|
4 | 4 | "cell_type": "markdown",
|
5 | 5 | "metadata": {},
|
6 | 6 | "source": [
|
7 |
| - "# Using a \"black box\" likelihood function" |
| 7 | + "# Using a \"black box\" likelihood function (numpy)" |
8 | 8 | ]
|
9 | 9 | },
|
10 | 10 | {
|
|
79 | 79 | "source": [
|
80 | 80 | "def my_model(theta, x):\n",
|
81 | 81 | " m, c = theta\n",
|
82 |
| - " return m*x + c\n", |
| 82 | + " return m * x + c\n", |
| 83 | + "\n", |
83 | 84 | "\n",
|
84 | 85 | "def my_loglike(theta, x, data, sigma):\n",
|
85 |
| - " model= my_model(theta, x)\n", |
86 |
| - " return -(0.5/sigma**2)*np.sum((data - model)**2)" |
| 86 | + " model = my_model(theta, x)\n", |
| 87 | + " return -(0.5 / sigma ** 2) * np.sum((data - model) ** 2)" |
87 | 88 | ]
|
88 | 89 | },
|
89 | 90 | {
|
|
327 | 328 | " the gradient of that function\n",
|
328 | 329 | " x, data, sigma:\n",
|
329 | 330 | " Observed variables as we have been using so far\n",
|
330 |
| - " \n", |
| 331 | + "\n", |
331 | 332 | "\n",
|
332 | 333 | " Returns\n",
|
333 | 334 | " -------\n",
|
|
336 | 337 | " \"\"\"\n",
|
337 | 338 | "\n",
|
338 | 339 | " grads = np.empty(2)\n",
|
339 |
| - " aux_vect = (data - my_model(theta, x)) # /(2*sigma**2)\n", |
340 |
| - " grads[0] = np.sum(aux_vect*x)\n", |
| 340 | + " aux_vect = data - my_model(theta, x) # /(2*sigma**2)\n", |
| 341 | + " grads[0] = np.sum(aux_vect * x)\n", |
341 | 342 | " grads[1] = np.sum(aux_vect)\n",
|
342 |
| - " \n", |
| 343 | + "\n", |
343 | 344 | " return grads"
|
344 | 345 | ]
|
345 | 346 | },
|
|
673 | 674 | ],
|
674 | 675 | "source": [
|
675 | 676 | "_, axes = plt.subplots(3, 2, sharex=True, sharey=True)\n",
|
676 |
| - "az.plot_autocorr(idata_mh, combined=True, ax=axes[0,:]);\n", |
677 |
| - "az.plot_autocorr(idata_grad, combined=True, ax=axes[1,:]);\n", |
678 |
| - "az.plot_autocorr(idata, combined=True, ax=axes[2,:]);\n", |
679 |
| - "axes[2,0].set_xlim(right=40);" |
| 677 | + "az.plot_autocorr(idata_mh, combined=True, ax=axes[0, :])\n", |
| 678 | + "az.plot_autocorr(idata_grad, combined=True, ax=axes[1, :])\n", |
| 679 | + "az.plot_autocorr(idata, combined=True, ax=axes[2, :])\n", |
| 680 | + "axes[2, 0].set_xlim(right=40);" |
680 | 681 | ]
|
681 | 682 | },
|
682 | 683 | {
|
|
711 | 712 | "source": [
|
712 | 713 | "pair_kwargs = dict(\n",
|
713 | 714 | " kind=\"kde\",\n",
|
714 |
| - " marginals=True, \n", |
715 |
| - " reference_values={\"m\": mtrue, \"c\": ctrue}, \n", |
| 715 | + " marginals=True,\n", |
| 716 | + " reference_values={\"m\": mtrue, \"c\": ctrue},\n", |
716 | 717 | " kde_kwargs={\"contourf_kwargs\": {\"alpha\": 0}, \"contour_kwargs\": {\"colors\": \"C0\"}},\n",
|
717 | 718 | " reference_values_kwargs={\"color\": \"k\", \"ms\": 15, \"marker\": \"d\"},\n",
|
718 |
| - " marginal_kwargs={\"color\": \"C0\"}\n", |
| 719 | + " marginal_kwargs={\"color\": \"C0\"},\n", |
719 | 720 | ")\n",
|
720 | 721 | "ax = az.plot_pair(idata_mh, **pair_kwargs)\n",
|
721 | 722 | "pair_kwargs[\"kde_kwargs\"][\"contour_kwargs\"][\"colors\"] = \"C1\"\n",
|
|
0 commit comments