@@ -172,16 +172,7 @@ class NDFrame(PandasObject, SelectionMixin):
172
172
_internal_names_set = set (_internal_names ) # type: Set[str]
173
173
_accessors = set () # type: Set[str]
174
174
_deprecations = frozenset (
175
- [
176
- "clip_lower" ,
177
- "clip_upper" ,
178
- "get_dtype_counts" ,
179
- "get_ftype_counts" ,
180
- "get_values" ,
181
- "is_copy" ,
182
- "ftypes" ,
183
- "ix" ,
184
- ]
175
+ ["get_dtype_counts" , "get_values" , "ftypes" , "ix" ]
185
176
) # type: FrozenSet[str]
186
177
_metadata = [] # type: List[str]
187
178
_is_copy = None
@@ -252,29 +243,6 @@ def attrs(self) -> Dict[Optional[Hashable], Any]:
252
243
def attrs (self , value : Mapping [Optional [Hashable ], Any ]) -> None :
253
244
self ._attrs = dict (value )
254
245
255
- @property
256
- def is_copy (self ):
257
- """
258
- Return the copy.
259
- """
260
- warnings .warn (
261
- "Attribute 'is_copy' is deprecated and will be removed "
262
- "in a future version." ,
263
- FutureWarning ,
264
- stacklevel = 2 ,
265
- )
266
- return self ._is_copy
267
-
268
- @is_copy .setter
269
- def is_copy (self , msg ):
270
- warnings .warn (
271
- "Attribute 'is_copy' is deprecated and will be removed "
272
- "in a future version." ,
273
- FutureWarning ,
274
- stacklevel = 2 ,
275
- )
276
- self ._is_copy = msg
277
-
278
246
def _validate_dtype (self , dtype ):
279
247
""" validate the passed dtype """
280
248
@@ -5595,49 +5563,6 @@ def get_dtype_counts(self):
5595
5563
5596
5564
return Series (self ._data .get_dtype_counts ())
5597
5565
5598
- def get_ftype_counts (self ):
5599
- """
5600
- Return counts of unique ftypes in this object.
5601
-
5602
- .. deprecated:: 0.23.0
5603
-
5604
- Returns
5605
- -------
5606
- dtype : Series
5607
- Series with the count of columns with each type and
5608
- sparsity (dense/sparse).
5609
-
5610
- See Also
5611
- --------
5612
- ftypes : Return ftypes (indication of sparse/dense and dtype) in
5613
- this object.
5614
-
5615
- Examples
5616
- --------
5617
- >>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
5618
- >>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
5619
- >>> df
5620
- str int float
5621
- 0 a 1 1.0
5622
- 1 b 2 2.0
5623
- 2 c 3 3.0
5624
-
5625
- >>> df.get_ftype_counts() # doctest: +SKIP
5626
- float64:dense 1
5627
- int64:dense 1
5628
- object:dense 1
5629
- dtype: int64
5630
- """
5631
- warnings .warn (
5632
- "get_ftype_counts is deprecated and will be removed in a future version" ,
5633
- FutureWarning ,
5634
- stacklevel = 2 ,
5635
- )
5636
-
5637
- from pandas import Series
5638
-
5639
- return Series (self ._data .get_ftype_counts ())
5640
-
5641
5566
@property
5642
5567
def dtypes (self ):
5643
5568
"""
@@ -7526,208 +7451,6 @@ def clip(self, lower=None, upper=None, axis=None, inplace=False, *args, **kwargs
7526
7451
7527
7452
return result
7528
7453
7529
- def clip_upper (self , threshold , axis = None , inplace = False ):
7530
- """
7531
- Trim values above a given threshold.
7532
-
7533
- .. deprecated:: 0.24.0
7534
- Use clip(upper=threshold) instead.
7535
-
7536
- Elements above the `threshold` will be changed to match the
7537
- `threshold` value(s). Threshold can be a single value or an array,
7538
- in the latter case it performs the truncation element-wise.
7539
-
7540
- Parameters
7541
- ----------
7542
- threshold : numeric or array-like
7543
- Maximum value allowed. All values above threshold will be set to
7544
- this value.
7545
-
7546
- * float : every value is compared to `threshold`.
7547
- * array-like : The shape of `threshold` should match the object
7548
- it's compared to. When `self` is a Series, `threshold` should be
7549
- the length. When `self` is a DataFrame, `threshold` should 2-D
7550
- and the same shape as `self` for ``axis=None``, or 1-D and the
7551
- same length as the axis being compared.
7552
-
7553
- axis : {0 or 'index', 1 or 'columns'}, default 0
7554
- Align object with `threshold` along the given axis.
7555
- inplace : bool, default False
7556
- Whether to perform the operation in place on the data.
7557
-
7558
- .. versionadded:: 0.21.0
7559
-
7560
- Returns
7561
- -------
7562
- Series or DataFrame
7563
- Original data with values trimmed.
7564
-
7565
- See Also
7566
- --------
7567
- Series.clip : General purpose method to trim Series values to given
7568
- threshold(s).
7569
- DataFrame.clip : General purpose method to trim DataFrame values to
7570
- given threshold(s).
7571
-
7572
- Examples
7573
- --------
7574
- >>> s = pd.Series([1, 2, 3, 4, 5])
7575
- >>> s
7576
- 0 1
7577
- 1 2
7578
- 2 3
7579
- 3 4
7580
- 4 5
7581
- dtype: int64
7582
-
7583
- >>> s.clip(upper=3)
7584
- 0 1
7585
- 1 2
7586
- 2 3
7587
- 3 3
7588
- 4 3
7589
- dtype: int64
7590
-
7591
- >>> elemwise_thresholds = [5, 4, 3, 2, 1]
7592
- >>> elemwise_thresholds
7593
- [5, 4, 3, 2, 1]
7594
-
7595
- >>> s.clip(upper=elemwise_thresholds)
7596
- 0 1
7597
- 1 2
7598
- 2 3
7599
- 3 2
7600
- 4 1
7601
- dtype: int64
7602
- """
7603
- warnings .warn (
7604
- "clip_upper(threshold) is deprecated, use clip(upper=threshold) instead" ,
7605
- FutureWarning ,
7606
- stacklevel = 2 ,
7607
- )
7608
- return self ._clip_with_one_bound (
7609
- threshold , method = self .le , axis = axis , inplace = inplace
7610
- )
7611
-
7612
- def clip_lower (self , threshold , axis = None , inplace = False ):
7613
- """
7614
- Trim values below a given threshold.
7615
-
7616
- .. deprecated:: 0.24.0
7617
- Use clip(lower=threshold) instead.
7618
-
7619
- Elements below the `threshold` will be changed to match the
7620
- `threshold` value(s). Threshold can be a single value or an array,
7621
- in the latter case it performs the truncation element-wise.
7622
-
7623
- Parameters
7624
- ----------
7625
- threshold : numeric or array-like
7626
- Minimum value allowed. All values below threshold will be set to
7627
- this value.
7628
-
7629
- * float : every value is compared to `threshold`.
7630
- * array-like : The shape of `threshold` should match the object
7631
- it's compared to. When `self` is a Series, `threshold` should be
7632
- the length. When `self` is a DataFrame, `threshold` should 2-D
7633
- and the same shape as `self` for ``axis=None``, or 1-D and the
7634
- same length as the axis being compared.
7635
-
7636
- axis : {0 or 'index', 1 or 'columns'}, default 0
7637
- Align `self` with `threshold` along the given axis.
7638
-
7639
- inplace : bool, default False
7640
- Whether to perform the operation in place on the data.
7641
-
7642
- .. versionadded:: 0.21.0
7643
-
7644
- Returns
7645
- -------
7646
- Series or DataFrame
7647
- Original data with values trimmed.
7648
-
7649
- See Also
7650
- --------
7651
- Series.clip : General purpose method to trim Series values to given
7652
- threshold(s).
7653
- DataFrame.clip : General purpose method to trim DataFrame values to
7654
- given threshold(s).
7655
-
7656
- Examples
7657
- --------
7658
-
7659
- Series single threshold clipping:
7660
-
7661
- >>> s = pd.Series([5, 6, 7, 8, 9])
7662
- >>> s.clip(lower=8)
7663
- 0 8
7664
- 1 8
7665
- 2 8
7666
- 3 8
7667
- 4 9
7668
- dtype: int64
7669
-
7670
- Series clipping element-wise using an array of thresholds. `threshold`
7671
- should be the same length as the Series.
7672
-
7673
- >>> elemwise_thresholds = [4, 8, 7, 2, 5]
7674
- >>> s.clip(lower=elemwise_thresholds)
7675
- 0 5
7676
- 1 8
7677
- 2 7
7678
- 3 8
7679
- 4 9
7680
- dtype: int64
7681
-
7682
- DataFrames can be compared to a scalar.
7683
-
7684
- >>> df = pd.DataFrame({"A": [1, 3, 5], "B": [2, 4, 6]})
7685
- >>> df
7686
- A B
7687
- 0 1 2
7688
- 1 3 4
7689
- 2 5 6
7690
-
7691
- >>> df.clip(lower=3)
7692
- A B
7693
- 0 3 3
7694
- 1 3 4
7695
- 2 5 6
7696
-
7697
- Or to an array of values. By default, `threshold` should be the same
7698
- shape as the DataFrame.
7699
-
7700
- >>> df.clip(lower=np.array([[3, 4], [2, 2], [6, 2]]))
7701
- A B
7702
- 0 3 4
7703
- 1 3 4
7704
- 2 6 6
7705
-
7706
- Control how `threshold` is broadcast with `axis`. In this case
7707
- `threshold` should be the same length as the axis specified by
7708
- `axis`.
7709
-
7710
- >>> df.clip(lower=[3, 3, 5], axis='index')
7711
- A B
7712
- 0 3 3
7713
- 1 3 4
7714
- 2 5 6
7715
-
7716
- >>> df.clip(lower=[4, 5], axis='columns')
7717
- A B
7718
- 0 4 5
7719
- 1 4 5
7720
- 2 5 6
7721
- """
7722
- warnings .warn (
7723
- "clip_lower(threshold) is deprecated, use clip(lower=threshold) instead" ,
7724
- FutureWarning ,
7725
- stacklevel = 2 ,
7726
- )
7727
- return self ._clip_with_one_bound (
7728
- threshold , method = self .ge , axis = axis , inplace = inplace
7729
- )
7730
-
7731
7454
def groupby (
7732
7455
self ,
7733
7456
by = None ,
0 commit comments