Skip to content

Commit 5ea8688

Browse files
authored
docstring of county choropleth (#2513)
1 parent 8dd6ed5 commit 5ea8688

File tree

1 file changed

+84
-91
lines changed

1 file changed

+84
-91
lines changed

Diff for: packages/python/plotly/plotly/figure_factory/_county_choropleth.py

+84-91
Original file line numberDiff line numberDiff line change
@@ -478,8 +478,8 @@ def create_choropleth(
478478
:param **layout_options: a **kwargs argument for all layout parameters
479479
480480
481-
Example 1: Florida::
482-
481+
Example 1: Florida::
482+
483483
import plotly.plotly as py
484484
import plotly.figure_factory as ff
485485
@@ -506,106 +506,99 @@ def create_choropleth(
506506
exponent_format=True,
507507
)
508508
509-
Example 2: New England
510-
```
511-
import plotly.plotly as py
512-
import plotly.figure_factory as ff
509+
Example 2: New England::
513510
514-
import pandas as pd
511+
import plotly.figure_factory as ff
515512
516-
NE_states = ['Connecticut', 'Maine', 'Massachusetts',
517-
'New Hampshire', 'Rhode Island']
518-
df_sample = pd.read_csv(
519-
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
520-
)
521-
df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)]
522-
colorscale = ['rgb(68.0, 1.0, 84.0)',
523-
'rgb(66.0, 64.0, 134.0)',
524-
'rgb(38.0, 130.0, 142.0)',
525-
'rgb(63.0, 188.0, 115.0)',
526-
'rgb(216.0, 226.0, 25.0)']
527-
528-
values = df_sample_r['TOT_POP'].tolist()
529-
fips = df_sample_r['FIPS'].tolist()
530-
fig = ff.create_choropleth(
531-
fips=fips, values=values, scope=NE_states, show_state_data=True
532-
)
533-
py.iplot(fig, filename='choropleth_new_england')
534-
```
513+
import pandas as pd
535514
536-
Example 3: California and Surrounding States
537-
```
538-
import plotly.plotly as py
539-
import plotly.figure_factory as ff
515+
NE_states = ['Connecticut', 'Maine', 'Massachusetts',
516+
'New Hampshire', 'Rhode Island']
517+
df_sample = pd.read_csv(
518+
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
519+
)
520+
df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)]
521+
colorscale = ['rgb(68.0, 1.0, 84.0)',
522+
'rgb(66.0, 64.0, 134.0)',
523+
'rgb(38.0, 130.0, 142.0)',
524+
'rgb(63.0, 188.0, 115.0)',
525+
'rgb(216.0, 226.0, 25.0)']
540526
541-
import pandas as pd
527+
values = df_sample_r['TOT_POP'].tolist()
528+
fips = df_sample_r['FIPS'].tolist()
529+
fig = ff.create_choropleth(
530+
fips=fips, values=values, scope=NE_states, show_state_data=True
531+
)
532+
fig.show()
542533
543-
df_sample = pd.read_csv(
544-
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
545-
)
546-
df_sample_r = df_sample[df_sample['STNAME'] == 'California']
547-
548-
values = df_sample_r['TOT_POP'].tolist()
549-
fips = df_sample_r['FIPS'].tolist()
550-
551-
colorscale = [
552-
'rgb(193, 193, 193)',
553-
'rgb(239,239,239)',
554-
'rgb(195, 196, 222)',
555-
'rgb(144,148,194)',
556-
'rgb(101,104,168)',
557-
'rgb(65, 53, 132)'
558-
]
534+
Example 3: California and Surrounding States::
559535
560-
fig = ff.create_choropleth(
561-
fips=fips, values=values, colorscale=colorscale,
562-
scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'],
563-
binning_endpoints=[14348, 63983, 134827, 426762, 2081313],
564-
county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
565-
legend_title='California Counties',
566-
title='California and Nearby States'
567-
)
568-
py.iplot(fig, filename='choropleth_california_and_surr_states_outlines')
569-
```
536+
import plotly.figure_factory as ff
570537
571-
Example 4: USA
572-
```
573-
import plotly.plotly as py
574-
import plotly.figure_factory as ff
538+
import pandas as pd
575539
576-
import numpy as np
577-
import pandas as pd
540+
df_sample = pd.read_csv(
541+
'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
542+
)
543+
df_sample_r = df_sample[df_sample['STNAME'] == 'California']
578544
579-
df_sample = pd.read_csv(
580-
'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv'
581-
)
582-
df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(
583-
lambda x: str(x).zfill(2)
584-
)
585-
df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(
586-
lambda x: str(x).zfill(3)
587-
)
588-
df_sample['FIPS'] = (
589-
df_sample['State FIPS Code'] + df_sample['County FIPS Code']
590-
)
545+
values = df_sample_r['TOT_POP'].tolist()
546+
fips = df_sample_r['FIPS'].tolist()
591547
592-
binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1))
593-
colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef",
594-
"#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce",
595-
"#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c",
596-
"#0b4083","#08306b"]
597-
fips = df_sample['FIPS']
598-
values = df_sample['Unemployment Rate (%)']
599-
fig = ff.create_choropleth(
600-
fips=fips, values=values, scope=['usa'],
601-
binning_endpoints=binning_endpoints, colorscale=colorscale,
602-
show_hover=True, centroid_marker={'opacity': 0},
603-
asp=2.9, title='USA by Unemployment %',
604-
legend_title='Unemployment %'
605-
)
548+
colorscale = [
549+
'rgb(193, 193, 193)',
550+
'rgb(239,239,239)',
551+
'rgb(195, 196, 222)',
552+
'rgb(144,148,194)',
553+
'rgb(101,104,168)',
554+
'rgb(65, 53, 132)'
555+
]
556+
557+
fig = ff.create_choropleth(
558+
fips=fips, values=values, colorscale=colorscale,
559+
scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'],
560+
binning_endpoints=[14348, 63983, 134827, 426762, 2081313],
561+
county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
562+
legend_title='California Counties',
563+
title='California and Nearby States'
564+
)
565+
fig.show()
566+
567+
Example 4: USA::
568+
569+
import plotly.figure_factory as ff
606570
607-
py.iplot(fig, filename='choropleth_full_usa')
608-
```
571+
import numpy as np
572+
import pandas as pd
573+
574+
df_sample = pd.read_csv(
575+
'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv'
576+
)
577+
df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(
578+
lambda x: str(x).zfill(2)
579+
)
580+
df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(
581+
lambda x: str(x).zfill(3)
582+
)
583+
df_sample['FIPS'] = (
584+
df_sample['State FIPS Code'] + df_sample['County FIPS Code']
585+
)
586+
587+
binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1))
588+
colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef",
589+
"#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce",
590+
"#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c",
591+
"#0b4083","#08306b"]
592+
fips = df_sample['FIPS']
593+
values = df_sample['Unemployment Rate (%)']
594+
fig = ff.create_choropleth(
595+
fips=fips, values=values, scope=['usa'],
596+
binning_endpoints=binning_endpoints, colorscale=colorscale,
597+
show_hover=True, centroid_marker={'opacity': 0},
598+
asp=2.9, title='USA by Unemployment %',
599+
legend_title='Unemployment %'
600+
)
601+
fig.show()
609602
"""
610603
# ensure optional modules imported
611604
if not _plotly_geo:

0 commit comments

Comments
 (0)