You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
"identity" : Applies log importance weights directly without resampling.
1673
-
None : No importance sampling weights. Returns raw samples of size (num_paths, num_draws_per_path, N) where N is number of model parameters. Other methods return samples of size (num_draws, N).
1671
+
1672
+
- **"psis"** : Pareto Smoothed Importance Sampling (default). Usually most stable.
1673
+
- **"psir"** : Pareto Smoothed Importance Resampling. Less stable than PSIS.
1674
+
- **"identity"** : Applies log importance weights directly without resampling.
1675
+
- **None** : No importance sampling weights. Returns raw samples of size (num_paths, num_draws_per_path, N) where N is number of model parameters. Other methods return samples of size (num_draws, N).
1676
+
1674
1677
progressbar : bool, optional
1675
1678
Whether to display a progress bar (default is True). Setting this to False will likely reduce the computation time.
1676
1679
random_seed : RandomSeed, optional
@@ -1685,17 +1688,24 @@ def fit_pathfinder(
1685
1688
Additional keyword arguments for the Pathfinder algorithm.
1686
1689
compile_kwargs
1687
1690
Additional keyword arguments for the PyTensor compiler. If not provided, the default linker is "cvm_nogc".
1691
+
initvals: dict | None = None
1692
+
Initial values for the model parameters, as str:ndarray key-value pairs. Paritial initialization is permitted.
1693
+
If None, the model's default initial values are used.
1688
1694
1689
1695
Returns
1690
1696
-------
1691
-
arviz.InferenceData
1697
+
:class:`~arviz.InferenceData`
1692
1698
The inference data containing the results of the Pathfinder algorithm.
1693
1699
1694
1700
References
1695
1701
----------
1696
1702
Zhang, L., Carpenter, B., Gelman, A., & Vehtari, A. (2022). Pathfinder: Parallel quasi-Newton variational inference. Journal of Machine Learning Research, 23(306), 1-49.
0 commit comments