Skip to content

Commit c98bd70

Browse files
authored
Rename aesara to pytensor (#481)
1 parent dd0b2b8 commit c98bd70

File tree

99 files changed

+464
-464
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

99 files changed

+464
-464
lines changed

examples/case_studies/GEV.ipynb

+4-4
Original file line numberDiff line numberDiff line change
@@ -45,12 +45,12 @@
4545
"metadata": {},
4646
"outputs": [],
4747
"source": [
48-
"import aesara.tensor as at\n",
4948
"import arviz as az\n",
5049
"import matplotlib.pyplot as plt\n",
5150
"import numpy as np\n",
5251
"import pymc as pm\n",
5352
"import pymc_experimental.distributions as pmx\n",
53+
"import pytensor.tensor as at\n",
5454
"\n",
5555
"from arviz.plots import plot_utils as azpu"
5656
]
@@ -984,7 +984,7 @@
984984
"Python version : 3.10.6\n",
985985
"IPython version : 8.5.0\n",
986986
"\n",
987-
"aesara: 2.8.6\n",
987+
"pytensor: 2.8.6\n",
988988
"arviz : 0.12.1\n",
989989
"\n",
990990
"pymc_experimental: 0.0.1\n",
@@ -993,7 +993,7 @@
993993
"arviz : 0.12.1\n",
994994
"numpy : 1.23.3\n",
995995
"json : 2.0.9\n",
996-
"aesara : 2.8.6\n",
996+
"pytensor : 2.8.6\n",
997997
"pymc : 3.9.3+1493.g372d7c24\n",
998998
"\n",
999999
"Watermark: 2.3.1\n",
@@ -1003,7 +1003,7 @@
10031003
],
10041004
"source": [
10051005
"%load_ext watermark\n",
1006-
"%watermark -n -u -v -iv -w -p aesara,arviz"
1006+
"%watermark -n -u -v -iv -w -p pytensor,arviz"
10071007
]
10081008
},
10091009
{

examples/case_studies/GEV.myst.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -40,12 +40,12 @@ Note that this parametrization of the shape parameter $\xi$ is opposite in sign
4040
We will use the example of the Port Pirie annual maximum sea-level data used in {cite:t}`coles2001gev`, and compare with the frequentist results presented there.
4141

4242
```{code-cell} ipython3
43-
import aesara.tensor as at
4443
import arviz as az
4544
import matplotlib.pyplot as plt
4645
import numpy as np
4746
import pymc as pm
4847
import pymc_experimental.distributions as pmx
48+
import pytensor.tensor as at
4949
5050
from arviz.plots import plot_utils as azpu
5151
```
@@ -232,7 +232,7 @@ az.plot_pair(idata, var_names=["μ", "σ", "ξ"], kind="kde", marginals=True, di
232232

233233
```{code-cell} ipython3
234234
%load_ext watermark
235-
%watermark -n -u -v -iv -w -p aesara,arviz
235+
%watermark -n -u -v -iv -w -p pytensor,arviz
236236
```
237237

238238
```{code-cell} ipython3

examples/case_studies/LKJ.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -987,7 +987,7 @@
987987
"Python version : 3.7.12\n",
988988
"IPython version : 5.5.0\n",
989989
"\n",
990-
"aesara: 2.4.0\n",
990+
"pytensor: 2.4.0\n",
991991
"xarray: 0.18.2\n",
992992
"\n",
993993
"pymc : 4.0.0b2\n",
@@ -1004,7 +1004,7 @@
10041004
],
10051005
"source": [
10061006
"%load_ext watermark\n",
1007-
"%watermark -n -u -v -iv -w -p aesara,xarray"
1007+
"%watermark -n -u -v -iv -w -p pytensor,xarray"
10081008
]
10091009
}
10101010
],

examples/case_studies/LKJ.myst.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -326,5 +326,5 @@ id: kJCfuzGtr2Pq
326326
outputId: da547b05-d812-4959-aff6-cf4a12faca15
327327
---
328328
%load_ext watermark
329-
%watermark -n -u -v -iv -w -p aesara,xarray
329+
%watermark -n -u -v -iv -w -p pytensor,xarray
330330
```

examples/case_studies/bayesian_ab_testing_introduction.ipynb

+2-2
Original file line numberDiff line numberDiff line change
@@ -2163,7 +2163,7 @@
21632163
"Python version : 3.8.10\n",
21642164
"IPython version : 8.4.0\n",
21652165
"\n",
2166-
"aesara: 2.7.3\n",
2166+
"pytensor: 2.7.3\n",
21672167
"xarray: 2022.3.0\n",
21682168
"\n",
21692169
"matplotlib: 3.5.2\n",
@@ -2181,7 +2181,7 @@
21812181
],
21822182
"source": [
21832183
"%load_ext watermark\n",
2184-
"%watermark -n -u -v -iv -w -p aesara,xarray"
2184+
"%watermark -n -u -v -iv -w -p pytensor,xarray"
21852185
]
21862186
},
21872187
{

examples/case_studies/bayesian_ab_testing_introduction.myst.md

+1-1
Original file line numberDiff line numberDiff line change
@@ -687,7 +687,7 @@ We also plan to create more PyMC tutorials on these topics, so stay tuned!
687687

688688
```{code-cell} ipython3
689689
%load_ext watermark
690-
%watermark -n -u -v -iv -w -p aesara,xarray
690+
%watermark -n -u -v -iv -w -p pytensor,xarray
691691
```
692692

693693
:::{include} ../page_footer.md

examples/case_studies/binning.ipynb

+3-3
Original file line numberDiff line numberDiff line change
@@ -72,7 +72,7 @@
7272
"We are now in a position to sketch out a generative PyMC model:\n",
7373
"\n",
7474
"```python\n",
75-
"import aesara.tensor as at\n",
75+
"import pytensor.tensor as at\n",
7676
"\n",
7777
"with pm.Model() as model:\n",
7878
" # priors\n",
@@ -120,12 +120,12 @@
120120
"source": [
121121
"import warnings\n",
122122
"\n",
123-
"import aesara.tensor as at\n",
124123
"import arviz as az\n",
125124
"import matplotlib.pyplot as plt\n",
126125
"import numpy as np\n",
127126
"import pandas as pd\n",
128127
"import pymc as pm\n",
128+
"import pytensor.tensor as at\n",
129129
"import seaborn as sns\n",
130130
"\n",
131131
"warnings.filterwarnings(action=\"ignore\", category=UserWarning)"
@@ -3538,7 +3538,7 @@
35383538
"pymc : 4.0.0b6\n",
35393539
"arviz : 0.12.1\n",
35403540
"numpy : 1.22.4\n",
3541-
"aesara : 2.5.1\n",
3541+
"pytensor : 2.5.1\n",
35423542
"\n",
35433543
"Watermark: 2.3.1\n",
35443544
"\n"

examples/case_studies/binning.myst.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ In ordinal regression, the cutpoints are treated as latent variables and the par
6969
We are now in a position to sketch out a generative PyMC model:
7070

7171
```python
72-
import aesara.tensor as at
72+
import pytensor.tensor as at
7373

7474
with pm.Model() as model:
7575
# priors
@@ -110,12 +110,12 @@ The approach was illustrated with a Gaussian distribution, and below we show a n
110110
111111
import warnings
112112
113-
import aesara.tensor as at
114113
import arviz as az
115114
import matplotlib.pyplot as plt
116115
import numpy as np
117116
import pandas as pd
118117
import pymc as pm
118+
import pytensor.tensor as at
119119
import seaborn as sns
120120
121121
warnings.filterwarnings(action="ignore", category=UserWarning)

0 commit comments

Comments
 (0)