|
| 1 | +from typing import Any, Dict, List, Sequence, Union |
| 2 | + |
| 3 | +from pymc import Model |
| 4 | +from pymc.pytensorf import _replace_vars_in_graphs |
| 5 | +from pytensor.tensor import TensorVariable |
| 6 | + |
| 7 | +from pymc_experimental.utils.model_fgraph import ( |
| 8 | + ModelDeterministic, |
| 9 | + ModelFreeRV, |
| 10 | + extract_dims, |
| 11 | + fgraph_from_model, |
| 12 | + model_deterministic, |
| 13 | + model_from_fgraph, |
| 14 | + model_named, |
| 15 | + model_observed_rv, |
| 16 | + toposort_replace, |
| 17 | +) |
| 18 | +from pymc_experimental.utils.pytensorf import rvs_in_graph |
| 19 | + |
| 20 | + |
| 21 | +def observe(model: Model, vars_to_observations: Dict[Union["str", TensorVariable], Any]) -> Model: |
| 22 | + """Convert free RVs or Deterministics to observed RVs. |
| 23 | +
|
| 24 | + Parameters |
| 25 | + ---------- |
| 26 | + model: PyMC Model |
| 27 | + vars_to_observations: Dict of variable or name to TensorLike |
| 28 | + Dictionary that maps model variables (or names) to observed values. |
| 29 | + Observed values must have a shape and data type that is compatible |
| 30 | + with the original model variable. |
| 31 | +
|
| 32 | + Returns |
| 33 | + ------- |
| 34 | + new_model: PyMC model |
| 35 | + A distinct PyMC model with the relevant variables observed. |
| 36 | + All remaining variables are cloned and can be retrieved via `new_model["var_name"]`. |
| 37 | +
|
| 38 | + Examples |
| 39 | + -------- |
| 40 | +
|
| 41 | + .. code-block:: python |
| 42 | +
|
| 43 | + import pymc as pm |
| 44 | + from pymc_experimental.model_transform.conditioning import observe |
| 45 | +
|
| 46 | + with pm.Model() as m: |
| 47 | + x = pm.Normal("x") |
| 48 | + y = pm.Normal("y", x) |
| 49 | + z = pm.Normal("z", y) |
| 50 | +
|
| 51 | + m_new = observe(m, {y: 0.5}) |
| 52 | +
|
| 53 | + Deterministic variables can also be observed. |
| 54 | + This relies on PyMC ability to infer the logp of the underlying expression |
| 55 | +
|
| 56 | + .. code-block:: python |
| 57 | +
|
| 58 | + import pymc as pm |
| 59 | + from pymc_experimental.model_transform.conditioning import observe |
| 60 | +
|
| 61 | + with pm.Model() as m: |
| 62 | + x = pm.Normal("x") |
| 63 | + y = pm.Normal.dist(x, shape=(5,)) |
| 64 | + y_censored = pm.Deterministic("y_censored", pm.math.clip(y, -1, 1)) |
| 65 | +
|
| 66 | + new_m = observe(m, {y_censored: [0.9, 0.5, 0.3, 1, 1]}) |
| 67 | +
|
| 68 | +
|
| 69 | + """ |
| 70 | + vars_to_observations = { |
| 71 | + model[var] if isinstance(var, str) else var: obs |
| 72 | + for var, obs in vars_to_observations.items() |
| 73 | + } |
| 74 | + |
| 75 | + valid_model_vars = set(model.free_RVs + model.deterministics) |
| 76 | + if any(var not in valid_model_vars for var in vars_to_observations): |
| 77 | + raise ValueError(f"At least one var is not a free variable or deterministic in the model") |
| 78 | + |
| 79 | + fgraph, memo = fgraph_from_model(model) |
| 80 | + |
| 81 | + replacements = {} |
| 82 | + for var, obs in vars_to_observations.items(): |
| 83 | + model_var = memo[var] |
| 84 | + |
| 85 | + # Just a sanity check |
| 86 | + assert isinstance(model_var.owner.op, (ModelFreeRV, ModelDeterministic)) |
| 87 | + assert model_var in fgraph.variables |
| 88 | + |
| 89 | + var = model_var.owner.inputs[0] |
| 90 | + var.name = model_var.name |
| 91 | + dims = extract_dims(model_var) |
| 92 | + model_obs_rv = model_observed_rv(var, var.type.filter_variable(obs), *dims) |
| 93 | + replacements[model_var] = model_obs_rv |
| 94 | + |
| 95 | + toposort_replace(fgraph, tuple(replacements.items())) |
| 96 | + |
| 97 | + return model_from_fgraph(fgraph) |
| 98 | + |
| 99 | + |
| 100 | +def replace_vars_in_graphs(graphs: Sequence[TensorVariable], replacements) -> List[TensorVariable]: |
| 101 | + def replacement_fn(var, inner_replacements): |
| 102 | + if var in replacements: |
| 103 | + inner_replacements[var] = replacements[var] |
| 104 | + |
| 105 | + # Handle root inputs as those will never be passed to the replacement_fn |
| 106 | + for inp in var.owner.inputs: |
| 107 | + if inp.owner is None and inp in replacements: |
| 108 | + inner_replacements[inp] = replacements[inp] |
| 109 | + |
| 110 | + return [var] |
| 111 | + |
| 112 | + replaced_graphs, _ = _replace_vars_in_graphs(graphs=graphs, replacement_fn=replacement_fn) |
| 113 | + return replaced_graphs |
| 114 | + |
| 115 | + |
| 116 | +def do(model: Model, vars_to_interventions: Dict[Union["str", TensorVariable], Any]) -> Model: |
| 117 | + """Replace model variables by intervention variables. |
| 118 | +
|
| 119 | + Intervention variables will either show up as `Data` or `Deterministics` in the new model, |
| 120 | + depending on whether they depend on other RandomVariables or not. |
| 121 | +
|
| 122 | + Parameters |
| 123 | + ---------- |
| 124 | + model: PyMC Model |
| 125 | + vars_to_interventions: Dict of variable or name to TensorLike |
| 126 | + Dictionary that maps model variables (or names) to intervention expressions. |
| 127 | + Intervention expressions must have a shape and data type that is compatible |
| 128 | + with the original model variable. |
| 129 | +
|
| 130 | + Returns |
| 131 | + ------- |
| 132 | + new_model: PyMC model |
| 133 | + A distinct PyMC model with the relevant variables replaced by the intervention expressions. |
| 134 | + All remaining variables are cloned and can be retrieved via `new_model["var_name"]`. |
| 135 | +
|
| 136 | + Examples |
| 137 | + -------- |
| 138 | +
|
| 139 | + .. code-block:: python |
| 140 | +
|
| 141 | + import pymc as pm |
| 142 | + from pymc_experimental.model_transform.conditioning import do |
| 143 | +
|
| 144 | + with pm.Model() as m: |
| 145 | + x = pm.Normal("x", 0, 1) |
| 146 | + y = pm.Normal("y", x, 1) |
| 147 | + z = pm.Normal("z", y + x, 1) |
| 148 | +
|
| 149 | + # Dummy posterior, same as calling `pm.sample` |
| 150 | + idata_m = az.from_dict({rv.name: [pm.draw(rv, draws=500)] for rv in [x, y, z]}) |
| 151 | +
|
| 152 | + # Replace `y` by a constant `100.0` |
| 153 | + m_do = do(m, {y: 100.0}) |
| 154 | + with m_do: |
| 155 | + idata_do = pm.sample_posterior_predictive(idata_m, var_names="z") |
| 156 | +
|
| 157 | + """ |
| 158 | + do_mapping = {} |
| 159 | + for var, obs in vars_to_interventions.items(): |
| 160 | + if isinstance(var, str): |
| 161 | + var = model[var] |
| 162 | + try: |
| 163 | + do_mapping[var] = var.type.filter_variable(obs) |
| 164 | + except TypeError as err: |
| 165 | + raise TypeError( |
| 166 | + "Incompatible replacement type. Make sure the shape and datatype of the interventions match the original variables" |
| 167 | + ) from err |
| 168 | + |
| 169 | + if any(var not in model.named_vars.values() for var in do_mapping): |
| 170 | + raise ValueError(f"At least one var is not a named variable in the model") |
| 171 | + |
| 172 | + fgraph, memo = fgraph_from_model(model, inlined_views=True) |
| 173 | + |
| 174 | + # We need the interventions defined in terms of the IR fgraph representation, |
| 175 | + # In case they reference other variables in the model |
| 176 | + ir_interventions = replace_vars_in_graphs(list(do_mapping.values()), replacements=memo) |
| 177 | + |
| 178 | + replacements = {} |
| 179 | + for var, intervention in zip(do_mapping, ir_interventions): |
| 180 | + model_var = memo[var] |
| 181 | + |
| 182 | + # Just a sanity check |
| 183 | + assert model_var in fgraph.variables |
| 184 | + |
| 185 | + intervention.name = model_var.name |
| 186 | + dims = extract_dims(model_var) |
| 187 | + # If there are any RVs in the graph we introduce the intervention as a deterministic |
| 188 | + if rvs_in_graph([intervention]): |
| 189 | + new_var = model_deterministic(intervention.copy(name=intervention.name), *dims) |
| 190 | + # Otherwise as a named variable (Constant or Shared data) |
| 191 | + else: |
| 192 | + new_var = model_named(intervention, *dims) |
| 193 | + |
| 194 | + replacements[model_var] = new_var |
| 195 | + |
| 196 | + # Replace variables by interventions |
| 197 | + toposort_replace(fgraph, tuple(replacements.items())) |
| 198 | + |
| 199 | + return model_from_fgraph(fgraph) |
0 commit comments