---
jupyter:
  jupytext:
    notebook_metadata_filter: all
    text_representation:
      extension: .md
      format_name: markdown
      format_version: '1.3'
      jupytext_version: 1.16.1
  kernelspec:
    display_name: Python 3 (ipykernel)
    language: python
    name: python3
  language_info:
    codemirror_mode:
      name: ipython
      version: 3
    file_extension: .py
    mimetype: text/x-python
    name: python
    nbconvert_exporter: python
    pygments_lexer: ipython3
    version: 3.10.11
  plotly:
    description: How to make 3D Cone plots in Python with Plotly.
    display_as: 3d_charts
    language: python
    layout: base
    name: 3D Cone Plots
    order: 12
    page_type: u-guide
    permalink: python/cone-plot/
    redirect_from: python/3d-cone/
    thumbnail: thumbnail/3dcone.png
---

A cone plot is the 3D equivalent of a 2D [quiver plot](/python/quiver-plots/), i.e., it represents a 3D vector field using cones to represent the direction and norm of the vectors. 3-D coordinates are given by `x`, `y` and `z`, and the coordinates of the vector field by `u`, `v` and `w`.

### Basic 3D Cone


```python
import plotly.graph_objects as go

fig = go.Figure(data=go.Cone(x=[1], y=[1], z=[1], u=[1], v=[1], w=[0]))

fig.update_layout(scene_camera_eye=dict(x=-0.76, y=1.8, z=0.92))

fig.show()
```

### Multiple 3D Cones

```python
import plotly.graph_objects as go

fig = go.Figure(data=go.Cone(
    x=[1, 2, 3],
    y=[1, 2, 3],
    z=[1, 2, 3],
    u=[1, 0, 0],
    v=[0, 3, 0],
    w=[0, 0, 2],
    sizemode="absolute",
    sizeref=2,
    anchor="tip"))

fig.update_layout(
      scene=dict(domain_x=[0, 1],
                 camera_eye=dict(x=-1.57, y=1.36, z=0.58)))

fig.show()
```

### 3D Cone Lighting

```python
import plotly.graph_objects as go

fig = go.Figure()
fig.add_trace(go.Cone(x=[1,] * 3, name="base"))
fig.add_trace(go.Cone(x=[2,] * 3, opacity=0.3, name="opacity:0.3"))
fig.add_trace(go.Cone(x=[3,] * 3, lighting_ambient=0.3, name="lighting.ambient:0.3"))
fig.add_trace(go.Cone(x=[4,] * 3, lighting_diffuse=0.3, name="lighting.diffuse:0.3"))
fig.add_trace(go.Cone(x=[5,] * 3, lighting_specular=2, name="lighting.specular:2"))
fig.add_trace(go.Cone(x=[6,] * 3, lighting_roughness=1, name="lighting.roughness:1"))
fig.add_trace(go.Cone(x=[7,] * 3, lighting_fresnel=2, name="lighting.fresnel:2"))
fig.add_trace(go.Cone(x=[8,] * 3, lightposition=dict(x=0, y=0, z=1e5),
                                  name="lighting.position x:0,y:0,z:1e5"))

fig.update_traces(y=[1, 2, 3], z=[1, 1, 1],
                  u=[1, 2, 3], v=[1, 1, 2], w=[4, 4, 1],
                  hoverinfo="u+v+w+name",
                  showscale=False)

fig.update_layout(scene=dict(aspectmode="data",
                             camera_eye=dict(x=0.05, y=-2.6, z=2)),
                  margin=dict(t=0, b=0, l=0, r=0))


fig.show()
```

### 3D Cone Vortex

```python
import plotly.graph_objects as go
import pandas as pd

df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/vortex.csv")

fig = go.Figure(data = go.Cone(
    x=df['x'],
    y=df['y'],
    z=df['z'],
    u=df['u'],
    v=df['v'],
    w=df['w'],
    colorscale='Blues',
    sizemode="absolute",
    sizeref=40))

fig.update_layout(scene=dict(aspectratio=dict(x=1, y=1, z=0.8),
                             camera_eye=dict(x=1.2, y=1.2, z=0.6)))

fig.show()
```

### Sizemode

Earlier examples use `sizemode="absolute"` when adjusting the cone size scaling with `sizeref`. `sizemode` also supports `raw`(new in 5.21) and `scaled`. For more details, see the [Cone Sizemode](https://plotly.com/python/reference/cone/#cone-sizemode) and https://plotly.com/python/reference/cone/#cone and [Cone Sizeref](https://plotly.com/python/reference/cone/#cone-sizeref) reference documentation.


#### Reference
See https://plotly.com/python/reference/ for more information and chart attribute options!