Skip to content

Commit 6fd760d

Browse files
committed
remove references to pymc3
1 parent 169a605 commit 6fd760d

File tree

4 files changed

+14
-4
lines changed

4 files changed

+14
-4
lines changed

examples/variational_inference/GLM-hierarchical-advi-minibatch.ipynb

+1-1
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@
77
"# GLM: Mini-batch ADVI on hierarchical regression model\n",
88
"\n",
99
":::{post} Sept 23, 2021\n",
10-
":tags: generalized linear model, hierarchical model, pymc3.Minibatch, pymc3.Model, pymc3.NUTS, pymc3.Normal, pymc3.Uniform, variational inference\n",
10+
":tags: generalized linear model, hierarchical model, pymc.Minibatch, pymc.Model, pymc.NUTS, pymc.Normal, pymc.Uniform, variational inference\n",
1111
":category: intermediate\n",
1212
":::"
1313
]

examples/variational_inference/empirical-approx-overview.ipynb

+5
Original file line numberDiff line numberDiff line change
@@ -6,6 +6,11 @@
66
"source": [
77
"# Empirical Approximation overview\n",
88
"\n",
9+
":::\n",
10+
":tags: pymc.Empirical, variational inference\n",
11+
":category: intermediate\n",
12+
":::\n",
13+
"\n",
914
"For most models we use sampling MCMC algorithms like Metropolis or NUTS. In PyMC3 we got used to store traces of MCMC samples and then do analysis using them. There is a similar concept for the variational inference submodule in PyMC3: *Empirical*. This type of approximation stores particles for the SVGD sampler. There is no difference between independent SVGD particles and MCMC samples. *Empirical* acts as a bridge between MCMC sampling output and full-fledged VI utils like `apply_replacements` or `sample_node`. For the interface description, see [variational_api_quickstart](variational_api_quickstart.ipynb). Here we will just focus on `Emprical` and give an overview of specific things for the *Empirical* approximation"
1015
]
1116
},

myst_nbs/variational_inference/GLM-hierarchical-advi-minibatch.myst.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.13.7
7+
jupytext_version: 1.13.8
88
kernelspec:
99
display_name: pymc
1010
language: python
@@ -14,7 +14,7 @@ kernelspec:
1414
# GLM: Mini-batch ADVI on hierarchical regression model
1515

1616
:::{post} Sept 23, 2021
17-
:tags: generalized linear model, hierarchical model, pymc3.Minibatch, pymc3.Model, pymc3.NUTS, pymc3.Normal, pymc3.Uniform, variational inference
17+
:tags: generalized linear model, hierarchical model, pymc.Minibatch, pymc.Model, pymc.NUTS, pymc.Normal, pymc.Uniform, variational inference
1818
:category: intermediate
1919
:::
2020

myst_nbs/variational_inference/empirical-approx-overview.myst.md

+6-1
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ jupytext:
44
extension: .md
55
format_name: myst
66
format_version: 0.13
7-
jupytext_version: 1.13.7
7+
jupytext_version: 1.13.8
88
kernelspec:
99
display_name: pymc
1010
language: python
@@ -13,6 +13,11 @@ kernelspec:
1313

1414
# Empirical Approximation overview
1515

16+
:::
17+
:tags: pymc.Empirical, variational inference
18+
:category: intermediate
19+
:::
20+
1621
For most models we use sampling MCMC algorithms like Metropolis or NUTS. In PyMC3 we got used to store traces of MCMC samples and then do analysis using them. There is a similar concept for the variational inference submodule in PyMC3: *Empirical*. This type of approximation stores particles for the SVGD sampler. There is no difference between independent SVGD particles and MCMC samples. *Empirical* acts as a bridge between MCMC sampling output and full-fledged VI utils like `apply_replacements` or `sample_node`. For the interface description, see [variational_api_quickstart](variational_api_quickstart.ipynb). Here we will just focus on `Emprical` and give an overview of specific things for the *Empirical* approximation
1722

1823
```{code-cell} ipython3

0 commit comments

Comments
 (0)