|
1 | 1 | import plotly.express as px
|
2 | 2 | import numpy as np
|
| 3 | +import pandas as pd |
| 4 | +import pytest |
| 5 | +from datetime import datetime |
3 | 6 |
|
4 | 7 |
|
5 |
| -def test_trendline_nan_values(): |
| 8 | +@pytest.mark.parametrize("mode", ["ols", "lowess"]) |
| 9 | +def test_trendline_results_passthrough(mode): |
| 10 | + df = px.data.gapminder().query("continent == 'Oceania'") |
| 11 | + fig = px.scatter(df, x="year", y="pop", color="country", trendline=mode) |
| 12 | + assert len(fig.data) == 4 |
| 13 | + for trace in fig["data"][0::2]: |
| 14 | + assert "trendline" not in trace.hovertemplate |
| 15 | + for trendline in fig["data"][1::2]: |
| 16 | + assert "trendline" in trendline.hovertemplate |
| 17 | + if mode == "ols": |
| 18 | + assert "R<sup>2</sup>" in trendline.hovertemplate |
| 19 | + results = px.get_trendline_results(fig) |
| 20 | + if mode == "ols": |
| 21 | + assert len(results) == 2 |
| 22 | + assert results["country"].values[0] == "Australia" |
| 23 | + assert results["country"].values[0] == "Australia" |
| 24 | + au_result = results["px_fit_results"].values[0] |
| 25 | + assert len(au_result.params) == 2 |
| 26 | + else: |
| 27 | + assert len(results) == 0 |
| 28 | + |
| 29 | + |
| 30 | +@pytest.mark.parametrize("mode", ["ols", "lowess"]) |
| 31 | +def test_trendline_enough_values(mode): |
| 32 | + fig = px.scatter(x=[0, 1], y=[0, 1], trendline=mode) |
| 33 | + assert len(fig.data) == 2 |
| 34 | + assert len(fig.data[1].x) == 2 |
| 35 | + fig = px.scatter(x=[0], y=[0], trendline=mode) |
| 36 | + assert len(fig.data) == 2 |
| 37 | + assert fig.data[1].x is None |
| 38 | + fig = px.scatter(x=[0, 1], y=[0, None], trendline=mode) |
| 39 | + assert len(fig.data) == 2 |
| 40 | + assert fig.data[1].x is None |
| 41 | + fig = px.scatter(x=[0, 1], y=np.array([0, np.nan]), trendline=mode) |
| 42 | + assert len(fig.data) == 2 |
| 43 | + assert fig.data[1].x is None |
| 44 | + fig = px.scatter(x=[0, 1, None], y=[0, None, 1], trendline=mode) |
| 45 | + assert len(fig.data) == 2 |
| 46 | + assert fig.data[1].x is None |
| 47 | + fig = px.scatter( |
| 48 | + x=np.array([0, 1, np.nan]), y=np.array([0, np.nan, 1]), trendline=mode |
| 49 | + ) |
| 50 | + assert len(fig.data) == 2 |
| 51 | + assert fig.data[1].x is None |
| 52 | + fig = px.scatter(x=[0, 1, None, 2], y=[1, None, 1, 2], trendline=mode) |
| 53 | + assert len(fig.data) == 2 |
| 54 | + assert len(fig.data[1].x) == 2 |
| 55 | + fig = px.scatter( |
| 56 | + x=np.array([0, 1, np.nan, 2]), y=np.array([1, np.nan, 1, 2]), trendline=mode |
| 57 | + ) |
| 58 | + assert len(fig.data) == 2 |
| 59 | + assert len(fig.data[1].x) == 2 |
| 60 | + |
| 61 | + |
| 62 | +@pytest.mark.parametrize("mode", ["ols", "lowess"]) |
| 63 | +def test_trendline_nan_values(mode): |
6 | 64 | df = px.data.gapminder().query("continent == 'Oceania'")
|
7 | 65 | start_date = 1970
|
8 | 66 | df["pop"][df["year"] < start_date] = np.nan
|
9 |
| - modes = ["ols", "lowess"] |
10 |
| - for mode in modes: |
11 |
| - fig = px.scatter(df, x="year", y="pop", color="country", trendline=mode) |
12 |
| - for trendline in fig["data"][1::2]: |
13 |
| - assert trendline.x[0] >= start_date |
14 |
| - assert len(trendline.x) == len(trendline.y) |
| 67 | + fig = px.scatter(df, x="year", y="pop", color="country", trendline=mode) |
| 68 | + for trendline in fig["data"][1::2]: |
| 69 | + assert trendline.x[0] >= start_date |
| 70 | + assert len(trendline.x) == len(trendline.y) |
| 71 | + |
| 72 | + |
| 73 | +def test_no_slope_ols_trendline(): |
| 74 | + fig = px.scatter(x=[0, 1], y=[0, 1], trendline="ols") |
| 75 | + assert "y = 1" in fig.data[1].hovertemplate # then + x*(some small number) |
| 76 | + results = px.get_trendline_results(fig) |
| 77 | + params = results["px_fit_results"].iloc[0].params |
| 78 | + assert np.all(np.isclose(params, [0, 1])) |
| 79 | + |
| 80 | + fig = px.scatter(x=[1, 1], y=[0, 0], trendline="ols") |
| 81 | + assert "y = 0" in fig.data[1].hovertemplate |
| 82 | + results = px.get_trendline_results(fig) |
| 83 | + params = results["px_fit_results"].iloc[0].params |
| 84 | + assert np.all(np.isclose(params, [0])) |
| 85 | + |
| 86 | + fig = px.scatter(x=[1, 2], y=[0, 0], trendline="ols") |
| 87 | + assert "y = 0" in fig.data[1].hovertemplate |
| 88 | + fig = px.scatter(x=[0, 0], y=[1, 1], trendline="ols") |
| 89 | + assert "y = 0 * x + 1" in fig.data[1].hovertemplate |
| 90 | + fig = px.scatter(x=[0, 0], y=[1, 2], trendline="ols") |
| 91 | + assert "y = 0 * x + 1.5" in fig.data[1].hovertemplate |
| 92 | + |
| 93 | + |
| 94 | +@pytest.mark.parametrize("mode", ["ols", "lowess"]) |
| 95 | +def test_trendline_on_timeseries(mode): |
| 96 | + df = px.data.stocks() |
| 97 | + |
| 98 | + with pytest.raises(ValueError) as err_msg: |
| 99 | + px.scatter(df, x="date", y="GOOG", trendline=mode) |
| 100 | + assert "Could not convert value of 'x' ('date') into a numeric type." in str( |
| 101 | + err_msg.value |
| 102 | + ) |
| 103 | + |
| 104 | + df["date"] = pd.to_datetime(df["date"]) |
| 105 | + fig = px.scatter(df, x="date", y="GOOG", trendline=mode) |
| 106 | + assert len(fig.data) == 2 |
| 107 | + assert len(fig.data[0].x) == len(fig.data[1].x) |
| 108 | + assert type(fig.data[0].x[0]) == datetime |
| 109 | + assert type(fig.data[1].x[0]) == datetime |
| 110 | + assert np.all(fig.data[0].x == fig.data[1].x) |
0 commit comments