---
jupyter:
  jupytext:
    notebook_metadata_filter: all
    text_representation:
      extension: .md
      format_name: markdown
      format_version: '1.2'
      jupytext_version: 1.4.2
  kernelspec:
    display_name: Python 3
    language: python
    name: python3
  language_info:
    codemirror_mode:
      name: ipython
      version: 3
    file_extension: .py
    mimetype: text/x-python
    name: python
    nbconvert_exporter: python
    pygments_lexer: ipython3
    version: 3.7.7
  plotly:
    description: How to make mixed subplots in Python with Plotly.
    display_as: multiple_axes
    language: python
    layout: base
    name: Mixed Subplots
    order: 1
    page_type: example_index
    permalink: python/mixed-subplots/
    thumbnail: thumbnail/mixed_subplot.JPG
---

### Mixed Subplots and Plotly Express

[Plotly Express](/python/plotly-express/) is the easy-to-use, high-level interface to Plotly, which [operates on a variety of types of data](/python/px-arguments/) and produces [easy-to-style figures](/python/styling-plotly-express/).

> *Note*: At this time, Plotly Express does not support creating figures with arbitrary mixed subplots i.e. figures with subplots of different types. Plotly Express only supports [facet plots](/python/facet-plots/) and [marginal distribution subplots](/python/marginal-plots/). To make a figure with mixed subplots, use the [`make_subplots()`](/python/subplots/) function in conjunction with [graph objects](/python/graph-objects/) as documented below.


#### Mixed Subplot

```python
import plotly.graph_objects as go
from plotly.subplots import make_subplots

import pandas as pd

# read in volcano database data
df = pd.read_csv(
    "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv",
    encoding="iso-8859-1",
)

# frequency of Country
freq = df['Country'].value_counts().reset_index()
freq.columns = ['x', 'Country']

# read in 3d volcano surface data
df_v = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv")

# Initialize figure with subplots
fig = make_subplots(
    rows=2, cols=2,
    column_widths=[0.6, 0.4],
    row_heights=[0.4, 0.6],
    specs=[[{"type": "scattergeo", "rowspan": 2}, {"type": "bar"}],
           [            None                    , {"type": "surface"}]])

# Add scattergeo globe map of volcano locations
fig.add_trace(
    go.Scattergeo(lat=df["Latitude"],
                  lon=df["Longitude"],
                  mode="markers",
                  hoverinfo="text",
                  showlegend=False,
                  marker=dict(color="crimson", size=4, opacity=0.8)),
    row=1, col=1
)

# Add locations bar chart
fig.add_trace(
    go.Bar(x=freq["x"][0:10],y=freq["Country"][0:10], marker=dict(color="crimson"), showlegend=False),
    row=1, col=2
)

# Add 3d surface of volcano
fig.add_trace(
    go.Surface(z=df_v.values.tolist(), showscale=False),
    row=2, col=2
)

# Update geo subplot properties
fig.update_geos(
    projection_type="orthographic",
    landcolor="white",
    oceancolor="MidnightBlue",
    showocean=True,
    lakecolor="LightBlue"
)

# Rotate x-axis labels
fig.update_xaxes(tickangle=45)

# Set theme, margin, and annotation in layout
fig.update_layout(
    template="plotly_dark",
    margin=dict(r=10, t=25, b=40, l=60),
    annotations=[
        dict(
            text="Source: NOAA",
            showarrow=False,
            xref="paper",
            yref="paper",
            x=0,
            y=0)
    ]
)

fig.show()
```

#### Reference
See https://plotly.com/python/reference/ for more information and chart attribute options!