import base64 import numbers import textwrap import uuid from importlib import import_module import copy import io from copy import deepcopy import re # Optional imports # ---------------- import sys from six import string_types np = None pd = None try: np = import_module('numpy') try: pd = import_module('pandas') except ImportError: pass except ImportError: pass # back-port of fullmatch from Py3.4+ def fullmatch(regex, string, flags=0): """Emulate python-3.4 re.fullmatch().""" if 'pattern' in dir(regex): regex_string = regex.pattern else: regex_string = regex return re.match("(?:" + regex_string + r")\Z", string, flags=flags) # Utility functions # ----------------- def to_scalar_or_list(v): if isinstance(v, (list, tuple)): return [to_scalar_or_list(e) for e in v] elif np and isinstance(v, np.ndarray): return [to_scalar_or_list(e) for e in v] elif pd and isinstance(v, (pd.Series, pd.Index)): return [to_scalar_or_list(e) for e in v] else: return v def copy_to_readonly_numpy_array(v, kind=None, force_numeric=False): """ Convert an array-like value into a read-only numpy array Parameters ---------- v : array like Array like value (list, tuple, numpy array, pandas series, etc.) kind : str or tuple of str If specified, the numpy dtype kind (or kinds) that the array should have, or be converted to if possible. If not specified then let numpy infer the datatype force_numeric : bool If true, raise an exception if the resulting numpy array does not have a numeric dtype (i.e. dtype.kind not in ['u', 'i', 'f']) Returns ------- np.ndarray Numpy array with the 'WRITEABLE' flag set to False """ assert np is not None # ### Process kind ### if not kind: kind = () elif isinstance(kind, string_types): kind = (kind,) first_kind = kind[0] if kind else None # u: unsigned int, i: signed int, f: float numeric_kinds = {'u', 'i', 'f'} kind_default_dtypes = { 'u': 'uint32', 'i': 'int32', 'f': 'float64', 'O': 'object'} # Handle pandas Series and Index objects if pd and isinstance(v, (pd.Series, pd.Index)): if v.dtype.kind in numeric_kinds: # Get the numeric numpy array so we use fast path below v = v.values elif v.dtype.kind == 'M': # Convert datetime Series/Index to numpy array of datetimes if isinstance(v, pd.Series): v = v.dt.to_pydatetime() else: # DatetimeIndex v = v.to_pydatetime() if not isinstance(v, np.ndarray): # v is not homogenous array v_list = [to_scalar_or_list(e) for e in v] # Lookup dtype for requested kind, if any dtype = kind_default_dtypes.get(first_kind, None) # construct new array from list new_v = np.array(v_list, order='C', dtype=dtype) elif v.dtype.kind in numeric_kinds: # v is a homogenous numeric array if kind and v.dtype.kind not in kind: # Kind(s) were specified and this array doesn't match # Convert to the default dtype for the first kind dtype = kind_default_dtypes.get(first_kind, None) new_v = np.ascontiguousarray(v.astype(dtype)) else: # Either no kind was requested or requested kind is satisfied new_v = np.ascontiguousarray(v.copy()) else: # v is a non-numeric homogenous array new_v = v.copy() # Handle force numeric param # -------------------------- if force_numeric and new_v.dtype.kind not in numeric_kinds: raise ValueError('Input value is not numeric and' 'force_numeric parameter set to True') if 'U' not in kind: # Force non-numeric arrays to have object type # -------------------------------------------- # Here we make sure that non-numeric arrays have the object # datatype. This works around cases like np.array([1, 2, '3']) where # numpy converts the integers to strings and returns array of dtype # '<U21' if new_v.dtype.kind not in ['u', 'i', 'f', 'O']: new_v = np.array(v, dtype='object') # Set new array to be read-only # ----------------------------- new_v.flags['WRITEABLE'] = False return new_v def is_homogeneous_array(v): """ Return whether a value is considered to be a homogeneous array """ return ((np and isinstance(v, np.ndarray)) or (pd and isinstance(v, (pd.Series, pd.Index)))) def is_simple_array(v): """ Return whether a value is considered to be an simple array """ return isinstance(v, (list, tuple)) def is_array(v): """ Return whether a value is considered to be an array """ return is_simple_array(v) or is_homogeneous_array(v) def type_str(v): """ Return a type string of the form module.name for the input value v """ if not isinstance(v, type): v = type(v) return "'{module}.{name}'".format(module=v.__module__, name=v.__name__) # Validators # ---------- class BaseValidator(object): """ Base class for all validator classes """ def __init__(self, plotly_name, parent_name, role=None, **_): """ Construct a validator instance Parameters ---------- plotly_name : str Name of the property being validated parent_name : str Names of all of the ancestors of this property joined on '.' characters. e.g. plotly_name == 'range' and parent_name == 'layout.xaxis' role : str The role string for the property as specified in plot-schema.json """ self.parent_name = parent_name self.plotly_name = plotly_name self.role = role self.array_ok = False def description(self): """ Returns a string that describes the values that are acceptable to the validator Should start with: The '{plotly_name}' property is a... For consistancy, string should have leading 4-space indent """ raise NotImplementedError() def raise_invalid_val(self, v, inds=None): """ Helper method to raise an informative exception when an invalid value is passed to the validate_coerce method. Parameters ---------- v : Value that was input to validate_coerce and could not be coerced inds: list of int or None (default) Indexes to display after property name. e.g. if self.plotly_name is 'prop' and inds=[2, 1] then the name in the validation error message will be 'prop[2][1]` Raises ------- ValueError """ name = self.plotly_name if inds: for i in inds: name += '[' + str(i) + ']' raise ValueError(""" Invalid value of type {typ} received for the '{name}' property of {pname} Received value: {v} {valid_clr_desc}""".format( name=name, pname=self.parent_name, typ=type_str(v), v=repr(v), valid_clr_desc=self.description())) def raise_invalid_elements(self, invalid_els): if invalid_els: raise ValueError(""" Invalid element(s) received for the '{name}' property of {pname} Invalid elements include: {invalid} {valid_clr_desc}""".format( name=self.plotly_name, pname=self.parent_name, invalid=invalid_els[:10], valid_clr_desc=self.description())) def validate_coerce(self, v): """ Validate whether an input value is compatible with this property, and coerce the value to be compatible of possible. Parameters ---------- v The input value to be validated Raises ------ ValueError if `v` cannot be coerced into a compatible form Returns ------- The input `v` in a form that's compatible with this property """ raise NotImplementedError() def present(self, v): """ Convert output value of a previous call to `validate_coerce` into a form suitable to be returned to the user on upon property access. Note: The value returned by present must be either immutable or an instance of BasePlotlyType, otherwise the value could be mutated by the user and we wouldn't get notified about the change. Parameters ---------- v A value that was the ouput of a previous call the `validate_coerce` method on the same object Returns ------- """ if is_homogeneous_array(v): # Note: numpy array was already coerced into read-only form so # we don't need to copy it here. return v elif is_simple_array(v): return tuple(v) else: return v class DataArrayValidator(BaseValidator): """ "data_array": { "description": "An {array} of data. The value MUST be an {array}, or we ignore it.", "requiredOpts": [], "otherOpts": [ "dflt" ] }, """ def __init__(self, plotly_name, parent_name, **kwargs): super(DataArrayValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.array_ok = True def description(self): return ("""\ The '{plotly_name}' property is an array that may be specified as a tuple, list, numpy array, or pandas Series""" .format(plotly_name=self.plotly_name)) def validate_coerce(self, v): if v is None: # Pass None through pass elif is_homogeneous_array(v): v = copy_to_readonly_numpy_array(v) elif is_simple_array(v): v = to_scalar_or_list(v) else: self.raise_invalid_val(v) return v class EnumeratedValidator(BaseValidator): """ "enumerated": { "description": "Enumerated value type. The available values are listed in `values`.", "requiredOpts": [ "values" ], "otherOpts": [ "dflt", "coerceNumber", "arrayOk" ] }, """ def __init__(self, plotly_name, parent_name, values, array_ok=False, coerce_number=False, **kwargs): super(EnumeratedValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) # Save params # ----------- self.values = values self.array_ok = array_ok # coerce_number is rarely used and not implemented self.coerce_number = coerce_number self.kwargs = kwargs # Handle regular expressions # -------------------------- # Compiled regexs self.val_regexs = [] # regex replacements that run before the matching regex # So far, this is only used to cast 'x1' -> 'x' for anchor-style # enumeration properties self.regex_replacements = [] # Loop over enumeration values # ---------------------------- # Look for regular expressions for v in self.values: if v and isinstance(v, string_types) and v[0] == '/' and v[-1] == '/': # String is a regex with leading and trailing '/' character regex_str = v[1:-1] self.val_regexs.append(re.compile(regex_str)) self.regex_replacements.append( EnumeratedValidator.build_regex_replacement(regex_str)) else: self.val_regexs.append(None) self.regex_replacements.append(None) def __deepcopy__(self, memodict={}): """ A custom deepcopy method is needed here because compiled regex objects don't support deepcopy """ cls = self.__class__ return cls( self.plotly_name, self.parent_name, values=self.values) @staticmethod def build_regex_replacement(regex_str): # Example: regex_str == r"^y([2-9]|[1-9][0-9]+)?$" # # When we see a regular expression like the one above, we want to # build regular expression replacement params that will remove a # suffix of 1 from the input string ('y1' -> 'y' in this example) # # Why?: Regular expressions like this one are used in enumeration # properties that refer to subplotids (e.g. layout.annotation.xref) # The regular expressions forbid suffixes of 1, like 'x1'. But we # want to accept 'x1' and coerce it into 'x' # # To be cautious, we only perform this conversion for enumerated # values that match the anchor-style regex match = re.match(r"\^(\w)\(\[2\-9\]\|\[1\-9\]\[0\-9\]\+\)\?\$", regex_str) if match: anchor_char = match.group(1) return '^' + anchor_char + '1$', anchor_char else: return None def perform_replacemenet(self, v): """ Return v with any applicable regex replacements applied """ if isinstance(v, string_types): for repl_args in self.regex_replacements: if repl_args: v = re.sub(repl_args[0], repl_args[1], v) return v def description(self): # Separate regular values from regular expressions enum_vals = [] enum_regexs = [] for v, regex in zip(self.values, self.val_regexs): if regex is not None: enum_regexs.append(regex.pattern) else: enum_vals.append(v) desc = ("""\ The '{name}' property is an enumeration that may be specified as:""" .format(name=self.plotly_name)) if enum_vals: enum_vals_str = '\n'.join( textwrap.wrap( repr(enum_vals), initial_indent=' ' * 12, subsequent_indent=' ' * 12, break_on_hyphens=False)) desc = desc + """ - One of the following enumeration values: {enum_vals_str}""".format(enum_vals_str=enum_vals_str) if enum_regexs: enum_regexs_str = '\n'.join( textwrap.wrap( repr(enum_regexs), initial_indent=' ' * 12, subsequent_indent=' ' * 12, break_on_hyphens=False)) desc = desc + """ - A string that matches one of the following regular expressions: {enum_regexs_str}""".format(enum_regexs_str=enum_regexs_str) if self.array_ok: desc = desc + """ - A tuple, list, or one-dimensional numpy array of the above""" return desc def in_values(self, e): """ Return whether a value matches one of the enumeration options """ is_str = isinstance(e, string_types) for v, regex in zip(self.values, self.val_regexs): if is_str and regex: in_values = fullmatch(regex, e) is not None #in_values = regex.fullmatch(e) is not None else: in_values = e == v if in_values: return True return False def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_array(v): v_replaced = [self.perform_replacemenet(v_el) for v_el in v] invalid_els = [e for e in v_replaced if (not self.in_values(e))] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) if is_homogeneous_array(v): v = copy_to_readonly_numpy_array(v) else: v = to_scalar_or_list(v) else: v = self.perform_replacemenet(v) if not self.in_values(v): self.raise_invalid_val(v) return v class BooleanValidator(BaseValidator): """ "boolean": { "description": "A boolean (true/false) value.", "requiredOpts": [], "otherOpts": [ "dflt" ] }, """ def __init__(self, plotly_name, parent_name, **kwargs): super(BooleanValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) def description(self): return ("""\ The '{plotly_name}' property must be specified as a bool (either True, or False)""".format(plotly_name=self.plotly_name)) def validate_coerce(self, v): if v is None: # Pass None through pass elif not isinstance(v, bool): self.raise_invalid_val(v) return v class SrcValidator(BaseValidator): def __init__(self, plotly_name, parent_name, **kwargs): super(SrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) def description(self): return ("""\ The '{plotly_name}' property must be specified as a string or as a plotly.grid_objs.Column object""".format(plotly_name=self.plotly_name)) def validate_coerce(self, v): from plotly.grid_objs import Column if v is None: # Pass None through pass elif isinstance(v, string_types): pass elif isinstance(v, Column): # Convert to id string v = v.id else: self.raise_invalid_val(v) return v class NumberValidator(BaseValidator): """ "number": { "description": "A number or a numeric value (e.g. a number inside a string). When applicable, values greater (less) than `max` (`min`) are coerced to the `dflt`.", "requiredOpts": [], "otherOpts": [ "dflt", "min", "max", "arrayOk" ] }, """ def __init__(self, plotly_name, parent_name, min=None, max=None, array_ok=False, **kwargs): super(NumberValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) # Handle min if min is None and max is not None: # Max was specified, so make min -inf self.min_val = float('-inf') else: self.min_val = min # Handle max if max is None and min is not None: # Min was specified, so make min inf self.max_val = float('inf') else: self.max_val = max if min is not None or max is not None: self.has_min_max = True else: self.has_min_max = False self.array_ok = array_ok def description(self): desc = ("""\ The '{plotly_name}' property is a number and may be specified as:""" .format(plotly_name=self.plotly_name)) if not self.has_min_max: desc = desc + """ - An int or float""" else: desc = desc + """ - An int or float in the interval [{min_val}, {max_val}]""".format( min_val=self.min_val, max_val=self.max_val) if self.array_ok: desc = desc + """ - A tuple, list, or one-dimensional numpy array of the above""" return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): try: v_array = copy_to_readonly_numpy_array(v, force_numeric=True) except (ValueError, TypeError, OverflowError): self.raise_invalid_val(v) # Check min/max if self.has_min_max: v_valid = np.logical_and(self.min_val <= v_array, v_array <= self.max_val) if not np.all(v_valid): # Grab up to the first 10 invalid values v_invalid = np.logical_not(v_valid) some_invalid_els = (np.array(v, dtype='object') [v_invalid][:10] .tolist()) self.raise_invalid_elements(some_invalid_els) v = v_array # Always numeric numpy array elif self.array_ok and is_simple_array(v): # Check numeric invalid_els = [e for e in v if not isinstance(e, numbers.Number)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) # Check min/max if self.has_min_max: invalid_els = [e for e in v if not (self.min_val <= e <= self.max_val)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) v = to_scalar_or_list(v) else: # Check numeric if not isinstance(v, numbers.Number): self.raise_invalid_val(v) # Check min/max if self.has_min_max: if not (self.min_val <= v <= self.max_val): self.raise_invalid_val(v) return v class IntegerValidator(BaseValidator): """ "integer": { "description": "An integer or an integer inside a string. When applicable, values greater (less) than `max` (`min`) are coerced to the `dflt`.", "requiredOpts": [], "otherOpts": [ "dflt", "min", "max", "arrayOk" ] }, """ def __init__(self, plotly_name, parent_name, min=None, max=None, array_ok=False, **kwargs): super(IntegerValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) # Handle min if min is None and max is not None: # Max was specified, so make min -inf self.min_val = -sys.maxsize - 1 else: self.min_val = min # Handle max if max is None and min is not None: # Min was specified, so make min inf self.max_val = sys.maxsize else: self.max_val = max if min is not None or max is not None: self.has_min_max = True else: self.has_min_max = False self.array_ok = array_ok def description(self): desc = ("""\ The '{plotly_name}' property is a integer and may be specified as:""" .format(plotly_name=self.plotly_name)) if not self.has_min_max: desc = desc + """ - An int (or float that will be cast to an int)""" else: desc = desc + (""" - An int (or float that will be cast to an int) in the interval [{min_val}, {max_val}]""".format( min_val=self.min_val, max_val=self.max_val)) if self.array_ok: desc = desc + """ - A tuple, list, or one-dimensional numpy array of the above""" return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): v_array = copy_to_readonly_numpy_array(v, kind=('i', 'u'), force_numeric=True) if v_array.dtype.kind not in ['i', 'u']: self.raise_invalid_val(v) # Check min/max if self.has_min_max: v_valid = np.logical_and(self.min_val <= v_array, v_array <= self.max_val) if not np.all(v_valid): # Grab up to the first 10 invalid values v_invalid = np.logical_not(v_valid) some_invalid_els = (np.array(v, dtype='object') [v_invalid][:10].tolist()) self.raise_invalid_elements(some_invalid_els) v = v_array elif self.array_ok and is_simple_array(v): # Check integer type invalid_els = [e for e in v if not isinstance(e, int)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) # Check min/max if self.has_min_max: invalid_els = [e for e in v if not (self.min_val <= e <= self.max_val)] if invalid_els: self.raise_invalid_elements(invalid_els[:10]) v = to_scalar_or_list(v) else: # Check int if not isinstance(v, int): # don't let int() cast strings to ints self.raise_invalid_val(v) # Check min/max if self.has_min_max: if not (self.min_val <= v <= self.max_val): self.raise_invalid_val(v) return v class StringValidator(BaseValidator): """ "string": { "description": "A string value. Numbers are converted to strings except for attributes with `strict` set to true.", "requiredOpts": [], "otherOpts": [ "dflt", "noBlank", "strict", "arrayOk", "values" ] }, """ def __init__(self, plotly_name, parent_name, no_blank=False, strict=False, array_ok=False, values=None, **kwargs): super(StringValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.no_blank = no_blank self.strict = strict self.array_ok = array_ok self.values = values def description(self): desc = ("""\ The '{plotly_name}' property is a string and must be specified as:""" .format(plotly_name=self.plotly_name)) if self.no_blank: desc = desc + """ - A non-empty string""" elif self.values: valid_str = '\n'.join( textwrap.wrap( repr(self.values), initial_indent=' ' * 12, subsequent_indent=' ' * 12, break_on_hyphens=False)) desc = desc + """ - One of the following strings: {valid_str}""".format(valid_str=valid_str) else: desc = desc + """ - A string""" if not self.strict: desc = desc + """ - A number that will be converted to a string""" if self.array_ok: desc = desc + """ - A tuple, list, or one-dimensional numpy array of the above""" return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_array(v): # If strict, make sure all elements are strings. if self.strict: invalid_els = [e for e in v if not isinstance(e, string_types)] if invalid_els: self.raise_invalid_elements(invalid_els) if is_homogeneous_array(v): # If not strict, let numpy cast elements to strings v = copy_to_readonly_numpy_array(v, kind='U') # Check no_blank if self.no_blank: invalid_els = v[v == ''][:10].tolist() if invalid_els: self.raise_invalid_elements(invalid_els) # Check values if self.values: invalid_inds = np.logical_not(np.isin(v, self.values)) invalid_els = v[invalid_inds][:10].tolist() if invalid_els: self.raise_invalid_elements(invalid_els) elif is_simple_array(v): if not self.strict: # Convert all elements other than None to strings # Leave None as is, Plotly.js will decide how to handle # these null values. v = [str(e) if e is not None else None for e in v] # Check no_blank if self.no_blank: invalid_els = [e for e in v if e == ''] if invalid_els: self.raise_invalid_elements(invalid_els) # Check values if self.values: invalid_els = [e for e in v if v not in self.values] if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(v) else: if self.strict: if not isinstance(v, string_types): self.raise_invalid_val(v) else: if not isinstance(v, string_types + (int, float)): self.raise_invalid_val(v) # Convert value to a string v = str(v) if self.no_blank and len(v) == 0: self.raise_invalid_val(v) if self.values and v not in self.values: self.raise_invalid_val(v) return v class ColorValidator(BaseValidator): """ "color": { "description": "A string describing color. Supported formats: - hex (e.g. '#d3d3d3') - rgb (e.g. 'rgb(255, 0, 0)') - rgba (e.g. 'rgb(255, 0, 0, 0.5)') - hsl (e.g. 'hsl(0, 100%, 50%)') - hsv (e.g. 'hsv(0, 100%, 100%)') - named colors(full list: http://www.w3.org/TR/css3-color/#svg-color)", "requiredOpts": [], "otherOpts": [ "dflt", "arrayOk" ] }, """ re_hex = re.compile('#([A-Fa-f0-9]{6}|[A-Fa-f0-9]{3})') re_rgb_etc = re.compile('(rgb|hsl|hsv)a?\([\d.]+%?(,[\d.]+%?){2,3}\)') named_colors = [ "aliceblue", "antiquewhite", "aqua", "aquamarine", "azure", "beige", "bisque", "black", "blanchedalmond", "blue", "blueviolet", "brown", "burlywood", "cadetblue", "chartreuse", "chocolate", "coral", "cornflowerblue", "cornsilk", "crimson", "cyan", "darkblue", "darkcyan", "darkgoldenrod", "darkgray", "darkgrey", "darkgreen", "darkkhaki", "darkmagenta", "darkolivegreen", "darkorange", "darkorchid", "darkred", "darksalmon", "darkseagreen", "darkslateblue", "darkslategray", "darkslategrey", "darkturquoise", "darkviolet", "deeppink", "deepskyblue", "dimgray", "dimgrey", "dodgerblue", "firebrick", "floralwhite", "forestgreen", "fuchsia", "gainsboro", "ghostwhite", "gold", "goldenrod", "gray", "grey", "green", "greenyellow", "honeydew", "hotpink", "indianred", "indigo", "ivory", "khaki", "lavender", "lavenderblush", "lawngreen", "lemonchiffon", "lightblue", "lightcoral", "lightcyan", "lightgoldenrodyellow", "lightgray", "lightgrey", "lightgreen", "lightpink", "lightsalmon", "lightseagreen", "lightskyblue", "lightslategray", "lightslategrey", "lightsteelblue", "lightyellow", "lime", "limegreen", "linen", "magenta", "maroon", "mediumaquamarine", "mediumblue", "mediumorchid", "mediumpurple", "mediumseagreen", "mediumslateblue", "mediumspringgreen", "mediumturquoise", "mediumvioletred", "midnightblue", "mintcream", "mistyrose", "moccasin", "navajowhite", "navy", "oldlace", "olive", "olivedrab", "orange", "orangered", "orchid", "palegoldenrod", "palegreen", "paleturquoise", "palevioletred", "papayawhip", "peachpuff", "peru", "pink", "plum", "powderblue", "purple", "red", "rosybrown", "royalblue", "saddlebrown", "salmon", "sandybrown", "seagreen", "seashell", "sienna", "silver", "skyblue", "slateblue", "slategray", "slategrey", "snow", "springgreen", "steelblue", "tan", "teal", "thistle", "tomato", "turquoise", "violet", "wheat", "white", "whitesmoke", "yellow", "yellowgreen" ] def __init__(self, plotly_name, parent_name, array_ok=False, colorscale_path=None, **kwargs): super(ColorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.array_ok = array_ok # colorscale_path is the path to the colorscale associated with this # color property, or None if no such colorscale exists. Only colors # with an associated colorscale may take on numeric values self.colorscale_path = colorscale_path def numbers_allowed(self): return self.colorscale_path is not None def description(self): named_clrs_str = '\n'.join( textwrap.wrap( ', '.join(self.named_colors), width=79 - 16, initial_indent=' ' * 12, subsequent_indent=' ' * 12)) valid_color_description = """\ The '{plotly_name}' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: {clrs}""".format( plotly_name=self.plotly_name, clrs=named_clrs_str) if self.colorscale_path: valid_color_description = valid_color_description + """ - A number that will be interpreted as a color according to {colorscale_path}""".format( colorscale_path=self.colorscale_path) if self.array_ok: valid_color_description = valid_color_description + """ - A list or array of any of the above""" return valid_color_description def validate_coerce(self, v, should_raise=True): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): v_array = copy_to_readonly_numpy_array(v) if (self.numbers_allowed() and v_array.dtype.kind in ['u', 'i', 'f']): # Numbers are allowed and we have an array of numbers. # All good v = v_array else: validated_v = [ self.validate_coerce(e, should_raise=False) for e in v] invalid_els = self.find_invalid_els(v, validated_v) if invalid_els and should_raise: self.raise_invalid_elements(invalid_els) # ### Check that elements have valid colors types ### elif self.numbers_allowed() or invalid_els: v = copy_to_readonly_numpy_array( validated_v, kind='O') else: v = copy_to_readonly_numpy_array( validated_v, kind='U') elif self.array_ok and is_simple_array(v): validated_v = [ self.validate_coerce(e, should_raise=False) for e in v] invalid_els = self.find_invalid_els(v, validated_v) if invalid_els and should_raise: self.raise_invalid_elements(invalid_els) else: v = validated_v else: # Validate scalar color validated_v = self.vc_scalar(v) if validated_v is None and should_raise: self.raise_invalid_val(v) v = validated_v return v def find_invalid_els(self, orig, validated, invalid_els=None): """ Helper method to find invalid elements in orig array. Elements are invalid if their corresponding element in the validated array is None. This method handles deeply nested list structures """ if invalid_els is None: invalid_els = [] for orig_el, validated_el in zip(orig, validated): if is_array(orig_el): self.find_invalid_els(orig_el, validated_el, invalid_els) else: if validated_el is None: invalid_els.append(orig_el) return invalid_els def vc_scalar(self, v): """ Helper to validate/coerce a scalar color """ return ColorValidator.perform_validate_coerce( v, allow_number=self.numbers_allowed()) @staticmethod def perform_validate_coerce(v, allow_number=None): """ Validate, coerce, and return a single color value. If input cannot be coerced to a valid color then return None. Parameters ---------- v : number or str Candidate color value allow_number : bool True if numbers are allowed as colors Returns ------- number or str or None """ if isinstance(v, numbers.Number) and allow_number: # If allow_numbers then any number is ok return v elif not isinstance(v, string_types): # If not allow_numbers then value must be a string return None else: # Remove spaces so regexes don't need to bother with them. v_normalized = v.replace(' ', '').lower() # if ColorValidator.re_hex.fullmatch(v_normalized): if fullmatch(ColorValidator.re_hex, v_normalized): # valid hex color (e.g. #f34ab3) return v elif fullmatch(ColorValidator.re_rgb_etc, v_normalized): # elif ColorValidator.re_rgb_etc.fullmatch(v_normalized): # Valid rgb(a), hsl(a), hsv(a) color # (e.g. rgba(10, 234, 200, 50%) return v elif v_normalized in ColorValidator.named_colors: # Valid named color (e.g. 'coral') return v else: # Not a valid color return None class ColorlistValidator(BaseValidator): """ "colorlist": { "description": "A list of colors. Must be an {array} containing valid colors.", "requiredOpts": [], "otherOpts": [ "dflt" ] } """ def __init__(self, plotly_name, parent_name, **kwargs): super(ColorlistValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) def description(self): return ("""\ The '{plotly_name}' property is a colorlist that may be specified as a tuple, list, one-dimensional numpy array, or pandas Series of valid color strings""".format(plotly_name=self.plotly_name)) def validate_coerce(self, v): if v is None: # Pass None through pass elif is_array(v): validated_v = [ ColorValidator.perform_validate_coerce(e, allow_number=False) for e in v ] invalid_els = [ el for el, validated_el in zip(v, validated_v) if validated_el is None ] if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(v) else: self.raise_invalid_val(v) return v class ColorscaleValidator(BaseValidator): """ "colorscale": { "description": "A Plotly colorscale either picked by a name: (any of Greys, YlGnBu, Greens, YlOrRd, Bluered, RdBu, Reds, Blues, Picnic, Rainbow, Portland, Jet, Hot, Blackbody, Earth, Electric, Viridis) customized as an {array} of 2-element {arrays} where the first element is the normalized color level value (starting at *0* and ending at *1*), and the second item is a valid color string.", "requiredOpts": [], "otherOpts": [ "dflt" ] }, """ named_colorscales = [ 'Greys', 'YlGnBu', 'Greens', 'YlOrRd', 'Bluered', 'RdBu', 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet', 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis' ] def __init__(self, plotly_name, parent_name, **kwargs): super(ColorscaleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) def description(self): desc = """\ The '{plotly_name}' property is a colorscale and may be specified as: - A list of 2-element lists where the first element is the normalized color level value (starting at 0 and ending at 1), and the second item is a valid color string. (e.g. [[0, 'green'], [0.5, 'red'], [1.0, 'rgb(0, 0, 255)']]) - One of the following named colorscales: ['Greys', 'YlGnBu', 'Greens', 'YlOrRd', 'Bluered', 'RdBu', 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet', 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis'] """.format(plotly_name=self.plotly_name) return desc def validate_coerce(self, v): v_valid = False if v is None: # Pass None through pass if v is None: v_valid = True elif isinstance(v, string_types): v_match = [ el for el in ColorscaleValidator.named_colorscales if el.lower() == v.lower() ] if v_match: v_valid = True elif is_array(v) and len(v) > 0: invalid_els = [ e for e in v if (not is_array(e) or len(e) != 2 or not isinstance(e[0], numbers.Number) or not (0 <= e[0] <= 1) or not isinstance(e[1], string_types) or ColorValidator.perform_validate_coerce(e[1]) is None)] if len(invalid_els) == 0: v_valid = True # Convert to list of lists v = [[e[0], ColorValidator.perform_validate_coerce(e[1])] for e in v] if not v_valid: self.raise_invalid_val(v) return v def present(self, v): # Return-type must be immutable if v is None: return None elif isinstance(v, string_types): return v else: return tuple([tuple(e) for e in v]) class AngleValidator(BaseValidator): """ "angle": { "description": "A number (in degree) between -180 and 180.", "requiredOpts": [], "otherOpts": [ "dflt" ] }, """ def __init__(self, plotly_name, parent_name, **kwargs): super(AngleValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) def description(self): desc = """\ The '{plotly_name}' property is a angle (in degrees) that may be specified as a number between -180 and 180. Numeric values outside this range are converted to the equivalent value (e.g. 270 is converted to -90). """.format(plotly_name=self.plotly_name) return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif not isinstance(v, numbers.Number): self.raise_invalid_val(v) else: # Normalize v onto the interval [-180, 180) v = (v + 180) % 360 - 180 return v class SubplotidValidator(BaseValidator): """ "subplotid": { "description": "An id string of a subplot type (given by dflt), optionally followed by an integer >1. e.g. if dflt='geo', we can have 'geo', 'geo2', 'geo3', ...", "requiredOpts": [ "dflt" ], "otherOpts": [ "regex" ] } """ def __init__(self, plotly_name, parent_name, dflt=None, regex=None, **kwargs): if dflt is None and regex is None: raise ValueError( 'One or both of regex and deflt must be specified' ) super(SubplotidValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) if dflt is not None: self.base = dflt else: # e.g. regex == '/^y([2-9]|[1-9][0-9]+)?$/' self.base = re.match('/\^(\w+)', regex).group(1) if regex is not None: # Remove leading/trailing '/' characters self.regex = regex[1:-1] else: self.regex = dflt + "(\d*)" def description(self): desc = """\ The '{plotly_name}' property is an identifier of a particular subplot, of type '{base}', that may be specified as the string '{base}' optionally followed by an integer >= 1 (e.g. '{base}', '{base}1', '{base}2', '{base}3', etc.) """.format( plotly_name=self.plotly_name, base=self.base) return desc def validate_coerce(self, v): if v is None: pass elif not isinstance(v, string_types): self.raise_invalid_val(v) else: # match = re.fullmatch(self.regex, v) match = fullmatch(self.regex, v) if not match: is_valid = False else: digit_str = match.group(1) if len(digit_str) > 0 and int(digit_str) == 0: is_valid = False elif len(digit_str) > 0 and int(digit_str) == 1: # Remove 1 suffix (e.g. x1 -> x) v = self.base is_valid = True else: is_valid = True if not is_valid: self.raise_invalid_val(v) return v class FlaglistValidator(BaseValidator): """ "flaglist": { "description": "A string representing a combination of flags (order does not matter here). Combine any of the available `flags` with *+*. (e.g. ('lines+markers')). Values in `extras` cannot be combined.", "requiredOpts": [ "flags" ], "otherOpts": [ "dflt", "extras", "arrayOk" ] }, """ def __init__(self, plotly_name, parent_name, flags, extras=None, array_ok=False, **kwargs): super(FlaglistValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.flags = flags self.extras = extras if extras is not None else [] self.array_ok = array_ok self.all_flags = self.flags + self.extras def description(self): desc = ("""\ The '{plotly_name}' property is a flaglist and may be specified as a string containing:""").format(plotly_name=self.plotly_name) # Flags desc = desc + (""" - Any combination of {flags} joined with '+' characters (e.g. '{eg_flag}')""").format( flags=self.flags, eg_flag='+'.join(self.flags[:2])) # Extras if self.extras: desc = desc + (""" OR exactly one of {extras} (e.g. '{eg_extra}')""").format( extras=self.extras, eg_extra=self.extras[-1]) if self.array_ok: desc = desc + """ - A list or array of the above""" return desc def vc_scalar(self, v): if not isinstance(v, string_types): return None # To be generous we accept flags separated on plus ('+'), # or comma (',') split_vals = [e.strip() for e in re.split('[,+]', v)] # Are all flags valid names? all_flags_valid = all([f in self.all_flags for f in split_vals]) # Are any 'extras' flags present? has_extras = any([f in self.extras for f in split_vals]) # For flaglist to be valid all flags must be valid, and if we have # any extras present, there must be only one flag (the single extras # flag) is_valid = (all_flags_valid and (not has_extras or len(split_vals) == 1)) if is_valid: return '+'.join(split_vals) else: return None def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_array(v): # Coerce individual strings validated_v = [self.vc_scalar(e) for e in v] invalid_els = [ el for el, validated_el in zip(v, validated_v) if validated_el is None ] if invalid_els: self.raise_invalid_elements(invalid_els) if is_homogeneous_array(v): v = copy_to_readonly_numpy_array(validated_v, kind='U') else: v = to_scalar_or_list(v) else: validated_v = self.vc_scalar(v) if validated_v is None: self.raise_invalid_val(v) v = validated_v return v class AnyValidator(BaseValidator): """ "any": { "description": "Any type.", "requiredOpts": [], "otherOpts": [ "dflt", "values", "arrayOk" ] }, """ def __init__(self, plotly_name, parent_name, values=None, array_ok=False, **kwargs): super(AnyValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.values = values self.array_ok = array_ok def description(self): desc = """\ The '{plotly_name}' property accepts values of any type """.format(plotly_name=self.plotly_name) return desc def validate_coerce(self, v): if v is None: # Pass None through pass elif self.array_ok and is_homogeneous_array(v): v = copy_to_readonly_numpy_array(v, kind='O') elif self.array_ok and is_simple_array(v): v = to_scalar_or_list(v) return v class InfoArrayValidator(BaseValidator): """ "info_array": { "description": "An {array} of plot information.", "requiredOpts": [ "items" ], "otherOpts": [ "dflt", "freeLength", "dimensions" ] } """ def __init__(self, plotly_name, parent_name, items, free_length=None, dimensions=None, **kwargs): super(InfoArrayValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.items = items self.dimensions = dimensions if dimensions else 1 self.free_length = free_length # Instantiate validators for each info array element self.item_validators = [] info_array_items = (self.items if isinstance(self.items, list) else [self.items]) for i, item in enumerate(info_array_items): element_name = '{name}[{i}]'.format(name=plotly_name, i=i) item_validator = InfoArrayValidator.build_validator( item, element_name, parent_name) self.item_validators.append(item_validator) def description(self): # Cases # 1) self.items is array, self.dimensions is 1 # a) free_length=True # b) free_length=False # 2) self.items is array, self.dimensions is 2 # (requires free_length=True) # 3) self.items is scalar (requires free_length=True) # a) dimensions=1 # b) dimensions=2 # # dimensions can be set to '1-2' to indicate the both are accepted # desc = """\ The '{plotly_name}' property is an info array that may be specified as:\ """.format(plotly_name=self.plotly_name) if isinstance(self.items, list): # ### Case 1 ### if self.dimensions in (1, '1-2'): upto = (' up to' if self.free_length and self.dimensions == 1 else '') desc += """ * a list or tuple of{upto} {N} elements where:\ """.format(upto=upto, N=len(self.item_validators)) for i, item_validator in enumerate(self.item_validators): el_desc = item_validator.description().strip() desc = desc + """ ({i}) {el_desc}""".format(i=i, el_desc=el_desc) # ### Case 2 ### if self.dimensions in ('1-2', 2): assert self.free_length desc += """ * a 2D list where:""" for i, item_validator in enumerate(self.item_validators): # Update name for 2d orig_name = item_validator.plotly_name item_validator.plotly_name = "{name}[i][{i}]".format( name=self.plotly_name, i=i) el_desc = item_validator.description().strip() desc = desc + """ ({i}) {el_desc}""".format(i=i, el_desc=el_desc) item_validator.plotly_name = orig_name else: # ### Case 3 ### assert self.free_length item_validator = self.item_validators[0] orig_name = item_validator.plotly_name if self.dimensions in (1, '1-2'): item_validator.plotly_name = "{name}[i]".format( name=self.plotly_name) el_desc = item_validator.description().strip() desc += """ * a list of elements where: {el_desc} """.format(el_desc=el_desc) if self.dimensions in ('1-2', 2): item_validator.plotly_name = "{name}[i][j]".format( name=self.plotly_name) el_desc = item_validator.description().strip() desc += """ * a 2D list where: {el_desc} """.format(el_desc=el_desc) item_validator.plotly_name = orig_name return desc @staticmethod def build_validator(validator_info, plotly_name, parent_name): datatype = validator_info['valType'] # type: str validator_classname = datatype.title().replace('_', '') + 'Validator' validator_class = eval(validator_classname) kwargs = { k: validator_info[k] for k in validator_info if k not in ['valType', 'description', 'role'] } return validator_class( plotly_name=plotly_name, parent_name=parent_name, **kwargs) def validate_element_with_indexed_name(self, val, validator, inds): """ Helper to add indexes to a validator's name, call validate_coerce on a value, then restore the original validator name. This makes sure that if a validation error message is raised, the property name the user sees includes the index(es) of the offending element. Parameters ---------- val: A value to be validated validator A validator inds List of one or more non-negative integers that represent the nested index of the value being validated Returns ------- val validated value Raises ------ ValueError if val fails validation """ orig_name = validator.plotly_name new_name = self.plotly_name for i in inds: new_name += '[' + str(i) + ']' validator.plotly_name = new_name try: val = validator.validate_coerce(val) finally: validator.plotly_name = orig_name return val def validate_coerce(self, v): if v is None: # Pass None through return None elif not is_array(v): self.raise_invalid_val(v) # Save off original v value to use in error reporting orig_v = v # Convert everything into nested lists # This way we don't need to worry about nested numpy arrays v = to_scalar_or_list(v) is_v_2d = v and is_array(v[0]) if is_v_2d: if self.dimensions == 1: self.raise_invalid_val(orig_v) else: # self.dimensions is '1-2' or 2 if is_array(self.items): # e.g. 2D list as parcoords.dimensions.constraintrange # check that all items are there for each nested element for i, row in enumerate(v): # Check row length if not is_array(row) or len(row) != len(self.items): self.raise_invalid_val(orig_v[i], [i]) for j, validator in enumerate(self.item_validators): row[j] = self.validate_element_with_indexed_name( v[i][j], validator, [i, j]) else: # e.g. 2D list as layout.grid.subplots # check that all elements match individual validator validator = self.item_validators[0] for i, row in enumerate(v): if not is_array(row): self.raise_invalid_val(orig_v[i], [i]) for j, el in enumerate(row): row[j] = self.validate_element_with_indexed_name( el, validator, [i, j]) elif v and self.dimensions == 2: # e.g. 1D list passed as layout.grid.subplots self.raise_invalid_val(orig_v[0], [0]) elif not is_array(self.items): # e.g. 1D list passed as layout.grid.xaxes validator = self.item_validators[0] for i, el in enumerate(v): v[i] = self.validate_element_with_indexed_name( el, validator, [i]) elif not self.free_length and len(v) != len(self.item_validators): # e.g. 3 element list as layout.xaxis.range self.raise_invalid_val(orig_v) elif self.free_length and len(v) > len(self.item_validators): # e.g. 4 element list as layout.updatemenu.button.args self.raise_invalid_val(orig_v) else: # We have a 1D array of the correct length for i, (el, validator) in enumerate(zip(v, self.item_validators)): # Validate coerce elements v[i] = validator.validate_coerce(el) return v def present(self, v): if v is None: return None else: if (self.dimensions == 2 or self.dimensions == '1-2' and v and is_array(v[0])): # 2D case v = copy.deepcopy(v) for row in v: for i, (el, validator) in enumerate( zip(row, self.item_validators)): row[i] = validator.present(el) return tuple(tuple(row) for row in v) else: # 1D case v = copy.copy(v) # Call present on each of the item validators for i, (el, validator) in enumerate( zip(v, self.item_validators)): # Validate coerce elements v[i] = validator.present(el) # Return tuple form of return tuple(v) class LiteralValidator(BaseValidator): """ Validator for readonly literal values """ def __init__(self, plotly_name, parent_name, val, **kwargs): super(LiteralValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.val = val def validate_coerce(self, v): if v != self.val: raise ValueError("""\ The '{plotly_name}' property of {parent_name} is read-only""".format( plotly_name=self.plotly_name, parent_name=self.parent_name )) else: return v class DashValidator(EnumeratedValidator): """ Special case validator for handling dash properties that may be specified as lists of dash lengths. These are not currently specified in the schema. "dash": { "valType": "string", "values": [ "solid", "dot", "dash", "longdash", "dashdot", "longdashdot" ], "dflt": "solid", "role": "style", "editType": "style", "description": "Sets the dash style of lines. Set to a dash type string (*solid*, *dot*, *dash*, *longdash*, *dashdot*, or *longdashdot*) or a dash length list in px (eg *5px,10px,2px,2px*)." }, """ def __init__(self, plotly_name, parent_name, values, **kwargs): # Add regex to handle dash length lists dash_list_regex = \ r"/^\d+(\.\d+)?(px|%)?((,|\s)\s*\d+(\.\d+)?(px|%)?)*$/" values = values + [dash_list_regex] # Call EnumeratedValidator superclass super(DashValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, values=values, **kwargs) def description(self): # Separate regular values from regular expressions enum_vals = [] enum_regexs = [] for v, regex in zip(self.values, self.val_regexs): if regex is not None: enum_regexs.append(regex.pattern) else: enum_vals.append(v) desc = ("""\ The '{name}' property is an enumeration that may be specified as:""" .format(name=self.plotly_name)) if enum_vals: enum_vals_str = '\n'.join( textwrap.wrap( repr(enum_vals), initial_indent=' ' * 12, subsequent_indent=' ' * 12, break_on_hyphens=False, width=80)) desc = desc + """ - One of the following dash styles: {enum_vals_str}""".format(enum_vals_str=enum_vals_str) desc = desc + """ - A string containing a dash length list in pixels or percentages (e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.) """ return desc class ImageUriValidator(BaseValidator): _PIL = None try: _PIL = import_module('PIL') except ImportError: pass def __init__(self, plotly_name, parent_name, **kwargs): super(ImageUriValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) def description(self): desc = """\ The '{plotly_name}' property is an image URI that may be specified as: - A remote image URI string (e.g. 'http://www.somewhere.com/image.png') - A data URI image string (e.g. '') - A PIL.Image.Image object which will be immediately converted to a data URI image string See http://pillow.readthedocs.io/en/latest/reference/Image.html """.format(plotly_name=self.plotly_name) return desc def validate_coerce(self, v): if v is None: pass elif isinstance(v, string_types): # Future possibilities: # - Detect filesystem system paths and convert to URI # - Validate either url or data uri pass elif self._PIL and isinstance(v, self._PIL.Image.Image): # Convert PIL image to png data uri string in_mem_file = io.BytesIO() v.save(in_mem_file, format="PNG") in_mem_file.seek(0) img_bytes = in_mem_file.read() base64_encoded_result_bytes = base64.b64encode(img_bytes) base64_encoded_result_str = ( base64_encoded_result_bytes.decode('ascii')) v = 'data:image/png;base64,{base64_encoded_result_str}'.format( base64_encoded_result_str=base64_encoded_result_str) else: self.raise_invalid_val(v) return v class CompoundValidator(BaseValidator): def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): super(CompoundValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) # Save element class string self.data_class_str = data_class_str self._data_class = None self.data_docs = data_docs self.module_str = CompoundValidator.compute_graph_obj_module_str( self.data_class_str, parent_name) @staticmethod def compute_graph_obj_module_str(data_class_str, parent_name): if parent_name == 'frame' and data_class_str in ['Data', 'Layout']: # Special case. There are no graph_objs.frame.Data or # graph_objs.frame.Layout classes. These are remapped to # graph_objs.Data and graph_objs.Layout parent_parts = parent_name.split('.') module_str = '.'.join(['plotly.graph_objs'] + parent_parts[1:]) elif parent_name: module_str = 'plotly.graph_objs.' + parent_name else: module_str = 'plotly.graph_objs' return module_str @property def data_class(self): if self._data_class is None: module = import_module(self.module_str) self._data_class = getattr(module, self.data_class_str) return self._data_class def description(self): desc = ("""\ The '{plotly_name}' property is an instance of {class_str} that may be specified as: - An instance of {module_str}.{class_str} - A dict of string/value properties that will be passed to the {class_str} constructor Supported dict properties: {constructor_params_str}""").format( plotly_name=self.plotly_name, class_str=self.data_class_str, module_str=self.module_str, constructor_params_str=self.data_docs) return desc def validate_coerce(self, v, skip_invalid=False): if v is None: v = self.data_class() elif isinstance(v, dict): v = self.data_class(v, skip_invalid=skip_invalid) elif isinstance(v, self.data_class): # Copy object v = self.data_class(v) else: if skip_invalid: v = self.data_class() else: self.raise_invalid_val(v) v._plotly_name = self.plotly_name return v class CompoundArrayValidator(BaseValidator): def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): super(CompoundArrayValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) # Save element class string self.data_class_str = data_class_str self._data_class = None self.data_docs = data_docs self.module_str = CompoundValidator.compute_graph_obj_module_str( self.data_class_str, parent_name) def description(self): desc = ("""\ The '{plotly_name}' property is a tuple of instances of {class_str} that may be specified as: - A list or tuple of instances of {module_str}.{class_str} - A list or tuple of dicts of string/value properties that will be passed to the {class_str} constructor Supported dict properties: {constructor_params_str}""").format( plotly_name=self.plotly_name, class_str=self.data_class_str, module_str=self.module_str, constructor_params_str=self.data_docs) return desc @property def data_class(self): if self._data_class is None: module = import_module(self.module_str) self._data_class = getattr(module, self.data_class_str) return self._data_class def validate_coerce(self, v, skip_invalid=False): if v is None: v = [] elif isinstance(v, (list, tuple)): res = [] invalid_els = [] for v_el in v: if isinstance(v_el, self.data_class): res.append(self.data_class(v_el)) elif isinstance(v_el, dict): res.append(self.data_class(v_el, skip_invalid=skip_invalid)) else: if skip_invalid: res.append(self.data_class()) else: res.append(None) invalid_els.append(v_el) if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(res) else: if skip_invalid: v = [] else: self.raise_invalid_val(v) return v class BaseDataValidator(BaseValidator): def __init__(self, class_strs_map, plotly_name, parent_name, set_uid=False, **kwargs): super(BaseDataValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, **kwargs) self.class_strs_map = class_strs_map self._class_map = None self.set_uid = set_uid def description(self): trace_types = str(list(self.class_strs_map.keys())) trace_types_wrapped = '\n'.join( textwrap.wrap( trace_types, initial_indent=' One of: ', subsequent_indent=' ' * 21, width=79 - 12)) desc = ("""\ The '{plotly_name}' property is a tuple of trace instances that may be specified as: - A list or tuple of trace instances (e.g. [Scatter(...), Bar(...)]) - A list or tuple of dicts of string/value properties where: - The 'type' property specifies the trace type {trace_types} - All remaining properties are passed to the constructor of the specified trace type (e.g. [{{'type': 'scatter', ...}}, {{'type': 'bar, ...}}])""").format( plotly_name=self.plotly_name, trace_types=trace_types_wrapped) return desc @property def class_map(self): if self._class_map is None: # Initialize class map self._class_map = {} # Import trace classes trace_module = import_module('plotly.graph_objs') for k, class_str in self.class_strs_map.items(): self._class_map[k] = getattr(trace_module, class_str) return self._class_map def validate_coerce(self, v, skip_invalid=False): # Import Histogram2dcontour, this is the deprecated name of the # Histogram2dContour trace. from plotly.graph_objs import Histogram2dcontour if v is None: v = [] elif isinstance(v, (list, tuple)): trace_classes = tuple(self.class_map.values()) res = [] invalid_els = [] for v_el in v: if isinstance(v_el, trace_classes): # Clone input traces v_el = v_el.to_plotly_json() if isinstance(v_el, dict): v_copy = deepcopy(v_el) if 'type' in v_copy: trace_type = v_copy.pop('type') elif isinstance(v_el, Histogram2dcontour): trace_type = 'histogram2dcontour' else: trace_type = 'scatter' if trace_type not in self.class_map: if skip_invalid: # Treat as scatter trace trace = self.class_map['scatter']( skip_invalid=skip_invalid, **v_copy) res.append(trace) else: res.append(None) invalid_els.append(v_el) else: trace = self.class_map[trace_type]( skip_invalid=skip_invalid, **v_copy) res.append(trace) else: if skip_invalid: # Add empty scatter trace trace = self.class_map['scatter']() res.append(trace) else: res.append(None) invalid_els.append(v_el) if invalid_els: self.raise_invalid_elements(invalid_els) v = to_scalar_or_list(res) # Set new UIDs if self.set_uid: for trace in v: trace.uid = str(uuid.uuid4()) else: if skip_invalid: v = [] else: self.raise_invalid_val(v) return v class BaseTemplateValidator(CompoundValidator): def __init__(self, plotly_name, parent_name, data_class_str, data_docs, **kwargs): super(BaseTemplateValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=data_class_str, data_docs=data_docs, **kwargs ) def description(self): compound_description = super(BaseTemplateValidator, self).description() compound_description += """ - The name of a registered template where current registered templates are stored in the plotly.io.templates configuration object. The names of all registered templates can be retrieved with: >>> import plotly.io as pio >>> list(pio.templates) - A string containing multiple registered template names, joined on '+' characters (e.g. 'template1+template2'). In this case the resulting template is computed by merging together the collection of registered templates""" return compound_description def validate_coerce(self, v, skip_invalid=False): import plotly.io as pio try: # Check if v is a template identifier # (could be any hashable object) if v in pio.templates: return copy.deepcopy(pio.templates[v]) # Otherwise, if v is a string, check to see if it consists of # multiple template names joined on '+' characters elif isinstance(v, string_types): template_names = v.split('+') if all([name in pio.templates for name in template_names]): return pio.templates.merge_templates(*template_names) except TypeError: # v is un-hashable pass return super(BaseTemplateValidator, self).validate_coerce( v, skip_invalid=skip_invalid)