|
| 1 | +## This script uses px functions to generate html figures, which will be |
| 2 | +## tested with percy. |
| 3 | + |
| 4 | +import plotly.express as px |
| 5 | +print(px.data.iris.__doc__) |
| 6 | +px.data.iris().head() |
| 7 | + |
| 8 | +# #### Scatter and Line plots |
| 9 | + |
| 10 | +import plotly.express as px |
| 11 | +iris = px.data.iris() |
| 12 | +fig = px.scatter(iris, x="sepal_width", y="sepal_length") |
| 13 | +fig.write_html('scatter.html') |
| 14 | + |
| 15 | +import plotly.express as px |
| 16 | +iris = px.data.iris() |
| 17 | +fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species") |
| 18 | +fig.write_html('scatter_color.html') |
| 19 | + |
| 20 | +import plotly.express as px |
| 21 | +iris = px.data.iris() |
| 22 | +fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species", marginal_y="rug", marginal_x="histogram") |
| 23 | +fig.write_html('scatter_marginal.html') |
| 24 | + |
| 25 | +import plotly.express as px |
| 26 | +iris = px.data.iris() |
| 27 | +fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species", marginal_y="violin", |
| 28 | + marginal_x="box", trendline="ols") |
| 29 | +fig.write_html('scatter_trendline.html') |
| 30 | + |
| 31 | +import plotly.express as px |
| 32 | +iris = px.data.iris() |
| 33 | +iris["e"] = iris["sepal_width"]/100 |
| 34 | +fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species", error_x="e", error_y="e") |
| 35 | +fig.write_html('scatter_errorbar.html') |
| 36 | + |
| 37 | +import plotly.express as px |
| 38 | +tips = px.data.tips() |
| 39 | +fig = px.scatter(tips, x="total_bill", y="tip", facet_row="time", facet_col="day", color="smoker", trendline="ols", |
| 40 | + category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]}) |
| 41 | +fig.write_html('scatter_categories.html') |
| 42 | + |
| 43 | +import plotly.express as px |
| 44 | +iris = px.data.iris() |
| 45 | +fig = px.scatter_matrix(iris) |
| 46 | +fig.write_html('scatter_matrix.html') |
| 47 | + |
| 48 | +import plotly.express as px |
| 49 | +iris = px.data.iris() |
| 50 | +fig = px.scatter_matrix(iris, dimensions=["sepal_width", "sepal_length", "petal_width", "petal_length"], color="species") |
| 51 | +fig.write_html('scatter_matrix_dimensions.html') |
| 52 | + |
| 53 | +import plotly.express as px |
| 54 | +iris = px.data.iris() |
| 55 | +fig = px.parallel_coordinates(iris, color="species_id", labels={"species_id": "Species", |
| 56 | + "sepal_width": "Sepal Width", "sepal_length": "Sepal Length", |
| 57 | + "petal_width": "Petal Width", "petal_length": "Petal Length", }, |
| 58 | + color_continuous_scale=px.colors.diverging.Tealrose, color_continuous_midpoint=2) |
| 59 | +fig.write_html('parallel_coordinates.html') |
| 60 | + |
| 61 | +import plotly.express as px |
| 62 | +tips = px.data.tips() |
| 63 | +fig = px.parallel_categories(tips, color="size", color_continuous_scale=px.colors.sequential.Inferno) |
| 64 | +fig.write_html('parallel_categories.html') |
| 65 | + |
| 66 | +import plotly.express as px |
| 67 | +tips = px.data.tips() |
| 68 | +fig = px.scatter(tips, x="total_bill", y="tip", color="size", facet_col="sex", |
| 69 | + color_continuous_scale=px.colors.sequential.Viridis, render_mode="webgl") |
| 70 | +fig.write_html('scatter_webgl.html') |
| 71 | + |
| 72 | +import plotly.express as px |
| 73 | +gapminder = px.data.gapminder() |
| 74 | +fig = px.scatter(gapminder.query("year==2007"), x="gdpPercap", y="lifeExp", size="pop", color="continent", |
| 75 | + hover_name="country", log_x=True, size_max=60) |
| 76 | +fig.write_html('scatter_hover.html') |
| 77 | + |
| 78 | +import plotly.express as px |
| 79 | +gapminder = px.data.gapminder() |
| 80 | +fig = px.scatter(gapminder, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country", |
| 81 | + size="pop", color="continent", hover_name="country", facet_col="continent", |
| 82 | + log_x=True, size_max=45, range_x=[100,100000], range_y=[25,90]) |
| 83 | +fig.write_html('scatter_log.html') |
| 84 | + |
| 85 | +import plotly.express as px |
| 86 | +gapminder = px.data.gapminder() |
| 87 | +fig = px.line(gapminder, x="year", y="lifeExp", color="continent", line_group="country", hover_name="country", |
| 88 | + line_shape="spline", render_mode="svg") |
| 89 | +fig.write_html('line.html') |
| 90 | + |
| 91 | +import plotly.express as px |
| 92 | +gapminder = px.data.gapminder() |
| 93 | +fig = px.area(gapminder, x="year", y="pop", color="continent", line_group="country") |
| 94 | +fig.write_html('area.html') |
| 95 | + |
| 96 | +# #### Visualize Distributions |
| 97 | + |
| 98 | +import plotly.express as px |
| 99 | +iris = px.data.iris() |
| 100 | +fig = px.density_contour(iris, x="sepal_width", y="sepal_length") |
| 101 | +fig.write_html('density_contour.html') |
| 102 | + |
| 103 | +import plotly.express as px |
| 104 | +iris = px.data.iris() |
| 105 | +fig = px.density_contour(iris, x="sepal_width", y="sepal_length", color="species", marginal_x="rug", marginal_y="histogram") |
| 106 | +fig.write_html('density_contour_marginal.html') |
| 107 | + |
| 108 | +import plotly.express as px |
| 109 | +iris = px.data.iris() |
| 110 | +fig = px.density_heatmap(iris, x="sepal_width", y="sepal_length", marginal_x="rug", marginal_y="histogram") |
| 111 | +fig.write_html('density_heatmap.html') |
| 112 | + |
| 113 | +import plotly.express as px |
| 114 | +tips = px.data.tips() |
| 115 | +fig = px.bar(tips, x="sex", y="total_bill", color="smoker", barmode="group") |
| 116 | +fig.write_html('bar.html') |
| 117 | + |
| 118 | +import plotly.express as px |
| 119 | +tips = px.data.tips() |
| 120 | +fig = px.bar(tips, x="sex", y="total_bill", color="smoker", barmode="group", facet_row="time", facet_col="day", |
| 121 | + category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]}) |
| 122 | +fig.write_html('bar_facet.html') |
| 123 | + |
| 124 | +import plotly.express as px |
| 125 | +tips = px.data.tips() |
| 126 | +fig = px.histogram(tips, x="total_bill", y="tip", color="sex", marginal="rug", hover_data=tips.columns) |
| 127 | +fig.write_html('histogram.html') |
| 128 | + |
| 129 | +import plotly.express as px |
| 130 | +tips = px.data.tips() |
| 131 | +fig = px.histogram(tips, x="sex", y="tip", histfunc="avg", color="smoker", barmode="group", |
| 132 | + facet_row="time", facet_col="day", category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], |
| 133 | + "time": ["Lunch", "Dinner"]}) |
| 134 | +fig.write_html('histogram_histfunc.html') |
| 135 | + |
| 136 | +import plotly.express as px |
| 137 | +tips = px.data.tips() |
| 138 | +fig = px.strip(tips, x="total_bill", y="time", orientation="h", color="smoker") |
| 139 | +fig.write_html('strip.html') |
| 140 | + |
| 141 | +import plotly.express as px |
| 142 | +tips = px.data.tips() |
| 143 | +fig = px.box(tips, x="day", y="total_bill", color="smoker", notched=True) |
| 144 | +fig.write_html('box.html') |
| 145 | + |
| 146 | +import plotly.express as px |
| 147 | +tips = px.data.tips() |
| 148 | +fig = px.violin(tips, y="tip", x="smoker", color="sex", box=True, points="all", hover_data=tips.columns) |
| 149 | +fig.write_html('violin.html') |
| 150 | + |
| 151 | +# #### Ternary Coordinates |
| 152 | + |
| 153 | +import plotly.express as px |
| 154 | +election = px.data.election() |
| 155 | +fig = px.scatter_ternary(election, a="Joly", b="Coderre", c="Bergeron", color="winner", size="total", hover_name="district", |
| 156 | + size_max=15, color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"} ) |
| 157 | +fig.write_html('scatter_ternary.html') |
| 158 | + |
| 159 | +import plotly.express as px |
| 160 | +election = px.data.election() |
| 161 | +fig = px.line_ternary(election, a="Joly", b="Coderre", c="Bergeron", color="winner", line_dash="winner") |
| 162 | +fig.write_html('line_ternary.html') |
| 163 | + |
| 164 | +# #### 3D Coordinates |
| 165 | + |
| 166 | +import plotly.express as px |
| 167 | +election = px.data.election() |
| 168 | +fig = px.scatter_3d(election, x="Joly", y="Coderre", z="Bergeron", color="winner", size="total", hover_name="district", |
| 169 | + symbol="result", color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"}) |
| 170 | +fig.write_html('scatter_3d.html') |
| 171 | + |
| 172 | +import plotly.express as px |
| 173 | +election = px.data.election() |
| 174 | +fig = px.line_3d(election, x="Joly", y="Coderre", z="Bergeron", color="winner", line_dash="winner") |
| 175 | +fig.write_html('line_3d.html') |
| 176 | + |
| 177 | +# #### Polar Coordinates |
| 178 | + |
| 179 | +import plotly.express as px |
| 180 | +wind = px.data.wind() |
| 181 | +fig = px.scatter_polar(wind, r="frequency", theta="direction", color="strength", symbol="strength", |
| 182 | + color_discrete_sequence=px.colors.sequential.Plasma[-2::-1]) |
| 183 | +fig.write_html('scatter_polar.html') |
| 184 | + |
| 185 | +import plotly.express as px |
| 186 | +wind = px.data.wind() |
| 187 | +fig = px.line_polar(wind, r="frequency", theta="direction", color="strength", line_close=True, |
| 188 | + color_discrete_sequence=px.colors.sequential.Plasma[-2::-1]) |
| 189 | +fig.write_html('line_polar.html') |
| 190 | + |
| 191 | +import plotly.express as px |
| 192 | +wind = px.data.wind() |
| 193 | +fig = px.bar_polar(wind, r="frequency", theta="direction", color="strength", template="plotly_dark", |
| 194 | + color_discrete_sequence= px.colors.sequential.Plasma[-2::-1]) |
| 195 | +fig.write_html('bar_polar.html') |
| 196 | + |
| 197 | +# #### Maps |
| 198 | + |
| 199 | +import plotly.express as px |
| 200 | +carshare = px.data.carshare() |
| 201 | +fig = px.scatter_mapbox(carshare, lat="centroid_lat", lon="centroid_lon", color="peak_hour", size="car_hours", |
| 202 | + color_continuous_scale=px.colors.cyclical.IceFire, size_max=15, zoom=10) |
| 203 | +fig.write_html('scatter_mapbox.html') |
| 204 | + |
| 205 | +import plotly.express as px |
| 206 | +carshare = px.data.carshare() |
| 207 | +fig = px.line_mapbox(carshare, lat="centroid_lat", lon="centroid_lon", color="peak_hour") |
| 208 | +fig.write_html('line_mapbox.html') |
| 209 | + |
| 210 | +import plotly.express as px |
| 211 | +gapminder = px.data.gapminder() |
| 212 | +fig = px.scatter_geo(gapminder, locations="iso_alpha", color="continent", hover_name="country", size="pop", |
| 213 | + animation_frame="year", projection="natural earth") |
| 214 | +fig.write_html('scatter_geo.html') |
| 215 | + |
| 216 | +import plotly.express as px |
| 217 | +gapminder = px.data.gapminder() |
| 218 | +fig = px.line_geo(gapminder.query("year==2007"), locations="iso_alpha", color="continent", projection="orthographic") |
| 219 | +fig.write_html('line_geo.html') |
| 220 | + |
| 221 | +import plotly.express as px |
| 222 | +gapminder = px.data.gapminder() |
| 223 | +fig = px.choropleth(gapminder, locations="iso_alpha", color="lifeExp", hover_name="country", animation_frame="year", range_color=[20,80]) |
| 224 | +fig.write_html('choropleth.html') |
| 225 | + |
0 commit comments