boyNGzdGxJ8Hh7GE6oGk7Lzb29vjp59+ig0bNkRExHPPPRenn356TJs2rbI9Z1B27o6h5Yz5vbTef//9WL16dQwMDMS8efOiu7s7/vjjj7j++uuHI2fr1q2xcuXK+Pnnn+OII46IVatWxbHHHhu7d++OBx98MDZs2BBtbW3RbDbjnnvuieOOO66SO5fBaObd2dkZQ0ND8e2338aRRx4Z9Xo9Hn744TjllFPilVdeiccffzyGhobipJNOitWrV4/59MyBpszMN23aFE8++eSI2KnVasO3Y+/Kfq//3Yknnhhbt26diLsxaZSd9yeffBJ33HFH/P777zF79uy4//77nVIchTJzX7hwoWNoCd48FABIzwlXACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgvf8DSCzTqRNziv8AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3179,7 +3315,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 129, "metadata": {}, "outputs": [ { @@ -3197,7 +3333,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 159, "metadata": {}, "outputs": [], "source": [ @@ -3228,7 +3364,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 160, "metadata": {}, "outputs": [ { @@ -3245,7 +3381,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 161, "metadata": {}, "outputs": [], "source": [ @@ -3257,7 +3393,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 162, "metadata": {}, "outputs": [], "source": [ @@ -3266,7 +3402,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 163, "metadata": {}, "outputs": [ { @@ -3278,57 +3414,57 @@ "post-warmup draws per chain=1000, total post-warmup draws=4000.\n", "\n", " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "theta[1,1] 0.301 7.22e-4 0.065 0.182 0.255 0.3 0.344 0.436 7991 1.0\n", - "theta[2,1] 0.488 7.87e-4 0.07 0.351 0.441 0.489 0.536 0.625 7995 1.0\n", - "theta[3,1] 0.465 4.0e-4 0.038 0.391 0.438 0.464 0.49 0.541 9070 0.999\n", - "theta[4,1] 0.459 7.02e-4 0.06 0.343 0.417 0.458 0.5 0.578 7298 0.999\n", - "theta[5,1] 0.4 7.67e-4 0.066 0.276 0.355 0.399 0.443 0.536 7367 1.0\n", - "theta[6,1] 0.443 6.13e-4 0.05 0.347 0.408 0.443 0.476 0.543 6765 1.0\n", - "theta[7,1] 0.504 5.46e-4 0.046 0.415 0.473 0.504 0.536 0.595 6994 0.999\n", - "theta[8,1] 0.548 4.61e-4 0.041 0.467 0.52 0.547 0.575 0.629 7930 1.0\n", - "theta[9,1] 0.541 0.001 0.1 0.343 0.472 0.543 0.611 0.735 7726 0.999\n", - "theta[10,1] 0.465 5.76e-4 0.051 0.369 0.43 0.465 0.5 0.564 7693 0.999\n", - "theta[11,1] 0.51 5.07e-4 0.048 0.417 0.476 0.51 0.543 0.603 9087 0.999\n", - "theta[12,1] 0.552 4.02e-4 0.037 0.478 0.527 0.552 0.577 0.624 8426 0.999\n", - "theta[13,1] 0.487 9.2e-4 0.081 0.335 0.429 0.488 0.545 0.648 7723 1.0\n", - "theta[14,1] 0.525 6.54e-4 0.055 0.418 0.489 0.525 0.562 0.635 7082 1.0\n", - "theta[15,1] 0.536 4.91e-4 0.044 0.45 0.507 0.535 0.565 0.621 7920 1.0\n", - "theta[16,1] 0.546 6.32e-4 0.053 0.443 0.51 0.547 0.583 0.649 7067 1.0\n", - "theta[1,2] 0.599 7.83e-4 0.069 0.462 0.553 0.6 0.647 0.732 7787 1.0\n", - "theta[2,2] 0.47 7.91e-4 0.07 0.34 0.422 0.469 0.517 0.61 7829 1.0\n", - "theta[3,2] 0.412 4.41e-4 0.037 0.338 0.387 0.412 0.437 0.485 7109 0.999\n", - "theta[4,2] 0.513 7.16e-4 0.06 0.399 0.471 0.514 0.555 0.626 6944 0.999\n", - "theta[5,2] 0.48 8.11e-4 0.068 0.344 0.433 0.48 0.528 0.612 7117 1.0\n", - "theta[6,2] 0.443 6.49e-4 0.05 0.346 0.409 0.443 0.477 0.546 6048 1.0\n", - "theta[7,2] 0.387 4.95e-4 0.045 0.303 0.356 0.385 0.417 0.477 8197 0.999\n", - "theta[8,2] 0.338 4.58e-4 0.039 0.264 0.312 0.337 0.363 0.415 7136 0.999\n", - "theta[9,2] 0.292 0.001 0.09 0.131 0.228 0.286 0.351 0.484 6683 0.999\n", - "theta[10,2] 0.403 5.7e-4 0.049 0.31 0.369 0.403 0.436 0.503 7420 0.999\n", - "theta[11,2] 0.402 5.18e-4 0.047 0.312 0.37 0.402 0.434 0.494 8376 1.0\n", - "theta[12,2] 0.351 3.93e-4 0.034 0.285 0.329 0.351 0.373 0.421 7492 0.999\n", - "theta[13,2] 0.458 9.36e-4 0.08 0.304 0.403 0.456 0.514 0.614 7343 1.0\n", - "theta[14,2] 0.35 6.47e-4 0.053 0.251 0.312 0.348 0.387 0.452 6700 1.0\n", - "theta[15,2] 0.369 4.5e-4 0.042 0.291 0.34 0.368 0.397 0.449 8556 1.0\n", - "theta[16,2] 0.361 6.08e-4 0.051 0.262 0.326 0.36 0.395 0.468 7159 0.999\n", - "theta[1,3] 0.1 4.47e-4 0.041 0.034 0.07 0.096 0.126 0.195 8533 0.999\n", - "theta[2,3] 0.041 3.66e-4 0.028 0.006 0.02 0.035 0.056 0.112 5936 1.0\n", - "theta[3,3] 0.124 2.9e-4 0.025 0.078 0.106 0.122 0.14 0.176 7558 1.0\n", - "theta[4,3] 0.028 2.4e-4 0.02 0.004 0.013 0.023 0.037 0.076 6610 0.999\n", - "theta[5,3] 0.121 5.6e-4 0.046 0.046 0.087 0.116 0.149 0.222 6738 0.999\n", - "theta[6,3] 0.114 3.67e-4 0.032 0.059 0.09 0.111 0.135 0.183 7768 0.999\n", - "theta[7,3] 0.109 3.21e-4 0.029 0.061 0.088 0.107 0.127 0.17 7954 0.999\n", - "theta[8,3] 0.115 3.21e-4 0.026 0.069 0.096 0.113 0.131 0.171 6764 1.0\n", - "theta[9,3] 0.167 8.95e-4 0.076 0.05 0.111 0.158 0.213 0.341 7185 1.0\n", - "theta[10,3] 0.132 3.61e-4 0.034 0.073 0.107 0.129 0.153 0.206 8845 1.0\n", - "theta[11,3] 0.088 2.94e-4 0.027 0.041 0.069 0.085 0.104 0.152 8509 1.0\n", - "theta[12,3] 0.097 2.62e-4 0.022 0.059 0.081 0.096 0.111 0.145 7111 0.999\n", - "theta[13,3] 0.054 4.98e-4 0.038 0.006 0.027 0.046 0.073 0.15 5718 1.0\n", - "theta[14,3] 0.125 4.77e-4 0.038 0.063 0.097 0.121 0.15 0.209 6448 1.0\n", - "theta[15,3] 0.096 3.12e-4 0.026 0.051 0.076 0.093 0.113 0.152 7006 1.0\n", - "theta[16,3] 0.093 3.61e-4 0.031 0.042 0.07 0.09 0.112 0.16 7287 1.0\n", - "lp__ -1.41e3 0.103 4.0 -1.42e3 -1.42e3 -1.41e3 -1.41e3 -1.41e3 1502 1.0\n", + "theta[1,1] 0.299 7.95e-4 0.063 0.182 0.254 0.297 0.342 0.431 6344 1.001\n", + "theta[2,1] 0.489 8.84e-4 0.071 0.349 0.44 0.489 0.537 0.632 6476 0.999\n", + "theta[3,1] 0.465 4.85e-4 0.038 0.391 0.439 0.465 0.49 0.538 6069 1.0\n", + "theta[4,1] 0.458 7.69e-4 0.058 0.347 0.419 0.457 0.497 0.573 5595 1.0\n", + "theta[5,1] 0.399 9.03e-4 0.07 0.268 0.349 0.398 0.446 0.538 5994 0.999\n", + "theta[6,1] 0.443 6.25e-4 0.051 0.344 0.408 0.442 0.478 0.542 6674 1.0\n", + "theta[7,1] 0.505 5.68e-4 0.045 0.42 0.475 0.505 0.534 0.594 6152 1.0\n", + "theta[8,1] 0.547 5.22e-4 0.04 0.468 0.52 0.548 0.575 0.626 5937 0.999\n", + "theta[9,1] 0.541 0.001 0.1 0.339 0.473 0.542 0.611 0.734 6164 0.999\n", + "theta[10,1] 0.464 5.9e-4 0.05 0.367 0.43 0.464 0.497 0.562 7033 1.0\n", + "theta[11,1] 0.511 6.07e-4 0.05 0.412 0.478 0.511 0.544 0.61 6812 1.0\n", + "theta[12,1] 0.551 4.73e-4 0.036 0.48 0.526 0.551 0.575 0.621 5799 1.0\n", + "theta[13,1] 0.486 0.001 0.079 0.335 0.433 0.485 0.54 0.647 5829 1.0\n", + "theta[14,1] 0.526 7.82e-4 0.057 0.412 0.486 0.526 0.565 0.635 5314 1.001\n", + "theta[15,1] 0.535 5.68e-4 0.045 0.444 0.505 0.535 0.566 0.625 6367 0.999\n", + "theta[16,1] 0.547 6.62e-4 0.053 0.443 0.512 0.548 0.583 0.649 6390 1.0\n", + "theta[1,2] 0.601 8.9e-4 0.069 0.461 0.555 0.603 0.648 0.733 5983 1.0\n", + "theta[2,2] 0.47 8.95e-4 0.072 0.33 0.421 0.47 0.519 0.61 6432 0.999\n", + "theta[3,2] 0.411 4.79e-4 0.037 0.338 0.385 0.41 0.436 0.485 6134 0.999\n", + "theta[4,2] 0.514 7.88e-4 0.058 0.399 0.476 0.515 0.553 0.627 5429 1.001\n", + "theta[5,2] 0.481 9.01e-4 0.072 0.342 0.431 0.48 0.53 0.625 6365 0.999\n", + "theta[6,2] 0.444 6.31e-4 0.051 0.343 0.408 0.444 0.478 0.545 6576 1.0\n", + "theta[7,2] 0.386 5.5e-4 0.044 0.298 0.357 0.387 0.415 0.473 6427 0.999\n", + "theta[8,2] 0.338 5.03e-4 0.039 0.264 0.31 0.337 0.364 0.415 5993 1.0\n", + "theta[9,2] 0.293 0.001 0.089 0.132 0.23 0.289 0.35 0.477 5396 1.0\n", + "theta[10,2] 0.404 6.09e-4 0.049 0.309 0.37 0.404 0.437 0.502 6480 1.0\n", + "theta[11,2] 0.402 6.35e-4 0.049 0.306 0.368 0.4 0.435 0.501 6037 1.0\n", + "theta[12,2] 0.352 4.37e-4 0.034 0.285 0.328 0.351 0.375 0.419 6037 1.0\n", + "theta[13,2] 0.459 0.001 0.078 0.305 0.407 0.459 0.512 0.613 6100 1.0\n", + "theta[14,2] 0.349 6.89e-4 0.055 0.246 0.312 0.348 0.386 0.458 6267 1.0\n", + "theta[15,2] 0.37 5.42e-4 0.043 0.285 0.34 0.369 0.398 0.456 6394 0.999\n", + "theta[16,2] 0.36 6.72e-4 0.051 0.258 0.325 0.359 0.392 0.465 5797 1.0\n", + "theta[1,3] 0.1 5.41e-4 0.041 0.036 0.07 0.094 0.125 0.191 5787 1.0\n", + "theta[2,3] 0.041 3.52e-4 0.028 0.005 0.02 0.035 0.055 0.111 6507 1.0\n", + "theta[3,3] 0.124 3.31e-4 0.025 0.079 0.107 0.123 0.139 0.178 5582 1.0\n", + "theta[4,3] 0.028 2.43e-4 0.019 0.004 0.014 0.024 0.037 0.077 6225 1.0\n", + "theta[5,3] 0.12 5.65e-4 0.045 0.048 0.088 0.115 0.148 0.221 6420 1.0\n", + "theta[6,3] 0.113 4.02e-4 0.032 0.06 0.091 0.11 0.133 0.182 6304 1.0\n", + "theta[7,3] 0.109 3.64e-4 0.028 0.06 0.089 0.107 0.126 0.17 6030 1.0\n", + "theta[8,3] 0.115 3.62e-4 0.026 0.068 0.096 0.113 0.132 0.172 5232 0.999\n", + "theta[9,3] 0.167 9.83e-4 0.075 0.048 0.11 0.157 0.214 0.334 5887 0.999\n", + "theta[10,3] 0.132 4.2e-4 0.033 0.072 0.109 0.129 0.153 0.204 6332 0.999\n", + "theta[11,3] 0.088 3.41e-4 0.027 0.041 0.068 0.085 0.104 0.148 6295 1.0\n", + "theta[12,3] 0.098 2.44e-4 0.022 0.06 0.082 0.097 0.111 0.143 7771 1.0\n", + "theta[13,3] 0.055 4.75e-4 0.037 0.007 0.026 0.046 0.074 0.147 6215 1.0\n", + "theta[14,3] 0.125 4.97e-4 0.037 0.06 0.098 0.122 0.149 0.206 5565 1.0\n", + "theta[15,3] 0.095 3.38e-4 0.026 0.049 0.076 0.092 0.111 0.154 6101 1.0\n", + "theta[16,3] 0.093 4.31e-4 0.032 0.041 0.07 0.09 0.113 0.165 5525 1.001\n", + "lp__ -1.41e3 0.095 4.088 -1.42e3 -1.42e3 -1.41e3 -1.41e3 -1.41e3 1845 1.002\n", "\n", - "Samples were drawn using NUTS at Fri Mar 27 17:06:10 2020.\n", + "Samples were drawn using NUTS at Mon Mar 30 17:22:59 2020.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -3341,7 +3477,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 164, "metadata": {}, "outputs": [], "source": [ @@ -3350,7 +3486,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 165, "metadata": {}, "outputs": [ { @@ -3359,7 +3495,7 @@ "(4000, 16, 3)" ] }, - "execution_count": 26, + "execution_count": 165, "metadata": {}, "output_type": "execute_result" } @@ -3370,19 +3506,19 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 166, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.28969053, 0.55576013, 0.46880875, 0.62499109, 0.31250517,\n", - " 0.45638551, 0.51475111, 0.54379053, 0.50190306, 0.53247051,\n", - " 0.49688836, 0.55487369, 0.47213411, 0.56546164, 0.5566992 ,\n", - " 0.5919083 ])" + "array([0.305646 , 0.47988473, 0.42721749, 0.46774404, 0.44612915,\n", + " 0.51697408, 0.58440693, 0.53752915, 0.63354365, 0.4760622 ,\n", + " 0.56491333, 0.60691645, 0.62535855, 0.42935015, 0.535791 ,\n", + " 0.56380083])" ] }, - "execution_count": 27, + "execution_count": 166, "metadata": {}, "output_type": "execute_result" } @@ -3393,16 +3529,16 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 167, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.10000779136186363" + "0.09984042335668665" ] }, - "execution_count": 28, + "execution_count": 167, "metadata": {}, "output_type": "execute_result" } @@ -3413,7 +3549,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 168, "metadata": {}, "outputs": [], "source": [ @@ -3426,28 +3562,28 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 169, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.35447872, -0.17297568, -0.17596767, ..., -0.2805937 ,\n", - " -0.47618688, -0.13276545],\n", - " [ 0.15755553, -0.0566407 , 0.03664864, ..., 0.11863572,\n", - " -0.0685502 , 0.06912136],\n", - " [ 0.04329983, 0.14636458, 0.10092675, ..., 0.24371403,\n", - " -0.00409195, -0.03231013],\n", + "array([[-0.29830963, -0.20967514, -0.26950832, ..., -0.35826107,\n", + " -0.33491419, -0.23189027],\n", + " [-0.02413558, -0.21438899, -0.10612351, ..., -0.02959419,\n", + " 0.06178593, 0.0923874 ],\n", + " [-0.02366946, 0.02613382, 0.11743479, ..., 0.06990543,\n", + " 0.11012108, 0.17011507],\n", " ...,\n", - " [ 0.22064079, 0.24680335, 0.09860484, ..., 0.09248436,\n", - " 0.13465215, 0.08122155],\n", - " [ 0.22483055, 0.15969287, 0.10511641, ..., 0.21970223,\n", - " 0.14075503, 0.0461641 ],\n", - " [ 0.27342662, 0.16853591, 0.18921759, ..., 0.28294102,\n", - " 0.16541389, 0.16547692]])" + " [ 0.1281835 , 0.30301716, 0.14321119, ..., 0.1655299 ,\n", + " 0.13558499, 0.28890727],\n", + " [ 0.16218526, 0.22916085, 0.10451857, ..., 0.31905207,\n", + " 0.16814509, 0.13835418],\n", + " [ 0.2052175 , 0.2833933 , 0.11942988, ..., 0.12966828,\n", + " 0.09326143, 0.22236906]])" ] }, - "execution_count": 30, + "execution_count": 169, "metadata": {}, "output_type": "execute_result" } @@ -3459,19 +3595,19 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 170, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-0.13276545, 0.06912136, -0.03231013, 0.16520493, -0.16403938,\n", - " 0.06041195, 0.02550831, 0.19337253, -0.0194513 , 0.03460096,\n", - " 0.16171201, 0.16481575, -0.24930883, 0.08122155, 0.0461641 ,\n", - " 0.16547692])" + "array([-0.23189027, 0.0923874 , 0.17011507, -0.3350024 , -0.06830835,\n", + " -0.11070815, 0.07650463, 0.28555088, 0.16222205, 0.04862792,\n", + " -0.04044725, 0.01634078, -0.19855381, 0.28890727, 0.13835418,\n", + " 0.22236906])" ] }, - "execution_count": 31, + "execution_count": 170, "metadata": {}, "output_type": "execute_result" } @@ -3482,7 +3618,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 171, "metadata": {}, "outputs": [], "source": [ @@ -3491,7 +3627,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 172, "metadata": {}, "outputs": [ { @@ -3500,7 +3636,7 @@ "(4000,)" ] }, - "execution_count": 33, + "execution_count": 172, "metadata": {}, "output_type": "execute_result" } @@ -3511,14 +3647,14 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 173, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAygAAAHwCAYAAABNBkuaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dfZRcdX348c/MJFDCbiJZ5MEokKQuKiBEipwiKME+QE85SvxxIiCC1R6ElgQtArGlWNAmxWKCAcFApG0OkYPKcwhWDVhrsFabeCAkJWEoGEBTIA+7MSFh9v7+oLuw7iZsQnbvZzev1zn8wZ2dud+db7539n13Zm+lKIoiAAAAEqiWPQAAAIBOAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSGNbXL1y7dm1/jmPIGDVqVKxfv77sYRDmIhNzkYN5yMNc5GAe8jAXefR1LvbZZ59+G4PfoOxi1aqnNAtzkYe5yME85GEucjAPeZiLPDLMRfkjAAAA+D8CBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQwrewAAbF+lUolqddecT6rVam/4MTo6OqIoil0wGgDoSaAAJFapVKK5eVTUapVd8ngjR458w4/RaBTR1rZepADQLwQKQGLVajVqtUpcMq0t6vVG2cOJceNqcfX05qhWq9FolD8eAIYegQIwCNTrjVi+QhAAMPT5kDwAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIYVvYAADKqVCpRrZZ/DifDGABgIAkUgN9SqVSiuXlU1GqVsocCALsdgQLwW6rVatRqlbhkWlvU641Sx3LC8cNj6oV7lzoGABhIAgVgG+r1RixfUW6gjB1bK3X/ADDQvLkZAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkMawsgcAwOBTreY4v9XR0RFFUZQ9DAB2IYECQJ/t21KJRqOIpqamsocSERGNRhFtbetFCsAQIlAA6LPmkdWo1SpxybS2qNcbpY5l3LhaXD29OarVajQa5Y4FgF1HoACww+r1RixfIQoA2PVyvIkYAAAgBAoAAJCIQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIYVvYAADpVKpWoVss/b5JhDACwuxIoQAqVSiWam0dFrVYpeygAQIkECpBCtVqNWq0Sl0xri3q9UepYTjh+eEy9cO9SxwAAuyuBAqRSrzdi+YpyA2Xs2Fqp+weA3Zk3WgMAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANIaVPQAAeCOq1Rzn2jo6OqIoirKHATDoCRQABqV9WyrRaBTR1NRU9lAiIqLRKKKtbb1IAXiDBAoAg1LzyGrUapW4ZFpb1OuNUscyblwtrp7eHNVqNRqNcscCMNgJFAAGtXq9EctXiAKAoSLHG3cBAABCoAAAAIkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhjWNkDAMpVqVSiWu3/cxW1Wm27tw/EGACA/AQK7MYqlUo0N4+KWq3S7/saOXJkv+8DABj8BArsxqrVatRqlbhkWlvU641Sx3LC8cNj6oV7lzoGAKB8AgWIer0Ry1eUGyhjx27/LWAAwO7Bm74BAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASGNY2QMAgKGiWu37eb9ardZv4+jo6IiiKPrt8QH6k0ABgDdo35ZKNBpFNDU19fk+I0eO7LfxNBpFtLWtFynAoCRQAOANah5ZjVqtEpdMa4t6vVHqWMaNq8XV05ujWq1Go1HuWAB2hkABgF2kXm/E8hWiAOCN8CF5AAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkMazsAcDuplKpRLWa49xAlnEAAHQSKDCAKpVKNDePilqtUvZQAABSEigwgKrVatRqlbhkWlvU642yhxMnHD88pl64d9nDAADoIlCgBPV6I5avKD9Qxo6tlT0EAIBuvAEdAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQxrOwBAAC7XrWa4xxkR0dHFEVR9jCAQUSgAMAQsm9LJRqNIpqamsoeSkRENBpFtLWtFylAnwkUABhCmkdWo1arxCXT2qJeb5Q6lnHjanH19OaoVqvRaJQ7FmDwECgAMATV641YvkIUAINPjjeoAgAAhEABAAASESgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANAQKAACQhkABAADSECgAAEAaAgUAAEhDoAAAAGkIFAAAIA2BAgAApCFQAACANIaVPQAYCJVKJarV8ns8wxgAADITKAx5lUolmptHRa1WKXsoAAC8DoHCkFetVqNWq8Ql09qiXm+UOpYTjh8eUy/cu9QxAABkJlDYbdTrjVi+otxAGTu2Vur+AQCy84Z4AAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASEOgAAAAaQwrewAAwNBWreY5H9rR0RFFUZQ9DGA7BAoA0C/2balEo1FEU1NT2UPp0mgU0da2XqRAYgIFAOgXzSOrUatV4pJpbVGvN8oeTowbV4urpzdHtVqNRqP88QC9EygAQL+q1xuxfIUgAPomz5tCAQCA3Z5AAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDQECgAAkMawsgfA0FWpVKJaLbeBa7Va6WMAAKDvBAr9olKpRHPzqKjVKqWOY+TIkaXuHwCAHSNQ6BfVajVqtUpcMq0t6vVGqWM54fjhMfXCvUsdAwAAfSNQ6Ff1eiOWryg3UMaOrZW6fwAA+s6b8wEAgDQECgAAkIZAAQAA0hAoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQhUAAAgDRcSR4A2K1Uq6+en63VaqWNo6OjI4qiKG3/kJVAAQB2C/u2VKLRKKKpqalr28iRI0sbT6NRRFvbepECv0WgAAC7heaR1ajVKnHJtLao1xuljmXcuFpcPb05qtVqNBrljgWyESgAwG6lXm/E8hWiALLyIXkAACANgQIAAKQhUAAAgDQECgAAkIZAAQAA0hAoAABAGv7M8BBTqVS6XSG3LBnGAADA4CNQhpBKpRLNzaOiVquUPRQAANgpAmUIqVbzXCH3hOOHx9QL9y51DAAADD4CZQjKcIXcsWNrpe4fAIDByQcFAACANAQKAACQhkABAADSECgAAEAaPiQPAFCSLNcN6+joiKIoyh4GRIRAAQAYcPu2VKLRKKKpqansoURERKNRRFvbepFCCgIFAGCANY/Mc+2yceNqcfX05qhWq9FolDsWiBAoAAClyXDtMshGoAAAUPrnYWq1Vy7y7PMwCBQAgN1Yls/DjBw5MiJ8HoZBGiiVSqX0yu9UFEVUKpVu2zrPAAy0LM8JADB4+DwM2Qy6QKlUKtHcPCpqtcrrf/EAaDSKHmPpPAMAADBYZPo8TKaTrr2djC7L7vL2t0EXKNXqK5V/45zfxLPPdpQ6lncfUYv/95G9UozlteMZN66c3+C81lvHvHJgMZbuMo0lItd4jKV3mcYSkWs8xtI7Y9m2TOMxlt69Z8KwFG83e63eTkaXZXd5+1ulGOrfIQAAMGjk+f0ZAACw2xMoAABAGgIFAABIQ6AAAABpCBQAACANgQIAAKQx6K6Dsis9//zzMWvWrHjooYdi3bp1ccABB8Sf/umfxgUXXBB77LHHdu/b3t4e119/fXz3u9+NNWvWREtLS/zhH/5hTJkypceFGp966qmYNWtWLF68ODZv3hxjxoyJiRMnxqc//elobm7u+rqLL7447r333m3uc9myZTFs2NCcsoGYi5kzZ8aNN964zcf513/91zj44IO7/n/ZsmVx7bXXxpIlS+Kll16K8ePHxznnnBMf/vCH3/g3nFR/z8Pq1avjgx/84HYf573vfW/MmzcvIqyJnZ2LiIiXX345vvrVr8acOXPimGOO6XpO38h+rIn+m4f//d//jdmzZ8eiRYti/fr18Za3vCWOPfbYuPDCC+PNb35z19ft6HFsKBmIufjWt74Vf/M3f7PNx7jlllviuOOO6/r/p59+OmbOnBkPP/xwtLe3x0EHHRSnn356nHvuuWku7LerDcQ8HHroodt9jDFjxsSiRYsiwpp4I6/ZX/va1+L++++P559/Pvbbb7+YMGFCTJkypcfzVcbrxNB8Ze+D3/zmN3HWWWfFr3/96/jEJz4RY8eOjV/84hfx9a9/PR5//PH42te+ts37dnR0xHnnnRdLly6Ns846Kw4//PB44okn4pZbboklS5bEbbfdFsOHD4+IiMcffzwmT54cI0aMiHPOOScOPPDA+OlPfxpz586Nn//85zF//vyuq6W2t7fHiBEjYvr06b3ut1Yr/wJK/WGg5qK9vT0iIv7hH/4hfud3fqfHY732h4AVK1bExz72sdhnn33iL//yL2PUqFGxYMGCuPTSS2PdunVx7rnn7tonIYGBmIeWlpa49tpre32MF154Ia666qoYP3581zZrYsfnIiLiueeei89+9rOxYsWK7V7Ma0f2Y0303zysWbMmJk2aFJs2bYqzzjorxo0bF8uWLYtvfvObsXjx4rjnnntixIgREbFjx7GhZKDmoq2tLSIiLr300njLW97S4/bX/uD861//Oj760Y9GR0dH/Nmf/VkccMAB8W//9m8xY8aMePbZZ+Ov//qvd/K7zWug5mFbrxMvvfRSXH755T1eJyKsiR2Zi40bN8bkyZPj6aefjsmTJ8fhhx8eTz75ZMybNy9+9KMfxb333hv777//Du9nl75OFLup66+/vmhtbS0WLFjQbfuXv/zlorW1tfjhD3+4zfveddddRWtrazFnzpxu2+fPn1+0trYW8+fP79p29tlnF4cddlixatWqbl975ZVXFq2trcX999/fte2MM84oTjzxxDfybQ1KAzUXF198cXHooYcWjUbjdcd0zjnnFEcccUSxevXqrm2NRqOYPHlyceSRRxZr167t67c3aAzUPGzL5z73ueKYY44pXnjhha5t1sSOz0VRFMWxxx5bnHzyycXKlSuL1tbW4mMf+9gb3o818apdPQ+XXXZZ0draWixevLjb9rlz5xatra3FTTfd1LVtR45jQ8lAzcXMmTOL1tbW4umnn37dMX3+858vWltbi6VLl3bbftFFFxXveMc7ipUrV77uYww2AzUP2zJr1qweP1NZEzs+F7Nnzy5aW1uL22+/vdv2Bx54oGhtbS2+8IUv7NR+duXrxG77GZR77rknRo8eHSeffHK37WeccUZExHbfVnLPPfdErVaLj370o922T5o0Kfbcc8+u+xZFEePHj4+zzz67W+1HRLzvfe+LiIj//u//7trW1tYWTU1NO/9NDVIDMRcRrzy/I0aM6PqN1basWbMmfvKTn8SJJ54YY8aM6dperVZj8uTJsWnTpvje977X5+9vsBioeejNz372s7j77rtj6tSpMXr06K7t1sSOz0VExPHHHx/f/va343d/93d3yX6sif6dhwMPPDBOO+20+P3f//1u27f1OtGX49hQM1Bz0Xk2/rVvv+7N1q1bY+HChXHYYYfFkUce2WNMHR0dcd999233MQajgZqH3jz11FNx8803x8c//vFuP1NZEzs+F6NGjYo//uM/jlNPPbXb9t6OOWW9Tuxes/l/2tvb48knn4zDDz+8xz/oMWPGxOjRo+ORRx7Z5v0fffTROOSQQ3ocwPbcc89obW2NZcuWRUdHR1Qqlbjiiivi0ksv7XUMEd1/9dje3t71Xv2iKGLTpk07/T0OFgM1F537eu1nUjZt2tTrr5gfffTRKIoijjjiiB63dW7b3pgGo4Gch99WFEVcddVV8fa3v73rgPfacVkTr+rLXERE/OM//mPsvffeu2w/1kT/zUNExJQpU2LGjBm9jiEiYt999+22rS/HsaFkIOei8y1enceyTZs29XrsqtfrsXHjxnj3u9/d4zZrYtv6Og+9mT59ejQ1NcVf/MVf9BiXNfGqvszF2WefHV/96ld7vCVu48aNEfHqMafM14ndMlCeeeaZiIg44IADer39gAMOiNWrV/d6W3t7e9cHhLZ1382bN8fzzz+/zf03Go2YP39+DBs2LE444YSu7Rs2bIiNGzfGRRddFEcddVQcddRRcfTRR8e0adPixRdf7Ou3N6gM5Fxs2LAhIiIuv/zyOProo7ue4ylTpsQvf/nLPo2pc1vn1wwVZa6J73//+7FixYr49Kc/3eMAaE30tL256K/9WBM97ap52J7ODw+fdNJJXdv6ehwbSgZyLjZs2BB77LFHXHPNNXHsscfGUUcdFe9+97vjk5/8ZDz22GN9GtNee+0Vo0aN6vd/HwOtzDXx2GOPxYMPPhjnnntuj8CxJnra2bn4l3/5l4h49ZhT5uvEbvkh+c5C7O3DVJ3bt27dGlu3bu36gPWO3DfilQ8VbcuXv/zlWLJkSXzqU5+Kgw46KCJeOTu8cePGWL58eRx00EExY8aMqFQqsWjRorjjjjtiyZIl8Z3vfGenzzxkNZBz0d7eHs8991ysXr06rrjiihgxYkT85Cc/ifnz58fPfvazuPPOO2P//ffvety99tprm4/Z+TVDRZlr4oYbboiDDz44TjnllG7brYkdn4v+2o810dOumodtmTdvXixcuDBOOeWUOOaYY7q29/U4NpQM5Fy0t7fHli1b4j/+4z/ic5/7XLS0tMTSpUvjlltuiTPPPDNuu+22eMc73tGnMW3v54DBqMw1cf3110dzc3OcddZZPW6zJnrambn4wQ9+EHPnzo2jjjqq661fZb5O7JaB0mlbfwKw81eD2/sTgTtz36Io4ktf+lLMmzcv/uiP/ig++9nPdrvthhtuiObm5vi93/u9ru0nn3xytLS0xDe+8Y24/fbb4xOf+MTrf2OD0EDMxVVXXRURr77HMiLiD/7gD2Ls2LFx5ZVXxk033bTdPy/Zl30OdgO9Jn784x/HsmXL4oorrujxF7msiZ2fizL2Y03sOnPnzo2rr746JkyY0OMv2O3K49hgMxBzcdFFF0V7e3scd9xxXT/YTZw4MSZMmBDnnXdezJo1q9uftN3emKyJXePJJ5+MH/zgB/HJT36y188kWhM97ehc3HfffXHZZZfFwQcfHNdff32P1+MyXid2y7d4df4D39bZjU2bNsWee+7Z6/UV+nLfiOhxVnfLli3xmc98JubNmxeTJk2KWbNmdfsHUK1WY+LEid1+EOt05plnRsQrP8wNNQM5F+973/u6HcA6nX766TFs2LCu53d7j9u5baidtS9jTURE3H///TF8+PD4kz/5kx63WRM7Phf9tR9roqddNQ+vVRRFTJ8+Pa6++uo44YQT4hvf+EaPs5F9PY4NJQM5F0cffXR84AMf6HHW+cQTT4wDDzwwHn744T6PyZrYNRYuXBhFUcSHPvShXm+3Jnrakbm45ZZb4uKLL47W1taYP39+t8+8lfk6sVsGylvf+taoVCrxq1/9qtfbn3322W1e1GfvvfeOlpaWbd73mWeeiaampmhpaenatnXr1jj//PNj4cKFMXXq1Jg+ffoOXb+h87E6PzA5lAz0XPRmjz32iObm5q7n921ve1tERK+P2/n+yUMOOWS7jznYlDEPjUYjFi1aFBMmTIg3velNOzRea+KNX3RsR/ZjTfS0q+bhtT7/+c/HP/3TP8XkyZPj61//ete1T/rit49jQ0kZc9GblpaW2Lx5c2zdunW7a6KtrS3a2tqG3MUBy5qH733vezFmzJhobW3doftZE68/F9ddd13MmDEjJk6cGLfeemuP1+kyXyd2y0AZMWJEtLa2xiOPPBKNRqPbbStXrowNGzbEe97znm3e/8gjj4z/+Z//ifXr13fb3tbWFqtWrYoJEyZ0+zXWZZddFv/+7/8ef/d3fxcXXHBBr4/5q1/9Ku66665YtWpVj9uefPLJiIheLxo12A3UXKxbty7uvffeWLp0aY/HWLduXaxdu7br+T3iiCOiVqvFL37xix5f+1//9V8REdsd02A00GsiImLJkiXx4osvxrHHHtvrY1oTOzcX/bEfa6L/5qHTNddcE3fccUecd955ceWVV/Z6EmtHjmNDyUDNxebNm+P+++/v9Yx7R0dHPP300/HmN785hg8fHmPHjo03velNva6Jn//85xFhTewKzz33XDz22GPbfJ2wJnZ+Lm677baYPXt2fOhDH4rrrruu18+OlPk6sVsGSkTEaaedFuvWrYsFCxZ02975Fww+8pGPRETEiy++GE888US3X1mddtpp0dHREfPnz+9231tvvTVefvnlmDRpUte222+/Pe6777648MILe1wj4rXWrVsXl156aUyfPr3Hn8e7+eabI+KV91QORQMxF0VRxLRp0+Lyyy+PLVu2dPvam266KSJefX5Hjx4d73//++OHP/xht78AsnXr1vjmN78Z++yzT0ycOHFXfOupDNSa6PToo49GRMTb3/72XsdjTezcXPTHfqyJ/p2HH//4xzFnzpyYNGlSt88m/rYdOY4NNQMxF8OHD4+rrrqq66rXr3XbbbfFhg0bup7fWq0Wp556aixfvrwrSDrNmzcv9thjjx7XmBgKBmpNdHq91wlrYufmYuXKlfHFL34xjjvuuPj7v//77b6rp6zXidoXvvCFL/T5q4eQd73rXfHggw/GnXfeGVu2bIk1a9bEP//zP8e3v/3tOOOMM2Ly5MkR8coPQlOnTo0JEybE2LFjIyJi/PjxsXTp0vjOd74T69evj3Xr1sWdd94Zc+bMife///1dLzBbtmyJCy64ICqVSkyaNCnq9XqsWrWq238vvvhijBkzJvbdd99Ys2ZNLFy4MH7605/Gpk2bYtmyZTFz5sxYtGhRnHTSSXHRRRcNyQ/dDcRc7LXXXlGtVmPBggXx0EMPxebNm2PlypUxZ86cuP322+OII46IK6+8suv9mu985zvjrrvuioULF0alUoknnngiZsyYEY8++oVFSGYAAALOSURBVGh86Utfine9613lPFn9aCDm4bXuvvvueOSRR+JTn/pU7Lfffj1utyZ2bi6eeeaZWLx4cdcx5oEHHoi99torWlpaurZ1XiStr/uJsCb6cx6mTJkSa9eujTPPPDN++ctf9nideOaZZ+KQQw7Z4ePYUDIQc1GtVmP//fePu+66K7773e/GSy+9FE899VTMnz8/brzxxhgzZkxcc801XWeaDzvssFiwYEHcfffdURRFrF69OmbPnh0PPfRQfOYzn4kPfOADpT1f/WWg1kSnBx98MBYvXhyTJ0/u9eKO1sTOzcXf/u3fxqpVq2Ly5Mnxwgsv9DjmZHidqBRD/Wo227Fu3bq49tpr4/vf/36sXbs23va2t8Xpp58e5557btf1GGbPnh3XXXdd3Hjjjd3Kb/PmzXHDDTfEvffeG2vWrIn99tsvTj311Dj//PO7/pza6tWr44Mf/OB2x/De976362/dv/zyy3HHHXfEt771rXjqqafipZdeikMOOSQ+/OEPx9lnnz0kF1in/p6LTgsXLoxbb7016vV6tLW1xZgxY+KUU06JP//zP+/xfu+VK1fGV77ylfjP//zP2Lp1a7zzne+M8847b0ieKe40UPMQEfFXf/VXcd9998UDDzzQddD8bdbEjs/FHXfcEdOmTdvuY7/2KsF92U8na6J/5uHQQw/d7teNGTMmFi1a1PX/O3IcG0oGak08/PDDcfPNN8fjjz8ea9eujf333z9OOumkOP/882P06NHd7vfcc8/FV77ylfjRj34UGzdujPHjx8fHP/7xXn9rPFQM1DxERMycOTNuvPHGmDt3bhx//PHbvJ81sWNzcdJJJ73uNUnKfp3YrQMFAADIZbf9DAoAAJCPQAEAANIQKAAAQBoCBQAASEOgAAAAaQgUAAAgDYECAACkIVAAAIA0BAoAAJCGQAEAANIQKAAAQBoCBQAASOP/A5vNm10fs+nmAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAFkCAYAAAA0Wq9BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQ3klEQVR4nO3dX2id9f3A8U/a056ktkU6joq0Xdt5ISt2Y06qKGihLJkJ/gmopTdWvNgocxfDQWF0qCgG/2w3IrUo1nUiE/8VGv/QDUUFtymC4kXLqgsrjpat0jaxJ7Gpz+/Cn4cc/TTNenKS5uT1AsGef895Pj759u15zjlpK4qiCAAA6syZ7icAAHA2EkkAAAmRBACQEEkAAAmRBACQEEkAAInSZD/gf/4zGBERCxeWY2hoZLIfvmWYz/jMZ3zmMz7zOTWzGZ/5jK8V51OpLDrldU17JalUmtush24J5jM+8xmf+YzPfE7NbMZnPuObbfNxug0AICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASpel+AgATsXBxR3SUJ75kVSqLzmg71ZHRGDpWPaP7Aq1FJAEzQke5FCu29Dd9OwN93THU9K0AM4HTbQAACa8kAYwxfOLkGZ+qmyin9GBmEEkAY7TPm9v003pO6cHM4HQbAEBCJAEAJJxuAxr2v348H2AmsKoBDZuKj+cP9HU39fEBvsnpNgCAhEgCAEg43QYtzvuFAM6MlRNanPcLAZwZp9sAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CALPN8ImTUaksauo2qiOjMXSs2tRtQKsTSQBTrH3e3Fixpb+p2xjo646hpm4BWp/TbQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAoTfcTgNlq4eKO6Cif+Y9gpbJoEp8NAN8kkmCadJRLsWJLf9O3M9DX3fRtALQip9sAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CAEy+4RMno1JZlF53qsvPRHVkNIaOVSft8eBsIpIAWlD7vLmxYkt/07cz0NcdQ03fCkwPp9sAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CcDZauLgjOsp+PABmM38LQKKjXIoVW/qbuo2Bvu6mPj4AjXG6DQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CAMxcwydORqWyqKnbqI6MxtCxalO3ARmRBMAZa583N1Zs6W/qNgb6umOoqVuAnNNtAAAJkQQAkBBJAAAJkQQAkBBJAAAJkQQAkBBJAAAJkQQAkPBlksw4Cxd3REfZoQtAc/mbhhmno1yakm/4BWB2c7oNACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACBRmu4nQOtYuLgjOsqTd0hVKosm7bGAmWv4xMkpWQ+qI6NN3wYzi0hi0nSUS7FiS3/TtzPQ1930bQBnj/Z5c6dsbTlx4mTTt8PM4XQbAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJErT/QQA4GwwfOJktM+bG5XKoqZtozoyGkPHqk17fCaXSAKAiGifNzdWbOlv6jYG+rpjqKlbYDI53QYAkPBK0iyxcHFHdJT95waAifK35izRUS5NycvIANAqnG4DAEiIJACAhEgCAEiIJACAhDduA8AUGT5xsqlfVhnhCysnk0gCgCniCytnFpE0zXx/EQCcnfztPM2m4vuLInyHEQD8r7xxGwAgIZIAABIiCQAg4T1J42j2m6qb/TFQAODMiaRx+KWwADB7zdhI8tF5APi2Zn9h5dePPXziZLTPm9u07URM/xdjthVFUUzb1gEAzlLeuA0AkBBJAAAJkQQAkJhQJL3zzjtx4403RmdnZ9x2221x8ODBb91m7969sWHDhujs7IwNGzbE3r17a9f19/dHT09PdHZ2xh133BGDg4MREVEURTz00EPR2dkZXV1d8fDDD0/Sbk2tRufz7LPPRnd3d3R1dcXtt99eu/+uXbvi0ksvja6urto/e/bsmbL9mgyNzObgwYOxevXquv3/+hhx7EQ89dRTdbNZv359rF27NiIiHn300Vi7dm3d9R9++OGU7ttkmMh8iqKIJ554IlavXh3vvfde3XXWnvHn08prT0Rj82n19aeR2cyGtaemOI3PP/+8uPzyy4uPPvqoKIqiePzxx4uf/exn37pdV1dXsWfPnqIoiuKVV14penp6iqIoik8//bRYu3Zt8emnnxZFURR33313cc899xRFURS7d+8ubrrppmJkZKQYHh4uent7i1dfffV0T+ms0uh8Pvjgg+LKK68sDh06VBRFUfT19RW/+tWviqIoip07dxZbt26dit1oikZns2/fvuInP/lJ+tiOnW/bvn17cf/99xdF8dVxtG3btiY986kx0fls3bq1+M1vflNcddVVxbvvvlu73NrzlVPNp5XXnqJofD6tvP40OptvarW1Z6zTvpL017/+NZYtWxarV6+OiIgNGzbE22+/HUNDQ7Xb7Nu3LwYHB2P9+vUREdHV1RWHDx+Ojz/+OP7yl7/EFVdcERdeeGFERGzcuDFeeeWViIh49dVX48Ybb4z58+dHuVyO3t7e2nUzRaPzWbJkSfz+97+P8847LyIifvzjH8f+/fsjImJwcDAWLZq5XzjZ6GwGBwdj8eLF6WM7dj6ue6z//ve/8cwzz8TmzZsjYuYfOxETm09ERG9vb9x7770xb968usutPV851Xxaee2JaHw+rbz+NDqbsVpx7RnrtJE0MDAQy5Ytq/35nHPOiXPPPTf+9a9/1d1m6dKldfdbtmxZfPLJJzEwMBDLly+vXb58+fI4fPhwHD16NL3uk08+aWiHplqj81m6dGlcdtlltcvffPPN+MEPfhAREceOHYv3338/br755ujq6oq+vr744osvmrxHk6fR2QwODsaRI0di06ZN0dnZGb/85S/j0KFDtfvN9mNnrCeeeCJ6e3tri/qxY8fiz3/+c/T29sa1114b27Zti2KGfdvHROYTEfHDH/7wlPef7WtPxKnn08prT0Tj82nl9afR2YzVimvPWKeNpGq1GuVyue6ycrkcx48fn9BtqtVqzJ8/v3b5/Pnzo62tLarV6rfu197eHtXq9H1p1JlodD5jvfTSS/HWW2/FHXfcERERF198caxbty7+8Ic/xJ/+9Kf48MMPY/v27U3ak8nX6GyWLFkS69atiwceeCD6+/vjggsuiF//+tfp/WbzsTM4OBi7du2KjRs31i679NJLY/369fHss8/Gk08+GS+99FLs2rWrSXvSHBP9uRnv/rN97ZmoVlt7IhqfTyuvP5N17LTq2jPWab+yesGCBTEyMlJ32fDwcJxzzjkTus2CBQvq/g9kZGQkiqKIBQsWREdHR939qtVqLFiw4Ix3Zjo0Op+vPf3007Fjx4546qmnolKpRETE9ddfX7u+vb09Nm3aFNu3b49f/OIXzdiVSdfobNasWRNr1qypXb558+a4/PLL4/jx446dMbd5/fXXY82aNbFkyZLaZbfeemvt388///y45ZZb4vXXX48bbrhhsnejaSay76e7/2xfeyaiFdeeiMbn08rrz2QdO6269ox12leSVq1aFf/85z9rf/7ss8/i6NGj8d3vfrfuNgMDA/Hll19GRMTo6GgMDAzE9773vVi5cmXdy5D/+Mc/olKpxOLFi2PVqlV11+3fvz8uuuiiSdmxqdLofCIiXnjhhXj66afjj3/8Y91LoAcOHKh9Gifiq08alEoz51exNDqbw4cP133ioiiKaGtri1Kp5Nj5/2MnIuKNN96Iq6++uu6x9+/fX7cIzrRjJ2Ji8xmPtef0WnXtiWh8Pq28/kzGsRPRumvPWKeNpLVr18bBgwdrH//buXNnrFu3rq6aL7rooqhUKrF79+6I+Oql26VLl8bKlStj/fr18fe//732H2Tnzp3R09MTERE//elP47nnnovjx4/H559/Hs8//3x0d8+sX/ja6HwOHToUv/vd7+Lxxx+P888/v+6xH3300XjwwQejKIoYGRmJZ555Jq655pop27dGNTqbt956KzZv3lx7M+GOHTviiiuuiPnz5zt2Vq6s3Wbv3r110RQRcc8998SOHTsiIuLo0aPx4osvzqhjJ2Ji8xmPtWd8rbz2RDQ+n1Zefxqdzddade0Za0K/u+1vf/tb3HfffVGtVmP58uXR19cXX375Zdx+++21xXvfvn2xdevWOHLkSHznO9+Je++9tza8l19+OR555JEYHR2N73//+3HffffVXtZ7+OGH47XXXou2trbo6empnROfSRqZz2OPPRbbtm2rW6RKpVLs3r07jhw5Elu3bo19+/ZFW1tbXH311XHnnXfWvc/ibNfIbIqiqB0fc+bMiVWrVsVdd91Vm9VsP3a+9qMf/Siee+65WLVqVe2yAwcOxG9/+9v497//HXPmzInrrrsufv7zn0dbW9uU72MjJjKfnp6eGB0djQMHDsR5550X5XI5HnjggVizZo21J049n3feeael156IxuZzySWXtPT60+jPVkRrrz1f8wtuAQASfi0JAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEDi/wAW3xt9NpaCgAAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, @@ -3548,7 +3684,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 132, "metadata": {}, "outputs": [], "source": [ @@ -3599,66 +3735,67 @@ "\"\"\"\n", "\n", "modelo3 = \"\"\"\n", - " data {\n", - " int N;\n", - " int n;\n", - " int post[N, n];\n", - " }\n", - "\n", - " parameters {\n", - " vector[n] mu;\n", - " cholesky_factor_corr[n] L;\n", - " vector[n] beta[N];\n", - " simplex[n] thetas[N];\n", - "\n", - " }\n", - "\n", - " transformed parameters{\n", - "\n", - " vector[n] alphas[N];\n", - "\n", - "\n", - " for (i in 1:N)\n", - " alphas[i] = inv_logit(beta[i]);\n", - "\n", - " }\n", - "\n", - " model {\n", - "\n", - " L ~ lkj_corr_cholesky(3.0);\n", - "\n", - " mu ~ normal(0, 5);\n", - "\n", - " beta ~ multi_normal_cholesky(mu, L);\n", + "data {\n", + " int N;\n", + " int n;\n", + " int post[N, n];\n", + "}\n", "\n", - " for (i in 1:N)\n", - " thetas[i] ~ dirichlet(alphas[i]);\n", + "parameters {\n", + " vector[n] mu;\n", + " cholesky_factor_corr[n] L;\n", + " vector[n] beta[N];\n", + " simplex[n] thetas[N];\n", + " \n", + "}\n", "\n", - " for (i in 1:N)\n", - " post[i] ~ multinomial(thetas[i]);\n", + "transformed parameters{\n", + " \n", + " vector[n] alphas[N];\n", + " \n", + " \n", + " for (i in 1:N)\n", + " alphas[i] = softmax(beta[i]);\n", + " \n", + "}\n", "\n", - " }\n", + "model {\n", "\n", - " generated quantities {\n", + " L ~ lkj_corr_cholesky(3.0);\n", + " \n", + " mu ~ normal(0, .01);\n", + " \n", + " beta ~ multi_normal_cholesky(mu, L);\n", + " \n", + " for (i in 1:N)\n", + " thetas[i] ~ dirichlet(alphas[i]);\n", + " \n", + " for (i in 1:N)\n", + " post[i] ~ multinomial(alphas[i]);\n", + " \n", + "}\n", "\n", - " corr_matrix[n] Sigma;\n", - " Sigma = multiply_lower_tri_self_transpose(L);\n", + "generated quantities {\n", "\n", - " }\n", + " corr_matrix[n] Sigma;\n", + " Sigma = multiply_lower_tri_self_transpose(L);\n", + " \n", + "}\n", "\n", - " \"\"\"" + " \n", + "\"\"\"" ] }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 133, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_748691e7ccede7ca1d8cce075e5cc736 NOW.\n" + "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_18738fd7d802e41a14daf6d0e4aad6e0 NOW.\n" ] } ], @@ -3668,7 +3805,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 134, "metadata": {}, "outputs": [], "source": [ @@ -3679,7 +3816,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 135, "metadata": {}, "outputs": [ { @@ -3687,11 +3824,7 @@ "output_type": "stream", "text": [ "WARNING:pystan:n_eff / iter below 0.001 indicates that the effective sample size has likely been overestimated\n", - "WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed\n", - "WARNING:pystan:24 of 10000 iterations ended with a divergence (0.24 %).\n", - "WARNING:pystan:Try running with adapt_delta larger than 0.9 to remove the divergences.\n", - "WARNING:pystan:1 of 10000 iterations saturated the maximum tree depth of 10 (0.01 %)\n", - "WARNING:pystan:Run again with max_treedepth larger than 10 to avoid saturation\n" + "WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed\n" ] } ], @@ -3701,127 +3834,127 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 136, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Inference for Stan model: anon_model_748691e7ccede7ca1d8cce075e5cc736.\n", + "Inference for Stan model: anon_model_18738fd7d802e41a14daf6d0e4aad6e0.\n", "4 chains, each with iter=5000; warmup=2500; thin=1; \n", "post-warmup draws per chain=2500, total post-warmup draws=10000.\n", "\n", " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "mu[1] 5.003 0.1 2.855 1.046 2.879 4.434 6.604 11.845 818 1.005\n", - "mu[2] 5.881 0.078 2.698 1.905 3.854 5.43 7.537 12.034 1185 1.004\n", + "mu[1] -0.002 6.89e-5 0.01 -0.021 -0.008 -0.002 0.005 0.018 20619 1.0\n", + "mu[2] 0.002 7.23e-5 0.01 -0.018 -0.005 0.002 0.009 0.022 19414 1.0\n", "L[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "L[2,1] -0.01 0.009 0.375 -0.719 -0.284 -0.01 0.262 0.698 1841 1.002\n", + "L[2,1] 0.737 0.001 0.137 0.385 0.68 0.767 0.831 0.905 9163 1.0\n", "L[1,2] 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 nan nan\n", - "L[2,2] 0.921 0.002 0.101 0.627 0.889 0.962 0.992 1.0 2772 1.001\n", - "beta[1,1] 5.024 0.101 3.02 0.479 2.839 4.523 6.728 12.022 903 1.004\n", - "beta[2,1] 5.02 0.099 2.993 0.574 2.821 4.513 6.784 12.021 915 1.004\n", - "beta[3,1] 5.022 0.101 3.011 0.529 2.832 4.531 6.778 12.096 880 1.004\n", - "beta[4,1] 5.0 0.1 3.015 0.512 2.782 4.465 6.753 12.121 901 1.004\n", - "beta[5,1] 5.025 0.101 3.024 0.48 2.83 4.538 6.751 12.162 888 1.005\n", - "beta[6,1] 4.999 0.1 3.022 0.488 2.78 4.522 6.722 12.055 909 1.005\n", - "beta[7,1] 5.038 0.1 3.006 0.536 2.852 4.536 6.719 12.163 906 1.004\n", - "beta[8,1] 5.022 0.101 2.993 0.57 2.851 4.525 6.735 11.911 881 1.005\n", - "beta[9,1] 5.011 0.1 3.007 0.547 2.834 4.479 6.691 12.017 906 1.005\n", - "beta[10,1] 5.018 0.101 3.018 0.501 2.835 4.486 6.731 12.045 894 1.005\n", - "beta[11,1] 5.011 0.1 3.006 0.502 2.822 4.508 6.729 12.063 898 1.004\n", - "beta[12,1] 5.019 0.101 3.013 0.499 2.828 4.507 6.74 12.044 896 1.004\n", - "beta[13,1] 5.025 0.101 3.026 0.498 2.816 4.485 6.798 12.129 904 1.005\n", - "beta[14,1] 5.018 0.101 2.999 0.569 2.858 4.471 6.737 12.033 887 1.004\n", - "beta[15,1] 5.023 0.102 3.004 0.537 2.859 4.517 6.767 12.019 869 1.005\n", - "beta[16,1] 5.016 0.101 3.008 0.507 2.81 4.522 6.752 12.056 881 1.005\n", - "beta[1,2] 5.906 0.08 2.866 1.416 3.799 5.51 7.627 12.384 1298 1.003\n", - "beta[2,2] 5.894 0.079 2.865 1.42 3.779 5.485 7.629 12.336 1305 1.004\n", - "beta[3,2] 5.904 0.079 2.875 1.37 3.797 5.495 7.633 12.401 1322 1.003\n", - "beta[4,2] 5.893 0.079 2.864 1.384 3.815 5.494 7.57 12.29 1326 1.003\n", - "beta[5,2] 5.889 0.079 2.882 1.315 3.805 5.498 7.631 12.292 1340 1.003\n", - "beta[6,2] 5.89 0.079 2.864 1.378 3.792 5.513 7.603 12.369 1299 1.003\n", - "beta[7,2] 5.889 0.081 2.881 1.394 3.756 5.507 7.608 12.422 1271 1.003\n", - "beta[8,2] 5.883 0.079 2.86 1.354 3.798 5.489 7.602 12.333 1303 1.003\n", - "beta[9,2] 5.918 0.08 2.876 1.386 3.802 5.524 7.651 12.336 1293 1.003\n", - "beta[10,2] 5.899 0.079 2.855 1.366 3.824 5.483 7.624 12.327 1322 1.003\n", - "beta[11,2] 5.907 0.08 2.866 1.398 3.818 5.502 7.627 12.305 1293 1.003\n", - "beta[12,2] 5.888 0.079 2.865 1.364 3.804 5.485 7.608 12.298 1307 1.003\n", - "beta[13,2] 5.883 0.078 2.86 1.38 3.793 5.503 7.589 12.298 1329 1.003\n", - "beta[14,2] 5.899 0.078 2.852 1.356 3.849 5.494 7.616 12.25 1325 1.003\n", - "beta[15,2] 5.895 0.079 2.863 1.392 3.803 5.508 7.631 12.299 1307 1.003\n", - "beta[16,2] 5.896 0.079 2.872 1.37 3.81 5.514 7.618 12.353 1314 1.003\n", - "thetas[1,1] 0.27 5.28e-4 0.057 0.168 0.23 0.267 0.307 0.39 11696 1.0\n", - "thetas[2,1] 0.352 5.31e-4 0.057 0.244 0.313 0.352 0.39 0.468 11479 1.0\n", - "thetas[3,1] 0.377 3.1e-4 0.032 0.316 0.356 0.377 0.398 0.442 10414 1.0\n", - "thetas[4,1] 0.33 4.36e-4 0.046 0.242 0.298 0.329 0.36 0.421 10923 1.0\n", - "thetas[5,1] 0.343 5.62e-4 0.059 0.232 0.303 0.341 0.382 0.463 11015 1.0\n", - "thetas[6,1] 0.361 4.0e-4 0.042 0.281 0.332 0.361 0.39 0.444 11114 1.0\n", - "thetas[7,1] 0.389 3.38e-4 0.037 0.319 0.363 0.388 0.413 0.462 11817 1.0\n", - "thetas[8,1] 0.411 3.2e-4 0.033 0.347 0.389 0.411 0.434 0.479 10913 1.0\n", - "thetas[9,1] 0.429 7.62e-4 0.082 0.273 0.372 0.428 0.485 0.595 11605 1.0\n", - "thetas[10,1] 0.379 4.05e-4 0.041 0.298 0.35 0.379 0.407 0.46 10498 1.0\n", - "thetas[11,1] 0.381 3.7e-4 0.04 0.304 0.354 0.381 0.408 0.46 11637 1.0\n", - "thetas[12,1] 0.405 2.76e-4 0.029 0.349 0.385 0.405 0.424 0.462 11031 1.0\n", - "thetas[13,1] 0.352 6.3e-4 0.066 0.23 0.305 0.35 0.396 0.487 10946 1.0\n", - "thetas[14,1] 0.406 4.45e-4 0.046 0.316 0.375 0.405 0.436 0.496 10539 1.0\n", - "thetas[15,1] 0.397 3.59e-4 0.035 0.33 0.373 0.396 0.421 0.467 9605 1.0\n", - "thetas[16,1] 0.398 4.13e-4 0.042 0.317 0.37 0.397 0.426 0.485 10530 1.0\n", - "thetas[1,2] 0.73 5.28e-4 0.057 0.61 0.693 0.733 0.77 0.832 11696 1.0\n", - "thetas[2,2] 0.648 5.31e-4 0.057 0.532 0.61 0.648 0.687 0.756 11479 1.0\n", - "thetas[3,2] 0.623 3.1e-4 0.032 0.558 0.602 0.623 0.644 0.684 10414 1.0\n", - "thetas[4,2] 0.67 4.36e-4 0.046 0.579 0.64 0.671 0.702 0.758 10923 1.0\n", - "thetas[5,2] 0.657 5.62e-4 0.059 0.537 0.618 0.659 0.697 0.768 11015 1.0\n", - "thetas[6,2] 0.639 4.0e-4 0.042 0.556 0.61 0.639 0.668 0.719 11114 1.0\n", - "thetas[7,2] 0.611 3.38e-4 0.037 0.538 0.587 0.612 0.637 0.681 11817 1.0\n", - "thetas[8,2] 0.589 3.2e-4 0.033 0.521 0.566 0.589 0.611 0.653 10913 1.0\n", - "thetas[9,2] 0.571 7.62e-4 0.082 0.405 0.515 0.572 0.628 0.727 11605 1.0\n", - "thetas[10,2] 0.621 4.05e-4 0.041 0.54 0.593 0.621 0.65 0.702 10498 1.0\n", - "thetas[11,2] 0.619 3.7e-4 0.04 0.54 0.592 0.619 0.646 0.696 11637 1.0\n", - "thetas[12,2] 0.595 2.76e-4 0.029 0.538 0.576 0.595 0.615 0.651 11031 1.0\n", - "thetas[13,2] 0.648 6.3e-4 0.066 0.513 0.604 0.65 0.695 0.77 10946 1.0\n", - "thetas[14,2] 0.594 4.45e-4 0.046 0.504 0.564 0.595 0.625 0.684 10539 1.0\n", - "thetas[15,2] 0.603 3.59e-4 0.035 0.533 0.579 0.604 0.627 0.67 9605 1.0\n", - "thetas[16,2] 0.602 4.13e-4 0.042 0.515 0.574 0.603 0.63 0.683 10530 1.0\n", - "alphas[1,1] 0.945 0.002 0.104 0.617 0.945 0.989 0.999 1.0 3498 1.001\n", - "alphas[2,1] 0.947 0.002 0.098 0.64 0.944 0.989 0.999 1.0 3003 1.001\n", - "alphas[3,1] 0.946 0.002 0.1 0.629 0.944 0.989 0.999 1.0 2848 1.001\n", - "alphas[4,1] 0.945 0.002 0.1 0.625 0.942 0.989 0.999 1.0 3035 1.001\n", - "alphas[5,1] 0.946 0.002 0.102 0.618 0.944 0.989 0.999 1.0 3062 1.002\n", - "alphas[6,1] 0.945 0.002 0.103 0.62 0.942 0.989 0.999 1.0 3088 1.002\n", - "alphas[7,1] 0.947 0.002 0.1 0.631 0.945 0.989 0.999 1.0 2962 1.001\n", - "alphas[8,1] 0.947 0.002 0.101 0.639 0.945 0.989 0.999 1.0 2882 1.002\n", - "alphas[9,1] 0.946 0.002 0.102 0.634 0.945 0.989 0.999 1.0 3036 1.002\n", - "alphas[10,1] 0.946 0.002 0.103 0.623 0.945 0.989 0.999 1.0 3017 1.001\n", - "alphas[11,1] 0.946 0.002 0.1 0.623 0.944 0.989 0.999 1.0 3165 1.002\n", - "alphas[12,1] 0.946 0.002 0.1 0.622 0.944 0.989 0.999 1.0 3191 1.001\n", - "alphas[13,1] 0.947 0.002 0.1 0.622 0.944 0.989 0.999 1.0 3323 1.001\n", - "alphas[14,1] 0.947 0.002 0.098 0.638 0.946 0.989 0.999 1.0 3232 1.001\n", - "alphas[15,1] 0.947 0.002 0.1 0.631 0.946 0.989 0.999 1.0 2916 1.002\n", - "alphas[16,1] 0.946 0.002 0.102 0.624 0.943 0.989 0.999 1.0 3281 1.002\n", - "alphas[1,2] 0.975 8.6e-4 0.057 0.805 0.978 0.996 1.0 1.0 4359 1.001\n", - "alphas[2,2] 0.974 9.14e-4 0.059 0.805 0.978 0.996 1.0 1.0 4210 1.001\n", - "alphas[3,2] 0.974 8.81e-4 0.06 0.797 0.978 0.996 1.0 1.0 4605 1.001\n", - "alphas[4,2] 0.974 9.41e-4 0.06 0.8 0.978 0.996 0.999 1.0 4063 1.001\n", - "alphas[5,2] 0.973 9.58e-4 0.064 0.788 0.978 0.996 1.0 1.0 4418 1.001\n", - "alphas[6,2] 0.974 9.15e-4 0.06 0.799 0.978 0.996 1.0 1.0 4253 1.0\n", - "alphas[7,2] 0.974 9.77e-4 0.062 0.801 0.977 0.996 1.0 1.0 3983 1.0\n", - "alphas[8,2] 0.974 9.0e-4 0.059 0.795 0.978 0.996 1.0 1.0 4249 1.001\n", - "alphas[9,2] 0.974 9.09e-4 0.06 0.8 0.978 0.996 1.0 1.0 4352 1.001\n", - "alphas[10,2] 0.975 8.97e-4 0.058 0.797 0.979 0.996 1.0 1.0 4156 1.0\n", - "alphas[11,2] 0.975 9.06e-4 0.057 0.802 0.978 0.996 1.0 1.0 3927 1.001\n", - "alphas[12,2] 0.974 9.39e-4 0.061 0.796 0.978 0.996 1.0 1.0 4173 1.0\n", - "alphas[13,2] 0.974 9.04e-4 0.06 0.799 0.978 0.996 0.999 1.0 4448 1.0\n", - "alphas[14,2] 0.974 9.39e-4 0.061 0.795 0.979 0.996 1.0 1.0 4174 1.001\n", - "alphas[15,2] 0.974 9.53e-4 0.06 0.801 0.978 0.996 1.0 1.0 3975 1.001\n", - "alphas[16,2] 0.974 9.52e-4 0.063 0.797 0.978 0.996 1.0 1.0 4340 1.001\n", + "L[2,2] 0.649 0.001 0.128 0.425 0.556 0.641 0.733 0.923 14384 1.0\n", + "beta[1,1] -0.446 0.01 0.927 -2.209 -1.069 -0.46 0.17 1.377 8129 1.0\n", + "beta[2,1] -0.284 0.01 0.946 -2.162 -0.916 -0.286 0.359 1.555 9166 1.0\n", + "beta[3,1] -0.245 0.01 0.941 -2.065 -0.883 -0.243 0.408 1.581 8585 1.0\n", + "beta[4,1] -0.321 0.01 0.937 -2.123 -0.957 -0.322 0.322 1.498 9479 1.0\n", + "beta[5,1] -0.283 0.01 0.941 -2.171 -0.918 -0.284 0.375 1.518 8696 1.0\n", + "beta[6,1] -0.265 0.01 0.939 -2.115 -0.884 -0.263 0.351 1.61 8060 1.0\n", + "beta[7,1] -0.204 0.01 0.947 -2.054 -0.853 -0.216 0.443 1.626 9344 1.0\n", + "beta[8,1] -0.168 0.01 0.94 -2.011 -0.804 -0.169 0.465 1.698 9307 1.0\n", + "beta[9,1] -0.119 0.01 0.953 -1.98 -0.77 -0.116 0.53 1.732 9650 1.0\n", + "beta[10,1] -0.228 0.01 0.957 -2.079 -0.885 -0.225 0.423 1.66 9080 1.0\n", + "beta[11,1] -0.246 0.01 0.944 -2.14 -0.88 -0.235 0.382 1.599 8914 1.001\n", + "beta[12,1] -0.195 0.01 0.924 -2.038 -0.811 -0.191 0.427 1.626 8675 1.0\n", + "beta[13,1] -0.273 0.01 0.939 -2.125 -0.913 -0.265 0.36 1.57 9294 1.0\n", + "beta[14,1] -0.196 0.01 0.935 -2.009 -0.833 -0.19 0.429 1.649 8743 1.0\n", + "beta[15,1] -0.188 0.01 0.943 -2.044 -0.827 -0.175 0.462 1.626 8428 1.0\n", + "beta[16,1] -0.195 0.01 0.939 -2.065 -0.823 -0.189 0.43 1.633 8419 1.0\n", + "beta[1,2] 0.428 0.01 0.93 -1.37 -0.198 0.42 1.053 2.24 8377 1.001\n", + "beta[2,2] 0.275 0.01 0.943 -1.607 -0.36 0.281 0.909 2.112 9178 1.0\n", + "beta[3,2] 0.243 0.01 0.943 -1.604 -0.4 0.242 0.89 2.073 8607 1.0\n", + "beta[4,2] 0.339 0.01 0.932 -1.487 -0.293 0.334 0.972 2.161 9419 1.0\n", + "beta[5,2] 0.302 0.01 0.94 -1.585 -0.325 0.312 0.954 2.114 8660 1.0\n", + "beta[6,2] 0.276 0.01 0.941 -1.598 -0.355 0.281 0.898 2.156 8127 1.0\n", + "beta[7,2] 0.226 0.01 0.947 -1.64 -0.419 0.221 0.873 2.084 9263 1.0\n", + "beta[8,2] 0.179 0.01 0.938 -1.66 -0.455 0.179 0.806 2.038 9367 1.0\n", + "beta[9,2] 0.126 0.01 0.955 -1.741 -0.512 0.121 0.781 2.016 9677 1.0\n", + "beta[10,2] 0.24 0.01 0.959 -1.622 -0.418 0.242 0.898 2.142 9040 1.0\n", + "beta[11,2] 0.218 0.01 0.944 -1.664 -0.422 0.227 0.848 2.068 8924 1.001\n", + "beta[12,2] 0.182 0.01 0.923 -1.649 -0.424 0.188 0.803 1.979 8642 1.0\n", + "beta[13,2] 0.261 0.01 0.938 -1.591 -0.371 0.268 0.9 2.104 9339 1.0\n", + "beta[14,2] 0.168 0.01 0.937 -1.666 -0.464 0.17 0.796 2.029 8753 1.0\n", + "beta[15,2] 0.217 0.01 0.943 -1.641 -0.426 0.228 0.865 2.039 8461 1.0\n", + "beta[16,2] 0.198 0.01 0.942 -1.704 -0.426 0.196 0.826 2.018 8475 1.0\n", + "thetas[1,1] 0.294 0.002 0.324 2.72e-6 0.013 0.148 0.536 0.979 17589 1.0\n", + "thetas[2,1] 0.37 0.002 0.346 5.09e-5 0.04 0.27 0.684 0.992 20046 1.0\n", + "thetas[3,1] 0.381 0.002 0.347 1.07e-4 0.046 0.286 0.7 0.992 19933 1.0\n", + "thetas[4,1] 0.347 0.002 0.339 3.49e-5 0.03 0.229 0.639 0.988 19925 1.0\n", + "thetas[5,1] 0.357 0.002 0.344 2.64e-5 0.032 0.238 0.661 0.991 19601 1.0\n", + "thetas[6,1] 0.367 0.002 0.342 7.21e-5 0.04 0.264 0.673 0.99 19089 1.0\n", + "thetas[7,1] 0.393 0.003 0.347 1.1e-4 0.056 0.311 0.718 0.993 17961 1.0\n", + "thetas[8,1] 0.41 0.002 0.347 2.1e-4 0.072 0.341 0.736 0.996 19874 1.0\n", + "thetas[9,1] 0.439 0.003 0.356 2.39e-4 0.081 0.386 0.79 0.997 19601 1.0\n", + "thetas[10,1] 0.386 0.002 0.348 9.84e-5 0.046 0.291 0.703 0.993 21182 1.0\n", + "thetas[11,1] 0.381 0.002 0.345 1.03e-4 0.051 0.286 0.695 0.992 20470 1.0\n", + "thetas[12,1] 0.405 0.002 0.35 1.62e-4 0.061 0.322 0.731 0.996 22212 1.0\n", + "thetas[13,1] 0.374 0.002 0.344 6.01e-5 0.046 0.271 0.691 0.991 21806 1.0\n", + "thetas[14,1] 0.414 0.003 0.346 2.52e-4 0.076 0.347 0.738 0.994 18196 1.0\n", + "thetas[15,1] 0.401 0.002 0.347 1.82e-4 0.063 0.319 0.726 0.994 21444 1.0\n", + "thetas[16,1] 0.404 0.002 0.349 2.06e-4 0.059 0.324 0.733 0.994 20330 1.0\n", + "thetas[1,2] 0.706 0.002 0.324 0.021 0.464 0.852 0.987 1.0 17589 1.0\n", + "thetas[2,2] 0.63 0.002 0.346 0.008 0.316 0.73 0.96 1.0 20046 1.0\n", + "thetas[3,2] 0.619 0.002 0.347 0.008 0.3 0.714 0.954 1.0 19933 1.0\n", + "thetas[4,2] 0.653 0.002 0.339 0.012 0.361 0.771 0.97 1.0 19925 1.0\n", + "thetas[5,2] 0.643 0.002 0.344 0.009 0.339 0.762 0.968 1.0 19601 1.0\n", + "thetas[6,2] 0.633 0.002 0.342 0.01 0.327 0.736 0.96 1.0 19089 1.0\n", + "thetas[7,2] 0.607 0.003 0.347 0.007 0.282 0.689 0.944 1.0 17961 1.0\n", + "thetas[8,2] 0.59 0.002 0.347 0.004 0.264 0.659 0.928 1.0 19874 1.0\n", + "thetas[9,2] 0.561 0.003 0.356 0.003 0.21 0.614 0.919 1.0 19601 1.0\n", + "thetas[10,2] 0.614 0.002 0.348 0.007 0.297 0.709 0.954 1.0 21182 1.0\n", + "thetas[11,2] 0.619 0.002 0.345 0.008 0.305 0.714 0.949 1.0 20470 1.0\n", + "thetas[12,2] 0.595 0.002 0.35 0.004 0.269 0.678 0.939 1.0 22212 1.0\n", + "thetas[13,2] 0.626 0.002 0.344 0.009 0.309 0.729 0.954 1.0 21806 1.0\n", + "thetas[14,2] 0.586 0.003 0.346 0.006 0.262 0.653 0.924 1.0 18196 1.0\n", + "thetas[15,2] 0.599 0.002 0.347 0.006 0.274 0.681 0.937 1.0 21444 1.0\n", + "thetas[16,2] 0.596 0.002 0.349 0.006 0.267 0.676 0.941 1.0 20330 1.0\n", + "alphas[1,1] 0.298 5.53e-4 0.057 0.192 0.258 0.296 0.335 0.414 10514 1.0\n", + "alphas[2,1] 0.366 5.42e-4 0.055 0.26 0.328 0.365 0.402 0.476 10223 1.0\n", + "alphas[3,1] 0.381 3.0e-4 0.031 0.321 0.36 0.38 0.402 0.442 10608 1.0\n", + "alphas[4,1] 0.342 4.62e-4 0.046 0.255 0.31 0.342 0.373 0.433 9895 1.0\n", + "alphas[5,1] 0.36 5.95e-4 0.057 0.252 0.32 0.358 0.398 0.475 9255 1.0\n", + "alphas[6,1] 0.369 3.92e-4 0.041 0.29 0.341 0.369 0.396 0.45 10708 1.0\n", + "alphas[7,1] 0.395 3.6e-4 0.036 0.324 0.37 0.394 0.419 0.468 10224 1.0\n", + "alphas[8,1] 0.415 3.26e-4 0.032 0.352 0.393 0.414 0.436 0.478 9843 1.001\n", + "alphas[9,1] 0.44 7.1e-4 0.076 0.297 0.389 0.439 0.492 0.593 11337 1.0\n", + "alphas[10,1] 0.386 3.84e-4 0.04 0.309 0.358 0.385 0.413 0.466 11077 1.0\n", + "alphas[11,1] 0.387 3.81e-4 0.039 0.312 0.36 0.386 0.413 0.463 10355 1.0\n", + "alphas[12,1] 0.407 2.82e-4 0.028 0.352 0.388 0.407 0.426 0.464 10136 1.0\n", + "alphas[13,1] 0.372 6.03e-4 0.063 0.253 0.329 0.37 0.413 0.499 10768 1.0\n", + "alphas[14,1] 0.411 4.21e-4 0.044 0.328 0.38 0.41 0.441 0.498 10940 1.0\n", + "alphas[15,1] 0.401 3.47e-4 0.035 0.333 0.378 0.401 0.423 0.469 9937 1.0\n", + "alphas[16,1] 0.404 4.25e-4 0.042 0.322 0.375 0.403 0.432 0.488 9933 1.001\n", + "alphas[1,2] 0.702 5.53e-4 0.057 0.586 0.665 0.704 0.742 0.808 10514 1.0\n", + "alphas[2,2] 0.634 5.42e-4 0.055 0.524 0.598 0.635 0.672 0.74 10223 1.0\n", + "alphas[3,2] 0.619 3.0e-4 0.031 0.558 0.598 0.62 0.64 0.679 10608 1.0\n", + "alphas[4,2] 0.658 4.62e-4 0.046 0.567 0.627 0.658 0.69 0.745 9895 1.0\n", + "alphas[5,2] 0.64 5.95e-4 0.057 0.525 0.602 0.642 0.68 0.748 9255 1.0\n", + "alphas[6,2] 0.631 3.92e-4 0.041 0.55 0.604 0.631 0.659 0.71 10708 1.0\n", + "alphas[7,2] 0.605 3.6e-4 0.036 0.532 0.581 0.606 0.63 0.676 10224 1.0\n", + "alphas[8,2] 0.585 3.26e-4 0.032 0.522 0.564 0.586 0.607 0.648 9843 1.001\n", + "alphas[9,2] 0.56 7.1e-4 0.076 0.407 0.508 0.561 0.611 0.703 11337 1.0\n", + "alphas[10,2] 0.614 3.84e-4 0.04 0.534 0.587 0.615 0.642 0.691 11077 1.0\n", + "alphas[11,2] 0.613 3.81e-4 0.039 0.537 0.587 0.614 0.64 0.688 10355 1.0\n", + "alphas[12,2] 0.593 2.82e-4 0.028 0.536 0.574 0.593 0.612 0.648 10136 1.0\n", + "alphas[13,2] 0.628 6.03e-4 0.063 0.501 0.587 0.63 0.671 0.747 10768 1.0\n", + "alphas[14,2] 0.589 4.21e-4 0.044 0.502 0.559 0.59 0.62 0.672 10940 1.0\n", + "alphas[15,2] 0.599 3.47e-4 0.035 0.531 0.577 0.599 0.622 0.667 9937 1.0\n", + "alphas[16,2] 0.596 4.25e-4 0.042 0.512 0.568 0.597 0.625 0.678 9933 1.001\n", "Sigma[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "Sigma[2,1] -0.01 0.009 0.375 -0.719 -0.284 -0.01 0.262 0.698 1841 1.002\n", - "Sigma[1,2] -0.01 0.009 0.375 -0.719 -0.284 -0.01 0.262 0.698 1841 1.002\n", - "Sigma[2,2] 1.0 9.12e-19 8.83e-17 1.0 1.0 1.0 1.0 1.0 9356 1.0\n", - "lp__ -1.45e3 0.097 5.25 -1.46e3 -1.45e3 -1.45e3 -1.44e3 -1.44e3 2913 1.0\n", + "Sigma[2,1] 0.737 0.001 0.137 0.385 0.68 0.767 0.831 0.905 9163 1.0\n", + "Sigma[1,2] 0.737 0.001 0.137 0.385 0.68 0.767 0.831 0.905 9163 1.0\n", + "Sigma[2,2] 1.0 4.61e-19 4.36e-17 1.0 1.0 1.0 1.0 1.0 8966 1.0\n", + "lp__ -1.46e3 0.093 5.513 -1.47e3 -1.46e3 -1.46e3 -1.45e3 -1.45e3 3519 1.001\n", "\n", - "Samples were drawn using NUTS at Fri Mar 27 17:07:56 2020.\n", + "Samples were drawn using NUTS at Mon Mar 30 17:17:28 2020.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -3834,16 +3967,54 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 151, + "metadata": {}, + "outputs": [], + "source": [ + "samples2 = fit2.extract(permuted=True)['beta']" + ] + }, + { + "cell_type": "code", + "execution_count": 152, "metadata": {}, "outputs": [], "source": [ - "samples2 = fit2.extract(permuted=True)['alphas']" + "samples2 = softmax(samples2, axis=2)" + ] + }, + { + "cell_type": "code", + "execution_count": 153, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0.32363442, 0.67636558],\n", + " [0.39600414, 0.60399586],\n", + " [0.36065595, 0.63934405],\n", + " [0.32982244, 0.67017756],\n", + " [0.35618454, 0.64381546],\n", + " [0.38430935, 0.61569065],\n", + " [0.402073 , 0.597927 ],\n", + " [0.3404694 , 0.6595306 ],\n", + " [0.41749458, 0.58250542],\n", + " [0.32197246, 0.67802754]])" + ] + }, + "execution_count": 153, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "samples2[:10, 4, :]" ] }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 154, "metadata": {}, "outputs": [], "source": [ @@ -3857,7 +4028,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 155, "metadata": {}, "outputs": [ { @@ -3866,7 +4037,7 @@ "(16, 10000)" ] }, - "execution_count": 42, + "execution_count": 155, "metadata": {}, "output_type": "execute_result" } @@ -3878,7 +4049,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 156, "metadata": {}, "outputs": [ { @@ -3891,12 +4062,12 @@ { "data": { "text/plain": [ - "array([0.93894789, 0.96938789, 0.81823725, 0.96043972, 0.98275602,\n", - " 0.49781907, 0.93636218, 0.80706103, 0.99502264, 0.77100402,\n", - " 0.79591668, 0.83848738, 0.40896394, 0.9346735 , 0.77259644])" + "array([-0.16317686, -0.13144722, -0.15993167, -0.13796937, -0.15175436,\n", + " -0.13930074, -0.13661417, -0.1265063 , -0.11742489, -0.18464812,\n", + " -0.15224667, -0.16219158, -0.11969181, -0.16735025, -0.13077128])" ] }, - "execution_count": 43, + "execution_count": 156, "metadata": {}, "output_type": "execute_result" } @@ -3909,14 +4080,14 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 157, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxsAAAHwCAYAAADOwnKhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAdnElEQVR4nO3deYzU9f348dfsgKiwINqo0VIFdGlwQWmsWjyopEpt0Hr8IlpLU8/WxqtWBVOrJGqtR20VPItaAalnNVKqrdYG20ZjjbcBdFlsFfBAZbk8lmV+f/iFunIz+2Jm2ccj2T/8zHx2X8Pbhc9z5vOZKZRKpVIAAAC0sZpKDwAAAGyexAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJCi0/re8cMPP8yco2r16NEjmpqaKj0GZbCG7Z81bP+sYftnDds/a9j+VdMa9uzZc73u55WNdaip8UfU3lnD9s8atn/WsP2zhu2fNWz/2uMatr+JAQCAdkFsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkKJTpQcAAIBqVSgUoqbG8/MbS2wAAMBqFAqFqK3tEcViodKjRERES0spCoVClEqlSo+y3sQGAACsRk1NTRSLhbjgwkXR2NhS0Vn69CnGVVfURk1NTbS0VHaWDSE2AABgLRobW2L6jPZzgF9NnIAGAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrEBAACk6FTpAQAAYIVCoRA1NdXxfHi1zNGeiQ0AAKpCoVCI2toeUSwWKj0KbURsAABQFWpqaqJYLMQFFy6KxsaWSo8TBx7QOc4+s2ulx2jXxAYAAFWlsbElps+ofGz07l2s9AjtnhPRAACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFGIDAABIITYAAIAUYgMAAEghNgAAgBRiAwAASCE2AACAFJ0qPQAAAJVVKBSipqbyz0FXwwy0LbEBANCBFQqFqK3tEcViodKjsBkSGwAAHVhNTU0Ui4W44MJF0djYUtFZDjygc5x9ZteKzkDbEhsAAERjY0tMn1HZ2Ojdu1jRn0/bc2IcAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJBCbAAAACk6VXoAAICOqFAoRE3Npn3et1gsrrJtU89AxyI2AAA2sUKhELW1PaJYLGzSn9u9e/dN+vNAbAAAbGI1NTVRLBbiggsXRWNjS0VnOfCAznH2mV0rOgObL7EBAFAhjY0tMX1GZWOjd+9VT62CtuIkPQAAIIXYAAAAUogNAAAghdgAAABSiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAghdgAAABSiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAghdgAAABSdKr0AAAAm0qhUIiamso/11oNM8CmIDYAgA6hUChEbW2PKBYLlR4FOgyxAQB0CDU1NVEsFuKCCxdFY2NLRWc58IDOcfaZXSs6A2wKYgMA6FAaG1ti+ozKxkbv3sWK/nzYVJwwCAAApBAbAABACrEBAACkEBsAAEAKsQEAAKQQGwAAQAqxAQAApPA5GwBAmkKhEDU11fHcZrXMAR2J2AAAUhQKhait7RHFYqHSowAVIjYAgBQ1NTVRLBbiggsXRWNjZT+xOyLiwAM6x9lndq30GNChiA0AIFVjY0tMn1H52Ojdu1jpEaDDcfIiAACQQmwAAAApxAYAAJBCbAAAACnEBgAAkEJsAAAAKcQGAACQQmwAAAApxAYAAJDCJ4gDwGamUChETU3bP59YLG7YJ3BnzAC0L2IDADYjhUIhamt7RLFYaPPv3b179zb/nsDmTWwAwGakpqYmisVCXHDhomhsbKnoLAce0DnOPrNrRWcAKktsAEAbyDp1aUOtmKGxsSWmz6hsbPTuvWGnXQGbH7EBAGXKPHUJoD0TGwBQJqcuAaye2ACANuLUJYDWKn9yKQAAsFnyygYA7Va1XZQNQGtiA4B2yUXZANVPbADQLrkoG6D6iQ0A2jUXZQNUL7EBwAbZ2OskisW2PSB3nQRA9RMbAKy3cq6T6N69e8JEAFQzsQHAenOdBAAbQmwAVLlqeXvXiM9miXCdBADrR2wAVLFqe3vXlpZSpUcAoB0RGwCrUS2vJlTTaUt9+hTjqitqKzoDAO2L2AD4gmp7NSGiOk5bAoANJTaAqrG2VxPa+m1T16aaXk1wETQA7ZnYoEOollNiIiJKpdLKi2yrQbXMUygUYuutu63x1YRKvG1qNbya4CJoANqzdhkbm/rAcW3PqFbLgdoK1TRPNc1STafEtLSUqmaWiOqb5+Zbl8bcucsrOsPAAcX4f8dsFX36VP5A/8s7f/Z3XTXM8vkZqmGeavqzMcvqVdMsEdU1j1lWr5pmiaiueaphho1RKJVK3loEAABoc9VxXgkAALDZERsAAEAKsQEAAKQQGwAAQAqxAQAApBAbAABACrHxf+666644/PDDY8CAAbHPPvvEGWecEbNmzVrv/R999NE45phjYuDAgbHvvvvGcccdF48++mjixB3b/Pnz46KLLooDDjgg6uvr41vf+lb89re/jU8//XSd+y5evDiuvPLKGDp0aNTX18eQIUPisssui4ULF26CyVmh3DW86qqr4pvf/GbU19fH0KFD42c/+1n85z//2QSTs0I5a/hFF110UfTr1y/Gjh2bMClrUu4aPv300zFy5MgYNGhQfP3rX4+TTjopXnzxxeSp+bxy1nDOnDkxevTo2H///WOPPfaI/fffP84999xoaGjYBJPzeR999FFceOGF0a9fvxg9evR679fc3Bw33HBDDBs2LOrr62Pw4MExatSoeOeddxKn3TA+ZyMifvOb38TNN98cQ4cOjWHDhsWCBQvijjvuiI8//jjuv//+6NWr11r3v+666+LGG2+MffbZJ4YPHx7Lli2L++67L6ZPnx5jxoyJ448/fhM9ko5h6dKlcdRRR8U777wTJ554YvTu3TtefPHFmDx5chx88MFx4403rnHf5cuXx8iRI+OFF16IE044Ierr62PWrFlxxx13xO677x533313dO7ceRM+mo6pnDVcsmRJHHvssfHf//43RowYEfX19TF79uyYOHFidOrUKaZMmRI77LDDJnw0HVM5a/hFzz//fBx//PFRKpXijDPOiDPPPDNxclYodw0fe+yxOOuss6K+vj6OPfbYWLJkSdx+++2xcOHCuOeee6Jfv36b6JF0XOWs4ZtvvhlHH3101NTUxPe///3o1atXvPXWWzFp0qT45JNP4p577om6urpN+Gg6rtdeey3OOeecmDdv3so1/dWvfrVe+5533nkxZcqUOProo+Mb3/hGzJs3L8aPHx+1tbXx0EMPRffu3ZOnXw+lDu7NN98s9e/fv3TKKae02v7666+XvvrVr5bOOeecde7fr1+/0gknnFBqaWlZuX3RokWl/fffv7T33nuXPv3005TZO6obbrihVFdXV5o6dWqr7VdffXWprq6uNG3atDXu+9BDD5Xq6upKt956a6vtkydPLtXV1ZUmT56cMjOtlbOGY8eOLdXV1ZXuvffeVtsfffTRUl1dXWnMmDEpM9NaOWv4ec3NzaUjjjiidMQRR5Tq6upK119/fca4rEY5a7h06dLS4MGDS0ceeWTpk08+Wbl9xowZpf322680fvz4tLn5n3LW8LzzzivV1dWVnn766Vbbn3766VJdXV3p/PPPT5mZ1t5///3SwIEDSyNGjCg9++yzpbq6utKoUaPWa99///vfpbq6utIll1zSavu0adNKdXV1pauvvjph4g3X4U+j+vOf/xzLli2L733ve62277bbbrH33nvH448/HkuXLl3j/k1NTTF8+PA45ZRToqbmf3+c3bp1i0GDBsXChQtj3rx5afN3RA8//HBsu+228e1vf7vV9hWvIE2ZMmWt+xaLxTjuuONabT/66KOjS5cua92XtlPOGvbo0SOGDRsWhx9+eKvt+++/f0REzJw5s42nZXXKWcPPmzhxYjQ0NMRPf/rTNp+RtStnDZ944omYP39+nHbaabHFFlus3N6vX7946qmn4uSTT84ZmlbKWcO33norIiL22muvVttX/PeK28nV3Nwcxx57bEycOHGDX5V/+OGHIyJWOYY96KCDYuedd66aY5oOHxsvv/xyREQMHDhwldsGDBgQn376abz22mtr3H+PPfaIa665Jr75zW+uctvixYujUCjEtttu22bzdnSLFy+O2bNnR319fau4i4jYeeedY9ttt125pqvzyiuvxK677hq1tbWttnfp0iXq6uri1VdfjeXLl6fMzmfKXcORI0fG9ddfH1tuuWWr7UuWLImIiC996UttPzStlLuGK7zzzjtx/fXXxw9+8IPYbbfdssZlNcpdw6eeeioiIgYPHhwRn52iujHX6rDxyl3Dvn37RkTE7NmzW22fO3duRET07t27jSdmdXbYYYf4+c9/vlGncL/yyiux1VZbxe67777KbQMGDIi333473nvvvbYYsywdPjbmzJkTnTt3ju22226V23bccceI2Li6nzlzZjzzzDOxzz77RLdu3cqek8/MmTMnIv63Nl+04447rnG9Fi9eHAsWLFjrvh9//HHMnz+/bYZltcpZw7WZMGFCREQMHTp044djvbTVGl5++eXRo0ePOOOMM9p0Ptat3DVsbGyMHj16xPvvvx8nn3xyDBgwIAYMGBDDhw+Pxx57LGVmWit3DU899dTo2bNnjBo1Kp5//vn44IMP4uWXX47Ro0fHNttsE6ecckrK3LSdOXPmxA477BCFQmGV28o5hm1rnSo9QIaWlpZ444031nm/7bffPpYsWbLKM6QrbLXVVhERaz2NanU+/PDDOOuss6JYLMaoUaM2aF/WbsWz12tasy233DKam5ujubl5lWcJ1mffiA1fbzZMOWu4Jn/729/itttui7322muV06toe22xhtOmTYu//OUvMXbs2OjatWt8+OGHafOyqnLXcMGCBRHx2QHrsGHDYuTIkTFnzpy46aab4swzz4wJEybEPvvsk/cAKHsNd9lll7jnnnvijDPOaHVqcd++fWPSpEle2WgHlixZssbYrKZjms0yNpqamuI73/nOOu93xRVXRESstggjIkr/90Zda7p9debNmxcnn3xyvPXWW3HNNdfEHnvssd77sv7KWbO2XG82Xlutw5/+9KcYPXp07LLLLnHDDTdEsVhssxlZu41dw08++SQuvfTSGDJkSBx66KFp87FuG7uGzc3N0dTUFD/+8Y/jpJNOWrl93333jcMPPzyuuuqquP/++9t+YFaxsWs4b968OP3002PBggUxevTo6Nu3b8yfPz9uueWWOPHEE+OWW25xDNMOrOvfymo4ptksY6N79+5x1113rfN+vXv3jkmTJq18KfKLVtRg165d1+vnzpw5M0477bRoamqKcePGxcEHH7z+Q7NeVpyStqZS/+ijj6JLly7RqdOq/2uvz74R67/ebJxy1vCL7rjjjrjyyiujf//+8bvf/W61p0PS9spdw5tuuinefffduOOOO9JmZO3KXcMVr/wfcsghrbbvtttu0b9//3j55Zdj8eLFTiNOVO4aXnnllfHGG2/EQw891Ootbg8++OA45JBD4uKLL44HHnig7QenzXTt2nWN67+hx7CZNsvY6NSpU+y9997rdd9evXrFq6++GvPnz1/lwtIVEbLLLrus8/vMmDEjRo4cGVtssUVMmjQp6uvrN3xw1unLX/5yFAqFePvtt1d7+9y5c9e4Xl27do3ttttujfvOmTMnunXr5oA1WTlr+Hnjxo2LsWPHxtChQ+Paa69defBDvnLWcPbs2TF+/PgYOXJkdO7ceeX3WHGt1OLFi+Ptt9+OHj16WNNE5f4e7rTTTjFz5szVnp6z4u/QJUuWiI1E5a7h008/Hb169VrlszR69uwZe+65Z/zrX/+KJUuWVMXBKqvXq1evaGhoiFKptMorGBtyDJutw18gPmjQoIiIeOGFF1a57bnnnova2trVXuX/eW+99Vaccsop0bVr1/jDH/4gNBJtvfXWUVdXFy+//HK0tLS0uu3111+PhQsXxte+9rU17r/nnnvGG2+8EU1NTa22L1q0KBoaGmLQoEFV8ZLj5qzcNYyIuPvuu2Ps2LHx3e9+N8aNG+egdBMrZw2ff/75aG5ujttvvz2GDBmy8mvEiBEREfH73/8+hgwZEo888kj64+jIyv09XPH2qDNmzFjltrlz50bnzp2jZ8+ebTs0rZS7hh9//HE0Nzev9rZPPvkkSqWSdxircnvttVd89NFHq7zl+/Lly+PFF1+MPn36xDbbbFOh6f6nw8fGYYcdFltssUVMnjy51fbnnnsuXnnllRg+fPjK9xBvbm6OWbNmtfoI+FKpFOeff34sXrw4xo8fH1/5ylc26fwd0VFHHRULFiyIqVOnttq+4t2IjjnmmIiI+OCDD2LWrFmtXmI86qijYvny5aus91133RXLli2Lo48+Onl6Ispbw9dffz0uu+yyGDx4cPzyl790jUaFbOwaDh48OG6++eZVvi6//PKIiBg+fHjcfPPNK99SlTzl/B4OHz48OnfuHLfddlssW7Zs5fZnn302Xn/99Rg8eHCrz98gRzlrOHDgwJgzZ0689NJLrfZ9991346WXXopdd91VMFaRRYsWxaxZs2LhwoUrtx155JERETFp0qRW9506dWrMnz+/ao5pimPGjBlT6SEqqVu3blEsFuPee++NV199NZYtWxb//Oc/49JLL41tt9221ekZ8+bNi2HDhsXcuXPjsMMOi4j/vQvO4MGDY8cdd4yGhoZVvrbaaqvq+Lj4zUT//v3j73//ezz44IPx6aefxrvvvht33nln3H///XH88cevfIZ0/PjxcfbZZ8egQYNWvqtG375944UXXogHHnggmpqaYsGCBfHggw/GrbfeGgcddFCce+65lXxoHUY5a3jxxRdHQ0NDjBgxIt5///3V/s75zIZ8G7uG3bp1i969e6/y1b1795gwYUIceuihMWLECKffbALl/B6u+Dftj3/8Yzz//PMREfH444/HpZdeGp06dYprr73WZ95sAuWsYZ8+fWLKlCkxderU+Pjjj2PevHnxj3/8I8aMGRNNTU1x2WWXRZ8+fSr58DqEhoaGeOaZZ6KhoSFmzJgR06ZNi+7du8fWW28dDQ0NMWfOnNh1111j6tSpcdJJJ8WOO+648rPhtt9++3jvvffi3nvvjblz58bSpUvjr3/9a/z617+Ourq6uOyyy6riCbnN8pqNDfWjH/0otttuu5g4cWL84he/iK5du6488FzXB/JNnz49IiKefPLJePLJJ1d7nyuuuKJq6nJz0KVLl7jzzjvjuuuui/vvvz8+/PDD6NWrV4waNSp++MMfrnP/G264IW666aaYMmVKTJ48Obbffvs49dRT4/TTT88fnogobw1X/M5dc801a7yPTxHPV+7vIZVX7hr+5Cc/iZ122ikmTJgQF198cXTp0iX222+/OOecc9Z5+jFto5w13HPPPePee++NG2+8Me6+++5oamqKbt26xcCBA+Oqq65a72tfKc8jjzwS48aNa7XtmWeeiWeeeSYiPvuAxieeeGKN+19yySWxyy67xH333RdTpkyJnj17xjHHHBNnnXVW1by6WCiteG80AACANtThr9kAAAByiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAghdgAAABSiA0AACCF2AAAAFKIDQAAIIXYAAAAUogNAAAgxf8Hvfp4vrAOSPIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQpUlEQVR4nO3dX2yddf3A8Q9bR9f9KRhyMCFjbvzNXKKG4CYOYzBCB60GJUvAO0IiN6KAkTQxBAWHVaLeaOIiEP4MErgALqgEEBTGGFB1MdGkhAUbF5ItBHHdkbas8+vFwvlRGfuV7Xl6Tj97ve7On53vd5+153l3zzmnJ5RSSgAAJLag3RsAAKib4AEA0hM8AEB6ggcASE/wAADpCR4AIL2uI9345pv752QTy5Z1R7M5NSdrZWeW1THLaplndcyyWuZZnXbPstFY/qG3dcT/8HR1LWz3FtIwy+qYZbXMszpmWS3zrE4nz7IjggcAoE6CBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPS62r0BoLMs6+2Jnu56nhoajeURETExNR3N8Yla1gA4HMEDzNDT3RWrBodrXWNsqD+ata4AMJNTWgBAeoIHAEjPKS1gzk0eONh6PU+dvFYIeI/gAebc4kULa3+dUITXCgH/xyktACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpdbV7A8DsLOvtiZ5u37IAR8OzJ8wTPd1dsWpwuPZ1xob6a18DYK45pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkF5XuzcAUJfJAwej0Vhe6xoTU9PRHJ+odQ3g2AkeIK3FixbGqsHhWtcYG+qPZq0rAFVwSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS62r3BiCDZb090dPt2wmgU3mGhgr0dHfFqsHhWtcYG+qv9fEBMnNKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCk19XuDQDMZ5MHDkajsbzWNSampqM5PlHrGpCd4AE4BosXLYxVg8O1rjE21B/NWleA/JzSAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNfV7g1A3Zb19kRP99F9qTcayyveDQDtIHhIr6e7K1YNDte6xthQf62PD8CxcUoLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQXle7NwDAkU0eOBiNxvIZ1/3v5SpMTE1Hc3yi8seFTiB4ADrc4kULY9XgcO3rjA31R7P2VaA9nNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS80nLtM2y3p7o6fYlCED9HG1om57urjn7uHwAjm9OaQEA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKTX1e4NANAZJg8cjEZjea1rTExNR3N8otY14HAEDwAREbF40cJYNThc6xpjQ/3RrHUFODyntACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnl8twWEt6+2Jnm5fHgDk4IjGYfV0d83J79QBgLnglBYAkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNfV7g0AcPyYPHAwGo3lta4xMTUdzfGJWtdg/hE8AMyZxYsWxqrB4VrXGBvqj2atKzAfOaUFAKQneACA9AQPAJCe1/DMQ8t6e6Kn+8P/6ep+QSAAzDeCZx7q6e6akxf9AUAWTmkBAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASM8HD1bo//sEZADqN3ng4Ef+xPmj+YT6ianpaI5PfOQ/R3s4OldoLj4BOcKnIAMcyeJFC+fsubhZ+ypUxSktACA9wQMApCd4AID0BA8AkN5x86Jl76ACoEpH826wj8o7warTEQVwMI7uLYEfVd2v2vfuKYDjx1y8G2z0to2iqiInlFJKuzcBAFAnr+EBANITPABAeoIHAEhvToJnx44d8bWvfS36+vri6quvjj179hz2fn/6059i06ZNcemll8bXv/71GBkZad02PDwcAwMD0dfXF9ddd13s379/LrbekWY7z1JK3HXXXbF27dr44x//OOO2LVu2xMaNG+PSSy+Nb33rW/Hmm2/OxdY7ThWz3LVrV2zatCm++MUvxhVXXBG7du2ai613nCpm+Z6tW7fGueeeW+d2O1oVs3z44Yejv78/Nm7cGNdcc82HPsbxoIp5OgYdMttZjo6OxpVXXhl9fX1x5ZVXxujoaOu2th1/Ss3+/e9/l8997nPlr3/9aymllDvvvLNce+21H7jf1NRUWbduXdmxY0cppZQ//OEP5cILLyyllPLGG2+U9evXlzfeeKOUUsoPf/jDcuutt9a99Y4023mWUsrNN99cvv/975cLL7ywjIyMtK5/4YUXysUXX1zGx8dLKaXccccd5bvf/W79m+8wVcxyenq69PX1lSeffLKUUsqjjz5abr/99vo332GqmOV79u7dW77yla+Uc845p9Y9d6oqZvmXv/ylbNiwoezdu7eUUsrQ0FC58cYb6998B6pino5Bh3yUWW7cuLE8/fTTpZRSnnjiiTIwMFBKae/xp/bgeeaZZ8qmTZtal5vNZlm7dm3Zv3//jPs1m83WQaOUUvbv31/OOeecsm/fvnLfffeV66+/vnXba6+9Vi644IK6t96RZjvPUkrZuXNnKaWUiy66aMY37913311uuOGG1uVt27aVr371qzXuujNVMcuRkZHS399f/2Y7XBWzfM+3v/3tMjw8fNwGTxWz3L17d3nllVdal3/3u98dl9/jpVQzT8egQ2Y7y9HR0bJhw4YZ111wwQVl165dbT3+1H5Ka2xsLE4//fTW5aVLl8bJJ58c//jHP2bcb+nSpXHJJZe0Lj///POxatWq6O3tjbGxsVi5cmXrtpUrV8Zbb70V+/btq3v7HWe284yI+MxnPnPYx1i3bl3s3Lkz9uzZEwcPHoynn346Pv/5z9e2505VxSxHR0fjtNNOi8HBwejr64tvfvObsXv37tr23KmqmGXEoe/7ZrMZl112WS37nA+qmOWKFSvis5/9bOvy888/H5/+9Ker3+w8UMU8HYMOme0sx8bGYsWKFTOuO/300+P1119v6/Gn9uCZmJiI7u7uGdd1d3fHO++886F/ZnR0NG6//fa49dZbW49x4okntm4/8cQT44QTToiJifwflPS/jmae/2vt2rVx+eWXx5e+9KVYt25djIyMxLXXXlv1VjteFbMcHx+PkZGRuOqqq+KJJ56INWvWxE033VT1VjteFbOcnJyMn/zkJ3HLLbdUvb15pYpZvt9jjz0W27Zti+uuu66K7c07VczTMeiQ2c7ySPdr5/Gnsk9afuqpp+KOO+74wPVXXXVVTE1NzbhucnIyli5detjH+fOf/xzXX399bN68OdavXx8REUuWLIl33323dZ+pqakopcSSJUuq2n7HqWqeh/PMM8/Ec889F9u3b4+TTjoptmzZEt/73vfiN7/5zTHvuxPVOcvly5fHmjVrWj89X3311bFly5Z45513Un591jnLX/3qVzEwMDDjJ+nM6pzlex544IG455574t57741Go3HUe50P6pzn8XYMOtZZLlmy5EPv187jT2XBc8kll8w4JfWe5557Lh5//PHW5X/+85+xb9+++MQnPvGB+46OjsZ3vvOd+MUvfhHnn39+6/rVq1fHSy+91Lr82muvRaPRiN7e3qq233GqmOeH2b59e3zhC1+Ij33sYxERcdlll8WWLVuOfdMdqs5ZrlixYsa7NRYuXBgREQsW5PzEhzpn+eyzz8bbb78dW7dubV23YcOGePDBBz/S48wXdc4yIuKRRx6JBx54ILZu3Rof//jHj3m/na7OeR5vx6BjneUZZ5wRY2Nj8Z///CcWLFgQ09PTMTY2FmeeeWbcf//9bTv+1P6svH79+tizZ0/rLX73339/XHTRRR8o41JKDA4Oxi233DIjdiIivvzlL8crr7wSf//731uPMTAwUPfWO9Js53kkq1evjh07drT+O/b3v/99nH322bXst5NVMcsNGzbE22+/Hdu2bYuIiIceeijOO++8WLx4cS177lRVzHJ4eDhefPHF2L59e2zfvj0iDsV5xtg5kipmuXfv3vj5z38ed95553ERO0dSxTwdgw6Z7SzPOuusaDQarTh67LHHYsWKFbF69eq2Hn/m5Hdpvfzyy7F58+aYmJiIlStXxtDQUDQajdi7d29cc8018fjjj8fOnTvjG9/4xgee3H72s5/F2rVr47e//W388pe/jOnp6fjkJz8ZmzdvPqr/4s1gNvOMiBgYGIjp6enYvXt3nHrqqdHd3R0//elPY82aNfHjH/84tm3bFgsWLIhGoxE/+MEP4qyzzmrz32zuHessP/WpT8Xf/va3uOmmm+Ldd9+N0047LW677bbj5rTM+1Uxy/c799xz49VXX23HX6XtjnWWO3bsiF//+tczYqerq2vGT+fHkyq+Nh2DDpntLF999dW4+eab41//+leccsop8aMf/SjOPPPMOHDgQNuOP355KACQXs4XGgAAvI/gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJDefwFBYKIugl3qwwAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": {}, From 0ec4a17d251f58edd2c97bdec88a5bc4fa8ee847 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?David=20Cort=C3=A9s?= <33338133+rosgori@users.noreply.github.com> Date: Wed, 1 Apr 2020 14:32:24 -0500 Subject: [PATCH 9/9] Removing some cells --- BDA3/chap_08.ipynb | 3004 ++++++++++++++++++++------------------------ 1 file changed, 1332 insertions(+), 1672 deletions(-) diff --git a/BDA3/chap_08.ipynb b/BDA3/chap_08.ipynb index 446739d..88662d6 100644 --- a/BDA3/chap_08.ipynb +++ b/BDA3/chap_08.ipynb @@ -9,7 +9,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 5, "metadata": {}, "outputs": [], "source": [ @@ -37,24 +37,6 @@ "%config Inline.figure_formats = ['retina']" ] }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "%load_ext line_profiler" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "# arviz.style.use('arviz-darkgrid')" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -64,7 +46,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 6, "metadata": {}, "outputs": [], "source": [ @@ -80,7 +62,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -281,7 +263,7 @@ "15 West IV 0.554 0.361 0.084 0.057" ] }, - "execution_count": 4, + "execution_count": 7, "metadata": {}, "output_type": "execute_result" } @@ -291,15 +273,6 @@ "data" ] }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "#data.density" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -309,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { @@ -342,7 +315,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -365,7 +338,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -384,7 +357,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -393,7 +366,7 @@ "1444.106" ] }, - "execution_count": 9, + "execution_count": 11, "metadata": {}, "output_type": "execute_result" } @@ -404,7 +377,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -423,7 +396,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 13, "metadata": {}, "outputs": [ { @@ -432,7 +405,7 @@ "1447.0" ] }, - "execution_count": 11, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" } @@ -443,41 +416,6 @@ "np.sum(values) # Check if the sum is equal to 1447" ] }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[ 14., 29., 4.],\n", - " [ 23., 22., 1.],\n", - " [ 78., 69., 20.],\n", - " [ 32., 36., 1.],\n", - " [ 19., 23., 5.],\n", - " [ 42., 42., 10.],\n", - " [ 59., 45., 12.],\n", - " [ 80., 49., 16.],\n", - " [ 12., 6., 3.],\n", - " [ 45., 39., 12.],\n", - " [ 51., 40., 8.],\n", - " [101., 64., 17.],\n", - " [ 17., 16., 1.],\n", - " [ 41., 27., 9.],\n", - " [ 67., 46., 11.],\n", - " [ 46., 30., 7.]])" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "values" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -487,7 +425,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 14, "metadata": {}, "outputs": [], "source": [ @@ -499,7 +437,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 15, "metadata": {}, "outputs": [ { @@ -510,7 +448,7 @@ "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 13, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" } @@ -521,7 +459,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 16, "metadata": {}, "outputs": [ { @@ -543,18 +481,18 @@ "\n", "16 x 3\n", "\n", - "\n", - "\n", - "post\n", - "\n", - "post ~ Multinomial\n", - "\n", "\n", - "\n", + "\n", "thetas\n", "\n", "thetas ~ Dirichlet\n", "\n", + "\n", + "\n", + "post\n", + "\n", + "post ~ Multinomial\n", + "\n", "\n", "\n", "thetas->post\n", @@ -565,10 +503,10 @@ "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 14, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" } @@ -579,7 +517,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 17, "metadata": {}, "outputs": [ { @@ -590,7 +528,7 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [thetas]\n", - "Sampling 4 chains, 0 divergences: 100%|██████████| 16000/16000 [00:13<00:00, 1229.44draws/s]\n" + "Sampling 4 chains, 0 divergences: 100%|██████████| 16000/16000 [00:13<00:00, 1194.54draws/s]\n" ] } ], @@ -601,12 +539,12 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 18, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9WYxl2Vmo+a09niHmiByrsrJmV9mFJ4q2sJure2nTXHPhYqAlLLoxEvDQLbBkqy0ssLBlgVDzhFpC3X2hjdTu6y5jun3BLmyXDXaVcc1TzkNkzMM5ceazz9nztPphR57IyMipTFVFVnl9L5mxp/WvtYfz/+sflpBSShQKhUKhUCgUCoVCse9o+y2AQqFQKBQKhUKhUCgKlIGmUCgUCoVCoVAoFLcJykBTKBQKhUKhUCgUitsEZaApFAqFQqFQKBQKxW2CMtAUCoVCoVAoFAqF4jZBGWgKhUKhUCgUCoVCcZugDDSF4jp87WtfA+Ad73gHg8HgRzpXoVAoFIq3Auo3T6G4fVAGmkJxDbIs4y/+4i/e9HMVCoVCoXizUb95CsXthbHfAigUtyOf+cxn6HQ6/OZv/iYAX/3qV3nmmWfY2Njgk5/8JL/wC7+A4zh87nOfo9vtkqYpH/rQh/j93//9Xef+9V//Nf/4j//IV77yFUqlEnEc84UvfIGHHnqIJ554gi9+8YvYtk0YhvzhH/4h73//+/e55wqFQqH4cUP95ikUtxlSoVDsYX19Xf7kT/6klFLKBx98UH7jG9+QUkr55JNPyl/+5V+WUkr5+c9/Xn7pS1+SUkqZZZn89V//dfniiy/uOldKKb/0pS/JVqslpZTyq1/9qvzEJz4hpZTyl37pl+Tp06ellFIuLi7Kb37zm29O5xQKhUKhuAL1m6dQ3F4oD5pCcQt88IMfBODIkSOj2Pznn3+eU6dO8Z3vfAcAz/NYWVnh8OHDu86dnp7mk5/8JACO4zA1NQXARz/6UT796U/z8z//83zwgx/kIx/5yJvVHYVCoVAorov6zVMo9hdloCkUt4Bh7H1VSqUSn/nMZ/jABz6wa/vGxsbo/41Gg8997nM8/vjjHD16lG9+85s89thjAPz2b/82H/3oR3nmmWf4y7/8S77zne/wx3/8x29sRxQKhUKhuAnqN0+h2F9UkRCF4hpomkaSJOR5ft1jHn30UR5//HEA8jznC1/4AvV6fde5nU6HUqnE4cOHieOYb33rW8RxTJZl/Pmf/zmWZfGLv/iLfPazn+WVV155s7qnUCgUCsUI9ZunUNxeKA+aQnENDhw4wD333MOv/MqvXPeYT3ziE3z+85/nYx/7GEmS8MEPfpDDhw+Tpuno3L/6q7/i0Ucf5dd+7dc4ePAgv/u7v8unPvUp/uZv/oZDhw7x8Y9/nPHxcaIo4lOf+tSb2EOFQqFQKArUb55CcXshpJRyv4VQKBQKhUKhUCgUCoUKcVQoFAqFQqFQKBSK2wZloCkUCoVCoVAoFArFbYIy0BQKhUKhUCgUCoXiNkEZaAqFQqFQKBQKhUJxm6AMNIVCoVAoFAqFQqG4Tbhhmf1Wa/i6NTQ2ZuO60et2PcUOamzfWNT4vnGosX1jeauN74ED4/vafhDEb6nxuhlvtft/M95O/Xk79QXeXv15O/UFVH9uZ270m/emedAMQ3+zmvqxQ43tG4sa3zcONbZvLGp8Xxtvt/FS/bl9eTv1Bd5e/Xk79QVUf96qqBBHhUKhUCgUCoVCobhNUAaaQqFQKBQKhUKhUNwm7LuBZi08jt5f2m8xFAqFQqFQKBQKxZtIv+4Tecl+i3Hbsa8Gmrn2FJNP/I9MPP5xkPl+iqJQKBQKhUKhuI3IM0kSZfsthuINZNAKGLTC/RbjtmNfDbTS/H/B+6lPIdIAY+vl/RRFoVAoFAqFQnEb0d30qF/s77cYih9Dahf7uN39Mxz314NWf4Hkjg8R3/sR7KVv76coCoVCoVC8ZZFSvuZzsjSnvea+AdIoFK8Pfv/tUU5d8dbDMDWEJvav/f1qWPMaaMNNSif/T7Swi8jT/RJFoVAoFG8D/uzP/oyTJ08ihOCP/uiPePe73z3a9+Uvf5mvf/3raJrGI488wmc/+9l9lPT1Z/10l6kjFSYOlG/5HCkhz/Y/vcDthpTHLXRz39Pi31JoXoPcmgDz1u/5W4k8f+2TDgrF60XoJthj5r61v29fQ715ChDEx/8dRu8SRuMkZGqmRKFQKBSvnRdeeIHV1VX+9m//lj/90z/lT/7kT0b7XNfli1/8Il/+8pd57LHHWFxc5MSJE69b21mSk6X7b+jEwbVzdUI3IXSvnYS/nzPEaZJTu9Cnu+HhD+J9k+Otill7Hi1oveHtpHFGY3HwhrdzNdF1ntm3I74T4ylv4W1H7O+f82jfDDR75Z9AZmQTd5NN3A2awGid3S9xFAqFQvEW5tlnn+XDH/4wAPfffz+DwQDXLcL3TNPENE183ydNU4IgYHJy8nVru9/wcbuvr3IVB6+fYtBcGtBc2qtgCyCN98+wFIDc9pKIN9hOzHNJa2X4I4WC3q6kBx5Blmbe+Hbi/IZV9iI/ZWvJ+ZGu3d30GHaunefzdvWo5llOMNw9nnGQ7qsxoNiLWdIp/Th60MytF0nnHmH8yT8gPvrTkKeYtef3SxyFQqFQvIVpt9tMT0+P/p6dnaXVKrwLtm3ze7/3e3z4wx/mZ3/2Z3nve9/LPffc8yO14zQD1k53dm0LBsnrrlxtXXL2KsXXMS6im7Q9fqDM+IEySZjRWd/JOZOAbuyfB01ogvKkRZb964wmY+vlm0fgSEkwiItOv02QQoc3IT3kZkZtOEx+5AkKmUvkde5/GhceYc14Y1XVJMpGbb0ZDFohreXdEybhMNljtN0qcZBS+zEppKJ5jTetLSFEMYu0T+xbDprUbKK7/xuCn/x99M55Kif+N6zlJwje/z/tl0gKhUKheItytRIppSx+YClCHP/Tf/pPfPvb32ZsbIzf+q3f4sKFCzz00EO7ztF1wdRU5YbtmEKnUrJ2Hde2XDRufu4eshgQoO+dpW1XXMbHy1QmrGKD10Ks/AD5rl/bc2y93adSsRkft3fJoOsaU1MVgnaMlKBlAhkxOiZLckTMa5f7WvhdcNbhyHtu+ZQ4TOkGHiKFqekqY1P2DY+/3J+rEZtNZDmHyva+JABNB90aHSOlxHhYZ3y6NHou9pPr9QWAxIckQGy+hHzg5697DVE7j5x8FF7L/Ut8xOI/IR/6j8XfMgfEdV2Yw05I0EmoVOzrymsJnR7+aP/CS03uec/cLXnA2osuhr13LOIgpdPxqFRsrJK+a38cpFhlg4WXmkweLHPgrvFb6PheZC6J/JT2goumC+593wHgJvfmR2pIQtCDSuHt1FJB6ua7vyHCRQpJb9XnnvfMvabL92MfSzeuK/Pr2p+tU2w5c0wenaM8bt38+FugXXGpjlm3JKPYfAXt4BxTUz/aPX9NcgmXin1rcr1m0gix8QIc+LfXPWRfDDQROei9S1hGieDRT5Adeh95eQ6jc2E/xFEoFArFW5xDhw7RbrdHfzebTebmCkVncXGRY8eOMTNTKEiPPvooZ86c2WOgZZmk3/f3XjxLioIME3diXPomxty76ff10W7fjzBsfXTusB1SnbbQ9EJBFWEfzW+RzTyw67LW4j+CZhLf89/uabJywCRMEuJ+4SHRnBamFxFdQ74gjPH9CCywr9g/NVWh3/dp1Ya7jr8sZ5rk1Jf66NV/vYfCrJ1Ec+tE5QdufvA2WZLj+xFHH5kiFdm1x/4KpqYqOFub6M4K6aH3jbbbXkTsBMi4ON/ceJq8NE02986dttKcxtKAo+bUa+zZG8Ple3Mt7Pm/J6seQvc6RD3vusaTNvFu8nQMbjJuu87xGpgDl6DZBmFRXvkm2dhR0iOPXvP4JMkwxjT6NX+XvGmcMWiFzNxRZdgOiYbpaL/vR3Q7LlbWRVYP3lCeMEqQ+t73btAKcHo+hqmRSGO0X+aS9TNd7nh4mjhNidLkps/N9Rh2QnqbHqYIsLun6d/zEeDG9+ZHQRtsYG69RPTgRwGIkxS9qu1qI0oSsjRnYrz8mtsO44Q4S6973uvZH3vtDO3m3URYTB56fQwX34+QhqTX9Vg/0+XYIzPXzo2VObYXUc6v852+BfJcEnkp5fGbhy6mZMT59cf1X4MIe1jNdSZu8LnclxBHc/M5RBYCErRikIJ3/g+IxIU02A+RFAqFQvEW5kMf+hBPPPEEAOfOnePgwYOMjY0BcMcdd7C4uEgYhkgpOXPmDHffffctXzveXCBaeBUAxzHYmPd27R+bLVGd2plNHrbDXbld1vITWAvf2HWOCPugGUizes02dVMHUSgUa6c6SCkLL9iwhrn6/d3XulmhDymvHR4pJfaYcdUmedPqeXkmd4dUyZy8coC8cuDGclyF0KA8abF5oXfLOXe6s4LurN7wGGmUSRJj1wLHQgjSKPvXVwbMU2Qu2TjbJfaTNyw0TmTFeFhr30f41y4EImIPLXqNoW0yAyTdp59i64WTIHO0sHd9OTQwLJ25u3d7LIQQmHYxSaFbGqUrniMhBFrcw9p85qbilCdMrMq1fQWXxza54tmQgBjWCQbRyGsugg7Wyj/ftK2ruZz/OH6gSnX2X1cJ01r6FsbWK9dpaFv+PNv+R5Jetfh2ZcpmfLbE+IHSru1pnLFxtsvaqc51QyCFuMk34BbCYKWUuL1bC1MtVYr8rNeby+/mdd9Ruf1NFTc2XYJhgnedvni9aE946fVIOg1C99rFi0TQwVx78pauc83zk5vbOvtioBlbLyMA99/+L6OBjt7xq0hzTHnRFAqFQvGaef/738+73vUuPvaxj/Enf/InfP7zn+drX/sa3/3ud5mbm+N3fud3+PjHP85v/MZv8PDDD/Poo9f2GFyLoSPodIrJxMq4zuzRvaF4l71lAEcfmsIq7yidyZEPsMEHSZMrCnIsPMXqqR4h1/boNBYcYj8l387PCb2clZUyIh6gRQ4i7F1X8fKdiEFrRwHQe5eK469CaGKXnAD9us/GmS5eP7ruIq1ZmpNG2UhBti99HeG3ycvXL1ihDdbQOxd3XyeRBE5MOExJwlszdPLSNFAYnJ2VDt75FwGQ+s490Qdr1M/Vaa3seA6FBgfvndjljAq9ZCcnL/ZuqnCJ2MVeeJw8l+SZpLflM2zf+kK22mB9199rpzrE4d57mE3fR14qitiIaIAWF/24OozXaJ8dKf2XScIb51OZtRcg9ohjDRnfXCEfNIY0Tq3QXtnthc3SfPSMZUlO6O70IwpTsujWDG6vG+1d6yyLEfEA/Yp3alQlVUp0r05zySnaHSbo/SXEFWMU3qCgyZX064VnJNdskis8sjc9b8vfU9hEpBEi2e1p0ftLGM1T2xMkOXq3eP7jIC3yIa88n+LebZ7r7brPUoJozSOCzg3tkuvl8QGI8/+w59m7mjyVdNdvviailDDsS2L/iskPv4196eu7jvOd11iVddvIzLN8NDals/8PpZNfvKLx7TZvYqDFfnrNojb+IKa3WUyu3UrVXWPrFRg0r7lPd+to4a1NjrRaDVqt1547tz8GWvNVJKC5OwLnY4cRiUvp9P+9HyIpFAqF4i3Opz/9ab7yla/w2GOP8dBDD/Grv/qr/NzP/RwAH/vYx/jqV7/KY489xh/8wR9c9xrBIGbj3G5jxpqaoDxZzGyb+RA7370/T/NCwdhWEl95fJVBY0eh1bZOkjQ3RzP2AHGsQZ5RW92tTGdJvquQx2Wa64XCIe2JIiWgdQaxJ+KkuL7vxPS3/FHp+hJ9LHkNZUKyp7hDtm1EdtZcuhve3nMATRPonYto0U7lPhH20Pw2kZ8SDPcqZ0bzFEbn/E7TUo70LLt6lQcldHCXFq6QUyL87fBVo4xIfIzmCRoLAxqboggds3Z7Iu+6y+fw/RO7+tVaHiKEYFjvsnm2TXjFTLvIY0R2HaXy8mx3FkOWkA+LIjEH755g+ui1PaB7yFPMrZcx155k0Biw8FJze/O2F8hvF15VILenR/lzaQpZGJB7LvE/f2fXJePj/468emjXNq8fjZZU0DsXSTfO7zbs8hR9uDbyqEqzQj52+LpiT85oHJq6oihOFkMaIGSKIYrxypvL4KwV15OSQSPA7d26gp6lsjDKticRROJh9BauW/glnXsXXn9HAdeHm6P/B4OErXnnustKXIthrU33heeuOyFxNYPNDr3N3e9oNn4n+fhRhNfciQTLksJD6dbQekuIPNnp71UITaCbGofun9yVI2naOsfee2jXBMTVxDcxyuW7fo184tgN+6SbGkcfmsLthmhu/brH+b6GN8iwqkbxLLXPIfJ4x7tF4fXrnjyFNljbc35+I0MS6G76bC0U35W8chC9v3xFR7bb8Ls37EvkJ4Sd3p6ogSsLOd2KATkma5SyGvb83+/Zl29XT9W786Nt7dVhMSl01aRJr9el19sts7xG3vHV7E8VR6MCQicfP7KzzayAZmA0XtwXkRQKhUKh8J0Y7apwIafujQyZfjhDrTm55xy3E2Kt/DPCb1MWXfL5p2guOSRhyvkXAoTXJEvzUbgigJAZ4iovWOheEZ4jJXrv0q79mtdEC9pIs1IogNfgslesNt+nuTTAHrOxZ/Z6t/JcYtq71YDypEV5wmJsxqY8uRO2mcbZyHgTmqCi95FXGDTGcB0t6NBaHtBaLozTxqKzo5BtW2N6bxHNrZFEGbULfeyqURiuVwx53O/jrNQxN5/FWngcbbiJtfHDov9uDZF45HoJ18nItAr2/N+PjGMolGXPvn/XunC6oRXhm1mOf+kkzYuNXR5NkcV7PCBQhJTay0/s/B126Lz0MgD1Sw7tteGec66J0AsFUxbeVrtq7AoT04cbaN4WAObWS4ioCMNqtWz67fyaeWhabxlr6du7tlllfRR6aHTO0zq3tsc7KdJ4dL1g9v2kk/cyaAVsnN2r+OZZzuqFkNBNiMMUozuP2XgVu32SKbfQ12wjHIVs+f3imcjSvQbD1RX4siRHMwTVKQujdRpr7amdY51lRHMnomo0uZHnGK3TJOFeBTsYJghReKh6tWtPLlxGb50dGYRhpJNXDmKWbq0sg9E+t8uIEdEAkcWYq09itE6PJi5EPEALu+hujbMXZ+m1dryAVzNsB7jdAJmmuwzqJMpYf2Udo/HqnrDIy4bAjbxnADTP7Xo/7EtfR0S7l0WIvITahT5+L8CsPY/eW7j6Kpd7S+YOi29BXjwPUrOQ1k4IrGHpHP2Jw/jx7rDRIn+wQ+gW+XZXh1RKKbGrBlbZQEpJNn4H6YFHRoYuUqK5dcSF3d667ZML4xiIvBS2zo3ep8tcWTL/RiGacZiSRBkuh0ffvCtprQyJ1heQQsNonxtt952YoDvEXvhGEZJ+xYRcGue0V4esnW4TRSHSuHn+3r4YaHnlAHlpimzmwV3bkyMfQItu/FIpFAqFQvFGoRkaEwd354F06hFZJiCLmDDaHLoT+k8/Qf3cjgKQpRKEjhQaE3qTnvVuQjfFW2+wuT5GqpX3rDkmIx/h7c4vKvkL9M+eIU1yhIzRu7sNtNyepNO1iBubRXl5uVeB8HpRMUMcu4SOR7ejUV+OCIYJSZShuTWM5ik0XWBXds/kGqZGZUJnLF+jekVVxe6mh9MoDBhNRriVh8msuVHf5aBQvivt5xFJ8TseeelIScmm7qU2OMrWS6cx6y+PjODIS0EyMirSuDC68vIBsql7SQ++m0E35ezZwlOVVw+T29Pk1jR6FFNyNyDxILrCYxk5dDdc+ls7Blee5Ry8b6IwjpyLGLi7S+6nASBHYaNXeiQGA2O0iHBenkPc8RPA5VC163tq9M5F9MtpGzJHC9poQYs0yYmDIqxzZKxHfURceGU6HZPALdo/dE+FmXsOQC4LD9sVyrvZfBUR7DaqwmGya9mF1JjcpSii24XSe7nd/ibW0nexpcfh+3dPPGjDGsNujJvOEIcZgRMjNR1pjpHGEZ6nkWc5rn0/5rGiIEueF89jnkqWl8uj3EIRu5ibz0K646UatEN8JymqPV7xHFtrTyFCB13fkXtHUZbEsdi5d1dMcHQ3XJI4Z2y2xJEHp7blkdf0pmlRv3h/IgeZpER+it/cGcvU91l/5gzt1eK52hOCK3f+NjefRvMbiDRACzpo2zmDWjyEpR9gdC8RxCV67UJoz4mIr7penklk4xKd559G8xpEqxfo1TyEJrDzHuKq9zwYxgyefQIR9kbVMq2lb48mbeIgJUtz6vN92mcv7X5OZI4IumRpPnr+DFsvvHi5Txol6NdYl1hz66N+x34Kuk187GcQ8XCXAdhaGXLpxT7NZa+QZ3six+uE2/m5RSjn1SGVUhaGzOa5HsNWiNE8WTw3teeLMFaZFeGo+V5vot69SPnsfyaPg2IiRjNZuZiSZ/mu618mDVOQkrwXkZ3fHRGxNe9Qv9hHS1z0UhlpT+zaX5mysP0laFwonsWryCsH6G54rJxos3aqgz5cJ+w5eBtrxGFAs9m4aZgm7IOBpjmrmBvPFDM4VxHe+xG0oAnJrcd0KxQKhULxehG5yZ7QPq0ySXLwvdiL38LsX2TjlTUGfUhdlzyXaIaGVdZBZkSBoOkfozXfIPZCtGjIBE20NCycRFKOlKL2YJpGw8J3CuW/2K5jVKscf88sdsVChFctAGyW6bkTXLg0gdFbQLtcMCPdmY0ehc11F9CGG4yVfIx0SJbmZGmO3jhRKDxBh3RjtyIWDBKctRbu8gpePyryMOIBB++ZYObOMYg9+i8/j96ZRzhr6Fsvs3lmi5fmHyBJBHNzMUfv2lE+Lyf8i8SjdqGL2/JAZmiGxsH7JuhseEweLo1mtGsX+nRPneFB4wmkXiItH2IwNPDDEuQZwm+Szryj8MbEkkgcQfPbiMRFRiEyy8hLUxx7wOLw/ZPo7XMYrdOsne6ycaZbzGxX55iZ8ClPmGi6wFr6NiKL8RtNrEuPj+SI/BS9t7BL+SR2ORDuXrM1CTPI4j2hUEbnPKUz/xm9cx5kXoSpCZ2Nsz36jWD7nhfHttd8hLs12ia3i4Q0uxP0OqKIdewswhUFQ+LjPwv27uIdVsVANzXq832yDDpbKc3Fzo6hGPUwas+NioUQu8jQoPfqJv3mbg+iWX+BOXuDg3OFThYHGXp/Cb2/hKZBkmgY688Qn3+aZK14ji6H5wkh0fWdpS7YDu9LvAHrzxe5WNMHNEoVwaAZjBRWv+sy6MbIygFkumNYSQlkMdb818mvsFWqV3R/6kiF7oaL14tYP1MYJL4TX3OR9vTATxR1D9oXmN74f5Fuj2F7J2Q4DSJEGuA7MYkfUz9bG+3Lst2herJUrL+ouXWkpo/C37LqYdbr0/huRp5r+MMi3FHXNcamd5eoL42ZjNsD7j42xOycI60v4HU8DFPj6D0W8iqFPktyPE9HpCG6qSF0wda63C7AV6yj2FlzSVyP4eRPkU8eJ73wFM1Ti4iwh0hcNs/1aHcCwrzw7Bq2jjlYYnPeQ8qiXkSeJCMj2zv9NGuLGkLIorBLnmB0L6F5W2huEWaq9xaLcF5/E91Zwl78R+zFbyLjDHPTu34xkyyFPCMLQxCC0EtI596JPlxHGnbxfMicILZZXd8bVizNCsnRDxC8/F3ClYtMlFw0t7bLKHOa/k7ebPNFjOYJuDyZIeWuyYPQSzBEhJW2Rt7sy/dc5hISD8crszE8glNf376EJM0Nktl3koQZQggO3D2O5jawsh76YAM9HqBjorkbNwwlhX0w0IzOeUTqEz3wS3v2Re/474CiGo5CoVAoFG82lSmLaT9BXpFEXiplWJ1TiHjIoB0y6AnyXJC4IWtPzlOZMEdhhY3FPpNmDdNbQ9bPINsr5GigG+DVsLoRbIdLSt3AsrLRQrzrp7sE3QGzM4VSmQRh4Y26QsvQvCbWxr9gpV2a5zfoNyLwO5i15yDPRqFJmiYgjTg2u8XUVEqlKhmbtrGGy5jNkwBkmUYsi0qXwTBm2A4LxSiFRsOmV/OwL34Ne+kJzn5/k/r5FlrkEAQ6UtPRnFVKlx4nN6pklOiJe1ldLRMMc0hDtP7yKDJPGmWkNYkYLyo9xn7C1iUHmUvWTvdG+XJQhBtu1Q2C099n63tPYhgSU/iI01/Bqr2A2TyB1Aws08TWYrR4iMgz4md+QD5/CpG4uPPnGLY8jO58EVapF4JYF/+BvNegtVUs+XPIXkAKE6mZtNoVkliid+cxg02EAM3dZNJqYduFt0v3ttCWt0PxJDiNIZsXeiOv4bUq0GmDTUTUHynZVtncKfMtJcNOgLPRRfY2ALDtvMjrAsLNNZxmiLBt6v5BnMGOd9donUEMNnF7IcEwJs+K4iWaLqhO2wwGBnmSYEbNUQG2+O4PI+2pkcGUzj2MMHOsKXA7EZvne4U3K3YRUZ8wn8QbJIjtfDCx7aGR1TlKEzZx5U7ivII9NXZVryV33RVi2hoi7BH2h/T7BqKzWhRXSHyCFx4nri8xzQL6dhGL9rpHtyWKohaBg/BbREFKc3mAjANqtRKatjPGzbWQNIU4FnTWXCwtwmydpDJpIaIB7VdP7/Ggef2IYOk8IguRQsOO65T13sjzBaDLYOS1MlafxF54fLQvCHSiK9I/05mHt/MHJWhWsQYfRUinJftobH9Lsoh8+UXaay7dK0Iw5fakjW2l9LZKhKVjTB4/xH32M8RDl+XlMkGg01wesvBCA68fUZ0yOX5HkbMoBHTXXcJQg3CA3j6H1lssjJH6GeS5byGCLrk3IB+20YIumrsFUvKU0+eHjkN08gnqF/usrI6RRRHoBiLo0a+7bF0qJomS1MJxdKQU2x5wgbX4TcytlzE2nqe/sIJoncc0cyayRWa0ZaIH/iPRA7+MsHTEO6awGdBd3luV1GyewF77HuVoDU2H9qqL3l8iH7+DfL5HvNjAd2JMdw0r3Nhzvua3sJa/gxg20dxNZBqjBZ1dkcGdNZc4yEiTjFSvgpRY9e8WoajOCvblcGEpcbsRYWLhutbo3m2+cJ7opW+w+GKL5Y054tjA3zhB9/zzDDshkZ8ymJ/HPfEMY1Ma1Sl7VIykVIK5uYg4gU5tSPPkImG7w/WjV6UAACAASURBVI148w207jxaPETq11jgziwBGvbKd99ssRQKhUKhIBzGBIOYYGNzlOMRtDqI3jqaW2OGJabtLdoNkJsbWN11+o0A09bJogogSAYDpFnF76dULIckk3i9FuUzX0ZkOWznulhaAlk6yjnTGydIWhtsrURsLTisnu5Sb43tyj/K7QnunGtwfGqRcrbFoN4Dr114lLKU7tl5Qi/BrhrcN3OerYUBGxc9Wi2d1sqQ2mpGbB8iz8EwoDpdGApJkO2ExgmBrstCCTNKZNUjRAOPwdlTiNhlIp0Hs0pePURqzDEVXsK2cyy7sCV7zRTN20IPO5BFRW6IUULPXHRnCb19nu7zzzCs9ciyGM/xqZ3vFeOdhGRjR1h37qHtHaZ8/H6GnYg4MZCH34uIXYTfYOuHHUwS5ibrJLMPY9RfYuIOn7Hh9zHXnyZsNEhe+fqoP1IWHpbs8HsxRMyk3SUNQ5prMdHAI+13yBKJ0V/C2HoF2a+T9+oYrbOsLJrUzvdwewl55RCt/MGR0Zw117jzjgBkjuvqbJzZCSWTug1mGbN1CmvjaTw/IE9TdFMbhVAOOxFZLJHlKUgCjMYJaltV6r1ZADRvCxF2kV6XQ3aTcfuKCKM8Ybn7AJeeabD0UovWyoAkTEn6Pbxnvo43yEhTQWcrJ88L41FLQ6RmojuraO4W1vI/oS09R9rPMW0dpxlgbjxD/vLfIToLpCsnCLwcc/2HWHGDdOp+1ldg/VLOpQsWvWAWjjxMaN4JaYDWuYjwGmh5yvJymchPsNaeYnj+LL2eieltkk3eg7H+DFrvEpE3QHQW0Z2V4h1w1ooCcpqBiYfurJLFRUhoLgyi1CBJdt6HzqpDqy4JgsIoai47OI7J2IyNiF2c2hCnNySKincsbfq0T7TpNHIqZgAI8jQncz00d8dLlpfmkIjC03hF0Q9tuLntGdy5DSJoFxMjUiLSgMFqvRjryCGNIOp2QWbobg0hiryysO9TfvV/R4Q9Ii+lv1wjCiVBs8TmhZjBZptLp8Ii9NEaI6rey7AxpHmpTVabJ/3BX7N1ehUpJUGak0cB+nADq/Ys1smvYm+cRQxq9LoG/R6F11rb/pQIgdFfGskdJQnWkfuwKwZJt8GMuU4+fieGswT9VfStV8nSnGR9gUEtIPZTQjeh+tyfk5dnibQZflj7RWovXYIsJdhqsu49TK13FHP1+4igjUxyoot9ZG8T/RrFQ6RZBsMijjUiLyXo+eTn/5naxS5bnZTVcy7DbkxSPkIcZchcjsIXZeMcYrCJNtiA1EMYFnlpjnTuXTtLk2z8ENmtI6WkXw9wNvtoww3cRo+wPs+w5REEGiJysDdf4dCYhyZydLuwVcza8wzrDo5jMDZe5MwGkU0Q6qSxpLfpjUKJzc5ZKv1XMKyc7kphhOXekNOnJ6hd8pko+YUXVt54eZQ33UDTu/NIIdCuVYVFM5C6gbn59JstlkKhUCh+zEnjjNwfQBLgXjrP2skmSMlUqcX0mIO0p8hynXAYQ1TkTzhOjtsakqc5eVsgEolv3UPih8T6JHq1hDYxxPUdEAYik7BdQCHDIIp0vG2PWj5xF7kwqU4ajE1b3JE8TRhbhWdsO5RRhA5rw4fZ6Byh709xzD6FETSKWfs8xvN04iAldbpsLQ4Q/VXMrI9mlZgcMzlgjLO2qNFYi0leeYz4u3+LjCKkBKt1goruoPlt4liQ+W4R9mMWCe1JbpKdfYJh0yXcWGFs6b+Q9GZJB7MkbgDDFnEEWm8JmQRFiXC3hVl/EevSP5D4MW5QRkQ9qlMWE/kyvr+B49fw+wnWpW9QuvR3GK0zyMCFzhbeiyvkegWm7oRoUOgPzjpGfxM9hHbyILExgdFfIF6qkdc3qbenII+J2020jWcISsdJ46wIdfNaJNok0qoih71i5jsStOspZAGmt4ofHiFtdDHdFQCOzrQ4cm+Z8ZkiNEl0V9C78+RpRC41zj27wOqZXmEkSDkyvnKhk9kzRNY4gV5iw5F0hznhICL00sL7tbhAY2lAkhTVCK3V72GIiGFYeKRE7GI0TiIXn+Vs8xiNFy6NwrTiY/+Gw3dpHLx3HMsWRD0H30kwCRBeg6DvkqYaUrdoNXSG7RBz7Sk0r14YrZpOsnGe9cYkcWuVxRcaNJcHZDP305UP4uczTE8nzOkraMmAylS5CAurn2O4skLouOgrP4D1VxG1V9D8DkbrHFriofWXseMtjKjwlkhZrP1ntM9gX/z/EP01tLJJHmxA4iOCQpE1ehcRmYHsjRNoc4RTj2A3nt3OB6qiHbyPbqsoIuF2I0TkYCVNeu0VEI1RrZnG4oC8NAXRgMhv4vsuInaJnnsO2iFbc3fxeOkuRNCmH0zghTZZupPPJlIPNAMQxb+6hUhcjM55gkAn9kI6l2qsne5g9BdJD/wECI219QrdRgr1c2QTdyE1g0Z0H8ic0NfIMoHb8orQz9jDqL+Ede5v0esnMJIBdz6yxT2zZ9BkQjCUDLYGHDwYU6FZFJLxW+iDVSw5BCF46oTLd7oDVkwJ8ZD4yKMkE48gOIq99C3KWR1r9iCkMU7d4XyS0QqDYt3h7TBab5jTcKaQeYLUTNruLJk+jtZbRPP7CFnkjLXS+xBI0iDA7JxBRH30zgU2lxJ8X8cfFms1TmRLpL0mjZrEWH+GfOVpyCUmbBvXoshLi3dy0PTBJsbGc4jqFLqhkdc3aTt3kLoea47kX0o2pSrk/hDShKhRo7FYhB5unhtS684Wjh+h4cVlLvaG6PWXiwmdtecpnfq/MJaeJ3WGTE/DtNVn9WJCFlmQaAybfmGghT2mQp1kbUi5LDH0YoxkaYY4gnq9ROjnSKOMkDmVMsgk3KmKWpphIO5ia8sivvg8x62Xim+nFxA5LiLoEtcucXx2g7HSjddCu7WSNa8j3n/1P2OuPYX/nt+95v68fBDdq11zn0KhUCgUbxQbZ7YYq3+PUmCQzEwRew1EaBObh1laeZbZQzBI54jSMvEww80TjGzIVPUwg5ZPNQzQwmXmUkEtn8Dw6wwakAxsKnNVTC2CHPLtBWdFHlMux8zNeMAsUjPIkhRvMyVrzJNUPYRnIo8UIUa+r7FyCZy2Tq7lBHKKqH8nYvIgmtEtysSnIZVgAUP6eBxGGg6GnpHHMZYOqVdj4DqkQZuz/THukDOMNbv02xrW2ipH9AaGyGhFs1gbL8GdaVFWPbPJwpB6dwa9HBB0LTwOIFJJyhjInNj10TuT2NYlWB+AHGd1rcLhsTuYSC4RpRYly0LEHr6f04mOwqCBGUeErTqDAzb3HlxnaSMgt95L4gwIg4zxco5sPY92dgEtNzCGaxjyfUi3TbrhENWfZOygRDYS8nKKb04Q9AWeKyhTxZrtkQ0swqHGcGWZ1jAkEjblyCTwcpoNk6kjMWGcIxCIV75JPjhE46JN27+DyYpL+PI/kdz/KDXHJhYapa2XCUpDtIFDp+1RGpsgQsBYUclw4mAZc+sVzNYpvnf3f8/yRoWH2gbDVhUOCMqlnP7ZVc7O3cl43Ofe5gatrs/hMZdKKaHfdOg1EqRZRkt8dLeDyGdwkgnKjYDJg2Xs+gvI3kUyr4JsNQkGLfrjP0VdM5kLTAxbJ5MaWurgNTpMvlvQcgVHB5uQHQOh0R1O0vEm0NOYJGyRmxOUX/k/mCvfSznu0nfvpu1YjNs5oruI0ThJbt9HHuUY1XFc16UznGb6wcPklVmSoz8NS8sMhwa251OuPUk+eRxZthDNZYZ5D5iF3hobi7N4gwmiQwmZMYlMBYY7TZ600P0WUZZjZs8waK2gZ8fI6wHNM02OZAMGww6hbiLMMrql063FxP4S4+YEpbGUqbiHMf8kpbCGXQqpVh9FxF3stIHFDCcaPYw0Jc8TktwCLadTX+RgbYFvvPBlHpr8N0j9ILkU6P1FyEykXiI++tNk2QtkvRatEx6Vd7wPsng7n0iSpSC0BLP2HNrsMUwR0AyPE2ZlNN2m104RXot85jgiDRDNixhOj8B/ELc9pD9/mMkZF+s+waTdonf6FP0kRJg2MyWPJJ5Dlmdg+hEmgxfpDTLi/pCWJUC3GV6cx6zPkzONiBxib4J0ZRXXr5GFPlPpBbKqjjR2wj5tfPzTS3S7Zew8xDS7jL36v4JukaWHyNPCyE7ijDgz0eKMrUWXo9MCkadoYRtBCcjRZEKSWBjSJ8emYb+TLeMd3KsJ4qNVymtZ4aHvLRRVUxdW8E5JKvEm5+/0OD8GdwYZbrSMIWrIA/cRO9DPJa8+/izvPdhDxJAsnyBLD6EdPoyvH8DfXOQ+vcswkCRem4UD05iDg9y59i9srMB9cUhVc9gapOQba4STAY3kONLYwLZzjoyvYkQ9GEzQ6UV4UYpll9DyEkb9e6Rz7xyNV9B1MYVJOXEplSYZKwd0V15FP/QImrtJnvTodiaY0ZYYlu+h2bQom4UBp6UuYt1hte0yPTPGjWo5vrketDwrSgRHveuuuxHd9x+KCjP+jWMzFQqFQqF4PfEuvUp3MIbjjxHHAs1rYHQuYAzmMfGRkcusXWO62iWPMvymgx408QcRIOnWG+TtV3lat7EygzwK6LlltMokWvkgUkKeRLidAM2tk2UanZage+IUjcUBZv1For7LcmIyb5bwnRnydIKsvY7va8XaabrF3MEULy2zHB4jFybpcEivDXpnhX7HpudkBIEBYQ8taOP6Nsmgh7NeI0pL6CJnXDQp2QmZYdB1YobLa3hDQXtxFa/VIvUvUTJaaM4a/Z4BSLSgC9vtySxnq1VhdTMljhNkGlEup8zOxpRMk347Y7jZxq/VcC6cp920GXQk5XQLkQbknke5f5IpVzInK9RzHen36HpTlMZLSLNCbOUEZp+g3SVKy6w7xyH2kLrNtL6OpknKtDlQrSHyhOpdKeZddyDSEJFHxIlGlFnkpRkyP8CSPbzlFTobDYxwi85Cg04DhlsDWst9hkGFZjJFwxkUSyBsL5R8qXYX4SCksRrQiA4QTx0CoSGloKwNGDMG5H4f0oDQS3DqfUhDpFki08v06wmZH5I4Es/V0bdOkCy8QBRYtPIML2sjDJNITCJkxmCjRe72aK04iMhBxA6xfqAoM1616F1cxO1FpJnO6qKOV6ujBX2ivIzmNZF+Hy87gN9Pif0OndoCjfYY7RWXwfo8cZwiMoHuhaCXCeIJyjKmUskxkh5SCLpnFwljm3ZTI0zKaJFDuLlGPP1OGt4R4lBnJV8knL0fbXKOJDVg4Tu8dPZiUcQjHrLSPMqp9SnonIdc4jeqnF0wEbHLlnMIPW2SZDUaNUHYd1ldLhH6kKchQWIyYzQZNrp4XooIOpz59hKbiSQILbS48D6kvofb6FJxi7yrijnAc2fx5jc5/3xOFJn0Bib9WgOiIfmwSXP9AnFU3NvzMsIURUGQ1Btn7XvP060FNBwX6XVoL3RwzxYVSvX+EtnCMww62/l42+46s/EKcddlufYe5sqbpNYUXvVBNK9O2Idqbx4zdwk86PctskyQegOaaxGrtWlkuVh8PfOHJGnG+sY6C2cS2q1xyo5Oc3ORqG2R+h76oIbwGqy8WGdjrahmmIYxJDEiGrByesCwZ6D7AVs9j2anheOPUx9Mgcg5ppsE7UlatRy3sUYeBqRNSIdHsMs6paxORQ5xvAphbuHVA4ZOUa1VBgMSTHJp4kWl0TqMpRJYtk4mDbLKHL0gIdSrZHFGtrWCaK8Qt/qEzy0UCz8Ljbw8i7TGCcvHSZo1sjBlc/xeulFMGiQsTdVw9IhqdIGElDR1MQxBMnYYogGa1yhyzOIBc86TyK2LxN72uo96jG7bVO86BmaFQ1MdpDSoZF0Mr07Y71OvpYg8IaREEtTw6i0uPPcim+eHZIGNmeuYBExGxdqN/ae/CzIFmTGrL1I1h4isjOFOE7caDB3QTZ2sXBSI0eI+LWcapy3Jc0nHGUPXBYZI0couKRYnl3dXsr+aN9WDpg3WmPz6bwBsP5B78X/qk1RO/hXG1osk9/77N1M8hUKhUPwYM3B07ChEJhZ6d4k7jk6S6+9mYjwkrTsgpggSm0FfJ8dAJAEij4lXzlKZ7JJGGicn54pKiTIk1io01wIMbYh0a4Rilvpaixk9YehAEA3ZIkRf9Dl8yIFUIvQSmu0ixnRmwjVyrcpC4wCZOYVhSjLPpd8uFdFJmoHRX8ILdFK3it6SBL5FKiVzkyGDbk7WGcc64CGHHbLYoWSPU00OQFADt828eQjsPvfEfYJA5wflu9BDjXfrAxoti/Hpd1I/+QK5f5Qk1SGP0PwmUhwlc4esxSWmpA4iJYlyRB4ybnTxmKDR85Fyk9lDFmbtLELchy8O0A3HWWtfIG8KxifHkLICUUxtfh3TzyhXB8xaF2m7OWEIdw2eoSHHOHNxhp95dxk9T1kfPkiaG7STe5jy72SuHDO46GGUukj9veSajWlEZGYV/eA96Ks1/JUGZS/knvwIp4MxjoktcnEY2wiIXANbczm1GZAG0xytmhi9eTRjHNuMOT6zyqnWMYJhyFFxCmm+hwPGAs1ORDPQ0bILHDrgkSd34G8uoVfniFOLgX83xDaTekCUVDCFhqF1MeM7GA9hcuDjR5u8lIb8ez0lvZQx8C0GfglDDIn1KgYx1X4XxBRaaxGtAtmaz4p3J16rztgRlzBKGPQbVMdjTHsMmQSkuQZ5WKwZJ49g1trYLQ8mPPR8DL8/SWiGlAwfLe0SBEfRZEKeZOT2FBvtKpvuGONWmyQvE2RVZtb/AdP/AP38OLXKMve/CFbpOLIUsnLIZMW0eI+ASidjlgFnrDs5dv4CWc8gz2YYVipsRi0y9w7MUMcIGzidDIeIvpZhujGhcRxNeHiDg4Qixos7zLlrxNYUawenOD4QmImLYQ/p1pfoVRpUKwK/E7ApbYw4QdMN4jTA9TdItDL+0otYk1t4hk+SNyhpd6Dp0LEqTJptomyG9gDC5iGMUsJYqtH3JjHjOhveKhNGFc1ZZ3D6EpVoHMamCPse1c2XWLQ/hM6QXge0tIQzqGEd2WLskVmctItZysi0MrZIyHK7CPe0ygyqHwIkmneOSjxk9khKN5tno7PBwZmDlA2f9a0VNDFEbqzREZOE2hh6+wRj5ORzUwi/QZ5HxPEsWZaT5ib2+BRpV2PW3qBtHgFdx6zE6LnHt8UhZi14sOnTSzvkY+NkRoAmMjJRIshmCIN3IfxNht4aa84SY9lRzGCa5+0mpfE+Zfkgr9o6cel+fqb5fTzvOGNyg7jfRHRKzNub9EsljqUP0FtxyPrnyatz2EGLhpMydkhg6MXi1pOt7+ENDZKkx72ddbryAURmIkSCk95Lo3EQWY4x7QotWlz0bf6Dl1NKA0TqklAhmHiYTlTnwtYjCDNCtx2E16S9KuG/HtBa9aivHmJ58DD2eMiY6ReTXbmkalTIOiZuuYSvH0bfAi0H3x8yXhmSJUWOrhDQCGvo9jT6VgejGkCckkQbuMIFvcXGie8j87uIyyZG2aLUPM9c32KdafTUxtIkXqJRcya4r9omivYukXIlb6qBZvQuIcvTxeKARvnaB1lj5NXDaIHyoCkUCoXizSP3+/T6BnPTMVkFVjolHpze4OSFowjvfu7xBCK1kGmEJkN0GeClJS5MnEZ0HkAL7uXoYAVMFwGkQQLDId0sYXZc0miW0XJw2xGh49OOArrjIcccSX7y7zjTq1I2qzjlKby2Ty8s00/uQi+vkRmTCF2y1gTTL5PkJlIkNJ0qfTdGd7cIemOsxxpGNIkmfURoc3AsRIsdwqiCl0To1p2cMeB97YMEpsV0v8LhpR4n4gqzosO7Oz1kCl1HIzJzhNNBSxukxhRZVEZ3N5G6idMvE3UTItukK8fIUpjbClnZCqg2x5HmBVLz/2fvTmIsydbDvv/POTHd+WZmZdbU4+vmm0GKEiUYIryQQC6slQ0SJumNAa694o4bEtwQXBEwAW8M0AYNL0xwZRimQEkU36Oo9x7fwO6u7q7urqqsqpwz7xxzxBm9KFkwTboJGHoNG8rfLnBPRHyLC3zxRZzzna9AecXVfIIaDwh5RFklnNsZN6UncJ+mbwmhIs06npoDsg7u6Q/oZj8FxSO0uMNqPcR5wXWkuC5X3O0d2nukrtnfako7JBqPuekV3kfku5Y6nvNSa36gXuO/+vRbuKcaYTqCycmTr3K6v8/BVc6wL+i6AT5NydSAYbtHXR9jrebcT3n9/pTeJJzeHKGGAipF0Q0YjfdYrgKlTwnUrLeGSTqn7q8ptxWT7pSgPVO1Y5M4SqnYDqdU6YR/eLNmnp5zFd/lIkmQfsi46dAhZptpej3CGIXIc9aJomkMdfIuHZbJdo2pDT7/K970Sy76b7DLI4ITxCqlM2OC0yRCk0YGEY0J1ZLhYEiWTDm6c5fEP8G7Ct3WFNqw5+8R7IDEbdB+SL52tDqjdwZffkYh3mA2cKyvHR8++ComvktatdxpYqRrgZp8FQjb99DZP37VAMGWSNGx3fQ8232JO8kE1zSsmw15EzM3LxnwDkFbyBvsfkRkSrpuzLn+lDYNDNMR+IIGkDikD7z5osfKQGQ1m0+/R6LGRJuMlinOPaApIl4f76CX1KWnaz02tSQn/xzxta/y4cVTToopw+seO70PdFx273Iwr3iaTxFNxBv+a1z6KUf7A9ZtyWfRkP+k1sjlY7pdhVAT0A1dvaGYfI2vp3/Mj64f0rk5e6Klq9ZsrzreHf4LtP0qbSth2FEnGVmnCF4gnEGYht4P6ZscIefkW8/14g5Nf8y1rnk7OIK2bGXGNEsIfY2Vc7ZVYN0N2JeCSvVEZgN6iE3uYMuWHRU6xFDM6GrBVO14LO4xSwZ88/yE7S5hbRZoISmeVxy9AfRH6HzHILRUwjM2O9p0iHGKOPGI4LC2ZRmlHBWCh8WWd7NTvpUEOlPytjukaiz24884fnAXM4t52KWcMKevX2f/rCQbtiAEWkPWfAL5Bet1j4neRWd7vK42iO2SxnUE03HPP+Mi/ScEJKFvMDuN1hVNrghFhHNbVo+f8/TZkrko8VbyMlgWh4dY7SmU4vH3CyaRojFjspAT+YRtEUGwDIOn0S1tP+IfNf8zVqSo+Gc5qS7YdDn3hadtAsENaWt4OZ1hveKu7uiMQfmK0WBCaw8o6x1m27IXLcGuiUcSr6+5qn8SkVZsPAxtimXAnh+zrhWZ3H5eOvpipziqzZNXe8Co7P95kBCIbsvg0f/4xQV269atW7f+oxfJCZmZ03Qx/3yz4l/lL3m2m+Oqp+RlxZPL18gSzd5wi3URGEvRV9zPv4GN7yJcx1O/z0INsSFmLFfoqKAzN9zg8D6gmyV1fo7vaiITUIsNKTlfnr5Pkb1BHfZoqxJXbDnZKfLmBkOKMjt8ZChGilFSopTEe0lvoK9XWKfYVYGx84xUj7nSzENNXQe2zT5t13OcCf714R4n8ymxMkxH9+il5fr8ezybpnx/dERwkhudsik+pdy9xOVfx1WOsTrn7uSK5Ubg+hp0y3ceHPFRUtO1SyrjePb0gmCgE4rHswNOpKPdLbi5WPJsoRF1QWS2XC5TnG4gc3hb0DXXLOIpDZoqpGhjccEwHqZMIoHRgbqSRCPDtbvD6cJxvbtACIXkVfe+orjDMnvIyzDhTB+S06KdoKsjAuDyFdN0iZgaHIJKQa1TRmJI0kUI17FoJWc9VD4lyAjhLbtqSF5GrN0+/zI+JC80J5sMtXnOvI85QoHTWAe6c3TO4wksXlyzPt8Qi5bUewZWsx0GrDC8GMxodcb35nt0gFQKO7+Pjwb8OT3P7VNEtGFgVnTrEus9u/aC2OWI1QmmWvPRjaLOhvTxnKYMmDSnrTW6NMRuAl7QtpKmbnG6oSkD7uITdsUNF+3b7Po73IiSzkq8V2RRxIPRS2Iatu0Bm22KcxJlStpmB31O1jzHRlOcSWg7T9usacyQfhehmy1PVwfcf7ah21Z4H7GtHnC9uGK5vSZpniJljBCeQTpkMnsNIc4QYcGT8YDdLiNfbjDS0biOm6ZjlC2grHA+pjB7WNvz7J4i2EDd7bjSBc+k5fcPf5pNFEE8QkaSjR7R2IjT4Yyn80OU7jFFhH/5AtM+IPFjqvMOe7XE2AglLF0Dxw/fYBkn/K/unO/XNR8+eY/+RvL3V3cxIeXl4iGtG1P3A7wziHDJc05Idp8wwnEnvqHbSLzfY1vt41WGM7C1Ka1VPE0CvmpR7TXV6fcI6xd0RUNjx1ykMR9xD+0NOsQ8ih5w1R3giOlVjDeSpO8J9SWnyxmPlm9xvkiplKYPEzZS8p6zYEpcn5LYEct1i/Q5mhHLkPDCPsQUc6qwoDWBroNsCLo7woYMZ55z7a95onqelwfklUO6Fhs6zPEPcF4g8Jj+DHf+iOaqZ1MfsnIBa/YI6Zz+8C2ujWarUnS9pO0rlmWOvTb4mwOSVDLSO4QTrKpDmhqwlrpJOHMznjctze4Jnpg/tu9w4tZ422Glw9ZbJnnBxr/B+fWUdT7EVUs+HozZmiF12OOTu/f5cHJASOckE8Ew3TEV50z9BZ0f4dsWZwx535FfP+LptefCrvnh5uts6pQXz7/DdaqIRMrWPOD4xR0+e/GQZvE6eA9K0ac981lJNz/gSo1wtmM0OMB1krwYgQ90XcRKDtHP/oo2r7muY7xuKbuMyvXMlacxh5+fj37sGe//LjhC9DkFGhCSCao4+YICunXr1q1bt8AGsHaJ7RzRWNN0kuMffIAgxoeArhq2PqWq7vPZ/SmzhWFYnxHqlMEHf8pWvMU2HjLzEVFfkXGHhT6DYAgItPbk7Q1hUZHJDma8ejiJDvizJzPee6vmzTLhzW1gLTXCa5Caxarj/t6O2IJsFxTNgIaOEkXajBllK1wTUK5A+hGydrwUAx7pPWbxPVJ3RtoWeDNEyhzyDaXpubg85+bh19i7b4niiqVVPLozDOHSbAAAIABJREFU4bM85ZurmBgotIJoxrbTHKV79OUJWiV01qKWz9HJgLRuKZOGcyLuRQkidCgTGOgNsVkT4j02/UN83CFNgq9jMnuJ1y16fwQkrINnuf+Ar9cLZEgYVS3Hqxs6Ct4ezmjNlM/2bzi4mTN0KWVf4NUpZjzn0FvQht1KUssY054xmx3geNUkI65PCKLjkxvBbBqx1TsW4oDjdMiXm5qlveQur3PgDDudEOQ+Shhi4ZnIG3L5JQ7iBW+fWl5UhlhMePei4c/f3eONElp9Q+q31P07LCMHXc2BtWzFazze7THL1mgkxfQBXZxwR0IkPU4EXo5HfOnFX5CYKbswoxSK0pZkYY9cHTE98GxaRVHE3LWaSkSk0vE8HvFs9zb/tDdMxjuemglxdUWcvOBg+A9wIuXGx1i7o+kL7k4SmtizuprwzMaEbECwZ5Dus/M1Xm84698ikBFUyqKFcfQGs/h9rvMnmMERH2QPMVvHzNasi08QWUMzSBkGwc3W8onwbB8c8A8XS77sOg6TEV2qqESCb3tQLevKsRsvkaUhyK9iTEtvDHXR4uWCXfwuvYtJI82/nPwM890Jqn7Ja/Ej3rdHBP022lgqAassoqNhXO64omdYnBKNE0wS0bmAiyIiMUIKh3dD8uczdJEj4jmNKImCQNrXuTEdx8PnqN01NtzBuYzE7hjUEeu25pPZgn8a3iLomlR6JmFFWY6pzZQrXXJZv0NvZxg3xjLkxZ0hX9qeUbqMTTigSiKmvsbJHu0EkW2wquZ6cYjb3+O6O+SD0bskmeYno2fsRiNUtcIJw0YKLiYD9lY3JCbhw/1L3l5EJMFyke6Rt5IDtaEYHHJ9bcnyhsE84ijzvBkbquhtdqrhfuGhPuP9esNiPuN+bzm0nt5EqFojNzlqu+DqoUHJQwblHUZuQN9WnFQ9b/mAjBXSOU6ngn78kP5ozvLiBVWQjJrnKHWPH1xesLyT8dA6TLegGo4I5RXn7ZZ7s3foQs+w3xGrC6bAZPURjfwKKW/xuJjR9TXGaqKqxol94hDjYwNqDyssC6ZMs33SesokdIzP/5Ko/yrrbMSnkwe0QSOsxJ18zHAzIHrTc7J7hz5otEhIQkBIyVxURMOI3W7F4mBH6Su+JCRaa57fETyoO77U3RDsP0ZXDWQNwg+JQs4P9t9l7/ITdlHPcdMzqAruz7asZI5IW8ZVg5qPqZsSNxOchSFKdCyROEpM13MqNan9m3sm/l99oV/Q2n/w34BK/lo3lL+Nee1nEd7y17aLv3Xr1q1bt36MvjtsKNSKoFuEH5LWBaneYULG9d4+u27Mxe7vMdnUREpQq4qGnrPoFNMXRAHutTWR6CgiiQkxhRtjSdkkA07zNQMr2bcdId/yLJsSEFTao2vH3Ztrsr5DasN+F2idY9v11NWCer3j+NlTXFMSWktJjxEVzfUnFK2h8ZaNFqh6S5l/xHn0l/hIcjGZsgkOq3NUY7hbpYiu5cWmpdMVbX1DeTFku+hodKC2GctW0vQ9xjRomeHU19g7rlkuoWoO2bbfRNshJw8fYoNDe4mUkk0Ele9wSlLpFKPG6DDB9xLj98jNNdvtDbb2LITh5M4OfIoIMDMVGy3Jq5xH459i5OYkYQx9y/KqpcvPKLuYcpuxqw5ovWcRai5Ex6dRxfPVhEJKVmEEHvpaUKUpm3REUcKHd49YHw443gnW3QaxesFNU2L7Lb5tEb1gUze4XuO9wvQdVje0fYb3cLGZYgZw/HDH2TBlEx3SiISbQYQMGusls2GD7D3ejejsIYZ9mj7iB6MZq+aYRSqwEhYy48oO8dJgJOxiRzAl3ns+jXK2cY7shgyLE3ZNigsZtRXosI8Lb6LtBOvGiFYQRMO2eJ3TYHChpmi3GGeRQlHaFTfpCcI4Yr+kaU54EXs2CrxtaX1HLTTaa0q9R+lSgg+025y+6VnfHHOy3GF8xhUHnIgHXPT3+d7BAD25w1QcIoRHx4bOCly3ZZEM+PBwjsOyNI6gG2wbSOIZV0bTExGbGUaXRCFG2wbRlWzHb9BOD0hCwAoQQtGFHhcVICLW/QP2fMw3tqACBCSRcajsiLta4myMMhEDB8EJrNNcjs6wk9f4eHZNZVtO2opV3NHKmm3m2biadJOz7SKQnp5Ap3aM+ojxokVubrB+zaCZ0gTBatOQ2hlmkJA0Vygq8A33Bs+p9ZAaj7eQJ4qNmvPJZ29zXb2ksz3WxXRyRNM1VG6Hb2G5OqM/P6Ha3KN31/TFhirXIGKkcDwxGcZAsIIWxdI1GGHoicisx5WnCNNTuxGTvmEPwX50SO8zrjX8cDDmSi1J2gUPyx0HZWCvqBjWHt8bCqFYOE3wAdWX+K7mtc2IL9dHmLjlTBUsikcEXSDmEySW0LQE13C4vaL55AUq39IbzSpJeH/vUz72HV9ZfINvrt8iG7xGL4AQWIecS2dp9YRFG7hpUv509S6L/j5TMaLsr+jsHYJ3SAdt2ZHmS9J+D0gJXiOtQFlFkaSY8j1C/QmIniLsczx5k4FM0FKwSTJwlnXoWG09iZkTmIJrWHdQ2wG7KiaxC3y/pfMdhYZaCJ7tPaCNJUYFKnfA2Sjh1NZ8Fs5pw5xNq6hdwMQpRybwmk4RxHwgcvI4w4UBOI3pPYWZch7e4XQcOBuMKLVB2YLYzjBLx1x2n5uPvrgCrS8Zffd3ELrCjR987tDuq/8leEv26Pe/oOBu3bp169Z/7L4zvcOfTUv+Ql1w1TqyziO6gOu3iK6iczU33CWOp9TFFcJ1OK+pK0exXuCc4SKJ2QbHB0cTPt2fUExetXq7DBfc1Jdo7wkqJo1nzOuGXRxzPNij8RH13gHOLrhIdmztisrWpCImUnOKZsmFjDgeCC7EXXbTOeuDKWZwFxUiNnHLMoKhGKHSPfZswtt5S2xzNI4m1JiupnMp3kMZj3HOEJUnWF0QugLVLjgeTLhrL4l8Q2waZsGDH1OPBvTuitKm6P6anhXxbknc52hh0aElbTdIv6INihezhCvl6LuS7fop1+LVw6R3FhPH9GmMTwXDYktmeqTpOTj5lMI5qnpJb9eYIPHA8aEEmzPoKioiNnKOsRXGGZCarneEbs6kHSI0oOB05umHcDx+zLfyGWs7og2ex/vvUk0OGTvHvq/YS6dI4OXimGUwdAJ8CBTs86LL+Vf997kqvkv59ANO1wWDdUsbaj7MxjQm0JkVym/xpmV307Oveio74spYvOjZ+IyTiWM9sKSuJwktymn60FK5hjREHOQlHZaP8oq9ZkwUIooxHEc/xYW8pqhe4rolrb7EmhVKBw53hrvXzyiDxJiW104ukboiBIdDUoYxRZ/gXcDaluu6ZV3HhOBoEezoKWXNOl4wF2Pmbkgx1pSDHR/Vc8rqAnxJ16+phuesU8Uy/oS9J99mtHiJ0QWNviZEnqXxXJXX9KriS5cvuXezxuohp7M9dsMxq/GMVedYdRMio0m0YXH0GjczgxceIXqeccNjESN9Q50FohARWYetX7U0f88nvNie8WjUQoC0qjH9livxPlfU3LVDxkqREbMNgT9/YPDtNeSPkaLnIp3Qyzt0QrNOOhQgbYQVY87nj/loMOR0MmE7uiDQsb5ccSoiFnHD3euIHzHk46akbVP+zdEbzJwiYktdGP7t+j9H2ZigY3oz4ulexkfTKZ3dUauWk74m83NG+YplvabUC+quIzUpbnvCqjqnL//dVgoioL3B6Iq17Aj6hunyEmdbNhEYH3ExGrJ2O1xdE9pPWSVnzLcF88WSnV7z3E4Z+hl7xR0uY895+5A/OTjgveGUTiqsVCBhm17Tt+c4FBqN9I5FXHNZP2bnFe/zgjJtGXhB+XJJqGuivkTpGlUsiK7XWBtYyAlnwy2Ziplup4T8Q67Eis3mEW3ToWNJI2Jyo2F9ji1btJ0yAzbdm+xZx+k4ol+9RHnIkEQoVqrnYrrABYtVAq2gT1OMMvTSUeSOD8ohvRgwDopVnPLZ5CXWB3wYM3YtRzyliz2p79iJI3bVNcfDhrV0XG4FXoANHiMyXu5m1MUlcVMRe0vXj3hmz/irw2OuBjnad1xM9vnhwZbL1PGt6et872jFtVzzZFBRcMnjvROu44BRnjbq8KMZVaJpfYXwCa5bs6hfYsOO3k0/Nx99YQWauPghyYt/gR8dYe/+5OeONa//pyAE6Ys/+YKiu3Xr1q1b/3/327/92/zSL/0Sv/zLv8yjR4/+2m9XV1f8yq/8Cr/4i7/Ib/zGb/yt58v+mCIJXOsKm58TpGPdeIRr8Fg+SB7zsX8PG+6wVxeM2habTWgTRzMUdPaaGz5hYz6A9pyJkaTVEhd6kt6wcSXCWxQCj6OQKV4IdsmQ09kEVVywEZd8/EbDepyxGCT86/s7NsLzfHQPGSxJ1UK/ZuFOyN17JPkar2JWWeByPGIdR5xPE+blHoVuGNTFq7VaMgPXcxU9pfU5pVtjZY9Rimf7U2br9xn2Bd57FtMpQUq879hWz4jMki0toz6C4iNMecb1ZIrUzat1496Smg4pEmTnebo/JOpKgj7jxbzBhp7n8ys6NrSqop55jM1Jtjta0aDVkKmc0qVbnC/RBs7zczpT0IeetFjSCHA2sO0dl+maSgVqGp5yTB41nPslH2Q/ZL7+S3yScRHvs44jRL3jUX7G80GM35xi1B62uSbJz9HhhkeDhhZYDlo+HtdYXWJMRR0KGmPYdJbSXLIY9LxejClnM5TpWdqXpMsnUF3TeU8IltalFOsVpr2gti21K5HmhnmdI4yhkzHJ+pzUbHg8+4RF+gmp9SS6QtWX3EwmJItr4mJLFXI8inHtiIQkChXPkmcUFNQ2o1KKNkp4mp7zwj3i/VnLyZ7EJxHnfseH1TXnoWbQdzjTIVzL+fCSxo/pu8BSFlQkZE1GHwLPJxEfHFT8m71TvjtYsc0KKrel9AbKDiE0V+oZa5XjnUbYLd52VK5kMTzmYrxlUOW8nKUMLj9lVWQsR54QZZTjOX8mzqjCU1rVs1SOqqk5HQiC75BdySYaczm9QyUFxuUMvYDWEJBUJFxEFYWCcXfJ0Av6CFLVctjWmCjwLFNYkfDE77iMctieEW93LLmg8S0jV1LqGofHhR4bDxAprOMFC1lynpbMly+ZljWDpqfLhmi/ojcXXO8/4971BaG/4VkwPA+f8MNEcNLfofAtlyKjKJ4zy3e0ZkFa3bAddMR5QDrJ0N5g7AvSbEQz3adLBlzzHJ2BjAfoUBNHQ8Z9R92d0/sc154Tt0sINVpUXI0lo3zD1SjQRzFWtOBq4qrAeotuF5wqwaPRJZX0VDbm+vCQl0c9z0fHrCKPUZoyjWliibOBaRExLUu67oxHs0/IY4nwPcvpkCaKiP2UmCF5X9IYBdoh3Y7UetrhnHrvNUqVcidfMl3c0HcbLtwFul9Q6qc0icRISJxmKwwXYsH7w5es62O0ifDmDN/lVNVTfHHGNlSMy5e0IscDbvAmP6F/ho3yONcSfMDaEujBGU7VivrmmgeLv+Q0LfGyxWtB11cYBK6LuLCHfMstuCiOqdQ5q7Hg5VFClbY8kwnbYYJPFSeHR5xM76F6g2hzbgaKc9EQ8pfsLSsma4uhgThgo9fRZ5bnriG7uECWPfevCqyIyJOGHyQV396LWcSGRaKpBzGDtsRuH+FtAaLBhZq6f/y5+ewLW4MmXv455s7XSU6/jZ+8+XeO99kd1PbZFxAZ6LYhGXzednG3bt26dev/y77//e9zcnLCH/7hH/Ls2TN+/dd/nT/6oz/697//zu/8Dr/6q7/Kz//8z/Nbv/VbXF5e8uDBX5/N0fgNgzig44S4k1wMLSPTE4zGi56+q7Bdx2V3jItWtIBWitg5LtIdmbyhtSWWEVXUMa8uaTJFJwsGlcPFAzq7QYqIVlhMLMH0+KgHamLdEJI9pLVIF6hdyZ2bNa6fsZneY6pLsDVp+W+ZbaecH25RQbHRHVG/4qAcUgjLJIxZjs5wzCmTNVHTM5Ilw15i18d0WuNFRyM8QxMzy1/SK0vSVOydfI9Z2yNDTRsH2oFHZpbUtRw5RU/HSGbkkzFCr4n7il5KKl8QXMcuHiFNS5muWQ4Nh9st3fCI7VDSJ5ret0zzBTKy5BPNUBpmeku3fcaQgknroamx8T51IghtT5tOkIMZu5HkYR/Y9RmZEuBKskZR+YyHmytGs0tCMkfoEhdJor5mf1fi4wc4OeLk8Ih77Yqs2zEINU6l1NGbTIBV1LCOF+xn99g4ILsiaqCKU1oZE+KIJ0c5V/tj3tluaKKe6ze/wt3Tb7FXWWIv+Kz7GDu5TzXLmeUdAcegran8hHG9JkIwL1bsXMqdWFGlMdv0feIDmJcZ+8GzzAzz2tN3H7IVRzSZIa4kUQh44GJUUKkB5xFM/JZxU1OKGmktgSHORyzFjjyNsUVNVJXghkzaGtF4Lt+5x8FxQwjQuwo7jjnlkr88Ckwa+CRb8jOblFRJbtwLZCrYNxnUJWHfo12JlwX55D5pE5Ddliws0VOFiBy7ROCtoWyf4y+njLJT4p3BhJaeY4Lv8CYiKIupHiODJ8gE6oYwbJm2BiVKztuaRn+JkQ+0mQataVTNanLBfpOQbM5QTcFATlkNxoTW8ywK/OndjC8X12TdBoekimpoLYV/C0JNqyzCeIZFQTnLwC7RTkJ0iBMNi8zzYLdhhqUYCFS0z2ungsvXBoTGMEvHvHX2GFlb6sGIUVHxwd4T9h+8y89uAoPgmF99RnXv66ylYuQsFstzuaDsTgnhPmkWE3eGnbjGWIEdTpiawGhVUiYJsTVYGaGjiF4ZbmYCJS4YG8vIHJIVSxqZE5Ql6kfsmTleL7CxQ/UdF/OaSpY4c0bdaBIRUOUFrrhmv+5gLJC2YzNKiXuL7tekIXA1jkjUHt7VLIYNvehRjUfTcdbfkOoNdVCUA8Ves2E7yMjaHi0VqZ2T9xdIkZIS47xkM7vHJgukmxxnc0YhsEktT3zOXxxdMGjGvHEBZ0NBYhQ4j+w6HBEmBDbxjNLXfLY34zT6jCTrGdUnvBwf824ypkayDROkgCRYVAtx5lAyUARofE3bTtkeRLz/5iGjUqHTGU4m5KM9IrfEodEyIgjPoFigPERdTr73gHV0Q2hyYnpObUlaaoJqiMI5ebJjf2WIQgApaEeBLs2was1sHcijJ8TCQX5MnPQIewS+o4syQn/N1EVcH24+N6d9MQVaCMi/+h9wX/sVhC7xo7ufP14IECCbNXgHUv3YQnv63W/x3v/2vxCnGXE25O2f+Vm+/k/+M4T8YvfwvnXr1q1b/+9997vf5ed+7ucAePfddymKgqqqGI/HeO/50Y9+xO/+7u8C8Ju/+Zt/6zW8sRgMm0yx36Y00rOTGtIYG8UE32KQOOFpk4iryYjDzROG7atCpz1ICH7DqPFIfUHoIqTt0SloAe04o1oJLjPPoLLMdjeUo5pQfYL2Kc/vR/zEjSTpFNgcq9Z0tPhswtBXRNKzzq6wc0E+8EyaIdthRhMu2I4sI92h6hUMvsodcZ+b6jlK5Ag/p1IWpzoiP6FIHXoacbTT1G7BxkX4OMarhEH9nMx1OKERMqCcJsfAQDIqrvBRRBtZwuY9EtngnaKRPYQMHXpcWBK8pomukD7BA5gtb7wMYARetDQYhJJ4pVimlknt2e9K6ngEFKzHiqN+wE1WMrICrRxNdM2gnnITeWTXMBD7OO9YR1CIId0b95B9havhNIV8IHkzz1kPN8h6RLfv2KsvaHiDmXCYJMN7hYug72r26wWNEvSuxaUlloSxLZiWEvqWs9kOY/d5cN0xrhoWh3Pi/FOULegijWha8kFAySF1vGIcFIvsnG9epQR7BysEXbTlarxmUCfoomAvG5PfT5jVEYfbim70kj5RSKFQvcF353QyY9hq1GAMqUficLLHxHNoIQ+BEAKz2iFDx8Vsn1l7xUQrdiqnjAWRV2xGih88HPHw5lNu4ikzPcVLQeItwvdYu+VsVPLwqqZzazbqABEyXGZg0CMiy8TPiMwa71ck1uBDzvPpfV4/L9i3gTID4QoqVVD1FVUyI3aOOq7IbIwMDb2C7Ugy6QNRs6UXAYNEhzWvn6dUDPAq0AqD7D6mY0fkZ8QMSDsH2zMeDSU/c9PgYkljK1K7ZikrhrLgTrtHG8YcVAtcpJk1EZHWfO/hnL+fa4QTr+aOmR4fRkhjSHSM6BpCNMGEJX0w+LBA2IiEEYnWXCc3yBCId0+Qg4pCBbztcOmApGmoog9YRV8m1QLVvOAnLgf82eRT3ugcqpuyG5ZUcULqQfaGoDwn4w1y/hqvbw26OmGVSvYbjY89WgqMtzhXMa4VLk5pY9DeIIICbzEi0AwSRsuO2nukdgz7ipF9wfrgkPvLikrFiK5myYfsa0urBK00JIMBm5khbRLifkUrHUfdjot5R9IaBJI0SejDFtVt2IzuEYmYRhgid8EyHZDYDk/8at0gDUYoDgtNl0pkfU3kPKR3ePLwHq+/WPFyrBkVnj4KnByNOFoqOqBJEuIg8W5DFzwTU5FJQ5ss+HayRq9b+ntTWtWi6DEuoBuDHc+ouordZInoniPYo08i3jz9Dr18ncd7h4z3H1AnL1HNllFzQIjWJNYTu4JEN1glyIqWvd2Gzlu870EM6MNLVF0Ra4uVEm802fIzRPQTCLHm23e+zleWT2llYOgtlWqJjeXBpcYFhaw/xcpAPkpZTCVxs8VIaGPHSHsqpWnq5HNz2hdToAmB+y9+nzZ9k9H7/z1+fO/vPMVN30Q2C9TyQ9zdv/djCcsZw2ff/hOy8YRqvaJaL6k3K+rtin/0i//1j+Wet27dunXrP7zVasU3vvGNf398cHDAcrlkPB6z2WwYj8f83u/9Hj/60Y/46Z/+aX7t134NIcRfu8bB9oKjvGM7m9FGO5rBXZo4xghD8AXSC4Iz/NVgQ7ANRiZYEdCyQYQM2a4Rc0GiJLPVGTeTwLT3DLUmCxrlG1ZiBXZIF+2QRmCEZ15aumTIfGdp5ZpOOKpswl6piZ2myTa0o7sc9pc4Bb0q6YRFIjmbvGTqDMpZauGwg4JgP0aEVw9CTmiaRMP4CNmd02AYNBWxVehIUA40TggS4ylHCfduHGln0AqkTNilBssLDjvDi+yMgXNkUhGbNS7q6YPmJhsBO3oJmYs5m/U8uIFqmJD1DbH3SO8JtmA7gYnwiOBJTcygtZxPU0S0pBocsF/nGFGTh2uw7auXtMHhnSHWHZvomjkVLkzwKiH0BSbRnMuPMIMtQ7FHPn8DY3eE8ikHfUlMSbr9DmlT4wYdHSXSWCKvkMsP6HVBnbagAyEIshBovMAHGPXghSeyIFTE5RTuXjUMWugigXElI23QkSf1nqw2IEZATQiSnXTcW1ywt9Fsr79DnsKkNBAUw1YzWz8nayvwFmEUs9YQtMVHMa3sEGEAg4SbbIlOIy5GgTdNRtJJEJIgApF19JHCoSjiHVIbyniMMjnCGnbJkG20ZZivifVD0i4i0TVBBgZFw6I+5e4W9N1Xtcv+ylJMDNXYMOoCQSs+eDDnYTMl8IIgAugbfOwRzSW5akmcJ7YDxm1Dk8bUbY/UNT4WyKDwAVINygWECCQmEARUqqPHYKMJG1mwHQRU0eFjT1re0MoOdIFiivAa5TpsbKhkS6dygktQvuRyKNlzltjtONycE5AoqzFRRBCSm+GWp5OCUS4JeGwkqAcJo6pgXubcv+nZW11jxiOaqCarPUIJbLjmyV3PoLQY6Xg01gTT4oIitQN670m1xdiOP34r5+G1w9eWjblkcxRzsNEc2hLX97Tjji4ZQnVBIju0UCifY52kdx3FwNLEgtg4sm5HFgzKR1glcFFE0q15/bTDZA9JbEBHms5dEPoV0k7olUAmgno0wtmaVrask4aQKe5tNyRW0sYjGvcSfPuqS6LRxO0128Mh+jBimG9ohhnSW9JdiQjQRluUzVjuZcw3NX2WIJ3FC8VQa7rRgEr0ZLVGeIETDkGEj0c4uyDdvUCYAtl4jGyJgiD+dx0MX6SelTomGuzRC0UYGGxcMtBTDtsJMZ6ies4sOgM3xaOxAbRUGNljZMCFmq7+mGBfg3EHdkMQUzaDp4R6A2ZNR0MQkn5wiCeiE1cEFE4o4s2a07t32FOCIFJi3RF1jsh0JFqisxQnI4pU0auUYbjLUfcpqivwocMlMcMeXNwxrsEpUNqTaUNta+7u7hF8S8C/evEWZfTeYmT7uTntC/tMFN75OUY/+G8JMibE479zvH7nn4FQZMf/+48tpr/4n/47oiyj2my4/5VvMpwfYHXHs+98i8XxZz+2+966devWrf+wQgh/4/j/LMBCCNzc3PALv/AL/MEf/AGPHz/m29/+9t+4RhNrXAg8PL9mXIG3G8qkwciAF5rYWpwIeH1FORwwK3YoH5BeUo49ZVojtKGqT2hjQ61KetkShMQqSLR9NUMEhxYaK3sip/DKM9U5B0VF0hQcrdYM2hta2SAJDDpNWh0jbMuoqImcILGeyGmGXYvoNXsFWHtJpB0tObbf4KXFh0DS50h9jZeO4W7DqH3VJbnMerrIMys69oqOg+VntOkEE2eIAME5jFhTDBryyDOpBE4qiiQi9SlJmCJsAXqNahtc6PDOMFvtSDTc2dVIB1nvSbXERRFt4vBSEUSENA4rGmbbNaHpUNUlPjgiU7FUS4pJio4hCvJV0wjXk7pzrLSUqcSJgBOeWAeGdYuOHetMcbQ4Jq0+w/sOFw+JrOe1qydsh2tE/4LI9vSxpRpKrFnSioYQLNJ76kSTDxKyzoBQeCXQMSQ2ZRM1VMoCGZ4a4UpCAKMcVjqKSeBqr6YRWyAQac1m3LEZdQQs+5s1h8sdwrRs7ZrFaM3B8poQeqx89f8QgFEeZXra1FFkHY2D4GOsF2gsG7Emak+R3RYvJX1k8dITOc+gqbA0SJujgsPGMU3UpE48AAAgAElEQVQaELogMgofroj7Bcq2YCtORqcUUU1kNbFtMGKHiR3KW2Z1RGShTiXjzY9Irr+HFw5lNe1ggheeuFxTp4KbiceJlrRe4CRcTSp6c8bhasOkbBn1HTJIZIA+jqhji/CWephglGXeViTmGqlP6SIDweODx8sBl/t3EL6niXpU1xNVn1KkEh8UfQQ66nlnCbNGkXUNHk8QFicDSIsTBtm9JOl7jAJlPeNGk2rDKF8TvOP+UuOlZTmyaGKM8hQjx8m9mIu9ObvRgNhIng+2KC9pUkeXNBhXIrShTg1t3LFLIoZ1he1Oee2yQtmGNinolCQ4AziyrsVLSR0rtOjZpK9eQmSdo45b2shi4oCUnnw4oE9iJkVJk0i6KKaNI3SigAinYkKoUWZJT4uRisHuksluSSsCe+seKzSZhj5WCNcwzxuUV8je4OkwyqJ9IOo7CDBqNCby6FgShMBmGSFs8aEhcoLIOsZtj/CGIEDYmlHb4KSnTT0DHTOpepwzTPINjWr+D/bePNay7Drv++219z7DHd786tVcPVUPbJKWKIER3bJkyZFlKzDiwHZCOUCAGAFsKAYMBEISyIYZBEgCZETgRIkFGBISOU4UW5ZjjXYShaYsiRQ1cugOyW72yK7p1XvvjuecPeWPfe69r0iqZVFUEwHeArqr6p5hz/usb31rrU0SRdXNCAqcSiT3Nkt9SsMcp+aE9h46OOrGUy4TRVxyb0vxlr2H9gq8QEjoCDuTiFcOiQucaOamxXZTFiZSuAmLSqG6B5SNY8oXGE1PKZzm7qUxSzvh4O1P01pQEXR3jJOES5Go5qS0oKMloGh0BL+gM0ucTBG35PqdT7Jz8ipgcGqOF8fpEKZVYG48swEErVFJ5T3ALdk6fout+RmCMCs0Z6ViqWBmZu/4TXv3/PiCo3rxfyUW4/4D9c7ysU9NaVKB3P2d3/Per0VijFx7/ptZnD7k5vs+gBLhW/7s92PLAbdf+C4+9U9+6g+l3Au5kAu5kAv5+svR0REPHjxY//vevXscHBwAsLu7y5UrV7h58yZaaz70oQ/x+c9//iveMVwOKbolxCVRNAcPE9MBJJYkoLVCETziHeX0VUgnqBQxyTCaBZSfMpxFBgvw0pKUp7MQFASd8DrShWMmZoqzQmsTjY00Gk5Lx6xQoGpMCCyLBTqGzFYQKNoJzihIEZU8dWOoloHGBgIwLwy2aWm1sCgMnVHo6CiaFnE5u5/2YELEm4IogapT7E5hbhJRKSRMkDghqQ4vES+B0dJTLhpCXDAZGFqTIDg8LSkc44zOLn4ERguPdZ5FrWjKSMRR+khjE0ElGh0ZLcEZ4WxkaSwQA9PiPrgFo7MZXjydUUxKx2D6EAkRkkOFFhU7TrYCwVi69IDU3SN5n2N1bEA7T6cDreow7VvYGBnNO0x3TJDAlWPF7mSGF4WOFcMGEoFIBAXGA9FzWheo4GmtwhkwUUPnGJy8xtOvvknVLbjyILJz1mFaUGSWqOg8EhWDJSQMNg2ZV4l6+RYvX4PxzDNedEROSXHJ5XvH7E08JoANEOkIOKISGqtYlIkYFzwcTiFKtsovArPksa4FWlJoITpM29GYJVG1BBUgtbQ2ErQADU4pds8WFLMp4k8x7j5ewKVEY6Exju0JHD1UBJUgNiAlwcCyWLJ/fEo9O0ZFB2nJaDHDiaO1keRh7ywyaCNb3ZygIolI2ZwRjGZZas5qQ8ATNFjX8GD7lKVekPwS7RyN7tAhMjclkiBJYmlacBP2T04AR9XC3tRQtxYXO2YDg3aBrbNjFvKQ4+EC7SNnwwgpoBLgWyKBy/cC0beQHPMq0VjHmX7AstYkgagckoTtyRkwR4DCwY3X7+BlTKehMQvscopKkcJ5QgoE09Galpgcu3dOMMsHTAeOSIvxAZRmWVrKTmPagF68RgpnWB8pu0AjE5bqFNNOiNIwK5ckSRADURROGupmSWs7gjHECI3keWq8Yzw5xbYdTnf49JB5URGMZVH1czpqooKIIqVEayJOMlDcnj4k0rGwDcPZ26Tk8Ton9iibgHUdiyLRGQMJAsK8DnQmEAWWhdDqvP8EAjYmqhZUXDK3Db59ixjnjBeOSAcpMmwi4ifceuU1tk4+h1cLZNmg2yVV8xDjA4lEm1puvPFZLt25i0TPlYdQtxMEkAiJzDRGIqRI3SmCm7E9axgtPEU7oWogorEuMpq1sHydrftvMa89SUWK0GKCsKgU9bIj4lBhgVNTinbKcOGwIWB9Nn54FfBqwu7J20jbEFlAUoxnDVXXIMkxbDVlF6maFgCvSxrboaNjWhlMTKiYmJj7tMm/4zft3QNo2pKKMXHr5jve9un/8x8zfXCX5//Vv8TDtM/ZnTf/UKrzxm//Gi999OexZc0L/9YP8J1/6a9x65v+JXav3+Tw8du8/dKnmdy/84dS9oVcyIVcyIV8feWFF17gF34hZ/797Gc/y6VLlxiNsreGMYYbN27w6quvAvCZz3yGxx9//CvesX92h3rpkKRRKQCJ8XRC2UyJeKxPBOVzXBUeFQNeJVRoUD2IiHhs1BQuMJiDdR4VO8SDBEdjPUuzxLiE8ZEknrrtSCi2pi22Oca6gNc1oIgkEhGVAp10kAAi1k8xviXRESQgsSOpiDOWqukovCIFT1SO16/WzOrcxs5EPAugBQKLMpIUWK/Yni0o2wk6LPA6QOYiqDooXVacJEW8amjljLpdYnzEREUCkkpEGogN27NI5RRRBBMg4THBU/RNKNt83lEUcAQ67XBGEWipOs9wKRSuw6uI4wwVPYVLbC0t47lQd55EZHveUTUtpnXUrULCFNKUuvVIiNStw4SOYSvoqJlVOZudhBnQkkiErPEhEYZNYns6o9MeExKFC0hQRG2YDioWZcCLBwK6m+IFOolEBQnNvIo4a4nSEfwJejlhdxp48q2IiUBMFF1gtISzYcGyUiQSjelIgAkOlTwJsB6sFwrfEdUSFSNVExgsEp10LEzC+TMkJDpLTj/voPDglUclRWcjQTXMbGRZdAwbIYjgdKToOg6PPSYKpROMFwaNwXjDrO44HcxIKEZzldlfch8an+hkyaIITMaaJAqUIEmx//BLFH6CCh4dQfuOhEN8S2sSkYj4ht2JUHcaSQAKHTSg2Dm9x7DJv0kMeAHbOYgBpSwQSTQ41VJ2HcMmUnYR2zr2zzwmBnbmCcjvlghFgFm1IKqAhETRZkhx5cGU7WlA5eFHQtODdPDAaAFFSNh2xv7JQyQmOHc8byCPDzGifWI8mTKc3aVuIxIDRUhICnTGUzdLquWErZO3UcnjVMB0np1JwAaFs5kkOpgYii5gg8epCdovUal3EY4dJswI6S4qCV48xkeCRArXUbiWspmzKKFTU1RYIqGjsxoh0BkHqV9nktDBQQqUXaDTmiQFJkTa0lC6OQASI151qLBk/2zGsFEkKZiVnrJrMT4bNqIErJN+v0qYYGjNDIkdZZvd+6JakpLDush47hnPO/RyBgmcbiGcsrQNiZjZvhiY1AbjHdYHouT5U3gAjY0ZyOoQENdwVluIeR8tXEMRAiTHcBGQ0FIvJ6jQMKlOmQwCrW7x2jOeNUyrCaQlCo8Nhmq5xLoAwHghWA+qe5m9szNs01DP3kJHhTeC0zBcGrbm4CWi8OgYgcj+aUvpoRNPoEHcXZZ2SWMCKbp3/Ka9e1kcP/l3UO0Ev/PUV72eUqJbzEkhYIqSemuHvXJGbM74/Od+h8On3zk1/+9HUkr8+j/6X4g+f4CXZycMdvYA+J6/+kN88h/+OEoLr/zaL/FN3/fnv27lXsiFXMiFXMgfjnzgAx/g+eef58Mf/jBKKT7ykY/wkz/5k4zHY77ne76HH/qhH+IjH/kIbdty+/Ztvvu7v/sr3qFQRJVQKaADDBaBIDG7RUWFCRmgBJUtn2XXgopEEZLKmlu9dKiYrc6ShEAg6QgRVBQKF+iKAqInCJhoScpTto4kgqTsfrh/ekoUegU2u+NULRAjUUAliJKoO0GRY5ECjrKNYEHFSLAZZD3+ZkQpSCqSUqIIiqiyMmWCcPVBJIpHR8EX+Ywk20aSQGtTfpeCshO8gEohsxxKYQOkINnVKUUUwuFJrnNKIbt2JiFqobWeqlPoLuK10BUZhKgExgUUGeihDFEBRJIkOpPvkejZO0tk56HMfgWt2DvLroHHhcaE2ANADUSWVlOEhI6JJFA5RSLgdSImQZIjiMaZQEJYFonIEi+JMkSCijmhCYGDkznjRYK+ntZ5Cp8IOrcfEa7ez3ElGUd7EFAhgxuVwATwCOARv2A0DwSBqDUqRkxQJFQP0gwKBUkygIiBttYIkVAaSBnoRQ2SIiaa3CdCzkYXEioEIglv5uydJqJyGA9JCpZmQdBQukhnwIbMurQmsTNVRAw6JSZDg/WZkdIJUBpnFNtzzzxZAgt8EShdXj8megKRDHMyE5XjvkAB80FEB1iUHolQudwvJmSFGYCYMBG8Ib8nZVDpJL8PpSm6QBJBR4HUklBITDid3YghIlHworh0KszLQNnleQUW43MdbcjMstN5jjtj0OQ+UWhGS43X4LXKQAFHZyEqi44diKbooG4WuKLKBp4QgURUIFHotGK0FCS2kMCovMZAEyTmNqByrCMh70MxkFJEgkURCBJwRqHdhKXN/a0wOBPRIaBjJKVAvZzh9ZKEpnAZeM6qyGCZgLwHSXI4URQuj6mJERvmRKUo245Ge6Y1HJySXRkFCp/wonoDUAbKXkUkaiRqOhvyPhGyYUcH8EYg5k1MpYjXkJRAyixzIlC0sd+bAlEiSQlOdWglFJ0jisoAVeV1lGVJACSZ9fjsn06pl3MkQlAKGzRVF0kiKEA7j7Nw821wZgqUSGhISrh212NSb3pTC4IRik6IKhDEY1PMfUlEpQYbFJ1OWBeYVxC0IxIovMKLoJLkb4VE6gZKbwGHV56ibYmSeATtfxV51wCafO5nSOUWcev6V73+z370b3H3859l/9aT7N14nGvv2SFu38R0v8Nr//RHOXz6v/m61SV6x7Pf8b385k//BAc3n1iDs5UYW6CN5fP//P/+XQGa9yecTX6Rwl5hNPq2rwg2v5ALuZALuZB3V37wB3/wkX8/++yz67/funWLH/uxH3vH58czh8RIVJGoBB2z6xkkniif4258i3k6zS5kRILOFmZJggrSs0gAOVAeLTlBgkq0ZaJ2AMJo3qAitEWkaFtA0CmrsypGvM6Kpe4t+/mNWclFslKXEEzYfHcak6iSoHCoCEFyXQYteJ1wylPHXMGkpAd+oVeeM5gKYqm7Jr9Q8v8GrdAYh0Twktk80JRdAwRiD8xIsgZYSSWWRaB2WQHsLFgfqVvp2xGYDjTWg4SYryO9Uq8IyqPo+zV6kgpYr/tqhb5PIglBpayQe4nsnyliDwpGLUQlFD5bwRNp3YcKQSLoFPq+VeiQyy/dCpCD10IUIEDVJbz22W2uV6x0UEBEh5x4osq6dwZVJCKOBBRBSLJSxgQbPEsLl04ihVM50Udc1TICQiIrf6hEpzMLFBTsTDO41CECLvdYUugEEQdIZnoQMgPqc0a+LmRwherdwlpKF5Euq4GtjRnT9LXQQSEiOO3RocF6jQm9wUBlAwYoRosFkYCJCshsqcTUz4PcD6lXfFM/CnUDTWGou01/emnXc1n149tZoXBZqZeU21kE6Ucy5NjAAEE5lMp9VrjMEhc+j7+kvIYTmsInnAZn6Bvi6bSiDOA12dCBp27ye5IoEg5FImqDBJ/nOlC1CaSDCE0ZUDGikyBtSyIAGshzN0E/l1cJSiIm5PFpbMR6haSIBMGZXF9FxEQhKOnL7A0PnUDymD7JRsJhOzgbKcoOhk1DouTBlrA/hag09dKTRFO4SJRIpy2l6w0tfZ9nljuvYx0COkSGKdKZhI5xbRTRMaBjQyKv68JtRtYE1e9ZAW8ShVPoELMxp5/Xiti7hcPWvKEzgg4wHXRUrcWGzELZoGh1y6iBxmQQnyub3+Ol30lUg8RAGRWS7hHx6NQbsZSwM+2fiZxj80GiI+rsbuh0pPDSr13QUdAxro1jdeuAvG+22qGD4CXHwwEMm954YNR6j1vtTy7bu0j92tSp78egSL+HE+O7BtDYukY8/iJxfO0rLr3yiY/x2m/8CtoW3Hv5Jd5+8Xd47rv+NC/svofB5E147bNM799lfPh7pOf/F5TP/dL/xW//7N9Ha81z3/19X3H9yrPvZ/bwAa984mNM7r3N1qUrj1xfLl/ii6/+VaryCZr2i+zv/TmOjv7K16VuF3IhF3IhF/KNER1DtsKnbOH1EklaZ/e3lCiVZUa2okayEp+/0ZltMhEaCyoJNkRCymyNpKxgRBUzaxYgaOld2LIy5vRKkczKWxTY5D1ZITWFF9Axx6VtJGYFpgcvtr9kgu7/zPUNStBkJo2UFcQg9CwKJJpekWLN0iEBswaKqzLTBjiuGD5WICihklC7fFxOEOnfvREF7Mw6JOZ22pABpUSXFaS0Ysj6fvUbIPoIYJWsrNmQMCHhJfVAIYMZSQHpFdsVYKF/70r56tU9dCQDWMCG1b0xK3Q9uCqd5DapiI4rdnOj2J1vY1oVubaS5/uigERF5RIxJIJWWL/qU9W3La6Gm0TM8WkKvEpoQIewuaeX1m7YyFXLMhjN805SdglNZFZAn59bCIXLyjMIVRC8iQQVKILChHxfVIKKsa9XdslDhXN9pkAlgs796yVlRlPlNREl0Fio20jdelZMpEKtld209jfMjF6UPEckkF2KTUJihsCreR50LiePgfQucKBTZDXVk4pIAJE81zuTUCqDTkWk6NsYRHKd5TzY9rkuKiIpM5xRYu4voe+7nCzGaUXdkd0pkwAaE2OOm+rfuepPyPtCWhsd+lhEldmXDOzye3Nbs0JfuIBC6HQ/VwS2Z4LT+XpnHQdnmRVzOjJaCvQAIZGwPvb1i30b89hFFVDrcvO6VSicSYhXa2bW6UAQRenPzfuMwggqr9/SaZY2rxNi3j+9Tn1/b+aehNQDT0UQ37saJ1RUFEkICiqXjWFJsn0qr7sNK6dQBAXGdzmGTieCKGyI67WJbEBiUHk9aZ/7oPD9/EiSx3jteqg3a5nNHFvtx3k1JoLk/X61b2zWZd6XveTyJOW1sNnX3xmgvXsxaLO7JF0QRo8eDJpi5OM/8aOUwzHP/vE/xZ/7j/8WxWDIi//Pz3E8eJZUbfOhK/e48/l3PnH79yNf/PVfJnQd9dYO19/7ga+4fvTUszz7nX8q3/vJX3nkmnPHvPraX+PS4b/NE0/8CE8+8Xe4/+DHWS5f+rrV70Iu5EIu5ELefVmUBq89UUVaG7ERrMuW0tB/ZCH/mRRrBThoobPQadABdIy0dgWkNpKt+VmZW32sV8qRCVmR7ktA4qPuL9m6v1Jke62nl0dL4dzvcf2fDblMiI+wQIocf3ReQq8IqZQVvPO1WNVvpdh/eR2ydTqRlPQM10ZhiYq1ciTrdmSlWs4Vs35Xf29nspIeJZ5rU34uPAKC1Pp36du4YTXjGgABLMocN7ZSML3k5zqT3+H641c7S19GZgFJ8RyYWCl9PZu3BoFhXaeo8rtW90mMK0dOJMZ1uvG0fo61ZT0qWZedyIqvlw2bcn68CpdBkOrL3DBxgiTJxoZ+7CStALas65ZddBWJSGvimj0Oq/orye/Vsu4fEzP4z26luf5BxTVINKGfY71CXXRZqXda8DrfH1U6B/c3lPGqflmxzWOb7Q3qkT5KgIrnFeksuV29HaK/mIGa9AxGoHIZxK2edXpVV+nfkVjaRFArUC9ElV3TGgvLogepZOOHCYqiB9NRnV8rOTHOqv9jjxhWcxVWZWYXzhWQXs1zu2LnyS63kBk/GxQmCIWDSKB0eRwKl/eeDRjczMPsfudJKu9XqzomQu82vbo/bvpwZTjoO9gGRe3yv1eGm86s3F8391cu110nYcWuQjbapN7FOgh4vZlvEntQ3NdDUsxGqcA6CyjE9d6w6jtZlxGxQaPDo3sS5/4uKbv/OrPZdFR61HBD7zaeVFyvuahW47Aat0BUEZU6lhacRBZl7sNN3ejZ8c1CVmz2pHeSdw2ghQ//BHr5gPhlAG1+9hDXtrTzKVefez9FPeBb/uxfRCnhldkh+CXb6oTbf/S7vm516RZzTFXxZ37oP0d+lwOp73/xc5iy4o1PfXL9W9u+wWuv/3sMhx/k4ODfBKAsb3Kw/2Hu3vuRr1v9LuRCLuRCLuQbIW79MS+d9B/hFVuSmbXVd1elDVzRIStFNqw+xitLc1aSo8qKfmKlpOXfvGSFO2SqqldcMhuyBoPrT1RWolcf9/MKAEjOxFfm573O70hqc++jysrmuycxx0kkNvdsMFlWqhrb10ClXiFdPR/XQAbiuj+8SXR2A+La/jxWSdltkATOJPx5BVFtFJ9EBh0q9cpUz0Csykrn2i4RnOQ6bkBer3QrtW77suhV3P7ZQWvX43leYbI+9W5Y+T4TBP1oZ69Bkzqv+Z1Tns/3T37HI49vwMD6ni9X1PpYnX7uLYucQdRE/cjYnO+DdT+yAuKr9+TfVjFOK4cr34PdtdKsoNMJp2UNxrycc7lLMSc+WCnMK5AK63HMADet69YUG3o19bSYSpkZU73Ser6u6/Htf3E6Iily1VzPUDP18Wa9q9wKnEt6FLA2dsPKroZOAa0BUgZXsX92NYZR5XFyOrsdroBJ5XIcXOqZ01XfVw7qLpexqmdP0/SZPxMbI4bqjS+9a+zaQKJYlOFRZV31cVuPGGA25UoSogg6RBRhzXpGrc+tp0SUvNZam+uXVN/vyfcsbt6rFBuQ6fvfV322mhs53iyeG6ue0dWrv6s1IMpzMbEoNuOa1nM8FySx/01BkM2+sTJWJfJ8XK+fmPfP80ac1d6wMUZs7l/te+fXiFvX9dH1tizyfNmAVcH1/a9Snh+rPd2blbFCbcCdynO6cmBidnHcsHyb8qPazFEv2ej0e8m7x6C5BdKcfAWD9vKvfpTdqzc4fPw2V57Oh4w+/q0vUNRDvGt5+WwM0fPFX/z7nN156w9cjbc/9xmmxxFd/Rl+7R++yid+8os59eji0XSXz3zHn+T2C3+Ch298kcXZKSenP8vnPv/nWSw+hZaKk9OfXZ+7c3DwF5lOfwnnjv/A9buQC7mQC7mQb5QkgpHerSh/yDsLszL1finpEUXwK2MIhM5slL3sbpc/8jkWK/RgKGfd0zH/p/rysiIMhReCzhpDVlSyCpNdZaQPtD9fbnalqdq4VpidSRxvJY63ssKRROjMeZYnK5eN7RXXryq9FV2yIhNkpazk36PauJkBzOrMyDidXeYAvInrGCTIyh7krJHZJWgDZlaJQVQP0rZllwN9tHYJS71B9Sn7LIUqWYFCGzMzE9ZKFn1snEJSrnfdZRetjeKUzjFxK+V8Na6s4/9UXOWlg3mdHun7fH+uk+pZu8ZuGKHG8ohFHjStTXneKGFp81gVqgR5dBBW8V5BIEpCqQ3rt6g2LM5KmmLF3IDGIOj1e1YAIEgCleublXNZP2diBuM5/jEDfJ0ipcut2/x/1bf5z9Nh6t0X83vrTvUxnKsYvdyhy0rTFJt5kNmW88B0Bb76R3q2IioozYhSVWyYw43irr5sDSa1cveV9drKLGzu6yBQe41EobErsLd5R+GFyj3aR6T8niB5raRNszABuiKXtyxZr/XQGzLyvakHjKlnanP/QmLQqr6OimXRv2+N6GU9zk1v5IiSGU7FxjCRiBTdKq4tzxOJmU0qHRnQRdZJh1SKdCauGbCo5FxdV+O8GdPVOETJ7epMD0J7ttCZDVjKsXyaImo6K+vnAKb1o5YKSZv9z+sMgKNK/ThlA1ns56sNudxwbriTWpWb+6kz2chwOgg9mPpyLwNBEBZFImgoXKTq6JnUvs0qG1ry2jrPbub7bQBS6t2SMxjr7Iam9ZLdZB91qd7Ue8UIr7I8vpO8ewDt+GXC4AiK4fqndjHjt3/2H7CYnHDrAx/aVEprnvrQdzK5+yVu7gZQwu7JrxH8O6ek/BeRB6+9TTH61zB2wvRhy+y4IbjIP/3hz7CYdJs6iHD9uZw58rd/7u/y1uv/CfbtisHgW9nb+37u3/9xzs5ySmdj9hiNPsjp2c/9get3IRdyIRdyId8oEealyixWrxAlDDoJzsKBvkSp6jXTtbF6S85K2Ccn0Ckn5mhN7/PTX7de9S48OQmBN1kR8TqrREFlcKJSzNnieuWmKTPzYUMGgNaDjhvtPKisqDnbJ+FQJjMDCgZdVixyMpPePU5tQEjlhLrbgKSVMjaSLVZuWKTMFtiwcv0CE0zvVpT7LbvjKRTCrPLrvon9dXp3xFm9sryvlP5IUoogG1eo1mZ6SUyJ1QPA5MxusnHL1Kbq378BUCbkDIRRCcfbwnQAZbENtsrKW4+BgmSW5LysWJdVXTvTW7r7bvY6ob3qsw3Sj8eqhRtmtPArTi63d6W8Zct9QiXFooLjkedLB5mhOzBHjO1uTuyyGgkFZyNDU0gf90ROQKAMra3Y9GBmSsouK+JeIuXogB2914MxQaV83EFhBjxRPQeURLFEFZlXKTNlOrtnoWBeBW7Gq4gqgZzJszN5DieVkzp4rXtGtAc/KrN1XudxVAkWZVor/YMmrMFha7ORISdK6Pu/gNbENXu3YqhXqfK91qT+vjxH9RpAb/o/g53Gsh5fr8+5IerEohJu1s9QYqjcimHMyn1r89xYu9AJLG2uU1JwMo6cbCVUz8I5IzzYzn0Yezbo3g44++hcSz1brqPBxMx2l7062/V9ISlReliWQlvoPp4sA91VlsvUszDzOrGwgomC9TmRCD0rl9cmLKrVDMmHap9sZTARJI/N6dbGmNQWgVmV49yWxQow9efJseo7Q+wBiYJH40r7zSZKLvvIXOWwut7HqskasKXsFvYAACAASURBVOSsk/mMv6bIsWDOwKLcGCRy7KL0ACazwZ3JWF77uAbKqzWy6uOoJLt7Bo23wqLcMJ/rNkh+F6KRCI3NBqXOJlortDa7eQoZqHcm9ntBv5eJpSkzq7wCc/Mqn5M2rXNbXe+5sLrH69x2Sdl1c+WmqeMGdP9u8q4BNHX/s4T9Zx757eVf/SikRDefceP93/LItSc++Md441O/zvHDBSnBjfqEveuP/YHr8daLiuBe5tYfeYxv+wtPsjjreOvFU77nB55nsJV7y/3Ob9H984+xe3QVBbz667/C4PQ6e//lgtH/NqEsr6OU5s7d/55XXvkBnDtmZ/t7mUx+8Q9cvwu5kAu5kAv5xshrVw3TgdDaksJnRaoznmAMIDTimdQ5YF2ljeWZFM8FkOdzgcbzVZavHMjRFpHGZne/pDRdkRWXzioWlVpb3IOKnI4Sjc1AI1vwswK9rCxRVK9Y9SyYgmUtLCvBi2E6yFb2zmpM0CxtoC1WFvKszJ2NdH+AcQaF8zqzO6uYrCEjLpvrTGuLUmatWDdlVmKFgqgzO5iBT06hHiVnRNtaCvd3Nu59SXLKe0kwGeqcDEVZWpvd3lqbeqYo95+OiSiJY3+Pt7tXyRxBxJRD9s0lnFVrUOuM0NqNsnkyTrRFR5DIooIje4PD6jpdr9jPq+wKaoPOYJgVC7MB3Yl8ZllOdpDr5E0+0PhknAEGZGV2I5HORrwRvNb5msrjuixXsTMZQNzfgmA1C3tAAr7kXqdzS3RcKbP0YKjABs0qWUFn89gHUwA6g9beFXLlLhkMtPNTJmECKbvQOgMvPia8ea2kKwag9DqJhQlQhHxcQtCJttB01jCvYVnlNWB9nlOmZ3gFhQ2JZQlRa5a9AcEbw0k+epDOCk2laIrs6thYeO1yvqaARWW4yTX22QVgXhuSLtfvUv1YQc6I2qiWqISqW8XDZaal7nLyhmmd3eOeKt6DL7ILYtezPLm8xKICExReeSZD4WygcDoDwsJngL4soSnTmiEyMc/fRDbanI4z6Bw1IDFROkXhV0xpovK6jxvLgKo1iVmd/XVPx2nd/jXzGuMaQHbW9scjWLyGKPocqE09DtIUvoQe+K1Y7a4HG9lAo6jaDMoVEZ0Ug6XKLo9Fno/jeX4uA4eyzwibmd22T3RUrDkR4WQErmfuWpNYFHC8lY0I03qzHgFaAnNp+zUGtc/n162Y8SSJ07GnKWAyTDibmNaJeb2KOYzoHqA3hdBaxbLM+2Y+3iPXycTsKrgCbN4o5rXlZKzobG5n0+8xUaCzGqdhOvC0Bs7GisWo4GwsLCuYVxlQrbJ/5mQzG3BGCkgQFnWJ1znLqLM6Hz9BiY6w5QZcUUc5XpXehdxI77qd56jTed/25xj/rybvIkB7Eb/3ZQDt4x9jtH/It33432G8f+mRa9tHV9m9dotXzsa0qcQ8+Aw/81/8Dab3737NdfifP/U/cXavxjcf58Gsxreeb/q+m/zWz76OUvDGpx5y/9UpqWlIywXV3gGXdw9xC4/6x2/gr9fYX5vS/cI/4cknfgSlCpSyKKUZj19gsfhtQph+zfW7kAu5kAu5kG+cTMd7vHFlh6rzqBh5sAuLGmaVozOKReGxPseb5QQf+XBdBdhim9Zk18LJoA8h1xvlQXxiNxQ4nTgbWRIWhQV07y6jGDYZEJhoSJLPFeosOFsCgiu2cDanZe8sTAfSp7qO7E5hOrLo2KeQj/kMMm9NZumMwYTQMxIhJwzQmgc7kbOtqleMLJ1OVFKzpw+oW59dqJSwLDWtzQlFJCmWVWbYdEhsLwJtAW/vFXRGA5bR0jCvFYsqrlkO0NSdQauSaAbEnmWaDITp0NJZA30ilIjhUI64Zh9DkTjeTiifWOpAIGTjrhGCsfm8I6+Z1wkThSflKXZdTeE8SXI8jvGwrDK7aL05l3xD0Vrw1jIZZiDx+lHiUtjhKpdzLBzQlJp5lXDW5vTrCkovPD54L0pKosC1eJn50ECfuXN7ETBrt72snE2Ggo4Dqlbz6pUFjVVcKW7x1OD93LJPZWDYH7FQOUFipLMKRYEziru7NQ+3DIsy0doMJLzJwAKE4+3Art6jLPdyAo8Y8TrRmZbXdyOnLEjKMB/s4bWms4qgswHCBkVncozSb+x+iUY6rM9ZF0/GEUExr6GxmlnVZ0JEmFUFr16Ds+E22Mssyp7lUDWPxWuMXYlC5/lUJKyLqOgpiyGqqGkKQ1PuEKTkzm4+Y2xRKpJkYKXUymWuB1BFHhMb8nqb1VDEfDYbKESGZDYzA29nQCcFStPZhKZATE1TKJJSffKPzNQNl4aUNLFne2e1cDIW2sJgY8msNiQFhUssK4WzGmc0TWF4sKP5f28IUTTeZEOPNxVRCo63LWfj3qW40BxvZ+08j3M+Y+10GHJCigRn9YBlNcRrTWM3LpOtSVgfaI0wrzR39jJzVTgIJgPuyTCRlIGUWFQlpRPaoqS1mqZYxQ8mHqufZ6CGPNy2+fDpOrOwUcFkaPHG5MQYKrPvyyoDIm/yO8ZLUBh0TNgQ12zYUO2w67eY1ZogcG14G0PJvNq44b50KzIdCd7kchSs3QV9D2iCWJIIzmS34NZqOp0Z6NbCyVgIOiePiRK5vw1vHI5JEaQ/H+5krJlXMBv2jK+xLKshXalABjxlnuEaV1ApUHmd4zyTgqpexyHmYzkCkgxe5/MHbRCCFt4bbyNHT7Isc1bekdljy+wxG2QXbG9y/GvQCtCgCoaNMOi+0j33y+XdA2hf+k384fPrf6cYaWYTumbJ49/6R7/qM49/4EO8qZ5kZo+Q5QMG27u8+Znf/JrK//k3f4bP/sZrqOIBn7/6Fv+o/Xv8zP/4m/zy3/sCMSQ+/g9eyfVyjuKD30b5L38v/pWXufqpFwHQk47q0nOkyRnz//a/QqWCx2791yyWv8Ubb/5NmuYVquoZZrOPf031u5ALuZALuZBvrNw9HNHWVVaKKmE2sEzGA7zUeK3Zl0O24zZtD3oUkbNRdnm8XNxkOSyYjgSLxRlobKDtLblhUHNLP8mi0jhrEBJ3D2pcdZmm0D1nkM/vaU2iKQKgmNdFThqgFM7UWJeIoimc0BaS2ak+BiiJpikLogj3dhNJDCopklgGjWe0TAxaiLIPvUvQsB1yslXTFAUJw5tX9rD1Hm3qz2dDuLe3AyicGQCaphAebm/lDIcmsagC3tRceqhQqmRZZXaFlLifHwV6xbHe5snyPWzZfYLOLKMrhGVVomMB1DzYrmgqmNolTWpwdkRXFISqopAxwWpu2ifZ0ntUnSOK51b9HPXwMkksyg65aZ7gqH6MN+x9TmzDF64LXZHoihJnFW29TVQGMASlacqaKo2zi1R5naVqmTFnVoOKOXYoaM29XWFZjfFG0xmNREOZDDoKyZZMturMjhrh3t6Q2XCH+XAnJ20wgqZCIpyNIo/dgav6KkFBEAWFQSKUXUAiTAcVzhSULhLsNq9dv8Z0HPFGo2JB0KMcL2kE4zND6o0maaGgxPcxhyZa9mYHeD3mlCneDpnbhukgcToWnAmcDaEtEs7Cg13Hd8yeZ1uOsCEhVkAZFkUiFSWHo9vs1DfQMR+uXnbQWc/JjkHUmLLLCvKDvSFDvY1SmqQSTVkyHVqW1Raz2oDSjIt9ji/VPKxLdBIqZ9Zp2rtiROGz6+5ye4DSJa1VOFv1YN7SGMNkvJ0VeAMRx51tw4Pt3KfHO3XvGikosstmsDn+cFLn/l2WGQiejIVl5VnWHa0RntPvYVlrpgNFomZStwy6ivEiT2kdFG0xIIrG+oQNibOtnCSn6KD2HYtB70ZqHEFv462lM1D4IU1hWFaZ/W0LxWzguLevmVcD6i4h0fGMfZrL8RBvKrw2TEaQqopQjNYufySF748D6axQdbpnAYWmEOZl7sO6jWwvLEJJGFwiKaHSw5zQROWjJt46FGa18PblSywrw5G5yjV9nbLLLralF4bLHM0VjGG4AO01q5g/60HrEl9ZZDBmXF3COhBVULkRpc9Mmqv2gAKTSiTBJbmBYHMypT7uVmLKLqIiNKam7KRvVyJojUqRu3uJO3twMqwovEGiorU7nI6uELVlPszs8NJE2sJyd39AstfRwaA8TIqKeVyQpCCIojWay/YmT6UnGHSRYeOZ9kzuw1HN6WCL0y3N526MOBlGgtXcPhkytw7jAyZmMHm6VTGrNQ92arqiJIoi6pIkFTYIxmejzzvJuwLQ7BsfQ73xK3TXv2P9mxLBlhUkmB3f+6rP3fzmD3L3YYez+3Qucu35b+LNT//+AdrCz/nbL/53vP/4BdrT3+Tx7q/wHa/8G5yM7hCs4/LTW9x7ecL4sKL44b/J8mMf46c//Taf/g//BtttQinFF779Ofb+s7/N4C//u6S2xX3yE5TlLZ6+/VPM57/Bw4c/xXj8ApPpL33N/XQhF3IhF3Ih3ziRmOgK4Y39fSRYlnqf2eAmv/7UB5nWI7pCsxyWnJVjmkI43hJQlrKL1G2gbgW9d4Mj+1R/aKtCsLhqn9b2LnUKZgPLl462OTk8oLMDSq9wRmVXQYksakVTH3D3YMhkGLizZ7izb/AG7u8OCcbibHYppBixP7jBnUsHnO4c0pQJicLrV64wHxqEkruHdZ/ZTHF1+DRNVbCoLEoXmFDw+tVbSNCoGDk4WbBdHrJrD3Pmygi37TPsDK/x9qUyK7pqi9nOFcTUzOqcWKVqPSbAdLhFZw1JFJIURyfCoh70iVOErTSioOAKl9grbnLJXGHgNctSMxsMWdqaKDtEKeiWpxz7e5xtbTMfbGG8ZjHa4t5IM1bbVMUWI72HdYlGOb60N+NkFKi7yLKqGKgdttUB2lxmPii5txu5c1ixrCyPtYeMGfFwZ4yvjthTu7zPPYY3hoe722wXR+zIEfsTYdApkihQuV1eZjQ2sqgrUIrHiqcwWF7Zm/Jwe8DQ18xGNdvdiNp5PB1WldzfNbTWIOKIonmwNaIqtpmnCYs4613SMit0du0ZxuVlJGVW6IAjbi+uMGgSR2cd82obSTUx1Tip0EmzqC0mCA/iCa8Xiz62SXhGP4eSklGouGKvMRmWBDWgs1trJrjyqmcsCozc5KXBnBP9gIEueFw/S91AGTq2GbKnD7jsx4w64eHOJWb1Icg2g9bgXI0rRgglIoc0pSbUNSZmN72tuaduW7woolJYBzemY0xMLAYDgi5wRvOseWZ9ePNLvMQ1dY0r5jFQlmvj93C6d8jZIDNqZReYVpaHWyWfN29jgmO0zO65lVu5uEVmA8/+jAxogPtbRxQ+u46ejTVVlw8lHi87ki0w0bLld0m6RMWAdQZXHGXWUhJJFcwHQIqghGD2EX0lM0cGYorcGx1w52BI4RWRKU5b6uUYE4X5QBjYHdphgUSFYQvrDSY0QGIyrIlikbImak+oa8ZLw3PhSd6fnqfSIy5NFckOmQ0sh/Ya81pxvA2zOiKAM4Gw8z52XImiQAFXh0/xdLqOdjkz5vPqvXiBs1HFwx3DbGvElnk/QUpO3DGv6btMxhXToUYpjRLLtBa+cHVMV5XMhwWT4ZD7W4KOifvhbV6vG67Ibfb1EUHnhB0qRi4Xj/OMPE3SA+7vlzmVhlZcjrtc8iPex3sZqAFRwFlFsCOiLplU+0zKXRDD6Sih0IzdgGZ8la7ImV6jRF4/srw5MrgYmI8PiAKT2hCkpK0OQA+5f/g4XWFZ1IbaXGU5LHjlaMCiLuiqEUlXNKUhpez2XHXCvN7ljf1v4dVL38SLt8dsL2d0BTg8WmkGcXfN1CugxTEZJEgNR6eOtsjfF2c080HNg/0h0ey/8/foD/Fbt5Y4uET4C3+XNNy4MX7if/8xJvfu8K/8B/8pW5euftXnRnuH7F69wW56m5IlTxxE7n7hRVzb/L7K/7k3fprL6gbqZEB0bzKSfZ7/7iv81gf/D978rl/mp679Dzz97Uf86k+8zCdv/2V+/qVtfvijL1OPBnxxsENbWe78VjYBDv7172f01/8jJn/938e98TrW7jIcfoDp9J8xHHzLBYN2IRdyIRfy/1NZ5Sxri5rt+Zyb96ZIowgyhFQQtQE9ZDbcYjq+gWEHrSqC8TTaIwgfv6r56BXHdBQ428of+Kgtt7vrtFahiRRecPUuO+EGyIAyWCYDSFqTlKEzOaHI9nJMkgFfeOZPMB1fQaEZNi2vXy744rV9zkYKZwy7cY9u5xY6nnAYxpTjW9RhQKLDGc3W3OOMwqAQbQhVzagd8rh9kmZrG+MTkoZ4XXF/9wDtDVtqm6I8oqm2EBkyZg+T9qicpa328cVtbun3MVpWJFVytrXN2WBEa3bpBk+yN4WFtTxWPUM3KNDlgNvqCcadwhUFM7vFrKh4bPQ+3rO4xHx7SFdVqDhERcVk65Bvq76dJ4vnibbkg+4xttjjXtXw4uCYgao5SjtcLm+QRNEVmvHCUvkRzpQEs0tnIm1tCbaiHdxkNqpzO23NUX2dm9VjED139zQScyDR2dgQjeZSdY3L9XUUBZerx3nS/BFeefo5Jls32Vpk16xhZ3BFgdeGLx1pnmguszd3tEUAbdidnVJ7zWTwBE/KY5St5kb1LC/wJ7mqb3M2bHBS8JR6kktxh85aOi0gJTfDgKcX+6CyO+ayjqjguTTVDLs5R62mFcNsIEzGltevGpKM8HbMcOtxBvUBkqCtDCa0DJcPKNEEU3I2OKSzGs2I164fcPdwl2Wh2V507J/N+NJhYKahbhUmGqJWVDHSDnIWSIkwUFtcMjeRpBEc6MtEXaBi5N7+JYIpsTEwaAxlV1CkMc+/AXsTR1CWqqt75gLu2o7IAPQBXVnSmcBn+ByCxevIM8UH2GprohQsi5K6TdThgKOJcGkWeKwbY5RlUh1yuX6au0djnDXoIFhXZNC9vcXJzi5aDbBpyM5cGLaC1zVNOSCK5Yl4mVvmWc6GO4gqUAr+GB9ktrWDDYm9Kdw47VgONFEUwToWg4KzsWFRV8yH2/jqOY53d3BmwMPBVY6Kb8UPLiMM2O22oX4PMGQyHuJNSRkMT6QnuD56D6CYDRWdGWGLbXYXFm80ixrU6CaXi8f4jfc9zb6+xoADRlvv52n1fp6wtwmqYlDu837zreyG93LtWFO1icqVHA7fx5XyJkEbFqNL2FRgYuLe2UvM1JLteUc93OczTw7Yny05iiO+eSZga26N3suBvsyWP+R0+zEWg306Y7Fe8afPnufKXDg8Kxg3JZcmnsp5jtqKy9NEwrOoMvMXU2C6ZZnUglJDIs/SFdvc3zskqiqfpff/sfdmsbZtZ53fbzSzn2vN1ey11+73afbp7mlu53uvr21sjB2XC0QoUkWpAqiU4iUVHioikZKClyiJRJAqRIoqTTVKUAqFQFBZpAIpqnACAQPBHb6+183tzj39Obtde3WzH2PkYTtILrCDQnBFyvm9Ta2hOeYcGlpjfuMb3/9vWhAarTOMSjgYdDjNuhiG+KamjXpckTdwQYByMO5c45nqOZZJxqNhzMEgoZQjhK4QckodSR6vR5SBT3+hmCU+i84KQnnMUg/penSXBbG6SB5sY11JLTSSmFaHDJJdYt0jrDTz4KzuslsKkmaDtYmkv/AoaagCn0oElJ7GirNMat9cRxlIC0UZBLhoF8Iu02yIlQ7ftGid/SnWoz9nzPAKbu9f+aPrush56zOfRkjJ6aN7SPWt03y7z7/CNLdYJ4hnb5KtbfD4zTf+1H075/iVu/+YjckehXyIF73IhVvrXPvIBo2r+fT8V7l7epc351/DlBXxQPJfLWf8bHCb4TtvcD4rODED2qphcXwIgP/h74a6Zv7v/QTOOdbX/h2MnXPv/k/RNCfU9Z/dDuApT3nKU57ynUXik1ZDGu2TFZbVmSUP1hF2A6nSM2W6OEXYPooMSUwgJLEJEcKniCKuLFLONSOM7lNpCJwkalqmSUynsvTbNUK2kE6xmVesNBkvxN9NFfYotU8RrZEnimUSMFxavEZg2j5rM0FaOJowYtEZgpdRphu8eXGFWW/IaBkiiPGjIX0xYHVec+GRZXwEN+w1lPDOHIaEZlT2KLLRmbBB2ZAVmu3oAse9IRu54rQ9QjmJ53Vx2sdjgO/6rMxOOO2GaAS7swlWas7Ly8Qi5mBtlawaci7vcjK6RhGDlJqhGXPDPM80jWi8mBMPZFtzEgSM/HM0zuF/o4ZsU4644u1wmF3HZheZyYITe8r6ssJvW8qsz9rC8l2zsyNKaeURVQ3KWpSfkNkhx70eS78HVmKVz535AerJO4zlOlsnW7xY7xAYn9wLmAjFfnqVrO4ilhPq07t0C41u4El7TE3DrB/i64QLdpWXDjfpcJW08pjr8zg1xChJXLfsPXEchA0NFWWqkbpLsXKR2fqzzJMRIMl1yknmc1+eErVw+cEQo/vsewtyYyjUOrO4h0BRtgWzQHLa67IRP8/Qu8xAxn8kCLKpzxNYgfU89gdrXMuvMO0NkHJA4dV4tqHyI8LaRxGjXcbN2ycImaJszJPex1B2jq+6fOVCwHHfIaRGC0mvdjxfbxLE2zjhsSXWWG0i5p2A0zRg7hkCQnpicHYaqo3pL1tCF3Bn/QZKxWiR4FR2JorT5gxPjxi0Ppf967y7cYV3N76fVsKTdp+iHXLcGfN4/RxKXWTWSRnLbZbjTY76KWmVElSGRigWqU/lJaAlL3Y/wkvhd3HR7dAmXR6v7FDqCOP3eHv7EmVnwE13kTJS3Nt5H1fqq7wQvcKGGKGNpAxS3t7d5II8T+ptkug+gfY46mqWaZ9FJ8UoiY27Z8bMMqQNztEEHVopycMNIjMgbH36uaHObuK8PvvjXYqgj4fgSp0SCsmXr/doknUilbEarjLtpsyTGD/skMoBOj1PFWgCeYmtOuFWMWIjfR5URuuv4BqYLR/w0rs1Q/qEOsWKhkYYnD9GhitEziOzCTEprR/yeNTh6+NnkSrEqBBlBaOTGX5bU1jBqH8DE8WAoMeAC/uWwFhKM+NNvyFU51i1GRfbNWrl83Bnm2XUklQV6+oifbVGVw+RrTjLWjYRpjOEMMTZAs8GCFKk85im5+gsLYM6QCoPRIZnuygrybMuuZlTUNIguD+QVLHGrwPO70+YRwFP4nV6uTib/Z0NrFJo41EqRW9WEdg+49OQ4WIBJkNaHxlcZPj4HI+GDXFdYrRgZj0EAd1FjWg7WAu4gs6ywmsgymsEPg5JkXg4HbJMAoSUdIqC3NOoysfKhFY4+q7LjhuRigG16mEUeMLnNLMYlTDvriCkx5XgAnv+RWS4wgXvGs/IZ3D/okHiH1uP/iXw4PUvECQdOsNVpk8efdu2O8+9zJOZpjKK13/rN9m6/jwP3vjin7qvzx9+lof5A9TDDL/YRwcvsHtriJKKf/ihf8RfvvBXQTmK1wLOh+9x/yszvu9wwYMvNLy+fYP6ZsBffPdLOODtL34WAOn7hH/5r2JPjqn+6a8Rhufo9b4XYyZE4VUWyy/8WYbnKU95ylOe8i+B598ueeGrj9hbjrCdPo1K2DwxZLnDtgleHdJ6klsiYt3C49UuXTrs2TU6RcVwlqNdn67NONessTVZY7XQrMwWjA4PEA5eCl5hmJxjNr6OECmFH9MRHWr3LIWfsgxXCe0ubXCZ08F5NB/hpTuSpLZUUYeejhi1l0FEHA0lA5eS99b48miPpN4hm86oDMj4VUK5zlCO2JYbPKueZT26htECv3+By+4iOtkhqmFzf8pYDni/PcfFZZehGlEJw73IcNTvEjUtW23C5UmApzt06orH0uMhd0lsyLDtMZyPaPwhQ6e4dLjPc+YG57lGrzQMREbU2aZJ+4xMl0WccSIhcD4Delgk4TLFq1ZpVcD5o5KX9mHUdhjGG1wJbuCiDExBjz6dRuEZQxum1H5CHac8iQOsNQxkj62TI4QLkbLL+/I+w3rMertJRwx5PRpyZ/c5hO4Qex26M+gsAqSQWNcwMD367Sa2KVmYOckiQiJ5Ik4o65LRomFbnSfwW1ASpKQn+yhnyGYLtFph97TPlfmIW+WQm4uaQXMCQnB39SZ/kJ5SdEb4XsBxlpBoTVNNqYQjrjWDPAcHczulLg4Z5CF78iLdJuZExDg/JW4bCr/DntjhZfUqZfIiXX+X58vzhHaDwaMDooNHDKYFSB9nI1rZQbkO2sF6XlPZiLvbL+OLW+wepXRK8GWfsbrOK4sbfG40pwn7jMJtJuUTqqJi7VQxmFdoq/AJ0Vajk/ez4l3nufkqeycSpzSrZc0ts06nSRnKFa751znqD4jNmZrfOgG+77OSC87ZNbaLlJm8xf74Anlnmw3Oc17vsFZljMsVhHP09YiLdoOB69DRQ6626xhneWIec6pbDrIVlNNUnqAuOxwMnuFBrHjDPmawaOiXloVN0CI4q2nyfcLWsXqyYOxWWZsHrJkRxvMZ1obE9YkKj0aFROpFdGvZPSwYHZ5QiBijBKNZxfgkJ2hACEFSVHTyIecPh1gZc7fXY7+acut0kx96e4ex7GHDLbqM8GSPnSLj0olisIR7zYzF8P082PkA1s+o/IgqyKijLp6FrSncchf5iHiBxtYUlITGZz5coed1uGn2GNQRUWPYVBFOe/TLht3DA7YnS7abLs/GLyO8Dsr5hO5MzXNQB1hr4XjBtcc5XisRviCVHqq9z137gM/Hd6milKK4iawEOM07WY87aco0ctjQo99/hlGwycvTNRLXIZFjAjGCOuC2bkhYh2CTuLPLmryEY5eNOqRKumxXXdajCyiZEIiYuNzhlfo6zy2H7Bwt8Jo+zpMoKpZBxGjSoVfFtDLAc4rr3qs87F0jq3IGS4O1IRpNTBfEHoH9bpRdQbqI8emcvTLmZfUiFo9cJ8xiQ7dQrJ0kGCV5PNwgtRn7iwf0vAHP2XOkuccOHRqZ0bbXqNOAPLrEvajk0Mv50Hyd93OOUKUM9CqNCjjpcQraZwAAIABJREFUepz217BK0gaazbbLB/IB28E5nEwY1t1vux59S3vKP0/ufumzmLalrU9Zv3rj27btjta4H+xi1JRnO+/y4OaLfP23//mfuq/ffvKbpKrL9vQqUh4gZMPoXAcALTT+6wrPV9zZ/SK9+oP8H+qQD7ZdTgfXST+Rs9j7Oe6v/SDiM1/hvf/5f+K5j/4FhNZEP/hXKH/lH7P4+/8FwSc+yebG36YovoaUAcvlFxj0/9U/0xg95SlPecpTvrP0ljlrD04o+wcEVc2wbSj8HFe8B/EKwsHM+FxoY1q/Ry+/Q+xC+vjMTE5UOB6woPIaPqrOI5o3WYuvsN/MWK8EWkqSZUvWHrMtUtrKEoiIw/aAa61kixGPH99hbTmi6nrcEFu8p1aYtwFjeZHF/C6qH3Lx8Sm/3w+4Pt3EqzJ2j0/YyxKComBbnkOXPu3dd1ixKeNoF6tTWiWog4ATN2dsE64sa/xohdfTZ6mDA6qZo2klbSvQoSJ1MQnbbN/PeSnp0DjYbgcEiyX3hyvMfc2a28K2S5LFCfVWxoPNDcaTY8bFQ1aaPke6Yj79GiJbRZqIwWFDIzuEnkcUJqh2gZY+mRzg63XWpM+6zoiFIViWDKSm5w95xAmrdYfjToA8fUBIF+0cfRMg6pLLs4CyNySsFNe+dhcherhCooQlIz6TSBcZ1+5UnGxYZmVBIXrMspjnDmtaMaXobtOzBh0ktEvBSrhO5lJej0+Qh09YrVMWWZ90fib39+rJCndjiVUKG2qe4SWOqglv2xYvjIj9NQQLNhofaxXCTvmux47ek4v04w0eBnfotQuSpWGoL6H9LlG+xDUJs27C7mlD1ttGukOSqmYaCwZthTdbIJqAmJI8HpG6gA8eK4z0GS0c01ywE17EOoum4F67ZBQOWM0XlOoJnvWownXCVnHD7PEVc4o+SVg/rLkYbDFvpgxPHSex46PTdYIwYFm8jfEjdg/mtMESs6YJCGhMzfmHXyX1rrItNlG25XONYHshWNPrXJEd+ssHSJOy03oEswOOAsPl9iY2n5HKkI6/zZOgQ7YQhMczhmXLx0830Ba2l4ax3qNrO0zbHCN9krzGaoURHn2VEQaaUkboxQHvuz+h6wUM/QVFrdldRoSB41Tn9OYtgbsA4g5JYXjWnGP1OEKVhjC0WBfgh2usTR4xXGoWGyG5Z7gbBvQXd9lWWxTlW+SmoETSqw1bjU9T+7yjllgtUKcTYhbcPC6ZmIiqPGGnnvCwM2IWaxK9RdAGeGj25BU2xJQ0f4Neb8itusudGrQssMKniDPazgZ6do9ulWBcTSQTKs9RNi1146i8VUbzI7ziCSsyQGAZtSnhzKNqJEkuibwJKpQo49H4Cd15hO/H6NqhnWQWDeiagBtlh7eyLl2hGJuarA45rArG4hLWDTkNu3z8jd9FlhXShjx37OiF+7zp1eTSp9i+xfjOlxHOo5Garqyo8YnmJwSto+6vE0mfB4ljt1yBScMGQ6RbsDqdk1WagVrFVxlSeviqplPV1A6cv0G6fIu0LBnJHGsmLDo1nWiF9aKlWThWN7pk8gKFb+i4DV5ki6+7BC3gxTszHJdYdLZ45fV3iN2S3XqddXdEG3ncut8wn+wTFYqD8Qqj1mPoNDdWP4k/PWHZttxM1lFiyOumoFq8h3GS0ERcqhyBCqhai9dqxq0mCAy+d5nHw5jv+cPXSQvLxQOPTHcxrYcxE1yzRCT/H6hB+xd58Qd/lDpf4Kylv7n7f9veXP8h5qJPao4Q1ZQP/fUf/1P1s1/s8+mH/4zn1asEMkSqda58+Cw4m0yOkVJy65UXmPgT3os+z+Pla4Qdyfl7v46Whvr2Ls6B99yP0EgPs5zy6D/9OwConV2CH/jXEH5A9el/jlIdLl74b6jqe8xnn/1/PjhPecpTnvKUfyno1kDjiGp4tt6jX0h2jp4gBICju7RcfFKxMSm5cmq58rhGLidI4RFXko0D+L53+7yUr5EYj5HaZJt1UpVQVfto0xJNJ4yXjs5yQTYtuWYyLottPnYckogNtuizPV3S94eYvKK0kmdqy/UJ9Cuf9y2uMHIrRGqM1Rv0jmFYtmwsK67NPWpfE8uMvthkO/fxXEbVWrTThLpL2Dh8p5FlSzA/5uZpzdX5KsLvs+Pv8CH9DOl0inCO9eOC0O0jG0u3aMlcwuZSszGfcvXgAVHV4IuIgc14+bXPkU5OuWH7XKm2WASaZFFx2buJJWLZlKwslpQI+oucC4ucoDA05QIWMzwT0pF9YtVBNZbttmCW75/Vx7WKlccPGdc+V+w25+oVrNRUTUtQFZw3QzbEECE3qRcNfgVpUZLVXXom5lyteN9777EVZDz7+IDL8xBq6B0r9k7mjJuYodjDSkFYt1xe+gyaFI3Pcm2D0crzbHrnuHk4Z3A0RxFRi4DVdoWVpke3iQjp8kSckNY7KNdjo5ZolRCrDhcWFmsEH6wHvDCDIJ+wdqwZTeZsijUy0aEyCwKvw5a/w6vyJjv+s5y6gKnWCBUiS0G/TklnLVFlSauKTt0incfz925zdarp6B6XcoAY7RKysqXTCFpbcbVUuNqQznK2XYdXGo/t+glX3/0MYVGwNRWkj++yYXr0C8lzp5usm5hR4zOWfV7KryCdJGpCxmXAbeaERnOjHuCJAFnm3K8L7jUhjRuicAzzCiVCMplyqR0Rh336yUVoPS5+/WtgHV7bcKsW7DSOeFbTny3wG4N2gp06Zqk7eCLCCh8hFM9P1xjMCkqZMNeaREQkeGgl6BmDOGm49Y7l+t17XM93uVhv0jsRKELCVjINUzxr2bR9xpMCX/rEOkAHQ0LrcxpJjNC8MO2T2D5Xm5C100cMOztciJ7hA0eaYTngXHidFX9MFG6wkX2Qpeth/D6feHKbZydwo+jx/HuPWa0Vo/u3eSPLOAg0frlgXFlEFWKlpuwmRFYzODrkg7/7GT7yxa9wTmwwzdbp1y3pcs6FaUVvss+ynbF6NMUrAQK8umFUQp8UX0WMxIBIePRaSeU0o+x5muEHeChnvK0EHikm7NOrIG2hH4zwdcS7WiLcmRXCePKQqJDUi3fYncfsMuLctOGZScELT6YoARefTDg/l4xLyaZdY5UV1icnRKclWRtjPB/VWs6dFGSNpEPMrbzh5iLhxUmHEIkuDbJt6S4mrB9qJJJRsMud7jonUUpGRL92jO2Yjx3UbDzxUE1MN2+IFx7nokuYRiKnc0ox5IV9wZViQKeoaJo+phxycKC4dvctrp8c0F+e0reSsV5l99F9QgM+IWU7o1wq1vZLNgvLhtg7O1auA6StoIY8FHw5rniQ9JhFA67fX5BNc67dfo/tesha4aHwGIXrdLyVMzEmFfLhN75Gb1kx8p/Hb2LyxlAIn1B1KeMxythvtxx95zNo++98neXkmKjbY+XcHlJ+c4zonOP09FeZzT+D540ZDn6I3edfZf+LsNaTzF77pywrR5Mvufj+j3zbvr4y+TJSSn40/Zu8zmtUZsnlV95Hni/5tV/7Ff7aX/vrvLDzEteePMPX6nf4vex/4y8cnWfn0W/xWxc+ydbpmHL/h8nHIf3tC0zvvc1Ph8/wd8uS9vXXSP/tf5dibYP8l36B8JPfi1K9M/lQ85i6fozvr/85juRTnvKUpzzl/016ec1mcoFOfBXnTlg9vo0UcMN1UVWJtzhivbpPlt4kDjdZlR5P2jkDJTltTxkYnwulT6QyfDHlXDVAaMOmt8mpfIRVEslZHdH4+C5X7j6k3BuTtj71co7QIVFeYXVMw5Ay9Lh+cgJBwsnJbUbbV7lQdviqqjm/zAjLlhWpWa8kr8xnBMEqx/df47Sf4skuQXeNR/GItJygXY9dOyRZ5hwtBWsqoxGOrJ5g3Q6lyihETSmXOJHgmoLzeUu3/yxe4whFwHE5ZxUfX0oWMiI3p2zlCYNSc+LmvPzG51lff5G51GSNJjI+2jk6RvHSQuPZivMuoyWnX1Znxq46ofR3eGah8XBoC35rMc6jI1PC1tKva+QyZ+d0yICE2i3QpsVD09gKK6BXVviLnPdmDapb0GlmhIsYaQz29DFr1RIv6PC1ek4v22ZddBHLQ6KiRnbX6M8aokUDxmFpyPSIslnyycfb0ByzKI9oD97iucGzmHATrAetR0QLNBTFE64uO2RJl2G5oF9MaNtDlp0eixWJ73VJmpbaQmAgnfu8v36WLEyZMmM31+yHAiVThk0IZsGq6LF5+Bg/WJJ3VhlOF2TTVZbyiEkc8WCww4v7U+ayT9DUlGFE3/rcK+/TaRrWRMYFOTqT2Q8vcLI4JvMrEpew8fhdukHKvWLAVrzLSmjxZgd0igjMjHm3RDQCR0gxvUNQVvR7m0g7pG8zVpzDQ+Eta7wgILYel6JVPlIp9mYN6aBH//ghQkRIYB51cEWXsNZsTiY8aBq0EmAhtY7hfJ9NOebG/rtIEYPU+PkxzxQNh6sRSbrJ3FYERUzUVGT5At+GTMwELUd84nDMxWaVY7EgPv4CpzKh559j3x5xybtO7zDjQXNAWhkqoQlp6REjKsGKjhh7Et0WrNkd4jxlPVxlf3GAo+Xa7QWyG9GtM+Ymp6kDIiWIdcbUGWxbsSauYh83DJYHKD1mNF9QlkMeG8vRxhp/87P3adUhx9EQOmNGecneySlxGWLEjDvFCdGywAsaYl3QKxasRNep5znrwS5hVRCZPhMd4AcDwkDiTe7QKUpEmND319D5IWKxj40j9uyIZDFn8/htRivPgvUwqWLTrTAOepw0x3gNjK1HOjsBA3FtOMcup2GIcH1s8x6VW1B4AatktKtDHoljXo0OyFpFnlc4nbChU3bmltYLEVaTFpMz24q6wRpIbEUY+TQ05KTg4OaDN7m/1+VDRzGpeoJyirmJeSR9hJnTdym1t8ZsfYRfNcRC80J6g6ApyB69gakXfGm3g50e0ctL9qTAqojx6YxHvkU1LcIF3KTPovwaZZrxA28+5uDR17GrG1S2JA5CzjcOOSsw1hF3thm2iu2iIg46tEcNubZ0a7jx4JBQfJVP1g/BNey2cGQ01jms0mwFXZSrCInxhc93vzfnD5c9xjYhPT3Cz7oMvR5RYyi1xXNLbsySb7sefUcDNNO2fOa/+y+JegOstYz3rv2xNsv8Czx6/HdwzgGWo6NfYG38t9hJZwgsaX4bur0zif5vg3OOzx1+lta1vPnmXerSgMux0uL7Ad/3fT+IMQatPb5n9EN8/sl/SD66y/35eQ4/8UN8/C/Bm/+D5a3PvsQvD+/yt/cus7j3Fu3igC/+wRtc/o1Poa5cJf97fxeA9t130Bf36Gbfw/HxL7FYfJ7B4Pv/PIbxKU95ylOe8ifw0z/907z22msIIfipn/opbt269cfa/OzP/ixf+tKX+Pmf//k/9tt20adOzrNiQvKqAOdYS/eojIdsl/S9PsfT++ioZTl5lw4lG36MRhB1LtJULYFVqKKgqQtEU6P0AGEbRqZH23p4AuKm4hnbx3cnDEhpqiOE9GiMR+JChp0LmNqwk0PYWB54ln56DmkiamfpWZ+PvnebQIW8tbrK3O7jR0OUtVztf5jTZsnp8k06tabnzYjaEk8EdKuGqrWIvGbilqQiQiHRraHrKQJjaS0EsoMvQ3Z0F69RoBzatJxXI3JzxPVFF6+o2fSeYSXIQcT0T99AmApdN4TSEjufSK/itUsWaHbFBXLzNn2jWeRzJAmqrQjSNQZG4RyE5ZRAdum3DTov6Ga7OAuJ7mLals2FRFOzQOKZ+uzYqNrF6gXL+QJdLlnNZ5CNOQ17PJMX9FpNG65gFkeI5Yy97pCe6FNZReI8vKBP7DR1u0C0IX60zrKaE7QBSkaoZk5nYViaLhM9Anvm3XbmoxXTdRW2XbLtViiSHunBfVbCTayWHLQHDBnz6lHBlklIdEBjWoZ5SbtckugMYQVdPaCiIp5PUK5GxBAVDX7oWPG3CYxh0yhSHdPtnWcxPcZrG849vs2gjcC2pBYaWeFVNVdURqd3nqy1GMeZYbKtudSsc6IlpRPsqT62zLlUC3yjOCfXKH0fnMCzARdOfQwNwk+J0/PYTkQ8eZ1FpEmcZqZacnPIE5Nz+UFF1wimw4wDUeLP57huy2lxwqbrE6guqewhHv0BwWof2xlwmkxpmwocpDLhB2YHzJsJvTalE/YwSqHnByThkLyNKdolG02FMZJcB4xmc/pxD2G7LHXCyMGIio6nSaYLRtUd0q0xgoBTLBuHR+zKlNW2xgQJzkCiPbTzGVQem3mOJyBpLL5OCeuWDeMzqQrs8RFN7GjQNCpgWBfspHsor4MnYGd+whcCuProq7Su5MScsjG4ybYKmfmK7rt3YJazufFd+MLSliXjao4oa9JWI5MBl9NNbnfXiE7eJgktnWhMVluWec4smlBHu6RezEq1QJk5eaO4oxNwFb4IUE2BdII43qDQDSObEDTHXFBbhHTwq4Yq9jiYn0DWJxQx2JLtRcOB6KHtKderDlVzQub3KY2kMut0oxEd26MsGkxV8iNFgfFCRLJChGNteYSxOXnSY2BirKnQzjAuc2ztcM6wWSyRHfDrkp7nc9Ie8vy9r7O5WGeoA/A6eEZxDoksBHJyTKDWiXSKPL2N7/cQukNXp4jWomuHKwKenzXYuaEuHiJ6OywDxatHIe+b3ydLtljoCJbHbBITF5ZY5IyGz1PLikgk3Mhb1oWP33mGw9NjOq3kWhlTK9BILpmIppYcxyG9zjmoW/aXj6k9j9VmlaazQpQbolAx0ZAKiUdA5DyCtmHH22W1KbGqIGgdgSdpjcFKOF8n9Oy3D8G+YwFa2zT84T/5RaKsR1MWmLpifOmbA7SmOeb46BfRaoQQkvWNf5+HD/9jnuz/ZzTX+gzePiXc/zz3br/JMx/9Xqwx31IB8s78PT798NeRSJoHEqc6zFa+zs/93H8NgFIKay0rK6v8ziRlLXSUISz9mLvqJfb050m2FO7+y2SzBb84XfIi8Ip4yM/cfo7/8T/6TxCAiGJEr0f1z/4X9I//LVZHP8bx8S9wfPKppwHaU57ylKd8h/jsZz/L3bt3+aVf+iXeeecdfvInf5Jf/uVf/qY277zzDp/73OfwPO9PvIdWHr1FgUoyel6PpdRsCY/ASErVRdkpo6ohDEaMHCybCScuZFX7BOWcWAZEXkZQ5lSNJfC6GKGQtkIvjsmG19BWsOoNaZsla6OXobHocETuJozCHisbryIn99g5eUI222eSrrI2OyKqGua1Y24aekEHme5S1zO8+VlQs5CKsG7wnWCgOpxjDRsoulVJiCZVEcoafCKWVc7ubIrqxQx1l+3TQ3qDHonwWRERJ8Uh0hsRqgQhPBp35u0TC5+0cw1bHLOXZEjT4n3D7Hmnf5Ns+gDdlgxUhLQK6ywOGJYFw8YRhj1wkoFKmJcFefEYonNQL7lwUiGiMRGaqTHE0qPOJ3hBSqUlyhrCuqGJu0TLQ5ySWCGosdSexmsdUWOZDS7TD9e4eHpC4DSe6iI8RaeX0ToDTU7SKnA1whiCcMgTFdCdnuJEgpQRGg/hIG4tngiJ0h62LfGnTzg9fYTtX6JjodtYPO2hZB8Zg57cRvghVkXUpiWxPSIiVoFBOMJZg3ALyCfY5ZwiOKL2V5DNBA8PX0i61sNzFtUW6KZAljOUCllbzJgpgRWaLhF+2dLPp3S6A/wyJ05WCKzFFafsRxojJFZpNJpcClonQQWEwqN0LZEKqMopq3qIbgW+g7CzQ11NQWmMkoQE1MsTuvGYosmx4Rirz3b9e0VBbn02dBe/LbBNTWsaNtsYnW3h25YbkwW600MqSdRYnDckCtcJW8vVSrLpjWmcwArJvJqTKB8pPaR1WAOpWqW0LUlZgdb0hODIGNSyptfWyEiiVIKanrDlJQgBPopscIVU+8QG/KBLMn9CrjxG0hDhU6CpsXgWIhUTOs12G6B8nyfFPWLZwasfIqSga1pk2aCDEXq5YEWGdOIdpPQxVUGsfU61z0vG55EMwLZ0RcJKuIaSkkcnb5A+eRe9LJGr30XHGQoUF1qPqsqpkz4dC1FT80LeQHKRA1fR2pJTZegaCCpJ11U0FpKywnoS30lunNwn6O8Sypi5renLiKYtzrJqviTSA1TkoYslsnHIfMGKTrFSYS10dY95e4wQLd2iICxLgu4QvbC814vJjmqCRCOQLOuSnpEMsj1KW575uGHY0Gu08/u0oUPmp3REhzxM8JslUbRKLDWz5m2GpsV3GiV8VF1wr1WEpUesDQSSsHWodkk3P0LkDSIFXwWEOsVIn926pK1mBG1JFI0R/gqd0pFbh0jGOFMTzwVaXeCR0PhG8IHZDLGY0u2cQ7clBR5dPCpTI0TFqpdRLQ8wrqW/9iI+gkymtPUM5QzIAIVgnYjDdoE6useHasHj/TtEa+9jT/ZRnP3HLW2FVhW+cSih8I3kRdNlLkB4Zwmlqq1QfooHFPGQarr8tmvad6wG7Wu//WkefOUPefWH/02m+4+4+ckf/Kb6s6Y54s23/hLL/KtcuPAP2Nz8D+ik7+PC+b/H6uq/xfF4yR8812PQbZjcv8Nv/7f/Oe99/ne/ZX/vzt/G4fhY+v00lcM5hw4ccBaceZ7Hxz72SZadHUbNE547+Qi+cfze5m9wMm/58v/uMbr+qwgEr/oHfNm7AECSH3J/UvD3f+8uQkqC7/1+7MMHFL/2T3DO4XkD0vSDFMVr38gCPuUpT3nKU/68+f3f/30+/vGPA7C3t8dsNmOxWHxTm5/5mZ/hJ37iJ77lPSoxpFcXBF5EkGzglzWLYkLmFONWo6ylH64SNS3S66BlhBY+yuucfUx4PawDdEDS2UDqEGEMXd1HjF/G+SkuGdL1R3SDTWTQRdZLTLNEGsN4cUrctCjpI63B93uM65KuTgj9FL9c0vVTEnGmWBjLmCYY0XUB5GcmuKYtUFYytpJYpyRWEMgY2gZnGobdc1wSCYGfEogQ7aWsCI9BXRM3FcY0aGuhKQjDPhGKqClxgLXgixCHj18rvLLEmQq3PKAuZ8xO75CIs2dX0ifwEkQ0oL9coKwj9geEMkB5Kf1ojZ1kj0h4JCqhf3KEqArKJidB00k38KMM4fm01QyvrnHLY7RpCVSI7zTaiwllQBqvk0SroBQjEeLXli05IFEpVT1HTB8ggTBcwShNa0ssLXHUR3sRg8WEUEWk6e7Z81mPIBiCF+HLgKYpMU1FMLxM2t0mbM9k7HWdExvwjEU3FW0QEghJa1uc8vHqhtn0ITqfIZ1FO+jYs0A1XbnK8+EFMjwiEZI0DT1jUTpEcjbXNr0e0u8T1zWRtfTnE4xxhMkO43SXMFpDy7O5ZpB4KES0ylqwi66WSNMicQStw2sNcZkz0B2SqsCXHihNt7OG3n8PoWJ0kCH8LtJ5NCeP0LpLEq9D2yLbiijZIIr6YC2ubYmdz4oNEd0tgu42K36PT1QSJTWoED9cQasUvAQVZgzXX6WXbCKlzyhf4BtJP9xANzlevSStlnT9DIRAtwYjJEF+SlTOyWSEQhFVhnUZglQoJNZBYUusM1jOPuq1EMSdDSzQFT5r6SbDbAcnzjZhpBP0VEjmNH6RY5qawE9BwijcJlVdrJegrIOmJR3eoJvP4PQegYpIdIgolzTOIZZHdOdzugSs92+x6nr0O7uAQwpNU9akg1t0L/1FPC8mkQFKdxFeh352Ca9VtLYlLud0oh6hCshsiCsq1uuWJNpCO/AQJCLEqgCnA7z5Ef0qJyxmgCRTGV5rcNLDGEtqQqQTpMEQ34DnLJ2qZjMc07WauGnwUWz0n2FdJsR+RpBu0YqE2HlcqgI8E2FNi5WajvVoylNaU6Gkf3bEuG2QQOp1GHmrdONd2mrGRrRFJ94gEh5h25AmG2gdUSKwUuJby42tDzAUAbq0OOuhvRg/yOgWFYP5EYEF0xT4KKLJPTzTEEqPpauR6YhQJ/jlkqMwoaNiUr+PRRGEQ8JkzCCfsbY4IYlWKaoZiYqIkFS2RuqQTER0qyUryRp+ucBVc7QXI01NW8+x1ezsdIGDQHXYbCLGw2cI/IxQJyQqQrUtftMgLGy1Lb02oOP1CVXEiojwVIhsDaGTaOnj6wjPWoLFgnHh4fj2McJ3LIN2/aOfYOuFD/PlX/8UUkpufuIHvul3ITysbVFK8u7tv8Hq6MeI4+u8/c4PE4YX2Mp+jIf2HzIdlxx8+U32PvAxHnzlD7n4yof/xP7++3f/EVp6vNh8iNvZ16mDA7pRzI/86/8GQRDy7rtv85u/+RvkVc3W7i2K/3Wf55aOo8vnuLv+O6ztX2bx1geI4pyd3gZ/Y0WwuJMggoSbayk/tz/h3XsR1/7Kj/J9v/Nb6CePad9+C+/yFdbGP847i99hNv99su4HvhPD+5SnPOUp/7/m6OiI69ev/9H1cDjk8PCQNE0B+NSnPsXLL7/M5ubmt7xHQoIyxzjTIm3LYHSdqHeetq2pXEkY9pHlglAFiLYitoIdozEKrBcjuhtQzUFHCEAKgadTFIoAjTAOnMG3c2J75oHjwi7aNAjRoFWMwKFw9JenoEMQksBPkdIjLCe0TYmnJamKmS/vk/pryKakU8yIegN8T9LahgZImvIbnkMSJRWYsyAhs1CbBmsbRD7hnN9BNRXOnb13N1pB6oD/q4RdfiMTBgrnLKnfI3YWl27Q2hqpEpSAdL4P1uDaGqIQqUJk4wh0BEIhlYduSiIdY3WAUAkGCDsbpG1BSkigIzyW1G2J8kKkhUzF+KMbZ+/QWlo/o2xmeCi0n9I2BcaC5wRWaZzUiDDDtiVxMSNYuUrb5EhgPLwOTkKdE6CQWuMX0EqJNA1SR8RaYGyLdo62XuJHA4RYIhFEpkaYFqtDcgEJGqFDtAqRzTFJC9JCIX10skoY9jgujtDW0koJztDzeiADkBppDcI6KtfgghUiFeKEI0yUOANDAAAgAElEQVTWcUhEMUX5CTiL7xwuHjA9PROu6QiFRlBVCzwcQihKL8XTMQEaWy8QQiGijKY4oa1nhA5uGY3D0tcZwlhE/zLSWYSQhGGXyeQdVjdeAieQgEQAFh0kgKCxLYGKqesJdnYPv3cRqXxEU5BYRS9eo0WcBY1CIG1NYn2c76EAZVoy56HkNzYUVMx6dxddnKJUgLAW15Y4PHTYAyTe/ADhp/RVQq0CAtnHA6z0GPl9pLXQ5OTNAh1k+CrENqcIBxZI6ppC+YBAWUAo8EN8oVB+grMNqmkJRYSIUzzjqNqSRCechBk9HaI6m6B8OsKHeAXPNhhrUMpHSI2/PGFhWowUpEIDjp3eJYpqhic8kAIQhHV+ttmQjEjCAUL56CbHKQ9PBUjhWLUgrUH7HUoEoq3AGGRToMMeY93lVC1IhQ91ju+FZ8GpbbB+Fyu9sxNmbUvpQEsfpIdsa5pyirYN4mw4kKbCz7awxZQsXMEDlPRRK9fxhcRaiycD7OAiFnc2Z4OMuK2oTUXRFPjVEu13kINLFG2NaQq00Egd4XsrtG2NMRWyWuJcS+Z8auljooD/k703j9b1qus8P3t6hnc4wx1zc2/MQCYSIBAgKkGxFTBiqSWuZmHJogSrLasNtuVQ1bLspqpxqhKWWsvVtRyqS8tSLIRQDB2IYYxMISSQhMzJnXOHM593eoY99R/7ec+VBqPRkK4u72+trJVz7nueYT97P+/3+/t+f78tZIaMkVIVSFtjzCLWTsiyIS4u0N+9jA41QffZXxikbRCmhwauEItQj5jFSO4DwW1zEYqocmSWs9zfh2hGRJnhqlUW8l3kQuOjR+qkdBflLurNw5h8EQdIH4kayAYIZ2hcRZ71kEicyijMAkoo+v39SFvhbYOTmtx7vAGPTO9OVdDzHqcyshBQISCEQKkc6QN50z7ld9qzpqBJqRBCQIwUwwUe/czHdv6tqh7m2PGfp9d7Lt6vs2fPP2J5+QcQQnD1VR9iOLiRU9M/IXM5j1/W59LveYR6ssKph+4jePc155q0E45NjvCG5/xjRsc3cWYbHPzD1/4wRVEihODyy69kfPErmEZDdfRLfJNa5X/83ICr25fwyV23s7bvy7z4pddx6Uv3MTtcEh8+g911IaPtLY4vblMfKJmtV3xwPOOf/9JvMR0uUP/ZuwAoyysRoseTT77t2Rre83E+zsf5+Hsd/2/HQowxfecAW1tb3HLLLbzpTW96ymMciBmyvxcjJAhFPjyEaLaRdoZBUKgew6VLUVkPqXNMbw+5LpFRksmcntDkqkQKjXd12l/IW6JU5NkCyAxBQEuDNH2CUKi2IsSIDy1CCjJd0kzXqcanqWNH/GJMhA+BUgXYihgDZb7EZU2LUhllVGSuxccAEXYVuxEiXZcLDilNIgQqI0qJ6e9FScWwtwfVgXMpM5QuEUIRhMTZGbbaBEDqkkFvGS0MqIyoDDp4lMoxpiTqnD17n0tWLFMWC2RSIwSp3bt3GF2ivEvqiE6bXQuVgWvwrqE3PEiJwPhIUezGmB4xeKK3FFESpEJmQ2Q2RAhJTy+CkIQYENkQozJUPqRYvpQMSSEMi/kyvaVLQRl0sYhUOXTzREiJVBlSKKyrkd6hhEZLjQkREVxSDbMBEYHK+nhX0U5XKbIBi8UyyzLHuxodIQhBTy6gyl1EoRjKDJMtUMiMPcVuRAxE11KYIa5O3fCcq/B2BiFQFPsZ6gKhNCpGynwBXY/oF0sEmSFjwORLlKrkwsEV7PWCXrZAsBUKgTbD5OKpx9h2Rk7AFIsIU9LahtL0WVy4FIPE+RYdPJkQKERS7VRGDA4tNAuDgwlMppWEkAqTDQGFaCaYDnf1hpdTlhdQdLZHhKRnW4JUZK5BmX5HzHN0DNBOAYFwNWbhEKZMc5RgifU2plxEI5FSk5keWmfMXEOQmihV+qwyKCJ78mWUj+gIWmokAUsgM0NMmfalU7ok1zkKMJBqmITG2Ba8Q3rb3SMoadCmRKqCLAqUVCiZk+mc5XIfSpfofIkiXyBNbI8C8Alk+3aClprFwUFy79M88xale5h8iaJ/Aa5Jz6p0ln6WxiyECMERmikmRgiesp2hhUS6CqKnKJYp+vsoi0V0f29a74MLWMyXyXq7KZSh8o4gBEEaKjsjSgVKg5AU+SINEQ+gMkxvD1qqNCeDQ5sB2IZIRIeIDxFiwPomPdYY8N4iY0TFSPD1zrgJDNFHtMrwvkUpTeYdOnh0fw9kZbLaes9SsYzSiZD5GJBSU/T2MpBFGtPoWNZ9Fgb7MdkCkOyvIDBRUtXrZDJHmT5SZgQE0jV4AkPdZ2j65PkSBIsLARkDpdRolYOryXQfET3BN9huvmYxkBVLDC+4Pr0DhSE3A3LTR8aIjIGBMMR6G+kbiqzHnn0vQBVLZDFShZqoM5TOkKpAiWTtllKjoicrlzDFMipGrKsQMSKlJgiJ7u15yu+jZ7XNfj0Zc+K+L3LdTa/lkuu/def3q6t/yHR6N86tceDAz7Nn9+t3vliV6rNv35u54vJ3cdXaHi5/sEblqyweHJKVPVYOP/o15/nAiVsQCG7Y/c2cmj5CEA39MycZLi591ee+74UX8xF3LSu+x6mLDrH+shv5RPEJFJITy19httlj63EAQfmtL2F5IaPwNS984i4WpODTyuOAsff8qzffzJ+0gaauEUIx6N+Ac6vMZvd/A0f0fJyP83E+zgfA/v37WVtb2/l5ZWWFPXvSF+DnP/95NjY2+JEf+RFuvvlmHnjgAX7lV37la44x8JFC5WihCEITggVdonWPfrYLITpS0YUPHiEUERBSo3RBiB6pTCJERKK3aOfwgNYpZS0RICSSiDR9pMzJersxwuDaMWZ4gP6eq1lauJAyGyBjACEx5TKFLpCmRxQCScSYEmV6lMMLUSoneovSGQSHzheSiidEIjKuJSIS8BDJIha9R5kBkrgDuqTUYCtyXWB6e/BCIaRO9x59IllSJ1WtGRNjQE9WyVSBa8dEFE5nBNcQ2wklAmsrtNQoXRKEJAqZbH86R6sM6y0KgQwOHR0iBnR3XgSJIMQIEYQPSB/SsYJHBIuIkdo1+GoTnfVR0RN8S4geW2+DkAilEbbCN5NEQDoSVhZ70OUusnyQjhc9WhgkyTIXOnBqyl0sXnAdmdAI35K5Bh08EZFIdDHAe4dSOT4GdDYg2Ard5Q6MkOSmTIqcLilUjtElxgwTiBQykWUgBIdRCYTqTseyBHKpKeZAF5IqmQ/wUqLyAXqY9pty9QgAESNDoB8FpreHXpRkUUBweNcQCaQzKmT3TKUZ4F1NtDNEjLRunumPOJmTyQzTqaIxRjB9ZDYkR5CpnGhnoDKy3m6kSvVw5EO0LgHI80WKYhkRPFJmCASD/j5CSEptDA5vK6SQDIqlNJc7kip1SZEvpjkEiQSpjPHGEXrlHnKZYXQPAFWkjYCNLjA6R/gWaQqyfEBmSqQyST2LgRgsRBIw756FyYfpHLqAYPG+JfoW55p07yrHO9uR3B6i3I0pFtHlMtNqDSE1wdcYIYkCjM53FO2g80Q4oyMgEPkQ7xoQEh0FKjiEyhGqSNcgJE5IXDc/iJ6st4RyDUZmDCPpODGSZQOUNMRmig5pPg7yBXKpIHokoKPEkCGFpswWMP09ibhlA2Q2QAK5a3dMeFIXhBgI3qJ0GrPQzih1ya6Fy1ISQxcIadCmoBzsx7dTYjtL5FxpojRp3euCTOfofIAWCmkrpDAgFD2ZlEAJ6Rwk8iukZiD7BN8SY4Dg8d6DMhTFEooIKsO59BwLXSBFeqs11RZSKIqsh5cSGyNaSIKdIYRM/ymV3s3REYXAtRMEiajG4FCmRxQpUaGFwvqUWMqsJdM9CpkhdY6UGUblZCH5D4TMyIkgDblKazatNjDePuV32rNK0NaOPs7GyWP0d+8lK9MCcm6D7dFHUWqR/fv+Kbt3vfbr/m2eX8xiu4DRDkRg272Di27c5skH7vmaz95yJBWGnzm8Cl028cCFX70h3LvuPsnvff44u3OBWms5ePIk9ywMeJX/bl4wvpq9a8/jxNZZajum7is27h2R3/h9GGe5+OwJJloQY+S7y5JLy4IT+w7wJ6/6fl756HGebC2DwUsBOHv2d5/JITwfXbS14/6PnuTW37iP9ZMTvAucfGDjfN3f+Tgff0/jxhtv5LbbbgPgwQcfZN++fTv2xptuuolbb72Vd7/73fz2b/821157LW9961u/5hg6HyK7zLZwFVk2BGkQOiO4OmWghSAES4wxOUMSPAchiSqjyAYE3+LdjCgkSueJYPkWIQ0qG9IG14HrHCckyAQSEApURmH6ZCaBWeaATGqMNMmKJjU6RpQZdJ+JHTjQCSh2fwckAIPEIJJCkOgkgYgNDqRI+7x1GWcAKQ1K5wlYR4cWihgcoZ0SpO6OnwhdpkukyigWDmLKZYTMEyj1Fi0NKhsg8wWMTvs+CSGJtkbEANFjYyAISYYgdOOSLj9ZQAUgZGrqEueJW2lg/v867z4Fvd4e8v4+MEXK+EuDlDplsDtlUOucQucsSJPGHMh7y5TZAHybgLpURNcAkmirZK3szhJjQKmMKCRR6ATmOxgbvSMrlpPSKSTEmAiAmD+mAAg0SZUQ0kBHEmM3njF6gjSJmAJKaoRO45hJk5RZO8OGFu8ahNR4O0MGh4gRHzxBCHS5NJ8aRCGBSCE0ShUpqSB1mpsIZAgpGdH9QYgOqUuULogxkOksXbttKHWOkCrN1e4ehJ0hIBEXW5NLs6NUSpWhYuiIp0DHBHq9rQjeUbspUWqkMpish4oBIyTSJAKINJisT3BJtTH5Qpo7waVxNwUiRpb2XUNws27uOITMUEKl+wkB7xqsTYqlCwHo1huAkMlyCsRuRSM1dEmXQigQmrxcBtPD6DwRnRjoLR5EmRIpBdrV6HJXSuj09hJJiQUlDSDSeqIjah3plSqD4NFCIHWJ1AV51kP/pURQROBdgwwOI1V64wgF2QIyXwCpEL5BBIcUAlxNOz6DzvtESPNEKJIWJVICwOR436R1TQChENIQOtIQYkAVSztzXkBSmObXJSSmSPsKB28JTSI0saMgKgZEjCiTuoxKYRDBEWxFsLOUuDJ9iKREkk7HVdFjo8e5CiEkRmiy3m6U6ZHRkanOkad1UsC9kHjfoJVBRUtu0juwiY4QoVw4kMZIaDKZoVQig0qf6wYfbE2MPiXOlMGYfpesKAlEoszTO1UnpT43Q1TWJ+/vRQZP9C4lr1yd3mNSEYVA6DSvdEwVZ/N3bBTir61Be9YImncOb1vKxWUeuePPd36/uXUrQhRk2QGWl7/3KY/h9l3H/jUHtiDrO+TwKCe/8tUEbWxHbLTrDPQAuTIAEemvWLKi/KrPPbldc9+T24S1df6nO9/HS+76Irv3X0C1PuWS5iCl63FmsMboNYfABnadbnn4Psf+wZTF0Qqv+eLHePWdn+QPVjbZbTRvPXOMOst43mSbH37iJKPBPwQkVf0gITy1z/R8PL3YOjPlo//+QZ58eIvhnoLVI2NOP7rNlz98nM++63Fs478h593YWOczn/kUH/nIB/n0pz/JysqZb8h5zsf5OB9PP66//nquvfZaXv/61/P2t7+dt73tbdxyyy3cfvvtf+Nj6Kx/LvtuSlTWR+sCoRJhmfcMltIghEhgHlKm1VtEB26UyhIwjgn4REDooqNGEdORixActFNETP/iRMpCK1MiTJ8YHEiT/q4DuYkOdjY9kcAoXcY3ektwVbpGXaRaug4QRyEJUhO6a1BCIaVESkMMjihVB+QhRJ+uvZ0SQ0gkSEiUSQA6xoDvSGroiJTvSIDSGVm+QIwJrMWQ9okSxKRa+Rapsw7wKVRIQFd2NrYdyCL1jqYnSBbC2N15GheFDS5dc0dmYkjWOylSAxHRZa511t8hY/NrnRv4iBBiR7GERuoCbTpSJSVSl3hXkdxnbQK03iKFxOiMGH1XoSUwZtARbZGIaDdH5sqRINWgRTrQDSAk3lbdfPKAQnVA1wfbAT2Zxk/nKF1gsn5SlHSRGqDpc/gmNz200CgxB/JJRQvzY8SAdxWiG6vgHUIkJS526mgmzQ5RZmeuyZ35C52lWEjKhQtROif4Fq2ydBxIiqw0OyTIuwYn07hHqVH5AKFTlz7RKWY7RLx75jtkHYHM+jghabvxFkImADsn8jJ1Gww+WX6VzlPXTOYlNpKyvxedDTE679Zu3HkWggAx4l1DcNW5+w821TQKEMqgO3ta2CEj3fXGiC6XEDEgpUIK0ZGb7iyCbu2kw+p5IoiU6InBE0Nq6hJdy7zq08cAwSbFVEik7kG3tuieYYwhNaZxDda3iczkA3xIapAwJShDUBl0iR9jBknNkxpt+knV0fnOMxBdwilEv/Ps52sxzpM/oksOqPQ8g2shBlSnSqmsT5AGFyPWTtLvdJ4Irc7Te0dpxFyNj5EYWnKVrNaRRBSB7h0iEELvrGUfPd5OoUsGCaDo7cG1k2Q5zhaQonvPdHPTdQkRG2xS6JxNCplONaGJ/Kfkke/mmpIG6SokoESaSyF4iEl9FsokIhYDsnsPAundGywIjcp6O++v+aTJzH8j+6D90c//M/LhMiYvOPS8F+38fnPjvxLCmKK4/K89httzDYUuuH79Gr64/0vo3oj9142ZTR6jN7gCgEe2Hgbg1Us3ce9dn0IEg56cRWXfdO44IfJz33k5JQ1/IWZoZ9lcWmLfvgu4/voruO3PP0UWoX245itnP8E/eOULefL/HvNtp47yukP3cNfGIW6Mt3OVfYgTn/tDfu+bf4H/63kv5lvv/CzWaH5KeP6X45Jfy6+h0MtImX3d+zkfTz9GqxWff/dh+rsygovY2rNyeMTDnz6DyRXbKxUf+90H+Y43X03R//qttJ9uhBD43Of+gvvv/zJXXnk1hw5dxObmJu9//3u46qrncuON34H6K7Z7eDoRQySemhI3auRli4jBM3P9f5dov/gF6g+8j7C+BlmWirerGnXoEL03/zjq0EX/X1/i+TgfO/FzP/dzX/Xz1Vdf/TWfOXTo0NfdAw0SAJ9niF0IaCkIyhCRRBFSIwJ2xBvYUXZk1wCgIxLBdwAsgeyd2qdguzqwfMcStAN8hES5hhAsyvS6eo5kkwTwrkaqgiAFqsvGJnUpfY1r00tgXmcJPEefgGFHEmWnWghzDszrKLtsb1LmvGuTPZKkYClTJlAhErmIXR35XD0L0XfAeA4+Y7IHRY+UyQYoVFJHvJ2hTC8RzpAsmwBR56nGhYA2faytyLqs8xzOBG+759IBU2kS2ZC6u5ZujIDYTjGmB0LQRI8JAaHOvUudt8keKlKGO8aktLWuSWpP8KBkItlzwqdyYrQIladaLSC4FtcRHml6CViHdP8hpGNGSMqknD9jiCjmOo0kETndjTNSEWyFVDqprd38IoYEUOf30Y2dIO0zFTt7WCRl5pXO8K5JJKWrLyR4okiKr9ZlsvUBwpRY36KlTqoM81Mmi6gyJdY1qbGBzhPR65od0N1JEAKhi1S3pHNkM0YgduZSEKmGUDuHIJHFtp1QmF4CsZ1iFoJFyKyrIXLJgviXrkkARqRGNY2ryU0v1ft09yV0mbThzrIYEDtJFZTZuV5BTKSgI62EBMaDMCkh0xE3qQy2mSQFea5aAdE3KGnSfcdUQ+aFIOgc1c4QOicgO7DfJjVwvmZFatCjdJ5Upvlxsj7CtwRbE0yBliYlU7qFPh9n7xuMyiEEtCmIvqVpxxTZYtfZsiPjXbJIzBlhcDtKsBcyEZc5+ZnPEc6p1N4li+lftnSLCNY33XuJbn70Up1YjDsqWESA0OndY6copRHZEN8dW8ZEi2Onru6QFiEQ4lxyQEAi7050hM7ifdOp5iBCQJpB5wdI7+EQI6ZY3Dmm95ZI3FljQgiirTAqJxBQ+lxSIAhJbEbobJBs2/PnHWN6h8X0mvfBETvrtM4GxBDTg52T2/l7i/n7OaZkwVz9nFO1MG/D9PXjWVPQbvrJn2f9+BNMNlY5eM0LAaiqR2naY4Dkgv1v+WuP0Vz8Suy+61h6/M9ZUG/AN4reJV9mPP3ozmc+eebj7M73cPHWJRAD+7IrCe4Ez33Fd+985i3vuY83//E9/Jf713lrbxWc4/B11/Gyl72CpaXjvOQlHwABOmh2T9Z43mP/K5dln2HdXcwJfwVXD1e5Xj7EIE7xQfBvvvgz/M9n38u919/AvZddRWkyfuWiffxH8U8YN6c5fuJt5613z0BUo5Yn7lqhGltMpjn0vF0s7CtZPTrGO88Lv+ci+ks547Ua1z4zKpr3nve97xaOHTvMD/7g69izZz933fV5jh07zEtf+i2srJzlwx/+QPJC/y0jxoi7e4X2dx7A3nqMcGRMbDxx3GLff4S41Twj9/K0rsl7xr/1Tka/+C8JbUvxA68lthZ7/32oiy9BXXY5ctduwnhEbM8rxOfjv4+w3uJiwAuJ6mpzIhIfGqRv05dwhx5cO2H+VSxiIHQkI8aQgI9UBCESkJuTCGWICGyw50hFBOtbbL2JUBlyns1WnbJFpyDoMlmSumoxwTkbIADKYDugJJjb2kRSzYTACZnsRiQQZqPHujZZhoiETtFxMRC6bDNA9C14m+pjgk/gT6pEmFT21SCiA5vzMRBzS6PUSNPDI2nrMbbaIrgGoqe1VadIKEJniYodRPZCpvN1IFFwDkBG5qCq+zn4VI9kSqKUCYSqpDrMlU4AqfNkvZwrHELjhUKZMjVZmCt/kS5T7jqrXYYgptosIfFZL5GKLmM+B9+xayAhuicldapHY+eZsAMeBREXbFLLhMRJTTQlUeVdjdU5EiR0AULhXI1zDda1eFeD1DvWPkEkxIBVekcpESKNRaOLpBDZihAcQaSaG2zdkV+xM6beNQnsz9UWnSdg6ttE3OQ5RcVFt2PTdK5BNBOULsEUO+qiiAEjdepGCXg7w0/OYtsJLrhkD0YkckYCtYn0pufvhcR2Wz3QjUiudAK6c+K+8xwEwduO4Oqd8RbeYYNL1lAhidHhXA0hkZOgS9DJmum7c8YYkDKRyyBll6xJazrVcoadhEGIAVuPCLok+jZZkUkkby6bzevmjMq7hinggkvAv1svUheYnWOnqw9AcHVKBiStD6RI7yeVEYXChiYlgEgEbD43AJyr8cGlc7k2WT2DxwaLd22yyfqW4Bqsq7susGLnHeA6ohI6hZ8Yu1qyjOBaat/SdueICOrOvud9mxIwnQ1Ydo4BYmqi4knK83ydg9h53t7VuHaCyocd0U8EeZ5giiRFc/6sbLC0MSQLepr4BCGRQu7UhHpXE3ynlgnR1ailCK5JxFFluHaaEh7ddVnCjt3bIZAqw2R9snIZoTIa1+BJFm3XWRwj8wYnnfVX6XNrtLvmc5m+rx/PCkHbOHmU9/7yW7ngims5cOXz6C3tAqCqHgAECwvfhTFP3c0EgKyP23UlSM3lF9xEbHZjp5LTx95DCI7Wt9y1+nlesvsGjj9+BKJAraUOVHsufg4Ak8Zx36kRj69NKLEs3PZemizj+h+/mSzLmEzvYjDQvOyHbuK55nYGTc2to+vY2gUguXf/v+UPjt7Afw0/ymFxEc+XRzghDvAPjr+X95z89/z0e/4Tvypzhm3LCQ7xVvcTjEafYDb78jdmcP+exOrxMbf+5v08/oUVrv3OC3nZD19OPbIcuGKRV998LbsODvjyrcfZe8mQl/zAJfQWcz76Ow/wyGf+9jbEGCN33PFx1tZWmUwmfOQjH+S+++7hwIELEUJy991f4CUv+RYmkzF33PGxvxUJ9yfG2D95DP/p0wl9TCyhcsSZhUwhFjPa//wI4ejob30fTzdCCGz/7E/RvP8WhNa4Oz/H5O1vwz9wP2IwoPnER2k+8iHc8WPM/uA/MP4//nfi34Ggno/z8d9KTIshcU4Gum5cjW+SfUZq6ABnRHQqV53IRWe3cm0qOldS4ZtJ14RB0JiiAxEdcJfZuRorV6GFwiEJviFEzzS4zh4pz1mtuvoI5xuInbUJsO1sB8jbGPBzZUQoosoQvqX2DV5IatfSqgwnFUYojM4IMjVxiELgTZHaYRMJ3uJtlQiH0OcsVt17znlLDD5lqDtSK+ZXIlIhvgWCyhMQRkJoU3F82XVglBqZD4m+wZgCIQRO6qRGCJ1Aakz33kiFjyERqGCxviW4GmCHNLb1iFYXQNcIJSYb1LmcdhozF1rsvEBfKqxM3SBdSFsPzAg4ncCfUHmnilraZpoy4cEm9SW4zjLKzjwQvsUGt2Oj9K5O9WjQKTUJuLeuYtJO8KpIHe069XFua3IhJBtdnNfizUG+Iph+oiKml/6lq0X0JHLVuCYRS9ipe7IdKI1KM2Fu7Yv4zhIbhMD51GBB6TlB7Ahl9Liu3k4SO+uW70ByhtdFqn/SOa4YEgSdfVN3BFqkPfq6tWNVhlm6FJ0voIUG32CbbZzS1Dpj3nQFIVKzkJgUEC81TfS03tLUY6JvE7EQEtvV/AQi0pQdYay6sYOgc6wAr1JLdxdCWktCYm2TaoNszWx8CtoZqmuIQTbAS4UPDmxNcDVWahpXU8eQSL0QxHqEQCTCylc7alywSSXr1oaTEml63fwzOJHwRrIIJnuxE7qbMjWyq/0KQoIq0nMmNdQRwSGUYSIVbTNiOl3FeoswJU2wifyZMtW5SgOmQEqFlQotU/dBHyzBzvBSpwSR1FAs4DoVdcdSPV9FIq1FHxy+U+mV6XfNO1xS42NMSapuf7qASImOrJ9svSSrq41JXcLO0nwPyZYdzYDZYD9W6qTKuxqiT/Vu0eOUZiwkVahTbZ4wHTlvmTUjat+Ca7qsSRrTIBWNiExnm0ztjIqkhLdCdDW3CqkLnNSE0NIEiwgWJxSxGSf7YvQ0dpbIra1SN8hyMSVhlEmNUOYKfwy4+RxF4OeKXDcvQnxq3PSsEPZ5T9AAACAASURBVLTlgxfz+l/6DbZOn+CqV7x65/dl7zpibNm398f+xsfKztwDSMzGI1zynF9Gaoso1nno4Vcxqo6z0awj11IDj7zZy2zzeFdUmG71s0c2uHi5R+XgzS/eh1xdRV59DfsOXUSMkdHo44TQckU94Ua7Bgi2WMBe/lwAts4anIeTjz3M6Ifez0+0P83F7gix3uY5W/dz0xOfYu/6Gjc/coR/deFBVsQBHhbXsj36+DM5pH+vwrWez/znxwghIC+f8BfL78cGi7645WT/cYa7S77jTVfx/Fcf4vDdqzz4iVN8/s+eYPtsxVc+dpLH7zzLbPT0VZ6vfOVeDh9+jK2tLULwXHnlc3n969/ITTd9Pz/yI2/i5S//DlZWziCl5Pjxo9x7791P777uXcO95wnE3hL9ustRz9tNdvPzERLcew/jP3Ma9W0H0DddjP3gUcJa9bTv4W8T9Qfeh7vni5RvfDPDX3sny3/6Pnbf9kl2veeDLL7j39F/yz8nTKdMf+PXKd7wo9hHHmLyW+98Vq7tfJyPb2R8XgSq7uvTBsf2bIXtdkTbERzbTvG2ogkNbb2dWt6TrD42OJyQBNI+ZLFcxOgibew6b+cdkwJlvWWqM6xraQSp9iEbELv9n0K+QN3ZhGJI7bMJnnG9hVaGIA2NnRF8i5MK39nbamWwpqRuRlSuBgRV9AhlsL4FKfAdMZmDhLYjBzZ4nmzHRKmQoWv+kPWRKktAlgT2GzGvQersWTpLmfrgmdkKJ5K1B9113YMEXF2VFLd8QO0aYgdKAaJQzNoxNjhmSgMS22wnG6HSbPuWEBxSqATaTWpgITuFoLUznFBMywUmneJA9NjQUk/XaKsN2ul6slaGgPA2WaaQWFdRuxrnKmRwbIWGY+12UhKRyb7mG4Kd0eosjbl3ODsldLVdtqsPxFZMJivU7Rgvk5XR2yqpsELipUHI1NQg0yW9bIiQkqgMXkrmDSqSMpRapM9i6KyMAavMTpZ+KzpETNbX0Km1laupZhtMdUmUOhFo19AGz4qU1DES24q+yiG4NP+yXqpDg25uSWLwVNUmTafIjIGpUokUS53qtISgna4yaids2Qm+a4YThaT1Tdf8JZG+IEQC7DFZ7qIuGGlD4zsALTO06dEGTy0EtZslEBwDsU100s4VsuCw0TPNCqaCHbvjpCOMEpGavcQAMksgutomCJAhJqUnJqoY2inOTlEybSlRZX2q3i7q6JP+2RFtV22wVW8TTdltPm9RXc2TtRXTZkytCzaKIafHT7I1W8EqgwWcnSFUkUgHMNNFGkeR6E4dA+NiSJAKFz0Ez9Q1TGarTE0JZkDVTHbqM2ehoZaStiOmzXQFEzwlkjYbYLMeMetT+fSMZHTEEJAhpvq4CEEXBJ3v1HXa2TqV1IxN2r+x8Wl/s2inhEiXcFBMBYzbUTISCIkVOinWQrKuVapxE4ptX1G7tDcY3tIGh1UmPVvf4oWmlYI2BmYidCQuNd1xUjOdnGbSjqmDY3u6hqu2QOfYbm85pKGWGiUkxvRTHVp0VNHjvUuk2pR4AZNqnWm1QTQllS6ofcuk3mA8WyNIhTBpyw/XTghS0JISOA2gZU6UBmunBJ1Rqwx0TiYNo+kaU1OiEOTeo6XBSY3QSdFMSS8Jpke0dfreUIbNYpEqBkJXm/tU8awQNCEEd3/wPey/4rk79sbJ9G6OHr2Z4eDb6fW+tk7grwp74Q0QWvLHPsCegy/lkT+7lsmTC3g/4mOnbsVHzw0XfCtEyWD7CqI/wfKhi3f+/k+/dIIjm9tkwtF+/Hcoq4qN/ZrGN92Xheey0yWXf/iN7GODBTbY2C85/eQx9N4p4zWLVIZgLUvS4S/9Ll7T/iojG3H7nkfcdxm//cfvpG5bPrM14hK5wYfi93Jy6wvP9LD+vYgYI7ffehd13TJjxB8tv4NTf+74sT/9cX7z7Nt5sPkS6/U6j24/wsFrF3nNT7+Al/7gpQx25ey7bIHeUs49HzrOh95xL5/6g0fYOjP7G513dXWFT3/6EwgheP7zX8AVVzyXgwcvQspzS+aqq67hhhtexste9u286EUv5c47P8vKytm/0fH9w5v4TzwJiznq5QeQizkMDOGRLcQgQ+wr8Q9s0P7OA4j9JdmPXo3cUxLdU3uW/y7h11bZ/te/yOy33knv5p8mf+Wrmf6bX0btWqC954tMf+//RF95FeUPvJZdf/weMIbpL70NfdE30XzyY7Sf/fQ37NrOx/l4NqKKtsuSJhVqtPE4osuszqZrzKRCZH28NLiuy2ElJW0I1FIxiS0QUUIibUXTjNAqpwqOmW87YyLUoSGI1Ils5hu8VIz8jLa3i0nwNARsPiCEBi8UTmoakaxD0/FpZIwIWxODZdNNUdHjgmNCqqWZ5gsEKZnGllgsYrNBImQqZ6oNHoUVgto16OhxBGbRIasVgmtoiQSZamjW2xEzpbG2wsWk/nkhqQVs4GntLLXCrrYgWII0jOwUT2reEW0FXYF81U6wzYgtX0PwtG7GqN5ko9nG2woFlCFt8xqkYivl2Wl0uaNCjOZqYac2RiLO1VTthPF0nUBkU0q8rZPyaXo0+RDd2w1K04Sm67yYNqcOuiRIRasMrq3QzlKqklYZolTUQiZVyfQRUlFtHaOSilZoUIZK5yipsd3mt9sytcRvhGTqWxqdMyF1k47dRsWj6GhdS+sqamfxIqlKTkocEdvZKINUeCFwweJVziS0rPuKJ6crPNzrY30NocX6GhEcM6Bux7RKMAMcILI+Lh9wVnq27BgPjEJLq9SOFTaqZHGjs9aljngZCtJz0QVRKrZna4QQGGUF0672bhwadEjKZh0ctavQpkQDbfRpqwRX00pFq7vz+IYw2yC6ms3YJmKiDI3OMN08NVmfoAsmWUmrcqxvmLo2NbVQhhACQipc8ExDC3aGn1v8XEPTbcTexsB2tIxtzdTXSamShrrr5DcTEnSOywYgJBsx0ChNEzqlRggm0qAHe5kKQRAgpMKSGt4EnRFNTjQ5Z4qSR3EczQoOZxnBzfBC4+yUjdNfZtxsM1aSqc4IzRhioFYGgcDLRGxmdoY0Ba63i008tp2Qm5J2vt9a8GlO5gNmBNZNyagdc3a2xqxNtX+VEDxU9Bhrk9Z5s8Wk3uCJeo1tEWl9y5aATSmpQ8uWzqimK6x1xN/rHJf1wfRROqeVkpaICZ6BGRBiYENnVEWPSXCshxrvK6JrCNFRxcjW6CgbwWKLhWQ97pTkxlXUoaFF8BU34YyUtFLTRse6TEpnMbiASbRUMbDVbDP2DVsCzjZbaZ3EgEAmFT54toLjoVCxGi2IuU07T5tVywypspT88S0hNLjeMmH5kkT6gICkGZ9i21ZpjzJTIk2fVoCTCp0NaBHMpis8efZ+jm48RigW6Hd1ga7bzsP7FusqnK+RMRB8sv5W9RbRpPcMwaGEZKYUo+ypm4Q8azVo/8OP/jNe/saf3CksbZrjWHuKpeXveVrHsQdvBASiHQPw/Fe9jtHJkuBgYfyfuExpHv7M/WT1LrSSxLDF0oGLuG/9y3z4+Id58OwG0bdcmz3ORSe3AXj3tdu86Y5/xD0n/yMA+WaG95YgNXfsv5/h2Uiel0yGh4kisvvSq1HGsHrkMf63730+j8eD/EL7YxSPvIeLr7uba665l3f80Tv4/bUtlkyfe8Pl3J795Pk6tKcZR8aH+bmP/wwbX3KQBZ7//QdZGixyw7c/l3/3fb/Jgf6F/PBlb+QnPv0m3vK5H+dn7nwL226TfZct8IJXXcS3veFKXvGPryLrabSRlIuGj//+Q5x8cPMpz9u2LbfffisHD17Ei170Ul7zmu/l4osvIc/zHdtjXZ9Ts5xzfO5zdyCl4LbbPoi1T723RTg7w912HKRAXjzE33kWd8cp/KeexD+0idhdoK7fi3r5ARhm2Hc9ir39BKF12D98mLBePyPj+5cj1jXbP/tT2E98DHn5lRTf9Sr0oYu45Ici2ZOfwbzgOi7ofQQ5OcXk138V+5X7WPy3v0FsasRwyMKvvRN7/73E+pm/tvNxPp6tuNw1ZJ29LkpJALZVhssG1IM9aKkZ2THrWY9xscTxvE9dDHE6w/uGx01B62pa1+KDZVtKxqGhVRKvJFZInEztnVutmEVH4RsmvqbSmm0cR4ohm8FxRmu2hcZ3SSFhZ2w2Y/J8AetqtrXBS8WJ3q4E7pot1tspZ6p1Wt8ghcZ1tTMbsaVxDW1omQZHLQUm+K5zYkYVHEoZ8mwASrHpK8bRMp2tpnoUXSCyIZA6MU6bMQ+t3s/DvsLWW3hbUWcF06yHU5qRnzI2GSOpmCjNVoxYKWiDRUZPMAWb0bIWHcNyF9N8wKToYaVi0xRYb6mjJZdJhRhHy2a9QRUc4+hoicxMyabStAiOuYpgcmjXmWKhGdNKTe1mjH1N7Wrq6Ajecbwds6010+iI7ZjYTjgtSQpCdKktf7TkMRJkt99bTCatZrqKszWtq0GAD5YZnsY3NKFlu53w4MIyR2eniEoRTMk2sJ4VNHZCbCusFNQq46yWHGsnjDr7XBMck+BYm54ltjNm9SZVO0aHQI2gnq1iXIvsbHRnsoL7mzVGtkKonAaZLIYL+zlicu5cvY8VN6OJgVpqQKCzPutK0SpN006plcF31scnth5jbeuJ1KhBZZzO+7TKUAnFerNN8B6nDI6AiDCVgkYK+jpHmB5RpM6nQeU4BBOl2NYZK3gm2YCRa5lGj++6C7piEWtrhrqHiIGTtmImFQ3QNNu0ocWRVMlGwOpgD0IKJrM1jk9WWNcKq0uqyWm2t0+ympWcGD3JxM6YCIGXkkn02HyANn22cKxKmVqxh5YseGbzGsIYMK7GBce2a1gbnSDU20ghWBewKSJaaqp6i7NuRk1kYqeckhopBKsmY9aMWQ+O/YP9VNKxpj3rQlGZgpHSNOUiRIH0jsNFn7GUzIJjzWhaqdmUikm+QAsEAVZJrNY8IqEm1YU21RaVbzluUvMXZXKO+4a/kBKnNFOdUbsplTYMTJ/M1my0W2idEaVBlbvxxULa0Nu16JCsiRNTUhGwvqbOe1TFkNC1oG+abVyWUeUDpuMzBMBKhfING9FT6QyrFK2fsl2tJxt3cBzf+xy2ROSBap0joaaWOqnK5RJO51hleKK/QKtz2naMVRm5a2jaKSfshKxYQuiMLSJjnTFutpiagqMbTzCdriCJeGWYClivN1EyY6Y0p3zNmWqdo3aKa8YEnXG02eRMbIkisj49xbYbM/FjNqNjaqds+ykjoCXQuBnTdkRsJ9S+ZtJsEX3L1OQ8JgKnqlWmUhJdw8jOsHZGzPo0pgCTp30QTUElUgdV65tUpxZabPQ87mc0vqUxGWfdUwsGzxpBM0WxQ85CaFlfezdCZCwuvPJpHcfufxEhG6I3HgHg6u/4HuLsEPffdiELyvFt7hqcc+T1XvY/J3Vi2X/1NfzKvf+aX7vzT1BC0xOaF+oZB0+fwku4+aZ3EGJgZeW3WV5r2Ts6xShb5pcu+wmWr3otZ3sryEIiTSQM1yFewnDvBVz20pfTzzT78sht4Qb+g/8+JI7R2h4u238Jv/DBP+Uhu8ib+F3eXV3Arz95+Bkf1/8eI8ZI5Sr+yxN/zMX3fCtOt8RBy/rWJteNXs67tn+fN37uddy78SV+9gtv4eUXvILLhpfzxOgx3vwXb+D45NjOsXqLGd/5T67mBd99ESe/ssllL97DXbcc4fRj23/l+d/73nexvb1Fvz/gggsOAHDZZVewd+9+vHf0+32yLOfMmdPcffedXHLJZbz4xd9CjJG6rvjsZ+/4q+/NBdytxxBXLyG/8yDqW/YjLxqAFmQ/ejXZ6y5Hf/N+1NXL6BftJXvDlYhLFojHxrDZIK5awr3/CPEZ3EoghsD2v/wZwtEjYAwX/PjL2POB72bpXa8E35A//G6WPvsvUJdfiRyfov/iixiEL4OUDP7FL+JPHKf50PuxX7mfrX/6pvOJiPPx/9uYum3W2jEjWloEW9kQJSVr2nDc5BybnmVl8yglniNZQaYyPIJpqNgEdgFr1SZbLtnhRFZS2WSa1ErThppRPuSUcExFwBFx2YAZHi8jtp2x2weGUoCQfFG4tMcOMG2nqNCwTeCoyXlQRyo7BpNzfPNRVienOS49Z5Yv4u5ewYlMoWNSF9ZyQ1MMCVKzWQwBmQr7TcmGlNQmpxKBh5VkpAva/m6ybMBICGw+xBMZ4alczbheZ8sUmN4+Wt3DCE10TWpK4BpGtuILC/uxCKLOiVKihGLdNZAv4oRkMyt5ohzgjWKS9VnpL/GY9JyansETadopK6MjtCanyXqs9fYw7e/B6AzfjJgGjyBgewts+hplZ9xbDGn7OVIqZsbw/rxgXWdMJic46mom7RYbzRqPDPvo4Amq4I5MczwvOJYJlAyEvOTw0gHOlovMBMgQaH1LVY+TkmlK2qyHJ9lCQwxsuQmtzrAmZzY7RSYlexcu4LComIaamSkIkxVsMyZISbV9kmm9zZnpGe7oDfAi4olMfIME7tOSVW2Y9vZQFMvUKhG6gGRbpP3VVAxsS8tMWM7YDdaDwyvNTAhqZViMgSvMALn2cGqG0bUxb1Rg6moab5k0a1RSMiXweLvK2fETGBlwUjANLcZV+NAyFQIfA2M3o5GKKBWN1lTlEBssZ9oxYztBIvGzdU4Jn+rrhGC77DOTGitBS8lmvQIdsG6DZWNyhkZm+KzPZr7AaSVZjY5Hmi0eKwZMiwFeZ/joibbiuNKcji2PLl3AVmeZK8u97Nr1HKpykaNFjzN2i7XRSbbsDN9OWVt/lLbeZJzlnIotM1czlhorZUc0HK7aZItA1AW7sgEsXkjV340TGjc+hR2f5exsla3ZRmqQUa2jBJj+AjMC20LQ2BmHQ0NsRvTJuZuG4zGpyznQBEsVGhpf02+mjINHZQMKW4MMbCjFqgrURVJVtoMlCIXVgk075pQ2PLS0nyMLBxhIg20nhHaM2zrCC8ZnmGCREYpiN0ooVmLNY8YR2ym2TeTTCp/q6Tpr6ZOhYSIERsJkfKazM7dIPBY4++RdUCyyqSVfDg1VvcXhOs23TJcErVKtq4Db7RmObh9lElvyYNkbBDZ4NkPLUJf4rMcZpdkm0oakNGei4ZTUnLUTGjtjtZ3weF7wUG9IFVqmboaZnWF19UFMjDghWVq4kLGdcCpUbJuMdSU4UwzwAqJU/w97bx5maVLX+X4i4t3PmifXyqysqu6q6uq96R2a7qYRhGGAK6ICgoiKyxV9fNTrdRl0RO84jPuguMyIgAqKNiKggLbNYtML9N5dXd21Vy6V68mzL+8aEfePbJnrBZpRHB4d+/NP5vOcNyNPvHky4/wyfvH5smNSHL+Ckoo+hvt9l2VZsOSFPFwMsBSgIHd92l6AF01hjCbNhxRozgYl1osOqRMgnQCdx/THTc4k2xyfWODE7AGslKRuSNfdLS6NziAdILQmLWK0zincgJFfYWO4xUgYRnmCEoIoqGPckFhZztejZ1yPvqZB1X/P5tZvk6QnaDS+BSn/cSpxG02RHnw55DHoDOU4SLOPR4OMnUKSb+yhUqoSpNOU6jFIwa8l72EnaXLb9LeQF0/35OYZ9e6AYt8CFb/OQmmRG3oNnvNknw97Ab915Nv54MI38MbFWziz7zR3zd3FFVc8h2G0Qr9zkGFnh5P3fBKA77rpAnxyfq94Ob3Fl9DYv8OB6Q/xBvs+XqdT/lp8I4c4y/u6lttbX74weJbd4uw/P/o23nPyv/P5sw8y1z9AaCPuWfgwH+t/kMZUjR+67Ef57ee/i1+/8bd47YVvIDUJK8Nl9oTzpDrhRz//A6z1d4u08fv+APeejzN/pMahJ95H86/vY/7iOp/7s9MM21+82zMY9Gm3d6hUqrzwhS9hz56Ff/C447hce+2NSCnxfZ/6F4Q3Y0qlClFU4tixx1hZWfqS89P3bGJdibBgH9iGZow6VMN98SKi5n/R9UIInBfvRR6qkX/oLObRFniS4m9W/tkKIdPv7epwjWHPixXV+38eGTdxOqdQ3XP4Z/8Gd/nTYAXWq+JcfBGlcx8kvfPjxO/9b9R+5R3kjzyMuuAC9NI5Rr/56/8sz+tZnuVrjTSGsvKpSB/PasrSYViukkpB7LgMozpbjTnOC5cmlhWbs87umaQwG7KZNGm67m57VZ6wlmzgRxMkxRhbFGzpmFjAWlhiTRbEfoVR1sdkY6SF2OQUmw+w2jtHgeV0FDHydq1lw9IEy7V57qxP05YaaRI+Y3t8SKZknmTPzOXsKzLW8i4zTkhd7lr6tI0RFDjCoqXDJhnr0rIp4SyazdEWnyNhSzpUVchfBSEDx6FwXVZ9h81kg/s8wbosWM27rJiYp4IaK9MHaQRlbFgjdwP6RYIBCr/MquOT6RQo6EQ1tIDzlWnifEBruE4qJa5QDPWQntDco8YMwiot1ycUFiMsFb9GLAUDKVnLuowGm/SwWGE5k3RIioSBkAySHt1xm9qoSX3Q43jvDEtplyecEduBpSR9NDl2uIEX1Mj9CWI3IvMjzkcBcThBLB3iYkSmAqTNMRJcBJkpGDkuzdoccR5zipz79ZCudMikSwyEQlE8bU/UlWnwXZanKpxWfWILx4IyT0rL0AuIlU87rPFUBN3aDGfDMonOSdI+jrAMihEDnWCVomYLhM7o2iapH2Arc+QqwDUahWa2SKhoSz1LGOVDdNJFCkkRVqiqFnl9P2ltESFdMiwTpHimg4nqrAVVHi/XSKWktXOCvkkYez6F49HOeri2oCxdkjwllBLnaSFEPx8xkg6xF+6+ARaWvzE7SJ3RHW0RO4KPqz5WuXiOz1O6ww4ZxmhCITFqV8nejDskQpJKhzEFLTegGUTUbIzSazSUz4ROSLA8UJlmyfNI4z5WJzymhzxGhm8tUmgy5TCQip5NSJwCo1x62ZjMamTee/rsW4EEbJ7geSGZSUkch7FUbDkuqVdhqCw5BYMipmv6SAEDqcikpBlVaVYn+UyjRJq2SaUiyXokUpMwpuqWcIQkIONoNMUw67HKiJ1siATWTUrHpqzZjA3HJShiolETazJ0WKdDRq4k21ajBs2nBTClXSELmqpXYdXz8JUilZIumiJqMJYWU1ug71dolSYREvpZizEZSEs7qpBhWU87bJUmOFGu00TzYOSx4rokoc8J3SQpKbquomw0RxmxTkpKxmbUAJ2hiw65GqHylG4xpukpCmsIBTTzPsZKrge6+YjRYINlaylMirEjpl1/t0VQZ0xKgS22OBNYHlYx5xgxlQ5wpcF3A9Y9j6HvM+1X2QgizjqWbHIvG4uX8sjE3NNnSy0noxL4ZZCG3BEcq83ymSAkMQU7423aVqPtrhCJ0TatosdD+Q6fChIGaPrpaawjKEnFmitZFZat8gRpqUbF8Tkzc4ARBUZkDLMOJ8yI91QaZFKwUZ7kI37EcSzraZ9WqcE2Oe3eMu3Beawt6HVO05OCXGekJmWMJHYcOlLSRJOS07cpo79PsP9y69H/wrXuS2JtQa/3CcDQaLz6nzSGEBJdXdy1WgEvestPsr0nZtI6pGkJk3ZAwIm73o3GcGJ4kptmb+GBwZ9ggUvCFleUKwhg7r/+HoEKmMsTDp86SSJ8PjL/vfxe6XIuO7HFY3++SjPZwT/tc/fdn0GTkbtd8ljw+T97D9l4xMsu30uBR9WF3925nhX3zdg8wY1yfuiT/5EFV+DbIcpm/PJmi3Pps1ryL8UwH/LbT/4GZbfKGw99J69V38fQ6zL0O3zzwuv59W/4Fd70vDdwzdR17C0tcqByAbfO3caPX/lW/vC2D7BY2U/FqfL167O0vuN1tN/xi+RPPE7+4P1kb/tR5rxtsqDK6P6HufahX+aB20/u5lc8zc7ONrff/j4Abrzxpn9w3uxLMTHR4ODB3fy9m2++jde85tt49atfhxCCO+74GEVR/IPrTStBP7QN7QR54yzOqy9E7K98xfsipcR95QXIK6cg19h2Cv4X566NRo+ysvpW0nSVouiysvKTDIcPPGMhlz95jO4Pfh/6iceI5jLKe2K63/ghBi/6r+x832nab36c1nc+TD5/A97KJ6ne8f3YYILR836K8IU3s7jnrxAyI/q2N5Hf/Vmcq68l+eCfUiyf+4rzepZn+ZfG8bhNjiUrUgqdkQzWGWtLyJh5U7CV7PC4gKdEQcfmbJNSQpEjaSddRiZHlufoBiVWdo7yZP8k5/IeLb/C2HFoOx6CgglRsE7KMZEwips8Jvs00w06WZ/zImfkCh40ffZah44XsOW6bKZNhOPQ0RbjVjglLYVRlIqYVjTBmoJ2FNBWlidUk/PjM2TJDp14k7NZRqHHWDLutwlnrSXIY/YoH9yQnhD03QgdlDFFE0POyBbk0md13CG2berZkHN+mUHZZygsTzrQsgX5qMlO0qJXnWGnPEnsKAo5ZslxiH2DxNDLR4zVrhigPTvL2BEYkVBiQC5TLjM+wmRsxmus2AEfcGLa0/vwg5QAKBWGyGia+Zgnh6uMqpNYND2bcbY6A6UyLceQB1WGnmW7WqeEpCbKtEuzpDLg2OwCDweS4wwYuAFtAblVNNEUFEh2ldvHA8uqyBEmpQBOjzY4h2JTST7kO5RnL0MqhzgfMUq7tNN1ZNYnLlKCYoi0Q1wDC2aC82EZRyhabsCWyWnZhLXqLJNuhb/14BqTQlDZzW7ShnZYZXrcYrt1luO6xajoMus49CWsmpTzrkeMoOQHFEaxUpunWZqA8jytqM6KF1AIw0nhspN3WNdjdtIOYywShyTdZuyG9JXlhOjySBBw78Jl3OOmfH7uQv6wFnFMGk4OH+OciWkLy0AnOEJQpD2SZHcHaWAMTxZDjkpN5rj0hUPuegjH56wI+Ewp5JyrEeQkOt/tUHIDSlEJdEYgFZkXsjZVI5eSTAhiU2CEZqdkGXkR4kUanAAAIABJREFUo2yAZwsiDUJnhI4gsoDOeSIo0fZrjKTP9mCTdNxm2ijGpSk+6uecYci5dIelCFK/TCyhYzXWCxjv5mIAksSNOOk4rMbbdPM+cTbE6ISRbjE2I7rSslStMfIDtPKZ6awyUJJO3GK5dZqWcbA24yhdPm1z5oVHbLucTrc4kCvKekQ/abLiBzywcBWfn2iwqQS9IGAQllmXhpPWoEVBD8HjTk4/a+GI3RjzxMYM5JiBVOzBMjSGkhAcJ2egBC0HOnq3bbgsFNthg1QZPmcGtIRhemeN8ahF1wsZBRFTWAJgv6pREg7GWCbSVUZmlTyqkgvLPgtjmzFCszbVYKyGbOiC3N1idbxFz4xwsgGb8SaPiW0ca+iZhJqaZWHmckK/RkkP6WZDhAwZm4K7/YB1BefJeCzKOCtSzhVtekVBTY8QWJZLk5jyDGdNASZhKunjaWiFDVbLDdZUjnYkKZq4tIBvM5aybcb4SCdiv/TJPM39c3v5aH2WJ52A2PG5s9IgF5ZNaZlIMpbzlCf2XkBbSDbIWUMw1DGusSTCMqRgwfooYDPrsxmf51NBiWvWHqewili6lKTiZNbhTHWOvnSxpTJLyuK5PsIrEUZTjPM+sY5B53hFjJWWRCnaFAyMRguXnl5/xvXoa16graz+NFqPCYLLCYOD/6QxrF/F6Z4meuAdAEjXYa1ccNfZ3fGcraupXrxFHrfZqWV8x+HvoTd0iZffAggOmB0uTTRiaprcr/LAh5d466OPILXl/dOvpIJGOxdw0zGFXQmpp9Ocm9htTwypMS6dx41eQqk+SfPcKSJPcdVChXNFlTt6M6zd8HLygYsMoOHez6+ETdpMc7E4yXX+mO2s+HJT+zfLmf5p3vh3r+Ge7b9jkPd56z0/Rf+EpioneP4tVzOT7/1Ci+yXYiqY5id4FT9zZ4OXv/sosdQsNZ/CtFpk996NPnUSuXWeG+77eQ4++l789grh/X/Ou/74Ln52dZO3r+9we7PDWTfk0NU3cPjw/7y4BnZ3ulzXffqjR55n3H77+1lfP/+Fa/JPrj4d3iGQvoOs+c84p/8/zk1ziMN1UAJzoot+vIUdZBiTsXr+51ha/iE8bwHHqYOQ+P4FrKz+JEvLP0yWf7G8xCYJw1/4OZzxFuiCuVdOMr7uhynmbyA98ur/EewZTtJ/5fvov+R3UL0lKp/5CbJ9L8CWZtCLz6X0p99B8amPUPmlX6U4eRxRLjP4+Z/9R92/Z3mWfwk8MbXAo+PTfKp3lKeKFnnNYVn1OYNhKFKqKkQ5ZUbFkKO2R6vo0DE5vs3ZmryI3vRhTirL49UKct+NCLdE4ihWpSGWCuM6BAg8WyANJBa2owaqfIDCBtSdiGptD/tUhECwyZhzRYexTrmnFrInSYmyIYnNUKHHTt2nblrUhCEOXBKjmZOKrk05trDBieFplqzLQelTcRSBhIZJOOUqjkcNXGVoxpsgJR00jytBXwW4VuKjqElFWLTQwsFicPJtAiwdxiTGMCEg9kN6XonEDWg7Hg8xJpQppbSHN+4zh+a8o1gqEtKgylDUGGPxRUanaBEbSd1opIVk9gCRcDjiV9hgRGCL3R1AJyCpTJOEIeXpAyS6hysNFSQ9x+VkYz+fM02aw1WuDbo0/BxXeDhC4khQWBynz6ZtoguDNjkOhq4dc58Z0smWSfwSmR/iaEsiJOvDZTwJG6To0RaYjDD02ajMcFZaVtM1Hko3aFVn6UeTKCdgNLZkWcGSDtmwBdsYeiLHF9ArYjaLp0UxwiM0iuNCccyR5Go3Ly4SHlnaYzBaYrMK3WqfYlSwplM2vRDrCHoiw+oEi6DnejQbC7RNzlIIipSWGbGgfWrRDAfjHbysv9tCazPOTEyRupLCanJH8NeMyejhCYMJQm5zNLnn43tTDJXHVuCRColjNGOr8YsBmRS4ZCzqjInOUaybUZDRJ+VjfsEMkgedHYyzhbWS3PGQCFbsiNykpOS7RTw5A6fCiiNxn44XeMp2mCTnyUqVdm2Ss7ZHaMYoaxFGkLol6pVpZuyQvWaIVJrMpvhuiU2RkpgRIhnyZGMvm2ZIZZyxHe8wNgXdYshJE7Piu4yCEj09ovA8GkWCP95io1KhLB3KTwcL+zalYYYMrEFt3s+q7NCcLVGILtZoQicikA5p6FNTQ4LJPfhkCCkIpc8TQpKHDayQHIj7HCo6zDiahISBHjCu1bBRSFMYrHVwrWYgLYOFa2mWQ7qeQqIofM373QEnbW83zsZaXGtYMTmuDCmAzKtwWvlox6PhVblIZ4zyHr2oxnJYppdts+wV9BjiYEiEwEfi2pyNsoevDKnrMvAq9PIx/bTL3XZMy53ACWcpORV6QZ9hdZqdrM9IAGEDLSK6ZkRGyprewroZ2vVI22dIvAgtB/SyDY6S0JYFWkDQbHLWjBgKxYvjJUayR+Y6FNLQReMCBSmBHiDjDrZ3mnUyNgBVGFaiCXZkypOjz9FGM0TwsMn4tBlwr0kxgcd+FIWjWA8i9pqU5bmLySnIlSLcewNuUCU2hgCDLy3Kap6wCU8Jw70MUAiWA4cdoUj8SVrlKhuNMjO6R1GMSUplVqsNQmlIdcwAzVw8QFpDrDw2ozGJ6bAdljlXJAyUS8etUEPhI6jYjJLepj7aecb16GtWoFlrabU+RK/3N4Bkeupb/8ljZfu/bveTp1PRz/RPAxA2L0EKi5tX8EsfR4QZ/lSDbz/8nfzMtW8l14JF0WXvdAP+8i8wozF3vPMY406CtZrtepn/ePEPcvfcrdyWpmxNPkGvtMUFzavQBrb9JmPRIve62GCaUbfHytEnAHjRkVmuXqixToOPPXGGzuYCQu+G+R2461f5YX6DMxziOUFKq9DcNRh9Vffzfye24k3ecu+byXTKdDDLfdt389zSrRxsHKRcC7joebNc+oL5ZxyjOHWSwU/93yxsZbRfeQu/8KaQPzi4SqwK6r/z+9j/9Evc981v4J6rrsfLOwhr2H/6Tl7xrp+he9e9fLDd4/bugDsufy4/Vp3nFSeW+Y/nt7hnMN5tkfifJAhCrrvuRoIgpNNpMR7vHgLNT3Tg/AhcifOmI4jI+QojfTFCCLxXHEBe1gBj0Z9aI//4MoPh58iyFY5c9GHmZt9CXrTodj5OobtUKjejdYdO+y8AGGeaQhv6WZ/eT/4oI73OfbWYyg0hD/4fv8X7Q8HHVj7KHec/wb1bd7Mdb31hBy479HLar/80IhtR+9A3Ubr75xi8+B3Iw1ew/8jdBM42/s0vwOY5ZnPjWavjs/yrY9qVZOUJjk3sBxxiz2U/BVV2LWadyQMc9CIqIud6wAjLeTumk3UpOT5VOqSjNWrrT/Kkq5Cuy36nQsXmaNtj2yZ4NsEruuwrxiQqI/U8JlCsVmfRrsfIK9EcrxOaApA8mm1ytHecHT9gEMJFeswlJmOvdXDVJLGxpCLiYCpYMk2eMhlB5lO2Hq6EHMiE4rwUJCpAmIQJa0kdh1Ujuas+yz0K6gguxuMADpndJEJQqICHpmrUbUacdknMCGUGaHJcdu1nhV+jG1W5l5jHTEoZy3zh4eqM1VGbUT5g5HlMCk2imwR2yILNmLEj3NRgbUFbGNBDCj2gsBohJBcJy8Bu0zJ9qnrMhOeihCWRHhOqxDis0hIZoTA4aoI9yefIphs4HGRf7ODbDN8WnKtM0YkiusYhLJ624D1tf1SknEVQSMWWaWKUIFSKzPUI2Q2AlmGNTlTmlF9QQbFJRjOoYIVDza0QCEUkDENbkFlLkfcJ0ZStRmI5podsuZK+HtMZrtGjT2A+x4LuI7CcRtMe75AWMevWYKb2MRXV0O4JtGtpVSp0RM6kdDC2YDPe2A1OFxKJ4Hw2okuLhIwLsNSspBets+po8tosXZNwWmjO2yF7eiMqBbvB6Wa3gc4VgvK0z7x12MxrREUP25hjMmww5XgYv0ShUzomIazMsu16CGspVEhbDbFasBzVMH7EpKyjrEO1cJguNNbG9D0XZTUeCSMzoN1bRrdOUi9iGJ4ntz3WbM4Jm+FpSwlLTVVRaHJjMSQ8JTUj12fD0eQ+HDZjpHWQso/I+/hpk1IxppMtsVSqoN0B56YOcNQxqOn9CN1h249olqaZUiEz0mFJZZwvujwWBkSL1xOJSbRwKGUx58oXsur79Cqz1ChQ7hplkzGW84zUFOetQNX2UrIWx/G5TgqOFAWRHqPtiHiuxx7doxvV0NUFAltwOO3jaJe5NGYUn8HLUlxnG2v7FCKjhkCRs0ECEmZlQsWsMUdMFUHVNjkiCiJbULWGCSQTMoDyDEk0QR/BMZtyxisoy01KYpslpZkQgky3eYxVnhI9lvU6Iz1mWW+xlW+yrQo27SpFMkYJS9uFrl+lsAVlqxFxjyAbkw9q1K0mIOdJN2Fd9FEqox+fxhiXi0SFqLvGoIhJVJlTaZtgok3/QsWlSPaOh2zES1gRUNgSVZ3jC4eyEuyJBHUrKaxhv8nY0po0j1n1A1ZK+zCAg2ar1qDjKsoUtIpNDpqUQMdclscczM5jSFmMs91/suQD7jVjqlIy72wQ2k1mkqdY100aTpceOUt0qDAmMTlowyU2YJ/1mGRIRUoyW2CtYEHGXBOdoSDD00Ncp0TJ8VnSOV7QYMoExCKmNdztHDqnaoxkQAKUogZuWMV1FCkFQ5OTlySu18O1X3ys5f/LP/5d4j+RRx97LcPhMRxnGmtz6vWXfOUv+jLkM1cBINIhAI+0HqKe1fGIcMflXXWs32bxedvM928GoDnMsMZwq3eWF73gtdh3/iZbs9dzyfMneQ7vxn2iieyXCHXMDiE3PJTwlNchW2jTyla4sXozD5i7eMn6S3HTGkm0hdMSCKnYPN3jloMN3vGZMwhruXOrxL+rXEu42qe0aPC6S7xoPeLUoZN8oLtAebTDi2pVbq08s2Lz3wJpkfIzD/0Ei6V9SBTb8Ra/fO07aP6VS2d7hOMrdG5wvC9u6ft7Rr/7TuIPfRDvec8nf+gBFo9afvNejx9+Y8Z3f+M6r6t5/EbhUbnl69E3v5iFwvD9f/LXXHTfB1A64ZaHz5GogpXZBdqVCQCW84Jmq8n97S3evrnDa5JTvHbvQfz6/q+Y/n7VVdeyubnOzk6T++67i5Xlczzv8Wmk6+C+4SJk9Zl/Kb8S6tY92GZM3l0nHR/DWVukPvsKNjbeQZotE8fHCYJDuMFNnNyZ5NH1RWaD+7m+9xp+5rOvY6VXo374/+EH4ow7X1hwfMHhl2QB934XAoGnPDzhMSgGSCTT4QzPn7mVbzv0JurVfXS/+cNU7vwRwqPvwd18mN4r/wihM0r3vJ2hcwXqe/9Pxr//LrLHHsG76eavaq7P8ixfSyr5Grkt4appsvE2jgip2g6GEopdq6OLZI/NWDYCIUIuR5KbFI1BW8k+KdmuTuGZAlmuM7YJ8yiqIqSuBGPGBCpkS44JbZWkFHKFkMRU2Rk8TFGbpBRdyLwZUxJltsOI057Lc7zjYF2m1HMwNqHAY6B8rvPKNPSINimRUyfWCWUkNZWzNHUhPWeKkrWMTB/fCTggq7hIpoTgAmuYE5IrioBVt2DWCur5Op4oo3zNhjU4xmGPHeEkS1xaP8SCv0OjqPKHDtyJ4dJA0RaK/Umf+4KIAwZqxYiWVyf1DBfLkEmTM8IQ2ZTCJFSLmJ7ooMjxRMGUdXlUQEGNe4ttLjMFZTGLZocd4TNBTlVoHirGGOFyiS1wMHhAIiCQkKNpyTHzVlKTIYf0mHWR8TAxC6JJM20jC4EfVtgkZ2gTQisQQtKXEaWdk1RdKE3PMhMMcONNJIoJTxBqSbNo4vhTXC88EqNJi5QyKS0zhRA5Gomevpgs+zzbTsA10ucx4TISimmdUq3t49Rom8QWzAaH8cYZkxSctRltqZg2OVVdcLpSo+tFrOeWi5UiQnE475NZj54s2FOawXcrNKxgaFPOknGBrSALSSsd4xEzHZfoZ10Kv4zUI2oWOrrGjrfEhhhxVCfMyZA9JuM5TsJZt0EoDE3lUtUuIHFsijExWRFTMgMy16FUWSQVAoNEmpyclNzJKZRDKkOqRqPJWcx9pEhxhEtmBYlO2BAZ+1EshQ38aIJZr85pOc0B7RAqS88mFNalUkAmMnaKlIlkk8jCjBIYbwptY9bcWWzRpiwKxlmNDMFq3meWSY64h2gJwbUmYcmbolPXdGxKMjtFgIsUlh2b4ouAjuPgCxdtR6TDEXFpjhiYEYZL1k8QTO6jHFXRwlJ3pjlVBCQY5osdTticUJWoFx2ekKv0o3muHBuaMuGiLEGZLj0xZGDLnDQjquU6Dd2mahX7lcNZHHxRYli0aBWCEIdJk7EXzaTcAbuHVSs4IBwaQjBhcuadOpYcUQwYOxE1JEWRUAurCOkR2TaGkPm8oCcSfEdw7eYpnHhM1/eYTuv0hWRd1GgIQSQiNtwZpoQgZ4PR3FX0kFxrJE8WO8x6i8QMGEi4n5zQ1Ih5ikREHMhaPO402IlLvD6R4GtsVOdMcAlaTbBTnuBKFRIWZzC+yxQDxmEVVYypliOy+AwtWUVYh8wU9ETEXltwEkPTFhRWYuhQOBPMMuaQPMGjxcW0lMOc1KQ2Y69/OTpvY5wal2QxCQkXWMOammbHpuzB8ioz5rgIiaKY07Fkwq/RNQkzasRZcpQ8wYS5iCfdjFhNkducgRkTaE2kCjaDGrXZEkc4z7QMWNHgmS6H7DyOScA6zAgfJXwKp4KPoi0KLibguB1Rsymh3Q1nl8KhZhJmdIbjCMClLqvPuB59zQo0KUNK0TVk+QYzMz+IEP84Ocg/wI1I93894RPvJb7yO/j0xp3c0L8RgGCwQB7uUJo7jqehERwizjVvev8jKAom6nW6t99DDUHpta/jIu8viR58F6kp8yuLbyHQAbeVQ17//Yd4eEfzK0ffTiftMCi2ScOUTrXDVaWDrK4vUY++jsEOfPaPTnLR8+fY14goipyVruDhhUWmP1Fn8aW34Jz7CHvOHOdle2/nbvFdLOspPtYb8B1TdWrOly88/i3wPfe8CWM0e0v76OUdfuv57+LMJ3rsLLeo74l44ZsvRqovv9GrV1eIb/8AcqKBPnMK57LLKY49wdyPv5WD/l9wetzj19fPUwoWmPU83tSocVXos3XLKxm//JW0/uCPufGxO3j+g312vuFV5N/9faw99F6+aeOvqHZP0p65lJMzk8yvPM7s3T1ibwJ74W30rv12gsrVCPHFz00IwW03vYjlBx/jxEP30z3+WR6R0yRzGel7Psi1r3oDUilqe/bi+rsq2/F4hLWWUqlMlmVfaJf8Uggh6L/wITbWfhUrCtS4jFnP2Yln6ck383WHG3zyZJtfvKvGTGnM4drjXD69hw8017nlyH/hcDjLueXreecr7sFIxVwwyy3zX8fLFl6BxdJKd/j9k/+NqlvlcO0IWPiTs+/jw8t/zrce/DbedPjNDF76O+RH30P57p9j4v230nntHVQ+9WMsZHfSu/l1xB+skfzxH6H2zBO+6pv+WV4rz/Is/6u5gghjYzq+i0DheCOWVIez2RzPx0PYmLDICKzglE2o2iHn9YCDQpA6zu5hd1rc6MzwgMkp1feymbiMi4QFp0aiC7q2R1oMKCkHl4TzaHwLNwv4bNIjnFhgWj3GOXMRXe2yZbsYLbjMb+G7V5BpQWYLXOlxocm52Bh8GfKwTfDwOKCHBE4VD0niV5nKNefpcJUVRLiUbUaORRpDT3nUjAERE1uPYybjCBpflVFI5hU8KAs6uaCeGxBVWrmDsRoHiMyAaeVSWMVBLHcjuI+UgypgWmtmEeQ2ByE4oE7jO2c5kcySyAqoOj4t6kVKTSjuA4ZCsMcKAuUQ2ois2MflNqMtmkRyH9flI1zlsZ4uU/VnGbozRDZlmoIRghoVYsfDt9C2MWt5CwFcqnOgylm7xJYYs1lIJhyfwGbUreEWEmamrqYnyihj0J7ASoXyy8TmLAfMXsQ4Y60y5gkpaNuU6So4eY9FIfGEw7wr6YkOc8ywoyICm5BEkor1UKOUTtbBMwkXWkVqIzyl6FuPoXDo1OYoxn1mLPT1gGEhMfkksrCEeNRsSlMYjCmIynViKwj0DhPWpZRuMFIlvNySmxbz3jy5kZQ9l7B1kmplH6kt6FHQmN+EwSTTA8WK8pgzmoqNEF7AFWaTUOes5xuoYC8nbMx+FRGnCdPCZdsJCFULSRkrXJo2ZnoY41c02k+xeBxLzxK6M+wXAQ1CbhDwe2KI68Gl1keJnGE5IMZhi4w90t3dsdyNKWaEx1bqcLlXMFIJLpJcx8zqMZkSBMJjnxmSKh9pCyJvhI2q2OoMfWsIRUhFGPbJMpMm5zgCicOlOuCU5xBnO7vRCY5HhKQA6k6EVUMCqYhcUJ6BBCIcPOHgaghGfWoYMgvK9cnp4QiXmqqyFqQsBSmXKfClQzIxx5HBg7T8HY6LCymbgulsQEzOYT0E5VMTZUZaU4ld9klNYBUWQz3rsri3oNefxM0DJC2kdLioGDEpq3SKJr6I8KwCAbEdkYoqE2gKC1fLEEfm1HGZTNbpzxwkiYe0zYBChEiTUlaCBtBEs0c6lEVAYXJ2RMwpYqYH56g6BY9PTGKrNV4wVlyfrnHUuszIEgaHA94+HFWhK2DHKVHRGTtFG+vPEApJ7JWwwkNpF6s90D65LZi2LjVZZq9wkM4M83pMRowjfAZ6wLT0kTanwCccwFQomFAekUhpS8us1GTGZVtFqHSDvU4NV+ZcFDxAoq8GK9kSObNSUpM+UTZAOC65iBiEE3SnHSY7LhU5YE6EYKfpMkKWagzkLAqFtoJzuslBpqhpl5nWScp7qwyNxpc+oRUkNqWvQp5rBUM9ZixBS4eBFMznZ/GDq6jJjACHcrVKkWuUcNixhhEJXfrMWEVknzmo+mtWoDUat7K1+Ql8b5GJ+iu+6vGSS16Lv/y3FGmP1eEyVwwvw3EdVCYZihauUeSJIC6/mweWn4eUEJiCq6+8GvEf3g6VGosvvZzK+76TxFRYl4u8++DLUELygwdmALhm6jrec+sf877T7+X+5udo99s8WnmUxvoEoNDVBlsnPkplbpJzDzlcvOgyqgec76UclTW+Tjqs/8kKle/+NRpn386+px7g+y9J+THzdmIheP3ZNf7i0F68ryCj+N+Ve7fuZn10ngmvAcLyaze+E1+GLD92FlNYDlw99YzFWXLfPQx/4W1gwX/xS5B7Fsg+fSf1976ffr3B5tJe+t0fp7H98+TOHn76pt/j8mi3IJr/9/vJ4oJ297U8eNfF3Hzff2HPR/+C2e6HeGF1A1lWxJ6gunOM52493eLnSPpRjO18jNPL91AbukxW/x3RJT+FkB46zWl98jHkyTGlosSsNkzZq/DqEUoo+kmP5niZJ979p5zvPcXU/OWkC7N0iow0S7nmmhu48cbn8/GPf4R2e4e9e/dx5MilLC7u/wfCknNLP8hweB9BeBFFu8cHV2/lweaNdAuPqxZqvOI5l/HcwyO+J2/z8NomR9OYB++7FeVfQHnxvTywuUNH3c1zzll+ZPUAv3vrT3OlP8+B6q6R8gIu5NKJywDITcEPf+4tvPHQm/jjM3/E+8/8IXec/wS/eMOvc+DK7yJfuJnqJ76b+kffwPDmn6XymZ9AFiPK3/56Bu/8XUb//XeeLdCe5V8Na9SYc2eYwWcGSyeLuFY/Qc/sQ8qA640BqylUmSoeFWWZSwqKRoOOzVDAbGmaE9rhNis46ggWJLhsIe0qXsUlyixRVjBUJSrW4iQ7DJ0ynizTVRERCkUP7BI1e4TjqeGi/BRu2iCUdVJTYIXhRlnifpPwsONxiTFcbiwxlhM6Y6gU9e2DWFdRF5KuSJGOZQJJ1Wqa7JoSwaBVsKuvFoqBiFl0ZwnwiE3CGMP+8BAzRZdi9mJKjgIT4UuXbymK3WwoXHLhEjFizqQcdE8T2EtISXCMi5IOrlDEdg5hYxadWXzh0/cVF6iEsQVhUy5GkumUTQQaRSw0LdPD1ZaBGRDI80w4FQYmZ8adZpj32a88JoSPK31O+AFzwYU40scxBYvpeZpKkIUzKG0I3Dpnpw7RGEBqCh43JRaMi1GCU7LEPgPWGqx0adgJVJEx6pxlz5SHKyPwDpGrMoVQOMUYI8rYCy8h7MeMhiMC6RNKnxl/GoNB55rc9dA2xwHm+ttMu3CRXKXnlDiX+eyzu8c/jOOS1fezaAseTso8L+mQRJYeln6xRUWVKFvBlUgisRtAnRZjpp09DMILeCpbx1MOR9warnTZogNCYet7qLsVFIq9zibO1iJ7rKKPoiQrNIDcU2ALHpgUJEmFq3ozCOVSzQoC6SD75yiJKvtrDSryKGsy4Wi2n72iz5m5Cyi5msPuWcbFpexTdVwki9ayVWzjSYdpGTIvHGaxZBieozNOOZaOtPikzDLmLiuoWcM1ts2MN0YhGdsSQ5FQccsAWJuSWUOKQokyxhZ0yRibgpLy0U4d1xrmsnV8EvZTZ78I6ZicrukxLHwO64QLZEbNZngoEptzifDxoxmmLLu2x+p+bJJg3ZB23mOsDF51ir0mY16WKVXmEN0mg9IkuckZiD41sYgsMsrCpz9VpZI1CGQZPwyIc03dGDy9G7Mxljmugjw/x9iZ5rkWyiZlFU2sNV3bpS+HBEQ4cgBM4MkIY2HCmcRauM4OcYViLCxIxaY1lKxlumizZoc0VIk49DlU+CxVZvF1mxtNznkbc3khaTgV2kjmrUAAq6JEZXaCDSMR+gARMS6GoSvpEZPrFllwIaE1zOsET/q4pmBChWR+jVNTVRaVz5G0zP12SGSgJgXaS3gejzK0/54tDFa28AuPKXeKmpA4QpBZiyc8JHJXXCIiJvMuAQX7bULNFvQt+EFC11oahUeFEk8t7mVvC2bCCoUIsd0UKWukZkBkNanNEUqRkiIHe7jUTamsrSFmAAAgAElEQVS7Fep6wGJyjtVRzmqQ0rIg5AXstZoDFjKb4WlJ26+zImIa9QVmGbAoHZpaU1fT1FQVg0XYjKoK8JFMzV1Gkq0z5xX0RY8QSUko5rwqHd+hazWhSZhHIHf/QhDueim/LOptb3vb277cg+PxP59tsNf7SxxnHwsL/wEpva96PHfnGP7Zj/Pk9CXcs7bMvtE+BqpgYnAJanyCrLNDde8Q6QnuXyvxyEaN66Ier7n1JtQf/AbZi76J/JH3MqNOgqP5zzd8A0+6V3FTJeJ1k7UvfB9HOlwzdR23zN7Gn557P4kTM21nqORltMjxBh1cv0SRT2HGhrvSMXtqActjjxu7x6msLBMETarFg1RHOUFtLzLY4gF7FRY4Gme8rF7+qu5FELgkyTOHI/9L45Gdh/iNJ3+V3BQcrl3Ef7r2lwicgDMPNll/qsvkvhLXvGL/l91FstbS//EfQWgNX/8yOpffSj06wnl1Ga0HOzz24AZ/vjPmW/R1zI2bjDjP3kqZi+uXfmGMe//sFJtL21wY3cGxiTdyoP93DI5bmg2PM994KTPiSpov+x3kja/hUzsZiVPjUGuJ2jCnMpzCzcfMP3kPnP4TVp9MKP46Q27nyJJLX7cJVRmjJKtmk4aso/CYduepRAscLF+J79Rp5QPStRMcjPaT+3Bq6Qzr6+d56UtfwfLyWR555AEuu+xKNjfXGQ4fpVzex3B0H1k+YG1Q5tCBN7D9+efwKqfM9758lW+8/jLuPtvjBz74EOAQZzGz05/lW68/wv3ZbyGtxmaG7/x4xEsnfM5+y8+y2vd59+dXOThVYn9jN5fDlR6u9DCjhAviaa7QF7KfOXpFl5VsjY+tfoSF0l4OzN5Acvm3I9IelU/9X6SLLyC96NVMP/gD6G/9RZKPfhQ96OM/96Yv+XP81/ja/dfEv7b7Wyp9de2/Xy0P/+0TSKeEVhlhdZZe1OCy4Az1ZAYrKki9Q0WVQTg0pc9kMWRRNnA9l6qRuHLEAXuGMhnSVnBGLSZtRFm1EKLAK43wTcisWKXPDHU5xpoSqxMTTBBxKqhzgVNCii7bdi+HjWLN6XKr38YfXoWWFiHKeDYjUhG+NSwKsMqwPjGB6m8S2wLhzzBFQlt53GADKnaHI7IgEP8ve28eJdl113l+7vLW2DMiMyMrM2vfVCqV9tXavQsbjG2MMXDANmLcNIZhaWCAtmk3eOgZ2oAZ3GODDQbsNt4ty7IsW5astVQq1V6lWrKWXCor14iMPeIt9/YfxaibAbunDwMc0/78d899590TL34vbvzu797vd4SG7dOSPlekfXxi5oRlkwwIgWLSp5X2kAJCUqZsjBQe6zB40kOicNEoqQmlw4A+BRvSxUEly2jPZ5ucYTHOsYeEqvRwrSZrBVmh6acpF4ZK5BKHmkwZzveJRZVe3GFGOWSkw3haR0mfrHappB6SOlqXqTrTWOHQMwGedFEyxVMBibDsL6bUXcGGpIARGhdNQfg4OsNKAutRCK05XhBc3+vjJBpfOmwwULERWxD4aYzVGc5JSSsv2L7aBhPTKxbJWY9QCoaV5iq1j2JcJXVC3PwQm3oRYZKipGDUPYKhywVdYZcKuRimBERMRiFrfpbrNxwmDrqctzezs9+kLrL0hWRYaHIISli0HXAwO0yKYT2KPIqFcoUR6TGaLiHJgnA4IQQX81msI9hlNDudw+TFThztYYVEG4EwBlcFFIRlQh5iRaSEqkTbwIoQCBtT0S6NTAYtXISATd0efT9hi/FJkhaxaeMpSapjRrwui8LnZHaSu80MdmDZkZshI320zFPrXCDrDrNdaAZiQFEVmbJdRoyhJDVYMHA5YTNgZJdRN+WozRMLwW22R6C6NCKNMRGttEveySGlg4skkC7TMmVD3CInNEM2QyoS6sE6iljqWMYdQ2AMrnDIyBDH9oiUIVAZKsIjEOBJjzkpQTg0qgVMv8X6OGVUn6bmOpzy1rFJKbTQvJiusanX4VJmA5FQbBWCA8phxCtSJGZx7SxecSdKKKqRZkNjwIhaoacs3f46yqnBTfsM0hqj3ihaanIyoKgKtDGMqSKpHTBDSld4jCuPXlSmg8ukmCYUAYHoImwJV/mkNsEoRULC09U8KziIOGGh4HHdIOX5dUVAkuumlFSeIRTDNmKjypBJO1zQOTzp0gbyNiV0FlBygNGTBPRZPxBY7XA1Reolh63NmCH9LNucceZSl8W4zlhugpqAfSbipqBCvXrZRHwh73Jrd8A0CaPWkAmbjOqLlKMNXEhTRuIBqbXUvQIVoRiyCR3TIxGKrBwwL1rUZJGqGSCK6ygIl1BAy1mh5bpUY0uSZplIBN1ChvU9yalKCJwhaRfR/hDLaHwZsMW0IVmjrTSpCbCeR87L8NreYTKJTy+AhA4b7EbaqcYIjy02waGHtSmXpKSLZKdbRMk1CvI8HWqcjX2GnAo3xysMCcFg6CIrocN05GBsg3y2j5NmmTIKoX1KGPpCsqYdJowgb2KG9AAlLI1YsPP7bvm289E/WQVt+7bfZm3tO7tm/48Qrb8TgA+d/hCTndsY3TZO59kREIK0f4j6VJbxlylcd4Qrcn+G4D3sNF0ufOIbDKcJMyfWuO3mGazyOLnZ5wv+m9DAz4wM/b3jFb0id1Xv4emFJ3mi9C1e272P0EkhuBHsNNq5mkkBpm+4NuvxGRPw2OZr+fGZGaLxu2ge2Ud2U5d1pw5y542znC68i5U45VT/csCq/wE1v38JHFk9xEp/ma357fz7G/4DrnKx1vLi4/Mg4PrXb/x7k7O1Xkx/dhb3t36VgRrBvf778bou4UGJcVepOoJLrqSVU4wULPeuBIwmP0o472DPpvR2n8d/xUZMP0b2vgjNW7h26CkuZu7lhde9hT0Pfgq118PPLND6if9AvfMg7Shh/d0/xYWZX+ZYfDU751uU6w0mZuu0smOskXJl/fd4aufVlM++G/oxC81zZIM8GZ2hnCnR7w1oygF79SlWZQdcCwgkAlOd5EXqcK4GAoSUPPDAZ1/6zH/1Vx8jSWLA4rrPkB/q8a3Bv8bqCa6cfIL7XtVk+cE9vPdr8LP3rXBqOeDVu0O84Ye4q3g/Zwav5JPT/xeh43DNiYgffVZxfmQrlxYinnjxi3xp7EfYPRHwaw+f5M2v3cIrkxqdQ88xd+wAndoKXibHXDZLa3WZmy3cHuzior/G/938XU5ddZKfvuJn6N34c4Ahs/8PcC8+gw2G0NfcgP/2n6L/F3+Ge90NeHfc9U8WX9/jf07e//73c/jwYYQQ/Pqv/zp79ux5qW/v3r184AMfQErJpk2b+J3f+Z2/Y6VR0ZaBTbnGdKjnJzHdVUKp2eTW6ZoN9HQRLTMI270sBKH6jDhTzKZX4khNz3FYchKGm3mEOsjSiMdKZwNj3QjlRMiVTfgyBP8CNoJAdYmVTzaK6csE7XosBzHFTpMeO9FElAZNin4edIhVCk9APxEgBEUERbWXS3ICyFFURS6ZNTQpeQHXyITQGkaExhdtUhp00y5GZUhIGVJLvEweoCNez4hpMtAOs+ay6p5EsksoOkpRUEXA0jMxJhoQoBFALW2ThEXWSh7rF6o8npXkhMtdkcO0maUqtxGb+PJZVucYZdnguWCMzWmeUnSBk94eKs06oQhYyGU5nxlw16U8GeGSRn08dQpfneFp93rWkSdOXKRQdOhS1AV8myUxhmtWu2RTQ+AojFBIQGnJiHG5A4vn+lxgmkZ5O5NrEPgvkNocz8kJUusygUfJybKEwkrLZHKckeo0U+mdyLRGqPII22cbDUoWymqNCQLOmj6eAWUFrvARGELVJKMkduRFbhgIUJYhsYdIa9AWYzQnVMp2p0QjVURYZNoBlcMCFelxLx61tIm2CisMLU+xlPQYdk/T1FfgdHIIGbLkphRR2H6GjjVkbR9kQNf2caUhrxSCLq50CLHkKm28dsJkUmJOSdbLFiN2nkvRdlYcn6oj0apGJzTo2KPshDSDJuVwDhu5aEciUNQ1nLI7SdVBCtGArhszKQ9xQQ4hVYhrJK716JkOVkh6OsFRPrHuY62lKPfSi69FSc2M36fUaTFkJIYcnTRH0clweX70OTxWZHu9QzVxkUIS5DROVMTrWvIqxORGWWcsx2xEC8t8OcN1S30cHIxNqboHKdsqAznO3uGADY2EfCxomQRX+WxZi8mkLhnlYlSXmUKTWzou0n2RNTXBrq5gxObRaLo2xcGjNDLBYifhCuughaItYuaKOa7qpDw6nPDytQQXyWLOY2NiyLV6NBiATQmyIclak0DlKBKAEDjCZ0wNWJ9qMv0S00giG1OLtzDheAhxBgukNkJKibQpGZUhI0MK6gztYIyekgihLy+uOAXWS4G0KUJYsJZYRbQGXYZtmUR0MUbgG8sIXUzgQHdASQiyNiSOGwgZgwxAucTpgNDvsSE3SteR+CrDhLaUU4E0hvFegpc4XAg1BAWCqIeOOli/jSNggEDrLBtEnk7S4CbboyALdBH4wiGQPnnnRe6QKQtphYEUuFYT2T4xMbEQRLh0oxLaZjDKIKzBUz1G0jpZGzE3PMZUmGHnfEwRKErJkuyyRxY4hofWIY528LVFWodqxcF2mphOnZos4SsPohisIdBFtquAI0aSyDVKOktWuIQiIKvyGAxFp4IUNTLucQYCxuxGerbHuUyXjEkomgxCXcBNhoilS93L0hMguik5a7HiIsuF71ys+ieroP3/vpKrA4KD/4nfLRS4buUmlpqLlNd2Ip2UpPMsIBipvhU18TKS3jcpDCzXjd5B5vOfIOwsUnnrdUwkj9IdGuWjG2/jOXE7V4U+93+bBA2g4o9grGWqdZpta1txrIewCtk4xq0/8kPMn2wQabiw1qev4Yg7xpvOPYE9dIBOvUBhTxbZX8ZJUiZHGny8fw1dY1lJ0n+QYMh32yr5/qV9fOT0H1Pyynzw1v9EoC9XbeZPrXH+wAojm3PsvH3speuXW32+fmqZ00sdPvbNF9n6+EFGsnsIN96LsfAF32GjcHmKBJVYxmPY3YUfrkGlb/GERyPtM0DDag91qEayb5rJXpaS7nJa7GShv55ea5Liz0W4Cx38p9vEhw7SeVmPHTt/G2UCiuFOsvlbed7tszZc41I5YPvcJbK9FIzHxR0tssGjaB1RvO9tBGctYleJ1u1FHrr0JCfsLAOZUtZ53vRjP87auUs4QrJnkOPW3hVcm6xnKyW2tvK42SavfONbufGW25mc7JDJfIkoTllrjvDF+g10OoY7nAv82dQuitU9jIwXOX/GcFM94BWv3UI1l+fQwhyfmvkjnlt9jG4cUz15A8P2Zj70g+/kazfewYmRnRyvbyYtO4zPHODWmScoP/lFLj7/JGcTS7Y8ihsP8HN53CDk6vvezG1vu5/jX/8yQduyfSYkPjbNQ81HuXn7K2DyDtJMFf/cVxGDNWRvlUy5TfNgjcFXH8S5825U6W+/X99tsfvdxnfb8/2HVND27dvHY489xsc//nGuueYa3vOe9/CWt7zlpf53vOMdfOQjH+Enf/IneeCBB8hkMmzcuPFv3WPvoydp4lGiSzUN2GwFZTWLMTUiM0aKQzfpkVU+AywjqktWNoiYoKjWiL2LNIIqO6OLKJUnTkcpDHKEso6xy3THenhK4pkGS06ZkunxVGmYbf2AFyo+Hd9F+pK7+g+Tk11EPE5ozjPspaTpBnwnxGDIq0UC2SQxRXpmiKbKUg9yrItXOG8k6DyZ1HBUumw2Aim6DLmnUNJB22EqKEIBgZqjqqfZO3w7m+L9YAWhrOIBQ/oCBVnnudGNlKIEbSL60pK3ITOlLMOpZiUbcbRSwWCoNBrMeoqSXGJyMEpJVi7/SSZFCoGhTFOUmQ0yjMcOK6OzPD80wc7VBqEIyftrjPpnqcYDXFkikBk0HZTosHfiRrYkc2TjENQI1nUoCENsL1f7axmfFdFhNM1R9vL48jzSOmgyCAml4AQLpQoXc+MYv8DuThNhEmp6HdMyZJt0yAAi6ZL1PAa5BXxjCJONaGPwRUBWtXGlQMgaSqQ8Ud1CK8xQTBQqaiBsSqAu4aOZ8oaZcFcxXdBxHy9ehycccpkppNTMZ3ZRGqREqSCLJS8NGRxyVmBI8KWDxYLWLAwNcy7nU+xHFPUSpwrrqTkZdndTmsWQSiTY3OtQVPM0bYUXJioU++coMM+oWsSTl8joJo5UtDp7kIMcUoBrDdvVJXoqx3RmiFgmBKlg68Ahlwvxu4rECubcDmOqSUas4cosLwQhK2aIu9JnEfISvhJ4zjAlrYnSCnlZImsiUlKMMdSdIrtEgbxwEMLBmpRQzyMYp6vnGLWneI04i0lG6SuXLe4RJJbUlkhIqfQiPGVIkxitfB7NuQht2RQJpJAs0SAwmvPSI7aGzWnESOKhEbjCUHH3kditaFYYtVMIs5GMcpgTGmEt691FdAxaeLj6Ikt+lkqnyLwcEFvJuDNEkq1SFIIhY0mlgqzHlb2YxHQxrsugMEFkBmRWLjJXKrB7MMdAFrmkx3hl+hQ5UyAUFZTyyEiHftJHWJDax0HS8iMOVjJsaSUMJk5jkhG8BMbwcZRmgIs1Lp52sQIipdDSYzrnMWZehEFAzRviym6P6awml0I5FhTl07j49JFcyAQMpyEF08MowQ6RQYmYwF9gOXQw0Sh97TCS6L8Rg4e1TEq100IzRxpuQvdcQqeEdSX9tE3VCBZKPnn9DF09RFeHtFzBlZ3e5R0F4Xl80cD2tzBLjrwwZGRIZHpkxCLgE0l7+cyrTQlUh0ami0pjPFNipbhEVnaoiz41x+PqzDJ7jGUoCriU6bM+f458PEvVXGA1Hsd3W2xqO+wf89kZn2bc7TDQG1lvNSZQrAQedXIUOxn62uLTphxbzg/tYMzzGe+kaOmSETWyMseMcNilD6GFiyRmQQQ07CR3OhkUcDFI8Pwey85G1ncCDo0VGLHLOIlhJakQ6hXGbEzDKXHAk1SjHhkDPfcEnmrSyws23v7qbzunfVcffjo7vIN17U0IBKtEIGB8+zD8zapocWwbe88vkVrJrZufZOGFlHLjNDIXsqPxh1ivyKlb72FNDKGBfzX87ZMzgN2lq3jz5rcw4o3y/ObnmfJOMch22XLba5jYNcRr3r2bO0eLnHFSXtZSJEJzdNtO4moV9+bbWRz8AP1sjvUXu1T6S/zbsSJ9a/lSvUU/Tf8Jntg/P/OdeX7zwK/gCJc/vOVDhPpyYprGhuc/fx5r4ZY3X/az23uhxsf2zvCvPnOUTx+Yo/+n/5n7H/ksm+UIFzM+a44hzhd5k8wyKwzzxvBhP+YXszFvK0W8VjT5+WHD2ZePwR15ni4e5GTax3ZjZAqWITJZwyZzHZPXHUcrSXfuX+O992dQd9yCOX+e3M+epPvVb6JUnlzuZWwo3ckt8Zv56pOv4z8Gv8YHbn49Jzfn0bbP7S+sMbncYGvjs4w+cT+R0+Kb5jAPP/xlCoUhfD8gm8+xalucO3cae+fddG+7l+v/15+gOVLGVSGFZIiKP8H17VtZ+ciTnHj6F1it/Sq5/DLXXnuJDbe+jlhneOWudTzRLHFyNeXh/WcZuSLPrb7HB5ZP8/JP/xz/y+e/zrfqf0mLGcb9rdy76f2cuvfHeOCeV7G1Weem6Sk+tGOYd42scv9DH+buQ98gFzWZK04yE6xHdJpcmptmJUkpvfu9XPXqNzB98Dm8TI6b3/J2Jq+6nupV12AtbHi8yZ/8zjvZ++AnaG95A2tv/DyNN3wG/9Tn0GtT+G9+K6Qp/S989juFxvf4Hv8gnn32WV7xilcAsHXrVprNJu12+6X+z3/+81SrVQCGhoao1+t/5x6pcXCkA8pydMhn1W/j0iKQbfL6ArEZEOgMWMEmq8gREKcuiUnB9clRZCxeIbKaUJwiEzfwjUIBgfBw+xXUwEUIRUY/yRJZCh3YN6JJzSXuWoh41XwfIQ2O7FFwShR1mbyTxUq4KFYIrcb7myqRReLoAUIpGmFAO3+e4aLkFgYEThNX+rjSxREhCgfFIspYikJgZI++6qOEw5UNi4qG6ApJiy7TQQ+PJVxVJxWChufgCY0junjCoREEtOmwpfssmeSyTY0nXaphQFkrlmQdjEX8TSVOS02CRCQSI6DtSs47V5NJBDqTI7UWP5xnOruReqF72UhYaPKyhyMb1HKjtFyBRDGT9Tg2PKCWP4LnnifVkqm8w3wuYCnrMBUkKO84wruIrxUZFRIiubK/QECAxLLoWtoqR31Y8mPuPJVMjp6I0EJQES0yYpoVP0GZlGa0QGJjjg/XWA06SGOwApR02dZ/mspglY4rWCgWEdIFDHc4EQNXIwoLjLhd+jLLqvDouV3qfpezSY+O16KHYEpItuqDbLRL1FKJliFLOkFLj5zMkkhLogSh9BkeWISQaD9LVsJEcoR20KGkl6g6HQ6sG0NJhwulHQTxFWihQUoUhtQkLJVnWMw1mSlm2KRDsmKNvOngWhA49O2ANjVMEl1WLRWC4djhaE4h1RIDpcgocKRACsUmRzPml4mCDmdyeda58wzWHeJcMeAv9kyyd8MoV6VdKtIllQJrUhw/ixUevj7MbgZ4ThdHDDgxVuTkmENPQJx0iK0hkD7C8Vlx+iy6HXzxIp5pExqLlSnWgaEgZLlao5e7LDwXyCyhCDg2XOTs8DJGSHw5i+ss8mJpmIVcFoxlU26ePfnH0P4LSHc/IYeAFIFAS8GI08OTMGqP4aYpHj6+ctFYGvqymLMnPMqqgkKBcvCzVe652MBDsUGl7OiuUIgixp0vUnYu8Gw1z4G8z+mREr70wTvEqlggJ/Zi0zYd02EqnyEejqmPFBg4iumNh8hkT+EJF6MkSEEgXbS1aAsZZ5GG46DtgLiwgsByuuCw4gi0FfjuIQJ/iV4Yktceh9wCNVVgzXOJTIqwl9+rlWyGhaxGCIGvfVwdsMHsZ+BdpJPLcyyf4fhwgamCg5NKKipH0Rq67uVEN2+XCcwqDUeiXUU72yN0EtwkB/ToW0sgPJSCs6MjpPlVQqeGFuDKHhFFLCm4M1h/GSkkwl/FBGv07SiBFAyrAU6YgOtiHI0VihnnOubVTmSmQ15cIusmaByWvCwdo9CxxifFsZI1x1J3fYrqLNJvUGWKcdklVBlc5aKkRqIp6Bm0mmG3sSTmDoRYwpErDKVtNpIQ0qOfdjhRzHIiHGfWL9IMXBxhEYCQeQqmg6aJUsuU3bNYDa5yAUs5zeLiIeR33sT4XZ2gfXLjdWxpbMWnyRVXbUdaxZYbRyiNTYCULJw+wb6ZMTJOlzBoUtnwTcSgx+hNl8uY7Wt/GiE8zjmvZIvvcXM2+O+OOd+dJ3RCOrbDqFyHlTHHj7WZuXAMP+vw/T+6g90jWbyJkO/vOryw9SbE7CzNQZ/+sy8w//JfwgLb9z7GfYWQawKPnrU82uy+5Df1LxVrLe8//FvEJuZ/v/H3GPLLL/WtLXWIeikbrx1C+pIHjy3wS188wZeOLlAdGP54Ieb7J+5ksrAOJx2wMb+RyvZRyq/ZQPbdV/Hkj2zgj2/NM7Utx4fuv5G3XT/BrTuGCXIu7370FD99sMnyZJU73R9nyH0758JHaLl9vP4mOvkIu3oDu0OXypEVMsm9lN7/QTK/+CvQbrP0G79Bcu4sAPs/91fMfvJRfqN7C7+8bz1/7vwC79v8Kb5yx8cZhEUyfUuifKSYoeK/g/n54xhj2LBhA3fe+XIuWsHRsY08cfAF0nyGejnPo802hR+7gm+8eQNP3FDgUiDRODjX7cUZeY7uSsCg8x/Z1/h9rpgcY6JS4lMn++RcyY9vTkkt3PfhfXzY6XGlzHOViJCTf4gVA35u169wuvq/cWS1hd8ZUGo1WX/6KDftf5hv/MG/wxx4mqFXvAFv63ry/RYj/QVWdZEDw9dz8b638tn7foJ3Ty9wrrqBW976TgCK6yapbttFNiwwkh9DSEG2Cace/jKf+tX7efHMKvHQDqybxZ19kmrwFcjnGXzpC3T++pP/LLH3Pf7ls7KyQqlUeqldLpdZXl5+qZ3NXj7ru7S0xDPPPMNdd/3dLbdXpoYrU8O4PIdHBy1mkLaGEgpLlna+yOHhHLMZyVPjBaRM8ESLjj5Ox9lP3c2z7PjENg+4rJaapPknOFAG3GWKjRFKSUrfaASGJD/DhUoGS8psaJkPNJ/ZBsbp4VmIzRKu7YAp0XE054shxqZMFzq0vUu4uk9Vf4WKOcczI5oUWN+O8EkZkQlV66KEwIgeSnSQ1PHUacASZR5j2TuDtYZzTgPjrHBmuMLR4RwLhQKJDdBCMW6bDMUpZ4cXWc7PklWHiLwlovCrHChaZvMaqRTPrR9COpclpecrG0hIMaJPrC7yjbGAOLOf+dFzjKbHydPk5v6TDPeaqNhQ0G2wDuvj0xjHI8SDMEvX0fjSw00tA1uk7vgkSpAgOZspsqZCFJo7lxpcW09ZKXjM5UJ6TpuC2kfR/zKNwgUQHdZcwTX9F7gyfoZJ/RSl4DBSpSinhRjUyIoQT/pEytLWkp4LU9kWyzkPLRSnw+tYdMr0taXl1AjjJhuT4xTkYV4sapLcQVLRBQTaaKRUbIrO4agV8rJNPgOxUmRExG2Zb7JdPUgaCpY8iTQp89k+J4oeWvSYr6zw4IYcq2aRgamBuuyBdilUxCQkaUQkLL5IqCYN+nYUoduUnLOcySm29JcpO/MMFCRKkxJjSMlkT3OmEnO4OM/ARCihEE6dWEqms5pn1uWIRUSBEtZaDo7kaJs22+sNCkJQV2ABLWPO2ysZKqzDjXoUuETPBqSiwExQ5bSf5cr+YTL+aaKMz/ENqzy3znBo1GffuiKHfUs3OICxsCgrGKCV8SnyEA3Vw5F5jpVDktw+TpQc2kqhpcaRy+yxPSrdHksi5hNjDofzLiuFFWTe5zp/H73CIVbHDrDoK2RoH44AACAASURBVNp+nVSAok1gm6yEHqdzmkMFS6PgsYmTjKanGKdBRvfQRFggUH1i2Ud5A5ZC8JUPCBJpUMqn77sshvqy3IMUxCT4yqWdLfDYRJlYQpB2mSgd5UJm+LIUhF3mXJAw5yvWPE2sDLEC40ZoXLRwuTA2Qd1XCCl4saA5NBKgB31klBCoZXJ2ltDJY0h4aH0eIRQF0SNnuzg2pRYYqqzx8tbjFKIIqRzmshKZZhnrGlzpc40yVPyUI2WP5WKJgRZgU6y7xvbkOXoypZ8M6AJWhzw/spN2EHI+67LmuSxnM3TVgIiErM6wq/8ck/Y05WiandETSCu46CaUwkewNkVYhcbgSIfjZR+joOk5tBwHLTxG9RJ5eYj5Sh1lO7i2icuAbu5Zpr0KTVllD8uEqcDRllgIJAEqo1j1JWPxi2Rtm56r6LiKSGi0UMxns/Qzl3CsQhoPhKIQw1XxQYQU+N0Kvhll0fNxZYhOJAiJQaPRgENZQJzZT0auoESHcemxxUZkxQv40seTEVl1gXZuhUxiUEJjBDi0GNMDMmJAJAR++ARXOufxxBKT3ifp2h5p6qKXr/iOc9o/2Rm0fwyeXX6Rm83NRKLHrY27mJLLjG7O066vgjGc3fstzmx4J18PX8Frtj5C+coHsL6iOHKRqHoj84UaH6577BNV3juc+7aCFP8t15avY7G3gLGGHVdewcX9M/SyHR762P/Ju973cQB++u7N/OZDJ/mpG0b4veM7+eEgJP/E46RKkeXXaGc0uU7C6adv5fdufoofPrfC78wvkdeSO/6FeaNZa0ktaCn49wffw4m1Y+wq7mZrYftL18SDlJPfWkAoeMiL+bkPPk1qYdhRXN9O+Depj1Aam7ZwR69B7srhvvbKl8ye/2ypxkdXG+wZztCylsha7tlW4ZrxAlsqGT74+BSfPTDNnx/N8ef8OTmnyZCuc7Fnec+uhHvjUcqn10h9zVJqST9xmvSVkwQ/+Gb07j2Yr32ZtZ/9aQaVMqPZ3QxveT1CCaJ4P+/o7eHP5TC/4W3g8Xu/zG89+weEy18klyQMHMmeq7/IhvL7eGBF4pw9w03rN1AbJPzJlpdTvbjAZC7LSpJytDvgQNpn5/YiX5yM+cm1nyXj1rGnXk3l3L18cXCaz2Va/Knj8JorRtk5kuGRk3Di/ICd2Zh7MlNMlR7j826XWCSkgw10vB/k/Ucn+T7nIa5+6DgP3nQPk3PHmJybolYYZvWGl1NdmqG5/zlO3vFmTt0V4jh9JnvnOHNqksUTcPV4nszGLDsLBX7z0grZzhL/bv1mKhu2vPT9dddqfOWbf8rCc/uQJuHZv/4oxhj23PJr5B77N3gLexl9y+tZ/Oh+en/xMYI3/hDS+QfYbHyP7/H38P9e4LLW/p3f9NXVVd71rnfxnve8528lc/8PQTDH4eIubu14KNUDFRLbHovBEL14wJmsy+GsZocboq1ByZjADnClRqQZ1kVrtIIOZeckCSW2t5tYXWNIN/HFGoPK4zj9hMPeOlwCquIcObudra1xpgobmckIUtnGKEFTZYhL85QHa5woFkhbLpHsE5FSd0ISNKPqRRadEbpOjY409L0U4/Wopi5xGrNdRZwdOUml12AxyVNIZkiCApFxyIs2q+6Ao7KC43WoDo6zOYrouy9nd++baO3ScnI8XyryhuYRGk4HP5Us+dtY8VM62uAZQ6E1jydKbIoOsqCuoC4EibAEMkPqLuHbBp7sUwtcvl6+lZsaz7Ah/gRzLuieYsYdYynvsTU9Rk1sxE8Nvu/w5JCmEo1yfb1OohXSWWK65GJSjasiemmfVqIpmVUahYP0k9sp90Pms4KuCMgYl5a7RkY8TzNjmQt3IWwXaRuc4wpcUacYL5FIS+jEyHiVvqnT0aOkZAlTl4E3i1ARxmymap+iYDTnwjWEXmQtcxVRV5LVszjBGAserASWhheweVCnkHRZdMfQqeRsYQWbbVDVikpkyKs+kTK8rmt5rWmyzp3mK5ltJF2JK5YYTueYsSMk2VVGxBx102dELHOq4KESRS0MWCzP4ZsWMvFYzGeQjkOVk8wnkwwns0i1TOR1WLFVtg8iWirFq4+D20fSJVY5Bk4dx3YR3QY3qPN8y7uGcWc9ynNIXUHbEXhaMZ/NMxIvs+qv0BcFNtLAlp6g1RuhrFfoSJ9Ff4jVUp9c0qbYOsFsoBiKFdIrUg/OMdxaoOmWGIuOk3fmqcfDFIHKoAtKk0+zBFYT6wW6eoRdrVVyynL1apNzfgesTyJcTg4Nca99CDXYyIX8OhYys/xA/3FqusylfB6lU9aCFI995NsRSsQ4ahktOlSjEgO5B1e1EAxIZEIkBYFuYqN1xFYx3uoTqlO4NibSU5wojDEqUja0+3gmJckIJqJDHC1sZ0v/IA5X4aBpaUFfxNTLK5j4IqLXJ2OHqeFytBhS7MRskc+wt/JabliMeXidx52NDuvlSZp6M6uhYcYJ8H1JqBpoJpgaStmwFnDWlskIhZQeJVPHOoa5oMuokcgkQbuSRGgW5Gaq6Xky8jzNYDcmchlOZ3DdJR7LvZPcoEstuESSrXOseAfZvuCcM7j8e2CaCKfJhfIC25fGMVIzFE0zohTCaqwFpOSa5hEu5JYxuOxZ28H6ZIpY1JlyUqq2zXRBcPf8aSpBnfNDBTAg5BpZ02PJ09Q9yYJzhsWoSwWXQK+RYLiY7bOxXyefLDCVq5BaqOkhSrrBNgxbxBny7gzTy1fiRZAxIS1PUbVrFMwiQ2mZXFJjpdjhmlqffv4ES94Ia4WYfCowKkQhkCbheMmnSJPGIEdfLxPrASbSCGHIqi6GkGdGxqg2XGSgyFooRw7789dT7jhcwqGUabJDnmaQaMJEsFR6ntOla8jVElR4AVdspO5EiCTPghxFJHN4ZDGOx0UFIpA4ztnvOKd911bQBskAb9UDDLdEM5x/fol1Oy+rLyb9HgjBU0PfRwNJbXYbnrMH6/Zw3iiwCPo73sJy/1ke4TU4WN44VPjOA/4Noc7wfZM/wGgwxofX/phQBxinj9/byMLqDLGJuX6ywHjBp1P22JD1+NzVb0CkKYPvezNudoIXb70bK2DPiRqjyuHhHespKsXDa61/xCf2j0utG7H3Qg2ATx+c53UfeY67/+hpbv7Ak9z6+09y8wce47HZvQgkv3HNb/G73zjDWjcmTg1f/5MTfOrcMsV7qnxzaoWMq8hqwQdzRX7F+pD0sXGT6NgDiJtivDfd+FJy9o1Gm99fquML+OON6/j81kkySjIUumypZMAk/OK2GkeKv8A3ht/N7vxxWnGGBbvCtuEsfzSd8H94Ef1XTeJUQ6qpJYoN6ck61licbdsp/dIv048j3PMXCGJDamLszZIb3/V23nHjTbxnfJhWkvJAy/De9G4+Y19LikYbyxXzNXY+8lPY3oP8wfhOHtx4BU9WJhAIFoXicKfPI40Of7GyxqFOjy/WFrim9yFCr87R9Eb+aOY1fFSGPBBOcGccEXRX+PyReT59+BKDlMuy3vFpTo/sZclfpRJVuXnlTmT2V4knr2VoLOaRodt55Oprufn5r7JleoqGU+RseCVHV0Y5OXw3Z7yruTEqc/8gy80LHbb7M5Sv6nHxpjJPuAnXSYeKuryh6uFGizdPzfLl+n+N1bA4xJt+8Je58MZ1fOWeVWpBn+c+/TEe+NqLPJV/O9ZCsfcwxZ94JbTbJIcOYHu9f4Yo/R7/khkdHWVlZeWl9tLSEpVK5aV2u93m/vvv5+d//ue5/fa/30B9XO5l1MyzECoW3QpCzzPQXZTpkbUdutJiYofRToLFMD8+S0d4RNLQVjGHypohc5Y1OUok1thfznMyXM8VvTPkRAOvtQ0nsng2JQU2i1Pcw5d4snqRJXGEYpSysdkhokhsA+aUZi1jiXVEWw/AWprZIWbCHN2hMxwtD1gJUnoattUOY/1LBMEs+0Z8BrrBFzaVqAcpyznFJU+zLDV7Cz57h0Bm5mmYLAvRODl7nsRK6mqYjnORLPO0pOJ8YMj357kUZglsTNEs8mJ+hPOZYVaDUXIiZk/0DLsHj9OKLOvTI7QdGJg+U8LjZD4loc3pnMeWRodNgzNsTE6j7Bq1Xp5M2ibIHWdV96k5IQtqE3mzQiF+gSBewLF1amEHnfYxdPHkDI9VfTL9Vdab85TlAp1wngOlDBccxQUlMAamtUscztIylrg9jD9IGE9O4JpZcvYSq/k6B0eqrDMzxBxgWpzCUmNgLa5YZjhpMdztIgRoumTE00y7E8wUOiTCsJSWWCs20e4qDil5scCAc8zpHKk/j9FHwMwyOThLMV1iu36aK/r7qETzNBxLaJtIb4U/mww4kqkTyouM9Vpo00OrOiPpDDvSw9Q8i7IJlUGNSXuAkZ4hm9YYS55m0R+QNfO0uUTOHMIzK/QlGBIuaM3Augy8Ffq+5VK2xrxeJqtf4Fr1Nfpul8dHHZLMEtJ2yacLaLFCniU8WgjxJCfzbU4XPRIpaaDpK8HZzBhtbVnNpeRdRZqkIBXWWkrxGjvkFKV0joq5xOb4PH034PCQx/rZdXwzfwOnwu009ClqqoYgRcg1VLDEctjAUyeo2LO0/UWWw3Nk1BGOlAO+uj7PbGhR7irn8wmOWSEn51lvzxMOEgqxQVloSZ9BfwgTKzK2TiGKKNkzoGssRJvoW8uG/hmcpIVwp+hl6ggd03UEmkUcsUrT87hQKNFSWVArNB3YsnaRiWiBY6OXcOVxTLRIyjKpbOEEJzg8FtP2OpTtAdq+YSSKyMgFUgkFe56VTIez7hZOVFz2tM9x9docE9FhfNHGS1MWsiHLwSLj7SPs7j7BUL1FLR5jfW4ft3W+xnbzKFHuOJE7zZK6wII8wnz5Wd66/CD3dL9CkvaYKwVcqY5x3eDztFSfBEHJLrIcxGg6dFWffHKGlpxjv/BppzAZnSVR03Q6ZSIDkYWR/gJD/QsYJdAKIlxi2aJsz7Guf4Hrak06CLywwy73GZYzlxCqziV/iERZhO3gyTZRpk0zUAxUn3Z2QKoX2K0PUEqbtB2FFV0mzVHc4DAHhjK8mPexJmafGOOA3MS0zDIdrkPLFtvt1ynIo/i08boBKs4h6JHrzUHUIxEuvqiRD6ZIFKAs7dwyQl9EqgUq+ikK/gNIschwcpilQFKxp1BqBc+doiimKXa/jPAPYOU8a+4ppOhg0zqHh31mgipns0WeGS5AGqNpM128yDO5MmfTYRzjUolbTOUcTuV82lbTky7KPQOixZB+CjeK8JM+I+IgK76iNpSSls7jy3PfcU77rhUJefLSt+gdbeNZh02tAsvxJrbdMoob9HjxsYcY3X49U2YTy8ryg+MRt9/0y6zOfJTt9UU8o6jf9vM8UX+GR8WreVOpwN35/+9S91vy23hu6RmW+0tMRltRERg3z2fmPshSpsN1lRvYMZLhtx85zVtvmuAvVzxeP/0U6bnT9G94DfnxKkvJC4wsNbHz34JdP8anag32dwcoAddn/vtbLf9b/rmEAM6vdvn4vhmyruaF2TX+av8cXzq6wJPnajR6MeWMww9fN05iLGv5jyHdGlH9JjZ6t6Gl4PGpVR49tcTnLtaYcw0L0rDcHPDr5SK/TkixEUMSw8SA3mN/gPOKmwnf8taXxn+82eHXLi4hLOz0XdZ7Lhu9/6qKIwYNSn9xE+GxjzPQA45eF3BlYZrpQY+l1h5S43D/rZuZrfeZEYYN28rMzbQYSQy2GTHXmkGdaPGFj76XzOit5FfnYfEEvcVnSb/5IO4116JGqyzECYUzx+jX6my4dJIHd7yKv6q+mlvaR6n01uj4Lq+Y38/mwgWc6qsZihOqs2e5rdfg1Y7kJyeqvHNshLe5T/G65E+pRgd5ofZ23nL9+9AFn788XyMRUJQuPySylKJpTqkCCRadX2Rxw6fZPbadpg1YluepV+5hbWgSjeEH5h/hVX/9OaqL58mFIcpzueLlr8e26zjFYU70s0wPXI5eanJ2pcvckmBptsC7yx/gTvkYK86N/Oce/Ol8jTuyAf92coSBhd9bXMVYy7WhjxICIQT3rnsFh2sHeXJ0igsjbSbOGC6eW+SU2c0Of5pi8jz12WHiZx5Hr5wgLHVwkwZRZLBOBv4e0+/v8Q/jfyaREMdx+OQnP8kb3vAGTpw4wQsvvMDb3va2l/rf9773cd999/HqV3/7Q9lTzz6A4w0IG73/wt57Rtt63GWev6p60857n31yuOdm6UpXOVjBtizkCAKbjGfA3YBxYzexzcAM3U1opmlgNTOMiQ1NMmHZJFkMtmVbDpJlBStfXV3dnE7eZ+fw5qqaD5d2L6YxYbWHWTR+1tprve+HXVWrqvb+11P/8NB29jNjTlFjnYwSJRMgxSZn1EEODjfwK69QkJfYMSE9x8dTHV6aWsY3ERofI3MGnkNJ50xshmdTui443llOsQw2Y1HsslVoUMnAFZaOWeE68SGmzRpdWSAPxtTMhJEskTtjxnlOWCqxlL3EHK/QUgvM55dIhGTNaTDxatzRjni05uPlIAttFtM1luMdqmYL3xsxEB5jVtkrHyMykgyPqH6B2XyDzXSaBfkSzazLdkkyEWUaaYfImccwoh4P8eSY5+p7uWX0OIEOiVSBhg2ZiADhp0xszsifJem7ZK6kaXcZJUtM+58isX1m0h7VVHFJTZHYEq4bclV+EqtymnqTR8r3MxOfo1I8Tl8VKCUjHipn3Bd+Ek8aarrHDfHTLOgz7IpradctJc7jhhVs0iAtCvYlz7GU7bIjZuipEp4cEvtjeiJnzgj2R5e4JOZo5mMSlbJWqHEoHNOxZdqNAaMgI5GKT1duR5iYQ1HKx4qvwgR9fL2FsgmreRulBQmKVCR0hKIn6+xhnYIRDAsCJ09JcdgyAQUVYTxN24Ni0mEz208xi6nmL7Ng+jzjHSKwIYF3Ck/GRNKnpwUlMSD26izLF9nyGgS5xrEt5u0pQmdCS1Q5GnfoBAVOl1bxbZ+5KGM173HSrdJ251DSUuo2GZsiQbDDwHfZ5TAHOYXVI3Y4QN27hKMsN4zW0O4TbMgKT9WbHO6ewyjDXtOnb3Mq+spFReqPkZUtqmab1JSpm00SJ8aohEIkqaodtt0mO07APvsR5u05HJNwoHuehriM9jS9QJPkGVUvxmGXeXMZ5SS8UtyH62jG/ojH6kdwsw6OM2BanifGYzU9S6Y0Ez9n5MP10XPcMThOL5lHyR5elCDyHZqijWsMXeuw6zj0ywXafsBF9zqq2TbNKEKKiEDDtrOXx+vX8EptnlfKRWYm5wmV5VJxkc8vTLMb1BkWYqLieWbsMTIvojEpcF5dzZQ6yaHkGD1VpVuIuTp6mXo2oe8Lzsk9uCNL1e+TKcO5wjKvGT9G21dEE4WQQ4ybIHOJ74xIfcsUO0SeZiqcsJJcpG/KKNVmUzVpiAkV9yJt1SBIByS6TZIWabgjSrLHi9W9zMXrbOkiLzUazHORhJShMAyVZthw0OWc2WwLkVcpxSMCtU3d7UPapuVakH3WGutc9Fss6HWscChocESPUbHLjrvOmVKZxCswZ86SKs3JwgJ789PoIKOaJFSzEZPCCGWhY33anuaIfoauV2E5fpF5tUnfh5OVRRq6hXYtk7CAZzIir8wt6ePMZ+skSlLWHXZNlVT55KOjdJvH0Xab+cku12RPYFVOLyhhjAvukBnOkhmopgPGXpF2UOB4ZQ9j3zLyM8p6SMPskGHIhEu/OE9N9nDcDmNj6QcdJjSInAp3T/6IGXWGTLtIFeIkVRLRIQ4KZJnCpYtqnOekuI8DyTNMTcbUxA5Tdou+cpnXA87Yq8jxmfK2UWLARlnRNC22ohmO3v01X9Qe/aMlaP/xyZ9mqb2IW3EwuzeS2QJ3fNMB1o59nvXjz6G9e3nUh/2izRv3NWhevEzzTz/CdCOhVy8wuuo+fnp4NR2m+bXVRQp/gyDy/xsFp4CnPC4Oz/GM8xS3dO4i9SZkss1n7NPcv+etLNWq9KKMJy92aYcZ+yY7HGhdRHzsz4nv+h661T9nftIkaJ0kWX0j+xtLPDSc8Ow44uunqhT/HuLV/5CHsF6Y8ptPXObffOQkv//0Ose2Rjx4fJuNfkQ5cIkzzWIt4KrZMquNEqMkZ+y8wCD4CEJI1O638/CpAcc3B6y1JhxvTWgYQSSgl+SsGHjPWCFTg14ISJ5+H+kTD6IOHabyw//6CyFLx8OYd1/axhXw/fNN3jk7xVWB/wW5Amty5Ke+g1LrNJOC4slbpzl//i7Kpe/Gb4V81etn+PSl8zx5zvJ1N8wwycf86jM7PO6s43UD5l2HZksh2jEr/lVssM3SoW8gHb9MNtwl2H+Y8I//kDOHK9jZwzx97hJXX3gJISRnp+e5/tJF/vzu93KdHXFg+2XCks9162fZV8+579qvJ3vlRVZdRSUO2Xj5KW6/5hBS79LrPUhe+Fe8/9j1/NJnz3N2Z8ir99b40Vc+zdtKB1nOQ+5xF7hxdJzzBy6TVX+X0JvhnF0kT15mPPUDNKZu5vpzx7nv6U8y8+xLpFKgLKzecCtpmnLft7+H2+64ndffdJBvvW2Fb7ttmdtXGyxWA3Jt2BkLHr70Kg6ULrIneYEXn96HCHNe0Dl/moZMO4qmUpxMUn5xp0dqLLeUAhypeP3iG2lHOywWCny49grX7RaJhhnHezPc0NjCkwmjsyB1n8b0ZZxTH6Lw9C9QfPoX8M78Od6FT+Bd/jSmNI/xawQn/oB85uiVzfdPTIriS4F/SgRtYWGBs2fP8r73vY9HH32UH//xH+fRRx9lfX2dxcVF3vve99Lr9XjggQd44IEHyLKMo0eP/pU2Lj7xmyxkz7EmZniuUeNAlDBrzuHZHiMOMRE9OmIaVw6Zc06SuzF+MqItZpjSXWpRH3JLKd3BVzFlG4GMGRpJLFxagaAuOpwVCxTcLgc5TSotJZ1RzCImiaSu14knTbrCx3gwp7fIYo9Ns8rIj7nevkBZXKLibuFlBjczrLtl+nGVrwr/hLLaocscNpqlLzzG5QQpIiZZRGDa7LgztL1pruZxMq1I8Sh656nELsRFJpUWia4QyyIX/VW2nUU82cHamIHjEWbzzOo1bgg/T24F2vVJXMGGU2c6O0cjaZO6CcHAR5bOIP1tCumYOLjMlhvgmwplO6EvcsYiIPBHzOg2VTOgZNqs5s+TuikHsxO03Bqz0QVm0y7LzganivsJrcuS3mLNTNNCMa5FNLMddvR+qjrEdVNms+cpypSqDbmo92NVhGsm1HSfWXeXrYIkEmWa2ZCy7ZFJhZEJoZScmC9wMDqFkBO23T2ofEzqpsyPj3GTfRJfDsmygAW7jSPHoIskIkdFKTGKzdJ+5iaakZtT0CE9GXPOW2WaHiljdswKddsnyqtEySLWgGtSWl4TrfuU8zZKDanIDqnt4ZEzzzZdLXFlh/NBhYJ8hSSrUUpHRNJl05kmcFpEruKq3iV2Mo9JsIuZBEysz6p4gXVTYmI9KHXoyDqj+AhVuwW2z0XXYdObJhOG63sXQG1yITvC85UhX937HFNBH5+cTUejcYhUiYPZc2TWYeIUca1lmCYoEkoiw41cAq9D222yZ3ycKGyggj5zyRbpaBXhdxgFDou6z9i6ZL6i5dSQuoebC3xj0YUBNX2ZNXcPzUGLoraMixUKucWVMQEtjtX2MdW9yFX5RQITMVAR3qjMinqZYalK2J9jXU6TKY0rEhwvo+9WWElOc/vgIUp2m4FbJnYsG26TgWepmBZHo6cY5AqpIpTMyX2JFhkl20fJHspk7LizHBxfpKP3sqyep8gu14fP4bpd6tkOQ1kmkjUuUsc1E2bdPlo4OHrE1dE5sCG9fIay2KLtHWHNrWH9jOVxFxkWwO8zFY0ZZAUCkxLbEpGpkpgIyhnxqEQ/rbCgt1iXTVIlaGZdgnyMjEPa1Gn789yWPEPH+mxIj7KJsIHGOoZyHnN+VGZJ7FB217CBw2ZWJNIBZe8Sy84plI4p5yGpbdAKCng2Jvc3uTa5gHLhvLiVQ+kxUiUgGbInucTFxhSz0QhkRM32kG5KHFkGIqGqNFZErCZnSYoxOnHYlQssdRMKImaQFijZjKrYZdoOiKWPZzpU6RIjGQQObV1EcB4ru0g3QVhJaIqYICO1LtvpNLNxj2qS0M4OMO2eZUbvMpJVjsTPsunPslZsspy2GOSGcj6hoFsgtynmMW0RMCfP05LTzNh1qmKTASVmw3UyLDPZGV4oHuLV6cM42lJwt+mUDHkaURjFzGYt9uvzhG6Anw+xmWJTLlEwEUveKcBSsBvUbMowqHDk9q//ojbtH2UOmjY5lY0rHq+33vd2nj3/PA25RbH1JMlkAgg+KRtso7nVWePiI09xwBTZu38MCE4ecJC772dg38Fhp0/DVX/vMbxu6l4+7nyYNblGknShCPuGd/Gdp64iPPEivetLvOeGI7RfGBHJMps3fAf54u0Mt5/mmQ9/nqPXvodjRz7Kdc9cZurPvobXvOEXubt8M58dT/ixtRa/tHfh75QT9w+BfpTxydO7fPC5TS50Q1wpKPmKpXrAW47Mct/hafY3SwghGCc54yRnvhrwyNk2nmP530/+NsoUeNP82/mh+9/A3b/wGF9zdJ6HTuwwH0Pbscw7im/KXF6Pi8by8Z3nmN28yJGLp8inZ2n8u59G/CVp3Uoz3n1pi8xa9nkeWFj2/mtOUx5tMvP+V6PylH7VY/PNP850dhut3UucOnWS1975FRzcfxW/ePb1JMMD/Pyn/2eQEXPNDhe29vKrpTG9geVwYYfb3FWKqsIt1dfx8cKnefCdLiVzkO/63Ys0TU7jx36Rn/oXa1y/rcmUy+cOXM/FuRU2Zhb51kqVPa//Pxgefhvlh7+XsFykNXgQdWbITVfP8NAjVa67+nYmhQ9y4qUP00rG/NYz38vleJpKIaOcTHjXYCI1CQAAIABJREFUZ3+fW3evaKCExUcp3/Yd6JLCm2vQKv4hVt6O0i+QIVgYv52Vfsj+nT9lpvMKk26CtoJKknHDba9h6VX3wup/qy9XcBW3rNS5ZaXOt922AkCcaU63bmF9833cv/djfHb9Toa7MSZwaN+5wOmCYMV1UAJ+dbfHw8MJ/znYYOX0H/MfLjzE5WKdz9cd/vCeFu8ZvYXeZ4/x6xdezc21i8xWM6Ity+YnUpb++ddgL30Gd+d51GQTFbUhj/DOfwykg5Uu1q/jXn4Eb/2zpPveRLLndWSr932hWuuX8WX8F/zQD/3QX3m/+uqrv/B8/Pjxv/X7IlRsudOkasRt3cfxbAspY4wYY/QOIisyJ7ap5CFe3MczE3ZthdxmSJszrTfoyVl2RY1JGrBbdTCizHx2kpH0yDLBWFfAsYTSYZLX0ZlgJmmR2ZSybjMSFVybsytq1OiQKtCZoJRu4suEKf88E6mJpaSnCtjxDMVQsKgGiILDbgDe+BxjW2KhK1nOT7BVq+MJl93kIL4VzITHOV9pEGfzZNksW5klEwlKSfrZFLORw9CZQ/ZcrtFrjGd7VJNd+rrM/rSDUjvUZZ9WukQhnzAftRj6Hn1bJhIF9sSbbIg97GRNRlmBpr/ObCio+FDVZ0kKI0y+zEzaYSHZxhcTIuHQEwHlLCSNDrLhuahE0LEeB805mukYV16grl8kUQ3aaQWcFrI3z3l7gFqYQmmHVecUru4TOzmZAplZ0lwSUcFTgoHrYkyPpewyVpVxdE5PFSknAYmKMMKnrEM0kjvHH8VGYzr5HIlZYhyXcQoDXJvTyqrM2ha+u4Wjp3FzRT1yaKQtFCcYRHMsiAgdLbEsdmjrI/jFTSqyj/VTHBFR031GeYXLTpmAYyR2L10zxfH8Go6Kl3BFm7ZZYdGco8CAE9FhBr5gCgUpTLRPms3iqAHDbJG92SXIAmQOE6dOIjx8fZlt6eGQIaVGZIZIBaxmp5nJOvSzWSK3xLw5y/TI4aycA52i44y3nE/J8gVCO0KoNiWd4JIQmQLxZJYgSJAiwZKQiwrGQjqcw9WWgh2gTAejR1ScjFAJCplkQzbQqsJiuo6PRVHC5OCrnGE6i0ubo/kZuqJEM99lv/MZGlkR31GsdDexKkN4DtvxEvW0xThN8GQKKCbGY050SLMp9o5PM1BL9EWJ3XyO1BEs5afoOrdw2+jzeCLFYUIz3EIol44dE6QBt3p/wYY7zwwddqlgMsE1wxcByHPLvBpxJt5HYZzSwqVoz1FLNthxi6QCCtmYdtakq+a5Jr9AxcwR6SJzyQVa3mGKcY++0ZSTFKkjHBUxPz5H5NZYTLcIkgYDUWVhZ4d+ucciKcpIcusyJCCwloPhcdaTecbUCPUye2yHrWwPYb5AhQ201Wgx4nXJA+wm04RuTjMPUTZgihbVyNDJazTyCXHWpOqegnRCFq8gdQXjbGOMoCOblNMJG8kCAR0W7WVsnFJKx+yVOUvmj9mNDzEohoQmQ+MwFbUZeSWUjmjqAcWRwxm7h9AocF7kUHaeC8USC0lC32To0JJKyWQ8y0QpAjR78jWgTWJiRtZjXkpiJKVsQF+uE+icSAtix/Cyv4K1CYf1BtWsQzxeJAjGdNNVrPYp2zG58ZntjLDS4YjzMgvpNr5MCHWVjq4xby4gTMpIuPTiBUZKYJwuiasp5B0mdolOvkJqBpyQVzGdnSQzIZlxmVZb2KHPWXEne5LnqJghGSDyBKuvFPWp2DYVNaGme3Rp0BneiFAXKDntv8kc/eP0oP3g4+9hdW0PEsmrX3MPpx7b5YD3GNOvvpcnPvQAySTnM43rSIXlHnMSsbPG0Y3HqO+NiPd/JRuLRUbxGZ7hVv7l0i3sC4K/tU87yTBnBmRPbqEfXsc8scNmssGJwjk6fsye0R5yL2U2cZgRMzS2XXixQ8FC1cAckqLfpFE5QDMcsi88TPHCzfTrE6bClxHtba591T/jk6MJx+OUVd/lcPB3u03+/+qW/MT2iP/rkfP8+4+f5mInYq0fsVgL+Mh338E33LTIgekSb7tunm6Y83OfPMsbrprhoZMtPnqixWsPNjnfCfnD9Z9iJ73MfbNfxxsXvolGwefZ9T6PnOtQNILcWv55pc6/ecMBDq+HOK7i91Zcmp//M64++RQDt8APvOZfcvjAIp6SBK5ioDUf7A4pSMnPLM/iS/mF0Mbdnfez+Bc/iBsNOHmgSP+uH6DTuZPHH38K5Tu84D3PseAYf3H5AXbibaTfQdaeIo8XGAzmCRzBRHu84mn2xFWOelfKzmphkI7P54snOCfX2X8xZXnXgjUcvbDNywcbvFw/Ti09Qzp9I1r4PBdGdDYmNHamuVS8nenxg+xfHzBz/hXspS7tznV0h89SLO7yQjzDrzz/Try+ZnHSgWjCwC1wS2+D9eXbWFt9FSObMXSXeGEFfmb1V8hVEew59kVv5V+8uMw7P/k5rj3+HP10kyiy3NTqcPjyLv3ZeVauvRG/1SK48WYmv/bLoDVqeeWLrr2jJHPVgENL93DdbMTZ1nE2RvMonbN9YUJ1K+SuPVN0lCHJU3ZzzSP9Pt/q9Jjc9W9wbv8RWmmXjWiTR5xj3LD3EPJyztqoyEazxNJ6m0D1KC0asgOvwwRNJq/+CZJ9byA9cD/j1/0sprQAXgn/4sN4lz6F8avIdETxhV8nOPVHkE1Q/Qvo6Wu/7F37Ivin5EH7UuDyZz5I7iZ0dJN+tswkKzGltvHUiJ4a04uP0EWyHK9TjVPWzBKZ0bhSo0yKYzNyXSbWVSLpUQlbLNmXqesRYxEwzHxiK0mtS0SNICrT8Ry8pEFoqoT2SrWxko6RGFwnJkw8jPXY1Yso6dBIe1yeHGY17hKm8/h5ijQRjtEcUqdRWEY6pZo4ZKaEa4eUgjaFJCbOphjLOp5NCeyIoS0xNFWKqYPRRYSRhIEgT2r4JiLMpijnFt+9wJgCiSnga8FE5leS3+0iUqfkWZXMBkiZ4llN3RsQxXNIk4LW2KSOth6pmxDmVQ6KNQa6xMCWKWdQFQMUll09TUKBYmYJRJe+DRjoaSaiSCYgMQWm9YDpPGFsfYauh4wL5HEJV/ukElJ3gExzUmMYiSodvUgiJEZppJY48RTlOGY3OoSwCVZCHk1TMRO0DFmV56hNMnQOpAmejtFIEt1g0T2PUZru+CrG+Rw6q7NXnaaVz6GNJdcVPAsDJcncgEXdIdOCDbNCltYwJmeS13FUSGRqNCcRQ6lBGIzxUBJy66IxZNajYncYiRrzokWYLtAWBZbNBlN5l7GZopzH5LlPlpbRGAbxEUr+JUpyQKzL5MalIEc4coLOGggBbaospz1EXsEf+/RsnaFymdIJN3jP0nBabJsqbVNnMQ4pao3vrpF7Id10noLNkCrHyVJ0Mk3NRBTEiL6p4ErNwNQYmTIRmqvyMwzNAtXSmLn4EipP2TFVyuoMi3ZA6PqcT/ah8wWk0ydNPSJdIZUumQFw2TbLxGmDyJd4kwraBFwwtxDkKf3SGtcmG+RGkpoGW/ERTD6DoyZsmQYDWwcTYJ0IgWDa7FIQIbV0je7wWi4zj3RDuqJGZ3KIOJqhVrjIOHMp5hMmIiDLChxOTqBERjurMGU3WY8PIbQgUgaBZYwk0B3yvIhJKrTsFA27RWgV63oJzxoCk5OFC4wYYZMZbOaQWpeYGiPj4TCmKbrUdUSSl5gIwWp+kV29wG62ghQ9YqFwrMFVCbvZEsZ4NG2boZmhb5eoqh5xENM3FVLh0rB9tqPrMCajY+fYI09DojgXuNTCESIXSJky7W6yVakzGsySmzJjPBp2QMCYgS5i1IRZvYMTZBT1mFbWoCh6XIqvR4VFDshn6bk1lu0mSbbABTtHK6lj03liXWVTz2JUSiIl04wIbY0p+gyo0M5rVI1Baoe+DRAWCjZnnzxHLznKUJdpuD36eYUeTSLjU8lCOnaKsS6xbNaomDGemzEIFdv5CqOszCQ+jEolC8EL7KiA3eFNJNogA5hM9lGTa+xGqyAsFafNdngzUo0YpEu4RHiqjXI0jXCHrfAGKjon9iyRrSJNzi5VAj3CSy0yLXNKXEsx36FIyPrkCO3BbUx5JxlQpGMbVAnBjVizy+RpCSEMVsYcfM07vqg9+kdH0HajFr//4u+wf7Sfe157H6ceGjHqGl5f+3lUY54nHnkGnAqP1q9l1c/4yXd9M+M/+gNuvPoSTtEyvvc/kJdmGE2eIKTM/TWJFC6OU/9v+rL6SrGI7NPr6E9tYC4OoZdCZsCVBPN1XlAn2CysccvGHWReTNtG/P6tH+GcvMz/vfw57nrz17AduDyw0acY9amON6kWZhF+CWMlanIDnlgjSJ+jeuwRXr9+gA8uN/jsKOTtU1W8v4OX4Et9CPv8pR4/+dAp/uDZDUquwyTVSAHvvGsvrhIsVAPmKwE/+dAp7js8QyVwmK/6XwhtfO3BK+Xza+WY3zz9Pu5feSvfedX38J4/Os4Hnt/gYjfCNbCcSH740CL3ZhZ1rItcKuG9aZpb6hkLp19Etnc48yM/R6fc5Jcfu8QfPLvB7693GSjLS1bz3TN13lyvsDfwMCZj0Pkw+x783/DCPuf2VVB3/2fW4v384ed+h881H+fT9pNsOBv0kg6vXbiXOI/opl2EzJif3mKpVmW3vcC1ZpvVtMGDBU01h2vfOMP27Qo1Nnzz2dcxCa6hU52hNuhQH0yoDydcqO/w1ME29WyVc9Wj6GxCKhXn4mNMLnwCfWGZU+Fb6Nc7tNMpVuwFthohoRvwmfB61rcP8ZWjYzRLOctlh9uLDl8vUlYWj3Kktp/DXpPQg3/7DTfxWPF9WNVE5ZvcM7iFn7j8FvboChdKGS94uxgcqjm0HcU1C2/mxVmX9uYO/uefwNvaAJ0jl1eQtTqD934f3uvuRbhfXNG+WDzMq1YLXF34Mb720Cf5zPq9DGPL2TMtbj33Wd5rP8XJ+lWc82bp5YaX2mvc9+j3cu/ZT7FpU054isvmMm9/8/fRfe5FEiMZzgaUthPMqEl+97dSufQB/DMfonDmQwSn/4zw1u9HJn38iw+j63tJ972ZfP5mUC5quAE6xW2fIDjzIPHBt6JG68jhZUxl6Uv2O/gfAV8maH8/vPDwx7FktPMlrJFEwmWST7MgegylC9EUqQV0kYJJ6Iky2noMbEBqimS6RiYTlHYp5GPW7CEKiUSbhC2ziitCNA7SGqzxkUmJ2Coy4bCVz5BaD5s0cOyYiaiRG4fQVnGEZmTLOCYiHR9gxzaI4j045ORpQFv5KCckzkt4aUBui0yig4SmTldVCMQWY1PF5gGx8HBtSpB7iMwnFR7CePjkVJwusZYoe6Wq20RXCPHRTkgCZEbiaBdrFUm0n6EJ6JsGfRlgjEND7VLQEUEas54vECowMkfmFYbSwXo9JIaqGrCVHCZCQFrDjaqU1QZ9plAipJkZhIyJhUeHKgVCEn1ljGOp8Yzkgt5DIU9x8gKp9aiLISL3sTokNiUS3cCXE4bpMrEAk01RnszQkB1SIQiFSxYvU/RapHmZsXVIkMyZNSbJEhvR9bSzRSZ6CoslFxrfTmhmA3bSI3iZT0EbGsXLbEeHyEzKRFRpZAnCJoyyGiNcrM1JdBNylySvUFRj6rJDEs0xzKskwkHKCMfmpNk8sdQINDUxZIR3RbYgWyXWJbRI8MnJ8oDclFBZQCSK1NUmWtfIdI2RmWLXzhDZgJGtE0oPEy0yTPfiqi4TSvjG4EQNUhMwtjWMTEAIitbQHh9mKErEtnClKI0DdecynXg/ST5Dni3g5glCRjgqx3evENiRCSgS4yY+vXwfruhhTZ0sLbORLLKbzeOLHiaeInQSOmYWZUtsJ/uIsipXZS+RIsjzGmK8TNnd5VxyE0ZXiI1LWe5AXiaSKZU0QhmNSA01MSa1AWG8wtDWkdqlIPtU1BqbrNIys5RUjyyeZ6hrVNmipWcZ6HlCPcPFfC+7+TwTXcMVEXudk2xEB5AqYhzvRxmJFpYEnx0zg5cF9PQsibAoNMY6KCMpuzvsZAdxrEtkHUp2xASPVr6fVBgKNkNklr6t4xnNtNxhaKawQtMTZUKpqNldWtl+BuksWkxwSamnllgUiKzPrOniiivn8kF8EIlByhEDWUJkAbNsIuSYzATE6TKJgiyrgIiIRcDITjGkxFUDTWQFYbqCsVUK/g6LWZdR3iARkMqcku2xmy5ikynGegov9zigj4Mu0M9n2TZ7EKaEn0tSp8PATDGdjdhSy7TDJdzcUM8NGoeuKBDIiEoeU5Aho3gvu9k+Lpk5NJJU+zQyGAqFtpI0m8bJXRrF8/iMwAjado5QT2GNpKgzOqqMKyNG2SyJrdJO5tnI9pFbiWcn9HWDUEls6pMQEmVThI7GISO3RZw4JcayYxboZAtEtk6EJcynsM6YiZmikmWkcZNzrELWoOJeoMs8u1TJrKJmYnS8wnTzafZNzpNkDlOmS5zNkuPR9M/RDa9maGaoiCEVsUPPLhBmRXyjWTB9Fu799i9qj/7REbTvefy7mGvNYV346ru+kRc+vIaQcHfjA5x+OeP8wNA7cCfHTJM3Vrd4za03Uf7A+5g7NOBCtBf1hh/lL3Zf4GJmuVu8gNBdWq3foFK5G9dpYq3FbE7QL3XIH7iAPTOASQ6uBFfi/k+HUbfMIJsB8689yp0zd/FU50nKuowX++SO5rvf9H38p/5vsmY2eH78PN985zfznDX8u1aInbVc9eBP8oJYo33gKLs9Q1o4yLR4HpmHZJM38fhUkcuBYP14m3sTAa5C+OqLhjx+qeb25e0RP/HRU/zJC5s0ih5Xz5b4rrtWudwLuefgNN922wolT7GnUaDkObz1ugV8R+I5ksXaX/VCWmv54ae+n4Ldw26vyWZrnhM7I8LkCtl7AwH3Gp/XzAXIzQimfJxvPMDwB99D9Hu/jRkOqP/yb3DwlqO86cgcd+1tcHp3xOWFgJelwb0wZhhI7p+ukacXufzKO7j24Q+gsoTeVJGfWbiT/3j6j/nY9kfYKm6R2oR3z30vbzr8lXzF4ht5296v57aZO7i5eRuPbn8aYzU/ffcPcsfly7w8WeCsMmjgCaW5/VX7WJ1f4OE+rG7G3N6v4okqzy0XmW33KEUpK70ZKld/K2lxTBJ/nMLwM+zvz3PddpuFYUbqbDNR26yli3STCjtqljP5EeK0REU7TImI1F2h4cagQkI1YlsNacsRwmvy7a+d4gM3HsIZ/SfcbA2hd/nq3a/gO7e/ljyb8GT7w2zHFzAYDlZu4o7iHexlHrXnVTT8Ocr+PCsLb4aNCebsJZKPfIjwd34FubIHtbyH+CN/gdnewjl0+K/dG4E3z5Kd4gOncl7aPcicbDOwFTbkAo929vCTPMm7ksf4gFrhwcpNfGjmK3iTG/EVc6/GLS+Rlxd4//afUbz9eo5mS+y2O6xXqpTPreG3O/A9v0V8/XcQ3fRuwpvfA1KBdLFeFYFA9c9iyguEd/6vOLvHkDrFehWETiic+ADu1pO4658jOfItuJtPYgpNUF8u5f9lgvb3w2OfehiJYGyKiLxAICZkUrFXnGdoy6i0gAFykSKEZtOpkKHw1Zhiqsh0AyFjbBbgpw4jGSB0lVE+T5cqiAjXZuzqVWQe0BU1YuuR5BWslYS2SmYK4IUY62CEIUPh5B4j4WONSy23GFwcmzIUAXUxxHH67JeXmCQHaCd72REB43yWRGoCk/ylB8jFsRJrBdVcM2SasXTpiTIGl8SUGeMztg209klMQEeWUCJlXp5nJAuE2SzaesS2QJZOE3sRVl459AhhGYmANrMUEp+eqGOxODLH1RmpsjSSGC0Ezniei3IeaRwCqxlQ40R6C0MlOWzPYPIpuqbJRr6PkSiQWQ+NQCYNlLFspocZ2iZzcoetfB+SjEwX0STMO+eZpFPkwkGhGelpUmkQVoDxmHLaRHmFNbMPqT1KzhpRXqVPhRE1xrZGrIskWRUtNNZKxrZOKh1yNKEoYawltFW6ykWT0UlXiWyRjACT1xnIIlYXcGVE187jaogoMVQusTSMzRQi9xmKArn1SWyJ3AZYqzAiIyFApBUSWyQSRcqyg8o9tpgmwUdlZUamQmYFRk8hLYRUGQoPRw0QImYoymjrokgwxiPGo6La9GWZkonRWYm+CoiVwKiUGA+d1UmEwsqcyBRJhEfkaNK0wVBUyaWkIBImwsclosoITIHEKLpmnho9OnaOXFcBAXmNUHgIe0WfqqjakBfI3ZSxnUaOVuiKApG0KF1gR9XomXlMskBmr0hdyLTASHo07RgvBdcI8nSegW6ipaVoYtp6AStjRqZBMRNs2WVcOWRs68TSJTIBDdNhV0yhsxojO4UUOcoowryJBmIlUcIwyqbpUcZXQ4bZAtaaK2trXbSQ9LM9aOGQCheXK2sFBrSkly8AORPdZGSa2NwjMjUEkkxXUQhiW8IjwskLtH2IbYXYFEiEh5sFxHmTXCikM0bj0kn3kJsiRmg0Am09EJpM11AiI6WEtRara0ibESvJwNYJchefkEg3iEXAleDUIgCZdemLBrkNCLTLyLrEo1UmUpDagERKQlMnzxpgFcLConeSC/GrSHWVTWYYmCYFcyV0dccsEMVLpPEe9qvn2MwO4OU+FTtm00wzVGB1gYrs0aPOYHI1A+sh4C+JYxmpHQYKtNTEeBRTD4tLRxXZZobITOHmARgYOlfmPzdFfGOpELFNBWk1U2JIbnwm4ooUiSc0JdUizaYZOJK66aIil75eIpKGPlPEpoybKxDQ1wtkToxLQkH2sCIny6fRQrPrSDyTk+oCWqgrFapzB6XHnIhuZywCKqZPx05fyZ+zEf1slVQ4LDinGeh5orRGbhWhKDLQ8xy97y1f1B4J+zeoI+/ufunKvtfrRfr98L+rjTCf8NUPvZG3XXobUkped+PX8fJH26xc0+DV0x/g9z5aI08e508PvIOucXnvgR5vfeNXUf0/j+AUDb97/nbqN9/Dj912O2Nb5LedHwHdoVS8mSg8ycrGT+CfnoLUQNNHzhcx4wzntlnknr9eJ+3F7vP8+iu/wsXuRb7l2DsYVlvcd+ddZKtF/pdnf4DMpMwEs/zG3e/nG3/pSX7+4z9PXWXEArxf+y1e/tgnmGzv5cDUE7ze/jrGq9BufhU3HXwXRkh++1jMddsZCGCpiDhYxz1cR1T+q8fjv3duX9wY8GcvbvHps7tYC76jGMY59x5s8rNvvRZjLVIIjNaMu7sMW1uMWttM+l3i0YBoOCAeXfnkWYrJM3SWYbGcrl7FJJhhP10eLt1CXxR4e+6wOA54dcWlJAVqfxXnbfuYvO/nif/kj0AI6r/3QZzVvV8YYyfP2c1yvuXcBnuMQDzVYnOYMl/q8bM3/RR3Pd9CWMOlus+31WcYWYlAsDJa4RrvWg4VDvO2N33TX7uGP/X8v+Xl3nF6cYf3n/gpKqLCh+YcfnmnjzKQOVC8fYZxRXH/84/xTf397MlrdBjhW8n6HofK7/17nCTkofvvRysDFrQQZErh6RyjodFrEVWqzI53SKaXEDohECGhXSHHoIUgIsUIi0SROz6fuPYWLtSmEMCezd9GJk9TTarc7N5KYctHDjoU1i8gpaTsRezLC2T2Wva3t+Do1zEsVWjkFt9KtDWMZUQ51iiniM1C8vWnSc9/EitiEAJZqyOCgMI/+078e+5FSEnxyZ8jOPUniGxCx7e8W7yLVjjLVYWAT7SmEWiKZHzL8oB33nM1v2zn+OPemKGxvGOqxg8uNOnGLd7xyLdgsXzt6jdwx6OXePmli0z1Y2pZxsK7/xV7X/fGv9N+lcM1nNaLuDvP4+w8T3TDu/DOPkhw7iOYwjQimxDe+C6iG9+FyGNscfpvb/R/UHwp/nf/ITEzU/n/tf9f+dF/jcuVXARrPaTI8W1OwWthTMB0bEiVps0MZZ3T8RykkZTVFqEtE1PBExFZNoWROUZa5iZljDOk7SoCpwMmIDMBBhdlLUYYrL3ynEuJMIJpOiATJrKAsjkyrzJWICxMxTW6rqGgLambsEyLSF45KA7MFL5RKBIc7dHzoJYJMicitwGOiK/kDFmXlCsXGInSNESXoZlDopHkCCRu5hEKH09OqMtNOrJMQplAG1wLERUcMUFbD0+GuCRoZcmty2yeMqCEVjETCqisipQ5Qia4TpdyOEXX02QoJJKZvE9LNnHVhNk4ZVZ1MG6P3fwQW6KG6/ZQIqYc13DcFj29wFh5TJmQofTxbU4mJI52CPwtrHaYmCaKHGMDUCFS+/hJnTn3NFtymokSWK1Y1rtoKRjQIMMBFdHMY9J8DitCHDFirCokEhpqnYQyJquQUcDIlAX6jG2JgfCBnErqE3kJykiUu4U0VaQ1oCuMlEQ6YwRQyzImdopECAxXQtd8EpQICWWAFYKiiXBkSiwCCqlL37W41tDIYCxdsArPpoxFkdAV+NriqSElMaSr5zFC4pAirIMwDgVGTByPEhNs0iB2DNYqtMzR1sUXOSWbECuN1AUSHBA5Ndv7y2JTHjavo9xthJWMRIlSUmO68DyXzF6maZGIMkm8hCdGaMegLQhpCaVkL2dZZ5U9ZgejJO18kYG6MraAiMzJUAZkNIvr9tBehJ+UGLqKithFpgU8MSGxM+RZlTjoU7IxUmhM2kBhSHWZzBuA0hg8rMhJpcTRUNcJUuYYFZPpOgZBiIMRAgtI41PRGdqNcZ0+XT2LJxIcEqTNSJWLnxVITAWtIpRx8NQIsDTzmJ6oIJ0R5BVKIqJDmVgEKC0JLPiiz5gKrhzjGUniJpi8SEaBzEnxjcU3GikjPJVgjcfQNHCtJVKGgklApUwzoJevYrWLT0LkZKS6hpRjHGHInBxPS1KVI7IyVsXkuAiRI0RGQadkIiAwAiuukCInu0LijHBInYgiE3JdwhE5RpdYcY+zk/4/7L15mF8pflLJAAAgAElEQVRHeef7eavO8tt6VUutpbUvlizZsi3Z8o7xwmK2QFgCTiAEEnKT3DCZCYEhGUgCQyDDzQwJkAeSQIgJYHaz2o53yza2Zcmb9rW1tNT79lvPOVU1f9T5teQE3wmTPM+FO5Sep1v9W+pUvfVWne/33c4FlNUQ47qTTlenSZEwK5LpGpFTFK1llhIzoSE2IfNaERPFGllQR1tNh1RxCK3GMrKgiQR1WjbCoenIYoyeoUYZJCMymhVpE1M4iYmqTKfLwYUkAi0CMheCSlFOWGNOcTLoxqJIiCkYTYMAbWIGZAinZphJVzBRMMQGdFagiylGgg4ynVGkRuQsoGgSU9BTBCRYpwiSIk06saYDiif8Z7JelECHyehqVaiGTaYCIXBNitSpqg7ExATBNC3bgRMQadKTWTIFFuhVYySml7d+9M9e8H70M+NBM86wf3Ivx/YcYX6zj7f92rs49MAktYmES1+3kp17ljJ+8n5wDe7p2sZqNclrL19P171fpIcfcby2iOkNr+ORqSmeWXkBv81f8aLV/5Xx8a+Ttk5TGdpCONxBVFsAsSZ623r0+h6C83tR3fELeq96o3lctuBy7j1zJ0fj46ya3MihMwews4YXXXQDR2cPc7oxxINn7uedl7yJT88uZPG2rax47D72nBhktLyWSrHK6MT5qM6FLE4fplzbw+p1L+UO28HOgZg3L+1FIo07WYMjM5gnRzFPjWKGG0hnSHFeiVYr+4nkeXKqwUQ94b6D47zvu3voK4e8ectSHjw8wdLumE/dtIit4QgHHrmHPf/0XZ763td48vYvc+jR+zm9fzezI6dp1WcRJazccgW9AysodXXTv2YDfevO47PFUzy3eiljxRu4etMq7kiXMr8S8/tLZ9HHy7yoHFFSwp76YxzgKcyunYRf+TIUi3R9+m8J16ydG2vmHL917DSfHZ2iSysqhZBPXrWGZv1x3tfxJ1y+d4ypTs331vTxp4XVbF14PX9+6X9n/r4+esd7ma8W8AuveANB8ONr4mzo3shXDt5KQspzlUNcWdzCFb+8lcuXdLH92WEagBtuQdKitxCRTQ6ylj4iArQodjSfpXLmMH0TY8ybnqTQ2YPMzjBwdJCLn36GW298NQ+vvYArz5xiSbyCC4oXcklzM2vNGhZLjc3pRjaZAYo25ng5Y8WadZy+8jo+17+cyUKRosArxu/iSPIdBOFlYy9HJh3FiWHCM8cBi3OOqYHzWRqvZ388SmHqJPP/+F0cKEzz9mUFys1Z7lgc0zc1RL9egMWighK6dxXB4ovQncsIV7wYWx3DDO4nufcuGrd+juadP8RMThN2CqGZJCov40WLqjyeRjw3NY9tyxdTDAMaNuCJySKPjYX83gVLeWt/L1+fmGZHvcmd07Nc2dXHpb1ruWfoLvZM72HLNW/n6tEHeGa2wni5yMnndjJ1/CiLNl2M/l88xNrFXZjedaTLXkRrw5swvWtIl1yJiyromRPo2mmioUcpPfUZCnu/QnPdayEo/B9Zxv/nHrSfrG2/+xFqEpMpjViNRdOQiJJLGHO9ZGknLddBgwDE0ZAYg6buenwOllNYAZygAEvgy9hrSEVRVlXA0bIVxGmssmTiUE5hFGQCggMLNV1AWaFOB6mo3GJbIDaWamRIlCVVjhlipqWDmhTItCV0hqr2YVeZEgrOMhkEGDQWqOkI60JSpXBoMvGgRjlNohSIw6Go6wCrLOBIpEjLdSAOEB+2ZESREWKCDJdWaFHA4UhdgURlJARkRFgl4BRGOazTGAJmpIQVR6Y0OEWiIROFI6SqCpzWnczYhaSug0Q0ThyJK+NsiVBapC6ipRWZ8/l5IY6EECMWS4S1MS2lMYQYF2BEsCicDRjTnSQEOMAoRUjGhPRg0VgX4cRiCKkFUNMhSeC/axU5oK+QuRgnDqstqVNUpYQFENAuwihD5jQtVSS1RcSGmFwOVlkiMqwLaUpEpi0COECjaSkhE0HZiEx7eaamTEsCnHI4F2FMRCMIMMpQUxEmMFincAiZBDQpkonXUUOAxcvAOC9jYwsYNKkIDkWmLU4AFJkr4pTFmSKZ4PN7TYGMAol2NEVTVxHKCZkt43SDNOugqYWGlHBpBw2taITW5w3qAOc0qXjw2zTdVFVMPZtHhiZVghGwOBCFZAUyCWmFKZJVyFAkKJquA6ubZNqH/YqkpAoSV6ZGBes007El0Q4rXs9SpXJPtGBdjCGmqgJaaT86mPHyR2MJ5tYgUxkt7eUoKAJaWBcgNiKRiEwJuIBEQaYE5YSmClBOaBGTiMMSkbkI5TQtDVbAih9bqhxiYlIJEeufmaVsgFEWXAAEpNqBCUlEkxJibQErBhFIRJOZIqmNMfktLQmgpS3KaiBEWw1YEqUxLsYBKIN1IcoGpJRwLsKJ0JIAcYqmChCVkIpCJPNhxa6TllZYNNN0kyhHQ4qkElCnhKgMZwNqKsQ5QUxEXVtS0QQOis5RDVOMKFoU6ctSZm0PxsW0ghZKMlJXxIojtEJLIrKghQPERJSsP8vqZh6zOiAhyM+QkEwUFdskU/jPUCElRJzCIP6fJGQi1HRAPVAEkmFESBSkosly+VlRpBKDjUhcidSWqEmFzBVIiagHGofyOmW6/BkpjpSQRAytsI4RaKmAAEglQuP8+pjInx0CkcvIRFOTGGNKRFax+SUvfsH70c8MQfviob/nY89+mG3Dl2HFsWXTpQzvr1KbbDGwqZfn7hnCtHYR92seCTZxdTTIq266kXl3vRPBMLHgN3hs5w6+cdMbaEUxr5FJVj9zIaV9K5lZ+CNanceIWitwWxXB9UsIi/86q7tWmlgXqGU1flTdzsVD15JG08zMTrNl2aW8/eJfZ6C0lNONkzw4/lWu3/AmfvDIMW4a38uCwUHsJeuZnliKBE1OTG4gUI5FwR7OO/FD4tU3c0cas3RZFxs296MvXYD0F3GBwJkGjDWxz05Qe+AkZriGxAHSGSHqx5NJ5xwnp5p0FUNufeIkf/PIMZ48Mc3GYo2ugw/R3HEH180+wdpTj3D6qYcZ2vMMI4f20pydQQcBW193C+uvfSm1yTHSZgPnHDoMObN/N7WJMUaPHuTk7p3sHD/FUTaw5dAU3eUyXz9dYMHkYW448gPK4wO8uHMhoQi7zTO0Vlq6u+fR+7nPgbXs2ryeiVAQpSn39KGU4q+GJ7h/tk7qHN9cs4TK7J18cf+f8EczX+b8k1WcwGdX9vORXR/lhv43cMuGl7P9ru8zPjZKFEW89rVvpFQqv+AaTjzwNDcd2MqCVg8P9Ozk6NJJ1sx7MX84Ncm6LGDecIuTKqVzeobCzCQ94Th79HEqrsAi18Mas5COniIzo4fpHRtj0eGDrDx+nMWzdSrdG7ig63LWtQJe3FjN2mQ+1pRQGGZ1lXsrQxjuZ4P+OIvC7zOxSPjgops44jyAuLpS4gPzanzu2J9RCsp8dNv/4MYtN1Dd9QjN04M4k9HRGVAYWEAz7OVoIaFZKDA4sITxyXHGR09yweaLCBfHPDQ7zLQZ44A7wNPhcWrjdUr1hDOS0BF2EHYOEC7YTHTezYTrb8IsWEpt6Awzg9OM7AkZOb6Y1liVeMEmrrrqAjb2/jkvWtWC6GqePDFFah3WwT8+eZLz+sr8yXlLKCrhhzM1vjY5QylazBv6N7B9+F4eGXmIm677L1xZ3c7BE0KmFa3ZGQ4/sZ0Fq8+j1NXzkx0QYZFs8TaaF7yV+iW/RWvlyxAs4ZknKT31GUo7P4maOECy+uX/RxUU+TlB+8naI/c+6ImCkOcdaUQcTVsGp6mrkIaKcsAvZMQY0WgboEyUkwwBNJlECI5UWywCIqQ+cAYjAU4URsSHEIlgPPvxITVKexAoIU78OIwIRllioKGtJwgCjsBTLxegEFoaDJ7QZcrmvw1WOU+4BHDKh12p/JoowD+M3uQkzYgHrFYUOIWSlExpMkIy0TixiMsRjrJkypFJiFEK44p+zGhwIQ5wePJqCHACFoWI8aTCBZ6AKkOJxIM2V6AljjRMsaJwomkpaNgKqfLhZhpHJtDSkl8jABtiCHHKYvDkTpwnWAIYlWG1weYUOsoCWiog016emSiMKFIf8ZSvZeDlY4tYgjlZWjTGhVi0JzhOkymHwYM/ZT2wb2kFCEngsCgyIlJCQLyMEJQLcc6RBs57NQixojy5UoATnIKUAEOE0Wn+mu/TGwc8uW4fccqBc/7aVhzkOpSIxrmATFtvHMjJmYAH2soTvkRbrIKWEpyoXD6CMhFGPMF3onMyHtPCr0uqrNcpAbEKnRXIxANX8ntbU+ucHPnBWtrAW6PwOpzl62SUwyIoG4IYmjqgJQqDJrBCqhwm9JFGXmZ+vAJz6y7OYUXmdKJFiCXE4Pc7yvk9JgonguDX0booB+IRhggrnpQ5vyRz12wRk2i8h1xCWhKgncrPBBAEI9rrnTivR3id9/vee3A8kQ5JlSbN1wlxnjQ7P+ZMO4zyZ1CiFM4FCI7AxmTakCnn964rAhanLc76sXsiLt6TIwocZIQ4bK5n3pjToghO+zHlsvF7Bm8oyP8WG+V9OU9GNWRoXH6upBLlRh1N05ZRYshE5UTK65DgPElSFpefiQqYiKBJkYZWuVFIg4m9IUtcbiSKyGzZrzka7fz55kSwIt6QY0tkyuuLkeCcNdBY8Wdz5gKcuPwc9eSqTQSVcxhl5/aAVV6G4gKcykgoYEXl+0aDKDL8WeBJvN+bmWiKWYFMGZpaUVURV99wzQvej34mQhxP1U7yjod+hSDRvOzEy5AOxeuvexuP33aCecs6mDxVozoxQWvqM+zvXMeD867hgxcm3LR2EfO++ypSNY/JN9/L5/fv468q81BO8YU772FV/zUEoxnZlZbBzveS2VFKpYtIkhOsWvV3FOIV/6rxJSbhI0//MUO1U/Q/XmBN/WaqPYfQgeatb/0NjrQO89m9n2KwOojMVnjvFwyjK8/nip13US+V2PnWmym1Ylqz80gmz+O67s+yPvwhSe8m/uhFt/KPEzPcumoJF5bO5nk55zAnq7i9k7iD07hKCDOJD8+shKhNPegt/ajC2UcIDI7X+H8+/02uiEYZOXbIP3CSiLKpgo4IldCzeCml7h6GD+xm4IItPpxxbJg3ffSzPP61v+fMwb28+v0f497PfJzx40fo6FuA0gGdCxbR0dfPF49UuafaR7n7YfprWzicdPKG1RFbhh9iSeEGlo/6iohPcZjR6qNIrc4Vjz0NIozfdAPHiwFTZ05iswxrDfHqDXx7yXoGl6/DhA1KQ+9nsczw96Oj9E8ntALh2E2/R/fKd7Pz+DS/+83drGCYq8JBRAe86Q1vpq9vwQuu3fhXdxAPGg5O76L68n6+YL/JseoJZjtew0J9DW8fG+bUsQOM2yJ3Z2toENKLYZU6w6/MnGZjtpi4az3YjHRwO61nvwrOoAe2UbzkV3HZDMQdUIxJGobTzvDgfMVT9YQdjVFKHafoqIzyDvsk31zxVvaUz2NZ6wSDxWW8d+E81qvT/KfH/28C0dx2/bdhqs69n/k4pe5epk4do59TvG7gWWY3/g6jD1aZefhBRje/hMNL+pkKqyQYlFKUSx3MupDnOlaxbmQn2ho0jkXqIsyZTrpaMxBEBEHMZWXvwdLib2yJtZxoNhlMLHU0VvL3dcaJ4jRfDYqEolgUhQy2EpakikzDKy5dzNuvWc5D1Qb/8cQwDiiL8JbiIb69/0MUdYnbr/8c+k9fxg+OrmCks8RAuYszJmXLL7yFdVff+G9/1IQ1FHd+kuJTf4NqTZH1rkNas8y89NOYRZf+2/r+GWg/D3H8ydrH3v9nONXCEALWExMnWLGAZyy5gwzlHOSAxYqnB+03NRlGAhQ+3BnwgEX8dwSLth4gnP2+13URS2BzwCrOxzXiPKnKSZEVUDZ/5iMOp1x+nbYfoN3O7h/lBG01qc5QYjzAtNqHHtoAk3vy5uaSf0c5BSrD5h6/s9f5583PQUmGOA8anaQ4FCoHXJkyCA7nUSJKHFiNVQacIrDMWbUBFA7rBMShnOTAqz1fh4jLCTEoi38PydcMLzvniYo4jVEmXyIBl8Pmc8QleEu3nzv52oA4QeHvXeL8+gsO5TTiPPmxYlFiwQZYyUD8mGxOVJRYL3OXMwbnCI0m1Sb3ePh+va5lKBf48eHmyLuIQWyQrxFoK5j2QPOlD6yftxXmyI+S1Otq7lmxIii8bKwIksvJCSircCon3+6sPASLw+uQNw7ktNtqIudo6rOClHwynkCf1Stx5GAcbyib+4pfS8HinEKbiCzI8msqlHV4+gJW+T2krMzJ4WxHkvfl967LXxOxOCcEJvThkGJy/XTn9MHz+8qJjL+O9X0gnnA6jdGZ1z3n8NL08/TnhuTe57wPh98TYnN5tilbW18VVszzxu/a7C/XUXeOXlo5u5+NTnDOk0ztvB8WLC7XN8GAiPcS2nY/NtcLR2AdzsYYlZ8J+ZmjbABkXm1Q7SEjLve2tgcE+f4E61RuFfB7VpzkxPjs8ihnc9Lp+xErc11p54ngWX1TRCYk0y2vp1gvNevPQL/ObV1y7SWbk53gjTPaOYw2GKuR/OzIJ4PKdc6JQlub00W88aptgJpbL0AMzmlEDIGFVGm0BassYtXzT2DJjXPtV0UIrD+bnPiot/d/+AO8UPupJ2jOOX7/sXezb3o3m2ubWXx6Mbf86js4fPc0R54cZdmmHk7smaJj3iAj+7/O55f+MiuiGf5i0d0sm9pP2Bxk5DX3Ypet5uZ9Rxm2lt8YHOad+0s4Z5Er5lO4chkAZ4Y/yfj417C2jlIxq1Z+hlJp0/9ihGfb3snd/M4j7+LXHnkvUwsPIlpYvnwlN9/8GgAeGd7OB578z9QG30Wx2s+HDtzOitP7ObB8OdEtQ3R1zdA49scce6yLG7r+klXFHUyuvoFLF/8OF1Y6+dzKxT8WsLZlmx2fwT54GpdZmGjhHMwyyYnWEEfqz5Im47QadcRZRGlGetYwkI6wYutVXP66W/jex95PsbOLQqUTROicv5C4XCGudLL8ostIGnVMmlDs/DEVL53jM48c4nOPH6PQvYv56iKazU7+801ruWplL+n9pzA7x2jiMK/ppm/NSn70+U+y+rZvIK0WR6+8jKVv+w3GTxzl6I6HaVZnfDjO9CTK+jCbVmgZWTjJH/cdpLuZMTIvonbzl+no3DY3jif3H+aRu2/HOfh2solEl/jDm9bysg0L/oXsRv92Ox1TZawzjG9NqG5Zygd33cHykzAwNYFCo4zO77IaSUs8kS3jOV2kYBI+/08foW/davTq6wndBsDhbEb9R/8NNz5EsObFFDe+HllcZG94Px86sY4zyyKqYYng0CyBCH/+6g3cF87wzekM64QNjT1846n3MBNWuH31Ej5XnWRlxyredd7vsHi8wH2f/Qucs6y68DqWj+9kNuullS5nRi/mvDv/hGzBMs687kMc2jvDzR3wZFLnSDhMo3gGp3JPihPEhDidgEDUmE+ltoJSGNNqSH6UOHqVZWslIlZqDo5NZykj6QydT/89hxZcT7VnAYe7FN9SZVCK1Pmb8CtrEWsyRQb09peQ7ohPbNAMR6AEttkd7Dv5l2zs3cgnws2kn/pbnhvrYe/S+bggJIiL3PCb72H+qh9ftOR/q6V14v3foOOhD4BNcUGZZMk2qjf9FS7u+ve7zk9R+zlB+8naR/7oQx6E0Q4X8p4t5YOCfQibaQN9b1H1LScnVuUAG7RTedgSZ3mTPO/j5wAFzn73XNyTgxRwiG1bmu1ZL7Bz/4wrnfOH8z+UOKz1HhaEc4Bj/qE2OhKbA0btr+c8MLTnEiarsJJ5L83zJuJ/tQmp9+x5y7MnN47sXGCt3PP6RIzPvbX67HvOEjjOejhwvqKecvlYycmZ4Kek5s64tteoTdByV04OuFwuP49WJfdMnZXnuZDIg/z2+s9ha9w/E3UO3jDeI3DumjtPztoXsYrnyUDwBUzs89bPkz+r7BxpaYtbzc0z/2xOqNoGBN9NfnFHThqYC1cVq/KcmLzfOfTvztEr5mR3lvqcqyc5cXKSEwHVZq1+7Pbsmp3l822DR26QaHv7ct+HcxrBk07v4bEo5wmoOId1CiUGLf5+7JQjD4zEEeS6ac7qovM0RHIvY5voWGl71Np7K5+rFQK8R/as7qg5Ocz1k++5NrkiB/Ttn2I9MfDGjPx9aavVOYohFmWDs8afdhNyKix4p5o9Rytkbp3n5JiP3xNrT+C11b6oiHbP219+r2hsrm1++rkv2Ulu8FBzMzu7vfOzTZlz1jnvwp5zRnjlPju+ObnnEsrPxucRn7auclZn23oYGPJzo63WLte19vB9f3aOmbWJsKEdEaCcPzdN21NJ27iicLkxCZefO/m2FvEeW9oBB7mcC0ZIlDcMSE7UAJRkZ0msl1bujZtT/rN61l7k3If63g9/kBdqP/Uhjk3T5O8P/i0zyQyXnLoEK5bz11zAs98fRglMnWkgAoXCE9QmR3ikZxtvjJ7gJYVniOuHmR7qpD6znC9Od/JYZEmV8PFdGVU9xk61nUPHHmPVpVejg4COyja6um8i0J00m4cYH/8aYbSAQmHdv8qS//0T3+F47RiLjwzT3byerDDNTH2SOIrpX7iInriHneM7mHC7+YXHZ5iwigtGDvPY5ds4M7mOgYEZegdG6Oy4kScObKQiZ1hZ/SG3jN7NB+e/mh9M13hld4X4n5XeLxRC9jx4L0FvmdrChNu/+acUVywgm6xRUT0sDBayrrCJVcXN6NIqBpeu57X/1zs50ruJN//ym1m+cTMA666+gVWXXs2yzZey7MKt9K9Zz7xlq+he6EuX6zAkjP/lM+NqScbvfuM57jw4SNh7P62Ja9m2dDGffuNmVnQUSG/dT3p4hv1Nw1MpnPeiVQS2RfEDH0CspfArbyPYdCELL7mMcm8fJ57bSevN1/CP8QoyFfHURRfTVd3HsgVNfr/8HKXUcmBFmfsGr+TEjmFmRk4TlzsgjLjzu7ehRLjiJb/IogV9nJxscPtzw3zpyVMY57hkoJvq2DD1W/dQnikwLjNMbsh4wE2z7/4HWDHSorvZQhBqqkYkAYXUsejM+ZRrC3jjrn9kwexpdvSv5fbV1/BEsIBXBavBtBAdIkoTDVxFNrQLM7QL2drNPevv4Y/2XsKiroMMnZ6PmkhAgbloHk8UYcZqBuKYreUiNjnKWwa/z9dLis8oi4jjFQs20/WI4slvfR6lhWJlgHRqDSPpeoazdaw9dge95gytaot9L3ofTacJtLB/2jBrQkpJNx1mKevWXABiaKQzGJW2jXNkYZ3p3nGCcISw1kccpWQ2QiUTmFMPMj64g2pQIQoiahOHGegaoGPZVXTHRWbpoNBybMQwZX1YQ8kKu2JDVhQGWoo7bJ3uBC57qsblexusPdHiuytXYgmYmtrOV2cPsfX6TzHw4A9ZNDTB8PwyzSSj3DMPkyS5UeDfgUDpELNgM/Wt76a16hXEx+4iHHma4tOfIzizy1uve887C1L+f9B+HuL4k7VH7rsHSzAHUnypIYG29bbtRYI8iAfILbQqv1kLFqc8MXFiQXwWkDjv+Wgbn8UqjyGUBxNtyzWubam159za5Z+BMU+i2rqqcWgrc54il5M4J23rLTgxOZD3sxPnznnf05CzJmiZs3B7xNj+24EoT3bEAxnl3S7+GogP9UEj+DG0wyBde1+JyYGvv2w7XMoDuIzAkZPRyBPcPDQPAVEp4gIPrvJ1IZenVQbQKBugcflYBSVngTTneiRR/n38NaIc21tRiFUoAec02vkcqTlJikW3iUD+quQguw34z/Ici3Yaq7xs2kSh7cUQPMhrwzYtBml7MvK1Jg8F1S7wYW5iERvkYFcI2h4Vq3Pc2x4Pfh3EzAFoZXVO8IwnOUI+Fz2Hu9t5hi6Xj+Rkrg14vRC0H7voOf1pexN9xpLLiXSuTgjC2TVXKM6hNChyXRUP6t3c90CL9X05Qbd7V3PcNwfsOZGSnEiKB9Ui58gQM/f/tpdV8h3uJNdBMbl+txmVzeec63wu2xz6+xnk+UguX3E/RzW37/S5up+PzXuw/Roqsf5Tc8YZyUOivf6G1nulnVPeq+oElPEEW8CJIsgJtsKBMt6AlBc+kbYnLQ+V9F5gfzZJe9/N7Q+/mdr7UaPmPH8ml+1ZZ7/LCXq+N51DzvEaOuXPKZWfJZ7UB4Q2mjNiKc56wtqn7fPvv4KoDFFt45Efa/vYas9f8jhW/7rNw1pt+wr48Gq/Rqq9V+dCygUk88aDtt7khhY716cnYamSOd1sK2Egzp+5zhvznaizZ4yAcrkxoU10c2k7p7CiuPb6a3mh9lNN0BpZnePV43z92Fe4JX4rdiyjsrGLDV2XcPTJMUQLSguXvHI5e++9laZEpAPn86HzT1I+fjc2g9m+3+K0uYr3rwvpTRxrWuO84toGe47tpjo5QlgoMbT3aZZftA0RIdCdKBXhXEaanWZmZjvV6iN0d70EkR9fZKLdVlRWsqZzLXeOfoflI31oltCMxjhx/AQXbd5KMSryiqWvplRIuGc44XBxLZef2cPizk4WP/0su4PVLF0DUe8DbLziLTy8azULw930myNsao3yj92X80y9xau6O8A5nrnjW+x74A6e+PZtHNh+DwcevodjOx4BpRiZPMZDbobC1nl8SxSjdVisQpYGnVyU9RIPJlzUgGBRGSkF/6ZQsvfcvpvBmVPMmknMzCVcvbqHj7xyE8Fog/Tz+3D1jKHEsidxXPmmNfTOD5j5L+/DTk5QeO3rqbzjN+lacx5T2SSfOPgJ7ux6hu/bbdRKS2kVh/jINdfyovozvLj5ANrB4xu7GZx5B+lMhdGjBxk9coCDD9/D3vvvQE2OsLRSZn455sWXXcjrLlrCUyenODHV5MkT0+wanOSCh47gUtjHMUXt7FAAACAASURBVB4sH+TA5CmSiTGMDpkodVB3NWJrKbgCZ6JTtOyTvPT+H3Fq6U3I0m1cOX8Vbw4q3IvlUKGTIwqusgnh+grSDBArhCuuxrmE1n3f4t6hdYwMdHN4ZjXlULNuUQf1K+ZTLQW0rKPlHB9YPJ+3dHdxWX0xH8pG+VZxjMA53j0yTcf2hFOHjuMQLrhyIQtqPWSFhVQq0L2oi+4HvoIaOsYTW/6Auikyb6BC/9ouuhcW2VqrcV6kqc0+wKbXbeXireu4fFU3606XWTm9jJ3dVaKkhTaGFilDS5uU+ntQU5byooWMxCtJwgrz936V8NgPiU8/jqRN1MASYhuwtFhitTYsjb7L+SuGuH7h33Df1NXUJGAIy0jo2GIjbpMafWiW9hWZv7aDHQWHidZizGmcPcJDY4/RkbyPVSfuZ2C0xuy8FRw5tIvBp5+ge/EK+pat+N/Wz3/RRHClPhqb30m6eBvh8FOEZ3ZQOPx9Sk9+Cj3yNNnCrbi489/vmv8ftZ8TtJ+sPXzfveAiUDYvWpBb0VXm81KcAp0CHkRGVpEpn0cSkqJ1Yy6HxipDgQTrQrSkPu+ibXkVT2oCcm+TuNzq7T1vkQlyS3Seo6I8kA9JCQSsiwFHYIVYNX357Xaui1NYbQmsz7mJjMaKI3CSkwEPNp3KAZ1YT2JE8B4uhUIjTqOcpxwi7qy3MA+zdCKEZLnnIwczOLQTnE4RE4EkOWDJ8owvQanUA3/va8KKz2/zeT+awIYY8Q9vJvcMWQQtCYJgde6NaoO8tldGW7SzOJV5gizWFzHIganyiUZo52G+lRxsKoNyijAreVCrMrQymDwEzukUpQ2S5z+1vWqgCaxG6ya4YC6csJ0NBw6lTE58BKUd2to5oq2sykG0zBFfAYzyfQQo4iAFq3LrvKB0k0hSMnxuUIDxeUnKzoHgs4Q0X1PtK92JE+99csEcgPfkwa+pKsygsngufM7J2Zl6vfWAV3IypKTtRYOCns6LavjQvsi1PTWeIIPOvUKeDGsHgSlglUVLmldRFFRe0sTlhDGUzOfoKYNWWe4N8fulYMQXWFFCTObzk/I9G6oW4umxz0nKCZGXiqBUhnaCKIsRm+erWQRFYNsknjnCq1XiI04QVBZ5Hch1QaTt2fLriTgCyfAhfiFW5WF2mFx/hND4wiwiEOBI873rVAYoT8CcRukMhUEkw7jIe3nEoSX/nPWk3YdCBzjtSajYAFEpjnyNlcPqnNQ5n1ypEGIHRmdEJpgrghO6EBu2PCG2niDbnGCEDrQ47Dl7zKHo0FMYF/v+crIZ4OUTqAwjPoQVfMVQz6byMFqxOCVo54itDyP2umARNKFkBLoFNs6/52jTLxAfEZbPTSQPgVQ+kkc5n+/qVAYuQEQR5LszdBYrmkA1fQ6nDQmdIrCCCuoYQk848wgDyXMz27l1KIuI9prdJsVOI2IJTYByQX7++OgFp4y3x2HzqAx/Llzzs0rQPrPvk3x6zyeIdMSqo6vIXMqvvPrXqI9Zjj89gbPQt6yD1VtD9j1wJz/qvpRta/q4KtxNOLaHM2d+FRO+jA9uLLKkYdnfDf8xej/rV7yH/lXrGT1ygOGDe8iyhObsNIvO8+GMYdhPZ+fVlEuXUq09TKOxh8nJH9DV9VK0Lr3wHIMiA6WlfHbsH1h8fJQKF6NdhSSe4NCuU6w9fzVhFLKp90Ju2Ho+f3f4CMtGZlm79wlaXZ3MOzHFrribefN20tN3PudffSk7Bi+HyUEubd7LksYoX+7cwtMP/hMzX/gEwwf30KrOUp0YR5Rmwarz6LroWqbX38gtv/kuRuadx0efatK3eB5HuwP+R7VKeEU/F758FeybhJEG9plxzI4RzK4xXC1FemKk8P9ORNtt7/AsM82UvROHeOb0GCSL+KOXrOZ3r12LffAU5s6TOAdHEsszLcv6axaxYiBh8pY3IqGm9Eu3IGnCwRUxf7zzD/n03r9ksGUYmv8HiIpZWXJ8ZctLkdEvsm7XP5CEiqGr3k7lvE+x7PyrOe+aG0lbLVZfcyNHjx1F6rOoLKM+NcGp3bvYffd3IE25vDLLtctLDBx5gtc2CjwRH+KZYJDT4SyzYcSBRau4a8M2GraPjacqlNQo4oT9nc8wHO6mP95IsmiAG/QaBgoFAhUSJ1Ve12qw287yaFjgVq1Yftlyzrt8MerqhcwcPUWpuAk6F7HxmW/zWMcm+teu5F2v38B3y5ZAKRrWYZxjXqBZ/9Aku79xlO+Pf5MnytvJlOEPD5cYfW4ltWbM1hWDRJsXcmLPLzGerKBpA5bsu5tF27+AThvYd76Hi959MxfcsISlm3pZsKKThWu7iS9bxPiJYwykK1DPzDK8/X569r2bnsIIUruOYtTLK/QZDvX00Kw3KDTrNGtDNEtDmI5pllxcwskyjnVexomBFzO07DoWHf822VPfIx16FN0xgO5aTMGsZ8HsRjqTjVy74D4mT0acLHQxoeBwyfDr16xkMLJ8a3yK/TblAwPz6est8kS0GZfNkHEafX4FF7yEJWMHWHLiKOP9v0iDJqee3c4zd+1g3wOPMjXcR1gIqfTGpE3jDZsvUBTnX9Ns5zKaF7yVdMk2golDqMYYweRBinu+iBOFC8u4Qo9/LtvPYPs5QfvJ2qMP3ecRctjA38qhZMEFDZQkhMqgIkPQ7MQpSxzMYl2MhCnFYNIDBeuT7AviCKMWLVNC6SYOhY6qudVc8DllHsCjLSonJYIQObDKkxh0OhdmXZIEhU+M17pF4ITQBbhwmszFBEEjJ4egrSZwEd02QQc1tGS+gIfgAWAO8hHvqRdlsHnRiAgQlfkwKVGARitvVfaEzoByOLEUnBDYEKcNKkjpDocI0SQqQIcNQmeJMDglOG0IpYm4oieP+JwuAotTPuQndvgiJPnfARblIJI6KvBEV4tD6RbOFtA2pCAGFzY8oQiaIJqCnsK6EtqBSOaJoXIolWKUB8SFNCRQLZw2FCQhCVNU2CTUdcT6Z94pB1qloDMKqoZKyjhRhJIQKf9ogXaeSWRzwGs12kY+bFMcBZWgizPo1Bc4KEXTOOvBO9oAZ71jba+CVpqgNIqzvpiGwqHiKqrnBFHShdZNwtIY2sR5YQKHBGkeqqXz0Djl1yU3+xfDFhniMyyDBO0CT7QEdJgCmhIWyqexaQ8OR6QgzHMJA4sH00GdUjwGLmRh1qQR+uIbISlCgI5msYDR7Vwoh1K5d8LlxC1oAiAq9ZmYuYchjGpYU0YhhEFCoAUbTROVR9GtClYL2ml64zOkyuAkQNuIQFKUMmBDtAvIlAEX5PMHhyc81mm0Toh004N4G2AlQMT7W5ROPNkPZnGmCMpQUHVEvMfD02WLCj2w19oSRXXvmWyvg6QEkhDlJFGFKZ3BBIktoVULEQVB6h8F4Py1XZASKOONNZL7f5QliCfQzhHoBGejPKEyo+As2Bir07kQWi0pEiQ4G6NV6vU+p/voFKUS0MY/AsJFFLGIDdFRFWwRb5qx2KCFEkfRaE98xRHolFiys8YA5dDaoFRKoXOEZmN+nuvl91lR17AuJjAFXNAk0nWcys8PFEGQEOk6mAJKCYEEBMEMab6XlAtBW2LdIFGevKu5vEGFBClapQS6CQToaJoCTQwxKIs2IQUboOMEowyRKWJ1E8k94IFyZNpQULOITojSTkI0mVPYMPNGgbkoAUXoHFocBl/8ySqLDusUnGCCZM4jGusmoQ0wLsZELXABoQUVpDmZBsQR41CiuPJnkaDtndrNX+3+C5q2ySu7X407aXGh44I1F/PwrUexmWP1pX2UewsMHrifqcGDPLDwRv5gc4uBpz+OI6aub+Gu/j6+taLA0U5hA0/xSz0VurpeTFgosnTzpey7/4eEhTIjh/dR6uqmZ8nyuTEEQRfG1qnVdmBtjbHx2+jqup4geOEKcyJCNZ1l/9hzLByaoqCuwEpCLTjNqcFhNl64EYBiUOTqlQv56/0pN57YxdEOy4rhacZ1PyPRAoqlHzJ/wZtYcn43I+GlBEe+yrbWc1w+tZOPb3w78cwk6xSsu+ZGrn3zW1n/irew9orrKC5eyfGG5sP/dJDv7R5h/YIKxyYbFELNf3/tJq5b20cQa4KL5yOrvYfATTQhtbihGvbJMcyuUU/W5heR6McD08xY/uD2PdxzaJDHjlg6evfxtVtexZbOTtIvHcIdnYWFRXZOZxxLLRffvJRVXaNM//qvgjXo5SvZ/voNfMh8la8d+zLjyQRBuISxRf+VSJe4a8MG3pEO0vuNV9B1+CHEwTPXv5wFG/6CqFBGB75QRTR/IY8/8zSzQcTiLVdx89t/m1JnN9ZarDEMHtrHqckJTk+MYkuK48EorjbBpNXsWLaWh8+7jIliHzceyLji8PdJyuPg4FWjRa5JruSNjTdxRe1iykEfhwqH6Wh286O6Yq8RFl4R84a338gvbl7Mj45N8L3dw+wYnmVq5i66RidJmvOoVBbRXHUDNzx3O+VwmP+2ZA2Lpizj4qPAb366wdJjTcLBaabiExgyhkq7ef0Dy6iNlnAotq09wWXl46zMjpJcfC9n+n/Al+bdx/WPDtJRTeE1r6L/t34TpZ9PVNTMCYr7v0b/+F8zm9Rw2RoqwRIa7lWE6R7i7qP0TF4ErRVMXrye05dsptcZ6hNjCNBs1TkzPMS0HGfZxd1QaVIfLTO+8gpMEFMePoAdeox06DFcWkd3LiG0fXTNbua6wjyubz3CGTOfMwIrOgNeeuESDk81mGll3LZ3hPp4g09du46X91/Bnafv5mRzO48v2smW8zuZ//g4S888ycL1qxiNy6SNQUw6w9Sppzj+XMyBR2c5+OgwU2ca1KZa7N9+hu5FJaJiwOjRWYpd0U/kFbadS2me/2ay+ZswPatoXPCrVB76IMVnv0Dpqc8g1dPYrhW4Yu+/us+fhvZzgvaTtSef+A7WgC7WcE6wLmA+CTasoruHsRITFepUMsGGBhNmiIsIeo/QEU+gQkslNRgiCh1jVCpTlAs1tLK+GEQ8QxTVfdW1rARiEG2JtCXLyVKIYwmnaYUBUVAllcCX2FZCVzCOMiVSCQgrIyQuomgiyj0HIVBEhTqSqZxMaJyNKWcFVi26k247TkIRowOi4jQkFZDM51toi3YK0RlBYRaVdkJQxVlfalzCBqIMgqEU1jHa+29CMfRVhmm6MlleNrsnqpH1jtCq9yDaEJBRKsxQj6pgSthCjZINsQ5EacI8oiyM6ghNIqdQWcXnX4kQxOP0Fo8TqoTEdlAMZ0ldkZKqUpCMpgQQZAR5aJqtTBEqhypVoTiFapXnwrkq8SQD/btoTC9HExCWx7wXSBQF3URCi7MhHWSYsImkZSralwlXYUKxMOMLp+gEa4sUSdBBHRtmhJJ40igKXaiChPR17MXaACHAmTK9tkUSGLLAonSKCjNUVsKJI1SWQDJUXilOAcXeI9ikiA5a9Mzbi8nmIUFG57wDOG0xUZOOsEErK3oCF2S4qE4hz5kLwpYH/Tgi1SLsmCRrdqKBULWIlCMMqygxGCWUu4dRLiYNm4S6SUFZwuIssZpGxBBbjeoYpdA1TKJBB00u7r6frNmDlYggmkHZmLAyi81KiCkR6ipKOQLRoJs+7y1sECmDUv65n0UHWtcoqCq9qx6D6ZWINmRhgyiexihHpTJJlhUxLiS0MWFYp6t3L03TgcZRLA2RmQ5wmkppnEwLsYVAT+OpV+QNEwo6yqOI8qaOomoSxQlONNZBXJjCAkVdI3MRiKOTKirKyFCIaOK80EhQaBIGKVHYIouqSBaiwjqxa1FQdWJdJ5UiQVyl2DOOSUPizlOUMl/RT8dNX/o+bKJLU0SVMaTZhXIBBd0g6D1FEM8QEGLCFi4rQ9CkOxpD204yW0AFCaFuoURQyqAKVSrFKYimcOIo2RCRiLhjlCz36hSLdSRI6YnqaGdoCsRxggsbhKUJjCn4MMwwRRfqqMI0kWSU1AylwjBJqYGOa4CiUpmGuEHqJPfgWV8dMqqBK9DrErLIQKGGhC3C4jQdlUl03ERJFaNAEVKMa1hJiMNJrAsJwiaWgCBqgDJ0SBVLiZZOieIqiEFHDSKliEhx5Sk69QQN24MWn1OnbEihYwx0giFA6YTOYJr5wQyioa4saWiQQpWIImGQ0FQOF9WIOocRlREbQWUxxXASow1RsYYyAShH3HGGuJBQKE57w4OzKNEoAXEFKI6ilD8z495BkqTivaZRFTEBTgtXXXfdC96PfioJWmJavOfx/8BsOsMl87ZykbuEwbGjvPwXX8PYwzA2WEUUXHXLOgbO7+G+v/4oAqzddgM3T92Nnj7GUPPvON3Xy3/cHLBlZhelwhS/Lx9myeL3EkULAVBa07tsFfsfuou40sngrh+xYPV6Kr2+xL6IplK+hO7ul9Fo7CPLzjA+/jXiwhoKhZUvOP5L+i7l9ubdLNo7jbKWuGMlPUuLzNTHWThvgGKxiNKKeaUy8YI+7j4yzSsPPcOzyyt0NwyHK+dhWi0O3P4g+x74J4b2PcSuM530FRI2u8PcMPkYH7vs9/iVK29m80UX0rdoIf/pm8/hnGN4psXH7jmEEuGXtw7w6LFJfvvqlfyHF62iu/j850upSohe3YW+dAHB5QshVLjjsz6293Qdu2MUM9nwkSSVCAkU1VbGbbtOcWKiznd2DzE66ygvvJsvve4dLHSdpLcegEZGuqTEE03H6GSLsKC5ZH2dmd/5DSiVqHYXOJAe58/mPwRAo7iF1vzfZrLztSiE9/Z3c/Xj76Pj4Q8jJuHU4jKnLr6RJes+jchZwjg5OcFtt/0DrVYL5xyvfs0bKHd0UVqwmEapE1m4lNPGkRV8AQvdqBOdOYadGadrapi1R3Zz2e5H2XTqAJXWKVbHa7m8vpQr0zVUCisoSQeIMBNU+eKCH/CtJQ9yX/d21jduIGkIpVUD9K/qohRp1vdX2D88yZ7hGR492cvtzQ4me55jstXPJbpIYeAyVozWWfngV7l96zbmTVve9kiVTYliVW+JLy35EqcL3+VMeTev3LOWqNaid+lKXntNB6unHyZyjsDAsrEm4fgyXnVrSkfTcfeVFe5/9Qoumfc/2XvTaMuu6r73t9bu9z79Obe/tzpVqaSSSn0HAgmsDkRvMDZgsEOMHQc/x5CE2DjEfjYmz4lDIC/YxiDbzzbNiyD0hAgDQiCp1EslVamaW93tu3Pu6Xe/Vj6cErYCeNh5b4wwhj0/nXH2Pvuuu/bea6255py//7XM907SMEsIaRJ8599Q+uY/x2ydwOyeI5gAY6zJxmoFKRwSriZSBzFmStBL2LEYc0O9RDDhcursaQDaXgE7S9hyffqdFtvtBQbBAl1ji01/ltXx1zIc24u87eU4S/eTHvoLss1jJAcskmKLgjPGy/JZfjJKObSZ8OVn1/nJAwH/+rVX8exaj6eWu3zm4SVKwuC1B1/PfZv3IlSHb1oDmrsv59rDK7iLp7nuFbuQV72S1eOHgQiVPoPlmuy++hLiYc7pRzbpbkbMP7TB/EPrnHuqiRCQDFOO3rvC7CU1+tsx8TDD8f+G6LAQ5JU9pDMvIK/swTlzD4Pr/gWyt4Rz9h68o58m2n3HKJqmFBj2D7/Wj4j9g4P2d7MTj93NmHmWzDQw/DYqCajKiGJtmaFp4GuDgtfDCvoUxufx/CYiaFEur2AaioqbIfsOyJxyuc/MzFPIxCVVFkZ5GQMLx0gwjBDDHtCgRyYCSv4WKSCVhV/YpEBMVowoNpZJ7QEmJr7TJrBbWDIiwqZc2MYwUqaDFczyAgkeyITdu+9FWRmO2yFNi5Qu+TL52AZaapJsHM+NscwUq7hKjsBytpFSYxU3sNw2gddDpAG+vYWhJdrKCKrLo2he7jFe3EJ7HUxtkuUWlQu/BUYMImWucAaLGHNsC4bjOGaI1Iri2DyWH5P0xxD2kDG/hZHY5HZMobDG3OzTaL/LeNqCvIglHdyJp8HuUvDXEaUeZdEntqGx4wgFIyJKXByvSSIMAq9NsdzE1wmevYlwEkqNs9hWRNyfJDFyTH8bt7JKudSBpIgyhzhj55BZAcsaYGJTcbuMjz1GQ2yj7RzTUYjqaTIsKtVVyhPzVNwlKLXQSY1qZRPDW0ebCre0grJjfL+HXVhFIZkunKFERM90UAjswgaZKXC8IUpbWH4Lx2tjCoXjdjGMnILfwnQ6uP42hWAD2+sSuFvsKyygXAEkBHaG9rdx3CGV6aMIkeCnktLEs6MMuWiCWnEdz2+RyQSlTWyrP0I8mjGGM8QSKaapcBuLJNrHKawxPr6I2dqNW1zEDlr45U0qY88yxSbu5Cn6w3FwUvzSBuQmKqpTcTZItY/ltRGVPpYTUqmsj6Jog0lkYROBgev0UG6bovYYn3wKJ6vh6x6W3WFcDRBBiPYEVnUBR5gY/iZB0ESbKSiTktvDtBNst8fkrkdR42dRXkYcO7hyQMNbJnQFgZ3SqC3TBUgKCK9LbmhsJ8JxehRLK5THTmDFPqkOcIIB4/u+hW/30MrGDFoUSltIN6JWXkernLrO8L0I6XcJlEsuRvWRntfBs2NcmVB0+0gnxC9tIPwmTmWT0vQpev0JtFTYTjKq/XIGBLlA2QaWmRKU1hHKxPFaFMoriMynEixiRGP4E0exnRCcIcLMsIwYQ5qMV4+TSBOw8epHSOMSWuZMTh9BFLZxvU0cK8cyFLY3IDUjnPoZTG0gtEmxvECpcRbDNCgwwLQ3GZ88xiBqYJopwulQK6/iltfRuY1rDcmVS2niKJY/JM7dUeqwklgIgsIySgiKlRXM3KQoM4Q7hOEkhp0SihzH61B0e0xNHUNmZbSyyUVGrh1q2iVwYmKRU7I2cEyN3VhAJAWEoaj7HYRhkClBhsS2I6TdxTBGdW8xkh17HiKxNCRFXJljGAlucQunfpwsLSEyF0No6m6TmdJTWJMniS2NldmMVRYoFzpYpVXMwgqGmeAGbQqVJYruJlbis2fquxiGJtEewlC4hS28xhlUXKZcWqbsLxBpi6K1jTBsVFyhPvsoVmED5QyxCk08q4c0clx3GzMuoKyUF9x02w+dj34kHbRc5xzdfoaz/TO8cepNnH1gntAKuf3i1/DIfz03OknDRS+eZGnxHGcPfYPQDnincYpy9y+IsmvZOrzIr77yag6k57infCW7ogVe5J9jevrdz/tbxcYE9bk9zD94L16xzIn7v8H47gsp1Me+d45pVqhWX43tzDIYPES7/UU63fsol29Hyu9fUAghuKR2GXdvfJaZ5W0iewa3PUaoBzx98mFOHD7NpVccRErB/vEizdm9yO9+nalWxD1XVKgurBKeToh7PdJwSG1mJy99xz+n9rJ3I058jbn+cV6xeS/vym5g/RtbXDgRsBol/MWjSzy62OaK2TK/9fL9vOiCOm+4fJpLp0t/YzThuWNyOkBeVEVIgd6OYcJDWAbqsU3UQ+vMr3Z553fmObze46vHNtCyR3Hvh/ijH3sPk/8lRD26PqLeTPgsTgQsn+yS9YfcdGWb8Pf+T3qBZMMc8L63mbRvvo58+j28feZ60vLLOZL6uELwqUbOq+95I+7ywygg9Tw2fuy9TOx6H/KvpZktLJzlnnu+jGlaeJ7Hbbe9gpMnj/Gtb93Dww8/wNLSAs2tTaoq4OJ4jNLqOmvxGp+/9U2YwuXg6iYFJdkz8VJeWHgR18n9zKo6trAR0iTM+ywMj9Pdnmeh8wUWry5zWq2wf+Iy/tL7DJe3bmbjZJ/V+Q6PqYj/+vkT3OA8zNFwjESbIASnozGeLUgGFZuDwxyrNM3OymW85uuf4q0//TKuu3U3jcstFuT9PNL5Mjc/UmPHWpnEKPHSt7yd262vU+gcJc0NernNqqxTHAyIvmxgZHD0XTW+ePk0C52H+fP5v+C7C1/iLU9/jsWpK4iX7qPWPE5e2okybczuAuy+Fn3lDZx79hgVOUYn2cJKLOT5Wgx9pk99YpxdNxxgfXUZOegRGxZPzl3It/Zdxl7HZu/MDGF3i8jYZlhcYqM8ZLE9JJk4yMRYACceRx07zMad99GdPkRx61qUM+CFeYNX4vDYUsS933yUg3WDs8LBNiTPrve454lVXlB9GR3nSdK8zelSlyMX/xQXnVtB3HuUnbtydvzsr1OdmWXj9AnyeInO6sNcevs1jO2axvIMsmQUZbBck+Wj2yw8vc1gO+bcU1ssHdmmszakNhMw/9AGWmuCqkOW5EhD/qCXgujiN5KPXwamj7V1hKy2j8Khf4dz6isUHv4gsreA8uqoYOp/Kmz+0bF/cND+btZc/lXKYkBQaiLNhEQ5VBpnUBMLWO42UzrE1C6mgPLYMSp+kzi38USCCUxWF3HVgFQXmNj1CLbIyb1lpNek7jWZKPVBGzRK58i9IZY/hMwmMBJq5WUqQQvLa2NNn8IIuuTCpmC1qZQ2KLnb5KHLlH8GUW9SLrSYqxyn7q0QBFuY1S5lZ4AyQWYWnr9FQVhU6mexZYxvx8RSMD12gmL1NIXqAlIqat4W0o0RwSaeFVJ2t6mXTpEXN5HFLabrxzHdAa4REiKoVNbxjAxL5uBvMF1ZwHc7WLmFGwzJTSjaCtGZwfG3KVaXsMyUcv00cVjC81vMzDyK9DsIkTBWn6deXiDUBbRtMDb1NBMTj1GtrmLIhEl3lVB4uGaODLr45RUahVUUCqeySTHo4zVOEigDpQyCYBPfi3CsDko5lKwYUyqq1Xkmi5tU3Q26QmP5PSb8LfSggeu38WVCQfTAazPnnMAbX6ZcXcUprkFcpVBeoeYt4bo52EOCoEll8glsoXFMTW5EeP4A3+ljmwkFs0O12mZoWGgrwjRTSrseIw6L7Jx+DEPZVOpn0LmD7bYJvE2s1Md1epTsLlNjJ6gGa/SHdQIzwitmWFIhlMAWCU5xlTysMhV0GB92MHJJqdRkunGKarBG2e8SGXeopgAAIABJREFUhxXwuli5S6l+FEMauP4m9bF5fG2zq3oES9fIMgvT7jDnbWHlOabfZKy6RqnQBJEQCwtZ7SJShWEoApkRpw4z40fYwwoL6YXkbkZgRVTcIeXiAmQaNylglRbJ0wL7xh9BVLYoWQkT9VPU62coZiHF8gq1mVOUG0s4wfZITsfpUa6fplRqYtsdsqhEwd/GkCnS7TBeXMKyMkwzZMJfJbc1RrlNZsaMzT3OlLeE6W1Q1A4lfxO/cYaxmacQZkKpsEmpuE1QPkvJSnGVxVh5GW330WbE3PhJokziaY1UFlrDHus4pbl5rMI2XuajrR4zU88ipKJaWqJWPYdsnKFWXiNNTFw5oFDdoOF28NyQJCowMfcQ0+VzmEGP0uQRhMzJowp+aZFiaZmxwgZZ6mCYA6bNBMtQFOqniDIfS2lmSou4dkKW1mjsfBZb5Qx6M5hS05g8gkHO3OQpilaHqrFNrgMsJ8KqnMOxQiwtKJkdatUFTDNCxR7jlUW8KEKJnKDUJvbaGF6TemmdmeI6VnEJ1duBa/XZNX0IMCg6PcYr6wRmRIJgduJpikCe+hT8bWarx5CqxCB1cSrnmBibR+c2jZ2PUKotEZhDUjsk7deplM7hKhuSGoGzQeo26Wsft7jB2ORZxr0tssxhvLxOyd1Cez2SsEi9tInjt8iFZrp0FoIWjdIy414Xx07w/DWcgYuyNbPlY3jWNp47QLhdCsEaQaFPUOjhGRFS5tTrZ3GEIvBXyUKXSPlYhsKRmr3FFcrlE3TLGWF/DgMLq36SstmnUF7HtNtUvS2yNCBNXWaMTaozx6l6K4zVVjGNEKUkhlCMFzpkSmAWmkw3TmIVW1x2xdt+6Hz0I4fZP9Y+yonOce46/oe8++Cvcv9ffougG7Dz4D7EA7uJByPtgBf+1AXMHKjy8fe+F6d3lqvG9nNz/f8hF1XOftnk4x/4Yx70At411eDQw3/Ee8/9Pt0bfwX3greD/f2ixWcfP8R3/+wjqCxDmhZXvOINXPzSOzHM5++4K5WwuvYhms1PImWZudnfpFi8ASm977vm589+hsc/9Wfs2Chh1H6SWr3Etn+CwaCLZ5Z43WtfSR6HrJ04yuOf/8QI3wr4SYL2A5pTs+y43uHOl/7m865buOeXcE9+ng2rxjurH+PyeQMZ5jQbJu9440U81Oxz+UyJ2cr3t+lvazofFYXq7Zj0Eyf4L3nER1SEAg4ieIMR0i8c4cq9L2THSgW9FkLNIZ8psFq2iQYZ577wEJfPfxTZ22alDoXM5Fzd4D//7GX8H3tfxaZ9PR/batPMFT9TL/MvV+6m8sjvkho5WsPmy34Pv3EL2n++aPji4jm++MXPYBgmtm1Rr4+zvr5KmibYts3FU/u5/GSVWGWINOEryx/nwctfyHQ2xs89cj/F2hXIiUsQCJqiT1l79HrnOHbq0zjjB1hTWwyzLhpFjhzlwCuFKBYYxG3OXN2gnafccvJn0Dho2ecB0+KQOypbHTME24YgzRXFskO/G1N3LT6pC3jbW5ArsBx6NxX5vRMfYO/Tgr6d0Og5DGb38I2bXsInnv3X1PIOThaiq3v5dvVNrH7rGa586EFEIDCThLk7mmze9CoezO/nkb7Df08lDSxuGA74umdxUZzyctngxXvfhHfRG8EcPQ9aa05/9MvUO1Uc0yclQZsCNxstjsXFVeQlFU4OF7n//m8TJzGt6hherw3AiR0XcvullzK9cIrDhx8nz88TzTQ4gyr79ZB9L7ke88t/Qrh1mN4dfRz3IFNHfhGN9xwLjEFvkc5smd+SPie6EVprNAnjF32MWKwhzFmapVfz0sMd/snnP82FL/JQ7/kcC888xb0f/xBozYUvvpXLX/EGdJbiV+rfe0ZaywNWT7bZXhrQXB7iFkykIdheHo1Bhi0p1Bx6WyHXv+ECxncXWT3eYecV9e/fzMhjnBOfx3/yj5DDDfLiLEbzBFgeaEXvtv9EsvMWRNwe1av9CNk/YPb/bnbo7gvIbAuhLMxuyHyyj7LbQlW3KWQ5XpYjBxZJoNGmHtV2hD5DKySPPWpOSm5mNOMaRRlRSE1CdxNzxBBA6wIq9jHcDfpSYuSSPHQJdIY0EjInQOcGdq9Lv+hiS0UcCkw7Rw8rhJlkzNogKymM7DwSX+b0pCTRLhVikjzAjwckNghhIXMwjBgjh0Qao0p/FLGArc2LMGSCU15HmDFZcwJXJFSCDVJLcLa1h4nSMr4V0+5OsNUbZ2rsDMU0YTEbI89tdpfPoNHkuU8vHmOYmkyVTpPFPrgZYXuWgVbUywtESQnX6ZORkRiSsLUTR4aUqxsM8TDTAEc0MRjplaWmRGvBoFcllxb91Ge8dApHQrM3QcXdZqO/B9Nbp2pvozHx04yh2WBotslzm3KqGAgX12kzkvKG7ahEYCQYStFcv4HAPUdQWkKZijgqUrQ7aKnp2BIvVihdIJMK3xiSYRLKjMKoFIc8NxkmVRKnSzmOkb7B9mCCJHWYdc+RCUhw2U7LFCvr2ANQjkkQO5C6xE5G3+7Qbe1ExVXG6qcJ6CGES24NWG3uoWh2KLkGQhhsJRZZBrXyMt3Mp2JH6Cyn1dpBsbSOZ4fIHDJToDIbQ0m6pkFuDCF3UMpEygGeqQgiSZb5dPIxLK+Da0aYekiSFjHs0T1I8gikoovE6I2RpD62o+iEPhO1BRwjgtRgoz/DRLA4qgk2c5LMoRQNaMsCm/2dzFaO0cwaWIUmbgbFxCdOMzaTKSaLLdA9tnyLRKYUEnAMTZb7qMhiaetCGsVVSqU2yAxHxSRaYecCJ1KcVXOMldso2UcisZQaCY3rES2vJy1QKWZs49kpz2mxSQSiVYRqjJKCHgkFpTCkYhCW2W5PUYgSxqZPcx7SSmZKlNZIfDa70+hcU7GXSTyBmwXoOMLOIPZHKZBZUifMMhp5izQY0U3NFLqyQKs3TsXfxDGHNMNJ6s4aSmsKfZOh52J4feLcZLs1y7izjuXGDFUZx2uhlEmzO4sstHBVj2oOiWmRmz5O0mEznsK1I4TdoducJRUGlaCJZXVRwqAXe4y5XSylWWnuolFYZyktE7gRY6bCSAV9t4/OCxTjGG3E5AYIQ7MtTHyVs9WbY9JfRpsuUWJgOD0cAUlYY7k/jTaH7KwsonKLgY7QtkcpNWnJhEwkzKUZqRojSSWut0GEwTCqkigbv7xNMdVoI0KKEWJIJQad9iSqFCNigyRxGRtboKNdSiLCSRWZZYAe6Y9luaSgcnKh6fYm2IincZwugRjQ8FaJkgDXCUcgkVSiPIXM4ejWFZTdLr4dUhNDjCxh6MVY/YDEzxnmgoIbIhH0LD1Kpe069FxJUUmUnXwP2CN1NpJ7EKBDj4HhknsdiqmBJOdFrzv1Q+ejHykHrRU3ecd9b6OTdthXvoirxdVETwzYNkMOrL+cPBvpCuy6ss5V+8qE957h88f/A1dUFC+cOoMj1jnxxSm+csMd3PXGn+G2SpGBUrws/iKv+sZvI0oXooqzdF9+1w8s+j/7+CHu//M/QEoDy/MQ0uDyO1/PnmtvRBrPd9TCcJ75Uz+NEA6F4AYaY2/E965E/jUEvtaa/3z0P6I/eQhblfDLb2KibHImOkJuhcg0xz/zFLbjkkURstjg0sOHcSNBkA946jUXcdY6SGt2nnfc9htM+lMA3HXoHAdOf4w7tj/BA+XLOFS+nC8MXsdrTmeUIiiPe+y9fpydl9cxf0gN2d/Wnlzq8L6vPstaL0ECF1lNbrL6/FR0CYY6j6AG2BFgvmSWU/NdTj26TvnJ/8buU59Do3hml2A8cjj8r95I3riFrjVOICX/aaOFAP5o0uXgqd9k7rH/hgI6ZRtZ2k/yis8/L0KZJAkPP/xdDh9+Cq3V89q5Z89erq1dgbhvkUAG5DrnUOubLPiaPXIH+6yAmpiF52CtQrAu2jyY3Met33oA5/U/jq2ugaEkI2P1BQZPnz3FqWPPYnbWqWat58DMgIswd6Gy0wyqP08Ni5ZQ3F3tc8mLxnnAC3CFIN8McY93SYYZSmt8U9KwJP9seJyr1WUondHNWrTidR7r/iUvfss/5cLxFP+r70DmEVoIPnHjR7j94J187Y/v4oY/+zj9iXGs7TZTt7SYKHUAiG2D5Zk6SR7wjeKAT/YdelJgYjBX2MniYIELSnu5c+7V3DHzcmxj1Kfbyws8+8ef5UrvZgSC+cGT7PQvxpYu4oIi5st3ghQ88vghnn76CQrVBoNShfap46yX62xf/1JeUPD4cd/mqccOcfLEcfJEkKlkVFujJFVvnck9h5lYWSW/SFD67jTR4iupTF9L+XxvojKGtDhTqPMRlXFGR4jJv0AGp8nJUGaDXu2fccdDz/JLa19l9t0fphWafOdP/286a8vYno/Wmp/83Y/9jZFilWvOPLHJyrE226tDkmEGevQ9gJBQnfaxHAO/4nDZbbMYlsSwztO5tMZa/Dbe4T/GXvou2vBAKbLqbtLZF+Efvot49+1El76NdPqGH4mo2t83B+0DH/gATz31FEII3vve93LZZZd979gDDzzABz/4QQzD4KabbuKd73zn9/3+yB9dQLcBGpugFdJ0y3h5SL9gUCTCGEqEzHFCjcw0nTETry0IawqvrxG5jTZMUnKSYoaZ2nidiLQkSQXkloXMHLTRpW9KPDWSqva7kLiQ2gFmIqitdWjWHaShEHJUr5pEDSqDTXIfBmXxPfq8zGBwngVdiiH1RgtAr6fpFHzMZpHA2SAsAgpyQ6INNQIhDmy0qRBGRmaOeBXn10JYQ0UmLQyZk57f69tozTHpLeHFOa2wSFdNMDl2FiXBShVhVKSZNZgpn6G8rkgtaOZzNG2bibEz3+vnPIccyLICthlji1Gdl5EFGLpHakuMBDJbIRX4HU1UMHCiEaEytkGZCjuE0ClgZ328gWJYkVh9QVzQpBqMDOzzxHPFeR6HkEiliB2whxA6PoYRjjTbcoGRj8h0RmqQigraaZFiIxDUWkOsBIYFCMvn8fhakXTGSKwhNRWh7RylDCLTpBSNAC8aTVQY8R3dvkCZGi0hliYDA4qpYq23kwlnFZ8IK9b0q+ex5zk4CaRmgFAOiDZGqvFiTack8QcZsX+e4AmYmSS1Rv3jDEBmmtgV9HIwBVRyaBbBVeCMAJRkZgGnJ0i8PkJqMnOUbktuYidDSA1EBqlpsB7PEFiKQVSgNnkMSymsUHEmuYCJYAlp5+f/Z0ljWdOpCtp5hcmwxbAsyZ7Du5sjSmCSWxTyGHIY+pALRngeAXniY5kRSeJi9h2o9BCWwu1rNBoj0xRbmuakibZAZCMYzXOgHIXETBWZw19p+kkJWo0gobnEinNS20ZmDonsI0aAVJCwvbWDMW8BN4V+ZfQ8AeQmGHGZgTNAJ4rxJgxqCiuBxJMjpo85WqNk3TqVqENWVOSAskZImdSG5spuikELq9wBJbGzET3WHxqIUJAUM8KCYK21mylzFduJQIGRa1JbkEcBphGirZFIcmQ7KEzKvQGZrchtiYg0p8NdNOrnRpsKegSqSGOwXVBSojJBMEy/1z/KkGQWI6BHrpG5gR3npK7A7yj65RGoJbMUWo0GjLX2bmatM2SF0cAURiVwUjw9BCGw+oquU8ZxhnRSk7EwQjsjDUIlwBpopBAYGSS+JnEFzlCSBKN+NFPILDCS0ZhnMNrAkQpSU2BlGc5AM6xIRA7qvCKBlYCZaELTI1E+4WaZ2d4merpP7Gm0MaIy5laOHYKyBLkJdghmrEmjWWzVIpwYIrTACSG1NIkvMCNBagrsfAQ7ih15HkiTI5XADjW5LZ6DVpLlHrFlYdPFyiBz4QWv+6tx8X+2HxkHrZ/2+cX7384wHbK3dCH7/AsZ3tcFwBuvUj58BZ4tUBpuv2Ua+cgmR5sP0rA/wf76Bq5l0kku40vPFPmtd/wKby0H3BVmeCLm36tf4hr/Z5n+2q+jTY909ka6r/iTH9iOrXOncItlnvnLLzHc3mLr7CmkYXDZy17HBdffjGH9VR2XUilr67/P1tafM5puDBr1n6LReDO2PQ2MnLQ//Oyv4917ms2aybR6C2hFv7pC5nbxHAff97jxRT/G3M7dbD1zlHPv+VeMD5pIKfjGLS+lV62wUjzFmeosVwZv5EvPrJMrzevsR3i//hAGivfv+nnmjVfzmk2P9fkulmegUs3uq8fYe904xcb365f9MBsmOffOb/GFp1d5crmLFALTyNhd+xI/F17F1b2LMIV5XgVy9Ju20rRTRZQlnIglB+Y/TH31FA/cvJu9uw/yUOkAL7zzTg64Nu9aWOMbvSFzpuCT/hNc8OVfAa3JLZPlgzfjXPNBTKMM0kQpxeLiOZ555inOnTvNX39cK5Uqe3deRF0FNJ7IcFNJJ22y2DvORHEfRbuCqy1Ao8/voiwZ25wzttjM1riyVuLit/4j0jMrpEsS84lNzuQQewb9isvqyQ5CCFSuyclY1uuUkmXSbIUniw2OBQeIhMvrYocz+wMe3euQGyNdjXrY55ZTh3nDRRdxmBnuObpK1t5g39lvMW70uNK8hB3eXjyzPCIaVQNsf51i+w8x5mxir8EHnCv4VOF6/uPHP8Te+RMUXvNj9B/5Og9f/mKssosfLfBq/hKbUQRr6ErmL7mQ+pWf5hvLn+fTC19nabiEK11qTh3XdLiguI+9pQspO2X2Fi9kXNZ55GMfw1hPcQyPcXeOgl3DN4qY0oLAxHrHAZTKefzxR3jssYcoVeocveASjoVDrj11hGz3fm68/ApSw+KWgsfqyjL33/cdBr2IMGufp8TlmEZKrbbKpDrNrk+0+P2Dv0CpejHNPOHWJOZmb5zntENWyfmKSLi3ci+t8a+gpWRY+gniwh28+Myj/MrF4+zZfxtnH3+QzbOnOH7fPYzv3ktnbYXd172Ig7e9Brf4t8PkN5f6nH1ii7CX0lzoo3KN5RoM26MUb8uRNHYVCao2u64cozrpY4Qb2Ke/RnTh6yl97eexVh9CFXegLQ+jv0x04esZvOjfgMr/txIg/z45aA8//DB33XUXH/3oR5mfn+fXfu3XuPvuu793/M477+Suu+5iYmKCN7/5zbz//e9n7969z7vG6gf3cXaPQiZilC4bK+yBYFiSiNxE6Bynk2OpSYLhCpuTUF4xySyHvKCJg5jcEdj9nNRUZJbJxHKGNsEJJUu7HKyshsxatMsxtgYZQ7mVkdqSsGxSWzQoJB5b422GgSSXAgyN35JUFgx6u1PaYwojGS1EBGDkCisUhGUBucBuSoJWlfbsgJlFh0G5Q6cBxVVBcw4claENC2eY4/QMhiVF4grc2EAbKbmGxINSbzSzCaVGxfyhRElGtMUox8wC+hVN6sYYmUl5Q9Me10gk42fBShOaQYWVMRu/NAJymJFASk3unn89Uo/UjUGPdKtkblHoJWQip1s3kLHB3NPQm8sRroSepD2ZIDQUu5JeTZKhqK/kRLaJdjXDIgRdiF0odHxcFdEpKhQGrgIryukVwW8JsiJYsaRfylEI6stgFCwys4CZKNqeIrX6KA07T3g05yJyK0dJTW5LFDlmamCmGmvLpj+d4sQaLTVWIilu57THwYgl/TJUB5JWQZ0nzUl0NJJhSD1wYoHblVRCm9WJAUiJ1jl+ZBC6BbTwyY0NGkugHMX2mEFhW9IrjfD1VmpgCU0uNFmmmVjNCEuSdlli9jOSkoElJKnMEYaNN8iwuxq0jdX3CWsdMg96voGTpVS2NJgWpa6iWbYROqLn2UgyrL5BVMkJumCIkcNnh5Cg2JoF0TUJMkHmaPpVhb8FylOkrsQOBcOixorBsF0SHWP3NDkCP8/JpMGgrDEyhZdIcm2gEgWmRpsQpBZWNyEKXXQ9HkkTCEAqcmmiZUZuSQwNMlTkFmSeROaQW6BjC6+vcT0LczNBGCmxNYatmmwXwRh65H6IMEb+nBVDosCNIHIh98HKRp+9rkJbEqEURibpF6HYH5XqRJ6BEUGQC2JP43YVYRFyIRCJPUoD1TndcQ0Z2LmNHKZUI4eBk2IozdBUJELS6I1om6E/wrnHvsaJBVqDlgorKzMoDnG6o9q2TOUYsY+MU2Inx5EGsTMitZqRgZVlxL7BsKAglVQ3c6KCIHPAiSR5DpmnSDxJaQuyAMgUlnBRZGihGAQKI9GMbRho12HbjjEYOdmR75ArA0cPQYA/yInwEEGClYEZGuTWiGLr98Ad5IQlj8hLqDWhPLBY2lmg6/SwomQU5bJAS4kdK8g0/tAn9BNkpkmKBiLNib3niJbn3+9hmYkoZGk6Q+oUr2Mz2UzYnLUYlH3spQHJhGRYyCAVeKmJJqfQyvB7CicRkEriYk6vDOU1ycaUQVbSSKXITCj3LDJsuqUUf5CR2wplSbw+JLYANZJrUakgD3KkhFyPhLivfdOPcAQtzIYMsgEfPvIfuH/9PhrOGIEIOHDqYtzEZW1qix8/+gaWEkg0/FjZpCAEJ8QKk9Gvs6/YRJoWzVs/xZc//Kf8zs/9MgfLRZ4ajhCu71K/wRXmJhdf/N9xjn6Kwn3vAwS9l/5f6GCSdPbGH9je+UPfZvnIE4SdNhunj+MERYSUXPay17Hvxluel/oYhic4e+49pOlZhLDQWiOpsnWkQfOYx2ArpO2nFIcm3aJBXr2VejgLQY++ewbTsDEswfj4JFdfeyOff7bHJX/42+xfO8mpxg6efMGl7Nzc4okLFQ+WNsiTGxk0L+L2/bt4y17NNY+9E7l1goHh8pHxf0Kj+BqS77ZpzAW4BYuV420aOwrsu36Cqf2V76P9wUhs+uFzbb55cotvntgABBNFh4OzsOr/IS8/+UJua18xwtLaJuaeCmImIN7v8pWVL3P2C0OuOzZk7/wXSSpzlHpLkIa41/xjrB1XoXJFYsCRssm5AF7S+BSN5mcJ+kMKfUXnqp/BCvaSTF3HljHJ/PwJVlaWWFlZfJ5TNjk5Rb04iWoW6W5pbk3M81o9I2HZOBvgGh6gieM27eOfZW3nPppOxpmKgaM11+2/mJlLXsz8oSb1wOTEoXWGCv56TE4aAtORjF9a5YEwZCWN+c5al5fvvIdH129gMypRrG/R32MSlveDNLEzzY6NlJcc+hq1rccQpkFtZidBrc65xx8ir03B9grPCcy3y0Ve5b6eWadOPthEFjyk9DDnMpQ9iWHfx9qH/xQRp5zesYv73/4KdnWe5ISxm8a5PqApyJxJN+TSg7u44PC/xQtjhq5kZbIA1/17rMpLONk5zrfXvsWXFj+H0grXcJnwJumnfa6oX8WEO0l87Bzj97fZXb2cvdZBbOEyzHoUrDLCMxEHa1hXjRMbGU8++RhPP/0ESZKQmRZdy8FLYo5dcAm/cMMLWMoyDnoue12b9YUm3/j6PbSjVTTqvA7LKHI2WTtB+ZsxX9l5I8+6c0wplyu6m7whmKZuBZAnLHgtPtP4OsvGJseCM2jnhXRKl5O4VzGTdfinbsgdF93E2uFHeeATHyWNQizPJ0tixnbt45of/2kaOy/4O45WIzv67RWWnmnRb8VkyfMjtoYtmN5foTZbYGasRcVaw0i6FL71LxFZTDp5NXlxDmvzSdLpG4gufRvZ2KX/S+34/2J/nxy0D3/4w0xPT/MTP/ETANxxxx189rOfpVAosLi4yHve8x4+9alPAfAHf/AHFAoF3vrWtz7vGic+9suIyiNkShPqmKAtMPujBVRSuobZ1gbR7hsp7HoD3PduWtkZGouKsLQXxzEIih6hFdJpW6yPX4od30cQbeMmB6nbKcv+MXwOYCjJgv0QnrAxOib1pkIaAYULbsJQGVHtUlpba4TNz+IONMqF1DBJuxcTzJ6j5bQxMwXDhMogJvJNwtZViLkIkbWY607T8/fQby8xTocsPAlSI0rXs2U/gyjbOMIlW5+jMXiAWHucDW5lJy18Y4HTXoNqXVM+ugHxEMcxWRpW6DlTNHZJ5GaTSriB2vkStF+kt/kJ+uLVTC99kbUxh7FkgtLgDIv+DVQHRzBKY2z5LZRhMtZsEbpVhoVxGCwgJ28g2gqZaj2J5ZnMT13JjtaTtNU2kTONcIo4SxqjPD+q9+qO0xxrEtoJ5aGN6QXkejf+9oCVcp8Zs45R2EG6+gQibiPUGFvjVzIUX8MeeIhykWDqesonHqKT1+mUuzRql7DVfxKr16G+kBJfdjHScqnEu5BL99NONhgEOWP113Bm+F1m2wPSpEHUqNEunqIQD6llc6zol+Dor6L2HqB0+CRZFOFub2M4Gd3pV9Ks5oxVTTqde3EGCWxU0GmLikhYr9QYKotGVKR+4SvpD5/GUmvEnZPkwmdgWNTLB1Bnlyi2T5GUfc4Vb2dMh2TW0xiZxjVATF7DZneBenMDe7NNtGOGOOvQzyN0uUExbdFRPqqkKDo1Or1raHRbeK0nsANBU08QTVm44SqTcRU2T2EYgq0xA3ejx+q0oN42WYhvxe8couLZuJNlXFlGdzawe6dp5h7dPa+hLLrItE13Nqe8vETHbeGFF1KsXE6vd46efAhfSCxvH3rVY91YYyxtkxZ6xL6DmcfYeppK22C908PdczVlf5zB1in8qI/QCpks0TJCgvIBVu11CmmXLI3xHAOVgTk0afkGgTuGky3RFwnh6s3MxE/BXh8vLzFoBaSFaUqdp8mynEGwh5QQy3qcXETUl2wGxVkybxo5HtNK1wl6QzJfUm72CSeKtJMeBXsKIxOo7VVEycfWFmmhAltgR026jsaPITQGlKffitE5C3KeViOi2I1Jnd1YJx8im9uPF40Tq2fpGjWs6jVUTj2Ek6ziJH06wTRhNcSrXUC+eph+34eShbAMJromW5WMWFp4A0kt7jDcux8vH4eVZ2ib25S2cowM4qrBeiBIfI/ZdkTf6LHtSKbCGbbDhLikcdwmxZUcZVu4QxuqV6Inh2AGI/DW+n0Ir0It381GdoJDfWf/AAAgAElEQVRMg7eh2d4rSUMTQ5vM5AamnCHtL9GpR1RSwVBUWa/vZjI6zfi2QXNzDfvgq4g2juJnmq3qjRjdr5M7IaFVxRseo1/1yXOHwpaP9jXKfBlan0aJ+3Fsi8pgmn62TLEj6NsTGLFAlfeQBVP0Wk9hyHlqeQV7kKB2FkntCJ5NsKZdWmOajriY0tYjmOWMSnQ5hXCIbp4iUjaJ8BCmg7YCusUqpaxFKguEpWdQpXHKC5AnZ0lcTbJWI7+ggYVBLtdBSNzEoXx6k86uOla2TdKfpl9f59q3PPZD57T/rQ7akdbT/LunP8DacIVUp/yL+BdwEp+nt+cxcpOu2WVi+womwx3ECsom3HpNh6Xt77Cz+SkKMsIUiv7ca/jdo3N8+tZX8K5H7+dDN98OaF6r7+aVfJV9+z6DbY8DYGwdpfK5NyCSPioYp3Pnn5A3DvzAXW6tNXmW8bnf+GW0VrjFMkkUkoVD9t90BwfveC2mbRN2O6yePMJg+CjD/P/FLg3IIgs7SEkGJuFajbELDnDmmyU2T58cCaC6l+K4LyW3BoTBMqm7je97XH/9i4iLO/jMw8d49ESL3/7OH7Czt0ZsOyjL5PGrruTkjjKPTD9K5qUcqFzK2w/+I/avLJHf+z4a4QoKyRl3lrvlr1NdnBzV9iiNYUmkIdh3wwQ7LquxieKRc22+e7rFowvb1IMRlW6jn3D5bIEbJld58VMuqRVywXBmlBq4q0jn9oAvLn+Rry19hR2nr+CitRluevwQlfYZTBUjpKDyyc+w3FN84/SQWzdy/O0YwzuN53ySyehhzFyTC9jwL2Yw2MXj1u2cy9YJdYI+L47p+wGgGQ6HFIISeiDYo67ikkRj5CmutPleCG90xwh7iyTf+SDHLjrIiQtmSFwbNEyW5iiZO9g+ZuD6JtFgJJxaMaGVgWEJCp5J7bIax0uae8+2OLE5IEwVntFH4xLlBoaXcuDSBY6UrmJoFhAIGr1l4u6fM7M95M5j78DLfQbpKSTPYmeLJFHEan1IsW/ixyYb1ZjT8jqeLVxDJByubJ3hHycxl09cDUISGgo30+iwTd48ASrliHyQX3rb+5igz61Gj0tC+Leizk+fPsyeqWnmjz7Bq50HOZAeJnMcZNxDA5FvszUxgfnCP8Yq7OOJ5uN8c/XrrIfrCODJ5hOo8xE4L7O5/sw4c6cN9tevZ591KZ45ikIZwkCUHKzX7UE2PJTKOX78WR577GG63fbI4fQC7r3wCsp5zuzsHO/fNcNdm21+cbyKoTSnjpylHS5x8uRX6PVr2HZIkngoZT53+1hWRR5KdlKQKQeSjJ8IBRc5DaQd8M49H+CMszw6VzgMyq8i916CIxz2WfDTM7PMPfs4R7/+RfqtTSzHJYsjbC/gwC2v4NLbXv2/PH5prclixeqJNscfWCPsJqPU1edSwgDDlBSKir2VJ5ntfoExcRzLzFBOGRm1SaeupfOqPwNhgfE30CT/f7S/Tw7a+973Pm6++WZuvfVWAN785jfzO7/zO+zevZvHH3+cu+66i4985CMA3H333SwuLvLudz8fGjXsdrG8AKI22fYyibKwZYqozaANA9P8a+1LI/TWMUTYRgw20DPXgFbgliEYQaayJKHf2qIyOQ15Snbumxi7bkPnIc3tBynpCjgzDAYZtYKAwgQkw//R3p2HSVXeiR7/nrX2qt6qF5puutlERcAIKgHEBTTGkIzRGTB2HuPVGLfgxGQUjCNkkkhUdGbETMYxmhhjnixe7pW5IY5ZNGNGQGgQaZBFoKE3equurr3O9t4/Clo7YoMOsbuZ83kenoeuU9X1+73vOafP75z3vAdUHVQPdvcuRHg8+a5m1P6DxPM65TMuor+3E82XwpsROGYKp6gcj6+qcLVLAtkyEI4g3tuLiDXjr51Oqnk7ZWOqSDdvQZsyD81fhRlrRyTacCLj0CLlyEYKOdmGXVpPJn8IXa5D6dqGJGskU3n0mhn4wxEARDaOpHpA9UL8MBTVYmYSmDb4NQH7fw9nfx4RP4xkZRGyBzvVgxKpQvhKEJKESLWiBKsxTAdrz+/xjplMwglRXFqEk+vDtBWcfAIdGylQhK0GUDQ/6eY3UZPNmE4/oTEzkYrrEaoPw+jAo0UL94eme8DKY5kGcmkd/e0teHw+hGjHVzwVWdGwc2mcXBuON4wWa0Pu7yBfejZSUEfzjUESDggbYgdJxWMEaqciyRr0HYCSCRimg2G3QaKFgHccUsl4HDuPwMFM50FWkPf+BnXifORwBdlsM6paTLp/B7q/DF0bT2zvVlRhEK47m5xhoaQ68dVOK5yYTHcjmVmcQDFmvgdZDyPJEVI9HWjeILl0iiD9KOFy5GwMpWMrYsoiuo50Uea3kCK1SMICxySVs9E0DY+mkLMFsf0biI49A62kvrDe9jVDoAxL8iBsCxJ70KLTSXR3YRzZS7i+nlQsg1AVVJ+EppVhxjsx+9ooOeM8NBl62o+gSwaBsVNAGTxrNEJg5ftQtSCkuiBcjdmzE8mw0OwMoqgWy1OKtee35ItlAuWzUSUPdrYbyV9J9+EWympqURQZy5GQk23IwoZgOcgKduderOKJaB4Vo3c3XssGVUdq3UKmbg56UQ3ytucxy6bglE0n09VCsERFi0xAsvLYkkZv816KisPIgVLs/iOoXZvJ6AahonMhOgXTsNA8OpYRR/R1ovrCSP4SbMemfe9GisdOIBAZS/e+zYTKi/AKHxk1RSB8Dr2thymqLKe/eQ+B3EE84y6EQBRhpLCxUczCg7BzW55FK5+AWjWDNDqaP4zujeCke8h0t6OGy/AEi3C696H4wjhmDtMbxYp3kLZ0itV+hGVg+SqQ8gkSWUHpmBAqPsj0YGlhHFnH0cJ4yJBXfGSzh/BkupANjaQ8lmAkR8ZUCIQqcUggGR6IHUbzerGFjFo6pjAztmUj2t/ErpiEGqol03sE1clgxI/gs3oxy8/Bm+lC6mhETLqSnBRA93mQPWGIvYMZCGNk2wlkHcyug6hTF2E7oBz6E/nKmUj5BHa6D2/VeESmm4TRjpkV6J46wtEKHFsgmykyfc34KiYj2zaOZZE9uBW9tBpK6tF0D45joygKRrwTK5/BH63FObIdx1+EqkcQioqtKphmH9buRry1Z6OFayHVVdivpPpIpfOEpARaSQ2SvwQ0HyJ2ACdUAV3bEcVnY3bshfIpgIRj55F1Hcm2SOfeJugfg+jqxVM/C5FsRQrXkI73UVwe5YMMS4HWFHuLx3c+xqF0M6ZjUOOr5TvRB1j/2m9xHAcbm7yc4/Pp+byV8KKrEmgSUz7tpeiNu6lIv0NIzSOA/+1Zwj+O+wxZ3YO3PMoXtD6eMIJ82vkVi1jLxAm/wu+fNDgYx8G/+R/xb/0+OAZCUknN/Rb5aTccN3bLMDi8fTO7/vBr4u0tqF4fRrrQNrKi4tjWwHuj9ZOoPKsab0UnQn8TSxwEVCRJweebRqKrBSF3EY/7ONLsQzowA1lfRDrYRibQAZIgg4ZPWPQ4AaQjaYJ9KRqa1oMElqJyqGwMmz4xE0pM9gf20x5sRwtqzIxewJRUjit2v8zYXDsAGdnHLt98WmPz2JkeR0vQT4vscNAwsGWo8GjYmsyRdJ7qkJcbwz6mdaVISt3U5ceQlwx0j4+3yw7zs6L/R5P9Ng4OqqVzcctCZuw7g0n7XqAocbDwpPlzZvCbm27HW1/PdJ+Xx3e9wpKux7mw+230hEYXZWzjTFoZS4YI1nvuJZOQiIoQJXaYOqeUalGKhU3ezuLBUxhy9x6mkyOb7yeePILVtZN9pRW010pHxxQLZNuDnishkKovPHT26JD+oEfBb9lM9CkcrNDRNBlndiUP/GY38eyxvrQJajkSWgirNogT9YG3MI5CkgSLgoJ5RVVcEPBSrGm0plpY/vuvcmajoCQ3Fn+mH4ENCAzVoSWaoyNUTp0zgxmePNLhLRjZLP/pO59tkWkE7AwLu7u4QQngrTwHM97CocN/IjL5Soq9xTiaIKMJfhfVeKZWo8evM86j8dl0jMMth+i3LKZ0thAQSWZL26kuL0OfMJ6Sxn/DkzcQQCocJB8qoXfWrUQq/wpVCRPL9fJG90a29LzB2/Fd5O0cdjzJlIMBJrYECYYrmBO8kjKtkqM3XNCTbyc9UVB75Tx84SLS6RRvvPE677yzB8MofJcDxPwhDlTWQk0911RXsT2T4/rSIqJSL33tPyMW/79IwkNb63iEnKG7cwKZXAghCkX3sXsqTGTeyUS4qL0XRXqTP03o5K36wr5EFwGuj32ZR8+pxlZKUYVKmSm4yrA5N7aHI39aTz6VQJJkSmvrySb7+eT1t1Ix6UwQAln56MMPhRAY2cJ9bDt+28qhHTHsP7vSJks2KhlqPDso1loI6HnGBvfg9wtEUS25Kddi1C0E+S9TsP1PKtDuv/9+Lr744oEC7brrrmPVqlXU1dXR2NjIM888M6hAa21t5Wtf+9qg32Ga9qhqrxMZbf1/IqdTPqdTLnB65XM65QJuPiPZUH/zhqVA29u3m81b/0CxUsQFRReS/a8OXuVN+skCEigmM+zJVJWew66WFI6RY17lv1CffRUhJLbFxmDJQdYHL2Dj5PnEi0pIah5mBRqpopOxUjfnStsoLv4sVZV3fXBQQuDb9AiBbT8Ax8QO1WBWzyFft5AWq4pkXx/eQJAdL7+I5vWR6u4k2dP57uePThyAJOEJhcF20IMhZl3dQLhyDL5gGNWjkcsfJJXcQKxvHZajY+b3IEmFqxaWodHReD16dDfx5gsxEmOJRbchS2rh7B2gaRqarVG2ewcVPZ3kLJVxPe1sK53ET2deSbknR63ch9fbyT7vEdJqjnZfCQ0ZwY3x3+MIibBIo2GTkTzsUibTZpbxplFLDzOY7lQzT9bxF+Y0KgwVxODnZS/xQunvAAlHtvEqXmb0T2PRtgiB/f1UdmwASUZSZERpKX+8/RakcIb8gc1U9fdwxBxDWgQwURFHJ4TwqJC3JPw+PyUlUZykxTjPBKyDWaolBb8k45O8R5tXGhjeeOxg/Zg+UuxW2okraY7I8cJVSUBBoVQbi9JbhdcfJljqYczEMMG8yZGdPbyTNXlBypOVJRY7Kv+CgSE5eEM58uEgRiSAFfKAVy0MrD82HFSCCsVmUVjlmrIafJ2tCAQ9zfvZsvanADiWiQAyHou+oEFncZ6Ocp1ZbdcQzHu52LOOCzyvo8tmYYZMB6yMQn+nl962EK2JMr554S3Mindw4/7/xNN3kMD8+5AkmXQ2hr/8LBRZO3rfuKDVSbFXSbJP6uNwVGJKopWe0ioCjoM/1kNc83KN8wfOFTtQJRMkB8UurFM5TSLn14hXn4FU8xmc8pkEgjOQZQ9CCJr6drCjYwt7N/+RogNZon0+Jpd/kones9HQUSQFyzHptbro4DDJKoe6OfMIhcvRVJ1NWzbSfGAfDkevRMsySY+PtuJy2oqipCIl1If9jNGTfCI4jnP7V5BKvYpje0ml/bR0nEFH3zgCpoThqAgkGFiLIK7G6PW0cyDSTNKTR3V0bNnGL02iq/gSDP8srKNFT0V/gtnb32DskQP4k10IK390bRL4i0opqamj+uxzqT9vNrrPf9L7tA+Sjhuk+3LE2jMceKOLXMZE2ALbFBTulimsqeDgkVJ49Twl0kGKKzwoxZWU+VvxXfol1GM3tCsffer50faH7L9ToK1Zs4ZoNMqSJUsAuOyyy3jxxRcJBoO0trby9a9/nV/84hcAPPHEExQVFdHQ0DDod7gF2sh2OuVzOuUCp1c+p1Mu4OYzko24Ak0kDMxfHwIJcpbF04Ff0p7vokPuYpp6PhN3XYosS/jCOi2JPXw1eD+6lMFyZJrTRbySu5j2cA3zX3+F5X//EEUBL235LE+FfoyRfAXbgNrKp1HVaGFyCNOgY/dObMtE9/nxBMMku49QXFNHc+MG2nZuQ3ZMHNvCso4d6r9LVxXCEQ9en49wRQ3V5y+gfPI0QMJxbP704ycwjDzxtsPkU4mBzwmkgQPLvKzRpZcjAHWcTciTpjSeZPz5+xGKjMeXp3fXIhItn8TOR0BImP428uFDCNkkL2QGekoUyhXVNFAMEydr0SUVccBbQZ8cpE/yYUgqGjblEtSqac5ydP7KaUEVPnyUISgGfMcCRXJ6EcZmcimL7tQ+8rFOvP0ysiPQjDyysNg7aSbj9zfiy+cwVRXFsmivrmLPmWfQW1Yx8JgACYHK0ZmwkIkIH7Ljpc4uo86JoqEiG3kkzY/ynpnuHKDPsvHIEv22TZtt0CXSxPVuhGyCUDC8PSAfK8ZkNFQEDlVOCZ+w6igWISwKs0DZOPSo0KPLHNahQ4eekGBjSOVIQMXSFYQqHz1WFwNVoILNlOR2bElnauoIMw1BfbiO5v/6A+l4H6aZxzLswkRPHgdhSPT7TA6XZ2iqT2J7bealM9wS7+fvi2tImjWc33I5Y1JngRDouQN48llKe/dRGmvCkmyEEIQNg6byWn5fPYv/rJiCX1h8MXOABc37CfnK0YpqyDW9QH/tHMbUX1So8GSFYzNTJoWD5likkh1YjkUq1cZmtR/J66fO7CMUtenIhBhf/Efmq28PFL3HVitbkXBkyHh1jFA1qaBCzqdj+IvJBSvoiaVofydNbK9NKOPjgujnKJWrUCXvu7N5AiYmOTlH2s7QI/ewxX8A2/EfjfNdliSR0XT6AhHSfg99QYVxgR5mB1rISTHqpH34RDd7YuPpSpdhmQE2HZxNuUhToqdRHNDJEw+0YcgG20vfwpItQMFv6thKEUlvGNRasr6zUJRxhC0veSvHmfu2c0bz20QSMVTLGhSZovooLq/DTmcYM+5cSipL6U90MX76bPCrhCoqQQFJlgvTekrS0XFlDDmLpGnYaLpC18EEe/7UTqqtCzPvYNkKjlBweO9VtEIZHlGPkLTLQYBXSePz25SF+vB7DbJOhEAIvNESiurGEPH00W9WgKqhBCOoPg+l0SD9/dkPjGmk+e8UaFu3bmXNmjX86Ec/YteuXXz7298euOcM4KqrruLJJ5+ksrKSxYsXs3r1aurr6wf9DrdAG9lOp3xOp1zg9MrndMoF3HxGshFXoL3Xb9a8xR88/4cSo5L6/FnUT6ykzdhGV28H+v4m9GyCUm+avK1xRC7i7YnT2X72BfRHSlGwebBc4aJiL5s3XE+22cv4i8aye22E2OEuZFkZmI5dCFGYJUqWkWQFxzr68Naj0+J7/AG8oSLCJcUUiW6iYYeA2cGE7BsowhxctAnIo2KhIJBICR95CsPvHCFhCoV2q4RiEmw1J9JlhjEdBY/mYHgzHPEJOrIhHAFBWaLaqUYSOrUBk3i/l5Djo0Iaj2L6QYJSWUWSTEzZQEJmr36AtJphevZMNvi3Ycs276sqjx5519lReuUks80zyEg5Nur7QECxgKmeHip/uw8j1olqZN9NbtDvEQOXrnxlBnhAhGX0SoFZriECKhErixAytlOKZE1CNkLYgU7UXAlYXrKhw/jSNSTFTOLRTrwd59OUtnG0DLonRbscIyVscnIOIVs4cmGYYY/jJ42OEBI2hUJq2zlnEispLkQpURgOJ0kDMQbSSWo6DiIJgSwEiWCE9vKxXPpf6ylKxMj4A4SSCeLhYrqiY5i2cwt5rRuPZRFJSewbm+as5tBAuSHe0x6OBGmfRSxs4MiwZXKMjNchYurotsKszgqu2OVjbEcGNRTB7j1YmFwi249AIhaZTHv1XOKRCViaHyGp7/bVoFJJoKmF8ei2N4HXCBKWdVKSjRVvRzXjVPS8TZlt4XgjRPJJ7I438Z33v1CK68HKI/mKB26Oeu+VSCTYLEx6hMklko9fOr2MEw7TlWL2ygfJSF14MPBgoGIiY6MgUKXC6QZFckgHVWS58KiChKeTpBIDIZHVVOLCT9++IvIxH6qs4wgHSVaO1u4SsjdMJuBFsR2qtCyObiOEg5AL04RjW/DeYYcSSNhoWgZhq+StFOXSXnKeCn6dvxDZcOgUlaTxcV7fHi7MvEXG28or5/TRFxTYsvOepj36HykI5AEbSykDAcFMltojGuOOePHnFSRk/LnCNTvddv6skFWxFRXdyCEAoai8c86lOKpGuvIMIj1tqMlONCExMWVQ5lXw1J2N/1CctPkOEWSyUgRlSinh6hrsA+8AEsI0kKUU3ohJVyyCmUrhNTvo7plBxihBwsEWOs7R/Q4D/xxA4JMT5J3gewo9CUUBXcmSMzwIJFRNAkmmtDSPEgjRedgA20LRNVSPjE/NkHOCWHkbb1DDthzGTCmmuMpPx944JWODePzqoCcI+Is8lNUGORX+u9Psr169mi1btiBJEitWrGDXrl2EQiEWLlzI5s2bWb16NQCXX345N9100/s+7xZoI9vplM/plAucXvmcTrmAm89I9pELNJfL5XK5XC6Xy+VyfXzkE7/F5XK5XC6Xy+VyuVwfB7dAc7lcLpfL5XK5XK4Rwi3QXC6Xy+VyuVwul2uEOOUP33nwwQfZvn07kiRx3333MW3atIFlr7/+Oo899hiKonDRRRdxxx13nOqvP+0N1b4bN27kscceQ5Zl6uvr+e53v4ssuzX4yRqqbY959NFHefPNN3nuueeGIcLRbaj27ejo4O6778Y0Tc466yz+4R/+YRgjHX2Gatvnn3+edevWIcsyU6dO5Zvf/OYwRjpyncz2PxI9/PDDNDY2YlkWX/nKV9i0aRPbtm0jEAgAcNNNN3HxxRezbt06nn32WWRZZvHixVx77bXDHPn7NTU1cfvttzNu3DgAJk+ezM0338w999yDbdtEo1EeeeQRdF0f8fn86le/Yt26dQM/NzU1ccEFF9Df34+qFg697r33XqZOncoPf/hDXnrpJSRJ4s4772T+/PnDFfb77N27l9tvv50vfelLNDQ00NHRcdL9YZomy5Yto729HUVRWLVqFTU1NSMun+XLl2NZFqqq8sgjjxCNRpk7d+6gWV5//OMf4zjOiM/n29/+9klv/yOtf/48l6VLl9LX1wdAPB5nxowZ3H333XzqU59i8uTJABQXF/P444+TTCb5+te/TjKZxO/38+ijj1JUVDRsuZwS4hTatGmTuOWWW4QQQuzbt09ce+21g5ZfeeWVor29Xdi2LRYvXiz27dt3Kr/+tHei9l24cKHo6OgQQgjx1a9+Vbz66qsfe4yj1Yna9tjrixcvFg0NDR93eKPeidp36dKl4uWXXxZCCLFy5UrR1tb2scc4Wg3VtslkUlxyySXCNE0hhBA33nij2LZt27DEOZKdzPY/Em3YsEHcfPPNQgghYrGYmD9/vli2bJnYtWvXoPel02lx+eWXi0QiIbLZrLjiiitEX1/fcIQ8pE2bNonvfOc7g15btmyZWL9+vRBCiIceekg8//zzoyafYzZt2iRWrlwpGhoaRH9//6Blhw8fFldffbXI5/Oit7dXLFy4UFiWNUyRDpZOp0VDQ4O4//77xXPPPSeE+HD9sXbtWrFy5UohhBCvvvqquOuuu4YtFyGOn88999wjfv3rXwshhPjpT38qHnroIeE4jrj66qvf9/nRkM+H2f5HUj7Hy+W9li1bJrZv3y5aW1vFbbfd9r7la9asEU899ZQQotCPDz/88F885r+0U3p5ZcOGDSxYsACAiRMnkkgkSKVSALS0tBCJRKiqqkKWZebPn8+GDRtO5def9oZqX4C1a9dSWVkJQElJycCZB9eJnahtAb73ve/xta99bTjCG/WGal/HcWhsbOTSSy8FYMWKFYwZM2bYYh1thmpbTdPQNI1MJoNlWWSzWSKRyHCGOyKdzPY/Es2aNYt//ud/BiASiZDNZkkkEu973/bt2znnnHMIhUJ4vV5mzpzJ1q1bP+5wTyidTr/vtU2bNnHZZZcBhYePb9iwYdTkc8z3v/99br/99g/Mb968eei6TklJCdXV1bzzzjvDEOX76brOU089RXl5+cBrH6Y/NmzYwMKFCwGYO3cujY2Nw5LHMcfLZ8WKFVxxxRVA4WpMPB4nk8lg2/b7Pj8a8jneOjYa+ud4uRxz4MABkskk06ZNO25+MLhvFixYcFrUF6e0QOvp6aG4uHjg59LSUrq7uwHo7u6mpKRkYFlZWdnAMtfJGap9AYLBwrOIurq6eP3110fUMImR7kRtu3btWs4//3yqq6uHI7xRb6j2jcViBINBHn/8cRoaGnj00UfffW6b64SGaluPx8Mdd9zBggULuPTSS5kxY8b7Hs7sOvH2P1IpioLf7wcKQ+ouuugicrkcTzzxBF/84hf5xje+QTwep6enZ1T8/c1kMjQ2NnLzzTdz/fXXs3HjRrLZLLquAxCNRunu7h41+QC89dZbVFVVEY1GyWQyfOtb3+ILX/gCK1euJJ/Pj+hcVFXF6/UOeu3D9Md7X1cUBVmWMQzj40vgzxwvH7/fj6Io2LbNz372MxYtWkQmk6G3t5elS5eyZMkSfvKTnwCMinzS6fRJb/8jKZ/j5XLMT37yExoaGoDCPuLAgQPcdtttLFmyhPXr1wOD+6asrIyurq6PJ/C/oFN6D9qfH1QJUXiY7fGWAQPLXCdnqPY9pre3l1tvvZUHHnhg0AGHa2hDtW08Hmft2rX86Ec/orOzczjCG/VOtG/o7OzkmmuuYenSpdxyyy388Y9/5OKLLx6GSEefodo2lUrx5JNP8tJLLxEMBrnhhhvYvXs3U6ZMGY5QR6yT2beOZL/73e944YUXeOaZZ9i4cSMTJ06kvr6eH/zgB6xZs4bp06cPev9IzW/KlCnccccdXHbZZRw8eJAbb7wRy7IGlh/rp9HUXy+88AJXX301AF/5yleYM2cO0WiUBx54gOeff35U5QKDj9tO1B+jJTfbtrnnnnu48MILmT17NqlUirvuuovPfe5zmKZJQ0MDn/jEJ0ZFPkuWLDnp7X805GMYBo2NjaxcuUngdhgAAAUzSURBVBKAqqoq7rjjDq666ir6+vr4m7/5G2bOnDkol5GYx0dxSq+gVVRU0NPTM/BzV1cXZWVlx13W2dlJNBo9lV9/2huqfaFwMPblL3+Zu+66i7lz5w5HiKPWUG27ceNGYrEY119/PXfeeSc7d+7kwQcfHK5QR6Wh2re4uJiqqipqa2tRFIXZs2ezb9++4Qp11Bmqbffv309NTQ0lJSXous7MmTNpamoarlBHrBPtW0ey1157jX/913/lqaeeIhQKsXDhwoGrpAsXLmTPnj3HzW8k/v2dMGHCwPC5+vp6ysrKSCQS5HI5oHDcUF5ePmrygcKQwHPPPReAq6++mvLyciRJYsGCBcftm5F+bOTz+U66PyoqKgauBpqmiRACTdOGJe6hLF++nHHjxnHnnXcChdFIf/3Xf42u6wQCAWbPnj3QVyM9nw+z/Y+GfDZv3jxowqaKigoWLVqELMuUlpYydepUDhw4MCiXkb4NnaxTWqDNmTOH//iP/wBg165dlJeXDwy7Gzt2LKlUitbWVizL4pVXXmHOnDmn8utPe0O1LxTukbrhhhvcoY0fwVBt+6lPfYr169fzy1/+kieeeIKzzz6b++67bzjDHXWGal9VVampqaG5uRmAnTt3usPwPoSh2ra6upr9+/eTy+UQQtDU1ERdXd0wRjsynWjfOlIlk0kefvhhnnzyyYEZy2699Vba29uBQnEwadIkpk+fzo4dO0gkEqTTabZu3crMmTOHM/TjeuGFFwaGk3V3d9Pb28vnP//5gb55+eWXmTdv3qjJp7Ozk0AggK7r2LbNDTfcMHBv47G+ufDCC3n11VcxDIPOzk66urqYOHHiMEf+wT75yU+edH/MmTOHl156CYBXXnmFCy64YDhDP65169ahaRpLly4deG3Pnj3ce++9CCGwLIutW7cyadKkUZHPh9n+R0M+O3bsGDTi47XXXmP16tVAYbjj7t27qa+vH5TLsfVytJPEKb7ZY/Xq1WzZsgVJklixYgW7du0aOKu3efPmgYa9/PLLuemmm07lV/+P8EHtO3fuXGbNmjVwpg7gM5/5DIsXLx7GaEeXodbdY1pbW1m+fLk7zf5HMFT7Hjp0iBUrVpDP55k0aRIrV650HxHxIQzVtj//+c9Zu3YtiqJw7rnncs899wx3uCPSn7fhaBgG+otf/II1a9YMOqFxzTXX8Nxzz+H3+/H5fKxatYrS0lJeeuklnn76aSRJoqGhgc9+9rPDGPnx9ff3841vfINMJoNhGNx5552ceeaZ3HvvveTzecaMGcOqVavQNG1U5NPU1MQ//dM/8cMf/hCAF198kWeffRafz0dFRQXf/e538fl8PPfcc/z7v/87kiTxt3/7t8yePXuYIy9oamrioYceoq2tDVVVqaioYPXq1Sxbtuyk+sO2be6//36am5vRdZ3vfe97VFVVjah8ent78Xg8AydkJkyYwMqVK1m1ahWNjY3Isswll1zCbbfdNiryue6663j66adPavsfSfkcL5c1a9awZs0azjvvPD796U8DhSGPy5cvp62tDcuyuO6667jmmmtIp9P83d/9HfF4nHA4zCOPPEIoFBqWXE6VU16guVwul8vlcrlcLpfro3FPUbtcLpfL5XK5XC7XCOEWaC6Xy+VyuVwul8s1QrgFmsvlcrlcLpfL5XKNEG6B5nK5XC6Xy+VyuVwjhFuguVwul8vlcrlcLtcI4RZoLpfL5XK5XC6XyzVCuAWay+VyuVwul8vlco0QboHmcrlcLpfL5XK5XCPE/weo+ZY7oWGILwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdeYxlx33o92+d9a699+zcKZISZT1LorxIzvOLo/f85FiRDCMR7cAyYhsBAluAFCgRHMMSBNlG/JcDvIcgtiMnUSLIEvxkwZIoidqohfsicjhrz3RP73ffz75U5Y/T0zPNWTikhhySqg8wmOnpe86ps9x761f1qyqhlFJomqZpmqZpmqZpN5xxowugaZqmaZqmaZqmFXSApmmapmmapmma9hqhAzRN0zRN0zRN07TXCB2gaZqmaZqmaZqmvUboAE3TNE3TNE3TNO01QgdomqZpmqZpmqZprxE6QNO0K/jyl78MwN133814PH5Z22qapmna64H+ztO01w4doGnaZeR5zt/8zd+86ttqmqZp2qtNf+dp2muLdaMLoGmvRZ/4xCfo9Xr83u/9HgBf+tKXeOSRR9jc3OSjH/0ov/Ebv8FoNOKTn/wk/X6fLMt4z3vew5/8yZ/s2fbv//7v+frXv84//uM/UiqVSJKET3/609xzzz1861vf4rOf/Syu6xJFEX/6p3/KO97xjht85pqmadrPGv2dp2mvMUrTtEtsbGyod77znUoppe666y711a9+VSml1EMPPaQ+8IEPKKWU+tSnPqU+97nPKaWUyvNcfehDH1JPPvnknm2VUupzn/uc6nQ6SimlvvSlL6mPfOQjSiml3v/+96vnn39eKaXU8vKyeuCBB16dk9M0TdO0i+jvPE17bdE9aJp2Dd797ncDcPDgwd3c/Mcff5yjR4/y4IMPAuD7Pqurqxw4cGDPtrOzs3z0ox8FYDQaMTMzA8AHP/hBPv7xj/Prv/7rvPvd7+Z973vfq3U6mqZpmnZF+jtP024sHaBp2jWwrEvfKqVSiU984hP84i/+4p7/39zc3P13q9Xik5/8JF/72tc4dOgQDzzwAF/4whcA+IM/+AM++MEP8sgjj/Af/+N/5MEHH+TP//zPX9kT0TRN07QXob/zNO3G0pOEaNplGIZBmqZIKa/4mvvuu4+vfe1rAEgp+fSnP02j0dizba/Xo1QqceDAAZIk4Rvf+AZJkpDnOX/913+N4zj85m/+Jn/2Z3/GM88882qdnqZpmqbt0t95mvbaonvQNO0yFhcXue222/it3/qtK77mIx/5CJ/61Ke4//77SdOUd7/73Rw4cIAsy3a3/bu/+zvuu+8+fvu3f5t9+/bxR3/0R3zsYx/jH/7hH9i/fz8f/vCHqdfrxHHMxz72sVfxDDVN0zStoL/zNO21RSil1I0uhKZpmqZpmqZpmqZTHDVN0zRN0zRN014zdICmaZqmaZqmaZr2GqEDNE3TNE3TNE3TtNcIHaBpmqZpmqZpmqa9RugATdM0TdM0TdM07TXiqtPsdzqT63agWs3F8+Lrtj9tL319X3n6Gr+y9PV9Zb0eru/iYv2GHj8Mk9f8NXopXg/3/KV4I53PG+lc4I11Pm+kcwF9Pq9lV/vOe9V60CzLfLUO9TNJX99Xnr7Gryx9fV9Z+vq+uDfaNdLn89r1RjoXeGOdzxvpXECfz+uVTnHUNE3TNE3TNE17jdABmqZpmqZpmqZp2mvEDQ/QzMFZ3JNfBCVvdFE0TdM0TdO014nO6oQ80/VH7Y3nqpOEvOKUYuob/z3m8CwgiN/839zQ4miapmmapgGkcY7t/myMd3m9CscJSehSrjs3uiiadl3d0B40q/UMRtSn/9/+kPjO99/IomiapmmapgFFcNY4PURJdaOLol2FYQosRwfRr7Q4yMiS/EYX42fKDQ3Q8rm7GH7gH5HTt2INlhDR4EYWR9M0TXsd+6u/+is+9KEPcf/993P06NE9v/v85z/Phz70IX7nd36Hv/zLv3xZ+w8nKXGQXY+iai9TY2mI149e8eNkSZE290YKz6RUr8q1ezXJXCGvkOKolEKpN9IdvHFaZ0cMm8GNLsbPlBsaoIloRD57JwDVhz+Ds/7QjSyOpmma9jr1xBNPsLa2xhe/+EX+4i/+gs985jO7v/M8j89+9rN8/vOf5wtf+ALLy8s8++yzL/kYWZK/YVuRXy89RWmUEwyTV+FICqdsYRjiVTjWqyMcJfQ3/RtdjOvuSjFYd81j+9TwJe5LMe6E16FUbyyVaQe3at/oYrwutZZHBKOX/pl1QwO0mS9/AKt7HID00C9ibz9xI4ujaZqmvU49+uijvPe97wXgzjvvZDwe43keALZtY9s2QRCQZRlhGDI9PX1N+3XOfg2zewIAIdgNDmI/fcO0zueZZONY/1UJ0oJx8vJ7Ib321X/djxi1rl/lOgkzkvD102MqX+z+vXFizV3CEJj25auykZeSpy9tAhElFe21yY1psEhDDK/x6h/3GgSjhHD8ajSM7CX89pUj8NcLIV7Wd8UNC9BEMsH0W2SzdwGQHrgPu/n0jSqOpmma9jrW7XaZnZ3d/Xl+fp5OpwOA67r88R//Me9973v5tV/7NX7+53+e22677ar7O58eJWSG4bdI45w8k9TmSwC0Vsak8d7etDTOWT/au85n9irYqTtct3pQduUgKZqkJC8zQBNrP4LUv2KFfLAVMGpdnzQsw2uBUlc81svhnvmX614BzzNJ5Kd4rQGbx/pXfW11xuXmt81f1+PfaEoqZH75B1e8jID0erwHRDxCxKOXvJ3pbWFvP/7TF+CVIMAwr/xeyFP5isymaaw9ghxsXff9vpr8fkQavvTMixs2i6Mx3iCv7AerhNk7hXJqpPvfXrw7Xs67StM0TfuZ9cIWSqUUYue7xPM8/vZv/5ZvfvOb1Go1fv/3f59Tp05xzz337NnGNAUzMxUANk72EUIwV3XBsem2Y2SuqM45TM2Uqf6Ci2UbiItS4IJxQqXi7u7jWp17rotpCW6+9/pWnk3TuKayKKWYTEdMT5cxrZ8+IBHHv4E6fB/M3HLJ72oVFyEEWZoTjBNmD1SvbadKYTQEd/7cPNbULE7p0upLr+qhJC/5+p+XRBlCCGzXJDp7HDXzc8wv1F50u96Wx+zB6lXTIfNUwtQi5dkpqFau+d5cTZ5JBg2fZJxR7T5JxXgzMzM3XfH1aZwzbAUs3lx/mQdMEaf+BXXvb1/yq+txPtciibI9934wHTA7W8EpX/o8DGoBeSpfUrmyJGdkhEzPVF52eqs4+zAohXrTv3tpG069BQ7fTtl58fKuPNvh5nvnsa7SgNA718KtOphm7ae+N/GRFLdiX3E/Z59q45RMbn7r9f0MW+7UCUYJP/e+C8e9Ls9ansJgBRbuvvZtZA6jDZi99Zo3SaKMaJRRut1mxonALhd/rsENC9BEGpAe+mXq3/ofcFcfRAmb+M7fvFHF0TRN017H9u/fT7fb3f253W6zsLAAwPLyMjfddBNzc3MA3HfffRw7duySAC3PFcNh0QMz6BRjdeZLMalvkJUluZR0mhOkpVg/2uPAm6b3VAwjLyUI4t19vJhwkiCEoDRnoRSXbOcNYlSuqC+UXuLVKMzMVK6pLFIq7GmTiXd9JpBw/Zis1ydnEWDPtWqeHeGUTPJMEY4TROkaK8EyZ1Yq+t0QO3NxK5epvtiQJ/Kar//FvEFM88wQt2Jz01vncGXEoB8htkYvOvZma3lARr77OilV0c6simdKCDj3TIdS7W6O7K/CMLjme3Pe+tEes4eqe54Ffxjj92P23T6Fv5ESivCq+/QGMf0ND3vqZc56mIW4fkw88C9pSH+p5/NiIi+lszrmpntnQRRBSJ5Jtk4MOPLWud3gaTIK6fdsSrVL71EQxOTpS3seumsTZKpob48vu89rYTKLQNJf6pEmOfNHXjzIh6LnzfCa5PMvHjR444hB37/qMhDbJ85hV8vU9s3+1PemtTHGrVrgXv73QRAThuK6PgMASZySkO7Z7/V41ozxOnbzGWLryg0al2wz2cJuPEl8175r3kZKhTtlkaocf/kJZPUg+dybMIcrmMMVpt/1W1c+3jUf5TrLDt5HOn8X7so3CN98P4Pf+S7uyjepPPa/3qgiaZqmaa9T73nPe/jWt74FwIkTJ9i3bx+1WlExOnz4MMvLy0RRhFKKY8eOceutt152P/4gprfhUV8oMbWvTJbBxpqFP4iZ9KIL6y0JdnvoXq7Yz4iDDLdi45QurWgFfQ+/O/6pjnEtZK7orXvI/PqlKCnzwrpUpm3sXqvqrIt7ccVXKVDXcFxVpEUOWgnhCwbcm4NlzMFZTNvAdl9etSaLc2SmdscepakgS9SVZ3G8qMf2heOgNo/1Gbcj+lse2ycHKKnIYolYfxJjtPaSyxb5afG3t/e83aqNMARbJwe4bnENsyS/7Lg5Z/W7u2P+XzbxKk5nL8BKutiNJ0njnGCUIEQxLnDj+d4lr73sLnaeOX8YM9guGlyCUXLV8UBePyYOMrx+hIgGuEtfeclFN4erWO1nGbcDojPPXXPepBH2sHonX/LxrkSonOtVzbdc86oNFXbZonalhqTkwsQ0G8f6pNEL0v2yKzcMbWyUGLTTl1TWa2JeIdK8CmVXr/09oBTOuQfJopRwnBQ9nYYFRrG92V9CJN5Vd3HDAjTn5BepPvUfCO/5r/F/9a+QtQNk+95G6fR/ulFF0jRN016n3vGOd3Dvvfdy//3385nPfIZPfepTfPnLX+bb3/42CwsL/OEf/iEf/vCH+d3f/V3e/OY3c9999112P5ZrUp6ySaOcNMpRSoBSRQWlZu+Oszj4phlMZ+9X6Esdv1KZcShP2awf7XLsO5eOszjMU9wsHnlpO/0p5OlPOQAniyANkeV5sC5UgPbdPoW1c62csoVTtrB3AlIRdLA3fnjJrvqbHu1zFwWnsrjuR46E1Bf3VgSH22NGTR+lIM8ufw5yPLpqxbxUs3fLuHu4K1T8rebTOOe+tfuzkmrPcS3XJPZTmstF+ZtnRliugTV/EFUuenHJU8ivbdIFudPb2FqZ7Pn/aFJM3OBWLcr0OCQfY7A5oXmqe8k+8vphpDNz2f0Ptv0rXpvSs/8n1saPdwryIuNo8utXkS5VbQ6/qUZeP8KkE9JeGRezqL5g0g/TMjAMQTi5zLUUF15z/nnrHTtF0rvMZDMyL+7HzjZO2QJ5jWMllcQ59+0LDQ1CYYy3MB2jaKh4QQPEla51PnM78V0fvLZjwp4xX+FlJt9Rdo2fdqGIzuoEfxhju2bR0BINMIcrjFohw0bRi5WlObGXkl80w60xWsXqHAPAXf32bjCipCK/qCFIREPclW9e8fhKFQ0lewRFgB6M4pd9Xsoqk2cSf30dKK7lpHf1DAJzuIy1/RiG37qWIyDSACET8sYZYs+HSRtjXBxPXCUoPe+GpTjWH/lLRB4SvOt/pPLk/4Z7+j8R3/4+7M0fI6IBqjT74jvRNE3TtB0f//jH9/x8cQrj/fffz/333/+i+5C5JEuKiRcMQyBUisgi3Iq1Z82lxtKQ/XdOXz7V7hpNuhFCCPbfOX0+/tgVThK8doaUNlMvyHiKzzxFv6U4+CvvesnHbJ4dMXekumccj8ol8mWsGTVqh9iuQWW6CMac9Yd2Kh4KWT1QRKwyo3F6vJviONj2sUsmpapNqW5jJEOMaMiwGVCbc3cXHZ7aX9mNeINRTNxsMFuD0anTOG87sntMAOfgbSghKNVKpHFOd91j4eYaIvEQ0QA5dRPpE49hv/MXELN76xbhJCUNM+IwIwnz3eO7rsKWl28tV3YV5eytYF08XimLc2YOlMGAaJwic4WSEJUPoZxi/JdY/i7OZEJyx3951Wsswj7i9CPE4b+6ZJIGu2RhmILZg1WStYhROItTOUPe7QH/fs9r89k7MdwcRntb7aVUTLoR9cUylv2CiFRJlFXaqehTpDWe/3MZ7vLXSQ/+ArJ+CIBBw0fmivkjNeyNH5MtvOVCgPoi/GFM/3TALXdbOFWbaHXC8DIzdOaZJA4yBls+N711bs+YULEbbJk45eJeWukQixncpa/gmTdh3/FOAAy/iTlaRYi7UQr8YcL0dJlcXEOaY54gUh9kjsgDlOGg7DLVaRsZmrspmv4wJpqk+IOY+kKJ2UN7x18Kv401OEN65D3XdI3Mi56HYJxgOSZuxWLSi6hMO8VxXxhk5gmYTtHDs/59kpt+dbdXZ+/rYjBdslSSp5Jk7QTpwi1MVc5gpT1UbT/K90GVWHmqg9eL9zRwKKuC0XgKFu4lz0GMNxClaQyztHds34s0UtTrGWnpwn6F30ZsPU0y/2/prnnc/DYX0hC7+TTSncIarlwxyHWXvkJy5D2oyiIiHqHCIauntrn7wGG8fsy4HVKfv9D4s360x/SBCtP7ijFjxmgNDIvcLD6bhBAoqYjDjNILexd3PrtM2+DAgZjhtkc0KHHTm689bfbG9KApiYgG5O4Mqn4IZZWQlX0kt/07MGzszYdvSLE0TdO0n23jTsSwETBzoMLMwQrxYIgx2cLvefRW+5RajwFFpU8AxvAcIujsbH1pgCOiAcgcrx9dMsuZU7JwyiYK9lQsASadiDwXl60LJ50Wyu8X+77GoGrYDMhSSRJkxP6FSpu79BX8jVWi5ePFrq7QS9Lf8i+ZLc8w9lbWz7cKi3hMPn0LVvcYpeP/H5VpZ7eYU/vKO5XHIrXyfO/CuB3i9SPCcYKURSB8vldq3I7YXg6REoLAZNKN2Dje312vSvhN8tY5xu2Q5tKQYFi0rJvt54vZofMU59/8F4iZS3uQkjAjiXLcikWW5gwaAShFHAvSRF1yS+MgY9DJX7RXZNgMGXcuBHGqs4zVeJrsJ18t/iP1ETs9TkmYXXF9PZEGNJsuk96lvQUyk5iOSfPsCNwKUgpcM6ZcvjRl1F3+OvXhUy9tFsfzz8JOgFGko6qrP3OyqHCH44Stk0NWf9KlcWbIRu8AyiqfLzjS6+MNYgZb62w+/8wlu7Fdk0rdQvl9DENgmmDs3IwslUTehd663UcwT/c+vzu/aK1M2Dw+KLatHiFzZoljwebx3m5Kq3RnyKdv2/3ZLZvEfsLa+qXjx5RSl6SRCq/F+rMtGG1jDc6irDL9rYDxZnf3mvTWvd1Ld7mlJoTMMMKd3qFxQuxf2iMp5YU0XKWKf0upiP1sN3UwGCbkqcQIOmBcFNwkE9zlB4rPDRQiHheB2AsYfhN3+RsAHLhjivpCiYroYSYDNs8V1zRamzB5+Awi7MG4iTFeZ9/tUxeOlXoY0QBUzvp6Gf/MScpP/+/I/NJrdzUXP25pnNPZLK7lxenlpt/ACLsY0YVZTA2/tfssnF9+wvBbu+9bZVcQ4YA8DHYXpb/4oDJJ8AcxaZRhbz2CSDxUZR95/TAbp6Pd93aa5LSXr5yGniWSZtMlGOXk9gz51EsY83bNr7yOzP5ZQCHrRwCI3vwh7M7zCK9JfMdvYLd+ciOKpWmapv2MO99DZpeKlJ5mu0ImTcgT6rWUjeUiFcYwDbaXhhhRHyOZXGFnOc76DzB7pxic6SFHe1Orqu0fYZk57bMjRo29Cwgb2YT5WZ+FhaKSlo5HNL73g+KXOxVmZ/0HGKPVvdt521cfN6MUpbVv70lHs+MOM/UQfxCRPfd1RDLB2ln2prfp4Q1iTBVeEpQIg8vP+igMRB6jTBdzvIGRjemu7VwjBW7zCaqT58n7WzSWeii3qNiF45TTP27SOjuiszqhdbaYqrzsBGTtNcKwqJTlqaJzbrKbktTfChh0wXIuzKoZ+ymrK0Uvobv8dZIf/xA1vHTR4lLVYiZ4CndyhjTMi9kWlSTLBAqxm8Z1XpbkTBpDjLBHd2mLxC8quDJX9Ld8/EHxcxJkeBelTCnDRtpV/Nl37Nmf4bdonhnRPrf3GcpaK7D9PAiBiIYY4tKgqPXcJnF7gGEKtlpTzC4YTDwL32PP/V0/2mNQ+wU85/Y9y0DYGz/GHJxF5pI0yoj8lP7Wxc+hRGQhMk3ZOjnAnGwWZZ5skg67exeBPl+LNoqxh8Eowe9HhKOE2M+I2l1EVlxLw2sQnHiS/oaHP+zhDSasH+0RTtLdVMUsyQmGPhvLkv65Dv7qOcKlp3DKFm7F2rNUg122EIbAWX4Ae/uxS67T4mGLw/NFWpoI+1jpiCwT+L5Ff2kVEfYw0gnGZLM4DaUwLIMsTkEpBts+vc0LPY/hOKV5ZrT3vLMIEXaReY6yK6jSDGK0gSMCLs6VzV6wNIfXj4oAG5D1Q8Rv+q/IUsnm8T6d1Us/VzrnJrvj6fpbPu3VCVsnBmRxTpbkpHFO7KeM2yFZeYEsyiEaFenHO71pznrxOZJlgiQs0kYbSxfdy4t6tbZODRl3IoQAlStA0ek4SCCNUjYfPUEymmD6bZL29m5DhYgnGPF49/qcT380bQPLNbEaTxVLEbzION7x2CLyi23zVBJ4FLO/W2J3yZPzqaH59G3I2gEA/ONP0jtxliTM2DzWZ/N4n2G6HyWKzwTlzhBPvxnh9xCJj4j6jJoBcZBhdY9hnP4Gea5wqzaG3ybY2qa70sZZ/yG3H9ja7VWzXZMj916uV3gnKLQEhqEQKkMmftHTeo1uSIBmdY+j7BrJHcWsjao0S3zre5l66H8mOfRLWDpA0zRN015lyU6aG8CwETBshtxxU5sDs31qro9bMRBCIaIh3XUPmUmMaIBIJhB7l6TrGF4DsiL9ZqFzGre5MwGAkuRRzKCdEfbHHLrTZW56QhJd1LLcPkNrQ7K1VaTyWVmfxdnx7vbnFRMBFPJM0j3bvtDBkcU7Y51SvPZ4ZxIQhetK3KV/xhivowwLu2RhWQqvF9N0fgUlrN3esPNjs+LTT2H2l4pjRkVlrr/pM+lcSDuLIgMpweydxmwfwxytkRpVBo2Y6QPFtNjB2WN47TFJp8noXIO8uYKIi/FFg2aIlIo0yjl09ww3vXUOspDp/CxgkE2KXhBjuIYtQipTRTAw+5Y3MXPHTSRhThKkoHKyRKLci3rMlILLreMkBONwholnFT2ceYJ79quAwByeY/zs47vr3YmwT7miOLLYJbFmideXCJvFumaGJYj9tNhHGhAsPbcbrAEwcwRZXsCxLuoVyWLsrUdBKbI4J2muFf9OckZLy0Rba4BCJGMWbyqxcMve3pzF4Awq8Jg7XGWx3qXfUUhlYnhNrPZze15rOCW80EVKhTHegDzFCLuYw1XSfotJJ0QAplVUmI3xJlbvFMqu4K1vMFjr7k4yYnVPkI0Ge3v9hEA5NZRpF0HHmRFpLJk9UqVSNxl2U84HKl42zaDyTrJUIhC7qZv9TY/exs5kHsOEblNgjlZh85kiXTXPcDvPML34gjQxqWi0lul48Z71x8z+Emb3eNGD2nqKYGuL1PMxTIFhQKkkqXnHinsAYDq78YLfjxF58WfSjfD7xSRBeSaLVD5RzDRpnPgXzO5xjKCD6TVQVgVlmBh+m8NT5zhSOV2kFO4433skBGTHH2T9Oz9Grjy+c83XcZe+gsyKHkLjfONHGux+tsReTLh2FjFpkHgRca9HEmbU5lzKdYftUwNkLhFGMaOpN5aI5e/sjgfbpRS9ns2kF6N23nMX3czdf9VmXUxTEAQmoa92Gy9KCya1hSFW7mFJH/KIwbbPuF18bsj6YWR1H9uni88K0xZIKWgtj+lteJiTTforTYbtvZ+ZSu5Ntc6yi3oADYFlqSLYVIrYT1FKYfaXcE//M1brWQyvSezFVKs58+pUcWzLQOaK4bkGydZyca39Ft7yCqlRxVr/IaWzXyPzRqRRhkh9TBMsSzHVfah4ZtdW8dJZwoV3sNI4tDtxT+ynbB7vX5oefj5QNWB2LqWWLDPYmDDuhKw/176m8Y03JkDrHC2+oObu3P2/6C2/i3KnKB///M7vX+crh2uapmmvKxs/eoLJiaJie74l/dz2fsLYxR/ltM4OKZUkdtqFcIAZthCJhzlcofb9/wlr+2n6Wx6dnd6iHBNj+yeYgyUkBuHIxxtEWM2n6fy//xfD5QYV2yNvruAEmzSXLqpc1qcpTbnFGIwoJ08V+fk6VKowxxsAiIsWhc4SyfaaxPN2JuDYfAKr/Sx24wnqg0d34zrLUkh3GoSFkBmRl9Dr2WRJTt5ZpbXiMREHyFOJW7GwXZNWyyFPEoTfxn3mb5Fe0ROzG7wkExoNlzg2wHQwwg4i9fGHKYEnCUcJVvs5FpwNpqYy1PxtxbKnMr2wn4u+94NRgj9KEHlKY8skMhawm0+CzJGjJjNul/owprfSo//U0wzPrBCOEmRrGatZNPKKsI+5/RRpZuL8Z7+KqNUhC7G2H9+tyEeTFDV/O9PZMm7ZIItSZBxgeE2MqEcYspsy6Wz8EHXsAYbtmKg/AWHgpm3cpa9gZWOMuI8pA0Ti4bpyT+9iaXgcZ/37lE//04UHzjBBSazGU6AU6eox0lGP7VNDSmWJ41wIxGM/w+9Hu9eqf+wUnXwGY3E/rZUxQT5PShkFKNPdHesGxaQlTuMRhsdOEI5T7ObTiGQn2M8iTK+BDIYIU1x4RvqnMYfnijFjfh9juEZm1ckySIKYvHpg75tHqSKF0SqTJRIhcvDaDDdHjJ9+lEo5Re3MnOf/5EcMfvLM7vmcV5l2qM25kEWUS2mxpMBORbZcSqjVMqLIoPH8BslFAUUa5xxKeyzWLgRCMleIoI9IQ9rbsNY9zHirj+dXGJ1pkefgewYVawBBvwis7AtjwmrzO2McJUyHGRWjx/D0MvG5YzufDdBfH+CfOwvds6x1DhaT4yAwxlsYXoOt1iwrnZsRfoeLzd9co1aNyDZOYcUX0pSVXUNWFhFCIITYTQfsPneiSFdUCrN7ophowqlgeNsY3SVGTR9/u0nc6zLrPV6k6Q5WsYencR2FGJyjvdSms37RGL48xuskRCuru8/3RRcPq/M8JD7VOZeZ9jepVHLm9hsYecTcXMKk5dFrOwih8PoheZxAMiFLi/tihN0iqN55C9iOIlMX3x/JpBsx7ia793DcCdk8MaC37pHGOVsnigaZ82MjsyQny873yEWoc0VgqwwLs3sMs3+aJMoYfv0fdgJtQVatPkIAACAASURBVB4lyEHxWSlLs5hJDxENMII2cSyY9A1ax3ykU8N2dlJopUmeQzAIyKOifGbYQySTIsNCZkSDokFt6eFHGLfOofweZufiWVJ3ypkqOg2BTFJMGRN1+4iwv/Pbq8c5NyZAa/0EkYXk07ft/l96+JcRWYgSBiJPMILLzLKjaZqmaa8QVVlEVoq1uyrTDqWajVmuMg4qYJiUp0v4vkne3cIdn8bsnioCBqtCvngvIg3IM7WbzjfoSMZhjUyUGdYP0JjM0jjZBauMGDfALpM5CwwGDt2uRTAMUGGGSnIaT56kPDpOpZLTWBrSWInp9RxUGGL0TNgJbMzB8p5zmLK6e8Yg2ZuPYPaXcPI+lm1gi6KnS6Q+ZD5m/xRZZiCyCLX5DN3VEVsnerSfXaa/7bN9akjn3IRqOcbafAxzssGx1jtZPZUjlaKxNCLqdXFO/zMi8ZBSFJMm7ASOll1U+v1BhJg0iSITKSGp3la0ju90WYgsKiq2hgSl8AYx/unnUUqSNDdxkjahfQiRJ4BitNEj3lohPv0U/Y0Ryip66OJQMhqZiKVvg2GQlg+zvRKRPPRdZK+LEQ2QZx5gsPkk5ClV16Oy/T1Ub22nlb+4bwRd8up+SmWKZQF2ejBU7BF0J4TPncEYblJnCyVMfN8kXD1LdPYoNj5S7owf3ElpSkoHkfXDjBd/mUhKSIog8PzyAbAzNkYKSANcV2EYitMra4RZwujkCcJJ8dpglOBPJLLdIT+zhGkadAaVYjZBNaHbyBEbT++OeeytDWmre5HlBUAS3v5+EmMGWZ5D2WVsOWG+/Q3y57+FPP4A5An51M3I2gGMSQMZTEgmI04+4/OjZ+o0zoxx1n+ICDpkSU7j9BA56RCPJ6ydLIIuk4QkUgSNDp2VECvuFdlRecrIc4kSi2BYXNPzacXBMCEYJZijVezxMo4cgGFjWcWUmkoVf0zLpjy104smislSkjwnvGgsUWd1QhQVVdyDR2Dfyf+H5ORRZvqPMXji2eLZtBTt1YjkoR9AMEREg2Jsk9rZsVNHZBnVusVh50Qxi9/gLGK0hTFaw61YjCcl3PazmGW3iLP8HsqdRlb3kZt1DNvB2Xjowhs08TCNjO1HnufE5psQlkUYGgTjBFWaJT38y8U5OQZi+1m2nlwi6fVQvXOYK9/GH8R4I8jHPc5X8E1LYPSXCQKDQM2jJMjSAmn1FuKJBzJj4c59zB8uUgJVKrA3HmMqb5K1ersNSucZQavo3W0/S2t5zHhsEccGeSpRCra3S5ipxMpcWi2bMK2SZhbjviwaXJRk0hzS6wgsS5BlgsZyQJ4VPXtzh8o0Ht6mfbxPvjOuNR5PCCcJlWkH14pZfuAR0jRnwRSUSwadY+dQaQSGjdr3FkRevBcMv0XpxD+i7Dpq3CAvF2tf9no2jXWJ0Xgaa7iyc2I25vL3cda+X6RwGyZEPlbrLEKm5N0NBme3WGvuA7cKKDxvZzIloZBSUOk/wy2VZ9mXPEl7ZcygMWZqNqK8+g3M0cruNYyGY9I4w7QFaSbIc4WUMOklWCUbu3carpQaf/4+XPW3rxS7Aijy6VsuKolJctO/RiiJsmuYw+Urbq5pmqZp15tRnaF2eD9QzLA4PrXC1OazKENBnqByRa2WU24/QtD3URjFeK3+Esakgdk/RSnaoD5fIgkzjCzAsGw8cQhzcIZkOKS89E+Y3RNgCbIoIfFDFt96K2rSJdlcId7yEFtrCCSn1o7QWksIn3uCoDni0KGI6JEf0Q+LluVcKqRSuCe+iDHeQAiIY4Mo2hmrdebbGJuPYUQD2pMDDFcbzCQ5piEReULUbLG9XaZaSSkxgmGTfOoWJCY+C7vrjWWZxOuFu7O9lcNlpqeSovdJZjSf3yyuwUUNq/nUrQAksSCPIublCfzNBv2+Tb9vky4/RZZBs1miMdqPE7Zg8yiz+SnytWfYfzDn5pkVzN5Jxp2IHJv2agm3kyCyBJUkJF6A55nYVsZB6zhmf4k0CZiMDZpNF1k7RFy5hXQ4wti3H6NaQ2QRT8+/iycTA7N7ErX8CCsnJd22KCYmSTPOnHIZ+yWOb4/x4p013HZ6cuqixR2zx5BZigqHTHo+qjJP6Cm86r0YeUjS7xNMMkQ6weoWaa3KrhS9OWLEw70WJGOM0SrjboTnW8hM0m7bdLciauNTTJYF/gTyNMPPTEwSZg+WUUoVHW92lQMLKca+/czfXOPIXBNzskVvK6Ji9FlaaXP6sSUaZ0bI9jm8088zWVunTJ/V7z1Dd7mDrB3GbjyF9Ia0uhW6qwOmnT6G38TqHsde/yEi7OH1Qzy/wjhwCBOFcqew3SK9Nlo/ixm26D/9KCJLsI2iN6azHiElCMuE6WmyRGJ6W+Rpgj8xSVWNpLmKvfqd3ZRdYQosxyCfuYOxeTu9QQVUzrTTpezGCLUT0ClB7GdFWpkClQZ0/BGtccz5oGXOWEYGPdrbbcLIQM7PEZZmiXIHkUzwPIssN5ipe5h3LyLScRH872T3jTsh4coxhLfGoPEMa8Z/zuHbTWaio5jjcxhBB2P9UQ7NNcG0qI6fxwi7bDVrxcyvyZgpsY6bNi6k2iYeztr3aT2/SnN9hBF1IE/Z3i7RPDPCHC7jP/4N/F5AOmhjTjaLMZUyo/noswxPnMZSAfVqCFIynZ+DxMcyi16r/qZHdzyNSH0MGWKkY2wb1KhNPIiJJ1ExM+e5Bt5Gwsp2nUxcmIHUXfoK7tJXMAdni8/DoMPswQqOo5CRSX4u25mZNcfIcqbmLczpfdSFhWla4JQx1h5FbD5FOVrGnZ9n2ArpNaFeAYRC5Rnd7/yYLJ0hlTaTXkYYGoyfeYzO0WXy1aeQ4w6qvp9oklKt5TglA3nqe9gbD2NMthD91Z1nRqGyBJFMWFlOebx3C7aZs7CYs7CQcNOhIWXvTJFqHk8Q3VM0GhWU30PIHGRO3bBx1GwxMYgEUp8sSjEcF7IUo3cKlGL+nluRWHTq/4bnzr2ZQf2XEEJg2nMEy1uoPAN2Mhe8LfqPP0L7XEB64vvIZILnO/ixi+GW8OMuXS8Ge+8sni90Q6bZF9Gw6Oq29q5lMvm3/wFn9bvUfvC/YA6WSQ+/+0YUT9M0TfsZpNpLqEYPbn97ke63eYa1XoUH527hA6MNEnkAU+ZkXg8/eTt536JkTDgwHRGfbRHNTZGGMVF/yLBiMVMTlBjS384xjXtw4jVk6GNvP4GUMzjJiMXl/4Pu6P1Mggr4AzqTCQsLCsM0UHnMQrVD82RE1hniHZjCnpmQbgY4FhxbHTE/6yDXJxzYF1Ha+DphUGNr0+XIrSHD05uEUjBXP4xY2mZyXDDxDzOS07z98AnyW96CEIrYy4lii0F6AGuyRhDXqJQaJNNz2PUawfoGpopI7XlsqcikyVT3B2yOfomk3WA48GhWisqGsdUlM2w2nlnn5jfZhLW7qTUGJMeHVObXqdQXWVuvsG+fT5pWUNLEmAyxOw6TsETYMjBKNr2Ta1Qba9TfPIUgI1Y1MjNhduYU6XAGOIhAkCQG8VDR2szhYJU4PIHrzFB2KqjuOqjn6Gdv58jBOXAcSOCWzhN059/F0bUZ5NkapjFitjZhaAnIYkauIvZDcsMiF5IkyumvDLjVgaDZod8vEY9DIlGjueQRKAcpuoTdIfF4iay2H9TMhQkh4gllbwlTJCyeOsq9bgJ5ihl0qFQ9XCcniTJi3yRsRRwRYEqJv7lJtK+GLxdxnCqDhs+MsU57vcShyinOdV0iaWKsjCkFJSBg6sg8MivRSiOGa88znfZxDQ81PkHQlRy561fwwgivv4Djf5VGew4zirDMjKx6E8OxYn9QrKMm4jFCJiTGHaTK4Yh5jhkhsabezGRzmWqyxXB4C1FiYU4bmKZJ4IDTXmGxtMkWLmlq4fuSA9MZ29tVMoaQhVTzHqaT7/SIFgGaY2eATXDsYaZdC//QIWgJMnuGzoYi3trGOPIm0p2ZDJPvPkiWH0Q2jnGrGnF4/uDue9kPXYLGBpNhyGS7RxjfS5opHMvCnp+nXC5m4jSEYuVEj1tua2BnXWR+NzKR2I5Ja8UnHwxJGw2MjYcJpk3uvO1u/K0WwbmEjjlNKznIHTf3CNIacmeGvpXtg6D2s7HuYIqDHPaaxXvDEIgsJOlvEoRdqtOzCJlh25JS3SIQiyT1BLN9HNdvkB+8A5zzlXhJmhgYIsdVfdbj23GC0wwbh8kOJeAUY+5KrDPJ7sKstrB7PtnCu8g6ktF2QlJ7goXSwxh5g8GZPiS3kkUGZq7whzFyH8STAYHvM59Jet4MaXKMSCmmozNk1WnS1McMOmTVQ6zEHdRsysHVjHE6xuutsW3fw+zoFJMfP0q6+CYCeRb8MeEoY70/S17NUO5t1A7WcKMyg0bAaa/K3FyKlQ4ItluQhESbJrMLBkPfoWZkdJN5om4dO2swaWW0wgZGPKa0/l2UXSWhQpbnGNEAVdtHNxDYcYXK1oPI8cGi8cipIpMxaxt1bj3cQyAhz8kzicpS/EHKTCrwBmO63hpGrKBcwt9Yw3XOIcZTxJMGXjxAdLtE3i3Evotn7SPpjnDdore8fPT/RoQHUa7L2afPMmxLysYhLLuCF1cZD0KGvZv4+XnFhXkvL/WqB2giHmN4jb2Ddy9SefJvSPa/YzeC1zRN07RXg7l4C6NmhXTSwFveYGooUG6VgV9nND9PNYuJNyZklovIQ4zMoNGZxhQZpaRM5sXY6Qix8hCJ9YsE+TpbrTuplDOEglF3HdOqk+UDct9Dli2CbBrVOEmU7qNm9Bg+9yzBwTtY3x5w06JD0ztMfXqIYaeMB5J9jqBuWKQyZ9KJqJVz9k95oHJsOaIUdRjF+yj9eIkDcpFSOQDDJq7cStiPqAfbiLrJVnOa+mKAH5WQYYWbSkfpdW/Fsw6TSwPTGpJNxjgiIOk1uaV+mlI/Yzs5iGNmtDdz4uEycuJh7q9SryVURR/TWwByjjgPw+ge2BphDG4mq01Rlm2GuaRajrAscLIuZTfCC6tkliSKJM60olLJCZISbpLibPyIOWGRZ1UMy8Qd1alnirbMwOjg2CWk8umOF1motYhVjdSzYLVJyWxhvvMw83aNrX/6LJV//dss3DRLp9GnVBkwJe8gsGLwe4SjPl7QxZFDnqvXuYsxRsnGUgbhOCGNMnDAKtsIJEJIDJExb25iy4hW+i5S38dIRty+kPNce5YsLsar2K1niMxF8u6YY+6/4rA0eHfvLF1/HsSQeOwhZopgLhkOGRiCRTOm259BqSUcWSYfZ9iNpwmjc4Ttt9NKRqjumIo0kDffx1Z7moPTIZPGkFGrTn3fgMhvYHgV6kkKh2+hpnxa2wbT0yVEtUaWV8iHNbKwQl7u0Z3sZ9qxOLSzmG6zW8c1A5y6Q97KaQxnkHjMRTFhd0g/XqSyT4BU9FspcZCRl1Yoz45J/Qg7C8CeJYsV+WRAPF0j7w9wqi5SpIyHNlluMG55BJMR+4Pv0Ff3MO4t8db7jpB1BQ4C2V7GnFRRVozr5MwfAXd2Z7bI1SZN0+Wscqn4MVOWjVKKiV9ikpcxRMjN5hMMJ08i3V+mnPZxwgW6UR9w2WzPMIfAbT+DpQKovpdwkuK3m4hhjzzNGHsJU3afQbafjunjRVX8uAR1m9SoM5kMSEUNo30StXgXh6fXaGwaZOoecFxSivWyROcUIMitMhgmE9MlMTOUgu7qmPTJHtmCTTnZxPDaWO0mudOAcoWRX6Eic9a6PRwp6dR8fjz1Vm7zXQ54OcyBEfbYiOZIUh/umSErVVHjFqImkIEidfdDPCISv4AtwM27jDZjrIU78IcpEyfl8Ye63HFzj7rjsdyUnAnHhFaN903fgpnkmEEDkQWoA3XMdYdwbUyQTdELIVnfpCRt8sWMnnMnQa+KYawhY0Fnu82t+/v08y5xM8e01zHNWxFRSuoKZOghI4fMclDdNexslknTpJzvQ6Q5lZmdcZVygh+A7CwxV+3jDULsPGe6lhB7Pmm0SO/ckA1pMe/UWA7fhkjK3N05C/4AshQx2iQ/cBAn9chVxrqZ8dbt5xD5v8cwcpy5ebzJItWaxIod2hzBa2VE3T5SSKoLE2atESuTgyTeFqkRY40GmG4xtb+ySmBVyJOYbDxAiCnSIMNLDezyALVgoBKfzeeWOfi+/+6K30evfoqjzMkW3lrk2V5Guu/nMcI+Vv/Uq1wwTdM07WdZlhkYSUqr+yMSniJPc7KwynQ0obr5Axg1mXJ6OHKGUlbHz+pYKsTJuiwsdrGrAf1hhqzuxxhv4rMfIWP2pR5pNGDix4SRw2jiMJLzeEmF8cRCSYOyE5FQpT/2SeIGM3UbJx9gto4Sejl+b8KMeJL29gp+niNQBGqKds8lizwMb5sskXSHZcJRxHi1yclxhSQKkYNV/O6QwIcwsSlScQRpEBfTt5sez/WqRPEQZSmqzohpu8NN02cQvdPEUUQnuZUTy2XM8VPkyqBaTcCwQSnyURfGDba6++kGZaQKOL0Z0vvJEww2W3iJSTwZsbExLNL/BgFZBsqdxhuOWDnTxIhTMmlgq5AgMFnMnuagc5Z+z2IU1olUhTNBjW54hFg4ZGGIGsVsbTg8ubiPqt3E6j6PowLs3COf9Ml6Phv9PieefxSnrmif6+GPc/rTd9G3DtE4+RRRb0i3M2S150J/gyQxuLuZUxsdge1V2mdOYyYDnMkqWauPcGaYnfIZpjOku2toTRWzH9YPgmnTbh9gJjYpCw8RdOn0KyTtLUzpkaVdTmyZDEcGI69C3O0WiyTLgCRJ8BuPYcUe/b5Fo+MxnyUYqcvEWyPsNHiiOkfXGzKYTJPNj3hyX4U0yrDSEUmYEbX7lBgxHs2j4gAzARKbaGuFQU9iTpqI7hm2j7dZ6r8NkSfUzSpGkFBNzmFGfTbXbazGU4ShxTiss3VOIKVBLh0WVJ1sXGZhMUMJh2HfwPcU3kiC12Kf+glT8SlGyQK2raiYYyxXEaR16lOKevAs6aBHYs2RJIp202Sw0iRYOcEz8YQw6SDtKoOtHpunJyStNcpijFXyyAxB1F2n8/DjDL73L0wmkklg4oxj0iQjaZ3ge6c7xHGA0T1JEk1AJQz8KeKDtzMKKnjdGnkQIkYO5AllK2etuoCabJHjINYfx4wCjM1nEckYiSS3IgzHZTAp02qXOOQ8ir1vTJQ7zLot2pN9nN6+G2Owgpg0yJOceU5Ti8DJh2y25/GH8c54S4mSIPKIEQlnmCdNDbLWOubgHFNbp7HzIVkYE1MijgVxMMK1YgQKM43IjSoqFyRZhdwwSIIMkVexpEkgXdJcYvWex4w62LLPaCRJY4v+epfYTzGyIbHlEFPCMXqYFUWp7qCiAdtTEiVM7Ll5jKSPzHMOxILt1U2ioU8mTVqT/fRbfaantpgqK5LEAaNC1QiLtcX6G0wbqxyYHxRru6UJ49GIWXeTkpMRBQadfpmwP8KaNPHbI4LxmDQeUKeJylOirMKZcoV+HpKHMW7nOcxgm2zx52h3HNrnTnByaYTsnsUIOrg9A1elSLsGecLCVI+bD7RxJzbpZJ7toMaqW0KKMsHs25H9BPIpXAsMUhTFtPnB5iatoU827tE4/RPSyRIkAYNxmUpN/f/s3UmPNEl+5/evme+x5/Y8+Sy1dFU1qxd1kz0UNYBAQToMT/MSdONL6Bt5IUgIBE8UwLsgYC4CQUAXaqCBZgQOm0uR1ayqrr3q2fLJPTNW393NbdPhmSE0INlzkFiQwPzcAmYRbhEXcwsz//8YsocU9YSrD1oSu8UOFWVRMWSPCYpTwr/4H1FVB7plaV8duBV41rs1fW9fHZX2HjB4+/NL7n/jO2iyWxFd/zX99//7v7e9+W//B/b/p1/Ch8k3PLI7d+7cufNPmVh+zmSlqQ4G0qBgLlsCZzioNVp2JLqk3CxYpBWRF8S+RtuA5+fHXBeaIfN437BbjtEaHvMzcpWTtwe8/9qUo3SO8Ql5ecw4OIDoGVHTcpUvsBpE2yKmGW6d4hxoG4Fv0b1Dh/v8zaXFFzdEacY7+grpHrBuJny0i/l28R6n8++RN1ccRy1N/JjtEfjNO9yf9HTVGu0e4V2P9xFOhAzrDf2QcPPVKVd6nz3ZIepLhLtFRxH50tLqAdff0DFDDwHxsiev7hFHSwa5ZTqFUCw4775H3o+JooSlPuZvbiPuZTnt8Vvsd5K49tzahxxPG1oVcX0hQSk+enDIWyWszz/DR2+T6wOcnLJZ3eCKEVU4o3VThk4wEBMFJeNoTa9mLFdbYr/HrBTcqgPGBz1C71BaoUyFlMd8ZDNu4hH/cnKD3f6M9JOf8MPuM/6X5X1sZXm9ciSZZD+6pOMBa/8d2ihkN+wzdxaRJcSXP6EXbzOcXJJXPdf+h+joktodIO236UpDmp4RRIB02PLVzdWMkC9XIftiizI9tZrwehsyip+gAg3hiGw/JNloqvwJzc0TumjEqrol2Vwi3ASL4mZVQzjlvdmE42FOnO8YpQf8TZHQpLdU/jVUn3C8t2ITPSS0A17neNPjkagB9DZg3g8oa6iKiIanSHeK72J01dEcSn6ShPxXJwXBeIRNC7xKcFHAwASkYBIpEpdzWfY0/QOiWCBtwaAEwxAxGwesqnvkzaugZCsXVNsb3LDie5MIO3jWuxxpZwT1CUIsiLsLEn1EFk7496bkoCv4dl6xGWICO8J1HV9fw+na8W66orgZEeMZ26+o+weI9F1ot9yTA0O5j+SCT/74f2PRwVAagnFGte5ZL4/54wcJv2bHFCLn9RiQEq8ionVJdFSwayd0my3ZuAchqGQITjBzPZPqMyoREcUhX+8esLzdEooD8nTC4BPwPS9Wkj11gZmNiOsH9FbQNlMe3H5I/klK0GsWUUnm/5LbIKG2mj7f0NchM/kCJ+/T2Cnj7pw0MRQ+o7cpk/xzvJqxiASREDS2wzmD0SnO92QiR6wNKTOyYImTI6x2CGCXO6r6PipY02cCHR+R2i+J1s+J9Q/5WLzN+OKGt5gy3FugfMXqqicZDmh3ilCsMCrFqxV6PCacGlz7Bez2eS4EvVjziCNOA8N3hKCRCafnS4rLtxBhTxe/YJR8F6lTfnrxz3jxWsCb0tM3ijQaY4kQ1rG0sG4ipN4jokPaltQMbO2Imc1Yjd7lg17ww5MPWMgZfXhExpbrVcejhwsKfcR2dcrr7zbIdkUe7xMMM2wXIJznNJ3RiDd5I+9RL9YY8Qw5fptE7NG5EEGIlwHXKuLzdMeim2ApWFevU7UC1TluqzmjYMeEgqz9mHrtcPUO60LMV1/jX284Kyco/4B4BJ+lY94NjrCuI3EFe+Jr5ozoqwmzUQ3nw8+dj77xHbTw5kOEG/7TtPf/m+j5/47sNwT1zd8Jxbxz586dO3f+sYjz9xCq5aCKqIpjbrSnMjUnezMYPyR1IPwELWu0aFEmwTpJrRe8//AxI7tjMR7AtGgdcPHc8LJ6Gy9m6Polqt/Q+zl+cFgMlZ7SmAXOBzSD4vJgjwCP0g3trqAfLLf9txjPJZWdkOYN9eDITUoxxLQqI7WONDnkKn/EYfUhgVAszR4jIblf7GF3lna1I0sMoTS01lGtaihuufmiQdWa2JbMqGDoKWrDqp2Rd2MGExEiaH3GW/OfcrPKeX7qOG8Cnl1N+doVNK0kbCQH8il4x0lXsW4l48DTNSHvXox52MXMM8HxNKVYW3RbopuaUBdYI1hKi4wC/KBJ6yf8+WjL7mrJbf8GL9c5g7KkZvWqPoEKuNq9y04dstEzHqYeN/EMjDG9RqtX+VStPaZ3h4SLfUaJ4oOPHU2VI03Jn17vkbdbrLGkwnBkj2mbCbVe0LeWz8cTVNxxyIpYKMJIcnrS0pUFgX1EG0R8OHqDuk0JuxUxDdH1+9S15v3NEa0LKLVjah1Z4Ni5lsKH5MOUL2cP+F/N25wXr6F6yabI2FQL/qzzGKMZqppSC0pxyKAE12XAoCyD7bBNwe1OYvAE5Q49SGxZc1//JaY33NwkrJchuj7GuIyEBa0eONNblH6dUAYkPXR2QdgPLC9ynPSYcMS2O2bUxTQy5uS25Lp8RKkmdHpEGEkQIUUfcTJkDB0kZkNCj/a3dMOWSdxQ16+qg8aiIUBhmoZAWtq44GN5xYe3np+VbxL6hi64x2W/pe1aEBalDD/ovs2iXWCsZKsWnCX/IYhYDWjTY2zEPH6Nzh6Q68evqoWWFxixx1UZ8MXLK7qupz6/4LzsMcbj2wGqFXP1lMwrpDYol1H0AlPveLFLEOmIwNRsqj2sDbHlhk0zQzuPxHPmO57LLV0fUm8byjqjdAukV9yYjL34CuN6rFZ80ET8tJCs6wO8bwj8gBxagttPGFaWZ9d75JsWbwbWMkIJzzhpedlnfNwk1K3lejelVindxRqWTzFFT996VKsZ3MDzUcQy7snqEzA5TS2o6wBhLQETIj/w5/KUl3ofKaf45FtUmSQIY55vGur8LUz0z19VEJUtTb3jprnG5zcYn+IIKJuMSCiWdoFME/pwRtHWnNpzljZH2IAHzT2ON68hkThlKVuHb9e08pg8eo2lnPNpoNFO0A9AWLESJW2/ZN3dYlRDllYkaU9TgxCeLDOofqDY7Yi3FYHrSfMbMn2Jqgb07Tn18kuKm5+hVYm2CebZS9aFI9cHpBd/govH9I2kv71hwgGZCDFti1IC51uE37KzezRNgCFikCOGzoPzjHvNL51fYZY3aCV4z67o6amGgL4N0B5MIMi8w2iAkCjQPCtalk8y1ssl/fU5eoBhkIz8YyIZ4FxI4/Zp+gxTrLm6yVDF/8d20KKbD8BZ7OJbf2+7efyrr45NOI1sV7jx/W94hHfu3Llz55+i0JZ4F3MxGEyYszp6A+UnhGHEeKUokzkzwIkpITPGekzHGaHrsMHAh0nFrrngkXrI64GlrxeczF+wiTdkxXfp4uBbkgAAIABJREFUeol0a9ZdxJ+++QD8mMeq49ge0uwpimzE60qRdSVKCM47zwOzT1vnkOYE0Q7pA5SznBYR/WTClyPN29tLHmZ7rKpfIIgTEpvRaM9pfMG7swVz9wWn9Q/QDBxEOzbyPv82anmrh8qmPD4+o7nSqPAIGWqscKyrlthlHEWX/MU45tb9KiP7IbFXTMUFujrDyndonEMPHZfFD3gxOuDd8w9Qc001WBJn+av9A75DityeUAyew5kl8SEzk+NvdgT2CKxCG0luR1zakJ0OSM8uyI9f5+vjQ974Gu6J13BhzhCkdL0gDW4ITcAnbcxHi4jvRqfce3nJG7Nf5CToiF3PKFyjTqDrPHL/gDDyfHX1Frt2R69TroKMmT/ioTrjsh8xCzbsZUf819eeJI34wozR3QXzpxHDtqdrB9LRPkvXsB2N2Vc9t/mC6ZFicCm+qwiiknwY4YIdCzPl/Tms3Se8XkX8krpPY14nNYZeB6yqkDciBd7Tt45lJpjWoIeE0M85mDQcxSuuHdwmS6w+xDqFEg7RK5KwoI7uE/c35LyOL1OuM4EWKSMFXXVGGc3owp7pEDGguJxOaDvN/V2HHsb4UYvwNbJb85oL2E1D6iRgun4dqwYOk5q+teBafNqgrOEsXBGtNjxMD/jp0DE2La/Jfe5HzwmFpXGPqE1I5BSOlNUkp2PKREsMCqOh9QOrkeVxPSNXE0b2ho/vHbOf3bBQMXkA10FL0TiccNwmD7DhiDfLz1h1Cpcs2JmG8dkFF/sjiC1XwlHqMd/tY9JAsLYBYbml3N5HiR8ht1sUMwIqnq7OAcnj+wuWJkYRcVq/wdqFfEd2JB6adkUctUwakCYjnSgkDi1yvnzwgH92FeCSHo9ASEnoNUYNr74rLxiFM3Ix4OIpZfsYfyPZRofk1QV1UxFOWlx7g9OPaf0NRldMvGC2tyMmZdcWRFHAzu8xG3ckgWQyEfg4IugssSoIh5rAS6qwYyYktU1InaEuBUX2Ee8Uh1xWIzYJPKqv2H+c0Mo1fbPP8+iQwYx4vhfSDT2/uL4mlRNUaCmaCc6D9JbQRAgrmLg57rKlWYachbd0k4gyMHy/mxAAmSzx3MM6xaX/musH7yAaw5Pbmgcexn1P6wSn44DXm5QwCGmsoUYRh4ZBREzsGZftI0pdcDL5Nm8Yy9XNF4zaBaQDX82OeHf5ggvX0eaGyEcEQUkl1/gYwuoZ+7rmo9u3mcy3KP0LaBuQbQpasabgkCS+IKlW7OwxOI3Xllu5T6xDlpXk08Mp/91mhZOeB+0DxnLJGRnSxvx1/AZfvHnIgydT9tNLrsKHaBy75JA9MUftztGD5uk44fr+nJ/yIQ/Zw8uQJDxm1xnqwBPIFp9EP3c++sZ30OKLP0PgMYt3/t52n0wxh9/Fx5NXafd37ty5c+fON+Bs95jKK2y7ozaKPg5p04J5eUtVOj6YpbyYTLi61OhhjbOGTX5N3WtO9Pc4HTJuwys+fpwiWktMhHGKfNdxMz7Cjb9F0XY8K0p2QrNOF+QuYX32CW0hcF5ijeWmWbHpt2xnAQpFLEIGrdioFEuMq27wy3O+jD6hCDSdiCm6nutiQktFm64oRiuqQNOWU8ouQtuGsjyn6MZYlRO4BhfkbJny8fodNt0Y7wM64cnDAOtC+l5yfhIybBt6YfBihBf7aKaE00cMWrIcrnm+CLkdHdBITxaO0ddgVQA2JbEhUoBSjjJbcL6fYfqYoVAEY2A8olm8TWUdX2T/nq9nTxi3mq05ptD7dH5KEndsgw6H4NQ0aCGxqkSblgMnmOqOJ7Mp/8eD7/NyUARoNmbChTJ8y5xSqZyP5DVNe0VdS2BKr0KGwaCNBgbCsSVt1tCu+fwg4lzM+NPXHnHy6Ltc7DxNfsFLZfkyTKibBOMzIh/RsKAoJvzr+bdYN2tsc83cBBy2IygbNgIUA86MOO1G7HUVb9wuucljbvqIz5cLOqOxImDlI2y/w2uBHwbK9pYPg4gydtyv7zOuG2Qb4a0i6LYoHUNbs95KDnRMV6Zcz1M2/RO61TOMNgStw/UC7Qw/nV1zkkg2+gal10ziEbrw1H3HRu34bLqH9uBVy9oK3r8/I2qvkMLigVgqHIK2XnLae76SIdINHFWesVPIMOClfcjnZk6tLxj6mrK9AdVxk/acRGOkTgmkY+zO6feO0CLAhRptK6abz2mVwpiGpGmII4nxc+hGTJ3mSEQIPyaRY4o4xasWLTK6aMx4mAEJgRpwTYg1kERz3OgAkYZ8qRP8UFP7FYFVIDw2UmxKSbeu+XQZcesdq2nMualpMRShxFqFswNVuQHdI5qGp+6cZLvl08nnEK7YtkcoFaGMpDEj9tUh63LO87KmM2NsXpIXA9Z5Umuo7RiEIGtK0rZhqzuUDtCuQw9LptmcNCzQqkJqQ1TV3PQBynh+KmYEtuegKUjyG7yyjOWGptqwyW/xrmQkA66jA2rn+bfzd1HhPbwV5CamXx/xrD/iuUi5PHqNXbbH7Oaclf+SC/GI3o5pdnPGN1tKkaL2F1RJxNPU01hLva0YjELLmqfJLWfRC4pwB76naXuuxxF/un/I9UQwqRui8hliuELiOFPf43yUccuKp+OAURohhjGyGNjsNlxGCZ+77+IFGAmJ7XjvaMRXj9/Ee0nie7ohZNu0SGuwFnotaUn5KlJcVDX/5snrfHL7LpUJudoliN5QiBSvBiId8v7ohD/vrqh1TOnPue3XOGBjBJlMMeaWVfAx54lD+orSDKzrEYFsOQhCQuuZqAGlHRuh+eT+ik/vX+PwjNKWXgkuBkHeVlgrmYSvY6yhnQpW8Y7EhkRkhEL/x2jFf9A3vkBzyRyPxM1f+wf7iKECERBUdwu0O3fu3LnzDXEvUKYGp8htRlNv6PsLno4VroNhiNBOsNKeL6Ocp9MlJ2nLzw6nlCOBtxBqj1A5g0nQPsENEnxA7SqG/pI2mnKrrtl118yHMU/mC54szujCDUm3wduWWwo6r9iEI4ahQ7gB1a0QbY3WAtNs6Qz0g+VFGuL7gq4/5zjaoswVF/6UPz0ccx5pBl2R6wM8MdiCQEzJVc51O+LDUUU0KAINAo00LdYHDEIiI81cntBXBYOGIV8SWoWk5lzEbPoAi8A5ixMhtWsZhQ1XWrE2BSIK0WKPwr7HX8Y/Yelu2YsfEHUhlbds0gNyr7C1J9y8RCp4uFbc7yRX8xGGlsqF2NslO3/Jh9mnGBeAcNS+4iQZOIlqlOy4mqQslud4V3IpW7ohopQtuakZNR1uCGnyEdddShVEvMxKLicKT8/ZWDOYgKuh4f3FNbf2KbfpkssIEiu5SQJOjCTH8DIY8fFkTmauSPIzJJKvDr4iGeW0IuCp3tBXFmtjGj+Qm5x417HQv0Do59R+4Em05STTGOUYbEjZWNquo/AjEgXeClqraYVh7VJM9Sr892q6pZwv8EFGGO0Tje4RAL6/4YviL6jaa6RumZaKuL6hY6D3I8pmjREVPk7pJzOeTlO2WcoqNryXtVw0t6y7M/qu4v7FC1y+wVc9VeBht+Fi19PsXtDVTznLZzxPr8nFGqFzXo5HBComiDwpsG3GPAtTPhnv47prnL5kOzvnanpN4x1pN3DCCSfFpxgGdL/l3EouRhNUL7hXjmDw7FzBxHreyCNAoMyczHa0xmESw5cTw1/sLfjytYz1zFKZkMvJgpIU0yeEYkBiidobBlGjk5c8uzfD4CizOcsQcAKpFGW7ZCDhdAvaWlAWNwxUrmPr4HyIeTYN2KSGWzxlH6CjMVJEzNslJ6Ek7DfQbVF9x2IoEHbNMOQkOkeqNfZij3U74sNZz8s44rMsYRmt2XDF88M9PngYYm3LVMQYr7mozrlsXmXgFVXOUlg+S6f8lVQU5opLu6EkxsVjXLQA+4itTHnmAvpKEWpJ7qHrFiwY4eQINzmiTmNu2o6uvo80MXbznOnmz8jThN4O/JtwwUZusDLhr98q+Mn0Kds0IPSC0HqWPkRawSDA25ixfYwKI66iC3qxh+IBTb/ldFnjQ8tt0DIEDn30kC7MaIsn0HVgBVjFoBsUKbWu8Fqx82s+mKX0bsrJXsTlKKZJR+wmCXFUEfUZ8aBxzhNhaHTMVR/TuxQJOG/Z9HMqM4doxkUy57PDCc8mLbfNx6h+Tes1ykpuxOs4PcH5isqPuazHtE5Sy59ytLvig4cWsVlRJTvejzxn/nNqfUXuO7JG8TwI+DTOSZocObR8mVY87++TuBwlO3YCdNfyJBMULmAtDhnswIfilK+7FVYp8D9/CfaNLtDEUBMUrwI43egfPrrY/eDXX/UtL77B0d25c+fOnX/Kqi6k1Et6bTgqJWlbkJYtx8sLXDdgiw22L7iYvMXP7pX8ZO8LLrIr7m9vCNorqiSjTCdEyZTaeW7KZ4TbFd5b7pclYVszyT9H+R2Hyy94kQmsdhRZSNw3dM0NTbOmGQp0kFAHKWV/xlJfI4Sh7WswBicDtuMRkXEcbNf4vkBYw3kElRzIRY3FEOclremxZYRsd3gcq+ZLdH+JDxXLUJNjSVxAFIzp1Jgm8hSpo3AV+cXH7KipXc8yVPRdwZNxiRYDT7hkN4oYtzvm2zU7e0jXwtXsnGJu0Ra0bbjIMvIIbBJxtv2KnR3R2Q213/Ll0S+DqqHdsRNbVnPFtdxx0Aw0Q8W1cAzzBzybZdSiRzuDcxAMJagNO3PDZ2rHdHuBkQJ2T1DtBSoIeJKc423BVX5EI3vquUPZhA/iDMSCzB0wN5694owiNHRxQhFq4q7hBxtLRMisbvjW2VPipmEQEbNhzH3VsZlkxP0FE+mxjDhd5cyuv0AMCqlW7IZrTrpP2MiGPshe5TUhSXVF1pfMlk/5ahZRxTE9ik9HNcvIUbuCpb/FkhDjUEqzrQ0OiZCOqFjRDJe05XPOYsdASy1LruJDnu47nAhR/oRGNCiv0FiCvuG5P+dn6ZakqnGExNUW2a3IGCHswK67xHqHR9OiMeUpTfsSm0yZBHu0bkxcX3C4O8GKCu+hHQSm82yjlMtgQT7MkNWOB88/5J0nH9Eh+JNv/yLgCLTj4HzDWQZZ5bnem7E1EdkATZjRuQCtdyi5IjBrnIx5OZ+Q2yv05XMuxhmN1KzMkufXXxPWO5JiTWEecjXe52qa8Pn0a7TJUc4h+h5hFRJoRM3ftIbeeHrnWAYaqQ1OSGpd0ppb9JBTKMvH3tMUZ1y7Ci00S7nhZdgyGmKk8zT9Jfn6Y7RPQPQoE1Ay4qk/45P5E3ozUFjNewczVoHHG8O2vOZPDqaMgLq7oJEeWb9AKkE4tER9wxAIwuEGYVtsELIc7/H5aEUVhnjnQAp6s8W0goeVp0dT6RrjJU9kwNUo4GwqiEVL6CVCjnj9/Ja97Tnx+YfEzVfU3c9w/RUQcNs5bsNjhtEh0VDj7DmyrjBVycPuhLHe0F/d8vD0K4r2K15wisJSB5o6nYFOMaqjry+oqKDcMB6eEgQFt8ZwvL5mv9oRWc/I7XEaPeep/IzO1MxWF8Rak5RLVAet0+hAMjjY+jXm6kN2/ZfIoSbZXHN8c0u4ecplJ/Gu5TRecS4KlI24mu9zO5rzr8a/glEtOI0JHG3YcTOf07uAp5O/ocie4F6VAUEIB8IRsaCNUmSyT6m2BJ3BeUMZZmync16/OedmEjOuxwxlwYYLaqM4vP0I0Z2gRIxqDbWcMgjJ7VwT+UOcNHSip7U1RdLi6qfQ3pJHhpOpo/IVQXlO3wnGMv+589E3+gyaqK+RusbJGKLsH+w3HP+X4A1y9/QbHN2dO3fu3Pn/s9/93d/l448/RgjBb/7mb/LDH/7wb9uur6/58Y9/jNaa733ve/zO7/zO33n/abiHyQ7Z+R2HVUAbp8hWE/c7rvf2kKtPKeWMyMCimLKIInTTUI1ruvgMESj6SDGxHut7rN4S2I56OqXMFjzST5AqxywE2JrGvwrHFXJBuPqKLNTkLiAYjRB9h62fUXnB4EoSDuh8gNMVJsgYkETNliC5Tz5d0DuNZUMd1GgZMq9yoq6ktjFt0xHH0JmaID3iPB44zzbIboLqd9SixfgGYy+5Cn9AkzjqQCOvGky4RxY0BGtP7y22rGAyJvALFp1mnQScPZowjCTHL5f0xNzsK95oO7yIiI1i8JpWtwzBfUrZcmg75mXPr+5W/KvXQo6MohJXBMYz2y2hfo88qFDVZyTs0QcwHXqeRGtmTUk4WlCKnlndEotPGdq3cVIDoLzlKluhooCdG5BlzzRLiaJ9tkGP3P2fZP4AeXTAuG+xOHSY0c0CFmc9RdjydXDJfZVggjFP3/oO/8XzU+5fPqXY26M1JYO31OOMl+kNzkiKEEJVEA0KpGQXDNwEkqHf8PDqGqdu2N1/k33tidQNdegZfEUdp2i9w9cWOa9fPYsWxVTO8NNHt7z2rGaVPGKaKt5s3+IsvmUov2Dne75eSJJ6iR0i+ijEjODijX20qgg9rCcOJwXfKRxZ5yAx7PlH1P4FVn9FGx3w9m7F1nhMMKaTjnIyYry7wgnBLtaU9gVfjRJEFWGzBUWYcRF/xt7GUYYzhNEMaPaKLU1keV4I2r05xfiGozpinF+QpxlykOgwopED/WSJ6a7o8471t/4bHg0TcBAFGfiKVZowLQ2tydmPMj6dJdTpFq9umQ37jIN94mjE2ASEzS1hU+CCQ8a9IBhK2vE9niTX3KtDxhKmvM4P1nMu3M8osgCtC04SyX3dsgkaZK8JzcB1dI82+4LS79OOFtw0P2NeB9hghAoHEh2QdSFbucdo2WIihUsnHFQl7VBST2ETHpLYJfcKifMZn+xphnREfrTg6MqQ6QEnt0gf0NkdHWMipZhvL+ilZj0vScOHTBaPcDendKajnR0w1haCK4I8pZYd0+Yx0/KEJgmIWFGqHAJJnqbc8x0dsJZz9uocNZlQpXOsPqeJB07MJdPoPpHbEjVL8jTHc0zWbvHlCU/mc2xkSYM9VN4iTU7pHSadE5glV1PNolT49pJM1QTTCPyMPC7I+wNKcUPqajajiNR1KHtLLzzCSfrIE+uB0BmUqPki/Ypi1PHu057lgcNbi9FQxR2uMfhxwI6U3UHP/kVB3mpeHFwyDrbMiIh0SxfNKaVl5DumqqeIR3ywP6edSh6VNwS1w7sMHSUU45a5CVjHBed6w4qX5GnKA/9t1sGaQeTgFLiYJraMpGQlblBuzhAOVNmGxseMkGzagtNRisUR45FqjQre4Ml4j67a0fqe2AwMAqwpsd0X5OM3kUQEteR8HvJ4d/Bz57NvtkiIDPFBCvLnX9ZPHwEQru+y0O7cuXPnzn/e+++/z+npKX/4h3/Is2fP+I3f+A3+6I/+6G/bf+/3fo9f//Vf59d+7df47d/+ba6urnj48OF/8hlaWJ5OIzbDwKhumBc9baxZLkJ++ewak/bswhHBEJEVF6gkpEpniEBzsFzhfMG4N8jJLU+HE5JojEoy8I5+2OKFxckM4Qucg06esaguqNOUqwPBQRMxeEcXaSIdImyFJeB01PPmrgQnKCY1qWqYuD3ysSHrG4R3SO1wZkOfdDiXUQ1PeFQrGruiiVoWPKJKBvxoStx5xq1DW8UQ5QzhhIvRQLJuifsNSnriQXEdzBgFPUk1IAQ4AVLEfBrGHNUDc3WJwtMEV2yigHnokGrAmwCXxQQK7l9cUxwlWKuJhICrpzy5lzEdRtzYDmtqBr0iMYa522MbrXH9JbvE4v2S0g3cqyO20wYXtzgnkK5CDgorAlqxpQq/xd7gMSImMaCbmijyVF4R2xCjHYMOWJQ1PktR9Nw/+5hd8giLRffP6O2a2AXcRFdUcsRIvkNYfkKmHMYc8mI+wscRor8isZ6sWxO5hLnaIbwAZ8mGAR1PWM8ibNGzikM6DAkCqXpMoNmNxzThHnG/pIkXdLFkpAcmekU1GnPYLum6L6jknCK55a015HHMi8kFAQHjriSwBh8mdLEj6nO6cEpsG/TwES6M6MSAtQ7hBy5SUK6nki8Y+pij23sEBvoo4ErX7MmULknpREHUbykiy0hrOpeTbiIKF1JOdgSmJvaGg2qPTuZo5wiqM6wu+Oio4V5dszyUTERDnu1zVHQY8ZwwCjHW4G1P3JxwFV4xCkruiwPS3Uu8drjQEFjPPXnEpjXEXcHt4T0m+Q3X0yOIYibBiiTRRC10UYRCMh96Ji7hVj+hT19V/Xa+xIoW3Z5zNV4wVWt+FlqsHzGvNgReYoXkPMtpLMx1Sx5JGtEzyBGjJme/0NxmjiaNUHJH6GLKqeUi/ZA3TiM2Wcz18SHOlxxebzD7R/Qip5GQ+IGsz9mFBusKShlzNYlZx1tKb5h4Rxl59kRAlSVk3RqhErrEE/U5kpZqqeiCMZFvCESMDTt0ADehpUsyurhDyYG0yrm9H1LZLaKS5IHHpgtu5RrfKVI1xU8HuiSgI2CuM3rZs01P+GH1C3T+OYlTCNviTY9zhqhRLCNHZB0JY/aakpSU/foSHUlEPELFns722MBxvOroh57UzimCyasQa+exBJTRhmNVExDSJRGpzQjQVPT4TCNZs53vszdZ0zuL6C2Di5E9uCyjD2ISbUk6RVJUBPGWtyMDHtYzmDUlAkUsFXlksIllrAZW0Sek/QgzXiBczbR+daxyVDe0kwlCWdb6ayrXYGzI6XRBMlic+gjYsT4+oLmXMSprJIqZdXStILcbVLRPoAp6N3CwqskTx0h3dHsZBZqbzBMPIZNmIB4E19OMN6KWYFD4Yceo6glNz7C74kod/9w57RtdoCXP/zX6/o8Iipc/t5/P9jBHP0DW19/MwID1y2c0+ZbXf/FXEEJ8Y9e9c+fOnTv/z7333nv8i3/xLwB45513KMuSuq6ZTCY45/jggw/4/d//fQB+67d+6+/9jNvuDGRNmMSkw47EFRhahiDEC4e3mjrQXB1CIhTdxBLUL9hfjijShDZUGCK64BY33vFo02F8zm4Wclw27EY1ASWBC4mNxnrDIm/Ij2KCoUEbCEUKgyFPYzq5ZRMKsJ7WakIBY5WyixuKaUNkFdP6klwKLvdDJkNDNY+Y156b/RFHQU0WSAxQujXWe/r2OcI0JMpyXFd4bTjZq2kDxTgNwVXMqoEhhj6BTbhl0UuGOEEjGNSG7598yG60pp4csqc877484bNH+2xGNYnP8SKiHnr68THJEBDWDRaB1UuIYtpII6znaHNFvJ/iiRmCitvwltAJpKlQMkVay9W+Zb0X4VxE6m+oE8uod8QuxLueidvDyB3laAK6QEwesNe11ELRJZJGNngZskvHTAX0Abh0QVIPBHrNzDu20wlBvwM0qck4qEAHz4nbnINO0BpHYBumjcB7SRsIHJ7G3KL7DcLuMaRT2vGYrO04DZ+QxYapmeOERDhPdrvBCs+hCxCypZMNbVYzMhMGaZlUNyRtR5UEuNiSdh3NfMb10CCVpfOwX/cMUpEyJiKgFwbpDc4PCNtRRC3WGEJjCTGopEK7CaGyZG4A2/H4xpK2ltRuSQfHLgZkAl6Qj+ZEdYcXgtEQo2TAoAbSbsN6P2CvLbjKWqYqwQjYhRonIurxiMPdEsIJVVITNRt6u+CLRzN++bohsAbQzLcvsL7GJ2Mi43B4Ot2QdDlV5CiSG7oooo8ihO3o9AlH3cD1+Du8vK/ZtDm/sDXEVUc9StgMp5TeEilJHDZoAoo0ANMx6kKqdMSgL/hyVnC8+x5Sd1h6dJIQtDkmC3HC4yQYWSI1aCvYSk/SdCAMtwclD/sHDGHIpDZIYdB4Jsv3cLIhUbCe32PRBOh0TFzX7OIOb69xwLyYU9U5y+QFFE+wwWMSO1CNY+pMkLU95Thl0kgmxuJ8QR6/TZZ3CCGpgoZB5MTaUMueYMg4KGpwM0wQUUcRlQ9J9Y7QgY48pG8wXrd4BaovGNcVM1EiO0WxP6aOBe045L76NiuekZoG/sNtrzQaYQccY4ZxhLSKKhWYzOPYIO3A/SDESIlwmjLumLmM0NbMhxXNOCTUHVnhicKAQGboKMZRM4iOoGsQbkkvPW0SUgWCdpKizI7Ah3RpgKkVoXbErkeW16T9mkZ6VJxSxiHh4PHaYiX4QJMOPdJZHI4+yBh1HbPeIHTLg6rDhAnRUOIl+LwiHBxF0jDoAR2lZPlzUjfivjrgr45vkeaGxxuBcQHlNCCtLhn3AYFpmNqI7d4xmYgZqQBpdphsjA4TVtmcznhGZqAbjbm2N8RaIQNBrAfGVYkOxwTWwVCxCf/+uLH/6JvdQfMO0dzgsv3/bFd9/1fIVv/zq7w0GfyjDamvS77+s3/H5//ujwG4+OxDHn//R7zxo3/+j3bNO3fu3Lnz/671es33v//9v319cHDAarViMpmw3W6ZTCb8wR/8AR988AE/+tGP+PGPf/x3/oyL+oGMDb18jPMDgQ2Z1451tON8NKYKU5p4x7Qr2Gskz0che3VAG3qyXmFSCI0g4iUMHdaDFgFZ6zHtFcU45bVNxWYG5ahnun1ONgy0qkU6g5XQ+hIn9hjYsJ0O7NUpTgbkY8vYWKpEgY+Ihg4rDF5ohhhGjcVEIYdbTx15pJlhxQ11WBMOFik9Jhzog2siY9AC0r7H0FPikDYhtBapV4S2JdIB9SSiSQJmGGI1MNbQxyl2niDsmEnbM+oa2lTw1skF/WiEJcSikd6TtrfoWOCkIcZTjQNcoInbHO93tEHLqIkInUVYTwAgJW1qmfWGLvHsb3ZU8z28bVFSvyqS0RYI2+NIKaIS4yqWizHHlSNoK5zRqKQnbR0+COjnEfOqRIcdobKgDYHLmFjH1fiGF298h3vnECuPjhy9dCRG0QUeI8FMa+K6pZAzNgf7PFjdIL3kVhYMY8N+aYmGDqEHSiryyDJTKW0SEGlFG0oGOQCGMtYo4fFeMkjBbOiQThG3JSZI8V5SpNCHA9NSU4UxbizwyX1cfUakeypK8iYJAAAgAElEQVQ04eZzFsYQGonAUsRPGNtjwr6jDWMGEWCkwEqPCiVWdEgXIYYe7zuGIMVhwTk8Bic9UhfIoWUQCuUrIhWCsayP3qENTtjPO8K+R5DhhcD4DYFLmZcVVSppw4ZEeFQAwiveuD5DNhOmnYTI0E8mjLqQ+a1CDjVhd4GVlmlvyNMZaW+ZOYsKYpyuKEYpVeqJ2ysebHfgBcV4RD+2eL0hU5Y+iijHA6GVCCRKDBih6GSEVktMMuLetidpr2hDiXQg7ID3PaFNEAh05Bh3r36j6P9i791iLU2u+75frar6LvtyLt19uqdnenruJIdDihIlRZQE25ICARaSBwM0EiV+MeCEcV4EBJASQA8mkCB5CeA8OIgRJIGZxLHsAFEgJA9RZAiRZVNQIEpyRFLifcjhXPp6bnvv71JVq/JQ397nNClRQTAzpoGzgEafc/Z3qaqv6tvrv/7/tWqsEc4wOpDNmpurI0Qjbgg0o7BuEqhl3m9w9gCjZxysEtFCzGcEyUh4DEbQ2DHWiafe/H1SG8DDEFckb1men3HeJpox0Dx6yNjOAQWUzj3i+vkpohWPK7ixgYOTNWSPCjid0cSBoAPL4du8efMarzx4QJUUlcS9a29QXd/DPjoj8IDXr7+M7Rv2NBH1Icez6zw6+WPi+m0WacFQD6yqjqavUOOJohxfb9l/vCaaM/Jwj6RHtMMGrSyP65FmFFyKzNcwmpGuDszTyHxT45Ji8ylL9SQb0TSg2qNJqFdf53xhEY3M1lBpJI4BNyrLtGZvFRgBJdOsH9A3I8EnBiJuNFw7NcxCgpjwSTEa2VRAVnwEtZZMQI1Sbc5JxjG4iEmJaEcq3ee8GjncWLyCiWs0C6uq4Y/rr9J2hudXK4ytCURsFwGDqNK7SGoiy9M3ySiDjZws5hz0IyF6xs2XmQ0rRits2pZn33nE472K4BQ0k4ls6sSiqsk2kcz3C0DThC6fAT8j3njtzz/eleo9sr6HLp/+cw///2ubk8d8+Z/+Bq6uufHcK3zj9z7Lt//oc8Rx4KUf+4vv2X2v7Mqu7Mqu7N2znPN3/b4FYDln7t27xyc/+Ul+4Rd+gU996lP81m/9Fj/1Uz/1xDmP56fYJOydVzT9wLrOJIkgLWezA7T/GmvnmNuRlAMHjwx9Y5gPnqEWlt0GMqzcQBXhzWs1VX9KFTwhR+ohABmXlMOVpWvPGN2M2fkDmqBEgUQi60PEVDz3tsVFIeeRbDIbB1ETKkrbWUZXNk21SYFEbztGDJI81x++RTQDNoOxhsFEMhCtRT2IQjCFxVisDGKF0UGVNnRWsJpouwofFMEwuL6cnzeczVrqHkw3Eo2SskGkIsdHNONAcjVq55y1hioEBitYlzDpEb1PPJwbJK9wYVnYiF6wOSMIJmWaaFAUGyK1OPr+DBcGDOeI7GNSwCiQFTWRkzbiVmtEMzas6BGaLhFFMSRS3tCGkZ6Ej9A1kaxr7jfKbJVYPPoqh6elcMTolCgjNx519FVGc2SjPdVocPmUJFANKxJrzqpzjh47bI7kCNF0GFNx5/6I0YHZ6nVUSkl1l2A1t1QijCbSdhGfLEPdsfIeJbCZPc3N+99i/zyy2ruOiiLhGIdDxkeMZLwaklNECwhWA0rEh0wT12SFrCUnCRLBrDCayU4YrRAtWG1xaeTMZ9owEOtATMeE9ACfKwKChESyBs0jPfdYnHUEYL7xSI7YkGk7JRllqB7RVYH5pqJbBPoq04tw+5HStefMg5Czcu34HFCsWs7bjNEVYuacLpccDMqmmWPiMVnPqddnuOwwo9KGM4ITXHJEM6DR0Iw1iyHz8MaITSMuKiqwN8Bik+n8hrPa4GNPR2Iz26cZRvoqI3pOlTP1kMhGUKPYqNQhkSRiU0e0mc4PnFcnHI0LJEcez2BvBcl6xEQ2ckqLwY8dlYlIOEdJRPFEZ5EAZ7WlTZ4QH3MwZkYHpI4sFVXIZBIGR7PpGWuHicrs8RvlvZMVkiFowoeykXNWC3HFyhqyQN/sUWnHph6ogiWHY+qHiUV/zmAdSQMp/CGzXhisxeTE3bcecaKZGZnRrKl7S/IKpcY6wSn7j0/wEc73HM16w3z1DkmUx+2C/XFNkAYQXFCCKM0AyQqjL1syJJlhFSRFTBpxEdSMZBw5bxCzR9cqh5sN55WyGDL1qAiRNlmGmcHkE0xW6r68Z/pqRj0EVJTkLF4FFyJOAiYLwSlGe5xGDk6VoZmxXEX82GPUYLEcS4dByCkSJEEyJNcy6ttUKnSzSJs8EhOSFUwmOks9CpKFPI6cziPOJBZ9z7WzU4J3uLHhDXtOpQk1hrZboySefStS6R69AZMze2drbAzEtOHU6/f8Tnvfqjjaf/Tz5GqPdP1V0rUP/rnHh9s/Cta/56X2xVqG9Yq9o6f46X/3P+DWyx9idnid3/2f/x7d+el7eu8ru7Iru7Ire3fs1q1bPHz4cPf7/fv3uXHjBgCHh4fcvn2bu3fvYq3lx3/8x/nKV767CNW8s7hoSKYDwCUwGtg/OWPUM1R79s6HEjX2glWo+xEXO3pvUVOcYjQw+MD+2WPqMWLGARdHVn7Dw/0aNRmXEk89VOohYENicEU2p2IxgNGRelSSCFYVsqX3QrSCGkgmUQeY94HFJtH5gSgw22TaboWMK3wqTpySySYUcLHZ4ELH4UnivE1AZLlO+HUHacApOIVsHclssCmgBIINZFGsRpJGkulLLowLjGZNDo/xwdE14McB1RMW61KlrHeBRMIHJUji4LTn6DEEM1KNAzamCQzBKIqhOLJGlc6PzLqBg/NENSbcMGI0TE8sMlb7zNeJ+Toz2yjJJDZ+hVVl8BAqg9FzOp8YfGKo4MGN6yRnqfozcgYbHRhDsIloKg5OztG8IetAMgFRg09C1o7946+QTGbjM/VgCD4TrQMDyVp6H3EpEZ0yeIG8Bu2JJuKGhAwPqIYz0MhyvcEPI1V3wrXTjjtvfh5yQs2GZ95+xN5Zz/I84oY1gwWyISFk05CNECXTNZkmZKpkcN0GzSuyAZciOWei6XCxp+0V0YjJI5JGAh3BbjiZKyfuPsFG/CBs6goEXBRmXSSLsH/yAB8zMHD9pKPtNvR+w6zrsemYWdex6DKzIWFiYLnKrOsOo5nFGtZ1KVoClsHBuhbIkXqMuO6MpnvMmlNyOidIkapt2hofE4uux8eRagxEGXExs1wlNI+cNAYXlMW6tFeBlDeMtgB8SWtEoRoMJ/Me0inVuEEZqaLBYJAENsFQwejAJp1A1kA7QNsFNJdAj00GyZ5m0zFfj5icGOtM0wdMDGTxOBpGG6iGkSrAtZMz3LDixqMBJbGRY5p+oPeZbDKDN4zOkJxBtcOmALpCTSZJohk7BhcJDjaNYHQkWmHVtmzalqq/z0iH0QKwkiTm3TGaRyQNtN2Gg9MBN5xQDee4ZGk6ZdWuC+tnFc1rjI5AwocBP45UMWMw3Lq/Yd6VIIBooN0ckwlAIjNgEzRjgRKKMu8jVVSqEPFhRK2d2gaiBfRIsvh+w9HDEwYzkrFEmwgOooXBBOruHKWj3QSyBoKLpHxOEwL16DE41FqCjSU3NieyySCZo8cJmxJ23ID2ZMo7xWZL0yXcCCdtYvAQXcZGqEdDNSiSIBvFaMKFhI/KYpPJIqgJ2NijWirzJhEkJ6oQ6fwDHrUbiB3V0JN15KzNJKM88hucVDT9CuKaxDnRwuO2+Z7fae8bQEt/+T/HHn+V+qv/O/n/Q46XVvuQBuzDL75nbfrKZ3+T3/7v/y7GCD/4r/8bGBFe/sRPEbqO2x/8CA++/uX37N5XdmVXdmVX9u7ZT/7kT/Lrv/7rAHzxi1/k5s2bLBYLAJxzPPvss7z++usAfOELX+CFF174rmskyRjNkDuSGDIJqxkfwZ69weAzOW8YXY8LynIDVRI6D23XI6qYrCw7WK4EMCTjGJ0lmDVtb4jOESfVvosZp4XVAUOGwlKJIZmp6AHKaIVgFZciohmTwarSe8iUKPzhKlMHIWMgQxVGcs7kDGoMyTkgkmzZfsdkxY+KSZloFJcS7ZjIaGHdEkX+ppkkgouCTQ4fhWtnG1Q8s66D1JMNZJNJZsPgFFQxOWOyYVOnqT2ZaIWjU7h54pgNYGPGJiXT0QwGtaDi6OpJUlRb5n1muS7PYfSeeTdOY5UKEBmOmfWOW8fgU5HW1aFwAe1gcUPHcgXLdWJvo7ioPHX/AU2/pvMjmzpR9ytEI3WEthtIJjJ6w9kM0sQOBGeRHKj6c3qfmW9CkbOGjMlrTM64kDAaUGA2FGYzeCE4CFapRhiN0PlA7wYG26FmoBkyRnsMQwEUMbK3HgvzJVqe97jBxDWQ0EmiZzUz6w1WDcEkep8wKSIKvRdMLnk6yRowoJJxsbCKBbYnBpuJksgEfIjU4xo3bqjHAHmENGJMGe/BRQwJkx1dLQSXaYY19WiYDVqktoOhDkoToIoGUWgDiI6MNtH24CJUIWFTmJx9RU1x3p2CyZHFekVXKUNtCF6I1kJWkoGuBjs8JqfIpikBDasZpxYflHosa3Y2gEFw0XL7/gl1yKgRRC0ZQxVK4ZvRKfUIiy5P4xKRVD6zWQjmhOCh6TMqCbRIQpdrYb5K+BRph4AdV6xdYrkecDEhWkDJbPOAZDLrJkPOGBJ+6KiHjnoC1yYnXMoEbzBqCFIApFUlkzHZTsAuYnLGpjVV6Ll23nFw/x5uWq9Oi2IgGUNwhpR7Vo3SNZmhyiw2SrKZ5XnAJsXkhA+BWQ82bhC11MECER8CStlNWe2MbCzJGDKWJEqm3C+6cs1olWwo8k4CiRGJHYt1LsBHLEECPoxUY0RyAcB1f44LYDKQlaGuSAIuKoMfUDElYDAayhsvINqV7TZIqBR1gI+C00wVIFpHlMzjpcUnyCgbPyA5gyp1D20H1QDJjASnnM4NdYTFOmCjgjBdayRK4ngW6erEfFNY2yCb8u4Dqi5x7XHP2DRkozRjz7WzgdN5JuuaG+4GczNjqDqSgE/CYrX5nt9p75/E8fB52v/nv4PUo3vP/bmHx5sfKYvu0R+/Z0169qM/zOd+7Ve49cqr3Hr5VQDufPTjfPZ/+q/56X/vl7D2vct9u7Iru7Iru7J3zz7+8Y/z2muv8fM///MYY/j0pz/Nr/7qr7JcLvnZn/1ZfvmXf5lPf/rTDMPAK6+8ws/8zM9890Vyog2GKvYEKUyVqKGvoAk9JllcGGliyalXFDdmgkRGa6jHTBFaCkkyyRoSPfVg6D1UyZOZpEhkok9ETPlZU1GlkbAK228fN3ZTrkL5i09bWYwUB1NSAZXA/ioRpTiraoXoEpItmZJ3YwSCM/hQ2D+ria4RfCzOvNHizJsMKgGfSnsgkawS0iTRjB1NH4uzOo1bMhXtkGgmpziTGScppTGZJOV+ySSSN/gEzRAwuVwjC6hRRBNNKmCyDolMYSUHDwdniilb0mImOSg50fSKT0KUcucSAi6SN6NF7WcoDItLGZ9yAQQKgnDtrICgDEgWSAHJBh8zTfFPMXkACovShDOyJCQbVCYlWk6lsxRQAglRIeRAE2SaE4kgicXKYIEg5f59pdShMKVTugpJAkkSPoGo0o6lD8mAlYvclWgzwUVEi5MvuYCdKhSW0WDRKdfFJkUQyrbSfZlFqozeMksABTAnydiUyQJJFReFYAvTlBFshv1V3I3zduzqMTJU05QgkyzYnMkI8x6q2JfjVYiurC2Z9l9zyaDY6XnHMvdSRo2SxRCtQ03EakA0ESVjMYgWwB4lU6XEfJPJBqIVyJAJNEGn64JNkSbqNB8jKoJVRxalryzzvsxDYwzBAjngUrXrp5qt026wORWHnzgFTSDZM0DovWKT4lNETUZy4uBc6SrKvbFYTdNbZMRkS1dl2hFmCbKZ1nISYCQjmJypQgJ6omQkWUBoo2N0io8KCC5bJCWiNUWuuAKbHaMt76c6GDJFnioZRl9a0QRbmD0UW5qGFSn/580EgnKpGquJTJFMmgRGCws4WqEOYPFs6kwdMou+ADedAB1qGCqDzRabRkSFLOzeN4kRlVwCLr2dQGoBWYUtM/hQnp3BUIfyjlNT5rdVcDqSrGXebd/JGZeEJIZ2BMnl3RBtYZarnEkm4FMJCPiUUYr81WBwCgebMjfXjVClHp/Ku2j0mWZI1GHFUDlWM8O8i2SE5UaRrLwRXifawLwrz31wqYzF97D3D6ANZ8j6HgDp4MU/8zBNCSOCqZZkW+Mef/U9aY6mxMNvfg1rHf/q3/wPd7kKvm545sM/yOd/49c4ffvb/Phf+xTXn/3uSOuVXdmVXdmVfX/ZL/7iLz7x+4c+9KHdz8899xyf+cxnvuf57WjJlG/NNEXPyUo9KNELiy5SXOtMlu2RQjsqXc3uXENxjm0asRSZoaiQKY5ysgkZDVkNLmeiNUgGULIpTk9xKkpemtfigCSj2FwAXbBKNTlRYFFTmDWTIUpxvKwWGVyeQBtYqrB1dgzZyARAJkdRwOQCiES33oOSMZicS06UFsbBxTiBzkwVYbRjOQ5hmw1YhUgVLSWsXvru1GCnA1zMkwSzSJuqNOUMoqgpY1JyppjYQZ2uXSLpBbJIYUYoIC2jdB6aAMGCn44s7s44Od+KUd05WJetjLEnE5j3QjIFFKphkg52BXyIYd4VcJXMiOShOIi5POtkYKh0WxyPZBSXDMv1NPZisLk4f7OBqR2lPZJLD12CaIozuWVXTSF5cEAUmRg+w+AFH7cgTnfnwJRLM51f7rCN3At1BMmRZAoTNfhYxloiIIVxndqSjRaQGyfUiiVYwW2DBqY4vQYmUKiQoatATZ6YYsiiiEo5PhcwX47PGPIO8EEBOWjGlnShaXxh9Bk1mWtnhXn2yUyMjpmaotMcK9canVJFqIKgUuYUW4ChwuiFdeuZ9z0mK0GgCoaa4vhHKc/fTLPOpURfWSQnREuOYZZSqCJTAHWZzgXQbM3H0vcgede2clSiGZnWkJaIBYWRl1TAS3ACqpTUJSFYg9PE4JS94eJaSsJQwCHTeswoLsn0u0792K7T0r44AX+fpiUrE6NvFZnAnw8TyEIxu/UoIIrJsnu/JCLNkBirwuj5ZCaNAHSVTLLISBIp761ty0V2wBXAaVl7fQ11KKx8aVVZo9v7b/+qxJJnmGHWlzm162/O+JSQDMOU/1WPk6QxQztJNUfHE2NU5ui2z0I7KCZvKEy+Kbl2o07rNdIEy+gy2cSJzVeer17hUX7IeTie5qfs2vBn2fsmcTQP/gSd3SwLd37ruz7/5h/+3/wvn/4F/uEv/Q1SKIs/LW7jHv7Re9Kes/tv80/+3t/BiJBi3P0958zTr32Mzekx1+++yBv//Pfek/tf2ZVd2ZVd2feX7SBXLl/mmSIxK59BdBduwPYLHIrz3Qzd9JvZOUrFidr+devMWGapLvKZNDmK+cKhZGIcdmZkatfW6S5XKbKdraXJCSygxmm5bkaxqgiKWrPr37a3ZgKFMOVLTe57kZtB7wvIycYg2RbwJYKoTsxEqYpXHORMX+nkdFz8y3TABduShV3/VAqzIZSxKNyXTIxDAWkugRp5whHbunPF9Ur4tI2Rl/41oZxTANi2t+PFs9Xy8+C2YPXiXxnjApDP2zzNhUm6lYEcSKZITZkccdG0u/b2f8lCO4ALZQ6YPLGEUqSGwZvpmpcruU2yVgNKmObY9tmUzw2KShlbq0odC/uw3FyMucmBwStqyu+hULMTi8ET94vmgskyGZpx6i8XgFC2/6tMfRSCFTIjLkGy2zGeWJAJRJWgBLQjNMEwTsi8AB2FrJeCGiWPqMzjsraSJDY1jK7Mze349nVxhsuz2oIOIRuZxv5ijkku/1cRti6v7AahPN88jef1k82uPT6ZSb5WmKsmbM+4aHM7ZqpQ5mhfbVfmNNONTIGIAmySKVJjqwVUe9VdoGL7XA1atvPYrZ1SmKKKZV26qGSRiQVTqhQxOTHfXPR3VwnSl/Zko0SrDLYEbrYzIE+M4GUY4BTqKKgpstwtKKmioGIYnRJ8YdyibN9nF++2KIXhKtcPIEo1Kv5S4CWjNGMpamRQRLfztPShBIaEEoIo7740SQ3zLsQQitT20jy+eBdCMxp8LAxosJeCE1nZ1ImugjoUsI4p75RgS16xGqjixfuksKZlDHsPg2cXOFITyVNgbAt+y3s8YpNSB91J1Ttdk7TUp0ySqaLSDt8nAI37XyRd+wDZ1uRq+cRHr3/ud/jtz/wdxvUaI8KX/+lv8vl//L+RZrdKmf33wPafegbrPcYIv/er/yP3vlY2xf6Hv/Q3uH7nee5/7Uu4puH13/+d9+T+V3ZlV3ZlV/b9ZaO/+Jo3lAg9CGNVWAIX0yUWB54ATgb6qvx16zB01cQ8wA4MGRLP+VcAx+ih80oVL5yIC3BTzKXLrodMbdv+XIqGsIMtmU31JFgBiMIUpRb0Ug64muL8J8OUyK8kK0guzmkTtnldSrTlmsXhkAloKFEuIFMzFkdq29Y4AYMohQlSI0TD5ITuWlFGzGx/1ktAZ8prQRmLNmrnZH7nWEmegM12P6fJ+c+70bk8hhcsSrTf+RlT9cfC8G3Np3KhJMXpjxbOZzBaJhA+PUMjk1M4MbFWcUl3TuB2rFxMJFOi9YO/OH/bFygyPcnQhIvPCqNRnGSAIMowFVfYAmoAHy+AikvTeF0CDFtmhUvjXdp/eTwun3cxRmr0ktTWEEWm87asR/m5PLNJWqiGaprLkuUS6GRi0njCSnChADu3C0aUc9wUUy/Pe5oXVp9gqr6zD7v5tc3tnH4PQsmxTHA+K9dPUiSMUS769ETbDGxqubTGhDqYaS5NMO2Jtugu6DN6xarsANXoLh+1PU927bNagNs21uAvvSu297e5ABG99OzaYCcZdgGFdSqA8fIx23lbwAa7dhv00jqe2q+ZKgrtILg4BYB2YGxqW5LdOjRkei+ofCfMkOnel2SnenGMmUDZaOP0bGUCP9uxj7u+P7m2n3xvFpn2lind/k1YdDIxlQVYBpumwEJh/yRvx+Xi3SUTAGsCE0M4rek8BS4yU/6dUgeDitkx2DYXAHgvfptNOgcEq/mJ75E/y943gCZvfQ6t99HmOnxHkZDf+ZX/FjA8+9GPU88X/P6v/QPO7r9D9HsYHTHdo3e9PV/6J/8n42bNsFmhmpjtHwLwV/7W3+bwzvM0iyWv/95nOXvwDmHo3/X7X9mVXdmVXdn3l1WheEtFnsKUX1IA1HjpS/vCub0wk2XKFyl23qaSnERxWLZAoACkjGhxgpogkyxNLgEvLl3nwqGOl9i8bJQkOsnXprwbgTqaS062TOzJxKBQincAU/8unBI/xUJLyX7Z5dvsrqRbGVQBMKXCJagteTBp6uMF4LlwYpwWJ1KyEl0Zq9E/ef3LDroKO6dRTZFFVrE4s9/lyE/XcDiq7JFcmK/RXzhaWx8tShmDkncixTHMxSHfOez2Il+tihNbcKktZZxK3/KUW7cduyhA1t31urrkIoJhU2eCuwDXwRX5YBUN9RPO8MW4uKQ83IfOb+fFBFBScVpVLMluGZYCMlya2nGJUblgOv6UIICZHFErZFP6P+wCFYVhuAARE3OXC6jJRujrTB22AYALZz3YC1nkaKGfrpmmZ7CV1fX+yTG7WFtlW4DLbOxWarj157dsGVw8g0ujuJtj0ckO4Gznz+48LXM7CSz6MkrRluIwu+dqlXWbS1sBcmF6tkB59BBc6e9lm4ij3b23+Wtlnl2wlOVYeQJsbJm/s1nZi08UVITel3UwerO7budL/y+DoS0AkGzoq8TJLDE6LoFx2fVvy0Zu7TuZtctjWtpWmO7vfEdctkymCk+Cv+01Rn+xjrbrbveZVU7naQoMlb8OXuknhv/insLlM8s9y9zpfSkkY5TvaOP0DpvAd+fBpS23PzFdVQF1KpeDDZfO3Q3Lls0D8gVY277bgyvM+fY5vFx9mJvuNltmdN0Kd6rvnT71/gC0nDFf+02ke8R3RiMefvNrpBSZ7R9y/+tf4mM/90mOXv4gq4f3eLvfA6B647ff9SZ9+Z/9Jjln7rz2Q/zEv/0pljeK7LLdO0BEePFHfpIUAx/+mX8NeQ83yr6yK7uyK7uy7w97ufpQ2dRXigPS1aYwFUqpQGa3gOsicj66wqIU8DPJmaRi2VmcwtmsRFNLCWnZOV7pUuR8K7/ZSf8uOTTLzu5YAqeT5BCzK0qw9fDUwPksE1xmdBd5OD4VGdHWWRzd9hqlwMTWem+nCstbmWOR/JTcG4tVW8CLKQUeiuPrS26aMYVVcgUcXbZsYN1egJzRwaYuzmtwQl9d/n6dHD8tTqPKJLnDMPgCmOQ7nMfRFafpbvUSd5tX8KbCR4OK7HLStsPpVKb8qDLqg4e+KUDJTs5qEuiqRF+bUshiAj1b5myohCTFWdxU7KRvIKUC4dS6InFUZoNFJWOwxck2BeBGC6fzEgyI9sk+mXzh1G8axXKRf2eA3msBx0apA3RV2btqC1Zl2hOqyFMLA1zmSOl/X108o3GSshUwXcDeVh62qyxqClAYvWf0Je8sWWV04MfLTEpxSrtqYlMKGqNKUMeLfMJ8KWCxkw6a7drYPi8li9LV2+BEGZdxqop5ecZ0tUx9kl27YTuHpgISl0DSebtlIGX3mdVtcCKzajPRbZ9BAb6zzuzm0eh1x6pUE6ty4dpeAN51U7aL2AInycKmbXb5bJcZIJt1AnuFjSxr3uFTheTSYVGlCTLl0uUd89SEco9dLuCl/gKct4a+dTvWtYzDk8d2tdBV05iYwhBfBvoqMHhh9KU65AVTfXHN0evU13INKGNjcnlv1Kbl0B5xN99hy7Bvz183ma7KE3t5MZYqk8QxljkB5bls38XBXawVQ6k424TCIJd92S7eucGWtRMlXwL3pa2rGazbTLR5l+e465cr4DwK5OlZjp6JIUxRu4MAACAASURBVGYqNCP0lUz3hCK9Zrc4HsR7nKbj3djbCI1p+V72/gA0Y0h/9TOY8Ryd3dj9OQw9/9d/81/gnGdYn/Mz//5/xEuf+Es89fKr3P/6l/js775OxqDNwbvanJwzY7fBVTU/9m/9O3/qMXc++nGMMXztd3+Lb/7B776r97+yK7uyK7uy7z+LrjjlUIpw+GoJOuUmSKKfVZy3mU29PaMwQlUqTMNW4iR5JFrD8UJY9BdgLnqHoXhmgxMGDydLpkphU46Q2J3T0lVwPlc2zeSyTgn12+jt4IXotjIhdmWlM5mqPuCGf5pVk1nNmPJdiuQoTrK6dw4TXV1KmBf2IxOcp6+Ers5UIeNU2NSGTVNYOh8LkIzOT9X1KtIE9JqBUgluquSnkyQwuMz5rDioWTKrZkIyKHWYZKReiDaTJnlhcQ7L5rVRSt7GybxszHw2K31Jk7SuawTBYlW4W72M0+KgdXVmcFvmaWIRjWWsCjjNUx7N6VyYjaXAg0vwcF84XhrIhmQLoCwgTXm8v8CqI1nLWGW6GvpKdn2NtrBvg986hAmbChN7usicz4TgBZMtSEXXyARazLSP3lSYwDiyrRiqAhILm1WYlq7xDN7gUmbVFkewCoUp6qvieFbJs9AWk8FPbFVhIkC0sJ7ZWLq6yD1r03BZLrpu85R7qBOos9iUqEKpTuoi1MFijGXTTAAiZ5IVks0cLxObdjuvDSbLzqk3ucxDndgwNRPzZ7esWnmuVYB2KIGG1VzoGmHVJs5nFwx2noo2NGMR9CVb5lucWDuXEtkom1rY1OWzTZunnCadwN6WDbSsWymFbNIWZGTU2AKcJtYQU9of/BZeFaDRV9DVhuA9kusSfJhySKOdCthUPU63+UqXgaKQxFGFwr50lSkSZJcwOU55eGXNjB662u0kjqOH0epO3roFDOAJVtjPe7yyuUUdLpjEdXOBrHbbfugEkPNFQOh4rzyf3oOKwWiemPsy17tqexXD6Evhi6FK5CyMvsFrxubMdXeLZ6sXML7GWE+wSlcViXRfC+u2FGkyWNatRas5jVtMeY+CZDux2SXwkkR2jOC6FhwVFodTQ1eXMdjOoS2TbrPQhDI20TGxXGW/RJeEWW/oa3i8lJ3cNUwsdxPK+LhUjt8GbMp8nt7XdSTjUGPpW0eUgsSTgbN8Rsjjbq5ko+ifw/28bxLH/MyPIpsH6OKZi7/lTBx6muWST/4n/yUHT5XPPvZzn+TGcy9hbr/G8dDg/vnff1fb8s3f/x02J4946cf+InU7+1OPOXrhFVJKhL7j85/5r3j40z/B47/513jzK/8xjx//r+T8XXz6lV3ZlV3Zlf1LbIVhEZZ9xiXlpfQCM1nik7Kw+7zsP8RmvodQTwyUZfAeFUe0hq4FKFHgt45KzkcyxWG4d91yc++juL2npmh0JBtYbCpUapJ1mOyfiNyqZE5ncD6zQMUNucE1OcIgnMwTx4tYkvWNMHP71EHAViQrHMlN9s0BWewuF6yvoBmVdgCMZ9FP9KAs8KlGpZR3L9XYKh7tG87bUhhABV6pPsx4sCy1GrNwvriLVYfBk41h8I6+qXeMkOSarm54+7rZtUEUsvNF1il+BziNTgn5IkTx9HVNXzuSE0wuTlnwhf359u2WbX7ONlJ/zzzkcbrP14YvFomjM0RnaILZ5d0VWVgmY/FJeNV8mBvmGsfLUPa4M0I7JkYr9LUhWcO6rXnnRnH2Hu8JTb8GCtty49Sx3ATqoERnWM8EnRig6AxnC4tgqJIpwNCXftroWbcOTEsd2kkelRkqDxT0/6x7nrvtS3TNnHDnLn5xnbNlCxiyndFERzYWHy2SL3J9ttLHG/Y2d+qXyphPWrpNU2iDaltN0RR2r3X7PF2/SFdtZaqZVWuJ1nA+K8xAFRMmFwbibOEw1Yw7e69xujDYBD5ZzmeGN241DN6WHDgt8yaT6X0BQ6s2c/+wyHvXTXFgJXt6fyknx0BwNcn66XwQTZzPEmoNQsVQ1yRrd1LLLch46whWTXG+3zzKrNoCrIa6FKixOB4vM+umAOFq0qzZpIiWuTK6AsbrZHi5+jDeeEYvnDfQNTWiBUj0Hs5bIfiW4AublsSUfDDrqKOWgilZeOc6rFvBbDfQmNh20QoQ+rrMaTXC4z0DUsDxWHnO5x6THaP3rJsiL+0bR5SG0Qpns1xAvpT3V7CFGU0mEp0yb6/T1vtESVgV1m0F9nD3nklywbBe/K0w5snUvHO9gOPRpcKSz4Tj5YImWOZDpK8KGO6qMs9OW0u0Sh1GkmRWDRNQhY1TOjPgk6UJFrWZ01kk2BLsiK48fzEZYz3RFrniUJeiIQXIl60FJDvcVOHyurvJgT0CmJg4RcXy4NoR0SkYs2Owu9YQbGbTwKv2w3gzYzUrsoJm9GQSwSXO2hL02IK9bCDYzOgzwdmiJJACaqOU98PT7i6HeQ9wPN53nM5rsjheqD/AflskjlAz1J5wScHwp9n7BtAAsp8Rr72y+339+CEpBp79gR/BN09SfU+/+jEevvHtIhd45w/e1Xa89eUvALA6fo6v/d59fucffZXf+Ltf4O0vn+yOEet45tUfYJ6FM5Np/uq/if7J1/B/67d4eP/v8/rrv4Bq92fd4squ7Mqu7Mr+JbOTRXHabHQIFcl5TpYNj/Yyb96ynM494DnZ20MQNo2jrzPrRhldpgqWaD0+CTePhXeuVZwsK9qx5p0bBzzKZ6S+wxnPydJwPgNjPNFZHhzMJkFZIlohieV4f86/Mv4Q87wPZJbmEF8v2Tp2BxvhfFaAzVPuDs41bOoNDw8N9/2KMxeoA7TjnGws7VjkN4OH87nQNcUbun+t4eFB5v71GWprVrNA12ayWNZtw6ZdosbyqOlxQeiblvN5hdNh2nhbsNkzVHC8LM7sU7MX6euaoSkA7uEBnC7g0aHjj14MbGqDUHOyNIy+wqdSLKBUFDQkEWZ9wqYExhCcI9NShZpbj4vzBVt5HsxTTStzXqg+OEnpaupoQTKrWaavpo2JxXDjLONjprVzfDVjtWixWkotns8MD44M2c4n4KHUoWI1E0I143h/TvQtfe0ZJ/bAZCHZGT6YqUplcRrnm4SPDrJwPiv9VzvjZD4jOc/5vJ7kU8JgbQEZpvTrUd3xznxATE03nHCjus0H3AdJ8z1EI9FEkiSaUKRl0cLbN4/IMsdk4dyccWL7HfuTLKixbJqGVetJ1iFq8FrR1zNsFjIWl0rFzvOFYz1r2NRlrkg2PDqo+fYtz8ODGcOiJdhIEsfxskjN2tHjciRZpQ6W0QlW7W7bgNNlaceDA+F0XgAwIpwuzXR/V0qYZIeKQ6Vi9GVNDXUZl1UL71yH3ldEVxMqz+BdyU0zFZJhrysPYZvbt6lLYY5r5gbP1a9x46TkzgUrU8l3aMYCnqsAkmsk1xzVz5DEYnPFvBOeOrEIQpYSPPDRlQqHRlDxRJs53lMe72Xeub4ossFGeLy/z9fvzHDNNea6x+gNiOV0BqXCqSl7Yy1rhsayv2KSxlUoFRjBMsNHmPc1Q9Xio50qbBbdokrJJ93UELywbjOne5kHB5bRP4WK496R5+0bsGqVrk4XOkhTAYZVm7np7vB88yr3r7cEb7G54WBliE6IvubBQU2VGsYqMjpD76acV5NRa9m0lsXABMoqknEMVam8maxhP+9zKIeM3nLv0HE2s2TjUOuAjNWKTTvDm32e96+QqprHe2WbDZds2VqAhufaV1Cj7NlDbtuneSc/5Dg93BUvKuYwcgjYXd7epvG4AGVfyRqDw0rLw0PHg4PMuoX9deZgxU4q+XC/qBlGbzmwTyFaczY3GC25hEPluH99wb1bt2j8Erc4QDTiUsUts0+dPd+M3+CePkD8HmM7p2v3wFzSnP4p9r4CNJ3fIt74CFDYs//jb38a6zz3v/7l3T5kW3v1p34Oax3ia6Kdv6vtePj1L4MxvPAjr/CFf/wm4gyn9zs++ytf5Z2vnu6Ou3H/EbpeowY2f+EHkJu3kW+fc+M/Lfu6fP3rnyLG43e1bVd2ZVd2ZVf2L8beuHOHzWzB4OdsaiWJZTM/5O0jz9lSqGMEaWlC4Hhp2LRCcgua0dM1e2zaG0TX0PuSA+RDzcFKmfeBefoQqzyyrjqu+1sE71Ep+TyLISIo927UHO9ZjHhuyy1Oa8+X/H00wVjVHLuOlRnYeFg7z7qxDO01Xpr9ME6Fk3nkzRtKPWbuV2e8w0PWjaFrPFsZl8GTxYJxRF8czdVsRh0tVag4n8/YtNUk8ZoxNA5yx+myYakLqiysZ3vU0bOeH7CezfjW03fLhsl+j6Gu8FozlwM+5F4jJ8dqljA5UAfP/qrmE38SuHfUEl0imMzjvesM3rJpDdIs8MnQ1WXfqmQzrz/tuHejARFWjefB9RaJwrpdoK7mnRseqec0dg8jM8R4ohOuze5wrX6G3hu6pjCIb9xq+fLdfc7mDfv2kNbM2Te38a5hUd1g6Y44bfb41tMtyQuj9yTboALBKev5dapoGCpoh0Soap6b/wCrw7t0bc1YWcaqyNTWM+F4MSA5gUbq4FFX0zeRJjTUY2as91AxbOY1z5rnUDFE66k6hcFw7+acO+EG6j3CDEtLoqVra1Qu8oYMnkdHH+H4YInkTG1mLFiw7ELZBDuW6ovJKIveEZ1nPV+g4nnkV3xD7vPwcMZmtsfowVCznlfsb4Ru/gzBVVTBMVTKvaMWGzPNKCSzx2k9I1amVGUAMIazheMPXmo4bQ3nc8v5TNjUAYxhvdjjwc0DVGrOZg2jM/g8Z9VYYuW5u/wYf/TsC/jo+Gh+leg9D67PebxfEaqKb9w+5PWja2RjaHTGQT7AqWP0JY9pcEplamKukAjnM+ULLwk0C6IrrE1wthQxaWe82H6EofWcLhuGZsbZ3hHRWqJzOI1ghG/cmWFyQFR4vFexauH+tUwWoWsKMFHb0DVLBmmBIm/8YHqRI3uTbvYUC3dIwwKbaqKbEyo7MYQGlzx3/Q/xAfsBjvcsj/YNXR0JkjjKhzwzf56Hy5qhMoVplZooM1wSjvcr7tTPYfwCdQuGyrDohHVdEWZ38cFDztSpYl2b8gxaSxbovJBsDViMLKh8w8zu8dL9xN4GginBkr4yPN4zjN5MBV4sz8jTHK2KzDRZy+gX5ByKBNDO6WpPlYr0rx0Ls3zPBU5lBCKrmZJdy1BbuqaidktyfYjTitYt2LfX2R9q9teW4/0jVjWQM4cDjM4yVMKb845vzFdcd0fM6gO6Cr561xOd4XRp6Zo9ZoNjXd3EsEcTG4Yqo64A77UdeePmDZAlDw4dNnuaWCTJq/mSbz1jWGzmNMFwFPa5q0fMg6fON5BsmQcPGM72b7Npy2bj6yrz8HDOg2sVt/Umh3KLPX+IYHnOv8Lz+Tan88zJ/HtrHN8/gPbOH+Ee/TG6uA2AMYZbH3gNDDz/8Z/4rsN90/DcD3+CPjna9et89X/45XelGWcP7rE6fZVm/6/z1h/33Hp5nx/75Ev8pb/+QawX/tk/+ArDOpBD4OBzf8im8Ry99Apv/8Z/hv2RHyB/8DbpW6+zevOzbLrP86Uv/xWG4Y13pW1XdmVXdmVX9i/O9k83nCwrHu4d8ZXnlqhYrp2vMRoxeYZRh4uZayvLwTrw8LAizG5wumfpm5aH1yxn88zZ3oKTJSxDi0slL2Zor/O8+zCH7ikkKy/rbU4XrsjfEM4XMwZv2V8r7eDpgCwGcQ2n7RFZGm7pLW7qDc7nhvvXE8EFDk47oljesid8+Tac7R9xvr9kUT3F0t/iZL/lB/koaXYbSZFF8sxGz6r1PLh2iybWLHsQe8TT54aX+jn1KHzCfoI75nm++fQCnx3XNrBuGlZ7eyA9L+enOT36IKl2LMIctQ2YzOvPHnJbnqa3keg9Cznio28oP/zmNe6mZ7DG0gSPyE3eurXPyWJBNNdKLlqGI/8MvloSqyNsFtpgWG5KhYhkZrx544DVzPHh+sN8iOcZfIXNFd9Kb/JN8w7f6L/CjdlrPBsOud+9yZvpLfpmn+gWnC6EL7ziaaJjMRTJlJeW5+Mt6vkh+2afp7qaF98+p5sd8s2n9/ncRz9GqGY8PrjOW0cH1MEQvMNoZDYU4Hk/vEXnlfu3j3iqfZF5e5tsHKvFgjq1U15hxbKrscnx/NvK4dljEIuhItmKu/kZ9s01rskNntn/EbJpcWQ2suBkfw/j9lFRfAjc1gOMOyAbh+i0vUPO7J2dk2YVQ32ISENlGmo7h6mUOnjUQl8NJGPZtC0+12zmdzivM4N3DFWFyTDUNXurjv11IvGY3h9zb1+oh5G2j2xaT9/O8XHB9fMAWHwyqHiO9yzJws3TPYbG48fAXlrS1Qse7VXsrUZ6B3/y3CEfMR9gbyPcrV7kg+ZFQgVZWsbK83i+T18Jm9kCmzacz5WuOcTzLJLnvHN0i9eqD/Fj87/A2aLl9Wc8b9/cw9ial9wH2fPXiNdu8fj6K/zl+x/h2XQTGzOresaqhdOl5S/wo7zQfoi6fYpFF1i1hrP9a5wtijQ0uYqv3/YcdD37/YazeU0TBpKFb925xVgLn3/pJZohIxpo9YhF17NuPZI9ldnDuadJfh9THVDNrkO7xFUzGnVUqcLR8lzzMpuq53ReWJ6Tfcu8vk5wwsObNxmqmtGVSpub2TXeOsqsZhHJLfP4AtRL0nzON2/POP5/2XvTWN2ytL7vt4Y97/3Ow5nPPefO99atqltFVVfTDfSAA40h0B0UkGJQrPhDCHZMJAtLji1hYSH5A04iO5YiQnCM4xjSbgMRMWFwYtpONw0N7omurnm405nPO+15rZUPp2VbgS6GthtFur9vr/Zeez3vevXq2Y+e4d9VnHd6ODvAWomjC0TsHCqGS4HAw2997g8l98YZjaeYZQGtn2G9mMQfEMqM8+6YT+/tcdrJQHZRhCiZIAZXOFi/RC0hMAKjLbXX8vqmx2nH0UrFb++2+HWJtJbReY2yDmkFwrNEMiUQMaHxKAPozx1VoImDITLwEDii1uGE4qwX8akrHazK8FsPh8YrlsjlGYO5Zdx0WLNDas9HSs2DiY+RikUcsUoS5p0BRoOQHgNvyE21x5bboKvGjOnz0BzSVEBjUMkWt+3Vi/+LZ7EarOpQ6Qjd1jSqucjEBdB4Aa2nGfduE4ZdgnKB5xLOpGNpQaoJjZa80RFY5xP7YwbpPlYJHnQGWEaENn1Hf/Q1C9Dkvd9AVAtssgbA7OABh698kbYq2b37/O+7Zu/r3stZLtDC8toXvkhd5F+1Hb/18y+h/BvEPcXJvSXz45LP/eo9Pvcr9/iWv3AbEPzS3/48Zz/9vxJlXXpbu2xvX6Xzp/5L2rND5k88BGDyv19mFP0nGFPw+ut/nsPD/+mrtu0xj3nMYx7zJ4cWQ4TeIjCWrIKZP6Wr7/Ds8gZJKbEqZBH3eWljyGubPlWU4lsDBKySmMm5wPghVbKJja9zJlIiv//loKQlr44QZYNuoU59ag9+58p1Ft0u1u+x6vaIbMIN7xq7yR2c89ltB/QqBarLyi45Y8FJd0KySJjOJMpbw0pFr01wLkURcDaIiMNdvM46m+UeyuQ4z6dTWC6JXYLuBm8MA+ZhyKozodh4AU8qEpkwdmMWCah4Subv0s37bJyuiFuQVU7dOJbjy/gyplcd84U734pSCefhLktPMFqtWPoVm2qXoexzXe0T1CWanE21Rta7TBVB7jucv0/lrVOEY1olQCg+G894OPQJnf7yCH8Pq3yMl7JIByAygqDLSE8ZeVM0AVcftXyDfJ7d5Ck2ejfYWAk6qoPMpqTBGihNG0T0RZegTehWK6yqydsFujWU7Qm5zhl7G8wSj6OR49o9SSyv8vWfOmFyGiAIWWRjat+j9CDwB6RGc7e9zkubGW+nT7E179GXEzQRjdZ4TUVYG8Kq5fPbHZxsWQWaWTAAd5GxREWM+3e5IfY4t0csvYiz1QnL0GcWBbh6yYG2tGaJwOGSDk+r2wzFNnlgwDlaP6PxBHl3jEMgg12s6tKlw1p4mSIbUfkeASOQI+ZpwKI7RVuDdI6bxZAnm5vcLe+imwGtCEkqR+t8sqJkcl7xjffXWfnPcbC2RX9Rc5aso6xHG2yzH98EJMgQ5ToIETOoUlaRoQq6bDU99v3LRNVFr9TWec697iV6ZyFGSo5HY3ynCAi4Pw4pooQy8Hlp3ONfDWBXXmLrqL7QJvTX8I1CUDJLa1w4wUPTEz2eWN3m0mxI2IY0foBHTNRAxdsct+eklaYvRzSeZe8gxykP4SWAwzY5+AlDOWIzn/LUbB2JhxOWpOwxmoeEjaY7K8jjLofTNcK2f9H/JixFp4f1IpyIOA8z7o/6vLnecBCuKFkxLQfo2hLngoeTEZfdGlMz4Jno3SRBxiW5Tdb6SJux/6jkWt5joneo9QTf9ciDgDzKabwAz1mKKObhwGcRdymyfeogYRkF2C8Ly5dxQj6IiGjxrcPRp9FDjB/jpM886CPdRRnjebfP2kwiiBFS81pUcZA2vDi9jd9cRdcxaTOhbm8x625wfZkR1i0Pw5LPbWta6bEhr9EzYwIL2Splpx1RxhcD/sLW0S0skepwmZv4xmeaXkHpHnWQYrRPFXm8qc95W0vQA4owxijJeZZivBRQzP0tXro05Mn+BzhqHvBwAPMgxgjFq8EB1eohUe1RW8thJ+Yk3EdUFxoCYdPS9dcZuoyhixjE2+yXmzzlPcu1k1O8OiK1AQqDEIoiiCm8NYRzHGcepZI4J6j9gDd3tvCsJY802oG0Ga+NUywt20vFKIdZusAGlxnVKZnKWGrFFbGLauG0OmAVFgjXfGVnxNcwQBNvfwKw2HgCwIu//svURcGN933oX2uQ/X9Zu3qTh3IfBITjbd78nU9+VTY8emXG8VsKqRXW73Djm9Z47rsu8cqnDlm72iXKAjZv9WhKw2/9jual3hZt5fOFX/4FfuMf/n0efPjTdL/7z5P8wF9EfeJNso/HbG3+FXx/g0cHf5vZ7F9+VfY95jGPecxj/uSYZ2NWrPHyRp8mG3Ixwy3i6oni2v0FiA61v8FkFpCHklUnpEgDwkYQmA79VcFkrpm4Plsyo6O6jIN1rDb0G8O6HHCJbTwD43NJ2Ho0dsKgdsR1gyZjI3sSpCRu4e1hRuVFWDXiZLqLF/QYtwmeCCijdS67q9zWtxEolNfBa4b4RhOYFs9YPEZU3jEKTR1mROGEmWg50fB1rx6zdzTHxV0+8OCQNZNejG03GuFt0lJgRMPWwUt0FwsQkLQxcSW5dXD8ZTHWlKuvv841OyINtjkavJus6dF0uig0As3YDujaPl6wRmELfMYc9DqsOjcwgebt8ZAijFnEPtflFZ52l3jCPksiniYkpA4k01lFWhmGK4/jTsL4wT1Oy4f4LXRan0veDTr+mDDoUvsx2nhoI+nrbdbENsiExN/gSrXBs29HyM33Em08Q0f06JQeVxdrTPOM1IZsN9t88FOS3eOCnl7jhslIGonnJBEpSu6w8ELSzk16nV20s9wtLzFmQJzcwsgBDYbaC3nxSg8bWIzf4ElDEYe0WpBKR6MSareG0SmlMBz6FR09IE3XeLMX4npbBHIdZWMmZo2AiLjVdFwHn4T5ZJfhwpCWOY0fYbwxnTYhKads0+OS2sJTCUiPD/ICz0YfYCu8jmrhvLdP2LYcTTdYpBEb9FinR98FLPWAUmmCpuX16S7DcINrqz4Pej6reIfA32P/NEU1MJLrbNHnStFherbAeJrzTHL1YYVqDY2YUukSz0nSGi4flYjkGml8k6031rAqovKGlFUHrLvQzGvW0S4kq7YJ6n2eMFdYDnpsnM/ZOdkmqTf4hhdrvuF0h0l4HW0dvhVMFy1918GLn2eQPknaSAKzR2wkTlccDEcooTDKMs82OctiNg7naNuinEAHHUQ6phvfYc12Gdo1AhcT1BV+6/P2tIdUmjbqs1/02D3LOO93Oehu8Ey+Rzy5RrnzbtJVQCtStBuSVUOkTdhmjU47pfR69L0pYbNNVFt84xEbj223iRMCJwKCpiSrA959MEYZ92WJixyJQIkxG2KDPinjsodRI0zQo+c8hGs5jmIwgsNhQFxrCrXGWXdAozxSZxBezEE05uH4CvPwCo28zfjIcDyaEtc12dKxigLGtWTZm+JXK4zIqOQlqnSNRdbDupxDe8Tew0OeXo64e99hghFDuU+n2qIzb/BNzmaxSeq6JJXBby9KIiMZkomME1WhrEcV7RMbn0CGDJYDNqI9kmDjQicxCpBO4Hia/mLEcvB15F6XrDAIAdvRLQrfZ5F0eXXS4yl9l93gJr1iyFNvhOi2jzYLZO1ojYDSIVrBKhCcdQ2eU4yJiI1D6IDzXofRwxXR8ZxOUdFIRSW3yLsdunKKFAGt0IRVQ//hKbZNSGtBW+YcBTMa1bL9wOEVBX4rWKaaRWZpBWReHxlkHCnDPO5xMNqkDQNCEb6jP/ra6aC98ivYaALqoikuG01RSrF959mvuEwIgX3ie8DBt2f/jIdf/MxXZUa4ZmjKl6nL1zg5O+O/efSj/Iuf+yLPf2SPL/2LR6zOK971H+2jySmCAb/5ro/QffUNal9hGo9wcJPh5vcRfsu3QbdH9bMfpd//TnZ3/ztA8Nbbfwnn2q/Kxsc85jGPecyfDJPDQ5a5x6VVwuX5GtIJNGCFIS0dY9MhqmqysuXd9wKuLm+BJ3h9/wVu6CfYmVm6VhMXF/0tJ8MM6wfs+zcIVJdRsIOnMzwZcuOh5dq9Lvumx3X2iNqGrK7Zcn0Cb8ypMkizxo12h9umTzY/pmfAdmKi4DpDeZcq9Sg6CVXcp9KKqBLceLXhuRdXILqUKFqhkCjGIuIJeZnNZsx6uYF2jr3DGeOyQTlxIc4sILJw/d4Jwzpg5DKUCglVRmIvpk2e9dfQyzkITSU88GOazpinXJ8taJXGNgAAIABJREFUs4lRHfr6OifmjNd9AwL67ZA75gqXgn1K5XP1AMrsCtptkaW3uHH8Bnsnil22uLnsEC7m9IFt/xJB29CvAsKiRFPy3HnMn/pSyECNqbTgitzCb8EZD6+V9Oc1UndAOm6/fUxUNjRINsuMVexzrFo2Hx6yeeJwXkivaOlXjm5xMeo8qZb0cgl6iNMhRW9AZAxXHrXE7R4dm+AHfWaqoGjmKByLg99l4QpEc8ZESNrBBvn4MpdOJkgcnvHw2jHbRYxjxJbeIR9mjFcNk9mKm9UaI6YoEVGrNQa9r0dZx/Zpw87hOg/61xgUMR095n4kWHqaqKxRTiGIOB5qau149tjxzHFJUJ7Q94YUgU/PHyNdS+R81mZLrh9ZPnTc4wmzxtJv8bPbBDJCGotXODoy4aa4wu6ZZbAqmYoRY7HHk+cJ62cPuTVbcamd0F04apFR4qjKOdgUdIerh9ApJYO85T2vHDPKBUM9IWs9Li3XeHo1YZAL3jU7JylKZANpefEqGtQtd8pdJq3CqgzFBN91yRrNDfkMdbLGfLiBbwWJ6vLk6YCoMWgnuOeV/NLVdXplxaDuIGTAUMRcX/X4xi80PHfs0ZqGmTOUwRSvVfSWLXl+inWGDbnNrk15ULyCNi0mGZN7Ed2VQdYRw5MlfddnZAcYa4nmim/6zCv4ZsznRYura7ZPVxyNt5jpW4Sn62yf7tBZSaRKqPwQP9tGeRlbKsbRYpwiczGb4SVmniQrPdKiIS1g/bxlspSkRf8ic9haRtWQjuxyucoYn53w1FsBx8M9Xt7YQltImgBRXSNhm0Y5/FXLSfA8QkgGMuOy7TOtPN53ljJaCQaVR28l2H70FhpBXBSMzyzj0mfn+JT3vPQZBssVT8t1fNPQLc8YrnyUTtm6f0bYWCZzw8bqiMYcstTr1MGANbXO9PXPEjWOzfgGyhr8usUTEdoIMuuzmj1gFU+YhPt0KoHwYqJwFxWucfss4ZnlOlHt0Mbx5BsBQ5fQZLsETYx0EuOHXKu22DKbfPAtxf4spNt4uBIwMadZhx5PoDVo0dCtC6wUJCLjieOYHddDKx8lPTbUBu9d3GHvYM6ieIRwAoTHLJkwKjZYDAYo0TBPLcoohqclL288R3f96/F0l+2DnG84u0p8uA4iIAynJFylKrZ5EMY89BzCBSSiS8ffYCr3eeKtnHQ2f0d/9DXTQbPP/Fna8W0A8tkZX/r4r2DalnI5e8elV97zQRorOVx6vPC9v79m2R+Gz332Jf7qz/wQ2ruE1ru43RVnnYf8o8nf4t7gRb7x+68Rdy5GMg2OXsT4IR/+n/9rth/cYykjmsrxv/36tyOEQPb7hN/5EVitKH/uH6OUz9UrH8W5ipOTj/2xbXzMYx7zmMf8yZE5zUiPiJaP8FYJ0gpm3oAyGCOiIaHfQ4sNyvUd+vpJbr3+gCy/zlwOaP2AQbDJLXGZ26zz1GKd7nFAXFiSxnL9+C1W7TG1qfCEJnr7RSZ5w7VlRWQ1IrQExuLyOZXwsWqIbp+h1wiU0NxgA+ckZ2HDzZOISyvNxnHLRhGRuE102+G9L834tt96iSdPM8JFzkFt2WWbNN5muiiQrsWZhmtthzv6BVJjGJ3M6biQ7SYjKkE7QWwVVd0gCti1V5gElxmxi54d4s1yOk1CXNXsPDrjJb2JLwIOZcVzb73C5lsJoUvZFCMGLRjtEVVL2voYURdEK0dkQnbv3SdcapJTx3W7yR3vFp0CdL5klJfcenjCGms8p9/Fu/znuV3t0GsmPP0gZ+TtUOAQqyWtGrGMYlrbEjYJY73NjBRLCFYRV4JxHrOtxtSRT6LGjKuQQSvRwoeoh+dChHOotiYNJ4xq6DWCZnbO4uA1ho3ixN/By0P8RchVtcnVI0ecS2J/ja3gDqEVKJEi5zPe94biz5zdYvK6o1sN6JDiZMj6MuHyseUgzhi2EWFdMsyXGBcjRUxP9tm1AeHsET0iYhWTliumD1/h1FuR5SXvXk6Z5CXnWYZ2PtJ5PPDWOfN2aAtHp7TockXtamIhSXRGr9aYpgLjyNeus7YKqF2P894z3HxwnzBfYXXAhuzQ1zFaQGNLpquYWCTEuSOdWe68/Dpry118E/LBsxRhLN1Wsd706aR7xDYiOktYO3cYz+du9BQv5JusMSbRfYbZHtNVQporTLbHN5+PiIqSOrpMVjT0Vi1XD4/ZXVi+6Quf5rsP32Bw/AqeGZA1EU+9+ZAAcRG0O58rpzVJ68i15j2P+vwXvwtPni6QtuH49HOMZweoxjI9POdeMGbd3yXTe/hunc1jGJqMnhzSKkGi+6yVKYNwh52zFTcLn92znMqT+NGAuHKkJmC4VMz8lM6qZd9t8mze49nVOtePh+ycLHnmxPKBPAQcnbmiqwSRChiUJeb4ANm0RGVB1FickoTCI5EZUb6it6wQIiVzCmValJWksiWrKoZNyHPNDpiQX53MOOlPgZJ3HZ2zeXLM3qOa9xxo1pcta4shO8en9KqS4fmM2ChalaBtwvuXQ5bLF7nquux5E9ZPAi7fO2M7e5Kd7l2mrk89e5OtJuHZ+N1kLsK38OSDU6ZnNU88FHRtzOvTMcJB0U2pZBcZ75OXKeOVTyb67IlLDGyEFIq1mSJoLPJiVg77Yp01NaZbO4asc1c+za65yrhJSIykTjNqKxHW8d5Xvshmo4jbBm1iPjS/RiBjLld98kGPvK1Zd0M69EmDMZXvI+2c7OgSYew4H2yTlC2vD9bp+xNUWxGualbtCaWvqaQlcgrlJB0xYCe+zlRtsnas2Dl8lSe+9DuslVuszeG6vcN2fItJ/C7ev/J4fjZllEu2xRa3jnJ2ZnPG8SYDG3CeL9i8d8gHzn2eqfu0xExNn7VFSVy1jMo+Df47+iP9jlf/HWMG1wCo8xWLowPAMbl84x3XJP0hQikGXsObb36Jyim2bt/9I+376vxlPv5/fIHr5t04DEJ4PPvNe3z/2s/yqeNP8tc+/Zf5q3f/OtcfPMfP/i+f5Dtf+hgPXvjr/NrTf4H97U/Tq1+mekWw+NLn+PnPvZfvvLNO8mf/HOU/+gdUH/91wu/4LqJonyi6zYOHf5Os8/UE/tYf95ge85jHPOYxfwKcuBljMeWqWGf/rOZe1HA4iFBNxI63Ry4EKj/h6smSa6uc40BSx6ecBhnOaYrSIPyIRzpi/2TO803BdtVitEXIkE7h07gAhYfKtriZ3KVeStKVYmuZsnFY0reaUmQ0yhG0NUV1RtcJ/vlGwHfnCb0HR/yzTkTHOrpixBuqpa5KsIpNdZfaL9jU6/grxW6aEi0y0hh6rGPkKZHXo++v4YcZxeoV/NrgI8FYngy+jnlzzmWxRb8sEaZimFukjdk6s5RSc/14yRWrWI1HdLxNsrJgUnXIbIehKfmMaOjfe4TRffZKhd+ccFgrEqEJkyFjN2NaXif6wus8F25xTzhS3aVvLUkwQkm4Zw5ppcKogJGf0Cwf0huv48sY7D200ciqREYhl3KFXZQMRinHxTkdJ1kvZsxVTGCWBKZi63TB6ahluGz5DxsfjwkDU6HLmna5IpE+zvbp6jHaOuq5IXrxc/gbT7Gr1jit3yb0IvbPoHPykLFs6c5aKq9PbD2umphO27ISilGTkVhH4TQ3/DV2FwGFe5PhyTpPnZ8yU5bVaUWZbeNpQ1lIhssl0lOMVZcHRvD+ozkzv8I3iqdOXiIZjEi8LrVSzG3FVlNx96UDtqp9rIM3X7xP4+0SmpLQKvrZDRqhiGpHKgKq+pju7IReU+OXMZEMSUyHP/NqzbP2Co9Eg1zcZxDv4Osxh72cp7+4zsl4G9neQ9FQmoLpbMn1hzc48jtoM2cZZMyrHCUUHhM2K8nn+TwNJQe6w43ZIR2bXwyEEAapM7Q/AFmi6xU9uYOt53yw8lBOEdQOvVjg+yXTk0Pi7oBxOsWsPBKTog7nsGioc1iMQtbOzun661StJJqdk9QF4vyQxmZsyKtUsznnOmMneRe9+yd4ah0jPS7PLU9Ez7Me9KhLR4yHFjG1lUylT7dZQFsxrX0OZc6zecCbRqPVmM0SJqshS7tCm4CotoSJT19mDLwBD5qElfZZi0reJzdZypqlkfSqnLE3YFq0iMWMqPUJdINfVUQxhKJHbhs8KwnrEiEcygpeOE+JAp/AZJx6Hll1wIcedslP32Df7iM6W4TnFs9JKjVma9kyOX+DAyvonObksuLEn7CdV8jGkFUBu/o6v9EPGNqKblnRFIYsS8lWNd0WZLDNcfUZ9PKQD7xZ0vQ2uOpd4ax8m8O+pj2+h28qAp0wKDeQ5zlOGjqq4Ua+xiSecjZ/Gb+bErcR/ejrSKIxKxJmtPTqhk2xxo3XX+Va1adtjjlLN/HmfQrjEHFOc9binMe6P0bQ5RS42ShiQlrX4DvBB95O+BLnxGpAojJi1+VGOKV7mrJvz/iNbBM8S6E1K5XStA04Q2ADJtUYYxseVg8I/F28VjEtBaEQPLSazCy4+vCcwyhBLxfMx5vckBMGecvWcoW79xp9MUbqIaVuWC8k6eqYJNohCUZ0a0NaSForEAqunuR4nZDGhTyzAs+so5p31lP+2vWgHXyWdngRjLV1hZQSP06Jsu4fuLYORoTtOclv/S0+/8u/8Efe+/U3HpCWA8bldbAVau2IXzz6eX761b9HIEPet/4B/s4X/lv+rzfusTaPKIIey/aMzcv7DN7ziO1r99C+h+csf/PXXqE1FqE14Ye/G/Pay+R/738EYH39vwIMs/Nf/iPb+JjHPOYxj/nq+LEf+zG+53u+h+/93u/ls5/97O97z4//+I/zfd/3fb/vtct1zPOLnEiEjNWEcWu5dX52UV63bBGtIgqmeKFF2oYN0ePpI8t7TyLyhWLd38B3HtdWNVk+Z9rbpgkzEtHjUGgMMRttgI9Pp3udqJV0VEzRWefK/RWbYpMk3kSHQzSar1t6RN6QkVZsz3NSfPpqwDff+xJ3j94kUx1sWXJtNqPnInaMIJ6X9NKrbMghm7khOj9DWklASlvlrJkAz1iylWFqNuifFYQmYeBvADDQA27V6/hWEtSWjVlFXHukso+ycNutsSV3GC4KAqv4joPVRfbJtRwFHhvzc2yUsqpOmc3fIBU+w2CXWHYJncd0VhKucib1RXZrv1L4bY2W8kK71zlip/GcZVxphIM4ucTmrGSr9lidnFA7w0a6zwZ9RFMgJGAMgfAJUXTxecJ0SVyMHw55ssx4YaW5fqTpHizplGdEdYGT4LUtfttSS41FYMwKqSWpiAnKM9IHn2djcYorZtTFAZdLx764wlZ8hUHbQRvJfHWfS2/9LuFKEhpB7HyiqoVCkXsZYV1z6XBBJjtkjWXHddg8nSNVyG52i67MGDYXem60ltT61OUMz19js5wQmZBLq4ZEhdw2A7CGqwwJVEK/hg+9dsxzDw6IhGCge/TDNcYmo19KoqKh442Igh5WGXbmp8i6YDA7YG9hEBhikTL0NhHW4BnHerlFFqyTuBItFIltGIoEo2NEtUQ0BQN/SDdfkEpN1a6YlC2BhWvzDm0z4NmDDhO9Rl8OCWWEcgJfDuktKnplwDNGIdo5NAt81SFrBQII/C6xyrjU2ScPOtT4LOcPaYs5NYrOowWpq+nOl0QiBSFQ1uLZhvL8LbKzM7ZsxED0iNqI9dUZkQ0YljmNLems5uiFoZcX+CrEodF4JA2ERUk1WxEuc7AOLx7TFQO0VVxrhoy8LsI5dl2PPT0mOS+ZzM6YtpKsqOnZhD4B4uR1Lt8/oFssyBZLvLJg++ABm42Pp0JMGDGMtrmsrhIKH6ylj8d2IRBCEVcQyJixGgGCrGjxm4ZcBvS9SwR5QrJs6EYT8qpi9OAhrREMVkv2vT6eCmmU5UE34CxIsUoxMZqxTNioLZ1asPbwTfZrn8ngKlW4gUdALD1indHRQ7qrBuskSdWQWolPwtN2kyuLDbr6DqP5gMBfJw62GHbfy6aN2Do5ZHMVETUSG/tsxzeopxsk8Sa+1aTW8ZovkWiEFXTbPiY3qNpQKUlVnTNqllw/W9FIjW0NNZZFWxC3FcZplDGE1iNQMb6BO3oXnwiNJhIR++dLejZmb1Wxe37GM7lic57zxPECdX6EUimBzshaTeF7hLrDWCRcPjshK3Niq7gRPUnfThn3nmbztOLW26/x9JGmu1he9Mc1xUXG3mjCumWUK7Q/wsgeiYvo2JT/+Pw2N48OyJ3kFOi3IE1LKDw6ThNXLSp/5wrCr0mAph/9NuKNj9NsvQeAT/zDn8A5x8atp/5Q6+dPfBPHI5+f+x3J0RsvUyze+Uv923zi4F/y25/8Euryiir/B0jV5Zs/8n7+06v/Gb/4ys/zP/zu3+Ev3fkr3O7f4afO/jKbb/+ffOHa9/Dk/U8ye3BObf4Va1dvg3NcaR/QGMdHP/MAgPBb/zTu/Jzi7/8U9W98gjR5BikTDg5/gsXiE3/0g3rMYx7zmMf8sfjUpz7Fm2++yc/8zM/wN/7G3+BHf/RHf889r7zyCr/5m7/5FZ+xN68I5gecVge0poDSMK0tjdAM8gWTs0O2Vwa/cwMRTxHSp+/tMqw062XJ2O/TbQVxlaPDHpePjuiXirjx+YZFQDh/gOckWgbo1tBDo5BkVcnUv0wa7+KrgFG+YONswfvffoVotWJaeDy37GBUhCtLhDEE1YqoLNg+XjIRPlespi5m+K2ldYKmWhFWKzplicUhZUwYTMmDBCM1nmnZrmNGyQ3mKKQc0DoPi0IqHx106couSfcKoYiw0kc0KzzbIL0E2TqeXax4ohT0KkHbNsSn93nqwQHh/VfpkrIebHBaHzN3JdJA01ZMrQ8W+g1YoREqQBpL6o8RSuOcRVvoGIeHRDhNrTw8q6hP3uSqSIisRjqH73yGJKThBkp6+G2NEpokXxDrlDjeIMEnFTGdGjrhiMjLSLwBtfQwRhOGQ+pyzvnpF/GMQYkA32lkOGK3DphpxZkbsN+5xncsErZdghCatpwTlRLPafaymzxrR1w+mdGi0DIgruGm9WB+SjjPee/DNwitxHMBhSmJ84rkfIGuKzQe0gqMcaTFCmUtUzdGG0PPagamoXSOKDf4KsOTCX2vjxaaJNlirXOXm/4lUjFmlZ9j6py6KZGAlgG+yggJaaTiNEhppCbzMka2gzQWrKG2Bh+PqG0JjMUYw64YYY0jjbaRXsK4u0dgICotoYjZyJe8/3TBJLlEHA7xnKIxGmoYFxWydfh6SmQ8wrwl0x1GxjFcLim9Dls2Yj/YZLiaMfBG+DKgm0xASJrG0tMBqQp5SgzQwYB9I3nh/hsUVjLRXWRjcNbhWUi7ewz8KdbFeNZDtQ6vafBaWHcDklVD1/pMi5oPPiro+Bs46RGhcFikMcQu40PnKTqZEOsEv2mIoik7ImYgh+CHNNUZtskp6hWVU3TzBbZu6JaaqIVpWXKjqNmZa1okrW1p64ZusSBcHNPg0WsyPOPTL1s0HspJ/LohUjEjIoLa4OuYtHVQa4oyRzq4NjtHOokgpG974GCnqAnKJV0XsEXKVlFx6/4pm6clN04F3740vHuWE1Qzxk5RV+eogy9yG8F2VeEZx2Se43BEdYUWktY2dHrvIoy32LURg0VOp4WsdUxf/SRPFJa4s0nYOmxviyEJQV3zrScPmfpDMhezEV6hKs+YlD6xN6DFkrcFl02MagxeK1gme7RRh/34Ft/6W59n/7zmzuEpuwvBtZXHsLrIlKXWcWdWsZ0XdERC4BQ+mkYJympFLGOkaTEIJoTsWMl6ZZicHdErGybqOnf6z5LFuwRk1PkDdLnCM5otb4dOa9lalviDp5HRCD/sc22lEWdvkFY1V21Kb2XwW4NCMmkFl22CNobEKlJiNvOWKSEVBlctmZw84K4acMclrLkQHOimxSFwrcBrW7QTX9EXAagf+ZEf+ZGvdDHP6z+sb3xn2hL/2vspBk8C8MX/+5fwAp//4C/+td8jUP1vUxQvovWAKhDY+/8UNVOk31hTrySjrT+4zPHe6m1+6BM/QM6S96y+hWrWwwscu1+/xq/94j9l7dE6o6MhKtRcWXuKX334UebqAevNt3Kjd8DrXOL8lQ9y+e5dlgczVkcPebT+DJ85LPneZzZRwyHFxz6K6PZoPv7PCb/rIxhK8vw3icJbJMmT/27O7w9BGHqU5TuP7HzMV8fjM/73y+Pz/ffL/x/ON0mCP/baj370ozz11FPcvn2bwWDAT/7kT/LhD38Y3/83df4//MM/zA/+4A/yqU99io985CO/5xmPfuGTmMUxbf6Q3fgqoROMnaRX5IRejGoaOvmMvQa6MkZ7CVJ76GJGks/pW0uFQSyP6csUq7yLrIRTWBy+P0BYh3YWmhzldWg8j1jGhETkZUFoDZEM8RcHoAPS1Rmhn1KYEk8l+E1J4F3o8iTJlC9Ixz4BgdAUtuawOmK7f50QH83FXlUwZIBHXZ0SWkVkHR4C3UpUMkSHkDSauGlJZIiHxNCihU/od1lhqdoCR0EgQ5T0sdk6cxzd1jDAZ1jVRCqkMhUbpSNMpti2xDMOsTwnjsZoL6FanlK0FbWAaTSFIKZRAYl1tKZFCI1WPpWfIuo5qd/Bkz6qOGeUbDFvVmTZJo0z+EIRoi6moWmPui3InIY2B2eJvQ6VM8QyRKoILS4CYuN3cAgS4WG4KHFbnzyPweFQnCHx64KNzmX6uotwmk7UJxYBQbkglwrlDF5xTBpvonWI17a44pytYIRoK4QXI/yEkdfHFkesrGC9dxkv3UBLha98gsUxo3gdDTQ4QiHQKiRzEvnlXsVUxfh+hzWR4EmPwEFZnuO1LYGT+H5KIxVGavIgY7Q4wU8mRIArzxEohGlw+RlxlROqlH40YqATfKHwFo/w/CGe9PC8hBMEolpy5fgtBtkmmgCkB0FGP9si8lPytgIdIVVIUC3QQYrvFN2mwTMN2svoxuOLgD5IUE1NvbhPHWbItiEvj7Bej7EIkdaS4/CFJmgbhPSQXoQF+o2lo1NEUyDnD6jLM/byhlG6S+IPYHlInEwI2xZPSLwwQ7WGOOpjww4NBmsKIt1DyACtA3zriHVMoEJ8B54KEM6g2osXfCEVLS2phVAFeCrCExrXVjRNQVOu6GTrOGOxQhMiWfMHIBQdJ4ktaGv5FbHibqtIojHn0YTF8T2u2BhQdPIVoReR+T1MnYMX4CPQ1mCVZuSv4euEWkh6VYmnAnTQYVSs0E1DoiL6xqMT9JE6IkET1jV+MEBZhwh6bJSSEQlZnjNdLpG2QiIwhOigR+YN6VoIqhVv2BnjaI2eUaACAp2yXDykKs8xziERdPwORXlCm6aERCyLU8Y6IbMSU5zSlyGunOMnIyoM7eqE0Evpi5hA+vh+Fyc0D03OoCyJjGFV5Vx5+DJGSILFnEG8QVoU6HLGKNq8+L10Rl/4eMLnZlHSCPAcCFejm4ZeC770EM7hq5A5Dpkf4UdDhqf32Dg/YaI6SBmyaCtSpUlFRix8gnyBURrdGBSCRAbUpsFD4uuAbmcPzwq0Ssjdkk4wIVQhqQoJVUSAwNiaNFkD64iKOVUyIHWgqxWqnBPpiMhJZFvRRWOA1Dg8z0NUC/Y/8r6v6NO+Jhk029vDXf/TADRVxfLkkPUbT9KUX1nXbLH4f3j1tT9HWb5CPPhGth6VPN15C68Y0yQ/QVG8+Afu+9Mv/xTaeui+xXgnCD0G9yXiOOby5Wv8wH/+QwyujXj90av891/4u7zwu2M+fbPk7md/hOC7nsF17yGAey+vwfUXAPj+6TmP5hX/5LMXemjht3077uARhCHFP/nHTMYXpTOr1adxzn2VJ/eYxzzmMY/5w3B8fEy//28kW4bDIUdHR//688c+9jGef/55Njc3v+Iz5oRspFvcDm+CaamaHGVqnHBYIQjamm2doay8cJ51iV9VDJ3mEhGeDMla6KkU4xyurQg6WxB0sGVFiiZFEAiNcAoFF6LAWGyVkzY1QgYI2+JLjWgbiHoIP2UQjpBSUzmLJzxUW6OCDrcXc4TSSOUx8nvs5hflWUoFeCoEGdBbLRDGIq0jaCoiGRCS4gd9QmLGqxSFJvIzrLnoi5BIWulhbUumQtayLfqtT9+fkkRTvKZlYiUeIEyFkprKj0lFyGDtKboqJgtG9P0hm4M7JNEYrUKSaMx6NGTdKqpqRtI0F1kjFeBJjfYiQhXQXZwQqggQOLjItFnLQMWEQZcOPr6TFyLipkFZh8XQCEese2irUCogkxGR3yNQEVL6gECXR4SmQThH2ELblljTULYVsi5Yj6cMkx1kneOJkJ3BFcatpTAlOuqx5vcYRlOSeBMpfQqTE6O5Eq2B8nFfzlAmxQJhGirjs1AhFkFsIcoXeFVNHE0uAgQEoRNEVtE3Ek9HyKYhEJoIhVidI9oar2nxrCNuW0Ll4fkJAKqtyIIeO61l0N0hMQ7PCaQKEM4hcAgdXUyXUzFSSFxbgTVYJJgWZS22qbh19ogrdUvtZygZ4HsRkY5IVEToBCGKQThiIDz6xiKER13N8aVHKEN6OiP1QsbRiH53l9jr4sUT0vETdJyHrwLG3pC9tkU0Ob5QTMM+ARI/HKCEwjnoOJ8AhW0KWB3jx0NUtk7Y2yPTXSpTkcVjpHFIZ7HO0rQFWTwCoYgQSNvQyS6hgy7aT6BeEXkpIYLAi1HSo73IM6KET9sUnJbH+FV1Ue6qfLSD1rT4jSEiwPdTAhGQeX02GkhUgo+g21RIFREgmeqMd5mExFq0tfSKBZm/gecUdb0kwqEuBufjSY1AgvRovIiOESi/A0GPwM/wwgE9IqK2IUzGJNGA1GlUW130jq6OiVtDEvYJccRCksVTOtO7jPwe2yIhiUf0VJdEd+gFHTayXaK2RkoNQRdNRFTX+H4fDw9rajKZkAVDJIJukOJLTYpPsGgYRGOe8Cf4xhGokDQcYJy/P48PAAAgAElEQVQgiPoIoUB6dGRA7DRaKmgrnP1/2XvzaM3O6rzz905n+IZ7b1XdqlKVSipNgEAgiAAZAcYQDJbBxjg2Bi+Stew4HQ9x3CwWnbhxmiSrYydp1kqy2vOc9oixwYANNGAzGBAIEDNICEmlUqnmO99vOOe8w+4/3nOvikFabgZhoPZf937De855p28/+3n2fiN1SjxmY4U9xR5SN+Nx0aDsAF0usaBrGj8nGMu8nZKURiub5wOwIAKupg4dzhaYYonx8Ci63odSDmVKUDB2NYOlo+jkWV64jJFoimIPRYjsx4Ek6voSlB2glGZkFilsTV3vw9gKpx2qHJGKIYU2jNweChQ6jejmG0RtSOWISleI0pgQkdkmBkU5PkIdEq5YZGHhKEuLV6HtkNBuMhwcQJuSBQyEKcOmZV99yUP+pj1sOWg7dssf/ToAd9/6Hmzx5c8AmM3u4N7jL8Pavdx34pWcOPNf2Lr0cTRqxOc/YNi/7ye59/jLiXH7Qa+z2W3yt6fezlO3ns+/WHsVC/UEMQn1qCUmkwmnTt2PUorn3/BCbnzMd7H32FN48srl2Kj40392iL/76Bb79t+BkoJPf+gYH5eDAKg7P4gzij/7WJY51j/yo/mCMdL8xZ9h9BJFcQXT2Sc5dfq/fg177qJdtIt20S7ag9kXB8REZFehsbGxwetf/3p+/Md//CHbGLYzLIbajSlMzb7hJbhykcINMaaiHB7EaEuwJRI6wvb96NChU0R1E4xvGeiSZCyqGDAqFrDthMIULFPjYqDUDq0MMbYo49jTBfaEiCsXSa7CaYtBYYsxy/VeTDEGoCEx7GYsiqa0BSiFJE85OohSJueBacOeK55FaWtCN6HdOklqN5EYCDEQVAW2xIcWn7qcMK8sNgmm2SKFBqU1YmtS9IwArS1aW4roGVYH0K4C4xjZAZUpGdshRV8BcVlKloeXAgotQqkMSal8vI4y6NBSCBR2xN49V1PZ7AO40AF5/HSKgKAVIAofGwJQVHvpmjWsMpjoKWxNYUokJXQxzNyXaCwWiS2lq4nJ57PsunmeE9pSDS/B2UW6JNiUUEqjo4KkGJoRRbHIoNqLMSWpHKIGS6hykSU34rKkWDQDXIzQTbKDa0tqPaQoRlm6KqD7uaiNQ0XPYrHE/q2z7LhcEQizNYKt6CRQ6wKnyIAd6HrAaKbrODdg//gyoihEEgC2GJO0RZs6s6yDAwwF9saAMQUhzCElSjNA2wrlakBQbohzNcYNSMYBmqQKyhBwKJx2jAf72e8W2LN0JUryQdjGZPZJh44kQi0KjSZ22xQxMNBDCFlKW5VLVEkRYyAmMLbG2oqoTJah2gpX7SXZGu8b0BY7WcF1M4pizHB4ECsRPVtlUIwpkuCG+zGD/RwsD1CZkn1ugWVdUNgaI0LnG8rxpRT1AdAWUZBCQ1UsMKwPorXFYbDFEso4rC5IvgHtiDEDVUFwyrBHDxi6GoWC0CHGUtqKYnQIXSywVB/EYDHNFtaVlNUeQvSoHkgoFMbVPEkNEDegQHPQB663eyjrZQ5HkxklU2ZgCRQxoGNH0TWgdGbmtcVg0LFDfAOqAO1ouymDds5w6UoshoEdYNDYYgFr617WapHgKSmo6724bkZqp9BNsbrIrI92WFtjk+eytdMcqI6iTU1UEJJnWC6yd+EIC8qwMJ+h2hlaKfYEj/MNYitqm6XPRhc4m5l1HVoGMTAcHUJVe5H5JqI0Whco7RjaEczXGY8Ps1Dvwwz2gi0pqj0MY2IcE8vRIkpB9ChJODRVCGhJFPU+0CXggIRzA6xxGKVBoPYeEzylGxMFoqnQqkSlxAEcB5qACQ0pCY6aOinKEDACyg5wbgQpUBeLKEApDe2UgURG1b48vspQaYtOCedKkrJI7NDGMSgWkNghocUChS0p62WM70AE8VNG8yk6QamHD/l79LBWcQQY7d3PcM8+bFlj7JdePqWW4/e9AjDEuIk1+9jcfCe3XbnNZbbhkavHueU3P8qjf+gAZ8/+OocP/5sve51z87MIwnj1IKvNhGZrP9vjWynsPvbvP8ALX/gjKKVY8Y5b1u7izMJbuP/yp/DYqee9S5/h+5du4MTd64iCsR/z7EePef87R5xrFS+48RLe9OkznO48n7MVs3/yEh552WXse+NfkO4/weFDL+fe4y9jOHjS17k3L9pFu2gX7aIBHDx4kJWVld3/z507x/LyMgAf/OAHWVtb46UvfSld13HffffxS7/0S7zyla/8gjbK4TLKVFQSUGh0CqAtVTEiNJuQEoJm5BvsYB8xBbS2VCkRihEoC902tVskKYM2KgOEFClGB4kS0crmKO74SHYs3QCtM+godQGSUAAKjGTpjZHEoPWUtiTaLAMtRpdkOVj/M6oAa2s2JeKSpyiG+NQhSlHW+1AInSpwtiaKYFN2J8U34CpqnaWgWdKUpV89T0hh69xO9Fg7hK5B2xIkkUJL4ar87JIQVyMSAUuKTc5nUwYAjUJpjXMLIInClogkqnIMIjhtESBph9IWHwOVMhhJYCvc4CDRz8A4kiQ0Gq0dBjAxslfVSArYcowyJVZporGI6hCywyMSiCKMy0WscfgUqJeuwNiSJrb5fXRmYer9aBFCijShRUlC+zlJadCGlAJIRClDVBqjLSAkEUKYo/vIfFGMod6D1pakFMPRIWIxRpsCiQEMpBQRW6AlYUQYDA9ibIW1JUkSZbmAEiFogyvHNJNzFPUiGoW2NSkFYmgxxRAkAwWFoCTl15XCuhptClJKGaQgFG6IthXSA2SRhOlBtUIRAR09RhcYFdFKoUyNSYGi3ocPDcY4jLaILVHNJvvdIq7MgQWZr5OKBZytiNEjtiS6ChU9Vb2EVhpVLuIBkxJR2nxvPbOIq9CS0EpRKk1ot3NAIAkqdogpKYsRMcxJZgHrhjil8X7GsD5AEo+xJc6WGbhKwkYP2qAQSlujY4NIDupU1QJRIhI9RmcQiySUtlCMsKbAakeqFiHMUQi1CGiHQjCmIKZAAowbYt2gDwK0JG2JxZDQbFGFDq0dcz8nuQFKW4pygRRmhOSxqg86aYcpLQs9cFis90LsSCGvraIYIf01RCnEZ8bZlGPMzOc9rBiRmnWitmjrcKokhgYBXL2Xq658LloEHxuMK9DaQegwKVLpElcvYosBQ1eSqr3o5FnEgNLQTXMAQGkG5SIohVMGEHQ3x5Z5jH3yaONAaarxYdrZWpb7DZYJIsy6TYaDvVhJ6IWjmBgQ5XCxhdCSjEPEo1LC2AIdPXmiK1A675kIYhyuGAOJIIFFu4DShoVuQjM5w3DxMMpUWBQSA362itgK17ehbNm3HRFV0tkBOgnj0UFctZQ3W20BhS2GpFRilSHFjthuY8oFjM4Fb2K5SIgdVluS6fNmUZmBu2DNPZg9rAxaM9nmxKc+yuIll3LokY/5kvdDWOdzd76QEM5RFJfz6Gv/hr37/gmXHXkV16/ewKnDjuIfb6IIbH/+8aytv4GmuevLXusP7/qfaDSHt6/mqifup3Pb+NqjXcHtt3+ajY01Yoy8/XW/x9s+XLBvRbGuPs+jzh7FBcfb1c8zO/NYpGiRBJ+89bNUj3oCKjS86ImHmDxmie+94zi/dX6dP/iu5/KSK6/jX/7Ey/igdiwsPANjljm/8gd0/uzXu1sv2kW7aBft296e9rSn8ba3vQ2Az372sxw4cIDRaATAzTffzFve8hZe+9rX8iu/8itcd911XwLOgMwmxQ6FzsncKWYmDhBtwBbYYogtFwjdNq5cBBLG1ZmBMA7thlhbZkctdmAsypZ432CV243Kxm5CVY5zzktoCdOzvewpO2ZaUj40SFuC0pTGIinQhjm2GGVwA5QpA7oe1rE42I/VLjtf5R6UKZHQADCq96EkR3WVLTIYMgVahAQk2GUdjSmJWhNDt+voSwz5KsZB6lAiYCxCZkx8mCOhRWuLUmBsidV2t02ldJYiiYAyiPQMlinYyUZPsUPFjhQ9dTHI0jQUyWeQUVaLOAGtDCiFso5utpZBk9KIMShMBj6AJmGVyQ5T6CBFnLboPuJeFmMU4NvtzG6i0cZRjvaTev9JxQ6nTQ8ILc6WOF1QDvaDQOtn4DNLFwR0OQIRYjcltpsoEYbVniw5zCOMsRUpdmhTQOwoTQYiCrBugLEVugeipLDrgBpJpBQp6kWkm++6eCF27MpBbdH/lU1rQzU6hC1GPSjMzq1CMG4IkjDa5vFHEBSYgoTC2UEeEySDAAQTc30CI4nSlKjQIoCkhNOOanwQYwqsrTDFePe7xpYoQPcAUWJ4gBXULgMpbbHKUQ2W89rwmfkJKSAIkvpxTSEHKHbuF4UO88x4AM5WJD9HfINC8pwEUBptK4ypMpBRGm1rtKsZVItYDCYJhRuhbEHyU1LsSCHPS2ccCZVzS4sFjHK783u3x0OLLRco3ABJIQcV+kBL6qbUg2VQ/Rp19e53E1DaAcYNEFNh3JCiHFGWi3kMlEaJkHxDCC3Sg2/dP7P4BlsMiaEFSbhqjDYlWhmq4UHKcgGdUmZ4U5YyiynRrkZCQ6EtOvhc0EI7RCmKwb7deWSUyevAlIjWGFtj+vtPShMk7Y4nIlR+mtc5QOhwonD13iwpTh5DnhNlMWZp7yMw2qFslVnfvGFgjWNQLlAVY0y5gDY7ESmdlQN930m/QpSkDHxEMltbjHDFmGp0iCgRq8vdgVKQQZdElDYkSVjJ+zluACjqYkQ1Oohxg93rgiJ0E2IKSM/4G1PghsskwBtLUhojCaP635L+/nLQpdq9/4eyh5VBO/mZj7F17hR7jxzlEU991he8JyLcfc9P4v1pRsObuPLKX0Upzf7lfwqAv+xe3NqthOXEoe/8NPe9B55604+wuvY6Lj38b7+grc+sf5r3nX03z9zzHEaDIWfvXWdr8Q6UMWxvb/Gud70dpRTXX/+PeNFL/jl//P98jP/lNuHjTztKqh1PXn8SH1q+hcODc1hdo5XgNwrOb69SbZ7llR94L+PRUW480fHfnn8N0i5z6vueyzt+9Mf5+fECP2gcN5sR8/mnWFt9PZdc8tMPWx9/O1s3D3TzwGCxQJuHXb170S7aRfsG2g033MB1113HS17yEpRS/Pt//+95/etfz3g85jnPec7fqw0JHaJN7+4JqmerjK0oVY64KmsIIhhb5wh3yoxJhJwLZTLw0ZLQrs6yFpHMQsWuj/haivqBfDljS+qFfHbmDmgxtiKlBDozSEkSkhJV7yhYN8jOri2JSqMlITtsFiApVwwr6j0gQkg+53HZIkfaowdJ4CdQjHqHTUhmh0kLWWpmC1L0SAoUg70AWV4nGhAshohkh9DV7ChNpWeWRKmMx5D8XkaoGUAovevU7gC07GwaysEyyri+sYRSKjvfShNTwPbf1drhhssZmCiNEcAWkAIxeWI3paiW8nVchZLEjphQIaQUEKAox/kztsQAknxmE3WRZZS2yiBGEkgihmZ3DEo92B070zvR2o16di0/mdYjkkRQJjOvCNoUxNCgehnpjgU/AxIxeWwxyk6hJGLs0KYk0QNUmwGfiODcYNc5Dt0Ua0uU7qVixvVzIEDoMuiVlMGiMigNKXT5O73TuAMkY+woeic8P2MeD5QmRU+UmOeqJJQtM5OWAkrl+1I6t5eiz3O/B8dRIqoYZobPz3YDIRlgCdrltWe1BVugFXk+lRmgqd7x3Zlw2laYHRawf9/ZmhRbdB+wMLZ3srXZBccigkggIOiUwJZone9BRNDFMAcigJj07rxRKCQFtC0IknYBv5DX/Y4HkkTQ0RNTRJsM/PoJgSBoO9htX/qAzA6QFMBph6TYB12EFFooF8jZlIKxJSkFlLYoY4m+wRYDQooQI9ooUCqvYUkok4+TMG4ICM44RBxK0QNWg/dNlmkrg3VDYmzzmGpLSgmlNegig6x+3mpJKO2Q5KFnKPXwAKnZxBTDPtCSn8vaCikCxtUPACtbYZInxUA726BaqPtgQWYG1Q7wUzs9qxAFpJiBa89HGUkk1bN7KRJ7Bit0E8aLR/OY+Bna5r1QKY3TLstctUVJIoUOYwskZfb1Qp5L+v3CFUMkBZJEoo8obTG2wElCQkKSz0qAnfkcAyhFjD6vdaVzUOkh7GEFaNO1FcrRAgcf8RgWL/nCRO2trb+l606g1IArrvhvu1GQ3Ru99Ad47Pv/E6vLB7j7sk0OPvEYi4NXMVjYxxfb/7wzn0v2yelH+cEn/AS3fOytiPUYgeXl/TzveS9EG8Pvv+5N3HP8Pp6+/0oed/wEttjiU0++GYlCaAeMvuND3PzkV/HW//Ep9o+u4OkvfhJv+Xc/w9G7P8vi0iIf2xBWph3Lw4rhtY/h+970Wp4WPT//jO9hpXo1L+5+iKK8/OvXoRcNEWHt5JRq5Ljz/Wc49tEVtFE84qaDXPudhzD2IlD7Wlr3kQ/hP/Fx7FVXU3znd6G+jEz5ol20b5S94hWv+IL/r7322i/5zJEjR/jDP/zDL/v9JAFrMsBJvaO988OPLtGkDAqUzo63UmjJIEKhsiyvm6K1yU6stphe1qOQXcCRUq5Wl3pgtWsi+Ogzw6UcxpBBmiIXD8nIIV9vRw7YR2oFlcFa8kif73Mhi2J54LuSElrbnpFIuY1+qzT9ZzR2FzQp7RDjdtxSxM/AlDl/hwwwxdUEwKqdRxEgojC7Dv0XF22WFBHjvrAPVJYBGlUSY4cxBfR9l9PSNMa4vv2ch6d6p1Z2pGtKZ4cJ0NUeklK9dHDnOuoB5kXbDCoAnzwqeJTO51EVO8yeLfF+BghaBGWKDHp2hy32wEZd8D/Zsex7ISmLUZAkZtBxgWnjevCVcwuzdMrv9r/0Si7dy/KMUr0TWfYObn6WFBqMG+wWD9np4+TnxG6KHezFFANEQg+eQYnkHKEeuO8i7B1z1QWsSOpBcr5/ZRzJDNDdHGN6iSuS5wspSzK7bUwxzmxgzwQKOUdR9YyLLoaE2OJjDxJzVZjcN9qRUmb8kjJofUGl19RBL81NfoZ2g12uIvg5xtaoPg9S9WAxy28V2hQZyBbDnI9kHDnmEDOrJJlPvLA/dsCISMx9n2KWMu74qyrPLMiAV7TKc9UUfZ/nuR2jR4lHGYeEzLKj7e6a3r2uBJIpMDpLc1EWY0vgi8aoB6D5ffrAhSXEDoke5QZoHXNOoM5g/cK9YWfYU8zAxNkL+ljlIBD9uClT9HsZqJR2A0r5o5IBOJkNpJtmye0XmQiZJRQh+ml+BFMQJaG1xo0PshPLgQSSg0Kp3c7BDFdnwCZcANguCPL0z2YueA5bjBABH+ao/p60Nhms2ookEZUCSQRReRRVfzYigIQs605KY5TOQTHtHgispEQ7W6WollDa5LFF7YJL1X/O2AdYP3Xhvvdl7GHzXm978xv4zDvfTDeb8Nl3vvlL3t/ceh8ikauu/FW0rr+0gcF+RnHMns0J0g0YXXqaoO6i605z7vzvf8FHP7H2US6pD/Gf9v4anz/9EYKdoVLgkcv7eN7zXsjy8n7GC0s84juewye3Co6sfZiVfftYtpcSXGR5vsyzTj+L99uTxCDsOTJie3XOfzl+ivlgzLV3fYLrNj7Atg/8izfkw1DDT/1rZHWVvX/1en69FD7ROt6kf4ytzXfRNPd8Xfr0293m2553/97neNfv3sFb/8cnOf6JVQaLBdd/zxHO3bPNxpkHrxL61Zj3nvX11ew4fZtY6nN7pG2RzQ1mv/tbbP6rf0laX/8G39lFu2hfO3P2gcJVu1FtNEgkGrvrNMqOZE+EHVcn9o6LLkdZolMM+5wjneWDO866n/VSu5z07nU++8v7GZ0EjMkRW1Eq+2n6gUhrUJodlBP9PEsbY5udc5VdU6Nddo5S19+/InQzfO8wQJYxCopga3wPkHaeaecziOQk+5BBmEZ228zyvIbUP2tSmi5kBzv2Ur9kq75wgtp1ogRF7P9O+Ua+wEmRFHJuTeyQFDPQBVBZftQln+V+snuXuS96thBTkLTNUfydZ5H4AAMS5ogkQuqIoXugiEj/nIYsT1RumB34PlquAGfLDLDLMcY4rH4AoKUYSdH3/cruPPHdFN9toxFsL7syPTMikoh+jjbZud6Vee5c05Sgi11Jn6SY52LukB4gBHaYnthtk7RDerC+00OiLaYYUo4OZMZI6b4ttet8xjDHqyyllRQI/XOkHm70UAWldJbW9f2tgCL63K/kPkzR5z4HlDYYO3jAcd4BIMk/wKz1zytKZYf3AvCQ5+40s787AYd+7mZw7YhKk3aYur6vgCxTkzwupMzeChl47wQqdDkmKo0yRT9X0q4kb8e5zkshA80UfX5d98EKbXq5aD9/L1g/2uZcrhha2tiiVQbXKgWsNvmaPTCm3yN2+jT1wR/V5zRKz+oohNQ/Rxs7okju877t2E1BKXzKjHeWyvZsnjI441Ap5c+GFhHZ3VtSzAAkhjazP/1zyc5Y0gOwnbUVQ59TZvIepzSNJFL0/drWSDnaXe8XWiQRJBKTJ8QuM47GgTbElHrmN7eplIZe8q3Kcd5vLuhnLvhbUIQ+eBB9g0ftflZQhDDLTOaOWiB2uVBLCvkJlclr2+R5lYMeOc9Q2Wo3oCMoYgq0YZbnXJYIoN0A6b+789zqi9Yj/bq6kP19MHtYANpsY4073vdOXFUz3LvM/iuu+YL3vV9nc/OtOLfMcPjg55vFhaMsbGxzzaFXcfojV3Ds7v+VGPvqTP2Dfn7zcwQJfMf+m7j9A3dzevUYqER9z2e44RnfvdtWGxLjsuTd08Ms33uGv3vmd/Gu6x/LXGbctv/DGLF0xwpOnTzP2sltNs/PuOc8dIMxJno+e811tP/4MPccrrhlbcKPmCEvevVv8vHnvZDi1b/Irx29hL+W5/DR6Sben/s69Oq3t22vNLzj1z/D6okJ13zHAV74yht4youvRhnFR//qPq59xiVYp1k5vv01O+7g/PnzvPGNf85v//Yv8+d//sesrJzv5RFfm/b/oVr4/J2s/9iP4u++C+UcajDAPeUmzJEjiL7IUF60bx3bXrkT32wRezlWUorUS6uSxOwghY4gORcmRU8KLUFZtnsZkZZE0LmqIkrjyWXcFYpWUnaYtWOH9VCSSMkjxRinC5JkECK9I6p38tEk5ntCZceljwJbnRkmI0Lys57BKwC9+/tviiExerzJ5/BEpTNDk/LBq1kCFZDkEaXw2hJDPujY2BIk4NvJLlsRtEHciKAecLK1UlSmxLg6Oye98xclZGkd9JLK/JudhT9wIdBCZ4YgmJJkcgl0H31mEmKH7aV+kvwuKE2mwKeUnVqynEz1jEKSuOvgRaXRbohC5YIuZLAUQkv0mfWUHXBMBou+BxFREh7JeVM6O/CezF4KOhctMBkcBelze/p+VyZH3WPyQAbCeX4ZjMsSvE5pWmUIKZK0I4Yuj4EymR1UkBBCu5WB0A4g1e4B11Q7XM/WhtT1XC8P5OZJyv0QfWbqJPbMK2AqOmIvD7PMdlgmMsv1QAmGnjXrAwVRIPk5rhhlNrgPcLQISSJBUg4qAN1sjSxXyyXlm35MlAjBz1Ex5GDDjmMsGaiIcQRT5L7oHehgDK1ShH796B5k7TjPO3JJtM0yyowW83zpQUGUzPAhCR8agp+SoqdNkUZnxjt1U+JuIRiL0oYokdBNIQVCN839sTsX2AWJu6yjcTk3C0Xoz1ILoQGV2XHpe9f0c8druwvEd55lOzT5bDilmUnAG0dhqt3cs2Z2PrN6xTAHblyN9AVpmhQyA9nvJ0r16gBXo5RCp0QDqD7nKqVITEKMzS6ICN10d9/w842e+TbsMOqq36NKZfriMhD7PF7fM2Ts7jshF7YxJdYUNErnIw2i7wMhNV1odtuMSpN6KWoG1v3ryWcg1AcngLyP7eQoupq5MfgLKsQqWxJCQyuZKdM7QRZtaWyV975+fHIlVkHbitiDtJ3xjd0EsRWlqUkp0krIY9xN89pOHmK7e908H4SE0KaQWdxeVfBQ9rAcVC0iDMcDTn3uDqrhmMuufyLLR6/u30vcfc9PEMIaV175yxTu4IO2o2dnKU7ewsLxW/hccQ3DQ/cznXyMo0f/MylN0Lrkdfe+luVimdAl4vEpiKae1tjNe7jxRT+GUorGR573m7dy9+qUzXng59/ze+xdXeX+q6/i8Y94PH7x75hvL3BodoS1I+dYOHOEWZO4bhOu+KGbmNz6bj511WMIpqY7Fzi5scaNR/ax4SN/fPk13Ifmhw8fpHTH+O3mRp5XnWBheN3XpC8fzL4ZDqH9Wtr5e7c48ak1rr/5Mh79jMN84m0n+MzfnuTqJ+3n8LVL3PZXxzl/74T7PrlK9In9V4y/4mullLjllvfw1re+maZpOHDgIJPJhBgDk8k2t9/+KY4evfIhD13/ZrVw33E2f+6nKb//hTSv+RO6d/0N5shlOUp36wewV15F+MTHsI969Fd9rW+3Ofxw2zdD/341B1V/LWzlrz+RZS+mRGxBUgbbJ9MH49Cxy1W5bJmjvQLGOLxxKFvgyKX9vZ8hKdBogzXZsROl6Yo6FyuILUrbHEW2FYSWTiV0CpnlgOxUK5UrtqXATALK1rgUiX1MNkki2YJ5N8XYiqgdRgITCb1MMu9JQRmUyu6U8nOMNiQ0faybxg2wqHw+VvZmswynv2/Rhk5ZgqtxKdDt5BjFhlb1bJgb9C4ZiDKk5HP/kfPdtLYEZXKxlV7yGWLA6J5l66/ZmVx0QbUTpvN1hB3WyaCVQkxBtDssoya0E3IuTa5KGPyMpEzOBVOaFNpcHbGX1yWliORKc4kEkh1wQTN1A2S23ktUBW1yEYpm6yRThHk5wLdTAoJRBtMzeh5BtMusqCnwfprL3SsIbgB+htIGrSxtN6VwuaKhbzaIkPN5lGZORPuWpBVzYwnaUPiGYBzBTymKEShFsBU+9sVYyExrk6svfXMAACAASURBVCKN0lhtCLYCrXdzF0me0Gyg3IAkAYPadeDbMEdpTVQKjUGMplOKImYZZETlSoC9hDNqjfhcQdAbR+irW9LnI6XQgkjPQhh8anFKEyQQTc4lC4DVGmm3adttzHAZI5nFIQaC0liT2bYYPT51GIQtSdgYCcbiJTGzBS7lPL+I0Jpe1koG2FEX+BRItsAghNihehBid+ShIqA11uR8pGgMwdUIUCjTO/8q552aAokd1rhcVEIZZs02ps9lmqcOawoiwun1u1iocwqO1wZlC7AOSSnnn/kG325gbZFZnl6a641FI8TYYnrJs/IznBvkowqMzUx9z3oricT5GrreDwr8fIPkBjgg9sy/0xYlZOY4eqw2eIm5WqeCaCwqBnycY/oCR12ziShou+28ZnfmntJIMURph0lhdy1DDrZEZdEqP/OaBEqd90WA2O8LRhmUBObRE5pNWiJlny+ZRJBiuBscaLopyViiLQkpF/khBZStiDsyZp3b1UqTtKZNnkJpogKni6xESJ6u3ztttYTugwjT5EnFANVu5cBYaEhKY41jJ3zUoVExsK6gFEG7AXNb4iSitSUqhdWO+fQcoVrE6TKPsbKIxKyC0AYrkpUF5KBWTIkD3/e4B/09eljC30U94Oxdd1KPF0BpDlz9QF7A+fO/T9PcyWDwWIaDB79RgOZRP4y4IXHxcp70/F/g1If20/q7OHfu97n9ju/F+/O84d7XsVwf4JmTZ5NsAzbhzt7CZdc/KSc2ApUz/OVPPJk7z00pU4cNAWsdL33pT7C2fgd7P/dUTizdy1q5xkdu/yDhxn0kLRyq5nz31rvZP5zxfSfu4NcGMwb3bXDPp7d4+b4F/uJxj+Q5H34/77/+ifxfd9yNqh/PMuf4nbP30nVnvq59/K1uSRLvOvU3/Jv3vZx/9ccv53VveTvHLvk471/8K973F7ezcu+E5/7MdTz6uw5z5Q3LXHXDfiQJT3vpNXz23ac5eftXJsUTEd7+9jdz//0n+Kmf+mme//wX8oIXvIjrrnscx48f4yMf+SAnTtzHu9/9jm85Jk1E2P6P/wfl87+f9o1/Sfns57DnT1/H6OdezuhnX8aeP30d7vFPYPKbv0rzjrd9o2/3ol20r9qsKVH9OVKrfspWz6fMN06AyiXbJ9Zx3BbMm3Ua8TQkWnIxBVIgxcDMlqhyhLUlURlC6piGOdJNORVmpOSJoSGmQGccwRbMJSepe8lnI4lEJrEjFAMSsB5amtjSkAt5NLM1ts58ktn0PL6d0FrHjIQyNSF1+NASeknYms0HXEeEKImoFF5rYjFA2QKbInNj2S4GdAoCKTMJCuaSJWgl+aBmkURXLzIhkdyQUC+xWY85UdT42Oaqd1rR2AKldqSXOZYcNMxTh48dbTfF2OzkJxEkdkSJNN2MOF2hk8hgsI9UDEjFkDXraCTgfYPqo+3BWLqiJphcgTAqDbbaZbmSyrI1327nohKhJaCYdVM6P6PzDZBBXNesU0lCjCa6Gm1K2tAQomdba/zwAKWpWTXSM1BZ0hdjiycfNm607aVNmpg6NpVidb6S8wGVIXZb6NgwmZ5jvVmn9XOUdngliC2xxRgQos6HbGtlSNoxS56ZLUjakfrCK4XJFQZj77SG+ToThKAtSWtiLy9NKj9PMI5k8nEAvpcFthKZSqRB2PZzgp8yjR3nXMmmEqbiEZPP/Uv9WM7bLaKfklA5MECW7bZKs9ls7PZ5k3zOfVMa0RatDLYvIBHbTYK2tNrSDPfi+yp6rlhAFYOct9kzsO18vdeY5kqDLUInwj14onFsAW3s6CRiUYTQ4P2ctgeTIXnwM+bNFo2CYPpcO4ROYj6uQdss51W5+EXhW6wIQTy+WacLLaIU7fYpZjrntEWlaRQ4V+Y1pU0G+GgsMKhyEaA1P6EVz6qf0kXPyWaV+WyFUA7ZtC7LNG1FS5YzK2CtLwaDcaxXIzaVsDk5QwwzorHMJTEJM1o0MXZM0BgJpHabuYJ1YmbtdUHRHxOxEee5HHxfXTRET6c0G8D5GJhpg9Yms7ex40zqSCimm/cRZqskFNspcHz7NI1WzI3p5Y2KqPK871JAYl9hEjAmz0VBEUNLR2K9GDFNLUGEzW4bNdiDqvdlVr6XDoKQ+mMsjC0xKSJExA0zw7gb1MlFWPKZgAVRaeZugDUlwc84O1tlIzW0KZJcTeq2mUokSmagm/kGKMVm7JiHhk5rvJ+jUEy2T+cAxuQsqg9I1T2L2/g59xKZdFOmEvEp0CVPWy0wV4rGObZDA7FBSaIFGlMQgA0FEzdgkgJN89B+6cPCoAGUheHa734Bj37mzVSjhd3I3slTryaEcywuPofx+KaHbEPKRVQ3oTz2DuSJP8lHXn8bg4NrdOpDjMdP5fz2p3jjuTuQJIxPDPBz4TJ1I/Nzt/LoZz53l7W79d517jw/5T13r/LDp97D9Sc/z+A//iJ7r7yasvpDJN1LefIppAGodsJ3rryGq5v7uWv18Rw9/xs8benjPKr7NI8++zoOsMl+Oc+V+jzlwWt5xjvezNNf9yf892d/H8EW/FP1J/xGeDE3jwJ7yi8taPK1sm+G6PhXahvtOq+67X/nvWffw3ff88+4dvPJLMk+rv6BMRtvHHL6/DnmNx3n5OsU1z79EGfv3uLU5zYQgY0zc0SEez58nmu+4wDG/f+LSdx66/u577570Vpx9dVX84Y3/AUf+9iH2dzcYDQaI5KYTLaYTCacOXOKq666pq8A9dWZJEFWG2S1RboIpUHph5ehk/kMvbiEe/w/oqjmLF95ktlv/N+kD78T+6Sns/Uf/gNqPEZWVmj++g1UP/BDqKL4iq/3rTyH/yHYN0P/fqMZtDNv/AiTdpOt0BKHy9TFCJciPrZ0g2WiKdgwmnMahrMNKm1JRuN7RkbN1xBJrBvLSBmCNjTNBq2CubasdxMWykWcyYdRpxSJxRDn50RdsGkd8+2TGG3YkMCpdpPS1gwRTszXOFAtYEKLV7lsuGjFmhtQi0fXe1gJDZOt47hijFEGqwt8t8WZapFh9KTkOT9boar3I7GhSwFvC8QUQMq5EWEOpqSNc9ZMwULPts3Xj6GrJay2rLmKVRJD7RCtmTiNAQZ+npkQ8nld82YzM2wSiNrl89CaDZQuCNun8NUi0Q1wIvjt02AHmWVAEFMStSNpTZkSokG0ozWWEkAbWuvY9nNMO6HQjmRLWqWIRmf2QWuCgnm7jkIRrcNqQ2MMrc+5blppptPz1KNLaGzBPAVKU5FCw6oEBilyTAvbowMMQkOIgXa2jjeGRmtqW2NcxalqxFLwOVru52g3pK0XiLFh++ztzKoRI1MxcSVRW7bbLeapI9qSwg3YtJaoDQOl2G42WFWKgbGo0BC1zqwXgjY2V3k0Fu0btCkJruTeyRnscBk3Oce8GOBJDHpZVdSa7ZU7cLZmy08Y2Boxlok2NAqssiTJxw9sVGNEl9TtNrUb4lH50HClCNoS5hs0StHVe9Cpo40dtmdqGlfTbd5PFzvOD/cxSp5pu00pwoZ1+TyuXg67WY0IQKdNznHTFi2RTT9DkY89kGLMqXoRrS0DZZiFKbUbEsXTSWBNCQdTrh7axZZSO9oePLZKMzUFBeAloQb7mCmhczVeBPwc08scJyFLXIM2eFsxLSpq3+Ln67QC3hUQPZ0rMa6kjZ7OFpxNHVWKNK7E9vlw8zClQxGkw8UAxZAVCdxeVZjQsGVKSgyDcszm9CzDYtQHZgIuBk6TmG8cZ28xZtNPOVePUfNVBrpAVYts+hmNePbaAWhFY0pW56sslgs0tmSbhHMjRGnuSS0+BSJCKoaIJKZa8VFnUcM97A0Baxzn6SjROHIxlYgw6bYplGamFIUb0BQ152fn2JbA2A3orKXyLclPkGKQ11fs8Ari9AzROOaAdDNqlY/SiLbk7rKm7CYYrbl/vsKMiHc1anoeZ/Ja8GFGqUyWG2qLjx4vgZmtWNk4xtgOmEmHMyWToqKKgWgy298aA5Mz+OjZTIGkLWU5zoxWO4EUMK6gS5FAYNPPWHQjUupouhlBQWmKzF67mslsldVmg4VyiHdDYjshkbDVEmX0aCIazep8jTp2aG0plaGbniP5BmUKtlyJVprzw0VmrmAUA/N2C+VKjnz/Ex709+hhA2iHr76KOz/4fkLXMtyTgcp8/nlWzv8BQuDo5a/GmIc+VRuguv3PsKt3gDbUN7yIu275CKODmsHCITa33sEHpxUvLF/M1ul1is1DHFhcZOvMLcxH8Jr0//LLn/3v/OXH5tx64gRds8j/dtufUncdB34hd8OpU7/IgQNXcOOTf4bTt99BNR1y1u/nBYM38dGtF3B3+3S2l2oeo25DE7nO3MuVnGLtzDHukqM87rL72ff5d7KxMeAdVzySZ+y5grtmZ/lcGHDzngeXb3619s3gfH0lttau8fJbf5bLRkf5ufGrOHtbQzuJmBvXGSxb7O3LPP6HDvHG7T/lxKFP8ZTDN7H/4B6ueMIy+y4b8cm3neC6Z11K6CIn79jg8uv3/r2liKdO3c973/suRIQjRy7nllvexyWXXMqzn/093HTTM7juuut53OOewMbGOisr57DW8qhHXYcxD322xUOZiBDedh/hzcdJn1gl3b5O+tQq8bbzyMocddV4lwn+etr0934Lf8stxDs/zdL2XyKf+QDNbA/BLlHZVZbueDX6e/85PO47KW56Gs1r/hiZTSme8tSv+JrfqnP4H4p9M/TvNxqg3fGe07R+SrN4hEpZSnIe2Uk/4ZODMcaUbBnN0nyDuTbMB3sJqeP+wQKSWpbcgLkSNoxjodtmA8+WCEFDMoZSFNPhPgbtlBgapgjRFES/zXY34WzhGPel+s8pxdQYnMoytk+njqHWlO2EVinwcyaT08hgH9gasQUhtKzNz1OPD1HaGjEa8VO6epFxaOnadWKzhStHaBHEGs7HgCsXmHQTauNolWKAQvkpkz5hXpQgrmK9XKKWxMdtx1XNNk5lp/Q+lajQrHdbjAS8KzlTDQjRMyIzHKmvPmeMohNhTTxzpdDKsmkdw/kaplzAa00zX0NJIijYlEQlgW0h732uysUVlCJpwwkFfv3zGFuhtOVkPUY1Z4nr91OXiwRlmKUWPTkJ9T4SmhhmSJgTSLhuQlSathjgbUnbzUipJc1XuT9sUxjHXFnuqMeI3+bulc+QJLGnXmZmNHWKrEnknaXjatGYlFhpVmF0kC1j2QoNg8lZ2sEeClOxJi0azTBFjmvYUwwpjGPTOGpT4ELHhtWcD1MW3IBZ6pjFFkwB5Qh8g2jDVrOB7SWDp8TzR4VhELfpZmsMBgcYmgIb8sHbhIbt9WMMR4dISlGYDKzP6si2cQyMZS12FG7AVjFAlMF3Gzhl2FaJafQMejZs2q5T2RpbLuAl8tHSUXdb6G6Lz89OUTeb3B87zi0/gj3dlFPtBvt0wVpRc7IYMt46Rak0uGHOz1SClGMKFE1oOe0qxqGhDXMmC5cw0ZYitYzaOQ0wW9jHIAROxQlzbRiLptaatdl5tDKc3zxG0JZj1YDVcsBk6wR7MKwlz3y4L4OPasSGEspmiza2uNEllCiCdqzHOWUxpJCEVZqtjWNsLRzCKU013+BMNaSwNUiim5zHSGDghhhl2DCaUC+x1m2x3m7hNk+wJYGP7D3CMSs8kYrj8xVa59ifEl2ft5lIJJvPwWsItMpSimd7fJBTViPdBJcCqlrCz9dRqWFQLjBJifVqiNaasRuypoVPhQ3WtcJJYgXFQGukGGMVNK5gPTSYaoyYgn1tA9pwUiuGszV8McRIQLRmRQmLfsZMgRRDrK14y9bdrA8WeKQekGyZgVdfREhMwXnxiClRtuQscNdwxKVRgQSM0sxS4N6iJLabWOXY8lsQPHfVC1yWcmXMFfF02lKZgibM8NqgU2DmKqa2RDUblK4m2ZItYwjaUWZNODG0TNyAZut+Bt0MbwsaHXGm5lQ5JHUbxGqJWlucMbShY7Ws2GtHuBjYXrsbExtMtcRECfNyxJmNe/jYfJVLomfDZalstBmwFn6GFmEyPc05ablj6RDF9mn2DZY5pRJbOtG6ESF5RrZi01o8wkwJbejoZqtc84MPTkw9bBn+KUU+/tevxTfz3dfOnf8dkkwZDZ+Ec/v/Xu1Mb3wFUowRW3P5E25kWN/E5960h62td7HqE88aG9Y+ew7fBNR4xtLlJxDgT8bv5tjW3Wz7La48+hlmW5eyzDpOAt3lh5j6CTG2pDRjaeG5XPbeX+Bnt38FscfZZswLLvuvoKCsSszlT+J373oyn7vh1bSHn8aV6iyXyDlu//iH2LzyZhYeqfiFjd/hZbN1/s+1gxxR9/PemebO+denquC3qrWx5Rc+8goeu+d6XnzFS3nvX32GE+Zu1senuPf4SV5z7I949r9+FHsuGfJvH//vOLzvEC/74M+w2W0CsHiw5tpnHObYbSs85pmHOXvXJh94zZc/2PyLzfv/j703j7L1rOt8P8/zvOMea9euuc58TuaTkIlAIAgiMgtGwBbxNtq27bxsG6/d2DbXAWlFgVYRHGiVRlGkFTHNGAyQAAkhJ8nJOSc5c52qU3PVrj3vd3qG+0elXderAtJC39udz1q1Vq21az/7fffatd79e5/f7/MtuOeeTzA+3qTRGKdWG+M1r/lOXvKSVzAxMfX/yLaRvPCFL+OFL3wZ29tb3H33R7nrrj9nZ6f1VZ+nsw5zrkPxoYvkv/8E9lQbrINAgL87Si/213D9Av3eM+gTra9rO+Xov36A5P3vwxx/kLHsk7Tu7bBzKiI7eRbWlmifcFz48xruD3+W8PI9qOYE9fe8l+zuT5D+9d1ft+N6iqf4evOID/eMzeA5S2YzPi9hyK40oAOMI1gVmsWoStdBW1gGnuQSGR3bw+7KmdmMq6RRmbVQkBWbmP4KF1TGxbiCJtttpcmHdKVgJdnGOMNng4ClqESAI8n7ZOUmG/UpRqUqmR8RW8vjvuLh8Rm0cGyGFZR1bOk+pysNRl5IYgbUQkHFpawkW2QILocRm9awri/SGzyKK1UZBiVyL8Ihib2QSy7nctpBm93Q25bnkavdouSS7pObAUJIKjZDmIwauwY7+aRMwbmcTRLa0rEyWmcgFDVnibAUJifVCYVU9ONxukbTcikDzyPxIgb9FZb7q5hiSI4lz4eYYsQobdMbrpEoyXZpjIE0nCo6bOQ9LtiUPO2gnzQ97pTHKOIx+lGNpi7YCSJ6gc8AR6YkEospT5Eq/0lRiqAXllmuVBkkLS4OVriMZqBHGAnb7TPoIqGDZTndYUcJ5qwlDyuc3nsTkyoiAgK3K5EZRjX2WZ9c+iRSYUqTFMqjhea+bJs8bTPYfgKrM4QtuC/wuKc6zuXmLKulMonQeOy2P10KYhazHdaUoK8CVivjLNZn0NJSCNjyI9aiCv3aHH2pGGQ9urpNJwiJantJ/AiEQTtDIj36foVBWKY+dgDt+Si/oBAGHMQGIiQbns+OSdnUAx5nyAkyToVjrAlLV1r65SaFs3RsgZYKKQVdV3BPXCYLKzxaKtP3fAbFAAH0BiuEOFxQwimFsYZhUEI7g/JLDG1GTyq6nk8/iEm8Yne+SDiqVgOSLBojEIrx4SaRLsgxpLZA4ZHLgBXfUXE5LT1iACy2z5LoEYtT1zGI64Q4fKtphTUW8m1OiwJlDTIfgrBkYje3LYzGEFKSSklXwmWl0Rh0kdLrLrFYaaK9mFHaw5iUC3GFzWSL071lNnuX2YnqbEYV+mLXAugjGIQVOqUmj0VlVtndtZopMjAp7XqDEj6ENfpBGRuUkF7Ehh8wDAIkih09fDJPL0NLxUq1QWo0mbO0MZx3I3pFjwT4nMx42PdweY+Rs1wsTbHWXWahv8C23CHpL7OUrAAFsbEsBBH3+yNGzrDlRxwbrPG46TLwAowQDIVgkA8oxO5u4raEXrlM2w+43JhlziX0ohItNCOdYb2Qvi3oBD6DsETXDCmcpmcSjMopPMUoH4I1DLMuhTP0neZC0WNB+QzDmKg0ThJVaHsBF/MBnby124rsoDvcJvcCOmqLzAsYmJyiSPCsZegMXVfQ8zz6XkDihWyblFFUZjPvc3y0ST8fMrIF54XlZHWOwGQkMiBTIUZKKlJRSMe2MKxUmoy8COPH9KxhUzhMMdidc7N2N2ZFhWxIxYLJaDtNi5zFIGbFj6iFVXpRlW2l6JiMU7UmkQoQUpI7w5bN6dqMthAoAV2bfdnr0TesQDvz+c8ipGL2qqMAFMUmw+EJpCzTnHjtV72Ore/HOUN86o93lbW+jx542MKjqQxXpDF5nu/2zA9meeC+B3FAP9bcNHErr5t4D/OjHwMnuL04S2nQ5z988xrvfPw/caZ1D9Z6zN79iwSL96CnbuAn9ScQGG5bOMfM0RrpCAaDqxnYMS6uFfRf+ce8uf4LzIkd/rX7bdJ73077Re/Fiy3/4vQ7mfI9ut5RnsND/PLKytfnzf1fEOcc7zj5VspehRvHb+JHHviXDA+t0BzN8leH30XRE6Qrgr+49Gfcs3o3f3LxffzU9W/k6rFr+dljP03xpAr2mm+awTnH9uKAG1+yj+XHO1x6eOsrvv6xY1+kVCpTLpcZDgfcdNOtzM/v+Qf//tChK7jppqeztLTA8vISH/7wB0m+QkHuejn60yvk7z6J/m+XsCsDRDPCe9l+gp98Gt5z51E3TxK8/hpQ4LYS2F/B3H0Z/cnLX5ciLb3744x+4+3Ez76ZRvNxNo+ViBs5h75bMPeikOarb6b5jjcz9d3X070YsPNTb0Le9Wb8g4eJX/s6Bj//s+QXL/yTH9dTPMU3gs+7NfYO1rESYj9mygsoTArWUjeGrkt5wqUEox18IdnRPYYm5Yzusu4S8uEqskhInKXr+ShZIwsUW0HAqhxwTAqwPkhBUp7gWLINT1ohA6dRMuFE6PFYHLMqFYGVCJ1TyvpcGJtmT1jC8yJWa3OsVSYYVadoVmeJhKQn8l25wp4ET6ZYzwchWA98qsYQFxE7tWkuxhHaD/Gdw6H5SLDDBZfTzrpoa7HOobHoYsAOlktRSNcPOCUEqS3Y6l3gYyZjvVKjZ1OGJuNetjnOOqJUoROWaNucdaAjJMIkpHmPkefhofGlRQufc2HIvZ7kTDxGIyxzOfCezKuCs0JzPO+TmIxVl5EkWzDcYszlxEJRMoZNKchdgeot4iQkNmNLeqR+yBBNFpfpuoxRUKIXVlhyhn5YRVqHDas87klO+I4HZqdpTexjj3NIIRkM1ulkI04OVyhMRrO2l/NSseEKBLtzgg9Xx3kiiuiWGrRwlCQIa7hPOHaCMokz+M4y5SRBaYLWYJUHvYKTjTG2K02uSkc4FZOqEgPfINyAS27EPabLhnAMbZ+dWpmBkqyhackBG+GARU9zyROcIONLHmwmLbaG6ywHdYqwwgqaZHAZ5QybWQuLJrEJ28WAJO+xJB3nsjOMhGEhqtCOKzjfoyUMl0bbPNA+TwvLFppU+dwfR4y8CN9pUhwnhOP09B56UYUWBR2b4ZPTqZQZ+jW2Jht8IvIgLGFxLJiMYd6jn2xSy0cskZPFNdqNOTLPw3gR1vMIkIxsStekFHmPQbJDIn0KB4NymfUwQgnLULfRCDJhybyYDWtITI7M+sx5JVZrMyw6gxGCC0FArkLWK+NcmNxHUm0yxNLTCe0n9TgCgREgTQpZn8gVlGOPthgxNAnngzIbEzNsuj7bg1WGfhVfhCxHVcJynaI8xlBohlJQqIBQSjIKnA/3RhHWLyFkgHCGo+4BrLBUhIfyoietirAalOgLiYfDej5rgY8dbSCzNqlMEThy6SG8kNQU5DoFadg2CUlQZhrNlu/TDwJK8RjnZUIRVzlc3c904XOxuZdTlSabYYWulDRGbUraseT6tHpr7HeWldE6q3rI5dEG2WibJVKEdCwry0cnNPdKy8lAEZRgJMsUzvKAGNLO22TtS7iij2XEGbXbcWAQnKs22Cx6iKxDUvSRUuGVGgxcwWrWQtgha/U5Fhp7qdscpEA4jRg/SGp36CcbrAhLohM2i4RLbp0Fm5NEVXKbkprdXdZAePSEZSQEBYIUy0K+yfvGx1irTrNuCj4RR6ygd02tVrPpC9bzLtoL8V1GYXNCqXjEE7TiMudMyro09IVlfd8t9H1JENUoZIj1Q4QfIooRpaCMJzVJYy8fn5jjAZsjhCUwOUExYiXp0C36u0HjwFBmLMrd/yUlA4LS+Je9Hn1DCjRT5Pz1e36LZ37X9yOkxDnHwsKPoPUaQvjUqnd89Ys9aa2RwzVE0uKml/8zpPL56CemQcDW5ZvwlMIzMW4UUxoNCMsV3njjm5grzfFfl36Pe85vIxA8d/sivoHtmRKPth7GtP+AmaWUWrtNHtZZyjJ++Pqf5tHGSSSOTXkch2PQgmu/5ZX0NtcRQvDKV3w3z8veTsdVUJ3zFAevYvmBKTbvWuKDh/fy7n1j1N0KD6eWM+mXr5ifYpePLf83Hm09zKsPfBefPP8pnrfyasYvHGb2yjHeevvb+MEfuZPfec07WR5eZl9lP/eufZof+8K/QgkPYw2/f/Z3AZBKctt3HOL0fWtM7KswvqfMgx+6RJbof/C1+/0ex48fY//+Q0RRie/4jtd+VW2Lz3zmHbz85XdirSVNUz760Q//vVlprrDoz6yQ//4TmKU+8kAVyj5iIsZ//h7U1Q2EEKijTbzbZ6Ae4NZGeN88jzvTRTytCRUf1/una0EGyB9+iMFb34JsVBCnPkPrRMzkD72Y8eeM03/1B+i9/A+Jn3g/5S++FfXsl1B/1+9QuTJk++1/SfGOnyS88zUQRQzf8gvY4v/brXRP8RR/H3vyEmU0npAIBBUHAYLEjAj0iNzkNGyBHawwzHt8OpQ8HAT0rWTZbzKUGUZIDjlDYlPqDpTUhGQoHFfaDGv79P2YzsXkUAAAIABJREFUtTBiMYjJSort7iL70ha2EJxVFi0KnDAo2yOWkkzn7BGWFpZlmdIWu5ldfSn5XL6DFgPOy4KHAouzXSIS2nGNJAgIXMIEmhIaX2g2VE7gQNmCteElNqzPKWfxnWE92UECnlDkekgZQ9ds0HOOjd4SS9kOZ9DM5jmNXpvIOVZMSiEDLkvJuc5Jip3zbOoBqadJgoi13gWcgEgWhEArrvKxap17yxFnVM6677MVRNTq8xSuT8QAKTSN0GGCgFNs8Ljtszba4HIc88VKmaGACeFTmIKlWsTWaImykHhYTomCIM8osi6BE5zAEouEuH2GXn+VdadRSZtDvXWuswlHR2eZrE+xZQyetVScplOZZjGI2SgHCLvKtu8YWMujegdrWnw2LtEdrLJYtPHlkE/mK/yF6HEQTdkVaJGzLQoWbIEfhNxz1fPojjfJbEJOTt0Lqe1qMtkqErY8S+L1uFktUhOS5fFrSW1GyxlGRUYTx0SRExYJxgnmgj7bqs9AWnphlW6pSdMpvKJLN5qgU3JMl5vERUJRDEldQc8VSJPRr5e4FBY8ITXbpk/hEsaw7A/rBM7xkB5xxg553AwZd7tffB81ffykg+guYdAMii6RNcQ4OliqYodhcpyqirg0Ps9CVGZLFvi1CYLyXlTUpJX1uSwFCzJhKDRlp0msoWQNqxT0dcLQUyyEFUQ8Tu40j9uMR4yjJBQ6abEjcx6iS14kxDpnK6zxRZvypcECHpZRskXmcnCa83LIOTvgOt0G0+OyucyOFGyWIhJyhIK0GIFzu5lzfkyiYhIxou4CrIA95WkmZMDAr1OWPoHJ8TDstxojJFUMpuhx3CR0lWIgJebJWU7lRQi/wljWReUpI9MkC8skpoAiIdUJIQZPajyXY3Sb1PaYl5a5qIZfnmRCBPjWETnHI+U6H+pfoFeeYHVMsJqeY13AsssZd9CLyiwBODhVglbewTcFHV9zrZSsuZydfAdrM+ZECZ+C1VLECZ2QBVV8NHmpgi3V8etjlE3Gpk6YGxmaRU7NecS6R1X3EUbTE3DOz8krU2z4IVsyJdVDulkP5wX4ykf7ES6a4IuVCdpZmxBNisbDoRF0XErNKSq5I8ZivIjHnGFl1GYz7zKwGdbmbLmMvozYFpovjjUoR7uRGedFwSmZUlUBnti1wvd1yicb08wMWhwZbnN8ai+nbYcTrs+OTTB+RL0oiEsNvFAincGQk+gB85WYwDm28i5PJMuMRMFU5xyTtgc4MhXQchqtJJvkXEw2OW4sCJgCGlIR2YIlz+N0eZyRzDifbnEuitnBUeCIyVEOWlGF5Urjy16PviEFmvR8fvB3/vhvds+sHZBmFwmCfYw3XokQ/ldY4W9TzD0TkKjuAo35fVQmpji+f8hft0oMB2N4xJR6R3ChwZkOz/+JN7I2WuE/n/ldjk7P4zvDNWqTfUtrCKV4/ws+TOyV0OlZJjojjLNc8CWvuOk3uX/iJcxfcQWZytje2cJObJKPNOfv/wgrpx7BOcdMLWQuVtyp34LnCibf9wxmn+coNkfUP/Xv2cgn+aJ4NsJZfmX1qUy0r8RGss67H/9NYi/mZ479FEcXn8cNozuoxGV8E2KON6gGNTzl83/e8DM8Z+Z5vPFp/xcjPeTulY+RmZS7Fv+Skzu7IeL16ZjrvmmKx37/Pm6bOM2VyQOM1jvY/t+fkfbAA58jDCOOHz/GzTc/nXL5K89G/ndmZ/dw5MhVOOfodNqcOPHo33rcDQqKPz2H2RghZkqwk2K3EtQNTfx/dgRR+7uSDSEFweuvRh1top41g3u8Damm+MB58g+ex5n/sZ20zGSceuJTfOwP38C9/8cUd93W5j/fGPEn3yf5pf1DfnzfEf7D2XfyO5c/xH3f9h6KPXcQH38PjY98D9WXPpu5VzdIPnM/yfe/lPIP/Qjm7Gna3/Uduzrhp3iK/x+xF0GMY1MnWJNxmZzcWWLn8KwlkgGhHPLA5DyPxHX2WEVabFKxLS67jO1sRFcIfKcIZciGHaLHcvx8k5iU2WKTIrlEVxjaShGWY4gfJylZilKdyBVUfJ9+HHPASZwz5OTsVCbIhcXPNyijiZ/MH0pdyrrVjHRK2RW0XUHHc3xJLvEl26drcpq6S06PdjmicCnj0t/NhXIFleoEEo8Za5goUqyw9PSQbZexLRNmbcF8PqClHPdNHuBYqcrBxgGe55XpSY/taIxV5WjaBGVzOuEhjs1cxaVyhYI+Xhiw6tdY6i+xXhiU8MicYcu0OWI2UC7loget0SZiuIWsDtFmFdd/gtTlnBycRAVNNs0Wii6tOMUXA87GAQmODMuYKTCuTBrVmXKWWSfIq3MIvcGXgj4jO6DjRsSTV1LxS3ieQXgSo3xSr8Kmq9JJnkCxK4xol6sMygMqqmAU1XmoGbEnaqGKLQqXcpNOGTNtZrMd5nWLxdGQcRHyrWqB6pPCi3vLko6X4tke4WibI91FGpHHjG2zSc4J6ehJgxRQkjUyPGZcTkiMc4ZTpJwDlii4SiqqKqMuhgzcBp+0LXxSZlVGVpoiUiEbztDDIIXPrNP0GSJ0F/yYmoJRFGOsReuE9TCj66W0sHxApLTsAhZLu9yk1ZghRhMhkEozcAl7kWgRMJKStcjjmB2Q6y5gSXB08UBaYrnMnPUZlScpKziERFAwHTUY5l0ym1G3KZHrsWIUbecQwjGkQJLTzVsUQY9qXN6NUbA5fQqmZcFQGC7qPqnw2YtA6AGzztKU4CoznJu+goXqBNovUZURvvBoULDsDJto1s2IQhjaZLS8HMj5nFykrTw6NqNlCnaKPqmAwnksuC6jzmXOD1YIC0lNa7yojpdsM3LFrgQFQacxh4nHuMcNSFxBYB1LNuW867DPZLggolWf42kGaq6BZzN81ycSEIZ1Ppu3WScj011GzjJwPVqmy0IpoO0LOl5C4oYIYehHNS43ryCKKzSU4DP7ZmhLQ0kUFA4KepQQlEXBc1ceoTdawiHo2g7O7jBOQc8PWPElj2frtIoBdc8jyLaYci2GesB5WUYpxz58MtnHuIw02stSFNHF0rCWWRtSsQXCFHTCmM+ElsfKKbHbol5ssJC1OO1ysDnTmceyNCwFEbmUpPkGmevT93JyDNtuh9AV1L2UoRhyzhPsWMN+b8TQi9ioTXHa91msTzMoB2gL40lKxZQIhWToeyzaAud2DaodP+AemdOVMJn0EMk2a0LS8XwGIuAyklDn5KNNRLFOVbRZLXucEAOMs2zajFaywTgGZ3xwGdblnJ68ivPti3wpiOjHNZal5mGXkNsRhReRAxrDtPDYrs+QyYCivQA2oOYCpgWco0PfFGT5bovnttDMuS9/I/sbUqAJIfCj3QBDbXqsb7wbEBw5/F6mp3/wH71ecvT1oDziR3Z3Sa5/4bfTruWsLu0WgFWZEhRVZmbLyMLy9s++ib+49EFeVHkbrvUt5MD13ibl9XXk7BzVoMqvHf5env1Qi5lezif33cy/mP0eOlZx5eKIa+56MWthi6LI2ZFn6HV7eOUfAMpsL5xDCMEPvOxZbLkabxPfT2EMYu4AOBAXH+L6R95GRZU4Ii7wpVHGXe3+P8n7+r8izjl+5fibuWXi6Vw3dgO/dN3biC9OM9jOaMyWGHVzrvmm2b/zvGfPPIc/eO77+bmb34JeW+E77s1Jf+xH6bzhx9l57ato/uyruObun2f0W7/OnhN/gX79y9l8zavov/nncFr/TaG2ubnBhQtnGQ4HVKtVarX6P+r4lVK86EUv51Wv+i6KouALX/js38yjuWFB8YFzMBlDYkBbvNdfRfC6q/CeOfNl5SXiSfukurqB9/IDuMUBRAp3eUDxVwtfU7vj2e5pfvGRN3Hnp17Cz5/8ee65tuD49mUWqxEbV1m29txAJZriGZPP4paJpzPSQ/79E7/Kj2cnOf9tf0jn1X+FK01QKu+w72UJ4WxI8q63I+fnce0dzNLiP/qYnuIp/mcyJkcYV5CJAZH0qOCxGUQk5TGUvYDVfcqZ5daVM2S+T9NYIqvYW6wyYTqcSs6xZVJOuJxNVzBpNVO2i9Vtuij62tAzOXWbUMVilCOwlu3+GSSCMwzYQSGs5FE7YEkYRjgmPUGGoWI1ntU0MCjnqDvHtdEk+0SMJyESI0Zyhy6aa13Co9kWq3oD31jqO9ts9QqcjjFCkKebKK15RrHBM63jTHMPmXCcFSnTro+p1rlkeyymZzlbtLAyZFbFhGHGcRI6vmLRDKhZy6wQjLsSoedxuTTGeRkSy4JtO4Kpg8RhHd9BH4eUIUKEOJqMmYAxa5mtTPJ4fQ6Z1BD+Htbnn0/Xc4TWZ1KENIIK/elpBnSZkPdzWY7YimKc59A2Za2xlxU8lNHUih4VK2g3rqArPMZtny4J5/yIsyInHKzSDR1bY9OUkQxij9A5QpugBARxlY1onvtnn8aEV+b5yQyiGCcMq8x5Fa5TdfahWNtzmAWzwVa5SdVXXEWfFb1JrneYGm3TKBQ1GdBNukyYjFlSRq5gKCUno4h5UbBhRuwVEWVR4ouMyFyPCpoXqyWOeNtENmXgNAaJqUYIb4ybijVSlbChdkjJGaTbLLiMps0ZFyUaQR3nfArbJU83afcXGJo+y56lWyoTDRJq7T6e86laR2YNwm5wpfSYUwKJYALDnClQRuE5zbrrctL0mQrGqYkhA2PY1gMWnME6STqS7HR7hHqbg2abi9NXoqRhnQQpYEdYKjal5kZsyAoOSQXHunBIJ3G55tGgwCUrlIwmxlISkm0yMhkzLmP2VQ5Qimep2Yid2jyXghI9O6KJxJcGo0DLgFCVGEZjGHKulSHzskFd1dF5gLQK6W1xVmyQUebPRc4pdlAyQfbXQWccjDboqxE7cYgrTTKDpOkpsvIkYRBznb3E+fIkadxg01c8Jg2BCKnjseYyOuYSFzEs0mdZJRDXqQhDZuGMGbKK4LNxyEAULNSn2NJwWToW5W6YfSLHWI+q+KWQoQ81EyC1IHaOmhmyJgwJAXs8ywSSvU5xGENiqzSdZS5fJWo2ORDvp+w0NUICUcOKiA2vzGpUovAieiSs6RE7fsgoKvPQxDztoMdGGGCcQeVDStkApRST0mMPsF8anlAex7IOy0KyPdqiZC1XuxY151BeZTffTChKIiRItwla56jlLRKTIouMISNW6+P0Kg2UGbKV3sdj+Slqqk4VD09qorBPDYdVPo/MXMFICCaGPk0UMqyjZYDMh4wLn+vxUKaHBDrCMi9SGiaj35wmLzc4qAfcYobsNRmKDKcMIqwQ0kW4BRbcgDWRslSpcdjCvBkxcI4pm7PHFojJGyjKczxeHicXhn1uiOdaKCfwdIoOI5Qe8XSzQ9sO0XI3nuHS5B5qdndG18Mx6VImcCAjxoRg0aXs+wqbU9+wGbT/Tq/7aXZ2PsR4406ybAEp43/0GsW+bwIEaucMAHO33IKWloODg0gpGAxq+LUtkvwcAD/8jH/Lf3nuB3jJlVfw+Yvb1ETOnkYF4RzhC14EzjF7378lyhwDUeKjl/81y1N3EuaGO1YvcPgHJE9MnEBLjVCCXv0sRjtwKXe/+73kScFNe8dxDu7Kr+dt/k/gD05w8IVriM4K0bm/5FeDRS6xnykx4Pe2vrZMrv8d+L0z7+ax9qOc6T7BT93w7xi7tJ9yI6DajNi42OeO112BH/7D7YY3fX6NX3uP4elnFXuXc7KHvoSoVBBT00h/N1tldOgW1n78t9FG0H7kES58+8s495138oYzF3nV8hYO2GxMsHP7t3zN4dNRFDM5OYW1lg9/+IPYwlB86CJMl3BLfWinuFQjI+9viq+vBhF7qIM1vNcchl4OkzHuUg99/1efs5ebnHc+/g7+zQM/xmQ0xbsm3sizLzhGvqWQgscOeyyNz9PzQ+66/Je849Rbec+Zd7M2WuMdz/wt5st7+cHPfR9nPcnw9jey888fpP/K9zJz5QJ77mjhDZYQpRLD334nyV996Gt5+57iKf6n0HAZi1MKP7lMkXboO8O6Upz3DJGK6UrHYQuxCLjaOuacYU4E3ODGcS7FTuxDN6fY7/pUhIdzCQNvk6pRVEWZuWCKaW8OZAzC8nR5kTIjlib3UfUVzy3gVqcJyWmaHntkmbJwbNGjImMmVJ0DsmBIRs9p1mIP341oWU01dzRkla1Rj37WB2WRqofQOV07ZCg0JRc+meHl6HmWclDjKHUOiIJeFLHePIiOKqQmYZ+cYBaYlw1Cv8oNWrKXEF/mBIw4KEN6KiQOIvZaRfZk5tYz7ZA7spRmP6NiA1ZUxISKmBcK31mUkNxZ9LnDAtJQkBPalINFl0KVyKNxXDzBnD9LRVXoIrjJa1KVEUdsh9gMuanYptxZIfarFC5nVJpiaFO061FCEwGxqlBXTYyq0Z7dz/7qONc5yw4eXpqyJ02ZtYLA5Wi/xlB6dLMeIZKqiikDRkQ8Yoe8gJAXEHGr0/RMD4Pk/jBmLtjPcVnw8OgRtmlzothiw/WR002CYoe63qFfbuCFdZQTOGOQNiRBsF8uc404w6zJ8Bx8M+douEt8JF+iQUHqrVJSD9CiYH8BotPCKxzSn6ApetwRre7OxAnBrdZxBMt2sYqrjTHvhhT5Dl2VUUQBzbDMaHyeQCpsxWetWuImtngpbQ64acZsuDsb6FVRTpDh4YQid4INm/CCYkivOoEI63wTC4zSc1zIl6mQcMgMmNAbVMTuPNZtQnNlcI4KLcaFoOkrDoxNUfEV4yJC6T5H3IAdAeBoOE2AwFcxLSPwnKUc19kOAwos+0zKtIOwOs7+sMKky6nZlP0mo56fZc5sc0fRZVbAfj3kBl2w7Qm0F3PQavYLya22zxFvN8+24hkapW2mxZAZJRBehaEs0dEjMgpaYZfrgENjB3hm7BPiyFVI5vv0S+Ms0eSSFDibIoTP0DoqLuEcOV2ZI2VBKAzKRWz4Y2RuiBIj5v0JblQlJhBEXkBKQex2v4Rrr4yxPQIRMEJQVmNE0YCyyvGkx3mb8rDrU5KwCaz3tqj2QhIsYybiKgH7nEW6jDn/AIfC/UShz1AVxDKgLEI8FGMoDosyB6ThStuiqzvUi3Q3W88PuF2d5Qq3inCQuZy+EGTOZ7oQSKDlTXGV9BlH0RQ+dWdRvsdITDEQdeoGkvG9bJTGsAiieJoTUYNpVWNTgQmrPBPFNa7FE2jKJOyzk+zjEGVZZh7BDcBSb4wRCodj6AT7pEC6ggddtpvtpnxC36fpQOAoXIF2hsgmjIkAYy1NYDqAG4otXpxrDjhJAcROUs5T1gvNmr6SPa5KU1aJVMSssIycYEJYPJfiCw9f+HgyZqfSQDmDrwumM9gfhjxQHyOWEa3RaaZEwi22QAlJH8OhoAalGkvj+9h0GeMuoGaGVF2BcJpnEVKSpS97PfqGFWit1l8zGD7CduuPiOOrKJdvRpvO17aY9DDlWbzeIjjH/RufBwueAastYX8fut9kce1DOAH7Dx4l1Y4/ObZMYgRPr/Z48eGrAIhecSfy7Mcpt7bZ1If5vf7v8pFnzOGAl59K8FYrLH3Q8tL0ezjZOIkTDhsNSYNNvPA6dLrI3e9+goUvbnBFVWAsmNoe3me+jbBukDZhdMMPcPTivXw7HyZ0HZbzgvdsPlWk/b+5e+Xj/OnFP8ITHm+97T+hC8vFh7cYtDOG7Zxnfddhyo2/X8NtVlcoHjyPfSil+q3/kSue8WucP9Lg48+fIz76k9S+59dp/NZfEv/Mm2mNAv7Mevz5876NC5Mv5As3PpvK9hbf++9+nBsffZg/uvVb+NT1z6KrPEbW8gdbbY5t3UOa7kpeer37MKb3Zc+lXh/jVa96LS984UsZjYZ8+gN/hfMlbmMESkAzIvjuqxClv3sHxTmHtRbnHN1u5++dY5PVgOD7roHcgCexj+2aHXd/zG7IdP9+VlZ+lfMXXs/pM6/g7Lnv5MzCT/GG+/85ZzuPc13jeib8Jv2piG1VMIgFB49ex1TtIL9xxx/wPUe+l/nSXn751rcxEU1xrPUgrbTFt869iGbU5N888KMsDy+DVJjpGxne8Sai/WPsf7Vi7KaA4sEHGL3/j8ifOPU1fBqe4im+8dTLE8x72xRRiZiCiIKWyMmwSJOz5FKETVk5sBcXBxxUisPOUfJqPMN5zMkKF/xlKrJgTHd3lcyxj5y/Hl90EXbAmJJI1+McOVe6CvMyoBuUKImISSk54gKaxYAZ3aWNY1P4rImQgSvomSGx9VlwgiGOqqdARQxxCBx1Qq4Ob+Ka8CjLzuBUndgrI4MQ3ZhlbuYajgqB7zKi6jxSBXheRKY0N6ctYp0zrkdUVI2SijmCZq8/TYSkjOOAtdTtFLcIwSCK6CvFjh0xZSVzusM4mqZLqJgcowIqeOx3jprJUC6j6hzT+AxUSIjjBSpAxSGtqEJP9+jrPlbkDLGoUoPFuSu40Yzo6h1yBQLJXkCYEZ2iy46xZEWLSQQjqfG9EF9IMgSFrO5mo8kSwgqqxjEdjuHKNdouZaR8+jjGZBORdYnx0MBO0eZ5znCHswg8OjJmTH2RzHWInSOQMTWpuC70aTi4Tm1yTSRoOMEATdcOWEl9MhlicKRRjaK5j1CGlGWdnvSJsQy5TJkCz2n6dkiDGCEDnl5sQn6Ijd4+oOCgKlGzZzDMMsJjZAta4YCSdIReTGvmKLdZQ1lEKK+EcxmrSY+Vco20NkFWnyC0GUb51EXIHjTOrnCleIxb1SZKdChxjIrJGXOahitQSCadwcMRiYgQCOISQoLC4U830eVpGs6RCUfsKgQTVzMd7qdBlX30aOKYFprcZAw9y4VYkzuPq/wGdSxrLmVoEyrOclCU6fspXbvDtNN4QqAwKJuyTErf9OmYDrnuIoA5GTEhoEaZlAGpSIjicepemUlfk5QkzpNsSUlLelwdLbBXCEIMTS9nPmwj7RTNeJzr/DJOwGNzR1nzQi50DmBTyxM4Mv9xQqkJrWHMphTFECNKjDuNpuA5KBoqJrdD5hA8zVgOs01AwlW6y5QZ0QGUUFhhGBV9lCgxRCFQ+MDFfJ1LxTblvENgJSUkudDkXh/PWSLnGLeOA1bzcgTPsbCn6FHOM7Yxu+2oKKrCpy5b+CLDYTkdxKTlKYZZSm5HDF1CyxU4IThsfMbUOFFplvHxGdbrY/TjKjgPiAhlTFQ/RNLcR034bAt4pNhEFgOmtKCcJYybHa6ojnE5GjImNXvpEErJZlDf3QlkVzgUB4qrZUEYKFoqZQJJvchRYofIWYLQxwR9CjTjruAZznFoepOeyPGFxxVynWvFBeZSRxnLaZfTVR7aC5hwji6O1KSkzqGEo5mcoOZGuNIcLi4RCoWRuzeQJpzGJm08M6Qiq+Q6oeT6dNwWa8LQR9CTHsvZgI6KkLYgsyP224RsbA970VRlFafKJMLnKiHY4wxj/hizZhyfgMJZUuHYK0oEwmNaWjwvIGGTg/JBjrpt+nbABjn6K1Rg3xhJiBnR6z3C5cv/gTS9wOzMT9NovJR67Zu/5jWzK+8EZwgufoLNdJ1nDW8HJFL7CB0Tjl/k9pedQykfIQQnVnt87IlNBI5X33qI7Gd+GoKA1Kux9qmPI5zh0tg8f/HcGVCCoOjz3EMFR+6sctsrDzGzb5x0KuXBiQcRwjGoXsQrPxec4spnTXL8k8u8ojqJA07mE5x185xMXkBYyxH3vR+vc5HXVVN8lzGverxnu81m8Q+LKv5344n2KX75+C8C8JZbf429lX1sLfQIol2V840v2cvUwdrfeZ5zjuyv76X9+u+m+NxJTH+dbOsTqG+vM/P2X+ePb93mV65/P8vNNoPPrtGz+1j8uTdwxUJGxdbYf/kzvPizH6EolRjvdnjTH7yTX3v7L/BaZel37uI3HvqPXNhewE+Poe5+E5dWT9Jq/SnBhY+jsw3WN979ZdsLfT+gUR7jdPciS4dSMA45XyZ47RWIkve3zqN4UqzxgQ+8j/X11Sd//y8URcFg0OfRRx/6W2uLsk/wmiPkpU1SbwF7us3Fcz/E+vo7ubjwL1m49MN0up8kcTewkdxIR8/xSxcfYWm4zOvKJ4jNKu8685v82ad/jp+4y/LeL5T4SW+Kdz3nvYyFDW5q3sLvPee93DZ1O2+59Vd5w/Vv5Jqxa/md07/FVDRDYlJ+9As/QDvbASC97nUUc0/HNA5Tv20GP0qhvU3vR/8VvZ/7WWyv+z/2IXmKp/h6k6eIXoOwt0FXdwiQ+C4nEh6T/gTX6WVy2+f22iq3e102iFgLxgmFxyBbpiOgqwqsAu2ebJ3WPr6ocYecw3e7c2OJzQGHFRk9vYers3XmvAqhKDHSQ/L8Irjh7kyJLrjW+ZRkiabXwLOw6oZMCIWP4mpTUBc+bdMBkyBrA/pjEdf5VaakoOX6lJyPkD4VFRFKQclpHJqeGzAyA5wuWJwZY31SMYHGYkhMRixKVP0xBmGJSEJZGWreAnXhMwpgzjNMF5so6zhsq5RlSNkI1kOPxKU0zA6HbZ946jqMVBiXUcYxUA36MiLUKTIIMZ5HxS8zEUwQyt1WrQPBOt8ulxi3lpiAWiqItE/dVZhXexDNQ5SlYdaf4GYHyjm0sOAF7Hea/SahZnOazuL1t/CcwwqJLdU47Wke9x2B9KkFdTzPwxM5ndo4hpSzqstN/jFud5pnmQzP86mrGqEsUZMVPOkTqYDcZVw9tcLexmXmSPGEJHCWmUqJUFqEs+zXBcrBWB5TciFTznLUOY44jz16RGpHjNyAQEpm7SR7whnGKbg6W2IfBcsiAdmjFja4ggIPw6IVnNIzpNIwUJpH56poVzDjFA1Voux8LA6F5ICbZtqV2HI5ngOJpBR2GZfbONOgLEv4wpK6nDFrOKT7XI1mBkdd9hkTF+m6Hhu6h5aKg0Iw5iSFkFxjEw6xTtOr0a/4tN0I3yhKskQmukwJi5SSSFXZnr8/L1obAAAgAElEQVSenbjEMeWTSM1tGBpIJAofw4xuM+bXyaShEI6SS9iDTyIj1oXACp+qX6YQBRZDJGOuiA6yxw+YVlNMeGMgDABzgeT56gTXs0rdaZAeh21KA6i5PjcULcpERE5QFyFT1vKtwDTg6QohPteKgDEH2mr2IGj6McfmprmkNNvSZ85JAhS3OMO08BnYEctig7x+EYliUtUoo6jpLtYZIhlS8spkXkxVCLQtOCjXuEOd5krdoRSMY6XgiJQczUeIzjzdQZXHTBcTJIxXtxjkLZwMOVA6xB3+JP83e28abVlWluk+c87V7rXbs0/fRMSJPiIzIzuyzyRpEhIUC7ABS0UaBUGvIFZdLSnFUq+WHVTZVIkNSEmBSErSJJg0SZNk30ZGH5Fxzok4fbPP2fvsfrVz3h+BOChK7hgWFwuL59deY479rTXmmGus9a75fe+XNxGaFFu0wIRY1NgjLGw8uiqHo1Ns0WeXNYerE+oYpNC49hKWiNEmoecUGZcRg8IiNWUUl7Lasixkj9GMopiQLoeEy97Uop8fJioMcqOCoLfNkfoy5axEPRrE0SGHhEMVQ5cMO+0zvnkBlfUYsvKMeVNYyqFj2gxpH0tYONKnH/cABV+tAW5PDDJdGGan0eyVSygiShZcgWBCNxCOTyQu2d6PC4u8lacuMh6vugzkdzNlVSnbRaSwsXWMrQ2HdETZSCLLYsYIhHTw3QHsr6YZShQ7ZZnLEHjVEkeqHp6wqMg8eelzSGeckpJ61sU1KWXhULAUfZOSlwWEgTHp4EiHM8Q0RAroSx+BspSSVcA1Dp4YxBaSxGTI/486/W9Lo+pu7ykWl34PrTvs2vUHNLc/RZo28P1D/+SYafUAuaPvIR68gl9Y/huuWL8C4oRCew/atEhf+nlG7RWqY4cZ3/MStvsJHz+xyrhocfOwYOBznyEc2s1XZke50vsELc/h7usv54vyetBwywWN92SdD/t/yG0jz2fpbzO0yDhdfIrL7avxEp9Y95Gt04zs28OVd17J+sMbzKiQ8x3NaGDR7UTsPjdDebJOOHYLgxtLFIKvcI+4k9BYnAkjXl75RtHxT+E7oQntN+OehY9xavsEr9v3k7xk6nvZWuzw0IdmCHsJh583zv6bR7/hP7oeknzwGNkza+jsIvHxL+C/7gcg6yKDgKED13Ll4DW89+Kf85R9mo9ddgf35QUPJSEHPYtio4p80fdyNnczD1+zl0eO7Kfaa7H34kWu+PTHGRcOV7qPcH3vIwyuPk5h4RQj5z7E+NwsuZnPYM9+Aq++jBi5lZBNpAwQwvq6ayzlSux90qFDnxMrp5m64zL65R6r508ilYVfLLF86hlOnD7J/NICu3btZs+efVQqA8RxxIEDh3AclygKqdfrjI1NsLBwkSzLkHILKxigWX2Ilv489fBT9Oyj9PrPsBHdSKX8/UTRDD/1dy/n4cUhPtM9SpwE/MBgnfdvSZ7tNXntWpcf+6uEkR/azcDkBu3v/TOwvK9dvxSXvuHk7QJ7i/uwpc1yb5mCXeCNB97MfSuf4WTjJC+eeClCCJKp5xI8/V+I9txJTi3QOdPGue15ZFtbhH/9AewjVyEH/+c9D7/T1/D/7nwnzO8/d6PqjfvOUZEz+K01lksTCHsQnSXEBqakYsprIajQDmJMUmJAB1SzhLbugBTkrTyp3ybDB7dIITboToWSKpNJzYCqYgmFVpIMl6pepGq1SdQOApFDGoEQDkeZY0gN8XxnltQ4hMKmJix2aY0lbC6KjNm4z7QJyQlJ17c4mc9TiDNyA1vM+6PsbSsKAsr4eFaeggyITYSPc+leRSOEICcCiipPmLS5OvYpawlC4sscCQlRFtEvFtkRQl6HOFZIlJXZyjnszWyqRiLtmEAVucF6kkRvsoc+lj2JJQy2VoTC4AgLTYZreZxHMyQMF6Sm4XvYymZfP8KXOQwaj5AhlTLsHKdkNenpfUQ6pCpcBmQb1xxgWSiMVHhOyi5RZspAJBMKKk+oeyQmo68CHMviQtXhQORiIzghMwICtLTYLxQ+HgVVojve42G7gOXBnqzHqEzJ1DQnK4p90TIho6RGkJiUC2R41QGmtnv01TppnDCqbZzMZcKaoF4sMtpsIhGsKpfDVoGcsChbJZQwBGKbCVFnAQsdCkp2gTG1TYZNrCtUrA5WvMmkk7Fupjks1tHGJq+azMlJhtwT7HczWp0RloMcm8N5lJKMh6tUtEbgIDONzCBQAdponHiLadsQOFukvmbMxETJboR0sB1NZEY5ToZvIppoIlVilzXDkGhizDgtE1G2Shxgia5x2WKU/VJwmbtCbGkCMYgSeSxjSK1NAlnAsx1IAiSSubxNNTHsSEOCLEUKhwn7UQLGcOQGNWHo0GRSjOEIh5pssCFcxoxgp3CxTIZv5Yl1hCccYhJW00UsJL4MSLIYQ4YSiijIMRHPIGKFK6o4coG2nGbTCpksNYlkkZHuKKOWxNGCuvIJhWDAJFQJsYUkTFoU7QaZGcWVHpGJOD5YIMsioszhmizCkhndeIPxbBOpyizLABEloIe4HMNukacoDY6y8fBwlc8pJQiVxR4NUl7gcprk5dV4yqOftMgwVFQBR7q0XYUfrTFZarA3WKXc38mYzGGyhNRb5rSbMqxdxtVZhIgJxBYqG8SRBUZ0iJSaFQT7KVFS2+zLFJNkTFmzbMYOG8ZiwkgG05AJGTBuZhgw66R6ko7p4SoPZQc0skti44AqYUuBa3v40rAuOqwWA6bTEkLYhFmHq+wydfp0kNymfJygQCBceqaPZ3nYlkesu5wqj6OyjOcyho3i4vAgGkOQpHSbRQLpkppNYrXNZaZAJ22zaY1zuXAZMYLFaAkjIGcy0BEjMmA1gJFEE0R1DqoKOSe4ZLJm5RmRNgewwQkoejmMScikhZWlNNOMpUKFpBIwGoMbnKcklkFPU1UuS8LGl1s8EVRJKlDot6kLxTUix9ZXxd6gVNhG8CVa9IXFBD5rQFVYTOmEMI2oWGuAz2ntXPp4I21GX3zwH30eWf/oyLeQQv5GjlzxfpJkAq17zM//G4aG3vC/FNP4VZKR53B65T76sgcJtErrDNVuA9PjWvMm1hd+ntLOh+iGde45fqlG51p7md1nNjDA8bGX85rqm/FUm0/suJ338QZsW5Iaw79/xWEWmzF3PVXnrWffwNtf9Uu8ntdybOZ+LvSeZYfegc5tU8o/l6c/9gH6d0xx62v2M/fXp/gAPS4/eJh2Ms/GXBWnqCmLj5GWdvGqxXnyN/4M95T+nE93Qj7bbHNnqfAtmOXvTJrxNr/29K/wTP0pDpUu40f3vhaA+WNbJFHGda/cxfQ13/hCn53bJv3cAvG5L5NsPgZpRP7tv4Bz/Y041z0ffX6b+GNzjG8q/jL8XRLTYS2/zlzV59D0OJOLmzw1ZrE618YrFphYmebg0CYjvzJNeP+z+H+p2PHJh7CrKbvuqJG4ii27Ssd3yHkOKm5Q7G9SmV8jXXourd1jZNUbyV3zboRQdBtbrJ06Sfb4BiLMmNY2h+Vu0g+fJBExliNobJznGXmcgaUm8cYS2x78tzMnyWwbz/dpNBrAP+zOVSoDLC8vkKYZe/ZMYdnvZMfU+yiPvYDN9l+R6k22+4N85NTP8nSzzM6BHGuttxM4YIY/i/IvcoP6Ob7UeD+NrMmbT5d57hdXiIQiSB5n/sW/TtEp8o9V3SVRSH3xArdt7KY8PsX5eJ0Xzeym193gT06+jWsPv4Brrn0JrTv/hNLHX0Wy/2YKu+q4+iE2L7jYt9zG9tt+mtJvvwv7qmv+f1hN3+X/dH7rt36LY8eOIYTgHe94B0eOHPna2KOPPsq73/1upJRMT0/zm7/5m0j59UkkaTFHvznM1khAbewgozVJTuZoa/BIsaVD3tpkQwFeHxginymGvDHyWYClLDbFGs3SIBeCCi+b3cBogbZdMp2R6Ii6A6ulMqV2xPlCidHtBmVVwMMnFQlaa3bJEYaogFnFt1JCozBC0ZMZgVH4QrMhMgLLoaoGEJmh2m4TDRXQbo6gm5HLPAQWbRGiTYIlPDw7D6khMSltGbFld5nMhrEsyef3TfPq+QTR28aRFlKAi03RytP3we7bqCQmZRAtYd2VKBlxOH2SerHJKfuF7NkU1AcF+3ttdKxwpEXTSjg+5PPCdY2ShkiH3IhGWZJKIplBoDXgWGQ6RkqLDcdnM7eHGztnSE2fJd1AW7DLCiiqDpsmpaU3Cc0IhzKHkvswbXM1BenTtgWPVQNuWO1SAVTa5Wp9lK5zK0GYcYtlOJHYdOkRAXnhk+gmcyJB9TvsiHqMK40tIcMwFENKSkwXi4BR9zgvEQELOsKVBUzm4yIoWopA51GZodLukZiUnOVzE5q8sOkJiSUkgdxEyGeJsh6JLFPyxtiyIwQprmwSyEMMqvNEfo4BctyCRImQvHqGFWeMptBMqQGmzAKJPcSyPkA+rTEuekz6mxTSHputccacHGJgAb1dxQA5ZaFkjGdSPKVA9sipLdZkmTDnUIgNN5uUulXBkh32itN0dEBZxmwbwd4sYtpopOoxae/Aix360oB0GUwGaSiPknZoiy2GVQMthtBYaKOxhETqkEOZhY/AKIWyLbRYxVUzxDKHr22qjOJKFyMt3KyMNikNIdjMegwKSHWMh4MRhtMjA+xseFQ09EiQOiZQEZnQLHkZk6FkQRkSY7jMsfhiEDPWilB0KOttupaN1pcaBm8WNBOtmEC6+OY0DbkDIw2SS3VIkYnwpc9Uss6AWGHeHKEoHJRJcF2bTV3noO6z11I08jEHmm1cq0Y/vYyiCEhFhDIKA7RcQc1W9Dopz5od2FKzK9WU8m068QUeLV3FLQ1DaAmcwnEGu0UsfWkOPdkHIUA5bFrT9KWPk1+kk42gekN4VgMlFZlOOWu5uECUhBjtU7G36JgCs9UCXemwT7vMpYMkJibnOBQci51agozopz1yskjOspgZzZFvx1QbHdboMqlGKJiMZ4o+UTTASKdGwf0CYXqICs/SYZiDCA5rjSUMnlQYrXEsD0u4SGEYtAeZchwwPVb9BBGmzKgWXRtcz6bULxIIF9hmt0lwxToVu4yPpqAEcZIw4o2zbVoMywKxWWXbamFrQWbAD6oI4+NkIUNqhCW5gad9inKAMOthhET4FToWlLsr7CVh1XdpWSnSG+CwyNOzT7OW9ZGmiCHkWusMidpgV5xRKxnC1pUkoo8tfbpZhJIKbSAQmiBLEAp2Y6EAWzm4pokrHbSuIJTExaVvf3MJ9m0RaADF4lVsb/dYXX0X5dKLcN2p/+WY2cA+Hl67l5v73wMC6gL2SBcTXeTsZx+k0xiluHOWudlXc9+5X8YXGVeMDhH+2fuwlc/hK5bx4xbNosunp+4g0Q57HItJ12HIthgafA4ffN5dvOOJ/5vfm/81Xr//jQyVqzymHmViYwLVyhFWA9y+x+Z8k6VTDe543iQfePhZ/uKxVe4oHWRlaBDrsRCnIvG8bTCSoajB5a7g3g6c7EX/xwq0zGT82tO/zHznIiPeKL913e8jhSTqJVx8ZhMnZzG69+tdFKNUc2qtRXx0jp3z9+LUnqQdpnzqx9/BCx5+ktG5AXJpDrErz915zROjPnnbYWP+z9kRVbipeS1j9yu6juCmyMId8fnsxXWknRJuXknhzPuYTmtEP+ihVyw2z1SYPXYL9V/9Rf5jS9E3W0jdZMu+it93/xjT/BLDtR7TCxs4s3dzsv0A9XSayRM/xUQ2BBQJVYf1dJGKO4U2mpQUKW3cWYeG6uLqQc4OraMxyCwDo4nCiLHyMC/7oVextDTP2toKrusxN3eKjY0GKysL2PbtKPURrr/hHjLd5szqT/JHJ6/g7/dIwkQzXvIoDcxxXp5lLH41T8gP0IssXnT/dRw8dxzVM9RfcDvnbz7H7x1dZ9/Sf+NNz3s1UvqEnTbbq4uM7D3E+Ye/yKMffi/5gSHKY5Ocuu8edv70jzGrljkidjCzPUd47wql3bvZ4U/ROPyL7Dr7LkZvAqESYutymvd9jtzrfoLWL/1bir/3n7EvP/I/Lonv8l3+yTz++OPMz8/zN3/zN8zMzPBLv/RL3HXXXV8bf+c738lf/dVfMTo6ylvf+lYeeOABbr/99q+L0U2a6MwQ2B0gZR2ITYoSYBmB0i0kCVNZEZ34ZMaQVx4Z0LdcIpOxUiqzMiDZLWbRlFC2y4OTA9y6tkCa5dkoDLHmKFxiphONIzQjskacDbPteWSdJoX8FPkoICdTNnSeQOYYQVOSBSSaW/AZFTUCq4I0glindGXGZKoJLUFbFckbl4yM1aRH0Q7ANlhGIQQ45lLquGdsdBaRWh77ogVW8w6H2hbGQKhDPDtHL45IpSQuQLnVxxXbhNYkxSQmVoqFvEtOK0rZpXYkU4lLz4IvDQU8fxvS1jo5WSVnzeOrWbbS68gJmyiLwVlkyFSx2UVO5HCUgxCKR/KS29Vp8qwTiSrrY1NkhSbTa8vUgi7BtuKQd4FFNUUrcelIwGj6EmyjOdTRJCRUUo0rNT1gh3mQWF2JNA6H7RYFc45tcTXzbJHXNsMqwqiAoutyLFvmNtUml0jycYyDS04MoCVkZozUr9G1a1jWCP3BkB16DWqDHLSX6TFAM+czEeZZcyTjoYWtFEWdB2MYNw5N38LVG8RWiaOZpJbLM12r4rKJFJCSUJQOmWmSZpoVdRNDZoZYVdiVXSBwuyQioyAaFOOEw80TxCQ0fY/ZXJE9cpUhaiRWi7a4hlQIht0hUrFJPvPoO4pO6pOKYZLUo6eWSHSLNRmw27ZxDTi45M0gjSShnS1QsIsoZeGoDm0BIrNI0Viyi2O12dJd8uRwjMCQ0ZObBKqMtHySTOBbBS4UMsqRy1Q3I9V9jBUQacVKbpPYVNiRVZEChGUTSAc3URxOQ4ZUAakUGkFmOuTUOgvBEYLEYTBsEsSKY5M9rqnPkFousRpHILmcGm0zjVAWzXyRw6qL8Vex2oZNz+V8Ae7YqDFOi8QeQWhFwCbCDBKZQeRXq4Bm8mv0TJ6+nUHa44W4pDJGqRyRynFwaBG12acfe0hhUcZgOYaHR4Z43mqXviVJ4gxpNAekYsDtEmYGp9snc3o8XrC4IbaZsIZpCkUkBfWiTScHO8iIsj553aOiLtIwo1SdU9iyyM1qkTC8AaV7aEJSHaKlQGrBtIAMm0EREQ6epNwZwc6dZMO9maK28aWHIyQ5HBYG8hQ4QS4U1D2YdM5R611DYnpgwHUMO60Ka0mK1jHSdlEjC8TLHhUDNhFKdPGkzVNDg6AEV2100WlKSsiFvMtunUekGZqMihii5OZpDe/hvHI5tNJmT2yTT1NqpYt41iC5jmFATqLpY1HDUw7PAYSRGJHSTzsk+QA/aTOqjvG0uAopXfZYEZ1kCk86tJwMoyNMrElkRpYlICwKyueBYkrs2bzAnWGgWWbSFoxk55BiB0jBdqFClIZIobjaGAYJ2W33cGO4rRtSICYQLr5uorOMvvDJiRwHBQTSMGkyLC2YlYI8Fr5Vpp+GCFkgJ1p4tFnNf3OX8G+bQAPo9U6x3byX/fu+Nc5u/YM/xN2dB3hBYwiBYKxzGdLJiJqfo7ECUubw/Svo9U/wnNH76a7uoXd6Ai1t7FLA5eY9GGHxzOUBw06ePxwe4TeWa/zQ6D+kHVbcAf7k1vdyvP4M73/2L5jvzIOAFZaZtCeJZB+3cA1SzHHdK5/HmS+vcv1UiacWt8l3ymyMjjK+UaM2+SbGS59DNC8wfbHO7uWf49Gr/pTTYcSnGi1e9i1KdfxO4j1n/phj9aMMuyP85e0fwlMeWar59Lsv9S+78/+6DL/wD33BHj6/SfOeizyot3n9Z34L0pBarsR9V7+WA3MwVLqVrG94JdsMLfb4jcTlT+8o8SM1xSv7b+DfD/0HZB3qOxNevu9lZF9ZgHaflwYf4t769xMRsPDMj3Cg+idY1Qn05ACN8yuks0uUX/9z3HXnErafUnfKnMlN86+vfDcvy+7kjf59rO/OKF/8JIfObiDZ5OSVs2zWn0/z5CRhklLZN839G5/EdFyy0hArss54boxtE9JJ+zgoJrIqY1mBQV2gLAqIFej/2dPsfNXl7L55HwCTk8dZWvo7VlZeweKipB8b7n3iZXy+cx3bseCqwOMlPXjJay4jGApY7i7xkw/8W960/6f4xMLdTHi7sc2tPPKyMj909kn+08tfwz0vuJMKXcauCHGzc3zo/W+lO5cn167h5Ysceckr2XnVDfS2G+y7+fn4xTIbs+cYHTmMfOEv8qHPvYvVwz7dCzF/+Plf4S2H38rJjz/A7onnc3vhMZx+QvvBZ3FuvJX4kYfxXvN6Wv/+F6m87wPI6uA/y9r7Lv/yeOSRR7jjjjsA2Lt3L61Wi06nQz6fB+Duu+/+2u+BgYGv7lB/PZOhxlcLZCLPvLLZIzV+krKoYd2JKLsLFKIqoReyGSyxzCi3r2iMhGpWJNR9+pbGczs4cpu6V6WkNZHugW5wYmyENjaW6TOhZ9jR9tAKjMx4csBnuZDj1hXDwqDP9MIFXLXMqcnDeF2fI1t9LODZisVirsCNqworveS29uUpH78/g5NOM5fuopIVSE0fy3YJMp8xZ5a2vgZlSXSWAAJtNLK8Rr43gTQu+zsL7G3CSnCY8W6Ti6VRRrSLp2NywqbnNvDEJhGD9O0CmwWJbbbpiYByqHDTFCNsiuEAy56HsHxyro1lJ6RKYEybGI0Uikxk5Mixw3mSLTXEUbMLDCQmxZaC3a7gfDDFlWGO4ahJWk6p2QWqIqDUy9EC2k5Ew1mhVh0j13eY0DG26tIS4wgdI7RmPV+kUewxGS3SZYICc7TkHnLaxZUpsbdJLxtAOw6psHm2EGBJwZHaAj5rnM/ZnC867N/QGBmDsVg2FS4UMraiPk0nplHMc3Nti7yMSOUOOtVniPK347ctTlQKTNQ1T1Y8jtT6eNoQWB/jrN5HRUBRxLRtn7xw6coRLlb6DK3FaFPCkXWE8dDCYr18DBl1icwuDgmL1Gx8NdNBsO57lAsOWlsU4gzHSJQS2LpPGKYkeolMV7CUgyMslNujb0+wLRR5XWTKu5fzcoqnxstUNlP6MmFA13Dpo4jIyW1iM0potslMykpgyCKBY3sUjCY1A+isQl5rilaRvN2mLTLaGMLRYzhbe4ib+0ikIZMZSkqMBltZZCRIu8ZQT1IDklzM56sj3NJIKAGlfIzuaPJiHi179MzlWAJsWSN0t0lyzyK9x1gxl9EIPBYSC9d0uKn1DFPZeSJPIKIJYg17khWaFsSlAJ2M008MAQt4soslc9jCw7a2yLNOmB3CSg3SEhgMdcvweDXjinYHaXcIrGdZ1JOMWOeI7MtZqnjcsn2MVvJcwsxjtgRTGRzejpCWpGIt0NHjrO2cIYz3c3U8Q88d5rZ2mz6CvvDoeYuMmbNIu8sDU7czlGyzM4nwZAXfHSEWMV19A55ycE2GEhcZMnVOTrQJuovs23I4N5DnUPssBsOQ6tLSt1JTFdZtlxHZQSWXjG8yCQ8NFvHWJB6GRGiU7lNzFasjLZJeiAxBW0UyY3ArR9FZheFGgZw9R8xuoqhLu1xkNjjCNfUZenQwskjPSUiUT921OTEccMtKSqM6RLfeAkfjpQKkou5JGoUB9nYlA5ZhwbMxaciQqeMpl55fIiZEqnVC6RB08vi4GHFJqDeqXS4MxBxavkAqGmiTUdA1cqLFth6jJyWPD/nkdI4dGz08y8Nks1RNRje7kmIKTnaakrXE2kCO9ZzNSFthCYsLgSYsKrKWx9mcYk/7UuqsNhmxbThf8rim9QCZ2EWOiLrOYeNxqiQYbwcsDLhUOxGFKMc+IKceQ5kmeW+WtUQyIVL2Ws8yZ17xTZ9p3zYXx/X1j3Nx/m2Mjb4dx/nGeqJ/Cs3yLsr9sUuOMVafXc1rIHbIlcdBa2w/x+TU72KM4IcP3M3Nssfk0kmCcJ2Jf3cnIunSnL6OGe9OvhKP0cgMUkpuyn+j9f+Rgav41Wv+H3YUdqKE4ujgUVJSMJJeJWNwh8XEwQqlMZ9ba5AiOC0FtcHdkKbEYcyG+H6kERR7io3hJm8pzPJUN+T317aop9m3ZE6+U0h1ynJvCYHgxVMvxVOX6p469Yg00uy6ehC/4HBmvc3bPnqC9z9wEfdT81SyjB996C8ojT8HZ/p2Wq/7dX6isp9DCn57TPBRkXCdsqlIye/Q58rPr7Hw9DpHvTKj/jST+Z3IzRqf7v4qkXUCxDJG/ygvKZcYswzL5kY2f+I0jR/9Ms3vv5vgQ/dT/uBd4HnM3beT2qsepPXyv2bstndwXeBjett0L1xg/PRnyPcVc1MVjBBcdWaTCXkvzss+ztALc+wvP4dDr3wN5RtuoO8ptOOxlDaYmtzJHbfcymsv+0Gue87VtFpncIVgoXWKerSK3bdofuR+Zs6+nvX1v2Bo6LVcdtn72H/gfqaufJAPRddyV/06ZNzlDeMb/OFrr+D7qkWsT8yTPLDC+579c0reJO859x4uMsljuTdxwtrBtTMnyDuGatDjuc8c5Xl3f5TJzz9Idv8GnTMaq73JWmmIJeXwxQe+yMMf/FPqtXWO33cPJz//SbrbW6ydP82+gUO89cf/EGMMqSvQjiKcCnjhW/4dUWkf//3MPlrFnRSvKKJXFiHL6L//vTg33Uz7134Fk37XKOe7fGvY3NykUql87bharVKr1b52/PfibGNjg4cffvgbds8ABpzP4lsbWEIhTMywNAxYHpUgx1PjoyzbY9gKtEkpiGWWcm1So7FJGbXuouwsc0vvFAPxNtpoLgz6rA2AKDSI0mH6osCQOM5O9TiH/BoLQymbnuT8oCZ0Y4TcIFYKaQS+LNOxu+Tis4z1jyNliLFcepYiNSkzhYzayHEWCx470m2epx/j6LCPyjcI/RjLOTibw1EAACAASURBVI/NLIFwCMUEmcmwbQ+ExKAxCJbyktVySGJLGp7iYsFhLX+RAesBttxtuhY8NDFA37UwQE8ts+ou0C4+zo7sGE0noRAnSBUiZAwiY66yjSXqrPuKTR1hO0dRJiEzQ+RkhNJ9TBQyX3B4ujjNen6aCcdCm5RArZKZiFqkueDkabspAs1ov8NYsk7OniG0O3xiZ4CvIK8UA50QN1ygoj5HXlzkM2M5Pjflk1MuBdFmONnAkz4LBRtLtLGETYbFjHTZUA3OlGxODBdoa8VovcNzNkIsdxvX3iQfJ0x2EroW2KxRUI9gCrOcLhXZyFVZcGOElSBNgi375OUCwrJouTHNiacpqDYB6/REhnFnEKRoCdoGKUKuyB6lSMauXoZnzbJtMowt8WUISKRQQEI57RBQI3CeIS/PYiTElg0CylGHHf11LARFbdO1BSkZGkMrmaRtXFzh0HZcnhrxMLlN4lzIpueReg2wtgmlZrZ0kU7lAjVf0rBW6ASzNNxNlGgyNPBFdlY+zbZ7lg2VkRcrCMelKDwCT5DSw1YOJ4seUq0wKWN6ApxmA6H7PDHsM9Hto7TFsbLFVqVMI7BYsKvMFBy+OOSykhMo+ySBd5rjA4qTzhLLXsSSD4F1P75aQOou2iiEgdsbJylmPZrKR7PO7n6NUgqDZoWFoM+G57DuuxStbbZyEXvih9gfP8bu7Tmq6TlSy6FuJpBinYHsGWarm0TaoS9z1K15FnLbtF0LbIlSHa7ozlJKI1Jtc7rY4tiIzUODVVquRd2ySVVIMniefDnhwdEdLLsWS25GkqSETgPLbnKuZJMFp8iZBdb9aXK6gmUp1p2Uc5MxT48ErHsDSLHFgHcCySJ51cXBYMkenvMABk3L9umLlMDpkfp9TleGyKxLr/OpVLR1jrlCxtNDHZ4tCAayedZz2yReDmG1yZB4cpu+5dIRNkp6aDxiKfAzQ2R1kMLlqUGfjZyNl3XpuMtYzlfImQUss3qpXiyDI+1FUmwSXCzq7I6fRGjBSt7FCE3k5ei7NrblUnSK5DIPV3nUAp/r+48i0gaJSpnIHmVCPsm2p6hynKMDgtnyNvlEU4o1mS6j0YQmIjYJFyo+W57LbAlwI1yVUDANYifixESFet7HNuqr9Y99ltyEWiXEFR2+MmqxmFdc1m7hxRFdv8NMKYcRDp7cYKawk1V/iJmhPIuBomZrNj0HKRQVs4FSGku10NYcPbtP0SqyZrd4onyRJU9SsU4RB6fRQGr65NRZ8tY5QGLLPJfbQwxLgZbfvCb827aDtlX/EmOjb6dS+d5vWcxa2mFv8zIEKevlDXYuCYKKw9Xf+1ru+6PfRKcpUg5zz+yd3D7xEPuu+yDjR8ex85L88T9Ge1We2mH4D9lPcn2Q57PNNj84UET+I72vSk6ZP73lffzXM3/Ex+bv4lj1GFdsXgWixVa7CsC1L9tJ8dENLvtKh5PEtLzD3O7cAx/+IJmUOB/+KMVPfx+HTs5zMX03L1U/wv0D1/EbyzX+085vjXD9351W3OJtj7wFJRSv2v0jvHbfTwCwcq7BI38zC8DUTUP8x88/y6dOrYOGV1+MUK7FHr2Jd/PPY+IeIshxpOZirq8yfqDCrxRtnrp3loP1iGp0yaGrm2j6GOLViMfNG/jUYpNfUEe5+vSn2KjUKPUOkglNYvZxXV6wlWm2PrnI4A/sBUC6LnJsHOvAYdLHHqbxpjczcNcnWU0zuifP8KOP5Pn1G3+N02XFK5ae4OcbDuu776W0+GV2rHaotnI8dfVHmBmf45EHdtCPJZqUpcoQ9x24lti9JEzt4Yjn5gcZecPr+MpSj8tma4yvbxJXL9K/4sPklg7Rne2T3vAgD56+iw+c+jHWewNIAb/wvGn2inUee+wh3ve+/0pQnuT85iSPLL0XUzpBd+Tn8eN7mBp4DUnnIrWszH1X3cLySInrH/gC1+hTqCwl6ticKx3kXGE/e5nDT3qIyOB0W6xsLJNlGVl1mEMHLuPsg1+ALCUJe4DgFYVRZoMNntpRo12v8aUPf4B/9Uu/S/38zRRnfp/0SIvevVu41YyOkrgveBGd//IHhB/9CP6rf+SfZR1+l39Z/I9uqsaYb+hjuLW1xZvf/Gbe+c53fp2Y+3uyrIdCIySUwpBlP09VC/52l8v3N/4OoS4w70oyZ5iR/goFpclZdXyxiKNWOO8cpGbZ7OudoivHGcvO4uqUoTChYC+xPzlNzfeAmIbyKYcxmbSo+y5OOsfe/jIr5WkKUUjTlvT8EqN0qYhtXLtDmlzPXN6ibhty5KgmivWcYlDMIByHEes8garRcHcwm1/ntvAia8nLiXWFjmXIbMmJ0Tx9Mqx+F6Nz9PQQdqrZFZ4nJ2p8pfoybuiOMdY/S+yUaDsllgKbHck2llDE1iptM07P7rCtBD1LUtYxNbdEpHcz0u4xX9CkAto6opv3mciOE1jbKFpYsoFQY8xXfPbEmvlggqo2ZFLRCeZQ/jMMR4ephhLb9MhEipV2uT78Mp4IuehVmE4fwlAi6k/SzzWoG4delnDBSql58PKV+1ipNBkSPr6/iYw6LAYTXN09jS+uRVjrCEIi4dC0DCsDLmU0rrtEPRxhJvPxXQe/JugXn+K0kFy30SRVmpmSzRXhE4z1NvnY2M9yR/uL9KRPHsW23WfDDZnLlXlpexmRSgbEJhUsGvYWm2qMI3GJqhIUs2XaKmB/+ll8HHrk6Zk+0v0yfWVx2i+zd7NJ3c244B7hueGHibHIEbOlRshp8OV5diSDlNIai24FIVzAYCmH+wsjTLQNy4HiaGWAXaHByVJCJaikLWwr4omRAvuSgIbjMMoOrm31OVHI2J01iZ2UxFmgLQp0s3FSJ2XV71MQbTZygtHuPKmaoJ7EZNYSXb0XozeZK/bZ28sYYQudbrOdAy3rnKvmMAlInfBskKcchyS5IpEWBEkPoX0cKTnYP8nF/gESYoxboRAlpOk0oR6ka+Wx9SZGwP2Vq9jXyag4F+l6DnVToBJt4emYyeQMmy4EmcYAkYSy7lKigUy3ySeQqfPkkgzhnKVllWmJYdqVz2Inm1SSQRa9IovSYne6Qk95bLkxXpZR6NpsZEW2Cx5Nq4rsbLPhWSzmiiRxRl7ZlHQTS4Y0ikv0+y4tP6buxyzmfMaiFoFp4ut5bFKOlXfwbKHAcwQYZeEmCcN6HaNgQ7msVVwOxRklc5Rlt0q1czuhBT0FY84Wxt7myq0L1ANFR+6h4UoeV/tQhTUuOltcaVoMp89ysniIDdGAtEOsMmbyg+xog7clGek3kXZMZElCBZFt+MpURNCz0HKbQ81H2Bb7aZr96LTJXNUiUZKO0gy6X0SoCLs9RMlbR1subtJFxA12scSTg1ew6nd5dMDn4EbGYRRLORcQ5OQysdhJ1xumlBkGY8kyCatJiVK4TsU9T1RYpJ1O0wnOs68tiZIhilab0azGzk6bHdEmHlsIUqQQ9OxtHHGGbn6AXCoI5QAluY4tN2lTop9BpDus+glLeUVo5+hkOQ50z3MofZB+vsPeNMCEPe4tvYCmzHPDZsiqlyMkY8GtXurfWGjQNy3WkmnyqY2jO+xIuzSnthiKl+j1Rjk+EfDStTVsuUXNNhT6g3hqnY6s8Kh6MY8PjPLKb/JM+7YJtMOH/oDt7d63LF5mMn7+kZ/hBckL2MEc/2ryzTxyMubAraNIdcn2O+n3+MJnzvCpuZdgFiZ4xW0P0HrJWSp3J4g0onXLL3NB34MSKW8eHuDN86v85uTINz2vkhY/c/htnKwfI1cO0PUEtMXM+kWOzD3LyO79HLhllD86XOHHPvQ0B/1xtoZ34oQNRpRD9NQJGq/4MCMfehF7Tj3FT936r/mUNtzX7nKsG3Jl4H3T8/9L4C/P/zntpEmsY16//41fcwqcfaJGlhimr63yd+c3+bvTG8SZ4bk7SuzPPPyVPkoM0Tv6fpJrfphi2uZzhRoXTZ63Dvv87N3HuVhUcLBA4eEav/3Sg1w+kucH3vckP37tINWnH+JpM8FPpTdhbV7Hi1qP82bxSUZ/8MU4I0dIPn2R6oU25kKb7dkmxbKLGHARQlD6nXfBPR9l693vYustP8H6vlt5Tfcig/4djEYCu5Nx99SNPDVp+FDzGmgHoD5B0K1x46M1nrisxeHLCnxi63V8eewWcmGXHa0t5gdG+OnRQS7EKYtxSk/C2YrkI1c/h8Ms8W+yd1Ceu57y/Pdw4ao/474HL/KxuR/GIPiew8O87fbdDOQcji4VqFe2kbUzzKqM9YkLmOJjgEWmRilU3sKejYe55f5HOG8q1AYnuXx7lpbWrI7v45FrX8r3feY9nLjtJhpBhe2ZZxjPLZJ4NscLN/KBfXs5lkEDuG5inN945jRH8jl+ZnKM1sNfYOXMcXYuhIwtKuYe++8sT8Pcsd/hlf1bWb3pd3jkP7+dyT01LvdW4Od+mXR2BqEU3ff+Gc7tz0eNjv2zrsnv8p3PyMgIm5ubXzve2NhgcPAfUmg7nQ5vfOMbedvb3satt976P42hs2F8tcKSEDxTMPRUwoDTotQpo70GSTckVj67oxnWnAqeNU+gWmAuEBmbBWHTki6eCMml62ilscQyIhvnQrGCVz7PSKgxmYUrLVbsMYZiC4GEuA06ZEIukWV1Mlmh6TqMxCscK++gktbYszpDykEOh8exrJimgbx4hHXP4MU2ge5xqDXLUbkLJUISu8HaYMpodIyvDD6PnVGTqj7JrLqelt/HCkfJkgJHK4pbwvOoNOGG5qMESZ7FyhjSP87p4vPpS0Nsb1JLS5yVFaQoMpjVuDI8iqsNGtiyU+qqiJCbzGVXI0VCPSfYE28iTJdMFLBEF08usWobQqOpZOe4vCcxYg3pGtbzBk9aKKN4qjTNy5ptOmaA4f4yBdFiKx2kktbpZzspxpuY7HEa1h76yuFsAFsYrGyONbVMObapFYsMywSTZHiigbG2EOpv8dMYJytTV0W6lmEwrqGSLeazQcKRDruXXdrt3WzlBA3XYTiOOFFy2Blu4mQ+BdOnkzqk8QopLi3pE9htOupSqmFmFE1HsiUUsVWn7TyODIcYkE/TjjPOAYE7iWUgkZJMdiHOY+mElglwZIOGX2B5tE6WHWVnlhHh07VDjGpRTMp0bCjababtJ1jzY5Q+g29KYHaymnNZtyWWLajrFmf9LdaCMX648SkuUCQf18gngm6+i0q7TMbncfU6UTEgpy8n1R5rrmYyvshmaQgrzjOsFwiyJk3l0XZDDvQe5m8Hf5yRZoFdcp4nhga5ur+Aj2bDzaCfYJs+uWyNrj9BW2qc1FCMDMIKCJKEid4JFu397I3mWTAVlOihTIqXrVMTRRpuhso9jZeexMoKPFjZz55e/f9l7z3DLruuOs/f3ifdHN8cKmeVqqSSZEtOkoVsGQcw9gDGhO5maMDQ0wyNGWBo2k1ousHMQBto0mDaNjZgsOW2jZOwZcuSlVOpcr1v1ZvTvfe9+dwTdpgPoqcfP4PbfnqAwcD/2/lw9tnP3uectf57rfVf2EgwqZYZM6u4ukdBSfpeAHpIJ5lg3F7mOf8gLjCeOYd2phiIAibToWQFge5TdJ7lsj/DMMkQyjrnKlmmkibzuy1Clikmp3BzDa6Xe8Se4kTSIisStv0D+FYxmYS8rPt+ls0xRH+Dsu2yHvTY9ooYM0tWhVTaIzamLnFz+Bjb5jRXzDGW/X10GBBndkmDBtJpclK3Od09S+QGuEnArqwTew7l3gipNJPiKtrGxGTp+B06GZeaaaMQHErPIjyfahQikz2credwB1vUojYbapp1p8JURnJidImF4jSCTSbDRVRnnLXyFHm2mE/PsZbNMmYs7cCh7PTx88sMe6c5Gj5G1wbkwyET9goZr09qNEsUCWSHDB1y2lDwz+HQoqoy7KptIjFOTxYY5znKg5hHsnez37vMYr5P39NMpHP0ZInnyuPsTa6TOpKsarM/arIsThCnBS4WNYFN2Cx3qQwzKLlJlBds5xIKYoesGtH1Na6SCBsiGQKKzWyO6miRCS14NlMnkgkzkSFHSpsaobfDpA7pOoIbB1vk/QGMXuAn5aTAWiKpen2GLDHTE4SZbaQcsgOcVpdYLMzStQlDM4GV11n2DEfsE8zp/QydPtYZIS14BuLsMkokFIRCem1cBmwFe0gya5zs9YFXfUWb9rcisw9//RLPkYr47DOfZjac5U6eJOpNstUe50Vv2s/lBz9BZ30Zv1Thl8P9BCj+p72PU66fReRS9mRSsmiu3P4WfmrwCgQOA+txcz7LPeXCV322EIIT1ZP83pXfIs2kTA2mAIfFi9c5ffstSCHxMw7vfXqd53oj9o9i5ncXaOUmyW+tkH/j97DsP8/EyjUm2s+zNPESrooCR7I+N+b+xwja30UJ7eYgZjdMSZTB/GXH9//tiR/hS9tfZKAG/Pip/51DpSMALDyxw6UvbfFwVtHbm+W9T69Ty3i8Xfl8r8zgb7dYW/ko2dYimeNvQtw8Qf6tZzhy5jB37KvxE6vbPFQUmJLHt9XKvPNlB5kpZRBCcHq2xF1TIUdW34nQA27Kn+NcdJSrep4/0q/iwUaOmVqGvXfMYCayNC+0Ca50kVc6iIKPHM8ipKR6+200Hn8ScfY5ys02hw//c5L9LjvLn+fc8RuZyHisasPjkWayfxMPzB/hYOdpMiZhz3ZIWlTsnTmHyp6k4k5Rdxy8nU20Vvy7owc5ncuwlChmXIfjboOJwkHc7AmamUfZGX+An37qX3Bu9wY8K3jbyQpHbt/DZ1p9/q/7F/n9L61QnBzn1ImbOF/SLMv3IMwAQZFbr72Y7sYuB3evkrm2Sr2zS6G3zdD6eCpG2SwX40M8VzjJayZn2V4Zspmd4nzuGMu1g/TKFf6wm/CkEtwfpfxFb8Dd9RrGdfn3W7scOHSU19/5DZx69Tez78wdPLf4EGPXFcHlFltOi+M3vJLZm27nyYceJQ4E03aAc+c34R49icjliO//FJlX3ft38h3++4Svh/X9/yKz73keH/jAB3jjG9/IhQsXeOqpp3jrW/9bdPbnfu7neO1rX8u99977FcdY+eJvg/RYcyfZcCxGDymH68ykCZnMNtrG5EzCOD2UoziXP8TN/RGXdMKGHSOxkoK3RoUE6SiSpIZwGqQUaHozuNkt8mmfyaRNw6kyIa7iiZCRAyNZYG+ySEYqmhRRIoeWDQbao+uVqKstxqMSZ6vj7FePsW2yaAFlmux6PrNJB1UY0MoWme8tMxoFFMSIHb/PQmGK+6cP4ulzFOUGpaSBGw5wcxc4IT7PBXeOglpm1ZkgNeD5PS4HkwyykuOj89zV/wwdx0PpFwiCkx+SsyGp9REiRAC2v4e0+AzSvcBYPyFb3yQvmuwZnMd1NCU9JJYh2mtiMwvk5QU8EyFsyuP5MxyMriCDFTbyloHOMQpKHB9ewFjF0POYtmus6xm2fUm3ABZNYAasFSSTySrtdJ5Js0Ec9BhoCWkIsk0NjaNSKkmPjA3ZDmoM3YCOlYRJno2gwHT5One1nud4eh3fhXZSpJr0EfYwR6NzjKvrLBRSyvoSM7rDapBnMm3wtF/htDxLICKCtMe2M44IRuw4RfLONspIyukGGRq0xF4OJTsM8gOKzoAZtYZnFGt2moJZZqkwhp82cYImsdfAZUjJ9snrATU1oma2aPsukesQO4K1bMie+Drz6YBmJs+42mVSN+m7Hk6Uoy9alFWMxuf50pC7h59nGDl0yFEXCRkbop2EmXiTrE1wbIuzxTLb7hQl0+CQPU/N7ODbFl1XMUWHXGw5VxhnTDeJvTbnCnsRkcK1gn22TTubYY96mlhbmnIMJ3Ipez0ueqfAOMynF8iaDt1MnbJ9jiTuUFc9Nv0MBbXBmFjmuhhDqhJDEdP1LC9LHmTdFlmrlFh0DvLi0WdYLIyxL32eoZMnHE0QmhIy8fFGDg1ToFJY4aqew4kDHCvIuF0yto8jmpRVG6sNF7w9nM0eABNTTTp0nABHd9gfN1jWR1C6QJSLwb1EVS8hyIPV9G2eiuwwyOTYr55io5RhJDP0eocYZgY4cYxO6xwfrbNtsrSLmgndZCk4hAmGVHe7+MmACZ1QMlu0g4hI1sjGHYSvcNKUir7Olco0L+89TDlJaDopU2KRSGeIgpjVXA1rQnw3Qvl96smAgSpj/ZBwqDCORijLgICqGLJHXMYa6Mkce6PrbMkTtLIOfbmHQniNpjugXwiYlouEOUNOD7nkHeFw4zy+2KJt6lx3J7HGJ43KDEuahqvZzk2wN14hloJivInrjLhanGTBPUE9XCbLVbACNw25VspjRrPU1Tkc7zyOFLyk/zh53SebhvQQlMUSl+VpEg3Ks9xgP8uumOVa8QDF1JKRq1zK7NDKVsmaPlNqi2nVYNVME9oEx99kN8iwOzxNmmnwip0LTIpnaTg+1bRBahQlewXECj4pWruEVlAVDSQJPVnkT6ZO8qLoEkb2WXTq3DK4SJ8uSVZSTjaQKstibj8nBktU4l26niDCwXW2eKA8w4v6VyjFqyRU8G0DR2yD08M4KaFw2DQTlL1FWibPUOe5+RWv+Ir26OuWoH105T7SixFZneUWucDZ9VeRqVc59vIZvviffwOjNaL4zTzsZ9gvWnz3q95E+fEWRxtPU04idk98A78nc+zogH9dD/mtbplfmpuk4HxtZXkFN8/7F99HtVJjdjCDiBy0tDwSfJEXT70EIQRRqjm70WMjV+TN5z9LL+dwuXyU2dtfhC4ImqMHmdhq85rNT/GRiVfy2cSjJCU3/A+QtP+/nC9jDEu7I55YbnNpZ8CfX9jmLy43WO9G/PLnFvmDx1Z4/5Nr/MHjq/z+E1dpBR/BkDDtvIjXTX8P953d5OpGl4WPr/HH5YTVAM5u9/nmo+P8ahhwoJzBqvPET3+Mav0M3tQZlDxL7o79OPU6Qgg+3Rnw7kabsiP5T3uneVOtjCclQgjccIfpcz+HeOrfMtdb5ZbSRV4TX+XJ0iq5vGRyrsPiZomHF9vcf7nJvoNl7F5Dcn5E0Vra/SaZIMvC0nnORs8z3XoxdtCHzedIt56m/m9+hJvO3My3To6xnSqeH0RsZARPZdvMXF3gSU5yPnccXcxy48Z18pFisvQ4M8Eandrr6HTatPs97qyWsZks26nipvgPuSn6Qw7n5tk/fA+fPH+I95x/C44I8KzgZ43gnh3Lg0+f5X1XQjYxeEcqLM9neTgJCds/i6Ma+DpgXH4fp7uLvFFcpfD8U3ihZpANwJH4h2+Bu/4JzvE7ODye59B4kURbhv0U00mIN0PEakTm+i770gVuK19ivnSC5VTzxcEIjeVbKiX+tN3n8/2QlxSy1MoVDtz6Mn7T/gn740nS61s0rl5i1B8xdfg4ixev4a6tENz3p8SPPIV/8ijRZx/APXqc/MH9f+cJxNcz/r4TtOnpaRYWFnjXu97Fgw8+yDve8Q4efPBB1tbWmJmZ4cd+7Mdot9vcd9993HfffaRpysmTJ79sjLXP/C5WFtgKxlG2j7FtCmmTMTXkoDnPmponSSYoeV0GfsCqO09t5NLUllC6GCHYDSyRrhGXM7SFz8F4mVAWORAvsFGa5FB0CUcZ9GiHadPGqgzLYpys22aIR6IGaCHpOWVcp0smGFFKekQW+k6VNNhlPFkhG7cp2R32xCtEdoRjBBt6lhPpZdK4RzctkwkUSdLClw163j5Odx/hSPIMGzpDhwqOP2CGdZS6DmlK29RwraXkRPhJTEXscKS3gSsMCeCqkGHiM2lbHE+eo2Z2aHo1PJ2yk5zCk2fxTEo1UdT0MioOmdBtNnM+W0EZ43ZpZwQZLVjPVnF7L4jX35iep+QuMvxLafNBOsm8XWVvtEpP+hgJ0ulj0gqV7Dqr3iRpf4aMHaFzLUaJIHIadEWOjWydjG5xs10gJQC3xKA/iRrmqPubZOyIjI7pIWlkEyJHMOVvMpZsU7MNeuEMNs4wSsbZzm+QFyvU5TY5ejRUgRwxJbuKk1q6Ms9YuIXr+niJQ9d4hJkMBwcLHO1co9IVuCYldDoIAgKvwZxaJUePjB0Syjxjapec7DNwPWppEyEsA1NiV0xQkR08HZK1fTQZ1nNlPIb07SRRHLBPLSAcw4ZfIZIJQgZo7bHgTrBHrZNJcwgTk8susGe0iUoL9K2H70scR1FwdxmSQ5Ol6xzAM0VG1me+l1JxV5DeEGFiWm6RYabKRXcvnh4RuRWquoUWGp1kmGKBqvMoM8kyscjRMgU2ZBnXCor5ZSbUdVIvJlIecZLj5vRx1jJlgqRLWXbYklW6ahppM0jbo5jGFMQAnDZ1ucOWnGI1H7CQ6dDP1cibBouiSiNbxpUhIs7R0lVKLCOsz1zmeZbtLF7ik09jyA0IyTDSCQW3TU/W2dAlfJNS7yVYr4EUHjnVYsy2kC5smP1sOCM8bwEnMWiqVJJddtNpUnLMmg1m7WW6KqAnC4gowTUhRRXhhwViHOr5i7SydWaSFkIHDEhIlE9OpRRFm+uFAS0vT0xMRSn26nXG4yYDnaMzuoVM1CJxArKmCSS0bYmhJ1kLchyOFhhzd4g9xeywS0PChl9HRIZ+Mg8mwdMjptwms/E6bVPisLmMsJqKbvO5ym0cHV6AgQDZZNZZpWZ2MCnk4z5bWjO9k6WWdMnmNvCNxtNT4HZo5DXOwDLKC06o5ygmA0bWJ5Y5Hho7xa46zPhgmZxYIlZFujpHI1viht02dVZoZ4cU0jYOEBhJ6FboW8uanMQ3Fk8PSDyPTLBC1d0lPxiRuBnmRldoijy+7XNAnYXARWqFpw2xzaHckLzoEapZJuNLWNsizDt0KVJXbTwT4cmETjpDhQ6u2ybDiJyIKeqYRTGNrzYomgRXjlBI6E0QKUlQGBH2JrHhJAfdZyjRpicFO04WT/fZY7YxJse8XiZnRlTMFmed2wpEcAAAIABJREFUMtV4Hd9rs6v20bCTzIpFcmKA74Zs5xxuvv2bvqJN+1tVcfzrgjKK377w67wmfQ3WhawaZ6hrHNtnSOOIdBTiBHv50+AF+foX2RZz8/vY+fw1nNte6Nx9tnaBZ9N7mRNrfCB5A2+pZ5jyv/bl8J2A7z/6Nn7n8m9S31fn4OMHSbOG5CHFx9I/4vUz38Sbx0p80UoafpXB+Cz5aICTLvMXv/Ygd//L13Bt9hcw2TFOnFvmpxqf5Kf2/XN+aavJ68oF8q7zN7J2fx0YJYrFZsjHzm/zkec3ybgOh8fz5H2HqVLAc+s9HrjaRGmLtTCe9yF/kUbvhWaHVpVZWXgTH7TrLDZDgvURl4qaCEBbTlay3LEUoyPYmUwpve9jZM98L7pxDXlPkcLNP/D/zOXtK1t8ujfkh8erfP9E9cvqB0X7EqUPvQFUhJUOqedTcg7yB96rGU+7LMx/hn924Ef5P5dGpE6XXjzNv/zQOWThHG+xR3j5qMKxLRf96TWmleFi8DgnwjvJn/pOGtF1MpurnP+Td7LvO34YY3zOdkMywy6vXLrAbLvBYn2aZ47exGdOH6OwdD/+px5nZiui3N3h2VMPMWO+h/2NNzA2doTPfPrjfNu3fRevjf6c9vBj+NxDZ/On+eXn/ynPN27gjUcmuNAO+ZkX7WXs06sst5/jewunOCS3+YkT+xn6EqE7VLq/imPa+E6FexovYba3SSfpsT7sYlWAyQlOTOzl2P/ydgq1v7ph9H/FMFa8+/Fl7r+4zdJaQGN7SMV/kL2lY/z264/ycJLwuzu79IzFYnnL4hofP7KHeqbOL9z9Lt4W/M+cmpqk+Mw6g9o4h+QOcy89wOT6J9jayFCaWCG/9J8I5mH4cz+Ic7lAVTio+gnCMz+At/4ounaYdO/dyOEWJjcB4m9N1+gf8XWIt7/97V92fezYf2sCeu7cua96f9ZN6LoaLa4i42lynockIBCGjXSWPuMEhFRNg1jVuCV+mnOVw1Q2DFoqPKuZi9qMVECtsISKi0ymG5RUj8vBISZGSzgqZRgeYoKzODh0HBdpQ6w2FHSXimoRiYSraZai1lRVl5HJsaX24MoG+1STNBzDpj7zuScZqUnGujmWnTppmGWP1+SyqaAtlFSbnegwTgI3Zz+Hk4bEUiLkiILaxI1TRq5kv1llnXE8M8KzCtddRdkMYVQi7JewwmV3VuCmObRN8GWLjA7ZkVUUDlm5TV1dYFJsoHWejutjkwqbZow9Ypu5/iaps05kJfV4SMebZmK4jorHmRMrZJKY0M6gXIdJ3WZNSJI8xI5mKT7MmG1Qlm36xqETlRnrKnpyiLUJjkmIcLEmSyoERbPGbLJNTg3Z48GWGzAcHafgXCNyXPrSI297EJXxVI0zyQI1mnh6SCh9dGTwbIeszZKaHRIxZOgCpNRNjw07x7jTYdcWKaYxWZUQIOirOqvpIUQQk3faxGmdJK3SkBN0oxrTskHiWiwJW2KMkieopj1ikcWiCE0f4br4WKRWFOMuJbdHqgPWo+NETpaRWaNkdskFHkN3xBJ1ptIe+oUkWXJmRC5Zo+lVsE5MqhxGeBzojJBJndQ4FL0+qeyQSzS1pIWRApv69JHMGkFq2nTTGWJHUtQpPbL0dJad0RieHFBKtqlmW5T0gPF4kyUzT2o9lAciTegbj9hYsrFL306QDluoguB0/BjRMMtZezM2jjmTfpHL7GfLlGgnWYqpZTvdixPkkXZEZFPG0iYTYoemKLN3qGnFx5iUn8e1gqPuGqXegFg7rOmjHHCukVhJKbjGpppCx3k0gqYMuHm0xKo/w4xdo2c9hDVMJC3G9A59DjEyWcqjZRLhYjH4epee32beXubF0QKX4jN0fEFGxligpHrspj7WU9hAMJ402FVz5L0+WgQ0XI9AW/Rwlv12k6rcYscUmexFtKygpScopopb9FMMRIEN/zAjV2JVzNAGlJIWk95TJDi0HYes67M9fAmhGDGuVjmhW+TyI1ydMhYqYhughEMhHjCkgCs6DKQmIsBJh2x6FZKRi+eNiJw6ViecGj5NXQzYzNfJqD716DolZ4CrHQrpiJqTxwaCqnsdVwwYuor1SsQw9TmiV2mICU43VmhRA92n4G7hOIrD0bPs67ZZciZxxQRFFFmjOTF8hmK4h6FbppK9QqTqNMgzGWzxWOkIB1rXcBBMJB5rahqjQkYqwAkiXJOQ123ao73Ejksxilj3DnJz/CzaM7R0kW3Hx8MjkgEDo8gLw6asUW4bTEWhjKWtawSihcUwissEdpOc6JH1dtn0Sji2xbTOEZuADFDojJEqjesOqPYabNsMnkiwNiVPnxFFbCrxh1WCzALz8RYZGbKq6uxjHUUFmXTJOpdppVWayQwm1yHjJBTjIXNm679rj74uI2jL/SUunH2e6WiaG0+dYrA+y25Y55XHHmRjlGfpqS+RLR/lk7kZMqTc1n6Yg45mavk95Mopized4eHqm7lH/T497wwPq338H/NT+PIrtej9q3HYOcAHV/8YlOZ48yixq/CEy0tX92Ou9SisJ3yDcvkO41GYfRmFsZPMRhmq7Ys8erFG7VCffuE6sw2H4zuP86LW4zy2943c3w+5q5Aj+zVG8+Bv53RcG8uHnt3gbX/2PJ+62KAbpXRHitRYGoMXflz7ajnKGY+D9Tx3HKhx16ExXndyCpN/hij/ALHt8V3Tv8aNUxMoC+vXu3S1oePASS34VzLLayPJh1XEbxCRawpOTb+Y+MJHWYkuMfY934XjeQD8m7VtPt4dcms2w8/PTXy5uMu1P6P+ke9EasXGbIXiICU99M08OvsjnFtc4a5bX0WmnuUPF38Hp/owaRow6O7hjn1V5nJ7+Xg/ZUEaatJjT9FDRnBIHcLF5fzJdVr/9BU411YofeohFj75Xt5W/RLDoeQ1lxYZH3bplWs8csNtJF7AiVzA7NRxktmXEqw8AMDcapdOXlLcc4HN519Ec7DF4jPPk6/+HmkzQ2Owys8/9mOwW+Fw6vBND36cgwtPce6Rh7m6u8Rz+VmuT1h+5Y4DFI0mzLiUdv8zXnyOoPB6vML3M2cTck9+kaDXQPS71PojJl73Zm7/gR8lyOW/6n77ruTFe2t8xy3z5F3Js2stWlGFftTmvqd32C9d/vWJaQZWcH4U0zEGCVQch6ODDXIbj/PnmXWC6YTdhR0ayymXF3a5MhhjtxbQauaYtF20zhB3HBzPkqkmuI3zZM//If7qF8hcuY/g6n8h9+S7yD/+q2Sf/V2yZ38fOdwk3XMXTnsBYRKs/9VTk/+h4+97BO2vA7sP/Abb0UnGnKv0bQbfJrhGIUYTiGCDPgVqchcvlXg6pcYGa8kEZjhBJCE0Bcb4y9PyxCEaVqiaHaTjkIm6RErjjDyGaZVNWcI4HqkxbI/2kUbj1MQWgRyy7s1xzT3EWBTjOiHTYoeeLhBJh+lojTgeZ4TAkT0GqoxjoO9oDIaT7pNcim4lwaNiLNuMYyW4DEljD9eM6MUzRHqMkmiTszG+HGGVT4caIXkCobHSY5CWieIaTrDJ4dESO3oSz8Sc9M7RM0WSVHFYL+KZAToSDIRLSgahLWBIlYdnXNq9EzhOm7PsI7E+vg5JU8PAVCm7bazy2DUzFFUXLRKa8X6kzTLmXScbj5hxLhPZHBf1AYT2ySqFdDRZYvq+g0xiSIukJkNNdOkNDuMmOeredYY2wzAqk9eaemYRbXoox7KtanjGYnSRWppSlVsEakAYz9CmTs8RePSY8pbIpyGRjCiYlGa8j4GugDQMbYHT4hJ5HbKhS7SpMDYI0FYhrMLqIqEDTVukY+qENsdI1OmmJbzQ0AzPsJZzAY1jfCLlYKwlNBX6+AhtUdKnoSfx7IiK3SBQKS1ZptTzGbMNVFIgMTXypkslTbkc3sFAa6xNCaN5PFVkLniavp5i19bIyAHTzhayO02kJ0hVlqEIWApvZtcpk2qXkBwVq0EO0dahbwp0TZW62aXvl6nGHp3oAINkiqEV1HSDpqlgjEfiOGyrcRJdJi+H3Bg8yKatkBkJUgMbySHSdIyqv86QLE1dYWQKBFqTqCKO20agQWhGjmTS7NI0dYyTJxvmqNlFEAkls4tMWywmL6GvshRUysjk8ERCIgXbyTxZbRk6gr0ssWan0NawHB8BLbBIAqvRcYECDfJ0iEWGA3aNpp5gO96LYwVT/lV2RodR1sGXI9b1LBZwtMuE3GYjGCObaFQ4g+82GAmfjqkhlEdBDgjskCSepp9M4ZuIjBkR64Ab0gU8t0O3f4SmLiLdLn1ybJs6HpZKZhtXpWyLSbrxFG6SJ9J5crKJ6s+zls4xySZBKhEqQ+wb4uEcvhnQ01OkVmKkZlKukdMDEuVR0zFB3GXRviBYlgtX6KXTZBhSoUtbFMnqESWnSxcPNdhLznbBG9BL6qSxT5yMMzKCrA1pyzzdaA8qzZEREbtOHj8ypOE8qfHx3V1cK/HCLPXQATRpmqHEdZb0MUbaxxUd4jDAjfM4dkRkfEJTxJMdKmzRcGrYsEI2yqFJiP0EIyAaHKTubWCEomHqjGwGjKA0qDNICriiS85ECOOi0wyOTRjYMhVvm6Eqk1rJmNzBCJemrpA3IVIZyqqNmwsZtys4wyn6qoojI5p6ikQI9GgPyklwGSClYkePs6vqTMvrSKspyR4XRi8iHU2RGWXxnQEdxyersqzbKpETU6HHZryPbTPLmVe++ivao687gmat5bu/8G0cbh3Gw+PNr3srTz+QUharHH/5LI/c/xSD1ibi9DfxpaHlDneZ6Z0L3LL8R1SnB8SizqXjKY+mU8ywzpS5yJ3Tb+JY/r/fMM6mBttLMIMU9akV1OfW4IkWzxQvE4mU69lLzAznX5AwNoKj8TREGs+ARCAQ2FEX21mmdOAeDgQ+2cXTFLZvolsYpx6dpZb2eHD2G3k0ddlMFa/6Gurh/iv+Jp0vay0/96nL/OJfLPDZq01cKVDacHSiwOtPTvLj33CIH7/7EG85M8dL9td45eEx7jw0xq3zFU5OlwjlMu9e+DV66S4/f8t/4A1HbuXQWI7nN7p8YaPL0IEfSTP8eLHI3lKGwkye+YMVvm+1z341IH3gl9iJG/zQ7T/IHzy9zRPLHd4/GvKgTpjzHD54aP7L1NqGw2fIfvYHUdky/axlclcRvvLXuD7/Jt736HtYLC9yx5mXY6zhWn+R1EbsHUvpBQ9xYLrPW04f4+MXtmjh8zmb0BiMOCM9PASxSND9lA8lH+XTN2m8iXu5+ZGzuPlj7O8JPKs4N36e3dklbspLnmUPm0nEbbkcw06Fc+2XU2o8RtYOmd7pMZIuQe4Z9n5hjd6NEfXaMpu2yC88/qOEZBkhuWfpIW5a/jxjgy0mhy327V7n/NEJ3vOK20ikYKL3DN93boV05yO0ipYf+tCAV33hE4iNJWpuSKg8Ti9tc2Snw2PTc7R3tpgbG0dmc/8vlbuvhFOzZb77RQdZa17kYjOPsfD85oCPPLvJt0xW+MkjU3yk0+fKcMiftHZ5cuMy3xVts5pxeY4WjckOI62Y3A3wHEEiAraDDE7Nwz0nwM8xbOSw7/g0as/txMe/nejotxIdfRMyHeJ2lxEqRFiLSHrI3gr+2sNkzn+A/OPvJFj4GDLuoioHwPvq5PMfIv6RoH11XPj8BxnqMawMGSVVhEheSAGzGQamSIpPXqUM9RRRWmdFFjghzrOeHkCKmKH0GQqP1GQJdZlUZynKTepmh3QwTaxqnPKeYj0+Qap91sUMUowQWuJpQUSeg+lFdpJDVFWDCn0OyMtsJnvYFBW0ymLSKkRjKCHx3B3W1R46ZBGAMgGTcpVmupdIOtREn8gEFOyIKKozMDU8OaRLGWk8kBYVjjEmtxjiE5oKiSnhiQHDtEou1ShVwGcXo4oMpcOAAlkT0lbTbKR7SIBcqvDTgJ4rwWoc7REiGTgeOQNdk2VkJcZN6FMgMT5a5dhxaiS6SMtMY42ib8pseGWUybNHbzKKSvSifSgV0NfjNEUB1xh2RQFPwEDPQQxDBGWxw0DkIc1hdcCcaOHIXTrxFM34CDqZoSqvUxQ7OCZhTexD4WDTGk5Y52DwBK3wOGF0AGNh4DiUbZ+2zLIVnSDUNWLy9HWVKJ1ikxk8GbFfbxMndZq2TGgrGJXFZ0DbZlAKKoQ0ZQGBi0oreFEJIQd0knliXWJKrlJwN8mnHRbZT2zLxEmJvlPARzGMZummEygvIbEuXVshp1JSnUEJl+vJcUaqwGg4TTM5QjeZxTgxkSOJ42kKJsL6HRqiijIeSlr26WWWwpeyIcvs2gxDLKmt4NsekXAQ1qOsU3bUDFmxi7UuqXBpmElkOIUBdDqGdVoUbELe9tlNJxFWMLSCAWWslUjtkdgsgpDd5BBRNIFJK7iOJudu0rAVYpPFESlSF8mkFiM00jpoKQhFnq7aQ4SiELlIMSAXWwYiw3p6Ix09QejkiU0ZbX1cGYENSI2kbcbxtYPRPtpWWLV1AgbspgdQqkysC1REi7aZYFeM0ZFFrM2SwRAIxZqepWS7THoLPJfcSkSGUTzDSGpc7QAGX5dxvTaRyrFJCUSCZySpfmEu494GI5mlEU/RMxVAIUREy0wwkaYU3RU2h7cROx4luUUpCQk68+C26Ksxukmdti2SNykuKQObJzRFWlRJbI4SI9oyS2e0H0cJRrrMdTtFJawQOhZHxJwOniJvY1KdIYoPs6AOEQtJmhQYihyhKIBUZOI8jlRkGCGSEut6lnYyj9Au0h+wFB/HUxkQKW07AbqAJ0ISnUHYlNTkUI5hJb6FJJlCu0O00GS1IjEZ+gTkRELF7uB6TbbsPInN4QlF1YzwtEMrnUELiTQOWdGlb7L4oyJJMknZdBnFU2S8VSKdRadV3KhO3V1FWU3LlsnriLKSDExATrSoMqCcQtEOaKhpho6k5mzRUpOotEaUTBOpMfLONm1TISAGKzAx9PUYSVxmlyLGUYyZGCteyCLIizbaCynZHs+oW4htlr3OdTyZEMosS/EJ0EWGrsYxDgqJg0vHlPFIyIsOzmictq1y2z13fUV79HVH0P7L8od5fONRTu2eYnQk5s6Dd3PugS0m82sc7L+Pzz83wg3G+R0OIYTmnxyR3HnbCfZ3P4R0LXr+JTwx9zLG0scZo0Hk7GVv+iCVymsR4svTCm2s0Q9tYjMO6UeXMA9vYp5rQScBbcGTvPTme3n34H0MvIibV25G+YZdp8dyZYV3j3+Y6SMHKQzKvDMN2b/2JNnJG9Ctq6T5Ap6TwU/KeMMDaD1LQTzCa1f+jFif5tSgxmMFydHAwxHiqzrSfxPOV3OY8Et/cZUrjSEfPrtJlGpumSvzvXfs4WfuPcobT01zZq5CNed/xfmtD9f4oYe/j0THvOPMv+OlUy9npx/zut99jOc2+kwawbuzVW4VEpn3ILVIAbWrTdS1T2Keei9CR8z8x3dR3TPHo0sdlvKSrZkMohNzZkdzZrJIIXghPdX54o9gn/0POG4VrVpkYsmFe36ddzQ/zW8u/Ee2vS3ckseHVz7IIzsPM1QDtNV00w7SHbIWXeWTVy+gurdwQ9xAUeSsC/fZmH7pGW5L9pDVAXftnOGiuczT7rPc9eyQQ9fXmV5d5M9eusNuucdOtMV6/3lcm3JN7OWDm4s8utRm+pEVVs2d5MttEj1kX7dJW1VpvzphqnqNxT8+wzs7349B4hrFD5/9CMeaC2RlwFp5hqXqfnbveB2/d8/LiD2Pe6+32b/4fu6f+gJbFc0PPHmG0nab9WoRRxjKXsStZ7eojGI2p6ZYnp8j3Fhj8eEHqfzKL6Effgh99Qo2ipCVKiLzlesfhRC88uhhjhU/ySMrWbSVZF3FEyt9/vTpdX7FPMgvXvhfOVs8zkOVU7yv/BL2qAJDdR7XyyHnp7hS7XCoM4dfGica9NkaZQkslDJlgn37SLe2cO/6FkxpDlOax5T3kux/FaMzbyO64a2o+nFwczj9VdzWZUz2BZU+p7eK2zyHSAYIkyL7a5jSXvgaCeg/BPwjQfvq6N7/6ywnN9N3fIbJDCPpkpJDJhUGniUlIKMCEuHRDYZ0zATauHTMGEoKFJLUuijhYBF4SZayUrj+DttMELqCns3SUxMYk6PvOPgyJGdjOlQQImVLTNEWRXxj6Ng6VmgWkuPEMgNWYqxkRIDGoeYt00iPofAYmSopAalwiGyOiAzp4AYiigROi1BPkNqAviMwOKAKDE0BrItNxl9IZaOEsZKS6NA2E1hShC6ibQml6oxczcgWcLRLixLGwgiP4eggyjHsyixtO0ZOJLQoEtkMTuzRdQJiRxKIAYn1SU0Jq6ooYaiqiB07Q0/kiUWRREgUHrHQYA3bskTbjiOsoiezRLb4Qr1JMkbRDghMyq6To63micmACZBWU5HLXLXHUKN5RqZETsOyW8T3Nrlqj9PQc4TxDJ7K4KQlZvzHCFWVFTFD5EBis3QcD61zJKpET82QqhKhYymKNj2KpLr0l47cQTI6YptphBMjUQykh4tg3Ntm3U5gTQZls/RdxcgWGZJj6PgYBKEwtM04ifBxLHTMGNJaAjSVVNOQVTw5JCKHZETdbuKiuG73kNoMwmq2ZJ2yHpDoMr7o48qYOJ1EiJSuKNLVNVw0RafJhO2wrI7QFllSnSPVFVKTAwxWGhJTwIuz4MQETosVfZCBqZGqImUTktg8HglGFcmZkIapMhR5+sk+YuuQWBer82jrgfVw3TZ9VaOt67RdB6ECHC3oyBzKelhAqxJKvBD18eWALhkqssFQZRmIIlJZGrZOS0yicSkkORyvT4KHSQs4QEb26NmAti3zQtMNwYAsJ3iGVTGNJzSRKYETERNQlF2aepq+rSKtoqcn6EVz9KWgZypMqT7oDNf1EQIZYlSFoQSDi29clC6SOAatPHqUQWcJbQGJwcUSqSq76ThK53BIiISPI2BIlhwjTFzlmphhJAWeTHCVz5I5iAHaepKeyONri8CQJnVCXLQ3wloXZfMkqoqTOnRslXU9T0PUECJBmRyJm5A64KUJLers2jKLyS10ZAElDGNmSCIEnhzhCEVo84xUkVBNMFQ1QqkZJPuwIiV2DInJk2NIbHJ4BtoUSaVGG49Yl9AmgyJHJDwcHRA6hkj4jEyexEoizzAUAo8Ru7JK346T4JGaPNORZl3UcNIi2knQwiHBEFLAVTASAS3HI9QlmrJE39SQWCKTJ1CwraboiDIdW0aZDDoZZ1dW6ZhpJDFtL0dXFEhsjlCXGBEwIoujMggh6dgKI51lKFwq9LkoThDrGttmEuUYEJpYV2mLPBEujtNHktI103RsBYzLjc7TpNYjr1Mu6RuxaISMGToS1+2wbsZRNoN1UmLcv/zeJS/++0LQekmPn3ziX3Fm5wzltMztN72MmdIci081uOHl4zz7lEtzcA1jNI9UTnHE6/Av3nwv80/9AmJ3DeEImvf+Hp+wc4zHn+M6RzgkrmBNwii6Qrl0N0II0k+vYF2BfmAds9THPNMEZREna8iZPPLWcbyXzeDcOUN2qsrTzSfZijepyzGySRYQtJwRK/PrfHz0aV7y6tfy0XVLJ+2y/9H34q4+yuWyYulYgfONHFpZ4rE6rv8yPPUwNXWF2e1X8C4/pbna4+ZnO4iJLCgDnvwrydBfp/MVJpp/f/8V/u0nL7O4O2RlN+Rbb5rhZ7/xGG+5ZY4jEwUC92tLv7zavcyn1v+ck9XT/LPDP8izax1+5hOXaIUpt8cuv1Uo4ec8/Lk8YmsExkB5wOBPfhK9eQlnZo7MG95I5tXfyPGpIsXDJR7IWTIjzYmFIRdWerz/qXWe2+hwpvmL7Dn3YdaDgOlWi0vZgO+oTvBA/xKL/au4xmV/7gBnpm/ldP0Mr517Pd9+4Dt568HvYTY/x7nW8xS9Ip7s8oOtOiuqxLpbYD4VtFxBO7+XO99wCPfKAGkEKdMUhwU2pyY5tLBAIUpZnXN5690/Tb5ZZiPZpNze5O7FISvjx/DNgKq6wqlH/5jNps9Dk7dzSRzhmjrEYGeaK93jrGaPEAjNLaM2t5RWuDRxD3+27zR79s3yubvu5uN3384nj+9FOgmnV36De5cqDAKXhfwlvveJW0l2m3ilGqlW3Dq2wcHuHXijlIcPHSbyMqSlPP1SkUKvz+Ujh5l87lmcZ58h+fxnGX3gfUQf+wjq+jXk1BROfeyv3NO9k7fxzUcbuMl7eWb7BImyxFrwid1JnkwPMTNh+Al/h6ez+3nKn2O6eoZe7/PENkUWc7z929/FzvICcb9HOaMZGkUv1UxKj/iBzxK89vXI/5u9N4/27KrqfT9zrbX3rz39OVWn+r5JpSpJpQ9JKgEkQOhFEKMiiNLavPH06eAq3osoiuBTHlcv+FBQJMBVkCZIAtInkD6pFKkmqb4/VXXqtL9277Xm+2Pt30mhlxtQx7teZY9RY5zxq99v773mnGvt73d+55q79k/VY03r+NGL6K57Pq3tb6C9+ZW0rngL+dhW3OQe2ltuIzl1P5WdH6S872+o7PwgpjVJPnYJJP/05fP/0Y4fErSnP+6/61scTIcLgNPBmBBBhBisglVH2zi6RpkPwyA5c2GQptYJIY2VEmrJRfBYNJSZsEN0Qp1TuoLpMM45hpkLI8xJleDaJLlwPGyAUCa1DRompUkN48s0pcK8KeNCoCE1VARFaEmFVqLMUafhhxA8mVUMhm4+DKLMSh/lTp1m2mKeCh0tE0wgYAkCmg8SjCcTgwZLRyvM6wCZVuj4fpSADyU6oR/1NfrlPLntkoeUWVsmEDCqtKlS9sJEUqYrFtSiGAIJ7eLlt4rD2QYtrdPQQUDIQwUTUqZslUwcbaPkWqKrFSzQ1Ariy8y4BB8SWmGAzEKASFRDQu665FpiylZJ8jg+UaEjjlO6Co/DBIMlgC9xumyY0xGyMEDH19DonD9/AAAgAElEQVRQw6hFpUPDGKazlczZMm0j5Jrg1WEDBHHFy3gd1rTohjqt4oXiRkG8YSKNxN2HhKrM0ZaEfpqErJ8JGcKHMioeJMcGyI1g1NCwga6WmcnW0hZHyw8SKIHJSCTQ1DINUyWhS+7rNLSfOT9OJ1tCSxyJ97SzxbSsIw91cgPzpkwWSswnAfGWjpTISUjp0qLE2fZG5ugnF0uS1TCmw7yDzFhEcrw6gi/RNCVmnTDnFxE0RcjpUKWbD3PWJMybhDOmylDe4KyMosHQsoZcq1gVcqOYrMqcscxSY8bUURG8CYxlczRsiabUyLRKMJ6ShyCGjh/Ci9DMxnAKqWkxK1XKQekYQ5sqXRNoA3MyQK4GTJdMHDMM0NYKAYsLjo5YTplhOpTpaomWHyDTKh2xtLrLENOlq1WCr+HF0ZWELMQkSyaec/lymjYBX8L4Eg0HAngU1YSGAa+Wth9BJJBhQRM6foCmpHS1ROodWQH0MwOdUKURBsl8mSkZpGMcnXyQs2GMNmVcXmXOWcohQ0NKV8uYkNB0YFTwGt8j1hHHLHWGMh/ndyiRkRC0AhIICHM6Rp4NcZ4BMkqIZGC6zJkyXS3jtYylSyMM0JAqKS0a+SKCzWhnw3SMQV2Tbqgz6ceZYYi2VUQgCYGW1mjaFEdGEMjEUfaGWUnIbU4mlsykGBUIJeZNgkqgKXUCQtqtEkKZprFosDQtGLrkxmAk0NIhMgyCx4caLROT8SqxNq2LYbq7gRyPmEAWhmiYCuCpmClmdJCOCzS0D8HgxWHJ6RpLRkoSHB0gtzlNBmn5RXQkIc/7CL6fzHmyUMeroS0JgpAGz3S2jCkdoWkNQQznGGaRO8ZctpjDsgrF0paEVANz2k8WKnFfLyWUQIcaXuC6fy8EbbJ9jr859DGuPHslinLrc17CV//bE7TnMq65ocvOR1JarceZ7r+GRyuLeW7/SW5eklF/5L9inefEiX7+4niFYytLfMbfxE/L7YyO/DgA7bl9ZAdOUN67EhTCw2fhbBsGUuyNS0metxK3fhC7ph8zUkEqboEobRjYxOePfo4Jc5itu1N8/xiJF07UTzBYG+TTR/6WgcETPDS3g2efeAhyz/41SzjiMp7x4ks4ef47HDg8zv7OMKuefTUjx+/AJF/lvStexOMJnGh2ecaXJwh7pvD3TRBONJDRMlJL/lXtm/nAP+w7y8/e/jB7Jxr0lSy/cvM63v6Ci7h61dCCSvX9Hu/e+U4eOHc/ddfH/33t+/jw/cf5vS89SdcHbvNVtpOybnmNkipyoonZPIB93jitO/4Cf+I41de/EbtiBdVX/yxiLYc7Xd5y5DSLnOU1S0b4zatWc9kKwxf3TvG75pfYfup+OsYwlGX81YoBfre+kuuXPJttzW2sP7KOy5rbedvLf4drFl3HFaNXsn5gI4sqi+lP+7lo8GL6pM4D5+5Duzn7h47yB7O3sKk0w4bOCNVMeTjv8tHJGb6ctsmzQzynvZjtfg0j1XX0b7mI7IkHuPzxFvaLOzlWX8nqmTWsaq6g6g1bTh5m6ewU967dwnw14/yy5XRsiTnpZxGTrNTjzLeHyaTMatPljKszoFWW1Fs8d8Ua9vUF7luxjMlyypYz32Hs3Htx3TbfGr6HvlMTPOvRceq+Qts3QBNuGH8RY7UXkKarOLxsJbOXPJ9nV65iUWUD2xpDrJtLabsBHtm8hOHJs9Qa8R0gGhS/by+dT3+S5u1/hQyPYEZGEecQGxVm6c4xeu9/Yzx5iPElT3BobhWtbhkrjqO6iH0TI6xauZ2Ll/ZjRXioUyG4MXzjEa4c2c7S/hX8fuPPeNElP8G5/SfoKzc5nxv2a5dsyRL69+yjfNOznja+tGgCFPpX0t76U+RLrwFxuMk9iHokb5OcfpDqIx8gOfFtUE8YWA02/cEmxr+T44cE7emPu/7hYXJJyMWQS4pqCS8G1AFKbgJoiseg6gjqIpg1AgJBBCNdgiQoQiaCEaWlNbpUIJQIJsdrgscSjNANdXJJUHXMSw0fyiCebqiSW6WiHTpaxxslFGBPNSUzYCQn0wrBSGz2oCaSI03xmpLZQMcqXSsgeSSaEIvu1dJ1ikfoWInnFEswATUZAUeeDyJaxpoWLSPMSZ2GTVGBJLhIZMQhpHSMiYCPEi3KBBwBcN5h8jLeQO6rZMbGsWuJtlMyTRAMeUG+vFVyAcXS1RJBLF7ABUNXDFDCaaDlwEtgzpRQtYgacudBwBtQAY+jaSrkoUpKm64NdEM/ua8RQhUvStvldG3OmbCcc0mZRJWWJBiNZKVhKwSIpNsoEiwdKmRGsD6lYxIya+haaGuJXISGSehoDas53c4Y04mL92cUkYAJlowEq4KEEt18EBVDhiUThyI4lK44ZunD+Uh2NSR0JKEbKrRcTpcKDWq0pRTHLUIQgwEyl5Hj8DZgJMcbCKFChyo+1FHJyZ1HjdKxAW8UL4IPFdK8hNgWGiokdOlq9GemFVSIjWbEoxJVkq7WaNkkqkliMChBE3KBzIJXR0tSgjpsEHIjzEuFtkkQCdgQExuoBcnpOEURcjF4TWkaiwuWNBhaxuJxZJToShkrbbomIdMSKoEcAU0JJpBpSqJCxxgyEpSUHLeQSMg0pWMsQS0tG+/bquBdQNVSpsW0DEbiZoglm9ajIohAS1JaktCSKrkJBInX6W1r8WJRAc3LtBIPvkJKRjP0IT5l3iQEEhICHkNHHLnNo9+wtCTFE8sprSptY9GQkJsEbzNAyA20JaFNnWYSCaDzjsxlgIXgsCGhZeJrOTyWhIyOScmxuGCYlzpdKmhIaVKhSYVMHS1qYDKa2keHCrkFCXFem2BpWxM7pQaL8yXmTIUOKUlWQk2gbQwaUoKAl5gYMoC6nC4JikGBeRd9HRBMiEkwrymZ1vFYRELUJE2GiiEhj+uDxGSEqmHepnitEDRB1KImo0WdrolESUVBAom06UiChnKx7nRJfApqUBLmTJk2VXJN8QI5joChayxWk7jfN7E0raOmDQRLUEcmBrIa+9lEW0oETJxzarDiaVFH1ODFRFtg8JJww7O/d5t9UVX9Xv959uzcv9Zzj8HB6r/oRdUnGsf5+qmvctfDd3DV2avYP3yAd73kfXzm9x6hNpRyxbPrzH76jdx7dpQ/X/Fqcpdy1+uvYsXnX45M7GHG3czuVc/hNaPbaNWq/Gj6CL+6eDv2bofZOMLpw3/M1KI7WLz7NQxO34y5cgy7bRRT+f5Iyf/znT/kzuOf57WP/hKdbpuZ4ZMMj43y5IYnaebzPHL+YZi/jCuOXM2bPvunnBlaxNSmVexfs4bbbruNf/jT+8kbY4wlB/jR0d/Eaod9I5fz09vfx6ks5+0T8Nx9TWh5sBJLLK0ga/pxt6xgeEn/923fbqvJ+WOHmDx2iNkzp5k6fZLTE2fIm/OkoVtMmXiICEmlSlqtkVZqJJUqSVqmb2wRSamCSRJGV60DDaSVGiOr1jF98iiuXOFnHnkt5nyLN2x7P3/90By7Jxo8c90QPz2TMHq6ST5WYnQqw6yqkd6yCipC431/RPtLd1K6+VnUXv9mzNAwADsbLV576CSDznLXhhUYUZp5i5/6ykv5g/kprj53FoIyPZTymwNXUyv/Iq/Ydil27hR33nkHqoHnPe9FrFu38X9oEw1K+4O7+Ih+gs8svYeW6bIlX8Pvv+DD3H52jiOfOswT800OO48lcFV6nJ8pLWfL3AAdujyUzdKWY1z09dvpm59n5/YrqM5NMzU6Sql/AG8Me/oGODM8Ql+nw0h7FlTIARTKRLKtqqhAywol79k3sphvbLqUTlKi2mly0+7b2Tn0bVY0l3OkchQx8IsP7WBqdgI6DVZWF1Ee38xWvwppJYhLMZUBCOABC5wuwVjHE1CcWk7LFMeO3MnW4ycJoYG0Z9BOOxomzyFNcRddzMBPP5/6g++mzDEEBWN5fOsyJgYbfPXYM/nY3pfSX06Ya+coMLqoyltuWsuqkQo/f/g0/vwnKLce5kfGb2bv5FdpZk3+8PI/Zuazt/P4Q4+jKlQ9bDg5yfJf+y2GbvjeC9fTHhoo7/4Y6YG/x03txzTPxodqCHTW3Up7y6vIlt/wH6oE8l+6Bv//cYyN9f0vvf7v/sZvE2cJGAWHJzdg8pTg2hAsRh1BFFuAKoBgfHwXmApOA0EANYDB4lF1MQMsFmc65CHFoIhpE7CYIPiiqbLzDrVdFMUbwUkbQoIXxeZVQgG2QUnUk4lFUGxwBAkIhcpkQtwHJB4A8QlBAkYCgkc0wQNGDWpynLd0nMepIngCFhsMxqcRvJsuLpTITUZi2nggFl9ZbLAE4rsuvQhGciTY+LcKQZSyj8QrN2DFE9RigsMX96SAYrCq8TxGSbIy3aQLCC7kqInfIRggXieIYoMhEwGEVDMCRNKqDtF4DwDVXJgrZThvMVJk6fMEbwKIokR1RACXJ3jr8aI4DZiQEkQJorjgyYwhnjUABtGoDBkFNTmqlpLmpOppUkUkJxcTR6kGowZRCKIgHogqkIYU6y150sXgMT6J17YttAD+aVBazkeLq8GqQcWjahAsJii5yyPhQaJypwajgqKIGhCPGjBBUAlRmSkIqBYaqGJINSOzAigaUjBdRA2qgpr4vVQ7dKkW80FJNHb29WJAFOMNweYQHILEOCyedSIhPk+ChZAQTIYYXyixUPLQtYoNCbkEkIAS1UeVPBIqkegL8RQjLPxuCSokZHQlweARCfH7weJFSVUJai7wgwPxBCSq5kEIIljymFhAwShBLaIUcSPFmrFwdSAgavHGFxFFEXdZTK4EhyEniEGK2ZPH4CENGsld4YfcCDYYvMRzGYVgAi4QfQaUNKfFUwkuI56gBqeKGg8EgqYFQVacQkAQkxUkMJIuRUlQMF1yX8FpoOt0wa4oONW4LhKQ0EOMsjD/S0EhpHjbJZcYd6KC2pyYhgh0KaF6YSWWYhRMMHHdKBCLI8dLKBIuxX1G/b64YlzDkCyORwUkKumoA1GC8aCCiMY5V5zFaFTXS17jfjEVDIFMHEYdKhmoLch2XqxDjtzkxXU8BkHVYfAkZGRG0JAg5ISCoKUSkxypKrmJ3c1BEVXe+s7//D2fR/9bELQ85Lzh7tcw0ZzglhPPgTbMX9Xk5dkb2HnncYaXV+k0cqYO/zEhdHjf6tdzbXqS977xpQz/5Q7yiTOcGfk/efhVr+Utxya4JNvL7+kplvS9kuzrRzm65bepnbmUyXWfAbGsXfMB6n3bf6B7nOlO8+NfeRlvGvw5pj9+F/PrLwNRrrtuB6u2rOb/uPctdHybiwcvYfsXxrniix+lXavyDy95MTtuejZi/gunH1/B2Z23cVn177h4+C76umf4ytLn82eXv52HGi1+bckoL0sr+IOz+D3n4WSjQN2CpAbWD2AuGcEu/u7mDz7LOHNwHyf37uLknp1MnzhK36Il1JesYk+rzIPnAqAghq3VNi97/s3o7CSP3fVpyn39hDxn+tQxbnzNL/Lgpz5Cc2YK6xKCzynV+0hKZebOTixcT4yhUQl06UI2yt+Ov4yWqbB5fh+/89wrOPBFzzU1R65gbeDIqhOsvWY7k+95J+nuPSQ3PRNb76N09bWUrrueblBesf8oE7lnmc3pP/endLvHaTQmuOPkEQaygBfYtXWQb7k38P6HLqfkDLY7wy1uL47AmjVrufXWl/4PfRcm25x4/FHqD3gqWuXjI1/gY4vvQmyF80vfQ0cq7HhsjmfsaXN8cD+fk6XkqqxlnpcwyvMo4zB49Zxo7GHoy3+KinJmyRL2bL2YcttTd0PU7AB2YCUDPqWsCSmOoJYjwElybLqbF+cdEjnOc298MavCfu6uXI8Cz5WcgYmP8u323YwwwvnWaV76zaV0h8epzsxjQ04y0s+KoSaHuYS1j+2iNHuevVdcxytf+vPMlNucOTPFQ5OO6fkuo+2cW051qaotFpoYApkoQVoks7Pk554gnN1Dnjg6rUlKZw/RqIxBKWH0Zc+lfd0LSMdGmZx/G2eO7ecrc2/mU7vTAuQIiRWswJWXLubQ0jJ9Fg4ffRc+eNbUl3Nt3xDfmvgKH97xMewjH2Pnpz/Ed6bHSQJkIqy95kau+fGfJSn9817evnCoUr3nHZDWqez8IJI1CGk/WhmldenraG96+X+IEsgfErSnP975m7+9AEJQwS4ALMUqqLpYOmTAeYO3+QLIsBoBlIgWShaIBuiB3sjgMMZHkkEkdEbi+hvUFcAjUgTTA++A1agKJSHQFYtABKZGI8hTC9IDk08BxviZiSRIhWA8NgheiGOTEK8pBhMMKgFFicjTgAaM2nh/QmEHAQxquhAs4cJXm0go7FFQHaEAn4rxCYjHFyDUEEAtQXyRKBFQLf7WAgiyAATjGHXBF0EK+6kQJP5XD/wXZ4gymglE/mUJ1uOCKYA+T/laetQsXjf6MBJUNXnhk8LmEpvaS9ElD70wyRPBYTy5IJJHIqEGFnwSYiOCwp699XfB7mqAULxSREGFJESPZiYCUIuSfc/c0gU2JIJugCAe0YI69H67EB8R+FuN9qOI4Xg/4CSqOvGUEj++4PqppyjhA+k5I1gQiU0/go224qkfWY1gfiFW/tEYjMRy3IIPRU5OKOyjRVz6YiwSYw+DCaAmEn4TCuK1cH5dSBj0PjMqOJ+Q2y6YYi7RC4eeP4nfMf4CH8ayZy8BG4pEvs3QIlHy1PmJBEmliM94bRdiaSQmL0hGVK8XDFvM/afi8R/bSLAaYhInaEFg4jwOJhJZASQYBEOQfME/Qbgg1gr7CheaCSRgQvR5sDkWRUNUwUR8/A1R8VTtJbUMQQIuKEEcwfiFuWsUwBBMXtAqLdbTwnTBoCihKM00xWcAKjHpZbQY2wJriXEQFtbd3iAUE+I6GZMmvXUhrms22OjLXjZLAi5IQZY93sQ4CsUUtMHE58AF9pGCskajxglhJBB6618vflCs2oWxXeg/kZz/9Dvfm6D9b1Hi+DeHPs4DZ+/Dt3M2nt/I7oHd/Nwz3sThLzVoz2d02zlrr17EmScf5LHRzcykg7xpyZNsrLco7/44NoEZezVvXLSWhnp+5dQDjO52VJ7sQ8RSbq9ncMtLKS1by9z83UxNf5pKZROl0urvf3y2zGA6yAcPvp/NR1aTMEBWhjNnTnPx1ktphAYlW+KeibvZw09y2cFHWDR3nvn+fqoXXcz4+I/hS+8htLZx6NzVrCl9h/31ZVx//mvcUKvglj+Dd5+eZMdwnfHl/biLR3DXjmO2j6CjZRJr8Y+fRx87j793Av/ENNMTx3nsG5/l7tv/lIn9e6gMDDK4ZDlrb7iFvadneeTELI8kq7nl1BdY1zrKlnrO6n7LkjXrSStVGlPn6F80Tv+iJSxat5m80yat1hhcspwbf+YtjK7ZQLnWz02v+2WCz2mcn0SMIfcZtqN8fuRH+fbgtdSM5+flYV6djzN0aoTlieVMt0nNGL5y8iMcO7aT6l//NX0HDzNVsnyLFvu6M5jxpRw7cZTP/Pn7GDx/mhVnP044+N857o6yo7SCvzzwEFUfOLNoEUe2rGXsyk9x6epn85Jt49z5nePs0F0oyjxlLt/xAhb1lb+7FT8wd+I0+UefoHrc0PFNsMKTN1zNt8mQzpOskwavmOwwfGIP7cpxkmSei80pLLBLR7kHZV4DK7rT1LEMJqO4pZejJx+hPjPNlo2/wIbapaxI17FkdBUjDvo7/TTKZT5Zgrf6Nvdqh2/Wd3F44zz7F82zc6DDtweu5EiykmX+CB9ftY6N1bP83ZlP8gsX/TK7j9zH+qXbuCxfR3bsKEs2bWL14ElMpcIxs5LZIJxePMrxlSvwNmHvk7vZd+RJpqenecHNV5BP7uHIxBx/NzDALt3DIbOP0zZjN8cwIWWR9mPSOnZwFWbpdtIlV1BecT2lTS+kvPaZ6LJnMHWmwuHdXfbee5KJfZcxdeA6Ng1/ig0DJR6dGkYiLsKqcHqyxYp9DW5tpoSlV5E3vkTH9vNgo00aJnnOsluorbiWreleVh76Fs2TjplKmZmJk+z9xhdxaYmRlWu/746T/+QQIVt5E9my62hveAnu3F4aN/wXyk9+ivTQXVQf/TMka5CPXQzu3y9R+2GJ49Mfd3/pW5ieKiaCQaPyWgBqLf4ZBC9aqE8RWMcSmuILBU54KmalAGrxv2xRJhSBeVQjYibeRBDRU+BM/JIgqAhBTSH6arwusRRw4Tu9a2GK+6EgXopKwKqL3zJhAaSp9EBQj5hRkIMIPKUA0VoAy6h6KEFMQQSf+hyVheE/BWYMVqNSJgv3JYUttbhWcZ7CXoaeGlF8j0jEVATrYwmg9uzXA9sCanr3WZzTxL9754k2in9HBcvG3xB92vudKT4XkxMwcGEMFN+JLjPFNZ4asIoU3oh2DBdcLxTXUolrIyJF/ETCErP2BXgt7jcShFgCmoR4Dr8QZhf4RHtDLgjrwj15MB4u9POCvSP4RcwFf/c8oIho4btirAWiNRIiBzMxYuO4CruYwmeGp3yNYkxU1eJwi3sxAaSnCBURXMSAxglU2M3HuVgojzGeo61NoahBr+yyp8pEX9tgF2wa/VjwEikSCOIJ4uP1CzJj4CmCWsRnMFokGwozFONC4hoQ46j3mS7YSk0kSWri/YTiHoLp8SMpkkE9MlnM+d5iUdhHivkcY67wn+klb4r5R6GGelskEaKGX+QdirnU8260k6gUfihiqTcXRAq10BfVAi7GBxLHjPlHE10iKZJYdilF/ESirqgRouIUkx+9sfUOFf2uuRw/Cwvra7R3jD2zsF6Z4p4WnPKU70XRnq5frFmmIHDBRkInwcQETpHs6vlwIQalt6TH+7Jqi0RAb4Hv3W+x/hBV1wW/LoyNBf/QI8dFzO74n5Q4/psnaBOt07zjkbfRDV2uO3MtlbzC7iW7edO2X+Kxu44TvLJodR/7730Q336Ir/Zfw+pkjt/qvpvSobsIHc/EI0OcfN07+PNOzsvPHOeVj6+n3llKqztP+szlVJ99GXa8xtT0p8myE6TJMmZm76G/73qMKSPy/ZU5bujfxBdPfZGWr7DkpMP3DeNDzrGjh3jNM3+eHePP5O+Pf4659Nt8pvZmnnP0IdYePcxXKil79u9n68XXY4ffzZqtO/jGI7dwPr+SJ8a6XHPoI0yVhpkd3cbGcsqIcyTFO9sksdixCkNXLiG7dJi54Razp09SmUpwZwLj7WVs7LuCDcuuYWriGHsf/jIHdz6ITp9lsTRYOb2P1Arrrrqe5//Sf+Lknp2U6/2svuI6Dtz/TVozU+SdNj7L8FlGWqlRGxxm1fZrSCs10mqNgcVL6RsdZ/nW7bQ2D/P/pvfy7dptzMg460eqfOgnruDyiWXUs34kwPxVo7gaNNZ3qC8bYNA4xh96lE6lQopQHhnlrBVO7tvFqX27SNtN6udOMnQ6sOpshTHX5l1n7sWqcqY2yHcuGiRJ38bw+BZUlWrqqJ58gKzbpu2Vz3W28Pd7z3P7Qyc4Odtm+7IBEiPMPLSfv//A21lR3YzB0qxbXnfzYiZLhsEzJS4+U2HT0Qr5+bliois266PSWczLZo+y/skHeGh4LWc7s/xluU6atbgs6ceUBkhX34Q/t498bi9+8ghu3aU0R3ZzfvFn+OrYHn753Foe62aExDBy/TL+4pk30xraysfcBu4bvBxvHO9+4t287fAf87XG5/jbmWNMnjlK+Y49bDlQY/lBIWs1QeF5K06ypD3L3PK3sXTvBFfc+d9ZFUqMveB5nDvYomVyOqFJoz3LY7se4vzkJDabYsnUPM6ewc0tY9pOMm8bHJUpHtezTM0P0clyus1J8kqZalFu4bM2jdlTlGt1lqUJGyolxvIupTzj/NRG9Pg4W7qOo0mgKdAVqKjwnFZCONHigDVcd3wbj/TdgTcDtMIAnzrwfr6490ts6P8NNozuYujAAeyk4XS1RNDAid2PcuDerzG2diO1weEfeA35rqPUT2fzjxEGVhGSGunJ+5BsjuT0Q1Qe/TOkO0e+6JJ/l0TthwTt6Y9vfO1rLCRhi3K2HjDS4qFttSAMJscXG9V70H8BFksey3++i0jEa2ihvkSipxc87AsFAoOV8FS2daH0LmCwBNPDD1qASc9CyVeBoRfuG0GMj6paUW4WgYvF+kJ1U4NRLYAHWCTuelEbiagNRdZcCsCnhZohC+MSKYrvpFeNIRfYImaOFcHZTizpRDEh7ssS1SIBXZCzQvXQHpi+ALAJEaxrcb1E8miHBaLVy2v3fhBLw1RiqZgJriArxW96oLconZJCWlIDtidmFH6KihlPgTTRCLZ71ETNAl6NZJj4KoPCU2LzOMbi3wJQlp7KErP8oSB4iOAkKwilKXwZEC3ALlrgwp5fwRZgOCoZYDUUvzU9A14Qa3FwPav16H1BueJvCnBqCvVLis+sFEqR0+Kz8F2AO8ZTzw+h8GW8B28igTSS07upHqm3waLGF8kQU4D8UBAfs0DqRXiKRPfiiAvJJ0BAirngVCPRhmhDwoJqZCUjiCuIylNgWtRhTLggnhRTxJ2KFDEYrxPtBj1qbiTa3QVH6CVwLozjwvbS25RVqPIiPSItRTInzqfYHMgsKMIQOZqGHtHRWEpddI9VE+K9C6j4oiK4p2D2EgaxekZdF0iespsS1TJ5KtkQvawLpMyqflfSQyhIpO3GUl+JsRpVfsGFhF5p6lMxWMzo0EsoRDUfDFqURca51yO1ve/KwprZW0N7sbpA+NQsxEyQ2Bmc4jzx/3s+jAmNWNVgYwJIFC0yHLJASHunjdUPprd29OYSBdmT+HwQtcU8fSoZIkUCTHoLTFGuu+NZN/G9jn/zJY5d3+EXvvV6Ds8c4kVHXkQgkN8IP6Y/x31/exCAgcVlZk78Fa2543xwxc/wusHH+dX8jwBonqtzvPPzvOoVL6VpPHd+5SK9pX0AACAASURBVBxamqe9eRFf+NS7MNbx8t/9Eyr1flSVmdkvcerUe/F+ihA6jAz/GMuWvfX7vt/J9jle+9XbeNnfD5P03YSW1tFcvIfrb7iZrVsv5eFzD/JbD7+Vmcn1XH7/Jm574svUa45vXn8tt77shUzP/CIiLfrDp9l3115+tPImjpWHWdc5ypsufQ9zK26kGQJ/sGKcYRcfKtOnj3Pgni+x//5v02k2cGmKzQybxq5mZbqZsq1hJG5yzzTwHT/PHtemsrmP51y2gnKlHMlWpfoD++fC48Dsfl79uffQPf0TgHDrlkX85x1ryW7fj852OZArw4vK6OYhll43DkDjg++n++ADhNOnEBFKtzyP6ht/gSdnD/KqQ23KrRbXPfpe1jUq+MlJXtx3jG0DJ+mWLI9dXGfq4HKO7l5F3+gyxjduYdcXP0u5f4A5m+AVnvmq1zJZWcaH7z/Gg8dmAahJxm+Xp7lkfjHHG0+wqH8Td9dPcMCcpZx1Y1kS0ExKVLM2DWlQ0To3br2B43dMYsvDrMomWW2bHKuN8eup4SywFsOfUKWrHfpNGURo7fkb8gNfZeK9m5jKTvLxPbfywMQleLWIheozFtOoJZREUFXKRvjJ0QFunvgGK/Z/lCemHuG9Q4NwboBrdo1CrUI6G3ClJfhshkr9BSzrm6TaZ2meEtZ+80/IK4PsvOKXmXcjRSlA78ELmZ0jHWqig02mZs/iTXzB+ELiTg34uJiOTF2G8ZGojOcnWd2ZoV5L0cG1VILj0Mwkw9U+ai6hGwJV52gnh5lYeR87d76Q+1ce4Nz8Mp7spiz2wraO5aLM4jDsWdLgm2veTycZJsln0XCIQb+RX8/eSr77PoYevhvNj7F72QBu8TLyzjwhz7j0ha9kfOPFDC1Z/i+K1QsPe2YX/Xe9EdOZQbpzKEpr+5tpXfEWNP1fW3L3r3n8sMTx6Y/f/413xIe25GS4Yn9PzPw6H/eBQcx+mwDe5gvAM/HQteBQxLSKZgEBTxITwGoK4N4jXjlB4r4bCcV+HsliiZX14AvSACR4comkSSRHgotlZ64LvkTQYv9aIL7by8TyJquxTMwXpVOOQEqXjjiSrEJms4JcWCDu/cmwYDwmuAhUiGDJ2wxH3JsTNAXJMb2yN9NFfIVgmwuEg1AiFEQ1FCTCSQtPCasx+52HBCGDC/bgWpvFUqrCJ0LAiJLkCW0b7Z+oxxM338fmFy4SvR5ZIODVIQWYdFmJ3HUZ8BlZ2qatDmN8bMlN3KdnXZMs6yNqh0o5GJzktMUSggPJCGJwGlB1sWmLCQvcxOLjPsICeBk1BWhTQkgJJifJLcFlMYCktxNGMT7eXyCCYqvx3FZjM4RIln18hQA+qmjE3ZJRfTUxhgQET5BA4ubJ8gGCxLgIRVmes/MYdWShHEknDlwTDS7SqYLYGY1g0hstxhJ9nkteUDhFnYdg0JAUypbvQWegGL+J++iC6eB7RIMC/KpBJI+AWqCSCy2rhQIR3yFlvYNiT2ZJAg2SWDJZgF0pSvriXqtuLN1VtzBuJZb4IiHGiyYY8mLPZ6AkGbkmEchrbOAScAXJVYzpYIPFS4Inj0RDwGj0gBqPNU1CqMa9h3mJRDpkJCyU8REQE0mYyeP1DbGJTQ/nBwnRx95hUHIbYqKmKKV0eYm29UXZb69EGIxrk3Sq5CYnqIvluyZQzW1sEW9yQkgATyyODYg8tZ4YW7x3LsRkkwuKNwFxHp+XsAGsmyXXUtxbVexZTYIhs7Fs0gaNHVPFQ3DkarCmG+NHolQoxFI/ISM3ASUSROddbAIiipiMbq8iIBSJHI3E0BgPwZItkOb4eVVatLUMKKnmRYMki1jFE4oycihqGQvhMZY526L0MjWzdEmxkqOhRG48EkrFXklLkNi2BZXY+TRPyG0b1BX7+zzRI45EumQY4v7PuA6gMdniifseDUIucZ785jve9j2fR/+mFbRHJx+mkTX5yIEPcc3ktfR3+/nyyi/z9qvfybc+fJjgldpQCihzE3cybfo4PLKFD6z+Cm7mICfuH6PZ9+v84fU7eGDIMtD1XD38F4zcuoPBTZeRdzqcObiPs4eeYNWlV+HSlHJ5HSPDrwARGo37abUex9g+Ws1dVCpbn7bMquqqGGPYd+wJxru3YEKVTu0Mh4/uZ2RkjC3LtnLr8hfxZPurTE+1ePHuA5Qb8yyfnuZL3ZyzZzcyOrqLvtEm2559G08+Lmxof40PLf8J/q8n38uDMsqJgXUsOXUUOX6Ir3/wj3jsC5/i/IljiLWMr7+Ii3/khWR5m9FrtzJ4y1Z21srcf2KWRSp8QzybXZVrtc6WcwmlY560XMMtH/jnl5ABp2bavP6T32T+3FU4Y3jfy7dx29oxso/sg07OZK5UnJC0PK1lNQYXJWinQ+v2j+APHkA0UPnxn+Tky2/iHY++nT+YW4t3/Swz+7n48lfzo2scPz79cZal55ntLzGxtMr08DqGRn6DkCvN6fNMHj1EtzFH1m5hWg3SrAvtFufu+TzjT3yZHaM5l/oZNnZzzszt4kh9jv31Jt9JjjMXZnE+Z746yLHl1zI2JbhwDlHDsb792EqH0cNtdrhVrC45+moDJJVhBsXyPBL2SMakgzvTwCYtUXWGtGQxS5bjD+6i/OAk+3Yu5xOl5+KMY92qARbvWMZxiQ/a9SXHqdzz1iWjvKxc42RL2VW6iPOHL2f61GG2HRgk9ULNVZDqT0PwJNWbcLZGyy2jkqSs/cLvg3W03/EhGqHGpuvH2XDNIlZdNsKiVW3y/d/kxupGNusAF23fyDVXDnLp6c8S5q9kyuWc7KtRydsYk6Mm0KidhGUNyn2e850a87ZCfuA+ao98iFPjY4y/8EpqBx4nkT5Sl0J3nlSHGZjeyMaKco3s5fLNn2O4XuH+xmKecIHdpcBsEihnJWrnLqMztpuWTFJOd9AI9/FNt48VE89navAylpzZy4Zj+5llkPn+5+PzGU4+/jBPfPOLdFqLmDplmJloIkYoVRPE/PPiV2uLaV/6OlqXv5ls6XWkh79IevxbVB/6r9gzj9Jd+3wwP1gH03+Lxw8VtKc/Hv6Hb6FphySdQ0hwrhWVmUJ5icDT4UTwtoNNWoh3lCTDSGyCUTJtUINPIrhOfAk1HmMzBKFfY/e7sm2QOYlt4DWNKpMorjIFtktabDQ3Ejvsqcswauiz0wQtE1xAbYbP64gEUsnAeEJSlAGZgDNCgi022cdMchCPs23Aosk8QSuI9QTTBSzGdRBRSm4WHyqIGko2p5RMRZBkAiFt4dThVWLW3OYF8CvK3lwnNrtQpaSCCSWCeKrJNAElNw5MFkvKTI6xCt7G0rnyLCGUcRqw9MoiLeXyJLkEUh/LK9GUihfy8jyJKiKxvAsTSXIQAVESPKW8j+C6VGmTlecxLsf6EkoFbzKshUTmqJoWue+jpDaqW65Drg5nMlI8WVGSFySWvBmfkKrFEXDJLBoqCA5JW4VOCLY0FxUGX8K7DIPBqMPYLiakDKbTOFGS3GLcPN4KVZlHbE7FNGOGH1CXY4wgkpG6ZvQvuqDiivGI6+CCQVwHMTn4lCAWi4J4RKDiZqlIVnSpE4yJcRkkZvytzbHBYmxGIjkDdpKc2AVPTGzMYsRjrSe4LonJokqqKSCkNkNRrMlRMZRMjpTm8WkLg4vqAmBcB/BYm5GYDDVRORZj8ATSpE0qHdTXCa5DOZ0m+CpWLdZE5RSBsm0Q8losgU1alKQT+40Qa82Mlqgl0+RJZ6Gxh1jF2oAYjysa3gQxVGyGk0j+jZYYqh0CBGtjo44S7aLRCzgTlTxrumTWEFv1RNV8gCaSzIG4+IlVnIBNmqjrIhiM6RSKjMUZCxowJse6Nta20cQXa08JZ/KCxBX7wdSgNsOUpyhVpwjtEYx41HZQIxgEI4bc5ljbwUmX3FgIKXXTInVz5AZc2kZcp9DgLWXboW5nsGkT0jahWyPBM5YcpWkcagIur4L1UV02AbAMp5PgSwsvCkcsanNSaRN8faE8tK9yDtUEn3QjIVMDLqNSm4J0jiyvkKgjcQrJPGJ8bEYjAZM2iWossULBdpFi3Rx0p+mEIUrJeRLJyazFmYC1HhscaZIVHXgtRnyRWLMYLEkw1EtnCZVzAFiTRXJpY6MR8SWCi41xpFC/q8kk6gKmPIUhYMWQ2A7edUEd2Bifie1gxWPwDNjzNKkhKEl1AjTu19/xzJu/5/Po3yxBm+nO8Cv3/SL3nf02WdblirOXk6UZV115HasaF3PowWhMn3vWXdnl5J57OVhdxRsvzbj46IfxjDA3/OecHlzMb11SZbUI7zKvZHDpVsbGfhKA8U1bOf3E48ydOc1jd32axes3Ux8eQ8RSr11B/8AtTE/fwdzc3STpcmrVyxFxT0tktg5fwl/mn6Tv4C6MmcCyFi03eXL/XlasWM3o4BjPXXYrLJnn3H3HWD47RZa1SIzh9MAY56fG6R+4g9GxF9O/7SbOHTjH1ac/x7l0gB87+3nSYxN8ZNLxwFyDdTNn6czNMLZ6LasvfwZXvPQ2Fq3dyNqrrqdRH+fNn32STzxxlgeN54llZa67eRUXP2slYf8ssroPpjvowRn8fWcIh+fQRo7WHab8/QHSoMrXDpzgZz/2MK2O44p1XT7+U89ipbVkH30CgrJ3aZ3huQyfGA4tqrL11pW0bv8r5v/4D/H79oIRzr/hVfyn8a/y8UOfZP/wr5LZAcYmfpsb+sv82ol72HDvu8idsv+i9RxYAbr8FtZv+ADDS9ew6rKr2XTjj7Bo25Uc6eR0jGVodBHVSpXzxw/TmJ0hq/XTMpZOWaE8B9UqHZPjfc5kUuae1ZvZteV6VhwbZfzMbqqcYXO2mOuz9bxw/gbWdpZRNnVatks/A/gQOJWDXyMsevWl3HrDWjrG8LWjU1S3DXNwrsXb2ud49sBBhsdfSTp4JeMPfJIbzz3Ohhdex+ObxtnX7aLAkIdtD85x3eMt0q+d5es77+YD8k52n3uUoccPMjadUrXKdUOHmQ7Kmku+xFhzJa8Y+w32jxjSFSmb/+pdGBGqb/klFj/vetZsH2NkeZ2+kTJ9I2WGli1ixTO28/C3P8ESVmCPdwh7AqPdO1heq7Nlfgfr3So+e9NW6tPnkW4bo0reaTLvz6MDM5wrn+TksiEOb7iWc+kQ5yfmGLrzPczNHYDKafy++5CQY9JBjO2nlK9jaOJG1jctyxYdod+OsKsDYSBld+hyHIGZS6j0VenqnRg3SB6Os3Pbap5/5Xpu7ryHub0Ji6cnWHXjRo7Pnse4Ybw3nDt4N6f3fZ3TT85z6GHLnq+fYt89pzmyc5KzR+bxWcxOJ2WL+QGIW+hfTmv7m+guewbJiXtIznyH8uMfobTnE+QDqwmDq7/vc/1bO35I0J7+uO/+T6OaYkstyjagaSOCKRFI2lQkw7omlfp5fHWK4EuUswpUp7CVJviE9fZJWlImSwyp6eBCmVrSpL54JzZUoNqkjeDq5+nrP8HiZIIwtxlTmSGUmtjqeZyA14RyLpTLp+mQkLouwXqSUhcTqtSdEvomYtdDTShpBM3WzUK5hTU5YqFUm8K4NhLiS2mxvijfcZB0cJUZxHWRyixYjxjFWU+lco6Wr2BFqJbPIqml5DNcqU197GDc+O6jqrKyvodOPgKmTXBd0vIMSVYG4yn1TdFRg0tb+EojNjKxHmcDTg3OtqnVZosW1jVs/QylvErbeOqmhYYU5zLG1n2dxvxSxCcgCUlIMZUO5eokPjOopHgTgXNuArXqJJqVGbLThHyIkmsxXDlG2n+E7kCbpOtok6Ii9ONY0ref/tJZsrwfDRE8lftOELJB+k2bcjpFSNo4VUqmQ+6ielEqNRjMlErpFD4bjUS7/zTlpI0lwzhPJ6SIDZikyYiZwoujY4Vq0kVKGaHcou0TsF0wGSPSApODZBjboWNSwJBU5qilE6TVSYaH9zIvJRIXqNXPYcuz8ZUGWRlcjk3a/x977xk12VXe+f723iefyvXm9+1WZ0ndyhIKCCTACDFgsgUYjAGDx/cOttd4PA7Ya+xxwMZrnMc2YBDYYEwyWARjwBagjGKrW1Ln8HZ4c6hcJ+99P1SDLwbsWXfurMua6/2x6tSpU6vOc/b+7+d5fn+MdhDS4IhsRNZUmnFrAaNsQhEBHo6KENJcWICC43UQRlMSfTx3nUK6FEEfLRSuG2Fho/weYW0ZYyXYxsZYERYWgRuh7AG2GowyqlZBOHYat7pEmtaxczVaVEuN52/ieJ0RzdBAjo0yPlbQxhMSx+tSNiMj6pJaJ7QybAHaa6H9PuXKGiaqIu0MmZdREgJnnb2T95BqRWRCLCsm1w7bK4covD6O3UNYIxS/EwwolRbxdAoqRTl9XGWTOhEmKyOFxURwCtdbw6+coZOOj8p0jQSVUrE71EsDqK5CrjAqwwk6CCEYU4tk0sUqAsQFcYt2cbweqrQKmYcfdNDaAVngNOaRiY2wMkSpReAPR88dO8eyEnIhEMJFFgLp9XAzB8fr4KoeYX2RYFgnnH6KIqqjVYonh1gqp3AihNcjs1Icp4cb13FKm5REhHJ6aDfGGAvLHdAIOoy5Z6nLCOHnBNsfx23txBGGWniMtuVg2xqT1VBqtMnjChAqwxMxSmZY1UUKv4/MA7RKQRVI7eHmIYWVEvi9kaD1BqjCwdKKSu00wtVomVHkIY52MNKgZY4K1wm0xhEpfrWHMCla5iAMrhshtIMRBUHlHLlwEGEf4cZgHCx7iCwcbONiwvURjEdbgEA5MRQOfmmVMAmoOUtkY+vgpASlTcqih3EkpRxSbHAGKKNwjcHSLsbv4dsDCi/CyQTSzlGVFZQCkYfk2sZGMumtkmoXhaGsNkYbbSpFuxEy86hIw/XPe8H3nI++LwWaMYbfe/rdCOBE7zhXdq5E5JJT/kneuO9tPHTnPOZCX+tz37iHk4/dRXt1lXNTN/DO5N0ICuL8OobRlfzEjQWbXonrnZNcpf8Rx56kXn8JMKoDnr3sak49ch9pNOTsgUeZ2r0XJyghlcK26jSbP0wUHSKKDrG2fiebrS8Qlq7Btpr/4m+4fvxG/vHQJ5leG8c1+0icPsrTPPPMQWZnt1CpVLm0vpfisq3Yf/cVtLGYXjjHxlyZtpymtdykN/9JTt5znP3PHGMlbXJkKWB/sJsXOY8x7XT5yN47cK+4gf/jla/jple+mtrWPVjOyOPpFz73DL9z90nSXDNT8/ixG7fyCy/cw9ZmgLAV1tXjqD015KSPaaXQTWGYYy4YcxdPbSBCC9NOkM3vTtGL0pxX3vkon31qHWTCTc/6Kn96+zswDy6Tf/ks4tIG54Gnnmmz/XnTHFiNuemOi1CmILn36+QPP0jv0m186DVV3lt6iPU8ozv7e0Qi5CpxjFeWruW/nPo7qic/z2bNoVtWLE27zOx4N1NTP4EQ6lvX8vTTB7j33q9ihGBm58U89+WvpWhOsiJduqUalJvkjkswSHC7XRh2cM4dx99YorK+yMUnn+aaQxtck65yo7WTG/JdzBY1AhGAzilR5jPNf+T9k3dxtH6abOM6Wp7i5JmC2lxIbSLg6rkqN15U530PneRguoFSCS+zczaicdalzeT2W6iX5tj6xY/gnz3J+Ymd9FyX7edTbn46ojY0nBh/krt3fYhK7DC1VrB1OSAIqszsu54jpzpcN36eG8xZdnuP8LfbruJD+iSvfv+DOJlmY67Msbc8n6lwDuufZXxk+zSl/X/K5e0/52DnSQbZRZTtMYb6BfSvvQb3tj2Unm5ze0dx7UueTWvflTyYasY3lhHAhufjZykoTaaGpHaPllnl8KUXc3Z8krXhgJYl6V+xl+DwJ0kf+msG/Xvp3HqK2saN7OxM8Nw44EeMyyWpYaJiMbe9ztPLA0R3mqx7DWoyhfwstu7y5egUZ65/Fz+QPkV6fAP11H7GX/hiIrtPMlzBq95OfRZ6K49iiqMIdRFOUELZku5KxKCVcPT+ZZ7+6gILh9psnO8T9TIwBse3kOpfEG1CoCtzxFe+neG1P4VxynjHPoN37NP4B+/EWjlIuv12kOp7n+P7cPybQPvXx8EDH8OSEbNbHsJ2MgaZS55UCLFQjXkCuvhOjq6tMr1tP255ia32MXp5HdfKUVbC3OwDeHmFSCiq4TpBdYHG7COUwzZ+No5bWiAFas3ThE5CXbco+V1kqY+uLCCNxBFgqZwtwXHyYMi2LccQdkGalBjbsh93MDPCrrtdLHeAjQV2xrbKk1gTi2DlSCFwnJSJnfdTTgOE36bILWSwiVYaS0ikyqhMnGRy7gB+dZWoPzYCFpQ2kO4Qk9YReQmrOU+jcRbP6THAY7y+RCVYJc9Hhri7aocZMkam+rhhF0dIVFZBOD3qYZ9QJZhwfZSdQVNpnseprpAPayivS337YxRxjbC8hvLbFMMmTrBOQ7YxwsK3hjTmDiCiCZTU+HaBP7aEV25BaQltwLIKfG8Tr7pKWD1P1dV4jZOMe0vopIHVOMdY+QQiyMksjeX0IS9R5D6W12JuxyOMh8uIrEFXl8mx2XrZl2jqHNdrUfbP0NFVpksniMIY6cY4bpe55jMIx+BZmyRZjbC0ysTuByl6s1TGTmLshDSuI2XB1MRpajP7sUWXuKgwtuN+EDa16YMEcUQWRPiVFYSd4ng9fCvC9npoR9OszdOsrJBpC6eyjlvvUK8tUiptYkmNXV4dCToBMmgTlNYpFRJXCUrN4+SFJMfBqIyxymm21I9hOW2EcLBVhO21R4WJfg/XabHHP0Npx3HGii6RrkLQxvbbjHnr1MePoqycRORMWBnjE0fpt3YR1E+ytXqEXm8GUVnHcgc0q2sUdkTgDCF2cb02gUoJnRg76GNLMFhIaRCiQARrjE+cpchsYrfAcmMmS6cQShGOLyLcCKu8ThBu4jCio+baxna7SDdm+qKnkE5BltaRqsAULtN2G1nawJddbJEwUznNxJajBH6HYeaDsbHsjObsQerBKl5pE6dwscsxjcoBTOZSiDKFsbCJsFTO5Ng89eYCntfGUjnG6eEGHaQV48gcPINbauP7y9hhm0plA7d6DpUrrMKnXlvBC9ZxcZHVRYQ3RHodAmfIjukjJIWNVALrAr3Ur5/BMfqCF1mIZQ+Y9s8Qzp5hcvwwSV5GOZsUdoFX20DaGUhNtbqMh8Gy+/i2wq6dpFZO6BQWSuYUWZVaaZOJ2QNMq9PU/SWKsRVsd1R6OhzWqVbOQBgRljaw85BS4zAlIsL6aezmPFpZ4MYYOyf0OiOiLQrH6hN6ayQmwFh9qmGXvPCwvDZ55mPJmPHtD6OchGq5je12EEkVAxQyx3L77AyP49sRRaWHE2xe8Gk0+G6C4wwpV86iql1ykROW12iOnaTw+giZEoqMsHYeqzlPkZSRKsf1N0dZLqNozh2k0q9ReH2o9FBC4rgRpjzADTepTh4iNVCrLaJKG5QqK4jyGmPTRzF+F5MFZCZAAmHQIXRSlJYkhUszWGNCbeA6PVyRssc5jvLbUOnihUMcO6FUWufK63/oe85H35cC7cDmfj49/wkqVoVL7b1MzU/RrrSYvmKO2qMX01kZeTTNXFzj0lunuffD78XytvJbY3+PxRId8xZWvmHTu6nKn83t4CWbD3CFdR+TcpGtW34T25741nfZrseWy6/j3IHHyJKIYw/cjTGG6YsvA0BKm1rtxRgd0es9hNZd4ugEltXAmAzL+u7QgopTYX28IHrsAFpnhPmzRrtQMuXw4acIgpCJiSnGx2ZRY+NkD9zHqdoElx47wmKtijizQmfRYthawxSa6p7r8G24I3yAIgm5MjvEi1e/zl+Wr+DhvMIrZurcf3yNjz22wCf3n+e+Uy0uny5z5+uv4i03bOWy6cp3vU5RdVGXNVHXjiNnQyjbmGEG3Qx9ooM+06V4eIXiVAc2Y8TWMueWevz3B+f53a+dZGMYMz57P5fvOcYf3PAbFF9dQD+5jthWZhgVuPN9oi0hl75sOzuuGyf91Efpf+j9pPd8jS/e3uBdL9hk3u2QepfSmvo1AuXyN9sm+feHPsAPPPHbqO452lWL/VdU6M9dwfY9f0UQ7Pu233D//V/n4YcfGP2ftkWn0+Gxxx7m3Ll54jjC0zZ7BzWuLHZwo7qSozuu5Et7r+XxS66gmTS5MSuzb/xWbqheyYyzhcDYLOdLmDxjOFzEdRsc6z3OZd5e7p46wFFxmnCrpHZyG9WJgNOPr6McxYLM+dQTT/K2i3+BXhZyuHUpn43qNJHcKB0ix8f1G/hbn8NMP+UFn/sTrtmEV111DTuuGudLe77OPe5H2bFo8/zH6tT7dabf/gtcsX0na0f386qLjhHWRuVPdg5zh1rc/FmH1oxPzyr42P+5l48vfYa/nf8Uw2KAKTJmvHG8A3dS/fu3YW0eBSHYMuHTu/1Huff+D9Owpykt2aQn12gX6wQbFupUl103zBDXGjyY5Ey01gnShLVyjRMXX8NunTE7NYlj2wyGfQpbMnQmaTXGOFus88zkGEuz0/RxcPavsPHyv6a1/UvovE+5u49pFFfFkmvWc17reDy7ErBl6ySPHppm6NwI3kHs+DHm2/fylet/lt3r8zTPr+MfeYRrXr4T99rX4LhdhpvL7Lr5payeOEgeP0ZlTDC1Zx+3vuUSDv7DAn7ZpjrhM7GjzMa5AWcPbjK/f51DX19k4Uib3kaMLgxuaKFs+R2xceEBQD55JcNrfxoD2AsPYW0ewX/qg6j2PFra6Nr2/6Hn2v/X498E2r8+1g79FqXpI1TtGEsZBsMyWeHSEDaUz2OlI8N2v7RO6KQ0rIiG2oTaBnk8jqcKmFjFLveYqpxjeuwojfIyJZVg6QLfauFX16FQTAbnKQcDAi/CcVqYUpskquNbQ2ShaJRX0L5GqYzQ3SSOahRWzO7xI8Sbe5DOkMzpEdbnaU4/en2koAAAIABJREFUw8z4CVQpwvU7FKLAEoKLpvYjJIyH81TdFlFh49bWqJY2ILGpVs7TaJyipCI6/QlEMTLZnZp+ClvkhE6Pij+kHK5Tk2t0pYtlJUxWlqj467hJD9wMNdFmbOwYxhsiCoct4SkqbgfbgfLcI3gqxrMSpNbYVkbZi5isnSHNBA4FzfpJJqsL5OEyyaBJyV9nduZxwsZZiHbg5pLJ6jHGKqep10/T8JcJvDYmKeOHS0RFGcvtogQ06meoNOdRwSJVJ2dOLVPyF/Em13CdDsbL8Pw+pnAxxsX120w6PcLaJsa26Gxeis5dbK/L5MQz2MEa48E8RT3B8XvUaktsDqYQKsd1hmytnUV6PZzUMCzF1CZPUPbbWEbiVhapuh2cYIPqxDOMh4vYXkKqmyByAnKknRLaGVW7Q2Zl1KprBEHEZG2eWnWFOA8pu5tUShuMVVaIM5tG7RyulRJYGl8lSG8DVIxnwA828eyYIisR2iOMf+73sEVMqX6Omumzs3yKUOZsqhKTEycJKssE1Q16WRlpDam6bRrjy2z0Z5HNTRqleQZplWppHTdcY6htpLFw7ZwgdymXV/AapxgrzVO1u2g7xg0Sym6E4w7xrA4T3gZTk2eZqJ6nWp/HN+CHHeK4jNYKYcV43oBKdYEZe43c6RPKiJnpQ8h+gPQ38SbPoNMGxh7iIghEhud1qddPEIYLKBXTLK2gTUCsLZoTz2DlLrPbHqBU3sDzuviNFcIgQiiNKzMGcQ3Xttg+fQhXp1TKK1T8Nr7TQTsppXCJfFhHy5C6kxE0jmF0ienp4wReBwmkkUtauNhWPEK4K0ngRlhZBVleZ2rmAH55hTwOULnFeP08QWMekQVIJ2Km3KJIHIoLvlpTlXU8v08uUiZKaxR5iFdeYWJ2P9LrUq2eoeoPwI9p2DGeEEgrpxvXkEZhZRWqjXka9gba1ljGohx0GJs8zlh1mXK4QL26ykztHJXSOhibZrhCbGe4BghGRNEgWCYXOYGOKFybktsia+9ktnkMnza2TIkdiVdaZ7w2T1hax9YWFi6unXLRlsfZVj1G3xqV0pbtjMBbRvk9FJpSdYGwuYryuoxZQya9Ho7fJr1AuR2beorq2BodUcKye/jkOG6PZnCe6YlnyJSmFqxTCrqoPESqnNBbo8jK2EZQ884zO/MMNb9DoW2khIrXZZhUscM1pmeeZKJyFG9iAcfvEXgdKlZGJehT87oYZ0gR1cm0y3h1iWpjhYlwhYozKgVFK6KkRtWOkF6PrZPH8UorWM6A0vjTTNvnSBoDLKtDtbZAqxwyO3aSurdBNVyjXD7Fzr3/8XvOR993kJC0SFFC8dqvvgKjNS88cxtFmrMSrvDOH/515h9qcfieRYKaw4vfdDHfeOA+jn/5g9w6obmu8QDaqrAU/DjPfOFe/uuv/z5TCv7i7hcj3JiiPEHx0i9j/O8UVVkSk8URn3vXz9HYso3rf+itCCmoTs5865goOsLZc79KkpwANOXSc9m27Q8BEOI7F3jaaH7jrnew7e4WsvTvcO1L2X5DgyV9gHPn5rl4z6XsmRinsWUbS3/6Ph5efAqKElJ0yWwLpKQolXjem+5gx6UvBMA9/nmCf/hZUuMTY+OzwR9f9CN81r4D62CX81Jz2XSFn33BDvZOfXdR9j8yTK4xWUFxuI1+cAkSzd1k7FCKdxVDjqCRouCW8gFa2x/lT+Z+H/GlZZjysa6bILlnkdZ6zDHPot3PuO3Hd9MtFuj82i9jnz7PPVdIPnuLR2TBnrFbOBj8CAkWbzfn+NkH/j1uPiDzyzxxqSStX8SO7R/AdWe+7RqLouChh+7jwIHH/9nVC6qVCs2W5vJkB1ncY8yfY9V3+MUrPM77gt/50gmuivs41Z3EpGgp8HEpsoj1jSc5fv7vWGrUQRSUrCaJHpKTgJIcn2hz/xUbvNS8jjde+zaevGeB9qEua94mJbvHQcvm8aJGXnfJ0gIzLNhmK27MFH/va/4y0oyZAPKEdPVrBP/1J3nXkd8mfuwoYysW1bZkYfslhO0e9z3vlbxKPMNPH/lDLKeEiNZ52rkW8fQS1uMZSINyDc23bGXppb/LLx38r5zuncRHEZmc3WnObYM+t0Yxc895N8mul436qZRDkec8+OH30DhTZmf5CgqTg5Ik6QDvkhm8l2ynsBVfXVnjxBc+hUlitLK4+5Jr0TNb+OOpBo9/5fP4fkCn3UGnmsFwiDecJhNdjOijRYR2JFO6Q906ROnK8wSRQ3b3m5luXkX5mw3jQLckeTrK+HU9JB4/QjD2USAjcS7lrU9UueP+e9CpovEn70ZWJzm/YXjicx9j7wt+kIVnnuDUYw9geyEv+bnf4NA9A5QlcX2LhSMtbnrdDlZO9Jjfv47WhmE7HfVTKEGWFFTGPMa2lZjYVmF8Wxm/4nz3wChSvKc+TPDoHyCKBFGkZLM3of0x+s/5FUw4+f845v5Xj3+DhPzr4xuf2I228tEGq3HodJtEeUijtobo2bSTEkYJXD8Cr0/d9OhYI7S0VcCwPY2orOPZgjCPcGJD7ooRaVqPiNOZcYmHZSruGrlxyZWFpwdk0qKPhy0ynEig3AQhJenAx5MRiXFJlEXZ69Ffu4R+WkEGC1j1JYSGmmZERQCGaYW48KlZmySU8e024bLkaGmCNPdosEpuaginoOpvYomENpLOYA4Vl5hrHsYIQ2p8yC3crsZVA3JLsZBcxHTzLJgcNZBs5E0q5XUsbcgsicpASU1uwTBr4Io2EugXNbKNcTJLU/VXKTsdYmPTHk7SbCwAhi4WUXeSktPH9frYFGS5D/0ybnmFQo2MmYXQpOkoe9eP67SyKoiUMWeAG/RJZYwASlqPKjqFoRAVeiqhXDj0xJBkc5aetNECtoYLSMtBkZMmFeL+FEH9GSyVj3y1MP83I2xDq9tE5ho3TLC8mKKw6KYlbJUT2H0KqUmMoFoYhFQMACksXJOQCBcynzzxwR7Fo2trwijlVH8Kp7lGTWpcGY/6bWILyJHSUNgCctBICiXJhEPYKxhUMjSa3vp2PK9P1d9gvTuLpT1M3CScfAqRFXhWSqMXgZG0ag5cAKsYI2ibgOX+FBYJnpFMVZaJ05Ci1MfXCSutnQTVFaJeA5Mpxuobo14/bcDOSIUkLIYYpYhSl1ZvK5XSKpad4ejR626iyb0LpE8cZO6w3q6SRhV6JmTP3KMIHeJGBWeSGbSEifI5stTDsQZgQzEskQQGRw2xUgdIQY5Ml8kFytUURUCSegT+OqK4wGswF0B/uUQaTR655MpnPaoTOg6h6KBkF8Ih3bV9GDfCrp4jNwW91jYUmlplmaX+NDJSzI6fwRIFVmGIlaSblEmEwRWGXmeWMOhSIsUONkegi0FI4aUImeNnBdqSxNQZtMYo1TosdJsIkeKW1pl0OqjcpZ15+H6H1fZFjJXbOKqDZtQHqbRDpCWuSBmxehS9XoUk8anUWyipWWtNYbSHY0fkhaBaWcMXA6QpSJWHLAwoe9Q3KfpQFCgNhTUyhQ76OUPHJTI+/WGTZv0MvWiMplol6dYpMhc5uYJjNDKGblmSdcfxvD65dqnYHRCGfjxJIQfg9shbs8hgibpbIDW0ihKeHWEbg8Sm36vT6Y6ToZmePkxOGZN6eLLN+mAGN9xgTHQxFix3t1IzLSrGYcGq0B86zFRO006mmCqfRQ0laTBKmCVxgK1LJDKjG5ew7R5BsIknwErLtN0IpQ2qCEZwFpWSCE05EZxuXcRk7TSB46HyGG0JnEHOYHWCp61dzLkLFKWIihejihFcxpddcksgc2itXUngr6AqbWyRYKUabY16Cp/zytPfcz76vhFo2mg+f/YuPj3/Sf7DJT/Nrzzxi/xQcgfpQsKjzUcZs7byqvTHWTzcAeD2K+u4Z/s8uf51Gs4nefb4WeI9r6F1yX/k/C/+PG/6z79Oz3a4peTzslM/xxsO30NW3YpwanRe8XGM+93Fy4lv3MNjf/tX+JUaw/YmN77ubWy75kaE/KaxqKHd/jKLS7+D1kOEsBHC5uI9d2FZ1e84X5RHfPzPfhFzfAV7+s1YSZnu5BPkJh3RZLKE2vJZ8mEfYzQyk2zb2KCSDnjqJVuJ3a1kSYXn3vJs9u0d4TjVxhHcL/0ka8OQueQgq6pJ33X4lW0/zWVjN/PGLRM4nsLx/+fBBp0oY32QMufZvPWvnuDEYNQ3tQfJb+AzjUAoOSK4KlBvuYTB/g1OPbjMOUtRFAWlG1O8z/82u55YxtLwRy+XbHvZWwmqz+e9LYu+NtzqCd575s8Ijn4aQc6ZmZCTO0Kmpn+K8bE3f6vvL88zDhzYz7Fjh2i1Nvnm7RuGJYIg5PJ9VzD9jOHw8fugn3B581b6luSd+xSvPBHzwvU+ym/wTbLh+eFhToYJjViSn3+Eusy46I4fJunOIk7HpHGfIyzy6MY3CKMNPJOM7gMBAntEywruQKlxlpSghOSuRs7ixSX0bMg+y8bq5yw+vkp3mOE5kr8pNwg6KWrQQ9oBQ9XlH05/iNikCN9lYm4XK/MnOLDnSqznv5wfm38/+1bup5q2OHnbnYg//muyRx+mM1Gi2e0w+7wN/FqOkBa92jiPRi0+UKtyyHWQCOpug7V0k53l3Txr/AZeNPvv2Fb+p6xPd3WZRz94J5fr6wnsKlIohlmXcnMM8aZdOP6I5Njr9fjwx/8CnaY8tu0STkxs4bKxJpf6Hm/1FQcP7uc5z3ke99zzj5w4eoIkj0YLAKOwcUC1SY1F6LcYtxbYeu8qH6+/nPHJq7lWC/YVBYET0LnA+fpGY50/H/9r+vIUYDDeTbzmPps3H7qX6TfsZnjrr3L4wFEev+uvGN++hxtf/3bu+/Cf0ltdYvfNL+TS572UoFrm5GNrTO+pkgxyvvaBwzTmQtbP9nEDi903TTLYTGgtDhl2EvyKQ2t5iBfaTGwvM7Wryvi2MmH9n2V28gjv6Gfw978XOVhGFCnJzh8k2fVSZPsU8RU/Bvb/HBX1/+3x/weB9lu/9VscOHAAIQS/9Eu/xBVXXPGt9x588EF+//d/H6UUt9xyC+94xzu+4/NPfnQnsaNHzeumhMoV2m6hOi7VnqEdFsRlAaHGTgWgKfQIviH1qMWhJS1cy8ZPYhSG2oqmPS7QSmAUZMJGdT1U0LvQ9A9OCs66pDc5Alt4SUHhCApr1IqkRl7ZaAvcgSb1JNGggskc/Po6AknmGFRm8HuSYdoYleyojER5SBUztpyzMSVH/esatANoiRVDGmpUBpntY+loRKlLwcolhQXuEEyhKUojmEJuB0jdx4pAWxd8iuTIq8soCLswrMDIG1citcZISWVd022Ck0DmgJVC0NX0miPwhh1Lhp6DFVuYUv8CIl5jpSOhC6Cy0ddZfZuoDJbJGfbn0GGHEl3cyCaqZrhDiIMLtEQDdjKyB8jtElJHFAJacYNhUmF76dQIbJEzyooLD6X7CMAaapLSSGQjBF4fZCYJejCsa5JgRO5Hj0Anlh5da2aNFmFCiBHooFAokVHEPlp6uOQUXg87lYjEJnM0m3GVitwgFJo4FKicb3mKBV1BrgS5rxGZobBdtGXjdSPS8sggXGQCO8tRGtJAkEmBKVy8Ih6VL5oRFVPlYA0s+nXA1ugLc3ghDEUCPt9E+o9gG5kjRkj/BMxmiaHj4jfbWCkgClLhkStJORqQeSMs+fLGdubkWZSlsBKLOOxT24DchjgQGBWSORZRLGi3J0mkzV77KcIhGCXIYof1nRqbYrS+MBI718hUUqiQ3OuNaKG5xChNYV8IYsFIYeR6RNa0QFuC0qpmWLfwBoCl8YYSMhgKh0G1SZANKcIW+gJEdYCPosAmIyvqGDXENjEykaTdGs7EJkZInKSgUGCkIpIaWwDaQZpRiaGdCbSU2LnBSjSFJVADhfZzYk+QDqYIjSAqrRLnIUGpD1ojCjnKfqWQO6P2RBDYqcZIQe6O4m306j/5swVtQ67GKZwMYwYM0wpVFZFbEbEVImWEROP1Nbljje4xGhT2AEQ0QtNL8KKCbYcN53dZpL4mt8GOR3EbbkqGDTOKfcCNQWSGtiWoFlBuG4JYsDRnkMUozuMQVGYwSqJtUEhEMqKgZt7oLzOAlUjUQBAmKf2GInElhbHxswSrL7GzHOG6FDJnWDKo3GAN66xTJR4ommNnWW/NMTU2j8xHMR0HYLBxOhbYKVlRwSki0noMQuD2BIkrEJZGx3WwYlwdkWqQtiDtSQgMjipGPoMS/J4mHLpsjhfYib6A8K2Rh20ya2Robqcjem+WBEiZUDggrAw7GcWVtgU3veb7XKB95PiH+Py5u/CkR8kuc6pzkh8v/QTLTy/QsTs8OfYUr336nSM0ZmqoK3hu1SbNevTTn2FfbRXhVenf+i7mf/Uj/KfXvoWjuy7hJydqvNR8hfW19/Hsw2XszjzZzPXIuEX7ZR8F+7t7HfXWVvji7/4XsniI5foo2+GF/+EXqM9u/dYxWqdsbPwNyyt/iDEpUoZUKj9ArfYiKuXnfOs4o0feMg/9w8c4/vnPY5VejvCm6dYOIPIu2oBwHHbNzvGcF7+CR09usuVnfnRENTQ5S6+xeEC+DJAwG5M2bufxM5JT6320gV+z/oLXya8yUCGujvha80b+wX0zO55ssm1fg61XNpjaVUWq71HC9T3G+XbEXM3nroNLfPHwCifWBvSTAtc2TGz9CtuSJd7e+iF2DL49q7WcFjw81AQWDFVKNvxbLj56PxetjhCzd7/5Kna95tf4o/WCQ1FCYQwfmv8TXnT202gJ83MBizM+meOwfdufotSlPP30QRYXz7O5uUEUfec9dO01N7HF3s3m04scOPA+rihfw+7K1QgkfWUIco0UCnQOUtHONznmrBPJjFNiCaULXrV9N43nvxCRuxSPr7OwEVFeHFC+foIv3L+MubjMicMtZqICosfBDDHZOZZtyeP157LPzDEpLL58XcDxORcMXKU0H9g2w+cTzeWBy/ETLX7v6ycpcsONueAdxtBklKlpRYsob5PkihnO77+XZz13GxOnP8yf7/0Z3v7wf6Zt13ji8v/G2of/hn3zJ/CuvZ7+tZfwxJEj7L7qIW5cOEkpHqG1I0+ydMObcPb8PPevfYP7V+4h1zmPrj9MrnMMhl2VPVxa3csrLnoNOyo7AeiuLHLuC/czsTZO2aphMJzsHmD3j/wgzq4mQko6nQ733f81zsyfxAD791zJY1PbmHBsylLwxmaVW4qY84MBV27dxmc+/QlUv4ZbFpxePgxoLJXiuD2StIwocmZOLbOka/zFzAu4xCjeuniI3aVpqrVtCAHvm36Uu2p/AVhoUWZ36zqMuow7l3+b4LpXs7zrx7j/I+/hkltvZ//nPsF1r/lRHv74ByiKnKt/8HXsfvbzUbb9bfdMGud0ViLGLyrz6F2nWTvTI+5l6NwwuatCe2lI1M1GPjKM7FXq0wFbLm8iBOy6YWIUU8Zgn7sX7/AncE99CWN5iLQ7QoiPXU6y+xVEV77t+6Jf7X93gfbII49w55138r73vY8TJ07wzne+k0996lPfev8lL3kJd955J5OTk7zhDW/gN3/zN9m1a9e3nePIB/bQrkC95ZB5MakwOJFN0DFUeglDXzEcg6GvcVNJrwrlDgwqI2FlDHixIrcyiFywNEHPkLmGNFe4VvJPJrNKEPvgJIrMBica0RonTkPLLaHHE+LmSJCYoqDShcQDp5fTq1tMnbFZ25qRhRJygZYad2hwtcBt5Tg9Qe5JNrZoaj2LyrJmcZsm9SVWrMnlyELAEhC5BhkJsHNAkQiLcjtH+6PFYTjQVDc9VudStGPj9TO8vkMeCVyRsD4B2Bpr6FDqxWSeZFACJ1WjZn9tUViS2UWbYZBhFQ5ukhL1CuxAs95U2LEmLQusgSATFiJMSJyR2a5dWERhClpSHkhk5mBySVTNCLqSjAlskZObZbyWjVCKOEjoT2qMGnmalVswu2JxZhK8OKE9pohdgemF+HlENSuIPT1CxscFaQih9iliSVRJ0NYIsW7pUZbQ74zCut0EoxTF0KHaSYlqULgjlL49tIlqGUJ/07jaQC6QhcFLRgvTVElqK5ruGFjZyITYjgoGNYNVCFIbZGFRPVcwmC5wtCK7QL20sxA76dJpCuxIYusCK9ZkgcQtHNrlAjspsHOIhMIVBcZAgU3prEOydQCOJMLGJUHlI9pkrjLIMypFlaFKyOyU2B3dy25PoV1NahuGVXVhAS4pjEPzbExvq8bKJQNbUuvlRIFH9UyN9twqpb4mkxZxyRCkks0xjZ0XlDY1A9sh6GumOw6ZUWBi5vcWlAaKRAcU5Qi/7VNIyfT5lJXphLQEhaVxh5CUR31PArASQ464gH2XmEBSbhX0q1AYgaM1tU3BkCpB2qFTbVC4MVJlaJ2ONhlahtQ2xJURGj+2BcEwxelKPGnTKedIYyi3R95drTFJkGoKf4SCtxKD0ILENQR9TW4rSu2MxJPMLEm6pZzUsZBIEjTdSXATTRiFiDyiFwiMY2AEZyVTNrZlU1kf4g4la7OGwjakLpT6Duh8JLqEZFhTGAnu0DDWyulOzdK3F0htcHJBKgtUoihlBq01WtRw44Skash0gTAFk+cdggjO7EopLI1KFVYGuWPwh9Av26hUYNyUsC3oVwS5NASDkUCvDgSrYwXKgDOAzNOoVIInSV2BlWvCtqHnC7RlcJOcJBAEbYWbu4RpSuQalqdGAnfmTIaxwOq7FGMush+xOKnxEoPulCAAK0mgmhCuwaApycVIoBlHoSyB3ynIFJTXHXI7ZXNCjkixMVSGBZbwaFUKMsvBIqOyKSFOyEqS/rRFqgVWlGPpHKuAuqiQ5IYs6SO0JG86GCOwkoR+STI5rxCFzbDUJ/IVeUWSi4xqS5JbI4uQK98y/z3ntO8Lgfb4+qN00w4fPPbnrPZXeNmZl428iFTE+fA8r+r8INPdGY4lhljDbRXFvN1FJ/+NF4UHiCo7iV/xl2zc/yS/c3aVL938fK4MfaaLZ3hD8ssIIdm38ws0PvsGVG9phCv1GrRe/RkIxr/rNbWXzvOVP/5NsjjCcj1u+6lfIuq0SIYDtl/77G9ldLROWV55D+vrH0HKgFr1xUjGiJOnaNRfzT/+wcfYffOLmX/sQRY3zhBkit7YjTT1sxiUT6GaMRdt28rhw89w003PYc+eS3no9AYH/vuHeOXJe3CNpn+l5L6Ln0uuy8Qy5sHmQda6NxPk1/NjV1T5kfRTlI98lMiZ4zHV4KbeY3yxeSuH07dQOlnh5tfuZHJHhY2FAZM7K9+TQpkVmlwbCm149Qcf5botVb52fJ2Sa3Hz9goTtQH3rLyL1268kJe2nzs6T92Ffoap2Rx0T7N0uIEuDM8bHKY4dBf0l8EOUdP7ENe+jvjqi3j3hOGrOuPHz32CXz7zfhyd0yk7HNl7CRumTa/7HPL8OZw9e5Y0HWWslLIIw5CpqRmOHTuMEAJHBezIr2GiNWCbG2KMRgkLIS4YhiJA52ijSRcfZ3n+czx2y4vo2gV2UaBdl1tu+gHQPrsu286BT56kd7LLlCM4nUHEyDnD5Be8jxTkBpZFzmJlmQOWoptVKaoOeq9HEZSwGO2kO4XhuiNrPOuR9yNVgVeqYPsB3u6dPL78BJOne9gZ2GGdfhzzyqk3Urbq6KRDdvoryN7jTN7QJvBXOLbr9Tz1SMDeL/8dx7Zuo/AcPv6Cl/Ki4CFes/g1PiReSy4Lbt7yVS7pnKXZylmvWdjGJb/6P6EveStCOfTTHr/8+M9zWf0K4jziC+c+S2YybGHT9MZ48dxLef2ON2LijHOf+jqTq01sOfIXORsfpb0r5frXvxmA+flTfOlLnyezLJaCMl6W8eTsdo5PbuXt43U+1+7xwe0zBHnK03HGrfUqn/z4R9k9cT3t6BnOLB5FSYPy1+l0pr+5yU07czkpJ1gqSujYcNvmGWZq2+lNLfA3Mx8jFylgSJ1LmbDfxMtW92OPTfP6udtQsxXmn3mExcMHGLtoFxvnTrM+f5z+xioXP+c2Ln3BSwjr3xvuY8yo9DGsu3RWI56+e4Hu6pBBO0UpieUphDAM29loApr0yJOC7ddM4AQKz07ZZd+DffQu3OVHGNXUKIZX/wQijdDlKZI9r0KXpv+lR+X/svG/u0D7oz/6I2ZmZrjjjjsAuP322/n0pz9NqVTi3Llz/PzP/zwf+9jHAHjPe95DqVTiTW9607edY/69ryFqtAmmb2V45m6G/ZgaAWfS7UxvnqBcCYnEBrHboWl8Vm0fqygI6zaxLpH7AdbmaRKrIMlmqegG9fUjnNwyzdZkHTut0koq2O4SsRqSqJTx0i0kvSP43RYDuQ3LG0O5AU6px8rwEEXVw+67TKysUZS2Es3VCYsx5o8N2CofYGl3QEkHWJlBq5QiT9F6LxxbxtN91O4d1JqX05vfz1LpJJbJEPWbkQs2VR5Ajl1PK3+M9TP78CYPU84sBtZeqlN7UQtfJ3VaNBcHdIoJKpWcbFt19IzrrdAtwBrsRnWOMb91D+nmCtujNTLbojW3Bu0GgdtlpphiWG8QHDmICPeQ7no5tRMf51zHRs1eRs9+Aue8olxZwlgak2/F8Tu0lIdO1inj0amGiHVNUxlqzhgb4jy5sVDVKbxtP0Nx6N2ctxwmsn1UJ6Y4dexuKskJSlOX4XeXWBlWmVI9oqiHqE6T5h4nnAFq2qGc5tBLKOerCDTLyTbi6gY3BlfTW3iEdSsgKzegb1NML9Dob8HzK6xlLVL/JGHskRcNpuVWhuUW4doya05B6r4QNz7EmD1DsfW59M59iEHPZoI1xjJJO+6CNc2mLAjtBnmyTCK62ImDp32UlZGXekTyOuKzh+le0qI+ALwpJJrUTKBNTOL0CXt9ZDxkbD0H36YzVUEHOXFPQWUck0bUNmAw3sIKJwnPKobuWVRhYJrOAAAgAElEQVTYIM1mSMIu1fllgsYuOs0NYhsa3ZRu2WGolxDWONXjkLotQt8h6c6g/WVqnQEdx1DPPfruZcTiSXIpSWcl/npKJgrqy4aesmnXLyPtlJkadyg3drI4+D38ZY/JgWAgXHr1q9kRStYiH69znNg+g5zbydpKjZ3+Jr2OQ58yE80F0vUWPX9IUvaoFophqOh5JTJSptdaiLnbKMavIjn4cXL7PHNcxupkiWzlEbxkHG9sjrUjizQok4xtUAy2oS7filn8Oo5lmD4dkw5arF5UwagyG3IntjyKP+9g1a4ksU9SKcUQb6EbHyVnB2OlUd9oZVUS6ZROLadwFfXlGsXs1ejNL9KxX8pFVQd77SmGcQ5pn4Vgg3yshdNxiCavYd+6zfnaAFvEDNc0y7LBduc8lfBy7PU1ztWrVJdPs+auIS0Yty3yfognpgkH51kVCY2yB+FW+oM6xl8h0idJvIhqvJue6ZI0dlMyLlOHH6LvNKkoSGqC1XiNrKoIOpfQ6C6g47P0Zy2M3eREtI09wQJ5f4mWO02QVrHNEo3WkNPTJRyvSUU9HxpjxAvHGNqfIZcWwcZtDMNlalnA/9XencdJVZ0JH//dtfa19w26hUYQ3FFBUFDBJcZkjElwIa+TV2PiMjhRo+g4gRnHEBV9M0Fn4sdoFmMmRl9mJG8c4jhR40Qg2izKvjU0vVd3V9e+3OW8f1TTkUgQDbG7yf3+A13VXfd5zqlbdZ97zr2nQksTs9vQjSSWfDLFti3kJgjKe6Co6AhXkUaqyMoerGKKTsWDVrSoMrLkpAGkyLkE6EPq2kZnwI9f86BaZeT9Or6yybjTnSSTBgGrnQNSLxlJxW3XUqG70PMp9vuS+GI+FDNHa3gqjTX9+LP1uMvGU9QF0pYfYuUVYpPrqGnTcFkpzMIg3SdYSKagmPegFwShQVCjzSh1VUgJQWdyN/5IESkbw50poll1uNJt9OkT0KISpleg++vItW/G7zqBdHcbuqLR8I1X/uh32ogWaB2Zdl7pWM1r+15hYn81oUwVPitI3ixgYvK7qnUs7rqBhlwdrQWL3UXBuAqVvO91/qs/x338lFpfjl3nLePHnrN4YTADEpwcDbFY/xndg68QFAM0jl9BMHguFFL4f/sAWucalERpWNH21pC85HHM2nM+EHMxm+Gtf3uK9ndbSlMb/AFs28YTDBGta2TGNTcgKyqZeB89e7Yw0P8L5MibKHoRYcvYhoTitohtOoGg+9P46yzSfS62v/qfoE/F7Z2HJZv0Tnobd6a0boWuu8nns7jC1eze1c/C375ENJNg0Odlx5cqaU+ciS0kujxddNf1cn7TXC6omc8p1Y3kWn5Od18r4Z4N5OPtVBXaeD18Fi9qNzEzVkOuO487qNEwNULDtDLKx/kByBsWbk3hzv/YgmHZtPZniWcLKLIMksRlk1upSfZyWdvZpTOKFSqapbJ3eoZXe/+Lfcm9TN72V4RTXpr2PU8olSCSaEVyuZC8IYqfewg9YeAzQSZBSP8OprydbippVWrZJE+hYHgAaWg6CIRCYSKRKMVikSuuuIp0OsUvVv076VSSsO3hbE4mkhV4FA8S7ys4hY3R8Q75bIy4OUDM7mJv80QimSwiUE9PVMewDLRiGL9SjjZQjWUeugu4vAppIagIuTAiGi1Gjt8k0ySKFppsYgswdQVODFCsCpSm4YjSuhd6bj0n7NP4qy2NKLYNVi+SvI108V1E0UC2JfpCRVpr0pyxpxpb8pKVXKSjM7jIruB0PYwklxZqFIUExUInxobnYbAT2y9z5x330eWqpD8UwS0J5kUiJG3BrO79xN75LZHIAeZW/o5IMkZ9V25ooVGJnvoGjIuewjd0g5XW1F5e2PtvrI29RcpIIiODBJZtEVAD+HQ/E/3NzN8+heYD1QS0KLawSZoDHCjspP6L51Mz5RR27tjG62+8imkaCErTn9qjleyacjr7VRcTXTouSWLF+JrSiCmCszSZbRt3MX5cPS1bFtHdXY0sCxKJKoQtI5k29tAi7Fmh0m/76MvozGx7lx2TWtncnCfniiCZ+7DkCiK+O/lSe4jflqt8qmMQb/caWjs3UF7ZyMmXXcmaf3+GfGoQIaB28sk0nTWbhpPPQHMffgT9DwkhsAwbVVdo3zJA584E/QdS5JImLp9CdrDI8NrDcmlKkz+qMX3aAdLbN1NV+B+q1W2Yrgo8RidC95G85EmMcecf1faPleO9QPv7v/975syZw7x5pet1r732Wh588EGamppYv349Tz/9NE888QQAL7zwAgcOHOCOO+445DXsbBxD1pFkFckoYBgWqiwoWAq2beENBEh17aO3bTv1k04hm0khSwoBOYXl8iBLXqzOLeTDTUhanGAyjRh3LnlTItOzH2wT2VtG2K+QTfdi5vsJnXAhwiwiBlopyH5cOsiqB4SN6Qpi2wVkyQX7fwsVJyEHoshWaaFde2AnqdwuAjXno8kezHwf+Z41eGrnYfe34SpvwFa9pdkitoVRSGLZNi5vlGImiWTmMdBRk/tx1U4hly/i9vqGp/RjZCEdQ7jD9PX0E4oG0N1eyPZjSRb5QjeeyHRy+97B1TgdjAzSYCvClskJg0Q+R834s1DsAsIyEDteoVB7Dp7qCZBPguZB6tmMqegYuSKWKKIGPLjUMIbHgxrbgxkaj5TuJplXkLxeIipQSCKycYq2hl51AlKoHts26Nm3hbA3iKdyHCKfIt+2Ec+JcyHbh/BEsWO7yNhe/F4VSfcR6+3AE/agu4Kk4+/hV+sxhIHsriIzmKKiKko+GccS4AtFyKeTKF4/qqIh6V6Mwf1YHb9GHj8PzVeDhEzRGETXIhjFFP3t3WhWhkjTVGStdM1XOt6Hx6Oj734ZKzwRyieR6m3DlY+hNM7AGGgvrYtWGKBPqSEkBlBrpjLY0YruUSjKfWhqGDQdn7cJO9EBwUqMvr0MDBYJuhUUM03W6yPiCVNQvFiWSSFjEA17oJACWSFbAOhEC56AJAdBkuh95xVqmichQrXYVhE52QXuYOm9rfow8xbF4iAut4wmBbAUN4qRJtfXjmRk0BrOgEwfuVSctPFbIjkvkgghyk4A8kjRifTt76Cm+URkBIkdv8aUIwSDftSKCaTj/QT8HsjGSBQ9WMluws2nIksq0v7fYtkCu+5McvtfxB09DxkbOVRXep8KC0uykFxh5EIG3OHSTIZclmxfJ4GyMMnibjRDoATG43JXk4v341ZtbJFDdZVhqhLCKqL0bkHWomDkwF8BvgpMSUXYAlUS2MkOMiJIoLwC27Y4sP11Kqun4fW6yVhdeNU6LMsmmy0QLCsf/nwRZhZJD4CwITcIsoKZGcD0acTbNiFrjUSra9EG9iKEiVHWgKpFsIRBsdiNT60B1Y0tyVhFg0yqi0JmG+GaM9FyBkq6AxEah5GMoWkaVExG5JMUBzowJQX8Crp7HGaxA4s8Xvd4rO2volo5pIbp4CnDLOaxjQxyaBxKMU0uFUfJbkZx11DwTsRrdGPICvH4LiJ1s8nHd4LhQ/cH0H0BZFcQJBnLNMh1v0NGTuN1nQYCAuUVWJk4+cEefJXjKFoS3e++QV7aSUg5Ca/HhafhJFRZIm9rZOK9eIJlpGPdlI1rwkj24i6rQ5FsLFsent3C4AHwRiETA08ZQljIsW3kTQm9opFCJo0eqgDVw0B3Ny5dxRxoxVU/DYxWfOkcYvysUiclOzA6t6A1ngOKC3IDWJaJYfai5gok0zJBJYVZdTrucGmAR+powao+CTPfj5FtRxNhivEY/sYzQNWgmAVPGKwi2fbteIJhUkUZ04Kq8eP/6HfaiBZoC1//IgOFPuarc7lmxzw2GfvY6NmBx/DR6T/AuYkzmJk/lQOqYE/cQlP7uShyP+PkGBI2reko112wgj53FXkkJNtmopZmorSJL0k/xbQGiET+iob6pYdsV+nbimfj0yAMZCOD1v4/5KdcQ+bc+0H54HVbffv38M6//4Te3dvRPD48wRDp/hiNZ8xgX8tb2JY1XFjIqkKwvkB0cpzguD6QBJLkwuc7k0xmfemaqeIE2t6Ksz1eTU3uchS1gYy3jb5wG14bhICEcCMBQalAZW8vjfv3Ub+/jX+bcR6VpxRJx+sQQEEu0O/up83fhlyhcK5/Fl+on0Nk87NU7HgeCYGFzBbfBJ4ru5HKjZPwWmC7ZCafWcl/d8ZZnU6hqjL9WQNNwJl+D+f6FCKpNmYVG1FMwbuendSalUSNIFu9e3kzsJ71gf1M2XUmJ+/dSGO3h4q+LUiKjBLwI4wi+z73RR47Zw67TZtr977Mhb2/Y7+oo51aBEPTfIamIchCpdwKc7Y5kYSSod4uR1NdZC2DnJXFxsAj3IT44HU9trDpG9hGLLafouRjX1UDBW+GnC+BQELIJkrRj6UnkW0XwfhJeNUgQUVCNWxkBGWKxKqA4LOfbSYcdrFk9Q66Ejm6U4VSG8oKdlRHqVOwyn2YsoYqw0SXm4uCXia5XSR6XuOldf9CtE+ivi9EJCGBLGHKFgW1tNCkL6die3QaT5tDdU0NO369ikwiwRuRWWz3T0KTZK7MJDizdR2nNcxCCQ9NqxWCrFQk5h6kGC3wc6/CRr8XghG6XT7yikJQlhgfj1HftpMz9LVMq9tMY88AoWSaSNLAliHv9mB7q7HOuAvjhEsRsk5ntoNNAxvY2L+elr7fMTl0Elkrx6aB9QD4lQBlcoTF679ArVSHJrsQ2GTsFLF8GzVfmEOnEWfH7u10dnWAXJr6l/H42VZeQ6ysily4nOvKI7hlifODPn7SN8hnI0Emu2WKeYP9B/433T0DmIaLdO/ZdPa7wRJkCgqqGyxJKV2LAEiGgWkk+U3ju8R9A6X3gOQlG7iUQnA+FUUPeTPDXa+9RbPWzB65F3d6J4l8jHw6idsdJF9IUXfiKdSefBrVk6YSqqr92Au1m4bFvg39xPYliXdmKWQMhA1m0S6tNwX4ghLphE1I68FNAiEkpvp/jSzyKNEqKieWY0y5ElEx5WPFcDSO9wLt/vvvZ+7cucMF2jXXXMOyZctobGykpaWFZ5555pACrb29na9//euHvIZhWKO+jT6KsdDnH8XxlM/xlAscX/kcT7mAk89odqTvvBEt0NJGmsx/7CAU0/mdsYPdSheVVpBqK4JtVlI+tZLOfR10druo0rfymdAShCyhCJPBooedM57gWwmJlvrxRFNJvuJfxZmhPMVCO6qdoqbmNsKhi0oLcr4/6UISrf1NihMuR+1uwdvyBPr+1xAuP5nmz9Nffh5xO0yyp4tUfy/xjjYGO9vwhCJkBgewCgXEwVPmQ3SfH2HZVJ04lerTZ9ETT6PXNyHxNhi/Rhc70aQ4ALaQsYVEtteNqprkUxOItdyKEBpFOctg+U58VS5ysdJi3D6fHzuX57IXnicRCLClrplN4WraQvVU60Wi7hxmZCd9hk1FtpIDvgNkyrKM76lmhrSZSYrEWYkdKNhYSAzKAVbmZ/Mb8xIUqZxmJOpwcwYKEUnGwkKlNIIhgK3u3TxW9i8058aRMnuZ3BFgemstle1b0IuJoUaVGayp55X580kXCrgkE22ojWQsbFQ0CmiYFGWN8ZUDuK1qJHcdM/LTyfUMohcVJCQkIYYK3kPfmoJS8SqG/m8hyNmQtYu0aj0c0LrJKJnSa9gKEgpCtlFUiYlNJzKhYhKVipfB33XTkSxwMipPkqXLrWBXeFjbnSRj2AiPjO3XsMpciJBWWg9O/f01RJd501xVfgLq4ACRngP0te0ltmcH/e370T1eisLALORQbIm432BHQ4qT95aRD0+lKj+HvK+VqcoGLvb+B7r8+9ued+z1sbH7RDboJ7KxopkuXznX9rUyzwJv3XSEolNM96AGa1FljZywSFhJcsU+BvL72dZQxiaPjJ8C/+/0C6jvO8Dc7FrOiK5nirmDcR0W4cGhC6uH5F06iXHT0P2noJRPpzjxCoQkYwmLn+35CZc3fJbXul7l8W3/B1lS8GZlLmw7iU/lLsTSJRppQhq6E2POStPhHSARKHJATtGfipdObwmBDWyuO4GiWiqzOsqqCUXL+GpVGcu7+vheUx0V7h72tz2Hmn0Dw+hG2ApCCDpaz6B129lsNnWagnG8qjVc3ie0QeLuONvDO8ippRF0gYQtl2O4JpPznoNKDbM2baS+az9l/e2oKMiyikt2I0k22UISVdYoC4+jvO4Eyk5qJjJ5Aj5PGNnn+tiFWyZeoHt3gv72DMneHLZpUcha5JIH+7zUERKCoNKNJRRkSVDr3o7lihIo9+ANuYlLTVRPrcVdFkZ3q2iuj3c921j4UvtTCrQVK1ZQUVHB1VdfDcBFF13ESy+9hN/vp729nTvvvJPnn38egMcff5xwOMzChQsPeQ2nQBvdjqd8jqdc4PjK53jKBZx8RrNRW6AB7Nm3hfUHWtjZuZs3A2/yZfkrTIpOoWetTGqgiEdu5VT3i9Qp71LuStOZDfCrrhP59WlXMGPLNgiEuLCmkp+cWsns6Dt4sr8CTMaNW044NO+QbRmFPPlUklwqQc+uLfS37aMh30I8eBq9nb2cr/yK/+poImW6hg4AJWS5NIwqbBtJUahsmoTm9eENhmk8fQbpgT7e/c//SzYRx7ZMkCSE6gIjjy0pdFSdipLowaqeyN7q6RR7N9EQ7UZym1zQ1EfYeg/VlUBSBP3bPsXA9k8hLB0QmEqabNl7GKqBbculuyghsIWEZFmopkUwMchOu5xc1I+s2RRsN2WS4F0jiCzbRK0oRWSakTmPHJPox0stEAZMQAYEMmlsQpjmdnqkfryWGz3RguhpR2TjiE7rA303EI5ScOukAn52TTqRjN+LJIEmbHShYiDTZEWZJPlZI/dxcfF0VGR65AS1VnR4YqIpSsWWhkSHYZGxQZUkdhZsZEATgqAKAdVA0rMU5SI71A4q8KMis13pAEAe6jUbKBcB6uwotVYZtSLMJkxUWUJX4FeyxX5dsLlMJaVKmD4N26eXbsXrVnn/jEnNMjh9x9s0DnbRXCjiSaWxTYP0QC/CshCaDKZNwWWzsTnO9K0RDEXQUZ7FpVlQMcCBgElMVajrnUX94MnUJ09EQUO2c3iyXRhqiIb9zxDKqBQUnQOqxVs1J/PKCTPw6gq1fhU/FhN2vsNnNr5Mde1M1EgTku5DiTRi2yay8vu7DNoIDGGzr9CNbWWQJJk+K4YcbEOt3U1dYBfjsikqBgwMVSLrkYkOmr/vD0XCVlQGKqrwmLXYniDdJ1QxICvEFUFb0WZXwc2u/u2c2TqeubFTqJXr8akhBALTLqJIKqYkyIgsG9RWYmoSCUgNFaQHP3QEEjmXGwuJdU2TsWSFCbkUk5u7CBT3MN5+mwB9COTSnaqExJsHZjKQKqO3fzyxYoRx8iB+KUfWSjBQvo2OYCdFxcCWrKGC7SAZhAdX0Y3hnk5ZsoaztmwlmE4gIyE0D0ohg2YaMHRXLBWdoF6GquhU1kxA9wZQbInKhhORq7yo5T78jbVI8tEXcUIIsgmDgY40g51ZJMkm0x0j1panUJCwbQmBMtQ6YuielqXRZpBQpQLV3n0kqcXjNqmod1GQI0iaG1vS8YVd+KOlawc9QZ1AhQfNpeDzuEhn8x+74Pwk/CkF2vr161mxYgU/+MEP2Lp1Kw888MDwNWcAl19+OU8++STV1dUsWLCA5cuX09R06Bp2ToE2uh1P+RxPucDxlc/xlAs4+Yxmo7pA++/OV/jN3teoT9VTG6gj05nGU4jxv5LfwUYiK/lJaZXsajPZmqujrXISO8+ZxdyudaS3J1GaNcYVtmBbeYStEihvIFI2i9Z1WxFC4AuX0bN7G0Y+976sh651sg8dBXP7vWgSFLJpGv0JyrTS6NBJoV58ukVSKSegC0Q+gSyM0t1fECQJUHCVoRsJNGGyVTqJ7b0ydt6kM+0nqqTxqQad+SBlegYhJBKGh0p3BssVIVFQ8JPA8HnRwilUjx9JPRHb8pPpPBtsHVMqIHkShBWbXr0LGwtLNinIh19M3CN0IraPLmUQBQlNlK5r0oSCjcCUTSwpjWS7OTMFk/e30GpYWMUcwpYQksSEzD4ykpcD0Xq0apPmzj0UdZVwXZ6AK4MRUlAkDVsS2LaOKin0B3SwgkTyMXoDVXgyETK+IuRqwLbJUERLjCOrJBDuBPuTc9mjFDHULEI2cRteCnIRS3nfgrpDwyXt4XL8+SxxX5D3QuOIu/3kIr7hURpkafj/Us5ENQRGQAOrtG4IuoJk21z+3z8nlIwTD5cTSfQTScSwJQvFssl5NVxFC1fBREil2+0ePJwVQ4f6aY9JQbPRTIlNExKUJ1zEA0W6KnPctHEKjZ15qpMmureKYtsGMN/33pMVhID26lnEoyeS8tdTcJcNvy9L/9iU9kqBLJUKclkSyLLAkAvEXf00DvZR1roJtZAgkuzEjYJ30mWg6KjRJvBWYKe6QNFQA7WlBjzMWn15YWHLEnmKxFwHmChbvJvT8UhFyoA9SMyU/wdJbmOFdTqzlBhFobJbkrnZtZE3zEZ6sblcStFKnoSlME2LYPreJquGCGaaUdV15PvcYCn0mX4QOqgShltHliR22yewSx1fyv9gX9o2khAIRRkaNrWRVZtgMIYi5Qj5u6hu3MfrG+ZTqbeyKzuJN1OzsWzI4GVSvB0zkKZK2snstj5+OSNG0p3DW/TTFRxEFRqmUkQgsOVKhBJi2q4UVYN1+LMmvlwSV1EgDX08Jv1uwunSraqFVCqbFPH+4k8aWnpBpsxdhy1MXJKGG52kXGScVIWnsY7OXDe1hoI2vhk7OYiwDOSGaux0O1ge0ALIvX3UnTQDcWKUvlUvkWk6h0LHbvI9PSgijyQMuouTydlBBAo2CjIGNipwcHTt4OicjU6GAqUvAU3KYaGBkIfKPxlZFggkFE2mYVqUwe4cZtHCG9KpGB/AMm3yaQNZkUprxx0sRiU4ZX4DsnLsCr4/9Tb7y5cv55133kGSJJYsWcLWrVsJBALMnz+ft99+m+XLlwNw8cUXc8MNN3zg750CbXQ7nvI5nnKB4yuf4ykXcPIZzT52geZwOBwOh8PhcDgcjk/OR1scy+FwOBwOh8PhcDgcfzZOgeZwOBwOh8PhcDgco4RToDkcDofD4XA4HA7HKPHBRb/+RN/61rfYtGkTkiRx3333ccoppww/99Zbb/HYY4+hKArnn38+t95667He/F+EI7Xx2rVreeyxx5BlmaamJh588EFk2anDP4ojte9Bjz76KBs3buTZZ58dgQjHtiO1b1dXF3fccQeGYXDSSSfxj//4jyMY6dh1pDZ+7rnnWLVqFbIsM23aNP7u7/5uBCMdPY5mvx+NHn74YVpaWjBNk69+9ausW7eODRs24PP5ALjhhhuYO3cuq1at4kc/+hGyLLNgwQI+//nPj3DkH7R582ZuueUWxg8t3jpp0iRuvPFG7r77bizLoqKigkceeQRd10d9Pi+88AKrVq0a/nnz5s2cc845JBIJVLV06HXPPfcwbdo0vv/977N69WokSeK2225jzpw5IxX2B+zcuZNbbrmFv/7rv2bhwoV0dXUddX8YhsHixYvp7OxEURSWLVtGQ0PDqMvn3nvvxTRNVFXlkUceoaKigtmzZx9yl9cf/vCH2LY96vN54IEHjnr/H23984e5LFq0iHi8tDzV4OAgp512GnfccQeXXnopkyZNAiASifDd736XVCrFnXfeSSqVwuv18uijjxIOh0csl2NCHEPr1q0TN910kxBCiF27donPf/7zhzx/2WWXic7OTmFZlliwYIHYtWvXsdz8X4QPa+P58+eLrq4uIYQQf/M3fyNef/31TzzGsezD2vfg4wsWLBALFy78pMMb8z6sfRctWiReeeUVIYQQS5cuFR0dHZ94jGPdkdo4lUqJCy64QBiGIYQQ4stf/rLYsGHDiMQ5mhzNfj8arVmzRtx4441CCCEGBgbEnDlzxOLFi8XWrVsP+b1MJiMuvvhikUwmRS6XE5dccomIx+MjEfIRrVu3TvzTP/3TIY8tXrxYvPzyy0IIIR566CHx3HPPjZl8Dlq3bp1YunSpWLhwoUgkEoc819bWJq688kpRKBREf3+/mD9/vjBNc4QiPVQmkxELFy4U999/v3j22WeFEB+tP1auXCmWLl0qhBDi9ddfF7fffvuI5SLE4fO5++67xS9/+UshhBA/+clPxEMPPSRs2xZXXnnlB/5+LOTzUfb/0ZTP4XJ5v8WLF4tNmzaJ9vZ2cfPNN3/g+RUrVoinnnpKCFHqx4cffvjPHvOf2zEdWlmzZg3z5pXWHps4cSLJZJJ0Og3AgQMHCIVC1NTUIMsyc+bMYc2aNcdy838RjtTGACtXrqS6uhqAaDQ6fPbBcXQ+rH0Bvv3tb/P1r399JMIb847UvrZt09LSwoUXXgjAkiVLqK2tHbFYx6ojtbGmaWiaRjabxTRNcrkcoVBoJMMdFY5mvx+NzjrrLP75n/8ZgFAoRC6XI5lMfuD3Nm3axMknn0wgEMDtdjN9+nTWr1//SYf7oTKZzAceW7duHRdddBFQWnx8zZo1Yyafg5544gluueWWP5rfeeedh67rRKNR6urq2L179whE+UG6rvPUU09RWVk5/NhH6Y81a9Ywf/58AGbPnk1LS8uI5HHQ4fJZsmQJl1xyCVAajRkcHCSbzWJZH1z7dSzkc7j32Fjon8PlctDevXtJpVKccsoph80PDu2befPmHRf1xTEt0Pr6+ohEIsM/l5WVEYvFAIjFYkSj0eHnysvLh59zHL0jtTGA3+8HoLe3l7feemtUTZUYCz6sfVeuXMnZZ59NXV3dSIQ35h2pfQcGBvD7/Xz3u99l4cKFPProowhnFZCP7Eht7HK5uPXWW5k3bx4XXnghp5122gcWa/5L9GH7/WilKAperxcoTak7//zzyfaI2IkAAAc0SURBVOfzPP7443zpS1/irrvuYnBwkL6+vjHx/ZvNZmlpaeHGG2/kuuuuY+3ateRyOXRdB6CiooJYLDZm8gF49913qampoaKigmw2yz/8wz9w7bXXsnTpUgqFwqjORVVV3G73IY99lP54/+OKoiDLMsXi4ddu/SQcLh+v14uiKFiWxU9/+lOuuOIKstks/f39LFq0iKuvvpof//jHAGMin0wmc9T7/2jK53C5HPTjH/+YhQsXAqXPiL1793LzzTdz9dVX8/LLLwOH9k15eTm9vb2fTOB/Rsf0GrQ/PJgSQiANLb57uAOtg885jt6R2vig/v5+vva1r/HNb37zkIMOx4c7UvsODg6ycuVKfvCDH9DT0zMS4Y15H/YZ0dPTw1VXXcWiRYu46aabeOONN5g7d+4IRDp2HamN0+k0Tz75JKtXr8bv93P99dezfft2Jk+ePBKhjhpH87k6mr366qu8+OKLPPPMM6xdu5aJEyfS1NTEv/7rv7JixQpOPfXUQ35/tOY3efJkbr31Vi666CJaW1v58pe/jGmaw88f7Kex1F8vvvgiV155JQBf/epXmTVrFhUVFXzzm9/kueeeG1O5wKHHbR/WH2MlN8uyuPvuu5kxYwYzZ84knU5z++2389nPfhbDMFi4cCFnnHHGmMjn6quvPur9fyzkUywWaWlpYenSpQDU1NRw6623cvnllxOPx/niF7/I9OnTD8llNObxcRzTEbSqqir6+vqGf+7t7aW8vPywz/X09FBRUXEsN/8X4UhtDKUDsK985SvcfvvtzJ49eyRCHNOO1L5r165lYGCA6667jttuu40tW7bwrW99a6RCHZOO1L6RSISamhrGjRuHoijMnDmTXbt2jVSoY9aR2njPnj00NDQQjUbRdZ3p06ezefPmkQp11Piwz9XR7M033+R73/seTz31FIFAgPnz5w+Pis6fP58dO3YcNr/R+P07YcKE4elzTU1NlJeXk0wmyefzQOm4obKycszkA6UpgaeffjoAV155JZWVlUiSxLx58w7bN6P92Mjj8Rx1f1RVVQ2PBhqGgRACTdNGJO4juffeexk/fjy33XYbUJqJ9IUvfAFd1/H5fMycOXO4r0Z7Ph9l/x8L+bz99tuH3LCpqqqKK664AlmWKSsrY9q0aezdu/eQXEb7PnS0jmmBNmvWLH71q18BsHXrViorK4en3NXX15NOp2lvb8c0TV577TVmzZp1LDf/F+FIbQyl66Ouv/56Z2rjx3Sk9r300kt5+eWX+fnPf87jjz/O1KlTue+++0Yy3DHnSO2rqioNDQ3s27cPgC1btjjT7z6GI7VxXV0de/bsIZ/PI4Rg8+bNNDY2jmC0o8OHfa6OVqlUiocffpgnn3xy+I5lX/va1+js7ARKxUFzczOnnnoq7733Hslkkkwmw/r165k+ffpIhn5YL7744vB0slgsRn9/P5/73OeG++aVV17hvPPOGzP59PT04PP50HUdy7K4/vrrh69tPNg3M2bM4PXXX6dYLNLT00Nvby8TJ04c4cj/uHPPPfeo+2PWrFmsXr0agNdee41zzjlnJEM/rFWrVqFpGosWLRp+bMeOHdxzzz0IITBNk/Xr19Pc3Dwm8vko+/9YyOe99947ZIbHm2++yfLly4HSdMft27fT1NR0SC4H35djnSSO8UUey5cv55133kGSJJYsWcLWrVuHz+q9/fbbww178cUXc8MNNxzLTf/F+GNtPHv2bM4666zhs3UAn/70p1mwYMEIRjv2HOk9fFB7ezv33nuvc5v9j+FI7bt//36WLFlCoVCgubmZpUuXOstEfAxHauOf/exnrFy5EkVROP3007n77rtHOtxR4Q/bbCxM+3z++edZsWLFIScyrrrqKp599lm8Xi8ej4dly5ZRVlbG6tWrefrpp5EkiYULF/KZz3xmBCM/vEQiwV133UU2m6VYLHLbbbcxZcoU7rnnHgqFArW1tSxbtgxN08ZEPps3b+Y73/kO3//+9wF46aWX+NGPfoTH46GqqooHH3wQj8fDs88+yy9+8QskSeJv//ZvmTlz5ghHXrJ582YeeughOjo6UFWVqqoqli9fzuLFi4+qPyzL4v7772ffvn3ous63v/1tampqRlU+/f39uFyu4RMyEyZMYOnSpSxbtoyWlhZkWeaCCy7g5ptvHhP5XHPNNTz99NNHtf+PpnwOl8uKFStYsWIFZ555Jp/61KeA0pTHe++9l46ODkzT5JprruGqq64ik8nwjW98g8HBQYLBII888giBQGBEcjlWjnmB5nA4HA6Hw+FwOByOj8c5Ne1wOBwOh8PhcDgco4RToDkcDofD4XA4HA7HKOEUaA6Hw+FwOBwOh8MxSjgFmsPhcDgcDofD4XCMEk6B5nA4HA6Hw+FwOByjhFOgORwOh8PhcDgcDsco4RRoDofD4XA4HA6HwzFKOAWaw+FwOBwOh8PhcIwS/x9KbuAFSdCRowAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -621,7 +559,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 19, "metadata": { "scrolled": true }, @@ -665,154 +603,154 @@ " thetas[0,0]\n", " 0.300\n", " 0.064\n", - " 0.184\n", + " 0.183\n", " 0.424\n", " 0.000\n", " 0.000\n", - " 16693.0\n", - " 14799.0\n", - " 16701.0\n", - " 5847.0\n", + " 20497.0\n", + " 18033.0\n", + " 20306.0\n", + " 5485.0\n", " 1.0\n", " \n", " \n", " thetas[0,1]\n", " 0.600\n", " 0.068\n", - " 0.474\n", - " 0.727\n", - " 0.001\n", + " 0.469\n", + " 0.724\n", " 0.000\n", - " 15018.0\n", - " 14778.0\n", - " 14982.0\n", - " 6380.0\n", + " 0.000\n", + " 18636.0\n", + " 17860.0\n", + " 18527.0\n", + " 5570.0\n", " 1.0\n", " \n", " \n", " thetas[0,2]\n", " 0.100\n", " 0.042\n", - " 0.033\n", - " 0.185\n", + " 0.029\n", + " 0.178\n", " 0.000\n", " 0.000\n", - " 14612.0\n", - " 11216.0\n", - " 14513.0\n", - " 6030.0\n", + " 16683.0\n", + " 10963.0\n", + " 17565.0\n", + " 5671.0\n", " 1.0\n", " \n", " \n", " thetas[1,0]\n", " 0.490\n", " 0.071\n", - " 0.362\n", - " 0.623\n", - " 0.001\n", + " 0.357\n", + " 0.621\n", " 0.000\n", - " 19890.0\n", - " 19890.0\n", - " 19769.0\n", - " 5557.0\n", + " 0.000\n", + " 22720.0\n", + " 20814.0\n", + " 22669.0\n", + " 5743.0\n", " 1.0\n", " \n", " \n", " thetas[1,1]\n", - " 0.469\n", + " 0.470\n", " 0.071\n", - " 0.341\n", + " 0.342\n", " 0.604\n", - " 0.001\n", " 0.000\n", - " 18397.0\n", - " 16708.0\n", - " 18280.0\n", - " 6221.0\n", + " 0.000\n", + " 20246.0\n", + " 19174.0\n", + " 20256.0\n", + " 5921.0\n", " 1.0\n", " \n", " \n", " thetas[1,2]\n", " 0.041\n", - " 0.027\n", + " 0.028\n", " 0.001\n", - " 0.089\n", + " 0.091\n", " 0.000\n", " 0.000\n", - " 13983.0\n", - " 8384.0\n", - " 13998.0\n", - " 5573.0\n", + " 14038.0\n", + " 8686.0\n", + " 13641.0\n", + " 5593.0\n", " 1.0\n", " \n", " \n", " thetas[2,0]\n", " 0.465\n", " 0.038\n", - " 0.394\n", - " 0.534\n", + " 0.392\n", + " 0.533\n", " 0.000\n", " 0.000\n", - " 20043.0\n", - " 19863.0\n", - " 20038.0\n", - " 5672.0\n", + " 19496.0\n", + " 19331.0\n", + " 19518.0\n", + " 5376.0\n", " 1.0\n", " \n", " \n", " thetas[2,1]\n", " 0.412\n", - " 0.038\n", + " 0.037\n", " 0.344\n", - " 0.486\n", + " 0.484\n", " 0.000\n", " 0.000\n", - " 20367.0\n", - " 19791.0\n", - " 20372.0\n", - " 5545.0\n", + " 17488.0\n", + " 17011.0\n", + " 17509.0\n", + " 5936.0\n", " 1.0\n", " \n", " \n", " thetas[2,2]\n", " 0.124\n", " 0.025\n", - " 0.076\n", - " 0.169\n", + " 0.078\n", + " 0.171\n", " 0.000\n", " 0.000\n", - " 19117.0\n", - " 15634.0\n", - " 19928.0\n", - " 5515.0\n", + " 17151.0\n", + " 15063.0\n", + " 17280.0\n", + " 6015.0\n", " 1.0\n", " \n", " \n", " thetas[3,0]\n", " 0.459\n", - " 0.057\n", - " 0.355\n", - " 0.570\n", + " 0.058\n", + " 0.352\n", + " 0.567\n", " 0.000\n", " 0.000\n", - " 18824.0\n", - " 17674.0\n", - " 18744.0\n", - " 4945.0\n", + " 18130.0\n", + " 17764.0\n", + " 18085.0\n", + " 5195.0\n", " 1.0\n", " \n", " \n", " thetas[3,1]\n", " 0.513\n", - " 0.057\n", - " 0.404\n", - " 0.620\n", + " 0.058\n", + " 0.407\n", + " 0.623\n", " 0.000\n", " 0.000\n", - " 18301.0\n", - " 17842.0\n", - " 18333.0\n", - " 5361.0\n", + " 17777.0\n", + " 17374.0\n", + " 17775.0\n", + " 6078.0\n", " 1.0\n", " \n", " \n", @@ -823,514 +761,514 @@ " 0.063\n", " 0.000\n", " 0.000\n", - " 14944.0\n", - " 9113.0\n", - " 14491.0\n", - " 4950.0\n", + " 14917.0\n", + " 8734.0\n", + " 16011.0\n", + " 5999.0\n", " 1.0\n", " \n", " \n", " thetas[4,0]\n", - " 0.401\n", + " 0.400\n", " 0.069\n", - " 0.277\n", - " 0.537\n", - " 0.000\n", + " 0.265\n", + " 0.525\n", + " 0.001\n", " 0.000\n", - " 19545.0\n", - " 17552.0\n", - " 19733.0\n", - " 6137.0\n", + " 16837.0\n", + " 15776.0\n", + " 16676.0\n", + " 5651.0\n", " 1.0\n", " \n", " \n", " thetas[4,1]\n", - " 0.479\n", + " 0.480\n", " 0.070\n", - " 0.350\n", - " 0.613\n", + " 0.345\n", + " 0.604\n", " 0.001\n", " 0.000\n", - " 17495.0\n", - " 17291.0\n", - " 17387.0\n", - " 5666.0\n", + " 16149.0\n", + " 15519.0\n", + " 16101.0\n", + " 5845.0\n", " 1.0\n", " \n", " \n", " thetas[4,2]\n", " 0.120\n", " 0.045\n", - " 0.041\n", - " 0.204\n", + " 0.045\n", + " 0.209\n", " 0.000\n", " 0.000\n", - " 19618.0\n", - " 13669.0\n", - " 19556.0\n", - " 5868.0\n", + " 18531.0\n", + " 13203.0\n", + " 18693.0\n", + " 5873.0\n", " 1.0\n", " \n", " \n", " thetas[5,0]\n", - " 0.444\n", - " 0.051\n", - " 0.349\n", - " 0.538\n", + " 0.443\n", + " 0.050\n", + " 0.353\n", + " 0.541\n", " 0.000\n", " 0.000\n", - " 18114.0\n", - " 17289.0\n", - " 18174.0\n", - " 5259.0\n", + " 17396.0\n", + " 16985.0\n", + " 17402.0\n", + " 6050.0\n", " 1.0\n", " \n", " \n", " thetas[5,1]\n", " 0.443\n", - " 0.051\n", - " 0.348\n", - " 0.537\n", + " 0.050\n", + " 0.353\n", + " 0.539\n", " 0.000\n", " 0.000\n", - " 17550.0\n", - " 17392.0\n", - " 17511.0\n", - " 5927.0\n", + " 15522.0\n", + " 15188.0\n", + " 15594.0\n", + " 5973.0\n", " 1.0\n", " \n", " \n", " thetas[5,2]\n", " 0.113\n", " 0.032\n", - " 0.057\n", - " 0.174\n", + " 0.054\n", + " 0.173\n", " 0.000\n", " 0.000\n", - " 17665.0\n", - " 13440.0\n", - " 17741.0\n", - " 5767.0\n", + " 16770.0\n", + " 13482.0\n", + " 16690.0\n", + " 6164.0\n", " 1.0\n", " \n", " \n", " thetas[6,0]\n", " 0.504\n", - " 0.045\n", - " 0.422\n", - " 0.591\n", + " 0.046\n", + " 0.420\n", + " 0.588\n", " 0.000\n", " 0.000\n", - " 19771.0\n", - " 19385.0\n", - " 19826.0\n", - " 5891.0\n", + " 18929.0\n", + " 18929.0\n", + " 18917.0\n", + " 6351.0\n", " 1.0\n", " \n", " \n", " thetas[6,1]\n", " 0.387\n", - " 0.044\n", - " 0.305\n", - " 0.470\n", + " 0.045\n", + " 0.307\n", + " 0.475\n", " 0.000\n", " 0.000\n", - " 18517.0\n", - " 17144.0\n", - " 18586.0\n", - " 5444.0\n", + " 18815.0\n", + " 17320.0\n", + " 19015.0\n", + " 5639.0\n", " 1.0\n", " \n", " \n", " thetas[6,2]\n", " 0.109\n", " 0.029\n", - " 0.061\n", - " 0.167\n", + " 0.058\n", + " 0.163\n", " 0.000\n", " 0.000\n", - " 18652.0\n", - " 14589.0\n", - " 19016.0\n", - " 5561.0\n", + " 18174.0\n", + " 14221.0\n", + " 18255.0\n", + " 5475.0\n", " 1.0\n", " \n", " \n", " thetas[7,0]\n", " 0.547\n", " 0.040\n", - " 0.472\n", - " 0.623\n", + " 0.474\n", + " 0.622\n", " 0.000\n", " 0.000\n", - " 16515.0\n", - " 16360.0\n", - " 16472.0\n", - " 5739.0\n", + " 17203.0\n", + " 16668.0\n", + " 17181.0\n", + " 5828.0\n", " 1.0\n", " \n", " \n", " thetas[7,1]\n", " 0.338\n", " 0.038\n", - " 0.266\n", - " 0.406\n", + " 0.267\n", + " 0.409\n", " 0.000\n", " 0.000\n", - " 17604.0\n", - " 16743.0\n", - " 17693.0\n", - " 5599.0\n", + " 18076.0\n", + " 17371.0\n", + " 18045.0\n", + " 5747.0\n", " 1.0\n", " \n", " \n", " thetas[7,2]\n", " 0.115\n", " 0.025\n", - " 0.070\n", - " 0.163\n", + " 0.067\n", + " 0.162\n", " 0.000\n", " 0.000\n", - " 19374.0\n", - " 16772.0\n", - " 19152.0\n", - " 5998.0\n", + " 19176.0\n", + " 16501.0\n", + " 19653.0\n", + " 5909.0\n", " 1.0\n", " \n", " \n", " thetas[8,0]\n", - " 0.543\n", - " 0.097\n", - " 0.367\n", + " 0.542\n", + " 0.101\n", + " 0.352\n", " 0.728\n", " 0.001\n", " 0.001\n", - " 20286.0\n", - " 18361.0\n", - " 20174.0\n", - " 5683.0\n", + " 16573.0\n", + " 15569.0\n", + " 16523.0\n", + " 5957.0\n", " 1.0\n", " \n", " \n", " thetas[8,1]\n", - " 0.291\n", + " 0.292\n", " 0.090\n", - " 0.124\n", - " 0.457\n", + " 0.140\n", + " 0.472\n", " 0.001\n", " 0.001\n", - " 17542.0\n", - " 14385.0\n", - " 17443.0\n", - " 6252.0\n", + " 15467.0\n", + " 12739.0\n", + " 15805.0\n", + " 6123.0\n", " 1.0\n", " \n", " \n", " thetas[8,2]\n", " 0.166\n", - " 0.074\n", - " 0.042\n", - " 0.304\n", - " 0.001\n", + " 0.075\n", + " 0.040\n", + " 0.305\n", " 0.001\n", - " 16485.0\n", - " 10657.0\n", - " 17427.0\n", - " 5949.0\n", + " 0.000\n", + " 16759.0\n", + " 11344.0\n", + " 17757.0\n", + " 6350.0\n", " 1.0\n", " \n", " \n", " thetas[9,0]\n", " 0.465\n", - " 0.051\n", - " 0.371\n", - " 0.560\n", + " 0.049\n", + " 0.373\n", + " 0.555\n", " 0.000\n", " 0.000\n", - " 18596.0\n", - " 17819.0\n", + " 18998.0\n", " 18577.0\n", - " 5670.0\n", + " 19001.0\n", + " 5476.0\n", " 1.0\n", " \n", " \n", " thetas[9,1]\n", " 0.404\n", - " 0.050\n", - " 0.313\n", - " 0.502\n", + " 0.048\n", + " 0.318\n", + " 0.497\n", " 0.000\n", " 0.000\n", - " 20028.0\n", - " 19170.0\n", - " 20068.0\n", - " 5357.0\n", + " 17674.0\n", + " 16791.0\n", + " 17727.0\n", + " 5982.0\n", " 1.0\n", " \n", " \n", " thetas[9,2]\n", " 0.131\n", " 0.034\n", - " 0.071\n", - " 0.194\n", + " 0.070\n", + " 0.195\n", " 0.000\n", " 0.000\n", - " 19738.0\n", - " 15885.0\n", - " 19949.0\n", - " 5384.0\n", + " 17445.0\n", + " 13987.0\n", + " 17525.0\n", + " 5756.0\n", " 1.0\n", " \n", " \n", " thetas[10,0]\n", " 0.510\n", - " 0.049\n", - " 0.418\n", - " 0.600\n", + " 0.050\n", + " 0.415\n", + " 0.604\n", " 0.000\n", " 0.000\n", - " 16846.0\n", - " 16372.0\n", - " 16865.0\n", - " 5435.0\n", + " 20122.0\n", + " 19961.0\n", + " 20138.0\n", + " 5408.0\n", " 1.0\n", " \n", " \n", " thetas[10,1]\n", " 0.402\n", - " 0.048\n", + " 0.049\n", " 0.312\n", - " 0.492\n", + " 0.495\n", " 0.000\n", " 0.000\n", - " 17349.0\n", - " 16466.0\n", - " 17378.0\n", - " 5289.0\n", + " 20196.0\n", + " 18632.0\n", + " 20400.0\n", + " 6184.0\n", " 1.0\n", " \n", " \n", " thetas[10,2]\n", " 0.088\n", - " 0.027\n", - " 0.041\n", + " 0.028\n", + " 0.039\n", " 0.141\n", " 0.000\n", " 0.000\n", - " 17139.0\n", - " 13514.0\n", - " 17179.0\n", - " 6125.0\n", + " 20677.0\n", + " 14266.0\n", + " 21582.0\n", + " 5756.0\n", " 1.0\n", " \n", " \n", " thetas[11,0]\n", - " 0.551\n", - " 0.037\n", - " 0.486\n", - " 0.623\n", + " 0.552\n", + " 0.036\n", + " 0.483\n", + " 0.618\n", " 0.000\n", " 0.000\n", - " 19784.0\n", - " 19560.0\n", - " 19790.0\n", - " 5414.0\n", + " 20510.0\n", + " 20477.0\n", + " 20558.0\n", + " 5590.0\n", " 1.0\n", " \n", " \n", " thetas[11,1]\n", " 0.351\n", " 0.035\n", - " 0.284\n", - " 0.416\n", + " 0.282\n", + " 0.412\n", " 0.000\n", " 0.000\n", - " 20817.0\n", - " 20046.0\n", - " 20778.0\n", - " 5549.0\n", + " 21991.0\n", + " 21991.0\n", + " 22090.0\n", + " 5983.0\n", " 1.0\n", " \n", " \n", " thetas[11,2]\n", " 0.097\n", - " 0.021\n", - " 0.060\n", - " 0.139\n", + " 0.022\n", + " 0.057\n", + " 0.137\n", " 0.000\n", " 0.000\n", - " 17024.0\n", - " 14273.0\n", - " 17452.0\n", - " 6258.0\n", + " 20308.0\n", + " 15929.0\n", + " 20981.0\n", + " 5392.0\n", " 1.0\n", " \n", " \n", " thetas[12,0]\n", - " 0.486\n", - " 0.081\n", - " 0.337\n", - " 0.640\n", + " 0.488\n", + " 0.082\n", + " 0.345\n", + " 0.652\n", " 0.001\n", " 0.000\n", - " 17963.0\n", - " 16518.0\n", - " 18055.0\n", - " 5405.0\n", + " 19112.0\n", + " 17279.0\n", + " 19025.0\n", + " 5319.0\n", " 1.0\n", " \n", " \n", " thetas[12,1]\n", - " 0.460\n", - " 0.080\n", - " 0.307\n", - " 0.607\n", + " 0.459\n", + " 0.083\n", + " 0.300\n", + " 0.608\n", " 0.001\n", " 0.000\n", - " 16284.0\n", - " 15271.0\n", - " 16295.0\n", - " 5535.0\n", + " 20378.0\n", + " 19943.0\n", + " 20114.0\n", + " 5941.0\n", " 1.0\n", " \n", " \n", " thetas[12,2]\n", " 0.054\n", " 0.037\n", - " 0.001\n", + " 0.002\n", " 0.119\n", " 0.000\n", " 0.000\n", - " 13424.0\n", - " 8281.0\n", - " 13513.0\n", - " 5758.0\n", + " 15024.0\n", + " 8410.0\n", + " 16509.0\n", + " 5094.0\n", " 1.0\n", " \n", " \n", " thetas[13,0]\n", - " 0.525\n", - " 0.056\n", - " 0.418\n", - " 0.627\n", + " 0.524\n", + " 0.055\n", + " 0.419\n", + " 0.624\n", " 0.000\n", " 0.000\n", - " 18347.0\n", - " 17793.0\n", - " 18365.0\n", - " 5434.0\n", + " 22690.0\n", + " 22545.0\n", + " 22757.0\n", + " 6179.0\n", " 1.0\n", " \n", " \n", " thetas[13,1]\n", " 0.350\n", " 0.053\n", - " 0.252\n", - " 0.450\n", + " 0.248\n", + " 0.448\n", " 0.000\n", " 0.000\n", - " 17740.0\n", - " 15856.0\n", - " 18049.0\n", - " 5701.0\n", + " 23034.0\n", + " 20606.0\n", + " 23233.0\n", + " 5930.0\n", " 1.0\n", " \n", " \n", " thetas[13,2]\n", " 0.125\n", " 0.037\n", - " 0.060\n", + " 0.056\n", " 0.194\n", " 0.000\n", " 0.000\n", - " 15347.0\n", - " 12565.0\n", - " 14960.0\n", - " 5493.0\n", + " 18983.0\n", + " 13364.0\n", + " 20271.0\n", + " 5904.0\n", " 1.0\n", " \n", " \n", " thetas[14,0]\n", " 0.535\n", " 0.044\n", - " 0.452\n", - " 0.616\n", + " 0.448\n", + " 0.614\n", " 0.000\n", " 0.000\n", - " 19003.0\n", - " 18991.0\n", - " 19087.0\n", - " 5799.0\n", + " 17242.0\n", + " 17242.0\n", + " 17152.0\n", + " 5962.0\n", " 1.0\n", " \n", " \n", " thetas[14,1]\n", - " 0.370\n", - " 0.042\n", - " 0.292\n", - " 0.449\n", + " 0.371\n", + " 0.043\n", + " 0.297\n", + " 0.458\n", " 0.000\n", " 0.000\n", - " 20079.0\n", - " 18987.0\n", - " 20118.0\n", - " 5816.0\n", + " 17314.0\n", + " 15825.0\n", + " 17537.0\n", + " 5855.0\n", " 1.0\n", " \n", " \n", " thetas[14,2]\n", " 0.095\n", " 0.026\n", - " 0.048\n", + " 0.049\n", " 0.143\n", " 0.000\n", " 0.000\n", - " 19411.0\n", - " 14268.0\n", - " 20703.0\n", - " 5823.0\n", + " 17752.0\n", + " 14755.0\n", + " 17697.0\n", + " 5668.0\n", " 1.0\n", " \n", " \n", " thetas[15,0]\n", - " 0.546\n", - " 0.054\n", - " 0.444\n", - " 0.646\n", + " 0.547\n", + " 0.053\n", + " 0.454\n", + " 0.650\n", " 0.000\n", " 0.000\n", - " 21369.0\n", - " 20947.0\n", - " 21393.0\n", - " 5278.0\n", + " 18991.0\n", + " 18230.0\n", + " 18964.0\n", + " 5824.0\n", " 1.0\n", " \n", " \n", " thetas[15,1]\n", " 0.360\n", " 0.051\n", - " 0.264\n", - " 0.456\n", + " 0.265\n", + " 0.455\n", " 0.000\n", " 0.000\n", - " 18968.0\n", - " 17477.0\n", - " 19048.0\n", - " 5636.0\n", + " 18835.0\n", + " 18220.0\n", + " 18752.0\n", + " 6254.0\n", " 1.0\n", " \n", " \n", " thetas[15,2]\n", " 0.093\n", - " 0.032\n", + " 0.031\n", " 0.039\n", - " 0.154\n", + " 0.153\n", " 0.000\n", " 0.000\n", - " 17638.0\n", - " 12620.0\n", - " 17873.0\n", - " 5377.0\n", + " 17650.0\n", + " 11649.0\n", + " 18822.0\n", + " 5791.0\n", " 1.0\n", " \n", " \n", @@ -1339,107 +1277,107 @@ ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", - "thetas[0,0] 0.300 0.064 0.184 0.424 0.000 0.000 16693.0 \n", - "thetas[0,1] 0.600 0.068 0.474 0.727 0.001 0.000 15018.0 \n", - "thetas[0,2] 0.100 0.042 0.033 0.185 0.000 0.000 14612.0 \n", - "thetas[1,0] 0.490 0.071 0.362 0.623 0.001 0.000 19890.0 \n", - "thetas[1,1] 0.469 0.071 0.341 0.604 0.001 0.000 18397.0 \n", - "thetas[1,2] 0.041 0.027 0.001 0.089 0.000 0.000 13983.0 \n", - "thetas[2,0] 0.465 0.038 0.394 0.534 0.000 0.000 20043.0 \n", - "thetas[2,1] 0.412 0.038 0.344 0.486 0.000 0.000 20367.0 \n", - "thetas[2,2] 0.124 0.025 0.076 0.169 0.000 0.000 19117.0 \n", - "thetas[3,0] 0.459 0.057 0.355 0.570 0.000 0.000 18824.0 \n", - "thetas[3,1] 0.513 0.057 0.404 0.620 0.000 0.000 18301.0 \n", - "thetas[3,2] 0.028 0.019 0.001 0.063 0.000 0.000 14944.0 \n", - "thetas[4,0] 0.401 0.069 0.277 0.537 0.000 0.000 19545.0 \n", - "thetas[4,1] 0.479 0.070 0.350 0.613 0.001 0.000 17495.0 \n", - "thetas[4,2] 0.120 0.045 0.041 0.204 0.000 0.000 19618.0 \n", - "thetas[5,0] 0.444 0.051 0.349 0.538 0.000 0.000 18114.0 \n", - "thetas[5,1] 0.443 0.051 0.348 0.537 0.000 0.000 17550.0 \n", - "thetas[5,2] 0.113 0.032 0.057 0.174 0.000 0.000 17665.0 \n", - "thetas[6,0] 0.504 0.045 0.422 0.591 0.000 0.000 19771.0 \n", - "thetas[6,1] 0.387 0.044 0.305 0.470 0.000 0.000 18517.0 \n", - "thetas[6,2] 0.109 0.029 0.061 0.167 0.000 0.000 18652.0 \n", - "thetas[7,0] 0.547 0.040 0.472 0.623 0.000 0.000 16515.0 \n", - "thetas[7,1] 0.338 0.038 0.266 0.406 0.000 0.000 17604.0 \n", - "thetas[7,2] 0.115 0.025 0.070 0.163 0.000 0.000 19374.0 \n", - "thetas[8,0] 0.543 0.097 0.367 0.728 0.001 0.001 20286.0 \n", - "thetas[8,1] 0.291 0.090 0.124 0.457 0.001 0.001 17542.0 \n", - "thetas[8,2] 0.166 0.074 0.042 0.304 0.001 0.001 16485.0 \n", - "thetas[9,0] 0.465 0.051 0.371 0.560 0.000 0.000 18596.0 \n", - "thetas[9,1] 0.404 0.050 0.313 0.502 0.000 0.000 20028.0 \n", - "thetas[9,2] 0.131 0.034 0.071 0.194 0.000 0.000 19738.0 \n", - "thetas[10,0] 0.510 0.049 0.418 0.600 0.000 0.000 16846.0 \n", - "thetas[10,1] 0.402 0.048 0.312 0.492 0.000 0.000 17349.0 \n", - "thetas[10,2] 0.088 0.027 0.041 0.141 0.000 0.000 17139.0 \n", - "thetas[11,0] 0.551 0.037 0.486 0.623 0.000 0.000 19784.0 \n", - "thetas[11,1] 0.351 0.035 0.284 0.416 0.000 0.000 20817.0 \n", - "thetas[11,2] 0.097 0.021 0.060 0.139 0.000 0.000 17024.0 \n", - "thetas[12,0] 0.486 0.081 0.337 0.640 0.001 0.000 17963.0 \n", - "thetas[12,1] 0.460 0.080 0.307 0.607 0.001 0.000 16284.0 \n", - "thetas[12,2] 0.054 0.037 0.001 0.119 0.000 0.000 13424.0 \n", - "thetas[13,0] 0.525 0.056 0.418 0.627 0.000 0.000 18347.0 \n", - "thetas[13,1] 0.350 0.053 0.252 0.450 0.000 0.000 17740.0 \n", - "thetas[13,2] 0.125 0.037 0.060 0.194 0.000 0.000 15347.0 \n", - "thetas[14,0] 0.535 0.044 0.452 0.616 0.000 0.000 19003.0 \n", - "thetas[14,1] 0.370 0.042 0.292 0.449 0.000 0.000 20079.0 \n", - "thetas[14,2] 0.095 0.026 0.048 0.143 0.000 0.000 19411.0 \n", - "thetas[15,0] 0.546 0.054 0.444 0.646 0.000 0.000 21369.0 \n", - "thetas[15,1] 0.360 0.051 0.264 0.456 0.000 0.000 18968.0 \n", - "thetas[15,2] 0.093 0.032 0.039 0.154 0.000 0.000 17638.0 \n", + "thetas[0,0] 0.300 0.064 0.183 0.424 0.000 0.000 20497.0 \n", + "thetas[0,1] 0.600 0.068 0.469 0.724 0.000 0.000 18636.0 \n", + "thetas[0,2] 0.100 0.042 0.029 0.178 0.000 0.000 16683.0 \n", + "thetas[1,0] 0.490 0.071 0.357 0.621 0.000 0.000 22720.0 \n", + "thetas[1,1] 0.470 0.071 0.342 0.604 0.000 0.000 20246.0 \n", + "thetas[1,2] 0.041 0.028 0.001 0.091 0.000 0.000 14038.0 \n", + "thetas[2,0] 0.465 0.038 0.392 0.533 0.000 0.000 19496.0 \n", + "thetas[2,1] 0.412 0.037 0.344 0.484 0.000 0.000 17488.0 \n", + "thetas[2,2] 0.124 0.025 0.078 0.171 0.000 0.000 17151.0 \n", + "thetas[3,0] 0.459 0.058 0.352 0.567 0.000 0.000 18130.0 \n", + "thetas[3,1] 0.513 0.058 0.407 0.623 0.000 0.000 17777.0 \n", + "thetas[3,2] 0.028 0.019 0.001 0.063 0.000 0.000 14917.0 \n", + "thetas[4,0] 0.400 0.069 0.265 0.525 0.001 0.000 16837.0 \n", + "thetas[4,1] 0.480 0.070 0.345 0.604 0.001 0.000 16149.0 \n", + "thetas[4,2] 0.120 0.045 0.045 0.209 0.000 0.000 18531.0 \n", + "thetas[5,0] 0.443 0.050 0.353 0.541 0.000 0.000 17396.0 \n", + "thetas[5,1] 0.443 0.050 0.353 0.539 0.000 0.000 15522.0 \n", + "thetas[5,2] 0.113 0.032 0.054 0.173 0.000 0.000 16770.0 \n", + "thetas[6,0] 0.504 0.046 0.420 0.588 0.000 0.000 18929.0 \n", + "thetas[6,1] 0.387 0.045 0.307 0.475 0.000 0.000 18815.0 \n", + "thetas[6,2] 0.109 0.029 0.058 0.163 0.000 0.000 18174.0 \n", + "thetas[7,0] 0.547 0.040 0.474 0.622 0.000 0.000 17203.0 \n", + "thetas[7,1] 0.338 0.038 0.267 0.409 0.000 0.000 18076.0 \n", + "thetas[7,2] 0.115 0.025 0.067 0.162 0.000 0.000 19176.0 \n", + "thetas[8,0] 0.542 0.101 0.352 0.728 0.001 0.001 16573.0 \n", + "thetas[8,1] 0.292 0.090 0.140 0.472 0.001 0.001 15467.0 \n", + "thetas[8,2] 0.166 0.075 0.040 0.305 0.001 0.000 16759.0 \n", + "thetas[9,0] 0.465 0.049 0.373 0.555 0.000 0.000 18998.0 \n", + "thetas[9,1] 0.404 0.048 0.318 0.497 0.000 0.000 17674.0 \n", + "thetas[9,2] 0.131 0.034 0.070 0.195 0.000 0.000 17445.0 \n", + "thetas[10,0] 0.510 0.050 0.415 0.604 0.000 0.000 20122.0 \n", + "thetas[10,1] 0.402 0.049 0.312 0.495 0.000 0.000 20196.0 \n", + "thetas[10,2] 0.088 0.028 0.039 0.141 0.000 0.000 20677.0 \n", + "thetas[11,0] 0.552 0.036 0.483 0.618 0.000 0.000 20510.0 \n", + "thetas[11,1] 0.351 0.035 0.282 0.412 0.000 0.000 21991.0 \n", + "thetas[11,2] 0.097 0.022 0.057 0.137 0.000 0.000 20308.0 \n", + "thetas[12,0] 0.488 0.082 0.345 0.652 0.001 0.000 19112.0 \n", + "thetas[12,1] 0.459 0.083 0.300 0.608 0.001 0.000 20378.0 \n", + "thetas[12,2] 0.054 0.037 0.002 0.119 0.000 0.000 15024.0 \n", + "thetas[13,0] 0.524 0.055 0.419 0.624 0.000 0.000 22690.0 \n", + "thetas[13,1] 0.350 0.053 0.248 0.448 0.000 0.000 23034.0 \n", + "thetas[13,2] 0.125 0.037 0.056 0.194 0.000 0.000 18983.0 \n", + "thetas[14,0] 0.535 0.044 0.448 0.614 0.000 0.000 17242.0 \n", + "thetas[14,1] 0.371 0.043 0.297 0.458 0.000 0.000 17314.0 \n", + "thetas[14,2] 0.095 0.026 0.049 0.143 0.000 0.000 17752.0 \n", + "thetas[15,0] 0.547 0.053 0.454 0.650 0.000 0.000 18991.0 \n", + "thetas[15,1] 0.360 0.051 0.265 0.455 0.000 0.000 18835.0 \n", + "thetas[15,2] 0.093 0.031 0.039 0.153 0.000 0.000 17650.0 \n", "\n", " ess_sd ess_bulk ess_tail r_hat \n", - "thetas[0,0] 14799.0 16701.0 5847.0 1.0 \n", - "thetas[0,1] 14778.0 14982.0 6380.0 1.0 \n", - "thetas[0,2] 11216.0 14513.0 6030.0 1.0 \n", - "thetas[1,0] 19890.0 19769.0 5557.0 1.0 \n", - "thetas[1,1] 16708.0 18280.0 6221.0 1.0 \n", - "thetas[1,2] 8384.0 13998.0 5573.0 1.0 \n", - "thetas[2,0] 19863.0 20038.0 5672.0 1.0 \n", - "thetas[2,1] 19791.0 20372.0 5545.0 1.0 \n", - "thetas[2,2] 15634.0 19928.0 5515.0 1.0 \n", - "thetas[3,0] 17674.0 18744.0 4945.0 1.0 \n", - "thetas[3,1] 17842.0 18333.0 5361.0 1.0 \n", - "thetas[3,2] 9113.0 14491.0 4950.0 1.0 \n", - "thetas[4,0] 17552.0 19733.0 6137.0 1.0 \n", - "thetas[4,1] 17291.0 17387.0 5666.0 1.0 \n", - "thetas[4,2] 13669.0 19556.0 5868.0 1.0 \n", - "thetas[5,0] 17289.0 18174.0 5259.0 1.0 \n", - "thetas[5,1] 17392.0 17511.0 5927.0 1.0 \n", - "thetas[5,2] 13440.0 17741.0 5767.0 1.0 \n", - "thetas[6,0] 19385.0 19826.0 5891.0 1.0 \n", - "thetas[6,1] 17144.0 18586.0 5444.0 1.0 \n", - "thetas[6,2] 14589.0 19016.0 5561.0 1.0 \n", - "thetas[7,0] 16360.0 16472.0 5739.0 1.0 \n", - "thetas[7,1] 16743.0 17693.0 5599.0 1.0 \n", - "thetas[7,2] 16772.0 19152.0 5998.0 1.0 \n", - "thetas[8,0] 18361.0 20174.0 5683.0 1.0 \n", - "thetas[8,1] 14385.0 17443.0 6252.0 1.0 \n", - "thetas[8,2] 10657.0 17427.0 5949.0 1.0 \n", - "thetas[9,0] 17819.0 18577.0 5670.0 1.0 \n", - "thetas[9,1] 19170.0 20068.0 5357.0 1.0 \n", - "thetas[9,2] 15885.0 19949.0 5384.0 1.0 \n", - "thetas[10,0] 16372.0 16865.0 5435.0 1.0 \n", - "thetas[10,1] 16466.0 17378.0 5289.0 1.0 \n", - "thetas[10,2] 13514.0 17179.0 6125.0 1.0 \n", - "thetas[11,0] 19560.0 19790.0 5414.0 1.0 \n", - "thetas[11,1] 20046.0 20778.0 5549.0 1.0 \n", - "thetas[11,2] 14273.0 17452.0 6258.0 1.0 \n", - "thetas[12,0] 16518.0 18055.0 5405.0 1.0 \n", - "thetas[12,1] 15271.0 16295.0 5535.0 1.0 \n", - "thetas[12,2] 8281.0 13513.0 5758.0 1.0 \n", - "thetas[13,0] 17793.0 18365.0 5434.0 1.0 \n", - "thetas[13,1] 15856.0 18049.0 5701.0 1.0 \n", - "thetas[13,2] 12565.0 14960.0 5493.0 1.0 \n", - "thetas[14,0] 18991.0 19087.0 5799.0 1.0 \n", - "thetas[14,1] 18987.0 20118.0 5816.0 1.0 \n", - "thetas[14,2] 14268.0 20703.0 5823.0 1.0 \n", - "thetas[15,0] 20947.0 21393.0 5278.0 1.0 \n", - "thetas[15,1] 17477.0 19048.0 5636.0 1.0 \n", - "thetas[15,2] 12620.0 17873.0 5377.0 1.0 " + "thetas[0,0] 18033.0 20306.0 5485.0 1.0 \n", + "thetas[0,1] 17860.0 18527.0 5570.0 1.0 \n", + "thetas[0,2] 10963.0 17565.0 5671.0 1.0 \n", + "thetas[1,0] 20814.0 22669.0 5743.0 1.0 \n", + "thetas[1,1] 19174.0 20256.0 5921.0 1.0 \n", + "thetas[1,2] 8686.0 13641.0 5593.0 1.0 \n", + "thetas[2,0] 19331.0 19518.0 5376.0 1.0 \n", + "thetas[2,1] 17011.0 17509.0 5936.0 1.0 \n", + "thetas[2,2] 15063.0 17280.0 6015.0 1.0 \n", + "thetas[3,0] 17764.0 18085.0 5195.0 1.0 \n", + "thetas[3,1] 17374.0 17775.0 6078.0 1.0 \n", + "thetas[3,2] 8734.0 16011.0 5999.0 1.0 \n", + "thetas[4,0] 15776.0 16676.0 5651.0 1.0 \n", + "thetas[4,1] 15519.0 16101.0 5845.0 1.0 \n", + "thetas[4,2] 13203.0 18693.0 5873.0 1.0 \n", + "thetas[5,0] 16985.0 17402.0 6050.0 1.0 \n", + "thetas[5,1] 15188.0 15594.0 5973.0 1.0 \n", + "thetas[5,2] 13482.0 16690.0 6164.0 1.0 \n", + "thetas[6,0] 18929.0 18917.0 6351.0 1.0 \n", + "thetas[6,1] 17320.0 19015.0 5639.0 1.0 \n", + "thetas[6,2] 14221.0 18255.0 5475.0 1.0 \n", + "thetas[7,0] 16668.0 17181.0 5828.0 1.0 \n", + "thetas[7,1] 17371.0 18045.0 5747.0 1.0 \n", + "thetas[7,2] 16501.0 19653.0 5909.0 1.0 \n", + "thetas[8,0] 15569.0 16523.0 5957.0 1.0 \n", + "thetas[8,1] 12739.0 15805.0 6123.0 1.0 \n", + "thetas[8,2] 11344.0 17757.0 6350.0 1.0 \n", + "thetas[9,0] 18577.0 19001.0 5476.0 1.0 \n", + "thetas[9,1] 16791.0 17727.0 5982.0 1.0 \n", + "thetas[9,2] 13987.0 17525.0 5756.0 1.0 \n", + "thetas[10,0] 19961.0 20138.0 5408.0 1.0 \n", + "thetas[10,1] 18632.0 20400.0 6184.0 1.0 \n", + "thetas[10,2] 14266.0 21582.0 5756.0 1.0 \n", + "thetas[11,0] 20477.0 20558.0 5590.0 1.0 \n", + "thetas[11,1] 21991.0 22090.0 5983.0 1.0 \n", + "thetas[11,2] 15929.0 20981.0 5392.0 1.0 \n", + "thetas[12,0] 17279.0 19025.0 5319.0 1.0 \n", + "thetas[12,1] 19943.0 20114.0 5941.0 1.0 \n", + "thetas[12,2] 8410.0 16509.0 5094.0 1.0 \n", + "thetas[13,0] 22545.0 22757.0 6179.0 1.0 \n", + "thetas[13,1] 20606.0 23233.0 5930.0 1.0 \n", + "thetas[13,2] 13364.0 20271.0 5904.0 1.0 \n", + "thetas[14,0] 17242.0 17152.0 5962.0 1.0 \n", + "thetas[14,1] 15825.0 17537.0 5855.0 1.0 \n", + "thetas[14,2] 14755.0 17697.0 5668.0 1.0 \n", + "thetas[15,0] 18230.0 18964.0 5824.0 1.0 \n", + "thetas[15,1] 18220.0 18752.0 6254.0 1.0 \n", + "thetas[15,2] 11649.0 18822.0 5791.0 1.0 " ] }, - "execution_count": 18, + "execution_count": 19, "metadata": {}, "output_type": "execute_result" } @@ -1457,14 +1395,14 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 20, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 8000/8000 [00:12<00:00, 638.87it/s]\n" + "100%|██████████| 8000/8000 [00:13<00:00, 587.66it/s]\n" ] } ], @@ -1475,7 +1413,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 21, "metadata": {}, "outputs": [ { @@ -1484,7 +1422,7 @@ "(8000, 16, 3)" ] }, - "execution_count": 19, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } @@ -1502,7 +1440,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 22, "metadata": {}, "outputs": [ { @@ -1514,7 +1452,7 @@ " 0.05711423])" ] }, - "execution_count": 20, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1525,7 +1463,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 23, "metadata": {}, "outputs": [], "source": [ @@ -1538,28 +1476,28 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.12250978, -0.42556044, -0.15966997, ..., -0.22926153,\n", - " -0.24760069, -0.24930177],\n", - " [ 0.07019904, -0.02395537, -0.06649436, ..., 0.26462965,\n", - " 0.26716916, 0.29235914],\n", - " [ 0.05685179, -0.03017662, 0.13384658, ..., 0.10394146,\n", - " -0.00056104, 0.06779968],\n", + "array([[-0.15934847, -0.3558678 , -0.36340106, ..., -0.40914886,\n", + " -0.13256056, -0.18882421],\n", + " [ 0.04619461, -0.01816537, -0.09714105, ..., 0.30711543,\n", + " -0.24122136, -0.22424189],\n", + " [ 0.0744588 , -0.0131596 , -0.00063706, ..., 0.16045235,\n", + " -0.05271542, 0.08162244],\n", " ...,\n", - " [ 0.25018806, 0.11635687, 0.2790056 , ..., 0.16693184,\n", - " 0.16900893, 0.21247109],\n", - " [ 0.09925011, 0.25388441, 0.16680238, ..., 0.08845875,\n", - " 0.12992982, 0.15282509],\n", - " [ 0.12496571, 0.22629916, 0.21195712, ..., 0.17396249,\n", - " 0.16813381, 0.12199068]])" + " [ 0.21968616, 0.20546796, 0.01871482, ..., 0.24882987,\n", + " 0.10857277, 0.16821664],\n", + " [ 0.16953651, 0.16044884, 0.28627215, ..., 0.19292837,\n", + " 0.09478497, 0.04568657],\n", + " [ 0.17530829, 0.20666844, 0.11741038, ..., 0.22721735,\n", + " 0.26367063, 0.18835987]])" ] }, - "execution_count": 22, + "execution_count": 24, "metadata": {}, "output_type": "execute_result" } @@ -1571,7 +1509,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 25, "metadata": {}, "outputs": [], "source": [ @@ -1580,12 +1518,12 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 26, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAARi0lEQVR4nO3df2jcd/3A8Vfaa6/XNkEqt4m0Nev2h1isYqftcDALZclMUBeYlv7jZH8oxamIQkDqj7pqmHb+I6OWDTvrGI6pKzTbZMrGJlSdThz+kWKdwTJp1UqbZL3GZvt8/9jXc7csMVlyl/SVxwMG5nKX9+fz8pN3ntxd0raiKIoAAEhs2UIfAABAswkeACA9wQMApCd4AID0BA8AkJ7gAQDSK033yX/8Y7RVx7Hg1q4tx9jY+EIfxqJiJpOZyWRm0sg8JjOTycxksvmYSbXaPuXnPMPz/0ql5Qt9CIuOmUxmJpOZSSPzmMxMJjOTyZo9E8EDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEivtNAHACy8tR2VqJTf+HZQrbbP6v618YkYG6m94fUAZkvwAFEpl6Kzf7Bl6w0P9MRYy1YD8JIWALAECB4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0ist9AEAk63tqESl7NsTYL7YUWERqpRL0dk/2LL1hgd6WrYWwELwkhYAkJ5neICWu3jppahW21u2Xm18IsZGai1bD1h8BA/QcqtWLG/5S3ZjLVsNWIy8pAUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6ZUW+gDgcrC2oxKV8ivfLtVq+wIfDQCzJXhgBirlUnT2D7ZsveGBnpatBbAUeEkLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOmVFvoAAJrt4qWXolptb9l61Wp71MYnYmyk1rI1gekJHiC9VSuWR2f/YEvXHB7oibGWrghMx0taAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEivtNAHALO1tqMSlbJLF4CZ81ODy06lXIrO/sGWrjk80NPS9QCYX17SAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgvdJCHwBARhcvvRTVanvL1quNT8TYSK1l68HlRvAANMGqFcujs3+wZesND/TEWMtWg8uPl7QAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgvdJCHwCXv7UdlaiUXUoALF5+SjFnlXIpOvsHW7be8EBPy9YCIAcvaQEA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6pYU+AADm7uKll6JabW/ZerXxiRgbqbVsPZgrwQOQwKoVy6Ozf7Bl6w0P9MRYy1aDufOSFgCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC90kIfAPNvbUclKuX5+b+2Wm2fl68DAAtJ8CRUKZeis3+wZesND/S0bC0AeCO8pAUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6/rV0AGbt4qWXolptn/H9Z3Pf11Mbn4ixkdqcvgZLm+ABYNZWrVgenf2DLVtveKAnxlq2Ghl5SQsASE/wAADpCR4AID3BAwCk503LLbC2oxKVslEDwELxU7gFKuVSy3+bAQD4Ly9pAQDpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEjPHx4EYNG7eOmlqFbbW7ZebXwixkZqLVuP5hM8ACx6q1Ysb/lfrB9r2Wq0gpe0AID0BA8AkJ7gAQDSW5Lv4VnbUYlKefKpt/INcQBA6yzJ4KmUSy1/8xsAsHCWZPAAwHRa8Wvwr/76fg2++QQPALyGX4PPZ1EEz1TvqQEAmA9tRVEUC30QAADN5NfSAYD0BA8AkJ7gAQDSSxc8x48fj5tvvjm6urriE5/4RJw+fXrSfYaGhmLXrl3R1dUVu3btiqGhofrnHnzwwejp6Ynu7u647bbb6o8/evRobN26Nbq7u+v/Pf744y07r7mYy0xOnz4dmzdvbjjvAwcOREREURTx7W9/O7q6uhpuvxzMZSb33Xdfwzx27twZ27Zti4iIu+++O7Zt29bw+eeee66l5/ZGzWQmRVHEvffeG5s3b47f/va3DZ8bHByM3t7e6Orqittvvz1GR0frj8l8nUw3k6W6n0w1k6W8n0w1k4z7yUzm8bvf/S5uueWWuOmmm6Kvry+eeeaZ+ueatpcUibz44ovF9u3biz/+8Y9FURTFPffcU3zyk5+cdL/u7u7i8ccfL4qiKB599NGit7e3KIqi+MMf/lC8//3vL86cOVMURVEMDAwUn//854uiKIojR44Ue/fubcVpzKu5zuTEiRPFjTfe+Lpf+9ixY8Utt9xSjI+PFxcvXiz6+vqKxx57rElnMn/mOpPXOnToUPHNb36zKIpXrpmDBw826cibZ6Yz2bt3b/GlL32puP7664tnnnmmfvsLL7xQbNu2rXjhhReKoiiKr33ta8W+ffuKosh/nUw1k6W8n0w1k6W8n0w1k9e63PeTmcxjfHy8eN/73lccP368KIqiePLJJ4vrr7++KIrm7iWpnuH51a9+FRs2bIjNmzdHRMSuXbvil7/8ZYyN/fevG5w4cSJGR0dj586dERHR3d0dZ8+ejT//+c+xbt26+M53vhNXXHFFRERce+21cfLkyYiIGB0djfb2y++fnpjrTEZHR6Ojo+N1v/Zjjz0WN998c6xcuTLK5XL09fXFo48+2vyTmqO5zuTV/vnPf8YDDzwQe/bsiYjc10lERF9fX9xxxx2xYsWKhtt/8YtfxHXXXRdvfetbIyJi9+7d9Wsh83USMfVMlup+EjH1TJbqfhIx9UxeLcN+MpN5XLp0Kb7+9a/H9u3bIyJi69at8fe//z1GRkaaupekCp7h4eHYsGFD/eM1a9bEm970pvjrX//acJ/169c3PG7Dhg3x/PPPx/r16+O9731v/fannnoq3vWud0VExMjISDz77LPx0Y9+NLq7u2NgYCD+/e9/N/mM5m6uMxkdHY1z587FrbfeGl1dXfGZz3wmzpw5U3/cxo0b64/ZuHFjPP/8800+o7mb60xe7d57742+vr76Jj4yMhI///nPo6+vLz74wQ/GwYMHo7gM/vLDTGYSEfHud797yse/9lo4e/ZsnD9/PvV1EjH1TJbqfhIx9UyW6n4SMfVMXi3DfjKTeaxZsyZuvPHG+sdPPfVUdHZ2RkdHR1P3klTBU6vVolwuN9xWLpfjwoULs7pPRMTDDz8cTz/9dNx+++0REfH2t789duzYET/4wQ/iRz/6UTz33HNx6NChJp3J/JnrTNatWxc7duyIO++8MwYHB+Mtb3lLfPGLX3zdx61atSpqtcX/p9Hn6zoZHR2No0ePxu7du+u3bd26NXbu3BkPPvhgfP/734+HH344jh492qQzmT8z/b6Y7vErV66sf7xy5cpoa2uLWq2W+jqZqaW0n0xnqe4nM5FlP5ntPIaGhuIb3/hG7Nu3r/74Zu0lqf688erVq2N8fLzhtosXL8aaNWtmdZ/7778/Dh8+HPfdd19Uq9WIiPjwhz9c//yqVavi1ltvjUOHDsWnP/3pZpzKvJnrTLZs2RJbtmyp375nz57Yvn17XLhwISqVSsPjarVarF69uklnMn/m6zp54oknYsuWLbFu3br6bR//+Mfr//vKK6+Mj33sY/HEE0/ERz7ykfk+jXk1k/P9X49/9TMU4+PjURRFrF69OvV1MhNLbT+ZzlLdT2Yiy34ym3k8++yz8bnPfS72799ff6N2M/eSVM/wbNq0Kf7yl7/UP/7Xv/4V58+fj7e97W0N9xkeHo6XX345IiImJiZieHg4rr766oiI+MlPfhL3339//PCHP2x4Wu7UqVP1d4pHvPJu8VJp8ffiXGdy9uzZhnfYF0URbW1tUSqVYtOmTQ1PJ548eTKuueaaFpzV3MzHdRIR8eSTT8YNN9zQ8LVPnjzZ8A2Z6TqZzlVXXdVwLfzpT3+KarUaHR0dqa+T/2Up7ifTWar7yUxk2U9mOo+hoaH47Gc/G3fddVfDeTdzL0kVPNu2bYvTp0/Xf+XvyJEjsWPHjoYCvOaaa6JarcaxY8ci4pWnmtevXx9XXXVVnDlzJu66666455574sorr2z42nfffXd861vfiqIoYnx8PB544IH4wAc+0LJze6PmOpOnn3469uzZU3/D2eHDh+O6666LlStXxk033RQPPfRQXLhwIV588cX48Y9/HD09Pa0/yVma60z+Y2hoqCGAIiL27dsXhw8fjoiI8+fPx09/+tM018l0du7cGb/5zW/qG92RI0eit7c3IiL1dTKdpbqfTGep7iczkWU/mck8iqKI/v7++MpXvhLXXnttw+ObuZek+7e0fv3rX8f+/fujVqvFxo0bY2BgIF5++eW47bbb6j+8Tpw4EXv37o1z587Fm9/85rjjjjvi6quvju9973tx8ODBhs2pVCrFsWPH4ty5c7F37944ceJEtLW1xQ033BBf+MIXGl5rXKzmMpOiKOLAgQPxs5/9LJYtWxabNm2Kr371q/UZ/edzbW1t0dvbW3+PwmI3l5n8x3ve85546KGHYtOmTfXbTp06FV/+8pfjb3/7Wyxbtiw+9KEPxac+9aloa2tr+TnO1kxm0tvbGxMTE3Hq1Km44oorolwux5133hlbtmyJRx55JL773e/GxMREvOMd74j9+/fXn8bOfJ1MNZPjx48v2f1kqpm8853vXLL7yXTfOxG59pP/NY/f//73sXv37knP+hw4cCA2b97ctL0kXfAAALxWqpe0AABej+ABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkN7/AWV3ygjx+FEEAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQuElEQVR4nO3dXYhc5f3A8d8mk0w2JotERoskMUm9EIOp+EIUCxoI7ra7tHVBDd6oeNES1AuxEJCIFcVFa70RiUExmopUbGsgWxUVRQVfERQvEoy6GCwJNSXJrpms2Xh6kb/zd6u7TjrZs7u//XxAMDNz9jnn8eyTr3Pmpa0oiiIAABKbNdk7AAAw0QQPAJCe4AEA0hM8AEB6ggcASE/wAADpVca781//Gmx5gAULqjE0NNzyz8nK/IzP/IzP/IzP/IzP/IzP/IxvKs5PrbZwzPsm/BmeSmX2RA8xrZmf8Zmf8Zmf8Zmf8Zmf8Zmf8U23+XFJCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQXmWydwBgoi3oaI/2arnLXX14JIYO1ksdExib4AHSa69WYtmG/lLHHOjrjqFSRwTG45IWAJCe4AEA0hM8AEB6ggcASE/wAADpeZcWULoy3yZeqy0sZRxgahM8QOnKfpv4QF93aWMBU5NLWgBAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0qtM9g4Ak29BR3u0Vy0HQF5WOCDaq5VYtqG/tPEG+rpLGwsgwiUtAGAGEDwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJBeZbJ3ACCjw0eORq22sLTx6sMjMXSwXtp4MN0IHoAJMG/O7Fi2ob+08Qb6umOotNFg+nFJCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApFeZ7B0Avm9BR3u0V5v79azVFk7w3gBMf4IHpqD2aiWWbegvbbyBvu7SxgKYDC5pAQDpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApFeZ7B0AoHWHjxyNWm3hcW/3v2wTEVEfHomhg/X/aVuYDIIHIIF5c2bHsg39pY030NcdQ6WNBq1zSQsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AIL3KZO8ATAcLOtqjverXBWC6soJDE9qrlVi2ob+08Qb6uksbC2AmcEkLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9CqTvQMATD+HjxyNWm1haePVh0di6GC9tPHIR/AAcNzmzZkdyzb0lzbeQF93DJU2Ghm5pAUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANKrTPYOwPFa0NEe7VWnLgDN87cG0057tRLLNvSXOuZAX3ep4wFwYrmkBQCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC9ymTvAAD8mMNHjkattrC08erDI6WNRTkEDwBT3rw5s2PZhv7Sxhvo644jR46WNh4TzyUtACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOn54EFatqCjPdqrE3cqlfnpqgDkJHhoWXu1UvonoALA8XBJCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQXmWydwAApprDR47GvDmzo1ZbWMp49eGRGDpYL2WsmUrwAMB/mTdndizb0F/aeAN93TFU2mgzk0taAEB6ggcASM8lrYQWdLRHe9V/WgD4lr8VE2qvVkq/9gwAU5lLWgBAeoIHAEhP8AAA6QkeACA9wQMApOddWgAwyQ4fOVra11h8a6Z9nYXgAYBJVvZXWUTMvK+zcEkLAEjPMzwl+LFPPi77aUwAmGkETwl88jEATC7BAwAz0Il4ofTxbD/ZL5KekcHjyzUBmOnKfqH0ZL9Iuq0oimISxwcAmHDepQUApCd4AID0BA8AkN5xBc+bb74ZV1xxRXR2dsb1118fe/bs+d5jduzYEevWrYvOzs5Yt25d7Nixo3Fff39/9PT0RGdnZ9x0000xODgYERFFUcQf//jH6OzsjK6urrj//vtbPKzJ0er8PP3009Hd3R1dXV1xww03NLbftm1bnH/++dHV1dX458UXXyztuE6UVuZnz549sXLlylFz8O154vyJePzxx0fNzdq1a2P16tUREfHQQw/F6tWrR93/4YcflnpsJ0Iz81MURTz66KOxcuXKeO+990bdZ/0Zf36sP2PPj/XnmLHmZ9qsP0WTvvrqq+Kiiy4qPvroo6IoiuKRRx4pfvvb337vcV1dXcWLL75YFEVRPPfcc0VPT09RFEXxxRdfFKtXry6++OKLoiiK4g9/+ENx5513FkVRFNu3by+uvPLKYnh4uDh8+HDR29tbPP/8883u2pTQ6vx88MEHxSWXXFLs3bu3KIqi6OvrK2655ZaiKIpi69atxcaNG8s4jAnT6vzs3LmzuPzyy3/wZzt/vm/z5s3FPffcUxTFsXNp06ZNE7Tn5Wh2fjZu3Fjcdtttxc9//vPi3Xffbdxu/TlmrPmx/hwz1vxYf44Za37+21Rdf5p+huett96KJUuWxMqVKyMiYt26dfHGG2/E0ND/v8ls586dMTg4GGvXro2IiK6urti3b1988skn8fLLL8fFF18cp59+ekREXHPNNfHcc89FRMTzzz8fV1xxRcydOzeq1Wr09vY27psuWp2fRYsWxQMPPBCnnnpqRERccMEFsWvXroiIGBwcjIULp/enMbc6P4ODg9HR0fGDP9v588mon/Xll1/GU089FevXr4+ImXP+RET09vbGXXfdFXPmzBl1u/XnmLHmx/pzzFjzY/05Zqz5+a6pvP40HTwDAwOxZMmSxp9POumkOPnkk+Pzzz8f9ZjFixeP2m7JkiXx6aefxsDAQCxdurRx+9KlS2Pfvn1x4MCBH7zv008//Z8OaLK0Oj+LFy+OCy+8sHH7a6+9Fj/72c8iIuLgwYPx/vvvx1VXXRVdXV3R19cXX3/99QQf0YnV6vwMDg7G/v3747rrrovOzs64+eabY+/evY3tZvr5812PPvpo9Pb2NhbogwcPxksvvRS9vb3xy1/+MjZt2hTFNPs0imbmJyLi3HPPHXP7mb7+RIw9P9afY8aaH+vPMWPNz3dN5fWn6eCp1+tRrVZH3VatVuPQoUNNPaZer8fcuXMbt8+dOzfa2tqiXq9/b7t58+ZFvT69vrK+1fn5rmeffTZef/31uOmmmyIi4qyzzoo1a9bEE088EX/5y1/iww8/jM2bN0/QkUyMVudn0aJFsWbNmrj33nujv78/fvKTn8Tvf//7H9xuJp8/g4ODsW3btrjmmmsat51//vmxdu3aePrpp+Oxxx6LZ599NrZt2zZBRzIxmv3dGW/7mb7+NGumrj/jsf40Z6qvP01/3PD8+fNjeHh41G2HDx+Ok046qanHzJ8/f9T/FQwPD0dRFDF//vxob28ftV29Xo/58+cf98FMplbn51tPPvlkbNmyJR5//PGo1WoREfHrX/+6cf+8efPiuuuui82bN8eNN944EYcyIVqdn1WrVsWqVasat69fvz4uuuiiOHTokPPnO4955ZVXYtWqVbFo0aLGbddee23j30877bS4+uqr45VXXonf/OY3J/owJkwzx/5j28/09acZM3n9GY/1pzlTff1p+hmeFStWxGeffdb487///e84cOBAnHHGGaMeMzAwEN98801ERIyMjMTAwED89Kc/jeXLl496mu/jjz+OWq0WHR0dsWLFilH37dq1K84888yWDqxsrc5PRMTf/va3ePLJJ+PPf/7zqKcXd+/e3XhHScSxV8pXKtPrqzFanZ99+/aNetdAURTR1tYWlUrF+fN/509ExKuvvhqXXnrpqJ+9a9euUYtZ1vNnPNafHzfT15/xWH+aM9XXn6aDZ/Xq1bFnz57GW9G2bt0aa9asGVWyZ555ZtRqtdi+fXtEHHtqdPHixbF8+fJYu3ZtvPPOO41J3bp1a/T09ERExC9+8Yt45pln4tChQ/HVV1/FX//61+junl7f+N3q/Ozduzf+9Kc/xSOPPBKnnXbaqJ/90EMPxX333RdFUcTw8HA89dRTcdlll5V2bCdCq/Pz+uuvx/r16xsvotuyZUtcfPHFMXfuXOfP8uWNx+zYsWNUAEVE3HnnnbFly5aIiDhw4ED8/e9/T3n+jMf6Mz7rz/isP82Z6uvPcX2X1ttvvx1333131Ov1WLp0afT19cU333wTN9xwQ2MR3rlzZ2zcuDH2798fp5xyStx1112NCfjHP/4RDz74YIyMjMTZZ58dd999d+Mps/vvvz9eeOGFaGtri56ensb14+mklfl5+OGHY9OmTaMWm0qlEtu3b4/9+/fHxo0bY+fOndHW1haXXnpp3HrrraNekzAdtDI/RVE0zpFZs2bFihUr4o477mjM10w/f7513nnnxTPPPBMrVqxo3LZ79+64/fbb45///GfMmjUrfvWrX8Xvfve7aGtrK/0YW9HM/PT09MTIyEjs3r07Tj311KhWq3HvvffGqlWrrD8x9vy8+eab1p8Ye37OOecc60+M//sVMfXXH18eCgCk56slAID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9P4DuEjYZSEc3XkAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -1600,26 +1538,6 @@ "plt.yticks([]);" ] }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "0.09773008630792071" - ] - }, - "execution_count": 25, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.mean(result)" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -1643,61 +1561,26 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 27, "metadata": {}, "outputs": [ { - "data": { - "text/plain": [ - "array([[ 14., 29., 4.],\n", - " [ 23., 22., 1.],\n", - " [ 78., 69., 20.],\n", - " [ 32., 36., 1.],\n", - " [ 19., 23., 5.],\n", - " [ 42., 42., 10.],\n", - " [ 59., 45., 12.],\n", - " [ 80., 49., 16.],\n", - " [ 12., 6., 3.],\n", - " [ 45., 39., 12.],\n", - " [ 51., 40., 8.],\n", - " [101., 64., 17.],\n", - " [ 17., 16., 1.],\n", - " [ 41., 27., 9.],\n", - " [ 67., 46., 11.],\n", - " [ 46., 30., 7.]])" - ] - }, - "execution_count": 13, - "metadata": {}, - "output_type": "execute_result" + "name": "stdout", + "output_type": "stream", + "text": [ + "[ 42. 45. 146. 68. 41. 84. 104. 129. 19. 84. 90. 165. 32. 68.\n", + " 113. 76.]\n" + ] } ], "source": [ - "values" + "alpha_2j = np.round((1 - data['other'].to_numpy()) * proportion) #Not a probability as you may see\n", + "print(alpha_2j)" ] }, { "cell_type": "code", - "execution_count": 14, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[ 42. 45. 146. 68. 41. 84. 104. 129. 19. 84. 90. 165. 32. 68.\n", - " 113. 76.]\n" - ] - } - ], - "source": [ - "alpha_2j = np.round((1 - data['other'].to_numpy()) * proportion) #Not a probability as you may see\n", - "print(alpha_2j)" - ] - }, - { - "cell_type": "code", - "execution_count": 15, + "execution_count": 28, "metadata": {}, "outputs": [ { @@ -1718,7 +1601,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 29, "metadata": {}, "outputs": [ { @@ -1751,217 +1634,7 @@ }, { "cell_type": "code", - "execution_count": 17, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 4., 1., 19., 1., 4., 9., 11., 15., 2., 11., 7., 16., 0.,\n", - " 8., 10., 6.])" - ] - }, - "execution_count": 17, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.round((data.other.to_numpy() * proportion * (values[:, 0] + values[:, 1]) - values[:, 0]) / (values[:, 0] + values[:, 1]))" - ] - }, - { - "cell_type": "code", - "execution_count": 18, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([ 57., 69., 234., 101., 62., 131., 170., 219., 33., 135., 145.,\n", - " 277., 49., 114., 187., 126.])" - ] - }, - "execution_count": 18, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "np.sum(new_values, axis=1)" - ] - }, - { - "cell_type": "code", - "execution_count": 21, - "metadata": { - "collapsed": true, - "jupyter": { - "outputs_hidden": true - } - }, - "outputs": [ - { - "data": { - "text/plain": [ - "\u001b[0;31mSignature:\u001b[0m\n", - "\u001b[0mtt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnnet\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mh_softmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mbatch_size\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mn_outputs\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mn_classes\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mn_outputs_per_class\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mW1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mb1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mW2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mb2\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m \u001b[0mtarget\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\n", - "\u001b[0;34m\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", - "\u001b[0;31mDocstring:\u001b[0m\n", - "Two-level hierarchical softmax.\n", - "\n", - "This function implements a two-layer hierarchical softmax. It is commonly\n", - "used as an alternative of the softmax when the number of outputs is\n", - "important (it is common to use it for millions of outputs). See\n", - "reference [1]_ for more information about the computational gains.\n", - "\n", - "The `n_outputs` outputs are organized in `n_classes` classes, each class\n", - "containing the same number `n_outputs_per_class` of outputs.\n", - "For an input `x` (last hidden activation), the first softmax layer predicts\n", - "its class and the second softmax layer predicts its output among its class.\n", - "\n", - "If `target` is specified, it will only compute the outputs of the\n", - "corresponding targets. Otherwise, if `target` is `None`, it will compute\n", - "all the outputs.\n", - "\n", - "The outputs are grouped in classes in the same order as they are initially\n", - "defined: if `n_outputs=10` and `n_classes=2`, then the first class is\n", - "composed of the outputs labeled `{0,1,2,3,4}` while the second class is\n", - "composed of `{5,6,7,8,9}`. If you need to change the classes, you have to\n", - "re-label your outputs.\n", - "\n", - ".. versionadded:: 0.7.1\n", - "\n", - "Parameters\n", - "----------\n", - "x: tensor of shape (batch_size, number of features)\n", - " the minibatch input of the two-layer hierarchical softmax.\n", - "batch_size: int\n", - " the size of the minibatch input x.\n", - "n_outputs: int\n", - " the number of outputs.\n", - "n_classes: int\n", - " the number of classes of the two-layer hierarchical softmax. It\n", - " corresponds to the number of outputs of the first softmax. See note at\n", - " the end.\n", - "n_outputs_per_class: int\n", - " the number of outputs per class. See note at the end.\n", - "W1: tensor of shape (number of features of the input x, n_classes)\n", - " the weight matrix of the first softmax, which maps the input x to the\n", - " probabilities of the classes.\n", - "b1: tensor of shape (n_classes,)\n", - " the bias vector of the first softmax layer.\n", - "W2: tensor of shape (n_classes, number of features of the input x,\n", - " n_outputs_per_class)\n", - " the weight matrix of the second softmax, which maps the input x to\n", - " the probabilities of the outputs.\n", - "b2: tensor of shape (n_classes, n_outputs_per_class)\n", - " the bias vector of the second softmax layer.\n", - "target: tensor of shape either (batch_size,) or (batch_size, 1)\n", - " (optional, default None)\n", - " contains the indices of the targets for the minibatch\n", - " input x. For each input, the function computes the output for its\n", - " corresponding target. If target is None, then all the outputs are\n", - " computed for each input.\n", - "\n", - "Returns\n", - "-------\n", - "tensor of shape (`batch_size`, `n_outputs`) or (`batch_size`, 1)\n", - " Output tensor of the two-layer hierarchical softmax for input `x`.\n", - " Depending on argument `target`, it can have two different shapes.\n", - " If `target` is not specified (`None`), then all the outputs are\n", - " computed and the returned tensor has shape (`batch_size`, `n_outputs`).\n", - " Otherwise, when `target` is specified, only the corresponding outputs\n", - " are computed and the returned tensor has thus shape (`batch_size`, 1).\n", - "\n", - "Notes\n", - "-----\n", - "The product of `n_outputs_per_class` and `n_classes` has to be greater or\n", - "equal to `n_outputs`. If it is strictly greater, then the irrelevant\n", - "outputs will be ignored.\n", - "`n_outputs_per_class` and `n_classes` have to be the same as the\n", - "corresponding dimensions of the tensors of `W1`, `b1`, `W2` and `b2`.\n", - "The most computational efficient configuration is when\n", - "`n_outputs_per_class` and `n_classes` are equal to the square root of\n", - "`n_outputs`.\n", - "\n", - "Examples\n", - "--------\n", - "The following example builds a simple hierarchical softmax layer.\n", - "\n", - ">>> import numpy as np\n", - ">>> import theano\n", - ">>> from theano import tensor\n", - ">>> from theano.tensor.nnet import h_softmax\n", - ">>>\n", - ">>> # Parameters\n", - ">>> batch_size = 32\n", - ">>> n_outputs = 100\n", - ">>> dim_x = 10 # dimension of the input\n", - ">>> n_classes = int(np.ceil(np.sqrt(n_outputs)))\n", - ">>> n_outputs_per_class = n_classes\n", - ">>> output_size = n_outputs_per_class * n_outputs_per_class\n", - ">>>\n", - ">>> # First level of h_softmax\n", - ">>> floatX = theano.config.floatX\n", - ">>> W1 = theano.shared(\n", - "... np.random.normal(0, 0.001, (dim_x, n_classes)).astype(floatX))\n", - ">>> b1 = theano.shared(np.zeros((n_classes,), floatX))\n", - ">>>\n", - ">>> # Second level of h_softmax\n", - ">>> W2 = np.random.normal(0, 0.001,\n", - "... size=(n_classes, dim_x, n_outputs_per_class)).astype(floatX)\n", - ">>> W2 = theano.shared(W2)\n", - ">>> b2 = theano.shared(np.zeros((n_classes, n_outputs_per_class), floatX))\n", - ">>>\n", - ">>> # We can now build the graph to compute a loss function, typically the\n", - ">>> # negative log-likelihood:\n", - ">>>\n", - ">>> x = tensor.imatrix('x')\n", - ">>> target = tensor.imatrix('target')\n", - ">>>\n", - ">>> # This only computes the output corresponding to the target.\n", - ">>> # The complexity is O(n_classes + n_outputs_per_class).\n", - ">>> y_hat_tg = h_softmax(x, batch_size, output_size, n_classes,\n", - "... n_outputs_per_class, W1, b1, W2, b2, target)\n", - ">>>\n", - ">>> negll = -tensor.mean(tensor.log(y_hat_tg))\n", - ">>>\n", - ">>> # We may need to compute all the outputs (at test time usually):\n", - ">>>\n", - ">>> # This computes all the outputs.\n", - ">>> # The complexity is O(n_classes * n_outputs_per_class).\n", - ">>> output = h_softmax(x, batch_size, output_size, n_classes,\n", - "... n_outputs_per_class, W1, b1, W2, b2)\n", - "\n", - "\n", - "References\n", - "----------\n", - ".. [1] J. Goodman, \"Classes for Fast Maximum Entropy Training,\"\n", - " ICASSP, 2001, `.\n", - "\u001b[0;31mFile:\u001b[0m ~/anaconda3/lib/python3.7/site-packages/theano/tensor/nnet/nnet.py\n", - "\u001b[0;31mType:\u001b[0m function\n" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 101, + "execution_count": 30, "metadata": {}, "outputs": [], "source": [ @@ -1985,7 +1658,7 @@ }, { "cell_type": "code", - "execution_count": 102, + "execution_count": 31, "metadata": {}, "outputs": [ { @@ -1998,7 +1671,7 @@ "Name: Log-probability of test_point, dtype: float64" ] }, - "execution_count": 102, + "execution_count": 31, "metadata": {}, "output_type": "execute_result" } @@ -2009,7 +1682,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 32, "metadata": {}, "outputs": [ { @@ -2104,10 +1777,10 @@ "\n" ], "text/plain": [ - "" + "" ] }, - "execution_count": 24, + "execution_count": 32, "metadata": {}, "output_type": "execute_result" } @@ -2118,7 +1791,7 @@ }, { "cell_type": "code", - "execution_count": 103, + "execution_count": 33, "metadata": {}, "outputs": [], "source": [ @@ -2128,12 +1801,12 @@ }, { "cell_type": "code", - "execution_count": 104, + "execution_count": 34, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFkCAYAAADmPNjoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9a5Ac1X03/OvbXHouO7srYSEhbwlRtmJBhJAVkEuAsbABO08Z563wkHwgcXDKqefLW0A5n+IqymWXie28fpPXTx5XbFwx2HkSPRVbNmDJ2BCQFGS0llfYwSxYy+4iJFZIO7tz6Z6+9/vh9DnTPdNz29n7nl8VJXamp/uc7j7nf//9Bd/3fXBwcHBwcHCsCYgrPQAODg4ODg6O7sEFNwcHBwcHxxoCF9wcHBwcHBxrCFxwc3BwcHBwrCFwwc3BwcHBwbGGwAU3BwcHBwfHGoK80gPoBpcvV5o+y2aTqFbNFRjN8oDPb21jPc9vPc8N4PNb61hP89u8ORf7+Zq1uGVZWukhLCn4/NY21vP81vPcAD6/tY71Pj9gDQtuDg4ODg6OjQguuDk4ODg4ONYQuODm4ODg4OBYQ+CCm4ODg4ODYw2BC24ODg4ODo41BC64OTg4ODg41hC44Obg4ODg4FhD4IKbg4ODg4NjDYELbg4ODg4OjjUELrg5ODg4ODjWENYEVzkHBwcHRxTT05MYGxtFuVxCPj+AvXv3Y2Rkx0oPi2MZwC1uDg4OjjWG6elJHD/+HDRNQzKZgqZpOH78OUxPT6700DiWAVxwc3BwcKwxjI2NQhQlKIoCQRCgKApEUcLY2OhKD41jGcBd5Rwc6wjcfboxUC6XkEymIp/JsoxyubRCI+JYTnCLm4NjnYC7TzcO8vkBOI4T+cxxHOTzAys0Io7lBBfcHBzrBNx9unGwd+9+eJ4L27bh+z5s24bnudi7d/9KD41jGdC34D516hQ+9alP4a677sKnP/1pzMzMNB0zPj6O+++/H3fddRfuv/9+jI+Ps+/+5V/+BZ/4xCdw11134cEHH8Q777zT75A4ODYkyuUSZDka/eLu0/WJkZEduO22Q8hkMjBNA5lMBrfddoiHRTYI+opx67qOhx9+GN/+9rexe/duPP7443j00UfxzW9+M3LcQw89hEceeQR33nknjh07hs997nN46qmn8Ktf/Qrf+c538O///u8YGBjAl7/8ZTz22GP4+7//+74mxcGxEZHPD0DTNCiKwj6j7lMe+15/GBnZwZ/hBkVfFvcvfvELbN++Hbt37wYA3H///Th58iSq1So75vXXX0elUsGdd94JALj77rsxOzuLiYkJDA8P4ytf+QoGBkhc5pZbbsHkJI/HcXAsBK3cp9u2beexbw6OdYS+BPfU1BS2b9/O/s5kMigUCnjrrbcix1xzzTWR323fvh1vvvkmRkZGcNNNNwEADMPAU089hUOHDvUzJA6ODYtW7tMLF87z2PcawfT0JI4cOYwnnvgWjhw5zJUrjlj05Sqv1WpIJpORz5LJJHRd7+mYr3zlK/jXf/1X7Nu3D5/5zGearpPNJiHLUuQzSRJRKKj9DH9Vg89vbWOl5lco7MaePbsjn5048RxSqTQEQWCfiWIC1WplQWPkz25pMDFxDidPPg9JkqCqKgxDx8mTzyObvQc7d163aNfhz2/toy/BraoqTNOMfGYYRNPv5Zi//uu/xsMPP4zvfOc7+PSnP43Dhw9Hjq9Wo78HgEJBxfy83vT5egGf39rGappfNptvin3bto1sNregMa6muS0FVmp+J06cBCBCFGV4ng9RlOG6Pk6cOInh4a2Ldh3+/NYONm/OxX7el6v82muvjcSki8UiSqUSRkZGIsdMTU3B8zwAJFlmamoKO3fuxK9//Wu88sorAEj265/+6Z/ilVdeQblc7mdYHBwcIfDSobUBXhXA0S36Etw333wzZmZm8Mtf/hIA8OSTT+KOO+6AqtbdFNdddx02b96Mp59+GgBw5MgRXHPNNdixYwfefPNN/M3f/A0qlQoA4D/+4z9w9dVXI5/P9zMsDg6OEHjp0NoAJ1Xh6BZ9ucpTqRS+/vWv4wtf+AJqtRre+9734rHHHsOlS5fw4IMPMmH9ta99DZ///OfxjW98A8PDw/jqV78KAPjkJz+Jqakp/PEf/zF830c+n+elYBwcSwBeOrT6sXfvfhw//hxsm1jajuNwzwhHLATf9/2VHkQnXL5cafpsPcUx4sDnt7axWue3GPXcjXNbbzXiK/ns4u4lgEW9v6v13VwsrKf5tYpxc8G9SsHnt7axGudHucxFUYpYdL26zcNzW6xzriaspme3FPd3Nc1vKbCe5tdKcPPuYBwbDsth1axGhLnMAUBRFNg2+Xyhc12Kc3LUwe8vRxy44ObYUAhbMJRF7LnnjkEQgEQiFWEWW8tWYxyWohUkby+5tOD3lyMOvDsYx4ZCXAct27Zgmua6ZxZbiqxlngm9tOD3lyMOXHBzbCjE1cp6nsd4BijWo1XTSz13t9SbvEZ8acHvL0ccuODmWDfoRtjEWTCiKEIUo0thPVo13dZz03BCN01JeI340oLfX4448Bg3x7pAXOw6Lk4dVyurKAkIAqEBXe/1s63qucMJe6ZpQpYVZDIkttouIWq9lYKtRvAafI5GcMHNsS7QbfYttWDCwubgwQ+zc6w2AdQoGLdt244LF84v6jgblZ5qtQLHsSHLEkuMigsddKsscXBwLC644OZYF+gl+7aVBbPahE2jYJybm8PFi29DVTNIp9VFE5SNSo8sy3BdF7Wazu5pXOiAlypxcKwMuODmWBfI5weaOmCtxTh1O5e1bZsQBAGWZUJVM4smKBuVHlXNoFwuw3Fc+L7fMnTAS5U4OFYGXHBzrAusB57nTi5r13UhCAJc12W/6UZQdopDNyo9iUQSqqrCtm2YptHSJb9elKXlBM8J4FgMcMHNsS4QF7tea5tiJ5e1JElwXReSJLHfdBKU3cSh45QeSZJwxx0fa3v/FkNZaiXI1qOA4zkBHIsFLrg51g1WMvu2UdDceutBDA9v7ekcnVzWipKE42hIJJJtXdhhdBOHXqjS06+y1EqQ7dq1G+Pjr647AcdzAjgWC1xwc3D0iTgBdOzYURw8+JGeNuROLuvBwUFcf/3vR7LKt23bjrGxUbz44s9jBWe3ceiFKj39KEtUkHmei1KpAtd1IYoizpw5jVwuv+4EHM8J4FgscMHNwdEn4iwpz3N6FjTduqz37z8AoDvX62LGoalXoVotI5vN912aRgSWAE2rQhAAQRDg+z5c14XrupExrwcBx3MCOBYLnDmNg6NPxNGoyrLSs6ChrmdRFDE3N4tKpQRFSbQ8Po53vZFjfbEoM8NsaqlUGvPzcxgdPYW5ubmO7GqtkM8PoFbTmNAWBIF9V6tpkWPXg4Dj9KUciwUuuDk4+kR8Iwh7wYLGcWzkcgMYHByG67otBWK8whC1TBeLMrNRSbAsUppGS9QW0phl27btcByHWdie58H3gXRaheu60DQN8/NFXLlyGZVKCdu2be9pzKsNnL6UY7HAXeUcHH0izsUNeAuypHpJYOrW9boYSXuN8dl2pWndZIRPT0+yBDTPI8l3vu9DVTNIJJKQZRm6rsHzPEgSCQWMj7+Kq67asiSCLjzmoaEh3HDDTUtyHU5fyrEY4BY3B0efiLOk7r77ngVt0HFWtOu6mJm52NQ8ZTldr41eBUmS4Pt+U2maoiS6alBCFZRsNgtRlCBJEkRRhGka8DwXipJALjeATZuuwuDgMFQ1s2StVhubqlSrlZ7d/hwcywlucXOsOqzFGt5GS6pQUDE/r/d8nkYr2jQNaFoFgiDEJqAttByr13sc9iqIYgKJRBK6rkFRoqVpRAB39hhQC14QyHG1ms6s99tuO4QXX/z5smVgN9fPJ2AYJp599hkkk8kleQfX4jvOsXogPfroo4+u9CA6Qdetps9SKQWGYa/AaJYHG3V+1PpxHAeJRALVagXj4/+FV175Fd56axLptIpCYXAFRtwbFvr80mkVU1MT8H0foiiiUinD83zkcnnIssws3dnZy9i1azcKhcHg3yHMzFzEG2+8hsnJibb3qfEem6aJqakJFAqDLX9Dv5udvYxSaZ5lvHueB9u2MTBQwC23HMSbb/4OiUQikmgmiiJ0XcOePfvYZ5OTEzBNE5IkQZZlpFJpKEoCQ0PDuOWWg5HvKRzHQS6Xw65du3u+r+1w+vRLkTHbtoVKpQLP85DL5Zvuz/T0JF544Wc4ffqlru5147Gl0nzP978fNI4hl8tCVXOLfp3VgvW0d2YyydjPueBepdio83vhhZ8FLlcFtm1B0zQAfvCtsKQbXCf0smEv9PmFBaSua7BtC9lsLmJ9NgrCXgVx+B4LgtCkDLQbWzqt4sKFt6AoSaTTKiRJhiiKuOWWgxgZ2dG1wG1UUKjFfsstB9l12n2/mGgcc6VShu97kGUpmGP9/qTTatf3utVzuXDhbQBCz/d/IYgbw7lzv8PAwMqsoeXAeto7WwluHuPmWFUIx3h1vV4qROt6lyrO2QmNcdCFlD91i5GRHbj33vvwwAN/iS1btkIUpcj3jQlo3ZSFhdFNNnorjI2NQpJaX6vbuHunDOulysCenp7EkSOHI/kCjWOmsfx0Wm26P73c61bHlkpzC77/vSJuDJK0MmuIY/HAY9wcqwrhGC9l0gonQa0UEcdK0VV2wwfeKyMXvcee57LYsiiKyOcLkePi4rDlcgmqqsLzfHZc+Fq9xN07ZVgvdgZ23fp0YdsmqtUqZmYuYt++myNjVpQEJEmO3FOqLPVyr1sdS8+3HEQs8WPonWOAY3WBC26OVYVoEpQIz/MACMz6WSkijpWiq+xGEIaVHdM0UKvpcBzioZienmwSfnv37sdzzx2DaRosruu6HgxDZ8e3YmVLJJJwHBuiWN86Gp/JcpY89ZLkNTY2CsdxYRg1CAIgioSp7cyZl3HPPZ/EvffeBwCYnb2In/zkJ7Btu0lZGhsb7Zr9rFW5XqEwBNu2lqWTXfwYFs4xwLE6wGPcqxQbdX7hGK9lWfA8F6lUGqlUeknjnJ3Qa7LUYj4/moC2Z88+lpAWBo0Hm6YJXdfg+8QalmUZb7zx26bEvkJhEK+//hpM02DejGw2B1lWWJz1hRd+hlpNh2Ho0HUtENYiJEmG57nwvKWPPXdCr7H906dfgmUZAHzG1CYIAjzPg6ZV2XPcuvU9SKWyLM8gl8uxGH4vsfdWxx48+GGMjFwbe/7FRtwYfN/DzTcv//NaLqynvbNVjJtb3ByrDmGLjVpUs7NX2MZ39OiPMDAwiA996LZls+yoJ0DXLZimwdzLV131Hhw5cnhFy3qoVf7ss8/A933IsgxFScAwiJByXaepjMyyTAwODkeyv33fZx6EYnEWhmFAEADP81j2uG3b+KM/+iM8++zPMDc3CwAoFIYWdT7dWtG9hi/y+QFUq1WIYnTOkiR13XSl11BAu2OXmkiGXq9xDAvpXMexuiD4VD1fxbh8udL02ULrZNcKNvr8whuQopCyMNu2I80okskUDh26e9kE5ejoKZw58zI8z4csSxAEEbZtQVUzSKdVpljcdtsh7Nmze9mf3xNPfCuojRYwP18MwgxEOA0Pb4Zt28hkMrj33vtw5MjhJheqphHLOplMolqtoNXWcNttt+Ps2bMQRSni6l2s5DHqou907vB8KXzfh2kaeOCBv4ycc2xsFMXiLGo1PZLJTShW04FXJ7XkzGlLiW7v3UbfW9YSNm+OL9vjFjfHqkNjfHV+vgjHcSCKIkSxXghh29aytnq8cOE8crkBJuzm54uMt1tVMxGLb8+e9mU9S0HA0UtiX2PSm67rqNU0qGoGyWQKlUq55XVefvllpNNqz4l63cx5sSlfw+9SJpOF57kwTROO4wT14yn4vgdd1+C6boQ5LU5ZWM3EKbzf98YBLwfjWHVoLGEJW45heJ63rNmxjWVUcXzdlJ70G9/4hwg9aRjdlJbFlS3FIXxcrVaDZRmwbZsl9tGmHUBUqDWWWzmODVXNQFUzrGwoDBoPVhQFlmWy+2BZJubniyiV5jAzc7HtOLspp+ulVK2b0rNTp05A06ool+dRKs0hlUpDVbNIJJIs5p9KqUgmU6GSqURsiddylgQuBP2U+XGsLXDBzbEsaBREExPnWh7buAFRi7FRcJMSpuXLju3E103pSQEglUp35Omuk8xUUKmU8eyzz2B6erJrAdF4HBXUpM6aMIGlUmkkEslYoRauF08mk5G6ZVXNROYpiiIEQYSiJIPMcgeWZTKGMfK90FKQdVv/HN9pLT5ru1Ot9/T0JIrFKywxy/M8VCoVyLKEZDKJBx74S9x7732wbasrgddrvfxyo5d7x7G2wV3lHEuOuNKiY8eO4uDBj7RMIgq7QEn8uAzf9+F5HotxJxLJRS+haecKbXQvK0oSjqMhkSB83SSjG8jlcmxjb8fTTQUfKU0SYds2jh9/DrKsdOXyjHONAkAqlcL99z/Qk1u38Z4nEkkkk6mg6QeJ6StKErIs4YMf3IezZ89C06ogrHYCfB/IZOqNQBqvE54zdUvTpiJhdFO3Hka70jNKFkMVPhIL96FpVWzZUk/Oapy7YRgsxn/kyGF231aqJLBb9HrvONYueDnYKsV6ml8cxaYgAFeuxFM8Npaw+D7ZdNPpNByH3JNCYQi33764vYw7lRc10pEWCgXs2rUbtm010ZPatoVyuYRaTYemVbF583tY+Q0tLdN1IvhochVtX1kuzyOTyXbk+6Yc25ZlolotQ9OqcBwbhmHgppv2dywja3fPCRe5GFzPh+u6KBQIH/kf/MF+pFJZnDv3Oht3JkNi43HjpHOen5+DplUjoQ/P8yL3pvEe91Mqdfr0S1CUBCwrun94noddu3ZjdPQUTp9+Cb6PoLabKE/VKuGHz2ZzcByHvQNzc7NBfNxm99s0DahqBjfccGPP41tsdHvv1tPeEof1ND9eDraBsNoSaHplb4oroyG1r82JQotZitVNck+chbd//wEAYJnamlaFrmvse99HJNmJWkY04a6e3axGmLUosxnJpicx5rAFmM8PYG5ujhGK0Hi753mxxCvt0K50ic6v8fgtW7Z2TUaybdt2XLhwPnRPiBUsSXKThd6JwKXb95ta0tlsNsIQl8lkWS/wZDIFx3GY16NSKbFjEgmyadJ3oBvimpUG7/e9McAt7lWKhc5vIZ2flhpx5CWu6yCTad3pqZO1uBTzbOwSBcRbuq2QTqs4d24cuh4tRSElShampt7Epk2bMTKyA4XCIKam3oTruhGL1XEcqGoGhlFDraYz65TCdV2cPz+FQmEQV1+9DePj/wXAD2XbE8/E/Hyx54YV3Vro9N3shYxkdPQUKpUyu7dUERFFomw03t9WDV16ee50fKIoBVn/CciyzARy1AMkBlSuHgYGBiL88PQduP32Qx2Ja9YC+N65dsC7g60xLHR+C+38tJRYCvYmOk/Pc1GtVmAYNTiOg3ffvbRgt2W/rSQLhUGMj/8WtVp8DanneZiYeAOvvPIrlErzeN/7dqFSKQUZzYkIs9alS+8E8WUiuIlwIRn2yWQKs7OXccstB/HrX4/B9wlBChEkWSSTqSZlo50g7LbjGQV9N+Ncs9deex3eeOO1pvOdPv0Se+5h+L6PTZuuitzfdsKZ0JZ29363Gt/k5DkYRg2WZTI2OCqc8/kBWJYJQajn7eq6Dtu28Oqrr6BSKSOTySKXG0AqlY78thvlbjWA751rB0vmKj916hS+8pWvQNd1bN26FV/+8pexZcuWyDHj4+N49NFHMTc3h8HBQTz66KPYtWsXAODw4cP47ne/C9d1sW3bNnzpS19q+j1H91iNCTRxbth+2ZvIfARoWjVCyjI3N7tgt+ViJPfYtgVFURjbWDgTnrjE60xm4+OvYteu3bhw4XyT2/fFF3+OwcFhFItXmHUKEIs7/DyHhoab3NW2bbesZQ5nqe/atTviMm5kV+sGjSx3cde57bZDSCSSsbXhvu9j27btkbE+++wzAU84aatJcgbA3p9e3u+48RFLv55lnssBgiCy+3/y5PNwXT+2vr1W04OEQoFZ7uspc7vbMMRqC8dtNPQluHVdx8MPP4xvf/vb2L17Nx5//HE8+uij+OY3vxk57qGHHsIjjzyCO++8E8eOHcPnPvc5PPXUU/j1r3+Nf/iHf8APfvADXHXVVfjbv/1bfPWrX8Xf/d3f9TWpjYxuSClWAo2xt37ZjfL5AVy69A4T2gCYRd+KcKLTZtMLnWWrcyYSSbiuB9OsxTKP1QW6B1GUcOHCedbconF+mqZBkqRIMpckSZHn2Y2y0Sp2f/bsGUYcE/58oYQd7XIE2hE0njnzMi5cOI9t27ZjfPxV2LbFBGu1WgVAstzpPV7o+03Hp6qZoOc2GVOpNA9VVVkeRTZ7D06cOIlyuRSpbwdImVy1WkG1WsHgYGJByt1qRTvFK/w+NDIIuq7Xs8LH0R/6quP+xS9+ge3bt2P3buKiuv/++3Hy5Em22ADg9ddfR6VSwZ133gkAuPvuuzE7O4uJiQkMDQ3h61//Oq666ioAwAc/+EGcO9e6vpejM7rth9wO3ZJ/rCT27t0P13XZ5ksTvDKZbKz11W1tdLi2+d577+sotBvPSZLSPKTT6UisvBGl0jzK5RKKxdmW8/M8F4qSDKx0F65LnmulUmJW6sjIDuzatRu6rjGXMHUZ02c4M3MxQhIDECFvWSY0rYLZ2cuYny/CNI2+vDPtCEBsm4S74u4JafKh4cyZl5lHgR4rCAi6nTlMkbIsA8XiFVy58i6KxSuwLKOr9zs8vkY9Ivz3zp3XtaxvTyZTyGQIDeVi9glfDeimTn16ehJnzrwcKMkkdEPCVO6qqWffCOjL4p6amsL27XU3VyaTQaFQwFtvvYUPfOAD7Jhrrrkm8rvt27fjzTffxEc/+tHId8ePH8eePXv6GdKGx0KsxjC61bpXGiMjOzA0tIlxckuSFLB+ichkMk3HLwUdZKs6alEUkctlg77PFnwf8Dy36fee58KyzFjXfvg5vvuuBdu2IAgCqx8fH38VV11FQkrj469CVTOQZULA8V//dRa27bDYN3EJlyAIYG5mmkBHlB8EDUSIwJZlBU888a2e351O1jDNtKfZ7+EuZiS84AfCMItKpQJSIw44jhtRPn2f/kcUmlqthnffnWnpZXnppeMolebgui40TQti4yILr4iiiGQy1ZFWldagkxh7ArfffueqWhP9opswxNjYKFtvdfiwbXPV1LNvBPQluGu1GpLJaPA8mUxGsmq7OQYAjhw5ghMnTuDf/u3fmq6TzRLihzAkSUShoDYdu17Qz/wKhd0dubJb4emnfwVFId2lAECWJdi2hd/85lcLPmccFuP5ffSjd+LYsaOQJAmyrMBxbLiui1tvPdh07mq1jFQq3ZAxTpqXLHQcrc5pGAb+7M/+DK7rYWLiHP7P/znMhEQj0ul0y3tLn+P3vvckqtUKeyYA2DMB0PS8yuV5trkKgghRRCC8y6jVasz6BdCUtQ6QjH9JkmAYOk6efB7l8h6Mj7+G2VniHchmSamUZZkoFAZx4MAB7Nx5HW699SCOHTsKz3PY8wA83HrrQQDAU0/9GLVajcX6ASLEs9kcJEmELMtwXQfpdBqiKAZ16SRB7eMf/zh27rwO3/vek4HQpYx6Anzfw5kzp3HttSPYufM6No+JiXN4/vljQZczIZivGzynurMxm80hkai/C+F3k87JMGoB4Qz5bSKh4OTJ55HN3hO55lpAq7U3NDSEarUCWY6+Z0NDQ+z4arUMWZYDIqT6PXRdN3LcSmK9ywagT8GtqipM04x8ZhhGxOLp5pjvf//7+Od//md897vfxebNm5uuU62aTZ+tpw4wcehnfv0kjhSLRSSTKbhufUMXBAnFYnFR7/diPL/h4a04ePAjTXMdHt7adO5sNh+bxJXN5mLH0c09bHdO1/UwP69jeHgrq3emTUmo0BJFEamU2vHetnsmAJq+o8K4XnolwvP8IHTSXKHRCCo0C4Uh1GomTp48EZDgEEu3VCKWVS43gFKpjJ/85CfMI9PqeQDAHXfchVOnTmB+vsjGl88PQJYVuK4HRUnA81wYBuFCV9Us625Fn2mxWGT7SXh+ruvixImTkYTHEydOwrIsds/D997zPCiKEngqFJimxd6F8LtJ3zHSMhUNCXN20zW7RdgTABBCoQMHbl0WC77V2rvhhptw/PhzLDGPxu9vuOEmdnw2m4fjEC8HQFkMyb/h45YTjWt1PbUtXZLuYNdeey2eeuop9nexWESpVMLIyEjkmKmpKcZnTJiIprBz504AwA9+8AN8//vfx/e+9z285z3v6Wc4Gxrh1oWWZSKZTENV1Z5d3aspua0b4dkt4UQvGePdhgu6PSc9jpYuUTa4bDbb9t7S+es6iZ0Ty7A5k7nxeVEQYhEhsIyIwGqV8R4WatSVbVkmajUtpGhIkXIuw9BRKAxFQg7tnkd8hjchoCHduiRcf/3NsVn2FI09telcALAmJ/T4crnE5hnn7VCUJBQl0TEPZGRkB5LJJPL5Aei6hkqlzNzCYaKdbjE9PRkhcvF9H8XiLJ5//hg+8pGFt6ntN9O7mzAbfZfT6XSkL/2+fTevSNigVzrl9YK+6ri3bNmC//k//yf27NmDrVu34p/+6Z8wMDCAT37yk+yYoaEh/OhHP0Iul8P73/9+/OAHP8D09DT+6q/+CpcuXcJDDz2EJ598EldffXXL6/A67vYI170ahs42QkmSGI92t3XcvZBq9INO81tsgpVeqDS7rYVvd87w/EqleVy8eIERqpBSIsIDXqvpUJQEcrl8ZF7h+csyia/SGnNCFUqeydVXb4s8r0qlDNeNNpqos5RJ7Prhz8OgpWeCIMI0zYigjjteVTMLqmNude8+8IEb2pLApNMqJiZeZ8I47F0QBAHvvHOBnXtycgK6rsWGA8IEK43vQty7SSlbDaMW+Zx2iAuXtHXCCy/8jAn++v0m56pWKwviW+hlvbRbe51IeOj5aG7Jpk1X4dZbP4IPfOCGnse8GOiVTnmtYUnquFOpFL7+9a/jC1/4Amq1GjmCaXYAACAASURBVN773vfisccew6VLl/Dggw/i6aefBgB87Wtfw+c//3l84xvfwPDwML761a8CIHFtTdPwF3/xF/UByTL73VrHctU6hpOkqGfD933UajqSyVRPmcL9JrctFpYimazRGmxFmdpLrXA39JzUIhga2oRaTUetpsMwdEiShFwuD9d18fzzx5BKqbBtC/n8AGq1Gps/2ZSIdadpVQwMDEKSJLz44s+Rzw+wWvBicbapaUcYyWQatm1G3hEii4kbOZlMw7JIUxEi21uXcAH1rm1h67/TO78YVuG+fTezDHSAxqsFxi1+9OiPAfgtLW2AWOqu6+D22z/Rtcfm6ad/EPvd2bNnYmlhW4F6AsK5EdTLsdAEr/B6CSfRPfvsM/jYx7qbY7dYTbSqvdIprxf0TcBy880348c//nHT52Hh+/73vx+HDx9uOuazn/0sPvvZz/Y7hFWJ5czODr+84bpfurH16upeDQtzqYlk2j2ffsMF09OTePrpX7F4rKIobC6UzlSWZQwODgNA4JI2YFkWCoUhaJqGUmkO2WyejSGZTCGRSKJarQT85RY8z0OtpqNYnMUNN9yIS5dmWo6J0H1KAJIwDD3kKidkJLQPt6oOQRAEFItXIMsykskUDCO+Jp0oGnU3c6d3Pu775547BlXNwLLMrgX5/v0HcNVVW3D06I8iFQUAWAJZNOs5Dn4Th3w7NH5ft5SFrvIGwiCKmd5EztNPm9pOHed62XfWErlK/Fq1VyS0t5zgTUaWCEthMbZC+OUl5BKklEaSpAXVcYexUot4qWPt7Z5PPwxqVDgpChF61Wo1YAGrc2Q3Wlu6rkEQ6p+T+lkRtZqGVKquvDiOw55nOMnKcRycPv1S23GRmvAEZJmU7tDGJbS8TBTFyOZOG6ZQi1/TqkwRHBgYgCQpjCiFWv+maUKWFWQyqaZ7OjKyo+mee54L0zRgWSYGB4dbKrf0HZydvcIE9dDQMAqFIbiuy85Hk96AumClXoX4cjwPrut2vSZJH3I7kpFOktwSbX7VjHCzEqDOQZBOpxa8Tul6oe8SnbssSy1brcZhrZSDUsStVcBbF4Q47cAF9xJhOalHwy+voiSQTqdhGDVIkoxMJrNgYbuSi3ipewvXKVMrrNFHKqWiXC71FS6oC6cEXNcLmKVc6LrGBLcoihHBTeOkYYFAapnLTOjT+YeFdi/IZLJB5zAXudwAy6oGCJGIrms4evRH2LJlK/bu3R+5/4lEEqIosQzvPXt2Y35eb3o/qtUKHIdQldJ3P/zON66JWk2PZHzHKbd1lq56Mp0giJifnwsUHbDrkE0bkTIl4oKOxvzrIOGk8H1vRFhxTSZJCRw9L3XF33jjvtjj2yVUHjp0N8sqFwQBg4P9ZZV36jjX7b6znAbHYmAp6JTXArjgXiIsZ3Z248tbKAxi796P9b3QVnIRLwaRTLvfKkqClWfR5h2aVkGhMMSu33ituHMCiHxWLM5CURQUi7NMkJAyLAdzc7NMSFNviCzLTAiEGbpoTDyVSkWu1yrOSiAgLi5NCUYA0qKyVJpjbnrTNFCtVpnFH1bOOt3/xveD1GG7LLcCiL7zjWuCNB0h452fL7IOXlTIhFm6osqKD8sykcnk4Dg264VeZ9Hz4Pt1i7sd2lnMjYoJSfxKMgVIURK48cZ9LL7di6K72OEoul7ied67dx2vxl4HnbDYdMprAVxwLxGW2mJsxFLEpVd6EdP5UOFBKRU7zbObDZRs6oi4Fcnf8TSlreKzggAkEin2GckUr0GSRGb5NOYceJ4H27bhuk5QEiTCde0QwYfEuoQ1zpVyeMeBzCX6vSAIyOXy7O9wv2/iAteYG5nW5FLXapjylSotL774cwwNDeGGG25qej9UNRPQm9q4cuXdQGFI4uDBD2N6ehK1Wg2l0lxAYJKMlJl5nodSqRR4I4irvlarMdd4eE6Uytc0DRhGDaqaCVz/9cz3RorXdmj1zOMUV1XNIJPJxPLLr6SiS5+PKIoQRdIAJZFI9hwqW03loBytwQX3EmG1ZGf3g14X8WLHwxfqqu9mA7UsE7lcDrWaHuqJrTJXaOOcZmYuBslbGQgCiftWq6RRBeWuVhQlEBx1/vQwBEFkrl3f96FpVciyzEquaFaxLCu46ab9TUKzXC4FbuB4wU2TtDStGmSOS0ilUsxFD5DnR2qvLei6FXEjC4KASqWCbDbK9x7nEj9+/Lkg5utE3g+q/NRjzMAbb7yGiYk34Hk+whUPgBAoG5Q0hpS50feOupFbWc3EzS0F7TmFQAHyIiVstOyLWOFxzHXNz5yik+La+L4Xi7PIZLItj4/7zWLsCeHnk83moOs6DIMoPUNDwz1dY7kNDo6FgQvuJcRqyM5uRC8bx1KQlvSChVow3XgKqHCgrnGAsJ6FGf3Cc6IlVJVKGdVqBUA8XSgF7eIlSRKz/sKdzARBgOM4sCyrKcbqeV6Eizx8X4k7u4o4UM5xGqemv22Mkx88+GEAwLPPPsN+K4oSRFFgCsWWLfUYYbNLPAHXpXXULns/aFIkYRiTA0vYwRtvvMYsQQIhuKYIz3ObrGP67ChRTTtvN4n517mzyRzEIBThQJLEiEs+jEQiGTQNaea2B9orrnHvO+3vTTPcw8cDS5cz0vh8MpkMEolES89AO6wHg2MjgAvuDYReN45eFvFSuAkX6qqnG67ve9B1jcWVw0K613aYNH5L463hciPLMpsSz4aGhoP2ngYcp8waYoQFJEWjUPE8N9KVKXxfqVAwDIM1ERFFCZlMNnApu5FntGvXbpw9eyboE05isvS7ZDIZvAfViJvZ86JZua2eg2kauP32OxljH3W5Uy5rWpZE70sd9Drx7uzZ2cvB/xHXPfUitAINR9BrUKWJWPAeU54a77NlmZBliSkyjWj3jsS978lkmhG0hFnF3ve+XQCWzpW+2CGt1WhwcETBBfcGwkI2jm4X8VLEwzu56lt5D/bu3Y/nnz+GWs2IxLB1XWOUmN0oJeE5qWoGpdI8+65uRQuR3szJZDKwfC3oei1wCddBMsMBanUC8Yxk4XvXeF/TaZXV/DZzpdef5/T0ZFPnMGrJj4zsYL/PZrMsZCCKIgYHh5toRsOKEPU0FApD7F4eOXIYly5ZkbmEBXNYsHaTMFZvZCGwWnKaREjd8FQY088pFCXJyt3ascQBRClq9+63ekdefPHnTc9FVQmBDnFT+02d3NqtkX5c6Os1Lr2W6smXG1xwbyAsZbLZUmwe7SyeTt6DVEqFZVmsjEgQBBiGEWGS6qSUxM0pDEEQg6xdE6ZpIJ8fYNbb6dMnQ0K7OdubNuxoBV3XMThI6CYbx6DrOhzHxsWLbwNApIGGIAiYn59jyV1xitpLLx1nVjIRiITLXBRFKEoCH/rQbU3PoZMiVC6XkE4Ty5h6AsIIE76EY9CtQI9NpdJIp9P40Iduw/HjzzErnsxVRDpNhDQpg5KChL8aOwfN7A+j3pPbb1KsGtHqHWn1vpNkwIGmxjNjY6Mtf6Moib5c6Msdl14OgbrW6smXG31xlS8XOFf54mBycoLxXVM4joNcLtc3r2+vHOfdzK8dF3gnPvGxsdGgXaQEy7KZwHFdBzMzF7viPA/PSdMqTdnaNAt7y5at+O///QHG7Ux4ss+hXC5DkuoNPsKQJImNr1G4kPi3jV27diOfH8DU1ASLoZqmCcOodcyapj24ST25g2q1DE2rspptXddgWWRdhXm/HcfGlSuXYRg1jI6ewunTL+Gddy6gWq2wBC9RFJHN5qAoCXa/Jycn2PNo7AYYRXc16LJMOAhSqTR0XcPttx9CoTCIqakJ1nY0m80inVYhSSSeThWGdvcmXC9P533hwnmcPv0SJicnkE6r2LLlqo7vZtz7blkGDINkuuu6FuKW9zA3NwvLslCrafA8H4qisDUiSUSRCL/Lpmnid78bx6uvvsLG1ep97YWHH+hvb1nsHgKt0G2/gDisJ9nQiqucC+5ViqWY31I2EFmqzaOx6UGpNI8XXvgZLl58G45jQ5IktvGFm11QJYV0b/KZy1SSiAbfzQYQnlOcV4Ju/Lfddqjp/v3nf74Ix7FjE9gURQlYvxzcccfHMDX1Jly37gKWZRmpVBqVShnvvjvDYteu67YhE6mDPFsbvu8zYd+uS1YYpLmIgQsXzjPXeak01xSTtyySkW4YBm66aT97t0RRivClN5LNdANVzQTtPuWIYlkoDGLTps2YmbmIZDIVEX6E5EZn4+t0f8JxcVGUIkJo06ZhqGp8O0WKxvddUZSgfK2uNPi+F2oOU6czNU2ieA0MFHDLLQfx5pu/QyKRYPeJKleuS8hyuhGOnZqDhNHP3tKPQO0Fp0+/FLknQHR9t8N6kg1L0mSEY22hm7huP26wxU5qaRzLtm3bMT7+KkRRYslilUoFuRxYaRLdHOtMUi5LBvN9IhQ8z8XMzEU88cS3Os6Rzulb3/oGHMcGdfXWO27JLJ5Mx2pZVttmH55HXLSFwiBGRuotIwVBYA0iaEORTCYLVc2wpLTLly91de/aZbwDrYUbmRsCylUdnlcvb2v8PSEi8TA6egoXLpwPatPr8260bjt5CYggkFnXNOrCN4wajhw5zFy/sqxE+lgfPPhhHD36I5BktM4WfdTDUe8nrSgKdN3CD3/4QyQSici70WpdhCli6Zga7xOAEBc8IZkJZ3w3utCp+56S86wm9rLl4nZYr3H7xQIX3BsM7YTrUsaVem12HzeWM2deRjKZRiaTQjqtolol8dRSaZ4JCZrBG2WSslh5EgBUKhVIktjTHKkAoiQnAAIuaDkyVtt22gptKih0XcPu3b8PIJr8FW4QQa1IGpPttvdzJ6HdDbqxzkkdtojTp19i1hfpRiehVqtFEsM6nSqTycL3Pdi2A5q4R61XRUk0Ed4MDg4H3O11b1y3VLB0rESR8JnyB5D8AUEAcrk8ezd27drNFMZW70y5XIqNp1OEhV1Y0I2OnsKlSzOBUki8Yo5D5h0uK1st7GXLJVB5PXl7cFf5KsVKzG+p3GBxcbFz536HgYHWrj86Ft/3UK2WGaGE6zqB+7HeoAEg7udEIoVi8QpzKca5VstlkhmeyWQhy0rX8cS33pqE47gsjkqEVBpDQ8OYmbnI7lul0n5zpU05SItNC7t27WZuZlLyRBPNaBwdAUuYCdqqcrUgnVbZcyCJYS5s24LrekilUkEGPXFHp1JpOI7NFKzwPARBwMDAIKrVCjs+nLXveS4ymSw0rQrHcZDN5preT9d1Wcy+FagFXygMIZPJhnjH6w1cqDKWSqXZ+c+fn0YikWy7LiYnJ1h9fxxkWWYldISD3sJvf/sbTE6eo6MD4AfhHxHptIpUKs1+v1i5KABw4cI0nn32aCSu322obCnDbWH0GnoLYz3JBu4q5+iIpXKDxZWheZ7T5PoLW+W0KYdpmswC9TwviNUSoo1wP2Zao00zeOl5G8MDVGDQ9piyrMA0Dfi+z6yJOAucWgBAEoAJx3HheTVs2/b7eO21/2L3rZNgHR7ezI4L31eSRFafTyqVgmEYgfXcvwW9EHTi+g5nZEdLvwhf+dat1+DKlcuwbQu2bSObzcGyrAamMoF5FMLCmoLSm87OXo71JMiyjHffnenCDV9PEiyV5oJSLQWGYTLBTa9N24zSnta+7wdd2upWZuO62Lt3P8vyj4Oua/B9QNMq8H0gl8tFfk+SGCldbZTLfjGtzenpSZw8+TyA3jxOFMtJ0MLryVuDC24OhqVyg3XT7L7RNV6r6axzU7jbE4AgJll/dcPfxykadAOYnp7E0aM/itT+0g5VneKJIyM7sGvXbtapirqFx8dfhaIkIp6K1sKuLpDiGLho7bLvA7peCzbz7kCtwMVwk1Mlqb0S0rmBx8WLbyOTySKfJzXkxGK2G+4RiX3XSVfiy+TCwjxMeKPrOmw72mozdrShWm+qDJBa7zq3uywrSCSSEAQB5XI5ojCSEIbArtu4LkZGdmBoaFNkHgANsdDyuWpQLpYLzlNi44mO0+1JOPaSlzI2NgpJkiCK9Uz2XuPnXKCuPLjg7gIbhQhgqeJKiUQSc3OzjHGMEIJIkY2v0SqnDSsae1dThD8P1wW3UzTGxkaRSqWbWLh8328ZTww/e9M0gxh7/VhK9EGpPwl7VqvaYL+p+QadN00Ka2ym0S16FdqtFIx0WoUgiDAMPTbOTV3d3Tbx0DStLesZ0ByTb9U7m3KbEz53mYUugHqmeON46b1txdJGlEARqqoy70alUgaxzknIIpVKB13U6kQ7ceviwIFbmWIYba2ZRqEwyBTYMO1t45h934eiJLoWju3yUgA07VvlcimYa/2aqyV+ztE9uODugNVABLBcisNSuMGmpycDN6HP2K7K5TJUNY0DB25nxzVa5clkCqJYYZYftSgBYl0WCkOwLBPlcpltkp0UDaoIxMG27SZrqtt+02HqT0IAIrYkGQk336BjIuxr1cDCk5iQocpJNwK8k9AmClMW1Wo5tna8fh8sJjxIzDh67VSqTuvZCo0WdSMWGqcfGBiAaVowDGJlhxF3r2ipYKsmIhT5fJ510hJFsaEO3Q86uBGLnRLtbNu2nXVLC6+TfftuxpkzL4d6vKcgSRKjSaUeLcsyI+OltLy+H+3v3Qmt2BBfeuk4HMdu2reId8hmFjfAs7XXIrjg7oCVbiy/3IpDJ02/VyVibGyUJYbVO3GRRgxxtJphN306rcIwasjlSE2vruuo1TTWEpIwZ6WQSqlsQ203nnx+ABcunI/9jvZ0VpQkZLm+0Xbbbzp838JxRFmWMT9fhOt6TEAAUTYt0nmsnowWlsGteLZ7RSaThShKrA93sXgFAAkzNHosSM9pJ+i4RbYIml/QiWkMWLhgbgWq7CQSycAaBiMRCrdKJS7guuu7UBjC/HxziVYj6DOhStg112zH5ctXUKtpkbmIoojbb78TAFquyf37D+Cqq7a0XCPHjz8HXbdY9jpNSiNWuoQPfvAPWH/vbtAqL2VubjbC4Eb3LUpC5Lo+z9Zew+CCuwNWuif1SisOYSxEiai7B5VIAldjBnCcm16SJOzbdzMuXDiPcrmEwcFBXH/977O/KcVoLy0LWwluAMEm5uH6628GAMzMXGS82bSWulwuBy7a1hb+yMgOZLP34MSJk5idvcKoMKnngZRMkXfo937v+siYaEyfCtNerO52cF0XmlaFoiQwPLwJ2WwehqGHkrLECLtc2AJcWQgsk5v0lvaCsYY7jJF7Ra1i+t7s338A//iP/0/bs1PyHqCuhB04cACHD/9b09x938epUyeQSqXarslWym+4RJFcW0I2q4Ly3QOExY1yyXeDVnkpQJ3alYIqJp/4xCdw4sTJRfWqbYRQ4moCF9wdsNJEACutOITRrRLRGBd2XS8SFyY9oQuRc7dz0zdaIGGLhnbQ6jYjVpYVVjMbhiAI2LTpKti2jYmJ32F8/FUWz6XJSalUksWz5+ZmMTAw2FJx2LnzOlSrZqCMWCwGXa2SeC9h60oG9cF14eN5HlRVDRjMTEbvSb9bKAyjhmQyDVVVoWlaYFFLAMgmT2O92WwOtVptQVZ+uKnHYiTJybLMGoxIEqFApeV8FOF7pygJiCJhe2unoDVeo1EJ27nzuqZ50XDM/HwRqprp2Kf71KkTmJ8vAgAGBgbxoQ/dxgR6I+EObYcKYNF4yguFoaZe6XTf2rnzurYcCr1gNYQSNyK44O6AlSYCWGnFIYxulIjGhex5HiMOUVWV3b8DB5rdga0slbAikEgkoesakslUVxtFozVw7bXX4Xe/G49kGQPELU/nQ92MqpphsWfPcwP3JqGuFEUpVgEIgyo62Wwu2JxJzbCua1DVDKPbzGZz7Dq+78M0TWQyWdx993/Du+/O4OzZM23JPVqBCFHifpckGbZtolgkru44wUrldKd5xUGSSGtR+n7Mzl5pmRDWLei7I0kk2/7y5Xcj46bClCgc2UBxEGHbJi5efLuj8Cbr2YamVTE0NByxFKmVT9+TcJZ9uIqAIpwX0diQZX6+iOeeO4ZDh+6OdGUjTG0ac5mTJi+dleFG5rY4hRfAsuxbi+kR5JZ79+CCuwOWs24xDiutOITRjRIRlx0OUBKRehx6587rMD/fOV7aqAjQ7HRSeqW03Sjob13XZVnBoiji6qu34cqVyyxpSVUzyGSybD4ApZusU1DSWGo6nWZ/C4KAU6dOxG6w1WoZ1WqVCbNcDqwuWBRF3HbbIdYaMnwd6q63LAunTp1gQp66r3sHoQG1LDPgPI+nMAXAWOh6hSCITR2x0unm7P1uQevYAZLd7roOHMcPJfb5TJhKEnnXNK3ac1Y9UZ6kCP1offxqLKGKKEpBxj35O65Pt2maQX5AvRrCti32jobXdGOSnWkaSCSSbZXhRmW1lcK7HPvWYnkEueXeG7jg7gKLWbfYq1a50opDGN0oEXELmfSPNvDAA3/Z8zUbFQGanR5OEGu1UZAsbzeg30QguDxcuvQO7rnnkwDqSUZhd+nAwGCTRUVRq+kRF/Ls7GU8/vg/Ynh4U4RLnZSdaaz+NwwaV6WKECUsoWQfgiAgm81FlJSFxJobf+O6HrrtzhV2QXdzHcqgRpMITbOGRCLZMaM7DEmSMTg4hGLxShAmiCoqzaVeJMmRJqz1BvIODQwMNr07ExPnWnoLUqkUc3HTuYVDJi+++HOmUITheR67Dl3TL710vD6agIugWq0ilXJZS1dg4VbtctRbL5ZHcDXl8qwFcMG9jFioVrlaCA+6USIW27XfqAjQLOvwpt7q/CTGXndZAjSBycfY2Cjuvfe+pvls27Yd5869EdswAojPmLYsk3GpS5IM3/dQLlMhSbiwiUBGQPaiMA7s3/zmLCs3ouf2fR/F4hUmOOmG340wbZ9Q1j2Xd5gspjMIoQkJLVRg21bQR1vF3Nxs154CwtVe7lphIDkDrWlGO13LcfzYd+e5556DZVmx95KGfQRBxPDwJjiOEwkt5PMDkfJHClEUI9cZGdmBsbFRZDJZpljSNrGmWcPevR9jx3Zr1Y6OnsLZs2eC6ogEbrxxX08Z6gtxVS+WR3A15fKsBXDBvYxYD1plJyVisV37jYoAzeyWpM612/n8AKrVSpP1I8tSxPoJl3FRxSqbzaNaLXddQ60oSoNCIbCYte+7QSY0yRY3DMLWNjHxO8iyjFqtWVDFCa9uBFov5CjNv5WCeL6HXC7XtdtcEETGU57JZGEYtUCZ6c1V7vvo0KAl7jcLz3onLnfy7lChNTt7JahTJ2Va7X6r61XYtg3HcfDss8/gYx/7BPbu3R+KcfuMYEUQBBiGgenpyUhjknRahe/7EU+OLCusRjyRSKJWq6FarbDqhsZOeAAR2qOjp1ginePYGB09BQBthTedd7E4C8syIwmMrYyKRgG/a9fuSKXHQjyCqymXZy2AC+5lxOzsFRarlCQJ6bTaFM9a6+jXtR/eSFzXDfW0FhjxSbe123v37mclXXWWNUBRkrEbQlixInHTSmgzldsmiDULnGhHLMLe5bP+1J7nsVpqkqQmLigBrRH9CLJcLhd0N6s10cy2Aw1DiKIUuPeBbq37MFqR1iwU3ZSz2bbNcgmSyVSo33mn8ftBsiIRlLZt4/nnjyGVIqxkhOSGWOJEEczCdd2IMMznBzA/PwfDMNh7Qd/5d965GLDpldlc6uRFKiN1oTh79gwbCz3e8zycPXumpeCOdrUjlQ+GUWPrrFWSXKPXcHz81b5j0aspl2ctgAvuZcL09CRbHHRRxcWz1gMW6toPJ5MZhoFoNyw/+LzGanTpb+IYrOg4KJOV5/mQZSlCsNKIOLd8N1auJEldE5PEWcOdeLZ7wULLsEgynghZlnD99bR2fr6r81F+9VJpbhXUfdchSXLHDHnHsRm/eDfPsBVI/3IDlmWxUqxKpYRUKh2h0w0Lw71797M+4pTPnN6/xhg77VrmOC5s28Ydd3wsssZs22p6jwRBiLQ9bURYUaVd2aj1H+YaaPUbYPG8hqspl2ctgAvuZQLlya7VCF1kq3gWQITR00//CsVicUO9wHRTIM1FBManTC0JURSRyeRw4cJ57N9/oKucgU5MVmE0JouFM35JYlc8CJUoLffqnbSkc0OP3lDvNd09FCXBqFDPnHkZAAlLaFq1q7H5vreg6y4VKNMayT5vPaZ+x1vvNe6xMAOt9aekN5ZlMhd3WBiOjOwIusLVvXDtxlMoDLFEwMb3l1KZNnZWU5REy/OFFdWwkkrH0Oiqnp6ebCIlonMqFmdx5MjhvoTuasnlWQtYPFWfoy1oPCuXy7EkI1EUkUgkY11R1WolIoympydXcPTLA8IlTiyKMAEILf9xHCey8YW1f9rZSxQlRsoSRq1Wg65rmJm5iFOnTsTez71797OyMfp8KNq5catV0pRCURI9uZjr515cK7VXYfQHf/AhHDp0N2o1DdVqmcXqq9VKT2NbaaFNFTwqvHRd61hLvhhEMbTvOFXAqtUKI9qh16hUyigWZzE7exmmabL3b3h4EzKZHIaHN7PWtHQucc11WsV9b7xxH1sn4X/b8Z7Trm0AUdJ8H6wvAGGpq7uq6b7USEpkWSZqNZ0laG60PWulID366KOPrvQgOkHXm909a61Z+uTkBEzTRCKRYO4zWVYwMECSOyheeOFncBwHyWQSvl9v1zg7ezly3FpH3PN77bVXg4So1sKC1PS6ePXVVzA3V4QsKxFqR9u2MTc3i9/+9jeYnJxApVLGf/7nC0wIUVfgG2+8homJ3yGfH0ChQEIVhcIgXn/9NdafW5Ik5HJ5UDd9K+RyA0EzCwOJRCIUJ13dEEUJ6XQa119/I8bGRjE3V+zrfOGe10uNOMFGCViiIZaluHbreRICGAs0OZGOiwhSqqyncP78FAqFQVx99TZMTU2wjmKGYbD/J8mM9cY6sqzA81zccstB9s5SbNu2HQDw7ruX4LoOEUed7wAAIABJREFUFCWBffviec/p2kunVXZt6vp2XSfYlwq45ZaDzKig+5Isy0HGPUCqCaxgv0qzUrmV3rPWmmxoh0wmGfs5d5UvE7pNvtjIZRG0ZKpdr2fKKpZMpqDrGjStAkEg3cRM0wj+Fpjm/8tf/qKlVVUuzze51i3LxODgMBMKpF63dZwQAAxDZ9bSQljHlhuU3hWoNzspl0t9CTsaynDdpRWaFLSsLwxy3aW/frtWoqIowHURCGkJ6XSShccAIJvNBYlfdmxJYqEwiGq1Atd1Aq+PBOrNyWQybV3Q+/cf6Kn8qzGuXCgMYu/ej8WeP9xzAIiSEilKAqqqRo7fKHvWSoEL7mVCt8kXNM4qy/USpoWWRaw2CsHweIaGhnDDDTc1JdhkMrnA9dwaNNknm82hXC4HdbNg5VuE3pMI23auUNd1I671sbFR6LoGXdeQzeYAgNVgtwIthSLjUln52WLHrSloHLTXWHq4Bjz8O7rB0g5ZCwV1FS8XWl1rsTPTW0EUxYCqtsLc85T1jiKVSgXlcQZoeVm1WkGtpiOVUmNLEoHmygpRJDXji7V+JybOtW0yErdvhMu1KN2wbdusBwEv5VpeCP5qSgNtgcuXm0kWCgW1K8rMtQYaS1IUGYIgMcu813KLcOJW2MJfagrBVptOmFWMNHZwYdtOZDxHjhyGpmkol+cjlgx1v1FXHW1NGY5H1yEEiW2dN3BBEDA8vDnomqXAcdymVo6dQFtJFgpDsG0buk42MMOoLVrMNyykJYk0JzEMQiyTSKRgGJ3XQdg6FAQhqHGvrhq3frgP+VqAqmaRyWQwP1+MxLfDCWaECpbw0HueGynX8n0fhcIQ/uRP/iz2/Eu1fhtbzjaet9V1d+3aHVm/4d8BWJG9phXWk2zYvDkX+zmPca8yFAqDKBQGMT9fRLVaQS6Xi8Sapqcn8cILP8Pp0y9hcnIC6bTaFO8C6jEpmri1HHEnuuhrNR21Wg2+7wV1qS7On5+CJEksDkZ6W3uR8Zw/P40LF843Cc56DbaPdFqFoiRgmkZgDcc1y+he8JomKeGxbacnes7wtYgLUYTnkYQ6km2bCIg8ekNcQhJABO/+/Qfg+4SlLJvNIZVKQ9er6Ga6jfeExPGXz0LuhKGhTUinVZimuapKylohnU4z745lmaDNTmicnXxPOOept4M2LQEIn4Cqqrj++j2x529cv67rQNOqOHfudbz99lst130nvPDCz+B5LmQ5fl9otW/Mz89BFEWUy/MwjBpUNcNoXumeNTt7GbquNe1Zy431JBt4jHsNYWRkB/bs2d2kNfZCmboSsfLGci5qKdq2Cc8jZSzhmtbweEZHT7GuXc0bNznX+973e5iZuQjbtgOmqcXICKbtNNtbe4TPPOr+pptaeCMbGxuFpmlIpZKsPrY7y5t4CoB4xUNVM7ExzMcf/0e4bu8KwmpCKkWoUZfS1d5r0pokyS29EYqSgKIkWNtOVc0wmlNRlFiZlKrWOdwFQWVxYdJJTYVlmRG3NKlKIDzouq4hk8nCsryIZ0QQhL4acJTLJaiqGskPCK/DuH3D81yUSnMYGBjE4OAwHMdpqg/npVzLi77LwU6dOoVPfepTuOuuu/DpT38aMzMzTceMj4/j/vvvx1133YX7778f4+Pj7DtN0/DII4/gAx/4QL9DWffopfwpXOpBsdRxp3K5FFjSbsRydF0XstxcoxoeD2V+issW3rp1G+6555P46Ec/jttuO4RMJtPUVWmhIJn7nfVXUYyyUlEXOVAX4CMjO7Bt23ZUKqUgu9eD63otregw8vk8PvjBW2IzpVMpNfL59PQkjhw5jO985391tOq7ufZKwzD0JRXaJHGurhB2c0/a50aQuuvBweGAm0Fn16FCG6i/37QNbKEwxMq+aD/248efg6ZpAEj7z2Jxlq2BcrmMSqUcUSAoTWurdd8JZF+Irp3wOozbNzStyrqwddp3OJYHfQluXdfx8MMP44tf/CJ++tOf4uDBg4jzvD/00EP4zGc+g5/+9Kf48z//c3zuc59j3/3Jn/wJtm3b1s8wNgyoYAyjlRW9d+9+VhNN3atLTSFIFz0VZBRk0ScZNSQZjwXTNGAYBp544luwLLOp73F4LmE2tL179zfxjy8U1MrthGZlxGNkG77vY25uFqOjpzA+/iqSyXTgHnVBWbGoNQUg9l/LsnDhwnmk06RPtyRJTDmwLIMRaVCvi6ZpsG2roxBaC27npYMQZDtH71G3hDJNZxPEwPNCGcOsICRE2c5IW9TLl99FsXgFlmVg7979LdcitdBJTgSlTyVdy4hnym9SIGhnvIV6z/bu3R/wysfvC41j1XUtCHc5mJ8vRrrA8azxlUNfgvsXv/gFtm/fjt27SYzy/vvvx8mTJyPkA6+//joqlQruvPNOAMDdd9+N2dlZTExMAAC+8IUv4L777ms+OUcTurGiqTX24os/hywrkCQJpmkgk8ksebIIXfSEsapOAkFpRvftuxmZTAamabCGFq7rNrnmGnHq1InI35SFrhVVaJiEo9P3xJXttKUdfd/7fg9bt17DuOVp2ZHr1ok3RFHE2bNngo1YZolKVMGgdLcALXsTI39blomLF99GtVrvjlUfo49yuYTvfOd/4ZlnfohyuQRNqwTKBOdQagVRFEI1x2BW7kJB+OY9VvGh6xrr6kVpX4MjA4WO/EUrSui7T9eibVtMEa8ntAkt10S95M5dsPdsZGQH7r77nqaxhBVjOlZNq8IwahHSlWq1CtM0eNb4CqOvGPfU1BS2b9/O/s5kMigUCnjrrbeY63tqagrXXHNN5Hfbt2/Hm2++iZ07d+LGG2/E22+/3c8wNgw61YI3xsDp97fffueyxJ/CJW80tiuKIgYHB5nVTGO0Tz/977Dtes9rGieMw+zsZXzzm/8vAEL7qGlVZLO5wCLQQckwBEHAJz7xKQDA0aM/irhGKZsUQGkqu+1LLeHKlcss+3d09BROn36JfU/PQ9nGUqkUc53STTjuWo0WXaNl1RxWiLLJ0d7dvr92MrGXEzS7m95XSZKRy2UjRkUjuiuxI1bq5cuXANQ7qoVZ2zzPw+DgMKvVpvHfVqWfiqJESgipskeqL3xks7mgrzuCa4p9ec927rwOw8NbW35Px0qrPEi7VUrpSxQWVc3wBiAriL4Ed61WQzIZ1WCTyWSwmXZ/TCdks8lIXTMASJKIQkFt8Yu1j7j5FQq7kc0mcerUKczPz6NQKODAgbogfPvt8xAEAblcHrIsQZZJ15/f/OZX2LNneRiMCoXdXV2rVJoPsrHJbpTP55sEd+NGSl3SAFCtIsgC9yPHZ7PkXZNlhVk0qppBKpXCzMw77DyNiPuMxL7JNQ8ffjJIGmr93gqCEGFoW2yEhf3GdoF3BlV8KIEJ8ZA4bcvfFtISNZzUGG7p6jg2kskEqtVKy33q1lsP4tixo/A8B6qaQaVC+AsymSw8z0EikQgqMCTk8/mAmMXDpk3DOHToEHbuvK6nsVJ0u3dWq2WkUmmmlGhalXn8Pv7xjy/4+kuN9S4bgD4Ft6qS8o0wDMNgRfndHtMJ1Wpzmc56qtWLQ6v5DQ9vxR/+4f/F/g5b2VRglEol5HI5JBJJCIKEYrHY071aDuKWgYECSqVyhLSB1vJSiyO8idKEHdrUIS4py/M8PP300xBFkVEzOo6DcrkEy7Ij52oUfHGCkMYhAWB2dhaZTLZtUpyiKB1Z1sJYSEOS5cZSksksD0iOAXXztkO7RjK9XnN+fh6qqgalnfFrb3h4Kw4e/EiIuWyIZZVnMlkcOHA7ALDv3/OeqyNrcaH7X6e9k67/arWKapV4txKJJAYGBhnpyvDw1lW7/64n2dCqjrsvwX3ttdfiqaeeYn8Xi0WUSiWMjIxEjpmammJxQMdxMDU1hZ07d/ZzaY4A4UzzcIcfXdeQSCR7jkV1W3LWr3A/cOAAfvKTn0Tc/qlUErbtsFhiHXWXc5ywC2ejEwuH0I8SC4pYCKZpsE5M3WYwh6/jeS50vf3Gv1iZ7qsJK904pB1InkD7Z+l5HvL5AWbNtgNxdS/OnH3fg2HEd/5rXDf33ts+x2cxlOZOrIXh4+j6V9UsNK2CcrkcNEeSWrroVxtL43pHX5ktN998M2ZmZvDLX/4SAPDkk0/ijjvuiPDWXnfdddi8eTOefvppAMCRI0dwzTXXYMcO/lAXA+FM83RaZQkxjuNA1zVUKiXMzl7BkSOHu+rW003JWTizeaHdgHbuvK4pYecjH7kbd931h3jPe65GJpMNPAaEKjKcyEVBLWuafR2ONxPrqp4g5nkk4aefsqNOG3qvVunatWJXBygfeCeQRC8h6DneOmmRtuJcrIQ/UZRiO/9pmgZBEDAzcxHPPPND/O///V1MT0+yxNInnvhWy/XazTFxvwmv12q10nK9jo2NwnFcaFoFmlZvVatp1ZYJrouxH3D0hr4pT19++WV86UtfQq1Ww3vf+1489thj8DwPDz74IBPWr7/+Oj7/+c9jfn4ew8PD+OIXv4idO3fi1VdfxSOPPALHcXD+/HkmzI8dOxa5xkaiPKXodn40gYS6nE3TCNoZekGzjTRUVe1IQ0g15osX34Ysy0inVZbZSpp3VKGqGeTzAzAMA67rRtzc1IXWyXponF87TX16ehLPPPPDlha27yNC9OJ5NLGnTu0J1Hsm90OpuZhu7UQiiUQiiVpNW9UW7VrApk1XYXb2cttnE+ZpX05Ikoy/+qv/m/195MhhzM/PBeuHEqqIkCQxKBckFLataEMXSoPauEdIkgjDMGPX6+OP/yMsy4woOL7vI5FI4sEH/0dX5wd63w8WE+tJNiyJqxwgVvePf/zjps+p0AaA97///Th8+HDTMbt3724S0hy9oTHTnDI3kRaAHltMpO4ULMs1jPCGQDnBSY1mKWCQIgQqVJsuleaCdpf1hbqQus5Gt/z8/ByOHv0RFCXBmiqkUmmYphHJDlbVDGzbgigKME0zUkpD6p5NNqbG8rmFYjGtY8dx4Dg2hoY2YW6uuGr4wtci5uZmOz6blRDaACFqmZ6eZOutWJwN2naGkww9uK4PgJQLZjJko45br6dOnYCmVVnmuapmmDcsLNwbFeFyuQRBEDA/XwnWsoxUKh27XhtLEckYm+vJw9jIHQ1XCpzydI2jVdexF1/8edeLaWxsFK7rMkrG8EYYtgxKpTkmJKvVauT8C6nrDLvlLcsM2h/6AS8zcbepagbJZKpJm1eUDASBCG5qDafTKtJplVlgiyW0O6HRGu9k4VHLf7FoWzcyGht7REHCLCsFQRDw7LPPIJlMIp8fgG3bEATEcsvHJQA2UgLPzl6OfF+pVJDNZtkxrfJT6LGU/c91XVQqFQwNDbPf0f3DcWzmrQsng7YjPEokkkyBogqFIIi8znsJwQX3OkCnGlGKVsKVWgJhWshG2LbFmiRQ2kVd15BOq0315N0irKlTMguaiKYoCjTNgqbNBRSPIjKZLESREMpQt+Lg4DDbNGo1nXFGLyfi+Mu7gaa1T3bjaA8ioJKxFQarIWOfMpPRteg4dmyMnQq8xvHS9To9PYkzZ16OfEeFq6ZVsWULqckOK8JA3WqvVMqsBrx+DdI45PHH/xG2bSGVSiOdVoN1SAU2GZcsE2H/xBPfig1n0TVHeQvK5TLS6RQOHvzw4t1Mjgg47dI6RS+UpyQhp5nDmSanhf8OE03Ytt0XK1uYCS5MKUrZ3giHtYtsNg9BEFCplJlGn0ikWAKd5/kd3XntEK4n7xX0d6SpRBZDQ5tYL2+OpQV5T8wmpjxCirI0HO2CICCRSHR9vO97KJXmWJkj4bmv20u0U56iJJBMJiNUozSx9Nlnn4n1KPi+D9f12JqmiaqmaWB+vojZ2csBw56DTCbHEjjDhESu6wRKbw22bQXvLlnjQ0OboChJWJbF+nA3Jp6NjY0imUwhm82FuPtFpFIqzypfQnDBvU7RimYxbjGFewSHQVtUNn7m+0Aul0cymcQDD/wl7r33vgUt0rByQd3Lvk+y4yn7GInHEct6YGAQqVQKlmUGddom5ueLfRCTCEHJnB3ZQHsB4ZsWgw3Pg23b3JJeJhCu9rimIQtX4rpBL7X6AOA4pMqB0uXmcnnk8wPM/ZzPF3Do0N34yEfujlCNJpNpZLO5pk5cYUhSPXM9nx+AruuoVCqBou6xEkXXdVmTk3qFhscUBcqIlkgkkcsRVkJCbWpDVTOB+7u5yqRcLkXCbJIkIZ3OtB0zR//grvJ1jG5b7Q0Pb8Lc3FzQfrMeayMWrRgIdoH1FKYxrEwms+D6zYmJcxgbG4Vt23BdA6SXsY9kMo1EIhlQLJJM8dnZy8GGoLLrXLnybhOxz0JAS8WoazCRSMBx7J4UAM/zgqQjtIm3Li2I4kMYwpYXKxtHpslWdXpbkXFGLL7wrseIewFRLEXUanqQJFasnzHgHnj33Rns33+AUY3Oz8/BskwUi+2zo8Mesb1798dWYQCkA1sikWDUvOTapA6evvuu68KyTKZ45vMDKBZnkU5HWcjCsXfa3pR64zzPg6bVuRQ4lgbc4ubA3r37IcsSMpkchoc3I5PJBvXPMjKZDD74wVuQzWaRzxcwMDAYbI4utm3bvqD6zenpSRw7dpTF4F2XZFmn04Sa1DSNIOYHAD7bhCuVChKJJLZt296X0CbZ96Q/c62mBzF6L8hgr4WEQPfuVtLdSeyK6GMpQITU8gvQ1dA1NJyESL0v7ZrGxKPzRGh/9YUgmoQYzdi2bQunT7+Ef/qn/w9HjhzG5cvvQtd1poC0Q5xHrBH0Pc5kMoxEiHSgE1kdPJkXaSVKGwNduvQOajUdxeIsq9QAorky4WYq9fLLtdFOdi2DC26OJrd6oTCIe+75JB588H/g3nvvw/79B2Ld7hcunO+6P3gYY2OjgWCu01CKogjD0OE4Nm6//c6gh3G9DhtAkJHr48KF88HfzZtDuJ+3IIhQFAUDAwUWByWKghu7ARM35gASiSQymWxP99DzPNRqWlCmtnGW1UongMVDWIDXo/M8iPu3uV88u2oXxC2UZyByZdY4xoamabAsk7EH0mYyrRAeS6t1R+Pa9957H1Q1g0JhEIAQhHnC8/EhSSKSyVQwBtqulCScmabRlCtjWWbAqlb3dORyuYig51h8cFc5B4DObvW473spOQujXC5BVVWUy2UWo6TJMlTw27aFTCYHw6jHzlIpFbZtseYhYZIV1/UCJi0RkiRDUZRYa6TdRki7HtF+2L2CWCrkuuVyadmFWjcUoBsDfmzJ1aKcOWBrSySU/5+9dw2O47rORb/unu6emZ4XZkgKIkQjFGWZMSVLNM1I9KUlW5IVyfJ1eHKqdKz8UHzKcdU9J8mPxJWfdliqVJyyU+V7Uzknrmv7VCz7l6piMzYl0bKpK5E8hCSYhmKHMSwLAiAKFGVyBphXP6Zf98fuvad7pnsewIB4sL8qlYhBP/Y0eu+111rf+hbrTe3/XS/0M+z0/fH/3H2NIFt+ZaXCasVrtWpkiiCfHwMAT0BJRTabZb22eZ5HoVBEq2VAlpOoVpfZvKRaCILAMwa7Px1GGfP+0DgVX4mxfogNd4xVY5iSM6BdL6qqTRaipnKtALzSkwTLY/daEIiHS+q+iZdN2MSPPvoHAOCJ0phIJBJe2NFl3ngvg7qyQmrVw0qMBgHdLFAhm+sHDq7rbIoyqO0OavSGfdaDRI8rlbLv+HBd/s7PaC+BXC6PVqvVtaHgOA4f/eh9AEha7Ny5F8FxPPL5MVbKuW/f+/H66xfQaDTYe0RL1EjUagyGoXcpofVrNQwMrmMe650PDuH48ePHN3oQ/aCq3QzFZFKErm+/pg4Um+X7LS7O46WXfoLXXjuP+fk5pFJpL9RG2N8LC3OMWU0n7b33HmXH+K9z5sxpWBbpwW0YBvOyaZ5MURS0Wi22+GhaE45DFg7/tW++eQKXLi0wIhj1Gg4dugcf/OCdKBTGUCiMoVy+ClVtenWqSaRS6b5NRobPFbdDjTwvgOcJ2ah9j+uT6/NrtcdYP4iiCEXJMgWzKLTTNYMrkJFj2r+nGvx+Y90p9JPN5sDzAsrlq5iY2IO3317ouubtt/8uPvzh3wMAFApjmJgYx7vvXoGqNpHNZnHrrbdhdvYiK/Gk7z+5F4dMJuOlkbLYvz/YsrdzrmWzWdx779EumVbLIm1KDcPAwsIcO49i0OMGwWZZO0cBRZFDP1+zVvn1QKxVvjEYRBt50F1yp56xZZmoVqtwHNvTRld8oi4K0mlSEqbrWkAC1X/fqamzWF4uB+RQJUlCsVgKHPv0099ktdqGoaNer63JyNFadipasVHCLzGuPxQlE1DniwKt2e5UIhwGlI9BDbhl2UzJUBASyGQyrMSMdr+rVK51XadY3IEnnvhj9nPn2uKfm62WgUajwe5DuCbCQJroYei8tqo2vc27hIcffoxdb5R655th7RwV1k2rPMb2RZQSk18bmf7//PkzuHLlMp5//l9RKBRx5MjHApO8U89YlmUUiyU0mw0UiyXUalWYJmGW03B4Oq1AFCUoioKDBw9jZmYaL7/8U+RyeUxM7EG9Xgt4MLZtQdMsrKzwOHPmNPbvP4ClpUssNJ9OK9A0dVUlPX5wHIdHH/0DzMxMM8ZtKqXAMLS4acg2xu7dt+DatatQ1V5Gm2MhcX+qhG72XBdIJlOsPrpWWwFA9RGC16SpHkmSIQgCPvlJIm0clZ66cuUy2zBQuK6LanW55/eqVMowzRYr96QeNo0q0Pm3mrA1nffNZh2q2jamrZYRaBcc650Ph9hwbxOsR35okMm0uDiP06dPeTKkJKRXqZTx4oun8MADj3SRWNq65KqnOS6xsVLPuPN+5fK1Lg3m1147HznuVsuAKMq4cOFVJJMpuC4x6rTZwiC57l5wHAfnz59hEQFS0mNsWDOLGNcHly+/A54XkMnkUK9HGRQXxeJOJJNJXLlymaVxaKUBrT6g76SfYEkQrIsnZEoNhw7dw+aSP6dM30Fd15j6oJ9Y2X39IBYX5xmD3F92mUqlGBHNv2Eedl3J5fJYXl4OGO32d7OZEzAsX+ZGR5zj3qQY5vuNMj/kx/z8HAzDCCwElmWxXNfi4jxeeOFZGIbOJj7JydGe2HWWE6P5cBqKowQYSUri0qUFFApjWF4uh96v1WpBkmRWdmZZZt86btclpTRtOddgDjjKcA9af2oYRoChHhvtGwNUPrgXD+LBBx/BvfcexX/8xy9Zj2/HcQL8Cb8eeNh7SOdSIpFAJpODrmvYv/9AIKdcq1VhGDpkOQVFyQQ6j5GNQTtM/8tfvo7FxXnU6zVMTf1vvPLK/8b8/BwWFt6C66KDSOmyZiMXL/4CzWbDUxi0hl5XUqk0Zmf/PYRkxwNwYNs27rrr0FB8mX7YTrYhKsd94xScbmP4Q9rD1FP3Qy+9c7pZoJKKQHuhoApKfs+c1orT48mClIWitFsTRt2Pss0pqBxqFAijm6pD0TBl2xPpRRIa1At3HHtTiI/EuP7oV/Y1NXUWi4vznrcY/pLQ96xTZ52CGHqXKcPValUsLs7jxIln8PLLPwVAjGI2m0ciIWB5ucK6zpFzgykbXddx7dpVr8vYNRa5qlSuIZEg4XG/lrnjOFBVlSmq1WpVtFrG0OvK5OReSFLb+JC5SEiclmUzj3oYieYYcah8S6BfGHy98kNRLUOpLCMhrQkwTX+euR0a7AxzTU7uZS0OEwkBtu0Extp5P1GUIAgCms0GTLPFWnz2yyNLkgzH0WDb3WIZawmR03P9deejRFzKdX2QzxdQra6s2/XL5at47rkTuO22D8Cyoj0/ytqO+puTDQIHVVWRTCZx5sxp2LYNw9DRaNS9Ui3Ji/yEvYucFzonBrnVIi1wW60WUikFoiiy+VUs7mBrSKVyjRHS/FDV5qrWlWKxhJUVHpqmsY000WzgAmVjg0o0x4gN96ZHVI9d/250PfNDUZOJbhYSCTHgdQNkxy9JcmgnMjrWRCIYDvfvvCcn9wa+t6JkUK/XvcUqWPoUtuglkykcOPAhXLjwKis3I8eS39PzhzGSpK1oFo3G2hjpvRAb7fUGyR+vp9GmcBwHc3Nv9D2un/dOOnc1IQh8aI1272Yerq+BUJsAR0ouDUiSjFRKQaNRY0Q4Kv8blTLytxEdFLTWO5VKwTD0QPlmbKhXhzhUvs6g4a2nn/4mTpx4pq+OdycGCYMP08JzVKAtOcN6DBMCTzZ0UrbH2uo5Vv/3luUkcjnS2lNVG8jlCkilUp7KWXsDkEymUSgUYZot7No1jn37bvdaF5IcIw239yPshEEUJahq79rdGJsX5O99ff92o4jIUCW+RqPeZbQHBYkOBb3ner2OVovwScbGSoEQ9dhYKfI9dxxn6HWFRtIKhTGkUmns3n0LHn30D3D48JFVfZ8Ysce9rhjEW+6HQcLgvULaaxl7r+vRXbRl2YFdfTabhShKkYsMHesvf/lzVCqV0GsvLs7jypXLzNiS/tsyxsbIdZ944o/Z+HRd84y3i1ZLh22bEEUZ58+fgWWZUJQM2+XbtgVZTsIwjKEN92oXzRibAxux4VrrPTmOSJFS8ucg6AxxB9NKZPNCNzGNRh2KksHRox8PzL/p6anQqg2O4zE2VlzVuhKHwUeL2HCvIwapg+6HQcPgo5wYg2w4qAF+4YVnmXY4NbCmafYM009O7sVddx3oEklYXJzH+fNnsLxc9rzidnlKNksWjs6Q+re//T9Z7o4+G9M0oaoNryY1i3S6BIDUxdbrVWSzWdY/eDMhkUisSbAjxvaC6zq4du23Q70P/tB70IhzEMUEEgnajY+wyMOciKWlS5BlOVC5QQmeVDo1xsYiNtzriFGQxgbRAh41wjYcqtrCCy88y8hl1Et++OHHAupqnaHvYXSKz5w57ZWK0fy1A8fhWM9iRcl0fW8ajiRlYjb84VC/0ZckmYXKeV6tDnRYAAAgAElEQVRAoVBEpVJmClGbAddX2/zGwPr05b5+GHYTR8qpBGSzWcbmrlSugeM4pvsvCDx03YCiKJH8lWw2D1k22AaXtvldzyhejMER57jXETQP7MewpLGNKJOo1aqB8isiVUgEUzr7bvcaHzXGg/TrnpmZhmXZXbk4P4ks6nvT9odh7RJdl5SllctXWQOHanUZlcq1gMfNcXyX6lSMrY9kMtn/oE2OQdrESpKMT3/6D5HN5lAslgIlWIqSgW37OTCtnpt/um7JchKFQhGl0k4oShal0o5Vf4dh1oIY/RF73OuIUXnL1zs/1BmeJ52Q2vrLnSH/qPH1ShXcdVewWUG5fK1nR67x8d1d91hcnIdtWz3LqKLY59Rot6UoCQNXkuS+deJRkCSZhe3jcPfmgK5vfW5Cv3eJ5wWmURCWWqNkUdpwR5Jk3HXXhyPXFP+6Zds2NK3JvG66WR8Wo0gbxmgjNtzriPUgjV0PhG04OI5DKpVmxwzadzssVVCplPG9730X7733HvOWOz1tP1zXxcTEnq7PZ2amIcspT3Z09fnqYrHtSZTL3U0aBoVptpicqiAketbwxrg+2Kxh8mE2d/S4TqneRCLBwt+maWJmZhoTE3tYGaQgEI6K6zpwXaL9n0jk4bo2ZmcvYteu8dC1iK5b58+fQbW6zLqQ2bY9NLmWYpi04VpC6ouL8zh5Mpr4ul0QG+51xmZkU/abGGFCKImEGJh4nSH/sGuG7f41TUWrZaBcvoZWazB9b54XsLR0CYcPHwncR1WbSKczyGQyqxabcV0X5fK1nhuHQSFJMmszGhvtGFHoNL6Dchuo4hjVTaDqgPQ6lUoZ9XoNspyCaRqwLNJXPpGQYNsmDEOHIBBdBFpSGrU2TU7uxczMNBxnrKNj1+q85EFJtmupxKHnimJi1VU8WwVxjvsGw2pyTdlsDqbZwvJyGeXyVU9TXA8Q0MKuOTGxp6u+XNc1yHIKrVbbO+0Hapg77wMAzSZp+TpIHjAKgxptURSRSIiRvzcM3atrX/VQYtwAaHva3FCERNpLvi0o5KDVIsxvqstPBIsUFApF7NixE7KcgmFoASnTer3GZEx7oZPrAqxekXFQrYm1yDe3z5VGKv28GREb7hsMg0yMTgOpaZrXdKDdFMFvnKKuubR0qYu4JooS0uk08xb6hwvbmsb0Pq7roFpdhuO4TBP9eoRE02llIE9aFKV1H0uMrYu2aNBa67w5Tw6YGEHalMQP0wyWdFFvv14nEateolCjINdSDEqyXctmYZQbjc2OOFR+g2GQXFMnkcQ0DaZ5XCjs8D4zWcis1zU7UwUnTjzDJE9pG8JexpvjAE1r4o47PoRf/GJmKDGKUZLE0mll4GvFYi0xwsEhn89DFCWUy716ekfDdV0kEqQe27JMWJYV6FffbDbhODYr46IeOrmVC9cN5v0vX17ClSuXcejQPV1KZgcPHsaLL57yNsZko83zPG6/fX/fcUal4zqFlk6ceKZvem3QzUI/OeXthNjjvsEwyC66c+dKRUFM00S5fBUrK5VAqG2YnfnExB7U61W0Wq2+YiMcx4PnBXAcj+npKdb7OgyiKGLnzpuQTmeQSIisL3E2m19ziZeiZCAICdTrtTVdJ8aNA57nkU5nWCOPRCIBQeChqk1G9hwWdCNqWRY0jXTuGhsr4dixxzE5uRcHDx5mDUg6I1DJZNKraQ+qqrkukQT+2c9eCfW8O4mjjuOwFqFRGCQdN0x6bdBKnEHllLcDYsO9zdGplT7IxAgzxH5mq+M4aDbrLCRMF4yoHLh/LLOzF3vmiQHSrnDnzpuQy+VYLXY/74SWd6XTaaRSKTz22H/CTTfdDIB0UFKUDHbuvGmgZ0a/pyAI+L3f+yhkOYl6ff2ai8TYXqBzRNOaME3TIyySftymaWJlpbKK1E53/27LsqDrKjOIk5N7kU4rzMALgoB0Og2O42AYOvL5scgNg+M4mJo6y35eXJzHCy88i1aLNDGhYXhBEGCarZ5540HSccOk1wYll9FwfCaT3fatQeNQ+RbFICUTYQzN2dmLGB/fjYWFt2CaLYiihLvvPsQEU2ZmplGplNFqGZDlFNLpNGhPYdo7mCweCCwCHIfAwhK2PtDJSntscxwH23bgug5rBQqQ2ltJklj9uOP0N5i0jpV6+v6wHH0Oqtoc6NnS2u59+27H0tIlLC+Xcb0bVMTYuvBrB3Ac720824aafjYI2q1k293t/NdptVp4/vl/xfj4bhw8eBitloGxsVJgbgqCCFVtwDB0iKLECG2dWFmpAGjPF3/nMb9CIeWVRGGQdFylUvaEYBxvg0H4L2HptWEQJae83RAb7i2IQUsmwkQPms0W5ubeQDabRyJBPOvZ2YsAgNnZi6yNJs/z0HUNjmOD44gXbFkmE2JQlDRbAGZmpiFJSShKlt2b5sDp72n5FtUyB4I5aCpNmclk0WjUUa/XhyrRSibTgejB9PQUXn/9Atuc/M7v3IqFhbciz6cetuu6GB/fjYmJPZidvRhrh8dYE8IMNM9zcJzB+BdhAkJtTXsHrksjYE2vFIr05/bniAVBwPj4bhw79rhX5/z9rvtwXDv4StcNKmHsHwvd1PbKG/fLUy8uzqPVMpjoEZUmTqVSKBTG+j6TGHGofEti0JKJMJalaZLa6c5zX3/9QuCa6bSCbDaPUmkHxsd3M/nDbDYHAKjXazAMA4uL84y8srJSYTlwx7FRqZQDeSzXRUCVzL8Y0dCeLCchy8mBjTbHcchksgBcFhr77W+vYHp6CpZlgud5WJaJ3/xmFq7rYMeOXaGsb47jkUopSKcVHDv2OJaWLoHnhUjvJGwcaylJi3F9QTdqGyFx6zhO4F2h+fBhzqdzh5aA0XlMPOLoVNjk5F7k82FG10U+T4wmXTdo2J0d4bre2iH1zBv3K/2iwkkAibgREp2NZrMRKrQUoxvxSrMFMWjZQzhpzGZhZf+5tMNX2DXpRFTVJmq1GizLguu6aLUMnDz5fTQaddRqVS/PTAQiarUqNE2DbdtsM9Ar3EyVnQCijU7zaf3w/vfvx8c//knkcnnUalXMzEzj5z+fZqUvjuOwhY70D+/WNCfHEvY69QroZsTvcUSBitMkEmJAXS7G5oXruhsWTaH3puA4DmNjY6z+uB868+OO47A502oZfXPEd911d+iYbrvtdgCd60b3eO688+6eoeyw0q/9+w9gZmYaTz/9TVy5ctnbpMtdEYnZ2YuxfvkAiEPlWxCDlkyESZfyPNeVfyKhte4Qmz9fTFt4hoX+6OLXTbhx0Ww2oOtk8gLt8DjVB6fnplIpiKLk7c4dZDI5NBrRLG6O48FxwBtv/AoLC28hnVZY2oDUWnMAguNxXRe12opXIuPPM3JsIdV1HdPTU6x2fRA88sj/CQCYmjrL8oSxXnmMQcBxHA4duge7do3juedODP3OUN6JqjahKHwXvyMMi4uLUJQMWi2DddRzXRevv34Bu3aNs3Wj2WyA4+BpJxAhJL+KYS+EcUxoak9Vm2g264GoB10T+im6xSCIPe4tiEFViMJ2vocO3eMxQ4Pn3n33ob4htkE84DDYtoVGo8G8YFEUsWvXTdixYxcKhSKKxR0oFMbYGMfGSl6+OfqagtAms5F8GRFlqVaXvSPCT6abC0qIo/8GyCJYr9fw2mvnh5IsPXXqRzh58vsol6+yDUBstGP0AzG6PC5ceBWnTv1oKKY5fXfpOcM0MFpZWUYqlWahcJ7n2Zpw5sxpAKQTn/9emUzGiyoNL2jSmdrLZLJwXQTmSltLfXsKpowaa/a4p6am8NWvfhWqqmL37t34yle+gvHx8cAxs7OzOH78OJaXlzE2Nobjx49j/35SxP/ss8/in/7pn2CaJm6//Xb87d/+LbLZbNitYngYpnlJ2O57167x0HOjPqfwh/d6Iczb9LPOJUkObA6OHv14lzADWUAGN37V6srAx1J0jpGGHIdFrEseoxeCPcGJkFG7UsL1jNjg7xDRN2gbbsdxIQhElOXll38aOnf9FSO6rsN1qz7Gevv/lmVjZmYax449jvHx3asWQ/Gjk2UuSTKy2SxTPKT5dEpc3Y6CKaMG567BNVBVFQ8++CC+9a1v4cCBA/j2t7+N6elpfOMb3wgc9+ijj+KLX/wiHnroIZw6dQr/43/8D/zoRz/C5cuX8Yd/+If4/ve/j927d+Opp54Cx3H40pe+FDj/6tV6170LhfS2pvxvpu9HJ/3S0jsYxpi2Pdo2c/zQoXuwtHQJjUYdmUw2csMRxX6lEARh4I3EoGPdrJ2kYmx9EM9WAJ0/wXe3N/+j8zo0TUSNLckVI+AR0/aytKLiypXLsG0bqqqChsa7r02uK0kyPv/5/x4IcfvbEg9bG03VEoPNStrE0bVevxObae1cK3buDHdi1xQqf+WVV7Bnzx4cOEB6K3/2s5/FuXPn0Gg02DG//vWvUa/X8dBDDwEAHnnkEZTLZczNzeH06dM4cuQIdu/eDQD4oz/6Izz//PNrGVKMEcOvcOSXEuyGv6ab8zUQ4ZDL5ZHPj2F8fDcOHz6CY8cex5/92Z8zxacwTE7uRbG4g4XxOsP0ozTaMWKsN9qlT27Iu9vfaAc3wS6TMyXXJbljUu7ZYFEjQsg08cYbv4JhGGi1DPA8aTnbWQFBenoHw++D6ov3Q1Rq76MfvW8k178RsaZQ+cLCAvbsadP3SVeaAt5++2188IMfZMfccsstgfP27NmDt956CwsLC3jf+97HPn/f+96HcrmMarUaUbIQYy1YTZ9bf35KUTKh9dWUZJLLFfDRj96H8+fPeKIlhNDCcXxX/m1u7k2cPXuuayz+MUqSDEFIwHUdFlIjjU76K6kNCkpSi73tGOsNv6DJ8OCYPnlbDIUY2kajjmw2D1EUoeta4CwaSTIMPSBy1Mle5/m2sJJ/k7wWMZTOuey6LgxD71p7YkM9PNZkuDVNgyzLgc9kWfbCMf2P0TQNxWKRfS5JpBxC07SA4c5k5C5vjzS82L6lN6P+fnNzb+LcuReZDKKuqzh37kVkMo9i377bIs9rNGpIJlPgOA6pVAo8z7PSLzrBaX2nZZk4e/Y0CoUx3HHHASwuLmJlZQX5fA5Hjhxh95mbexOnTp2CbZN+wc1mA1euvItbbpnA0tKSp6ZEDLYkiUinFbRaLRQKBRw5cgTPP/8ckskUlpcrTJIxDP3C3yS3FxvsGJsfiqJA09SOd9oFwHlrZhOKku7a0IYJtxAjHTTebYnUJIrF4prXns71hmw4bDz22GM915tRYLvbBmCNhjudTsMwgmQef+lPv2PS6XRg4TUMoqZDZDbbaDS6CUPbKY8RhlF/v7NnzwHgwfMJ6LrOmh18//vfx8MPPxa5681kcoH8VCIhIpvNw7YtqGoTjuOC50k5VaNRh6JkUa3W8Prrr3eFvej3OXv2HHRdZ94Bqbe2sLi4yFiupG5cQzKZgm0TRbVKpYKzZ89BEEQYRsurW4023IIgeGIXQqigS8z8jrEVwHEk3WQYRkCXoVO3vFbr5gL5w/Kk3FKF69q+n1tIpxVPGZHkmO+888NrXnv86w1ZIxKwbRdnz55DqbR7Tdfuh+1kG6Jy3Gsy3Lfeeit+9KMfsZ8rlQqq1SomJycDxywsLDC1IMuysLCwgH379uG9997DK6+8wo79zW9+g507dyKXy61lWDFCUKsRFmmlUoNtk8nPcTwrAYnKLYXVgjuODVGUkM0mIIoiq10GAF1XUSgUYZqIrMcsl68FQnrdDPS2cIqqNqCqDdaHm+iX87BtayDDKwiJoaRTY8TYLEil0pDlJBSFqPl985v/GHksz/M928nu3n0Lrl2jrUQ5JBIJ7Ny5CxMTe7C0dCk0fTZsas1/PKkrzwBoE9LiUq/RYU2G+5577sGVK1fws5/9DB/5yEfw3e9+F5/4xCcCHvNtt92GnTt34uTJk/jMZz6DEydO4JZbbsHevXuRTqfxD//wD5ifn8fevXvx3e9+F5/+9KfX/KU2CqvJIV+ve0uSjEqlHAgNuy4R+O8lehBVevbyyz9lJR4k/MYHFKF6TdJe4Wsadu9Wh7I94+3Cts2QHB0PgAtpWxjOoI0RY9QYpnnIICA6+yLjhvib/HQilUpD1zXs2LELqtqApmk+bXEBjUYd6bSCXC4P17VhmhZbI8LEVAbthxB1vKapqNeJyIokkVRpWCnZRq6ZWxlrYpUnk0l8/etfx1NPPYVPfvKT+MUvfoEvf/nLeO+99wIG+O///u/xve99Dw8//DD+5V/+BV/72tcAADfddBP++q//Gn/6p3+Khx9+GIZh4M///M/X9o02CIP0oN3Ie0d17HJdt6eRjZpYfllE2pyD/hvobirgby3aD1GG3U9Kozk5/zl+o01zge1StNWJx8SIMShGzZdwXZcZysXFecbK7gT1tm3bxvJyGaIoYceOXdi58ybk82Nsc97uTyCF9jbwY9B+CFHHE3EXQpyLEonayDVzq2PNAiz33HMPfvjDH3Z9fvLkSfbvD3zgA3jmmfAF+1Of+hQ+9alPrXUYG46wTly9wsXX+96m2YKiZNFo1NhOnCJKVIFOLNu2YRg66vUalpYueQIKORaaS6XS3u66u0uXfyfOcRyrJ/V7DoPKg3Ye06skjDLd6XEkHx6HzGNsfgiCgGw2D0VRMDm5F9PTU5ienoqovSZEM9oek8j61pDNZhm3g/bS9iNqs0436pcvv4NEIsHC9b3OAbpFVmhTIdpONMyb3sg1c6sj1iofEQbpQbuR96b65rlcnhlZgOaTw6USZ2amYdu2F3ZrexOtlgFd1zwdY5JvLhZL3s66BUVR2CQ9ceIZlp8msqfkGp2dwciYRQAu8+QJ+11fVakW3ZjQOtfBFdHaYhix3niMjQApe2xvfC9ceDXyPSTvd/s9JTr8HBqNOm6+eQIHDx7GzMz0QApo/k02FTiimhyynOypmhbWP8HfTjQMG7lmbnXEhntEGLTxx3rf2zB0aJoKyyJduRYX5zE5uZeRzHheQCaTQbPZgOM4GBsr4aMfvS90h1urVWEYuqfSFPwdLU0xDAPj47sjc1N0clary0ztKQySJCOfLwAgG4NarYZWq4VMJrvqibya7k/pdBqapkEQeE8CcjAS3CAYdQ40xvaEYRgwjBamps56nI/e7x/ZfLueuAqJMjmOE5iTfoKpabZCN+thmg2A6811oacWehSJtZd2+kaumVsdwvHjx49v9CD6QVW7S36SSRG6vnk0olOpNBYW5phCEn1x77336Kqaww/z/ei9DcOAqjaZoUkmk7h0aQGFwhgmJ/eiUBhDuXwVhqGjVNqJ++57EEePfjxyfPPzc6jVqqH10DTcTsutFhbmUCiMoVpdwUsv/QSvvXYe8/NzrJmApmmBnHPU9wAIE1wQBLRahJxD7s0xok2vDQDFagVVLMtmJCDaAnR0PZtj7z3G4NA0zetfH/7eCILg9ZZ3O9QKwbzu/fsPoFAYY3NfVZvI5wv4vd/7P7o22q+9dp5paRDtcwGWZcK2bZRKO3DvvUcjQ9id98hmsz2PB0a/ZlJsNtuwFiiKHPr5mrTKrxe2ilb5KBmSw36/xcV5vPDCs6yvtl+0n5aTDIvFxXk8//y/MqZ3GGiNKcfRDkOtgPYwJc1Ehar94eh8vsAYqP5xP/30NyHLSZhmi4X5qYLa6EFC5f5+3jFibFb4G4TQHDdtwem6Lp588gtd5/jXFv+aZRgGEgmRSZD6I3e9tB7WgvVglW9G27BarEsdd4wg1iIPOIp7y7LsGdG2h7iWnNHk5F4cOnQPLlx4NfIYjuNQr9eRyWRQr1eZ9GKrZTCRF38Hou7zeZCmBw4ajTrGxqSuMBsNqZEabtqwAQASrCadgoiutI162wATjedekCSZbTAEQQiIXfgXxn6RgxgxRo0oFUB/lYVlWWzuq2oTuVyBHec3kMViEXfe+WEACJRwEd0E0s/e3/FOFMWepWBrwUaumVsZseHeRliPnNHhw0ewa9c40x/3GyxBEJhBbjYJiYWwtw3mGRPymg2AQzqd6iKbkXWGgyynYZpGKAOV5s+IIeWY8pO/UYKfNctxxOvwazM7TtDAh6EXgS2MTBcjxvWAvwFIf10CDhwH2LYDXVdZaZXfQDcadZw5c5qVhdH1Ip0mipeq2gSArsjdqNjece322hEb7m2EXgSRtU4WyzKRz4+hVlthhte/gFCiG9GgbwZKzojXS8LfpdJOlMtX2TV4nkcqlQbPCyiVSjh27HE21pdf/ilrTkClTaknTfPQFH6v3nXbghSUZTssHCcYJQgTfInD6DHWFxx4nvQIoEa1XL7a03ATrQPCE+E4ntVd+w10IiHBtl2srFQwNlYKnJ9KpaGqTZRKO0cWufNjWGGXGOGIyWmbFKv5flEEEQDMY5UkCYZhMDLZICSQl176CSzLYiHwMCNWKBRx2223Y3Hxra6FRRQl1oGLEtBs20IqpSCbzXl1qISUUq2u+LxrF9XqCgxDQzKZ9nnEXJfnQQ0px3FIJpN48MFHUCiM4be/fa8rnD4IwhZHf4icNEGJPe8YowNNG1GUSjtxxx13oVK5xghchtG/PJJEn1y0WiZMk/xHSWcA6QQGcNB1DaIoBYSMyGbfYQRR/+fZbBb79x9Y03f0ryX+9NPS0iW8+eavGak1lUoPTVBbXJzHSy/9BOfOncFbb725qmtsNsTktC2GUX6/qEb2g5LWKDmM4zgYhs7qsR3HQT4/BsexmSzqysoyY7bTftyJhABRlGFZJsvD79t3K+bm3kK5fI2JRxSLJeg6IbNRDXS/Z057EIehVNqJVsuIjCZ84xv/T6QBj+u1Y/ixUe8DLYdsNMh6R8ssAbBomShKXSkrP6gxdByXKQlKksxIZwDpnqXrhsfkNgNkUsexsX//AczOXuz6PMwrHjaS519LKKi4Uz4/1vd+UQh68hIMozX0NTYjYnLaDYy1Ch34c+f0OqraBM/zAbGVl1/+KVKptNcMRPUWFxemSTztBx54mE2iQiGNXK7EJlsikUCz2US1uoxsNgdADNVADwPPC0gmkzhy5GMsxN65iIiiGGm4w5qc+D+LDfuNhY36W1erK+zfPM9jZWUZL754CjwveGVhQKEg4+abJ3D58juh1+A4DrbtBCouRFFkeet0Os3quI8e/TgAhBreXbvG+xrksLD36dOnvDa84ZtoSZLZxoO0/FTQbDa80rbVK6iFSbRuZxW22HDfAFgraW1iYg8uXHgVjuMy7zmdVrp2s7lcHsvLy2w37/eO9+8/0DWBwiQPBUFAs9lgxtLP7CalWuGoVMo9c2el0g4sLy/DNI2enjvQzSiPjXaM9Ubn5tBxHEb49KNcvgqAGEDbttiGVhAET3HNgWma7JqUYAaQKJth6IxVTudjVHOhzi5hnRvizvlLS8g0TWVj8c/BxcX5QDTOtm3UalX2vVdWKowMN2xO/UZTYYsN9w2A1agaUSwuzuOXv3wdrkuIL6bpwLIsHD58pGvCHzx4GM8//68AXF8nIyCVSmFp6VJXFyL/ZGvXjRKDWa1W0V2+1e0Z045gmqbCNBMQRQnNpsm89fPnzwSU4yQpi0QigZWVCmOpd163l3cfI8Z6YNjNIZEZ3gGAGGR/2LtWW/GuSUiW5fJV8DwPUZTw5JNf6JmG6wx9T0zsYWHzzg1x2Pz1fx9N05BKpZjXOzMzDVlOQhRFNtf9zYkcx0G9Xkc2S/L9w1TD3GgqbLHh3iIYJpcUdmxYa85BQkjnz5+BrmtdC8ubb77RZYgnJ/d6pSMt2LYDahANQ0elUu66Np1sjmOzvHnbU++9kIUdZ9sOLEv16rxJTrxSuYb/9b/+CcViCfv3H2C9hymRjW4w/PKosYcdY7PDv7lMJBIwDB333/8QZmamUa9X4bqkLJJuoh3HQatlYHFxHoVCOMEsLPR94cKrSCZTzED7Q9B+Y+k32m0FNxeGoTOvlxp6jiMpt5WVCot+kfECgItGow5FyQzkWFD4nROel0K7kW0nrKmtZ4zrg2Ha30UdCwDHjj2OJ5/8Ao4de3zgvM/KSqXLkLkuKSUJQ7FYYuQTnufZTpouGn4cPHgYjmMzYRUCDoOUb4WLUfh7jbdZ56bZQrPZxOzsRRw8eBhPPvkFJBJil0RkjLUgfn4bAcPQsbJSQaNRxwsvPItKpYx8fgz+DS2ZBxxkOTVUK0/HsWHbNprNBlZWKqwboG3buHLlMiqVMur1KprNJgvP0/vRjbFt28zr9bcCpteh+ehMJhPQZRiWVDY5uRf33fcgFEWBrutQlO5U3nZCbLi3AIbpjTtsH91+iMoFR31+8OBhaJrKJj0Nh4UtGnSy0YnO8zyy2WxXC8IwkNKZcPglWnme5KubzTrqdbK4LS7OMy/EsixWAhNjdRAEIVA6dCOjU19gPXHt2m9Rq1WZMbQsE7qus5IxmjfneR6ZTAbpdLpnzrdWq7K5R6tHKByHdPdrNOpoNgnrXVEySCZT0LRm17Xo3OJ5nnm9dKNO+4rT8dHWoYVCEblcAePju1dlcCcn9+LYscfxZ3/250M5J1sRcah8C2AY4sWoSRq9hEZo57FOdDckIYt72BgmJ/cyYRfbJt43Ccf1rmHPZNq9xaNAvQaA5AE5jodptnDmzGkkEomYLT4ixJyANq7XBjDs3aXpIcogt227S/8/rJWnX6vccRyk0wo0Te1IXZFQtq5rADhks1lwHId0WvE2CnQsbiDadejQPQESnD9lVygUveoUgRFRt3N4e5SIDfcWwDDEi1GTNAqFYmjdKMdxoYpHMzPTzPvy98TWtCZuuunmrusvLs5D11XYtsNqw3VdZyH2KMNar0dvRPw5bj9c1/FkUAWoqgqAC7TvHB7dxLYYMYaF3zj623JGlSTSFriUdEajWv5z6PG1Wg3ZbDa0LWdnTtu2nYDR9+6MdFqBabbYfXK5HNsM0GP9SqPDG+EAACAASURBVIlt7QYplAfjXy9i+dPVITbcWwDDsMLpsc1mC6ZpeG0qOdx++/5V3fujH70Pp0+f6iCotTuC0fA3nXyq2oQkyd7unUx+et7ExJ6u68/MTEOSkhBFCaraZIsAqc2WA6SXfiCtCImimWl2q+0BZEEk5DQbPC+s0VuMjXaMtSOo3U+Mn78kked5lEo7AZDwOOVy0M0thd9oU/0DnufRbDaYmEvnJttfzkUFWkh0iowjk8my5juNRp3lvDmOY5/7meFUcpiEvvurlsVNRlaHWPJ0k8L//YbpdVsojKHVMnDp0gJs24YgCEgmU6hUroX2y+4nC1gojKFY3IG5uTcAEFZpNksmM8/zqFZX8M47bzM5VV3XvBxWMGRIylSq7LvQ70d7ACcSCSSTKdYalLLS22G63qQ1nheQy+UhCDweeOD38e67S7AsM9Rjv17scSKLuvrQ6VrPj7G10Pl+Uy+Wzg0AXptcEs4mEqjdayMheXHIZnNQFEL6+i//5Uk2zzvnnv++hEiqQxQltrmlZVoAIMsp2LYFwzCY5gIdZ/s6Lmzbwsc+9sCGSI5uJ9sQJXkae9xbBMPsTJeWLrH2mhSmaeL8+TOs1pMyzl988RSSSaKmFBWqmpzci/Hx3aEheEIqa+/aZTnJwm1++ElynUpKlUqZeef+8PMwIiiu6wRU3HK5PBqN+oY2A5HlJARB6JuLDwMlFPnVtGJsffjTRxSiKEKSZHAc5xE7idARJZhRfX+AvFN0cyyKElKpFHRd84XMwRTJaFevqDSZKEpMVpgIuIgwDB0cxyGTyaJWqzIRGI4jrPRMJgvDIEps9HfZbB4cB2iaypwFQUiM3JOOw+ptxKzybQg/O5QikUigWl0OMM5d14Gm6ajVVvqWmXUyQmmdJFVsoogKURMCix0gqE1PT3mdwvzh6tV7wRMTe9hEnpjYE2CXd6IzD9/G6BjBrZYByzJ7RgqiQAUsYowOvSoRrheod0q5Fvl8AYVCEalUGhzH4dFH/wC7d08gmSRG0nVd1Os1LC+XoapNCIKAQ4fugaIQUhhlYyeTKRSLO5BKpaAoWYhieC3z4uI8vve97+Lb3/6fnggRmXuO47BNQyaT9d5di5VoEe/eCNwznVYwPr4bgiCwz0qlnVCULEqlHSN9bsOUxN4I2Pg3OcbI0VkvCbS9V7+RpfXTdGffq3TMXydpGO06yWKx1FWbGYVms8F2/3Nzb+LChVfX9D07MT09henpKSwuzmN29mIXux6gvY0THQso7/s9P7KSHlKeo7FSt2GuSVqZRvcHjzE8NjrtQDcONKxMU05Am0BKS5ruv/8hz9tWmDfdbDbgOA527Rpnx1gWUQkk5DKbMcH9c9QvXXrmzGkvV03z5xw4jmcRAJ7nIUlygFXeHj8Y54SON2pDP2pm+KjLXLc64lD5NkQUma1QKLKWekBbAME/OXuVjkWF6/336mWcHMdhE3pqampVIWwqc9q5CFOizuuvX8DOnbtYzrvVSqLRaLCFKpPJsJIZ2uI0OEYbAIdMJsO6NK0FdEEM+65xOdr1x0amTjgOEEUZDz/8GM6cOc0MZhjZtG2oOOh6O0Kk6xqr5gjT+geIxPATT/xx1/3bx0ts7gPEeBcKO30ywO21gTQDoS1sSbMfv3HuLPHyh7BHGdq+0bTI+yE23NsQUZMJ6DayVACBYtjSsbDaTNoIoRN+I7WystzVzKMfyELXLYfK8+2wt2m2ApNckmQUizIMQ0ez2YBpEg8lkRA9mUUuIAZBPeOwBg++kXSNYTWIjfb1x+qMNikb7FWeOAhc18Xddx8ayNhdvvyOp0PQJmfSa6hq0+sJAKTTmQDvpJcx888LutGl6mYA2VTQJiWCQCsuOGSzGQDtdqN+LgkQvqEPk08NKx8dFLSBEW0SRLqJyRgb29r9tleL2HBvU0R5x+shgNB5r2984/+ODJm/+OIpPPDAIygUxmBZNmxbDQ1hynKSSSxScBwRc4mC67oQRSm0lp3nBRQKRZhmC7KcZJGIapWQ8kh+r6021butp+vbRMTYrqDlTZlMFpqmBtjTqykjpK06T5x4hhns++9/qCuUzfNCwGgDwU2eX2mw2ayD48AMsn/j3enxiqIEy7KQSAhIpdJoNBpM28A0TSQSAu644x4sLV1iKZ5kMsXOU5TMwIY3LBqwljabExN72GaGPn/LauKOOz409LW2A2LDfYNhtQIIw4S9iAEMN2yqquK5505gx44dcBwHkiQGwtVt7eIsM9w070wXS5L7S3kiKjS8zTOPZteu8UBkQdNU6LoWOJ+2O+Q4vstDaXc2C4pZ+BEb7e2NdphYCPSgdxxn1bX/tm3jjTd+BUmS2ebS74UG87g8gOh3jL6/tVoNjUbD67bV1mwI83hbLd1jnZMa7GTShq6rXrlXFfn8GHbtGmeiKWsJdY86tL20dIn1+aYetyTJoV0HbwTEhvsGxyBlZsOGvcgO3Yz0junix3GAZdkBQ0pLWJLJJJLJFFoto8sLdl0XipIFAGgaEYZJJETcffchNolpZKFSKaPVMpBIJNiCS6MLUaVWneHUWMf8xgN93xzHwdWr74302q1WC9XqMssjT02dxeTkXpTL11iP7V7vnOuCzZVkMulFAxy2yZidvYg333wjNP9t2xYajSZaLQOCkIAgJKAoGRaB8s/rtYijjFrBsVarIpVKs97i5Dm4cY47xsYhbGcb1XpvIxAV9jp//kzojvzuuw9henqq5zUJQcaFYRgolXYGSG10Z14q7QjktagBF0URrZYRaFYgCALm5n6DN998I1CTPjMzjWazyRojUIw6v0zy7NHlZzG2P26//Xdx5cpl8LyAZrPeQ2+/Hep2HAfl8lV85zvf9HTAO5ncHHheAM9z7Hp+NjrdlI6Nldg5pmmiWl0OfAbAa59bR7FYBMflsLxchuO4cBwbHCeuOZztxzBqj2GICvPfKP22+yFWTttgUG+WKo8ZhoGFhTns2FFCOp3d8LG99NJPcPnyO7Bti3nGAFkcarUV8LwQGHehMIYPfvBOACS8FYVMJguAg65rEEUp0F3Ksixks1kcPHgYly4tQJaTUJRMwBuhHZAASkqzoOsqDEOHJMmwLAsLC3NoNOpIJlNe6dvwLO5+im3+44DghoAqWMXSqNsfiYTIyFyiKPatSKDvO40C+Uv/yGaUB31vstksa5UrSSISCZGViOm6BkUJdtTjeT50XpH5yiObzUHXdSZjbBgGVLUJ02xBEEhv77vuOrSm5zGM2mMnwtZEw9BgWRY4jmff3XFs3Hvv0S51tu1iG4BYOW3TIsqbnZqawqc//Z83bFz+8DhlmNI2f7KchKY1wfN8Ty+8l6GsVMoQRQmFQhGa1kS9XmVeiCzLOHr04wH2bbl8DZZlhZDWOMZOpyzxRqPGDC7HkUlOWbTDlgNRpnk/gx92TXq/mDy+fUHLE2VZxvJyGZlMDo5jD6D01zs6Q0hjJIpDUkMKjh79OABgauoslpfLAMCahwDE+Ktq03vfE2yetD1eB5kMMdr+lp0UpmnCsmpdnvpqsdpQe1SZG5FvTsbKaYgN94YjisSxskLyrxsl8+efPIqS8bSKXWiayppzZLO5wDm2baNaXYbjjPX1bi3LgmmamJjYg0uXmj5DywUMHZ38J048w3Jm5XKL7bo7vVl/lyXHceA4Flot4oWrKhGVoBiEGU7r3FcbAh/2POqlB9XkYowa/nA03Ziu9m9Mu2XpugZNa/bdqCUSiZ6lZXQe5HJ5KIqCY8ceZ+tAuXwNptlCMplCKpWGqqrMWLdaLXAcWAMQwGFiLESUyYSmNXuWYPZq0HO9ELUmGoaOz372yQ0a1eZCbLg3GFEkjkKhMPJayGHQWQudzRLlM1IWokAQBGiaBk2rMJanbdueh+mgXq9FXttPNvvNb2aRSikYGysxj0HTVDz77A88GccSDh48zDz4lZW6Z5CjF1katqZGN5lMe5rOOhNiAcjirShZ1Ou9tMRXV/qzWpDnEufJ1ws0VFyv19h7WCgUAWBoEhrH8eA4sHwz2eD216W3bRuplAJVDdcKoFEemhP2rwO2bTE53EQiwTp6aVoTNPqUSqUhy0mYpsnEWBYX5/Hii6e85j29vhMX2mvgemLUxLbtiFjydIMRJRl45MiRVcv8LS7O48SJZ/D009/EiRPPrErPt1M2VZJkZDI57N59C44dexz79r0fmtZkpDHqsfC8gHq93sebIHkqWier6yqazTrq9Tq7J/lcx8rKMs6cOQ3XBer1OruHH8SId3dWcl0glSK9hCcm9njdjsh9yZgtaJqK3btvwe23/27AC2tfZ22iG1HPQJJkrxmDgImJPaE58hsVo5Cb9YPOoTbnoF2j7c8Bd75X/UCZ3P7zi8X+Gt0kr9xbhz6dVpBIiHj55Z/ihReehW3bEEWRzTeOI+VprZbhlXm5EAQe6bTCNtz+8ivaPjeXy0U+304VxY3C9ZJR3cqIPe4NRpSK0r59t+HZZ58duhZyVF76wYOH8eKLp0Jzz0B4XSXAeQQXoStU3g6Du144j3jmdBHRNC2QDyaLCIdWy4CiZNForMB1HYQ5v4mE6LUDNVmImed5pFJp8LwARVHw+usXQsPelmVhYmIPLlx4tctoUk8qnVbQbNYjw6m09WE/EloulwfPCwGW7f79B7C0dGndDHYiIcKythZRZ/TPwmWCI4CLZrPButiJouzlfIfv4AaQd8QvXnT06Mfx/PM/DER2wuCvkugG2VQKQgKyTCR7iUBKIqB4Zlk2S2FRwZZ6vY5sFoygSb1UGkHrFwb3RyBGDX/aTxRJO9FWy+hKAfZSlotBEBvuTYAoEsdqQkajVCyiZK+w3HNYXaVh6L5NRZtN3T7XX4vteB5xmtVik8/pOTzz5KPzjxySySQ+//n/DiC4aeksQXn22R8wo92pSHXhwquh4XDC9CW5Rrrwdxp+0p88D11XoetGz9w0NdJ0MZqY2IN///fXu/TSR4mtZrTXA/SdovrzlmXBshpM1CcqZN0PmQxhe1OiWD5P2M2SJEHT+kv5Rm8UCNObahUkEgLT1/crnpGUCtc1d6rVFShKBoIgMC+VriVEKZGPJMfRTcHi4vxIDaV/bgIcVlYqcF3CmA9zLtZSQ34jYOPjIjEisZqQUVRLz2GFCmZmpiHLSYyNlVAq7cTYWAmynGRh+rAOZMRgiiyUJwgCC09KkoTDh4+wshnqcYiiiHQ67XkMVFKSB8+3latI/i4MwcUnqoPZ5OReiKLUJWVK0TuH7aJcvgrSj1iG4/ijCDwSCRGpVAp33HF3V1lKEByWli7h2LHH8eSTX8CxY49jbu43UFXtuubQtxcGC6mTSoMG665FMUjIuhP+cLqqNlGpXAPHcUinM3AcB2fOnPY2s2sL9/tz0alUmmmI0zKzTmPdCV3XsH//AWb86FpC5yytDydRqXbrzlwuD9u2R94y0+9Q6LrKImqapt7wnb5WgzV53FNTU/jqV78KVVWxe/dufOUrX8H4+HjXcbOzszh+/DiWl5cxNjaG48ePY//+/QCAZrOJL3/5y3j++efxH//xH2sZztDY7I3ZVxMyGhWxI4rZWamUceLEM13sVurdfvjDhzE7e7HL673vvgcBEA+VCD6QDl+1Wg2pVBKHDx/B7OxFWFZbhtF1gWRS7lmD7c8x0mcW9nyoKEznNQap7XZd11NZC9Zkk37mKlZWeNTrNdx334N4441f4Y03ftV1jWw217V5Ip5anNNePQZ/dmEe5qChcVL2KAVSMUC7YsCyLNTrVSYElEw64HkusMnrhCTJfdq2hr+nhLjGIZlMQdP0UCIjaRmaD8iB0rXkhReehWWZjMQGICD8Qudls9nAc8+dYDXjpdKOkXX3aufp28TPG7nT12qwao9bVVX85V/+Jf7mb/4GP/7xj3H06FFEabn8xV/8Bf7kT/4EP/7xj/G5z30Of/VXf8V+98QTT2BiYmK1w1g1tkpjdtqfl3pp/SbOqIgdYR61pqlotQw0m00vTJiCrmtoNhvMuz18+Eik10u9+EwmywyuIBDWNz1vbGwMkiQjkRCRTCZRKIyhWNzBvHc/sYaQgQarOT18+AgOHz7SRczp7MfdG+ELcatlgOcFnD9/hiln+ZFKpSEIQtfmKVZZuz4gm8DVPetEIsHeWY4jP0e9L67rwraJ0RPFcOEMAEzWt997R+cwYXlzyOcL2LFjF4rFHT1LGck4bFy5cjlAUJ2c3IuHH34MuVwOipKF65KOX1TwheTIa6jVaiylZFkmWi0Dy8vLa1of/esJnft+cmDMGh8Oq/a4X3nlFezZswcHDhBpzs9+9rP4+te/jkajgUwmw4779a9/jXq9joceeggA8Mgjj+Cpp57C3Nwc9u3bh6eeego7duzAt771rTV+leEw6u41mwWjInaESRbqugZZTrFnpigKJElitab+Mfg7Hs3MTOPll38KVW0inc4gmUwinU7Dth0vXKl3nefH4uI8Tp8+BcPQWX6OeuPDbEh27Rr3PBWVfUZL2AYFfRZ+UIlJIpSRQTabDShnmWYLoihiYmJPoDNUjM0ODum0Ap4XvHeWMLavXftt5BmUaW5ZLRb96iSqtT3t6PeO4zgoioJarQrXdQMypwC6Oud1ol6vMu3yzhxyJvMozp49hytXLntRggQowa0zbUPnm2kakKTsqtdH/3qSTKbRbNbhuoCipGPW+CqwasO9sLCAPXv2sJ8VRUGhUMDbb7+ND37wg4HjbrnllsC5e/bswVtvvYV9+/bh7rvvxjvvvLPaYawa27kx+yiIHWEbAF3XkE6nA8f1emadDHdVbbI2hPQ6g+y0Jyf34sEHH8H582dQrS6D4ziMjRVx5MjHhvqeMzPTnpRkEBzHQ5alnoshDVVGecltopOKXC6HXC7PiFA8z2P//gMshUAX00FAmfZxbff1Bc/zjHxGm1lQQ9wvvaIoGTSbDaYxDgihPIawvylhjbsoFktsM0zFh/zwaydEgUQJuC6nZN++21Aq7cbTT38TspxEq2Uwxn3nM/Dfby3rY+d6UigUGau8s7/3enQs3G5YteHWNA2yHAwHybLMWi0Oe9z1Rlzk3x+dGwC/ehlFr2fWGdXIZLKo1WoeOzYF0zRhGDoEQcDTT3+z5+QbxWakXL4W6DZGQTTQe7OA6fFhhpuy5mltsKo2USrtQCIhwjRNKIqCN998g7WFFARC4usFyl6nYfZarYYbNR9OKg/Wb73wt3F1XReSJMFxHDQadWiayjZ7lUqZ6XtHQRASgd7vvVTKopBKJXHkyMfYz2HRL1KemfKU2rrHQ7/PykpbIInmsinoGkgdGE1TA/lnf1qJygqvZX0cZSfCXsdtpgZN64W+hvuFF17A1772ta7Pn3jiia4yFl3XmZIPRTqdHui4XshkZCQSwbyhIPAoFNIRZ/THxz52FKdOPQ/HsXy1rg4+9rGja7ruqLDW79cLc3NvYmpqCisry5AkGRwHGIaBQmEMR44cwb59t4We1+uZlcuX2TXpdRqNGpLJFFsAUiny73q9BsPQPcIPB8BBOp2Grqs4d+5FZDKPRo5hLYhilVNQDyO8Vjta9pRc02UGnHhBLhzHAuBg375bcfbsGc9AkOv0M0SO42JychLVKgl55vN51Ou1NefFV9NoZaOxnkabaA5Qz5I8W8MwmDH3d/gieeXez45Ekhx88pO/DwD4wQ9+0DesTSFJEm6+eXfXHCwUDiCTkb35tYJCoYAPfehO/OIX/4ZWSwiMKZfLM/W2ZrPBxk1KKl2Uy5dRKt2OQiEdmM+pVAqimICuUzGXBJrNBmj3PeJ8rf/6ePLkzyGKCYiiBICUwplmC7/85c9x110HBjruwx++c1Os4euJvob74YcfxsMPP9z1+csvv4yTJ0+ynyuVCqrVKiYnJwPH3XrrrVhYWGAiHqRr0wL27ds38CAbjW72ZaGQxsrK6id0qbQbR48+0BVqKZV2r+m6o8Jav18U/DtVxyFeKK2nrFZreO655yLFWqKeWaNhsGuKosyuk0iIMIxWwEMHOIyP78bnPvc5/PM//zNM0wLPJ+A4Lng+Adt2cfbsOZRKu0f+3fsZbuoNUyIcEX6pMy+k97Xb4jA8L0DTdGQyWdZalG4KyGX6lwrxPI+3337bq8cV4TgmCoUiGo16HzZyOGiZ3eg10Ld29zOyyep+JtTD9GOQdIV/HQGAT37yUzh58vt9z+M4Djt33sQaC3XO/VJpd1fToVyuhPPnz2B5uey9rxm4Lq0j15jgEHnniebB2bPnsG/fbVhZUUPn85Ej9wMg0TLLshgHJJ8fuy7rY6VSgSwnA+VwHCegUqkE7tvrONt2rusavp4h+507wztErjpUfs899+DKlSv42c9+ho985CP47ne/i0984hNdOdDbbrsNO3fuxMmTJ/GZz3wGJ06cwC233IK9ezc+F3EjFvn7w9ck30xqrjVN9cJ7vQl6Yc/sxIlnQol+pDbbjuzJuxE8g34eJw0r0rHSEHo/jefOa1CFqt/+9gquXLnsne8OzGKn6nK6ThTl7r+fkDtfeOHZgccRvN56NS5Zb6PNeXni68vCp+H56J7a3ZAkOUDSBMh86RWtoZ49z/Nd730/g0Dnov842kXs9OlTMM0W24ym0wpEUeq6R9QauFHr4qApzM2S6tyofhKrNtzJZBJf//rX8dRTT0HTNLzvfe/D3/3d3wEA3nvvPXz+859nHvnf//3f40tf+hL+8R//EaVSiYXeL168iC9+8YtsZ/fII48AAE6dOrXW7xUjAsPUUw66k+zVzef++x+KvEYul8fy8jJMsy2bKooyxsZ6CZkMjs7xU4nV/i06XYiihPvuexDPPXdiVQZD0zTY9lUsLb0Dv3GjXaH6jcNPhrMsG88//8OB2kVGXG1Llp5RIR4izDOaMH8/QhcFzfcOA8syQ7katPlIGOjfhYoSnTjxDNvYnjlzGrZtwzB0NBp1XLlyGYcO3cNqsynofei7PjMzzRqN+A2baZqbhsMTtbaE5fPDGOeDHrfe2KjqpDUJsNxzzz344Q9/2PX5TTfdFAijf+ADH8AzzzzTddyBAwdiI32d4d+pUt3jsHrKYXaSvXa/vaIaExN7cPnyO4HNg2U1cccdH1rz9wwbv+M4SCTEvqHmVCqJBx54BJOTe7385/BGz1/m1gmO4z1hmehwnl+adbWSnL7RrPH8jQHPc543Gq1uN6wxH9QYW5YNQRi8nSt9hzvnCrmWNfCGkTbVoQqDhE3usrFPT09h167xvkQt0niE/D7MsG0kI7vf2jJIOetm0TPfqOqkWKt8xNjsJQqD1lMOs5Mcdve7uDiPkyd/jnfeucQ0yWn9qyTJAcUn/znDPNew8SeTRDAmkUh4NeThDUOSyTS79qC608PAcWwkk2nouh5pGLaihzxKtBvOuJHGVpZTkCSxS8p0raAlVAS9//apVBqm2YJtO6HlV2ScxPOlXjwpHXQgCDzLo/O8AI4Da6pDdQE6N12u6+L8+TOBdz/sXQfgqbglu+bM3NybG9YuOGq8/rVl0BTmZkh1blTI/oYz3OtpWDeyf/agGLSe8uWXfzrwTnKY3S99RqKY8OktE0lQ2mkpLNc37HP19++mYfhUKg1JkpFKpVljCD/S6TTS6UzAUy4WS1hZ4RlDd1RYT6b0VoVfDYySWXsR+QxDg6IojHw1SGTBH2WKQrsftuOROLs3Drff/rtoNhuo1apotYwugRT/XJHlJDhOhCwnYRg6NE31moRwvns6AHhWL02fQRhWViqBn3ulqj772Se7zp+amtpQ8anVeKmb1SHaqJD9DWW419uwbhU1tkF2qsPuJAfd/bafkcQWUYA0bOhsRUgxNXWWlaZQog1tShB1T0mSUamUwfPtVp71eh3FYglHjnwM58+fQaVyDQCpvVUUxWt7GMwD0olJRTU60Ut6sheo4e5FXLrR0PkcB3kuKyvLXgTFBkA7yrUbaYRp04cxxv2QZRmZTNaruAjvStdsNnoKpPjf42azCdd1usr5/JEEUvFgQxDI4l8oFFEuXw0dX+dzGXaurqwsd0myXk/xqWHHu5kdoo0K2d9Q3cH8hpWGtEbZlWZUnbk2A9armb3/GaVSaZaHsywr9B6Li/OoVK4FvKB6vQ7HsXs+V9r3m/4bAKtXP3PmNBzHQTabDxjOsPvTiWmaJjiOhyiKyOXyrDxstYpm7fODhoX2Mt8OIFKag4F+Z1mWQ9XtouA4ttc9yw1UAQDdz5beo9eGQJJkjI0VWbVFGHieQ61WxeLiPGu4U69XoarNrrly8OBhtFo60//uB0JItHHkyMci34POz4edq4XCWNfG5Xoysocd73qv22vFsP0kRoEbyuNebyLBZilRGAXCdpITE3uY7vhqd5b0GSUSAvtb0B7BndKHAJm0VJEMoIsWEZcYH++u9aYhtUol2HlLEASvLrvGPH2q5WyaLXa9KCIMz/OsLzJR01otw5mMn3p9vVSvBkVUOHeoUXlcg1GWjPVTo/PujHw+D47jUa9XvfA0B8cZ/BlYlgmOA/ofzjHSHy3BoqTIYnEHarUVuK6DK1eueNcLv6DjOFBVFS++eAqSRBqQqKoKXdfgOA6KxVLgPUom02i1WrAsYrjD/l7UGHMcmCfJ80LoM+xsYhPl9QEIaOPTMR05cgTPPffchjGyh/VSt7M89WpxQxnu9Tasm6VEYVTobBYyinBV+xm1wHECeJ6EvqOuU6tVkUopXpg6WFbV+Vynp6dw4cKrnmfj75tNFM0MQ2ciLMRIOTAMA4qSAeB21eBSLC7Oo9UymMc0TGjbH0qn+teapgY8Hn+Jkm3bEEURoiii1WqxcfZCJpNBo1FfdcidRhKo8Myo8/m9wPO81zKVYDW9yTVNY7XxtF4+DCSv3BajUZQMS4+4rhvYSPXbBLiuC00j6n+0IUhYwx2ANJkpFIqoVpfZUa4MPAAAIABJREFUpsF12/3meZ73NBSIPC6dB6Iohhpux7G7ys46U1W95utddx3A/v0H8PrrF7wGOBLuvvvQdQ07D0Ms204O0ahwQ4XK1yv8S0F3kmEtLbc6RhWuos8ok8kO9IxyuTwEQUAmk2EqUKTJSKlrobpw4dUe6mgua78JtMt3iPhMs+ciMDV1dlXeNTUmkiSjWNyBXK4AWSZdpoIRBLAFVpJkJJMp7NixC4899p/w3/7bX6BY3NHzPpIkI5crDD0+CppWSKcVlhIYBKlUek2L56g8fNrGkkrNDpJqkGWZeXGJRCKUrNgLZNy05SbYdcK8QNrSkqaG/O+S67pIJrs7ZC0uzrONGH1Xackm0Snv3Yq413ydm3sTs7MXkU4rKJV2Ip1WMDt7ceiWnTRV4G8duh5Y73V7K+KG8rivB5FgrSUKNNTbaNSQyeQ2DXtylOGqycm9uOuuAwPJElIPnecF5PNjUFUVhqFB01QmVkF7fdPwd6fnST0b13U975R4736Rk16la1EkoV5IpxVIkgzHsVk9L43GUH1lOjbaTCSdJhu+J5/8QuD+ut77OV279ts15sVdGIYBx6kimUxClpOo1/v/XUl/9gRWK3u6XpLp/TZZxFvWIIqE6U097UHFWfzX8UdOorxA/zusKBloGjH2yWQKlmWh0agFvN525YXobaTo/Uh0JKrrlx+95usoWOXXkzC2WWq2NxNuKMMNbI7avyj4J0MymRrJZBhVGcX1Dlf5x03DkY1GHabZQjKZQiqVDjyfWq3KjHNnjlgURShK1sulC8hmyb+pcpyiZEJz9/TvsRoYhoFkMoWjRz/OnjddfMplwmanXpTrutB1HRzHoVAIqsbNzExDkpIAuIB314l+xorneeRyBfA8z9j0nbAsE7ncTXj33aWBv6dtW16zmBb7ToNHJzZSGMZFo1Fn+eawXtRRoB4wLSujBtxx7K6e6/Rd8huem266GRMTezA7exHJZIql1WZnL2LXrnHmLctyEolEAqra9DYXDnK5fGTZGcX09BQajTrq9Ro4jkMqlYKiZNl8HQWrvFcFDf39KI3sZl63NwLC8ePHj2/0IPpBVVtdnyWTInR9cB3hrYCXXvoJLMvywlo860ZULl/F/v3Dt6qjhseyLEiSBMMwsLAwh0JhDIXCGBYX5/HSSz/Ba6+dx/z8HFKpdJfhoKjXa1hYmPNUmQzYtgOOA+6992jkOb3Q6+/XOW4SBrW8LkcWTLOFVstAIkFaKJbLV5nnZJpWF7EokRCZ5reua+A4AdlsztsQUJUyt+sZ0UYLrZYxVKg8lUojm83AsixMTt7Knk+hMIb9+w/g7bfnYdsOLMsMLP62bXltCdvP87XXzkOSJEiS7OW9h28wAoCFv23b7Km/ffPNE7h2rX+Ewb/pWB8N9PWH67oolXbg1ltvw7vvLkX+jduNOoLnAv7n4KDZbOCdd95GvU4JkC57lyYn92L//gO4665D2L//AKanp9hc9z/LcvkqyuVrMAwdzWYDtm1571MOhqEjmUyxkDlANs/ZbJatD9PTU5iengqM1TRN2LYFQRBw771HUautQNO0ntfpB/pe+iM9lK/wzjtvR6451wPbyTYoihz6+Q3ncW9mjJo92W9XPGioa3FxnnkHhqF73oWDO+64ZyRpgc6dedi4m80WVLXByqVIv+QGFCWDWq2K++9/CGfOnEYqRcboOER1iqhUWcxL1zTK/rVRKu1g5WBhz4j+PbLZXIBARUHODapbcRznedvJyFrzdnQgeD3HcXD+/BmcPn2KKWxRFjQNvVM29LAkLqJMl/A8uOjQ+5tv/nrA621NGdVOUJXAZDId2ts6k8lBkiRGLPP/nv4tbr55Ar/5zWzgd6TyAJCkJHsH/O+7qjaRTmcCEaxEIoFy+RpMsxUgUDYaDSSTNvL5MViW2ZP8+vrrF9i4aIkcQCJAmUwOAEbCKo+KwFHRmuvlid+oiD3uTYT5+TkYhuExTTkWghtmJ+xH1K5YVZtYXi5H7vg770UjAclkkuViqRe7mnEBwNLSIn760xdCd+ZvvPGrrnGraoOpadFQJUDCu6XSDub5v/vukuddcygWdyCVSkMUJSSTSS8vKCGREJHPF3Ds2ONeKDr8GeVyeRiGAUkiOelOTzXKeFERkFQqzep9aVSjXq9haekSy3PyvMA8H5J7VWFZpqfbbkEQEkzJLZEQoWna0B5uOk0U45rNOnRd63nsMAa5X3/qtdaj+//O64UrVy6j2WxAURQkEgmPH8EhkUhAkmT81//6f+HOO+/Gzp03YW7uDTZXyLhIGPq9994NTRFYluWVijVRKBQDUSRd19BqkblOdQ1IdKcFWZY9ffN26sG2LTzwwO9jcvJWlMtXoapNZLNZ3Hvv0YDxe/XVc2yOdBLhZDmJhYU5vP/978fNN7+v53X6IZVKY2FhjukrUONPyHbJrvlUq1XxzjuL18UT3062Ifa4twD85WQ8L62ZPdkrLz2Md7/aSECv/Hovgkz4uG3wPPVSo4lluq4yz4iSymgZlp9FTMfe6xl1lvdFkbCocle7lMhl9d6tloFmswlZTuLatd9iaelS4FzHsdGrisuyTKRSivcuBEviBgFltvfystcLa/fKSUvP1ZSIDQrKRrcsi70fuq55KRcei4vzLL8qSXJoq8xms+EzlkHGOH2XOqNImUwWtVotoBjoOG1pXprbppEXUZTY3OllYEVR8urauYA4kJ/MNjU1hU9/+j+vyduNIozNzEyHzifbtgPdyjarquRWwQ1VDrbZ4S8n0/W1l5P1KqOgJSp+RJHNhjmWguapqdHqLF2hUpV+UIMaNm6eJ95NNptlIWSOI151ezNwFqqqdhkMqrZGPVf/2Hs9I//fo9lsIJEQkMvlsXPnTdi58yaWN6ZhTQr6s65rkOUUy00bxvD5acdxYJoGeJ5HsVhCLldAPl8ILIz9zifPxAnkNEeBTs+/UxhkrXDdtljKeoG+L45DOnE1GnXvXSdG99lnf4DvfOf/xXe+801Wf08IX2lmcKnBDiujo+9Sp6qiJMnIZrOgXeToXC8WS55XKqNQKKJU2olMJodisTTQ97n77kNsQ+ufB6lUCgCZYysr3Wmf1SBMMSxqPhEBo+2hKrkZEIfKNxkogem++47id37n9jWFkWgYKiwkFhXqCiObDXMshZ9oFxaKn529iJWVClSVkN1oaI+OsXPcH/jAB1GpXGOCLaIoQRRFHD36cTaGc+f+vx5enut5Sgk29mp1xSu9q3vKVhby+XwgbEj/Hv/2bz+HbdvQdQ2q2vRIbrREpztMmkwSYQ/LMtFq/f/tnXtwHNWd77/T3TM90/PQSLKMsS1Uxl5wMF7beBUjMGzAIBlsslB3yRr2hltAtqhblWS3SBV/JZssVdmwEOLdraQqt2BTYAy766rkKgFjr8FOLBuLtTE2D98IsC0JY1vG1mvePTM9ff84c850z/SM5q3R6HyqqETjVs853a3+nfN7fH8q4vF42fKopCd3EqFQEA6HA7LshNPpSpcWFb+T9np9edXaiqWQEa123Js8NxKcTpntdvNR/qJEhyRJuPPOPnzyyf8zeU6oO5zcv8yiS9d1xONxJBKJdFhGZL9HjDf5fY/Hhz//87vQ1bXMFAYznqetrR1/9VePYOXKVfD7W8v6WzOyZEknAODLLy8xT4WiKHC7vQCQ1kFvwXXX3VDm9SpMvnfO9PRUzvwrCQMWoplsA3eVz1PylVGUUhtZTh1lIff66Ohw2g2YYlndoVAQsuzExo1fyztuWipTbnJLMplksqpffjmWVlnTIUki7HYZkiRanjNbOQ3IqKcRF6Rk2k3b7Q5W3kUTjKrh7qWd0xQlwV7ENF5YDNXY3cwU0y6k9EYToYrF6XQhHlfhcDiZ1yKZ1CwXQJl4rq2gXKkVGdW1JMsgp7vWfBDjTVT3XC4FwWAgrcyXgsMhY+3a9abWtMWqKhbztzZTiWd3dw+6u3tM5aXGkrWenp6adtvK987Zv38vQqEAy1Wx2x3s751TGtxwz2NKqY0stY6yUOyYZPE6IUl2Uz21orgLfsdMY2hpac1boyyKIhYtWoz77/+GSWWN6GKnEItF4XS6LGNuJCPWeqdJFOCIx0CSJCiKm9VbUy9CtT29kUgEqRSQTMahaRrLlp9NiCvUDo/Hi8nJcUvDWYrRBjId1AKBqXQSl92UIGhsECNJEnRdTJcNllaT3d6+AEeODAAoXc5WUdwAyPOeSCiWkqdA6QvlfM95KcInhTTMZ6PbFl1QZWSHa/ZVTQ833JyaUGiHcfDg21AUBYIgMTEJGuurhFtuuR3/9V9v5LhUbTYbZFlmLy2jyloGHYmEmjc5T9dT6Z2LOXYYDAYAkHCCx+M1fVbLpCqqpmaz2dh8Z9uA6zrxnFTbZU5L4rINP5HCJX2wVTVWVg6BzWbDkiWdObXPxSBJYtbPhWO21RARKbV1sNV3vvHGr+vefpgKCVFPEUCqNHhyWnlww82pCYV2GD5fC2KxCAQh8/hVQ4Wtq2sZ+vq24siRAbbrI13HPLDbHUwZbXz8ikllLTMGLW9yHt1FE6WtVM7OjHYMc7s9TCgGKL3TV6kYXbqlGG2jS9j8OZWMLc3V7HQq6TK2ZM16jGdizwJ8Ph9b9NEe6hMT4ywZqlgkScKZM5+VNeZs9TH6DNfSDV0NrYfZ6MfNO3xVF264OTUj3w5j3bpuHD58AJqmV72LWr4uSWRHFmM7Qkmypw1BprRMEGyWY1i3rhsHDuxFNBq1MHQkPkqyt8OIRiMwJzch5/hqGzXj+YrV26bZ2sbuZQBxZ8py8XFzgMSXVTWaTvyrbRY4ALhcTlZDbnx2Tpw4hitXvix67D5fCwRBxNTUBBwOuaSFDxGzEZFIJEzP8JIlnTV1Q1dDetjvb8X0dKCu3baM41bVWDpDn3TCoyV3nOLh5WCcutPVtQybN99TsItatToPnThxLF1THWWNJGw2G5LJBMt4p4pPoijhxIljOd/V1bUMN9641tIgWTU0oVjttmuxEzUiCAIrvZFl14xGNDvRi2ZMF1t+BACiKMDpdEHTkjMmdVWKKIq4887Nls/OunXdJcXRQ6EgwuFguuQuzhZhRmhmufHfBEGE399q2Qnw/PlzVemil49qdMrq6empe7ctOm5ackcXl3a7PW+HM05++I6bMyssX74C7e2LTZ9RF+PExDjicRWy7IKiKGXtWui5Llz4grnMaZ0t3fUad95WjUuAjESjqqqQJDvbWRkxGipj5jR9cVcrq7wYiAQrzfAmGcYnTx43lTORXXkqRzqVlu05HDICgUDe76Ad2IwtVgGkd7qlz9PohaB5B/muV0tLa8FKCYdDRiyW6xmxgoY8aDJb9iKHlnbRygejyAoNnWQnoh08+HZNXcLV6JS1fPmKunfbouPet293+u9OYjK+PNZdOryOu0GZb/MzNhaJxSIGN2gKqhpFLBbDyMgZLFjQMWM96+joMPbv34tAYJoZhEypEHk5i6IIp9OJ1tY22GwCk2mkse8vvvgcw8OnmUQj2SUkQdW8rAyDlXKWw+EsWH9cbXQ9Y4iSySQmJsbh8XjhcimIxaKQJCmtIidD05IGg0nW8HSBU6iZSfbcE4l4uiFGeYsT43Vrb+8whRuyWb16LY4dG8zbGGd0dBjhcKgkdz3V9s4IqdggCER2mD4P9HNRFFnOhJU8sFW9NtUzOH36k6Ia+swE1Rbw+9swNnYBn376x5LO6XTa4XSSMrbJyXEEAtOYnByvaEzFjvvUqQ/g9bbA5VJMz1wkEsaaNeur8j3N9O7MV8fNDXeDMt/mZxRsIe03hbQLM8HqgzUtibGxCzPqG+/Z8zuEw8GczzMtP4lus9/vRyAwbalVPjlJEp1UNZY2YlRCUjdpi88EVdbK7jBlFOqoNsYYu6alEI2SHubUMMXjKhKJpEldSxAyNdilLjQyTS3Kc5HTMdjtdpYZn+/aXrjwBcLhEFMt++yzIXzyyR/x/vtHMTx8BkuWdKbd1QIbF11sWY070+HMLA9KFmdIu8LjkCQRbW0LWBvOfMbGSkAlHo+l3dG5HejKNZQzdf4rhNNpxyeffFr271dCvoVNNYVYrDYFxXZBbDTyGW4e4+Y0BEZJSOMuB8gkedE2njPFC6enJ5mxzzSEIJAMaBcTW7GSc41GM3rnxg5dVsy0sxNFAQsWLER7ewer+SVzyYzLZhNgt9tNfZZngu5WCmGzCWm5SRu7HrqOtOs+mSPTSv9t5vPmzrnYzHlJssPpVExjNJwZU1MTOcl25vgyuR+BwDSmpycRjUYwPn4Z4XAIly5dxEcfnUxn9tvY/fN6vfD5/Fi8eClEUWSNPbIXYB6Pj4mVEKPtYTvvbPd3vmQuo0wujX07nQrT6Sba9UEEg0Hs27e7otyNSmLplf5+uVQjRl8KM0kvz1V4jJvTEBizThXFjWAws2OmL1LSlcwcL7QqvaG/Y3SLU0lKp9OVE9PLrjenMpbUPpEdGKBppMmI0dATd7gD8Xhu7ThgNoRutweSJCEcDsHpdKUV1iJwOJzsu2nziqmpiYrj4jQWT40YFb2gNta4Syb/XtyO2SrhjhhCKa+L3edrQTweR3v7AoyNXWDuaPKdtvRLPJ4jXZq9GzZ6CbLDElQLQFE8UBQ3BEHMqVo4cmQAU1MT7PfoNbbZhHRtPE1gJB4Rt9uN665biaGhU6YM8ng8BkEQsGPHCznPU3YMfseOFyDLznRVQwg2G/FwJBLxsjPOKy2vmq3yrGrE6Euh1Lr3uQI33JyGwCjYYrc74HK5EA6HABADY0xkoTudfCpSiuJGKBQyuMZJfLu9fQG2bXvE9L1WL5JYLMq6Ppl7bQN/8idfwZkznxpe+DYkk5qprMput8Pt9liKkQhCRsGNzsH43Rs3fo31bt6z57d5jTfZSYsz1iyLomRSq6LjEUUJfn8b2+Fm9xXPB9UPNy5gjC1W80FCEjIT4JHlTOvHeFxl/c6zd/OFsvatxgaQFrB+fxumpycBAH5/G7uuAJHepF2+MudNIZFIsR13KpVkOuOjo8M4ffpT1pObLnji8ThcLveMyZN0UUp7dNNn0uhBsvq9QvXglZaFVaOsrJhxWlGKEE2lNfHNWj/OY9wNynybX3ZzgpYWP77ylRsRDAaYmzG74UK+RiaSJMFmI601adaw0+nE7bdvsoxt0WSfNWvWY+XKVfj882F2XprAJQgC/P421kiCupqpG5e6fCVJhN/fls5EpmMR8jaMyP5u4+e6rue0ATUyk5teEER4PJ60hrbZ4Om6DrtdgiQR9+1Mu216bTM7YvNuN7sbFS2hMn4myy6cOzcCh0OGpmnsXKIosbaj2bHmUjBWC8iykyWRaVoSXV3XsmesrW0BgsEAawKTfV3osxQMBuByKRgY2A/So9vODD4NPcTj8fSzqeGzz4Zw6tQHOXFUGvem+vXkewCPx8NyOrJj5TPFsItpRpIvtut02mGz2TEyQuLNkUgIoVAIqkqy8T/44P2iY8GVxNpnotxzG98t9Yip1xKenDbHaNb50ZfJ4cMDOHv2tOnlkG3ElizpzNvdDACOHj1imVgWj6u4445eXL78JXPder0t6OzsyslAtnqx0ZeisROZJEnYuPEOfPrpH+FwOCCKIlSVPJepFGkLSVygIpLJJNra2nDzzbdh2bIVecef79rQ8axYcT38/lZcvHg+x/CS1pIkdOByuZBIxCFJEtxuLxTFDZvNBp+vBZqWhKZlGqIQY0pctclkArLsSs8h/87d5VLQ27sVV65cTht5HaJIFOmMIYLs+2AcsyAIaGnxM8OoqtF0HXUoXb6VMuUkZNfDW50z+3rQ5DqyYPGy86mqajKqV1+9BDffvBGjo8PQtNxkPF3X4XZ7oaoxTE6Os0VcKBRg/25ctCUS8bRqnAavtyXHwND/RkbOQNOSaalWD0uwszIiM3XXK9T5jz5L+YzeokUL4XR6EI+rOHduxFQKF48nIMtkXMUYyZnGWQnlntv47qy029psw7uDcWYdo2vb6XQVVZ9dyK02k7svmUzA621hcUnjd1m52ffv3wtFcac7UsksZmqMnauqilAoCEmS4HQ6oaoqdJ0YPa/Xx9zXPT09rE69kKEeHDyEqakJ5sZWFHdOPXlrazsmJq7kxHSj0TAAkljU3d2D8+fPIRCYhtvtznG5U08EUa5SmTdCEARs2rQZJ04cQzgcTotkZEq7RFHCpk2bTfkAdrsEm01kLULpS5WOi57bSCqVwsTEFSiKJ90S1ZwwZ/zdbGhtOakTN+/IreLdbreH/X9VjbHyQvq80OtKOq0piMUiWeOlZV9uk6vVaOCM36dpmX7TNNErO47a1bUMvb1b2DMnSVLBxKx8Lt6JiXH09++a0XV85MgAIpEw0+R3uRTmll+zhhi98+fPwettgd1uNyUFRqMR+P1tRcWCa+mKJhK2cTYHuogu5dz1jqnXC264OXXDKpO1nESRfEItxiSkwcFDCIdDzL1Lk5Xod2UnraRSGiv9am1tZ+cyxjkHBvanRVgS6TrpKNt5kdpo8gJLJIDBwUFs3fo/Cs5h377dOclc4XAYkiSl4/lIG9SQpQoblWyNx1UMDZ2yVJ8bGNjPxphMJpFIJJi6GlWQAzI5BoIgmuZvPGdX1zLWmzweV2G3U2+HzdCPmvxsFS/XNA2hUACCIMLr9cHj8SIeV02JiEaoYfd4fOlnJQ5AZAaGSraSznIKfL4WRKNR9u+qGkMwGGDjojvrcDiEPXt+yyRavV4fgsGgKRnRKKNKF4dUeMboks/cC2RVDeQar1KMiNWiNBqNpLPSwwXlVEdHhzE5Oc7uMWmbG4Lb7TGNyWpRYuysVowBrmas3AhtpWus7AgGg3C5XCXvlKvR3KXR4IabUzeqsTo37pRJuY6AWCyKVEpDe/sCtnuZmLhiqi8OBoPweDIvruyx0CYh9CWfvaight7tdkKSRKa1nEoR96jxXJIkYWpqquA8BgcP5cnAJqpcDofMro3RUOVzFWuaxsZKFzY0e9tud6Q9A+R3ze5kAUeODKTd7QloGsmWptfS+MJ766038emnf2RjATKLBzZ6VhdOXPJWkqq6nmKlf0SBLH/CGfVgJBLEIFCBGI/HA1l2Mq/II4/8DQBj+U+c7bQpNAGOjl8UYRJroapzdrsdK1euQlfXMlPfdhvr822Dy6WwHu2iSLwvxnK+QuVixRgRq+56sVgUsuyaMUOaPKs094KGL4iH5qqrrmbHGY2uUQ2Pek+KMcDF9hkvlRMnjkGWXVkqeDpisSjWreut6NzNADfcnJpglQ3q87VgcnISiYQKTUtBFAXY7TJaW4tfQWfvlKn7jL6oDh58O90fWzDtoAAdwWAAdrsDO3a8kHYXp+B2k11SxjWcSWIxuiYvXPiCqWbJspMZjcnJ8ZwSpmQyCb/fX3AexpKkbOhY6IuTdr3KhyAIUNUYAoFp08KG7g5VVYUsm5to0Be6pmnpbOlWuN0e04vXGC/9wx/eQihkLtErpK5WqB6cquKR5D8t72KEJL1pWLlyFc6fP4dgcBqkA5ubLZRIDFc2uY9XrlyFkyePm0oCrbwV8Xg8ZzHkcilQFBeGhk4BAIaGTsHpdEFVY4YsepIJ39LSiltuuR0ALSlMVM145at2UBTFdJzVwpeESzwIhUhVBJ1jKpUyjclodJ1OBeFwMF2/rhRdX10rVzQNY9BFMk1mFEWp6XbP5cANN6fq5CvTWrRoMS5c+MLkkksmw7jxxj8t+txWu3aj8ZFlJyvDMiYQ0d2E3W6HLDtZN69kMgFdzwisOJ0udl6ja1KSJGiahmAwCK8XLLGopaUVyWQiZ8fR09NT9vUTBMH04iRdry5b9iunbm9NIy1JjQsbSZLYvHM7X+nMRS0IQt5dHL2XRqOdb8wZz4CQs9M2fbOuY2pqgu26C4u32FgYAAB7rqjxj8dj0HXyDNBnbWjoVNpr0IF43LrHOr0GNpsIXdcMu8wE7PYWaJqOkyePQ1HIIkEURWYISWjEx8IMtTJe2bvz/v5dRbmlHQ45nTeRSucPECW41tZ20/myx02qIWyIx1W43e6i51ALVzT1BtBFMkDat9KF9nyHG25O1cknejAycpYlf9GEE4dDxvnz59DdXZyhs479hU3GhxpZAKZGGjRLHCA79WQyCVWNGbKtdUSjUVZfa3RNulwKe3ET9ypRJdu48WtszsaX9vLlKzA1lb9NZEtLK+sZno3d7sh5ce7Z81tLWVH6syAIWLeuG2+/vSedSa6ly9ass8WNbvPsF79xF3fixDEkkzPViossnkp3d8Vox5BdYOHacSrUcuLEMdx//zeYoRkfv4JUKoVkMsHuvc1mZ88a+bdk+qWfPxRjzKbPju+STH1ybTI12OQeZC9w6hFHLcYtPTo6jEgkzGLDVLxIlmX09NyWc85Gjf/WygXfLHDDzak6+WLZiUQcPl8LFMUNURSgaWQ3WEqM2+oPmpTh+NgxiuJm3a3IjjiJ6elJeDwe07lILbaABQs6AJBkpkgkjHA4hEWLFptck3Q+JLadzDGspb78brnlduzfvxeqqpoUzrq7e3IWMV1dy1g9slFEhWKz2bB+/QYApDQp4yLObxSNtciCkOvqp8Y8EJhGIlG4v7Usy6wOOzMmojxWaDfd1rYgHVdPIhjM7UZGd+7Z2dQkNGKD0+nG9PQkdF1PL6rIfaJypjQ2Toxs/lADFZTJju/a7Q6TS58uSugx9RbyKGZnT2LDRPcg42IW4HQqDWmg89Gs2eDVoiLDPTg4iGeffRaRSASLFy/GT37yEyxatCjnuKGhIfzoRz/C5OQkWltb8aMf/QgrV64EAOzatQsvv/wyNE3DkiVL8OMf/9jyHJy5Q75MU+OL0Pi5ccc3k1KS8Q+a7rpsNhtLMnI4ZDgcMhRFYU1CfL4WJntqRNM05q4FyEuflB3FcP9kbiavAAAgAElEQVT938hxTcqyM52g5s5p51gqXV3LWBlWMS8mshiZMpVRpVLE9d/buwVdXcvQ378LTqcL0WgUgHVddXZ9NIn1Ehe81c7G52thRtGK6677Cvz+Vhw9eiTru4pTOSPekSTa2ztMMq/UOAqCYApZADbmqYhEogB0Vo4VjUYgy850HX07CzPEYlFTsxqj14J6Yczx3ThSKQ1r165PS53C8PzYmNemGtnTpTLTDpkumm02O1ts0gS+uUajegMagbIFWCKRCP76r/8a//zP/4wnn3wS4+PjeO2117B169acY7/5zW/i29/+Nn74wx/C4/Hgxz/+MR5++GF8+OGH+Pu//3v8+7//O5544gkMDQ3hrbfeQl9fX9Z3cQGWuUQ+0YMbb1yDy5cvsV1LPJ4wiSEUq5RERVK++OLzdPY1Uf+iCklUk/vOO/vw53++CStXroLX68sZUyIRh8PhhMPhYOeORCJIJOI4deoD6DrSNcf5lc/yUcz9y6eals3o6DA+++yPiMcTOZKZPl8Lzp79DMPDZzAxMc703GlLVLr79np9OS9vm02AoihwOkk5HRXyuPbaFfj00z/i6NEj7BpY4fF4sX79BrzzzkFTaILkFejphZQz3Q7VDJGwdTABku7uHly8eB6iaGfH6zrJOaAhC5sN6RK/3Pg5XZTY7Q52j2j52k03dcNms2Fs7AJ0HbDbJTidCrt+mpaE2+2BoijQtCRaWvz46ldvxQ03rGYiJ7FYDKlUCi6XC7LsRDQaQSQSgqqq+Pzz4YbpOFWMUthcfrcUQzPNr+oCLO+++y46OzuxahV5GLZt24bt27cjFAqZXJKffPIJgsEg7rrrLgDA5s2b8fTTT+PMmTNoa2vD9u3bsXDhQgDAn/3Zn+Ff//Vfyx0Sp0gq1f+diUJuroULF+HEiWMIhYLweLym7y6lIYDxWBLfhMnNXWinTseU3TwiEokgGg2zhCTSkjOTte3ztWDJkk6cOHEMBw++zX6mwieVXst89+XEiWNwOJyw2x2IRMJs50dj2TQpKx5XTbruALkmmaYpmQxqUZTSkpsOqGoMDz30vzA6OowjRwZw7NggBIEoo1EXsZUU6eLFS1k2tbE9pq4jXTHgwGOP/W8cOzaIkyePsyx0WXZCUdymBDx6fwYHDyEazcRonU4XNE2Doijprm/5rx9RPMtNqhodHcb58+eY1KogCGhtbc17r/x+heUnGHd9+fQDihESqhc8Njw/KNtwj4yMoLOzk/3sdrvh9/vx+eef44YbbjAdt3TpUtPvdnZ24uzZs7j77rtN/zYwMIA1a9aUOyROEeTL+K72Syefm4t+bnw5Ukqp884+NtvNbSTbIFJRFQBsIREITCOZTEBR3MwVShcQLpeLGTZ67QAbLl48n+79TCQsjdfS7y9N7rHQfcm4P23MII+PX063t5xiyli07pVKtNJuY+vXb2DlVADZKdPz0KYt9PtJXTUJIwQC0+kmJQBgM9QxAw6HgyUbSlKm9Iwm+rndXoiiyOLSHR0LmfEotGhMJOJoaWll408k4iyR0KhcZoXT6bK89/S60raaiUSKhRNKgT672SEUqwVmrRfHhcbIY8PNT9mGOxqNQpbN23irJJVij+vv78ehQ4fwn//5n+UOiVMEjdzmrhQVpmKPzTa2ly5dxO7d/xdtbQvQ03ObaYFB2y8ayc6wpoIg4XCI7UJTKS1dd0p2ukZZSSusXuqF7kv2XFU1ZhJlMSpj0Yz07Jd2d3ePQUlNYOVUxpIzqrNuxOjmNu7a4/EEAB2S1MIy7sluO5U2+lMQRcnkEaALkfvv/wa7Bm+/vYdVGJCcAzvcbqfpGlAls0Ja5QBx6b/wws8hiqIpxk3bh2ZaagoIBKZmXLDmM74zLTDrtTjOR75FM51PKBSAx+OrmUGn30NzUIz3Y7bfMc3CjIZ73759eO6553I+f+ihh9LawRlisVhOnZ2iKDMe9+qrr+Kll17Cyy+/jI6Ojpzv8nhkSJI581UUBfj9Ss6xzUKt5hcKBeB0urISlxwIhYJ1vZ5W87vtto3Yu3cPUqkkkxYFUrjtto1lH/vGG+/DbpegaSlEIiTJymazYXp6EocPH4DHcw+WL18BAGhra0vrkGdi3olEHG1tbfD7FXbtJicnYJWxTRTPyLXMd//OnDmNw4cPpGVYiU724cMHEI/H4fX6LO/LPffcY5or3RUDZqnKaDSMJUuW4n/+z29aXnO/fxU8HhmDg4O4cuUykkmScfzRR+9jcnKcfT9VB8ueI+2AJgg26LqGVEpPa1zr6ZphnV1fMrYkiHEXIUkiEok4PvrofXg8Mg4fPsB21GQRkUi3ylQRjUZgt0vpkIWMWCyGe++9F/v378eVK5ct50ah7viLF2NM5Mbj8WJycsJQzqWl5VeDeOutN/HAAw+wZwAgz+b4+AXL++Tx3GN6TlRVRTgcYsmX4+MX8NFH5Jmz28lzZJx7oQVdLTE+dy6XyzQf49yr9T3Z9zYQmK7J91nR7LYBKMJw9/b2orc3V2Lu4MGDeOONN9jPExMTmJ6eRldXl+m4a6+9FiMjI8yVRrrOjGD58uUAgN/85jd49dVXsXPnTlx11VWWYwiFcstRrFytzUSt5ufx+HJ2qolEAh6Pt67X02p+7e2LsXHjnTm7nPb2xZiaiuTsgK677oac+DI9ljIxMZHe9ZByI3NmsYBDhw6zZiCrV9+EgYH90DTdFB9cvfomTE1F2LWjiV9WTE1NQhRFvPzyy1i9+qacHcahQ4cBCBAECamUjkQimRaCSSIej7P4OpC5L9nXxapHNf3vqqsW46WXXsrrJm1vX8zmabcTWdXp6UB6cW3MHs9dmNCkMF3P1I9rWsrkQrfZBPh8PgSDAZbtTw2YzSZiYmKCXQO6oDfW2tPvIbt2slBqbW1Fe/tibNiwEfv377UQk8mFCOxEIIoS7PY4k0slvccz3op4XMWbb75p2g37/UrOfRIECZqm49ChwyyOHIupiEQiLO4uihLefPPNtFCIh3VlM859tt5ZxvkQQZbMfOjzX83vMd5bXSdSpW63t+rfZ0Uz2YaODq/l50K5J9ywYQPGxsbw3nvvAQBeeeUV3HHHHTmSfCtWrEBHRwcz8v39/Vi6dCmWLVuGS5cu4Wc/+xlefPHFvEabU13WretO17cmoOt60dKG9aKraxnuv/8beOSRv8H9938jp02hscHC0NAprFvXnXOsEZ+vhcVHKTSrPTt+TuODbrcbqkq8QsYXOr12VI0tH4riQSgUxMDAfoyODpv+LRCYZiVoqhpDKBRiO1xNSyEUCiIWi+XcF+N1kSR7OntbzCn5Gho6ldOEInsMVs1eiKxnNN1WMzM/USRiNDRbnF47QRAhiiJ8Pp8pg1kQBDgcMktWM153Gsqg14D+G9mx59amAzpUNWqKjZNFTXF9usn3J9MtV21po53JfgfAxHZOnDiW9z5R6PNCnxNaG07adHrhdpNGNkQR0BxymI3SMSOF5lOL7zHedypsU++692am7Bi30+nE9u3b8fTTTyMajeKaa67BM888AwC4dOkSHn/8cWasf/rTn+IHP/gBfv7zn6O9vZ253vv7+xEOh/HYY49lBiRJpp08p7rM1eSVcmPzma5XgmFnmlFOy36ZFqodpdfuyJEBTExcsTyGZEI70wIzes74jPFqqsZFfs+WVjpLIhicRlvbAtaa0+o7ADDXL0BVyFJFXSOrGK3LpaTLnRSmv06auIhMVpSKm+i6homJCXg8PlY3T9tC0l05FcERRet4ejgchiiKSCY1y/Iuqk1ttzvY2DPjLqy2ln2taLY6vWfGdqK0fC7boDgcMqsXp93liDeBPC9dXcsgyzJ8vhbT4oksBAQm/tIomd216uKV73to0xIgs1Ce7cVLM1GRAMuGDRvwu9/9Lufzq666ymR8r7/+euzatSvnuCeeeAJPPPFEJUPglMFcFDYot7OY0djSVocej4fFOunLtNgsYHrtjh0bZF2jSAwzwdp7FhqfsVzHuOMkxkRnLzyqg21Fe/sCQ7MWauBkqGq0qF1Vvpd4W1u7KXHM2NsbALuGAFjiGYUkqAVZjJyW0mmahsnJcfj9baaFCHXVJxK54i6CIKQXDl5TLozP14Kpqcm818WKlpZWds9oK9VEIm4qm6OZ9ZQzZ04z2VC6WwwEAnC5nOxaAESali5YjD2vaWe1RlocG587QXDUzNNGv8dul1l3NlKPL8/64qWZKFuApZ5wAZbmo9T5FSMskQ+/vxWrV6/FwoWLEAoFoaoxeL1eJtJRrPCLkSVLOtHRcRXC4SAzYA6HEy4XCRUJgg3xeCJnfPSc4+OXWa9ogs46mokiyUYeH79sOTeXS8G5cyOQZSfcbg8kidSx07rrfNeIdvmamBhHNBpmymvZwjJWwjDT01MYHj4Np9MFn88HTUshGiVJcpJkTzf6SAIgce14PA673YHW1jYm19rVdS07v9/fiqmpCRYLpxCxG2IsHQ6HSewmGAxgdPRswXttxOFw4Gtfu5v9vt/figULOjA2doHJglqJ6hw4sA/JpJaWOk2md4ykxI0a7mxRHCCTGLdixfX49NM/NozRBszPXSQSgcfjYc9/Lb5namoi3X1NgMNBnoNafJ8VzfTuzCfAYtMLt+ZpCC5fzu1M1EwJCFbw+ZkxltgY3Y/VKLGx6rpEOxEVK22aPT5d15BIJPOOb3R0GAcO7EU0GjO5imlyl66TZiaK4rZ8+Vt5CADkvUbZ/xaNRljNt1XvbSrGMj09ycblcMhwuzM68yRRLwFZJu7ySCSc7s4WSLtJbaxvdr7rabz2qhpjfc6NUq7GYycnJ6Gq0Rz5WofDAYcj07rU729j5X5W177Qbnjnzhdht8umBUV23286bl1PMVEcm82WdqnbynpO61X7zd8tc4d8yWm8yQhnVsl+WeVTIqtlbL5cN7yR7PG1tbVZZpVbqYjF4yrbedP4dTBISsry1QHnC3fku0b/8R870nKhmZit19tiaUxHR4fTDVBihm5fpBmIJIksAZWUehJj1t+/C5pGDC6tIKHtRGls3NgohI7N6MJ1OGRWJ29l6GiPZpo8SJto2Gw29PZuLfpZmClURDwMgYLxYCtRHNqf3ettKTkXY7ZrvzlzC264ObNG9stqamoSFy58AZfLbSklWavYfLUSd4zjs1r1Hzs2iGPHBk07OVWNsd7eNhsRcyGxYrDdWykiOVbXaHR0GBMTV5iqWSqVQjAYhMfjsVycnDhxLF2DC1N9NjXE1HBndxGjix9jYhLdGRsbhWQbpmIXZMb7RPs00518qSIqhejp6UmXdeVPLsv3zAAoK3u7kYWROI1H2eVgHE6lZJclxeMqbDYbEgmVGSyrUp1qU68SuZMnjzPjaTTeiUQ8nTBnYztut9tr8gJUUkpz4sSxdJkX+U5aahUITCMSCaO/f5epZCwQmIamaSajTUkmk5bXiJbdAWTBQWLeGnRdx5UrlxEOh9I11face5uvBDAbep/C4TCmpiZw5cplBIPTWLKk0/J4qxJCq/K4bJYvX1GwLNA4luxnhraRzb5mMy0C61WuxWkO+I6bM2tku6ip29MYv6zHy6sabvjsnd1tt23MEZqg2cxApsMXgHRDDeK+puMgLSwzVFJKEwhMw+VyIxwOgfadNpbqXLhwHmNjF7B+/QZ0d/ekW3nm5pVQYrFYToMYo8vbbnfAbpegqlq6i5mIZJJkyqtqjN1zSZIwPn4lx31eqBxv5cpV6Wz+FEviGxo6hYULFxVsRAOUtoudybuT75n58ssxU7UBEbkRCy4CR0eHoaoqQqEQJInqzjt5+RQnL9xwc2aNbHcj1avOzoqux8urEje8VXxy79492LjxTpOADJBZnFBBE2pAjV2tynn5F4JeZ4/Hg2g0woRDAFrTTAz48eP/jYULF2Hdum6cP38u5zw2mw2y7MS3v/2dnDBAtiEjva09rGEL7bVNY95ApoWqlfs83704f/6cKYYMkERCK2NcjdyFQmQ/M6OjwxgaOpUWs4kxhb0bb9xQ0JVPyqfsSCQSTIo1mdQquuec5oa7yjmzRra70eGQ0z2V5YZUdcuHlRKZKGZc/JmXM5H+pIpitE74q1+9hbmIjS9/USQSwaoaxcqVq3KMRH//LuzY8UKOqzubjOKbiJaWVoPLXGBiJHQRQQ1ge3uHyZ0vihJcLjfa2xfk/R6jy1uWZVYaB2Tc50RwhdxbVY3C6XSx65ZKaYhEwtiz57d551SKS9novqfUciFInwNFcaO1tR0LFiyE19tiuQiy+h2qQkf1vXliGicf3HBzZo1siVG/vxXd3T1obW3NG1tsRKyNiT2nq1hLix8ul2IyiN3dPeju7mE/F/PyLzV2m32d7XZH2liby51EUWRj7um5DV6vD35/W3oMvpJ2gNlG0+GQoSgKK/tyu4n4CTXuRvnXVCqVd07FGuPR0WHEYjFMT09icnKcycjG4zFEo9GiFjylUk6c2vg7DocMv78N7e0dkGW54Z97zuzBXeWcWcXKRW00ZHMB6wzjhGXGtcfjhcfjZXXB2XMlL3kbE3YRRRFOp2J6+ZcTuzVe59HRYezZ81u248+oWzlNkp4rV67CyZPHkUgQMZW1a9fn9JvO17rRGPM29ga/445edg5jDbdR/lWSpLxzsjpvtlfGGLrwen0Ih0MIhQJwu72sQUotSq7KqU6olxQpp7ngO24Op0KsMow1zTrjmpLv5Wy3OxAOB5FKpVhjjHA4yNzsQOUZyF1dy7B+/QaWCGiz2eByuSCKmR01ddkrihvt7R1QFDeGhk5hdHQYZ86cxsDAfkxOTiIeV5FMJhCLxTA1Ncl2yTM1bMm+bjR0QPXD882pmPMaFzay7ERb2wK0tLQiHleZYlotqhbKqU5o9KY/nMaE77g5daGYrOu5ilWGsXF+xewSKbT5BWkgktkNG93r1dildXf3YOHCRXkz6Qvt6iWJdAdLJCKGhh064nEVbreX7ZJLycwOBomB9ni8TNAk35xmOm++pLREIg5Jasn5vJrJaqVWJ8zVpj+c2YUbbk7NKSbreq6TbUyMAiylvJzjcRVer5epgpFmGwpTWgNKWwiUMmYjhTKyBcEGu11mu3Wg/NaNxgYgAwP7YbPldhMzUoygSr6Fjd3uSP9v7dzS5VQnzMWmP5zZhRtuTs2x2r2lUsl5pQpV7MuZGh2/v419RtXBjOeq9S6t0K5ekkRMTwcqbt2YbYRXrlxlKXdrPD57AXjgwF44nQoSibiljKpxYbN27XoMDZ1qqHabc4166alzCsMNN6fmWO/e7FVzUdaCYl9Q1X6RFbubLmWXVs4YC43D45Hx5ptvVtS60coIDw2dKpgolr0A1PUUotEY4vE4/P62omRUrcIDAEwiMNUI4zSjgeN66o0Db+vZoDTT/KxacmpaEm73zC05Z4Ni23wWOm7RooVl3T9z+8Wwqf1oLedSyjgWL74KTqenrNaNtLXoyZPvIZlMQJIkSJKd1S/na2UKAEePHoHD4WDuedoWVdd1KIrbdI6bb96Y05qUzsv4+fT0VM71OX36M6iqimPHBnH06BEMD5+By6UUvF7VuOb1otx3yx/+8BYLNdhstqLu2WzQTO/OfG09+Y6bU3Osdm9AqmFdlMWWWxU6bs2a8l9k1Yh50h3f2NgFACTpqxoNSyoZo3HHRjuIhUIhAGAdxAp5YbLd90YVOkqpMXarexiLRXH8+H/D620pa2fZrA1Daq1Exykebrg5NWemrOt6UIrrstgXVKO+yIwGkuqhB4NBeL1E5GO2xmg0aJIkpUvewGRQZ4qPZy8AaTa7UaGt1GQzq3sYi0WRSuk5hvfIkYGinqFGfS4qhdecNw68jptTF7I7QC1fvqJu312q0lixddf1ltQsFqOBpF3BbDYgEgnP6hiN9edUApXKvxZTv5yrtNcGWXayBUo5NdBW95Bkx4s5n01Ojhf1DDXqc1EpvOa8ceA7bk7TU6rrstgEsWqVZVUb447P5VIQCoVgsxHjUehlW+uEKuOOzeGQ4fWCdSEzNlkphFVjj0rGbHUPbTYBdrs5thiNhiEIQlHPUKHnYi4nrfGa88aBG25O01Oq67LYF1SjvsiMBjLTiYsYnnwGsh4Zw7mubgFut6ei76g0H8DqHv7pn67GyZMnkUgkmOHVNA1er8/0u/meoXzPBYA5n5XNa84bA264OU1PObG5Yl9QjfgiyzaQxl7fxZZa1SKhqlYLnUp3sVbiOT5fu+mctOWskULPkNVz0d+/qymT1urFXPZWVBtuuDlNT6O6tGtFOQayXglV1V7o1MpTYOWSr/QZataktXrAa8jNcMPNaXoa1aVdS0o1kI2aMTzTLqtepVfVeIYa9RrPBZq1xK5cuOHmzAuqWRvdjMa/lISqepXyFbPLGh+/Ak1LMl13l0uBwyHXZBdb6TM03zw/1YR7K8zwcjAOpwhKLSmba+RrlwkgZ9579+6paN6jo8Po79+FHTteQH//rrznMu6yrNpwjo4OI5GIMyGWVCqFUCiESCTSkLvYYlqScqxp1hK7cuE7bk5TUu3d8Xxw1RWbUFVJg5hSYpUz7bJOnDgGp9OFaDQKgLZBTUFVo1i3rrfksdWDRkxmnAtwb4UZbrg5TUctElnmq6uu2g1i8i2ArFTJZooJBwLTcLkUSJKESCQMTdPStdYObhybjPmYp1IIbrg5TUctdsfzMbFodHQYqqoiFApBkkj8mEiTJsqet9VCQNM0TE9PIpVqNS20Vq5cVbANJ70nDocMh4MIpmS3QJ2vNGM+BvdWZOAxbk7TYZTWpFS6O55vco+jo8PYv38vkskkdD2FRCKBQGAa4TDZ2ZY7b6tYpVGVzBjLPn/+XMGYcC3vSbFx+Eak2fMxOHzHzWlCarE7roerrpF2SUeODEBVY6z7ViqVAgCoagxf//qDZWeVW8UqC6mSzdShrNx7UuhanzlzuuFqhkt5NuZDPsZ8hxtuTtNRq0SWWrrqGk1gYnp6Mt2cxMaMN+k0pmP58hWYmoqUdV4rY1uqKln2+SppL2p1rQcHB5nhi8dVRCJhJJNJ7Nu3G729W+p+P0p9NuZrPsZ8grvKOU3HXCy7man0aTagLUHz/Vwu2Z3ienpuq2sYwnitE4k4wuEggsEA9u3bjdHRYUxNTUKSJMTjKoLBIOsdnkgkZsXlXOqzwUunmh++4+Y0JXMtkaXRdkl+fxsmJsah6zrre63rQGtrW9W/q94Zw/RaU8Nss8FkmJ1OGfF4EpFIGDYb2PwlSWQGs57PVqnPBi+dan644eZwGoBGy1rv6bkNBw7shaqqrMzK5XJi+fI/wQsv/B+Mj48DAFpaWnHLLbdXbMjqudCi1zqfYdZ1IJXSkEwmWYhA18FKz+q9mCr12eClU80Pd5VzOA1Ao2Wtd3Utw513bsaiRYvh8XixaNFi3HjjWnz88UlcuXKFuc2npiawf//eOZWxTK81dSdnG+Z4PI7bb98Eu92BVEqHIAjweDzpUrj6L6bKeTaywxHcaDcXFRnuwcFBPPDAA+jr68Ojjz6KsbExy+OGhoawbds29PX1Ydu2bRgaGmL/9tprr2HLli3o6+vD448/josXL1YyJA5nTtKIcfnsl//58+egqipLVqOJa4lEfFZj8aVCr3U+w+z3+9HVtQy9vVvg9XrhdnvhcMiztphqxGeDM7vY9DIzTiKRCDZt2oQXX3wRq1atwr/927/h2LFj+OUvf5lz7D333IPvfe97uOuuu7B371784he/wOuvv473338fTz31FH7961+jpaUFP/nJTzA2NoZ/+Zd/Mf3+5cvBnHP6/UrZma1zAT6/uU0zzm/HjhcQCgUhiiL7jOxWdbjdHjzyyN/U5HtrVSZnzNY2xoLvvfdeVu7WSCV61aIZn00jzTS/jg6v5edlx7jfffdddHZ2YtWqVQCAbdu2Yfv27QiFQvB4POy4Tz75BMFgEHfddRcAYPPmzXj66adx5swZtLe349lnn0VLC3E93Xzzzdi+fXu5Q+JwODXE52tBJBJmCWsUQRBq5j6uZZlcvliwsdxtriU5lkMzLk6anbIN98jICDo7O9nPbrcbfr8fn3/+OW644QbTcUuXLjX9bmdnJ86ePYu7774bXV1dAIBYLIbXX38dmzZtKndIHA6nhqxb140DB/YiFouZss0dDrkupVtA9cVE5oNhLkSj6QdwiqPsGHc0GoUsy6bPZFlGJBIp+bhnn30Wt9xyC4LBIL71rW+VOyQOh1NDaMLaggUL2I7b72/Dpk2ba1q6VW352vmIUcJ1585XWDJhI+oHcGZmxh33vn378Nxzz+V8/tBDD0FVVdNnsVgsR+BfUZQZj3vqqafw5JNP4le/+hUeffRR7Nq1y3S8xyNDkkTTZ6IowO9XZhr+nIXPb27TrPPz+1fhpptWQ9NSdfm+trY2hEJBSJKDfZZIxNHW1laz69ts9+7MmdM4fPgARFGEoigIhYI4fPgAPJ57EAoF4HS6skIfDoRCwTl7DZrt/lkxo+Hu7e1Fb29ub9uDBw/ijTfeYD9PTExgenqaub4p1157LUZGRpj6UDKZxMjICJYvX44PP/wQuq5jzZo1kCQJDz/8MJ5//nkEAgH4fBnt4lDIbPiB5kpAsILPb27TzPOr59xWr74JAwP7oWm6KYFs9eqbajaGZrt3hw4dBiBAECSkUjrsdgc0TcWhQ4fh8fhyasQTiQQ8Hu+cvQbNdP/yJaeV7SrfsGEDxsbG8N577wEAXnnlFdxxxx1QFPNKZ8WKFejo6GBGvr+/H0uXLsWyZctw9uxZfP/730cwSLLGf//73+Pqq682GW0OhzN/4aVQlVMo3NBo+gGc4ig7Oc3pdGL79u14+umnEY1Gcc011+CZZ54BAFy6dAmPP/44M9Y//elP8YMf/AA///nP0d7ezlzvf/EXf4GRkRE8+OCD0HUdPp8vpxSMw6XFu1EAAAfqSURBVOHMb+Z7AlmlFFJe4yprc5Oy67jrCa/jbj74/OYuzTw3oPnml12vrusaEolk03oumun+Vb2Om8PhcIzweuDGJHtX3dbWhtWrb+L3Zg7DDTeHw6kYXg/c2BjDDc20I52v8CYjHA6nYng9MIdTP7jh5nA4FcOFUjic+sFd5RzOPKWaMelG6yfO4TQzfMfN4cxDaEw6HA6bYtLl9tXm9cAcTv3ghpvDmYdUOybNhVI4nPrBXeUczjwkEJiGLDtNn1Uak+ZCKRxOfeA7bg5nHuLztSCZTJo+4zFpDmduwA03hzMP4TFpDmfuwg03hzMP4TFpDmfuwmPcHM48hcekOZy5Cd9xczgcDoczh+CGm8PhcDicOQQ33BwOh8PhzCG44eZwOBwOZw7BDTeHw+FwOHMIbrg5HA6Hw5lDcMPN4XA4HM4cghtuDofD4XDmENxwczgcDoczh+CGm8PhcDicOYRN13V9tgfB4XA4HA6nOPiOm8PhcDicOQQ33BwOh8PhzCG44eZwOBwOZw7RsIZ7cHAQDzzwAPr6+vDoo49ibGzM8rihoSFs27YNfX192LZtG4aGhnKO2blzJ66//vpaD7kkqjG/1157DVu2bEFfXx8ef/xxXLx4sV7Dn5FqzG/Xrl3YsmULNm/ejMcffzzvOWaDaswvHA7je9/7Hm644YZ6Dbsgxcyp0Hx2796NrVu3oq+vD9/5zncQDAbrOfwZqXR+jXa/sql0fo389wZUPr9Gfl+WjN6AhMNh/eabb9Y//vhjXdd1/cUXX9SfeOIJy2M3b96sv/XWW7qu6/qePXv0rVu3mv790qVL+n333adfd911tR10CVRjfsePH9c3bdqkT01N6bqu6//4j/+of/e7363D6GemGvP74IMP9FtvvVW/dOmSruu6/swzz+hPPvlkHUY/M9V6Pu+77z79+eef17/yla/UftAzUOyc8s3n/Pnz+oYNG/Tz58/ruq7r//AP/6A//fTTdRr9zFQ6P11vrPuVTaXza+S/N12vfH6N/L4sh4Y03Pv379cffPBB9nMoFNJXrVqlB4NB03FDQ0P6rbfeavqsp6dHP336NPv5u9/9rr579+6GMtzVmN/IyIh+/Phx9vmBAwf0++67r7YDL5JqzO/cuXP60aNH2edvv/22/vWvf722Ay+Saj2fJ06c0M+dO9cQhqCYORWaz44dO/S/+7u/Y59/9tlnek9PT+0HXiSVzk/XG+t+ZVPp/Br5703XK59fI78vy6EhXeUjIyPo7OxkP7vdbvj9fnz++ec5xy1dutT0WWdnJ86ePQsAGBgYQCgUwr333lv7QZdANebX1dWFm266CQAQi8Xw+uuvY9OmTbUffBFUY35Lly5Fd3c3+3xgYABr1qyp7cCLpFrP59q1a2s/2CIpZk6F5jMyMoJrrrmGfX7NNddgfHwc09PTtR98EVQ6P6Cx7lc2lc6vkf/egMrn18jvy3JoSMMdjUYhy7LpM1mWEYlEij4uFovhn/7pn/DDH/6w5uMtlWrMj/Lss8/illtuQTAYxLe+9a3aDboEqjk/AOjv78ehQ4fwne98pzYDLpFqz68RKGashY6JRqNwOBzsc4fDAZvNhmg0WtuBF0ml82t0qjm/Rvt7A6o3v0Z8X5aDNJtfvm/fPjz33HM5nz/00ENQVdX0WSwWg9vtNn2mKEre437xi19g69atpl1Avanl/ChPPfUUnnzySfzqV7/Co48+il27dlVxBoWpx/xeffVVvPTSS3j55ZfR0dFRxdHPTD3m1ygUM9ZCxyiKgng8zj5XVRW6rkNRlNoOvEgqnV+jU635zebfWyGqNb/ZfF9Wk1k13L29vejt7c35/ODBg3jjjTfYzxMTE5ienkZXV5fpuGuvvRYjIyNIpVIQBAHJZBIjIyNYvnw5tm/fjsnJSezcuZMdf+utt+K1117LOU+tqOX8PvzwQ+i6jjVr1kCSJDz88MN4/vnnEQgE4PP5aj43oLbzA4Df/OY3ePXVV7Fz505cddVVtZ2MBbWeXyNx7bXX4vXXX2c/W82p0HwuXbqEd999lx372WefoaOjo27P4kxUOr9Gpxrzm+2/t0JUOr9GeF9Wk4Z0lW/YsAFjY2N47733AACvvPIK7rjjjpzV+4oVK9DR0cFeov39/Vi6dCmWLVuG3bt348iRI3jnnXfwzjvvAADeeeeduhntQlRjfmfPnsX3v/99VnLz+9//HldffXVDPITVmN+lS5fws5/9DC+++GLDvUSqMb9Go5g5FZrPXXfdhaNHj2J4eJj9/tatW+s/kTxUOr9Gp9L5NfLfG1D5/Br5fVkWs5wcl5d3331Xv++++/S77rpLf+yxx/Qvv/xS13VdHxsb07ds2cKOGxoa0h988EH97rvv1rdt22bKKDfSSFnlul75/FKplL59+3a9r69P7+3t1f/yL/9SP3ny5KzMxYpK5/fLX/5SX7t2rd7X18f+M/7ebFPp/D7++GO9r69P37Rpk37dddexOc4mVnMq5e9t9+7d+j333KPffffd+t/+7d/qoVBoNqaRl0rm14j3K5tK5tfof2+6Xtn8Gv19WSq8yQiHw+FwOHOIhnSVczgcDofDsYYbbg6Hw+Fw5hDccHM4HA6HM4fghpvD4XA4nDkEN9wcDofD4cwhuOHmcDgcDmcOwQ03h8PhcDhzCG64ORwOh8OZQ3DDzeFwOBzOHOL/A+xB9wRPBSPqAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfIAAAFkCAYAAADbrrmOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9bZAc1X3/++2HmZ7nnd2VZCFp2RJS7L0oRKzljRAR/IPBWHG4DkkqLjmpS3CMq3Kr7gtDiryKHRWFywRIVEmR3KpL2bEFdjmqirM2AknYIiBhLWaRRcyfWBCEdsESq4fZnafumZ5+ui/OnDPd89izM7uzs3s+VRTa2d6e0z3T53fO7+H7ExzHccDhcDgcDqcvEXs9AA6Hw+FwOIuHG3IOh8PhcPoYbsg5HA6Hw+ljuCHncDgcDqeP4Yacw+FwOJw+hhtyDofD4XD6GLnXA/DD1au5Xg+hI2IxBfm83uthLBn8+vqX1XxtAL++fmetX9/69XFf5+E78mVAlqVeD2FJ4dfXv6zmawP49fU7/Pr8wQ05h8PhcDh9DDfkHA6Hw+H0MdyQczgcDofTx3BDzuFwOBxOH8MNOYfD4XA4fQw35BwOh8Ph9DHckHM4HA6H08dwQ87hcDgcTh/DDTmHw+FwOH0MN+QcDofD4fQxfaG1zuFwgNnZCzh7dhrZbAaJxADGxycwOrq118PicDg9hu/IOZw+YHb2Ak6ePAFVVaEoIaiqipMnT2B29kKvh8bhcHpMx4Z8amoKf/iHf4jPfvaz+NKXvoS5ubmaY86dO4f9+/fjs5/9LPbv349z587VHPPss8/iE5/4RKfD4XBWJWfPTkMUJQQCAQiCgEAgAFGUcPbsdK+HxuFwekxHhlzTNDz00EN49NFHcfz4cezduxcHDhyoOe7BBx/EAw88gOPHj+P+++/Hww8/7Pn9lStXcPjw4U6GwuGsarLZDGTZGwmTZRnZbKZHI+JwOCuFjgz5a6+9hpGREezYsQMAsH//frz66qvI5/PsmHfeeQe5XA533XUXAGDfvn1IpVI4f/48O+Yb3/gG/vIv/7KToXA4q5pEYgCmaXpeM00TicRAj0bE4XBWCh0Z8pmZGYyMjLCfo9EokskkPvjgA88xW7Zs8fzdyMgI3n//fQDAyZMnkc/n8bnPfa6ToXA4q5rx8QnYtgXDMOA4DgzDgG1bGB+f6PXQOBxOj+nIkBcKBSiK4nlNURRomubrmGKxiL/7u7/D3/7t33YyDA5n1TM6uhW3334notEodL2IaDSK22+/k2etcziczsrPIpEIdF33vFYskknGzzH//M//jHvuuQfXX3990/eJxRTIstTJUHuKJIlIJiO9HsaSwa9veUgmd2Dnzh1dPedKubalgl9ff8Ovzx8dGfIbbrgBzz33HPt5fn4emUwGo6OjnmNmZmZg2zZEUYRpmpiZmcG2bdtw8OBBLCws4Nlnn2XH/87v/A6+//3ve86Rz3sXAv1GMhlBOq21PrBP4dfXv6zmawP49fU7a/361q+P+zpPR4Z89+7dmJubwxtvvIFPfepTeOaZZ3DHHXcgEqmsMLZv347169fjyJEj+PznP4/JyUls2bIFW7duxfPPP+853yc+8Qn87Gc/62RIHA6Hw+GsKTqKkYdCIRw8eBCPPPIIPvOZz+CXv/wlvv71r+Py5cu455572HFPPvkknn32Wdx9993493//dzzxxBMdD5zD4XA4HA4gOI7j9HoQrbh6NdfrIXTEWncP9Tur+fpW87UB/Pr6nbV+fX5d61yilcPhcDicPoYbcg6Hw+Fw+hhuyDkcDofD6WO4IedwOBwOp4/hhpzD4XA4nD6GG3IOh8PhcPoYbsg5HA6Hw+ljuCHncDgcDqeP4Yacw+FwOJw+hhtyDofD4XD6GG7IORwOh8PpY7gh53A4HA6nj+GGnMPhcDicPoYbcg6Hw+Fw+hhuyDkcDofD6WO4IedwOBwOp4/hhpzD4XA4nD6GG3IOh8PhcPoYbsg5HA6Hw+lj5F4PgMPhcNYas7MXcPbsNLLZDBKJAYyPT2B0dGuvh8XpU/iOnMPhcJaR2dkLOHnyBFRVhaKEoKoqTp48gdnZC70eGqdP4Yacw+FwlpGzZ6chihICgQAEQUAgEIAoSjh7drrXQ+P0KdyQczgczjKSzWYgy96opizLyGYzPRoRp9/hMXLOioTHEDmrlURiAKqqIhAIsNdM00QiMdDDUXH6Gb4j56w4eAyRs5oZH5+AbVswDAOO48AwDNi2hfHxiV4PjdOn8B05Z8XhjiECQCAQgGGQ1/mufGXDPSmtGR3dittvv5PfJ07X4Iacs+LIZjNQlJDnNR5DXPlQT4ooSh5Pyu2338mNVBWjo1v5PeF0De5a56w4EokBmKbpeY3HEFc+PBubw+kN3JBzVhw8htif8GxsDqc3cNc6Z8XBY4j9yWrIxuYxfk4/0rEhn5qawuOPPw5N07Bp0yZ885vfxMaNGz3HnDt3DgcOHMDCwgIGBwdx4MABjI2NAQC+//3v43vf+x5M08SWLVvw6KOP4rrrrut0WJw+h8cQ+4/x8QmcPHkChkF24qZp9pUnhcf4Of1KR651TdPw0EMP4dFHH8Xx48exd+9eHDhwoOa4Bx98EA888ACOHz+O+++/Hw8//DAA4Be/+AW+/e1v4/vf/z6OHz+O7du347HHHutkSBwOp0dQT0o0GoWuFxGNRvvKCPIYP6df6WhH/tprr2FkZAQ7duwAAOzfvx8HDx5EPp9HLBYDALzzzjvI5XK46667AAD79u3DI488gvPnz2N4eBiPP/44BgaI6+2WW27BwYMHOxkSh8PpIf3sSeHVEpx+paMd+czMDEZGRtjP0WgUyWQSH3zwgeeYLVu2eP5uZGQE77//PkZHR/HJT34SAFAsFvHcc8/hzjvv7GRIHA6Hsyh4tQSnX+nIkBcKBSiK4nlNURRomtbWMY8//jhuvfVW5HI5PPDAA50MicPhcBYFr5bg9CsdudYjkQh0Xfe8ViyS2Fg7x/z1X/81HnroIXz729/Gl770JRw+fNhzfCymQJalTobaUyRJRDIZ6fUwlgx+ff3Lar42oL3rSyZ3IBZTMDU1hXQ6jWQyiT179mDbtu1LPMrFwz+//qZb19eRIb/hhhvw3HPPsZ/n5+eRyWQwOjrqOWZmZga2bUMURZimiZmZGWzbtg2//OUv4TgOdu7cCVmW8ad/+qf4+7//e2SzWSQSCXaOfN67EOg3kskI0mmt9YF9ylJd30opBVrKz6/X18i/m16Ghzfhnnv+2PPaSr4//PPrb1pd3/r1cV/n6ci1vnv3bszNzeGNN94AADzzzDO44447EIlUVhjbt2/H+vXrceTIEQDA5OQktmzZgq1bt+L999/H3/zN3yCXywEA/vM//xPXXXedx4hz1iZroXHKcl/j7OwFTE4exqFDT2Ny8vCqupcczlqmox15KBTCwYMH8cgjj6BQKOD666/HY489hsuXL+PLX/4yM95PPvkkvva1r+Gpp57C8PAwnnjiCQDAH/zBH2BmZgZ/8id/AsdxkEgk8I//+I+dXxWn71kLjVOW8xob1UjHYgqGhzd19b04HM7y0rEgzO7du/HjH/+45nVqxAHgE5/4RE3cGwAEQcBXv/pVfPWrX+10GJxVxlooBVrOa2y0aJiamqpxJXM4nP6CS7RyViSrQe6zFct5jY0WDel0uuvv1e/0Om+Bw2kX3jSFsyJZC6VAy3mNjWqkk8lk19+rn1kLuRmc1Qc35JwVSb/LffphOa+x0aJhz549XX+vfobLtHL6Ee5a5ywpnbgp+1nu0y/LdY2NOspt27a9J+U9K9V9vRZyMzirD27IOUsG7yZVSyMDthyGbaUsjFby92It5GZwVh/ctc5ZMrib0kuj+Ov09NSaisuu5O/FWsjN4Kw++I6cs2RwN6WXRiVgb755BpFIdNH15L1yUy/2fVfy96JRCKLXngIOpxnckHOWjE7dlCs1jrpYGhkwwyhBlgdqXvdj2Hrlpu7kfVe6+3qlhCA4HL9wQ85ZMsbHJ3Dy5AkYBjFMpmn6dlP2Mo5avYC47ba9XVE/a2TAAoFg+f/tGzY/6nBLsSDqRJWuk+8Fh8OphcfIOUtGJ+VVvYqj1otjHzt2tCvx6kbx15tv3rXouGw2m4Ese9fj7t38UtVFt3rfZqyF0kIOZznhO3LOkrJYN2Wv4qj1dpq2bXZF/7xZ/HXDho2L2jW3clMvlZ57p+5x7r7mcLoHN+ScFUmv4qj1FxCBlgsIv+7rRgZssYatlZt6qRZE3XKPr7Y8CA6nF3DXOmdF0qsyoPpSpkbTBUQvZT1buakbSbN2uiDqhnucy6FyON2B78jXCP228+lVGVC9nSZgN11A9LrlarPdfLs753a+J526x3t93zqh354nzuqGG/I1wEpW0mpGK0NRbzIF0NEEW28B0SprfbXURTf7ngCd3dd6rOT71ox+fZ44qxduyNcAvdz5LNXOpd5keuLEMQgCEAyGOppgqxcQyWSkqR75aqmLdn9PdL2IQkGDaVo4duw5BAIBKEpn97WalX7fGtHPngTO6oTHyNcAnZQKdcJSxkDrlacZRgm6ri97ydpqkfWk3xNdLyKfz8O2bYiiANM0oOtF2LbV1fvar/etV88Th9MIviNfA/Rq57OUO5d6blnbtuE4jue1xUyw7QrCrBZZT/o9UVUVtm15ficIAgoFjd1zy7IwN3cJhw49vejrXY77dv78ezh16tWunr9fPQmc1Qs35GuAXilpLWUMtN5kKoqix5CXSjry+RwAYHLysK9JvJ7L/tixo9i799NN/3al1kW3E9oYH5/ASy8dg2WZNb9zL5J0vQhVzUEQhJau9lbvv5T3bXb2Al599SUAYldDAt1+nnjiHKdTpAMHDhzo9SBaoWmlXg+hI0KhAIpFo2fvn0wOIpkcRCp1FZqmIh6P45Zb9nZtsmh0fRcunIeu65Akib1mmibi8TjGxnZ09J7hcAQzM+fhOA5EUYRpmnAcB7IsQxBEmKaBXI4Y8Wg0DtM0MTNznt2LRrz88k+YXKogCJAkCYIAXLt2teMxLzezsxfw0kvHkMmkoes6VDWPDz+cwdDQOnYP3J9dMjmIc+f+G8ViAQDZhYuiBEEQ4DgOJElCKBRGLpeFbTuIxxOQZRmSJMFxHKRS3ntEF0WmaSIYDELXdV+fQbd4+eWfwLYtyHLls6w3zmbMzl7Ayy//BK+/fhoXLpxHOBzB6OjWjp8net7Tp0/inXfehmGYCIfDbd+jXs8tS81av75oVPF1Hr4jXyPQnQ9d/b/yyk+XfPW/lJ6Aem7ZvXt/FwBx3c/NXYIkiYhEoswr4Metv1hBmEb0crc1NXUKhUIRokiMmG3b0DQNL7wwieuu24zx8Qkkk16DZhglxGIJqGoegkBfFQAISCSS0PUiHMdBPB5HMFiZZOp5WnqRFOa+35qmIhaLIxisTHPteIRaZacv9hrc5zWMEhzHQbFYgCyT9+GJc5x24YZ8DbHcZTNLHQNtppJ26NDTUJQQhIo18jWJ149/NhaEcRuOYFApJ22VkEgMYPPmEZw79za73+n0Ao4e/RECgSCGh9exe9HI2He6CEin5yEIZGdt2w5s2wZA3OT0s4/FFE/8n15/LBZDoaDBsiyIooihoWF88Yt/DoCEKVRV9bxXvRjxcpeXVX+/NU1FLpdFLBZn46geZ7N7vFQLEfd5SUIhCQnRHASeOMdpF27I1xC92CH1Kna82ISkdgRh3IZDEATMz6cgCMSVr6oqzpz5OUKhMBQlhFJJR6FQAODAskxmSMfGdniMfbPXT5w4hkgkilJJ923Y6ULGcWzP6/Szn5qawj33/HHN9YuihIGBQeZFufXW25veI10vQpIkT/LbciWFUWM8N3cJgiAgEolCEAKIxeLI5bLQNBXBoFLjEWq1sF2qhYj7vNRTApAEQqD1PXIvPoaGhnDTTZ9s+xnjcfnVBS8/W0OslbKZ2dkLKBQKyGQWMD9/Dbpe9F3aVE96dN++3/NMcrOzFzA5eRhHj/4ImkYyvAsFDaIoQBAEFIsabNuCZVlQ1TzS6Xnkclm2O7Ysi5Vwvfnmmbpd3qpft20Lul5EOj3vu5RvYGAQjuOw/yiiSB57WZaRTqfrXr8kSVhYSCGXy0CWA7hyZQ6Tk4dx6NDTOHt2GmNjO9g9EkURgkAMkXtsmzePLHl5mbvEkSbk5fN56HoRwaCCRGIAjuPUlZFt1WFvqeRt3eeNRKJwHLAchFb3qLqkM5/PtV3SyaVxVx98R76GWAtlM+5dViyWQKFA3KtDQ+uwd+/v+tp1NBOEcZ+fukVJzbUFWZaZwbKsPPt727bZsTTpCiCG1DBKkGXv/a/3eqGgsaSzSt18c2/KrbfejhMnjsEw3MmiAuLxBACwJLTJycM16niGUUI8PgBZlqFpGqanpxCJRBEOR5BOL2Bu7hILERSLRQSDoRpPz8WLH3Y9tFK9kywUCswYy7IM27YhCGBuakkSsXHjJtx77xdqztVqx71UOR7u8wYCQYTDYRSLBUiSjGg02vQeVXvVZDkIy3La8qpxQZvVBzfka4helaEtJ+5JKhAIIBQKwTAMhEKhrkxS7vO7DQc1sgD5tyCQnS91mwIoG3MJ4XAEAMrZ8UGWJU+p9zp1u7orAFp5U0ZHt+LOO/fh7NlpXLkyB8MwIAiApqkwDBOOY8MwBBiGCUEQMDd3Cc8//x/M1RyN0iRBHYIgoFTSIctyTYggk1koLw4q10DH1s3QSj1XeCazgFgsgUAggEgkWq5UcGBZxBPQTCe/1cJ2qXI8qs+bTA5ifPxuX+fthru/X6VxOY3hhnwNsVqES5rRrUmqURzSfX634QAA23ZYpjcx6iReaxglWJYNwEEoFEYwqDAX6s0378K5c2/XLK6qXxdFEZZlIxKJsjH68abQz/bkyRMIBol7nrwHOVcwGIBpWsjn82zxYVkmikWNZVFblsVCAqT0rJI0Z9sWJEmCquY9930pPD31dpKiKKJQUCGKAjRNhePYrCQxGo02FfPxs7BdqhyPxZ63G161teCZW2twQ77GWOwEslKSY1qNoxuTVPXOj8Yhb7/9Ts/5g0EF8TiQzxNxlGRyCI7jIJNZAIByKVEJlmWxUrhEYqBm7Bs2bKx7Td7XkygWNQgCyXBux5tCDaCihNhCwDAM5HIZRCLrkc1ma7wKgNs9LTGPgNvDAAD5fB7BoAJdL8AwjCXx9NDP/NKlX0OSJESjMVb6Fo3GkMtl2TXQDHBFCWF8fALbtm1vqJO/HAvbbj831YsPwyi1fa/XgmdurSE41ZqWK5CrV3O9HkJHtGq6sdJxGzb3g08Th5br+lqNw+8x1ec8ffok0ul5VxxbRChUMXqSJKJY1Fn80s8YXnrpGAqFIgBvolkwqGD9+g2LKjGbnp7Cm2+egWGUEAgEcfPNuzAxsafmeqrP98orP60pxXMcBwsLKSSTSSwsLDADSA02JR4fgGVZKBRUCILokW4l2fpkAZBIJBEOh5e0OY6q5srjE1gdu2EYZfU+Ul4nSSR0IYoSotEo7r///p49e+1+F9s571rJWu/3ubMVra5v/fq4r/PwHTmnJSslOcbPONpt23nixDEUiwVmbMmO04aq5iHLMtv5uWO+t99+J06fPomFhRQAIJkc8px3dHQrQqEIikW9ZgdbKum4du0qjh79EYuhh0JhhMORllKn5869jUgkClkmWc/nzr2NDRs21l3EuLORaelVtZdiYGAQlmUyt3m9NX0ul8HQ0Dr85m/+Fs6c+TmIOAxxXYuiwBL5br319iX5Lrg/83A4gnw+D8ApC9aIKJWKTFJWluVyuIDU8/c65rtUz43bq7ZYQ7dSJYU5i4Mbck5LVkpyjN9xtNO2kypr1YPWHwO17nnTNFhWt2maNQbYMErlcjSpppkLLdkiyViAquZRLJLyKFr+VD1+P0ahURtSURShKEF2v+jOcO/e30UspuAnP/kpUqmrde8BSc4LY2JiDy5e/BCqSuLQuVyWlVDJcqDu33aD+flU2X1slyViyS7cNM2y5CqY9Kpt28jlcojHAUEQex7zpd9X+lmQEIvEJHA5nG7RsSGfmprC448/Dk3TsGnTJnzzm9/Exo0bPcecO3cOBw4cwMLCAgYHB3HgwAGMjY0BAA4fPozvfve7sCwLmzdvxje+8Y2av+f0Bup+0zQVhYLmkTtdTNy5U1det5N0stlMzY7ZjWEYWFhIIRyOQBAEFkOsNqqOQ3bwR4/+CBs3bsLmzSPQdR2madbEnSnV72tZJrLZDMLhSN2mJX4WMW7DUUleIzXo1ODpetFz/5PJCIaHN+Fb3/qXugbGti2kUtcAVGKrpknc68QdDyiK0rFCYL3vB0A8GDR5zbZtFIs6wuEwNmzYWL5vpCafXi/gIJ/PIRqNLSrm202XcyIxgIWFBRSLBY+GgG3bmJ29wHfEnK7RkSCMpml46KGH8Oijj+L48ePYu3cv6vVgefDBB/HAAw/g+PHjuP/++/Hwww8DAH75y1/in/7pn/Cv//qvOHbsGD7+8Y/jiSee6GRInC7hFo2IRmOwLBv5fA7FYn1xFSqScujQ05icPOwRl+iWAEW3+1cnEgNMHKUeZOK1UShoGBvbwSZet7BOqaQjl8sx0ZWFhQVMT09VZa/7p1DQPBrm7rG2Eiehx5Ca84qqmyzLUJQQQqEQ7rvvK7j33i/UGJHh4XUNx0QXHTSsYJoGEzBJJEjjFLqQqf7s/VDv+/HSS8dw9OiPmeGrLHyILvn4+AT7HBQlhFgs5vksF7Oo6LZQyvj4BHSdlOpV8hMEhELhjnu5czhuOjLkr732GkZGRrBjB2m8sH//frz66qvlOBbhnXfeQS6Xw1133QUA2LdvH1KpFM6fP4+hoSEcPHgQGzZsAAB86lOfwnvvvdfJkDhdwr3rVJQQEokEBEGApuVrFLLOn3+v6QTYSkHLL/VU1zrZBY6PTyAQCHqSwCoISCQGsG7degwMDODixQ/Zb9xGVdNU0EQr27ZRKBANclLeFVnUuOoZfz+LGHoM3TGTxQXKcXUZqdS1hostcp5698Fbuz46uhWKomB4eD3LDXAvZKie/Le+9S++jXr198NxbBQKJPZNus9VYvGSJCEQCGJ0dKvnc1CUEJLJISQSSWzcuGlR34lufU8po6NbEQwqzJsgiiLi8TjC4Qiy2UzTxS+H0w4dudZnZmYwMjLCfo5Go0gmk/jggw9w4403smO2bNni+buRkRG8//77+MxnPuP53cmTJ7Fz585OhsTpEtWu3GBQweBgELperFHJmpqaahq/7WaMvZtJOlQwxZ21DqA84SZciW7e7mfu8h3DMEHryN0CMKZpIZkcQiAQhKrmm7rZ3RCZztq2vX6S+EZHt2JsbAemp6dgWTYEQWDiM6nUVTiOg7m5S4hGYzVNU0ZHt2JoaBjp9ALLTBdFEeFwBIoS8qi/BYMKCgUNpZLO4vwEAZqmleVazZbJe1NTp5BOz7PGLLS5CV0cAWA17HSxRe6jiNnZC10ro3KXt8myzK4Z6DwXZGhouCYcZBgGgkESjrAsqxwKyWFu7hJ27dpdU4nA4bSiI0NeKBSgKF43oKIo0DStrWMAYHJyEqdOncK//du/1bxPLKZAlqWa1/sFSRKRTLa/Ozt//j1MTU0hnV5AMjmIPXv2YNu27UswwlqGhoaQz+cgy0H2mmGUMDQ0VHMtmUy6prxJFIPI53NIJiNtnWu5SaUUxOMxWJaBZHIQmkZ00gOBxmNNJncgFlPKn808AJSzuCsNMBzHRiazgEgkioGBAeTzKmIxIiBDBVmqIaVT4Yb3JZncgZ07G/fRPn/+Pbz77n8jGo2iUCiwjlqFAlicGSDJdYnEAAIBGa+9NoU/+7P/CwBw992fwbFjRyFJEmQ5ANM0UCgUoOsFCIKDSCSCYlFDLperMuAUh3kByPU5CARkvPXWLzzjPn/+Pfznfx4vK8QRSKJa1qXI5jpr1eLHMEo4duzHuPXW38HnPve58ueQRjKZrHlGWj1758+/h1dffal8zTLTxxdFsawKWEIoFMKRI//e8jms97zedtteHDt2FLZtsnsK2BBFUgNO7wH1OvziF6/jhhtGfT/ni51busVSz1G9vr6lplvX15Ehj0Qi0HXd8xrNvm3nmO9973v4zne+g+9+97tYv359zfvk83rNa/3EYkpE3KVEgYCCTCaLF154YclajlZz002fLO8YHM9u56abPllzLQMDSWQy2ZpdRywWRzqttXWu5aTePS6ViuUErspYDUOH4wj4p3/6R89O+J57/hjf+ta/oFTSy/F0bwzbsizmjdi585NlpTbT0x/cbaQUJQxRlBZ9X06dehWAiHCYZL8XClpZllXw/Ecai+QwMDCIhYU0e6/h4U34+Mdv9NSqK4oCSZIhijJs2yn/v3GCoJtsNotoNIb5+XnP9Zw69SqKxaJnTLT8TVXzTc5YwbZt/Oxnr+L3fu8PPN3bAHjeq9WzR++ZKMpMqa8yDgG6XoQgEM9Ls+ew2fO6d++nazwpJ04c8yxk6PfAsiycOvVqQzW6anpZZ70ccxSvI1+GOvIbbrgBzz33HPt5fn4emUwGo6OjnmNmZmZYjMg0TczMzGDbtm0AgB/+8If43ve+h2effRYf+9jHOhnOqqLXtdvt1GPv2bMHL7zwQkMX50qVhq13jwGUy5xCrMd4qURi4PVaXQ4Pr8PCwgIMQ2diKpXWoQ5rqzkxsQcbNmzEiy8+X26IIiMWIw8pETQBBgcHa+5Lo2zus2enMT+fYm7p4eF1SKWulV35OVbqRMfjbpdJDadpmkgmk573qq5Vr6ej7j5PtUgMhYrFFAoqPvax6zy/o9UC7vFV69I3g95X27Zx+vTJuv3g6b8ty0Aslmj4fXOHfahSHw2FRKNRpmrX6jls9rzWSy6sFt6pHlM/0Os5ilOhI0O+e/duzM3N4Y033sCnPvUpPPPMM7jjjjs8ST7bt2/H+vXrceTIEXz+85/H5OQktmzZgq1bt+Ly5cv4h3/4Bxw+fJgb8SqWQjO8XQPqNx69bdt2X/Hbeq1Ae2nYG91jXS9i//77AACTk4dBXbrQpkMAACAASURBVKFA7WRF47TBYBzZLG0JWlEeoy00AXIP7r7792vUvqLRWN1dzPT0FM6c+TkzerZt46WXjpVd15bH00WT8UipU0WsheIWU6GJablcBoWCiqeffooZUprcSK+1no46VYEjuuyNDRKt7a6OWScSA2Vd9Eo2t/v/fjL96cZgYSEF2x709IMnsrqkHC0eTzSN1VeXNAaDCgRBZIuM+flrNbKw9Z7Ddp/XRtUSjuP47kWeSAw01ZJfalaKvgSnQ0MeCoVw8OBBPPLIIygUCrj++uvx2GOP4fLly/jyl7+MI0eOAACefPJJfO1rX8NTTz2F4eFhVmI2OTkJVVXxF3/xF5UByTL7u7XMUmiGN5vQOqWdJLROx9WtWl8/9zibzSASicC2K8bFPVm5vQ25HHktFos3FJLx652Ynb2AM2d+zsq8SLzbHVNuZkBtVNtXIlkaQ6Ggsl28IIg1YS+ql07HHw5Hkc9nPTrqJNMfsCy7QaycjE8UJQwNDQOAZ9G2efMIFhZSKBSKEITK7pqM3SnryfvZnQsQRZJdnk7nIIpkMVAsFpihLBQ0DAwMNtwp1kuYo+EVy7JY3JwKzVCVvOrnsN3ndXh4Ha5evYJSyXv/JUnC+PhEQ09M9XNz7NhR7N376Z7sgHnzlZUD11pfBjqNkS9Wp3ly8nDdjNloNFq3P/Ni8Xt9VNd8fp4IjEiSjFgsxjSz/Yyrm/rVfs41OXkYxaLGduQAuYckozvccKJ1n29sbAcuXvywoeGuN2nTLOpOH09SRhXE+vUb2Pmz2Qzy+VzDcwcCAVZaVn2ttFxPVfPQ9WLDc9De67t27ca5c2977omuF1ntudedLpTd7ALzOpBzVdTqKueX4DhE3tY0DZYLAJDFAO0N7zjEaNK8gOHhdZ4FxcWLH9aEKAqFAvNOUHEdKksbiyXqft8Wo/FPxXUMQy8r8JH7tWHDxrrnkuUAGxfFtk2EQpGuPs9+WSoteTc8Ru4vRi4dqKfgssLQtNpynH4iFAqgWKy/c2lEMjmIZHIQqdRVaJqKeDyOW27Z29YD8vrrpxEMeuukRVGEpqnYuXNXW+Nphp/ro7rmqloxIKQfNokXBwIBX+N6+eWfMN1wGvt1HAep1FWMje1g7/Xyyz/B66+fxoUL5xEOR5BMDtacy889DocjmJ19v5zoJTJDpOtF5HIZ6LoOVc3jww9nsHXrdoyO3uA53w03bMdbb72JbDaDUkmHpqmYnb2AoaF1SCYHXRO6iWAwCF3XMTNzHpnMQlO3tR+oe1gUJfzZn30JO3fuQi6XxYULzbUabNuGpqnQNBW6XsRNN92MO+/ch2RyiP1tKBRGoaAxNzsRyKm4xWVZLmdpm57Pi2TCazBNkgxZKhllw+2UjT+RV6UiKpXvCmkBS3fqg4NDkCQZxaLGfu+mIoYjIRQKQ9O0clKiiGAwiHR6Hh98MINcLgvAQTCoIBAI4JZb9uL99/+HPTeyLEOSSAjBsiwMD6+r+xy2+7zS42n5HS29u3z5I7z77q8gCAJCoZDnO57NphGNxjzPsyRJyOfzXX2e/dKNOaoVi5k7+4lW1xeN1opD1YNrra9gOq2ZXkmuL6pr7s6cBipGIxr1p43dKi7Xrtu+3j2u7jJ23XUb8dFHc+xnUutteLLPNU3DCy9M4rrrNnsS0qanp5i7mBosXS/i9OmTGB3dyhKGaLkarZv2m/jVDLoQoPeauuvb5a233mQtVd3JTdTtDKBGdS4QUDA4OFjzeRHVOYGVxlF3uLtWXBQFhMNx5PM5SJKESISEBIrFAoaG1mHPntswOroVP/jBoXLzFJRL/yr17yQUQnIBrl27wlqbBgIBlEo6CylUxlJAOEwU16qfG0UJsW5qzXa+7T6v9Hi6yKWa8rZto1Qq1TTtoffZ+zwbPXVl8+YrK4OOlN04K5tuS5p2glvXvFpJrR0hj1ZSpZ2qc01PT2F6eoppfJdKOmZnZ8u7sfWIRKIoFDTQHaNtO+y6bNuGqqo4ceIYXnrpWLnBSMX74DgVg0V7lpP7YiGTyZQ/H9vTiay+6lx72LbF3Pf+d/lkN0qau5SY658mA6bT8w3r4QFA0/LIZDLQNBXp9Dxzi9NrEwTSNIbudAGAbqpN0ywnw5F8g1AohMHBYQwMDCIUCjHDUSrpiMfj5Xi4Uy6TI7vXWCzGxiLLMgRBQKlUYl4RCk24EwTSzCabzbDnRtNULCykcO3aFeRyGWzeXBG/6ianT59kYYrK5+14FDJJhcFQzfNsWbyPOIfvyFc1vS77csd+3UlVNBGJGoFAIOg7rtZKzavTTNo33zxTN+5rWSZKJZ2d222g3ZAGHlk4joNo1BvfIsdKngk7kRjAxYu/BlUyq8ZvFncjaPzyxRefr0msao5Tlnol7z03dwkDA0QwhzYBaZW1XixqiEZjyOVy5Zg8yuEJC6LovW+O4yAcVlAqlZi7nmb+U6o/R7pzdreRpbkWAMnBCIUUWJbNXNiapjKvR3XWvGVZSCQGmEIeqRhwyqEfpaZtbLfIZBaqPBJieUFnwnEcT7c6ACsma52zcuCGfJXTK9dXtYubugsBd/2wiHA4hE9/el9bJXF0ceJOUqI7bj/hhGZZ7/XkUSm5XJbVfANUy7xiZN0LFLqbd0MnZUDA8PAwZmcvlA1TY0MtiiKCwRCLBbdLKKSgUCC74fYXBd5ji0WNZc47Tm1c2u3+BcBq7wVBQD6fg6blMTAwyNTwqrPTdV1npXhnz05DVVW2g6bG1220my3qXnnlp54FHSm/y7H2pxWvjsA+R1EU2YLw4sUPEY8P1CSK1st870YVhXtR4a6pr+5WB8Bz7tWeDMbxBzfknCWhOp4aiZBdkq7rcByiAz44OMTine1Ajz958gQUJVTOgCax8LGxHWUFtdrJnWbNLyykIIqiR3OcegQCgWDDnSstBauUSrl/K5SFUyox2kymkRfAwfDwOpw8ecLj5m30noaxeGXDainkxaIoobLGesH3YoAu2IJBBZGIA03Ls/7v1B1OXeGUsbEdOHt2GqnUNRbecOdV0GRBgHzHSqWSJ7RhmgaOHPkhAJQT2SpjoX3TafKYJMlwHNuTMe7ucOfHs9NuTkY9o59MDmF+PsWulYYehoaGmZ5BN+nGwqOb7V45ncMNOWdJqDcRhsMRiKKI++77iu/zNJowGqlKXbz4Yd1wAgBmOOnOOZ/Pl2OsEttp3XzzLrz++umG4yFGqKLL7d495fM52DbJgi4fXfccoihhZuZ9RCLRlkYxmRwqt0rNNj1uMUiSXLf3eT00TUWxWGRGmN5Ddzy/OndBlgOsIQi9R7lcDoDD7l00GoOihGAYBiRJYqVqsVgc8/M6OzfRoY9AFCVMTZ2CYZTYcYWCBlWtNFqpB43Fx2Jx3HjjTXjvvXexsJBi15NMDrEe54D/RNF21M0aGf2xsR0oFFTous7uSzgcwp49t/n6bNqhG9oSy6lPwfEHN+ScJWGpBW2a7ZjqhRMmJw+zpiaVeCTZ4Q0MDLKd1sTEHqTTC3j33V/VHRPtCOY4QD6fxcDAIHS9iEJBK0/CxOA01wx3ymV3A2x3WM+gk7axKvNm+MGv+5zEt5sb8epz0axwOt5G46bQhi1e3Oezy+5uC7IsuRrPWMhkKsZfFCW2oMnns8w9HovFy0lsOpoZcTeapmF6eoqVl5FrJCIybmPkt7NaOzkZzRafn/70vmXZ4fpdeDTbcXNp1pUHN+ScJaEbLSabTRjtLhTm51OsvAcA63NNNcfdf/eZz3wOyeQgK0EDSPb7wEBFl5y65wOBAFQ156rZFhGJkH7p1TtUCjVYpmmyRh2At4EKbetZ7XpuRiQSQyQSYS1L60GNs1uprhH1zkET0aj8avXvKq+RhZKf9zBNA5/+9N145ZWfAhBYsiCFtETNo1gssnMSiVmittZOvT1djOi6XpZiFVk+QzCo4MUXn4eiKEgkBloK+QDtLVjbXXwuBX4WHq123FyadeXBy884SwJNSotGiVGLRqNtud6mp6dw8eKHSKfnce3aFagqSTKjE0Y7pXWzsxdQKulMnxuouFpJCZn379zNQ4aH1yMWi8EwSlBV4l5eWEgxI63rRU+zFPrvcLjxLloQRNx88y7YtgVBEBGLxdi4RFHCwEASw8PrWfyfCq/UQ5ZlJBID+O3fvhWDg4NQ1XxLw0/LrfxQXf5GE/nqlZ15X2ttxOmiolTSceLEMeg6CSHUG3+lR7nAVOMEgbxOF1Ht4jg2bNspC9WY0DTSLY4ar3Pn3sb4+ATuu+8rdRufAGTBWioVMT9/DdeuXcH8/DWUSsW638NWpZPLgZ8xtCrhXAnXwfHCDTlnxUFruSkkyUmDqubYhNHOQuHs2WkoShhUAtQt5UlUyQI1x7snsmg0ynbZdLdIjTatj6c7e9t2mHEnxrfWYgYCMjZs2MjG7zgONm7chHg8AUEgSVrp9DxKJR2macKyLIRCJD4sSZLHqCcSSdx++52YmNiDe+/9AoaGhhGJxGre030viaH0Z8n9HNtokeHv3AQaf2+2ABAEAbFYDLFY3FNzTkrUFldvb9vumn2iBNeu/gD9jEi3NauhJ2Yl6Dr4GQPVC3Dj3nGvhOvgeOGu9TXIcmScVmtJ5/N5zM1dwq5duzExsafp31E1tGo0TYMsBzztUf2MmzY+kWXSo9u9cxwaWgdN03D06I8QDCoYGhpGKnWNtRilhMMRFIsFDAwMwnFsZLPupDY3DpvwRFGCKMLjxpYkGcFgCKdPn/RotW/ePOLJXCaLhCzC4VDZXV8ZP22rKUkyvvjFP2f3jeqzV0/C9WjVlIQK37QyrgDKeQd+G53UQvMEmpX+AcSQu126NHExmRzEjh2/5UlgA7xhgObjd8piPeRzpvhxF5PEO5OFash1mJiaOlXz3WxH12GpnlE/Y2gVLui1PoUbnj1P4IZ8jdFOxmknD8nZs9MwTcslHkImOSoRWi/2SMfWbOJdTGYsnZgo7om+VNJRLBZAE9BUVYVhlKBpGhMWASoZ2bIsI5NZgCgKNR3GqqnXocyyTJYcJ8sybNtGoaDh0qVfIxyOQlFCKBYLzKCLooTBwaRn/PQaaBLc7OwFvPTSsXJpn8M6krk9D+1C7kk7LF60xh2SaHUM7cImihIiEa8Xxr1ApN/dfD4LSQqwRj3kngieRQf9t22TygMqDUtlZqtxPxe0mkAQZHZ+QXBYrXw1fhafS50V3moMfvJbVoI0K8+er8AN+RqjXgKZqpY8ST6bN4+w3U2jeutWZLMZGIZeboJRUc8yTRNnzvwc8fhAzcNHjX8jgkFlUQ/o+PhEOQZb9NR+27aNbDbDyqloZ6lQKMwMmWHoLJYeiUSZG3Wx7mQAZYnXiggI3TVqWr68i6+cW1XzuPHGm/DWW29C14vsXlqWjWJRw+zsBUxNnSq3BPW+TyeKcO1qvcfjCVZu5vZ6+Mmidx9bT2deEIhHIhQKIxQKsQVgNBrDiy8+zzTwb755FyYm9ngm+FAoDF0vecRWaFc0SiVJz2Exc+IiV/Gbv/lbnrFUesQ7kOVKbN6df9GprG43ssI7WYSvpB13M3j2fAVuyNcY2WwGgiAgnc7VNNVIJAawsLCAS5d+XW7y0bjeuhWJxADy+TxriuF+H9t26j58FeNff/IPBhV861v/Atsm6nBDQ8O+JpjR0a3lGLcOx6ldKNBGFYCA+fkU20kXixpoZy/ah9qyzC41NRHqTvjuhQ+tcb548UM2fvqZSZIMQSCKdun0PKiWe68YG9vB2m8mEklYlsV6n7cy5tWtTKvr24NB0qjGLR5E8yiI10KEaRqYnp5COr2AmZn3WfvVXM5hAiskudC7+6ffc/cY3J/5xYsfsp2+u0e8KHq/A7Sskf69W4HOL9XhkXA4wkIJ7WSFd2OnuhJ23K3g2fMVeLLbGiMYVJDL5dgOgmYhiyKJ8VFDSo2ZOzu4nYdkfHyCudMBuHZBgmcnA1QePpINa3kER9zk81kUiwUYRgnFYhHp9AJOnjzBlL6aUSrpnkVFfZyyASHHkdalUlleVocoigiFIkgmhzra7Vbey65Jjqq+X9FojLlw3Z+J45COa1euXO643WmniKKEixc/ZDs5SZKgaSR7fnBwGKLoL6u8noGkrU/HxnZ4DMubb55hhpMuxBzHwbvv/qqsCEe0yiv3huy0E4kkS2ajvc/d0GTCZHII4XDE830/e3aaPTfUe+D+nlIPC81ROHToaUxOHvb1/aTGV1VJFr5lWcjn86zZTDtZ4Z02DlpqZmcvYHLycFv3px48e74C35GvAdxuNiLZSTKR6zcHsWp2io3qrSnnz7+HU6derXHD7dq1G2fO/ByWZUGSJIRCJP4bCHh77NLzjo9PYG7uEtuJ0u5i1UlUdMIvlXREo3FfXgLiIcg1PaZy/sr70R04zZy3bRt/8Rf/N6anp/DGG691tDOvlxxGEuPscoyW9GiveAzo31USuFoliC0Htm3h4sUPcejQ0wgGlXJv6gEWX20lPCOKxLtCFNqIkE4gEGA7UsMwPDtjoHLdfhZUbjW6cDiMcHgLVFWFqubqfn60nK36+57NZlhinjtcRIxlEIqisOunOvONdsPVru9CocCML200A9BWr1JbWeF+Wv32spFSt+La3dCqWC1IBw4cONDrQbRC03o/WXVCq+bxS0kle9xEMBhkOyUaKwSIexEgyVO03pomBQGVnUYgEMAtt+xFMjnoOf9LL/0EhkHOr+s6ZmbOI5kcxI033oT16z8GVc3Dtm0MDCTxiU/ciPn5a2wMmqZB0/IolUrIZBbwsY9dh4WFeebqbpQJTccejcagaSp27tzV9D6EwxG89947i95J0+xtyzLxq1/9b1y8+CEUJYRIJML0w7tFJBJFIKCUY81OS9d0N1qddgNFCSGXI+1YSyUdhYIG0zRaLnYcB2z3WOkTLrJz0OTDDz+cxeuvn8aFC+fLiyr/nggSZ49B14u45ZbbMDNzHoIg1ozPcRwEg6Gyt8ryfN8vXDgP0zRhGGb5nAL7Hu/b93/if/2vO/Hee++w0JEgCMzwp1JXMTa2A0DtM6nrOtLpeQQCQciyDEmSIcsSTNMot89dh1tu2VvX0NWbWy5cOA9d1z319aZpIh6PIxyO1Lw3fV7dz/VS8fLLP2E91Rvdn1bXR6FjTqWulheP8Yb3aaXSyjZEo0rD37nhO/JVTnVCiFsjPJkcYlrYdFIKBBSYJpEFFUUJhQLZXQwODtdtcHL27HTZHUm+SrSP89GjP8LGjZswPj6Be+/9gudvNmzYiKmpU0yBjI5PVVXkclns2rUb58//D8s0bgTtYlXPS1C969i8eQSyLJc7sNXiV9rUcRwoSgj5fB6GYSAYDLa9K6c7rEbQXakoSkgk4k111jttc9pNikWNubirG8w0g9bOu2vB6S6exL/Jv9PpBYTDEaTTCzDN9hbGjmOjUFCRSCRZCOD06ZPQtFopXV0vlGPkQbzyyk/ZrnV8fAIvvXSsPD6Lja/dZiv1krREUUShoCIUIn8bDCoQBBHRaLTm+WlFs51qrxPEuh3X7odY/nLAY+SrnGpxB9KoAzBNixlRRQkxoz44OIjf+I0xGIaBfD4LUZQwMbEH+/ffV/eBIecnkwJZFOSZ8hd1m9WLgRlGCZIkletvUf47m8VbQ6EQBgaa7xAMw0Q2m0Ymk/bE26anp3D06I9w6dJFFIsFLCws4MyZn0OWg5Ck2rVrO8ZQFEVkMgvl5DKbxTDbwc8GmtRlVxqGdJIlv1xUx+rbua80a7z+62Ca6nR33i4kPFTJ9L9yZa5uiZggiAgGg2wB63b/XrkyB8chpZSiKEKWZShKqKbZSqu4bT3BlWg0xsrrOhVZaSaW1ErsZanhce2lge/IVznV4g6kpWSkbKhzLAM8FKp0Wzp58gQikShkmTx05869jQ0bNtY15InEAIpFDaJIpESpkZJlueFqn+4K6jUwCYcjuHTp174MgCSJsCziAYhG41BVlZWZAWCJU8VioaxERZKg6ERGFxyyLLPa61ZUx6vbhSZIkZagzQwS2dVmsxmEw2FYll1jGGn8uF4mfi+ovi9+71WlmqHxsdS4ZTLpRY1NkkjduSCIOH36JDKZhbrvRxZnOvs3DSkZBkmwi0SiiMXirMyuWCzixRefx913/37DZiu6XoQkSTh06GkkEgOsAsIruGJBkmTkcsSgDgwMYu/e3130brPRTrUbzYya0Sr+zuPaS8PKX+ZzOqKenKIkSbj55l0IBoOIRKKeOvHTp0+2lfE6Pj7BdhJUptJxKv3H66326a7AHcMj2clE8tRv9y5RFJmiVrGolSfcUk1mMS3pIpOltwmJLMuIRuN1d+rdhl5vdR1zPdzZ64VCgbmsK+eSIUkkt2GlspgFjyCIXY/5BwIBJJNDCAYVJujjZ2y5XI71pieLvRJkWWaeJ/I9E2AYJeZ5qt4Nm6YBXSda7IWChnR6AZqmolQqsmdSVVUUCioURcHg4DDi8YG2Qwd+WUp5VXfmvduT4fbIddqDgVMfnuy2DPQy2a1RQsi77/7Kk3RimgY0TYWq5lmmNt25kqS0+gllyeQgNm/eiI8+moOq5iEIAuLxeFn/upJk405kock47pg1MW7UjSp6kvGqqbSfdJjL2bZtRCJRaJrKkvPoMe4SpEAgWBadIedWlDAEgUz2dNJu9J6LwS3dScdl23bHE7Xj2Gwy7ne899Zp+tkvhlAohGBQga4XkctlfZfr0fh8KBSGppHEvUKhwL4n7nGWSjpmZt7HunXrMTq6FWNjO5BMDuFXv/rfANwytCTJLBQKIxKJQNOIkmAoFCp7DFongHmvrb25ZSkTxPwmsiWTgxgb24GdO3eV71PjEFov587lgCe7cXxTz832yis/ZUkndIdB51NawwoQ920r19u2bdsxPLyJrchpfLeR24y610RRKnsDqsuA6GReX7+bGkR3MpW7jSjJdqfdrSp/T1yaBgShslssFFT8xm+M4aOPLrL63XqQ/t2Lc2FXZ0VzmkMS5WQfZWuir511sViEbQOlElH2o98bP5+FaZpsx0zGRt/PgWU5nlJJwzA8pVSk7py8B/VWASiXmolMJ//QoaeXVdikVYLYYsvTuEBL7+Cu9TWKO+nEHdsmLmYSsyalP/5db37dZu7jDIPIZ0ajsZrYdTO3sW3bzJ1PXftXr16G4wChkIJwOOyZ5MPhCAYGkkzf3O2W/5//OQfHIbvzeh3GaDx/MfRarKUfqDWoAsvebvV3kiQx708jSJ4EyagPh8OIRmNNXfh0UUjzGYjATKWPvPv93eJFsixBFCWcPn0Sk5OHy7kedvm/yjWSjmuV91tJCWB+3OONWEnXsdbgO/I1ijvppGJsBMTjpAWmquZhmiai0WjbOs1+jqXHTU4eZsk3ZPWerdlJt4Nlmdiy5TegqnnWHctxHBavpEltbl1smhBH9bwNQ2cKc5FItFxS136mNGdxOI4NVc17NO+rkeUAwuEw2zE+//x/+Npha5paNuKNs+or/eVF7Nt3D44e/RFEsZJvAVQ8ATShj5SKRWBZVjkGP8jKI+uPI8+MYyp1zXOdihKCoig9SQDrpDyNJ7L1Dm7I1yjuxgg0UzYWq8S2F1vD2i7UHVcq6dA0FdW7cFGUymVpImu6QsdX7Xanu+2Zmffxla/8P/jud/8/j5qbe9ImCnYim6Aty2zYKCKZjODv//5JGEapjR22UHMtnNbQXbBt2+VFlVHXxW6aBnI5A6qaZ+1f/ULLHOl3gEreVp/DNA1cuTLHxuUaZd1zulvb2rbFstNrr5EsLqemTiGXy9bkZuh6sWf10Z24x/ul2cpqhBvyNQydLPzGtpeCRGIA6fQCCgXS7pTGLwVBwK5du3Hu3Nssgc2tRFdf3tRm9cY/+MGhGklW90RNzmcBkACQmGy9CWh29gKOHPlFW0ZcFKVyIl/j5DlOfdzJiWT33Px42gZ2sQgC6n5WdFH45ptnMDAw6Kk5byzmU/l+NTJ8lWoKEen0fMPv1MzM++1dSJfotDyNC7T0Bh4jXwO0alLQy5KQ8fEJ1g/ctukiguyO3nvvXdx++51IJJJVbTEby7bSibFRP+hqbNtiZUTVccHp6SmcPHkC+XyuaeOPSi08gcZV6xzpa0wcQqmkN3RNd4q7dr3eZ0W/h6WSju3bPw5FCXVFRY98t1FO5mu8MOyVhv5Slqdxlg6+I1/l+G1SsJQr6WZZsKOjWxEIBMv135WJzbZtzM9fw5Urc/jiF/+c9d1uJttamWSFtpPMTNMqt7kMMJnZ118/DVmWEYvFm5aL0TIb+p7Njv3t374Vr79+uq2xcboP9d60MsyCIOCtt95ku3ZSLSGXEzIXl8hISx2bZd0HAsGGf+9+noaGhnDTTZ9s+9l1nyMYVMpGu4REYgBjYztw8eKHTd3jvWy8wqlFcDpcYk5NTeHxxx+HpmnYtGkTvvnNb2Ljxo2eY86dO4cDBw5gYWEBg4ODOHDgAMbGxgAAqqri61//Oo4ePYr//u//rvseV6/661q1UkkmI0ine5Ms5U4moxiG0dX4d7Prcy8k3Akw7oXE5ORhXL78UV0lMEmS8Hu/9weexDhSC9z9nRpZ7CjQdR2CANa1DWiefe63DAogSVqWZfoyICu5VG2lj88PjUI0bgKBINNVGBwchmmaKJWKi5aJJdUSMmQ5AFmWkMtl697Hj3/8/4Cq5uuGetzPk+NYMAzTlweNGt9U6lq5dj0MSZKQy+UgCCgLI0k1z2e987R6prtFL+fO5aDV9a1fH/d1no5c65qm4aGHHsKjjz6K48ePY+/evainL/Pggw/igQcewPHjx3H//ffj4YcfZr/74he/iM2bN3cyDE4Teq2t7Kc3MlWHqzaGgiDCth12LL2WaDTKysQooti5HrkgAMVigcVl/YrAtJNhb5rNRVzIZC8hHA77Pmcv6HcjDtRvI+smFA3P/wAAIABJREFUGAyC9jF3dwAMBkOQ5YDvPutudu3aDcsyUSioKBS0ujtvUZTw61/P1i0Bq32egr56jbvLyuhCslAoQFVVlvBJ1REty8KLLz7fMBS30vudr0U6mvlee+01jIyMYMcOotqzf/9+vPrqq0xMBADeeecd5HI53HXXXQCAffv2IZVK4fz58wCARx55BF/4wtJmRrvpVlP7fqFebaemadB1veN7QO/lU0/9U8Pz+FlIjI5uxdDQOvYzNWaiKECWJWSzGczOXoCu60ilrqJQ0BAKKZ4Sslgsxv69WGhCHZVQDYcjZWGZ5TFakiSXr8nh5W4rgFKpxLQKSKtfAu0jQL9zfonF4jh37m1PZj51sdP+8+vXfwyiSNq51jOU9Z4ny7IwN3ep6fPsNr7keoSy18lkz4xlWeXqEaIf0aiOvNebA04tHRnymZkZjIyMsJ+j0SiSySQ++OADzzFbtmzx/N3IyAjef59kZd58882dDKEtOhE76FfGxyeg60UsLKSQSl1l0oyBQKCje+C+l6FQuOF5/IpE7NlzGxNiIZm9tE+1gkAgiJMnT0CWA+VSMQuFQgGWVUmAA6iQx+IMOa0nB2htMImT02S4Bn+FUKh7O2fLMut6Jji9x3EqSXGmaWJoaBhjYzvYd08QBITDkQZeIcGze6YdCCk0AS4cjrCfLctCOj2PVOoqy26nbnb381QsFqGqJPTY7HnOZjPsnPT8dAzuLnu0UkCWpYa7bS78svLoKNmtUChAUbyqSoqieHYTfo5pRSymQJbbd2NVc+TILxAIyMydJcsSDKOEt976BXbubK5p3AmSJCKZjCzZ+ZuRSikQxYpxIy5C4jaUZWnR98B9LwWBqKnVO89tt+3Fc8/9GPl8limqKYqC2277rOeeJJM7kM2mcPr0z8od2WQoCun1ncuRSUiWZYTDkbK4iwmA6KsXi4Wu7AbajftSV3w7MXLO8tGtz4UaZ01Ty/OQjW3bbsAvf/lfiMXirH98sVhs4K53AAjlSgqhfE7vd81xHPZdolChGdISOIfh4XW47ba9OHbsKGzbhCwHWIllIjHQ9HkOhUJIpa6x0jciumR52uVGIlHkclmmtEia8gCiGEQ+n2PPa/UYSHKnjdtu29v1ea6Xc+dy0K3r68iQRyIR1vKPUiyS8qV2jmlFPt+detz5+XkoSojt5ABAECTMz88vaUJFLxM2Tp16FYGAgkiEuAFTqasAgHw+x/qI+70HNHOc7hBEUUQ8nnC12aw9Tz6vM71pim07yOf1mve76aZPIZEYZi7EQCCIYlErq6yRnbhpFphrEiB9nEkCUuffkXZd6H7ab3YCXyB0RjfuXSAQQDgcQaGglRuoRDA+PlHeoYosxEO6oTVPwPSWUIqeeYjs+EtMebCy00c5vFN5biQpwMorbdtGPJ4oJ1HS89c+h7ZNwkVEq0FkOvGCAAwODrOsdZKEFygn+ZHzkY6JMr7zne8wr8DHP35jTWb78PCmrs9zPNnNX7JbR4b8hhtuwHPPPcd+np+fRyaTwejoqOeYmZkZthszTRMzMzPYtm1bJ2+9KJa6F+9KpFqpiQquuLOw/dyD2dkLeOmlYygUiiwZzLZtZDIZiKJYXpnXnufs2WkoSgiBQIBpt1uWhRdemMR1122uKVtxl8FNTh5mmuq0XIg0qzCZG75U0n0ZcVrrTSdTmm1LWYnJW9yI9x7icRLY/EVxP1fBoAJRVNGs4pHqslONBPpdBryeIPq7eDyBQkFjlRPRaASqmmfZ4jSDPpfLwjQtuJ2e9Z7DUklHPB5n56TeLcdxsH//few4GjIzDMPTT502GqLu+3Pn3ubtR1cQHcXId+/ejbm5ObzxxhsAgGeeeQZ33HEHIpGKq2D79u1Yv349jhw5AgCYnJzEli1bsHXr8n8B1qLYQXU8iz68dPLwew/Onp2GrusQRaGqeYSDfD7X8Dw0NpfP59k4aFOUixc/xNGjP8L09FTd96RJNfWSzhzHQSAQQC7nrzSxenfLm5msXrrZz7xQ0Mr6/w4ikRhUVS0vaAtIpa5ifj6F+fkU20m3GBn7V3WMWZJIKRftDSCKEpLJIQwPr0cyOcQa91RnixOPZ6HlnJZIDNQ9Z7XBrycOFYlEEQyGeJb6CqajHXkoFMLBgwfxyCOPoFAo4Prrr8djjz2Gy5cv48tf/jIz3k8++SS+9rWv4amnnsLw8DCeeOIJAMDbb7+Nv/qrv4JpkiSfffv2AQCOHTvW4WXVZy1qAVc3MqDCMJEIeVD93oNsNlOOXdN2oQJrM9qsuUoiMYDLlz9iLkI3dDFx5szPsWHDxrp/q6qqaydeaVlK+kvr8KNnTiZH72srcQfO6Q3V3hk35HviMF3+6hpyv3oGZFdff/FIxYTcIaNcrvK8KUoIkiQxY+8mEomw54/OaZs3j+Ds2Wm88spP2fPdTkOTanGo5W6zymmfjgVhlgMuCNMZ3VBhmpw8jLm5SwAqOx66s9+8eQvuueePG77388//h8et7Ya4+h1s2rS5RqCm2p1PM9bd798KmtyzWBUuTn9CF4l+8gz8CMOQXvXNW+s2opIQ5g+SAR91deETsG3bxzEz8345ji2Xd8kKbJvE7emz00ysBcCi5oHlEJVqRK/nzqVmRcTIOe3RyqD6NbjtGuZm8qt+zzU+PuEyqhXXfDCoYM+ePU3fe2hoXV3tc2qQaa14vb8NhSIolUqesix/a0+yiyfH0v7j8qI0rIkxIDszTn8QjcZg2xZLRGtGKyMOwBPTpj+3+h5SY9puGCcSIe5sgCQEZzJpvPvur9jvTdNENptFJBJBICB7dtVTU6egqnnWqz0SiTI3+L33fmFR3sfNm0dw5szPYdsOZFlCIECqiFZzSLLf4DvyZSCZjOC//uvtprKGfmUPuymPWO9cpVIRoVCkXENNXHtDQ8PsoaVZ6wAwMDCIW2+9HTt37mi6qqTvY5oWNK0yqRKRDYclom3cuAmbN494smFTqWsIBIJQ1Xxbu2rqgrRtG4lEEppWUbRyd1LzC4lR8l19v3DPPX8EAHjrrV9gdnam4/ORHXnl8/fzfaC7Zlo+6QdBEDA8vB6lks4y5el3lS4KKipzQfzRH/0Rhoc3AfB6v2is3XGAWCwGx3Fw331fafu66bNrWRZ0vciqVXbt2o2JicYL+G6xVDvylaIVz3fkS8RSfcBuZSWAlLUYBnl9dHRry9/7PU8711F9LsexUSgUUSwW2TGGYSCdXmCNVtwZrtVUv6fbKDsOarLLSUmZDYAos6XTC7h06dcIh6OIRCJQVRWGUUKpVEK7u2HbdlhbVFmWIUmkvpZOcK0gyXwkKa9ZDJWzMjly5IfMC9MIt9u91Q7b7Z6v3p03gtSdy77OXz4zAJKPYppmOa+k8jd0YU0NuaIo2LZtOzMEZ89Os9+7x6mqeWzcuKnleOtB5wiaVwOQOeHixQ+XxZAvBX4bSfUTvI2pi6VUfmsla+hX9tDPcX6vo/pcVNWJlnqR7HShLCPZOEv1/Pn38IMfHMLzz/8HLl/+CET8YgGvv34aH310Cfl8Dvl8FqZpIB4fQCQSY/FuoCK4QbtLGYbOsmNDoXALdbX6kL9xEIlEmRIXrZf1F1uvTN68DKw/IaWLjUMp1VUQzag+1u93QlXzSCaHfGnnU6GmUkmH49gs9FQ9BvrsVGecZ7MZhMNRWBZJQKVJxJa1+Mqc1SjHuhq14vmO3IXf3e5iaFXD7rfG3c9xZ89OwzQtGEalDjUQUGquo/pc7kQyCp00Gj28s7MX8OqrL5U7KJFdRz6fY3HHavdjLuc9B8mCd8qCGkRpyjAMpFJXIUkSk61cDO5ENzqRHTnyQ19/63aFckO+OnEb56Xq5kZd4SS+XEl6q5eER+LaMgShxBYL7sRO+h+tRU+lruHZZ59hbUwTiQEsLCzUVIi020zI7VnTdR22bbPdOLA47Y2V4soGarU1gP5fnPAduYulXH22qmH3W+Pu57hU6hqKRY1NBLZto1jUkEpda3ouOpm5u4rRnxs9vGfPTsOybJaMRiYu/4aPGsyKIEZlF2wYBrv3tLFEbY2w9+dIJIJEYgCBQACOYyMajWJsbAfOnp3GiRNLU9bI6W9oj/GlOC99/mKxOGKxeFncJcYEjarRNLXca4DEyhOJAQiC6DkXTTKNxeJIpa7h6NEf4dvf/n9RLBZRKJByTVmWPYuAF1983pdnsdqbJ8sBaJoKTVMXrb2x0npcrEateG7IXSzlB1xPaMEdk2n1e7/nAbxSkPQ/9+uNzpVMDkFRQlCUMFv527ZTLnOp//DOz6eY1vRi8WP8qZwsNfiiKCIWi2Pz5i0sDp5IDCAajUNRQohG49i0aQvGxydw7tzbLN7O4bihXc0SiQEmY9wpoigiGo1BFEVEIlGPC1dRwigWC+Uk1frfeaoiZxgGAoEgwuFwuUdBCIFAEJFIDAMDyXJCXIHJq7obodAkOdqEyDBKvoxntds5Go2WS+GMpvNSO+fstSt7NQqDcde6i3ZEExZDszIwP7/3exxJ7DJY1ip1b5umgdnZCw0lUYGKCyyVslhyTTI52NAVRnfU1Vm93cYwSuWdk+S5LvrZ0OQVx3E8n5t7EuEJaxw35PskIpFIwjBKnoqKxRAMKrAsk0mZ2rZdExqKRCIwDL1luGbXrt0sUZQ8f3djdHSrR5ylUKhkO5OStDRog5ZAIMA8co7jMDGoVmHCem5noh5XXFTWe6Nz9tKVvRqFwbghd7FaPuChoWGk0wsoFouskQNRphJbZme2WiRUx7rcLvmlhHoW3PWxgiCy+th6n9uVK3O4ePFDeoYlHR+n/6Ax53Xr1uP8+f/p6Fwk/GQwgaN8PodYLA7TND35LJqmsZhzPU8WkVEdxMTEnrpZ4e68FroDp96sSk6IzXbjdNEbiUQhyzLm51OYnDzccH5bin4UK7HHhd9NU7/A68iXgeVWJ6rEpPIuQ0vqSS2LuJQURWl7oVKv7jyXI13KdL24ZMacxgwHB4c9MXLHcRruFKanpzA9PcWlWDlNCQSCLAGtG98VasjdoSIasw4EFOh6AaFQGLIsI5fLenbmpBxKwZ137msq4ESfQVXNMY13mj9CDTd9f7cKnKapKBYLiMcHGmpQdFOnot6Y2z0nV3bzV0fOY+SrEOpZoJB4Min50jSt/PALuHz5Izz//H/gBz845CvxpF6sS1HCnslkKVCUEJLJIWiahnR6HqnUVaTT89A0reGq/s03z7AdCofTCNM0uupRqpfvQeOwul6AKBLN9EbNfpr1e6HeMMMwoGmq628EjxGPxWJQlBDi8QSi0TgCgSAMw0CxWICihJvGqv3m6rTDUpyT44W71lcpo6NbsXHjJo9LK52eZ5rlqppn/06n55nLHWisx1wv1kVi1jZr/LBYGk2msVgCwWAQ2Wza02GKZrVv2TJS93w0sY3vyDnNoC7opUaSZMTjCeTzuYaxYUkSEQyG6sax3bvaaDSGQkFDsVhg12BZNmS5EnIaHl7HckTos1wsFjydKYHli1WvNlf2SoMb8lVMveQ9ajDdGe20PeLU1Kmy+ll9xaNAIIh0ep4lwclyALpeZBnkuVyuZjfiF7fBpe5J6kWo7p/u5t13f4X33nsHgiAwydjR0a0QRcl3ZyrO2mY5WtpallmWOG38nSTllmnkcpmapFS3N4xmqwOk7pwspEmLYrduQrXxrNf8pDpWvRpVz9YC3O+4iql2aQUCQYRC3hU5TR6TZRnp9HzDMpHZ2QsoFjXWStS2bRQKJHEnHk9AUUJIJBKuPuWLh7onVTXPxtMsy5eUydlIp+dx4sQxzM5eWDI3P4ez2O9WoaCV25G23j9Vl4qRNsIW0ul5ZDJpVoniOE65Pl2EquY9ugmHDj2NycnD7Dx+yq5WWqkYxx/ckK9yRke34t57v4D77vsK7r779yHLFSEKGlMLBAJIp+dhWRZUNQddr2itU9fb2bPTCAaJsXbrOZN+yQpKJZ01WukGdCfut1EJzUA2jBJeeeWnNbruHE636GQHT0rTFIhifUEYmnGey2U9Ii6k+UrO83wRT5rAckgikahHN6FafMVPrHo1SrKuBbhrfQ1BH+TTp09iYSFVFplQUCwW4Tgou6Mt1vZRUULM9Ubj44IgIBgkhjuTScOyLFy7dtUlJ9mdmDQNAZAJxN8kQkVscrlsV8bA4XQborJIMtcNo1R34UueJSIIQ93aJBxWez66oKbPaSuZ6Vax6pVYKsZpDd+RrzFGR7fii1/8c/z+7/8hNm7cxBqVJBIJxONxJrSSzWawsJCCrhcxPj7hUb0rlXSmrQ6AqVRV4tyd12wvdmfPc9s43aJWDrg7EGNeRDCoNDzGceyy90wqZ6qXEI3GWSkmHZ9lWVhYSCGTIboR8/OpjnbUq1H1bC3ADfkahbrcI5EoBgeH2aTinrvcuwD3A06ELBwIguhRriLH///svWuMHOd5JvrUvaqru6enm6QoUvSYoizTorUUTU+k4aEk6xKKgnUSGdnVSkZWkRHnzwHywzb8M4Hg2EiQBMfBIsgmkR0gtIFkucju2LqQok0e3ZZjkaJHjqwVdRnNjKihRyRnpq/VXV238+Or7+uq7urbTM9NqgcQJPWlurqn6nu/932f93mIx3g36HpyVXb5yyXbxYjRDCr7OzSU6fi6dHoImUw20FPmW7TUeZ731dXIY67rMNZ5O2haggXhdHrIV1nMYsuWbb4Ge0NLPZVKw3Ec5mMeRD8ZdTwqtjkRl9Y/4QiW0oiNKccWoUwmC8uyWtTTCoUliKIITUtAUVQ4js1cnjiOZ4S4duB5gbkpCUIlZpfH2JAgLHCu7cw3AP9eEeC6DnQ9iVqtGnIqo6AVK3p/OY6DVGoI+fxi22MrigrLstgYaHACheeJAEwqlYaqaoH3EC13SZKXLTPdrvy+kRzMYoQRB/JPOIILhG3bvqwjWKYdLMvRG7x5jCWR0FEsFnyCGrEijcqM6eOK0igpJpNJFIuFFc97r4VMbIxPFhqiK+2vK88DcwajOuvtX9sI7hzHoVzuzOWgSmy1WhWTk+exffsOzMy8D8uqQ5Jkf0OcgOuSY5pmDZZlwnFc5qJG58lHRnavKBC3G0vbu3cf04SPg/v6QXjyySefXO+T6AbD2FyuVbOz03jhhZ/h3LmzmJ6eQiqVRCLRm9TeWiOTGUYmM4yFhasol0ssc6AOTKRsl8LevfvYezQtgZmZKSamQf2PU6mh0Fx5Op0B4DEhF3o82yYqU7SXV6vVok6tL1DDlBgxBgE6Yua6bqjn3Nw3px7iQGsW3gl0KqPDK5hRkKomYBgG5ucv+xwQumlw2Eib49golYoBW2Ayu16v11Eo5FEqFXHhwquwbRuyLMM0TczMTLH7vxteeOFnTDeeVhVM08SlSzPgOL7nYzavjZqW6Pj5qiqhVrPaPr/Z0e376Xp7HkUQsdb6gBGlKwy4OHz43g29U52dncbp0ydhmrWQ3KOmqbj33lbt5+DuPpvN4tZbv8B2/cHvT8baXGia5gdsL2CzGp25x4ix3kgkkhgeJgGmUqmgWMwzclk7DMoBkJTNwUrxVDu93VLd6Lu33leCICCVGkKpVICqaqylBRABGl3X8fDDj7Qcszl7X1i4hmQyFdrILC5eg+M4jBNAVeU6HbNfzfXNoLW+kkrHoLTW49L6gBE1/uG6dlf7wPXG5OR53+9YQrVqwHEcCAIPVU1Ennewjxa8GClZZmLiZSwuXmOLi2EY4HmOle7JQrPh95AxPpHgIIoCdu7champd1EoLAFYudwvZZzTYN9uIxvUTggS2tqebeCYRBWxcUzHcfw1iBgMBQN5OzZ7VBmd2Lwa0HXyfqJS57DvRcY+S6xVFoVuo3H9YiP07DeKEl4cyAeMaO9dacMLKjTmxCV2/tRdLIiomyeT2ddyvKCpA4EH1yUZBgno5GYO6qdvZpBF2UO8Odn84HkOe/fuw8WLb4LnBV8jvdxVnIj2qts/32ym0r0a1cvmYXg4h2vXroQc0JohigIbH6Vox2aPCriqSkh0skxIdPT+ptUAqiFRqZSxffuOyPMcpC/5Rgmgg96cLBdxIB8wogUVrFUZtRrkjrQXIYh2N08yqSCXa9y8dO6V3NxhkRhSihOgaYmObOD1wEpK/WQBjdsEmx+kd33+/AQrFyuKCkVRYRiVSA/xBtZ+E0dL1FRzPQoLC1dZmd6yrK5s9qiAq2kJuK4LXdcZOVXTEjBNs4Wd344hP0ixmY0SQAe5OVkJ4jnyASNKUMFxBi+o0PAcb5ViHNR596rDPDExEToW0YV2/QyldXFrSFRykCQ58nxo300QxBULcySTaSST6a6vW0kg7lVKNsZGB7leKXGtXC6zqlRQMyEKPM8jm93S0/W6HHvd5uMSIpwK13Vw8OBvMeXF5tdRAqsgiD5JrfN8eFD8icK2bWSzOSb3vH37DiiKimQyyUisHMdheDjXNpAOUmxmo0jJtvut1loJL87IBwzaIw5mynfeeTiUsXZCr1l2847UdR0YRgUnTvwE27fvaPu+5uPrepKNtAANE5WhoWEcPvylFh3mqN1nPp8PPZZOD6FaNVoucIAsPvW6iWw2h23brsO7715sKQfS7IJsBNqTfHrBzTd/jn2/QZGRYny8QXu+ABFIqlYNf1yscwXJcRwsLl7r6TM4riGJ3His3dgmx3Qb6H3leR4URUUut4URTbdt247JyfNYXFxoEYUhG28Zqqri0UcfZ49HrTdRronNAZe+hufJWkFfc+jQXW2/c9TauNwq4kaRku3lt1oLxONnq4BMZhh79+7D/v0HsXfvPuzYcV1PIxQ0y+5lROTcubOQZRkcx8E0a0wfnVqSRr2v+fhLS4u4cmW+JbiRGVUeIyM3ht4/PT0F0zRD7k+2bSOTGcLNN9/CHtO0BGZnp2Hb4e/McTySyTQkScJ//s+P4403JmHbDmgWRLIJMs5GTCASEb32/rC4uADPa4zSbYIhjRjrjGamuOu6MM0a2+QOQrOAZrD0uiRGRMSTnAorpdNpX2gJSCZTUBQVqqpBkmTkclvw1a8+AdM08OKL/x9effUVzMy8j5tv3gvbtlAul5iSHCXZeR6xA96//yCA9uvNyMiNGBm5EQsLV2EYFaRSKdxxx+FQwA2OrbZ7TRSa18Zuo2/txrOaR2BpAL3jjsM9jdMNCsv9HSgGNX4WZ+QbCP30fYI7UpIxkMdFUYx83+zsNE6detbvkZEeNc3Cm2FZdSQSesvn7ty5CxcuvArX9SCKAiRJgSgKGBsbC+3sqapUEIIgQpZlVKtEPGN8/DgWFxeg60lwXINJSwl2jz32BwCAv/u7/7ftoilJEstO2oEulvS/B+XOFuPji07XSDNTe6WfQ8vxhw7dhcnJ81hYuAaOI0GpUin7vWkqsuTBMAyYZhWmWcOxY0+hVCqyjUW9buLcubMQRYk5FAbL7LbthDLWTuvNww8/0jEYrTdjfJDZ/SDOZb0nkuJAvoGwuLjAHJEo0UaS5Mi+T7Ck08ioOTZeEuwX0Z23ZdXZAlQul9sGQOI6lkexmMcPf/h3zO87mGFblgfHcZBI6PjpT38C0zShqhp4XkA+v8jU4WiJz3Ec9t+alsD8/GU4jgPTNJFKpSDLCkyzxlSyxseP48CBUQiC2JLZU2QyWZhmrWNfLLiQxdl4jEGBBvGVBnRBEHHo0F0sENBytWWZsG1yz+zZczMqlTIWFq7BsupQVQ2alsC1a1cAtF7XrZUwjmX9wZJvsFVGbYht20apVGC2p1HYKIzxjRBANwpWTHabmJjAV77yFTzwwAP42te+hvn5+ZbXXLx4EY8++igeeOABPProo7h48SJ77tlnn8VDDz2EBx54AH/8x3+84ZjMa4XZ2WnU6ybbpdO5zGrViOz7BM0NKDuc6EIXkc8vht5Hd940Syblwm6jNC4rKVpWPbQ40BEy1/VQq1VhWSQrrlarTK+d5zlfXIZeYo3yebVaZf9NnNaKKJdLKJdLcBwXup5kiwPJplvJQ3RxoprTzaDf1XEc2LYN27bj/niMgaNX0hr1F2j2IJckcp3Ozk7jxImfolgswDDKbCzT8zxMTb2DAwdGkcttQSpFzFPobHsvoIF+z56bQ4GPErWomyFdeziO60icbUd6nZw83/M5xRgsVhTIDcPAN7/5TXz3u9/F888/j8OHDyOq5f6Nb3wDX//61/H888/jiSeewLe//W0AwOXLl/Fnf/Zn+Md//Ec8//zz2Lp1K/7mb/5mJae0aUEEWTQAwf4bCZTtiBPUwezgwdv9fp7LxCEMo4KdO3cBaDA8EwkdjuP2lUFEZbG0bwh4sG2bjZpxHJgBCi1j8zzHgqooimzWmpqs0O9ZrRpwXReapjJhGp4nvXhFUQLBuiGQce3aFRSL+RYCHoBIol2MGINGN8MfUZQgywojzQHw++ykd12tVnHy5NN4/vlnWo5F7mmyGT1x4ieYn7/M+DD93MOSJPmb4/DoHGWRExIfZevD33C0D8yrzRifnZ3G+PhxHDv2FH784x8texLnk4QVBfJf/OIX2LVrF/btI4Igjz76KF555RVGvAKAt99+G6VSCffffz8A4OjRo1hYWMDU1BROnz6NsbEx7NhBGN1f/epXceLEiZWc0poieMGNjx9f0QVXLBaQSCRC4xyCIECS5K7lo7m5S9A0nfXFBEGApumYm7sEoLHzlmUlRFTjOI4R5poRzDR6KUk7jtO2jE17de0XH/I+QRBQq5ls3EcURb/8XgsF/SBo1SBGjI0EjuP9+zmFdHoIqqqxDbDjuP5Uhsu8B9rxVSiL3XEc1p6iG/bm7L4ZlOyWyWShaYmWQEurehTEIyEJRVE7BubVHLlqHqstl0srGqv9pGBFPfKZmRns2rWL/b+u68hkMvjggw9wyy23sNfccMMNofft2rUL77//PmZmZvCpT32KPf6pT30KCwsWzfnyAAAgAElEQVQLKBQKGBpa2zGCfjHoPhElr1HxCaChhdwNdBPQTBqjN2Kwn04Z3ADHetOe52FpaQGp1BAkSUI+v+izyftD0GiFMHCFgBxl+0AeXKxIlmIw+8he5rPj3neMjQJBEDE8nMXS0gJkWQ05BFarVf96Xt71SltuZEPgRW7Ag6BcG6B9oB0Z2Y3t23f0JAZFiWWUzwIMfuSqmYAnijIcx9vwEtfrjRVl5NVqNWRJCZAyqGEYPb2mWiWSfxQ0O6Q91I2MQfeJViKW0LxDNs0a8vlFGEYF4+PHASDUTyc+xiSI1+smlpYW4HkeSqUCKpUKBEFaljgKx3FQFBWZTBbZbK5JvrHzokMrAIRUZ6NYLMYiKzE2HRzHxrVrV+E4DvL5RSwuLqBeNwGsTHCIvD+ooOawDLrdvUWc26Sua0m3tac5SybVN7Kx6CYu0y82itDLZsOKMvJEgkj0BVGr1UJZZKfXJBIJ1OuNkhKV+0skwgpKySQZc9pIKJeLUFUttCvmeRnlcgmZTPj8BYFveawZmcw+JJMKJiYmkM/nkclkMDY2hj17bup6LnfeeRgnT56A69qwbYcJV6TTQ6jVDLzyyhkcPfognnjiCUxNvYeTJ09AEARYVh2lEvFETqXScF0XhmGwzJrMZzoBJ6awqxLQUI3iOB7/6T89Ejrfp576BywsLPhZeTgLaRWBEeB5HOudi6IAx4nnvmNsRgQliYm96NBQZiCz5xRkbC0H27b8kU1CSKUbdbou1esmUqkkPE/Eyy+fxhtvDLesK93Wnmee+SUkSWQqjKIoQBA4JJNJ/P7v/5cVfadmZLNZfwaefBZZexxks9mua+hmRC+xoResKJDfeOONePrpp9n/Ly4uolAoYGRkJPSamZkZFhxs28bMzAz27NmDjz76CL/4xS/Ya999911s3boV6XRYTrNcDm8ENgKSyXRLOcqyLCSTqRZbul6t+HK5HXjood8LPdbr+w4fvheTk+cxP38ZHMchmUyxG89xPLz88ivI5Xa0vJbneSQSOmSZVE0EQUSpVMDwcK6l522aNXzuc5/H+fMTrO9N//niF+9ALrcDv/rVmyF1KapK1dxT43k+0gWKlg8zmSwKhaWPjalKjM0NojbYfdojCq7rds0om8fYuqkQiqIEwzCQzWYxNnY3Xnzx51CU4ZZ7tlwuoVYzwfMCXBeYm/sQ//2//yuy2S0YG7uTZdGd1p6PPvoIjmP7johEg0KWFSwuLg7cYvTWW7+Al146DcfxfHKsA8uyceutX9jwdqbLwaBsTFdUWr/99tsxPz+P1157DQDwox/9CPfcc08oo77pppuwdetWPPPMMwCA8fFx3HDDDdi9ezfuv/9+nDt3DtPT0+z9Dz300EpOac0wSN3gQYAy2BMJHcPDORaYgUZpipLzXnzx5wAAWVaQyWRDrG/XJaSahYVrWFi4isVF8u98fhGSJGN0dAyjo2MQRYmV7g4fvhOjo2OhElxQ8rW5n9ecjYuiwBSaVJUsEoTFvnrZOGXEx4jRDRzHQ1VVrMQUpdvooyTJvnZEElu3XodsdkskmY1unI8c+TIef/yP8Pu//18wMrK7LQGNKj1SgRm6Ac/nF3sikc3OTsOy6ozMSjUoDCN6LHalCI7VmmYNyWRqzefTNyM4b4X1nldffRXf+973UK1W8alPfQp/8Rd/Add18Yd/+IcseL/99tv4kz/5E+TzeeRyOXz3u9/Fnj17AADPPfcc/vZv/xa2beOWW27B9773vRaC19WrG3O2vFd1o14z8kFgfPx4ZKWAltLpPDkVflBVjYnI1OsmisUim++maMxs81AUFdlsLvRd6fejn01mwztnINQQRRAExpKlpJnt23cwDfbNqMRGF2Cipd1ZeS7G2oIGtX6gaQlkszksLFxjWg/9gqimta8uybLi97xTTHa5VCqya4dOpPA8j3Q6w5QP6b0XJN8G7yVCmE2iUFiC67psQ+26LtLpDHRdx8MPP9L2vMbHjyOfX0K1WgXHhUmrmUwWllVfVVW1tVw71wODyshXHMjXAhs1kPeKtbwY293QNIMOBvhKpQLTrCKVGoIoioz0lkymUKlUQnOtVAOdLDZpuK6DvXv3YW7uEsrlIpLJNBYXFwCgxbChHSRJxu7de5ipiSTJuO22g5ibu4SlpSXUasamDOQAWfBGR8fw+usXGNkpxvqDEi/7IZ7RQF6tVlGplFo4P718ZiqVRrVqhII5Daq0XE0nV8hsdxmAx65/Wq0SRSGUoS4sXMbLL7/CrEVrtRocxw7dS5VKBcVinmXzdEMwNDQM06zh8cf/qO25Hzv2FBRFhWXVYRgVv7JAfr+hoeHQGrMamXMcyHsL5LFE6yZFu2pAOw1iUk7nUKmUWK9LVROQJJl5DAOArqfY/CY1iLBtGzzP+WIzLiqVEizLxrlzZ5FIJJFKJbG0tNRzAKewrDreeecttri4roPJydfYBqLbHlMQBNZr32iGKJ7n4cKFc10FQ2KsB/q7Tmq1GvJ5wtfotimLMlRRVY1ZjBYKxCmQiiN5HqAoKtLpIeZlEBzZJEprPFzXgW1buPfeIyH/hFdeOQPSIeVgGGV4HiGu8ryAixffxN69+3Dx4psh0yAq+tLL7DfdXMiywtp1i4vXNoQXeIwG4kC+CdFthj1Kg1iSZOTzi2xX7rokIGcyWVZao6VxgARJykinIP/vwnU50MWwVqvCcay+s5Qg6GcEe3x04ekEx3HYaCPNdAbhTDUoxEF8Y4Fe07qeQrlc7Pl9PM8F5JMF5ooWBfp48DqkpkZ0k2yatcBmWoUgCNi5cxcuXnwTqqoxBTbP86BpGnQ9xcimwft6cvK8v5kVUamUmLpitWr4ZW8iFnXXXffh7NmXsLS0wEbW6OagG6cn2qbTRTIZJiTHI2LriziQb0L045JGQa0ZaZ+L7syDJLQDB0Zx+vRJlMvFJgnVsOsTfQ/5t7eiIN4OvQRjjuNgGEZsjBKjJ9BruJ8gTje+9H4Ilqc7vaf5eXKd8lAUBfv3fwFzc5dCFTN6TyuKGurD0w1qVPZMhaBc12NkNHquQCO40o19sIqn6zp27tyFycnzePHFn7ftc4+M7Mbevfvw+usXWPtL15Mhhch257feDmmfJMSBfBMi6FpE0W1HTOZJU6hWDZYNyDJRcTt27ClW2qMz450yjuYsfTXQLSDTnv1GK6nH2PwIjn4F5ZJpNtoNREedEsMaI2uWZeGee0hpfHR0LPQeMj5G7ulEQvfNo0iAbjcRQ3UieF4MVdA4jvfVGUmvnDqZBSt1s7PTOHPmJEzT9PUjKjhz5iTuvfdoKNjOzk7j4sU3kUjoEEVqslKDaTY2C1HKbhvFIe2TghW7n8VYeyxH6zidHgLPC8hkssjltkLTEkxmkd5oFy68Co4j/siSJPnMcpL5Dw1lANAAyzF/5PVCOp1m59dNczpGjF5A9BfSjN3d4G6Qa7779U4Z4Y7vHugxbgnHcbCsOiYnz0eOfAXvaVlWkEqlmDZ7sZiHYRj4+c9PhDwdDhwYZYFeVRPwPM83RXJYhi6KUsuY2ezsNE6efBqGYfivI/dPtVrDxMTLofOanDwPx3FQqZSwuHjNL+ET7Qk6Ihal7NZN+XKQPhUxAOHJKLuyDQbDiDYU2CxQVQm1Wn/CJtTW8H//7xfw2mu/wHvvvYNUKo1MZhialsDMzBRjn9Id8R13HEYmMxx5vOb3lEpFuK6HVCoNUSQ7+kqlwnbcdD6eirWkUmlm8EAYv2RxC6IXS8dgGVyS5GXLsBLyD1n4aEDvdWPRTaM6xicTsqxA0xKwbSvED5EkucXjux2a2zw0g6fB3DAqePvt/4OpqXfZ/Qy03p+macK2LSaJSrNz23Zw6dIMMplhjIzsxs6d2/Gb38z7ATXJ7ltRFKDrSWgaCfALC1exd+8+likHian0MwEi7/zFL97Bnjt79iUmmU2rE/U6+YzHHnsC+/cfxN69+1rWnXPnzrYYMvE8D8OoIJPJ4qWXTvtGTjJM08TMzBQymeGW4yxn7dxM6Pb9dF1p+1wQcSqzATE7O43Tp08in18EQG60xcUFnDlzkpXJgqIJvWgdN7/H8zymt05BPMadpnlTsmOv103Uas0uYx6bf+V53pfRJYufLMtsN05Bs2eeF3xrRy70+f2ALlg08yGf1dvlHJfiY0ShXjexuHgNtm0HVAvJtd/PJrH5Omxk9sRHgJgUhQVZmu9P27aYFwIl13keYFlmKLPds+cmPPzwI3j88T/CY4/9ATRNQy63JST0FGy70Uy5GcF7Pgiqqx7kxRC74s4b8E5Vw9jPfPCIe+TrgG4kkMnJ8wGP70aJzzRNRmiLYqZ3Q/A9QYY6Rae+eLlc8nvSDXEK13VRr5vMblRVNZ8VnGSLSD6/GJqdpZlOvU5MH3Q96S9wy991u64TMuqJEWMlCPIuPK+/ipHrur6/RL3jGCUVTXr22f8FVdWYyBKdIPmnf/pvqNVqgfPwAHiwbQ+VSgmFwhLGx4/jzjsPI5fbwY5Lx8XaOZlRfk2zJCz9zplMNnSeNFNv/g7d2lnRbHeHjcL2y/GJ0RlxRr5KCPaAfvzjH7Gdd7OTECWBBHtExWKB3WSk7+Wwf6joykpBJWYrlQry+UVcu3bVF4yRGTOd53k/aJNz0fUUJEnys+DGIkB19O+++35s374jtOMPBvFmJjzNAhzHXlG5u98Mm1QGBL8asLHL7HH/f/OhVjMBeD397TzPQ7VaRT6/FFoHmjPh4OspWbVSqeDkyROhtaObdDTNlJPJFKKu/WrVCPWsc7ktUNUEK6tTYZpcbkvH79WpariafuafVMQ98lUADda0B1Sv1zA9TXpAk5PnfTYpKSvR7Jb2sABgenoKhlEJ9dgoPM/F1q3Xte2F93JuL7zwM7zzzlsAAMMoB3yLOX9GNIVUKu0zVSXkcluQTKZg2zZEUWQkucY5kV76tWtXMTo6xnp93QQ0qJhLUKxiLUA/q1t5cCMgbgNsPtDrub+JDg+KorJ14PXXX2OEteZrgOOIlCvpQQPXrjXWDtpnXli4CsOoIJVK4Y47DrNKHO3Fk9K2zFppPM9D0xJIJHSYpon33ruIixf/D0qlIur1GmSZiNaIogSOQ0c+DkUmM4y9e/e19NH74fjEPfLeWo9xaX0V0DznLYoyHMdj5fRuZaWdO3fhN7+Za1kIiN+3tmwFpeBICMdx7DNpiZuW0MvlEnTdQ7lchus6KBSWoOspuK4NWVbbWJB6WFy8BgBMWY46sbULRjSQp1JpFItFdiwA6xLgY8QYBJazQaTBbH7+Mo4de4rJKQdJd3SOPchtEUWppSTdqe3WrPx43XXX+7KuDluvPM9FtVpDvV5HJpMFz/Oo1apwXQe53JYVz4O3U5+Mx9KWjziQrwI6BetuPSw6t6lpCabwBDT0mmVZWXYviW4wPM/1tZwJXNdFqVTyFwgVtZoR+gyO41CplCFJIjRNCGXSpHzIASC7+snJ83j44UcwMrKb9fkIiS68KQnOvZZKRaaBTRzVRH90p1HOi+1MY6wEa6X4t9zPIfdBCYLA+0x1F9VqBYmEjqGhYWZypChaiCBq21bfJWkaMGkgNYwKdD0JgKxJhlEBxzVaX4mEzqScOxms9HsOwZn2bsI0MTojbsCtAjr1gLr1sGiwJTdPY5ZbFEUoirqiXlKxWIAoiuxGDVuLgpXRosDznE9oU/Hgg78bIuERVi2gaQ3N9tnZadRqVV/StbXEGOyzU4U4UZSYJKUg8H6gj8fFYqwcazWauJLNAscRMRiO46DrOjRNh2VZrMd88ODtEEUhtHY4Tv/Wyc08HY7jUCqVWBuMlvSD6m2rRUbrhTMUozviQL4KaA3WdRasu42O0WALkJva8xoEl5V6ntMNRkPOMfznbxc4aUmPiFMQycfh4RwL5IIgIJkkso3p9BC7OTstasHnqH2jrifB82SjYduOX14UUa9vLo5EjM2L9WzjUC12ikQiAUVRcPfd9wMA3nrr14yMSteOo0cf7Dt7bR7/IpsHoFwusXud6Lwn2HtWi4wWj6INBnFpfRXQ3APKZrO49dYvsBuuUw8rWHonCk/kBgMAXddXVHaiIyE0KAfH24h6FZiMa7CUTfvUxAuZ3MyHDt0VkGCUYZqNzUrw5uxWEvc8MgNOHdeIwQQPSSLl9W467kE5zRgxNjJavdA5v/LkgeMQqV8uy0qI15LPL8J1XQwPk3G1PXtu6tvms7n1pygqPI8QX02zhkwmC8Oo+G04L1KCdVBYjtx0jFbEgXyVEAzW/XjqNs9fchwhog1Co5huMCYmXvatCIm3OOlXO5AkGY7jIJHQUSwWEfRsJqIrImq1GtNmb/iRl5BMptgmg86JJhI6s23sBMMw4HkNH3PPc2FZvTF+FUWDYZS7vzBGjHVGMpn0Pb1dpo5IuCaklUaqeOG5ayqgRHgtJdaOWly8hjNnTiKZVEJz5L0giqcjCAK2b9/BeuBrZXjSjTMUozfE42drgH5GKJrHR0ipicf777+L6ekpaFpi2aNn9Pif//x+bNu2HaVSEaZZYyMqu3aNsNEUWZZgWTYrtel6ChwH/zkiq3j16ke4447D+J3feQif/vTN7Lymp6dgmiZ7XXBD0A7tBGG69SyDbk8xYmxkaJoOUaStokYJn2o27Nv3H1CrVUNjY++//y5kWfa1JcLXuW07uHLlI+zbtx9AY7T03LmzHdeKXsa/2o2ODf436Xwu8fhZb+NncSBfA/R7MdKbKJPJYnr6PQBcV03ifhF1owY3EaZZQzKZgqYl/MXHhCCIUFVis2gYFdRqNczMTGH79uuQSKTYsYM3J8kuLBBm+2D7j5qWgKYlUKsRLeiYFBdjIyOZTEEUJVSrRqgXT2fOf/ObOSSTKdxxx50skNFNcbUaVmGkLbFqtYovfvGOFu2KTmtFJjOMet3EpUuzLMv//Of345Zbbl2T36H5XDrNvceBvLdAznmbYEj36tXSep/CitBPaT0IKqMaLDtZljXQMZAozM5Os/I7YczLqNXI+VOCHM9TLXYXQ0NDOHz43hb7w8nJ81hcXIBp1gZud0rJeqlUqqfy/aA/exPcNjFWgGYJ00FAUVRGgo0Gh0xmGK7rsFYaDdDNPeOGxgLhtZimCUmSkEjo7DXt1oqgnkSwjN/cvqPrAPV8GBoaxqFDd63paNhy187Ngm7fb+vWVNvngoh75BsYa0EEmZ2dxtmzL6FQWAJAyn+ua8M0Tb9s7cK2g05JdHET2PkIgtAiUkP/+9SpZ1bFs5yU/D0YRqX7i1fhs2OS3ccbq3HNmmato2wrx8EniCLkqXDXXffh5MmnWfupMfZJrkNCFC3DsiyIohgQi4leK5oFq5o/E2j4lVerNTaqms8v4vTpk7jvvqPxnPcGQxzINzAGSQSJIq8AwOnTJ2GaNbY4lMtFVqLuFKyCJJ2gulTwc6rVakczFFEUoWk6KpXSshbOZs33QYF+/05ZN/ncwbcLYny8QYWQOqE5AI+M7MbRo/83Tp8+CcuqhzwLqM+5KJJ71TAqLJC3Wyu6JQizs9M4depZNldOGfMAmKd6HMg3FuJAvoHRyUGoHwRLaUHRBVGUWlzWqNpacNdP0VxSplKRVF2q+XNKpWLH8xoezvnHxZqNm/RSFqcztByHtq5qcWl9c4PeT2uDxoaPajgArVoKdPyMjn/S6RDKGL/vvqM4e/YlLC0R4ySO45kinKoqsG0blmXh2rUr4HkeiqLg8OEvtZwNTRA8z/VZ9OScMpksu4ebzY7ouVEtiRgbC3Eg38AYlCZxu1JaobDEgjZFI9BxaI5VHMdD0xRmr2gYFRSLRQgCjz17PtvyORsRvfa3q1UDPM/3NAsfY/Oh2zUwNJRBqVT0BZn6q/oIgsgsTAEw+1///0Lyp42gTsibhlGBYVSgaToURUU+v4QTJ34CSZKRy20Bx3EYGhpmVSzCWXFhmnV2LzdUF6PP78CB0ZayOb2fz559ye+dC6ERUGqsEtSSaIe1Gl2L0UAcyDc4luM73ox2pTSgQZppBs9z0PUkM07hOA7JZBI8L8CybDiODdu2IQgCNC2BixffRL1ehyzLyOdLfkm+c+nZNGtQFJUFTUEQkMlkce3alVBVYJDo53irVbqPsf6gfgEAoCgKXNdlGzZFUWEYlWX/7R3H9slyxEM8CDobTq9tqrfAcRzqdROWZUHTdOi6jnrdRLVaBZk3t1GpVFAoLIHjeDaKxvMeswKmCon0XrcsK7IMPjKyG6qaQL1eDzmf8byAQmEJw8M5aFoCtl0MGbZ4ngdZVjpWBNtV/wahgxGjPeJA/glAu147VXCitqQ0E5dlCanUEOp1E9dfvwM7d+7C3NwlFIsF6LrOeuf0eILAo1YzYduEJMfznE/qcZliXDM4jmP9PNsmixJl3AYXj05YjjtacAGP8ckFcfNzmKhRsVhAKjWEcrmEer2OlU4y0k0AbT0FrU2ps5kgiPjDP/x/Qu87duwpFoipJwJAtBJc1/GvdweiKPqPuSyrb5Z47USMtSzibBasxtH7yLZtdpxKpczul0wm25W13guRLsbgEQfyNcR6lZza9dpp/4yy1jmOw/BwFmNjd7ac1+joGPvv4GJDQRzLHLYABst8YctTEckksUytVIgkpCRJTJIWACtnd8vIqY96r4GZVBXWflwtxsZDqVSELMuYm7vE7sPZ2WmcOPFTZgJEsDJCo21bjOBGS9Ou60LXU9B1veX1wU130MpXEARfvrjBXaHP0XJ7cwWhEzG20+besuqwLLIJ4XkBpllDIkEqBFQDvd26FUuurg/iQL5GaFdyCmYEqxXcu/Xa+/28dosAMWBIolYzGEEmkUjCMMpIpYbY6+t1k1m0ptND0PUkpqbeYaNkNHjLsuwbxbQvcfaTXXueFwfxjxmW235xHBvVqo25OQOXL3+Iz3xmL+bnL8N1G8QuQgIjrO3lVnFc10UymfJtg72AAREhrTZv7nfu3IWLF9+EZQVn2TloWgLlcoltjmllSRDI+OehQ3fhzJmTKJUKbNPQjuwGdN/c03OSJBkcR36LXkrlseTq+iAO5GuEqJJTpVLHhQuvIpUaWvV+0iB67RTNiwB1d6NZQSaTZa+1LMv3U7ZgWaRHWCqVwHGkFLi0tITLlz9kDFwKKtdIEYuwxIgCvSZWMtfveR7eeect6HrSryy5LFjSKY6VHJ/nBeh6EtVqhRmejI3dCQAtm/uLF99km3vTrKFeN5kHOc8TnfZ0Os2qV65rQ1UT/vdoKL51IrsBvW/ux8ePs1YA0L1UPqhJmxj9IQ7ka4SokpNlmX3dJBsFwUVgcXGBLXySJLN+e7td/vz8ZQgCj0SCsnIXWd8vCNd1kUgkoaoqajWj7RjYIEE2EzG5bTNiELyHarWKVCqFUqkEIMwAlyQZnmf2TYBLpdLQdR3FYgHXXXd9qIx/6tSz/gy4iERChywrsCxgaupdeJ6Het1k/3ZdB+l0BrWawTa9ZKPrMsdBRVGRTDaUwNqR3Sh62dz3WyrvZdImZrUPHnEgXyNEl5ycFuvCzdJPojfeSy+dhiSJ4DjBL6+D+SVH7fJpf52SbDotwGSjQ9zY1iKQCwIPx+mPPBdjY2AQSnuUCZ5KpWAYFcbTkGUlpOnfOzjcfff9LUEqOKtNs/5SqYRUirZ/lkKjaY7jQJYlHDp0F4BG2Ztk6SJefPHnMIwKdD0JoLG+DGItWU6pPGqDQIP3wsI1WFYdqqpB0xIxq31AaK8X2AMmJibwla98BQ888AC+9rWvYX5+PvJ1Fy9exKOPPooHHngAjz76KC5evMieq1Qq+Na3voVbbrllJaey4XHgwCjTWfY8z7+JuZbd7mbqJzXaBbKftUiQZRWapuHxx/8IDz/8SMtO3DRNLCxcQz6/CNOstWxkgrAsyy/bu2xcDkBHmctOoGM/reBA5ubjAL5ZMahJhEIhD8/zIEmKz/nQoetJFIv9cStEUUQ2m4sMTvS+EUVy7ZOgDZTLZRSLBcZuB+AT5DjUaiZOnXoWL774cwDA5z73edbSohvjUqnE1NiAwawlUetWv6VyunGpVCpwHOKoWK1WYVl1391RYCS6GMvDsgO5YRj45je/ie9+97t4/vnncfjwYbQzUvvGN76Br3/963j++efxxBNP4Nvf/jZ77rHHHsPOnTuXexqbBrTkpOs6TLMGXddx8ODtEARhRTfJWmJ2dhrj48dx7NhTGB8/joWFa6EAC7TPAujNTHf2juP45J3OlyDpUbp+ttF4rBuCZVFBEEGEODjGHKbz77KsIJHQkU6n287Ux/hkoVgswDDK4DgeoijCMCp9q8DJsswy6CBmZ6cxP38ZxWKejY+RwO2FRGQAMClWzwMLprSXfuHCq7Bth22iySw6UC6XBrqWRK1b/WbPQX4QVZEjqomE3LpZqpAbGcsurf/iF7/Arl27sG/fPgDAo48+iu9///sol8tIJhuL7ttvv41SqYT7778fAHD06FF85zvfwdTUFPbs2YPvfOc72LJlC37wgx+s8KtsfESVnLZt274p+kVRrHvLqsMwDKTTKZhmDdWq4S8uEmZnp0Pfg97MiqK2LI6KosE0o8uWlGmeSOgtillRkGWZCXrQMR1VVSEIAiqVMiMb0XnY4PcaGhrGtWtXAMT98o8r+iNNeixD7gdkQ9j6OL3WgudCdRY8r6H0Ftyo0kAPAKIosMoXEbAxUatJbNabvjeqrbUSrJQoG+yz01E8ImJDqijEelXB+PjxDb8OblQsO5DPzMxg165d7P91XUcmk8EHH3wQKpPPzMzghhtuCL13165deP/997Fnzx7cdttt+PDDD5d7GgNBP+SLQRM1BskmX01Ese5VVUOtVkW5HNYklySppe8VvJllWYEsK/A8j5HjTLPacZE1jAoSCR3VqtsxwLqu16LxXqmUwfN8pKBFMzmnYRjz8eyXy7KMemIYRaIAACAASURBVL2+3qex5qA9dM/zoOtEobBU6p4F9vv317QEkslUJNGM3kPJJCXUkeuMXnNR1qlBcxRNS4S+j2VZ7Fqn9w7P85F9+ZViJetesM9OxujK8DwyImdZFur1GjwvesQtk9k30O/xccWyA3m1WoWihE3PFUVpISX1+rr1Qj+SgptJfnDQG44o9qqmJfzMgPS9wuzb8ELWjTRDy2ydep2mWYOmqS3XTtCEop3bGsdxbZ8Lbqb+6Z/+G2q1Wshh6uMCVU1AVVWIYg08L6BcLq33KTGsli0saa00etGkP2t05GZQLEeitVarss1pqVTA7Ow0rlyZx+uvX0C9bvoBWWOEOlqVom0dKu0a3KyKogSe51GtGiiXSxAEAYJAyKVBYRiAg6pqA596Wem6FxxJk2UFqurANKuQJBm6rrMNTNT0zv79cSDvBV0D+alTp/BXf/VXLY8/9thjME0z9FitVmtRK0okEj29rhOSSYURQwaNZ575JSRJhCTJAOCbBdTxxhu/bLmI+nltEILAI5NJtH1+0Jiaeg+vvHLGF2RJoFYz8MorZ5BMPog9e25a1jGz2SzK5RJEUWaPWVYd27ZtQ6GQRyaTCRHJeF5GuVxi3/vOOw/j5MkTcF0boij5QdXFnXceBgA8/fRPUal08xbn8Du/87t47rnnQj21XgOuJIl4441fIplUMDExgatXr8BxXIiigC1btiKVSvqGMB/PkrplmbAsE7qe7NqiWGuoqsZEggaB4Ax486YsKGs6aARV1ziOw6lTzzD2O33eMAzoOo9cbgssq45yuQJZltlmVhB4uC75DocO/V/41a9eR6FQYN/LcRw4DpFpbYyhkV6zJEmh+24QWO66R5HJ7GP3XD6fx9atWzA2NsbWor/92/8KVdUi14+1XjvXGoP6fl0D+ZEjR3DkyJGWx1988UU888wz7P8XFxdRKBQwMjISet2NN96ImZkZpjZk2zZmZmawZ8+enk+yXDa7v2iZWFxchKKocJzG4s1xAhYXF5HPG8t+bRCZTKLj84PGyy+/AoAHz4twXQ88L8JxPLz88ivI5XYs65i33voFvPTSaTiOF5oRv/XWL+CNN36JQqEYyrYty0IymcKvfvVmSCUK4Py+OqkS0PO5554HcPLk022z5kQiieHhYeRyO9hxwtKZnaU0Sa+9gIWFRXz44SVfyIZ8Vr0OzM3NdfROX2usVo+eGOEsz/99NUGqNTIsazBl/6DGf9RGj2bqq6e7z/ls9wITlAE4NuJmGOT7UhMVRVHB8zyzFSWkTAGvv/66r7lOrgciSyxCVVWYpgnPIzLFtNpQKBSQzeb6Wm+6Ve+Wu+4FkcvtwEMP/V7oMfreZDLdUq2j64fjuGu6dq41usWGrVtTbZ8LYtms9dtvvx3z8/N47bXXAAA/+tGPcM899yCRCO8ubrrpJmzdupUF/fHxcdxwww3YvXtjlKLT6aEWRmq7sY1+XrueKBYLPbPJe0Un9urY2FjkiMrOnbvY2ImiqH4Zvo7Pfe7zAIAXX/w5xsePM2KcpmnYsmUbM08JwjSrWFi4hvHx4zCMCtLptD+6QqxG0+l0xyzLdV0muUl6843Noee5GyqIA+ScZFlBKjU0sOzRcRwUi4UNF8QJPN9cROh7vDA4c934rXqr0nT6LDrlEOxN93o+qVQqZOhDNgweeJ5UFkmvntxD2WyOEb4ymSxyua1QFBWWVUepVApl3IIggOc5v63V2IQ0eun99fWDo2HBsvns7DR7zWqve4MYcfukY9mBXFVVfP/738d3vvMd/PZv/zb+/d//HX/6p38KAPjoo4/w0EMPsdf+9V//NX784x/jyJEj+Ld/+zdWqn/zzTdx9OhRPPHEE3AcB0ePHsXRo0dX+JX6Qz8X0Wa54FbrxhsZ2Y2HH36kZUZ8z56bIoP83NwlRpCj+tLlchnnzp3F3NwllEpFzM9fxpkzJzE7O83OW9eTGBrK+Dt0sjArioZkMoVKpYJ63YTjOGzRy2SyLIvpBLqw0sV+fWxKewvKJMNyfb/odvPv4ddvdhAbziR6/Y0oggGzUxCjGz+g4a9NlNeSfim8MZrI8zxEkWSI1Wp/GWEqlYbneb6+euMcybVGyu6yrLB7qHldoZ7kpERPS/LESZCyvam3QSqVZm0E+k+hsBQKxJ1ACXiu66BQWEKxmGe+5BSrve4NYsTtkw7O2wSMnqtXV5eUs9qs9bUurQfJKbQMXq/XoKoJWFZ92eS3dt+93fcLqriVy6XIBZEEIFKGlGUZS0sLbKGjAZvjOKTTQ0xfulKpwDSrSKWGIIoiqlXD7693v5Rp7zI41rNRwXFcSPs7OGLUK6KY0BsRPC+ErENXWvIOTkAIggDP85DLbWXXDh15bHiSawDAxiApGW4510kmk0WlUgrMgYffz3EcPvOZvahUyiGzFGqeZJomRFFiEs7NAjEcx/m68BI4zoNl2SiXyywbp8/3EgyPHXsKAIdKpRz6/V3XxZe//BX2/vWSVV3rtXOtMajSehzI1wDrcTEGbzxZVmAYFTbDTfvb/ex6ozYH9Bj79+8L9cLpjT45ed5fOGtts5rggkszazLv3byQcxgaGmJja+VyCbncFrbw2bbVY4Dur/TaCaIowXHsVfM4D4raAGQRTyT0nhzc6O+6kcxmGkYeredDdcIXF68t+/ckAi5CS/ALfj7P87juuut9pzOXva8dHyFqtrvx2/IQhEYViAbt66/f6RsBceA4nvmIU9x88+cwP3858l4KyhjT0jrHNTYUHMchm93CTFdeeeWMP85FKxJEYpbjeOi6jocffgRA63pAMuu6f+/YfuWnQcgDgO3bd7D3rxfiQN5bII+11j+mCI5UjY8fh+M4KzJniZojp8dIJpW2Fq1vvPF6x9JkcIErFvO+YETUIk7mw3O5rbBtG7ncFrbIHDv2FOtxk0W5UxAYTFAjpVfRn4Vdnbns5myOLr69vpcGiY0CURSRyWT9zVeNPc5xHEzTZCply3cxc8FxEhyn/Qiiomj46KPfAOBCJLF2HxmVUQPRvXUaaB9++BH8y7/8M/L5RdBSOn2eZOvltvfSyMhuNqpJOBKEGOe6hDNx5MiXQ/dsMvkg/sf/OM5kjOn4p+d5jBMzOzuNM2dOwjRNn7BWBMdxSCbTEEWJjcXRyoXnAclkMlZb20RYkdZ6jM2BQZDfOh1jYmIi1Aun+slzc5ciiWvtEFU2puQgAD5ZrrU/l04PBRbWwWWfoii2JTq5rot63YQkSWuW8bqu25f+wkYrqVuWhXK5FAriAA2Knj9+tbJef1BrvJlbQH6/si+N6rAxrn43DqSHLsDzEMiESQCkFr5BG9FGpkv+u9v9GOxJk1nrFFKpdEsQBwg/Zfv2HRgaGkYmk2XtpyAnZmLiZVSr9DdvnK9hlP05boFVMAhvIAWeFzYciTdGe8SB/BOAQZDfOh0jn19iC5Np1pDPL6JYzGN+/jIMo8Iy106gvb/gwktKoVwomEcRYQ4cGIUkyUy7uhf0Qg7jOB7JZKrl3BvvpRrX4WP1z7rmez6n3o/ZKMdvJNDqDM0AaRBplKBXtvkI/4bdlfn63YQRQRfd3+QRgSS6EdA0lZW863XTD4h8KEDW62bX+7Ff8lc3Mlo+vxgqnVPQ89b1pM9DyWBoaJj9LTYaiTdGewhPtnM62UAwjM0tKamqEmq19Rtv0rQEZmammFAF7cndeONNOH9+AufOncX09BQ0LYFMZrivY9xxx2EUi3lUq1XYtuUzdRuykkS4QooU4aAZvKpqbFEJZuVhtzIOudwW/Mf/+NWWc8xkhpHNbsH7778Xem830CDSDq7rsHlz6gFNzxFoBIHm0bV+g4MkSf6iPVi9hHZl4Y0CkjHTysHGPc8g0ukhCIKAoaEMDh26m5mU5HJbcejQ3SzYTk9PsQmMREKHqmrwPA+pVAoHDoy2vZfotZ3JDGPv3n3Yv/8g9u7d1/a+VFUJqppEJjOMhYWrMIwKUqkU7rjjMDuX1177BdskN18Pup6E53lIJHQkEonI968notbO2dlpvPDCz3patzY6usUGXVfaPhdE3CP/mIOSXCzLguPUwPNEUWrnzl24ePHNnmUXmzXJg8zVZFLBc8895wtX0Hdwvua0DdOsQtM0mCaRPhUEAQcP3o7R0TGMjx/3+4FyQAxDYCYSdKwsmO1Egc6hK8owC7T1utmWGEYdmLoJydAxoGCmH1wMyXdeWSZt2xZcV+7+wg2G5g1Nt9c2v851HXRzv9sIoJtCWkGg2WonnwQqS2oYdXbd8zyPm2/e2/FeApbHEO90LkNDw36/Pvx3oFrnruvg8OEvtfUQ30hGJptJJnstEWfka4D1ysjpRW/btu8ARkrcd9xxGO+88xZs22ZZMSW6LCxcxd690bKLNEvIZLKYn7+Md955C9PTUxgZ+RSuv/5TePfdi77ylIBkMglZVph1YTabg+u62LJlGz772VswN3cJ586dhet6MM0qRFFCIqFDkmRIkoT9+7/AMspgttNpNz49PQXTNNnokOM0yo3NFqW9srl7zWhJQFp+VmnbNnh+MAxzOq436Ay/GaJI+QH9l6fp9Ubeu74z8J3ta0n7xHGItDBVYHv//XcxPT2FUqkYWdXKZIZRr5u4dGkGrkuIh7KsYnHxGjKZYYyM7I7MuIP3rCzLME0TMzNT7JjN6GVtSaeH8MEHMwHmO9mYKIqKoaFMZPbd73msFpq/3wsv/KzvdWsjI87IY3RFJ6Z5lAlKLwS4qB3xyZMncPjwvdi+fUekMUqQYd78fmL8QLKdZvvF0dGxrp8d3I0fODCKM2dOolQqhEr1zdKfdAyJ43ifHBRNIlMU1ZfX5FGtRtusUvA815b53As8z8WgquB0PG+1QNnwtm35C6ngn3+vX6B5w7J+Y3L0c5PJNGo1g21ERVGCadbgui5qtSoymSz27PkMq2IBHH7zm8tM9EjXk1haWsKJEz+BLCvIZnOo1WpIpYZapEc7TYtMTp6H4zioVg1WvZJlZUVGKCMju3HffUf7yq47rR3rmfkud936uCMO5B9jdLroJUlGPr/IFi5NS7RlqgZLbFSsQtfJcYk3so3JyfMhl6PgfGyQNBO1QABEKfDRRx9v+11mZ6dx4sRPmdmHIAjMjjK4uFBmMAU1laA796BYxosv/pwJ1hDRnHDlhwaWbkEcaJhZbBR0I/0tN3A2txEaLQqhp1E3TUugXq+3mLbQv02/gjcrAd3QZTJZjI3dGdJJMAzDl1FNQtMSsG0bFy68CkXRIIrw7UPJ7+e6jm+JSsiZllVHpVJBobCEVCoNoBHIHcfB/PxlHDv2VBtd8wXUajWf5MmzSYWV/ib92iVv1IDZzUXxk4qN36CKsWy0Y8dKkoxazWAmCK7rsrGgZqZqsxazZdVRqxkBH/EaisUSLl/+EJOT57F3776ObNvljMLNzk7j9OmTocXfcRyUSkWmHw6QTYKiqBgezjGpTYDOFzcWxkqljBMnfgLTNFkm3nxOAHxlud7msKkBy2YAlfZcDoJuWwC5nnqxfE0kkhAEwd84NR4n2uoN/XFq0dkLeuEmUKlVopInQZJkZDJZbNmyDUNDw9D1JMbG7mxhitu25RPAdDZSScYfTb/aEfV9PXaNSZIEQRBCjm6mWUOlQiol7XTNqR9AUDue41audNcvNqqvxGaRyV5rxBn5xxjtMmRSrlMhSQ2CGceRXmDzrr05gxZFkZX+ADCWuiAIyOeXMD9/GZIkI5fbEkngMYwKqlUDiYTOdvzdFghC1mvlSXieh2q1guuuux5AOIsgwjLhLIb2CGnQkSSJWUcGs24SXDhmtPJxw6BL2NQqtPNrXBw8eDvm5i6hUFgCAF/bnAs5lfW6IaKBLp0eitwEBisOjmP7mwgFlmWhVCrCdR1IkozbbjsIgIgm0bLz3Xffz6o1QRAP8M4jcrTCBQCapqNcLqJYzKNer7PzkWWFbQ6ay9VB8Zgg1nqMsJfqWjPWghzXjSg4SGxEsl87xGS3NcB6kd0oMaV5LOX999+FLMsQRRGqqrHxmHrdxP79B0PHOHfuLGRZDs0lm6YJ1/XY3C9RzFJRq9XQyFQ4Ro4pFPKMOCNJEmo1E5ZVDwhRhEdvmnHu3FmmPtW8wHmeh7vuug+ZzHCI7MZxXGjxbDbW4DgOQ0MZAIQ1TjNvGsSDx1dVbUUKaYIgMh3sQWGlTHma0XQCz/PYsmUb6nWzx9Ju+3OiI3oHDoyiUimjWjX80TOv79lxjuOhaTojOwXlS6ksahB06sCy6n71wPXJZwquXPmNP7bohUhdsqywHnXwOI5jd/zdKJmMbJBt8LzQsgmlTmiyrDDrUnrfffDBNNss0E2BomjIZnORZK7VWlvarR2dPCj6Icf1OkIW9f16Hc1bCdaK7BeT3WL0hKjeWD99pubXyrKCRCIBy7JgWXUIgoBUKo1yucTGuagcLM02AASyelLmLJdLMIwytm/f0XWnm04PMfJPMwShcQkfODCK06dPolwutgSeqA2AadZ8bkDN/w2sliAuilJIT3s5cBziVCXLMuvD05798nqfKyeGUZGSTp9P1et6rUoQf+/2G56gdC/pBVeX9T14noMoCrj33iNskqHZB4ASHtsdn1Rzqux4ySTRtKbXLd1g0oy0WjVQrfbaq6aVAJdtUmgli56PYRiwLMu3Lm0EBpoJy3Kq50x4tdBPX70fctxmGCHbqGS/doh75J9ArNS6VRAEHDnyZezYcQOSyTQURWHleaDhHEV73819cbIZSAIg5fDJyfMdbRcPHBgNCbIEwfN8qM9IM1+aoSUSCaRS6Za+q+d5qFQqbANz220HWWAN/vvGG28aSP/b8zzU6/WQMEevveCIo634fADSt+6W2ZdKpSZhnvboxifwPJdJ995339FlVxU4jke9XmfXTZQSGi1ftz8G51cEWtUAXdfB0tICyuUS8vlFLCxc9Y183J5+C9clf9t0ujMPwbIsGEYFO3fuCj0uihJKpQKWlhYgCMK6BrjZ2WmMjx/HsWNPYXz8eMt9Sp+/fPlDVCph+d123JdgkAxKOtNN/0bAIGSt1xJxRv4JRD99pm6vJX20eiC745g+eTDLD2b1lPRDS/KVSgWnT59EIqEzCcvgZ4yM7IaqqpF9clq+pIuALKvQ9YZjEOmJFqDrSZRKpVAZ13GIvWtQDOP11y/Asuqsfzo3d4mVOAfTL+eQTqeZJvbVqx+RR9dh/KparWDr1q24dm2hjVENCWo33/w5fPjhbF8671EoFPLgOA75/GLIfawfEJEgG4CHfH4plMkFr9/x8eOYm7vU9VhAuP9cr5tsseZ5PlS1oIRJAB1bLZRvQv/GAG0htP59JUnG3NwljI6OhTLV4eEcbNteNUOeXtAtcw4+T+8P6sFOR0ujqnwblREfxGZjx8eBPIDNRG5YKfopm7V7LQ3yb7zxSxhGFfW6CUXRIMtKS5YfJM4QtTRqt8jBdR2YZg31uonh4Vxkqc0wKpGlYCIB21gEohYIAL7jFAfXDVtW8rzAPmN0dKxldv2tt37N5GVXMrJF35dIJEILPH2ul+MKgsg4CaSFsXJns3vvvQ/PPfdcx0V0auodNgWw0s1Mg4C2/OPQtkS1ShQDo8qdBw6MYn7+ctvPob85z/O+zoAFURTZ/D01XGk3DtfJ+tR1SUDLZhUoiurPo7fa8goCOUZw6mIjlXO7nU/webpRBjxUq0ZIAa8ZmyFILofst56IyW4+VpPcsN5a66uJTGYYv/VbX8TnPncbtm69Dvn8Ygs5ppk4Y1l1JJMpFnTL5SIAMM3nKLUmqhcdBWL3SI5XLpdQqZRRqZRRr5v+LHAK1aoB4lYV9pW2rDq2bduOQiEfSb6Znp5izHZ6jv2Cku90Pcm+m21bKBTyPRO9qGwtQNn3K5+1Hh7O4ciRB6CqSUxNvdP2u9FMNJlM+8I30b1nmsEOsrIwNJSBIPCh9gYNwACYUU4zSTOTGYbnefjoo9/4gkM8a7eQcyS98S9+8Q7ceuttgWvTYt8lSoKWfi4ZEWscsxmeRyYeFEXByMiNWFi4FniW9PjJ+bvYsmUr9u7d10IspZ9XKOTxwQfTkcSw1Vxb2p0PJecFnxcEEaIo+MRRB7nclrbkuE6+Dc1r7UYjCg96QxWT3QaMjbYb3ozolOU3+6NXKo3gSLOmYM+4udRG9aKbs2KSpZOd8pUr87h8+UOWSTmOA8OoYN++/4D33nsHS0sLoXOix3nhhZ/5QYiUEPN5otAlSTLbWBDjlH56ug0Nd0J0U3DLLbfivffeYUI8PR/Jl3+NkppdLniex6FDdwEArlyZb3tMGvQsy0KxmAfP875kqQPLqgf6xjwkSfQZ28ayNxocxyORSKBWq2J4OAfDKLeU9Om4G60QtMvkRkfHcOONI3j55VdQLBaYT7dl1SPbNwC5Nknwj5bzpdUZz/OgKET2mG5Em2GaNezf/wWMjo6hUikjn19CtVplc/Tk78mxLC8qUyWkuDrTcVhLYli3zDmKCMtxPHRdZ0qOUVjLEbKVoF8RnfVEnJH76Lb7XAk+zhk50P/3a96Rk9Kjh2QyxVjotm0jlUqxjJzqRTdLgQ4P53D48D0YGdmN8+cnIkd3LKuOT3/6xsieKSFOmRAEifXhySaDBIt63fR10Btl/YZOeDQkSYKqanBdB6qqYevWbbjpps/i179+nZGm+gGdaQeWP8LWfM6f+cxefOELv4Xz5ydw9uwrHbLxRgmZZqP1uumTIMnfIpfb4uv4C1BVlZUilxPMdZ1snOhmoZvULM/zuPPOe9tWzXbsuA6f/vTN2L//ID7/+f249dbbWrwCghmupiUwOzvNeuCkBA/IsgxN09kYXSaTxd1334fLlz9kmgqtvx1ZS/bu3QdNS+DSpRm2+aAmKnv23IwPPpgJ+Q6Q+XqSqRpGGaqqQVXVSG3x1VxbumXOvWbWUaNm7bTmm/FJXzvjjLxPbIa+zccFrTvyDGo1g5Uqo/pRvehFF4sFJBIJcJzOHiOL3jWUSkXWt6OgzGXPAwyjDMsi8/GN+ebGbDIApFJpZslaqZT8YNWauQmCiOHhYRw4cISd37/+6zFUq7XQeFsv4DgOmUwWS0sLyy7r08ARVLd7992LuHz5w1DbIAr096KlZrpoz81dCmVdx449xVolsqxAUeowjN57+DwvgONISTPIq+j0nTmOw8GDtwMIC7p0yu66EbjodXb27EsoFJbAcRyGh7NM/S14nMnJ8y1VniAEQWBVpagstNmBMMp3gI5IBrFWxLBumXMvmXU/o2ZRHKVMZvMZoawH4kDuY7ORGzY7mstWvRANu5W60ukh5PNLbPaZGk6Q8q+AVCoVsjVtJpnRfmvQpzxIeCLBhpDzZFmBbRNhD/o6nueZPWvwe01MvIyFhav+Z/T+G1FW/2OP/QH+4R/+a4vveS+ggYEKlQT7y5VKuWOgDFYhXNcNVRLm5i5hfPw4uz9Mk0iXiqLoKwYa7DuQ8+j0OQJUVcG99x4N/X3vuus+PPvs/wr0oUm7gv7/gw/+LgDg9OmTrMxfrRo4ffok7rvvaOS10ksLrdt1FgxOnb6XoqihRIAek17nV69eafEtAMK+A7QNtV4JRrffotvzvbYs2wX8ZFJBLrdjcF/oY4o4kPvYLH2bjysG0Y/auXNXZI9ckoiKHSXltGN7N4IWdU5ryGUSRywRlUoZmpZApVIGxwGCIEEUxRZJWoAsTmfOnES1Wmv9sACaKwWUHBcMnsthqAuCCF3XfbEejkmV9sKUFwQBDz74u6FNSDOuXr2C06dPguPI7DMlOllWI8uPYnc3s9+JfSvp1Tfff6OjYzh/fiIwNUDeMzo6hpGR3fiXf/lnmGYtNFVgmjWcPftS5PU0iNGn5jnodr+jIAihRKA5WJXLJdi2BVEU2Dk1n8tmTzB6/b3bBfyJiQk89NDvrdn5blbEgTyAzURu2GjodXRvNUf85uYuQdN0WFYjI5ckBbZtMXnYZJKMybSbm25GY2xMR7Vq+CN2KpvzdV0He/fuw9zcJbz44s9D32ly8jxM0+xoccpxHK6/fgeuXr0CyyLKco1AS4LB7Ox0S7BoHmmLtmGV2XcI9tiDhhyNx8IB9+DB2zEyshtXrsy3DeT1uslK4tnsFoiiEFI/o1rqth0+92AQT6eHWAZ24cKrSKWGWkqwo6NjbL6fWIYm8NZbv8bc3CUsLS1EirTk84sYHz+OpaUF2Da5FrLZnF9JsVeU4QaDE1VsC86aA2Q+vLl83Mm3oJ3vwGZPMHptWbYL+Pl8HjG6Iw7kMUJYTqCdmnqvpz7YcqQZ6fksLi4wglBU9gu075GXyyUmtylJMjRNC7lSNUMQRKYjDwi+UxiHWq0KRdFCWUOlUg8FoCDjnWp7i6LYknUDhExES8Dj48db2gKqSrS4T5z4Sdtz5XkBpmlGPhcV3INZPt0MEGcwAbZNsmPaHpidncavf/16288mx3MAcDDNGpPRDR63dQMS3jDQwEf4CW5kCfbhhx9pEUwh1ZEKY7AHVbgoCW9paQmmafqqeiYuXw5LwlLymCTJOHz4Sx2/ZxDB4JRI6Ez9jljrpuC6TuQ13RysEgkdxWLRJ2hGc0OAzZ1g9FpRaBfwM5nMWp/ypkQs0RqDodmyNMpmMQoTExM9SS72K81IzyefX0KtRqwl63UTS0tLkefVznoxl9sSkvDMZIaRzW5hfubN0HUdudxWqKqG7dt3+LPouj+OFiYe0ey/UilhYeEaY6U3W64Sf+nGZ8myEurjHjgwygIBObcUPI/Yy5K+dqvELCGVKSsSVyHz7SmoqoYdO3biwQd/l/X4JyZe7lHNzUO5XGajWRRkA9PIlkVRanlnoZD3iYNk81Kvm0wWtVwuYnGxQSZrd/3Q34P+m/5elhXe4ETp7VPb0H4QlC2mG0Patomy7qUypoZRwdLSAup1cl7Ut0CSpLa2bMJJvAAAIABJREFUv5sdUfK5Ud+xnWz02NhYmyPHCCLOyGMwLHeWPp9fgiSFxySi+mD99ifp+RClKI6ViA2jDFEUW/qgwd0/KVkSLfVyuYTTp08im83h7rvvD8lLNmfnmpbwfdct5HJb8PDDjyCTSSCfNyKJR1RApFmwhJYPi8UCO29KiFMUtYWMFVVC5Xke1Wqj/8txjd4y1bsHgGee+Z9t/zZBRGXIyWSKzVfPz1/GiRM/QSZDWNqLi9faHKkVVEedlullWYLnEec4ytB+/fULkYQ9wzD8jFZEqUTMdyjRrl43mZ561PVDWiVkjptWbABA15OoVEotIkBRkGW1L72I5r8VYdofadtKolWERIKcU7FYRCqVYtKm99wT/d7VwHqoV/ZSUWjXQtiz5ybk8yuTBv4kIA7kMRiWSwQiVqXFrn2wfkf86PnQ4BVkTZPS6QJb5IHGYkBHh4CGNrdtW5ibq2J+/jIrHdOFgwYMRdGYs1tU+a/VXa1zKkcU59KMbEZ+qywOHbqrreRt8PFjx56CKAqhUjjtq2qajlOnnu1LizvIxKf2n4IgYGHhami8bHFxAWfOnOxp3C1InKMl7kSCVC9Ms4bHH/8j9tq33vo1m/GnAbbR50+iWiXz+w13Nw6KorGKDWHGlyGKAttw8byAbHYLVFVlAaBarQY4AZ2DOHG463+cq9dyd3BzTCoJRG64UunN+W+Q2OiuY5u5hbDeiAN5DIblztKPjY3hueee69oH65eBS8+HKqtRBM0umjMpSjJz3WFWsm0s5iTgXLjwKrZt2x5aOHrNVILuap2CRFBTXBQlKIrSdwaUTg/BcVzUalXQMTf62eVyyS/X86wn3CuC7mvBTUbwOLVadN+99Vi8Xy0hm4JMJguAVCiiNnLlctk/bw4AzeDJPL8kyXAcm3EENC0BzwMuX/7Qn0bg2YaBML4diKIQMr0BGgGr20aL/harOc7VvDlWFBWyrMA0ax3Vz1YDsXrlxxexstsaYLOoE/WjgRzEjh3XQVWTXXWJ+9UvpufD83wo8yTlUw7JZNKXwQwr71GVPmLOEg62JPB5qFRKTDWOnls7pSn693vhhZ8xBbpEQg/5aTezpiVJ8tsAZCNCtNULmJp6G57ntVhXtvv+ly7NMJ11x3FZ8KaBvbkvHUaDnU7K+o3A6XmAqmqsXxvVP+4mSctxxMlNkiTU62SOW9MSba8bTUuw708DMs28dT3pB1PiDa6qGhzH9svjnj8219A4d13H94/nUSgshdTZ6HX23ntvd/2NAcCy6vjsZ2/p6W9CEaVWFnWPTE9PwTTNkPxws2rhStDP2rKa6pWrhc2ydi4XsbJbjIFjJaMuvZbF+nVdo+dDx5poWTiR0JmuczOCmXyUWxrHcSESVa9ozq6o0EpQZIVmtYIgMjKUbdt+35drqQhQNFcEdu7chbm5SyxAiqKEbdu248CBUSaSQhH870QiCdOs+u0ID8lkGl/60v0ASOa1sHCNldQzmWEkEglcvXqlzTdu6MVHPstxKJWKPvNbgueBKZLRKkuz4trBg7fj/PmJ0AbI8zzUagZuuulm/PrXr6NUKrDfMais1xiXc5nmvK4nsbREJgVkWUE2m2PX7PbtO1CrGeB5EfW6iVKp2HI9kJK3gosX32z5m7RDPyXqjTQHHqtXfnwRB/IYIQyiTzVIQg09n+bRo04LIl08JUkJleQp6DhSsL/eC5oXQjo+RF2/bNsJqbsdO/YUDKMSEJjh/GzSDZUzmwPD0tISLl/+EImEjmQyFfqu3c7Xssi4FQ1QQ0NDLcYgQSwsXMa//uu/tDxOy92NfnUrgqpvHMeFbGA7Bbtsdgvy+UWWadNN2dTUu/C8RgUhOEsfVNCjpDZRJAGath6oTj79nAMHRvHKK2fgOB5ct2E4IwgiZFkJbQIty+q5xNxPiXojzYFvpE1FjMFiRYF8YmICf/mXfwnDMLBjxw78+Z//ObZv397yuosXL+LJJ5/E0tIShoeH8eSTT2Lv3r0AgOPHj+Of//mf4TgOdu7cie9973uRx4ixObBahJp+FsTgay3LbOmvcxzPSFTdpDgnJ8+jXC4imUwzbWy6EHIcD01ToaqJSEct0vNtOGORwOSA54UQuao5MFiWCY7jUK+bPnGMzKufOvUsFEXp2A8nmwmiClerGVhY6DyatmfPTSywBk1hFEWDaVYZGYyinYWpJMmYm7vEAnmnYEd95+l3NIwK061PJJIYHs4BIKIu5PMosbChRud5ZCNlGBVWbrdtm/EiTp16FkeOfBlHjz6IU6d+hkJhCTzPI5VKo1QqolZzOiqqdUK/pNBBkbi6aZF320B3u4fWg9EeYzBYdiA3DAPf/OY38YMf/AD79u3DD3/4Qzz55JP4+7//+5bXfuMb38C3vvUt3H///Th58iS+/e1v4+mnn/7/2zv3ICnK899/Z6Zneq67s7suF91la1kOosRaUSlE0BMDLChgTFVMgfU7nnhJmX80Can4l0kIZSUKIpWUOb9U6Y/yAlRCVaw9ERRIwB/LcgmKJGiOa2Rh0ZCwkdll7vd+zx8977vTc+257O7M7vOpsoSmZ/p9unv66fd5n+f74Ny5c/jVr36Ft956CzNmzMALL7yAbdu2Yfv27RUZRUwelSTU6HkQlRKW5/v+13/9n6wkKotFLvjgTn8hsVptCAaDGBj4m1Bx42PMTLRKp9Aac3o4Ux2HAcGgX6iE8ZknoIarI5EQGGNoaGhEKBTMWzuuZoKbNOV6uWzj57m5uRnz5s0XzTvSZ2o2W7OYOefSTOcOnif++XxeXLp0ESdO9InSNZNJgtPphMUiC2fHIxuMKZpys2QyiUgkJByszWYXdfROpwvhcFAsM8iyDItFht/v05wrVRNf7TPf13cY999/P2w2GxSlSdyTXLimkKJaISYjRF1Mi1zvC3S+31CtZ7QThSlbEObUqVNob2/HwoXqG+GGDRvQ39+PQECrmPXpp5/C7/dj5Up1nW7NmjXweDwYHBxEc3MzduzYgRkzZgAA7rjjDpw/f77cIRE1gM/n1czgAHUWd+XKP/HGG6+gt3dvToGZcsVo9NDSogqstLS0wu1uFp2m+IOXC3akj+/s2feF0MvVq18KJ8u7fj3yyHfw4IPfKviQi8WiWZ2reGg9HA6L4zGmJt+lJ66lO0zeJpPrxTudLhgMRpEvkJ5IpX5WyQhLj5F+ng0GAy5f/gfef/8kFIUhkYhjdNQDv98Ls9mCrq7/AVmWoSgsKzOe5wRwEokkzGYLDh8+gGvXRsT2ZDIBv98n2sHyFzRF4S1Kx2bY/Du5vbKsRjvMZgsAhpkzZ2Pt2m9gzZr1opKB50HwsfE/czW9kydPZt2TdrsDjEEoquUrN8xHPvGS8QxR5xPDOXnyZMF/zye2pPf79X6emFzKnpEPDQ2hvX0sy9PhcMDtduPzzz/HzTffrNmvra1N89n29nZcuHABq1at0vxbX18furu7yx1SXVJv4axi4b3M2Uo0GkEw6BedvPK96Y9naUyhtcH33z+JM2f+LBLAFEURjo6rs/H12lAolHOGm4/0c8FngTxErCiKOB/qOroiGpqMdR0zpMRl1Nmm3a6u6ar16S74fN7UDFVK7asIR6auIauz3J07/1OsK3MZVIPBgEAgIGbDPMPfZnPAblczzwcG/oavfOVWDA5+JpyzJJmFE02XYeUa8fF4LMMG1bkGAn44HE7ccEN7KrweE4mHPEpiMBiyJEslyYSvfS1bMIWHiDM7uPHkQ6vVJrS6M+9JrqgWj8c1yXnlCsLk+3w1f9vFtMgrbQZTjWYyxORRtiMPh8OQZW1qvCzLWZKOevfr7e3FsWPH8Lvf/S7rWE6nDEnKltKsF0wmI9xue9b2wcHz6O8/kkr4sSMSCaG//wiczvvQ1TVvEkZamHzjbWiworOzCwBw993LceDAu1CUBCTJLPpdNzQ0QpJMkCQT4vEYPvroQ3R3j70ABAI+WK22jNIYCwIBf85zVwpu90I4nTJOnjyJa9euwe12C+nHAwdOi6QrNXs6DIvFopFY5c6BdyTTOx5+LsxmCTZbCxKJOK5d86bafAZEHTR3xjy8POYIk6kQNUudIz8MhkAqccsASTKjsbEBZrMFkUgk1XPdmFrjVn9jsqzWLANjiWK8bGtMQY1BURKphL0YJMklrtPw8D/x3e9+V9g0OHgeBw68C4vFgkgknBqvETfdtACffPKJeFlJb/4CqFGZOXPa8fe//z+YTCY0NjYikYhDURQ4nS7xjFDFeWKIx2PiOuX6LbjdC9HdvRC7dr2ZksYNarLcY7FomhSqBfF4FCaTes6CwQCi0QhkWUZzc3PeYxS7p9Lv30yq/dtubm5OtYm1IBqNIhgMIJFIwGKxwOP5p+bfOfF4DM3Nzbru10o/P17ke3ZOFaplX1FHfujQIWzbti1r+8aNG7OaNUQikaxyILvdXnS/3bt347XXXsPrr7+O1tbWrGMFAvrEKWoVLvGZybFj/QCMMBql1MNZQjLJcOxYf0324M033uPHT6CpaTYAoKXleixf/jUxE2GMiZaNXu81MfsaGRnRnBOnsyGn/KnT6dIt0VhoBtTScn1WO8Te3r2iNhsYm3mHw+Gc388dhd7x8HNx4kQfrl5VO4gpioJolLcTHesElkgk0No6E9Go6pDTQ8Ucvq/qkNXwZygUhiyz1LqxmqAmSWbEYnHYbHbEYlFNFjh/UVJnuxLUw4xlhCcSCSSTXEnOlHWd0q8vAFEqNzDwt/QzBUXRJsRJkoRPPvkEsmyDw6GG6+12tcWqz+cV3eQMBgNWrbpfM3NNP37mNfZ4rsLpVOVOeYRBXSZIiOS2eDyRGo8RXq8X8XgMVqsNNpsdXq8P77zzTslrwcVm29X+bd9yy23o6zuMSCSKUCgk9OElScI777yDBQsWYnT0b0gmmSbqdMstt+m6X/n3l/v58SLfs3OqUMy+1laXru8p6sh7enrQ09OTtf3o0aPYt2+f+PvIyAi8Xi86Ojo0+82dOxdDQ0OpJBQ1s3RoaAhdXeoM7q233sLu3buxa9cuzJw5U9egpwr1Fs7S22owPaHmt799AyMjHo0Kmd/vR3Nzi+YzlZbGlJOso66damvNM2uWAWhCyC0t1+kaTzqJRBwuVyMkScLVq/8W38nXhPl3x+PxrFBxLtR/Z8JJa7vCqWHonTv/E9FoRDhHdU1d+z18TZ6vT/PIBO9kpq57m7PK9DITpnp798JoNMHpdMHn82WJ8BgMhlSXMF+qkYn6Ei/LVjAGhEIBXSHuXNc4Ho8hFArB4XAgHo9rRHrUhDmbeDGxWq2wWq2aF8ZylnD03GvV/m3zcP6hQ/sBQLwQq7P9KC5f/qKiMrdaKpMjSqfs0PqSJUtw5coVfPDBB7jjjjvw5ptv4t57783qDjVv3jy0trZi3759eOCBB9Db24u2tjZ0dnZieHgYL730Evbu3TvtnDhQfwIN6dnGasmQWhpkMBjwyisv52wxqjpBiD8DYzKn6VT6IClnjT2fBKr6+TEhF8AgQu0jIx709u7VPbbMcfE2nvzFliubWSwWOBwOsRZtMo01SCkErxk3mUxiTJcuXUQsFk0r1VLL3gwGoyibi8djwpHLsg0mkzFVymVMJaFBnEc9L0SybBVKb4FAIGtpIhwOpWb8WptMJhNmzbpel1xprmtstdpS10/NxxiLPBgRjUYRiURgNls0TrRSB6vnXhuP33ZHR6eQ+s3sMufzeSsucyOt8/ql7Kx1q9WKHTt2YMuWLVi1ahXOnTuHn/zkJwCA4eFhrFu3Tuz74osvYteuXejp6cHvf/97Earv7e1FMBjEY489hjVr1mDNmjWaz011JiP7tRIWLVqMWCySSkhKiJkXF1jJ1WI0Ho/B4XAJp2U0GuFwuHI2++jo6NSdEZ5Jrmz5Yg/oRYsWQ5LU8jK+VmwwGDB//k2p2ZsttW6tOiVZtqa6aunPqM8clySZNNrmRqMRdrsdra0z8OCD3xJZ6MXkUdOJxaKaDOOzZ9+HLNugrlWP/cTVly7VidvtDjQ0NKZm4GHIslXUgPOZeUNDA+x2R9Hs5fT2sVxdjbcX5fbwJDzGFIyOeuDxfInRUQ+i0Yju+93n8yKZTIo2p9eujcBoNMFikZFIxMW4TSYptUYPkaOhrifLiEaj4rNj96wHoVAwb0VFrnEUu9fG67edr1XveL/856rsIGqHigRhlixZgj/84Q9Z22fOnKkJu994443Yu3dv1n5PPvkknnzyyUqGUNfUWziro6MTVqsdsVgs62HC12Hj8SgsFpeYnfCZCW+mAahr37mkVSsh3wzIYpGzZEIzu6XlOv/pa6C8vppnjZcSjs2nBidJaoORzCWExsYmTflWMYxGk+g6xh2Jz+eF3W6HJKktYNNn5nwM3BYemrXZbFi8eCk++eRjyLIVkUhIyK9arfaiL0SZyyLp0q7pKm3p3dLSozV6MJstuHZtRNxriqIgGPTD7W5OSfiaRPKd+lKm3gPxeByxWASMqVn3iUQcyWQSXq83JSaj9mTXWzutZ7Y9Xr/tzHOtRlbG9+WfasxrH5JonWTqLZylZhM3Y2Tkqsh5ADK7fY05lYmShcx1HP7wTiaTeR9A+c5/+vZdu17V1W9dz7jS1eByrQvfddc9OHhwX86+3blhqaYsY46EOxpZtoowcjAYRCIRRzweA+9UlkvVrJCzzEcup8Wz/3nZnVoVoN4nzc1jeQalSKPy9XzufPnLQTweQywWTSt34y+ZaqMYh8OhKb3jLziKEhdjikRCmuhDofHovafH47edea6bm5txyy23jeszhLqm1T7kyImSyGxIkpkNnelUJirqkOs46Q9voPgDKF8mst5+6/k+nzmuQmpw6jillDTp2HpyeilXOqp9Fo0jSXc0ipIUWfBGowkGgzHVBlQVbuI149wW7rwzKRbqz5UAlxmJuXr13yUvf6QTi0Xhcrk0LwcOhx3BYAAmk4RkUlvdwhjDsmXLcMstd+CNN14RLy78//G4V4yBJ2E6nc6i45nsSFr6uZ6IrO56S8qdjpAjJ0qCOwmLRasFwEOlZrOcNTuZqKhD5nHSH96cfA+gQuFDPf3Wi4UfS0naMxjUde10UZVcTjxdBS4zynDPPStw8uQxeL2jqX2NojRL/ZiagGY2SxpbgsFA1kuDwWBAMBgoSeAk16zVaDRmRTbKkUbNXKYBoEmuS2dg4BPccssdWeFwrh6XbiPAEAwGMGtW8fKweoukVUK9JeVOR8pOdiOmJ9xJuN1NsFqtMJstQvfaYpHR1NRUM2tnpSQGFZKo7Oqah3vuWQGHw4FoVNVAKKRMV4nEpc/nTWVfI9VVTSuEZDSa0NjoRmvrTFx33Qy4XA1IJhM4evRPmiQkNZ/BisbGppTAjCHt/0axLOJ0ujS28CiLJEniP15fXoqELr9P0s/Z7bcvSQnNlJcAli+BrLGxKW+Gv8fjyflZnj2vVhGMNWNRFKVmk00ni3pLyp2O0IycKJnM2UitijaUsj5fLHxYbAZWrfBjQ0MjAgG/0EhXHa9JzM5drkYxM1J7bPthMhlzRgH4mNL7svPQucvlhsPhwH/8x//SXLtc8quMqSH6UtdJc52zGTNmVb3WGQD27Xsra381smHQfPbEiT6Mjnqg9jQ3wWpVW93yWvymppaaeAmtJSZ7KYEoDjlyYspSygMoV/gwHA4hHo/j5Zd/BaezoeDDq1rhx0WLFuPKlX9mNFABzGYZVqs1lbCmviSokq1I9fM2ZDlXPia1i1gAvA2o6sxzv9A0N7fg2rVRxGJRsQ5ttcqIRMIVrW9zir0QldsBz+l0aerf+VJCc7M2SY+L8/CGOOFwBC6XqgynKEncddc9JdkzXZhOSwn1CDlyYkqj9wGUOXsPh0MIhYKw2RywWm0YHR3Fu+/+X1Ennelgqpmdz1XQADW8brWqpWTcyXBHBwAOh0sTCchVMaBmbjtFG9CmphYsXXo3Ojo6MTh4HseO9QvHecMN7fD7fXA4XBo7GhubkEgkdL2oFHLG+f6Ntz8dHfWktAacJZU5ffWrq3D48AEhdKOux1uwYsUKsU/68oe6BAIEAgH4fN6UUpoDJ0704ejRP9Gsk6grTJs3b9482YMoRiiULR5ST1itZkQiesuJ6o/Lly/h0KF3cfr0CVy8OAibzQ63u2myh6WLS5cu4r//+4/4+98/gdlsgdFoTAmFxFICMA7EYjEEg0GoM1pVVGVoaBBud5Owk//Z4/kSoVAQLpcLd965vGT97r6+wzCZJFgslpToDoPL1YDly+8VGfQLFixEd/ft+Mc/PkcikdC0Kk0kEnC5XFiwYKFmTNFoBC0t1+Gee1Zg+fKvwu1uwqVLF3HkyB8Rj6vNN6LRKL78chgLFixEJBLW2NHe3oGhoUEh6sMd/J13Ltdca24Db+gRjUbFufJ6r+X8t1gsijNn/pyKMKhRiFgsBovFAqPRBI/nSyxYkL9BCT//zc3XiQz9lpbrcNdd/xM33bRA/PZOnz4Bi8WSJsiTRDQaFa1hA4EAotFwSmAmkXWNa5Gp/myZ7vY5HHLef0uHZuRERVy6dBH9/UcA5F6nrWUyM825c7rppq/gzJk/Ix6PIR6PCuES3ks83/pwpeFHbb2uGbJsRTweh81my/m9eqIAhcZ09uz7MJlMMBrVxwC3i/dc5+fo7Nn34fFcFd9vMBjQ2NiUs4yO26AoSXi9frH2fOJEH2w2W8519r/85QzsdodYTuAZ5KFQEI2NTbrD98XOf+byhypJq+YFhMMh0TwnEgnB7W6mWmmibqCsdaIiuDOoNFt7MsiVaZ5IJHHmzJ9TzsSAeDye6giWFD3DgfGpoy1VZjZXZngpL1Dq8cyabenH4y86o6OjKcGVJBgDrFZbXsEaLqMaCAQ0OgOqLOvVnPbF4zFIkqSJLPDsaI/nKqLRaFUkQbMz19WKBpvNLtrHAmNd5qhWmqgXaEZOVASXA01vW1kvD8BcmebxuKoQZrPZNHXygFqaZLXaAFSnjjZzvZiHdEtJmCsnCsCPGwoFEQ6H4HA4YbHIWcfjLzrxeEjTCjUWi8LhcOWcrTY0NGJ4+F9CfQ0Y6/SmKEpO+0wmCaOjnrwlZHoat+SyL1P5LDP5UW2mokY+VKU3NbOfv1BMZq10KTX7BEEzcqIi1Fpt7eysXsQicteZJ0UJ1liYV8VgMCAWi1aljpbPdtPrskOhIGKxyLjW66Yf1253QlEU+Hw+RKORrOPxCEG6g+VtU/O9rC1atDilSpfeeQ2isYnXO4rRUQ8ikYjQQOcvCOkzcgAwmSTdjVty2SfLVgQCfk29e0dHJxYtWqxpGMMz+xVFzeq3Wu1lnftqNRbJdW/obdJDTE/IkRMVwR/c9SgWkUvowmg0QJatovSK/2c0GoVTKzWEnYtcYX1ZVjXYyw2Vcwo5lPTjWq3WlEMzIhgMZB2Pv+hkhrwzZXjT6ejoRHPzdaJeXc26tyISicBoNMLlagBjDIGAT2TkOxxOOJ2ulAAOV7Uzobm5RUQK9EZ5ss+rRfMSkO4kHQ4nrFYbotEwYrEYmptbUqpxrORzX03nWy1xIWL6QKF1oiI6OjrhdN6nKWGqlzBgrjrzGTNmYnDw71AURazxGo3GlKNRG3Do6Z1djHwCMtFoBBs3/u+yv7eYVGzmca1WKyTJjGg0kmXXokWLceTIAZE9D6gzcqvVVvBlbenSu8UYJEkNm/N6d97IhSfxjfUyN4txjYxcRTKZhMfzJUwmU6pO3qgrylNMmCezAYjd7oDZrPaCX7RoMc6efT9ni91iVLOxCGmbE6VCjpyomK6ueWhpKa5PXYukrzFzJ2i12hAOh1PJXQyyLItM7GpFGioRkCm0flrMoZR6XMbGGuHwZQar1Sbq0HOR+YIE5K93zxwPF6IBxsL4Pp8PNpsVy5d/teh5KGZfPic5MuKpqFVnNZ2v3mt06dJF7Nv3IUZGRurqBZqoPhRaJ4gU3Ana7Q60tFyHxkZ3ah01VlaotdB6abn61cVCuMUy37OPm7+fNW/gwqMSkiSlBHKsRc9DR0cnHnzwW3jkke9g1qzrs9a/uWPKHE8g4IfRaITNZhdhdpNJDcGnHzPfebjhhvaC9uXT31fL5MoPZ5ei618MPfcGtz8Q8NM6OkGOnCA4mU5QbQLTAqfTiQcf/FZV10vLLR0rtn5azKFkHlf9LktW0xUA8HiuIhIJiSUGRVEQiYTg8VzVdR44hRxT5ngAdfbudLrgdjejpaU1VdOtDXfnOw+XL3+h+b7MpjD5xsJfVNIpZUZdzcYieu6NMfsttI5OUGidIDj5Qpputztr30rC25xySseKhXBLEYkpJuaT3miFwxjL2a88H/w8qY1J1IS3lpbrNOcr/TzwPubp5JrZFjoPhfp1p4f9R0Y8QrBGURSEwyHY7Y6Cx81HtRuLTFSTHmJqQI6cIFLkc4JLly7V7FdqQhlQvYds+stGNBpBOBxCIpGE2WzGpUsXS3Io+ZTd+AtHvk5omWHyfKSfJ4fDqXmpKKWPea6ZbSU5BvzYfX2HIctWSJKEUEjV1gdUgZhytPInsrEIt1+StPK89VD2SVQfcuTEtCZdglRRFOG0TCaTaI7S1TVPM6urdkJZKXBHFwzGEImMjSlTNEVvglYhMZ98ndD0ao+Xk8mt90WEn4dQKIZoNCJm1vPnLyhrbA6HOhNXSxAjNZ88NvbCE4PBYKqoSQ9R/5AjJ6YtYw0+kojFogDULG273Q6TyZTzQX7p0kXRZlSSJNjtDlgscsnh7XLhju7Qof1gjGnGEI/HSyp3amhoRCQSEjNyQPvCwe3I7ISm145yIxN6XkQ6OjqxYMFCnDnzZyiKeh7MZhkDA3/DjBmzin4+19jsdjui0QgeeeQ7BT9bC/D74KOPKGudIEdOTGNKlSDljp9ncSuKAr/fD5cLmjrnaq+XZtLR0QlZltHQ0KhbC6+9AAAMvUlEQVRZvy41fL9o0WL09x9BMslyOupK7RjPyASgNndxuRo136/3ZWa8xzYRdHR0ort7oSZaRExPyJET04r0JLVQSFX3Sm+YUUiCNL08LRAIQP2IWjLlcDh1dx2rBtVwRHrEfPLZoUcLfDwjE0BlCV/jPTaCmEjIkRN1QTWaSGQmqYXDIfj9/lS98pg2eD4J0nQVMgAIh0NCvGSi27ZWyxGVI+ZTLNmPM96RiUoT3sZzbAQxkZAjJyacUp2yXsdRjFzynIGAX/TY5lnZVqtcNFM6XWrU4XBMuAOYTEdUShLbeEYmKn2Zmcgsc4IYT8iRExNKOU65WjrWmaFYWbaCMSAUCsBstoh+425306SEiktlshxRrdQw06yaIFTIkRMTSjlOuVqOI1co1mQyYdas63U1QiHHoVJLiWI0qyYIcuTEBFOOU66W46jGjJocR+1FJghiukNa68SEUk5ziWrpWJerb05oofNIELUFzciJCaWc2Vw1Q9o0o64O9XAeqc0nMV2oyJGfPHkSW7duRSgUwvXXX49f/OIXmDVrVtZ+AwMD2Lx5M0ZHR9HU1ITNmzdjwQJVSnHPnj3YvXs3EokE2tra8Nxzz2H27NmVDIuoYcp1yvXgOIjagSdVms1SRZUOBFEPlB1aD4VC2LRpE5577jkcPHgQy5cvx+bNm3Pu+4Mf/ABPPPEEDh48iG9/+9v40Y9+BAD48MMPsXPnTuzZswcHDx7EvHnz8Pzzz5c7JKJOSO9VXUp7UILQC7X5JKYTZc/IT506hfb2dixcuBAAsGHDBuzYsQOBQABOp1Ps9+mnn8Lv92PlypUAgDVr1mDLli0YHBxES0sLtm7disZGdX30zjvvxI4dOyqxhyCIFNUQ0alXaqVEjhhfpvM9nk7ZM/KhoSG0t7eLvzscDrjdbnz++edZ+7W1tWm2tbe348KFC+jo6MBtt90GAIhEInj77bexYsWKcodEEOPC4OB59PbuxRtvvILe3r24dOniZA+pKDy0HAwGNaHlehh7NSgnqZKoL6b7PZ5O2TPycDgMWZY122RZRigUKnm/rVu34re//S1uv/12PPHEE1nHcjplTd/desNkMsLttk/2MMaNqWzf4OB5HDhwACaTEXa7HZFICP39R+B03oeurnmTPby87Nv3IcxmCWazBQAgSSbE4zF89NGH6O5eKPabqtfu7ruX48CBdxGPxyBJZiQScQAK7r57+ZSyd6peP04h+/Te47VMta5fUUd+6NAhbNu2LWv7xo0bEY1GNdsikYjo68tRWwMW3u+ZZ57Bpk2bsHPnTjz66KPYu3evZv9AQPv5esPttk/pDkVT2b5jx/phMhlhNEpQFAajUUIyyXDsWH/JGuUTycjICGTZimRSEdsMBhNGRkY012qqXruWluuxfPnXstp8trRcP6XsnarXj1PIPr33eC1T7Pq1trp0fU9RR97T04Oenp6s7UePHsW+ffvE30dGRuD1etHR0aHZb+7cuRgaGoKiKDAajUgkEhgaGkJXVxfOnTsHxhi6u7shSRIefvhhbN++HT6fDw0NDboMIIjxxOfzwm63Q1GY2FYPa621pL42WVCbz6kN3eNjlL1GvmTJEly5cgUffPABAODNN9/EvffeC7tdGyaYN28eWltbhdPv7e1FW1sbOjs7ceHCBTz77LPw+/0AgPfeew+zZ88mJ07UDOpaa1yzrR4eFtUS0SGIWoXu8THKXiO3Wq3YsWMHtmzZgnA4jDlz5ojSseHhYTz++OPCeb/44ov48Y9/jJdffhktLS0iVP/1r38dQ0NDeOihh8AYQ0NDA375y19WwSyCqA6LFi1Gf/8RJJOsruRISReemOrQPT6GgTHGiu82uXz5pX+yh1AR03kdayrg8fwTx471T8mHxVS/dmRffTPd7avaGjlBTHe6uubVdGIbQRDTG2qaQhAEQRB1DM3ICYKYUEiNiyCqC83ICYKYMEiNiyCqDzlygiAmjLFmJmZqZkIQVYIcOUEQE4bP54UkaVf06kFghyBqGXLkBEFMGNTMhCCqDzlygiAmDFLjIojqQ46cIIgJg6txORwORKNq86R77llBWesEUQFUfkYQxITS0dFJjpsgqgjNyAmCIAiijiFHThAEQRB1DDlygiAIgqhjyJETBEEQRB1DjpwgCIIg6hhy5ARBEARRx5AjJwiCIIg6hhw5QRAEQdQx5MgJgiAIoo4hR04QBEEQdYyBMcYmexAEQRAEQZQHzcgJgiAIoo4hR04QBEEQdQw5coIgCIKoY8iRV4GTJ0/iG9/4BlavXo1HH30UV65cybnfwMAANmzYgNWrV2PDhg0YGBgQ/7Znzx6sXbsWq1evxuOPP45//etfEzX8olTDvr1792Lt2rVYs2YNHn/88bzfMRlUw75gMIgf/vCHuPnmmydq2AXRY1Mhe/bv349169Zh9erVeOqpp+D3+ydy+EWp1L5au16ZVGpfvf/e6vVZCVRuH2fXrl248cYb9R2UERURDAbZnXfeyT7++GPGGGOvvvoqe/LJJ3Puu2bNGvbHP/6RMcbYu+++y9atW8cYY+zMmTNsxYoV7Nq1a4wxxn7+85+zp59+egJGX5xq2PfXv/6VLVu2jA0PDzPGGHv++efZpk2bJmD0xamGfYwxtn79erZ9+3Z20003jf+gi6DXpnz2XL58mS1ZsoRdvnyZMcbYz372M7Zly5YJGn1xKrWPsdq6XplUat9U+L3V47OSsercm4wxNjw8zNavX8/mz5+v67jkyCvk8OHD7KGHHhJ/DwQCbOHChczv92v2GxgYYMuWLdNsW7p0KTt//jwbGhpiZ86cEduPHDnC1q9fP74D10k17Pviiy/Y6dOnxfY//elP7IEHHhjfgeukGvYxxtjZs2fZF198UROOQY9Nhex544032Pe//32x/bPPPmNLly4d/4HrpFL7GKut65VJpfbV+++tXp+VjFXn3mSMsaeffprt379ftyOn0HqFDA0Nob29Xfzd4XDA7Xbj888/z9qvra1Ns629vR0XLlxAR0cHbrvtNgBAJBLB22+/jRUrVoz/4HVQDfva2tqwePFisb2vrw/d3d3jO3CdVMM+ALj11lvHf7A60WNTIXuGhoYwZ84csX3OnDnweDzwer3jP3gdVGofUFvXK5NK7av331u9PiuB6tybfX19CAQCuP/++3Uflxx5hYTDYciyrNkmyzJCoVDJ+23duhV33XUX/H4/nnjiifEbdAlU0z4A6O3txbFjx/DUU0+Nz4BLpNr21QJ6xlpon3A4DIvFIrZbLBYYDAaEw+HxHbhOKrWv1qmmffX4e6vXZyVQuX2RSAQvvPACfvrTn5Z0XKn8IU8vDh06hG3btmVt37hxI6LRqGZbJBKBw+HQbLPb7UX3e+aZZ7Bp0ybs3LkTjz76KPbu3VtFCwozEfbt3r0br732Gl5//XW0trZWcfTFmQj7agU9Yy20j91uRywWE9uj0SgYY7Db7eM7cJ1Ual+tUy37JvP3lo9q2TaZz8pCVGrfr3/9a6xbt04TEdMDOXKd9PT0oKenJ2v70aNHsW/fPvH3kZEReL1edHR0aPabO3cuhoaGoCgKjEYjEokEhoaG0NXVhXPnzoExhu7ubkiShIcffhjbt2+Hz+dDQ0PDuNsGjK99APDWW29h9+7d2LVrF2bOnDm+xuRgvO2rJebOnYu3335b/D2XTYXsGR4exqlTp8S+n332GVpbWyfsXixGpfbVOtWwb7J/b/mo1LZaeFYWolL7duzYgdHRUezatUvsv2zZMuzZsyfrmZQOhdYrZMmSJbhy5Qo++OADAMCbb76Je++9N2v2Mm/ePLS2tgqn0dvbi7a2NnR2duLChQt49tlnRYnPe++9h9mzZ9fEjVkN+4aHh/HSSy/h1VdframHClAd+2oNPTYVsmflypU4ffo0Ll68KD6/bt26iTckD5XaV+tUal+9/97q9VkJVG7f/v37ceLECRw/fhzHjx8HABw/frygEwdA5WfV4NSpU2z9+vVs5cqV7LHHHmP//ve/GWOMXblyha1du1bsNzAwwB566CG2atUqtmHDBpGlqCgK27FjB1u9ejXr6elh3/zmN9lf/vKXSbElF5Xa95vf/IbdeuutbPXq1eK/9M9NNpXa9/HHH7PVq1ezFStWsPnz5wsbJ5NcNum1hzHG9u/fz+677z62atUq9r3vfY8FAoHJMCMvldhXi9crk0rsq8ff21R5VjJW+W8vHb1Z69Q0hSAIgiDqGAqtEwRBEEQdQ46cIAiCIOoYcuQEQRAEUceQIycIgiCIOoYcOUEQBEHUMeTICYIgCKKOIUdOEARBEHUMOXKCIAiCqGPIkRMEQRBEHfP/AcVPLcZPvL1ZAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2151,12 +1824,12 @@ }, { "cell_type": "code", - "execution_count": 105, + "execution_count": 35, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFkCAYAAADxHkghAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOzdfWxc533o+e9zXueVHFIkRcsSLduynUSJ4ySOmqTdtGnvok7Spovd/NG8GJsixbZI/gjQP1q0+SdAW2QTFNteoIuiF8jdNgmCptd7L9a5uXGbNq3TpHFU23XsKPGLZEkUJZEacjicl/N+zrN/nBmKpEiRkkhxSP0+QOBwNJw5czhzfvP8nt/ze5TWWiOEEEKIXWXs9gEIIYQQQgKyEEIIMRAkIAshhBADQAKyEEIIMQAkIAshhBADQAKyEEIIMQCs3Xzyer297u2VikunE97moxkscg7kHICcgz45D3IOYP+cg/Hx6rq3D+QI2bLM3T6EXSfnQM4ByDnok/Mg5wD2/zkYyIAshBBC3GkkIAshhBADQAKyEEIIMQAkIAshhBADQAKyEEIIMQAkIAshhBAD4JYDchzHfOELX+Chhx5idnYWgGeffZa3vvWtPPbYY8v/++pXv3rLByuEEELsV7fcGORTn/oUb37zm1fd1m63efTRR/nSl750qw8vhBBC3BFueYT86U9/ms985jOrbmu321Sr63ciEUIIIcS1bnmE/Mgjj1xzW7vd5ty5c3z0ox9lYWGBd7zjHfz+7/++BGkhhBBiA0prrbfjgR566CGefvppJicn+e53v8tzzz3HJz/5SRzH4fd+7/colUp8/vOfX/U7vh+t2wrNNA3SNNuOw9qz5BzIOQA5B+fmO3z/TIN6J2S84vKz949ydKyy24e1K+709wLsn3Ng2+u3AN2RgLzWqVOn+M3f/E1+8IMfrLp9o80larUSzaa3HYe1Z8k5kHMAd/Y5mG54PHlqlqprM14rUm/6tMOYDx2fZGq0tNuHd9vdye+Fvv1yDm7r5hKzs7MsLCws/6y1xrJ2dWMpIcQec3K6SdW1qRYsDKWoFiyqrs3J6eZuH5oQO2JHAvITTzzBZz/7WaIoIk1TvvKVr/ALv/ALO/FUQoh9qt4JqbirU3sV12S+E+3SEQmxs25p2Do/P8/HP/7x5Z8ff/xxTNPkS1/6EpcvX+aDH/wghmHwyCOP8Lu/+7u3fLBCiDvHeMWlE6ZUC1cvU50wZazi7OJRCbFzbikgj42N8dRTT637b3/8x398Kw8thLjDnZiq8eSpvNlQoWDTDhLaYcz7jh3Y5SMTYmdI60whxECaGi3xoeOTlB2TuVZI2THv2IIucWeQSishxMCaGi0xNVraN9W1QlyPjJCFEEKIASABWQghhBgAEpCFEEKIASABWQghhBgAEpCFEEKIASABWQghhBgAEpCFEEKIASABWQghhBgA0hhECDFQphseJ6eby3sgn5iqUatJdy6x/8kIWQgxMPp7IHejlImqSzdKefLULOfmO7t9aELsOAnIQoiBsXIPZLViD+Tvn2ns9qEJseMkIAshBsZGeyBfaYe7dERC3D4SkIUQA6O/B/JKnTBPXwux30lAFkIMjBNTNdphTDtI0Fov74H8s/eP7vahCbHjJCALIQbGyj2Q6+1oeQ/ko2OV3T40IXacLHsSQgyU/h7IQtxpZIQshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDAAJyEIIIcQAkIAshBBCDABrtw9ACCFuxnTD4+R0k3onZLzicmKqxtRoabcPS4ibJiNkIcSeM93wePLULN0oZaLq0o1Snjw1y3TD2+1DE+KmSUAWQuw5J6ebVF2basFCKUW1YFF1bU5ON3f70IS4aRKQhRB7Tr0TUnHNVbdVXJP5TrRLRyTErZOALITYc8YrLp0wXXVbJ0wZqzi7dERC3DoJyEKIPefEVI12GNMOErTWtIOEdhhzYqq224cmxE2TgCyE2HOmRkt86PgkZcek3o4oOyYfOj4pVdZiT5NlT0KIPWlqtCQBWOwrMkIWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoBUWQshbslObfKw8nGnxqu8ZVyqqsX+dssj5DiO+cIXvsBDDz3E7Ozs8u1/9Vd/xfvf/35++Zd/mc9+9rNEkbS0E2K/2alNHq593EQ2jxD73i0H5E996lMUCoVVt73wwgt8+ctf5utf/zrf+ta3WFhY4Ktf/eqtPpUQYsDs1CYPax93qGDL5hFi37vlgPzpT3+az3zmM6tue+qpp/jABz7A0NAQhmHwkY98hG9961u3+lRCiAGzU5s8yOYR4k50ywH5kUceuea2c+fOMTU1tfzzkSNHeP3112/1qYQQA2anNnmQzSPEnWhHirp838dxrn5wCoUCvu9fc79KxcWyzGtuN02DWu3OLt6QcyDnAAb/HPyHN0/yX56/SKIUFdeiEyZEwK+9efKWjnunHncvG/T3wu2w38/BjgTkYrG4qojL931KpWtPYqcTrvv7tVqJZvPOLt6QcyDnAAb/HNQsg18+doCT002mr3QYqzj88rED1Czjlo577eMeGa9wYhsedy8b9PfC7bBfzsH4eHXd23ckIN93332rUtSnT5/m2LFjO/FUQohdtlObPKx83P1yIRbienakMcj73//+5erqJEn42te+xgc/+MGdeCohhBBiX7ilEfL8/Dwf//jHl39+/PHHMU2Tv/7rv+aTn/wkH/3oR9Fa8573vIePfOQjt3ywQgghxH6ltNZ6t568Xm+ve7ukp+QcgJwDkHPQJ+dBzgHsn3Ow0Ryy9LIWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIA7Mh+yEIIsVOmGx4np5vUOyHjFZcTU7Ud2Y9ZiNtNRshCiD1juuHx5KlZulHKRNWlG6U8eWqW6cbe3wFICAnIQog94+R0k6prUy1YKKWoFiyqrs3J6eZuH5oQt0xS1kKIbbPT6eR6J2Si6q66reKa1NvRtj2HELtFArIQYlv008lV12ai6tIJ83Tyh45PbltQHq/kjxunGecaHu0wwTYUD45XtuXxhdhNkrIWQmyL25FOPjFVY6bp8+z0IkGc4hiKdphQ74Yyjyz2PBkhCyG2xa2kk7ea6p4aLTFedlj0YuIso+JavPNgBds0OTndlGprsadJQBZCbIt+OrlauHpZ6YQpYxXnur93o6nuVGvefe8ISqnl27TWMo8s9jxJWQshtsWJqRrtMKYdJGitaQcJ7TDmxFTtur93I6nu6YbHTNPn26/Uee5Ck0Y3BLYW+IUYdBKQhRDbYmq0xIeOT1J28jR12TG3VNBV74RUXHPVbRXXZL6zesTbH0lPVF1sA9pBwo8utphueFsK/EIMOklZCyG2zdRo6Ybncbea6l45ki47FucaHgvdmHon5Lfec1Tmj8WeJwFZCLGrTkzVePLULJCPjDthSjuMed+xA6vut7JobLTsMFp2lueOJRiL/UBS1kKIXbXVVHd/JL2SzB2L/URGyEKIXbeVVPdWR9JC7FUyQhZC7Ak3WzQmxF4hI2QhxJ5xM0VjQuwVMkIWQgghBoAEZCGEEGIASEAWQgghBoAEZCGEEGIASEAWQgghBoBUWQshdtxWt1cU4k4mAVkIsaNudHvFlb/XD+JT41XeMi5LnsT+JgFZCLGjVm4KASz/9+R0c1WAXRmATaWodyMO14pYhuJ7p+f5f5/zedc9Izx8qMrMUiijbbHvyByyEGJHbWV7xf4ouhulTFRdXq13ubDoMd8JeOlyC8OAAyWbFy4t8Zf/Os3FJZ+Jqks3ykfb0w3vdr8sIbadjJCFEDtq7faKjW7Ey3NtojTjiRcu4RjwX350maafUCvZvPWuCnGWUXEtXrzUZqLqUrBMVKY53/SZrBaodyKOjJQ2HG0LsRdJQBZCbMnNFmat3BQiSlKeu9BEA8fGSnzz1Cxn5rtYpsFE2SGKU/7l9UUmh1wc16IVxBwoO5xd6LLkRXhhyt1VvWrXp4qb97YWYq+TlLUQYlNrU8o3kipeuSnEjy+3qbg2D4yVmF4MmGuHFCwDDSz6MYahKFgGi15MK0wwDcW5hS5BlGIqRck1eL3ho9DLjy9bMIr9QkbIQohNbbUwayP9TSHqnZCJqsvzM0sUbJM40xQsA9I8wLaChAMlm6afMDVSBODSUkDZVBysFIhSzfmGR5RmaK1lC0axr0hAFkJsqh9IV7qZVHF/PrkTJlRdi4JtEEYZBcek7Jg0/YRWmDJctHj80SN88ydzPHqkxmsLPucXuoDm7mGXKNXU2xFjFYf3HTtw2+ePZV212AmSshZCbKofSFe6mVTxiaka7TDGNgzCOGW85BBlGtNQgKbqGowUbT79c0eZGi0xXnHx4pQky5gaKfLgeAXXtnAtgw+8aYIPP3JoV4LxzabvhbgeCchCiE31A2k7SNBa0w4S2mHMianaNfedbng88cIl/uJ7Z3nihUurAlV/PvnB8TINL2a07PDe+2oULIOlIOXQUJHfes8U77r3wPLzvlbvohS4lkGQZPhRQpZp/uSfTl/z+LfDyvS9UopqwaLq2pycbt7W4xD7j6SshRCb6gfSk9PN66aKt9KVa2q0xP/xs0d57I0TnJxuMt+JePjukXXTvlOjJQ4PFwgyWOyGGAq01pQdkyjVy6PTzbp+baftSt8LsZYEZCHElvQLs67nRoq/tvJ4AMfGK2SmgaU1z11oYhlG77HNax7/dszt9tP3cZpytuHTCRNsw+DB8fK2Po/YXbtRJyApayHEttlKV64bdWKqxpKfp8s7QYzWmjBJOdq7OPYf/3bN7Z6YqjHT9Pi36SZRnGIbik4YU+9GMo+8T+xWnYCMkIUQ22ZtVy64+XXCK0co5aJDEMSAAuDhQ8OMlp1Vj3+rS7O2amq0xHjZZdGLibP8C8EbDlaxTUM6hu0Tt+u9tJYEZCHEtlnZlavimje1Tni64fHUT6/wzPlFCpbCtUwSFDrLeMfdQzx3scVzF5qMlvJ5atNQvO/YAb75k7nbNrebas277x1FKbV8m9Za5pH3id2qE9ixgHz8+HGOHDmy/PPDDz/MF7/4xZ16OiHEANhq8Vff2nm6w8Muz84scW7Bp2gpLrcjlMrnkRe7Cf/tx3M8eniYMMtodGOWgoSPv+Pu5SVS2zU638ztfC5x++3W33dHAnK320UpxVNPPbUTDy+EGGBbLdZaWZFtGYpnzi3yWr3D3bUCcZoRJpqinc9H17sxaZJhKEWYad5xZASAdpAwsxQC2zM636qtPpc0ENmbbud7aaUdCcidToehoaGdeGghxD7Rn6eL05QXL7Uo2CaWoWj6MXGqCaKU0bKDUhDEKVGcMlQw6YTJ8mNEScrzF64GvEcPD+d7JW9TF6+NAupWMgFbWQImBtONZnq2y44E5FarRZqm/PZv/zbnzp3j7rvv5g/+4A+4//77d+LphBB70NW+1h0KtknBNqm4Ft0o5WDV5fR8hyBOMU2FaZoYClwzvw/k2zg+d6FJZUXAe3ZmadsC3mYBdbNMwG4VBontsdVMz3bakYBcKBR47LHH+I3f+A2mpqb48pe/zKc+9Sm++c1vYllXn7JScbEs85rfN02DWu3OfsPKOZBzAPv7HEyNV+lGCWGqGSraKKUYrbhErYDhss2huEg7TAiijIcOlhirVHn1SocjB0oUCjZnLixhWiaP3DNCueRSLkExiHmp7vHwfWO3fHzffGWeiVqJoYINcMOP304yDtaKGCsKvwoFm7lWeFN/0/38Xtiq/X4OlNZab363W6O15tFHH+XrX/86x44dW769Xm+ve/9arUSzeWev55NzIOcA9vc5eObsAl997iKXlwJcy2C07GAouGekyOVWSJxqjk9WAbBdm6qlcAz44XSTuXZEK4h559Qw949Xlx+zX+n8gTdN3PLc7V987ywTVXfdSurf/rmjm/7+Ey9cohutLgxqBwllx+TDjxy6oWOB/f1e2Kr9cg7GV7xnV9qxlPXS0tJylbVSiizLVo2OhRB3rumGx7MzSxwbK2MZcGbeI0gy3nO0xlilgGubfOj4JJCneNtJXlVd70Y8OFHl7UdMfnC2wel5j5GSw2g5X6LSCVMMxU3P3a6cM55p+oRJtup3bqTSdrcKg8TetSOdul555RUef/xx5ufnAfjbv/1bJicnVy2DEkLcufrzq1OjJd57bJxfe8sk9x0oc6EZUnauBuN+t6SDQwVerXd5rd7mhZklvntmgTSDMEl5ea67asML4KY2f3jm7AJf/M5p/vHVOjNNn6Jt8KOLLaYb3qYbaqynXxhUdvL1q/3XJfPHYiM7MmR95zvfySc+8Qk+9rGPoZRiYmKCP//zP8c0r50vFkLcedY2Xhgtu7z7XofT9S4A3/zJHDNNn4mqS7VgYShFK4hp+QlRqrn/QJkgybAMg6UgXlUJ+82fzK3bvvN6TR2mGx5ffe4ihlKMlG2CJKMdRtw/VqTeCSlY5k1V2u5GYZDYu3Ysh/yJT3yCT3ziEzv18EKIPWy9xgszTZ8LTZ/JoQITVZcfXWrRCmLKjkWp6OAnGbapyDJAKQq2ScmxqLrmqjndm2nqcHK6SZJpxsr28mMD+HHGkVppS3PGWyHrksX1yOYSQojbpr9X8pl6h3+bXlyVDn7x4hKZ1jw/0+T5mSUKloFSBud6Df2V1jT8mIYXcb7RpdGN0Foz5K4eV9zI3s199U7IgbJNmGTLtxUsg4aXbFt3pt3asEDsHVJlJcQdZDdHaCvX9R6bqFBwTF6rdwnjlJGSQ5BoRksmrm0SJhkL3bySOtN5d65FL8Y2DIaKNt0oI4hD3nJXlfvHK9e8NscwCOMUP0q3lGoer7iEScaZ+Txl7loGrSDBNNjynPFmZF2y2IwEZCHuELvdOWptQDoyUqJWdCg7eXr4riEXlEIpRZppulFKloEm49+nmyRZhmso4kRTdk1cUzHXifjfp2rrvrZ2GG/5tZ2YqjHbDrh/rEy9G7LQjTANtdwnezvs1oYFYu+QgCzEHWK3R2jXC0gazUMTFV663AJgwYvIMk0nSjl+V5XZdkjTi0i0wjI03SjBV4rDdr7l4XfPzOOYBm84WEUpizjNOLfg8Sf/dJr33j+2aSZgZavEgmXytrudbc8eyIYUYjMSkIW4Q9zKCG07Ut2bBaRulPLwoWHONbxeNXVGyTY4v+ix0I1Ba1xTUXAKTI2UmF3ymWlHdKOUfuuOFy8tcc9IkfOLPo5poFDLc7WbjZZ3uiJa1iWLzUhRlxB3iH5AXGkrI7TtKka6XrFV/99s0+CekSJF22DJj1n0Y5peTJZp0gz8RNPoRARxSjOIqbgW1YJFpZC33nQtkxcvtXEtE6UUlYK15XXIO03WJYvNyAhZiDvEzY7QtiPVPd3weOqnV/jRTJOlIGW4aPPOI7VVAelDxyd56qdXeOb8Iq5lkGaQAml2tbtvquFKJ4LZNl6cEScZz19oMlKwOL/oU7DyQD5RcQiSjIcmysuvdxDmamVdsrgeCchC3CFudku5raa6N0prTzc8vvLsBaYXfWpFB8dKudwKefrMAgCPvXFiOVCNlh0ePjTEqctt+mG4vxBJrXiubpSiyUi1yaKXV2PfM1Jkth3hWAYaxVvvHlrVUlPmasWgk4AsxB3kZkZoWylGul4F98npJotewlDBJs00890I2zTQaF6td6l3LzBedkm15qdzbcI4peHHWKYi03mqWgNKgQlkGixDgTLpRglnGx73jpaYbYccPVDiw2+d5NmZJWzTRGstc7Viz5A5ZCHEdW2l0cbKtPba/tH1TkicpriWwYIXYRkGBdsgSTVLQcT0os+r9Q4TVRfHNHjlikfbj1GQd+Uiv1D196UzFIRpSqZhouwQxRmvXOnw8lwHxzA4NFyUuVqxJ0lAFkJc11aKkeqdcN3+0fOdiPGKS5JpXl/ocmkpoB0meFGKZSqCJO+0lWT5rnB3DblEaUqYZAwVLDLy0XH/v4kmb58JxGmGn2RYpmK4aDNasvGTlC9+5zRfe26GRjfCUPmxnZxuSkcsMfAkZS2E2NRmqe7rpbUPD7s0ujFenGIbiiBOWPIzqq4NQJJmTPbmqGeaIQXLoBtleEm87nP5icZSYCrNlU5IxTFJ0wxlm5yZ72IoxWw74GzDI0xSagWHFy+1+OfT83z8HXfzrntXp663sqRLelCL20ECshB71CAFietVcJ+cbvIzR0c41/CYbvgs+immytPWtmngRSmdMOX1eoezjS6OZdCOsk2eEWzLII4ykkzTDFKCJKNSsBgp2bxW7zJWdpgPIqI05P4DZZaChK8+dxGAmaWQeifEVIp6N+Jwrbhh97Ld7nAm7hySshZiDxq0jQqul9aud0KOjBR577ExPn7iCI8crjE55JJmMFnNd3YqOiY/utTCMQ3aQYKprv98Jdek4lhYpiJMMsIkpRWkvHKlw4sXl1jwIs43PAzF8u5QpoLzCx6f/4fTPHOugWUoXq13ubDoEafZhnsnr5wfX/RiXqt3OHW5zV/+6zlJg4ttJSNkIfag3W6DuZ6N0tpr09ndMCFMUoI45VLLZ6RoY6BpeDEPjpc51/DR1zzKapaCZpCg0GQoLKWJ015FdZB37loCTAUTFYf5dsiZ+S5hkuFaJn6c8dLlFkGcz1Wfa3iMlvOq8bVLuvrLvhrdiBcvLeFaJgdKNgteLCNlsa1khCzEHnS9IqpBs7JKe6ETcnkpYMFLqLjWcsp4MUh4YKzESNHeNBgDtIMUy1BYpoFjKgxDgcobh/ST3Qb5z7PtiB9dWiJIUpQCy8zPX5pBkGQoWNXBbO2Srv4XinMND9cyKdgmYaoZLTsD0QFM7B8SkIXYg262DeZW9fct/ovvneWJFy7dUmp2ZTr7x5fbOJbBkGvhWCa2ZWAZeZp6qGDx9OuNLT1moiFJNVmvi1em89GwIr+oGYbCMvKfNZBm4JgGqdbL/a3PzHdpBzFXuhGWwYZLuvpfKBa6Ea6pCOJ8dH/vaHFgvwSJvUkCshB70GZrg28loO7E/PTUaIkTUzU0miBJiZKUK52QuXaIAVRsg5mlkDTbvJgL8gtXnGXEqSZKMtJME/caiDiWouiYFBwL11IYKm8q4tomQ65NO4xJM02WZdimQRRnHKw6Gy7p6n+hGO2lqR3LWO4CJh3AxHaSOWQh9qDrtcG82argftV2vpWhyRsOGihlLc/9PvXTK4yWnVVV3cCWKr37x5SkmijVKA2mAVXXIkozvFhjxZow2UrCOm8OohU4hiJMNKlmOdUdJpqiBWGaoTS4pkHRMai4Ju0gwTLU8tzz3bUC94yUOFwr8uFHDl33fP/We44un9f+Y0kHMLGdJCALsUdtVES1UcHXegF1vaU9AArNjy62lkeCUZLyw/OLvPfY2HKQ/8qzM4DmcK20aeDvH5NrGxRMgzDNAEU3TFBK0fRjTKXZ4gCZWINrKMJUg8rT1f1uXonOC8cc20AbCtcyOFgpMFS0WOxGKMMgQ3HXkE3ZsSg7W0s732wv8LUGabmaGCwSkIXYZ9bbDCJKUp45v8jPrwioK4PnyiA+VLAJk4yCbXK24TNadnnlSpeR0uogv+hFgOKNk6tv+8t/PcfhWnFVsOkfU6bh2HiZy62AJT8hzjRVxyBNNcpUeVDe2iAZrTVa5+logNGSjW2ZpJlm0Ysp2Ra2qXh0apiD1QKvXOlgWyYuMDVaZLSU7wj13IUm9x0o8cQLl5aD5OFhd3mt8npBU2+p9Oza4Ht42OXZmaWBWtMsXxAGh/m5z33uc7v15J63/rfSQsEmCNbv0nOnkHOw+TmYbnh8+5U6T5+e53zDp+KYDBft23iEO+9m3gfnGz7dKO8d3ffCzBJF2+LYeLm3b7ABKOqdiDdNVnn69DwjJXv53y4t+ZhKEcQZB8oOL8+1OTpa5GzD57V6h4VuRKMbYhoGRw/kF+9GN+Sncx26UcZbDg3RjVJeutxisurS9BO6UUo7TNDAwaECo2WHe0ZLzHsRXpSQ9ka3W7UycGsNfpI32BwuWhwaLvI3n3iU99w7SphqumHKgxMVhgsmidZUXBvTUKSZ7u27nHBouMhIyWam6fNfX5zlciuk4UVcbgW8Wu/iGPBPZxZQSjFSsle9vvXed/2sw8r7P/XyFUZKNuNVd92/w/XsxDVhvWO83mvabfvlulguu+veLiNksSdJ96SNrdc1q+HFvPvoyKr7rVxvu3KtcL4F4jAvz7UBKDsmb5goc3reY6hgU3UtwiRjwYtJMnjuQpNOmDDbDgnjFIXm/3tploJlMFSweeqnV3jsjRN85dkLLHoRl5oBCkWYJtiGSb0bEm8xVb2SZfTmjXW+vCnJwI8y6jrCVIrphndNWv///ParlGyTM/MdvCilaJs4lkGp1xQE4PyiTzdKQMH9B0oEScaFRY+/eT7kbUdqW177vd7UQZJprrRDjoxcvf9u7tU8iOvZ72QSkMWeJBeSja031/mue0ZwrNXrlldWCPeD+KIXUe+GLHRjLEMt937+T98/hyKvsvailNl2wJIXM9cOqXciKo7JbCtEkzFUdGiHCXOthIJl8NO5NhcWu5xtBGRaUzAVV7yIONVMVExMg5sKyK5lEKXZcnU1QJRqXAv8KOH/+qczPHSwsqoA7bX5LgteTMdPsMw8onfChCzTNLoRo2WHS0s+JccgzfJ8eMHOt3E8Pd/l+F1Vnr/QoR0mVF2Le0aK+FF6zbFNNzy+e2YeBVQKNveOFhktuxwo2zS6yYZ/h9ttq3tdi9tDArLYk+RCcn1rR4b9jAJc22u6f/9HDw/z1ecukmZwoJRnHp6dWeLQcJFUa95xpMZPZvN+05ZpoBQ4pkmSZcx386BkmyZxqknSFMMwCNJ8SdIPp5d4YLxCyTE53/A4UHYxgEbpgVsAACAASURBVIJjUu/EXG3nsXWdKMNa02JTA5nWzHdjojQPoM+cW+R//GQO28yLyLwwD8amoWhHeXC8e7i4oluXIssyCs7VLzB+nNENU5788SzVgsVktUDYm39+++HaqmPon2vHzKcMoiRbLpAbL7ss+QntIFn373C7bWWva3H7yDpksSftdGOM/WYrWyjOLIW8c2qE//kN47xjaoQjI6XlTlTjFRfHMim7Jg+MVyg7JkrlS4kOlF1sy2C8mheDtYIYP0oJ43zTCENBN0qZbnikWb5EqR0kuHbeECTeamn1OpIVy536/CgjSjXznYi/f6WOH6eMlmzOLnhESQZa040SGl6EH+VtNl3LYKEbs9AJSdKUuXaEFyZ0gphGN+L8okfBUtimIk01M00PL0rXLe3qZ2/ecLBKlOavrWAZvDzXxTLzrMOg7NW8lb2uxe0jI2SxJ11vd6E71WbVspttoXi9rMMH3jTBk6dmWehGHCjZdMIEo7ekyDYVeU8sRaZ1/v8MSLQmSfNK6IJlECQZF5d8HEOxlGlmlwKCRJPefDxeVwqg89FGsxsy2wop2AadMCFKUrxYYxqgenPP7TDFC2M6UcZ/e2mWomUyXrFQyuBsw8NUigMlG9cyKTsmDT+mE6bMdyPuqjqcnF5ktOxcU1GulMXDh4Y51/BoBwmgB67GYbuWcontIQFZ7ElyIVltO4rcrpe+7Ke0f3hukZlmgEZzoGiRaPCjlKKlmGuHoME0Faah0KnGMfO1wrWCRZTlw9lunBDGKXGmMbl2hLtdMiBM8yYiQZSgM+j2SrPTLP8KAXm19o/nukxWXe4dLVJyLJpeTMU1CRLNQjfk5+47wLlFnyjJmBop0Q0TXl/okqE4OHS1m9mHjk9eUyA3WnZoBwllx9z19+dGX9p2+7hETgKy2LPkQnLVdhS5XS/rMN3weHZmiUenapyudwhizZVOyJBr0vAiOnG+L3HFNVGAn+Qj5Ypr4sUptmVwV8lmwUtY6MYYhsYgH0lzbU3UTen3rV75s2GAoRRxqii7Bq0wT1GbhiLLNBl5tbYBBHFKvRNxuGZSK9k4lsHP3T/Md08v4Fgm944W+dHFFgCXWz4oxeVWgB9bgGK87HByurml7M1urP2VlQmDTwKyEPvAyi0CzzU82mFCxTEZKuRrSVcGAFMpmn7EzFIAwJsnh3jsjRPLo+BvnJpjrh1xsOrwq8cPMjWaN83oB/yyk29XmGQZTS/CjzWOoSgWbYq2iW0oJkzFpVZImGhKtsl42UHrvODKtfI1r/VOTHAjC483sTYYayCIsjzok7fqNHv/WLAM4jTD6HUVsQwwDAOlFJeXAmxL0Qrykfzhmks7jKm6Ng8fGuKVK10a3ZiibTAxVGSk5BAmWb69Y5zy4UcOXTd7s1uBUVYmDD4JyELsA+MVl5mmz5n5Lq5lMuRaLAUJS0HCM2cXlrtDWYbi+2cbzHcjpmoFyo7FczNN6t2QX3pgjGdnlnhwosrbj+Qju36V9cr55X4a9p6RIv/91BxDRZvhgoUXpyx6eaBaCjJKtolpKIZckwUvIkw0dq+P9FwrItzmueOVFHmq2u5tyxinmqaf5qNywFSKpLfpRKY1Zcem4loEScqiH+Na+VKn1xc8LAP+l/sOMLMU4kcp7zo6QpKmZKjl5hkF28wL2sK8anuj7M10w+Mv//UcC17MgbKzvBwKdj4wysqEwScBWYh94MRUjS9+Zx6j1/0pSDK01hwbK/ONU3M8OFGlWrB4/kKHKM0o2ybdOONAxQKlWPQSvnFqjomqy2v1q+tsxyvOcpX12vnlV650sAyDsmuQZJqyk/9bvR320tdwoOyw5OfzxUtehG0ZdKKdmjW+KgMMDanW2ErRm75eLvjqF6UVHcVY2aUbZ4yWHS4s5pXgcZoxXrYZqxS43Ar5f354gQxY8mOGCyZhrHGs/FwnacZcO8Tr7Y7Vb0iyVn9k3PBixkp5RXp/OdRIydnxwChLnAafLHsSYh+YGi1xeLhAtWDSDpPlLQKPjBSZa4dU3HxNbTtMSDNNwTYIe9043F76drrhc7reIUwyhnrduE7XO5yZ7667PGa2FWIZsOQnXOmEXG4FvRR2hmsZvPFglTiFNNMoNFopwmQHh8UrWApKjoFlKIJ0dedpQ+Vz15MVm6Jj5UVnRYvZVsB8N6bkmDw4XubBg0M4lkHDi3ml3mGhExKlmnOLAeebHjOtgCstn7MLHii4u1ZgqGBtuFVlP2V8oOwQppqCbS73C78dgVGWOA0+GSELsU8cG6/QjVaPgNpBwsHq1ZFR1bWoG3mP6n7ji0UvouHFLHoRYZpyuGYud6jqrytePb8cUnEsNJqhgkXUjUjTjDDTZFpjKHBMhVKKdpjQ8CPWaWa1oxJ9tXGI1vluUAqg/18NrTDjV99ykLPzHmcWutimwVDBRGs4s+BRb4d4SUYnTEh1XgAWxClm79zEKVxqRzzYa3gSJilvOFjFNo1108/9lPHR0RIvXloCwDUVC92I9tDOL9mTlQmDTwKyEPvERtW9v3r8IP/42gKLXsSSn4+QkkznbRw7AeebAWNlm4mKy6If8+NLLcquSdExMZXCjwy+8O1XubAUcGyszNuP1PjB2UY++kzyDlb5WmKFRvPgeIlOlI+um3687euMb0S/Zqy3SyNKr/y3jHon4nI7oFqwKVqKVn/jAq2peylZls8x54VweStQ21TEKQwXTBrdkDPzHYaLNoeGi4DecF7WVIofnG3ky72UQZJqOmHetOR2VTrLyoTBJgFZiH3EMQyeu7CIQnF8ssqHjk/2/kUDipJjcWTEYMmPiTNo+QlTtRJvPzLMqdk2i36MVrDox7TClCRNOTZWphUmGEpxZr5LxTV7QUUx0/SJ0gxTKSwDkjjv+GUoRSdMcCyF3vkp4y3R5CPlVPfPBsspdIXm3IJPRr4uOUwyMp1XXyug7Jp4cUacakwjX2dtKHAtk4Jt8cB4ZXlO+P6xModrxVXPPd3wqHdD2mHCkJsXwF1uhRRtk7fdPXSbz8T2ka0bt5cEZCF2wXZcyJ45u7AqhVywDd44OcTPHxtbHh1DPnd5uFbiYDXl1GyHhXZEkmrGywbHDgxxbKKCUnluVymF0hrHNLANA19rFroRlmEwUXUJkowfX25zoeFzuZUvm3KtvHI6SCDL8s0nDCMfnSbx7kVjU+XzxSs3rkj01YYgrmVwpRPSCvLNJfw0wzYUtmkQJvnvFy2DMNX58qgsI8oyTMPCNfNiroO9cxImGQXLyOfd57v8rw/ftepYrv4NXJ6dbnJ63kOTB3wv3pvrgWVd8/aTgCzEbbYdF7Jnzi7wl/863dvowOXVehcvThkrO1QLlVVrTOudEMtQnDzfpOFHuKaBaSnOLHjMdyPOLwakWcb5RZ8wSci0wrEUUZZhG9AOM1IdYFsGtqF4rd4hiPMRpNkLvHGSz7Eq8jnb7Wr2cSv6ldVraXptNf0ERUDRNpjvJmQpxFqjVN5MxDLBtgxqZRPLMFEKWkGKaeQFY+0wxY9Tjk9WSXotOKtuvvZ7o/njRS+j0Vvy5FqKbpSvX75/rLzn1gPLuubtJwFZiNtsOy5k3zg1R7VgLa+DVUpRsg1evNzmvvEKcHWN6XjF5Zlzi3TjhIJlYpt5VXXBMljyE5aCFNvMU8tRqilYBq6pCBONRlFy8oYZFxZ9skzTjVKSLE/dWkb+3HEv9A1IdhrIj2VturzQS6HHab7JRdNPWPR7a5bNvNWmrTVV18SLUtphytGRIsow+J/uH2VquMDfvzpPmmkcO6Fg5r2tHz40vKpF5lr9JUfnGh6ZhopjEKf5fHPBzveELljX/t4gk3XN208CshC32XZcyObaIVXH5NV6hyU/xo9TXAMMI+X5C03aYYJtKB4cr3Biqsb/+MkcYZxRcS3iNFvuUuVYRr5HsZWvgPTjvLVkpkH3KovzoKYJk4ylICG/a94LK0zz+dddrNu6Yf2WmXB1XjnKoFfORZJpkixP2yda89q8x6HhAo8eHl7eEatasGh0w14rTcXZXpX2TNNnvOzwF987i9nrApb2isLq3YiFbkTJNvB7O0VNVIu9naYi7qnBEy9c2jPzsbKueftJQBbiNtuOC1nFMXm13iVONZapKJgGrTBB6YxGN6TsWLTChHo3BOBd94zwz6fn6UYpZdfkYLXI+UUP0ARximMZOJbBkGuwGKQEaUbRMpgoO8x1IiqujWOBa+YB3DIVQZzv5LSXgvHaVp1Zb8enlZJU001TXFsxWnIIkxTHVHz+H06TZBkPjJd5811DjJZd3nr3EGcbHnOtiFrR5/X5DheaJkXLoOHlX7BGSw5NP6bhRaQpZEoTJZqind+nExhkQL0b4trmrszH3kxNg+y4tv3Mz33uc5/brSf3vPVHBIWCTdBffnCHknOwf89BxTF56XI+snJMtXwh+8UHxpZT0H0bnYOXLi/x49kOaZaPwBINWa/ZhDIMxqsuxyerjJRc6p2Inz92gMvtkHYQE6WaRjei4UXEiWaoaJNpaHoxcZana+NUE/a2ThyvOpRck4VuTKZTDMPI55AZrBT1jVIb3Gaoq1PgWabpRHlL0AyNzlT+czfiQNlhtOxSde3leXzXMhkp2cws+Sx5CX6S4UUpcZahlCLJsjzdbSrKjkU3yuhECQ8cKHL0QD73r3rd1kBR70S8abIK7NznoV/ToFTeY7wbpbx0ucVk1b3m/bjScDF/3fVOxHwnola0+cUHxnbsC8R0w+MfXp3nH1+e43zDp+KY1z2+QVYuu+veLiNkIW6z7WjQkGX5BglRqomzDHojVdOAWsHiHUfy7ktaa+rtiKnREr/0wAFeX+jSieK8x3TBIkw0QwWbi0s+ygCdavw4o2wbBGnGUhDTDmNGig62CRqTNM1IWT+g7SUbFXz1R8xxBjrOsCwDrTWdIEWT4sf5TlFnGx62adIOY/wo4XIrwDIU9bZi3ouI4gzDgDAxGK+4FE1FO0gZKlhorWkFMdWizVjZZbYd8siR1XPIt2s+9lZqGm7Xuub+l4aJWmlfV3RLQBZiF9zqhawVJgwXbTS9vsxK0Y0SokTT8GMa3ZDRcn7hMlQ+N/ndM/OMFB3efXSE0bLL06fnSdKMTphim/kccpTkBVsaA9s08KN84+B2lHB0tMTFpQAvzCPW2u0O96NEA0m2Kq0da828F/HalS5vu7vGQ+Ml/tMPpvM550zT9COiJCPJMrIUgri/1jmfo9c6n8svuxYPjlcI45RXmwEXFv1V74nbNR+7XcVZO7kmuf+lYahg4/nRvq3oloAsxA7biQtV1bUYKlhMN3yMXp7VVIqYjFrBWh69zTQ9QOHa+ehLofnhuSYV12S2FWIqqBZs3nr3MItexE/nUiwj35UpTPK0dH/cttCJ8MLkajr3ll7B3rF2h8gsA7vXMOTDjxziiRcuUbANFrohVzpx3hEMTZxd3Sxg0U/ydc22Ik41nTBhrOzm67+V4u7hIqfnu4yUnNsyH7vyPTnT9AmT7Ja+DOz0muQ7paJbArIQO2inLlTHxisUbJOFbr6ZQ6bzDRIqvU0hXphpgYZa0WKiWqRasBgq2HlxkR/RjQwODbm8vpDvnYzOOD3v5RXYiaZLtjz6jVJIdUacRNcEpzuRBtIMGl7EEy9c4m///SJX2n7eGGXN2udeoTWq1/UrSvNe36ZW+X7NcUqYpLzt8BANL6bsmDveZ3rtezJKe+8X4MhIcd0vA5t9qdzpNcn9QsjyiofajxXdEpCF2EE7daE6MVVjth1w11CRRT8iSrO821QUg7IouyZhonnhYotfOOYAFkdHS/z9y1cwlSKIU+baIUGcp6gvt0KGCxYL3fCanh4aevsZsv9z1FtkGHnF9sUln4VOiB+vzhj00/llJ28z2u/KpXU+99//4uRaBg9NVLBNg/vHHD78yKEdP/a178kjI/n78Eo7Xwu99svAel8qv/LsDONlh1RrxisuZ+odjk1UVj3Pdo5g+xXdxSDG1HpHMwi72Q50XwRk6acqBtVOpdr6uy/9+0yLTphQcS06ccyinzHkwv1jZZQCP87495kW/+EN40DeEKMVRkQJHKwqakWbfI2xxrEMvGT950vgzslRb8LqteN0LPjn1+r4vdT+Sv3vLUGSzxdXCxaOmW8H6VoGSuXTDm87PMxM0+e1epfDwwWeeOHSDV+/VrZQPVh1+dXjB3nXvRsHqvXek4drRVzT5Ld/7ug1918bwOM048Kix6IX8+57R+iEKReWAgqOuRzcYXtHsP1CyJfqHhfqnZvKIGwlTux2O9AdC8g/+MEP+OIXv4jneRw6dIjPf/7zTE5Obv6LN2i3T6AQ1/ugb7TmuF9odSNfItc+T6Mb8d77DxCnGacut3iumfeWDpKMy60AjSJJM16ea+PHCZ0wydtGKoPhgkGn1/rRUIooSYkk4G5JP20fxxmXo+i6XULjVHOwatMOM/wsZbLqUHIsRko242WX0/UuF5p+vt67HfJv00t85d8u8LP3jvDrbz+86XvimbML/Menz/Z2s9K0gpT/+PRZgA2D8o2ug18bwM81vLzBTG8pV7VgcWyszGv1LrXizs2BT42WePi+MZrNa/ea3sxW48RutwPdkXXInufxsY99jD/7sz/jd37nd1hYWOBrX/sav/Irv7Lmfre+Dvnbr9SX3xQbrd/bi3ZzDe50w+Pbr9R5+vT8rq732wvrkDdbw7nemuOZpo8XJxRta9N1n4WCzauXlvj68xf56nMzLHRjJioOmYbvn21waMhFKbjcClkKYixD043zlo8tP6YdpqSZBqVpBintIMGPMvw4Xxsbp3lXKpkbvjmbtezWwKIXU7ANRks2qYa3Hhrmf3vrIX7xoXFmW3mf8dPzeWCO0owgSXm94XOx6fPgeGX5PbHe5+FPvnOaejeiaJs4vZF3N0q52PR57E0H1z2mG1kHD3C+4dON0t61FV6td7CUouhYHBouADBUsEjTjINDhQ3XJG/HdeVmrwlbjRNPn55npGTnxXY9jqmY70Q8OlW74efdyG1dh/zMM89w5MgRjh8/DsCv//qv86d/+qd0Oh0qlcomv31j7pTqu9tlkDIO5+Y7/MOPZwd6KmKzb9T91HKeUow4WHUw0PgJnG8s4CcZ6AwvzvjHV+ocGSny5skhHnvjBFOjJc7Nd3jy1Cw/udzBjxPONmJenm3hWCYNL+JMvYthgIEiylKiXspZkW9rZORFvMx3YlzLyNtEAmhIB2ADiL1sq6cv0TDbjgiilLccqvIvry/wX1+8hGkoHMNkqGBwuR3jxQmOaVCwTOI047V6l795foZa0eHHsy1sy+KhsdLyewPgXMOn7JjLy9ZsU1F2TE7PextmYNZbB//QeImT002++ZO5a+6/tiOXbShaYcI7D169lnfClPvHKxvOgd/MdWW9zFMzyW7qmrDVOLHb7UB3JCCfO3eOI0eOLP9cLpep1WpMT0/zpje9aVufa7dP4H6zEymbm5njn254/N3pBRzYkS8GN1t3sPb3Ttc7PDBRodENOdvwe/O5JkOOtXz/Z2eWeHCiytuPmMw0ff77qTmKloEXpSh0XnlrKBSKQ8Pw3EyTejfk8UeP8FLdI800l1o+JccEndEMEtB5cw8/0cvzlaZaM82r8yVLWa9pSBJnmP2qX3XtxgtiZzXDlH8520SRF3jZpkKTcLmtURocK19q1o1SDCBOE/7x1XnuPVBaThE/9fIVnj4zz8/fP8bDh6oESUonSlBAnGmy5TdA/jgbfXZWroPfLFiuDeAPjleod0Ns08wbpmwhPX2j15X1C8ku4Lo248UbHyxsNU7sdjvQHQnIvu/juqu/jbiui+fdeO5/M7t9Aveb7c44bOWb8XrB8eR0k+GijdWLGts5l3OzWYD1fm9mKSBKMurdiIJtUnUtWkHCkp8sv67+hajRjfjB2QZelNCN8tRhnPa2Oey9xk6UMFFxWfQSTk43aScZV9ohJcdCAc0gxTQUSQaR1vn2h3nvDkzj6qi3XxC9tr1lv8GFBOPbZ20DFUW+Q1bU25y5v1Qq6325UoAy8p2nojTBNAxSnVdB24Yi0/DCxRY/OLfISNHmQtPP93zuPUkGuKai3vapFqqbfna2EizXNrJZ/sxucYnWjV5X1jumRS/BjjX3jRQ3PM6NbDVObEcXvVuxIwG5VCoRhuGq24IgoFwur7qtUnGx1tlyzDQNarWtnYBarcTQUIHvn2lwpR0yMVzk1+6/m6Nj25sav91u5Bxsp6nxKt0oYahwdW6nFcQcGa/c1PF885V5Jmql5ccrl6AYxLxU93j4vjHOzXf4u9MLDBdt7pmo0gkT/u70Ap0g5o2HhlddyQoFm7lWeMvnZbNjupHfe0um+c4rVzg8UqRazDcisCyDhw5Weanu0U4yDtaKLHYjfnKlQzNIGXLz9cBhL3j217WOlBziDKpFO29ZmWgmh4s8P73I4dESFxo+cZJhGYoETZrmy2rCJCXNoGCZJGma70vcGwFL3N196/0NTMNA6zSv1jbztd79/aQNBRqFgUYpxaIf043S3jIphY1BM0i4q+ZiKJfZdkTc+yZmGHlWRKH5+1fn+dlUcWy8zHituOFnp/8eNVbMm272WavVStf9rKx1o9eV9Y5JK4izjFLx6qh2q9eEG4kTN/rattOOBOT77ruPb3zjG8s/NxoNlpaWuOeee1bdr9MJ1/4qkJ+QG6mkq1kGH3xo9Qm8mUq8QXKj52C7vGW8xJOnZvFde9U3yQ8dn7y56sZ6m4mqi+df/SZsas2Feodm0+MffjyLA1haEwQxFuAA862A1khpeYQM0A4Sqo55y+dl7TE1uhFnF7rMtUN8P9owfb3eaxkrWjiGomAoGu2QimvypokKI0VreXlGvenzWr2zfKHUQME20eRLSEzANBRaa2xT0fZjlIaqpXj3vSN880cXCcKEyYrN7JIiTFMspcjUisYTKm8y0R9hyQh4cGVAlKboXnrZNAwKShP3NvPINLgWOKZJkmnmej2yC45JFGf4UUrZySgaBdpRilJQtPM9qzOt0VoDmiDK6PgRP3zd5/6xMncPF9f97FQtg3rTX5XO3a7PWt+NXlfWOyalwTaMVZ+/GznOQYoT4+PrFxwb6956i37mZ36G2dlZnn32WQC+8pWv8L73vY9SabAKcsS1+imbfsegsmPe0rxtf+5mpZVzN/VOHsRWqrgmQwWbJT+mHSRorWkHCe0w5sQ2VDquPKZGN+LFS0u0w5SDQy7dKE9fTzeu/aBu9FqmRoo8OFHlvccO8PYjNUbLzvJrPDFVox3GLHQjXFNRcUyiNGO4YFKw8ipX2zQwDfCjhIpj0QpiRkoWJ6ZqHB2r8PF33E2mNUGS8eB4iaqbd+Qq2AZBnI+ydG8bQUX+oS46Jq6lMMjXze71jSD2mzS7Ot+fZRrHUNimwjTyqYe7h4tM1YqYSqFU/oUtTjVpb+9q1zJphSkV18I1DQq2SckxsQ2DkmOhdf4lrV9N/Fq9u+Fnp/8evdnP2nQjLyD7i++d5YkXLq372bnR68p6xzRSsjhQcXbkmjAodmTZk2VZvPnNb+aP/uiP+M//+T8TBAF/+Id/eE3KWrZf3NhunoPhos2bJqs8OlXjTZPVW1rytNkSi7VLKiAPcgerLr/61kPMLHjbvrXbymM6M98hSvNRxRsOVqiVHDZaNrfRa3nfsQOcW/TWfY1ToyUmqy4/mW3T8GJGyw6WUliWsbxxfa1oc7hWpOhYuJaxvCxmarREoWDj+TEXFj3OzHu0wiTf9q/kYBqKdpAX9Nhmr6KavPrXMeGNB6u0gnxLxTthI4hBkofBq+e8P6dvrSm8K9kGh4YKuLZFlGRonW+heaRWQBn5iPdwrUiYpASJplbIO655UcqVTkScZiRpRitIV1TWKzKtGClaFB2LasFkouzwwTev3wfiVrZRvJGtG2/kurLeMX3gjQd59wNjO3JNuN02WvaktN695Fa93l739t1K1w6S/XQO+gUg851oedS4XoXn2lTWzTYBuJFjeuqncxwccrl3tMRo70PS37Jwva5FG72W673Gta8zSlJeudKl4UW8656RVctY1momGf/3d15jetFnyLWWd3c6MlLi8UcP80d/9yqdKCHo7btbLVgs+QlBnDBadhguWJxd8PL1xis+6XavGEyTV2ev3M3IVDDkmiwGsi7qRinAMWCoaOOaitlORMnOU8+GAsNQREmGZRi8974RXrjc5p6REkMFi0Uv5lLTJ9Gakm3xSw/m6VXXNqkWLLxU89NLS1xq+nSilIfvqhIkGReXAi428yr8bpTXGIyVLH7hwXFGyy7tIKHsmDvSlvOJFy7RjdJr0t079Xz75bq4Ucp6X7TOFIPtelsN7lZV48pjWntBud6yuY1ey2bbKa58nX6U8q6jI1taavX9Mw0WvbwYptDbscmPU358ucWf/NPp/7+9ew2S6ywPff9f975Pd89F8mhmJEuyDSjYxjbGGDAhyfYF9k4qZ+NKTDCBQBkKPvAtJwSqEiqHXQF2qlJFqmBXJSkuDjmwXScViGOHHUjC9sbGsYlJbPBFsuTRSJ5rz/S91/U9H1ZPay49kizNpdX9/Kpc1PRoulevbtaz3vd93udhpeWTsQ2qbohC4QYRSUsjUgZThRRZx8DQNV5ebEAQYRpauxhI/PwJUyMIFQbxyNrQYDhtkU/aoLksN7eopSnWWZ3gsTQwDZ1y08exDIpJi1YQN/8wdZ1iysYNIlKWznzdR1cKQ4OqG5BPWbxpIkchZbNQ9XjgbYd44uQSDz59hjBS7BtKMpaxKTd9bpwY6pSpvBl49kyZlxbr5BJxpbZrx7IUUnZnWnendp1IHYjtJQFZ7LndanLezW5umzvf+9xqX/R8tYUfhmTb2ak1N2Ch5hEqhYZG1omLQBi6hqnBUt0jCBUZx8D1AxpenNV9sJik5sVVH0+IOAAAIABJREFUumpugNseLqt2QCikbZRGZ23OCyIsQ2c0ZbHc9AeukpfO+Ut3a5zLiE5YOuNDSSKlqLQCGl5Ayja5ZjRDqBRz1RZRpKh5ISsND1PXyWYcTF3jqqEkTT/klqkCxXR8E1htBYxk7M4e9qMjaRbqLkt1j8Vq3F5zIp/sHEup7rJQ98g4Fr9y3UinNrYzX+PIaGZHb3ClDsT2koAsBtp2j9AvtQjKVvuix7IJLMPADSISVlydSyNO1skmTHSNTiJYPYz3JVuGRhCGPDdbI20bpGyTrK2jIo2aFxAqyCV0tHjVEdPQeefRYfIpi+dmazx7dgU/UthmXGxC1yCha7TC/o3KG9fYV4OxvqaAytrfK+KgbRoaGSe+jNqmTr49Ve2Gil++boTlhs9zr1Y5W4n7Vte9iP05h7Gcw9XFOKj+6/QKz89VeevVxXU3hGv34k4VU6SSNnPLDV6cr64LgidLTTRNYzgdl4WcLKTIJ+0dmzZeS+pAbK8dybIW4koyVUzx3hvH+djbD/HeG8cvKxh/57nZToWk82Vsr7X2wrtabzfrWDw5vcLbjhQppOKA2/ICaq0AP4xI23FyTwRcO5pC0+IsXcc0MHVoBnFjg4YfsNL0mC67jGVtkpbR3ueqYxgGmhY3oPj+i4s892qNU6U4OS2XsHjTRJ6sY2EaGpqmkbYG63JhtJPkEpaOY2qbM9W1+AI6mrYxDY2WHy8JXDWUJGObzKw0+fezZUxD49rRDFPFNCnb4A37472v//FqlZOlJkdHUvih2pR9vOUOBMdcl4G8VPdQKuLQmu9txjFYrO38tPF278oYdDJCFmKbXGrZ0fOtwx0ayXD/LZM8+vN5nputYuo6w2mbmyaHKKbtTmUw29QZSVlUvJCletxNKmHGIzXbiKs7Ta80CSNwdPDa65pKgU5ExY+YXm5Qa2dte0FI3QvJJAzqnkkzCBnNOBgNj0ofJnutHf3qxNuMdE2Rtg1GMwlmyk0ShiJScW3qtK2TT5qsNEPm6x4HC0km80ncIKLS8rl5MsdLC3X0diODVjuDupiyePzUCkdG0mTbPZGPL7rcPJHngbcdWndMW00HHxnNdKrZLVQ9hlPxzMrqlPfqv9utaeO9XHLqNxKQhdgmF5vgsnFa29C0867DTRVTnYv1apLP06dXKKYskpbOmVZA0oqrNzX9EKXiYIymtdc4DbwgoNYKCaOISIGuKzJm3H2o3AwxtDhZrOYGWKZGwbIoNTyKKZtS3aPuRizW4tKN+WS837XhBkRocYOMPmLpkHZM8kmTXNLiyHCK2WoLNANfKdJGnJwVKIWuRwSh4uWlBpOhIpewmCok+c2bJvjm0zNUvYBqu1/1dWNpnj1bZbEefx9WR9xb7RHfOB1cafmd6eButairrUCmja9wEpDFwLjUhhIX62ISXLqtFy/UXUBjIp887wV1Y5JPqR43mLjjcIF/fHGBM2WPKFKYGriBwjQgZRsEUUTTj8glLRKGxWzVJYwApdDRWC3vFUYqLlLSDs5uucVC1aXmBvHIMIxoBfHIcV/GpJBMUHEjwrp7RfVStnXiYipb/N7QdcayNoYOQwmL4XQ81V91g3gPua4xX3PxwoiUZWBoipob8Uqpwev3Zfnl9t7Yo6OZTRn8bhh/fo6pU3VDMo7BtZP5+PPYYGN+w+Roput08F7XXxbbRwKyGAi70VbyYhJcuk1rT+RTuH7YWYfb6oK6MckH4ozcF+ervPlgkcxchefn6gTtqWjLgOGkxUy5hUJjKp9koeZTTFlUvZCqF7Ybyutoms5IxiGKFK0gpFR3ccN4P3LWiatChZFiLG2RScTT5MuVFrZhkHJMvCtke1S8JmzguVtPu7thRBRFpGyL1+1Lc7LUZKqQ4vRyk6obECiFF8VT/glLp+lHJG2DlKXjhYqnZsqMDyW7fh8MXePghine1X273awdCZ9vD65MG/eHwcrSEAPrfIlT2+ViEly2StSJFBdMLNvqb18pNTixWCeXsLlpYoircgkKKQtD12n4EZahcXQ4ScIySTsG+7IJxrMJTCPO1LYNHTRoBSH7cw7jQ0nQdBxT56p83DTD1HVMXaPmh0QKXD8iUhqGrjGatrH0c9WpepUGmEacVX6+44xU3Gd4X8aimHaouQGFlMXR0TT5pEnSMtBWm3m0uywVUhYJ22Cp4XW+V92+D++/+QCmofV1+Udx6WSELAbCbhUwuNBI5XL2bW71t5oWZ0EnLAMsg0NFjZmVJhoa975pnJNLNeaqHn6kSJoaMysuCVtnLG0ThCGNQHFV1mL/UIpIKfIpi7RtMJK2mSqkeHG+hoYiiBSeGzIbtQjCiFBBy9dIZONgHUWqp8tz2u0iKNVWcN7jtHVA0/i3mSpTxTSZdvKVG0RxgRZTp9TwQEGoFMW0hWManY5La79X3b4P40NJmV4WXUlAFgOhVwoYXM6+za3+9mAhSbnl0/JDEqaOF8YZvWiKx04scabcIlSKq7I2lXZFryiCfMZmJGvzxqs05moeNx4Y6jzvi/O1TmUwTYszi/V2o4OmHy94ph2DfNKk5oUMJUzma37XQLc6Dae3e//u1XKz1+43bOkKXQd3iwOJm3QoFhse3/mPOQ6PJJmtuNTckIPFJCnLYChh44UhGdtA1zX8MKLlR0wVUhf8Xsn0stiKBGQxEHqlgMH5EnC6JZ3l8+sft3Ud1w9pemHnb5+cXuFMuclCzWO+5rHc8EiYBq0w4mylRRhFFFI283Wfhhe0C/cneEf7vSulsBfqpG2D4/M1Km7AxJDDiaUmSilUFKFrGoGKSJo6oRGPNDUFo2mHxbpP3Y8opuIm8htXZ9Wa/10NyntBEZe4TFgmh0dSuH7E83O1dcerEQdkXcVFP+peQLkZZ6/nE2Y7Q1pjPOdQbnn4oaLuxs1RCimTQ8NJyXAWl0wCshgIvZSJ2m2EtFXSWSWM+Ofn59c9vtp8Y+1zfOe5FteMZlCqimPqvFppMZZxWKx7JGyDQCkOFVPMVl32Z2z8NaPDmhtyZCTNrVN5Zqst9g/F2d7D6Qo/PVul0gwYy1ik7ARnyi66AkOLsE2DUsOn5gag4kpVhg4GcdANVRwEVwOhpWu09qgGp6WDhkY+ZeEHESutgGtHM6w0PeaqXlw2NIoDckRc19vSwLHi6lvxeQo4NJwm0d5XHCqFpmkcHU5RceN64wfayVwyAhaXQgKyGBi9PFW4VVGR//mTsxwuJM9bbGTtzcZc1WVfzqHlWxRSFjUvIAgjXD/CMXVSpk7FDcg6JkqpLUs1ArzhqiEmC2lenK9y7ViWbMLkJ6dXcIOIhhfwynKTUMWtK8eyNiutAE3TCCOFYWhEwbk15TCKR+K7abXloW3E+4qDML5RMA2NcjNubdoKIjKOQcIyWKh5RIo1x6wIQ3hpsU7aNvEjOtP4cf9hk6xj8H//p2u7vv5Ob7MT/UcCshA9YKuks7lKi+vbpRbXPr4xGW1j9yqo4QYRwymbV0oNHCue6s4mLAopk9G0s2mm4OGfzTGWdSjVPU6VGnFBC9tAA6puHMAOFpI8fXoFBYznEuQSJscXaoQKGm5IEC/AYmigjHh+2msHud0ohb22JnU7eRzb0EmaOvmczcxKq12JC8pNn0jBvqyNY5osN/1O0w2IWyVGKDxfEUY+Gcek5cfT02678lbO6X4J3Y1tdqL/SEAWogdslXS2L5d4Tcloq2vlo2mbE4v1duN4E9swKTV83nKe/sujGYeZlSYnFus4ZlwzudwKiJTiPx8bYqbs0vRCbpqIt+g8N1ul4cVTtXU/JGFqtAJAxQlUpgGaoWFHCi/a3MBhJww5cZJVpOIbl5VmnGhWTNmM55MYusb0chNd08k6Bv/puhFs0+Dxk8sYnDtGDQhChUtIMWVTXe0/HKpO5a0DQ4l1XZfW2mrG49Gfz1NM2zJqFl1JQBaiB2yVdHbvTeP88/Pzmx7fKmlo7fS164dU3IADQ4nOGvH5Lv63TuX5wg8WN9VfPjqSZqbsbuoc9MTJJf7kn1/GDxWGpjrJWueCWvw8Kdug5cfPVfVCdC3uybzdwdnUwDINwiiiFQQkbZ1C0qLphyzUPExDp5C0OTyc4v5bJjuJdN95bpaGH2KbOm5765JaM6pPtRs6FNI2Wcda9zlstX+424yHF4T8+JVl7jg6IqNm0ZUEZCF6wFZJZ9cfHiFn6K8pGe1S18qniikmhhKb6i8rBf/7xNK6UR3AUzNlMrZB0wtZqPugwUjKpOIG+GGc5JW0TepeyGjaYqnuk7IMTEMjDCLK21xvM1DQ8Px20wyNlheSS1pYho4fKRaqLglLZzSdXveef/XYfv7u2VkUcWcnP4xwTIOwfYdh6TqFpEmtFfBqudW54cg6Jk9Or3C23GSm7K47P91mPF6Yr1NIvfbmI2JwSEAWokdsFUh3MxltY/3lUt3j6dPLZDashdq6TtaxGM8nOblUJ5swWW74BCEkLYMwCmn6EfmkhmbrvFp1SVoGBceK90xHivYS87aNlDXi5wuiOFiahoYXKhzLoNXw0S2ddx4dYWalyRd+cJyJoQRH252TJvMJlho+hqZRqnsEkSJUCkPT8IKIq0fSTOSTzKw0eWamwg0HckwW4p8ffm6u8/Pq+bllYoinZsrAuZmNUsPjrYcK6455J4rTiCuXlM4UQnTcOpVf12v3+bkqCnjdvvS6kqPPzlbIOAZXF5OUmwFLdQ9QKBQNP0TX48QuN4iIorhhQ8rSuXYsQzFlM5Qw0bW4gKWxTfU2NeJELFOP86tdP2Kl6VOqe/hRhGnAcsPnxGLcFrHqBZ2e1deMZsg6JpahM5SMK5VlbIP92QS3XV1gshD3nF6oeWQTJgt1r+vPq+dnpuxuKpt528ECtrm+9OleFKcRvUtGyEL0udey/Wbj1LkXRtwymaeYPrcemnEMNOKWkcW0Q9o2qLZ8IG73GKG1AyM4po4fKo4OJ1lpBVTdkFApMnbcoCI6T9el10IjrhzmBSGhgtCNME0dS9c6lcsKSYtTpQaOabS7LQWdmQBbj28WlhsBfhhhGXGhj6YbMF9zeXmpQcYxmS7V0dCYXo6bPMxXW+zLOFTdc801Vke9G2c2VterV/9Nv7RJlO1d20cCshB97FK236wNJA89c7a9jeqcmhtyYMjhX6eXCSKFH4QYOph63JqwSbvnMhppx8QPI+arHpmkhUKBpjFfbRKGinYXyEuyun1JQ1vXPjL0o7i4RxChGzphpNA1jflKi/mqh2VqGJrWSbrKOPE6+P23TPLk9AqLtXitfmLI4cGnz6BrGrn2lPzZskvKNiikLLwgotyMi6KM5RLrzk+3UW8vFafZLrK9a3tJQBaij221/eZiE4m6ZX/PrDQAjWtG08xXXc6sNFHE67WtQOEYGiHx9PFwymal4THTaDGScdCBWtOn6cdR+HJHx6GKa1OnbQOltHi6XIO0beCFikApbFOHKGKxGZAwNNLEHb/qbkCp7mIZBiMZe9OI9qFnznLNaJoTi3XcIKLmxYluNS9kyombTOSTcX/pY1flNhVa6aaXi9Ncisv9fon1ZA1ZiD62VcvGxdrFJRJ1ayE4mnaYyCdJ2yYNL27HqBGXx9Q0RSuIsA2Nw8MpIhVXw7pmNMW+nMPZistQyiKfNC87Gmu0S2JqGhU3pO6HWEY8mj06msE0dMZzCQ4WUlimASgsw6DpR1yVS5BPWjw/V1+3fWm61OChZ87y5cdO8sMTi6Qsg+vHh3BMnUozYChhMjEUt7esuiGjGZvrr8oykU9u2XKzn13u90usJyNkIfrY6vYbPww5WWpScwMsXefa0fSF/7ht7ahuutTgv//TcVpeyEorIFKQsnRafrxWm2/v+7UtnZsn89imwb8c97ntUIHh9lprzjFZqHkYelxS81KZOnEWdKdbhcL14+zt0yvN9jYmgyCKp8nHMg5pxyRh6HFAbVcxWQ2gG6dfTyw2ePr0CrdMFbhpMg7YlVa87rz6c7UV4Prtvcs93XxyZ/RKF7V+YfzhH/7hH+7Vizca3e+iEgmLVsvf5aPpLXIO5BzA5Z+DjG3w2MtL/Hyuhqlp6JpGzQ1wg4gTi3WenF7mlVKTjG0w1G6isJXVgFVthSw1PBQaizWXuhcSRmDqcaAbz8UdoE6VGhgaTAwlGEraOKZOqe6x0vQ5vdygHScvOYyFirhJhorXoXUtfj7T0FEqDtjLzYAIRdLS4+1PfsTBYoqbJvMMp22KKYtS0+dfji/yTy8tkrQMxrIOmqaRtnXOlFtUWwET+SRhpJguNTk8nCKXMNvT900afkDSMimkLOpeyH+8WmF/1rng+XytevH/Dxnb4D9erQAatqF1pux/6ZqRbX//0Jvn4FKk007Xx2XKWog+NlVMMZp2yDrnmiNcM5qm1PB4caHOWNbpbP2ZLjXO+1yr64Wv25duB+GQMIqnqDUtrhk9X/M4U3YZSdscLKS4diyLHylmVppUWwEHC0nOllugwNA1tmnHE4pzfZbjYKwxWUgxnDZJmQYqgpVGXDTkYCFJtRUws9JkoR7fUIxlHUrtLVGlugtAMe1wy2QeP1QsVD0ODCX56O1T66anR9M2E/kU2YS5btvTk9Mr2/TOelu3JY1BmrLfbjJlLUSfC5XirVcX0dr7fn9yeoWMY+JHUSeIwIUTcVbLQWqayeHhFC/M17BMDT+KE6dMI26v2AojptoVqbIJk4l8CtcPSdsGs5UWKoow9bin8nY0gFoNxEEUjzCCdmEThWIsm4inlUOFhmI0Y/PjV5bZl3UYSpjsy6U67384bVNpBZwsNTvbvGzT4B1HhjeVDV315cdOdl1DHaRiH/2WqLaXJCAL0ec2rvNV3QBb18is6VR0MUFk7fMcuyrHyVK8NzefiKi6Ia12UlXS1DF0jUPti/TqtqLVfstHRrMky00qrYCFbU7+iYiDcrXl4wYR+aTJUMKiUEiyUPe4/erhTrb4vxxfpJCyWb0MHiqm+OmZFUp176Iypjeek1UXu4Yq+3fFRhKQRU9Ze5GaGs3yxlG5+1611QX8Qhf2jVuXLF2j4ga8ed+5to4XE0TWPo9SClPXWKx75BMWh4dTJC2T6ZUGtqFz/fgQxbS97rnPTXnrrDRc5qrn9jdvdyco0zAwdI0gguWmz6tVl7Rt4IchmhaP3BOWzj+9tMhoNp7SP1RMcXQ0w3zVveh9wls1BblQsQ/Zvyu6kaSuHjWI52D1IhW3DLRwI8VPTi/vSILMlWL1e7Dx3KwmD0VRxD+dWNr0+NpzNpS02J91WKh5cdGLtI1laBRSzmtKxFl9nhfmavz4lWWGEia5hMVwxkHX4PBImuG0w1jWppCyNz33M2fKFFIWKdtkOG3z3GyNMIqLiJj6pRcIWbW6Hu2Y8Vq5G4S0/AjH0qm2AibzCeZrHkMJk6Yf8spSg1IzYF/GJogUp0oNkpbJ77xlil++bpQ37M9e8Hs3lLSIoojHT5V45kwFNwh519Fhjo0Pnffv/tcLC53lAq3dXQviUpxv2J/t+jeDeE3YqF/OwVZJXTJCFj1jY5GBXMKi2U6QGfRRw1YFGL773BzXjmUvWJihWxnHS6kYNVVMUUzb3HF0hGzCpFR3eW62ynTJY65a4leuHeX68Wzc/WjDcxuaxuMnl/GjiIxjknXMzp7Vy2nHqBFPU+t6vI6ctk3StkHDC1FK0XADNEDTdRKWwclSE4CUY3E0YWFbBjU3IONYjLZH9Q89c7Yz4zAx5Gzq5rR2G9hTM2WuHcty02Q8Qn5qpsz4UPKi1uPXGrS1Z7GZBGTRM+QitbWtzs1c1eOmydeeVHQ5iTgnFmpU3IDFmke56VP1QoYSJhnHxLEMnpop86vH9gPxjcHDP5vD0DReXqpTc30yjonnhzT9gJYfoeugwgu86BYM4hrWLT8kUHFP5KRl4LU3OI9l4+1Wbqg4vdxkIp/AC3TcMMLS4dh4vjO1rpTi+EJ93VRyt25O33jqNKNph1DF2eNjWec1V6qS/buiGwnIomfIRWprW52bfVl7V8/ZdKnB6XILL4g7KVVbAWGkaPoRQeTjhxFZx+LRn8/jRVEnsD1+skTVDbhmJM1KK2C+6mLpGlgGkVIEYRDvKb5IOpA0Na4aShACTT8kbL92K4ywdIORtI6hafihYiqfpNz0ObkUr3FnE3Gv59VgDPF5q7R89ucSnfO5UPMwdXh6pszJUgNdi1tSLmd83np1kZ+erVBp+aRts/NcF3NDdKlrz6K/SUAWPWPjRarS8uUi1bbVBfy/HNu3qe/uTp6zJ6dXODqS5kcnS2hAoBReGNGoxUlTD/9sjjfsyzBf83j74eFOYPMjRc4xWW4F3DyZ5+nTKwwlTMqtgGYQ4S41MA0Iggj/Iuau/+sN+7njyDAzZbfTDGJtktt//6fjNNvVxMYyDkoplps+hq7znmP7qHshPz1TIZuwmMgnO+dtdRp91Vy1RbkVELb3L7+8VKflhzimgaZpDKdtqq2AU6XGpiS28+nHRhPi8klAFj1j40VqcjQjWadt57uAjw8ld+3CvlBzmSwkGZo121udItDiCKpr8XajmZUmM2UXlGJfLsGhYoqsY9LyQ2rtNoVxCc+449KhYpL/r+bS8AKCiwjGSVMnm4h7DnfbKjRVTHHHkRHq3rmSoS8t1DB1nYMFh+GMw+rtynzVxWk3l3jX0WGenF5ZN+PgBipuF+nEyVdxRTKNVhAP568uJvnpmQpLdf+it0qtPU75bou1JCCLnrL2IpXPp1hZOX/1qEGy1QV8Ny/sq1Pn+7IJ6l6DfVmb+ZqHYcRNHjQUMystso5J3Q9xg4h/P1vmYCHJSzUXQ9d4enqZlxfqtMKI8VwCBYymLY63/E5i1/m2QQXtwiJPnCrx9z+b47aDBe5+/VjXrV5Zx+KmiaG4xKUXUPdCnj69wtXFJJOFJAnT4GNvP7Tu+dfORBga+EFEJmuCUhi6RstTJJPxKLqYdjgykmahdvFbpYTYipTOFEJctFun8lRdn9GMTd310TUwNIVt6PiRwtR10rbB1cMp6m6cqWUbOq9WXIopm5YfcqbcwtA1bF2n2vJZafiUWgE6cW3klKVhnKemph/B/z5RiqeMUxYvthOx1pb+XJ1RcP2Qf/jZPGdWWgRhuy1jEPHTMxVOLzc3TS1vLAU5PpTg1oP5TnenfRmHXDLOdldKUW0FmIbGR28/xMfefoj33jguwVhcMhkhCyHOa2PhkVsmhpgpu4xlE9TcgHzSJmkb7M8meGU5blRhGjpXD6ewTZ1aK6DphaRsHcs08LyQA/kkjqkzW3VZrHvYetxbuOyGoDRSjk6ltXXq9VLD4+BwKg6KbtCpH70xGHpRRC4ZJ3DNVl1eWW5ysJBE0zSOL9b5v66/qut7XJ0Kf+LkEg8+fYYgUgynLUbTDiOezWjalhGx2HYSkIUQW+pWUWp1W9PqtHAQKk4s1gkihY7CMXVafsgNB3IU0w7TpQbHF+u4oWIkZbFQ9Wh5AZOFFPuzTmfE3AgiEoZGK1R450m5NjXw2mu4bhDvae6W2fzoz+c5tdTgxGKdXMJiLONQbvmcrbgcHUmRS1hd2y6uVs26ZWKIp2bKXDOaZr7qUqoHlJsB77/5ALddLYmGYvtJQBZCbGmrgiRPTq/w3hvHO4lmrh9ScQNyYxlerbQIlcZ/nK1gGQbLDZfrDwyxUPPiAJowaHkhZ8st/DCupJUwDM6UI6JIYejgbxgcm1rcblER/2cZGi0/rp993Vh6U2bzdKnBE68sU0xZ5JIWLT+iFYSM5xJEwLVjWdK2cd73uLboymQhHgFXW0GcsLaB1KUW20ECshBiSxcq1tKtAtg3npphuRFX3wKFGyhSlsGhYop/P1smY8fNJkp1l6xjkjQNFuseCUMj0ABN65TUXBWocwkvpgYZx0QpuH48h2UYmzKbn5xeoZiy0TQYTtnMrDTRNI25qsv4UHLdv7/cois7VZd6Y5D/lV/YT96UtJ9+JgFZiD61HaO2CxVr2fgapbrHRD7J69fUY/7Ry0u8MF/n9sNFrh8f4lSpQd0LqbQ0RjIOzSBiIp9gtqJRb299coNzU9ar+V0RYOvwa9fv5zfeNMGT0yss1uIevBvXcRdqLteNpfn3sxUSlsGBoQRzNZeVRsAvHk2vy8q+3KIr55tFuNSA3C3I/8+fnOEuWa/uaxKQhehD2zVqO19FqW6v8cQry7z1UIG1l5brxjI8fmqZaiugkLKwjAz7cw62ruNYBj+ZWSHrmNS8EAWUmz5he3Sstf/T280nErbBOw4PX3Cr12jGoe7F69gnS028MGI8l+QXj6R54G2HLuo9XmzRlZ0o+dotyAeaJnXd+5zMfwjRh9Ze0Fe7Cq1mIr8WG7cBpW2jE9S7vUYxZfPCfG3dc9imwW0HC5ue4+7Xj1F1fSxdx/VDojBioeZSc8NOINaIR8ZhBCgoJiwefPoMf/y/XuShZ86u2+q01ur2LMswuGliiJsm8hwaTnL368cu+j3edvXwlu99rdUR9lqXW750oeauqxgG8TT94jb3jxa9RUbIQvSh7Ry1bTUa7fYa142leaI9Gl47qtxqZP6rx/bz//5khu+/uEjVDXAMjVCP9xprgG1q6JqOrseVwDRdQ9c0qu0iH1uN+l9racrLKbqyE3Wpu0+jB1LXvc9JQBaiD+1Go45ur2GbBm9ZMxq+mH26qfa2JU2Lp6X9KCRpKiLiUpXZlE4YgRdG5BImc5UmP5sNOL5QZyRtY+s6D7ztUNc18/feOL5t73crO1GXuluQ94C7pK57X5OALPraoG5H2Y1uQlu9xsYR63Spsa6/8NrPIN4r3KTUDMjYBhnbxDSCzp7m5WbcTaqQtKl7AYvtKW3HNDA0jVcrLuXmEtePZ3lqprztmc4Xa7vLl3YL8r8mWdZ9T1NKXWpf8Mu2sFDt+rjUMJZzAJd/DtYmHV3M9GkvupxzsHrUfUL7AAAUFklEQVQzsrEb0na60Guc7zMA+MNHX2A4ZfHzuRpeEGEYGklTo+JGDCVNTA0KKRvDNDhbqlNqB+hswiSfsIgAQ4Orh1OdPcOrqq2AtG2sGyVfyTdock3on3MwOprt+viOjZCPHTvG5ORk5+frr7+eL3zhCzv1ckJsshPbUa4ku9F04kKvcb7PACBhapwpt9A0jWYQYUWgoZOxdfxQ8fqrskwVUjQjxfG5KlGkSNk6uqax1PBIWTpjGeei9gzv1H5hIbbLjgTker2Opmk8+uijO/H0QlyUndiOIi7edKnBD08sogGZhMXVxSTFtNP5DFaaHl6ocMOIrGOga7Dc8Ki0Am6ZLPCbN413SlQ+/MIibxyvc2q5SdMLiRRYho5pGOSSFo6pX3DNfNBv0ETv25GAXKvVyOVyO/HUQly03UhsEt2tjkZtI17zXO2wdMOBuLLWSMbm9EqDlG2SS1gsNTySCpycw3guyZ/+1zeue775aovrxjKUWz4qUiQsnajdf7iQsvnla4YvuGdYbtBEr9uRDIFKpUIYhnzsYx/j7rvv5sMf/jAnTpzYiZcSYkure1GrraDTKq/q+tw6ld/rQ+t7q6PR1+3L4oVx1a2EqfP8XL3zGeQcE6UiDF1jKh/3J845Jg0/5MuPnVy3z3gsm2hncBeZKqQIIvBCxZHhNPffMsH4UBJb13n69DI/PL6E64ebpqJ3Yr+wENtpR0bIiUSCu+++mw996ENMTU3x9a9/nY9//OM8/PDDmKYkdovdsRPbUcTFWR2NaprZKZdZbQWA6gTKQsrmleUW08sNQCOfMPEVjCZMxrIOMytNvvCDRSaGEowX08ysNJnIJ3n7keKm5LDVteF3Hh3p/G6j3cg8F+JyXFaW9fe+9z2++MUvbnr8gQce4N577+38rJTilltu4Vvf+hZHjx7tPN5sepimsenvDUMnDLduvzYI5BzIOYAr9xz81Y+nqXsBuYQFwFLN5dmzFbwg4pdeN8bBYoJHnpvj1FKDoaQFKF6cqzOUNPml6+JqWk9PL6NpkHUsfuHAECcXa+zPOgRKYyzrcLCY4JVSi+8/P4djGhwbzzGSiaekKy2ftG3yW2+ZWndcpxZr/J8TJear8Q3D244UOTSS2dVzc6mu1O/CduqXc2BZm+Me7NC2p0qlQrlcXpdl/aY3vYm/+Zu/4dChQ53HZNvT1uQcyDmAK/ccrM1o9oKQp0+voIBbJvPYpsG/Ti9zdCRNxjE4WWpScwNmlltM5hPccc0IPzm9ghtEBGHEmUqLqWIaIsW1o3Et6idOLvHg02eouwGvVlpYhk7SMrh1Ks/h0QxKKRaqHh97+6G9PhXb5kr9LmynfjkHW2172pE15BdeeIH777+fxcVFAL797W+zf//+dQFaCNG/1taHfvbVKhnH4s1TeYYzDtmESRgpFuouxbTDzZN53nl0hNftT+O2u0pU3Xi/8SvLTUxNI5cw0VD8+JXlTjD2goi6FwAabhDhByFPTq9QqnuyNiyuSDuyoPvmN7+ZD37wg/zWb/0WmqYxNjbGn/3Zn2EY3YfpQoj+s7pH+dx6stb5XTFlUaqvX+cdTTuUm0FcB9s2eGmhDsC+XCL+W02jkLL47nNzhJHCDSIsw6CQ0lmqebihQtcVz89VOTSckrVhccXZsQyrD37wg3zwgx/cqacXQlwhum0/G8s6lFvBuiYUpqHx/psP8O9nq8zXPBZqHsWUiQa0ghA3CHnjVTl+/Moy+7IOCzWv3RFJp5i2KDV8TD0uKNKt2MeVXKVLDAYpjCqE2FHdtp8Zehx8N7Y2HB9K4kURbz88zI0Hchi6xstLdfxAcf34ELZpsC/rMJZ10DVo+hEKhVIwlLR469UF3nFkcyb96pp23QsZyzqdTlFbtW8UYi/IHiQhxI56LdvPHnrmbKea1rGrsgSRQtM0UraBZehUXZ//cmwfT82UuX48y0/PVCg3IyxD4437s5iG1nWfuVTpElcCCchCiB13sXW111bTKqYdbjiQ42SpwWylxS/sy3QC+fhQkienV7AMg0rLJ+eYHBnNbDkNLVW6xJVAArIQYttc7jrtxvXmYtrBMgx0I04Ie/hnc5fU61jKqIorgawhCyG2xXas03Zbb55ZaTJbdbf9eaWMqug1EpCFENti7TqtpmlkEyZZx+q0WrwYa/cvryZ7jaZtDg6nt/15pe2i6DUyZS2E2BbbtU67cb35y4+dJOOYtFrn9i1vx/OCbIUSvUVGyEKIbdGtm9Lp5SanVxqbuje99ucN1j22Heu/shVK9BoJyEKIbbFxnXa61OCnZyqMtfcNX2rAu3UqT7m5/eu/W02xP/rzeR565uxl3UQIcSkkIAshtsXGddqFmsuNEzkmC6lNa7/TpcZFB72pYop7b9pcRORyp5YXam670tc5XhDyxCvLMmoWe0LWkIUQ22btOu2XHzvZdU35+EKd2WqLrGMxlo2nub/z3Ox5g+yhkcxr2uZ0MbpthXphvkYxZUsBEbEnJCALMaB2OqFpq72/lZbP/lyia9Bb/d/dSLK6dSrPd56bBejU0y41fN56qLDu30kBEbFbZMpaiAG0GwlNW+39zTrmpqnijGNwYrG+q0lW3bZC3XawgG2uPzYpICJ2i4yQhRhAu1Hbeasa1k9Or7zmkfP1h0e25Zi6HePa97t6owLnRs1V15dWjmJXSEAWYgDtVm3nrWpYdwt6G0fOpbrLyVKDuYpHMmnzxtGLq4d9ucd7sY0whNhuEpCFGEC7Wdu521r1hUbOpbrLT89U0DSNfVmbuhdcMPFru1xsIwwhtpsEZCEGULeEpp2Yml2dAu6WUd0ta/o7z82y3PB4emaFSivEMTQOHsyTS1g021umJFiKfiUBWYgBtFtTsxe7Vv3EySW++9wcL85XqbRCFLA/65BLWryy3GR/wZVsZ9H3JCALMaB2Y2r2Ytaqnzi5xP/40TTZhEnSMonQWGkGWKZOIWXT8kOOL9Q5lE8MfLaz1N7ubxKQhRA75nxr1avB5dv/dgbQyKcs3FCRsU2iSHFmpUUxZeMYGos1l+GkMdDZzqcWa1tO//dCUJabhcsn+5CFEDtmq73IE0NOZ8+xF4SYOpxZaYIGQaTIJSxMXcM2dZYaPsW03TOBZ6/8nxOly25vuVOkUcf2kIAshNgxW/Uhnim7neAylLQJFViGjqYUfhhR8wKKKYtrRzNM5BMcHUnx8M/mBrrZw3y11bWgymJt79fVt6MXtpApayHEDuu2Vv3wz+Y6a8vXj2f54YkSjqmjAUMJk7max9RYEtcPAQ3HNkmZes9N0+6msWyCxXJzV7aqvVa7ta+938kIWQix69b2Tr56JMMdR4qYuoYbKMayDr//K0f5f/7zGyimbSbySXIJa+BHXm87Uuw6/X+5bSi3Q7de2L1ys3AlkRGyEANqL5NwNu6DHskkuP3w5raKMvI659BIpmeriO3WvvZ+JwFZiAF0voIdO32BX70RqLcCXi23yDkmR0YzXYPL6sgrvebhQR559WoVMSk5uj0kIAsxgHajuUQ3a28Ejo5lOiOprUbnqyOv1lKd6cUapYaPoWu8/+YDO3aM4tL06s3ClUTWkIUYQAs1d08ydl9rNu5UMcUtE0M8P1ul1PAppi2OjqR5aqY8sNnWon/JCFmIAbSbzSXWupQ14Zmyy1uPDGMq1Xms2gqkrrXoOzJCFmIAbVWwY6czdi8lGzceza8fO/TK/lshtpMEZCEG0FYFO3Z6xHkpNwJxEA/WPTbIiV2if8mUtRADai+ScC4lG/fWqTz/cHwJG9lSI/qbBGQhBtRe7UN+rTcCU8UU996U4B+fnZUtNaKvSUAWYgDt5T7kS3FoJMN7bxzf68MQYkfJGrIQA0iaAQjRe2SELMQA6oeSlNJ/V/QbGSELMYCu9GYA0n9X9CMJyEIMoG7bj2ZWmpTqHl9+7GTP9x2WKXfRjyQgCzGANu5DjvsOKxzLuCJGnHtV+lOInSRryEIMqLXbjx565iyOZexas4nLXf/dq9KfQuwkGSELIXZ1xLkd6797VfpTiJ0kI2QhxK6OOLej9aP03+1fg5w9LwFZCNHpOww7X55yu7ZcSf/d/nOlFazZbjJlLYTY1WYTV/qWK7FzBj17XkbIQghg90acuzkaF1eWfihYczlkhCyE2FV71fpR9L5Bnz2REbIQYtfJ+q/oZtBnT2SELIQQoicM+uyJjJCFEEL0jEGePbmsEbLv+3z+85/nuuuuY3Z2dt3vvvrVr3LPPfdw11138elPfxrPG4xFeSGEEOJSXFZA/vjHP04ikdj0+DPPPMPXv/51vvWtb/HII4+wtLTEgw8+eDkvJYQQQvS1ywrIn/jEJ/jkJz+56fFHH32Ud7/73eRyOXRd57777uORRx65nJcSQggh+tplBeQbb7yx6+OnTp1iamqq8/Pk5CQvv/zy5byUEEII0dd2JMu62Wxi2+f2jSUSCZrN5k68lBBCCNEXLphl/b3vfY8vfvGLmx5/4IEHuPfee7v+TTKZXJfE1Ww2SaU2Z81lMg6maWx63DB08vnBzLJbJedAzgHIOVgl50HOAfT/ObhgQL7zzju58847X9OTHj58eN0U9fHjxzl69Oimf1eruV3/Pp9PsbLSm43Rd4ucAzkHMFjn4HxdfgbpPGxFzkH/nIPR0WzXx3dkyvqee+7pZFcHQcA3v/lN3vOe9+zESwkh+sB29EgW4kp3yYVBFhcXef/739/5+f7778cwDL72ta/xxje+kQ9/+MO8733vQynF7bffzn333bctByyE6D/b0SNZiCvdJQfkkZERHn300S1//4EPfIAPfOADl/r0QogBMuhdfoQAqWUthOgBg97lRwiQgCyE6AG3TuWpuj7VVoBSimoroOr63DqV3+tDE2LXSEAWQuy5Qe/yIwRItychRI8Y5C4/QoCMkIUQQoieIAFZCCGE6AESkIUQQogeIAFZCCGE6AESkIUQQogeIAFZCCGE6AESkIUQQogeIAFZCCGE6AESkIUQQogeIAFZCCGE6AGaUkrt9UEIIYQQg05GyEIIIUQPkIAshBBC9AAJyEIIIUQP6JmA/P3vf59f+7Vf45577uG+++7jxRdf7Pzuq1/9Kvfccw933XUXn/70p/E8bw+PdOf4vs/nP/95rrvuOmZnZzuPP/XUU9xwww3cfffdnf8efPDBPTzSnbXVeYDB+S6sdezYsXWf/e/+7u/u9SHtmscff5xf//Vf56677uJDH/rQpu/DIBjUz3+r60BfXwNUD5idnVW33HKLeumll5RSSj344IPqN37jN5RSSv3bv/2bete73qXK5bIKw1B99KMfVX/xF3+xl4e7Yz7ykY+oP/3TP1XXXnutevXVVzuP/+AHP1C/8zu/s4dHtru2Og+D9F1YVavV1LFjx/b6MPZEvV5Xt912m3r22WeVUkr9+Z//ufroRz+6x0e1uwb58+92Hej3a0BPjJBN0+RP/uRPOHr0KAA333wzx48fB+DRRx/l3e9+N7lcDl3Xue+++3jkkUf28nB3zCc+8Qk++clPbnq8Wq2SzWb34Ij2xlbnYZC+C6tqtRq5XG6vD2NPPPHEE0xOTnLs2DEAfvM3f5PHHnuMWq22x0e2ewb58+92Hej3a0BPBOTh4WHuuOOOzs8//OEPueGGGwA4deoUU1NTnd9NTk7y8ssv7/ox7oYbb7yx6+PVapVTp07xvve9j7vuuovf//3fp1qt7vLR7Z6tzsMgfRdWVSoVwjDkYx/7GHfffTcf/vCHOXHixF4f1q44deoUk5OTnZ/T6TT5fJ7p6ek9PKrdNciff7frQL9fA3oiIK/1+OOP87WvfY1PfepTADSbTWzb7vw+kUjQbDb36vD2xOTkJO985zv5yle+wt/+7d9Sr9f5b//tv+31Ye26QfwuJBIJ7r77bn7v936Pv//7v+cd73gHH//4xwmCYK8Pbcc1m00cx1n3mOM4NBqNPTqi3TfIn383/X4NMHfzxb73ve/xxS9+cdPjDzzwAPfeey//+I//yB/90R/xla98pTN9nUwm1y3aN5tNUqnUrh3zdrvQOejmjjvuWDeD8MADD/CRj3xkx45xN1zKeei378Ja5zsfn/3sZzs///Zv/zZf+tKXOHXqVOf/I/0qlUrhuu66x1qtFul0eo+OaPdNTk4O7OffTT9fA2CXA/Kdd97JnXfe2fV3P/rRj/jc5z7HX/7lX3LkyJHO44cPH143JXH8+PEr+ot4vnOwldnZWSzLYnh4GAClFKa5qx/dtruU89Bv34W1tjoflUqF06dPd6ZuNU0jiqIr/vO/GIcPH+a73/1u5+dSqUS5XObgwYN7eFS7q1KpUC6XB/Lz76afrwHQI1PWzWaTT33qU3zpS19aF4wB7rnnHh555BGWlpYIgoBvfvObvOc979mjI90bDz30UCe9PwxDvvGNb/CLv/iLe31Yu24QvwsvvPAC999/P4uLiwB8+9vfZv/+/evWVvvVW97yFmZnZ3nqqacA+MY3vsG73vWuvhoRXcggf/7d9Ps1oCdqWf/d3/0dn/rUpzhw4MC6xx988EFGRkb4+te/zl/91V+hlOL222/nM5/5TN/dIS4uLvL+978fgJMnTzI1NYVhGHzta1+jUCjw2c9+lieffBJd17nxxhv5zGc+05eZ1+c7D/v27RuI78JGX/3qV/nrv/5rNE1jbGyMP/iDP9h049qvfvzjH/O5z32OZrPJ1NQUf/zHf8zo6OheH9auGsTP/3zXgX/4h3/o22tATwRkIYQQYtD1xJS1EEIIMegkIAshhBA9QAKyEEII0QMkIAshhBA9QAKyEEII0QMkIAshhBA9QAKyEEII0QMkIAshhBA9QAKyEEII0QP+f4ayGdhXtFxlAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFkCAYAAADxHkghAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9a4xc53nn+XvPta7d1VdSvDQpkbYsS5YVSZavScZBZqwkiGd3kQHGE3sxA2OzQebDYGe/bfaDsUCQxNjZYIEBMplJgEysCZKMgN2x12MFSSY3O5YZUaZlUbIkUiT73l3d1XWvc3/3w6kqdjeryWazi91NPj+AoFiqrnPqra7zP8/zPs//UVprjSAIgiAIB4px0CcgCIIgCIIIsiAIgiAcCkSQBUEQBOEQIIIsCIIgCIcAEWRBEARBOASIIAuCIAjCIcA6yIOXy42DPPwWCgWXZtM/6NM4csi67Q1Zt70h67Y3ZN32xrDWbWqqOPBxiZC7WJZ50KdwJJF12xuybntD1m1vyLrtjfu9biLIgiAIgnAIEEEWBEEQhEOACLIgCIIgHAJEkAVBEAThECCCLAiCIAiHABFkQRAEQTgEiCALgiAIwiFABFkQBEEQDgEiyIIgCIJwCBBBFgRBEIRDwIF6WQuCsDtmK20uzFYpN32mCi4vzJSYGc8d9GkJgrCPSIQsCIec2Uqbr19ephXETBddWkHM1y8vM1tpH/SpCYKwj4ggC8Ih58JslaJrU8xYKKUoZiyKrs2F2epBn5ogCPuICLIgHHLKTZ+Cu3XqTME1WWsGB3RGgiAMAxFkQTjkTBVcmn685bGmHzNZcA7ojARBGAYiyIJwyHlhpkTDD2l4EVprGl5Eww95YaZ00KcmCMI+IoIsCIecmfEcn3/yOHnHpNwIyDsmn3/yuFRZC8IDhrQ9CcIRYGY8JwIsCA84EiELgiAIwiFABFkQBEEQDgEiyIIgCIJwCJA9ZEEYAmJ1KQjC3SIRsiDsM2J1KQjCXhBBFoR9RqwuBUHYCyLIgrDPiNWlIAh7QQRZEPYZsboUBGEviCALwj4jVpeCIOwFEWRB2GfE6lIQhL0gbU+CMATE6lIQhLtFImRBEARBOATcsyCHYchv/uZv8vjjj7O8vNx//Pd///f5mZ/5GT73uc/xq7/6qwSBVJgKgiAIwk7csyD/yq/8CplMZstjly5d4g/+4A/44z/+Y771rW+xvr7OSy+9dK+HEgRBEIQHlnsW5H/5L/8l/+pf/astj73yyiv87M/+LCMjIxiGwRe+8AW+9a1v3euhBEEQBOGB5Z6Lup555plbHrt+/To/9VM/1f/36dOnef/99+/1UIKwa8RLWhCEo8ZQqqw7nQ6Oc9MEIZPJ0Ol0bnleoeBiWeYtjx8EpmlQKskF+245jOt2fa3Jn15ZZzRrc2a6SNOP+NMr6/yTZzOcnSwc9OkBh3PdjgKybntD1m1v3O91G4ogZ7PZLUVcnU6HXO7WN9Vs+sM4/J4olXJUq2L+f7ccxnX78zeXcQBLazwvxAKc7uO/8MyJAz67lMO4bkcBWbe9Ieu2N4a1blNTxYGPD6Xt6bHHHtuSor5y5Qrnz58fxqEE4RbES1oQhKPIUAT5Z37mZ/rV1VEU8Yd/+If83M/93DAOJQi3IF7SgiAcRe4pZb22tsYXv/jF/r+/9KUvYZom//E//ke+/OUv88/+2T9Da82nPvUpvvCFL9zzyQrCbnhhpsTXL6c98QXXpOnHNPyQz56fOOAzEwRB2BmltdYHdfByuXFQh74F2WPZG4d13XpV1mvNgMmCc+iqrA/ruh12ZN32hqzb3rjfe8jiZS08kIiXtCAIRw3xshYEQRCEQ4AIsiAIgiAcAiRlLQh7QJzABEHYbyRCFoS7ZLbS5uuXl2kFMdNFl1YQ8/XLy8xWpGhGEIS9I4IsCHfJhdkqRdemmLFQSlHMWBRdmwuz1YM+NUEQjjAiyIJwl4gTmCAIw0AEWRDuEnECEwRhGIggC8Jd8sJMiYYf0vAitNY0vIiGH/LCTOmgT00QhCOMCLIg3CUz4zk+/+Rx8o5JuRGQd0w+/+RxqbIWBOGekLYnQdgD4gQmCMJ+IxGyIAiCIBwCRJAFQRAE4RAggiwIgiAIhwARZEEQBEE4BIggC4IgCMIhQARZEARBEA4BIsiCIAiCcAgQQRYEQRCEQ4AIsiAIgiAcAkSQBUEQBOEQINaZgnCfmK20uTBbpdz0mZkq8pEpsd8UBOEmIsiCcB+YrbT5+uVliq7NdNFlfqPNt364yKnRDOenCrwwUxJxFoSHHBFk4YFgc/Q5VXAPncBdmK1SdG2KGYtKK+Cd1SaGUjSCiFYQ8/XLyzIxShAecmQPWTjy9KLPVhAzXXT7AjdbaR/0qfUpN30KrgnA9UqbrGMykrFo+jHFjEXRtbkwWz3gsxQE4SCRCFk48myOPoH+3xdmq/sSce5H9D1VcPvi2/AjJooZGu2Agpuea8FNZysLgvDwIhGycOTZHH32KLgma817F7j9ir5fmCnR8EMaXkTBMal1Arww5tHxLABNP2ay4Nzz+QqCcHQRQRaOPL3oczP7JXCbo2+l1J7TyzPjOT7/5HHyjslIxiZJ4NxknrGcQ8OLaPghL8yU7vl8BUE4uoggC0eezdGn1npfBW6/ou/Nae9zk3m+/OkznCplKTcC8o4pBV2CIIggC0efzdHnfgvcfkTf29PeC7UOv/udG1wpN5ksOIeuIlwQhINBirqEB4KZ8eGYbLwwU+Lrl5eBNDJu+jENP+Sz5yd2/RrbW56urrWwbVNangRB2IJEyIJwG/Yj+t7e8uRaJqMZW1qeBEHYgkTIgnAH7jX63t7yNOJa+FEiLU+CIGxBImRBGDK3tDx5EZ0w6bc8zVc7zFXb/Pa3r/HypcVDZWgiCML9QyJkQRgyvbT3hdkqIxmbmhfxwWN5xrI2cxttLs3X+ejJESxD8er1Cv/1rRU+cWaMF5+YHtq+8mG3GhWEhxERZEG4D2xOe89W2vyw3Gau3GS14fPRkyMUXIs3Fmu4lslEzubdcosgGU6x1/ZBF01fCssE4TAgKWtBuM/MjOf4xY/P8MufOcupUpbTY9l+sVfGNnFtkzBJhlbstV9mJ4Ig7C8SIQvCAdIr+OoVewH9gq9hFXuVmz7TRXfLY0e5sEzS78KDgkTIgnCA9Aq+bEPRCWO87p9Hx7ND87ceptXo/eYoTPoShN0igiwIB0iv4OuDUwUq7RCt4ekTI9imOTR/62Fajd5vJP0uPEhIyloQDpiZ8Ry/9OmzvPjENBdmq6w1UwOSz56fGErqdXPVd7kRMFlwhnasYfOgpd+FhxsRZEE4JAzL/vOgjzVMNpuu9Diq6XdBkJS1IAhHlgcp/S4IIsiCIBxZhjnpSxDuN5KyFoQ7sF9tNZtfZ2aqyEemHoy08UHzoKTfBUEiZEG4DfvVVnPr60TSniMIwhZEkAXhNuxXW8321xnJ2NKeIwjCFiRlLQi34V7aajanqN9eafCRR0bY/JXb/jriOCUIDzciyIJwG/baVrN9gMPVtTbffn+d8bxLojXjBZdRx+RUKTvw+TLwQRAePiRlLQi3Ya9tNdtT1MeLNuvtkIVqm6JjUvdCfrBQxzHg5UuL/J9/eYXr6x3COBbHKUF4SBlahPzkk09y+vTp/r+ffvppvvrVrw7rcIIwFPbqalVu+liG4uJck6YfUWmHTBccWkFCuRXS8COq7YD/+2+v86HpPEEU42YNfrCQzkYez7viOCUIDxlDEeRWq4VSildeeWUYLy8I95W9tNWYSvHaXLVbvGUxv+GhddKtsA5Zb4V0/AitYK7awUThWCY5x+JapcN43hXHKUF4yBiKIDebTUZGRobx0oJwZFCb/nYtRSuA1YZPM4ixTQNlKEyl8MOEjG1SbgbMjJk0vaifGv/s+Yktr7lT4ZcUhAnC0Wcoe8j1ep04jvnlX/5lXnzxRb785S9z9erVYRxKEA4ds5U2by7XSRLNasNnteFzrOgyVXCoeRFojaEUSikcU2GZBn6UMJa9GQ0PcpzaqSf61WvrMoJQEB4AhhIhZzIZXnzxRf7Fv/gXzMzM8Ad/8Af8yq/8Ct/85jexLCnsFh5ceqLpmCZu1gCl8KOYk6MZ3l9vE8QajcZPQgzAjyEhQWkoZizOTmR3rKzeXCgG9P/+xuUVPjhdvOXxC7NViZIF4QihtNZ62AfRWvP888/zx3/8x5w/f77/eKcTYFnmsA+/K0zTII6Tgz6NI4es21b+0/dmaQURQZTw+myVrG3Q9EMWqh7HRjJ0/JCray3iBAquRaIT2kFCMWPxhY/N8PmPPsLZycLA1/6tP3+XYyMZDKX6j602PP7LpUXOTuQYydqcmyowWUhbq1bqPv/LT3/gfr31+4L8vu0NWbe9Max1s+3BujeUcLVer1Or1fpV1kopkiS5JTpuNv1hHH5PlEo5qlVJ8d0tD+K63ct+7Gy5wXTRJWcqPjyd41qlw3LVR2vNj50Y4fJyg7zj0/Qjal6IbRoU3XT28f/43EmAHdezaBmUq51+BFxp+fz9bBXXVCitaXZCvnd1jY+eHME2TYqO+cB9Ng/i79v9QNZtbwxr3aamigMfH8oe8jvvvMOXvvQl1tbWAPiTP/kTjh8/vqUNShAOI5v3aS1D8er1Cl955R3+/Xeu72pPtmckAjCed3nudImxvM2HpguM5x1afoRjGeQcC9swyFoGjmVS96I7vvb2nugfrbRQwHOnRwm6d/EZy+BHK61DPYJwttLm5UuL/Pa3r/HypUXZ6xaELkOJkD/2sY/xz//5P+cXf/EXUUoxPT3Nv/23/xbTPBzpaUHYid4+bRgn/HCpjmuZTORs3i23CJLUOav3vEER9AszJb5+eRlIrTGbfirsPftNL0pQShFrjWmmhV2dIOaHSw1evbbOfM3fMTLf3hMdxDHPnS4xUXAZzTpcr7RpeBGgD63DlziSCcLO3Jc95J0olxsHdehbkJTO3riXdTuMrTq//e1rTBddvj9fw4/SdiStNQ0/4tlTJfwwJkgS4m4FdaUdYhqKLz53kk88OrHlfa01UyORU6Mur83XKLo2375a5v31Dn6U4JigMQiTBAM4PZblH33oWF/IG354W6F6+dIirWCrrWfDi8g7Jr/wzIn7sVx3zb2es3xP94as2954IFLWgnAn9mus4X7TSzk3/IiMlX49/Cih4FoUXJPLyw3iRHN1rUUQaybzDoZSvHRxgVevrfPypUX+8OI835+vUuukLlsnRtPK6bxj4keaph8TxJp2qIl0Qs42UEqxVPfvyjpzr7aeB0m56VNwt2bKCq7JWlMcyQRBBFk4EPZrrOF+0xM521B0whiv++fR8SxNP0aTRsauZZKxTVCKkYxFy4946eIC89UOCzWPhh8zX+uwUOvw9cvLLNY6XFtvstTwUQpMAwwFUayJE4VtKCxlcK3S6Z/LnYSql8LOO6nF5qDe5cPG5j32HuJIJggp0hQsHAj3MtZwmPRE7pW3V3n1xgbjOYenT6RVyw0/5KnjI3x/ocZk/qaA+FFCpDVxAuVWQMZOxdoLY8rNgKmCw0sXF1iuexiAqSBI0rthy1RESYJrpdXWTf9mcdduhGo3tp6HaWtg0B77IEcyQXgYEUEWDoS9jjW8H8yM5/ilT5/lxSem+3vBecfsi8YbS3VqXsRIxsKPErwwxlCK8ZxF048ouul7ylgGDT9Ga59WELHeDsnZBqNZm412SKxB61TQc7ZJ3Qt4cynknZUGtmUwnXf4nz55pn9eexHWw1ZEtddhHYLwMCCCLBwIRyFS2in6/OJzJ3np4gLrrYDxvM3J0TxX1lpkbYO5qsd8tUPBtbANRRhr3l8L0BocQxFECQkKNGggSjSWAU0/JEzAUqAckyRIaDsxf/HeGidG05nJexHWndy9trt43c8oei/DOgThYUAEWTgQjnKk9IlHJzgxmuXCbJWr5Sblpo9twIXZGqOuiakU1XZIrRMyM5bFtU3aQYxS0PBiTKXoef9owDYNDKVIkpiY1EhHKVhvR7w+V6MdxJwZyw0U1lfeXmU87+wopLvZGjhsUbQgPKyIIAsHxkFFSvsRDfaev9zwOD6a5d3VBscKLlUvJGMpOqEm71popfj4zCgXZmustyIMBUmi2WzGF8Vpe1UMKBRRnBBrSJKEgm1QaUcs1Tf45NkxNn9lgyjmezc2+InzkzsK6W62BnaKoreL/alR97Z90oIg3BsiyMJDxX5Gg5uFrBnEHB9xKeVsHMtg3I8oOiaNIOaxqSKg+C9vLjPIFjdIIPJjVLfyOoh1GjWbBl6cMJG38UKTd1abfKpwM9p9Z7XFWO726ejdbA0MiqKDKObVGxv8ZFfs5zY6fPPyCs+cGuFUKXvbdRt0w9M7LxFzQdgZEWThoWK3e6q7YbOQFV0LL0qrpcuNAC+KuVHpoND8p7+fY6MT4kU7e/AkgErAVGn0HKsExzRQwNnxHFprXr2+QcOL+sJaaQfdqDml0vK5VmmzUk/T0T3Re/7UKN+4vMJKI+BY0eHnnzy25b0OiqLfWW0ynnP6j5VbAcWMRbkZcHosd9u96O03PF97bR7QnCrlJCUuCLdBBFl4qCg3fSxDcXGuSdOPKLgWZ8eydIL4zj+8jc1CdnY8xxuLNWqdkI1OQCnj0OgEtMKERIMa8PMG9FPXlgIUuJbZ96VGQ9G1AXAsk4+fGev3HE8WHD5xZgynOy2t0vL5wUIdpRTHik7faOX5U6O8Nl/jg9NFnj2dCvlr8zVOjGZvG0VX2uEWsW/6ESPd/9djUJvaoBuejXYAKJ44LuMhBeF2iCALR5a97AWbSvHaXJWRjI0BXFtr8cZCjXMTeWYr7bsSiBdmSnzttTk22hFhHBMnmoVqB0Mp1hMfL0761dSD0NwUatNIi7v+wfkJZjfalFupJedE3ua12Q1Oj+X40vOnmBnPMVtp88rbq/z9bIXVZsjJ0Syulfpig+bRifxdzUoeVGC3WewhHRVZ77Z69di8F937LF55e4VjIy6PjucYz6fZgyBOUNtuSQ5Dz7kgHDZEkIUjyb3sBSugHUSUmwEKsA1F3Q/56n+7wqnRDOenCgPFffsNwKlRl5Yfs1jr0A4iLNPAixI+NJ2nEcSsNvy+6PbkaLM4a1KTEDSYyiDR8Dfvr5O1TE6MuuRcm0RrsrbBVN7pi/HXXptjdqNDKetgmwYrDY+mH/HEsSJPnRhlvGtaUnBNVho+z57eaqU5SAy3F9j11rf3/Km8w2LV49xkmj7fvBe9+bM4VnRpeDE/WKjz0ZMjjOddHNNge45grz3n19ea/Pmby7IXLTyQiHWmcCTZq/VmrDXPnS7R8GMSrck4JseKLpV2iKEUjSAa6Ks9yHv7P7w6y7X1dppqtk3aYUKiNSvNED/SuN0IUwOGMfjLFmuwTFAGjGUtDBS2pYgTzZPHC/zk+Uk++egYib75vheqHg0vYrbq0QoTjo+4jOcdLFP1xRhS0TtW3JtV5XZbzlOlLP/zp2Y4OZq9xaZz82fx6EQe0CiluNadPjWWcxjLWffsuT1bafOfX184dP7ngrBfSIQsHHoGpab3ar05VUgv5GM5m5mxLEoprq41yTkWIxmLhh8NTOsO2hstNwOaXkjWsUi0TnuNSVhvB0zkHJS6uUccDaiu7gl0oqGUsRnN2fixj20YtMOEa5UO43l3i4BeKTdZqHnkXZOMaRDFmnIzwDUVG+1wS9FXww/5+SeP8dp8jY12QLnls94KsbrTqe6U8t9tW9rmz2I87/D0iVGurbdYqQf82EmTLz1/qr+G99JzfmG2ymjWxuoOqJO9aOFBQwRZONTslJp2DGNLZXCl5fOjlRZBHPPypcUdU5m9AibbMPDDGJSiHcQ8NpHvT3WCW8V90A1AJ4jxo4Ssk+7/mkZCGIGJJkoS4mRr4VYPs5u9zdgGcaIJY40XJdhBTClrEydJOhXKi/rRZK9NqeFHuJaBIt0zts20bznS8OPbir42i95LFxeIE5jIpev4F++ts1+Vz9urtMfzaSr9x05tHal4r6JZbvqcmS7ieWH/MdmLFh4kRJCFQ81ObUp+mEaAkPbMvjZXRQHPnS71U5mDxGXz8Ijv3dhgLGdzdixHlGjCOOHx6Txwa1p3UGtQrBMMI1VXrXUq8iToJOHkaIZEd/DDGK1TYY77P5f+2wtTAxCAThDRiRLGcxaWSned20HEu6sNRlyLV95eBWC20sGP0glUxYyFBsI4IWtavPjE9EDRm6/5fGxmbMu5/9376+xX5fO92qDutjgv/QyiLRetw+J/Lgj7gQiycKjZKTXdCeJ+ZfDrc1WKrsWHjhW37KHuJC7bh0dcXWsxV+1wfjLPWM65JSqFwaKTsUwcM1XUMNZYpqLoGPgxaRrZMjFNBXHXmavb/qSh/+8e7UiTMWKyVppSt5RmquDywekiQRTznWvr1L0YnSQYhkEQJbSDGMcyOT6S5ZmTI/2ir92k9/ez8nm3Nqg7GYbstjjvhZkSf3plHYfD638uCPeCCLJwqLmd9WNvj7MnOGnbT8puxGXzHmlfLHYQlEGi8w/OT3B5uUEYaxKtMZTCNm3Gsg41L6QVpFOgtAlx1xRkewvU5grsiDR6PlZ0WG+HvFNuYhiKtaZPw4uxDQWGSZhoLENxZizHj51O5ze/+MT0rtP7wL5WPm9fy0Hc7tx2a9QyM57jnzybSausj5j/uSDsBhFk4VCzm3Tofoxy3I2g9KI7UykqrYBEp9Oa/EgT64SsbfLISIb/7iPH+Td/9T6J1uRsk/V2uGMvsiKNll0z3Q/+h49P8oOFOui0D9mPEq6stRnL2WRsEz9KODOeZaXucX2jzWfOTfRF6eVLi3dM7/fWcCznAPqWIrBhRZsXZqvEiea9cjMtnHMtpgoOb67W+cnzk1uee7ubqbOThS370oLwICGCLBxqdpMOHfYox83RXeryVUUDxwo2dS9tk8rZBoEy+NFKk99ceY/lekBC6k3dE+NeunozSffxME6j3m9eXsGP06Iu10yLvkwFrSDGMQ1c26DgWpijGcJYbxGn26X3b9pn+hwruvz8k8f6E6vuR7R5tdxkvtYhY1uMdG1Gr5SbeJE+tHOxBeF+I4IsHHruFL3u5yjHQfucmwvLXp9rUszYtIOY783WKGVsHEtR92ISHdHwQhINWoGxzaXLNtP5yJsf64m0BvwwYa0V4JhpHzKm4nqljWMqKp0AP4yZyjss1TpU2iETOWdLRflOmQJDsck+s9S3z/z8aPa+RZt1P0Ipg4yd9mb3ov28zS3R+6Cbqd7n0ogSipYhhiDCA4kYgwgPBDPjOV6YKTFZSMcFXpit3rVhxCDzj69fXuZquUnBTYWk4UdkLIOGHxLFqaBWOxFeGFP3IqIEtFI4loFhKlzTwARcM42Wt3tabxFnI42UO1FCwbUZyVhEcUKlHQIK01TU/JD311ORfuFMaYs5xgsz6X7ydgMOSD2xwzjm9fkar89Xub7e6Vdu77QWL19a5Le/fY2XLy3es/lG0bXQWuOF8Za/HxlxtxiQbDYcGfS5HBvJiCGI8MAiEbLwQLAfYxV3arFaqnn9yLM31akVxNgmVDohYaSxDUUnStuYzERjW+m9rlKKGEhiUOhbepJ7WAoMwyBvQCNIKDcDKqkJGKap+PB0gXrXjnPEtTg+kmFi0yjGC7NVfuGZEwMzBd98a4XVRocLszWSBPKuSdEx+N6NjYGtUrdby96x7ta68vxUgYxtcmOjzY1yG4ViImczlnPumAHZ/LkYXVe23uMSJQsPEiLIwgPBfoxV3GkPdsS1+pHmmbFsuoeswbUM6l5IlGg0BlrftMmMtcZUijhJyJhgGop2uPP4xUhDEiUE3Iyak66xiGVCzYu7e9IK1za3RNYF1+RKucXLlxb7QvmzH74ptKZSfPd6FdtQ5FyTKNEsNQKOF52B67PTWr7y9ipBkuxJqF+YKfHOaoN2EHOmlEWTTpAqt4I7DvXYqyubIBw1RJCFI8PtDCT246K90x7suakCp0Zd/uj1Ba5XOigFI67JXDVAKYO8kxZddR0dCWKIk5umH6aCrG0QRDG30eSB0XNq/KGp+xFTBYeGoVht+JwYvfle56sd5qodjo9kdswOhHFCxrbodYap7qjHteat67PTWr4+V+XZ06W7EurNE6Wm8i4b7ZAwSV/vQ8eK2KZxx5um/aiiFw6WvUxmexgRQRaOBDulUZ8/Ncp8zeftlQZX19p86Fi+P/bvbi/aO1VrPz6V4y/eW6MTJXxgKt+P7nKuhaUg0YpOGJNsKqPuizGpV/WGd/fzlqFb9NVtr9KkQyy8KMEPk/7UpffKLc5P5gdmBwDeXK5jGYpqJyRjGhSzNjOFLF6UDFyfngCGccL1SpuGH2EbqcVoby+9x+2EervQxlrzyUfHt/SLa63veNO0+XPJZOyBxi3C4WU/tpMeFqSoSzgSDJruFMWaly6m038+8sgITT/k72errDf9PU0U2j7hqFdgNF/zWax5NPyIH602+f58jXdWW9TaYXc/OSKMb4rwZqwdpjztloRUkG1DpbaRhuIzj5awTaN/jqdGM5wey275uYJrcrXcTM03TIMToxmytglKMZ61071uQw1cnxdmSsxXO7w2u4EXxjiGouFHJDphbqOz5blNP0ajBwr19ui7J/Tbf/5uJk+t1P2BhV/C4WWvk9keRiRCFo4Eg9Ko5ZZPnPQiMovnZ8b40UqDN5ca/Pgmw4y7YZB71395Y4mluodjKhpBjIECpUnQ1LyIOLm1v7iHv1MV110QAwXH4Nx0kUfHs9immQ7GAP7m6hrLdZ/ZjQ7Pnh7dkh2o+xHHR7N86FiRNxZrPDKSodIKmN3weGTU5YvPndzRWnQq73TTy+nAjY8dK9AK0mh8LOdsySA8dXxkVynle+kX730upVKOalWqq48SUgOwe0SQhSPBoH3E9VbIRM7u/3s87/DJR8cpN4J77q/dnGZDgWEqql6aujVMRRBpovhmD/EwUcB6J+K5jIltmsxX27T8mEo7oOBaTBVcbmy0aQURn3lsAscyafghI65FwTVRyuLpE6Ncr7Qxu+ni//Wz5257s5Kml8f66aTlPQgAACAASURBVOVKK2C14VPrhP2BF+emCn0x3Y3Q7qVffPve408/dZySJYm9o4TUAOweEWThSDAourIMdcud93590Ten2TK2Qc4yqGsIEw1JnJp/MHwxNru9y50g5pUfrfHihya7xVGpQUnGNsl2326lHfSzA49P5fij1xe5MFfFMhQnRrKcKrl4YUwQJ/104U5iuPkiWmkFvLFYAxQz41k+OFXcsh1wYbZK04u4stqiFcZkbYOnjo8MfN3dzliGwXuP//n1BT4n/tVHimE76T1ImF/5yle+clAHb7cPT8oik7G3zFkVdsf9WrfRrM3xoku5GbDWDChlbT7z6BjLDR9QOKbqf9F/6gOTjGbtO77m7fjrK2uM5WyUUjS8CNs02GgH+HG69wqpUBoMV5Q1aUV0xjLJ2iZKKfwo5v31Vt+20zIUIxkL2zB44liRf3B+gv/3zRUWah38KMFUsFjv8OZSk7WmT5xorlfa/P1clfGsxamxW8Wt4Jj8cKkOKK6uNQlijdaaDx0rUMo5gOKdlSZvrTZQSuFaBrPVDoaCZ06O4trpzx8vunv+LP7snXJ/z7F3DMc2Wax2+PDx4j2t68PGQV7fBn13f+oDk0fipmpY65bPuwMflwhZ2DeG3dowKLoalh/zVMFlbqNDuRVQbvhUOyHTBYeFekDeNmj4MaaCsDvbeB+2infEMRWGSlup1ps+Kw0fhcIyFFGsWah1mMy7ZG2TyULaW7zRDpguZhjPa5bqHnUvRinQWqFQtIL0JuOliwucGM0OnKzU87++tFBnPG/z0UeK/T3q7dXVF+eajGRS4b2x0eHZ0zej571+HoP3Hi1mV5t7er17Qdp27o27yYw8zIggC/vC/WptGHRh3E8/5t7r/9mPlnlzudmtcDbIOgaGUkzlLPwEDCMBrXEthYGiHQ1PkuNY09EJOtC0/JjposN4Lh3RaCho+DHlZsCj41kcA/78vTVmK21Gcw4TOQfXMsg5JkGcYBoGWccijJM0ejYG9wHPVtp9/2tIj3Fjw6OUcxjPu7dUVze7E5xU97lw74U7g/ceo/u+9yhtO8L9QgRZ2Bd6e65hnPD9+Wa/d/WVt1f5pU+f3ZdjDPvC2Hv9jVbAO+V233krThKavuZYweETj46RdSzeWm7w1lKDROuhijFAoMGIU/GPktQ7++x4lvV2wHI9wFSKomtyZizH//PDFRSaINYs1jxW6h6WobBNAy9McNw03W53U/ynShkuzVf5/nx1yySo+Zrf30N/dCLPG4s1lFJcq7SxTfOW6uqCa+F31+GmSN/bfv6gvccA+Nx93nvcDxc4QdgNUq4o7Avlpk8QxbyxWMOPEkbc9KL16o2NfRsCsF/9jDsNTui9/pvLTfwoQal0v9i2TAquRTuKebfcxjEMGp2AIE5nId8PEiBBo9HEieYHCw0ytsnMWJbjIy4512Kh3mGj7XO90saPEpJEkySw0Q5pehFBnFDrRMxX26zUfaI4Jo4T3lhq0PBjjhddGn7M7/zdLJfmNvrCOp53ePrEKEXXZKV+sz/7xSem+8Mszo5lqXshDS/kzFh2T33g2xnUF/5Pnh3cqjVMyk1/V33WgnCvSIQs7AtTBZdXr1dwLbM/Yk8pxXhuq1/yTntxu9mj249+xttF2VfLTZbqPnMbndRH2lBooB3GRElCotOo033MZLKQYW6jQ2u4wfEWggiKjoEXJwSxohNEZB0LFNhK8dZyC4VGocjYUPcT4q7Dl1IJRdfECxM6oSYxE8ZyGd5ebXKscLPwajSb3qPfqHp84NjNdPF43sE2DX7slLlli6DXxtQJYp47lYpvnEDeMfdlP3/73uNB9CFL245wvxBBFvaFF2ZK/Ne3VpjI2Wit8aMEL4x5+sRIP5K4nf3la/O1HW0xeyJtKnXHC+OdhP12gxPeXWszX+1AdypTkNyMfr1uJFz3Ar57bZ3r6+19Mf24GzRppBx37bs22jGmYTCZd7hWaYPWhIkm0ZpOBLaR9k8biu6UJ4uRjMILE1zb4MRolrdXGhzbdpMz4ppstHc3p/hhKNaRth3hfiGC/BAxzErRmfEcnzgzxrvlFg0/ouBaPD6dxzZN8k4aMe8kht+4vMIHp4tbHt9oB7x0cYGPzYz1RbrcSlucTpWyt3hNv3xpkavlJnM1j/OTeU6PZW/ZY56ttPmbq2sooJCxeXQ8y3jepeCafOfqOlGc+jdbBoQ7iK1tGFxba9OJEvR9FmSAVpB0zz9No4exZq0VEsapc9jmDHqQpCMfx7ImnTBNdX/k1ChNL2Sx7hHEaQS90gg4Pprp/1zdj5kZy961iceDyl4MTQRhL4ggPyTcj0rRF5+YJkjSYwyKJHZKOa80/H6bTI+eLWYYx7w+36TpR9iGwXTBxg9jXp+rotGcGs3wF++tc6qUpe5HGEpxda1FwTUZz7tstAP+r7+8SiuMWax5hFFMxjYpZCxW6z4nRh3eK7eZ3egwkrFwDIUXbpoSsYm8Y+JaimYQk2jN3sZF3BuaNG2tdTpDWRmK5YZHGA2etawBP9bkHZNOkNDyI2arHVzTwDUNToxkmK+l/tQF12Sh5rHeChhxLf63/+8tzozn+PhMiSCBb761ct9bfg6LU9fDkAkQDh4xBunyoBuDDDJZAEW5GdyTycLmdbuTAcCNSodWEHePndoxXpqvsdoMaHgRecci242m31xqkDEVS3UfpRQ5x6ThR/xgsc7sRgsvSjDQzFY9al7AqVKW+ZrHaMaiHSa8W25xfb3F20sNFmodal5Iw48IIk0rjPGjhPVWwNW1FpaZno/W0AwjEp0OhdiUscYAHEORAH6UYDB4mMT9wI/TKuqGF/eLt25XWxbFGj9MiHRCJ4wxVLovGmv42JkSY1mbuWqHpYaP1mkknXFMtIZ2EPPX71fImAaPTuZpBfE9G37slt5NpFKKsZzdPXaDqaw99GM/aDzo17dhIcYgwlAYpsH7blPhm/figijm4lwVDXxsZpQra22+/f4apYyDHyfdKC2NcjO2ScuPWK57BFFMECnGcwY1L+6OIoTLSw2KrkWlHbLa8EhQKEzqQZS242gwlSJUGq0hTjRBlKCB4yMu5abPWiskTgYLbQK0o4SMqcjaJs0gHrohyJ3o3RyYdwgYexafClhtBIxlLRzL4MnujZgXJ/hxwhPHisxvtMnYFlnbJIwTNryQnGPy3nqbp06O7tjy8+q1db5xeWVL69QnHr23PdZBWxyRUtJuJDywSNvTQ8JeR9/dietr6Yi/VhAzXXRpBWkqfFCr0+Y2ljeXGhRcm4/NlDg3VeQDkznqXsxctcN43uYjx4ss1QPaQQRady0yU2ExFGQdC9s00GhsU7FY9zg7nqPc9ElI+2yX6x4tL4ZEE3ajSq17M4bT/1DA7EaHIIqxFH1xS7rP20yi0+KuMI77BVYHhUl6fgnpfvf2c92OY6UuVxnboB3GzFc9ZistXr1W4b3VNk0/YrHWYanuoXR6R2IZaQFY3jZpbIoStrf8vHptnd/5u9lbWqdevbZ+T+9xcLuRJe1GwgOLRMhHiHspytpeKTpf7fBeucWp0QwvX1rc877gd65W7so0obcX14vYe9OENryYcxM5wgQeHc9xrdLBNOHaepsoSc05zozneHOpjmmmfs5NP6LpR3imQdYyGMvZ5B2TjXaIF4ZYpsI00ohXw00xJhXWnojVvJCsZTKWtam0fcJ4Z3/qBPAOYvN4G9tP4U7Z8yiClo7JOybNIMIPY/7be+sYhoFtKkyg3AwIE81K0+fMuEWUaDK2QSuMKWZupoi338j90evpTOqal45rtJTCNk3+6PWFe4qSD4tTlyDcLx6ICHkno4cHid5+2m4i0UFsjk6vlFu8V25xfjLPB6YLd/1am1lteHsyTdgesTf9qJtW1fxgoU4QJZwfz2EaBgrNI8UMUaLJ2yZRlLBQ86h20qjNIO15/v5clXaQUPdColhjkgpotGkyU9L90xOwBAjjtLJ4rubTDqHg3CnePFqYqtcupemEMQpFzYsIYojiBD9M6ERpn7VjGbSDhNWGx3rLJ+zutT9ScNBa32L4MVtp8265hdZpwVgYaTphQpykJir38l18YabUNx7pHbvWuTezkd45P+jXC+FocuSLugYXftx90clhL3rYj6Ks0azNh48XWa6nEXYvQr2XAq/FRkC1FfQLtSCNoErdY+3E5mlCjqlYrPlpJbVl4lgGGdskAUpZiwSYr3aodkJyjkGlHaZVzhqSRINSfGAyz4YXYShN3U9D3GYQcztXy0FRpUGaAj6geq2hsPlmJEogYxvYhsLvpg4yjomhFFGSkLEMoiRdW8c0GM1YlLI2S3WfpZrHsaLLz334WD/78WfvlLm23qbmxVhmOrjCixOafoxjKSzD4LnbCOhspc2fvVPmr6+scaPSoeCYm0xKbi0S/PmPnuBYfu8R8mylzddem+dKuclKw2ep7vFuucXZsewDXSh22K9vhxUp6rpLjrLP7N2koPezKOtuXutO5/jpc+O89N3r/dfYrWnC5mlCK42AgmNSytpUvYjJnI0XxvhRzEwpy42NDsdHsjw2keEv31sniNN0c8Y2cC2TONFcWqzhmAYfOlZguuCw0ghQXVntzRTuVU3fbu83gQdLjQfQChIcM12XSHerxlV6c6O14tRYjvGcw3OnR3ljsYZrmaA1GkWQbF29ctPn2VMjfPOtcr9/O0k0sdY8MuLyvRsbvPjE9MDf69204u3k1LXX7ZtX3l5lbqNNMWMzmrHxooS5jfa+eq4Lwl458oI8zOrhYXK3fcH7ad+329d69do6L11cIEo0E3kbP0pYbnhbzvHsZGFPpgmbpwk9ezoV8vlqBy9MWG9HTORtHp8ucK3SRilFxlLMVT1yjpWmRrtV0rGGrGWSJJpQJZSbAeM5m7VWiNYGRpL094odE/w77P8+iFrsmKlTV28vHdI0vdUd5hxsKiu3oohOYLKuPf72atQtBDPTlLEfUXRtXnl7lfG8Q7npM1/tMF10eXw6zzurLeIkwTYMprpTobTWW56/WTz3ejN9Lz31by7X++8J6L+3y8uNvS+wIOwTR16Qj6rP7N1ejPbTvm83rzVbafPSxQUMpZjsivHVtRbnJvO3nONeTBMGvf+8Y1IG/CjGC9ML5XorwDagE2nqfkTNC+hEGkOl1dZxnNDROh0CYRgooBMlTBYcFqoeplLpHGDAO6jG4QNmUJGaZrAbWTsCvJCpQo6aF9MJ075x01AUXIsginn1xgY/eX6S6aKLHyVcmq9zbjLLUt3DtWzCWIPSvFducqzg8NdX13jhzBirDZ83Fuv81ZU1vvjcyT3fTL/y9ipvLzdYawWA4sSIy9mJ3K6zYtsrBB6sigHhKHPkBfmo+sze7cWoV5T1yturfZeqp46P7OnYu7ECvDBbJU40Y3kblOpHFOWWT8Yyd3rpXVNu+liG4vW5dFSjAenIRtPkk2fHeGe1yavXNyi6Jq5lcHGljqEg6ka4uttYG3crp3umHRvtADppLXUQJ6iuyUfGMfvtSg8bd/uevTDh7dUWtqEoOibLDY+JnEPWUrz8g0VaQcxSrcPMWI6PnRnjoydHur/PGSqtkCCOGXUcjhdd5qupzeibizVKOZfJvEPNi3jp4gJPPzKyq5vpzenpQtbmz95ZJdaQsQyUghsbHRpeiLeT3+kmnjo+wsX5KnRrJ/wooe5H/cEYgnCQHHlBPqo+s7uJ7Lfvk50adQmShGdPl/o3H3u1v7xTVFtu+ozn0j22nhi7lsF6K+BMCV6+tEi56ZPPOnheSKz1Xe3lmUpxca6KaaQDI5bqHlprzk3mmSi4fKrg0vAiVuodvn1tA4O0L7YTJliG6u5pgmOlkTHAmbEs76+3aYcxjgljGZNGGBPHYCjVb3kSbk8CqFjTjjXtMGGjE2IBP1pp0ApiCo6BRvHeWot2GPMT5ybIlHL8/JPH+Dd/9T62aWIZUG0HrLfTPvKF2KeQcUApRjIW6630xvNOAyy2p6dfm69T9SIKjonTvzFU1P20uv5OvPjENOWWz0Y7ouFF2KbBzFiWF5+Y3nLMYXm+C8LtOPJV1nCzevj5mRIfPl7cU7Xk7arpblcJule2Vxn3LkY/9YFJRrP2wOrxV360Silr70t19O2YrbT5y/fWWKx5lJsBpqHIWgZ1L8KLElxLkbUttNZcnK/x/lqTlh/z3lqL717fYDxrcWps8AXs1Wvr/PZ3rvPXV9dZbfjUOiGubdAO0sEOVS9mvRVQ8yLiJObiXJ1OEGMYaTSDIjWuUDf3ReNEYyhFO4gJkoSMpbBME9UVYZQmTsBQul9xLNyZXio31tAO0n37rGXi2KkpC4AXxd1tDYe57u+Layo2OiFrrYCCaxEnqSNaECfdPVvohCFvr7RYqnlcW2/RCWJmxnJbrFZnK21+5++uM7vRoRPGZCyT1WZAvR3gRwmuZWIY6efvRTHnJ/J85tztM2OjWZuzYzmUUuQdiw9OF/jZJ45tOeZ+dG0cNqTKem88MFXW3/3ud/nqV79Ku93mxIkT/Pqv/zrHjx8f1uGGxrCGMtwpsh+0x9ryIy7OVblWaVN0Lc6O5xjL2ftawNZ7v1MFl7oXYRkGK3WPVpCaSjw+lePYSJZixuLiXBPbVDS8mCD2OTeR76cjT4xmb1mfnqOTbSqiOCaIYloJaDSGobo9x+lFvtoOeX2uShCl05fiuGt3GSZE3ddzjHSiERo8nZBoCCONMsEwNKapaEepGKezkESMd8v2depEmpytsE2DuFuubhukEXQ7pNoJWG2Gaeo4SggjjW0aWIbq3jQlVNshzSCiYBvU/YSRjMnZ8QJ1P+bqWhtDwd9cXQPg1GiGMIH1dkjWMnh/vcWbS3Us08ALE8JEU/dDLKXIOiYnRjOcmyrs6r3dLjt0kF0bEpkLQxHkdrvNv/7X/5rf/d3f5cknn+T3fu/3+MpXvsK/+3f/bhiHGyrD+IJu/+I9c7LIfM3fMk1n+x5zpRVQaQW0woQgTigrxUq9w1MnRjk5mr3tMcyuG9ad0sq9iGS9HTKRdzgzlmGhHlBpB7T8iE+eGWOjHfSNQJp+RN2PyNhGOqN3Uzrywmy1v0699/ntq+skOmF2I6Dpx6mYApVOTN4Cw0x7kP1IU/c61L0QQyniOC3I6u0X9+hZRiaA0uB1vam9GCytCeNoxzGKwu4xSZ3BWqHGj0NytokfpX7khqGotHz+4t0OrmXQ8CPCOG17coy0LkCRfk4RCcQG62H6O3OqlEMZBn4UsFjrcG29jWMZ2JbBDxfrHCs4ZByT98vpgBEUBF5EnGhsA7LdnmnbUJwczezaMGQn4bvdeM5hd23cj2lswuFnKIL86quvcvr0aZ588kkA/uk//af81m/9Fs1mk0Jhd3exh4X9bqva/sWbr3b45uUVPnpyZMsMX8cwtuwxX16qp5FBlEYklqmodiDRNf77jzyy4zEsQ/WHODx/utR35dr+Re/9zGLNox1EvL/eIorTqGhmLIdtmri2yVzNI+OYnB7LUXAtluo+lgGunaYw/ShhPG9zda3FcsPbcoF5e6VBECcEUdIX4x6tCMxu+rMT+nSCGK0h2Bar6V38N0CUSCy8X2zuFIuS1NWsR0ZptGHQCQPqXvo5mCp9XtRt6jboDoaIE3T3xskx0y7xph/x7mqTdndclRclhHH6y7Fc91AqzZy4pkEriIgSTTFjkbUMlDJQKnVxKTcC/o8/fWfgYIvZStpn/OZynU6YOpJ95JGt37fnT43y2nzayw4QRAk/WKjz0ZMj2Ka5Y9fGfkW1R9lPQdg/hmKdef36dU6fPt3/dz6fp1QqMTs7O4zDDZX9Hsqw+YunVLr/W8xYlFtB34mr6KZ7VZttA6+UW4RaM5azcS2DKIYw0YSRvuULu/kYNzY6FDM2Ixmb6xud/uv3ItjNPxMnmo1uIY5tpKnJmhczV/VQKr1InJ/M8165RcOLODuWJdGalh8znk3NPLwwZirvUvfCLe+zmLHQCtpBsmPUmmafNaWMRaJv9WsWDh+xBi+I0aSpaTS33GwlQMtLp27lbIOxrEWQaBaqHWYrbTqbfiFMIxX1WIPfFfWpgoNhqjTqtkxGXYupYoYPTOXJWQY3qh7tcPBgi9SZa46L81Vc06Dph6w1Ay4v1dloB/3vwzcur1B0bT50rEjQvSHIWAY/WmltsQrtMVtp8++/c52vvPIOr16vYBnqnixoBw/SuLMFrfBgMRRB7nQ6uO7WqNJ1Xdrto+cZO8hPd9AXdLds/+I1/IgR16TpR/3HCq5Joul7T5cbAWGSMJKxKeUcJvIuJ0YzjGWt1P7wNsdo+BEZy8C1jP4xBn3Ry02f1YaPbZkY3bxwN0uIHyZ0s96cHstyejRD3jGJE/jx85NMFtw06rEU5ybzWKai6Fr9c6i0fC7OVfHDeIuP9HY0qctTpRPKXu8RQAFxAg0vJDXN3PkmKiYVWz/RlLI2QZSw2vSZr3lbxl0mOv2jScVYKVCGYsS1yDsWUwWbTpyw0S3sWu+EOIZBzQtphwmj2fQm8BuXV4D0RnOjHTGSsck4FolWFFyTVhjz5lKDi3NVXp/b4PJygyCKGc87PH1iFNcyCGJNGCc7ZpPeLbeYyNkopfjhUp0wTgbe7O6GYU1jE44WQ0lZ53I5fN/f8pjneeTz+S2PFQou1j70tO4HpmlQKt2aGiqVcoyMZPjO1QqrDZ/p0Sz/+NxJzk7uLfU+M1WkFaQXCIDxQoa6FzBecMll0y9f3Qs5PVXg6ccmefqxSQDeWKqz2vTRCizDIEoSEhTTBeeW8958jPFCho22z3orIIo1P1xucGzE5fRUYcvPzUwVeWu1iWWaTBcNmkECQepPXMzZmJZJLutQ90KemhnnFz8+01+3qyv1m+tTdPn0uXG+c7VCK4gIooS3VttkbYOMbRFEIdEOapv6SGsMVGr6Iap8qOm7fiV0fx93RgFGN+vSChNOjWVZqnps31nQeuvPjGRsvEiTd03OTxdYrHXwwpizEzkc28QLNY+MOFiWSdWPGSu4TFgGSzWPUilHI0rQCkayqXDmMzZRHNPyI2arHk8cL5LP2hQ7EZeWGnzqMYdTkwVOTRaoeyF5x+p/B3t88501pks5rm94FDPp63pRzEIj4GNnx1ip+wOvJbfjp586zn9+fYFIpQYsTT8iAP7xU8fv+rUGsdP1Tbg993vdhiLIjz32GN/4xjf6/65UKtRqNc6cObPlec2mv/1HD4yeR+7A/2cZ/NzjW7+UOz33TnxkKsfXLy/TcW0KrknJNbheDjg9kqHV9vvtT59/8viWYzxzYoS/u14hiGK8JMY00tapZ06M3HIum4+RNzV/v9LENBSPjWdZb/hcL7d45lOFLT/3kakc30o0cZygTMjbBiprEycJJuAasLLRvuXcSqXcwPXpncP19Q4mmiDUZG2DKLYI44hOxEDyjknBsVjsbUgKh5quP8sdP6p02lSCqQxOjmZo+BHHii41P6TWivqV873XMVX6+31sJMPTJ4qsNnwq7YipQoa8FXb3NzRTBYco1timptryuRLHVDtp1umN99coWgZKQ6MTkrFNSq7JjYpPK4gYzzsEXc/0jz5S5L21Ft+/UeGTj47v+D0EmC03mC66uKbqv66hNRsdn3K1Q9Ex7/r6ULIMPnd+gguzVWZXm0wWHD53foKSZez5WrPl9W9zfRN2ZljrNjU1uE11KIL88Y9/nOXlZV577TWef/55vva1r/HZz36WXE7u0La3O50czfLxmRLzNf+2xiapoUHARjsgjDW2qRjLOVsMDTYfoze44fJyA9cymczbaGUw4pqcm8wxX/Nv+ZkvPneS//DdG6x297UfGXFphzGmoRhxUmvLuzFdcQyDK2tNHNPg5GiWH39snEsLdVbqmk60NT3XG5XYDtIq2gdiLuhDgmP2+sF3FmYFPFLMUMxYlDIWS/XU1vRYwaUdxESh7j9PAaMZi3/4+CSxVpwczeKaJj92yuGnnzrOn7+ZjiEtZizGMiZ/+/4GnTDGj7pbKzrhg1Mj/WKtsZzF7EYHdGq5WsxYdKKEgp26wD0+XWA87zCatXlzqXFHg6FeevnR8Sw/WKgDoLXGMrgrl8BBBWG/8MyJu15/4cFBaa2HEod873vf49d+7dfodDrMzMzwG7/xG0xNTW15Trl8eAzdj8IdZO8LvNZMLxi3a1/qVVm/PreBbRoEccLTJ0YZz6dzbcuNgF/+zNmBP/vK26t9s/0njxd3nNYDg9dt8/HfLTdoeDGgefrEKAB/d22dt5aaJKR+1KahcEyjawACeddC67QQaIdAWjgk5G2FY6UmMem4y8GXk2MFh//9H32Ab1xeodIOU0F1TZpBTN2L2GiHxDrBUgYTeYfTpSzPnBol75hbRKoaJfzJ92Z59cYG4zmHx6fzLNU8vnO9gmkYTOYdnn6kyGNTBRpeRN4xeWGmdMvvNIBrm1uc8nrPv5Mobv79DqKYd1ZbVNoBnzgzdtvvyk6vsdmlbFhtTkfh+nYYud8R8tAEeTeIIA+Hly8t9iOIv7myxmrDx+/uw/3EuXFs09zVhWc3bB6H12stWa77TBYcnj2VCvAPFtKWLT9Ko+31dki1HabOW11UN+9pmYqRjE3TD0EpLEORtw1Wm2Hab9z9Y6j0Z3aq2FakRUS3m4cs7B1FmtUwDMi5Fucmcry31qLupZmPXobDNGAka/E/fOQEv/Tps/15xAtVj4Vam1aQUHAMxnMO6+2QU6UsY1mL9XbEk48UtgjUbKXNn15Zx4GuEDbZaId8vNsf//+3d+/BkZ3l4ee/77n2Xa3WZW6S5mqPjY092IMhBkxIfvEFtpJNLd6KCa5ASDle8we12Uo2FahK8kdSIeS/pAK/3VAFxiEFv9naJBTxBJLNL/WzAzgDDGCwB2Y8skYzo9Gldenrue8fp7tH0ug+aqklPZ8q3UTTQgAAIABJREFUyoxG6j595ug8533f532eE/0Zpqsul4s1yo5PxtbJWQb/5y/decvx325AXOvD8XLm/442rfWBYCN20/1tK+2KKWuxvZp7p4sVh4oTl7tMGIqK6/OfIzMMdSd5+vTg6i+0Rs2tJSPTNXK2QRBGjM05fGd4mncc6eZwd4LvjMzieCFdKYMu22B8zmkFWIgza+NugBEpS2eu7qETEUXQn01QdQOcIIqLQuiKpKkDETO1ALVEApihK+7oTbXWHiPW1n5R3KSxdO9onTjQhsQZ0INdCZJmvPZfcYLWv4WlxwU27j+YXbS0Ev8bdyVMZus1pqoBCdPg1KEsfqSYqsQtNBcHx1dGZuhKmhhRBBiteudpK04M/dcL41yddUjbOvsyNqV6wGzNZ6RYXRDUm9PElqbheAE1N1h3DfyNdDibb6e2jRXtJQF5F2qucV0u1sinLLIJk7GSg6FFZG2DvrS9qdNiC7aWmDqZhEHdC6l48TEAHMglyCUMSo7Pjbl6a3tMoyVv63+mrrh7fzYufFL1iIgYLzvctT8HRMw5AQkjrv09NlenK6m3uvxEqHgdkTgpLUJxrDdD9doMQQSWoePu0Y5PK9EasxOLg68GpExF1YtrgJtaHDT8EKpeQBjCgYxJxQu5OlsCBZauCKP4e7NJk760xf/81gMLSsIO5FPsy8bJVPc01pPDKKRY9TjRl+FAzl5ypDpRdjjcn11QWzhj61ycqOCHIWMll4QRP+KNTNcopC3uPZBtFddYqhpWO6eJV7JT28aK9pLcmV2ouXd6qhIX+te1uKfxL53s4+eOFm7ZanK7JsoOXhA0ml1ATypep3a8kHLdZ6riEkUhRwpxda9i1cNU8cWnGldgMzBbukbF8fGCOEkna8frkylTQ1OK9x4v8MRb9vMLd/SiGsUovCBCKUiZGo2CYei6xnjJYbLsEEQKQ9PQlULX5KJvMjWwddXad25qcTGMnK1zMGeRtDXQNBKGoi9jcqQnCSjCRv/phKFA06g1Gk8QKVJm3HilO21zvCfNIyf6FiQQNvfIXy7WSJg6hbTN4e4USmn4IVyerGJpGl//yQ3OnL+2oMhGHMQWZhWUnYC5usdAPkVv2sI24/3xdmPEPpBPtvbcLy7Ks1yRnK2w2fUNxO4g96ZdqJnJ3ZMymar62IbWSuhqx1N4X8bG1PXWmnDaNuJtIa0AbXKiL85kPVpIEkbxlKeuxS0dk5ZO1taxNEiaBm9MVbANg6HuBGUn3sbyRrHK4e4EAP/j0iT/zw+v4wYBQRBiGIq6FzFT80EpUlZcatEL4zKdSUunO20RbF+6REcyNEXCjBtA6FrcN9oyNCJgpurjBxFP3NXHr58e5JdO9uOHcbnLEEjqip50vJd+tuZj6Yp6o5JHLmGQNDWuzTm3FKFpjgzLjt+6Pgxd446+NA8MdDHn+NimTn/WvqXy1UNDeWZrtwaxZhGavqzNvmyCO/szHO9JNUpz3rzeO6kaVvN3tFn4J23pUrdayJT1TrdcLd2hQorffvjIgsSV5g1srdsy1uqhoTwXxkutrSUR4Ach9xzI8fTpAQD+8cdjlOo+3SmLwXyCy8UqKryZpBUBB7oSdCVN0paB3mg8n7J0DuZsZuo+P7pewtTjNpBBENKdsig7PpYCX8WdJxK64khvmqszdRKGTs0POVZIMl52qXsBfrh3n0I14iQsRVyAI2XpdCctrpccnEajiKxlUPPiLl8REcPFGofyUKq7VFyf3rTFjZJDPQgJ6gF5GwIiwjBCqbjONBFM1zy8MOJffzqBpSk++9LlVk/vc6OzmI31W5TC8QNO9md4/UaJQspatp7zUCHFkw8k+JdXx1pbk072pfjaj2/wzQsTJIx4diXfmKFZvA2p06aJb3cdWuw+u6If8mbYif1CV+vd2pU02Z+1mSi7TJZd8klzQb/ZzZBImNgKjnSnqLoBYyWHMIL7D3bxv9wfrx0uPo6h7iQacSKWG4ToumJf1uZ/f+8xSnUfFLw5XccyFAP5JD1pC1DM1FwmKm6j9rEinzRImDpKU4RRiKY0MrbB8b4MhgYnetNUvJCMbTJX9yg7wYJ10uY0+V6STxpEIRTSBm4Qt7qMa2xE2I0e0lU3TgQMw5A5J+Ce/Vkmyx5+GFFxA2p+3JvYNnS8IO5FbRkaXUkL3w+YqfsEUUTa1Jmp+ShNcaSQIoxgeLrK6YEu/DDi4mSFhKnxlv1ZLEPn9RtlTh3KkbJuBkxLV0yWXU43pnL3F9Icyyc4PZQnY+n826UpUpbObM0FFF7j85ScgPsPdvGBt9zsdbxaD/LdbCfe3zrBrumHLNpvLR1ituopfKiQ4pl3HVnx7+dnuk5U4rrZXpDA1DW6U/GxlxyfYtUDIvZlEqRtg7oXkDLjNcasHRcoGS+5TFU9CkmTtGmQtQ38AO7sT/PAYJ7vXZlhru5zIGdzdbaObeiYusJohGC/UVS7+WDQbOO4m8WdmOLp6ZmaDyj6szZD3UnOX53F9QNqXoBqTl1HipoX8Gqj09j77ujlmxcm6E6a1LwQx/NxgoiUqVNxQ/Zldab9EEOL1+yTlk5vxiZp6gxP13hwMA6qo7MOz7zrCI/f3d/aOpS2dN55uBtrXindYsXl9UaHsDPnr/HQUH5BGcP513/aMhguVvGCiO6kwW//4pFbrvvVepCLzSc9ntdHAvIOtlO3TjQzbe/ef/PyuzJd5YXvXuVEb5q5uk8UKd6crnGwK2oUD4kbZBi6ojcdd/Up1z1m6h6FlIWpaURhSF8mnq7sy1i8MVkhnzSpNtr2+WGEUoqMFe/Dnqy4BGHUSnJrTmXvlsBsqJudk5pmah4ZS8cNI3pSJpqKcPyQLttgJoqIiPsLayrurpRubEGzDR3L0MknTZwgxA9dKl6cub4vZ+P5ISnLwAvgLd0Jjvak+dH1OXJ2/Ag0UXIbD0lxI4r5SytNzRkfiPcZL9U2NJdLkG+sPc+//gtpa0HRm+Vu+jJNvHWkx/P6SUDewTptTWyt5t9IixWHy8UaPxsvE4QRpw7luP9Qjlevl7g0WaFYcXnfHb18d3SWXEJHKQ1dUxwtpHizWKVY9UhbOm8f6ua+g9lWCdKkoTPUncQPIyxdx/E98gkTTVP4IUxUHPwwziq2orhamBtE6FrcInInBmWduKuSoYGKwDQ0al7YWqcHCEOoeiGmBl3JeJljsuLSl7WYqrkEQQRRhKk0LF2RteNkvTv7MpQcj1zjWvOCEFPXOFxIYWgK29C4oy/DT8dL3NmfbWQwG9T9kKobMF1zySUNbD3ejrbUjbk5gj372jj/8tMJgjBiqDvZyogGePlSsVU3faPXv4zatsZO7/E8Uqzy9QuTjEyUtuw62av5LbvCTt060byRFisOP7g6h+uHBGGEbWqt2sCPnOjlkeMFghC+8+Y0FcfnSCHFOw53YxsaYQRHe1I89cAh/u+n3sbjd/fHwbjstG7I+3MJbFNHEY+MbUPFzSvsuJ+0FsH+bIL9uQTdaSteV9yhwVgRTzP3pAwyloGhx+vqTaYeB820rZMydTRNY1/WZiifwPECupIWfWkT29SwDI2koZOxDSzD4FBXilMDeX75nv3c2ZehWPVwvJDD+QSGFidlxVvadHK20bomD3cnKdU9rs/V6G1kZNf9kLv2pVfcbuSGIYW0xd37Mhi6xg+vzVKsuGRsnfHSzS1UG7n+m6O2ihssmcktNk8nZbWv183rxN/S60SSuhp2YtLDRpK2RopVvnlhgn+/OMmbxRoZS7+thJaNnLdmcs3FiSpmowbmXN2nJ22TtHRKjeIfr14v0ZexeN+dfaQtg9duVOhJm5zsz9CTtkhZOh94yz5ma94tyW1nX7sRj7CrHlU3JGlq1PyIuheQMHUcPyBlGaTtuFjJbN1vBJedGI5jfhjh+fHo19A1vCCejtcUaFo8f20a2s364ZrijakabtB4IDJ0upIGoMgljXh/MNCVNHD8gLOvjzNedjjWk0JTCieIRz0n+7OtLXX7cgl+4Y5eJsouFSfgYFeC6apLwjRIWjp37ctQSNu3JGs1ffPCBErFa9duEJEw4xt62fHJ2iZ9uQR39sbX90au/+brN/cix1uvFBNll7fsX7qc4W6wHfe3N4s1Ku7N+gQQz2Dkk2bHn+vmddKTTeD74aZfJ5LUtUutZ02sU9Z0mlOTf/FvF1EosgmddxzO8+Z0LW5SUPd5/UYFBdy1L4tSqnV84yUHW9cXJOScOX+NrG3iBSHfHy0zXnIYKztYms5At0XdC6l5IWnbwAviAiUVxyeMoO4FTFfjDOIw2vlZ134EFT+kP2MDCi/w0RXoKAxDoas4wzhp6nhhnOXelTDiLWOGzsn+NKMzNYaLdbwg4lhPipmaz6XJKhnbQAGXpqp0Jw36sjYD+eQtW+oWX5OFtHVL3eblppabyxnzOynZumKq4rE/5/Erxw8t+P71rgnv1LyLneihoXwrJ2B+vfDN3nbZDtt1nUhA3kM6aU1nqJDikeO9C27UXUmL12/EDUfcIODBwTyF9M2b9mB3koSh39KlaqLsYGiKH12fIwjh+lydIIio+D6z1Xjdc6LsUm4kJ1UcD01FzNUDZmrergjE0NjTreJ14mLVxdDi0XAYxfuPcwmD3rTN1dl45OJHEf0Zm96MRXfKih9O6j5vG+zm3cfjJgdnzl/j28NFso2yqPEbxevwfWmrVdhipYzl9dyYm8sZhbTN/YdyXC7WFtS2PtKbWXOx/6XWindq3sVOtJOz2pvXSXreoW7FdSIBeQ/Zrqe+5ZJoFt+oTV3jSM/NX+KKu7ATxHK/EH0Zm28PFwnC+DO6QTzF5IcRM3UfTVP0pq24tzMwVnI4XMhQHy9RdW82Q1iumcJizUImnUg1Hi68IC6MkbJ0wijOMJ+t+RzuTnHfwRwzdZ/elMl0zefyVJWxOQdNRQQhpEy9VdCleT67EvGyRsXxmaw4zNV9vCDk/3jf8VVvsOu5Mc+/JrpTFqauU8qtv970crNBpwe6ODc6C+y8UdtOtFOz2pvXYbLuoUfRll0nsobcsBPXkNdr8ZpOseJyfnSWsVKdihtsaD15tfO2UvGSoUJq2TXA9RRxyFg6L742Ttn10ZTCm9cVSlfQk7boSdvkEgZvPZjF9SMytsGNUpx0UndDdK0xulwl0io6u6BIsy61puJOTLauYZs6uYRBT9qiL2MxXfOpuAFRFJcunam6OEFcn9oyNPqzFvcf7KIrafJmsRbPOETg+CGjMzWCMG4FUvdDXr5c5MacQ1/GWvHa6WqsG54eyvOW/dllv3e1deG1/p4ut1Zc98PWGne7iuV0or1wf9tMzetw2gm4Pl3b9OtE1pDFgtHHcvs8N3s9ebVp8uWeoNczqhoqpHjn4W7++fVxDD2+CZsaKKXwg4iZRieqDz94iO9fnePBwXi92lAaQRhh6PFe3aXyuXTiUbOm4tGn0uKyk50YkRVxZSsvjEgaGmYjGz2bMEgZGlNVj2LVozdl4npBvDygwNY1TF3nYC7B/YdymLre+veJy6KWuTJdZbbuo4jibWFRxP5ckqSp8dOJMm4Ybtq1sxmjqpVmg3bqqE1sraFCivuO9W5pH2kJyHvI/CD3vSszZGyTu/alKcx7Wtvs9eRLE2XmHJ+yG5C1DY4UUnSnzDVNk6/nxvn43f388PocmlJ0JeKOUhNlh3yj//Jb9mf5/tU5Rmdq9GdtHhjM0500+P9+NkUUQbTMXHXG1tE1hW3GDSs0TWO25lGue4SAt41J2YunztOWxhN393Nxosz1kkc2EfcFNnSNS5MVDnXZFNIWMzWPiheQs3WKNZ8wDKm4AfmEznCxxuHuJLXGcsFQIcXTpwc4+9o4//TaDWxdJ2Vr9DYKcRBFlJygtY2pUwKdrBWLnUgC8h7TDHLNEYRSqvV3m72ePFKscmW23gqSdT/kh9dmOd6b5lBXctPeB+LP9eEHD/HCd68yWfEopAzu7E9TdgIgitvxNYpcnB+Ns3eP9KTZN1ai5gWUnaBVPENvFNZAgReGHO/N4AQRtqFxejDP2dfH8YKQemNNOljmmDabHh8S8SdaGIxNDe47kOPXHojXfr907grT1XidN4riAihvG8ijlOIbr4/H07lJkzk3JIoiCkmz0egh5LtXZnhg4OZ2pGZZ1Ga29PdGZ8ja8a2j7odkbH1LM5XXUthjJ2f4ir1L1pAbVlpj2ey9u51gs/YIrnTevnlhAkNTFKsuNNbxHD9iquLyv546uOnncKA7RSFpcGWmxo2SiyLukXywK9VaS+xKmiRNrZGZrTFb9/jFO/u4Uao3ykOquBazrtGftUnoBu8+3stQd5KUqXFpsspMzSOKIrwwrtu8lVuXbV1h6hCEcUCOp6nhWE8KXVNU3IBfONmHpSkuTVWYrvl0JQ2OFJJ0JS3yKZPRmRpKEWdahyFJMy4C4vohXUkTxw85mEvw4KI9whlL56U3ilyeqnKj5DBXjzPU7z2QIwghnzTJWHpbf1fGyg7/7XujyzZUadqKxio7iawhb4w0l+gwnbJ3d7NtxQhiouww2J1sNaQvOT7ZhE7OMtpy7kaKVc6NznJnf5YHBuPP9O8XJ+lOWcy/1Odvnzpz/hoVN8A0NHQtwg3iUaKtx5WsDE3j2XcfaV0HDwwmufdAlpcvT+FMN8pMalErQLZzaVkBhq7IpWxuzNWxVDyVfkdvmt5sgprr8+Ox0pLnYXSmxuhMlYF8ir6MRckJyNkGdT8gY8UJbqi42tfpwTzBsg8ZEd1Jk6uzdXQVEUUhFddH1xQn+1Jt/115+VJxzVv3On2tWEp4isUkIK+ik/bubqat2CM4f09pc526VPdJW/oqP7kxZ18bZ3iqihdGrfXqQsrkwniFhzM3n0jnryU2H0wyps7wdBVT11DElazeLNZ474kCsPA6KFZCEkZckrMeRCQMDccP8cP2BuQICMKIwa4EKopIWfEkdrUxRG9OuS91zQ7kkzheQNrSySVMZus+J3rTTFQcSvX4fNx3sItC2lr23+hmU5BcqwZ5seIyXnL47YePbMnvynipTm6Jcow7rbDHbn3QF7dHAvIqdnNln3aPILZyHW+kWOXbb05TSJmNkV+8Xj2UT/CTGxVKdX/JY2g+mPxwdIYwgpoXYutxi8JcwqIrEQfuZvGR/3Fxlp9OlPGCkO6URdUNmK17bU3umr/NStc17j+Uw9DiblgJU6NUC7gUlCnVfY73pLg0UeZEf2bBa2RsnbHZGoW0RS5hcN+BHAA5y2C25nNHX5rulLmg4tZiC7srxQ9Z87srff0nN9r+u9KfTTA5W9vxyVq79UFf3B4JyKuQbM2Nu91R+Hqm9F4ZmaGQslCNclXNqlJjJZd3Hu5etaKUHynu2Zeh5MYZx0rBvQcyrX3JulK8fHmK8bJHxfFRSjFZidepdaWItKh9QVkRl79UsD8TB8KBvMflqQpjsx5eGNIbWezLWBzpSXNxskLC0hnsvvkZr0zXuDJbZ39XsjUiKzkeTz040Dp/q/0brfa7sBW/K+86XuCFbw0DOztZazc/6IuNk4C8CsnWvD0bHYWvd0pvouxwsj/ND6816h8b8Ybh6arH43f3M1RItQL8139yY0GAj4O5iVKKQiYO5HUv4EbJ42hPPNK8Ml1hZLqO6weEURwc3QCMRjENVEREuOkJXgoaSWaK+/bniFTcO3q4WKU/m6DmVUlaJoahcde+TOvc/GyiQj5pta7Zi5MV7uhLLzki++Cpg63/P1F2Wl2Y1pu5vBW/K0d6Mzu2HON88qAvliJZ1g3LZdNJtubK2pWFuN6uPG8Wa4QRrYSlsuOjKY37D+b4hZN9K1YMO391lv6MzbW5OhAHQC8IKVY9fv3BAWZrHl94ZZSkoQgi8MKIkLhASNhIdQ4isHSNKIo2pX2jIi5G0p0y6E1bPHy0m4HuJI/f1cf3R2epuCG9GRtDV9zRlyFjG3ghHOxKkEsYBEHIvlyidc0GQciRnvSCbW7Njkv9GWvZc7OezOWt+F1JJExsxZqqfnWy9VSi2wySZb0xkmXdgTo9W3M3Wu+UXnN0lrVNHhjoat3gHr+7H4hHf0EY8bOJcpztbRv0ZSxeGZmhLxP3O73vYBfDxSolJ8DQ4J2Hu1vdpAxdYRs6CctgsuJQcwP8xnvrSmFqoCmFu0mFrk0dupMmKcugK2nSn0m0RvrfvzrHA4PxnuLvXZmh3mgPV3LiIyo7Acf7Mq2RL8D/9fIw37pcXJDwZuoavY1zsFmZy/K7sjY7ufGCaB8JyKIjrXdKb7Ub3KWJMqOzNRKm0Ur6ujhRpu6FPPXAoVYwf9sSwXyi7DDYleTKTI2EqdObtnmzfrOcnhdE9KRMUrbBjbk6hgpxgpuVtNYTnxXQnzHpydgkDY0HB/NYhk7JufmU3jw3XhBQcQMuT1VQEZhGXPTD0BQffvBmm8KRYjXOpnb8+LN7AedGphnsjqtwLU7GKlZcLk9V4q1QINtx2kQeXsRiEpDFlllPktZG1iNXusHNOT5Kaa1kr4QZV+2aq3urBvO+jI0bhFS8gIrrU677BICpwDY1ggiKNQ9NQdrSSZgmpXrc3jCuFLY+bhCRsQxSls6b0zUeGIwLdMyvL/2lc1cYma6Rsw0KSZPh6Rp2oHEwpzjam+bc6CwHu5KtNfKBfIp9WZvLxRplxydjm/SlLYYKqQUPP8WKyw+vzQKKfTl7zTXOZU+tELdPArJou5FilbOvjTe2JVmc7E+veKNv3twrdZ/rs3VytsHxvsztTelFEdfn6lydrZG2dLK2ieMH1Fyfz750+ZYgMlKscub8NSbKDrqK1/juPZBlvOTwn1dmsHRFT8oiaelU3HjNetbxGcwnKVbjfsuGUmiN9eW1MnVFxfG5OlPjWG+6FdDnT9cPFVL0pW2mq/F2qyCK11STpo5laAx2pyjV/VYAv1km1WjtB29uV4KFDz+XpyqAIooijhZSa9qOI3tqhdgcEpBFWzVv1sNT1UYmM/zw2hz3H8ot2ZBg/s39RH+mNTK+nRHXSLHKrBOQTxg4QUTFDShWqvhBQDoRl5Kcqjj894uTDHQlKKQsJioOA/lUK8BARNLQydkGYUirNrdpaKRNnZrrE0bwyPEevj86x5WZGlEUtnosa6xe89pQkEsYVN2Auh8yVnI41hN/5sXT9UEU8XNHCyil+PeLk+Rsgwha68jzA/hy0/+aovXQYWkajhdwo+SwL2dztJBqBe/VtuMsXoP2gpDhqSp/8W8XeeR4764ZLcssgGg3CciirZo3ay+MyNlG3HQYuFys8cBA1y03+nYUTHhlZIY7+tJcmqyQN3SCMOJH12YJURzuTjFT83n1eo19WZuS6zNZcSk5Prau+OlEPPr1gpA3pyr4UZwVa+g6hh4xXnYJghClKfrTFj0ZmwcGuwijkIxtYhuKK9M1rs85VFx/2b3KGmCbOkSQNDXcIKRU9zjcnbylWMdIscroTI0fXpujJ22hNfr8AmQaTR+WqkYW/32zlGYVUNimvmBf8kND3dimvq7tOPMT8JpT3pauoVBta+u51WQWQGwFCciirZo362wjkSph6q2M4KVu9Itv7sPFKnN1D4Xa8IhkouwwkE+StgyGi1V+NlFBoeiyddK2wVS1SsLUqftBa4rYUPCdkVmOFFJowNicw0zN4+7+NAdyNj+brGIoSOqKSgimUqQsncuTZaZrPkEYMTJd5c6+NLmkyQODebwg4P/94diSQTkEbC1OALNNnbQFg/kUQRivS5/si9eCv/zdUUZn6+zLWBiaYq7uU3U9/JBWN6rFAXypNfK+tL0g8Db/63hBK4FsrWv380fgw8UqthGv02cS+q6pQCWVtcRWkIAs2qp5sz5SSDWShWg0ZNCWvNHfzCCOS1/aho6ta0SoDY9IbtbUjnv4lhwffV49yroXkjA0Kq7PYLeBAi6VHMIoImHqjJQdTF3D0BQlN+RwIcVE2aXkBASRQlOKI4UkKdvgO2/OcLiQIp80MQ2NmbpPPmEwUXYYLzkcyCWoewEzNQ93UWCergekzYCUleBkf4Zn33WkVdCkOToruT6aUkxUXA53J5mux6P3jKXxlv3ZVgBvntfmlPTiKdbPvnSZzBI1oWtusO7tOPNH4HN1D1vXqPshJ/vTrdfd6RWopLKW2AoSkEVbzd8f/NYDOS6Ml5muerzjcHdrX+1S3z88VcXS49aQdT/k/kM5TF3f0Ihk8ZStqSlMTcPU4opctqEouz66UhwtJAHFD67G064j01VGp+uYelzMoeLGI+ikpZO0DIa6k/hhiB/EbSWDRq3NZovGlG0SAf1Zm1evl7D1CD8CXdNIaCGgCMIITYEfQD2I16fT84Ll/NFZ2QnIJQwcP2Sm7vPgYL6VoPXMu460fma1KVZdqWX3Ja93O878EbhCEaG4/1CutQa9GypQtbuylqxPC5CALNps/s265ga880hhxZtN8/v/4t8uolBkEjon+9MLGhnczjFMlFzu7MvQnXJIWwYTlTiL2gsiTg3m6E5ZlJ2AroTBbN2n4gSkLA1T1/CDED2KqHtxQlQQxv///kNxo4YXfzKOrselNNO2galrJAyN8XK8Jq2UYroeYOsa037Y6GccoQEJWydrx2vHB/NJBvKpW7KkIV4jdvx4RF9qTK9fma4xUXb47EuX0Rtr9K+OzWHpOnft01DKWDDFCqy4L3kjmkG8+fBj6jpRY9vXZpbPHJ4s8y+vjm154GpnWVBZnxZNEpBF221kxPXI8V4q7uaNSBYfQ3NEkjB03nYoz0CXzeis05qmve9gjktTVXIJEz8IeXO6hlKKvoxBFIGmNFIJjeO96VYQP9CV4ERvmqFCin+/OIltxFO3szUXP4SpioMbRJhaXAvbb0yZR8Rbl8qeT8bUG/uEl86SPlpI8oOrczh+SNbWGSlW+cHVOU4NxB2gzl2ZQRE/LNhJjR9cnWuNVpvQAf53AAAexUlEQVSvudq+5NvRzgpUI8Uq/3xxCgu2PHC183PJ+rRokoAsOtJWNfWIGgvJB7uSvPPozdf+7EuXOT2YZ3i6hhuEHC4kGyO+kHce6eahoZvFOpo36A8/eIhzo7OU6j4a8NPxcrxH2fUxlIIork/tBSyodx0Cnh+gKdXIToZvXZ7GDQLOnL/GQJfNudF4/b07ZXG8N+7olEuYTJQdTg3kGOxO8d0rM+QScR3k8ZLT6np1uVijkLZbDzSr7Uu+Xe2qQPXKyAxdSRMjiv/Ntjpwtetzyfq0aJKALDpSu0daq00RNutbP9iokgVQqvukLX1BjejFx3OwK8nZ18YZLzn4YUjS1Cg54AYBQXhzVNzU/KMXQtKImK173CjV6UqYPDiYp+IGnBud5fRAF6OzDhfHy8w5PoNdiTgwT5QZyCcBKDdqdCualcgC/CBkpOgzVXEXlNTciZ2GJsoOh/uzC4r974bAJZ2fRJMEZNGx2jnSWm2KcKMj9KFCikLa4tG79+EFAd+8MImhKWoerWYU8zXrXRsK0raJ64U4fsQdfWl6MjdHTaOzDg8N5RkrxT2Nm8f0s8kKI9NVTENnuurhBxEpS6cvY5FPGPzHcBGlFD2p+OGjGdybI+6d1FI0Dlz+gpvWbghc0uJVNElAFnvOWqYIb2eEPlF2MDTFm43pbj8IlwzGTTqgaYqBLhulNHIJg9EZh+maT8nxyVh6ayp6cUWsIAwZqwYc70mRsTTenK7Sm7Z419ECF8Yr9GdsTg91U0jHQatU9xmddXZkp6GHhvKtNeTdFLik85NokoC8B8iWioXWOkW40RG6rhTfvTKDoWsQRbiL56nniQBdA0MpMgmLlKVzfbbGyHSdfNIkbcV7g2frPkQRJ/ozrZ8dLlZJmQazNZ+RmToREX1pi66ESRDG0+QPDuZbwRhuPnjsxE5DQ4UUTz6QiLOsd1ng2on/HmLzSUDe5dq5pWKkWOXrFyYZmSjtqEDfrinC5oPPf44Umap66EqRNPVV2y8GEaT0uLHDvozFG1NVLE2RtrRWEZHTg13MNaqbNR8kxksOkxWXpKlzrDeN44fUvYADOZtn332EM+evtfZNN+30Kd4jvQv7PAuxm2jbfQCiveavlyqlyCaMVlOH29EM9BXXpz97s03fSLG6+g9vs+YUYdqKR4tpS7/tB5Sb5yMgZRnsz9qtKedlylcDjaYTEQSRImcbTNfiRKxswsTxIxKWzkA+Qd0PydkGJcejVPcbGd9xic59uQSqkVGtlGKu0WDioaH8gu9vltRsZogLITqLjJB3uXZtqWgG+lzCpFpzd9zeyc2eIpz/4JNJmLh+SH/WZqbmrfhzph5X6FJa3Fu5HvjsyyawTY3jvY3p6ShisuLxtoE8Dw3lW2uNGcsgZcYlPYkiilWX8bLDtGFw5vw1HhrKy9qkEDuIBORdrl1bKnbC3sl2rJ0vfk1Lg++MzHD+6hyFtMn9B7Kt4h3dSZNrs7VWJvVSwgiSlsZbD+R45EQv370yw0zF4eqs0yjrqTFXj2tvN4+/+RnOnL/G1dkaE2WXG6W4+UV30qIvYy3osiRTvELsDBKQd7l2rZc2A316XnzbjvXJ5YJuO9bOF7/mT67P8R/D0wx0JclYGjdKDl+bqtGTNknbOn4IWcvAD1y8IA7K8wOzBqAUhZTBQJfNd6/MMNFYF+5OGViGYqrios/bPzy/WcRAl81Yqc4dfRki4kYYEHG0J73jZiyEELKGvOu1Y70Ubq5PztW9bVufnL9uu3gdux1r54tf82eTVVKWTsnxcIOIIIzwo5CpqkfFDbB0xT0HMhwupOIgbelY837jQsDWFX4AP5us4npx44hcQkfTNHKWwS/e2cfv/cIJDnYlb/ms//qzSWquz3evTPPj6yU04L6DXa2s6oytM1nunBkLIcTKZIS8B7RjS0Uz0P9oosqVifK2rE+uVOCjHVPqi19zru6Rsw0myi6FtIXjR4QhOH5AseoxU/Vxg4j9GZOEoTFcrGObOpEfT0XvzyQIoogbcw49mRAvjI/x3cd6MXVtQVWwM+evLdqDHDAyXSNrG7z3RC/fujxN2bm5Xl2sOLx+o9Iqv7lTMuCF2MskIIsNGyqkuO9YLzMz25NZvVLQbcfa+eLXzCVMKq5PpMDQFBFxreoIRULXQEEYhlyYqPLsw4f5zsgM//nmLDlbozdrYyiFF4SYhoYfRNx7IMtwscqPrs8tKAay1Ge9XKyRsw28EJRS3LUvzX+OzPD6jRIn+zOtJhPN8pvSPUiIzidT1qLjjBSrnDl/jc++dJkz568tu5WqGSDnawbddmz5Wfyad/SmqLoBSV3HC0KiKIz/bCh0XcM0dAxdJ2PrfGdkht9++AhKxb2PJ0p13ixWuT5Xx9Tg6myNb7w+zms3yszUPMZLLldmaq3Pvvizlh2fiPgBBKCQtjk9mMcLIl69XiJrG5we6qYnY2/aVjchRHtJQBYdZaV14cVWCrq3s3a+3APB4te8e3+O/+3hwxwuJJip+WQajR2CKKJU93C9gKrrcagryY3GVHnC1HCCiJoXEkVxL2Q/CKm4IY4fxsVA3IDxskN/2moF0cWf1dQ0yo7PkXmfxzJ03nO8h7v2Zfi5o4VbKnTJerIQna1tU9b33HMPg4ODrT/fd999/Pmf/3m73k7sEuvpDbtaDeDmf5trys3gtlJQHilW+dK5K0xXfbwg4NJklQvjJZ4+Pdhai1/8879830FGilXOvjbO354bxQtCFMS9j4O4gMe+rM0rIzOcHszz3y9OkbJ0TE3heCE1PyRtaoSNMpsJS6c3Y+GEYSuILv6sd/almai4mLrWKBJyM3v+lZGZ1tR6seIyXKwyVXEppExGilWZthaiQ7UlIFcqFZRSnD17th0vL3ax9SZjrZSwtpGtT2dfG2dkukYuYTaqZYWMTNc4+9o4z7zryLLHPVRIMVNzSds6s7UQU9ewNEXVCxmdrfOxdw7x/atzvOVAjp9NVJitB8zVXTSlUECqMbq+o1GrOooipioubztkLXiP+cfd2vK1xMPIP/54jJmay8WJMkrFxUP6MvauXUuWeu1iN2hLQC6Xy+RyuXa8tNjlNjMZaz2j7aZXx+bI2UZjT2/cV5go4sdjpRXfa6RY5eXL02RtnaQZt0KseAEpU6MvbfHOoz2MzjqUnYChQoqyF3BtOg7GFTdAoai4PsWKQyFlNYqBqBXXvJd7GGmOpv/rfwzjh1BIGxwtJCmkbUp1f9ftTW5nvXYhtlJb1pDn5uYIgoBnn32Wxx9/nI997GNcunSpHW8ldpnNTMaaKDutpKemtaylLq6qtVpzCIiDvKEpdE0jmzAZKqTi/ccZm+5U/DDR/Gy2rrgwVmKq6jJb98knDZSCgXyCubrPZMUjjCI+/OChDQeUoUKKgXyS/3Kyr9HxKZ512I1rye2q1y7EVmvLCDmRSPD444/z0Y9+lKGhIZ5//nmee+45vv71r2MYN98yk7ExDH2FV9o6uq6Rz8vT9Hpt9nnL51PkcglevlRkvOTQ35XkV44f4khvZvUfXmSoL0vF9RdsH5qrewz2ZZY95rcfKfDt4WlsBbah4/gBtSDiZH+ar1+YZLxUpz+b4F3HCwuOqeSHHOvPMDxZwVRgaBohEeVawOkj3eTzKfL5FHNByN+8/CaappHSFYam46N4x9ECbhAxNlfnf7rv4C2vvxEb+fydbqnrreSH7Msn0ZRqfS2RMLkx5+zYz7nZ5P62MVt93lQURWsZACzpG9/4Bp/5zGdu+fozzzzDk08+2fpzFEWcPn2ar3zlK5w4caL19YmJlacBt1I+n9q2/bQ7WSeft/lTmfPLhq40lRkndY0yXXXxgghTVxiaIpswGcgnl32dM+evMTpT43tXZrhRcql6PkTQlTR55ueGcEO4OFHmx2OluBmEppEyNAppi7oX4AcRugZuEPLI8d5Nq7u93s+/ntfejjXbpa63ZpvJ+cscpbq/oLDKXtfJv6edrF3nra8vu+TXb2uE/Oijj/Loo4/e8vW5uTmuXLnSyrJWShGG4YLRsRDttloW9nI/8/TpAV4ZmWGyHP9MseJim/qKa9EPDeW5MF7GC0LCKMI2NJRSWDr83feucfe+DCMzNcbm6kQRJE2NihuSTRgkDY2Zus/hQpLTm1TIoxkwy3Wf67N1cgmT473pTamm1mlrtu2q1y7EVmtLhLxw4QK/+7u/y5kzZ+jt7eWrX/0q+/fvX7ANSoitsJGyoYt/5rMvXV5yLXp+5vdQIUVf2gKlyCXjEWkhZXGjVMcP4Mc34mBtGTqOF1ByQxQhrh9QcX2UUtzRG685N200+Wp+wLyjP9MKUJs1it1Islw7beTBS4hO1JaA/Pa3v52PfOQj/Pqv/zpKKfr7+/mrv/ordL0z1ouFWI+1Zn4HUURfxqIrYUJjPfPqTIQCilWPvrSFbWhca1TZytoGfhAH90NdSabrNytxuX7A965sbEq43QGzE1tvtqNeuxBbrW1zyB/5yEf4yEc+0q6XF2JDNrL2udYp0b6MzaXJCnU/bG2bMhrdnHQFKLB1PS7mQYQfRmhK42ghja7F5TAhbgxx7soMWdvY0JRwuwNmu3psC7HXSelMsWespyznfGstw/nQUJ7ulEWp7lFzfequj6lr6AoO5BLUvYCa62NokLFNoggSZjySnqw4mFpcdev1GxUUcNe+7Ia28axU43sztKNOuBBCuj2JPWSlqdzmf5cbOa9lSrSZEHb2tfFWIZF3HSlw38EsP7xW4t8vTlL3I4hgsuxg6Yr+TJIginB96M+YTJRc3CBo7B1eWIt6rSPcdic5yZqtEO0hAVnsGctN5V6cqDBWqm9K1vBQIcXjd/dTSFtMlB0KaYuDXUneebSH+w5meeG7V7k+C7mUSRhG3Ci7HO0xeehwnoF8kg+eOtjaxjPfeka4WxEwZc1WiM0nAVnsGcutfc7VPfbnEpuSBLXSlqDRWYe3D3XzvdEZejI2nh9S9wJsQ2OwO9kaAW/GCFcCphA7j6whiz1jubXPrG1sqMTmUlYq49gs5ZmxDRw/BCBhaJSdYMEI+HZaRwohdi4ZIYsl7cbuOUtN5Z7sS/G1H9/gmxcm6ElbrSYMi6eIVzsfzb8/+9oN9uVsjhZSC+pHT5Tc1gj9aCHJT8ar6EREUYShccsIWEa4Quw9MkIWt9hoNvJOMFRI8cFTB3n23Ud4aCjPudFZ+rM2phaXW/zB1TlGitUFWcOrnY9mD+VvD08zV/f52XiVb18uUqw4wM313+YI3dR1Tg12EUXx/uQ7+zIyAhZCyAhZ3KrTKjG1y/zPmbYMhotVpioeE2WH3374SOuzLnU+pqsu//U/hhnIJ7lwo8R0zac/a3OoK8HITI2JSsCr1+d420B3a/Q7f4Re8iPeeaR7V8w8CCE2hwRkcYtOrMTUDvM/ZyFtUUhbRFHERMldECQXn49ixeHSZAU/hAcGbf7lwgQR0JO2yCRMDncrxubqDE/VefcxfUGGc3MqWor9CyEWk4AsbrFXKjGt9XMu/r7LxRpKKXrSceKWoSuiCKaqLmk7/p4IQN1spNZcY744Uabk+PTmkgzmdsfavBBic8gasrjFXqnEtNbPufj7piouURRypBFID3Yl8cOIihNQcXzeLFapugFHCykqbsCXzo3ypXNXGJ2pcXW2TskJGClWuDpbW3ZtfqRY5cz5a3z2pcucOX9tV6zfCyFWJgFZ3GKvbLtZ6+dc/H09KZMTfZlWJa179mfIJgwsXTE6U0PXoD9jc8+BbGu9ebrqM1FxSZg6XUmTlG0wUXaXLIm5m5PqhBDLkylrsaS9su1mrZ9z/vc1A2ap7pOxdUxd586+NH1pm1dGpm/Z9uQGIQqFF4ZkG1PatqFTLDlLrs3vlaQ6IcRCEpCFWKel9jM/fXqQoUKKQtqi4i5cl7Z0DVDYpobT6ATl+EGrCtfiNeu9klQnhFhIArIQG7DcyHqpspfdKQuISFsGlyYrOH6IriuOdCeXbeO4F5LqhBALyRqyEJtoqXXpp08P8PTpQQbySQa6EmRtncOFNIe6ksu2cdwLSXVCiIVkhCzEJltu9Dz/ayvtQ5b2hkLsTRKQheggi2tmv/8t/RKIhdgjJCCLPa2Tmmis1Lpxu4NyJ50nIXYrCchiR2hHQFhPANyKgNSp2506+UFBiN1EkrpEx2tXoYyVehdvxfsv1uyXPN9G+zJvprWeJyHE7ZGALDpeuwLCWgPgVgWk5nan+Tphu1OnPigIsdvIlLXoeJtRKGOpKee17vfdqkIdS+1hXmqf8laTfdFCbA0ZIYuOd7sjx+WmnAe67DXt992qketQIcXpgS5+Ol7ixZ/c4KfjJU4PdG37Oq3sixZia8gIWXS82x05LpcsNTrr3LLf92RfildGZvj6T260RtK38/7rSQYbKVY5NzrLnf1ZHhjMU3YCzo3OcrArua1BWfZFC7E1JCCLjne7AWGlKeelmkYslU28kfdf6fXy+Vt/tlOzrGHvNBsRYjtJQBY7wu0EhLWuga4UED946uC633+l17vvWO8t3y9NJYTY2yQgi11vrVPOmx0QV3u9xdPZulJLPjhoCs6cvyZFOYTY5SSpS+x6SzV8WKqoxWYnb630esOT5VsSzSYqLqMz1QXJU6MzVSYqbtv3QAshtp+MkMWesJYp783edrTS6718qXjLdPZAPonjBa0Hh96MRV/axjb1jlxXFkJsLhkhC9Gw1pH0ZrzeeKm+ZLGNMIIPnjrIs+8+wgdPHSSIIinKIcQeISNkIeZZPJIeKVZva/12uZF5fzbB5Gxt1UQzKcohxN4hI2QhlrGZNaybgf2zL13mzPlrHC4k1lRsQ4pyCLF3SEAWYhmbVcN6qcD+rcvTnB7oWnV6fLOn0YUQnUumrIVYxmZtg1pqP7KvFKOzDh88dXDVn5eiHELsDTJCFmIZm7UNauluSYYkZgkhFpCALMQyNmv9dunA7ktilhBiAQnIQixjs9ZvlwrsszVJzBJCLCRryEKsYDPWb5dqjvEr9+4nb8jzsBDiJgnIQmyBxV2lXr5UZGSiJLWphRAt8oguxBa6uQXKl9rUQogFZIQsxBZqboHKJUyqNXfNtakXd4aSUbUQu4+MkIXYQktvgVq5NvVmVgwTQnQuCchCbIFm6czXbpT41uVpJstO6+9W29u8WRXDhBCdTQKyEG02f4T71gM5yo7Ht96YYqrsrGlv80ZG1UKInUfWkIVos4WlMw1OD3VzqVjj1esl3nO8h/ed6FlxPXgtHZ9kjVmInU9GyEK02eIRbiFt8Z47erl7X5YPnjq4auBcrWKYrDELsTtIQBaizW63dOZqFcNkjVmI3UGmrIVos4eG8vzjj8eAeO237AS4wGMnetb8GitVDNusrlRCiO0lI2Qh2mypEe6TDxzatDXezepKJYTYXjJCFmILLFU680cjRUqOT842ON6X2XAi1lIj8JLj8b51jMCFENvvtkbInufx6U9/mpMnTzI2Nrbg777whS/wxBNP8Nhjj/HJT34S15XpMyGaCVhXpitcna1TcgJGZ2tcna1tOBFrs7pSCSG2120F5Oeee45EInHL18+fP8/zzz/PV77yFV588UWmpqZ44YUXbuethNgVmglYN+YcEqZOV9IkYRpMlN3bSsQaKqT44KmDPPvuI2vK3BZCdJ7bCsgf//jH+cQnPnHL18+ePcv73/9+crkcmqbx1FNP8eKLL97OWwmxKzS3QJXqPnaj/WLC0Cg7gRT7EGKPu62AfOrUqSW/Pjw8zNDQUOvPg4ODvPHGG7fzVkLsCvOLfDh+CEDdD1trv5KIJcTe1ZakrlqthmXdvLEkEglqtdot35fJ2BiGfsvXt4Oua+TzMs23XnLe1ue/3Luf//a9qxzoSvBa1aPqB4RRxImeNC7wK/ful/O5ArneNkbO28Zs9XlbNSB/4xvf4DOf+cwtX3/mmWd48sknl/yZZDK5IImrVquRSt36ocrzCuxvt3w+xcyMVDZaLzlv65M3NB470cOPJqpMz9WZc3xyKYuehMFDQ3nyhibncwVyvW2MnLeNadd56+vLLvn1VQPyo48+yqOPPrquNzt27NiCKeqLFy9y4sSJdb2GELvVUCHFfcd6mTnZu92HIoToIG0pDPLEE0+0sqt93+fLX/4yH/jAB9rxVkIIIcSusOE15MnJST784Q+3/vz000+j6zpf/OIXeetb38rHPvYxPvShDxFFEQ8//DBPPfXUphywEEIIsRupKIqi7XrziYnSdr31LWSNZWPkvG2MnLeNkfO2MXLeNmar15CllrUQQgjRASQgCyGEEB1AmksIsU1GilVeGZlhouzQl7E33FxCCLE7yAhZiG0wPFnmH388RsUN6M/aVNxgw80lhBC7gwRkIbbBy5eKZG2TbMJAKUU2YdxWcwkhxM4nAVmIbTBeqpOxF5aNleYSQuxtEpCF2Ab92QRlJ1jwNWkuIcTeJgFZiG3wruMFSo5Hqe4TRRGluk/J8XhoKL/dhyaE2CYSkIXYBkd6M/zyPftJWzoTJZe0pfPL9+yXLGsh9jDZ9iTENhkqpCQACyFaZIQshBBCdAAJyEIIIUQHkIAshBBCdAAJyEIIIUQHkIAshBBCdADJshZ7hjRzEEJ0Mhkhiz1hpFiVZg5CiI4mAVnsCa+MzEgzByFER5OALPaEibIjzRyEEB1NArLYE/oytjRzEEJ0NAnIYk94aCgvzRyEEB1NArLYE4YKKWnmIIToaLLtSewZ0sxBCNHJJCALsUfIPmwhOptMWQuxB8g+bCE6nwRkIfYA2YctROeTgCzEHiD7sIXofBKQhdgDZB+2EJ1PArIQe4Dswxai80lAFmIPkH3YQnQ+2fYkxB4h+7CF6GwyQhZCCCE6gARkIYQQogNIQBZCCCE6gARkIYQQogNIQBZCCCE6gARkIYQQogNIQBZCCCE6gARkIYQQogNIQBZCCCE6gARkIYQQogOoKIqi7T4IIYQQYq+TEbIQQgjRASQgCyGEEB1AArIQQgjRAfZ8QPY8j09/+tOcPHmSsbGxBX/3hS98gSeeeILHHnuMT37yk7iuu01H2dnuueceHn/88db/fu/3fm+7D6mjfetb3+JXf/VXeeyxx/joRz96y3UnlibX2dosd0+T+9nKljpv586d4/77719w3b3wwgttO4Y93w/5ueee4957773l6+fPn+f555/n7//+78lkMjz33HO88MIL/OZv/uY2HGXnqlQqKKU4e/bsdh/KjlCtVvmd3/kd/uZv/oZ77rmHz3/+8/zRH/0Rn/vc57b70DqaXGdrt9Q9Te5nq1vqvJVKJU6fPs3nP//5LTmGPT9C/vjHP84nPvGJW75+9uxZ3v/+95PL5dA0jaeeeooXX3xxG46ws5XLZXK53HYfxo7x7W9/m8HBQe655x4Afu3Xfo2XXnqJcrm8zUfW2eQ6W7ul7mlyP1vdUuetVCqRzWa37Bj2fEA+derUkl8fHh5maGio9efBwUHeeOONrTqsHWNubo4gCHj22Wd5/PHH+djHPsalS5e2+7A61vDwMIODg60/p9Np8vk8IyMj23hUnU+us7Vb6p4m97PVLXXeSqUSw8PDfOhDH+Kxxx7jD/7gDyiVSm07hj0fkJdTq9WwLKv150QiQa1W28Yj6kyJRILHH3+c3//93+ef/umfeM973sNzzz2H7/vbfWgdqVarYdv2gq/Ztk21Wt2mI9oZ5Dq7PXI/25jBwUHe+9738rnPfY5/+Id/oFKp8Kd/+qdte789sYb8jW98g8985jO3fP2ZZ57hySefXPJnksnkgqSHWq1GKpVq2zF2upXO4R//8R+3/vwbv/Eb/OVf/iXDw8OcOHFiKw9xR0ilUjiOs+Br9XqddDq9TUe0MwwODsp1dhvkfrYxjzzyCI888kjrz8888wy/9Vu/1bb32xMB+dFHH+XRRx9d188cO3ZswZTOxYsX9/Qv/nLncG5ujitXrrSmYZVShGGIYeyJS2vdjh07xte+9rXWn4vFIrOzsxw+fHgbj6rzzc3NMTs7K9fZBsn9bGPGxsYwTZOenh4Aoihq6zUnU9bLeOKJJ3jxxReZmprC932+/OUv84EPfGC7D6vjXLhwgaeffprJyUkAvvrVr7J///4F66Tipne84x2MjY1x7tw5AL70pS/xvve9T0Yrq5Dr7PbI/Wxjzpw509oiFgQBX/rSl/j5n//5tr3fnq5lPTk5yYc//GEALl++zNDQELqu88UvfpF9+/bx/PPP87d/+7dEUcTDDz/Mpz71KXkiX8IXvvAF/u7v/g6lFP39/fzhH/4hx48f3+7D6ljf+c53+JM/+RNqtRpDQ0P82Z/9GX19fdt9WB1PrrPVrXRP++d//me5ny1jufP2+c9/nr/+67/mlVdeQdM0Tp06xac+9am2ZV7v6YAshBBCdAqZshZCCCE6gARkIYQQogNIQBZCCCE6gARkIYQQogNIQBZCCCE6gARkIYQQogNIQBZCCCE6gARkIYQQogNIQBZCCCE6wP8Prl89AVomeesAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -2174,17 +1847,17 @@ }, { "cell_type": "code", - "execution_count": 106, + "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.89705107, 0.4222884 , 0.01865691, ..., 0.61285104, 0.3037912 ,\n", - " 0.08469206])" + "array([0.04234814, 0.42735343, 0.71620506, ..., 0.77613368, 0.98830831,\n", + " 0.56861496])" ] }, - "execution_count": 106, + "execution_count": 36, "metadata": {}, "output_type": "execute_result" } @@ -2195,12 +1868,12 @@ }, { "cell_type": "code", - "execution_count": 107, + "execution_count": 37, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFkCAYAAAAXN4NlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3df3CU5b338Y8hD4sJYE6ZODLNDwlg0LUDPf6IR0EGBBN7LC1MfRJ7yplEOqblQEODZfJEgSghXS148OhxCqOF50SreTrNOJaWZjg6tlB+CQJOg+E0kBhkXEnDSciSX8a9nz9ykjYNsHvv3vfuvbvv10z/2M19ha9Xl3y4rlw/rjMMwxAAAIi4pGgXAABAoiKEAQCIEkIYAIAoIYQBAIgSQhgAgCghhAEAiJLkSP+B7e3dln6/iRNd8vn6Lf2eiYY+DB99GD760Br0Y/is7sP09ElX/VrMj4STk8dFu4SYRx+Gjz4MH31oDfoxfJHsw5gPYQAAYhUhDABAlBDCAABECSEMAECUEMIAAEQJIQwAQJQQwgAARAkhDABAlBDCAABESVAh/Pnnn+vZZ59Vbm6uvF7vFZ9pampSUVGR8vPzVVRUpKamJksLBQAg3gR1dvTKlSt1++23X/OZH/7wh1q7dq0WLVqk3/72t/rRj36kX/3qV5YUeSUVhY1j3lu7bYbSp7ps+zMBALBSUCPhf/mXf1FZWdlVv3769Gl1d3dr0aJFkqSCggJ1dHTozJkz1lT5N64UwJK0dU2zniu78tcAAHCaoEJ4zpw51/x6a2urMjIyRr2XmZmps2fPhl5ZiC56rx7SAAA4iSVXGfb29srlGj0N7HK51NPTM+bZiRNdEbmhoqKwUatrZsh9x9/Z/mfFunHjkpSWlhLtMmIafRg++tAa9GP4ItmHloRwSkqK+vtH373Y19en1NTUMc9G8p7LFyub9eXpyVpdkxuxPzMWpaWlqLNz7D+YEDz6MHz0oTXox/BZ3Ye23yeck5Oj1tZW+f1+SdLg4KBaW1s1ffp0K759WM6fGdSGYqanAQDOY0kIz5gxQ+np6dq9e7ck6a233lJGRoamTZtmxbcfw1PnNvX8QO/Q9PSbL31sSz0AAIQiYAj/+c9/VkFBgQoKCiRJy5cvV0FBgT777DM9/PDDI89t2bJFr732mh588EH98pe/1E9+8hP7qpb5IJakE/t82v70n2yoBgAA864zDMOI5B/Y3t5t6ff72Y/P6r9O9JpqM/56afWP2VM8jN8hhY8+DB99aA36MXwx9zvhaCp/9nat3TbDVJuB3qE9xadPWvsPAgAAzIj5EJak9KkueercSh5vrt3OmjZtepxFWwCA6IiLEB5WXevWrDuuN9XmctfQoi1GxQCASIurEJak4nU58tS5lWRyB/TOmjYWbQEAIiruQnhYzetu3Zhp7j+v5dQAR14CACImbkNYksq33KrFhVNMt6sobFT7p5E72QsAkJjiOoQl6YFlN8lT51bqDebabV3TrHfqr3x3MgAAVoj7EB62fodbX55u7hfFe+s69PwTH9lUEQAg0SVMCEvS6ppcLSu9yVSbC+f8qihsZFQMALBcQoWwJN29cIo8dW6NN7eTiVExAMByCRfCw57Z5da9D5n7RfGFc35VrWD1NADAGgkbwpK0pDhDa7fNMLWnuM83tHr67V2f2FcYACAhJHQIS0NHXta8bn719IE9XXqujFExACB0CR/Cw9bvcGvabeYOn77oFYd7AABCRgj/ldKNM0O6CILV0wCAUBDCV1BdG9qe4g3FjIoBAMEjhK9idU2uSiqzTLUZ6GVUDAAIHiF8DbmzJ8lT59Zkk8dP763rYNEWACAgQjgIlS+HtmiL6WkAwLUQwkEq3TjT9JGXTE8DAK6FEDZh+MjLUBZtcdIWAOBvEcIhWF2Tq1l3mDt8evikrSPvdthUFQAg1hDCISpel6O122boOnODYtVv9zI9DQCQRAiHJX2qSz9+3fxFEHvrOrTpcaanASDREcIWWFKcYXrR1uUujrwEgERHCFsk1HuKuZEJABIXIWyxZ3a5NWfeRFNtDuzpYk8xACQgQtgGRauyQz7yklExACQOQtgmoR55eWBPl2pWMioGgERACNus8mXz09OXOqSnlhPEABDvCOEIKFqVrbXbZijJxJ7iwYGh6eldz521rzAAQFQRwhGSPtWlmtfdpk/aajrWy/Q0AMQpQjjCitflmN5TfKljaFTc/mm/TVUBAKKBEI6C4T3FN2aa6/6ta5r15ksf21QVACDSCOEoKt9yq+lFWyf2+fRcGdPTABAPCOEoG95TnPy/gm9z0Ts0PX36ZLd9hQEAbEcIO0Du7Emqfs38VqadNW0EMQDEMELYQYpWZZu+kWlnTRvbmAAgRhHCDrOkOENrt80w1abpWK8qChu5pxgAYgwh7EDpU13y1JnfU7y3rkPbn/6TTVUBAKxGCDtY8bqcoYsgTPy/1HJqQBWFjTrybod9hQEALEEIO1zu7EnyvGH+Ioj67V5GxQDgcIRwjKh82fz0dMupAVWtYE8xADgVIRxDQjnyss/HPcUA4FSEcIwZPvIy1dxOJh3Y06UNxYyKAcBJCOEYtX6H+bOnB3q5pxgAnIQQjmHlW27V4sIp0nXBtxkckJ5czo1MAOAEhHCMe2DZTfK8aW7R1hcDQzcysY0JAKKLEI4TxetyTK+ert/uVXVpoz4732tTVQCAawkqhA8ePKilS5cqPz9fJSUl8nrHHo/43nvv6Rvf+IYKCgpUVFSkDz/80PJicW3F63LkqXOb+qeVr1Pa+Ngf2VMMAFEQ8Md1T0+PysvLVV1drYaGBs2dO1dVVVWjnrl06ZLWrl2rZ599Vr/97W+1cuVKrV692q6aEYDnDbcmmLuQSS2nBlSzkkVbABBJAUP40KFDyszMlNvtliQVFRVp//798vl8I8+cO3dO119/vWbNmiVJuueee+T1enXp0iWbykYgVa+6Ne228abaXOrgnmIAiKSAIdza2qrMzMyR16mpqUpLS1NbW9vIe9OnT1dSUpIOHjwoSWpoaNDtt9+uyZMn21AyglW6caY8deZHxTtr2riRCQAiIDnQA729vXK5XKPec7lc6unpGXk9YcIEbdq0SaWlpZowYYL8fr9eeeWVK36/iRNdSk4eF2bZfzFuXJLS0lIs+37xaNsv79KPy07q46aBoNvsrevQf53s1v95YbaNlcUPPofhow+tQT+GL5J9GDCEU1JS1N8/ek9pX1+fUlNTR15/9tlnevLJJ/WLX/xCubm5Onz4sFatWqWGhoZRz0mSz2ft/tS0tBR1dvYEfjDBff/pmTp9sls7a9oCP/w/Pm4a0Pfy39fiwil6YJm54zITDZ/D8NGH1qAfw2d1H6anT7rq1wJOR+fk5KilpWXk9cWLF9XV1aXs7OyR944fP66MjAzl5uZKkvLy8pSUlKQzZ86EUzcsljt70tDqaZP21nVw5CUA2CBgCOfl5cnr9ero0aOSpNraWi1YsEApKX8Zqt98881qbm7WJ58MXRLQ2Nio7u5uZWVl2VQ2wuGpM3814kDv0KItAIB1rjMMwwj00OHDh7V582b19vYqKytLHo9Hfr9fK1as0O7duyVJb7zxhv7jP/5Dfr9f48ePV1lZmRYtWjTme7W3W7vylqmX0B15t0P1280vwCqpzFLu7KtPryQiPofhow+tQT+GL5LT0UGFsJUIYed5oeK0Pm0ZNNVm2m3jVbpxpk0VxR4+h+GjD61BP4bPUb8TRvzb+NOvDl0EYULLqQH2FANAmAhhSBq6CGLtthmm27GnGABCRwhjRPpUV0iHe+yt69Cu587aUxQAxDFCGGNUverWnHnmkrjpWK8qChu5HhEATCCEcUVFq7LlqTN//nT9di8XQQBAkAhhXFPpxpm696EbTLW51CFVPEoQA0AghDACWlKcoWWlJo+t9A8d7vH2rk/sKQoA4gAhjKDcvXCKPHVupZobFOvAni69WHnanqIAIMYRwjBl/Q7zvyc+f2ZQFY82qv1Tay/vAIBYRwjDtNKNM00f7iG/tHVNs9586WN7igKAGEQIIyQPLLtJnjq3Zt1xval2J/b59PwTH9lUFQDEFkIYYSlel2N60daFc36mpwFAhDAsMLxoy9RJW/8zPc3qaQCJjBCGZapedZveU3xgTxdHXgJIWIQwLLWkOMP0RRDDR14yKgaQaAhhWG74Iojx5tZs6cCeLm16nJO2ACQOQhi2eWaX+enpy11DJ20BQCIghGGrJcUZ8tS5TX/SmJ4GkAgIYUSE5w23vmTy+OkDe7q0oZhRMYD4RQgjYta94Da9p3igd2hUfPpkt01VAUD0EMKIqOE9xWbtrGnTc2WMigHEF0IYUeGpc+vGTHMfv4te7ikGEF8IYURN+ZZbQ7oIoqKwUe/Ue+0pCgAiiBBGVA1fBDHZZBbvretgehpAzCOE4QiVL7s1Z56Zw6eHpqdrVhLEAGIXIQzHKFqVbXrR1qWOoelpzp8GEIsIYThOKEdeNh3rZdEWgJhDCMORntllfnp6eNHWkXc77CkKACxGCMOxilZlq6Qyy3S7+u1evVh52oaKAMBahDAcLXf2pJD2FJ8/M6inljM9DcDZCGHEhPItt5o+8nJwgCMvATgbIYyYMXzkZfJ4c+121rTpzZc+tqcoAAgDIYyYU11rfnr6xD4fq6cBOA4hjJgUyvT08Opp7ikG4BSEMGJWqDcyHdjTxUlbAByBEEbMC2X19PBJW+2f9ttUFQAERggjLoQ0PS1p65pmbX/6TzZUBACBEcKIG8PT02ZHxS2nBpieBhAVhDDiTiij4uHpafYUA4gkQhhxKdRFWztr2pieBhAxhDDiWqjT0xWFTE8DsB8hjLhXvuVW3fvQDabbcSMTALsRwkgIS4ozQrqnuH67l+lpALYhhJFQntnl1pdM7mRqOTWgyn9iehqA9QhhJJx1L7i1uHCKqTb+QY68BGA9QhgJ6YFlN4V85CWLtgBYhRBGQvPUuTVn3kTT7SoKG/VOvdeGigAkEkIYCa9oVbZKKrNMt9tb16EXK0/bUBGAREEIA5JyZ0+Sp86tpGRz7c6fGWR6GkDIggrhgwcPaunSpcrPz1dJSYm83rHTcD6fT2VlZZo/f74WL16shoYGy4sF7FbzulvTbhtvut338t9n0RYA0wKGcE9Pj8rLy1VdXa2GhgbNnTtXVVVVY57zeDxKT0/Xe++9p5/+9Kd67bXXNDg4aEfNgK1KN84MedEWW5kAmBEwhA8dOqTMzEy53UM/lIqKirR//375fL6RZwYGBvTrX/9a3//+93Xddddp+vTpqq2tVXKyybk9wEE8dW5NNreTaWQrEwAEI2AIt7a2KjMzc+R1amqq0tLS1NbWNuoZl8ul+vp6fe1rX9O3vvUtHThwwJ6KgQiqfNkd0j3FFYWNnLQFIKCAIdzb2yuXyzXqPZfLpZ6enpHXly5dUnd3t1wul37zm9+orKxMP/jBD9TZ2Wl9xUCEDd/IZHbRFhdBAAgk4I+VlJQU9ff3j3qvr69PqampI68nTZqkL774Qo8++qgkad68eZo6dapOnjyp+fPnj2o7caJLycnjrKhdkjRuXJLS0lIs+36JiD4Mzsu/vksvP/2RPjzgC/zwX6kobNTqmhly3/F3NlUWH/gcWoN+DF8k+zBgCOfk5OhXv/rVyOuLFy+qq6tL2dnZI+9NnTpVSUlJunz5stLS0iRJ48aNU1LS2IG2z9c/5r1wpKWlqLOzJ/CDuCr6MHjfLsvW4v/dr61rmk21e7GyWTdmJql8y602VRb7+Bxag34Mn9V9mJ4+6apfCzgdnZeXJ6/Xq6NHj0qSamtrtWDBAqWk/OVfCZMnT9bChQv1s5/9TJJ08uRJnT9/Xl/5ylfCrR1wnPSpLnnqzF8EceGcXxWPMj0N4C+uMwzDCPTQ4cOHtXnzZvX29iorK0sej0d+v18rVqzQ7t27JUmdnZ1au3atWlpaNHHiRK1bt05z584d873a27st/Q/gX33how9Dd+TdDtVvN3985Zx5E1W0KjvwgwmEz6E16MfwRXIkHFQIW4kQdh76MHyhLMBKHi9V15rfjxyv+Bxag34Mn6OmowEE9tOGu5Rs8qCtwQH2FAOJjhAGLFJda/6eYmkoiN986WMbKgLgdIQwYKFQ7yk+sc/HqBhIQIQwYANPnVupN5hvRxADiYUQBmyyfkfoR14yPQ0kBkIYsNHwkZdmMT0NJAZCGIgAT51bEyaab1dR2Kj2T609ZQ6AcxDCQIRUvRra9PTWNc16roxRMRCPCGEggoanp83uKb7oZdEWEI8IYSAKqmvdmjPP/Px0RWGjjrzbYUNFAKKBEAaipGhVdkiLtuq3e7WhmFExEA8IYSDKPHVuTTZ50NZAL9PTQDwghAEHqHzZrXsfMn+6B3uKgdhGCAMOsaQ4gz3FQIIhhAGH4chLIHEQwoADrd/hVklllul2FYWNLNoCYgghDDhU7uxJIU1Ps2gLiB2EMOBwoRzuIQ0F8du7PrG+IACWIYSBGFBd6w5pVHxgT5eqVjAqBpyKEAZiSChB3OdjehpwKkIYiDGeOu4pBuIFIQzEoHDuKX5qOaNiwCkIYSCGhRLEgwNMTwNOQQgDMc5TF/qNTM8/8ZENFQEIFiEMxIFQb2S6cM7PqBiIIkIYiCPh7CnmnmIg8ghhIM5U17q1dtsM0+3qt3vZUwxEGCEMxKH0qS72FAMxgBAG4pinzq1pt5mfn64obNQ79V4bKgLw1whhIM6VbpwZ0qh4b12HKh5lVAzYiRAGEkQoQSw/09OAnQhhIIEwPQ04CyEMJJiwpqcZFQOWIoSBBOWpc2uC+YO2VFHYqPZP+60vCEhAhDCQwKpedWtx4RTT7bauaebIS8AChDCQ4B5YdhNHXgJRQggDkBTePcUAQkMIAxgR6j3FFYWN2v70n2yoCIhvhDCAMUIJ4pZTA4yKAZMIYQBXFM49xadPdttQERB/CGEAVxXqPcU7a9r0XBmjYiAQQhhAQKHsKb7oZU8xEAghDCAoVa+6VVKZZbrd1jXNjIqBqyCEAQQtd/akkKanh0fFAEYjhAGYFs6RlyzaAv6CEAYQkqpX3SEv2tr13FkbKgJiDyEMICyhjIqbjvVq0+NMTwOEMICwVb3q1r0P3WCqzeWuoenpI+922FQV4HyEMABLLCnOCGl6un67l9XTSFhBhfDBgwe1dOlS5efnq6SkRF6v96rPNjU16bbbbtPhw4ctKxJA7PDUuZVqblCsi17pew+9b09BgIMFDOGenh6Vl5erurpaDQ0Nmjt3rqqqqq74rN/vV1VVldLT062uE0AMWb/DrbXbZphr5Gd6GoknYAgfOnRImZmZcruHppmKioq0f/9++Xy+Mc++8cYbmjVrlrKyzG/oBxBf0qe6Qp6efmo509NIDAFDuLW1VZmZmSOvU1NTlZaWpra2tlHPtbe3q7a2VuXl5dZXCSBmeercujHT3PKTwQGOvERiCPg3o7e3Vy6Xa9R7LpdLPT09o96rqanRypUrNXnyZGsrBBDzyrfcGtKoeOuaZr350sc2VAQ4Q3KgB1JSUtTfP/pfo319fUpNTR15vW/fPnV2dmrJkiUB/8CJE11KTh4XQqlXNm5cktLSUiz7fomIPgwffRicnzbcpe/lm1uAdWKfT62nG+WpvcumquILn8XwRbIPrzMMw7jWA7/73e/0wgsvqL6+XpJ08eJF3X///Tpy5IhSUoaK3LBhgxoaGpScPJTpXV1dSklJUWVlpb75zW+O+n7t7dYeWZeWlqLOzp7AD+Kq6MPw0Yfm7HrurJqO9Zput7hwih5YdpMNFcUPPovhs7oP09MnXfVrAUO4r69PCxcu1L/927/pzjvv1AsvvKDm5ma9+OKLV22zfPlyrVq1Snl5eWO+Rgg7D30YPvowNKFc6jBh4tDhILgyPovhi2QIB/yd8IQJE/Sv//qveuaZZ7R48WJ9+OGH2rBhgz777DM9/PDDlhUJIPF46twaf725Nn0+qeJRVk8jPgQcCVuNkbDz0Ifhow/Dc/pkt3bWtAV+8G8sK71Jdy+cYkNFsYvPYvgcNRIGALvlzp6knzbcZfoiiPrtXtWsZFSM2EUIA3CMqlfd+pLJdVeXOkL73TLgBIQwAEdZ94Jby0rNr4CuKGzUO/VXP9cecCJCGIDj3L1wSkiLtvbWdej5Jz6ypyjABoQwAMd6Zpdbc+aZ+0XxhXN+Vk8jZhDCABytaFV2yDcyceQlnI4QBuB4IzcymfyJdWKfT5X/xKgYzkUIA4gZnjfcmnbbeFNt/INDo+LTJ609owCwAiEMIKaUbpwZ0o1MO2vatP3pP9lQERA6QhhATPLUuTXZ5GFZLacG9FwZ09NwDkIYQMyqfNn8nuKLXvYUwzkIYQAxbXhPcVLA29FH21vXoaoVjIoRXYQwgLhQ87pb9z50g6k2fb6hUXH7p/02VQVcGyEMIG4sKc4wv6dY0tY1zSzaQlQQwgDiyvCe4mRzO5nUcmqAiyAQcYQwgLhUXWt+elpiehqRRQgDiFtLijNCOmlr65pmbXqcUTHsRwgDiHuhnLR1uYt7imE/QhhAQijdODOkRVsVhY16e9cnNlQEEMIAEsjIRRAmHdjTpaeWMyqG9QhhAAnHU+fWjZnmfvwNDjA9DesRwgASUvmWW0NatMU9xbASIQwgoXnecCvV5E6mE/t82lDMqBjhI4QBJLz1O9yadcf1ptoM9DI9jfARwgAgqXhdTsjT06yeRqgIYQD4K6FMTx/Y08X0NEJCCAPA31i/w/w9xcPT00fe7bCpKsQjQhgArmD4nmKzF0HUb/dyIxOCRggDwDVU15pftNVyaoDDPRAUQhgAAihel6OSyixTbYYP92B6GtdCCANAEHJnTwpp9XT9dq+ef+Ije4pCzCOEAcAEzxtuzZk30VSbC+f83FOMKyKEAcCkolXZId9T/E69156iEJMIYQAIUSh7ivfWdahmJYu2MIQQBoAwrN/h1r0PmUviSx1iehqSCGEACNuS4oyQ7ineuqaZG5kSHCEMABYJ5XCPE/t8HO6RwAhhALBQda356emWUwOqeJQ9xYmIEAYAiw1PT5tatOUf2lO867mzttUF5yGEAcAm63e4tbhwiqk2Tcd69eOVp1i0lSAIYQCw0QPLbjK9p7irw9DWHzbr9Mlu+wqDIxDCABABnjfc+vL05OAbGNLOmja9WHnavqIQdYQwAETI6ppc09PT588MqqKwkVFxnCKEASCCHlh2k9Zum6EkE4NiaWhUzJGX8YcQBoAIS5/qUs3r5vcU763rYE9xnCGEASBKqmvdujHT3I/h4T3FTE/HB0IYAKKofMut8tS59aWbTDTyD01PMyqOfYQwADjAuhfcmnXH9abatJwa0FPLuZEplhHCAOAQxetyTB95OTgwdCMTR17GJkIYABxk+MhLs6un67d7taGYUXGsCSqEDx48qKVLlyo/P18lJSXyescukz927JgeeeQRPfTQQ1q2bJnef/99y4sFgERR87r5iyAGeqXv5b/Poq0YEjCEe3p6VF5erurqajU0NGju3Lmqqqoa9czAwIBWrlyptWvXas+ePSorK1N5ebldNQNAQhgeFY8396ti7axp09u7PrGnKFgqYAgfOnRImZmZcruHLqwuKirS/v375fP5Rp75/PPPtWnTJt1zzz2SpDvuuEMXLlzQpUuXbCobABLHM7tM3sgk6cCeLj3/xEf2FATLBAzh1tZWZWZmjrxOTU1VWlqa2traRr334IMPjrz+/e9/r5tvvlmTJ0+2uFwASEzrd5ifnr5wzq+KRxu5kcnBAv7qv7e3Vy6Xa9R7LpdLPT09V3y+qalJNTU12rp16xW/PnGiS8nJ40Io9crGjUtSWlqKZd8vEdGH4aMPw0cfBvbPa27RP6+RnnrsmP583h9cI7+0dU2zlpTcpK8VZQZ+HhH9LAYM4ZSUFPX3j/5XVF9fn1JTU8c8+8EHH2jNmjXavHmz8vLyrvj9fD5r/0WWlpaizs4r/4MAwaEPw0cfho8+DN4Tz9+qFytP6/yZwaDbvL3Tq/17vFr3gtvGyuKD1Z/F9PRJV/1awOnonJwctbS0jLy+ePGiurq6lJ2dPeq5pqYmlZWV6fnnn9f8+fPDKBcAEMjqmlwtKzVzzJZ00Tu0p5iLIJwjYAjn5eXJ6/Xq6NGjkqTa2lotWLBAKSl/GaobhqGKigpt3LhRd955p33VAgBG3L1wijx1XAQRy64zDMMI9NDhw4e1efNm9fb2KisrSx6PR36/XytWrNDu3bt1/Phxffvb3x4zOt66devIquph7e3W7l9jCit89GH46MPw0Yfh2fXcWTUd6zXVJvWGoQVfGC2S09FBhbCVCGHnoQ/DRx+Gjz60hmd1ozovmGtTUpml3NlXD4pE46jfCQMAYoen9i7NmTfRVJudNW3sKY4SQhgA4kzRqmzTi7YunPOropCzpyONEAaAOHT3wilau22G6XYVhY1686WPbagIV0IIA0CcSp/qkqfOrRszzf2oP7HPxz3FEUIIA0CcK99yq+np6cEBcTViBBDCAJAAhvcUmzHQOzQ9zY1M9iGEASCBeOrcmnabudM9Duzp0qbHGRXbgRAGgARTunGm6UVbl7s48tIOhDAAJKDhRVuTp5hrt7eugz3FFiKEASCBVb5sfnr6wjm/Xqw8bVNFiYUQBoAEV7pxpkoqs0y1OX9mUBuKG9X+qbXX0yYaQhgAoNzZk+Spc2uCiRMvB3qlrWuamZ4OAyEMABhR9apbiwvN/aJ4+MjL0yetvaAnERDCAIBRHlh2k+lRsTR0EcSu587aU1ScIoQBAFdU9ar5Iy+bjvVyEYQJhDAA4KrKt9yqksosXTfOXLuKwkYdebfDnqLiCCEMALim3NmT9OOfm5+ert/u1fan/2RPUXGCEAYABKXqVbfmzDOXxC2nBlg9fQ2EMAAgaEWrsrV22wwlJQffZnj1NIu2xiKEAQCmpE91qeZ1t2bdcb2pdk3Herke8W8QwgCAkBSvyzF9T/Hw9YictDWEEAYAhCyUe4qloZO23nzpYxsqii2EMAAgbJ46t1JvMNfmxD6falYm9vQ0IQwAsMT6HTVSg0cAAApiSURBVOaPvLzUIW16PHGDmBAGAFhm+MhLM6Piy11K2NXThDAAwHLrd7j1JXNrthJy9TQhDACwxboXzE9PD6+eTpQjLwlhAIBthqenze4pTpQjLwlhAIDtitflaO22GRo/Ifg2LacG4n7RFiEMAIiI9KkuPfN/3aaOvBxetBWvh3sQwgCAiKp53VwQS0OHe7y96xN7CooiQhgAEHE1r5u/kenAni49tbxRp09221RV5BHCAICoKFqVLU+dW1+eHvyweHBA2lnTFjdHXhLCAICoWl2Tq2m3jTfV5sQ+n6pWxP6iLUIYABB1pRtnqqQyy1SbPt/Qoq1Y3spECAMAHCF39iR56swv2mo5NaCnlsfmqJgQBgA4SiiLtgYHpIpHYy+ICWEAgOMUrcrW2m0zNM7Mr4r9Q9PT79R7bavLaoQwAMCR0qe6tLnWbXrR1t66Dj3/xEc2VWUtQhgA4GihLNq6cM6vikLn7ykmhAEAjpc7e5LWbpuhZHODYsfvKSaEAQAxIX2qS9W15hdtndjnc+z0NCEMAIgpw4u2zBiennba+dOEMAAg5qRPdYW0p/jAni5HnbRFCAMAYlbN6+ZXTw+ftOUEhDAAIKaVbpypZaU3mW5XUdgY9UVbhDAAIObdvXCKPHVu06l2Yp9PG4qjNyomhAEAccPzhvnp6YHe6E1PE8IAgLgSyuEeUnRuZAoqhA8ePKilS5cqPz9fJSUl8nrHnsvZ1NSkoqIi5efnq6ioSE1NTZYXCwBAMIZvZJp1x/Wm2rWcGtD38t+3qaqxAoZwT0+PysvLVV1drYaGBs2dO1dVVVVjnvvhD3+o7373u2poaFBxcbF+9KMf2VEvAABBK16XE/KoOBK3MgUM4UOHDikzM1Nut1uSVFRUpP3798vn8408c/r0aXV3d2vRokWSpIKCAnV0dOjMmTM2lQ0AQHCGR8Wm+e2/HjFgCLe2tiozM3PkdWpqqtLS0tTW1jbqmYyMjFHtMjMzdfbsWQtLBQAgdJ46t1JvMNnIb0spIwKeNdLb2yuXyzXqPZfLpZ6eHlPPDJs40aXk5HGh1jvGuHFJSktLsez7JSL6MHz0YfjoQ2vQj9e29f/dpd+8eU5v7wz+zmE7+zNgCKekpKi/v3/Ue319fUpNTTX1zDCfr3/Me+FIS0tRZ+fYsEfw6MPw0Yfhow+tQT8Gdm/BFN1bMCXobUnh9md6+qSrfi3gdHROTo5aWlpGXl+8eFFdXV3Kzs4e9Uxra6v8/qFx++DgoFpbWzV9+vRw6gYAwDZBTU/bvJE34LfPy8uT1+vV0aNHJUm1tbVasGCBUlL+MjyfMWOG0tPTtXv3bknSW2+9pYyMDE2bNs2msgEACN/6HW4tLpxy5S8mDR3+YafrDMMwAj10+PBhbd68Wb29vcrKypLH45Hf79eKFStGgvf06dNav369Ojs7NWXKFFVXV19xJNze3m3pfwBTL+GjD8NHH4aPPrQG/Rg+q/vwWtPRQYWwlQhh56EPw0cfho8+tAb9GL5IhjDHVgIAECWEMAAAUUIIAwAQJYQwAABRQggDABAlhDAAAFFCCAMAECWEMAAAUUIIAwAQJRE/MQsAAAxhJAwAQJQQwgAARAkhDABAlMRECB88eFBLly5Vfn6+SkpK5PV6xzzT1NSkoqIi5efnq6ioSE1NTVGo1LmC6cNjx47pkUce0UMPPaRly5bp/fffj0KlzhVMHw5ramrSbbfdpsOHD0ewQucLpg99Pp/Kyso0f/58LV68WA0NDVGo1NmC6cf33ntP3/jGN1RQUKCioiJ9+OGHUajUuT7//HM9++yzys3Nverf5YjkiuFwly9fNu655x7jj3/8o2EYhvHKK68YpaWlY54rKCgw9u7daxiGYezZs8d4+OGHI1qnkwXTh/39/cbdd99tHDx40DAMw3jvvfeMuXPnRrxWpwr2c2gYhvHFF18YhYWFxv33328cOnQokmU6WrB9+OSTTxqbNm0y/H6/0dzcbHznO98xPv/880iX61jB9GNXV5fx93//98ZHH31kGIZh/O53vzPuv//+iNfqZN/97neNbdu2Gbfccovx6aefXvGZSOSK40P4nXfeMR555JGR1z6fz3C73UZ3d/fIe01NTcZ99903qt0//MM/GM3NzRGr08mC6UOfz2c0NDSMvO7u7jZuueUWo6urK6K1OlUwfTjstddeMzZu3Gh85zvfIYT/SjB92N/fb8yZM8f485//HI0SY0Iw/fjHP/5x1M/E/v5+/j7/jePHjxuGYVw1hCOVK46fjm5tbVVmZubI69TUVKWlpamtrW3UMxkZGaPaZWZm6uzZsxGr08mC6cPU1FQ9+OCDI69///vf6+abb9bkyZMjWqtTBdOHktTe3q7a2lqVl5dHukTHC/bvssvlUn19vb72ta/pW9/6lg4cOBCNch0rmH6cPn26kpKSdPDgQUlSQ0ODbr/9dv4+/5U5c+Zc8+uRypVkS7+bDXp7e+VyuUa953K51NPTY+qZRGa2f5qamlRTU6OtW7dGoryYEGwf1tTUaOXKlfywu4Jg+vDSpUvq7u6Wy+XSb37zG+3bt08/+MEP9J//+Z9KS0uLdMmOFEw/TpgwQZs2bVJpaakmTJggv9+vV155JdKlxrRI5YrjR8IpKSnq7+8f9V5fX59SU1NNPZPIzPTPBx98oMcff1ybN29WXl5epEp0vGD6cN++fers7NSSJUsiXV5MCKYPJ02apC+++EKPPvqoJGnevHmaOnWqTp48GdFanSyYfvzss8/05JNP6he/+IWOHDmif//3f9eqVat0+fLlSJcbsyKVK44P4ZycHLW0tIy8vnjxorq6upSdnT3qmdbWVvn9fknS4OCgWltbNX369IjX60TB9KE0NAIuKyvT888/r/nz50e6TEcLpg/37t2rU6dO6b777tN9992n48ePa/Xq1XrrrbeiUbLjBNOHU6dOVVJS0qiwGDdunJKSHP+jKmKC6cfjx48rIyNDubm5kqS8vDwlJSXpzJkzEa83VkUqVxz/yc7Ly5PX69XRo0clSbW1tVqwYIFSUlJGnpkxY4bS09O1e/duSdJbb72ljIwMTZs2LSo1O00wfWgYhioqKrRx40bdeeed0SrVsYLpw2eeeUaHDx/WH/7wB/3hD3/QV7/6Vb344ov65je/Ga2yHSWYPpw8ebIWLlyon/3sZ5KkkydP6vz58/rKV74SlZqdKJh+vPnmm9Xc3KxPPvlEktTY2Kju7m5lZWVFpeZYFLFcsXSZl00OHTpkfP3rXzcWLVpkPPbYY8aFCxcMr9dr/OM//uPIM01NTcYjjzxiLF682CgqKmJl9N8I1IcffPCBMWvWLCM/P3/U/4a3QSC4z+FfY3X0WMH04X//938bjz32mLFgwQLj61//urFv374oVuxMwfTjz3/+c6OgoMB48MEHjYcffnhkqw0Mo729feRn3C233GIsWrTIyM/Pj0qucIEDAABR4vjpaAAA4hUhDABAlBDCAABECSEMAECUEMIAAEQJIQwAQJQQwgAARAkhDABAlBDCAABEyf8HuFXVY/g4Ru0AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeEAAAFkCAYAAAAXN4NlAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3df3CUVZ7v8Y8hRWMCmCs3U1AmQQJj0HYKdlXijjAUvwzOKjOkxkocx6pEvOKyMGHCDJuJg0SBvi0jjK4uVywV7kYHc61NWcoOm2K1HMPwQ0DAMhjGADFA2RKTJaTJD4z93D+ynZkYQvfT3U/3093vV9X80d3Pab6e6eSTc/o851xjGIYhAAAQdSmxLgAAgGRFCAMAECOEMAAAMUIIAwAQI4QwAAAxQggDABAjqdH+B1tbOyP6fqNHO+T19kb0PZMNfRg++jB89GFk0I/hi3QfZmaOGfa1uB8Jp6aOiHUJcY8+DB99GD76MDLox/BFsw/jPoQBAIhXhDAAADFCCAMAECOEMAAAMUIIAwAQI4QwAAAxQggDABAjhDAAADFCCAMAECNBhfDXX3+tp59+Wnl5efJ4PFe8prGxUcXFxSooKFBxcbEaGxsjWigAAIkmqL2jly1bpltvvfWq1/ziF7/QqlWrNH/+fP3Hf/yHfvWrX+mdd96JSJFXUlHUMOS50soc5U0bfo9OAADsJKiR8D/+4z+qrKxs2NdPnDihzs5OzZ8/X5K0cOFCtbW16eTJk5Gp8luuFMCStM3VIteyK78GAIDdBBXC06dPv+rrzc3NysrKGvRcdna2Tp06FXplIbrYNnxIAwBgJxE5yrC7u1sOh2PQcw6HQ11dXUOuHT3aEZUTKiqKGrTCNUXO2/6H5f9WvBsxIkUZGWmxLiOu0Yfhow8jg34MXzT7MCIhnJaWpt7ewWcv9vT0KD09fci10Tzn8vnKJt0wOVUrXHlR+zfjUUZGmi5cGPoHE4JHH4aPPowM+jF8ke5Dy88Tzs3NVXNzs3w+nySpr69Pzc3Nmjx5ciTePiznTvYxPQ0AsKWIhPCUKVOUmZmpnTt3SpLeeustZWVladKkSZF4+yHcNU7TbSqKGvThe20WVAMAQGgChvBXX32lhQsXauHChZKkhx56SAsXLtSXX36pe++9d+C6Z555Rq+99pruvvtu/du//Zt++9vfWle1Qgvi2q0ebf7lpxZUAwCAedcYhmFE8x9sbe2M6Pu9+r9P6c9Hu023CyXEExXfIYWPPgwffRgZ9GP44u474Vgqf/pWlVbmmG5XUdSgN1743IKKAAAITtyHsCTlTRsT0sj2aL1XVUtYtAUAiI2ECGE/d41Tk24ZaapNj5fNPQAAsZFQISxJS9d+V+4ap1JM3gHN6mkAQLQlXAj7uV53Kv06c21qt3qYngYARE3ChrAkrXnJqemzRptq45+eZlQMALBaQoewJBUvn9i/aMvkf2ntVg+rpwEAlkr4EPZz73Bq7DhzbY7We7X1yc+sKQgAkPSSJoQlqXKLU4VLx5tqc/r4ZVUUNejdWo9FVQEAklVShbAkzZg7Tu4ap1LN3cmk3TVtbHkJAIiopAthv/XVTn3/HnPLp8+f8amiqEEnjkV2600AQHJK2hCWpEUlWSGNire5Wlg9DQAIW1KHsN/6aqe+k22uK2q3ehgRAwDCQgj/t/JnbtaCInPLp7e5WlT5INPTAIDQEMJ/ZV7heLlrzN3K5OvrD+O3t5+1rjAAQEIihK+gcotTU2+71lSbvbs69HzlCYsqAgAkIkJ4GCWrc02fU3zuZB/3FAMAgkYIX4X/nOIbJps7kml3TRujYgBAQIRwEFa48kwv2jp3sk9PlHAiEwBgeIRwkOYVju+fnjbRY5e7xfQ0AGBYhLAJedPGyL3D/E5bu2vatLGMUTEAYDBCOASLSrJML9pq93BOMQBgMEI4RP5FW2bVbvVwTzEAQBIhHDZ3jVPXmzsdkXuKAQCSCOGIWP2cM+R7ilu/6LWoKgCA3RHCEeKfnh5pbqMtbVrZxPQ0ACQpQjjCntru1PRZo0212burQ+seZfU0ACQbQtgCxcsnatWzU0y1udQhpqcBIMkQwhbJnOCQu8apdHO3FGvTyiZt33jKmqIAALZCCFtszUvmN/doPNzN9DQAJAFCOAoWlWTJXePUKBNfFfunp9944XPrCgMAxBQhHEVVr5hftHW03sv0NAAkKEI4yoqXTzR9T3Hj4W5t/uWnFlUEAIgVQjgG/PcUp44Mvs35Mz5OZAKABEMIx9D6aqe+k23u/wJOZAKAxEEIx1j5MzertDJHI1KDb+M/kenEsU7rCgMAWI4QtoG8aWO04XWnbphsIoklbXO18F0xAMQxQthGVrjytKBonKk258/4uKcYAOIUIWwz8wrHh7zl5YfvtVlUFQDACoSwDfm3vDR7TnHtVg/T0wAQRwhhGwvlnOLzZ3yqWsJBEAAQDwhhmwvlnuIeLwdBAEA8IITjxPpq86unGw93q2oJi7YAwK4I4TiywpWnVc9O0QiTo2LOKQYAeyKE40zmBIc2VDuVYm5QrE0rm/T29rPWFAUACAkhHKdcr5tfPb13V4cqHmB6GgDsghCOY6GsnpaPc4oBwC4I4TjnXz2dfp25dkfrvRwEAQAxRggniDUvOVW41Nz8dLtHBDEAxFBQIbxv3z4tXrxYBQUFKi0tlccz9Ezb999/Xz/60Y+0cOFCFRcX6+OPP454sbi6GXPHmR4Vt3uk5fcd5EQmAIiBawzDMK52QVdXl+bNm6eXX35ZTqdTr7zyig4ePKgXX3xx4JqLFy9qzpw5ev311zV16lR98MEHWrNmjf74xz8Oeb/W1sj+ss/ISNOFC10Rfc9E8Pb2s9q7q8NUm/Tr+kfUMI/PYfjow8igH8MX6T7MzBwz7GsBR8L79+9Xdna2nM7+X87FxcXas2ePvF7vwDVnzpzRtddeq6lTp0qS7rzzTnk8Hl28eDHc2hGiRSVZIR8EwagYAKIjYAg3NzcrOzt74HF6eroyMjLU0tIy8NzkyZOVkpKiffv2SZLq6up06623auzYsRaUjGD5D4Iwu2hrm6uFLS8BIAoCbvnQ3d0th8Mx6DmHw6Gurr8M1UeNGqV169Zp6dKlGjVqlHw+n15++eUrvt/o0Q6lpo4Is+y/GDEiRRkZaRF7v0S06f/doc3/9In+fLQ76DaNh7v15P9q0O/evMPCyhIHn8Pw0YeRQT+GL5p9GDCE09LS1Ns7eMvDnp4epaenDzz+8ssv9fjjj+vNN99UXl6eDhw4oOXLl6uurm7QdZLk9UZ2+0S+/wjOw7/O1Yljnfq/G1vk6wuuTfdF6bGCgypcOl4z5o6ztsA4x+cwfPRhZNCP4bPVd8K5ubk6ffr0wOP29nZ1dHRo4sSJA88dOXJEWVlZysvLkyTl5+crJSVFJ0+eDKduRFjetDFyve7U1NuuNdWudqtH6x7lViYAiLSAIZyfny+Px6NDhw5JkqqrqzVnzhylpf1lqH7jjTeqqalJZ8/2703c0NCgzs5O5eSY3M0JUVGyOtf0Tlv+RVsAgMgJeIuSJB04cEAbNmxQd3e3cnJy5Ha75fP5tGTJEu3cuVOStGPHDv3rv/6rfD6fRo4cqbKyMs2fP3/Ie3GLkr08UdKgy8F/VSxJKq3MUd604adXkhGfw/DRh5FBP4YvmtPRQYVwJBHC9vN/1n6mzxsvm2pzw+RUrXDlWVRR/OFzGD76MDLox/DZ6jthJL5fPzdN37/H3H1M5072qfKnnFMMAOEghCEptM09fN/0n1PMiUwAEBpCGAP8m3vcMDngnWuDHK33avMvP7WoKgBIXIQwhljhyjO9evr8GR9bXgKASYQwrsh/TvGo0ebabXO16N3aoadsAQCGIoRxVVWvmN/cY3dNG+cUA0AQCGEEFMrmHu2e/s093t5+1qKqACD+EcIIin96OnWkuXZ7d3Wo8kFGxQBwJYQwTFlf7dT0Wea+KPb1seUlAFwJIQzTipdPlLvGabpdRVGDnq88YUFFABCfCGGEzF3jVLq5jbZ07mSfnihhVAwAEiGMMK15yanCpeNNtbnc3T8qZqctAMmOEEbYZswdF9L09NF6r6qWMCoGkLwIYURMKFte9nhZtAUgeRHCiKgVrjzTB0FI/UHMTlsAkg0hjIjzHwRh9tO1u6ZNW5/8zJqiAMCGCGFYxr3D/JaXp49fZnoaQNIghGGpktW5TE8DwDAIYVjOPz19vbk7mTgIAkDCI4QRNaufc+r795jb3YODIAAkMkIYUbWoJCukRVt7d3Vo+8ZT1hQFADFCCCMm3DucGmluzZYaD3dr8y8/taYgAIgBQhgx89R286unz5/xqaKoQSeOdVpUFQBEDyGMmCpZnRvSlpfbXC0s2gIQ9whh2IK7xvyo2L9oCwDiFSEM2wh1VFxR1KAP32uzoCIAsBYhDNsJ5Zzi2q0eTmQCEHcIYdjSmpecWlA0zlQb/4lMjIoBxAtCGLY1r3B8SFte1m71cE8xgLhACMPWQj2RqfFwN4u2ANgeIYy4EMqJTFL/9HTrF70WVAQA4SOEETdCXT29aWWT3njhcwsqAoDwEMKIO6HcU3y03qvfPMT0NAB7IYQRl0I5p7jvcv/0NIu2ANgFIYy45V+0NWq0uXaNh7sZFQOwBUIYca/qFaemzzKXxP5RMYu2AMQSIYyEULx8okorc0y327SyiYMgAMQMIYyEkTdtjNw1To01t9GW2j1iehpATBDCSDiVW5whL9rinGIA0UQIIyH5F22ljjTXbpurhXuKAUQNIYyEtr7aqRsmp5pqc7Teq3WPMj0NwHqEMBLeClee6UVblzqYngZgPUIYScG/aMusba4WbX3yMwsqAgBCGEkmlC0vTx+/rKolTE8DiDxCGEnHfxDESBNZ3OPtn57+8L026woDkHQIYSStp7abv6e4dquHe4oBRAwhjKRWucX89LT/nuJ3az0WVQUgWRDCSHqhnMgkSbtr2uRaxqgYQOgIYUChb+5xsa1/VAwAoQgqhPft26fFixeroKBApaWl8niGTsN5vV6VlZVp9uzZWrBggerq6iJeLGC19dXmp6cl6bGCg+y0BcC0gCHc1dWl8vJyrV+/XnV1dZo5c6aqqqqGXOd2u5WZman3339fL774ol577TX19fVZUTNgKf/qabOO1nu5lQmAKQFDeP/+/crOzpbT2f9Lqbi4WHv27JHX6x245vLly/r3f/93/cM//IOuueYaTZ48WdXV1UpNNbddIGAn7hqnrh9vro3/ViYACEbAEG5ublZ2dvbA4/T0dGVkZKilpWXQNQ6HQ7W1tfrhD3+on/zkJ9q7d681FQNRtPo5pwqXmkxi9Qcx09MAAgkYwt3d3XI4HIOeczgc6urqGnh88eJFdXZ2yuFw6A9/+IPKysr085//XBcuXIh8xUCUzZg7rn962uQyxqP1XlU8wKgYwPACzhenpaWpt7d30HM9PT1KT08feDxmzBh98803euCBByRJs2bN0oQJE3Ts2DHNnj17UNvRox1KTR0RidolSSNGpCgjIy1i75eM6MPgvLjrDm3+p0/056PdwTfy9Y+KX6y7w7rCEgSfw8igH8MXzT4MGMK5ubl65513Bh63t7ero6NDEydOHHhuwoQJSklJ0aVLl5SRkSFJGjFihFJShg4dvN7eIc+FIyMjTRcudAW+EMOiD4P38K9z1fpFrzatbDLV7rGCg5o+a7SKl08MfHGS4nMYGfRj+CLdh5mZY4Z9LeAEW35+vjwejw4dOiRJqq6u1pw5c5SW9pe/EsaOHau5c+fq1VdflSQdO3ZM586d0/e+971wawdsx39PsVmsngbwbdcYhmEEuujAgQPasGGDuru7lZOTI7fbLZ/PpyVLlmjnzp2SpAsXLmjVqlU6ffq0Ro8erdWrV2vmzJlD3qu1NbLns/JXX/jow9Bt33hKjYdNTE//t8Kl4zVjrsmNqxMcn8PIoB/DF82RcFAhHEmEsP3Qh+EL5bak68f3r75GPz6HkUE/hs9W09EAAnux7g7TP03tHu4pBpIdIQxEiHtHaFteVhQ16O3tZy2oCIDdEcJABIW65eXeXR0s2gKSECEMWMBd49RYk+uu/Ftetn4R2dv4ANgXIQxYpHJLaFteblrZxPQ0kCQIYcBC/i0v068z127vrg795iGmp4FERwgDUbDmJacm3TLSVJu+y0xPA4mOEAaiZOna76q0Msd0u00rm/RECaNiIBERwkAU5U0bE9Lq6cvd3FMMJCJCGIgBd41T02eNNt2uoqhB79Z6LKgIQCwQwkCMFC+fGNKoeHdNG6NiIEEQwkCMuWucut78nUwEMZAACGHABlY/5wxp0VZFUYOerzxhQUUAooEQBmwi1EVb5072MSoG4hQhDNiMu8ap72Sb/9GsKGrQh++1WVARAKsQwoANlT9zc0hbXtZu9bDTFhBHCGHApvxbXprl32kLgP0RwoDNuWtCP6eY6WnA3ghhIA6Eek5x7VaPKh5gVAzYFSEMxJFQglg+pqcBuyKEgTjD9DSQOAhhIA6FMz1d+SCjYsAuCGEgjoUSxL4+zikG7IIQBuKcu8apBUXjTLfbtLJJG8sYFQOxRAgDCWBe4fiQRsXtHhZtAbFECAMJxF3j1CjzxxSroqhB2zeeinxBAK6KEAYSTNUroZ3I1Hi4m3uKgSgjhIEEFOqJTNxTDEQXIQwkMHeNU2PNr9lSRVGD3njh88gXBGAQQhhIcJVbnCGNio/WexkVAxYjhIEk4a5xKiXVfDuCGLAOIQwkEdfroW95+XzlCQsqApIbIQwkmVC3vDx3so9RMRBhhDCQpMKZnuYgCCAyCGEgibleD+2e4tqtHra8BCKAEAaSXKj3FLPlJRA+QhiApP7p6Um3jDTdjulpIHSEMIABS9d+N+Rzip8oYVQMmEUIAxgilCC+3M30NGAWIQzgisKZnn631mNBRUDiIYQBDCvU6endNW2qWsKoGAiEEAYQUCij4h4v09NAIIQwgKAsXftdrXp2iul2rJ4GhkcIAwha5gRHyKun1z3KqBj4NkIYgGmhnFN8qaN/VHziWKc1RQFxiBAGEJJQzyne5mrhRCbgvxHCAMLirnEq1eSdTJzIBPQjhAGEbX21U4VLx5tuV1HUoLe3n7WgIiA+EMIAImLG3HEhTU/v3dXBoi0kraBCeN++fVq8eLEKCgpUWloqj2f43XAaGxt1yy236MCBAxErEkD8cNc4db3JQfGlDumxgoPWFATYWMAQ7urqUnl5udavX6+6ujrNnDlTVVVVV7zW5/OpqqpKmZmZka4TQBxZ/Vxo5xRXFDXojRc+t6AiwJ4ChvD+/fuVnZ0tp7N/mqm4uFh79uyR1+sdcu2OHTs0depU5eSY/+EDkFhCPaf4aL2XE5mQNAKGcHNzs7Kzswcep6enKyMjQy0tLYOua21tVXV1tcrLyyNfJYC45a4xv2jLfyJT6xe9FlUF2EPAEO7u7pbD4Rj0nMPhUFdX16DnXC6Xli1bprFjx0a2QgBxb8bccSFteblpZZM2ljEqRuJKDXRBWlqaensH/zXa09Oj9PT0gcf19fW6cOGCFi1aFPAfHD3aodTUESGUemUjRqQoIyMtYu+XjOjD8NGHgWVkpOnFujtML8Bq9/SPil+su8OiyhILn8XwRbMPA4Zwbm6u3nnnnYHH7e3t6ujo0MSJEwee2717t44fP6677rpLktTR0aEVK1aosrJSP/7xjwe9n9cb2emljIw0XbjQFfhCDIs+DB99GDx3jVPbN55S4+FuU+0eKziowqXjNWOuyf0ykwyfxfBFug8zM8cM+9o1hmEYV2vc09OjuXPn6p//+Z91++2367nnnlNTU5Oef/75Yds89NBDWr58ufLz84e81toa2X1j+cCFjz4MH30YmlB2zbp+fP/qa1wZn8XwRTOEA34nPGrUKP3ud7/TU089pQULFujjjz/WE088oS+//FL33ntvxIoEkHzcNU59J9vcnkHtHqnyQb4nRmIIOBKONEbC9kMfho8+DM/b289q764O0+1KK3OUN234UUYy4rMYPluNhAHAaotKskJaeLXN1SLXMkbFiF+EMADbcNc4lX6duTYX20L7bhmwA0IYgK2seSn0LS+3PvmZBRUB1iGEAdhOqFtenj5+mVEx4gohDMC23DVO3TA54HYGQ1QUNejD99osqAiILEIYgK2tcOWFtOVl7VaPqpYwKoa9EcIAbC9zgiOk6ekeL4u2YG+EMIC44a5xamwIu1ZWFDXoxLHI7lEARAIhDCCuVG5xyl3j1KjR5tptc7Xo7e1nrSkKCBEhDCAuVb3i1NTbrjXVZu+uDjb3gK0QwgDiVsnqXNP3FPs392D1NOyAEAYQ1wbuKTb526x2q0ebf/mpNUUBQSKEASQE9w6nFhSZW7V1/oxPFQ8wPY3YIYQBJIx5hePNb3npY/U0YocQBpBQQt3ycpurhc09EHWEMICE5K4xPz3t39yj9Ytei6oCBiOEASSseYXjQxoVb1rZxOppRAUhDCDhuWucmnTLSFNtard62PISliOEASSFpWu/G9JBEBVFDXrjhc8tqAgghAEkEf9BECkmT0c8Wu/VEyWMihF5hDCApON63fw5xZe7WbSFyCOEASSlUM8p3rSyiYMgEDGEMICk5Z+eNrtoa++uDv3mIaanET5CGEDSC2XRVt9ldtpC+AhhANBfRsVmfytuc7Vo65OfWVMUEh4hDAB/xb3D/KKt08cvq/JBpqdhHiEMAN+ywpWnwqXjTbXx9XFPMcwjhAHgCmbMHSd3jVMjrzXX7mi9l3OKETRCGACu4qntTn3/nutMtTl/xqeNZUxPIzBCGAACWFSSZXr1dLunf3qagyBwNYQwAATBv3o63dygWLVbPUxPY1iEMACYsOYl86unz5/xseUlrogQBgCTQlk9LbHlJYYihAEgBP7V02PHmWu3d1cHm3tgACEMAGGo3OLUgiJzSXz6+GWte5TV0yCEASBs8wrHm97y8lIHm3uAEAaAiHHvMH8i09F6ryqKGBUnK0IYACIolBOZJE5kSlaEMABEmP+eYrOLtjiRKfkQwgBgkVAXbT1RwvR0siCEAcBC8wrHm56evtzdPz39bq3HoqpgF4QwAFjMPz09arS5drtr2riVKcERwgAQJVWvOE3vtOW/lYlFW4mJEAaAKPLvtGXWNlcL9xQnIEIYAGLAXePUd7LN/Qo+Wu9lejrBEMIAECPlz9wc8vQ05xQnBkIYAGLIPz1tdtFW7VYPq6cTACEMADZQ9Yr5c4p317RxNGKcI4QBwCZWuPJMb+6xd1cHq6fjGCEMADbiP5Ep/Tpz7ba5WrSxjEVb8SaoEN63b58WL16sgoIClZaWyuMZ+j3E4cOHdf/99+uee+5RYWGhDh48GPFiASBZrHnJ/JaX7R7psYKDjIrjSMAQ7urqUnl5udavX6+6ujrNnDlTVVVVg665fPmyli1bplWrVmnXrl0qKytTeXm5VTUDQFIIZctLqX9UzHfF8SFgCO/fv1/Z2dlyOvtvLi8uLtaePXvk9XoHrvn666+1bt063XnnnZKk2267TefPn9fFixctKhsAkoN/y8sUc2u2tHdXh37zENPTdhcwhJubm5WdnT3wOD09XRkZGWppaRn03N133z3w+IMPPtCNN96osWPHRrhcAEhOrtedmj7L3H1MfZfZ8tLuAv5t1d3dLYfDMeg5h8Ohrq6uK17f2Ngol8ulTZs2XfH10aMdSk0dEUKpVzZiRIoyMtIi9n7JiD4MH30YPvowsMd+c7Mkadl9B+W7HHy7ba4W/c8bUrT+1dssqiyxRPOzGDCE09LS1NvbO+i5np4epaenD7n2o48+0sqVK7Vhwwbl5+df8f283t4rPh+qjIw0Xbhw5T8IEBz6MHz0Yfjow+C5qp16e/tZ7d3VEXSbr8759FjBwZD2rU42kf4sZmaOGfa1gNPRubm5On369MDj9vZ2dXR0aOLEiYOua2xsVFlZmTZv3qzZs2eHUS4AIJBFJVkhBSrT0/YSMITz8/Pl8Xh06NAhSVJ1dbXmzJmjtLS/DNUNw1BFRYXWrl2r22+/3bpqAQCDcE9xfLvGMAwj0EUHDhzQhg0b1N3drZycHLndbvl8Pi1ZskQ7d+7UkSNH9NOf/nTI6HjTpk0Dq6r9Wlsj+xcYU1jhow/DRx+Gjz4MzxsvfK6j9d7AF35LaWWO8qYNP12ajKI5HR1UCEcSIWw/9GH46MPw0YfhO3GsU69tatHXJpfeTL3tWpWszrWmqDhkq++EAQDxIW/aGD3/9h2mD4JoPNwt1zKmp2OBEAaABBPKQRAX21i0FQuEMAAkIP9BEKkjzbXb5mrR9o2nrCkKQxDCAJDA1lc7NcrcRltMT0cRIQwACa7qFae+f4+5+5j809Pv1g49NQ+RQwgDQBLwb+5hdtHW7po2PV95wqKqQAgDQBJZ4cozPSo+d7JPVUuYnrYCIQwASWZRSZZKK3NMtenxsnraCoQwACShvGlj5K5xaqy5O5nY8jLCCGEASGKVW5yadIu5+5jaPdKvH2hQ6xeRPRUvGRHCAJDklq79rlY9O8VUG8MnbVrZxOrpMBHCAABlTnDIXePU9FnmbireXdOmN1743KKqEh8hDAAYULx8oulR8dF6L7cxhYgQBgAM4h8Vm3HuZJ8qf8rmHmYRwgCAK3LXOPWd7OBjwvdN//Q0q6eDRwgDAIZV/szNWvXsFFP7T7d7uKc4WIQwAOCqMic4VPVKaPcUcyLT1RHCAICgVG4xv/d04+FurXuU6enhEMIAgKCtcOVp1bNTdP344OPjUkf/9PTb289aWFl8IoQBAKZkTnBo9XM3mz4IYu+uDhZtfQshDAAIyaKSLC0oMvdFcbtHqnyQLS/9CGEAQMjmFY7XqmenKMXEV8W+vv4tL7c++Zl1hcUJQhgAEJbMCQ65Xje/aOv08cuqeCC5p6cJYQBARKxw5Zmenpavf9HWh++1WVOUzRHCAICImVc43vROW5JUu9WTlPtPE8IAgIgrf+Zm06Picyf7ku6eYkIYAGAJ/6ItM/z3FCfL9DQhDACwjP9EptSR5trVbvVo8y8/taYoGyGEAQCWW1/tND09fRiKoDsAAAnxSURBVP6MTxVFiX1PMSEMAIgK/6ItswdBbFrZlLAnMhHCAICoqtxifvX0NldLQm7uQQgDAKKu/Bnze0+fPn454Q6CIIQBADGxqCQrpOnpvbs6EmbRFiEMAIipyi3mg/j8GZ8qH4z/e4oJYQBAzFVuMb962tfXf09xPC/aIoQBALbgXz1t9rviba4WvfHC5xZVZS1CGABgK4tKslRamWOqzdF6b1x+T0wIAwBsJ2/aGNPnFPs394inUTEhDACwJf85xWbvKT5a742bgyAIYQCArZU/c7MKl4431eZSh7TuUftveUkIAwBsb8bccVr17BRdN+6aoNtc6ujf8tLO5xQTwgCAuJA5waFfb7klpHOKq5bYc3qaEAYAxJV5heNVuHS8UkYE36bHK1ueyEQIAwDizoy54+T6vVNTb7vWVLtNK5tsdRAEIQwAiFslq3NDPgjCDghhAEBc82/ukTrSXLuKogZt33jKmqKCRAgDAOJe3rQxWl/tVLq5QbEaD3fHdNEWIQwASBhrXnJq+qzRptr4F23FAiEMAEgoxcsnyl3jNN0uFtPTQYXwvn37tHjxYhUUFKi0tFQej2fINY2NjSouLlZBQYGKi4vV2NgY8WIBAAiWu8ZpeqjZeLhbjxUctKagKwhYXldXl8rLy7V+/XrV1dVp5syZqqqqGnLdL37xCz3yyCOqq6tTSUmJfvWrX1lRLwAAQXPvMD89LfWPiqMxRR0whPfv36/s7Gw5nf1D++LiYu3Zs0der3fgmhMnTqizs1Pz58+XJC1cuFBtbW06efKkRWUDABCcgenpEL6AtTqIA5bU3Nys7Ozsgcfp6enKyMhQS0vLoGuysrIGtcvOztapU7Fd+g0AgJ97h1Njze14abmAJzV2d3fL4XAMes7hcKirq8vUNX6jRzuUmmpir7EARoxIUUZGWsTeLxnRh+GjD8NHH0YG/Xh1G39/h7Y982cd2N0RdBsr+zNgCKelpam3d/Bemz09PUpPTzd1jZ/XG9l9OzMy0nThwtCwR/Dow/DRh+GjDyODfgxs8SNZWvxIVtBTzeH2Z2bmmGFfCzgdnZubq9OnTw88bm9vV0dHhyZOnDjomubmZvl8PklSX1+fmpubNXny5HDqBgDAMu4a85t7RFrAEM7Pz5fH49GhQ4ckSdXV1ZozZ47S0v4yPJ8yZYoyMzO1c+dOSdJbb72lrKwsTZo0yaKyAQAI35qXnCpcOn7Y10O539iMawzDMAJddODAAW3YsEHd3d3KycmR2+2Wz+fTkiVLBoL3xIkTWrNmjS5cuKBx48Zp/fr1VxwJt7Z2RvQ/gKmX8NGH4aMPw0cfRgb9GL5I9+HVpqODCuFIIoTthz4MH30YPvowMujH8EUzhNm2EgCAGCGEAQCIEUIYAIAYIYQBAIgRQhgAgBghhAEAiBFCGACAGCGEAQCIEUIYAIAYifqOWQAAoB8jYQAAYoQQBgAgRghhAABiJC5CeN++fVq8eLEKCgpUWloqj8cz5JrGxkYVFxeroKBAxcXFamxsjEGl9hVMHx4+fFj333+/7rnnHhUWFurgwYMxqNS+gulDv8bGRt1yyy06cOBAFCu0v2D60Ov1qqysTLNnz9aCBQtUV1cXg0rtLZh+fP/99/WjH/1ICxcuVHFxsT7++OMYVGpfX3/9tZ5++mnl5eUN+7MclVwxbO7SpUvGnXfeaXzyySeGYRjGyy+/bCxdunTIdQsXLjR2795tGIZh7Nq1y7j33nujWqedBdOHvb29xowZM4x9+/YZhmEY77//vjFz5syo12pXwX4ODcMwvvnmG6OoqMj4wQ9+YOzfvz+aZdpasH34+OOPG+vWrTN8Pp/R1NRk/OxnPzO+/vrraJdrW8H0Y0dHh/G3f/u3xqeffmoYhmH88Y9/NH7wgx9EvVY7e+SRR4xnn33WuOmmm4wvvvjiitdEI1dsH8Lvvvuucf/99w889nq9htPpNDo7Oweea2xsNO66665B7f7u7/7OaGpqilqddhZMH3q9XqOurm7gcWdnp3HTTTcZHR0dUa3VroLpQ7/XXnvNWLt2rfGzn/2MEP4rwfRhb2+vMX36dOOrr76KRYlxIZh+/OSTTwb9Tuzt7eXn+VuOHDliGIYxbAhHK1dsPx3d3Nys7Ozsgcfp6enKyMhQS0vLoGuysrIGtcvOztapU6eiVqedBdOH6enpuvvuuwcef/DBB7rxxhs1duzYqNZqV8H0oSS1traqurpa5eXl0S7R9oL9WXY4HKqtrdUPf/hD/eQnP9HevXtjUa5tBdOPkydPVkpKivbt2ydJqqur06233srP81+ZPn36VV+PVq6kRvTdLNDd3S2HwzHoOYfDoa6uLlPXJDOz/dPY2CiXy6VNmzZFo7y4EGwfulwuLVu2jF92VxBMH168eFGdnZ1yOBz6wx/+oPr6ev385z/Xf/7nfyojIyPaJdtSMP04atQorVu3TkuXLtWoUaPk8/n08ssvR7vUuBatXLH9SDgtLU29vb2Dnuvp6VF6erqpa5KZmf756KOP9Oijj2rDhg3Kz8+PVom2F0wf1tfX68KFC1q0aFG0y4sLwfThmDFj9M033+iBBx6QJM2aNUsTJkzQsWPHolqrnQXTj19++aUef/xxvfnmm/rwww/1L//yL1q+fLkuXboU7XLjVrRyxfYhnJubq9OnTw88bm9vV0dHhyZOnDjomubmZvl8PklSX1+fmpubNXny5KjXa0fB9KHUPwIuKyvT5s2bNXv27GiXaWvB9OHu3bt1/Phx3XXXXbrrrrt05MgRrVixQm+99VYsSradYPpwwoQJSklJGRQWI0aMUEqK7X9VRU0w/XjkyBFlZWUpLy9PkpSfn6+UlBSdPHky6vXGq2jliu0/2fn5+fJ4PDp06JAkqbq6WnPmzFFaWtrANVOmTFFmZqZ27twpSXrrrbeUlZWlSZMmxaRmuwmmDw3DUEVFhdauXavbb789VqXaVjB9+NRTT+nAgQP605/+pD/96U/6m7/5Gz3//PP68Y9/HKuybSWYPhw7dqzmzp2rV199VZJ07NgxnTt3Tt/73vdiUrMdBdOPN954o5qamnT27FlJUkNDgzo7O5WTkxOTmuNR1HIlosu8LLJ//37jvvvuM+bPn288/PDDxvnz5w2Px2P8/d///cA1jY2Nxv33328sWLDAKC4uZmX0twTqw48++siYOnWqUVBQMOh//tsgENzn8K+xOnqoYPrwv/7rv4yHH37YmDNnjnHfffcZ9fX1MazYnoLpx9///vfGwoULjbvvvtu49957B261gWG0trYO/I676aabjPnz5xsFBQUxyRUOcAAAIEZsPx0NAECiIoQBAIgRQhgAgBghhAEAiBFCGACAGCGEAQCIEUIYAIAYIYQBAIgRQhgAgBj5/+1L9Baq4lh0AAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -2218,21 +1891,7 @@ }, { "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 108, + "execution_count": 39, "metadata": {}, "outputs": [ { @@ -2243,25 +1902,23 @@ "Initializing NUTS using jitter+adapt_diag...\n", "Multiprocess sampling (4 chains in 4 jobs)\n", "NUTS: [beta, mu, packed_L]\n", - "Sampling 4 chains, 261 divergences: 100%|██████████| 24000/24000 [04:03<00:00, 98.74draws/s] \n", - "There were 15 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 26 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "There were 217 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "The acceptance probability does not match the target. It is 0.6731413512132158, but should be close to 0.9. Try to increase the number of tuning steps.\n", + "Sampling 4 chains, 25 divergences: 100%|██████████| 16000/16000 [02:22<00:00, 112.56draws/s]\n", + "There were 10 divergences after tuning. Increase `target_accept` or reparameterize.\n", "There were 3 divergences after tuning. Increase `target_accept` or reparameterize.\n", - "The rhat statistic is larger than 1.05 for some parameters. This indicates slight problems during sampling.\n", - "The estimated number of effective samples is smaller than 200 for some parameters.\n" + "There was 1 divergence after tuning. Increase `target_accept` or reparameterize.\n", + "There were 11 divergences after tuning. Increase `target_accept` or reparameterize.\n", + "The number of effective samples is smaller than 10% for some parameters.\n" ] } ], "source": [ "with model_hier:\n", - " trace_2 = pm.sample(draws=1_000, tune=5_000, target_accept=0.9)" + " trace_2 = pm.sample(draws=1_000, tune=3_000, target_accept=0.9)" ] }, { "cell_type": "code", - "execution_count": 109, + "execution_count": 40, "metadata": {}, "outputs": [ { @@ -2301,478 +1958,478 @@ " \n", " \n", " mu[0]\n", - " -0.002\n", - " 0.011\n", - " -0.022\n", - " 0.016\n", - " 0.001\n", - " 0.001\n", - " 115.0\n", - " 115.0\n", - " 121.0\n", - " 2472.0\n", - " 1.03\n", + " -0.003\n", + " 0.010\n", + " -0.021\n", + " 0.017\n", + " 0.000\n", + " 0.000\n", + " 3533.0\n", + " 1681.0\n", + " 3543.0\n", + " 2350.0\n", + " 1.00\n", " \n", " \n", " mu[1]\n", - " 0.002\n", + " 0.003\n", " 0.010\n", - " -0.017\n", + " -0.016\n", " 0.020\n", " 0.000\n", " 0.000\n", - " 768.0\n", - " 768.0\n", - " 786.0\n", - " 2194.0\n", - " 1.01\n", + " 3294.0\n", + " 1741.0\n", + " 3281.0\n", + " 2303.0\n", + " 1.00\n", " \n", " \n", " beta[0,0]\n", - " -0.457\n", - " 0.489\n", - " -1.347\n", - " 0.300\n", - " 0.066\n", - " 0.047\n", - " 56.0\n", - " 56.0\n", - " 61.0\n", - " 142.0\n", - " 1.05\n", + " -0.372\n", + " 0.480\n", + " -1.270\n", + " 0.452\n", + " 0.020\n", + " 0.014\n", + " 565.0\n", + " 565.0\n", + " 523.0\n", + " 1525.0\n", + " 1.00\n", " \n", " \n", " beta[0,1]\n", - " 0.374\n", - " 0.466\n", - " -0.410\n", - " 1.272\n", - " 0.034\n", - " 0.024\n", - " 183.0\n", - " 183.0\n", - " 160.0\n", - " 1617.0\n", - " 1.03\n", + " 0.433\n", + " 0.483\n", + " -0.306\n", + " 1.390\n", + " 0.020\n", + " 0.014\n", + " 589.0\n", + " 589.0\n", + " 530.0\n", + " 1442.0\n", + " 1.00\n", " \n", " \n", " beta[1,0]\n", - " -0.284\n", - " 0.376\n", - " -0.986\n", - " 0.391\n", - " 0.021\n", - " 0.015\n", - " 324.0\n", - " 324.0\n", - " 276.0\n", - " 1405.0\n", - " 1.02\n", + " -0.236\n", + " 0.379\n", + " -0.968\n", + " 0.397\n", + " 0.012\n", + " 0.009\n", + " 957.0\n", + " 957.0\n", + " 806.0\n", + " 1425.0\n", + " 1.00\n", " \n", " \n", " beta[1,1]\n", - " 0.234\n", - " 0.372\n", - " -0.418\n", - " 0.952\n", - " 0.020\n", - " 0.014\n", - " 363.0\n", - " 363.0\n", - " 349.0\n", - " 1316.0\n", - " 1.02\n", + " 0.288\n", + " 0.390\n", + " -0.347\n", + " 1.037\n", + " 0.012\n", + " 0.009\n", + " 986.0\n", + " 913.0\n", + " 824.0\n", + " 1919.0\n", + " 1.00\n", " \n", " \n", " beta[2,0]\n", - " -0.252\n", - " 0.351\n", - " -0.865\n", - " 0.404\n", - " 0.016\n", - " 0.011\n", - " 480.0\n", - " 480.0\n", - " 391.0\n", - " 1437.0\n", - " 1.01\n", + " -0.221\n", + " 0.361\n", + " -0.945\n", + " 0.406\n", + " 0.012\n", + " 0.009\n", + " 945.0\n", + " 816.0\n", + " 774.0\n", + " 1455.0\n", + " 1.00\n", " \n", " \n", " beta[2,1]\n", - " 0.221\n", - " 0.352\n", - " -0.398\n", - " 0.881\n", - " 0.017\n", - " 0.012\n", - " 412.0\n", - " 412.0\n", - " 281.0\n", - " 1412.0\n", - " 1.02\n", + " 0.257\n", + " 0.364\n", + " -0.421\n", + " 0.924\n", + " 0.011\n", + " 0.008\n", + " 1009.0\n", + " 1009.0\n", + " 808.0\n", + " 1342.0\n", + " 1.00\n", " \n", " \n", " beta[3,0]\n", - " -0.342\n", - " 0.386\n", - " -1.065\n", - " 0.362\n", - " 0.023\n", + " -0.292\n", + " 0.409\n", + " -1.082\n", + " 0.383\n", " 0.016\n", - " 285.0\n", - " 285.0\n", - " 272.0\n", - " 1259.0\n", - " 1.02\n", + " 0.012\n", + " 631.0\n", + " 631.0\n", + " 547.0\n", + " 1321.0\n", + " 1.00\n", " \n", " \n", " beta[3,1]\n", - " 0.284\n", - " 0.393\n", - " -0.380\n", - " 1.058\n", - " 0.026\n", - " 0.018\n", - " 231.0\n", - " 231.0\n", - " 176.0\n", - " 1405.0\n", - " 1.02\n", + " 0.334\n", + " 0.413\n", + " -0.392\n", + " 1.090\n", + " 0.016\n", + " 0.012\n", + " 632.0\n", + " 632.0\n", + " 542.0\n", + " 1000.0\n", + " 1.00\n", " \n", " \n", " beta[4,0]\n", - " -0.293\n", - " 0.391\n", - " -1.045\n", - " 0.349\n", - " 0.029\n", - " 0.020\n", - " 183.0\n", - " 183.0\n", - " 165.0\n", - " 1158.0\n", - " 1.02\n", + " -0.252\n", + " 0.411\n", + " -1.120\n", + " 0.399\n", + " 0.013\n", + " 0.010\n", + " 941.0\n", + " 803.0\n", + " 791.0\n", + " 1507.0\n", + " 1.00\n", " \n", " \n", " beta[4,1]\n", - " 0.255\n", - " 0.383\n", - " -0.402\n", - " 1.005\n", - " 0.021\n", - " 0.015\n", - " 322.0\n", - " 322.0\n", - " 242.0\n", - " 1566.0\n", - " 1.02\n", + " 0.293\n", + " 0.417\n", + " -0.469\n", + " 1.056\n", + " 0.014\n", + " 0.010\n", + " 924.0\n", + " 841.0\n", + " 759.0\n", + " 1306.0\n", + " 1.00\n", " \n", " \n", " beta[5,0]\n", - " -0.286\n", - " 0.362\n", - " -0.956\n", - " 0.341\n", - " 0.035\n", - " 0.025\n", - " 106.0\n", - " 106.0\n", - " 95.0\n", - " 764.0\n", - " 1.03\n", + " -0.236\n", + " 0.376\n", + " -0.941\n", + " 0.425\n", + " 0.013\n", + " 0.010\n", + " 839.0\n", + " 770.0\n", + " 711.0\n", + " 1720.0\n", + " 1.00\n", " \n", " \n", " beta[5,1]\n", - " 0.246\n", - " 0.355\n", - " -0.331\n", - " 0.962\n", - " 0.024\n", - " 0.017\n", - " 214.0\n", - " 214.0\n", - " 152.0\n", - " 1574.0\n", - " 1.02\n", + " 0.286\n", + " 0.382\n", + " -0.394\n", + " 1.001\n", + " 0.012\n", + " 0.009\n", + " 944.0\n", + " 944.0\n", + " 770.0\n", + " 1433.0\n", + " 1.00\n", " \n", " \n", " beta[6,0]\n", - " -0.216\n", - " 0.321\n", - " -0.877\n", - " 0.331\n", - " 0.013\n", + " -0.188\n", + " 0.374\n", + " -0.919\n", + " 0.435\n", + " 0.011\n", " 0.009\n", - " 635.0\n", - " 635.0\n", - " 531.0\n", - " 971.0\n", - " 1.04\n", + " 1252.0\n", + " 937.0\n", + " 841.0\n", + " 1179.0\n", + " 1.00\n", " \n", " \n", " beta[6,1]\n", - " 0.194\n", - " 0.327\n", - " -0.383\n", - " 0.847\n", - " 0.017\n", - " 0.012\n", - " 373.0\n", - " 373.0\n", - " 321.0\n", - " 1381.0\n", - " 1.02\n", + " 0.232\n", + " 0.373\n", + " -0.428\n", + " 0.884\n", + " 0.010\n", + " 0.008\n", + " 1340.0\n", + " 1058.0\n", + " 911.0\n", + " 1067.0\n", + " 1.01\n", " \n", " \n", " beta[7,0]\n", - " -0.194\n", - " 0.306\n", - " -0.742\n", - " 0.381\n", - " 0.030\n", - " 0.021\n", - " 106.0\n", - " 106.0\n", - " 86.0\n", - " 1025.0\n", - " 1.03\n", + " -0.158\n", + " 0.323\n", + " -0.828\n", + " 0.421\n", + " 0.009\n", + " 0.009\n", + " 1254.0\n", + " 627.0\n", + " 977.0\n", + " 1360.0\n", + " 1.01\n", " \n", " \n", " beta[7,1]\n", - " 0.158\n", - " 0.298\n", - " -0.353\n", - " 0.763\n", - " 0.014\n", - " 0.010\n", - " 461.0\n", - " 461.0\n", - " 275.0\n", - " 1472.0\n", - " 1.02\n", + " 0.178\n", + " 0.328\n", + " -0.407\n", + " 0.827\n", + " 0.009\n", + " 0.008\n", + " 1196.0\n", + " 772.0\n", + " 959.0\n", + " 1040.0\n", + " 1.01\n", " \n", " \n", " beta[8,0]\n", - " -0.106\n", - " 0.347\n", - " -0.815\n", - " 0.515\n", - " 0.008\n", + " -0.098\n", + " 0.349\n", + " -0.839\n", + " 0.533\n", + " 0.007\n", " 0.008\n", - " 1727.0\n", - " 991.0\n", - " 1283.0\n", - " 1540.0\n", - " 1.02\n", + " 2800.0\n", + " 867.0\n", + " 2561.0\n", + " 1591.0\n", + " 1.01\n", " \n", " \n", " beta[8,1]\n", - " 0.103\n", - " 0.352\n", - " -0.529\n", - " 0.830\n", - " 0.008\n", + " 0.114\n", + " 0.359\n", + " -0.592\n", + " 0.803\n", + " 0.006\n", " 0.008\n", - " 1758.0\n", - " 918.0\n", - " 1493.0\n", - " 1518.0\n", - " 1.03\n", + " 3135.0\n", + " 905.0\n", + " 2767.0\n", + " 1468.0\n", + " 1.01\n", " \n", " \n", " beta[9,0]\n", - " -0.259\n", - " 0.364\n", - " -0.900\n", - " 0.330\n", - " 0.043\n", - " 0.031\n", - " 71.0\n", - " 71.0\n", - " 68.0\n", - " 656.0\n", - " 1.04\n", + " -0.202\n", + " 0.375\n", + " -0.926\n", + " 0.443\n", + " 0.011\n", + " 0.009\n", + " 1069.0\n", + " 905.0\n", + " 800.0\n", + " 1129.0\n", + " 1.00\n", " \n", " \n", " beta[9,1]\n", - " 0.210\n", - " 0.345\n", - " -0.370\n", - " 0.879\n", - " 0.019\n", - " 0.013\n", - " 331.0\n", - " 331.0\n", - " 252.0\n", - " 1228.0\n", - " 1.02\n", + " 0.249\n", + " 0.379\n", + " -0.493\n", + " 0.901\n", + " 0.011\n", + " 0.008\n", + " 1172.0\n", + " 1025.0\n", + " 889.0\n", + " 1666.0\n", + " 1.01\n", " \n", " \n", " beta[10,0]\n", - " -0.237\n", - " 0.356\n", - " -0.953\n", - " 0.374\n", - " 0.014\n", - " 0.010\n", - " 655.0\n", - " 655.0\n", - " 429.0\n", - " 1417.0\n", - " 1.01\n", + " -0.200\n", + " 0.365\n", + " -0.939\n", + " 0.405\n", + " 0.011\n", + " 0.008\n", + " 1099.0\n", + " 1099.0\n", + " 800.0\n", + " 1393.0\n", + " 1.00\n", " \n", " \n", " beta[10,1]\n", - " 0.208\n", - " 0.358\n", - " -0.411\n", - " 0.901\n", - " 0.018\n", - " 0.013\n", - " 381.0\n", - " 381.0\n", - " 268.0\n", - " 1512.0\n", - " 1.02\n", + " 0.247\n", + " 0.367\n", + " -0.438\n", + " 0.927\n", + " 0.011\n", + " 0.008\n", + " 1151.0\n", + " 1151.0\n", + " 812.0\n", + " 1470.0\n", + " 1.00\n", " \n", " \n", " beta[11,0]\n", - " -0.201\n", - " 0.315\n", - " -0.766\n", - " 0.390\n", - " 0.019\n", - " 0.013\n", - " 277.0\n", - " 277.0\n", - " 179.0\n", - " 1514.0\n", - " 1.02\n", + " -0.167\n", + " 0.324\n", + " -0.821\n", + " 0.389\n", + " 0.010\n", + " 0.008\n", + " 1155.0\n", + " 790.0\n", + " 893.0\n", + " 1059.0\n", + " 1.00\n", " \n", " \n", " beta[11,1]\n", - " 0.175\n", - " 0.313\n", - " -0.390\n", - " 0.765\n", - " 0.014\n", + " 0.201\n", + " 0.328\n", + " -0.459\n", + " 0.796\n", " 0.010\n", - " 471.0\n", - " 471.0\n", - " 228.0\n", - " 1435.0\n", - " 1.02\n", + " 0.008\n", + " 1101.0\n", + " 865.0\n", + " 869.0\n", + " 982.0\n", + " 1.01\n", " \n", " \n", " beta[12,0]\n", - " -0.261\n", - " 0.361\n", - " -0.976\n", - " 0.388\n", - " 0.018\n", - " 0.013\n", - " 387.0\n", - " 387.0\n", - " 320.0\n", - " 1358.0\n", - " 1.01\n", + " -0.216\n", + " 0.386\n", + " -0.987\n", + " 0.492\n", + " 0.012\n", + " 0.009\n", + " 1073.0\n", + " 944.0\n", + " 894.0\n", + " 1619.0\n", + " 1.00\n", " \n", " \n", " beta[12,1]\n", - " 0.223\n", - " 0.359\n", - " -0.407\n", - " 0.973\n", - " 0.020\n", - " 0.014\n", - " 338.0\n", - " 338.0\n", - " 307.0\n", - " 1609.0\n", - " 1.01\n", + " 0.266\n", + " 0.392\n", + " -0.474\n", + " 1.015\n", + " 0.012\n", + " 0.009\n", + " 1024.0\n", + " 1024.0\n", + " 856.0\n", + " 1663.0\n", + " 1.00\n", " \n", " \n", " beta[13,0]\n", - " -0.178\n", - " 0.322\n", - " -0.798\n", - " 0.399\n", - " 0.011\n", - " 0.008\n", - " 904.0\n", - " 811.0\n", - " 669.0\n", - " 1168.0\n", - " 1.01\n", + " -0.158\n", + " 0.338\n", + " -0.838\n", + " 0.449\n", + " 0.009\n", + " 0.007\n", + " 1427.0\n", + " 1034.0\n", + " 1024.0\n", + " 1504.0\n", + " 1.00\n", " \n", " \n", " beta[13,1]\n", - " 0.165\n", - " 0.323\n", - " -0.382\n", + " 0.193\n", + " 0.343\n", + " -0.471\n", " 0.817\n", - " 0.012\n", " 0.009\n", - " 710.0\n", - " 629.0\n", - " 497.0\n", - " 1371.0\n", - " 1.01\n", + " 0.008\n", + " 1458.0\n", + " 1001.0\n", + " 1175.0\n", + " 1462.0\n", + " 1.00\n", " \n", " \n", " beta[14,0]\n", - " -0.220\n", - " 0.332\n", - " -0.779\n", - " 0.432\n", - " 0.026\n", - " 0.019\n", - " 159.0\n", - " 159.0\n", - " 126.0\n", - " 1193.0\n", - " 1.02\n", + " -0.172\n", + " 0.341\n", + " -0.829\n", + " 0.450\n", + " 0.009\n", + " 0.009\n", + " 1339.0\n", + " 786.0\n", + " 956.0\n", + " 1704.0\n", + " 1.00\n", " \n", " \n", " beta[14,1]\n", - " 0.176\n", - " 0.326\n", - " -0.378\n", - " 0.867\n", - " 0.016\n", - " 0.011\n", - " 441.0\n", - " 441.0\n", - " 228.0\n", - " 1225.0\n", - " 1.02\n", + " 0.219\n", + " 0.342\n", + " -0.390\n", + " 0.870\n", + " 0.009\n", + " 0.009\n", + " 1316.0\n", + " 763.0\n", + " 997.0\n", + " 1565.0\n", + " 1.00\n", " \n", " \n", " beta[15,0]\n", - " -0.214\n", - " 0.320\n", - " -0.843\n", - " 0.324\n", - " 0.020\n", - " 0.014\n", - " 265.0\n", - " 265.0\n", - " 189.0\n", - " 1440.0\n", - " 1.02\n", + " -0.169\n", + " 0.338\n", + " -0.858\n", + " 0.407\n", + " 0.010\n", + " 0.008\n", + " 1157.0\n", + " 872.0\n", + " 936.0\n", + " 1369.0\n", + " 1.01\n", " \n", " \n", " beta[15,1]\n", - " 0.173\n", - " 0.321\n", - " -0.421\n", - " 0.781\n", - " 0.014\n", + " 0.209\n", + " 0.342\n", + " -0.372\n", + " 0.876\n", " 0.010\n", - " 516.0\n", - " 516.0\n", - " 396.0\n", - " 1720.0\n", + " 0.008\n", + " 1155.0\n", + " 860.0\n", + " 938.0\n", + " 1515.0\n", " 1.01\n", " \n", " \n", @@ -2781,79 +2438,79 @@ ], "text/plain": [ " mean sd hpd_3% hpd_97% mcse_mean mcse_sd ess_mean \\\n", - "mu[0] -0.002 0.011 -0.022 0.016 0.001 0.001 115.0 \n", - "mu[1] 0.002 0.010 -0.017 0.020 0.000 0.000 768.0 \n", - "beta[0,0] -0.457 0.489 -1.347 0.300 0.066 0.047 56.0 \n", - "beta[0,1] 0.374 0.466 -0.410 1.272 0.034 0.024 183.0 \n", - "beta[1,0] -0.284 0.376 -0.986 0.391 0.021 0.015 324.0 \n", - "beta[1,1] 0.234 0.372 -0.418 0.952 0.020 0.014 363.0 \n", - "beta[2,0] -0.252 0.351 -0.865 0.404 0.016 0.011 480.0 \n", - "beta[2,1] 0.221 0.352 -0.398 0.881 0.017 0.012 412.0 \n", - "beta[3,0] -0.342 0.386 -1.065 0.362 0.023 0.016 285.0 \n", - "beta[3,1] 0.284 0.393 -0.380 1.058 0.026 0.018 231.0 \n", - "beta[4,0] -0.293 0.391 -1.045 0.349 0.029 0.020 183.0 \n", - "beta[4,1] 0.255 0.383 -0.402 1.005 0.021 0.015 322.0 \n", - "beta[5,0] -0.286 0.362 -0.956 0.341 0.035 0.025 106.0 \n", - "beta[5,1] 0.246 0.355 -0.331 0.962 0.024 0.017 214.0 \n", - "beta[6,0] -0.216 0.321 -0.877 0.331 0.013 0.009 635.0 \n", - "beta[6,1] 0.194 0.327 -0.383 0.847 0.017 0.012 373.0 \n", - "beta[7,0] -0.194 0.306 -0.742 0.381 0.030 0.021 106.0 \n", - "beta[7,1] 0.158 0.298 -0.353 0.763 0.014 0.010 461.0 \n", - "beta[8,0] -0.106 0.347 -0.815 0.515 0.008 0.008 1727.0 \n", - "beta[8,1] 0.103 0.352 -0.529 0.830 0.008 0.008 1758.0 \n", - "beta[9,0] -0.259 0.364 -0.900 0.330 0.043 0.031 71.0 \n", - "beta[9,1] 0.210 0.345 -0.370 0.879 0.019 0.013 331.0 \n", - "beta[10,0] -0.237 0.356 -0.953 0.374 0.014 0.010 655.0 \n", - "beta[10,1] 0.208 0.358 -0.411 0.901 0.018 0.013 381.0 \n", - "beta[11,0] -0.201 0.315 -0.766 0.390 0.019 0.013 277.0 \n", - "beta[11,1] 0.175 0.313 -0.390 0.765 0.014 0.010 471.0 \n", - "beta[12,0] -0.261 0.361 -0.976 0.388 0.018 0.013 387.0 \n", - "beta[12,1] 0.223 0.359 -0.407 0.973 0.020 0.014 338.0 \n", - "beta[13,0] -0.178 0.322 -0.798 0.399 0.011 0.008 904.0 \n", - "beta[13,1] 0.165 0.323 -0.382 0.817 0.012 0.009 710.0 \n", - "beta[14,0] -0.220 0.332 -0.779 0.432 0.026 0.019 159.0 \n", - "beta[14,1] 0.176 0.326 -0.378 0.867 0.016 0.011 441.0 \n", - "beta[15,0] -0.214 0.320 -0.843 0.324 0.020 0.014 265.0 \n", - "beta[15,1] 0.173 0.321 -0.421 0.781 0.014 0.010 516.0 \n", + "mu[0] -0.003 0.010 -0.021 0.017 0.000 0.000 3533.0 \n", + "mu[1] 0.003 0.010 -0.016 0.020 0.000 0.000 3294.0 \n", + "beta[0,0] -0.372 0.480 -1.270 0.452 0.020 0.014 565.0 \n", + "beta[0,1] 0.433 0.483 -0.306 1.390 0.020 0.014 589.0 \n", + "beta[1,0] -0.236 0.379 -0.968 0.397 0.012 0.009 957.0 \n", + "beta[1,1] 0.288 0.390 -0.347 1.037 0.012 0.009 986.0 \n", + "beta[2,0] -0.221 0.361 -0.945 0.406 0.012 0.009 945.0 \n", + "beta[2,1] 0.257 0.364 -0.421 0.924 0.011 0.008 1009.0 \n", + "beta[3,0] -0.292 0.409 -1.082 0.383 0.016 0.012 631.0 \n", + "beta[3,1] 0.334 0.413 -0.392 1.090 0.016 0.012 632.0 \n", + "beta[4,0] -0.252 0.411 -1.120 0.399 0.013 0.010 941.0 \n", + "beta[4,1] 0.293 0.417 -0.469 1.056 0.014 0.010 924.0 \n", + "beta[5,0] -0.236 0.376 -0.941 0.425 0.013 0.010 839.0 \n", + "beta[5,1] 0.286 0.382 -0.394 1.001 0.012 0.009 944.0 \n", + "beta[6,0] -0.188 0.374 -0.919 0.435 0.011 0.009 1252.0 \n", + "beta[6,1] 0.232 0.373 -0.428 0.884 0.010 0.008 1340.0 \n", + "beta[7,0] -0.158 0.323 -0.828 0.421 0.009 0.009 1254.0 \n", + "beta[7,1] 0.178 0.328 -0.407 0.827 0.009 0.008 1196.0 \n", + "beta[8,0] -0.098 0.349 -0.839 0.533 0.007 0.008 2800.0 \n", + "beta[8,1] 0.114 0.359 -0.592 0.803 0.006 0.008 3135.0 \n", + "beta[9,0] -0.202 0.375 -0.926 0.443 0.011 0.009 1069.0 \n", + "beta[9,1] 0.249 0.379 -0.493 0.901 0.011 0.008 1172.0 \n", + "beta[10,0] -0.200 0.365 -0.939 0.405 0.011 0.008 1099.0 \n", + "beta[10,1] 0.247 0.367 -0.438 0.927 0.011 0.008 1151.0 \n", + "beta[11,0] -0.167 0.324 -0.821 0.389 0.010 0.008 1155.0 \n", + "beta[11,1] 0.201 0.328 -0.459 0.796 0.010 0.008 1101.0 \n", + "beta[12,0] -0.216 0.386 -0.987 0.492 0.012 0.009 1073.0 \n", + "beta[12,1] 0.266 0.392 -0.474 1.015 0.012 0.009 1024.0 \n", + "beta[13,0] -0.158 0.338 -0.838 0.449 0.009 0.007 1427.0 \n", + "beta[13,1] 0.193 0.343 -0.471 0.817 0.009 0.008 1458.0 \n", + "beta[14,0] -0.172 0.341 -0.829 0.450 0.009 0.009 1339.0 \n", + "beta[14,1] 0.219 0.342 -0.390 0.870 0.009 0.009 1316.0 \n", + "beta[15,0] -0.169 0.338 -0.858 0.407 0.010 0.008 1157.0 \n", + "beta[15,1] 0.209 0.342 -0.372 0.876 0.010 0.008 1155.0 \n", "\n", " ess_sd ess_bulk ess_tail r_hat \n", - "mu[0] 115.0 121.0 2472.0 1.03 \n", - "mu[1] 768.0 786.0 2194.0 1.01 \n", - "beta[0,0] 56.0 61.0 142.0 1.05 \n", - "beta[0,1] 183.0 160.0 1617.0 1.03 \n", - "beta[1,0] 324.0 276.0 1405.0 1.02 \n", - "beta[1,1] 363.0 349.0 1316.0 1.02 \n", - "beta[2,0] 480.0 391.0 1437.0 1.01 \n", - "beta[2,1] 412.0 281.0 1412.0 1.02 \n", - "beta[3,0] 285.0 272.0 1259.0 1.02 \n", - "beta[3,1] 231.0 176.0 1405.0 1.02 \n", - "beta[4,0] 183.0 165.0 1158.0 1.02 \n", - "beta[4,1] 322.0 242.0 1566.0 1.02 \n", - "beta[5,0] 106.0 95.0 764.0 1.03 \n", - "beta[5,1] 214.0 152.0 1574.0 1.02 \n", - "beta[6,0] 635.0 531.0 971.0 1.04 \n", - "beta[6,1] 373.0 321.0 1381.0 1.02 \n", - "beta[7,0] 106.0 86.0 1025.0 1.03 \n", - "beta[7,1] 461.0 275.0 1472.0 1.02 \n", - "beta[8,0] 991.0 1283.0 1540.0 1.02 \n", - "beta[8,1] 918.0 1493.0 1518.0 1.03 \n", - "beta[9,0] 71.0 68.0 656.0 1.04 \n", - "beta[9,1] 331.0 252.0 1228.0 1.02 \n", - "beta[10,0] 655.0 429.0 1417.0 1.01 \n", - "beta[10,1] 381.0 268.0 1512.0 1.02 \n", - "beta[11,0] 277.0 179.0 1514.0 1.02 \n", - "beta[11,1] 471.0 228.0 1435.0 1.02 \n", - "beta[12,0] 387.0 320.0 1358.0 1.01 \n", - "beta[12,1] 338.0 307.0 1609.0 1.01 \n", - "beta[13,0] 811.0 669.0 1168.0 1.01 \n", - "beta[13,1] 629.0 497.0 1371.0 1.01 \n", - "beta[14,0] 159.0 126.0 1193.0 1.02 \n", - "beta[14,1] 441.0 228.0 1225.0 1.02 \n", - "beta[15,0] 265.0 189.0 1440.0 1.02 \n", - "beta[15,1] 516.0 396.0 1720.0 1.01 " + "mu[0] 1681.0 3543.0 2350.0 1.00 \n", + "mu[1] 1741.0 3281.0 2303.0 1.00 \n", + "beta[0,0] 565.0 523.0 1525.0 1.00 \n", + "beta[0,1] 589.0 530.0 1442.0 1.00 \n", + "beta[1,0] 957.0 806.0 1425.0 1.00 \n", + "beta[1,1] 913.0 824.0 1919.0 1.00 \n", + "beta[2,0] 816.0 774.0 1455.0 1.00 \n", + "beta[2,1] 1009.0 808.0 1342.0 1.00 \n", + "beta[3,0] 631.0 547.0 1321.0 1.00 \n", + "beta[3,1] 632.0 542.0 1000.0 1.00 \n", + "beta[4,0] 803.0 791.0 1507.0 1.00 \n", + "beta[4,1] 841.0 759.0 1306.0 1.00 \n", + "beta[5,0] 770.0 711.0 1720.0 1.00 \n", + "beta[5,1] 944.0 770.0 1433.0 1.00 \n", + "beta[6,0] 937.0 841.0 1179.0 1.00 \n", + "beta[6,1] 1058.0 911.0 1067.0 1.01 \n", + "beta[7,0] 627.0 977.0 1360.0 1.01 \n", + "beta[7,1] 772.0 959.0 1040.0 1.01 \n", + "beta[8,0] 867.0 2561.0 1591.0 1.01 \n", + "beta[8,1] 905.0 2767.0 1468.0 1.01 \n", + "beta[9,0] 905.0 800.0 1129.0 1.00 \n", + "beta[9,1] 1025.0 889.0 1666.0 1.01 \n", + "beta[10,0] 1099.0 800.0 1393.0 1.00 \n", + "beta[10,1] 1151.0 812.0 1470.0 1.00 \n", + "beta[11,0] 790.0 893.0 1059.0 1.00 \n", + "beta[11,1] 865.0 869.0 982.0 1.01 \n", + "beta[12,0] 944.0 894.0 1619.0 1.00 \n", + "beta[12,1] 1024.0 856.0 1663.0 1.00 \n", + "beta[13,0] 1034.0 1024.0 1504.0 1.00 \n", + "beta[13,1] 1001.0 1175.0 1462.0 1.00 \n", + "beta[14,0] 786.0 956.0 1704.0 1.00 \n", + "beta[14,1] 763.0 997.0 1565.0 1.00 \n", + "beta[15,0] 872.0 936.0 1369.0 1.01 \n", + "beta[15,1] 860.0 938.0 1515.0 1.01 " ] }, - "execution_count": 109, + "execution_count": 40, "metadata": {}, "output_type": "execute_result" } @@ -2864,12 +2521,12 @@ }, { "cell_type": "code", - "execution_count": 110, + "execution_count": 41, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOy9d4zl13Xn+bm/9FK9yt3V1TmxKZKiKAaJI1KWZItykO2xxxaW9Ng0vPAA89fOGisPFhivVgJEaNde7Sy8HK1twNaMAY9l2gYtSzIlMUtNNnPo3F05p1cvx1+6d//4vXpV1RW6OjfZ9wMQ7HrvF84vvd8995zzPUIppdBoNBqNRqPRaDQazQ3HuNEGaDQajUaj0Wg0Go0mQjtoGo1Go9FoNBqNRnOToB00jUaj0Wg0Go1Go7lJ0A6aRqPRaDQajUaj0dwkaAdNo9FoNBqNRqPRaG4StIOm0Wg0Go1Go9FoNDcJ2kHTaDQajUaj0Wg0mpsE7aBpNBqNRqPRaDQazU2CdtA0mi3yxhtv8Pjjj/OVr3yF3/iN3+B3f/d3eeaZZ/j93/99HnnkEY4dO8bjjz/O888/31rnwQcfZGpq6gZardFoNBrN1UW/DzWaa4t1ow3QaD5InDhxgm9+85v09fXx8z//8xw/fpy/+qu/4jvf+Q7f+c53brR5Go1Go9FcF/T7UKO5dugImkZzCezZs4e+vj4A+vr6uPfeewHYsWMHhULhRpqm0Wg0Gs11Q78PNZprh3bQNJpLwDTNVX9b1uZB6CAIrqU5Go1Go9HcEPT7UKO5dmgHTaO5inR0dDA7OwvA8ePHqVarN9gijUaj0WiuP/p9qNFcProGTaO5iiwVTT///PPce++97Nq160abpNFoNBrNdUe/DzWay0copdSNNkKj0Wg0Go1Go9FoNDrFUaPRaDQajUaj0WhuGrSDptFoNBqNRqPRaDQ3CdpB02g0Go1Go9FoNJqbBO2gaTQajeZDxTe+8Q0effRRHnvsMU6cOLHqu2PHjvGlL32JRx99lG9961urvms0Gnz+85/n6aefvp7majQajUazCu2gaTQajeZDw5tvvsn4+DhPPfUUTzzxBF//+tdXff/EE0/w5JNP8p3vfIejR48yNDTU+u7P/uzP6OzsvN4mazQajUazik1l9jOZ8vWyo0VbW4xKxb3u+71StN3Xnw+q7dru688H1fYPo93btqWv6b5fe+01HnnkEQAOHz5MqVSiUqnQ1tbG5OQkHR0d9Pf3A/DZz36W1157jcOHDzM8PMzQ0BCf+9znNtx2ve59IK/HzcQH9Z6+mdDn8MrR5/DK0efwytnsfXjT9UGzLPPiC92EaLuvPx9U27Xd158Pqu3a7ktncXGRu+66q/V3T08PmUyGtrY2MpkM3d3dre96e3uZnJwE4I//+I/5yle+wne/+90Ntx2LWR/Ya3KzYJqGPodXiD6HV44+h1eOPofXlpvOQdNoNBqN5nK5sLWnUgohxLrfAQgh+O53v8vHP/5x9uzZs+m2w1BRKNSunrG3IJ2dSX0OrxB9Dq8cfQ6vHH0Or5wPVARNo9FoNJrLpa+vj8XFxdbfCwsL9Pb2rvvd/Pw827Zt4+WXX2ZycpKXX36Zubk5HMdhx44dPPTQQ9fdfo1Go9FotIOm0WxAbPB7CL+Ce/CXUPGuG22ORqPZAg8//DBPPvkkjz32GGfOnGH79u20tbUBsHv3biqVClNTU+zYsYOXXnqJb37zm/zO7/xOa/0nn3ySXbt2aedM86HEDyUnZ0vct1uL4Wg0NzPaQdNoLiRogBXHGf0xRi1D29GvUfrCk3gHf+FGW6bRaC7Cfffdx1133cVjjz2GEIKvfvWrPP3006TTab7whS/wta99jS9/+csAfPGLX+TAgQM32GKN5vohFRiIG22GRqO5CEKtl5Tf5EaoOH5Qc1q13defa2G7Nf8ebT/9CoUvfR+adSv25E9xJo9SfeiPrso+Pqjn/INqN3xwbf8w2n2tVRyvJb4ffiCvx83EB/Wevpm40nMYSoVp3NpOmr4Prxx9DreGlTmJcEv4ux9e891m70PdB02jaSIaBdp/9O9p3PlbLecMwN/zGaoP/RFGaQpRz95ACzUajUajuYDQxxl9bkuL5msez5/PXGODNBrNEmZ+GKN26c+cdtA0mibJt/+UYNvdNO78t+t//+5/oe3o/36drdJoNBqNZnNk246tLbdhzpRGo7lWKCt+yetoB02jaaLsJJWH/rdV0bOVVB/8jzhjL2AunrnOlmk0Go1GswGGRdBz5422QqPRbMilz4xoB02jAQjq1B78j8jOjQUDVKKHxt2/R+rN//s6GqbRaDSazXDGXoDQu9Fm3DCEVyI29H3YWFJAcz0IfZDhjbZC8yFBO2iaWx6jOk/PX38S4RYvumzt3n+Pe9uvXQerNBqNRrMVhFcGJW+0GVeFUCpeGMis21R9Q66DYzZXavDqaO6a7+eDjD33NkZl5kabofmQoB00zS1P/ORf4+16GBXruOiyKt6Fe/hXMUpT18EyjUajubUx88OY2fMbL9B0ToQMrpNF15ZAKoJQ4Yc3VzQsW/WoND4c5/haIePdKDt1o83Q3OSEUtHwLx5p1Q6a5tYm9Emc+Vvq9/z+llcxSuN0/d3nEW7pGhqm0Wg0axGNArGB795oM64bVuYkVvbsxgsIAcJAGeb1M+oaslQB7YXLEUHRyG/xml/cqbtcdf2upENvm3N5K98qCMHl1BpdCmZhBKM4dk33obm2nJkr85OhiyuCawdNc0tjVGbwd9xPsOOBLa8jO/YT9N1LbOCfrqFlGo1Gsw7CQJl6oNxCqSi98UNWf7XKQfMqF1l668fembB55PZtl2xP0jE30s+69vi1LZyDG48I6ojAvab7UIYFwrqm+9BcW+p+iCE9YoP/vOly2kHT3NLIjn2UvvhXGyo3bkTj9i8RH3j6Glml0Wg066Ni7XiHvnijzbhuhO17kPGujRdo1p6Jm6QGTTTyV6T0u+RqecHy8ah459ac8i04qX6oODFz6dkfMcsgV/Uveb2rgT33LvbUqzdk35eEDCMH6hqi4l3IRPc13YfmGrDi2VRAzC9c9HnVDprmlkXUs7T/y/94WapL3sFfJGzfF6k2aTQazSYEUiGvUoRHVBcuK8XRqMxgzb51Rfs2KjPYk69c1rqXmxKuYh0op22zJS5ru9cKo57Dyg1c8XZW1aDJEJnqA6IUVy6stxNbT+9sBCEL5UuP8iyUXUKpLk285CohU9uRqe3Xfb+XinLSIK7tsNqafw974f1ruo8PGsIrXzQadTPRlbBpj1/8mdUOmuaWJTbyI4Rfg8uoXVBOG+Uv/L9g2tfAMo1G82HihfMZ3p++uErsVlBOG2H73ktfz0oiU1trZrwR0ukg6Ln9ktcTXhln/MV1Nnhx0QkRNFBWYuMFmg6DspOXbNe1IOw6hHvk1y97/SUHaKUbJIJa9K4CrMwpqGZWrxNrj/a5hXdZe9zmF+64fGcnuAGdro3KDGZpIlJIvI6RUrMwcunR0GtsX9BzB2HnoUtaR6kb41hfKtbcO9EExCUiGvkPVIrz/u4kH+lLX3Q57aBpblliI8/gHv7ly17fLIzQ8d1HP1A/DBqN5sZQql8lBTw7SbDjvkteTdkp1DqpgkZ5JpKp3wKGW8AqjKz6zCyMYM2/t/m+N0jPiw394KKy5GHHvlb0aD3sqVfBr15yJkQQXpuBtFGdw554ee0XSmKUp7e8naUBtVGZxVo4iVGPRAVE6ELQWL1wUI8c4C04BzUv5MdnFy4+YPdr677bbkgZmjBRZhx75k2Myux12621cOKSoqFGdQ6hrn0fNGXFL2n5V0ZyvDO5zgSRkhjV+atk1ZWz6UTMpit+sMZgCxWXk1tIM9YOmuaWRLgl7OnXcQ/84mVvI2zfi5U7h6XTDTQazUW4Wu6AUZq8rBRHK3MCZ+z5NZ/bs29e1MFaQhn2mqiXmTuPWRzffEXZPPp1nCjh1zdd1ahlMC9wCld9X1/EaBRAbj3dfL7s8sLA4jWJBhnFyQ2jAGZp/JIbaotGHhE0z5FSCK+MWLhA1VLKKIV0Cw5aI4iuwaoIXW0Re/LoquVio89iFkdbfysFOzviWObWh43O0A+uSksameghTO9GWfGLpLtee4JQMplf/56V6V3XvAbNyp6LoqiXQM0LyVbXue9CD3v6tZumVCPs2H+Z1/cynmMZRr8rlxDxNHMDGOUr73PnBpLtbbGLLqcdNM0tiYq1k3v8VdSV5LUbFo3bfo3YeS0WotFoLsJVmuWVqT78/k+u+dyozGzqyITdt+Pt/dz6pm21d5PpEHYdvuR1hVpy6i79HAivEtX2XIxLSHGsuJE9VyXt6wKnU4R1gu33rFlMeGWU3QbNaKKo5zZ1tJcsM1dGjJSM/ruwns9JNVMcI+fAqMxgZs9F+6kuXPQQhPRbEbrWrpw00mlv/b2nK0HND6l5W48QCRkg5KU5pOthVuew8oOIoIG4MHp4NQga2NPHALDm3kXUFjdcdLHqcWZug4izkiBDrJk3L9+W0N3YqQ09gu33EPTeefnbB/DrUYTUiuPueqh139xoYqPPYuaHLn3Fy3iOhVfCWjix6bVeu04Z4VcBomvUTDteD6M0teG293Qm6E5eXPRHO2iaWxJ7/KWr0lDSPfIbOBMvfeBC7BqN5goJ/S3VUC1x1X4hhIlM9qz52MyPYOYGonqM9fZvWIhw7eDW2/8IwbaPbm3XXgWjNLG8z+x5ECZhx/6LrqtMZ4OB4OZnRnhlrLn3Nk7DFEYUtQi3IHwRuuBVCa9S5EzUs8SGvr/qMzM7QPzsU+vs28MsjCDcKNVMWXFk244V653DWjixyc5MUBJlxRDZwdVfeeXI2Wvej1bmNFbTQXOmj0GwNuKz8pVllKfx10mbtTMnIsdSKdxAUqj5LbGbQs1vNdtVSvHGWH6NEI6KtSO34lxfhDC1Y/P0t9C9onewkH4r6mmWJjDzg2u31/w7bpkknfVr/YzqPMKvYF4kbXcVMlyVsioaRaz8+mmVseFnMOffu+I6Nyt7BmvxDGMzM1Te/pvoeJdQCtEoYJSnEfUcolFYJfDz6khuS02WUXJtKu4WUIHLXOnS1hNX8Ot6SSmpSrL0eyX8MmKTqL2QHoa3fhrjRKG+pZpk7aBpbjmEW6Ljh//uqvRVCbbfQ/63XrhkmX6NRvPBxsqcuKTZ3quVTWeWxokN/xAAUctgzUcp1ireCYaFc0Gq2hL2wvvY06+v+dyozGLUc1vat3JSq1TqrOzZKAVxhdO2ESL01nUURD2HUZ3beD2vhLV4Gmvx9AYLGICItn8RnKlXiY0910ptXG9Mb+aHl1M+ZbjpwH9pNh2IBqMyQFkOMrm2z9hSG4AlsQ+sOP7Of7X8fehF6y990PxHmN4Zbb77tkiUyq+vFadqHrtwi5G9K99HQrCycmy9N5WVOUn89H+/4FOFTG5HGTbPnstwbDTH/rkfgRs5ym+M5zk+NoNoFAilolD31zi+wi1h1DJshhvIVkRzI5aUPJVprzuxGhv+IUb58lMphV+Lzn8z3daeeX25XlAIkGGkEhj6rSiiUZpcc9/K5HbEJUzaADgjP1yVhaNS2/H2/dwGhpqYjTxW5uQl7eNCgh33E/Q/gO+5GNVZrLl3Wt8Z5UmciZexZ9/CXngfszy16tz2pWOIDcY7ZnagdQ6txdPERn50ybbV/HDLbSAafrhhuulFWXquL8GxX9nKQ8hg9fN/AWGyjzC9e+UOW/+aKTa25FJqB01zy+GMPU+w7W5kW/+Vb0wIjMocscHvX3xZjUZzXfjGN77Bo48+ymOPPcaJE6ujEseOHeNLX/oSjz76KN/61rdan//Jn/wJjz76KL/5m7/Js88+u/HGgzpmfpiw6zbC9B6Q4YZRq5Wsm063lajPhat0HMDd+7OY+WGckR+zNOQ2ytMIr4J7279edz2/717cQ7/UOoYlrMXTq2fQN0GELjK5VrAjTO9a/mOd2f0lkZD1nChr8TRmIap1MiqzLYdzxV6jbRgbpATJACG3GEEJXJDhprVnRmW6VVMXG/r+5oPhFcfqjL8QHUesk6Dv3k2WVZj5YWKD34uiXk27g57bCXrvWB43Li0d6wTALI6BDDG8EmrFu0tUF7CnotYH9tQrCLdAyw1TKoqIrDPTX/dDpgrRfRB2HCDsPLDG3jC1A4zIGTS8MiBXHXPl/Is0Bp7DNKL9rTdsX89ZXcm7UwVeHdl8gsBaPINRyyBCH7FOVMI98uvI9j2bbmNTms+h0+y1Zvg1lqtGjeVee36VmBUNm+25d7AvTGVUcuP7dANEUF8VSTVKU63U10BGkcslZCyN33cPfv+Dl7SPCzEXz2DNvs2Rnb10HX4YlVxR6rHi+sp4NzLetSqyu78niWOuc6WVJDbwNFbufHPlLTiqSjYjv8tRrJRj8dnDvasWE43COr8LUKj7UbrpZUVPlx60S4lGqta+hF9DmRvXkTlTr6xb8wtbN1c7aJpbjtjIM7hXsdGr4RZo++kfXVK6k0ajuTa8+eabjI+P89RTT/HEE0/w9a9/fdX3TzzxBE8++STf+c53OHr0KENDQ7z++usMDg7y1FNP8Zd/+Zd84xvf2HD7hlvCypzEqM5j1uYRQR17Zm1k6kLWeynHhn+IcIs4Yy+sG11al6CBM/lT4if+K1gx8KNMANEcZMYGv7d2Hb+GM/psyxGKjfx4S07lhZj5EczC8KrPwvY9BDvuj2yoLqy/fzMWFf+vIxLi938Sv7m+Mp11mvA2B4MbNWpuRfQuPuoxqjNYmeMETdGSuXX6gclk36oooWg0nYfQXzOYXDmjLgMPNzeJEhb27Nvr7H3Z81J2gqDndvwVtWpmbghrYa0zuJReJoIGhC5Chqs8IbM6h9FYSpcyAbEmo0OtM9T76VCW07NRNEzFO/B3fuoCcyXxU39N7OzfA7Br8RW2yQUSieVUQ4EkkAovXNsaIFpAXLS+abN0UytzCmvhBDLRTdi2E4SIhGouXG7+PYziOEZhdJ2tbIFmHzlRb9YM+fUVUaNl+4RfwzENYpaBTG5b49QKv7Lc6mCdB97MDbQ+r3lhKyVUOenoeQwaqFh7a7vvTxV5eXC5jsloFLCygxjupUvRr7IzdFF2kpNTeRZG31u+x2F1Tz3DxMyeW1Wf+ML5zPqCI8LA3/kgqlm3uCVFxqXnZ0WdohdIXh5cXDWhZRbHogmKC+hLx/j87dsAFV2zdcSKRC3Tqi9cve+l7V/EQZNhNAGvFH4QEjZ/O8LkdpTVrHtdZ+wnQnfDqP5Wa1+1g6a55fB2fxr34C9dte0F2z6GslPrpg9pNJrry2uvvcYjjzwCwOHDhymVSlQqkRMzOTlJR0cH/f39GIbBZz/7WV577TU+8YlP8Kd/+qcAdHR0UK/XCcP1axOWUqONynSz9iWES5w1X4WShG39UZraxWZzQx+jOIZZniLoPoIIGpj1xUgIYikat842jHoOa/HsKhGRS53pR6korctdrp0I2/dgliZbTWINf/20ceGVo/O2Tr2HkF4rSmXUcxiVC9Idm87GRlL9CKMV5bkYMr2XoPfO1uD47Aqxh9jAdyFoIFPbUVY8KvCX4bIT1hp4rzi/K5y1qUKdM7N5VKwdb+daEZflkJhEtu1Etu0kbNtFqx+1YaFiHZyeKzUXb8rsNwfjCsWb41mo5xCTb7QGmCtVA0VQx2jkUEsenBBrGicnHYuDvUmMFT6cUZrAGX1u1XJh+16EilQkczUPBCQMxYnzA63I2/S2n8W/7VcJpMQ2BfYKhUcrczK6Xy8QH7kQsYlwvxJGZL8wwYqjNmjIbRbHMXMDWNkzGJWZi0rxC7eEGFwRJW+dQ4mZO49MbcfMNaPKK+uOgjq5mocbSML2fVGEcZUhsVaN4bJDvvx/a/EMNOtAjw5nKb7791F0aOE4zsRPMObex7faWiIzF6Z+qlg7yjCj7VwBQd+9hD130J2wSNFYXSt2wTlWdnLVc/vg/i661hO4UApn7AXMZv3ckqO2afuLpXMjl5+pUCm2pZ1VaZRrJ20iSo2A07PNCQy/gpVde15E4GKsI5QzX3bJ1/yL/+YGjebxK96fzHOm+XwaXrmV2h0b+sGK6w7HRnO4wcbHvdV4n3bQNLcWStG4+/euLB3iQoTAPfzLxIZ/cPW2+QFjLFfjufMZfjKUvWb9hTSarbC4uEhX13K/r56eHjKZqA4mk8nQ3b38su/t7SWTyWCaJslkNBv6D//wD3zmM5/BNDdv+uvv+hRGdRH8OkH3kXWX2XCgqBSinkPGO1F2Ctm+h9jYCxvXWQGELs7oc9i58zTu/C2IpVEIlJ2KFO4uVPZbuTsrTth9BH/3p4md/6do0LHkcMgAmVgrOnIhojSJ0cgTrlhWmXGUnUSZm/dlEs1B+npqjGb2PCJoEBv4bpReeIHAglyS3d4oEhN6kcT+FmalhVfELI7z3lRxzeDX7/8kGDZmfiiKlEy9soH4xIq/VwzuhjJVCjUPo764QrWSdZZVGMVxnPGXKBx/mhfPRrVOYfse8kYvuapPvLFA+8j3mzYvOZEC3w9odBwC04miNa3zopoD46ZTV56KIkrFMVCyZc8b43mCwWfZk1499BOhh7JXRzzC3jtRpoMQBvu7k9yxPUXZC5nw25lvRh632XXa/BxSgh+qVjRMeGXM3CAy0bPasW62CVi1703Kt436ImZ+qKVQKmSACNZGPd0jvw6xNCL0sWfexJ55Y+ONAkZtAVbY0Yr2qGhAX7//f0KtO0ZQxO3ouTHcQqu+zg9l1AxaGKhYR+tYjfJMa/IicpajekAzc5r26li0jtNO0PtRkD7TJY+R4TOt1NcL36TCLSFTfRvXqG0Ra/ZtnLHn6endjrP/07Cyr5qx+t5QsQ5kYkWaqtrAwZA+Kt5B0B01spfpnauap3uBpNxYP8tIrDjSRDzO/u7kqsiqspLr/nb4oSQ+8M8MjgwiDYcLk2wXKy7Siq+7riHAMsWqKPi6ti05p0qRjpt0xqPfIeGVV6WmihUZEF4gkXLj7Tafkk33C3BzaGtqNNeJ1LEnkG391O/5d1d1u407/+11baB5M/HqaI7/9P2z3LGjjWzVYzTbx+89uPdGm6W5RbkwfUQp1ZqNXS+1ZOVM7fPPP88//uM/8u1vf3vdbZumIN3dicjWSc69iPCKyNg+RHYQtff21Qt7FcT0+6hdB0imokFqZ2czJaY8h8i9gdp9L7THEedfAMuFpIVKSlivF1C5hFEfQbXtIFk+icgfR+77NKIwgbrndxBxWvLric4LJOc790L650hmB1FHPo2YfI1EmwnxJBy4H5LdkN5cpl6MvQXJGHEKqM4kYvh5WDgBThuV9tuiY0sdQlTPk+hIrBp5i+mzkLRJdMQxTaN1HkQqhup7AHoOI878E8RsMGOr7Ve3Ycy2Ybcn4cLjAkTSgdAm1pGExCbHkB9DJJNg72fv2DAJv5NEz23L18RKQyKOqDggm7UltQokbZKdySiFKv8+yWw36kizf6brIBqRvQs9D5A0PJLBccT0OeRHPrN6/8ndCG8c1R4HMwa9P8/MZIO41zwfU6ehmieZ+iiZoIuF+QxH3v0mau+nwPWhcy8fs/pI1m5DlE/R0ZGEWBJkGpFzELUaKt2G6t2GmPMRMk+8eh5SMRLdHWAnSWaqiHKV96azfHTfDkazVTo7k4hUEpyeVeddTL4ODmBZCMeiUArBNEgkbdraYtQUMPEOsfY01p2/STLl0JaOE7NNxKlnwF9A+LPI3bcvX7fyHGLmVdShL0A8irCk26qEK+6JVdf2dLPfW8cRMNKRYmd3J7StXlacfybK7kwt1wSteQZWYu/EmBiiU+SgYzf4IBZj4PmQ+AhO/Tyk4tEzCSQ6EtG9mo7RFUvQ3whIe5MQa0d1Jvn+iRlu70tzpC0G8RSi0ryHwwCRWvq3h0g60bNR9UjbDdSd/wPJuX+B6gDsvIf92+9DhgGJcBeJdJJEoowt5arnhdIpVNKCRAd0H9r4GEvTUM9D30fX/v54vZA4wrmZRXYPPUdnZxuJ9G9FacRWClGIzqNqi0Mti6DUOp9HJ2Z46GAPnW2xVc8yJBH9t+OkY9H1rhcQoy+hjvwSWHGGFiqcXajwqx/buWxj6EXnpz0e/Rbd/yUaAZw+v8gjH+kjsaSW6ZYRYYZkRwJq0aQYnXvpbI9x2209DC9WSBg1jJiKntUmRycKPJzKkLK9VZ9LqRicCjnUmUQs2bsRDb91DVNxi2RbPDpm8RGIt0Es2bw34tAebceMWRjKIplySHRG32PaLRu62uM4dpykvXkvNO2gaW4pnLHnqHzmiau+3bDzIGH7vkiS+CrICn8QcANJ2Q14YE8nT/3e/exoj6OUwg8Vk/k682WXB/Z23mgzNbcYfX19LC4u120sLCzQ29u77nfz8/Ns2xbNDh89epQ///M/5y//8i9Jp9d/hkdPv83ZYpKH2w5gVmYR1TzB4jzQzk/eneITeztxmiIC2XyB/moDL1+hVvXwQsn4bJGOhI2ouTiVOpz+McHOB7GqDUTDJah6mNPfwz30y2uU+szMOPHFKcTsWcKu25Bd96CKZazsHPKtvyXoPIjZiAaUbmF1fx7RKBA/8W383Z8mSMRwfAu/WEc1bBJnniXsPIh34AsbntPZUoNd5QaOhCDVQVCoEcsuYDRCZGGCU1OSQ9s+iRU2sFU7fqG6KrUuVnUjVbyp/4vYI/8rhYqMZOWrLuHCDMb4CYT0kaGP0XBX2W/NTWCrOF6pRmis7TsUq7kYDY96TYG79vuKG1Co+xxaOIZRHCPsvYve2ii99TLjqV0UmvuKDbyAt/vTmFUPs1gCK4a1MEzgW7jba+DXSTUC/GIJb2md4TeiCMFbf8eBwizZ1G00zAay485Vx/DqSIYHKy9hH/g0KmgDEhj5KRqZLDWzj0KhRnzkLfx6nVr7EebzNT6aPU893oFr7yVx+i9YvG03xxt1tmdfRtVyFIs1lGNiVALswEHEd6NqPn6xhuXsxG6MEFQboBRuRYGocUfhGJYh+Nj2Nl6ZyNOesKJ95+cxallq2z/Xum6G6ibmSqTvkVuqzJ8AACAASURBVB19hkp4CmklcbLDVFJpalUPyw/Jl1wSdY9a1SNfqBG3DGzfIj7+FsH2j+GVG4RmdC6MSgW76uIVyqhmJKJadanVAwqFGrPFGrusErKZOhiXSYRXIvBsjGZ9mJ+oIIPVExhOPSBMbseqNhsPC2PNM7CK0KJzz6epn3ke9+AvYpansKoueC4qlkZMnUPJANGM2rqFKrGqS1CqM0OF2cUqNdNFudG9UKt6ZAs1KpQhn8MslXALVcyKh1Vt3s9KRtsYeZ+T584xve1nOXD6H6mbDRACz48zNTmLbyTZ15mEQo1ypYFStO5RW7VDvBNz+FVUvAf3SCQWIxr5KHK34plzxt5FNHL41ZByuR3TEK3tYO1G1Bt0ODZWLI3XaFDNZFDxLkS1jlONfkdCp4GiDafuUW+u+9DuDswgpFCo0ZlUFGpLIkUzJEbfxJMpfHMnolZiLmvQm29g2pKUUNzWGW/ZkK16xIRPT9XFy5dRCRtr7h1Kyf3ElEG5VMdt/paKME1y+hS13XOtxu0hvdRPf4/y+Hukdt5BzdyGUXVx85XWeQjdgMDyqVVX/6YopfAbHlOlCp2pWuv+XBfPw/ATNF75GxaKJkZ9gfb+GmY+jwhmCLbdTazq4vrRNQOoVT2CMKCGwi3UiFVdlClbvxt9cYtuoagVXNo33rNOcdTcOhiFUYzqPP7OK1NA2ojkW/+Z1LGNxQU+TCil+PqPz/Nnr4wSswx2tEcpEkIIHMtgeLHKf/rB2ah2QaO5jjz88MP8+Mc/BuDMmTNs376dtrZoQLd7924qlQpTU1MEQcBLL73Eww8/TLlc5k/+5E/4i7/4Czo7N55U8GdPUfEUhpvH772jWYMQpRn2tjmr0rXenyqtqnEYWKjw+lgeozKDlT0bfe6VyGQXoxQ9QIlm+sw6IgD27DuY1RmEXyPYcT9GdQEjbCCCKmHbznXT6k7PlRlarCL8KrLzIGH3EVJv/mfsyaO00uFKkxjlySgVboM0yRNTRRZKDURt4YL9RNuIeVmUUhi1BZSTZrHqr332pY8IooGqUZ7GmfhJtP/qLGHHvkgEYp1aMuUkN1cCVERpfusoqpm5QWZzJaYGI9l8o5HDnvgJXggT6ftZKJR4cUmEQfqAQgQNrCVVSxm0xFfWS+wS1XmUCvF2/isCr8bts09jVOZoiNXpgvVajUZ5MRI6MONY8+9hz71Ne+44poy2v9QnzgskFCfpChaoukErEtleOkc8rOJ6HqS2tRQakdEyyk6jhIWyk1jzxyPz41E675Ic+NT8PDUvIN/sZ1aqB5G0v9OBt+tTOCM/wpp7N1q3fXczPU3Ra1RwZI1KYjfGqsS7qAOVbRoYS0qOboH46b9FBFVEUF+uh1t1zVbIlSPoqAwjStOcG59GDf4QqymyItw8Rj3bcs4ACAOozK2qp/T2P0K47W7C9dIS1xFqMGoZxExTWl6Gq+yxcs0eZOulzCrFtjYHu6liuFinlbYXDyOBEJnoicRepLyg/k+AMDFqC/QWT7B/9gcE8S5AEnYeJDb+IgPnT3Pi9PGojUZQX2OCUcsgEz0E21Y0Qg8aUf3aUluAZWMBxZmZLOcXlmtDzdwg8ZP/DXviJ8QSaczuQ8hkb+scGI0cZrPGzcwPY9TzUQsPovf+SLYaKUv6dcRgJKMv3CJW7lw0Oe2kGFioECZ6eN+6h3KwlL0AK8Uf354oMJRpOkbNNEKzNElaFhnJ1nhlJMdMMaqNU7E0tfv/A8ppR6b3EHZEIiqO8rGDEqO5WvRcoFYp47qBxA8jJczTs6VWBoUQAqEUCcdgvRo0szDCaydOUvUCcFLkF6cYW6zQa3sckiPNZUYJOg+BUijDwq1XWuUdtmVAsqlEGa6tgetM2FTPv4CVObVm3yvRDprmlsFeeB9/z2fWfZFfDbz9jxAb+eHmRbEfEn54doH3por8z589uO73n7utl4cPdvN/Pr/1PlEazdXgvvvu46677uKxxx7j61//Ol/96ld5+umnee65SATha1/7Gl/+8pf57d/+bb74xS9y4MABnnnmGfL5PH/wB3/A448/zuOPP87MzNpmswlLkXTnEcUJnJk3QYXkikXKc8OEcrkGh9DDCuukMu+2fg9CFb24lZVAOh1RZMPu5kS9t1UkHwQefihX9WgUzToXZcXwrRTVeD/W3LsYpUmkncKoLWLUc8j03lWCEQAJ2yDXVFwTlVmc0R8RNAc3q5QK/TpmcQxn/MV1z6lAolCoRA9meTmV26jMIWRAuj6FCgNkxz6QPu+PzTO4sLpHkPAqkRKhnWSmYSPtFIR+U+L9Nszy9BpBC4jq3KzC2Lp2QSQygozEUy7EWjyN8sp0VaLfIWW3gZXANRIk69PI6gJ+IKPR49QbvP/Oq5GYSm5w2QEKokHkmloVpZgu1MlPnELFO3CNNmJ4oALGh8+QqSwPFA0V4Md7AIWRH0SmduAe/EVGtv8ioRk5c0Y9i9HIYQiYEv3M2ftACEQjT80PUcrgYKdJzM0gcsOAolTMEQw+h2gqiwq/HImbEDm+S5EoZdoY5WnilqDuS87Nl5DNezUMA8zSOCrRgwi9ljPkNN9lCoO6H6k13tZ4n3bVdOKVxDfiCCtGpuIipcJoOpPCr6Finavv43oWloR3ViphCuiqDGIsngYUdrITe+YNzOw5spUGgZVEGRZBzx0AzIRpRl77R4zyNEZ1HmSAee6fCIeeRSZ619xDsZEfQ1CPat+WBuheGdym+qkKV9Q3qlaNW6v5sV9bodKq8JqDfpno5bi3i/lK5ET0zh8FtwjCQLbvwShPrBI1EX4F1/c4N18m0VigP/8mc/HbCDLnsadexShP05lKkO4/gnv4V8BeTruzp16NajSL45hz71JanFx2RpXCKI2vEddZuva1comd1VOtWiqjOg9KEfTewcT4MNWJtzFqi5yYLjCWrUV1gv5yRMksDEdCLyqSrRlZrOEG4fJEjVKoWAfe7p9BduzFnH2b0WyN6uIU++d+hNWslcwtzpJ7++9bioc/e1svH+1vW74GRLWEhfgeJvN1VG6QQq3Rsjn53p8jmj3gYqPRBFysdz+7utMkc2epTr7bPPDVz2m+ETCyUGBucVmsJgglb0zkmi0TouUjkaCojkzGu/GUhRtIRD2H7ZVQCMqBQdWMnFW/7+NR3ZkQhF2HGZrLka1FE21+IJnpuB9v10MY5dllddAm5xbK1LbfFynbboJOcdTcMrhH/g3u4V+9ZtsPtn8cZcWxZ17H3/3wNdvPjSZb9fjmi8P88b++g/b4xupp/8vnDvGl//oWZ+fL3NF3a6R9am4O/vAP/3DV3x/5yEda//7EJz7BU089ter7Rx99lEcfffTiG453sWv6p4R79mLJKH2M6gLlrjuYzNc53JsCv0Zs9FmEPIgQAtWUkN7dEacrYaMMq/liVlilcXa5NeiPmu+emytiFCrc2a9o+CEWktTUq3j7H8Hf8QDe+eeRuQGcnoMEO3ZHDXb9MvbsG4Rdhwi7DqHiywIpMcug7oeAwCqOEqKQVgxMZ00qtnTaN1ZsUIrQbkc5irB9dX2pv6SUjUDUc2DYKGESXjj9HzaiSE6jSG70HfqMGm3uOEZpFJkbACSh0x4NIAFr7h3M8gzSTiDjnetGNIzyNGb2PDK1DXv+fdyO/dHgP/TATkBQwxBlWu5A6KNMm3hYIe3VWUw9SB9Es+jVRXZVXsFQiWavrWaEsZ5HNApgmAR99+Dt/SxGeQZpxkjZgrgfEBv8Afvc0whhgp1iJvVJVsrGGNLHCOqEHfsxS5NI08EsjtOXHyKX/gixgWMop41AJZCAIxu4RoJGeiexyhz5uo9VrTJr19nnFqOIg1K8PVnkYL5Gz95DGO1xumk6JEiEDLEWji9HFw2LrlQcPwix/Cod9fO4yV1g9KBMG3vqlVakBBU5KjK9i9CMk10QxNvKWIXj9Llvku89REelSDpeQ932bwj9kK6kHaX3+grZvg+jPInq2B+1ggCs3PmWmEzk8Ecs3XKhESPRyGDl30G19aPiXUyq7SSMOnEZtBTzKg2fWFDBqM5h1LMEvXdx1tuGW5znAfVeFAltRmKDUNIw2kmEPs74i/g7Hogig83oUnSsKydUVVPK30KZMYzQjaLPyT6MRgFRW6QURD3Dws4DPNRh4MbjDGdqGAKEW8YwFzFKU+BXId4U1FESZEjdl1QCm6LcQX/Swpk4SsOXxJpOTCgMypUKRs1fJcwhUzsiKf56jlLXPcycOUpXTDTbW0TXysqeRSZ7kak+zmRDesIEuxO9xOfn6faLmEGNUCoWS3V2xbtwJn7K4fhOrO69KMMjV3HJUedgfxdB/wORo2/ayHj3cuTbMPmFO7aDV21F/UFB4EZNqedP4Tcdw6DpABtEAirbtu8k3flYyxmeLjbosAJSAG4FYeRwpo5S6vw4ezpjfC42jbE4gZH4ZLOPn0SZMYLUDmSzb9uk6iPI1PGVgRc27VmRGp4SDTqskKRT5khfiaB5sxkCPrMDZgtV+nsVRmUWozTJwHSG3u5uemSJhtNDm2PhDL5APrUT3BIp08dcansRetH9F+uMouypna1YseMXaZ97F7Orm1K1xll3N3cvGRU0uDMYIBWMRVkDm6AjaJpbA69K/MS310jIXlWEiMRCmgOMDysdCZv/41fu4BN7uzZdLh23+O+/e792zjQfGlKzr5FszIFfI+zYB0BvOkG/U+euHW04ltGaDW6zQkyDqG8V0Df/EqqWxSqOYk+/BsIk1/kxRtseYK7YnLGWIaFShKHktbMjnJhuSqxbCQy3hB1UscIG3r7P44z8KEohExZhejciqGJlz0cDqdIUopZhNFuj4UukkyZs24mMdWIVxjDquVYEQaZ3EXYdjiIPGyiaKcPCjfVgFkdbg7UlJosuY4m7UcLALE9GvcwMu5UGBuBLhQyCqG9QLUPe3EallEM6bQgF3q5PUW5IXpo2ms6YjJoAB/XmbP6KAfUqw5pRoEAynq8RG/gu1tw7rRl2w6vQwbK6mtHIIdwSVbOT2fZ7cYJlSXRlJwmFgzJjKLsNozSOcEuR5H5QZzxbQ1ayxAf/mcS7/x/Jk/+N9phJ3DIBibJSxP0CRmmC/cXXVknO9yYgpSpYi2cI+u5BduxHxdI4fgkUUdq9YWGELqYQ9JlFekQRKRyECuhvj9OxfR8qDKiazT5TShKLJwil5OR0jnI2avtgLp7BqMyiDLulTrjUY6swP8bwYpVUZYiPll5mW/EEKvQQQZ2as41yKxtwSVa+gRnW+MyhTvpSgvmOe5hMf5yO/EmcoEzVC2iffw2pIF/zafghRmkcpaK0S7M0gWzbCTLE3/mp1sA6SnOdiRQzFXRWBpDCxFABoeEgYx34o6/QWzzZUvUUXhmkT5/IY3ftBcNCxjqiZbd9DN+KohHW/PGW8zCdK/NuIbl8HuRSKwtj+X4KGlEaporkCZXp4B3+FVRqe/OeybeUJ+3Mcdobk3SnbIxahpnpUaYLDYQKMYI6zsRPkLEOjMoMQrEczZMBoAitJLZfot+fJOFladt1B6k99xJsuxs3DFkMEuwyctgzb7bSUqP1PcK2nahEF46XpZzcg2gUmqmIUeqk8CvYC8dxZl5nMl9ndm4W2bYbo+8ubEOAgHzNY7pQx8wPYlRmUG6JskjxnrsLgUI2lSet2bcRfhXhlTHcQrPfV/T9s+cWYOhHrTYEscHvYc+9gxImGboYT98HgBtEkTIhoOKGvHJ2nGDuBMeG5xnJVhnMVJgt1pvPaRGjNo+oLtA+9SJxd4GpKlTqdYxaBmUl8Ps/SfX093huPEQ1nf4djSFCr06+7lF1Q8L03qiFQnkGL5Cks+/jZ0cYtQ/zYq6n1XdOSkV5YZCuWBS9U3YKZSeihusyxMgNsiP3OlUvwN/7GeK1WQzp4SCjtgOAPfc2QU8kDCXqOXLzE5QbHqKRp6d0ilhQxsqdJx5W6K+caP1WGbUFYrVJxuczqxqAr4d20DS3BM7UK8TPPrW5pu9VoPbAf8C9/Teu6T5uJMOLVYYXqzy4f3PnbInelMPR4SzHp4sXX1ijucmxS5M4QQVpxjEqc6hYJ2/nE5wdm2C+7FL1glZTYK9Ri3o8NVN6pFfDqi8QdBwg6LsXDJP2uI00jCiVJawTk1GfpUylwR3BWbrjiunpcSZGTmMuno7SAgFn8J8RXhVRzxJu/ziybSfCr1FWCeTEa9gzr2Pmh9k980OE9KN+wdUFrMUzeLs/jUx0tfpryXgXrdqr2XcwymtTO4X0acyeIlN2EYVR3hxbmbIjsCoTyNADGWJlz5FwM+zsWJbuXii7VGp1zNIEYuRlfCtN0epF2UlkagdCSeTsO+zK/pSw8zAELkHnIZRhIUJ3bW+0JkqFmMVRzNxZjOZ5NpYacCuFMmy2mRUO9DRrwoSBctqoO130qBx9ccnD+9MQBlh+maQsEHYcQJk2YEaS+YGHMh0Gsg3U/PHWwFQZJrPlBvm6B34N6VXxsQBBZ2WomT4VsTttkrQMjEa+2QvLQ7btZLrn09hBGRHUEY08hl9DCJhQfRhOikRpgNDpoF6cR8mQ2/fvJZbupuIGjGar3N8fY2c6hlspYFdmsIrjhB37UIneKPLjpBHVOYzyDCKoE2vrZrrjATynm87Ekvy9gWiUmJqd4vXw9qhp+JIDHtTBrfLThSQD8yVihSFiftTU2LfaaPiKgdGx1sA3CCVGbZGKD7OyK6prrGeJDfwT6s3/Qnkhqt/JV13OH/8pVuYUBiFWWCcIQ0zLxJIe9txbDGUiB8X0CshY5JQa1Tm6/HkOMAUywHCLiKDOkeyz7I+teMc0J0XiqsFOtYAz/gL+jvsJU/2YucGoCXUsmjg0SxPY08cw84NR4+3Ow8QG/3nFc6Aw5o/TCEKM2iLSb5Cr+pjFMYrZWYJKBscrEFoJaD6fMt2P1ewHFm0iBBlSKBVIlIaxhEKogLHJcXKDx3DGX6LSex87nTqfbM9TO/xry9FMokbNidN/g5kdQGXOozCpH/l1ZHo32Imo4bkK8aVislBjdKFAJb4DVMDtTo5t6RiBEW9OIClkqp+w+wjlwiLB7En6828Aqin739acECo273M7akugJFIq3p8uUXH6IkfFa4q/1DIgfXxh0zb3GihJw4uugZKKmGVgSo/F8TOkjYCEbfLzH9nOXf3RdRWNAiKIIlJ+cZb0wtuUKpVWQ3mkjz3xMvh1eusjOJNHo213HaTLqNJjeZhCYC2ejPr5Tb3Oy0OLNJxubCeGWRyjd+GVaF9eGc9rcL6ciiJfSkHQiCbATBPsBNWdP0O2/aMkbBNz8QyWX0IoxaJrMpsvceLcWbxdDxE/83cgfWSqj5iXo1DIIkZfwmrvx+84hLvv5zA797Ctf9/yvWDGGMxU8UIIO/azGdpB09wSOOMvXHHvkK2SfOv/aRU5f9j405+McHR488ajFzKWq/HtNyaukUUazfWjYqRYoJNG/4OoRDdh+y7uNKfo72pjseoTMw3OzZfxlMHhvXsxYwnsmdexgzK7O2LcbwxEzZyXBgUTr3Bw8SWGOh7CLWYIp9+hK8xiE1JQcWZrJr292+mVi4Txbqywjh1WkApkojeaLS6OYs+/g1kYYWChwkT3z4D0WZgdZbrYwFAhRmUWszxB2HmQkZEBqrUaS7UXzsTLmJmT0eSVFcMoDOOMvbDquE3pU/Mkbr1MKX2EYlMARCoFKsSuLRCGIcIt4gz/gE+lM+xsX3bQBNDw/SjtUSk+Mv13mCISrzBKE8RP/w1Vq4dqvB/hVzELI9ijz0ViKa1B2traXqswAkphGYLd7TaVaolGufn7pCTFYoG3xhZ4a6I5eDcsVKydrtoYZS9gjh7kwA8JR19GIQiUSWzgnzAaOaSdQjntUb8xpXASbci2/uVJPmHSHrNJxy2s3ABm2MDHBMNmlH7emYoc4FzN4wcnpqj5ASiFWRhjeHqeSr3BvoXn2bP4E2Jn/56gnKFg9eCHkvsLP4bKPKZXIkjvRjUKWItnqIQ2ojyLn+xDKkW57kVCBksm1RcjZ0AIlNNGbOxZzMIoVu48Mrkd23a4szOkmDrIoH2Ee7YZOG6WYNtHiXl5pHAiNUClQEmU044b3xbdEyJA1bIkvRwF3yJc0eh8Z0c0+EeISMm4NEuqNBilzTbvgCopimG0TqHmknd2Rg2IDREpHGbP0LP4FkZhGPw6jTBk1E2Rr8tIZEEpRHWBxpnvc7KcJqyXkc3eY5nO+/B2/cxyhozpIBpFsmGCaq2KpwzGiz4nFhqEHfsIuj+C2v7R5n0CImxEqbsqmoyI6rCiqJkyHTyvwcBcCRV6JGqR4+aHkvt2d7Kv9Db9+bco9z1E2LYDwy1gFidavf+gGUVXkrGy4D11J0VSSOFw2DtHl6hC6BLPneW9M6d45dQA77x9lGw2qj0VAoLeu5GGg/BKVPs+iRVUiJ2P+gaOzOUpD78CCGaKdTwv4K7ST+hZfAOjUeC50+MEXgOBaoq5RJMyRi3DrvoA1Xg/hpNASIkXhKj5k4Rdt0VpwkqhYu2tSRzLNHhgTwc9E/+CnTmFWDgZpTUHdeyF4ySqU1QTUdpeKCWNIGQoU2FgocJ9tx9k2ycfI7RTZCouL71+jNPD0WRHeWGcyZlJslWXuhdw/55O7tnZjgwkE5kcC+ePsejHEF4V04kx1/MpAOZzRea8BHU/pBHIqMbUdFDN34RUY564AXu293L33Z8gNvMa9vQxUtnjfDp4halsBeGWMLwSoRLMl91okiQ/hHASxG0TK3ceo9moenvMQ0pJsd7sd9goIKpzWLkBhJIs+gnOd/8cfjmDyA0RH/oB6tz3OFHuYKk8WSGokcBpLGzc27GJdtA0H36Uwhl/EW/f56/L7oRXIT7w9HXZ1/XkvYk8p+fKPHbfrkta71c/uoN3JotMFeoXX1ijuYmxpUtSNUhMvAgywJ4/TtpboN2GB/emsUyDyaKPZ7eTLRaopA4Q1AsYMiBX9XAreYzKLPb826BCCtY23jE/Tv3Ud5Hzp7DdLLHaNCXXY6YUMjA1h5/azeBCmUy+iEBRd3qRoY+VPYNM78R0i7zR9ggLYju3dyms8gSzmQWq+Xn8cHkGWpkxqq6PUxzCrVWWa7pCLxpAhh4EDd4fncFr37/quAWSDivACuucGZ+lP/d66zvPShP0PxAN5swY0unAGPoXhjNlCBqYuUFy5QqeiFFuBLhunY6OXtoas830RUHYeQgpTAIzQcbq541SN9nMDNGopmmnXKfJremg4p3UpcWp+RrDqU+w2BAo08HMD+LNnSUfOC2p/aBRjiIjQuCLGPH6PEPzBWrVEnLHx4nF4pHTIAOs7GlQfjTolx5WfhDfbURpa8Kg5AvydQ+BINh2N36ij+3uGGVS+LlxpvKRwEGbY9GfjuHWqxDWCXpuZ6gaozTyJnEvS2DGUYlu/NIMYxPRRFZSljGNKLXUrs3Slkhilid54c23qXgBs+YOFssNTs2WyVR9Uo6JY0VNd83SZOTYhj6iqWBozb8Hps2cF2d6dhq7NkOQm8CbP4s1+VNEUCfXfgf9+TfJn/4xA5MziLGXsWbewKss8mDtZbYV3mfe3sNY/xepVUskilE6bXf5NN7saboyb4CSmPlhhAowpBeJj8S7wTBJ77yD/u07WvdTaDgoM87QXIlQhiQr43jJPurbH0C27aRaqyHNBK6KoqgIQabsMluIJinczBAnZ8o4Ez9huiIZzLkE2+5qHu/7yJN/R+3MM2TDBK7RhjvyCuX50SiKmTuHGH81uodUGKXwNRUrW+qQrYxag4QJh3oTCCCZilIpz85VOFVKMF3yiLuLbDv7bazCMKIyH6Ue222tjQSBz1yxivTqHKi8Q184T6IxS2n/ryC7DkTy9kGd28MhdtbOsSP3Jm0Lb0Q1cEJg1BYw/Ci12C8vRhMvSIxqhmMjGQarUZ81qcDovY3elEN38TSilqHaeSdlXyBUSNULkVIi504ggjolN6TdnaMhLSBkeC7P+ZFhrMwJZHonoZQY5SmUMPCDkLFcladPzBLmRmDxPIOFKCJVrrs0nB5G5DbeMh4AYbBY9cjWPEIlCZXinYFRSmefY2g+R7bi8/+z955Bsmbnfd/vvPntHCbPzWn37i42gBe7AgmAgEyJpEiTlESZkmnackkllcolmbblKle5ylU06S9yyVZwFUv6YtAmaYoCA8AgBhBpsQB2sfHmMHfu5JnO4c3hnOMPvYRMEQIpggJN6P6+TU13vz09Vd39nOcfcqtOgbvwryVHuDrFMATTKGZ/knDjeM4szXHIGSWK0O6QRlPMwy9ysPUWt04CjP7b+IYiKxVhVrIbmhzMc2ZJybMbDWalyd1BxCfml/mpmzHxwTvEwYw7coOJ9BBek5OTA6RdZWsuOJglSA2mzlk//iQH04Ri48+8q1zQpHFIZNRxyhBrdBfVOI0qSpJCLqTtuiQ+vkMazRjFOSdlhdiocDa9SV5kbPVn/Nyr9xiMRpRSEx/f+ZqfN48HtMd886NK4ms/upAVfQPILn7PIib3myzN8Z9++iE//C2nqLn/btlCLd/mO55Y5peu/4dZ5P2Ybx4slVHVIdLyMed7aLvCZ6wPcPMk5s7RFHn3V1GmS1kWGPtfoDq+ycnOHTK7ST3cYhwmlJ3L3POeIzy8jZnPaJsJl/TeV4apSFSZpQqvUmOTEwb3Poc6eI3m/DYpDraMsYaLeGZRJJTNc6g0IglGSKU52HqHcnKIKDMEiy/t6IX0b3Zwi3v6LKlZ+4qPQ9tVMAywXJSGZriDGj741wNcmbA6fo1ZYTKoXeU9Xg/7XR+aWQScW2mTjXao3fq/cfY+TZkGvDNxmCYS99FvYQ1uYIdHaK0pleZ49x5HYgWvcwqRzcmcNgfDCZX4iHq8x+2HD4lnA2JvBSwX8buD2VfxxxWb70c2zmC0g0FEjQAAIABJREFUztK+/AEuZLdouVCsXcOIejiOxdrsDcp4xN44YVh6gGK5YlATGZ2it0jpR6F6N6mZBdhVtFNHV1YRqkSUIcnxbZy9T+OXU7RpI5tnOWq/yHQyQg4f4By8TCV8RIoHpv37YvbHUUp9fAN353dwH3ycpgvu5nMgBHYRILI5M+mTv+vbKawKrmWhLB/z4FWiNMWMeqzXbXSe0ZncpKOndII7gKZqG9Q9G7RENs+SnfkwQmWg5ULiKlOKwRZe5xSD5rN4+RR/codJfw+dBhiTh4sv9LpElgW/cafPYSQWg9HuK/QLn8SosaTHnJ++yjSKKQ7exrNM7DMv0TNWiTtP41kGQmZI0+NQrJG7y1jHryHygNn1j7P15m8xSwuElnSC+5jhEWEUMYtTAqrkkwO0lghV4skAQ2Y45fxdCV1JKCpoVdCMdzDSIYbKMbIp7cNPs3r4W2jDWYREGBYKg0vTl3FHN4lHu4BCaIlIxguZKb9bU1Agoj7W6M4ile/ddaQZ/q4XK6Q4uYUsC+7ZTzIxFxUHbmuVsHIKy/UpTZ+o/RTSaSJUuaiFeHeLZ47ucjyNeHR4jBkdMxYNIqOKylO2tq5zb3cfEfUx/TYdT1C1JL2VD2FUlzkz+DS1+ABztouIB4STE9TJO7SibQrhILIp60ttnPoyQpcUZo0HxRIHsxRLZYx2b3CGY4IL3480fSq2ST3e517epWye40a+Thn08IopQiueWHKQ/hLK65BNDtnvDdFuk2Cwy2cfDNgZJViGgVp+mtKuYRURcTTn0dzg3gxWymOuzf8VpkxYViNaDlxaqvLMegPPsYnikOfWqzx/qsH3nMq51skQeUCNlHUno+1bJNplZxIT5ZK1msN6zWajZrFZHDCNMxqm5Gp+Hd/UNGd3qaVHVBwTw4BqdoyvIoSANw9mFHaDWq3B5fHvcC36LG6ww/zhF/GiQ+aFwEtP0IDKE8w8QCqB6VSx1p+nuPx9lEpjzHYw80UwiDPfphLtg9YUK89jzPc4HA65cTynlAUUCb1H15FaLLa7WUiqbbzVq4vh/vhLVD2P1XYL4bUIza/dE/t4QHvMfwAo0mf+s3dPyP79U66+gDYd7ONXvyHX+0bxd779Av/JC187dejfxt96/1n+yvN/tPs+5jH/f2FoLjNPS5TpUay/iKqscG2zyoWWgS4SfKPg3OQVKsPrGEgECqcMqCbHKOFwbv5lvOsfRex+jkcBqGjAU06Pw86imzEVVfr2aUSR4k7u4cVHnG+7tO2CYnZCP/dRwiRpP412Gws54HyfzdHL2MWM3VECAuLu00TuKi4ZL+q3AI22fKzlS2zSoxA2mB5vHkwZRBlaWKjKKgCV7JjK3f8H++DzJMGUj73yDmU6Z+CdozBsep0XFy+GLCikJnz4BbpqiB0dYoQ9+rFGoJiFwWKokhmpVKjaOkP3LLfyddThl6mNb2AkQ2a9R8wnA6rxLlaZ4udDnt77KLXkCFD/Oi1OfxWJ49GXMafbOPMtDh+8zmzcx0Ti3/goRjqh4xk0Lcm6sZAbhtJiOjohLyVzXaUj+wRpycEkol/WGMYaY7bYsmixCJIQssRP+mzqHkXrMsgCu/cm5/URnudj+3VEOsPWGSVgpiOOnHN8x9b/jDHdYW+SYIWHWMV8EUCQjIjzEhHs0wi3sWW0KBJvdAjcFUCwnO0RJRF5NMXIJwsVIILu8Ev0S59ImTTTfZrhFlI4nEQlhVwMHCIPsGa7aLcFZQayRNk13oiWONh6G2dyl/evaHwVEDtdivYV8vppSsPBUAWrdY9Ou83Dle9ENk5RSIkqUmrtVYwyojl5C1dnlMKg5lm86nwbpVIsuxLLNBHBIaQzPBWjKl3s49fRlk+j4tFhzsE0pSwVo9oTqNoa51oOFa/CXtmkOruP138La/KAUw2bib1ChosRHWOdvIXpd4j8TVKriS0TbFOgTZfD7rfCeAtr55MgCygziiLjdfE0hswoLR8w8LLhYhO69l7EydtQpljjBws/pioX6YuqoFh9gWLleWT74uIQRJZMDu+zMr+JDk7YHH2eXu7zVC2BPEQDaeMcurKEkfQxx/cXHlXDRHtttNbU0mPWzYDS6xJQQ5s2m9lDmp4NTp24epakkJTRlLWTT1H279Kd36KS9ck33odqnGKuPEq1SFPU8Qhzvg9FzFJ0F9TiwORKcY+qbVLJeuTRBHf/c2xs/9xi2DWgm+0hDZfp4T029TGqugJug+XZO1TmW+R5jnabKCWxZAwyJ/JP0Z+n7E8TztbAyGYU2mCaFAzGY55bFvjTLcZxwavFRR6Mcop5D9/z0ZaPVJqLmxs8/aEfYqXdwbEM7t6/Te9kccil6huLQyKgZgsuLVU51fRpeAbW+B4WOWV1lVPqiIopqWw8w0bDwVUJI1UlLxWhs0Kj2WGp6lD3LBqOZr04YNPNuGY84NlTTWzTws9HGI8+xWbdJsJjs+nROzlgkGhuncy5vbPP8OFrjIaH3Hm0y9H+FseRYhim2GVMZjV4EFjc295iNxRM45QwLbmxc0QWDAgvfh+NisulpSprDY9O2WdrXCCAszWJ21gjq6zSirbYsL567+Tv8nhAe8w3Pa2P/zWcnU9+4y4oBNMf+BcU6y/+ke5uju5gHb0GgNV/B2P+J+/funUS8MLp1r/z9ux32Wh6uJbB4eyxzPExf3rZnL5OzTGwwkPM0V2008AIT6iNrvPcRgUxP+DhOObeRBMaTbJ84WdZH30eW0WkyqA4fJPV4nBhFl/682T9LS4dfwIAx/NozW5zfxCT4CKSIfNM8rrxHKF26GR7xO4q85X3QZGgnQYYJvvdD5HXz3B1vY6VjNCzA2rxPnU9ZzYdoipLlN2nSJKYspQQDxkOe8xHPSLRRLYuLbxWAsbmMvfUaayTNyh3X2Z3MMUc38MO96B3g8PjA2CRRqaaZxg1rpI1LmLN9zjKXSalQ6sYEqQFUV5iTbcxhEDPDjnKHJTWHFlnGAQ5sn2Jk8LnHedbkKaPod+NEdRqIYE6/eGF74uF1806fh1jtvOVbjhrdAeRh2S5Ip2doNIp+dE7GOExZDOSaMZENEnxcG2DQkqKomCWCzxyzrohliFQwiJoP7P4Qu120Ja3KJXWkLptckyGdNCTh4vut2TC8f0vseQbFP4qsnmOLecpbJmQxCHvS79AtRhizrbxpvd40jjAVsm7G64L2LaLO7qNUpJR9Qky4WEF+7SzI+zZQ+pqTp6XlIaLIUwqjk2iDHZil/nq+xG1FeaZYj3foVKMUEoxCDN6swir9w4iWSQPytZFVHUFWVvHtU0SdxkVjTi+8zJ1I8fVGdb4Dsn+24hoiFPO2ev1kMc3uNT/DUZ7t4kLxaYb42ZjhnRIDZ/VdJdY1JgGAdfu/wMaB59C7bzCdD5lO28TSgONwB7dXmyphInleHQb1XfTPRUboy+gZcnuJCROY4p4RmR3KGqnUKbLce6zlB+S4C5kppaL51hUN5/hfE2BzAnNNlgeT3kjUm2TmvVFuXgeUEhNrRhR2B1Mv4OhciJl86VkAzlbqDmEKhDZjPSJHwSlkI0zaL/NyF5nQg3tNCg7l6g1upzzYsKsRCVj+q3nqSf7PHrnU5i7L1NP9lm99zNYg5to00NVVhblz5b3blm4JrUaFFLRDe7QzQ8wshnb/jOEldMo22OcLeowlqoWDTMFIQj8UyjTxtn7LOZ0G0NLqskRbjmj9LoY8z26zKg7BkKVzGsXiCqbNHwLQ+UILRnba0xyk05wD3Hjp8m0RT05IMJnLl3mukquoGee4l7kEk0HWMObpEVJLiXF4AGmzulHGQbQn4wYHW9zY+eYXpCShlPu7ewwcTc4ME7Tt9Z4sfgShlj0I1Z3fpOsVNx9+IDtl3+am7vHHM8zOhUb29AgDIyoh9AK2bpEYviczDNuTwUHqYusn+am+15SZSA1pKM9xPAeLz/oI50mjldFao1XznlwcIxKRrg65VK5kKrO0pIHaY1Xt47ZnUtip8vQv0iMz/ryKlEuMRqb+K7NmaZPo14lsbvYB69wpbyPdfE/olqpUXcEhmVhV9usuCWnxZBGc4m2rWj4NhfFEdXBW9jv/F/cn0jSoqC06wyiklP5A5LsXSWAMGjE+yjD+Srl4r+XxwPaY76pEekEq/fWIpnqG4hqnFlEaf8BMkfxbqeG1X+H5i//0MJsu/8K/q2fpvL6P6X6yo9T/9Tfp/7J/5rWz/8Fap/5H/Df+D9wHv4a5mTrq/sy/pgZhhl/+1+8Qy/I/uAbfw0+9s4xP/n5nT+eJ/WYx/wJkDkdYm+NePkF0lPfjmyeYXtvh/3M4/XjgmzW44wd4JVzKv03CNMcgaKSj1nNdxmkBkGccmydpigLlidvsin6VB0TyxT4+QjP0mhdUK23sQ3B9jDiwvgzLMXb5Fi0oi0693+WQoNWBdqu0YwfUQ0eslV7H3Z4AHlIJd6nqmPq5sKrYo7vUSsmTFtPMaJNeufXef/s4winQjY/WQSOmA4XxQFLZkSSl8S9LTwyKraJrTLiyhneVxsTFiWPjntw/DYyS3HHdyidBipPKDBx/Cqdhx/jra3FCb8oInQWsCz7rIoxTjFlkAlEEVGRc66NfundOgJN7K7SL3xCo4Y530VMttEqx9r9HAzvYffeht2X2RmFX9mquaam64lFL9nyZcrOE9gnb1FGU9JcMrNXMA2BYdiM61dxdEatHJIJn/UKWGWKs/c72OkYyghtuuypLlJrDqYZ+uQd2skOjowRukQ7NSbUmB3foxxuofOQSnrMvnWOil9hbtQJq+fAcOjs/iorwY3F1sNtop0qB3e+wPEsZZTbtI8/y/TwJrMoIxUu25HLgXmGmqPxPZ+yLJgnGYH2adSqrAfvwGQHJ+7RPP8iaE0qPFSRoYXBuLB4vThLJhen/r2TA3Q4xOjfpOZapFmGXakTeZvUdIiVjknzgkp8wHH7Jez1Z3laPMLLhxiqQEmJDnpMogQjGdEKHrChj/BkhBQWk/oVwvPfjRKCxv2fx89GuDpjaG0uvDuGydHBFuHeW5xsvcH84CZCKxrxDs7eZ7CjY6JcMUwUzaKHUorScNHxmFo5JiigqJ1aDO3TA4zeTYo8wUbSDu5gju6yNnuTjl0gK6tgWAiVU3pdGnLIsj7GSoYElbOsj79EZXSTIo/RtXXuzuB244MIy2WSFKR5hmxdoP/qzxHf+DhW7y2+OG3xIKkT5ZJBmBOkOabKuRC/w9nkFo4lKKwaub+KtvzF9snvLKoaopNFF52W5HaL0vTInBYj9xTKrrLWexln8DY6DZn6ZwFNaTeICkFqtReeQlVi5Iukzw2/wDYEm9kDyjymV9ZZTh4yTxb1AZlZo194HM0zhNZkdpOqmlEaNmcGv40zuE41OWLmrPHWzOdENWjGj0jnfcZhgIPinD0CLRmXPkmu2E9s8uEjHDTtikPLMZCtC/hLZznHCavmnKX8kGlactk44nvlp6mZmkY+opr1QJdUXZOVpSWS6ianO1XW6i5rDZe4UBzsvZt2KTOGucleKAjzkrqRs2zMcQ5e4T3JqzSyIyKjxr6xQaEUpkzJ0pBGMSCsX6RpKzzHgSLF6N9mdxyiWSRIemXAElN8UqrpCV4+wjdydDRglAnKZEbNkNQ8g1lhExaa0qrjVxusBtepeA6W32JcejSmN1kyYyrnXmL55FNsHv0aHTPh6oWLoEs2yx3Mladw+29zdPeL9HWL28YVdoYTjMkWtWQf34buxsXf1yn5b/J4QHvMNzXO3mcpV577PeWt3xgE9U/9fezj137/r7ReGPJlQednPoRz7xdx7/0iIjph6Z9dofLWT2JEPYxgn3L1BYpTH6Bcenrx4S4szNEdqq/9Q1q/8P0s/bMrND/+V/Hf/ueLge2rlLl+vfzLt4/40MUumy3/D77x1+C7nlzhs1ujRerYYx7zp5A4l+xlVU4yhzuDBCOb8eT5cywtrdOpWIjuJVbj+6z5imOxzKCsUWJg6IK52cXLhjgGdNJtHJVgRANqcsY0zsnLRYqaUnCuInGDXfJCUnaeoK4CZqWFrVKUYZPbbQZihd7BQ4rxDpZMOJYt7o41hhCMKxeYSJd+7lCtd9h/9WNoWZBYTVbnt1iz5lzs+nT0nPr0FvOTLQDE8C6JdmikhySTY9q2pClikjikbkkslfKQTYqiILHbHJU12pM3qRkZZniMFx2RC5/UXeap8Is0+1+iVNBJHmFaBp38CN8WtIwMV6WIZEQ9O8FSGVHlFAfdDxK7q9SNlHa6jzm8Tf9kl72szu5cst0bI5Ih4+Mt7p/MFhJKw6RIQ+xgj2OxihkeIuMJR/MUU2f4tqBeDKlYgi5jWtFDMCz6YplhYeGMb9MIHwACJTOKeR9RJjTMAhCUVhVDprStHKGyxXtzPKCS9SmwmaWSMJyzUh7T0ItkwUfmRWrRDpQpD8UZEmkQSotSSrTXpiLnZFKxYYdMrCWmskZuVJiZbXKrykXjCK+YUU72MYTGs00MmdCZ3UEkE0bmCjXXZHS0RWy1iMwmu41rCK0wypSV2dvkVoNq8AhblBz1TrDSEfbwBhVSNryCE1WnbhTY0SG99jUyHDrhPTbECHSJEhamWshYY7xFYbjbRBs2qTJx/DrNYgBasWbFLM1vcnS0i1PO0UpRTQ+QeYosM6zWKayly9TrTXydEmc5pi4wgwOuqG1atiS2OsRGg1mccFA0COxlKmpOVU7Z277FLIpYLg6pygl7ZZtECpZnNyi7T7EbO5w034usrlJ2n0RNHjHt79Au+tTDbaI44NzRJ1DCoB0+IGucB7sC0RjVu4nZv45K56SPvoga3AcBob+JbF1gZfoWh9Zp7s0E63pAw1asjb/MVHkM3dPE2sEtZhS2j5A59vFrWKO7aMPBfPv/ZJc1UApLpXSKPk3XYG4vESubJ/RD1totTF3gTx4wljUG0ymd4C7No89QT/awiznphe9BuS0GuYsIDpnYG7iiRMuMrZMx06TACI/oDl/lSnqdlruQ5waVszysvMBSto+hSmTtFIbKiY0GZ7L7LJXHqOoaZf00L1i7PMUjdJGiTZd1X9L0bU63a6ilp6i4JhcGv8UH9Ov4KqaSjxD1NWJvjU7VZT25T5CXPHKucNx5icRdYlK9wCxVhINdNvqf4+oLH6biV5DxlBuHAfd6EUeqi2yeQxQx+cHbnDKn1Kt1up7AC/YRZUqJzWj1g9SKMc1iSFk7zdr0DebhnBPVop+aTN11uu0OllDklRUydxnHMlBaU+QpSfUM7apPaVVYju5hAAP/IiAwswm5MHEf/jrp5BB357dpTq6zNZU8SqukrScxZUolHxD7pxiaK1jj+xSN8/h+g1NVwaNRgu9VyJae5UK5hWcZgKCVHS5CZCoWSQEj9yznWjaMHyw8nl+DP5pe6TGP+VOCOd8nO/+d3/gLC0F26Xtx7/8yxeb7f8+vjE//GLXZaOGJkznV1/8xxekPEn/r/0ix/r5/6zCZPP+3ABYR/g9+ifCDP7FIhDt4GXf3U1S+/L8jG2dJ3/PXSa98P1hf30AFkBaSX3jnmH/8l575uh/rdNvn0nKVlx+O+a6rK1/34z3mMd9o3GzEZfuA1tGvY3l19PJFpoXAyqZcSW9S9u8ziTMiZ4nVbJdG3WUUa2aVC5wvb6IwcaJDStOn4i7jei3uzCrUytskVgVXTgmyGoeTjLXuZTb7P08Z3SXUHjF1znNI5HaxUVTyAQNvnSLbRxoeaWWT5043CW/Bar5LVY2Jccke/CbCXkGZHv70Hj3ZwZOSk9yDWUKZlmRGSLWUVAUoKdmXS5yTQwK1RKkElluhkx8SaJf63icpRZON7DYjZ5M+q5wpBigZEakWeecMRj5BFRlCQ1ZKBCCzhBiPWLnsLb+fK8efAJ2TOEuU2Ahd4JQRK3s/h5odEtoW/pW/iDf4R1TknH4hyJ0a5mSbzdkjJvY6R0LSsteJ5rsUSR/7TJ1gb28xtFlNptULGEXCueQWZwqHRAYkpWRuV7CKkGbRY9e6SJnFXFF7GFogK8uoSpOqnGGqAquMMcwCmUdIt7boUrMq1JIREwWFLomrp6n1H2IgGYvznCm2CYRJMx5gv9uHdeQ/ga8s1pIhvpK4ps9Ieuyby+y7G7yUf54nkutUJgKhJLF2KOwl2lrjmAZWGiLzCW5VsaQjhKFJoxlnojsMmi0ux2/jljNsGWLoEjubMGo/jzPdomFmmOqYITn1YkC0+yaXdUzqrmMVGY3yEXOjQWf4KneLiOXx6/h2QGnVEYaBsBzMIsY3TAqrTlQuth/r6oRKOKPc/gzN8CF3xEWWdYmtMwyrjlkmHO1vodeqBO4amgCRBTRdAyUcAtOhnDyiIkd08kNip8uotUm7/0VaxiEVFZFri7DwiBKftaxk3ujSibd5GPusmCGiCKmOrnOin+eZPMTd+SSxWac5uwMqJjKaKKNKN+3TtCRJ4xLLx19A2AnQRhgW2mtiJCMe5i2u5AlHM4/L9DACm1qtzrn5TXxjiFA5TmuNN/QLPLVzwNsTm9OlSUeGuNERRnoMWi9K7E0TkU6w49vQOsvG4efxsh61UrIqZ9TkhIFzlmqcUTWnVNimsFpQKDK7RZeQ7dp7yd0W1ugO5nyHXDaJ7GWE6ZGtXkMe/SxNT2IASalQGKjpPhULlLBwijlz8wLSsKlkO1iznMhdwY4P6aUWhnToMqRmOzzovMhJUNAtXsEMDinrT6AMRSXr03AdztQ9ioFkGETYzoCq0yLGxitDjuMmpXA5cc5S9u6zUfYxRIxQJYfThOaDz6PCAcef/inC1hUuc8DZro+TOYjJAHVyg7x7laPKVQazbcqyx1Hms9Lu0DRdbhhXuTb5DHNcNoodqj2Noy+TGnVWqlPqUnJu/joHhwataoylI4L5LueyLWbyNH3ZRI1PuNk6zYojGRpLlKVmveKjZ2Oi5iUq+YDLMuB68t20nA0KY0zWegLTOSS7/yuYzhrSqjDMYGccIWozDmOLqICJuUE3/Dxl5zLto1eYVz9C4HaJnRxlSVblEIs2STRH2iHHEirSx/8qvtr/L48HtMd8UxNf+7t/YtdOn/jLtH75rxB+8McwkhG1l/8n0is/gPHgt3GDY9In/jLTH/iXyHejgf+wlOvXCNevQZlQ/8x/T/Dh/5Xs6g9BmeI+/FX8Gz9F9Qs/TvLs3yB+/m+DU/0j/w1ZqfgvXzrzlULJr5e/9t5NfPsbE9bymMf8cbPjP8NENaGwKNw2F8b3SUchlko4mgHzgiXmNOKQ0ojxG08iwnssjX4byzRAaQqpuKdOUQYRT1sTkGOwBJECswwI/CucchNa0+tcd6/xkeDjlLpESg+jUqORHGCoEX3p4uSjRdy/DJAa3jmKaTpnqRohM2oYMsXOJnjawZB9HLNLTo2pVaPo91kuJI4A0xTEVOkAS2pERWWkqcnEVdzU53hK3WKsPDqO4py5x9A+S1x9hlb/bVJlIVWOdiDLEswyxjYXnUkmPuNEIpXG0jGmKDgoNM7gFjXXQCtFt+ETzGf4yQw/fISOBkyNFhmKtcEtdDpDGjarDZfiqe+mGH4ZRg/xZMhQWtjBgEY5pDCqVAefx167zMloAukcT05oqBypFIepjaRNjQH1YsipeJuT+nuo6IREJlgyRhgWaRDhW5p94yIbxiK0xKj6GEJgGAbKX0U2ThPnA5ai67iiQBchpWESU8VXKbHZoEeFdWFTYmEiqScHWO5p9gKNjUIqTViaPJ29il/OqFia0F6j554jSDI26iFPqiOKsCBKCjBMLEMwnU0xhWY0i1lWBaYuqPh1DFHHihPmZodcarTtkqcJet7HtW2MJEZ0r9EMt8mtKmGssXITr7lEJw4x5BCtLC7KbU4sYxGDb5goBHYZMGg+iTnfx4xOqJpVKoaF2/aJn/0bzA2X5dqX8aOM0vQpzQaFcClsH8oUffwmS+kOpVSM7EWPXl2noFyU0pzoLqUwuZLfIStr2DLBNCAxKtgyA7tKNDkiMAvM4y+DrYAmhgD76FXa4R4d5WL1HDQC07IY+E/jyAdMrRVasmCoqji6pG2mWIYNQG7V6GSHGFmDwqyi8oRRkNLyHaqzASQeaSGI4gyVxIROl1sPZlTrbzJOJV0jZNkIKe1V4uYF2mqKkCnK62LEA4TM8fMe2fSQLJzia4Mj7wLd7ACfnGreQ6oKhjWlq+/zBMsIyyGzWxDcpGrVsITCTo8x4jG1MqBw1liJHlDcrxPaK7SrFey5QVCa7Iwi3uOPyeeSo+YLYJi0sj6JWScXLSapwswCEnEOx1CYusTUOU4Z0Ej3Mf0O1XobVQeEjaHmqMoazuwIo1JgGYKKV2Feu0KvcpWl3i9guyauX2Wmc86rA5xsRBQ9geOCk42pyG1c5yLO6jqH1fdwauk0bv3P4Nz/JaJZyemTzzKrr2A2FetOzG6h8CsGVzuCliMYH/W5VnwCkQUMKldoZNeRSiMNC7u+jurt4jcqxHGTSZJRdlqI8RaZinBtAabBspjh1lepF4+wkkNsuU9RP0P74S+SGz55ZQ0pHKpyzqX9n0V1rrCme3y78Qpi9zUe5Aa57yKw6ebHrIkG5er7aN38OFK0WLvw7RjWs7jxEVJkhDIn0RaWmjMqHSaVp7msIpa9xaFGkWd0l1YhG3/Nz5vHA9pjvmkxh7exT94gfeZH/r1eJy0k9wcRz240OJ6nXD+cI7Wm6a3x/rWPoA7foZL3sAY3qA3vID/03zE5/b1gulAkUMRg+dR/578h/NCPY8z3af7afwEYi7jg6gqytoFsnCE/8xHKjXfDR0yP+Nm/uTDRlylYHtkTP0j2xA9i9d6i+qV/QOfWTxO/+N+SXv2rf2Ap4r+J0hrTEPzwtVN/bK/Vn3/y8ebsMX96KYVFNT7AM0weZQ1MM+B0wyacxkQFBHTYLyt80NzCUDlXVriRAAAgAElEQVTjYY/9os2mFaDtFn7SJxM2Xab0s4hbwQZ1r46ISzwDpFWnWmtxsa6JTwacDu5TWFX61hK5LHkq30daLoW3SliUTNQyjfIRlsp5O2zgVkuaXhNFyqF3hTiYcKqSUJgVisYV7DxntXeLsnkWncyQhoHUmnEKyfEDas46eT7G1jE91jgqG2hZUot2OKw9z+nkHSZliUgOaJa3kUqxbFoI00PJDGRBEs5wqi52GVAIn0kKda1oqjED2aAS7bOu79Jkgtp8GmOwRcYSZmUNkS8i500hOJPeg+kjZJEzrZ7mnCFheBNrdJdYwqo8oTXcQSZTMrtBXkjM2Ql+pYqvM1TSoy6mTJrnIJtyFJSslilCS9azLao6xDItTuUn9LMJVFew5ISikEyChPV1ELJJZDTwjZzSqCCdJjIZYMZD1vKSmV1HaYmVBmDYeDKhFh8iymW6ZY+9Xp9B7rBmwFw0OF/12C1c1pKbeMqhZsxQusRRCWVpkcoMkz3+bPQrXPe/FeJDwrxCt+owkT4qUyTKxBXlos/KdFEYzKc9JtUVavYSuiwxdYkyXVb1gLHpkjtt8vkJc3UIRYoopmgNY11nPerhZiHKbeEKjYnERmLLmMKw0WaTwF7mqeUWD/OErJiTa5u6mZEWJtadj2E5VbLJISsywqi0SIwqdh6Siy41FZAuvw9jPMFDo2JJfnQdhYWTHOE56zSUQSHHzLRPJTqhV/o4q6cxw7uApqGmWHIMwsQ1FnH59WJIKlwmGQT+WcbZKqUCITOsuE9X3KKQBRUxxyoC6mpOKTp0zZS48STN6DqV9ARfDUE/Qep0cDhgHqdML75IWBxxUqYcDkZ09BSpSlbNEC/8NNs8T1930Y6Bk1zHzw2UOrt4k0hn2MEhxfJ7iKXFTesp3M6LdB/8K+ZmgzyNKfKUkhzHdplVNjmMCo5Vm4G9yrouuBLdpChDlO7T1QEsrVIuPYXs71IRObnlYwSHWMrHCQ8JlUWQBnTlTap+i3UzpTnf4sb5v0OcR3h5wm7jGs34IV0jIHSXeHL0ORQmurrCcecF2sF9Ut1lu2xj2m18FiXoeZYStZ9CGyaGENRNSSvv4fh1HtSf55QxZt3SVOWUw6JNIE4jKpdp5rdRhoVjGpgqZZ7kbFy9QjDpYd385xwFOVs8Bc2XOCt6mOEJ03HMWStn2HqapnUI8yOWzYAg8zipPcuTo8/SF1CuPk995z7zNCNQTcZBhGNJzpfbmOIqShZc0LvEokKpBJHZYmys0TVCMquGXQ4pZc5g7f2LJMlhH99aohRDusUJ9nRGWBrcOp7TLmqETh1HpnRFwI7/HNP6M1i9N9lvvAedTFnKj3j9aMRmxcFbfg6/DPCPbxDZaywnB+RE4C2Rlwm5Cllv2IxmmlX9te0ejwe0x3zT4m79KkYy/MrPWmt2Jwl3eyGjKGccF8zTAtcyqDomNddiveFxuu1zuuVTcX7vpqdUmnv9kJtHc+4PQh4MIv6X77mKbQr+t08/5KM//AJ7k4RfuXVCTYcc5z7hTHLt0d9DGwW3nv67XP7Qj1Cxc7zrH8N98Ans49cI/uw/JHviL1GsPg+AbJ5n9hc+ikCBLDDiPmZwiDl7hD24TrnxItUv/ATZ+e+iOPsRAJq/+p8Tf8vfozj9gcVzXX2B2ff9LPb+Z6l94Sfwbv40wXf8I2T3yT/06/fK9piffGWHn/mR9yKE+Hr/HV/hx37jHt/15AovnftG+wIf85ivj3PpXSJtUIlyTisLKkv0phmVsI/rbzCVgthsYCc9+rRp6hjPrNKjTTvYQ2sHhE1QmvTFEqfWnqSYH9AlJFNVWkZCNusxLHucNWdEZUAMDJ0uLWNOVtq4hsCOe6xkAdJpLfxD7ioX1Anrp17Cuv1FfDXF9p9FI3BkxLR6Hi3mZMERSoMO+oxEi64vkNpDCodi7zVk2CcqbShMzGJIq7zDn5MjTjOgG38BW2coq05VTnAMRagtci3wipTC9smshcfD0DmDymVq+QStE6o6ptAm0+o5KsWUzPQxsgPIZoTKITQqVGTKUrFFJDQZgpG9xvZQclYrGskBw0jjBAGmOkZpRTQfIc0KDkOsPCU3lqj5bWajHmkS4ZgOc9UgyDSegkayh8qmCFthoCkwaccPqZ+6xL18wnr+DjINKewOod1gLTjAURHSfx/aNomFx2rcY54WOI1lyqiHUgWlglnhUMXB0QUIuKJ3CNw1shI+bN8iyELmVp3DXg+j4mMJTVEqepnNhpViORWMMqapA55K30IrxRP6IUl1E1suYvZLpwm5IDQ28PN9ojTnqhsSasml+G1a0RTXSDCLjNRpYpYZR9VnCA3FKd/BCCU1YlQ5RxgFLVEQZxMSQtIsJbXbOOWIO/5LLJV7pG6DuDBwrZSZVWd48ogTucw5q0KJxVTVqcmEpdl1hrLKhBoeGk8XVGsdZFmlbmQc4jDpHVCnxEyHdCwLXexQyU4wPBsv7bMsegSiSt64QKBdzDzgpHdES6UIYXKs2yhT45cnNIwEiUdm1rAxmBUGaE1EBalAyJTcajDKKizJI9Y9l4f2Bo7ZoJKM+NJwk1b8gNWOprDrEB+hhYmXj4iNKtI/Q3B0h2x2jCx7ZFkX0xOsugpfjqi0uhxqxan4LYosoac9rqicYniPvJzjqQLtNhmN+tilxLAKzOPXsU1BqBSX0us0jAJLl2xzHjPXGNLgyFojjSPOVQ0O9Rqr9ghpLUG0g0WfsDQxVcakqOOUOTfMq2zOX2O522ErXuH54h497XCgl2mXt9HxEBGdULcbIJusTL5Ms+hzyCorekzgrlFmCd1kwvLsLUZLL9LTZzgz/3Ws3iPU2nMkhWKsKuiwhzJL0rJkP4LnGjbN9AA31UgHdtUqs0aDbc7z5PwVrPA22jXJrAZlOqZWZvgHL9Of9Tle+iBN0+XUSoNk+AhBihUdMmtcoGlNCaMMu3+daXGH1toFLG+ZNM5Ym71Fv3ARckJ897epWg1ys0rVKdjFoKoC9vQKS+EYHQcUcohtOOT+CuPSxR7vM3NCpLuKKg2KXGInUy4W99hRq7TTfYQasKfXCe1TrHFEpVKjpTVy8ojUOs9IVWmmBzS1jzqzhIreZC4dDvN1TsvXIG9gD99mvvmdHDbey8PAZK3aZVUPgEUPZDPcYo86XjBnuf211U2PB7THfNPi7H6K+H0/yr1+yMdvnPCZrSFxLrm6Vme15tDyHTaaHlmpiHJJL4h4eXvMwTRhGOZsND2eXK1hGYLdccLuJKbqWDy32eDKco2PXF6iW3WoOCYf/eFFCfZLZ9u8vx3Q+qW/SXb2O/DC3wHL4JUP/AwrYk7tN/8rjO3fIl+7RvLE9zP/c/8EXV30D6Xv+etfee5/kOwx3/w2VH0DkYxo/eJfJD/97ahKF5FO0E59sS0TguLMh5mc+gCVN3+S1i98P/G1H1142f4QnXA/+8YB//Eza3+swxlAp2Lz6a3h4wHtMX/qUJU2eZAwqmxyX53lSt4j85eo6ZL1wct4osspY4CyHEqrRdZcJx6nXGIf0yqRBbikNNSYTik4H76BEe2TehWUEvQym03jhJVSguFSWj41Qq4mb9C0ChJRwZIpaZ4yN5o4OkPkiqTxNBeDu7yy/228z3IxdA2/nDMSVSSCWnKAHR8zLltolTLVFrnfpFAhSwTU5B6ReZbY28AODkkxybXgJBHIWgdZGAx1gyUxJyhdKpUKuXUa3buDI2wQBuOiTlmWUIQIHdMmQNU7IApi7WAZJhvqhFwYUEYUhoeRh9gqoaKnVJIJuXcGUxgoDFK7jV3MGUsfz/JoZDukzVMoG7K0zzDMWWpUcPwGRibZyI8pzTa18y+RPbpO3ZSk41385BgsD78MMHSJEjbVcoZZJkxpYBy+Slc28eJDFBZuPmKa5xzJNiu2RTPapvQvUS/H8K4829Q5hTYgT6kZGV56QKxg4l/CNUJCIdBlTiN8RGg2SfMJnh5TiBpLHvQDzdyoc0bdw1Zg5zNiXDwjo6/qNMwuhr+OK3KEhGlcYFZz/PomXrBNaNRI50OOqwamtpm6a5h5TktOyawGZplRtlcZ9Pd5stzGmggCbdMVIbFVcmKdw1QpvmUiTJsYQaoMtLnEenIfx5Sk2iLFIolTLJkwFMusptv45QjD8EnNDVLhEvhnsbRiFluUhkvTiCniKYnwUK4mnAfMhEnSbWMmATE+VjJ7tzQ6wDI2FhH5RpXUXaYebi9e5jykVk6Y0sARY07Lh+TKQAGxt4wuS2ydUC/HuCrmqlln0vpPaQ++QJn0uP3/svfewfYmZ33np7vffHK66ZfT5KSZkUCMJIKEZZAAgZBMKBaMWVPGaxa8W4vt2qLkhdKaNS5RtRi0XjDGUAslS8JgERSMEhqFkUaaGWlmfjPzizffe+7J57yh3+7eP85ICIRGEcrCv89/9/TtcN7qe/t9+nme79P7Nm7f+z3qRhKm+1xXJznnnqZiJgyCs5iux97RlJq2dEeXEc6wVh5wDZ+bKwvWR4f4vmOcJoSqQS0/YorPcDBjNXqGmjkCWUBZksX38rQ7zlksp2p1bDbCO3wUTxhuM08yHx8xoMZOfI6z7LFVlJzggFV9Hc8IPAo2yk2MSYnnU+Z+hyIbkngOIUuyUlGUFg+HlQGRnXHHwe8z91rMjE938TSjQlKpKFRSJ+trFtVb6eZXCcdDapUKud/E6j41M+RD5iy3uSsgLFJaQqFpzi9zrFqhGofkok0z3QfA+DUmB1dJwwWBkjQrCa5ximu5YKX8MEI76iunGCxy7rSPk6ic3FM4ICn6yGJMnOdUuiv4nsdaKyfuC9TOh+nlkrQw7NGkrmfYfErVzPEa63TDDYLmKv2dZ+ioFFMWlGGdSRHTNzEr5QFH/ik2TQuikFytEM/m2OQcUzbRugAXEERVzqkDJrXbqIkpcvoUhbHMw1XSax9ExIKW3mPutXGij3SGVr5JGPtc0E9i5leZlJLcLhU0YzNlPXsGbzQmXOwyjO6ikh4SSIjtkDKsEpUjatkuq4WilQ3Zr93M2cUek9LSkSPytETgEDp7zvPmhoF2g7+VyPkecvAU//ihFp84fIRX3LbK//nKW7ljvY6Sn9/g6M8L2onPI9sTfuk9l7j3eIP3XzpikBbkpaUVCzwpqIaKdhI8W9NlSXD5j0EG2KiFkx7e9BpHr/0Tyvf+Avfu/yeia+9icP7vYX7051Fxjz9+Yp/f+b1t/sHXK15yrvMlGUKf9pxhS2Yv/jmip3+f5lu/B4REH3shswd+FvtpCVfpsbj/n5Cffin1d/0kwbX/yuTlv4pLep93/IsHM57Yn/GLr/rS8uO+GF5yrsO/eNsT/MxLz3/Vjb8b3OCvk8woEjMhmA6pRk1qcky8OCLwBEL5bNfv41o6wm+folX2EfN9oukOYm2dqd9lNb2I1o6O3qewksujOmdszjQvkfU1SmfZt3XacsiObhLYHeZBg5kDw5y2GbKonyW1A4TRjOMTnB28l6OVF/OkXkFKj6oPkd9gfXiFgT3Jpfa3sDF7DBt2KNOShhsjVEAQTpZiRk4ypcHl3TFnyj26sce1+AJycp11s81h2mNWSnpxjl/MKDPNJk0yMyN1K7SUpukVtM2QQsaAwsuHiPSQ/UxSjxOM9WnaGakRDIJ1WqGFbI5TAY4ULSMy1WLqdTDFkB5DGi7n0JxC6gVlpQkIKpOnkHFA1U5RJFDMKCxYGTEzhtncMdu+hEtHZGZGYFO05xGUU4TvgZ4jgho4iXOW1WKTKTG+U+TxBgsjSIpDWnZAWOYElTXC+ZCjwS41DNu2S2wOqeRjPJMyCXpou8CqFhW9Q5JfxYYryzw837KvQ1yuOaEkFkNuHHuDlAQ4YTZpKE1pILeQeRWU02gLFTNmNt0jkVNIGjRaHXbLKvlsyBpjprLFyfwy83mdmp5w1jyCdZZF2CQo58yqZ/GKESfyLVRcQUrLljtBqxhy5K1xXF+lT4tqIIjzPlN1jolqc9LukFsPLSpUyjFH3gkyXxKYIyrFAXnUYjO4QDO9Tic7wM8FiedxtChZNTmRnSG8NuRThF0wUSEIwWPe3VTaLTYaZ6lvP4xVFbKgQzIfEtsZxotRymNHVziHJMjHlD4cyRU8l7OqtyjsUhVvJGr45RxTKpwEiWNAk7CYEG6+jytHKT095V79VoJ4Wdj51P4fo53PQtVIyjFGH4FpUs+2EHqB7j+DFzdw4z4nF48R5KCDGkYItF9lNXsCZ0uiSoXj5SF946OdIPN61IpNwuGT9JoxUlpsMWcxGUDQZk7Cvmvjl5KJExRFSaO8TFPK5WVGska1WmE22mdSelhVp1WO6Ik9fFk+Wzx8QVZ4FCIi1Q5P99FBC2kLApuyOLpKbAUBBYt8ggjqTNZfRHvyOPv1O5gNP0Zjco16FOAriZIx5+YPc0xfReCwwTEWXhUnFPboEteGKY2V04hak8Fom1OLLeTGBaphgphl1LJNouEuvuxysfp19PItzk6v0ZvtcVmeYUs+nxMy4py5TilD1tsdhEl5sljhjF8wO7hIduW9pIXhau1eVsIjVDahMXqM63TIohrNOMAuphTDLda9GQeiS+ZJVu0hE5NzMb6fSDyDTEfs2pOU2YRSTABFlB6gpaMdWIZlgHf5fexX70WJBGM2sdLHmRzf89jyN9DllOboIvPqLYzUKqE0tOwRo7zOg7NVjukjCt8nyg8J3Ixh5QyicR4bTEirx7GEBPNdxmmBjRRFsMI8OUEt20G5kkCUnJp9nCCOSVWHcZ7RVUdov4maXn3O80a97nWve93na1wsiq/eyfZFEkU+Wab/xuf9Srmx7r95Pt/aJ5nmDe+5zFsHp7jt9nt5/Stv4xvPd1mrR8i/ZBBoY/n41nipVPjey/zqB67yrTf3ONVOuOtYg2883+Xbb1vlB+87zg/df5w71+sY5/jE9oTfemiLf/fBazxy6ToXByWV+XV6W39M86Ff5Hfi72f8Da/j7Cdez9u2fJ43ficPffs7+LEPNvhHf+cePnFtwKIwnO1U+JU/u8p7nu5zoVehWw2/tIcgJLZxmuLsy0nv/jFM/RRqdIna+1+H8xPKtXsRxRRUiEt6ZLf+PfyDR6l+4P9Ar92PrW78lcM+dTDjdDvh/pN/7uX6au2VXjXktz+2zQNn27SS4Cse74vha3Wf/21cd6XyJe7x/4aY/dm/w7c5voS6m5Ml6xzVb2dKjEhHDE1IICxtfUDLHFE/eRfz0QFP2+NUpxcZFIrYLoBlyHUer1AzI0qdMy8cVd2nbxLyssSqiKruo0xG5DKUzdEiIAkDzOyQyOUUMsYPE5yKiJSjcur5JJ/8TVyZIcs5rbLPhr7CLD5GN79OlqcYJ8Aa8jyjovsEegoqYESdY2YTUyzw9JTETPGF5bS9TlulSCmWCoZOUAsEfbXCTIOtrNHJr+OkR+5CXPcWssWC2EyosaCMu6wW1zBhi6mr4NmUa8ldHM+eROiUNGgTSkdo5oyDNQI9gnxGKiOK+kna2TW86goqH1KVBb7TKCnY1QnX5Ek8p4ldRmBm0D5PfzxD64KAgll8HE9P2bRtVuUUZzReGDM3avmCKx273gaL2nlCMya2KVI45i4idgsiUZCKhLaYQTpc1hsrc9ITL6WfOVgcURE5Zdgk1iOcMcS1Fjqdcpic59DVuZ9PIYsZR/46C69NiY/2Ijw9QevlxV9KRKAUYyrUxJzYZdRiH88Psc4RhgkL67FXRFSLA6TVpCVUVElsZ/hhRGznJKSkVnHQeB6VbJdxbgmlwbcZlXSXvrdO3Q7xTE7P7NMXHbAFFBM8k0IxZZcu9WwH6UXgNKXWHMoORnqkhWXD7uEpiSlzqp5lveYxGx9RoiisohYpjLWMXJVWYMmMxTcLAk/S3n4Xc79LRZXU5tco/BoiHSAw5LqkEBFGxfjFCF8Y2gzRwqdwksz5eMJQsVOENYxEa7l255gaj7CcYMuCZr5F3z9OZEY4Z3FliecFGCcIXIZ1grX8EvVIcSBWaJaHLHJNahRZnqPiGsPZArMY4ekZWvjUmJGQEboMk6yzVdYJsiGRXbBwPmVlY3kJMN2joTQkHcbzBYmy+CYlKQ7w9IQVu09gM+pKk1qPS2WXcL5LaOfkIiQUllgY9qKz+DZnv/sAQXFE2y9QxYTcSvq2ivRjjNEIIZh6XQoVk6sajwd381i+zh3ZQ8jJFtveCRr2iHnlDKdHD+JsQVlZQyRt5gXkBLTcEE84xvWbCYohleKQXvoM1mgG0UnO1iz9a4/xlDvFanGFqwuftapC5BPkfI+WOST3W1zxztHOr9FxR7S8kgoLcr+5FA5qHEOOrjHfe4Jt28EvBgSNVdqmj0EQ5UeIpEtkU/qZxZvvYPM5URSTEZAuptTFgr1UIsqUmhlCVMX3A3yzwCY91rKnmdgEN93BWstemdCNBXU3YzCZocopvewaBgVRi0Euie2UY2KA8kISN6GWbrJn28RRhIm7hEmNipuxFuSk1meTVYJ0D89kbFQF/f4eaa4pVUJXjgnRxLNrFFEPHXRQiwPKqEWVDOkHFE7hUyBUiJUBrcAS3PWqz3ve3DDQvkrcWPffPH/V2j+xNeYn/tOjHI8L/smrX8k3nGnjq88t9/exzRFveM8lXv/Op3no+oi1Wsir7lznn73sPL1qiK8k3cpfNB48JVmrR9x9rMG33tzjB+87xitvbvI/PPYDPBPfwbmLv8riaJN/K76f59lPcbH+AJ2bX8wdL3o1/v7D1I/fxWseuIc4DnhyZ8LBrOB77lqnHnkoJfjFP73EJCu553gD7zm8fJ8X6WE6t1Cc/45lqCOWcuV5dP7jC8hu/X6EKxGmoDj/SlxQp/bOn8RFLcqVu/7CMM45TrYS7j7W+ILP+8tBCsGr715n5Us1Rr8Cvlb3+d/Gdf9NGGivf/3r+eVf/mXe8pa3cNNNN7G6uvqZtgcffJCf/umf5i1veQsHBwe84AUv+IJ9Ps1jH3on2ALrVxmrJkPRpGydxc8G5LMjRrLJSfboeAsGogF3/yizS+/jmL7Git1HOAilQ2EpSsvYxhzzxkyNT+oUVTcni9c4yyYxBZnzWRNHZDJGWU0/PM26HDLOHSKsUEQ9kvwQH40oMx7MTnFh9H6uxHcgnGHufI4HKcJqqnaKNpbcWHIiJsEKgZlhnKTpRjzBKTq+pmbGeFKwRxcd9zDWIUzBpjjOvHIaIwQlkkluaJtDNuweVioWLoQyY4v1z9SvGvur+GEFXWR4EuaEaK/CSrmL70q0dVR8QY5PUo7Ik3XE5DoHZvnydfNKjXI+xEZtViNNni2N22nhmKsGrN5Dr9gkKYeU1hKUE+zGCzDFsgC2Vy7QFoSDTlAy9To0mONMQWoE16NbqWfbdNPLy3pThLTcmNQq9mmBLRGuZOq1wTliUvbo0ooV29EFvNElunJKXI6ZkLBwIccTzZNZC2lyzrlraL2sJYbyMTrHlimJtMt1mYKGmxK4HCUlTTNAlRlzVSfxQZUpVnik6ZzIzpiWy6K7ylNMygAlfTxp0EGLwkAgDGMbMQhPkM5G+OUMJRU2nWCswUifhp1A0iHTlqHqMKufJ8wHPCXOYGTIermJ9AJEpYfTObEeoJ3AJSucMtcIiz6FASc8pOdTO/sAzwxysCWRTQmDiFRbhClIAoEpDTvxBRpKI/UMVMBCO4TJ0H6DUgRoJxhRR/khsZ0hiwkVpVFGo0uDLywtMcXHkMuEJIqIPYE1JT0vxXMF+3Q5bNyFLVLqKkcHLXZdl1A56m7CUDYwrQv0ik20X6Ppxnxi0cXXU0JRkvp1atkuk+QEqd/GyJA2Y4YuRkqPtJSMXY1Cp6zYQ45kl1iWlCj2mvchkh5becKKnzGd9KkoEM4SuwVTF+KXC/Ai5n6LeSmYkVC1YxSGUFhyGdO0I45kG+cclWwPzyywIiSQlry0FG5Z6jRSjqToU8oIKz1q5YjAzCjjFVbKbXIrmYgKSXGEK2Z0w3IZIugUkdBMgzWK+ZCazLEqpBL6BOWEBRWc1WSEeHEDrWLidI/pcJ+42mRF79D3j3EiLjica5rlAWVpWMRreHpCxxwSownjBN8VlDIkXmyilKR95l4Gs5RJtEHVjknSPXIj2EsVw+gE9cgjX0zRVmI6N+OCButyQJbO0aZkFJ3EL2dop8hEQrfch3zCNdOl2lqnFlh8PSGVVayzzGxIUy7wywWdQKOrx4miBJEeEZkFNqyTLeZLI5qcfnwT8zRFWY3EkCXHWNXXaea7jHKL9SLGBbT0PkHeZyXQDIYjrnCc2I6pymJ5caEi6tkOqhjhZUcoUzD2ezgVExZ9lPQpVYJyJfVKRHj7t33ec+yGgfZV4sa6/+b5y2t/08d3+Ll3PMVPvegE/9vFVyNvexUuagJLo2NvmvP6dzzNy27usTlKCT3JT33TOX78gdO86GyH0+2E4K8w5v4qRDYkuP5ujpLz/MoTHj8z/9fUTtxJu9HmpYu3cXnl7/Km3RX+zQcOeO+lAdfXXk6ts0GnEhDHAe1QcetqDYD/+nSfb791lVffvc7vPLzNw1tjXnrT5w8//GLQx19EufFChJ6Sn/8ObP0E4eV30Py978HffQjTvkB22/dT/bN/icyO0McfgGe9i7/6gas8fTjnzo2/KK3/1dwr2jje8eQhN61UvyrjfSG+Vvf538Z1/3UbaB/5yEd497vfzW/+5m9yzz338LM/+7O89rWv/Uz7j//4j/PGN76RH/7hH+YNb3gD99xzD88888xz9vk02Yd+gyTbR+gFpQjYSW4lPvoUq2qCLnIeU3cQuRT8mFmW89TWPsfmj1FJqkuvgHQoJfFYqvA95L+AdTWBYkwiCmbxOrvqGEk5JiLHlTl1FjyV3MdYC85wHdc8zTNZlSYTxslZVhYXyZJjXNUN1oMF1XwXFVawRc7MBqxGBdvqOJ1YkGwpCNoAACAASURBVKVz8pKlQIZK0VozIcEJjziKlrLbWLSM8Slo5LtoJ9hzHRq+wRZzylJTOEXFjCllgCcFpVMkyiGc5Yo6zYY4ItFHjE1IIErWggzKlE3XA+WjEHiuoF+9hVgPGIsGkTSkzmNiYxrFLsoZFrXTlHYph+7aFxgfHeC7nFSXxNIg5/t0Zk9SqAp5tkD6IVme4k83cdInchkz1SYmp1rsERVD8qDN1HhELiOJI1JtEEKyF99CN4ZxARVlqAeSUiU4r8LCaxLmfeaqSUUP8Bb79LLLOAe7YnWpcGdyqsxRAoJiQJsJUxezMBIrPTw/JDWS2M1J4w3a5oBIOqaigl8uUAKs8Jm4hIqdcUiHmpsyrpyn76rMXcwod2QipivnVIpDUiOouDkOSUCBUxEjV6FtB9T0AbE0COUzjTbItUUbR4mk4cZYByEFTqcENmMkmpwwVymdRxr0aJkhqayQGoiimF5o2HMdrBNo4aORxHZBHrZJ+o8wku1n89oE2pRILCqsY5zhYXEXayurBOkhh6ZKEsdMXIQMYmw2RrjlpYELGxRWMs81vtVkqkLoMkaqjW9TEALnV3FSsbAeSoAAFi5gTJVeUDJJU9bUjCKbUjcDoighdBlCCBbWJzZjbFCnaYfkpUOWcw5sncTlqKxPN5ZcF+tMey8gPvw4ExvSYcqaP2WpKDlFSom0GamBzEgaxR7BYodGtk2oHCZfsBARQiouejcRZn20jPE8RaPYRzrNwnos/DZz1UTanMvuGCfsFgJLzSup6AFCeSQuJXELJjbAd5q5qDKvnMIVUwIFdd3HJ2NhfEbGx1eSVquDmx3ivIDSWJKijyhmOD8hUwlF2EEVU4IoYkaFaSkg6SGPnmKRZTTEHBlW2MlCeuUu2qswWnsJxlrE4BnWs6dJS8fI61D4DSr6CExO3zV4Mrgd5fmosMIn9QYNMcd3BVfSEGb7kI9J5lsUDo5kGz+qsiCiK2cMTEShKgTCMJzPya3H8Yrjcf9O6q0eIp8gFn2GooEOmhROsckasVsQLPYp8TmZFJTGEZKRiwoiHzPyVzgSLSJPEdtnw6KDKkcmoUSCVCinKXVOGrRoiQUGSVY9RZbNMSpGSYjTHfKgjYs79NptLo4g9AX1JF5GR7ic0llmxmfuNUnCkKY5wgU1tN/ACMVEAzhM2KTt6ec00L64t9Eb3OC/YZxzvOE9l/gPH7nO//Pau3lV6xo26bEr1/mthzb5gf/4MR7eGtOtBHzT+Q7WOb7uVIsfuO84J1tfXjHnN779w4yfeBfnrr+Jn9f/Br12P9XNP0XW1xn/0J9x93f+L/zq993LO3/ihfzo15/kaK751Jv+Ob/y6/83b3zvJQ5nf15B/h89cJpz3QqTrEQK+F+/+SzGOt7yyA6ldV/eQ5EeSEX49B8QPfUWAPIL38Hghz5AfvplhE/9Zxp/+KPY2nHCJ99M7R3/GEzBojC8+RO73POXvGdfbaSAf/Wup9kep3+t89zgvz8++MEP8rKXvQyA8+fPM5lMmM1mAGxubtJoNFhfX0dKyTd+4zfywQ9+8Dn7fDZ+c4OxqDOTy5yNEsU2Kzw9jxiINh3Xx1lDNdul6glU+/TyFtksRSBmZqk6VzpJLkJOe0eYdIT0Qpy1VPURa4snGWmFC6poBwNqZLrkuNkmtQFxuscZfYnYzvFGTzNLTlD4NW6W12kGME0L4ulVKOescshsNmVUSJzO0Nay6zosrMdUC2Jl8aXEIkiyXcJna4GZsqRV9vFcSZ0Zx8UBcTkhEpoWUxoywzZOIZVCJi38cooRHplVHOYeU2LGwRrH5RFdOUcUU2RQoe3ltPUe0hlSIyjmI8ZlQKxHCEABdbn8n5B6TTKvzqR+Czv157E7XODpIcOFpnAeeaE5KiMOdITVKbEoaCUBBkXociqBoAwaOFviYXFOomXIwFVIZYInoO0mNAJBTMZ4PmM27pN6LUbhOrOixORTDrXHRnGV3AVkWmOlT1FZ4yHvPjKZ0GZM4bew0mfid8lLC0Ix8do4L2bN9WnaEU4GSOHwpMRKn/2yxqHsENmU0ktQtkC6gsCTjOOTtJhgozZ5NsOmQwonmCRnaLsxh4VHSsiaOKIQwbNhqxqFplKOuJ7FpC4gcxEjbwWrM2p2TOlXqdrJMmdLlOCFNPU+fjlhQ1/HWUshPNp6h6m2lNmU0GVE5Zjtacm1LMI6R4sxmUgYUaPUmhDNiprwRHgvzhmELRjXztPzZ1SU5Zx5hnD8DLXJE9Q9gy80Hb1PGPpMSh/f5syJOYxOI50hlI5EZqzYfcaqicAu6+05QWQmeGWG1gUTrZgUgl2xju8HlGGNKIpZyAr7chXf5njlgixeY6Za1KZP8ZA5j01H2O6tLGrnyKMVtBUYoJAJW/EtuMUQrr2PoJziYRn5KygVkOmSXCVclqewCCpugRXe0ptbZvg2Q5Qpw/gk4PClo6k0PS8j9evEdo7xYuaqyUh1yK3AK2fgJ5xgl0yE9IMNntIrDEWTSNmlgqU1UGoKAwtiwnQHYwyjYAMXNSjxkUpwpfYCUm2ZzGYMbITTmtjOGIvGUhUaGLoGFoGxjk3bpT6/QpwP6GufI28FEdTwbUac92lEPlI4wtkm1at/Qmv6JPuuwTBYI/WatPQ+zfQ6qkxJVY2uPeL+7EFW7R5ydJUL84+S5pqdLGKgI7azAKwlC9qEUZVm7ONJxy3mIoWqMicmKwqy0R7GWCr6iGEOF+xlWuNPcVGvMKRG1x0Rk1JLIs57h8RJlZoZsqU22J87rCkYlAkVzxAGAUU2p8YCMbrMoAzIXYAUgg0xoB2CH0QoAQ03QRYTwmqTKFyGVlbiiNDOSYMul5O78Ysx1cUWzq+g9JRFljPIQXXP0/BKwuwIWxYsKidYFJaJ30X7NZ4wGyibU/EcQnn02m2+UAr+DQPtBl/TWOf4V+96hgevDPiNH3geF1Yq9B99G+/Ud/Pqf/8Qj+5M+LGvP8kd63V8JXn5rSufk4f2xfLglQHv/aP/QPSp3+aB+15Ao1qh8rE3QHUVNdtm9Or/zPwlP4eL/jxvqxp6fPOFLv/7y2/ie1/6TfxT9SY+tT3ku3/9IX7mDx7nI9eGOLc0wu7cqPP/ft89tCshP/tHT/KBywPMl2ugPUt2199n/vX/DJEO8A4/ia2skd35I4xf9SaOfuSjZLe+FltdR46v0/j9H+CDH3kv53sVblurfUXzfiEiX/H8k00+cPm5CzXe4AZfKv1+n1brz/8GO50Oh4eHABweHtJutz/T1u12OTw8fM4+n80o1RyoVZ6RZzmSbVICpFTMRYWh16OQVda9KZnfZK4dj7uTbMkNIk9h/TqJXHp+hqqHtpJ2dpUVb+mNy8I2ptTURE5PzekGJYHnUfWgU+7R8TIqniGgIJMxz3CKsWzj0iE5ipGt8L75CTyXM/JXcSrkQPSw1XVuLj6JLMZoK5n6beLAJ6k0yUREhqJuR7gyR7tlrTcVVkhFRCYjND5zF7Dvmjxiz7FDl03Tpj8viIohcrIUcNgrQip2yoKQbmDYMFvMgh6LQrNTREwLgzMaKSRRtk9hYKYtKcGyDphchnJl1uMD/ouoepZz6aPE2Q6wlMnHgVsKc3MkO0y8NjkBRiisCrk6dTTWb2KzcS9bboVhajBOkOKzE52n8KoYFG0mzK3ioFDUigMmNuG428d5MRv6Km6yx2bZpnSSssgZLgqmfpum7uOMRmUj0sWM3HkY61DlDGMdl9Q5lFJclccJ9JSGm7AjVskJ0NJnISpkfotDW0NSosqMxM1RTmOEWr6QmRxlM6QAazSt8oBKOUaUGR3Tp+bG7IlVfAxz1WAWrjIyAU+JM2SlIMdD6BmljFBmQaU8wpYZC2KUK1mEa1yr3sOe6IH0+bi8g0+KWymlh0BwFJ3mMDrLFbvOrBT4rmBaOAIJp8UuymZYJEpKyqBOKivkXo2BrbEwgkXpEMKjNr3Ebrr0bD3q3Yko5qQioar3mQ77OJMRTHeIZMlYNsllRKFL6sUeseeY2xBpCq7ZVSpmRFPOidDL+eJVIpfRFmMaKiPxBUop/nS/wqbpLkPSgjrTcI3AzDiaphQiJPWbCOlRCg8Wfbzh0yzygipzhBAkpOwcjaiGgkBaiqCB8AKueyd4ZhEzCI6jypTj+gqF8xipDsppYqHZjG6nUBWywuCXc+IgoETR1juMTEBNHzInQgUJfdmlEBGRy2gwoxEKRFRHYZY1tMyUyM7xsiEH9NhWxxnamCF1Yjsj8iQdOWUiW4y1Yuoi+mWV+4uPsJZYfJsTJXXSygYKR8cekQVdZFDhDNs4JFlpaHiGmddiRsRGuc1K5JBSchQcY5icwQnBgoiFqrGuxpi4S9w6gVUJSlhKv8pA9bBJlykVjrxVjsKThFhSr7EM2yz2cItD1uo+Wye+l6h9EuNXGeaOhVHs6BpblbsYzlLatk/d07jKCvvN+/Ap8W3KbD5lUxyjVwvZVRtMZZ35YkGoR2y5Hjk+WetWVtWcQfXCUqwoquHpMc4UrMkRjUqFefUMoZlTsRNCTzFyEYPpjDzXPGk26MsuEZrBZIouDUG6Tzzfoh9sEOshDX2IQ6CtRRRzVmNHM/LYaNXIGzczlnXM6vPwbcrO1OLnfUaTCfliRoaPRTBNc/xywXD/EtdH+eecMZ/NDQPtBl+zGOv4+bc/xSM7Y9742rvJtOE1v/FRHrl+yOTky3nbP/w6/vV33c633NQj9L60rW7ssmbFNCv5qbd+Eq01J1sxx05ewNRO8A0f+59Idh9k9L1/yOL5P8Xo1X+A6dz63GPe8t0kccwv3/o4v/cPns/5XoV/+ScX+cHfepi3P3FAad1nFCZfcfsqP/eKW5jnJf/zWx/j0Z3Jl/2cEBJ/98NET/zuX/jYxW2y23+Q0Wv+kPH3vAVcyXc++hP8/Tsry8LXf808cLbNB67cMNBu8NXl0xcen/3zp9VC/3IbgBDiOft8NpKlaMat7mnW9SbH1lY5IXZZiS2raxtMWreiwyZXvLPMgx7nJw9SlykH4SmcSfElKBzKFTgv4kj12KbHnqmjrcALQp5UF9j0jrMfHMcAOYqZrLNHBy1jdLLCONwgcTNmqkpYTsnxsLbk787eTM9bUEueDS10+xT4XGONK+HNCAyZCIldiq8HeDanbiekfgsZJihXkOY5MyKkzamaEakI0X6VE3FGyx7hmZSOPaBb7jP01xiIBpEH6+II60Wc9w+Z+R0QsMgLUqeo+w7rRcxVHYtgGB1nT3TxFUg/opAB29kybE5HbU6JLeJywCXWGWmB9Tz8QCGlIPAEvlngnOGY2UQqBdIjtYqd6Dx2/xHOZZ+inu8xD3oUyQqxKDAsQ70OozMUSAJKar5gnJxEhTFSSggSpn4bTwkqnuGg/Tx0/SQVkZIawSxaJSEjimNu149hEex6G2zTw3cFd5aPsQg6dOwAT8G1ok4pPKzyGFADqRiIGmVQocGUlQSuyWPs0GGqamQqASTYEuMchfCZeC2sH+F7ioVxxCLnrNwlYYEtM2rFIZHL6NlDEIKKndGIPTpeRhDGBJ6HqK8x8jpEZs407HFi9nGk8lFBSNceUYk8tsQGnhLMtSO3gjV/ggpjSuGThB4NJtigxiRYY9s/TUDBut1DmQnaWsbBKk0xReGoijm+gtRJbFkwD7o0Y4lLumgH3VDjpM/cKUI0DTGnKhbUvRwviFkYj5YbM1Yt7uASCI+BaFHIEE84fD2iL3tIKdHCJ3cKEDRjxXowpcGc1fRpGkyZqTqRndBieeHpEBg/QZicDXG49GoqSa0Ss6dWWbEHBHpKJisI6VHzHTcVj3PSO2Ld7tCMBEfRSUIFCyKiKCHOD+kU12gxxE+qBC6lbwKskExcTE0s2PVPMY6OcajD5bw2Z1i7CVfpkWYpMghZqBqlKfF9j1oSYL2YlhgjcHhocjx2vWMs/BYHwSlipugiI3U+M1UnTHcxpqRXgVVvxqlKgVU+Tvm0zR4qCNh2bZxUjLr34uqrIBxX1Ek2bYujzDEvDW29TSxyZtpRKYfEjS5l0mHcuJnW7Ana6SVabsSgcTvXKndSFgtcVOOifzNDUWNhJdaP2DNVjsLjpF6dK/0pTXfIaNJnYj2EH1KpJnidk+TzI/zAY1euEgYB1o9Qiz32TZUJMZ8K7yJIYkJl2fDGBKJkHK1TJD3syq2Edo4xObWg5GZ/lyT0OOW2mcsaGT57ap3NmeaKW2Xsr9Cv3cTutGC7eT+ZCJl7VW5TW1RlRj3xqUQepfSYhT02vZMUiwnCD+iYA6wfswg6SAVXTAc/rhBUqowOLqH9CpXFVeZ+h6fFCa5V76TiGdpBQexZhB/Rr5zncvclPG5PcoXPzXP+i+fNDW7wNYh1jn/+e49x8WDGq+5Y/0zdsp98yRke+PFf41te+p00Y5+9SUZpHZk2vP/SEQB7k4z3PL0sYP2p3Qnve/bzdzx5wEevjwD4sd/9BB+9PqQaKl5x+yrNP/0pzg7ex4Xzt1H58P+FTPuUq/dia8fIb371F1VXDCGZvfBfIJ/+E3rVkP/xhaf4/R97AT9433F+/cPXefW/f4g3f2KHvLR8w5k2lcDj0Z0Js7zkJ9/yGG99dPfLfl7F2W9j9pKfR2RD/Gvv/txf8CLG3/1m5IW/w7d/4h/SevN3UvnAz4FefNlzfiFecq7Dt1zo/rWNf4P/PlldXaXf//MC9QcHB3S73b+ybX9/n16v95x9PpsPdr6LA7XOxFWoBpJ80udRfYIPpyd4cNyh75+kyoJb049xXu1x+tavJ0ka5MNtcqdY6GX4jbaSROSsihGUOXHgUZQWUxq6DCmMpBgfLMPqSsEVeRKs5mrRIJ0MaGdbROWUZrpJpqr4xYy40kRIyb5tEeZHyDIHoVCzHVrMWM2uM/F6aAPb9OhnCs9pQmGIRYHSC3wp6LohXnpITI5REYWs0mHCh9wdVH3QXpVAWPaiC1hTUjfL71A6SWBz/CDBzg5JVQtPSpyqkBLiRS102GUoWoxUjyQIWDGH+GVKRZYE+ZBhrvBtwY53ml25xmiwlOC2RhBJgfVqpEaBA41HJirMVZuJjRh7PZrlAKsLUlUnN3DFrbOYz0GnCGvYVieZ2wCrC6wM0V5CaQXClhidU85HJHrMQHUYmZjW4DGq+R6pqD5bL9Oy5zp8vPIS9rwTtMwAJQQRmr5aZWEDyrJkGqwysgltMSESBc4JIj1BAlJ6RLNd8sIwyCyxnlA6hShLUlGHIGFUvcDM77JVNsiLnNAWZIXBMynaCIrSMaRG7DJGLsGpgMhMEdmy1EGS99nMQg5MBessae6ol32UJzk2+yRlaYmEZpFbpkGPjfwKNTvmYXcLu65Lku8hhAc6R9qCsWyxY5qgF8xKRdscUjhFkWcMXZu+fxwbNbhYexGFFQx1wJgGej7CFAu+M/sv7Ip1RDpAGk1hHb6Zc+jaTI1PbiXSi4gl+J5HUxXkfp2Km3MkmziW+WPSaqZasBBVpqJKbiS5kYwXOUPZIqi2cSJgW6xz1a1xSV1gTyz3/MxGeKbgIPfxZ/uMBvtoAq5U7ie1HtfnAU+L8zzh38nV9otp51sMcxh5q4Rhgi1LBjriYrnOLC/ZUccIyikgmMYniIXmgA5j7XHgHSdZ7CCzES03YeL1oMxoZjs8Ft6/9L7JNsl8k2i2SdMMWFlcIgxCcr/FjjzGpAwwIuAZdROhhJBlfmisHG7eR+cpI9rshWcZyA6LaJ1ZtEZ1fp2n5lX+S3YPV/bHVMoJC+NRlgYx2aXvn+SK7rA6eoStsaVa9Hl++XHU/JDEczjrGNkabtZnNNcMypjF6BB1+CTV/Y9ylQ12vDPsqFOEw4tszD/F2FVYyCYXzFVWii1UMSWabnHC7hGbOU7GENTI9p5CmZK9+n34jeOsVwLUdJfT5RWEc7jSEGSHxItdMhdQtyOuLWLuXnyIsH+Rq2OYaUHbjugx5erqK2n4km6rTYTmct7mcG6ZL1IuFw1skUPUXubOlUvlzJHsMNM+zlpunX4IFVQwuuRwURKVM8o8pbABuawz7z4fJdUyd3MxYSbr+HpGI9thqz9lxexjHTx1kLHebnPSX9AfTfFNSlhbYSI6PCzu5GpaIcoHuGyGKzL2xznrMbTN6DnPshsG2g2+Jvm377/CQ1eH/Mpr7iIJFaVzCODl+dt57x/9Jo8963H6kf/vExzOchba8DsPbwMwTkseebZ9XhhG6VLM4LMFQn7pu+/g6061EGXGt97cI3vBT1PWT9L+7Rdj4y6j17yN2Tf/wpe8bn3qmzGv+e2lFBNLZchX3L7K7/7wffzTbzrHHz2+z3f92kd408d30MbyTRe6/Nr33cMvffcd/OKfPsPPv/2pryjsUY0uE1595+d8bqzjZ972FJe+7hfQx1+IyEd4+x+n/Tsvxb/+3i97vueiVw35rjvXv+Iwzhvc4LN54IEHePvb3w7A448/zsrKCtXqUozm+PHjzGYztra2KMuSd7/73TzwwAPP2eez+cCoxx9Fr6AvWsyJ2cxiVr2UDdFnEa6QqwrXvdOISo8j2eFdz4w48I/hBRGZ38GXjrHXRQQJu2KFfe8YfW+V6+oEU69NSsypVswJ0afDmLqb0fVS/KSFlBITVJmJCpvRTWx7J8nDHqpcoOZ7fNKc5NHyDP34HM4JZqLKE+oWirBDqIfM0jkz2SDzu1z1z+IrmLgKC+fju4LA5WRumbsqpcdMNnjKu41NscpMCwoj2ZfrvD94Mc4aGvk2HXtEqqrkMibHp5ARC22oKk3pJEPVRbocZ0qmxFwqe2RGcGb+MD27x45cIxURRVGQywRbTBmnJVBSL484lj1Fu9hkMR/TbPc4pMH1+HbmLqQZKo7iUzSLLRaqycDVKIqUud9BOM2hqeKMYVY7w1RU0S5gqmpckafYkRvMvDYj7RFne2zHtzKIjhEmDZQUrJk9QqERCA5TSWGhGgbkQQvjLOuDj+CVM4QQhGjGssnAX2PsEvzFAY+Jmyich3Eel90xtr2TKC9ASoj0mG1dRUkIKEl8WHVHNGSKchnDQmGzMc4JpLOsmz1wjswKmna49GgicMJn7HWZyga7ZY3L8gxTUQMZoPHYVKdouAmlsaQyJpVVImGZiSqHosNcOz5qb/7/2XvTaNuuszzzmXOufq3d73P2ae8599y+1dVVh2XJsmXHlh0jbMdgHNOYmFAJZBQhkBEqIykcyEgGoQkQqoAUKTwwGNsUtoMrNmDjVpYsy5LVXF3dRrc7fbf7bvWzfhxhYGCZQjYUjLrPr332XnPOtdbYZ6z9ze/73pd1Y55+bpEol44zB14Vw7Dop4K+8MilTT8xiAsLtK1ZImER5RJbRyjTZcta4Ip9nIfz07h6RJ4lKAFu2qalJukak3zFv4fd1OW8PEQfn15q0aVAmElcQ/CcezuBHrITwnjYwcr6rOsGy3IOMx1R1D0qck9IxRAakQwpmppAhgRyjFWc4Ho2waeaVXQ0oJJsoaSgIIY00g2GVpVE2HTtKQ4bG2ROhYJMUGGTRBgkhXlEPGAhvcKsXmdgVNmq303oz6GFZCWtsJZXSZWFlfSYFB3Oi8OM8DEke0I5To2+duhnFq4esSMbdGNBhqSbGViGZIBDSY55VhzE1hFl3SfSBqEqEmuDcrpL2TXZZ/VJ0hQRtQnEkCu1V/KMeQuJsDFNi8go0tC7jJRPoHsYQmMlbcrJDr3yCUhCsuICW9YiHQpUdYvtwmmWnaOcTp/CH68zSlKmPEEubVaYwnJ8NuU0A3eOVfsQl9USGogxueYcQ8/dxXlxiOlyEZOUSFj03H1ERpGiCLGTNj3t0LdnsNwipuXgyJQga6OiDkE+ID38RrxijdroKssjkxUxxRCbbTVNc5QSpC1C4TF2GtSnFjFMhwW5TaiKdEXAPjdiW0yyZi/RM2s0iyf4UHuBh8eLiCymZoTsFE6QS5OKBa4ekkQjXLfAbNHioFijmm4S6C6GlHSsGS7lszQzl3Vriav2cax0wHPpJM3gKJ1xyuPJfprOEqZhUJIRXaNOpHxi6SKCaaZcQc1TbOkyj3mvYDT9sj1/2vYWsr9CNd/FijvglGm6S6TS4mB+jY2xopuaX/dZdjNAu8nfOX71C9d53+Nr2KbENiQPnpziiZUO//kzV3HO/SaLVZ/aCxL5f/BPvoXpokPVs/jfv31PTv5II+CH71sC4M6FCg+enALglYfq3L5vT/Wx5JoIoPyRt2JsPoFqPkf1g69HWwGD+/4jKAvES/33EZR+/+2YK5//6jtSCO47WOO/vf0M/+6BI/zfz27y1t/4Mh87v7dDc8tskX/16kNc2O7zg7/7NDdaw5e0cjp1G4P7/gPEQwp/9EOIqAvAH17Y5lprRC1wGNz774kOvwXVvcH45PdQ/KMfwn/kP0CevsTrfXHe9/gqP/fpK9/0eW/y/1/Onj3LiRMn+M7v/E5+6qd+ip/4iZ/gQx/6EJ/4xN7GxLvf/W5+9Ed/lHe84x284Q1vYP/+/V9zzNfi3vQRJtJ1qrrLMIzwCZnUOyyKHQ4b20gpeF4eZJQZrHrHqbSf4pmwxqZzgEEqGeOymwfkUZ9Mejzn3kaWa2bTFebMHkGxwlPpPkbSJReKcQajFK74t3FN7SfE4aJ3O4qMqWyDSEtCFdC3J5kKn+e4WmYuucpgNCZPI/aJTVQ64opc4mHzbuIsZ5BLytE6Rd3DM/ck/6+LfUi7gCEFsbDJdU6uNSs0GOUGGC47lTNcSatkdgnLsvH1iL41waac5praj6kkuV0mywWhcNk16ngyZkPXaYkqUkAiHVaMBVAmeZYhvBpaKtqZQ5YmWDomMgt4xHtqk8IkSjW7w+SFMs2jtKxp7HxMRQzxiABJlGbkeUZLNXAGN6glW0ypHg1zyFbsEmIS5YK5+CqDOKct62ghEGGHK4W7qKoxgeuTuTW6skRuixWdmAAAIABJREFUFSnZgqFRJnfKjITPauyTYBPkA8y0z4TsYyiJaTtcFEs0sg0aok2K5Gz2FEKanBdLzBh9LMcnF+pP9uVwFIQ4jHNFMwvYUpPoPMPUKReM47jZYC8jRk5XFFFK0JVVYruOlw9xLJNBbmElfUSekBoBi2aHgoyx4jZIxbTcpe/MshqcYXb+ALZfJc8zvqxOU1Yhvm2xQ5F6eANPxoxFwIzskIRDmuYsRdtgsSCQhqLqSirhChtqlm5wBKHsPf+5rAO9VU73Ps1Ess7B8Gky5bLtLFKwDHxLUnYketTiae8ucuURSRfPVNhKoGROT5apiD6ptBnKEle9M2zqKiUxYMVcomhmDPF4XJ4iEjYuEY7M2KDGUBbZyKtsGnN8kVMEro1Ox3jGC20K0QgpFZ4eo9IxXryDaRf2/EP9SVyZU5dDvLmzlCy4YJ5imzql9c/SFhVaIRCPKaoE38hYkFsEjsHTxhmWzCZDs8yGnKY/6JL1t6jlLRy/hLQC7GyAlIp+7tCQA3reEj1ZpjS8Qp09wZ1N9yBX3FOMc0HXnmZHl2hrnx05gTRMtozZvU0autywj0Ce0Y7gCXULX7Dupjheo5S2kOkYke8pcrbGOcW8RWVwiRmxQ1JcIJYuE+EV4jRhNS1iSEFgKqLRAJOcPM+5IJYYygAd9hhnEGkDTJtZsUNRxuxEBh3tMdq9jhs3OZFfoKd9BrkDYZdqoUCqNYM4IxoPsIZrdGPBJfcMTXee7WGKWn+MVnObZ9RRxtYE49zGK9bww01y5ZJLk0y65IZP1FnjajaJcCukak+cZpAK5sU2pXiTMN8Lbo6WNfs6DzMOx2SjDjdCF6VMSlmLWPmIPGYnNujtLtPp9VmTs2wZ80Rpjg6mMUROZjgcNHfxVUbiThLYNq3cIwv7pGnIIEqI05w4B4EgNIosRy5fiPbjegHjBKLty6zvtinsPIHlVzC9MhuFU6RWGV+McQ1F4k9i50NWncOseCfYNae+7rPM+GY9FG9yk79uxknGuz9+kU9d3uUtp6f5x/cd4G3veYzfe9edPHhyCm+8jvG7V1h6y98H0/mG1pLDLXK/Qe91v4r3+H/BOf87xAuvoveG94D8Bvc1hCA8/nYKn/xh2t/xB2h/8s98JLhrscKdC2U+dXmXX3noOu99bJV/es8iD55s8NqjE3zf+77Cv/kfF3nvd5990V6ZvxRlEs/fh7aK6M4y731kme9/+eGv9sANX/bj5FaA9+Sv0nvNL+I/9vOo334TvO43wPK/sev/MxxtBHzgiTX0/Qde2nXc5CZfgx/7sR/7c38fPXr0q6/vuOMOPvCBD/ylY74Wninphi4frv4AQbxDMROki99NvvwFhmGONmGWbbzRKq53nNH0ywkTzWTnEyg7ZTCwiE2PTXuSjazIYXfARLfLQNXpWzPoUZP1iYMEgxsMK7Osjzax5Q5W5wqLcpPLLHJ4+BQVdtFGRJSsMqwdJ5MFZvMN+hHEwqXCLju49OQEfrjDvNXicLrKI+p2osykRpfdvERgSjpGmWreZZzF2EaGRUq+V4zHspzlHv8GlUGX1mDEhGXSlGXaqctEyWGjH1HJmmRIvmzfzlS+SaRcBjEkZoXTtYwnWyajRFCSgiNimablYaOwlE1CF8+AobQhjUlRlCzB1bBEz6xjZtuM3QkibTBKEpbdE8yHF9hVk6SqwtCeZCADsixDKZMZa0AsGgxjjek32I3L7I/OUxcD+obDUFdYkLtYhHt2AlpTjjfQWrM2Npl2YiI5h8+YdiLwdUjVGJFmGVbepqJiYqOA4U7QyYYsRpcpIjnqTrGbVlEmuEQYbp0noymO5Jcp6iHXBy6OJTCUidQpa2KajmFxhgsMhGIi34U8Y2QX0dpg1z5AyWqR9COEVNhKMyM7lAzNtneEVdEgkNexaKN0gi33frj7ecRIlhjisBM7SKXpmw066+eoRFuUJubY6S3yTHqMd/FxxjKgKRoczS5SliO2I0nJNTCiHk1MBskARxXYybw9Of5shx4BRRs6ucVGUmLSjjnn3klBjHmy/m0sbv0ixbTFcuEY06OLEGnMvMUoSjHjNl8OXsap/ByVOMaQgpEoYygDB4mnMhLt0XNmSWyTdjrNKD7P0KjikWBlI1Ll0TEbDKiQRBppWHRjgfTr5OMtMqfGZuZzRc9ym7gIUpHGKcKSFEXMl0YVXpk/R0u4ZNJjYXoKx7FoxhkBA7aNRfzCPl7W/n1CmRO6B3CjHXSeM8wNropp2lqCX2Wp9wxx5VYeM09xe/djLIuDLIQjfD+gaMSYEjASkhQK4SpNo84Rr8nmGBJzkkK8zrTexrcMRNrBynuM9IB+7rOVl/AsgzYF0tjiWH6ZopkSOy4Hk6u48Sodimhnjq6q0c48JqQmSJusqxkuGMdpjFdZGl9CFkqs90zcZJ0Zs43MbArJGs96d7FfpxzVV7GHGfb0ScLhEEWfivJ4Whzm+WGJILtGObmBo27DtG2y3COP1jmUfom2rPCodx+Vxbfg9n+TUriM1AmGFBRMyPSItjnPUJu0RwJp72d+3wFuDbepxjd4pG0h0Ig8opS1sND09ByebVEME8IopqIHoGw2c5dJ06SSDhnrDk2tqes2tXIFMY65MaoTxgk67HBd1qnlfcLaceqj7T2lTsNDSYEbbZLpnP2dhxl6p4gjSZTmKKCTWQRso7wKh8wt8nATV2kC3WdXFinFWwzjjFFW4ow/4FJ8iM1+i4UJFzdpUmi16CYOxYJixzyIHneZZpXRqIcRdSilbUaDFW6Rl2Hc/rrPm5sZtJv8neDZzT5v/Y0v89nnd7lzX5lXHapxYMLn1952C4YUlFyT4soniedeAab3jS2WRZQ/9BbM5c9R+uh34Tz3QUZn/id6b/zNbzw4e4Ho0LcRL72e0v/4XkT8F+W8hRC8+vAE73/n7Xzn2Rl++pOX+f73P8X5zT7v+57b+N/eeor1Xsjb3vNlwiT7q5+AsoiOfQcIQfTIL/Og/vSe91r+p3ONb/tnDO/4EYqf/J8Z3P1vyU+/fe/e5i9hvRfh9HSRXpRyrfXX1+t2k5t8sxgnGZKUNE24bu7Hrszx8tEnKKa7LPopCxWXoT3Bcu1uhs40unmR0vgaFKaZmphiPgBbwfbsa/mk/61cH1rYIqZHgdl6idQMKNTmqOkm23mRgpExsup7fk46xitNg7JpGVMMcwfXdvB2n8ZPO2yHkmaYs1U6w8CaILcqPFN7I1fdWzCjzp4ptEzwTMXInsQoz9EUNfI0QmQR3dxnkCmaFFmxDtKRZVyZcn7g83luxdA5/Shn2O/iZ202ukO2sgIawdgocCR8knVzEa3Bdn3q0QrXejlOtIOVh4zjnF6UEqXQFiXGqcC1bAa4rJgHSP0ZrhuHeCScRwpBRfQoyojAVuRIdgcxtXiVFfsQA1kkSFu4aR9fpgyMMtflAv0ww1awbi6ykZcwky5r7lF6ssxYuFwQSzybzdLJfca5oqQivLRNpjXCKQGSiegaOhnQs6bZUQ2iLGcrL2EYBmvGPlItqMVreHpMU9ZYZZJQBlzLJ0ELSskOK6HFZLpOJd5iNQ7IhGJT17iuFlFCUrBNDnODggjxjRRPD8nlXunaVT3NOI7ojROkEEidkcZjHCUZqDJS7GU9Cwx5XiwSC4cOAa4p6ckSWkqEXaJoaQ7rq+wfP8Ul7yzb7n42k4Bm4RhX9CytWDFjR9R1myvqAGtqH0pITCkJc8kwislMH601Mu5RFkOmSj4b3lH6mYmtBCNZ4Jxxii1ridW8RqX9NDoa4GV9Gv1zbGcB58UBWoWjBOU6u4Vj7HeHVOJ1EumAMDlhrtOu3c6zxgk+kZyhGRvYOubK0GUjkvS1y1y6zJH8efqqyqaYJMkyhs4URRtckbAupql6JoMoo5uatCiyqFdoFk+yoieRhkNilJBScZpL5E6dwNSkGtLuOo5tIAA/H3BKXiMd7CBLs5huEdc02DKn2dIVuqJIYlco2ZJxKnjGvZNw7h6O6itsmov0VJkVJpHJACcfsZKV2ZETDOKcoSiy+4LEvZVH1NJNZss+HhEjVWKIi0GGlQ+xkjauDgm1RTlrMhr2aasyvczGMBShU0MqiWVI/GgXK2rTSQRGPqJTOMy0bDFnh9SSTXZ0gSDcZFg7TcPVuMR0EpMkzXiZfJauqrAmpigx5lLfJJUWeZ7RHIyYGZ2noYZEToNB/RQ+IybkCMs0aJrTrBRvpWvPcIu4TL7yGM3M5bJ/J93G3cRWGTtuMzm6xOnRw5wNH8Xzi3u2HSsfprt5hU5rm6noCi1jApGldLWHlYfM5Ou4+ZDYqjFBC51nqKjNbemTjFVAx1uCyn60hk83K7TaLTaZwDVgGBxAWj5lFWEQk7RXqM4cpuAY1DxFNVpGZgmWUrRknS4+OgkZmJNsGjMYeUwWh6Azmrub7MYGjxtnyEyfSr5D09nPjnuQrrefrclXkgT7cEzF9iDmxshgUD7Gri6x0H+co/2HWEouUE63mUpXqSbrhNJjgMcoSuj/JRanNwO0m/ytZxin/MiHz9EbJ/zIKw/wrpft42DdRwjBVPFPM2XhsbcxuPfffUNryeEWKJv22/4Qc/XzyP4qg3vfzejl/+YbvYy/wODenyQ6/Ga0fPFEtiEF33Zqmg+9607uP1TnX/3+eX7kw+fYHsSstEaUXRPHVDxz4Tydpz6C+/gv43/hpzC2nwbA++J/wnn6NzBXHkKEX3u3xnngp3nr9/445nib6m/fu6fg+EItTnjqnQzueTelj/0jKO2DPKbywQeQvZVvyj0wlOSepRqXt19ayeZNbvI3iRCCwDZZSK9xOL7ARKlA2rgVKRWNwEZJwZp/C08kB1A6pZy1wK+znle42FWsxAGRNvijNZOGo+mmcFnPYqUd7NEGSirONXOezRfY0nt9buM4I0WQpgnpuMPn0+Ns5yXcvE+CRBomZUfgELOg15ntP0UUhxTzNof6jzIRr3CJRTbzEk0qREmGz5i58XNUXLkXBCiFMC0CQxPkffI8Y11M0BdFEAJhl9hXMlFKkesMJXKWnaOcs87wx97ruGyewFGCxZqPUhI762ERU8ladDNFjiB2JwlMRYYgNgqEuaDmW5RswWK+QiVeg3TMvN4g15qxLLBt78MzwLVNrjVH9Iw6uVvDJGHsLTDSFsvWQVruEpkZ8Kx5kuXQJcrAKUxg+lXC8Zjt1GNTNNgxZhhhoxyPgqEZZ5I17wRKGYzsScZGkQzF88GdtI1JzomDbPinmJAdsizDSAbIPCaxSpiWS9+apG3NIWoHmPMFQd5hzdpPXfTITZ816lSMmFi6dN19PGud4Yp1BNs2KYohuYaL+RyPOy9jIHziXLFjzbOrJlFKYhmKXV2gJaqsigZbTODGLQypUVlELdtGI0mKS0jDxhEJlk73hEKyHlIIetoDM8DNRuSDLZI05h6exNIRPTxCbVDO2xSTbTSCbpTQo4BleZREiBQC2zB4Nt3HblbAmz2FZyrQOUOrBuMmur/Cun+URnQN33NIMPak+NG0zBmk4XBqusgd7jpS5NhuEewSWf0oa3mFo+0/Zr5o0pio4xgKR6Sczp+laqY0zBEtUebD8rUMZIFSuoPMIprdHtf9s5zX+1lJC+wMYwLHBMNlkJu4MiGOQ7q5wwiLzd6YkfAIZEjTnudc6RW0qLDWjwhTQAhSYeLnA3ZHObuxRI62cVVGIh0Mx6coQ7ozr6LnLZAaAQWZMIgSknjM/vgiM6IF/iSR9Glrn0wLkizDyUcMkoyp6CqXRi5VYwxKYdeX9uwAopiRCBgJj5EMMLIIywkIvXlaokKzcIy2OYfWms9Gh1mJPJ6UJ5HKYGyWedo+y1TRJcwEl6MSFQt8RmyZM6xW7qIlqsyEl2knBp3cJXEnGbqzPB+VsaSkL4IXgnzBjaxGhyJds8GmuUDkNjAMxbl0Hx1ZYzzqs0adYtIkTxO62mPF2M9ErYqSsBlb7EYQJzktipzz72Gr+i2c1/txB9cxwl2+Ei+yOvkqhF1gWLuFSd0iMQM2nMN7vbgpDLRDK5b0nRlCf4aBUeEzhQdZaTxAlAlaqUuc5czaA9x8wDCFSAuKo6ugLIwsJFMu0inQbm4yjDKSNAerQNOaI9eagh6wpJdp0MZwAjJp4RqCRavPK71rVJN1XD2iFO+g+qvEaU45XMF3HEr+njrnYnyRSrpNI1lDpSP83mXqnuBS5X4c22VsN9g297FmH+aad4Ztcx8V3WYyMDGNr1/EeDNAu8nfWnaHMR89t0maaQq2YrJg8+23znB2rkw9sP/csSLqIXvL5MX5l75gMqb8e2+i+PF/jP3c+3Gf/S0G9/8s4al3/pWn+hPZ7vYopjmMSbL8Lx4kFeMzPwBoih97F+bqF150PtuQvOP2OT7y/XdydNLn537nQ2SP/BK/Mv8pwiQjevw9VM/9H6judRLUnwZ90sBa/yLBQz9B9b13QxYhe6uozlUAPvz0Bn94YQfTNMm9SbpvfC8YDs4z79lTcQSiQw/Sf9V/Qv1f34W18hC91/wieWHuRQO+vyo/+fojvO7Y5F9+4E1u8v8x14p3sBubGFLg2iaf2vb4ZHILl8R+nk0arHRDLFNRjVeZyLcYzt3HO+67g7KRoJIuMumRCYVhONxqXOeOeopjWhhS0hYVnsr3E3g+RTFmMtvClRmeTFEItIbdPKAqengiRJoONd0mVAFZkiBLs7RVnS1qALREiQv2CQAOi2WqYoztBUwUbBy/xHPJFJ1IMpIFLquDFPMeIo+pyCFz2QrPWGdxXRejssiKnub5vmRUPkwx8FBoEkwW0hucNfYyTptqmit9xVP6CLG2CIWHNh0wfRJp4aY9hIDALyAtl9RrsG0vkOWahqcpuDZWPkQKCJOcLXsR17IpjNewFEyqPiqPaec+lWIJp1jDtwzQOTrskDs1KqJPEszhzhwnNgIuqEMcEssI0wavStU3mZEdZvQuy9YhdtUkVtLHlJB3V3nYfTWRWWKEg510ebX4EvvdIVfVQXIEddFlnQmauszT1lnGGUyzxd3WNRLD5zl5hLpn8GzjzfTwEIbDuphgSxepZLvUR5ewol3iVLOduPi2xSIb+Lq/5y+mM45mlznsxxQdg0g4BHqIl3boiQLFZJPQLGF4JZ43j9AypzClZohDO9zzyEuRrCYFrmRTrMkZWvYc3fEYO97F8stU0taeMp2G3cTlUunluJaiaKSMU41nGrh5D5TJMDMx8zGJhoFVo5h3uLQzJBcSoTOmRZtw4haeKNyPEIqeOYnSOQPhM8TDz/tMJKtow2Z1a4veYMzlpMFyVqEZG2SGz445z8ioEGlJrqHkGtimJJMuFpp+DF189hu7e/2RwuCGewJRmqMYrtEtHAVvgsBUSCkxCpNEVg1bScIMpthFJCMKeZfQqtHURZJRh5WkyhPGLfQTieGWGBllAtdjNB5TMjIa0Q0cERPMnWKgKoSJZjWv8elNk0rvPANrkqpuQjImOPxqhqpAS1bxB9cZRjHYBar0mREtNmVjz79M5QydWQapInJnyHcvI5wK077C131yy8Mho2JlRPEYO9xknAmS0hKz2SqRcNnvR5zWVziQXuG6fYSxPUmxVCVD4dk203ZGmOTk/hTXnOPY4S5pMMNqXMCKWziGoJptk+cZz/l3kuYpU7JLkT4LgaDgudTUkCV3xEytSmc45gvZcUQ8ZNU7xqB8jPXGaxi7DSajaywmV8AOEE6Zpewq96aP0KDLdnAE2/aYztYZCZuxVWXNOsCmmuX2o0tUZw5S9l2UXSC3C3uluvkINxuQKofJUoH9zoARDloYjOwGXX+R5jChpncI0hZppikaOX55krmig6wdpJ3ZDJOMG2ofWZaRFBb2+jZNied62EpSjDcxlaRujKG0j88W30iYS6ayLfq5yZcKryU/+Aa2nSUmPINGpcjAmeGGdxpBjtG+xEazQ8Wz2EqL5GGX6WyNsrUnAjVKchQ5mYauM8eyf5JxmuNlXabjq5TTHarhDfa5N33QbvJ3lHGc8f4n1njX+77CgXrA737f7S9qMm0//1GCh979kteSgw1EMqD19j8mqR3D/+LP0H/NLxIdfvP/q/EPXW3y7o9f4J2//RVe9yuP8ImLeya3b/2NL/P3f+2L3P0LD/Gt//VR4jSnOYhY7Yz/dLByiPa/luIf/ACl338H1o1P/fnJswS1ex4R9ymmu/ybi2/i/f7PMptc5+eeSPi5T1/hX/fezC/t+2WePP1uvvXi3yOu7nmyje78F/Qe+DXab/9jmu98ApSNsf0klQ88gP+ht3H+8x+gEbygJCQEWeUAANHRtzI+9b0AlD76XWC4ZG/6dQp/9IMvBHea8ke+A+/Rn/lqtu0b4T2PLjOIvvkiJDe5yTeTmiu44p9lnGRE2Z6Y0L0Hq5zUl6m7EKc57cGQmm/xfFzHXv4MF555lEq2S6E8Sck2sPwaY+WzM0oIRIItElbMAwSOBUEDKSQLVp8GTUp5F6EMRGUfm3ISw6+zai7xePF1DDOTpqyTJzFb1LgUVbkhZ7GPP0huVxH1IziFOr6lyPKcVWOBLAcNeLbFrNllWxfQQhLZdYQdEOUGqTOBlAZDs8I6kzza8Um0Zt9EjWtRgV5q0RYl3HzAQBVJ44hUuTwf3IFvKbbzgMBISbVmMwlwsj6BSNhWk3xMvIJxrsiGTfqjkFZs0BwmfDFaJMRGOxUGqcJUkhtRwDBTNN1FEm0ghCLOJVprFvyEGdkiRxPEW8ymK+z0ekzFq0xn61gSHMdjwta0q7ei3QlGKTwk7uBpDrGRl3DibebFLma0gxRQL7ikxX0gTe5IH+doBUrVKbLOCp9Qr8AxJKE28UVIliUs9B7lqnOS63qa82GFXpRj6ohhr0m9d46ZdJ1VNctFvQhaI4REorGkxiTGEwlWfYlt7wg1eiTKR5oOZTlkZxDy7LjOhXyesfRJpEs3Nemak4xFwECViITFOXmUXNk0U4uCqRmKgEh4LIgt5p2IauDSSJbJJk9zpfb3uJpN0lZlblgHsZSirEImRA/h1dm25yk6BqaC/x68ne3UI3InkGgMqZhVbQqFAMeQfN57NY/JMzQpIJMxM8kyUQ5T0RXW0gIlFVMUQ64YS7R1Acu2WQ0d2tUzTGWruFkfyxR0xymFyQXcyjTSMBnGKXGWcy1vcF3MoNFYImFOdTicXsYjpKtqjIwKTlCjaEsOeQNOzRQRQtCLMlqjBNsQPJYfYiwLpEh8leIRs6tLLPoZ+f77OS0uURlfZzwaY7kFdqw5hGFT9UxaxgS9idvpmg1ip4YQAiEEptAc4AYTok8/U9wwD7BTOMEK02AW6Koq5ybfvCezrgRXmeFcMs1z1ikGsgRAOdshzBXBeIWgWCE0PEZWjQ1jDiftU4rWMKTGEBDGKdN6m26UEUsXhzF+0uFK8Q6m61VunStRoctidp2dUcaqnKEk+mRac9AdMKmGxEmKPd7EcjwSs8S1ysvRyZgkzTlVgyhXXGEOQ8IwzhklEGWCp/pFdgchgYw5NFVl1s/YP3wKQwgGYcyGucRy4TbawRGqnonZv8E5DvNc5dXETp0dUedCNsP7jTcikxGTepfQbTAtWjy30eML1zo8s9FnkGo2/eNM2im7okLHbOCUGtwofwtN7yDUDtI0p+k6s9yan8cwTTqyyqhyHNuQPDcq8HxY4CnrFKYTkNSO0yocxzUNjDxB75zDmj9LyzuAbQgcPUKRE1iKpLSftjGJUDZBvEOcaVbd42yGkp1hAlrTG0c8NyqwIyZZjC8RSp/t4il81yOtn2Srdgf9wiHOe7ej+xu0yme4Ig4Qa4EEDsbPUcma5LVjhDLgef8sPVkmi8eMk6//m+emSMhN/lahteZ3n1zn8ZUO//GNx1ioeqx3x/zk64+8aHAGewFadOjBl7Zo1Kfy/teA1gzv+pd4T/06vTf8N5L5e77m+d1ojXn0Rpsv3mijNfzCW04SJjn7az73H55gpuQwV9orvfzjH7obrTX9KGWjF2EZkifWuvzw+5/k5HSBd965jzsXykTH3ka89ADOcx9ANS/Cwv0UPvnDmCufR4YdtF2g+/pfJ526nc63vZ+sdpQFIXlrc8gvf+4aaZrz0XObrHXG/Je3nkJJwQe/ssbJ6SLHpwp7J2+6AMQH30hz/l4+/ZFf4V8b78POThHr+/eO+RNDX6uAtvbG9d7wf6Klgefv7ecUPvUvGYxb9F79nyn+0Q+iBhv0X/nToL6+ZOyLIYTgU5d32Vdxuf/wxEua4yY3+Zvgdf4V9hcPs32lxK6s7PkhdUN8lbHS3GJ5UEZGIypZSLEYkihJJhS2kgyzlEtxlc+V7qM1yHCrNsMwZBDBvHmViqpyojDmDzK4kM1y0hSM4lUSFGEKdjagGK/TD27hWPgkZXr0Mw+rXGHHqVNKU3x2iDa/Qma6fDE/gUwhMkt8RU0TyQIemlGcIUZXMJMhc84O14xp9ufr+CrHtSI8u4Rllim4BUa5zYJsMjQqHCs6nGleYMWYRbllVgp3QdhjxyjxVH+KbxfPkszcix4Kev5+rmaKQ1znup5gSbTI7TLzhBRIqRSL9IYGE56JthXn4ho7xj4a+Toog3VjAVPBNcNgXJ/ixrZCZD7XQpdWMqZZrBG6s7R3+rgaxth4eoxVnmY0WKfQvMDUzEkGAqzU5tl0H2U5wDAM7BzqKmc67aFzSYrBIDNYDRWdccJVtUCj1qCkQrq9EWv2UU7l19lIykyrIXW9RSqqmH6FoDBB2INiZZKDo02cuEM7sTiuVrhoT+MKC18ppuIOKVOAZsNcwDMl67JBOPB5LJxC+CYH2+cZZyFFx0JHI9IkQmLQpETBLpNrKFgSmZv0RJE4g2NcwjLh8IRPL5kmyAe4Em4Eh5keXiCWJTasBQ7ONCh1RlwOjjFKyuSOjzFM8C3BRLaNkhKnwQG1AAAgAElEQVRXCMIcNmKH0C4wEdhUA49+MkkjcNgau2yPJdWyiajfS7/fZjWVpGEfP22xOHOaZFijnu1wwzvNYrZMkICQOSuxZL5iMLv7DOvWbawhMU2LLzn3YfZ3+H77UxhGgfmyS0mbbKYVyumQNeGhhcnzWY1lMcMptYqb7uClHYytL/PZ4t3obhdnUmEqQSOwqRgmriV5KD5IKj3264sMjDpajzCiFi0SCs2nuDD1Cp5rb2FPHEQVJkmEveexpQW9zCJqreDGAzqxQaah6pswaDE3f5DWTp9Sukslb9MnIktDivE6DadEd3KOOD2GqTeYSHZ53lxkgTapoVCJQCYhyg7IpWAntuiOwUt2Mc0ZhtphvXiWUrROwSuwLhfZCgEhqNUbjAYVcqEopC1a2iMaxmTBEa73NAVH8hnntRTHq7xCbLHKBIZYYcKMWM1qCKV4r/EPuH94Ad+doS5WeCIscUb61HWTjjlB2Xe4uBuCzjnq9biq63h6iKEjTCnxLMnOMMJ1x0ynNxhlkzQpkQ1jDlagJjoMOkMMv8dC3KdnOMwGBgWnymq/y9HeQzhEbA4SGjMWgaVIDYOpcJPtidtIegFO9yn83aewKvdzzjxBIK5StIZU9Sp/GN5F5pcpxevsdq4yDG7l5cYFFuLnaY1trGxEoQWOM6QwvkYh7yByQbr6BGvGWRI5Zikfspb6FKINjHSarcbdNIIe7s5TBJagXTnNSZUzW3ZZFZLx5K2EsU8rBlk8hde7jK8yUgUXdsZ4toWpY8pZj2mjS9Z5jN3qAxyYnWJm06bVLBJKn4ojGRoWY1UgMgK8LCKRX6Oy6s9wM4N2k781xGnOT/3hJX7zsVV6YcavPnyD85t9fv7NJ3HMFzeCFqMdzI3HiJbe8FdeU+2cp/iJf0bu1hif/G78L/0c3W99758LzrTWnN/s0x7FdMYJ3/c7X+Gx5Q5376/yL161l3F6zZEJvvfOeV5xoMbBuv/nzlcIQdExOTK556t0/5FJPv5PvoV7D9R49x9c5JOX9gxytV1ifOYHGJ/9pwAMXv4TdB/8bVrf8wjN73uSdPqOvSxX/fhXJf6Xaj4//+aT/MybTjAR2HzuSosf/r1naI9iHEPhWYo016x1/0zGDmjnHr88fDWtf/gZ4oVXYa5/kfLvPYix/dRfuEfaKoDhgluh+a6n6T74WwQP/3sKn/4xOm/5CKp9mdLH3gnxS+8je/n+Kg9dbb3k8Te5yd8EO/2QfO0rPGHfxYZzmM1+xCPX2qwYi9SLBQ7WA07PFkhyjY4HPF96GZZlYxkSR2Y09A7zo2c4OVVkGOfUfIuC5+HZBoZfYasfsa/issQarsrpmhNI08EbXqdmJpTEiCPDL1PRbWJvEpsxZQuS8ZBmqLmuZ7mqZ/H0mMb4EmkO/dzijLpC4BewDUXRdShagm1qrJkHWFb7MJWkn2gsw8TxCtgyp5TuUIk32Cf3TKt3YsUN+xDKtNl0D9Gy5tlNbLzROrdnj3PNOswX2mU6MfhBGYcIggkMyyHKJYYUzLCNeiFIdEyFFgZpDsPJs2Szd7KTV9hyDnIxn+W20oijwYhitMmEC74l+ZNc/czp19D0DjCKM5aN/azYB6g4EjPqUPIc0toxGtUSl+IaGs2xKuwruygpsaNdyqPr7FDmoel/RNWzSIyAKN8rsQuFx1A4dCIBgw0CRlRsTVvVGGFhSfBtk469SBhHVLJdJrtPYgVV1rzjlD2Hpn+InioxUS4QpTkyT0AIcgTjFJblHF9Ud6AMk2NqDW+0yqauctU8SDs1KFmSGdGkKCM2zXnMbIgrYqZEm4IYkzevYZkG4/JReqLCVi+krT1iZTPUBumwxS4F0jSlMX6ez11eh+4Kfn0fh2YaTAY2IQZCWoy0hRCCedVioCoE+78F2zRoqgme76QMM8V6LyJKM6y4w3JnzHDQZcLRLOplSkFA4dB9GIaiI0uMnGl25CQ71hzScmhTYjMvYYmESDhE2mI8HmElfbSGnqqyOvMAaS5Z74aM44yKb3Nx4gEumCdZVXO4ImZatBB5CtJiwzlEkA/ZP3gS5N53q+5Z5EJxerZIlmsS5ZMql747y42syhX/NuTULaw4xyjQp9S/zEV5kFk3RUiFqSNc16MfZcyZPSZdqE80mPYyJJr2KOFJ63au9gU32kOiwn5m8i3mZIu7pg26qkZXVYgvfZy29hknKUURMs0Oyp8gw6RvlPH8AitiksidxhqsYOgYv1ijlLexRcqB+Xk826QdpmxRYk3X6WsXPdjCJiQ3HKaia8zE17luHaIZSXxLMYwylsbPcLphEcUhvmMznH45fXOC3LDpiBJl3cMTY9rmDONcUTQznHxAWYwJHJvpkstU2Wex5lHyHSYDiy1d4Uo7oZMYCARzJYdGuUhUPQ5OAVNJTCVZL53FNEyWWMEt1Ola01imTZplJHFEbhbZmnoVztQxGuWANE1xTIkhDQbOLLFR5LjbxtAJpmlycnEao7LItcYD+GmbxJ2gHPi0I8GgcJBxbhKnOSvWIdLSIqP6GYonHuCGfZiV0h1cq76KsVWjUziMCiaJKke5XLqX5fLLCL15zEKD3C6hDIsnmopm6mAbe9/1i7tj0JAjmfBtyq6i4Ad0cg8jjyi2n2GrO+BWdRV/vM754iuRyibRkrXCaYJ4i0Frm06Y0nfn2FcrEMydJLcKZJiYbpko2Mdc5esL2t0M0G7yt4JemPDdv/UED19v8d7vupVvOzXFh57a4BfecpKqZ33dsSIZMrr9n6Pd6l9pTWPtYSq/+3q04RId/Fbc5z5I500fJJ26DYCrzSG/9NmrvOnXv8Q//9A5Lu0MqXgWn/zBu/nZN53g28/MsK/ivqTrDWyDf3jbXk/ZKw/WuLg94H/56HNs9/+0Jlm7VbLaMXK/8dXM1otx23yZ937Xrfzb1x5iux/xxv/6KLYhWax6PLvR43/92MWv9sWluabsmnzgnbdTK3ggJMnUbURLb6D037+T4DM//lV/tL+AskmnbqPzDz6C6m/gnH8f6Hyvf+8j344Y7byk+3HPUpWHr7fJvwnlkje5yV8XrqUouxb3JA8xma5w/6E6P3D3IvXAxvMLe5lzw4eZ25k7djd3ZY+zO0yYDGymygE1M2Pe6LA7jFCGwY6zRJRLshwwPNygymo3IlYegzjDESlDWSKRLluyQaFQ5kb5LtatJT5nvpJnzVPc6OcondAepyhyZg7cQmoEjLx5HMsgeqE3Zk03CJOMK/ZxRHGGejmgYObMpjeQEp7172aZBtn8PTRKHqFwMC0HDdTtjNGgx1Y/5vrQ4JPqXlb6GQMcsiwlMCRBuMZ8xcMyLS7nU9TUgK3Epxiu4RIxMsp4pmQUp6RZTnuckeU54yTl8bYLdoXW7Gu4bh6g5tvs6CK9RFCId1BCUnRNar6NZyou3VhGZPFXFWwdQ3E+mebp/4e9N4+yLLvKO3/nzuObp4h4MWZGRuRcOdSQVapBU5VAU5UQSOCWEFhtI2xYblgLG4O73asx4KZXNza0aaChZQYBRoWEJDSALKlBQ5VUqiGzsnKqrMyMjHl683t3vv3HTSUlSipJGIHW6vz+iYgV775377vnnrO/s7/97WSWkbBoqD6nV/vskKfu6vitZda7Pn0/Zp0S58QcajxkZvA0CjFOfQ/FXA5DlQmTlKW0gaarXCw/xLqxB0XTSSUVJQmJ05ShPcl8+CyTbNJSqpxRDnG9GxKhsZW6jNprFINVdn1QZYEiK0gkPOfcTd+Zo5i0uSN+kplqgS+b9+JJFkO9gdAdzkqLfDq5jTBJSNMsSDPlhKmSxbI2xxXG6TfuZEeu8mnlPtakBgVT4aA7QhEyipb1RBsTLYqiR9m1aOYNVp3DnOtIrPd8BkGMoWnoqkw9uEbbnqPnzlHRUxpbn2Xkh7RDiY4+gSIJzsn70GRIFJOiqTJIdQZKAVtV0EVMFKd0vYi5+CohEmPxCoq3y6e4g2vUUA2HfqqTn1jE0GQKss+k1kNVJKqOjqpka3ycpMRJgpTGNFwdTTeRFY1JeYcxNqmqHrFq0RDbFB0LU07Il8comRpBmqIrEgVTYRQmtP2U+ZpLPmkxo7TppzpXdofIScCOvY+xcIn70ifobF5hMBxQtVU2RlnfwXZiMXbkQSxdJ4piQLBsH2ZMHzGl9Fg2FtkcpfQrx9m/eIQvrgZ4woQ44nz+PqJhlzRNeD4s4fk+ozjlMhNcSmcQioYRdtH7yzgTB+i5e/nzxnu44t5OF4f+9jUsVZC3TcywS44Blzc7qGlAngGJUWDH3sewchQn7jIKE4ZBjB/FyGlAwxbIQjAKU/xEQpMSyvE2R/I+r6118bUS152jXFH20LRSEgQv6It0Yp0Lm0M6XkoYw0grszWMqKgeB6s6l3J30RE2jqGwrU2SBgNO7BlHItvETmSLx7RT7NiLrKuTxJKMZOW5EFQomzLTapvDkxXypsaFrsraMGFlpNALEiLFIlAcdEUm0QsMp16FlSvhhdkm1oYyzrWRxWS8RNGUucokV439yJKgg8OWr3LVd2mqfRquhjt3F0fHLSRiosEOlm0TJeDmCggifMVmN5AIKkcYhTHVZIuiv8wgTFDqBwjL+9keBKRCYmmnx05k8Fj+uynToh0qtJ0FEiFzzT4MxVlKhRKfUu/nM4W3UswXWUkq7IQKJVPlbv0KR502B8cLXHbvoq8UKZgqO4nF6tb2y643twjaLfyD47Mv7PDD73ua6ZLJLz9yiCu7Q37xk5f4pTcfZKb0jS3zk9w0w5M/9i19pvHMb5H/sx+mf/fPkjjjGOffT+uRR3k2nuQPnlwB4OLmgEEQ8zMP7uOjP3IXd04XAW72Cvu7gK5ku09jOZ28qfB9732CP3xy5W9FVIQQvO5Anb/40VPcPVvif/3U8/yLP3kWW1f49e/LmnT/4l9c5Cc+8Cx/embtq69D1hgdfw+t7/9UZrjSW3nZ2rK4coD2Wx7FPPNewtoxOm98H3FuCvdT37iX1NfC/obLj983S5LcImi38J0L0zBRNA2JhDsr2Q7wUmvEllyjE2sMw5iKa9EYXWYyvs78wbs4MV1hteNxuQfdVMcLY3YGAYs1G613FT9OSVMQ0YjbKikpsKU12fYVJFJ0f4sL6iKf1l9Fr34ntXyO8WSNI/6XCVINrdBEc0qkacykWOdayyMRKlu+jKWr5II11oy9yIpC2daIUrjcg+1+gGoVMsMTVaaebHDA9fBaqzwxqjMSJoGUSbWX1D1UzZT7nFUsVSJnO6iyRBhGCMgyhggKls6+qsWk3Kat1CmFa0Sqk9VJmTMMwwRTU0nG70CrLWDIAqk4hyoLzm31We2H3Bt/ES3uU0rbGHaZsLAHSTOQhSBJJdIU1sunCMv7KVoaE0oXWYI5rc0wN8dynCcMfTytRN2/yjCI6QcJUZqyp+JQsTSG9hQtc4aqFpIIBUWS2PAUbE0mSVJa5OnZs+z2+ow5MpaUECYpg0RhQ21y1r4TP1Xw/SFxkmDrKhN5nTgcYccdFqoucW6anKGxOvF6UrOAJCRyaZeBOYEsUlQZUr9HiMJZaZGJ+DpJMMLNV9jUZ7gg5lAkQSe1SMwqkhDIfhvJrlKtNtAVmQdbv8+CssptEzl0bws9GaIQoWk6I8ll5M6ArBKmCs14iYlyES9KkCSBQkit4NIxp8gLD02RCQKPF5I6/SglnXkliTtJlKRMlvOkVpVIqBiKzGTRohUqRGlK3tIZhAnftb+ONHkHrfq9nA3HGMp5cuEmdrBNWerzqhkbafM0UZxgWg5jeYNREOFqCqqSjcG7ZkoUbI0wlQiDIVLQRpYkrjPOpbTJspjgfDKFoUhM1cusFO9gY5DghTFhnOIaKqMwk40JWQEhcV2a5prcpBhtMamP2JCqmMEO23KNs8YxVvO3UyoUiYSCpsh07Rm25DGefeE6vVFAmlEQJLvCZpxDskpcl8bpyQW0nWfZ2VphTB1gxT0EkItbjPQyXXeeprRLorqkQkWvzbOhTrCW5JlS2oSay2qrjzZcpb7xl5RFDyHrrFbupVafRJ/IzFdKlkbNlukZ47TUGluihpcI1op34Y8GKFKWWV6sucyWLD7ZmWDD3k8Yp+wOA16Qp4n0PJvDhBEGTzqvZHJsgo36A5xrxRgEzAYX0cIu40UTSRYgwOxdI44yE6NRqqKoOsKu81ivzDCEiXSNctoiiBP6QYKlyhwSVykNLtGPVZrJKjIpk0WTVDFo+8CljxP4Q5TyDItlnZoeYmkyhf4lfK3ISuUe1HiI6rcxWs/TDyK6XkhFdNmbXOHCwLzR4iHFEAECONbM4xoK98wWGClFcp1zXG+N+MKWwjCSQM+x0w/RVZnWKCLc+0b8KCFKQIsG6IrEvoqFRIKrK7zlyBj76zkMVWKiYHGwYaEpCkbrAmdqjxDoZfLRFopICYcdRsMedbnNVOcJ5tMrFFtP07AFrz08yXrpLq7m7iBxM/M6SRakInPOVWWJSu7le8reImi38A+KJE352T87z2Ld4RffeABDlfmpP32On37NPMea+W94vNRfo/gHr4bkmzSYSFPEaBfry79C97W/gtK+jHbtk/zK1H/gTY9u82PvP8OVnQFRkvK6/TV++rXz3DFdRPk7JGVfCzlD5V+9Zp5f+Z7DfOD0Gs+t9/7W76UpMr/05oP86bvvYLPv867fe4pf+OQlNno+vSDmyu6QO2eKX7N/WuKM0XvoPxFXDmCe/m2cT/8UhKOv8SkQF/fSfsufoC99GvuxX2B4/J8RTL8KqbeCsvqlb+mcJSH47gNZz6FbuIXvVDzJfnyzAUDdNQiilOX2CM3fYWsY0/ZC1HREXg1xhEdtbIqcbaHlG5SLVTTTIUiz9iAvDHRKpoxraAzcOfzZB/mSdJSTk3lCLce+ksyaqNIVOYqGzH59G1VSKA4uMNGYwJt+NSYjYr/Hc2KeKJV4Ip6nbOuU6tNouTF6oxA7GbBPXKdkZZtAuiKTuFN0hcuz7n2kaUrN0SjoWU2MadmEcg5FlmmUSwRCJxy2KUTbTJVtqrZGSkoUJ4ynm5SjDWRJMFCKXNzs0fFiVFlmaNR5vPQwsWwAEqVh5hx71rmL4fZVXDFkGMHnksPsqeYpmRp+mCAEhHHChCuj+Nu4209i4eMaCpoiZcHY3jqOoeFoCnGaghCMjCqtTod8rsjF2R9kvXQHchox8GM82UUCel6MJAniJKUnuTym3E4sJMbzOmul2zHV7P1tOWBNnSUX7xIpNl4MqiToKSUumiewNZl+qhL4PpIkcA0Fz6gThAEjDPp730zZkFCdCutdj0vRGJGsc7f6PPcpZ6iGy7SMaSp5l2bB4C7lAnGandfWMGQsb6LJEpppY+OhJl6WIY0GKAKu7A6xdYXuwtvoq9kGgK/m6SlFJKdM2YCtfe/EDHYZmk0Wx8v4hXnu3lvn4cMN0jTljP0KSqUa4fhdRHJGgD1h4pQaaJJgY5jSk/OkKbT9BDduYyZ9doYBAIaVQ1V1PMlmX9VmredxKZlgWxnDdQpIxFRLBQJ7HPQ8n3lhl5YoUbQ0UrPKSu1VOLpCzlRQJEHOUIiSFC9MkEhR1ayBsUxMXhohuQ1asU5Ji7mk7GPJPIRSnCaVdSRJEEQJK52AfhDjhTGGpvPCrkddbKOrCp/R7ueMtMjAaGJFbeLNi6wPs42FYRCz7DsokmAi3WCvPWRC2mE8b1BxTWQBS+0Rn1BfxSXPQRYCEXsgyfhhTGPuGJu5Q9Q0n4n+GZSwh+zt4qcyebr4uWnmxysk7iSSrHJFTJJoOfKjJdTEZ7qokcQxieYyXimjJCO8WGZm9zPECFJZZ1MepytyzCeXOWRscvjabyHyE2iqCmNHiVUT11CYKjs0iwZRCpMFk5a1B69xO9esQzxh3YcvTNqjiOXAomwqeGj0tCqaYWKoKq6uYKgKI7UICFZLd3J9qHJwzEUQc9zpkLNNVoxFLvV0SpbGeN6g7YU0XAVUi/1lCcwqmqLi6jIijSg6BrtTr2dmdpET+SGSoiGLTBzUtWYAmNj+HF4Ey9occmmauqNnbR6CXQKhUCmW8KOExuLdLDZrLHc8nt8Z0S8dYbxgYxbq7NZOYWkykzkNRdNJjBJVV+dYM08jp1NzNCKzhtHYTzh2HEkIlkcyQRTTCQS/8YWrPLncRpMlZssO465GkKSUy3WUeEigOMixx44oMiNtYQQtcrk84+MTbNr72Zp9CwV6+N1tbG8NHx3SLNbKGyplSyUlxUoG9OJbNvu38B2I1Y7Hj73/DEkK7/+hk/zc6/ezMwj48UfP8I9ONr9p23X98p8R56fgZXqJvRi5D/8j5N0LPPbgx1j6/O8zvPo47UceReSa/PRr5/n4e07xr1+779tOyL4eDo/neN87T3BoLMdfXNjij/6W2TTIZJQ/+co9/N47jpGm8D2//QSfubTNz79+P39+botf+9zVlz3em38Tcm+F4vvfkBmXfA0kuSnaj7wf7fpfYp35f/AO/ADK6uNZA+5vUe74/z6/w4+9/8y3dMwt3MLfJ6a1DoE7iyzghZ0RXS/k/r1lGsU8s/UKXphwermDIgnsPa/g89dHXGpFFOozFAplurlFZElmGERcjMe4VrqXYaIwXXGR++uc3DfHetdnVd+Hp1XIp23WpBrlQp5VT2O15/E5cZLt/CFCyeCKcYAo9OmkBkma4mgKr5wvsxsqpKpOGvn4ksV/Te/galggSlJAUNd86nKX8f4zmIqEFybsO3ASe+4eYqsOmoUuK6SSxhPGKSpSHyPYZb0bcHDMxdZk9lQsFFUmkXSGicKuXGVv1aYzCtkZBGyLMgVTJp8rsm3MYkRdzjp3s5EUyMe7lOMdmkWTy2KSp1d7pKSMF0y8KNukebxbwk8EsdBojUJqrk7N1W/W99ZzFjlTIWdoSMC1TkI+2mSIzj7/WeQkwC1PMJ43kNIIL06wDYWipRDHKXIS0Ox+mVy+iqUp3DVTwVRldgrH0Nw605bHQs1mmTpCNUhL84wKB4jsBrosM1cpUrYUdEVCVxRsfzOrT4vaNK78Fyqiw97F45iqjJ+fBcUgVByqyghFEhiN/aiyRNnWaLgawsihGzaNnMlmz+Nx7S5UwwUBXqoQC42hUqAXy8xMznA5bfL0jsCyHEZBTM6y0VUFs9AgSiUK4SqxlidUbHKmyuXKQ3zkfIenl7tIksRu7iBtuYzoXMP2Vpku2+zJxUz1z6BIEMQJM0UdxbCYKNpMFCxMw+REs4AqS2zoszyeexChmjy/3We+YnOi/2nk0SYL0nUKYsimc4ji3ruxDZW1fkKjXkdIKdXbvxd54gRxmgk1NEliPG/QGgZYqkScn0SxKhRNlVC2iIWMgc9UskS+WCEq7MGqzFCKtymHq9nzpknkTAVHlSg7GqqiYKkyu7HFbYdPcjfPYA2WsMWIZWOeLQrcmzxBwxb0/Ig5vYOpymxLVZ4elokn7uKiNEdfcoCU+YrDw845TlrrNHI6Dj5e+TCePUkkaTyp3s7l2neTP/59jGSXtHGMq2mDbmLgq0VURaPtJ0gCRkoR2dvFHttPO7+fT6v30yse4nl5jme8GqkzRiTpbCR5ZBJUkWKWxikmO+R1ickjD9Juvpq92i77KgYbvsH2CHYGAaMoxdZkWsOQnKEwlssagk9WS+StTLKsqxJ5Q8XSVUaSRad4mC/qd/PC7ojWKGTNWsR3p0GSmBRb7C8pRHFKbxQShj6jIKIUbzBdtrBUiVEME3mDi9Je1rRZvjgcI229gBHuMle2EYCSBJysxjx/+RynN3zWkgJPsUgvgO38QdSwD8BO6ThOfQ+porM1CLBUmSBK6XgxpWiDuqPyZEunq9aZr9oUDJXHuwUubo3Qd85yzO1xz2yJvU7AUNhI/XUGQYwiK5yaKeFEO5TSFl8qPwzVAwAEsg2kRFad8ZxBI6cjBCy1fS5s9rFUhctJDbN1getyk09W38Ul7SD6+BFecfw2CvkSnxzs4fmggJ30WLMPsBEayIlPfnCZ2BkHMqXBwI8QCK6bB4gmTr3senOLoN3C3yvao5DNnk/OVLi8M2C771NxdHpexI8/+iz37Snzrju++V5m+sUP4O/9xu6N6WALMdgk3brAD354l/BPfwTXW+XZB36H1KryAyea3Pn3kCn7ZvAV6eF43uDRZ9Z4z385/dW2/N8CTkwWmCnbpMDds0Xmqzb/wweeRZUF//iuKbww5mPnNm7Wp70YqVWl88bfxdv3CLmPvfvrZikTZ4z2I48it54n/9F3Ec4+SOttn0AKelhf+Pmvm4H7mzjWzHFuo097GP6trvUWbuHbDat7Gad/mWVtjr4zgyQET610iIYt6FxHlsBUJdqjiJ3Lj/PQnMn++QWQNaR4RNuY4NPWdxGncERbY6r9OJ4wKfSfhzSmPQqRJEEia6y0hvRinetxma4XYxXq3D5Z4LhyhdzGFxjf/Tx3KZdojjVpk8fRFBxD4dHTG6SkyJKMVmzStmaoykOmJ2coGCrzNYe99oi8bdEwEm6fKhDECXI8wvLXiLafR4qGDOMUU5Op2DqqIuOFCRXaHB3Ps6/qsFhzkYTCINV4Rr+D0sQiO4MQQ5WIVJuBWuJ+c4mV3Al8xaHjRRzsf54x3cOxHVIEuiIzXTSxNJmpoolraOyt2MiSQkl00VWNkVkHIIoTkheHLEJwcrLATpojEQrCruPmKqwEJp1Y5oGFBuPJOssdj7IBeysWcxWHhZqLmq+jSimhZNJNNVbaHh8/v4UfJVwOi+ypuRww26QpzAyewR/2OJNM09QGHC3f+Pz6AT5bfhuyJJAlEAgUzWBdaiBHI5yZkziVSd59appSsIwfxXSrt+PcCI53I4PdYcRWP+AJ6z7acgUpHuHHKQVT436eRA67eInKWGMcR46Yiq5StRX2NApcEtPcLp6jMLqKpkpsijIXzWOs+iY+Cnfck0YAACAASURBVAOtSpCbYW3sNcRJyt3eZ1gsyTTyOnVXwy/sYcdP6AUpPWsGxSqx1ekTxClBkpI3VcLAw091Do6XuRCUaUUal7b6pGlKhMRTfpM75uq8/XiTiqMT1m/DrUwSlhaR3Qa36SsULZ2eHyHFEZ3rZ9Ekiapr4ccJnVHI6CtKDpFllqN9b2JYOsxmqGHqGn1znGfcB7iUvycjRHqVvKEyltOJ4mxNahbMLDOagiwLSqaKpsj0/Zh8Ls/5tV10KaGkxQyDGHdwFT9VeEI6ysmZGnVXZyfOyim6wsbUDDavPENlcBFTREwWDMqOThAEFCpN4iQlSVMKW18i762gyoJrcUaeh0tPcrbwaiYP3s9hdY28mjB/8A4KjRmiVCAJmJxosm0vsNWPmPIvctTcRrWKlMtV7KRLMtxhsjlN+dBDmJqCoyuoYQfdrSEkGXm4gWnaRP0d+kFEuZAjcSfJGyqrvYieF2WZwTChaCp0hcu5a9dvKlQsVUZTBMs7XSpJi32dz6HHGcl+3WKNw9I15uOLaPGQYaqy2guZKlosa7N8IjpBzlSxoxay30EIwTBIKJgqt6enqUfXqTX3YloOkZo5QY/sSU6rRwm6W6RxSLNep2iqTBUMcrpEbrhMKmXPtjraxlj/EkrvOnGS0vEiTFWipCW0vYiNQcSh8DTl0WUsVeZV+ypMFgzqOYOWNs65YY4za10+smqxShVz8jYGfsIL2wM2ej4p4ivD7a/jPUmBJKEsuhwZz5PTMynvsakS++sOzaLFIW2TkTXGVLrKwvDLVBydMh0+99wLbC89y9HwKWaHp3E2HudO7SqWrrFVOEb5wGsyY7cbc1gQZWNWkQU15+X9FW4RtFv4e8UffHmZX/vcFWxV5kPvvoNGzsALY37yg88yW7b4iVfuQXwDQ4yb6G8gDTfx577ra//bj/ivF7f40B//OvZ7T7G602btLR/lvfnf5FTTwnnHBzgw89/Q2PrbjIMNl999x3EOjeX4J3/0DEH0rcv/0jTlP3/xOgVTYbntMZYz+LnXL/Lx81u88/ee4gOn1/jStTZft/RLSIxO/HNab/sESAr6hfdD/NLmiqlZov3mPyKVDfIfeCvIGsQB5un3kv/IO78pkpYzVA6PuXz+6i03x1v4zsRm12dcapNrLHDvwT2ESUqSwCiM6Xs+shA0iw4lU6VqaSDJ2dgPhyCrLLghp4LPsVB1sHSNqUqewdzrSZ0GYeME5zb6HJ3IEacCw3bpWFNsl29n6Hkct3bRG4vIikbJdQhlh1CyiIe73D3GTfnfeN6g6ugoioxjGuyQY74ocUBbZ6PvocgyqWISlxc5Y9+NqUrk80USu0FijxGbZWzLZrKUQxYgCVBkGUUSdBONpfYIP0qI05RYUtAJ2Kes4xrZrn2SpFnWJtzgtHUX+biFKv+1A2Ma+5wOx7nuHOILwwme3x5gqTK3NfOs9wI+PNiPL9tMLtxFa/JBAq1MLBRMVSF90doQJdDxQkwpRFYUdkWOs+btJM17WLEOo6gamhQjAbVqnZpjoEgSmiKx7mtsKBMoIkVqXyNMEgxVxlRlBNn9NDSVthcxEgbdykmON/PMHLiTA0dPce+eEi0fRmh0cgfw8/OM9DKjVMeTHcLSAkU9RQjB89t9RkFGQiZKLq6h0vFCxqyUmqNyaMxlyr/IknWQ8aJNP4jRFIkojjFFxFV1L0FnnQIdPKuJJGRqrsF81SEOAwwRkcQJiSRTHF4lVhyi2jH61jR29xLF3WeIU2iXjmJbNnXHoOFmksY7p4oIzSKWNIKxO7lon6RgKlRsjbypsumrmCo8s9qjp2U27LIsSIGJnEGYJDy92qVoZS1WvtzNsd4PkZIQI2yxrznOwTGXkqXhCZU159BNWeN618dQsqxXpGZZljhJWetHaHJWpzOU86yrMyxE5zgZPkUp3qZhJViaTM3VGeh1PMnmys6ABxdrHBzLIwsJirOYqkyQJLTsPWz72b11K5MkuSaX3btwhMek6eOaKtuDACXoEsQJYZxSNRIWcxEVW0ON+khpylLLI5y8l+1Qp+tFyGlI4tSpVavoikTRVBnXPNTuFYIowZMdBnIOKUlQJMHVnSE5U+eBvRWe8ytcrDyI6a2RAodnJpgo2hD5TOcUlKiPngzY6kc8ZjxAKmTao5hANtl/o22Ov3qanhfTMyYIJIuLSYNrjdcxX83MNlRZ4lprxJXdIVNTe+gXDnBysoAuCxRJICEYy1u0hcv13DEwywQ3NmXC0jzr+hyhZDBSyxSr4xQtFSHrVIt5jkzkuWYd4fLIJG+oTBQs1ro+SmUfAynPTHyVHXeRzeJJAFqlY+T2voLxvcdRDYcHSrvEScoojImTmNXyKRKRkRVfdQmbryDJz9DMG1iaTJxCX9jUG00EIOqHGB+fAmAYZpLWOE3JF6ukep6VjsdMuoyjplzo29TGJjk24TJRMEhkk5HkIMh6252cKmCqMo4hEw7aXN7O3KglCRDSjYy+YGx8mu3ekC1RYdlcyFxogz5xMKSljtEzxonsMVrmFJv9CCvJylQqjSlSI/MvmCyY1OzsOsdzBpr88hTsFkG7hW87vDDmn7//NJt9n+ttj7Nr/RspZ4kwTvjpj5xDlSX+7etevtfZS+DU2X3HF27290rTlIubfb58vQ3Az338PPFf/nt+YOeXkawyjYJN889/EKvYoPuG94L28gWa3wnQFYkfu2+W973jBJoi8btfus7Hzm0QfRO1Wps9n3/xgWf50LPrvOFgg998+1G6XsRvfmGJ/+3NB/hn987yR0+tcnlnyJeWWvziJy99/eyVakHkYTz3hxQ++H1fW76omnRf9xtEjRMUHn0zCJnddz4Gskbxjx5Ef/Z3v+E5v3JflZ1B8A1fdwu38A+BWk5HkuBA5zME688xnjM4OVVAMVysYoOFmsPlTsIzziuI57+bVM8j0ohUtRGKCUYJhMTzOwPaiclGaDBMVbYTB2X3Ig/tr5EzFFIhQRzhKOmNuiyJa+0RYeCxVTiGn5slklTODhx2Bh7Pb2ekSZHgQMNlresx5hpIQtCTS3S9mC+9sE7eUAGBiEMKSQtFNdgsnGA5cEDWiIp7QTHYqN5HT84RpSmbfZ+9ZRNVFjwtDnJ1Z0Tfj1FliYFeZ02dAiGx2fN5zUIFP04IlTwiTdnpjggG21wVkywbC2iKQi8xyOfyxLlZOtYswyBiZxjy6YvbhAm4wRZ7iypXhyrN8UmWxx4kknRUWZAimLjRYzJMBavyBFVDUDMSWqOQ9Z7HUmtEe5TNY9fyp+gpJZ5aG3JldwBCsDsMqAQr7JE2GBc7xHoBWRKcmitTd3UWazayEGiajufOoaQxbtqlZGl86HyXv7rc4umVDmOuzr6qzcidpVoqE2p5XFNlaE+jty+BlJGWw2M5JmoNposWoyDmUv4+nnLup2pnsrHuKEKeOkV+fIHlbkjJ0gFwDYWcobAjSiwHDolq0RNZlidJUy5vD4iT5CbxVaIRkaQhy9APExACKQmQO1dZbo1YTqt8/MI2Hz+/CUDF1giTlFq1wXS9hCQrpGYJXZFxdYWFqkPTlXCVlHreYkuf40r1NRweyyEJgaXJKELghclNP6nDygpu0sEIdhBpTGLXaRZM9lZtFmo2h8YLlCwVSQhunyowV7GI4hQ118Db+6YsGynA1uSbwetAyTGUcrQjCS1oo9zY7JMlQSobJIqdGS7YGrae1fe8ENdxDYWTzTxtZ56hMAnihBptmnKbJEkYKkUCNC5tDYjihPmqTdnWGM/ppEaezvi9CFkh0XMATBRMHtaf5P5yB1uTUVUVszKDpxbQFYmuF7GtNxnNP8zrD9YQksRl+xhRcZaLWwP6fkTXjxECDBnaXoQxfQdr+36YxKyw1gtQZMFSJwRJQ5CRhLypIInMBGwrLUBlkVTPoedquK7DykhlIm+wv+5QsTWSNMU1ZBq5LC4ahSlf/PLn2SOtsdrxCeKU1o1MfYjCJeMIK7mTDCK43hrRGYXERpnV4p0gBJV4i3v3T914r4j2KOKL11pstDvE/pCtgc9a12eyaHJBWaC1/x2cX9kh2bqEnGRruUBwaavP1vXzyFtn+OSZK9zWzGfNoIH9M5PISbbx21WrpFF2nK0rGKrEjrPAitwkCBMmCwYXdmNQs/htpeOxNQhZaY+QJEHN1Zkr2wROEzWNsPovsLLTZqPnMwpipKBPSR7eVCqVbQ1ZEvhaiUDN3ZzrVUkCIXNtZ0THi1kZytS0kHO5+1DrBznYcNEqe8i5eSw8Lsd1lpMycSrYnnkDbj7riftinJjMc8d0Ifvjm4h1bxG0W/i2Ybk94sxqF0OVecPBOj/zkXPsDgP+7+8/iqMrGTn78DkGfsQvvfkgmvItDMfYR/rUv4U0Zrvv83OfuMgbfuNxfvSPT/P4tRaEQ35V/WXern2O4ds/yvCRP6T0obcT1Y7Se/D/BFn/tl33twOFGzuUU0WT335sidf9X4/xv3ziQiZleJE8MU7Sm8HJT3zwLOM5g9/9746zp2Lj6Aq//JZDzFdt3vX7TzGe0/njHzrJd+2v8TMfOceTyx02+v7XlDsCoBh03vQ+otICxT9+A/LOuZe+RpLp3/dzjA69k8KfPIKye57OG36HqHoI5/P/DvX6X72sO+T3H5/gHbd/52Y1b+H/39i3Zy+xkvUzFGnM1sDn05e26fiwO4xJyeRWlZx785hUcxF+izQacmljl6qro0iCo9YuLgMixaanjyGiIWfXung3XOj8MCAWKtvDAATMlkzycZZdDoSGrQhOaleIzRrXRwaGIqFKEk8sdRgFMZv9AF2RyMc7qBLsLZtozRP4ah5kjd1uD9dUSOIIEflIwy2U1mXU3nVSsgAlp6tMFS0ubI1o+wlTZYe7Z4tUHA1FEgxjFd10EEmArSlc3OyTM1Sqo8vkoy00t8gz+VfjWw18yeKL1v0ohsvW2GvY1SY4MOYyXbI40cyRM1SCOGEyvsZoNGSmlJke7IwSbC0L1CAzkwAwVZl9NZeWlKebX+ChxRqOnjkxWlpWp+Y4NruVOwi0MqRZQHRkLI+z5x76Y69gkJvnefM2FElwYXNIEKfEaSY/ioWC6m1RUAIq/hJn1nrMDZ+mMLhEz4tuBnhhnGQtAGaPsWIdZEFZw6seJRzLsgd+lLAplVlVpwFQgl0qSYtY0vHSrF7qtj3T6FunUWOPQRBTsTVKtkbZUgmFjC/bjDA4bd7NUu1VmKpM2VZp6U3M6h5OHDqErxUZyDk2ewHdG2tAohcYahUg65k5UzIZz//12rfUGuHky5SkrC5uujnD0th3ccd0kaqrE4QBYRhSLxUQQnCtHfC5G/0qr7dHuDfuxVdiTVOVKZoq/sEf4PLYG9G6VwHYX3d5w8EG11sjLCPLIGwPQnYGIQ/Ml2nkjJvKmQfmK9RzBsMb0seBWmVbHccvLNBNLaQbxE2WBEO9SqF5IHO4lAQgspptkRH5es7AUGTWlUl26/cRSypdP2Y7VHnSupu1tJyZTuQMpqZmmK/YrPdD+kHExc0B/dIRUG0Ojrmkacr5oMJnNw0OjOU4PjOGtX2a3Wun0eSM1M7rbZzlz1B1dOTEx5ETUqtGmkLN1VElQRin1F0NS5VZ6QSkS59n48ozJEJlpnSjbU80gjThxGSBiqOTN1RMOaViq4g0RgQ9aqbEjCt4ILfOgYbLW2+b4PbpIh0vJk6yMQxZm4dGpcpuf4SlychS1nM2SVM2On1yaRdLjujKJRYbOQqmiiYLDlkdktI+1qbfDJqLoysca+apOzp5Q6GScxkVFrBuOJ/6Ucyp3kc5eeVXSSWJgZLHV7PMESK7X0JRSAszHKppNHIGk0UbW1No5Iybg8gaXGez89VtfgzToo/FmWSapbbHvug8W8sXaBYMTjYL7K3YLNQctvoBZ9d7LLWGPBYf4OrEw9xz7Dhy5NH1smciBVRFomCqN99fEgK5NIeez+TUzg1DIoTg8IRL3tIRksRpaTGri01SJAFyf5Vw+zJiuMmU2mF+8ATOaI3C8ApxmrLe+2q10VrX58p2/8bC8I29Bb45Z4VbuIVvAX6UoCsSZ9d6bPZ9yrbGbz22xELN4X98aOGGfCPhX3/kHB0v5D+85fDNBfUbIYoTzqz16D39fo4tf5iV8R9hqmRTdjR+4Y0HONhwUfsr5B99mERzSKwqIvLIf+Qd+AtvZXDXv/ymdi6+U3H/3gr37SlzcWvAX13ewdJkPvvCLv/mo+fRFYm+H/G6/TX+zUML/PrbjmBrX/2Iq7LEv3rNPAs1h//jMy/wm28/ytuPT/CGg3V+50vX+e//4GnypspPvWYv986VX3oCskb/gX+P8ex//vokVwhGx3+UxG2S++g/ZnDqp+k99Gvolz5M7mPvztwf3/rhm822/ybe9+VlTjQLLNSd/9av6xZu4e8UV4xDKM4yW16Z+clF9isejqbgz52gk1osbQ85MVlgT+VF2fnIQwp6JEaZhYUjLF25wELeodW/xuGGSlXVkcQYia3gB5l8S1NkHElnStOY9S1UWeLQWA4/N8kJNUEXh8hFWwzWCsi7l2iWAsZlg2bBxK46tNayAE2RBAmQAJIkc9avoMkSiVXGdbts9HzmLIPEGCOxqiSlfSTJ4yAkbF0wVbR4bqNPkErsaOMIIVF2dNa6PmGSYkUtKv45fPc2XjFX4hPntxj4EYorECSstEfsrdhMds6z2upywbkz68F16YMEtWM8szLJSsdjb6WMayg3a0IkRWG6aGZui14mmzQUGSSFr8zePS8i6AWM5Bwtc4713RGGIpE31RtkDk7NlPjEuU1yuoR6I2D144TTWyGOYvK96TZyBA13mn9yeBZJktju+3T9iFhxkBWNar1OTJkFbIp6E+8G4YFsPu3fkC8O/Jh2IMgpKeguUm+FpLSPqaLJ4MBh2qOQQRBzUpxnoujzpDSJW6jywESZz17eheIxxvSzBB5sDwJ2pCqqt0FBidivrLHu9ZHtiETKyNsjR8b42DmZpT33s7zp8YA+ohv3GcmVzNkSQAhsfwPI6r+vtzwmiyb3zJX40lIbW5MZyxXx8w9DlNwknckNNcqBkoK1nvLkekSzaLDR8di5obKQROZsmf2e/RyGEbqjslh3eXIJEi2bwx1dwQtvSNnyJepAZxQwWcyah3/lXCHLtji6jGsotEYhpBE1LSQ/+DJluU9wY92QhCCWTWLZvHEcpELCVBROjBd4YjP7DqZLFu1RSCAZjJQqJd1mIDfRhiGNMKbvRVzdHbJvtIsXxTylnWSx6nBqsojUbpFZOsBK10cfn8IWBiKIEKT0zEnkwnTWhD1vUDASAlIcXQElM3UxwyxIN5SMVBuKxAvLfSKzyrWx1zHcusLR6b1cWoooqhvMOzlEW4CQ2O0HXNzsY+sKzZyLESko7edJjBKqvEWutoA86HG263Fhs88dU0WmSg7eauZW2swbFG2V0u5zaHqMqcmAQFcyCeneosZoM0TxdlHc23iuuMjh9idJ44Rn9QPEFZ/QNEFS6HkRkF2nEILLtYco5gxqrSvk9IzsV4u3M1WcJt2S2dSmMLXSzXszX3WoNsZ4buck5Yl9eGHMSugyJboAN9oZwCi3h6nm4lfNu111jCWRY87R2BkExLXb2DdeIlQdnl3rstn3aI1C9lZs3nK4weWdIX6UYDvjPL3+JMcaDeaaOVJH55o/ydOKR/NFSh1TkxmODFQti2n6Nza+ReSx2vEZ6DZ1U0WWJASw1sviWiHLDIwGLfIEox2WrINMKxKDwQgtTV/SNiiIUwLVpexolCyVb4RbBO0W/k4Rxgnf994n+E/fe5iH9tc4t9Hjh973FA8fbvAj98wghMALY372z87TGoX8x+859LLkLE1Tru6O2BkEnJwq8O/+4hJPXm/z28qHGBz4fppFC0uTec89MzePUTafIirsoffgr6KufIHCB9/K8MSPMzr2T/8evoFvP4QQLNQcFmrZ4nf7VIHfe8dx/CjB0RWqNwpP/yY5ezEeOTLGmw41iFP4wDOrPHK4wY++YpbvOTrOz//FRf6nj57nn949w1tvG39p3zch8A6/CwDri/87iTOOd+DtL/kMf/5NxPkZch/9YZSd8/Rf8T8TVg4iDzeQukuQpiSF2Zccd3V3SHsU3iJot/Adh8PTVZ55QTAY9JEUg+NNnSSFrjvFrCTRCbc5t95n74sJWpo5JyIk/PIhtnY1xlQD1znEpWiHi1sDjtjXkGWF4/NHWe14jOct4p0UIckISdAs3thZjwMqjo0YyUjDLUaYbEZVDLtA4gsMRaZkabQQN6VyilngutFkvVfi7jEjC3CcCSIP1BtStT4gjXZJ05S0cRtpW8bRYK5i4eoyPTnHvvAsqnUcP8oIiaZIHCxKDLbyXNYOcFeScnTc5fRqF18vs6OqhHFCkoIZ7mDekDApkiBvKOyGAzRZImcoPLfRp1kwsDWFnfFXUdYdvrjU5sHFGiVLZXU7xItiQslAFnB2vUfJUlER3DaR55KfEkQJ+2pOtrP9ojnLNRSEIcONeCyME1xNpqkPsVvb5IrNLNNoZfPmzjAjDubOaV49KSH0lLSzzrY+xmj7GqVaysBo3Li1KcUbO/FCQLOcZ3cV5pb/isQukJDN1wcaLl0v5LGrLZBVhGmRSBqbpdtZ2+jzirkST+/02ej4uIXsPC4o+ymELXqRTKtxlK3aq1i0HTYGKV4Yc2a1R5xkbosAy5GLXC6gRFkWEACrQhpk/x8EEWGScmVneDMLtt0PkEUWdL84lJy4YfM/rhWIDYXD03WeG+pc3R5Sd3RURWIYJuzeyNR95dved+B2Ovo4QkDPnCQx/loyZqgyx+dnWOt6AOyt2Jzb6POVW/XiVWY8Z3B4zMWPErxRhBJLbKl7KDKgo9Zf8lwqssDSFCAz4SiYCpCdW5RkzomzJYujfocn2hHjpb2Ypka35yFLGYFE1tFthclqic4o5OJmn/1adlayJPjuAw1y0dOE9eNIag5NdmnuezeKqpEKwZ6KTeyWmL1z9qbz8nrhNqYKA6quRsVRSdKM/FYdhZUgZX/d4ZlompHsokTLbPVbtOVsoKaKhWPIFEyFMIGZWh7Vy0iMiDyCmVfTH/ps717DncrcRLt+xEovwp1+LbqvoGvZGE2H2+RliZV+gCSynnOnZoqcvrCFqo0hzDrDUcRSa8RcGKNrBuutHiu7PY6MLkLltaiygalKbPZ9Nno+u8OAEzmDSyMTNexz9505vnjRxRobI90+Ty24hh8exSlWgYzQy63L0FtjOzqCGic8JfYTVyz2AbftabLy7POsyE0K3lcbknlWnbodo8qCmaLJ855MPrQ4fXUbWcraZ+z0A2ZKFo6hcGq2yKPPePT9gGR3g+UgZXwswiQjgna+ytiL5Ievmq+w3XsQVVd5tW1wdXeIEIKwepj1uIcYCjb6Po8cafCRs5scarjZHOOMMae8wKZqcGnbwFJS1NRHImamZL1E4li2VcK4TGXy7egXP/iScfyScf0NX3ELt/BN4KnlDtd2hzx8ZIzfeNtR6m4WHCRJynvumeHhI2MAdEYhP/nBs+iKxH/8nkNfl0S0hgG/8pdXePxai0EQ84aDdU5OFfiXr/7/2HvvMDmqK3//rdw5Tg4azWiUc0ZIiCSiAbNEg8Es6zU22F77C+u113mdN+CwxjisA9gGg+FnggGTTRYYkJBAKKE8kiZP93SurvD7o3p6pmda0kgIMNDv89houtKt6lu377nnnM9px53eS/S2DRin/JFYbvh4bfOfsCUVy1OL7QqhbfkTvqe+QuKk/0FvP+utfwjvEC5FoinkPuzjJFEo/hAZlo0sQa1f40fnzWZNR4zr7trArS938N2zZzCjzl/2HHrLiQTvuwIh209m/tVjvJNGzRxiF95P4C//TPDPlzJ42s/Jh9vwPvstXBtvY+Dih7D8jSXHLG+N8IvndnHNirHGW4UK7yT9o/IjN3cn2dWfocavMZDWaa/2MpDJo8kjFp2cbHMQRFSXGzE8EXfOpLmhCUFoYp4UJ5w0wXYmX4Zlo5s2OctmAI36gMay1ijERlxYEMCGma5elLAXu9rPPHcQ0zRZ3RGnQZN4LaHTFHWhoNOib2Fi/UIUyUmMR9J4La7Rp+pMmOAC0w+2iZjpRQqHh5suCCyeEGa7mMIVc3HS7DoEQWBrdwrBhu1ZjfmigISJKAjsiWeZFPVQEwpgxbN4NZmuRI7Zolj0tiiSgCKLTKsP8rrpTMYXNYfYMZBmIJOnIRph/f4Ex01yVt+396VR9Qy2BR2xHNU+jahHIeRW8AZcJAYtqnyOFH9z2I1pgTRiHEpkDWaGXZBS6cSRA9/h04hldLrCC2mkq+Q73RfPYlga1Z4aRNWHFN+FtyCMVBdwMcGfZ8DnhjxYNkVvVXPIzXbNQ8Dvw3SLWIGWkvOalo1HldBbTmOwPwu9GWwcaXRJFHDFNlMbFNioSkgIRDWRme4A1Tk3LjtLk8fA8nrpSiUxbZspNV7qAo7gR3dCp9s/m5ToJ9T9AnqhTamJZ9C7Yw/ghBnuH8wVI1xyhsWiCSG8hQVSVRp+ZrppIUsC+9ICKXUqfnc967d1Mpgz6EzkmNsYQBSGPWdD/82EphBSHS+nP9uBmgxAYYKezBk8v3OgWEJndyxLT8FgGOrSQ/8VBAHdtKnzawheEXsPJNU6dGMnsntsfdSpNT7HECm0ZeTPkIBAXdBFc8iFHDqTF5/ZjbsvzawJYUyPTHPYQ5VXBdviqXgVr3WlmVzlJeFqwvRqxYZlDZOsZyodMZUNXQmOb4/i2/UQZqgVo2Yu4Bj/W7qTzKjz41VlqqO1xDwKc+scwZ2wR8G0YEGTn1ZfHS5F4vWuJJOrfbhEo+ApD2LkF2F7qmhU3HQndGKZPCG/j4Bfdfx5RgYxn0L3TCAXlZlVHyiG3eUMm/68AgWTAdonvAAAIABJREFUWxAFdMPJJTVrnX0GMjoNQY20rtOsdzItOIec18tp02sQjbPImODZsIEpSpqBmmOoV9y4BLFgcAiYtl2c4xmNx9IxmGZqSud0bR07XtqEHVqJIWhMrw8QaQzz0u4YCAK2O8L0uSvA50MQBOY0hooL9B5NQZEEwvp+LHt2yffnS+/ByHjpSYTpS+mcM7uOvpTO1Bof9QGNgEthTkOAeCbPur2DGJbFQDqP6rKZHnIj6U5BbTfOwlLApTCtZngBWDctPJpGVeGehhbYbG8NsybVsHdjN4IAyZxZ0lcBJjY2kEh4aHL1UN39HIIf8pIT9aCMEgHpTer0JsefY1/JQavwptjel8KybTzKcNx/rV/jvg2d/HHtPmbWB4rGWedglo/dvo66gMYPzxs2zizb5vXOBL96fhcf/cMrrO2I41Vl6oMuvnv2DB795LH860ntgGOM2AVZd9yFiUThx0hMdSLFd2PUL8ZyR/E99y3i59zynjbO3ixBt8KXTp2CLIl8+f6NbOpylIcWNIW45SMLOHdOHVf/cR3feXhLMa9hJEbtfGLn/Qn3qzfhefnHZa9heWuJnXsHlq+R8J1nIXevI3Xsl+i/fDVCLo73mW8gxnYU9188IczO/jTdibFqkRUqHIx8Ps91113HJZdcwmWXXcaePXvG7HPvvfdy/vnnc+GFF3LnnXcCYBgGn//857n00ku56KKLeOmll8qevz+lF/NuAKp9GrMbAsxvCtIa9WJaNouaQ7iVET+toorlqQJBwqvKHNsaKW7yaTJeTSIenU++dj7gTJRDHhW3y0fb5PlMqXYK6ObaTisKG9muMGZ0Glb9EtpbWljaEsbvUnCrEjPrA/hUmeaC1y3XcCwTw27k3td5pWPQCQVTfcyZPovGoJuMbiCLAmagGbNmDmb1TE6Y7ITxDXkCqnK7yeYy/OX1bhK5odVtm66shF/fz4LM07hVieMnRZnZEGCL3Ygr0oJHkUjpJnnZi+pxkuMDboWuhE7E50YseB6qfBrTa/w0BFwE3AptEQ8tEUcQY0qNj6BmI4hOKFLetIfroQkiqiwQcikkciYeRaI16in5jmr8GpZl4S7UT+tN6WzsTpIyJSQzg6mUeuoTWYNtPSnM6FSM2vnka+cRqZmASxGJZ/NILl8xV2hpS4i6gDOpS+dN8iaO8lvzSpBLV8910yaVM0FSQHLaEvGonDqtBpciMWn5Jbgb5lDrU2mvdsL2VVFkUUuEkGLQEvEWQzf9LoXmsIecaRYni4PeNlonTMSrSliFfDvTU82gt5XWqAdRENjak8LGZkFzEJfi1GAbqisnCEIxakEUCkp//jo6a0/muR0DALhlibZC2Za2iIdVU4e9IwCrdwzw4m5nX1PUsNRQ8f5VSaQpNPxMFGlY8AVKPWhAURnSFiQiXoWAW6XFnSGY28toNuxPOKGmQ+GPI/yBNX6NE9uraA57QHEjSgq7+tMMpHVkUaTKq/DE1l5y2SQNapaApnB8exVz21swCnmEAB2xLPvlJtobaqj2aeiGRW7SBzCqZhX3SenDE3hNFplc7WUgnUcSBSy7kOskQk8iR1o3CbkVfJqEjY03WEM6MgO70G9sUebVfYNs6U5R69ewJRev5RsdT3zraRhVM6gOBZjR7syNHt3cQ19K56IFDSxqHn7usiiQqV+K0bSCEydHEUUBl+KEUV8xJ0DEZTMY60aWRJ7b3k/MkBEklaRnAnH/FATBWWBKZA26k44YiFeVSOkGUa+GKstMqg7yRm8Ko3YOnuqJ2ILIgFKDpYWLz0MEbMWDJFgIgkAyZ7ClO0l66Jnl0wgItHuyLBzRfgDdFSWrOmkP1X4NTRYxTJueVI7ndw3w/M4BdvSlqfJprJpaTUvEw3lz6mkKafRndOqrI4Q9zpjQEHRR5VN54o3e4vktGzZ2JQphnOVxyWJxDBmJFWolHPATCYTY5F2CK1SHSyov4mYcUC67PBUDrcIRY9k2X3tgMzv60kyt9XHqtBos28a2babW+JjbMBze8EpHnCtvfYVjJ0b4xpnTkEWhGOrwwye28//ueo09AxkumtdAe5UXVRb52LIW5jQESmqTCXoSpfOl4oqVkBskcN9HULc/iFE9CzM0Ef+j/4L2xp8ZOP9ejLqFb+9DeZciCTCnIcgn/rie+zZ0AtAQdHPl0hbOnFHL2r2DnPqjp3lkc88YEREz3E7s/LvJtZ3uGMt2mcFJdpE4+Qek536M4N0X417/K2zVh2DquDb+Ad9TX3ISowGPKvHjC2YXxQAqVBgv9913H4FAgD/84Q987GMf4/rrry/Znk6n+clPfsJNN93E7373O375y18Si8W45557cLvd3HrrrXz729/me9/7Xtnzt9f4iHjUohcg4JIJup1+Wh/QmFTl5fEtvSOMGEAQMGrnD+fYjFh+3diV4NHNvWzNhbGCjscl6FYIelSyhsnGnvTweeRSL7nljmLLWnEyDc4EUCxIyQM0h90YSoCku5ntdh3zGwPOZCnVhSu2iRPao0Vvn5ToQMg6k2utcLwsOt6IhFZPTvTg1SQGC5MYRZZoqq1DFAQsywkxDHtUwm4FSwtSX11VvNd+/1T6/dPwqRIht0KgeQ6+6hZOnVbD6dNr2Nab4qU9Md7oTZHWDScssXCfx7dXEWmeTbZ+GQ1BJ0Rza3dq6OHiVZ2ampLoTMZbox7aosMhpvObggykcnTGnd+bpqCbGp+KxxwknNqGnE+U/a6HEPUkubQj3vK8soyX7OnFbUG3wuQqx6gZzBrkZS8x/1TUxO7y42Cx1Q6xtM5DG7vJmxau2BY22i2FUD2HvGWhyDJKuAnbM5wTnMwZPLu9j/Udg8SzeaIF6e6WsLv4fYy8jiQW8ro0ib2xLKt3DDgFjEcxNLTPbwoyudpH1KPSUF3FssKiwrQ6H585vg3bdgxSWRQ4tjWCXPAUnDi5itn1AccDJvux5eE8ZVUWmVk/PCcIuhTSulnsu6PL6xQVnQVHwl53RTEWfoJk9YLiPiPTI6q8KqdOry0518IJIVqjnoJB4rSxNqDRGHIzuyHIYC7P1p4USyeGsdtPp3HKImY3+NnWN+K9KzzFhc0hZtYH8KgSiuj0OzHTC6ZevD9ZKr2HvrSzTRYFRNEp32BZMG1iC7MbnOdU43PCpLsSOeLuicOGvaQS8ih4VBFRcOZbGbWKfO0CR7l6VA73xIgHWRSdfEbgmIlhjm2NsHRCiE4rTEtzM25VxqtIZHQTryryXCekI3MJtizgtOk1pHQTw7QcL6RlkOreRrTraTCyuFUJRZKcsF6PwvQ6P8dOirK5O8mGzgTLWsMICAxmDQbdzYRI4jYGhp+iICDFtiP1byn2tUIgAACmv4lIXQtVQQ+j8SgKrV6L/pRO2K1gAxnDpD+VB5wwbRtHMXxDZ4Kp1V56Uzo5S8ZUg+wYhJg1PCZoslii0VHlVZ2cxoMYUL2pPFphgWT0YsJg1mRzfw6PZKOl9mFny48pcxsCHDepTG7/AajMgCocNuv2xnl4Uw+fO7mdmz48vxjvn8mbfOX+TRzbFuG8gtfMtm1uW7uPnz+7k389aRIntFfxx7X7uPOVfSiSyK0fWcBVx7bw2RPaxiWx79p4G+qOh4g33gHdrxO64zIEU8cWVcxQO4EHr8JW3MTOv7tYe6LCoREEgYvmNzCl2ssX79/Imj1x/u3kdlyKxGdPmIRt26ztTvKNe1/n4U3dfP7kdqp8wz++lq8BANdrv0PZu5rEqh85K8WlFyE750qM+sX4H/oESsdzJE6+nv7LniHw8CcJ33YKRnQmiTN+zvzGILsGMkyMjB2sK1Q4EKtXr+bcc88FYMWKFXz5y18u2b5u3Tpmz56N3++E7C5atIg1a9ZwzjnncNZZjqc9EokQi8Uox/54lpFm0taeFHsGMpw2vYatPSlEAY6bFB2TV2sGW7GV0rIeogiTq7xMq/UWkvcdDNOmI5alTRKpDXjoobyuka0FEIxsyWe6abOzL80xAY3XbPBrjgEpBhfilhME3Ao9KR0z0MxrezcRdyVYWVuDndyDUbcQWyn/vinoTI7KtLVXIQqwsTOBAORTTt6aqLiK3rb5TcMhaA9u7EKRPEhGHMXUyZteZtQH6BmY7JTuwBl7lraE2d6XIpk1cCkSqZxZnGRLosCU+jBywEXY3ctF8+oRRwhL9Kd1Wquc+mF741myeYuoT3XC1goItoVLlVjWGibgUlg1pZrHNuXZF1hGm7mt5F7DHqUkH0tMdZLPxEEDQ9SwRYWhhDYbisV/a30aXlUmY0fJNbahjvr9qfVrnFj0TDqfeVTn+5FEgVjvbkL+GrqSIlVeZ2wVgaAm4bIkciNmlJIgMLs+QDxjENRkol7NKU8iCHg1iQZVo8clF/uNJAiF3GU/Axmn7eUWwJpDrqJxDo7ww7beFG1VHlyyVFRLtGybRM5gjk+lI55hust5n/rTelEdz53rQc4YQMOY6wCOFyuTL3rwhhi6/pAaccitkE0q2IKE7a2lwVODVgg1HvK+DHPoOcTMugCPb+2l2q+xwYLupM7cRgnw8vwbXezqzxTDa51TOud8ozeNpaVpjXqKnm+l4wWMyBTMqhkcNymKbds8vqUXv+Y827kNwWIIrCQIBFwK6fZz8LkUBCCVM9jel2Z6nR+XIlFfUNjMNy5zRHv29iAKAsdMHG6PFN+JFWgac18NhZphVT4VUXTqioLjtVEkgUwhF7El4iGTNwi4HEXIDjtCY0FtcWjhKW86ZRr8Ri9W+xmguJGBWXV+Ai6nv27pSbF6ex/Tan10J3Psj+fwef3k8hY1HpFan4LqjRQfoSiAGZxYbK/fJTuhnUPRBpKKv7qFkEtkdKyOL74Rbz5K3FcPtu2sAxdeh5WTImiyQGvEWZwwLIsHN/XgUSRsUSbVeDwpoF4bsTjgVkrmm90Fj+ZoA3skmizQmygY44pEfkRd2mzepCXipmX/E1iKSGaEkNBIZElEHp8enrP/+Het8H5n90CGap9KS8RTHMCGjLPelM61d73mrC5Pc8Ie4pk833v0DTZ2Jfj5xXNpr/JywW9epD7g4pPHtXLcpCiCIDgJuuPBMnGv+xXJld9E23IX8hNfILXkOvL1SxCyA4TvOIPslPNJLfv3scZBhXExrynILZcv4KsPbOYfb13L986awcSoM5EaSOVZ1hpBlgQuvvllPnN8G2fPrC1Z+cxNPgfX5jsJPPQJBk+7sazSo1E9i9hFD+J78t8J334ag6fcQPzsW/Cu/g6uDbeg7niEuGcCH/5DN3f/8xKqfe+ukggV3jl6e3uJRApjkyQhiiK6rqOq6pjtAFVVVfT09KAow+PFzTffXDTWRiOIEPIPGzGzXSpTm0xCPo0JliNf3VBzAHGbyHAe51kLmvBqMpZlo2gKoYCbUMg5b09XApdbxa0rTGiOkOpXmNQQIugeNaaFZiHsWwMM4A55ELwaHo/CGdOayaxX8QgaOxM5NJdCIOAi3hGnM52nJuLFHzE4bk4rZnOTM4Y3luZ72raNx6sSDnvxJXVcngw1gsxDb/Ry/JQaPF4Vv0sh4AKXIpNQotREvYT8pV4Zr1fD64W6fduplyxmzF1EXchFImsU7xcgFIK5/WlCfo2qkBc7mS3ZXhXxohsWXq9GJDLi+Rpu1KCbsN9F0oghKBKCJhMMuAn5h8cNl0vGZSlMqHOMR08si0sVqLL2IYUb8Xhl3IXrTbWc3Oni9Zun44oM4I9raJqE16sRCFgISQ0r4EaM5wiFPAxaaURVxghOI5LdgFwTBlf53F131sTj1WmpD9JS77RJWH4ZA91Joj1JPJqMaILH1NBlmWz9CsJVEdKxDJ5YFo8mEwp5aKvLEwx5eWlXP6fMaSDiVfHUBZBcPrQZTQxm8ni8KQIBF6GQhzmtEf66qRuPV2VrLMu0CZExbasascDfqsgkLJv96TyfXjUF03Y8RV6vhhjP4vG6WNQybIg+uyeOO2Nw0tQaxGA10YZ61FB5o3+6INCnW/j8rqIH7uJlE4vbJwsCikshls6jSiYet3PPkihQXWjjOQubeXRTV6EPFQx+r4Y74MLjFZz7HtUnq3ULU+ijL51n4aQqXIpYPHZGc5iYbjK3NUooOLQU40FIaCi2guLTCIU8yNogbq+Ge8mlY+5rxXSJ+oALcZS4lm3bTK4PUFvtL+YmuQ2L5iovXq9Gv26CqjhtKYhn7YjtwRYF6qudfjSwuxefmMAu80yfXr+PlZOrWTGtFkUSi9c3TIvqsIcTZ9UjiQL/sLgZy3bmbo1CiNtf6CMwYvwZOsbtc9O49FSmhTPgj5DImezcl+DEhiDxTB5Rlanya/QmNVRNwe3VCDZU0z3pHPTYfmKijwX1tSBr+GNZRNUk6DXByELIw0BaZ1NfijmNoeHvbqATiBfvz+NViYTcuOMqPtFm7oxaXtjRjz/gwqebmJJIMOhhS/8+Gqv9zG70cVKVj119KUzLUSK1bThjVl3Js8r0Z4gZVvG6vbqFx6tSE/WVLffkKdRKawq5ifSmCPg0MnmzePwkG/aldZ52r+RDS9tozJWOb+UQvIee11QMtArj5qfP7ODMGbUcNylasqLzRm+K//en11jRFuG6k9qRRYGnt/Xx7Ue2Mq8hwKnTqrnn1U7+7eR2fnfZgvEbZKNQt/8FW1RQdj+Ja+u94ImSmfFhPOt/jXvtjSRP+B65yR88Wrf7viXsUfnR+bP4zQu7+f4T2/jf852E3UsWN7OqLYJl28ys8/Or53fzyKYevnjq5GK4jK0FiZ19K8EHrsT/+L+SOKV8Xpqt+kis+l+0TX8keP8VZGdcSmrpv5JvXIb/0c/gld2savoBj23p5UMLGsueo8L7mzvuuIM77rij5LN169aV/G3bdskCwujw3NHbb7nlFjZs2MDPfvazstes87uIxYbDn9K6SSZvIhkm5PJoAiXbD0Yso5PJm+zoTFDvkYnFnB9s1bLAtNGzBpmMwYK6MHYuTyxXpoi8NgkhWosdSyNpExHyKYyEwTZtMam4BegsaY8iSQKSZdMWclHt08hsfYT+VA5DnTXW8Ctw3IQQmWSWZDJHt9ROl91MRJFJJbKkUzqiaYFhstc3mw3qfFalcsTM0rC+Zq/KYM4gq1sItsVUj0znYI7YYHbMc/KJAhFVwtbzpFN62ec4t8Zb8rmU0Mkkc3QYSdpDbiTLQjUtFNMs2c/M6eQxip8FJQElEwd6SfjqSafS5Ia2iYAoFPeVu/cR7+8iIdbgEgRCssjgYAYllSOf0ZlV5SEWSzM4mMErCaRTOgl3BCFlQ7Z8XxiIp0mndNbv6GNrT5KTp1TTncixY/8gumkhGBY+TSRpupwcPqmmcA3n2cfSOs9t6qInpTMt6iGd0nlk/T5Om15DZ08CzSMQjqVJ5gzSKZ1kMkdMEXlmYxe7elMEZJGZ9f5D9lUJmF/rQzcsntnUxZyGAGlBIJXKkUjqbNsXp31EXbVlTQFs23kHFtf7yKYypMXy1xgczNLZnyIez4xVCgb29qbY3eOEsm70rSCVlxmMp0sXBA2LdEon5FGK96KlcujxDOmUQTyeQR3VJ5OJLBNDGooIVWrBW1c4NiABhsUj6/dz9mxnUi8WvusJgSoMTSIWS2PnDZKJLMnuVzH9jSXROps7YugRD2GPymhmVXtIDmZK7iGqSViFPr9jf5zACPvgwtm1PLall8RgBq8qUS3lSadyxb46kqUNAexcnrtf6WZxS4hI4fqWbZPP5unsTZSIstm2zcPb3VRPnE+VIpT0Bdu2CUgC2WSaZGobRn2InAmxwQwvv9FDImdQH3AxudrHmjd6yRoWXsEmFnP6tcsVojXkIpbIg2CSSuZI5U2Se3cg5NPkhRpyeRO/LKFn88VrS0IUyUigF/6eX+vDpUgksnlyuXyx/8fjGRLJHOmsQTyeJqJK+LCL5/Fg8/gbvSiyyKw6P7ev3snCCaGiV70vliadGx4jYvEM6ZROOpmlXG+dEnbTk8ixo3OQiEumWpPYFMsUj9/bnWBXdxJvsoP87hTumqmHfLe0lJNjHzjIPhUDrcJBSeYMfvHcLj69spVvnzV9TBji41t7+eZDm/nYshYuWdBIX0rnhqd38NyOAS6YV89fNnYzkMnzL8e3ARyxcQZghieRr1uIuvuvDFz8IAGfSvDuKxEzfcTOuxszOvVN3WuFYURB4KPHtGBYNnnT4vcvdXDNSZNRZZFnd/Tz/M4Yt12xkJ8+s5NLCt60cwsKb6he4mfdjJTY55zMzJWvmSYI5KZf7Bhlj19H+I9nkDjpegYueRzLFWHV2nV0vPJ75IZVlVzCCmO48MILufDCC0s++8IXvkBPTw/Tpk0jn89j23aJd6y2tpYnnnii+Hd3dzfz5s0DHIPv8ccf58Ybbyw5ZiS7+9MlE6iBjE5HLEvUq7In5uRQzqofv/ferUhcvKCxqKQHTqh41iiERUnyQctlICnYkjM5HDn+VYWj7EnFyRkWNk4OzAdn1xEvhI2Z/iY29sWQ+9LMaxqrijcSWRTIIyMqKo0hrVi/RxRgZVuQ2HaZhpC3GFI1Ep/miEeti64AYIYoMKXWh6tMftbkai/P7+wnWmZiO4R/VFieGWjC3Wgy1xVkY2eSkEthc3cSryaVeN5n1fuwc049OHAC4dJKmH7XdBrzg+TmnH/AaxrRGXSaDZCAjw+VcxnsH7NfWjfpTer4NRkzMrXoFSp7zoIOfmPQRU2hLEo8k0cQnFy2aq/K8rYq+tMnoO0dLNZwG8KtSCxqCfPavsGSvgNQ49OQXGppmGbh8JWTokyu9tERy5QJDyxPX0pnR3+avqTOnEK04pyGQFnBA1EQilGGgm0eLA2P/YNZ4tk8ZWwzAKdId8RNc8hNLm+yoStZJk/N+W+tf+zvy4SIu1gCYSSaIqJJjkjGaJ7d3k9HPMsHZtaM+NS5yOudSQTZUVyMZwwG0nmaYm9gy27MEQZaT0Knzu+iXIJFOaNtZr0fnyoT9xvFXMIhIl7VqbeFU2cvmzfhAMPLkOdnZXu0RMxCFARaIp6ydZEjXoVs3hrzXIVCKKsgqhi1S5zzSzYr2obDt5/b0c/Owf0AJHJGUfQEYEoQ6nCRK+TJDYU4GtEZxdxMlyLRGCz1NJqhNsxQW/HvofliuVIMIbdCcigfVhJRRni+hu5VlQQyeZMqn4prxPYFTSGyxnD/b6vyFEWVylHr16jxqXQmcqzfOzhGnbEnqSMIoGoekrbGzr2DTvHtQ3GAWrBDVERCKhwQ27ZxKVJBGtYeY5zF0nl+9MQ2vnfWDD44u46fP7eL83/9EoIg8IcrFvB6Z5Irl0zgZxfNYeYBZNrH2RDcf7seuftVMvM+RuLUG5G71iL/+kTMyBQGLryvYpy9RciiQFo3GcwaSKKTRLu8NcJ3zpqGKAgsb4vwo/NmcdPf9vC5e14nVihiiuzGDE9C3XY/obsuQMiWz+kBsAITiH/wdjKzriB474fxvPgDhHySU/p+yxx5N4ZQmJRZ45tQVHj/snz5ch588EEA/vrXv7J06dKS7XPnzuXVV19lcHCQVCrFmjVrWLRoEXv27OG2227jhhtuQNMOHHoyeoGpMehmaSHEq6owmTpcBtL5ksluPGsUf7gl6cgWtAKuUrVIgNf2D7Kjf2hVV+CY1sghjTNwjAFNFnEpEi/tjrNv0Fn5FRGYOnEipm0XhUNGk8yZ6KaFJSpYojN5UySx7HPqTeo0h9wHzQMZg6RhRqYg4qjC1RUm6kNy2EN0DmaLCnsAPSkd0UhRO/Ayom2UT/IbQvViac5zWr/PKapr+ZvQm1aU7ObIww/9++D3kLecSapUUNQDiHpVgm6lmL8EjvJhzrBK2g7OhLUn6XwPhlk683YrUnECOVK6HpwJf0dhIWFH3/g8vYIAZuEaQ/dVF3AxtzFQVFoshxlqKwrflKO9ysvEsIcDyTKEPSrTa/34NBlRFMiUMSiHPG+bu5LFz/TGYx0591p/WSO5PuAi5FFQy2ybXe+nIaARKWPYtUY9TAh7iv9uDLnITTkXMzzpgPc4HjoLpQ/60zrZfKlFO9SLREEgY5jsM4NYnuqDnm+00qBt2/Sn9TG5foIgMLnKR1o3i/mjI9kby5Ib0R6hUDMxpRts603REctgM1RiwlWs+eXTZLxCdsz5RARH3KSgRNuf1lm3b7CsOvRoBEpLMdg21PhUgm652CdHiskN9YtUziSWybOwOVQydntUqehhBOf5amVCG0vaIAgokojfJVMf0FjcMqw0We1TkUSR/XaEhGtsnb4Dc3BVx4qBVqEsL++Jce3dG5BFgSuXTih5uZM5g4c3dRPyKNx2xUJ2xzKc96sXeb0zwVdPn+IUAtUUfvAPMzlnyKtypBg6GFk8a25E7Xgay1ONe82N+J76MuZZN5Bc+a0x6mYVji5Bt8Jnjm9DEgWuuWM9v3txDzZOQem71u9nTkOAWy5fgM8l86HfvsxzO4ZXl/XW0zADLQTvuRgh03fgiwgi2TlXMnDp4wi5OJFbVkLjYmZe/mNkLFyv/BL/I59+62+2wruaM888E8uyuOSSS7jlllu47rrrAPjFL37B2rVrcblcXHfddXz0ox/lyiuv5JOf/CR+v5877riDWCzGVVddxeWXX87ll1+Oro+tVxM5iAFWF3CVVcY7FNt6U/SOqK/WEnYzudrJszpSA00QhKKhMzT+NgZdRWVdKbGHfbs20Tk4diI1GrfiKLdl8yaTa7wEhiY6ghOqnJp4OpOrvWWPnRj10BRyF2ufHYxqn6OkNh6xqNEECkqaHlViep1/jEelezDL7v5M8e+ZdX7m1HpIuerIecqLWIxkaNLbUJDURxCwPVVj9hkKoTqQV2iIKq9WIgwDTp2tWDpfnPSCM9k9bXrNCE+Cc+JkzqCrYCgrssCiCaGi5H2hgYX/L61TBhTLAoyXiEdlUtXYfJpM3qI/dFaWAAAgAElEQVQxdPj9fYhY1qCtyjOu73u0x2KIcsfa3poyew6TzTvPuWyukSpjWjbr941Q4Stcw63KxUn8lBrfQT3bh9OFZ9b5iXhVJlV5qfaVH18Ewamjl1XDmKHWsvscjMGs4XjfRvHCrgFCHqXsc5xW66OqTHt6EjrJnFHi1R15fDJnsM8MYVSPqGU2qjYdOAJGLWF3Wen6AyEO9WfRWdgaWps4vj1aMkcdMtACbpnW6NETGsubFomsgSAIJQaeS5FwFfqoKkqEDrJwUUI5t+YIKiGOFUqwbZucYTGnIcA1KyaW3ac/neeFXQNIosCNz+zErUh848xpdCdyfPOhLXz0mAnIQwVR3wSutT/Hu/ZGMlPOw/ZUozceS+QPJ6FPPIWBSx4nWNcA48z3qPDmEQSBa0+cxFfu38TqnQN8/fSpfO/sGeiGxV+39vK106bw2JZevvrAJk6fXsOnjmt1BARW/Qjfk18g+JePOfXrDtIvLF8DidN+irLnGXxPfwXh1Vt5Up/GGfpDJFd8HQAxvhNrhBpUhQpDSJLEd7/73TGfX3XVVcV/n3766Zx++ukl26+99lquvfbaQ55/R2+KsPzmxrXRDCmnDeFSJFoiHnYB0uFIfo1iyMM9NKn0aTLdSZ0JYTdGZCqdg114xxHmVh/QyFs+tnan8GqyEyImi9T6NMTEXib2PsG26tMOeo4VbdFDrBUPr4AfXqUgh1TBYyZLIhPKhCoJlHomOmIZXo9LRNUokfS+Q56/KeSm2qcddJV9MGvQl9LxqvIhf/smhN1j2llwqpHSTdwH+N5r/BrLWp2adyPVQkeuG5ihNizXcP0pKA0Nm1LjI+pV2TWQYbxoZdozVMz3SPGqUonX42C4ZJEpZcR3RueUHg6qJGKOct6s6YjRldRZOXmk8X3477vvYGHJoxgyLMoqFo/qR2p+EKm/o6iaPB4EQUAShLK2QGvUc8DaXC0HUFAeEg3rOkCd0okRD/VBrSTsU2CsMa1IopP/Oo7v0NICpOwqEODY1gg+TSKRM4oLMaO9g0MMZgz2D+bKhl8fCQeS4c+bFidOqWL1jn500xyOJHqTVDxoFUq497VOvvfYGyiSWFzFHeLRzT386vldDKR1dvZn+OET2/nnZRP47WXz6Uvp/OSZnfzovFlcvrj5iFZBAbBttK33oL3+B7wv/ZBs2xm4ttyFLcp41vyEwVN+TOLk72O7Qoc+V4WjztQaH7+9bD4tYTeX/vZlHtvSQyyTZ01HHMOyWTW1mls+spBtfWmuuGUtW3uSIEokT/hPBlf9CAQBQT943SGAfPMKBi5+CGPy2axIPEDa34rv6a/gXvMzgn++vFgzrUKFt5Paw/Q+HClCQUZeEo7cQIPSkMytPSn2xZ33RszFWFgjMWkck2xZEmmLejluUpTOwSzxTJ4TJlcxMeoZ17sMTn7MoUKIZElkbmOgJMRvvBzy52bUJDCZM5D0QSKJTQf0zozmUO13JrpHbrw3h92FfKSDf+cBl0LetFjTUT5s3KiZgxVohhGtGWkwPrejn66CrPh48bvkMQsJb5awRx1fng5O3yjnCREEgTmNB5NZGIuzAOIelncfwYw6PxNCLtRxGo7lOGVa9ZhcySNl+PtzwpZ9mb2I2YGDHlOOnGGVNS6CbmVcY8BIBtI6L+4eKOazQmkB5qm1vjEG0cjw3yH6Ujp7BjLjKt6cqZpDRqtGFJy+KAgCedOm8wBG4kh2jjOUdzyE3EpZz6tbkcgZFqumjv+7tyUVWz2A4m+BigetAuC4/U3b5vTptWMK6WXzJt9/Yht/3dpLS9jDLS/t5cqlzVw0vxHbtknlTE6aXMWCpuC4B9yyWAZCbhDPC/+FqCdJnPjfaNsfRNCTZOZ9nMzcfyovNlHhbcWlSHx+1WSWt0X49sNbmdcY5KunTwHgNy/s5tKFTfzkgtnc8lIHH7ttHVcvn8hF8xuwAs3I+/5G4JFPEf/gbSXJwGWRVPKLruG/uxZzTvJ2llub8P7tf8hMvxgkF+rOx9AnHA9iZRir8PbgUWX09NjQx6ONIMiYooIkH71yIZOrvUWPheWuPmgh5XJ4VIllE0vz2ixfPVU1jZhHqV6hKAhU+VT2xA4dejmSoVDAA1HjUzCM4YmgS5Fwaxqd3kU0zD3piNs7krBbKebqHSmOxsahjYOcYRW9huNhpL1hmDa9ycPrw4mswXM7+o+6kXY08GsyTYcZajmt1l/WMPdrMpYNm7uTNIYKHs5iItj4fmeOeHH6EOdUFZHm1mlYVtcRnaNcs17piLOkJYQmjz93Np4x6E/li95blyJhWgcfS8p50CIehSuWNI3Li+qObcGtBxAYVnTuSeYYGEf+2tEkZ1joxth7FQRnfAx7VAIuhYbAodNu9ImnHHKfigetAgC/+dsefv9iB5oslsTWbutNcdnv1vDs9n6yeZNZ9QHu+uhiLl/cTFo3uOaO9dz84h5civSmjDNl72pCfzyT8G2rMKMzyEy9EP9j1zoJrh9ZTWbB1RXj7O+MFW1Rbv/HhUyp8aLJIv3pPINZwylcKwhcvriZn140h9vX7uW6uzcQS+cxGpaQnXkZoT+dj9y1dlzXOW3+VL6Uupi+S58i13Iy7td+S/jWE3G/8n+IqSP7sapQ4UjY2jU+j9GbRVUVJh17EdI4vTvjIW9aRaVJMzwJMzL5TZ/TdoUJTTuJqQeq/XaYrO2I05/Kc3x79NA7HwZ1TZNobhgu7rt/MEtPViDvqUM4wjy/0WiySJVXfVNtbwy6x+SmlSPoVg7LWBrpQXOrEu3V3sPy8oxUvPt7w6fJzKw/PC/agRAFAa8qMaNE1Mx5duZhhBUebQSc0Nd1ySD5puVHdI5ynp95TcHDDv9rDLmYWe8vLkQsbw2zvO0QfV4Yu+wgCAI9KZ38ONaJsuGppLWakrw3VRaH82HLsKTl6EdZ5coYZ+A46IcMUEkUxvduScoh6/VWDLT3OXsLcrv/tHQCHz1mQvFz07K56YXdXP77NewbzDKvMcDt/7iYz57QRtCtsLM/zZW3vkJblZdPHHtgpaZDob5xH1LPa+RrF5Ba8GnyjctR9j6H3L8Zo3YetrcG+xCqRRXeOQIuhSuXTkAUBL710BbmNwVRJJH/fHQrnYNZptf6+d3lCwi4FS757cu8uHuA9KJ/IXXM5wg8+AmnaOUhmF3v5/eXL8AONJI44+fEznNCXuXeV9G23IP2+m0ImbGy1xUqHG3aqo+OITIetDfhiSlHVyJ32J6pd4LxhDwd9jlr55NvXln827JAsXOEE5uO2jU6Ezlib9OKfiJr8NDG7kPuN2SYjXRSZHSTjndBP3gnCLoVTp1eU36x+R0QIxMFCLplVFkkpRvkzSN7N06eWl1WjCOjOyqrh0N/Oo8sChw/KcppM+qQpUOHLwuU9+Bt702TH8f1c3IQS1RLrrM/njtoP45lDKbW+ErUFt8sXlUq6yHPGhYDb0FkRSU26H3ODX99g9m1Ps6cUSoN+tjmHn75/G6aQ26+etqUMStUv1y9iw/OruMflzQfmRiIkQHZjRTfieflH2NUz0Hb8RBG1UziZ/0Wufd1J+fs9F+8mdur8DbynbOm49UkNncnSedNgi4Z27bxqjJfP30qD27s5t/ufZ0L5jbw8WM/RK79HJBdKHueId907AFrggiCQDpvcue6/Vy2qAmjfhGxSx5F2fEIgUc+DbZFOt1DZsE1IB7dSW2FCiM5UJL4u4H2ah/tb6OBeSQsaQnhP0oJ/QdjYtRNJt9EuG7KUTtntU9lMPv2GGg+TWL+OEokFKPzRvkvsnmTGn9F/bgcB1IVtA/h7XgrEASBYwphxcE38V4cKIxwc3eSkFs5LCXFWCZPVyKHIonkZZ3x9CKnDtrYNoxOpzkQQ0bkyLlmudIAI8kZJjV+rSQi7M2im1ZZNUyXLCKNw/N9uFQMtPcp6/bGmVrj45vnzCSZGF6FuGvdPn7/8l4GswafO2kSZ8+qK3mxntrWx8LmIP9xxrSilOnhIg7uJvSn88m1noIVbENMdSEp2xk8/efkG5chxbbjfe7bxM+9vSIG8i5iyK2vGxbr9w3ymT+9hk+T+eDseo5vj3L69Bpm1fv58v2beGlPjG+eOY0mMYPvma9h+eoZXPW/2O5I2XNrssivnt/F4gmhYjhVfuIqBs/4JYKRxvvst3G/ehPphZ8mO/uKw9M5rlBhnOyPZwgeTp2uvyPGq5j3TlKukO9bQWPQTWPw6Bootj0uQbqjgiAI1JQpzjx2v6F/jN22uz/D9Nrx1ScNuBRaIu9Tg84q1PgT356+eSAOlWd5JCxvixRzycbLxIiH+oDGQDpPTtRxuw9tRjg5aEfYSJz+N/onvcan0ZU8sEjItHH27cMh6lWLdS9HIpYJ4TwaVEIc36fcvnYfm7uTxUKOz+3o55aXO/jBk9uZWuPj//unRXxwdn3ROLNsm589u5NvPLiZjlj2iIwzddfjKDsfxb3+14iZPlxb/oS29W4Sp/wv8X+4k3zjMgDMYCux8+/CqJl79G64wtvG3MYgt12xiEUTQry4O8aajhh9qRwp3aAp5OaXH5rLwuYQH/n9Wh7ammDggj9juaOE/3g68v6Xyp7Tq8qcO7ueP7zcMfyhIJBvXoHechKCbWC5wnhe/AGhu84/4HkqVHgztETfnLR4hfcuVV51VO7SO89B7LPDWsPSZPEtmfC+GxCsglf0Pbjo90ZP6rDUPMER54hlDFoiHmaMM/dP4M2VXar1a5w6rdQ4nVrrY+U4PXBHC1EQytY4S+dNEjnjqF+v4kF7H2HbNn/Z2M1Jk6v4zlnTAaeuz5fvepU1HXGqvCo3XDCHOQ2lL10mb/LVBzaxayDDTR+eT1Po8FbShFwcW3ahbr0X17b7sAUJ099IasXX0FtOLg58gp7E/9hnSS7/OmZ0+tG56QrvCJosctWxEzltWg3/9dgbXHTTy8yu9/PD82YjSyKfOq6VJRNCfO0vm3l+V5jPnXg94R13gaw56nJGDpTSfnbx/AYu/M1LXLMiV7p6LMrEz/4dgQevwoxOxZI0gn/+MPmmFaSO+cJREUOoUKFChYOhyiLRw1DDOxBH1QwY+m0dcdL2ai/belNU+yqiW+PCOvoT778XuhK5Yl2z8SKLwuHniQrvbW+QJolvif1eMdDeR5g2vLQ7xrzGILJo8H+rd3H/613YNlwwt55PHtdaNgFSEgRaox6+dvrUkro640JPEb5lJSAiGGksxUNq2ZfJTT2/JF9IyMYIPnAlljuK5a098PkqvKtoiXi44YLZPLypm5xhkTMsbnmpgyuWNLOkJcytH1nANx7awuW3rOVbHzid6dV+1Dfuw/fct0ku/wp62xnF2UVdwMX/fWgu1b6xkyAz1MbA+X/Gt/pbaJvuJD3/akQjTfiOD5CdfA6s+hIwNjShQoUKFd6rDHvQhmeP+wez2DZ0j6OGVAWwtPdumsWRhEweiVp3wCUfMmfs3UzI/dbkJ76XjdoKBdK6yY3P7MCybL582hTufGUf5//6RZ7a1kd90Jn0XndS+xjj7IWdA1x712tIosA1K1oPyzhT9j2P95mvo3Y8jVE9ByGfIr3wX+j/yAvkpl9UapzpSUJ3nY/pa2Dw1BsPKT1a4d2FIAicNr2Wc2bXs6s/xU1/201KN7Bsm7BH5fvnzuSieQ1c/cf1/P6lDrJtZ5Ja9u/4nvk6wXsuRhzcXTzXtFo/f9sdo3OwjHqT4ia58tskTr0Rz6s3o3Q8R/KYfwNA/vkyvKu/i5CLv013XaFChQrvLEOr+iNX94fqODUeZu2w9yu2t4bclHPf6Wa8JTy8qbuk4PRbRX3AddRzPv+e8Lvko1acfCQVA+19gCwKZHSTNR0xbBt29KcRBDh7Vh0PfGoFs0bFEecMi+//dRtfvH8jZ8yoPax8MzG+E7lrHeQzqLueIPDQJzEjU+i/4gUyCz9ZKlVr24ipLmzFS2rx/yNxyo9BemcTcSu8tUyp8fPINccScCmc98sX+fy9G+hL57l4QSO/uHgu97y6n8/ctYGO+tPov/RJ8k3LsRUvQroXuesVAB7d3MPPntt1wGvoE0+m/9LHyU08BaPhGDKzr8S4/H6k/q1Efrcc9yu/ALOyelyhQoW/P0JupaTe05uh3FnmNgaZ1xQc87tf4f2HIAhvSWHtCkeHSojje5idfWl++OQ2rj93JktawjyzvZ9fPLeLTN7iZxfNZUadH02RyIw67lfP72JrT5JbLl8wfne2ZaK98WenuLTiBjOPPulM4mf/HivQNGZ3qX8L3tXfRcwOEDvvLvT2s978DVd4VzBUy+TfTm7nvte7OO9Xf2PJhDBfPnUKv71sAT96cjsX3fQSn1zRynkL/wVREFB2P0ng4WswI1P4XPulfODJGjbObzigCpntCpNZ/BmwbcK3nYzQvJjYGf+HvO8FfM9/D/f6X5Na+jlyU/7hgPL+FSpUqPB2s6A5eNTUIIfroA1PwgcyecJvUUhWhXcXq6ZUvSnxjgpvLYJtH3go6OlJvJ1tASAU8hCLpd/2675Z/p7anTctHtvSw93rO9nQmeCWjyzksS093PTCHj68qJErl05AKag3DrW7N6Xzy9W7+MTyibhkEVUWx7eyYmTwPP/fuDf+AVvSEIwM+bpFpI79EmbVjLKH+J78EtrmO8nO+gjphZ/C1g5dz6Ucf0/P/HCotLuUB17v4qYX9tCdzHHOrFquWDKBPQMZvvPIVnyazBdWtTOlxgf5NK4td+F+9SYeDFzIb5JL+dXyNPm6BSAdOOFdTO4nIKdI792M77lvk5l9JaYrjPfl/8WW3aSWfZH8hOOP+n0dDd6LfaW6+t2rBpfPm8X7euqpJ1i/fh3bt28rbt+/fx8A9fUNALS1TeJTn/rM29/Qv2NG9o2hZzhnzlxWrjyhZL+nnnqCu+/+U/HvDRteLf47EomyfPlxbN++7V31jA92v+X2BVi58oQxxx3OuNCf1ktqQf3wrifwyHDV2Qe//njb9m5ldD+Et+Z+3s5nNbrPDPHTn94AwNVXfwqgOG6t6bOpMQdYeczi4ru0ffu24jgGpWPZs88+za5dO2hpaaW+voH/+I+v8rWvfaO4f39/30HbN3PmbMB5lyORKPX1DcX3OhIpVWQcOtfQ5yPPPfrY8TL6GuNp88hjD7Tv0LZIJMrVV3+K9evX8eyzTxc/G2rr0H6JxCDHHLOctrZJrFy5jJNPPrnseSsetPcQvckcd73aya0vdyAAHz92IpctauILf34dSRD45SVzmTyqUGksrfPTZ3fyx7V7OaG9CmzKCoWMwbbx/O163K/9Flv1YSNi+RpIHfsl8k3LS3YVU52oux5HyKfJzP1n9OaVpBd9GstbdxTvvsK7lTNn1HLmjFo2dSX4xB/X05nI8Z9nz+BnF87m7te6uOr2dZwytZqrV0wkMvPDZGdcyry8wRe6u/D99VNIqU70xmXoraeSnXmZU4xoZEFLXz2EPNh93ViS5pR76HyZbPtZ2IqPwCOfwYhOJr3kOvINx7yDT6JChQoVji6jC/W6JPBWZn4VAKV3G2Lg8FQcK7x9VF7Tdzm2bSMIAq90xLnmjvUsaw3zzTOmURdQ+c0LHfzf6l18fPlE/mFOfUmh0r6UTtSrcv9rnWzrSfHTC+eMr86JZeJ7+qukllyHsnc1luxCQCB1wnfJtZ/lhIsZWRAkxHQPwfs/gjSwnXz9IrIzLgVAbzvtrXocFd7FTKv1c//Hl+KSRV7cHeO6uzfwu8sXcOaMGn767E7O//WLXLaoiYvnN+LTFCY2NfHTGbdxfFWC1sGXELIxALzPfw91x8MY1bMwojOc/haaRb5hGYNn3YwVmIC28Q7kgS1o2x4AO0++diGBBz6GEZlC+pjPVQy1ChUqvCdxS87/KlQQjQwCFQPt75WKgfYuZcgwu+aO9XxyRSsz6vycOKWKM6fX8PyuGPe8up8zptdy55WLi4X1DNPime393PXqftbsiXP3Py/h0sXNfGBK1SGvJ/e8hpDtR8zGUXc9hty1FjHdTXrxZ8lOuxgpsQf3ul+h7nkCZe/zxM/+Hfn6JaSO+Xf0xmWgVAaBCofGqzpD0pyGAD86bxYTIx6+eN/rbOlOcdG8BtbsifOHl/fy4UVNXDivgZRu8NnHk/zm0kvwqM6sI73gGvSm45B7XkXu34RRMwfsmUR+vwLT34gRbkfd8zTxc28nteyLSP2bMCPTyNfOx//0Vwn85SpMfxPZ6Rc7HjmxMpupUKHCe4MBHWL6O92KChUqHIqKgfYuwrJtXt4T455XO/FrMp9fNZmL5jfwP3/dxjfOnEqVV+WL921iZXuU31++kAlhN7ZtF2PQv/aXzWzuTnLe3Hr+44xphNzKwRNEbRtlz1N41v4UZe9qcu1nI6a6EPJpcrOvwAy2IWb7QVLQNv8JuX8zubYzSBz/PaxAM+Ao6lWocLi4FIkFzU79mZMmVzG91s9jW3rZ0pPkuLYoz+7o5+a/7eHsmbVEPApf+8smvnv2DGRRwNaC5JtXkG9eUXLO+Jm/Ru7biNy3CaNmLpavAf9DV6PuXU2u9TT0CSsZOP9ubC1I4KGr8T31FXxPfxWjZg6ZGZeQbzmpEpb7d04+n+cLX/gC+/btQ5Ikvvvd79Lc3Fyyz7333svNN9+MKIpcfPHFXHDBBcVtvb29nHHGGdxwww0sXbr07W5+hQpvC+/dilQVKrx3qBho7wK6Eznu29DFPa91Ylo258yqJeBS2NSVRJFEFEngw79dw6qp1fzq0nlMinrY2pPiJ0/v4OHNPdQHNH520Vz+7eR2Ai750Ko9RhZt6714X/w+Qm4QveUkTH8Tyt7VZGZehq368f7tB5j+JkcFD0gv/de34UlUeD+yaqpTTPODs+v4+bM70U2bZ3f0U+NTGUjnWb9vEI8q86dX9nHunHpUuYwqoyBgRqdiRqcyUmA/teiz6C0nI8W243v662RnXEJ6ybVkp11IcvlX0bY9gPu1m/E/+SWwLcxgC7EL/owtqc4sR3nv1nZ5N3LfffcRCAS4/vrrefLJJ7n++uv54Q9/WNyeTqf5yU9+wp133omiKJx77rmsWrWKUMhZDPiv//qvMQZdhQoVKlSo8HZTMdD+//buPD6qKs/7+OfWrSWVVGXfwy6rgoCAGhIEw6YotCyRZWJPO26tOKJjqxEZcab7scHHx5YRN1qc7qEZURYVB0VGJTRKiCJ2EJBNloTsG6mk9uU8f4QqkhACiVCp2Of9euX1qqq71Ld+VedWndStc0Lcki0/kHeshoy+sTw8rg8Rei1hOg2rvjrFqq9OEh2uY8bQZP7vjGs4Y3djMqhYXV4e2bSfzL6xLJ48gFFnv4mIutjQuj4vivMM0ZtmcbqklGKPypA4gftUPhZdLEfjZ3Hn/W9y73CF2DEL+Oij/aSkHOUOW955IxStXLkCgIcfXsTKlSv46KMPuOaaYbz00n8Elvm1HoHrYiNd+Ucnysoax1//upN9+woBuPba4YF1HnnkQRobG7BYLADExcVx663TgXMjq40dOwqbzUZW1mTefXctPp+P+fPv4i9/+VOb5dHpmup300038847GwBITm6qbXn5mRbZLveITe3td/78OdTW1lBUdBKAhQsfDdSu+UhOQKBW/po3r/UHH2xi8+ZNmExmhgy5hpSUVO64Y1Zgu+nTb2Hs2LG8885GHnjgbgyGMEpLSwB49tnfcvz4j+ze/RVmcyTTp9/Bv//7vwIwceIUMjLGBa5XVlou+pjaGo3qppsm8MTEAQBk9Itl14lanp40gOc+OUxpvYNN35fx6pcnmHZ1EtOHJlN1+FsUpf3nwhc3CGfcIHBZUTwObKP+GbXmMMZ9b6OrLMQTfzX24ffhSRyGsfAt9Ke2Y/7sMTyxA9FVfEf9He+i1hzGF5GECIu+4P1IwZGfn88ddzRNKpuZmcmSJUtaLC8sLGTYsGGYzU2/tx09ejR79+4lKyuL/Px8IiIiGDhwYNBzS1KwxF14wFtJkkKI7KCFEP/vyj4+WMGxKiuPjO/HjKHJDEs2Y9CqvL+vnO9O1xMXoSdrQDz/PL4fsUYtWw9V8dCGfZTWO3h26kCyBibw8QM3XNow+UKAEJjyctGV7sZ51TQ09hoSDA7KHFEIgxGd00aZsQ+NYWmAwn8fDWfBmJgrXg9JupAJ/eObRh0FkswG0vvGkN4nhlveKODTQ1V8crACvaIwNBqMRXVMMF9kPj99BNbMZwHQ2KtxXTUNy+3/RcSXz6Gt2od95AMoLivu+KEoXieGH7eguG1E5C9D01CM4fhWXD3H4xx4B84+k+U3a12kurqa2NhYAFRVRaPR4HK50Ov15y0HiI+Pp6qqCpfLxauvvsprr73G888/3yXZJSkY5KxXktQ9yA5aF2t0eig4Vcdff6zhb6frefdXo+kRHcbe4jM88eEBTtRYKapzMDTFTNbABP5lQj9cXh/fFtdzdZKJ7cdqOFJp5d703oztExMYIv9inTPFaSHir8+gLcrDnDwKfek34HWiKy3AG9WHu3aoRKherv7Hf+HzkwKhyIESpND00Li+QFNbuv2aJPJP1lHR4MGtgdM2eHbLIVwf/UB6nxhu6N30l2i+8L+R3T0yAlNFuNNuxBM7BISPiPzn8ZnT0JXk443qi23E/WgrC9EX5eE1pYDXSfg3L2Pa/iSuq6bhGDjrvN/BSZfP+vXrWb9+fYvbCgsLW1z3/9Or+fW2lq9atYrs7GwiIyPbvU9VVYiObhrwKCtrHDfeOAqn89xJs263Gzj3bbvBYAisLzVRVc15NQwPD8dkalmnrKxxjBw5NHDd4bA324cWk8mE0+nsVjVu7/G2tS6AyRR+3nbNa9hRSf0HA/ykmjXP1l21fh3ClXk8waxV69eM39ChgwBITGz6uYD/uOVw2M9rS06nM3Acg5bHsgUL7sTlcqLXG9DpdGFGwPQAABYkSURBVKSlNc2F5l/f6/W0my8srOkfl/771el0gXatqi27I/59+W9vvu/W216q1vdxKZmbb3uhdf3LVFVLYmIiN944igUL7gzc5s/qX8/r9RIRYcJgMHDo0A8XvE/ZQesCJfV2vjpex84fa9h7+gwpkWH0jDESZdQx9fV8vAKSzQYGJ5p4YuIAhqWYCddree3LEzz2/gEcHh83XRWL0+Mja0A8WQMuPgqj5sxJNNZyjPvexnDyM/C5AYEwp+CNHYQzPAnDj/+DxtWIY8hcXL7/weLR4eqdhTiVd6VLIkk/mcmg5ZkpAxFCsO67Er7ef4wzboVT9W76xUdwVXwE//l1Ec9vO0LPmHCu7x3NdT2iuDY1knhT2x0256CzA0gIH403/Q536o2olfuI/N+FuPpMwheegP70V7hTrkdjrUTTcBqfMQ619ijh3/yB+tTr0VbtRxii8MZcFcRq/PxlZ2eTnZ3d4rbc3FyqqqoYPHgwbrcbIUTgAwZAUlISeXl5geuVlZWMGDGCTZs24fP5WLt2LUVFRezbt48VK1YwYMCAFvv3ekWzyW13yomqO6HlBME725moeufPcKLqCz/ettYF/2neOzs9UXVrdScOAXBmYOcHPGqerbtq/TqEKzVRdfBq1fo143ehiar9kyc3b0tyouoLb3ulJqq+ENlBu8L8/6E9XNnI307X84thyby+8yTfFJ8hxqhDp1EoqrPTIzqM63tFM31oMlkD4vmhooHvyxp486tTjOkVxYOZfekRZeS5WwcxPC2qxZxmLXidqPWn0NYcRndyG2pjBZqGEtSGU4CC0EXgjh+Ks89EVEctBq3Alv40uqI8HEPvwpPQ9B9Lh++T4BVJki4jRVGYf10P0hqPUWYTnHbo8PgEUWFaEAr3pPemb5yRpR8f4fvSeg5XWjGFaUnvE0v/+Aj6x4czPC0Kk6HZ4VHRBL5V8yaPpO6uXQD4Gopx9puKxlqBvmQX3qg+NGYuJWL3ctQzx4l7ayg+c088iUOxD78Ptep73L3G4zOldkVpfvYyMjLYunUr48aNY/v27eeNxDh8+HCWLFmCxWJBVVX27t3L4sWLufnmmwPr5ObmMnPmzPM6Z5L0c5Asz76WpG5BdtAuI49PUFRn43BlI0cqrRyqaORQZQO3X5NEZaOLXcdr+X/bfyQ1KozIMC2TByUSF6HF7ROUW1wUn7Hz0Li+5J+oY9WuUwxJMjN/VBpjzg7yMWNYMngcaBqLUS1Nf5qGs5frT6JpLEVjLUdodHjihqAoKmrtIRomvIA3sheKosEb3YeYdyYR8f1/4ux3K+LaOwFw95rQhZWTpCsjJRy2PHAjBaUW1uSfYkL/OHJG9+CTgxVEGFSOVtu4Kj4CVVEw6VU+OVhOeYMLu9uLUaeSFhXG2L6x7C+zMHlQAhn94ljzTTH3pfdGUUATex2mlOsBaPA4UKxViKieiD0rUIQXxedGrTuCLzyOqPfnoribBkjxmVJxp1yPfWgOnpTr4VJ+Lypd1LRp09i1axfz589Hr9ezbNkyAFatWsWYMWMYOXIkjz/+OPfccw+KorBw4cLAgCGSJEmSFCpkB62DhBDY3F4i9FoOlFk4Vm1lUJKZ19/fz+4TtagaBURTZ00AWg18faqOtCgjSWYDPgFWl4f7x/Zj2tVJPPBuIbE6DwNNDqbH2dEeL2Kio4bJg6vR2KpQTlSjOVCFxl6FxlaNxmVBaMLwRvUCnwtfeBKKx4G25gd8xlhQNIiIZOyjFoIQhB3egKngBTS2SuqnrUaExWC5/U944q4Gjdp0DnYnT5WQpO5Ar9Uw/dpUxvWKxusTqBqFk3V2UqPCKLc4OVpt5eb+8Ww/Wk2tzU1MuI6rk80IIRiaYuZEjY1TtTZe//IkL3x+DCFgx7FqIvRaYsJ1pESGkWQ2EG/SExkWhqmuFnP6nzDpVKK91cRWfonvqlvQNpwm8uNfoXFY0DSWYDj6Poaj7wMgVAPe2EEojjqcvSfhGPkA4d/+B0rfdPQuBQUF58BfoDjqUM8cx5M8CsVWheKx44vshaaxFKHRI8Ivfrrzz5l/7rPW7r///sDlW265hVtuueWC+/B36iRJkiSpq/xdd9B2nahlX6kFr8+H0+NDVRRqbG48Ph/RYToOlDfQ4PTgE3DG7sbl9eHxChQFzAYtNpcX99lTp+LDVXqHuxmbqsXaeIY41Ulvk5e+Ji8j4gSVlWV4tNWYvfWEe+sxfn8G7Td1bHTUoHgcCK0RX3gCHPOC14ni84DPAxq16fdiGh2WiS9j+urfUC2ncPW+Gf2xLQhtGN7InmjsVSguG4rw4Ynpj+uq29Cf+F9cvW7Gdt3DeOKvCYws50kY1sWVl6SuoZ49NfixCed+D+b1CTQK2N0+dp2opc7mwhymY/vRagYkmBjRI5ofKhow6BTCDQauSTZzdXIk731XQnGpnT3F9QCM7RuDxe7mWLUNAfh8Ao8QCNETVXMAg6oSYXgdo15Dqt5Oot6JQx9LdsMa+rkOo2twk+ooR3NwA5EH1qIVLsTBdZgUDT5Fj3PvfyFQ0DnKKBl4PzE1ezA6KtFkPIHpu9cQWgOutAxQmjp0CB8ID564qxGqHn3xTtw9M1GslejLv8UTN7jpmCO8KD4vQtHg7pEJ6kWm45AkSZIk6YoKSgftWJWVr07UBkbQaj6O1nU9ohieFsUH+8oY0zsac6SRP+afAgHi7JpCNG0TY9Qx97o0/na6nlq7m6wB8Xz6QyXHqq2Is+vR7B7mjkwjwqDyVn4Ri8b3Y3+Zhd98cIDocB1GncrB8gYMWg1ur8DjE+SM6sHfSuqxubzcOTKVM3Y3Hp9gUKIJt9dHQpjgd5UPondb0OJFVT0ooqkjpdjOZi0z4tObEXoTwmZGuCMQ9mhSw2LxJSYgwgbiC4tF87c3aRz3b3ij+hL10T9Q+8sCtJWFmD99EFvGv2I4vAltzSE8sQPROOtwJ16Hu0cGrt4TQXhAUXBeswDbtfeg+Ny4yr/Fa07DZ0pFGJpGInP1nXzln1xJ6ub8nbZwvcqkQQmB228Zkhi4/NvbBnOq1k5pvYPSegefH6kCIN5kYNM/jeHD78s4UN7A/7ltCCt2HOdgeQMoEK5T6RsXTlGdneI6O3qtBpvLi8VgZurQQfxh+3E+d80OjDTYPz4cp9tHqcXKfOVz+mgqSKGaHtp6zDWnMAgH9Wio2LOBCE0ZRqx4PlqIz1dPGA70P36CEE0dTiHAB9g1EXjQoheN2Pf8GY3iQ08jhvA4Shx6EiMj8KJQbBG8HqtQo4k/e8wV+AQMT43k3vTewXtCJEmSJOnvXLsdtISEy3NufkKCmfSr2x8x6L6J5+5r8Yyh7awJk5vlyrmEjL+b0zRn180JZr69Nq39dZtdfuYXbX3T1P6oMQpwSQPSZ/4jUf7Lgw+TAJA0HoYdJBIg81fQbF86IBxg9h9a7CbCf6Fnz0u51za19Twbzg6QkJBgbjEcr0ajoKoaTCYDBoMWo1FHdHT4efswnR0VLyHBjMlkQKdTMRp1gevt3X90dDgmk6HN/fqXA+zd+21g3ea3+3M2pygKxrMTdZtMBhISzKiqBo3m3O1Ai8sXYjBoz8vlv+7PcLG209G21d5+DQYtOp0a+JDfvHath1Ju/rz49+tf3//YNRqlxXPr3+6GG25AVZtOi1UUpUWNTSYDRqMOVdWg06ktnmODQdvi+qXUqvmyS61pe/vozPbNTb3Itg8knRue/eV/GHXJ+717QnsDUUy/4JILHcWUVpc1QPPkCS1Xp1ezy4OBFVw+l+v9I5TodOp5baf5McN/3Gx9rJFaauv409b7QPPa6nTn3ln9xxSjUdetanyx97bW68K5Y2Dr7Tr7mDt7PL3c+wgFHX3f7oxg1qqt9004d1xq/n5uNOrQ6dTz2pLRqAusDy2PZQaDFlXVBD4fLFv2+xbrN2+jbfHvy3+//gzNM/q1vr11+2++7aVqfR+Xkrn5thda17/MYNAG2mrz25rXWqdTUVVNoN7tUUTriWEkSZIkSZIkSZKkLqHp6gCSJEmSJEmSJElSE9lBkyRJkiRJkiRJChFB76C53W4ef/xx5s+fT05ODsXFxeets3nzZmbPnk12djYbNmxosay6upoxY8ZQUFAQrMgBnc1eU1PDvffey1133cW8efMoLCzsFrk9Hg9PPfUUCxYs4M4772TPnj3dIjfA119/TXp6Otu3bw9mZACef/555s6dy7x589i3b1+LZbt27WLOnDnMnTuXV1999ZK2CZbO5D5y5AiTJk3iL3/5S7DjBnQm9wsvvMDcuXOZPXs227ZtC3bkgI5mt9vtLFq0iJycHLKzs7vk9Q2dqzmAw+Fg4sSJbNq0KZhxf7JQaJ/dSev2VVZWxl133cWCBQtYtGgRLpcLaP+9XmrZXmQNO27z5s3MmDGDWbNmsWPHDlnDDrJarTz88MOBz647d+7k0KFDzJs3j3nz5rF06dLAum+99RZz5swhOzubHTt2dGHqnxERZJs2bRLPPfecEEKIvLw8sWjRohbLrVarmDJlirBYLMJut4upU6eKurq6wPInnnhCzJw5U+zevTuouYXofPa3335bbN68WQghREFBgbj77ru7Re4NGzaIpUuXCiGEOHLkiJg9e3a3yH3q1Cnx61//WixcuFB88cUXQc1cUFAg7r//fiGEEEePHhVz5sxpsfzWW28VpaWlwuv1irlz54qjR49edJtQzW21WkVOTo5YsmSJWLNmTdAzC9G53Pn5+eLee+8VQghRW1srxo8fH+zYQojOZd+yZYtYtWqVEEKI06dPiylTpnSL3H4vvfSSmDVrlti4cWNQM/8UodA+u5O22ldubq74+OOPhRBCLF++XKxdu/ai7/VSy/Yia9gxtbW1YsqUKaKhoUFUVFSIJUuWyBp20Jo1a8SLL74ohBCivLxcTJ06VeTk5IjCwkIhhBCPPPKIyMvLE0VFRWLmzJnC6XSKmpoaMXnyZOHxeLoy+s9C0L9By8/PZ/LkpuHfMzMz+fbbb1ssLywsZNiwYZjNZsLCwhg9ejR79+4NbBsREcHAgQODHTtw/53JfvfddzN9etOIbGVlZSQlJXWL3DNmzODpp58GIDY2ljNnznSL3AkJCaxcuRKTyRTUvP7MkyZNAqB///5YLBYaGxsBKC4uJioqipSUFDQaDePHjyc/P7/dbUI5t16v549//COJiYnt7Trkco8ZM4YVK5rGK4yKisJut+P1ertF9mnTpnHfffcBXXMs6WxugB9//JFjx44xYcKEoGf+KUKhfXYnbbWvgoICJk6cCMDEiRPJz89v971eOr+9yBp2TH5+Punp6ZhMJhITE/ntb38ra9hBMTExgc99FouF6OhoSkpKuPbaa4FzNSwoKGDcuHHo9XpiY2NJS0vj2LFjXRn9ZyHoHbTq6mpiY2MBUFUVjUYT+Jq59XKA+Ph4qqqqcLlcvPrqqzz22GPBjtxmto5kB6iqqmL27Nm8/vrrPProo90it06nw2BoGgb0z3/+M7fffnu3yG00GlHVjg2/erlUV1cTExMTuB4XF9fiNdBW3va2CZbO5NZqtYSFhQU1Z2udya2qKuHhTcMNr1+/nptuuqlLXi+dye43b948fvOb37B48eLgBT6rs7mXL19Obm5ucMNeBqHQPruTttqX3W5Hr9cDkJCQEDjutfca/3vXur3IGnbM6dOnEULw6KOPsmDBAvLz82UNO+i2226jtLSUyZMnk5OTw5NPPklk5LkpZWQNr6wrOlH1+vXrWb9+fYvbWv/+SggRmL/Jf72t5atWrSI7O7vFi+NKupzZoemFvHHjRnbs2MHTTz/N22+/3S1yA6xdu5YDBw7wxhtvXIHETa5E7q7QXqbWy6BpfrZQeBydyR0Kfkruzz77jA0bNlyxtngxPyX7unXr+OGHH3jiiSfYvHlzUJ+PzuT+4IMPGDFiBD1/wnyNXSUU2md31Lx9TZ06NXC7v56yrhfWVntp671P1rB9FRUVrFy5ktLSUn75y1/KGnbQhx9+SGpqKqtXr+bQoUM88sgjgX++gKzhlXZFO2jZ2dlkZ2e3uC03N5eqqioGDx6M2+1GCIFOd24yyqSkJPLy8gLXKysrGTFiBJs2bcLn87F27VqKiorYt28fK1asYMCA9iZ6DY3sX3/9NYMGDSIqKorx48fz5JNPXpHMlzs3NHWcvvjiC1577bUW24R67q6SlJREdXV14HplZSXx8fFtLquoqCAhIQGtVnvBbYKlM7lDQWdz79y5kzfeeIO33noLs7lrJlvtTPb9+/cTFxdHSkoKQ4YMwev1UltbS1xcXEjnzsvLo7i4mLy8PMrLy9Hr9SQnJzN27Nig5e6s9h6v1LbW7ctoNOJwOAgLC6OiooLExMSQPH6Hirbai6xhx8TFxTFy5Ei0Wi29evUiIiICVVVlDTtg7969ZGZmAjB48GBsNhs2my2wvHkNT5w40eL2UPmM0J0F/RTHjIwMtm7dCsD27du54YYbWiwfPnw433//PRaLBavVyt69exk9ejTr1q3jvffe47333mPChAksXbr0inXOLnf2bdu28f777wNw+PBhUlJSukXu4uJi1q1bx8qVKwOnOnaH3F0pIyODTz/9FICDBw+SmJgY+C1cjx49aGxs5PTp03g8HrZv305GRka724Ry7lDQmdwNDQ288MILvPnmm0RHR3er7Hv27Al841ddXY3NZmtx+l2o5n755ZfZuHEj7733HtnZ2Tz00EPdonMG7T9e6Xxtta+xY8cGarht2zbGjRsXksfvUHGh9iJreOkyMzPZvXs3Pp+P2tpabDabrGEH9e7dO3AmU0lJSWAMCP+I3v4a3njjjeTl5eFyuaioqKCyspL+/ft3ZfSfBUW0dU7KFeT1elmyZAknT55Er9ezbNkyUlJSWLVqFWPGjGHkyJFs3bqV1atXoygKOTk5zJgxo8U+cnNzmTlz5nkf2EM1e21tLbm5uVitVlwuF88880xQ/0PT2dwvvfQSW7ZsITU1NbCv1atXB87hDtXceXl5rF69muPHjxMbG0tCQkJQT2N78cUX2bNnD4qisHTpUg4ePIjZbGby5Ml88803vPjiiwBMmTKFe+65p81tBg8eHLS8nc29f/9+li9fTklJCVqtlqSkJF555ZWgd3o6mvvdd9/llVdeoW/fvoF9LF++vMXrPFSzOxwOnnnmGcrKynA4HDz88MNkZWWFfO7mXnnlFdLS0pg1a1bQc3dWKLTP7qKt9rVs2TKWLFmC0+kkNTWV3//+9+h0uou+10vn2ktmZiZPPfWUrGEHrFu3ji1btmC323nwwQcZNmyYrGEHWK1WFi9eTE1NDR6Ph0WLFpGQkMCzzz6Lz+dj+PDhgYHk1qxZw0cffYSiKDz66KOkp6d3cfruL+gdNEmSJEmSJEmSJKltQT/FUZIkSZIkSZIkSWqb7KBJkiRJkiRJkiSFCNlBkyRJkiRJkiRJChGygyZJkiRJkiRJkhQiZAdNkiRJkiRJkiQpRMgOmiRJkiRJkiRJUoiQHTRJkiRJkiRJkqQQITtokiRJkiRJkiRJIeL/A55KSklm5y5qAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAACYCAYAAACRbMq5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nOydd4Ad1XX/P3dmXn9vu3ZXvSMJIZAEovdqigsGG7ANuKbZTuzYceIWOz8TYjuOYwd3jE2cBIzBdGMDAiSEJZAQIKGuVdldbW+vvzf1/v6Y1RbtrnaFVg3u56/dN/Pu3Llvyj33nPM9QkopUSgUCoVCoVAoFArFMUc71h1QKBQKhUKhUCgUCoWPMtAUCoVCoVAoFAqF4jhBGWgKhUKhUCgUCoVCcZygDDSFQqFQKBQKhUKhOE5QBppCoVAoFAqFQqFQHCcoA02hUCgUCoVCoVAojhOUgaZQKBQKhUKhUCgUxwnKQFMoFAqFQqFQKBSK4wRloCkU48grr7zCrbfeyte//nXe//73c9ttt/HUU0/xiU98gssvv5zVq1dz6623snz58r7vnHXWWezbt+8Y9lqhUCgUikNHvfMUiiODcaw7oFC83di4cSPf+973qKmp4corr2TDhg3cc8893H///dx///3HunsKhUKhUIwb6p2nUIw/yoOmUIwzU6dOpaamBoCamhqWLFkCQG1tLclk8lh2TaFQKBSKcUW98xSK8UcZaArFOKPr+qD/DePgjmrHcY5kdxQKhUKhOGKod55CMf4oA02hOMqUlpbS0tICwIYNG8jlcse4RwqFQqFQHBnUO0+hOHRUDppCcZTZn1C9fPlylixZwuTJk491lxQKhUKhOCKod55CcegIKaU81p1QKBQKhUKhUCgUCoUKcVQoFAqFQqFQKBSK4wZloCkUCoVCoVAoFArFcYIy0BQKhUKhUCgUCoXiOEEZaAqFQqFQKBQKhUJxnKAMNIVCoVAoFAqFQqE4Thg3mf2OjgwA8XiIbNYcr2aPKqrvxwbV92OD6vvR50TtNxydvk+YkDii7Y8nhYJ1wv6Wxwsn8v1wPKDG7/BRY3h4qPE7PA72zht3D5ph6KPvdJyi+n5sUH0/Nqi+H31O1H7Did33I4Eaj8NHjeHhocbv8FFjeHio8TtyqBBHhUKhUCgUCoVCoThOUAaaQqFQKN7W3Hnnndx0003cfPPNbNy4cdC21atXc+ONN3LTTTfx4x//eNC2YrHIZZddxsMPP3w0u6tQKBSKdzjjloOmUCgOEc9F79qG0bMDLdcGnoMMxvFiE3GqF+HFJx3rHioUJzxr166lvr6eBx54gLq6Or785S/z4IMP9m2/4447uOeee6ipqeFDH/oQV111FXPmzAHgpz/9KWVlZUekX4Gm1dgTzwRNvYYVCoViNESxBxkuP9bdOGqoN4NCcTRxTIyOjYQ33kto7zMgBDJcgZuYjFs2C6NtA1qhC63QhRurxTzpeooLb8ErmXase65QnJCsWbOGyy+/HIA5c+aQTqfJZrPE43EaGxspLS1l4sSJAFx00UWsWbOGOXPmsGvXLurq6rj44ouPTMeEBtJFvYYVCoViFKRHsGEl5uxrQA8e694cFdSbQaF4q0gJ6Wa0VBKvdAbB3X/E6NiEZqYQZpr8kr/CLZ9L+QNXIcwkWrEHPBcvWoVdezpu2SykEcErnYk55zrwLOzaZRidm9B7dhFoex2jcxMV911GceYV5M//Z7xY7bE+a4XihKKzs5OFCxf2/V9ZWUlHRwfxeJyOjg4qKir6tlVVVdHY2AjAd77zHb7+9a/z6KOPHpF+2ZPOPiLtKhQKxdsOoWGe9L5j3YujijLQFIpDRO/eQWzNtwm0rkPYeSKnfYLcOV9By7UjrAxeuBxZOgMZKgU9QOHUjxPe+EtkIEL+9L9DGmH0XBuZq+8msv5H2JPOxpl4BolnPk3u3K9hzbyC6LofkL7uv0HoBHc9RcmznyG05xmyF3wL8+SbQYhjPQwKxQmBlHLI/6L3/jlwG4AQgkcffZTFixczderUEdvVdUFZWfQt90ts/j1y9hUQLnnLbZzo6Lp2WGP4TkeN3+GjxvDwOGrjJyViy8PIk66BQOTIH+84QBloCgX+RK0rZxE0NMKGTtA4QD/Hcwlv+T/M2dciA3HsKeeSO/tLJGYsIpexASguun3Id6LrfkDkjZ+TX/JpEGDOvxG9eydeYjIAhdM/07d75kpfoEDk2nFLp4NmYLRvwJl4BskbHiXxzGdIrPoqoR2PkHnXT5GRyiM3IArF24Samho6Ozv7/m9vb6eqqmrYbW1tbUyYMIEVK1bQ2NjIihUraG1tJRgMUltby7nnntu3r+tKksn8W+6XFl+AlxdQfOttnOiUlUUPawzf6ajxO3zUGB4eR238PJdQzsRMm6APXVg7UTlYHTRloCneUeQsh1cbUpRFDE6bXMqnfvsGnzpnOosnl/KeX67Fdv0bvzYRYkZFlFlVUS6ekOOSLV9BOAXsyefhls+mcNon/Qb1AGAPOY6WaSbx7GcRdpbkDY/hls4k/udvIqwsbuW8g/ZRxqopnvpxAIJ7nsUtn4150vX03LKc6Nrvo6UbKX/o3aSuvRe34qRxHR+F4u3Geeedx1133cXNN9/Mli1bqK6uJh6PAzBlyhSy2Sz79u2jtraWF154ge9973t85CMf6fv+XXfdxeTJkwcZZ+OBF5/o56EpFAqF4uBougpxVCjejuztznPv2kae297BtPIIHz5jCqdNLuXO6xZQGg4QNDRWf+4CXE+St1wakgXqu/P0NLzJ+as+i7X4o9wXuoXK7hgXjCIiZLS9QekfPkpx7nuxJ59DdO33ybzrZ2Qv/NdD7nf+rC/2tvk6od1/InfOl0FKSh9+P2UPvZv01XdjT73wrQyJQvGOYOnSpSxcuJCbb74ZIQTf+MY3ePjhh0kkElxxxRV885vf5Atf+AIA11xzDTNnzjzynZIeoV1/xJp+iR8KrXhn4pqEdv3xHTfxVCgOGekR2vn4O+qZqQw0xdua1nSRX65p4Jnt7bxv0UTuu+10ppb3xy9PiIcG7W+7HoYuWFibYOGEEMy/BLP9f3FqT2difQ+lYQPHk3z5iS1cdtIE3r9ssLpicM+zJJb/Lblzv0px3g0gwS2bfdjn4cVqsWuW9v1vLvggxkv/QslTnyRz2fex5lx32MdQKN6ufPGLXxz0//z58/v+XrZsGQ888MCI3/3sZz87/h0SGubsq0EPjb6v4u2L5x3rHigUJwZS4kWqkIH4se7JUUPFVyjetkgp+cqTWxECHvzYMv7uollMLA2TtxyakgW+9aftALy8t5u//t0GAB54vZn/eH4XoZ2PUbj3Wh59sw2n9nT+e20j1fEQ82sSNPbkOW9mBb9Z18hF/7GCe19poGC7hLfcR2L535G58scIu0B89b9CIIJbMfewz8WLT8SadRV69w5Kn/wIxfkf9L1rgSiJ579AsO7Jwz6GQqE4SkiJlm0Fzz3WPVEcSwRK8EmhGAuajj3xjGPdi6OK8qAp3nYkCxa/39DC5SdNIBzQWNuQ5MnNbZwyMUFXzmLx5FKe2NwGwB+2tvOZC2byrWvm89e/20BrxuQsuQG97t/puehnzK6M86HfrCdZsHnszVbm18R5pb6Hz188i9mVUXZ05XlmWwf2q/fweeMhOq/9NaLmVJh0DsItjvu5uaUzyS/9DGg6hVM/gbALOKXTSLzwD2RAedIUihMB6RJoex0zUgXB2LHujeJYIiW4dm8+8/C4nsSTkoCu1tQVby+MttcRZgp72sUH39FzCO3+E9bUC94xAmnKQFO8bajvznPf+iae3tbGRXOqyFoO7z6llpV1XbznlFpuWToZ03EpDRv80+VzMR0P0/WIBDRiQYMvXjoHL7WPM57/IZvO+Feq519MmSf53EWz0DWBEBA2dP712vlsbcuyqzNHV8Hh4uTvuVU8yO3O1/jcuj9SHXuawtlforbkCFS81wPYk89B79pG7JV/J3313SA9Cl3bSTz/RdLBBPa0i8b/uAqFYvzQDJV3pAAj4nvQpAuMbKC90ZSiM2tx1YLqo9e3A9CyLXiRyndMkWDF0UHLNCE8Zwx7CpzKBe8Y4wyUgaZ4m/D7Dc385wu7qIqHuPum0yjYHt99bhf3fmgx75pf3Vf3KBrUAQhqEDQ0Bgqczq6KQcVsClf8kKkzLuv7/MzpQw2tk2sTnFyboGL7vYg/P0Lygw9yR3A6n3vkTVoaclQ0b+K+20/n9X0plkwpRRvnMBa3bCaFRbeD0BBmivCORzDnvZ+Sp/+a1Hvvx6k+bVyPp1AoxhHpEWhZh12z5JhPeEWhC2Gm8cqOgjiKYjCu7XvQhqnHN5CseexDYY3OLdi1S5HjdL3qyd140Wpk8J2TU6Q4DDQdL1YNThGM8LHuzVFB+csVJzQbm9PYrkd5NEDA0DA0Qdp0WTSphHtuWYwQos84OyhSEl37H2i5NorTL8Ub5YUJEHn9Z2hr/ovke39HoOVVpr7+b9x729n8/ZWLyFku31lex7eX15GznGEL4h4Wegh76oUYHZt8T9oVPyK04xHyi/+C0idvR0vuGd/jKRSK8cNz0bItvZ6TY4twLYRTONbdGBFhpgjtePRYd+PI4PWWaJEniFjIOOZMapl9iGJy3NpTnJjI6AS8cNnoO7oWwYaVCCt75Dt1nKA8aIoTlt+93sxPXtrD7WdO4Z6XG/nSpXNYOrWUSaVhhBAYI9hlnTmLzS1pNrdmaOwp0JQqcmbqKT4lH+LaVQtIsQsBlEUCVMQCVESDzK6KMa86xvzqBDMro8Tf+BnRN36Bc9vjuPoU3JJpaFYaIQTvWlDDxXOqaE4VWd+Y5K9/9yZXljZyZrCepeUmwjUB8MLlePFJWNMuQY7lATUMbslUrKkX4Ew8ncJpnyTQtYXCotspffJWkjc+gQwfgTBLhUJxeOiB4yrEURzHBoIo9hzrLhxRpGacEHmIwsognALjtdQo7Hzfu1DxzsUpnYkYy1UldOza05EnwL0yXigDTXHC4XqS7z1fx8pdXXzl8rl8+7k6LppdyXsW1Q67v+V4vNqY5MVdXaze001H1uKk6jgLaxMsmVLKB2c6XLr6/2i67G4emngWmuYfo6dg052z6ciZ1HXkeXprBz9cuYdbvcf4pP4HHlz8My5q2UvZ1u+QufJHeAFfvl9YGcLBBPPTL/K/k1ZyydZrMXpWMLm6CyLTyMkgsaCGntxNsHEVds0ShFsk/uLXSL/rF4dUvFaGSrFmXY3R+hpO2RwKi/8CGYijJ/f44Y7X/c9Bk88VCsUxwHMI7XoKc+aVx0G4jkRq+jHuw8gcz8bjYSOln3/jWsc81HUsCGf8hK+EU3z7Gt9WDj3TgFu54Fj35LhHOAW0YjderObgO2o6eraZQOv6oYtb0vO9u2+zuY4y0BQnHHnLpWC7zCiP8u8v1PHRM6dy25lTB+0jpeS1fSme2NTKirouKmNBLp5Tyb9cPZ8FNXHCgf4JSeS1x7AWfojo7POJDmijPBpk1v581AX79/0pwdf/xG/n/YSnW0r59rpWLi67kLnr6nhP6HUm1D9OoGUdXR9dj117BrGS6fzXyRP5/COCuzsFJ+sJQobG968/ZVB/hZmiOP+DIDQiG36JlmmicNqn8BKTxjQmwrMRrokMJkg893kKJ3+I+Oo7iP/5X8heeMehDrFCoTiSSO/4CWsT2qg5UMeU42WcjgS9E0ph50bN7dLdwnGQfzN+14lbMhUZemuRI8c7eqYBo2v7WzLQHNfDeAepdQqngBzLNe0U0LItuIkpQzYZnZsBgTPhlKHfO4FRBprihEFKyeObWjEdj39+1zwaugus3NXJrcv6b9jOrMmTm9t4YnMbecvluoU1/PpDS5hZGR2+Uc+hsPRvxjQJiLzuhzUmr3+Qa0MlfGDt97He9Wmalv+IGeu+xk5vIivKr6L2km9waiAKwRhudALLgB/dsIj/XLELCXiy10OXt6jqLZQtQ6VYM68EwJpyPtE3fkHFfRdTWPhh8mf+PTKYGLljgD3pLJh0FkbHm7jxySRWfZ3Utb+m7PfvI1wxj+Ipt45pjBUKxVFADx7xEEeR70RGKkb1yEstiDieC2a/nWvF6UH/2T6G9095did6xsYtnzN8U11bcSvmHVIExiEzjoa8nmnCFcev5/bw0HBLpx/SN4yOTaRDE1nV5LJsehkV0WPsUfUc/1o6ktcT+J6zsdzjegh70pnIwAEhjp6L3rML821YYuidY6YrTnh+vrqeX73cyBtNSe5bv48pZWFuP3MaABuaUvzj41t43z3r2NSS4e8umsUTf3EWn75g5ojGmd6zi/L7LwWncPCHkJREX/l3Im/8guT7fodbMdd/SHg2Jf97OTPjHsUPPkroY8+yb/aH+fLzndz03+t5aksbrue/0BZPKeXeDy/hP68/hduWTeGFnR18/altwx7OrZxP5rLv03PTn9BTeym//1KCe58b0xgFdz+NWz4HqQcJ7XyM9DW/IrbmTgL7/jym7ysUiqOAa/rCF1buiB0iuG8VWqp+1P2ElUZYmSPWj8PGzvlqhwcQaFjhhwaeyNgFf+zHYKDFC82IQveI242u7Qj7yF1PPuPoaZXe8X3dHQZarhV9DPfeQPSeOmQxBdA3bziWBBtWEmh88YgfR5gpjOSuseyJ0fYGwfoXBn/ce+8cjXBZLduCntz91htwige9h4cc760fSaE4evzq5Qb+Z90+fvyBRXzlinns6sxTcFyWb+/gY/e9wRcf28LMyiiPfmIZ33vfQi6cXYmhHUS9UXrEV3wJc/Z1fi2akfBc4iv+idDOx0i+/xHcxGQqfnM2mGly534N5zMbyF76Pdyqk6mMBfnE2dN5/JNn8smzp3HvK43c8pv1PL+zEyklQgjWNfTw1T9sY0IsSKrgYDkuzggPY7dsFulrfkXu3K+TeO7zRF7/+ajjlD/ri5gnvY/csr8n0PIqzoRFZC/+LiVP/xVaumHU7ysUiqOBhhedcERzJoSZxujYPPqORgS04zOYRsu2EGz6M1q2eei2Qg/Czh+ZA1s5P5xwmM8DB04QDwMhe+s/jTH/bEQxhaMUoioPfFd6zmGFoMpQ6WH26Phlfyie3rMLo3X9qPubM6/CifkpDcdFxLFnoR0Flc1A+5u+ou1oOAWEa+FUzj9gg9fbzsbx79yBeA4chrCNntpL8BCM3uPzqaxQDMB2PV7a3cUnzp6K60l0TXD+rAo+ef8GHE9y6xlTeNeC6kF5ZaMR3vpbtHwH+TP+duSdrBwly/8WLdWANeMKAs0vY855D07lyWCE/PChaBSswZMEQ9e4cn41l500gT9tbeeHK3fzv+sa+cfL53L+rEoun5fkP1bs5pe3LObeVxqp68zx7fecPHytNCEw574Ha8p5vuKVa6Kn6nErThq531ISe/UHZM//Jng25pzrMDo3UfLHvyB5wyMHN0gVCsWRRw9gTznviB5CBqI4FcOHw+2nK2cRtHVKhwuhdi3QAn4h5WOEDMRwy+Yi3KHGktH+Bvbkc8bTp9PfdmoPXjCBd2CYmqbhJSaP67GkHhyzoeKFSkZqZfw6NNIR9KD/zhtAqO5J3MRknInLDr29YHzYfKITDb17B8I1cSYs8v/v3IJW7MHufUd7kUoYJUUBINCyFpHwc9aOB/sMLQAcQZVNzyXQtIYxn20gOnxYuNfrQbPzvmV7JJ9Xmg6HEQ4uw+VjKymw/3Bv+UgKxVHgvvX7+I8XdvHLWxZz/akT+eRvN/DBX7/Kj1bt4bZlU3ngo2fwvlMnHpJxBoBTJHvxd0ZMuNaTuyl/4EqM9g0YqT1ouVaE54IQpK/91Ziq2eua4NqFNTz0sTO4YHYlf/HbDfzkpT38zfkziAR0/mddI1cuqGZPd56v/WEbpjPySqSMVOLFJxFoXkdszb8d/MBCkLz+IZza0yl56uOE6h4nd9aXkOFyEiu/cpwszykU72DsPKEdjyLM9BE7hLAyaGaq//98J1q6cdA+BdvFzXagFTqHfD+06yn0np1HrH9jQmjo3VsRha6h2zzXD38choLt4rhv3bPjhcuH5roAaEHckqlDP3+rSOnXoRvu/AZg2H4ooFt2cIP7SCJDpcPWoNLe4jUsrCx66sSv16n31KH39Ifo6ZkmAALNrwAgnDx6au+otfyElUHrDXke97qpb4Uj3gfpRxCM9Tiei5ZrI1j35ODvSA+pGUgh4Eh51Pv64B2W117kOw/JK6kMNMVxiel4mLbL8zs7qYgG2LAvxft/tQ7TcfnkOdN48GPLuHZhzcHDGEdAyzZTPPXj2JPPGbpRSmIrv0z5fZeg59owT7qe7g+/SObKnxCsfw6je8chHy+ga3zsrGn8761LebUhyV8+sIHPXDCDW06fzIyKKL/44GlsbE7zNw9uIGc5B23Lnno+6WvuAadA5I1fjJxcq4f82O6OTcRe+hdwiqSv/DGBfasJb/6fQz4HhUIxjuhBnOpThzcCxgnhWugDCtZrZhIt1zpon4LtkhbR3tXy4doYfgW9aLsU7fEV7xDFniE5ecLO9k7Ghn/Oy0AE15NDcnZ2tGfpzFkIMwX2oRfh1gqd/rEP/DzfRmj304fc3kjIQAxpREad9DmBBN2JkxDmCJO7vgnrkfMeZGIzcIz+67UlXcT1JHIsIhKeO+xihAyO5BE8cRAH5EHKXi+nDMb97YUe9GTdqO1Yc67DGc2j6JpjCpc8ZJzi0HzAI62eKiUyEB27x8s10bu2Yk27ZNB3BB4IDRmMo1lHZsFL797pG3/S9esWvlUO0bunDDTFcclPX9rLFx/bQqpgs6crz2cf3kRA03jiU2fy3kUT35JhBhDc8yxlv79+SNK50b6RYN1TJJb/LZGtD1I49eN0fmIjuXO/6r/zPJv01b/EqT71LZ/T1PIIv7h5MWdNL+fzj2xmY3OKf3+uDl0X3Lx0MiXhAJ996E2y5sGNNISGsLKEtz1EyTN/M3yuBP6KZ/KGx3GrFhBb/1/ISAXpq39BbPWdR+Yhr1AoxoZm4JZMP6IKaV6sBqdmSd//eqq+b3V/P/XdBazG9Ug51NhyKuePGIK2sq6LlXUH9/qAH54+VkMu2LCS4L6XBn3mxWqxp5w/JLSu3yDRWLO3mzV7Byfel4YDmI5HsP4FjK6th5w3IvUw0hgqLuXFarHGMzRVCKRmoKX3HXS3ULGd0twetHzHCHuM7oWwXQ/7MLyKbdtWk7X6f8uNTWkaegp+2NcoCCs9RHBCGmE/D/M4wXa9sXuupERL7hlWvKYvDLW3LbdsFk7VolGbDO14FH3E39dHy7aiH+AFHxOufVAPXqBpzfBCZN4oc5HDRO/ZNXZDMBDFS0xBK3Qc4HUTyFCpf7+OY52+gWj5doRr+Qsqh5M3aYQRhU5wLSzHY33jwb1pykBTHFckCzaO63HmtDJe25ekLWP6eWdC8OMPLKI08talZ4WVIf7iV8id+zXQA+jdO30vlPQI7XiExPOfB6Dr9rXkzv8GBPwXdOzl7xLa+di4xDYbmuDTF8zkq1eexFef3MamljTffa6Oj5wxhW9dPY9oUOfTD71Jujj0wT8QGZ1A8vqHEMUkpU98GDGC29wrnUZ+4W0Ed/8RpMSpPo3c+d+k5E9/Adm2wz4fhUJxaIhiD8JME6p7YmSPyEFwXI+nt7ZjHSQkGkDLNKOn+hXH3MQUvGDCfxbs/8yTyEJyWA+OF6s5bBGHP+/uHpMhtx9pDM7vEIVujI5NiCETV9knY54zXXLmYCOwNVOkM+d7NoSZIrTrjxwSegDhDfMMdq1BgiqBhhUYzWsPre0BCCuD0bmZQMeGEfdpTRehmEIfrj/7GYNhUdeZY3dnfmxG2jCRGSJRTcTuv15rutfiWHnGMo0Udh7hOWxsTveJYnnhCt94Pk54YWfnQdMMBqL37CS081GQDk753EGlD0xr8GKAnmvxPS+jCAK5iclI/HEf6dccsVC45/q5b+nGYQ2e4XI4g3uXo3du6d0+VA1VFLsx2t44aJ8PCz2AU3GSX/9vLOUWXAu9u47Qrj/BgHtBBuN+Pq8RHvY8xwVNJ9iwAs1KDwkTPyRcGz25F2FmSBdtOrMHV6FVBpriuOL7L+ziv9c28tPVe6mKhfjeexeyrT3L5y6exdwJ8cNqO/byd3DK56Ll2yl78FrKHrqOQMNKyn53NcG9z5K58sdkrrirf7XWNcG1yVzyXcx5N47D2fVzydwqfvKBU2lKFXlxVxd/3t3Na01pyiIBFtYm6Mod3EADP5Qi9e7f4MVqKXvkhhGVkOxpF5G94P/5k0EpKZ58M9b0y9Ef+cSwK4AKheLQKdrumCa/wYaV4DmYM644pEK9+0OQDF3j/NkVBI2Dv77d+KRBCzfCsxFOYcgETnj2oFw1AKRHsGElWu7wFnG8Q8hjcUtn4MUmDumHDESHCQUV6Ol6EBrxkEE8PDjsKFVwaEkX/d/jgPMN7Xh09HygYnL4ia6V8X8/xw+b1IpJtMOWipd4B14H+z0e0iO332slvYNIiY8+ztPKIzhSsmIUgzmdy2LseHxIPo9mppFOv/ERsboJOekxLVzKQBTXiNKSKvbdI1580riF0T2/o4NU4fDeZYsnl6KPMTJHWFnfUJcSr2QKbrz/un2pPUJbZECuoFNETzcgDvKu9aTErpiPG/E9iiPdNsIZIVzXtdCzLQRa1w8JYx7EgIaFlUXvU0cd5oC9v41+kLSO4O6n4QDvrycl9d1jyNNyTTQrjZeYjF2zePT9PRct24wXrx2keuqYebTunbiRKmS4YsSvv7YvSUf2rYmeSD2EUzkfiUAOI/IhpaQ5VRz1eeeW+GWh9DEuTCgDTXFc0JwqYrke08rD3PNyA+dML+ehj5/B3AkxPrB4Eu9bVHtY7QeaVvs1NJpeJtjwAuasq3FqlhDo3ETx5FvoueUFrBmXD/pO9LWfElv7H/7D4AgoAy2cWMLdNy9G1wR3rdrNBbMq+NY18/nSZXOYURHh6a3to0/49BCZK+7CmnI+ZQ9fP3zdIyOMPfVCyn93tZ+PBmQv/H/gFImtuXPcz0uhON648847uemmm7j55pvZuHGwHPPq1au58QuRcOoAACAASURBVMYbuemmm/jxj3/c9/l3v/tdbrrpJm644QaeeeaZUY+xek83G5pGyYHofYELt4hmZ6E3tFCYqVFXZoN7n0PkfM9ZV84e1YMmhMCZ0B+SreXbEZ6DNfvawftJD6kdEJmwf4X6gBCn7e1ZHE8SCw2/4q2lG9C7dyKKPcNK44OvHPn01vYhn+vpej9nbAAyWoVbNsuPZhg4+RECGYgjXJPKWIDq+NDIim1tWba2Zftygfra1AO+0MdBJlNeuLwvl2hwfyZgznoX6L64lFs+e9DkfDQZ/kDzKwQaVw1oUPqqcAeKVe2X35eeP3WWEk3afg2mA4yadNHm2W1Dx/NA2jImYUPjspOqDrrfq7vbSBXtIeGUITeLd4BiMUIbU4gjntuXX6hlmhBWhkDrq+NWJsF25WGFbwJsbcuM2YMGEi3fib9Q0IjRvb1vixkspxjqFxFzK07CnnwObsnUYTzBPq/U99DxxpN9Yj1yJIN7pLp/gQjW1Av9bx5UZXDkkj5Dwk2FDkYEo3MLuCbCTPnX34CcTuEUEJnBBmF33mZb29D8zSEIAy3bihubNKwHbwiBCG7ZTLDSgzy8L+5oJb/1Txjd2/2i1yPQkbH8kNy3gLByyGAJMlTiP0+kHFQPTeLnZI66HtXrRfWivur4aAadMtAUxwV3PLODT/32DR58o4WyaIDbzpzKq41JwgGdW5dNRbwFA0mYKcIbfw2uSWDfasy576HnhsdwozVE19+FXXs63R95ieKijw6tRyQ98kv+kvzSvx6fExyBmZVRfn3LYnryNr99rQlXwt88uJH6njyrdnf1hekcFKGRO/+b5Jf89bCTiv37FE6+hfDOR/w4bT2Ee8O9hLc/5K+CKRRvU9auXUt9fT0PPPAAd9xxB9/61rcGbb/jjju46667uP/++1m1ahV1dXW8/PLL7Ny5kwceeIBf/vKX3Hnn6AsZtivpGvV+7TXQ8l0EmtYgrCyimMRofY1A22ujn4ymY7keW1szoz4b9J469Ez/6rZEIIo9Q7xHumcNXZl3h8892duVJ1mwOX9WJVctqB6mfwbCSvtFbpvXUlYcanRqAkoiwyXaD33Ga9lmAq2vDjX2HAsvUokMJmhKFWkcZuLlSWgpPwu3bHb/h1JiTb/UH5dh8u60dCMi34lwzd4JOIMMImGm/Dw+6YFroyX3og0sPKsHDloCRcu2oA1UbBSa72E5sPitHva3SQ88l3yomvayxRBMDFF8TBWcMYU4ZooOzakiuzsPbhRdesosyqomDzpvKSU5yyVi9P9GthHB1WPIsYQ4SpeGZAEyjYRa16Gn9vrhbcbYJMtFoQuRH6o0uh9dE8RCh1c1ShOC0Che6f3IUJlvmBth9J46tJxvIHtSUpLbTTSzpy+k0ejaip6qR9gF9OTeYduLBnQSdjt6wTfgDllA0SkS2vUHcB1feKMXo+PNXsN4wL3V68nzwmV4Ed9Yd0unY088Y1CTwin0eYr1TBOBxlUY7RsHPVP8c2ZQnumY5QE0Hbv2DLRCF8I5yDXpOX5+nJ33VV0zzX40QW9eqROII+O1aFbaX8QaEDVwYP7rSDVnR0MGIn4ZBCvrRyq5RT88tPeH0oQgoGuDRN5s1xvi1Q00r+2V6g+QMW3ebDm4910ZaIpjyo72LOvre6jvzlMRDVK0Pb7z7pOJBXWe2NRGU/LQY4r1zi1oqXqkFsDo2kp07fcJNq5EWFnKHr0RhKDnwyvJn/UPyGHqkwTrniT+/D+AETkqhTRnVMb40Q2L+OHK3dz7SgMfO2sqk0sj3HHtAmoSIV6pHymsZQBCUFx0OzJURvyFf/AfzAdQOP1vccrmEF/1DX+1vmQKmct+QOL5LxxeXLVCcRyzZs0aLr/c947PmTOHdDpNNuuv8DY2NlJaWsrEiRPRNI2LLrqINWvWsGzZMn74wx8CUFpaSqFQwHVHELuwCyOHrEjPl9v2+sPUADBCmCe9D2HnCDasINC+YdRZmTQiIHTiIYOrFlQzqbTf6xJoWIneU0fngBAeN1Y7KO/FK5mKDCZw45MGtys0tOJgkQ3BUE9Cn1KilOxLFtjZMcwquedhtPXnU50drueK+YNX5sujQc6aXj6o3bzlYs64Aqd6sJiCDMRwS6f3TiQHSmu76Kl6ZCDGsmllnD51+FDRqGb3h3xJCW6R0O6nkXp42OLcwsr4XgEzjdSDvnBDau+AQbAxOt5EWBlCu/6Anm0epPa4p7UbrXOYa8EpENr5BF50Qt+kGPwwdbfipGFyviT2pLMAqGz8I44RReCHWh04QYaBBaxHKmTtMb8mQSyk09BzcAOtvjOJWcwPKYodDeqYA7xUAaeAJs1hPWiW4w0qcyAR6AImpl7364Z6Tq/X0J/Na+l9aAcI2Awk0PqaH1oqvWE9s64naegewTsi5VCFwmGYWRnFGqMXzo1Pwi2diThANdB2JbnwROzwBOxavzacF4ijFbrQCp04tUuHba9oe5gihBSHlmNvdGwi2/AapuPhVM7zcyf356nZeboyeayBl5Zd8A05KX2vWcxfZDE6t2DuXcuz2/s9fFIz+iKHvOgEEKJ3UWRwuHHBdllZ19UnblYRDQ6/eHMgdsH3PGoa7oGhzYMQ/n0pXbxQCU71In/xqVehdkbPnwmndvqLL1PO9edsToHg3udYWdc1KJ//QLXXUZESkWtHOCbW1AsQrokMxEnZBg1Vl/Tvlu2gYFmEjf57oS1j8vLewXM3o/0NtFw7WrYJgRhV7E4VqlYcM6SUfPUPW2nLWPz9xbPY0JzmY2dNZUZFlLztcud1Cw6pPS29j9jafye4+2kyl/8nVunVFBZ9lPLfvxc3VkOw8UWS738Et+rkg7ZjTbsEd0i1+iPL3Oo4N5w2ibvX1HP3TafRnjXJWy4V0SD//NQ2PnfxLK5eMLL7vg8hsGZciVs6Y2jRRiHIXvgtYmu/j9GxEabNw5pxGcUFN1HyzN+QvP73g2K7FYq3A52dnSxcuLDv/8rKSjo6OojH43R0dFBR0Z+3UFVVRWNjI7quE436K9EPPvggF154Ibo+eCKq64KysigUTETBpLw0gum4aKEAJZFew0h6iKSGLIuAZpDK5ghHgoiIQCTXQ64defJlYOUQ9auIFHbCxNMGHUds/wNy5sWIkIeMaaSNAPXdeWZUxkj05l6Jpjy23cbedoeZkV3op34AUVIClRORZb0r6noVIiWQCy4CIXh5dxe1lTGm2yWEa2cTLhugWigjoJ9NpHRSX/idabtEY0HiJRHqGpPYrseyssFKh6KzHmE1I6v8CVcyb9HjSGZP6J/UdeUs1m3dxbvmlaPrcfRwgF3NaS4M7kRWzoXYwDajCHMKpPcRKY30GwOmhxY2CGg9GOVT0AREg/3TmXA0SDTgsqD7j5REp4EB0dxmsPPImUsRuQ6iJSHId0G8fzIpciBDQNlcCJVAWQLiNf3HLZsGkz5EBBBdIYTlImNhor3j0LW1kwVGN/EDxoV0EmYt9b0ZehD2b3eKCJFBhDSCA7/jFBHNryFnX0YxEqDW2UtZYQux0ijEpvT9prquUVIaIZIMEvWKREpCEB6qPik2/55tzKSidBaXztUAxz+/YVi3fTuTZZZEItzfT8BOhIlHg/655ruJaxliwiIRNSCzERmrhopZADyxsZmySIAL5vYa5+EKiokwVQmD0qBEi4chuR1CMWRZFNHkLyjKqXP7O1JIQjDqG69T5iO2P04kJhDNG5BTBteDWzq7imK6i7JoFA4IaW2p30521xrmXvrRIeeatxx0TVAayLM52cq0RAUlZZOG7FfflSMWMqiK93r8etrRMtvwqq5FpCrALRIpi5Ip2oQSccpTz1FuvYFccjvE50BJGG3XcqIdLyLnXTukfUtLInOtJCKSqBckURLxny0HIDJhkCEivdtEUyM7m3qwS07mzElzELmdRMpLIBSFnavY09aILJnD0qlliJj/PRELEe1+GYwwMj4FohImziTf1ky4EKAsJhAdWyFiIGIxgrEQkUAeEdaALDJgQkz4z6xYCC0S5JJTaimNBAkZGqbtsqUlzZJp5UP6PwgZRnRJZHkFIt+GlZjCizs6uWw44+7M3nuuuAu8IEQ1ZGkVlEURukS3LaKxEJHSKCBBxMGbTbQ1SMRppzyfIRqrJRTQKIu4EBq9cDjQex+uh3AJeG3I2plgF3h9bxuJ5hcpu+SD/rbNj3FS9BSqqy7t+2pLwSEaCw7+HRdcgWa1o8dC1Hj7uKTm4AsHykBTHBO2t2d4YUcnPXmbX91+BjMTQa5bWIMQ8I+Pb2VKWYTPXTxrbI05BWLrfkBk468pzruB7g+/6L8sPJfSJ29HSpfCqZ+guOj2g8paB5pWE972IJnL/hM3ePQLgn7+ktmsqOvk7x7exEfPmkZAF3zo9Cn827sX8PePbGZmRZT5NaM/WKyZVwCQ+NNfYc2+GnPue/u2uVUnk77ml768bc8eYAK5s/+JskduIPbyd8id9/UjdXoKxTHhQOlsKWVfyPRwstoDw6mXL1/OQw89xK9+9ash+7mu5MUtrcydECNSspiFYYeXdnXT3JHBK+n1btkFgskkVkkW9CDPbm7iXDtLqZFEzzThxWsR21/0wxw7t+LYAczI3EHHCaVS2K1NFLtzBMttUiLP7pY0Adeltvc4oZyJGXSJtb6GOTGClcwT7m6DVDfFmL/QFdi7ntDOldimwJz3furbMlTEArimRT7ZiZXs96zoXdsINL1McdFtIPzPc5ZDPmfR3ZOnkPdlopP7v+PagCTU04lRMHFyvidvZ2uGXU4nlYH+526+6DAx6JHu7qYkUUsuWyQsPfKte/DSWXZGlzC9PEJ33mb7to1c5q0CNIqVLQQbX/RLnTgm4aJDoSfFMzsEnpRcOb9/YlfIW0yMGAQ6O3B21uFFJuA4IfAcrOg8jMxe7LY2Qo0rMOe+pzecUBJq2oEXqUCGK5Cixc9/62iDXhEPLdeGlm3GqZxPKGeiFSwcE+zecShrXYtZGaSYHOylEnkHzTIx2n3VPDM4w28vuYdwy07QdPIDv+MU/N+0K0mhYGPZWeyiTSGXxckUcfYfryxKJl2gkDMx07spTMrwp71JLj2pioDeP+ahnIntdrEnX0Vo8zPMqIhinvS+Idc0wLJ589DSMVJWCNl7HNPx2NuWYWGFQzKZJ7B7BT2imqDXRmHPOmSkCrdM4mi1YOdxe1ppL1b2Xx8YNHTmkbZJtDqAbYcJ5ExkMIDVlSTgxUFofeMIENrxFF6oFM1M4UUq0L0oZmcnwZyJ2ZNDAnnbJaRrbNzbxaLkcvKZKoSdw5z7HoyWV/Ei5UhbkMqaA/ri054xeX1fitJAgbPdjZT3ZNDMCEn9+iFj8vKODhJhg3Nn+os5WiqHEZ2JlXHQA5OQQR0vmacnbxFu24Rd2EsxGqCQzGO0voaW2YeWt7AqJuEl8xgdb+IFS/B6lUjzOYukXo2RNSlmMqRTIZIDpip6cjdSaOi5AlrOxOw9l1DOxDIdyPRQaH8Fp2Iebl6DQh7PipG3dabqHqlUwR+3pH9dkWvDrj4NetIEdvwZa+qF5I1qNMcj1dFOcN82cMDIZnFyJk5PCqP3nrZLgujbX+rLUQyWuOQyRYKuRwHozFnsaEoxs2SU8FUpEaVLMfZtQit0U4ieTDTfRnb9Sziz39W/n50ntOcZrOmXEmx4ExkuxymZhDSDyGQeTQvjuoJ8zsTds8HPMS2diZ73/OdV2GB1s0daL2KTo5B5fvhrvzeceGC6iyj2EN27HqfqZBAd2G4JWrGbQjZINjiXmQUdo3Etoc49WIkJvLGrkxmVvkHWnSqQz1kU1t6HOftqhJUj8ur/+ddn1qSj2MXGvSmuvGjkIVIhjoqjjum4fPahTTy1tZ17P7yEzqzJFx7djKFrPPB6M3u683zynGljastofY3y316J0fYaPR98iuzF/4aMVSOKPZQ+eRteME7PzcspnvqxUWsOORNOpXDyh8bjFN8Shib49rtPprYkzIu7urjxNH8lb+mUMj59wUy++NgWuvNjyEnrpXjqR4mv/ArhTQcUpnYKlD3yfvQHbsFo3wh6gPSVPyG89QGCe5eP5ykpFMecmpoaOjv781fa29upqqoadltbWxsTJvir/qtWreJnP/sZd999N4nE8AsjLakiTvs2QjseJVP0Q3wGTowDjaswWtb1eaZLwhoBXUMGYpizrurNd7LRCl144XLcxOThT8Kzqetx6Mw7lIQNFk1KUBs3CNY/D0CjrKRbxtDdIi4Gwbon8Uqm4YV9sQIt3eiHJ4UrcMrm4Dm9EvQI0kYlyMGhNsIx0fLthDfc0/eZY9uUZHcjsi1DssX05C6Mrm39YZrSQ0/uGvZUEmGD6ohAmP7qcabosLszjzTC2FUL2d6WJW+7lLS8SK3XjF2zFK9kal8YoLBzfgHtQASQzKyMMqUs0t+X7p1Mc/b6Qhu+wsaA8yqgd23HnnohGIOjBfbXhhRO0c9jMcKEN99HZMtv+/aRehAt34HoFbyQgThu5QKKtusb+66NyDT7IXye2xfSKiOV6F3bsKtPw554Zv8xe3Yhit24lf3RInrXdkI7n/D7Eojg6WECThZHD+PULMWpXgxS+tfV/pBZKZEIPNchOYKaYXU8RFfOGlWpcMvu3XRaGjJS2ZfPE9QFVfEwXb3qhOaExZRl6wgV23FqT8ecfTVO9WmkizaycQ0TuweUHrByiGKSoA6Wa9Ndfb5vmAiBNeV8QrueQit0DZs/vV88Qit0oWeaEPb+lAdJQ0+BTc0ZTNfDcSU9OZvOdG+4qfQI1T1OaPfTNKYdXHfoQsx+QRBNOniORTxokLdGDnG0XQ8tvQ9hpn0lQSQi3zlIgdP1JEhJex724XuRvcRkCET9Wl1h36ukt28kcsB7WfMcQqldTOpew67WDto2976LrSyBxlUERpC8n1oWYUJJHLt2GXqupU9oxyuZxqTaSZTE+73X+3NNvVCp7xU2IlhTzsfo2ESwZa0fpqiHkEYYBih2Ij3csll+HTAtgJZq6AsbNR2PtfV+SaRh8dzhyzbYWQJNq/tyMjUhiBRahhaWN8K94ZYaBGJ0Z/LY3Xv7VKudTDuO1fsdIXzDzzX9uQ1gaSG6ixLL9TDcAkVn+FB1Ld9BoOnPA85ZIgMxvFACpIc9+Rw0M4nUDMzwBIrBSl+JMtOE50nsYhbb8/w8NNcmgtV3fwrX9p8rnoOMVCFDJZTaHcSd1LB96evTQbcqFOPMppY0//j4FqaVh/m/W09HCPjaY5v54JJJbGxO84vV9dx53QLiY0z4DTStprD4U6Te+7u+WiR6907Kf3sVIt9B8gNP4ZUd3BOnd20l/vwXkYEYzsRlh32Oh8OiSSX85iNLkFLyjT9u4y8f2IDrSW48bSLLppXxL3/aPuZimvaks0m997fE1n6PyPof9U+ejAi5s/8RgcSpOhlR7MErmULmsu+TeO7zI6qvKRQnIueddx5PP+0L4WzZsoXq6mricT8MasqUKWSzWfbt24fjOLzwwgucd955ZDIZvvvd7/Lzn/+csrKRpfADusBLTMWZsIiWtEl5NEA02B8K6ZVOR0Yq0DLNdKXSZPNFOtM5P6l/99O+quKU83BqT8crnz3i88drfo1iMY9jxNnTled3rzfRk+xB9ApUtOzZTMOrTzDB66AjMBmtmMJofa0vkT7Quh6jfSMymMCLlKPteBLNs+nOW4Q0X51wIPtrte3PgwJI7X2Nqq5X8ByTuUYr1fHeZ7RrouU7Bqv+uTaiMDR31mhdTzrZxfadm5HddQBYhSyaZyGcIpsb/Xwxz4Nw5QzmzFsMWqBXVXL/c0/4BpBdAOkLs/QMMEqEnSVOjkzRRgoNL1rTZyDLYAJn0ploXdv6hVH2J/r3KuiJYsrPz4lUYU86Cy9WiygmCe14FBkux5p5JTJa1XusDKLY4+e65HJ4IkAwuw8t2+rXTUo3AKCn9uBULsArmYoX7Vf4cypP8ts307RnTNJFGy9WjTPBz8UT+U40t8iMtqcpzfoGr55uQBS6fbGS3kl0czLP7m4LVwrqewqki0NFXp7Z0UVP3mZqWWSIsuVA8p0NBJteRu/aTrBhhT9EgAiXEPD6PaaaZyKQSDvP9lUPINo3sbUtS2t68ES9a+MTmJ27CGkaGhBI7uit1yXZtmcvpuOSs5xh86BloNfwdkz/Wh5gW06viLJkSimuJwno/oae/QuYUiJD5chgCSmz1+g6wEjYr6AnpIsnJd15C13XqO/ODys6Y7uSUN0ThN+8Fz25B6NzK0WjFCNZh9G9zR+W3ktUkzaiV35emKneBYvdBPb1FuvWQzgDxGRCZhcTO19EM5N4WoBAvo1g0b8eA62v+hEvIwilpU0bAiH/N8q19xkF0Y71JKx2Xq4fWGux91o3U+ipBoym1QQbV6EVugjLAuV2G8H65xFOEW1gSYfe3D9h58h21FO/Z1vfcWIhgwvnVFIZHb7OW3Dvs4Tqnhj0mZZr88Vl9DD0GnpF0/LrCpo96F3bB+wtsGZdjQzG8WI1JNvr6Uln+vLnXBHE7VOu9MfIaH0NJz6ZyvQmShqexmhZh+EWMZw84bb1QzspPbDzaAMERvTUHkLbHsKLT0EGohhtr/u16oJxwsV2Jne+hGamsGZdhV5op0wrsLM9R2vaRMu1MtutY1GZfy/sLxPiVs7HS0zGS0xGl/YwskiDUQaa4qiRtxw++/s36Sk43HXjqYQDGl99chs3nTGFBTVxvvzEFv7+4tnMqx6l3pmUxF78Onr3Dgqnf4biKbf1Pbz0njrKHvkACLBmXtW7ynpwvMQUrBmXHREp/beCrglSRYeX63tYOsWvzSKE4EuXzWFfssgDr4/dgHImLCJ5/cNENv2G2Oo7+iYjxQU3I4NxIhvupvzBa9HSjVgzr8Sc+14Syz8/bvVpFIpjzdKlS1m4cCE333wz3/rWt/jGN77Bww8/zLPPPgvAN7/5Tb7whS/w4Q9/mGuuuYaZM2fy1FNP0dPTw+c+9zluvfVWbr31Vpqbh953lR1ryKR7cEumIZFMKg0TCfgGmtG63vdcGVG0bBOt3T2UZ3YQ7dqIKKZ8I6bYTaD+efSubehd23yvyAE4FSdhuZKC5YJnEw3qBHSNYiHXV0i24OpIBHnCmLkUXrQSPdtMoP2N/lVcOwdOgejrPydbfQaeMJhYEgLXxDtQZn9/LqqZ6Xtm7OlI0eWEyUWmMFPuY2mNPyELtLyKVujCKQxYDRYChKAsEqAy1t+2nm4kiMmp7iYCrj8JLmt6nondL/uH6/TLhHhS8mxnKU++VkegZS1avoMN9W24nvQFAnp8Y0WGEvTkbbIDDRLNoDXrUlJSQariVLq0SuxIr1HkmmipekJ7nukzng7E6NqK0bnJV3S00uAU6O7y68FpyT0E9v15UD0yYWYIWT0YdU9h6BI3Wg2ajtQDOFqEDU0pvEgVwrMJ7npqUNFsKQWaY6KnG+nMWeQsFxkuxy2dhhufiNTD9FgGHaEZZCOTfE9lx5vo6b2+DHqvh8nzJFJo7FeJP9BJ5kqJRCNZsNmQCuFUzEfr2j5UPRI4e2qcspoZeOH+HKK85VIva0iQY1+yQG7trwl4BexACUZyNxNLwqDpxIP6kPp8nRmLtozJTibhomNk9/UpZAZyzexOS7Ykdbxof4iq0ez/5l6816OsB3Aq5iEDUZzK+SA0WtJF3mxJ+14rITDcHKFsY9/vLPIdiGIPAd1gRmVkUHFjoO8+LRRN9Mw+JmffJBzQSRcd0kWbnOXwwk6/n7GQztQEWFMvxCuZhrByOLFJrKzrRGZaEL2Gsuwz+jzCtr94omVb0NINeLEanOol6J1b0Ds2M3D6ndBNnOhE3EgVydgsvAG/pTCTvlBOrBY5zJQ+lXfY17yPYOs639PUS5c+gb05HQYulPSOgZZuIFj/HKGGFWBnQWgUbY9Et/88kcE4Xm/NrqLtsKKnok+Gv90K0hOfiwz48zTT8ejMWmi9F11Z22pqu18h11lPrqMea+qFWNP7c7MAAk1rCNU9ici14hkJsPOENZdIaS0y3TyogLkwk0Q2/NJXTXRMErEI+djUPu+qHk4QDQ42Dk1XsGfrOhL5fTSXn03UyzIrvZqAm+91qg+e3wT2rfaFmnoxOjahpfaimSmMttd9tV2nSLBxFaKYouBqtJWfjhcuJ7TjUYTQyAUq6MxZxII6RvcOOmQZlckNvjfSLYLw3wl652a0dCNJrRx3GKGigSgDTXFU2NSS5nMPb+KU2gQ//+CpRAI6jic5b1YFn71kDl/7wzbOml7Oe0ard9YrfOFMXDZIDQv8OO3SR2/Crj4FGSojf8ZnD9qU3r2D+IovIwNxrFlXH+4pjhuaEHzi7GmEdI0HXm/i6a1tFG2XSEDn2+9ewNnTR0m+PQC3fDbJ9z9KcO9yoq/+wP9QaLjX/AB70jn0fOAPfgiRa5E99/+z96ZRkmZnfefvve8ea0ZulZVVmbV39S4hqYUktCJWD8iywMBgDseYsYczY8wxMDAGZuAYD3g8A2bxYcZgzzEDg9SAhBBqCanUUq9q9Vr7mpWV+xL79u7LvfPhzc5q0VJzwJJZXP9z8lNE3ogbEW/EfZ7nv/w0ImjjnvvNr8LO7uAO/mrw4z/+43zoQx/igx/8IHfffTcf+MAH+MZvLLSaDz30EA8//DAPP/wwP/iDPwjAd3/3d/PUU0/xO7/zO/t/8/N/xjwgDZkJl5nzr2IvP4JScHlnvE9D1kcbmFtPY4zWQZikaYLr2GR2A7N7CVmaQe/dRPk9kupC0WX/Ek52yiiaTKlUaDKhYhuURMba6s29Oyj8yiKGgAib2q2PYey8QF6e3Qt+Lg5OmspRVpls+h6c3edASaKtc6waR9HkF089sj2HN/fa7++7FKrqPCVDUt95isv5YT55aYvdmy8ggjbRsMXqnEUx7AAAIABJREFU2srt/CZVUL0O1SzetHh7AqkMF9cpoSmJ3LPyt8er1L2iUFB7NHSloLTyaWr+Cun8W5DVw3Qyl0S+fEBVBUVLWJTDbUrhzv5j6P1l5uQuRF0cfxOvs4GUipVeQBRF6MPV4pAtbhu5wB4VbQ9itAG6hdk8i5aMOd9RtIIMVSroSSLsFrSv2lG04SoyT8lyicxyxHgTfXCL7MAbGKgSu6O4+J+oh6zMf1HhY/Su7U05FZq2Z9e98RTlp38R9+J/QjkTtO0jkIwpRbtoiU9eWyhy61SOdv3jWOM1qo5BRcTIyMMQ2n7xgZJcfuEz9NYukA82qDkGk3PHQeW4l34HY/sVVMQ97Jz/BNvjDOU0igO/UlRsgwO6zxYzJLlkWztAbDZwwl2SmdexNftu5MRxNgcRveDV0zs96nK8BpZloynFy5OcEw+8AxkHZLqLpjKspY8Vxgx5grSqKKtc6IU0Hd3bYteXqNgDmdEcxbimjmMIyiJlY+br6ZtzjKMUvb+MSEaIZIgRdvCSHPKUjhez3CnoqbNVm2++ZxadDCOPEAJ6QRFFsDmIkLJwo0Qp3n58igf9z2Mvf7x45kLH8Ld59yGF/orGrgi7mHkAaAhNQ0s8pF1DyzOUbkEWo3vb6GEbo3tl//8OVGxc6ZPrLm7cYWr7c2ymdZA5RvMC+mBln9K3f4G8Ar3cJVl4F5owiknQYIXIbCA1E0/U9l/v/Wlx1IMsRlpVkoV3gVZY0G9NvR3YC+Lem2wlWc7Ridt6sqmqi5l5aHvOr5lUXNkdF5PTLKKkxTx0qMTmxcfZvPR48bDi1dM1vXuVdP1ZllZvYnQuI5VCyAhNffHnRzkNtDRA7y8hawvspjXS3lrRcALyeIzcozgq9iiO7gTZaAdUzrC9yYF4Bak0Ut0lKx98ldxFGTa742jf8VHv38ToXN1zuzyG0gR59TB6+xK7kSAyG8X1l4zJGieJSwcZqjLHp0tYhiCdfzP9kcet1qiYbL5MF1USLQ0RUZ9ksI3lv3az/U6BdgdfdcRZzg9/+CIK+KX3349j6lzYHhGnkn/81iNIpTg9W+En3vvaxhxivM3EH347+uAW8an3odzb7mtitEH9o99FdN8/QPd2GH3jr/+5joSyPEd66K1/bSZnr8S33jPLsakSCxMu/+fnlrnVLaglp2YqLDRcPvTS1qsyPl4LsjrP4AMfIbr3vy3oQXkMcw+QHXg9RucKWtRn8vfeg5bFjL7p31F6/lcw2pe+Wtu7gzv4Gw+tfRUj6DCevJ9k8V3M1x0sFZGltw8Yef0YefUgWhYQjjqYvRsF9S9P0dsX0Ier3BjC5Y78sqG9Zus8fpLR81NCrcJ6d0T91sexBwWtymie5cT4BRqyh5AJYs/qWUs8pFnZ/37T8hiEiZan6FEfPQ8ZD7rY7YuvOvBpSiJri3jf8Cv7USRtVWO58hDjqddj7p6l0T1L2rzCIExZ7UcMS0dJ6qcK+tye0H633eTFi7e1M3p/iejqI3QGQ9IkoOsnaCpD2+9o79l6ozirTnJZvxctGRW29lqKxu3vPGXXEWGHo7uf5Fjz9lQqm74Xv7TAod3PYEdthK6T6SWmyxamW0NWDhaW7nsHvP33qlYYNiirQjZzP7I0TbL4bjJ3Bg3Fbj+gl9lk0/ej964X36NZTLvT4qWegWcfJBcmhmGCzDC3nsHYs/jXO1eQzmRxSH9FKK+yqqAbgKJqG+hCI555Hcn0PYXBzOoZDsfXIehghF201N8LRr5W6IgMB2dwg+b2LfzcJNZtMlnEIAAYK5+hJ2bw4xjXW0EXGq5lFgdUTfuSumxLaNSHlzE3nyocPGVCFHiYWs6U7DFfc8g0EzMd4UuLqL+NWPpTtHZRcNiGjpEO0b2d29lleYbtb3O0dntypQybZ86+SJBK3KSH8HYxekuIeIgyHGR1HmTO1cd/j1a3w7B8gsur23itFVA5rz9c594Zm7K/yr2jJzm19QekwibMJOb2M5DFCL/FKadPZ5yg7Z4j7dzczw9sjWPOXG/THYfkUuFFORXb4Pz2iDiXVB2Dbz0UYa2e4fLOiOW2h967id67hvBb5FJxcVQisSf36Xblnacpp8WedQH2tT/A3HwGaVUwt57Bvfy7AMRGFX/qdqREO5QomVNb+TiT4yvURMpd+ja53yZq3gDDQhpuUTh9CeToaEETEo903GJ7+Rx28wWc3MNO+ii5N0XPgtuFnsrRvW3stc9CnmIZGgudJ/apoCJoAYrVrs90uIy+R0F1wl3mBi8VERFSYQiNb7p7hvm6g7nzPEEKT7YdyjZEWYq5/Sz2yqf2X/Ngz/dfQyMw6tT9NcgTsqBPEnhQ3WuEKbV3Vkn2ptKF/nPszKH5rX29rmZVCCtHi8/u+ufQshB7vIJfO4UGLLY/S2pNoMuYUtzcWzdHb1/GWn0UMdpACYteYuIbxZkyPfA1SHcKUCjTRVMKc/VRhL9DmiRUgzXu3vgQWjTgsU6N0bCHNVzhesujPU7Qwi6NzhcQSmLsvMho6Ule2iyo08optJYb/YAkfu3g7DsF2h18VbE9DPmXf3qdE1Mlfv07HsAyBLujiB/76GUu7Iy4vDMizRX/7F3HccxX56m8DDHeZuKj30l68M2FhfwroCUe9U/8APFd7yd46J/T/+5Pk0+d/rJr6Z0rVB7/aZRVLRy8/hpC0zR+8htO8a33HmC6bPPC+uAVt8H2MPqyYvAvB+VOIctzuOf/I+VnfrFYKxpQ+9N/gt5bYvC+/w/lTJBP3UPwtT9O9cw/fbVg9w7u4A4AUJpObNbo7awyTgUHaw6LwUVE8grNRxayOsjIrRqalGjkNEpmcTB3p5HlWab1gEPpCggDP8m50friQ1hy+G2kUSFuT8Mhi2V4XaWHvkff1oer9MyDBImkFq4xXbaRpRmUWcLaeW6/IFAKwsBDqZTBqe9ienyFk/0nECr7IucygOcuXyEbbOKc+01ePP8iNzsex5IbHB89T65boCnmRy/Q6F/EizMUGlOjS0SVw+S12wZP2XAbc7C6P6US0YD64AqHKoLYH/H55Q5Sd4sO9cQxXu70a2GXzO8S9YtplEo8ZOzfriPzGG3PWMJNOrhxizSXLLU9/EGLtVYXZE6aKfRkjJbHrPcC8niMGG2hdAujc2UviHdvqrCnvZX2BCJoo482EKN1tGiElRb0zfroGtbKp9DyFHQLY3ATWwYcnyoxmTWZHF0jqy2ipT5KNzCCJiiJMkvo/Zs4l3+vyPPagwhaCK+JtOuMwpQ0l1xqx/SDEISBiIesqzlAwyAhzzLUYBXpTiPigibrbV1myrvO6ivMMGorf4IYrpHHHkbmYeYxCp1ekPLik3+MMkp7B9UU4W0jhqto8RCpFDMn30Qj3kLvXEZLPLKVpzn/1EdYGgncYIvNYUQtXEOTGa3EYLu1y9EpF82pU7ENZms2Rv8mk0sfxNp8au9iydkcBGyOUlIM8sm7SOfexHHRxBAaQhZNDWVVyM0qjLcxmmcLSp4wMJwq1waKYNQqprRKsdzxefHcC0S719geRNSibQ72n6dqGyijVLwHmk5NK+hl+uAW4e41BkHxu2nqGo4h8MOIVCrqroGTe0zZkiMNl7HncWYtIz30VjYHEX6cI+uLGINVRNBEqIzecEzTOko2eff+NVa1DTTDKoqA/nIxMRtvshxW8dwFADq9HuvN24HjxxZPoB9/N9IsY6cjMmAQQ2zUGTqHiEqHeMI/jLn1+f0GqxYXGWwH6w6zyQZm8ywAfpzSDqFfvgvlTPDe8vL+VEofrhdhyQoQJtIssz+NBmyjKIoubI0Ikoxcwvog4vzWYL8gWgqrBNYkCIthlHJpa8jFnXGRxTZ9H5HVQMiUmWSbctRkPPd1fDwttLVnN4dc2imetzRdcqNKbjjktSOU1h+lNY6JvS6yfABr9TNYG0+gBR3spY9irp7BXH2Uw50naTknGbUKOnRWmd/XJiqjhNJtVpM6o94OCo1e9W5EeQZDZUyOr2GMN0BliHSMFvWwlj+J2b3C8TpMuQJr+RMY/SWQSRFMHXRBN4uJbNAFFJFRY1Q6CrrF7O5jEA0YBiG7w2JSZvSXycwG5WgL0gAraiM0rchu2yuWI6uBy50C7Q7+iiCl5Ac/eJ5Lu2N++e8Vk7Mozfmf/vgK/829B3jniSn+5HKTl9ZfO4hZC9pMfPTvEx//1sIG/pVdPyWpfuZHyKsLaGmAe/Y3vmRw5hc9r+ohkr+mk7NX4uhkie95wyF+6OuO8n8/vcIvnlkCChrMj77nBNMVm93RXzzIO3zg+wne9CPFwU0T+G/+MapP/Ayyehgx2mTiw+8jvO8fICuHqHz+57/S27qDO/hbAS0LMfIQ29/GWj3Dld0xTW0WqZf2NUoq8RC6jsgiDtUMGuMbCMMqXMGm74UsJsokrer9RKe/gyXzLla6AWcub9K/+EmMrWewbv0pZjpEkNNY+wQlU6Pqr6PHQ8I0R1kVBonGhnWSUZQSDHuYzXMFHc50b39fZiHjYYfcrFPefIz59hM46ZAoF4hXduaVoqbHGOkIs30Jwh6PXu8Qj9u4SZtK9zxO0r8dZKxpOGmfcrSD1l1ChL19c5Kxu4iT9IrDNiDtKlr9EFGW4/pbWEJRIqYU7UIW47VWSTrL5Ff+mLd7n+aoaLFq381GNsFKs0NlUExpROIVjxOPsepzqOo8ZzeHDMIUNd7ByUbomiJXilzYhXbFMVnrRbywOSSyJvGGXTSZ87Ibn7n1TLEdmSLCDt3URBttofKUyfENcGqI2fvIpu8jm7yLNI0JS4fQTZuaFlBPdjGlh7d9lY2b51B+j+rqIxh5iL5He3yloyTcNiaR1cNUoy1sQ6CtPoGx/UIxUZU5pZJLVD6Em40ZJ5JRZ88lMvWJR212tWnG7iEmjJSKGjFhZlhhG/vGR8jSlIP9Z7FUiGFaNFyTE5Mmzp4zpSZzzO3nCspVMOTMtTY7F84w3jjH1sYK5Ak3PYPl/ADHWmcIlz7LkYbL0FnAt2apZF3i2gmuOm8gcWZpj3yS7hoqixlw25XR8TYwZMIg0ehNvQklTIzuVTr9Ponam6gJHVmeY6Ub8uRoFlldAGHxmPZmNssPcFA2KeVFUzePfXKpOHjsXoL6KSJrglSzqBhZ4ZJq2GgyLQrz5YuMopSrYR2/VBRI5Clzm5/gndM+9x0oodUP03GO4m1d5r2NNhN5n+rqI5wcFw0ON24BoA/XEH4TLexgjFb5puMOc2Wxr+VTCvzaSez6LGiiMP8xy8jSLBqycJycvo/YrDMxuIC5+igAaeyjrT9ZvCcqZ2AcYMc6imVZTJkJqr/Kgd3H6HZ2uNXsFMXL8iPF58PSOW3sFrRXq4IR97DSMVM1l2PlhO0D34DS9ILSuOcUq8w9TZ7ukM6/lbwyz2Y/oj8co8mU1CgjpSJzJrFkhBM296fs99YSpvQQMVgmSiWDMGN3FNEPEvT+TZZ32uRS0rUO0bIXSb0OdvrqM54+XMcJNlBoqM51ssEGU+kWVuaR1Y9irj+OFo/Y7vRJzRoi6qPsKrpKiawGplNo4NRgHW24RioVyp1E1hYoN58Dr4U5voWbtKl3nsfd/QLD0tE906G8oE47k5it8+TONNtJheFogKwtoCUeRvdGoc91JooGUu1IoYU0SuRGBVCI8Qa7jTcRKx0hM6qOwYWtHsvGSaadnNgs6N0JFoMwJ584VuhLa0dI3dlXMAe+NO4UaHfwVcEwTPndFzYxBPzWd7+emlN0aD98foeqY/ADX7vAIEj5yfee5D2nXyN1Pg2oP/IPSRbeif+2n3lVUVV67pfQh6vEJ/4O9s2PE9/1gS+7lLnxFJXHfwpl10lOfttXZJ9fbeRS8WtP3OLNRxqc3RyQ5bcv6DPXW/yzD18qePJ/ERguymkgzv0uE3/0HYWZCuBe/G1k9RDe238ODJfxe38Z++bHsfZ+RO7gDu7gNtT0aVyREtaP01/8FgZhSjnehe71YkqSxeiGxYzsQurTSwzG7mF6wzGZ38XcfQlZP4LtbVJvP4eIB5QnDuLGLRZbnyXy+5it81ibn8cvLeCqEKFSzu0EXIsnCaI9q3dhMhWtcjhZ4shUlTTsozSdcX+HK/ki+z/zUiLyBHO0it29iK4yRO7hD5po8SvcyzpXeNBqYqQ+2cz9aCpnpmIRmlN0zHmG029i9sBhGq5VTDN0k8SsgQaRUS3cEffqECsdMjt4sZj2ABguwzClG0FUOkCpewkmjlAru+jeNnEu6Y58jNEaYe0Y7cZDJINt8tEOjaSJTCKkO01WW0QJHS2PiZME5bUoxU22BhGj3GbLPU0uLDx3ntBsoGUBjZKJ5VYYGlPkvRV8b4Cx/VxB5VaSlajMqHS0yDmrHuZ8O2e1dD+502C3/iAd6zDXN3eRpRlE0KI98lltdhh7HteaHi1tklyzibHZyarInQsE019DZpQRw7XC1OPPaHGyxl3klTnEcIVa7yxhkuEdfgfJ5P3FdMtvotDZ4AA9Z4FqYw4/zRHtyxidq6TjJkYe0RnH+EmOMVzndYNHMeMuGCWyPGW78VZWxAlGmY4t/SLaQUZg3DbQ8kWN3tZ1dJViHbwfqe9ZsyvJSddn3hgz6ypqpkIpEDKmGq1T0VIqwSru1tMM1l5kZ3cTY/dFnKRLT1b2NYl66rM4fI6aGlPeepz1Gy+w2fcRrYuEcs9sZutZ8q0X6QwHTPjLxWTP22Zu4xGWNrfYNI/RVzViv0/7wic5VU2Yy3cxh2tUbINcWHS0afpBSt64q9DPyYTILJwe83GbaT2k5haW7S0v4eKFZ/GjCN8bEW6eo1Kf5Pylc2xd/AylYIvTlbBwOXx5wid0lOGgpQG5ZvLMjU2Ms/8BfbyJVIqttIypYowsKKzed18srNk1gdJ0nHAbWZ6jV72PXNj7tMGVnSYkPiIeoamMk9oWC70nCTfP0/RyTBkidB2PElEi0WRW0EHDLmu9AD3soA9vQRqQlObRVEa6+RI3OyHdl/6omKS2L2KvfArh79IbDPBTjWTcwtx8CiUlMhwQpSl9L0BkHrppQ9illnWpBGuYK2fQoj6ifZGKLlH2BAowDY27ZivM1Ry0PMJqX2K++ShZf4143MHwNjnQf2n/s/byEU6VpkitBnY6oqnP0tZmiEQJDBf7+h+CbtEPUoLQI504vRdRoBAyJTGqbGZFA0BXGaPSUa7ujNGiAWK8iTdocsM8ia9PoimJQBLmAhG2QeWgFHr7MloekZfniDorrGyus7TbJ5t5gPiu9yOrhxDeDppM0PIY3d9Flmax/S3q3hLlaLdo8GgajvRx5ZiWFzPs7pJeeJiybXB3NUKaZba9vTOaYYMwUXaNhreEqb22I/edAu0Ovir44Q9f5LeeWefXvuNBZquFwFQqxfe84RC/+G338LOfvM5/+MLaF4XCvgoyp/bp/wFZmsF758+/qjizVs7gXvxtxl/3s1Se/FlG3/TvkJWDX3otpchm7vtrS2n8ctCFxo+95wRXdj1MXfALe1M0gG++e5aaY/Afv7D2l1pbvuEfkhx6GxMf/ft4b/0polPvKwxY5t6I3lui8sRPM37nv6LyuZ/Yz8O5gzu4gz2MtsmTiE57k6s3bxIlGS82c9ZaxbVitC8SBR7rgcl23iAYdljwLyDIkZqBssoo3aKkRcyNL2Dd+iRH/PO8eTJE26PgSN2lG2b0Nq9xNL2JlIqj1Zwj7CIziR9GCG+bo/4FULA+lmQUh8iAEjLxSZqFVk1W54nqJxDeNrnTQGo6tbRDopchTxgNumxurqHymJc6sDxICbtrCCWxDYGQCWUVoqceFhkvpwmIPN07wOrEUueiV+fSzhBQHGGHaTsFpZBKEWWKmpGyWDMoj29xYvMjxUEuSdhpPMRUsoktJOv23SSRD4NlDrsJpWCL+XiJJC/svg1vGy1PyCdOUM97VL1lVOsq/rDN2BsSZ4pYlIjMSUppF5F6rPdDhoMO3s4SQ61OmAuUWaI3GPLirV36m1fRejcKY4buddy4g9W7jgq7xGvPMjm8iFx5jKx5BRENmKrXOWb0qJjgConTOoubtNFUTiXrocddqpufwczGpPXjgComi7qF3r1eOMXFfZRVRYR9etYhBmHGTLSOlfZR7gxaMmKUKO4ff57IqDHGpeGaqNph0DQ0v4OTeyRWg0BzCds3mfCukRklpFkisSZx0x5HwgvM0yEed/GHXQZBQpr4+9RT+9LvkG+fw447TNz1ToRhMnYPg26ReW1KwSaGLiBPWekFxHqVVC8T5BrL3YCDUzXywRYngvNcVCcQMuZkKUTunT+DymJBfVMSlMQcbzBwjzHlSEpyRL43nWm2d7jV7CFkjj5cQx/cwkp73Nd+BDMdI4VB9eA95GlC58IneP5Wi1aniZ8qMt3FSQdog1uYO88X9vnuFLnmMFt1cJSHS8yka4HQ2Tn4XlA5URQzCkLq+GjRiDSXJF6HtLfC84Ma6YE3cGzK4fhMibx2BOkUjoZZdREn2CZLY8RoHS/OGHW3aDQ/jxI6Xv006Fah/RxtIlRKbk9ibjzBieET1M1ieovMORAt4x/9VuLGKUJzBhUPcYNtjP4So9IieRoTigpW7uMkvUKzNXM/sjzLuLvB6MbnCot4lZNbNVKjwrPyXq6ExQRHC7row9X9ry4vTtmObfKgj5IZZucSRtBiwbtEr9diyXOIlMk4SlmVszxhvINR+Qh6f5mdULCa1ECmOIag6yV87OIuXhiS14+zlVWQpVmcpIslY8KZ17M694rg6ZchMzLNwkm6aFmI11zGkBFJfw0NQTZ5GnSD2QMLOP56YR6TJaDBgtHF7l7iU1dbjNwFrNxDokAYJMokjQLuj8+TW1USo4pEEEYh691x0ajy24iwixhtoeUx7ZFHo2RRMnXsGx/FvvHRojliliDPQZhkjZNk9aNk7gyeu8DYXUDpFnO953HiHk3zEBNGTOgPib0+l4wH2B4lNL0UMy1onYObX8BoX8JonaNnHbrNQvgyuFOg3cFXFLlULLU81vsBv/Dt93BsL1X9hfUB/90Hz6Np8P88u07bi/kf33HstRfTBMnRb2D0Tb8Bf8aOVHjbVD/7o4zf+8vIieN4b/+5Inz0S8C+/hHKT/0cymmQzr/lK7HN/6J427FJ3rgwwUzF4pErzX2NitA0/pdvvosPvbTNzbb/56zyJaAJ/Hf8S6LT30n1sz+KPlrHufifCuei+iLRvd9Lcup9pPNfS+Wpn/3KbuoO7uBvOLTeEqauYQnB/fIati6xdW0/Yw1hoAmd2fljrLbaXNvtozSBIwOiXCDNKkb3Ornfx09BWlW8UZedUUTDu069fwmjfwOn3OCo3kIYDrvjCBkHJHqZWrJF3V8ugq6Fhq1rXNTuxkjH6ONNyFOczgVeeuYRjM5lNJWSO1P41VNY3asE9ixja7awqI7HqNEW7s4zqNIsE5UKg+pd+N4YTeU8frPL1XCC/tTXYPubbLdaXM7m2cknkEphZWOM3Kd2/WHkXv4TMmNX1qA0BTLFO/sH7OxuosVjurFAphFGNKCUDYizjC8sbXI8vMjdg88hwhaL3nka0RYbYgFpVcg1s5DOBO2is514CG+LWq0O1UME1gwiDxEaVNovUvLXqQQbuHGRzzZbsekngkCvYrj1wixD5Zxfb+Jufo6JcI2XHeK1PCEVLobf3NeMNEo2m1PvZFg6Tlw/iYq9ws5e05DCJKwcpVt7EJn46CpDludIooBhrJCRB5qOsqrktUWM7lX0/k2QWdFUFAYM1lhttqks/wl6fwkt9cgbJ5ks2eRGiWnvBqsb66z3QxIMsun70GVGw1Lca+2wqPfZ9jKEXSXHRKQBoXuQcrSNJWOqWZcpR3G47tD1Cg3zy/lMkTNDgkWqdDqf+zXCOC7MW7KA9sgjCHxanTbxYBslJZO1KrEzQ0n6WBMLXMiOoquUmf6L6KN1PK1KW1X3C7R6/wKTjCibGqYAS5NM9wpqpd69xtYgIM1zLJUw5+RIYSDNEloyolpyySZOMB9cZqHzGN7aS5AFzIwucWoCJo6/hbmaQ692L5nhUu+eJ5u6h6y2CHHA9PgSwyBmYM5xeWgwjFI0v8XU5hnGzmGGfgTCYCjqDDMdqWCYmYjyNKfkEubmUxyqOzi5h96+jEj9IqcrC9Fk4a4svF2M4Spt9xSJM4W066yOIKidKBylS4dJhItIPeIkpl4pM5HsogXt4pwzaqLd+jTmaAMr2CKKE3LdQSkNOxvRHY6Y7J8jTjNK0S7dbhO9dR5j+1nMsMOQKvnU3WDYmN46dtLHyoZMxutsHHgvWXke6UySTp4ucvdQiKhHLhWqPEsqoTq6gitHWNmYB+IXsKMWLTXBoegG7/D/dM9hVuEGO1iWie7t4Cc5zVHhgGlf/UPc87+FVIKpySk852DRqBiucGz7T/jU1RaDMKUfpCgUuYSNcYYuExhuF5Ej5NgqgixERD0aRkzbS/Cqx5CVOdK5N5LoFczSNGO70MTVwg167S0MoZEaZR7fynCyIWXlU+mcQ88DnNzjaulNaBPHCGcexGy9iLTqiGSAPt5kKBrsBjCKM9K5NyHLB0CDUBrkVg1kXhR1QQepFZlzQhVNhI2Zd9FzjzAOE073H2cm3WXsHkbunufqzoDBaIyT9JgcX8VzDhT0UqVwDI2q/dol2J0C7Q6+ovi3jy3zQ79/nn/81qO843iRPbM1DPmpj1/le94wz++f3ebM9Ta/9P77blsBfwk4Vz6I3rtOdN/3gVn64htlTvXMDxOd/LtoSRFYGN/zXa9eROYgM5LFdxfr/A3Gj77nON/3pgX+yduO8L+dWSLb++U7Mlni+x46zL/+zNJ+8OZfCJpG8OYfJXjjP6X+8e+n9Py/xb75MdBtkiNfj965grJrWGuPYd361Fd4V3dwB3+DoRn4osp14y5WSw9yXzWgT5vZAAAgAElEQVSgoifEe1bwypnANg2M3Zdwwxbu5CE85RLhsB2AMVpDmmUMUshiRu1NRlFGx8+JjQYiCxla8+hhC3/ibgyVsOAmdC+f4UJygLl4hcAf0fcCTF0jyXNyzcCwy+SVeXQZUyXAMXSyybvIgyF66yKDrav45gwaktyZYSFZQozWadQnODgzg9G7wcFkhXK8w07jIV52GDSTPsJv4tfuQrpTCJURJglplhFY0wzLx7HyMcftIQe8K7Q6HXpbN+huXgeZ4/avYrYv0gkkaTCgqRqMyosEOIydBaY2PoWQKZEokWkWN6tvoVs6gTlaRVMSy9AL936zvB+xIrwml3qCYNwlNxwONiZwGocYTL2BeStEywuNriEEuoBjByaZnpqhtnEGI2yS9tdx0hFGaZIUkzDOkErRHAbMyy3qjoammwjAjxKObn2E1UtP0pcufnuN9shHj3ocCy/QO/yNlLIuiV7GFBJzcJNuXmJ5oDh3/Qa3elFR+AQtZHm2MHKx64iwh5ZFTA4uYvRvMnIXiUqHQeUIv8k4kUiZkqMV2plcYm0+g9G5jGubNIyU2cE5JpIdnGSAGG/h+BtFXEr3IttTb2fbWCRQNprMGccppmlhmjZKNxDjLYJM48bke3mh71A59U4mZhY4ZXbQ4hEnKhlHbI+ybeHWJsmlxNr5Am64Tala50Frm5nhBcr9K2hWFccpsyYW2PUy5F5xG1tTjESNA1ULx9DoeiG9sU8rdcmkopHukkvFrjbLduwgZFY4FirJbmzTEtPEmaKaj6hqIRoS19Kpds9hjlYI6yeZHF1GKkFSW0SVJtGUQo96HCopwiTDiHrog1uknWWUO0ViT1EOd9BVjKsiauEWk9qQL6j7aNmLCGeCST3CGNzi+bUerdWL5GmAikeg20S5TrO5SRLHjDKD4Jn/i+ODpyiPVjDD4jNhd69AFrHq6dT6l7HGa6yu3ODmQNLRJhDJqCjwMcg1kzz2Kfcvc0C2SI0KSfUwpajF9METhO5BerX7kbqNCFro4yJPLtNMjDxE83dRdgORp9hpn5lwmVq5zP3jx9HjAdns/VjNc+ijgnGT29Ui8727TFdrEIgahtD2Br0RmcyZ1oYYmqQR3EJkxbXkRjtULMgnjpNJiRCCrzs2hXXPt6EMl8XoCqXL/y9zusdU3oE8Z2p8hZne88wkWyipGIYZSekAI+sAvnsQwykhrBKgCqt8DVpBzlI6S731NK6/CbqDufE48/MLGKUJEuGg5yFO1CTCxhSCaLDLqe2P4KgYpTvkhkti1BiaB9jQDjEdLmMNV0kW34O5/TRaNCavLaLLBIuErHQAWZ4hnXsj6dxDDAcd0tZ1jM2nMbafwehdpdy/xIS3xIS/hHSmWGx9BkfF3J1eQUt9LC2lmnUx0jGazCCPECrFToco3S7CuWVOOdgkyV7biftOgXYHXzG8nIfxlqOTfO8bi+7GKEr5kQ9f4u89OIcuNH7z82v86gfuZ67m/DmLRfxZQfXLKL3wq4h4TD5xjPIX/s1+Hsar7vfcL1F66TdQ7iT55Kn/nK39lWOmYvPGhTpHGi6rXZ9ffWx5/7bvf2iBXpDwyOXmX3r96MF/hPeuXwCzTOWJ/xUtLDJOZOUg6aG3MX7Pv6b62P/8RQGtd3AH/1VDtwjsWaYHZ6kvfxirc5mloMJqXENZVeR4B3/9LF0vxFApC2obJ2pRNyIQOunMA2hKUtJSynGTPPGRwiYyJ9FVgh230Qc32Y4dul6MlfvstHsMo5TXmdsIw6SvTbA18PClhScdHvCeRtTmMcbrJGYFTebY6Qgt9orpUBawFpWIT/wdKuEOc95F0jRGT33Wrz/L8qWnyZsX6eyuURsuYe18AZlnyCzmDelLTETrmEkfv3aKStxk0b+IlY2xsyFGHqOhEccRM7YkiOMijwwBaFTjHWxdIOuHmavomGEHZEa7s8N892lmkk1MGaNpGk0xy5R/jbsHn2PBTYmUQynawdA1RNRDy4LC/ETlVGoTWAKO9p5mZu1jZHqJebnLhFYE8BqioIq3/QQ5btMIVgmMBlrYpycriDxAlzGRXkYpCSoj95qcLMfUhtfIBptIIMkyzGREoNdIKoeZMSMO2jG5WeVr87OcHDxFZbSEJX0wKuh5SDXrcUQ0SaMxYRzRG41JpCA99DbSw1+HGG2iD5bJygdJqou83t7FSXrkoy3aqYN0p+nb8xxMVnHTPr0gpezYaHYF0oCWqnFtZCB1l4EqIWSKqwKqtg5IVJZwoP8i03mTrqox9H0GsaLiOETDFrvLZ9HymIn+Rb5m7bdw8zFadQZjtMbYG6NlIX3pEiYpfppzbWxzrelxVp4i1UqMg4SLfYP5uQOU4hYNI0Y3HU7KFd4df7bQ98mMqDTPONXZHiUMVIW+n5JJcKcWKcsRSitCtCe8JVTYJ7IaGKM1RNhhRhtyYvQcWmmKiazFAVdSitpsMM85cR8vdATXxi6hNUU93qaWdrFWP4PeXyI3y3juPJoGM/41kjTF9wYomdNvfA1SE5gyZkebRjk1gv4u75bP8kB6iXznAjfGFlltkTTLCa0pNsRRmvZxlOFiiYzT2gZ5f4VWpJNLRT3exoo75FYVw7TRTIe8eojTvUdJSzNIw8WWIYdoUc/7aImPvvsSU6NLhSbNreG6FXrWQZykS5BreO4htvIaWtDigH+VvnOQVn9EVpoDTXDAijHIkfXjZOU5RDLCykasVd/IqjjC4oSDpQKstc+RaTrKrpEJlx4NunmJtLqI272EoVJGWp3UKJMLA5lneHGOY+hoeYRu6KDpeKVF1kObXBMITSNKc5642WHc20RLfSJRJhUlJsbXsR0XEXbIhYWZDbl352Hq3k2Ugs7GNdywjRO1IRpiZj5SwYgKN4270cqzlGaOUps7hRn3EMM1zM5VrOEKk2sf4/iVX2eh/ThD5zDeeMTFnRG2LqkOrhJj0siaJJiM7EPY0uNd/iexg93i9bn5J6BbSKeOLM1glevU65O8fjLHvvkI9s2PI289Shp52P4GGpJQWeTVRfzGvQxKR+l7ISqPmRpdoRxtsRGXsVTKnNzl+Il70fOIuuxTiXYw84BO9V6sZAiyiBUxVcxUuPqaPzF3CrQ7+Irgszfa/PcPnyeTip/9ltP72jLX1Pm+Nx3mnSem+PlP3eB/f989nJqpfNl1hLeD0TpP9OAPkE/d86rbjeZZ3HO/if/GH6b87P/B6Fv+/Z549Da0qA8yJ3zdDxI++I++shv9K4RU8NvPbfK2Y5N87NIua70iN8k2BD/x3pM8sdz9c1Z4bcSn/i69732cZOGdVB7/F0AREhmfeh95dZG8MkfliZ/5z97HHdzB3waoyoFiAlY9SCPZ5cKNmyyKNloesd5skmYpYZox5+ZU/VuoaExi1sljH4cUsgQt9RlTJjIbhOVF2pNvJNJMKsEGidWgMriKbRicqkQ4MqCW7ODIEAnoSuJIj0rSIpA6kKO5DeL2En4QkGo2Q3OWiayFtXoG4e2ivCYjcwpt+QxpFtJTVRL3ALE1wZF8jcbwMlt9n4MVnSyXJGaDsbvAZLSKm/RIc4mMBlSjTXKtMHdI8yLMtxxtEWU5SZqxG0hCZSKNMkJooIrg48ioMjIP0PISlBDM9Z5HSg0n6ZAbZQy3xkTa5IHBoxzMdzC0nOWoglAJNjGWWy2Cu2VWmDWoHD0a0KZBlCbcaryDTEoOjV5i5PkYpk0nEmwMY8qWwWpocS2qk+oOqVmlVi6RCpva8Aq1tIWGRABSM1na2qUdG7AXZ2DImNCsszRUWN0rqO4SqVVnQIWXtHtQusWgdBQ9T5iuOuhC0JUl7ul+krvlEifnppi+623o0ycwmucwN58GYZA3TqKHbWrROn4UYSZdhMoIopjcqrBojUmVTiIFIRbD3CLeczgcjEOyyMdVASVDYEUtAr2OUgpllLCCHXKvhVApM/kOc1bASaPDOMmIpSDKdfrmLIblIEyLStLGf+63GXnjwuU3i2nnNYYJCH8XEY1I/D4HrBSsUtFIdRsstcYweQw32GS29ywTesyudQTNb1Ie36TRfo6JZIeOn7Ia2vSCmF4sMAc3KWd9BpHEDbbQybnXamKmY5RZJsegVK4R6RWyYECMRceLqQyvUmvMcvL06zh1cIaD4wsozcAPQ6I0LaIN7DpZluK1bpHmOZnmAIJdLyfr3OTgysPMjC4hNYOee5QrzhtY4TCntC3m8m2McoMTZgdr53mcpIsUNhPBTexgExF2MMYbePXTeJRoeNcpWwZCpUjdQhkmncGQDg1afs6NoEzm91FemxsL30O8+PUYukB6u+j9Zer+LcrRDkkcspNVCTKoZD1at86hpyPs5lkmg1uMY4kb92gGisTvF1llWYBVmURLxoidl/B3rmLkIW8ffow36jdpt3cJnYN4xhRr7SHSncbIQ2bHlynnQ5abPVT7MnbukQobo7+EIRNq+ZAsCQnTjEnXwIslyIzK6Ab0VxmuXaTdaXM8ucG9ExLjxseIBzuFDpCcvpgilDrljc8yO3iB7tDnYnyAkSqup0TYeMooHBIVhLkgEw62W4awR9RdQVUOsh5X8KyZorCszLMSVwo9Gop6ycCJWpTlENvUUUojSjJKROiWQz3eZSJYppyPoLbAxOQs7XEIZgWvdIROBGK8yUIpRxg2/bFHsvBOssZdxHERvJ1YDaTh0lYTSGEU7r1BByEjxGiDfuU0kV5hli7z+RYVkbE1DFlwIixNURYpbtpnfufT1I+/mWzqbrKZ+3BFjsGdCdod/BdAmEpudnx+8dvvwTIEUil+8/OrDKOM9z94kJMzFX7p/ffx0GLjyy+SJ9Q+9UPYN/7oS9+eRVQf/TGCN/847qXfxn/7z5EdeP2r7lZ97Cexlz+OcqeK0NS/JdCFxr/4xlM8s9rnXSen+OlHru7TGt9ydJJ/8757UX8ZmuMXPYiJ/+Z/XgiOX5mBZrpEp78Tc+uZwt73Du7gv3bIDJF6NHpnWbdOMRMtY7tVpvWAfihRpRn8+mniOKHhLVGRHlIzCPUqetjB2ngcNIFNVFDBgh7Xmh6j7WvkwkKTKUEGMk/pDH0CvY6cuQ/d26Yf5hhavufMmFJRHqCBU6OfOXi4JOMOqXBolu4inzhG7M5xw76f+8dPUk6a5HoZ5UxQjXeJjAl0oWOSM9v+PPgtZp2MdfskM8Nz3F2JmNfaeJ7H88M6C1WdY6XCSl84NWJzgsSsYQnFFAPKcQuRx5hJv3CeFQZx5DPOTWqbn6GUDsgySbN0mnb5NErTycwKowQq+QChafSseXbyOpPJNrmw2bROEo4HRaEQdlGJjxb12Q6gFqxjRR0mgltEymJKeLgzx4mcWaz6HF17gWa3T9m2yDSTqWQbOxmQx2OsdEzgzDMw5xB5yihReO5BZioO9YlJMquKBkwGy8yPL3I4uk61d4FAr9Iap8x4Vznpv0TfD6ngk5Xm2Gntkvs9VrRFymmPKE64td2md+1JZPs6+nAVEbSR7hRKMzB618m66/jrZ7mZTtKfeAMzJQ3D22bu/K+Q5pJVschRN6aS9TCGaxjdq5i5jzIsSnoGUY/p8Ba1aItRlOKJKhKNy9pJrst5LJVwaHiefm4R5DpDVUYKg9HWdcR4mxiHu4PnCawZJmbmqdcbaGnA6bJP1TbxKycwx2tM7jxOo3++yKfTbU6Pv0B9+wlGO8sEzkFiaxrfmOCgapMbFbrdJtuySsc6TBTHJL0NMmGz0urTTW2eKH0LwqlRrjZQhstE8/PMd5+GPEWmEXFvFTPYoRLvoGsK0y7YN/7qs8TP/nuSwRYVXVIJN0mFy8CYRTmTaElAJly8KOOA8JB2BdvUuT+/jhG2SOxJjPbF/5+9Nw22bTvL854xZj/nane/T3/vOed2kq4kkECAQBYGI3AUYgKOq0IquFzlJJCkgklwk0qVFMnEJGXiGAw4FVdcaawiIDBQNkaRhISaK9Tevjn92Wf3e69+9qPLj3WtGPvqIizRCM7zc4815xxzNXvMb3zf975cCOZ41YgHZ59ioI5olKYiwoVd6uwcNkiRztBpjpBW4Zlm2R+oGszxc8TtiEgoNrsh/TQB4SERZNU+7vQlOovrOFVAM+eoFlza/WUO9nc4UF1mpUKcPE8TDNFegucHxDYnMgWZNDy+LolNQXb+cXxT0dNjIt+nkhk62QBnKFtLmO8s1ZZPnmPcCDzTENGyni4DJCa3mLYCFnvI/ADrHAEaaVv84oiFjVkYn8DWy54wHKqcMS1bjIN91SHxedkvUaJFiFINfnlCJmre/th59vQqhzpls72LbUp0NSMu95GmodYOPb7FJXuPy/MnwFkOmohec0QVbVAEa+TGZ9ZY2sUp9vZHkLpm/syv0VdHRIEPZunXeDXJuX2aM5FDtje22Dz9OD3ZkteKZw8XFHpZe3VqupjhZYyMebrzbRyoDDG7R1of0m69kfbGh5gUDb8j3oCaHzAfH2JPry/989K1pbE8gqjcx7UlaXOEaOZ0x09xdvJJNtU97PAyoZ4TupaSiMBW5PmM4b0PMBm8jjhOmQcbHDQ+pdcjPPzMsqS5GlEqmMnBqy4x9wO0+3xF5I3mZz92m5/6rRu8+x0Pc7a/3B35uY/f4YPXThkVDX/tV57FE/D151/9y5h98r2AoPimv/XK45/5e9ioT/X4DzF75/9F/dhf+l3j/tGT4CyLb/8pmitfW2qNXy6PbXX5j958jmcOFhznLb/4hf3fNf5Xf+EpXjrKv8TRXx528CCzd/4f9H7zh0k+8/fANJjBg9Sv/yuUb/xhuh/+r++XOt7nTz3yxV9nZfEi52af4YHqGS5yyJEb4LpneP35VcTJS6wcf4JWa9ZXN1hbPEMvv8FUByi/g7Aa0c7wmhmyHpG0Iy6OPsqZMxeZtQ5f52gRcCO4ulTsa3Ps6AZRGDKQNQtvQOP38CSMo/Ns2z3ik6fQMsCTktDW9Ot7RPO7yGZKaAt8qyhsSJmcoc4u0Dcj7tlVRsf3OJi35K1mnF7hM9OMk8bjyv6v4uX7fGi0Smuhk0b0mkN2gweYqWUPsRQeZ0afJNQ5OEfeaLQTSCEgWWE19cBonKqJXEXXLuilEX11SL89ZNDco7QeYX1E14xxSG5230RRVTxgduj2V1HSZ6O5i6tnoBuMtYwrgzh+jg2mRDR4tuHs7HPI+Q6NFZTBCvHoOdr5COE0g8VL9GbPsdHuwMZrUF7CvZllNwfrx1gk/b0PMWgPyMeH6PwQrxrB8QvLYnujAMtmNyLr9GnrnEG3wyK9hNKaxcF10sUtbD1F2paJiXiIOwjpsZc9Rt9NWW12cC97zjkcqpwirMIGGYe2y0Ptc2yWN+hNn2RHr6B6l9DxGkL6rNsjdkpvWd6YDLGdTQ7kGY6D81zyRiAD2qBPVzaINufoaJ863mStvsOD9QusiJwTb5NWJFgZ0G32SZoRhQ1ptMUVhwgctXFUZcWtqouN+8z2X8S0JTEtTecsaRRyFJ6nsoJuvceogiK7SOEitDGM6HKgu/TMmGCxQ0c0SOmRDM5QEzAuakI0Q6+mtY431p+kbhUl8bJnUs1I60MKIylcxAOZoa9PsG1DbEpkmFIqw6RouVMm3KkTwskLxGoGAvToFmKxjzAVtHOkgKGbMqj3CaUh0WOC/U9zMWlQMiJa3MMfX2c9leR1g3EWpwrquuIL+QoHpsf5fsRaIlHpBlEYcliCj+GCOFn2xIUdjnde4HBeYcqlrL71QlQ04Ng/x7aYQJDworfMtG4UL+LXJ0zogvAYxBBJi4j66LXHWfir7Hvb7EwV8dpFPstryEWGkhFttEYglgbszouY+etQL9itJNYYEjWlaVtujFuu7ey9nFHVxM0JSkTYIGNcKirnsx9ewmRbmLYmdhUGD9s9x27/zWjn0MYinSUwJTLqLAVvVh+m9LpY6eO5lrLV/OwndrgUL1jzamrrUXtdtHXM/dWllL2IWPMqVuyIqDogKPZ5oHqWLTkmNAUr+pBB0JK4gukiJzAV681dHhT7DPtD/OJg2U+qGxYKBqJm0xzyiZun5NpjnTGX2peI62Ocs9Rej/P6Nr3FNZSXcrl8kgfrpxnrkNP+44R7nyIOPLSMGZS3uXk8JwnANyXB/u9gbnyAYHGH2JZ4AnBQRJuINqdJtjntPsbCX8XKACMjjPMZuT7K74CzeGHCwbxFtwWdZp9ee0IcQDvdw5vewJvcxBnFhj159TXmD3QFu8+feOaV4p89f8Sff80mf+bqsnH7l58+4NefO+J/+b7Xcnk14/tev72U6H0VwjsfJL72K8y/6+fAC/+Ncf/oSeKn/3fwI5Iv/Dz4/1oPmzVkn3gP3vjaMmv2x9yE+ivhh77hAj/3A4/zU//ea/i5T9xhb7bMdAkh+G++/QpX1rOv/CJehE2GpE/9b/R/7QcRL/sYmfXHMP1LdD7+7q/8Gve5z9cypkU6ReKDxPD5+C08yi3mixl3rn0eO9/DBD2G/QGj+YLbdouJ6GOaGs80yOoEoRtKmTH3V7EIurPneXZ/gtcuaINVXD1nu77JYGUTz/foiZpZ3XIiVhD1jExPwTkGZkKKQoYJmZ6h6oLa71HLjMzNEdVSLe/R+kkIu9jxHY5ncz7SPoqyEHgenfIuqnOWNl4lDkOebM5wKLepXcTb699kQZeFCbCHz3By/VM847+WabBBOz+gFSGBa5i5DF9YqvQcLT6lkZQiA+dwOCJTcOiGnMxLxmIFvzqh0xwvhZ86fWp/iHSac/U1fOFYiS038oCOzck8u/TvcoZWW5TwkbO7RNUhe2KbfbnFondlqYpnID+5Q48FoctB1YRxxlRHzL0hL96+g/JTzrgDimiDtB0ReQ4Tr6L9Dr6pKI9vM5+NUMWETC/7olq/T1Id0s72Ec2cnblloQXagNQltwdvJTAVA3VELwnJfEGfgseKT7GyvoUZPoBnFcpYDuYNt/ZPoM2pZ4esyYLj8BxFa4jqU9btCaicjmcJbUVGxYX6RZL8HvL2h7Fhj5XEsdruobUm8H0EjoXsYbSiV+4gdEXtdWiIUNayzoheEqK9mEl0hlnnMrfbHjt2hbHrI51mOHmGI53g2YayKJiOj0iEIqhP0dqwGkMUBORK0oqQMAox5RjhFK7N6TV7dETFqUmZBhvM6JCV+1ycPcG2mHJie5xUllqmnGlukdmCC/VLeEdP4eo5SSgROO5Ej3Bj4eO5hqq1TLXPQnYpx8tNyU7scXUt5s+e0VxsrqFlCEbhRR0IEqwf4wlHZhccNT5jOgybA2oDs/0XkS/8MkNRMvCW6+eogV2xxVz0aKNVotWLPNo+jTe5yc07N3h+bFg1Y2Qzw1c5OhrQ+h2K9AJVmVO0Gk8tSOt9svGzeKZh5q0QnTzJWIeEtuGR+vMomTD2t2idj1UNJuxj6xmomsV8xJ3TKZ5asG6OccUp8fEX6B98jKAeo/yMoT7kQX0L5ndp8il+O6ORKTMTY8tTutUued3guxapC07mOc5YjlbegodmvxQ45wh0wZoZcan4AoEp6Nkp1lrGRcNZdQfsMog+Z++x4ZfcLQJmecGguIXnFNK2XGivc0W9xFuDF5id7qLrOb5w+K5BxeuAwC+PqYxjo7qJLcdMp1OkrujYGame4umS0gbcCB7FWkviSgayoNEG8mNGd59mFm7jsk0WdcuT4ZsowiELEkK97F+ciR5r3ZShmyGET9SOacIBSXVAoiY4IQglDAIN1SmjGloRo9ceo6dOqJXGO32J3eRhmge/m+faLXbCh9BWoLXGeQHSLW0RDmYFAzNCOIPWiutFyO7g6xkwx1fL+6+I2Ro98bI1QINvK/rz64yjc9wqIqzRNF7GQqRfcnmB+wHafb4Cnt6f84tP7rPeifgvvu1BAJxzPH+w4Me//TJ/54NLtcG3vqzm+CXJj+h++MdYvP1/fGUfM9PQ/fCPobfeiKxOqV/3Q///mCpJnvpHICSzv/BLS6nZP+F4UrDVi/nAiyeEnuQ9v3nti6WND210uHla8OFrr74z8+VQfOt/j40GiHbO4Fd+AFGNUGe/mdm/838S3v7AMmC+z33+tCI9ZukD1MkWczo8ql/kdjtkmN+gW+1RhSsUyRlGlSWbX2dLjBFWM+gktGEHoSqcDAkDH2FbyqbBOYcYXUdYhV/sofBoWsWnDg033HmO+68n0nNyUnzpaEVIEki6okI7GMiGKIpwfkyiZ/RlxSh7iFHnIVTQY+RvousZd8w6VZlzye6xbo6J+hvczSUUp6yePEGvPmBLTrjlXWKg9nkgs6zJBRfmX2C7vc2LhzMePP0gI5tyTw+Yu4TJ8PUEg7N0sy7rsUPoCq8esZgcYcNsKUnvYKW4Qce34PmU8SaBrSi8PuHkGtgGT0iacs5MDpiokGF1l3y0i1IKWY3xFntYByMVYRGgSq6425zR+6xWdwn9gExqksDD6pZIzan9AVNvla1OyNvcZxn4Cr+Z43TDo/mnkP5SZMVrRtRtS9fT9Fn25ASmJLANSXtKvRjh5ntMOldZpBfI8puo8Q4dfcI0Ps/27AsEHmgLqs7ZLyXSWfbdOr+xn7F3POL0eJcPjNdwXkxXn4Ln04RDMC1dPUHJgHl8hjWvIBq/xFEtyUk4dKtkWZeF7DMrCvT0HsPBKuurqxhraJqasJ0hdI1nCpSfERX7tEGfI1bwnSFrDthtU9Y3L5DpKcfznK+vPsZAHfFC5y3UskOYZBg8Wq1ojGXNnOLagv3wEqeN4NrCo1/cYlPvIwREix22goKhPqbpXyXwAzJXEdmSQ/8MI28DaUpGec2qG1GJlI4es6c6FCKlyC6QJAmLaIu5N2CuI+bRJoPFNWql8ec7NAQ0ImShJVngyL0hAoF/8Bmmz/wzSuvhl8dQj1FRjztFwGS6zE5G0iLqGcViij5+gag+pQ5WOJRbTJTHNb2F7GwQtxO26iVuClUAACAASURBVFuc6JgTscH0dI9JuIXnCVaqO/TqPRZlycKlFOEaUtfUVcGoMozDbRJh6AYWzw+XWU9nGDQHnPMmrJmlgFctUnqjpzlTPodN10hsQXL4BHghTf9BpjblkfZp4uaUpql5uG/JXUJfLDj2NlhhRihhZnwOzIBAWtbFlI4ZE7entDJBmJbMFWyoPepohYthTv/eB1lRe2SeI8l3UNay8IZMXYorjvBtQym7nLf36AcG1RS01iewDVZGvKg3qJRDSMnIRBRKslt4GG3o13us7X0Ir7fNTA5w0mPhDej6loEdo4MuM5viuRbfD1gk21gvYiYHHLs+p53HuCMvMKXL2GYceGexbYUysBjtsVFepxP5lHXFtBH47QynFMdynTxfkJk5rYi43q5Sm5f7XRHk2mMWbOIJi+qcJ7IFWX1Af3GTfLRPMLuFKA4ZJQ8QmYJttcOmOcQrjuhMniMJA2LRIkyNXxzQb/bx812G+Q3ivd8Go2iNo98ecWb+FNZaUj2jq0/wmgnK7xA4TW4jKtklDGPq2Skni4JaW1bnzzCVK6++xPwhLGP3+ROINpb3/OZL/Oozh/wP73yUwJPcOC2YVZq/9HVn+ckP3eCNZ/vEryKlDywd3X/9P6d54LtoH/zuV3xJ+tm/D1bhj15k9j3/+Hf1lQmr8aa3ls3Kf4KzZq/Ea7a7tMayN6341WcOv/j3Shne+4HrnBbtV3R+F3ZYvOPn0WuPoTYeZ/ArP7A0b0zXaC5/D9mn/+5SCvk+9/lTiHYSW5yQ5ndYlzO6FMioyzDx2Q4KtNehM7tG3JziktWl0ACCmpAHU8W0/xitDDHRChhN63VBK75V/w613yF3IdIqGuPI6kPWzBHN6DZ9UXMlnqPxab2U40XDtFKEukAWB/i2wXc1xlpsk7Ne3sDMdgmbMZmZcOidJXcB570xW2YPZaE63WFqIpR1FBqOWCE1OW9VH6fxeuzkkDbHdGTDw94er1NPkdX7XDT3GKYh680dtk6foC3nHKVXqI1jxY4Y+dvUXrb0LAMsEh0NkVi6dkYrY9qgT2pyhNNEtsRHsaDDA/oOm2afe23KyHTw1BzhBUs/sSAhsA1lmeNHCc6PGXeukuW32dm5SVTsU1mf1gqM8Dgf15z1xhzUgs7kOQRQKMeUDokrCac36IoKb+MxZJtTGUGRXcA3FYFeLEvs8Jj7y81G7XfYyALSJCMwBYlQXGqvE5ocp2qeDV7LTf8qvilQ9ZxGW6xuWNMHeLpCNyWdk8+QFncR5QnF+ptpvA6JLTmv7xLm+xznGmb3ONfeJJSCNaYc1QKEoCVg4q1xNJktA5V0wJguEksmNW04IA4DnDNcnn+K8+zTlQ2n3hmsn+FPb9Kh5lzxLJ4zRLbk7aP3sdruEmJZLW8RVieExT5j+mAVYXXMRbvLVXbJ9IyF10daxVT2qS9+J0F3g7PVC/jtnCO5QStisnKPoZtQRls0MuWFosvChvSZc259lcyHfnELmgVV05C5ijJaYyTWoM2Z+2t4yZCerwl9yaodMa8VUXWEykeUrVo+AJc5pfMYujmD4ibm5HkqDdP5giJYocHHNQtCNWdN7RPoBWnoIcIOZ90BcbmPCzJiFI/Ifa40z8D4JrWyhJ11ZlXDRPSxXohxju3E4DcThoEhkEBbYIBJqSi9HvPBa6hFzMhfYx6sE0ootaMVAXtr34JxjkVZMFEeTrdk1Fg/RQYpOlrlNLrAU/7jXKu6mHiFppiz4U6RzRSdH9FxBR4WlW4RRClaptzmLEl9wlrsiKSlkD0G02eZ2QisIhs9hZYRk/gibatI9AwtI1rrM/HWSO1imS0KOzgkPoonvddwJ3sDrYuWQWi5jwwzGjwaLyUXCZVIGeUl/eaAM5wwcj32moTGCZABB/45Imo8Z0ioOF+9RDy7hmcNYTtjpbpJzxVcsbeJaOnpEZXXIwslTdDHC2PmRcFkMqIRERuzp+iw4Jw7JLYljd9FOcmwuM4iOUshOwTCsKH3CU1Omt+jM7tGSk2AIdeCaH6du+e/D209YpsTeqC9mMtun2DnI6zNn6V38llEmKJFgLQtDT61sqTNMccqYWoi0DWV18EZjfRDPClIbE3WHZLZGZkZE7iGwNYMm3vMlCS3MXm4wUhHXGyvv+oa473rXe9611djsSrL5cNgHAfUtfpqnPIPnftz//LIG824bPknn93lXd/zCK/d7nEwr/lPf+FpAP7OB6/zV95ykR988/kv63xxEjJ/7C+/3ID6u/FPnqHzkb/J/B3/kOaR7/+iXL5/9AWSz/8s7eXvpr30Z1/x2D8M/ii/M1fWMqaV5tao5KM3Tvnzj22SRT5bvZidScknbo359ofWv+TxX87cbbZB++A7UFtvwpveJP3MT9E+8A6ah7+P4ODThLsfXxqEv0JZ6h8kX6u/1a/VecMfztyzLPoDPf9Xk4ODA8rdZ/CDmN34YZ6p13kN11ntxLQnN1BtQRmusuXNqJqWA7uK8CMi32O1ucfTxzVGxhTzEY3zGcUXaC1kasSaG+NJgW9aEs8QJx2apmTLneKMYmEienpEYnLG3jqhWtD4GeuDPpNyWRJmheRUrhHEXXp2TuSBrnMq2aVPjlMVtYYVMaPnSlo8MtGQupyeryhknwCN7/uczZ+ilikVIZFeUGXn8VW5NGzVDd32CKcbdvxL9JpDtFKYZoG0itA1VN0H6dZ7nNYOozWLqmYWn2OrvglBhtdMWQSrlCSM6bFhjkmpqLwuVjd01TGBsGzFBqIutRFMy5rWgnSOA7GFcuD7ATt2jbQ5wqarJGrGXHQoiUhcRVXMkbpgTkbkQU+f8vnwzVzQt5j76+i6IDUzqmJBHa4QS7d8mHYxqQ8LGywFTWb7BKMXOIwu0S3vcGx7eEGI5wcEaoGN1+hlKaM2QPoRWbNPHEZkVHQ6Xe41HR6Uh1TWoxeHlMWUrLzLzMQsRJeep+j1+vhhhKnmVMoR+cuyrG57iERgncXmJ5jpLqKZLk2h/QhrDX7vLJupY6ElbbnAehGiydlwIzbFiMpIRjYj7qxSGUdoG7SfMas1Q7VP43UxVjM0Y7S1HPrbXDR3MU6AbYhtQdloGhGxPejg3/0tEs+RlxWZXXCcPsxNeYlH3A1cW6DDHqvlbU7oMY7P81j9eQ7881wqnmYqh3TdnBXmtEYRBz79eg+BoyXAk47KhuwFF6BZMDSnhNIxDC29wRpr5ogTf2uZXVELrEzYZ51hvcuEjCjwOXBDjuUmSMkac0hXaes5mRpxajLGDPHqEcIqlHUMQzhz7jI9ctrFEVOb0bqAC26XhKWfXU3IxF/DhT26zSEGidYtnTTltFAMp0/zfOdbaGeHlMQ0RiBNy4vdb4ZqTGoWqKbGConUBaKaMG8tTVOiVx7ior6zzIZV95BOEeiCxnn40qNsFUl3+dk9rc6SRgE+hlhNOW19MDWxaPF1xS4bpJsPYSY7jFyXAzckU6dc4BDjwA88ZiamY6YU3hDXliRmwZaf49UjVppd8GMm2me7ucF6s8NCdFgLWvx2hvYz+m6xzDBbn6Ad07MLQlvhVScsvD7D/CY1IVjNsdhgy8/J8xlz2SOVloXs8wX7AJ32mNWVNYT0CGlZaEkjEuZVA15AToKHoY5WCZsJm2YfTxd8XH4jvrCcjTUbxYsk1OQuIQgTCn9AU0zIfEsaQNhM8VYucT1+nFRP0fh01QlZfodCpCSr55cl4NkjmOkOQdwhkZq93JHbkMiTyHpCz8048bY5qj3OugM0AYHOEcLhnGM99ZlUltaL6esxAZpr0WuZpxcowjUGp5/FNyVnvu2HvuQacz9A+1e4P/cvj3f/5kv849+5xzse3eQ/eONZFrXmP/vFp3l8u8tvvHDMj3zrA/zAG878nufxRi/ize4QvuZ7eMWpm5b+P/2L2N4Fyjf/KLazBc4tJZaD9GWJ4stf/Rv8ffBH/Z1504UBv/bMARdXUj51d8J3PbKOEILXn+nzUx+5ySObHc4Oklc89vcz984TfxtZnqAuvA09vIpLhqjtb6T7kb8BXoA6+01fzdv6Pfmjft//bflanTfcD9D+dfLn/1+mx7vUIuZEhayqXWw5YT45pkvOTtuj9PqkzSkIQegqIhQ6XkU3JT6OeO0S/eImUjd03JzQVjghaY0hlJLT8Aw9Nyf3V+lX99jvvg5P5fhOgRcxtQmN3yXRM2LPkcQxx6VFIIgDyTh5gDxap9sbULuQvGkJmynH0SUiWgbmFO0EQdLlBS5jm5y+GeGMpu/XHNoBvu+TqglWxhjhg7O0IiYVDY02jG1K307Rfkq7+hjJ/Cb3TJ+sPsa3DamrKLMLxItb5LWmp46oSGhlRs9TOKtxRtFaCarEjzuM/A2UCInMgoGv6Kkx0lk8zyPsrFK1ikllcA4iU7ChdvBdi6lyKq/DhUzTtTMq2UFpTSgcphiD8KDNaf0ufj1GI0k8RyYNqhizwQgfTdk0rKhDJiuPY+YHiDZnIEuCdk4jU442/gzGKLrNAUEzwTcljfVYZ0bu9XmBC6ybQ0auQ5mcwamcsfZZMyfgR0gBsRojggy58TBq9/MsGkNkFizCdfq+pt/roeuSXTZojOO2vEg22CQNJI1q8EzDQvToJwGVMghdseYmON0wDbd5YeUdRPUR88Yh6hGebQmk5dTbxIs63ChCAjUjLXaJ2zEnJmXur2LSbVRTMvU3WYsNTrf4ak7qCxZasOM2CG3DwE7xpMQZRRb55FVLKB1KazxhuWR2GMgC2hxDQK0aeq7Ak4KzzU3GrWDVTXBRj9S3yKjD1HWWQQiKVJ0uvcXKHWKb4zlLpicI6YGU9N2cxgjqukImXSLpsPWME9Ml0jMyVzGmj46GrHYiKI4YqiMKfwUXpOyrLml1QKRzmrZh0xxiEPRZsMsmftzlE9VFqqpkkAYMqx1Ck3Pib1PKDM+2OGPomWVgkug5QkqyULJwKSEtbdNytX2eRE9pCdj3L5BSsM0IP+kxb6FvxzSdi4hkyEFylUF5G5Os4+W7bKXQKINBcs+us2kPKLuXcdUpgS+oh68jW9zibH2dyAPnRbTakJiCEMV88Bjr7R5edUxb5VjPZ6BPGekIggRnNF11ipYxx6bLMFCEUUzjPPpezaJsaAl5IXo9D/uHyGZKmZxlrw5Iyl2kNcRSMzIJq+tn2S09QjXj2N8iDX2CdooJezSqJfY9PGeYhRtgNHVdcc+/QB1vsyAl1jkdOwPnCHTO6eANBPUJYZigqxnSNIzkCk3bEvkBYbmPZxW5CZiFG2y0d8GPyap9TNDhxPURUZeCmHHrUWtBrOcIZ6mMx0Z7l323zkR7rI4/R8fMSIRCLHaR9YRGLAWRYk/geme4prdY14c4VVE5n0QqVtyUcSN5WD3Pju6zcCmxaOlRcbz5bfjzu0x0iMND+x10U7KwMYlU+Pk+0hnOfesPfsk15n6J431+3/Rin2Ea8CNvvQTAP/ncLmtZyMdujfmxt1/m+x5/hT6yV8Cb3SY4fupLjmefeC/eYo/66r/7xfLF5PP/gPQz/zMuHtI+8Oe+4nv5WseXgv/nL7+Z/+l7H+O5gzn/4sVjAAZpwH/5bQ/ykx+6QavtV3yd4i1/fVlK6iy2f4n0s38fYWryt76b6KVfRiz2vuJr3Oc+X0s8X/bpN/t0zJRHwlPWZEWLx6os6cqWPgs67TFV04LwmKoQG/U5rRw4jVY15t7vsGjty244gq465aw9YOqtcSe6Sj+wFNZfliESE9UnqKBLGPhoo4mEQQoPK0NiV3GzyhjoEaGwFFqSVzUr8xcQo5uYYsyRf46d7uupozV6ZkTgWrTzWFQla80OPprC6zGjQ64EPTPhRKwys8nSrNlblpf3mj3i6hDfquXDoC4ITEk2fZ4gG7LqN2SywUY9qngTKyQLGyHaOYXIKAnZMPto5yibFuEMuQ2JafFty9xbIamPiVyDZ2rmpMz9IcZLcEFCW0w5p24Thz6tjKnDFWrZpSNK1hfP4892eMGcZyZX8VROV53QsXNUU5KKhn3doyZAyYRufUDQzumYGVMTYZqK3F+l8PocqQSHoPY6ODyOooskK2e5OvsYq/NnaZ2H8WNqkSKwNPgItaBwCc+KhzljD1lZvEhOSuaBNobb3kVcfsTxLKecHeFbTen3uRlc5a5/hVV1iK9m7I4WqPkhK+0etfXY1nexk7uMi4rQNjwjHiE3kiOxRusvNwOOvQ1qL8N2trjQsTzdbLJa32HTLXvd7ohzxP0NAlsSupZEz7DAQnTYtMdcUjcJi/2lUTo1rZOMXI+5GOB0zYods+VGmHSdo/AiXT1GEfIkjzDz1nC6oSHgpncJX83JW4snBUM3oROAQjIwYxbegPV+l3W/JDMTZq3E1As29AGJK/H10scvdA1pAIF0DPyaFTthoE9oidFa02qDXnkIP0i4qwakZs6QKWuyoA17rLkRVtXMixJPShJXs23uQXnCWnsPJyS+bYhtzkmwzcIfENOyqQ8YVUsvutC1OGs5Th6klTFT7XPcJsy1R6e3yjDykFZx4q2z6zYoXUwhUvbYIA/XKWSGcA4tAiqvxzAOOedPSdtTFjpkIboEi7vMGr38fScbmGpKK1OmswnjVnLUhAzNCbveBTrNPl27wC9P2ZlXTEzAib/FQSWXpvFBgB9GlC4gz+eUyoIXUcsUYTUz2Sd1Jb5tOYgeZC+6QknMBXGIpyuK5CydKOREd/hw/J1oP+Hr1GdReFjraOsFyloC32PhD6is5ETF+Iu7nLEHVCLDISn8ITPZZyU0dNIU31Q4BOv1HXzXMpQlD7s7XDXX6OXXuFw/Q5eSjfoW2gmGxQ20TLguLoJumTYwI2Ol2cNzDVq17OsO0mku18+ypo9Q+NSEuLak52Yk+V0qI1hlivUCchvyhHgcTxd4/bNsuFPOmD2Es9QiYey66GqC1AX+7A6Nttxsu+Sn93g+fB1zLalFTB2uUSjJceGowlWm9GgJcH6Ecj47dpVp2XKv7RLahkyP0KrC6JpYT3H1jBPToXGvXvl1P4P2r3B/7q/Oh6+d8DO/fZtP3p7wsz/wON3Yp1KWrzs/4G2XV3nThQFvu7L2ZZ1Lzu+ht74evfV1rzj3YO8JOr/931I/8hcp3/LXkYt9nB9jVh5Cb7/531Rx/CPij8t35hO3J/zz54944vaEd75uizT0uLqR8cGXThiVLV/3ChYHv6+5exHt+bfR/a0fR2++AaFKzMrDqHPfTHTrN8g+9w9Q29/wyiIvfwD8cXnff798rc4bvrYzaD/xEz/Bz/zMz/D+97+fhx56iM3NzS+OffKTn+RHf/RHef/738/x8THf8A3f8HseA6Csh3/rg4RBAF7AR3t/gXP1NaQfENiaRsTM4rOs6UMiFLe8B5BYkrRLrzmkqUtmLkVYRU3EcXieRE3xbLuU6MZj4KYoGXEs1nE4VuWCWlkaJxnqYzqiYGxT1uWCloDT+BJdO6U1y/Iw54X0yLEOWt0i/YSebOnZKbI8Zex6bMkpNuguVe+iLj19ylF4kcJGy0AqbOm2h+zJs4R2GRzgRRy7HiN/C19C31fMgnV8HGf0LlYGaKWoWkNBRGscMznEUwsCXSKc5jh8gLQ6IKWklhnCKU7lGje9B3jM3aQ0Apuuv+z11SEJfTIzxm6+gf0mIC32MHrpFVf6q9zTPabBNlMT0wkcebRNLBrCekQSStqgz553FhDkjaETOKxu0CJcrie6pvW7mKiPqCc44SFUTsdVeFIQJRltuxQn6DYHdPLbKGMJbMu+2GLmrxJHIamaknQGhM0pDh+EJGlHVOEah3aFzcRxvcwg6jPMQgYrG9jxHebFgpG3RuIaQqHRwscPI2rnE5qSRChSaqTKCV2L72qmnats19fplrvYIMHTNSCY2piVZoeZTbgnz5LqKZHO6YgKNbhCkK3x6eYc3f4G09YSoZmKAQqfvhmxG13hUqoQzYzWS+l6ikbEjGyX1C7oh47QLDDC50Kq8McvcWpT+m6Bc5bW76NEhBOSkggZhGRmQRinCD9h0O5z166TqBGt30MK6JkpJzYj8yy+a6llSscHLRNOTURlA4y1nIgVFqLLILRE3XW2xJipGDCvGkI1ZS4HKBFjVUVPNgxlRa0sd7PXsaF2cX5C66WsqENCD3IX03gd+maCwDEWQw78M/SSiMv2DnE7gmTAqYrpqjGbnFAYwcJbo9MccGAHNKoFISmNxxozauPYKq6RDx9js7rJsengCYhdRUZJ3lpEkBK1Y5QT+FLSZ06qJjgnIBkwEDmtUlgkYRQvRUD8Pr3A0aqWSCiedFfpmAXCGZz0qJRFvyxW4YymDQYErmafNWbKe1nZsSSjZsWrWIgO1jmapiYRLbnXxyuP6apTAhQ9dcy2OWTsbzCJzhFUh6zYEbXfJ5aWrjpF+Rmb9ojMldTaUhOzYk5IQ49cQaan7NUhqZkzYsDYW6cTBahqwYgeldejtpLQNQSuQfoh+AmunDBt4Kj2SAPHQmQMAkvkwzh5kNlsykq7xypTvpB8E91A0AkcUTPCWstMDElcSR0M8FRBLVMkjotuDxWvsGeGHLU+IhoQNSO8Zsapt8FJeIG8d4X92qerx8ggY2AnOKvomwm+FEjhCFyLkgmj8BxbYoS0itKFrLoRvhQMmbMwEqwmky2ZzZmLHp6wBFIwzEKcUVz85u//kuvW/Qzafb5stvsRn9ud8e7veYStXsw//ORdfuSXnuZdv/EigzTgTRde3efsXxLe/TDDX3onqPKVX2BaOh/9W6iz30z+9p8EoPPRv0l476NL8+n4y7vOnybe+uAK7/7uR1DW8aO//CzOOaQQ/I3vvMp656vTH2YHDzD99/8p6sw3Ur/uP8Z2tkg//XcpvvHHl5+lF4DVX5Vr3ec+Xy0+/elPc/fuXX7hF36B9773vbznPe/5XePvfe97+emf/mne97738bGPfYwbN278nscABPUJ98IH2W9ionKfd07+EUlzzKlJsDJkYQLCdkZplvKFl80thuqYmJaxTalkgvUShoGl52Z09ZhAGGqZUjufHgULb4VQ5eTxJqFt2PPOoWVMIg1SCiYMqdzSeHhqE3rtCYpg6YUWpvTThKq1POc/SmN9agMvFBknndew61/kkndMQUwqNMeuT1MtcKqlV93lDMcoQgoXMQq2cH5KhxLjxeTErLg5V/U1BsyIpMP3JJmbc9pIrG6wWjGmz0AfE5V7nC2fZ9WcEEtL7Etq1XAcX0DjU/s9eqJhqE/o6BHH/hY3wkfpVztU8RbKWaL6hFkracY7dEVLQURuA0auy6acsuKmPNQ+Q+obRLbOpfo5kmKPniiYiSHTVhLEHbqiJJEtTtcU1ie2Fbm3DBK8l/2iWhmzwgzlZfiuxTM1oslJzZwzYkxgK9pwiHWCnIQVJiQ09Kp7HMWXGYkhOh9hmzkL2eFIrDLRPn07IZxdp+ty8qpi3lienkbciR8h8jwu2D184WhEjG5brPC4nryJ2NXUBtp0m1l0DiskgdPcSx5DBhlN2EdpQ+N3MdZCW/FSNUBKSVweEOqChd/ntrzAc/UKfXXIW9tP0B0/yYqdUBhBKWKQPkW8xVAdMmoF+02Aa3JsOaKON7jtNrkTXOZEhQzcnMxzqHJCLBR9FshslVbG9OyCdXuIZxukM8y8De66DayXoBxMXEZtoCQjcJrD8CKj6BwIj9ZCTURXj6idpFU1sZqTm4AAxYqsuSsvcI1LjGyHezm0SnE+rslEQ+gafJ3TpcA4wYKMLHBszp/G1wWli5iYlNrrMTXxcvNCBOQuRomQLb3PRK4wn0840B10vIIxljPqDifBNvtmiBSCM+IYv51BM8P6CZE0xK6iMZY2O8MiPstVsffyRsuMrp0TC01cHxP4PqcMMUGHFb+lljGn3iZlsILFcVpqDhctqS8IXcvY38QKn1U34dRmRNJy7JaZ6hUxZyByjsKLuLBDICVYg5UhYdpjpd9jQx+yYk+prEfiGnLZ52lziZKEufY59M8xdwkd2SL8iAOGTOWADhW13+W0DVi3p0ghKYI1Wm2om4bCBri2ZCEyzNabqGVGRUgrQnItGccXOYivMHUdFCGrQcnQzQlR5CIF4VF0LtENBKEU+FhyE1HYgLucIXA1m3oH5XcZsmCtvktHarb0HkMzQkqPheyTN5aqmmPyE4RpUDJEIZiS4YCZ6GONYdUe4xBUrcZvp6zXd0nNglx7dGRLX+Rc8k7Zau4y7GZEnqNvJwgpGMqaxAMnQ0oX0VpBZEvO23sM233GJsU6R2QrYlsiMTTROsoKShtSeH18NCteiWdrisWUXL+6iN79AO0+vyd5o/n5j9/hJz5wne9/wxm+5YEV3v/UPu9/ap//7s89xA+/9YEv+1yiPKH7ob/G4m1/G4JX8IBwlt6/+Ku4IGP2zv+b8OY/B2uYf/f/SnvpO76Kd/Uni8CTfNejG3zvaze5cVrwvs8tSw6vrGV87+u2uT0qvyjF/5VghldAN/R/7T9ELvYRbU73Iz9O+cb/hO4H/yuG7/t2RPmVS/zf5z5fLZ544gm+4zuW/zuuXLnCfD4nz5fqo/fu3aPf77O9vY2Ukre97W088cQTr3rMv6RefQ09PeLQ2+QFLjNtBSNvjW13Slf9f+y9Z8xt2Xnf91tr7Xr26ee8vdx+78ydcodTyCFHFCVRtGlKoi1biGSrxHYSRIjhKICkdECKAgty4gBSEsGIESi2YwGWoNCRaYtqLGIXh0POcOrt7e3nPb3stko+vJRtitQwkgaWg9zft4111n7OxtkHez/rWc//f4wUgpru40vYkZvsqS0mskY+7bEsx9xzKyTFIalVpETckmewSCJKrsVv43ftUzjloXVOZ3ELgWarvEtNFVi/SkoFISEQlo9672YhE0pVISyGzMJVZiLh/tTgu4zIzInsgrmR7PubOFOwzT5HrsMddZasYUJ+1AAAIABJREFULFiyPXyX0aucZyDaWGupuxHHOiYqxyg9x0ofG9SpuJRj0WJKwsIF2GKGzEb42YB9lkBneDYlDdosVINMNUhVjaFsc0du4ZBsiAH18piMkGaxx8J5VAJF243ZE8s0zTG+XZBmOUMd4Hsnnmr35BZusoNyBhO28KXg1bTFxF9CYanpESyO6NMiVVVmVDFC0ZEzhtMpMhvjKw/rwBMQklNXJaHQ2OoaC31iQpyqGmWR46zGOhBYtAwYLAxeOQOdkcuYQ7WGFJJ1d8iCmKmLaXk5xotpmAEr6Q2UVCS1DrNwFVvdJBcnfcFBOaayuM8b9hQL6zGPN2gwZUidiVHkecaj+fMIW1Aho18I5iIicCV7wRnk+A53WcXHEHmSEkXgSSqyJLYTBqXHWnmXQFlyWaF0ilOVktHgAKd86m7CwnoYPFZsjyW9T5IdEtqUdnFALE8qsSOb4I9u0ZYzfN+nqgwzYnJjWbiQqayjpMLmc0Iz567awoiQhb+ECBKaKsUiuaU7KC/gdnCJu61voao01miW5tfpZHfpuD7S5KRGkao6qdek5WukFOzKDeaiQmk0T5XPE+gpQTGkEvqMW49x5C3juYIVMcZTkqmsUTiFdAX7us6a6wGSSjlgSYzwPI9YlHgYtLZc9y4ycDWMCnkq3KVZHNH2CqyMGaYlN8UpUpHg2QypPBaqSVZZJ/caBHrKIW0y55E5n2FygWMTM6he4LZZRghHSniSpHW28VtbyLSHzIaMTERgUo4Ln14RsFfEXJPn0H6NQ9rsyxWmizl1puQOwrxPqS3GrxDZlIWoUERLkA1o2z7dRgUR1UEIoult7roVEjMiFxG+K7jhn8d3BR29j6ytckOdRzvoyhm7rDBWXVRQAT/hMDrLRLY4rXr0vBUiM6OmShKRUYZNCGsA9FyL3uE9WozpeWukLqCvQ8b+MlfNKufFDpHUFETUxZSkOKbuQ5MJp+YvQj6htIZShlRVQRG06YgRZdhEy4hJrtkLzqKjFoWMmM1mSCx9f43d+BJtxtTdDKUXKAyJXbAapCRuQZT3AQgDhfUqHMs2VVGyU3sbrYrPipxSRF0G8Smu157FLoa49Bg1O2CmPe64ZbLScMd0OCpCIjujtA5rDD1XwzMZMy2JfYmSgmmwxDBYI6y0OHBtwjBiKutYFXAsl1FBlYXXZsXsE5g3V8F+kKA94JtSGMvn7w6JPMmPPneaz98e8D9+7AZX1huc7SZstb6xCMXX4Ry1j/04+envpDj3Xd94/Hf/M4I7Hz1J4JwmuvHPkYtDUP/fEQ/4s2SzVeG/+s7z/G+fvcMnrh8DoK3jv/4Xr3NvmL41QYIE3XmIxr/4ERZP/xjl2jOEt38TJ32KrW/DVf5o5cgHPODfNsfHx7RarX913Ol06PVOFhF6vR7t9r/2oul2u/R6vTed8weMM82o/TgmWebjte9iV65RrURMjeJQLnMcn+ZW5z1EyhEW/a/2KkVE1SZW52xyyFQ2yA1MZAsd1BjLOjjNFf0Sp9glFSFGxUS+hLBGECeUWjMtHQ3GVFxKTSzYkANickJZMJZNyiLDE46pV6fnrdEMLBNRQ8Z1vPoKsSqYiSqvq/Nc5A6EdZbVlIZv6PgZIqiA5zP2uqy6IzpigpUentNIW2Bqq7RUhlE+c69JP1jHqBAbVAn0hGGqmYsKTXOME4qGp6n4ME7OsiJHaF0ylxU8KdDCp9SWmaxxV25RqCoPiztQ6XIoV+kwQHt1irBJ3fTpqAmJ7wh8RZ0pdZlSFQuCvM+16FGO/Q3SeJVs6XFKr8Ju4wpTrVAUbPsjjPIxns9Ss0YoDXeDs+zEF8nw6ZS7zMJlShRO5wgvQKsKUgqU5+G8iC2xz0zVsKbkgDabduer2zgtRWWVauzTUCmtCMqozTBYI1GaveQCWWUJP/BInYfwY1rtFivdNg+nv0/NTUnTOXeCs0yp4ocVnPAYU8V5EbmXUPFgI7vBRDU56+6wG55F+CFSpyRmTNWOcfZEwVPYgq6cI4OYL4bvwFnLaXYJ45ABdY6Ts+Stc7yRPI3ve0gpcFLhS0vq1aHSosmElpgS+Iqet0LhPFbT67RNj6qZMHJVImWJRU6PJnPrYVXE48Eu2q9ilXdShTKGJTniXGVBJ9RcKF/Hn92jLxrsylUSWZyoVBJgpI90BRpJIQNSWWXfWyc3lkDYE3sBtcaaHFLzSqrMmOYFk+mcuayTqRjfnVTSEt/RCh2B58irG/SjDRZBm8P4LKXRFEGDqWwQypJtc4d1u8ue63LgGmSVZTzpSNK7bHlj2oFmS9+iqXK0NRyXHkOXYKWiKE/6QYlqlFGby/oVzpbXqSzusCF63PbOEnOyha8Y7fJq2uBu+BAISJ3PINrklDpizR0QBiFx3mNlqUOr4rGZWLaCGVOqCFMwFRWOvFXqoWRKhNQLhC2Jl87jjOba1EeXORE543CdaSl5XZ7DARkBbTuglD5tMaWS73ORm6yZPVJCDpKHqee7dLJ7dPM7tLN71N2YmdfGUyA8j2ma0ZNLJ/5hQqNVzKPxMWE55Krd5Ky9RVtMSVjQSm9T0SOc03gYRtrn/qnvpfATDmzCK+IcB2qFPblKRnTi71hbYlUOWEQrzIyHJy09HTEjIFcVUivIkxWmfocVMWC1uMu0ssk0WgUpscIj92sUyRqLeJXQpfxa40cIfR8l4LS9z5G/ykxbjheOXrBKNyzR2ZSg6DPpXkE3z+PCOiiPdqgRzrBS3iOu1tDCY9kcUlOabTXktNgl8gQJcwC0EyR6SFUVBJc/gJYBIQVBOaYZQqVaR4URRvpM1QMftAf8KXjh/ojP3x6yP8n4O999maNpzs9/8hZX1hv8zAf+eKbQ0cv/EDW6zexb/rtvOB5/6RcJb/xz0sf+BtHNj4AKmLz/H2Cr31wR8gEn/NDTm3zwsTXe//Ay/8WHX+M3XjvEk4J/8sNPcqpdeUuqaADzd/036KVHaHzkP2T23E9hWhcQzhC9/k/x736C+kf+owfbHR/w7wR/+J53ziG+Kjr0jf4PQog3nfMHzO58ifXFNSap5rnsU2zSQ2UTfD2nDBo0yyPqk2v0TcJcNWhl9/HyMTeyNr1MgZAkoU9bzGibYzZnryAdLPw2E1shsCWZ1+bINbDGkZeWG2WHQ7VOhYKJqDMXFTLnU3EpQ1ejN7d4NuWeOoXAsWn26do+88WCQlt6RcTnFpvcqb+TV7zHuCTuU+gSbQ338jr7RYVpmjHLLcJownLCSAcsVJ0iXuVV9Qg73jb9PDjZ1mYndOyQJO+Rasgq64SUTESD1EVYv4ayJVmR4832kfMDWnaMkRH1/ACrQjJRIZMVYj2jlu5SE3OORZeraQNnDWPZYW5DJrlgQoVgfoCnfMaywcLFLIhPtk2KkguzF6iZPh07xB9cI58MGeuIO0WDyULTKA7xbUEanyJdzOnbGlOXMJUNhNGUiwk6W/Ap9ySxS8E50tIyMRHpbMR8PkdKxcA12VGnKERESkCnPEIYTTJ8DZNNeWOakBeaMs/Ji5Jf9r6Pw4ViZX4TcXyNukgpy4JsOuYf3V9hrCPmIqGjD2mnd1Emx6iE0gleLdc5kGtc5wyTrCT3GhT4FFnG1EXcaz7HrLLN0MRMZQsrPKQXMq49TEMPqOkBj80/jxYRn3RP8+VRlRk1urMbiKM3ePv4t0jyHtYYUq/BsbdOZGbcyNvcLVvcL2vk1qN0klREfEk8xnHhUzhJ4AoOdZUeHW6xyZ6/zZA608zQyHbozt5gudzFy4ccyVXG05T7M8XcRZzKb2KcpGWHvKEuMKSJDRIyfGJyEj08sXIwBYHTBL6Pcw4rfIQzTE1IMelxkMf40z2qdkJkF5R5gftqJXpQBty0GzTtGLU4ZCW7Q2RTatPbjL1lPu1/Cy/6j5Nbj1mwgu80kSiZZJAWlqOF41rwKM6LMfh8xZ7n2Fbp2SbWwdyFZIsZLbVAFlPqZJSEHNoWpV+jcvAC0mnWbA9UgPYSwsU+K7PXaS7uMPfaDPwV5sYnTNocxRdYFicS7s/PVjFOcFSEvN78NkaiiXMwJ2FEg/7Csk+XJlOM0bzkzjMK1qizICVk6iJiM2Wl3OWcvkXVzbHGEuQT7tsuISW9VFAYSOMNMutRMRNmySkGwTrHmTz5LUWFQS5YURnYE/GhUE9pjl4jzQsicnaKGngxYTlh3y2RigjnJDjB2MTMvPaJ6buSFL37ROWE0JYYfILaCg2REnqSlukzGfU5zgQlinVvzvX4Seqeo1EcMVmU6Dxna/Yy58QuRVlyw6ziK0FWGOYmYGRjLJLJeERQTshVlQuTL3CzaIOzDF2NOD3goexlCqdw4312xxrPD6mbCf5sF6M1LZniC4eXDhiUAUe2gSrnjEWDsY0p8FAS0rykyDMGtkouYowFq0teOoZq/2V8m59UXYXkyFRZTAZUh28wLQRT++btJw8StAf8kRjr+MVP3ebnPnqdn/3uh3lxd8z3/dLzvPN0m7//7z1OJfgmJtT/Bqp/leTzf5fp+/4XCJKv/0CZEr/8j9CtCyze/uPYsAbuT68++P9HrvdmvLg74Xy3wt/57Wv84y/cRwr4nas9fua3rr01QYRk+h3/E/mZPwcqYPren8fUtnCVLskX/h7Zxe8F6b01sR7wgD8FKysrHB8f/6vjo6Mjut3uNxw7PDxkaWnpTef8ATcGBVk6o2kGjG3ITXUeK0OkClibv4FSHm19jBE+U1HnhllGKsWuTgiEpm8S4vSA0lgyEbKQNQwC6TRHtLmhzlKzI+6p08wbF0+8BlVEETQhrDNVTRQGD80r7gxtN2IhKjSYsWV2mBWOVFt8mxF6gi27Q9ONeXi1QdtNaJV73GSbq/ISrkhZCTMWXpOicY7AU1xVF0EIcqdIiRnLFj1/jaPoNLGZ8NvVv8yht4mRAYEwBHGdVAuklBwFWwyjDVJRYd64hPEqWCFxKD7Ok8wJENIn1iNCOyFwGYGCUkZgSjy94JK+iotaoFOEkvh+QCAt+1PNIlomFJax3+FmeJnP8QRKeRRelcxIFoVjLhM23D4Xpp9j1R1SqphZKbBI7pXJiYy2SClkTN33mIuEmdfkMDrDJe+AhfUotGYiGxgZcOQa9GwdbSXK5tTsiKnf5YvBO1moKrmM+GTyASqd0zxRm5DLhEhZGixYE8d0KyF3WGUuG0gvQHs1yvmQU+KAlkrZD88y9ZZYkTNWg4yJC8iLEzn70jo2gileOSPQI5bcMQeVh3g2vMtoMqJCQZSc+NbNVZ2IgkdGv0svNWANASVH4QYNOePJVslacYe76hTHapWJqPK698jJyn9xjCymHLB0IlohDfu2i7aWTX2XhayzGizoBdvshudxVhOaOffdEhkRfjECU/A5HqcvWiyIKeMVnCnomh43xSb35Rp9ucS2PKLlBkxEA3ROVlqiYoBVCdZYjuhS5BlU17ilzjAnpi87YAvWXI/EjvGEI0nqJI0ldtQW1jmiMKAm5ieiHEJjpc+idMRBgFEhPVq0GBOWYx6tzqlFPlI4rvoPc9s7g5YRjcCSBy1sskJH97gVPkyJx5Ic0bUnvU/73jYb4qQvqxARd70zTEpHbgxSSKwxEFRZGI+JrLEXnOHY1VnIGpl2dPUBfjllhzVCm3I4KwnSQ/Ztm7i+gicc/XmJMYbN4Rdomj5GRay4Y4xU+FGVwvlc5wwZIXfL5onNQbzCwF8FUyIWfWalZaaaDP1VzsgDairnLHvcdavkUZebboORDfAkkM8otGNZLbBC0Qu2kdLnUjxhKuo4U55UbKVkrWIIwxBpMhr6mKLM6YoTP77MKnybYoBQaioup7CS0hiC/AgtA5qBZbkWMJ9NUHqGsCWBK1i2RwR+QFMWLJzPoP4IX6j/eb7c/m4yVeV+9XGcNRxVH+XAtlgQcd1tI8VJL2LTjfHzEbE01Mo+pYFqAGOvjbEwEG1qSUJFaGbxButVyJJN7rNGX0f055rrZoU8S8m1Y49lprJOX3Q4LAIGpoKJOqRWYYxj5rX4jLuCcieCLpnfAhyqGLM7mDKtX0QAe/ElClEhRxIpSykDNt3emz67HiRoD/iGjNKSaaYZpiX/8btOc6M357/9l2/wLWfb/Nh7ziL/0GryN0NNd1i84yfRK098/eDRa3jD64h0gGmewUUN0if/1oMX/D8hF5aq/OMfepJf+CuPkwSKX3tpj2Fa8sxWk8/eHvB7N46/+Un+36AC0rf9KKKYknz+55h85y+gu48g8jFqto/qv070lV96a2I94AF/Qp577jl+67d+C4DXXnuN5eVlqtUTufjNzU1msxk7Oztorfn4xz/Oc88996Zz/gAhBFPZInEzSudx5BpMvCY3xQYjE5IZx63626nKnE56iw5jvmgv0YklqahwXu7hUzKTNQayjTUlBQFROcYiuWSuMc80qd9kN7pIlpyi7lvOzb6IMAUxJThHQME7K3s0VMFWsGCiOhhTEnggwxqpTChUjQE1XkzeTeZ85GyHW24dqwtOmTuIuIk0OT6WRnFEFnVJ3JxjucSKGFAJPfbiiyxkwsXJZ4nKAefLN7gmzpJ5DSaywX5whpFLKM3Jd5rYCjdNl3B6h01978TgNYhJ7JyOHTCkjucMFZsyVU1wlkzGFPjYdMhvJ9/NC97bcNLnnNilWg6QZUpaWu6MDK/G7+B2XmeoA85FUxaFIVCKPW8DqsuMlt7JF/ynT/q5RI2pqBFEFTzPZ2V+jaoeUWeGyCd8prxARMZUNQmqXbq2d2L8DBSyQk0VIE4SwLENSAuNkx4dc8STxRcYiiY7cpuxCynLglBB6J0oR3oKNs1dhvOUm+GjFDJmoR02ajKOT3HaG9K1RyyVu0xtwG25jagucT4pKa3ipllGmIJ+GdKSixO/LWvZdjsoDKfNbQ7KED/vg84Z2IRx7pgVlkRpZo1LXI2f4nV5iURk3Mpr3G88g/BjVLVLGq8RkHPgbTJWXQIluC22cJUVIpGzIod0XZ8b3kV6pkpRFKz4czZEDykEFZHxsLlOzY6ZqRaeUjwZH7AIl+nR4dVyldx5TF1MVy04xz7n9XXGJmRIk9bKNmX7Moeiw9RGJ6qPEiIKDILdosIdtpjYEAHseOf4ZPTtCBUhnSZa7GKHN6maEUdqlT1vk13XxRiNpzyaZkBdLE7UAmWFm9FlhuEGfR0wXaT0ioAvqysspTdo6T4v2bN8KvgWwmLIWW/AGkdsZNcQTlMvj5mLmIooaDFlsNAUwmfidTigi4djSc45xT7SZEgpWGKAcpaGGRC4kpoZUmpDFnWpKI32q3zOe5pRcgZhDbZMmWc5p+UBLd9gy4yloCSXMZlMKCyUsoJnM2p2jFYRR6ZK19cssox81mdmQ/r+JvgxU5GgiwUhBaUVSAxzUcVTkiDrc8beo2MGzPwldNgk14bxIiUycy4WLxPpCUe2znTSp5ARQ9HGotgpmxijsUJSUQbhLIdiiRV3REPMQfkoIWiYIfdthwkVpLNIP+G2PMOXy22uZU36NOmrVUYuISVmX20ydwEHqcTXC87PnudQVxgtChrlITJu45xjf5pSxstMVZNdb5s3vIe5Ez/CTDXxpSOtnmLmNVgQAgqBxAiPM+qIuBzR9VIOi4j7M7A6o6IH1OWCw/gC09pFXvEfR0lJxXOIIOYJeQNdWSMMAkI9xpPgBSFVZdiSA1JRRZqMA9poFbEkZzTiiMKcCLZNMs3MbzOpXToRR1EthHpzmf0Hb8AP+Ib8/CducvVoxkPLNT746Ap/8X9/nnefbfN3P3j5j30uNbpFcfq933DMO3gB78M/RC1qs3j6b1NuvftP+9UfwMnLwf/10hHvvbTEb7x6yO4o4+rRjP/k3Wf42d+5zpWNBs23SgxThfgHX6T+8Z9g8uf/Pt7RV2j8+vdTftc/PDGGfcAD/gx58skneeSRR/iBH/gBhBD81E/9FB/60Ieo1Wq8733v46d/+qf58R//cQA+8IEPcObMGc6cOfN1c/4wSxWFcyW1ICaPAlb1LvtljVXuYh2khWGjfIG7boWRV+GcuYkSkGvH6+ohtuOUZnqPMlkjGA9pyzESx7Hqcl2dZkMc0vYn6EXJzbxOtEgZl5YL4iT2jAiXFVgZ4WfHKKXwvtp07klJxQ9o5vuEquAFeYo7fsg+S8ynOS/YLTbVAeeKm+AMuVenn/oEKmdP1wjyHl2GtPQePX+NW/I8k8ZlBmWDZ8ov0dcnhr6r+joeHtZaqukOXphwXZ0jEmDQFDJG5BmeLNHa0uCAppQIldAuh+xFp8kKi/ViKsVNFBYrQu6wwV3T5a+UH8IJx/PmEpfCPpYDMpWwFEKaHhDKCg/bayhbwfcUlbLPY94tZFFBH99AO4GQHnHgEWQLMAugYKnik5omQg+IyGlVFHO/w8xfwYx3sUj6/gpT2eYR/TKllrRdyvPVdxMEM0S2Q9a8QDObYKmwUh7zme4HeHb/lxm5Va423kahD7mQn1gs7FYeosxy3m9/j44+YFe2uVq2uGxf4uVhl9JWqAYKvyzY1Pe5W66Rloqz/j08IamZKXPbYEKVRZAQ6TH9zCdLHP7p78Aeecx3eqAUAnDOkqk62+YettAYl7CIv4Nr2Tbl0YL3dQJaw6u0ZtfRwue+aRG6DKkKhBQ8ob9C31zBmogFPrflNguZUHdz9r1TNMUhnsgYBF0S68iiBtZrsVIZUvQVxybhrL1HwgQjKqiwxn222c5vMIq2yGSLQoZ01RjPLQj9NrK6QrDYp4y6yPIepYrxpMRFDfbcOd7jPs/SYoBuXeLTw5Drdo1LZsqkDJhEHbpyhyXXZ6xapH6ThZnia83C5TRsTpAdE9spfhBjMomtbXLkrRCXGUrMmcXbJLPXeEa8ymFekpWaGyODZJl75WmWmJCJGB1WUV5EZDNKFaOkYskdESmDsY6p3+a1+vs5rW4R5XM85RGTc2xbLHspw7IBYZ0ku00RdrhYt3xMPcXHqy3OlR/msflnOS5TPq1X+AuNDLuYcF9t0AhzIumIhSPOJhhpiZIWJTUEhsM84GbrW7mQv8ZxeJlwvot0R+yHj6LzKheLlxFSUYiAGjMKY8jCGs7AWHa5bN5AlHOqkceEZXx7TBl0GXs1PlVc4mn2mLuIKRE+BqvnlNYCiiNXYxEsM7Y+vi1oMGYSnmOm6nxusc5zwat0yzGJ1MyzPTSwKnzmpsZWolhow4IO1cU9Sl1wqzgFwkN4AQLBB1q7qIMXUcWEOD/E6pK2l/Nh+w6mwTKqnFEax9BVuGeXOfLXiNMJ1kKLPoWDWuAxKjuI8oBmOaZe2ebR7CrKeMwXhnMyZyagnd4i8OeE5T6lipF6wVzUCd0C5wtKB0duhYA5WmsaAazYe8yCbdrFkFUzYkesccrssTsrafsC4yDyJTWxoJkdkRLhcKS8uV3UgwTtAV+Dcw4HrNZDXt6fsFILsA7++tu3+GtPb35dH8Y3Q6R9Gh/+YYbf/5u4oPY1Y2p4g8a//Ou46goin5E+9bdBPnihf6t499kOoSd5eLnGT/76q7zjVIvn74+4uFTlf/joDX7xB598S+K4oMr4e/4JjV//q9R+5z9l9u6fwQU1kud/nvFf+lXU4BpCp+jlK29JvAc84I/LT/zET3zN8UMP/ev+2WeeeYZf+ZVf+aZz/jC+hJqdc0uc5lBskAtHo2JoWYNXlLigRk3vcxxsspe3OCXus6/Wecrc5pJ7mY+Lv8Az5h5isstIrvN70bM8k3+GS/oqXV/zBfcOzvFxzrNDt3iRTbtHKk5WgRfOZ258qliUTfmyOccVr6QaeDhmgKAwmv2iyaY74OHKLXaDKpvhnOOwS7X2MPX0eVQumIg2zFNWOSbtPMXq6Ue598onOU4bnFZjXlMrWJ1zf5SyHPqIPECLCEPG0Pik4SbnuEVVlSzyCcsYtD1ZsZZCMQjXUV6GJxfsi3VKCy2mhGGN1fwut90aq+lVShUjpI/UcxaNM7y3+CLNahU7vM2r0UWe9D5LJgWp8wj0mIYeYUSTI3+bmRZsSctCNunRYpYW7AdVnuIlEjumno1puil92UGagkqoSGzEQNeJkFzoxqhBl6ixwut5mzU1wlaWCb11wuFrYAW7ZgVXpshAcxyuc2H8ST4XfRtn5B0ybw0zP2YSLHNKjakGQ27FdZQJCIRlNb+JlJK5qHIslyhVhTP+mDidc7qSMpgnFK5FRc1R2p2YCOsGoW6wofbwlWA9KhjkMbEZ4gUJ+2yx0HDv7j7roo8vLNKlpH6DSAm6bsSBruH0gllljet6hXfJN6jGPsf712n5J8qOc9WgH55mI7tBVe+jjSITq1xwt5BiQmEVO5VHeSj7EtfEGc4mOa5IGYg2UhpEkVKLG6x5c+rjq5RC80/dMzxV2+CC+H0WahVTvM62vk6qatwJL9HKypPE2e5yd+EzFpr1okdgcgp89mhzWH0bZ1WPDj2ksAzKiEO1yr2J5bS9z2fl03SCkmzz23jNv8LW4kPU3B0iabmrlgnpIWVO6TfoF5JJuE3LDdkwO6hijMpTrqxXeD5P2I/PceRaLIuzXOAOXdfnU9HTvE++wKFrgnOM5hPW/ZLETunbkNzEhMYQ+CHWKEo8UlllXnmY3x2u8xdFl5o3oJ9F7KhNEjNGlzmLYIlXuEBXBESqwngOjwYvMMkanM9eJRSWQ2+NqVymP3gRzwuQek5g5qSyTlgsmMlVaF6mzypRdkjr0Q8SX72DmA2YNs8jZnNOqWOCxRFz5ciTRzntjwnn97jmXeKivYUTjkzWQFrWgjmyEMwLS4bBiYRao8mxXKZR7PIEb9DXS3Qo2YgdORHCwKisEtsxnfIAkRs8lXBXbrJR3ucwL/DDBceySygNiyLAasM9b5WqndFkSkVqXhgmdFzCcnGfQoQn5vOqQsPNya1Aq4j94Dy1rs/S4SEDHXMGsM7xHfbzZLrKx4Lv4lBMAYNpAAAgAElEQVR0aZsjFqqOkiWNsodPSSlifCXxlAQ/wZqAMNDcrjyO6r/EXNY5al0mnQ+4Jzd4nQYPSdhwY5qmz9xfoSnmDKjxlUWbZ5Md6spidI52CllOuc8qUaWGoUVaFjTI6PoghEdGyE50nmOWqThH6EuOWKJSHlK14zd9xjzY4viAr+H/fvmA//zXX+NXv7zPz33PZW4cz0lLw4+8fQtP/vGSM6zBxR0Gf+0TX5ecAdQ+9hPkZ96PmB0w/sD/8SA5e4vZasUsVQP6i4JnT7e4N0r5m+/Y5it7Y37/7pBffWHnLYvlghrjD/4ytr6NC+sMfvDTqOkulS/+At7hi3iHL75lsR7wgH8XyAyIpMtO/UluVx5lL4+JyxHHhc8tscWQGsNwg43yNpf0a0gMzpSEnsTXc7bsHkN/CSMCZrLBVvYaPblMX7SRxYx35Z/iZf8xOvUaxkLgCSJPcUSH22ITXzoEUFpBqGDdT6kEkswq7vtnsH6V+41nMFGLRBR8ynsXg/AUi9JQCRSp32GguniuwA9CrFBM/CW+vDsmLQ0bZhejImqB4rQ4QgqY5YbUCMrKKq3YQymfQIG2FukMB3KNhhngUBjrcLYk1ydbiJwpGahlWkxRtmCvbKAwIORX/dYCMnyyoMMsL9lpvZNjHTGSTZ6Q18EWBHpKaDN21Ba7yeOkGhYEJEpzzy5RypA03uL12rvZXmpx3bvI6+oydTvGl2DiLlOvwzzX6MoS/fAUIxNxb+oY64hATwGB0Dkbizfo2ToDl5DjE2JISBHOMbIJx8EpPLNgnmvmGgoLnUAzli20V+VKsIMOGtyIHid2KfMsIzWS3Doklg+Ld3Oj9gwTv8Om3kWagnHuOKJJTZUcJpe55l/mmjhF7re4kdWp1xpoFbHQhi19jxDL4/ERO3lEaBcUTuKQkA65a9pYqUiDDru2c9LfKASzwnKVswRKMhcVbsttOvl9chFz2zvHTvwIMxJmNqJUER0v5Rn9ZXzlMZRt+qWPb0/kzK2QCAFST0kt3Ks8wi3/As+FtxmGW8RxQt03pFpg/QqhB9v+lI7u4espe94pZJiwWgs5DjZ52Z1lZn2MDDmca/YnJYvFHCkDDJKmmOOHFa5V38GaN2crTEnyI2z/OityxE5whvt5TEvlSOGYUkcISaOaUITNkz7E5bfz5fhdfNJ/F5/Wj/Cb3rczFTWiok+BYtd10NYgvCpWRTidsRwUDMMNBDAQDRwnVZEdsUJWWoT0aDFDNLd5RN7lcfsa1Shg7i/heQrP5lgVMXUR3fwuOMcrtW8lr59GO5jEW9RCwSuVZzAItjhiSQyYVrY4is5zvqa5qi4gioyJS5gZj7uss4hWmYZrvLY/4WzT466u8/l+xLxwTAvYqz5GoASVbB+Xjymsoqr7zETCMNqiURywZA5oyoyhqzP3WywKw7BUfMWdYZHNoVwwEE26cooQguN5wcIIFkZx1zvF3IUkcYxfXeLXkr9KmymR0KQiJil6XApHjG3M1FuiQkHuNXB+wjV1gZ7oQFCnJ7vkqsqet82NypMU2nFPrDMnJpElOQFaa5oqp6+69OuPsigF7U6XotAMRYOd5DESFtSZslYP0XGXIl5GCIkEHI55qYnIGZkI5YekpaH0qpxavIrN5xhrEdvfShq0mYg6y2FJ5tVJvQY1O+O03yec7ZGUQ5qBZEnOiCjYlofE2QGZsSRl/8Rvz4ZstRMKGfOR+HsZupgyaDJtPnLSu2gL9DepkT1I0B7wNVxcqvKFu0PW6iEfvdZjd5wReH+C28RZ6r/xNwmvf/jEwPjfpFyAc5jKCuHNj2De97OY5cfemgt4wNcghMCTgv/g2W2asc8nbhzzD77/CX7yO87xi5+4yd3hH2EW/ifAhQ3m7/wvEeWcypf+V+ZP/S0qX/h7uKhB9ti/jxzdhmL+lsV7wAP+LMmsxM0Oadgh78k+ykPchnJGYRVdNceZApUPGdqY4+QSsXKcDaccJw8xUk3KoEld5NQDh+dynuA6DTFlFG1yT26iK6tsNiJ68xxPSZyfcFWc5ZZ3lm6jyiLoIKRkLmrUTR9fwV4R4VNyUHuMW955jrx1qoHgoHqZsWxxMM1RwOE0p6H7WBSf9p6l0IbcedxjjaNZzqwwZF6DtDRMcssrnCf2FUJKbrp11GyP0lgiPcUUKZ6UWAehKJmHq0ziNVK/Ta3WoFqtMrIJuixZyW7QZUyqapwRe7jqCoUImaoGgZJ4AhIPblSu0J8uvirvH/CieoyPym/lM8Fz7Hnb1MoerewulcDninePdTHitDykXhyx6va54t1hrR5R0SOWXI/C+eCFJzLnImbRvozL52hjidSJMXK7uIfIx6TaYiorpOESO95pQrMgdQEdxkxIqHiOOIoR3QusyCmBd3LtKqiQWsmn7SPcXfjcsyu4fEZV5Ew23kMuYhoyIyGnF27hCYdXznlFbzP124xcBRPU6DLiWIeUXoVTqsdGrJmRcEe3KacHJ5+zJ956Tkoaccx+7Qmu+Q+zkDW0Az+sIOIOdd1jvbhDzY7ZaEZoY5kXmpYbYos5I1thrANKA51ynw1xzKebHwQpeU1eoDSWO/I0M9Wg4gsaoeJW4518Kv5zaDwK4zh2DW4nT3JUf4JJuM4XzUVui0023AGpkdTdBF9JpqqNLFOmecFANPCFY0ONWNL7THLD1EWseRNWzT6ZrKAJWOUQm6xwuptQLj+BEhKpPM4U1yh1gSkyjgtFFCfEytBxI+rMafuakoDYznij8jRzF3Ixf5WqHrLoXqFqhoyCTaKyT6fYQWGJumeRyqcWhbQCyHXBTbvKHe8c17MaR7XHGLoqz8snmVChDFoshQYRN6lHPn7gURU52lgqMue4/gjSGQweLa+gcJJhvI3xKlyOelxcvMAs1+S10xT10/REi0hPqMYRTipSDQcLeDFf5fnZEjfleQbJeaLkRAxkEq0RNtcJw4hyfsxnjiJm3jKxLHlp5S9xNXjkxIfLU9R8QakNPbnEuhwhTc7cRajOWW6vvJ+icZaGb6nbCXEQENU6LIyiJ1f5SuO9jMJ1tugxdCc9cIdFSECOr+esmENu+BchrLEl+vxq/IN8Tj3DQHYRQGDnDNe+HapdfCVY0vuENj0xlzd9Cm3xAKECNtw+jek1tDHE9S7TUx8gOvtu3u7fpJj2eLn2HprVClVmZPEKvzdeYVetQzqgEnjgJxjrGBYBlCleekzT07zafh8vVZ7DOrgqz3Lg2sRhwHI1pF72iPIjAqFxOudc9hKbi9e5VHyFsFJj7gLS0vIJ9xTHosuuWGbPO8XIhDipEM6eiD6JNl17TO58+q7JF/UW10Ynz4rJYkaoJLEZUz/6DMViyjF1vMqb95k8SNAeAMDt/oKf+sgb/NiHXkY7x7luwj/7ygH/819+jHblzaVAvxGVF34RNblP/od7z3RK8599H9Gr/ydIQbnxLO7KD75FV/GAb8QPP7PFRjPmex5ZoTSOX/r9e3znpWX++w9e5m/88ot8+JWDt0x+HwAhCXY+RXj/9yjXn6X+mz+KGtwg+eIvEN792FsX5wEP+DNk4K2SeU3mpWRcCG6aVSJh8apLDNQSk9YVclUl8QRRpUbqNbjvllBKUZOauOhBPuagiNiVG9xOnuBe+DAHwSlYfpTcOM4MP00WrxIqSUOkrJgDAldyXPpIZ4h9xRZ72HiJOAwYessY4RNObmGLBRvTlxgWkppbsNxIWG9EPH2qyaXlKrfLOrflKbobF5nKOrEoic59K1ur65j6KV4XZ5mKhJZXsKkG5MaSBAEdMUMKeENdYi++wF5wltCTmLhDw/RpuwFxEOHCJpNFzpG/zVzE7Pub3E8eY0euo0zG7fgy6WJBXR8jEKREeL7PcRlwJTziUvZlxsvPYqMOtVqTYvVp1kUfgaVVHtDSPRqxT9Z5hNt2GRu1uZc8zivFBrP5lODUO6kox5reIZYa6yW8Ii+zECHJ5DrOWhJPUIqQuaqSKI3wYyq+ohUBQcJmNEd6AY0A+tSwCF5O3kXFTlnd/yi+nqKk5Lhygdt2hdHGe3koHvNo3Ge1VaWehGyVt0nmuzy9FvGi/xgjb4mpbNCtKGIyLnu7hNKRygpRpU0mYsb+Cp3sDtfKLkvmkGV3xJY/wumCbrFDKWP2/W08z+O1wykXx59hWQzJrGRBTGZgu7jOXvIIV6MrzKtnOJqeJPrtSkDfX2OSnFTLnm99F/eab2fkLzM1PtuDT7NXe5zNOCfxLJtr68S+ZO4CQmF4h32Rd4mXiDxJM1IsuQGmyOnlAeO0ICHllm7zpehZXren2W88xf3aFU7LA0RUoxInBNKxag+x+eyrvWaCRI+4Ls8wli2MU+T/D3tvHiRZct/3fTLz3fVe3UdXn9PXdE/PtTN7Yxe7wIK4CGAB8FiToCiZEbSDYTIsU6QYpMQIK4IypRBkMhQyBNNhCyYN85BAEjxBUMRJAAvsYrHn7MzO9Mz0zPR9VNdd737+oyAeEQzIBFakbMznz3oRmfWryqrMX/6ObybRhMCQgq1exJ3WgFGccjiCgp7imoodNclI2uTzJW5kU/RSDaWZ7OuTaCKjYClOFUKiNCOonOFV9xFat16mme7wwODT1KyUGXlIWY9xswE7VAjR8VTMibxg2Rliy4QgTtnswb6s06ndx2XrAttpCTdpoUtBexSyo81RokvkNGjHiuJwAyNXwnJcPqm/Fd+bx4w6IBW7I426I1l3H+SFZIH54y9SH1xlMt6kr5XoOPPYbpEg0xgWTjGvHzEXryOVZJcyLXsOQ7eYLVkcm7PciQokCLapcFVbYyLcZDG6SjNYZyOpcDur07MmSDULP9OYznY5GV9hmEomCxYV2ngyIMwEaRojk5CT9RxTJYf5+AZvyt2mn0gasocpwShOYZWmaIg2fWwm/BtYg03O+l9lTuxxLIr4SUqYpPiJJOofcHOUY51pdtICG3IG27QQQtILY6JwBMmIY4ocqjpDrcR8tsnzbQO9ukC/eoEN9wLDMKZjTfNV501sJ2XuT1/kXPoqFSNmFCWYmqSrSqTRACPzyaTGi9kCAkiUxY6apCxGDNwTvCRPs2XMUi3m0SyXF8Qp/DjlRlLnprlGhMZe4LCtpjEzn9jwuMYMfb2CkStgmTpdY4JMs0nr56iYGVvOGi+YFzFlwoTsUzxxDzfsc2AWiLKMguMghSKXtpkz+kyIo2+4x9x10O4CgK1L/vR6Cz9O+fD3niPNMj70Pef+34tQ/wX0rS9hP/9v6L7jl0B3/vxBGpP/5H+H6t5BdrfQd56l98QH4a9Z13aXvz5dP+Y3X9zh575zdaxp98dXeeNSje861+SDn17nJz5+iaNB+LrMlZkFOk/+KnJ4QKbZZMqk+PHvpv/wTxMsvwfhH78u89zlLn+bZKMWx3p9LKCainGbeBTXA5dN0WBTNunJAsQ+pe5lVOIziBImBpdIrRL5Yh1NCqRU6CKlPrrG7fy9fLn8fnLxESvxFQ6tWXzvBC87D9GRJTzpMxFvIhFsm0v0jSqRMFguCvZUkyE5TJEQphJTVzSLOSpGhj/sYGQBozDhKxvHbLSGCDJsLcPq3uCwfC97zgrB8W2wyzxXfCd54ZMiaZgRk1qXOMlIgGqyR9docCK4wqLaZ0qOb8GH2GRCQ2YxI+FwkDhkSYTTuUo1OcDTMkq2Rln2qVkpI71Cp3SaRJoERoly1iJVFpaI2O5HbFbfxDPZKY5kmZXhVzmx/x+oh7eZSnd5Ov9uto05BmHGztEx0cQFhtLFEBklC4LSKi9sd3g+90b6qsBQL7MhmtwWTbqyQncUkbN0jjMbPTxm1DumIwoEGFRcg8PQxPdHpJGPzGIIuigydF2nl+gcBgqVKxMj2NRO8Fn5AL43S0fk2TYWOJIVAmGy7yxzzVjB7+6x3w/YiKpkacK58AXekD7Hvr2EbTmgdIaFk+hRhygVVPIWeUsn0ou8JheI9Tx7sUtcWGBXNtHjPlXN55HVGWyvRkevIeOASNn0hIsRddkKc+OugLk6B84yYTK+hNvrh/Qm3kA7v8aGvkBJBZzWtlk3Vvis9yQ0L7JZeSOyu8OOqJMqCz83wyg3Sztz2BhZOLqGYefYd1bQdY2F6DXq4Q3qso9tGMwULGb8y0zGt4lSeLr0XRy5q9gyY8Yc4mc6z6uzrDNDMV+imjMYqRz7WYGRyjHUi0SZpBNJ1kcOozhDZQGJ0ChUJvhD813YlkWQKdzwiM29XVbZQJeCUSq4FZfIMUAmPn5mMpnu0WvtYBARTz7AVX2Na2qBZ5JlLlv30pEFOv0+lkxpiwIvmRdxdIketDCjFnXP5B55lY3iw0ilY0Udmtk+fizoJ4r1/EM0tB5lC2bjW8x4BkVbp5QzcPNlJuPbVPwNzGRIHCdsxGWGMVx0W3yX/jTtoY8mQJFyKMpcz12gE2SUtJB7rB1mXIGlCcwsYFM0ieKU9aMhu90A0zIxdR1Tl/T0KgOtQP94lztymuemf4h6Mc9cskEhbuFrBYpZn5assGUsUA03KYV7bCVldpM8umbwmlxmfzSWWcrpMIoS+n6MI0KGMse+NknsDxge3WEvK2CJBKUEreJ5rlTfRtW/wRo3sHSF59jIXJ1rQZHnc4/xavnthHqBqmezqyY4VDVsXeFaBqm00AyTTX2BYZzxldEU9nCbzb09Visa36U9zUXtJvNVj13vNHPBZSa0LoeZS5wJHpovoeIBk6KFaVoEeokDbYqvWo9yPIqQQpCYZcp0cLMeIkvY8k16EVgiwVQpmm6BXSUlY6BXseNj5sUOnop5WHuNt7s3KKfHWP1bbNprYJUJzQp6GhIlKXHQZz7bIpIWpWCLGa1LV6+hKYWlJIamyDKI4pSXWWY3+iskp/4Cdx20b3P6Qcy/+tx1/uv/+3mSNONnvmOJxWqOf/quUyzVvvHi+asQg328P/4x+o//PEl5+S898z79k8jBHsfv+3fYr36U3lt+caxzc5f/7BRtnQ997zlqrsGPP77A5b0e/+BjL/L9907xf3z/PcyWHJQQhHH6ukTTMsOj/e6PEtfP0XviFxHhgOLv/SAi6FL4ne9D2/3a62DVXe7yt0fNyojDIbGy8VTMyWSdWNq0VYmRXkEf7FEIthlJl1bxPK4hKMshiZFHaQY3jGVG0sUXDiQ+Smm8OXkaXQl69iyvlt6KZxnsHXfp9trcYpJN5wyalOiaJJQWQtlIqfFcMMlW6SG29Hm2RANdkwi7xKWogUgjjvQJ0B2uHg44HsUcD8cNRRoc0kosZkSLllZDHF7jilhkP7JwxQiE5EW/wStyBSGgHRusy0Vio8BIjut2jkM1FpmNdhjgsG5fwNAkWQZCM0kMD5mlDGWerdIDaErHcPKcy65gJ30OrBPsGrP0zQn61iT7lNnW5zBH29RtuDWyeFa/n5xt4yuXlihgEBKkiiiDCX2ENjqi7DlU/Oss2n3ypiRLYSrcwBYRLVkizp/gdLZOFI5o2ikIkPEIXQlOVS0OU5d+ZnA8jBBmDqWbGLkyRXrjlKu0z7acxMdAaRqWV6FgGxhaxv3xc5wx9vD8HbYCk4MRhJnCJqKeHhHnZ/FyLr7mMdLyvOw9zmAwoJzs0Rn57OTvpadVSKuruCrkuWCOY1VhOVln2eigwjZKCO5EHlu5NTKpGJRW2No/JCXDN6p09Bo39ZMYWUhbq+GYGvlgm8nui6wOn+Vc00MKyFsa9fSAOE3pekv0Up1t2WAxucGj8ZfRCcl0l0EUk2guw+NNDhKbghbT9xbo1R+k03gIEY3opgb7okLXnCRLE4I05VI6x/EwoJx12NVnkBJGYcSRnxEnEUexzb81/y55LWNWHTGo3UOAjl1sIgyPLxXfx58676Bg6QhtXONYtA0KkyvcnnwXwzDh4cGneKZbohLcYXukcSOu01FlplSbCTNCKoMbapEgEQwSyVFs0Uj3mBfbTGldaskepldnObzCYnQFe7SLlm/SFMdU0iOWh19j3ugQRxFxPP69rJtrRJVTCKfEHfce6voIS1dsueeYZp84SXkpW+JO4HArrbJFjZwI2Rc1PFsnyTKywgyblTfw6EoTZ7hJuPsqOUMhEAwZ19ldlydY7wp6UYZjaPjK4w878xiGiWNqVHIGJ+suSgrCJOXURJ57Z0roUnJP8gpPuS9xWL7IpcrbOWy1MA0LITUSp05gVsmkxNUTLA38whKdxkPknByOaTDQiliWySXvUXZrj6DU+LcdxwFRAqmykPkGYZoisoyFbBNThDxvPUq1Oce7rZf5orjIUeYRJxk72jQ30wYN1aep9zlt7GFnIUUtYknuMJttYWmS9fKbyciQAuazOwR2g1KpDPXTlAtFzO5NNmOXzKliKEWKIkpSdoaKW2kdP0xoD2MyoRhikmUpdjogi0bomo4UAl0J6p7JkdHENF0yIVmsOHSDlEEscPINjmffSUV2qIZbHMoKX6u+h9AoIAUcqSq+XsCzTY70KY5VhRer72JDzREHfUa5GZbi6/TNOnFphUN9krozdrE6/ji61x8NcaIjbF1wNr1M3v7GbfbvOmjf5sRJyh9c2mcUJfzUE0t88NPXuXn0TdYlJRH5//CjhPNvIzj5/r/8LE2Q7Rv0H/5pvM//LP7qU0Qzj33rBtzlr8Wt1ohf/NwN/tfvPc9+L+Bn/+AyzbxFzlR8/sYRH/7iBj/+25fY7wXf+mRGjuGD/5Bo5hESdxIxauF+5qfovO/fEU9chHj0rc9xl7v8LREVF3hu4vsR5SUOao/SFy6pXQbdJUpS1uUcz1beSy93gqHmsTvzJHvNt2NbDsJtMJ1sMWkG6JnPvn2SG+Zprg9NhmHC2ak8HVXiSNUo16dZC1/Gzvqk1VVa+VUEoEgwdY2cCHDiDkY65MKkRShMAF7UzmEOtuhGgjl2ODeZ591rDao5nYKlcRBbvJIuMFMt0k4t7ju1wmLZ5LGlKg3PpGVO84L9MLbjsSZuMwzHDT2EFDS0AUoJOqpMaJRAt7ByJfR0SJxBOxinhYk0ITRKjIwKNQd8s8GeqtOKNAIMjuwTHMcmm3GB6413082votKIs/I289F1TG3cfa3oFSjYGpPZHnUjQAjwTB1h5hk4M7ymneQ2E/xp4+9xO2vg6oJKzmDZPEYnQYZ93NEOL+nnOdQmaFfvx1AK1yviGIqDQYKVr+OKECnA8A/pYeP62+zrsyAUQaYxGd+hOxzhpT1E5xZpJjGlwNR1do6OkQJmKjkWKjlOT3hMNqfomzXqyQ65fImV6Tp9b4nbNMg0k0hzWZF38HpX2e2HPMNpftv9ABoxlia5IpeQyZAdcxG3UKXnLnIqeJGRcCjmC2hSsjuA2cEL5FXIZLBOZFXY0WYwozZpbpKRPclB4Tw73QBNjRuFbPQlHe8ki5UcJc8jyS9QdnS8tI2z/xzDMKFoG9Rcncm8he5W6DgneKjY52R4CePWZ/DjBNKUMJUU6ZCXEbaumK3kMHUF8Yi8FuNoioLyaUa3mSwXWZmb5VSuT1PrEWcCTTcwlSArL9IVHqnU8dFJs4yuVmVg1BGZ4DBQPCPu4YvxCq/KJU6IXQZYeGkbWyW8Gk9yTV/lNhNsGQsIUiy3TEUL2W68mb3aIwxLa8T9PSK7jttb52R8lWayg2k54LcZRRmtxMSSKbGRp2TGlG2NNMvYiKuUXJvJoke5UqMXppiGwWp0iV6Q0JZFLF3SVUW6wqXQv8adPnSrF7hTewt9XFQa0g41/vh4gjveRZTlst8PMZ08ObdIInTs+gpTBYuZkkuUKdxiDVOHMIFepJMzFJamqORMZoo2aTZ2bBxdoeeK3NJO4B5f4vzoGc6rm3RiwbFWY908zSAW3DJPkpMRE+EG/VHIILM5zi1SlgNsQ8eQkhk74Mn7TqFJiRCCfC5HN1ZMyRamkuxHNn29gmk7HKYey/5LxAfXSIfHnM7WQUiSLOMwtqiUyxyYs2yOTDbbI2zbpifzqFyFUObw45SjQYQfpWxkE3Sn3kTBLVChy9lSyslGgWtyEcspkCYhFdfANnQ0JSjJAY/yAjk9oRfGvJa7j8SpURcdKq6Nl8/zSjqNFCAY6/tKzcG2LYbWBPtpgSNZRWgmw2GPdqSxIyf5pHiYA0pMhLfJjCKJ1NFNhyvRBFXRoUiPiXQPKx0y3X0eQYZpGOyZ8xi5Er0gpDgxT0urUHF0LEMxDBNMy2XgTDPMdPIyQPtPZI/dddC+TQnilF/4zDofeeY2tiH5yScW+eBn1vmf3nWKs5P5b2pM1b5Bpiz6j/6Tv/R67nM/i/PMv6Tz3b+DuflFROIzePinXwcr7vLX5UTF4SMfuEDB1vinT56mYOv8t7/xIit1l1/4zHXumcrTzJt83y8/x+++TrVpmdJJ3SZy1CIunyQzC5BElH7jHaj2jdfBqrvc5W+ezu4698dfIwqGnC4G1PQRjI5pRToJoCc+oVHG0sDpb5Jvv8LJ+ApSQhinJLkmulIUtYR5x8eKjmh7K7imhh9n5NIuHWuSgTMLGYAglQZSt8mAQr5IkKR0Yo0CfXZL9+F647oVhCIVBq7jULMyInTWDwe0/ZAgzuiHCTXdZ1Ye0D4+5Mic4/ZBm8GwxxdvHjEMEybC21SyNiVbUXIMTk941HI6+fiQTe8CZTmkmI2bcGRWGZRGwdKpJfv4UcooTlAywx3dYaAVwamjSJF2CYmgEwpCo8CxqpAkGa6/yXpSJzSL3ArzfNl5M9c6AikFSpOMooSeLFBwLKo5kyg3yYss83vJgyw0JwjCAF/LY2pyHLEZhlzxHuK2sUQ3MRhGCavuEEOBNtjGNTUGWpFerLNcz7GX5kkinyTN+LT3JCpL6LZbhMMOaZpQFENMTdJwTTTLo2fP0I4kZX8DkQYI3caPUwZ+wvEw5NbxCD/R2GCay36F4cinViqhTryR9zovjQ/VSZ+twoNU9RjbtAn6h2MewrAAACAASURBVNimzWzFJbZrbNhneMG4j4HM8/HRWbzZc/S1Ml3hcaOTsFk4j14+wba1TBr0mbAylgoCw8pxRVulJDpMGQM0p0h7FBFEKVGaoewyDX+dvX5Az4+YyBtjiYb8FJtTT6Jrkn4QAdD2I3bMBS5X346RDNnqDOnjEEsLpCSQDqAQhRl03eR0s4BjGggyvOgQP0642tPZNpeI44jbRx1aocauvcyx1mCgVzmoPIhrGkxoQ07WXKI4puToWLk8MQpNl1RdkyBJmSq6uKUmSgrassxBkqfkmKwllxlpeTrWFIE9wYQ+IE5TUmmQq0yzM4CvREtsm0vccO/ls9obuS4XQGpsxEWGUULLnCJBcSer0U5sjiMdL+syqN3Lu7SvMOUptKjN7OHniFFsiwm6fsRE3mIp26TpmSyeWGShWR9npOh5yuEO54dfJC4tU6pM0IhuI9wGcX6G+aJB0zP5gnqAYe0+ciJgMr5D3tTZpso1tUB+dIfblSd4ybyP62GeOM3Y6QXsdAOuHvTZ644buZ2bylPRY/qtHYRQHGkTpKvvp1HwEGKcqnioanj5MltqGorzFNNjpg4+wxW/xHOsIEVGexSRfl2lXVOSndwav2u8G83KYeer7PdDrLSHDLscj2LqekBaO4U3fZrbxYdJlMmBt4apKaQ7QRAlOG6Rct7FdT2KpRr1Qp5DfYojUWC2aFHP21i6IpIORS2hFt3hFb9CfriBCvvMOz7VYANNM+hjc7KeQ5OCtijQShxIU9YaHkoZYJWJqqdpJwax3UAAupLkzHGkMsqgm4z7KkTFJWyVUcy6xCm8by6hLPucMY+p6BH1aBNneAdBRsO/yb1yndgf0A1SbF1R9TcYyRwje5JeEIN/TKH9KsPMoBfEuN3r1FwTXUlKjo5rKEp6SNXM+FqywLqY/oZ7zF0H7duUIE74xOV9/uCVPf7N95zj89db/Py7T/HIQvmbGk92bpFUVui+5/8C7c/F98wrH8O+9FGixr0Ytz6NdemjdN/+YVDm62XKXf6aKCm4vNfnJ3/zJX7uO1e5f7bIz33yKv/VhUn+x0+8xhMnq/yLJ9f40s0WSca37qRpNp13/zJx/Sy5r/4rnKf/OfYLv0TnyV8jKS5AGr8+ht3lLn+DFI9eITu8xmmnzYnoOppS9JxpImFStAzK6REPHv0miWbTXn4KdIdlZ8BB8V4yoWg78/hmFTMb4iYdvKzPmehFHEMhATftcyo3ZP1gSCWn4xiKVjiuX9CkwEgGxGmGUAYbxkkWqi5Hg5CCChjaTSbyFlbc41BrErrT44jM3gAlx0LWvfpDnJhfoWNNEx9dQ4qM1BkfLC1dsqtNo0ddbh8PeXrQZK8X0g4SvlT7ANejKtvU2dFmOXZXsU2Tw8hiUFrDtU08y6CWM6l4OYr1E9j5Ci8HVcJMMtTLfG76R9AkNEbXMZTA0CTV9ACyjHy4S6Y7LA+fZ9YTZBn4YcZG9c08W3kffXceXQmudkFpGlNFlyt7Pc7kQyrB1rh2SEpOVnOUWs8zFW6glKKj1cnHR4QJVHLjlLNJDmjmDe5fnsUI2yRpSpZBWphFiYyaIyjoIQOZpy3yDKOEvVHKdEEnExIjV6SVP02Q6gjNpOYaoFkMo5RhkHB0fMi56HmonaZTOodSisiqkjM0RBxSGa4zlA5XV3+MwzRH1c2x7IV0DrZQ3dusJZdZs1pY2QjHLfPp2wltvYFfWqGWs0jcSfo41DwbkauDVSBEo6yHzGtHjBJFt9Niof88MyWLMFMciRLe6Db9eCyFIIQYRzuFQAlB208QZLyqTpGgsRs5HA1T6vEuc6v3o1cWiYWGxtiBe5llXtDOcdk4TRuPKwdDdnrjeuYoFWRZhpZFdCKIUminDoFRpmPPsqmmGbV3KA6ukZMBjqmhK8lQ5NgVDTSlM1uyEUKStzSmCiZJlqE5Ja7KBTSZoXJFHMtkT5+mGu9xppTx2FKVvjNLWfRIhUbHnKGYzzMr9qjH2zx49HHOiuucn3IpWZKl6CqOW8I2dFKnQUn5TKgubXOSLdHk9lDHVhk5y8T2qozsKaTb4Hx+wIRnEaWwl5X4arLMVv0JRolEVxLfqILUWJvIEyUJh7LEIDcHQNkEVV1kq/wgzbxJL8oYZjqt1GEQJfhWnSN9msFwgHX8CkmWMVNymCzYzBVtpoo2QZxhKkUQp6wfDMnFbWbNIX5ljZ4zjb/xZUKjzKRn/dk+nqstMqU6kIRcN09xu/om0ixDkOGnEtexmWs2AHBNjYlag3rJRZVOcHuoY2qSnBIUlx6mtngfhogZRhnX3ftZLSYc1h7mqnM/n1MP8SejZfw4xVCSURQRxhmfTu5hkMCS1eWUvkcvTMZSIZoCMoy4TZSkvNnbYb94kcz0GPVaXLMukE49wHxxHDnc9C7QSnO8op3mUJ9mp+sD47NtS29iRm1E+zon6x4lW2cQpkRpyq6sEZRWxt+BEVORfQZhTKaZHPsRD01oNOPbBMql5a7gW+PPQpMQI3nFvp8/ML8TaVgoqXjNfZBOaQ1TkxToc2TOkLNM+rGkKbusNlyUUgghyEhxkgGHlNmXE1TC7W+4x9x10L7NGIUx/+j3X+U3X9xBAD/62AIlx+BfPLnGG+a/OeeMeETh934A2fsLiy3LcJ75BdzP/yyd9/46SWUV71P/A723/CJpfvZ1seUu3zxrEx6/9sMPoUnBUxcm+cdvXeY3X9zh4nSBf/g7r5KR8c/fs4YS8N//1iv89ks735qjplm03/8xosmHMK//IeHcW0i9yXEDhV9/K7K39foZd5e7/A3gmXBUuUjR82iPYvZTj3ZhDZRGL4iJpMlw5i1UTRA7z+HbDTY7IyJpsTv5HZwIrhBLg0vuIwSai6ZbfFmc43AQUnQM7KTL1vYdGkUHKQX94hrKneSSdYFb7r0cDCISoZMBD2UvoO58AUuNtdGq0TYzBQOSgJtqjsvOfTiGxmzZZrpoIyXcjjz+SD7GsnmMEBLNyiPyU7z/XJPFao4r9e/kqn2eA3MW2VjleBRiKMmJ4YsshK9x3T7LZ6p/B63Q5LB8H1cmvxuAUDrYusQxJPvdIaqySFX5zDljDbjjUcQohmNVY0+fYhgmXNVW8erzSNMlEzrleJcqbRCKkq1zqulhhu2xZpSfYZoW5Yl5hFAEccJU0eZOe4RlKPphymzJJsoyis1l2rGGo2Ka8QZ7uVO4poYuBcMwIW9Apiw+v9HHyDdQmsHL+cfHtX/mAjPVEsfmDA07ZYSFoytidFrHLYy4h1AmTRsO8mcJnSZGcYp7zl2gdPF7OT3pcfrENEZliTPDL5FIHcE4pUlJQdG16VjTNOJNvKPnMTWJYRh0/IiKmXKmlPKsukA/MxhoJQq2xqwnWGKTipmx1sxz31yZw0GAeXSJSdMnC/tsRy7XRw7a6JDDykVuV9/ERuNtDIKEr1iPcqCapG6TrLrKSt3l/GSeOE4BOAoVWTwiTuGcdofAKDKo3sukMeCssY3qb6GTUEhaSDXWcBK6jZ70Od3/EifclOVanuXaOAsnY5xaZhKzKHaxvTKhM4ETH/Mca3QjQcU1MeIenUhx2A8Ik5S8Cpm3hwy8BTp+xEE/Zqvts9MNkAJmyw7T82eJrSrzRo+KHtPJXJ61HyUorzGIUnytSGwWyaTGrazK1fp3clR/BAGkQrIUvEKwc4lRwvi7i9qEScoXsvPs5O8hyjVoWCkiV2NydJWDfkDRNgnCiJrqE0uTJE1Is4yDYcyR0WSYXyDRbGxdkqYZWjJCl/Ap8QYUGWb3DiqLuH08ZFC9h1tMk8QJUZLh2hZtVeFQqwFw1jxkUWxStjWW9BYlRxGnGa1hxDCKqbsWQZxi6gIpQEqBrgmkhLnec5wcPkcx3udGN6XtR3iWhpISQ0FgVAgwSYSBYY17DXi6Yr4gGfo+3b1xZsvxMCJKMy7O1uj4KQU9wTU1whSGnUNmPUVPFVFS0ut1uNJ3eJ/2JR4p7CE1A89UuObYgWxFJleMNZRu0PFjNE1xmBXY7wWEKSAEvsqNOy7adY6NBjl/B0HKoTZBari4wztYImIUJbwgz3CiaHDe3AEBzbxF3dWxsiFqsENaWaVjzbLfD2iPxpcJupQ0zASHEZYu0ZPheIUKaGkNjocxenWBFwrfQSdzCJxJRsIikyZ2vsauNkNVdDin3SJn2wRmmapr4loWmpR0jElCoROM+jgy5rjX5ebRkLpnMQgT8vkyQ6vBFjWG0iEW3zhQcddB+zYizTJ+8bM3+Oz6ER999g7fe88U//rzN7lzPEJ8k50URdgHzeb4+z81PnD/R2IfbfvL9B7/Z0T18+T/6L/BX32KcP5tr5M1d/lWMTXJ1YMBP/U7r/LGxQof/cGL9IIYz9L4iY9f4iu3jhFC8EMPzvArz97hxz72Mtsd/5ufUBl0nvxVUrtC/o9/FOfpf4Zx+3N03/m/k3pTdyNpd/n/FK3cErK/h16exz39Luqqx2J2C8c0yMQ4OrF/sMfhKKVIh0l/nRpt8v4dutYU29oMscphpUNUGmHqGsV8ibpr4hkKgDDJ6GU2n+ARnklPceBn9FURLd8gWH4vgoxNNYsoTDPwE5JMMlW0mCrYHAXQL6zhTpzk8rFkp+uz3R6x0/UJ45QgTigcfJWDXoBVnuLmyGLj+qVxHfLhkHvkDZaNY7DLbBsL3DtTZLXhUUjbSBKa0SZryWtkGQRRSMMRlKtNWnqDRjFHmGTjw+vWNUZanuaJM+QsA0dXVF2Tjl4nMKoYmsRxC4Tbr4zT4Wae4koyyefMx9nogSYFJyo5pvsvkIuOKed0ztRN3KSLZxno2jh9KEszBmFCMPsEX9Eucud4RF+66JZLaFZxbIem1kfXBLftNQqWTsePCYZdZjxJEENf5rlnpkg66sBgn52uj5YMSUdtprUO1WoD11DshDYHxYvECErFEutBnjNTZZLBITe2DxlGGVf2+mRZiu8PaYkyPn+xI7KgnDNJa2vEqcIyTe6ZKjBVymFIgcw3ma6WeOe8wW5axEz6hEmGpuvse6fpRJKtzgjP0nh0ocr6iR9gnRkqOYO+M0usOYz0Mo3Ba9SNCE0z8CydOM3IgNOTZertr+FHydhh+fq7qjg6CxUHTUJRiyilxxi5Il9jhWzlSVq9IQedPubqu5kvjdPEClOnqOdzLJV0XBnSLDm0/PGIiV2ma04xkg6X9LPsxHmk36YbK4ZhjEDgjJc6ae0MN0qPc3EqzwNTFjUzJkwlrUFIyTU5UbapODo/cN80Ugpag5AvJKfpO1MIp8xScp0JjtjvB2hSEKSCMFVf/7Sht32Zwc6rtMxpguISX9Mv8LQ/R4bANyrEyqbg6FRKJTrNx+jZs7wUz5HTJVN6l6I9jmIvFiXBsMd0cpskCtlLXUaVc6TKQghBM29hGxpRmnGyrJgu2RQdg1GmmG3UEEDJMbjZGjI7fIVTwfNoSpAh+ELpu2hMLjJXsnlt5BJYdZRS3D9bopwvkmTjxiGjKB2n1AGGpgCBBCq2jgQOVIN+6QwvF96C+XUdW0tTGErSm3yMzfpbMBUs18Zdtut5G13TyKUDTE0infLX/39SDvohf/haCwyHm5Un2On6CCm41Yl5afMIK19jf+LNLM3OsVt+kJazSGBUyRmKc1MFJjyTMEl5YqXGyuIK00WLOM1IrAq27XJ+Ko+wCrzESTJpAIJdWeWZaBE7PEImAeeLIWeGzyDSGITAUBJd03ieVf7IeBujKOHNy1Vmqx6+chHAa2GFHdUkyzJMTeKZCkuX5LMeg8M7JGnG0KwxjBIAprJd3rA6R1O2WBl+lYm8yVohRp88x1HtQepWxjsnh6RpzJ24zNVkgsypEmcZSQa9IOZOUmQpu82zzpu4aZ1hT5tCCHANnYY73hdst4hXm0EZOQy+cefsuw7atwmHvYAf+JWv8dn1I1xD8eblGv/+hW3+9fecZaXhflNjCr9N8WPvwdj41J+nLGYZ9vO/hPO1D9F9728Qnnwf3qd/gswqM3j4Z15Hi+7yerBSd/nIBy4gBez3Qz781Hm+/+IUaQYff2mHfhBzcbrIr/3de1mq5fjIV25/axNKRe9t/wuyexvr1V/H+5O/jxzsjiNpv/F2ZP8bh/zvcpf/Upjpv0w12eNgEHEQKG7piwSN+yjkbEqOwZQ73l6fazzF6kPvxdYVmZHHSnqsRpeIlUPPniZTBonUuV54BOWUyFsaizWHgbdEWFjAFDH3Dz5LGo+jCwKo5QyCOKVXPMVcXhAwTiuXmoap68TlVUo5i11RIWpv8o6VErMlmzSDkj1uNFCyDbatRcITT1CMDgg1D9MwMJTAtRTBqIuIRrQjje1OwKWdHiVHp2gbWKZBPtgi17/BXj+g7kimBy9jaoJ88ySmkjTzJgiFqq6wvHqBCdEiE4qbjXcwVcwxW7YhHqErSV316JoTJGjM9l/kvpkCbww+x6myJGdquKbidDPPyakagnFdWjtIKbsWy1WXtYbHdMmGDNqpRaA8DCVIkoyyEbNotpkvGeiGOY5s5BsESYqroOqaLNSLGBpU8i6H/ZjpapnIm2V6+gRTOQGGR6AV2OzG+ElG1QYtHnCn+gSWrjFddOj6ISqNSLMYXQk8UyONAlTQxs25uI6Na2nMlGxKjkbDkRSiA9B0jqwFDvohGYKibSDcOppXpzDcoGjrjIwyp+ouDVenJrtUcyb9oc/nrx5wozVk1uwyVS0xykxGVo1EmhQ9lyNK/MlglgEmvSAad9YE7P4GA61IlGZ4loalCSLdw9QEJ72Ic5MFbF0hhcD092moEcW9L1FpTFOdWiJpbxDEYChJX5XYK5xjtmSDgJd3+qRi7BhdkStsOyukWcZx5iByVRZPnufM3CRvOlmjUTApMECPR+i6hjJthlFCo5hnumAzyT6eqZMhWKl7mJrij68c0PUjNtojktpZYm+GQs5ky15l117m9FSFjh9hpkOM8M8lXUrxPqfLMM0Bc8NLzFlDTrgJtm2zGL2GZ1mUbZ13mK/wjuNfwU572JogSTNaPnRGEUKMLwvyliJNM0qWwKrMMTG4jJmN6IxiNlpDXt3t0dIb7MkGrTSHUpLOIGAndjl2F/FMDRCUtYiGZ/KeMw1uHA2o5AxcU6No63RinUSZnJkq0PEjdBI8UyNvKSqOwUJ1HPkyNUklp+NZGpqEgq2TeLMc+HCq+3k0KVmpu7xhvsTc1DROvkJpcA2RpWjZOLJUsg0sXVHM2ViaolgcR/HKjs5yLUfNc9kfSV4Ipzg7mUcIReZOoGoniZKMvh9ypzXgnXyBm/IEsVVFCkEYpUwWbBarDn6YEiUZh4NwHCVzJ5k0hmx3fOI4YTLdxSQiUyaBVuRswaflrYKRI9NsWt7KePEyTomeLDoYhEy6irJj8OlrB0R6niN9iqP8GkYyYHbwClkGwyihFyQEGMRWicAo0vVjclGLSBj0ZR7L8fjSockojDFSH0tXGNMXwK7RGgRYGvSKp4mLSzRmT3KioJF3bI4GEXGaoitBv3yWO/PfR7Nos++dpp1bQIhx+macZmRCYLSuMGkEeF//H/5G3HXQvg3wo4R/8snX2O74SJHx4afOA/DLf+cCpye8b27QJCD/iR8mrq4Rzr35z15Wx+vknvkgkIEQ2F/7ENrBy3Tf9iGQ2utgzV1ebwxNcjQI+Z8/c50wTvnAvdN87IfuI0oy3v2/fYV//PuX0ZTkx9+0yM+8dZnOKOIf/f5ldrvfXDQt9abovPdXkUGHTLfJf+KH0Q5fpfu2D5G647THu9zlv3TKjWkK9VmCOKUTSZ5234FWnOHhhSrHfsxIWJxsuDyy+8tsPftbRN4cfvMhTp2+j+tynlrnZdzRJr5RZdNaYdOY4/K+P04J0xSaV+PaMMeFCYv5ik0pZ/LQiSIrDZejYciNoyE1z6GaM/9MS7I5Mcdx6nJInumizXY8bipQsSRvXamzWM2hK8njS1UarsFQ5FjqPE0mNCY4YtHsc/9siacuTNEpnGX1zP00J+eYzJsY2rgOaBjGFIpVhF0kUjbNvEWWwXTBQgZdKvtfpBvEJGmGJMXvHRAXl4grK/SDmBNlm0xq3B5oSCl43nsLW7LJevlNJFKnRw47PCLQ8hxGiq4fcXV/iGdq1GgBEDcfoKU3SYxxKt1r+32+0Guyq5r0g/GNuK4Upxs5YmngaQlO0mcg8+PowzDiuHCWUHdp+wmfvHKAVZohLS+QM3U2uyGWruFGh2yWHmazcB99a4JVdwTZuFZLS32qBY/jUUiSCTqjGFOTXJwpc36qwGzJRq+fRC48jtO+wpumFa6hWKrmGIUpnVAwv3iaaVeQ717m3FSeB5YmiTQHMx3R7g94zXsDPb1OtvBWoiSlZOt44T4aMbpIkFKy1wvwbz6D1VnnmpynryrciYsMpYfwJsmqa+hK0vNjlBQ4hqKTm+fe8/dRd03iLKNg66jaCrdXf4Re+ex4gYvxsgrdGSaTTdJRm07tQdbTKe5EeY5ChaUJmv2XcNtXeP7OMWkGy3WPVGgc6lPMVV3k15NzDCWoFTwmRq+xXDZo5k3SVJCI8TFUItjq+MRphh+nlHMGq3PTCAGzJYeOH9HxYxDw2EKFybzFG5cblNMWdjpESdiWk7wqFpAIktIS3dwJYFxzeTV3P8fFc9heifbi+zBJ2cvKvMxJNtMKo94BwzDlzvGQgVYituqU8w51z8QyTLSvG6KUhqWPRbIHVhPr4CW6wbiOaq5s0RlFFEyNamOWDd9lb5CgKR1Bhmhdo967DICpCaaLJnlL59NXD6l5JqNwrCkGsGrsc69+E0vXyVsa7WHA0TDk8k6Pre6ISs74M9vWGh4Nz6SdW2IzrZIBidBJdJeZksUgSHhtb8COvULB1tipPkLfaqKScbfmVKivN2UpMAxjguHYse0FCfv9kJJrk3NMao1ptjs+eVvnhJcSRwl9a4J71HUsEbHffIJRnOAYEksfR0kBqjmD64cDrh0OiJTLoXWCNDfJa8zRDxJEGjLwFnix9Ha2a2/Elw7DkY872oQ0JjPz9J2ZsX8mx+vFzwwenbZ4Y/Ys0yWbuZKDyFJm3ZRz5Ywt5zSt/CksfRxhBLice5CvVt7PK+6j4wuzg8ugTOpmQhQMycct8Ka45L2Rziii648dWJXGDMIEH4uT3OKx7Dnm5T52sD9+LsZn24E3j7SKuIaGqUkEgoWKQ9WzsDRJrZAncKY4CnV2+hFR8h9j1381dx20/5/z6m6P7/m3z3L9cIBnKc5PFZkp2vzs20/SzFv/6QH+KrIU71P/AISg95ZfACEhjTFf/mXyn/wRRms/wPCBn8S48Qmc5z9M910fIbOKr69hd3ldqbom/+cH7sExFL/14jaWrviX7zvN3398gSv7fZ76yLP84at7wPjGruzo/OBHn+eLN1rf1Hxx8wH6j/88IhoxvPijFP7g740fpAmlf/8u1NHl18u0u9zlPw+5GtudgOmizfmmy6PpMxT6V9nrp5Qci9Bu8HvRA+zHOXayAnZpgvmqS1Jdo2XOcpRfJSnN85izwcngZd7Q/l3m8xmeqSGAzKmjFZq0/K/XfgqNyYLNyZqLpSlsfbx99yYfI5EWpi5ZD3LcMeZZqZpMFiyK+QJlx2AQw5W9HjeOhoyiBENJpkoWDc+g45xgIBw2xAx7xhRfvNnimVvHgMBvbxH6Azp+RM4YayJ92XyEXmGVwf/D3ntHWXbVd76ffXK4OVfqCl1d1TmppW6plYUCQqQBYYSxnz022G/Z4/UW2A8be9meZ2MzM8Z+b/kZMMFDssEIPySMDHhsBRAIgSRoxVbnHCreHE58f5xbt6q6Sy0hxNho6vtP1T33nnP23mfvfX7x+4uNcSB1A9XQpuOHnKt1kBUVJxMl4AtBVMfJDWjbA/jZDQymLHYMplBliacZ53hyD14YsKUUo6/+DCoeamGSbGmUffouZluR9Xk4YxGqdo9gQWqcJxAyLStiQUtbKhtTHmm5zbpCFLbl+AFPnJyn3XGZaQYEWgLNbyB383WSporrtGkGKjsGk3TqMxytR5EgoddmruXxRLgBqVOhWqsyH8Z5xLiG/pSJrhvUEhNcszbDYMrEDwUxXWV+6Dbueb7O/QdnePJ0lY7rEMga7vjttOU456odVFkQaHE0RYDXptA3zNaJcYbTJglT53TuWgJZR7MSlOI6oZEi3jzOwZkGU82AU7EtlF2ZrKVw5ViGPcNp9udfy1FphFJCZ3N/Aj07yqkgg+S3sDqzCKAQ0wlDUGWBEbaxzjwMRKQz5ZZDZ+YYg95xdqyJvCdNvUgtuYE5fYiZpksYhsw2HM7WHeasMdJq5M09rqwlsPvYvus6WqGJkCKvwBrOsmlNHwlTQZEkJCE4PNukVricTYNZFEkirksodpa2lkaRRUT7b2lIQSQcS+05UqaCJEkMJA0GkjpZS+Opc1UcP+Ds7Cx+u0rZjajn8zGdw9MNAKywjRRGynrCUBhrP0l/cz/bxoZYn5aIT1zLeblIPdRoKinQk1iaxFPx6/lO/LU0jBJtLYumCOKWyVDaImEoNLyAM9U2TT2HZCQxFInBtEVfKkajE1Bte6wvxYmNX03TKKJ15pAVCUPXiNtxinKVoZRBxwsJZRU/CPGCENcPmCzEULuKYNmJCHIIAwxFxgsFhGBpEn0Jo5eWoisSjxyfR5EESdXFdTp4fkBNyVIpXEkxvijnlZImtqZQTmygZZSQuh60iWKClrCYrTWY2HE9+fE9QJQWU2t7nCi3aY/dwbyrMF1zkGSN/oTB+UqNrfEauQ030F8qkU0mGUqZtNwAWQjWFWxURcLUZG7bUIhq8ckyM9YEgZGm7YXkYjqqbiGP3YgsgS8Umm7AlJRDhH7vGYZIhLLai9ZqBDKPu2v4tthJX9xgMGWyNmuRNwVm/xY8SaUamlw9liFtRgqUrhtImkUbjXUFLj6SfAAAIABJREFUm5iuIDk1fGQkSWFLVhB3zrK5+mDkqQfk0KGjxGgY/fTls7jr3sA33Y1oIkTzo1JBiizxXPpmmpUZ1gaHQcBCyr6lyRyba5GNaVRdgZBlckkbEHS8S+f1rypor3LoikTHDzAViaYTsDZnocgvL98MgDDE/s4HUGaeo/raT/QWi3Bq6McfwB24ksbVf4By7jHi//oeqrd+BD89/gr1ZhU/SQgRhXMcmW32LDtv3trH3b+4iytHMvzxPx/grk8/zg9OV3jvDWv53ZvX8ftf28+jx+df5Moro73pHXTWvxX90Ffx0hMk770LqXaSyus+jZ9Zj+hUXsnurWIVryj8VoW47HCq0kKWBJrfxpZD1mRjKIpM2/MppWKkM3kSo3twhYEuLb6QReiTlH0UEdDxBfPpHVQCg6l6B4RAVyRMVSaQDY4WbsPSZJ4/V2O63kFVJAxFZra4FyMVsYxlLI3ZhkNWCxhPiqhWWOcsuiJx+XCWfEyP6islo1woRZJIGCqDazczajTxtTitzBY2FmMokkRHisIBC0bEwnau2qHe9sjGbebbPvGgit0+zbQfI0yPMt90ifdNUCoOktAV1KHLSdkGqbV7ulbsKJqj2vYwZNji7mPK1ai1PSxNRvRtZ7KYZMQ5yPaCyu7G/WzJCfK2RsbWcEZvZj6/h3OZy5GrJ0ipAYW4TiGuM5yxsOQQTZE5Phd54Lf0xxlMGZhyQFwToOi07CFMTWYwZVAXNpKZRevbGBGH4GHKPnvHsowN9HOu72ZGR8cppmw8u0jLHsQLJSptD1uT8UNwPJ+DU41IGxVwpu6jyTJjGYv+lIHvBsw3HHJxC1OJ3rtzTZfG4HW0hm9GKR8mVG2CwlaOzy/WhbSbZ9AqR5lqdOi3w66QKjg+26TYPIA7cCW7d+wiZ+s8eqKM3TpFMZ+n0fHRZMH5ukcmmWYutY2zzShHxlIlDFWKwuT8aZx4pOxeN55DEVEe1mONPA8dmgWgYfQRKAZ9SZ3BlIUqSwylTbYPJNmxdg2ylcQPoNZ2eb4ZQ0uUGCllOTjdZCBh8IyyiYOdFCKMojTcICRhqhixDP1Jg7bnkzRVpNwE5zK7sTQZN4hIbnxpQamICp7PtTxMVeZ8zeHobIO5ukvL8VlbyhOmxxnJWNQdn3N1j9dM5jFUiSAzimqlKCWj/LXJvizxeJKnz9aYmTpFzjmDGbSQwoAhMUXalAkJ2dwf5xbrUG+ttpyA/Q2TZ9wShiJhajqFmM5ZYz1KZ47xnM1806OUMEiYClePZXjuXI0Tp04gBx182WQwZWHIMBUm6AxcyWDK5JqxDG7pcph8HZYqM1t3MbphpQANsw8vCHAL25lrOsw0fUxFZiBlIkX+OAaTBhtLcYIg5GS5hSX5qCJg20CCfOcE1zoPMVmIUUpeTEZRsUeoWiPdvchD9RrIkmBryWZjf2RQ3zGYZPtAgj0jaVRVpen6nMju5fv6laRtg76kSafTpn1+P4dnHfwQCnGdlKmStlRyMZ2EruD5MNVwGMpYkYFEgNk8ScKbZq7eoe26DM89RNwvIwmBrSnsiNdp6kWEGs0FT7ZwzX7w3ajqSOCSdU4xkInjBgGPnShzri1zIHU9J70kpl/HczqcrbaRJInXbSyyLh/DUCRytoapyvRlMyQ0OGusZV4tghCc9jIctncgiNrpSzpq4NCODRIkh7EHt3LH5RswNtxOtbgbAE0RyJKEGx9GGroKgJAQRY5ogdZkbGptD0mSkRpTdHwoxg0s7dIq2KqC9irFN56b4h2feZz/6xvP05cwmGt5vP/mdbz7qpHeBvByYP7gI+iHvkrl9Z/r1rPqYDz1GbRj91N93X+nfu0fI88fInnfL1K/9gOrxah/yiBLgt+8cZx8TOdj3znGQ4dmkITgPTes5a6dA5yttvm9+/bz7r/fR9xQ+Lufv4xdQymOzzVfVshj/eo/JLBLKPMHCTUbqX6WIBFZxZP3/QLqqW+/0l1cxSpeEZSTG4knCxBGdOLn1AE6gaCKRTuxlvGszXDKQG7PoR+6j5on2D/VBCBhKmw3zpFnnifCSXxJpekFlJsOcS3yoLW9gINTdQpxDVWWsDQFBEhCUG97NB2PQE9jZtewZbSfs5WI/KPe8Tg620SRJAqxLvW7kEDAeM4maSmR8CAJ5psO2pF/Jp/LEzMiQSiqGSTR3zfEYC5NIWFhawoZS2U83/VwAFpulGltiLQpaHuCmeQWjpQ95pouGVtjNGNxPkjxrSmlxwC7YzBJf9JAVVQei92AG0ZkKjMNlyA1hqRoCALSBnQSYzw9K5hvOZyvdXrj3lYzBLES2wdTPUH/6bM1zqZ3YU/cQKyb1zGStsglLBwvxNANQqATKggE1bZHfeA65odv5WHpCr51eBZTjdqSi2kIBNmEFRXPbdkMOUeIiQ4TeRu1S2sOoHWF+EJCx9YiL9GatMlI1iIbt/DjfRzUtzB74NvIfvTsQ6B86lmmzp/GT40h105HFOopE0WWyNoa5tB23MJW4rrKttEBqtZwVEBblfCVOL6eAUlBiIhWPOFMEc4eptVlBGz5IfMtB0+NMVAqRaQZfkjQZQF0Uuvw7BIQGXGbRommkaclxSjFdXatSSHsAoFssr4YJxfTcP2Acsvl2FwTX0twYuANzJnDbFZOslM/iXbiAWJhnd2jWQxVQg9aVGbOYGgyBVvjrdvXkLG03nOcqnWYqTtIXYoSS5WZzNtkbY1EMomTngAhmG44tN2QA9NRWYkt/QnihsIv7F5DEIZcnmmR0CNae00KOVNpk7Y0sEsomkYhFoUAP1Ab4rQyxGQxRj6mEwLPyZPM+iaGquI35mm7IU+drfGcV0J0WSp1VaIUUxhkitmmiyTJtFwff/Yg9UadigPH6UNSdDYU4xyebeIGIcOcISVqZFSPjG0wlDZZK09Rah7g2FyTfFwH1cQTGq4fUrogoilv6xiyjNSeJ2moGIZGy/OZbTgMpg2CMDLCeH5At2wZreIuTqevIGNp2OkimTVbsTQ5GgN60YEAzMfX0zRKpC2VrG2Si2noVnpZtFMQhDx7vs6x2SZrczZv39HPULGA0OMcmqpSdwJcs0hOVNmal2g5fsTK6AWMZK1I8Ww4lFsO1S6ToiSiMFs12U+ifwN2NwdSFhIbijEkIQjCkFlXJt46hQii84bSBqXgLIQ+YRiFgU8UYkiJfsIQbpzIUWtHIZVNx+O8Oc5zxnZabpehtBkRctQdn5mGgyQE8Q23cHrtXTxvX4EZNKKSEwE05SSSBJIIIQzJSlUy9UPgtsic+BojMw8i6Tb5RIxCTEORJSDE1GQkRY2Id0J63lBLk3D9kLht4ptZhN+h4im8SITjqoL2akMQhvhBiK3JnJxvMZIx+cu3bObjb9/GaybzP/b13f7dVN74+R5jo2hXMH/415hPfRL8NlLtNMl/fCfNy36dzuR/+LHvt4p/O1w5kmFtzsYPouKV/+naMf7gtkn8ICSmKfz2V57lD7/+PE+frfLwkTne+dknfvSQR0mJvKyJNQi3ibXv4+jPfgGpfobK7X+DO3BVVL7BvzTb0SpW8T8b9eocx8uR10MI6PNPY4ZtztZDwtQoSVPlkWPznOoYHEtejuxUCbv5Npos0Rp5Lc0r3svGRAc1aNMIDd62s5+0rSFE9HLftSbF5WvSAEzXO/jBogcuInGAqpTmX8p9tLUUGTsK3Rno60eWBOv7U2RyJRARFfe+01WePlsDIg9axws4Ym2l3XHoILFzKAlAwlC5ciRNSvXZNpgkH9cxtYgYwdTkKDepsIPQKlALbbzUKGWtj/LUSaYqNWJ2nEyuj3b/HrLJVC8cqxDXkSVB2lIpxPVo3BIGCVNFlaOxOVG4GdnOMmuO4AdEeUHlReOPCD1Ep8pU3eH58/XIMg0QRuPan+wKukJAbj219HrqbpRQtWdAQ5EFtY7DYMqklC+xJp9h71iGY2WPU0EWW4sEvzCEwzMN5uMTnCXDCQokTBVLUzA1mS39SUI9iSfrDCZNtvRFY7fvTJVvPDfFP7pX4CWGGXIO4w7sQRhRvpwAFLdGvHEc4dQIFQNbU2i5Pl4QsmtNiv7BMRJ9k9yxqYgdS9LSC9GcUFSmUjtQtG7kihBsH0hyLLaTebVA1tJJmAqFuInntCjMfpfO3CkArliTwgtDhjMmO9MextQPgEhgbul5zmb3MpAymCzGyNoa7b7dzPZdz5GZJodnW0hCYCgSRpcV8JzI8yyj1IuXUx64CSQZAh+BwFBlRrwjZEyZsayFJOC0vZnvSdsXn6OAdmKMUDZ67bh6bZaYLuN4IUF2PZ3hG7A0mVxcJ2dHDJPri/Eo1PbYPO12kwNnZnhuPuCAtZNczKDa8djan+BskOaIsRWAuabDusbj9DX3Y6pyd64JXD8gY+vY+WGSmTxJUyFuGkx71uJCD+F8mEGJl6ICzkJg6gbb7DJ6aSParl8ga0aerx+erjCes7lyJM1c6QY2jQySj2koXfIeOVYgq7QZTBm9UMyFOdFyve7/0Vo5UW6hqzJy/RRCURnMpdFVCWlwF7amEAqYrjsE3bDH0awVkbrIEqosSKbymANbevcYzVls6Yvm4EDSIG2pAORjOnFT5RCDNDsthLPYLgA/CDg232JN2uT4XJO5hsuOfptiQgcJMkMbcCbejGZGivNMw6Hj++iyxNqczU2TeZRumxae886hiJq/pWY5mLqOsKuKiDCMlq2tkUwX6ajJ3nhszOsRI2V3L2l7UG15pGwbWQjUrnHDUKUegcqaTJx1+ej/lhOFSi4EkAkAWePa9WvwhYpBByVe7PU7bihIgBK00XQD3bRAMTiY2Mt9na10vICkqWIqclephJmGQymhM5gyCcKQbQNJcrbG9oEke0bSTHU0XDlGbOxKNHXRWPFCWFXQXmX48LeO8jOfeoz3f/VZcrZG1tJJmhrr8i+PqXEB+oEvYzzzt3ily6Liwk4D48n/jv39PwfVpPL6v0VqzpD68lvpTLyJ1vZfeYV6tIp/K2zpj4gGvndint/7p/0A3DSR55N3bedEucXWgSQ7+hO8955n+N6JeX55zzC//7X9/L/fOvqj1UxTTSp3fIZQtZBqZ5ArxxCdCqGRBiGwH/0v6Ae/8hPq5SpezXBdl/e+973cddddvPOd7+TkyZMX/eYrX/kKb3nLW7jzzjv50pe+BIDnebzvfe/jHe94B29729t47LHHLjovyE4wO/AaivEot8fzQ/xWFJZ7y/oCN07k2dyXIJVI0leIvBUtPTKSXTaUIhPOIddP4bbrnNdG8JPD1Doee0fTkRAvS1HoVpf0ou0GgECRBdeNZxlKm93ipyGq18BwyoxmLIq5ArZhoEiCar3O8dNRjcFiXGcsF3kowjDylvcnDdb3ZchpLtcP2+RjOqWEHhWNFQK3fzeykaTleEhCMN/yiOsKSSPKnak7Pr6kYSVyFGI6HTWFnBjAGbuVUIvRdgNGc9bFYxeGyCLy1pmqhETkCVpAs1Gl7/z9bMjJpE2FodQiRb3m1RFuk7W5GJv6Iu+OkBZDtGVJEDMUFElQTFooioaHhFfciR3P0HZ9gq7leihtcvP6PE3HJx832FTQUWWJuKFwy/oCl61JccXEGjr57cxk9zDbiATijKkhKxpoNqfyNxCEIU+frUbXTBlcPpziqtEMQggsv8pk5WGkMCBpKsiSQF2zm86aaxBOg1Axabk+03WHS8W2DCYNJEmmWdrNruFs73je1rjKPkM+EaPaiYhAFEUB1eKwtYNpPxq7Y/NNUqaKrSlUGzX8eFSPVFMkinGdYlzH80O+8VxEfKDIEkKSGUgabCrFkaVI8SolIm+k0zX/N7Q8TZYoxUKi4/k0AoVEIslEPoYXQsOXSGcKvXYPJE3c3Kaep0oIyNoaXgANxyMbM0C16U+aZKyI3fDIbJOPPHyM2aYT1RoUOvNynnbH5bRjU265XDkSUcTfOJFj3cRmAivPlr4EO/e8hjUTl0Xzz8zQVtNoskTSVFhnVDElj7YbMJRQ2Ksfiaj84xtx+3cT2EW+44wt6AaM7v0ZGpKNLxkouk2icxbRpX/XZEHKVOHEt3j8yDmOtaKx8T0f30jRvPoPGM4srglFEmRjGp6//J0pAZXAwEuN47sO5yptTEVmLBtDVyTCMGSyEMPSZCYLcUYykYI2kDJ7nkppyYSSBHhdA89EIcYVw+ll9xOFTejFDQTm4txSZYmNpQR3bCry/FSdU5UO43mb/TMdZEXnijVZZitltCNfAyJvnueHyF1DVNsNUKSIKCOuRwphTJc5VW4h1c9gurN4kt4zXEGU15gwFNZpMwRCQchqt4GL6kpIiJAkmq7PtpLFG7eWesf7kwamKrNFPcU293FOX1AayNaUrrd6sSbh5r4EAykL2YiDEGzrT2DIMrKALaP9OPYAAZFnvj+fZe+6PjRZ9NarLAnM7trw/GgP6ksYGKqEEIKm6/MlZw92LI4PzEpZ1iTUKA/1ElhV0F4lKDcd6m2Xb+yfjgp2qjKXDaX41b0jr8j1vfQEXjf5G0C4DZTpp5DnDlB+/d8hOhVSX34L7Yk309jzOz0rxyp++nHlSIa/eNMmwjDkM987ST6m8emf3YGlydy8vsA9v3wFG4pxPvLtY1yxJoUqCUQ3TOGlIjQzVN74RaROBcIA9cyjGPv+Bql8lNoN/43O5FuQKseRykd/gj1dxasNX/3qV0kkEnz+85/nXe96Fx/60IeWfd9sNvmrv/orPvWpT/HZz36WT3ziE5TLZe69915M0+Tv/u7v+MAHPsAHP/jBi66tqQqpeIzztQ6aIlEa34U5GHkIZhtOtzCs4HD6GiRFiaz2S9aEUj6M1JzmiJthRhugElhMVR0sXel5nJ45V+NE10tnaTIjGRPPj+p9SSJiEzRVGUeJEerxxRCyLjvb6OAQuWRkNbc1hb6EjqHKhIAiC5KGSnHuUaz8CMl4xOh7rtrp5aAGsT5MTeH68RxXDKcYSptUWi79SYMt/Qm29ScIwxDHD7E0Gbt9Fn/q2cU+SoJS/GIyqrihcL7q4PoBsiThhSEbSnG0rncmZpqEA7t5ek5Qc3xWyqXPxw3yMT0iLeja2b0gQHRDQMMwpOMFnHASNKQEwu8gyZG1u9n1VkzVOvyP/dP84FSFQi7H2tSiSHSm0uZ0ucW/ngxoG0U0WeK6tTlGsnZEAqAYiPY8N/nfYudQREsPkDJVEnoURioEnM9cwbni9SDJBCHENJmd4gBXakfxk0NI7XkkIZgoxJClF35vBiEoEj2ylgUIITCFS2f2GHUlSzFuEDM0LCWkoPtsH4miXaptn02lBMWEjm+ViMWT7O4K6W4Q0PGjAt+b+qJ5IEuR1zVja8ypJZrJdb176oqE1BVPx7M216+L8ncII+KLthughg6duZO9uZwwVPKxxVyouK6QNNWL+il1CRbqHY9QS+DqkcJwrhrN6Q3FGEMpk/WFGKW4gu6WUeUov84JQr57LIriUGUJcpO4g3uJ6QrFTBrkaH24g9fQMPvRFImUqTHb8pmt1ul4AfumPR5Sr0WVJXzZIJ5fw9b+RGQQ6bYxc+yrhKHgmDICCAoJg+FsjA1dVmxVltDCDsJp0KnPAGBoEoZXQT/ydfK2vuwZrs1ZWBdQridNFU9LIjlVpOw4Z9sqU/UOj50od9fn4lyJ6zLr8rFlSocii8X6tkLi8HSTZ7re85XgBiHV5AZQF40hrh/w/FSdE3NNsrbGDetytFyfwZRBsx2VFQiFivBdIMp1BHqMlwvtGc/ZbO6PxiamK1HeXHIEkZ+kL6GzpTvnRBh5KIMQKiJJrH0WES7UR13ob5SXuKEYp3/325F1q+d9r3d85hpRSGQ1sZ5T2WvxuntZTFd6Y3PTZH5ZuG0rkDgx38SfPdw7thDimDEkTGeeTm0WuoQlrW7ttAU5VxYCLwhwvADHD3pK4cNH5phpOBycapCNaSSTGdzh68FI88RMyEF14ws+j6inq3hV4De/9CSv//j3KLdcdg4m+Y97hvndW9b1XngvF9qhr2L+8GP4+U14fbsiq8cTH0GuHKV+44eovPkfkFqR56y94e00d//WqnL2KoShyjh+lL+gSBGF7h/dvp7RrMWXnzzLlv4Ed//iLkxV5vNPnOavv32Muz79ON8/8dIJRIJ4P+U3/T3GgS9hf/8v0A/dS+rLb0GZOxAVpzz5TfTD9/0Ee7mKVxseeeQRbr75ZgCuvvpqHn/88WXf79u3jy1bthCPxzEMg127dvHEE0/whje8gd/5nahuYyaToVwuX3Tts5U2T52p9fbY4XXbMNKRMLxgqd7Sn+DqsQzriwliusy1g4tCmDN8I27/borVJ1HDTi+PYmmO8A3rcmwqxYnpCrIsIppx6NZRirZaVZa4bvtGOsM3cny+iehUEd2Q4H4rJKFE55yYb/HDM5Uo1CfsWu5tjc7wTci108uUx6VtaDgeT5yqsCZt0uxEOU4n5ps43TysYkInbWlkLJW1OZuxJR6zt182wEjmYg+arUUU+xCRV9y2vkDCUHtjGcoa7VBhKGkQBCFnKxfntz52qso3D8/2Psty5EFbaHlIFAKWlltoiiCU9YUySj1hTeoyOl6/Lkdr/jxOe/E+mhIRoxT88zSbNabqnZ5FXAChrBMaaZTJ10YeEyAX0zhVbvGvB2Z45Og8AkH/zMOYnUhIr7U92l6AXDuFXDuFVDuDHx9ElQUny63evFkJlbZHrePjr2D4mk7v5PD4L9MuXYGpSvzi7jVYuo4++wzTpw8CMJIxqXZcJAQxfx55/iCpbpjbfNOl3HSZrjvkltC3CyGodzzOezFENzf4uvEsfQmD7YNJJvNRjS9FVemM3UZ7y8+DpBICKVNB7ebo3bY+j65KnFnyHFuuT7nl9T4vPLcFpaLp+CCrzBciRsHtA0lunsxz3XiW68ZzJEyFtCETChkvlJAlib64vqLSdyHMQ/cSb55gIm9z/USOVKZAf6FI1lZZkzKI6TJrUiajWQtDkQhC2NqfIGMvCvW5hMVg0iDUYkwNvJamkmTf6Qp+EHKq3ML3QxK5fsx10f4zkY8jp4cJZZ0js41eHmPUZxafa3d+1jseZU9DOHW8wlY8SY3yG3ORpyxhLrbl8ZOViDyoqxAFYbjMI+f2Xc5McjMBF8+dhXGvtz1OlZevM0lETIbH5ptkLJUnTpaZqTsIIajkrqCJRipm0Zl4EwipW5NNo931hi/00VBlBpImcV1B6hbzFk6NSatOylB7+81g2iBnazh+gCNZVKxhxILnTJIJ7ELPkyZLAllertT2JXQydvT8Z9rQFibb+hOkTYWUuVjmacGYsoAAmefsPfjxoZ5yubkvgUSIcJvImoFpaCBkTlfaPHYieh/IAlQlCq/seAEhITFdYTxnc2C6gdQN1wTI2TqHGzon7a0U4noUfbCag/bqxvPn6xyarvP9Y/N4Qcjnfm4nf3XnVt6+c2DRevIyoR36KvEHfgsvv3nJUYF65lGSX/8VRGsW7fj9pL78Vlo7fpXmFe9ZVc5exdAVif/j+jEsTeZD9x/iH/ZFRaUnCjEGkwZZW+P9t0zw0bdt5ZFj89Q6Hu+95xk+/sjxZbkzl0KQWEPlTV8iREKZO4iX20zy3p9BPflN2pt/jtZlv45UPYV45h9+kl1dxasEMzMzZDJRyJMsy0iShOM4K34PkMvlmJ6eRlVVdD2y9n/605/mjjvuuOjahbjOZMHu1SNaQNJUegVI+5MG1bZP1RU0QoNnzy8y9SlTT6JMPcm+/BupKVkGUiYPHppZsR+7R9LsHk7jdYW4pfkcC4jpSm+dia4H7TvHKpzqCsWSgO39iZ4CJXdz3NT2zLJzbt1QYDS7qFRJQnCu1uHvnzhD04sEatcPaXRrHMX0qOZPLqZj9W9EzYz2zn3k6NyitfkFcK7mMF1fnmMadJr0l7/PVSNxLh/Jsr6UWPZ9KGvIyYFlhV7DIKTS8tBkQSmh9zyMrtNB8l1CPYkQAkUSJLoKWi6mc/14lrPVNhNFm4K1OJ45W2PvWIaNAxmKukfGUiPhbUFgVLreIDUiUbl1Q4GBpMFtG4rcNJHj1g0FNEUimc4hWBK+6Sz+L3UqSO152m5A0/G5FMGyJCLyg5n6xfm4xdnvYoV1Kp2IROKhQ7McL72WM303U9ejsEJdkVC6LBGyohIkhxfHrrs9Pz9V77E4DqYMRjORgrInXcU8+QBAj5HTUGUMVe698pXZ/RBExZxVSWBrMrsmormwdSBJIa73vHMAMw2XRmdRQVvaz6V/F9DxAqZqnZ53Iq4rTDU8BtMWI5nIS5uxNDYUX7y2qxCgenW2DiQZy8dB1mgqab5nXN0jn9AUiYlCDISg7Ub1wBbWWxArMeVozM1Ha2ef08/+stT1XEVsl7oqMV5IUCwUezcNMhM4Y7diaXJUqL0LXVlkbxTA3rEMV46kGQ2OIzWjkNOxjEV63V4K+QFkKSKjuXXDYsjo2WoHVVpUXpYiiPVRNwcvOSYxQyFnL1duZUmwvhjjmrEcz56r0fZ8Joox5hoO2dIasrbGXGUe/cA90X3CkJGMRcZUsTS5Z7hYwJpuSDGA1J5jZmaaSrfWmKFJjOWTbO1P8PrNRYaUcuRB65ZtQEi4A1eBJPNCwTkn5luc7XpaJwsxYrrSm3sXhjouhRDQkW2EHO3d+fjinh5oCdZNbiPc9vMgBMMZi1s3FCJDjRBsKMZRZImkqTLZTSVK6DLDaZO0qS17FsPp6JnPN93oeb+IuLxaOfinGH4Q8rv3PcvJchtNkcjHtSj04BVQkrTD9xF/4Leo3v5J3IGrUKafQjv2L5G179xjlN/4RYyD92B978+p3fyXOCM3vQI9WsVPC9591TCi++KSu5vW3T88w788P82f3LGBT961nXueOstfPnSULzx+mr6Ezh2bSi/p2n5qjPJb7yF1z9tQyodxkHN7AAAgAElEQVSoXfenJL7+K9Sv/eMo1LE1jZg/BgM/2T6u4qcLd999N3ffffeyY/v27Vv2OQzDZYarC3MlL/z+b//2b3nmmWf46Ec/etH9RvM2JyTBcDFOKrWo0LhSmXkvYKJ77OqEiSBkfqaDI4neb0VdIlQttKE1TLRcTFNlRynb+96yNRIJk1SX3W3eC5FUhXO1No4sY9kayYTR+/2ZE2UEAsvWCRMWpCxuuXIbQmyLPCEhtKYbaJJELK4jSxKplIU4/Tz0r8XM55bleSzA8gKG8jb/8ZoxvDDkibN1YrZOMmlh2U0ShrrYp0oNpDph97NqqASqsmx8FrBlKMXB6QbpuM66wRSGKhOzGwSyRLaQIbb5Np4qB1y26Q429eUAiM238Do6tiEYTNt0AokTcxE7oiwEfhhixQzMEJJJk50JkxP1n2N+5jtMDIxjxS2Stk4g0WvTo0fnmKo77EhahLksdI8fm21weK5Nu20yY40iZJlsxsa0dbSWQiyV7P12AaebHg3PRbV0zlfbTBTjZPfeShhGnjrL1kgkTaxGIgpDtTeh46Fmba4zVdIrhIMuzIV1fYnu89V6bZdlCcvWEGGRUniGU7EN2HEDy46E0ZR7AGNwnGzSZs9ohi98/yTJhEGxL42on+u13+oaGXRT45p1OVIXGB3uP5Ukv/baZc+x4/pRf+Jmdx6dI5RKVJN99OVsNu95Fwnrhb1ZoTJP3Q9JpaxoLictUvFI6c1nGmTSNilbo+QGzDk+mbTFZmBTf0TGkm24CALW9u8gIVLoB2eZ7Xg8fKLCHVv7XvC+AMLSMdoqx6odqodmmOifJKnWOe1WOVFr89R0k1s2RoqVr8j05Wy2DiQX5/npee4ozeHbKma3/X1Jk76UQTJh0EAQyhLxhNkbY2HrhHEdUhZpJ+C5c9XF6+kq45UOkiSIx6M1vWNtnpo7hJ3LY6UsdEPjB02L1LkGt+kqZtIGIzp/7/pCZKAJwZpvUczGuHxdYVmfLVujlLaWPUPL1oh395DBvIOlLV+rvqFy8GSbRMJj73iOcsvlKz88w6/euA5bVzg3K4FqY266BdO2CIKQvpZPMR4Rj+iXiuCytzPa53L4UBVFlugYu0j0DYHcnd++zYB3EJEyIgKaJYjFDRJJ86J95abNfciSIGVpDHV8mmGNfDbGluGoKPRUlw32wvNMS0PX26RTFoZtIM03sYQOlkYYVxGOQliKBI56x+PkXJMNXcIVYesgq1wzXOTZs9EzNSsdArnR258tW2OwECeZNBiWZRKmQqq4hrJqv/D4sKqg/VQiCEO+9ux5jsw2mal3sFSZrYMpPnD7ZC9048eBdvifiN//m1Rf+4nIYgEERhbfKmE99v9Qvfkvsb//IZTZ/ZTf/CX83KXjaFfx6kO6G7/97Lka/9+TZ7lsKMkbN5c4MFXn5z/3BH/+ps28ZVs/143n+JNvHOCjDx+j4wWM52y2DSRf9PpBcoTyW79C8is/i37k6zQu+w1iD/8hUv0srct+nWByL9KpQ5hPfITG1X940Qa+iv/1cOedd3LnnXcuO/bbv/3bTE9Ps379elw3KrarqotCY7FY5MEHH+x9npqaYvv2KI/s7rvv5v777+fDH/7wsnMWYKkKzYZDUhaUy83e8e2FGOoFxwgDWi2HpuwtHo9FkQmt5hRqGNJqOmRVqfd9s+FQq7bQu4wWz56Yp+36JE2FWrVFs+HQqHco69Hc31GMRflp5xVcRydcen+gXmvTabm0Q6haKqokUTZk6L8N/eC9dMyJXl3LpQjCEKft8ujBKYbSJloY0mw6VLttMAh7bVbaAgITb0kfqtUW5RXktB2lGIem68hBSLvRoQ3UGx2abY9KtcNms07FTGMqeu/6tVqHZtOlGXTYP3OMjhZ5P8dyFv1Jg7mGi03I90+WGbKjXL6g2YD6HNW6QxC2sA2LQrbUu+Z4UmddSqdxTMZtq4vj1vGYKTdZm4/zxMkmhB0qlRbNhkuz5VJthgQXjHGfKfPksVnOzzVpuz4ZVeLAw3/P8Lqd2H0TNBsOTrPDfO4qCEPMfZ/Ay2+mXWnx4IFpbprIr5iH1mw4mAIGUjprc3av7amURbPhcEZdy9qcjX6uhhEE9Jkqti5TPXyE9aMZSrki8+UmU+UmVwwkqE2dRS4fxVWGeteHKL+tWmkiu4uerXrHY77u0mn4tOXF/jpeEM1Bo025rKA3OniVJk25TbPh0Gq0CR334gffhfB8kt353mw4VKotVD/yLs6VWzRTBpLrkVEEVw4kCDouA5ba6/szJ+aJGwoDdoZOu0On45NM6Iwl9eVrbwXoTYd22+Pq8SSj/Sl+cHiGar1NRlfI6jJZbXEdVptOdx63KXddnHqjg1yfAy1Ludzkim4u5jefO89rJvNMz7Vw2h61WgdfafbO8aotfLmJFvhIftC7hx+ETGZM9p2uUjej8UxKkM3nqLXAKzexZNhaiBFTAzpnHNxKg7AdyXsxATgerY4X7Ru1i9fc1UORB3np2ER7TJuyKrH/ZJmUpZJfUptLazvsGkhwThE0am0een6a6WqLWqWJqyn4jkfSUCi7FnSv+/zpMsk1KRTfp8ULQ547gHCbbMpt4AenKoRBlfJcFdSu8hSGiOQ2wkp7xcispMRFz3lBCig7HgVdprAmRbncpN9UCEKYLbcIw4vP8zoeQ3Gdeq1Nre1RrrRoNjoEQRuvXEOuNnt72plKm6fOVOlbKH7d6BDKAZ7t0mw4lMtNpuYbnJxpMpm1KJeb7BlIIIuQ50/OM9902dKfYCIXIwxXFbRXHQ5O1/nQ/YcxNZmPvX0H3z02z/9+0zoatR+9DtWF0A/cQ+yh36F628dxB/eiH7wXuXyEzro30tl0F0GsRPyB38QdvIb5n/k6ofbi4QSrePViYynOn9yxAS8I+f2v7ec/XTvKRCHGr3xxH79/6wQ3TuT50Js38bXnpvjgvxzE9UPefdUwv3DF0IuG4AZ2ifKb/4HkvW9DP/JP1Hf/n/jFHdGXXodQsfAzk6vK2SpeEHv37uXrX/8611xzDQ888AC7d+9e9v22bdv4vd/7ParVKrIs88QTT/D+97+fkydP8oUvfIHPfe5zvVDHC5EwlItCeCAiwLgY0VxfLMAL6slvdT1W63qhLrWOt+I1AfaMpHE9n28fXczrXLqEFoxzfmq0R12+FKVEFIZ87oL3hHr2e9E/4coJEZIQVFoeTcdnNGOhSIKhtIkqC/aOZZZHbAhpRS/cSiglokK31fpijTNLlam3PfDa5JsHcRNrLjrPlzS89Do6/mJo6tHZJuvyMWxN6dVCWsBQLCRZU3pU3s/EriYmFgWjWsfjxHyLXWEIweK5KUvlhnU5mo5Pzo5qVUV9jEgMeiGOF4zVazcuUnWHYUhqw00c6chsAUYyFposgRI941CLAaLHiHgpkhBJCPoTESX/hRg69w0MbQeQQ5UlxvM29Y7Hk6XbGNANBiRB4IWszdqUEjphJ46fHu+dX4jrJIyI6v97x8vLQucsTeaq5DzquSM4iYvD5JZt42HQy+F5MZQSepeZtHudpZdhkWhCCNEjm3ghmJqMoUhkLG2xzMIl4PZfQdV1abk+R6brvXufqbSwVHlZ2PLCe2ppP93CNkIh987TlSgHydaiHKvhjIlcihGKC3KdjIiUJWGo7B1dnL+yJFY0rsvzh0EIvPxmxrI2cV0hDKNSBiutV0OJ8sMt9eJ34ou9b0sJ/aK9RxDlqabycfadrlCI66iKhNGdgylTIYbK0kzzhK70SDsuBeE7ELgU4jrXjmexz+wnDJdkyQlBuIRR8sfBoZkGqiSxZyT9gr9ZWN8L5S4ihCApoCzOqf6kseIcK8Z1rl8Xefp77I7dMV8Yj8GUydlqm/mmw8lyk8GkedF1lmJVQfspwkzD4UP3H+aRY7NcNZLhmfM1+pMGP3/F0EtaEC8FgZGmcsdn8Io7IQxxizuR6mdIffF23MGrUc98l/q1f0Rn4s2vyP1W8eqALOCWyTzFuMHNk3kGkga//0/7OTzb5Jf3rOH2jUUuG0rx/n98jo995ziPHJvno2/b+qLhuKGRovwf7iF179uIffeD1G74M1QhIX//vxK+4Uu0N78T0S6T+Pq7qN72sYiafxWr6OL222/nO9/5DnfddReapvXYGD/2sY9x+eWXs2PHDt773vfyS7/0Swgh+LVf+zXi8Tgf//jHKZfLvPvd7+5d65Of/CSatii4NR2fcuuFPQTL0GVb1OVFoSqI9RHKGiURUbufnG9dkvlUVyIKb1UWPWlxpfWzVPBeCtcPqDseAoHjBah69M6Q6mfxE0Mres8WcP14lnxMQ5Ik1uZt6h1/RUVBtGYR7mIdpYSpkFhRYY1gqhJLeeW29ici4UiR6Kx7A4/tn2F9UV5GS+7LJqEWcvVIjFDS+PaRuWUMeIbaram0MEaSFBGSdD+fqrTZsESJO1VuUW27kSC2BAen6xyZiazms02nJ2xB5FUMlUsLVwttSCUz9HXbNFlcXu7GWXM9wnfQFYmdQ6mVLnHhBVc8PJPcTNpf7hU4PNNgoPIYE/3bgQS2pnDTQi3UMERqzRLEo7Atxw+wNTkioViB1OXpM2V2L08D7DVFLFGtQs2+pJK5FIWYDuHib5eeF3RLOBgrKBoLiBlKr61+EOL5wTKF71IIYv3ctAkePDiDrHcYimnoXcKJ83WH/edr7OnS9a/UnSA1iu+1EOFiPqEiCfqSi/XppMwonrWo6HYm3nTJNq00nm5xO0iLlPnnam2Oz7V4nRSyUiKWIktcN/7ylJrztYioaHhRbyQIQ75zdB7DqbClP4Hjhzx0cIa2+8LPpj9pvKQ54OU29f43VZlg+NqX1e6XgtNd8pML198CsjGN4/PR+lnYPwAIA0JZI7AWawiXmy7PTdV65RwidD2rCyGdF7BZLsD1A4pxg7ihUm37nObSTpVVBe2nBA3H40MPHObbR2bZUIrx7aNzvO81616RkEYA8wcfJYj101n3BgBi3/w9vMwkoWJiP/pnhJJCqMeZe8eDhFbuFbnnKl49EEJw40S0if3Nd0+Qj2n8zTt28J+//jxv2lIiH4vq7Hzirm18/onTfPhbR/nUoyd57YYCfS9m8VQtym/+Momv/TLxh36b+bd8Bf+Nfw0I1BMP4g5eQ3PnrxHqqaigtfziBSBX8b8GZFnmT//0Ty86vlTxuu2227jtttuWff+e97yH97znPZe8tqXJqD8CS648sJPddn/vs9/1Dm1LRPP1XLXdS/IHyNgqCeNib9rSckk/Srpxw4nyRVOmguMHLIgqnYk3oR+8Fy+/5QXXTjGxuEZNVebITJOm419EDe4OXbNMcFwuxFyMQtxAWUIgJEsiEu7CEPXkN7lsYBdxa/n+IPst1PM/xB69hVCJ7r9nSU2npSQcEAlnQcOl2BWitvUnllnANy/kkhyoIXUq+N33W9bWmKo5rMvbNF2/R9cN0Bm6llB/8VBtgG8dnmWiEFtGvLIAdWofzsBV+EHI4yfK3LI+f0lPxwt901EzkM/BqUV1d9tAEim2kcC62Ggl3DqivcTvEUbKvipLFxl7m46PpsiokqDDCug2akEBkbukDy/msUlbWi9Ufu9YZpksE9MVYtqlIyME9AwafhAy/jJqvSqyIOxeywsC8jGd/oRgfWExMmhBYbqwO0F8EJawIoZAa4mCGBjpiKv9JUKs8HSD5Ejvf71br24sayMfEfgrMDL+OBjJWBd5/6Oi0kmmLI1a2+O7x+ZRZHFJL+lL8WAC/1MJ5YYz5iWVxo3FOPML9PxtL2KNlSFULFBMgtiS0gNBQLV1MbnNMnRvtTa3PITR9UPOVdsMpQyGUgbV9qWvs8ri+FOAz3zvBLd/9FEaHY9iQmff6Rp//LoN3L4klOJlo7vBuX2X4+U3I1WOQRjS3P4rBEjEH/hN/Fg/1dd9itpNf7GqnK3iRfEb143xMzsGSOgKd27rIx/T+eIPznC+1kEIwTsuG+SzP3cZ/+P5Ke781GP81r3PUHkxT4SsUn3dp2js+R1SX74TcfAbCKdG7OH/TPIffxY/MwFhQOpLr0eeefbS11rFKl4BFBMGN6576fvhlNLPg4cWaeG1k99EPf0IT5wq8+SZKq4fEi4Rui5fk76oTEoQRt6FIAhZkzEjL8RLhCKJnu60UCsIIrZeL7vhJRs2FuQqL1jBWyEpIL84zXnv5y8kNIUBUrtM2/F6Ndl6Xy2EjUlRjtl43mYpSeyFVPUThTilpNELvax1vGVsiafKLb59dA4/PohvLxIZJQ2VbQMJ3CAgaS4qy9eOZ9k4cnHo5aVwsrxyNo6XnSTUEwRdEpEXU2pe6Ov+6W9SbB/mNZP5ZceD5Miyula942ZumQej3HI5V1tR/SKmKwwPj+NfEJ0gLvi7gJfqQbvwHkuxdyxzSe8ZQNJQeqGhQgh0RfqRZf6lbRUiGgdDlXvlBxaOw8UKVKgnlinpiiTYVFpU7JT5Q936YC8N0gsNaBdxXSEI4OhcE4RMqF6s8P+oiOlKL5xzohCjL3GxchWGIX0Jg6l6h4lCjJsm8ihdJT5Ufvw2/M9Aw/Gpd16YTTamK1w5Gs3vWpdZtDN2G17psot+m4/py0KAV0IvxPGCtWBpMnXHp+n6ZCxtRQPcUqx60P4do9Jy+b8fOsxDh2Z57cY8T56pMZy2+KPb17P+JVDJvih8l/iD78MZujayfoUBqbtfR3vz/4a57+MIt9krEvxS8wpWsQpFEiAJjs41OTDd4NYwZK7pLAvfGs1afOpnd/Jn9x/kvmemePMnv88f3DbBdeOXEHiFoLX9XRA42P/8PuzNzzB/533Yj/wp6S/cTGP3b1G95cMEqTFEc4bQzKzO21X8u8HSukcAXn4zoVDYqMYRQnC20o7yky6BBWFRlsRLohNfioVwyL6Eyalyq3etUE/0cmNeCuRX0PK9ezTDVGIFxVCS6Uy8iWeem2K95CwT4HuVzrohiTN1Z5nV/sLmDaQMtIqG0/0irit0lnrDvICkoeD17Vp23v7zNU6V2xiqjLvk2V1YQ+ml4IV0Fj+7AQAduPkC5WrF67yA9F4pXEGgqS9ZOZKcKlLlBF7X4FpK6JTiKyv7XhDy6JTEjRPXsEycXCE3Cxbnx0/aPzLTcMiLxZBC4NKsgStgcymB0BXmyi10WV5xDF4uK7Yz8pof6fcvniNmUGm5HJttMrnh9S+rTRdi79ilPdwAPzhVxWnNsXcsQ+MCJccrbCWM74T6Swst/bfCSqUpLsRFypLyEj2BK6H7KI/PtRjPL/eiLRj1Ds80LopAuBCr0su/QwRhyFefOccdH3uU587V+eDrN3Lfs1P4Qch/ecPGV0Q5E50Kya/+HPL8IdzSToynP4sy8yyBnib2zd9Fqp1m/i330Fl/56qQu4qXhclCjN+4boy2F/D02SqaLPGX3zzC1547D0Qv09+9ZZL/+saNBGHIF39whrbrv6g3rbXz1/Bf8wGMpz9L8r5foHHl+6m87lOYT3+WxL/8BsrM0/z/7d15fJTVvfjxz/PMnkySyU4S9i2AsoMIhEVWFUEQUGqp1WpdgIrVimG51fvzXhUXaq9o3W8ptUUERRR3IcgtYS/IvsgWCEnInsns85zfH0MiWUmGbMB5v168mMwz88x3zswz85w553y/YRtTMR2TRa2lliMm1Fihvo4whILejNmgq/OJZdkpXG3rumpSNi2prJBr2Ymnt81wRMilOwdlWoWbA6MVDXAKbjXpiQqpfuTOdGQNw9qFkmT7eQSoQ3QIHa0XPh8ufC95Na1Cp9FQZVqZgtCbKqxPvXj5TqeY0PJpjhdLjDCTHGcNek1PhQhqOPk2HVmDWnK2HjuqetXILjH0bR2BFlq3MiYAwmCtMBum94VaUdXx+TWiQg1Vpj6W9QXDKo1+lb3PGnYCXlUur1ZeQ0tVArUBeyZWfR1rE2bW0zoyBIXAOryCar57LBfWJHl8jdsJqUvfOsJiuOToTUMb1D6Snonh5Du8bD6RX3Gjol5eR6aJdI4NpUtc7RkTy8RZTYSa6vkjTOXjW0BUiIH21UxrLnPvoLbM6Fd7rSB55t3CHMou4VfL/837W04zf2wXfnNjG363ei+xoUbendE7qOkDlanFp7GtnoJmjqTw9hWozjws/36TiI8DNab81gQKZnyDCG2AKZTSNc+sV5nRL4moEAM9E8L404bjvL7pRPmIWkrHaFbdF/j1+pd/28nEd7bybvqpKiMOFxODHqF47Gvoc/cRuWoiWkgsBXd+hbvTbYR9O5fiUX/C3WkCatEp1KJTTfI8Jak2ZoOOfq1/TgRhOLsFffauCre5VFHnshP9uiZDuJjxwhSwsgxvZSfWpiNrUIvP1Hk/Tq+fhHBzxcX0jcDbagAhIaEV1rtEhxrpUmmtkc1iqDA6r6oVp04KvRnNEgM1TDc7nG3n64M5Va6PDDHWeoJVHzV9bXvajqhXx6q63Zj0KpacXSiekmq2Vk8YrfhtHet0W5NeJc5qqpLARlUUxnePI7bSNNuyc5RLJF5sEGU/bCiKgtcviLjElLGaKEqgY1ndd46iKAzrFE2byEsnhbkc5c1VS8+21OPj/47n1XyDRlCkmbEYdPj8Wo1JNlq6TjGhdIyuWwctOtRISsfL/VFGoY3NUutavW8O5XD0vL3WvcgOWguRUeBk0bqDPPThHuxuL6mjOzM2OZb1R/MY2NbGynsHEBbkh8/F9Od2ELlqEu6O4/HG9cW2ahK2NXfh6TCOwtv/gQiJpXDqWrRq0htLUjAURSGlYzSKovDdkVx+fUMbNh3PY96nByj1BOZ7x1hNvDatJ7f3TAABn+/P5s6/7mDbqYIa9+vpOpm8e3fj7jCWyBXjMGb8gLPfIxTM+AZMYYSt/z2W3W9hPrq2qZ6qJNWZN2Egvrg+Fa671DSnMtWu/7oEIQRCQMiFjlXZKJyn/Ri0sMTa7lpBkdNLkcvbYJmDa6JVk9IdQITE4Gk3qvzvs4WuCifWHp+GdvE6tLK1dVqgg9Y7KbzCWptwi57urWqflRJq0tEqvO7r/SqraWpiYCiv7mNNNb09PB3G12sUtD58muBQtr26pIHVUi503PSN/P6ICzOVr8HUtMsfrzPqVdrV0AkLMeoa5Mfx2pQd+7X98GHS62hVQzHzxuDuMol/l0Tww095xIQaMddzCum1KslmJsZa+5reI+dL2XC09s62XIPWzM4Vu/jr1gy+OJBF17gwPr5/IBEWIy98e4RtGYU8c3PyhcWvl//hoLgKiPjiN7i63I7isWPd/Q7uDmMoHbwAnf0M/lb9KZr0jwZ4VpJUvf8Yn4xeVbihrY1nvznC/f/czXO3dadjdCiqonDPDW3o39bGws8PEG424NcEmhCcyHNUyYgEgN6Iq8fdgemNX/0W53W/onTwfFD1OPrNQQuJQfF7sG5cgGaKwDFoXpNmj5KkmghzxbTqep1yyTVoEHj7BrMOSlEUxiQHCiFfPE0qUIur7vQ6lQKHF7vb12BZhOtLmCpOZbs4MYhJX6ltPKWonpLyAritKiVCiLOa8F/iBP9yf1GvaQqrMeMHPO1uqnNGyBqnlTbiZ5oQ0NpWt9TpTSmw1LlhplNajXrMBpUfM520sTXuSFlNypo3tJZ1SXpVqbKmqVEpKsM7R+PXBIUuH3vOFlc5fq51QtWjmSt+PrS2WWhdh/dR5YRGlckOWjM5kmNn+Y4zpB3NZVxyLMtm9mPt3mz2Z9k5X+Lm28PneX5ij0tmMqoTrxND1nZ8sb1wJk8n5Md38bQeRsFdX2PITCf8m1mBk1pJamRlJyoOr5/RXWLQgHmfHmDFvQPKpwNc1yqMD+7pz0vfH+PZb47w4JB2vJp2nOGdonlwSLsqH3xaeBsK7vqaiLV3Yz68CmPGDxSPf6N8Ab5SfAa1+AzmM/9E8dhx9rwPLbJu03skqTaPP/4o585l8sgjcxg+fORl7cvnF3VahyJEYIpjMN8NlU+yf/ghDaBesZsaeWTkcpkNKsM6XXTCZLAEMt7VUILjmaXvcSK7gAfHD6z3a1iX9ruhnQ19DenWL1Ubq7KG7IfV9bXX6wLZJTUhgk6Y0Rh6J/3cqTXpVYZ2jAq6E2kLMaDXhZJV7K6wXwi005o1H9OxYyfmzJl7WTGX7Q+qtruiKPROCq+xUH1zyShwEmrUYTbo6NaEUxyXLv0zAL169S5v/169egOwZs3HACxZ8j+X9RjBfP5V5ul0KzWlxLnU/murewmyg9akhBDsyCjkb9vPsDezmDt6JfDgkHacKXQRZtKTWeRk1Z5MLAaVpdN61XvBa010+Yewpj2FruQcnrbDKZj+Bf7Y67BuXIjx9AaKJv69SgYrSWpMvZMi6J0UQYHDw8Zjebh9fj49mMO45DjCzHpCjXqeuaUbXx3MYfH3RxnVJQadqnD333aycGxX7hrcvsL+tLAkCu78ktCtL6IZrNhWTcZx45M4e/0GLbw1xRP/hq7gGJZdrxP1jxF42wzD0X8O3sTBckRNahFGJ8fWumahjMWoa9a3bGOvPQvGxaMOqqJUyo6moNqzINYP1fRpIxQXNnd2o8VW7PIRGdIwJ93N8br7/IKMAmeTnpwH43JHc0OMOlI6Rl8ys15jaomjUxmFTow6ld5JETTATNKrT5BJ9EZ1ib5kRlzZQWsCxS4vXxzI4eMfz1Hi8nFX30TGJccyJjmWEpePT/ae486/7mBUl1hu7hbHIynty2tTBE3zY9n1BubDq1BcRfht7Sm9cT6ezhMxZKbjFwLn9TMpHZyKMDZAyn5JCoLNYuB3wztg0qlsP13IDW1tFeb739w9jj5J4bz4/TEO59iZO6IT/dvaKHZ6eWfzKX7RP+nnL2ZDCKUpzwQu5u7HsnMppmOfUzJyMf7oZPyRnbGP/hOubjMwnttC+NezKBr3emAdkKJWWy9IkppKXTpnAE6PvxI7RTcAABz0SURBVEptsKZk0Kn1KtDd2C5Zk8hbeuFC9dv1aKh1XWAVhCJXw00FbYjMmfWlKoEaWS1p9KwxVO3YS/Dz9F6Hx09mkavagutS/Q1oe+nSJrKD1kiEEOzPKmH1nnN8d/g8vRLDeXhIO25sF4nFqOO/vz1KnsPD6t3n0KkKHaJCWDSuS4OsNdOf3ED4xqdQHefRTJHYhy7CkzwVtegkEZ/PRJd/lIJpn5dPAZOk5qIoCv3bBNbixFpNHMy284+dZ3H7NB4b2ZFws4FW4WZemXwd3x/J5aX1x9h8Ip/fDu/IwewSJr+7jXsGtmFan8QKX66OGx4n7Lu5qPZz2FbdhrP3Azj6/w4MIfiSBuFLGoRmikBXchZdyVmMJ7+j5Ja3UdzFVda3SFJL0xDfE5ejPgW6m5uosaRyQK4IJd9c90yK9dWrgWbCQPOMoCmKwnm7m3ZRlqu+kybVLMSoq1PdNKnhtJyfwa4SdrePVbsz+eXyXfz+k/1EWgz8457+vD69F6FGPb//ZB8/5TlYNK4rp/OdhJl0gOCxkZ0u70tX82H46UvC1/0G27p7UJz5FI9+lfz7duLpNg3zwQ+J+nA8vuge5P9iAyK0aWtpSNKlPHFTJ8YmxzKqSwybjucx/X938Onec/g1UZ7gYPVvBtI+ysJDH+yiVbiZZ25OJv1UAZ/tywLAdSFNuS+2JwV3fom762R8cX0wZP+bqOUpmA+sAC1wG1fPe3F3vxNv2xEYsnaAz0nEp3dhWz0Z06FV4HM2W1tIUk3MBhVDU+Qwv9rUMBUpWnEQ5TrXxMEEpzledZ8mKHB4m+WxJelaJkfQGoAQgl1nivh0bxYbjuZyXUIYvx7Yhpu6xGDUq7z5r5OM7BRNv9bh5PVK4J3Np1g8qQeqGqivce+gtkFl5QIwnPkXfmsi6rYPiNj+JujMlA6ej7PPQ+gKjhC6+b8oHfQkntZDyJ/xLVpEuwZ+9pLUcBRFoW8bG0un9iLP4eH/fX2Yv20/w4KxXejfxobVpOd3wzty37COPL/uIIu+OMTkngmM7BJNTombGct2cnvPVkztnUBrmyWQ/EbzgxBErhxPyJYXsOx+i9Ibnggs7lVUtNB4Cu/8EvQWXF0nY8g9gGXv/2L9v6dxdZuOq8cv8Ud1ae6mkSQgkCDE6dVogctVWiSlPMdf9V0MDQVNuTKmtjXHyKlBp9CndUSzj9pK0rVGdtAuw3m7m8/3Z7N2XxYen8Zt18Xzz1/3p7XNQrHLy4GsYv69ZzffZSj8fccZXpzUg6M5do7klOD1aywcG9yURl3eQXQlZ/G2Gkjopj+ilmajWuNw9nmI0hvnc+yLV+myZyw23zncyXeg+JxV6ppVl12mrtdVpyGy4TTUvmq6/w8/pPHjj3vo1at3ledYdn1lZbcryyg0Z87cWuO7eNsPP6SRmvoEAC+88EqF2z/++KN8+eVntG3bnq+/3lBj3JWva8h2rs7F+3/88UcBmDz5jhpjqMvtq9t3bfSqUl4Qc+7wjvyUW8pTaw9wfUIYz0/sgcWgo3VkCP99W3eO5ZaybFsG097fQZ9IP1NaC/IcHmYs28nd/ZOYldIB1MDJl334fxGy838wZG4jLG0e2rZXcPSbjbvLRLQLRdm9bUbgbT0Mf3R3wtf9GtVxHtuq23D1uJvSlKdB84HaOB+bjf3aSleH2DAjEWb51V13FzpoNYyguYQel64JU5dfhuboIvk1wYGsEuLDgq8DJ0lS/clP+Xry+TU2Hc9n7b4stp8uZEiHKP5wU2dubB+JTlXILHKRWeTkr1sz+PbweVShMDAGro+MYd7aA4zoFM1Lt19f9yKffg+oelT7OULTn6Nk7FIMpzdhOvwR4YUn0QwhuJKnYg6PQri8oNNj8hdzKnIYYsJT5bVfJOlKdEuPQMfprr5JLNuWgd3tY9ZHP3Jjx2geurEtkRYD80Z15qEh7Xj5s22sPKnQKdbJ7JT29E6KQAjB3I/30S4qhDFde9Bz4j8w5B9GzdqNTzUSueU5QjcuoLjDRLRBczmstcEWYiAGgbvLZNydbkGXdxTrD/NBCGwf3UrpkEV4W6eAzyWPL6nJ9Wttu/SNpHKibHSshg5ahOom3JvfhBEFrzkGsXSqQmKEHK6VpKYmO2h1IITg6PlSvjiQw5cHs4kwG5jUsxX/Mb4rUSFGhAikoU2IMPPbFbspcHrpHh9Gr8Rw9I58bm0tMLWL5+Gh7cvTqKrFGdjWTEfojKAa8EV1pWTcG5iOfY7l339BmG1oIbEYTq2n6PYPMR9cieHMZmL+0gGED39UN4omvE/E57/CmLkVdAPwtRoKwImoUQC0lSeP0lUiNszEH0Z3xun1M6VXAh3iw/hsXxbrDmTTJSaUJ0Z1xqPBXe0F7bsk8GracZxeP/1aR3Aox058mIk/fLofu9vPprkpfHTCyqYT+bwz8iUKN/6JNsdWox79kCRTV3I73IGha2/cnSeAzoQ/ugulw/8bFAV354mYjnyMZo4mctVteOP74u46GU/7MWjWxOZuJkmSKlN1aCGxV0U5jeZ4BqqikBzXslPsS9LVSHbQapFV7OLrQ+f58mA25+0eRneN4aXbr6NnQhg+TbDlZD42i5FP92by1aFc3pjekz9NuZ5ff7CLQqeXPgkhRJn9gMrgSDtaqBW8Doxn0/G0Hop98AIMmVvxdJ6A8aevsP6wCOf19+CL7AQGK/jd+CI7YftkKorHDqoOf2Qn3B1vxtn7AYQxnNzfHgS9BZstBE+ho7mbTJIalcWgY9L1rbDZQvC6vURajHyyN4vDOXYi9YIII9x2XSuiQozEhxlJP1lAjt3DZ/uySI6z0j46hL2ZxViMOvafK2HY5ya6xj3L9BviuNn6E/k/7aP92bVEHHoBUNBC4vB0GIt9xHOoxRm4u0xGC20FOgOO/nNQPHaMJ77FunEh/sjOeNrehD+8Da6e914VJ4SSdDVQnXnNHUKDkOvAJOnacc120PyawKcJfJqGXxOEGHRoWqCQ9OYT+Ww9WcCJfAfDOkYztVcCJW4fheeO0W3NL5gR8hYdi7dyD59zj3c+vwv5llfDcom0LKHbnv/HppQO6Ac+iG3VRLaZR5NFH2yf3EHhlE8QBguW3W/jaTcKX1wvVK8db8INCEWHLu8w5v1/x5C1C11JBr6Y61HdhXgTB+Hs9QDe1kOqTtNQZe0m6drUr7WNfq1t2N0+1h/NZc3WIt46DGuytrPi1/0pcfsY0iGKmQPaUODwsP10IdtOF/L0l4codHrplRhOG5uFEKOOsBAz3jYp/O1QPIcYhN9YwDDPJh6P2If56BpMx79EM9nQFZ8GRcUX2YnSIX/E2yYF48n1OJOnoqBgPPMD5oObcfW6D9vKW/HF9cI+9I8YT60PJBqJqLrOUZKkRqQacXcY19xRXJaB7WzoVaW8PqQkSVe/a7aD9rvVe9l+urD875u7xXEop4ST+U70aqDmQ7hJzx9v7sp/fX2E747kEmM28G//fHonhTPz1jtRXeNIa9UBq9YLNB8ixILjhicw6AwIoPD2D8navAWA/JmbUR3n0RWewNV9OiFbXkSfux9d4TGsafNBURAGK67rfom78yT80cm4u05uptaRpCuH1aQPjKrlH8KnQWzXZAw6lYNZdtYfPc9/jE9m1Z5z7DlbRIzVxNjkWABy7R5O5DvId3j5+/YzRIUa6JMUwcA2ERh0kSRE9ODbUCMqGuHFR4gs3ENi8Y9E5u9Cn3cI68b5+GKuw5CzG8WVj+Jz44/sQsGMb1ALjuON640/Khld4XHCNi5AcReBqifaEIo/vC3+iHb4Ynrg7PMwhqwdhLqzKDW1Qp+5DQWB0JsROhPojAhFDWScDG8LXgeKx44IjUNxF6F4StHC5PTK6ni9XlJTU8nMzESn0/H888/Tpk2bCrdZu3Yty5YtQ1VV7rrrLqZNm1a+LTc3l1tuuYWlS5cyaNCgpg5fagiKAvorew1VVIixuUOQJKmJXdEdNLvbx56zxQztGEVWsYuMQicD20Zy9Lwdp1ejV2I4208XEGY2kBwbyqd7A7VOwi1GCp0eYkKN5JV6UBTY+FMuLq+GqsCzt3Ynq8RN2tFcvH7BmK6xzOiXRF+bE3xtUfxe0M6jmDyQtxvFa0d1FwdOltxFqO4iFFcBqj2T0TnHMftLMO0tAtUQSInvPI/idYLejD+iPa7ud+JtdQO+hP74bR2buVUl6cqlV6HnhcKwQztGlRfWHNM1ltY2M3mlXvJKPRQ6vXj8Gia9yvO3dcdmMfDgh3vomRDOzjOFbD9diNunIQQY9SoGVcGg60OPVilMHpJAkrGUVu7jRDqOI0zh6PMOoSs6hT7/ENHv9UQzR6K6i+HwahSfA0/bkbi63Yk1dye+rAP4IzogQmKx7HwdV/cZGE98Q+/MdDZ3mEfo1pfQ2c8GnpDPjeJ3gRCgM5L3m90Yz/wLy75lFE38O5bdb2PZ+1fyHtjfXE3eon3++eeEh4fzyiuvsHHjRl555RVeffXV8u0Oh4PXX3+dVatWYTAYmDx5MmPGjMFmCyTiePHFF6t06CRJkiSpsbXIDppfE3j9GgLQhECIwP+aCCTsKPs/q9jNP3edoWNMCHvPFfPGppMIAcVuL16/QAE8fg1NQKfoEE7mOxDAda3Csbv9dIwJ4bbr4il0epnaO4H46FBy8kpJjg8DYOaA1gCMTo5Fl3cI299vD6TsVg0IVQ9CQxitCJ0R1WMPBK95UfxuFG8paH5yw/uxPX42g6MK8SbeiC9xIPqcH/FbExGWaLlORZKaQIfoEDpE1540Z/VvBgJw94XjXghBdombjEJnIDtrsZvMIhfLd5wh1+4mz2HA7etCqLEbkSHTCDPpibT6SFLzSFJyaWU6T5yWS5Q/l9DCQszp72BwncbkK8aYmV6+4D/y/f6gQLRQGL9vFppOQVPgu37v0i7nW3wGK0fa/Yqup5aTuyONgoi+JEYVYcvNIX7g47iTpwY6cFD180Ro4PegaD7QvIERucrJg4S4kJHSAj4nOvs5/LaOqCWZqI5sfPF9A6N6JWYI64V5/9/xxVyHL74v1g1P4ug7C83W4XJfokaRnp7O5MmBmQgpKSksWrSowvY9e/bQs2dPwsICn/kDBgxg165djBo1ivT0dEJDQ+natWuTxy1JkiRd21pcB810cCV7tq/nRIEbDQWBgh8VDZXl/jHkiCge1X/C/2jTSFLyuF39P75fpgIK0xUFvU6H0aTjrKkzJ8IHMkJsxxDdkYg2Heib9zmROheK5kXRvKD5UPweCNNRGp9KpOMQiZkbccY/hPnH/8V8eBWKx47itaN47Ki+UgCKJizD024Uto+nUHTbMhR3CZZ9y9AsMWjWBPzWRDRrAlpIHFv+9S8AnAN+Vf4cfXG9mqNpJUmqB0VRaBVuLs+8WpkQAqdXI9/hId/hxe724fD4cXjb4vT4Oe31c9jrx+HxB9a7+gWqXsXh8uLXBHqfHc3vI9yXxxjHOsJdmURShEuN4KPQX9L3x9X0dK7AjZH2R99nh/EGPs3pwq9KH6Kn70c8h+OwGlVUVz4F0z4jctUkFE8JQm9BWKLwJA3BH9Ee65YXymP2RvfAMegPeDqMI/Ifoyge/zr+sLbEvpPM+YePoy84hnXjQgqnrUWfdxBD5hZ88X3R2TOBQAdN6C2gGgDwtB2JMIU3xcsRlNzcXKKiAqOoOp0OVVXxeDwYjcYq2wFiYmI4f/48Ho+H119/nTfeeIPnnnuuWWKXJEmSrl0N1kGLjQ2r9nL9d3Q/w4bfz7BqNj1Yfmkys8sv33uJHQ6+6PKcGm8V+E15INZ2A7ECjH408K8aEWUXHv6emLLLnV6o9rY2W2DPl9UmdVT2GHV5zOpuU9fr6rq/+gjmMesbi80WgtVqwmYLqfJ4ZdfXFJfVair/u/L+a4rdZgtBd6HeXeXHtFgMKIqCwaCr9XWrfF1Dv5+qa6Oy6y0WwyVjqMvta3oujRl7U2rXIHu5m++//x4nMHr0aPoC8ADwFibABIy98A/uBso+swKiAeafAn5OxV2ePujm+eW3M3DR59fc7ZR3TZ4pIhag1RDosSFwOXYyMDnwOLGBH5gC19/78wPHzqj/U20kH330ER999FGF6/bs2VPhbyFEhUx4omzksdL2t99+m+nTpxMeXnPn02DQYbEYMJn0VY7vK0VzHTMXa+52s1pNWCyGoF7DK7n9WkLsLcWlzpUsFgNWq6lB2upqbPfGeC5l51wXt39Z25Wda1zu4zb2a3G5+1dE5W8oSZIkSboKpKamMmHCBIYNG4bX62XUqFFs2rSpfPvWrVv58MMPWbJkCQDz589n3LhxvPXWW2iaBsDp06eJioriz3/+M126dGmW5yFJkiRdW9RL30SSJEmSrjxDhw7lq6++AmDDhg1VMjH27t2bvXv3UlxcTGlpKbt27WLAgAGsWLGClStXsnLlSkaOHMnTTz8tO2eSJElSk2lxa9AkSZIkqSHceuutbN68mV/84hcYjUZeeCEwFf3tt99m4MCB9O3blyeeeIL7778fRVGYPXt2ecIQSZIkSWouQU1xvJJrywQbe15eHk899RRutxuv18v8+fPp3btpi84GG7vP52PhwoVkZGTg8/mYN28eAwYMuCJiB9i2bRtz587lueee46abbmqymJ977jn27NmDoigsWLCAXr1+Tu6yefNmlixZgk6nY/jw4cyePfuS92lKwcR+5MgRZs2axb333svMmTObJW4ILvYXX3yRnTt34vP5eOihhxg3rnkK09Y3dqfTSWpqKnl5ebjdbmbNmtWk7/HLib2My+ViwoQJzJ49mzvuuKM5Qm9yLeU4vxJUPjZ79uzJvHnz8Pv9xMbG8tJLL2E0Gms9Z7jWXXyMDR48WLZfPa1du5Z3330XvV7P3Llz6dq1q2zDOiotLeWpp56iqKgIr9fL7NmziY2N5ZlnngEgOTmZ//zP/wTg3Xff5auvvkJRFObMmcOIESOaMfKrgAjCxx9/LJ555hkhhBBpaWli7ty5FbaXlpaKcePGieLiYuF0OsX48eNFQUFB+fYnn3xSTJkyRWzZsiWYh78swcb+/vvvi7Vr1wohhNi6dau47777rpjYV61aJZ5++mkhhBBHjhwRU6dOberQg4791KlT4uGHHxazZ88W69evb7J4t27dKh588EEhhBBHjx4V06ZNq7D9lltuEZmZmcLv94u77rpLHD169JL3aSrBxF5aWipmzpwpFi1aJJYvX94cYQshgos9PT1dPPDAA0IIIfLz88WIESOaOmwhRHCxr1u3Trz99ttCCCHOnDkjxo0b1+RxCxFc7GWWLFki7rjjDrF69eomjbm5tJTj/EpQ3bGZmpoqvvjiCyGEEIsXLxYffPDBJc8ZrnUXH2Oy/eonPz9fjBs3TpSUlIjs7GyxaNEi2Yb1sHz5cvHyyy8LIYTIysoS48ePFzNnzhR79uwRQgjx6KOPirS0NHH69GkxZcoU4Xa7RV5enhg7dqzw+XzNGfoVL6g1aOnp6YwdG8gnlpKSws6dOytsv7i2jNlsLq8tU3bf5qwtE2zs9913HxMnTgTg3LlzxMfHXzGxT5o0ifnzA5ncoqKiKCwsvGJij42NZenSpVit1iaPd8yYMQB07tyZ4uJi7PZArbuMjAwiIiJISEhAVVVGjBhBenp6rfdp6bEbjUbeeecd4uLimjzeiwUT+8CBA/nzn/8MQEREBE6nE7/ff0XEfuutt/Lb3/4WaL7PlWBjB/jpp584duwYI0eObJa4m0NLOc6vBNUdm1u3bmX06NFAIGNpenp6recM17rKx5hsv/pJT09n8ODBWK1W4uLiePbZZ2Ub1kNkZGT5OWNxcTE2m42zZ8+Wzxooa7+tW7cybNgwjEYjUVFRJCUlcezYseYM/YoXVAetptoy1W2HqrVlfv/7319m2MELNnaA8+fPM3XqVP7yl7/w2GOPNW3gBB+7wWDAZAqkLF22bBm33XZb0wZO8LFbLBZ0Ol2zxBsZGVn+d3R0dIX3QXWx1nafphRM7Hq9HrO5+npfTSmY2HU6HSEhgXS2H330EcOHD79i3jNlZsyYwR/+8AcWLFjQdAFfJNjYFy9eTGpqatMG28xaynF+Jaju2HQ6neV16GJjY8s/O2s7Pq5llY8x2X71c+bMGYQQPPbYY9x9992kp6fLNqyHCRMmkJmZydixY5k5cybz5s2rUH5Etl/juWSSkKauLdOQGjJ2CLwRV69ezcaNG5k/fz7vv/9+I0Xe8LEDfPDBB+zfv58333yzESL+WWPE3tRqi6fyNggUNW4pzyGY2FuKy4n9u+++Y9WqVY16XNbmcmJfsWIFBw8e5Mknn2Tt2rVN/poEE/uaNWvo06dPlbWkV7uWcpxfSS4+NsePH19+fVlbyjatXnXHWHXfm7L9apednc3SpUvJzMzknnvukW1YD59++imJiYm89957HDp0iEcffbT8RxeQ7deYLtlBmz59OtOnT69wXWpqKufPn6dbt254vV6EEBgMhvLt8fHxpKWllf+dk5NDnz59+Pjjj9E0jQ8++IDTp0/z448/NmptmYaMfdu2bSQnJxMREcGIESOYN29eo8TcGLFDoNO0fv163njjjQr3uRJibw7x8fHk5uZWiCcmJqbabdnZ2cTGxqLX62u8T1MKJvaWItjYN23axJtvvsm7777bbFn4gol93759REdHk5CQQPfu3fH7/eTn5xMdHd3iY09LSyMjI4O0tDSysrIwGo20atWKIUOGNGnsTa22tpKqqnxsWiwWXC4XZrOZ7Oxs4uLiWtznf0tR3TEm269+oqOj6du3L3q9nrZt2xIaGopOp5NtWEe7du0iJSUFgG7duuFwOHA4HOXbL26/EydOVLi+JZ1bXImCmuJ4JdeWCTb2b775hk8++QSAw4cPk5CQ0KRxX07sGRkZrFixgqVLl5ZPdWxqwcbeXIYOHcrXX38NwIEDB4iLiytfB9e6dWvsdjtnzpzB5/OxYcMGhg4dWut9WnrsLUUwsZeUlPDiiy/y1ltvYbPZrqjYd+zYUT7il5ubi8PhqDB9riXH/uqrr7J69WpWrlzJ9OnTmTVr1lXfOYPa20qqqLpjc8iQIeXt98033zBs2LAW9/nfUtR0jMn2q7uUlBS2bNmCpmnk5+fjcDhkG9ZDu3btymdAnT17tjyHxI4dO4Cf2+/GG28kLS0Nj8dDdnY2OTk5dO7cuTlDv+IFlWbf7/ezaNEiTp48WV5bJiEhoUJtma+++or33nsPRVGYOXMmkyZNqrCP1NRUpkyZ0uRp9oONPT8/n9TUVEpLS/F4PCxcuLDJf10JNvYlS5awbt06EhMTy/f13nvvlc/Bbsmxp6Wl8d5773H8+HGioqKIjY1tsilsL7/8Mjt27EBRFJ5++mkOHDhAWFgYY8eOZfv27bz88ssAjBs3jvvvv7/a+3Tr1q1JYr3c2Pft28fixYs5e/Yser2e+Ph4XnvttWbp8NQ39g8//JDXXnuNDh06lO9j8eLFFd7vLTV2l8vFwoULOXfuHC6Xizlz5jBq1KgmjzuY2C/22muvkZSUdM2k2W8px3lLV92x+cILL7Bo0SLcbjeJiYk8//zzGAyGS54zXOvKjrGUlJTykj+y/epmxYoVrFu3DqfTySOPPELPnj1lG9ZRaWkpCxYsIC8vD5/Px9y5c4mNjeWPf/wjmqbRu3fv8iR0y5cv57PPPkNRFB577DEGDx7czNFf2YLqoEmSJEmSJEmSJEkNL6gpjpIkSZIkSZIkSVLDkx00SZIkSZIkSZKkFkJ20CRJkiRJkiRJkloI2UGTJEmSJEmSJElqIWQHTZIkSZIkSZIkqYWQHTRJkiRJkiRJkqQWQnbQJEmSJEmSJEmSWgjZQZMkSZIkSZIkSWoh/j/r+WFt0jVGlAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -2883,26 +2540,6 @@ "# arviz.plot_trace(trace_2, var_names=['mu']);" ] }, - { - "cell_type": "code", - "execution_count": 111, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.49950145, 0.50053649])" - ] - }, - "execution_count": 111, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "logistic(trace_2['mu'].mean(axis=0))" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -2912,7 +2549,7 @@ }, { "cell_type": "code", - "execution_count": 112, + "execution_count": 42, "metadata": {}, "outputs": [], "source": [ @@ -2921,17 +2558,17 @@ }, { "cell_type": "code", - "execution_count": 113, + "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[0.24829784, 0.04870112],\n", - " [0.04870112, 0.20169156]])" + "array([[0.20725225, 0.05865998],\n", + " [0.05865998, 0.23874154]])" ] }, - "execution_count": 113, + "execution_count": 43, "metadata": {}, "output_type": "execute_result" } @@ -2949,14 +2586,14 @@ }, { "cell_type": "code", - "execution_count": 114, + "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "0.4982949349217773 0.4491008335858505\n" + "0.4552496557178931 0.48861184784694617\n" ] } ], @@ -2974,7 +2611,7 @@ }, { "cell_type": "code", - "execution_count": 115, + "execution_count": 45, "metadata": {}, "outputs": [], "source": [ @@ -2983,16 +2620,16 @@ }, { "cell_type": "code", - "execution_count": 116, + "execution_count": 46, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.21762489903736582" + "0.2637110379347952" ] }, - "execution_count": 116, + "execution_count": 46, "metadata": {}, "output_type": "execute_result" } @@ -3010,14 +2647,14 @@ }, { "cell_type": "code", - "execution_count": 117, + "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 4000/4000 [00:00<00:00, 19663.07it/s]\n" + "100%|██████████| 4000/4000 [00:00<00:00, 17718.83it/s]\n" ] } ], @@ -3030,28 +2667,28 @@ }, { "cell_type": "code", - "execution_count": 121, + "execution_count": 48, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "[[0.33582516 0.66417484]\n", - " [0.36164233 0.63835767]\n", - " [0.3054917 0.6945083 ]\n", - " [0.3391067 0.6608933 ]\n", - " [0.31359315 0.68640685]\n", - " [0.28545371 0.71454629]\n", - " [0.25450457 0.74549543]\n", - " [0.29067865 0.70932135]\n", - " [0.24731029 0.75268971]\n", - " [0.28260285 0.71739715]\n", - " [0.29444538 0.70555462]\n", - " [0.26837252 0.73162748]\n", - " [0.26837252 0.73162748]\n", - " [0.26837252 0.73162748]\n", - " [0.26837252 0.73162748]]\n" + "[[0.31347249 0.68652751]\n", + " [0.31347249 0.68652751]\n", + " [0.31202501 0.68797499]\n", + " [0.25271686 0.74728314]\n", + " [0.25271686 0.74728314]\n", + " [0.25271686 0.74728314]\n", + " [0.25271686 0.74728314]\n", + " [0.25271686 0.74728314]\n", + " [0.23952949 0.76047051]\n", + " [0.23952949 0.76047051]\n", + " [0.23952949 0.76047051]\n", + " [0.23952949 0.76047051]\n", + " [0.23952949 0.76047051]\n", + " [0.23952949 0.76047051]\n", + " [0.38658591 0.61341409]]\n" ] } ], @@ -3061,7 +2698,7 @@ }, { "cell_type": "code", - "execution_count": 122, + "execution_count": 49, "metadata": {}, "outputs": [ { @@ -3070,7 +2707,7 @@ "(4000, 16, 2)" ] }, - "execution_count": 122, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -3079,29 +2716,6 @@ "ppc_hier['beta'].shape" ] }, - { - "cell_type": "code", - "execution_count": 123, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([0.3255814 , 0.51111111, 0.53061224, 0.47058824, 0.45238095,\n", - " 0.5 , 0.56730769, 0.62015504, 0.66666667, 0.53571429,\n", - " 0.56043956, 0.61212121, 0.51515152, 0.60294118, 0.59292035,\n", - " 0.60526316])" - ] - }, - "execution_count": 123, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "values[:, 0] / (values[:, 0] + values[:, 1])" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -3118,7 +2732,7 @@ }, { "cell_type": "code", - "execution_count": 124, + "execution_count": 50, "metadata": {}, "outputs": [], "source": [ @@ -3132,7 +2746,7 @@ }, { "cell_type": "code", - "execution_count": 125, + "execution_count": 51, "metadata": {}, "outputs": [], "source": [ @@ -3143,28 +2757,28 @@ }, { "cell_type": "code", - "execution_count": 126, + "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.2180816 , -0.2583519 , -0.23294731, ..., -0.07233225,\n", - " -0.09611557, -0.11400131],\n", - " [-0.17664335, -0.18725471, -0.13093216, ..., -0.02297447,\n", - " -0.17385674, -0.13187119],\n", - " [-0.27017526, -0.11269503, -0.09072602, ..., -0.13748094,\n", - " -0.0858593 , -0.17488378],\n", + "array([[-0.25611253, -0.04580321, -0.10527817, ..., -0.11496639,\n", + " -0.17975151, -0.04963993],\n", + " [-0.25611253, -0.04580321, -0.10527817, ..., -0.11496639,\n", + " -0.17975151, -0.04963993],\n", + " [-0.25864418, -0.0405677 , -0.10747083, ..., -0.09382378,\n", + " -0.19880038, -0.02752137],\n", " ...,\n", - " [-0.15250138, -0.02704045, -0.06015266, ..., -0.1388382 ,\n", - " -0.07947211, -0.10776233],\n", - " [-0.41835618, -0.23290852, -0.24437551, ..., -0.05594035,\n", - " -0.14824358, -0.08808137],\n", - " [-0.38614573, -0.22197272, -0.23666338, ..., -0.12101195,\n", - " -0.15251382, -0.0698187 ]])" + " [-0.3690686 , -0.01904772, -0.10363507, ..., -0.06335896,\n", + " -0.09953807, -0.18144236],\n", + " [-0.14514282, -0.27759565, -0.197737 , ..., -0.11084416,\n", + " -0.14028941, -0.03039312],\n", + " [-0.26916063, -0.15018802, -0.07902464, ..., -0.10092275,\n", + " -0.0680946 , -0.11604869]])" ] }, - "execution_count": 126, + "execution_count": 52, "metadata": {}, "output_type": "execute_result" } @@ -3175,18 +2789,18 @@ }, { "cell_type": "code", - "execution_count": 127, + "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([-0.13382952, -0.12666883, -0.11288486, -0.1406659 , -0.13906812,\n", - " -0.12450764, -0.13903533, -0.13287531, -0.12785005, -0.15845967,\n", - " -0.15170453, -0.15352308, -0.15352308, -0.15352308, -0.15352308])" + "array([-0.11283603, -0.11283603, -0.10969546, -0.1168538 , -0.1168538 ,\n", + " -0.1168538 , -0.1168538 , -0.1168538 , -0.12290433, -0.12290433,\n", + " -0.12290433, -0.12290433, -0.12290433, -0.12290433, -0.14458708])" ] }, - "execution_count": 127, + "execution_count": 53, "metadata": {}, "output_type": "execute_result" } @@ -3198,12 +2812,12 @@ }, { "cell_type": "code", - "execution_count": 128, + "execution_count": 54, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkUAAAFkCAYAAAAuZk/PAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQhElEQVR4nO3db6jedf348afu6NnUrSJOgUybaYoNKqI0mxFGOXUr+oOg3RMh72RZkQxCLEtbSXWnoJFFpQZ1o7zhkjIrXWvlKgkKJkodEsEhZW4nz+aOfX43vnhov2at7Zzr7GyPx73rj9f7fV6eXZ/nOZ9zXddxwzAMAQAc445f6A0AABwJRBEAQKIIAKASRQAAlSgCAKhEEQBAVWOH+wBPPrn7BW875ZTxpqb2Hu4SHIDZzh+znT9mO3/Mdv6Y7fwa9XwnJpa/4G3z+puisbEl8/nwxzSznT9mO3/Mdv6Y7fwx2/l1JM3X6TMAgEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVDW20BsAOJBTVixr2fjonqKm9840tWt6ZOsBRx5RBByRlo2PtWrD5pGtN7lxXVMjWw04Ejl9BgCQKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVDW20BsAFodTVixr2fjhP2VMTCyfg90AzD1RBByUZeNjrdqweWTrTW5cN7K1AMrpMwCAShQBAFSiCACg8jdFAFXt2ffcSP8IfHrvTFO7pke2HvDfiSKAaukJS0b+h+RTI1sNOBhOnwEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqGpsoTcAR4NTVixr2fho/zlN751patf0SNcEOJqJIpgDy8bHWrVh80jXnNy4rqmRrghwdHP6DAAgUQQAUIkiAIBKFAEAVKIIAKDy6jNYtPbse66JieULvQ2Ao4YogkVq6QlLRvo2AJMb141sLYCF4PQZAECiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUNXYQm8A4Fi0Z99zTUwsn9PH/G+PN713pqld03O6JhxNRBHAAlh6wpJWbdg80jUnN65raqQrwuLi9BkAQKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAFWNLfQGABiNPfuea2Ji+cjWm94709Su6ZGtB4dLFAEcI5aesKRVGzaPbL3JjeuaGtlqcPicPgMASBQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAqsYWegMwH05Zsaxl44f+7T0xsXwOdwPAYiCKOCotGx9r1YbNI1tvcuO6ka0FwPxw+gwAIFEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUNXYQm8AgKPTnn3PNTGxfGTrTe+daWrX9MjW4+gjigCYF0tPWNKqDZtHtt7kxnVNjWw1jkZOnwEAJIoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACpRBABQiSIAgEoUAQBUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFDV2EJvgGPDKSuWtWzctxsARy5HKUZi2fhYqzZsHtl6kxvXjWwtAI4OTp8BACSKAAAqUQQAUIkiAIBKFAEAVKIIAKASRQAAlSgCAKhEEQBAJYoAACof8wHAUWLPvueamFg+L499oMed3jvT1K7peVmPhSGKADgqLD1hycg/Y3FqZKsxCk6fAQAkigAAKlEEAFCJIgCAShQBAFSiCACgEkUAAJUoAgCoRBEAQCWKAAAqH/NxzDplxbKWjfvfDwDPc1Q8Ri0bHxv5ZwQBwJHM6TMAgEQRAEAligAAKlEEAFCJIgCAyqvPAGBRGPVbqUzvnWlq1/TI1jsSiCIAWAQW4q1Upka22pFBFAHAIdiz77kmJpYv9DaYQ6LoCHEovxb1jxFg4Sw9YYk3wT3KiKIjhHeYBoCF5dVnAACJIgCAShQBAFSiCACgEkUAAJUoAgCovCT/BY367dQBgIXlqP8CvG8QAMeyUb5j9/PrLPTnrS2KKPJbGwAYrVG/Y3ct/OetHTcMw7CA6wMAHBH8oTUAQKIIAKASRQAA1WFG0bZt23rPe97T2rVru+qqq3riiScOeL/f/va3XX755V166aW9973vbfv27bO3bd68ufXr17d27dquvfbadu/efThbOmoc7GyHYejrX/96q1ev7je/+c1+t23atKlLLrmkSy+9tA9+8IM9+eSTo9j6EW8uZvvoo492+eWX99a3vrX3ve99Pfroo6PY+hFvLmb7vDvuuKNzzjlnPre76MzFfL/3ve+1bt26Lrnkkq6++uoXfIxjzVzM1vHswA52tjt27OiKK65o7dq1XXHFFe3YsWP2tpEdz4ZD9I9//GN405veNPzhD38YhmEYbrvttuGaa675t/vt3bt3OO+884Zt27YNwzAMP//5z4cLL7xwGIZhePzxx4fzzz9/ePzxx4dhGIZPfepTw0033XSoWzpqHOxsh2EYbrjhhuETn/jEcOGFFw7bt2+fvf4Xv/jF8I53vGPYtWvXMAzDcOuttw4f+9jH5n/zR7i5mO3MzMywdu3a4Uc/+tEwDMPwgx/8YLjlllvmf/NHuLmY7fN27tw5vPOd7xzOPvvsed3zYjIX8/39738/rFmzZti5c+cwDMOwcePG4aMf/ej8b/4INxezdTw7sP9ltpdccslw7733DsMwDPfcc8+wfv36YRhGezw75Ci67777hssvv3z28tTU1LB69eph9+7d+91vampq9uAxDMOwe/fu4eyzzx6efvrp4dvf/vZw3XXXzd72yCOPDBdccMGhbumocbCzHYZheOihh4ZhGIaLLrpov3+g3/jGN4aPfOQjs5e3bNkyvOtd75rHXS8OczHb7du3D+vWrZv/zS4yczHb533oQx8aNm/eLIr+xVzM97HHHhsefPDB2cs/+clPPC8MczNbx7MDO9jZ7tixY1izZs1+111wwQXDo48+OtLj2SGfPpucnOy0006bvXzyySf34he/uL/85S/73e/kk0/u4osvnr38wAMPtGrVqlasWNHk5GSnn3767G2nn356f/3rX3v66acPdVtHhYOdbdXrXve6Az7Geeed10MPPdQTTzzRc88917333tub3/zmedvzYjEXs92xY0ennnpqGzZsaO3atX3gAx/osccem7c9LxZzMdv6v+eIqampLrvssnnZ52I1F/NduXJlb3zjG2cvP/DAA732ta+d+80uMnMxW8ezAzvY2U5OTrZy5cr9rjvttNP605/+NNLj2SFH0fT0dOPj4/tdNz4+3jPPPPOC/82OHTu65ZZbuummm2Yf48QTT5y9/cQTT+y4445renrh3s3ySHAos/3/rV69une/+9297W1v67zzzmv79u1dc801c73VRWcuZrtr1662b9/elVde2T333NO5557b9ddfP9dbXXTmYrZ79uzpc5/7XDfeeONcb2/Rm4v5/qu77rqrLVu2dO21187F9ha1uZit49mBHexs/9P9Rnk8+69vE/3jH/+4W2+99d+uv/LKK9u7d+9+1+3Zs6eTTz75gI/zu9/9ruuuu66bb765888/v6qTTjqpZ599dvY+e/fubRiGTjrppP/pi1is5mq2B3Lfffd1//33t3Xr1l70ohe1adOmPv7xj/e1r33tsPe9GMznbJcvX9655547+xP2VVdd1aZNm3rmmWeOie/d+ZztV77yldavX7/fT9zHmvmc7/PuvPPOvvnNb/atb32riYmJQ97rYjOfs3U8O7zZnnTSSS94v1Eez/5rFF188cX7nf563v3339/dd989e/lvf/tbTz/9dK94xSv+7b47duzowx/+cF/60pd6wxveMHv9GWec0a9+9avZy4888kgTExOtWLHif/5CFqO5mO0L2bp1a295y1t6yUteUtVll13Wpk2bDn/Ti8R8znblypX7vapkyZIlVR1//LHxDhfzOduf/vSnPfXUU91xxx2z161Zs6bvfOc7/9PjLGbzOd+q73//+915553dcccdvfzlLz/s/S4m8zlbx7PDm+0rX/nKJicn++c//9nxxx/fzMxMk5OTnXnmmd1+++0jO54d8rP4+eef3xNPPDH7ksTbb7+9iy666N+qeBiGNmzY0I033rhfEFW9/e1v78EHH+zPf/7z7GOsX7/+ULd01DjY2f4nZ5xxRtu2bZv91e3PfvazXvWqV83LfheTuZjtmjVreuqpp9qyZUtV3/3ud3v961/f0qVL52XPi8VczHbz5s398pe/bOvWrW3durX6v8A/VoLoP5mL+e7cubMvfvGL3XbbbcdcEP0nczFbx7MDO9jZnnXWWU1MTMwG1F133dXKlSs744wzRno8O6zPPvv1r3/dzTff3PT0dKeffnobN25sYmKinTt3dvXVV3f33Xf30EMP9f73v//fntS+8IUvtHr16n74wx/25S9/uZmZmV796ld38803H9Kvg482BzPbqvXr1zczM9Njjz3Wy172ssbHx/v85z/fueee22c/+9m2bNnS8ccf38TERJ/85Cc766yzFvgrW3iHO9vXvOY1/fGPf+z666/v2Wef7dRTT+3Tn/70MX3K53lzMdt/dc455/Twww8vxJdyRDrc+W7btq2vfvWr+wXR2NjYfj/JH6vm4nvX8ezADna2Dz/8cDfccEN///vfe+lLX9pnPvOZzjzzzPbt2zey45kPhAUAyMd8AABUoggAoBJFAACVKAIAqEQRAEAligAAKlEEAFCJIgCAShQBAFT1/wB4meQ8i0vHDAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQSUlEQVR4nO3dXWyVdx3A8d+gWykvVWOOSwhDkDmCJM6YDURmzJa5srWaTUMC3hESd+M2dBlpspBNJrNK1BtNRtyMOmaiF8rFOqJs0w0RpTqyRJMuI9qMkEAWZUCldBT/Xpg16xgvo+c85/TH53N3Xjj///mlPc+X8/S0V5RSSgAAJDat2RsAAGg0wQMApCd4AID0BA8AkJ7gAQDSEzwAQHpt57vx9ddPVLWPupk9uz2Gh0ebvY0py/wmx/wundlNjvlNjvlNTqvMr1abc87b0r3D09Y2vdlbmNLMb3LM79KZ3eSY3+SY3+RMhfmlCx4AgHcSPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKTX1uwNADTa7M6O6Giv9uVuZHQsho+PVLomcG6CB0ivo70tFvT2V7rmUF93DFe6InA+ggeo3LnecanV5jRhN8DlQPAAlav6HZehvu7K1gJakx9aBgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSa2v2BoDmm93ZER3tXg6AvLzCAdHR3hYLevsrW2+or7uytQAinNICAC4DggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQXluzNwCQ0anTZ6JWm1PpesC5CR6ABphx5fRY0Ntf2XpDfd1xorLVYOpxSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACC9tmZvADjb7M6O6Gj37QlQL15RoQV1tLfFgt7+ytYb6uuubC2AZnBKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQXluzNwDA5J06fSZqtTmVrTcyOhbDx0cqWw8mS/AAJDDjyumxoLe/svWG+rpjuLLVYPKc0gIA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASK+t2RuAqWB2Z0d0tF/ct0utNqfBuwHgvRI8cBE62ttiQW9/ZesN9XVXthbA5cApLQAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADp+cWDALxnp06fqfS3io+MjsXw8ZHK1iMfwQPAezbjyumV//bx4cpWIyOntACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCk19bsDQDAhZw6fSZqtTkNXePtjz8yOhbDx0cauh7VEjxMObM7O6Kj3ZcuXE5mXDk9FvT2V7beUF93DFe2GlVw1GDK6Whvq/SFL+L/L34ATF1+hgcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCk19bsDTD1ze7siI52X0oAtC5HKSato70tFvT2V7beUF93ZWsBkINTWgBAeoIHAEhP8AAA6QkeACA9wQMApOdTWgDwDqdOn4labU5l642MjsXw8ZHK1rscCR4AeIcZV06v/NdtDFe22uXJKS0AID3BAwCk55RWQpP9Uw9VnrcGgCoInoT8qQcAmMgpLQAgPe/wAECTVf0x+IjL76PwggcAmqzqj8FHXH4fhXdKCwBIzzs8FZjsp6YAgMlxFK6AT00B0Grq/XNDF3qsZv/M0BWllNK01QEAKuBneACA9AQPAJCe4AEA0ptywbN379646667oqurK9atWxeHDx9+1/v99a9/jdWrV8ftt98eX/ziF2NgYGD8tv7+/ujp6Ymurq6455574sSJE1Vtv+kudn6llHjiiSdi6dKl8Ze//GXCbdu2bYtVq1bF7bffHl/96lfj9ddfr2LrLaEe8ztw4ECsXr06PvvZz8aXvvSlOHDgQBVbbwn1mN9btm/fHosXL27kdltKPWb3y1/+Mrq7u2PVqlWxfv36cz5GRvWYn2PHhec3ODgYa9asia6urlizZk0MDg6O39b0Y0eZQv7zn/+UT33qU+Vvf/tbKaWUxx9/vNx9991n3W90dLQsW7as7N27t5RSyu9///ty0003lVJKOXToUFm+fHk5dOhQKaWUb3zjG2Xz5s0VPYPmutj5lVLKpk2byoMPPlhuuummMjAwMH79H/7wh/K5z32uHD9+vJRSytatW8v999/f+M23gHrMb2xsrHR1dZXf/OY3pZRSfv3rX5dHH3208ZtvAfWY31uOHDlSPv/5z5frrruuoXtuFfWY3csvv1xWrlxZjhw5Ukoppa+vr3z9619v/OZbQD3m59hxcfNbtWpV2bVrVymllJ07d5aenp5SSmscO6ZU8Dz33HNl9erV45eHh4fL0qVLy4kTJybcb3h4ePyAUkopJ06cKNddd105duxY+dnPflY2bNgwfturr75aVqxY0fjNt4CLnV8ppezfv7+UUsrNN9884Zv+xz/+cfna1742fnn37t3lC1/4QgN33TrqMb+BgYHS3d3d+M22oHrM7y333ntv6e/vv2yCpx6zO3jwYNm3b9/45Weffdb37nuYn2PHhec3ODhYVq5cOeG6FStWlAMHDrTEsWNKndIaGhqKa665ZvzyrFmz4v3vf3+89tprE+43a9asuO2228Yvv/jii7FgwYLo7OyMoaGhmD9//vht8+fPj3/9619x7Nixxj+BJrvY+UVEfOITn3jXx1i2bFns378/Dh8+HGfOnIldu3bFpz/96YbtuZXUY36Dg4Mxd+7c6O3tja6urvjKV74SBw8ebNieW0k95hfx/+/n4eHhuOOOOxqyz1ZUj9nNmzcvbrzxxvHLL774Ylx//fX132wLqsf8HDsuPL+hoaGYN2/ehOuuueaa+Mc//tESx44pFTwjIyPR3t4+4br29vY4efLkOf/N4OBgPProo7F58+bxx7jqqqvGb7/qqqviiiuuiJGR/H9A7VLm905Lly6NO++8M2655ZZYtmxZDAwMxN13313vrbakeszv+PHjMTAwEGvXro2dO3fGkiVLYuPGjfXeakuqx/xOnToV3/72t+Ohhx6q9/ZaWj1m93Y7duyI3bt3xz333FOP7bW8eszPsePC8zvf/Vrh2NGSv2n5t7/9bWzduvWs69euXRujo6MTrjt16lTMmjXrXR/npZdeig0bNsSWLVti+fLlERExc+bMePPNN8fvMzo6GqWUmDlzZh2fQXPVa37v5rnnnosXXngh9uzZE+973/ti27Zt8cADD8SPfvSjSe+7VTRyfnPmzIklS5aM/8963bp1sW3btjh58mSar8FGzu+HP/xh9PT0TPifdiaNnN1bnnrqqfjJT34SP/3pT6NWq13yXltRI+fn2HHh+c2cOfOc92uFY0dLBs9tt9024ZTUW1544YV4+umnxy//+9//jmPHjsWHP/zhs+47ODgY9913X3z/+9+PG264Yfz6hQsXxp/+9Kfxy6+++mrUarXo7Oys87NonnrM71z27NkTn/nMZ+IDH/hARETccccdsW3btslvuoU0cn7z5s2b8MmO6dOnR0TEtGlT6s3W82rk/J5//vk4evRobN++ffy6lStXxs9//vP39DitqpGzi4j41a9+FU899VRs3749rr766knvt9U0cn6OHRee30c+8pEYGhqK//73vzFt2rQYGxuLoaGhWLRoUTz55JNNP3ZMqVfZ5cuXx+HDh8c/Kvjkk0/GzTfffFZhl1Kit7c3HnrooQmxExFx6623xr59++Kf//zn+GP09PRU8wSa7GLndz4LFy6MvXv3jr+N+7vf/S4++tGPNmS/raYe81u5cmUcPXo0du/eHRERv/jFL+KTn/xkzJgxoyF7biX1mF9/f3/88Y9/jD179sSePXsi4v8RniF2zqceszty5Eh873vfi8cffzxl7JxPPebn2HHh+V177bVRq9XG42jHjh0xb968WLhwYUscO6bc39L685//HFu2bImRkZGYP39+9PX1Ra1WiyNHjsT69evj6aefjv3798eXv/zls14Ev/vd78bSpUvjmWeeiR/84AcxNjYWH/vYx2LLli2X9NbwVHQx84uI6OnpibGxsTh48GB86EMfivb29vjOd74TS5YsiW9961uxe/fumDZtWtRqtXj44Yfj2muvbfIzq8Zk5/fxj388/v73v8fGjRvjzTffjLlz58YjjzyS9hTNO9Vjfm+3ePHieOWVV5rxVCo32dnt3bs3HnvssQmx09bWNuF/7pnV42vPsePC83vllVdi06ZN8cYbb8QHP/jB+OY3vxmLFi2K06dPN/3YMeWCBwDgvZpSp7QAAC6F4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQ3v8AGayIPqh24ecAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] @@ -3228,12 +2842,12 @@ }, { "cell_type": "code", - "execution_count": 82, + "execution_count": 55, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAPj0lEQVR4nO3dX2zd8//A8ZfuzNmZbfEnh2TZZvM3M0GEbZQIQccq8SeScScSXHBDSEUW/zaKhBsSkrmQzQUXuFCLCMLMUMkiIdn8LSLZIv5tpat1Pr8L0Z+G+bb79HO6vvZ43J32nL7f57W2n+fOp+ecg4qiKAIAILG2id4AAEDVBA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOnV/uuT33+/c5+/8IwZ9ejvH9zn2zN2Zt56Zt56Zt56Zt56Zr5vms2Ze/1cZY/w1GpTqvrS7IWZt56Zt56Zt56Zt56Zjz+ntACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegPA/mXGrEY06tX+ahgYHIr+HQOVrgHwd4IHGKFRr8X8rp5K1+jrXh79la4AMJJTWgBAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASK820RsADjy7du+JZnPmPt9+tLcdGByK/h0D+7wOkIfgAVpu2tQpMb+rp/J1+rqXR3/lqwCTgVNaAEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9bx4KpFX2XdlHwzuyw+QgeIC0WvGu7N6RHSYHp7QAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegPA6MyY1YhG3Y8swL7w2xMmiUa9FvO7eipfp697eeVrALSaU1oAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegOQwYxZjWjU/TgB7K/8hoZx0KjXYn5XT6Vr9HUvr/TrA2TmlBYAkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANKrTfQGACazXbv3RLM5s9I1BgaHon/HQKVrQHaCB6CEaVOnxPyunkrX6OteHv2VrgD5OaUFAKQneACA9AQPAJCe4AEA0hM8AEB6nqVFejNmNaJRr+5bveqnJANQnuAhvUa91pKnDQOw/3JKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAerWJ3gAA/23X7j3RbM6sfJ2BwaHo3zFQ+TowEQQPwH5u2tQpMb+rp/J1+rqXR3/lq8DEcEoLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6dUmegMcuGbMakSj7lsQgOo52jBhGvVazO/qqXydvu7lla8BwP7NKS0AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0qtN9AYA2D/s2r0nms2Z//q5vX18rAYGh6J/x8C4fC0YC8EDQERETJs6JeZ39VS6Rl/38uivdAX4d05pAQDpCR4AID3BAwCk5294+FczZjWiUfftAUAOjmj8q0a91pI/XgSAVnBKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkF5tojfA2M2Y1YhG/d//6ZrNmS3eDcDo7dq9p/LfUwODQ9G/Y6DSNZh8BM8k1KjXYn5XT6Vr9HUvr/TrAwemaVOntOT3V3+lKzAZOaUFAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID0vPAhAKq14NecIr+g82QgeAFJpxas5R3hF58nGKS0AID3BAwCkJ3gAgPQEDwCQnj9aHkczZjWiUTdSANjfODqPo0a91rJnBgAAoyd4AGAfVP16P83mTK/1M44EDwDsg1a83o/X+hk//mgZAEhP8AAA6QkeACC9A+ZveDxlHAAOXAdMAbTiKeOeLg4A+6f9Ing8+gIA/1T1U9//WmPa1CmVrhERE/4U+4OKoigmbHUAgBbwR8sAQHqCBwBIT/AAAOmNOXg2bdoUV1xxRXR0dMR1110X27Zt+8d1tmzZEitWrIiOjo5YsWJFbNmyZfhzTz31VCxbtiwuueSSuPnmm+P7778vdw+SG828i6KIp59+OhYtWhQffvjhiM/19PREZ2dndHR0xC233BI7d+5s1dYnrbIzf/7552P58uWxbNmyuP766//19vxT2bn/Zd26dXHiiSdWvd1Jr+y8P//887j66qvjvPPOi6uuuio+//zzVm19Uis7d8fQEoox+PXXX4ulS5cWH3/8cVEURbFmzZrixhtv/Mf1li1bVrz22mtFURTF+vXri87OzqIoiuKdd94pLrroomLHjh1FURTFI488Utx2221j2cIBZbTzXrlyZXHXXXcV55xzTtHb2zv88e+++65YsmRJ8d133xVFURT33ntvcd9997Vm85NU2Zl/9NFHRXt7e7F9+/aiKIqiu7u7uPXWW1uz+Ums7Nz/sn379uKyyy4rTjjhhMr3PJmVnffQ0FDR0dFRvPrqq0VRFMWLL75YPPDAA63Z/CRWdu6OoeWM6RGe9957L+bOnRuLFi2KiIgVK1bEO++8E/39///WZlu3bo2dO3fGhRdeGBERy5Ytix9++CG++OKL+PTTT+Pkk0+OmTP/fIrd0qVL47PPPhuvdktnNPOOiLjyyitj1apVMXXq1BEff/311+Oss86K2bNnR0TEtddeG+vXr2/N5iepsjM//PDD47HHHosjjzwyIiLOOOMM//MdhbJz/8vq1avjpptuqny/k13ZeW/evDlqtVpcfPHFERFx+eWXx5133tmazU9iZefuGFrOmIKnr68v5s6dO3z5kEMOiUMPPTS++eabEdeZM2fOiNvNnTs3vvzyy1i8eHFs3rw5tm3bFnv27InXXnstzj777JJ3Ia/RzDsi4rTTTtvr7efNmzd8ed68efHDDz/EL7/8Us2GEyg78zlz5sSZZ545fPntt9+OU089tZrNJlJ27hF/zrq/vz8uvfTSyvaZRdl5b9myJWbPnh1dXV3R0dERN9xwQ3z77beV7jmDsnN3DC1nTMEzMDAQ9Xp9xMfq9Xr89ttvo7rOokWL4vLLL48LLrggFi9eHL29vXHjjTeW2H5uo5n3/7r9wQcfPHz54IMPjoMOOigGBibuhZ/2d2Vn/ncvvfRSbNiwIW655Zbx2l5aZee+a9eueOihh+Luu++uYnvplJ33jh07ore3N6655ppYv359LFy4MO64444qtppK2bk7hpYzpuCZPn16DA4OjvjYrl274pBDDhnVdV5//fV46623YuPGjdHb2xuXXXZZ3H777SW2n9to5v2/bv/7778PXx4cHIyiKGL69Onjus9Mys78L88++2w88cQT8cwzz0Sz2RzPLaZUdu5PPPFEdHZ2jnhEk70rO++ZM2fGwoUL49RTT422tra47rrrYvPmzfv0H4MDSdm5O4aWM6bgOeaYY+Krr74avvzjjz/GL7/8EkcfffSI6/T19cUff/wRERFDQ0PR19cXxx57bGzcuDHOPffcOOyww6KtrS0uvfTS6O3tHae7ks9o5v1fFixYEF9++eXw5c8++yyazWbMmjVr3PeaRdmZR0S88MIL8eyzz8a6detGPHzN3pWd+xtvvBFr166N9vb2aG9vj4iI9vb2+PrrryvZ72RXdt5z5swZ8YzPKVP+fFuCtjavdPJfys7dMbScMX13LlmyJLZt2zb8NLm1a9fG+eefP+IRg+OOOy6azWa8/PLLEfHnw/pz5syJBQsWxIIFC2LTpk3Dp1TefPPNOP7448frvqQzmnn/lwsvvDA++OCD4R+wtWvXRmdnZ2X7zaDszLdv3x6PPvporFmzJo466qgqt5pK2bn39PTEu+++Gxs3boyNGzdGxJ8Hh7GE6oGk7Lzb29vjp59+ig0bNkRExHPPPRenn356TJs2rbI9Z1B27o6h5Yz5vbTef//9WL16dQwMDMS8efOiu7s7/vjjj7j++uuHI2fr1q2xcuXK+Pnnn+OII46IVatWxbHHHhu7d++OBx98MDZs2BBtbW3RbDbjnnvuieOOO66SO5fBaObd2dkZQ0ND8e2338aRRx4Z9Xo9Hn744TjllFPilVdeiccffzyGhobipJNOitWrV4/59MyBpszMN23aFE8++eSI2KnVasO3Y+/Kfq//3Yknnhhbt26diLsxaZSd9yeffBJ33HFH/P777zF79uy4//77nVIchTJzX7hwoWNoCd48FABIzwlXACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgvf8DSCzTqRNziv8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQSElEQVR4nO3dXWjd9f3A8Y9tNE0fgjLOBlJr6yO1MEW2dhpFHM5UE8UHCtU7EfTGh7kxCQxx66xGRa8UFJwwqxd6oV4YZfiwaa3FZrMMNohYXLQILTJd07Olsanf/4V4WP5zNnr6yznnk9fr7pzk5PvNp0l/757vSXpUKaUEAEBiC1q9AQCAqgkeACA9wQMApCd4AID0BA8AkJ7gAQDS6/q6N3788f652sdhLV3aHfX6VKu30ZHMrjnm1xzza475Ncf8vr1OnF2ttux/vq1jnuHp6lrY6i10LLNrjvk1x/yaY37NMb9vL9vsOiZ4AAC+LcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAel2t3gDQXpb29kRP95H9q6FWWzbj9uTUdNQnJo/oGgBfR/AAM/R0d8XKoZFK1xgfHoh6pSsAzORICwBIzzM80CGqOGoCmC/87QkdYi6OmiK+OG4CyMaRFgCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9LpavQFg/jlw8FDUassqX2dyajrqE5OVrwO0P8EDzLlFRy+MlUMjla8zPjwQ9cpXATqBIy0AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHpdrd4AZLC0tyd6un07AbQrf0PDEdDT3RUrh0YqXWN8eKDSjw+QmSMtACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6XW1egNQtaW9PdHT3dyXeq227AjtBoBWEDyk19PdFSuHRipdY3x4oNKPD0BzBA+Q1oGDhyp/dm5yajrqE5OVrgE0T/AAaS06euGcPLtXr3QF4EjwomUAID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9LpavQHmr6W9PdHT7UsQgOq52tAyPd1dsXJopPJ1xocHKl8DgPbmSAsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHpdrd4AQCc7cPBQ1GrLKl1jaW9P1CcmK10DshM8AE1YdPTCWDk0Uuka48MDUa90BcjPkRYAkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCk19XqDQDw9Q4cPBS12rLK15mcmo76xGTl60ArCB6ANrfo6IWxcmik8nXGhweiXvkq0BqOtACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADp+bF0vtLS3p7o6fblAUAOrmh8pZ7ursp/78f48EClHx8AvuRICwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKTX1eoN8M0t7e2Jnu5v9kdXqy2raDcA0P4ETwfq6e6KlUMjla4xPjxQ6ccHgLkkeACIiIgDBw9V/mzw5NR01CcmK10DvorgASAiIhYdvXBOnj2uV7oCfDUvWgYA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkF5XqzcAwPxx4OChqNWWVbrG5NR01CcmK12DziN4AJgzi45eGCuHRipdY3x4IOqVrkAncqQFAKTnGZ4jaGlvT/R0GylAK/3/Y7OqjtAcnXUWV+cjqKe7q/KnaiO+eLoWgK82F8dmEY7OOo0jLQAgPcEDAKQ3b460vL4GAOaveVMAc/H6Gq+tAYD25EgLAEivLZ7hme1xU9W/nRMAZstvje4sR5VSSqs3AQBQJUdaAEB6ggcASE/wAADptTR4tm/fHldeeWX09/fHddddF3v27Pmv9xkbG4uNGzdGf39/bNy4McbGxhpve/TRR2P9+vVxySWXxE033RQff/zxXG6/5WYzv1JK/Pa3v401a9bEn/70pxlvGxkZicHBwejv74+bb7459u/fP1dbbwvNzu+ZZ56JgYGBWL9+fVx//fVf+fjMmp3fl5588sk4/fTTq95uW2l2drt27YoNGzbEBRdcEFdffXXs2rVrrrbeFpqdn2vH4ef35z//OTZs2BCXXHJJXHXVVTE6Otp4W8deO0qL/Otf/yo/+tGPyl//+tdSSimPPfZYufHGG//r/davX19efvnlUkopL730UhkcHCyllPLmm2+Wn/zkJ2ViYqKUUsr9999ffv7zn8/R7ltvtvO74447yi9/+cty3nnnldHR0cb9H330UVm3bl356KOPSiml/PrXvy6bNm2am823gWbn95e//KX09fWVvXv3llJKGR4eLj/72c/mZvNtoNn5fWnv3r3lsssuK6eddlrle24Xzc5uenq69Pf3l9///vellFKee+65cvfdd8/N5ttAs/Nz7Tj8/KampsratWvL9u3bSyml/PGPfyznnXdeKaWzrx0tC55XX321bNiwoXG7Xq+XNWvWlP379zfuGxsbK319fTMed84555Rdu3aVxx9/vNx2222N+7du3Vouv/zy6jfeJmYzv1JK2blzZymllAsvvHDGN/0TTzxRfvrTnzZuv/fee+Wcc86peNfto9n57d69u+zYsaNx+5VXXvH19w3m96VbbrmljIyMzKvgaXZ2o6OjZWBgYG4224aanZ9rx+HnV6/XG0FdSin79+8vp512Wtm3b19HXztadqQ1Pj4eJ5xwQuP2kiVL4thjj40PP/xwxvssX758xuNOOOGEeP/992Pt2rWxc+fO2LNnTxw6dChefvnlOPfcc+ds/602m/lFRJx11ln/8/ErVqxo3F6xYkX84x//iH379lWz4TbT7PyWL18eP/zhDxu333jjjTjzzDOr2WwbanZ+EV/MrF6vx6WXXlrZPttRs7MbGxuL448/PoaGhqK/vz9uuOGG2L17d6V7bifNzs+14/DzW7JkSVx88cWN22+88UasXLkyent7O/ra0bLgmZycjO7u7hn3dXd3x7///e9Zvc+aNWviiiuuiB//+Mexdu3aGB0djRtvvHFO9t4OZjO/wz3+mGOOadw+5phj4qijjorJyfnxC66and9/ev7552Pr1q1x8803H6nttb1m53fgwIG49957484776xie22t2dlNTEzE6OhoXHPNNfHSSy/F6tWr4/bbb69iq22p2fm5dnyz+Y2NjcXdd98dmzZtajy+U68dLQuexYsXx9TU1Iz7Dhw4EEuWLJnV+7z66qvx+uuvx7Zt22J0dDQuu+yy+MUvfjEne28Hs5nf4R7/2WefNW5PTU1FKSUWL158RPfZrpqd35eeeuqpePjhh+N3v/td1Gq1I7nFttbs/B5++OEYHByc8S/F+aLZ2S1btixWr14dZ555ZixYsCCuu+662Llz57eK9U7U7PxcO2Y/v3feeSduuOGG2Lx5c6xbt67x+E69drQseE466aT4+9//3rj9ySefxL59++LEE0+c8T7j4+Px+eefR0TE9PR0jI+Px8knnxzbtm2L888/P4477rhYsGBBXHrppTNeRZ7dbOb3dVatWhXvv/9+4/Z7770XtVotent7j/he21Gz84uIePbZZ+Opp56KJ598csZTxPNBs/N77bXXYsuWLdHX1xd9fX0REdHX1xcffPBBJfttJ83Obvny5TN+KmbhwoUREbFgwfz4LSPNzs+1Y3bzGxsbi1tvvTUefPDBuOCCCxr3d/K1o2XfIevWrYs9e/Y0flxwy5YtceGFF86oxFNOOSVqtVq88MILEfHF0cHy5ctj1apVsWrVqti+fXvjabQ//OEPceqpp879J9Iis5nf17noootix44djS/8LVu2xODgYGX7bTfNzm/v3r3x4IMPxmOPPRbf+973qtxqW2p2fiMjI/HWW2/Ftm3bYtu2bRHxxYXomwRnp2p2dn19ffHpp5/G1q1bIyLi6aefjrPPPjsWLVpU2Z7bSbPzc+04/PxKKTE0NBR33nln/OAHP5jx+E6+drT0/9J6++23Y/PmzTE5ORkrVqyI4eHh+Pzzz+P6669vRM67774bd9xxR/zzn/+M73znO3HXXXfFySefHAcPHox77rkntm7dGgsWLIharRa/+tWv4pRTTmnVpzPnZjO/wcHBmJ6ejt27d8d3v/vd6O7ujvvuuy++//3vx4svvhgPPfRQTE9PxxlnnBGbN2/+xkc6nayZ+W3fvj0eeeSRGbHT1dXVeNx80OzX3386/fTT4913323Fp9ESzc7ub3/7W9x+++3x2WefxfHHHx+/+c1v5tXxYDPzW716tWvHYea3c+fOuPbaa//rHyAPPPBArFmzpmOvHf7zUAAgvflx6AsAzGuCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6/wflaF/ROwtGRAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] @@ -3257,7 +2871,7 @@ }, { "cell_type": "code", - "execution_count": 93, + "execution_count": 56, "metadata": {}, "outputs": [], "source": [ @@ -3266,7 +2880,7 @@ }, { "cell_type": "code", - "execution_count": 94, + "execution_count": 57, "metadata": {}, "outputs": [ { @@ -3274,10 +2888,10 @@ "output_type": "stream", "text": [ "numpy 1.18.1\n", - "pandas 1.0.1\n", "pymc3 3.8\n", - "seaborn 0.10.0\n", "arviz 0.7.0\n", + "pandas 1.0.1\n", + "seaborn 0.10.0\n", "CPython 3.7.6\n", "IPython 7.12.0\n", "\n", @@ -3315,7 +2929,7 @@ }, { "cell_type": "code", - "execution_count": 129, + "execution_count": 58, "metadata": {}, "outputs": [ { @@ -3333,7 +2947,7 @@ }, { "cell_type": "code", - "execution_count": 159, + "execution_count": 59, "metadata": {}, "outputs": [], "source": [ @@ -3364,7 +2978,7 @@ }, { "cell_type": "code", - "execution_count": 160, + "execution_count": 60, "metadata": {}, "outputs": [ { @@ -3381,7 +2995,39 @@ }, { "cell_type": "code", - "execution_count": 161, + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[[ 14. 29. 4.]\n", + " [ 23. 22. 1.]\n", + " [ 78. 69. 20.]\n", + " [ 32. 36. 1.]\n", + " [ 19. 23. 5.]\n", + " [ 42. 42. 10.]\n", + " [ 59. 45. 12.]\n", + " [ 80. 49. 16.]\n", + " [ 12. 6. 3.]\n", + " [ 45. 39. 12.]\n", + " [ 51. 40. 8.]\n", + " [101. 64. 17.]\n", + " [ 17. 16. 1.]\n", + " [ 41. 27. 9.]\n", + " [ 67. 46. 11.]\n", + " [ 46. 30. 7.]]\n" + ] + } + ], + "source": [ + "print(values)" + ] + }, + { + "cell_type": "code", + "execution_count": 62, "metadata": {}, "outputs": [], "source": [ @@ -3393,7 +3039,7 @@ }, { "cell_type": "code", - "execution_count": 162, + "execution_count": 63, "metadata": {}, "outputs": [], "source": [ @@ -3402,7 +3048,7 @@ }, { "cell_type": "code", - "execution_count": 163, + "execution_count": 64, "metadata": {}, "outputs": [ { @@ -3414,57 +3060,57 @@ "post-warmup draws per chain=1000, total post-warmup draws=4000.\n", "\n", " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "theta[1,1] 0.299 7.95e-4 0.063 0.182 0.254 0.297 0.342 0.431 6344 1.001\n", - "theta[2,1] 0.489 8.84e-4 0.071 0.349 0.44 0.489 0.537 0.632 6476 0.999\n", - "theta[3,1] 0.465 4.85e-4 0.038 0.391 0.439 0.465 0.49 0.538 6069 1.0\n", - "theta[4,1] 0.458 7.69e-4 0.058 0.347 0.419 0.457 0.497 0.573 5595 1.0\n", - "theta[5,1] 0.399 9.03e-4 0.07 0.268 0.349 0.398 0.446 0.538 5994 0.999\n", - "theta[6,1] 0.443 6.25e-4 0.051 0.344 0.408 0.442 0.478 0.542 6674 1.0\n", - "theta[7,1] 0.505 5.68e-4 0.045 0.42 0.475 0.505 0.534 0.594 6152 1.0\n", - "theta[8,1] 0.547 5.22e-4 0.04 0.468 0.52 0.548 0.575 0.626 5937 0.999\n", - "theta[9,1] 0.541 0.001 0.1 0.339 0.473 0.542 0.611 0.734 6164 0.999\n", - "theta[10,1] 0.464 5.9e-4 0.05 0.367 0.43 0.464 0.497 0.562 7033 1.0\n", - "theta[11,1] 0.511 6.07e-4 0.05 0.412 0.478 0.511 0.544 0.61 6812 1.0\n", - "theta[12,1] 0.551 4.73e-4 0.036 0.48 0.526 0.551 0.575 0.621 5799 1.0\n", - "theta[13,1] 0.486 0.001 0.079 0.335 0.433 0.485 0.54 0.647 5829 1.0\n", - "theta[14,1] 0.526 7.82e-4 0.057 0.412 0.486 0.526 0.565 0.635 5314 1.001\n", - "theta[15,1] 0.535 5.68e-4 0.045 0.444 0.505 0.535 0.566 0.625 6367 0.999\n", - "theta[16,1] 0.547 6.62e-4 0.053 0.443 0.512 0.548 0.583 0.649 6390 1.0\n", - "theta[1,2] 0.601 8.9e-4 0.069 0.461 0.555 0.603 0.648 0.733 5983 1.0\n", - "theta[2,2] 0.47 8.95e-4 0.072 0.33 0.421 0.47 0.519 0.61 6432 0.999\n", - "theta[3,2] 0.411 4.79e-4 0.037 0.338 0.385 0.41 0.436 0.485 6134 0.999\n", - "theta[4,2] 0.514 7.88e-4 0.058 0.399 0.476 0.515 0.553 0.627 5429 1.001\n", - "theta[5,2] 0.481 9.01e-4 0.072 0.342 0.431 0.48 0.53 0.625 6365 0.999\n", - "theta[6,2] 0.444 6.31e-4 0.051 0.343 0.408 0.444 0.478 0.545 6576 1.0\n", - "theta[7,2] 0.386 5.5e-4 0.044 0.298 0.357 0.387 0.415 0.473 6427 0.999\n", - "theta[8,2] 0.338 5.03e-4 0.039 0.264 0.31 0.337 0.364 0.415 5993 1.0\n", - "theta[9,2] 0.293 0.001 0.089 0.132 0.23 0.289 0.35 0.477 5396 1.0\n", - "theta[10,2] 0.404 6.09e-4 0.049 0.309 0.37 0.404 0.437 0.502 6480 1.0\n", - "theta[11,2] 0.402 6.35e-4 0.049 0.306 0.368 0.4 0.435 0.501 6037 1.0\n", - "theta[12,2] 0.352 4.37e-4 0.034 0.285 0.328 0.351 0.375 0.419 6037 1.0\n", - "theta[13,2] 0.459 0.001 0.078 0.305 0.407 0.459 0.512 0.613 6100 1.0\n", - "theta[14,2] 0.349 6.89e-4 0.055 0.246 0.312 0.348 0.386 0.458 6267 1.0\n", - "theta[15,2] 0.37 5.42e-4 0.043 0.285 0.34 0.369 0.398 0.456 6394 0.999\n", - "theta[16,2] 0.36 6.72e-4 0.051 0.258 0.325 0.359 0.392 0.465 5797 1.0\n", - "theta[1,3] 0.1 5.41e-4 0.041 0.036 0.07 0.094 0.125 0.191 5787 1.0\n", - "theta[2,3] 0.041 3.52e-4 0.028 0.005 0.02 0.035 0.055 0.111 6507 1.0\n", - "theta[3,3] 0.124 3.31e-4 0.025 0.079 0.107 0.123 0.139 0.178 5582 1.0\n", - "theta[4,3] 0.028 2.43e-4 0.019 0.004 0.014 0.024 0.037 0.077 6225 1.0\n", - "theta[5,3] 0.12 5.65e-4 0.045 0.048 0.088 0.115 0.148 0.221 6420 1.0\n", - "theta[6,3] 0.113 4.02e-4 0.032 0.06 0.091 0.11 0.133 0.182 6304 1.0\n", - "theta[7,3] 0.109 3.64e-4 0.028 0.06 0.089 0.107 0.126 0.17 6030 1.0\n", - "theta[8,3] 0.115 3.62e-4 0.026 0.068 0.096 0.113 0.132 0.172 5232 0.999\n", - "theta[9,3] 0.167 9.83e-4 0.075 0.048 0.11 0.157 0.214 0.334 5887 0.999\n", - "theta[10,3] 0.132 4.2e-4 0.033 0.072 0.109 0.129 0.153 0.204 6332 0.999\n", - "theta[11,3] 0.088 3.41e-4 0.027 0.041 0.068 0.085 0.104 0.148 6295 1.0\n", - "theta[12,3] 0.098 2.44e-4 0.022 0.06 0.082 0.097 0.111 0.143 7771 1.0\n", - "theta[13,3] 0.055 4.75e-4 0.037 0.007 0.026 0.046 0.074 0.147 6215 1.0\n", - "theta[14,3] 0.125 4.97e-4 0.037 0.06 0.098 0.122 0.149 0.206 5565 1.0\n", - "theta[15,3] 0.095 3.38e-4 0.026 0.049 0.076 0.092 0.111 0.154 6101 1.0\n", - "theta[16,3] 0.093 4.31e-4 0.032 0.041 0.07 0.09 0.113 0.165 5525 1.001\n", - "lp__ -1.41e3 0.095 4.088 -1.42e3 -1.42e3 -1.41e3 -1.41e3 -1.41e3 1845 1.002\n", + "theta[1,1] 0.299 7.12e-4 0.063 0.185 0.255 0.297 0.34 0.43 7942 0.999\n", + "theta[2,1] 0.491 7.32e-4 0.07 0.35 0.444 0.491 0.538 0.63 9194 1.0\n", + "theta[3,1] 0.464 4.45e-4 0.038 0.388 0.438 0.464 0.489 0.539 7417 0.999\n", + "theta[4,1] 0.459 6.45e-4 0.058 0.346 0.421 0.459 0.498 0.573 7993 1.0\n", + "theta[5,1] 0.4 7.38e-4 0.069 0.268 0.352 0.398 0.446 0.539 8744 0.999\n", + "theta[6,1] 0.443 5.41e-4 0.049 0.351 0.408 0.442 0.476 0.54 8199 0.999\n", + "theta[7,1] 0.505 5.0e-4 0.046 0.416 0.474 0.505 0.536 0.595 8475 0.999\n", + "theta[8,1] 0.547 4.57e-4 0.041 0.467 0.519 0.547 0.575 0.627 8122 1.0\n", + "theta[9,1] 0.542 0.001 0.102 0.345 0.472 0.543 0.614 0.735 7025 0.999\n", + "theta[10,1] 0.464 5.67e-4 0.049 0.369 0.431 0.464 0.496 0.561 7407 1.0\n", + "theta[11,1] 0.511 5.83e-4 0.05 0.413 0.477 0.511 0.544 0.605 7229 0.999\n", + "theta[12,1] 0.551 4.02e-4 0.037 0.478 0.527 0.551 0.577 0.623 8384 0.999\n", + "theta[13,1] 0.488 9.31e-4 0.081 0.329 0.431 0.487 0.542 0.648 7612 0.999\n", + "theta[14,1] 0.525 5.25e-4 0.055 0.412 0.489 0.526 0.561 0.633 11028 0.999\n", + "theta[15,1] 0.536 5.01e-4 0.044 0.447 0.506 0.536 0.566 0.623 7880 0.999\n", + "theta[16,1] 0.547 5.36e-4 0.053 0.442 0.511 0.549 0.584 0.647 9702 0.999\n", + "theta[1,2] 0.6 7.54e-4 0.067 0.466 0.556 0.602 0.648 0.726 7995 0.999\n", + "theta[2,2] 0.469 7.51e-4 0.07 0.332 0.422 0.469 0.517 0.608 8661 1.0\n", + "theta[3,2] 0.412 4.48e-4 0.038 0.339 0.386 0.411 0.438 0.485 7136 1.0\n", + "theta[4,2] 0.513 6.26e-4 0.058 0.403 0.474 0.513 0.551 0.624 8474 1.0\n", + "theta[5,2] 0.481 7.22e-4 0.07 0.344 0.434 0.481 0.529 0.62 9468 0.999\n", + "theta[6,2] 0.444 5.34e-4 0.05 0.347 0.41 0.443 0.478 0.541 8597 1.0\n", + "theta[7,2] 0.385 5.02e-4 0.044 0.3 0.357 0.384 0.413 0.475 7676 0.999\n", + "theta[8,2] 0.338 4.47e-4 0.038 0.262 0.313 0.338 0.363 0.417 7379 0.999\n", + "theta[9,2] 0.292 0.001 0.092 0.13 0.226 0.285 0.349 0.489 6593 0.999\n", + "theta[10,2] 0.405 5.26e-4 0.049 0.311 0.37 0.404 0.438 0.504 8713 1.0\n", + "theta[11,2] 0.401 5.63e-4 0.049 0.308 0.368 0.4 0.434 0.498 7566 0.999\n", + "theta[12,2] 0.351 3.84e-4 0.035 0.283 0.329 0.351 0.375 0.421 8153 0.999\n", + "theta[13,2] 0.459 9.39e-4 0.081 0.303 0.403 0.457 0.513 0.619 7392 0.999\n", + "theta[14,2] 0.35 5.32e-4 0.053 0.25 0.314 0.348 0.384 0.459 9800 0.999\n", + "theta[15,2] 0.37 4.98e-4 0.043 0.289 0.34 0.37 0.399 0.458 7535 0.999\n", + "theta[16,2] 0.359 5.56e-4 0.051 0.264 0.323 0.358 0.395 0.462 8400 0.999\n", + "theta[1,3] 0.1 4.86e-4 0.042 0.033 0.069 0.095 0.127 0.194 7558 1.0\n", + "theta[2,3] 0.04 3.3e-4 0.027 0.006 0.02 0.034 0.053 0.107 6645 1.0\n", + "theta[3,3] 0.124 2.86e-4 0.026 0.079 0.105 0.122 0.14 0.179 8023 1.0\n", + "theta[4,3] 0.028 2.24e-4 0.019 0.004 0.014 0.024 0.037 0.075 7067 0.999\n", + "theta[5,3] 0.119 5.71e-4 0.046 0.046 0.085 0.114 0.148 0.222 6417 0.999\n", + "theta[6,3] 0.113 3.75e-4 0.032 0.059 0.091 0.111 0.134 0.182 7201 1.0\n", + "theta[7,3] 0.11 3.28e-4 0.028 0.061 0.09 0.108 0.127 0.169 7301 0.999\n", + "theta[8,3] 0.115 2.98e-4 0.027 0.068 0.096 0.113 0.131 0.17 7954 1.0\n", + "theta[9,3] 0.166 8.73e-4 0.075 0.049 0.111 0.157 0.21 0.345 7341 1.0\n", + "theta[10,3] 0.131 3.95e-4 0.033 0.073 0.108 0.129 0.152 0.202 6986 0.999\n", + "theta[11,3] 0.088 3.16e-4 0.028 0.041 0.069 0.085 0.105 0.151 7727 0.999\n", + "theta[12,3] 0.097 2.53e-4 0.021 0.06 0.082 0.096 0.111 0.144 7207 1.0\n", + "theta[13,3] 0.054 4.18e-4 0.037 0.006 0.027 0.046 0.073 0.147 7813 0.999\n", + "theta[14,3] 0.125 3.9e-4 0.037 0.063 0.098 0.121 0.148 0.205 8882 0.999\n", + "theta[15,3] 0.094 2.62e-4 0.025 0.05 0.076 0.093 0.11 0.149 9362 0.999\n", + "theta[16,3] 0.093 3.54e-4 0.031 0.043 0.07 0.09 0.113 0.162 7719 0.999\n", + "lp__ -1.41e3 0.111 4.124 -1.42e3 -1.42e3 -1.41e3 -1.41e3 -1.41e3 1371 1.001\n", "\n", - "Samples were drawn using NUTS at Mon Mar 30 17:22:59 2020.\n", + "Samples were drawn using NUTS at Wed Apr 1 13:58:31 2020.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -3477,7 +3123,7 @@ }, { "cell_type": "code", - "execution_count": 164, + "execution_count": 65, "metadata": {}, "outputs": [], "source": [ @@ -3486,7 +3132,7 @@ }, { "cell_type": "code", - "execution_count": 165, + "execution_count": 66, "metadata": {}, "outputs": [ { @@ -3495,7 +3141,7 @@ "(4000, 16, 3)" ] }, - "execution_count": 165, + "execution_count": 66, "metadata": {}, "output_type": "execute_result" } @@ -3506,39 +3152,51 @@ }, { "cell_type": "code", - "execution_count": 166, + "execution_count": 67, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([0.305646 , 0.47988473, 0.42721749, 0.46774404, 0.44612915,\n", - " 0.51697408, 0.58440693, 0.53752915, 0.63354365, 0.4760622 ,\n", - " 0.56491333, 0.60691645, 0.62535855, 0.42935015, 0.535791 ,\n", - " 0.56380083])" + "array([[0.29572325, 0.65129841, 0.05297834],\n", + " [0.54051595, 0.432803 , 0.02668105],\n", + " [0.47824452, 0.35413056, 0.16762492],\n", + " [0.51957493, 0.47637818, 0.0040469 ],\n", + " [0.40854686, 0.41944028, 0.17201286],\n", + " [0.38775786, 0.48608583, 0.1261563 ],\n", + " [0.52421906, 0.36840217, 0.10737878],\n", + " [0.51847677, 0.337041 , 0.14448223],\n", + " [0.40462137, 0.5052229 , 0.09015573],\n", + " [0.51062115, 0.35267396, 0.13670489],\n", + " [0.59024591, 0.35611482, 0.05363928],\n", + " [0.61836461, 0.29295664, 0.08867874],\n", + " [0.36347457, 0.59558058, 0.04094485],\n", + " [0.55051669, 0.3298886 , 0.11959471],\n", + " [0.49178011, 0.40013566, 0.10808424],\n", + " [0.56625645, 0.3640529 , 0.06969065]])" ] }, - "execution_count": 166, + "execution_count": 67, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "samples[0, :, 0]" + "samples[999, :, :]" ] }, { "cell_type": "code", - "execution_count": 167, + "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "0.09984042335668665" + "0.10019345338843164" ] }, - "execution_count": 167, + "execution_count": 68, "metadata": {}, "output_type": "execute_result" } @@ -3549,7 +3207,7 @@ }, { "cell_type": "code", - "execution_count": 168, + "execution_count": 69, "metadata": {}, "outputs": [], "source": [ @@ -3562,28 +3220,28 @@ }, { "cell_type": "code", - "execution_count": 169, + "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "array([[-0.29830963, -0.20967514, -0.26950832, ..., -0.35826107,\n", - " -0.33491419, -0.23189027],\n", - " [-0.02413558, -0.21438899, -0.10612351, ..., -0.02959419,\n", - " 0.06178593, 0.0923874 ],\n", - " [-0.02366946, 0.02613382, 0.11743479, ..., 0.06990543,\n", - " 0.11012108, 0.17011507],\n", + "array([[-0.37379623, -0.40020554, -0.35526723, ..., -0.45095156,\n", + " -0.14461942, -0.40179938],\n", + " [ 0.04206939, -0.09303923, -0.09644825, ..., 0.18600798,\n", + " 0.15895143, 0.112105 ],\n", + " [-0.08043822, 0.05722378, -0.04404239, ..., 0.0013293 ,\n", + " 0.02855459, 0.13559384],\n", " ...,\n", - " [ 0.1281835 , 0.30301716, 0.14321119, ..., 0.1655299 ,\n", - " 0.13558499, 0.28890727],\n", - " [ 0.16218526, 0.22916085, 0.10451857, ..., 0.31905207,\n", - " 0.16814509, 0.13835418],\n", - " [ 0.2052175 , 0.2833933 , 0.11942988, ..., 0.12966828,\n", - " 0.09326143, 0.22236906]])" + " [-0.01346588, 0.12558811, 0.0464158 , ..., 0.0514563 ,\n", + " 0.14019075, 0.22758187],\n", + " [ 0.25544295, 0.18122796, 0.21108366, ..., 0.06446671,\n", + " 0.34555547, 0.11465078],\n", + " [ 0.14040905, 0.15922342, 0.09676584, ..., 0.05328776,\n", + " -0.05423725, 0.3145302 ]])" ] }, - "execution_count": 169, + "execution_count": 70, "metadata": {}, "output_type": "execute_result" } @@ -3595,30 +3253,84 @@ }, { "cell_type": "code", - "execution_count": 170, + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-0.40828455, 0.22569834, 0.0602826 , 0.07930029, 0.00955351,\n", + " -0.04819828, 0.00276351, 0.21396297, 0.23868738, 0.03966128,\n", + " 0.29747492, 0.17296242, -0.09768944, 0.13778526, 0.13535163,\n", + " 0.39908791])" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "diff3.T[300, :]" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([0.03206413, 0.03206413, 0.11523046, 0.04809619, 0.03206413,\n", + " 0.06513026, 0.08016032, 0.1002004 , 0.01503006, 0.06613226,\n", + " 0.06813627, 0.12625251, 0.02304609, 0.05310621, 0.08617234,\n", + " 0.05711423])" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "proportion / np.sum(proportion)" + ] + }, + { + "cell_type": "code", + "execution_count": 73, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[-0.00903626 0.00915508 0.00813136 0.00217919 -0.0036359 0.00712706\n", + " -0.00098481 0.01602406 -0.00069021 0.01149549 -0.00577915 0.0293123\n", + " 0.00473389 -0.00404456 0.00639422 0.01363429]\n" + ] + }, { "data": { "text/plain": [ - "array([-0.23189027, 0.0923874 , 0.17011507, -0.3350024 , -0.06830835,\n", - " -0.11070815, 0.07650463, 0.28555088, 0.16222205, 0.04862792,\n", - " -0.04044725, 0.01634078, -0.19855381, 0.28890727, 0.13835418,\n", - " 0.22236906])" + "0.0840160462208799" ] }, - "execution_count": 170, + "execution_count": 73, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "diff3[:, 3999]" + "ii = 3989\n", + "print(diff3.T[ii, :] * proportion / np.sum(proportion))\n", + "np.sum(diff3.T[ii, :] * proportion / np.sum(proportion))" ] }, { "cell_type": "code", - "execution_count": 171, + "execution_count": 74, "metadata": {}, "outputs": [], "source": [ @@ -3627,7 +3339,7 @@ }, { "cell_type": "code", - "execution_count": 172, + "execution_count": 75, "metadata": {}, "outputs": [ { @@ -3636,7 +3348,7 @@ "(4000,)" ] }, - "execution_count": 172, + "execution_count": 75, "metadata": {}, "output_type": "execute_result" } @@ -3647,12 +3359,12 @@ }, { "cell_type": "code", - "execution_count": 173, + "execution_count": 76, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAFkCAYAAAA0Wq9BAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQ3klEQVR4nO3dX2id9f3A8U/a056ktkU6joq0Xdt5ISt2Y06qKGihLJkJ/gmopTdWvNgocxfDQWF0qCgG/2w3IrUo1nUiE/8VGv/QDUUFtymC4kXLqgsrjpat0jaxJ7Gpz+/Cn4cc/TTNenKS5uT1AsGef895Pj759u15zjlpK4qiCAAA6syZ7icAAHA2EkkAAAmRBACQEEkAAAmRBACQEEkAAInSZD/gf/4zGBERCxeWY2hoZLIfvmWYz/jMZ3zmMz7zOTWzGZ/5jK8V51OpLDrldU17JalUmtush24J5jM+8xmf+YzPfE7NbMZnPuObbfNxug0AICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASIgkAICGSAAASpel+AgATsXBxR3SUJ75kVSqLzmg71ZHRGDpWPaP7Aq1FJAEzQke5FCu29Dd9OwN93THU9K0AM4HTbQAACa8kAYwxfOLkGZ+qmyin9GBmEEkAY7TPm9v003pO6cHM4HQbAEBCJAEAJJxuAxr2v348H2AmsKoBDZuKj+cP9HU39fEBvsnpNgCAhEgCAEg43QYtzvuFAM6MlRNanPcLAZwZp9sAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CALPN8ImTUaksauo2qiOjMXSs2tRtQKsTSQBTrH3e3Fixpb+p2xjo646hpm4BWp/TbQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAQSQAACZEEAJAoTfcTgNlq4eKO6Cif+Y9gpbJoEp8NAN8kkmCadJRLsWJLf9O3M9DX3fRtALQip9sAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CAEy+4RMno1JZlF53qsvPRHVkNIaOVSft8eBsIpIAWlD7vLmxYkt/07cz0NcdQ03fCkwPp9sAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CcDZauLgjOsp+PABmM38LQKKjXIoVW/qbuo2Bvu6mPj4AjXG6DQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABIiCQAgIZIAABKl6X4CAMxcwydORqWyqKnbqI6MxtCxalO3ARmRBMAZa583N1Zs6W/qNgb6umOoqVuAnNNtAAAJkQQAkBBJAAAJkQQAkBBJAAAJkQQAkBBJAAAJkQQAkPBlksw4Cxd3REfZoQtAc/mbhhmno1yakm/4BWB2c7oNACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACAhkgAAEiIJACBRmu4nQOtYuLgjOsqTd0hVKosm7bGAmWv4xMkpWQ+qI6NN3wYzi0hi0nSUS7FiS3/TtzPQ1930bQBnj/Z5c6dsbTlx4mTTt8PM4XQbAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJErT/QQA4GwwfOJktM+bG5XKoqZtozoyGkPHqk17fCaXSAKAiGifNzdWbOlv6jYG+rpjqKlbYDI53QYAkPBK0iyxcHFHdJT95waAifK35izRUS5NycvIANAqnG4DAEiIJACAhEgCAEiIJACAhDduA8AUGT5xsqlfVhnhCysnk0gCgCniCytnFpE0zXx/EQCcnfztPM2m4vuLInyHEQD8r7xxGwAgIZIAABIiCQAg4T1J42j2m6qb/TFQAODMiaRx+KWwADB7zdhI8tF5APi2Zn9h5dePPXziZLTPm9u07URM/xdjthVFUUzb1gEAzlLeuA0AkBBJAAAJkQQAkJhQJL3zzjtx4403RmdnZ9x2221x8ODBb91m7969sWHDhujs7IwNGzbE3r17a9f19/dHT09PdHZ2xh133BGDg4MREVEURTz00EPR2dkZXV1d8fDDD0/Sbk2tRufz7LPPRnd3d3R1dcXtt99eu/+uXbvi0ksvja6urto/e/bsmbL9mgyNzObgwYOxevXquv3/+hhx7EQ89dRTdbNZv359rF27NiIiHn300Vi7dm3d9R9++OGU7ttkmMh8iqKIJ554IlavXh3vvfde3XXWnvHn08prT0Rj82n19aeR2cyGtaemOI3PP/+8uPzyy4uPPvqoKIqiePzxx4uf/exn37pdV1dXsWfPnqIoiuKVV14penp6iqIoik8//bRYu3Zt8emnnxZFURR33313cc899xRFURS7d+8ubrrppmJkZKQYHh4uent7i1dfffV0T+ms0uh8Pvjgg+LKK68sDh06VBRFUfT19RW/+tWviqIoip07dxZbt26dit1oikZns2/fvuInP/lJ+tiOnW/bvn17cf/99xdF8dVxtG3btiY986kx0fls3bq1+M1vflNcddVVxbvvvlu73NrzlVPNp5XXnqJofD6tvP40OptvarW1Z6zTvpL017/+NZYtWxarV6+OiIgNGzbE22+/HUNDQ7Xb7Nu3LwYHB2P9+vUREdHV1RWHDx+Ojz/+OP7yl7/EFVdcERdeeGFERGzcuDFeeeWViIh49dVX48Ybb4z58+dHuVyO3t7e2nUzRaPzWbJkSfz+97+P8847LyIifvzjH8f+/fsjImJwcDAWLZq5XzjZ6GwGBwdj8eLF6WM7dj6ue6z//ve/8cwzz8TmzZsjYuYfOxETm09ERG9vb9x7770xb968usutPV851Xxaee2JaHw+rbz+NDqbsVpx7RnrtJE0MDAQy5Ytq/35nHPOiXPPPTf+9a9/1d1m6dKldfdbtmxZfPLJJzEwMBDLly+vXb58+fI4fPhwHD16NL3uk08+aWiHplqj81m6dGlcdtlltcvffPPN+MEPfhAREceOHYv3338/br755ujq6oq+vr744osvmrxHk6fR2QwODsaRI0di06ZN0dnZGb/85S/j0KFDtfvN9mNnrCeeeCJ6e3tri/qxY8fiz3/+c/T29sa1114b27Zti2KGfdvHROYTEfHDH/7wlPef7WtPxKnn08prT0Tj82nl9afR2YzVimvPWKeNpGq1GuVyue6ycrkcx48fn9BtqtVqzJ8/v3b5/Pnzo62tLarV6rfu197eHtXq9H1p1JlodD5jvfTSS/HWW2/FHXfcERERF198caxbty7+8Ic/xJ/+9Kf48MMPY/v27U3ak8nX6GyWLFkS69atiwceeCD6+/vjggsuiF//+tfp/WbzsTM4OBi7du2KjRs31i679NJLY/369fHss8/Gk08+GS+99FLs2rWrSXvSHBP9uRnv/rN97ZmoVlt7IhqfTyuvP5N17LTq2jPWab+yesGCBTEyMlJ32fDwcJxzzjkTus2CBQvq/g9kZGQkiqKIBQsWREdHR939qtVqLFiw4Ix3Zjo0Op+vPf3007Fjx4546qmnolKpRETE9ddfX7u+vb09Nm3aFNu3b49f/OIXzdiVSdfobNasWRNr1qypXb558+a4/PLL4/jx446dMbd5/fXXY82aNbFkyZLaZbfeemvt388///y45ZZb4vXXX48bbrhhsnejaSay76e7/2xfeyaiFdeeiMbn08rrz2QdO6269ox12leSVq1aFf/85z9rf/7ss8/i6NGj8d3vfrfuNgMDA/Hll19GRMTo6GgMDAzE9773vVi5cmXdy5D/+Mc/olKpxOLFi2PVqlV11+3fvz8uuuiiSdmxqdLofCIiXnjhhXj66afjj3/8Y91LoAcOHKh9Gifiq08alEoz51exNDqbw4cP133ioiiKaGtri1Kp5Nj5/2MnIuKNN96Iq6++uu6x9+/fX7cIzrRjJ2Ji8xmPtef0WnXtiWh8Pq28/kzGsRPRumvPWKeNpLVr18bBgwdrH//buXNnrFu3rq6aL7rooqhUKrF79+6I+Oql26VLl8bKlStj/fr18fe//732H2Tnzp3R09MTERE//elP47nnnovjx4/H559/Hs8//3x0d8+sX/ja6HwOHToUv/vd7+Lxxx+P888/v+6xH3300XjwwQejKIoYGRmJZ555Jq655pop27dGNTqbt956KzZv3lx7M+GOHTviiiuuiPnz5zt2Vq6s3Wbv3r110RQRcc8998SOHTsiIuLo0aPx4osvzqhjJ2Ji8xmPtWd8rbz2RDQ+n1Zefxqdzddade0Za0K/u+1vf/tb3HfffVGtVmP58uXR19cXX375Zdx+++21xXvfvn2xdevWOHLkSHznO9+Je++9tza8l19+OR555JEYHR2N73//+3HffffVXtZ7+OGH47XXXou2trbo6empnROfSRqZz2OPPRbbtm2rW6RKpVLs3r07jhw5Elu3bo19+/ZFW1tbXH311XHnnXfWvc/ibNfIbIqiqB0fc+bMiVWrVsVdd91Vm9VsP3a+9qMf/Siee+65WLVqVe2yAwcOxG9/+9v497//HXPmzInrrrsufv7zn0dbW9uU72MjJjKfnp6eGB0djQMHDsR5550X5XI5HnjggVizZo21J049n3feeael156IxuZzySWXtPT60+jPVkRrrz1f8wtuAQASfi0JAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEBCJAEAJEQSAEDi/wAW3xt9NpaCgAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAFkCAYAAADMulS2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQ8klEQVR4nO3dX2id9f3A8U/a056c2gbpODpG27WdF2JZHXOjygZaKCYzYZuBafFmjl5sFN3F2KAwOjZRFtzcbobUoljXiShus9BMRYeigrqNwcouWlZdsCgtW0ebxJ5kTX1+F/l5ZmZzmjV5Ek8+rxcU7Pn3nOfjk2/f5286iqIoAgAgoSULfQcAABaKEAIA0hJCAEBaQggASEsIAQBpCSEAIK3KxVzpH/8YueBlVq6sxujo+MXcfArm05r5tGY+rZlPa+bTmvm01o7zqddXTXteac8IVSpLy7rpRcF8WjOf1synNfNpzXxaM5/WFtt8vDQGAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEirstB3AOB9K7tqUavOzbJUr6+a9rzG+ESMDjfmZDtAexNCwEdGrVqJ9bsGS9/O0EBvjJa+FaAdeGkMAEhLCAEAaXlpDEhn7Oy5lu8hmgvehwTtQQgB6XQuW1r6e5G8Dwnag5fGAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkVVnoOwC0h5VdtahVLRnA4mJVA2akVq3E+l2DpW5jaKC31NsH+G9eGgMA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABIq7LQdwCYnZVdtahV/SgDXAyrJ7S5WrUS63cNlr6doYHe0rcBMN+8NAYApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIK3KQt8BgMVo7Oy5qNdXlbqNxvhEjA43St0GLHZCCKAEncuWxvpdg6VuY2igN0ZL3QIsfl4aAwDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASKuy0HcAgIszdvZc1OurLuq6/8v1GuMTMTrcuKjtwEedEAJoU53Llsb6XYOlb2dooDdGS98KLAwvjQEAaQkhACAtIQQApCWEAIC0hBAAkJZPjUGJVnbVolYt58fsYj82DcB/CCEoUa1aKf3jzUMDvaXePsBi5qUxACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBalYW+A7BQVnbVolb1IwCQmX8FSKtWrcT6XYOlbmNooLfU2wdgdrw0BgCkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtX6gIQEtjZ89Fvb6q1G00xididLhR6jbgfIQQAC11Lls6L9/CPlrqFuD8vDQGAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWkIIAEhLCAEAaQkhACAtIQQApCWEAIC0hBAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtCoLfQfgv63sqsWyZUujXl+10HcFgEVOCPGRU6tWYv2uwdK3MzTQW/o2gJkZO3uu9Ac/jfGJGB1ulLoN2o8QAmDBdS5bWvoDoKGB3hgtdQu0I+8RAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANISQgBAWpWFvgO0l5VdtahVHTYALA7+ReN/UqtWYv2uwVK3MTTQW+rtAzmNnT0X9fqqGV12ppc7n8b4RIwONy76+swvIQRACp3Llpb+QC5i8sHcaOlbYa54jxAAkJYQAgDSEkIAQFpCCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASEsIAQBpCSEAIC0hBACkJYQAgLSEEACQlhACANKqLPQdYO6s7KpFrep/KQDMlH81F5FatRLrdw2Wuo2hgd5Sbx+g3Y2dPRf1+qpSt9EYn4jR4Uap28hCCAHAHOpctnReHpSOlrqFPLxHCABISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWj8/Pg+m+6LDs75kAYHHyXUVzJ30Izde3MZf9nRIRvuwQIAvfVTR30oeQb2MGgA9r9azTXD4btdDPPKUPIQDgw+bjWaeIhX/mqaMoimIBtw8AsGB8agwASEsIAQBpCSEAIK0ZhdCrr74aN998c3R3d8c3vvGNOH78+Icuc/jw4di+fXt0d3fH9u3b4/Dhw83zBgcHo6+vL7q7u+POO++MkZGRiIgoiiJ++tOfRnd3d/T09MR99903R7s1v2Y7nyeeeCJ6e3ujp6cnduzY0bz+gQMH4pprromenp7mn+eee27e9muuzGY+x48fj02bNk2ZwfvHieMn4pFHHpkym23btsWWLVsiIuL++++PLVu2TDn/0KFD87pvc2Em8ymKIh566KHYtGlT/OlPf5pynvWn9XysP9PPx/ozabr5LJr1p7iAd999t7j22muLv/71r0VRFMWDDz5YfPOb3/zQ5Xp6eornnnuuKIqiePrpp4u+vr6iKIri7bffLrZs2VK8/fbbRVEUxY9+9KPirrvuKoqiKA4ePFh87WtfK8bHx4uxsbGiv7+/eOaZZy50lz5SZjufv/zlL8UXvvCF4sSJE0VRFMXAwEDxne98pyiKoti/f3+xe/fu+diN0sx2PkeOHCluvPHG89624+fD9u7dW/z4xz8uimLyWNqzZ09J93x+zHQ+u3fvLr7//e8XX/ziF4s//vGPzdOtP5Omm4/1Z9J087H+TJpuPv+tXdefCz4j9Nprr8XatWtj06ZNERGxffv2eOWVV2J09D8fdjty5EiMjIzEtm3bIiKip6cnTp48GW+88Ub8/ve/j+uuuy4+8YlPRETEbbfdFk8//XRERDzzzDNx8803x/Lly6NarUZ/f3/zvHYx2/msXr06fv7zn8dll10WERGf+9zn4ujRoxERMTIyEqtWtfe3T892PiMjI9HV1XXe23b8vDHltv75z3/GY489Fjt37oyIPMdPRER/f3/cfffdsWzZsimnW38mTTcf68+k6eZj/Zk03Xw+qJ3XnwuG0NDQUKxdu7b590suuSQuvfTSeOutt6ZcZs2aNVOut3bt2njzzTdjaGgo1q1b1zx93bp1cfLkyTh9+vR5z3vzzTdntUPzbbbzWbNmTXz+859vnv7SSy/F1VdfHRERw8PD8ec//zluueWW6OnpiYGBgfj3v/9d8h7NrdnOZ2RkJE6dOhW33357dHd3x7e//e04ceJE83rZj58Peuihh6K/v7+5cA8PD8fzzz8f/f39cdNNN8WePXuiaLNvy5jJfCIiPvOZz0x7/ezrT8T087H+TJpuPtafSdPN54Paef25YAg1Go2oVqtTTqtWq3HmzJkZXabRaMTy5cubpy9fvjw6Ojqi0Wh86HqdnZ3RaLTX7zWZ7Xw+6KmnnoqXX3457rzzzoiIuPLKK2Pr1q3xy1/+Mh5//PE4dOhQ7N27t6Q9Kcds57N69erYunVr3HvvvTE4OBgf//jH43vf+955r5f5+BkZGYkDBw7Ebbfd1jztmmuuiW3btsUTTzwRDz/8cDz11FNx4MCBkvakHDP92Wl1/ezrz0xlXX9asf7MTLuvPxf8ZukVK1bE+Pj4lNPGxsbikksumdFlVqxYMeVRxPj4eBRFEStWrIharTbleo1GI1asWHHRO7MQZjuf9z366KOxb9++eOSRR6Jer0dExFe+8pXm+Z2dnXH77bfH3r1744477ihjV0ox2/ls3rw5Nm/e3Dx9586dce2118aZM2ccPx+4zAsvvBCbN2+O1atXN0/7+te/3vzvyy+/PG699dZ44YUX4qtf/epc70ZpZrLvF7p+9vVnJjKvP61Yf2am3defCz4jtHHjxvj73//e/Pu//vWvOH36dHzyk5+ccpmhoaF47733IiJiYmIihoaG4lOf+lRs2LBhytOFf/vb36Jer0dXV1ds3LhxynlHjx6NK664Yk52bL7Mdj4REb/5zW/i0UcfjV/96ldTnqY8duxY8xMuEZPv3K9U2uu3osx2PidPnpzyKYaiKKKjoyMqlYrj5/+Pn4iIF198Ma6//vopt3306NEpi9xiPX5asf5cWPb1pxXrz8y0+/pzwRDasmVLHD9+vPmRuf3798fWrVunlO8VV1wR9Xo9Dh48GBGTT7GuWbMmNmzYENu2bYs//OEPzWHv378/+vr6IiLiS1/6Ujz55JNx5syZePfdd+PXv/519Pa21y8one18Tpw4ET/72c/iwQcfjMsvv3zKbd9///3xk5/8JIqiiPHx8XjsscfihhtumLd9mwuznc/LL78cO3fubL55b9++fXHdddfF8uXLHT8bNjQvc/jw4SlhFBFx1113xb59+yIi4vTp0/Hb3/52UR4/rVh/WrP+tGb9mZl2X39m9LvGXn/99bjnnnui0WjEunXrYmBgIN57773YsWNHc3E+cuRI7N69O06dOhUf+9jH4u67724O5ne/+1384he/iImJibjqqqvinnvuaT71dt9998Wzzz4bHR0d0dfX13x9up3MZj4PPPBA7NmzZ8oiVKlU4uDBg3Hq1KnYvXt3HDlyJDo6OuL666+P7373u1Pe89AOZjOfoiiax8iSJUti48aN8cMf/rA5r+zHz/s++9nPxpNPPhkbN25snnbs2LH4wQ9+EO+8804sWbIkvvzlL8e3vvWt6OjomPd9nI2ZzKevry8mJibi2LFjcdlll0W1Wo177703Nm/ebP2J6efz6quvWn9i+vl8+tOftv5E65+viPZff/zSVQAgLb9iAwBISwgBAGkJIQAgLSEEAKQlhACAtIQQAJCWEAIA0hJCAEBaQggASOv/ANVKDkDCDBWYAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] @@ -3684,7 +3396,7 @@ }, { "cell_type": "code", - "execution_count": 132, + "execution_count": 78, "metadata": {}, "outputs": [], "source": [ @@ -3745,7 +3457,6 @@ " vector[n] mu;\n", " cholesky_factor_corr[n] L;\n", " vector[n] beta[N];\n", - " simplex[n] thetas[N];\n", " \n", "}\n", "\n", @@ -3763,13 +3474,10 @@ "\n", " L ~ lkj_corr_cholesky(3.0);\n", " \n", - " mu ~ normal(0, .01);\n", + " mu ~ normal(0, 0.01);\n", " \n", " beta ~ multi_normal_cholesky(mu, L);\n", - " \n", - " for (i in 1:N)\n", - " thetas[i] ~ dirichlet(alphas[i]);\n", - " \n", + " \n", " for (i in 1:N)\n", " post[i] ~ multinomial(alphas[i]);\n", " \n", @@ -3788,24 +3496,59 @@ }, { "cell_type": "code", - "execution_count": 133, + "execution_count": 79, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ - "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_18738fd7d802e41a14daf6d0e4aad6e0 NOW.\n" + "INFO:pystan:COMPILING THE C++ CODE FOR MODEL anon_model_484b7371ef716b8699f231237da781fc NOW.\n" ] } ], "source": [ - "stan_modelo2 = pystan.StanModel(model_code=modelo3)" + "stan_modelo2 = pystan.StanModel(model_code=modelo2)" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[ 15., 42.],\n", + " [ 24., 45.],\n", + " [ 88., 146.],\n", + " [ 33., 68.],\n", + " [ 21., 41.],\n", + " [ 47., 84.],\n", + " [ 66., 104.],\n", + " [ 90., 129.],\n", + " [ 14., 19.],\n", + " [ 51., 84.],\n", + " [ 55., 90.],\n", + " [112., 165.],\n", + " [ 17., 32.],\n", + " [ 46., 68.],\n", + " [ 74., 113.],\n", + " [ 50., 76.]])" + ] + }, + "execution_count": 80, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "new_values" ] }, { "cell_type": "code", - "execution_count": 134, + "execution_count": 81, "metadata": {}, "outputs": [], "source": [ @@ -3816,7 +3559,7 @@ }, { "cell_type": "code", - "execution_count": 135, + "execution_count": 82, "metadata": {}, "outputs": [ { @@ -3824,7 +3567,9 @@ "output_type": "stream", "text": [ "WARNING:pystan:n_eff / iter below 0.001 indicates that the effective sample size has likely been overestimated\n", - "WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed\n" + "WARNING:pystan:Rhat above 1.1 or below 0.9 indicates that the chains very likely have not mixed\n", + "WARNING:pystan:10000 of 10000 iterations ended with a divergence (100 %).\n", + "WARNING:pystan:Try running with adapt_delta larger than 0.9 to remove the divergences.\n" ] } ], @@ -3834,127 +3579,95 @@ }, { "cell_type": "code", - "execution_count": 136, + "execution_count": 83, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "Inference for Stan model: anon_model_18738fd7d802e41a14daf6d0e4aad6e0.\n", + "Inference for Stan model: anon_model_484b7371ef716b8699f231237da781fc.\n", "4 chains, each with iter=5000; warmup=2500; thin=1; \n", "post-warmup draws per chain=2500, total post-warmup draws=10000.\n", "\n", - " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", - "mu[1] -0.002 6.89e-5 0.01 -0.021 -0.008 -0.002 0.005 0.018 20619 1.0\n", - "mu[2] 0.002 7.23e-5 0.01 -0.018 -0.005 0.002 0.009 0.022 19414 1.0\n", - "L[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "L[2,1] 0.737 0.001 0.137 0.385 0.68 0.767 0.831 0.905 9163 1.0\n", - "L[1,2] 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 nan nan\n", - "L[2,2] 0.649 0.001 0.128 0.425 0.556 0.641 0.733 0.923 14384 1.0\n", - "beta[1,1] -0.446 0.01 0.927 -2.209 -1.069 -0.46 0.17 1.377 8129 1.0\n", - "beta[2,1] -0.284 0.01 0.946 -2.162 -0.916 -0.286 0.359 1.555 9166 1.0\n", - "beta[3,1] -0.245 0.01 0.941 -2.065 -0.883 -0.243 0.408 1.581 8585 1.0\n", - "beta[4,1] -0.321 0.01 0.937 -2.123 -0.957 -0.322 0.322 1.498 9479 1.0\n", - "beta[5,1] -0.283 0.01 0.941 -2.171 -0.918 -0.284 0.375 1.518 8696 1.0\n", - "beta[6,1] -0.265 0.01 0.939 -2.115 -0.884 -0.263 0.351 1.61 8060 1.0\n", - "beta[7,1] -0.204 0.01 0.947 -2.054 -0.853 -0.216 0.443 1.626 9344 1.0\n", - "beta[8,1] -0.168 0.01 0.94 -2.011 -0.804 -0.169 0.465 1.698 9307 1.0\n", - "beta[9,1] -0.119 0.01 0.953 -1.98 -0.77 -0.116 0.53 1.732 9650 1.0\n", - "beta[10,1] -0.228 0.01 0.957 -2.079 -0.885 -0.225 0.423 1.66 9080 1.0\n", - "beta[11,1] -0.246 0.01 0.944 -2.14 -0.88 -0.235 0.382 1.599 8914 1.001\n", - "beta[12,1] -0.195 0.01 0.924 -2.038 -0.811 -0.191 0.427 1.626 8675 1.0\n", - "beta[13,1] -0.273 0.01 0.939 -2.125 -0.913 -0.265 0.36 1.57 9294 1.0\n", - "beta[14,1] -0.196 0.01 0.935 -2.009 -0.833 -0.19 0.429 1.649 8743 1.0\n", - "beta[15,1] -0.188 0.01 0.943 -2.044 -0.827 -0.175 0.462 1.626 8428 1.0\n", - "beta[16,1] -0.195 0.01 0.939 -2.065 -0.823 -0.189 0.43 1.633 8419 1.0\n", - "beta[1,2] 0.428 0.01 0.93 -1.37 -0.198 0.42 1.053 2.24 8377 1.001\n", - "beta[2,2] 0.275 0.01 0.943 -1.607 -0.36 0.281 0.909 2.112 9178 1.0\n", - "beta[3,2] 0.243 0.01 0.943 -1.604 -0.4 0.242 0.89 2.073 8607 1.0\n", - "beta[4,2] 0.339 0.01 0.932 -1.487 -0.293 0.334 0.972 2.161 9419 1.0\n", - "beta[5,2] 0.302 0.01 0.94 -1.585 -0.325 0.312 0.954 2.114 8660 1.0\n", - "beta[6,2] 0.276 0.01 0.941 -1.598 -0.355 0.281 0.898 2.156 8127 1.0\n", - "beta[7,2] 0.226 0.01 0.947 -1.64 -0.419 0.221 0.873 2.084 9263 1.0\n", - "beta[8,2] 0.179 0.01 0.938 -1.66 -0.455 0.179 0.806 2.038 9367 1.0\n", - "beta[9,2] 0.126 0.01 0.955 -1.741 -0.512 0.121 0.781 2.016 9677 1.0\n", - "beta[10,2] 0.24 0.01 0.959 -1.622 -0.418 0.242 0.898 2.142 9040 1.0\n", - "beta[11,2] 0.218 0.01 0.944 -1.664 -0.422 0.227 0.848 2.068 8924 1.001\n", - "beta[12,2] 0.182 0.01 0.923 -1.649 -0.424 0.188 0.803 1.979 8642 1.0\n", - "beta[13,2] 0.261 0.01 0.938 -1.591 -0.371 0.268 0.9 2.104 9339 1.0\n", - "beta[14,2] 0.168 0.01 0.937 -1.666 -0.464 0.17 0.796 2.029 8753 1.0\n", - "beta[15,2] 0.217 0.01 0.943 -1.641 -0.426 0.228 0.865 2.039 8461 1.0\n", - "beta[16,2] 0.198 0.01 0.942 -1.704 -0.426 0.196 0.826 2.018 8475 1.0\n", - "thetas[1,1] 0.294 0.002 0.324 2.72e-6 0.013 0.148 0.536 0.979 17589 1.0\n", - "thetas[2,1] 0.37 0.002 0.346 5.09e-5 0.04 0.27 0.684 0.992 20046 1.0\n", - "thetas[3,1] 0.381 0.002 0.347 1.07e-4 0.046 0.286 0.7 0.992 19933 1.0\n", - "thetas[4,1] 0.347 0.002 0.339 3.49e-5 0.03 0.229 0.639 0.988 19925 1.0\n", - "thetas[5,1] 0.357 0.002 0.344 2.64e-5 0.032 0.238 0.661 0.991 19601 1.0\n", - "thetas[6,1] 0.367 0.002 0.342 7.21e-5 0.04 0.264 0.673 0.99 19089 1.0\n", - "thetas[7,1] 0.393 0.003 0.347 1.1e-4 0.056 0.311 0.718 0.993 17961 1.0\n", - "thetas[8,1] 0.41 0.002 0.347 2.1e-4 0.072 0.341 0.736 0.996 19874 1.0\n", - "thetas[9,1] 0.439 0.003 0.356 2.39e-4 0.081 0.386 0.79 0.997 19601 1.0\n", - "thetas[10,1] 0.386 0.002 0.348 9.84e-5 0.046 0.291 0.703 0.993 21182 1.0\n", - "thetas[11,1] 0.381 0.002 0.345 1.03e-4 0.051 0.286 0.695 0.992 20470 1.0\n", - "thetas[12,1] 0.405 0.002 0.35 1.62e-4 0.061 0.322 0.731 0.996 22212 1.0\n", - "thetas[13,1] 0.374 0.002 0.344 6.01e-5 0.046 0.271 0.691 0.991 21806 1.0\n", - "thetas[14,1] 0.414 0.003 0.346 2.52e-4 0.076 0.347 0.738 0.994 18196 1.0\n", - "thetas[15,1] 0.401 0.002 0.347 1.82e-4 0.063 0.319 0.726 0.994 21444 1.0\n", - "thetas[16,1] 0.404 0.002 0.349 2.06e-4 0.059 0.324 0.733 0.994 20330 1.0\n", - "thetas[1,2] 0.706 0.002 0.324 0.021 0.464 0.852 0.987 1.0 17589 1.0\n", - "thetas[2,2] 0.63 0.002 0.346 0.008 0.316 0.73 0.96 1.0 20046 1.0\n", - "thetas[3,2] 0.619 0.002 0.347 0.008 0.3 0.714 0.954 1.0 19933 1.0\n", - "thetas[4,2] 0.653 0.002 0.339 0.012 0.361 0.771 0.97 1.0 19925 1.0\n", - "thetas[5,2] 0.643 0.002 0.344 0.009 0.339 0.762 0.968 1.0 19601 1.0\n", - "thetas[6,2] 0.633 0.002 0.342 0.01 0.327 0.736 0.96 1.0 19089 1.0\n", - "thetas[7,2] 0.607 0.003 0.347 0.007 0.282 0.689 0.944 1.0 17961 1.0\n", - "thetas[8,2] 0.59 0.002 0.347 0.004 0.264 0.659 0.928 1.0 19874 1.0\n", - "thetas[9,2] 0.561 0.003 0.356 0.003 0.21 0.614 0.919 1.0 19601 1.0\n", - "thetas[10,2] 0.614 0.002 0.348 0.007 0.297 0.709 0.954 1.0 21182 1.0\n", - "thetas[11,2] 0.619 0.002 0.345 0.008 0.305 0.714 0.949 1.0 20470 1.0\n", - "thetas[12,2] 0.595 0.002 0.35 0.004 0.269 0.678 0.939 1.0 22212 1.0\n", - "thetas[13,2] 0.626 0.002 0.344 0.009 0.309 0.729 0.954 1.0 21806 1.0\n", - "thetas[14,2] 0.586 0.003 0.346 0.006 0.262 0.653 0.924 1.0 18196 1.0\n", - "thetas[15,2] 0.599 0.002 0.347 0.006 0.274 0.681 0.937 1.0 21444 1.0\n", - "thetas[16,2] 0.596 0.002 0.349 0.006 0.267 0.676 0.941 1.0 20330 1.0\n", - "alphas[1,1] 0.298 5.53e-4 0.057 0.192 0.258 0.296 0.335 0.414 10514 1.0\n", - "alphas[2,1] 0.366 5.42e-4 0.055 0.26 0.328 0.365 0.402 0.476 10223 1.0\n", - "alphas[3,1] 0.381 3.0e-4 0.031 0.321 0.36 0.38 0.402 0.442 10608 1.0\n", - "alphas[4,1] 0.342 4.62e-4 0.046 0.255 0.31 0.342 0.373 0.433 9895 1.0\n", - "alphas[5,1] 0.36 5.95e-4 0.057 0.252 0.32 0.358 0.398 0.475 9255 1.0\n", - "alphas[6,1] 0.369 3.92e-4 0.041 0.29 0.341 0.369 0.396 0.45 10708 1.0\n", - "alphas[7,1] 0.395 3.6e-4 0.036 0.324 0.37 0.394 0.419 0.468 10224 1.0\n", - "alphas[8,1] 0.415 3.26e-4 0.032 0.352 0.393 0.414 0.436 0.478 9843 1.001\n", - "alphas[9,1] 0.44 7.1e-4 0.076 0.297 0.389 0.439 0.492 0.593 11337 1.0\n", - "alphas[10,1] 0.386 3.84e-4 0.04 0.309 0.358 0.385 0.413 0.466 11077 1.0\n", - "alphas[11,1] 0.387 3.81e-4 0.039 0.312 0.36 0.386 0.413 0.463 10355 1.0\n", - "alphas[12,1] 0.407 2.82e-4 0.028 0.352 0.388 0.407 0.426 0.464 10136 1.0\n", - "alphas[13,1] 0.372 6.03e-4 0.063 0.253 0.329 0.37 0.413 0.499 10768 1.0\n", - "alphas[14,1] 0.411 4.21e-4 0.044 0.328 0.38 0.41 0.441 0.498 10940 1.0\n", - "alphas[15,1] 0.401 3.47e-4 0.035 0.333 0.378 0.401 0.423 0.469 9937 1.0\n", - "alphas[16,1] 0.404 4.25e-4 0.042 0.322 0.375 0.403 0.432 0.488 9933 1.001\n", - "alphas[1,2] 0.702 5.53e-4 0.057 0.586 0.665 0.704 0.742 0.808 10514 1.0\n", - "alphas[2,2] 0.634 5.42e-4 0.055 0.524 0.598 0.635 0.672 0.74 10223 1.0\n", - "alphas[3,2] 0.619 3.0e-4 0.031 0.558 0.598 0.62 0.64 0.679 10608 1.0\n", - "alphas[4,2] 0.658 4.62e-4 0.046 0.567 0.627 0.658 0.69 0.745 9895 1.0\n", - "alphas[5,2] 0.64 5.95e-4 0.057 0.525 0.602 0.642 0.68 0.748 9255 1.0\n", - "alphas[6,2] 0.631 3.92e-4 0.041 0.55 0.604 0.631 0.659 0.71 10708 1.0\n", - "alphas[7,2] 0.605 3.6e-4 0.036 0.532 0.581 0.606 0.63 0.676 10224 1.0\n", - "alphas[8,2] 0.585 3.26e-4 0.032 0.522 0.564 0.586 0.607 0.648 9843 1.001\n", - "alphas[9,2] 0.56 7.1e-4 0.076 0.407 0.508 0.561 0.611 0.703 11337 1.0\n", - "alphas[10,2] 0.614 3.84e-4 0.04 0.534 0.587 0.615 0.642 0.691 11077 1.0\n", - "alphas[11,2] 0.613 3.81e-4 0.039 0.537 0.587 0.614 0.64 0.688 10355 1.0\n", - "alphas[12,2] 0.593 2.82e-4 0.028 0.536 0.574 0.593 0.612 0.648 10136 1.0\n", - "alphas[13,2] 0.628 6.03e-4 0.063 0.501 0.587 0.63 0.671 0.747 10768 1.0\n", - "alphas[14,2] 0.589 4.21e-4 0.044 0.502 0.559 0.59 0.62 0.672 10940 1.0\n", - "alphas[15,2] 0.599 3.47e-4 0.035 0.531 0.577 0.599 0.622 0.667 9937 1.0\n", - "alphas[16,2] 0.596 4.25e-4 0.042 0.512 0.568 0.597 0.625 0.678 9933 1.001\n", - "Sigma[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", - "Sigma[2,1] 0.737 0.001 0.137 0.385 0.68 0.767 0.831 0.905 9163 1.0\n", - "Sigma[1,2] 0.737 0.001 0.137 0.385 0.68 0.767 0.831 0.905 9163 1.0\n", - "Sigma[2,2] 1.0 4.61e-19 4.36e-17 1.0 1.0 1.0 1.0 1.0 8966 1.0\n", - "lp__ -1.46e3 0.093 5.513 -1.47e3 -1.46e3 -1.46e3 -1.45e3 -1.45e3 3519 1.001\n", + " mean se_mean sd 2.5% 25% 50% 75% 97.5% n_eff Rhat\n", + "mu[1] 1.48e-7 5.6e-8 8.74e-8 2.09e-9 7.3e-8 1.6e-7 2.1e-7 2.96e-7 2 3.366\n", + "mu[2] 1.08e-7 2.67e-8 6.65e-8 1.62e-8 6.79e-8 9.65e-8 1.37e-7 3.05e-7 6 2.052\n", + "L[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", + "L[2,1] -7.12e-9 6.09e-8 9.36e-8 -1.67e-7 -7.13e-8 -9.13e-9 6.09e-8 1.6e-7 2 4.265\n", + "L[1,2] 0.0 nan 0.0 0.0 0.0 0.0 0.0 0.0 nan nan\n", + "L[2,2] 1.0 2.5e-15 4.65e-15 1.0 1.0 1.0 1.0 1.0 3 1.3\n", + "beta[1,1] 3.65e-8 4.45e-8 7.19e-8 -9.88e-8 -2.4e-8 4.06e-8 8.73e-8 1.81e-7 3 2.902\n", + "beta[2,1] 9.35e-9 4.89e-8 7.72e-8 -1.09e-7 -5.45e-8 -5.39e-9 7.71e-8 1.43e-7 2 3.395\n", + "beta[3,1] -4.6e-9 9.64e-8 1.4e-7 -2.62e-7 -1.07e-7 2.12e-8 1.2e-7 1.62e-7 2 6.2\n", + "beta[4,1] -3.19e-8 4.24e-8 8.49e-8 -2.04e-7 -9.25e-8 -2.13e-8 3.59e-8 9.26e-8 4 2.764\n", + "beta[5,1] -7.43e-8 1.16e-7 1.66e-7 -3.91e-7 -2.12e-7 -2.23e-8 5.96e-8 1.06e-7 2 6.923\n", + "beta[6,1] -4.17e-8 7.6e-8 1.13e-7 -2.48e-7 -1.46e-7 1.65e-8 4.21e-8 9.11e-8 2 4.86\n", + "beta[7,1] 4.16e-8 3.44e-8 6.4e-8 -9.05e-8 4.96e-9 4.81e-8 9.39e-8 1.36e-7 3 2.869\n", + "beta[8,1] 6.83e-9 6.12e-8 8.97e-8 -1.3e-7 -7.7e-8 -1.58e-9 8.63e-8 1.62e-7 2 4.678\n", + "beta[9,1] 4.81e-8 4.95e-8 7.69e-8 -1.16e-7 -1.23e-8 4.03e-8 1.18e-7 1.57e-7 2 2.975\n", + "beta[10,1] -5.7e-8 4.45e-8 7.74e-8 -2.18e-7 -1.08e-7 -6.52e-8 6.92e-9 6.39e-8 3 2.82\n", + "beta[11,1] 1.66e-8 4.21e-8 6.65e-8 -8.23e-8 -4.69e-8 1.08e-8 7.97e-8 1.24e-7 2 2.655\n", + "beta[12,1] -2.24e-8 4.09e-8 7.83e-8 -1.71e-7 -8.91e-8 -1.66e-8 5.31e-8 8.76e-8 4 3.137\n", + "beta[13,1] -1.51e-8 3.83e-8 6.56e-8 -1.06e-7 -6.75e-8 -3.19e-8 1.98e-8 1.19e-7 3 2.779\n", + "beta[14,1] -7.44e-8 4.68e-8 7.6e-8 -2.08e-7 -1.27e-7 -7.82e-8 -1.64e-8 6.41e-8 3 3.206\n", + "beta[15,1] 4.26e-8 1.92e-8 3.58e-8 -2.22e-8 1.53e-8 3.41e-8 7.19e-8 1.09e-7 3 1.677\n", + "beta[16,1] -5.5e-8 8.67e-8 1.25e-7 -2.5e-7 -1.75e-7 -5.03e-8 6.27e-8 1.35e-7 2 5.449\n", + "beta[1,2] -2.64e-8 4.72e-8 7.52e-8 -1.57e-7 -7.79e-8 -4.22e-8 2.22e-8 1.14e-7 3 3.238\n", + "beta[2,2] -7.13e-9 5.13e-8 8.19e-8 -1.64e-7 -7.32e-8 -8.48e-9 6.29e-8 1.2e-7 3 2.808\n", + "beta[3,2] -3.84e-10 9.5e-8 1.37e-7 -1.55e-7 -1.21e-7 -3.46e-8 1.24e-7 2.6e-7 2 6.728\n", + "beta[4,2] 3.24e-8 4.49e-8 8.5e-8 -9.53e-8 -2.96e-8 1.96e-8 9.94e-8 1.89e-7 4 2.767\n", + "beta[5,2] 8.23e-8 1.16e-7 1.67e-7 -9.99e-8 -6.5e-8 1.4e-8 2.16e-7 3.96e-7 2 5.926\n", + "beta[6,2] 4.53e-8 7.64e-8 1.14e-7 -8.94e-8 -4.55e-8 -6.17e-9 1.51e-7 2.55e-7 2 4.732\n", + "beta[7,2] -4.82e-8 3.57e-8 6.75e-8 -1.46e-7 -1.07e-7 -5.51e-8 5.81e-9 8.33e-8 4 2.441\n", + "beta[8,2] -5.11e-9 6.13e-8 8.96e-8 -1.62e-7 -9.58e-8 1.14e-8 7.9e-8 1.2e-7 2 4.442\n", + "beta[9,2] -5.34e-8 5.27e-8 8.06e-8 -1.68e-7 -1.23e-7 -6.58e-8 1.06e-8 1.15e-7 2 3.151\n", + "beta[10,2] 5.76e-8 4.52e-8 7.49e-8 -7.42e-8 2.93e-9 6.35e-8 1.03e-7 2.11e-7 3 2.905\n", + "beta[11,2] -2.33e-8 3.9e-8 6.16e-8 -1.29e-7 -7.87e-8 -2.86e-8 3.36e-8 6.61e-8 2 2.747\n", + "beta[12,2] 2.0e-8 4.01e-8 7.65e-8 -10.0e-8 -5.0e-8 2.73e-8 8.19e-8 1.75e-7 4 2.902\n", + "beta[13,2] 1.83e-8 3.95e-8 7.2e-8 -1.32e-7 -2.26e-8 3.89e-8 7.51e-8 1.2e-7 3 2.645\n", + "beta[14,2] 6.93e-8 4.67e-8 7.47e-8 -5.97e-8 8.96e-9 6.64e-8 1.21e-7 2.01e-7 3 3.585\n", + "beta[15,2] -4.1e-8 2.28e-8 4.21e-8 -1.23e-7 -7.23e-8 -4.3e-8 -2.58e-9 2.6e-8 3 1.674\n", + "beta[16,2] 5.01e-8 8.63e-8 1.26e-7 -1.33e-7 -6.92e-8 5.74e-8 1.52e-7 2.62e-7 2 5.542\n", + "theta[1,1] 0.5 1.11e-8 1.8e-8 0.5 0.5 0.5 0.5 0.5 3 2.902\n", + "theta[2,1] 0.5 1.22e-8 1.93e-8 0.5 0.5 0.5 0.5 0.5 2 3.395\n", + "theta[3,1] 0.5 2.41e-8 3.49e-8 0.5 0.5 0.5 0.5 0.5 2 6.2\n", + "theta[4,1] 0.5 1.06e-8 2.12e-8 0.5 0.5 0.5 0.5 0.5 4 2.764\n", + "theta[5,1] 0.5 2.9e-8 4.16e-8 0.5 0.5 0.5 0.5 0.5 2 6.923\n", + "theta[6,1] 0.5 1.9e-8 2.83e-8 0.5 0.5 0.5 0.5 0.5 2 4.86\n", + "theta[7,1] 0.5 8.59e-9 1.6e-8 0.5 0.5 0.5 0.5 0.5 3 2.869\n", + "theta[8,1] 0.5 1.53e-8 2.24e-8 0.5 0.5 0.5 0.5 0.5 2 4.678\n", + "theta[9,1] 0.5 1.24e-8 1.92e-8 0.5 0.5 0.5 0.5 0.5 2 2.975\n", + "theta[10,1] 0.5 1.11e-8 1.94e-8 0.5 0.5 0.5 0.5 0.5 3 2.82\n", + "theta[11,1] 0.5 1.05e-8 1.66e-8 0.5 0.5 0.5 0.5 0.5 2 2.655\n", + "theta[12,1] 0.5 1.02e-8 1.96e-8 0.5 0.5 0.5 0.5 0.5 4 3.137\n", + "theta[13,1] 0.5 9.57e-9 1.64e-8 0.5 0.5 0.5 0.5 0.5 3 2.779\n", + "theta[14,1] 0.5 1.17e-8 1.9e-8 0.5 0.5 0.5 0.5 0.5 3 3.206\n", + "theta[15,1] 0.5 4.79e-9 8.94e-9 0.5 0.5 0.5 0.5 0.5 3 1.677\n", + "theta[16,1] 0.5 2.17e-8 3.14e-8 0.5 0.5 0.5 0.5 0.5 2 5.449\n", + "theta[1,2] 0.5 1.18e-8 1.88e-8 0.5 0.5 0.5 0.5 0.5 3 3.238\n", + "theta[2,2] 0.5 1.28e-8 2.05e-8 0.5 0.5 0.5 0.5 0.5 3 2.808\n", + "theta[3,2] 0.5 2.37e-8 3.43e-8 0.5 0.5 0.5 0.5 0.5 2 6.728\n", + "theta[4,2] 0.5 1.12e-8 2.13e-8 0.5 0.5 0.5 0.5 0.5 4 2.767\n", + "theta[5,2] 0.5 2.9e-8 4.18e-8 0.5 0.5 0.5 0.5 0.5 2 5.926\n", + "theta[6,2] 0.5 1.91e-8 2.86e-8 0.5 0.5 0.5 0.5 0.5 2 4.732\n", + "theta[7,2] 0.5 8.93e-9 1.69e-8 0.5 0.5 0.5 0.5 0.5 4 2.441\n", + "theta[8,2] 0.5 1.53e-8 2.24e-8 0.5 0.5 0.5 0.5 0.5 2 4.442\n", + "theta[9,2] 0.5 1.32e-8 2.02e-8 0.5 0.5 0.5 0.5 0.5 2 3.151\n", + "theta[10,2] 0.5 1.13e-8 1.87e-8 0.5 0.5 0.5 0.5 0.5 3 2.905\n", + "theta[11,2] 0.5 9.74e-9 1.54e-8 0.5 0.5 0.5 0.5 0.5 2 2.747\n", + "theta[12,2] 0.5 1.0e-8 1.91e-8 0.5 0.5 0.5 0.5 0.5 4 2.902\n", + "theta[13,2] 0.5 9.87e-9 1.8e-8 0.5 0.5 0.5 0.5 0.5 3 2.645\n", + "theta[14,2] 0.5 1.17e-8 1.87e-8 0.5 0.5 0.5 0.5 0.5 3 3.585\n", + "theta[15,2] 0.5 5.7e-9 1.05e-8 0.5 0.5 0.5 0.5 0.5 3 1.674\n", + "theta[16,2] 0.5 2.16e-8 3.14e-8 0.5 0.5 0.5 0.5 0.5 2 5.542\n", + "Sigma[1,1] 1.0 nan 0.0 1.0 1.0 1.0 1.0 1.0 nan nan\n", + "Sigma[2,1] -7.12e-9 6.09e-8 9.36e-8 -1.67e-7 -7.13e-8 -9.13e-9 6.09e-8 1.6e-7 2 4.265\n", + "Sigma[1,2] -7.12e-9 6.09e-8 9.36e-8 -1.67e-7 -7.13e-8 -9.13e-9 6.09e-8 1.6e-7 2 4.265\n", + "Sigma[2,2] 1.0 3.77e-17 7.78e-17 1.0 1.0 1.0 1.0 1.0 4 1.0\n", + "lp__ -1.46e3 4.09e-6 6.67e-6 -1.46e3 -1.46e3 -1.46e3 -1.46e3 -1.46e3 3 2.306\n", "\n", - "Samples were drawn using NUTS at Mon Mar 30 17:17:28 2020.\n", + "Samples were drawn using NUTS at Wed Apr 1 14:01:26 2020.\n", "For each parameter, n_eff is a crude measure of effective sample size,\n", "and Rhat is the potential scale reduction factor on split chains (at \n", "convergence, Rhat=1).\n" @@ -3967,7 +3680,7 @@ }, { "cell_type": "code", - "execution_count": 151, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3976,7 +3689,7 @@ }, { "cell_type": "code", - "execution_count": 152, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -3985,36 +3698,16 @@ }, { "cell_type": "code", - "execution_count": 153, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "array([[0.32363442, 0.67636558],\n", - " [0.39600414, 0.60399586],\n", - " [0.36065595, 0.63934405],\n", - " [0.32982244, 0.67017756],\n", - " [0.35618454, 0.64381546],\n", - " [0.38430935, 0.61569065],\n", - " [0.402073 , 0.597927 ],\n", - " [0.3404694 , 0.6595306 ],\n", - " [0.41749458, 0.58250542],\n", - " [0.32197246, 0.67802754]])" - ] - }, - "execution_count": 153, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "samples2[:10, 4, :]" ] }, { "cell_type": "code", - "execution_count": 154, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -4028,20 +3721,9 @@ }, { "cell_type": "code", - "execution_count": 155, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "(16, 10000)" - ] - }, - "execution_count": 155, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], "source": [ "th5 = np.asarray(th5)\n", "th5.shape" @@ -4049,29 +3731,18 @@ }, { "cell_type": "code", - "execution_count": 156, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(10000,)\n" - ] - }, - { - "data": { - "text/plain": [ - "array([-0.16317686, -0.13144722, -0.15993167, -0.13796937, -0.15175436,\n", - " -0.13930074, -0.13661417, -0.1265063 , -0.11742489, -0.18464812,\n", - " -0.15224667, -0.16219158, -0.11969181, -0.16735025, -0.13077128])" - ] - }, - "execution_count": 156, - "metadata": {}, - "output_type": "execute_result" - } - ], + "outputs": [], + "source": [ + "th5" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], "source": [ "result5 = np.sum(th5.T * proportion / np.sum(proportion), axis=1)\n", "print(result5.shape)\n", @@ -4080,20 +3751,9 @@ }, { "cell_type": "code", - "execution_count": 157, + "execution_count": null, "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAFkCAYAAAAkOuGdAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAQpUlEQVR4nO3dX2yddf3A8Q9bR9f9KRhyMCFjbvzNXKKG4CYOYzBCB60GJUvAO0IiN6KAkTQxBAWHVaLeaOIiEP4MErgALqgEEBTGGFB1MdGkhAUbF5ItBHHdkbas8+vFwvlRGfuV7Xl6Tj97ve7On53vd5+153l3zzmnJ5RSSgAAJLag3RsAAKib4AEA0hM8AEB6ggcASE/wAADpCR4AIL2uI9345pv752QTy5Z1R7M5NSdrZWeW1THLaplndcyyWuZZnXbPstFY/qG3dcT/8HR1LWz3FtIwy+qYZbXMszpmWS3zrE4nz7IjggcAoE6CBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPS62r0BoLMs6+2Jnu56nhoajeURETExNR3N8Yla1gA4HMEDzNDT3RWrBodrXWNsqD+ata4AMJNTWgBAeoIHAEjPKS1gzk0eONh6PU+dvFYIeI/gAebc4kULa3+dUITXCgH/xyktACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpdbV7A8DsLOvtiZ5u37IAR8OzJ8wTPd1dsWpwuPZ1xob6a18DYK45pQUApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkF5XuzcAUJfJAwej0Vhe6xoTU9PRHJ+odQ3g2AkeIK3FixbGqsHhWtcYG+qPZq0rAFVwSgsASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS62r3BiCDZb090dPt2wmgU3mGhgr0dHfFqsHhWtcYG+qv9fEBMnNKCwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCk19XuDQDMZ5MHDkajsbzWNSampqM5PlHrGpCd4AE4BosXLYxVg8O1rjE21B/NWleA/JzSAgDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNfV7g1A3Zb19kRP99F9qTcayyveDQDtIHhIr6e7K1YNDte6xthQf62PD8CxcUoLAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQXle7NwDAkU0eOBiNxvIZ1/3v5SpMTE1Hc3yi8seFTiB4ADrc4kULY9XgcO3rjA31R7P2VaA9nNICANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDS80nLtM2y3p7o6fYlCED9HG1om57urjn7uHwAjm9OaQEA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApCd4AID0BA8AkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKTX1e4NANAZJg8cjEZjea1rTExNR3N8otY14HAEDwAREbF40cJYNThc6xpjQ/3RrHUFODyntACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnl8twWEt6+2Jnm5fHgDk4IjGYfV0d83J79QBgLnglBYAkJ7gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASE/wAADpCR4AID3BAwCkJ3gAgPQEDwCQnuABANITPABAeoIHAEhP8AAA6QkeACA9wQMApNfV7g0AcPyYPHAwGo3lta4xMTUdzfGJWtdg/hE8AMyZxYsWxqrB4VrXGBvqj2atKzAfOaUFAKQneACA9AQPAJCe1/DMQ8t6e6Kn+8P/6ep+QSAAzDeCZx7q6e6akxf9AUAWTmkBAOkJHgAgPcEDAKQneACA9AQPAJCe4AEA0hM8AEB6ggcASM8HD1bo//sEZADqN3ng4Ef+xPmj+YT6ianpaI5PfOQ/R3s4OldoLj4BOcKnIAMcyeJFC+fsubhZ+ypUxSktACA9wQMApCd4AID0BA8AkN5x86Jl76ACoEpH826wj8o7warTEQVwMI7uLYEfVd2v2vfuKYDjx1y8G2z0to2iqiInlFJKuzcBAFAnr+EBANITPABAeoIHAEhvToJnx44d8bWvfS36+vri6quvjj179hz2fn/6059i06ZNcemll8bXv/71GBkZad02PDwcAwMD0dfXF9ddd13s379/LrbekWY7z1JK3HXXXbF27dr44x//OOO2LVu2xMaNG+PSSy+Nb33rW/Hmm2/OxdY7ThWz3LVrV2zatCm++MUvxhVXXBG7du2ai613nCpm+Z6tW7fGueeeW+d2O1oVs3z44Yejv78/Nm7cGNdcc82HPsbxoIp5OgYdMttZjo6OxpVXXhl9fX1x5ZVXxujoaOu2th1/Ss3+/e9/l8997nPlr3/9aymllDvvvLNce+21H7jf1NRUWbduXdmxY0cppZQ//OEP5cILLyyllPLGG2+U9evXlzfeeKOUUsoPf/jDcuutt9a99Y4023mWUsrNN99cvv/975cLL7ywjIyMtK5/4YUXysUXX1zGx8dLKaXccccd5bvf/W79m+8wVcxyenq69PX1lSeffLKUUsqjjz5abr/99vo332GqmOV79u7dW77yla+Uc845p9Y9d6oqZvmXv/ylbNiwoezdu7eUUsrQ0FC58cYb6998B6pino5Bh3yUWW7cuLE8/fTTpZRSnnjiiTIwMFBKae/xp/bgeeaZZ8qmTZtal5vNZlm7dm3Zv3//jPs1m83WQaOUUvbv31/OOeecsm/fvnLfffeV66+/vnXba6+9Vi644IK6t96RZjvPUkrZuXNnKaWUiy66aMY37913311uuOGG1uVt27aVr371qzXuujNVMcuRkZHS399f/2Y7XBWzfM+3v/3tMjw8fNwGTxWz3L17d3nllVdal3/3u98dl9/jpVQzT8egQ2Y7y9HR0bJhw4YZ111wwQVl165dbT3+1H5Ka2xsLE4//fTW5aVLl8bJJ58c//jHP2bcb+nSpXHJJZe0Lj///POxatWq6O3tjbGxsVi5cmXrtpUrV8Zbb70V+/btq3v7HWe284yI+MxnPnPYx1i3bl3s3Lkz9uzZEwcPHoynn346Pv/5z9e2505VxSxHR0fjtNNOi8HBwejr64tvfvObsXv37tr23KmqmGXEoe/7ZrMZl112WS37nA+qmOWKFSvis5/9bOvy888/H5/+9Ker3+w8UMU8HYMOme0sx8bGYsWKFTOuO/300+P1119v6/Gn9uCZmJiI7u7uGdd1d3fHO++886F/ZnR0NG6//fa49dZbW49x4okntm4/8cQT44QTToiJifwflPS/jmae/2vt2rVx+eWXx5e+9KVYt25djIyMxLXXXlv1VjteFbMcHx+PkZGRuOqqq+KJJ56INWvWxE033VT1VjteFbOcnJyMn/zkJ3HLLbdUvb15pYpZvt9jjz0W27Zti+uuu66K7c07VczTMeiQ2c7ySPdr5/Gnsk9afuqpp+KOO+74wPVXXXVVTE1NzbhucnIyli5detjH+fOf/xzXX399bN68OdavXx8REUuWLIl33323dZ+pqakopcSSJUuq2n7HqWqeh/PMM8/Ec889F9u3b4+TTjoptmzZEt/73vfiN7/5zTHvuxPVOcvly5fHmjVrWj89X3311bFly5Z45513Un591jnLX/3qVzEwMDDjJ+nM6pzlex544IG455574t57741Go3HUe50P6pzn8XYMOtZZLlmy5EPv187jT2XBc8kll8w4JfWe5557Lh5//PHW5X/+85+xb9+++MQnPvGB+46OjsZ3vvOd+MUvfhHnn39+6/rVq1fHSy+91Lr82muvRaPRiN7e3qq233GqmOeH2b59e3zhC1+Ij33sYxERcdlll8WWLVuOfdMdqs5ZrlixYsa7NRYuXBgREQsW5PzEhzpn+eyzz8bbb78dW7dubV23YcOGePDBBz/S48wXdc4yIuKRRx6JBx54ILZu3Rof//jHj3m/na7OeR5vx6BjneUZZ5wRY2Nj8Z///CcWLFgQ09PTMTY2FmeeeWbcf//9bTv+1P6svH79+tizZ0/rLX73339/XHTRRR8o41JKDA4Oxi233DIjdiIivvzlL8crr7wSf//731uPMTAwUPfWO9Js53kkq1evjh07drT+O/b3v/99nH322bXst5NVMcsNGzbE22+/Hdu2bYuIiIceeijOO++8WLx4cS177lRVzHJ4eDhefPHF2L59e2zfvj0iDsV5xtg5kipmuXfv3vj5z38ed95553ERO0dSxTwdgw6Z7SzPOuusaDQarTh67LHHYsWKFbF69eq2Hn/m5Hdpvfzyy7F58+aYmJiIlStXxtDQUDQajdi7d29cc8018fjjj8fOnTvjG9/4xgee3H72s5/F2rVr47e//W388pe/jOnp6fjkJz8ZmzdvPqr/4s1gNvOMiBgYGIjp6enYvXt3nHrqqdHd3R0//elPY82aNfHjH/84tm3bFgsWLIhGoxE/+MEP4qyzzmrz32zuHessP/WpT8Xf/va3uOmmm+Ldd9+N0047LW677bbj5rTM+1Uxy/c799xz49VXX23HX6XtjnWWO3bsiF//+tczYqerq2vGT+fHkyq+Nh2DDpntLF999dW4+eab41//+leccsop8aMf/SjOPPPMOHDgQNuOP355KACQXs4XGgAAvI/gAQDSEzwAQHqCBwBIT/AAAOkJHgAgPcEDAKQneACA9AQPAJDefwFBYKIugl3qwwAAAABJRU5ErkJggg==\n", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "plt.figure(figsize=(10, 6))\n", "_, _, _ = plt.hist(result5 , bins=20, edgecolor='w', density=True)\n",