Skip to content

Commit fc8cfc0

Browse files
authored
fix: missing subscript for number of cells in series (N_s) in equations (#2296)
1 parent 633ea87 commit fc8cfc0

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

docs/sphinx/source/user_guide/singlediode.rst

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ diode model equation.
2424

2525
.. math::
2626
27-
I = I_L - I_0 \left(\exp \left(\frac{V + I R_s}{n Ns V_{th}} \right) - 1 \right)
27+
I = I_L - I_0 \left(\exp \left(\frac{V + I R_s}{n N_s V_{th}} \right) - 1 \right)
2828
- \frac{V + I R_s}{R_{sh}}
2929
3030
Lambert W-function is the inverse of the function
@@ -36,8 +36,8 @@ a form that can be expressed as a Lambert W-function.
3636

3737
.. math::
3838
39-
z = \frac{R_s I_0}{n Ns V_{th} \left(1 + \frac{R_s}{R_{sh}} \right)} \exp \left(
40-
\frac{R_s \left( I_L + I_0 \right) + V}{n Ns V_{th} \left(1 + \frac{R_s}{R_{sh}}\right)}
39+
z = \frac{R_s I_0}{n N_s V_{th} \left(1 + \frac{R_s}{R_{sh}} \right)} \exp \left(
40+
\frac{R_s \left( I_L + I_0 \right) + V}{n N_s V_{th} \left(1 + \frac{R_s}{R_{sh}}\right)}
4141
\right)
4242
4343
Then the module current can be solved using the Lambert W-function,
@@ -46,7 +46,7 @@ Then the module current can be solved using the Lambert W-function,
4646
.. math::
4747
4848
I = \frac{I_L + I_0 - \frac{V}{R_{sh}}}{1 + \frac{R_s}{R_{sh}}}
49-
- \frac{n Ns V_{th}}{R_s} W \left(z \right)
49+
- \frac{n N_s V_{th}}{R_s} W \left(z \right)
5050
5151
5252
Bishop's Algorithm
@@ -60,7 +60,7 @@ by a zero diode voltage and an estimate of open circuit voltage given by
6060

6161
.. math::
6262
63-
V_{oc, est} = n Ns V_{th} \log \left( \frac{I_L}{I_0} + 1 \right)
63+
V_{oc, est} = n N_s V_{th} \log \left( \frac{I_L}{I_0} + 1 \right)
6464
6565
We know that :math:`V_d = 0` corresponds to a voltage less than zero, and
6666
we can also show that when :math:`V_d = V_{oc, est}`, the resulting
@@ -73,24 +73,24 @@ between 0 and :math:`V_{oc, est}` will always find any desired condition in the
7373

7474
.. math::
7575
76-
I = I_L - I_0 \left(\exp \left(\frac{V_{oc, est}}{n Ns V_{th}} \right) - 1 \right)
76+
I = I_L - I_0 \left(\exp \left(\frac{V_{oc, est}}{n N_s V_{th}} \right) - 1 \right)
7777
- \frac{V_{oc, est}}{R_{sh}} \newline
7878
79-
I = I_L - I_0 \left(\exp \left(\frac{n Ns V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{n Ns V_{th}} \right) - 1 \right)
80-
- \frac{n Ns V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
79+
I = I_L - I_0 \left(\exp \left(\frac{n N_s V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{n N_s V_{th}} \right) - 1 \right)
80+
- \frac{n N_s V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
8181
8282
I = I_L - I_0 \left(\exp \left(\log \left(\frac{I_L}{I_0} + 1 \right) \right) - 1 \right)
83-
- \frac{n Ns V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
83+
- \frac{n N_s V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
8484
8585
I = I_L - I_0 \left(\frac{I_L}{I_0} + 1 - 1 \right)
86-
- \frac{n Ns V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
86+
- \frac{n N_s V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
8787
8888
I = I_L - I_0 \left(\frac{I_L}{I_0} \right)
89-
- \frac{n Ns V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
89+
- \frac{n N_s V_{th} \log \left(\frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
9090
91-
I = I_L - I_L - \frac{n Ns V_{th} \log \left( \frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
91+
I = I_L - I_L - \frac{n N_s V_{th} \log \left( \frac{I_L}{I_0} + 1 \right)}{R_{sh}} \newline
9292
93-
I = - \frac{n Ns V_{th} \log \left( \frac{I_L}{I_0} + 1 \right)}{R_{sh}}
93+
I = - \frac{n N_s V_{th} \log \left( \frac{I_L}{I_0} + 1 \right)}{R_{sh}}
9494
9595
References
9696
----------
@@ -111,4 +111,4 @@ Clifford W. Hansen, Sandia `Report SAND2015-2065
111111

112112
[4] "Computer simulation of the effects of electrical mismatches in
113113
photovoltaic cell interconnection circuits" JW Bishop, Solar Cell (1988)
114-
:doi:`10.1016/0379-6787(88)90059-2`
114+
:doi:`10.1016/0379-6787(88)90059-2`

0 commit comments

Comments
 (0)