"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"data": {
"text/html": [
"\n",
" \n",
- " \n",
- "
\n",
- " 100.00% [6000/6000 00:03<00:00 Sampling 2 chains, 0 divergences]\n",
+ "
\n",
+ " 100.00% [12000/12000 00:06<00:00 Sampling 4 chains, 0 divergences]\n",
"
\n",
" "
],
@@ -112,14 +137,14 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Sampling 2 chains for 1_000 tune and 2_000 draw iterations (2_000 + 4_000 draws total) took 11 seconds.\n"
+ "Sampling 4 chains for 1_000 tune and 2_000 draw iterations (4_000 + 8_000 draws total) took 7 seconds.\n"
]
}
],
"source": [
"with model:\n",
" step = pm.NUTS()\n",
- " trace = pm.sample(2000, tune=1000, init=None, step=step, cores=2, return_inferencedata=True)"
+ " idata = pm.sample(2000, tune=1000, init=None, step=step, chains=4)"
]
},
{
@@ -180,7 +205,7 @@
"}\n",
"\n",
".xr-wrap {\n",
- " display: block;\n",
+ " display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
@@ -489,89 +514,137 @@
" fill: currentColor;\n",
"}\n",
"<xarray.Dataset>\n",
- "Dimensions: (chain: 2, draw: 2000)\n",
+ "Dimensions: (chain: 4, draw: 2000)\n",
"Coordinates:\n",
- " * chain (chain) int64 0 1\n",
+ " * chain (chain) int64 0 1 2 3\n",
" * draw (draw) int64 0 1 2 3 4 5 ... 1995 1996 1997 1998 1999\n",
"Data variables: (12/13)\n",
- " n_steps (chain, draw) float64 3.0 3.0 3.0 3.0 ... 3.0 3.0 3.0\n",
- " perf_counter_start (chain, draw) float64 7.234 7.235 7.235 ... 9.779 9.78\n",
- " perf_counter_diff (chain, draw) float64 0.0002823 0.000284 ... 0.0002742\n",
- " energy_error (chain, draw) float64 -0.5087 -0.4354 ... 0.04225 0.1197\n",
- " tree_depth (chain, draw) int64 2 2 2 2 2 2 2 2 ... 2 2 2 3 3 2 2 2\n",
- " max_energy_error (chain, draw) float64 -0.6245 0.5775 ... 0.3449 -0.1726\n",
+ " lp (chain, draw) float64 -17.41 -11.12 ... -13.76 -12.35\n",
+ " perf_counter_diff (chain, draw) float64 0.0009173 0.0009097 ... 0.0006041\n",
+ " acceptance_rate (chain, draw) float64 0.8478 1.0 ... 0.8888 0.8954\n",
+ " energy_error (chain, draw) float64 0.3484 -1.357 ... -0.2306 -0.2559\n",
+ " energy (chain, draw) float64 21.75 18.45 16.03 ... 19.25 16.51\n",
+ " tree_depth (chain, draw) int64 2 2 2 2 2 2 2 2 ... 2 2 3 2 2 2 2 2\n",
" ... ...\n",
- " energy (chain, draw) float64 20.89 20.49 18.01 ... 17.55 16.76\n",
" diverging (chain, draw) bool False False False ... False False\n",
- " step_size_bar (chain, draw) float64 0.9604 0.9604 ... 0.9419 0.9419\n",
- " lp (chain, draw) float64 -15.3 -13.86 ... -13.54 -13.95\n",
- " acceptance_rate (chain, draw) float64 1.0 0.8879 0.927 ... 0.9095 0.9688\n",
- " step_size (chain, draw) float64 0.9213 0.9213 ... 0.9988 0.9988\n",
+ " step_size (chain, draw) float64 0.8831 0.8831 ... 0.848 0.848\n",
+ " n_steps (chain, draw) float64 3.0 3.0 3.0 3.0 ... 3.0 3.0 3.0\n",
+ " perf_counter_start (chain, draw) float64 2.591e+05 2.591e+05 ... 2.591e+05\n",
+ " process_time_diff (chain, draw) float64 0.0009183 0.0009112 ... 0.0006032\n",
+ " max_energy_error (chain, draw) float64 0.3896 -1.357 ... 0.2427 0.303\n",
"Attributes:\n",
- " created_at: 2021-04-06T16:24:24.465349\n",
- " arviz_version: 0.11.2\n",
- " inference_library: pymc3\n",
- " inference_library_version: 3.11.2\n",
- " sampling_time: 10.891047954559326\n",
- " tuning_steps: 1000
n_steps
(chain, draw)
float64
3.0 3.0 3.0 3.0 ... 7.0 3.0 3.0 3.0
array([[3., 3., 3., ..., 3., 3., 3.],\n",
- " [3., 3., 3., ..., 3., 3., 3.]])
perf_counter_start
(chain, draw)
float64
7.234 7.235 7.235 ... 9.779 9.78
array([[7.23425966, 7.23463133, 7.23499786, ..., 8.21941184, 8.21982745,\n",
- " 8.2202315 ],\n",
- " [8.8954175 , 8.89596285, 8.89643539, ..., 9.77893421, 9.77928411,\n",
- " 9.7796441 ]])
perf_counter_diff
(chain, draw)
float64
0.0002823 0.000284 ... 0.0002742
array([[0.00028233, 0.00028403, 0.00028609, ..., 0.00033475, 0.00032492,\n",
- " 0.00031708],\n",
- " [0.00042187, 0.00031782, 0.00044144, ..., 0.00027279, 0.00027981,\n",
- " 0.00027424]])
energy_error
(chain, draw)
float64
-0.5087 -0.4354 ... 0.04225 0.1197
array([[-0.50873119, -0.43537361, -0.2754945 , ..., -0.41472269,\n",
- " -0.04624652, 0.58648128],\n",
- " [ 0. , 0.05162033, -0.51012677, ..., -0.10103067,\n",
- " 0.04225451, 0.11974125]])
tree_depth
(chain, draw)
int64
2 2 2 2 2 2 2 2 ... 2 2 2 3 3 2 2 2
array([[2, 2, 2, ..., 2, 2, 2],\n",
- " [2, 2, 2, ..., 2, 2, 2]])
max_energy_error
(chain, draw)
float64
-0.6245 0.5775 ... 0.3449 -0.1726
array([[-0.62454923, 0.57749804, 0.68574548, ..., 0.52434551,\n",
- " 0.23932216, 0.74183316],\n",
- " [ 0.61023739, -0.29264149, -0.51012677, ..., 0.78759243,\n",
- " 0.34488576, -0.17257857]])
process_time_diff
(chain, draw)
float64
0.000282 0.000284 ... 0.000275
array([[0.000282, 0.000284, 0.000287, ..., 0.000335, 0.000326, 0.000317],\n",
- " [0.000422, 0.000319, 0.000432, ..., 0.000273, 0.000279, 0.000275]])
energy
(chain, draw)
float64
20.89 20.49 18.01 ... 17.55 16.76
array([[20.88764382, 20.4921193 , 18.01116499, ..., 17.49176409,\n",
- " 14.92873488, 17.43965595],\n",
- " [20.20316506, 18.13457635, 17.89032511, ..., 19.00599324,\n",
- " 17.55328583, 16.76147247]])
diverging
(chain, draw)
bool
False False False ... False False
array([[False, False, False, ..., False, False, False],\n",
- " [False, False, False, ..., False, False, False]])
step_size_bar
(chain, draw)
float64
0.9604 0.9604 ... 0.9419 0.9419
array([[0.96041447, 0.96041447, 0.96041447, ..., 0.96041447, 0.96041447,\n",
- " 0.96041447],\n",
- " [0.94194673, 0.94194673, 0.94194673, ..., 0.94194673, 0.94194673,\n",
- " 0.94194673]])
lp
(chain, draw)
float64
-15.3 -13.86 ... -13.54 -13.95
array([[-15.3048286 , -13.86066125, -12.92070308, ..., -12.06651172,\n",
- " -11.88730918, -14.62170062],\n",
- " [-14.30776839, -14.61483991, -12.18578006, ..., -13.37718754,\n",
- " -13.53911458, -13.95227994]])
acceptance_rate
(chain, draw)
float64
1.0 0.8879 0.927 ... 0.9095 0.9688
array([[1. , 0.88790791, 0.9269517 , ..., 0.92792804, 0.91796823,\n",
- " 0.53323407],\n",
- " [0.69160202, 0.96691222, 0.93334257, ..., 0.91483728, 0.90947644,\n",
- " 0.96880681]])
step_size
(chain, draw)
float64
0.9213 0.9213 ... 0.9988 0.9988
array([[0.92128394, 0.92128394, 0.92128394, ..., 0.92128394, 0.92128394,\n",
- " 0.92128394],\n",
- " [0.99880883, 0.99880883, 0.99880883, ..., 0.99880883, 0.99880883,\n",
- " 0.99880883]])
- created_at :
- 2021-04-06T16:24:24.465349
- arviz_version :
- 0.11.2
- inference_library :
- pymc3
- inference_library_version :
- 3.11.2
- sampling_time :
- 10.891047954559326
- tuning_steps :
- 1000
"
+ " created_at: 2022-05-31T19:50:21.571347\n",
+ " arviz_version: 0.12.1\n",
+ " inference_library: pymc\n",
+ " inference_library_version: 4.0.0b6\n",
+ " sampling_time: 6.993547439575195\n",
+ " tuning_steps: 1000lp
(chain, draw)
float64
-17.41 -11.12 ... -13.76 -12.35
array([[-17.41481817, -11.11746073, -14.00889121, ..., -14.62579449,\n",
+ " -15.12640488, -14.92067376],\n",
+ " [-11.79754517, -11.37321931, -12.41967116, ..., -15.0553557 ,\n",
+ " -15.03960873, -11.84774166],\n",
+ " [-14.40032205, -20.68972653, -13.74758915, ..., -15.20451325,\n",
+ " -13.46400824, -14.82413174],\n",
+ " [-13.44881972, -15.9252134 , -11.73013359, ..., -14.77629777,\n",
+ " -13.75935262, -12.34852981]])
perf_counter_diff
(chain, draw)
float64
0.0009173 0.0009097 ... 0.0006041
array([[0.00091726, 0.00090966, 0.00090066, ..., 0.00086925, 0.00092221,\n",
+ " 0.00046417],\n",
+ " [0.00092182, 0.00084332, 0.00081795, ..., 0.00048199, 0.00048006,\n",
+ " 0.00048616],\n",
+ " [0.00050058, 0.00061117, 0.0005809 , ..., 0.00170264, 0.00124334,\n",
+ " 0.00069834],\n",
+ " [0.00050844, 0.00052396, 0.00054123, ..., 0.00051385, 0.0005149 ,\n",
+ " 0.00060409]])
acceptance_rate
(chain, draw)
float64
0.8478 1.0 0.5188 ... 0.8888 0.8954
array([[0.84781696, 1. , 0.5188267 , ..., 0.91934539, 0.85438787,\n",
+ " 0.76057673],\n",
+ " [1. , 0.81181648, 0.93142852, ..., 0.94123492, 0.75399724,\n",
+ " 0.93529202],\n",
+ " [1. , 0.29414685, 1. , ..., 0.46697774, 0.83249289,\n",
+ " 0.65167911],\n",
+ " [0.79107091, 0.56355851, 1. , ..., 0.92367151, 0.8888214 ,\n",
+ " 0.89536079]])
energy_error
(chain, draw)
float64
0.3484 -1.357 ... -0.2306 -0.2559
array([[ 0.34837379, -1.3573709 , 0.72431555, ..., 0.2857954 ,\n",
+ " 0.1180722 , 0.03878686],\n",
+ " [-0.15890021, -0.10739294, 0.2229767 , ..., 0.01717362,\n",
+ " -0.13001742, -0.69487895],\n",
+ " [-0.21978325, 1.47962416, -1.65668177, ..., 0.50839378,\n",
+ " -0.41858308, 0.3440592 ],\n",
+ " [-0.14333517, 0.51606888, -0.88905807, ..., 0.0211668 ,\n",
+ " -0.23064281, -0.25594826]])
energy
(chain, draw)
float64
21.75 18.45 16.03 ... 19.25 16.51
array([[21.75076832, 18.45266859, 16.03241029, ..., 17.16983192,\n",
+ " 20.13659553, 23.01097321],\n",
+ " [14.09025318, 15.15479489, 13.75490571, ..., 18.64000448,\n",
+ " 21.55766921, 19.64569656],\n",
+ " [17.32485111, 25.19494315, 24.5830488 , ..., 21.14581229,\n",
+ " 20.19801996, 19.52502693],\n",
+ " [22.87267199, 20.94006237, 16.61780155, ..., 19.3110406 ,\n",
+ " 19.24706179, 16.51436075]])
tree_depth
(chain, draw)
int64
2 2 2 2 2 2 2 2 ... 2 2 3 2 2 2 2 2
array([[2, 2, 2, ..., 3, 3, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2],\n",
+ " [2, 2, 2, ..., 3, 2, 2],\n",
+ " [2, 2, 2, ..., 2, 2, 2]])
step_size_bar
(chain, draw)
float64
0.9358 0.9358 ... 0.9276 0.9276
array([[0.93583778, 0.93583778, 0.93583778, ..., 0.93583778, 0.93583778,\n",
+ " 0.93583778],\n",
+ " [0.96472688, 0.96472688, 0.96472688, ..., 0.96472688, 0.96472688,\n",
+ " 0.96472688],\n",
+ " [0.97413339, 0.97413339, 0.97413339, ..., 0.97413339, 0.97413339,\n",
+ " 0.97413339],\n",
+ " [0.92757304, 0.92757304, 0.92757304, ..., 0.92757304, 0.92757304,\n",
+ " 0.92757304]])
diverging
(chain, draw)
bool
False False False ... False False
array([[False, False, False, ..., False, False, False],\n",
+ " [False, False, False, ..., False, False, False],\n",
+ " [False, False, False, ..., False, False, False],\n",
+ " [False, False, False, ..., False, False, False]])
step_size
(chain, draw)
float64
0.8831 0.8831 ... 0.848 0.848
array([[0.88314133, 0.88314133, 0.88314133, ..., 0.88314133, 0.88314133,\n",
+ " 0.88314133],\n",
+ " [0.98491061, 0.98491061, 0.98491061, ..., 0.98491061, 0.98491061,\n",
+ " 0.98491061],\n",
+ " [0.79717973, 0.79717973, 0.79717973, ..., 0.79717973, 0.79717973,\n",
+ " 0.79717973],\n",
+ " [0.84803742, 0.84803742, 0.84803742, ..., 0.84803742, 0.84803742,\n",
+ " 0.84803742]])
n_steps
(chain, draw)
float64
3.0 3.0 3.0 3.0 ... 3.0 3.0 3.0 3.0
array([[3., 3., 3., ..., 7., 7., 3.],\n",
+ " [3., 3., 3., ..., 3., 3., 3.],\n",
+ " [3., 3., 3., ..., 7., 3., 3.],\n",
+ " [3., 3., 3., ..., 3., 3., 3.]])
perf_counter_start
(chain, draw)
float64
2.591e+05 2.591e+05 ... 2.591e+05
array([[259080.94794072, 259080.9491462 , 259080.95033726, ...,\n",
+ " 259082.86608642, 259082.86711713, 259082.86821631],\n",
+ " [259080.90127503, 259080.90247671, 259080.90355453, ...,\n",
+ " 259082.70122436, 259082.70185994, 259082.70249527],\n",
+ " [259083.94110883, 259083.94177995, 259083.94255876, ...,\n",
+ " 259085.68260603, 259085.68468606, 259085.68622814],\n",
+ " [259084.07774306, 259084.07843519, 259084.07920939, ...,\n",
+ " 259085.84236159, 259085.8430168 , 259085.84369495]])
process_time_diff
(chain, draw)
float64
0.0009183 0.0009112 ... 0.0006032
array([[0.00091832, 0.00091119, 0.00090133, ..., 0.00086943, 0.00092247,\n",
+ " 0.00046421],\n",
+ " [0.00092232, 0.00084386, 0.00081837, ..., 0.00048233, 0.0004802 ,\n",
+ " 0.00048617],\n",
+ " [0.00050046, 0.00052388, 0.0005813 , ..., 0.00170327, 0.001244 ,\n",
+ " 0.00069857],\n",
+ " [0.00050863, 0.00052436, 0.00054133, ..., 0.0005133 , 0.00051457,\n",
+ " 0.00060323]])
max_energy_error
(chain, draw)
float64
0.3896 -1.357 ... 0.2427 0.303
array([[ 0.3896375 , -1.3573709 , 0.72431555, ..., 0.34345 ,\n",
+ " 0.42071847, 1.28485975],\n",
+ " [-0.21887002, 0.50399625, 0.2229767 , ..., -0.78518544,\n",
+ " 1.03001369, -0.69487895],\n",
+ " [-1.00930297, 1.47962416, -1.65668177, ..., 1.11431688,\n",
+ " 0.47088174, 0.88911589],\n",
+ " [ 1.87193377, 1.14125086, -0.88905807, ..., 0.31397184,\n",
+ " 0.24269705, 0.30297649]])
- created_at :
- 2022-05-31T19:50:21.571347
- arviz_version :
- 0.12.1
- inference_library :
- pymc
- inference_library_version :
- 4.0.0b6
- sampling_time :
- 6.993547439575195
- tuning_steps :
- 1000
"
],
"text/plain": [
"\n",
- "Dimensions: (chain: 2, draw: 2000)\n",
+ "Dimensions: (chain: 4, draw: 2000)\n",
"Coordinates:\n",
- " * chain (chain) int64 0 1\n",
+ " * chain (chain) int64 0 1 2 3\n",
" * draw (draw) int64 0 1 2 3 4 5 ... 1995 1996 1997 1998 1999\n",
"Data variables: (12/13)\n",
- " n_steps (chain, draw) float64 3.0 3.0 3.0 3.0 ... 3.0 3.0 3.0\n",
- " perf_counter_start (chain, draw) float64 7.234 7.235 7.235 ... 9.779 9.78\n",
- " perf_counter_diff (chain, draw) float64 0.0002823 0.000284 ... 0.0002742\n",
- " energy_error (chain, draw) float64 -0.5087 -0.4354 ... 0.04225 0.1197\n",
- " tree_depth (chain, draw) int64 2 2 2 2 2 2 2 2 ... 2 2 2 3 3 2 2 2\n",
- " max_energy_error (chain, draw) float64 -0.6245 0.5775 ... 0.3449 -0.1726\n",
+ " lp (chain, draw) float64 -17.41 -11.12 ... -13.76 -12.35\n",
+ " perf_counter_diff (chain, draw) float64 0.0009173 0.0009097 ... 0.0006041\n",
+ " acceptance_rate (chain, draw) float64 0.8478 1.0 ... 0.8888 0.8954\n",
+ " energy_error (chain, draw) float64 0.3484 -1.357 ... -0.2306 -0.2559\n",
+ " energy (chain, draw) float64 21.75 18.45 16.03 ... 19.25 16.51\n",
+ " tree_depth (chain, draw) int64 2 2 2 2 2 2 2 2 ... 2 2 3 2 2 2 2 2\n",
" ... ...\n",
- " energy (chain, draw) float64 20.89 20.49 18.01 ... 17.55 16.76\n",
" diverging (chain, draw) bool False False False ... False False\n",
- " step_size_bar (chain, draw) float64 0.9604 0.9604 ... 0.9419 0.9419\n",
- " lp (chain, draw) float64 -15.3 -13.86 ... -13.54 -13.95\n",
- " acceptance_rate (chain, draw) float64 1.0 0.8879 0.927 ... 0.9095 0.9688\n",
- " step_size (chain, draw) float64 0.9213 0.9213 ... 0.9988 0.9988\n",
+ " step_size (chain, draw) float64 0.8831 0.8831 ... 0.848 0.848\n",
+ " n_steps (chain, draw) float64 3.0 3.0 3.0 3.0 ... 3.0 3.0 3.0\n",
+ " perf_counter_start (chain, draw) float64 2.591e+05 2.591e+05 ... 2.591e+05\n",
+ " process_time_diff (chain, draw) float64 0.0009183 0.0009112 ... 0.0006032\n",
+ " max_energy_error (chain, draw) float64 0.3896 -1.357 ... 0.2427 0.303\n",
"Attributes:\n",
- " created_at: 2021-04-06T16:24:24.465349\n",
- " arviz_version: 0.11.2\n",
- " inference_library: pymc3\n",
- " inference_library_version: 3.11.2\n",
- " sampling_time: 10.891047954559326\n",
+ " created_at: 2022-05-31T19:50:21.571347\n",
+ " arviz_version: 0.12.1\n",
+ " inference_library: pymc\n",
+ " inference_library_version: 4.0.0b6\n",
+ " sampling_time: 6.993547439575195\n",
" tuning_steps: 1000"
]
},
@@ -581,7 +654,7 @@
}
],
"source": [
- "trace.sample_stats"
+ "idata.sample_stats"
]
},
{
@@ -633,9 +706,9 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAArAAAAEiCAYAAAABAuFjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUR0lEQVR4nO3de3wU1d0/8M/sPZvrBhIC4aoQQG4aICCXogiCYKmiWJ4i4r1quTzUyg+sL+/PEysPtQhWq21FIbWQVqCiVEVaICCEaygCRrlESIAk5J6978zvj7Ozm80Fkk1CstnP+/VqJbOzM2fOOfOd78ycmZUURVFARERERBQiNG1dACIiIiKipmACS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECSyFv6dKl6N+/P/bt29ch1nOtfPzxx7j33ntx0003IS0tDY899hgOHTrU1sUiIi/Gtqa5cOECMjIysHTpUtxxxx0YMGBAh9guqp+urQtARNfe//zP/+DDDz+EyWTC2LFj4XA4sGfPHuzevRtvvvkmJk2a1NZFJCJqks8//xzp6eltXQy6RpjAEjXSL3/5Szz22GPo1q1bWxelWfbs2YMPP/wQcXFxWL9+PXr37g0AOHz4MObOnYtly5YhLS0NMTExbVtQIromOkps69GjB+bNm4chQ4ZgyJAheOWVV5CVldXWxaJWwgSWqJESExORmJjY1sVotvfffx8A8OSTT/qSVwC46aabMHv2bKxduxZ/+9vf8PDDD7dRCYnoWuoose22227Dbbfd1tbFoGuEY2Cp3bpw4QJeffVVTJkyBUOHDkVaWhpmzpyJ1atXo6qqqt7v7N+/Hw888ABuuukmpKam4vHHH8f3339fZ76KigqsXbsWjzzyCG699VYMHjwYo0aNwiOPPILdu3fXu+yGxolNnDgR/fv3BwBkZmbixz/+MYYOHYqxY8fi+eefR0VFRTNrouXY7Xbs3bsXADB16tQ6n6vT/vWvf13TchGFE8Y2ouZjAkvt0oEDBzBjxgysXbsWLpcLt956K1JTU1FVVYVVq1bh3Llzdb7zr3/9C/PmzYPdbseECROQkJCAHTt2YM6cOSgqKgqY98iRI3j11Vdx5swZ9OnTB5MnT0afPn2we/duPPLII/jb3/7W5DK//vrreOmll5CYmIgf/ehHUBQF69evx5NPPglFUYKui5Z05swZOJ1OxMfHIykpqc7nN9xwAwDg22+/vdZFIwoLjG1ELYNDCKjdKSsrw4IFC1BRUYElS5bgoYcegkbjP9c6fPhwvbe7PvjgA6xatcr3AJLH48HixYvx+eef4y9/+QsWLVrkm7dPnz5Yv349brzxxoBlHD9+HPPmzUN6ejruuOMOREZGNrrc//jHP/CPf/wD1113HQCgpKQEs2fPxoEDB7B3717cfPPNjVrO3LlzkZ2d3ej1AkB6ejpmzpx51fkKCgoAoN7kFQDMZjNiYmJQXl6OqqoqREVFNakcRNQwxrbWi20UfpjAUruTmZmJkpISjB8/Ho888kidz2+66aZ6vzd9+vSAp+e1Wi0ef/xxfP755zhw4EDAvD169ECPHj3qLOOGG27Az372M7zzzjvYt28fJk6c2OhyL1q0yBfgASA+Ph6zZ8/Gb37zGxw4cKDRQX78+PFITk5u9HoBoGfPno2az2q1AgBMJlOD80RERKCiogLV1dVMYIlaEGNb68U2Cj9MYKnd+frrrwEAs2fPbtL3xo0bV2ea+pBSYWFhnc88Hg++/vprHD58GEVFRXA6nQCAs2fPAgDy8vKatP6xY8c2uP7at/mu5PHHH2/SeokoNDC2MbZRy2ECS+3OhQsXAKDeqwhX0qVLlzrT1CuILpcrYPrFixfx85//HCdPnmxwedXV1U1af3235dXbdOoBpK2ZzWYA4mGuhthsNgBo0i1GIro6xjailsMEljqMmmPJrubXv/41Tp48iSlTpuDRRx9Fnz59EBkZCY1Gg/Xr1+P5559v8sMJTVn/lbz77rs4ffp0k75z7733YsSIEVedT33P48WLF+v93Gq1oqKiArGxsRw+QNROMLZdPbZR+GECS+1O165dcfr0aZw7d873CpeWZLVasWfPHnTu3BlvvPEGtFptwOf1PQV8Le3atavJDzqkpaU1Ksj36dMHBoMBJSUluHTpUp0rO8ePHweAVql3onDH2NZ6sY3CDxNYanduvvlm7N69G+vXr2+VnzStrKyELMtISEioE+BdLhe+/PLLFl9nU6xdu7bVlm0ymTB69Gjs3LkTW7duxYMPPhjw+T//+U8AwK233tpqZSAKV4xtrRfbKPzwPbDU7syaNQsWiwU7d+7EmjVr6tzuOnLkCC5fvhz08jt16oTo6Gh89913OHjwoG+6x+PB//3f//kedOioHnroIQDA22+/HbCthw8fxvr16xETE4N77723jUpH1HExthG1HF6BpXYnLi4OK1euxJNPPon09HSsXbsWQ4YMgd1ux+nTp5GXl4dNmzahU6dOQS1fp9Ph0UcfxRtvvIG5c+di9OjRiI2NRU5ODi5fvow5c+YgIyOjhbeq/RgzZgweeOABfPjhh7jrrrswZswYuFwu7NmzB4qiID09HTExMW1dTKIOh7GtdRUWFmL+/Pm+v9Xxti+99JJvTP+ECRPwi1/8ok3KRy2LCSy1S6NGjcLmzZvxxz/+Ebt27cK2bdsQGRmJ5ORkLFy4sMlP8db2xBNPICkpCR988AEOHToEo9GI4cOHY+HChb5xoB3Zr3/9awwcOBDr1q3Dnj17oNfrcfPNN+Opp55CampqWxePqMNibGs9TqcTOTk5daafOnXK9++a77Ol0CYp/B04IiIiIgohHANLRERERCGFCSwRERERhRQmsEREREQUUpjAEhEREVFIYQJLRERERCGFCSwRERERhRQmsEREREQUUvhDBo1QWlrapPljY2NRXl7eSqWhUMA+QE3tAxaLpRVLU7+mxjaAfTvcsf0pmD7QGvGNV2BbgUbDag137APUUftAR90uahy2P7WXPtA+SkFERERE1EjtdgiBw+HAb3/7Wxw7dgx5eXkoLy9HTEwMevTogVmzZmHGjBnQ6/WNWpYsy8jIyMCGDRuQl5cHs9mMMWPGYPHixc3+3WkiIiIiurba7RXY6upqfPTRR5AkCbfccgseeughTJo0CYWFhXj22WfxxBNPQJblRi3r+eefx6uvvgpFUTB37lyMHz8eX3zxBe69916cPXu2dTeEiIiIiFpUu70CGxcXhwMHDsBgMARMd7vdeOihh5CVlYWdO3filltuueJy9u7di8zMTIwcORJ//vOffcu788478fjjj+OVV17Bn/70p9baDCIiIiJqYe02gdVoNHWSVwDQ6XSYPHkysrOzkZeXd9XlZGZmAgAWLVoUsLwJEyYgLS0NWVlZKCgoQLdu3Vqu8F6XL8u4cBEwGoCqaiAuFujcGbDZAKdTzON0AnYHEBMNJCRIcDoVlJQC8RYgOlpcIHc4FNhsQEQEYDRKvr+1WvFfQHzm8UiIiBB/5+crKC4GzJGAyQhYLIBWKz53OhVcvARoNYDBIMpQWSW+1yleLKukFPB4AIcDcLkAsxno0R0wGCQUFSm4XALo9WJadLQGlZUyzp0X83aKB2JjRXlql7GoCCgvB3r2BDp1Et8rKQWiIv3lMxolXx06HArKyxVUVYky6vVAl0RRtqoqQJaBLl1EucrLFd961HXGxkq+5anLami60+lvD5NR1I3BINZ17ryor8goQKcV6wSA02dEuZK7irZV28DhUFBYKMPpFMuIjRXrKipSYLcDkZGA0+Xfbq1W8X23pERB3g9Ar55AfLwUUDZ1e6OjNQH9oGbbq+3jcon6MhpFmdV1xlv89VVV5e9/sbGibez2wDpV+6rBIOq2vByoqPTXUVU1cPEC4HYDiYlAcnJgW1ZWyrh4SSzXZgVi4wBLnL+dai+/ZtsB8PX9mv1aXUbteYxGybffdU0Sfaymmm1dc/8zGYGoqMAy1azvq9WFWn9qn/d4JJjNypXCQ8iqqJCR94Ps60c2G+DxKKiq9vet2v3coBf/hQLkfgeUXAYSEoBOnUX/VOOMyyXaI8II6PT+v2OiAIMRqCgHTCbA7QGKCkV/M5pEuYxG0V4mI1BtBQoKgE6dgD69RZtevCSWldwViIkR/ba6CvjhPGAyAA4noNMBGi3QyQL06SP6wKnTYt+3WALjpRr/ABEfrFYRJ9X4VFIqyhsbB+h1/hir0YjpsgxIWlEejQY4mQtoJBFHoPhjpMOhID9f8cVNAPjhnFi/RuPvu+XlwDcnxL7eNQmQNCLe6nSARwaizGKbtFqxDK1W1AEUUbauSUBUlD8ulJSK7/W9TpTj8mUZp04DMbF2GHSyry7O5wMXC4HYaBEfEzqL7ZVlQFFEvVviRN3YHaJubFbR/t26Sb7jkXq8sVpFG8THAfkFQGUF0LWbvx1rxh5VYRHwQx4QYRZlSO4q+snpM0BFhYhNOq3oD0Dd+FEzFmo08P07obPYBrUd1X/rDYDL6W9bWRZ9vapa9BXA397RUf44WVEujsl2u/g8Jsrfr9SY4vFI8HgUXCoUdQGItlaXA/jjlscDuF1AUpL4t3pctsSJOql5bFLjqs0m+nREhOirQGBbaSTRDhaL2LdMRrHvXi4W8xlMwPCbPNC1g+yxHRShaWRZxq5duwAAKSkpV51/3759MJvNSE1NrfPZ+PHjkZ2djezsbNx1110tWs4du2T87WPgwgURWAx6wOTtMBERQFkZYLMDdm+nssQD1/dR4HKLnS0mGpg6VUZCZwk5OeLgEBUJdEtWUJAPFFwAfvjBf1AwGIGePRVERgDfnwIOHRE7riyLA2vnTsDgwQrMJuC70yLhqKoWO6vDLjqsRisCodEbzCsrxY4iSWLnvK4PkNBZwYlvgZISccDo3w8YPVrG13vFgcnhEOvr1UOUteSyv4wlZUBxESArojzjxsq4eFHsaHYHkNJPQUpfYNgwIKmLhIuXFOzcqWBvNnDmrCin3iDqJiLCH8iSugJJiQoqq0R9ehQRRCJMQL9+Cib8SNTxzp0Kvv0OkFB3+pGjwPnzInB5PKIuYqLFNhYWAlabaBe9XgSDhASgqlIEWKcTiDQD118PDB0q2sDlrsY3x4HSUiA+HujTWwTIk7kiILvdIkDoDUByNwVaDdA5QcHFAuDIUVH/BgPQP0WBxyPKZrOJdujTB7hlggy7TfSD4mLx3cgI8ffBw6LMbrfYPoNBHDzUxFucYCj44Zw4EMoeICpa9C+1vTt1FnVaWARcuiSmxcaKA1ppiQiMiiKmV1aI8iqKqK+uXYG0kaItTREK/v1v4PgJEVzV8nTvLurF5RT7grp8vcHfdklJCqKjvQdgt79fV1WJfnvddcCNQ/3zREUCdoeCbdvFPFFRwL0zZUwYL44oan86clRsk7r/eTxivUldRD24nOLAr9a32r8aqgurN3lO7ir6vN0m2qPv9Q7066sgqYv/hCzU/ecbGdv/ZUVxsehPycniJCr3e28iFQno9Qp+OO/v55GRYv/WakT/dDj8y9PrRdvJsvifx+PvV5Ik/g2I9pa81ajOo35mMIhlSJJYnscjEgTFGwdiYwFIIg4DIrGJjxcH/kuFor1rnmpoNKI9k7qI/aG0TCTSJpPYFofd+7d3HkDEAatV9H9LnChPYZGYDxDJoiKLxNvj8W+vTifK7/bGfY9HrD86GuieDEy7Q8bZM8DX2f4TUkkS/Vtdn7pvXyr0r0/djpqj7PR6sdxePcXxqKpazF98GTBHiGSsV09xgvj9KcBaLU4iunUFRoyQsf+AOJ653dUwGkVdVJR7k+Aa6zQaRCKpkfxJHCCmAyJWaLXiJGLgAHHMO/eDSJgdDlFmtexqDFOTMlOEv20jIkTyWFYOlHmTbbWuzWbxb5vNvwzA30dMJn/8AER8+uGciAd2h7/eJMnf92TZ/1+3W7SdViuWFWHyT3O6RL/xuEW/U/unzQq43P72V8saESGOh507izoxGhV8mytiuJp0qvNFRYm/7TZRD06X6AN674mXw+Hfb9QT8EiziLcWizjp++G8/zOTSSxXkUVbeTxiOyRJ7DumCLFup1P0FVkW6+vTuwJzfuaPrW1FUhRFufpsbcfpdOIPf/gDFEVBWVkZvv76a5w+fRozZ85Eenr6Fb9rtVpx0003ISUlBZ988kmdzz///HMsXLgQTz31FBYtWtTgcpr6rkS3OwaLnynD5csi0bNaRScw6EUAs1hER6ioEB3NZBKd3OUUZ3yDhwKXL4uzswH9AadbJB2XCoH880CXJODSRZEM6b2nIC430O96oLQc+OaYWI/De4am04nAldxVBI+ycjGtvNy/g6g7quwRZ+4ajb/D6rRifp1eJH+St89qNIBBB+i8Z+I1g3BUFNAtCbDaReByOv1XDeLixHpl79k9AFwuBSyxwPDhQGICMOZmYOcu4Ot93is2Jf4Dm7pNkZGi7pxOQK8FUvqLg8blyyIgqBfVhw4W/z16TOyUiiS2U51+OAe4UACcLxBBQaMR69LrRL26XGK7FYjp0dEiONkd8J2FejziIHDzaFHHJSUSZFmB2yPa3uUSB52ICJHUOhwi6JkjAa0EJHUTZ9jZ+0UdJiSIZEmWxYGsqNh/MmI0inmHp4plFZeI4F5SCpz6XiT2Nm9ipratTudPvrVacRBWAFRX++vU7QbiYoBOCSIp1kpATJzoJ2rdV1X5l2m1Bh4cVEYj0D8FuOlGkYyXlYnAafcmLlqtv/2MBv+BR6MR5UjoLBLtS5fEf0eOAHZ/DfznqJjX7RZ1oSYZycmi3gsuANu+EsvvkgAUXRYHhBefE1eWtn2lIPuA2HeKLovtkmUxv1Yr+rlBL/p5VbXY5pgY0XY6Tf11IUniYGmziat43bqJK0CJicB110UgwmjDLROkgLsKDWnv74GtrJTxzrtAVbUOsTFufHNC7BcRJqCiSvTByyUimbBYRJyx20Uio9H675i0BrV2lVrT1L8lSbRxzfWr/f5KtFqx37hc/uRSo/HvT2oyriZctZevKP59pGZCfjVqshlhErHKo4hpFy+KZahXP9V5a54UXIkkidgcFeW9y2AH3N4kR/aWNcLkP9nUe2O+rHjjoiySpqvVW83trbnd6kmITitOGtUrl263/3h4JQaD/4q9RhLHIvUY1hR6vVhvYgIASVyJL68QMa2+PtpQ26knWuqdOq3WH0vVN035kmGIeqxNoxExJDZaXN10uURct9v9V0bV47P6v4AkWCOO95Ik2s5m958E6PXeCy86cWHhwgURh2tuj3pyVV/Z6qP2oT69gFdeqnuXqyGtEd/a/RVYl8uF1atX+/6WJAkPP/wwnn766at+t7KyEgAQpZ621KJOV+drSGxsbJPee3Ykxwm7TYO4OBmXL3tvbXmv8ni8ncug95/ZmYyio9ntgMkkISbKgCgzcD7fA6tVh+uv13kPgDJOnXLCEqfDxYtuxMTIkD0KJEiIiFDg9mihyB64PTIMev8OJctiB7PbAVmRoNMp0OtEuex2sWNptYBWBzhkf7nUTdbpxGfqDmP07vweDyC7RRJkMvmvglRUiO/a7BKiIiVvMiyLbTUBMdEiEpaUAtHRWjgcErp2VVBdBcRbDJAVCbKsh93hhE7nAhS3L5B6ZACK2OHiYiUoANxuBR4ZiDTrYDIqMBg8MJm06NxJC5tdQbVV3DOLjJRhiRMbVVrm8U03Gj3QGzzQ6WTUfLGFJIn1aLX+M2/1yo+siHKoZ9fV1eJgabVpYTJJcHs8MJu0iIoWt9DtdhmyDMRES6isUKAxieVZLBKKi4EuCToUFXvg8cgwRwARRnELurLS23f03rN9owYREQqsVglRkQZUVMro1UNCeYUMjSTD5fZA6w1cgCi/esIRYQIUDxARKaGqSlz1jYgQ22G3i4Ok0QTERGtRVuaBywnoNKINPR7ZdztLp/Xf3q19dUM9QDkcGhgNelirnTDoFd+VCLfbH+zVec0RItVweE8ITCYtYmM1KCoW7WjQ6yHBAbfHA5Mx8Iqd2y3BZNIhOsoAs1mGw2FDn14axMbpoDN4cLlYgc0WiU6ddLA77DAa3TCaZJiMHlR6DwZajbiD4XaJupJlEfB1esCgF7fz3J7660KvE8FcPWA5nBr0TRIdJiZKgsNphslkRFxc+3xetimxrazMDbvDim5dNZA0OsTEuFBe5oHDqUHXrhKcDsBk9MDj8d5OrRKxzW4XyVhFRStuiLfvSahxYK/RT6D4TzbVq5RXSsK0msArepIktgMQiZPRIPqH0+5PLk2mGieEbsAY4T+hVxR/4tHIzYFeL+pQbwASOktwuhRoJLE+jXf4l8vlj9ONWabkPXmHIrbBahV3mmQFiNCLk021L+u0/v3CYRcn6BqdWJB6FfRq1LLV3Hb1WGPQi6Eeatl8iRhqnYjUTIAV8b3aJwtNpfcuw+USJ1fw3j2qmQzXvgNQs+1qJudqHNPrRbzV6QJPdtQTbo1WxN+a9aaeeGk04g+TUbS5tsYxWL3yW/NqsE7nPbGusS71Dph6oUDNLaze5NTtEfWqlktRvN+VgHquQ9RLPRnVaIAqqwY2WyQslrpDPa+Vdp/ARkZG4ttvv4UsyygsLMT27dvxxhtv4MiRI3jvvfcaTE5bUlN/cSK5WwxMESJ5lbzjSbRa760qb/BxuvwJkd0hOphWA9jtCiqqHL4rsGazG3nn/FdgTUagtMwFCeKAUPMKbJdEGZI38Dhd/uCp04mzbVMnwOFUfEmHw+FNyCB2LDUpq3kLp+ZtHPUKrMfjT1IN3itpNa/Aqt+LMCmoqlZgNPgTP7sdqKiUYbOLna2yUkQF9QpsSakNiQn+sV1u720Yl6vGFVhvkCgrV2DyJoJ6LVBtdcPu8I4PsntQfFksO9IsjljV1eLWi3oFVp3ucIi2cbv9BwT1Cqyk8SY28F+BlSSxI0MKHCspATBHeMRYOq0Eu8ODKqv/Cp9GA1RUKr6r4xEmoLRUgUEHXCpyITpKzGe1ATaHAqvVuy7vFVyHA9DrZSgAoqMUVFXb4XEDeYXi6pfsLbPN5r9iBACSrJ5QiKuDNrs4gVEgbhOqdapI4kBVUenxjRlzy6INFcWfCLs9Yv6atyuBwNu6RqMMh9MBc6Q4KEIJHPet0/nntdrEPzQa75Vtuwfl5R7IHsBul+F0uaBAlMfhDLwCq9MpsNtdqKxy+W6pXiqSATh9V2AjIirhcEgwGUWS7LD7bxPKMqBoAcUhlq/IgFYv9ienSyxfvQtRX1243OKA43KJK9ZGg4wLF2UkJgIVVVpEGG2w220oLW2fV2CbEtu0WhkmI1BwQVyBVWOA0SDjwgXRB+3eWFddLfqJOqaw2lr3lnaLUvyxTOVx1/hb8vcb//Y0nFB6aszn8QTGH1kR/VBWxD6jkQLnUfuH0xm4TzRl2xWI5UVFiVh1uUQRSVeNZan7U2OXq3j/T6MV9eFwijsLFZXiCqzNLhJL9QTRKYvvqMm0evfD6Wr8leSat91VHm+S6tT4x+Mq8Nd57UXXXJciifW7XP4rsMFwucQJgF4Pb2bvPx7Wt97adax+VnMel8vbp9zeixxyYKIte+rWm1q/6kmW3SFimNXqX0bNdanHZvWkyOXyn2xJtbbBl1uoJ+Ra/7oC+qVS96ShIbLizRVkIMosIyKiEqWlvAJ7VRqNBklJSfjZz34Gi8WC//7v/8bbb7+NZ555psHvREdHAwCq1PuetajT1flaSkKCFvfOBP72sXcsjKf+MbAmU+0xsOKAWOZN5qZOhW8MbFmZeLBgyGCgIF/sJD2tgWNguySJcaqx0WKsoHp7VB0DO/AGBIyB9XjEAb5pY2DhGwNrMKhjYOEbA6soYnyZGAOLgDGwRpMYA+t0inoYNxa+MbAxMcD1fcUtnWHDJERHSxg+XEF1tUjkXK6Gx8D27g0kJYoxPJ3jvQ+saUSA69cPGD1aJA9Op3cMrCJucdecrj4s0pgxsBZL3TGwMdFiDGz3HvCOgTXgm+OOGmNg4RsD63aJ5NU/BhbeMbAiET9yVNR9XJwop3q7yGYT2yvGwPr7jscjhgb06iFunV9pDGznTv6H7BoaAyt7RL0lJYq2UeT6x8AajQ2PgR04EOjZA0hJAf79b7HNTRkDq9cBI4aLK3cOB3DTUCA60j8GVq8X7X7jUDFPdbUYIvPTWcC27eKEKCYGuHem/xbX8OFAdbVoa5fbe7XiKmNgI0yivq9UF1abeDhEjIEVy7RYgE7xGvTr27jhA6EgOlqDqVNlbP+XFsXFbvTsLoZvqGNg9XoxJEivF+PsPB5Rf+oY2E7xbT8GVh2z2NQxsIoiYmPtMbB9eovvqGNgzea6Y2ANhqaPgTWbxUNV0+5AwBjYrl39w1fU/a0lxsCaTOoYWDF8yOUWJ7darToGFr4xsHr466L5Y2DhGwMry40fA6uO3WzOGFg1fgBiDKzHe6La9mNg0awxsDGGwDGwsTH+MbARppYZA9ujuwY//anc6OEDraXdj4GtT2VlJUaMGIGhQ4f63jLQkHHjxqG6uhoHDhyAVj3d83r33XexYsUK/OY3v7niQ1xNHQNrsVhQWlqKy5dlXLokdhirFYjxJpJ2u9iJAdExHE5xtbVzZ/FEZlmZSF5qvoVA3WnVtxCIsZrivwq8Y6VkCSbvE7kFBeJJdLWDxsUCOp3kHTOqoLDQO0bGO5aqqlokdvHx4jtlZd5xtE7A7RQBITlZPGFcXKzgcqm4+pqc7H8Lwfl8cVCIjxc7oixLdcpYXCwSz+7J/rcQlJV5g7C3fLXfQlBRIR7QqqoW60xIEDuS+iBRYoIoV0WF4luPus7YmMC3Dajz1Dfd4fS3h8kg6sZgEIEoPx+QtCLJ0+m8Y6cgHi6rrhIP+nTu5G8Di8WCvLwS38NYsTFiXcXFCuwOcTvO7fZvt0aj+L5bUqLg3DmgRw/xFoKaZVO3V30LgdoPara92j5up+h7Bu9td3WdcXH++qqs8ve/mBhxZd3uCKxTta8aDN7xjhVizKNaR1XVQOElEUwTE0UiV7MtKytlEYzt/tvJajCtuS+oy6/ZdoD/gFWzX6vLqD2P+hYCdfxsfW8hqLlNNds7MiqwTDXr+2p1odaf2udlWULXrhZYrWVNihvXWlNjGwBotbE4e7bU14/sdjGMx2r1963a/Vyn818B/f57MW47obP4n8HojzPqnQaDSezr6t+R0SIBqqwU83vcIvHq3EkcZCXvSbysiLassoqT404WoFcv0aYXC8Ut/6Su4oTTahXLO5/vvR3vFlcktVogLl6M8XM6gTNnxL4fHxcYL9X4B4hl2LwJrBqfLpeKk9zoaO9wAG+MlTRivWJYiiiPRgJyc8W6LfEiNqsx0uFQUFCg+OImIB7q1HqHdql9t7wMOHFSJDJdvcssvizWIctARKTYJp337otW4x/zWV0t9peoKH9cKC0TV9v69PG/heDMGSA6JhIGfbWvLvILgOJCwBwl9oP4Tt7b6Yo4GS4sFP0iwizaWdxlESd93bpKvuOReryxVfsvvFy4AJRXipiitmPN2KMqLBJ1YjSKMiR1FSf7Z88CZZX+txB0jhf1Xzt+1IyFGkm0ldMutkWBvx3Vf6tX79W2VRTR163eOw0K/O0dFeWPk1WVIk45nEB1pejXar9SY4osS3C7xUOjthpvIVCXA/jjlsebECfW6HMGnai7ouLAY5MaV21W0acjIkS8Vu8sqm0lSeK5m7gYMQzGZAAcLnGy7vaIN4TceGMcdLqmjQlqjfgWkgnsqVOnMG3aNKSmpuKjjz664ry//OUv8emnn2LdunUYOXJkwGdz585FdnY2tm/fjmQ1EtUj2ASWwhf7ADW1D4RKAsu+Hd7Y/hRMH2iN+NY+nywA8P3338NWz+OFNpvN9/aBCRMm+KaXlJTg1KlTKCkpCZj/vvvuAwCsXLkSTnXQEIAdO3YgOzsb48aNu2LySkRERETtS7sdA7t161a8//77GD58OJKTkxEVFYVLly5h586dKCsrw4gRI/Dggw/65s/IyMDq1asxf/58LFiwwDd99OjRmDVrFjIzMzFz5kxMmDABRUVF+OyzzxAXF4fnnnuuDbaOiIiIiILVbhPYW265BYWFhTh8+DCOHDkCq9WKqKgo9O/fH9OnT8c999wDXSN/CuLll19GSkoKNmzYgA8//BBmsxmTJ0/G4sWL0VP9aRMiIiIiCgkhOQb2WuMYWGoq9gHiGFjqiNj+xDGwRERERERBYAJLRERERCGFCSwRERERhRQmsEREREQUUpjAEhEREVFIYQJLRERERCGFCSwRERERhRQmsEREREQUUpjAEhEREVFIYQJLRERERCGFCSwRERERhRQmsEREREQUUpjAEhEREVFIYQJLRERERCGFCSwRERERhRQmsEREREQUUpjAEhEREVFIYQJLRERERCGFCSwRERERhRQmsEREREQUUpjAEhEREVFIYQJLRERERCGFCSwRERERhRQmsEREREQUUpjAEhEREVFIYQJLRERERCGFCSwRERERhRRdc75ss9lw7NgxFBUVwel0NjjfXXfd1ZzVEBERERH5BJ3Arly5EmvWrIHdbm9wHkVRIEkSE1giIiIiajFBJbDvvfce3n77bWi1WkyYMAF9+vRBZGRkixbs0qVL2Lp1K3bu3InTp0+juLgYsbGxSE1NxaOPPophw4Y1ajn79u3DAw880ODn6enpmDlzZksVm4iIiIhaWVAJbGZmJkwmEzIyMjBo0KCWLhMAYO3atXjvvffQs2dPjB07FvHx8cjLy8O2bduwbds2rFixAtOmTWv08tLS0pCWllZn+sCBA1uy2ERERETUyoJKYC9cuIDRo0e3WvIKAEOHDsXatWvrJJ0HDhzAgw8+iBdffBGTJk2CwWBo1PLS0tKwYMGC1igqEREREV1DQb2FICEhARERES1dlgC33357vVdMR4wYgVGjRqG8vBzffvttq5aBiIiIiNqfoK7ATps2DX/7299gtVphNptbukxXpdPpAv7bGGfPnsWaNWvgcDjQpUsX3HzzzejSpUtrFZGIiIiIWklQCeyCBQtw+PBhPPnkk3j55ZfRq1evli5XgwoKCrBnzx4kJCQgJSWl0d/bsmULtmzZ4vtbp9Ph/vvvx5IlS6DValujqERERETUChqVwNb3FL8sy8jOzsa0adPQrVs3JCUlQZKkOvNJkoQPPvig+SUF4HK5sGTJEjidTvzqV79qVOIZHx+Pp59+GrfeeiuSk5Nhs9lw+PBhrFixAmvWrIEkSVi6dGmLlI+IiIiIWp+kKIpytZkGDBgQ/AokCSdOnAj6+ypZlvHMM89gy5YtuO+++/DKK680a3lFRUWYMWMGKioqsHPnTnTq1OmK69Zo+KNlRNSxMLYRUahq1BXYr776qrXLcUWyLOPZZ5/Fli1bMGPGDLz00kvNXmZCQgJuu+02ZGZmIicnBxMnTmxw3vLy8iYt22KxoLS0tLlFpBDGPkBN7QMWi6UVS1O/psY2gH073LH9KZg+0BrxrVEJbHJycouvuLFkWcayZcuwadMm3HnnnXjttdda7IqBWqE2m61FlkdERERErS+oTHD16tWNuiq7fft2rF69OphVAAhMXqdNm4bXX3+9RR+4ysnJAdC2CToRERERNU3QCey2bduuOt/27dvx1ltvBbMK37CBTZs2YerUqVi+fPkVk9eSkhKcOnUKJSUlAdOPHTtW7/wffPAB9u3bh969e2PIkCFBlZGIiIiIrr2gXqPVWB6PJ+jb/W+99RY2btwIs9mM3r174+23364zz6RJk3w/BZuRkYHVq1dj/vz5Ab+4tXDhQuh0OgwePBhdunSBzWZDTk4Ojh8/jpiYmKsmxkRERETUvrRqAvv9998jJiYmqO/m5+cDAKxWK955551650lOTvYlsA2ZPXs2srKysH//fpSVlUGj0aBbt26YN28eHn74YSQlJQVVPiIiIiJqG416jRYALFu2zPfvjRs3olevXkhNTa13Xo/HgzNnzuDYsWOYNGkSVq1a1TKlbSPBPG3HpzTDG/sAhcJbCILpo+zb4Y3tTyH1FgJAJK0qSZKQl5eHvLy8K36nf//+WLJkSfClIyIiIiKqpdEJ7IcffggAUBQF8+bNw/jx4/HYY4/VO69er0diYiKf7iciIiKiFtfoBDYtLc3377vvvhvDhw8PmEZEREREdC0E9RBXenp6S5eDiIiIiKhRmvUWAqfTic8//xwHDhxAYWEhACAxMRHDhw/HlClTYDQaW6SQRERERESqoBPYPXv2YOnSpSgqKkLtFxls2LABy5cvx2uvvYaxY8c2u5BERERERKqgEticnBz8/Oc/h8vlwrBhwzB9+nTfA1sFBQX49NNPceTIETzxxBNYt24dhg0b1qKFJiIiIqLwFVQCu3LlSrjdbrz44ouYPXt2nc/nzp2L9evX44UXXsCbb76JP/3pT80uKBERERERAAT1O685OTkYPHhwvcmr6qc//SmGDBmCI0eOBFs2IiIiIqI6gkpgNRoNevbsedX5evbsCUmSglkFEREREVG9gkpghw4ditzc3KvOl5ubi6FDhwazCiIiIiKiegWVwC5atAhnz57Fm2++CVmW63yuKArefPNNnD17FosWLWp2IYmIiIiIVEE9xHX69GncfffdePvtt7F582bcfvvtvrcQ5Ofn48svv0R+fj5mzZqFM2fO4MyZMwHfv+uuu5pdcCIiIiIKT5JS+yWujTBgwABIkhTw/ld1rGt901SKokCSJJw4cSLY8raJ0tLSJs1vsVia/B3qWNgHqKl9wGKxtGJp6hdMH2XfDm9sfwqmD7RGfAvqCuwvfvELPpxFRERERG0iqAR2wYIFLV0OIiIiIqJGCeohLiIiIiKithLUFdiaTp48iaNHj6K0tBR9+/bFbbfdBgBwOp1wOp2IiopqdiGJiIiIiFRBX4E9ffo0Zs+ejbvvvhsvvPACfve732Hbtm2+zz/55BOMHDkSO3fubJGCEhEREREBQSawFy5cwP33348jR47g1ltvxTPPPIPaLzO44447oNfr8cUXX7RIQYmIiIiIgCCHELz11lsoLS3Fq6++invvvRcA8PrrrwfMYzabMXDgQOTk5DS/lEREREREXkFdgd21axf69+/vS14bkpycjMLCwqAKRkRERERUn6AS2MuXL6NPnz5Xnc/tdsNmswWzCiIiIiKiegWVwMbFxeHChQtXne/MmTNISEgIZhVERERERPUKKoFNTU3Ff/7znyv+JGx2dja+++47pKWlBV04IiIiIqLagkpgH3nkESiKgqeeego7duyAx+MJ+Pzrr7/GkiVLoNPpMG/evBYpKBEREREREORbCIYNG4Zf//rX+N///V888cQTMJlMkCQJX3zxBbZt24aqqipIkoQXXngBAwYMaOkyExEREVEYC/qHDObMmYOMjAzceuutkCQJiqKguroaTqcT48aNw9q1a/HTn/60JctKRERERNS8n5K98cYb8fvf/x6KoqC0tBSyLMNisUCr1bZU+YiIiIiIAjQrgVVJkoT4+PiWWBQRERER0RW1SALbGi5duoStW7di586dOH36NIqLixEbG4vU1FQ8+uijGDZsWKOXJcsyMjIysGHDBuTl5cFsNmPMmDFYvHgxevTo0YpbQUREREQtrVEJ7G233Rb0CiRJwrZt25r8vbVr1+K9995Dz549MXbsWMTHxyMvLw/btm3Dtm3bsGLFCkybNq1Ry3r++eeRmZmJfv36Ye7cuSgsLMTWrVuxe/durF+/Hr17925y+YiIiIiobTQqgc3Pz2/ygtUHu4I1dOhQrF27ts57ZA8cOIAHH3wQL774IiZNmgSDwXDF5ezduxeZmZkYOXIk/vznP/vmv/POO/H444/jlVdewZ/+9Kegy0lERERE11ajEtiTJ0/Wmfbqq6/i448/xpw5czB9+nR0794dgEh2P/30U2RkZODuu+/Gc889F1TBbr/99nqnjxgxAqNGjUJWVha+/fZbDBky5IrLyczMBAAsWrQoINmdMGEC0tLSkJWVhYKCAnTr1i2octbmcCj497+t+McWGVYrEBMDSAAkLWCtAqwOwKgDDCbA7QQUCTCZANkNVFYBkgQY9IDLDSgK4JbFqyJ0OkCBmK4BoNEA0AARBjHN6QZ0GjGPRwbMRiA6FoAM2GxAtVUsT0b969dpAI9HzCcDiIkCZI9Yh1EvPistBzxuwGgAomIASRHTXE7AYAAsFkCRgYpKf3kk73suZFmULTYK0GoDvxcZCVhtYtmyWCXcsii7RiPWFxEplud0Aja7qCNJEvPbrOLfESZ/XRh1gFYvPlNfU6zT+eexO/31KMNfVoMBiIgAHDYxDyCmRUUBHhfgcgEaHVBRIbY1NkbMb7OJ7Vbr2Gy6DJfbv+0eWaxDp/eu0w0YTYHbrbafTieWW1EOuD3+OtRqAb0ecNj95dfpxOey7O8b5gh/2zud4jONTtQFFMDh9NeXJIm+6XaKOtdqRflq1qkse9sDgeVQ+09kJGA2AZDE96qrRRu43KIMBkPgfuB2is8ddrEOnd6/XWrbGUz+vzXw14/RFNg+at2q82ggtjUyAqiqFnWr0fj7k9oH1G3SakX/lxTR92uuX/HU7V8N1YXDLqYbtGK7ExOAWbMc6NG9OdGk/Tl+XEbWnlLkF8i+ejHoRRtoNf6+FRUp5q+9r8puILELkNAZKC8HysoAux0wRog4o1L3WYMBvn4ly0BkjGh7RQbi4gG7Vex7Ho/YN3UG0ZaS5J+3ssLfT3UawGoFXB7RL3QaQP2xSHUfkj1iv6moFGW2xAIaSUyz2/0xU+0zbhmIihD90uMByitF+Ywmf9yw20XZdBrRZ9TnnD0eUR5JC8R3AjxOwOEAJB1QUiz+rdEA0VGAOVpMUxQRa2uWyekGzGagbx+gygaUXhZ1EBcPuBxiPU6XqHOtRmynWxbHD50uMKapccEYIbaxvNK7H+lEXZgiSlBVofjqwmIBEuK9dVYl6lv2tp3HLerd5q3ziAixX0la0TZWu4h5EQb/Os0mUdaqKqBTJ8ASB1y8CBRfBnRacSyQFLHd6j5ssQCWGBFPbTZRpzKA2FjR/4ze7SwpFdteO37UjC1upzh26DSi/tV/q+0UFQ24HWL5Dpt/W21WUbeS5G9rtV9KWhGb9EaxfINJxKhqq79/ajQijigKAI04Vqp9yun0L0eNu3o9oNcCehNQXiK+px6Xq6pFOxoMotzqsUyWAaMR6NpF1FNpaeCyTJGA4gZ03nLabaKeNTp/XUaageEj7OjdU0Z0dNAvsmoRQY2B/fDDD/HXv/4VH330UZ0Esn///ujfvz8mT56M//qv/0L37t3x4IMPtkRZfXQ6XcB/r2Tfvn0wm81ITU2t89n48eORnZ2N7Oxs3HXXXc0u18VLCl56ScF/jtuavSwiCm2bPqnCj+8Envll2wb5lrL8tzL+8QmgKPLVZ6Y28cU1WUvwd1apY/jzB9XonwIsXCBjyKC2i29BrXn9+vUYNWrUFa9+DhkyBKNGjfJdAW0pBQUF2LNnDxISEpCSknLFea1WK4qKitC9e/d6X+3Vq1cvAEBeXl6zy+VwKNj8DwX/Od7sRRFRByDLwKefiauWoe74cTV5beuSEFFbk2Xgu++BzEygsrLt4ltQV2DPnTuH/v37X3W+2NhYHDhwIJhV1MvlcmHJkiVwOp341a9+ddX3zVZWVgIAoqKi6v1cna7O15DY2FhoNFfO9UtLZZzNK4e4oUBEJG7/nT0bgbFjzW1dlHo1JrYBwPenq6Eo9mtQIiIKBR4PUFKihaJEwWJpmxdaBbXW2NhY7N+/Hw6HA0ajsd55HA4H9u/fj5iYmGYVUCXLMpYuXYr9+/fjvvvua5Fb/o1VXl5+1XkcDgW9eynYlXUNCkREIUGrBXr3tqG01HHVeS0WyzUoUaDGxDYA6HudDEniFVgiErRaID7eA0kqR2np1U+CWyO+BTWEYPLkySgqKsLChQtx/vz5Op+fP38eixYtQnFxMSZPntzsQsqyjGeffRZbtmzBjBkz8NJLLzXqe9HR0QCAqqqqej9Xp6vzNYfRKOEnMyQMuaHZiyKiDkCjAaZPA264IfTHwN5wgwYzfiweUCGi8KbRAP36ArNmoU0f5ArqCuyiRYuwd+9e7NixA1lZWRg8eLDvKf6CggJ88803cLvduO6667Bo0aJmFVCWZSxbtgybNm3CnXfeiddee61Rt7wAwGw2IyEhAefPn4fH46kz5EAd+6qOhW2upC4SfvcGcPJbEz79zIaqavE0uSSJ/1mt4ilJo0H8z+0Ww+FNRvEkZGUlAEl85nJ530LgEd/Vq28hcIm/tRoxb4QJcLsAh0s8oalAXNo3RwDR0eJvu008Ga4ogKzUv36tzvtEbLWYJzpajHORABiM3rcQlInvmIziqVhIYprT+zaBeIv4blWFvzxqU3lksf7YGO9bCGp8LypSPBHpdovvaySx3Yoivm8yiu3R6rxP3doAvUHMJ8uiTiGJedS6MBrE+q02sSxAPIWqzmNz+OtRVvxlNRjEE8YOh/gf4H9TgtsjniiWNN4nlGUgLlY8KWpVn3b21nGkWbSVuu0ej1iHXu8vt8EYuN1q++l1ov6rKr1vFqj5FgKdKJdafr1OfO6R/X0j0uxve5dTPFksabxPUCve7fLWl8bbN91usX1arZhWs04V2V+HNcuh9p9IMxDhvUNutQG2atEGah82GAL3A7dblMuuboPev11q2xkN/r81kr9+TKbA9lHrVp1HI4nymc3iSVy3W7Sx2p/UPqBuk1Yr+hck0fdrrl9R6vavhurC4RBPWRv0YrsTE4F7ZkahR3dri8SW9uCZX2owfaqMvXu1OJ/v8dWL0SCe3Ndo/X0r2jtqq/a+KstAQqJ4ury8QjwV77SLJ6MNRtGfJHjjHrxvIYC3DWSxH9odABSx71XbxZPbHo/Yr3U6sQCN5J+3qtLfT7U6EYfdbjGPTgfEd/ZuoPoWAlm8TaGqQvSpuDix/7ic3qfEEdhnXB4Rw9QnxisqxDJMJn/ccNrFurQ6/1sIFIh6s1rFPhxvEfM6HKJsJSViP9dogJhoUf6SEsCjiHlrlsnhEp/36SOejC8qAbSSqCO7S/Rbp1OUTaMRdeXyiOOHXhcY09S4YPRuY0WFdz/SirowmSRUVSm+urDEAZ07e+u6ShzHFEXs17Is6sVu9x47TOIzSRLbabWJvyNM/nVGmEVZq6uB+Hjx9PvFS0DJZf/+C8n75g/vPmyJE2WrsorpVu9bd2JiRB8yGkT/LC3zHiNqxY+ascXtFn9rvfu1+m+1naIia/QTh39b7Xbxudqv1GOq2xuXNd630Li9b/Ixm8VbCNT+qZFEHSrenUB9w43bI9pZXY4ad/U6b+zUi/1IVvzH5epqsS3qWwjUY5lHFn030fsWgoqywGWZTGI5ep33bT3e/Uuj9ddlpBlITY1Er57VofkWgtjYWPz1r3/FihUrsHnzZuTk5CAnJ8f3uclkwsyZM/H0008jNjY26MLVTF6nTZuG119//arjXmtLS0vDp59+ikOHDmHkyJEBn+3atQsA6kxvDqNRwi0TzBg29Oq3DKnjslgsKC0tbetiUBuyWIwoLe04CSwgrsSOHRvHvh3GGNvIYjGhtLTt37YU9MjbmJgYvPTSS1i6dCm++eYbFBYWAgASEhIwaNAgmM3Ne2hBHTawadMmTJ06FcuXL79i8lpSUoLS0lJYLBbEx8f7pt9333349NNPsXLlyoAfMtixYweys7Mxbtw4JCcnN6usRERERHTtNPvRsYiICIwYMaLR82dmZuLQoUNIT0+/4nxvvfUWNm7cCLPZjN69e+Ptt9+uM8+kSZMwcOBAAEBGRgZWr16N+fPnY8GCBb55Ro8ejVmzZiEzMxMzZ87EhAkTUFRUhM8++wxxcXFB/9ACEREREbWNa/7ug0OHDmHTpk1XTWDVn6+1Wq1455136p0nOTnZl8Beycsvv4yUlBRs2LABH374IcxmMyZPnozFixejZ8+eTd8IIiIiImozkqJc2xejqGNaT5w4cS1X2yxNHe/DMULEPkBN7QNt8RqtYPoo+3Z4Y/tTMH2g3bxGi4iIiIiorTCBJSIiIqKQwgSWiIiIiEIKE1giIiIiCilMYImIiIgopDCBJSIiIqKQwgSWiIiIiELKNU9gr/FrZ4mIiIiog7nmv8T1+OOPY+bMmdd6tURERETUQTQrgf3++++xYcMGHD16FKWlpbjtttuwZMkSAOInY48dO4YZM2YgLi7O953rrrsO1113XbMKTUREREThK+gE9v3338eKFSvgdrsBAJIk1flpsfT0dBgMBsyePbt5pSQiIiIi8gpqDOy///1v/OY3v0FSUhJWr16NPXv21Bnbmpqaivj4eHz11VctUlAiIiIiIiDIK7Dvv/8+IiIi8P7776NHjx4NzjdgwACcOXMm6MIREREREdUW1BXYb775BjfeeOMVk1cAsFgsKC4uDqpgRERERET1CSqBdblciIyMvOp8JSUl0Gq1wayCiIiIiKheQSWw3bt3x8mTJ684j9PpxLfffovevXsHswoiIiIionoFlcBOnDgR+fn5eP/99xuc549//CNKSkpw++23B104IiIiIqLagnqI69FHH8Unn3yC119/HTk5OZg8eTIA4PLly/jyyy/x5Zdf4pNPPkH37t0xZ86cFi0wEREREYU3SQnyt13PnDmDhQsX4rvvvoMkSVAUBZIkARA/F9u3b1+89dZb6NWrV4sWuC3Ufr/t1VgsliZ/hzoW9gFqah+wWCytWJr6BdNH2bfDG9ufgukDrRHfgv4hgz59+mDz5s3Yvn07du/ejfz8fMiyjKSkJIwZMwZTpkzhA1xERERE1OKa9VOyGo0GkyZNwqRJk1qqPEREREREVxTUQ1xERERERG2lWQlsVlYWfvGLX2D8+PEYPHgwli1b5vts165dSE9Px6VLl5pdSCIiIiIiVdBDCF599VVkZGRAURSYzWa43e6AzxMSEvDBBx+ga9euePDBB5tbTiIiIiIiAEFegd20aRPWrVuHQYMGYePGjTh06FCdeQYMGICuXbti+/btzS4kEREREZEqqCuwH330EWJiYvDuu+8iPj6+wfn69++P3NzcoAtHRERERFRbUFdgc3NzcdNNN10xeQWAqKgoFBcXB1UwIiIiIqL6BP0Ql/qjBVdSWFgIk8kU7CqIiIiIiOoIKoHt3bs3vvnmG7hcrgbnqaqqwsmTJ9G3b9+gC0dEREREVFtQCezUqVNRVFSEFStWNDjPb3/7W1RWVmL69OlBF46IiIiIqLagHuKaN28ePv30U3zwwQc4fPgwbrvtNgDAuXPnsGbNGnz55Zc4ePAgbrjhBsyaNSvowm3evBkHDx7EsWPHkJubC5fLhfT0dMycObPRy9i3bx8eeOCBBj9v6vKIiIiIqG0FlcCaTCasWbMGS5cuxc6dO3H06FEAwIEDB3DgwAEAwNixY7F8+XIYDIagC7dy5Urk5+fDYrEgMTER+fn5QS8rLS0NaWlpdaYPHDgw6GUSERER0bUX9A8ZxMfH491338XJkyeRlZWF/Px8yLKMpKQkjB07FkOHDm124V599VX06tULycnJePfdd684ZOFq0tLSsGDBgmaXiYiIiIjaVlAJ7Pz585GQkIAXXngBAwYMwIABA1q6XACAMWPGtMpyiYiIiCh0BZXA7tixA5MmTWrpsrSqs2fPYs2aNXA4HOjSpQtuvvlmdOnSpa2LRURERERNFFQC2717d9hstpYuS6vasmULtmzZ4vtbp9Ph/vvvx5IlS6DVatuwZERERETUFEElsNOnT8ef//xnFBUVISEhoaXL1KLi4+Px9NNP49Zbb0VycjJsNhsOHz6MFStWYM2aNZAkCUuXLr3iMmJjY6HRNO2NYxaLpTnFpg6AfYDaex8IJrYB7X+7qHWx/ak99IGgEtif//znOHr0KO6//3786le/wi233AK9Xt/SZWsR/fr1Q79+/Xx/m81mTJo0CcOGDcOMGTOwdu1aPPbYY+jUqVODyygvL2/SOi0WC0pLS4MuM4U+9gFqah9oiwNCU2MbwL4d7tj+FEwfaI34FlQCO3XqVCiKggsXLmDhwoWQJAnx8fEwGo115pUkCdu2bWt2QVtaQkICbrvtNmRmZiInJwcTJ05s6yIRERERUSMElcDWfh+roigoLi5ukQJdS+oZQaiN5yUiIiIKZ0ElsCdPnmzpcrSJnJwcAEBycnIbl4SIiIiIGqvpo/cBLFu2DH//+9+vOt/GjRvx7LPPBrOKJispKcGpU6dQUlISMP3YsWP1zv/BBx9g37596N27N4YMGXItikhERERELSCoK7AbN24EANxzzz1XnO/gwYPYuHEj/vd//zeY1SAzMxMHDx4EAOTm5vqmZWdnAwCGDx+OWbNmAQAyMjKwevVqzJ8/P+AXtxYuXAidTofBgwejS5cusNlsyMnJwfHjxxETE4Ply5fzNVpEREREISTon5JtDJfL1azkUE2Aazp06BAOHTrk+1tNYBsye/ZsZGVlYf/+/SgrK4NGo0G3bt0wb948PPzww0hKSgq6fERERER07UmKoihN/dKAAQNw9913Iz09vcF5FEXBjBkzUFZWhl27djWrkG0tmNdF8DUj4Y19gELhNVrB9FH27fDG9qeQe43WAw88EPD3rl276kxTeTwe/PDDDyguLsZPfvKT5pWQiIiIiKiGRiew6rhTQLzbtbi4+IqvztLpdLjllluwZMmS5pWQiIiIiKiGRiewX331FQAxNGDSpEmYMmVKg8mpXq+HxWJpt7/ORUREREShq9EJbM13pc6fPx8DBw7k+1OJiIiI6JoL6i0E8+fPb+lyEBERERE1SlA/ZEBERERE1FaYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUXVsX4Eo2b96MgwcP4tixY8jNzYXL5UJ6ejpmzpzZpOXIsoyMjAxs2LABeXl5MJvNGDNmDBYvXowePXq0UumJiIiIqDW06wR25cqVyM/Ph8ViQWJiIvLz84NazvPPP4/MzEz069cPc+fORWFhIbZu3Yrdu3dj/fr16N27d8sWnIiIiIhaTbseQvDqq69i+/bt2Lt3L2bPnh3UMvbu3YvMzEyMHDkSH3/8MZ555hksX74cb731FsrKyvDKK6+0cKmJiIiIqDW16yuwY8aMafYyMjMzAQCLFi2CwWDwTZ8wYQLS0tKQlZWFgoICdOvWrdnrIiIiIqLW166vwLaEffv2wWw2IzU1tc5n48ePBwBkZ2df62IRUQMcDgVlZQocDqWti0JERO1Uu74C21xWqxVFRUVISUmBVqut83mvXr0AAHl5ede6aERUj4uXFOTkKKiqBqIigWHDgKQuUlsXi4iI2pkOfQW2srISABAVFVXv5+p0dT4iajsOh0heyyuBuDigvBLIyeGVWCIiqqtDX4FtKbGxsdBompbrWyyWVioNhQr2gaYpLZUhKw706qGB0SghKlJBSakMk8mIuLjQPNdu730gmNgGtP/totbF9qf20Ac6dAIbHR0NAKiqqqr3c3W6Ol9DysvLm7Rei8WC0tLSJn2HOhb2gaZzOBRoJAV554BO8cDlEiA2GrDbbSgtDb1hBE3tA21xQGhqbAPYt8Md25+C6QOtEd9C87JGI5nNZiQkJOD8+fPweDx1PlfHvqpjYYmo7RiNEoYNkxAbDZSVieR12DAJRmPoJa9ERNS6OnQCCwBpaWmwWq04dOhQnc927doFABg5cuS1LhYR1SOpi4RbJkiYNFH8lw9wERFRfTpMAltSUoJTp06hpKQkYPp9990HQPyql9Pp9E3fsWMHsrOzMW7cOCQnJ1/TshJRw4xGCbGxvPJKREQNa9djYDMzM3Hw4EEAQG5urm+a+t7W4cOHY9asWQCAjIwMrF69GvPnz8eCBQt8yxg9ejRmzZqFzMxMzJw5ExMmTEBRURE+++wzxMXF4bnnnrvGW0VEREREzdGuE9iDBw9i48aNAdMOHToUMBxATWCv5OWXX0ZKSgo2bNiADz/8EGazGZMnT8bixYvRs2fPFi83EREREbUeSVEUvmTxKoJ52o5PaYY39gEKhbcQBNNH2bfDG9uf+BYCIiIiIqIg8AosEREREYUUXoElIiIiopDCBJaIiIiIQgoTWCIiIiIKKUxgiYiIiCiktOv3wIaao0ePYtWqVTh8+DDcbjdSUlLw4IMPYtq0aW1dNGrA5s2bcfDgQRw7dgy5ublwuVxIT0/HzJkz652/qqoKq1atwhdffIGioiIkJiZiypQpmD9/PiIjI+vML8syMjIysGHDBuTl5cFsNmPMmDFYvHgxevToUe86du3ahT/84Q/45ptvIEkSBg0ahKeeego333xzi257uLt06RK2bt2KnTt34vTp0yguLkZsbCxSU1Px6KOPYtiwYXW+E67tz9gWehjbwls4xDe+haCF7N27F48++igMBgOmT5+OyMhIfPHFF8jPz8f/+3//Dw8//HBbF5HqMXHiROTn58NiscBsNiM/P7/BIG+1WvGzn/0MJ06cwLhx4zBw4ECcOHECWVlZGDJkCDIyMmA0GgO+89xzzyEzMxP9+vXDhAkTUFhYiK1btyIyMhLr169H7969A+bfvHkzlixZgvj4eF9y8Nlnn6G0tBS/+93vMHXq1Fari3Dzf//3f3jvvffQs2dPpKWlIT4+Hnl5edi2bRsURcGKFSsCErRwbX/GttDE2BbewiK+KdRsLpdLmTRpkjJ48GDl+PHjvukVFRXK7bffrgwaNEg5f/58G5aQGrJ7925f2/zhD39QUlJSlL///e/1zrty5UolJSVFWb58ecD05cuXKykpKco777wTMP3rr79WUlJSlDlz5igOh8M3/d///reSkpKiPPzwwwHzl5WVKSNGjFBGjRqlXLhwwTf9woULyqhRo5RRo0YplZWVzdpe8vv888+Vffv21Zm+f/9+ZdCgQcrIkSMD2i0c25+xLXQxtoW3cIhvHAPbAvbu3YsffvgBd955JwYOHOibHh0djSeeeAIul6vOT+JS+zBmzBgkJydfdT5FUZCZmQmz2Yynnnoq4LOnnnoKZrMZmZmZAdPVvxctWgSDweCbPmHCBKSlpSErKwsFBQW+6f/85z9RUVGB+++/H0lJSb7pSUlJuP/++1FaWopt27YFtZ1U1+233460tLQ600eMGIFRo0ahvLwc3377LYDwbX/GttDF2BbewiG+MYFtAdnZ2QCAcePG1flMnbZ///5rWiZqWWfPnkVhYSFSU1NhNpsDPjObzUhNTcW5c+dw4cIF3/R9+/b5Pqtt/PjxAPx9p+a/r9SPas5PrUen0wX8N1zbn7Gt4wvXvh3OOkp8YwLbAs6ePQsA6NWrV53PEhISYDabkZeXd41LRS1Jbb/aY3pU6nS1L1itVhQVFaF79+7QarV15lf7Ss1+caV+VN/81DoKCgqwZ88eJCQkICUlBUD4tj9jW8cXrn07XHWk+MYEtgVUVVUBELfV6hMVFYXKysprWSRqYWr7RUVF1fu5Ol3tC42dv2a/uFI/qm9+ankulwtLliyB0+nEr371K19wDtf2Z2zr+MK1b4ejjhbfmMASEUG8Embp0qXYv38/7rvvPtx1111tXSQiohbREeMbE9gWcLWzh6qqqgavYFBoUNtPPYusTZ2u9oXGzl+zX1ypH13tShg1jyzLePbZZ7FlyxbMmDEDL730UsDn4dr+jG0dX7j27XDSUeMbE9gWoI4PqW/8RlFREaxWa73jPih0qO2njuOpTZ2u9gWz2YyEhAScP38eHo+nzvxqX6nZL67Uj+qbn1qGLMtYtmwZNm7ciDvvvBOvvfYaNJrA0Biu7c/Y1vGFa98OFx05vjGBbQEjR44EAGRlZdX5TJ2mzkOhqXfv3khMTMShQ4dgtVoDPrNarTh06BC6d++Orl27+qanpaX5Pqtt165dAAL7RWP6UX2vRaHgqcF906ZNmDZtGl5//fV6H0oI1/ZnbOv4wrVvh4OOHt+YwLaAm2++GT169MCWLVtw4sQJ3/TKykq888470Ov1HWK8STiTJAmzZs2C1WrF73//+4DPfv/738NqteK+++4LmK7+vXLlSjidTt/0HTt2IDs7G+PGjQt4T+Mdd9yB6OhorFu3DhcvXvRNv3jxItatWweLxYJJkya1xuaFJfW22qZNmzB16lQsX7683uAOhG/7M7Z1fOHatzu6cIhv/CnZFsKfWwxNmZmZOHjwIAAgNzcX33zzDVJTU323MoYPH45Zs2YBEGei//Vf/4WTJ09i3LhxuOGGG3D8+HHfT+2tW7cOJpMpYPm1f2qvqKgIn332GSIjI/HXv/4Vffr0CZj/Sj+198Ybb+COO+5o7SoJG6tWrcLq1athNpvxwAMP+N6JWNOkSZN8L/AP1/ZnbAtNjG3hLRziGxPYFnT06FG8+eabOHz4MNxuN1JSUvDQQw8F/N4wtS9Lly694i8J3X333Xjttdd8f1dWVmLVqlX44osvUFxcjISEBEydOhW/+MUv6n2liCzLWLduHTZs2IC8vDyYzWaMGTMGixcvRs+ePetd586dO/GHP/wBx48fBwAMHjwYTz75JMaMGdPMraWartb2AOr8dny4tj9jW+hhbAtv4RDfmMASERERUUjhGFgiIiIiCilMYImIiIgopDCBJSIiIqKQwgSWiIiIiEIKE1giIiIiCilMYImIiIgopDCBJSIiIqKQwgSWiIiIiEIKE1giIiIiCilMYIlqWbVqFfr374+PP/64rYtCRNRiGNuoI2ECS0REREQhhQksEREREYUUJrBEREREFFKYwFLY+uqrr/DTn/4Uw4YNw6hRo7BgwQKcOXOm3nknTpyI/v37Q1EUrF27FjNmzMCwYcPwk5/8BACgKAq2bNmCxYsXY8qUKbjxxhtx00034d5770VGRgZkWQ5Y3scff4z+/ftj1apVAdPLysowYMAA9O/fH5mZmQGf5ebmon///vj5z3/egrVARB0NYxuFA11bF4CoLXz00Ud48cUXIUkSRowYgYSEBOTk5GDWrFm49dZbG/zeCy+8gI8//hgjR47E9ddfD5fLBQBwOp14+umnERcXh759++KGG25AWVkZDh8+jJdffhn/+c9/8Nprr/mWM3LkSABAdnZ2wPL3798PRVEAAPv27cOsWbN8n+3btw8AkJaW1jKVQEQdDmMbhQsmsBR28vPzkZ6eDr1ej7fffhvjx48HALhcLixbtgz/+Mc/GvzuF198gY0bN6Jfv34B07VaLd566y1MmDABer3eN72kpASPPfYYNm7ciHvuuccX3Hv06IHk5GQcOXIEDocDRqMRgD+Q9+vXD/v37w9Yh3pAYJAnovowtlE44RACCjt///vf4XA4MH36dF+ABwC9Xo9f//rXiIiIaPC7jz32WJ0ADwA6nQ6TJk0KCPAAEB8fj6effhqAuK1X08iRI+F0OnHkyBHftOzsbFx//fWYMmUKLl68iLy8PADiNt7+/fsRFRWFG264ocnbTEQdH2MbhRNegaWwc+DAAQDAtGnT6nxmsVgwduxYbNu2rd7vTpw48YrLPnHiBLKyslBQUAC73Q5FUVBdXQ0AOHv2bMC8I0eOxKZNm5CdnY1Ro0ahrKwMubm5mD17tu9KRHZ2Nnr16oXc3FyUlpZiwoQJ0Gq1Td1kIgoDjG0UTpjAUtgpLCwEACQnJ9f7eUPTAaBbt271Tnc6nVi2bBm2bNnS4HfVYK8aNWoUAP/tM3WM2KhRo3DjjTfCYDD4xorxFhsRXQ1jG4UTJrBETaCO56ptzZo12LJlC1JSUvDMM89g0KBBiImJgV6vx5kzZzB16tQ63+nRowe6du3qGyumjhEbNWoUjEYjbrzxRt9YMQZ5ImpNjG0UajgGlsJOQkICAPHAQ30KCgqavMwvv/wSAPDb3/4WP/rRj9CpUyffmLFz5841+L2aY8Wys7PRt29fxMfHAxAB/eLFizh79iz279+PyMhIDBo0qMllI6LwwNhG4YQJLIWdESNGAAD++c9/1vmsrKwMu3fvbvIyKyoqAABJSUl1Ptu6dWuD31OvOnz55ZfIzc313Xqr+dm6detQWlqK4cOHc4wYETWIsY3CCRNYCjszZ86EwWDAJ598gj179vimu1wupKenw2q1NnmZvXv3BiDewVjTP//5T2zevLnB76lBfcOGDVAUJeA2mjpWbMOGDQD871ckIqoPYxuFEyawFHZ69OiBpUuXwuVy4ZFHHsHcuXPxy1/+ElOmTMFXX32FH//4x01e5qOPPgqtVosVK1Zg5syZePrpp3HPPfdg0aJFmDdvXoPf69mzJ5KSkuBwOCBJUkCQV8eKORwOAAi4gkFEVBtjG4UTJrAUlubMmYO33noLQ4YMwdGjR5GVlYUBAwZg/fr16NWrV5OXN3LkSPzlL3/B6NGjcf78efzrX/+CXq/HqlWrMGfOnKt+F0DAGDGVGvTNZjPHiBHRVTG2UbiQFPW33YiIiIiIQgCvwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSGECS0REREQhhQksEREREYUUJrBEREREFFKYwBIRERFRSPn/S8H+HqrRhUoAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAEiCAYAAABEE2SgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0b0lEQVR4nO3deZxU1Z3///ettbt6b2hoQBaNgIiIooDrEBWjUeMkRI2Ja4yaxIh+jdHRJBNj9BdMHCdj1NGYSVwZBzsjmmA0bhMRUXYxuOFGK/vSe1d3VXXd+/vj9K2tq5umaeilXs/Hwwd21a17zz3L55x76ta5luM4jgAAAAAAAADkHE9fJwAAAAAAAABA32ByEAAAAAAAAMhRTA4CAAAAAAAAOYrJQQAAAAAAACBHMTkIAAAAAAAA5CgmBwEAAAAAAIAcxeQgAAAAAAAAkKOYHAQAAAAAAAByFJODAAAAAAAAQI5ichADzk033aSJEydq2bJlg+I4+8tTTz2lc845R0ceeaRmzJihK664QqtXr+7rZAE5iTi2Z7Zs2aL58+frpptu0pe//GUdcsghg+K8gIGKGNZ9tm1r5cqV+vWvf605c+boyCOP1GGHHabZs2frZz/7mT7//PO+TiKQk4hje+bll1/Wv/zLv+grX/mKZs6cqcmTJ+vYY4/VFVdcof/7v//r6+ShF/j6OgEA9r3/7//7//Too48qLy9Pxx9/vCKRiJYuXarXX39dv/3tbzV79uy+TiIAdOpvf/ub5s2b19fJAIA99vnnn+uCCy6QJFVUVOiYY46R1+vV22+/rQULFmjRokV68MEHdfTRR/dxSgGgc88884xeeOEFjR8/XlOnTlVBQYE2bdqkxYsXa/Hixfrud7+rH/7wh32dTOwFJgeBTvzwhz/UFVdcoZEjR/Z1UvbK0qVL9eijj6q0tFQLFizQuHHjJElr1qzRRRddpJtvvlkzZsxQcXFx3yYUQK8bLHFs9OjRuuSSSzRlyhRNmTJFt912m5YsWdLXyQKwjw2GGGZZlo4//nhdccUVOuaYY2RZliQpGo3qlltu0VNPPaUbbrhBL7zwgvx+fx+nFkBvGwxxTJK+973v6dZbb1VZWVna62vXrtWll16qBx98UGeeeaYmTpzYRynE3uJnxUAnhg0bpi984QvKz8/v66TslYceekiS9P3vfz8xMShJRx55pM4//3w1NDToT3/6Ux+lDsC+NFji2CmnnKIf//jH+spXvpIWxwAMboMhho0ZM0Z//OMfdeyxxyYmBiUpEAjolltuUVFRkTZv3qw1a9b0YSoB7CuDIY5J0qGHHtphYlCSpk6dqjPOOEOO4wz4n07nOiYH0W9s2bJFt99+u0477TQdfvjhmjFjhubMmaN7771XTU1NWT+zYsUKXXzxxTryyCM1bdo0XXnllfroo486bNfQ0KDHHntM3/nOd3TSSSfpsMMO08yZM/Wd73xHr7/+etZ9d7Y+xMknn5z4RqSqqkpf+cpXdPjhh+v444/Xz372MzU0NOxlTvSe1tZWvfnmm5Kk008/vcP77musEwH0DuIYgIGMGLZ/5eXlJb7w2L59e98mBhgkiGP7n89nfpDK3c8DG5OD6BdWrlyps88+W4899phisZhOOukkTZs2TU1NTbrnnnuyLtb8f//3f7rkkkvU2tqqWbNmqaKiQq+++qouuOAC7dixI23bt956S7fffrs+/fRTHXjggTr11FN14IEH6vXXX9d3vvOdHt059+tf/1q33nqrhg0bpn/6p3+S4zhasGCBvv/978txnB7nRW/69NNPFY1GVV5ersrKyg7vH3rooZKkDz74YH8nDRh0iGMABjJi2P5n27Y2b94sSRo6dGgfpwYY+Ihj+98HH3yg5557Tn6/X8cff3xfJwd7gTUH0efq6uo0d+5cNTQ06MYbb9S3v/1teTzJees1a9Zo2LBhHT73yCOP6J577kk8TCMej+u6667T3/72N/33f/+3rr322sS2Bx54oBYsWKAjjjgibR/vvvuuLrnkEs2bN09f/vKXVVBQ0O10//nPf9af//xnHXTQQZKkmpoanX/++Vq5cqXefPNNHXvssd3az0UXXaTly5d3+7iSNG/ePM2ZM2e327kDzmwTg5IUCoVUXFys+vp6NTU1qbCwcI/SAcAgju27OAZg3yOG9U0MW7RokXbt2qXy8nJNmzZtr/YF5Dri2P6JY6+88opeeOEFxWIxbdmyRWvWrJHP59Ntt92mMWPG7NG+0L8wOYg+V1VVpZqaGp144on6zne+0+H9I488MuvnzjzzzLSn7Hq9Xl155ZX629/+ppUrV6ZtO3r0aI0ePbrDPg499FB961vf0gMPPKBly5bp5JNP7na6r7322kQQl6Ty8nKdf/75+tWvfqWVK1d2O5CfeOKJGjVqVLePK6nbgTccDksyP1vpTH5+vhoaGtTc3MzkINBDxLF9F8cA7HvEsP0fw7Zs2aJf/vKXkqRrrrlGgUBgr/YH5Dri2P6JY++//74WLlyY+DsvL08/+clP9M///M97vC/0L0wOos+98cYbkqTzzz9/jz53wgkndHitq3Vb4vG43njjDa1Zs0Y7duxQNBqVJG3YsEGSVF1dvUfHz3bbtHv8zFvQu3LllVfu0XEB9D/EMeIYMJARw/ZvDAuHw7r66qtVW1ur2bNn65vf/OZ+PT4wGBHH9k8cu+qqq3TVVVcpEomourpaTzzxhP71X/9Vr7zyin7729/yRccAxuQg+tyWLVskKeu3MF0ZPnx4h9fcO99isVja61u3btV3v/tdvf/++53ur7m5eY+On+2nuu4t5G4n0ddCoZAk82CSzrS0tEjSHt3+DiAdcQzAQEYM239isZiuvfZarVu3TkcddZTuuuuuvk4SMCgQx/avYDCoCRMm6JZbbpHX69Vjjz2mxx9/XJdddllfJw09xOQgBqzUNSR25yc/+Ynef/99nXbaabr88st14IEHqqCgQB6PRwsWLNDPfvazPV7wdU+O35UHH3xQn3zyyR595pxzztHRRx+92+1GjhwpyXRk2YTDYTU0NKikpISfFAN9gDi2+zgGoP8ihu1ZDLNtWzfddJMWL16sSZMm6YEHHuhy6RcA+x5xbO/HYu5DYF5++WUmBwcwJgfR50aMGKFPPvlEn3/+eeJx7r0pHA5r6dKlGjp0qH7zm9/I6/WmvZ/tqVX702uvvbbHi8fOmDGjW4H8wAMPVCAQUE1NjbZt29bhm7F3331XkvZJvgO5hDi27+IYgH2PGLZ/Ythtt92mRYsWady4cfrDH/6g4uLiPfo8gM4Rx/puLFZWVibJPEwFAxeTg+hzxx57rF5//XUtWLAgbTHY3tLY2CjbtlVRUdEhiMdiMb344ou9fsw98dhjj+2zfefl5emYY47R4sWL9dxzz+nSSy9Ne//555+XJJ100kn7LA1ALiCO7bs4BmDfI4bt+xj2m9/8Rv/93/+tkSNH6qGHHtKQIUP2+TGBXEIc67ux2IoVKyTxsLmBrnfuYQX2wrnnnquysjItXrxYDz/8cIdbsd966y3t2rWrx/sfMmSIioqK9OGHH2rVqlWJ1+PxuP7t3/4tsXjsYPXtb39bknT//fenneuaNWu0YMECFRcX65xzzumj1AGDA3EMwEBGDNu3Hn74YT3wwAOqqKjQQw89lFj2BUDvIY7tOzU1NXryyScTa9Wnev3113XnnXdKkubMmbO/k4ZexJ2D6HOlpaW6++679f3vf1/z5s3TY489pilTpqi1tVWffPKJqqur9fTTT/f4G1afz6fLL79cv/nNb3TRRRfpmGOOUUlJidauXatdu3bpggsu0Pz583v5rPqP4447ThdffLEeffRRffWrX9Vxxx2nWCympUuXynEczZs3j5+1AHuJOLZvbd++XVdffXXib3dNnVtvvTWxXuqsWbP0gx/8oE/SBwx0xLB957333tMdd9whSTrggAP0wAMPZN2OdViBvUMc23fC4bD+9V//Vb/85S81efJkVVZWKhwOa8OGDYkx2aWXXqrTTjutj1OKvcHkIPqFmTNn6plnntF//dd/6bXXXtNLL72kgoICjRo1Stdcc80eP3Uq0/e+9z1VVlbqkUce0erVqxUMBnXUUUfpmmuuSay7N5j95Cc/0aRJk/T4449r6dKl8vv9OvbYY3XVVVdp2rRpfZ08YFAgju070WhUa9eu7fD6xx9/nPj/gw46aH8mCRh0iGH7RkNDQ+IOpjVr1mjNmjVZt2MdVmDvEcf2jSFDhuiGG27Q8uXL9dFHH2ndunWJn1ifeeaZ+sY3vqGZM2f2dTKxlyxnTx+nAwAAAAAAAGBQYM1BAAAAAAAAIEcxOQgAAAAAAADkKCYHAQAAAAAAgBzF5CAAAAAAAACQo5gcBAAAAAAAAHIUk4MAAAAAAABAjmJyEAAAAAAAAMhRvr5OwEBQW1u7R9uXlJSovr5+H6UG/RXlnnv2tMzLysr2YWo6t6cxTKI+5yLKPDcN1jhGfc5NlHvu6UmZ90UcYyyG7qDMc1N/GYtx5+A+4PGQrbmIcs89g7nMB/O5ITvKPDcN1nIfrOeFrlHuuWcwl/lgPjdkR5nnpv5S7v0jFQAAAAAAAAD2u377s+JIJKJ///d/17p161RdXa36+noVFxdr9OjROvfcc3X22WfL7/d3a1+2bWv+/Pl68sknVV1drVAopOOOO07XXXedRo8evY/PBAAAAAAAAOif+u2dg83NzXriiSdkWZa++MUv6tvf/rZmz56t7du368c//rG+973vybbtbu3rZz/7mW6//XY5jqOLLrpIJ554ol544QWdc8452rBhw749EQAAAAAAAKCf6rd3DpaWlmrlypUKBAJpr7e1tenb3/62lixZosWLF+uLX/xil/t58803VVVVpenTp+uPf/xjYn9nnXWWrrzySt122236wx/+sK9OAwAAAAAAAOi3+u3koMfj6TAxKEk+n0+nnnqqli9frurq6t3up6qqSpJ07bXXpu1v1qxZmjFjhpYsWaLNmzdr5MiRvZd4SZGIo083ONqxXTr4YGnECI8iEUctLZLXa/6NRpPbBwKS1ys1NUvlZVIgYKm+3lFTk9TYJPn9UlmpFI1JhQWS12sl9iNJJSWWgkEr7fgtLVI87qimVorHJZ9XchxpV400doxUXm6OIUn5+VI8bnVIWyBg9i1JO3Y4am2Vhg+Xioo82rLF1kcfm/QUFUllZSZdmcd0t3fTlXrMlhYlzlGShpRLFRXmeJl5FQgk05mfb7Z391VSYikaNcd18yc/XwoGrbRjxuPS1m1SKGTyM/W843FLLS2Otm6TSkukkSOT+wz4Tdnk55nP1NRKXo9UWGjKraZWKi+LKR63O5RFY6OtrdvM9m4V3N25uOluaVHifTf/y8rMeUSj5r/GJikWM9v4/VJRYTJdTc0d8yMzXfl5yTx3j1FQYD4bj0u2LRUXSSUlHdPb1CS1Rsz7qeWWeqxIxNGmTY527pQqKky+pn7etpPn1Fld3rHD0a4ac36jD0jWp9S6np+vDnXALddsedhVG3KPmZnfLre91tW1yeu109IzGDQ22olzCwSsRFtMbStunqbW0cw6nGnXLltbtkojKqUhQ9LzLLWddvb5xka7va0lY2Rn22fuz01ravqzHaOrY2bWu8z6lG2fnaUjHncS8T41PnY3jan1PrXeph6rqcnpkN+Zn3M/E41KkWhccpwO+6uplRrqpVCBlBdMxvRs+0rtJ9y6476/a5etzz438XXoUKW1vdR8SY2vqXEyMy6mpjO1v+isTuyJ1Hxx+8HOjt/ZZyUTOz7faPJt1KiOfVNX7Sdb/nb2txv7stWnrurI3uRRfxeJOKqrcxLtyW1znfWJmZ/dXZ+8u3rQ3TRm20+2/jmzjmeOIbpTL7O1fbcfzwsmxyjRaHrfvru631l+dVbXMmNFZh/aWSzMlobUMVY0Jvl8EZWV2mkxL7Ut5+dL9fVSQ2PHsU1X55U5Ts48r87qh9R539hV/5Kt38gWt7PFp+6kMRi0Esfvqk10Vm/cPMk8zu76sWxp+HyjeW/0AenXP7ad3pdkG394vY4kW5GIMyjjmRvHWlocffKp1BaTxoyRPB7ps8/Tr8HicSX664oK089mu7aTkm2hqz6zszFXZ21BMuPshkYTT9w+3L3WS40p2fqs1Lac+tnUei6lx8KaWqklbPIkc1yZOuYsLLQ6tI3U66T6emnLFvOaz2+uE93rjWxxILX+urHajSVer6P6eqVdQ6TmcWefcf+VbDU22h32ka383G0KCjrOEbhxLjW2u5918zLzWqylxcwTSOZ6UjLlFo+belVUlH0ss6dtNrPeuWU1pFzKz+94Pd7VGMa9zvzsM6mtzZzH8OGmLHfV7H4M3FXf2tTk6LPPk/MGbr59usHR5k3SsGFSaWl6HHbPpahQkmXmEDLLJtuYJBRy1B/028nBzti2rddee02SNGHChN1uv2zZMoVCIU2bNq3DeyeeeKKWL1+u5cuX66tf/WqvpXHzlrj+4z8cLV1mKmlxkXTWmbaGVUibt0iffWYaa12ded/vl/LyzARPcbGpJCUlpjJ+ukGKtEoerxQMShVDJX9AGjXSUaTVVLb8PGn8eEez/kmqHG5p6zZHa9c6Wv+htO5dqbY2GfxbW6VgwFzkTZzgKBCQWlukQFAqL3dUsyuZNssyjevAcabBv79eirdJBxwgVVTY+vurUk2NCQQlxaaBVFaaxuwes7hYmjBemvM1WxVDLS1e7OiDD80x447U1Cht2mwCu8drOrJpRzgaMUIKh5N5FQ6bhllcLI0Z46gg37y+ZatkSSosdFTfkOx8Jox3NOFgaeQoR++9K33wobRtq9k+GjOTpCNHSqNGmvNubZGamh29974JvsGg2YfPJ+3aZSYU/T4TaBxHitvJSbNYmxSJSFKjRlRKM6Yny+If79h66ilTjk3NJniE8k1n0Nm5jB/v6NBDTdBpajZ5vnmLyf/WFsnySAUhqaHBdAotLVJbe8fj9ZoOtWKoKb9gUHKUzI+pU9PTtXGT5POZuiCZYzQ2mHoimbz0+Ux6R42QJkxMpvfd98zAxI5LZeXSlMmm3Hw+U4enTjX7WLDA0WtLk2U47UhHwyrM5zdvaZ80DZoBQllpx7r87LOO/v6aqWvBoDRxvPStb9maMtmTqOtNzVJdrbRxc7IOjBrpyOuRhlaYNKfmYTAoHXhg9jYkSc8+62jF6vT8bmnp2F6HDGlWWal0+ukmPYPBP96x9fzzUmskLDsujRrlyOuVdu6U8vJNW3Hz1JEp73hbxzrslqHr1dds/ekpUz6FhdI5c2zNOtHk2dZtTiI2dPZ5N10NjeZLh5ISR41N2bfP3F9lpaOiIlMHd+406R9ZmWwPu8sL9yLSLWe3Xrp1JBiUDjssvY11lY7t26X1H5kB27AKs9+KoZbWrnW0ecvu05ha71PbWuqxPB5H1Z+1D0ja83viBCvtc258fOttE7MrhzfpkEOS7WDxYkevviZtqHZjnDRkiHToJOmLs+z2uJnc1/Jl0orVpj4MGSodfJCjsjLzfmvE0V+fN+cmScOHmQFcfl56vqx7V2psNPF16BBzgTNmjMmLkaOScTH1vN18++yz7H3innLLzc2X8nLp8Cnpcdk9frayccth21YTY1sjJh4PHWr6B7dvSo3xXfUBbv529rcb+9zxRmp96qqOuHlUVrbHWdTvbd3m6MOPIvroI/PFVNx2tGmzOe9sfWLmZzPzKbNPdmNfZ/Wgu2nMLKPO+ufUMVE0Zk4iEEyOIXaXnsxjuW3/zeWmH49FzRjMvYBrbR8zlpVLx850NHNm53W/s/xyx16ZMTo1frpjyjlfS/ahblozY2G29r9jp5MYY9XUmn45P69JFRXSt75pYl5qWw6FzPittkYKt18gumObzHibel6Z4+Rs4wY3f1PrR1d9Y1f9S7Z+wy3fzLidGZ86i4WpaSwsMP358uXS9h3p4+bMPMhWb1LH8V5P8jipacjWj2XuLy/f0XPPSx9/YtJ3wChp7Bhz/bN5i+kjK0eYvsQdh6SOP9w+ffToVpWVOj1ui/2VG8deX+rojTeTfaPfbyYH29rMNUlJsVRaJskx5RmPm7o9bqx00EHp13buOLakxFxPppZfap/Z2Zirs7ZQWWmuFd9eZ47j8UiVw6XCInOtt3Vb8nrhCwc6irWl91mSEm25NWL6/8IiE5vCYVPPDxyXHMt99pm5ftyy1Vz7DB9m2rw7rkwdcwYC0qRDHJUUJ9uGO34JBk3scK9b29pMWysqkg49xKRt21alxQF3TJKX7+jvfzex2rbNeG7kKEebNpl62dZmriFSr28qK7N/prUlOcYuLQ3r40/S95F5HVJSYmJZU2Py9bKy5BxBXZ2Z7GxsMnUkP99cx/r9yWt7Kf1azPK033TSaD7j9Zr/2mKmTCTz+WHD0scybl/S3TabGZ/y8hy99IopA9uWhg1ztHlz8nr82GMcnX+eOX62vuaVl6WX/27qnW2b8nZjZn6+yZfOxsCZMTO1b22ok976h0lXW5s0bpx0xOGOqqul1W+ZfLcsM6E5fryJw+657NhhzrWk2JRTcVGybLye7GOSI6ZGNP5gp89jWL+fHIxGo/rd734nx3FUV1enN954Q5988onmzJmjY489tsvPhsNh7dixQxMmTJDX6+3w/tixYyWpW3cgdlck4uiFF1u09E0zaRQMSnX1UtX/Smd+2UzobPjMVJi2tvbJuqBpAD6fmbjbvsNMltlOsiNwHCncbAY+hYVSzS7zzUZBSApWSh+slwpCjmb9k6O1a6VtO6T1H0pbt5pjuN84OI4J2LW10pvLpKOPMulrbTXHbWpKbm9ZJlBs2WpeLyoykyLrP5ReX5pMV1ubmZmPtZlA5Mgcy7JM+jd8Kv35z2aA+/56SY60s8Y0nEhr8hsJn0/aucPse8J40yls+Cz5bWltnQngwYAJ6Dt3mgm+WNycSzDPzN43NEgff2Qa/pq3pJZWM0Bz893vM2ncsMHsu3SXee3jT8y55+WZf99cZgKg45hJOL/PNPBIxAww3YlDj2XSFAiahv7OOlMWxx7j6NlnzXEjrVJzs9lPcaEJ1qEs52J5TaD+9FNpzFjTGS5ZIn30kZQfMnlVX2/y1rbN+aQuvekOFpqazCRkcZEkj8mP0hIzMPQfZdL12UYpPyiFW6Wlb5jP54fMQKCp/U5OyzL7jMWkcJP5FiTcaupVY/ukrVuf3nhDmjhBOu54qb5RWrXKUWOjtPTN5HbNzaZ8K4aaPI5ETXpjNaZ+Fxam1+Vly6Q3lpn67tarDz809Wlkpa21a82xQiFpxSqzv+Ji00HU1UiVIyVZ0vpa6dNPzPlFolJ9g0m/P5DehoIBR21tZl/unRP19SbtwaAp+9T2Wlxk7mh8/nlp3JiBfwdhY6MZDNbWSweMtLRqjRl8feEg81rLZtOZy5I2NJlBw7QjpRX/kLZtS9ZhtwxPnZ28Y+xPT5m2WTFE2rFL+tNT0mGH2iostLRqlYkNXo/kWB0/n5quoeXSP94xMfKQQ0wcTN1eUtr+2mxp5SozMVNcbOKd12fKce1aR2Wzst9pk3rM4RUmpj7/vKl3y5Yl60gkatrMh+uTbaxsVufpKCs37auhQfKXm9j57LPSIRMdhVtNW6rtIo2RiLm4qm80A5JdNeY4sZgSxwq3Sm+vNfs48EAzsf7kn6STZzmKO+Zz27ab+OhOLsXapF01tt59z7QDSVrztlT9WXqcqa2VPvrYxO+ZM0yZb9tuzq26/csCf8DErNpd0tlnS5u2SC++ZNp8fp6J5es/lA4cZz7v5ktDg6lHtm3qVvVnUnN7LPN6pbf/IY06wFwEuOftOFJDk4mhn200MTW1T3TrUHdFIo5WrXL0znvJfKmplf6xLhmX3eNnKxu3zKMR6dNqE/N8XhO/Nm+W3nvP9E3uuZSXm9iZ2n5S+4Dhw0z+pp576t/FxaYuxtqkQw81fZJbn6JtndeR1HZ20IH949vq3uK2kZZWW7W1Jt5s3tx+seMxZZHaJ3ZWhm4+ZfbJy5eb48yYbvqfruLI7tKY2o4765/fXGZicGGRed3fPnKPtZn63tJq2kdn6ck8ltv269u/nG1uH1vatrkzRO2nkZdn+tJly0z9PPCgjnVfUtb8+ugjc6EV8KfXNbdfX7HK9P3BPDM5+eyzpg8NBMzF267a9FiYrf0vW+Zo3Tvt48SwiR+SuTDctl1a8KQ060RH775v2nIkaj7X2GjGNqGQaS/hJlMXUuNt6nnJkWrqkuPkcNjEsdRxg89nyqq4OFk/uuobjz3G6bR/WbVKHfqN4cOlY4+RdtV2jNup8WnkqOyxMDWNQ8pNua9Yac4j3pYcN2f2YdnqTUurSdvOGpN/Q4eY83PbychR2fuxgmOdxJjNTcMbb5ovhbxeU//e/8BcpHt9pn5IZsy3a4f5FVZ9oxLjD8ncLVVXL4VCcdlOz9pif+W229q6Nr211rRFxzH55OaNm287d5nrirY2M171ek2Zvv+BmdAKt5r661535uWZcUs8bsbjI0em95nRqJN1zDV+fPa24Kswcaq+waQn2j6239Bi4lWszVzTejxmPLJtqznuYYebOvTnP5u0bPjM9J2RiPlSMuAzEzUFheYcd+w0k2kFBdJHn5i25fGY/7Ztl6r+ZMaVkhJjziFlpi+urZWmTDZtw+sx70WiZjJr67bkL7Akk/7mZtMOa2vNl5R+vzn3aNSMSRxHWrW6PQ+Cpp+pqzfltH2nuTb0eNuvldqvb/6xTnp1sWlDqZ9pakpenwQD0qbNUX2+MbmPhob065C8PJPXzc3JmxWi0fbr0wJp107z5Ucsavq71lZz40cgaOKe1Z5ftm3SFomafTQ3J8df7sSzlPzXknk/dSzj9iWbtyTvbOyqzeblpcent96WqjeYNPm8Jv+2bjX/nx8y+3zjTWnEcEfBoDr0Ne++a75UdicG3fLbtav97sr2fizbGPjtf0jDK5MxM7VvtWTqfVP7rzfb2sy8QV1t+0R3+xxILGbaQnGxtDouff6ZOd9IxNSN5vZfHbaEzfnU1UhDh5kxdOaYZERlXOHmvo9h/X5yMBaL6d577038bVmWLrvsMl1//fW7/WxjY6MkqbCwMOv77uvudp0pKSmRx9O9i/7aWluffd6cmCUOBD2yZKulVbKsgBw5KiiIq7XFVl7QBMOA3zTgwgJJllehfFsNDY4smQrp2O0/lfC6t/1a2rbNUUmJR6GQpaFDvGppdRSN+WTbAdlOTKWlUltbq/LzbUXag1AkYo7lkQkQLa2Sz+tVQciS1xNXJGoplO8oGnEUzLfk9Zrbgpua7Pa7OLzKz/eouSmmWMwEx1hM8rRPlvi9Zp+FheZ8igrMZFpenqXGRo/q630qKHCUn2dpV02bPJ64bNucl8cyafK0T3pZ8ire5lFBQVyxqKOyUkuxqKPCAkttca/8fkcer62hQ3xqjUi2E1Uo35LP49GIEeaCsrDAr0/CbQqF2huYE5PfZwJtKM90pCYAelVa4igatZWfb/IoEDDfxng85lwKCtrPVeYzHo8pr+YmyeuXPD6ppNhSJCr5fF5FY341h31qDreooMCWbTvKizpmcjIgeTxW1nPJy/No67Y2hcNS5bCAAgFLPl9EttOmslKPbNuR32cu8tyJOzkmsMgxr7l3NwaDki2PRlRIkail8rKAbMdSc9ir5nCLiosdFRd5FGq1VVsbl0dScZGl+jrHdOax9jsP27898vmkaNQnv1+yHfPVeH5+e9kFTP3y+XwqKgyqrNTSxk1x7dwVV1s8mrh9u7XFUXPY1BePZam0xFFtrWT5TYAsKw0obifrcmNTRLYTkT/gKC/PtBevJTU1+xRuyZftxDV2tEd1dbY83ogKQrZ8Ho+GDXO0caOj4RU+MyCxbNlOXGWlHtXXS16PaZOlpeltqDnsVUuLI4+3TUMrpG3bbPl9jmmngfZvpFLaq+1YOqDSr4ZGyXFCKivrnyG1uzGsrq5NrZGwxo72yPJYKi72qrnJVrzNpxHDLX30cVwjKj1mQJVn8iTg9ysYjMnjjSfqcG1dXNGYT3l5eSot9aj6s6haW5o1YoSlgpBXvkBcu3Y6amkp0JAhPrVGWlVQYMpHUofPZ6aroCCq5iZbJcV+lZR407Z3HKXtr7XV0bZtMfn9HlnyaOxoS60RR5XDfO3nEVRpace8ST1mKORRXp6t7TtshVvy1NgUk8cb09AKaddORwG/rbY2j8rLgrIdS3l5wU7T4bEstcWkESMkx7Y0otLSzl2OwmGfhld6tWNHrMs01tbasp2Ixo72KBi0VFjgaOOmuFpbHRUU2Cor9Wjb9rjidkwlBVJRgU/BoKNtW23V1ft12ORA+6DD1nvvReT3m8FkeZ7U2uooL8+v5rD5Ms1STHLiCvjVHtuSMSYcNuc7pNwnydbata2y5Kiy0iPblurr2yRZCvjzFQo5am1tUUFICoU8amm1zUWM11JJiU87dsblsSxFI+YcWsLmy6jaWtN/yPKrrNSr6uo2VQ7zq7zcmzhvy5KGD/No48aoiottc7dwSp/o1qHuqq211RppVTDYplCBk8gXv99KxGX3+DW1doeyccvc73fk2DF5PO0xX+aLrEjEo8KCgDZuiqtymF+BgKVgMJrWflL7gPJyryRbH38cTZx76t+xmOTxRlSc76i40K/CkLRxU1zhsE9f+IKv0zqS2s5aWhyVDYDbB7sbx9w2UlRkyesLaGi50153pNo6S8Mz+sTOytDNp8w+uaDA3F5QVBhQWanVoR50R7Z2XFNrZ+2fNzTGE2Oi4mJbdtyRJUv5+Y7a4t5ELO4sPZnHctu+x3LksWzl5TmybTOecC+uvF5z0VwQsmTbjpqafVnrfmacc/Orod5RSalHw4eZWOLWNbdf93hjqhxqyeezVF8fVzjskeMUKBj0yHYiGj7MSouF2dr/hx+1qbExpoICR62ttjweE5987XdANjdb2rnLp2BQChU4Kix21NRofmbh95mxqnuXUDzuV+UwfyLepp5Xfp6lhsZ4YpxcWGDGM6njhvx8S2NHexWLOYn60VXf2Bw2/V62/qU10tah38jL86qoMCC/X1njthufykr92rq1rUMsTE1jMGipORxXa0urRo/yqKZGGjHCUXOT0tqE4yhrvQmFLJUUe7Srpk2BQFx5eV4NHeJVXb2dSENtbbxDP2bbftlOLLG/5nBczU1h+XxmLBZvc9QSdhJlMqTcav+lj6mf8Ta/xo72qL7BVl6eeT29Tw912af3B3t6PWk7EckyP793P+b3mf7YlRc0f1tW+9g/YK5z4u0TiOFWS6F8KRpxEtedecFk3XfLL7XPbGmxs465CkI+8xPMjLZQUuLR5xtj5o7FPHNd0BY3E31qT1deMHknmpmgtFRcGFBhSPrk0zbF41JBgWN+9ZRna8cOM2Hk8VgaOsS0hdZWye/3KN5mKRiMSY65acHjseT3OwqHPWppKVDcVmLM6fd5VFTUpuZmR+EWr4qLpWjElscyk6HuZHeblbzxwh3neDxSY7OlkSO9GjrUq4bGuPKCtmT5VBDyKNwcUWGhpcJCM64Jh22FW5I3+9i2pYDfSVzf1NXH1dxsq7g4/TORqEejR3v0+UZHQ4dY+vCjeNo+Mq9D8tqv6S3LXJPY7fnuzhFs2WLu2rPbv1hxl4jyeqVQvqVAwFyPxeNO4lps1672iSrHzD1YVvqEqWUlrzs9nuRY5pNwmzyWI5/XUVG5s9s2G2+z0uLTxk1tammxNWa0pXCLR0VFcTU2muvuYEAqKrTU2ORo5y6/Sku9aWOYrdvatHVLXLGYk2gfjpOczDT1zaOKodKuGqfDGPjjj6MqK/UlYmZq3xpusRSPx+X3mTzOyzMTqe4NVIFA8liWJEseObbU0mJr5AgpErFUVGTu4CwoNJP0ZWWWdu6Uigs92rzZ7jAmyc+zZDuhPo9h/fNKNkVBQYE++OAD2bat7du365VXXtFvfvMbvfXWW/r973/f6cRfb6qvr+/2tpGIozGjA+ZbiUYpGLUTdwc6TlSW2mfmHRM0YzHTyBy56w3GFW7/psV2kt/munfo5eVLtbWOggGpOWxGcTt3mcFOwB+Tx9Mij2VmyX0+c2ecI6mlPYhEY+ZOG/dnTm3xuJrDprKHQu3rBThSuMUEaJ/fSQTInbviysuLK9Z+S3Mkmpw1l8yFTyDQ/rqkxvaf0ba2OjrggLhKSuLatMVMqLVGlBiMRmOmoTlqn7z0SI7i8vriam42HUxtnaO2uPnp7yivyVM7Lu3cFVVb3HRE4RZHgWBcO7dIZSVSU3Pc3IbdfuegLPNtgL89bbLcOxbNcQKB9vxyzDl42idjPV6pua69TOxkkG1y99Em2R6pvsGRz28emhPwt6kgZO5K27hJirZ/a2fbZmLJF3CynovHa94PhaSt29tUXt7+TaAl1dbZikTav9FoH8Tbtikvl+Mk78KMRKRgwNa2Heabs5raFvONW3u6Nm+RYpG4wq3Jb0saGh3FbXMMWe354JE8cZOOQKBN4VaTHlkmvzweMwns95pzb2xqU0OjVJBvvlH2ec1EbCTiJNLm1ou6evPZWKz9pz51UTMp3V6XiwrNsWLR9glFj5QXkAoL2hTKb5THMncrhUImD1uiktcXV81O843jth0xDato/8ayPQ9bW5N3MGW2oYJQzHTGcXMXq5vfHo85fmZ7HWE52rK1TUPKJcuqV21t18G8ry7AuxvDvF7zpUX159IBIwNqaIjL65G8vpi2bDNtYcvWuIYMMXkYi0nRWEyRSHodtuOmDFtbW1Vba6mwwFZevrmzuGJIXDt2mW/Z8vMbFYlYygs6am42nadjdfx8arqGlpsY6vFI9Q0xNbfE0raXlLa/NtvsLxaz5eS372OItHV7VEPKpNbWFtXWdvyGLvWY7p0dZSVSKD+mosJkHWlpNfWkpNhOtLHW9t/kZUuH7ZgYvGWL+fZyy1Zzt0Yo1KZt2008qd7eeRojEUcey1H158k7jgryzaDOPVa4fbDb1Cw1NreppsZcCJeWRFX9eTTxrWlByGwTbm6/+yLfo9bWmApCJqg7kmQll2Jw6388LhW2n29evtlXcZG5I3DrVlv+QPs3yAWOorGwwmEzsGoOm6VBWlvb74CIO6qvjyXyJRA0dwbYtuk/zTfejuREVVvX/g3/9pgcJc/bcczxLZlv14OB9D7RrUPdFYk4ygs65lvf9nxxlxIoLDBx2T1+SVHHsnHLPBpJxmn323tJCgZtNTW3Js6lvFwd2k9qH+DInF/quaf+XVxsPtvQKDU0RbRrl7k7PRRq67KOpLaz/Px81dbWdjuP+nscc9tIY2O+4m1R7awxZbizRvJ6nA59Ymdl6OZTZp/c3GyO09gUU0Njx3qwJ2lMLaOSouz9c+qYqKEh/e6G4cPMF12xWOfpyTyW2/brG027cy92zBezkqz2O4wikixH5aWmz81W9yVlza+iIqm1Na4tW2Jpdc3t1+24uTsk2P5LjeHDbFlWvSIRSx7L6RALs7X/okJznG07JLstObFpxorSyBGOhg6JmTucmqXWqBJ3Rcbaf2ERi0k+j+T1xrR1eywRb1PPq7lJ6ePkZpNfqeMGn8/0FcXFyfrRVd9YEFKn/UteUB36jdZWW41NMdXUdozbqfGptq4tayxMTeOQcnONkJcv7dxlqy1m7kgsK1GHPixbvWlpNWXcGmn/hUWr+SI4HjftpLauLWs/5vEoMWZz01BQKDVvb58Iax/P+tp/3bOrxix9lLgbzhdT9efm55nu0jfuOY0aEdDW7eEu+/RMfRHH9vR60mM5khNUXp75ssxxpJidvp37c0+n/QaBSDR5R2EgIIXyHIVb0q87WyPtk0ZtyfKTkn2m1+tkHXM1h9uytoX6+rg87RNqre13/rW1mfG/e+NCa8Tsw99+M0Brq5Pss4rMfnbVSJEWc80qy9wcY9uOdu6KJ+pFLGYrUNC+1Illri+CQUeRqHRAqa38fHPDjzvmHFJmJpv8fimUH9f2Heb4tmPu5soLmuuP1Ekl91rKtqWiAkexWJt27mxL3Nww0omqOWwm6JuaHcXbbDW133UXyjft045LHq+ZLAsGzfWNmQDt+JlgwNbOXbY8XnOHZEGBpZra5D4yr0PcvHSc9mvo9rs18/PMHEFe0Nw5GG//6XYsZtpePG6ulYN5jiyP5JUUccy1mO0k8yEW63jnYGISzHKXrTJjGbcvaWsvv9212by89PjkyHyZs7PGkc9rysrrbV9SzSPF6kwcGDokpmAw1qGvKSszv05xr4lTxeNSPG6ug4uLO46B84JSbV0sETNT+9axpSYdLS2mnkWb3cl083oslqwnXq/kyJblaf+lY72pt43tNxk1t999WFvrKOCTGpriWcckLa2Oigpb+jyG9fvJQZfH41FlZaW+9a1vqaysTP/v//0/3X///brhhhs6/UxRUZEkqcn9jWQG93V3u94QDFr60qn5evediJYuM421tEQ660wl1hwcNyZl7YeC9DXMgnnSQUPMWgKffW4qXfY1B5VYL81jmVu9jz7aUlGRpalTza3oE8ab9911FPLzTeP0+9w1B00jdu/aKy9XhzUHh1WYn365aw5GI+Ynv8cfp8Sagz5f6pqDSltzsKhIGneg+WlZxVDzDfQHH5rOpqysszUHlVhfJxpJrjlYXmYa9/BK6aCUdfoCPumYmUqsOVhcLH3hYGnkCOnoo5VYH2XcmM7WHDSBpqhIaWsOHj4l+dPhtrbsaw4Oq0hdc9DSiEpHkw8zZTFkiKUzz7QVecqsoVEQ77jmYOa5yDbreR16qMzaOk3S4YeZAdb7601HmV+552sOfuFgk9apU5Ppctc0Cgakw9t/of/++vY7Xv3m78w1B0eMMheZ48ZmrDlYZm7XHzHCDCJKisyxJGnbtuSagwUF5qc2qWsOhvKTaw76fel1eeZMRzt3JtccDATM+2efbRaXdet6U7M0/ajkmoOlpaZsvR5Tp8aONgNwNw+Li8zPLTPb0DHHmDTX15v1kOyU/M625qA/YLWvOdhxQfWBqKjIo9NPNz+n3VXjaMwB7sLD7ROzI01bcfPUkan7kyeZhZvdOjxxgilD97b4IUM8OmeO+WnxrlpT98+Zk1wg+KijpObm9nVEnI6fT01XbZ1pyyUl7Q8yynK81P15LbN8grtOjSVTX4eUmTra2a37qcfcuctcOJ1+ukmzWy/dOlJcJI2fkGxju0uHu+ag12sukk4/XYk14iLtF+qdpTEYtDR1qvn5VF1deluLRs2x8oPmJ2jVn5lY7ua3u95KXZ3Z95TDlLZ21ZByjw45xE60g2jUUUN9+pqDZWXSwV+QvjjL1IXEvs5WYs3Btpj5OcnBB5k+Z9QI6fzzlFhzMBRKrjno96XnS1tbcjmNUSPbF1WvMO33yCNMXMw8bzffxoQ79ol7+tOMYNBKlNtb7f1neXteuXE59fiZZZNa5geO7bjm4KRJyb7JjfGZ7Se1D0gtq2x/p8a+utpkPXXrU2d1JLOdhcN7lE39mttGPvzIo9pa057Ky5S2vk9qn9hVGVpOxz75kAlmH6l9XU/qWbZ2nLV/Pix9TJS6LtLwSiXWcuosPZnHSm37brzpbM3B0lJp5kzzX2d1v7P8Sqw5mFLXUvv1FavN+YwZLZ15ZrIPddOaGgs7a/8HfSG55mBxsemXvR4TN75xnol5lpVsy2UHpK85OGSIiU/DKjvG29TzKi9NHydnGzesXeuk1Y+u+sYhQ6xO+5ejjnKy9hvNzdnjdmZ8ird1jIWpaayrM/l5zhwl1hx0x82ZbaKzepM6jve2T/pNnJSehsx+LPX6xE3D+ecpseagZUmHTDQPTExdc3DcONOXuOOQ1PGH26cPGeJVWWnP2mJ/lYxjPh0xNaKWlj1bc7Cw0F1zMP3azr3uTF1zMLPPDAatTsdc2dqCv/06LHXNwby8rtYcNNdOqX2WlFxz0Jbp/zuuOZgcy0UjZjJsy9b2NfKHSeeekxxXumPO2npzfTrpEJNPdvuv8YoKk2sOen0d1xwsKDBt+fTTlVhz0D33oRXSyErpC+cosX5gcZG7fqBUsim5XmAolLy+OXSSuU7O9hmz5qDa1xwMKC8vkraPPVtzUGlrDgaD6WsOutf2Uvq1WGlpcs1B98GLna05mDqWcfuS7rZZtx/zWNIRh0vHzFBizcHiYjN+dNccDATMeHbWrI5jGLevKX+58zUHZZnz6mwMnBkz3b519BhTX9w1B30+d81Bpa05GAiYcfzw4Wbe4LhjlFhzMB7PtuagaXPDh3Uckwwf7tX4g/s+hlmO484LDxyNjY06+uijdfjhhyeeRtyZE044Qc3NzVq5cmWHdQcffPBB3XXXXfrVr37V5QNJ9uQbdcnM5G7dWqMN1Y527pIOGpd8WrG5NdxJrLfmCrQH6HDYfeqNpYYGs/hrU7OZACspSQYJn89K7MeR+Ulr5tPAzPoSphG0td+xZcdNJR892jytuKHBMbP2eebW5cy0BQJm35K0c6ej1ogJKu7Tij/5xATQomIzCerzWR2O6W7vpiv1mK2tSpyj5ZjgP3SoOV5mXrlrB9i2pbw8kz53XyXF5slXdXXJ/MnLSz6JyN0u3mYuQPPyk4vhu+dt25bCYUfbt0vFJdLIEcl9+nxK3P3irsPj8ZhvPb0e83dZWbHa4g0dyqKx0db27Ur8vMzN167OxU23uzZIav6XlpjgF2m/m66pWWprLy+/3wwI3HS5DwFJzY/MdOXlJfPcPUYov31dzPY7eooLTcDOTG9jU/s6f4Xp5ZZ6rEjE0ebNZm2+IUNMvqZ+3nGS59RZXd6506xBFPCZyarMp/q5x8ysA265ZsvDrtqQe8zM/M5sr35/iSyrvtsTg311x82exrDGRluOY84tELASbTG1rbh5mlpHM+twpl27bG3bZjrRbE8r3t3nzVOU02NkZ9tn7s9Na2r6u/u0YveYmfUusz5l22dn6WhrcxLxPjU+djeNqfU+td6mHqupyemQ35mfcz8TiUrDKkrlOPUd9rer1gxA8/LMANON6dn2ldpPuHXHfX/XLlsbN5r4OrT97tNs+ZIaX1PjZGZcTE1nan/RVR3qrtR8cfvBzo7f2WfdPmfTJimQZyYhMvumrtpPtvzt7G839mWrT13VkWDQUllZ2YC4c3BP41goVKotW2oT7cltc531iamy5VNmee2uHnRHZ/UpW/+cWcczxxDdqZfZ2r7bj+cFkmMUdz1Vt2/fXd3vLL86i9GZsSLb04qzxcJsaUgdY0Vikt9fqNLiprSYl9qW8/PMl6sNTR3HNl2dV+Y4Odu4IVv9kDrvG7vqX7L1G9nidrb41J00uuv5Zhs3d6fepI7js7WTzvqxbGnYuMlcJI8alX794zjpfUm28YfH46i4uEytrXV71Bb7Io7taQyTknEsHHa0YYMUbTMT6h5L2rgx/RrMtpXor4cMMf1stms7KdkWuuozOxtzddYWJDPObmgy8cTtw91rvdSYkq3PSm3LqZ9NredSeizcVWsmpg4Ylf1pxe4YqLDQ6tA2Uq+TGhrMBKblMdcaoVDyeiNbHEitv26sdmOJx+OooUFp1xCpedzZZ9x/i4vL1NBQ22Ef2crP3SaU33GOwI1zqbHd/aybl5nXYm6eWo65nnRkjhtv/+K2oDD7WGZP22xmvXPLqqxMCoU6Xo93NYZxrzM/32gm+MrKpMphyTXxdzcG7qpvbWpytHFjct7AzbcN1Y62bDXrqJeUpsdh91wKCkwafL6OZZNtTDJiRJnC4bpux4Z9FcMG5OTgxx9/rDPOOEPTpk3TE0880eW2P/zhD/Xss8/q8ccf1/Tp09Peu+iii7R8+XK98sorGjVqVKf76MnkYE86AAxslHvuGawX1RL1ORdR5rlpsMYx6nNuotxzT0/KfKBMDlKfcw9lnpv6y1is3/4O7qOPPlJLS0uH11taWjRv3jxJ0qxZsxKv19TU6OOPP1ZNTU3a9uedd54k6e6771Y0mpxyf/XVV7V8+XKdcMIJXU4MAgAAAAAAAINVv11z8LnnntNDDz2ko446SqNGjVJhYaG2bdumxYsXq66uTkcffbQuvfTSxPbz58/Xvffeq6uvvlpz585NvH7MMcfo3HPPVVVVlebMmaNZs2Zpx44d+utf/6rS0lL99Kc/7YOzAwAAAAAAAPpev50c/OIXv6jt27drzZo1euuttxQOh1VYWKiJEyfqzDPP1Ne//nX5fN1L/i9+8QtNmDBBTz75pB599FGFQiGdeuqpuu666zRmzJh9fCYAAAAAAABA/9RvJwenTJmiKVOmdHv7uXPnpt0xmMrj8ejiiy/WxRdf3FvJAwAAAAAAAAa8frvmIAAAAAAAAIB9i8lBAAAAAAAAIEcxOQgAAAAAAADkKCYHAQAAAAAAgBzF5CAAAAAAAACQo5gcBAAAAAAAAHIUk4MAAAAAAABAjmJyEAAAAAAAAMhRTA4CAAAAAAAAOYrJQQAAAAAAACBHMTkIAAAAAAAA5CgmBwEAAAAAAIAcxeQgAAAAAAAAkKOYHAQAAAAAAAByFJODAAAAAAAAQI5ichAAAAAAAADIUUwOAgAAAAAAADmKyUEAAAAAAAAgRzE5CAAAAAAAAOQoJgcBAAAAAACAHMXkIAAAAAAAAJCjmBwEAAAAAAAAchSTgwAAAAAAAECOYnIQAAAAAAAAyFFMDgIAAAAAAAA5islBAAAAAAAAIEcxOQgAAAAAAADkKN/efLilpUXr1q3Tjh07FI1GO93uq1/96t4cBgAAAAAAAMA+0OPJwbvvvlsPP/ywWltbO93GcRxZlsXkIAAAAAAAANAP9Why8Pe//73uv/9+eb1ezZo1SwceeKAKCgp6NWHbtm3Tc889p8WLF+uTTz7Rzp07VVJSomnTpunyyy/X1KlTu7WfZcuW6eKLL+70/Xnz5mnOnDm9lWwAAAAAAABgwOjR5GBVVZXy8vI0f/58TZ48ubfTJEl67LHH9Pvf/15jxozR8ccfr/LyclVXV+ull17SSy+9pLvuuktnnHFGt/c3Y8YMzZgxo8PrkyZN6s1kAwAAAAAAAANGjyYHt2zZomOOOWafTQxK0uGHH67HHnusw4TeypUrdemll+rnP/+5Zs+erUAg0K39zZgxQ3Pnzt0XSQUAAAAAAAAGpB49rbiiokL5+fm9nZY0X/rSl7Le6Xf00Udr5syZqq+v1wcffLBP0wAAAAAAAAAMZj26c/CMM87Qn/70J4XDYYVCod5O0275fL60f7tjw4YNevjhhxWJRDR8+HAde+yxGj58+L5KIgAAAAAAANDv9WhycO7cuVqzZo2+//3v6xe/+IXGjh3b2+nq1ObNm7V06VJVVFRowoQJ3f7cokWLtGjRosTfPp9PF154oW688UZ5vd59kVQAAAAAAACgX+vW5GC2p/3atq3ly5frjDPO0MiRI1VZWSnLsjpsZ1mWHnnkkb1PqaRYLKYbb7xR0WhUP/rRj7o1qVdeXq7rr79eJ510kkaNGqWWlhatWbNGd911lx5++GFZlqWbbrqpV9IHAAAAAAAADCSW4zjO7jY65JBDen4Ay9J7773X48+7bNvWDTfcoEWLFum8887Tbbfdtlf727Fjh84++2w1NDRo8eLFGjJkSJfH9nh6tDwjAPQ5YhiAgY44BmAgI4YB6O+6defgyy+/vK/T0SXbtvXjH/9YixYt0tlnn61bb711r/dZUVGhU045RVVVVVq7dq1OPvnkTretr6/fo32XlZWptrZ2b5OIAYZyzz17WuZlZWX7MDWd29MYJlGfcxFlnpsGaxyjPucmyj339KTM+yKOMRZDd1Dmuam/jMW6NTk4atSofXLw7rBtWzfffLOefvppnXXWWbrjjjt67VsXN1NbWlp6ZX8AAAAAAADAQNKjWbZ77723W3cTvvLKK7r33nt7cghJ6RODZ5xxhn7961/36sND1q5dK6lvJz8BAAAAAACAvtLjycGXXnppt9u98soruu+++3pyiMRPiZ9++mmdfvrpuvPOO7ucGKypqdHHH3+smpqatNfXrVuXdftHHnlEy5Yt07hx4zRlypQepREAAAAAAAAYyLr1s+KeisfjPf4J8H333aeFCxcqFApp3Lhxuv/++ztsM3v2bE2aNEmSNH/+fN177726+uqrNXfu3MQ211xzjXw+nw477DANHz5cLS0tWrt2rd59910VFxfvdtIRAAAAAAAAGKz26eTgRx99pOLi4h59dtOmTZKkcDisBx54IOs2o0aNSkwOdub888/XkiVLtGLFCtXV1cnj8WjkyJG65JJLdNlll6mysrJH6QMAAAAAAAAGOstxHKc7G958882J/1+4cKHGjh2radOmZd02Ho/r008/1bp16zR79mzdc889vZPaPtKTJ2DxlKHcQ7nnnv7yZKnd6Um9pD7nHso8Nw3WOEZ9zk2Ue+4ZKE8rZiyG7qDMc1N/GYt1+87BhQsXJv7fsixVV1erurq6y89MnDhRN954Y89TBwAAAAAAAGCf6fbk4KOPPipJchxHl1xyiU488URdccUVWbf1+/0aNmwYTwEGAAAAAAAA+rFuTw7OmDEj8f9f+9rXdNRRR6W9BgAAAAAAAGBg6dEDSebNm9fb6QAAAAAAAACwn+3V04qj0aj+9re/aeXKldq+fbskadiwYTrqqKN02mmnKRgM9koiAQAAAAAAAPS+Hk8OLl26VDfddJN27NihzAceP/nkk7rzzjt1xx136Pjjj9/rRAIAAAAAAADofT2aHFy7dq2++93vKhaLaerUqTrzzDMTDx/ZvHmznn32Wb311lv63ve+p8cff1xTp07t1UQDAAAAAAAA2Hs9mhy8++671dbWpp///Oc6//zzO7x/0UUXacGCBbrlllv029/+Vn/4wx/2OqEAAAAAAAAAepenJx9au3atDjvssKwTg65vfOMbmjJlit56662epg0AAAAAAADAPtSjyUGPx6MxY8bsdrsxY8bIsqyeHAIAAAAAAADAPtajycHDDz9c69ev3+1269ev1+GHH96TQwAAAAAAAADYx3o0OXjttddqw4YN+u1vfyvbtju87ziOfvvb32rDhg269tpr9zqRAAAAAAAAAHpfjx5I8sknn+hrX/ua7r//fj3zzDP60pe+lHha8aZNm/Tiiy9q06ZNOvfcc/Xpp5/q008/Tfv8V7/61b1OOAAAAAAAAIC906PJwZtuukmWZclxHG3atEkPPfRQYm1Bx3ES21VVVamqqirxt+M4siyLyUEAAAAAAACgH+jR5OAPfvADHjQCAAAAAAAADHA9mhycO3dub6cDAAAAAAAAwH7WoweSAAAAAAAAABj4enTnYKr3339fb7/9tmpra3XwwQfrlFNOkSRFo1FFo1EVFhbudSIBAAAAAAAA9L4e3zn4ySef6Pzzz9fXvvY13XLLLfqP//gPvfTSS4n3//KXv2j69OlavHhxryQUAAAAAAAAQO/q0eTgli1bdOGFF+qtt97SSSedpBtuuCHtKcWS9OUvf1l+v18vvPBCryQUAAAAAAAAQO/q0c+K77vvPtXW1ur222/XOeecI0n69a9/nbZNKBTSpEmTtHbt2r1PJQAAAAAAAIBe16M7B1977TVNnDgxMTHYmVGjRmn79u09ShgAAAAAAACAfatHk4O7du3SgQceuNvt2tra1NLS0pNDAAAAAAAAANjHejQ5WFpaqi1btux2u08//VQVFRU9OQQAAAAAAACAfaxHk4PTpk3TP/7xD7333nudbrN8+XJ9+OGHmjFjRo8TBwAAAAAAAGDf6dHk4He+8x05jqOrrrpKr776quLxeNr7b7zxhm688Ub5fD5dcsklvZJQAAAAAAAAAL2rR08rnjp1qn7yk5/ol7/8pb73ve8pLy9PlmXphRde0EsvvaSmpiZZlqVbbrlFhxxySG+nGQAAAAAAAEAv6NGdg5J0wQUXaP78+TrppJNkWZYcx1Fzc7Oi0ahOOOEEPfbYY/rGN77Rm2kFAAAAAAAA0It6dOeg64gjjtB//ud/ynEc1dbWyrZtlZWVyev19lb6AAAAAAAAAOwjezU56LIsS+Xl5b2xKwAAAAAAAAD7Sa9MDu4L27Zt03PPPafFixfrk08+0c6dO1VSUqJp06bp8ssv19SpU7u9L9u2NX/+fD355JOqrq5WKBTScccdp+uuu06jR4/eh2cBAAAAAAAA9F/dmhw85ZRTenwAy7L00ksv7fHnHnvsMf3+97/XmDFjdPzxx6u8vFzV1dV66aWX9NJLL+muu+7SGWec0a19/exnP1NVVZXGjx+viy66SNu3b9dzzz2n119/XQsWLNC4ceP2OH0AAAAAAADAQNetycFNmzbt8Y7dh5T01OGHH67HHntMM2bMSHt95cqVuvTSS/Xzn/9cs2fPViAQ6HI/b775pqqqqjR9+nT98Y9/TGx/1lln6corr9Rtt92mP/zhDz1OJwAAAAAAADBQdWty8P333+/w2u23366nnnpKF1xwgc4880wdcMABksxE4rPPPqv58+fra1/7mn7605/2KGFf+tKXsr5+9NFHa+bMmVqyZIk++OADTZkypcv9VFVVSZKuvfbatInEWbNmacaMGVqyZIk2b96skSNH9iidmbZssbXw6TqtXm3L75dCRVLNTikSkTwe858tyeeRfH7J75faolK0TXIkBbxSJCo5juTzmW3y8iS7TWpplbweKdZm3nf348i8JjuZDvdY8kj5AcmyzNuWIxUUSrW1UiwmBQOS1y9FWtP3abU/x9q2zb49Sm7bEpbicZOuIUOkaERqiST3kXlMd3s3XT6fSXPcNscK5kmFhVI8JjU0Sq1Rc7zUvLI8Ji1x27zX1v6vu69Ym9ku4E/mT5tt8iT1mJZHKi6UYlEp3Jrcnzwm7yUpVCC1tkhNLcl9xu3kvttsc362nSy3/IAUCO5SQ2PHsvD5pPw8s32bnczXzHPJzF+3DDPfj7SavLU8ktdrysHXXl7xuNTaml6fMvMjM12xtmSeh/KlYL5Jg9fTfhyvOWa0rWPeu3U40ppebqnH8njMfkOFUrjJ5Gvq5z2e5Dm59cI9jlt+wYCUX2DaQWNTsj6l1vU2u2MdsJU9j1Pre9CXnu9u3hQWmP9vDifz22XbUigknfzFsKYebquoqMcPfu+XqqttzX+iVv9YZyvelmyLHnXM02x1NDUvUwUCUkGB1NRs2mCq1Haa2YZcPp8p39QYmbl9Zpx130+NKan1a3cy20nqcTLrU2qdTc2X1HS66XBjTiSaHh+7m8bUY6SmKTW+hoKmPTc0JPM783PuZyyP5PfvUlNzx/gbzJPy85N9VbYYldpWU+NUavkEAlJxsYmv4Uj28nH7Dze+ZosH2c67qzLvblln5q+bL24/2NnxO/us0172FUOllhaprq779STbsbr62419u6tPmccpK5bOOqtFkw5xFAxae5ZJ/Vhjo61ly5v18v/Zqq1L7+c76xNTpdblzvrkrupBd+pJV9uljhtS20FqHc8cQ3SnXmZr+6ljUXeM4vUm+3a37+8qLmWL313F9Gz5my2tmf1OtjSk5pXHJxUW7dLOHekxL7Utx23T7wfyOo5tujqv1DFVZmzLzN/MvrGzfEjt0zLHNdn6jdR8SB0bZ8aMzFiYLY2yk8fvqk1k+4zbJ0bbOh5nd/1Ytv25463GpvTrH4/H1A/HyX7+7rj+sEMbdcJxtsaO9Wgwqa62taCqTu++Yysal4aWm3yoq5XijlReln4NZlnJ/jrcZPpZN7/cOu+2c7ctdHYdKXU+5soWj1KvFd3juLHLveZ1r2cbm0xaU/fdWf+fWc+zjU8CgfRxjit1zOmOZd1juNdzbpsOBqSiEnNS8bgUjSavNzLHVqn1OrM9pOZ3d8dCmTEu6N+lSKzjPjKvQ9xY5vWbc8+cI8gs88zPunnr9SpxLebzmustyzHXk45l+gKPpLyQFG011+rZrrO7arOpcTFb/Ar4TFmFW9rLymeu193r8Wzj3NSYE8qXSstNHrSETRptSQX56dccXcXAbNehAZ8pK3fewK2DRYVSUakUbpSaW9LjsFvvIhFJjtlfZtmkjknitmnLM2aENflQW0OG9G0c69Gag48++qj+53/+R0888USHybmJEydq4sSJOvXUU/XNb35TBxxwgC699NLeSGuCz+dL+7cry5YtUygU0rRp0zq8d+KJJ2r58uVavny5vvrVr+51up75i6177pNaW7NcFQMYdF54sUWjRko//YmtKZMHx6D0sfm2/vCQ1JY6kgAwaD3/YliTD5VuvUWqHD7wJwj/8Y6teb+SPvusta+TAmA/eO21qP7rj9Jll9q66ILBMxb748NSLMY1JZALnv5LiyoqpP93ja1ZJ/ZdHOvRkRcsWKCZM2d2edfelClTNHPmzMSde71l8+bNWrp0qSoqKjRhwoQutw2Hw9qxY4cOOOAAeb3eDu+PHTtWklRdXb3X6dqyxdYjj5lZdgC5Y9Nm6fH55k6Vga662tZj86W2tr5OCYD96Z13pT//xVEk0vPlYPqDxkZbj8+XPvusr1MCYH+KxaQnFphxzEBXXW3r8f825wQgd+zYIT02X9q1q+/iWI/uHPz88881ceLE3W5XUlKilStX9uQQWcViMd14442KRqP60Y9+lHXCL1VjY6MkqbCwMOv77uvudp0pKSmRx9P1POq6d1rV2Njc5TYABqft2z1ynCKVlfXPB8B3J4ZJ0pvLWhSNhvdDigD0N5997lNeXpFKS/vnnTfdiWN1dW3avr1+P6UIQH/S2ipt316gI47I6+ukZMVYDMDu1NVJLS1FKivr+rka+0qPrmRLSkq0YsUKRSIRBYPBrNtEIhGtWLFCxcXFe5VAl23buummm7RixQqdd955vfIz4O6qr9/9QHNIua2iIrOuEIDcMmyYLcuqV21t14O+srKy/ZSidN2JYZI0otJWIMCdg0AuGjO6Ta2tdaqt7fqnxf05jnm9toYNkz78aD8kCEC/kpcnDRvWrNra3V+M9UUc29OxGHcOArmntFTKz2/ss2vKHn09fOqpp2rHjh265pprtHHjxg7vb9y4Uddee6127typU089da8Tadu2fvzjH2vRokU6++yzdeutt3brc0VFRZKkpqamrO+7r7vb7Y0RIzy65CLTMQHIHaNGShdeoEHxUJKxYz266AKzQC+A3DH5UOnsr1gD/qEkRUUeXXiBNGZMX6cEwP7k90vf/IYGxUNJxo716MJvmXMCkDsqKqSLLlCfPpSkR5eA1157rd588029+uqrWrJkiQ477LDE0343b96sd955R21tbTrooIN07bXX7lUCbdvWzTffrKefflpnnXWW7rjjjm7dki1JoVBIFRUV2rhxo+LxeIefIbtrDbprD+6tf/6KRzOOtrV8hU9r1rTJ55cKQlJNjXmSlMdjnlZjO+ZpQH6/5PeZu3QiMfMEm4DfPN3Gdsx7fr+UFzRPsmltkTxe802S4yT34yj5mss9lizzFCWPZZ6kY1lSfkiqrzPHzAuafbRG0vfpZnHcNvu2rOS24RapLW72W15u3m9tSe4j85ju9m66/O4Tn+Jmf3l55qk+bXGpqcHklWWl55XHY9ISj5v9tsXNNu6+YjHztKVgIJkXbfHk05Lc7TyWVFRktgm3JPen9qdmWTL509pqnm7k7tOOS/6A1BaTYu3n7tjJcsvPkwLB9qdlZZSFz2eeouTYyXzIdi6Z+euWYeb7re3542l/wlReUPK2t+R43DxtKrU+ZeZHZrraYsk8LwhJwaA5f4/HpM+yTJ2MxDrmvVuHI5H0cks9lsdj9hsKSeGwydfUz3us5Dm59cI9jlt+eUGT1rgtNTYm8zG1rrfFO9YB28mex6n1PRhIz3c3b4raVyNobk7mtytum3P64hfzdfhhLYNiYtB10QUe/dMJtpa+4dU/3omrrS3ZFj1WxzzNVkdT8zJVIGCeStjUbJ4Elyq1nWa2IZfPZ8orNUZmbp8ZZ933U2NKav3ancx2knqczPqUWmdT8yU1nW463JgTiaTHx+6mMfUYqWlKja+hfNOeGxqT+Z35OfczHo9pj+5TBFPzMC/P/NfW1v7EtiwxKrWtpsap1PIJBKSSYhNfwi3Zy8ftP9z4mi0eZDvvrsq8u2Wdmb9uvrj9YGfH7+yzjsy/Q4aYc048rbgb9STbsbr62419u6tPmccpK5XOPCOkQya2DPiJQdeUyR797j5b77+fp1f+3qqa2vR+vrM+MVVqXe6sT+6qHnSnnnS1Xeq4IbUdpNbxzDFEd+pltrafOhZ1647Xm+zb3b6/q7iULX53FdOz5W+2tGb2O9nSkJpXHq9UWCjt2Jke81Lbcjxu2orbXlLHNl2dV+qYKjO2ZeZvZt/YWT6k9mmZ45ps/UZqPqSOjTNjRmfXB5l1wD1+V20i22fcPjES63ic3fVj2fbnjrcaG9OvfzyWqR+2k/383XH95MkBHXdMdFBMDLrcsdjyFT69+16bYjHTl3g8pi+xbXOHUeo1mGUl++tw2OSdm19unXfbudsWOruOlDofc2WLR6nXiu5x3NjlXvO617ONjZKs9H131v9n1vNs4xO/P32c40odc7pjWfcY7vWc26aDQXN96Mhc80WjyeuNzLFVar3ObA+p+d3dsVBmjMsLms9l7iPzOsSNZb72uYHMOYLMMs/8rJu3Xm/yWsw9H1nmetIdx3g85snQkajU2JD9OrurNpsaF7PFL7/flFVLS3tZeU15uNfj2ca5qTGnIGTag7e9T2lqMMcJhdKvObqKgdmuQ/1+U1buvIG7XXGR+a85bNpaahx26120/Uncdrxj2aSOSey4VFYuzZgR0qSJ4T5/WrHlOHs6ZDYaGhp011136ZlnnlFrxlM48vLydPbZZ+v6669XSUlJjxOXOjF4xhln6N/+7d92u85gph/+8Id69tln9fjjj2v69Olp71100UVavny5XnnlFY0aNarTfdTW1u7RMcvKyvb4Mxj4KPfcs6dl3lc/x+tJvaQ+5x7KPDcN1jhGfc5NlHvu6UmZ90UcYyyG7qDMc1N/GYv1+MdjxcXFuvXWW3XTTTfpnXfe0fbt2yVJFRUVmjx5skKh0F4lzP0p8dNPP63TTz9dd955Z5cTgzU1NaqtrVVZWZnKy8sTr5933nl69tlndffdd+uPf/yjAgGzuOOrr76q5cuX64QTTuhyYhAAAAAAAAAYrPZ6Zan8/HwdffTR3d6+qqpKq1ev1rx587rc7r777tPChQsVCoU0btw43X///R22mT17tiZNmiRJmj9/vu69915dffXVmjt3bmKbY445Rueee66qqqo0Z84czZo1Szt27NBf//pXlZaW6qc//Wm30w4AAAAAAAAMJvt92fnVq1fr6aef3u3k4KZNmyRJ4XBYDzzwQNZtRo0alZgc7MovfvELTZgwQU8++aQeffRRhUIhnXrqqbruuus0hlWrAQAAAAAAkKP67TMp77jjDt1xxx3d3n7u3Llpdwym8ng8uvjii3XxxRf3VvIAAAAAAACAAW/wPNYJAAAAAAAAwB5hchAAAAAAAADIUUwOAgAAAAAAADmKyUEAAAAAAAAgRzE5CAAAAAAAAOQoJgcBAAAAAACAHMXkIAAAAAAAAJCj9vvkoOM4+/uQAAAAAAAAALLw7e8DXnnllZozZ87+PiwAAAAAAACADHs1OfjRRx/pySef1Ntvv63a2lqdcsopuvHGGyVJq1ev1rp163T22WertLQ08ZmDDjpIBx100F4lGgAAAAAAAMDe6/Hk4EMPPaS77rpLbW1tkiTLslRbW5u2zbx58xQIBHT++efvXSoBAAAAAAAA9LoerTn497//Xb/61a9UWVmpe++9V0uXLu2wluC0adNUXl6ul19+uVcSCgAAAAAAAKB39ejOwYceekj5+fl66KGHNHr06E63O+SQQ/Tpp5/2OHEAAAAAAAAA9p0e3Tn4zjvv6IgjjuhyYlCSysrKtHPnzh4lDAAAAAAAAMC+1aPJwVgspoKCgt1uV1NTI6/X25NDAAAAAAAAANjHejQ5eMABB+j999/vcptoNKoPPvhA48aN68khAAAAAAAAAOxjPZocPPnkk7Vp0yY99NBDnW7zX//1X6qpqdGXvvSlHicOAAAAAAAAwL7ToweSXH755frLX/6iX//611q7dq1OPfVUSdKuXbv04osv6sUXX9Rf/vIXHXDAAbrgggt6NcEAAAAAAAAAekePJgdLSkr00EMP6ZprrtHzzz+vv/3tb5Kk1157Ta+99pocx9HBBx+s++67T4WFhb2aYAAAAAAAAAC9o0eTg5J04IEH6plnntErr7yi119/XZs2bZJt26qsrNRxxx2n0047jYeRAAAAAAAAAP1YjycHJcnj8Wj27NmaPXt2b6UHAAAAAAAAwH7SoweSAAAAAAAAABj49mpycMmSJfrBD36gE088UYcddphuvvnmxHuvvfaa5s2bp23btu11IgEAAAAAAAD0vh7/rPj222/X/Pnz5TiOQqGQ2tra0t6vqKjQI488ohEjRujSSy/d23QCAAAAAAAA6GU9unPw6aef1uOPP67Jkydr4cKFWr16dYdtDjnkEI0YMUKvvPLKXicSAAAAAAAAQO/r0Z2DTzzxhIqLi/Xggw+qvLy80+0mTpyo9evX9zhxAAAAAAAAAPadHt05uH79eh155JFdTgxKUmFhoXbu3NmjhAEAAAAAAADYt3r8QBLLsna7zfbt25WXl9fTQwAAAAAAAADYh3o0OThu3Di98847isVinW7T1NSk999/XwcffHCPEwcAAAAAAABg3+nR5ODpp5+uHTt26K677up0m3//939XY2OjzjzzzB4nDgAAAAAAAMC+06MHklxyySV69tln9cgjj2jNmjU65ZRTJEmff/65Hn74Yb344otatWqVDj30UJ177rk9TtwzzzyjVatWad26dVq/fr1isZjmzZunOXPmdHsfy5Yt08UXX9zp+3u6PwAAAAAAAGCw6NHkYF5enh5++GHddNNNWrx4sd5++21J0sqVK7Vy5UpJ0vHHH68777xTgUCgx4m7++67tWnTJpWVlWnYsGHatGlTj/c1Y8YMzZgxo8PrkyZN6vE+AQAAAAAAgIGsR5ODklReXq4HH3xQ77//vpYsWaJNmzbJtm1VVlbq+OOP1+GHH77Xibv99ts1duxYjRo1Sg8++GCXP2PenRkzZmju3Ll7nSYAAAAAAABgsOjR5ODVV1+tiooK3XLLLTrkkEN0yCGH9Ha6JEnHHXfcPtkvAAAAAAAAgB5ODr766quaPXt2b6dln9qwYYMefvhhRSIRDR8+XMcee6yGDx/e18kCAAAAAAAA+kyPJgcPOOAAtbS09HZa9qlFixZp0aJFib99Pp8uvPBC3XjjjfJ6vX2YMgAAAAAAAKBv9Ghy8Mwzz9Qf//hH7dixQxUVFb2dpl5VXl6u66+/XieddJJGjRqllpYWrVmzRnfddZcefvhhWZalm266qct9lJSUyOPx7NFxy8rK9ibZGKAo99wzEMq8JzFMGhjnht5FmeemgVDujMXQXZR77hkIZc5YDN1Fmeem/lDuPZoc/O53v6u3335bF154oX70ox/pi1/8ovx+f2+nrVeMHz9e48ePT/wdCoU0e/ZsTZ06VWeffbYee+wxXXHFFRoyZEin+6ivr9+jY5aVlam2trbHacbARLnnnj0t874K+nsawyTqcy6izHPTYI1j1OfcRLnnnp6UeV/EMcZi6A7KPDf1l7FYjyYHTz/9dDmOoy1btuiaa66RZVkqLy9XMBjssK1lWXrppZf2OqG9raKiQqeccoqqqqq0du1anXzyyX2dJAAAAAAAAGC/6tHk4KZNm9L+dhxHO3fu7JUE7U/ujOtAWz8RAAAAAAAA6A09mhx8//33ezsdfWLt2rWSpFGjRvVxSgAAAAAAAID9b89XRZV0880363//9393u93ChQv14x//uCeH2GM1NTX6+OOPVVNTk/b6unXrsm7/yCOPaNmyZRo3bpymTJmyP5IIAAAAAAAA9Cs9unNw4cKFkqSvf/3rXW63atUqLVy4UL/85S97chhVVVVp1apVkqT169cnXlu+fLkk6aijjtK5554rSZo/f77uvfdeXX311Zo7d25iH9dcc418Pp8OO+wwDR8+XC0tLVq7dq3effddFRcX684775TX6+1R+gAAAAAAAICBrEeTg90Vi8X2auLNnVxMtXr1aq1evTrxtzs52Jnzzz9fS5Ys0YoVK1RXVyePx6ORI0fqkksu0WWXXabKysoepw8AAAAAAAAYyPbZ5KDjOHr33Xf36jHLd9xxh+64445ubTt37ty0OwZdV155pa688soepwEAAAAAAAAYrLo9OXjxxRen/f3aa691eM0Vj8f12WefaefOnfrnf/7nvUshAAAAAAAAgH2i25OD7jp/kmRZlnbu3KmdO3d2vmOfT1/84hd144037l0KAQAAAAAAAOwT3Z4cfPnllyWZnwvPnj1bp512WqcTf36/X2VlZfL7/b2TSgAAAAAAAAC9rtuTg6NGjUr8/9VXX61JkyalvQYAAAAAAABgYOnRA0muvvrq3k4HAAAAAAAAgP3M09cJAAAAAAAAANA3mBwEAAAAAAAAchSTgwAAAAAAAECOYnIQAAAAAAAAyFFMDgIAAAAAAAA5islBAAAAAAAAIEcxOQgAAAAAAADkKCYHAQAAAAAAgBzF5CAAAAAAAACQo5gcBAAAAAAAAHIUk4MAAAAAAABAjmJyEAAAAAAAAMhRTA4CAAAAAAAAOYrJQQAAAAAAACBHMTkIAAAAAAAA5CgmBwEAAAAAAIAcxeQgAAAAAAAAkKOYHAQAAAAAAAByFJODAAAAAAAAQI5ichAAAAAAAADIUUwOAgAAAAAAADmKyUEAAAAAAAAgRzE5CAAAAAAAAOQoJgcBAAAAAACAHOXr6wR05ZlnntGqVau0bt06rV+/XrFYTPPmzdOcOXP2aD+2bWv+/Pl68sknVV1drVAopOOOO07XXXedRo8evY9SDwAAAAAAAPRv/Xpy8O6779amTZtUVlamYcOGadOmTT3az89+9jNVVVVp/Pjxuuiii7R9+3Y999xzev3117VgwQKNGzeudxMOAAAAAAAADAD9+mfFt99+u1555RW9+eabOv/883u0jzfffFNVVVWaPn26nnrqKd1www268847dd9996murk633XZbL6caAAAAAAAAGBj69Z2Dxx133F7vo6qqSpJ07bXXKhAIJF6fNWuWZsyYoSVLlmjz5s0aOXLkXh8LAAAAAAAAGEj69Z2DvWHZsmUKhUKaNm1ah/dOPPFESdLy5cv3d7IA9BORiKO6OkeRiNPXSUE/lWt1JNfOF+httCEA6B7iJdB/9Os7B/dWOBzWjh07NGHCBHm93g7vjx07VpJUXV29v5MGoB/Yus3R2rWOmpqlwgJp6lSpcrjV18lCP5JrdSTXzhfobbQhAOge4iXQvwzqOwcbGxslSYWFhVnfd193twOQOyIRMyCpb5RKS6X6RmntWr65RFKu1ZFcO1+gt9GGAKB7iJdA/zOo7xzsLSUlJfJ49mwetaysbB+lBv0Z5T5w1Nbasp2Ixo72KBi0VFjgqKbWVl5eUKWl3W/vA6HMexLDpIFxbvtSb9WRgcKcbyhnzhdJA6GtD4SxWK7FjP5qINRn9K6BUOaMxdIRLzs3WMscXesP5T6oJweLiookSU1NTVnfd193t+tMfX39Hh23rKxMtbW1e/QZDHyU+8ASiTjyWI6qP5eGlEu7aqSSIqm1tUW1td37ScOelnlfBf09jWES9VnqnToykIRCpfJY4Zw5XxiDNY71RQzLtZjRH9F35Z6elHlfxDHGYumIl9kN5jJH5/rLWGxQT8uHQiFVVFRo48aNisfjHd531xp01x4EkDuCQUtTp1oqKZLq6syAZOpUS8Fg7g5IkC7X6kiunS/Q22hDANA9xEug/xnUdw5K0owZM/Tss89q9erVmj59etp7r732miR1eB1AbqgcbqlsltTaKuXliQEJOsi1OpJr5wv0NtoQAHQP8RLoXwbNnYM1NTX6+OOPVVNTk/b6eeedJ0m6++67FY1GE6+/+uqrWr58uU444QSNGjVqv6YVQP8RDFoqKeGbSnQu1+pIrp0v0NtoQwDQPcRLoP/o13cOVlVVadWqVZKk9evXJ15bvny5JOmoo47SueeeK0maP3++7r33Xl199dWaO3duYh/HHHOMzj33XFVVVWnOnDmaNWuWduzYob/+9a8qLS3VT3/60/18VgAAAAAAAED/0K8nB1etWqWFCxemvbZ69WqtXr068bc7OdiVX/ziF5owYYKefPJJPfroowqFQjr11FN13XXXacyYMb2ebgAAAAAAAGAgsBzHcfo6Ef1dT56AxVOGcg/lnnv6y5Oldqcn9ZL6nHso89w0WOMY9Tk3Ue65Z6A8rZixGLqDMs9N/WUsNmjWHAQAAAAAAACwZ7hzEAAAAAAAAMhR3DkIAAAAAAAA5CgmBwEAAAAAAIAcxeQgAAAAAAAAkKOYHAQAAAAAAABylK+vEzBYvP3227rnnnu0Zs0atbW1acKECbr00kt1xhln9HXSkOKZZ57RqlWrtG7dOq1fv16xWEzz5s3TnDlzsm7f1NSke+65Ry+88IJ27NihYcOG6bTTTtPVV1+tgoKCDtvbtq358+frySefVHV1tUKhkI477jhdd911Gj16dNZjvPbaa/rd736nd955R5ZlafLkybrqqqt07LHH9uq556pt27bpueee0+LFi/XJJ59o586dKikp0bRp03T55Zdr6tSpHT6Tq+VOHBsYiGO5hRjWfcSwgYEYlnuIY91HHBsYiGO5JxfiGE8r7gVvvvmmLr/8cgUCAZ155pkqKCjQCy+8oE2bNulf/uVfdNlll/V1EtHu5JNP1qZNm1RWVqZQKKRNmzZ1GsjD4bC+9a1v6b333tMJJ5ygSZMm6b333tOSJUs0ZcoUzZ8/X8FgMO0zP/3pT1VVVaXx48dr1qxZ2r59u5577jkVFBRowYIFGjduXNr2zzzzjG688UaVl5cnOv2//vWvqq2t1X/8x3/o9NNP32d5kSv+7d/+Tb///e81ZswYzZgxQ+Xl5aqurtZLL70kx3F01113pQ24crXciWMDB3EstxDDuocYNnAQw3IPcax7iGMDB3Es9+REHHOwV2KxmDN79mznsMMOc959993E6w0NDc6XvvQlZ/Lkyc7GjRv7MIVI9frrryfK43e/+50zYcIE53//93+zbnv33Xc7EyZMcO6888601++8805nwoQJzgMPPJD2+htvvOFMmDDBueCCC5xIJJJ4/e9//7szYcIE57LLLkvbvq6uzjn66KOdmTNnOlu2bEm8vmXLFmfmzJnOzJkzncbGxr06XzjO3/72N2fZsmUdXl+xYoUzefJkZ/r06WnllYvlThwbWIhjuYUYtnvEsIGFGJZ7iGO7RxwbWIhjuScX4hhrDu6lN998U5999pnOOussTZo0KfF6UVGRvve97ykWi2nhwoV9mEKkOu644zRq1Kjdbuc4jqqqqhQKhXTVVVelvXfVVVcpFAqpqqoq7XX372uvvVaBQCDx+qxZszRjxgwtWbJEmzdvTrz+/PPPq6GhQRdeeKEqKysTr1dWVurCCy9UbW2tXnrppR6dJ5K+9KUvacaMGR1eP/roozVz5kzV19frgw8+kJS75U4cG1iIY7mFGLZ7xLCBhRiWe4hju0ccG1iIY7knF+IYk4N7afny5ZKkE044ocN77msrVqzYr2nC3tuwYYO2b9+uadOmKRQKpb0XCoU0bdo0ff7559qyZUvi9WXLliXey3TiiSdKStaX1P/vqu6kbo/e5/P50v7N1XInjg1OuVqfcwkxrPtpIoYNPLlan3MNcaz7aSKODTy5Wp9zzWCJY0wO7qUNGzZIksaOHdvhvYqKCoVCIVVXV+/nVGFvuWWW+bt+l/u6W/7hcFg7duzQAQccIK/X22F7t36k1oWu6k627dG7Nm/erKVLl6qiokITJkyQlLvlThwbnHK1PucKYlgSMWxwytX6nEuIY0nEscEpV+tzLhlMcYzJwb3U1NQkydzynU1hYaEaGxv3Z5LQC9wyKywszPq++7pb/t3dPrUudFV3sm2P3hOLxXTjjTcqGo3qRz/6USII52q5E8cGp1ytz7mAGJaOGDY45Wp9zhXEsXTEscEpV+tzrhhscYzJQQA5xbZt3XTTTVqxYoXOO+88ffWrX+3rJAFAtxHDAAx0xDEAA91gjGNMDu6l3c3KNjU1dfoNEPovt8zcGflM7utu+Xd3+9S60FXd2d23h+gZ27b14x//WIsWLdLZZ5+tW2+9Ne39XC134tjglKv1eTAjhmVHDBuccrU+D3bEseyIY4NTrtbnwW6wxjEmB/eS+3vxbL/n3rFjh8LhcNbfgaN/c8vM/S1/Jvd1t/xDoZAqKiq0ceNGxePxDtu79SO1LnRVd7Jtj71j27ZuvvlmLVy4UGeddZbuuOMOeTzpITBXy504Njjlan0erIhhnSOGDU65Wp8HM+JY54hjg1Ou1ufBbDDHMSYH99L06dMlSUuWLOnwnvuauw0GjnHjxmnYsGFavXq1wuFw2nvhcFirV6/WAQccoBEjRiRenzFjRuK9TK+99pqk9LrQnbqT7XHp2HNuEH/66ad1xhln6Ne//nXWxV5ztdyJY4NTrtbnwYgY1jVi2OCUq/V5sCKOdY04Njjlan0erAZ7HGNycC8de+yxGj16tBYtWqT33nsv8XpjY6MeeOAB+f3+QfH781xjWZbOPfdchcNh/ed//mfae//5n/+pcDis8847L+119++7775b0Wg08fqrr76q5cuX64QTTtCoUaMSr3/5y19WUVGRHn/8cW3dujXx+tatW/X444+rrKxMs2fP3henl1Pc276ffvppnX766brzzjuzBnEpd8udODY45Wp9HmyIYbtHDBuccrU+D0bEsd0jjg1OuVqfB6NciGOW4zjOHn0CHbz55pu6/PLLFQgEdOaZZ6qgoEAvvPCCNm3apH/5l3/RZZdd1tdJRLuqqiqtWrVKkrR+/Xq98847mjZtWuKW26OOOkrnnnuuJDOr/81vflPvv/++TjjhBB166KF69913tWTJEk2ZMkWPP/648vLy0vb/05/+VFVVVRo/frxmzZqlHTt26K9//asKCgr0P//zPzrwwAPTtn/mmWd04403qry8XGeccYYk6a9//atqa2v1m9/8Rl/+8pf3dZYMevfcc4/uvfdehUIhXXzxxfL5fB22mT17tiZNmiQpd8udODZwEMdyCzGse4hhAwcxLPcQx7qHODZwEMdyTy7EMSYHe8nbb7+t3/72t1qzZo3a2to0YcIEffvb304UEvqHm266SQsXLuz0/a997Wu64447En83Njbqnnvu0QsvvKCdO3eqoqJCp59+un7wgx9kfdS4bdt6/PHH9eSTT6q6ulqhUEjHHXecrrvuOo0ZMybrMRcvXqzf/e53evfddyVJhx12mL7//e/ruOOO28uzhbT7MpekefPmac6cOYm/c7XciWMDA3EstxDDuo8YNjAQw3IPcaz7iGMDA3Es9+RCHGNyEAAAAAAAAMhRrDkIAAAAAAAA5CgmBwEAAAAAAIAcxeQgAAAAAAAAkKOYHAQAAAAAAAByFJODAAAAAAAAQI5ichAAAAAAAADIUUwOAgAAAAAAADmKyUEAAAAAAAAgRzE5CAAAAAAAAOQoJgcBSffcc48mTpyop556qq+TAgB7jBgGYKAjjgEY6IhjGMiYHAQAAAAAAAByFJODAAAAAAAAQI5ichAAAAAAAADIUUwOIqe8/PLL+sY3vqGpU6dq5syZmjt3rj799NOs25588smaOHGiHMfRY489prPPPltTp07VP//zP0uSHMfRokWLdN111+m0007TEUccoSOPPFLnnHOO5s+fL9u20/b31FNPaeLEibrnnnvSXq+rq9MhhxyiiRMnqqqqKu299evXa+LEifrud7/bi7kAYKAihgEY6IhjAAY64hgGI19fJwDYX5544gn9/Oc/l2VZOvroo1VRUaG1a9fq3HPP1UknndTp52655RY99dRTmj59ur7whS8oFotJkqLRqK6//nqVlpbq4IMP1qGHHqq6ujqtWbNGv/jFL/SPf/xDd9xxR2I/06dPlyQtX748bf8rVqyQ4ziSpGXLluncc89NvLds2TJJ0owZM3onEwAMWMQwAAMdcQzAQEccw2DF5CBywqZNmzRv3jz5/X7df//9OvHEEyVJsVhMN998s/785z93+tkXXnhBCxcu1Pjx49Ne93q9uu+++zRr1iz5/f7E6zU1Nbriiiu0cOFCff3rX08E8NGjR2vUqFF66623FIlEFAwGJSWD9fjx47VixYq0Y7hBn0AO5DZiGICBjjgGYKAjjmEw42fFyAn/+7//q0gkojPPPDMRxCXJ7/frJz/5ifLz8zv97BVXXNEhiEuSz+fT7Nmz04K4JJWXl+v666+XZG45TzV9+nRFo1G99dZbideWL1+uL3zhCzrttNO0detWVVdXSzK3mK9YsUKFhYU69NBD9/icAQwexDAAAx1xDMBARxzDYMadg8gJK1eulCSdccYZHd4rKyvT8ccfr5deeinrZ08++eQu9/3ee+9pyZIl2rx5s1pbW+U4jpqbmyVJGzZsSNt2+vTpevrpp7V8+XLNnDlTdXV1Wr9+vc4///zENznLly/X2LFjtX79etXW1mrWrFnyer17esoABhFiGICBjjgGYKAjjmEwY3IQOWH79u2SpFGjRmV9v7PXJWnkyJFZX49Go7r55pu1aNGiTj/rBnTXzJkzJSVv7XbXhpg5c6aOOOIIBQKBxBoR3P4NwEUMAzDQEccADHTEMQxmTA4Cu+Gu45Dp4Ycf1qJFizRhwgTdcMMNmjx5soqLi+X3+/Xpp5/q9NNP7/CZ0aNHa8SIEYk1Ity1IWbOnKlgMKgjjjgisUYEgRxAbyCGARjoiGMABjriGPo71hxETqioqJBkFpHNZvPmzXu8zxdffFGS9O///u/6p3/6Jw0ZMiSxVsTnn3/e6edS14hYvny5Dj74YJWXl0syQXvr1q3asGGDVqxYoYKCAk2ePHmP0wZgcCGGARjoiGMABjriGAYzJgeRE44++mhJ0vPPP9/hvbq6Or3++ut7vM+GhgZJUmVlZYf3nnvuuU4/535r8+KLL2r9+vWJ28JT33v88cdVW1uro446irUhABDDAAx4xDEAAx1xDIMZk4PICXPmzFEgENBf/vIXLV26NPF6LBbTvHnzFA6H93if48aNkyQ98cQTaa8///zzeuaZZzr9nBu4n3zySTmOk3aLt7tGxJNPPilJiUfWA8htxDAAAx1xDMBARxzDYMbkIHLC6NGjddNNNykWi+k73/mOLrroIv3whz/Uaaedppdffllf+cpX9nifl19+ubxer+666y7NmTNH119/vb7+9a/r2muv1SWXXNLp58aMGaPKykpFIhFZlpUWyN01IiKRiCSlfQMEIHcRwwAMdMQxAAMdcQyDGZODyBkXXHCB7rvvPk2ZMkVvv/22lixZokMOOUQLFizQ2LFj93h/06dP13//93/rmGOO0caNG/V///d/8vv9uueee3TBBRfs9rOS0taGcLmBPRQKsTYEgARiGICBjjgGYKAjjmGwshzHcfo6EQAAAAAAAAD2P+4cBAAAAAAAAHIUk4MAAAAAAABAjmJyEAAAAAAAAMhRTA4CAAAAAAAAOYrJQQAAAAAAACBHMTkIAAAAAAAA5CgmBwEAAAAAAIAcxeQgAAAAAAAAkKOYHAQAAAAAAAByFJODAAAAAAAAQI5ichAAAAAAAADIUUwOAgAAAAAAADmKyUEAAAAAAAAgR/3/z8fmyQst/o4AAAAASUVORK5CYII=\n",
"text/plain": [
- ""
+ ""
]
},
"metadata": {},
@@ -643,7 +716,7 @@
}
],
"source": [
- "trace.sample_stats[\"tree_depth\"].plot(col=\"chain\", ls=\"none\", marker=\".\", alpha=0.3);"
+ "idata.sample_stats[\"tree_depth\"].plot(col=\"chain\", ls=\"none\", marker=\".\", alpha=0.3);"
]
},
{
@@ -653,7 +726,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAAHrCAYAAAAe4lGYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAAxCklEQVR4nO3de5yf44H//3fkQM4iQiIOrdQkIdIKTVERxKFVXW2qVNOqUqcVi7Lhu9Sh1Wq3u7otRUvXbkLFoUt1FyWxkhChcqg4RMQxJ0kkksmBHD+/P/xm1piJTJhLqOfz8fDH3J/7c891T65HvObO9bnvZpVKpRIAAKDJbbapBwAAAH+rxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2QBPq2bNnevbsuamH8bH17W9/Oz179syjjz66qYcCkERsAwBAMWIbAAAKaVapVCqbehDA34Ynnngi9957bx577LHMnTs3S5YsSYcOHdK3b98cd9xx2XfffRt834svvpj//M//zCOPPJJXX301zZs3T9euXdO/f/9885vfTFVVVZ39lyxZkhEjRuSBBx7Iyy+/nNWrV6dLly7p06dPBg8enIEDB9bZf82aNbnjjjty11135dlnn82KFSuyzTbbZMCAATn11FPTrVu3Ovs/+uijOe6449K/f//89re/zTXXXJN77rknr776ajp27Jj9998/Z555Zrbddtva91x55ZW56qqr1vuzGT16dLbffvusXr06d999d8aOHZunnnoq8+fPz5o1a9KtW7cMGDAgJ510Up3j1vj2t7+dxx57LMOHD0+HDh3y61//On/5y1+yfPny7LjjjjnqqKPy3e9+N82aNWvw+z/yyCO5+eabM2XKlCxatCjt2rVL9+7dM3DgwHz7299Op06d6v2Z3HDDDRk/fnzmzZuXVq1apVevXjn66KNz5JFHrvc8G+Pt59K8efNcf/31mTJlShYvXpyf/OQnGTx4cJYtW1b7c5o+fXrmz5+fJNlhhx1y0EEH5cQTT0yHDh1qj1nzZ7Y+l19+eQYPHlz79ZIlS/Kf//mfGT16dF555ZWsW7cuO+64Y774xS/mu9/9blq3bv2+zhGghtgGmszxxx+fRx99NJ/61KfSrVu3tG7dOjNnzsxTTz2VJPmnf/qnfOc736nznj/96U/5p3/6p6xatSrbbbdddt9996xbty4zZ87Ms88+m9NPPz1nnHFG7f7Tpk3LySefnHnz5qV9+/bp169f2rZtm7lz5+aZZ55J3759M2LEiNr9ly1bltNOOy2PPfZY2rRpkz59+qRTp06ZPn16XnzxxWy55Za54YYbsuuuu9a+pybc9thjj1QqlTz77LPp379/WrdunYkTJ2bBggXp0qVLbrzxxnziE59IkowaNSqjRo3KHXfckST56le/Wuc8hw0blq222iqvvvpqBg4cmPbt26dHjx7p2rVr3njjjTzzzDOZP39+ttpqq4wcOTI77bRTnffXBOrJJ5+cG264ITvuuGN69eqVBQsWZOLEiVm7dm2OO+64XHDBBfX+XC677LLan0nv3r2z8847Z+nSpXnxxRczc+bMDB8+PJ/73Odq97/nnnty3nnnZeXKldl5553To0ePLF26NE888URWrFiRwYMH5/LLL2/0vHinmnP55je/mZEjR2bnnXdOz549s2TJknz1q1/NEUcckccffzxDhgzJVlttlU9+8pPZdtttU11dnSeffDKLFy/OTjvtlFtuuaX2l4Tnn38+1113XcaNG5fXXnst++23X7p06VL7PY866qjstddeSZIZM2bke9/7XubOnZsuXbqkV69eadGiRaZOnZrXXnstvXv3zogRI9K+ffv3fI4AtSoATeTBBx+szJs3r972SZMmVfr161fZbbfdKq+++mrt9qlTp1Z22223Ss+ePSvDhw+vrF27ts77Zs2aVZk6dWrt18uXL68MHDiwUlVVVRk2bFhl2bJldfavrq6uPPzww3W2ff/7369UVVVVTjnllMprr71W57UbbrihUlVVVTn00EMra9asqd0+YcKESlVVVaWqqqpyyCGHVGbPnl372ptvvlk544wzKlVVVZWjjz663rnWvG99li5dWhk1alRl5cqVdbavWrWq8q//+q+VqqqqykknnVTvfd/61rdqj33zzTfXeW38+PGVnj17Vnr37l2ZO3dundeGDx9eqaqqqvTv37/yyCOP1DvuX//618qcOXNqv542bVqlT58+ld13373y5z//uc6+s2bNqhxxxBGVqqqqyh133LHec9yQt5/LjTfe2OA+c+fOrYwfP77enFixYkVl2LBhlaqqqsoll1yy3mNPmDChweO+8cYblYMPPrhSVVVV+cUvflHnz2HFihW18+X8889/z+cH8HbWbANNZuDAgdlmm23qbd9jjz0yZMiQrF69OqNGjardfs0112T16tX51re+lW9/+9vZbLO6fyV17949ffr0qf36tttuy9y5c9O7d+/85Cc/Sdu2bevs3759+zpLVZ5//vn8z//8T7bZZpv8y7/8Szp37lxn/+OPPz4DBw7MSy+9lLFjxzZ4TsOGDct2221X+/Xmm2+eiy++OK1bt86UKVMyadKkRvxk/k+7du0yaNCgtGrVqs72li1b5vvf/3622WabjBs3LsuWLWvw/Yceemi+8Y1v1Nm2zz77ZL/99svatWszYcKE2u1r1qzJ1VdfnST50Y9+lL333rve8fr27VtnGc21116bVatW5ayzzsqhhx5aZ9/u3bvnxz/+cZJk+PDhG3HWDdt7770zZMiQBl/r2rVr9tlnn3pzonXr1rnkkkvSokWL3HvvvRv9Pe+444688sorOfDAA3PWWWfV+XNo3bp1fvjDH6Zz58656667smTJko0+PsA7tdjUAwD+trz++usZM2ZMpk+fnurq6qxZsyZJ8tJLLyV5ay1wkqxduzbjx49Pkhx99NGNOva4ceOSvLUkoHnz5hvcf8yYMalUKtl///3Trl27Bvfp379/xowZk8mTJ+fAAw+s81qHDh0yaNCgeu/p3LlzBgwYkPvuuy+PPfZY+vXr16jxv920adPyyCOPZNasWVmxYkUq//+KvrVr12bdunV55ZVX6ixtqfHOMdbo0aNHxo0bV7u2OUmeeuqpLFq0KJ06dcohhxyywTGtW7eu9peOww8/vMF9dt9997Rp0ybPPPNMVq5cmc0333yDx12fww47bIP7TJo0KY8//njmzp2bN998s/bn1LJlyyxatChLlixJx44dG/09x4wZkyT54he/2ODrbdu2TZ8+fTJmzJhMnTo1++23X6OPDdAQsQ00mVtvvTWXX355VqxYsd59li9fniRZvHhx7X6f/OQnG3X8OXPmJEl23nnnRu0/c+bMJMntt9+e22+//V33XbRoUb1t3bt3X+8HDrfffvskyauvvtqosdRYsWJFhg0blvvvv/9d91vfle13fpizRs0vEytXrqzdNnv27CRv/XzXdx5vt3jx4trv+84Pma5v/4Y+zNlY3bt3X+9rCxcuzBlnnJGJEye+6zGWLVu2UbFdMyeGDRuWYcOGveu+Dc0JgI0ltoEm8eSTT+aiiy5K8+bNc+655+aggw6q/ZBks2bNcsstt+Siiy6qvTL5QVi3bl2Stz4U2KtXr3fd99Of/vR7+h4bez5XXHFF7r///uy8884555xzsvvuu6dTp061yxm+8Y1vZPLkyes97juXVTSlmp9XUv8Dng1p2bLl+/p+W2yxxXpfu+CCCzJx4sTsscceOeOMM9KrV6906NCh9nvut99+WbBgwUb//GvOccCAAdl6663fdd+3Lx8CeK/ENtAk7r333lQqlXzrW9/KSSedVO/1mmUkNbbccsu0bt06b7zxRl588cV6t/drSLdu3fL888/nhRdeWO9tBN+5f5L069cvF110UeNO5G1qrgy/22tdu3bdqGPec889SZJf/OIXDf4C8M6f0/tRE4svvfRSKpXKBq9ud+rUKVtssUXefPPN2runbAorVqzI2LFjs9lmm+W3v/1tnVv81bz+2muvvadjd+vWLS+88EKOOuqofOELX2iK4QK8Kx+QBJpEzYfJGroauHLlytx33311tjVv3rw2mG+99dZGfY8BAwYkSf7whz9k7dq1G9x///33T5I88MADdZZXNFZ1dXUeeOCBetsXLVpUu368f//+dV6rufJas1b9nWp+Tg0toRg3blxef/31jR7n+tTc5nDRokV1Ppi6Pm//M6n5pWBTWLp0adauXZt27drVC+0kueuuu9Z7Rbvm57+++VEzJzbl+QEfL2IbaBI9evRIktx555111huvXLkyl1xySWbNmlXvPaeeempatGiRm266KTfddFO9gJo9e3aefPLJ2q+//vWvp2vXrnn66adz4YUX1lsbvmzZstoPXSbJrrvumsMOOyxz587N0KFDGxzDihUrctddd633SunPfvazOuuyV61alUsvvTQrVqxI3759s+eee9bZv2YN84wZMxo8Xs1687ffCzxJXnjhhVx88cUNvue9atGiRU499dQkyQ9+8IP85S9/qbfPE088Uef8hg4dmpYtW+bnP/957rjjjjpLS2pMnz693i9PTWnrrbdOx44dU11dnTvvvLPOa1OmTMkVV1yx3vfW/Pyfe+65Bl8/+uij071799x77735+c9/3uDa+AULFjT6F0CADfFQG6BJVFdX5ytf+Upmz56dLbfcMnvttVeaN2+exx9/PG+++Wa+9rWvZfjw4fnqV7+an/70p7Xvu/POO3PhhRdm9erVtbf6q1QqmTlzZqZNm1bvoTZPP/10Tj755CxYsCAdOnRIv3790qZNm3d9qM3QoUPzyCOPpGXLlunVq1e23377VCqVzJ49O9OmTat9qmPNLwxvf6jNunXrMn369Oy9997ZYostMnHixMyfPz+dO3fOjTfeWO/Dmj/72c/y7//+7+nUqVP23nvv2tsTnnvuuenUqVPuu+++/MM//EMqlUqqqqqyyy67ZOHChZk4cWL23HPPrFy5MpMnT673oJm3P3Xx7dtr1DzBcujQoXV+XpVKJZdccklGjhyZ5K1fQD75yU9m2bJleeGFF9b7UJv/9//+X95444107do1n/rUp9KpU6csWbIk06dPz6uvvprDDz88v/jFL97TXNnQuSTJf/zHf9Q+OOfTn/50dthhh8yZMyeTJ0/O3/3d3+Xxxx/P7Nmza5/MWePBBx/MKaeckpYtW2a//fbLVlttlWbNmuVrX/ta7V1jnnvuuZxyyimZPXt2OnTokJ49e2bbbbfNm2++mZdeeinPP/98OnfunIcffvg9nR/A21mzDTSJDh065Pbbb8+VV16Zhx56KGPHjs2WW26Zz3/+8xk6dOh67yrxla98JX369MkNN9yQCRMm5H//93+z+eabZ9ttt82QIUPq3aJt1113zV133ZXhw4dn9OjReeyxx7Ju3bp06dIlBx10UJ1Hcidv3aXj3//933P33XfnrrvuylNPPZVp06albdu22WabbfLlL385gwYNyo477lhvbC1btsxvfvObXHXVVfnzn/+cefPmpWPHjhk8eHD+4R/+ocE7g5x11lnZbLPNcv/992fUqFFZvXp1kuS0005Lp06dcuihh+bGG2/MVVddlWnTpmXmzJnZYYcdMnTo0Jxwwgk58cQT3+sfQYOaNWuWSy+9NIMGDcrIkSPz17/+Nc8991zat2+f7bffPl/5ylfSs2fPOu/54he/mN133z0jRozI+PHjM2nSpKxduzZbb711dtxxxwwZMqT4eufjjz8+22+/fa6//vo8//zzee6557LzzjvnoosuyrHHHtvgLRmT5IADDshll12Wm2++ORMmTMgbb7yRJNlzzz1rY3uXXXbJXXfdlZEjR2bUqFF59tlnM2XKlGy55Zbp2rVrTjjhhEbdKhGgMVzZBniHmivb/fv3r7fcAwA2hjXbAABQiNgGAIBCrNkG4D07//zzG73vwQcfnIMPPrjgaAA+fKzZBuA9e+eHK9/NO++UAvBxILYBAKAQa7YBAKAQsQ0AAIU0+gOSr7/+eslx8DegY8eOWbJkyaYeBh9y5gmNYZ7QGOYJjVFynnTq1GmD+7iyTZPZbDPTiQ0zT2gM84TGME9ojE09T8xSAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCEtNvUAAAD4eLh/dKXJjnXIoGZNdqySXNkGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAACmmxqQcAAPBR9sILL+T666/PpEmT8sYbb2T77bfPl7/85Rx99NHZbLONu665atWqjBw5MqNGjcrMmTOzZs2abL311vnsZz+b73znO+nevXud/efOnZtx48Zl/PjxmT59epYsWZJ27dqld+/eGTx4cPbff/+mPFXeA7ENAPAeTZ06NUOHDs3KlSuz6667plu3bpkyZUr+7d/+LVOnTs1ll12WZs2aNepYK1euzOmnn54nn3wy7du3zx577JFWrVrl2WefzV133ZVRo0bl6quvTq9evWrfc/HFF+eJJ55Iq1atsttuu6Vz586ZM2dOJkyYkAkTJuQb3/hGzjrrrEJnT2OIbQCA92DNmjW5+OKLs3Llypx55pk59thjkyQrVqzImWeemdGjR2efffbJEUcc0ajj3XnnnXnyySez66675le/+lXatWuXJFm7dm1+8Ytf5Pbbb88vf/nLXHPNNbXv2WabbXLOOefk8MMPT9u2bWu3P/zwwxk2bFhGjhyZffbZJ5/73Oea8MzZGNZsAwC8Bw8++GDmzJmTXXbZpTa0k6RNmzY555xzkiQ333xzo483ZcqUJMmxxx5bG9pJ0rx585x88slJkqeffrrOey677LJ8/etfrxPaSfL5z38+X/7yl5Mk9913X+NPiibnyjYAkCSZM2dOBg8enD322CNXXHFFfvOb3+SBBx7IkiVLstNOO+Wkk07KgAEDkiSjR4/OTTfdlBdeeCGtW7fOwQcfnNNPPz1bbLFFnWO++eabueWWWzJ69OjMnDkzSbLzzjtn8ODB+dKXvlRvDFOmTMmoUaMyefLkzJ8/P6tWrUrXrl2z//7757jjjkv79u3r7D9x4sScfvrpOfzww3PmmWfm2muvzdixY1NdXZ0ddtghxx57bG10NrXx48cnSQ488MB6r/Xq1Svdu3fP888/nzlz5mS77bbb4PFatmy5wX06duzY6PF96lOfSpK89tprjX4PTc+VbQCgjjVr1mTo0KH585//nD59+mS33XbLjBkzcv755+exxx7LzTffnIsuuiht2rTJ5z73uaxbty633XZbfvKTn9Q5zqJFi/K9730v11xzTRYuXJg99tgjn/nMZ/Lyyy/nRz/6Uf7lX/6l3ve+8sor86c//Smbb7559tprr+y1115Zvnx5RowYkVNOOSUrVqxocMzLli3LSSedlIceeiif+cxn0rdv37z88sv58Y9/nD/+8Y9Ffk7PPfdcktRZQ/12PXv2TJLMmDGjUcerWepx8803Z9myZbXb165dm9/+9rdJslG/OMyZMydJ0rlz50a/h6bnyjYAUMfUqVOz11575b/+67/SunXrJMl///d/57LLLss///M/p7q6Otdff3169+6dJFmwYEGOO+643HfffTnllFNq75hx2WWXZcaMGTnmmGNy+umnp1WrVkmShQsX5txzz83tt9+ez3/+89lnn31qv/eJJ56Yvn371llGsWrVqlxxxRW58847c/PNN+fEE0+sN+axY8fmkEMOyQ9+8IPa7zNmzJicd955ueGGG3LkkUfW2f+0007L5MmTN+rncuGFF9ZZfz1v3rwkSZcuXRrcf5tttkmSvPrqq406/he+8IVMmDAh999/f7761a+mb9++adWqVaZNm5ZFixZlyJAhOeGEExp1rKVLl+aee+5Jktp/jWDTENsAQB2bbbZZhg0bVhvaSXL44YfnqquuyqxZs/Ld7363NrSTt2LzsMMOy8iRIzN58uR0794906dPz/jx47PrrrvmzDPPrHMLvM6dO+f888/Pd77znfzXf/1Xndjed999642nVatWOeuss/KnP/0pY8eObTC227Ztm3PPPbc2tJNk4MCB6dGjR4NLOfbZZ59069Zto34u22+/fZ2va66yv3PpTI2a7eu7Gv9OzZs3zyWXXJJtt902N954Yx5++OHa13r27JnPfvazad68eaOO9bOf/Syvv/56+vTpkwMOOKBR76EMsQ0A1NGtW7fsuOOOdbZtttlm6dq1axYvXtzgnS1qrmYvXLgwSfLoo48mSfbff/8G7zXds2fPtGnTpt4H/pJk/vz5eeihh/Lyyy9n+fLlWbduXZK31jTXrPt+p169ejW4nnmHHXbI888/n4ULF9aJ7eOOO67B42xK1dXVOe+88/LMM8/k7LPPzoEHHpgtttgiU6ZMyb/+67/m+9//fi699NIccsgh73qc4cOHZ9SoUenQoUMuvfTSRt96kDLENgBQx/qWRdRc6W7o9ZrXVq1aleSth60kybXXXptrr712vd9r5cqVdb7+/e9/n6uvvjpr1qzZqDHXLNl4pzZt2tQZV1Nq06ZNqqur8+abbzb4es32mjFsyL/9279l8uTJOeuss3LMMcfUbt9///3TpUuXnHDCCfnVr36VAw88MC1aNJxw99xzT6655pq0bt06V1xxRb2H4PDBE9sAQB0buhLamCullUolSfLpT3+60cH35JNP1t5f+uyzz06/fv3SuXPn2qUhRxxxxHrvrLGxV2+HDx+el156aaPe83d/93f5zGc+U/v1tttum+rq6ixYsCC77LJLvf3nz5+fJOnatesGj7127drcf//9SZKDDjqo3uu9e/fOdtttl9mzZ2f27NnZaaed6u3z0EMP5bLLLkuLFi3y05/+NH369GnsqVGQ2AYAmlzN1e/9998/Q4YMadR7HnzwwSTJqaeeWu+2gG+++WbtEpWm8Mgjj2z0ByT79etXJ7Z32WWXPPfcc5k2bVqDa82fffbZJP93C7538/rrr2f16tVJUu+e2TVqti9durTea5MmTcoFF1yQJLn00ks9xOZDRGwDAE2uf//++e1vf5sxY8Y0OrZrIrKhJSEPPPBA7dXypvD2pzC+V/vuu2/uvvvu/O///m+9u4Q8++yzmT17dnr06NGoe2x36NAhLVu2zOrVqzNt2rTsueeedV5fvnx5XnnllST1r5RPmzYt//iP/5hVq1blggsuaPDKOJuO+2wDAE2uT58+6d+/f5544on8/Oc/z/Lly+vt89xzz+WRRx6p/brmQ5l33XVXnTXbL774Yn7961+XH/RGOuCAA7Lddtvlueeeq/OkyDfeeKP2HuJvf7JkjaFDh+aYY47JU089VbutVatW2XvvvZMkv/zlL+ssl1m5cmX++Z//OW+++Wb69u2brbfeuva1l19+OWeffXaWL1+es88+u9GPhueD48o2AFDEJZdckrPOOit/+MMfct9992WXXXbJ1ltvneXLl2fGjBmZN29ejjnmmNpb/x1xxBH5/e9/n4ceeihHH310evfunerq6kyePDkDBw7MU0891eh7Vn8QWrRokUsuuSRnnHFGfvnLX2bUqFHp2rVr/vrXv+a1117LQQcd1OBTMmfNmpVXX3213gcrzzzzzDz11FOZPn16jj766Oy+++7ZfPPN88wzz2TBggXp0KFDzjvvvDrv+cEPfpDXX389nTp1yrRp0/LDH/6w3vf7xCc+8aG8+8rHhdgGAIrYaqutct111+WPf/xj7r///kyfPj1Tp07NVlttle222y5HH310ndvYdezYMTfccEOuuuqqTJ48OQ899FC6deuWk08+OUOGDMnXvva1TXg2Devbt29uuOGGXHfddZk0aVJmzJiR7t27Z8iQITnmmGM26oOb22+/fUaMGJERI0bkkUceyZQpU1KpVLLNNtvkqKOOynHHHVdviU11dXWSt9Z833333Q0ed4899hDbm1CzSiMXQL3++uulx8JHXKdOncwTNsg8oTHMExrDPPnouX900627P2RQ436RKTlPOnXqtMF9rNkGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIS029QAAAGg694+uNNmxDhnUrMmO9XHlyjYAABQitgEAoBDLSAAAaFBTLkn5uHJlGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgkBabegAAAO90/+jKBvdp23Zlli/f8H5JcsigZu93SPCeuLINAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABTiPtsAAJtQY+4pzkeXK9sAAFCI2AYAgELENgAAFCK2AQCgEB+QBADYCD7QyMYQ2wDA+yZAoWFiGwD4m+eXATYVa7YBAKAQV7YB4GPK1V4oz5VtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIWIbAAAKEdsAAFCI2AYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQlps6gEAAI1z/+jKph4CsJFc2QYAgELENgAAFCK2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiNgGAIBCPEESAN6mqZ/SeMigZk16POCjRWwD8JHmEebAh5nYBoCC/DIAH2/WbAMAQCFiGwAAChHbAABQiNgGAIBCxDYAABQitgEAoBCxDQAAhbjPNgAfuA3de7pt25VZvtz9qYGPPle2AQCgELENAACFiG0AAChEbAMAQCFiGwAAChHbAABQiFv/AbBBG7pVHwANc2UbAAAKEdsAAFCI2AYAgEKs2Qb4kGjqddGHDGrWpMcDYOO5sg0AAIWIbQAAKMQyEoC/UW7XB7DpubINAACFiG0AACjEMhKA98gyDQA2xJVtAAAoRGwDAEAhYhsAAAoR2wAAUIgPSAIfaj6ECMBHmSvbAABQiCvbQJN7t6vRbduuzPLlrlYD8PEgtuEjyNIKAPhosIwEAAAKEdsAAFCIZSSwHpZqAADvlyvbAABQiCvb/E1xNRoA+DBxZRsAAAoR2wAAUIhlJGwUDysBAGg8sf0h1NTrjg8Z1KxJjwcAQOOI7Sbig3kAALyT2P4Y8IsAAMCm0axSqSgx3relS5dm4sSJ2XPPPdO+fftNPRw+pMwTGsM8oTHMExrjwzBP3I2EJrFs2bKMGTMmy5Yt29RD4UPMPKExzBMawzyhMT4M80RsAwBAIWIbAAAKEds0iXbt2mXgwIFp167dph4KH2LmCY1hntAY5gmN8WGYJz4gCQAAhbiyDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUEiLTT0APpyeeOKJXHnllZk8eXLWrFmTqqqqHH/88Tn88MM3+N5KpZKxY8fmgQceyKRJkzJnzpysWbMmO+20Uw4//PB897vfzeabb/4BnAUfhPczVxqyZMmSHHHEEZk/f37222+//O53v2viEbMpNNU8WbhwYX7zm9/kwQcfzNy5c9OmTZt84hOfyJFHHplvfvObhUbPB6Up5sm8efNy3XXXZfz48ZkzZ07atGmTnXbaKcccc0y+/OUvp3nz5gXPgNL++Mc/ZuLEiXnyySczffr0rF69OpdffnkGDx68UcdZt25dbrrpptx66615+eWX06ZNm+y77745++yzs8MOOzTpmN36j3omTJiQ733ve2nVqlW+9KUvpW3btrnvvvsye/bsnHfeeTnhhBPe9f0rV65M375906pVq/Tv3z9VVVVZtWpVHnroobz00kvZfffdM2LEiLRu3foDOiNKeb9zpSHnnHNOHnjggaxYsUJs/41oqnnyzDPP5IQTTkh1dXUGDhyYHj16ZMWKFXn++efTsmXLXHfddYXPhJKaYp7MnDkzX//617N48eLst99+6dmzZ5YtW5bRo0dnwYIFGTx4cC6//PIP4Gwo5aCDDsrs2bPTqVOntGnTJrNnz35PsX3hhRfmtttuyy677JKBAwdm/vz5ueeee9K2bdvccsst+cQnPtF0g67A26xevbpy8MEHV/r06VN5+umna7dXV1dXDj300Mpuu+1WmTVr1rseY9WqVZWrr766snjx4nrbTznllEpVVVXluuuuKzJ+PjhNMVfe6d57761UVVVVbrzxxkpVVVXlhBNOaOph8wFrqnmydOnSygEHHFDZe++9K88880yD34ePrqaaJxdffHGlqqqq8h//8R91ti9ZsqRywAEHVKqqqjb67yU+XB5++OHaP8Pf/OY3laqqqsof/vCHjTrGI488UqmqqqoMGTKksnLlytrtDz74YJH/91izTR0TJkzIK6+8kiOOOCK9e/eu3d6+ffuceuqpWb16de644453PUbLli1z2mmnpWPHjvW2n3LKKUmSv/zlL00/eD5QTTFX3m7RokW55JJLcuSRR2bgwIElhswm0FTz5Pe//33mzJmTc845J7169ar3eosWVkV+lDXVPJk5c2aS1Ps7pEOHDunXr1+S5PXXX2/CkfNB23fffdO9e/f3dYzbbrstSXLmmWemVatWtdsHDhyY/v3756GHHsqcOXPe1/d4O7FNHY899liSZL/99qv3Ws229xPKNf9DtGbuo6+p58rFF1+c5s2b54ILLmiaAfKh0FTz5O67706zZs1y2GGH5YUXXsiIESNy3XXXZfTo0Vm1alXTDpoPXFPNk6qqqiTJmDFj6myvrq7O5MmT06VLl3zqU596v8PlI+7RRx9NmzZtan8Be7sBAwYk+b852RRcCqCOl156KUmy00471XutS5cuadOmTV5++eX3fPw//OEPSZLPf/7z7/kYfDg05Vz54x//mPvuuy+//vWv07FjxyxdurQph8om1BTzZNWqVZk+fXq22mqrjBgxIldeeWXWrVtX+/oOO+yQX//61+nZs2eTjp0PTlP9fXLiiSfmgQceyOWXX55x48bVWbO9xRZb5KqrrsoWW2zR1MPnI2TFihVZsGBBqqqqGrzwVzMH30/rvJMr29SxbNmyJG/9011D2rVr955DaMyYMbnlllvSo0ePfP3rX3/PY+TDoanmyrx58/LjH/84RxxxRA4++OAmHSObXlPMkyVLlmTt2rVZvHhxrr766vzjP/5jxo8fn7Fjx+bv//7vM2vWrJx22mlZuXJlk4+fD0ZT/X2y9dZb55ZbbsmAAQMybty4XH/99Rk5cmSWLl2ar3zlKw0uQeLjpWYetWvXrsHXa7Y35UUfsc0H4oknnsjZZ5+d9u3b55e//GWdNVJ8vF144YVp0aKF5SOsV81V7LVr1+bYY4/NCSeckM6dO2fbbbfNmWeemS984QuZPXt27r333k08Uja1l19+Occee2wWLVqUm266KZMmTcqYMWNy+umn5+qrr87xxx+ftWvXbuph8jEjtqljQ7/RLVu2bL1XHtZn6tSpOfHEE7PZZpvl+uuvzy677PK+x8mm1xRz5Y477sjYsWNz0UUXZauttmryMbLpNcU8efvrBx10UL3Xa7Y9+eST73WYbGJN9f+e888/P3PmzMm1116bvfbaK23btk3Xrl1z8skn51vf+lYmT56c//mf/2nSsfPRUjOPav415Z029K8s74XYpo6a+0o2tFZpwYIFWbFiRYNr6tZn6tSpOeGEE7Ju3br87ne/S9++fZtqqGxiTTFXnn766SRvfSK8Z8+etf8NGjQoSfLQQw+lZ8+eOfLII5t28HxgmmKetGnTJttuu22St+4q8U412ywj+ehqinmybNmyTJo0KT169EiXLl3qvf65z30uyVv3a+fjq02bNunSpUtmzZrV4L9y1MzBjWmdDRHb1PHZz342yVuR804122r22ZCa0F67dm2uv/76fPrTn266gbLJNcVc2WOPPXLUUUfV+6/maXFdu3bNUUcdlUMOOaSJR88Hpan+Ttl7772TJDNmzKj3Ws2293s7MDadppgnq1evTrL+W/stWrQoSSxjJP3798+KFSsyadKkeq+NGzcuSeNbp1Ga9K7dfOStXr26MmjQoHd9sMDMmTNrt8+bN68yY8aMSnV1dZ3jTJ06tbLXXntVPvOZz1Qef/zxD2z8fHCaaq40ZObMmR5q8zeiqebJxIkTK1VVVZUvfelLlSVLltRunz9/fmXAgAGVXr16VV544YXyJ0QRTTVPDjvssEpVVVXl1ltvrbN9yZIllS984QuVqqqqysMPP1z2ZPjAbOihNgsXLqzMmDGjsnDhwjrbP+iH2nhcO/VszCNzzz///Nxxxx11HpW6ePHiHHrooVmyZEkGDBjQ4BXt9u3b5/jjj/+gTolC3u9cWZ9Zs2Zl0KBBHtf+N6Kp5slPf/rT3HDDDenWrVsOPPDArFmzJqNHj87ChQvz/e9/v/ahWXw0NcU8GTNmTP7+7/8+a9asyT777JPevXunuro6DzzwQBYtWpTDDjssv/rVrzbF6dFEbrvttkycODFJMn369Dz11FPp169f7bKPPffcs/aOZ1deeWWuuuqqDB06NGeccUad47zzce0LFizI3XffnbZt22bkyJH55Cc/2WRjdp9t6tl7773z+9//Pr/61a9y9913Z82aNamqqsq5555b+8/772bZsmVZsmRJkrf+Oabmn2Ternv37mL7b8D7nSt8PDTVPDn//PNTVVWVm266KXfccUeaNWuW3r1759JLL7XU6G9AU8yTgQMH5uabb87vfve7TJw4MX/5y1/SqlWr9OjRI6effnqOPfbYwmdBaRMnTqz3NNFJkybVWRLSmNsL//CHP0xVVVVuvfXWDB8+PG3atMkhhxySs88+OzvuuGOTjtmVbQAAKMQHJAEAoBCxDQAAhYhtAAAoRGwDAEAhYhsAAAoR2wAAUIjYBgCAQsQ2AAAUIrYBAKAQsQ0AAIWIbQAAKERsAwBAIf8fkywNYcbRwIMAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlcAAAGxCAYAAABPzpOGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA4kElEQVR4nO3dfXzP9eL/8efYxDDN5ZiryGcuRq6ai4bkokM6xSkRkRUSherQOZXq1O9Up3OUKJFSLnKZ4jgU4xhztbK5NmZMzDBsZptdv39/9P18jo/PZ7PxmqHH/Xbzx94Xr/fr/drb5/Pc6/16v94elmVZAgAAgBGlSroCAAAAtxPCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhWAfAUEBCggIKCkq/G79dRTTykgIEDbt28v6aoAKALCFQAAgEGEKwAAAIM8eHEz4N7u3bv1448/KiIiQgkJCbpw4YJ8fHzUokULDRkyRB07dnS739GjR/XNN99o69atOnXqlEqXLi0/Pz8FBQXpySeflM1mc9r+woULmjt3rtavX69jx44pOztb1apVU2BgoPr166cuXbo4bZ+Tk6Pvv/9eK1as0MGDB5Wenq7q1aurU6dOeu6551SzZk2n7bdv364hQ4YoKChIM2fO1PTp07V69WqdOnVKlSpVUufOnTV27FjVqFHDsc/UqVM1bdq0fNtm3bp1ql27trKzs7Vq1Spt3LhR+/bt05kzZ5STk6OaNWuqU6dOGj58uFO5dk899ZQiIiI0Z84c+fj46NNPP9XPP/+stLQ01a1bV4899piGDRsmDw8Pt8ffunWrFixYoJ07d+r8+fOqUKGC/P391aVLFz311FPy9fV1+Z3Mnj1bW7Zs0enTp1WmTBk1btxY/fv31yOPPJLveRbG5edSunRpzZo1Szt37lRycrL+/ve/q1+/fkpNTXW006FDh3TmzBlJUp06dfTAAw/omWeekY+Pj6NM++8sP++995769evn+PnChQv65ptvtG7dOv3666/Ky8tT3bp11atXLw0bNkzlypW7rnMEUDSEKyAfTz/9tLZv3667775bNWvWVLly5XT8+HHt27dPkvTXv/5VQ4cOddrn3//+t/76178qKytLtWrVUvPmzZWXl6fjx4/r4MGDGj16tF544QXH9tHR0RoxYoROnz6tihUrqnXr1ipfvrwSEhJ04MABtWjRQnPnznVsn5qaqlGjRikiIkLe3t4KDAyUr6+vDh06pKNHj+rOO+/U7Nmz1bRpU8c+9i/qVq1aybIsHTx4UEFBQSpXrpx27NihxMREVatWTfPmzVP9+vUlSaGhoQoNDdX3338vSerbt6/TeU6YMEGVK1fWqVOn1KVLF1WsWFENGzaUn5+fLl26pAMHDujMmTOqXLmyFi5cqHr16jntbw8kI0aM0OzZs1W3bl01btxYiYmJ2rFjh3JzczVkyBC99tprLr+Xd99919EmTZo0UYMGDXTx4kUdPXpUx48f15w5c9SuXTvH9qtXr9bEiROVmZmpBg0aqGHDhrp48aJ2796t9PR09evXT++9916hr4sr2c/lySef1MKFC9WgQQMFBATowoUL6tu3r/r06aNffvlFgwYNUuXKlXXXXXepRo0aSklJ0d69e5WcnKx69epp0aJFjlAYGxurL774Qps2bdLZs2cVHBysatWqOY752GOPqW3btpKkw4cP69lnn1VCQoKqVaumxo0by9PTU3v27NHZs2fVpEkTzZ07VxUrVrzmcwRQRBYAtzZs2GCdPn3aZXlkZKTVunVrq1mzZtapU6ccy/fs2WM1a9bMCggIsObMmWPl5uY67XfixAlrz549jp/T0tKsLl26WDabzZowYYKVmprqtH1KSoq1efNmp2UvvfSSZbPZrJEjR1pnz551Wjd79mzLZrNZPXv2tHJychzLt23bZtlsNstms1k9evSw4uPjHesyMjKsF154wbLZbFb//v1dztW+X34uXrxohYaGWpmZmU7Ls7KyrH/961+WzWazhg8f7rLf4MGDHWUvWLDAad2WLVusgIAAq0mTJlZCQoLTujlz5lg2m80KCgqytm7d6lLurl27rJMnTzp+jo6OtgIDA63mzZtbP/30k9O2J06csPr06WPZbDbr+++/z/ccr+byc5k3b57bbRISEqwtW7a4XBPp6enWhAkTLJvNZr311lv5lr1t2za35V66dMnq3r27ZbPZrI8++sjp95Cenu64Xl599dVrPj8ARUe4Aq6BPThc/mX6/PPPWzabzXrnnXcKVcbXX39t2Ww265FHHnEKQ/k5fPiwFRAQYAUHB1sXL150u83w4cMtm81mrV+/3rHs8nC1du1al33Onj1r3XPPPZbNZrN27NjhtO5q4epqgoODrcaNG7vU1x4axowZ43a/Z555xiX0ZGdnW+3bt7dsNptLUMrPuHHjLJvNZn355Zdu1+/atcuy2WxW3759C3dCbtjPZciQIde0f3p6utW0aVOrffv2+ZadX7j69ttvHWHbndTUVKtDhw5W06ZNreTk5GuqH4Ci8yzpnjPgZpaUlKSwsDAdOnRIKSkpysnJkSTFxcVJ+m0sjyTl5uZqy5YtkqT+/fsXquxNmzZJ+u0WT+nSpa+6fVhYmCzLUufOnVWhQgW32wQFBSksLExRUVHq2rWr0zofHx9169bNZZ8qVaqoU6dOWrNmjSIiItS6detC1f9y0dHR2rp1q06cOKH09HRZ/zfaIDc3V3l5efr111+dblXaXVlHu4YNG2rTpk2OsUmStG/fPp0/f16+vr7q0aPHVeuUl5enjRs3SpJ69+7tdpvmzZvL29tbBw4cUGZmpu64446rlpufBx988KrbREZG6pdfflFCQoIyMjIc7eTl5aXz58/rwoULqlSpUqGPGRYWJknq1auX2/Xly5dXYGCgwsLCtGfPHgUHBxe6bADXjnAF5GPx4sV67733lJ6enu82aWlpkqTk5GTHdnfddVehyj958qQkqUGDBoXa/vjx45KkpUuXaunSpQVue/78eZdl/v7++Q4Qr127tiTp1KlThaqLXXp6uiZMmKC1a9cWuF1qaqrb5VcOvrezh8fMzEzHsvj4eEm/tW9+53G55ORkx3GvfCggv+3dDb4vLH9//3zXnTt3Ti+88IJ27NhRYBmpqalFClf2a2LChAmaMGFCgdu6uyYAFA/CFeDG3r17NWnSJJUuXVqvvPKKHnjgAcegdg8PDy1atEiTJk1y9DzcCHl5eZJ+G8TduHHjAre95557rukYRT2fyZMna+3atWrQoIFefvllNW/eXL6+vipTpowkacCAAYqKisq33FKlim82GHt7Sa4D8t3x8vK6ruOVLVs233WvvfaaduzYoVatWumFF15Q48aN5ePj4zhmcHCwEhMTi9z+9nPs1KmTqlatWuC2tWrVKlLZAK4d4Qpw48cff5RlWRo8eLCGDx/ust5+W9DuzjvvVLly5XTp0iUdPXrUZboFd2rWrKnY2FgdOXIk32kdrtxeklq3bq1JkyYV7kQuY+/5KWidn59fkcpcvXq1JOmjjz5yG/iubKfrYQ8HcXFxsizrqr1Xvr6+Klu2rDIyMhxPN5aE9PR0bdy4UaVKldLMmTOdplywrz979uw1lV2zZk0dOXJEjz32mP7whz+YqC4AA5hEFHDjwoULktz/tZ+Zmak1a9Y4LStdurQjIC1evLhQx+jUqZMk6bvvvlNubu5Vt+/cubMkaf369U63yworJSVF69evd1l+/vx5x/ivoKAgp3X2nhX7WLMr2dvJ3S2xTZs2KSkpqcj1zI992onz588rNDT0qttf/juxh8CScPHiReXm5qpChQouwUqSVqxYkW+Plb3987s+7NdESZ4fAFeEK8CNhg0bSpJ++OEHp/FCmZmZeuutt3TixAmXfZ577jl5enpq/vz5mj9/vssXZnx8vPbu3ev4+fHHH5efn5/279+v119/3WVsV2pqqmOQvCQ1bdpUDz74oBISEjRmzBi3dUhPT9eKFSvy7Qn54IMPnMZVZWVl6e2331Z6erpatGihNm3aOG1vH4N0+PBht+XZx4tdPheXJB05ckRvvvmm232ulaenp5577jlJ0htvvKGff/7ZZZvdu3c7nd+YMWPk5eWlDz/8UN9//73TrUK7Q4cOuYRlk6pWrapKlSopJSVFP/zwg9O6nTt3avLkyfnua2//mJgYt+v79+8vf39//fjjj/rwww/djm1LTEwsdOAHYAaTiAJupKSk6NFHH1V8fLzuvPNOtW3bVqVLl9Yvv/yijIwM/elPf9KcOXPUt29fvf/++479fvjhB73++uvKzs6Wv7+/AgMDZVmWjh8/rujoaJdJRPfv368RI0YoMTFRPj4+at26tby9vQucRHTMmDHaunWrvLy81LhxY9WuXVuWZSk+Pl7R0dGOWdPtAfHySUTz8vJ06NAhtW/fXmXLltWOHTt05swZValSRfPmzXMZXP/BBx/oq6++kq+vr9q3b6/y5ctLkl555RX5+vpqzZo1evHFF2VZlmw2mxo1aqRz585px44datOmjTIzMxUVFeUysefls5pfvtzOPkP8mDFjnNrLsiy99dZbWrhwoaTfAuddd92l1NRUHTlyJN9JRP/yl7/o0qVL8vPz09133y1fX19duHBBhw4d0qlTp9S7d2999NFH13StXO1cJOnrr792TFR6zz33qE6dOjp58qSioqL0xz/+Ub/88ovi4+MdM9/bbdiwQSNHjpSXl5eCg4NVuXJleXh46E9/+pPjqc6YmBiNHDlS8fHx8vHxUUBAgGrUqKGMjAzFxcUpNjZWVapU0ebNm6/p/AAUHWOuADd8fHy0dOlSTZ06VeHh4dq4caPuvPNO3XfffRozZky+T309+uijCgwM1OzZs7Vt2zb997//1R133KEaNWpo0KBBLo/MN23aVCtWrNCcOXO0bt06RUREKC8vT9WqVdMDDzzg9IoT6ben6L766iutWrVKK1as0L59+xQdHa3y5curevXqevjhh9WtWzfVrVvXpW5eXl6aMWOGpk2bpp9++kmnT59WpUqV1K9fP7344otun9wbN26cSpUqpbVr1yo0NFTZ2dmSpFGjRsnX11c9e/bUvHnzNG3aNEVHR+v48eOqU6eOxowZo5CQED3zzDPX+itwy8PDQ2+//ba6deumhQsXateuXYqJiVHFihVVu3ZtPfroowoICHDap1evXmrevLnmzp2rLVu2KDIyUrm5uapatarq1q2rQYMGFft4paefflq1a9fWrFmzFBsbq5iYGDVo0ECTJk3SwIED3U6RIUn333+/3n33XS1YsEDbtm3TpUuXJElt2rRxhKtGjRppxYoVWrhwoUJDQ3Xw4EHt3LlTd955p/z8/BQSElKoqSsAmEPPFXCbu/zdglfevgMAmMeYKwAAAIMIVwAAAAYx5goA/s+rr75a6G27d++u7t27F2NtANyqGHMFAP/nysHwBbnySUYAsCNcAQAAGMSYKwAAAIMIVwAAAAYVekC7yXeE3UwqVarkeD8aXNE+BaN9Ckb7FIz2KRjtUzDap2C+vr4lduzffc9VqVK/+yYoEO1TMNqnYLRPwWifgtE+BaN9bl78ZgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgzxLugIAgFvD2nWWsbJ6dPMwVhZws6HnCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwyLOkKwAAuLkcOXJEs2bNUmRkpC5duqTatWvr4Ycflm+Vx1WqVNH+Js/JydKWLYu0d3eozp07rtzcHFX0qaqft9+roUOHyt/f32n7hIQEbdq0SVu2bNHhw4eVlJSkChUqqEmTJurXr586d+5s8lSBYuFhWZZVmA2TkpKKuy4lwtfX97Y9NxNon4LRPgWjfQp2M7bPnj17NGbMGGVmZqpp06aqWbOmdu7cqXPnzqlZ4AN6YsC78vDwKFRZ2dmZmv3lGB0/vldly1ZU3brN5elVRidPHlRyUoK8vb312WefqXHjxo59RowYod27d6tMmTJq2bKlfHx8dPLkSe3fv1+SNGDAAI0bN644Tv2WczNePzcTX1/fEjs2PVcAAElSTk6O3nzzTWVmZmrs2LEaOHCgJCk9PV1jx47Vnj3rFRW1Sq1bP1So8n75ebmOH98rf/8mejrkE5UtW0GSlJeXqz27PtbSpUs1ZcoUTZ8+3bFP9erV9fLLL6t3796qXbu2Izxs3rxZEyZM0MKFC9WhQwe1a9fO8NkD5jDmCgAgSdqwYYNOnjypRo0aOYKVJHl7e+vll1+WJG0O/7bQ5cXF7ZQkdQwe6AhWklSqVGmNGDFCkhw9UnbvvvuuHn/8cZUvX95p+X333aeHH35YkrRmzZrCnxRQAui5AnDbOnnypPr166dWrVpp8uTJmjFjhtavX68LFy6oXr16Gj58uDp16iRJWrdunebPn68jR46oXLly6t69u0aPHq2yZcs6lZmRkaFFixZp3bp1On78uCSpQYMG6tevnx56yLVHZ+fOnQoNDVVUVJTOnDmjrKws+fn5qXPnznrxxRddtt+xY4dGjx6t3r17a+zYsfr888+1ceNGpaSkqE6dOho4cKAjZJi2ZcsWSVLXrl1d1jVu3Fi+lf115vQRJSUlyNe35lXL8/T0uuo2lSpVKnT97r77bknS2bNnC70PUBLouQJw28vJydGYMWP0008/KTAwUM2aNdPhw4f16quvKiIiQgsWLNCkSZPk7e2tdu3aKS8vT0uWLNHf//53p3LOnz+vZ599VtOnT9e5c+fUqlUrtWzZUseOHdM777yjf/7zny7Hnjp1qv7973/rjjvuUNu2bdW2bVulpaVp7ty5evLJJ5Wenu62zqmpqRo+fLjCw8PVsmVLtWjRQseOHdP/+3//T8uXLy+WdoqJiZEkpzFQl6tVyyZJOnXqcKHKu/vuIEnSlvAFyshIdSzPy8vVzJkzJalIQfHkyZOSpCpVqhR6H6Ak0HMF4La3Z88etW3bVsuWLVO5cuUkSStXrtS7776rf/zjH0pJSdGsWbPUpEkTSVJiYqKGDBmiNWvWaOTIkY4n2t59910dPnxYTzzxhEaPHq0yZcpIks6dO6dXXnlFS5cu1X333acOHTo4jv3MM8+oRYsWqlDhf7fFsrKyNHnyZP3www9asGCBnnnmGZc6b9y4UT169NAbb7zhOE5YWJgmTpyo2bNn65FHHnHaftSoUYqKiipSu7z++uvq06eP4+fTp09LkqpVq+Z2ex+f6pKkC8mnClX+PS3/oJiY7dqze63+9WE/1a3XXJ6ed+jkyWhdSj+vQYMGKSQkpFBlXbx4UatXr5YkR28jcLMiXAG47ZUqVUoTJkxwBCtJ6t27t6ZNm6YTJ05o2LBhjmAl/RYuHnzwQS1cuFBRUVHy9/fXoUOHtGXLFjVt2lRjx451mpKgSpUqevXVVzV06FAtW7bMKVx17NjRpT5lypTRuHHjtHLlSm3cuNFtuCpfvrxeeeUVR7CSpC5duqhhw4aKjY3VyZMnVatWLce6Dh06qGbNq9+qu1zt2rWdfrb3ol15K/R/9f6t/TIz0wpVfqlSpfXY42+qUqUaCt80T4cObnGsCwgI0L333qvSpUsXqqwPPvhASUlJCgwM1P3331+ofYCSQrgCcNurWbOm6tat67SsVKlS8vPzU3Jystsnz+y9VefOnZMkbd++XZLUuXNnt3M9BQQEyNvb22WAtiSdOXNG4eHhOnbsmNLS0pSXlydJ8vLycozbulLjxo3djkeqU6eOYmNjde7cOadwNWTIELfllKRLl1L07fxXFX/igHo/NF7Nmt0vrzJlFXd0p9aFTtZLL72kt99+Wz169CiwnDlz5ig0NFQ+Pj56++23Cz0VBFBSCFcAbnv53eay92S5W29fl5WVJem3yS0l6fPPP9fnn3+e77EyMzOdfv7222/12WefKScnp0h1rl69utvl3t7eTvUyydvbWykpKcrIyHC7PivrkiTpjjvKu11/pdX/maK4o1Hq1XusOnTs71jepGln9eheXSEhIfrkk0/UtWtXeXq6/zpavXq1pk+frnLlymny5Mkuk44CNyPCFYDb3tV6OgrTE2Kfb/mee+4p9Bf83r179cknn6hChQoaP368WrdurSpVqjhu9T388MNKTEy85jpdbs6cOYqLiyvSPn/84x/VsmVLx881atRQSkqKEhMT1ahRI5ftU1LOSJIq3el31bLz8nK1e/daSVKzwAdc1jdp0kS1atVSfHy84uPjVa9ePZdt/vvf/+rdd9+Vp6en3n//fQUGBhb21IASRbgCgEKw92517txZgwYNKtQ+GzZskCQ999xzLtM0ZGRkGJ1SYOvWrUUe0N66dWuncNWoUSPFxMQoOjra7VixkycPSZL8/O6+atlpqUnKzc2WJJUt676nyz6X1cWLF13WRUZGavz48ZKkt99+m0lDcUshXAFAIQQFBWnmzJkKCwsrdLiyhwZ3t/jWr1+vQr59rFAun+X8WnXs2FGrVq3Sf//7X5en+A4ePKik8/GqXqNBoea4Kufto9KlvZSbm634+Gg1aNDGaX1aWpp+/fVXSZKfn3NPWHR0tP785z8rKytLr732mh54wLXnC7iZMc8VABRCYGCggoKCtHv3bn344YdKS3N9Yi4mJkZbt251/GwfRL9ixQqnMVdHjx7Vp59+WvyVLqL7779ftWrVUkxMjBYsWOBYfunSJcccXvcFP+my3+wvx2jKR0/oxPF9jmWenmXUqFF7SdLqVVN0MeV/vXTZ2Zn6xz/+oYyMDLVo0UJVq1Z1rDt27JjGjx+vtLQ0vfbaa05TRQC3CnquAKCQ3nrrLY0bN07fffed1qxZo0aNGqlq1apKS0vT4cOHdfr0aT3xxBOOqRj69Omjb7/9VuHh4erfv7+aNGmilJQURUVFqUuXLoqOjlZ8fHwJn9X/eHp66q233tILL7ygKVOmKDQ0VH5+ftq1a5fOnj2rZoFd1apVb5f9zp+PV3LyKWVnOw/m79X7RZ04sU+nEmI05eMnVKdOc3l63aH4E/t18eJZ+fj4aOLEiU77vPHGG0pKSpKvr6/27dunyMhIl+PVr1//pnw6ErAjXAFAIVWuXFlffPGFli9frrVr1+rQoUPas2ePKleurFq1aql///5O0wpUqlRJs2fP1rRp0xQVFaXw8HDVrFlTI0aM0KBBg9S/f/8CjlYyWrRoodmzZ+uLL75QZGSkDh8+LH9/fw0aNEiVq/Yv0kD7ylVqa/QLc7Vp41wdOrRVcXG/jQnzqVRdjz32mIYMGeJyyzQlJUWSlJSUpO+//95tua1atSJc4abmYRXypr/9zeS3G19f39v23EygfQpG+xSM9inYrdY+a9eZGyPWo9vVQ9qt1j43Gu1TMF9f3xI7NmOuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMMizpCsAACgea9dZJV0F4HeJnisAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABjkWdIVAAD8z9p1VklXAcB1oucKAADAIHquAOA6XWtvU/nymUpLo6cKuN3QcwUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAgwhXAAAABhGuAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBniVdAQC40daus0q6CgBuY/RcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBhCsAAACDPEu6AgBQGGvXWSVdBQAoFHquAAAADCJcAQAAGES4AgAAMIhwBQAAYBDhCgAAwCDCFQAAgEGEKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBniVdAQC3r/+szlRamlXS1QCAG4qeKwAAAIMIVwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQ4QoAAMAgwhUAAIBBTCIKwGHtOrMTfpYvb7Q4ALgl0HMFAABgEOEKAADAIMIVAACAQYQrAAAAgxjQDtziTA9CBwBcH3quAAAADKLnCigB9DYBwO2LnisAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEFMxAIWQ39QJ5ctnKi2NaRUAAP9DzxUAAIBBhCsAAACDuC2I2xazoAMASgI9VwAAAAYRrgAAAAwiXAEAABhEuAIAADCIcAUAAGAQTwvipsITfgCAWx09VwAAAAbRc4XrQk8TAADO6LkCAAAwyMOyrN9t18PFixe1Y8cOtWnTRhUrVizp6tx0aJ+C0T4Fo30KRvsUjPYpGO1TsJJun991z1VqaqrCwsKUmppa0lW5KdE+BaN9Ckb7FIz2KRjtUzDap2Al3T6/63AFAABgGuEKAADAoN91uKpQoYK6dOmiChUqlHRVbkq0T8Fon4LRPgWjfQpG+xSM9ilYSbfP73pAOwAAgGm/654rAAAA0whXAAAABhGuAAAADCJcAQAAGES4AgAAMOi2e3Fzamqqpk6dqjVr1igxMVHVq1fXgw8+qDFjxqh8+fKFKiMuLk4//vijNm3apGPHjik5OVlVqlRRu3btNHLkSDVs2NBln1dffVXff/99vmUePHjwms/pWuzevVtTp05VVFSUcnJyZLPZ9PTTT6t3796FLiMrK0szZ87UihUrlJCQoEqVKqlr164aN26cqlSp4nafFStWaM6cOTp8+LC8vLzUunVrvfjii2rWrJmpUzPietrHsixt3LhR69evV2RkpE6ePKmcnBzVq1dPvXv31rBhw3THHXe47BcQEJBvmX379tX7779/Xedk0vVeP8uWLdNf/vKXfNfPmTNH7dq1M37cG+V66/nAAw8oPj6+wG3mz5+vtm3bOn6+Va6f5cuXa8eOHdq7d68OHTqk7Oxsvffee+rXr1+RysnLy9P8+fO1ePFiHTt2TN7e3urYsaPGjx+vOnXquN1n06ZNmjFjhvbt2ycPDw81a9ZMzz//vDp06GDi1K6bibb55ZdfFBoaqoiICMXHxys9PV3+/v7q1q2bRo4cKR8fH5d9CrregoKCNHfu3Gs+J5NMtM/27ds1ZMiQfNfnV97Ro0f18ccfa9u2bbp06ZLq16+vAQMGaODAgfLw8CjyudxW4So9PV2DBw/WgQMHFBwcrIceekgHDhzQV199pZ9//lnz5893+6V3pSlTpmjVqlWy2Wzq1q2bKlSooEOHDmn58uX66aefNGvWLN17771u9x0yZIjbi/tG2rZtm5599lmVKVNGDz30kMqXL681a9Zo/PjxOnXqlEJCQq5aRl5enkaNGqXw8HC1bNlSPXv21LFjx7RkyRJt3bpVixcvVuXKlZ32mT59uj7++GP5+/trwIABSktL03/+8x8NGDBAX3/9tdq0aVNcp1wk19s+WVlZGjFihMqUKaOgoCAFBwcrKytL4eHh+uijjxQaGqq5c+eqXLlyLvv6+/urb9++LsubNGli7Pyul4nrx65bt25uz83f379Yj1ucTNRzyJAhunjxosvypKQkzZ8/X5UqVVLz5s1d1t8K18+UKVMUHx8vX19fVa9e/aohMj+TJk3SkiVL1KhRIz311FM6c+aMVq9erc2bN2vRokWqX7++0/bLly/XhAkTVLlyZceX56pVqzRs2DB9/PHH+sMf/nC9p3bdTLTN2LFjlZSUpDZt2uiRRx6Rh4eHIiIiNGvWLP30009auHChqlat6rJfxYoVNXToUJfl7v4vlhRT1470W2gMCgpyWe7u/8rhw4c1YMAAZWRkqFevXqpevbrCwsL09ttvKzY2Vm+88UbRK2DdRqZMmWLZbDbrww8/dFr+4YcfWjabzfr8888LVc53331n7du3z2X5ypUrLZvNZvXu3dtl3cSJEy2bzWYdP3782ipvSHZ2ttW9e3crMDDQ2r9/v2N5SkqK1bNnT6tZs2bWiRMnrlrO0qVLLZvNZr300ktWXl6eY/m3335r2Ww264033nDa/ujRo1bTpk2tnj17WikpKY7l+/fvtwIDA61evXpZubm5Bs7w+phon6ysLOuzzz6zkpOTXZaPHDnSstls1hdffOGyn81mswYPHmzmRIqJqevnu+++s2w2m/Xdd9/d0OMWt+Ku55dffmnZbDbrnXfecVl3K1w/lmVZmzdvdrTBjBkzinQd2G3dutWy2WzWoEGDrMzMTMfyDRs2WDabzQoJCXHaPjk52Wrbtq3Vrl07KyEhwbE8ISHBateundWuXTvr4sWL13FWZphomxkzZlinTp1yWpaXl2e9+eabls1ms9566y2Xfbp27Wp17dr12it+g5hon23btlk2m8365JNPCr3PoEGDLJvNZm3YsMGxLDMz03ryySctm81mRUZGFqkOlmVZt82YK8uytGTJEnl7e+v55593Wvf888/L29tbS5YsKVRZ/fr1U9OmTV2WP/TQQ6pfv74OHz6s8+fPG6m3adu2bdOvv/6qPn36OCX0ihUr6rnnnlN2dnaBty/t7G310ksvOXWJDhgwQHXq1NG///1vZWRkOJYvW7ZMOTk5GjVqlNMbyJs0aaI+ffooNjZWO3bsMHGK18VE+3h5eWnUqFGqVKmSy/KRI0dKkn7++Wfzlb8BTF0/t8pxi6q467l06VJJ0mOPPXbddS0pHTt2vO7eEPvnz9ixY1WmTBnH8i5duigoKEjh4eE6efKkY/mPP/6olJQUDR48WH5+fo7lfn5+Gjx4sJKSkhQaGnpddTLBRNuMGDFCNWrUcFrm4eHh+N67VT97JDPtU1RHjx7Vzz//rHbt2qlLly6O5WXKlNHYsWMlSYsXLy5yubfNbcG4uDidOXNGwcHB8vb2dlrn7e2t1q1bKzw8XAkJCapZs+Y1H8fLy0uS5Onpvuk2bNigtLQ0lSlTRg0aNFCHDh2cPhyKW0REhCQpODjYZZ192dX+82VmZmrXrl266667XC50Dw8PdezYUYsWLdLevXsdY0Lsx73vvvvcHnfZsmWKiIjI93bqjWKifQpivy5Kly7tdn1KSooWLVqkpKQkVapUSa1bty5wLM2NZrp99u/fr+TkZOXk5Kh27drq0KGDfH19i/24xaU46xkZGanY2FgFBgaqcePGbre52a8fU7Zv3+743L5Sp06dFBERoYiICD366KOSrv57mTp1qtP2t6OrffZkZWVp2bJlOnPmjCpUqKDmzZvrnnvuuZFVvKHi4uL09ddfKzMzUzVq1FCHDh1cQqlU8LXTpk0beXt7X9P/6dsmXB07dkySXO7D29WvX1/h4eGKi4u75nC1e/duxcTEqHnz5vmOq3rnnXecfq5WrZree+89derU6ZqOWVRxcXGSpHr16rmsq1atmry9vR1tlZ9ff/1VeXl5Bbal/Vj2cBUXFydvb29Vq1bNZXt7Xa523BvBRPsU5LvvvpPkPmRKUnR0tCZNmuS0rFOnTvrggw/yfUjgRjLdPlcOlC1btqxGjx6tESNGFOtxi0tx1tPea/X444/nu83Nfv2YkJ6ersTERNlsNrdBwd3nSUG/l5vp86c4Xe2zJzEx0eUhk+bNm2vy5MmqW7dusdfvRlu5cqVWrlzp+NnT01ODBw/WhAkTnK6rgq6d0qVLq3bt2jp8+LBycnLy7VRx57YJV/bBofm9pNG+PDU19ZrLnzhxokqVKqU///nPLuvbtm2rLl26qGXLlqpcubJOnTqllStXaubMmRo1apQWLFjgdoCqafbzu/zW3OUqVKjgdiDt5a6lLVNTU10GuF+5/dWOeyOYaJ/8hIWFadGiRWrYsKHbL8iQkBD17NlT9evXl5eXl2JiYvTZZ59p48aNGjlypBYtWpTvX503iqn2qV27tt544w0FBwfLz89PFy5c0NatWzV58mT961//Urly5fTUU08ZP25xK656pqWlafXq1SpXrpz69Onjdptb4foxobCfP5e3c0G/l5vp86e4HDhwQJ9++qmqVKmiZ5991mV9v3791KZNG9lsNnl7eysuLk6zZ8/W8uXL9fTTT2vFihW3zQugK1eurJdfflldu3aVv7+/Ll26pKioKP3rX//S119/LQ8PD7366quO7a/2f7p8+fLKy8tTWlqay1CQgtx04er9999XVlZWobcfMmRIvj0spmRkZGj06NE6cuSIxo8f7/YR8ivHSNSrV0+jR49WjRo19Nprr+nTTz/V559/Xqz1RMnZvXu3xo8fr4oVK2rKlClubwVPnDjR6edWrVppxowZGjp0qCIiIrRu3Tr17NnzRlW5WF35pE7ZsmX16KOPqlmzZvrTn/6kadOmaeDAgUX6S/B2tmrVKqWnp6tv3775fsn9nq4fFN7x48c1YsQI5ebmavLkyW7/yB0zZozTz02aNNE//vEPSb89ZblkyRINGzbshtS3uDVq1EiNGjVy/Ozt7a3u3bvrnnvu0R//+EfNnTtXw4cPL/ae3pvuk23RokVKT08v9PYPPvig6tev70id+fVM2ZcXNZ1nZmbq+eef1/bt2zVy5Eg999xzRdq/b9+++tvf/qaoqKgi7XetrvZXWmpq6lXT97W0ZUF/sV/tL4MbyUT7XGnPnj165plnVKpUKc2aNcvpP/bVlCpVSo8//rgiIiIUGRlZ4l+OxdE+l2vUqJHatGmjLVu2KDY21jFeqLiPa0px1dN+S6eoA9lvtuvHhMJ+/lz+eXL57+XKMX030+ePacePH9eQIUOUlJSkqVOnqn379kXa/4knntDy5csVGRl524Sr/FSrVk3dunXTkiVLtGvXLj3wwAOSrv5/Oi0tTR4eHoWeJ9PupgtX1xpC7PdL7fdPr2RfXpReroyMDD3//PPavHmznn32Wb300ktFrlfp0qXl4+OjCxcuFHnfa2E/v2PHjikwMNBpXWJiotLT09WiRYsCy6hTp45KlSpVpLasX7++oqKilJiY6DLuyj7Wwd097RvNRPtcbs+ePQoJCVFeXp6++uqrIu1rZ/8yKMofFcXFdPu4Yz/fS5cu3dDjmlAc9Tx8+LCioqLUoEEDp0lDC+tmun5MsI/dPHHihHJzc11udbr7PKlfv7727t2rY8eOuYSrm+nzxyR7sEpMTNTHH3+srl27FrmM2+3auZqrffZcKTc3VydOnFDt2rWL3Mt+20zFUL9+fVWvXl2RkZEuF0p6eroiIyNVu3btQg9mvzxYhYSEuB1nVRgnT55UYmLiDXu81P40Xnh4uMs6+7KrPbFXtmxZtWjRQkePHnWZxM2yLG3ZskXe3t5OXy72Mjdv3pzvcd1N6HajmWgfO3uwys3N1axZs675yZtdu3ZJ+m2cUkkz2T7u5Obmau/evZKkWrVq3bDjmlIc9bze6RdupuvHlKCgIMfn9pU2bdokybmdC/N7uRk+f0y5PFh99NFH6t69+zWVs3v3bkk310Sixcn+f+Xy8y3o2tmxY4fS09Ov6bPntglXHh4eevzxx5Wenq7PPvvMad1nn32m9PR09e/f32n5pUuXFBsb6zRfivS/W4GbN2/WsGHDXMY6XCkxMVGnT592WZ6SkuIYOJffIFXTOnTooDp16mjlypU6cOCAY/nFixf1+eefy8vLy+lx5DNnzig2NtalS9TeVpMnT5ZlWY7lCxcu1PHjx/Xwww+rbNmyjuX9+vWTp6enpk+f7lTWgQMHtHLlSjVs2PCmmKHdVPvs3btXISEhysnJ0RdffKFWrVoVeNyDBw8qOzvbZXlkZKRmzZolLy+vm2IGaZPtc6Xc3Fz985//1LFjx9SuXTtVr179mo9bUky1j112draWL19+1fO7Va6fojp//rxiY2Nd5g20f/5MmTLFaQxuWFiYIiIiFBwc7PQF2atXL1WsWFHz5s3TqVOnHMtPnTqlefPmydfX95oDSEnJr23swerMmTOaPHmyevToUWA5sbGxTj01ly//5z//KUl6+OGHzVX8Bsmvfdx99kjSN998o+3bt6t+/fpOD5c1aNBA9957r7Zv366wsDDH8qysLE2ZMkVSwU/w5sfDuvyb8xaXnp6ugQMHKjo6WsHBwWratKn279+v8PBwNW/eXPPmzXMKBPZ3EF35biX7ewKrVaumJ554wu2x+vbt6/hLcfv27QoJCVGrVq1Ur149Va5cWQkJCdq0aZOSk5PVvn17zZw5s1Cv3jEhv9dzxMfHa+LEiU6v57Cf65XvW8rLy9Pw4cMdr7+599579euvv2rNmjXy9/fXkiVLCnz9Tc+ePR2vv8nOzr4lXn9T2PZJTk5Wz549deHCBXXq1Mltj1XFihX19NNPO5WzYcMGtWnTRjVr1pSnp6diYmK0efNmeXh4aNKkSRo4cGCxn3thmLh+AgICHP9q1KihCxcuKCIiQnFxcfLz89O8efNc3g9XlOOWJBPtY/fTTz/pxRdfVM+ePTV16tR8j3krXT9LlixxTBh86NAh7du3T61bt3bclmvTpo3jy2rq1KmaNm2axowZoxdeeMGpnNdff93x+psuXbooMTFRq1atUvny5bVw4ULdddddTttf/vob+zseV61apaSkJH300Ufq1atXcZ/6VZloG/t7Alu2bOl2biZJTttPnTpVs2fP1r333qtatWqpXLlyiouL08aNG5Wdna2RI0de05CX4mCqfTw9PRUYGKgaNWro0qVL2rVrl/bv3y8fHx99+eWXLrfuY2JiNHDgQGVkZKh3796qVq2awsLCFBMTo8GDB1/T629uujFX18Pb21vz5s1zvLh5+/btqlatmkJCQjR69GinYFUQ+62wxMRETZs2ze02QUFBjnBVt25d9e3bV3v27FFoaKhSU1Pl7e2tgIAA9enTR48//vgNfUS6ffv2+vbbb/XJJ59o1apVjhfLvvLKK4V+sWypUqU0ffp0zZw5U8uXL9fXX3+tO++8U4899pjGjRvn9omUUaNGyd/fX998840WLFggLy8vtW3bVmPHjr2pXtx8ve2TmprqGEO3adMmx22Ky/n7+zuFq27duiklJUXR0dHasmWLsrOzVbVqVT300EMaOnToTTGeyM7E9RMSEqKdO3dqy5YtunDhgry8vFS3bl2NGjVKw4YNczvo28RxbwST9SzsLcFb6frZsWOHyyz1kZGRTrf4CtMT8Le//U02m02LFy/WnDlz5O3trR49emj8+PFu52V65JFH5OvrqxkzZmjZsmWSpMDAQI0aNUodO3a8zrMyw0Tb2L+fdu7cqZ07d7rd5vKw0a5dO8XGxurAgQP65ZdflJGRIV9fX3Xu3FlPPvlkvgGtJJhonwEDBig8PFw///yzkpOTVapUKdWqVUtDhw5VSEiI0wz+do0aNdLixYv18ccfKywsTOnp6apfv74mTZqkJ5988prO5bbquQIAAChpt82YKwAAgJsB4QoAAMAgwhUAAIBBhCsAAACDCFcAAAAGEa4AAAAMIlwBAAAYRLgCAAAwiHAFAABgEOEKAADAIMIVAACAQYQrAAAAg/4/6vnGIXe5l44AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
@@ -664,7 +737,7 @@
],
"source": [
"az.plot_posterior(\n",
- " trace, group=\"sample_stats\", var_names=\"acceptance_rate\", hdi_prob=\"hide\", kind=\"hist\"\n",
+ " idata, group=\"sample_stats\", var_names=\"acceptance_rate\", hdi_prob=\"hide\", kind=\"hist\"\n",
");"
]
},
@@ -726,7 +799,7 @@
"}\n",
"\n",
".xr-wrap {\n",
- " display: block;\n",
+ " display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
@@ -1035,7 +1108,7 @@
" fill: currentColor;\n",
"}\n",
"<xarray.DataArray 'diverging' ()>\n",
- "array(0)
"
+ "array(0)"
],
"text/plain": [
"\n",
@@ -1048,7 +1121,7 @@
}
],
"source": [
- "trace.sample_stats[\"diverging\"].sum()"
+ "idata.sample_stats[\"diverging\"].sum()"
]
},
{
@@ -1074,7 +1147,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmMAAAGbCAYAAACI4ZeUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlk0lEQVR4nO39eXxU9d3//z/eZ7KHJOxE3EFFFpXFBRXBSlFRUXC5tHp9aBWVS62V1rZ++7Ofq9dlrV0+1ctq1Vrlqlpr61I3QKUuiMi+hH0L+xoSspA9mZnz/v0xSSRkEmaSSWYyed5vN27imXPOnElI5jnv9+u83sZaaxERERGRqHCifQEiIiIiXZnCmIiIiEgUKYyJiIiIRJHCmIiIiEgUKYyJiIiIRJHCmIiIiEgUKYyJiIiIRJHCmIiIiEgUJYS6Y3FxcXteh4iIiEjc6dGjx3H30ciYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEUUK0L0BEujbXtVRXB/6emgrGmOhekIhIB1MYE5EOYa1l23ZYshQ2bbbk5kLJEaiuBmsD+3g8kJ1tGXQWjBxuuOhCOOEEhbNoeumll5g5cybPPfcco0aNivj5V65cyQMPPMC0adO45557In5+kc5AYUxE2tWhfMv7H1o+/gQOHwanrjjCdZvu6/fD/v1w8CB8MS+Q0AafbfnObYbLx4LjKJhJZO3Zs4cXX3yRFStWUF1dzcknn8yUKVO48cYbQx6lrQ+sR3Mch4yMDAYNGsTNN9/M2LFjGz1+4MABbrzxxhbP++mnn5KRkQHA5MmTycvLA+Bvf/sbAwcObLK/3+9n8uTJFBQUAPDuu+/Sv3//Rs83evRonn766ZBeV3spKipi1qxZbN68mc2bN3Pw4EEAlixZEva5cnJyWLBgAZs3b2bLli1UVFRwzTXX8J//+Z9B97/vvvvIyclp8Zy/+MUvmDhxYtjX0hYKYyLSLkpLLX951fLP9wL/Xx++goWwYx29z5at8J//ZTn1VJjxIFxwvgJZPBk6dCj/+Mc/6N69e4c/986dO7nnnnuoqalh/Pjx9O7dm0WLFvH//t//Y+fOnfz4xz8O63zf+ta3GDBgAAA+n499+/bx9ddfs2zZMn784x9z8803NznmpJNO4qqrrgp6vqSkpEb/79R9kpk1axYzZsxosv/ixYspKCjA4/Hg9/vDuvaOtHPnTl544QWMMZx88smkpKRQXV+rEKZZs2bx0UcfkZKSQr9+/aioqGhx/2uvvZaRI0c22e7z+XjttddwHIfzzz+/VdfSFgpjIhJx//rM8tTTlsrK0MJXS+qP37sHfvhjyzVXW2b8wJCWplAWD1JSUjjttNOi8ty/+93vKC8v56mnnuKSSy4BYPr06Tz44IO88847XHXVVZxzzjkhn++KK65gwoQJjbZt3LiRu+66i7/+9a/NhrFQp2cTEhIYPnw4c+fO5fvf/z4JCY3fwmfNmkW3bt0488wzjzv6E02nnXYaL7zwAmeddRbp6enceuut7N69u1XnuuWWW/j3f/93Tj31VDZt2sTdd9/d4v7XXXdd0O1ffPEF1louvvhi+vTp06praQvdTSkiEePzWX7/lMtjj1vKy9sexI7m1tWVffIvmHqnJXebjdzJu6icnBx++tOfMnHiRC677DKuv/56HnnkEVavXh10/7lz5/J//s//Ydy4cVx77bU89dRTTUY0vF4vb731Fg899BDXX389l112GRMnTuSRRx5hy5YtTc65cuVKRo8ezUsvvdRo++TJk5k8eTKVlZU89dRTXHfddVx22WXccccdfPHFF21+7Xv27CEnJ4dRo0Y1BDGAxMRE7r33XgA++OCDNj/PkCFDyMzMpKSkpM3nApg0aRLFxcUsWLCg0fbi4mIWLlzIhAkTSE5OjshztZdevXoxYsQI0tPT23yuwYMHM2DAADweT5vOM2vWLACuv/76Nl9TayiMiUhEVFZaHv6p5YNZ7fs8rgv5BfAfD1iWr1Aga60333yT+++/n2XLlnHhhRdy++23c/7557Nt2zbmzZvXZP933nmH3/zmN5x++ulMmTKFjIwM3nrrLZ544olG+5WWlvL0009TW1vLJZdcwm233cbIkSNZvHgx9957Lxs3bgz5Gv1+Pw899BBLly7l8ssv5+qrr2b//v08+uijLF26tE2vf9WqVQBcdNFFTR4777zzSE1Njcjo0ubNmyktLWXQoEFtPhfAuHHjyMzMZPbs2Y22f/zxx/h8PiZNmhSR5+lK8vPzWbp0Kb17924UzDuSpilFpM2qqwNBbMPGb+6MbE+uC7W18ONHLE/8Ei69RFOW4cjNzeUPf/gDvXv35sUXX2wo8obAXa+HDx9ucszy5ct55ZVXOPXUUwGorq5m6tSpfPbZZzz44IMNUzsZGRm8//779O3bt9HxO3bs4O677+aFF17g2WefDek6CwoKGDx4MM8//zyJiYkAXHnllTz44IP8/e9/DxqkQrV3714gME14LI/HQ//+/dm5cyc+n6/JdGBzvvjiC3bt2gUEapAOHDjAggULOPHEE/nJT34S9Jh9+/Y1GRUEuPjiixk2bFiT7UlJSVx55ZW89957FBYW0qtXLwBmz57NwIEDGTJkSEjXGopg19WSa6+9ttG/pc5i9uzZuK7LNddcE/L3OtIUxkSkTXw+y//9r0AQi+S05PFYG3i+R//T8vSTMPw8BbJQvffee7iuy/Tp05u8eRpjgtbM3HrrrQ1BDAK1XhMmTGDmzJls3ry54ZikpKQmQQxgwIABjBw5kqVLl4YVcGbMmNEQxAAuuOACsrOzwxphC6a8vByAbt26BX08LS0N13WprKwkMzMzpHPOmzevyahiamoqEyZMCBr6IBDGjr0TEwKhNlgYg8BU5TvvvMOcOXOYOnUq69evZ8eOHUGL+tsi2HW1ZOTIkZ0ujFlrG0YZozmqqDAmIm3yx+ctS5Z2zIjYsawNtMP46f9neflFOOUUBbJQ1AeZCy+8MORjgk2z1Yeu+mBTb+vWrbz++uusWbOGwsJCfD5fo8dLSkro3bv3cZ8zIyMj6Jt73759Wb9+fcjX3lF++ctfNhTw+3w+CgoKmDNnDjNnzmTZsmX8+c9/bhJCW9NqYtCgQZx11lkNYWz27NkkJiZy9dVXR+qlAK1rNdHZrFixggMHDjBixAhOPvnkqF2HasZEpNU+/8LyzrvRCWL1rIWamsCUZUWFashCUV5ejjEmpEBUL1ixdX3R9NFtFNauXcvdd9/Nl19+yZlnnsktt9zCtGnTmDZtGmeeeSYAtbW1rX7O+ud12zgMWz8idmyQrFdZWYkxhrS0tFadPyEhgRNOOIG7776bK6+8ko0bN/LZZ5+1+nqPdd1117F7926WLVvGp59+ypgxY6LSHqSzi3bhfj2NjIlIq+TlWX79O4sBoh2B/C7kHYLf/M7y2H9pSaXjycjIaKgNCzal2BavvPIKtbW1/OlPf2L48OGNHtuwYQO5ubkRfb7Wqh8F2bdvX5PH/H4/Bw4coH///hGpIRo6dChz585l06ZNERu9uuqqq/jjH//IL3/5SyoqKtplii3ea8ZKS0uZP38+GRkZXHHFFVG9FoUxEQmbtZbf/t7i9UY/iNVzXZg3Hz6ZCxMjO1sTd4YMGcKmTZtYtmxZs32XWmv//v1kZmY2CWLV1dVBW1tEy4gRIwBYunQpU6dObfTYmjVrqKqqatinrcrKygDaPJp3tKysLMaOHctnn31Gnz59GD16dMTOXS/ea8Y++eQTampqmDRpUtTbgSiMiUjYvpgHy1dE+yqCe/Jpy8iR0K+vRseaM2XKFN5//31efPFFRo0axQknnNDwWP2IWWsbX2ZnZ7Nnzx527NjR0I3e7/fzzDPPUFxcHJHrj4RTTz2VESNGsHLlShYtWtTQ0sDr9fLnP/8ZiMzUVWlpaUOBeKTCXb3777+fCRMm0Ldv34bu/JEUSzVj+/btw+fzcdJJJ0Xsjsf6KcpYaAeiMCYiYamqsjz9rMWY6NaKNcdbC089bfntEwpjzTnjjDOYMWMGTz31FLfffjtjx44lOzuboqIicnJyuPTSS/nhD3/YqnPfcsstLF26lOnTpzN+/HiSkpJYtWoVBQUFjBw5sqG/Vyz4yU9+wr333ssjjzzCt7/9bXr16sWiRYvYsWMHN998M+eee25Y5zu6tYXruuTn57NgwQJKS0sZPXo0l19+eUSvv3///p1qJOpojz32WMPf61upHL1t6tSpjVZm+P73v09eXl6j9TYBVq9ezYcffgjQ0Fh37dq1Defq3r07P/jBD5o8/+bNm8nNzWXQoEER6wHXFgpjIhKWf7wFJSWxGcQgUD+2cBEsWmy55GIFsubccsstDBgwgDfeeIPFixdTVVVFjx49GDp0KOPHj2/1eceMGcMTTzzBq6++yieffEJKSgqjRo3it7/9bdjTXu1twIABzJw5kxdffJGFCxc2LBT+4x//mJtuuins8x3b2iItLY0BAwZw5ZVXcuONN7bL6FVn9dFHH7W47dprrw1pmax9+/Y1Ode+ffsaagGzs7ODhrH6ABftwv16xtrQfqXG0vCyiERHcYnl5lstNTXRvpKWGQPZ2fDGa4bERAUyEYmeHj16HHcfxXQRCdnf3ggU7cc6a+HgQXiv7UsLioi0O42MiUhIiostN91qCbFFVLtJyID0gYbk3gYnGawLvjKoKbBU7rK4R43adUuHf75lSE/X6JiIREcoI2OqGRORkLz1juWYRuodKnOYofdYh8yhDp5UqL+DwALGAesDXwWUrHIpWuRSnmupqIS3/wnfm3q8s4uIRI9GxkTkuCoqLJNvtlRVdfxzp5xoOOnfPGQOMZgEg7/C4qsEjmnZZBLAkw6eVHBroWyD5cCHfsizvPeORsdEJDo0MiYiETH7I6iu7vjn7T3O4cSbPCRkgrcE3OrmPztaH/iOBP54UiFrhKHb2QkULnB5e47L9/6t465bRCQcCmMi0iKfz/L3N22HtrIwHjjpNg99rnCwfqjJC+94f1XgT0IG9L3Sw/JDhjHVLmektM/1ioi0he6mFJEWLVwEdT0ZO4RJhFPv8tD32w7+SvAWtf5cvjKoybck9HX4W5mH5V4Ts/3RRKTrUhgTkRa99Y6lo3pVmgQ47S4PvS518JaCvyICJ3Wh5pClpAzm+R2+9Dm4CmQiEkMUxkSkWXv2WNasDSzC3e5MYGqy52gnUB8W4ZsFqvLBVwnL/A6feh38CmQiEiMUxkSkWR/O7rhRsX5XO/S5wsFXBm573Cxg4MghSMGS4zr8S4FMRGKEwpiIBOX1WmZ/1DGjYpnnGE643oNbA/7KdnoSC0eOgMcLqVjWuA6fa8pSRGKAwpiIBPX1Qigvb//nSeoNp/yfBJzkQFuKdmWgsAhSTCCQ5fgdFvocFfWLSFQpjIlIULM/6oApSgdOuSOB5H5QW9DOzwVg6+4MtYFAloRlid9hrV8NYUUkehTGRKSJwkLL8uXtP0XZ51sOmeeZQPuKDhqd8nqhrG7EL80AWL7wOexWIAvqpZdeYvTo0axcubJdzr9y5UpGjx7NSy+91C7nF+kM1PRVRJr47Iv2z0bJ2dD/Bg/WR6PFvdudgcOFkJER+N8MoMQaPvY5fMfxk6VM1mUsWLCApUuXsmXLFnJzc6murmbatGncc889YZ1n9uzZPP744422GWNIT09n4MCBTJo0ieuuu67JcaNHj27xvK+99hpnnXUWAPfddx85OTkA/P73v2fMmDFBj7nrrrvYuHEjAM899xyjRo1q9Hynnnoqb775Zugvrh1UV1fzz3/+ky1btrBlyxb27NmDtZZ3332X/v37h3WurVu38vnnn7N582a2bNlCSUkJI0aM4IUXXgi6/+7du/nb3/7G5s2byc/Pp6Kigl69ejFw4EBuu+02Lrjggki8xLApjIlIEx9/0s4d9w2cfGsCCVlQc7AdnycYC0dKwO8Hjyew3ngWlmLX8InXw82JfjwKZB1m6NCh/OMf/6B79+4d/txvvPEGOTk5pKen07t3b/bt29em851//vmcd955APj9fvLz8/nqq694/PHH2blzJw8++GCTY7Kysrj55puDnq9Xr15Ntnk8HmbNmhU0jO3YsYONGzfi8Xjw+/1tei3tqaioiGeffRaA7OxsMjIyKC0tbdW55s+fz6uvvkpiYiKnnHIKJSUlLe6/fft2vvzyS8455xzOOecc0tPTKSgo4KuvvmLhwoVMnz6dO++8s1XX0hYKYyLSyJ49lm3b2/c5eo52yDzXtKm7fltYCyUlUP9e5xjIwLLTNSz1OVyS2BGN1QQgJSWF0047LSrPPX36dHr27MnJJ5/MZ599xv/9v/+3Tee78MILmTp1aqNtBw4c4I477uDtt9/mnnvuISWl8Zpc3bt3D2sk7uKLL2bhwoUUFxc3WYD6ww8/xHEcRo8ezcKFC1v/QtpZ9+7d+cMf/sDZZ59NVlYWM2bMYMmSJa061/jx47nssss444wzOHLkCNdee22L+48ZM4a5c+diTONPXAUFBUydOpWZM2dy8803k1E/dN5BFMZEpJFPPw8U7rdXvVhCN+g/2QN08PTk0QwUFX0TxgASDSRay1K/4VQPnNgFKmpzcnL4+9//zrp16ygvL6dHjx4MHjyY73znOwwfPrzJ/nPnzuX1119nz549dOvWjfHjx3P//fc3Chher5f33nuPhQsXsnPnToqLi+nWrRvnnnsud911F4MGDWp0zpUrV/LAAw80mR6cPHkyEBi9+tOf/sQXX3zBkSNHOOWUU5g2bRpXXHFFm19/sNcYaf379+eUU05hy5YtVFZWNglj4Zo0aRJff/01H3/8MbfffnvDdp/Px9y5c7nwwgvp27dvWy+7XaWlpXHRRRdF5FwDBgwIa/+kpKSg2/v06cO5557L/PnzycvL6/Aw1gV+3YhIqKy1zP1X+xbu95voIbmfobaw/Z7juGygbYe3tvHmdKDaGj71eqiN83YXb775Jvfffz/Lli3jwgsv5Pbbb+f8889n27ZtzJs3r8n+77zzDr/5zW84/fTTmTJlChkZGbz11ls88cQTjfYrLS3l6aefpra2lksuuYTbbruNkSNHsnjxYu69996GeqZQ+P1+HnroIZYuXcrll1/O1Vdfzf79+3n00UdZunRpm78GHeHgwYPs2bOHvn370rNnzzafb9iwYZx++unMmTOn0fYFCxZQXFzMpEmT2vwcXdGRI0fYuHEjKSkpYdetRYJGxkSkQe42ONCONVypJxr6fMvBX2khBmYCi0vg6EEEYyATy0HXsMTnMDZOpytzc3P5wx/+QO/evXnxxRcbvflYazkcZGX45cuX88orr3DqqacCgSLsqVOn8tlnn/Hggw/Sp08fADIyMnj//febjM7s2LGDu+++mxdeeKGhXuh4CgoKGDx4MM8//zyJiYkAXHnllTz44IP8/e9/j9joSqQsW7aMmprAcG99zdjXX39NSkpKs1OgJSUlQe8kHTZsGBdffHHQY6677jqeffZZNm7cyJAhQwCYNWsWWVlZjB07lhUrVkTk9fzjH/+grKws5P3HjRvXcMNBrNuzZw9z587FdV0OHz7MggULKCsr45FHHiE9Pb3Dr0dhTEQafDHP4nHA304ZpP8UD540qMlrn/OHq6i4cRgDSDCQjGWF33CmB06Iw/mD9957D9d1mT59epNRAGNMQ7A62q233toQxCBQ6zVhwgRmzpzJ5s2bG45JSkoKOk02YMAARo4cydKlS/H5fCQkhPb2M2PGjIYgBnDBBReQnZ0d1ghbR1mxYkWTIOTxeJgyZQoDBw4MesyRI0eYOXNmk+233nprs2Fs4sSJvPDCC8yaNYshQ4ZQUFDA0qVLufnmmxt9rdrqH//4B3l5of+wnnDCCZ0qjB39dU9LS+PnP/85EydOjMr1KIyJCBAYEfn0s/YLYpnnmEBPsfbush+GqkqorYGk5Mbb04Bia5jn9XBrUvzdXVkfZC688MKQjzm21gtoCF3lxyzVsHXrVl5//XXWrFlDYWEhPp+v0eMlJSX07t37uM+ZkZERdMqob9++rF+/PuRr7yj3339/QwF//YjLV199xTPPPMPixYt59dVX6datW6NjWtNqomfPnlx66aV89tlnzJgxg48++gi/3x+0fUZbvP/++xE9XywZM2YMS5Yswev1cvDgQT744AMee+wxNm7cyMMPP9zh16MwJiIAbNkKh/Lb6eQOnHC9ByfB4K2KrWKskiNNR8dM3d2Ve61hvd9wXkJsXXNblZeXY4wJKRDVCzZ14/EEbsQ4uo3C2rVr+f73vw8Ewt4VV1xBWloaAF999RW5ubnU1tY2OVeoz1n/vG5HLJraBo7j0LdvX26++WYOHz7MK6+8wttvvx2xtgnXXXcd8+fPZ968ecyePZuzzz6bM888MyLn7krqW2I8+OCDVFdX8/bbb3PxxRdzySWXdOh1KIyJCABfzm+/KcqeFzqkDzDUFsdeqCkOMlUJgbsrjbUs8juc6fHXdeuPDxkZGQ21YZG+8+6VV16htraWP/3pT03uVtywYQO5ubkRfb7OYOjQoQBs2rQpYue85JJL6N27N8899xwFBQX85Cc/idi568VzzVgwF110Ef/85z9ZtWqVwpiIdDxrLZ990T5BzCRCv2sChVc2tAGRDlVZGVgiKVipTQZQ4hqW+Rwuj6Ni/iFDhrBp0yaWLVsW8amt/fv3k5mZ2SSIVVdXs2XLlog+V2dRH2giOZrn8XiYOHEif/3rX0lOTubKK6+M2LnrxXPNWDAFBYEFckOtZ4wkhTERYcdOCON3blh6jnZIO8lQG6UGr6E4cgSCzdg5dcX8q/2GczzQK06K+adMmcL777/Piy++yKhRozjhhBMaHqsfMQtWxB+K7Oxs9uzZw44dOxp6QPn9fp555hmKi4sjcv2dSU1NDf/85z8BGDFiRETP/Z3vfIdhw4aRmZnZLn2xYqlmLC8vj+rqarKzs9vUq23z5s0MGjSoSdPXgwcP8tprrwE0e+NEe1IYExHmf0W7NHo1idDvagdrwfqOv3+0FJcED2MQKOYvsoZFPodJSfExOnbGGWcwY8YMnnrqKW6//XbGjh1LdnY2RUVF5OTkcOmll/LDH/6wVee+5ZZbWLp0KdOnT2f8+PEkJSWxatUqCgoKGDlyJKtWrYrwq2m9+fPnM3/+fCDwZgyBurb6v5922mlNOuq35OjWFtZaCgsLWbx4Mfn5+Zx11lncdNNNEb3+nj17Mm7cuIies6M888wzDUsXbd8eWPLj2WefJTU1FYDrr7++0ejqf//3f5OTk9Nkvc1du3Y1hKj6r/3u3bt57LHHGvb5z//8z4a//+EPf2Dfvn0MHTqU7OxsjDHs37+fxYsX4/V6ueOOOxqWtOpICmMiwhfzbLs0eu11iUPqCbE9KgaBBrD1a1UeyxhIw7LVNex346cz/y233MKAAQN44403WLx4MVVVVfTo0YOhQ4cyfvz4Vp93zJgxPPHEE7z66qt88sknpKSkMGrUKH77298GbeEQTVu3buWjjz5qtC03N7ehrm3EiBFhhbFjW1ukpqZy8sknM2XKFL7zne+0uft+PPniiy+aTIEe3Wx45MiRIa2QUFhY2OR7WFRU1Gjb0WHslltuaVhYfOnSpXi9Xnr06MGll17K5MmTj7t4e3sx1oa2HHBXHF4W6Qr2H7DcenvkC+tNIgz+rwRSsg21BRE/fcSddhocs9RfA2sDrS7O8rjcmOhi4qiYX0Ta17FriAYTJ5/xRKS1FnxNu4SLnhcGRsW8neFznAksHN7swwbSTWAh8T1WSUxEIkthTKSLm/9VO7SbcKDvhNivFWtgobQ0MALWnCTAaw1LfU6L+4mIhEthTKQLKymxrN/Qcghpje4jDKknG7wlkT1ve3LdQO1Yc+pHx/a4sMfV6JiIRI7CmEgXtnhp5IMYQN9vezCOwXojf+52YwItLlpSPzq23G80OiYiEaMwJtKFLfja4kT4t0C3QYb0MwzeI50srdiW68bgm9GxXa5hv2rHRCRCFMZEuqjaWsvSZZHvLdbnWw5OIrjVkT1vR/B6ofo4190wOuZTGBORyFAYE+miVuVAXY/EiEnpb8g6z8EX+nJ2Med4U5XGQJqx7HANefHRA1ZEokxhTKSLWrTYBm1y2ha9xzp4UsFfEdnzdqTjhTGAZKDWGnJ8+hUqIm2n3yQiXZC1lq++DnSdj5SEDOh1sYO/KnLnjIaKCvAdpx2HMZBiLJtdQ4lGx0SkjRTGRLqgnTvh8OHInrPnaIeELDr1FGW90hBeQypQbQ1r/Po1KiJto98iIl3QoiVE9C5K44He45xAg9fOPlJkoDSEqUpjINFY1vkNVZ3sxlERiS0KYyJd0IKvI7sweOY5hpQTDN4QQkzMs3DkON3466UD5Rg2+XVnpYi0nsKYSBdTWmbZuCmy5+w9thM2eW2B64fKEG5CcAwYLDl+B79Gx0SklRKifQEi0rGWLYts1/2U/oaMwQZfeRylEQOHdlqyUo6/q8/CNuCLBDjF0/5fg6wsyO6nkbjZs2fz+OOP8/Of/5zrrruuw573vvvuIycnhyVLlnTYc0r8UxgT6WIWLwm0tIjUnZQ9Rzt4Ug01efETxmqLLYt+7wtrkfMF7Xc5jSQlwRt/bVsgO3DgADfeeCMAPXv25MMPPyQhoenbwc6dO/nOd74DQHZ2Nu+//36rn7OrGj169HH3UbAThTGRLsR1LQsXRy6IOcnQ6xIHtyZ+ghgE+qSFE8Q6Um1toBdadr+2n8vj8VBUVMSiRYsYO3Zsk8dnzZqFE+n1siLk8ssvZ9iwYfTu3Tval3JcWVlZ3HzzzdG+DIlhCmMiXcjmLVBeHrnzdR/ukNQLaiPcJkM6xrnnnktubi6zZ89uEsZ8Ph+ffPIJF1xwATk5OVG6wuZ169aNbt26RfsyQtK9e3fuueeeaF+GxLDY/MgjIu1i6bLItrToeakDGGwEm8dKx0lOTmbChAksXLiQoqKiRo/Vb2uuHqugoICXXnqJadOmMXHiRC677DImT57M7373uybnAnjssccYPXo0+/fv529/+xu33XYbl112GY899ljDPqtWreI//uM/uPzyy7nyyit59NFHOXToEPfdd1+T6b7Zs2czevRoZs+e3Wj76NGjue+++ygsLOSxxx7jqquuYty4cUybNo2VK1c2ua7Nmzfz+9//nttvv53x48czbtw47rjjDl577TV8x+v+2w4mT57M5MmTqays5KmnnuK6667jsssu44477uCLL74IeozX6+WNN95g6tSpXH755VxxxRVMnz6dr776qsm+kfw+/OlPf2L06NF89tlnQa9r1qxZjB49mldffbWNX5X4pzAm0oUsXBS5lhapJxoyzjL4yuJrirKrue666/D7/Xz88ceNts+aNYvMzEzGjRsX9LjVq1fzxhtv0LNnTyZMmMAtt9zCSSedxLvvvss999xDeTNDsE8++SSvvvoqgwcP5tZbb2XgwIEALF26lAcffJCNGzdyxRVXMHnyZPLy8pg+fXqz52pOeXk506dPZ8eOHUycOJFx48axefNmZsyYwfbt2xvt+8EHHzB//nwGDhzI5MmTmTRpEtZann/+eX7+85+H9byR4vf7eeihh1i6dCmXX345V199Nfv37+fRRx9l6dKljfatra3loYce4plnngFg0qRJXHXVVeTl5fHTn/6Ut99+O+hzROL7cMMNN+A4Dh9++GHQ5/jggw/weDwdeoNFZ6VpSpEuorTUsmVr5M7X4yIHJwW8JZE7p3S8oUOHMnDgQObMmcMdd9wBQGFhIYsXL+bGG28kKSkp6HGjRo1izpw5pKWlNdr+0Ucf8dhjj/H2229z5513Njlu27ZtvPbaa2RnZzds8/v9/PrXv8Z1XZ577jmGDx/e8Nhjjz3GRx99FNZrys3N5aabbuLhhx9uqHk7//zzeeKJJ3jnnXd45JFHGvb97ne/y49//GM8Ry3Uaq3liSeeYNasWaxZs4bzzjsvrOc/VklJCS+99FLQx0477TQmTJjQaFtBQQGDBw/m+eefJzExEYArr7ySBx98kL///e9cdNFFDfvOnDmTVatWcdddd3HPPfdgTODGjoqKCr7//e/zzDPPcPnll9OnT59GzxGJ78MJJ5zARRddxJIlSzhw4AD9+/dveGzHjh2sX7+ecePG0atXrzC+Wl2TRsZEuojlKyLX0sJJgp4XO7g1kTmfRNd1113X8OYJMGfOHPx+P5MmTWr2mJ49ezYJYgATJ04kPT2d5cuXBz3ujjvuaBQAANasWUNeXh5jxoxpFAAApk+f3igohSI1NZUHHnig0c0H11xzDR6Ph40bNzbaNzs7u8n5jTHcdNNNAM2+jnAcOXKEmTNnBv3z6aefBj1mxowZDUEM4IILLiA7O7vR9buuy3vvvcdJJ53UKIgBpKenc9ddd+H1evnyyy+bnD9S34cpU6ZgrWXWrFmNttePlt1www3BvyjSiEbGRLqIJcsi19Ii8xxDUi/wNi0Nkk7o6quv5rnnnmP27NkMGzaMOXPmcNZZZ3HWWWe1eNy8efN4//332bJlC2VlZfiP+sd1uJnFT4cOHdpkW25uLkDQEah+/frRr18/Dhw4EPLrOfnkk5sExYSEBHr27Nlkqs3r9fL222/z2WefsWvXLqqqqrBHfWpp7nWE49RTT+XNN98Mef+MjIxGo0z1+vbt2xCYAXbv3k1paSm9e/fm5ZdfbrJ/SUlJw37HitT34dJLL6VPnz7Mnj2bu+++G4/Hg9fr5eOPP6Zfv34htfYQhTGRLsFay+IItrToeZGDMQbrU71YPOjRowdjxozh008/5YorrmD37t08/PDDLR7zt7/9jWeffZYePXpw4YUX0rdvX5KTkwF48803qa2tDXpcz549m2yrqKhouI7mjgknjKWnpwfd7vF4GgVGgJ/97Gd8/fXXnHLKKXz729+mR48eJCQkUF5e3uLraE8tXb97VNFnaWkpEJgS3LFjR7Pnq6qqarItUt8Hj8fD9ddfz8yZM1m8eDFjxozhyy+/5MiRI9x8880x2xol1iiMiXQB23dASYTWjUzqBZnDHHwVCmLx5Prrr+fLL7/kl7/8JcnJyVx11VXN7uvz+fjLX/5C7969ee211xq9sVtref3118N67vrwUVxcHPTxYHdnRsLGjRv5+uuvGT16NE8++WSjabj169eHNZoVDfVft29961v8+te/jtj5wv0+3HDDDbzyyit88MEHjBkzhg8//BDHcVqc5pbGFFlFuoBlyyPX0qL7SAdPmsEfwtqN0nlcdNFF9OnTh4KCAsaOHUtmZmaz+x45coTy8nKGDRvWZIRl06ZN1NSEV0x45plnArB27domj+Xn53Po0KGwzheq/fv3A3DJJZc0qYdavXp1uzxnJJ122mmkp6ezadOmiLThaO33oW/fvlxyySUsWrSItWvXsmLFCi666KImNWnSPIUxkS5g8RIbseL9nhc7WL8FDYzFFY/Hw+9+9zt++9vfct9997W4b48ePUhOTmbLli1UV1c3bC8tLeXJJ58M+7nPO+88srOz+frrr1m3bl2jx1588cUmU4uRUh8W1qxZ02j7jh07eO2119rlOSMpISGBG2+8kby8PJ555pmggWz79u0hjyy25fswZcoU/H4/jz76KNZaFe6HSdOUInGuqsqydl1k7qRMO92QepLBV9b2c0nsGTx4MIMHDz7ufo7jcNNNN/HGG2/w7//+74wZM4aKigqWLFlCdnZ2kzYKx+PxePjpT3/KT37yE77//e8zfvx4evfuTU5ODgUFBZx55pls27attS+rWUOGDGHIkCF8/vnnFBYWMnToUA4dOsSCBQu49NJLm22yGq6WWlsA3Hjjja1u/3DPPfewZcsW3nrrLRYtWsTw4cPp0aMHBQUFbN++ndzcXF5++eWgNWLHasv3YfTo0WRnZ5OXl0evXr0YM2ZMq15PV6UwJhLnclZHrnC/xygHJyn+76L0pINJiM31KZOSICsr2lcB999/P5mZmcyZM4d33323ofnr3Xffze233x72+S655BKeeeYZ/vznP/P555+TnJzMBRdcwOOPP86PfvSjZova28Lj8fDkk0/y/PPPs2TJEjZt2sRJJ53Egw8+yCWXXBKxMFbf2qI5benFlZSUxP/8z/8wa9YsPvroI+bNm4fX66Vnz56cdtppTJkypaGhayha+31wHIeJEyfyl7/8hWuvvTbowvPSPGNtaJ+XmyvoE5HY9vQzLu990PZAZhJg6BOJJGaBtwv8OqgtsY3q4oyBM88M/DcU1kI5cEGCy1BP5OZ0s7Igu1+IFxEHKioquOaaaxg4cCD/+7//G+3L6bJC+T48/PDDLFq0iLfeeouTTz65g68wdjV3d+rRFF1F4tyiJZEZGcsYbEjqCd4I3ZUZ65K6G+jeeFtiv/BGpRItlBgPZyb5cbpOfmqVqqoqXNdtNPLi9/v54x//SE1NTbPLMklktfb7sHPnThYtWsSFF16oINYKCmMicSzvkCWM9kwt6j7CCUzdeSNzvk7HQElJeGEsDSi0hr3WcKrRHQ8t2bt3L9OnT+eiiy7ixBNPpLKyktWrV7Nz504GDBjAv/3bv0X7EruEcL8Pc+fOZc+ePQ1LJU2bNi0al93pKYyJxLEVKyJzHk9qoKWFv2nvyK7DwpEjgenHUKcqEwCfhc0+w6lJCmMt6dOnD1dccQU5OTksWbIEv99Pv379uOOOO/je975HampqtC+xSwj3+/D++++zZs0asrOzefTRRzn33HOjdOWdm2rGROLYf/6Xy5dfwVFNu1ulxwUOA+7zUFsItn26DHQaZ54J3bqFvn+5hSTg7mQ/qZqqFOlyQqkZU58xkTjlupZlK9oexAC6jzJgTJcPYpjA6Fg40oAKDNtcJTERCU5hTCRO5W6DY9ZEbpWEjMDyR/5KTbNhobgkvEMcEzhuvd+JWONdEYkvCmMicWr5isgsgZR1nkNCOvi0/BEA3lqoqgzvmFRjOeDCYYUxEQlCYUwkTi1dFpklkLqPcgADEZjujAsm/EXXk4Faa9ji169cEWlKvxlE4lBNjWXd+rYvgZTYAzIGGXwVGtJp0IqpSmMgwVg2uAa/vpQicgyFMZE4tGYtBFkzOGxZ5zp4UmnUiV6gpjrwJxypwBFr2K1CfhE5hsKYSBxavsLi8bT9PA1TlBrNacyEPzqWaMBvYYtfYUxEGlMYE4lDi5e2fQmkpJ7Q7QyDr1xJrAkLRa1ovZhsLFtdg25MFZGjqQO/SJwpLrbs2tX282Se6+BJg5pDbT9XZ2QSwLTwcdXrQkU1JCWHfs4EC2UYVvkNZzutS2QpBrppcE0kriiMicSZFasic57uIx2sS5ecojQJkHaawRxnqjffCQSscPiBf3k9LGnlWpVpwNRkvwKZhOW+++5rWOIoVI899hgfffQR7777Lv3792/HqxOFMZE4s6KuXqwt05SJPQJTlF21cN84BIKYJRBIm+GzkBjmb1EPgUDmsYE6snB4gUqg2rZtdOzAgQPceOONLe6TnZ3N+++/3/oniROTJ08GiMuvxezZs3n88cf5+c9/znXXXRfty+nSFMZE4oi1liXL2l4vVn8XZU1+ZK6rszreyKD1A274zXV9gM9AWriBygaCXKScdNJJXHXVVUEfy8jIiOAzSbT94he/oLo6vFuA77//fqZOnUrfvn3b6aqknsKYSBzZvx8KC9t+nu4j6u+i7IJzlGHyecOrG6tXaQ2ZrZyqjJSTTjqJe+65J6rXIB0jOzs77GN69+5N79692+Fq5FgKYyJxZMXKtp8jMQu6nalGr6Hy+sIPYx4CU461FpI6Se3X6NGjGTFiBI8//jjPPfccCxcupLq6mjPOOIP777+fUaNGNTmmoqKCN954gy+++IIDBw6QmJjI0KFDufPOOxk+fHijfetrmubPn89f/vIXPv30U/Ly8vje977XEBjnzZvHq6++ys6dO0lLS+Oyyy7j+9//PlOnTgW+mUr8xS9+wdy5c5k5cyZDhw5tcl1//vOf+d///V8ee+wxrrzyyqCv99ip3NGjRzf8fdq0adxzzz2sXLmSBx54gGnTpnHRRRfx8ssvs3HjRsrLyxtqs2bNmsVXX31Fbm4uRUVFpKSkMHjwYKZOndrka3b0+caMGcPzzz/Phg0bMMZw/vnn89BDDzWp3dq8eTOvvvoqGzdupKioiPT0dE444QTGjh3LnXfe2eTrW39d9fVgAI8//jiPP/54w77H7hOsZmz27Nm8++677Ny5E4DTTz+dG2+8scl0Z2teU1ekMCYSR5atsDgOuG1YuihjaN1dlF18ijJU1gamhcPp61a3djiVGJI60R0S5eXlTJ8+nW7dujFx4kSKior4/PPPmTFjBq+88goDBw5s2PfIkSPcd9997Nixg3PPPZcpU6ZQUVHBV199xQMPPMATTzzBuHHjmjzHz372M3Jzcxk9ejQZGRkNb9SzZs3iV7/6Fenp6UycOJH09HQWL17MD37wA/x+P56jvgFTpkxh7ty5fPjhh03CmN/vZ/bs2WRlZXH55Zc3+1ozMjKYNm0ab775JgC33nprw2MjR45stO+6det49dVXGTVqFDfccAOHDn1zC/Lvf/97zjjjDC644AJ69OhBQUEB8+fP58EHH+Q3v/kNY8eObfLcmzZt4vXXX2fUqFFMnjyZrVu3Mn/+fLZv387f/vY3kpMD6X/r1q3ce++9OI7D2LFjyc7OpqysjF27dvHBBx80CmPHGjduHOXl5Xz11VeMHTuWM888s9l9j/Xkk0/y9ttv06dPHyZNmgQEgvLjjz/O1q1b+dGPftTq19RVKYyJxAnXtaxc1bYgBtB9uEFTlOHxecMLYxAIZJUWskzg79Gwb98+XnrppaCPDRs2jIsvvrjRttzcXG666SYefvhhnLpCufPPP58nnniCd955h0ceeaRh3yeffJIdO3bws5/9jBtuuKFh+3333cedd97Jb37zG0aPHt3kTfjw4cO8/vrrZGVlNWwrKyvjf/7nf0hNTeUvf/kLp5xySsO5ZsyYwebNmxtNww0fPpzTTz+dTz/9lBkzZpCamtrw2JIlS8jPz+e2224jKSmp2a9NRkYG99xzD3PmzAFocTp32bJlzRbB//3vf28y8nP48GHuvPNOnn322aBhbNGiRfzyl79kwoQJDdv++7//m48//pivvvqqYfvHH39MbW0tv/vd75qc58iRlhdQHTduHGVlZQ1hLNQC/pycHN5++21OO+00Xn75Zbp16wbA3Xffzd13381bb73FFVdc0WTkM9TX1FWp6atInMjdBhVtvPvRkw4ZQxz86koaFm8rlp5yCBTy10TxS71v3z5mzpwZ9E+wFgipqak88MADDUEM4JprrsHj8bBx48aGbSUlJXz++eecf/75jYIYQM+ePbnjjjsoLi5m+fLlTZ7j7rvvbhTEAL766isqKyuZNGlSQxADSEhIYPr06UFf2+TJk6msrOTTTz9ttP3DDz8EaHJdbTFo0KBmw0ywKbjevXtz+eWXs3fvXg4ePNjk8REjRjQJJ/XnP/rrXC/YqNKxX8NIqZ/avPvuuxuCGEBmZibTpk0DaAiwRwv3NXU1GhkTiRMrVwUWpG7LgFbmEIeEdKgpiNx1dRU+HySE8Ru1fjSsCkNKlKYqR48ezdNPPx3y/ieffDJpaWmNtiUkJNCzZ0/Ky8sbtm3cuBG/309tbW3Qkbe9e/cCsHv3bsaMGdPosWA1Xrm5uQCcd955TR4bOnRooynKetdccw3PP/88H3zwAddffz0AhYWFfP3115xzzjmcfvrpx3u5IRsyZEizj+3fv59XX32VlStXUlBQQG1tbaPHDx8+zAknnNBo26BBg5qcp/6OxqO/zuPHj+fNN9/kkUce4dvf/jYXXnghw4cPb9e7H7ds2QI0naoFGmrgtm7d2uSxUF9TV6UwJhInlq9o+xt65jl1c2ZtnOrsirze8MIYfDNV2T2KU5XhSE9PD7rd4/HgP6qfSmlpKQBr165l7dq1zZ6vqqqqybaePXs22VZRN+Tbo0ePJo85jkP37t2bbM/IyGD8+PF89NFHbN++nYEDBzJnzhz8fn9ER8Wau2YIhM5p06ZRUVHByJEjGTNmDOnp6RhjWLVqFTk5OU3CGQT/OtcHzqO/zsOGDeP555/nlVde4V//+hezZ88GAuHwgQceCHpTRVtVVlbiOE7Q70XPnj0xxjR8v44W6mvqqhTGROKA12tZs7Zto2JOcqC/mL/p+6OEwO8P9CVraQmlYzkE+oZVW0jtDGksRPVvvLfffjs/+MEPwjrWmKZfiPrzFRc3XRDUdV1KSkro06dPk8duvPFGPvroIz744AN+9KMfMWvWLNLT0/n2t78d1jW11j/+8Q9KS0v5xS9+wcSJExs99tvf/pacnJw2P8fw4cN5+umnqa6uZsOGDXz99de8++67/OhHP+KNN97gxBNPbPNzHC0tLQ3XdSkuLm4SQouLi7HWNhvapXmqGROJAxs3QZAP2GHpdpYhIYMu23U/EsKtHWuYqrRxlMQIjMwYY1i3bl1Ezld/p1+wUbb6KdFghg0bxhlnnMEnn3zC0qVL2bt3L1dddRUpKSkhP7fH48Ft5V0x+/fvB2hSXG+tbXHEsDVSUlIYNWoUDz30EN/97nepqalh2bJlLR5TPzIVzuurn25ctarpumv1284666yQzycBCmMicWBVTvhd4I+VOczBeMC2ohhdArze8I8xQBXxNTPcq1cvxo8fz7p163j99dexQYZs169fH3JH+LFjx5KWlsasWbPYt29fw3afz8eLL77Y4rGTJ0+mtLS0oY9WuFOUmZmZHDlyhJqamrCOg28ara5Zs6bR9tdee43t27eHfb5jrVu3Luh1FRUVAbR4tygEXhvQqBXH8VxzzTUAzJw5s9F0ZHl5OS+//HKjfSR0mqYUiQPLV9i2tbRwoPtwBzf895u4ZpyW16Y8liVQyO+E+ZvVB5S7x5+qbEXWa1FLrS0Apk6d2ur+Tz/5yU/Ys2cPf/zjH/n4448555xz6NatG/n5+WzatIm9e/cyZ86ckEapMjIy+MEPfsBvfvMbvve97zFhwoSGPmOJiYn06dOn0R2eR5s4cSLPPfccBQUFnH322UELyVsyatQoNm3axA9/+EOGDx9OQkICI0aMYMSIEcc9dsqUKcyePZuf/exnjB8/nqysLNavX8/WrVu59NJLWbhwYVjXcqy//vWvrFy5kuHDh9O/f3+SkpLYsmULK1as4MQTT2yxjxoERg6Tk5N58803KSsra6i9u+uuu5o9ZsSIEdxyyy28/fbb3H777XzrW9/CWsu8efPIz8/n3/7t30L62khjCmMinVxNjWVDG+8M7zbQkNQTfGWRuabOzrqBdSeNp27B8DB4XWh5PCLI8wEVGEwId1WmASkRmtWsb23RnNtuu63VYSwrK4s///nPvPPOO3z22WfMnTsX13Xp1asXZ555JnfddVdY7RcmT55MZmYmr7zyCnPmzCE9PZ3LLruMBx54gClTpjRbG5Wens64ceP45JNPWlW4f9ddd1FWVsbChQtZs2YNfr+fadOmhRQ4Bg0axB/+8AdefPFFvvzySzweD+eccw4vvvgiCxYsaHMYu/HGG+nWrRsbNmxoqD/r168f3/3ud/nOd75z3NqtrKwsfv3rX/Pyyy/zwQcfNIyytRTGAB5++GEGDRrEu+++27DqwYABA7j33nu14HgrGRts/DiIYIWTIhJ9K1ZaZjzctjspT7jBQ/8pDjV5EbqoOGASwivGP9oZZ0JSYuj7V9rAEkm3JvmPG7RSDHSLrxKzNtm7dy+33HIL48eP51e/+lXQfe644w4OHDjA7NmzVVwuHS7YnafH0siYSCe3Msfi8QTu5mut7iOMasWOYX20rvuXgdJCOKZ1VIu6AaUYyjCc5KjhbjClpaWkpKQ0qoOqrq5u6JMWbGklCHR+3759O5MnT1YQk5ilMCbSyS1f3rYgltLfkJJt8OkuysiwcPgwZGcHmvCGwlPX2y3XbxjsURgLJicnh1/96ldcdNFF9OvXjyNHjrBixQoOHjzI+eef36RdxT//+U/y8/P58MMPSU5OblhMXCQWKYyJdGKVlZatuW07R+YQg5Ns8JYoBESKzwclR6BH99CPSTKWna6hKs56jkXK6aefzoUXXsjatWspKSkB4KSTTuLee+/ljjvuaFLA/9e//pWCggJOOeUUHn300aDLEonECtWMiXRii5dafvJI20LUGQ8nkDnUUJsfoYsSMJCeDmedGfohfhuYqrwh0a/RMZE4EkrNmPqMiXRiOXX1Yq2VmBW4k9JfGblrEsBCRTkEWe2nWZ66dUW3+TUsJtLVKIyJdGLLV7atXixjiIMnFYWx9mCgIMwF15ONZYdrqNbAmEiXojAm0kmVl1u2bWvbOTKHGcDEV/v3WGGhqChQPxaqFKAKwy5Xo2MiXYnCmEgntXZd2xcGzxzq4NcwTLuxFgoLQ9/fYwBNVYp0OQpjIp3UqjbWi2lh8I6RXxBeaK6/q7JGGVmky1AYE+mkVrS1XmywE1h7Uc1e25XPC3WdGEKSAlRi2K2pSpEuQ2FMpBMqL7ds39GGEzjQfYSDG+mVpyWoQ4dC39djwLWwQ1OVIl2GwphIJ9TWerG0UwxJvTRF2VGqqqC8PPT9k4xlu2vwaqpSpEtQGBPphHJWt61eLGOwwUkyuDWRuyZpgYFDYTTVTQHKMezTVKVIl6AwJtIJtbW/WPfzHKxfwy4dxkLpEaipDm33hLqpyu0KYyJdgsKYSCdTXm7Zvr31xyf1gtRT1HW/w5nAnZWhSjSWba5BmVkk/imMiXQyba0XyxisrvtRUddzLNQmsClAmTUcsBodE4l3CmMinczqNW2rF2vouq8Rlw5nLRw+HNq+CYAP2Km7KkXinsKYSCfTlnoxTypkDnHwVymJRUtBiE1gjQEPllzXtGkkVERin8KYSCdSWdm2erFugwyebpqijCafD4pLQts3FSi2cEhhTCSuKYyJdCJr1oHbhkW91XU/NuSH2OYiEfBawy5Xv6pF4pl+wkU6kdVt6S/mQPfhjnqLxYCqSqgIoeGuMeAYS65fU5Ui8UxhTKQTWbmq9fVi6acZEntoijImhNHmIgUosFCiMCYStxTGRDqJykrL1tzWH6+u+zHEBhYP94awNmgyUGsNu9QAViRuKYyJdBLrN7StXixLXfdjTihtLkxdBtumMCYStxTGRDqJnDb0F0vqDaknGy0MHkssFBwOrc1FsrHscw0VytIicUlhTKSTWNWGerGMwQ6eFPBXRfaapG38vsB05fGkADUYdmt0TCQuKYyJdAI1NZbNW1p/fNY56rofk0ygCezxOCYwgrZD3fhF4pLCmEgnsGFj27ruZ5ytrvsxyQZaXFSFMGKZbCw7XUOtvo0icUdhTKQTWLMWnFb+tDZ03Ve9WGwyoRXyJwOVGPZqqlIk7iiMiXQCK1fZVt9JmTHYwRiwrRxZk3Zmoajo+HfKJhhwLexUGBOJOwpjIjHO67Vs2NjKg+u77tdG9JIkwlwXiouPv1+isWxzDepQIhJfFMZEYtzmLaE1Bw0m7VR13e8sCkKYqkwByizkKYyJxBWFMZEYt3pN6+vFMoeo635nUVUZ+NOSBMCHFg4XiTf6iRaJcatybKsXic4arq77nYaBw4XH2cWABy0cLhJvFMZEYpjPZ1m3LrQu7cdK6gOpJ6nrfqcRYiF/ClBooUhhTCRuKIyJxLBt26G6lVOMmUPUdb+zcd3jd+RPQguHi8QbhTGRGLZm7TcLRYcrc5i67ndGoUxVGmPZproxkbihn2aRGLZ6jaU1WcyTVtd1v1JJrLOpKIea44yGpgAHXCjXt1ckLiiMicQoay05qwONPsOVcbYhIR18amnR+ZhA7VhLkgksHK6pSpH4oDAmEqN27Yby8tYdmznMAQOo637nY6GwkBanl7VwuEh8URgTiVFr1rTuOJMAWec66i3WiXm9UHacIJ5sLLtcQ42mKkU6PYUxkRi1eo1tVbPX9IGGxO7gU0uLziuEqcoUoArDbk1VinR6CmMiMchay8qc4/ecCiZzsINJANvKJZQkBlgoLgG3hWlmT93C4bs0VSnS6SmMicSgg3mhLRwdTNYIoyAWB6wLJUda3ifRWLZZLRwu0tkpjInEoNbWi6WcaEjJNrqLMh6YukL+FqQAFdaw32p0TKQzUxgTiUGr11o8nvCPyxxicJINrrrud342cDdtbW3zuwQWDoedmqoU6dQUxkRi0Koc8LeiLUXWeU7rGpNJzGppurph4XBXC4eLdGYKYyIxpqjIcvBg+Mcldof0AUZ3UcaZ401VpgIlFg4pjIl0WgpjIjFm7brWHZcxxMGTCn7Vi8WVmhqobOF7mgh4rWGX1qoU6bT00ysSY9a0tl5MC4PHp+P0HDMGHGPZ6tdUpUhnpTAmEmNWrgq/XsxJhsyhDv4qvRvHHRsIYy0FrRSgwEKRvv0inZLCmEgMqaiw7NwV/nEZgwwJ3TRFGa/8figra/7xZKDWGnaqG79Ip6QwJhJD1q1veQSkORlDHYwHrC/y1yQxIMSpylzVjYl0SvrJFYkha9a1ol7Mge7DtTB4XLOBbvwtLY+UDOS5UKqpSpFOR2FMJIbktKK/WPrphsSe4FdLi7h2vOWRkoEaDDvUAFak01EYE4kRNTWWzVvCPy5zqMFJBLeFTu0SBwwUtdAA1jGAhe2qGxPpdBTGRGLE5i3ga0XNV9ZwR7ViXYGFslLwtbAIfLKx7HUNFZqqFOlUFMZEYsSateCE+ROZnA2p/Y2mKLuQ4pLmH0sBqjHs0uiYSKeiMCYSI1avsWHfSZk5xMFJBr8WBu8yWrqr0jGBu3G3qW5MpFNRGBOJAX6/Ze268NtaZJ3rAHrj7UoqKwNLJDUn2Vh2uQb1/xXpPBTGRGLAjh1QXR3eMQkZ0O1Mg18FQl3LcXqOpQBVmqoU6VQUxkRiwNp1gcad4cgY4uBJA5+67nctFgoLm3/Yo6lKkU5HYUwkBqxea8MOYw0Lg7vtckkSw7xeKC9v/vFkY9mhqUqRTkNhTCTKrLXkrAY3jFBlEiFrmIO/Wu+2XZKmKkXiisKYSJQdOAglJeEd0+0sQ0KGuu53WRaKiwNd+YPRVKVI56IwJhJla9eFf0zmYAeToIXBuzLXhSOlzT+uqUqRzkNhTCTK1qwNc3FwA1kjHC1/1NVpqlIkbiiMiURZuIuDp51qSO6jKcouzwZGxppbQstTt1ZlrqYqRWKewphIFBWXWPYfCO+YzKEGJ8ngttD4U7qIutqx5iQZy05NVYrEPIUxkShavz78Y7KGO1i/3l0loKWeY6kEpip3aKpSJKYpjIlE0dp14dWLJfeF1JO0MLh8o6oKqptZm9Spm6rcqqlKkZimMCYSRTmrw6sXyxjs4EnVwuByFAOFLRTyJxvLbtegVbNEYpfCmEiUVFdbcreFd0zWuQ5YA3pjlXo2EMaaW2Q+BajGsF1TlSIxS2FMJEo2bQ5vVMyTDt0GGfyVSmLSmN8Hpc30HKufqtyiqUqRmKUwJhIla9eBE8ZPYMZgh4Q08KleTI5lWi7kTzGWfa6hVDleJCYpjIlEyeo1ttmppWAyhxgwaGFwaaq+55g3+MPJQLU1bNfomEhMUhgTiQK/37JuffN1PscyCZB1nqPeYtI823whv2PAMZbNrn7li8Qi/WSKRMGOHVBdHfr+6QMNiVmaopSWtThVCRx0oVAjqyIxR2FMJArWrgMTxoxRw8LgzUxDiQDU1EBFM4E9Gaixhm26q1Ik5iiMiUTB6rU2rDCWNcIoiMnxGTh8uJmH6qYqN/mdsGoVRaT9KYyJdDBrLTmrwQ1xuiilvyEl2+CrbNfLknhQt1alv5nFw9OAwxbyFMZEYorCmEgHO5gHJSWh7585pG5hcHXdlxBYC0XNLB6eCHgxbPXrV79ILNFPpEgHW7cuvP0zz3WwmleSMBS0MFWZgGWTa/Dpn5RIzFAYE+lg4SwOnpAF3QYa/JqilDDUVDdfyJ8GlFrDHhXyi8QMhTGRDrZqdejLIGWe7eBJQ2FMwtNCIX+CAb+WRxKJKQpjIh2otNSyd2/o+2cMM4BR130Jz3EK+ZONJdc1VGmqUiQmKIyJdKB160Pf10mCrGEO/mq9Y0r4bAsd+VOASgzbNVUpEhMUxkQ60Jow6sW6nWlIyAS/uu5LKzVXyO8xgIVNmqoUiQkKYyIdKGd16PViGUMcjAdsM1NNIsdTWwPlZcEfSzGWva6hWFPgIlGnMCbSQWpqLFu3hrizge4jHNzadr0kiXem+dGxFALLI+VqqlIk6hTGRDrIps2hj4qlnWJI6q0pSmkjCyVHwBtkKa365ZE2ankkkahTGBPpIGvXgRPiT1zGEIOTaHBr2veapGsoLAy+vX55pAMKYyJRpTAm0kFWr7Ehj0BknedgXb1DSgRYKCgg6L+9+uWRtmh5JJGo0k+gSAfw+y1r1wV/QzxWUu/ANKWmKCVSfL7g66EaA4lYNvkNtcr+IlGjMCbSAXbshOrq0PbNqO+6r4XBJYLyC4JvTwPKMexQIb9I1CiMiXSAtesCoxChyDrXgDWgkQqJoMoKqAoS8D0mMGKrnmMi0aMwJtIB1q61IYUxTxpkDHbwVyqJSYSZQO1YMCnGsss1HNE/O5GoUBgTaWfWWlatBjeE5poZZxsS0rUwuLQDC0VFwderTAGqrdHi4SJRojAm0s7y8gKLNocic5gDDtgQ+5GJhMNaOBykzUV9z7ENfgfdxCvS8RTGRNrZmnWh7WcSIetcBzfEQn+R1miuzcU3Pcc0OibS0RTGRNrZmjWhLQ7ebaAhsTv41NJC2pHXC6WlTbcnAj5r2KypSpEOpzAm0s5CXRw8Y6iDSQAbZOkakYgxkJ8fZLOBJGPZ7DfUaKpSpEMpjIm0o+ISy779oe3bfYTBamFwaW8WysuD971LJdBzbLt6jol0KIUxkXa0NsR6sdRTDMl9DD7dRSkdoZk2Fx4DWNigqUqRDqUwJtKO1q4NrV4sc6jBSTIq3peOYaGwuTYXxrLXNRSG0IpFRCJDYUykHa3MCa1erPtwLQwuHcu6gUB2rBSgxho2a/FwkQ6jnzaRdlJZadmx4/j7JfUOTFNqYXDpaPkFNFl2yxhIMJYNrsGvzwciHUJhTKSdbNgYWtf9zKEOnhQtDC4dz1sLpWVNt6cCJdawW4X8Ih1CYUyknawJsV4s6zwH0MLgEgWmbnTsGIkG/BY2qpBfpEMojIm0k1D6iyVkQMYgg79CSUyiwEJZKdTUNH0oxVi2uYZy/dMUaXcKYyLtwOu1bNx4/P0yhzh40lBLC4keA4cPN92cAlRp8XCRDqEwJtIOtmwFb5C2AcfKPNcABtRGQKLFBsLYsfWNTt3i4ev8TtC1LEUkchTGRNrBmrXgHOeny5MKWcMc/FV6p5Pocl0oCtLmIg0osLBfi4eLtCuFMZF2sHqNPe5oQsZggycDtbSQmBC0kJ/A4uEbfApjIu1JYUwkwlzXsnoNxw1jmec4GAdsCE1hRdpbTTWUH9Pmon7x8C2uQQO4Iu1HYUwkwnbshKrj9AxzkqD7eY6WP5LYYaAgSCF/GlCJYasK+UXajcKYSIStWRMYUWhJt0GGhCzwlXfMNYkcl4WSkkAj2KM5JvDgehXyi7QbhTGRCMtZY48bxrLOdTAesCHccSnSYQwcLmy6OQ3Is3BIYUykXSiMiUSQtZZVOS0vg2QSoftITVFKDLKBqUp7zL/fJKAWLR4u0l70kyUSQXv3QWlpy/tkDDIkdgef7qKUGOT3QXFJ423GQCKWDX5DrUbHRCJOYUwkgtasOf4+WefV3UXpbf/rEWmNYG0u0oAyDNu1eLhIxCmMiURQzpqWFwdvmKIMshagSKyoqoTKY0ZuPSbQrmW97qoUiTiFMZEIsdayclXLi4NnnF03Ram7KCWWGcgP0uYi1Vj2uoZCLd8lElEKYyIRcjAPCoPciXa07iN0F6V0AhaKi8F3zFR6ClBjDZtUyC8SUfqJEomQ1atbftxJhu7DdReldBK2aZsLYyDBWNa7Bp8K+UUiRmFMJEJWrW65XixzqCGhu6YopfMoKGi6rFcacMQadqiQXyRiFMZEImTlypbrxbqPdDBGU5TSefh8ga78R0uoK+TfoEJ+kYhRGBOJgLw8G3Rdv3qe9EDXff9x1qwUiSkG8vObbk4xlp2uoViF/CIRoTAmEgE5x+kvlnWuQ0KGpiilk7FQGaTNhQr5RSJLP0kiEbD6OPViPc53AAMaSZDOxjRtAqtCfpHIUhgTiYAVLdSLJfaAjMEGX4XetaQTsoHlkbzHtLlIA4qtYZcK+UXaTGFMpI3y8y2HgtTV1Os+0sGTCn6tRSmdWMExo2MJBlwL61TIL9JmCmMibbT6OPViPS92sC6ggTHprCwcPgzuMdPsqSrkF4kIhTGRNmqpv1jaaYa0k40K96XT8/sDXfmPVl/Iv0GF/CJtop8gkTZavrz5erEe5zs4yeCqpYXEgWOn41XILxIZCmMibXCohXoxkwg9LnJwazr2mkTaS001lJU13lbfkX+bCvlFWk1hTKQNVuU0/1jWeQ5JvcBX1vw+Ip2KgUOHGm+q78ivQn6R1lMYE2mDVTnN14v1utjBGKPljyR+2MDIWPUxi92nGste11CgQn6RVlEYE2mD5SuC14sl94WMIQZfuQppJM4EWSIpGahBhfwiraWfHJFWOnDQcriZ9Sh7jnbwpBr1FpP4Y6GoCHxHNYE1BhKxbPAbavT5QyRsCmMirbRqVfDtJhF6XerBrdW7ksQnCxQc80EkDSjDsEWF/CJhUxgTaaWVzdSLdR/ukNQHfKUdf00iHcIGOvIf3QTWYwIPrPU5WH0OEQmLwphIK1hrm60X63WZCvcl/vn9UFjYeFsakGfhgMKYSFgUxkRaYc8eKClpuj3tVEPGIIOvTO9GEv8O5dNoFCwJ8FrDWp/eWkTCoZ8YkVZYmRMoWj5WrzGBjvv+yo6/JpGO5q1t/KHEGEg2li2uQZ9HREKnMCbSCitW2CZhLLFHYFFwBTHpSvKOaQKbClRZw3qNjomETD8tImHy+y0rVjUuXgbodalDQjejjvvSpVRXQelRN6s4detVrnENXo2OiYREYUwkTNu2Q+Uxo1+eVOhzeV07C70BSVdi4ODBxpvSgRJr2Ko2FyIhURgTCdPKVU3rxXqODqxD6S2JyiWJRI8NfDg5egHx+jYXOWpzIRIShTGRMC1b3vjdxSRCn287WD+gtfmkKzJwMK/xpnTgoDXssRodEzkehTGRMNTWWtasbXw7f48LHFJPMBoVk67LQkU5lJd/sykR8FlY7VMYEzkehTGRMKzfAN6j1uTDgX4THCyoyat0bceMjhkDqcay3TUc1oixSIsUxkTCsHxl4yWQelzgkHqKwVscvWsSiQkWysugouKbTSlADYbVfr3ViLREPyEiYViy9JslkIwHsq92wID1tnycSJdg4MBRd1YaA8lYNvgN5SrkF2mWwphIiEpLLdtyv/n/Hhc5pJ2qUTGRBnWjY0fXjqUCldawRk1gRZqlnw6REK1c9U0LMScJsicGbtvXqJjIUQwcOPDN/zoGEo1ltd9QrdExkaAUxkRCtGz5N/VivS5zSD1Jo2IiTdhA3VjZUV3504EyDBv8urNSJBiFMZEQWGsb6sU83aDf1R6sT3dQigRlYP8xo2MOlpV+R0skiQShMCYSgn37oeBw4O/9JnhI7mOo1aiYSHAWqqqgpOSbTd2AYmvYqNExkSYUxkRCsGxZ3Z1h2dBnvIO/yqrbvshx7D/wTYPk+iWSlvsdfBodE2lEYUwkBEuXWYyB/pM9JGSA70i0r0gk9tXWQGHhN//fDThsVTsmciyFMZHjqK21rFgF3YYauo90FMREwnDgILh1vfkSDJi60THVjol8Q2FM5DjWrgMfcOJNHpxEg78y2lck0nn4fXAo/5v/1+iYSFMKYyLHsWSpJfuqQIPX2kJ9nBcJ16FDUFsb+Hv96Ngyv0OtfpxEAIUxkeNast3Q5yoPbo1aWYi0hqVxI9gMoMga1mh0TARQGBNp0YFDlsTLPSR0A29JtK9GpJOyUFz8zSLiHgOeutqxKo2OiSiMibRkzh6HjKEGb1G0r0SkkzOwdx8Na4p1A464hpVas1JEYUykOUUu5PZwsH5wa6N9NSKdnIWqSiis+2BTv2blKr+hVKNj0sUpjIkE4bcwt8ahNhG8hcffX0RCs38/+OpqL7sBFdawVKNj0sXpJ0AkiBy/YWutoVZBTCSi/O43xfzGQIqxrPMb8rWihXRhCmMix8h3YaHPoaYCXG+0r0YkzthAV/7y8sD/pgI11vC1z2lYOkmkq1EYEzmK18K/vB4qraHsIA3FxiISQQZ27wbXDYyOpRvLdtdhu6tWF9I1KYyJHGWRz2Gva0iutXg1KibSPmygCWxeXuB/k02gTnOBT8skSdekMCZSZ5ffsMJvSDaWcq0/KdLuDuUH7rAEyDCWQ9awWo1gpQtSGBMBKiz8y+fgtYY0oERhTKRD7NoD1gaWSfJgWeJz1OpCuhyFMenyXAufeR0KXUOWsfj9UFkR7asS6QIsVFd9M12ZAZRjWOBVMb90LQpj0uWt9hs2uw7pxuIYOKJRMZEOlXcIKisDxfypWDa5hl0q5pcuRGFMurSDLnzlc/BgSa773X/kCKD3AZEOtavu7soUwGsN81XML12Iwph0WdUWPvF6qLKGbnXbXBdKS1FLC5GOZKGmOtAM1hjINJY8a1iuzvzSRehfunRJ1sLnXoe8ujoxUzcSVlqKalVEoqSgAMrKAsX8iViW+w2H1ZlfugCFMemS1voNG1yHNGPxHDUlWVKCpihFomjXrsDalelApTV86XNw9QFJ4pzCmHQ5h1yY73MwWFKOCl7WrasX0y9+kajx+WHPnsB0ZTdj2eE6bFAxv8Q5hTHpUmrq6sQqrCHjmMfKygM1YyISRTbwoaigAJJMYMMCr0OZPiRJHFMYky7DWpjndTjgGjKPqhOrV1yMpihFYsS+/VBVFeg9dgTDfPUekzimMCZdxnrXsK6uTizhmNBlbV3Xff2yF4kZO3YCLqTV9R7L1XSlxCmFMekSCtzAqJg9pk6sXlkZuP6Ovy4RaUbdYuJ79kKKARf40udQqQ9MEocUxiTu1Vr4uK5OLLOZfTRFKRKDbOBns6gIMoFC1/CVpislDimMSVyzNvBpen8zdWIQuIuypARNUYrEqD17wVsDqcay3jXs0HSlxBmFMYlrm1zDGr9DapA6sXqlZbqLUiSWWRuoH0u24LOGL3wOVfrwJHFEYUziVqELX3gdXCypLXyQ1hSlSIyzUF0N+/cHlko67BoWaKkkiSP61yxxyVtXJ1ZmDVkt7Of6dRelSGdx+DCUHQlMV67zG3b69SlK4oPCmMSlr30Oe1uoE6tXciRQMyYincPuPeB4wWsNn2u6UuKEwpjEna1+w0q/IaWFOrF6RZqiFOlUXBd274YMLAWu4WtNV0oc0L9iiSslFj7zOfiBtOOELK8XykrRFKVIZ2KhohwO50OKsazRdKXEAYUxiRt+C3O9Hkrc5vuJHa2oqN0vSUTaycGD4FYG7q7UdKV0dgpjEjcW+xx21tWJOSF8UC5UGBPpvAzs2gXdbGC6UndXSmemf70SF3b5Dcv8hiQsiSEEscpKqKlu/+sSkXZiA6UGB/YF7q5c6zds13SldFIKY9LplVv4l8+h1hrSQjymsBAV7ot0djZQblBV8k0zWK1dKZ2Rwph0aoE6MYdCa8g6ThuLeq5bVy+mX9oicWHvHkj1BprBfqm1K6UTUhiTTm2pz2Gb69CN0OrEILAOpZY/EokfroXduyAVywbXYYvWrpRORmFMOq2dfsMSvyEBS1IYv3sLDrffNYlIFNhAHWhxHrhY5vkcSjU6Jp2Iwph0SiUW5tbViaWHcVxVFVRWtNtliUgUHToETjmUWMPnXgdXgUw6CYUx6XR8Fj7xeihyQ68Tq3f4MCrcF4lju3ZBss+y1XVYq7srpZNQGJNOxVqY73PY6Q+9n1g9v7+ut5g+LYvELb8f9u8CYy1f+RwOqz5UOgGFMelU1rmGVX6HVBNaP7GjFRVpUXCRuFe3XFJ5HlRYw1yvB58+gEmMUxiTTmO/C/O8DmBJDXf2wUJ+fntclYjEovxDYMote61hkbrzS4zTv1DpFEoszPF6qLSGjFYcX1oKtbURvywRiWF7doLxWpb7DTtUPyYxTGFMYl6Nhdm1HgpdQ/cwC/brHcpHhfsiXYxr4cB2qHUDq3So3YXEKoUxiWl+Cx97HfaGsQD4saqqoLwcFe6LdDUWamqgeDcUuYG7sFU/JrFIYUxilrUwz+ew2XXoZiwJrRzZOnQIjYqJdFUWSo9A5SHY4ap+TGKT/lVKTLIWFvocVvodUsLssH+02looLkajYiJd3OE8qD4SqB/bovoxiTEKYxKTVvgMi/0Oia25c/Io+aoVE5E6eTuhrBI+9ToUqM2NxBCFMYk5q3yG+X4HB0t6G4KU11vXcV+jYiJSJ28bHK4xzPZ6qNTvBokRCmMSM6yF5V7DF3U1Hd3aOKKVn68cJiLHcCE/17Kn2vCx11FBv8QEhTGJCdbCYp/Dl34PBshoYxDzeaFAo2IiEoTrg/ydlvVVDvN8Dla/JyTKFMYk6vwWvvA5fO138GDbPCIGgb5i+gUrIs3xV0PBXsuicsMynwpLJboUxiSqaizM9jos9zsktbFGrJ7XCwUFaFRMRFrkK4fDh+DjEof1usNSokhhTKKmxMLbtR42+h3S23jX5NHy8pTDRCQ03hIoKoF/HHLY6ov21UhXpTAmUbHbNfyj1tPQWb+1fcSOVVsDhwtRGhORkNUWQmkVzNzjYUtltK9GuiKFMelQroWlXsO7tQ4ldWtNtrazfjAHDkbuXCLSddQWQLUxvLDbw7ID0b4a6WoUxqTDVFj40Bu4Y9IFurdyrcnmVFaq276ItF7NIYtNMbx22MM7K6J9NdKVKIxJh9jnGv5e62GT3yG17o5JE+F62b37ULd9EWmTmkMWpxvMS/Hwq7csNTX6dCftT2FM2pW/blry7VqHw64hy1iS2yEwFRdDZQUaFRORNqvNB08qHDwngftfNGzN1S8WaV/G2tC6MRUXF7f3tUicKbPwL69DrhtYYzKdyI+GAbh+2LAp0OhVRCRSEnuAceDQRy7X9na5/VZIiGSRq3QJPXr0OO4+GhmTdrHTb/hbrYetbqBtRXtMS9Y7mKcgJiKR5y0GtxayJzn8yzrc+5Blxw6NkknkKYxJRPksLPA6vOutu1uSyLWtCKa6CvIL2u/8ItK1+coCf3qN8eDckMD0/59l5l9camsVyiRyNE0pEVNi4ROvh12uIQlLGu03GgaAhS1bobIK1YqJSLsyCZDUG2ryYe9ffWQUW/6/nxiGn6dpS2lZKNOUCmMSEdv8hn95HY5YQ4axJHbA76eCAti3r/2fR0QEAANJfcDWwqG5Lgdn+/n2OHjgPwy9eyuUSXAKY9Lu/BYW+RyW+Q0+IBMi2jusOTU1sGmTFgMXkY6XkBm427Jsk2Xv6z78h2HqvxtuvQVSI7Wum8QNhTFpV6V105I7Ompaso61sFXTkyISRSYJknqC9wgceM9P4QKXzG5w1/cMk66FpPYslpVORWFM2s12v+FTn0ORNWTSMdOS9fLy4KCWPRKRGJDUE0iA0jWWvX/3UZMPPXvCd//dcN21kNwejRWlU1EYk4jzWVjoc1jhN3iBLDpmWrJeRTlsze245xMROR4nOdCTzHsE8ub4KZjnYr2QlQm33Wq44XrIzFAo66oUxiSiCl2Y6/Wwx3bstGQ9nw82bQ78V9OTIhJTDCR2BycJKnZaDvzTT+kGizGQmAgTr4YpNxjOGKhQ1tUojElEWAvrXMN8r0N5B94teew1bNsO5eUoiIlIzDKJkNTT4HotR1a7HJzlUrXX4vGA3w9nnQU3TDJccTlkaLSsS1AYkzYrtTDP67DZdTBYMunY0bB6+/dDfn7HP6+ISGt40gJ3XfqroHChy6G5fmoLAr8/rYWEBLhsDFxzteGC87XMUjxTGJNWcy2sdw0LvA6lGNJpnwW+Q3H4MOzdG53nFhFpi4QM8KSDrxwKv3Yp+MJPTd0Hy/rRsswMuHICXH2lYdAgMNH4xCvtRmFMWuWQC1/6Ap30DZYMOrZI/2jFJbBrZ3SeW0QkUhIyA6Nl/kooWupyeL5L5a5v3n7rg9lJJ8Kk6wxXTUCNZOOEwpiEpczCUp/DWr+hxhq6mfZdV/J4Skpg5y5UIyYicaN+pMytgbLNlsPz/RxZZ7Heb/apHxi78AK49hrDZZdCYkcX6krEKIxJSCos5PgcVvkNFdaQYiypRKc2rF5REezeHb3nFxFpT540SMgwWGupLQjUlRUt81OT980+jgOuC926wbUT4frrDKeeqlDW2SiMSYtKLazxOaz2G8qtIdFY0onelGS9Q4fgwIHoXoOISEcwCYEpTCfJ4K+ylG+zFC91ObLWxVf6zX4eB/wunHsO3DjZMPYydfnvLBTGpAlr4YCFdT6Hza6hKoZCmN8Pe/YEpidFRLqa+tEysPgqoGyjS8lqS+n6b4JZ/WhZRgbcMClQX3Zif4WyWKYwJg0qLeT6DRv8DgcseK0h2XR849bmlJfBrt3gVUNXEenqHEhIB09aIJj5K6E813JknUvZRpfquuXg6oPZqJEw+XrDGNWWxSSFsS7OZ2GPa9jiN+S6hkoCP9hpQBKxEcJqa+DAQSguhrrLExGReg4kpIGTFvid7dZAdb6ldK2lfKtL+TaLrf6mtmzi1TDxKsOZZ6hFRqxQGOuCfBb2uYYdrmGLayizBr+F5Lqi/GhPRUJgqrSiHAoKoUQhTEQkZE5qIJyZRLBuoFVGxU5L+WaXiu2W6j0Wb2WgRcbVVxnGjYXTTlUwiyaFsS6i1sJe17DTDYyA1QewxLoAFs3Gzt5a8PkD60lWV0NFBZSWBurDFMJERFrPeAJ1Zp6629+t3+KvgoodgVGzyl2Wih2WPlkwdgxceIHhvHMhNVXBrCMpjMWx0ropyJ1+w666KUi3LoClQIevHRlMZSVs2XLMRgUwEZF2YRICwSwQzsD6wV8NlXsslbmWsm0u1XssA0+AEcNh8NmBjv8nZGvkrD0pjMWRGgsHXMMBa9jhNxRYqMVgLSTVBbBYW9qsrAy2bYv2VYiIdE314cxJAeMEpjXdaqg6YKnItZTvsFTucvFUwOmnwemnw0knGk48MRDQ+vWFHj0U1NpKYayTshbKgEOuIc8a9ruGPBdqMLiAgyUZSCY2asCaozAmIhI7jCcQzDypgb9DYOTMewTKNrvU7LOBUbS9gelOCCxo3rMH9OsXCGh9+kDfvoZ+fQNhrV82ZGbE8BtRDFAY6wR8FkosFFtDkYV813DQGsrrRr4ADJYkAndAxtroV0sUxkREYpgDnuRAQHOSDVgCdWfVUJMfqDerzrPUHLLUHrb4SsDWBu7cPDo5pKZC//4w4DQ47TTD6afBwAFwwgngxPKIQQdRGIsya6GWQI+vSqDCGioslFlDiYXD1lBmwQd464KXrav7SiQQvjrzv2OFMRGRzsUkgpMcCGkmsS6g2cDama4X/BVQW2ipLbL4ysFfaXFrAo/ZGihZ7uKrDZwrJRkGDIDBZ8NZZxnOOjMwHZrQmUYVIiCUMJbQAdcRNq9tXONtjvrj0D79sWzdc7qAv+6PSyAo+eoCU+DvBh+BkOWtC1u1GGptoK6rCqjEUGWh2oK34ZwGP2DqXpgFEowlgUDoSsMGglfX+jcqIiIxxHrB7wV/OTS8EzvgJAaCWmIWJPUyGI8TeLzuvdNJMvjKLJUHLL6dgeOqa2DjJtiyFfz+wLaEBDjtVMvgs+GMgYYBAwKtN7p3j0xtmtdryS8ILKuXXwAFBVBYZCkuDtzJX1YWuLns9NPhV485bX6+SIm5MJbvwpu1HvxBHjNH/bdRQDON/59j/g6Bfyz2mL9bwD0qhDW3zzd/TKP/N/aoJ6k7jzEWBxr9SSJQ5+UhUEQpIiLSabiBZrPUcNR7c+NJNZNgSewe/D3Of9Qbus8H27bDzl3gurZhujM1FU7sbznpJOjbB3r0MGRlQVoqJCWBxxMYNPH5oKoKKirhyBFLyRE4XACH8gPh68iRxlOoHk9ds1w38Kfenr1t/qpEVMyFsUobaNOQSCDU1Ds2KB29/egNocy5Hpu9TZD/Okf9/Zs/tvH/O0FOIiIiIi3yHzPiUlUVCGnbdwQClOvaRuHpWMYEloMyBHpZhvo89RJiLP3E2OUERrkSsdR0hnSjflktqk2C5Gx9kUREugJ/ZaC3WVvUj36Fsl9zQSsULQW9aIi5MNbfWK5LdINOU0rn4ncsaw+D1xvtKxERkfbmuHDlLWBs7A+m9O8f7StoTHdTioiIiLSTUO6mVDm5iIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQpjImIiIhEkcKYiIiISBQZa62N9kWIiIiIdFUaGRMRERGJIoUxERERkShSGBMRERGJIoUxERERkShSGBMRERGJIoUxERERkShSGBMRERGJIoUxERERkShSGBMRERGJov8/NWAEvp1echoAAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeQAAAFCCAYAAAAg664KAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABo0klEQVR4nO3dd3yUZb7//9c1k14hJBB676h0In1FQBQUEBucgyuIisrKsay7P93d77IcV13dVVlERVZBV1GUVWlyEJBOEAg1EEJCh5BCep97rt8fk4RMZkImySSkfJ6PR5Tcc9/3XJP2nqsrrbVGCCGEEDeV6WYXQAghhBASyEIIIUSdIIEshBBC1AESyEIIIUQdIIEshBBC1AESyEIIIUQdIIEshBBC1AESyEIIIUQdIIEshBBC1AEerp6Ymppak+UQQgghGqymTZtWeI7UkIUQQog6QAJZCCGEqAMkkIUQQog6QAJZCCGEqAMkkIUQQog6QAJZCCGEqAMkkIUQQog6QAJZCCGEqAMkkIUQQog6QAJZCCGEqAMkkIUQQog6QAJZCCGEqANc3lxCCFF9p+M0B6OgSRMYPhT8/NTNLpIQoo6QQBaiFlitmn++r/n6G1AKtIaQEHjjNejZQ0JZCCFN1kLUivc/tIUx2MIYIC0N5s3XxMXrm1YuIUTdIYEsRA3bG6lZ+ZXjcasVCgrg5f9Pk5MjoSxEYyeBLEQNys/XvPE3jSqnVdpqhatXYekyCWQhGjsJZCFq0Lf/geSU683UzmgN36xGmq6FaOQkkIWoIfn5ms+/0DcM42ImBYsWSyAL0ZhJIAtRQzZugowM1841rLD/ABw6LKEsRGMlgSxEDdBas/LryoWryQQf/0sCWYjGSgJZiBpw7DicP1+5a6xWOHQYok9IKAvRGEkgC1ED1qzTmM2Vv85shi++lEAWojGSQBbCzfLyNJu3gGFU/lrDgG074MoVCWUhGhsJZCHcbNduyM+v+vVKwTerJZCFaGwkkIVws02bNaZq/GZZrfDDWsjNlVAWojGRQBbCjXJyNHsjbaFaHbm58NNm95RJCFE/SCAL4Ua79oDFUv37KAWrVmu0K6uKCCEaBAlkIdxo68/Va64upjXEx8PJmOrfSwhRP0ggC+Em+fnuaa4uZjbD92ukhixEYyGBLISb/HLAtp2iuxgG/N8myM6WUBaiMZBAFsJNduys2mIgN1JQAJtkcJcQjYIEshBuYLVqduys2mIg5QnqrWg12czGFEWym5rBhRB1l8fNLoAQDUHMKdd3dqqI2Q/a/9pMk34mlAegFB9nasb4WRnooVHKPc8jhKhbJJCFcIPde2yjq6s7oMvkDZ2e9iCoj4nCdI01F1CaDC/42duMUgYDPaRPWYiGSJqshXCDnbvdM7q6zcNmgvqYKLhWFMYAGtIuAlqzw2LiglWqyEI0RBLIQlRTapomNrb692ky0ETocBOWTI0uM1rbaoXCdMjTip8KTRRIJVmIBkcCWYhq+uWX6t/D7Aet7zeDCYxsJycouJYMQUpzVSuiLFJLFqKhkUAWopr2RlZ/ulPzsWZ8WioKUso5QUNWFlgLwIzmF8OETE8WomGRQBaiGqxWzZ7I6k138moGzceYsOZpuFE/tIKUaxAAZGpFlEV+fYVoSOQ3WohqOBULmZnVu0fzsWY8ghSF6RWcqCE5BRTgqTRRhiJHaslCNBgSyEJUwy/7qdZmEl7NoNlwE0aOBhfC1VIIWZngD2RpxVFD+pKFaCgkkIWohr2RulrTnUJHmfEIUFhcrWUrSL4GJgUeSnPIMFEotWQhGgQJZCGqKDdXc+x41a/3CIDQkUV9x66Gqob0NDAstlpyqlbEyLxkIRoECWQhqujwkeoN5gq53YRnEyis5JKbWkNqGpgVgOaQxYSWWrIQ9Z4EshBVtP9A1ac7KTOEjjahLdx4ZHU5kpNt//cHrmi4qKWWLER9J4EsRBXt3Vf1GnLwbQqfcBdGVpcjN9f24QlYtOKILBQiRL0ngSxEFaSmac6erfr1zYabUSaFLqziDRSkpIBS4KM0sVZFhjRbC1GvSSALUQUHo6p+rU9LCOypsGRVI0G1bZEQbQVfbGtcRxvy6yxEfSa/wUJUwYFq9B83HWzG7Kucr1ldCVYD0tJttWSz0hw2FBapJQtRb0kgC1EFv+yvWv+x8oRmQ01Y3bFdU1GzNYAfkKYVp2UKlBD1lgSyEJWUmKi5klC1a4N6K7xCcX0hkBvRtmU7CwrAQ9mmQx02ZAqUEPWVBLIQlXTwUNWvbTrIhDJR9cFcZSm4ds32T1+luWiFqxLIQtRLEshCVNLBg1XrP/YIguDbTBg5biyMLpqTrMEbKEBxRAZ3CVEvyW+uEJX0y4Gq9R836WfCwx8s1RzMVVZhIWRm2QZ3eaM5YSiqM4BbCHFzSCALUQkJCZqkpKpd23RQUf9uNTajcEpdX7nLF8jRimNSSxai3pHfWiEqIepw1a7zbg7+nRVGlnvLA4C2TX+yWErvAqVwx0BuIUTtkUAWohKioqrWfxx8mwmzj3Jv/3Fp+voUKH9sU6BOyhQoIeoVCWQhKmH/war1HzcdZEJba7bKWtxsbVag0By0mDCklixEvSGBLISLEhM1iYmVv86nlcKvXQ01V5dSUABZRfOb/YGrslCIEPWKBLIQLjp0pGrXBd+qMPkojFz3lseBgqSiZmvPooVC9steyULUGxLIQrjo0KGq9R83GWhC10bbsYa0NLAULTrirzSXtSJeaslC1AsSyEK46EAV+o99WoJfm5pvri5RtAsUgJcCQ8MvspymEPWCBLIQLkhN1Vy6XPnrgvqYaqe5upSkJKAogP2U5oJVcVZqyULUeRLIQrjgcFX7j/uaoIZHV5dVWAgZRYO7vBVYNOyTWrIQdZ4EshAuOHK08v3HXiHg31G5fanMCilILLWamL/SnJdashB1ngSyEC44GFX5/uPAXibMvtTcYiDl0ZCZAQX5tk+9i/qS91hMtV1ZF0JUggSyEBXIydHEn6n8dcG3KkCV9OfWKgVJydc/9VeaizLiWog6TQJZiApEnwBrJTeEMPtBYE8TRs5NqpJqSE65Xu7iEdd7ZfUuIeosj5tdACHqsoSrmi0/a0ymyoWybxvIT9ZY0kC7e3enImZ/8GpSfo3XakBqKjRrZvs8UGkuacUpq6KnuWGk8tq1a1m4cCGvvvoqEydOrLXnnTt3LlFRUezdu7fWnlM0fBLIQpQj4apm+n9rCgoqf23WKTj5Z4v7C1WK8oCuL3rcMJSTkq4HsqcCtGaPxURXk0HilctMnToVgJCQEH744Qc8PBz/JJw5c4ZHHnkEgPDwcL777jt3v5QGLyIiosJzJNyFBLIQ5UhPp0phXFu0BYxsoEn55+TmQnY2+PvbPg8AkrTimKFoXnSO2Wzm2rVr7N69m5EjRzrcY82aNZhMdbN3a/To0fTp04fQ0NCbXZQKBQcHM23atJtdDFGHSSAL0ZAp2y5QxYHsoUBpTaRhYnzRKbfeeiuxsbGsXbvWIZAtFgs//vgjgwYNIioqqnbL7oKAgAACAgJudjFc0qRJE+bMmXOziyHqsLr5tlcI4R7a1o9sKdV6HgCkWhXHLbZff29vb8aOHcuuXbu4du2a3eXFx8rrn01KSmLp0qXMnj2bCRMmMGLECCZPnsybb77pcC+ABQsWEBERwaVLl/j3v//Nww8/zIgRI1iwYEHJOQcPHuSpp55i9OjRjBs3jldeeYWrV68yd+5ch6bftWvXEhERwdq1a+2OR0REMHfuXFJSUliwYAHjx49n1KhRzJ49mwMHDjiU6+TJk7z11ltMnz6dMWPGMGrUKGbMmMGKFSuwWGq268GZyZMnM3nyZHJycvj73//OxIkTGTFiBDNmzGDLli1OryksLOSLL75g5syZjB49mjvuuIMnn3yS7du3O5zrzu/DBx98QEREBD/99JPTcq1Zs4aIiAiWL19eza9KwyeBLEQDpzWkpFz/3KzAQ2mOGNf7nidOnIhhGGzYsMHu2jVr1hAUFMSoUaOc3vvQoUN88cUXhISEMHbsWB544AHatGnD6tWrmTNnDllZzhfxfvvtt1m+fDk9e/bkoYceonPnzgBERkYyb948oqOjueOOO5g8eTIJCQk8+eST5d6rPFlZWTz55JPEx8czYcIERo0axcmTJ5k/fz5xcXF2537//fds27aNzp07M3nyZCZNmoTWmvfff59XX321Us/rLoZh8NxzzxEZGcno0aO56667uHTpEq+88gqRkZF25xYUFPDcc8/x3nvvATBp0iTGjx9PQkICv/3tb1m1apXT53DH9+G+++7DZDLxww8/OH2O77//HrPZXKuD7uorabIWohFISoYWzYGiDPYHLnM9kHv37k3nzp1Zt24dM2bMACAlJYU9e/YwdepUvLy8nN53wIABrFu3Dj8/P7vj69evZ8GCBaxatYrHHnvM4brTp0+zYsUKwsPDS44ZhsFf//pXrFYrixcvpm/fviWPLViwgPXr11fqNcfGxnL//ffzwgsvlPSBDxw4kNdee41vvvmGl19+ueTcRx99lBdffBFzqeXYtNa89tprrFmzhsOHD3PbbbdV6vnLSktLY+nSpU4f69ChA2PHjrU7lpSURM+ePXn//ffx9PQEYNy4ccybN48vv/ySIUOGlJy7bNkyDh48yKxZs5gzZw5K2b632dnZPPvss7z33nuMHj2asLAwu+dwx/ehZcuWDBkyhL1793L58mVatWpV8lh8fDzHjh1j1KhRNCseXSjKJTVkIcqRkdkwpgYBFBZcX98awKTAq2jFkoKilzlx4sSSP6AA69atwzAMJk2aVO59Q0JCHMIYYMKECfj7+/PLL784vW7GjBl2IQBw+PBhEhISGD58uF0IADz55JN2YekKX19fnnnmGbsBaXfffTdms5no6Gi7c8PDwx3ur5Ti/vvvByj3dVRGeno6y5Ytc/qxadMmp9fMnz+/JIwBBg0aRHh4uF35rVYr//nPf2jTpo1dGAP4+/sza9YsCgsL+fnnnx3u767vw5QpU9Bas2bNGrvjxbXm++67z/kXRdiRGrIQ5YiPq/iceqNo5a6goOuHfIr+n6ptzdp33XUXixcvZu3atfTp04d169bRrVs3unXrdsNbb926le+++46YmBgyMzMxSq0xmpyc7PSa3r17OxyLjY0FcFoTbdGiBS1atODyZde33Grbtq3DmwUPDw9CQkIcml0LCwtZtWoVP/30E2fPniU3NxddajeO8l5HZbRv356vvvrK5fMDAwPtapvFmjdvXvKmCeDcuXNkZGQQGhrKxx9/7HB+WlpayXlluev7MGzYMMLCwli7di2PP/44ZrOZwsJCNmzYQIsWLVya9iUkkIUoV1wVlsusszRkpNtqyp5Frc/FFakcDeetivZNmzJ8+HA2bdrEHXfcwblz53jhhRdueNt///vfLFq0iKZNmzJ48GCaN2+Ot7c3AF999RUF5cwbCwkJcTiWnW3bhaNp06blXlOZQPYvHlpehtlstnvTAPD73/+enTt30q5dO+68806aNm2Kh4cHWVlZN3wdNelG5beWWqUmIyMDsDUPx8fHl3u/3FzHPUDd9X0wm83ce++9LFu2jD179jB8+HB+/vln0tPTmTZtWp2dNlfXSCALUY6iikLDoSDlGpRpoUSj2Gkx0dZkcO+99/Lzzz/zl7/8BW9vb8aPH+/8XtimRH3yySeEhoayYsUKuz/uWms+//zzShWvOIBSU1OdPu5s1LY7REdHs3PnTiIiInj77bftmmSPHTtWqVrtzVD8dfvVr37FX//6V7fdr7Lfh/vuu49PP/2U77//nuHDh/PDDz9gMplu2OUh7MnbFiGcMAzNmbM3uxRuVrS+ddnNLszYNp44aVUMGTKEsLAwkpKSGDlyJEGl27jLSE9PJysriz59+jjUtE6cOEF+fn6lite1a1cAjhxx3Hw6MTGRq1evVup+rrp06RIAQ4cOdegfPXToUI08pzt16NABf39/Tpw44ZYpWlX9PjRv3pyhQ4eye/dujhw5wv79+xkyZIhDH7UonwSyEE6cOWs/d7ehKCyAsrOHTApAs9tiwjCZefPNN3njjTeYO3fuDe/VtGlTvL29iYmJIS8vr+R4RkYGb7/9dqXLdttttxEeHs7OnTs5evSo3WMffvihQzOzuxQHxuHDh+2Ox8fHs2LFihp5Tnfy8PBg6tSpJCQk8N577zkN5bi4OJdbGKrzfZgyZQqGYfDKK6+gtZbBXJUkTdZCOBF94maXoIYUNVsHBNofDgCSteKooRjQsyc9e/as8FYmk4n777+fL774gv/6r/9i+PDhZGdns3fvXsLDwx2m2FTEbDbz29/+lpdeeolnn32WMWPGEBoaSlRUFElJSXTt2pXTp09X6p6u6NWrF7169WLz5s2kpKTQu3dvrl69yo4dOxg2bFi5C3FU1o2mPQFMnTq1ylOD5syZQ0xMDF9//TW7d++mb9++NG3alKSkJOLi4oiNjeXjjz922mdcVnW+DxEREYSHh5OQkECzZs0YPnx4lV5PYyWBLIQT0Scqv8NTvVC0clfbNvaHPRSYtGafYaKX2cDXxW2Tn376aYKCgli3bh2rV68uWSDk8ccfZ/r06ZUu3tChQ3nvvff46KOP2Lx5M97e3gwaNIiFCxfy/PPPlzvQqTrMZjNvv/0277//Pnv37uXEiRO0adOGefPmMXToULcFcvG0p/JUZ66ul5cX//jHP1izZg3r169n69atFBYWEhISQocOHZgyZUrJoh+uqOr3wWQyMWHCBD755BPuuecep5uViPIpXXps/w2U18EvREM041ErTmaJ1Cmu7PZUnnbtru8CVczQkK4Vd3gYDPGsW3Ows7Ozufvuu+ncuTP/+te/bnZxGi1Xvg8vvPACu3fv5uuvv6Zt27a1XMK6q7xR66XJ2xchysjN1Zw/X7lrOs3zwDMILBk1UyZnKtoP+UZSUhwD2azAA80Bw8StHq7Xkt0pNzcXq9VqVwMzDIN//vOf5Ofnl7uEp3Cvqn4fzpw5w+7duxk8eLCEcRVIIAtRxqlY20IZrvJtowjuozBywTOw4vPrguxsKMgHL2/74wHYaslHDMUQj9qvJV+4cIEnn3ySIUOG0Lp1a3Jycjh06BBnzpyhU6dOPPjgg7Vepsaost+HjRs3cv78+ZJlNWfPnn0zil3vSSALUUb0CduiGa6GckB3hclbUZhat5p5b0jBtVTHOckmZZsGddAw0dds4F3LteSwsDDuuOMOoqKi2Lt3L4Zh0KJFC2bMmMGvf/1rfH19a7dAjVRlvw/fffcdhw8fJjw8nFdeeYVbb731JpW8fpM+ZCHK+OOfrfy8zfUBXZ2e9aDpABP5V+tRIGOrHffu5Xjc0JCBYpyHQf+bUEsWoiFypQ9Z5iELUcaxY66HsckHArspjJz6F1wF+ZCT43jcrEAV1ZKN+veyhKi3JJCFKCU9XZOY5Pr5AZ0VZn8wHJcJrvuUbQqUMwFAilbEWW/CyC4hGikJZCFKiTlVufMDuplQZtD1cVUvDdeu4bCUJtjmJVs1HDYkkIWoLRLIQpRy4iRUZmOaoD6qfoZxEYsFsrKdP+anNBesiqSGtjiKEHWUBLIQpZw4qV0eXe3VDHxaKQwn/bD1hiqqJTvhDeSjiDbkz4QQtUF+04QoJTq6EtOdupow+9TT/uNiGtLSnL9mpcATTbRVUSiDu4SocRLIQhRJSdFcq8TsvoAeChRO+2DrE8OAzEznj/kCGVpxRgZ3CVHjJJCFKHIqthInmyColwlrXsWn1nk3GG1dPLjrpAzuEqLGSSALUSTmFJhd/I3wa6fwbFLPm6uLFTdblzN4y0dp4q2KrHreEiBg7ty5REREVOqaBQsWEBERweXLl2uoVKKYLJ0pRJETJzXWMqHjGQxmf8faYdNBCrOvwsjSmLxqqYBlaGv1plvlp1zmxF+ubyB/0Mk5AeEtuX/lD6SjiLcqbjU3zlSePHkyYFsisqFZu3YtCxcu5NVXX2XixIk3uziNmgSyEEVOnLQf3OQZDD3+6IlHgOO5XiEKkzd4BNy8plxtQM5ZXe1pV16hbWg6cAK+PtCkSZnHAgIwKcAKMUbjDeSG4k9/+hN5eZXrZ3n66aeZOXMmzZs3r6FSiWISyEIAqWnaYfqP2V/hEQDWQtAFpR4wAWZbIGqjNkt5nTKBMtv+X92I9A5tQ8u7nkApuPVW5/OwfZTmYlGz9U18DyKqKbzsbiIuCA0NJTQ0tAZKI8qSQBYCiL3BgC5dANZSgWz2LwpCCzdthLW22gLZrffUkJ4OztbA9wbSUdx5ewT9+vVj4cKFLF68mF27dpGXl0eXLl14+umnGTBggMO12dnZfPHFF2zZsoXLly/j6elJ7969eeyxx+jbt6/duXPnziUqKopt27bxySefsGnTJhISEvj1r3/NnDlzANi6dSvLly/nzJkz+Pn5MWLECJ599llmzpwJXG9W/tOf/sTGjRtZtmwZvXv3dijXRx99xL/+9S8WLFjAuHHjnH5NLl++zNSpU0s+L93/Onv2bObMmcOBAwd45plnmD17NkOGDOHjjz8mOjqarKws9u7dC8CaNWvYvn07sbGxXLt2DR8fH3r27MnMmTMdvmal7zd8+HDef/99jh8/jlKKgQMH8txzz9GqVSu7a06ePMny5cuJjo7m2rVr+Pv707JlS0aOHMljjz3m8PUtLteCBQtKtkxcuHAhCxcuLDm37DmrV692eN61a9eyevVqzpw5A0DHjh2ZOnWqQ9N3VV5TYySBLAS2AV0mk2ubSpiLd55raK23RYuEOAvk4mZrgKysLJ588kkCAgKYMGEC165dY/PmzcyfP59PP/2Uzp07l1yXnp7O3LlziY+P59Zbb2XKlClkZ2ezfft2nnnmGV577TWnm93//ve/JzY2loiICAIDA0v+WK9Zs4b//d//xd/fnwkTJuDv78+ePXv4zW9+g2EYmM3X36VMmTKFjRs38sMPPzgEsmEYrF27luDgYEaPHl3ulyQwMJDZs2fz1VdfAfDQQw+VPNa/f3+7c48ePcry5csZMGAA9913H1evXi157K233qJLly4MGjSIpk2bkpSUxLZt25g3bx6vv/46I0eOdHjuEydO8PnnnzNgwAAmT57MqVOn2LZtG3Fxcfz73//G29u2mfWpU6d44oknMJlMjBw5kvDwcDIzMzl79izff/+9XSCXNWrUKLKysti+fTsjR46ka9eu5Z5b1ttvv82qVasICwtj0qRJgO3N0sKFCzl16hTPP/98lV9TYyWBLARwKtb1dHU2yKs+y0++yJUNHwFwRUFa8+vN1mG9+tBmyFAAvJXtaxQbG8v999/PCy+8gKnoxIEDB/Laa6/xzTff8PLLL5fc++233yY+Pp7f//733Hff9QFkc+fO5bHHHuP1118nIiLC4Q9xcnIyn3/+OcHBwSXHMjMz+cc//oGvry+ffPIJ7dq1K7nX/PnzOXnypF2TbN++fenYsSObNm1i/vz5dnv47t27l8TERB5++GG8vMoflRcYGMicOXNYt24dQEkt3Zl9+/aVOzDqyy+/dKgBJicn89hjj7Fo0SKngbx7927+8pe/MHbs2JJjf/7zn9mwYQPbt28vOb5hwwYKCgp48803He6Tnp5ebnnBFsiZmZklgezqoK6oqChWrVpFhw4d+PjjjwkIsA20ePzxx3n88cf5+uuvueOOOxxaQFx9TY2VTHsSAjhxwrXasfIAs/fN6zuuCQXJF7m6cant48elHFmxlEOf2j4u7dtTcl5xZHr7+vLMM8+UhDHA3XffjdlsJjo6uuRYWloamzdvZuDAgXZhDBASEsKMGTNITU3ll19+cSjT448/bhfGANu3bycnJ4dJkyaVhDGAh4cHTz75pNPXNnnyZHJycti0aZPd8R9++AHAoVzV0b1793IDzVlzbGhoKKNHj+bChQtcuXLF4fF+/fo5BFTx/Ut/nYs5q12W/Rq6S3Ez9+OPP14SxgBBQUHMnj0boORNTGmVfU2NjdSQRaOXk6NJuFrxeQBmP2xvYwtrskS1K7BHBJ2fWlTyuX8AdHPScmkuahho2qYdfn5+do95eHgQEhJCVlZWybHo6GgMw6CgoIClS5c63O/ChQsAnDt3juHDh9s95qzPN7aoo/+2225zeKx37952zdXF7r77bt5//32+//577r33XgBSUlLYuXMnt9xyCx07dnR8oVXUq1evch+7dOkSy5cv58CBAyQlJVFQUGD3eHJyMi1btrQ71r17d4f7FI90Lv11HjNmDF999RUvv/wyd955J4MHD6Zv3741Oio6JiYGcGy2B0r6xE+dctw6zdXX1FhJIItGL/a06+eafbEtl9mAZWdBYQF4ltOSq/38sWjbKl6lmc1mDON600FGRgYAR44c4ciRI+U+X26u4+oqISEhjuXKtm1L1dRJJ7fJZKJJ2Tlb2Jqcx4wZw/r164mLi6Nz586sW7cOwzDcWjsur8xge+Mxe/ZssrOz6d+/P8OHD8ff3x+lFAcPHiQqKsohoAH8/f0djhW/6Sj9de7Tpw/vv/8+n376Kf/3f//H2rVrAdsbhGeeecbpQLvqysnJwWQyOf1ehISEoJQq+X6V5upraqwkkEWjF3vatpGCK5tKmP1VyeCmhuxaKrRo4fwxA7hkVbSvYE5y8R/f6dOn85vf/KZSz6+U47ue4vulOlnn02q1kpaWRlhYmMNjU6dOZf369Xz//fc8//zzrFmzBn9/f+68885KlamqVq5cSUZGBn/605+YMGGC3WNvvPEGUVFR1X6Ovn378s4775CXl8fx48fZuXMnq1ev5vnnn+eLL76gdevW1X6O0vz8/LBaraSmpjq8EUlNTUVr7TR8xY1JH7Jo9E7Fapf2QDZ5gcmz/CUmG5IbbbKhgXMubDbRq1cvlFIcPXrULWUqHgHsrLZd3DzuTJ8+fejSpQs//vgjkZGRXLhwgfHjx+Pj4+Pyc5vNZqyuDDJw4tKlSwAOA6601jdsOagKHx8fBgwYwHPPPcejjz5Kfn4++/btu+E1xTXUyry+4qbngwcd13crPtatWzeX7ydsJJBFo3fypG3Ho4qY/LA1VzeCQM7LhfIWdFLAaauqsEWhWbNmjBkzhqNHj/L555+jnVxw7Ngxl1eOGjlyJH5+fqxZs4aLFy+WHLdYLHz44Yc3vHby5MlkZGSUzLOtbHN1UFAQ6enp5OfnV+o6uL4Yx+HDh+2Or1ixgri4uErfr6yjR486Lde1opVubjSKHGyvDbCbplWRu+++G4Bly5bZNU1nZWXx8ccf250jXCdN1qJRs1g05867dq6Hb8Xn1Eelpz2VUJC5AwID4Zbpj+JRagSvCUjVcE1Dswoqyi+99BLnz5/nn//8Jxs2bOCWW24hICCAxMRETpw4wYULF1i3bp1LtdXAwEB+85vf8Prrr/PrX/+asWPHlsxD9vT0JCwszG7kd2kTJkxg8eLFJCUl0aNHD6eDi25kwIABnDhxgv/5n/+hb9++eHh40K9fP/r161fhtVOmTGHt2rX8/ve/Z8yYMQQHB3Ps2DFOnTrFsGHD2LVrV6XKUtZnn33GgQMH6Nu3L61atcLLy4uYmBj2799P69atbzjPGmwtCN7e3nz11VdkZmaW9MXPmjWr3Gv69evHAw88wKpVq5g+fTq/+tWv0FqzdetWEhMTefDBB1362gh7EsiiUTt3vuLasfKyLYxhLl4zsg4M6lJubNsqnvZUVnF9qde0R+wCWQGFKC5YFc1MN64mBwcH89FHH/HNN9/w008/sXHjRqxWK82aNaNr167MmjWrUlNzJk+eTFBQEJ9++inr1q3D39+fESNG8MwzzzBlypRy+0r9/f0ZNWoUP/74Y5UGc82aNYvMzEx27drF4cOHMQyD2bNnuxQ63bt359133+XDDz/k559/xmw2c8stt/Dhhx+yY8eOagfy1KlTCQgI4Pjx4yX90S1atODRRx/lkUceqbAvNzg4mL/+9a98/PHHfP/99yW17RsFMsALL7xA9+7dWb16dcnqaJ06deKJJ56QTSqqSGln7UhOOBtIIUR99+P/aRa+5vxXoPTmEiZP8ApVtv7jOrJCl7s2l7iRbt3A2d/za1ZFL7OV+7zqRvv9hQsXeOCBBxgzZgz/+7//6/ScGTNmcPnyZdauXSsDjkStczYivSypIYtG7fRpjYcZLE5qyYXpcHJBIWZ/Rcjtilb3eVCQXEfSmOpvv1ghBampzgPZW2nOWxWFGjxrscUgIyMDHx8fu37RvLw83nnnHQCny3CCbYWouLg4Jk+eLGEs6iwJZNGonYp1HsbFCtOhMF3j08KENuw3mWjwtG20devWtmlhpXkD2SguuzD9yZ2ioqL43//9X4YMGUKLFi1IT09n//79XLlyhYEDBzpMZfr2229JTEzkhx9+wNvbu2QDCiHqIglk0WhprTl1g12eiilPCOhmwsirO7Xj2mJYbAuFBATaHzdjm498USva12IbfseOHRk8eDBHjhwhLS0NgDZt2vDEE08wY8YMh0Fdn332GUlJSbRr145XXnlFdhQSdZr0IYtGKzlZM3laxT/+/p0V3X/nQWFmmX2RGwMFoc2gbVvHh9I0tFbwX96ywpIQFXGlD1nmIYtG67SLU0D9OyuUp2p8YQygbf3Izt62ewNJGjIbX8OBEDVCAlk0WqfjcGmFrsDupjozsvpmMAxwtu6/N5CP4pILq3YJISomgSwardOnK05Z5Qn+XRRGbiNOZAVF3bV2TEXrf1+QQBbCLSSQRaMVc6riPZD9Oyg8/MBw3JCo8dBFgezkPYmH0px1YRlNIUTFJJBFo5Sfr7l0ueLz/DsplIdCN6D9j6vCYoHsHMfj3kBG0TKaQojqkUAWjdK58xXXjsE23cnFiQgNWznN1l7YltG8pKXZWojqkkAWjZIrm+wU9x9bXduMqGHTkJbueLh4H+kLhgSyENUlgSwapdPxtiUzb8SvfVH/sQQyAAX5kO/ka+GlNOe0wpCGBCGqRQJZNEqnT994yUwA/45F/ceNcf5xOdIzHI95ATnaNidZCFF1EsiiUYo9XfE5AV2lGbbYlQ0fcWj+IM5FHnB4zBMo1LZ1ravqwIEDREREsHSp4zaQQjQWspa1aHRS0zQZTmp6pSkPCOjaONevvpHcPNtCIeZSzf1KgSqaj9y/nq6gcv78eT788EP2799PXl4ebdu2ZcqUKUydOhVVdmeNcixdupRly5bZHTOZTAQGBtK9e3emTZvGyJEj7R6/fPkyU6dOveF9N23aRGCgbTHxyZMnk5CQAMC///1vOnfu7HC+YRhMnjyZpKQkAFavXl2yhnfx80VERJTskHWzXLt2jTVr1nDy5ElOnjzJlStXANi7d2+V7pecnMyHH37I7t27yczMJDw8nAkTJvDf//3feHg4Rt2ZM2f45JNP2L9/P5mZmTRr1oyRI0cye/bsSu3R7U4SyKLRiY+v+BzfNgqzPxhOVqhq1DRkZkKTJvaHvZTmglVh0eBRhYpy7969WblyJU3K3rgWnDlzhjlz5pCfn8+YMWMIDQ1l9+7d/O1vf+PMmTO8+OKLlbrfr371Kzp16gSAxWLh4sWL7Ny5k3379vHiiy8ybdo0h2vatGnD+PHjnd6v9FaTQMkGGmvWrGH+/PkO5+/Zs4ekpCTMZjOGUXfXGT9z5gxLlixBKUXbtm3x8fEhL69qAzZSUlKYPXs2iYmJjBo1irZt2xIVFcWHH35IdHQ0b775pt0bq2PHjjFv3jzy8/MZMWIEbdq04dSpU3z99dfs3buXpUuX3pRQlkAWjU5c/PXRweXx76gweUKh9B/bU5CR4SSQgVwUV4s2nKgsHx8fOnTo4IYCVt6bb75JVlYWf//73xk6dCgATz75JPPmzeObb75h/Pjx3HLLLS7f74477mDs2LF2x6Kjo5k1axafffZZuYE8Z84cl+7v4eFB37592bhxI88++6xD7W/NmjUEBATQtWtXoqKiXC53bevQoQNLliyhW7du+Pv789BDD3Hu3Lkq3Wvx4sVcvXqV3/72tyUtDlpr/vjHP7Jp0yY2bdrEuHHjSs7/61//Sm5uLm+++aZdq8Xnn3/OP//5Tz744ANefvnl6r3AKpA+ZNHoxMfrCtew9u+sgMbRh5wVd5D4j1/k2KvjOfzCUI7/v3s486+XyIo/5HiyhvjNP/L97OmsGDuclVPuYu97b0F+HoamZF3rwsJCvv76a5577jnuvfdeRowYwYQJE3j55ZeJiYlxuG15fciTJ09m8uTJ5OTk8Pe//52JEycyYsQIZsyYwZYtW6r92s+fP09UVBQDBgwoCWMAT09PnnjiCQC+//77aj9Pr169CAoKKtkysromTZpEamoqO3bssDuemprKrl27GDt2LN7e3m55rprSrFkz+vXrh7+/f7Xuk52dzU8//UTr1q2ZMmVKyXGlFE8//TRg/z28ePEicXFx9OrVy6ELYfr06QQHB7NhwwZyc2t/eT4JZNHonIq19YOWS9kWBLHm18/+0MpI2vYlp//5FFmnIgnsPpiwX80goOsgci/FknZos8P5yTu/5twXrxHYthM97rsfr8AgTnz7Fbv/thCKmq0BMjIyeOeddygoKGDo0KE8/PDD9O/fnz179vDEE08QHR3tchkNw+C5554jMjKS0aNHc9ddd3Hp0iVeeeUVIiMjq/X6Dx48CMCQIUMcHrvtttvw9fV1Sy3z5MmTZGRk0L1792rfC2DUqFEEBQWxdu1au+MbNmzAYrEwadIktzxPfXDs2DEKCgoYPHiwQ39/y5Ytad++PUeOHClpvk9JSSl5rCyTyUSLFi3Iy8vj2LFjNV/4MqTJWjQqVqvmbAWtYj4tFZ7BDX/96txLp7j03Tt4BoXS5Tcf492sVcljWmssGckO12TG7KPbCyvoMqADYWHQP38u38+ewZktm+j91HNcCg2jQENgYCDfffcdzZs3t7s+Pj6exx9/nCVLlrBo0SKXypmUlETPnj15//338fT0BGDcuHHMmzePL7/80mmYuurChQuArcm4LLPZTKtWrThz5gwWi8XpwCBntmzZwtmzZwFbH/Lly5fZsWMHrVu35qWXXnJ6zcWLF52OML/99tvp06ePw3EvLy/GjRvHf/7zH1JSUmjWrBkAa9eupXPnzvTq1culsrqisiPf77nnnpJBZLXhRt/D4uPnzp0jISGB1q1bl4xTKB5EVprVauXq1auArfVk0KBBNVPockggi0blyhUoqKBf2L+jwuQFham1U6abJXn3atBWwu9+yi6Mwdbc5xkc5nBN2KiH8QnvQEYmhIWBh7cPncaM59CnS8k8dQLP0OYkaEU7Ly+HMAbo1KkT/fv3JzIyslIhN3/+/JIwBhg0aBDh4eGVqmk7k1W0r2RAQIDTx/38/LBareTk5BAUFOTSPbdu3crWrVvtjvn6+jJ27NhyQ+PixYsOI7TB9sbGWSCDrdn6m2++Yd26dcycOZNjx44RHx/vdKBXdTgr143079+/VgO5ou9hcZN48Xnt2rWjdevWREdHs2vXLoYNG1Zy7sqVK0lPT7c7vzZJIItGJf5Mxef4dWwcfcc5521hFtg9wuVr/Nr2AA1ZmbZBcUqBf5gteI2sLKwaLlsV7UyaU6dO8fnnn3P48GFSUlKwWCx290pLSyM0NLTC5wwMDHT6B7558+Y3pVmxIn/5y19KBnVZLBaSkpJYt24dy5YtY9++fXz00UcOb0SqMg2pe/fudOvWrSSQ165di6enJ3fddZe7XgpQ9WlIdZVSipdeeokXX3yRl156iZEjR9K6dWtOnz5NZGQknTt3Ji4uzuXpbu4kfciiUYmLB3MFP/WBPU1YG8HuTkZuFiiFZ1DFoVjM5G2rhVitkFO0+5MqmpSsrQYozXkrHDlyhMcff5yff/6Zrl278sADDzB79mxmz55N165dASioqKmiSHmDfsxmM1ZXdgi5geJaVXm1oZycHJRS+Pn5Ven+Hh4etGzZkscff5xx48YRHR3NTz/9VOXyljVx4kTOnTvHvn372LRpE8OHD78pU8dupoq+h9nZ2Xbnge0N0AcffMDtt9/OgQMHWLVqFenp6bzxxhv069cPgJCQkBouuSOpIYtGJf6MvuHSFV6h4BUC1gbefwxg9g0ArSnMSMariWPz8g0p23zkslnpDVyxKnZ/+ikFBQV88MEH9O3b1+6c48ePExsbW62yu0vbtm0BW5NxWYZhcPnyZVq1auVy0/qN9O7dm40bN3LixAm31WLHjx/PP//5T/7yl7+QnZ1dI4O56nof8o2+h8XHPT09adGihd3xPn368Pbbbzucv3LlSgB69Ojh5pJWTAJZNCqnTt1420X/jibMPpCfWXtluln82/cm98IJMmP20mzIvZW7uGiBkPBw+8NeQDaK8xcvERQU5BDGeXl5Tqc93SzFtaHIyEhmzpxp99jhw4fJzc0tOae6MjNtP1TVrdWXFhwczMiRI/npp58ICwsjIsL17gdX1fU+5D59+uDp6cm+ffvQWts1NV+5coVz584xYMAAl95UXblyhSNHjtCxY0e6dOlSk8V2SgJZNBoFBZrLjgMr7fh1ULbpx+77m1lnNRt6P8m7/0PC+g8I7DoIr5Dr00CKR1k7G9hVLDvb8c2NGduXLjA8nCsXzhMfH1+yapVhGLz33nukptad0XLt27enX79+HDhwgN27d5fMRS4sLOSjjz4C4N57K/lmxYmMjIySKUruCvhiTz/9NGPHjqV58+Ylq3i5U13qQ7548SIWi4U2bdqUBKy/vz9jx45l/fr1/Oc//7FbGGTJkiUA3HfffXb3ycnJwdfX1y68s7Ky+POf/4xhGMydO7eWXpE9CWTRaFy4eOPaMUBgD4W23PichsK3VRdaT3meS6vf4uTrDxF8yyi8QlpSmJFCVlwUQb2G0WbqC+Ver/X1fuRiStke6DH1IWL2RfLkk08yZswYvLy8OHjwIElJSfTv379k/m9d8NJLL/HEE0/w8ssvc+edd9KsWTN2795NfHw806ZN49Zbb63U/UpPe7JarSQmJrJjxw4yMjKIiIhg9OjRbi1/q1atarVG6k4LFiwo+XdycrLDsZkzZ9qt4Pbss8+SkJBgtz432N6UHDhwgL/97W/88ssvtGnThqioKI4dO8bw4cMdVk7btm0bH3zwAQMGDCAsLIxr166xc+dOUlNTeeKJJxwWDKktEsii0YirYA1rj0DwCVcNfv5xaWEjHsQnvDNJP39Oxok9WPNz8Ahsil/7PjTtd+eNLy7qRy7LG1ARI1jw2mv8e/lyfvzxR3x8fBgwYABvvPFGpZtAa1qnTp1YtmwZH374Ibt27SrZXOLFF1/k/vvvr/T9yk578vPzo1OnTowbN46pU6fWSC22vlq/fv0Nj91zzz0uLakaGhpq9z3cuXMn4eHhPPHEE/z3f/+3w4jpLl260KVLF/bt20daWhoBAQH07t2b6dOnM2DAgGq/rqpSWt9oRd/r6lIzkxBV8eFSK1+sLH+VrqBbFF3+x4PCFNB1d03+OsU/ALp1tT9m0ZCF4iFPgw7mhr/amRCuaNq0aYXnyFs10Wicjqt4QJdSEsaV4awf2UOBBi7pxjGfWwh3kUAWjUbs6Rvv8BTQTaEbwWAut9K2UC5LoTlnlUAWojIkkEWjkJOjSXZcmrmEyQf82iusVduOtfFS4Gw9Bi8g0Qq50mIthMskkEWjUNGSmX7tFWZfMCSQK0dDRjkDu/JRXJZashAuk0AWjcKZCgLZv6NCmRW6ESyZ6W45OU7mIxf1I1+UQBbCZRLIolGIP6PxMJf/uH8X+VWosnL6kU1ozksgC+Ey+SskGoXTcWApZ/S08oCALgojTzo8q6Sc+cheQLKGLPmyCuESCWTRKJyOK/8x3zYKs1/j2FCiRujyFwjJR3FJaslCuEQCWTR4qanaaWAU8++oMHkqrK7tBiicyMkFa5kWCJOyTTOTQBbCNRLIosGraIS1fxcJjGrTkOWkH9lDac5a1Q3nfwshbCSQRYMXF1+06YEzJgjsbsKaL4lRLQoyy5mPnKYhXb68QlRIAlk0eGfOaMpbz9+3tcIjkEa1oUSN0JCZ4XjYCyhAcVGW0RSiQhLIosE7FVv+hhL+nRQmL7Dm126ZGqLcXDDKbF1pUoCGC4YEshAVkUAWDZrVqjl7rvzH/TsrQMKiIlc2fMSh+YPIjD1ww/OcNVt7KM1ZrTBu0Gx94MABIiIiWLp0aTVLKkT9JfshiwbtSgLkl1f7NUFgD+k/dpui+chNmtgf9gayNSRqaFkH3/vs2LGDyMhIYmJiiI2NJS8vj9mzZzNnzpxK3Wft2rUsXLjQ7phSCn9/fzp37sykSZOYOHGiw3URERE3vO+KFSvo1q0bAHPnziUqKgqAt956i+HDhzu9ZtasWURHRwOwePFiuz1+IyIiaN++PV999ZXrL64G5OXl8e233xITE0NMTAznz59Ha83q1atp1apVpe516tQpNm/ezMmTJ4mJiSEtLY1+/fqxZMmSGz7/6tWr+fHHH7ly5Qpaa8LDwxkzZgwPPPAAAQEB1X2JlSaBLBq0uBvNP26p8AyW/mO30ZCeAW3LHPYEsrXiolXR0uT8zU/v3r1ZuXIlTcqmeS344osviIqKwt/fn9DQUC5evFit+w0cOJDbbrsNAMMwSExMZPv27SxcuJAzZ84wb948h2uCg4OZNm2a0/s1a9bM4ZjZbGbNmjVOAzk+Pp7o6GjMZjNGeX01dcC1a9dYtGgRAOHh4QQGBpKR4WQgggu2bdvG8uXL8fT0pF27dqSlpd3wfIvFwjPPPMPx48fp1q0b99xzD2Brqfnwww/ZtGkT//rXv/Dx8alSeapKAlk0aPFnwGx23ofs31lh8obC1NovV0NVWGBrkfD2vn7MNsLdNv1pEM4D2cfHhw4dOtRGER08+eSThISE0LZtW3766Sf+8Ic/VOt+gwcPZubMmXbHLl++zIwZM1i1ahVz5sxx+EPfpEmTStXIb7/9dnbt2kVqaqrDxvc//PADJpOJiIgIdu3aVfUXUsOaNGnCu+++S48ePQgODmb+/Pns3bu3SvcaM2YMI0aMoEuXLqSnp5cEbHl+/vlnjh8/zqhRo3jjjTfsHvvtb3/L9u3b2bJlC3fffXeVylNVEsiiQYuL0+XucezfRYEuGnXUiGXFHSRx6xfknD2KkZuJR2BT/Nr1Imz0DAI69XU4P/XAj1zdvIL8pPOYfQNo0vdOWk18FpOXLWQyMiHEVEjMD6u5sGcnaWfjyUtLxdM/gH233crjs2bRvXt3u3seOHCAZ555xqGpePLkyYCtFvvBBx+wZcsW0tPTadeuHbNnz+aOO+6o9uvv29fxNbpbq1ataNeuHTExMeTk5FS75jVp0iR27tzJhg0bmD59eslxi8XCxo0bGTx4MM2bN69usWuUn58fQ4YMccu9OnXqVKnzL1++DNje2JQ1dOhQtm/fTmpq7b9Tl0FdokGLOQVWZ3lrgsCe0n+ctO1LTv/zKbJORRLYfTBhv5pBQNdB5F6KJe3QZofzk3d+zYWvXsO3ZSdCh96P2TeI5O1fceGr632nGemQn5HOvn/+HWthAW0ihtFz2iM06zuAvXv28MQTT5T0b7rCMAyee+45IiMjGT16NHfddReXLl3ilVdeITIy0i1fh5p25coVzp8/T/PmzQkJCan2/fr06UPHjh1Zt26d3fEdO3aQmprKpEmTqv0cDVlxgO/Zs8fhsd27d6OUsut3ry1SQxYNVn6+5kqC88d8Wys8g8DIqd0y1SW5l05x6bt38AwKpctvPsa72fWBNFprLBnJDtdkxuyj2wsr8GnRAYCWBXOJ+dsMUg9uotW9z+EZHEZmFrRvHcQDX6/BP+x6Le2aVdHuQizLnprNkiVLSvoPK5KUlETPnj15//338fT0BGDcuHHMmzePL7/80m21LHfZt28f+UUjCYv7kHfu3ImPj0+5zeFpaWlOR5j36dPHaS0OYOLEiSxatIjo6Gh69eoFwJo1awgODmbkyJHs37/fLa9n5cqVZN5o7dkyRo0aVTIIra4aNmwYo0aNYtu2bcycOZP+/fsDtpaay5cv87vf/Y4ePXrUerkkkEWDdeYs5S7ZGNDFNv+4MfcfJ+9eDdpK+N1P2YUx2EYHewaHOVwTNurhkjAGMHn50KT/eK5uXErOhRMEB4ehrZBb6EVgmH2TqYfSZLXvQv/+/YmMjMRiseDh4dqfoPnz55eEMcCgQYMIDw+vVE27tuzfv98hDM1mM1OmTKFz585Or0lPT2fZsmUOxx966KFyA3nChAksWbKENWvW0KtXL5KSkoiMjGTatGl2X6vqWrlyJQkJ5byzdaJly5Z1PpCVUvz1r39lyZIlfP7555w6darksbvvvpvBgwfflHJJIIsG60Y7PAV0K55/3HibrHPO28IssPuNp92U5tfWsdbg1cQWvEZu0SRkBenpUJAQw7EvP+Pq0UPkXkvBarFfNSQtLY3Q0NAKnzMwMNDpNJjmzZtz7Ngxl8teW55++umSQV1Wq5Xk5GS2b9/Oe++9x549e1i+fLnDlJqqTEMKCQlh2LBh/PTTT8yfP5/169djGIbTqVXV8d1337n1fnVBXl4ef/jDHzh+/DgLFiwoCeB9+/bxj3/8gz179rBs2bJKT7+qLulDFg3W6TiNh9nxuPKwrV/d2Pc/NnKzQCk8gyoOxWImbydzM022L7Iu3u5Jw4WDh1n39CzO7dhKSJdu9Jz6ILc9+jjdH51D6y5dASgocG17LX9/f6fHzWYzVms5I/bqCJPJRPPmzZk2bRrTp0/n0qVLrFq1ym33nzhxIpmZmWzdupW1a9fSo0cPunbt6rb7N1SffvopO3bs4He/+x1jx44lODiY4OBgxo4dy+9+9ztSU1P59NNPa71cUkMWDVZsLFicTHfya68wB4LF9W6xBsnsGwBaU5iRXFLLdZfLGz7BKCjg7kVLaXFr35LjaRoOnDgKxLr1+eqD3r17A3DixAm33XPo0KGEhoayePFikpKSeOmll9x272INsQ+5eDCXs4FbxcdKN2PXFglk0SBprYk97fyxgK4Kk4dCFzTuGrJ/+97kXjhBZsxemg251633zk++iGdAsF0YA3jk5XH1VIxbn6u+KA41d9bqzWYzEyZM4LPPPsPb25tx48a57d7FGmIfsqWo+yQtLc2hBaZ4upM7++FdJYEsGqSriZBTzgjqwJ6m8kd7NSLNht5P8u7/kLD+AwK7DsIrpGXJY8WjrJ0N7HKFV9OWZCadJ/VMHE072gYyWQ2DI0veIT+t8Y2ky8/P59tvvwWgX79+br33I488Qp8+fQgKCiIwMNCt94a61YeckJBAXl4e4eHh1ZrLfeuttxIXF8eyZct49dVXMRVtB2cYRslod5n2JISblDegy+xnW6FLlssE31ZdaD3leS6tfouTrz9E8C2j8AppSWFGCllxUQT1GkabqS9U6d6hIx8kM2Yv656dQ8df3YnZy4uEQwfJSU4ktO8Akg/deJOK2rRt2za2bdsG2OYLA2zfvr3k3x06dHBYeetGSk970lqTkpLCnj17SExMpFu3btx///1uLX9ISAijRo1y6z1ry3vvvVeyzGVc0Tq3ixYtwtfXF4B7773XbuGWP//5z0RFRTmsz3327FlWrFgBUPK1P3fuHAsWLCg5549//GPJvx999FG2b9/O+vXrOXnyZMm99u/fz5kzZ2jbtq3dgiu1RQJZNEinT4PZBEaZ1kH/zgqzLxReuznlqmvCRjyIT3hnkn7+nIwTe7Dm59hW6mrfh6b97qzyfYN7j6DDY29w7edPiN+0AbO3Dy37D2TMwjfZ/+nHJAN1ZQr4qVOnWL9+vd2x2NhYYmNt/dz9+vWrVCCXnfbk6+tL27ZtmTJlCo888kitr49cl23ZssWhOXzr1q0l/+7fv79LK6mlpKQ4fA+vXbtmd6x0IIeHh/Ppp5+yfPly9u7dy3fffYdSipYtWzJjxgweffRRgoKCqviqqk5p7Vrb3c1YRkyIqnrlD1Z27IKy3XWtppppOclE/tWbU67GxscHeva0P2bVkI5ioqdBH7N0HYjGoeya487ItCfRIJ2McQxjgOBbFdrieFzUjLw820dpJmXrwj9l1MG9GIW4iSSQRYOTna25muh43CsUvFtI/3GtUuCscc1Hac5ZFVlSQRaihASyaHDKG9AV0M2E2Uf2P65VGlJScFgQzQfIRxFvlVqyEMUkkEWDcyq2eA9ee4E9i5bLlFpZrSoshKxs+2OmolVLT0qztRAlJJBFg3MqVmMq85OtPCG4twlrI18u86ZQRbXkMnyU5qJVkVa3V78UotZIIIsG58QJMMosmenfUeERCJa6MtemMdG2fuSy3xMfIF8rYqXZWghAAlk0MPn5mvMXHI8H9lAoD9CFtV8mYRtVXXZwl1JgUppowyQLpwmBBLJoYM6ccT7dKaiPCe1kowlRe5KSHI/5AkkaEiSQhZBAFg1LjJNNhLxCwbetwpDm6psqLw+yywzu8gIKUcQY8qdICPktEA1KzCmNucweyIE9ZLpTnaAgKbnMIQWeaKKtikKpJYtGTgJZNCjHjzsOHgrsJdOd6gQNaalgKbNSmi+QqRVnZHCXaOQkkEWDUVCgOXvO/pjJG4J6mTByJY3rAq0dp0B5KNv61jInWTR2EsiiwYiPd6wdB3SxTXeS/uO6IynJcTtqH6WJtyoy5X2TaMQkkEWDcSLGcYWuwF4mlBnZUKKarmz4iEPzB5EZW/19jAsLISPD/lha1AFWjh7EPz76uNr3F6K+kv2QRYNx8qRtha6SWrKCJv1NWAtuarFEWUWDu4KDSx0qeiOVqBVaO1/6tCakp6ezdetWdu7cSXx8PElJSfj5+dGzZ08efvhhIiIiXL7X2rVrWbhwod0xpRT+/v507tyZSZMmMXHiRIfrKnqOFStW0K1bNwDmzp1LVFQUAG+99RbDhw93es2sWbOIjo4GYPHixQwYMMDu+dq3b89XX33l8murCXl5eXz77bfExMQQExPD+fPn0VqzevVqWrVqVal7nTp1is2bN3Py5EliYmJIS0ujX79+LFmypMaf250kkEWDcbTMgC6/9gqvZmBkl3+NuAk0ZGZAfj54e9sOhfXszT3LV2EKbsJVDeG1FMibN2/mzTffJCwsjIEDBxIWFkZiYiJbt25l7969PPvss/zXf/1Xpe45cOBAbrvtNgAMwyAxMZHt27ezcOFCzpw5w7x58xyuCQ4OZtq0aU7v16xZM4djZrOZNWvWOA3k+Ph4oqOjMZvNGGX7cOqQa9eusWjRIgDCw8MJDAwko2zTiYu2bdvG8uXL8fT0pF27dqSlpdXac7uTBLJoEHJzNRfKrNAV1Fth8lIUXpOOyTqnaH3r4sqIh48PYe07kIrilGEl3FQ7C1y3a9eOv/3tbwwbNgxTqQXQH3vsMWbPns0HH3zA+PHjCQsLc/megwcPZubMmXbHLl++zIwZM1i1ahVz5szBx8fH7vEmTZowZ84cl5/j9ttvZ9euXaSmpjpsfP/DDz9gMpmIiIhg165dLt+ztjVp0oR3332XHj16EBwczPz589m7d2+V7jVmzBhGjBhBly5dSE9P55577qm153YnCWTRIJyKdRwo1KSfCW1IGFckK+4giVu/IOfsUYzcTDwCm+LXrhdho2cQ0Kmvw/mpB37k6uYV5Cedx+wbQJO+d9Jq4rOYvK6HjNVSSMru1WQc30ne1XgsmamYfQPw73QbLcY9jl+b7iQnQ8uWtubpK1EH+HH+U/R8dA4hs55gmAazgsmTJwPwxRdf8MEHH7BlyxbS09Np164ds2fP5o477qjWax84cKDT4+3bt+fOO+/ku+++4+jRo9V+nlatWtGuXTtiYmLIyclxCOTKmjRpEjt37mTDhg1Mnz695LjFYmHjxo0MHjyY5s2bV+s5apqfnx9Dhgxxy706dep0057bnWRQl2gQok9gt8OTdzj4tlEYWTevTPVB0rYvOf3Pp8g6FUlg98GE/WoGAV0HkXsplrRDmx3OT975NRe+eg3flp0IHXo/Zt8gkrd/xYWv7PtOjZx0Lv3n71gtBQT1HEbY6EcI6DKAjOjdxL47m5zzxzEMSE+3v78HkK4V50vNSTYMg+eee47IyEhGjx7NXXfdxaVLl3jllVeIjIysiS+LrSwetvqKuexKM1Vw5coVzp8/T/PmzQkJCan2/fr06UPHjh1Zt26d3fEdO3aQmprKpEmTqv0covZJDVk0CMej7WvCwX1MmHwUhWlSQy5P7qVTXPruHTyDQunym4/xbnZ9MIvWGktGssM1mTH76PbCCnxadACgZcFcYv42g9SDm2h173N4Btuads1+QfT60xq8mtjX0nKvxBH7ziwur32fLs8sJjkFmjS5/rhZgaEh1qroaLZ975KSkujZsyfvv/8+np6eAIwbN4558+bx5Zdf1khNJzs7my1btuDt7U3fvn0rde2+ffvIz88Hrvch79y5Ex8fH/7whz84vSYtLY2lS5c6HO/Tpw+3336702smTpzIokWLiI6OplevXgCsWbOG4OBgRo4cyf79+ytV7vKsXLmSzMxMl88fNWpUySA0UTkSyKJBOHbMflOJ4P4mtFXC+EaSd68GbSX87qfswhhso4OLw7W0sFEPl4QxgMnLhyb9x3N141JyLpwguOgak4eXQxgD+LbsTECXAWSe3Iu2WMjM8KCwzCh4L6U5ZShGl/rrNH/+/JIwBhg0aBDh4eElI4nd7Y033uDatWs88cQTBJceDu6C/fv3O4Sh2WxmypQpdO7c2ek16enpLFu2zOH4Qw89VG4gT5gwgSVLlrBmzRp69epFUlISkZGRTJs2ze5rVV0rV64kISHB5fNbtmwpgVxFEsii3ktJ0SSXWv3JK9S2/7GMrr6xnPO2MAvs7vrUHr+2PRyOFQevkWvfP5BzMYbELZ+RHX8IS2YK2rCfDG7JSsOzSSjXymzL6Atkojhb1GwdGBjodCpK8+bNOXbsmMtld9X777/P//3f/xEREcGjjz5a6euffvrpkkFdVquV5ORktm/fznvvvceePXtYvnw5AQEBdtdUZRpSSEgIw4YN46effmL+/PmsX78ewzCcTq2qju+++86t9xPlkz5kUe9Fn7D/PPiWos0kZHWuGzJys0ApPINCXb7G5B3g5KCtj1Vbr0+xyT5zmNh3ZpF+ZCu+rbsROuJBWox/nBbj5+DTqisAVksBOFlK06xsA/Rii5bS9Pf3d1oWs9mM1dlem9Xw4YcfsmLFCgYOHMjrr79e7f5jk8lE8+bNmTZtGtOnT+fSpUusWrXKTaW1NVtnZmaydetW1q5dS48ePejatavb7i9ql9SQRb13PNq2w1PxlMsmA4o2vJcW6xsy+waA1hRmJDttXq6Oq5s+QVsK6PKbpQ4jtXPOHSXv8vV9MvPzbR+leSlNXC1vNvHhhx/yySef0L9/f956661qj4Quq3fv3gCcOHGigjNdN3ToUEJDQ1m8eDFJSUm89NJLbrt3MelDrj0SyKLeO3rsehh7hYJ/J2mudoV/+97kXjhBZsxemg251633zk++iNkv2CGMrQV55F6MsT9ZQdm/9z5ABopCFJ618M6qOIz79evH3//+d7eHMVASau6s1ZvNZiZMmMBnn32Gt7c348aNc9u9i0kfcu2RQBb1msWiOXHy+ufBfU2YfSE/8eaVqb5oNvR+knf/h4T1HxDYdRBeIS1LHiseZe1sYJcrvJq2JD/pPLlX4vBtaRvIpK0Gl75/B0tWmU5j7bi2tVmBtoIFcN/wJOc++ugjPvnkE/r27VtjYZyfn8+3334LQL9+/dx670ceeYQ+ffoQFBREYGCgW+8NdasPOSEhgby8PMLDw2vk+3SzSSCLei3+DBSUGqUbMshka6qW5uoK+bbqQuspz3Np9VucfP0hgm8ZhVdISwozUsiKiyKo1zDaTH2hSvcOHfkgmTF7Of3eHJr0vRPl6UXW6YMUpicS0GUAWaftN6lwtsKjt9JYNFCDLddr167lX//6F2azmV69evH55587nNO/f3+7taArUnrak9aalJQU9uzZQ2JiIt26deP+++93W/nBNrhr1KhRbr1nbXnvvfdKlrmMi4sDYNGiRfj6+gJw77332k07+/Of/0xUVJTD+txnz55lxYoVACVf+3PnzrFgwYKSc/74xz9W67lrgwSyqNeOHbet9KQ1+LZW+LVXWFzv7mr0wkY8iE94Z5J+/pyME3uw5ufYVupq34em/e6s8n2De4+gw2NvcHXTJ6Qe2IDy9CGw60A6znqThI1OdnRyEro+2N5XWWowka9cuQLY5gt/8cUX5Z5XmUAuO+3J19eXtm3bMmXKFB555JEGWbOrqi1btjg0h2/durXk3/3793cpFFNSUli/fr3dsWvXrtkdKxvI7npud1Jal11w0LnU1NSKTxKili34Xys/bbbNQW55r4lWUz3IT5DqcX1kNsMtt9jv9HTNquhntnKXV+2sbS1ETSm75rgzMu1J1GuHDhctCGKCpkPM6EIJ4/rKMCCrzFKnxaOtLfJtFY2ABLKot1JSNIlFg7cCuyt8mkOhNFfXXwrK7prnA2SjuFjLU6CEuBkkkEW9dazUqolNB5lQnqALyj9f1HEaUlPtd+3yUGAAZySQRSMggSzqraNHbQuCmP2h6QATRu7NLpGoLsOA7DJzyD3QnLYqZGly0dBJIIt669Bh2x/wpgNMeAQho6sbgnKardM1XJVAFg2cBLKol/LzNbGnbf9uNrxoqUwZiFv/aUhNsz/kCRRqxTmr/LkSDZv8hIt66WSMrXbs31nh10Fhyaj4GlE/WAohp1SztVJgUprThvQji4ZNAlnUS0eOgskEIUNNmLzAmnezSyTcRkFquv0hHyBRQ5q0gogGTAJZ1EtHjmo8giBksEm2WWxoikZbl+YN5KM4J6OtRQMmgSzqHatVc+QoNB1iwiNQlspsiAoLILfUqHmlQGmIl0AWDZgEsqh3zl+AnAIIHV20MpeMvm14nIy29lKa81ZFnny/RQMlgSzqnaNHoWl/Ez4toDC94vNFPeSk2doHyEVxXmrJooGSQBb1zqGjmuZ3mkAptOVml6ZxuLLhIw7NH0Rm7IGKT66CzNgDHJo/iCsbPio5lp8PeaUG65mLdvU6K4EsGijZflHUOzHZipAOisI0abts0JStltyy5fVDnkWbTRjaFtDu8NFHH3HkyBHOnz9Peno6Pj4+tGzZkvHjxzNlyhSXt0tcu3YtCxcutH8JSuHv70/nzp2ZNGkSEydOdLguIiLihvddsWIF3bp1A2Du3LlERUUB8NZbbzF8+HCn18yaNYvoaNvasmX3Do6IiKB9+/Z89dVXLr2umpKXl8e3335LTEwMMTExnD9/Hq01q1evplWrVpW616lTp9i8eTMnT54kJiaGtLQ0+vXrx5IlS5yef+7cOf79739z8uRJEhMTyc7OplmzZnTu3JmHH36YQYMGueMlVpoEsqhXklM05n5mlCdY8292aYS7+LfvTY/fr8LDv8n1g9oxkH2ALK24rBVtlXvekH3zzTe0adOGIUOG0LRpU3Jycjh48CDvvvsu69evZ+nSpZXaw3jgwIHcdtttgG2f5cTERLZv387ChQs5c+YM8+bNc7gmODiYadOmOb1fs2bNHI6ZzWbWrFnjNJDj4+OJjo7GbDZjGIbL5a5t165dY9GiRQCEh4cTGBhIRkbVFhTYtm0by5cvx9PTk3bt2pFWdgBCGXFxcfz888/ccsst3HLLLfj7+5OUlMT27dvZtWsXTz75JI899liVylIdEsiiXtkdpwjqIwuBNDQmLx98WnRwOJ6fbxtt7etr+9wDsABnDUVbk3sCec2aNXh7ezsc/3//7//x448/snbt2nLD0pnBgwczc+ZMu2OXL19mxowZrFq1ijlz5jgEfJMmTZgzZ47Lz3H77beza9cuUlNTHfbZ/eGHHzCZTERERLBr1y6X71nbmjRpwrvvvkuPHj0IDg5m/vz57N27t0r3GjNmDCNGjKBLly6kp6dzzz333PD84cOHs3HjRpSyb2ZJSkpi5syZLFu2jGnTphEYGFil8lSVBLKoVw6jMPtAYWrF5wrXZMUdJHHrF+ScPYqRm4lHYFP82vUibPQMAjr1dTg/9cCPXN28gvyk85h9A2jS905aTXwWk9f1kLFaCknZvZqM4zvJuxqPJTMVs28A/p1uo8W4x/Fr093unpmxB4hb/BQtxs+h5YQnSo4fX3AvJ00w7bOVHPj4fc7+vJn8jHR2tG1PwexZjBlzR7Vfv7MwBrjjjjv48ccfuXjxYrWfo1WrVrRr146YmBhycnIqVeN2ZtKkSezcuZMNGzYwffr0kuMWi4WNGzcyePBgmjdvXt1i1yg/Pz+GDBnilnt16tSpUud7eXk5PR4WFsatt97Ktm3bSEhIqPVAlkFdot5IskJaM5PseexGSdu+5PQ/nyLrVCSB3QcT9qsZBHQdRO6lWNIObXY4P3nn11z46jV8W3YidOj9mH2DSN7+FRe+su87NXLSufSfv2O1FBDUcxhhox8hoMsAMqJ3E/vubHLOH3etgBqMQgsbX3yWy79E0mHkHXQYO4H0yxd59dVXiIyMdMeXwandu3cDlf9j78yVK1c4f/48zZs3JyQkpNr369OnDx07dmTdunV2x3fs2EFqaiqTJk2q9nM0Runp6URHR+Pj41Ppfmx3kBqyqDci801YPMDIutklaRhyL53i0nfv4BkUSpfffIx3s+t/gLTWWDKSHa7JjNlHtxdWlDQvtyyYS8zfZpB6cBOt7n0Oz+AwAMx+QfT60xq8mtjX0nKvxBH7ziwur32fLk8vdqmchelJePbsxYR3P8Ts6YnWcOqOu9j94tN8+eWXbqtlffbZZ+Tl5ZGVlcWRI0c4ceIEQ4YM4e67767Uffbt20d+vm2AQ3Ef8s6dO/Hx8eEPf/iD02vS0tJYunSpw/E+ffpw++23O71m4sSJLFq0iOjoaHr16gXYmt+Dg4MZOXIk+/fvr1S5y7Ny5UoyM11/Fzxq1KiSQWh13fnz59m4cSNWq5Xk5GR27NhBZmYmL7/8Mv7+/rVeHglkUS9cs8KRPCVh7EbJu1eDthJ+91N2YQy20cHF4Vpa2KiH7fp6TV4+NOk/nqsbl5Jz4QTBRdeYPLwcwhjAt2VnAroMIPPkXrRhQZld+xPU/oH/wezpWVQ2aDFwEIHhLUtGErvD559/Tnr69Yntd911F7/97W/x8Kjcn8n9+/c7hKHZbGbKlCl07tzZ6TXp6eksW7bM4fhDDz1UbiBPmDCBJUuWsGbNGnr16kVSUhKRkZFMmzYNz6KvlTusXLmShIQEl89v2bJlvQrk0l93Pz8/Xn31VSZMmHBTyiOBLOqFKMNEtgEWCWS3yTlvC7PA7jeedlOaX9seDseKg9fItf/m5FyMIXHLZ2THH8KSmYI27CeNW7LS8AwOrfA5zb6B5Hm2xmqAyWw75gN4hzbnWvRRl8tekY0bNwKQkpLC/v37Wbx4MbNnz+bdd9+tVH/s008/XTKoq7jmtX37dt577z327NnD8uXLCQgIsLumKtOQQkJCGDZsGD/99BPz589n/fr1GIbhdGpVdXz33XduvV9dMnz4cPbu3UthYSFXrlzh+++/Z8GCBURHR/PCCy/UenmkD1nUeekajhqKgkxkmUw3MnKzQCk8gyoOxWIm7wAnB20pqa3Xp9hknzlM7DuzSD+yFd/W3Qgd8SAtxj9Oi/Fz8GnVFQCrpcC15/QJQFvt90n2BrTZjNXq/u2fmjVrxvjx43n99dc5c+YM7777bpXvZTKZaN68OdOmTWP69OlcunSJVatWua2sEydOJDMzk61bt7J27Vp69OhB165d3Xb/xqJ4utS8efOYOnUqq1atKhlDUJukhizqvCiLiRytyE6WNHYns28AaE1hRrLT5uXquLrpE7SlgC6/WeowUjvn3FHyLsdW+p5JyVA8JVfVwmJdvXr1IigoiIMHD7rlfr179wbgxIkTbrkfwNChQwkNDWXx4sUkJSXx0ksvue3exRpyH7IzQ4YM4dtvv+XgwYMMHTq0Vp9bAlnUaZkajhgKVaCx1t01Duol//a9yb1wgsyYvTQbcq9b752ffBGzX7BDGFsL8si9GFOle+bmQE4O+PnZPi9u3svQEFQDAZ2Tk0NWVpbThTmqojjU3FmrN5vNTJgwgc8++wxvb2/GjRvntnsXa8h9yM4kJSUBVHrsgDtIIIs67ZDFRLZWWDKlduxuzYbeT/Lu/5Cw/gMCuw7CK+T6kljFo6ydDexyhVfTluQnnSf3Shy+LW0DmbTV4NL372DJquIkcgWJSdChve3T4kCOMxT9PKr283Hp0iUCAgIIDg62O26xWPjHP/6B1Wp1Sy0pPz+fb7/9FoB+/fpV+36lPfLII/Tp04egoKAamTdbl/qQExISyMvLIzw8vFpzuU+ePEn37t0dFga5cuUKK1asACh3MF1NkkAWdVa2hkOGwlNp0rMAhfQhu5Fvqy60nvI8l1a/xcnXHyL4llF4hbSkMCOFrLgognoNo83Uqg1sCR35IJkxezn93hya9L0T5elF1umDFKYnEtBlAFmnq7BJRdFSmq1bgqfX9WbrGKuJflSt+SQqKoo333yTW2+9ldatWxMcHExKSgq//PILiYmJdOjQgaeeeqpS9yw97UlrTUpKCnv27CExMZFu3bpx//33V6ms5QkJCWHUqFFuvWdtee+990qWuYyLiwNg0aJF+BYtzXbvvffSt2/fkvP//Oc/ExUV5bA+99mzZ0uCtPhrf+7cORYsWFByzh//+MeSf7/77rtcvHiR3r17Ex4ejlKKS5cusWfPHgoLC5kxY0bJ8qe1SQJZ1FmHLSaytKKJ0pzNQsK4BoSNeBCf8M4k/fw5GSf2YM3Psa3U1b4PTfvdWeX7BvceQYfH3uDqpk9IPbAB5elDYNeBdJz1JgkbP65Wma8mQps21z+/bIVUKzStwhDVW2+9lfvuu4/Dhw8TGxtLVlYWfn5+dOjQgQcffJBp06ZVuiZWdtqTr68vbdu2ZcqUKTzyyCPVXqWrIdmyZYtDc/jWrVtL/t2/f3+7QC5PSkoK69evtzt27do1u2OlA/mBBx4o2YwiMjKSwsJCmjZtyrBhw5g8eXKFG37UFKW1dunPXGrZzUmFqEG5Gv6VbyYX8CoAN043FfWcUtCnN3h42rZjTNWKOz0NBlWx2VqI2lB2zXFnZNqTqJMOW0xkaIU/kJ19s0sj6hINJFy1/VspMClNtGHCtaqFEHWXBLKoc/I0HLQqPJTGpCCruP9YCABtmwJVULT9pi+QpOGKBLKo5ySQRZ1z1FCkW221Y4BMWRBEOHHpsu3/XkAhihhD/pyJ+k1+gkWdkq9hv2HCQ2nMCiyFUODagk6iMdGQlgZZmbZma0800YaiQN64iXpMAlnUKYcNRVqp2nGW9B+L8ig4dwGsVvADMlHEWqVvQ9RfEsiizsjTcKBU7Rik/1jcgLb1IyckYPt50XBEBneJekwCWdQZR8rUjgEyZf6xqMDVq0VLairNZSskyM+LqKckkEWdkFum7xjAsEBe7s0tl6gHFJw9Cx4aCrTiiEX+rIn6SX5yRZ1w2GIiw6oovbmf9B8Ll2jIz4crl8FbaU5YFbL0uaiPJJDFTZet4YBxfd5xMek/FpWRlASWTMjVisNSSxb1kPzUipvuYKlVuUqT/mNRWefOgsmqOWwocuVnR9QzEsjipsrQEGUovMrUjg3Dtv+tEJVhWCH5PGRoxTFDmldE/SKBLG6qX4r2Oy5bO87OuinFEfWdhsx0yM3SHDBM5EstWdQjEsjipkm22qY6eStNmX3Cbc3VUsERVZR0DpILFYellizqEQlkcdPssZjI1Qo/J4/J+tWiOrQBqcmaXywmcuTnSNQTEsjiprhoVZyyKvyc1I4NC+TK/GNRHRqyE+FKtuKAjLgW9YT8pIpaZ9Ww02KiQCt8nDyeKf3Hwh2skJ6k2ZunSLXe7MIIUTEJZFHrYq2K81ZFgJPaMcj8Y+E+hRmQmAm7CuVPnaj75KdU1KpCDbssJqxovMoJ3fQMpP9YuIcVclJgf6binAzwEnWcBLKoVYcMRaJWBJbzeEGBbQcfIdzFyIa0LMVPuQqLvNETdZgEsqg1WRoiLSbMaDzKqaxkZtZumUTjkH9NE5sp06BE3SaBLGrNXouJTG2/gURZGRlI/7FwO10A2ZnwU4aJNBngJeooCWRRKxKKFgHxKbNEZmlaFwWyNCuKGlCYBok5sDnfhJafMVEHSSCLGmfVsN1iIl8rfG9wXk4OWKX2ImqKFXJTICpTccIqzTCi7pFAFjUuxqo4YzWVO82pWHo60lwtapQ1FzIy4ccsExlSSxZ1jASyqFH5GnZYTHCDaU7F0tOR5mpR4wpS4HIWbMo3YZWfN1GHSCCLGhVpMZFiLX+aU7GCAsjLq5UiicbOCjlJtqbrIzLqWtQhEsiixiRa4UDRXsdmV2rHQtQSax6kp8HGLBOJMm5B1BESyKJGWDX8bDGR52SvY2dS02q6RELYK7wGVzPghxzZN1nUDRLIokZEuziQC8BigWzZUELUNg25SRCTYeJH6U8WdYAEsnC7rEoM5AJIS6vpEgnhnC6EnCTNnlTFngLpTxY3lwSycCutYXuhiTSrIsjFa66l1miRhLghIxey0mBNkomjBTe7NKIxk0AWbhVnVURbFX43WJGrtMICaa4WN58lHXLyYMVFM0czbnZpRGMlgSzcJlvDFosJC+DjYuufDOYSdUVBMhQAS8+bWXfkZpdGNEYSyMIttIafC21zjoMrcV1ySo0VSYhKy08E5adYp828uFgTe1pGeona43GzCyAahuNWxXGryeWmaoCcbMiXxUBEHZOfqPFqDnmjPHj+Q4MeZiszHlHcdiuoiqYMCFENUkMW1ZZsha2FtlHVrjZVAySlIGtXizqpIBFMPtBhtpmzzUw8O18za45m02aNxSK1ZlEzlNaubUSWmipDYYWjfA1fF5i5aFU0dWHOcTHDAkePIdvgiTrNIxhM3nBtt5ULXxgYORAWBo88pJh0D/j6yjtK4ZqmTZtWeI4EsqgyrWFDoYnDhokgpfGoxN+mq1fh8uWaK5sQ7mL2BY9gRc4ZK2c/Mcg9r1FAYBD8eqZi8r3g5cqEe9GoSSCLGhVZqPjZMONTyaZqbYVjx20rdAlRHygP8AoFSyZc/s4gaasVitbAbt4cnn1a8atR0scsyieBLGrMSUOxrtA2BCGgkn+DklPgwvkaKJQQNcyzKShPyDimufilhbwroJSttei2W+HF5xUdO0goC0cSyKJGnDEU3xeaKACCwOV+Y7DVjo9HQ2FhTZVOiJpl8gbPELBkwNUfDRJ/smLNB7PJtp33Qw/ArF8r6V8WdiSQhdudNRQ/FJrIAZpQuTAGSEyES5dqoGBC1DLPJraR2LkXNQlrrFz7xdaMrRSEhMCL/6MYMVxCWdhIIAu3iitqps7RiiaVGFFdzGKx1Y6tRs2UT4japsy22jJAzhlNwo9W0g5aUdrWjB0xBJ6fr2jVUoK5sZNAFm6hNRw2FFsttmbqYCpfMwY4fx5SrmFr1xOiAVFe4NVEobUm97wmaauV1F+sUGD7Xfn1TMX0h2U0dmMmgSyqrUDDzxbb1CbQBFK1MM7MhNOn3V06IeoW5QWewaBMUJgKKXusXIu0kndB06olvPySon8/CeXGSAJZVMslK/xUaOayVeGrNFUdo2KxwIkTYDGQ2rFoHEzgGWTrY7bmQVasJmWnldSDVu4aA/OeUQQFSjA3JhLIokoyNERaTBw1FPlaVXrRj9K0htNxkJWFhLFolMy+4BFkmxuVlwBJmw0sx6z8/n8Ut0dIKDcWEsiiUtKscMgwccRQZGuFj9L4UrUm6mIXL0JSktuKKES9pTxsI7OV2barVMIGg6HBVn4zV+FTmZV1RL0kgSwqZGg4Z1UcNxSnrYo8rfBSGj9wedem8iQkwJUrbimmEA2GMhctMGKG7DOawm0Gr/4XdO0qodyQSSALp7SGJA2nDBMnrIpUrTA0bqkRF7tyxRbIQgjnlCd4hSishZrUvVbubmrlkYmy/GZDJYEs7GRrOGUoog0TCRoKtMKjKIQ93fQ3QGu4cAFSUtxzPyEaOrM/eAQq8pM0fkcMfnevpnmYhHJDI4EsMDSctypOGIpYqyIXhULjA3jjntpwscJCOHMGsrPdd08hGgUTeIXYfh+zojVjfAweugPMZgnmhkICuRFLsUKs1cRxQ5FS1CTtXVQbrm7fsDPp6XDuHBhWZDS1EFVk8rEN/DJywHLEyuT2VsYOlmBuCCSQGxGjqF/4glURW9Qkna8V5qIBWu5qki6rsNC2NrX8eAjhPh5BYPZTWLI0+Uet9PW1MrIr9OoOHlWdgyhuKgnkBkhryMY2VzhdK65pRaIVLlsVuYBFKyiqCbu7Sbo0qwGJSXD1Klg1UisWwt0UeASC2Q90IeQnQeYxKz4ZmqZWTZCh8fEs2mVKg9Vqa6HSVtuvo9kM3l7g5wfBwYqQphAWBi1aQIvmEuy1TQK5njI0ZAIZWpUEb5oVUoo+LwAMFBbA9iul8QS8AE9qLoQBCgpsA7YSk2STCCFqi8nbNvjL5AkosObbQrogRZN3WZOfZPt34TVNfoqmIAWwXP9bYLXaPkruZ4LQZtCmje0jvIWieXNoFgLBwRAYAP4B4Ocrwe0uEsg3gVWDFduHQal/a9vnlqKPAq0oAPI05KLI0bZab1pR6NrOUxjYQldrMCuNB2Au+vCgZsMXwDAgN9e20lZ6BuRkFxeoZp9XCFEOBSYv24fyBJNn0S+kAm2AtoC1EArTID9RU5CsKUzXWDLBkqUxcsDIBSNfY80HZdgC3pLv/OnMZvDyAh8f8PeH4CBo1sz20TxMER4OLcMhPNwW6DJty7k6H8gnDFsQKWwfJsCsrgeOJ+ChwANdEkAeRY+buP7/4m9/cU6U/nAWisVhaftQDmFpKRWIhUXXFQKFRbXTAqAQRaG+fk3xPUq33pb+v/1xVVImpUsVXGm7sPUofn21+POdkABp6bbab6GlVC1YQliIOk+Zi0PatjKYqbjJTOuSP5S6qFmb4v/r659bC8DIAyNXY+QWBXh20bEcjTXPNuDMyLP9MTSKglwXarTV1nzepKmt9t20GQQEK3wDwNMXzD4K5QnaEzArtBm02VZmD6B1ohUfT/D2vv7h42NrdvfyAk9PW82++OVYLLa/Ufn5kJcHOTmQnWOrNGRl22Z7ZGVpsnNslYqcov/n59s+Cgpt97BabRUPq9V2X8Nie3Px0RLl1tYBVwLZw23PVkmFGjYXmshBcf0l65JwLu+D0p9X8LXSRf8pG4zl/fv6h3I8pt2fRya7ggJalbxRKHB4IbUjwwTWANu/PUs/IG96hai/iv5YKpMtqF244Po/tb4e4EapMNeUhLp2Mo4kTUF60R9rZQKKwhRT0eeq6HMFliz4aplBfmJ1X6h7ZGTauuc8ajkhb1ogeyoY52klu5ywsWCrvRbXUEtqopSu6dpqmmV/FkrXuE1FtU6FrXZd9HNxvem3pEZ+/bzG7GyBbf1pIYRwSoG1qHZrNYM2gTYpdOlakwZlBWXVKANMVlvTuKmcHd9Mhqb/3QpLoaagwFbjzcuH/DzIL7CFo8Viq8lqbaspm822WnNxbdrPD/z9wN9fVTtIQ0PBz6/200D6kIUQQoga5kqTtanCM4QQQghR4ySQhRBCiDpAAlkIIYSoAySQhRBCiDpAAlkIIYSoAySQhRBCiDpAAlkIIYSoAySQhRBCiDpAAlkIIYSoAySQhRBCiDpAAlkIIYSoA1xey1oIIYQQNUdqyEIIIUQdIIEshBBC1AESyEIIIUQdIIEshBBC1AESyEIIIUQdIIEshBBC1AESyEIIIUQdIIEshBBC1AESyEIIIUQd8P8DcQaX+VmtDGEAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
@@ -1084,7 +1157,7 @@
}
],
"source": [
- "az.plot_energy(trace, figsize=(6, 4));"
+ "az.plot_energy(idata, figsize=(6, 4));"
]
},
{
@@ -1126,31 +1199,43 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Multiprocess sampling (2 chains in 2 jobs)\n",
+ "Multiprocess sampling (4 chains in 2 jobs)\n",
"CompoundStep\n",
">BinaryMetropolis: [mu1]\n",
">Metropolis: [mu2]\n"
]
},
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
{
"data": {
"text/html": [
"\n",
" \n",
- " \n",
- "
\n",
- " 100.00% [22000/22000 00:04<00:00 Sampling 2 chains, 0 divergences]\n",
+ "
\n",
+ " 100.00% [44000/44000 00:14<00:00 Sampling 4 chains, 0 divergences]\n",
"
\n",
" "
],
@@ -1165,8 +1250,7 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Sampling 2 chains for 1_000 tune and 10_000 draw iterations (2_000 + 20_000 draws total) took 11 seconds.\n",
- "The number of effective samples is smaller than 25% for some parameters.\n"
+ "Sampling 4 chains for 1_000 tune and 10_000 draw iterations (4_000 + 40_000 draws total) took 15 seconds.\n"
]
}
],
@@ -1174,13 +1258,12 @@
"with model:\n",
" step1 = pm.BinaryMetropolis([mu1])\n",
" step2 = pm.Metropolis([mu2])\n",
- " trace = pm.sample(\n",
+ " idata = pm.sample(\n",
" 10000,\n",
" init=None,\n",
" step=[step1, step2],\n",
- " cores=2,\n",
+ " chains=4,\n",
" tune=1000,\n",
- " return_inferencedata=True,\n",
" idata_kwargs={\"dims\": dims, \"coords\": coords},\n",
" )"
]
@@ -1193,7 +1276,7 @@
{
"data": {
"text/plain": [
- "['accept', 'accepted', 'p_jump', 'scaling']"
+ "['p_jump', 'scaling', 'accepted', 'accept']"
]
},
"execution_count": 12,
@@ -1202,7 +1285,7 @@
}
],
"source": [
- "list(trace.sample_stats.data_vars)"
+ "list(idata.sample_stats.data_vars)"
]
},
{
@@ -1219,7 +1302,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABoMAAAIwCAYAAABN6RLXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABDRUlEQVR4nO3debxWVaE38B+DiIdBQUUQscw8ToCKikMG4dDg0FVzyMQhUnPAVyuvQ5nZfRvudSrFm0qlJqiZ5ZwagoWSY4gDIKIoqAhCyiAemc/7h+85eQJk8MDhLL7fz8ePH/Zee5/1PGut/ez1/J69d5Pq6urqAAAAAAAAUKSmDV0BAAAAAAAAVh9hEAAAAAAAQMGEQQAAAAAAAAUTBgEAAAAAABRMGAQAAAAAAFAwYRAAAAAAAEDBhEEAAAAAAAAFEwYBAAAAAAAUTBgEAAAAAABQMGEQAAAAAABAwYRBABRp2223zbbbbtvQ1QAAAFjrmT8BlE8YBAAAAAAAUDBhEAAAAAAAQMGaVFdXVzd0JQCoX88//3wefPDBPPXUU5kyZUpmzZqVtm3bpnv37jn++OOz9957L3W71157Lb/73e/y+OOPZ+rUqWnWrFk6duyYnj175hvf+EYqKyvrlJ81a1YGDRqUhx9+OJMmTcqCBQuy6aabpmvXrjn88MPTu3fvOuUXLlyYO++8M/fcc09eeumlVFVVpUOHDvn85z+fU089NZ06dapT/sknn8zxxx+fnj17ZuDAgbnmmmvywAMPZOrUqdlwww3Tq1evnHXWWdlss81qtxkwYECuvvrqZb43w4YNyxZbbLGybykAAFAo8yfzJ4B1gTAIoEAnnnhinnzyyXz2s59Np06dssEGG+SNN97ImDFjkiTf//73c8IJJ9TZ5t577833v//9zJ8/P5tvvnm6deuWxYsX54033shLL72UM844I2eeeWZt+XHjxuWUU07J22+/nTZt2qRHjx5p1apVpkyZkhdffDHdu3fPoEGDasvPmTMnp512Wp566qlUVFSka9euadeuXcaPH5/XXnstG220UW644YbssMMOtdvUTGZ22WWXVFdX56WXXkrPnj2zwQYbZOTIkZk+fXo23XTTDB48OJ/+9KeTJEOHDs3QoUNz5513JkkOO+ywOq/z3HPPTfv27ev1/QYAABov8yfzJ4B1gTAIoEDDhw/P9ttvnw4dOtRZPmrUqJx00kmZN29ehg0bVvuLsNGjR+frX/96Fi5cmB/84Ac59thj07Tpv+4kOnny5MyYMSNdu3ZNklRVVeXAAw/MlClTcuihh+aiiy5Kq1atasu/9957eeGFF+r8gu573/te7rvvvvTp0yc//elPs/HGG9euu/HGG/Pzn/88n/70p3P//fenWbNmSf41mUmST33qU7nxxhuz+eabJ0nmzZuX//zP/8xf/vKX7LzzzrntttvqvNaah5++9NJLn+zNBAAAimb+ZP4EsC7wzCCAAvXu3XuJiUyS7LLLLjn22GOzYMGCDB06tHb5NddckwULFqRv37457rjj6kxkkqRz5861E5kkuf322zNlypRsv/32+dnPflZnIpMkbdq0qTORmTBhQv785z+nQ4cOueyyy+pMZJIPf4nXu3fvTJw4MY888shSX9O5555bO5FJkvXXXz8/+tGPssEGG+TZZ5/NM888swLvDAAAQF3mTwCsC5o3dAUAWD1mzJiR4cOHZ/z48Zk9e3YWLlyYJJk4cWKSD+9vnSSLFi3KY489liQ56qijVmjfjz76aJLkiCOOqP0V2scZPnx4qqur06tXr7Ru3XqpZXr27Jnhw4dn1KhR6dOnT511bdu2zX777bfENhtvvHE+//nPZ8iQIXnqqafSo0ePFao/AADAR5k/AVA6YRBAgf7whz/k5z//eaqqqpZZ5v3330+SzJw5s7bcVltttUL7f+utt5Ikn/nMZ1ao/BtvvJEk+eMf/5g//vGPH1v23XffXWJZ586d06RJk6WWr3mY6dSpU1eoLgAAAB9l/gTAukAYBFCY0aNH56KLLkqzZs1yzjnnZN999619CGqTJk1y22235aKLLsqafGTc4sWLkyTbb799tttuu48tu9NOO63S3/AIPAAAYGWZPwGwrhAGARTmwQcfTHV1dfr27ZuTTz55ifU1tzmosdFGG2WDDTbIBx98kNdeey2VlZXL/RudOnXKhAkT8uqrr9a5t/XHlU+SHj165KKLLlqxF/IRkydPXu66jh07rvR+AQCAdZv5EwDriqbLLwJAYzJr1qwkqfOw0Brz5s3LkCFD6ixr1qxZ7YTkD3/4wwr9jc9//vNJkj/96U9ZtGjRcsv36tUrSfLwww9n3rx5K/Q3Pmr27Nl5+OGHl1j+7rvv1t5/u2fPnnXWrbfeeklSe69vAACAf2f+9CHzJ4DyCYMACrP11lsnSe66667MmTOndvm8efNy8cUX580331xim1NPPTXNmzfPzTffnJtvvnmJWwZMnjw5o0ePrv33kUcemY4dO2bs2LG58MILl7i39pw5c2ofqpokO+ywQ770pS9lypQp6d+//1LrUFVVlXvuuSf//Oc/l/q6/ud//qfOfa3nz5+fH//4x6mqqkr37t2z66671im/2WabJUleeeWVpe4PAADA/OlD5k8A5WtS7SahAEWZPXt2Dj300EyePDkbbbRRdttttzRr1iz/+Mc/Mnfu3Hzta1/LTTfdlMMOOyz//d//XbvdXXfdlQsvvDALFixI586d07Vr11RXV+eNN97IuHHjcsYZZ+TMM8+sLT927NiccsopmT59etq2bZsePXqkoqIiU6ZMyYsvvpju3btn0KBBteXnzJmT/v375/HHH896662X7bbbLltssUWqq6szefLkjBs3LgsWLMj9999fOyF78sknc/zxx2eXXXbJ4sWLM378+Oy5555p2bJlRo4cmWnTpmXjjTfO4MGDl3gY6//8z//k+uuvT7t27bLnnnumVatWSZJzzjkn7dq1W51NAAAANBLmTx8yfwIonzAIoEDvvvtuBgwYkBEjRmTq1KnZaKONsueee6Z///4ZOXJkLrjggiUmM8mHvwK74YYb8sQTT2TatGlZf/31s9lmm2XPPffMMccck89+9rNL/J2bbropw4YNy5tvvpnFixdn0003Tbdu3XL44YfX3g6hxuLFi3P//ffnnnvuyZgxYzJr1qy0atUqHTp0SNeuXbPffvuld+/etbcoqJnM9OzZM9ddd12uvvrq/OUvf8nbb7+dDTfcML169cr/+T//p/ae2h81b968XHXVVXnooYfy1ltvZcGCBUmSYcOGZYsttqjPtxsAAGjEzJ/MnwDWBcIgANZaH53MfPRXcgAAANRl/gTAx/HMIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYZwYBAAAAAAAUzJVBAAAAAAAABRMGAQAAAAAAFKx5Q1cAgPI88MADueWWWzJu3LgsWLAgW265ZQ455JCceOKJWW+99Rq6egAAAA3u1Vdfzd///veMGTMmY8aMyYQJE7Jo0aKcddZZOf300xu6egAURhgEQL366U9/mptuuinNmzfPnnvumYqKijzxxBO57LLL8te//jXXX399WrZs2dDVBAAAaFC33nprbrrppoauBgDrCGEQAPVm6NChuemmm1JRUZHBgwdnxx13TJK8++67OeGEEzJy5MhceeWVOe+88xq4pgAAAA2rsrIy/fr1yw477JAddtgh1113Xe6+++6GrhYAhRIGAVBvrr322iTJKaecUhsEJUn79u3zox/9KMcee2wGDx6c008/PW3atGmoagIAADS4I488ss6/mzb1aG8AVh+fMgDUi7fffjsvvPBCkuTggw9eYv1uu+2WTp06Zf78+Rk+fPiarh4AAAAArLOEQQDUi7FjxyZJNtpoo3Tp0mWpZbp27VqnLAAAAACw+gmDAKgXb775ZpKkU6dOyyzTsWPHOmUBAAAAgNVPGARAvXj//feTJBtssMEyy7Rq1apOWQAAAABg9RMGAQAAAAAAFEwYBEC9qLnq54MPPlhmmZorgmrKAgAAAACrnzAIgHrRuXPnJMmUKVOWWWbq1Kl1ygIAAAAAq58wCIB6scMOOyRJZs6cmTfeeGOpZUaPHp0k2XHHHddYvQAAAABgXScMAqBedOzYMd26dUuS3HfffUus/8c//pEpU6akRYsW6d2795quHgAAAACss4RBANSbU089NUkycODAjBkzpnb5jBkz8uMf/zhJ0rdv37Rp06ZB6gcAAAAA66Im1dXV1Q1dCQDK8ZOf/CSDBg3Keuutlz333DMVFRV5/PHHM3v27PTo0SM33HBDWrZs2dDVBAAAaFBjxoyp/dFckrz++uuZMWNGOnbsmM0226x2+dVXX50OHTo0RBUBKEjzhq4AAGW58MIL06NHj9xyyy0ZNWpUFi5cmC233DInn3xyTjzxxLRo0aKhqwgAANDg5syZk+eee26J5VOnTs3UqVNr/z1//vw1WS0ACuXKIAAAAAAAgIJ5ZhAAAAAAAEDBhEEAAAAAAAAFEwYBAAAAAAAUTBgEAAAAAABQsOYrWnDGjBmrsx78fxtuuGFmzZrV0NVYp2mDhqcNGp42aHjaoOFpg4anDRpeQ7ZBu3btGuTv1pe1bf5kPLEs+gbLom+wLPoGy6JvsCz6xuq3IvMnVwatZZo21SQNTRs0PG3Q8LRBw9MGDU8bNDxt0PC0QTm0Jcuib7As+gbLom+wLPoGy6JvrB20AgAAAAAAQMGEQQAAAAAAAAUTBgEAAAAAABRMGAQAAAAAAFAwYRAAAAAAAEDBhEEAAAAAAAAFEwYBAAAAAAAUTBgEAAAAAABQMGEQAAAAAABAwYRBAAAAAAAABRMGAQAAAAAAFEwYBAAAAAAAUDBhEAAAAAAAQMGEQQAAAAAAAAUTBgEAAAAAABRMGAQAAAAAAFAwYRAAAAAAAEDBhEEAAAAAAAAFEwYBAAAAAAAUTBgEAAAAAABQsOYNXQFY3R4aVr3CZQ/Yr8lqrAkAAAAAAKx5rgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgII1b+gKAEu3aNGi/PWvf83YsWMzduzYjBs3LnPnzs2BBx6Yiy66qKGrBwDAOu7VV1/Nb37zmzzzzDP54IMPssUWW+SQQw7JUUcdlaZNV+53h/Pnz8/vf//7DB06NG+88UYWLlyYTTbZJLvvvntOOOGEdO7ceYltFi9enLvvvjt//vOf8+qrr2b+/Plp165ddtlll/Tt2zeVlZX19VIBAKDREwbBWqqqqioXXnhhQ1cDAACW8MILL6R///6ZN29edthhh3Tq1CnPPvtsfvnLX+aFF17IT37ykzRp0mSF9jVv3rycccYZGT16dNq0aZNddtklLVq0yEsvvZR77rknQ4cOza9+9atst912tdtUV1fnggsuyPDhw7P++utn5513TuvWrTNhwoQMGTIkDz/8cC655JLsvffeq+stAACARkUYBGup5s2b5ytf+Uq222677LDDDpk0aVJ+8pOfNHS1AABYxy1cuDA/+tGPMm/evJx11lk55phjknz4Y6azzjorw4YNy1577ZWDDz54hfZ31113ZfTo0dlhhx1y1VVXpXXr1kk+vFL+F7/4Rf74xz/myiuvzDXXXFO7zaOPPprhw4enU6dOGThwYDbddNPadYMGDcr//u//5tJLL82dd95Zj68cAAAaL88MgrXUBhtskB/96Ec5+uij061bt6y//voNXSUAAMjf/va3vPXWW9lmm21qg6AkqaioyPe+970kya233rrC+3v22WeTJMccc0xtEJQkzZo1yymnnJIkGTt27FK3Oeyww+oEQUnSt2/ftG7dOlOmTMm77767wvUAAICSuTKINeatt97K4Ycfnl122SVXXHFFrrvuujz88MOZNWtWPvWpT+Xkk0/O5z//+STJsGHDcvPNN+fVV1/NBhtskP333z9nnHFGWrZsWWefc+fOzW233ZZhw4bljTfeSJJ85jOfyeGHH56DDjpoiTpMnPhsRj8/NBMnPptZs6Zl4cJ52Wijjtl+h975fK/jkrStU37kyJE544wzcuCBB+ass87Ktddem0ceeSSzZ89Oly5dcswxx+SQQw5ZPW8YAABrxJtvvpn99tsvPXv2zHXXXZcrr7wyDz74YGbMmJGtt946Z555Zvbdd98kyQMPPJDrr78+L7/8cioqKnLggQfmnHPO+cTnqc8++2yGDh2aUaNGZdq0aZk/f346duyYXr165fjjj0+bNm3qlG/I89THHnssSdKnT58l1m233Xbp3LlzJkyYkLfeeiubb775cve33nrrLbfMhhtuuMLbNGnSJE2aNEmzZs3qhEsAALAuc2UQa9zChQvTv3///OUvf0nXrl2z44475pVXXsn555+fp556KrfeemsuuuiiVFRUZI899sjixYtz++2352c/+1md/bz77rs56aSTcs011+Sdd97JLrvskp133jmTJk3K//2//zeXXXbZEn/7Lw9enZEj7816662fz2y9Wz6z9W6ZN68qjz4yKL8ZeGqqqqqWWuc5c+bk5JNPzogRI7Lzzjune/fumTRpUn7605/m7rvvXi3vEwAAa9aCBQty4okn5t57781OO+2UnXbaKePGjUv//v3z2GOP5cYbb8w555yTVq1aZZ999smiRYsyaNCg/OAHP6izn3feeWelz1MHDBiQe++9N+uvv35222237Lbbbnn//fczaNCgfPvb316rzlNffvnlJKnzDJ+P2nbbbZMkr7zyygrtb4899kjy4dVEc+bMqV2+aNGiDBw4MEmWCLZqtrnzzjszffr0OusGDRqU9957L1/60pfSokWLFaoDAACUzpVBrHEvvPBCdtttt9xxxx3ZYIMNkiT33XdffvKTn+SSSy7J7Nmz85vf/Cbbb799kmT69Ok5/vjjM2TIkHz7299O586dkyQ/+clP8sorr+Too4/OGWecUTvRe+edd3LOOefkj3/8Yz73uc8l2bP2b/fp861s+aluadnyX78QXLhwfv583xX5x9N359Zbb80555yzRJ0feeSRHHDAAfnhD39Y+3eGDx+e8847LzfccEP+4z/+o0750047LaNGjVqp9+XCCy9c4fuqAwBQ/0aNGpU999wzQ4cOTUVFRZLkjjvuyAUXXJCLL744M2fOzO9///t069YtSfL222/nsMMOy3333Zezzz47Xbp0SZJccMEFK3Seutdee9X+7W9961vp3r17nStZ5s+fnyuuuCJ33XVXbr311nzrW99aos4NcZ769ttvJ8kSt2er0aFDhyTJ1KlTV2j/X/7yl/PEE0/koYceymGHHZbu3bunRYsWGTduXN59990ce+yx6devX51tevTokWOPPTY333xzjjjiiOyyyy5p1apVJkyYkDfffDMHHXRQ/vM//3OlXicAAJRMGMQa17Rp05x77rm1QVCSHHjggbn66qvz5ptv5pvf/GZtEJR8OMn80pe+lN///vcZNWpUOnfunPHjx+exxx7LDjvskLPOOitNm/7rIreNN944559/fk444YTccccd+eKX/xUGVW77rwl3jebNW+TAg87OMyPvyyOPPLLUMKhVq1Y555xz6vyysHfv3tl6662XeguMvfbaK506dVqp92WLLbZYqfIAANSvpk2b5uKLL64NgpLk0EMPzSWXXJJJkybltNNOqw2CkmSzzTbLIYcckhtvvDFPP/10unTpkhdffDHDhw9fofPUj4ZBe++99xL1adGiRc4+++zce++9eeSRR5YaBjXEeWrNVUr/fmu8GjXLl3U1079r1qxZLr744my22WYZPHhw/v73v9eu23bbbbP77runWbNmS2x35plnpkOHDrnqqqvyxBNP1Klvz549l1k/AABYFwmDWOM6deqULbfcss6ypk2bpmPHjpk5c2btLR8+quZqoHfeeSdJ8uSTTyZJevXqVWeCXWPbbbdNRUVFxo4dmy9+ue662bOmZdy4EfnnPydl3tz3U11dnSRp1my92vu5/7vttttuifuUJ0mXLl0yYcKEvPPOO3Um2ccff/yyXj4AAGupzp07Z6uttqqzrGnTptl8880zY8aM7LPPPktsU3M1UM2tykaMGJFkxc5T/920adMyYsSITJo0Ke+//34WL16c5MPn45R8njp79uycd955efHFF/Od73wnffr0ScuWLfPss8/m8ssvz3e/+938+Mc/zgEHHFC7zfz58/PjH/84f/vb33LiiSfmoIMOyoYbbphx48bliiuuyI9+9KNMnz49ffv2bcBXBgAAaw9hEGvcsm4nUXOl0NLW16ybP39+kmTKlClJkmuvvTbXXnvtMv/WvHnz6vz77yNuzUNDfpVFixYutfyCBUvfT82tLv5dza9Ga+oFAEDjtdlmmy11eatWrZa5/t/PBydPnpxk5c9Tb7nllvzqV7/KwoVLP09dloY4T62oqMjs2bMzd+7cpa6vWf7RK6w+zi9/+cuMGjUqZ599do4++uja5b169cqmm26afv365aqrrkqfPn3SvPmHU9jf/e53GTZsWI4++uicfPLJtdvsuuuuufzyy3PMMcfkN7/5TQ4++OBstNFGq/hKAQCgHMIg1rgmTZp8ovVJaq/m2WmnnWqvGlqeN14fnQcfuCotW7bOfxx6drbaqkdat9k4zZt/eEuNS/77kLz33j9XuU4fddNNN2XixIkrtc1Xv/rV7Lzzziu1DQAA9WdpV/J81IqcE9ZczbMy56mjR4/OVVddldatW+c73/lOevTokY033rj21m8HH3xw/vnPtec8dbPNNsvs2bMzffr0bLPNNkuUnzZtWpKkY8eOy933okWL8tBDDyVJ9t133yXWb7/99tl8880zefLkTJ48OZ/61KeSJA8++GCSpE+fPkts07Fjx+y44475xz/+kXHjxmXPPfdcogwAAKxrhEE0SjVXD/Xq1SvHHnvsx5Z9aNiHwdHYscOTJPsf8O3s0uOgOmUWLJibOXPeqbf6Pf744yv9YN4ePXoIgwAAGrmaAGRFzlNr/O1vf0uSnHrqqTnooLrnqXPnzq29VXJ9qI/z1G222SYvv/xyxo0bt9RnHb300ktJks9+9rPL3feMGTOy4P9fnl9zBda/q1n+3nvv1S6rCZxat269wtsAAMC6TBhEo9SzZ88MHDgww4cPX+FJ9twPPpwItm275K00Ro9+uPZqo/pwzTXX1Nu+AABoPD73uc/lyiuvXKnz1JrAYmm3fHv44bXvPHXvvffO/fffn7/+9a/p169fnXUvvfRSJk+enK233rrOs4qWpW3btllvvfWyYMGCjBs3Lrvuumud9e+//35ef/31JHWvNNp4440zderUjBs3bonQadGiRRk/fnySD59XCgAAJB9/HwRYS3Xt2jU9e/bM888/n0svvTTvv//+EmVefvnlPP7447X/3niTDx/uO3LkvXWeGTRt2msZ8uCvVn+lAQAo3k477ZTPfe5zK3WeuuWWWyZJ7rnnnjrPDHrttdfyv//7v6u/0ivpC1/4QjbffPO8/PLLufXWW2uXf/DBB7nsssuSJMccc8wS2/Xv3z9HH310xowZU7usRYsWtbdxu/LKK+vcDm/evHm55JJLMnfu3HTv3j2bbLJJ7bpevXolSQYOHFgbFiUfBkHXXHNNpkyZko4dO2a77barp1cNAACNmyuDaLQuvvjinH322fnTn/6UIUOGZJtttskmm2yS999/P6+88krefvvtHH300ena/cPJZY9dD87fR9yal8aNyJW/ODqdt9g+H1TNzsSJo7Ld9r0y+c2xmTlzagO/qrouueSS2ttszJo1K0ny2GOP5Vvf+lZtmd/+9rcNUjcAAJbu0ksvzYknnrjc89S99toryYfPBLrlllsyYsSIHHXUUdl+++0ze/bsjBo1Kr17986YMWMyderac57avHnzXHzxxTnzzDNz5ZVXZujQoenYsWOee+65/POf/8y+++67xO3ukuTNN9/M1KlTM3fu3DrLzzrrrIwZMybjx4/PUUcdlW7dumX99dfPiy++mOnTp6dt27Y577zz6mzzrW99K08++WQmTZqUvn37plu3bmnbtm3Gjx+fyZMnZ/3118+FF16Y5s1NeQEAIBEG0Yi1b98+v/71r3P33XfnoYceyvjx4/PCCy+kffv22XzzzXPUUUflgAMOyHMvfFi+omLDnHr69Rnyl//NxNdGZdyLj6Zdu82z7/6nZJ99vpFfXH5Ew76gpXjttdfq/HIySWbOnJmZM2c2TIUAAFiujTfeeIXOU2tsuOGGueGGG3L11Vdn1KhRGTFiRDp16pRTTjklxx57bL72ta814KtZuu7du+eGG27Ir3/96zzzzDN55ZVX0rlz5xx77LE5+uij06RJkxXe1xZbbJFBgwZl0KBBefzxx/Pss8+muro6HTp0yBFHHJHjjz9+iVvobbjhhrn++utzyy23ZPjw4Rk7dmwWLFiQTTbZJAceeGCOO+64bLXVVvX9sgEAoNFqUr2CN6CeMWPG6q4LSdq1a+e9rmcPDVvxe6wfsF8TbbAW0AYNTxs0PG3Q8LRBw9MGDa8h26Bdu3YN8nfry9rWd40nlkXfYFn0DZZF32BZ9A2WRd9Y/VZk/uSZQQAAAAAAAAUTBgEAAAAAABRMGAQAAAAAAFAwYRAAAAAAAEDBhEEAAAAAAAAFEwYBAAAAAAAUTBgEAAAAAABQMGEQAAAAAABAwYRBAAAAAAAABRMGAQAAAAAAFEwYBAAAAAAAUDBhEAAAAAAAQMGEQQAAAAAAAAUTBgEAAAAAABSseUNXYFU9NKx6hcsesF+T1VgTAAAAAACAtZcrgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgzRu6AgAAwOrx0LDqFS57wH5NVmNNAAAAaEiuDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAACAwv35gXkNXQUAAKABCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAABgHfHQsOqGrgIAANAAhEEAAAAAAAAFEwYBAAAAAAAUTBgEAAAAAABQMGEQAAAAAABAwYRBAAAAAAAABRMGAQAAAAAAFEwYBAAAAAAAUDBhEAAAAAAAQMGEQQAAAAAAAAUTBgEAAAAAABRMGAQAAAAAAFAwYRAAAMA64KFh1Q1dBQAAoIEIgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAFiHPDSsuqGrAAAArGHCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAA1jEPDatu6CoAAABrkDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAYB300LDqhq4CAACwhgiDAAAA1lEPDasWCgEAwDpAGAQAALCOEwgBAEDZhEEAAADUXiVUEwwJiAAAoBxNqqurneGvJd57772MHDkyu+66a9q0adPQ1VknaYOGpw0anjZoeNqg4WmDhqcNGp42KIe2ZFn0DZZF32BZ9A2WRd9gWfSNtYcrg9Yic+bMyfDhwzNnzpyGrso6Sxs0PG3Q8LRBw9MGDU8bNDxt0PC0QTm0Jcuib7As+gbLom+wLPoGy6JvrD2EQQAAAAAAAAUTBgEAAAAAABRMGLQWad26dXr37p3WrVs3dFXWWdqg4WmDhqcNGp42aHjaoOFpg4anDcqhLVkWfYNl0TdYFn2DZdE3WBZ9Y+3RpLq6urqhKwEAAAAAAMDq4cogAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDNG7oCpXv++eczYMCAjBo1KgsXLkxlZWVOPPHEHHjggSu0/R133JELLrhgmetvuumm7LHHHvVV3eLcfffdGTlyZEaPHp3x48dnwYIF+fnPf57DDz98pfazePHi3HzzzfnDH/6QSZMmpaKiInvvvXe+853vpEuXLqup9mWojzZ48sknc/zxxy9z/aq06bri7bffzgMPPJBHHnkkr776av75z39mww03TI8ePXLSSSdlp512WuF9GQerpr7awDhYdfPmzcsVV1yR0aNHZ9KkSZk1a1batm2bLl265Mgjj8xXv/rVrLfeeiu0L+Ng1dRXGxgH9WvgwIG5/PLLkyS33XZbdt555xXazjhoPD7pXITGbd99983kyZOXuq5nz54ZNGhQnWXz58/PwIEDc88992TKlCnZcMMN06dPn5x99tnZeOON10SVqWcrOxebM2dOBgwYkCFDhmT69Onp0KFDvvSlL6V///5p1arVEuV9HjROK9MvBgwYkKuvvnqZ+xo2bFi22GKLJZY/+uijue666zJmzJg0adIkO+64Y04//fTstdde9fpaqF+rMnd13CjfyvYLx421mzBoNXriiSdy0kknpUWLFjnooIPSqlWrDBkyJN/5zncyderU9OvXb4X3td9++2X77bdfYnnnzp3rs8rFufLKKzN58uS0a9cuHTp0WOZkaHkuuuii3H777dlmm21y3HHHZdq0aXnggQfy97//Pbfddls+/elP12/FC1JfbZB8OGnt2bPnEsuXNjb40KBBg/LrX/86W265ZT73uc+lffv2mTRpUoYOHZqhQ4fm8ssvX+EvhIyDVVOfbZAYB6vi/fffz6233pru3bvnC1/4Qtq3b59Zs2bl0Ucfzfe///3cf//9+fWvf52mTZd/wbRxsGrqsw0S46A+jB8/PgMGDEhFRUWqqqpWalvjoHGoz7kIjVebNm1ywgknLLH83+eRixcvzmmnnZYRI0Zk5513zhe/+MVMmjQpt99+ex5//PH84Q9/SPv27ddUtaknKzMXq6qqSt++ffPiiy9mn332yUEHHZQXX3wx119/fZ5++uncfPPNWX/99ets4/OgcVqVOfphhx221O+f2rZtu8Syu+++O+eee27at29fGzDdf//9+eY3v5lf/vKX+fKXv/zJXwSrxcrOXR031g2r+p2G48ZaqprVYsGCBdX7779/ddeuXavHjh1bu3z27NnVX/ziF6t33HHH6jfffHO5+/nTn/5UXVlZWf2nP/1pdVa3WH//+99r3+frrrtuld7Lxx9/vLqysrL62GOPrZ43b17t8r/97W/VlZWV1f369avXOpemPtrgiSeeqK6srKy+6qqrVkcVi/aXv/yl+sknn1xi+dNPP1294447Vu++++51+vWyGAerrr7awDhYdYsWLVrqe7xgwYLqvn37VldWVlb/9a9/Xe5+jINVV19tYBzUj/nz51cfdthh1UceeWT1OeecU11ZWVk9atSoFdrWOGgc6msuQuPWp0+f6j59+qxQ2T/+8Y/VlZWV1d/97nerFy9eXLv8lltuqa6srKz+4Q9/uLqqyWq0MnOxK6+8srqysrL60ksvrbP80ksvra6srKy+9tpr6yz3edB4rUy/uOqqq6orKyurn3jiiRXa98yZM6t322236j322KN6ypQptcunTJlSvccee1Tvscce1e+9994nfxGsFis7d3XcWDesbL9w3Fi7eWbQavLEE0/k9ddfz8EHH1znV6pt2rTJqaeemgULFuTOO+9swBquG/bee+9PfPXU7bffniQ566yz0qJFi9rlvXv3Ts+ePTNixIi89dZbn+hvlKw+2oBV98UvfnGpv57fbbfdsscee2TWrFl56aWXlrsf42DV1VcbsOqaNm1ap9/WaN68eQ444IAkyaRJk5a7H+Ng1dVXG1A/rr322rz88sv52c9+lmbNmq3UtsZB42AuwsqqGdvf/e5306RJk9rlX//619OlS5fce++9mTt3bkNVj1W0onOx6urq3H777amoqMjpp59eZ93pp5+eioqK2j5Sw+dB47U65+gPPvhgZs+enb59+6Zjx461yzt27Ji+fftmxowZGTp06Gr523xyKzN3ddxYd6zu7zQcN9YsYdBq8tRTTyVJ9tlnnyXW1Sx7+umnV3h/Y8eOzfXXX5+BAwfm/vvvz4wZM+qnoizXk08+mYqKivTo0WOJdZ///OeT/Ku9Wb0mTpyYG2+8Mdddd13uuuuuvP322w1dpUatefPmdf7/cYyD1WNl2qCGcVB/Fi9enEcffTRJUllZudzyxkH9W9k2qGEcrLoxY8bk2muvTf/+/fPZz352pbc3DhqH+p6L0HjNnz8/d9xxR6699toMHjw4zz333BJl5s2bl+eeey5bbbXVEl8QN2nSJHvvvXeqqqoyevToNVVt1rCJEydm2rRp6dGjRyoqKuqsqznmv/HGG5kyZUrtcp8H65ann346AwcOzG9+85sMHTo077///lLLrcjnj37ROP373NVxg+Tjv9Nw3Fg7eWbQajJx4sQkyac+9akl1m266aapqKhYqV/A/vvDPVu2bJkzzjgjp5xyyieqJx+vqqoq06dPT2Vl5VJ/OVvTvn7NvGbcd999ue+++2r/3bx58/Tt2zfnnnvuSv+yeV331ltv5bHHHsumm2663C9gjYPVY2Xa4KOMg1U3f/78XHfddamurs7MmTPz+OOP59VXX83hhx++3IdSGgf145O0wUcZB6tm/vz5Oe+887LddtvlpJNOWuntjYPGo77nIjRe06dPzwUXXFBnWbdu3XLFFVdkyy23TJK8/vrrWbx48TKf01CzfOLEidltt91WZ3VpIDXHg4/rAyNGjMjEiRPTqVMnnwfroAEDBtT5d9u2bfODH/wghx56aJ3lH/f5o180XkubuzpusLzvNBw31k7CoNVkzpw5ST68FcPStG7dOu+9995y97PFFlvkhz/8YfbZZ5907Ngxs2bNyuOPP54rrrgil19+eTbYYIMcd9xx9Vp3/qWmjVq3br3U9TXLV6QtWXXt27fP9773vfTp0yedO3fOBx98kFGjRuXyyy/PjTfemCZNmuT8889v6Go2GgsWLMi5556b+fPn55xzzlnuF6fGQf1b2TZIjIP6sGDBglx99dW1/27SpEn69euX733ve8vd1jioH5+kDRLj4JO68sorM3HixNxxxx2rFJoZB41Hfc1FaNwOP/zw7LrrrqmsrExFRUUmTpyYG264IXfffXdOPPHE3HPPPXX6wvLGdk2/ojwr2wd8Hqw7tttuu/zsZz9Lz54906FDh0yfPj1/+9vfctVVV+X8889PmzZtst9++9WW/7jPH/2icVrW3NVxY932cd9pOG6s3YRBa7mePXvWuS9jy5Ytc+ihh2bHHXfM1772tVx99dU55phjVuoWQ9DYbLPNNtlmm21q/11RUZH9998/O+20U7761a9m0KBBOfnkk7Pxxhs3YC0bh8WLF+f888/P008/naOOOmqJX2Sw+q1qGxgHn1yrVq3y0ksvZfHixZk2bVoefvjh/OIXv8izzz6bX//618ucmFB/PmkbGAerbtSoUbn++uvTv3//lboaEWi8+vfvX+ff22+/fS655JIkyd13353bb7893/zmNxuiakAjUfNsxxpbbLFF+vbtm6233jrf/OY388tf/rLOl7qUxfcHLM3y+oXjxtrNM4NWk+Ull3PmzFnmL/VWxDbbbJNdd901M2fOzIQJE1Z5P3y8mjZa1q/glverS1avTTfdNPvtt18WLly41PufU9fixYvz/e9/P/fdd1+++tWv5sc//vEKbWcc1J9VbYOPYxysvKZNm6Zjx475xje+kf/6r//KM888k2uuueZjtzEO6teqtMHHMQ4+3sKFC3P++edn2223/US3GDYOGo/VPRehcTv66KOTJM8880ySFR/bfjRRrpXtAz4P2GuvvbLllltm/PjxdfrBx33+6BeNy/Lmro4b66ZP8p2G48baQRi0mtTcM3Np9zScPn16qqqqlnovxJXRrl27JMkHH3zwifbDslVUVGTTTTfNm2++mUWLFi2xvqZ9P2lbsuqMgxWzePHiXHDBBbnzzjtz8MEH57//+7/TtOmKfQQYB/Xjk7TB8hgHq25FH0hpHKw+9fVQUONg2aqqqjJx4sS8+OKL6dq1a7bddtva/+68884kH345vO2222bo0KHL3I9x0HisibkIjVfN8bKqqipJ0qVLlzRt2rT2nv3/rmb5sp4LQeNXczxY0T7g84Bk6edeH/f5o180Hisyd3XcWPfUx3cajhsNTxi0muy+++5JkhEjRiyxrmZZTZlVsWjRoowePTpJsvnmm6/yfli+nj17pqqqqvaXcx/16KOPJvlkbcknU/ML8M6dOzdwTdZeNR/Yd911Vw488MBccsklK/2sCOPgk6mPNvg4xsGqmzZtWpKs0O1WjYPVY2Xa4OMYB8vWokWLHHHEEUv9r2byte++++aII45Y7vtnHDQOq3suQuP2/PPPJ/nX8bJly5bp3r17XnvttUyePLlO2erq6jz22GOpqKhI165d13hdWTM+/elPp0OHDnnmmWdqQ8IaNcf8LbbYIp06dapd7vNg3VZVVZWXX345FRUVtV/uJiv2+fPRRyGw9lnRuavjxrqlPr7TcNxYOwiDVpO99torXbp0yX333ZcXX3yxdvl7772Xa6+9Nuutt16deypOmzYtEyZMWOKSuJrA56MWLVqUyy67LJMmTcoee+yRDh06rLbXsS559913M2HChLz77rt1lh911FFJPnzo8vz582uXDx8+PE899VT22WcfXzzVk2W1wdLGQZL87ne/y5NPPplPf/rT6dat25qoYqNTcwnvXXfdlS9/+cu59NJLP/YD2ziof/XVBsbBqnvllVeWerXIBx98kJ///OdJkt69e9cuNw7qX321gXGwalq2bJmf/vSnS/1vl112SZJ8+9vfzk9/+tNsv/32SYyDxm5l5yKUZ8KECUs97k6YMCGXXXZZkuSQQw6pXV4ztq+44opUV1fXLv/973+fN954I4ccckhatmy5mmtNQ2nSpEmOPPLIVFVV5Ve/+lWddb/61a9SVVVV20dq+Dwo35w5c/Laa68tsXzu3Ln54Q9/mPfffz9f/vKX6/yg5ytf+UratGmTwYMHZ+rUqbXLp06dmsGDB6ddu3bZf//910j9WXkrM3d13Fh3rEy/cNxY+zWp/uiZHvXqiSeeyEknnZQWLVrkoIMOSqtWrTJkyJBMnjw55513Xvr161db9vzzz8+dd96Zn//85zn88MNrl3/0Nh6bbbZZZs2alaeeeioTJ05Mx44dM3jw4HTp0qUhXl6jcPvtt2fkyJFJkvHjx2fMmDHp0aNH7eWFu+66a4488sgkyYABA3L11Venf//+OfPMM+vs58ILL8ztt9+ebbbZJr1798706dNz//33p1WrVvn973+frbbaas2+sEakPtpg3333TfPmzdO1a9dsttlm+eCDD/Lcc89l7Nixadu2bX7729+me/fua/7FNQI172lFRUWOP/74pf7yfv/996/98s84qH/11QbGwaobMGBAbrjhhuy6667p3LlzWrdunbfffjuPPPJIZs6cmd122y2//e1va7/kMg7qX321gXFQ/2rOQW+77bbsvPPOtcuNg8ZvZeYilKfmuLv77rtn8803zwYbbJCJEyfmkUceyYIFC/Ltb3873/3ud2vLL168OCeffHJGjBiRnXfeObvvvntef/31DBkyJJ07d87tt9+e9u3bN+ArYlWszFysqqoqxxxzTMaNG5d99tknO+ywQ8aOHZsRI0akW7duGTx48BKBoM+DxmlF+8Wbb76Z/fffP926dcvWW2+dTTbZJO+8804ee+yxTJ06NZWVlbnpppvq/MI/Se6+++6ce+65ad++fQ488MAkyf33358ZM2bkF7/4Rb7yla+s2RfMClvZuavjxrphZfqF48ba75Pdj4OPteeee+aWW27JVVddlfvvvz8LFy5MZWVlzjnnnNqOvTz9+vXLs88+m8ceeyyzZs3Keuutly233DKnnXZavvnNb2bDDTdcza+icRs5cmTtvfBrPPPMM3UuSa05+f04//Vf/5XKysr84Q9/yE033ZSKiooccMAB+c53vpMtt9yy3utdkvpog69//esZMWJEnn766cycOTNNmzbN5ptvnhNOOCH9+vVLx44dV0vdS1Bzq4+qqqpce+21Sy3TuXPn2pO5j2McrJr6agPjYNV94QtfyLRp0zJq1Kg8++yzqaqqSuvWrbPtttvmoIMOyte+9rUVvkWZcbBq6qsNjIO1g3HQONTHXITGa4899siECRPy4osv5h//+Efmzp2bdu3apVevXvnGN75R+7y2Gk2bNs0111yTgQMH5u67786NN96YjTbaKEcccUTOPvtsQVAjtTJzsYqKigwePDgDBgzIkCFD8uSTT2bTTTdNv379csYZZyz1yjCfB43TivaLjTbaKN/4xjfy/PPPZ/jw4Zk9e3bWX3/9bL311jnuuOPSt2/fpfaL//iP/0i7du1y3XXX5Y477kiSdO3aNaeddlr23nvv1fvi+ERWdu7quLFuWJl+4bix9nNlEAAAAAAAQME8MwgAAAAAAKBgwiAAAAAAAICCCYMAAAAAAAAKJgwCAAAAAAAomDAIAAAAAACgYMIgAAAAAACAggmDAAAAAAAACiYMAgAAAAAAKJgwCAAAAAAAoGDCIAAAAAAAgIIJgwAAAAAAAAomDAIAAAAAACiYMAgAAAAAAKBg/w8Kb3DyrvtfZAAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRcAAAH9CAYAAACA1UuyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6z0lEQVR4nO3dfbzX8+H/8WeX6lQIpQuRbxxKNRUNQ3M5c7Gfmouv2ZoZdqGNbb7DZsb3y5flasZcjnzJtRlmWIpFrnWBromiVDJdyFGddH5/uJ0zxylO71XnpPv9dnPTeb/fn8/n9fm8qvPqcd6f96dBRUVFRQAAAAAAVlPDuh4AAAAAALB+EhcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFgFraYYcdssMOO9T1MAAAYK2w3gWKEBcBAAAAgELERQAAAACgkAYVFRUVdT0IoP57+eWX88gjj+T555/P7Nmzs3Dhwmy88cbp2bNnBg4cmD322GOlt3vjjTfyf//3f3nmmWcyZ86cNGrUKO3atUvfvn3zrW99K6WlpdWOX7hwYW655ZY89thjmTFjRsrLy9OmTZt07949AwYMSL9+/aodv3z58vzlL3/JAw88kClTpqSsrCxt27bNXnvtlR/+8Idp3759teOfe+65DBw4MH379s11112Xq6++Og8//HDmzJmTTTbZJHvvvXdOOeWUbLnlllW3ueKKK3LllVeu8rUZMWJEttpqq9V9SQEAqEesd613gWLERaBWjjvuuDz33HPZbrvt0r59+zRv3jxvvfVWJkyYkCT51a9+le9+97vVbvPXv/41v/rVr7Js2bJ06NAhPXr0yIoVK/LWW29lypQpOfnkk/OTn/yk6vjJkyfnpJNOyty5c9OqVav07t07LVq0yOzZszNp0qT07Nkzt9xyS9Xxixcvzo9+9KM8//zzKSkpSffu3dO6detMnTo1b7zxRjbddNMMGTIk3bp1q7pN5WKrV69eqaioyJQpU9K3b980b948o0ePzrx589KmTZsMHTo0nTt3TpIMHz48w4cPz1/+8pckSf/+/as9z1/+8pfZbLPN1ujrDQDAumW9a70LFCMuArUycuTIdO3aNW3btq22fezYsTnhhBOydOnSjBgxouonoOPHj89//ud/Zvny5fn1r3+dY489Ng0b/utKDLNmzcr8+fPTvXv3JElZWVkOPvjgzJ49O4cffnjOPvvstGjRour4999/P6+88kq1nxj/4he/yIMPPph99tkn559/fjbffPOqfTfddFMuuOCCdO7cOQ899FAaNWqU5F+LrSTZZpttctNNN6VDhw5JkqVLl+a//uu/8ve//z0777xz7rzzzmrPtfLi1lOmTPn3XkwAAOod613rXaAY11wEaqVfv341FlpJ0qtXrxx77LEpLy/P8OHDq7ZfffXVKS8vz7e//e185zvfqbbQSpKOHTtWLbSS5O67787s2bPTtWvX/O///m+1hVaStGrVqtpCa9q0afnb3/6Wtm3b5uKLL6620Eo+/slzv379Mn369DzxxBMrfU6//OUvqxZaSbLRRhvlt7/9bZo3b55x48ZlzJgxtXhlAAD4IrDeBSimcV0PAFh/zJ8/PyNHjszUqVOzaNGiLF++PEkyffr0JB9fbyZJPvroozz99NNJkqOOOqpW9/3kk08mSY444oiqn7p+lpEjR6aioiJ77713WrZsudJj+vbtm5EjR2bs2LHZZ599qu3beOONs99++9W4zeabb5699torw4YNy/PPP5/evXvXavwAAKz/rHcBVp+4CNTKXXfdlQsuuCBlZWWrPOaDDz5IkixYsKDquG233bZW9//2228nSf7jP/6jVse/9dZbSZJ77rkn99xzz2ce+95779XY1rFjxzRo0GClx1derHrOnDm1GgsAAOs/612AYsRF4HONHz8+Z599dho1apTTTjst++67b9VFrhs0aJA777wzZ599dtblJVxXrFiRJOnatWt23HHHzzz2S1/6UqHHcElaAIANg/UuQHHiIvC5HnnkkVRUVOTb3/52TjzxxBr7K98mUmnTTTdN8+bN8+GHH+aNN95IaWnp5z5G+/btM23atLz++uvVrjXzWccnSe/evXP22WfX7ol8wqxZsz53X7t27Vb7fgEAWP9Y7wIU5wNdgM+1cOHCJKl2MehKS5cuzbBhw6pta9SoUdWC6a677qrVY+y1115Jkj//+c/56KOPPvf4vffeO0ny2GOPZenSpbV6jE9atGhRHnvssRrb33vvvarr4fTt27faviZNmiRJ1bV3AAD4YrDe/Zj1LlCEuAh8ri5duiRJ7rvvvixevLhq+9KlS3POOedk5syZNW7zwx/+MI0bN86tt96aW2+9tcZbLmbNmpXx48dXfX3kkUemXbt2mThxYs4666wa17pZvHhx1UWzk6Rbt2752te+ltmzZ2fQoEErHUNZWVkeeOCBvPvuuyt9Xr/73e+qXWdm2bJlOffcc1NWVpaePXumT58+1Y7fcsstkySvvfbaSu8PAID1k/Xux6x3gSIaVLjIAvA5Fi1alMMPPzyzZs3Kpptuml122SWNGjXKiy++mCVLluSb3/xmbr755vTv3z8XXnhh1e3uu+++nHXWWSkvL0/Hjh3TvXv3VFRU5K233srkyZNz8skn5yc/+UnV8RMnTsxJJ52UefPmZeONN07v3r1TUlKS2bNnZ9KkSenZs2duueWWquMXL16cQYMG5ZlnnkmTJk2y4447ZquttkpFRUVmzZqVyZMnp7y8PA899FDVgvG5557LwIED06tXr6xYsSJTp07NbrvtlmbNmmX06NF55513svnmm2fo0KE1Lrb9u9/9LjfeeGNat26d3XbbLS1atEiSnHbaaWnduvXanAIAANYi692PWe8CRYiLQK289957ueKKKzJq1KjMmTMnm266aXbbbbcMGjQoo0ePzplnnlljsZV8/FPPIUOG5Nlnn80777yTjTbaKFtuuWV22223HHPMMdluu+1qPM7NN9+cESNGZObMmVmxYkXatGmTHj16ZMCAAVVvJ6m0YsWKPPTQQ3nggQcyYcKELFy4MC1atEjbtm3TvXv37LfffunXr1/VWzwqF1t9+/bNtddemyuvvDJ///vfM3fu3GyyySbZe++989Of/rTqGjeftHTp0vzhD3/Io48+mrfffjvl5eVJkhEjRlR94h4AAOsn613rXaAYcRHYoHxysfXJnwoDAMAXgfUusK655iIAAAAAUIi4CAAAAAAUIi4CAAAAAIW45iIAAAAAUIgzFwEAAACAQsRFAAAAAKCQxnU9AIDaePjhh3Pbbbdl8uTJKS8vz9Zbb53DDjssxx13XJo0aVLXwwMAgEJef/31PPXUU5kwYUImTJiQadOm5aOPPsopp5ySH//4x3U9PIDPJS4C9d7555+fm2++OY0bN85uu+2WkpKSPPvss7n44ovz+OOP58Ybb0yzZs3qepgAALDabr/99tx88811PQyAwsRFoF4bPnx4br755pSUlGTo0KHZaaedkiTvvfdevvvd72b06NG5/PLLc/rpp9fxSAEAYPWVlpbm+OOPT7du3dKtW7dce+21uf/+++t6WAC1Ji4C9do111yTJDnppJOqwmKSbLbZZvntb3+bY489NkOHDs2Pf/zjtGrVqq6GCQAAhRx55JHVvm7Y0EcjAOsXf2sB9dbcuXPzyiuvJEkOPfTQGvt32WWXtG/fPsuWLcvIkSPX9fAAAABggycuAvXWxIkTkySbbrppOnXqtNJjunfvXu1YAAAAYN0RF4F6a+bMmUmS9u3br/KYdu3aVTsWAAAAWHfERaDe+uCDD5IkzZs3X+UxLVq0qHYsAAAAsO6IiwAAAABAIeIiUG9VnpX44YcfrvKYyjMWK48FAAAA1h1xEai3OnbsmCSZPXv2Ko+ZM2dOtWMBAACAdUdcBOqtbt26JUkWLFiQt956a6XHjB8/Pkmy0047rbNxAQAAAB8TF4F6q127dunRo0eS5MEHH6yx/8UXX8zs2bPTtGnT9OvXb10PDwAAADZ44iJQr/3whz9Mklx33XWZMGFC1fb58+fn3HPPTZJ8+9vfTqtWrepkfAAAALAha1BRUVFR14MA+CznnXdebrnlljRp0iS77bZbSkpK8swzz2TRokXp3bt3hgwZkmbNmtX1MAEAYLVNmDCh6ofmSfLmm29m/vz5adeuXbbccsuq7VdeeWXatm1bF0ME+EyN63oAAJ/nrLPOSu/evXPbbbdl7NixWb58ebbeeuuceOKJOe6449K0adO6HiIAABSyePHivPTSSzW2z5kzp+rDC5Nk2bJl63JYALXmzEUAAAAAoBDXXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAopNafFj1//vy1OY7PtMkmm2ThwoV19visO+Z6w2CeNxzmesOxIc5169at63oIrGHz58/fIH8v13fmpH4yL/WPOamfzEv9Y05qr7br3fXizMWGDdeLYbIGmOsNg3necJjrDYe55ovC7+X6x5zUT+al/jEn9ZN5qX/MyZrnFQUAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQhrX9QBYPz06omKt3G+LFkvzwQc17/uA/RqslccDAKj06IiKVa5FVod1CwCwIXHmIgAAAABQiLgIAAAAABQiLgIAAAAAhYiLAAAAAEAh4iIAAAAAUIi4CAAAAAAUIi4CAAAAAIWIiwAAAABAIeIiAAAAAFCIuAgAAAAAFCIuAgAAAACFiIsAAAAAQCHiIgAAAABQiLgIAAAAABQiLgIAAAAAhYiLAAAAAEAh4iIAAAAAUIi4CAAAAAAUIi4CAAAAAIWIiwAAAABAIeIiAAAAAFCIuAgAAAAAFCIuAgAAAACFiIsAAAAAQCHiIgAAAABQiLgIAAAAABQiLgIAAAAAhYiLAAAAAEAh4iIAAAAAUIi4CAAAAAAUIi4CAAAAAIWIiwAAAABAIeIiAAAAAFCIuAgAAAAAFCIuAgAAAACFiIsAAAAAQCHiIgAAAABQiLgIAAAAABQiLgIAAAAAhYiLAAAAAEAh4iIAAAAAUIi4CAAAAAAUIi4CAAAAAIWIiwAAAABAIeIiAAAAAFCIuAgAAAAAFCIuAgAAAACFNK7rAUB989FHH+Xxxx/PxIkTM3HixEyePDlLlizJwQcfnLPPPruuhwcArCdef/31/OlPf8qYMWPy4YcfZquttsphhx2Wo446Kg0brt7P+JctW5Y77rgjw4cPz1tvvZXly5dniy22yK677prvfve76dix4ypvO2bMmNx11115+eWX8/7772eTTTbJdtttlwEDBmTvvff+d58mALCBExfhU8rKynLWWWfV9TAAgPXYK6+8kkGDBmXp0qXp1q1b2rdvn3HjxuX3v/99XnnllZx33nlp0KBBre5r6dKlOfnkkzN+/Pi0atUqvXr1StOmTTNlypQ88MADGT58eK666qrsuOOONW57/fXX54YbbkjTpk3Ts2fPtG7dOvPmzctLL72UNm3aiIsAwL9NXIRPady4cb7+9a9nxx13TLdu3TJjxoycd955dT0sAGA9sXz58vz2t7/N0qVLc8opp+SYY45J8vEPME855ZSMGDEiu+++ew499NBa3d99992X8ePHp1u3bvnDH/6Qli1bJvn43RaXXXZZ7rnnnlx++eW5+uqrq93uwQcfzA033JCddtopF1xwQdq2bVu1b8mSJZk1a9YaesYAwIbMNRfhU5o3b57f/va3Ofroo9OjR49stNFGdT0kAGA98o9//CNvv/12tt9++6qwmCQlJSX5xS9+kSS5/fbba31/48aNS5Icc8wxVWExSRo1apSTTjopSTJx4sRqt1myZEmuuOKKlJSUZPDgwdXCYpI0a9YsXbp0Wa3nBQCwMs5c3AC8/fbbGTBgQHr16pVLL7001157bR577LEsXLgw22yzTU488cTstddeSZIRI0bk1ltvzeuvv57mzZtn//33z8knn5xmzZpVu89ly5bkmWfuzPhXRuS9f85MkrTd8j/St2//9Op9SI0xTJ8+LuNfHp7p08dl4cJ3snz50my6abt07dYve+39nTRv3qra8W+8PiY33nByevU6OAcd/NP87nfX5oknnsiiRYvSqVOnHHPMMTnssMPW0isGAHzSzJkzs99++6Vv37659tprc/nll+eRRx7J/Pnz06VLl/zkJz/JvvvumyR5+OGHc+ONN+bVV19NSUlJDj744Jx22mk11hIffvhhbr755jz88MOZMWNGklTFuP79+9cYw4svvpiHHnooL7zwQubMmZOlS5emQ4cO2X///XPSSSdl4403rnb8c889l4EDB6Z///4544wzctlll2XEiBFZsGBBOnfunOOOOy5HHHHEWnm9nn766STJPvvsU2PfjjvumI4dO2batGl5++2306FDh8+9vyZNmnzuMZtsskm1r//xj39k4cKFOeyww7L55pvXcuQAAKtPXNyALF++PIMGDcrbb7+dXr16ZcGCBRk3blzVgnvatGm58sor06tXr3z5y1/OuHHjcvfdd2fhwoX57//+76r7ee+993LdtT/N3DmvpWXLzdO5c69UpCJvvflK7v3zeZk1a3IOPewX1R77749cmTmzX027dtvlP7rskuXLl2b221Pz5BO3ZMrkp3LSD6/PRhuV1Bjzh0sW57prT0rDBh9m5513rhrz+eefnxUrVuT//b//t9ZfNwDgY+Xl5TnuuOMyc+bM7LLLLpk/f35efPHFDBo0KH/6058yderUXHTRRdl1112z55575oUXXsgtt9yS+fPn55JLLqm6n3/+85/53ve+lylTpqRNmzbZddddU1FRkbFjx+aMM87I+PHj85vf/KbaYw8ePDiTJ0/ODjvskN133z1Lly7NhAkTcv311+cf//hH7rzzzrRo0aLGmBctWpSjjz46ZWVl6dOnT9WYf/3rX6eioiJHHnnkGn+dXn311SRZ6TUQk2SHHXbIrFmz8tprr9UqLn75y1/OsGHDcvvtt2f33Xev9rbo6667Lklq/NB19OjRSZIePXrk/fffz9///vdMmzYtG220UXr27Jm99947jRv7pwAA8O+zotiAvPLKK9lll11y7733pnnz5kk+vhbPeeedl8GDB2fRokX505/+lK5duyZJ5s2bl4EDB2bYsGH5wQ9+UPUphOedd17mznktu+9xVA782slp3LhpkmTx4vcy9ObT8tyz92SHHfbI9qW7Vz32Pvt8P1tv0yPNmv3rrTzLly/L3x68NC++cH+efur27LPv92uMefKkJ9Kj5wH545W/SdOmHz/OyJEjc/rpp2fIkCE14uKPfvSjjB07drVel7POOqvW1zwCgA3Z2LFjs9tuu2X48OEpKfn4h4L33ntvzjzzzJxzzjlZsGBB7rjjjvTo0SNJMnfu3PTv3z8PPvhgTj311HTq1ClJcuaZZ2bKlCkZOHBg/uu//qvqe/y7776bH/zgBxk6dGj69etX7cNGTj755PTu3TutWv3r3Q7Lli3LeeedlzvvvDNDhgzJoEGDaox5xIgROeSQQ3LhhRdWPc7w4cNz8skn56qrrqoRF/94xfGZNu3F1Xpd+n/zrPT+xDs35s6dmyRp06bNSo+vfIvynDlzanX/Bx10UJ599tk8+uij6d+/f3r27JmmTZtm8uTJee+993Lsscfm+OOPr3abN954I0myYMGCHHPMMXn33Xer9t1xxx3p0qVLLr300my55Za1f6IAACshLm5AGjZsmF/+8pdVYTFJDj744Fx55ZWZOXNmvve971WFxeTjBfHXvva13HHHHRk7dmw6duyYqVOn5umnn07Hjl1z0NdPScOG/7psZ8uWm+Ubh5+eq/94XJ5/7i/V4mLpDv/6daXGjZvm4ENOzZjRD2bypCdXGhc32qhFDj3sF1X/GEiSfv36pUuXLit9O9Huu++e9u3br9brstVWW63W8QCwoWrYsGHOOeecqrCYJIcffngGDx6cGTNm5Ec/+lFVWEySLbfcMocddlhuuummvPDCC+nUqVMmTZqUkSNHpkePHjnzzDOrrSW22GKL/M///E/69++f22+/vVpc7NevX43xNG3aNL/61a/y5z//OY899thK42LLli3zm9/8ptpaYv/9909paWmmTp2amTNnVlsL7Nj1K9l447Y17uezbL5Z9bVEWVlZktR4K3ilyu2Vx32eRo0a5ZxzzsmWW26ZoUOH5qmnnqrat8MOO2TXXXdNo0aNqt3m/fffT5Jce+212WabbXLeeedl++23z/Tp0zN48OBMmTIlZ555Zm644YZaf2o1AMDKiIsbkPbt22frrbeutq1hw4Zp165dFixYkC9/+cs1blN5tuI///nPJB9fvyhJunbbu9o/Bip16LBDmjYtycyZE2vsW7TwnUyePCrvvjsjS5d8kIqKiiRJo0ZN8s9/vrXSMXfouGNKSjapsb1Tp06ZNm1a/vnPf1aLiwMHDlzp/QAA/76OHTtm2223rbatYcOG6dChQ+bPn58999yzxm0qz1acN29ekmTUqFFJPg58K1tLdOvWLSUlJXnllVdq7Js7d24ee+yxvP7661m8eHHVWqJJkyaZPn36Sse80047pXXr1jW2d+7cOVOnTs28efOqxcX99v9+Pvjgg5XeV11ZtGhRTj/99EyaNCk/+9nPss8++6RZs2YZN25cLrnkkvz85z/PueeemwMOOKDqNitWrEjycZi87LLLqs5Q3GmnnXLZZZflm9/8ZiZOnJjnn39+pWtAAIDaEhc3IKt6a07lmYwr21+5b9myZUmS2bNnJ0mGP3pthj967Sofa/nypdW+fmrU7Xl02FX56KPlqzXmjTde+Zgrz5ioHBcAsPat6i20ldc6XNn+T3/PnjVrVpLksssuy2WXXbbKx/r09/ghQ4bkkksuSXl5+WqNuV27dp855rWxligpKcmiRYuyZMmSle6v3P7JM0A/y+9///uMHTs2p556ao4++uiq7XvvvXfatGmT448/Pn/4wx+yzz77VF1HsXINt8suu9SYl8022yx77LFHRowYkbFjx4qLAMC/RVzcgHzeW15q85aYyjMEttnmS9lss461ety33hyfRx7+Q5o1a5n/d/ip2Xbb3mnZavOqazUOvvCwvP/+uyu9bcMGNc9o+Cw333zzKs9cWJVvfOMb2XnnnVfrNgCwIVrZmYafVJu1ROUZdX369KnxjopVGTduXC688MK0atUq//M//5O+ffumTZs2VW913nPPPavOjFzdMX/aiOE35O1Zr67Wbfrs8o1s0/lLVV9vueWWWbRoUebNm5ftt9++xvHvvPNOklWHz0/66KOP8uijjyZJ1Sdyf1LXrl3ToUOHzJo1K7Nmzco222yT5ON3rEydOnWVl4up3D5//vzPHQMAwGcRF1ktlWc3du22d76y57dqdZuJE0cmSfY/4Afp9YmLnSdJefmSLF78zzU2vmeeeWa1P9Cld+/e4iIArCOVQW3//fev8SEkq1IZ1372s5+lf//+1fYtWbKk2oeV/LsmT3pqtT/QpfN/9K4WF7fffvu8+uqrmTx5cvbYY48ax0+ZMiVJst12233ufc+fP7/qbM2VfRr2J7dXXmcxSUpLSzNy5Mhq2z5p0aJFSVLtWtwAAEWIi6yWvn375rrrrsvEiSNrHReXfPjxonZlF0cfP/6xqrMh14Srr756jd0XALDmfeUrX8nll1+eRx99tNZxsTKErext14888sgaXUuc/JMb/+1rLu6xxx556KGH8vjjj9d4jlOmTMmsWbPSpUuXateNXpWNN944TZo0SXl5eSZPnpw+ffpU2//BBx/kzTffTFL9TMi99tor119/fV5++eUsX7686u3Sycdnj7700ktJPv5AGACAf8fqvU+EDV737t3Tt2/fvDnj5fz1gYuyZEnNxffs2a/m1anPVH29+RYfX8h99Oi/Vrvm4jvvvJFhj1y19gcNANQbX/rSl/KVr3wlY8aMybnnnpvFixfXOGby5Ml54oknqr7u3LlzkuSee+6pds3F1157LRdffPFaH/Pq+upXv5oOHTrk1Vdfze233161/cMPP6wa7zHHHFPjdoMGDcrRRx+dCRMmVG1r2rRpdttttyTJ5ZdfXu0szaVLl2bw4MFZsmRJevbsmS222KJqX2lpafr27Zs5c+bkmmuuqRZghwwZkhkzZqR169b56le/usaeNwCwYXLmIqvtnHPOyfe/f2qef+7evPzSo2nffvu02niLLFmyOHPnTMvChXOz+x5HZfvS3ZMkvfscmqdG3Z4pk0fl8suOTsetuubDskWZPn1sduy6d2bNnJgFC+bU8bOqbvDgwVVvWVq4cGGS5Omnn873v//9qmNuuOGGOhkbAKzvLrroopxwwgm57bbb8uCDD2bHHXdM27Zts3jx4kyZMiWzZ8/OwIEDs/feeydJBgwYkCFDhuTxxx/PQQcdlB49emThwoV54YUXst9+++WVV16p+qCY+qBx48Y555xz8pOf/CSXX355hg8fnnbt2uWll17Ku+++m3333TeHHHJIjdvNnDkzc+bMqfFBMKecckomTJiQqVOn5qijjkqPHj2y0UYbZdKkSZk3b1423njjnH766TXu79e//nVOOOGEDB06NE888US6dOmS6dOn54033shGG22Uc88919uiAYB/m7jIattss81y4g+uy+gXH8grLz+a2bOn5s03X0nLlpul9WYdstvuR6ZHzwOqji8p2SQ//PGNGfb3P2b6G2MzedKTad26Q/bd/6Tsuee3ctklR9Ths1m5N954o9pZA0myYMGCLFiwoG4GBABfIJtvvnnuuOOO3HXXXfnb3/6WSZMmZezYsdliiy3SqVOnfOc736kW31q3bp177rknF110UV544YU89thj2WqrrfLTn/403//+93PAAQd8xqPVjZ49e2bIkCG5/vrrM2bMmLz22mvp2LFjjj322Bx99NG1+vCbSltttVVuueWW3HLLLXnmmWcybty4VFRUpG3btjniiCMycODAtG1b8/IzW265ZW6++ebccMMNGTVqVJ588sm0atUqBxxwQI477rh06dJlTT5lAGAD1aCilhepqctPkmvdurVPsqtnHh2x5q5t9EktWrRY6XWODtiv9gtw6j9/pjcc5nrDsSHOdevWret6CKxhd93z3irXIqvDumXN2hD/flkfmJf6x5zUT+al/jEntVfb9a5rLgIAAAAAhYiLAAAAAEAh4iIAAAAAUIi4CAAAAAAUIi4CAAAAAIWIiwAAAABAIeIiAAAAAFCIuAgAAAAAFCIuAgAAAACFiIsAAAAAQCHiIgAAAABQiLgIAAAAABQiLgIAAAAAhYiLAAAAAEAhjet6AOvCoyMq1vljHrBfg3X+mAAAAACwLjlzEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgkMZ1PQAAYN15dETFWrnfFi2W5oMPat73Afs1WCuPBwAA1A/OXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKERcBAAAAAAKERcBAAAAgELERQAAAACgEHERAAAAAChEXAQAAAAAChEXAQAAAIBCxEUAAAAAoBBxEQAAAAAoRFwEAAAAAAoRFwEAAACAQsRFAAAAAKAQcREAAAAAKKRBRUVFRV0P4rO8//77GT16dPr06ZNWrVrV9XBYi8z1hsE8bzjM9YbDXPNF4fdy/WNO6ifzUv+Yk/rJvNQ/5mTtqPdnLi5evDgjR47M4sWL63oorGXmesNgnjcc5nrDYa75ovB7uf4xJ/WTeal/zEn9ZF7qH3OydtT7uAgAAAAA1E/iIgAAAABQSL2Piy1btky/fv3SsmXLuh4Ka5m53jCY5w2Hud5wmGu+KPxern/MSf1kXuofc1I/mZf6x5ysHfX+A10AAAAAgPqp3p+5CAAAAADUT+IiAAAAAFCIuAgAAAAAFCIuAgAAAACFNK7rAazKyy+/nCuuuCJjx47N8uXLU1pamuOOOy4HH3xwXQ+NNeT+++/P6NGjM378+EydOjXl5eW54IILMmDAgLoeGmvY3Llz8/DDD+eJJ57I66+/nnfffTebbLJJevfunRNOOCFf+tKX6nqIrAFLly7NpZdemvHjx2fGjBlZuHBhNt5443Tq1ClHHnlkvvGNb6RJkyZ1PUzWouuuuy6XXHJJkuTOO+/MzjvvXLcDglqy7ly7VnfNt3jx4lxxxRUZNmxY5s2bl7Zt2+ZrX/taBg0alBYtWtQ4fsWKFbn11ltz1113ZcaMGSkpKckee+yRn/3sZ+nUqdPafnrrpSJrM/OydhVZR5mTuvF56x3zsvbtu+++mTVr1kr39e3bN7fccku1bcuWLct1112XBx54ILNnz84mm2ySffbZJ6eeemo233zzld7PAw88kJtvvjmvvfZamjRpkt69e+enP/1pdtpppzX+fL4I6uWnRT/77LM54YQT0rRp0xxyyCFp0aJFhg0bllmzZuX000/P8ccfX9dDZA2o/AuhdevWKSkpyaxZs8TFL6iLL744119/fbbeeuv07ds3m222WWbMmJHhw4enoqIil1xyiX/AfQG89957+epXv5qePXumc+fO2WyzzbJw4cI8+eSTmTVrVvbcc89cf/31adjQSfNfRFOnTs03v/nNNG7cOGVlZeIi6w3rzrVvddZ8ZWVl+da3vpVJkyZlzz33TNeuXTNp0qSMGjUqPXr0yK233pqNNtqo2m3OOuus3H333dl+++3Tr1+/vPPOO3n44YfTokWL3HnnnencufM6eqbrj9Vdm5mXtW9111HmpG583nrHvKwb++67bxYtWpTvfve7NfZ17Nix2veXFStW5MQTT8yoUaOy8847Z9ddd82MGTPy6KOPZquttspdd92VzTbbrNp9XH311fn973+fjh075sADD8wHH3yQv/3tbykvL89NN92UPn36rPXnuN6pqGfKy8sr9t9//4ru3btXTJw4sWr7okWLKg488MCKnXbaqWLmzJl1OELWlKeeeqpqLq+99tqK0tLSij//+c91PCrWhr///e8Vzz33XI3tL7zwQsVOO+1Useuuu1YsXbq0DkbGmvTRRx+tdB7Ly8srvv3tb1eUlpZWPP744+t+YKx1y5Ytq+jfv3/FkUceWXHaaadVlJaWVowdO7auhwWfy7pz3VidNd/ll19eUVpaWnHRRRdV237RRRdVlJaWVlxzzTXVtj/zzDMVpaWlFccee2y170H/+Mc/KkpLSyuOP/74NfxsvhhWd21mXta+1V1HmZN1rzbrHfOybuyzzz4V++yzT62OveeeeypKS0srfv7zn1esWLGiavttt91WUVpaWvGb3/ym2vFvvPFGRbdu3SoOPPDAikWLFlVtnzhxYkX37t0rvv71r1d89NFHa+aJfIHUu9NHnn322bz55ps59NBD07Vr16rtrVq1yg9/+MOUl5fnL3/5Sx2OkDVljz32SMeOHet6GKwDBx54YPr27Vtj+y677JIvf/nLWbhwYaZMmVIHI2NNatiwYZo2bVpje+PGjXPAAQckSWbMmLGuh8U6cM011+TVV1/N//7v/6ZRo0Z1PRyoNevOdaO2a76KiorcfffdKSkpyY9//ONq+3784x+npKQkd999d7XtlV+fcsop1b4H9evXL3379s2oUaPy9ttvr4Fn8cWyOmsz87JurM46ypzUjc9b75iX+qnyNf75z3+eBg0aVG3/z//8z3Tq1Cl//etfs2TJkqrt9957b5YvX54f/ehHadWqVdX2rl275tBDD820adMyevTodfcE1hP1Li4+//zzSZI999yzxr7KbS+88MI6HROw9jRu3Lja//niWbFiRZ588skkSWlpaR2PhjVtwoQJueaaazJo0KBst912dT0cWC3WnfXL9OnT884776R3794pKSmptq+kpCS9e/fOW2+9ldmzZ1dtf+6556r2fdpee+2V5F/zTO18em1mXurWytZR5mTdq816x7ysW8uWLcu9996ba665JkOHDs1LL71U45ilS5fmpZdeyrbbblvjh1wNGjTIHnvskbKysowfP75qe+Xr/ZWvfKXG/VWuDcxJTfXuX/PTp09PkmyzzTY19rVp0yYlJSXOfIEviLfffjtPP/102rRpIzp9gSxbtizXXnttKioqsmDBgjzzzDN5/fXXM2DAgOy+++51PTzWoGXLluX000/PjjvumBNOOKGuhwOrzbqzfql8rVd1fbHOnTtn1KhRmT59etq3b5+ysrLMmzcvpaWlKz2LqHJezWHtrWxtZl7Wrdqso8zJulXb9Y55WbfmzZuXM888s9q2Hj165NJLL83WW2+dJHnzzTezYsWKz5yT5OP1wC677FL165KSkrRp06bG8eZk1epdXFy8eHGSVDv99JNatmyZ999/f10OCVgLysvL88tf/jLLli3Laaed5q2UXyDl5eW58sorq75u0KBBjj/++PziF7+ow1GxNlx++eWZPn167r33Xn+GWS9Zd9Yvla91y5YtV7q/cnvlvNX2eHNYO6tam5mXdas26yhzsm7Vdr1jXtadAQMGpE+fPiktLU1JSUmmT5+eIUOG5P77789xxx2XBx54oNr38NrOSeWvP/0BL58+3pzUVO/iIvDFt2LFipxxxhl54YUXctRRR+Xwww+v6yGxBrVo0SJTpkzJihUr8s477+Sxxx7LZZddlnHjxuX6669f5Td31i9jx47NjTfemEGDBjnzGGA9Z21Wf1hH1S/WO/XToEGDqn3dtWvXDB48OEly//335+677873vve9uhjaBqveXXPx80rw4sWLV/nTZaD+W7FiRX71q1/lwQcfzDe+8Y2ce+65dT0k1pKGDRumXbt2+da3vpX//u//zpgxY3L11VfX9bBYA5YvX54zzjgjO+ywQ0466aS6Hg4UZt1Zv1S+1p88g+STKrdXzlttjzeHn+3z1mbmpW581jrKnKwbq7veMS917+ijj06SjBkzJsnqz0nlrz9rXfDJ++Vf6t2Zi5XveZ8xY0a6d+9ebd+8efNSVlaWnj171sHIgH/XihUrcuaZZ+a+++7LoYcemgsvvDANG9a7n3GwFrj48RdLWVlZ1bXqPv29ulLl4u6Pf/xj9t9//3U1NFgt1p31S+W1rCr/fvm0yu2V81Z5TayZM2fmo48+qvF2xcprYq3smpp8rDZrM/NS9z69jjIn68bqrne6dOmSxLzUpdatWyf5eO6SpFOnTmnYsGGt56Ty12PHjs28efNqXHfRnKxavftX/a677pokGTVqVI19ldsqjwHWH59cvB588MEZPHiwa7RtQN55550kPhX8i6Jp06Y54ogjVvpf5eJs3333zRFHHFHjk/mgPrHurF86d+6ctm3bZsyYMVX/MKxUVlaWMWPGZKuttkr79u2rtvft27dq36dVfsKuOVy52q7NzEvd+/Q6ypysG6u73jEvde/ll19Okqr1Z7NmzdKzZ8+88cYbmTVrVrVjKyoq8vTTT6ekpKRaPK58vZ966qka91+5Nujbt+9aGf/6rN7Fxd133z2dOnXKgw8+mEmTJlVtf//993PNNdekSZMmrgEC65nKt9vcd999Oeigg3LRRRcJi19Ar732Wj788MMa2z/88MNccMEFSZJ+/fqt62GxFjRr1iznn3/+Sv/r1atXkuQHP/hBzj///HTt2rWORwurZt1ZvzRo0CBHHnlkysrKctVVV1Xbd9VVV6WsrCxHHXVUte2VX19++eVZtmxZ1faRI0fm+eefz5577umHHCuxOmsz87JurM46ypysG6u73jEv68a0adNW+mdl2rRpufjii5Mkhx12WNX2ytf40ksvTUVFRdX2O+64I2+99VYOO+ywNGvWrGr7gAED0rhx41x99dXV3h49adKkPPjgg+nSpUv69Omzxp/X+q5BxSdf3Xri2WefzQknnJCmTZvmkEMOSYsWLTJs2LDMmjUrp59+eo4//vi6HiJrwN13353Ro0cnSaZOnZoJEyakd+/eVacY9+nTJ0ceeWRdDpE15IorrsiVV16ZkpKSDBw4cKVnr+2///4ixHruiiuuyJAhQ9KnT5907NgxLVu2zNy5c/PEE09kwYIF2WWXXXLDDTdU++bNF88ZZ5yRv/zlL7nzzjuz88471/Vw4HNZd659q7PmKysryzHHHJPJkydnzz33TLdu3TJx4sSMGjUqPXr0yNChQ2t8HznrrLNy9913Z/vtt0+/fv0yb968PPTQQ2nRokXuuOOObLvttuv2Ca8HVndtZl7WvtVdR5mTurWq9Y55Wfsq/6zsuuuu6dChQ5o3b57p06fniSeeSHl5eX7wgx/k5z//edXxK1asyIknnphRo0Zl5513zq677po333wzw4YNS8eOHXP33XfX+HToq6++Or///e/TsWPHHHjggfnggw/yt7/9LeXl5bnpppvExZWol3Ex+fh01j/84Q8ZO3Zsli9fntLS0nzve9/LwQcfXNdDYw2p/At5Vfr3758LL7xwHY6IteXz5jpJLrjgggwYMGAdjYi14ZVXXsldd92VsWPHZu7cuSkrK0vLli2zww475JBDDsk3v/lNb4veAIiLrI+sO9eu1V3zvf/++7niiisybNiwvPvuu2nTpk0OOuignHzyySv9pNwVK1Zk6NChueuuuzJjxoyUlJRkjz32yM9+9rNsvfXWa+U5re+KrM3My9pVZB1lTurOZ613zMva9fzzz+e2227LpEmT8u6772bJkiVp3bp1evbsmW9961tV1yj9pGXLluW6667L/fffn9mzZ2fTTTfNV7/61Zx66qnZYostVvo4DzzwQP7v//4vr732Wpo0aZLevXvnlFNOyU477bS2n+J6qd7GRQAAAACgfqt311wEAAAAANYP4iIAAAAAUIi4CAAAAAAUIi4CAAAAAIWIiwAAAABAIeIiAAAAAFCIuAgAAAAAFCIuAgAAAACFiIsAAAAAQCHiIgAAAABQiLgIAAAAABQiLgIAAAAAhYiLAAAAAEAh/x9Vqxh3vdzeEgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -1230,7 +1313,7 @@
],
"source": [
"az.plot_posterior(\n",
- " trace,\n",
+ " idata,\n",
" group=\"sample_stats\",\n",
" var_names=\"accept\",\n",
" hdi_prob=\"hide\",\n",
@@ -1296,7 +1379,7 @@
"}\n",
"\n",
".xr-wrap {\n",
- " display: block;\n",
+ " display: block !important;\n",
" min-width: 300px;\n",
" max-width: 700px;\n",
"}\n",
@@ -1604,20 +1687,26 @@
" stroke: currentColor;\n",
" fill: currentColor;\n",
"}\n",
- "<xarray.DataArray 'accept' (chain: 2, accept_dim_0: 2)>\n",
- "array([[ 3.75 , 269.57489704],\n",
- " [ 3.75 , 147.77852694]])\n",
+ "<xarray.DataArray 'accept' (chain: 4, accept_dim_0: 2)>\n",
+ "array([[ 3.75 , 573.3089824 ],\n",
+ " [ 3.75 , 184.17692429],\n",
+ " [ 3.75 , 194.61242919],\n",
+ " [ 3.75 , 88.51883672]])\n",
"Coordinates:\n",
- " * chain (chain) int64 0 1\n",
- " * accept_dim_0 (accept_dim_0) int64 0 1
"
+ " * chain (chain) int64 0 1 2 3\n",
+ " * accept_dim_0 (accept_dim_0) int64 0 1
3.75 573.3 3.75 184.2 3.75 194.6 3.75 88.52
array([[ 3.75 , 573.3089824 ],\n",
+ " [ 3.75 , 184.17692429],\n",
+ " [ 3.75 , 194.61242919],\n",
+ " [ 3.75 , 88.51883672]])
"
],
"text/plain": [
- "\n",
- "array([[ 3.75 , 269.57489704],\n",
- " [ 3.75 , 147.77852694]])\n",
+ "\n",
+ "array([[ 3.75 , 573.3089824 ],\n",
+ " [ 3.75 , 184.17692429],\n",
+ " [ 3.75 , 194.61242919],\n",
+ " [ 3.75 , 88.51883672]])\n",
"Coordinates:\n",
- " * chain (chain) int64 0 1\n",
+ " * chain (chain) int64 0 1 2 3\n",
" * accept_dim_0 (accept_dim_0) int64 0 1"
]
},
@@ -1628,7 +1717,7 @@
],
"source": [
"# Range of accept values\n",
- "trace.sample_stats[\"accept\"].max(\"draw\") - trace.sample_stats[\"accept\"].min(\"draw\")"
+ "idata.sample_stats[\"accept\"].max(\"draw\") - idata.sample_stats[\"accept\"].min(\"draw\")"
]
},
{
@@ -1638,7 +1727,7 @@
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABoMAAAIwCAYAAABN6RLXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABzDklEQVR4nO3deXxcd3kv/s/RZlmyvMZxEmeFxGFJQhIghDVAWAoFLkuhtKzlRyml9HajFCjQ0lugvS30UmjZLpASoIXAZS1bA2UJJAGSsCSQfbcdZ/FueZGl8/vjzEhy7CReJI90zvv9es3rjGZGM1/raKw585nneYqyLMsAAAAAAABQS12dXgAAAAAAAADTRxgEAAAAAABQY8IgAAAAAACAGhMGAQAAAAAA1JgwCAAAAAAAoMaEQQAAAAAAADUmDAIAAAAAAKgxYRAAAAAAAECNCYMAAAAAAABqTBgEAAAAAABQY8IgABrlxBNPzIknntjpZQAAABx0jocAmksYBAAAAAAAUGPCIAAAAAAAgBoryrIsO70IAA6On//85/n617+eH/3oR1m9enU2bNiQ+fPn55RTTslLX/rSPOpRj9rj991www35t3/7t1x44YW57bbb0t3dncMOOyxnnHFGfvu3fzsrVqzY5fYbNmzIueeem29/+9u56aabMjIykqVLl+akk07Kc5/73Jx11lm73H7nzp35/Oc/ny996Uu56qqrMjw8nEMPPTSPfexj8+pXvzqHH374Lre/+OKL89KXvjRnnHFGPvShD+X9739/vva1r+W2227LggUL8rjHPS5/9Ed/lGXLlo1/z3vf+968733vu8efzbe+9a0ceeSR+/ojBQAAZgnHQ46HAJpMGATQIC9/+ctz8cUX5/jjj8/hhx+euXPn5pZbbskVV1yRJHnTm96Ul73sZbt8z5e//OW86U1vyo4dO3LEEUfk5JNPztjYWG655ZZcddVV+YM/+IP84R/+4fjtr7zyyrzqVa/KmjVrMjQ0lNNPPz2Dg4NZvXp1fvWrX+WUU07JueeeO377zZs35/d///fzox/9KAMDAznppJOyaNGiXH311bnhhhuycOHCfOxjH8uDHvSg8e9pH/ycdtppKcsyV111Vc4444zMnTs3l1xySe64444sXbo0n/jEJ3LssccmSc4///ycf/75+fznP58kec5znrPLv/P1r399Fi9ePKU/bwAAYOZwPOR4CKDJhEEADfLd7343D3zgA3PooYfucvlll12WV77yldm+fXu+9a1vjX+C7PLLL88LX/jC7Ny5M3/5l3+ZF73oRenqmugwunLlyqxbty4nnXRSkmR4eDhPf/rTs3r16jz72c/OW9/61gwODo7fftOmTfnFL36xyyfu/uzP/ixf+cpX8oQnPCFvf/vbs2TJkvHrzjnnnLzzne/Msccem69+9avp7u5OMnHwkyTHHHNMzjnnnBxxxBFJku3bt+fP//zP841vfCOnnnpqPv3pT+/yb20PS73qqqsO7IcJAADMKo6HHA8BNJmZQQANctZZZ+124JMkp512Wl70ohdlZGQk559//vjl73//+zMyMpIXv/jFeclLXrLLgU+SLF++fPzAJ0nOO++8rF69Og984APzjne8Y5cDnyQZGhra5cDnuuuuy3/+53/m0EMPzT/+4z/ucuCTVJ/cO+uss3LjjTfme9/73h7/Ta9//evHD3ySZM6cOfmrv/qrzJ07Nz/96U9z6aWX7sVPBgAAqDvHQwA0WU+nFwDAwbVu3bp897vfzdVXX52NGzdm586dSZIbb7wxSdUPO0lGR0fzwx/+MEnyghe8YK/u+/vf/36S5Dd+4zfGP7V2b7773e+mLMs87nGPy7x58/Z4mzPOOCPf/e53c9lll+UJT3jCLtfNnz8/Z5999m7fs2TJkjz2sY/NN7/5zfzoRz/K6aefvlfrBwAA6s3xEABNJQwCaJDPfOYzeec735nh4eF7vM2WLVuSJOvXrx+/3XHHHbdX979q1aokyf3ud7+9uv0tt9ySJPnsZz+bz372s/d627Vr1+522fLly1MUxR5v3x5+etttt+3VWgAAgHpzPARAkwmDABri8ssvz1vf+tZ0d3fnda97XZ74xCeOD00tiiKf/vSn89a3vjUHc5Tc2NhYkuSBD3xgHvCAB9zrbR/ykIfs12MYjQcAADgeAqDphEEADfH1r389ZVnmxS9+cX73d393t+vbbRHaFi5cmLlz52br1q254YYbsmLFivt8jMMPPzzXXXddrr/++l16Yd/b7ZPk9NNPz1vf+ta9+4dMsnLlyvu87rDDDtvn+wUAAOrF8RAATdd13zcBoA42bNiQJLsMF23bvn17vvnNb+5yWXd39/gBzGc+85m9eozHPvaxSZLPfe5zGR0dvc/bP+5xj0uSfPvb38727dv36jEm27hxY7797W/vdvnatWvH+3WfccYZu1zX29ubJOO9wQEAgPpzPFRxPATQXMIggIa4//3vnyT5whe+kM2bN49fvn379vz1X/91br311t2+59WvfnV6enryyU9+Mp/85Cd3azGwcuXKXH755eNfP//5z89hhx2WX/7yl3nzm9+8Wy/uzZs3jw9hTZIHPehBeepTn5rVq1fnta997R7XMDw8nC996Uu588479/jv+vu///td+mDv2LEjb3vb2zI8PJxTTjklD33oQ3e5/bJly5Ik11577R7vDwAAqB/HQxXHQwDNVZSahwI0wsaNG/PsZz87K1euzMKFC/Owhz0s3d3d+clPfpJt27blec97Xj7+8Y/nOc95Tv7u7/5u/Pu+8IUv5M1vfnNGRkayfPnynHTSSSnLMrfcckuuvPLK/MEf/EH+8A//cPz2v/zlL/OqV70qd9xxR+bPn5/TTz89AwMDWb16dX71q1/llFNOybnnnjt++82bN+e1r31tLrzwwvT29uYBD3hAjjzyyJRlmZUrV+bKK6/MyMhIvvrVr44fwF188cV56UtfmtNOOy1jY2O5+uqrc+aZZ6a/vz+XXHJJbr/99ixZsiSf+MQndhve+vd///f56Ec/mkWLFuXMM8/M4OBgkuR1r3tdFi1aNJ27AAAA6BDHQxXHQwDNJQwCaJC1a9fmve99by644ILcdtttWbhwYc4888y89rWvzSWXXJI3vvGNux38JNWnxj72sY/loosuyu233545c+Zk2bJlOfPMM/Nbv/VbOf7443d7nI9//OP51re+lVtvvTVjY2NZunRpTj755Dz3uc8db5/QNjY2lq9+9av50pe+lCuuuCIbNmzI4OBgDj300Jx00kk5++yzc9ZZZ423NGgf/Jxxxhn54Ac/mPe97335xje+kTVr1mTBggV53OMel//5P//neA/uybZv355//ud/zn/9139l1apVGRkZSZJ861vfypFHHjmVP24AAGAGcTzkeAigyYRBAMw6kw9+Jn+qDgAAoO4cDwGwP8wMAgAAAAAAqDFhEAAAAAAAQI0JgwAAAAAAAGrMzCAAAAAAAIAaUxkEAAAAAABQY8IgAAAAAACAGuvp9AIAaI6vfe1r+dSnPpUrr7wyIyMjOfroo/PMZz4zL3/5y9Pb29vp5QEAAEy566+/Pj/4wQ9yxRVX5Iorrsh1112X0dHR/NEf/VFe85rXdHp5ADSEMAiAg+Ltb397Pv7xj6enpydnnnlmBgYGctFFF+Uf//Ef89///d/56Ec/mv7+/k4vEwAAYEr9+7//ez7+8Y93ehkANJwwCIBpd/755+fjH/94BgYG8olPfCIPfvCDkyRr167Ny172slxyySV5z3vek7/4i7/o8EoBAACm1ooVK/KKV7wiD3rQg/KgBz0oH/zgB/PFL36x08sCoGGEQQBMuw984ANJkle96lXjQVCSLF68OH/1V3+VF73oRfnEJz6R17zmNRkaGurUMgEAAKbc85///F2+7uoywhuAg89fHwCm1Zo1a/KLX/wiSfKMZzxjt+sf9rCH5fDDD8+OHTvy3e9+92AvDwAAAABqTxgEwLT65S9/mSRZuHBhjjrqqD3e5qSTTtrltgAAAADA1BEGATCtbr311iTJ4Ycffo+3Oeyww3a5LQAAAAAwdYRBAEyrLVu2JEnmzp17j7cZHBzc5bYAAAAAwNQRBgEAAAAAANSYMAiAadWu+tm6des93qZdEdS+LQAAAAAwdYRBAEyr5cuXJ0lWr159j7e57bbbdrktAAAAADB1hEEATKsHPehBSZL169fnlltu2eNtLr/88iTJgx/84IO2LgAAAABoCmEQANPqsMMOy8knn5wk+cpXvrLb9T/5yU+yevXq9PX15ayzzjrYywMAAACA2hMGATDtXv3qVydJPvShD+WKK64Yv3zdunV529veliR58YtfnKGhoY6sDwAAAADqrCjLsuz0IgCov7/927/Nueeem97e3px55pkZGBjIhRdemI0bN+b000/Pxz72sfT393d6mQAAAFPqiiuuGP8QXJLcfPPNWbduXQ477LAsW7Zs/PL3ve99OfTQQzuxRAAaoKfTCwCgGd785jfn9NNPz6c+9alcdtll2blzZ44++uj87u/+bl7+8penr6+v00sEAACYcps3b87Pfvaz3S6/7bbbctttt41/vWPHjoO5LAAaRmUQAAAAAABAjZkZBAAAAAAAUGPCIAAAAAAAgBoTBgEAAAAAANSYMAgAAAAAAKDGevb2huvWrZvOdTTSggULsmHDhk4vg9gXM4l9MTPYDzOHfTEz2A8zh30xM8y0/bBo0aJpf4yZdjw00/YB3BO/q8wGfk+ZLfyuMhv4Pe2MvTkmUhnUQV1dfvwzhX0xc9gXM4P9MHPYFzOD/TBz2Bczg/3QefYBs4XfVWYDv6fMFn5XmQ38ns5c9gwAAAAAAECNCYMAAAAAAABqTBgEAAAAAABQY8IgAAAAAACAGhMGAQAAAAAA1JgwCAAAAAAAoMaEQQAAAAAAADUmDAIAAAAAAKgxYRAAAAAAAECNCYMAAAAAAABqTBgEAAAAAABQY8IgAAAAAACAGhMGAQAAAAAA1JgwCAAAAAAAoMaEQQAAAAAAADUmDAIAAAAAAKgxYRAAAAAAAECNzdowqCzLlGXZ6WUAAAAcdI6HAACAfTErw6CxsbE89/llfvslDoAAAIBmKcsyz/gf6/Pc55fZsWOs08sBAABmgVkZBq1aldxxZ3LLrcnwsDAIAABojm3bkhtvGssddyaf+WynVwMAAMwGszIMWrBg4vwdd3RuHQAAAJ30iU8lGzf6gBwAAHDvZmUY1NNTjJ+/6ZYOLgQAAKCDNm9O/v0zwiAAAODezcowaLJbhEEAAECD/fSnnV4BAAAw0836MOimmzu9AgAAgM659tpkdFR1EAAAcM9mfRikMggAAGiqvr5k67Zk5apOrwQAAJjJZn0YdLPKIAAAoKGOO67aXnNtZ9cBAADMbLM+DNq4KVm/XksEAACgeY6/X7W99lrHRAAAwD2b9WFQYm4QAADQTPe/f7VVGQQAANybWoRBq/THBgAAGuj+rcqga67p7DoAAICZrRZh0OYtnV4BAADAwXfccUlRJHet1T4bAAC4Z7UIg7YIgwAAgAaa219kyZLq/G1rOrsWAABg5qpFGDQ87BNwAABAMy07tNquub2z6wAAAGauWoRBKoMAAICmWras2q5RGQQAANyDWoRBZgYBAABNNVEZpGMCAACwZ7UIg4aHO70CAACAzjj00CKJyiAAAOCe1SIM0iYOAABoKjODAACA+1KPMEhlEAAA0FDtmUG3qwwCAADuQT3CoM2dXgEAAEBntCuD7lqb7NhhbhAAALC7eoRBKoMAAICGWrAgmTOnOn/HnZ1dCwAAMDPVIgwa3pKUpU/AAQAAzVMUxcTcIK3iAACAPahFGDQ6lmzf3ulVAAAAdEZ7btCa2zu7DgAAYGaa9WFQUVTbzVs6uw4AAIBOURkEAADcm1kfBg0MVNthYRAAANBQhxxSbe9aq302AACwu1kfBg0OVtstw51dBwAAQKcsWli1TFi3rsMLAQAAZqRZHwYNzK22W1QGAQAADbVocbUVBgEAAHsy68Og8cogYRAAANBQixZWW2EQAACwJ7M+DJqrMggAAGi4RYuq7br1HV0GAAAwQ836MGiemUEAAEDDLW6FQZs2JSMjZWcXAwAAzDizPgyaO1BtVQYBAABNNW9e0t1dnV+/vqNLAQAAZqBZHwYNjodBPv0GAAA0U1dXkYULq/NaxQEAAHc368OggXYYpE0cAADQYO1WcWvXdnYdAADAzDPrw6DB9swgbeIAAIAGW9QKg1QGAQAAdzfrw6B2ZdCwyiAAAKDBFi2stuvWdXQZAADADDTrw6CJmUGdXQcAAEAnjVcGrTNPFQAA2NWsD4PmmhkEAACQRYuKJNrEAQAAu5v1YdCcvmq7fXtn1wEAANBJ2sQBAAD3ZPaHQXOq7fZtnV0HAABAJy1aXG2FQQAAwN3N+jCorx0G7ejsOgAAADpJZRAAAHBPZn0Y1K9NHAAAQBYtqrbr1idlWXZ0LQAAwMwy68Og8TZx2x3wAAAAzbVgfrXduTPZurWzawEAAGaW2oRBSbJDqzgAAKCh+vuL9LU6J2zc2Nm1AAAAM8usD4PaBzuJVnEAAECzzW9VB20QBgEAAJPM+jCop6dId3d1XhgEAAA0WbtVnMogAABgslkfBiUTreK2CYMAAIAGGxqqtsIgAABgslqEQf2tMEhlEAAA0GTtNnEbN3V2HQAAwMxSizBojjAIAABgvE3chg2dXQcAADCzCIMAAABqYqgVBm3aVHZ2IQAAwIxSizCoTxgEAACQBfOLJMkGM4MAAIBJahEGmRkEAACQzB+qthuFQQAAwCS1CIPabeK2CYMAAIAGm7+g2gqDAACAyWoVBqkMAgAAmkxlEAAAsCfCIAAAgJpYML/aCoMAAIDJhEEAAAA1Mb8dBm1KxsbKzi4GAACYMWoWBjnYAQAAmmuo1SZubCzZsqWzawEAAGaOWoRB/SqDAAAAMmdOkf7+6vzGTZ1dCwAAMHPUIgzSJg4AAKAy39wgAADgbmoSBhVJkm3CIAAAoOHmt1rFCYMAAIC2moRB1VZlEAAA0HTjlUHaxAEAAC21CoN2CIMAAICGGw+DNnR2HQAAwMxRqzBImzgAAKDphuZV202bO7sOAABg5qhFGNSvTRwAAECSZKg1M2jz5rKzCwEAAGaMWoRBZgYBAABU5s0rkqgMAgAAJgiDAAAAamReq03cZmEQAADQIgwCAACokYk2cZ1dBwAAMHMIgwAAAGqkXRm0aVNn1wEAAMwctQqDtgmDAACAhhtqh0EqgwAAgJZahEH9KoMAAACSmBkEAADsrhZhULsyaHQ02bmz7OxiAAAAOmhoUhg0Nub4CAAAqFkYlCQ7dnRuHQAAAJ3Wrgwqy2R4uLNrAQAAZoZahEF9fRPnt23r3DoAAAA6bc6cIn291Xmt4gAAgKQmYVBRFOPVQeYGAQAATTc0VG03bersOgAAgJmhFmFQMtEqbrs2cQAAQMO1W8VtUhkEAACkTmFQq1WcNnEAAEDTtcMgbeIAAICkTmFQf7XVJg4AAGi68TZxwiAAACB1CoNalUE7tIkDAAAaTmUQAAAwWW3CoD5hEAAAQJLJYVDZ2YUAAAAzQu3CoJGRzq4DAACg04ZaYdCmTZ1dBwAAMDPUJgzq7a22KoMAAICmGxoqkpgZBAAAVGoTBmkTBwAAUDEzCAAAmKw+YVC7MkibOAAAoOHmaRMHAABMUp8wSGUQAABAkomZQSqDAACApEZhUG8rDBpRGQQAADScNnEAAMBktQmDJiqDys4uBAAAoMMGB6vt5i2dXQcAADAz1CcMas8M0iYOAABouHmtMGh4OBkd9YE5AABouvqEQWYGAQAAJJmoDEqSrVs7tw4AAGBmqE0Y1NtbJDEzCAAAYM6cIr2t7glaxQEAALUJg1QGAQAATBgcqLZbhEEAANB49QuDVAYBAACMt4rbvLmz6wAAADqvPmFQqwWCyiAAAIBkcF61VRkEAADUJwzSJg4AAGDcvHZlkDAIAAAarzZhUG8rDBrRJg4AAGC8TdywMAgAABqvNmGQyiAAAIAJKoMAAIC2+oRBZgYBAACMa1cGbdlSdnYhAABAx9UnDFIZBAAAMG5QZRAAANBSmzCot1UZZGYQAABAMjhYJEm2bO7wQgAAgI6rTRikMggAAGDCvHnVVmUQAABQnzCoPTNIZRAAAMB4m7jh4c6uAwAA6Lz6hEEqgwAAAMbNa88M0iYOAAAar3ZhkJlBAAAAE5VBW7SJAwCAxqtNGNQ7KQwaGys7uxgAAIAOa4dBZgYBAAC1CYPm9E2cVx0EAAA0XbtN3PCWpCx9YA4AAJqsNmFQb+/EeXODAACApmtXBo2OJVu3dnYtAABAZ9UmDOrpSYqiOi8MAgAAmm7u3KS7dcRnbhAAADRbbcKgoijGq4O0iQMAAJquKIoMtKqDtgx3di0AAEBn1SYMSpK+1twglUEAAAATc4M2b+7sOgAAgM6qVxjUqgzaoTIIAABgojJImzgAAGi0eoVBKoMAAADGjVcGCYMAAKDRahUG9bbCIDODAAAAkkGVQQAAQGoWBqkMAgAAmGBmEAAAkAiDAAAAamtwXrUdHi47uxAAAKCj6hUG9VZbYRAAAICZQQAAQKVeYZDKIAAAgHEDA0WSZIs2cQAA0Gi1CoN6W5VBIyOdXQcAAMBMMK/VJk5lEAAANFutwqB2ZdB2lUEAAAAZbLWJ2yIMAgCARqtXGKQyCAAAYJyZQQAAQFK3MMjMIAAAgHHtyqBhYRAAADRarcKg3lYYNDJSdnYhAAAAM4CZQQAAQFKzMMjMIAAAgAmDA9XWzCAAAGi2eoVB7ZlBwiAAAIDxNnEjI8n27TooAABAU9UrDOorkpgZBAAAkCQDAxPnVQcBAEBz1SoM6m1XBo10dh0AAAAzQXd3MR4ImRsEAADNVaswyMwgAACAXc1rtYobFgYBAEBj1TIM0iYOAACg0p4bpDIIAACaq15hkDZxAAAAu2iHQWYGAQBAc9UqDOptVQYJgwAAACoqgwAAgFqFQe3KIG3iAAAAKu2ZQVs2d3YdAABA59QqDOrVJg4AAGAXg/OqrcogAABoLmEQAABAjY1XBg2XnV0IAADQMbUKg/paM4N2CIMAAACSJIODRRJt4gAAoMlqFQaNVwaZGQQAAJBkojJImzgAAGiueoZBKoMAAACSJAPtNnHCIAAAaKxahUF9rTBImzgAAICKyiAAAKBWYVBva2aQyiAAAIDKYCsMGhYGAQBAY9UqDOozMwgAAGAX8+ZVW5VBAADQXLUKg9ozg0bHktHRsrOLAQAAmAEGB6qtmUEAANBctQyDEq3iAAAAkok2cdu2JTt3+tAcAAA0Ua3CoL6+ifM7hEEAAADjYVCSDA93bh0AAEDn1CoM6u5OiqI6b24QAABA0ttbjH9wztwgAABoplqFQUVRjLeK0yYOAACgMq9VHWRuEAAANFOtwqAk6WuFQdrEAQAAVAbnVVthEAAANFPtwqDeVvsDlUEAAACVwYFqq00cAAA0U/3CoHabODODAAAAkiSDrTZxw8IgAABopNqFQdrEAQAA7Gpeq02cyiAAAGim2oVB45VBwiAAAIAkE23izAwCAIBmql8Y1JoZpDIIAACg0m4Tt2VL2dmFAAAAHVG7MKjPzCAAAIBdaBMHAADNVrswSJs4AACAXQ0MFEm0iQMAgKaqbRikTRwAAEBlXrtN3ObOrgMAAOiM2oVBfe2ZQdrEAQAAJEkGW23itgx3dh0AAEBn1C4M0iYOAABgV4MD1dbMIAAAaKbahUF97TZxKoMAAACSJIPaxAEAQKPVLgxSGQQAALCredrEAQBAo9UvDGrNDBoZKTu7EAAAgBmi3SZueEtSlo6VAACgaWoXBo23iVMZBAAAkGSiTdzoWLJ1a2fXAgAAHHy1C4PG28SZGQQAAJAkmTs36Wod/Q1rFQcAAI1T3zBIZRAAAECSpCiKDLRaxW3e0tm1AAAAB1/twqC+viKJNnEAAACTzWu1itu8ubPrAAAADr7ahUEqgwAAAHY3OK/aahMHAADNU98wyMwgAACAceOVQdrEAQBA4/R0egFTra8VBmkTx9664cYyX/3a1oyOlnn8WcnQUNHpJQEAwJQbbM0M2qJNHAAANE7twqDevmqrTRx76/VvKLP6tqpXxo03J3/4GmEQAAD1024Tt0WbOAAAaJz6tokTBrEXhofLrL5t4uvrr+/cWgAAYDoNttrEbdlSdnYhAADAQVe7MGi8TZyZQeyFVat3/Xr16j3fDgAAZrt2m7jN2sQBAEDj1C4MUhnEvmiHP4sXVa3hbluTjI76pCQAAPUzb171mlebOAAAaJ7ahUF9ZgaxD9ph0Omn9aa7O9m5M7nzrs6uCQAApsNEm7jOrgMAADj4ahcGtSuDdgiD2AurbquqgI46uivLllWXaRUHAEAdaRMHAADNVdswaMTMIPZCO/g5cnl3Dj9s18sAAKBOBudV22Ft4gAAoHFqFwb1mRnEPmgHP8uXd+WIw6vzq1abGQQAQP3Ma7WJ26xNHAAANE7twqDe1swgbeK4L2VZ7loZdHg1UHf1bR1cFAAATJN2m7gt2sQBAEDj1C4M6muFQSqDuC/rNyRbt1Xnjzi8K4e3KoO0iQMAoI7abeK2aBMHAACNU78waFKbuLLU7ot71g59DjkkmTOnMDMIAIBaa7eJ27492bnTsRIAADRJ7cKg3t6J86qDuDftdnDtEKg9M+iOO5OREQfHAADUy8DAxPnNWsUBAECjCINorPXrq+2SxdV24cKkKJKyTDZu7NSqAABgevT0FOnvr85v2dLZtQAAAAdXrcOgHcIg7sWmTdV2aH617eoqMjRUnd+4qTNrAgCA6TTYahVnbhAAADRL7cKgrq4iPT3V+ZEdnV0LM9umTVUruPlDE5cNzWtf14EFAQDANBtstYrTJg4AAJqldmFQMlEdpE0c96bdCm5oqBi/bH6rSkhlEAAAdTTY+vCTNnEAANAstQyD+lphkDZx3Jt24NMOgJKMt4nbZGYQAAA1NE+bOAAAaKRahkG9fdVWZRD3Znxm0LyJy8bDIJVBAADUULtN3BZt4gAAoFHqGQa1K4PMDOJe7KkyaKJNXHnwFwQAANOs3SZuszZxAADQKLUMg/rMDGIvjFcGDU1c1q4SUhkEAEAdTbSJ8+EnAABoklqGQb3CIPZCey7Q/Elh0Pz5RZKJqiEAAKiTAW3iAACgkeoZBrVmBu0QBnEPtm8vx38/JreJMzMIAIA6G5pXffhpszAIAAAapZZh0HibODODuAcbW1VB3V3J3LkTl7erhNrXAwBAncwzMwgAABqplmGQNnHcl3YbuKH5SVEU45e3K4O0iQMAoI7GwyCVQQAA0Ci1DIPalUHaxHFP2m3ghoZ2vbxdGbRZGAQAQA0JgwAAoJlqGQa1ZwapDOKetNvAzb9bGDR5ZlBZlgd3UQAAMM2GhEEAANBI9QyDzAziPmxqHfzOn7/r5e2vR8eS4eGDuyYAAJhu7cqgTcIgAABolFqGQdrEcV/alUHtT0a2zZlTjP/+tG8DAAB10a6E37Ej2b5dJTwAADRFLcOg8cogYRD3YOOm6sD37pVBSTI0v32bg7ggAAA4CAYGkqKozmsVBwAAzVHPMKg1M2jHiE+6sWebWkHP0NDu180f2vU2AABQF11dRQYHq/PCIAAAaI5ahkF9ZgZxHza128QNFbtd1w6IVAYBAFBHQ+YGAQBA49QyDNImjvvSPvDdU5u49mUqgwAAqKN5rTBIZRAAADRHTcOgqtpjhzCIe7CxXRk0b/fr2pe1bwMAAHUiDAIAgOapZRjU15oZpDKIe7JluNrO20MYNNi6bHjYzCkAAOqn3RZZmzgAAGiOWoZBvWYGcR+GW2HQwNzdr2tf1r4NAADUicogAABonlqHQdrEcU+Gt1TbgYHdrxsYqNoMbhEGAQBQQ+22yJs2q4QHAICmqGUY1NeuDBIGsQdjY2W2bqvO7zkMqrYqgwAAqKN586oPP6kMAgCA5qhlGNRrZhD3YuvWifPCIAAAmkabOAAAaJ5ahkHtyqAdZgaxB+2Qp7sr6evb/XozgwAAqDNhEAAANE8tw6BeYRD3oh3yzB1IiqLY7frxyqCtu10FAACz3tBQtd0kDAIAgMaodRikTRx70g559tQibvLlKoMAAKijoVZl0KZNnV0HAABw8NQyDGq3/tohDGIP2iHPPYVBg8IgAABqTJs4AABonlqGQSqDuDfjYdDcPV/fDom2DidlWR6cRQEAwEEyOQzyehcAAJqh3mGQmUHswX1VBrUvHx0zdwoAgPppt4nbuTPZvr2zawEAAA6OWoZBfa0wSJs49uS+ZgbNnVQxpFUcAAB1M3du0t06EtQqDgAAmqGWYVBva2aQNnHsyX1VBnV1FZnbv+ttAQCgLoqiGG8Vt0kYBAAAjVDLMKjPzCDuxfBw1Rf9nmYGJRNBkTAIAIA6mjw3CAAAqL9ahkHtmUFjY8nOnQaisqt2wDM4eM+3mdsOg7ZO/3oAAOBgG68M2tTZdQAAAAdHrcOgRHUQu9sy3iauuMfbtCuDtmw5CAsCAICDTGUQAAA0Sy3DoL6+ifPCIO5ufGbQvbWJm7vrbQEAoE6GzAwCAIBGqWUY1N2dFK2ijx3CIO5mPAwauOfbDGgTBwBAjakMAgCAZqllGFQUxXiruJEdnV0LM8/WVsCzV2GQyiAAAGpoaKjabt5sxioAADRBLcOgJOlrh0Eqg7ibvakMGhQGAQBQY/PmVa0UVAYBAEAz1DYM6m3NDdImjrtrBzxz721m0HgY5JOSAADUT7tN3KZNnV0HAABwcNQ3DFIZxD3Yu5lB1SclzQwCAKCOhtphkMogAABohNqGQe02cTvMDOJuhs0MAgCg4dqVQdrEAQBAM9Q2DFIZxJ6MjJTjvxP3Gga1WsgJgwAAqCNhEAAANEt9w6DWzCBhEJNNDncG9mpm0PSuBwAAOmFoqNoKgwAAoBlqGwaNt4kTBjFJO9zp60t6eop7vN14GGRmEAAANTQ0qTKoLMvOLgYAAJh29Q2D2pVBZgYxyd7MC5p8vcogAADqqN0mbnQs2eoDUAAAUHu1DYPMDGJP2uHOfYZBrRZyW4VBAADU0Jw5SU9PdX6TVnEAAFB7tQ2DtIljT9ph0Nx7mReUqAwCAKDeiqIYrw4yNwgAAOqvtmFQb7tNnDCISbZtq7YD9xEG9fe3br9dD3UAAOpJGAQAAM1R3zCoXRlkZhCTbG2FQfdVGdS+viyT7dund00AANAJQ0PVVps4AACov9qGQX1mBrEH7eG47cqfezL5egN1AQCooyGVQQAA0Bi1DYN6x8MgLb6Y0A527qsyqKuryJw5re/ZNr1rAgCATtAmDgAAmqO+YVBrZtAOlUFMsnVrFQ7OvY/KoGQiMFIZBABAHQmDAACgOWobBo23iTMziEm2tap87qtNXDIRGAmDAACoo3abuI0bdVMAAIC6q20Y1NtbJEl2CIOYZG/bxE2+zTZt4gAAqKH586tjpo2bOrwQAABg2tU2DOprtYkb0SaOSdrzf+bOLe7ztv0qgwAAqLH5Q9V248bOrgMAAJh+tQ+DzAxism3jYdB933Z8ZpDKIAAAamj+gmorDAIAgPqrbxjUmhmkTRyTtat89mpmkDZxAADUmMogAABojvqGQe3KIGEQk4zPDNqLMEibOAAA6mz+/GprZhAAANSfMIhGGQ+D9qVNnDAIAIAaWtAKgzZtTMqy7OxiAACAaVX7MGjEzCAmabd826s2ceOVQQ6MAQCon6FWm7jRsWTLls6uBQAAmF61DYN6W2HQdpVBTLK1FQYN7EVlUDswMjMIAIA6mjOnyJw51Xmt4gAAoN5qGwbN0SaOPWi3fOvfqzZxRfU9wiAAAGqq3Spu44bOrgMAAJhetQ2DzAzi7sqyHK/yMTMIAACSoXYYpDIIAABqrfZh0IgwiJYdO5Kxser83L2YGaRNHAAAdTe/NTdo48bOrgMAAJhetQ2Denurrcog2iZX+PTvRRikMggAgLprt4nbIAwCAIBaq20YpE0cd9eu8OnrS7q7i/u8fbt6SBgEAEBdtdvEbdImDgAAaq22YdAcYRB3M9wKdfamRVwyURmkTRwAAHU10Sau7OxCAACAaVXbMKhdGTQ6luzc6cCGiVCnHfLcF5VBAADU3fz5VcW8NnEAAFBvtQ2D2jODkmRkpHPrYOZohzr9exkGtW+3VWUQAAA11Z4ZtEkYBAAAtdaIMEirOJKJUEebOAAAqLRnBm00MwgAAGqttmFQT0+R7u7qvDCIZKIyaF/bxI2MaDUIAEA9tWcGaRMHAAD1VtswKJmYG7RDmziSbGu3idvHyqDE3CAAAOpJmzgAAGiGeodBrVZxKoNIJrWJ28vKoN7eieoyYRAAAHU0f1KbuLEx1fAAAFBX9Q6D2pVBwiAyqU3cXlYGTb6tuUEAANTRggXVdmws2by5s2sBAACmjzCIxti2rfqk495WBk2+7VZhEAAANdTbW2RwsDq/fn1HlwIAAEyjRoRBI2YGkYnKoP59CIPat9UmDgCAulrYqg5av6Gz6wAAAKZPrcOg3lYYtF1lEJk0M6i/2OvvabeJUxkEAEBdtVvFqQwCAID6qnUYNEebOCbZ1p4ZtD9t4lQGAQBQUwsXVtsNKoMAAKC2ah0GjbeJEwaRiUCnXe2zN/pbt90mDAIAoKa0iQMAgPqrdRjU21ttVQaRTGoTtz+VQdrEAQBQU+3KoPUbyo6uAwAAmD61DoP6tIljknZlUP8+VAaNzwxSGQQAQE0tWFDN1DQzCAAA6ksYRGNs24/KoP657e/1KUkAAOrJzCAAAKi/ZoRBI51dBzPDAbWJUxkEAEBNLWjNDBIGAQBAfdU7DDIziEn2r01c1TLDzCAAAOpqYSsM0iYOAADqq95h0HibOC2+SLa1wqC5+xIGtdvEqQwCAKCmxsMglUEAAFBbDQmDOrsOOm/nznK8XeA+zQxqBUfaxAEAUFftmUFbtybbt/sgHQAA1FHNw6CqxZeZQWyb1OZt39rEVVtt4gAAqKvBwaSnpzpvbhAAANRTrcOgXjODaGmHQd1dExVje2O8TZwwCACAmiqKIgu0igMAgFqrdRg0R5s4WoZbbd7651YHu3urHQZpEwcAQJ215wapDAIAgHqqdRhkZhBt7cqefWkRN/n22sQBAFBn7blB69Z3chUAAMB0aUQYNGJmUOO1K3valT57S2UQAABNMN4mbn1HlwEAAEyTWodBvSqDaBkPg/axMqh9+23CIAAAamzxomq7bl3Z2YUAAADTotZhkDZxtLXbxO1vZdC27cnYmANjAADqafHiaq7mXWs7vBAAAGBaNCIM2i4Marx2ZdD+zgwqy2T79qldEwAAzBQTlUGdXQcAADA9ah0GzWnPDBIGNd7W/awMmhwetauLAACgbha1wqC1KoMAAKCWah0G9fZWW23i2N82cV1dxXggNGxuEAAANbV4cbVVGQQAAPVU6zDIzCDatm6t5v3sa5u4yd+jMggAgLpqh0Fr1yVlaVYmAADUjTCIRmjPDBrYx8qgZKKaaKvKIAAAamrRwmq7c2eyaVNHlwIAAEyDZoRBI51dB53XDnL6+4t9/t65/bveBwAA1E1fX5F586rza7WKAwCA2ql3GGRmEC3tFm/axAEAwJ4tXlRt167t7DoAAICpV+8wqFUZNDqa7Nyp73WTbW0FOQfUJk4YBABAjY3PDRIGAQBA7TQiDEpUBzXdeJs4M4MAAGCPxsMgbeIAAKB2ah0GzZkzcX67MKjR2i3e5moTBwAAe9RuE7duna4KAABQN7UOg7q6ivS25gZt397ZtdBZw62qnrkqgwAAYI8WLSqSJHdpEwcAALVT6zAoSea0WsXtEAY12rZ2m7j9qAxqVxNt3eoTkgAA1NdEZVBn1wEAAEy9+odBrVZxKoOabbxN3AFUBmkTBwBAnY3PDFIZBAAAtVP7MKivHQaZGdRo423i9mtmUNUuQ5s4AADqbEkrDNImDgAA6qf2YZDKIMqyHK/q6T+QmUEqgwAAqLFDDqm2a9cmO3dqkQwAAHVS/zCoNTNIGNRcO3YkZetYduBAwiCVQQAA1NiiRUl3VzI2lqxf3+nVAAAAU6n+YZDKoMYbnhTitH8f9kV/q7WcmUEAANRZd3cxPjfojjs7uxYAAGBqNScMMjOosba1wqA5c6oD3H01oDIIAICGOGRptb3jjs6uAwAAmFrNCYNUBjVWO8SZ279/39+uDBIGAQBQd4csqbZ33tXZdQAAAFOr/mGQmUGNt7XV3q1/P8OgudrEAQDQEEsPqbZ33Fl2diEAAMCUqn8YpDKo8dohzty5+/f97e/bKgwCAKDmli6t2irfqU0cAADUSu3DoL5WGLRjh0+2NVW7vVv/foZB/WYGAQDQENrEAQBAPdU+DFIZRLuiZ39nBrW/b+fOZGREqAgAQH0dMt4mrrPrAAAAplb9wyAzgxqvXdFzoG3iEq3iAACot6VLq602cQAAUC/1D4PmVD2vhUHNta3dJm4/K4N6e4t0d+96XwAAUEdLW5VBm7ckW7eqigcAgLpoQBhUbbfv6Ow66Jx2Nc/AflYGJRPVQdtUBgEAUGMDAxNtks0NAgCA+mhOGKQyqLHan2jc38qgZOKAeFhlEAAANVYURQ5ptYq7Q6s4AACojfqHQWYGNV67mqf/ACqD+lUGAQDQEIe2wqDbhUEAAFAb9Q+DVAY1XruaZ2Busd/30W4Tt1VlEAAANbdsWbW97bbOrgMAAJg69Q+DWu29zAxqrvHKoCloE7dVZRAAADV32LLqQ1S33VZ2eCUAAMBUqX8Y1GoTt0NlUGNta1XzzD2ANnHt792mMggAgJo7/LBqe9uazq4DAACYOvUPg7SJa7x2m7i5B1AZ1K4q0iYOAIC6G28TJwwCAIDaEAZRe9rEAQDA3jusVRl0+5pkbEyrOAAAqIPmhEFmBjVWOwyakjZx2xwMAwBQb4cuTbq6kh0jybp1nV4NAAAwFeofBrVmBqkMaq7hKZgZ1N/6Xm3iAACou56eIocsqc5rFQcAAPVQ/zBoUpu4slTV0URT0yauSKJNHAAAzTA+N+i2zq4DAACYGo0Jg5Jkh1ZxjbR1CiqD5qoMAgCgQdpzg1QGAQBAPTQqDDI3qHl27iwzMlKdn3sAlUHtqqJtwiAAABpgIgzSXQEAAOqg9mFQT0+R7ta/coe5QY2zbVJbtwOpDBpoVwZpEwcAQAMctqxqk6xNHAAA1EPtw6Ak6Zs0N4hmabd16+5Kenv3/37alUHaxAEA0ARHHF5tV63q7DoAAICp0YgwaI4wqLHalTz9c5OiKPb7ftpVRdtUBgEA0ABHLq+2q1Yno6NaxQEAwGzXqDBomzCocdqVPAfSIm7y9w+rDAIAoAEOPbSqrB8ZSW6/vdOrAQAADlQzwqC+aqsyqHnalTztNm/7q/39KoMAAGiC7u5ivFXcrSs7uxYAAODANSMM0iausdqVQQNTVBm0TWUQAAANceSR1faWWzu7DgAA4MA1Kwza0dl1cPC1w6ADrQya2/r+rduSsTE90wEAqL92GLRypde/AAAw2zUrDFIZ1DhT3SYu8XsEAEAzHLm8SKIyCAAA6qAZYVBrZtAOb+I3zvAUtYmbHAZt1SoOAIAGOHJ5tV1pZhAAAMx6jQiD+lQGNdZ4ZdABhkFdXcV4ILR124HdFwAAzAZHtdrErVqdjI5qFQcAALNZI8IgM4Oaa9u26qB17gGGQZPvY5swCACABli6NOntTUZGkjW3d3o1AADAgWhEGNTfCoO8id887TZxcw9wZlAy0SpOmzgAAJqgu7sYrw666abOrgUAADgwjQiDJio6tDZomm2t4Ka/vzjg+2rPHRIGAQDQFMcdW22vv6GjywAAAA5Qo8KgYW/iN86W4Wo7OHjg9zUwUG2Hhw/8vgAAYDY47rjqQ1U33OiDdQAAMJs1IgxqV4VoE9c87eBmYApnBgmDAABoiuOOq7YqgwAAYHZrSBhUbbepDGqc8TBo4MDvS2UQAABN024Td9NNyeio6iAAAJitGhEGjc96URnUOO3WgFMRBrVbzW0RBgEA0BDLj0j6epPt25PVqzu9GgAAYH81IgxqVwZtVRnUOMNbqu2UVAaNt4nziUgAAJqhu7vIMcdU52+4saNLAQAADkAzwqDWm/hmBjWPNnEAAHBg7mduEAAAzHqNCIPmtiuDhEGNM5Vt4gYGiiTaxAEA0CzHHVe9Dr7uehXyAAAwWzUjDGpXBmkT1yg7d5bj1WBTMjNIZRAAAA104opqe9VVnV0HAACw/5oRBpkZ1EiT9/egNnEAALBf2mHQylXJxk2qgwAAYDZqRBjUr01cI7VbxPX0JH19xQHfnzAIAIAmmj+/yBFHVOevvrqzawEAAPZPM8KgVpu40dFkZMQn2ZqiHdpMRYu4yfcjDAIAoGna1UFXahUHAACzUiPCoHabuER1UJNs2VJtp6JFXCIMAgCguR5wYlVpf9XVPlwHAACzUSPCoN7eIj091Xlzg5qjva+nujJoizAIAICGecCJ1VZlEAAAzE6NCIOSiblB24RBjTHVbeLaFUZbtyZl6RORAAA0x4oTqu3q1cm69V4LAwDAbNOYMKjdKk6buOZot4mbO3dq7q8dKpWlCjMAoLnKsvTBmAYaGipyv+Oq8z//RWfXAgAA7LvmhEGtQGCbMKgxhluBzeDg1Nxff3/S1bXrfQMANMmtt47lWc8t84Lf2iAQaqBTTqm2P/uZfQ8AALNNY8Kg/lYYpKKjOaa6TVxRFBlo/R4Nb5ma+wQAmE0++m/JunXJL3816kNWDXTqKUWS5Gc/7/BCAACAfdaYMEibuOYZHq4+sTgwRW3ikolgqR00AQA0RVmW+enPOr0KOukhrcqga65NtmxRHQQAALNJY8Kg/lYYtE1lUGNsaQU2U9UmLpkUBvk9AgAaZtWq5PbbO70KOmnp0iLLj0jGxpJfXN7p1QAAAPuiMWFQe2aQyqDmmGgTV0zZfbbDoC3axAEADXPJZZ1eATPBQx5SbS/9qcogAACYTZoTBrXbxKnoaIzxMEibOACAA3bJJd78J3n4w6oPWl18cYcXAgAA7JPGhEH9rUBg2zYHsU0xURk0dfepTRwA0ERlWebSn3Z6FcwEZzws6epKrrs+uf12x1YAADBbNCYMGq8M0iauMcbDoGmYGaRNHADQJHfdlaxblxRT132XWWrBgiIPfEB1/qIfdXYtAADA3mtOGDS3OnLdpqKjMaajTdzgeJs4n4IEAJrjhhur7fIjOroMZohHnlkdW114kdfEAAAwWzQmDOo3M6hxtmgTBwAwJa6/odoee2xHl8EMceYZ1fYnlyTbtwuEAABgNmhMGKRNXPNMz8yg6lOQw9rEAQANcsMN1Rv+xxzd4YUwI6xYkRx6aPVBO63iAABgdmhMGNTfahW2TRjUCGVZjleBDU5HZdDw1N0nAMBMpzKIybq6ijzh8dX5b/+3yiAAAJgNGhMGtSuDhEHNsHVrUraOS6eyMmhwsNpuVhkEADREWZbjM4OOPaajS2EGOfsJVcX8D3+YbNsmEAIAgJmuOWFQqzLIrJdm2LS52vb0TMyLmgrz5lXbLcIgAKAh1qypPmjT05MsP6LTq2GmeOADksOWVW24L7q406sBAADuS2PCoHYgsE0Y1AibW2HQvHlJURRTdr9DrTCoHTYBANRduyroqCOT3t6pe13F7FYURZ74hOr8t7+jMggAAGa6xoRB7TZxW4VBjTA5DJpK7fvbLAwCABrixpuqrXlB3N0TH99qFXdhsnWrQAgAAGayxoRBA61ZL9rENUO7cmdoGsOgsnTACwDU36rV1WueI5d3eCHMOCeemBxxRDWX9YcXdXo1AADAvWlMGDSvFQZt25bs3OlN/LprV+4MDU3t/bbDpZ07k+3bp/a+AQBmotWrq+0Rh2sRx66KosgTH1+d//Z/O8YCAICZrDFh0ODgxPktWzq3Dg6OTZuq7VS3iZs7N+nu2vUxAADqbNWqanv44Z1dBzPT2U+sQsIf/DBZt04gBAAAM1VjwqCeniJz5lTntwx3di1Mv+maGVQUxfh9bjI3CACoubGxMqtvq84fcURn18LMdMLxRR74wKpy/itf7fRqAACAe9KYMCiZaBW3xZv4tbd5c/WpxKkOgybf52a/RwBAzd11VzIyUlVGH7q006thpnr2s6rqoC99uczYmOogAACYiRoVBrVbxW3WJq722lU7Q/Omvre9MAgAaIpVrXlBhy6rKu1hT85+QvUaefVtyfnf7vRqAACAPWlkGGRmUP1NV5u4yfcpDAIA6q4dBh1hXhD3or+/yAtfUIWF7/2XMhs3qQ4CAICZRhhELU1nGDRkZhAA0BCrVlVv6guDuC+//cLk2GOSdeuS975PGAQAADNNo8KgedrENYbKIACAA7f6tmp7xBFaxHHv+vqKvP51Rbq6kq99I/nmfwmEAABgJmlUGDTYehNfZVD9TcwMmvr7ngiDHOACAPW2alW1Pfywzq6D2eGUk4u8/KVVcPgP7y5z8y1eLwMAwEzRqDBoojLIQUndbZ7GMGhoqNjlMQAA6mp8ZtARnV0Hs8fLXpKcdmqydWvyV28rs327Yy8AAJgJGhUGDQxU2y3exK+1sbFyvPprOtvEmRkEANTZ9u1l7ryzOn+4mUHspe7uIn/15iILFyTXXJu8+z1lylIgBAAAndaoMGjevKqiY8twhxfCtNq6NRkbq85PRxg0ZGYQANAAt7XmBc2dmyxc0Nm1MLscckiRt/xlNT/oP7+afPwTnV4RAADQqDBosNUmzsygemtX7PT1JnPmTP2w43nCIACgAVa1wqAjjkiKYupfU1FvjzijyB//z+r35sMfKfONb6oOAgCATmpUGDQ+M8ib+LW2aVO1nY6qoMn3234cAIA6WrWq2h5xWGfXwez13GcX+e0XVuff+b/L/OjHAiEAAOiURoVBKoOaoR32TXcYJFQEAOps9erqjfsjjujwQpjVXv2qIk98QrJzZ/KGN5W56GKBEAAAdEIzwyAzg2ptusOgyTODDMMFAOpq1epqe/jhWsSx/7q6irz5jUUe++hkx0jyxjeXufAir6EBAOBga1QY1G4Tt0VFR60drMqg0bFk69bpeQwAgE4bbxN3eGfXwezX11fkb/66yFmPS0ZagdB/fUsgBAAAB1OjwqDJlUFjYw4+6mpTKwwamqYwqL8/6e6uzmsVBwDUUVmWWX1bdf5wYRBToLe3yNveOtEy7m3/q8zH/q1UaQ8AAAdJo8KgdkVHWaroqLNNm6oDyqGh6bn/oigyf351fsPG6XkMAIBO2rhxYs7m4Yd1di3UR09Pkb96c5Hf+s3q6498rMzfvL3Mtm0CIQAAmG6NCoP6+iYqOtoHt9TPuvXVduHC6XuMBQuq7YYN0/cYAACdsro1L2jJkqS/38wgpk53d5E/+P2u/MXrinR3J/91fvL/varMNdcKhAAAYDo1KgwqimJ8btBmYVBtrV9fbRcunL43LhYu2PWxAADqZGUrDDIviOnyzGcU+ad/LLJkSXLTzcmrfr/MZ84rMzoqFAIAgOnQqDAoSQZbreJUBtVXu1qnXb0zHRaqDAIAamzVqmorDGI6nX5akX/7SJHHPDoZGUn++V/K/N5ryvzqSoEQAABMtcaFQSqD6m+8Mmg6w6CFrcfa4EAVAKif1bdVr3EOFwYxzRYuLPLOvy3yuj+tujhceVVVJfT3/zCW29Z4rQ0AAFOlcWHQYCsM2rK5s+tg+qxvVetM58yg9n235xMBANTJRGWQeUFMv6Io8uxnFfnUuUWe+pSkLJMv/2fywheV+cd/EgoBAMBU6On0Ag62+fOr7YaNnV0H02NsrMzGdhg0jZVBCxYUSUpt4gCAWlrdmhmkMoiDafHiIm95U5FnPaPMRz5W5tLLki98MfnSl8s85tFlnvvsIg89vQqPAPbHxk1lLrwwueTSMtden6xdm+wcSRYtWpcjl4/l5JOLPP4sH4YAoJ4aFwaZ9VJvmzcno2PV+WmdGbSw2rZb0gEA1MXoaJnb1lTnjziis2uhmR5ySpF//qcil15W5t/OLXPJpcn3vp987/tlDj88edITyzzp7CL3O04wBOydm24q85nPlvn6N5Pt23e/fv2GsdxwY/L9H5T51w8kD39YmZe9pMipD/F/DAD10bgwqB0QrF9fJvFHvW7a4czgYNLXN337d+H479G0PQQAQEfccUcyOpr09iaHLOn0amiy008rcvppRa6/ocznv1jm69+oqtbO/WRy7ifLHHtscvYTksc9NoIhYI9uW1Pmff9a5jvfnbjs2GOTxzwqedADiyxblvT2JDtHh3LpZZty4UVVVeKPf5L8+CdlHv+4Mv/ztUUOPdT/LwDMfo0LgxYu1N6rztrzgqazKihRYQYA1NeqVou4ZcuS7m5vftF59zuuyJ/9cZHX/F6ZH16YnP/tMhddnNx4Y/KRj5X5yMeqloaPe0yZxzy6yMknJT09fnehyXbsKPPp85JzPl5m+/akKKoA6AXPL3LqQ3YPjxct6s2KE4q88AVFVq0u88lPlfnKfybf+V5y6U/LvPH1yWMf4/8VAGa35oVB7YoOb+LXUrtSZzrnBSUTbeI2bKjmFHV1eVEIANTDqlXV9gjzgphh5s4tcvYTk7OfWGTTpjLfvyD57vfL/PgnVcXQp89LPn1emQXzk0c9ssxjH1PkjIcn/f1eq0OT/PgnZd79njK33FJ9fepDkj/5oyL3v9/e/V9wxOFF/vzPijz3OWXe8Xdlrro6eeObyzzvOWVe8+oic+b4PwWA2al5YdDCaisMqqf2fm3v5+nSrjwaHavmFM2fP72PBwBwsKxaXSYRBjGzDQ0VefrTkqc/rcjWrWV+9JPk+xdUlUMbNiZf+0bytW+U6etLznh4VTH06EclixZ6Exfq6vbby7z3X8v893eqrxcvSv7g94s85cn710by/vcr8oF/ST744TL/8Znkc59Prr6mzDv+1v8lAMxOjQuDFpj1Umvttm3TXRnU11dkYKDM8HAVQAmDAIC6aLeJO+IIb3QxO8ydW+SsxyZnPbbIzp1lfv6L5IIfVJVDq29LLvhB9XVXV3LSg6uKocc+OjnySL/jUAc7dpQ573PJOf9WZuu2pKsree5zklf+TpF58w7sed7bW+S1ryny0NPLvO1/lfnF5cnvvabMP7wzOeYY/4cAMLs0Lgya3N6rLEtDRmtm/frqk6zTXRnUfozh4SpYPPqo6X88AICDod0m7vDDOrsO2B89PUVOPy05/bQif/gHZa67Pvn+Bcn3f1Dm6quTn/8i+fkvyvzL+5Pjji3z2MdUc0BOXBGtn2GWKcsyF/wged+/llnZ+tt18knJn/5xkROOn9rn8yPPLPKBf03+/A1lVq1Kfu8Pyrzzb5PTTvX/BgCzR/PCoFbFyM6dyZYtybx5nV0PU2t8ZtBBKNleuKB6s0SVGQBQJytXVtsjj+zsOuBAFUWR4++fHH//5HdeVuS2NWV+8IPkexeU+enPkhturE4f/0SZpYckj350mcc9pshpp1bVAMDMVJZlLvtp8rF/q7ZJsmRx8upXFXnqU6Yv2D32mCIfen/yxr8sc/kVyZ/+eZk3v7GaYwYAs0HjwqA5c4rM7a9KhzdsEAbVTXtm0IJpbhOXTASLG8yfAgBqYuOmMhs2VueXH9HZtcBUO2xZkec9N3nec4ts3FTmoouqiqGLLk7uuDP5wheTL3yxzOBgcuYjyjz20UXOfEQOuM0UMDV27ixz4UXJp/6jateWJH29yW++IHnJi4oMDEz/c3XRwiLveXfyN28v893vJX/1N2VuvyN54Qv2by4RABxMjQuDkioo2LotWbc+Wb6806thKo1XBh2MMGhh6zGFQQBATaxqVQUtWZyD8qYadMr8oWqo/FOeXGT79jKX/jT5/gVV5dBda5NvfTv51rfL9PQkp59WzRl6zKOSpUs9L+BgKssy11ybnP+tMl//RrJ2XXV5X2/yjF9Pfvu3ihy27OA+L+fMKfI3f5W891/LfPZzyb+8v8zttyevfU3S3e3/CABmrkaGQQsXJretUdFRR+1g5mDNDErac4q84AMAZr9bW2GQD0zRJHPmFHnkI5JHPqLI2J+U+eWvkgt+UOb7FyQ33Zz86MfJj35c5l3/VM0ZOv205PTTi5z2kGT+fMcBMJVGR8vcdHNy1dXVfK8LL0ruvHPi+kWLkqc9NXnBbxQ55JDOPf+6u4v80WuTZYdWYdB5n0vuuKPMW/6y+j8FAGaiRoZB7RZiKjrqpSzLrF1bnV+8aPofb9GiIkmZu9ZO/2MBABwM7TDoSGEQDdXVVeSkBycnPbjIq1+V3Hxzme//oAqHLr9iYs7Q5z5fpiiS4+/fCodOK/KQU7SUg32xc2eZm1vBz1VXl7nq6uSaa5Nt23a9XX9/8vCHJU97apFHPTLp6ZkZz7OiKPJbv5ksPSR5+9+V+c73krvWlvm7tycLFsyMNQLAZI0Mg9oVHSqD6mX9hmRkJCmK5JBDpv/xDl1abe+4Y/ofCwDgYFi5skySLF/uTSxIkqOPLvKio5MX/VaR9evL/PRnyaWXVW3lbryxeuP6mmuTT59XpqsrWXFCmVNOTk45ucjJJyVLlnguQVIFPzfdnFx11a7Bz/btu992bn9ywgnJA05MHnFGkVMfMrOrbZ50dpHFi5M3vbmaZfT7ry3zD3+fLD9i5q4ZgGZqZhjUrgzS3qtW2qHM4kVJb+/079elrTDodmEQAFATKoPgni1cWOTxZyWPP6s61rjrrjKX/TS59KdlLr20ev5ceVV1+sxnW8HqEWVOPjk5+aQqHDrmaDNFqL8dO8rccGNy9dXJVdeUueaa5Nrr7iH4mZusOCE5cUVy4ooiJ56YHHXk7HuenH5akX99X/K615e5+Zbklb9X5q/fUoVZADBTNDMMWli199Imrl7aoUw7pJluhx5abe+8MxkbK9PV5UUeADC7mRkEe2/JkiJPOruqCkiSNbeX+dnPqzknv7g8uf76ZOWq6vT1b1Th0Nz+5Pjjy5y4IllxQpEVK5Jjj5k5ba9gX23dWua666tWb1e3gp/rb0h27tz9tgMDdwt+ViRHHZXaHEvf77giH/zX5E1vLfOrXyWv+4sy/9/vJC99cX3+jQDMbo0Mg8ZnBq3v6DKYYrffXm0PVhh0yJKqJd3ISNVycNFBmFMEADBdtmwps25ddX75EZ1dC8xGyw4t8pQnJU95UvWm76ZNZa74ZfKLy8v8/BfJr65Mtm5LfnF5dUqqgKinJzn88DJHLU+OPLJq03jIIcmSxdUxxuJFydy53kim8zZtKnPNtcnV1yRXX13m6muTm29OxsZ2v+38+VXwU52KrDih+v2ueyiydGmRf3lP8p73lvnil5P/+9GqgvBNb6j+jwCATmpkGLRQGFRLd9xRHUwdepDCoJ6eIosXl7nrrqoqSRgEAMxm7aqghQuSoSFvWMGBGhoqcuYjkjMfUT2fRkfL3HLrROusq6+u3lTfsiW55ZbqVCl3u6/urjJ9c5I5rVN/a9vdk/R0J92TTnf/un3q66veoB8aKjJ/KBlqnRYuqI5l5s+ffa25mD7r1pVV6HNNNePn6muSVav2fNslS5ITT6jm/KxYUeTEE5Jly5KiaObvU19fkT//syIPelCZf3pPmUsuTV72O2X++I+Spz65uT8XADqvkWHQIYdU2zvv7Ow6mFoTbeIO3gurQ5cmd91VzSs6ccVBe1gAgCl3003V9phjOrsOqKvu7iLHHlO1hXvKk6tjlrGxMrffkdx6a+u0sszKVcnata3TumrOyuhYsnVrdTpwu4dNSdLVlSxYUGbRwiocWriwqkpatKioLltcBUf9/VWwNGdOa9tXhU3Vvycpy+rUPl8UY9m4sUxRVI9x921PjzfHO6ksy9xxx66hz9VXJ3fcw/slhx+WrFiRnHB81ebthBOSQ5bYf3vy608rcsrJyf96e5lf/ir523eU+eZ/JX/8P5Ojj/IzA+Dga2QYtKw96+WuZOfOUn/mmrijFQYdrMqgpGpJ96srJ4IoAIDZ6oabqjeIjxUGwUHT1VXksGXJYcuShz00SXY9Ni3LMlu3JsPDybZtyfYdVTjUPo2OJjtHq237tHPnnr/evr3Mpk0ZP23clGzcWLW83rCxCm/WratOuWGXVRzgv3LdvV7b3Z3MGywzOC+ZN1jNlRmaV1WbLFlS5JAl1Qc629uFC4VH+6Msq64WN95Uhf833FRW2xuyx3nKRZEcdWQV/LTbvK04IZk/389+Xxx1ZJF/fW/yyX9Pzvl4mR/9OHnp75T5rd8s8+LfLjI46OcJwMHTyDBo0aKkt7ea9XLnnclhh3V6RUyFicqgg/eY7eCpalHnRRwAMHvd2Hrz99hjvaaBmaIoigwMVAHJFNzbPV6zc2eZDRuSdesnAqHqfLnLZes3JDtaQdSOHcmOkQNf1ehoFUZt2Lina3cPovp6k6VLyxx6aMZPy5YWu3w9NO/gB0ajo2U2bqx+buvXVyHb+g2t8xvL8Z/Z5O3oaFUd1T51d09se3urf2vP3bc9VRuynp5dLx8rW4Hh9mq7ZbgKf9qnO++qQsU96e5Kjj2u3eqtCn5OOD4ZGPD3YCr09BR52UuSs5+Q/J/3lrno4uTcTyZf/HKZ335h8rznmAsGwMHRyDCoq6vIoUur8vs1twuD6qBd2p4c7MqgIkmpMggAmPVuaLWJUxkEzdPTU7Qqce5+zb2/QT02VmZkpKo+KoqJ1m/JRCu4xYsXZe3adbu0jhsbq24zOlq1vtu8pZqdtHlLsmVzsmlzsnZtmTvvnAgy7ryzClp2jCQrV1WnCbuGRnP7k0MPnRQYLU0WLCgyr1V9NDiYzJtXbXu6k672bKWu6kOj23dUgcqO7cm27cnWbcnGDe2Ap8z69vn1E6eNm6p/28Gxfw/U1ZUccURy3DFVS9Bjjily3DHJccclc+YII6bbkUcW+Ye/S75/QfLBD5e56ebkAx8q8x+fSZ7zP8o8538UWbzYfgBg+jQyDEqqYYYrVyVr1nR6JUyFTZuqT0AlEzOhDoal45VBB+8xAQCm2vbt5fhg8OOO6+xagNmjq6vInDnV/KB70t1d3Gtr9qGh5NA9XrP794yMVAHR7XdUH+y8/fbk9turD+fd3vp6/YYqvLnp5uo04eAkNfPnV7OVFi6cOC2Yn/T3F+nr23XeUk9PMjZahWOjY61tq73fyI5kZGcVTo2MlNX5SZftHKmCsfa2q6u63/7+pH9OMndusnhxFfIdsiRZsjg5/PCqqojOKYoij3ts8uhHJd88P/noOWVWr04+9m/JJz5V5klPLPOMX69mDWmHCMBUa24Y1Hq1ueb2zq6DqdGuzFm48OB+oqldhaQyCACYzW65tXoTct686g1DgJmot7fI4YdXocaEXY//tm/fNRxac3vV1nvjpqr6aNPmqvqoXYk02gpj2tVKyUSgMqc/mdNXfT1/frJgQRX0LFhQjIc8ixZNhD/z52eaZhILBeqmu7vI056aPPns5LvfSz59Xplf/ir52jeSr32jzJFHJr/2lORxj6k+pCEYAmAqNDcMWlZt16wx66UOOtEiLtm1MqgsSy/QAIBZ6cYbq+1xx3rDCZjd5swpctSRyVFHTr70vv9fGxsrMzZWtYvz/yAHS09PkbOfmJz9xCKXX1Hmy/9Z5tvfTm69Nfm/Hy3zfz+aHLk8OfPMMqefWuTUU5P5Q34/Adg/zQ2DDq1mvagMqod2W5Nle+4vMG2WHlKV42/fnty1tiq/BwCYbW64sWqfZF4Q0FRdXcX4vCPohJMeXOSkBxf5o9eW+c53k+98r8xPfpLcujL57OeSz36uTFEkJxxf5pRTkhNXFFlxQnLM0dNVkQZA3TQ3DBqvDOrsOpgaN91cvYFx9NEH93H7+oocfliZlauSm28WBgEAs9P111fb4471ZhIAdNLAQJGnPy15+tOKDA+X+dGPk59cWuayy6o5WFdfU53ac7D6epP73a/MMcckRx1Z5Oijk6OPqqrjDmYbfQBmvuaGQWYG1Up7MOgxRx/8FzrHHJ3xMOj00w76wwMAHLArr6q2J57Y2XUAABMGBoo8/qzk8WdV73XceVeZy36a/PKXZa65tgqFhoerv+PV3/Jyl+9ftqzM0UeldSpyzDHJscdW8wG1QwRonsaGQYe2wqAtW5LNm8vMm+eP4Gx2cysMOtiVQe3H/OFF7eokv0cAwOxy511l7rizan17wvGdXg0AcE8OWVLkyWcnTz67eu9hbKzMqlXJddcnN9+S3HxzWW1vSTZtqrrhrFmT/PgnyeSgaN5gcswxVTXRsccUOfaY5JhjksMPq1omAlBPjQ2D5s4tsmB+mQ0bk9vWJMfP6/SK2F9btlRvYCSdCYOOPaaaP9WuTgIAmE3aVUHHHF19AhkAmB26uooceWRy5JHtS6q/42VZZv2G5JZWMHTzLWVuvjm58aZq5vLmLckVv6xOk0OiuXOT4+9f5oTjkxUnFDn++OS4Y7WbA6iLxoZBSXL44cmGjcmttybH37/Tq2F/3XxLtV28KJk/dPBfoLQDKGEQADAbXXll9SbQA7SIA4BaKIoiixYmixYmp5ycTO5isn17mVtXVsHQjTdWH2y96abqvZWtW5NfXF6d2iFRd3dy7DFljm8FRCtOqCqJddgBmH0aHQbd//7VJyGvu74c77/K7DM+L+iYzjz+Ma0waM2aZOvWMnPn+l0CAGaPdmXQAx7gNQwA1N2cOUXuf7/k/vdLJodEO3dWLeauvTa5+ppqJtE11yYbN1Zt6K67PvnGNyeqiI5cXubEFcmKFVVAdOKKZP58ryUAZrJmh0H3q9p7XXtdp1fCgahm9UyEMgfbggVFFi4ss359csutyYoTOrMOAIB9VZZlrryyOq8yCACaq6enyP2OS+53XPKUJ0+0m7vjjowHQ1dfU+bqq6txC7eurE7f+u+JgOjww8qsWFFVEJ24ogqIFi0SEAHMFI0Og9qt4a67vrPr4MDc3KoMOvrozr3AOOboZP36qkpJGAQAzBa3rkzWb0h6erRNBgB2VRRFDj00OfTQ5NGPStqVRBs2lLn6muSqqycColtXJqtvq07f/d5EQLT0kCogOnFFUW1PSA45pLpvAA6uRodBVUlsNTxveLg0MHeWuvbaantsh9rEJVWLup/9PLnm2jJPPtvvEQAwO/z4J9X2pAcbDg0A7J0FC4o8/GHJwx+WtAOiTZvKVvVQctXVVUB08y3JHXdWpx/8cCIgmjeYHHlkmaOOSo5cnhx1ZJEjj0wOW5YsXJh0dXlNAjAdGh0GLVhQZOkhZe64M7n+huogmNnlzrvKrFyVFEXywAd0bh0nPajIl75c5he/6NwaAAD21Y9/Ur0x8/CHedMFANh/Q0NFTj8tOf20pB0QDQ/vHhDdeFOyeUs1s7A9tzCZCIp6e5NDDilz6NJk6dJk6SHV+3fz5ycL5md8OzgvmdOX9PUlc+Yk3d1eywDcl0aHQUly//tXn1C49jph0Gz081b4cv/7VS88OuUhp1TbX12ZbN9e+mQtADDj7dxZ5tLLqvPVJ3sBAKbOwECRh5zSfs+kep9k+/YyK1cmt6xMbr01ueWWcnz+0F13JSMjyerV1WlCuYd731V3d5k5c5LenqSnt2qB29tTbbsnnZ986m1dt6fb9vZW7zMtWlhVKy1cmPHzAwPa3AGzkzDofslFFyfXXlem/YeJ2ePnv6heELTDmE454ohkyeLkrrVVIHTqQzq7HgCA+3LlVcmWLcnQUDXgGQBgus2ZU+R+90vud7/2JRPvxe3cWebOu5Lbb0/uuCO5/Y6qI8zGDcmGjcmmTcmGDcnGjcmW4So4ahsdTYaHp3q1ew6h+nqTRYvLLF6cHLI4Wdw6LVlSZMniZMmS1mWLkr4+7zUCM0fjw6ATTyySlPnpzzq9EvbHz39ebU85ubN/XIuiyCmnlPnv71Szg4RBAMBMd/GPqjc4Hnqa1ioAQOf19BQ5bFk1O2jCPb9GGR0ts2NHsmNHsn17sn1HFRDt3Lnn00hrOzrp/O6nMjt3JjtGko0bkvUbkvXrk3XrqvPbtlXXrVlTnXa1e3g0f34VGi1pnargqMghSyZCpEWLkvlDXo8B06/xYdDDHpp0dyU33pisXl3m8MP9xztbbNlS5trrqvOdrgxKqkDqv79TtqqV/B4BADNXWZb5xn9V5x/zGK9bAIDZp7u7yNy5ydy5U3mv9/66aOvWMuvXJ2vXJWvXVq3t7lpb5q61ra9bl61dW4VLGzdWpxtvnHwvu4dGRZEsmF+Ot6RbuGCiPd3ChUUWLkgWLEiOPnpnurvKLFiQ9PZ6DQfsm8aHQfOHipx0Upmf/Ty58OLkuc/u9IrYWz+5JBkbq1q0HXJI5/8AntoKpH7282pI4sBA59cEALAnP/9FsmpV9ebJWY/t9GoAAGaHuXOrAOrwwydfuvv7P2VZZuPGTIREd7WCorXl+Ndr1yZ33pVs3pyUZasKaUOSm3a7t0nnN4yfmzc4KTxaODlAKnYPlBYkc+aYdQRN1/gwKEnOfESRn/28zEUXlXnus/2nOFt87RvVH8MnnNXhhbQcf3yy/Ihk5arku99PnvbUTq8IAGDPvvr16nXUE59QvakBAMDUKYoiC1rVPPc7bpdrdrvtzp3leDu6Da3t+vXJ+g1l1q2f/HWycUOR9RvKjI0lm7dUp1tX3v0e9zzrqCiSvr4yc+Ykc/qqcGjOnKSv9XXfpMvmzEn65yRz+qvr+vuL6utdLpt02/6MXz93ruAJZiphUJJHPTL54IeTn1yabNtWpr/ff1Yz3dq1ZS68sDr/tF+bGfurKIo87deS//vRMl/7epmnPXVmrAsAYLK1a8t8+9vV+afPkNdRAABN1dNTzRA6ZMndr9n9ddqiRYty551rs2nTxDyjyWHR+vWTAqQNE+HSzp1V9dH27dVp3+05YLon3V3J3LllBgaqcGhgoHVqnZ+4rNjDZdXtJn8tXIKpIQxKldAftiy5bU3yw4uSJz6+0yvivnzz/GR0LHnQA5Njj5k5fwx+7anJRz6WXHpZsmp1mSPMoAIAZpiPfbzM1m3JA05MTjm506sBAGBfdHcX4+3fcszdr91zy7rh4WTbtmT7jolAaPv2ZMeOict2tC8fv02Zbe3LtmXi/PbWfW1vXda6323bqvtLqvfs2pVL927vQqauVrjU25t0d+966une/bK7n7qKak1lWY2caG/bp/HL7+EnWRTtyqpWNVW7kqrv7pcVu1zX2ztx2/apq6u6r8n3O36+9cDFpFNvb9Lbk/S0t61TX18VJMK+EAalSpafdHaZT3wq+a/zyzzx8Z5IM9nGTWU++e/Vf89Pf9qB76vR0dF85zvfybXXXptly5blkY98ZLq7u/frvg5bVuRhDy3z458kH/q/Zf76LX6XAICZ44Yby3zpS9X517y68AlLAKbF6OhoLrzwwqxZs+aAj7OBA1MURQYHk8HBff7OfX6ssbEy27Ylw8OTTltbp9bXW7dWs7Z3v2zidlsnbav7TbbcZ7A0E+xbBdWB6usrM28wGZyXzJuX6vxgMtT6emioyNBQMn8oGWqf5lXbefOqYLEOyrLM6GgVtHV1Tf+/qSyr/Twbj6WEQS1PeVKRT3yqzEUXV2HD/KHZtzOb4gMfKrNuXXLsMcnTf+3A7uvLX/5y3vSmt2TlypvHL1u+/Oi84x3/K8985jP36z5/73eLXHJpmfO/lTztqWUecYbfJQCg8zZuKvOmt5QZHavaJJ9+mtcoAEy96TjOBmaHrq5ivLXbvdu716Hj4VIrHNq5Mxkd3Y/TWNW6ruhqBQZF63wxUanT1XW3ZZV3X0tV+dSuptrRrqjaUU5UWW1PRkaq60dGJm6/Y9L5sdHqrsuyeoxWrrDbZWWq2+4cre5rdGd1P5Pt2JGs3ZGsXXdPP8F7D6cGB8vdgqKBwVb1UXdVldTdOt/TU6Snp7W29prba21d0P56Tv9wtm4dG/+33NM+2dPlO3dOnEZGqn//zpFkpH35yMTPZPJtJ/+buybt567uav+29393+7ruajv592Lyde3z7e9p5z5lmVx/Q7JkSfKpj8++QEgY1HK/+xW5//3KXHd98u3/Tp79rE6viD25+poyX/pydf51f1qkr2//n3Bf/vKX8/KXvzzzhp6SY+//ofT3PyDbtl2Zu+74p7z85S/POeecs18vVB9wYpHnPafMeZ9L/s97y5z7MWWbAEBn3XZbmbe8rcwttySHHpr8xeu8NgFg6k3XcTbQTLuES7vNVJopDt7r6nYFzM6dVRC0pdWKr73dvDnZsjnZtDnZvLnMps3Jxo3Jpk3VZZs2Vad2xdWW1veuvm2vHn0fVrp1P/51U6fd/i9JMnKvN91v7daLc+dOz/1PF2HQJL/21CL/8v4yH/1YmSc+IaqDZqAPf6T6j+dJZyenPmT/98/o6Gje9Ka3ZN7QU3LkMeemKLqSJAODD8vcgXNz600vyV/+5Vvz9Kc/fb9K2V/5iiLf/K/qDZevfzN5xtP3e6kAAPttbKzMl75SVVZv3ly1jvj7dxRZssTrXACm1nQfZwM0XVEU4zOD+vuT+fPv9db3eM3OnVVQtGljsvFuQdHwcFWhMzJSVlU3rcqc9vkirSqZ1kyjrknn29f19/dn+45t41/39Eya39RV3PN8p65WVdLd5iP19k6c7+mZmKE0fr51/+NzoMqqqmqsPRvqbudHJ82LGh2dmBk1Ojrp8rGknHS+/dPcsaPMX/+vKdqhHSAMmuS5z06+8p/JTTcnr3t9mWOPmd4+j319m7Njx9h935AkVSnkhRdVT+5X/s6BvYFx4YUXZuXKm3Ps/T80/gK1rSi6smTpH+fG656WCy+8MI95zGP2+f4HB4u8+EXJv7y/zIc+XObnPz+4PUNnM8+LmcF+mDnsi5nBfpg57Iu9t3NnctlPkzvurL5+4AOTt721yBGHC4IAmHrTfZwNwNTo6SmyaGGyaOG93Wr/jxkWLRrMunU79vv7Z7Kqqmr2vs8rDJpkzpwib3h98po/LPPLXyW//NV0P+L26X6AWnrG05MjjzywNzHWrFmTJOnvf8Aer5/Turx9u/3x3GcnnzmvegPmq1/f77tpIM+LmcF+mDnsi5nBfpg57It9NW9e8v/9TpHn/A+tawGYPgfjOBsAOqm/Pzn5pInzs40w6G5OPqnIu/53cs210/9Yc+fOzdatne2hONv0z0me9msHfj/Lli1LkmzbdmUGBh+22/Xbt125y+32x5w5Rd79j1U1Uzl7A+ODzvNiZrAfZg77YmawH2YO+2LfHHNM8vCHVq9LpkL74Kenpyf9/aNTcp8A1MPBOM4GgE4qiiL/+t6J87ONMGgPznh4kTMePv2Ps2jR3Kxbt236H4jdPPKRj8zy5Ufnrjv+KXMHzt2lhL0sx3LXHf8nRx55TB75yEce0OMcd2yR4449wMU2jOfFzGA/zBz2xcxgP8wc9kVntQ9+Fi2an/Xr13d6OQDMIAfrOBsAOmk2hkBtXfd9E6if7u7uvOMd/yubN30zt970kgxv+XFGRzdleMuPc+tNL8nmTd/M29/+N4ZaAgDcTVEUs/oACIDp4TgbAGY2YRCN9cxnPjPnnHNO5g/9Kjde97RcdcVxufG6p2XB/Ctzzjnn5JnPfGanlwgAAACzhuNsAJi5ZmWbuNk+qImZ45nPfGae/vSn5/LLL8+1116bZcuW5ZGPfKRPKgEAMGP19yenndqTnTt3Oh4CZpz2cfaFF16YNWvWOM4GgBliVoZBs31QEzNLd3d3Hv/4x+chD3lIp5cCAAD3qSiKnHvO/Kxbt87xEDAjdXd35zGPeUynlwEATDIrw6BECAQAADSX2U0AAMC+MDMIAAAAAACgxoRBAAAAAAAANSYMAgAAAAAAqDFhEAAAAAAAQI0JgwAAAAAAAGpMGAQAAAAAAFBjwiAAAAAAAIAaEwYBAAAAAADUmDAIAAAAAACgxoRBAAAAAAAANSYMAgAAAAAAqDFhEAAAAAAAQI0JgwAAAAAAAGpMGAQAAAAAAFBjwiAAAAAAAIAaEwYBAAAAAADUmDAIAAAAAACgxoRBAAAAAAAANVaUZVl2ehEAAAAAAABMD5VBAAAAAAAANSYMAgAAAAAAqDFhEAAAAAAAQI0JgwAAAAAAAGpMGAQAAAAAAFBjPZ1eQJ38/Oc/z3vf+95cdtll2blzZ1asWJGXv/zlefrTn75X3////t//yxvf+MZ7vP7jH/94HvGIR0zVcmvri1/8Yi655JJcfvnlufrqqzMyMpJ3vvOdee5zn7tP9zM2NpZPfvKT+cxnPpObbropAwMDedSjHpU/+ZM/yVFHHTVNq6+PqdgPF198cV760pfe4/X7s1+bZs2aNfna176W733ve7n++utz5513ZsGCBTn99NPzyle+Mg95yEP2+r48J/bfVO0Hz4kDt3379rz73e/O5ZdfnptuuikbNmzI/Pnzc9RRR+X5z39+nvWsZ6W3t3ev7stz4sBM1b7wvJgeH/rQh/Kud70rSfLpT386p5566l59n+fF/jvQY4kk2bFjRz70oQ/lS1/6UlavXp0FCxbkCU94Qv74j/84S5YsmcbV0ySOe5npvCfAbOA9E2YD7ynVjzBoilx00UV55Stfmb6+vvz6r/96BgcH881vfjN/8id/kttuuy2veMUr9vq+zj777DzwgQ/c7fLly5dP5ZJr6z3veU9WrlyZRYsW5dBDD83KlSv3637e+ta35rzzzssJJ5yQl7zkJbn99tvzta99LT/4wQ/y6U9/Oscee+zULrxmpmo/JMkZZ5yRM844Y7fL9/Q8YVfnnntuPvzhD+foo4/Oox/96CxevDg33XRTzj///Jx//vl517vetdcH7p4T+28q90PiOXEgtmzZkn//93/PKaecksc//vFZvHhxNmzYkO9///t505velK9+9av58Ic/nK6u+y6e9pw4MFO5LxLPi6l09dVX573vfW8GBgYyPDy8T9/rebF/puJYYmxsLL//+7+fCy64IKeeemqe8pSn5Kabbsp5552XCy+8MJ/5zGeyePHig/Cvoc4c9zIbeE+A2cB7JswG3lOqoZIDNjIyUj7pSU8qTzrppPKXv/zl+OUbN24sn/KUp5QPfvCDy1tvvfU+7+dzn/tcuWLFivJzn/vcdC639n7wgx+M/7w/+MEP7tfP9MILLyxXrFhRvuhFLyq3b98+fvl3vvOdcsWKFeUrXvGKKV1zHU3FfrjooovKFStWlP/8z/88HUtshG984xvlxRdfvNvlP/7xj8sHP/jB5cMf/vBdfsfviefEgZmq/eA5ceBGR0f3+LMeGRkpX/ziF5crVqwo//u///s+78dz4sBN1b7wvJhaO3bsKJ/znOeUz3/+88vXve515YoVK8rLLrtsr77X82L/TNWxxGc/+9lyxYoV5Z/+6Z+WY2Nj45d/6lOfKlesWFG+5S1vmZb10xyOe5ktvCfAbOA9E2YD7ynVj5lBU+Ciiy7KzTffnGc84xm7pO5DQ0N59atfnZGRkXz+85/v4Aqb5VGPetQBf5rsvPPOS5L80R/9Ufr6+sYvP+uss3LGGWfkggsuyKpVqw7oMepuKvYDB+4pT3nKHj8h9LCHPSyPeMQjsmHDhlx11VX3eT+eEwdmqvYDB66rq2uX3+G2np6ePPnJT06S3HTTTfd5P54TB26q9gVT6wMf+ECuueaavOMd70h3d/c+fa/nxf6ZqmOJ9s//T//0T1MUxfjlL3zhC3PUUUfly1/+crZt2zb1/wAaw3Evs4X3BJgNvGfCbOA9pfoRBk2BH/3oR0mSxzzmMbtd177sxz/+8V7f3y9/+ct89KMfzYc+9KF89atfzbp166Zmoey1iy++OAMDAzn99NN3u+6xj31skon9zvS78cYbc8455+SDH/xgvvCFL2TNmjWdXlIt9PT07LK9N54T02df9kOb58TUGxsby/e///0kyYoVK+7z9p4T02df90Wb58WBu+KKK/KBD3wgr33ta3P88cfv8/d7XuyfqTiW2L59e372s5/luOOO2+2NpaIo8qhHPSrDw8O5/PLLp2jVNJHjXprE3zRmE6+D6QTvKc1OZgZNgRtvvDFJcswxx+x23dKlSzMwMLBPn2w999xzd/m6v78/f/AHf5BXvepVB7RO9s7w8HDuuOOOrFixYo+fiG3vZ59WPni+8pWv5Ctf+cr41z09PXnxi1+c17/+9fv8qWUqq1atyg9/+MMsXbr0Pt9s9ZyYPvuyHybznDhwO3bsyAc/+MGUZZn169fnwgsvzPXXX5/nPve5eeQjH3mv3+s5MbUOZF9M5nlxYHbs2JG/+Iu/yAMe8IC88pWv3Ofv97zYf1NxLHHzzTdnbGzsHnutty+/8cYb87CHPexAlkuDOe6lKfxNY7bxOpiDzXtKs5cwaAps3rw5SVUevyfz5s3Lpk2b7vN+jjzyyLzlLW/JYx7zmBx22GHZsGFDLrzwwrz73e/Ou971rsydOzcveclLpnTt7K69r+bNm7fH69uX780+5cAsXrw4f/Znf5YnPOEJWb58ebZu3ZrLLrss73rXu3LOOeekKIq84Q1v6PQyZ52RkZG8/vWvz44dO/K6173uPl8cek5Mj33dD4nnxFQaGRnJ+973vvGvi6LIK17xivzZn/3ZfX6v58TUOpB9kXheTJX3vOc9ufHGG/P//t//2683DTwv9t9UHEvs7c+//ViwPxz30hT+pjFbeB1MJ3hPaXYTBs0gZ5xxxi59GPv7+/PsZz87D37wg/O85z0v73vf+/Jbv/Vb+9RKCGazE044ISeccML41wMDA3nSk56UhzzkIXnWs56Vc889N7/7u7+bJUuWdHCVs8vY2Fje8IY35Mc//nFe8IIX5NnPfnanl9RI+7sfPCemzuDgYK666qqMjY3l9ttvz7e//e380z/9U37605/mwx/+8D2+UGXqHei+8Lw4cJdddlk++tGP5rWvfe0+VSkC7A/HvQBTw+tgDjbvKc1+ZgZNgftKMDdv3nyPn57aGyeccEIe+tCHZv369bnuuuv2+37YO+19dU+fnLyvT8Qx/ZYuXZqzzz47O3fuzM9+9rNOL2fWGBsby5ve9KZ85StfybOe9ay87W1v26vv85yYWvu7H+6N58T+6+rqymGHHZbf/u3fzt/8zd/k0ksvzfvf//57/R7PiemxP/vi3nhe7J2dO3fmDW94Q0488cQDas3kebH/puJYYm9//oJuDoTjXprC3zRmO6+DmQ7eU6oHYdAUaPfg3lNvwzvuuCPDw8N77Ku8LxYtWpQk2bp16wHdD/dtYGAgS5cuza233prR0dHdrm/v5wPdpxwYz4l9MzY2lje+8Y35/Oc/n2c84xn5u7/7u3R17d2fAM+JqXMg++G+eE4cuPbw6/saXOk5Mf32dl/cF8+L+zY8PJwbb7wxv/rVr3LSSSflxBNPHD99/vOfT5L85m/+Zk488cScf/7593g/nhf7byqOJY466qh0dXWNz3S5u/bl9zRTCPaG416awt806sD/p0wl7ynVhzBoCjz84Q9PklxwwQW7Xde+rH2b/TE6OprLL788SXLEEUfs9/2w984444wMDw/n0ksv3e2673//+0kObJ9y4Nqfblm+fHmHVzLztf9of+ELX8jTn/70/O///b/3eR6E58SBm4r9cG88Jw7c7bffniR71ZbGc2J67cu+uDeeF/etr68vv/Ebv7HHU/uN3yc+8Yn5jd/4jfv8OXpe7J+pOJbo7+/PKaeckhtuuCErV67c5bqyLPPDH/4wAwMDOemkk6Zo1TSR416axN80Zjuvg5kq3lOqF2HQFHjkIx+Zo446Kl/5ylfyq1/9avzyTZs25QMf+EB6e3t36aF4++2357rrrtutvL79wney0dHR/OM//mNuuummPOIRj8ihhx46bf+OJlq7dm2uu+66rF27dpfLX/CCFySphinv2LFj/PLvfve7+dGPfpTHPOYx/qBOoXvaD3t6TiTJv/3bv+Xiiy/Osccem5NPPvlgLHHWapfxfuELX8iv/dqv5R/+4R/u9Y+258T0mKr94Dlx4K699to9fjpu69ateec735kkOeuss8Yv95yYPlO1LzwvDkx/f3/e/va37/F02mmnJUl+7/d+L29/+9vzwAc+MInnxVSbqmOJ9s//3e9+d8qyHL/8P/7jP3LLLbfkmc98Zvr7+6f3H0OtOe6ljvxNYzbwOphO8Z5S/RTl5CMF9ttFF12UV77ylenr68uv//qvZ3BwMN/85jezcuXK/MVf/EVe8YpXjN/2DW94Qz7/+c/nne98Z5773OeOXz65LceyZcuyYcOG/OhHP8qNN96Yww47LJ/4xCdy1FFHdeKfN6ucd955ueSSS5IkV199da644oqcfvrp4+WGD33oQ/P85z8/SfLe974373vf+/La1742f/iHf7jL/bz5zW/OeeedlxNOOCFnnXVW7rjjjnz1q1/N4OBg/uM//iPHHXfcwf2HzTJTsR+e+MQnpqenJyeddFKWLVuWrVu35mc/+1l++ctfZv78+fnIRz6SU0455eD/42aR9s92YGAgL33pS/f4KfsnPelJ42/weU5Mj6naD54TB+69731vPvaxj+WhD31oli9fnnnz5mXNmjX53ve+l/Xr1+dhD3tYPvKRj4y/Yeo5MX2mal94Xkyf9mvWT3/60zn11FPHL/e8mHpTcSwxNjaW3/3d380FF1yQU089NQ9/+MNz880355vf/GaWL1+e8847L4sXL+7EP48acdzLbOA9AWYD75kwG3hPqX4OrPcG484888x86lOfyj//8z/nq1/9anbu3JkVK1bkda97XZ7+9Kfv1X284hWvyE9/+tP88Ic/zIYNG9Lb25ujjz46v//7v5/f+Z3fyYIFC6b5X1EPl1xyyXiP+7ZLL710l1LE9h/Ue/M3f/M3WbFiRT7zmc/k4x//eAYGBvLkJz85f/Inf5Kjjz56ytddN1OxH174whfmggsuyI9//OOsX78+XV1dOeKII/Kyl70sr3jFK3LYYYdNy9rrpN0qZnh4OB/4wAf2eJvly5eP/+G+N54T+2+q9oPnxIF7/OMfn9tvvz2XXXZZfvrTn2Z4eDjz5s3LiSeemF//9V/P8573vL1uTeY5cWCmal94Xswsnhf7ZyqOJbq6uvL+978/H/rQh/LFL34x55xzThYuXJjf+I3fyB//8R8LgpgSjnuZDbwnwGzgPRNmA+8p1Y/KIAAAAAAAgBozMwgAAAAAAKDGhEEAAAAAAAA1JgwCAAAAAACoMWEQAAAAAABAjQmDAAAAAAAAakwYBAAAAAAAUGPCIAAAAAAAgBoTBgEAAAAAANSYMAgAAAAAAKDGhEEAAAAAAAA1JgwCAAAAAACoMWEQAAAAAABAjQmDAAAAAAAAauz/B0Z1RhZuVSnuAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABRcAAAH4CAYAAADQGNoBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAA9hAAAPYQGoP6dpAABeuklEQVR4nO3deZwldXkv/qd6X2YfZoFhhn3YV5GAEXGLSRC8xmiiUZFw1euCUaPXfbl6XRM1UcxPxBslYEwUjRtBJbigKItBFgEBGRgYhtlg9umZXuv3R3Wd7mG2nu7TfarOeb9fr35V9elzzny7unq6zuc8z/ebpGmaBgAAAADAfmqq9QAAAAAAgHISLgIAAAAA4yJcBAAAAADGRbgIAAAAAIyLcBEAAAAAGBfhIgAAAAAwLsJFAAAAAGBchIsAAAAAwLgIFwEAAACAcREuAgAAAADjIlwEGKOjjz46jj766FoPAwAAJoXrXWA8hIsAAAAAwLgIFwEAAACAcUnSNE1rPQig+O6888744Q9/GLfcckusWrUqNm3aFDNmzIiTTjopLrjggnja056228c99NBD8S//8i9x4403xurVq6O5uTkWLlwYZ5xxRvzVX/1VLF26dKf7b9q0Ka688sr4yU9+Eg8//HD09/fHvHnz4oQTTogXvehFcc455+x0/4GBgfj2t78d3/ve9+K+++6Lnp6emD9/fpx99tnxute9Lg488MCd7n/zzTfHBRdcEGeccUZcdtll8YUvfCF+8IMfxOrVq2PmzJnxjGc8I9785jfHggULKo+55JJL4vOf//wej82Pf/zjOPjgg/f3kAIAUCCud13vAuMjXATG5MILL4ybb745jjzyyDjwwAOjs7MzVqxYEXfffXdERLznPe+JV73qVTs95vvf/3685z3vib6+vjjooIPixBNPjKGhoVixYkXcd9998cY3vjHe9KY3Ve5/7733xmtf+9pYs2ZNTJ8+PU477bTo7u6OVatWxe9+97s46aST4sorr6zcf+vWrfH6178+brnllujq6ooTTjghZs+eHffff3889NBDMWvWrPjKV74Sxx13XOUx+cXWqaeeGmmaxn333RdnnHFGdHZ2xq233hrr1q2LefPmxVe/+tU49NBDIyLiuuuui+uuuy6+/e1vR0TEn/3Zn+30fb7jHe+IOXPmVPV4AwAwtVzvut4Fxke4CIzJ9ddfH8cee2zMnz9/p9tvu+22ePWrXx29vb3x4x//uPIO6F133RUvfelLY2BgIN773vfGy1/+8mhqGpmJYeXKlbFhw4Y44YQTIiKip6cnzj333Fi1alW88IUvjA984APR3d1duf+WLVvit7/97U7vGL/tbW+Lq6++Op71rGfFRz/60Zg7d27la5dffnl8/OMfj0MPPTSuueaaaG5ujoiRi62IiEMOOSQuv/zyOOiggyIiore3N/73//7f8aMf/ShOOeWU+PrXv77T95pPbn3fffdN7GACAFA4rndd7wLjY85FYEzOOeecXS60IiJOPfXUePnLXx79/f1x3XXXVW7/whe+EP39/fGKV7wiXvnKV+50oRURsWjRosqFVkTEVVddFatWrYpjjz02Pvaxj+10oRURMX369J0utJYtWxb/+Z//GfPnz49PfepTO11oRWTvPJ9zzjmxfPny+PnPf77b7+kd73hH5UIrIqK9vT0++MEPRmdnZ9x+++3xm9/8ZgxHBgCAeuB6F2B8Wmo9AKA8NmzYENdff33cf//9sXnz5hgYGIiIiOXLl0dENt9MRMTg4GD86le/ioiIv/iLvxjTc//iF7+IiIgXv/jFlXdd9+b666+PNE3jGc94RkybNm239znjjDPi+uuvj9tuuy2e9axn7fS1GTNmxHOe85xdHjN37tw4++yz49prr41bbrklTjvttDGNHwCA8nO9C7D/hIvAmHzjG9+Ij3/849HT07PH+2zbti0iIjZu3Fi532GHHTam53/sscciIuLwww8f0/1XrFgRERHf/OY345vf/OZe77t+/fpdblu0aFEkSbLb++eTVa9evXpMYwEAoPxc7wKMj3AR2Ke77rorPvCBD0Rzc3O8/e1vj2c/+9mVSa6TJImvf/3r8YEPfCCmcgrXoaGhiIg49thj45hjjtnrfU8++eRx/RumpAUAaAyudwHGT7gI7NMPf/jDSNM0XvGKV8RrXvOaXb6et4nkZs2aFZ2dnbF9+/Z46KGHYunSpfv8Nw488MBYtmxZPPjggzvNNbO3+0dEnHbaafGBD3xgbN/IKCtXrtzn1xYuXLjfzwsAQPm43gUYPwu6APu0adOmiIidJoPO9fb2xrXXXrvTbc3NzZULpm984xtj+jfOPvvsiIj41re+FYODg/u8/zOe8YyIiPjJT34Svb29Y/o3Rtu8eXP85Cc/2eX29evXV+bDOeOMM3b6Wmtra0REZe4dAADqg+vdjOtdYDyEi8A+HXHEERER8Z3vfCe2bt1aub23tzf+z//5P/Hoo4/u8pjXve510dLSEv/6r/8a//qv/7pLy8XKlSvjrrvuqnz+kpe8JBYuXBj33HNPvO9979tlrputW7dWJs2OiDjuuOPij//4j2PVqlVx8cUX73YMPT098b3vfS8ef/zx3X5fn/zkJ3eaZ6avry8+9KEPRU9PT5x00knxlKc8Zaf7L1iwICIiHnjggd0+HwAA5eR6N+N6FxiPJDXJArAPmzdvjhe+8IWxcuXKmDVrVpx++unR3Nwc//3f/x07duyIP//zP48rrrgi/uzP/iw+8YlPVB73ne98J973vvdFf39/LFq0KE444YRI0zRWrFgR9957b7zxjW+MN73pTZX733PPPfHa17421q1bFzNmzIjTTjsturq6YtWqVfG73/0uTjrppLjyyisr99+6dWtcfPHFceONN0Zra2scc8wxcfDBB0eaprFy5cq49957o7+/P6655prKBePNN98cF1xwQZx66qkxNDQU999/f5x55pnR0dERt956a6xduzbmzp0bX/3qV3eZbPuTn/xkfPnLX47Zs2fHmWeeGd3d3RER8fa3vz1mz549mT8CAAAmkevdjOtdYDyEi8CYrF+/Pi655JK44YYbYvXq1TFr1qw488wz4+KLL45bb7013v3ud+9ysRWRvev5la98JW666aZYu3ZttLe3x4IFC+LMM8+Ml73sZXHkkUfu8u9cccUV8eMf/zgeffTRGBoainnz5sWJJ54YL3rRiyrtJLmhoaG45ppr4nvf+17cfffdsWnTpuju7o758+fHCSecEM95znPinHPOqbR45BdbZ5xxRnzxi1+Mz3/+8/GjH/0o1qxZEzNnzoxnPOMZ8Td/8zeVOW5G6+3tjc997nPxX//1X/HYY49Ff39/RET8+Mc/rqy4BwBAObnedb0LjI9wEWgooy+2Rr8rDAAA9cD1LjDVzLkIAAAAAIyLcBEAAAAAGBfhIgAAAAAwLuZcBAAAAADGReUiAAAAADAuwkUAAAAAYFxaaj0AgLH4wQ9+EF/72tfi3nvvjf7+/liyZEmcf/75ceGFF0Zra2uthwcAAOPy4IMPxi9/+cu4++674+67745ly5bF4OBgvPnNb443vOENtR4ewD4JF4HC++hHPxpXXHFFtLS0xJlnnhldXV1x0003xac+9an46U9/Gl/+8pejo6Oj1sMEAID99m//9m9xxRVX1HoYAOMmXAQK7brrrosrrrgiurq64qtf/Wocf/zxERGxfv36eNWrXhW33nprfPazn413vvOdNR4pAADsv6VLl8ZFF10Uxx13XBx33HHxxS9+Mb773e/WelgAYyZcBArt0ksvjYiI1772tZVgMSJizpw58cEPfjBe/vKXx1e/+tV4wxveENOnT6/VMAEAYFxe8pKX7PR5U5OlEYBy8b8WUFhr1qyJ3/72txERcd555+3y9dNPPz0OPPDA6Ovri+uvv36qhwcAAAANT7gIFNY999wTERGzZs2KxYsX7/Y+J5xwwk73BQAAAKaOcBEorEcffTQiIg488MA93mfhwoU73RcAAACYOsJFoLC2bdsWERGdnZ17vE93d/dO9wUAAACmjnARAAAAABgX4SJQWHlV4vbt2/d4n7xiMb8vAAAAMHWEi0BhLVq0KCIiVq1atcf7rF69eqf7AgAAAFNHuAgU1nHHHRcRERs3bowVK1bs9j533XVXREQcf/zxUzYuAAAAICNcBApr4cKFceKJJ0ZExNVXX73L1//7v/87Vq1aFW1tbXHOOedM9fAAAACg4QkXgUJ73eteFxERl112Wdx9992V2zds2BAf+tCHIiLiFa94RUyfPr0m4wMAAIBGlqRpmtZ6EAB785GPfCSuvPLKaG1tjTPPPDO6urrixhtvjM2bN8dpp50WX/nKV6Kjo6PWwwQAgP129913V940j4h45JFHYsOGDbFw4cJYsGBB5fbPf/7zMX/+/FoMEWCvWmo9AIB9ed/73hennXZafO1rX4vbbrstBgYGYsmSJfGa17wmLrzwwmhra6v1EAEAYFy2bt0ad9xxxy63r169urJ4YUREX1/fVA4LYMxULgIAAAAA42LORQAAAABgXISLAAAAAMC4CBcBAAAAgHEZ84IuGzZsmMxxFNLMmTNj06ZNtR5GITk2e+bY7Jljs2eOzZ45Nnvm2OzeVB2X2bNnT/q/wdSaqutdv7uNx8+88fiZNx4/88bSKD/vsV7vqlzci6Ymh2dPHJs9c2z2zLHZM8dmzxybPXNsds9xoeico43Hz7zx+Jk3Hj/zxuLnvTNHAwAAAAAYF+EiAAAAADAuwkUAAAAAYFyEiwAAAADAuAgXAQAAAIBxES4CAAAAAOMiXAQAAAAAxkW4CAAAAACMi3ARAAAAABgX4SIAAAAAMC7CRQAAAABgXISLAAAAAMC4CBcBAAAAgHERLgIAAAAA4yJcBAAAAADGpXDhYpqmkaZprYcBAACTwvUuAFBPChUurlgxFC/4szT+52tdcAEAUH9WrRqKs5+1IS56jetdAKA+tNR6AKP96L8iNmzMPnbsiOjsrPWIAACgen7xq4gNG9LYsMH1LgBQHwpVuTh9eq1HAAAAk+fUk0f2N2xQuQgAlF+hwsU5c2o9AgAAmDwHL0oq+z//RQ0HAgBQJcUKF2fXegQAADA17ryr1iMAAJi4QoWLc+eO7JvgGgCAerZmba1HAAAwcYUKF0dXLm7eXLtxAADAZFsnXAQA6kChwsXW1pE5aNZvqOFAAABgkq3fENHbq1sHACi3QoWLoz3+RK1HAAAAk2vtulqPAABgYgobLq4XLgIAUOfWrKn1CAAAJqa44aK2aAAA6txq4SIAUHLFDRfX13oEAAAwudasMeciAFBuhQ0Xe3pqPQIAAJhc2qIBgLIrbLjY11frEQAAwOQyFRAAUHaFDRd7hYsAANS5TZtrPQIAgIkpbrjYW+sRAADA5Nq0qdYjAACYmMKGi9qiAQCod5uFiwBAyRU2XFS5CABAvdu6LWJgwIrRAEB5FTdcVLkIAEAD2LKl1iMAABi/4oaLKhcBAKhj3d3Z1qIuAECZFTZc7Fe5CABAHZsxPdta1AUAKLPChosqFwEAqGczZmbbzSoXAYASK264qHIRAIA6pnIRAKgHhQ0XBwYiBgetnAcAQH2aMSPbmnMRACizwoaLERF9qhcBAKhTMyvhojfUAYDyKnS4aN5FAADq1fThtujN2qIBgBIrdriochEAgDo1c3hBF23RAECZFTtcVLkIAECd6u7Otlu31nYcAAATIVwEAIAamDYcLm7rqe04AAAmQrgIAAA10NmZbbepXAQASqzQ4aLVogEAqFfTpmVblYsAQJkVOly0oAsAAPWqK69c3FbbcQAATEShw8U+bdEAANSpfEGX/v6Ivr60toMBABinQoeL5lwEAKBe5XMuRqheBADKS7gIAAA10NycjCzqIlwEAEqq2OGiORcBAKhjeWv0VuEiAFBSxQ4XVS4CAFDHpg2Hiz1WjAYASkq4CAAANdLVlW23bq3tOAAAxqvg4aJV8wAAqF/TpmXbbSoXAYCSKna4aM5FAADqWF652GPORQCgpIodLmqLBgCgjk2zoAsAUHKFDhf7hIsAANSxfLXobT2mAwIAyqnQ4eLAQK1HAAAAk6e7O4mIiG0WdAEASqrQ4WK/cBEAgDo2UrlY23EAAIxXocPFgf5ajwAAACZPJVw05yIAUFKFDhdVLgIAUM+6h1eLFi4CAGVV7HBR5SIAAHWsszPb7thR23EAAIxXocNFC7oAAFDP8nCxx5yLAEBJFTpcVLkIAEA96xoOF7dvr+04AADGq9DhospFAADqWdfwnIs9wkUAoKQKHS6qXAQAoJ6NnnNxaCit7WAAAMah2OGiykUAAOpYHi6maURvb23HAgAwHsUOF1UuAgBQx9rbI5Ik2zfvIgBQRoUOFweEiwAA1LGmpiQ6OrJ94SIAUEaFDhe1RQMAUO8s6gIAlFmxw0WViwAA1Ll83sWentqOAwBgPAodLg6oXAQAoM51DYeL2qIBgDIqdLg4NBQxOJjWehgAADBpOoWLAECJFTpcjFC9CABAfRMuAgBlVvhw0byLAADUM+EiAFBmxQ8XVS4CAFDHrBYNAJRZYcPFpuGRDahcBACgjo1ULpprHAAon8KGi62t2VblIgAA9SwPF1UuAgBlVNhwsaUl26pcBACgnnV1JhFhzkUAoJwKGy6qXAQAoBFY0AUAKLPih4sqFwEAqGNdwkUAoMQKGy62NGfbAZWLAADUMZWLAECZFTZcVLkIAEAj6LCgCwBQYoUNFysLuqhcBACgjnV2ZNveHbUdBwDAeBQ2XFS5CABAI+hoz7bbhYsAQAkVNlzMKxetFg0AQD3L26J3CBcBgBIqfLg4oHIRAIA61jHcFr3DnIsAQAkVPlxUuQgAQD3L26L7+iMGB9PaDgYAYD8VNlzM51xUuQgAQD3r7BzZ7+2t3TgAAMajuOGiykUAABpAW1tEkmT727VGAwAlU9hwscVq0QAANIAkSUbmXVS5CACUTHHDxeZsO6ByEQCAOlcJF60YDQCUTHHDRZWLAAA0iDxc1BYNAJRNYcPFfM7FgQEr5gEAUN86h8NFC7oAAGVT3HBR5SIAAA2iPa9c1BYNAJRMYcPFFqtFAwDQIPLKxR3aogGAkil8uDigchEAgDpnQRcAoKwKHy6qXAQAoN5VwkVzLgIAJVPYcDGfc1HlIgAA9c5q0QBAWRU3XFS5CABAg6jMubgjre1AAAD2U2HDxZZ8tei+2o4DAAAmW7u2aACgpAobLjY3Z9uBwdqOAwAAJltnRxIRVosGAMqnsOFiSx4uaosGAKDOWS0aACir4oaLw3MuChcBAKh3VosGAMqqsOFis3ARAIAGYbVoAKCsChsu5pWLg+ZcBACgznVqiwYASqqw4WLrcLjY31/bcQAAwGRrFy4CACVV2HBRWzQAAI1C5SIAUFaFDRcrq0VriwYAoM5ZLRoAKKvChovNebiochEAgDpXWdBFuAgAlExhw8XKgi7CRQAA6lweLvYKFwGAkil8uKhyEQCAepfPudjXHzE4mNZ2MAAA+6H44aI5FwEAqHN55WKEeRcBgHIpbLiYz7nY31/bcQAAwGRra4tIkmxfuAgAlElhw0VzLgIA0CiSJLFiNABQSoUPF7VFAwDQCKwYDQCUUXHDxeG2aAu6AADQCFQuAgBlVNxwcbhyMU2tmAcAQP3rFC4CACVU+HAxQvUiAAD1T+UiAFBGhQ0Xm0eFi4PmXQQAoM6ZcxEAKKPihoujRqZyEQCAepeHi73CRQCgRIobLjZHJEm2399f27EAAMBk61S5CACUUGHDxSRJKvMuDmiLBgCgzrWbcxEAKKHChosRES3N2VZbNAAA9W5ktei0tgMBANgPhQ4X80VdBoWLAADUOatFAwBlVOhwsdIWLVwEAKDOdXRkE46bcxEAKJNyhIvmXAQAoM5ZLRoAKKNih4vmXAQAoEFYLRoAKKNih4vDlYv9/bUdBwAATDarRQMAZVTscLE12w5qiwYAoM5VKhe313YcAAD7o9jhorZoAAAaRGXOxd7ajgMAYH8UO1y0WjQAAA2iw5yLAEAJCRcBAKAArBYNAJRROcJFcy4CAFDnVC4CAGVU6HCx2ZyLAAA0CJWLAEAZFTpczCsXB4WLAADUuY72bNvXHzE4mNZ2MAAAY1TocLG1Ndv2CxcBAKhznZ0j+1aMBgDKotDhYou2aAAAGkRbW0SSZPvbt9d2LAAAY1XocLHZatEAADSIJEkqrdE7VC4CACVR6HCxRbgIAEADaR9e1GWHRV0AgJIoRbg4OFjbcQAAwFToFC4CACVT7HDRnIsAADQQlYsAQNkUO1ystEWntR0IAABMAZWLAEDZlCJc7Fe5CABAA2i3oAsAUDKlCBcHhYsAADSAzs5sq3IRACiLUoSL5lwEAKARVCoXhYsAQEkUPFxMIkK4CABAY+gw5yIAUDIFDxez7cBgbccBAABTYSRctKAhAFAOhQ4Xm5uzrcpFAAAaQYe2aACgZAodLppzEQCARlJZ0MVq0QBASZQiXLRaNAAAjaC9PZtzfMf2Gg8EAGCMCh0utg6Hi/3CRQAAGkBnPueiykUAoCQKHS5qiwYAoJG0Wy0aACiZQoeLzcJFAAAaSKdwEQAomUKHi5U5FwdrOw4AAJgKKhcBgLIpdrjYnG1VLgIA0AhULgIAZdNS6wHsjTkXi+nee9O46j+2RFMyFK97bRJz5ya1HhIAQF1ob8+2FnQBAMpCuMh+++rX0vjZz/siIuKwwyL+6qU1HhAAQJ3o7My2KhcBgLIodlu0cLGQnlg/ej+t3UAAAOpMR165KFwEAEpCuMh+27Rp9/sAAEzM6AVd0tSbuABA8QkX2W/CRQCAyZEv6JKmEX19tR0LAMBYlCNcHKztOBgxOJjG5i0jn2/cWLOhAADUnXxBlwit0QBAORQ7XGzOtioXi2Pzluyd9NxGlYsAAFXT0pJEa2u2b8VoAKAMih0uaosunCdXKqpcBACorrx6ccf22o4DAGAsCh0uNg+Hi4PCxcLI51icPTuJiIjt2yN6e002DgBQLfm8iyoXAYAyKHS4mFcu9gsXCyMPF5csbo7m4bNn8+bajQcAoN6MXjEaAKDoCh0uto5qi05T1XFFsGFjtp0zJ4mZM7N9rdEAANXTKVwEAEqk0OFiXrkYETFoxehCqLRFz2oaCRct6gIAUDUdwkUAoESEi+yXTZuyCtJZs0YqFzcJFwEAqka4CACUSaHDxebmkX0rRhdD3gI9Z05TzJo1fJtwEQCgajry1aIt6AIAlEChw8XRlYvCxWLYvCXbzpyRxMwZ2X5ezQgAwMR1dGZblYsAQBkUOlxsbk4iSbJ94WIxbN+ebbu7k+h04QsAUHWVykXXWABACRQ6XIwYqV4cMOdiIWwfvsjt7BwJF7e78AUAqJr2ypyLukMAgOIrfrg4PO/iQH9tx0Fmx3DlYmdnEh0dWVmpd9UBAKqn04IuAECJFD9cbM222qKLYceoysXKSobbazceAIB6097uDVwAoDyKHy5qiy6UkbbokXfVtUUDAFRPZV5rq0UDACVQ/HAxb4tWuVgIO1UuWtAFAKDq2vMFXXSHAAAlUPxwMa9cFC7W3MBAGv3Dc192dSYqFwEAJkFlzkWViwBACRQ+XGwWLhbG9lHvno+ec3G7d9UBAKqmw4IuAECJFD5czCsXB825WHP5BW5zU0Rb26j5gISLAABVI1wEAMqk+OHi8JyLeTsutZO3P3d0RiSJtmgAgMnQ4RoLACiRwoeLra3ZVlt07eXvnucXvBZ0AQCovvxaq9c1FgBQAoUPFysLumiLrrl8bsW8YjHfDgxki70AADBxHcOrRatcBADKoPDhYvNwW7TKxdrbpXKxY+RrFnUBAKiOTt0hAECJFD5crCzoIlysufwCN7/gbW3NFncZ/TUAACYmv9YaGIjo79cdAgAUW2nCRZWLtbf9SZWLSZJU5l3UtgMAUB15uBihOwQAKL7yhIvmXKy5HcMXt6PbofN9lYsAANXR0pJUFjX0Bi4AUHTFDxfNuVgY+cVt16h30/N31r2rDgBQPa6xAICyKHy42JxXLvbXdhyMXNyOrlzMV4x24QsAUD3CRQCgLAofLuYtIdqia2/HjmxC8Y5RlYvaogEAqs8buABAWRQ+XNQWXRx5W3Tn6MpFC7oAAFSdykUAoCyKHy5aLbowRhZ0SSq3qVwEAKg+4SIAUBYlChfT2g6E3VcuatkBAKg64SIAUBaFDxcrC7qYc7Hm8upEcy4CAEyuDm/gAgAlUfhwMZ9zcVBbdM1VwsVRlYt50Jgv9gIAwMR1mdcaACiJ4oeLw5WL/f21HQcRfX3Ztr195Lb2tuGv+fkAAFTNSFu0N3ABgGIrfLjY2potHqItuvYq4WLbyG1tbclOXwMAYOLMuQgAlEXhw8Xm4bZoq0XXXu9wgNi2U7g4/LXeqR8PAEC96uzM3sAVLgIARVf4cDFvizbnYu317SZcrLRFq1wEAKiaznxBF3MuAgAFV5pwUeVi7e0uXGwTLgIAVJ22aACgLMoTLppzseaEiwAAU0O4CACURfHDRXMuFoZwEQBgaggXAYCyKH64qC26EIaG0ujvz/Z3mnOxPdsKFwEAqqcSLppzEQAouMKHi83CxULIg8WIkUVcIqwWDQAwGVQuAgBlUfhwsVW4WAi9oyoTtUUDAEwu4SIAUBaFDxe1RRdD33BlYnNTREtLUrlduAgAUH2jw8U0TWs7GACAvRAuMia9u1nMZfTnwkUAgOrp7Mi2Q0OuswCAYitPuDhY23E0ut2tFB0xMv9ir4teAICq6egY2dcaDQAUWeHDxebmbDuocrGm9hQuqlwEAKi+5uYk2tuzfeEiAFBkhQ8XtUUXwx4rF4cvegcHIwYGzAcEAFAtlXkXd9R2HAAAe1OacLFfuFhT+6pcHH0fAAAmLp93UeUiAFBkhQ8XW1UuFkIeHOaVirnW1l3vAwDAxI1eMRoAoKgKHy42D4eL5lysrd7ebPvkysXm5qRSXSpcBACoHuEiAFAGhQ8XzblYDHtqix59m3ARAKB6zLkIAJRBecLFwdqOo9EJFwEAppbKRQCgDIofLjZnW5WLtdW7l3Axn4dRuAgAUD0WdAEAyqD44eKotug0TWs7mAZWWdBlL5WLvcJFAICqUbkIAJRBacLFiIhBrdE1oy0aAGBqjcy56A12AKC4ShUuao2unb6+7KI2b4EeTeUiAED1qVwEAMpAuMiY7K1ysV3lIgBA1XV2JhEhXAQAik24yJj09mZbbdEAAFND5SIAUAaFDxebmpJoGh7lgDkXa2akcjHZ5WvCRQCA6hMuAgBlUPhwMSKipTnbqlysHW3RAABTS7gIAJRBKcLF5uHW6EHhYs2MZbXovHUaAICJ6+zItsJFAKDIShEu5vMuqlysnbGEiyoXAQCqR+UiAFAGpQoX+4WLNdM7pnAxnboBAQDUuTxc3LGjtuMAANibUoSLrSoXay6vSmxv3/VrKhcBAKovDxd7VC4CAAVWinCxWbhYc2Oac1G4CABQNV2j2qKHhnSIAADFVIpwMW+LHhys7TgaWR4ctu9utej2JCJULgIAVFNX18i+1mgAoKjKES42Z1uVi7VjQRcAgKnV1hbRPHy13tNT27EAAOxJOcJFbdE1N6a26N6pGw8AQL1LkiS6urP9bdtqOxYAgD0RLjImewsX21UuAgBMiu7h1uhtKhcBgIIqV7hozsWa0RYNADD1uocrF7VFAwBFVYpwsTmfc7G/tuNoVGmaChcBAGqgS+UiAFBwpQgXW1uzrbbo2hgcjBgayvZ3t1q0cBEAYHLk4WKPORcBgIIqRbioLbq2RoeGu51zsX3X+wEAMHF5W7TKRQCgqMoRLuZt0SoXa2L0KtDaogEApk6+oIs5FwGAoipFuNhsteia6s3nW2yNSJJkl6/n4eLoEBIAgImrzLm4La3tQAAA9qAU4WLeFj0oXKyJvS3mMvp2lYsAANVlQRcAoOhKFS6ac7E2hIsAALXR3Z11jVjQBQAoqnKEi8NzLvb313YcjWpf4WK+gnRff0SaatkBAKiWypyL22s7DgCAPSlHuNiabQcGBFe1kIeL+arQTzY6dFS9CABQPSNzLtZ2HAAAe1KOcFFbdE3ts3Kxfdf7AgAwcV3d2daciwBAUZUjXBxui7agS23kq0DvKVxsbo5oGj6TeoWLAABVU2mLVrkIABRUOcLFvHJRuFgT+6pcTJLEoi4AAJOgW+UiAFBwwkX2aV/h4uivCRcBAKqnqzPb9ggXAYCCKkm4mESEORdrpVe4CABQE3nlYm+vxQ0BgGIqRbjYPDznosrF2lC5CABQG/lq0RERW7fWbhwAAHtSinCx0hbdX9txNKo8MGzfS7jYLlwEAKi6lpYkOjuy/W0WdQEACqgU4WJra7bVFl0blcrF9j3fJ69ctFo0AEB1TZuWbbcKFwGAAipFuNiiLbqm+vqy+X32VrlYaYvunYIBAQA0kEq4qC0aACigcoSLVouuqd7hwHAscy6qXAQAqC7hIgBQZKUIF5uFizU1sqBLssf7mHMRAGBy5OHiFuEiAFBApQgX88rFQXMu1oTVogEAaicPFy3oAgAUUTnCRXMu1pRwEQCgdrq7s+3WrWltBwIAsBulCBfz1aL7+2s7jkY1lnCxvX3n+wIAUB3TtUUDAAVWinCxsqCLtuia6N2vykXvqAMAVNO0adm81xZ0AQCKqBThYqVyUVVcTeTViHl14u5UVovunfzxAAA0krwteptwEQAooFKEi3nlYr85F2vCnIsAALWjLRoAKLJShIt5cDVgzsWayNui2/caLmbtOioXAQCqK18tWls0AFBEpQgXK5WLwsWa2J/KRT8jAIDqGlkturbjAADYnVKEi5U5F7VF18T+hIu92qIBAKoqb4veuq224wAA2J1yhYuCq5oYS7jYbs5FAIBJkbdFb9sWMTSU1nYwAABPUo5w0YIuNTWmysX2ne8LAEB15OFimmYBIwBAkZQjXByuXBwYiEhT79ZOtb4xLOiichEAYHK0tUW0DV8Pm3cRACiaUoWLERYMmWpDQ2nlmI9lzkXhIgBAdSVJEjNmZvubt9R2LAAAT1a6cHFAa/SUGh3mChcBAGpjxvRsu3lzbccBAPBkpQgXW1pG9oVXU6u3d2R/TKtF9+75PgAAjM+MGdlWuAgAFE0pwsXm5iSah0eqcnFq5WFuc1NES0uyx/upXAQAmDyVcFFbNABQMKUIFyMiWoZbo825OLV6x7BS9OivCxcBAKovb4vetKm24wAAeLLShIutwsWa6BMuAgDUXL6gy5YtaW0HAgDwJOULF7VFT6mxhovtwkUAgEkzY3o2Pc0mcy4CAAVTnnBxeFEXlYtTKw8L29v3fr88fBwcihgY8I46AEA1WdAFACiq8oSL2qJrYn/bokc/BgCA6pg5HC5usaALAFAwwkX2qrc32woXAQBqZ7oFXQCAgipNuNiiLbomxlq52NSUVAJg4SIAQHVV2qJVLgIABVOacLF1ONyyoMvUGmu4OPo+wkUAgOqqtEVvjkhT81sDAMVRnnBxuHJxQOXilBIuAgDUXl65ODgUsW1bbccCADBaecLFvOVWuDilescRLvYKFwEAqqq9PYn29mx/kxWjAYACKV24qHJxauVViO0qFwEAamrWrGy7cWMtRwEAsLPyhIv5gi7mXJxSlbbo9n3fV7gIADB5Zs/Kths21nIUAAA7K0242DJcuWi16KnV15dNGL4/lYvaogEAqm/27Gy7cUNtxwEAMFppwsU24WJN9PZm27HMudiuchEAYNKoXAQAiqg04aLKxdqwWjQAQDHMyisXN6a1HQgAwCilCRdbK+Gii6mpNBIuJvu8r3ARAGDyzJ6VXY9t0BYNABRIecLF4QVdBizoMqX2p3JRWzQAwOTJV4vWFg0AFEl5wsXhysU+bdFTSls0AEAxVOZcVLkIABRI6cLFAeHilBIuAgAUQ75atMpFAKBIShQuZnPM9GuLnlK9w0Fhe/u+75uHi7195sUEAKi2vHJx48aINHW9BQAUQ2nCxZbhORf7VcVNqXFVLvZO3ngAABpVPufi4GDElq01HQoAQEVpwsW2fLVolYtTqncc4WKvABgAoOra2pKY1p3tb1hf27EAAORKEy625OGiORenVF652D6mcDHZ6TEAAFTX3LnZ9gnhIgBQEKUJF1vztmjh4pTan7boPIDs1RYNADApDjgg265bV9txAADkyhMuDgdXA9qip1Tvjmw7psrF4UVfzLkIADA58nDx8SdqOw4AgFx5wsXhykUtt1Mrr0Icy2rR+X3MuQgAMDkOGG6Lfvxxq0UDAMVQmnAxn3NR5eLUyoPC9o5937cSLqpcBACYFAcckM1xve7xGg8EAGBYacLFfLXoPnMuTpnBwbQyx+VY2qI7hIsAAJNq3nBb9BPaogGAgihNuNiSL+ii5XbKjG5B36+2aOEiAMCkqMy5qHIRACiI0oSL+WrFVoueOjtGhYT7Ey7uEC4CAEyK0Qu6pKl5FwGA2itNuJgHVxZ0mTp5BWJra0RTU7LP++et01aLBgCYHHPnZNv+/ohNm2o7FgCAiBKFi3nlonBx6vTtx0rRo++nLRoAYHK0tiYxe3a2b1EXAKAIShMu5lVxgqup07u/4eLwitK9AmAAgEmzYH62XbOmtuMAAIgoUbiocnHq7djfcHHUvJiDg+YAAgCYDAsXZttVq2s7DgCAiBKGi4NDEQMDgqupUKlcbBvb/UeHkEJgAIDJceBwuLh6tWtiAKD2ShMuCq6mXh4udnSM7f6jf0ZWjAYAmBwLF2YL7alcBACKoDThYmvryL5wcWrkcyeOtS26qSmp/JzMjQkAMDlGKhdrOw4AgIgShYvNzUm0tGT7wsWp0bsj27aNsS06YiSI7BMuAgBMCnMuAgBFUppwMWIk5LIa8dTY39WiR99X5SIAwORYuCDbbtkSsXWreRcBgNoqZbiocnFq7G9b9Oj7CoABACZHV1cSs2Zm+6tW1XYsAADCRfaosqDL/oSLwz+jHTuqPx4AADIHHZRtH11Z23EAAJQqXKzM5ydcnBK9vVmbjbZoAMrikRVDsXHTYK2HAZPukCXZ9uFHajsOAIBShYsqF6fWjonMuehnBMAUW7V6KP7qlRHP+9ONkabmoaO+LVmSRETEihXOdQCgtkoZLgqupoYFXQAokzvvzLbbtpmeg/q3ROUiAFAQpQoX8/n8BFdTo68SLiZjfoxwEYBaEbLQSJYszraPrAiVugBATZUqXNQWPbVULgJQJo+sqPUIYOosOiiiuSmipyfiiSdqPRoAoJGVKlxsFy5OqQnNuShcBGCKPaJykQbS1pbEgQdm+8sfru1YAIDGVqpwUeXi1KpULraN/TEjrevacwCYOoODaax4tNajgKl1+OHZ9oFltR0HANDYhIvs0Xjaojs6dn4sAEyF1Wsi+vtrPQqYWkuPyubF/v3vvakLANSOcJE9ylflbu8Y+2MqbdF+RgBMocceq/UIYOoddWS2/f0DtR0HANDYShkuarmdGn3jaItua8veQe/dMQkDAoA9WLuu1iOAqbf0qGz78MOujwGA2ilVuJhXxalcnBo7hgNCC7oAUHTrhIs0oAMOiJg1K2JwKOLBh2o9GgCgUZUqXMyr4oSLUyNfLbpjP9qi8/vuEC4CMIXWrVO1ReNJkiSOXprt331PbccCADSukoWL2Va4ODXyysVxhYvaogGYQuser/UIoDZOPil78/2OOwXsAEBtlDJctFjI5BsaSisBYVfn2B+X37dne/XHBAB7oi2aRnXySdn2jjsi0lTACABMvVKGiyoXJ9/oysNxVS4KFwGYQsJFGtUxR0e0tUas3xCx4tFajwYAaESlChctFjJ18nAxSfZvQZfOzp0fDwCTrbc3jY2baj0KqI329iSOOy7bv/PO2o4FAGhMpQoXVS5One3DlYcd7RFNTcmYH9fZsfPjAWCyPf5Etm1tre04oFZOOjHb3m7eRQCgBkoVLrYLF6fM9nwxl/2YbzFipHJxu8pFAKbI48OLuRwwt7bjgFo55eR8UZcaDwQAaEilChdVLk6dvPKwcz/DxTyM7O2NGBz07jkAky+vXJwrXKRBnXB8RFNTxKpVEWvWuv4CAKZWKcNFq0VPvnzOxM79WMwlYueVpc2NCcBU2LAh286eXdtxQK10dSWx9Khs/7bbazoUAKABlSpc7LCgy5QZb+ViW1u2CExERI95FwGYAuvXZ5Vas2fVdhxQS099ara94ZcqFwGAqVWucDGfz09oNekqC7rsZ+VikiQjK0b7OQEwBdavz7YqF2lkz3h69u7uzTdnK6gDAEyVUoWLldDKYiGTLl+QZX8rFyOsGA3A1FqvLRrimKMj5s/LruFu+XWtRwMANJJyhYvDoVV/f8TAgHdkJ1OlLXo/KxcjRqodrRgNwFTI51ycI1ykgSVJEs95drb/1a+lkaaulQGAqVGqcHF0i66quMmVV4d2jKdyUfs6AFPoieG26FmzajoMqLmX/kUS7e0Rd98T8ctf1Xo0AECjKFW42Noa0dyc7WuNnlzbd2Tvdo+rLVr7OgBTJE1TlYswbO7cJF78omz/c/+UmnsRAJgSpQoXkyQxn98UmUhbdB4uWi0agMm2dWs2XUpExCzhIsSrXpnEAQdEPPZYxD9/RbgIAEy+UoWLEaNWjFYVN6nylZ47O5P9fmzevq5yEYDJlq8U3d0d0d62/3+zoN50dSXxt2/Ofhe+9u8Rt/xawAgATK7ShYtabqdGXrnYMYHKRdWlAEy2fKXoOXNqOw4okmecncQL/0e2/5GPpbF+vYARAJg85QsXh8MuLbeTK68MHVdbdKV13YUsAJNrvfkWYbfe9IYkjjg8+x157wfMvwgATJ7ShYuVllvh4qSqzLloQRcACixvi1a5CDtrb0/iwx9MYtq0iN/eFfGhj6QxOChgBACqr3ThouBqauTHt2Mc4WKHRXcAmCLrN2RhicpF2NUhhyTxiY8m0doa8fNfRHz6H9MYGhIwAgDVVb5wUVv0lMjborvGVbmY7PQcADBZRioXLeYCu3PKyUm8791JJEnE974f8al/EDACANVVunCxQ+XilLCgCwBlUAkXVS7CHj3n2Um8d1TA+Im/S2NgQMAIAFRH6cLFkbZoF0STqTLnonARgAIz5yKMzZ88L6tgbGqKuOaHEe96bxo9Pa6nAYCJK1+4qC160g0NpdHTk+1Pm7b/j5/WnW23bqvemABgd/Jwca5wEfbpj5+XxMc+kkR7e8RNN0e86S1prF8vYAQAJqZ04WJHRzanktWiJ09PT0Q6fJ3Z3b3/j88fs21r9cYEAE82NJTGho3Z/mzhIozJ05+WxOf+IYlZMyPuuz/ita9P44FlAkYAYPxKFy5aLXrybR0OBdtaI9rb93+C/LzacatwEYBJtGVLxMBAtj97Vk2HAqVy/HFJfOGfklh0UMTqNRGvf2Ma1/9cwAgAjE/5wkVt0ZMub2fuHkdLdIS2aACmxvoN2Xb69Ii2NqtFw/5YfHASX7o0idOfErF9R8R7P5DGP39lyErSAMB+a6n1APaX1aInX15xOJ6W6IiRULKvL6KvL/WCD4BJYb5FmJgZM5L41Ccj/ukLaVz1rYiv/EvEA8vSeM87I6ZPd/0G+2P9+jRuvS3isccimpoijj2mN449Jo3ubr9LQP0rXbioLXry5RWH08dZudjdNbK/bVtEW9vExwQAT/bEcLg4e3ZtxwFl1tKSxJvflMQRR6Txqc+k8YsbIi5alsaHPxhx7DFCEdiXh5ancfkVafzkpyPz1me2RkdHxPnPT+OvX5XEjBl+n4D6pS2aXWybYOVic3MSXcMBo9ZoACbLhuG26DkqF2HCzjs3iS98PokDD4xYtSri9Ren8fWr0khTbdKwO729afzjJUNxwV+n8eOfZMHi0qUR5/5JxB8/L+LQQ5pix46Iq74VccFFadx+h98loH6VrnKxYzhctFr05MnboqeNM1zMH9vTY1EXACbPE+uzF2raoqE6jj0miS9fFvHJv0/jZz+PuOSf0rj1NxHveHvEAXNVXUFu+cNpfPDDaSxbln1+zjMiLrwgiaOOHPk9mTVrVlz7XxviHz+XxiMrIt769jQ+8N6IZz3T7xJQf8pXuTjcFq1ycfLk1YbTxtkWPfqxwkUAJsuGSlu0F2pQLdOnJ/F/P5TE374lidbWiF/dGPGKV6Vx9TWqGCFN0/ju99P4n6/NgsVZsyL+/hNJfPTDTTsFixERSZLEGU9N4p8vS+KZz4jo74/4wIfS+P7Vfo+A+lO6cHH6qNDKBc7k2LYtO67jXS06YqSlepu2aAAmyRMWdIFJkSRJvOiF2WrSxxydXXd/4u/SeMvb0nhgmetvGtPmzWm874Np/P2n0+jtjXjq6RH/8s9JnHXm3t/g6uxM4kMfTOIF52et03/36TR+/FO/R0B9KV+4OD3b9vdH9PbWdiz1akulLXr8lSAqFwGYbPlq0bOFizApjjwiiUv/KYk3vj6J9vaIW38T8devTuMjHx+Khx8WjtA4brs9jQv/ZxrX/zyipSXiDa9L4tN/l8TcMU4X0NycxP/+2yRe+D+ygPEjH0vjN7f5HQLqR+nCxa6uiObhUW/ZUtux1Ktt1WyLVrkIwCTJF3RRuQiTp6UliZf9ZRJXfCWJZz8rC0Z++KOIl78qjXe8ayh+dn0avb1CEupTb28al/zTUPzNW9NYuy7i4IMjLv2nJP7qpUk0Ne1fIUaSJPHWvxlpkX73+9L4/QN+d4D6ULoFXZIkiWnT0ti0OQsX582r9YjqTzUWdBlpi04jwlxYAFTX4GAaGzZm+3Nm13Qo0BAWHZTEhz+YxMv+Mo0rvprGDb+M+NVNEb+6KY3u7ojTTk3j9NOSOProiMMOjeieQAcMFMFdd6fxsU9ki7FERJx3bsTfXJxEV9f4z+3m5iTe/96IjZvSuP2OiLe/I41L/yniwAP9vgDlVrpwMSJrjd60eaR9l+qqhIsTqFzM58b0MwJgMmzeHDE0FJEk2YT6wNQ49pgkPv6RJB5ZkcbV/5nGdT+OWLsu4hc3RPzihpEqrIUL0li4MGL+vIgD5kXMn5fEvAMiFiyIOOjA7Ho+SQQqFM+atWlcelka/3Vd9vncuRHv+t/7nltxrNrbk/j4RyIufnMayx6MeNs70vjC5yNmzvT7AJRXKcPFaYKrSZW3RXdPqHIxiYg0tvkZATAJ8sVcZs7M2jaBqbVkcRJveF0Sr3ttGvfel83HePsdaTz4YMS6xyNWr8k+Ruzc/jmtO+LAA9NYsjjiyCOTOPLIiKOOyIIcoSO1sGFDGt/4Zhpfvyqiry+77dw/ibj4DUnMmFHdc3L69CQ+9cmI//XGrDLyne9J4x8/HdHR4dwHyqmU4WK+qIs5FyfH1mrMudi983MBQDXli7loiYbaampK4rhjI447NuKVL8+Ckc2b03hoeVbRuG5dxLp1aaxbl32+enXE+g3ZNeLvH8g+Rq+cO2tWxJFHpHHkERFHHJHEkYdHHHJIRFub0IXJ8ciKNL7+jTR+8MOIvv7stlNOzkLFY46evPNu3rwkPv13Ea+/OI277o74P/83jY98yBtmQDkJF9lF3hY9kcrFSnWpnxEAkyCvXJwtXITCmTEjiZNPGn3LzmHJjh1prFod8dhjEcsfjvj9A2k88EDEIysiNm6M+O9bs4+82rG5OWLJ4jQOOSRiyeKIJUuSOGRJtm9uR8Zjy5Y0fnp9xA9+mMZv7xq5/dhjIy54eRJP/8OpqaA97NAkPvmxiLe+LZvH9B8+m8bb/1b1LlA+5QwXK8GVxUKqbfv2NHp7s/3Zs8b/PDNnZttNmyY8JADYxbp12dbCblA+HR1JHHZotvDLHz4tIr+e37EjjQcfili2LOKBZdl8dA88kFU5PrQ8+8iMVDrOnZu1Vi9ZHHHIkiQWL4k45uiI2bO8RmBEmqbx2GPDixDdmMZtt0cMDGRfa2qKOPOMiL96WRaKT3Wwd/JJSXzw/RHv+2Aa3/1+RFtbGn9zsYARKJdyhovDlYtbzedXdfnKm21tEZ2d43+evJIkfz4AqKa1a7NwYcH8Gg8EqJqOjpEW6zxwTNM01qyNePDBrLLxkRVpPPJIxCOPZO3VTzyRfdx2e8To0PHQQ9M45eSIU09O4uSTIw6YK6hpJAMDaSx/OOLO30bccWcad96ZzQU62qGHRvzpHyfxvOdmLcq1dM4zknjH2yI++ak0rvpWxOBgGm/5m2zaAYAyKGW4OG1atliIBV2qb8OGbDt79sTeLcurHjdtyv44Njf7wwhA9axdm23nz/f3BepZkiSxcEHEwgURTzsrYnTX0pYt6XDgmIWOKx7JqhsffiRi+fLs4zvfzQLHgxelcfLJEaeclIWNBy5UGVYPBgbSWLsuYuXKiAeWRSx7MI1ly7J2+/7+ne/b3Bxx0okRTzsriT88K2Lx4mKdA+efl0SSZAHjf3wnYsPGNN737mx1aYCiK2W4aM7FyZNXGk50gvyZMyOSJCJNIzZvNicWANW1Zrgter7KRWhY06cncfxxEccfFzE6dNy4MY07fhtx++1p3H5HFjo9ujL7+M9rsrBx9uyIQ5aksWRJxKKDkpg1K7t+nTUzYsaMbHHC7m7BTq319KSxenW28viatRGrV6exek32BtPq1RGPP5G93tidzs7s3Dj5pCROOjGriO3sLPbP87znJ9HWFvGxT6bx059lVfof+VDtKysB9kW4yE425pWLsyb2PC0tScyckcbGTVk1pHARgGrKKxcXmHMReJJZs5I45+yIc87OApktW7LVeG+/I4077oz43b3Z9emGDRG33xExup36yVpb0+juzsLGru6R0DHfZh9JdHdHtLZkb65Hkm2TGPl82rTe6NmWRpJEtLRmc8hPnxYxY2bE3DmNvUJwf38aq1ZFPPJoxIoVESseTYe3EY8/vu/Ht7VGLFwYcfjhEUcekcThh0UccURWnVrGtuLn/VESBxwQ8Z73p3H3PREX/s803v2uiKc/rXzfC9A4yhkuWol40qwfDhdnVSEMnDU7YuOm7DkPn/jTAUBEZIuP5dcAKheBfZk+PYmzzow468yRhWOWL8/apx9ZkVXGbdqcTeezcVPWdbNtW/bY/v5sBeuNG/f2L+w5nByx5/mcmpsiDpiXxoL5EQsWZHPJzp2bxJw5WfA4Z3ZEW3tES3NEc0vEQH/E9h0RvTuGt73Zx44dEb19w9vebMGSvOu3qWnX/SQZ2W9uikiaIpqSiKbmbJs0ZV9/8m3Nw4/Jb2savl9LS0R7e0RHR0RHe0R7Rxa47uiN2LE9W5hn7dqsCnH16jRWDIeJq1ZFDA7t+cjNmJG1xS+YH7FgYcTCBUksmJ8FigvmT3w6pyI67dQkvnRpxAc/lMb9v49413vS+OM/SuMNr0tirvlDgQIqZ7hoQZdJs2HDcKvIrIk/1+xZEcvDoi4AVFdetdjdnc/DDDB2HR1JHHNMxDHHRIxupx5taCiNnp4sENs26mPrtohtWyO29URs3ZZGz7aR+wwMZC26eZtuvp+mES0tLdHfPxBpmgWWW7dmhRKbNmePW7Mm+4jf5iMYS2BZPzo7sjkQFx+cb5NYvDji4IMjZkxvzP/nFx+cxKX/FPHF/5fGN66K+NF/RdzwqzRe9pcRL36Rv39AsZQyXJw5I9tu3JStIFdv71TVUmXOxTkTP6b5vI35IjEAUA1r8sVctEQDk6SpKYlp0yKmTdvbvcZ+vTx79szYsJuL4qGhNNZvyOYPXLM2CxjXrk3jifUR69dnHUAb1kf09UUMDEYMDWULk3R2ZJWB+bajPasaHP3R0jIcdA4HnENP2k+HsghzaHDk88Gh7OuDg8P3G8o+Ru9XPoYfk3/ePxDR15tVKubVlNmxzKoZOzuz/7cXDC/Qc/DBSSwZDhQPOKD+qg+roa0tiTe9IYnnPjuNT30mjfvuj/h/X07j378R8Sd/nMbz/ySJo45y3IDaK2W4OHdutu3vz9oXZs2q6XDqSmW16FkTf658nsUNG9PYn4svANibkZWiazsOgIlqakrigLkRB8yNOOH4/NY9XzcPDaWlmUdwaCiNgYGI1lbB4UQde0wSl30h4qc/i7j8ijSWPxzxzW9FfPNbaRx5RBrPPCdr/V96lGMN1EYpw8W2tiRmzcwWC3n8CeFiNeXzyVRjAZZZs5KISCuLxABANax8LGsXPPDAGg8EYIqVJViMyMba1lbrUdSP5uYknvuciGc9M+KWX0dc88M0bvhlthr6A8vS+H9fzopwTn9KGieflMQpJ2Ut5sJGYCqUMlyMyErnN26KWPd4xJFH1Ho09SOvXKxGYDtSuTjx5wKA3IpHs+2Sg71gAqCxNDePLFC0eXMaP/t5xI03pvHft0Y88UTEj66N+NG1w/Poz444+cQ0Tj45iRNPiDji8IjWVn87geordbj4wLKIx9fVeiT1Y2AgqwaNqE7lYt5a/cT6iT8XAOTycPHgg2s7DgCopRkzknjBeREvOC+Jvr407vxtxO13pHH7HRH33JMVjvzs5xE/+3kWNra1Rhx5ZBrHHZu1Wh99dMTBiyJaWgSOwMSUNlycd0C2ffyJ2o6jnqxbl03G3No6shjLRCxcmG1Xr574cwFARDaH18qV2b5wEQAybW1JnP6UiNOfkgWFfX1p/O7eiDvuzALHe36XrVJ+z++yj3xF8paWiMUHp3HooRGHHhJx6KFJHHZottCOKkdgrEobLh4wHC6ue9xiIdWy8rFse+DC6sznctDwXFgbNkT09KTR1eXnBMDEPP54xI4dEc1NI39nAICdtbUlcfJJESefFHHBK5JI0zQeXRnxu3sj7r03Cx4fWBaxfXvEQ8uzj0wWOjY3RyxenMZhh0YcflgWOB52aMQilY7AbpQ2XJw3L1ssRFt09Ty2KtsedFB1nm/atCRmzEhj8+aIVauzOT4AYCIeHa5aPPBAL24AYKySJInFB2cVic97bvb3c2gojbXrIpYvz8LF5Q+nlf2enuz25csjfvqztPI8ra0Rhx2axpFHRBx5ZDK8jZgx3d9kaGTlDRe1RVfdY8Orby6qUriYP9fmzRErVwoXAZg48y0CQHU0NSWxcEHEwgURZ/5BRN4RmKZZ6PjgQxEPPRSxfHlaqW7csSPi/t9nH3mVY0TEggVpHHVkttjqUcOh44EHlmuFc2D8ShsuHjA32657vLbjqCd5W/RBB1XvD8BBB2al93lVJABMxAPLshcyhx5S44EAQJ1KkiQWzI9YMD/irFGh49BQGqtWZ+3UDzyQxgMPZPurVkesWZN93PDLiDx07OqKOPKItBI4Hn54xOLFqhyhHpU2XFwwvFjIhg0R27al0d3tP6iJeiwPF6s4h1XeYp1VRfoZATAx996XbY852t8UAJhKTU1JLDoo60475+yRv8NbtqRZ4Lgs4vcPZPsPPZS1Vt/52+xjdJXjzBlpHHxwFjQevCiJgxdFLFgQMW9eVkRk2hMon9KGizOmJzHvgDTWPZ6Va594Qq1HVH55dWF126KzuTHzqkgAGK/+/jSWPZDtH3N0bccCAGSmT0/i1FMiTj0lIi8oGRhI45FHIn7/QBY4/v6BiOUPRzzxRMSmzRGb7om4+56I0aFjRESSRMyZk8b8eVnYOGdOxOxZEbNnJ8PbqGynT8+qLIHaK224GBFx+OFZW/SyB4WLE7V+fRpbtmT/mR9YxcrFRYuy7SOPVO85AWhMDy2P6OuPmNY98vcFACielpasDfrwwyP++HkjAWBPTxorV0asWBnx6KMRK1ZkhSjrHo9Yty5iYCALIJ94Iptea0S6y7/R3Bwxe3YaM6ZHdHdnbdjTuiO6uiO6uyK6u5Po7so+n9ad3WfGjIgZ0yNmzozo7BROQrWUOlw84vCIm2+JWPagltuJyt41yuaw6uys3rFcelQWWK5anQWYc+b4OQEwPnlL9NFHezEAAGXU1ZXEUUdFHHVUfsvI3/OhoTQ2boxYuy4LGteui9i4MY0NGyI2bIxYvz7bbtwQsXVbxOBgxOOPZx+7t2sgOVpLS8SM6WnMmBkxa2bErFl5ZWSS7Q9/nu9Pn26BGtiTUoeLhx+etdw++GCtR1J+d92d/cd7wvHVfd7u7iQOPyyNZQ9G3HV3xDPOru7zA9A4/vvW7G/V8cfVeCAAQNU1NSUxZ07WCj0y/cnuw7y+viyIXL8hYuvWiG09Edvy7basQnLbtuzznm1ZGLl1a8TmLRGbN2WdEAMD2ePXb3jys+8+lGxuipg5M60Ejk8OIxcf3BetrWkljOzu9mYojaPU4eIRh2XbZQ9GpGnqF3cC8srF44+r/jE87rjsZ3TXPWk842w/IwD238BAGjffku0/7Sx/SwCgkbW1JTF/fsT8+Xu6x96vFXbsSGPT5ojNmyM2bYrYuDFi46aIDRvSrDpyY1QqJjduzILJwaF9hZFbdrq1pSViWnc6qk07a93u7o7o6szasjs7s2rOzs6R27q6Rn8tu72rK6K52fUPxVXqcPGQQyLaWrNf9EceyT5n/w0MpJVWs+OrXLkYEXHC8Ul8/+o07rqr+s8NQGO4486sEmHWrIhjj6n1aACAMuvoSKKjI2LBLuHk7gO8/v6sUnLjxpHAccPGLIzM97dsaYnHnxiIDRsitm/PKiM3bso+9m7v7dsjY06zoDEPKbuGw8fhALKtbfRHUtlvbc227aP2821LS5aptLZFtLZkt4/+UMDFWJU6XGxrS+K449K4/Y6I2+8ULo7XjTdF7NiRlXQfsmTf9x8cHIyf/exn8cADD8SCBQvirLPOiubm5j3e/5STs+1dd0esXZvG/Pn+gwJg/1x7XXbh/bQzvXMPwM4GBwfjxhtvjDVr1ozp9Qnsr9bWJOYNr2C9s5FrktmzZ8aGDVlZY29vGhs35S3a2XbrtpEW7R07IrZvT6OnJwsie7Zn29EfPT3Z7f392fPv2JF97Fo5uTtjCyz3paUljba2iI72iPb2iPaOUfvtER0dw9vhr7W3RTQ17fbw7BTbNjVlazM0NSXR1DT68+GPJFuwp3VUENrWOmp/N7e3jgpQW1oEo1Ot1OFiRLbc/e13RNx+Rxr/43wnz3h8/z+z/3j+9I/3PUHt97///XjPe94fK1eOLP+8aNGS+NjH/m+cf/75u33MooOSOOXkLAS+5ocRF15QvbEDUP/WrE3jR9dm++ef5289ACPG8/oEJlt7e7KbqsgnG9s1TV9fWgka87Ay/9g2vN2+PbtfX182n2RfX/bRP7zt7ctCyvz2vv7s84H+kf3+/myRnNEGBrKPnp5xHYYxqE4I+mRJEtHamkZbaxZS5rdlOyOfJ6Pu39Q0Ep7moWln50iI2pkHqR1JtLdHzJmzI4YG02gf/trof2d0rjl6P33Stzv689H7zc1ZSNrcnAWlra0RLcP7La0RLc3Z3J9NOyW5tVX6cPHkk7JFXW6/3byL47FuXRo33Zztn3fuvoPFCy+8MKZNf14cesRl0dFxTOzYcW88se4f4sILL4zLL798j3/Az3t+ErffkcZ/XpPGBa+wyhYAY5OmaVzyT2kMDGRvKJ54gr8fAGQm8voEyiJvcZ41a1/3nPg10uBgds2Vh415UNnbO/KxY8fwtjeid0cWXGa3pdHbOxKS7RScjf5H0uxrQ2nE0GC2TYcihoZ2vm1wcOdAtDKmPBwdvi0PTgcGRv0T6cjjqi//brZNxpOP2YzpEf/5veJkYKUPF48/LiuFXfd4xK2/iTj9KbUeUbn84EfZL/HJJ0UsWbLnk3JwcDDe8573x7Tpz4uDD7kykiRLyLu6T4/Orivj0YdfGe997wfi3HPP3W0LwjOfEfGPn41YtTriN7f5OQGwb2maxhe+mMbPrs/eqX3da4tx8QRA7U309Qmwq+bmJJqbswq9/Vfb67ShobQSPo4OIYeGsrCxEnamI/Hg6NsHB0cC1O07suB0R+9IO/qOHWklXN3RGzE01BabN/dl998+6t+JUf/OqKA1GVUxme3stKl8LR0OVgcGhytH+0ftD4wEqZu3ZGPp7JyMo7n/Sh8udnYm8YLz0vjmf0T8w2fTOPnk6pXVtrdtjd6+oao9XxH98pfZdl9VizfeeGOsXPlIHHrEZZU/3LkkaYq5894Sy5f9adx4443x9Kc/fZfHd3Qk8dznpvGd70Zc8v+lcfxxk1P+XASNcN6Ml2OzZ47Nnjk2e1bvx+bBB7P5eiMi3vrmJI4/TrgIQGair0+A+tLUlFTmgpwcO1+Hzp49vTLH5lTavj2NP/rT4uUppQ8XIyJe9tIkvvv9NB5+JOLhR/Z9/7HrreaTFda07ohnnrP3+6xZsyYiIjo6dr9EZ/vw7fn9ducF5yXxne+msWxZxLJl4xtrOTTGeTM+js2eOTZ75tjsWf0fm9bWiLe9JYnzni9YBGBENV6fAJRNR0fEiSeM7BdFXYSLC+Yn8em/i7jzt9V93s7Ojti+fUd1n7SAnnp6VgG6NwsWLIiIiB077o2u7tN3+Xrvjnt3ut/uLD0qiY/+34iHHprAYEugUc6b8XBs9syx2TPHZs/q/dh0dUY8+9kRB8wdW7CYX2y1tLRER8fgvh8AQGlV4/UJQNkkSRL/3yUj+0VRF+FiRMRppyZx2qnVfc7Zs7tiw4b6rwoZi7POOisWLVoST6z7h+jsunKn1oM0HYon1v1jHHzwIXHWWWft9XnOOTuJc86e7NHWlvNmzxybPXNs9syx2TPHZmf5xdbs2TNi48aNtR4OAJOoWq9PAMqmSKFirjjrVlNozc3N8bGP/d/YuuXaePThV0bPtl/H4OCW6Nn263j04VfG1i3Xxkc/+mGTJQNQU0mSFPKCC4Dq8voEoDgKFS7m7UwnnlCs3nEy559/flx++eUxY/rvYvmyP4377j4sli/705g54964/PLL4/zzz6/1EAEACq2jI+LUU1pc70IVeH0CUAyFaosuau84I84///w499xz46677ooHHnggFixYEGeddZZ3BAEAxiBJkrjy8hmxYcMG17tQBfnrkxtvvDHWrFnj9QlADRQqXIwQKpZBc3NzPPOZz4yTTz651kMBACgd7ftQXc3NzfH0pz+91sMAaFiFaosGAAAAAMpDuAgAAAAAjItwEQAAAAAYF+EiAAAAADAuwkUAAAAAYFyEiwAAAADAuAgXAQAAAIBxES4CAAAAAOMiXAQAAAAAxkW4CAAAAACMi3ARAAAAABgX4SIAAAAAMC7CRQAAAABgXISLAAAAAMC4CBcBAAAAgHERLgIAAAAA45KkaZrWehAAAAAAQPmoXAQAAAAAxkW4CAAAAACMi3ARAAAAABgX4SIAAAAAMC7CRQAAAABgXISLAAAAAMC4tNR6AFPpzjvvjEsuuSRuu+22GBgYiKVLl8aFF14Y55577pge/x//8R/x7ne/e49fv+KKK+IP/uAPqjXcKfPd7343br311rjrrrvi/vvvj/7+/vj4xz8eL3rRi/breYaGhuJf//Vf4xvf+EY8/PDD0dXVFU972tPirW99ayxevHiSRj+5qnFsbr755rjgggv2+PXxHOtaW7NmTfzgBz+In//85/Hggw/G448/HjNnzozTTjstXv3qV8fJJ5885ueqt/OmWsemHs+b3t7e+MxnPhN33XVXPPzww7Fp06aYMWNGLF68OF7ykpfEC17wgmhtbR3Tc9XTeVOt41KP58yeXHbZZfHpT386IiK+/vWvxymnnDKmx9XTeUOxTPQaMyKir68vLrvssvje974Xq1atipkzZ8aznvWseMtb3hJz586dxNEzHl5XNA6vlRqP14CNxWvb6miYcPGmm26KV7/61dHW1hbPf/7zo7u7O6699tp461vfGqtXr46LLrpozM/1nOc8J4499thdbl+0aFE1hzxlPvvZz8bKlStj9uzZMX/+/Fi5cuW4nucDH/hAXHXVVXHUUUfFK1/5yli7dm384Ac/iF/+8pfx9a9/PQ499NDqDnwKVOvYREScccYZccYZZ+xy++7OpaK78sor40tf+lIsWbIk/vAP/zDmzJkTDz/8cFx33XVx3XXXxac//ekxX1zX23lTzWMTUV/nzbZt2+Lf/u3f4qSTTopnPvOZMWfOnNi0aVP84he/iPe85z1xzTXXxJe+9KVoatp3UX09nTfVPC4R9XXO7M79998fl1xySXR1dUVPT89+PbaezhuKoxrXmENDQ/H6178+brjhhjjllFPiec97Xjz88MNx1VVXxY033hjf+MY3Ys6cOVPw3TAWXlc0Fq+VGo/XgI3Fa9sqSRtAf39/+tznPjc94YQT0nvuuady++bNm9PnPe956fHHH58++uij+3yeb33rW+nSpUvTb33rW5M53Cn3y1/+svL9f/GLXxzX93jjjTemS5cuTV/+8penvb29ldt/9rOfpUuXLk0vuuiiqo55qlTj2Nx0003p0qVL08997nOTMcSa+NGPfpTefPPNu9z+61//Oj3++OPTpz71qTudB3tSj+dNtY5NPZ43g4ODu/3e+/v701e84hXp0qVL05/+9Kf7fJ56O2+qdVzq8Zx5sr6+vvTP/uzP0pe85CXp29/+9nTp0qXpbbfdNqbH1tt5QzFU6xrzm9/8Zrp06dL0b//2b9OhoaHK7V/72tfSpUuXpu9///snZfzsP68rGo/XSo3Ha8DG4rVtdTTEnIs33XRTPPLII3Heeeft9A7B9OnT43Wve1309/fHt7/97RqOsLae9rSnTfjd0auuuioiIt785jdHW1tb5fZzzjknzjjjjLjhhhvisccem9C/UQvVODb16HnPe95u34E7/fTT4w/+4A9i06ZNcd999+3zeerxvKnWsalHTU1NO/2ccy0tLfFHf/RHERHx8MMP7/N56u28qdZxaQSXXnpp/P73v4+Pfexj0dzcvF+PrbfzhmKo1jVmfn7+7d/+bSRJUrn9pS99aSxevDi+//3vx44dO6r/DbDfvK5oPF4rNR6vARuL17bV0RDh4i233BIREU9/+tN3+Vp+269//esxP98999wTX/7yl+Oyyy6La665JjZs2FCdgZbYzTffHF1dXXHaaaft8rWzzz47IkZ+Do1q+fLlcfnll8cXv/jF+M53vhNr1qyp9ZAmRUtLy07bvWm082Z/jk2uEc6boaGh+MUvfhEREUuXLt3n/RvlvNnf45Kr13Pm7rvvjksvvTQuvvjiOPLII/f78Y1y3jC1qnGN2dvbG3fccUccdthhu7yYTZIknva0p0VPT0/cddddVRo1E+F1BePhb1Djqtfrskbhte3YNcSci8uXL4+IiEMOOWSXr82bNy+6urr2qyrkyiuv3Onzjo6OeOMb3xivfe1rJzTOsurp6Yl169bF0qVLd1tJkh/3Rq+8ufrqq+Pqq6+ufN7S0hKveMUr4h3veMd+V+AU1WOPPRa/+tWvYt68efsMQxrtvNmfYzNaPZ43fX198cUvfjHSNI2NGzfGjTfeGA8++GC86EUvirPOOmuvj63n82Yix2W0ej1n3vnOd8YxxxwTr371q/f78fV83lBb1bjGfOSRR2JoaGiP8zDlty9fvjxOP/30iQyXKvC6gv3lb1Bjq8frskbhte3+aYhwcevWrRGRtSvszrRp02LLli37fJ6DDz443v/+98fTn/70WLhwYWzatCluvPHG+MxnPhOf/vSno7OzM175yldWdexlkB+7adOm7fbr+e1jOcb1aM6cOfG2t70tnvWsZ8WiRYti+/btcdttt8WnP/3puPzyyyNJknjXu95V62FOWH9/f7zjHe+Ivr6+ePvb377PP5aNdN7s77GJqO/zpr+/Pz7/+c9XPk+SJC666KJ429vets/H1vN5M5HjElHf58xnP/vZWL58efzHf/zHuC7E6/m8obaqcY051vMz/7eoLa8r2F/+BjWmer4uawRe2+6/hggXq+XJKz11dHTEC1/4wjj++OPjz//8z+Pzn/98vOxlL9uvlkfq31FHHRVHHXVU5fOurq547nOfGyeffHK84AUviCuvvDJe85rXxNy5c2s4yokZGhqKd73rXfHrX/86/uIv/iJe+MIX1npIhTHeY1PP5013d3fcd999MTQ0FGvXro2f/OQn8Q//8A9x++23x5e+9KU9/lGudxM9LvV6ztx2223x5S9/OS6++OL9qvoFKDKvK6C+1et1WSPw2nZ8GmLOxX2lxFu3bt3ju49jcdRRR8VTnvKU2LhxYyxbtmzcz1NW+bHb0zvq+3qHt1HNmzcvnvOc58TAwEDccccdtR7OuA0NDcV73vOeuPrqq+MFL3hBfOhDHxrT4xrhvBnvsdmbejlvIrKFTBYuXBh/9Vd/FR/+8IfjN7/5TXzhC1/Y62Ma4bwZz3HZmzKfMwMDA/Gud70rjj766Am1CDbCeUNtVOMac6znZ6O+8VI0Xlewv/wNYrQyX5c1Aq9tx68hwsV8rprd9bevW7cuenp6djtvyv6YPXt2RERs3759Qs9TRl1dXTFv3rx49NFHY3BwcJev58d9ose4HpX9vBkaGop3v/vd8e1vfzvOO++8+MQnPhFNTWP7b6Xez5uJHJt9Kft5szv5JPj7muS43s+bJxvrcdmXsp4zPT09sXz58vjd734XJ5xwQhx99NGVj3w11r/8y7+Mo48+Oq677ro9Pk+jnTdMnWpcYy5evDiampoqc/k9WX77nuZkZGp5XcH+8jeIJ/M7Xkxe205MQ4SLT33qUyMi4oYbbtjla/lt+X3GY3BwsLKC30EHHTTu5ymzM844I3p6euI3v/nNLl/LVzudyDGuV/m7VU9eHbIM8v98v/Od78S5554bf/d3f7ffc6HV63lTjWOzN2U+b/Zk7dq1ETG2ldjq9bzZnf05LntT1nOmra0tXvziF+/2I3+B/+xnPzte/OIX7/N7a6TzhqlTjWvMjo6OOOmkk+Khhx6KlStX7vS1NE3jV7/6VXR1dcUJJ5xQpVEzEV5XMB7+BjFaWa/L6pnXthPXEOHiWWedFYsXL46rr746fve731Vu37JlS1x66aXR2tq6Ux/92rVrY9myZbu0O+R/6EcbHByMT33qU/Hwww/HH/zBH8T8+fMn7fsogvXr18eyZcti/fr1O93+F3/xFxGRTbrf19dXuf3666+PW265JZ7+9KfX/X+eezo2uztvIiL+5V/+JW6++eY49NBD48QTT5yKIVZNXi7+ne98J/7kT/4k/v7v/36v//k20nlTrWNTj+fNAw88sNt3aLdv3x4f//jHIyLinHPOqdzeKOdNtY5LPZ4zHR0d8dGPfnS3H6eeempERPyv//W/4qMf/Wgce+yxEdE45w3FUK1rzPz8/MxnPhNpmlZu//d///dYsWJFnH/++dHR0TG53wxj4nUFe+NvUONppOuyeuW1bXUk6egrmDp20003xatf/epoa2uL5z//+dHd3R3XXnttrFy5Mt75znfGRRddVLnvu971rvj2t78dH//4x+NFL3pR5fbR7VgLFiyITZs2xS233BLLly+PhQsXxle/+tVYvHhxLb69Cbnqqqvi1ltvjYiI+++/P+6+++447bTTKiW7T3nKU+IlL3lJRERccskl8fnPfz4uvvjieNOb3rTT87zvfe+Lq666Ko466qg455xzYt26dXHNNddEd3d3/Pu//3scdthhU/uNVUE1js2zn/3saGlpiRNOOCEWLFgQ27dvjzvuuCPuueeemDFjRvzzP/9znHTSSVP/zU1A/r12dXXFBRdcsNuqquc+97mVF/uNdN5U69jU63nzla98JZ7ylKfEokWLYtq0abFmzZr4+c9/Hhs3bozTTz89/vmf/7nyArpRzptqHZd6PGf2Jv9b/fWvfz1OOeWUyu2Nct5QHNW4xhwaGorXvOY1ccMNN8Qpp5wST33qU+ORRx6Ja6+9NhYtWhRXXXVVzJkzpxbfHrvhdUVj8Vqp8XgN2Fi8tq2Ohll+7Mwzz4yvfe1r8bnPfS6uueaaGBgYiKVLl8bb3/72OPfcc8f0HBdddFHcfvvt8atf/So2bdoUra2tsWTJknj9618ff/3Xfx0zZ86c5O9ictx6662Vuatyv/nNb3Yq583/89ybD3/4w7F06dL4xje+EVdccUV0dXXFH/3RH8Vb3/rWWLJkSdXHPRWqcWxe+tKXxg033BC//vWvY+PGjdHU1BQHHXRQvOpVr4qLLrooFi5cOCljn0x521ZPT09ceumlu73PokWLKv8B7029nTfVOjb1eN4885nPjLVr18Ztt90Wt99+e/T09MS0adPi6KOPjuc///nx53/+52Nu/62n86Zax6Uez5lqq6fzhuKoxjVmU1NTfOELX4jLLrssvvvd78bll18es2bNihe/+MXxlre8RbBYMF5XNBavlRqP14CNxWvb6miYykUAAAAAoLoaYs5FAAAAAKD6hIsAAAAAwLgIFwEAAACAcREuAgAAAADjIlwEAAAAAMZFuAgAAAAAjItwEQAAAAAYF+EiAAAAADAuwkUAAAAAYFyEiwAAAADAuAgXAQAAAIBxES4CAAAAAOPy/wMb38P5SE356AAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
@@ -1650,7 +1739,7 @@
"source": [
"# We can try plotting the density and view the high density intervals to understand the variable better\n",
"az.plot_density(\n",
- " trace,\n",
+ " idata,\n",
" group=\"sample_stats\",\n",
" var_names=\"accept\",\n",
" point_estimate=\"mean\",\n",
@@ -1666,20 +1755,19 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "Last updated: Tue Apr 06 2021\n",
+ "Last updated: Tue May 31 2022\n",
"\n",
"Python implementation: CPython\n",
- "Python version : 3.9.2\n",
- "IPython version : 7.21.0\n",
+ "Python version : 3.10.4\n",
+ "IPython version : 8.4.0\n",
"\n",
- "seaborn : 0.11.1\n",
- "pandas : 1.2.3\n",
- "arviz : 0.11.2\n",
- "matplotlib: 3.3.4\n",
- "numpy : 1.20.1\n",
- "pymc3 : 3.11.2\n",
+ "arviz : 0.12.1\n",
+ "numpy : 1.23.0rc2\n",
+ "pymc : 4.0.0b6\n",
+ "matplotlib: 3.5.2\n",
+ "pandas : 1.4.2\n",
"\n",
- "Watermark: 2.2.0\n",
+ "Watermark: 2.3.1\n",
"\n"
]
}
@@ -1693,13 +1781,25 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "Updated by Meenal Jhajharia"
+ "* Updated by Meenal Jhajharia\n",
+ "* Updated by Christian Luhmann"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ":::{include} ../page_footer.md\n",
+ ":::"
]
}
],
"metadata": {
+ "jupytext": {
+ "notebook_metadata_filter": "substitutions"
+ },
"kernelspec": {
- "display_name": "Python 3",
+ "display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
@@ -1713,7 +1813,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.2"
+ "version": "3.10.4"
}
},
"nbformat": 4,
diff --git a/myst_nbs/diagnostics_and_criticism/sampler-stats.myst.md b/myst_nbs/diagnostics_and_criticism/sampler-stats.myst.md
index e0325c4a6..ef18c9d38 100644
--- a/myst_nbs/diagnostics_and_criticism/sampler-stats.myst.md
+++ b/myst_nbs/diagnostics_and_criticism/sampler-stats.myst.md
@@ -1,34 +1,41 @@
---
jupytext:
+ notebook_metadata_filter: substitutions
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.13.7
kernelspec:
- display_name: Python 3
+ display_name: Python 3 (ipykernel)
language: python
name: python3
---
-# Sampler statistics
+(sampler_stats)=
+# Sampler Statistics
When checking for convergence or when debugging a badly behaving
sampler, it is often helpful to take a closer look at what the
sampler is doing. For this purpose some samplers export
statistics for each generated sample.
+:::{post} May 31, 2022
+:tags: diagnostics
+:category: beginner
+:author: Meenal Jhajharia, Christian Luhmann
+:::
+
```{code-cell} ipython3
import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
-import pymc3 as pm
-import seaborn as sns
+import pymc as pm
%matplotlib inline
-print(f"Running on PyMC3 v{pm.__version__}")
+print(f"Running on PyMC v{pm.__version__}")
```
```{code-cell} ipython3
@@ -47,13 +54,13 @@ with model:
```{code-cell} ipython3
with model:
step = pm.NUTS()
- trace = pm.sample(2000, tune=1000, init=None, step=step, cores=2, return_inferencedata=True)
+ idata = pm.sample(2000, tune=1000, init=None, step=step, chains=4)
```
- `Note`: NUTS provides the following statistics( these are internal statistics that the sampler uses, you don't need to do anything with them when using PyMC3, to learn more about them, [check this page](https://docs.pymc.io/api/inference.html#module-pymc3.step_methods.hmc.nuts).
```{code-cell} ipython3
-trace.sample_stats
+idata.sample_stats
```
The sample statistics variables are defined as follows:
@@ -91,19 +98,19 @@ Some points to `Note`:
- `InferenceData` also stores additional info like the date, versions used, sampling time and tuning steps as attributes.
```{code-cell} ipython3
-trace.sample_stats["tree_depth"].plot(col="chain", ls="none", marker=".", alpha=0.3);
+idata.sample_stats["tree_depth"].plot(col="chain", ls="none", marker=".", alpha=0.3);
```
```{code-cell} ipython3
az.plot_posterior(
- trace, group="sample_stats", var_names="acceptance_rate", hdi_prob="hide", kind="hist"
+ idata, group="sample_stats", var_names="acceptance_rate", hdi_prob="hide", kind="hist"
);
```
We check if there are any divergences, if yes, how many?
```{code-cell} ipython3
-trace.sample_stats["diverging"].sum()
+idata.sample_stats["diverging"].sum()
```
In this case no divergences are found. If there are any, check [this notebook](https://github.com/pymc-devs/pymc-examples/blob/main/examples/diagnostics_and_criticism/Diagnosing_biased_Inference_with_Divergences.ipynb) for information on handling divergences.
@@ -115,7 +122,7 @@ energy levels with the change of energy between successive samples.
Ideally, they should be very similar:
```{code-cell} ipython3
-az.plot_energy(trace, figsize=(6, 4));
+az.plot_energy(idata, figsize=(6, 4));
```
If the overall distribution of energy levels has longer tails, the efficiency of the sampler will deteriorate quickly.
@@ -139,26 +146,25 @@ with pm.Model(coords=coords) as model:
with model:
step1 = pm.BinaryMetropolis([mu1])
step2 = pm.Metropolis([mu2])
- trace = pm.sample(
+ idata = pm.sample(
10000,
init=None,
step=[step1, step2],
- cores=2,
+ chains=4,
tune=1000,
- return_inferencedata=True,
idata_kwargs={"dims": dims, "coords": coords},
)
```
```{code-cell} ipython3
-list(trace.sample_stats.data_vars)
+list(idata.sample_stats.data_vars)
```
Both samplers export `accept`, so we get one acceptance probability for each sampler:
```{code-cell} ipython3
az.plot_posterior(
- trace,
+ idata,
group="sample_stats",
var_names="accept",
hdi_prob="hide",
@@ -170,13 +176,13 @@ We notice that `accept` sometimes takes really high values (jumps from regions o
```{code-cell} ipython3
# Range of accept values
-trace.sample_stats["accept"].max("draw") - trace.sample_stats["accept"].min("draw")
+idata.sample_stats["accept"].max("draw") - idata.sample_stats["accept"].min("draw")
```
```{code-cell} ipython3
# We can try plotting the density and view the high density intervals to understand the variable better
az.plot_density(
- trace,
+ idata,
group="sample_stats",
var_names="accept",
point_estimate="mean",
@@ -188,4 +194,10 @@ az.plot_density(
%watermark -n -u -v -iv -w
```
-Updated by Meenal Jhajharia
+* Updated by Meenal Jhajharia
+* Updated by Christian Luhmann
+
++++
+
+:::{include} ../page_footer.md
+:::