|
540 | 540 | " b = pm.Normal(\"b\", 0, 0.5, shape=2) # beta prior\n",
|
541 | 541 | " sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
|
542 | 542 | " x = pm.Data(\"x\", Laffer.s_taxRate)\n",
|
543 |
| - " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2)\n", |
| 543 | + " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2)\n", |
544 | 544 | " rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
|
545 | 545 | " second_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
|
546 | 546 | "\n",
|
|
549 | 549 | " b = pm.Normal(\"b\", 0, 0.5, shape=3) # beta prior\n",
|
550 | 550 | " sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
|
551 | 551 | " x = pm.Data(\"x\", Laffer.s_taxRate)\n",
|
552 |
| - " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3)\n", |
| 552 | + " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3)\n", |
553 | 553 | " rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
|
554 | 554 | " third_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
|
555 | 555 | "\n",
|
|
558 | 558 | " b = pm.Normal(\"b\", 0, 0.5, shape=4) # beta prior\n",
|
559 | 559 | " sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
|
560 | 560 | " x = pm.Data(\"x\", Laffer.s_taxRate)\n",
|
561 |
| - " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3 + b[3] * x ** 4)\n", |
| 561 | + " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3 + b[3] * x**4)\n", |
562 | 562 | " rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
|
563 | 563 | " fourth_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)"
|
564 | 564 | ]
|
|
966 | 966 | " b = pm.Normal(\"b\", 0, 1, shape=2) # beta prior\n",
|
967 | 967 | " sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
|
968 | 968 | " x = pm.Data(\"x\", Laffer.s_taxRate)\n",
|
969 |
| - " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2)\n", |
| 969 | + " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2)\n", |
970 | 970 | " rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
|
971 | 971 | " second_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
|
972 | 972 | "\n",
|
|
975 | 975 | " b = pm.Normal(\"b\", 0, 1, shape=3) # beta prior\n",
|
976 | 976 | " sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
|
977 | 977 | " x = pm.Data(\"x\", Laffer.s_taxRate)\n",
|
978 |
| - " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3)\n", |
| 978 | + " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3)\n", |
979 | 979 | " rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
|
980 | 980 | " third_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)\n",
|
981 | 981 | "\n",
|
|
984 | 984 | " b = pm.Normal(\"b\", 0, 1, shape=4) # beta prior\n",
|
985 | 985 | " sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
|
986 | 986 | " x = pm.Data(\"x\", Laffer.s_taxRate)\n",
|
987 |
| - " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2 + b[2] * x ** 3 + b[3] * x ** 4)\n", |
| 987 | + " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2 + b[2] * x**3 + b[3] * x**4)\n", |
988 | 988 | " rev = pm.Normal(\"rev\", mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
|
989 | 989 | " fourth_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)"
|
990 | 990 | ]
|
|
1899 | 1899 | " b = pm.Normal(\"b\", 0, 0.5, shape=2)\n",
|
1900 | 1900 | " sigma = pm.Lognormal(\"sigma\", 0, 1)\n",
|
1901 | 1901 | " x = pm.Data(\"x\", Laffer.s_taxRate)\n",
|
1902 |
| - " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x ** 2)\n", |
| 1902 | + " mu = pm.Deterministic(\"mu\", a + b[0] * x + b[1] * x**2)\n", |
1903 | 1903 | " rev = pm.StudentT(\"rev\", 2, mu=mu, sd=sigma, observed=Laffer.s_taxRevenue)\n",
|
1904 | 1904 | " robust_second_sample = pm.sample(draws=500, chains=4, return_inferencedata=True)"
|
1905 | 1905 | ]
|
|
0 commit comments