|
2 | 2 | from typing import Sequence, Tuple, Union
|
3 | 3 |
|
4 | 4 | import numpy as np
|
| 5 | +import pymc |
5 | 6 | import pytensor.tensor as pt
|
| 7 | +from arviz import dict_to_dataset |
6 | 8 | from pymc import SymbolicRandomVariable
|
| 9 | +from pymc.backends.arviz import coords_and_dims_for_inferencedata |
7 | 10 | from pymc.distributions.discrete import Bernoulli, Categorical, DiscreteUniform
|
8 | 11 | from pymc.distributions.transforms import Chain
|
9 | 12 | from pymc.logprob.abstract import _logprob
|
10 | 13 | from pymc.logprob.basic import conditional_logp
|
11 | 14 | from pymc.logprob.transforms import IntervalTransform
|
12 | 15 | from pymc.model import Model
|
13 |
| -from pymc.pytensorf import constant_fold, inputvars |
| 16 | +from pymc.pytensorf import compile_pymc, constant_fold, inputvars |
| 17 | +from pymc.util import dataset_to_point_list, treedict |
14 | 18 | from pytensor import Mode
|
15 | 19 | from pytensor.compile import SharedVariable
|
16 | 20 | from pytensor.compile.builders import OpFromGraph
|
17 |
| -from pytensor.graph import Constant, FunctionGraph, ancestors, clone_replace |
| 21 | +from pytensor.graph import ( |
| 22 | + Constant, |
| 23 | + FunctionGraph, |
| 24 | + ancestors, |
| 25 | + clone_replace, |
| 26 | + vectorize_graph, |
| 27 | +) |
18 | 28 | from pytensor.scan import map as scan_map
|
19 | 29 | from pytensor.tensor import TensorVariable
|
20 | 30 | from pytensor.tensor.elemwise import Elemwise
|
| 31 | +from pytensor.tensor.shape import Shape |
| 32 | +from scipy.special import log_softmax |
21 | 33 |
|
22 | 34 | __all__ = ["MarginalModel"]
|
23 | 35 |
|
24 |
| -from pytensor.tensor.shape import Shape |
25 |
| - |
26 | 36 |
|
27 | 37 | class MarginalModel(Model):
|
28 | 38 | """Subclass of PyMC Model that implements functionality for automatic
|
@@ -205,8 +215,9 @@ def clone(self):
|
205 | 215 | vars = self.basic_RVs + self.potentials + self.deterministics + self.marginalized_rvs
|
206 | 216 | cloned_vars = clone_replace(vars)
|
207 | 217 | vars_to_clone = {var: cloned_var for var, cloned_var in zip(vars, cloned_vars)}
|
| 218 | + m.vars_to_clone = vars_to_clone |
208 | 219 |
|
209 |
| - m.named_vars = {name: vars_to_clone[var] for name, var in self.named_vars.items()} |
| 220 | + m.named_vars = treedict({name: vars_to_clone[var] for name, var in self.named_vars.items()}) |
210 | 221 | m.named_vars_to_dims = self.named_vars_to_dims
|
211 | 222 | m.values_to_rvs = {i: vars_to_clone[rv] for i, rv in self.values_to_rvs.items()}
|
212 | 223 | m.rvs_to_values = {vars_to_clone[rv]: i for rv, i in self.rvs_to_values.items()}
|
@@ -244,6 +255,176 @@ def marginalize(self, rvs_to_marginalize: Union[TensorVariable, Sequence[TensorV
|
244 | 255 | # Raise errors and warnings immediately
|
245 | 256 | self.clone()._marginalize(user_warnings=True)
|
246 | 257 |
|
| 258 | + def _to_transformed(self): |
| 259 | + "Create a function from the untransformed space to the transformed space" |
| 260 | + transformed_rvs = [] |
| 261 | + transformed_names = [] |
| 262 | + |
| 263 | + for rv in self.free_RVs: |
| 264 | + transform = self.rvs_to_transforms.get(rv) |
| 265 | + if transform is None: |
| 266 | + transformed_rvs.append(rv) |
| 267 | + transformed_names.append(rv.name) |
| 268 | + else: |
| 269 | + transformed_rv = transform.forward(rv, *rv.owner.inputs) |
| 270 | + transformed_rvs.append(transformed_rv) |
| 271 | + transformed_names.append(self.rvs_to_values[rv].name) |
| 272 | + |
| 273 | + fn = self.compile_fn(inputs=self.free_RVs, outs=transformed_rvs) |
| 274 | + return fn, transformed_names |
| 275 | + |
| 276 | + def unmarginalize(self, rvs_to_unmarginalize): |
| 277 | + for rv in rvs_to_unmarginalize: |
| 278 | + self.marginalized_rvs.remove(rv) |
| 279 | + self.register_rv(rv, name=rv.name) |
| 280 | + |
| 281 | + def recover_marginals( |
| 282 | + self, idata, var_names=None, return_samples=True, extend_inferencedata=True |
| 283 | + ): |
| 284 | + """Computes normalized posterior probabilities of marginalized variables |
| 285 | + conditioned on parameters of the model given InferenceData with posterior group |
| 286 | +
|
| 287 | + When there are multiple marginalized variables, each marginalized variable is |
| 288 | + conditioned on both the parameters and the other variables still marginalized |
| 289 | +
|
| 290 | + All log-probabilities are within the transformed space |
| 291 | +
|
| 292 | + Parameters |
| 293 | + ---------- |
| 294 | + idata : InferenceData |
| 295 | + InferenceData with posterior group |
| 296 | + var_names : sequence of str, optional |
| 297 | + List of Observed variable names for which to compute log_likelihood. Defaults to all observed variables |
| 298 | + return_samples : bool, default True |
| 299 | + If True, also return samples of the marginalized variables |
| 300 | + extend_inferencedata : bool, default True |
| 301 | + Whether to extend the original InferenceData or return a new one |
| 302 | +
|
| 303 | + Returns |
| 304 | + ------- |
| 305 | + idata : InferenceData |
| 306 | + InferenceData with var_names added to posterior |
| 307 | +
|
| 308 | + """ |
| 309 | + if var_names is None: |
| 310 | + var_names = self.marginalized_rvs |
| 311 | + |
| 312 | + posterior = idata.posterior |
| 313 | + |
| 314 | + # Remove Deterministics |
| 315 | + posterior_values = posterior[ |
| 316 | + [rv.name for rv in self.free_RVs if rv not in self.marginalized_rvs] |
| 317 | + ] |
| 318 | + |
| 319 | + sample_dims = ("chain", "draw") |
| 320 | + posterior_pts, stacked_dims = dataset_to_point_list(posterior_values, sample_dims) |
| 321 | + |
| 322 | + # Handle Transforms |
| 323 | + transform_fn, transform_names = self._to_transformed() |
| 324 | + |
| 325 | + def transform_input(inputs): |
| 326 | + return dict(zip(transform_names, transform_fn(inputs))) |
| 327 | + |
| 328 | + posterior_pts = [transform_input(vs) for vs in posterior_pts] |
| 329 | + |
| 330 | + rv_dict = {} |
| 331 | + rv_dims_dict = {} |
| 332 | + |
| 333 | + for rv in var_names: |
| 334 | + supported_dists = (Bernoulli, Categorical, DiscreteUniform) |
| 335 | + if not isinstance(rv.owner.op, supported_dists): |
| 336 | + raise NotImplementedError( |
| 337 | + f"RV with distribution {rv.owner.op} cannot be marginalized. " |
| 338 | + f"Supported distribution include {supported_dists}" |
| 339 | + ) |
| 340 | + |
| 341 | + m = self.clone() |
| 342 | + rv = m.vars_to_clone[rv] |
| 343 | + m.unmarginalize([rv]) |
| 344 | + joint_logp = m.logp() |
| 345 | + |
| 346 | + rv_shape = constant_fold(tuple(rv.shape)) |
| 347 | + rv_domain = get_domain_of_finite_discrete_rv(rv) |
| 348 | + rv_domain_tensor = pt.swapaxes( |
| 349 | + pt.full( |
| 350 | + (*rv_shape, len(rv_domain)), |
| 351 | + rv_domain, |
| 352 | + dtype=rv.dtype, |
| 353 | + ), |
| 354 | + axis1=0, |
| 355 | + axis2=-1, |
| 356 | + ) |
| 357 | + |
| 358 | + marginalized_value = m.rvs_to_values[rv] |
| 359 | + |
| 360 | + other_values = [v for v in m.value_vars if v is not marginalized_value] |
| 361 | + |
| 362 | + # TODO: Handle constants |
| 363 | + joint_logps = vectorize_graph( |
| 364 | + joint_logp, |
| 365 | + replace={marginalized_value: rv_domain_tensor}, |
| 366 | + ) |
| 367 | + |
| 368 | + rv_loglike_fn = None |
| 369 | + if return_samples: |
| 370 | + sample_rv_outs = pymc.Categorical.dist(logit_p=joint_logps) |
| 371 | + rv_loglike_fn = compile_pymc( |
| 372 | + inputs=other_values, |
| 373 | + outputs=[joint_logps, sample_rv_outs], |
| 374 | + on_unused_input="ignore", |
| 375 | + ) |
| 376 | + else: |
| 377 | + rv_loglike_fn = compile_pymc( |
| 378 | + inputs=other_values, |
| 379 | + outputs=joint_logps, |
| 380 | + on_unused_input="ignore", |
| 381 | + ) |
| 382 | + |
| 383 | + logvs = [rv_loglike_fn(**vs) for vs in posterior_pts] |
| 384 | + |
| 385 | + if return_samples: |
| 386 | + logps, samples = zip(*logvs) |
| 387 | + logps = np.array(logps) |
| 388 | + rv_dict[rv.name] = np.reshape( |
| 389 | + samples, tuple(len(coord) for coord in stacked_dims.values()) |
| 390 | + ) |
| 391 | + rv_dims_dict[rv.name] = sample_dims |
| 392 | + rv_dict["lp_" + rv.name] = log_softmax( |
| 393 | + np.reshape( |
| 394 | + logps, |
| 395 | + tuple(len(coord) for coord in stacked_dims.values()) + logps.shape[1:], |
| 396 | + ), |
| 397 | + axis=len(stacked_dims), |
| 398 | + ) |
| 399 | + rv_dims_dict["lp_" + rv.name] = sample_dims + ("lp_" + rv.name + "_dims",) |
| 400 | + else: |
| 401 | + logps = np.array(logvs) |
| 402 | + rv_dict["lp_" + rv.name] = log_softmax( |
| 403 | + np.reshape( |
| 404 | + logps, |
| 405 | + tuple(len(coord) for coord in stacked_dims.values()) + logps.shape[1:], |
| 406 | + ), |
| 407 | + axis=len(stacked_dims), |
| 408 | + ) |
| 409 | + rv_dims_dict["lp_" + rv.name] = sample_dims + ("lp_" + rv.name + "_dims",) |
| 410 | + |
| 411 | + coords, dims = coords_and_dims_for_inferencedata(self) |
| 412 | + rv_dataset = dict_to_dataset( |
| 413 | + rv_dict, |
| 414 | + library=pymc, |
| 415 | + dims=dims, |
| 416 | + coords=coords, |
| 417 | + default_dims=list(sample_dims), |
| 418 | + skip_event_dims=True, |
| 419 | + ) |
| 420 | + |
| 421 | + if extend_inferencedata: |
| 422 | + rv_dict = {k: (rv_dims_dict[k], v) for (k, v) in rv_dict.items()} |
| 423 | + idata = idata.posterior.assign(**rv_dict) |
| 424 | + return idata |
| 425 | + else: |
| 426 | + return rv_dataset |
| 427 | + |
247 | 428 |
|
248 | 429 | class MarginalRV(SymbolicRandomVariable):
|
249 | 430 | """Base class for Marginalized RVs"""
|
|
0 commit comments