|
| 1 | +import numpy as np |
| 2 | +import pytensor.tensor as pt |
| 3 | +import scipy |
| 4 | + |
| 5 | +from pymc.distributions.dist_math import check_parameters |
| 6 | +from pymc.distributions.distribution import Continuous, SymbolicRandomVariable, _support_point |
| 7 | +from pymc.distributions.moments.means import _mean |
| 8 | +from pymc.distributions.multivariate import ( |
| 9 | + _logdet_from_cholesky, |
| 10 | + nan_lower_cholesky, |
| 11 | + quaddist_chol, |
| 12 | + quaddist_matrix, |
| 13 | + solve_lower, |
| 14 | +) |
| 15 | +from pymc.distributions.shape_utils import implicit_size_from_params, rv_size_is_none |
| 16 | +from pymc.logprob.basic import _logprob |
| 17 | +from pymc.pytensorf import normalize_rng_param |
| 18 | +from pytensor.gradient import grad_not_implemented |
| 19 | +from pytensor.scalar import BinaryScalarOp, upgrade_to_float |
| 20 | +from pytensor.tensor.elemwise import Elemwise |
| 21 | +from pytensor.tensor.random.utils import normalize_size_param |
| 22 | + |
| 23 | + |
| 24 | +class Kv(BinaryScalarOp): |
| 25 | + """ |
| 26 | + Modified Bessel function of the second kind of real order v. |
| 27 | + """ |
| 28 | + |
| 29 | + nfunc_spec = ("scipy.special.kv", 2, 1) |
| 30 | + |
| 31 | + @staticmethod |
| 32 | + def st_impl(v, x): |
| 33 | + return scipy.special.kv(v, x) |
| 34 | + |
| 35 | + def impl(self, v, x): |
| 36 | + return self.st_impl(v, x) |
| 37 | + |
| 38 | + def L_op(self, inputs, outputs, output_grads): |
| 39 | + v, x = inputs |
| 40 | + [out] = outputs |
| 41 | + [g_out] = output_grads |
| 42 | + dx = -(v / x) * out - self.kv(v - 1, x) |
| 43 | + return [grad_not_implemented(self, 0, v), g_out * dx] |
| 44 | + |
| 45 | + def c_code(self, *args, **kwargs): |
| 46 | + raise NotImplementedError() |
| 47 | + |
| 48 | + |
| 49 | +kv = Elemwise(Kv(upgrade_to_float, name="kv")) |
| 50 | + |
| 51 | + |
| 52 | +class MvLaplaceRV(SymbolicRandomVariable): |
| 53 | + name = "multivariate_laplace" |
| 54 | + extended_signature = "[rng],[size],(m),(m,m)->[rng],(m)" |
| 55 | + _print_name = ("MultivariateLaplace", "\\operatorname{MultivariateLaplace}") |
| 56 | + |
| 57 | + @classmethod |
| 58 | + def rv_op(cls, mu, cov, *, size=None, rng=None): |
| 59 | + mu = pt.as_tensor(mu) |
| 60 | + cov = pt.as_tensor(cov) |
| 61 | + rng = normalize_rng_param(rng) |
| 62 | + size = normalize_size_param(size) |
| 63 | + |
| 64 | + assert mu.type.ndim >= 1 |
| 65 | + assert cov.type.ndim >= 2 |
| 66 | + |
| 67 | + if rv_size_is_none(size): |
| 68 | + size = implicit_size_from_params(mu, cov, ndims_params=(1, 2)) |
| 69 | + |
| 70 | + next_rng, e = pt.random.exponential(size=size, rng=rng).owner.outputs |
| 71 | + next_rng, z = pt.random.multivariate_normal( |
| 72 | + mean=pt.zeros(mu.shape[-1]), cov=cov, size=size, rng=next_rng |
| 73 | + ).owner.outputs |
| 74 | + rv = mu + pt.sqrt(e)[..., None] * z |
| 75 | + |
| 76 | + return cls( |
| 77 | + inputs=[rng, size, mu, cov], |
| 78 | + outputs=[next_rng, rv], |
| 79 | + )(rng, size, mu, cov) |
| 80 | + |
| 81 | + |
| 82 | +class MvLaplace(Continuous): |
| 83 | + r"""Multivariate (Symmetric) Laplace distribution. |
| 84 | +
|
| 85 | + The pdf of this distribution is |
| 86 | +
|
| 87 | + .. math:: |
| 88 | +
|
| 89 | + pdf(x \mid \mu, \Sigma) = |
| 90 | + \frac{2}{(2\pi)^{k/2} |\Sigma|^{1/2}} |
| 91 | + ( \frac{(x-\mu)'\Sigma^{-1}(x-mu)}{2} )^{v/2} |
| 92 | + \K_v (\sqrt{2(x-\mu)' \Sigma^{-1} (x - \mu)}}) |
| 93 | +
|
| 94 | + where :math:`v = 1 - k/2` and :math:`\K_v` is the modified Bessel function of the second kind. |
| 95 | +
|
| 96 | + ======== ========================== |
| 97 | + Support :math:`x \in \mathbb{R}^k` |
| 98 | + Mean :math:`\mu` |
| 99 | + Variance :math:`\Sigma` |
| 100 | + ======== ========================== |
| 101 | +
|
| 102 | + Parameters |
| 103 | + ---------- |
| 104 | + mu : tensor_like of float |
| 105 | + Location. |
| 106 | + cov : tensor_like of float, optional |
| 107 | + Covariance matrix. Exactly one of cov, tau, or chol is needed. |
| 108 | + tau : tensor_like of float, optional |
| 109 | + Precision matrix. Exactly one of cov, tau, or chol is needed. |
| 110 | + chol : tensor_like of float, optional |
| 111 | + Cholesky decomposition of covariance matrix. Exactly one of cov, |
| 112 | + tau, or chol is needed. |
| 113 | + lower: bool, default=True |
| 114 | + Whether chol is the lower tridiagonal cholesky factor. |
| 115 | + """ |
| 116 | + |
| 117 | + rv_type = MvLaplaceRV |
| 118 | + rv_op = MvLaplaceRV.rv_op |
| 119 | + |
| 120 | + @classmethod |
| 121 | + def dist(cls, mu=0, cov=None, *, tau=None, chol=None, lower=True, **kwargs): |
| 122 | + cov = quaddist_matrix(cov, chol, tau, lower) |
| 123 | + |
| 124 | + mu = pt.atleast_1d(pt.as_tensor_variable(mu)) |
| 125 | + if mu.type.broadcastable[-1] and not cov.type.broadcastable[-1]: |
| 126 | + mu, _ = pt.broadcast_arrays(mu, cov[..., -1]) |
| 127 | + return super().dist([mu, cov], **kwargs) |
| 128 | + |
| 129 | + |
| 130 | +class MvAsymmetricLaplaceRV(SymbolicRandomVariable): |
| 131 | + name = "multivariate_asymmetric_laplace" |
| 132 | + extended_signature = "[rng],[size],(m),(m,m)->[rng],(m)" |
| 133 | + _print_name = ("MultivariateAsymmetricLaplace", "\\operatorname{MultivariateAsymmetricLaplace}") |
| 134 | + |
| 135 | + @classmethod |
| 136 | + def rv_op(cls, mu, cov, *, size=None, rng=None): |
| 137 | + mu = pt.as_tensor(mu) |
| 138 | + cov = pt.as_tensor(cov) |
| 139 | + rng = normalize_rng_param(rng) |
| 140 | + size = normalize_size_param(size) |
| 141 | + |
| 142 | + assert mu.type.ndim >= 1 |
| 143 | + assert cov.type.ndim >= 2 |
| 144 | + |
| 145 | + if rv_size_is_none(size): |
| 146 | + size = implicit_size_from_params(mu, cov, ndims_params=(1, 2)) |
| 147 | + |
| 148 | + next_rng, e = pt.random.exponential(size=size, rng=rng).owner.outputs |
| 149 | + next_rng, z = pt.random.multivariate_normal( |
| 150 | + mean=pt.zeros(mu.shape[-1]), cov=cov, size=size, rng=next_rng |
| 151 | + ).owner.outputs |
| 152 | + e = e[..., None] |
| 153 | + rv = e * mu + pt.sqrt(e) * z |
| 154 | + |
| 155 | + return cls( |
| 156 | + inputs=[rng, size, mu, cov], |
| 157 | + outputs=[next_rng, rv], |
| 158 | + )(rng, size, mu, cov) |
| 159 | + |
| 160 | + |
| 161 | +class MvAsymmetricLaplace(Continuous): |
| 162 | + r"""Multivariate Asymmetric Laplace distribution. |
| 163 | +
|
| 164 | + The pdf of this distribution is |
| 165 | +
|
| 166 | + .. math:: |
| 167 | +
|
| 168 | + pdf(x \mid \mu, \Sigma) = |
| 169 | + \frac{2}{(2\pi)^{k/2} |\Sigma|^{1/2}} |
| 170 | + ( \frac{(x-\mu)'\Sigma^{-1}(x-mu)}{2} )^{v/2} |
| 171 | + \K_v (\sqrt{2(x-\mu)' \Sigma^{-1} (x - \mu)}}) |
| 172 | +
|
| 173 | + where :math:`v = 1 - k/2` and :math:`\K_v` is the modified Bessel function of the second kind. |
| 174 | +
|
| 175 | + ======== ========================== |
| 176 | + Support :math:`x \in \mathbb{R}^k` |
| 177 | + Mean :math:`\mu` |
| 178 | + Variance :math:`\Sigma + \mu' \mu` |
| 179 | + ======== ========================== |
| 180 | +
|
| 181 | + Parameters |
| 182 | + ---------- |
| 183 | + mu : tensor_like of float |
| 184 | + Location. |
| 185 | + cov : tensor_like of float, optional |
| 186 | + Covariance matrix. Exactly one of cov, tau, or chol is needed. |
| 187 | + tau : tensor_like of float, optional |
| 188 | + Precision matrix. Exactly one of cov, tau, or chol is needed. |
| 189 | + chol : tensor_like of float, optional |
| 190 | + Cholesky decomposition of covariance matrix. Exactly one of cov, |
| 191 | + tau, or chol is needed. |
| 192 | + lower: bool, default=True |
| 193 | + Whether chol is the lower tridiagonal cholesky factor. |
| 194 | + """ |
| 195 | + |
| 196 | + rv_type = MvAsymmetricLaplaceRV |
| 197 | + rv_op = MvAsymmetricLaplaceRV.rv_op |
| 198 | + |
| 199 | + @classmethod |
| 200 | + def dist(cls, mu=0, cov=None, *, tau=None, chol=None, lower=True, **kwargs): |
| 201 | + cov = quaddist_matrix(cov, chol, tau, lower) |
| 202 | + |
| 203 | + mu = pt.atleast_1d(pt.as_tensor_variable(mu)) |
| 204 | + if mu.type.broadcastable[-1] and not cov.type.broadcastable[-1]: |
| 205 | + mu, _ = pt.broadcast_arrays(mu, cov[..., -1]) |
| 206 | + return super().dist([mu, cov], **kwargs) |
| 207 | + |
| 208 | + |
| 209 | +@_logprob.register(MvLaplaceRV) |
| 210 | +def mv_laplace_logp(op, values, rng, size, mu, cov, **kwargs): |
| 211 | + [value] = values |
| 212 | + quaddist, logdet, posdef = quaddist_chol(value, mu, cov) |
| 213 | + |
| 214 | + k = value.shape[-1].astype("floatX") |
| 215 | + norm = np.log(2) - 0.5 * k * np.log(2 * np.pi) - logdet |
| 216 | + |
| 217 | + v = 1 - (k / 2) |
| 218 | + kernel = ((v / 2) * pt.log(quaddist / 2)) + pt.log(kv(v, pt.sqrt(2 * quaddist))) |
| 219 | + |
| 220 | + logp_val = norm + kernel |
| 221 | + return check_parameters(logp_val, posdef, msg="posdef scale") |
| 222 | + |
| 223 | + |
| 224 | +@_logprob.register(MvAsymmetricLaplaceRV) |
| 225 | +def mv_asymmetric_laplace_logp(op, values, rng, size, mu, cov, **kwargs): |
| 226 | + [value] = values |
| 227 | + |
| 228 | + chol_cov = nan_lower_cholesky(cov) |
| 229 | + logdet, posdef = _logdet_from_cholesky(chol_cov) |
| 230 | + |
| 231 | + # solve_triangular will raise if there are nans |
| 232 | + # (which happens if the cholesky fails) |
| 233 | + chol_cov = pt.switch(posdef[..., None, None], chol_cov, 1) |
| 234 | + |
| 235 | + solve_x = solve_lower(chol_cov, value, b_ndim=1) |
| 236 | + solve_mu = solve_lower(chol_cov, mu, b_ndim=1) |
| 237 | + |
| 238 | + x_quaddist = (solve_x**2).sum(-1) |
| 239 | + mu_quaddist = (solve_mu**2).sum(-1) |
| 240 | + x_mu_quaddist = (value * solve_mu).sum(-1) |
| 241 | + |
| 242 | + k = value.shape[-1].astype("floatX") |
| 243 | + norm = np.log(2) - 0.5 * k * np.log(2 * np.pi) - logdet |
| 244 | + |
| 245 | + v = 1 - (k / 2) |
| 246 | + kernel = ( |
| 247 | + x_mu_quaddist |
| 248 | + + ((v / 2) * (pt.log(x_quaddist) - pt.log(2 + mu_quaddist))) |
| 249 | + + pt.log(kv(v, pt.sqrt((2 + mu_quaddist) * x_quaddist))) |
| 250 | + ) |
| 251 | + |
| 252 | + logp_val = norm + kernel |
| 253 | + return check_parameters(logp_val, posdef, msg="posdef scale") |
| 254 | + |
| 255 | + |
| 256 | +@_mean.register(MvLaplaceRV) |
| 257 | +@_mean.register(MvAsymmetricLaplaceRV) |
| 258 | +def mv_laplace_mean(op, rv, rng, size, mu, cov): |
| 259 | + if rv_size_is_none(size): |
| 260 | + bcast_mu, _ = pt.random.utils.broadcast_params([mu, cov], ndims_params=[1, 2]) |
| 261 | + else: |
| 262 | + bcast_mu = pt.broadcast_to(mu, pt.concatenate([size, [mu.shape[-1]]])) |
| 263 | + return bcast_mu |
| 264 | + |
| 265 | + |
| 266 | +@_support_point.register(MvLaplaceRV) |
| 267 | +@_support_point.register(MvAsymmetricLaplaceRV) |
| 268 | +def mv_laplace_support_point(op, rv, rng, size, mu, cov): |
| 269 | + # We have a 0 * inf when value = mu. I assume density is infinite, which isn't a good starting point. |
| 270 | + point = mu + 1 |
| 271 | + if rv_size_is_none(size): |
| 272 | + bcast_point, _ = pt.random.utils.broadcast_params([point, cov], ndims_params=[1, 2]) |
| 273 | + else: |
| 274 | + bcast_shape = pt.concatenate([size, [point.shape[-1]]]) |
| 275 | + bcast_point = pt.broadcast_to(point, bcast_shape) |
| 276 | + return bcast_point |
0 commit comments