Skip to content

Commit 2996d38

Browse files
authored
Add click install to fix ci (#193)
* Add black
1 parent e0767fa commit 2996d38

13 files changed

+38
-38
lines changed

.pre-commit-config.yaml

+1-1
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ repos:
88
rev: 0.5.6
99
hooks:
1010
- id: nbqa-black
11-
additional_dependencies: [black==20.8b1]
11+
additional_dependencies: [black==22.3.0]
1212
files: ^(Rethinking_2|BSM)/
1313
- id: nbqa-isort
1414
additional_dependencies: [isort==5.6.4]

BSM/Chapter_03_00_Bayesian_CLT.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -54,7 +54,7 @@
5454
" A = Y - 0.5\n",
5555
" B = n - Y - 0.5\n",
5656
" θ_MAP = A / (A + B)\n",
57-
" info = A / θ_MAP ** 2 + B / (1 - θ_MAP) ** 2\n",
57+
" info = A / θ_MAP**2 + B / (1 - θ_MAP) ** 2\n",
5858
"\n",
5959
" post1 = stats.binom(n, θ).pmf(Y) * stats.beta(0.5, 0.5).pdf(θ)\n",
6060
" post1 = post1 / np.sum(post1)\n",

BSM/Chapter_03_01_Gibbs_sampling_one_sample_t-test.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -142,7 +142,7 @@
142142
" # sample mu|s2,Y\n",
143143
" MN = np.sum(Y) / (n + m)\n",
144144
" VR = s2 / (n + m)\n",
145-
" mu = stats.norm(MN, VR ** 0.5).rvs(1)\n",
145+
" mu = stats.norm(MN, VR**0.5).rvs(1)\n",
146146
"\n",
147147
" # sample s2|mu,Y\n",
148148
" A = a + n / 2\n",
@@ -291,7 +291,7 @@
291291
}
292292
],
293293
"source": [
294-
"keep_s = keep_s2 ** 0.5\n",
294+
"keep_s = keep_s2**0.5\n",
295295
"plt.hist(keep_s2)\n",
296296
"plt.xlabel(\"sigma\")\n",
297297
"plt.title(\"Marginal posterior\");"

BSM/Chapter_03_02_Gibbs_sampling_two_sample_t-test.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -122,12 +122,12 @@
122122
" # sample muY|muZ,s2,Y,Z\n",
123123
" A = np.sum(Y) / s2 + mu_0 / s2_0\n",
124124
" B = n / s2 + 1 / s2_0\n",
125-
" muY = stats.norm(A / B, 1 / B ** 0.5).rvs(1)[0]\n",
125+
" muY = stats.norm(A / B, 1 / B**0.5).rvs(1)[0]\n",
126126
"\n",
127127
" # sample muZ|muY,s2,Y,Z\n",
128128
" A = np.sum(Z) / s2 + mu_0 / s2_0\n",
129129
" B = m / s2 + 1 / s2_0\n",
130-
" muZ = stats.norm(A / B, 1 / B ** 0.5).rvs(1)[0]\n",
130+
" muZ = stats.norm(A / B, 1 / B**0.5).rvs(1)[0]\n",
131131
"\n",
132132
" # sample s2|muY,muZ,Y,Z\n",
133133
" A = n / 2 + m / 2 + a\n",

BSM/Chapter_03_03_Gibbs_sampling_for_simple_linear_regression.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -394,12 +394,12 @@
394394
" # sample alpha\n",
395395
" V = n / s2 + mu_0 / s2_0\n",
396396
" M = np.sum(Y - X * β) / s2 + 1 / s2_0\n",
397-
" α = stats.norm(M / V, 1 / V ** 0.5).rvs(1)[0]\n",
397+
" α = stats.norm(M / V, 1 / V**0.5).rvs(1)[0]\n",
398398
"\n",
399399
" # sample beta\n",
400-
" V = np.sum(X ** 2) / s2 + mu_0 / s2_0\n",
400+
" V = np.sum(X**2) / s2 + mu_0 / s2_0\n",
401401
" M = np.sum(X * (Y - α)) / s2 + 1 / s2_0\n",
402-
" β = stats.norm(M / V, 1 / V ** 0.5).rvs(1)[0]\n",
402+
" β = stats.norm(M / V, 1 / V**0.5).rvs(1)[0]\n",
403403
"\n",
404404
" # sample s2|mu,Y,Z\n",
405405
" A = n / 2 + a\n",

BSM/Chapter_03_09_Simple_linear_regression_in_PyMC3.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -79,7 +79,7 @@
7979
"with pm.Model() as model:\n",
8080
" # Priors\n",
8181
" τ = pm.Gamma(\"τ\", 0.1, 10)\n",
82-
" σ = pm.Deterministic(\"σ\", 1 / (τ ** 0.5))\n",
82+
" σ = pm.Deterministic(\"σ\", 1 / (τ**0.5))\n",
8383
" # σ = pm.HalfNormal('σ', np.std(mass))\n",
8484
" β1 = pm.Normal(\"β1\", 0, 1000)\n",
8585
" β2 = pm.Normal(\"β2\", 0, 1000)\n",

Rethinking_2/Chp_04.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -3062,7 +3062,7 @@
30623062
],
30633063
"source": [
30643064
"d[\"weight_std\"] = (d.weight - d.weight.mean()) / d.weight.std()\n",
3065-
"d[\"weight_std2\"] = d.weight_std ** 2\n",
3065+
"d[\"weight_std2\"] = d.weight_std**2\n",
30663066
"\n",
30673067
"with pm.Model() as m_4_5:\n",
30683068
" a = pm.Normal(\"a\", mu=178, sd=100)\n",
@@ -3329,7 +3329,7 @@
33293329
"metadata": {},
33303330
"outputs": [],
33313331
"source": [
3332-
"weight_m = np.vstack((d.weight_std, d.weight_std ** 2, d.weight_std ** 3))"
3332+
"weight_m = np.vstack((d.weight_std, d.weight_std**2, d.weight_std**3))"
33333333
]
33343334
},
33353335
{

Rethinking_2/Chp_06.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -1217,7 +1217,7 @@
12171217
"\n",
12181218
"\n",
12191219
"def sim_coll(r=0.9):\n",
1220-
" x = np.random.normal(loc=r * d[\"perc.fat\"], scale=np.sqrt((1 - r ** 2) * np.var(d[\"perc.fat\"])))\n",
1220+
" x = np.random.normal(loc=r * d[\"perc.fat\"], scale=np.sqrt((1 - r**2) * np.var(d[\"perc.fat\"])))\n",
12211221
" _, cov = curve_fit(mv, (d[\"perc.fat\"], x), d[\"kcal.per.g\"])\n",
12221222
" return np.sqrt(np.diag(cov))[-1]\n",
12231223
"\n",

Rethinking_2/Chp_09.ipynb

+5-5
Original file line numberDiff line numberDiff line change
@@ -139,7 +139,7 @@
139139
],
140140
"source": [
141141
"def rad_dist(Y):\n",
142-
" return np.sqrt(np.sum(Y ** 2))\n",
142+
" return np.sqrt(np.sum(Y**2))\n",
143143
"\n",
144144
"\n",
145145
"fig, ax = plt.subplots(1, 1, figsize=[7, 3])\n",
@@ -207,8 +207,8 @@
207207
"def calc_U_gradient(x, y, q, a=0, b=1, k=0, d=1):\n",
208208
" muy, mux = q\n",
209209
"\n",
210-
" G1 = np.sum(y - muy) + (a - muy) / b ** 2 # dU/dmuy\n",
211-
" G2 = np.sum(x - mux) + (k - mux) / b ** 2 # dU/dmux\n",
210+
" G1 = np.sum(y - muy) + (a - muy) / b**2 # dU/dmuy\n",
211+
" G2 = np.sum(x - mux) + (k - mux) / b**2 # dU/dmux\n",
212212
"\n",
213213
" return np.array([-G1, -G2])"
214214
]
@@ -257,9 +257,9 @@
257257
" p *= -1\n",
258258
" # Evaluate potential and kinetic energies sat start and end of trajectory\n",
259259
" current_U = U(x, y, current_q)\n",
260-
" current_K = np.sum(current_p ** 2) / 2\n",
260+
" current_K = np.sum(current_p**2) / 2\n",
261261
" proposed_U = U(x, y, q)\n",
262-
" proposed_K = np.sum(p ** 2) / 2\n",
262+
" proposed_K = np.sum(p**2) / 2\n",
263263
" # Accept or reject the state at end of trajectory, returning either\n",
264264
" # the position at the end of the trajectory or the initial position\n",
265265
" accept = False\n",

Rethinking_2/Chp_10.ipynb

+4-4
Original file line numberDiff line numberDiff line change
@@ -233,7 +233,7 @@
233233
],
234234
"source": [
235235
"p = 0.7\n",
236-
"A = [(1 - p) ** 2, p * (1 - p), (1 - p) * p, p ** 2]\n",
236+
"A = [(1 - p) ** 2, p * (1 - p), (1 - p) * p, p**2]\n",
237237
"A"
238238
]
239239
},
@@ -299,9 +299,9 @@
299299
"metadata": {},
300300
"outputs": [],
301301
"source": [
302-
"H = np.zeros(10 ** 5)\n",
303-
"p = np.zeros((10 ** 5, 4))\n",
304-
"for rep in range(10 ** 5):\n",
302+
"H = np.zeros(10**5)\n",
303+
"p = np.zeros((10**5, 4))\n",
304+
"for rep in range(10**5):\n",
305305
" h, p_ = sim_p()\n",
306306
" H[rep] = h\n",
307307
" p[rep] = p_"

Rethinking_2/Chp_14.ipynb

+7-7
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@
108108
],
109109
"source": [
110110
"cov_ab = sigma_a * sigma_b * rho\n",
111-
"Sigma = np.array([[sigma_a ** 2, cov_ab], [cov_ab, sigma_b ** 2]])\n",
111+
"Sigma = np.array([[sigma_a**2, cov_ab], [cov_ab, sigma_b**2]])\n",
112112
"Sigma"
113113
]
114114
},
@@ -4321,7 +4321,7 @@
43214321
"# linear\n",
43224322
"ax.plot(xrange, np.exp(-1 * xrange), \"k--\", label=\"linear\")\n",
43234323
"# squared\n",
4324-
"ax.plot(xrange, np.exp(-1 * xrange ** 2), \"k\", label=\"squared\")\n",
4324+
"ax.plot(xrange, np.exp(-1 * xrange**2), \"k\", label=\"squared\")\n",
43254325
"\n",
43264326
"ax.set_xlabel(\"distance\")\n",
43274327
"ax.set_ylabel(\"correlation\")\n",
@@ -4606,14 +4606,14 @@
46064606
"\n",
46074607
" etasq = pm.Exponential(\"etasq\", 2.0)\n",
46084608
" ls_inv = pm.HalfNormal(\"ls_inv\", 2.0)\n",
4609-
" rhosq = pm.Deterministic(\"rhosq\", 0.5 * ls_inv ** 2)\n",
4609+
" rhosq = pm.Deterministic(\"rhosq\", 0.5 * ls_inv**2)\n",
46104610
"\n",
46114611
" # Implementation with PyMC's GP module:\n",
46124612
" cov = etasq * pm.gp.cov.ExpQuad(input_dim=1, ls_inv=ls_inv)\n",
46134613
" gp = pm.gp.Latent(cov_func=cov)\n",
46144614
" k = gp.prior(\"k\", X=Dmat)\n",
46154615
"\n",
4616-
" lam = (a * P ** b / g) * tt.exp(k[society])\n",
4616+
" lam = (a * P**b / g) * tt.exp(k[society])\n",
46174617
"\n",
46184618
" T = pm.Poisson(\"total_tools\", lam, observed=total_tools)\n",
46194619
"\n",
@@ -4984,7 +4984,7 @@
49844984
"# compute posterior median covariance\n",
49854985
"x_seq = np.linspace(0, 10, 100)\n",
49864986
"post = idata_14_8.posterior.stack(sample=(\"chain\", \"draw\"))\n",
4987-
"pmcov_mu = post[\"etasq\"].median().values * np.exp(-post[\"rhosq\"].median().values * (x_seq ** 2))"
4987+
"pmcov_mu = post[\"etasq\"].median().values * np.exp(-post[\"rhosq\"].median().values * (x_seq**2))"
49884988
]
49894989
},
49904990
{
@@ -5016,7 +5016,7 @@
50165016
" x_seq,\n",
50175017
" (\n",
50185018
" post[\"etasq\"][::50].values[:, None]\n",
5019-
" * np.exp(-post[\"rhosq\"][::50].values[:, None] * (x_seq ** 2))\n",
5019+
" * np.exp(-post[\"rhosq\"][::50].values[:, None] * (x_seq**2))\n",
50205020
" ).T,\n",
50215021
" \"k\",\n",
50225022
" alpha=0.08,\n",
@@ -5254,7 +5254,7 @@
52545254
"source": [
52555255
"# convert to correlation matrix\n",
52565256
"sigma_post = np.sqrt(np.diag(K))\n",
5257-
"Rho = (sigma_post ** -1) * K * (sigma_post ** -1)\n",
5257+
"Rho = (sigma_post**-1) * K * (sigma_post**-1)\n",
52585258
"\n",
52595259
"# add row/col names for convenience\n",
52605260
"Rho = pd.DataFrame(\n",

Rethinking_2/Chp_16.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -126,7 +126,7 @@
126126
"h_ppc = np.linspace(0, 1.5, 100)\n",
127127
"\n",
128128
"for k, p in zip(prior_checks[\"k\"], prior_checks[\"p\"]):\n",
129-
" w_ppc = np.pi * k * p ** 2 * h_ppc ** 3\n",
129+
" w_ppc = np.pi * k * p**2 * h_ppc**3\n",
130130
" ax.plot(h_ppc, w_ppc, c=\"k\", alpha=0.4)\n",
131131
"\n",
132132
"ax.scatter(d.h, d.w, c=\"C0\", alpha=0.3)\n",
@@ -325,7 +325,7 @@
325325
"source": [
326326
"w_sim = pm.sample_posterior_predictive(trace_16_1, 200, m16_1)\n",
327327
"h_seq = np.linspace(0, d.h.max(), 30)\n",
328-
"mu_mean = np.pi * (trace_16_1[\"k\"] * trace_16_1[\"p\"] ** 2).mean() * h_seq ** 3"
328+
"mu_mean = np.pi * (trace_16_1[\"k\"] * trace_16_1[\"p\"] ** 2).mean() * h_seq**3"
329329
]
330330
},
331331
{

Rethinking_2/End_of_chapter_problems/Chapter_7.ipynb

+7-7
Original file line numberDiff line numberDiff line change
@@ -540,7 +540,7 @@
540540
" b = pm.Normal(\"b\", 0, 0.5, shape=2) # beta prior\n",
541541
" sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
542542
" x = pm.Data(\"x\", Laffer.s_taxRate)\n",
543-
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2)\n",
543+
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2)\n",
544544
" rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
545545
" second_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
546546
"\n",
@@ -549,7 +549,7 @@
549549
" b = pm.Normal(\"b\", 0, 0.5, shape=3) # beta prior\n",
550550
" sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
551551
" x = pm.Data(\"x\", Laffer.s_taxRate)\n",
552-
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3)\n",
552+
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3)\n",
553553
" rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
554554
" third_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
555555
"\n",
@@ -558,7 +558,7 @@
558558
" b = pm.Normal(\"b\", 0, 0.5, shape=4) # beta prior\n",
559559
" sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
560560
" x = pm.Data(\"x\", Laffer.s_taxRate)\n",
561-
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3 + b[3] * x ** 4)\n",
561+
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3 + b[3] * x**4)\n",
562562
" rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
563563
" fourth_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)"
564564
]
@@ -966,7 +966,7 @@
966966
" b = pm.Normal(\"b\", 0, 1, shape=2) # beta prior\n",
967967
" sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
968968
" x = pm.Data(\"x\", Laffer.s_taxRate)\n",
969-
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2)\n",
969+
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2)\n",
970970
" rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
971971
" second_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
972972
"\n",
@@ -975,7 +975,7 @@
975975
" b = pm.Normal(\"b\", 0, 1, shape=3) # beta prior\n",
976976
" sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
977977
" x = pm.Data(\"x\", Laffer.s_taxRate)\n",
978-
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3)\n",
978+
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3)\n",
979979
" rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
980980
" third_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
981981
"\n",
@@ -984,7 +984,7 @@
984984
" b = pm.Normal(\"b\", 0, 1, shape=4) # beta prior\n",
985985
" sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
986986
" x = pm.Data(\"x\", Laffer.s_taxRate)\n",
987-
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3 + b[3] * x ** 4)\n",
987+
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3 + b[3] * x**4)\n",
988988
" rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
989989
" fourth_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)"
990990
]
@@ -1899,7 +1899,7 @@
18991899
" b = pm.Normal(\"b\", 0, 0.5, shape=2)\n",
19001900
" sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
19011901
" x = pm.Data(\"x\", Laffer.s_taxRate)\n",
1902-
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2)\n",
1902+
" mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2)\n",
19031903
" rev = pm.StudentT(\"rev\", 2, mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
19041904
" robust_second_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)"
19051905
]

0 commit comments

Comments
 (0)