@@ -196,9 +196,9 @@ def create_structural_model_and_equivalent_statsmodel(
196
196
components = []
197
197
198
198
if irregular :
199
- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
200
- params ["sigma_irregular" ] = sigma
201
- sm_params ["sigma2.irregular" ] = sigma .item ()
199
+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
200
+ params ["sigma_irregular" ] = np . sqrt ( sigma2 )
201
+ sm_params ["sigma2.irregular" ] = sigma2 .item ()
202
202
expected_param_dims ["sigma_irregular" ] += ("observed_state" ,)
203
203
204
204
comp = st .MeasurementError ("irregular" )
@@ -255,7 +255,7 @@ def create_structural_model_and_equivalent_statsmodel(
255
255
).astype (floatX ),
256
256
np .zeros (2 , dtype = floatX ),
257
257
)
258
- sigma_level_value = np .abs (rng .normal (size = (2 ,)))[
258
+ sigma_level_value2 = np .abs (rng .normal (size = (2 ,)))[
259
259
np .array (level_trend_innov_order , dtype = "bool" )
260
260
]
261
261
max_order = np .flatnonzero (level_value )[- 1 ].item () + 1
@@ -267,9 +267,9 @@ def create_structural_model_and_equivalent_statsmodel(
267
267
268
268
if sum (level_trend_innov_order ) > 0 :
269
269
expected_param_dims ["sigma_trend" ] += ("trend_shock" ,)
270
- params ["sigma_trend" ] = sigma_level_value
270
+ params ["sigma_trend" ] = np . sqrt ( sigma_level_value2 )
271
271
272
- sigma_level_value = sigma_level_value .tolist ()
272
+ sigma_level_value = sigma_level_value2 .tolist ()
273
273
if stochastic_level :
274
274
sigma = sigma_level_value .pop (0 )
275
275
sm_params ["sigma2.level" ] = sigma
@@ -298,9 +298,9 @@ def create_structural_model_and_equivalent_statsmodel(
298
298
sm_init .update (seasonal_dict )
299
299
300
300
if stochastic_seasonal :
301
- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
302
- params ["sigma_seasonal" ] = sigma
303
- sm_params ["sigma2.seasonal" ] = sigma
301
+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
302
+ params ["sigma_seasonal" ] = np . sqrt ( sigma2 )
303
+ sm_params ["sigma2.seasonal" ] = sigma2
304
304
expected_coords [SHOCK_DIM ] += [
305
305
"seasonal" ,
306
306
]
@@ -343,9 +343,9 @@ def create_structural_model_and_equivalent_statsmodel(
343
343
state_count += 1
344
344
345
345
if has_innov :
346
- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
347
- params [f"sigma_seasonal_{ s } " ] = sigma
348
- sm_params [f"sigma2.freq_seasonal_{ s } ({ n } )" ] = sigma
346
+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
347
+ params [f"sigma_seasonal_{ s } " ] = np . sqrt ( sigma2 )
348
+ sm_params [f"sigma2.freq_seasonal_{ s } ({ n } )" ] = sigma2
349
349
expected_coords [SHOCK_DIM ] += state_names
350
350
expected_coords [SHOCK_AUX_DIM ] += state_names
351
351
@@ -374,12 +374,12 @@ def create_structural_model_and_equivalent_statsmodel(
374
374
sm_init ["cycle.auxilliary" ] = init_cycle [1 ]
375
375
376
376
if stochastic_cycle :
377
- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
378
- params ["sigma_cycle" ] = sigma
377
+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
378
+ params ["sigma_cycle" ] = np . sqrt ( sigma2 )
379
379
expected_coords [SHOCK_DIM ] += state_names
380
380
expected_coords [SHOCK_AUX_DIM ] += state_names
381
381
382
- sm_params ["sigma2.cycle" ] = sigma
382
+ sm_params ["sigma2.cycle" ] = sigma2
383
383
384
384
if damped_cycle :
385
385
rho = rng .beta (1 , 1 , size = (1 ,)).astype (floatX )
@@ -398,18 +398,18 @@ def create_structural_model_and_equivalent_statsmodel(
398
398
if autoregressive is not None :
399
399
ar_names = [f"L{ i + 1 } .data" for i in range (autoregressive )]
400
400
ar_params = rng .normal (size = (autoregressive ,)).astype (floatX )
401
- sigma = np .abs (rng .normal (size = (1 ,))).astype (floatX )
401
+ sigma2 = np .abs (rng .normal (size = (1 ,))).astype (floatX )
402
402
403
403
params ["ar_params" ] = ar_params
404
- params ["sigma_ar" ] = sigma
404
+ params ["sigma_ar" ] = np . sqrt ( sigma2 )
405
405
expected_param_dims ["ar_params" ] += (AR_PARAM_DIM ,)
406
406
expected_coords [AR_PARAM_DIM ] += tuple (list (range (1 , autoregressive + 1 )))
407
407
expected_coords [ALL_STATE_DIM ] += ar_names
408
408
expected_coords [ALL_STATE_AUX_DIM ] += ar_names
409
409
expected_coords [SHOCK_DIM ] += ["ar_innovation" ]
410
410
expected_coords [SHOCK_AUX_DIM ] += ["ar_innovation" ]
411
411
412
- sm_params ["sigma2.ar" ] = sigma
412
+ sm_params ["sigma2.ar" ] = sigma2
413
413
for i , rho in enumerate (ar_params ):
414
414
sm_init [f"ar.L{ i + 1 } " ] = 0
415
415
sm_params [f"ar.L{ i + 1 } " ] = rho
0 commit comments