You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
@@ -154,19 +154,19 @@ In the data set above we've explicitly specified the relationship, and in the fo
154
154
155
155
The model specification for ordinal regression models typically makes use of the the logit transformation and the cumulative probabilities implied. For $c$ outcome categories with probabilities $\pi_1, .... \pi_n$ the *cumulative logits* are defined:
One nice feature of ordinal regressions specified in this fashion is that the interpretation of the coefficients on the beta terms remain the same across each interval on the latent space. The interpretaiton of the model parameters is typical: a unit increase in $x_{k}$ corresponds to an increase in $Y_{latent}$ of $\beta_{k}$ Similar interpretation holds for probit regression specification too. However we must be careful about comparing the interpretation of coefficients across different model specifications with different variables. The above coefficient interpretation makes sense as conditional interpretation based on holding fixed precisely the variables in the model. Adding or removing variables changes the conditionalisation which breaks the comparability of the models due the phenomena of non-collapsability. We'll show below how it's better to compare the models on their predictive implications using the posterior predictive distribution.
0 commit comments