@@ -24,7 +24,7 @@ diode model equation.
24
24
25
25
.. math ::
26
26
27
- I = I_L - I_0 \left (\exp \left (\frac {V + I R_s}{n Ns V_{th}} \right ) - 1 \right )
27
+ I = I_L - I_0 \left (\exp \left (\frac {V + I R_s}{n N_s V_{th}} \right ) - 1 \right )
28
28
- \frac {V + I R_s}{R_{sh}}
29
29
30
30
Lambert W-function is the inverse of the function
@@ -36,8 +36,8 @@ a form that can be expressed as a Lambert W-function.
36
36
37
37
.. math ::
38
38
39
- z = \frac {R_s I_0 }{n Ns V_{th} \left (1 + \frac {R_s}{R_{sh}} \right )} \exp \left (
40
- \frac {R_s \left ( I_L + I_0 \right ) + V}{n Ns V_{th} \left (1 + \frac {R_s}{R_{sh}}\right )}
39
+ z = \frac {R_s I_0 }{n N_s V_{th} \left (1 + \frac {R_s}{R_{sh}} \right )} \exp \left (
40
+ \frac {R_s \left ( I_L + I_0 \right ) + V}{n N_s V_{th} \left (1 + \frac {R_s}{R_{sh}}\right )}
41
41
\right )
42
42
43
43
Then the module current can be solved using the Lambert W-function,
@@ -46,7 +46,7 @@ Then the module current can be solved using the Lambert W-function,
46
46
.. math ::
47
47
48
48
I = \frac {I_L + I_0 - \frac {V}{R_{sh}}}{1 + \frac {R_s}{R_{sh}}}
49
- - \frac {n Ns V_{th}}{R_s} W \left (z \right )
49
+ - \frac {n N_s V_{th}}{R_s} W \left (z \right )
50
50
51
51
52
52
Bishop's Algorithm
@@ -60,7 +60,7 @@ by a zero diode voltage and an estimate of open circuit voltage given by
60
60
61
61
.. math ::
62
62
63
- V_{oc, est} = n Ns V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )
63
+ V_{oc, est} = n N_s V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )
64
64
65
65
We know that :math: `V_d = 0 ` corresponds to a voltage less than zero, and
66
66
we can also show that when :math: `V_d = V_{oc, est}`, the resulting
@@ -73,24 +73,24 @@ between 0 and :math:`V_{oc, est}` will always find any desired condition in the
73
73
74
74
.. math ::
75
75
76
- I = I_L - I_0 \left (\exp \left (\frac {V_{oc, est}}{n Ns V_{th}} \right ) - 1 \right )
76
+ I = I_L - I_0 \left (\exp \left (\frac {V_{oc, est}}{n N_s V_{th}} \right ) - 1 \right )
77
77
- \frac {V_{oc, est}}{R_{sh}} \newline
78
78
79
- I = I_L - I_0 \left (\exp \left (\frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{n Ns V_{th}} \right ) - 1 \right )
80
- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
79
+ I = I_L - I_0 \left (\exp \left (\frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{n N_s V_{th}} \right ) - 1 \right )
80
+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
81
81
82
82
I = I_L - I_0 \left (\exp \left (\log \left (\frac {I_L}{I_0 } + 1 \right ) \right ) - 1 \right )
83
- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
83
+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
84
84
85
85
I = I_L - I_0 \left (\frac {I_L}{I_0 } + 1 - 1 \right )
86
- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
86
+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
87
87
88
88
I = I_L - I_0 \left (\frac {I_L}{I_0 } \right )
89
- - \frac {n Ns V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
89
+ - \frac {n N_s V_{th} \log \left (\frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
90
90
91
- I = I_L - I_L - \frac {n Ns V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
91
+ I = I_L - I_L - \frac {n N_s V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}} \newline
92
92
93
- I = - \frac {n Ns V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}}
93
+ I = - \frac {n N_s V_{th} \log \left ( \frac {I_L}{I_0 } + 1 \right )}{R_{sh}}
94
94
95
95
References
96
96
----------
@@ -111,4 +111,4 @@ Clifford W. Hansen, Sandia `Report SAND2015-2065
111
111
112
112
[4] "Computer simulation of the effects of electrical mismatches in
113
113
photovoltaic cell interconnection circuits" JW Bishop, Solar Cell (1988)
114
- :doi: `10.1016/0379-6787(88)90059-2 `
114
+ :doi: `10.1016/0379-6787(88)90059-2 `
0 commit comments