|
| 1 | +"""Implementation of mutate.""" |
| 2 | + |
| 3 | +from __future__ import annotations |
| 4 | + |
| 5 | +from functools import singledispatch |
| 6 | +from typing import Any |
| 7 | + |
| 8 | +import pandas as pd |
| 9 | +import pandas_flavor as pf |
| 10 | +from pandas.api.types import is_scalar |
| 11 | +from pandas.core.common import apply_if_callable |
| 12 | +from pandas.core.groupby.generic import DataFrameGroupBy |
| 13 | + |
| 14 | +from janitor.functions.select import get_index_labels |
| 15 | +from janitor.utils import check |
| 16 | + |
| 17 | + |
| 18 | +@pf.register_dataframe_method |
| 19 | +def mutate( |
| 20 | + df: pd.DataFrame, |
| 21 | + *args: tuple[dict | tuple], |
| 22 | + by: Any = None, |
| 23 | + copy: bool = True, |
| 24 | +) -> pd.DataFrame: |
| 25 | + """ |
| 26 | +
|
| 27 | + !!! info "New in version 0.31.0" |
| 28 | +
|
| 29 | + !!!note |
| 30 | +
|
| 31 | + Before reaching for `mutate`, try `pd.DataFrame.assign`. |
| 32 | +
|
| 33 | + mutate creates new columns that are functions of existing columns. |
| 34 | + It can also modify columns (if the name is the same as an existing column). |
| 35 | +
|
| 36 | + The argument provided to *args* should be either a dictionary, a tuple or a callable. |
| 37 | +
|
| 38 | + - **dictionary argument**: |
| 39 | + If the argument is a dictionary, |
| 40 | + the value in the `{key:value}` pairing |
| 41 | + should be either a string, a callable or a tuple. |
| 42 | +
|
| 43 | + - If the value in the dictionary |
| 44 | + is a string or a callable, |
| 45 | + the key of the dictionary |
| 46 | + should be an existing column name. |
| 47 | +
|
| 48 | + !!!note |
| 49 | +
|
| 50 | + - If the value is a string, |
| 51 | + the string should be a pandas string function, |
| 52 | + e.g "sum", "mean", etc. |
| 53 | +
|
| 54 | + - If the value of the dictionary is a tuple, |
| 55 | + it should be of length 2, and of the form |
| 56 | + `(column_name, mutation_func)`, |
| 57 | + where `column_name` should exist in the DataFrame, |
| 58 | + and `mutation_func` should be either a string or a callable. |
| 59 | + The key in the dictionary can be a new column name. |
| 60 | +
|
| 61 | + !!!note |
| 62 | +
|
| 63 | + - If `mutation_func` is a string, |
| 64 | + the string should be a pandas string function, |
| 65 | + e.g "sum", "mean", etc. |
| 66 | +
|
| 67 | +
|
| 68 | +
|
| 69 | + - **tuple argument**: |
| 70 | + If the argument is a tuple, it should be of length 2, |
| 71 | + and of the form |
| 72 | + `(column_name, mutation_func)`, |
| 73 | + where `column_name` should exist in the DataFrame, |
| 74 | + and `mutation_func` should be either a string or a callable. |
| 75 | +
|
| 76 | + !!!note |
| 77 | +
|
| 78 | + - if `mutation_func` is a string, |
| 79 | + the string should be a pandas string function, |
| 80 | + e.g "sum", "mean", etc. |
| 81 | +
|
| 82 | + !!!note |
| 83 | +
|
| 84 | + - `column_name` can be anything supported by the |
| 85 | + [`select`][janitor.functions.select.select] syntax; |
| 86 | + as such multiple columns can be processed here - |
| 87 | + they will be processed individually. |
| 88 | +
|
| 89 | +
|
| 90 | +
|
| 91 | + - **callable argument**: |
| 92 | + If the argument is a callable, the callable is applied |
| 93 | + on the DataFrame or GroupBy object. |
| 94 | + The result from the callable should be a pandas Series |
| 95 | + or DataFrame. |
| 96 | +
|
| 97 | + `by` can be a `DataFrameGroupBy` object; it is assumed that |
| 98 | + `by` was created from `df` - the onus is on the user to |
| 99 | + ensure that, or the aggregations may yield incorrect results. |
| 100 | +
|
| 101 | + `by` accepts anything supported by `pd.DataFrame.groupby`. |
| 102 | +
|
| 103 | + Arguments supported in `pd.DataFrame.groupby` |
| 104 | + can also be passed to `by` via a dictionary. |
| 105 | +
|
| 106 | + Mutation does not occur on the original DataFrame; |
| 107 | + change this behaviour by passing `copy=False`. |
| 108 | +
|
| 109 | + Examples: |
| 110 | + >>> import pandas as pd |
| 111 | + >>> import numpy as np |
| 112 | + >>> import janitor |
| 113 | + >>> df = pd.DataFrame({ |
| 114 | + ... "col1": [5, 10, 15], |
| 115 | + ... "col2": [3, 6, 9], |
| 116 | + ... "col3": [10, 100, 1_000], |
| 117 | + ... }) |
| 118 | +
|
| 119 | + Transformation via a dictionary: |
| 120 | + >>> df.mutate( |
| 121 | + ... {"col4": ('col1',np.log10), |
| 122 | + ... "col1": np.log10} |
| 123 | + ... ) |
| 124 | + col1 col2 col3 col4 |
| 125 | + 0 0.698970 3 10 0.698970 |
| 126 | + 1 1.000000 6 100 1.000000 |
| 127 | + 2 1.176091 9 1000 1.176091 |
| 128 | +
|
| 129 | + Transformation via a tuple: |
| 130 | + >>> df.mutate(("col1", np.log10)) |
| 131 | + col1 col2 col3 |
| 132 | + 0 0.698970 3 10 |
| 133 | + 1 1.000000 6 100 |
| 134 | + 2 1.176091 9 1000 |
| 135 | + >>> df.mutate(("col*", np.log10)) |
| 136 | + col1 col2 col3 |
| 137 | + 0 0.698970 0.477121 1.0 |
| 138 | + 1 1.000000 0.778151 2.0 |
| 139 | + 2 1.176091 0.954243 3.0 |
| 140 | +
|
| 141 | + Transformation via a callable: |
| 142 | + >>> df.mutate(lambda df: df.sum(axis=1).rename('total')) |
| 143 | + col1 col2 col3 total |
| 144 | + 0 5 3 10 18 |
| 145 | + 1 10 6 100 116 |
| 146 | + 2 15 9 1000 1024 |
| 147 | +
|
| 148 | + Transformation in the presence of a groupby: |
| 149 | + >>> data = {'avg_jump': [3, 4, 1, 2, 3, 4], |
| 150 | + ... 'avg_run': [3, 4, 1, 3, 2, 4], |
| 151 | + ... 'combine_id': [100200, 100200, |
| 152 | + ... 101200, 101200, |
| 153 | + ... 102201, 103202]} |
| 154 | + >>> df = pd.DataFrame(data) |
| 155 | + >>> df.mutate({"avg_run_2":("avg_run","mean")}, by='combine_id') |
| 156 | + avg_jump avg_run combine_id avg_run_2 |
| 157 | + 0 3 3 100200 3.5 |
| 158 | + 1 4 4 100200 3.5 |
| 159 | + 2 1 1 101200 2.0 |
| 160 | + 3 2 3 101200 2.0 |
| 161 | + 4 3 2 102201 2.0 |
| 162 | + 5 4 4 103202 4.0 |
| 163 | +
|
| 164 | + Args: |
| 165 | + df: A pandas DataFrame. |
| 166 | + args: Either a dictionary or a tuple. |
| 167 | + by: Column(s) to group by. |
| 168 | +
|
| 169 | + Raises: |
| 170 | + ValueError: If a tuple is passed and the length is not 2. |
| 171 | +
|
| 172 | + Returns: |
| 173 | + A pandas DataFrame or Series with aggregated columns. |
| 174 | + """ # noqa: E501 |
| 175 | + check("copy", copy, [bool]) |
| 176 | + if by is not None: |
| 177 | + if isinstance(by, DataFrameGroupBy): |
| 178 | + # it is assumed that by is created from df |
| 179 | + # onus is on user to ensure that |
| 180 | + pass |
| 181 | + elif isinstance(by, dict): |
| 182 | + by = df.groupby(**by) |
| 183 | + else: |
| 184 | + if is_scalar(by): |
| 185 | + by = [by] |
| 186 | + by = df.groupby(by, sort=False, observed=True) |
| 187 | + if copy: |
| 188 | + df = df.copy(deep=None) |
| 189 | + for arg in args: |
| 190 | + df = _mutator(arg, df=df, by=by) |
| 191 | + return df |
| 192 | + |
| 193 | + |
| 194 | +@singledispatch |
| 195 | +def _mutator(arg, df, by): |
| 196 | + if not callable(arg): |
| 197 | + raise NotImplementedError( |
| 198 | + f"janitor.mutate is not supported for {type(arg)}" |
| 199 | + ) |
| 200 | + if by is None: |
| 201 | + val = df |
| 202 | + else: |
| 203 | + val = by |
| 204 | + outcome = _process_maybe_callable(func=arg, obj=val) |
| 205 | + if isinstance(outcome, pd.Series): |
| 206 | + if not outcome.name: |
| 207 | + raise ValueError("Ensure the pandas Series object has a name") |
| 208 | + df[outcome.name] = outcome |
| 209 | + return df |
| 210 | + if isinstance(outcome, pd.DataFrame): |
| 211 | + for column in outcome: |
| 212 | + df[column] = outcome[column] |
| 213 | + return df |
| 214 | + raise TypeError( |
| 215 | + "The output from a callable should be a named Series or a DataFrame" |
| 216 | + ) |
| 217 | + |
| 218 | + |
| 219 | +@_mutator.register(dict) |
| 220 | +def _(arg, df, by): |
| 221 | + """Dispatch function for dictionary""" |
| 222 | + if by is None: |
| 223 | + val = df |
| 224 | + else: |
| 225 | + val = by |
| 226 | + for column_name, mutator in arg.items(): |
| 227 | + if isinstance(mutator, tuple): |
| 228 | + column, func = mutator |
| 229 | + column = _process_within_dict(mutator=func, obj=val[column]) |
| 230 | + else: |
| 231 | + column = _process_within_dict( |
| 232 | + mutator=mutator, obj=val[column_name] |
| 233 | + ) |
| 234 | + df[column_name] = column |
| 235 | + return df |
| 236 | + |
| 237 | + |
| 238 | +@_mutator.register(tuple) |
| 239 | +def _(arg, df, by): |
| 240 | + """Dispatch function for tuple""" |
| 241 | + if len(arg) != 2: |
| 242 | + raise ValueError("the tuple has to be a length of 2") |
| 243 | + column_names, mutator = arg |
| 244 | + column_names = get_index_labels(arg=[column_names], df=df, axis="columns") |
| 245 | + mapping = {column_name: mutator for column_name in column_names} |
| 246 | + return _mutator(mapping, df=df, by=by) |
| 247 | + |
| 248 | + |
| 249 | +def _process_maybe_callable(func: callable, obj): |
| 250 | + """Function to handle callables""" |
| 251 | + try: |
| 252 | + column = obj.transform(func) |
| 253 | + except: # noqa: E722 |
| 254 | + column = apply_if_callable(maybe_callable=func, obj=obj) |
| 255 | + return column |
| 256 | + |
| 257 | + |
| 258 | +def _process_maybe_string(func: str, obj): |
| 259 | + """Function to handle pandas string functions""" |
| 260 | + # treat as a pandas approved string function |
| 261 | + # https://pandas.pydata.org/docs/user_guide/groupby.html#built-in-aggregation-methods |
| 262 | + return obj.transform(func) |
| 263 | + |
| 264 | + |
| 265 | +def _process_within_dict(mutator, obj): |
| 266 | + """Handle str/callables within a dictionary""" |
| 267 | + if isinstance(mutator, str): |
| 268 | + return _process_maybe_string(func=mutator, obj=obj) |
| 269 | + return _process_maybe_callable(func=mutator, obj=obj) |
0 commit comments