@@ -478,8 +478,8 @@ def create_choropleth(
478
478
:param **layout_options: a **kwargs argument for all layout parameters
479
479
480
480
481
- Example 1: Florida::
482
-
481
+ Example 1: Florida::
482
+
483
483
import plotly.plotly as py
484
484
import plotly.figure_factory as ff
485
485
@@ -506,106 +506,99 @@ def create_choropleth(
506
506
exponent_format=True,
507
507
)
508
508
509
- Example 2: New England
510
- ```
511
- import plotly.plotly as py
512
- import plotly.figure_factory as ff
509
+ Example 2: New England::
513
510
514
- import pandas as pd
511
+ import plotly.figure_factory as ff
515
512
516
- NE_states = ['Connecticut', 'Maine', 'Massachusetts',
517
- 'New Hampshire', 'Rhode Island']
518
- df_sample = pd.read_csv(
519
- 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
520
- )
521
- df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)]
522
- colorscale = ['rgb(68.0, 1.0, 84.0)',
523
- 'rgb(66.0, 64.0, 134.0)',
524
- 'rgb(38.0, 130.0, 142.0)',
525
- 'rgb(63.0, 188.0, 115.0)',
526
- 'rgb(216.0, 226.0, 25.0)']
527
-
528
- values = df_sample_r['TOT_POP'].tolist()
529
- fips = df_sample_r['FIPS'].tolist()
530
- fig = ff.create_choropleth(
531
- fips=fips, values=values, scope=NE_states, show_state_data=True
532
- )
533
- py.iplot(fig, filename='choropleth_new_england')
534
- ```
513
+ import pandas as pd
535
514
536
- Example 3: California and Surrounding States
537
- ```
538
- import plotly.plotly as py
539
- import plotly.figure_factory as ff
515
+ NE_states = ['Connecticut', 'Maine', 'Massachusetts',
516
+ 'New Hampshire', 'Rhode Island']
517
+ df_sample = pd.read_csv(
518
+ 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
519
+ )
520
+ df_sample_r = df_sample[df_sample['STNAME'].isin(NE_states)]
521
+ colorscale = ['rgb(68.0, 1.0, 84.0)',
522
+ 'rgb(66.0, 64.0, 134.0)',
523
+ 'rgb(38.0, 130.0, 142.0)',
524
+ 'rgb(63.0, 188.0, 115.0)',
525
+ 'rgb(216.0, 226.0, 25.0)']
540
526
541
- import pandas as pd
527
+ values = df_sample_r['TOT_POP'].tolist()
528
+ fips = df_sample_r['FIPS'].tolist()
529
+ fig = ff.create_choropleth(
530
+ fips=fips, values=values, scope=NE_states, show_state_data=True
531
+ )
532
+ fig.show()
542
533
543
- df_sample = pd.read_csv(
544
- 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
545
- )
546
- df_sample_r = df_sample[df_sample['STNAME'] == 'California']
547
-
548
- values = df_sample_r['TOT_POP'].tolist()
549
- fips = df_sample_r['FIPS'].tolist()
550
-
551
- colorscale = [
552
- 'rgb(193, 193, 193)',
553
- 'rgb(239,239,239)',
554
- 'rgb(195, 196, 222)',
555
- 'rgb(144,148,194)',
556
- 'rgb(101,104,168)',
557
- 'rgb(65, 53, 132)'
558
- ]
534
+ Example 3: California and Surrounding States::
559
535
560
- fig = ff.create_choropleth(
561
- fips=fips, values=values, colorscale=colorscale,
562
- scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'],
563
- binning_endpoints=[14348, 63983, 134827, 426762, 2081313],
564
- county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
565
- legend_title='California Counties',
566
- title='California and Nearby States'
567
- )
568
- py.iplot(fig, filename='choropleth_california_and_surr_states_outlines')
569
- ```
536
+ import plotly.figure_factory as ff
570
537
571
- Example 4: USA
572
- ```
573
- import plotly.plotly as py
574
- import plotly.figure_factory as ff
538
+ import pandas as pd
575
539
576
- import numpy as np
577
- import pandas as pd
540
+ df_sample = pd.read_csv(
541
+ 'https://raw.githubusercontent.com/plotly/datasets/master/minoritymajority.csv'
542
+ )
543
+ df_sample_r = df_sample[df_sample['STNAME'] == 'California']
578
544
579
- df_sample = pd.read_csv(
580
- 'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv'
581
- )
582
- df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(
583
- lambda x: str(x).zfill(2)
584
- )
585
- df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(
586
- lambda x: str(x).zfill(3)
587
- )
588
- df_sample['FIPS'] = (
589
- df_sample['State FIPS Code'] + df_sample['County FIPS Code']
590
- )
545
+ values = df_sample_r['TOT_POP'].tolist()
546
+ fips = df_sample_r['FIPS'].tolist()
591
547
592
- binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1))
593
- colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef",
594
- "#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce",
595
- "#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c",
596
- "#0b4083","#08306b"]
597
- fips = df_sample['FIPS']
598
- values = df_sample['Unemployment Rate (%)']
599
- fig = ff.create_choropleth(
600
- fips=fips, values=values, scope=['usa'],
601
- binning_endpoints=binning_endpoints, colorscale=colorscale,
602
- show_hover=True, centroid_marker={'opacity': 0},
603
- asp=2.9, title='USA by Unemployment %',
604
- legend_title='Unemployment %'
605
- )
548
+ colorscale = [
549
+ 'rgb(193, 193, 193)',
550
+ 'rgb(239,239,239)',
551
+ 'rgb(195, 196, 222)',
552
+ 'rgb(144,148,194)',
553
+ 'rgb(101,104,168)',
554
+ 'rgb(65, 53, 132)'
555
+ ]
556
+
557
+ fig = ff.create_choropleth(
558
+ fips=fips, values=values, colorscale=colorscale,
559
+ scope=['CA', 'AZ', 'Nevada', 'Oregon', ' Idaho'],
560
+ binning_endpoints=[14348, 63983, 134827, 426762, 2081313],
561
+ county_outline={'color': 'rgb(255,255,255)', 'width': 0.5},
562
+ legend_title='California Counties',
563
+ title='California and Nearby States'
564
+ )
565
+ fig.show()
566
+
567
+ Example 4: USA::
568
+
569
+ import plotly.figure_factory as ff
606
570
607
- py.iplot(fig, filename='choropleth_full_usa')
608
- ```
571
+ import numpy as np
572
+ import pandas as pd
573
+
574
+ df_sample = pd.read_csv(
575
+ 'https://raw.githubusercontent.com/plotly/datasets/master/laucnty16.csv'
576
+ )
577
+ df_sample['State FIPS Code'] = df_sample['State FIPS Code'].apply(
578
+ lambda x: str(x).zfill(2)
579
+ )
580
+ df_sample['County FIPS Code'] = df_sample['County FIPS Code'].apply(
581
+ lambda x: str(x).zfill(3)
582
+ )
583
+ df_sample['FIPS'] = (
584
+ df_sample['State FIPS Code'] + df_sample['County FIPS Code']
585
+ )
586
+
587
+ binning_endpoints = list(np.linspace(1, 12, len(colorscale) - 1))
588
+ colorscale = ["#f7fbff", "#ebf3fb", "#deebf7", "#d2e3f3", "#c6dbef",
589
+ "#b3d2e9", "#9ecae1", "#85bcdb", "#6baed6", "#57a0ce",
590
+ "#4292c6", "#3082be", "#2171b5", "#1361a9", "#08519c",
591
+ "#0b4083","#08306b"]
592
+ fips = df_sample['FIPS']
593
+ values = df_sample['Unemployment Rate (%)']
594
+ fig = ff.create_choropleth(
595
+ fips=fips, values=values, scope=['usa'],
596
+ binning_endpoints=binning_endpoints, colorscale=colorscale,
597
+ show_hover=True, centroid_marker={'opacity': 0},
598
+ asp=2.9, title='USA by Unemployment %',
599
+ legend_title='Unemployment %'
600
+ )
601
+ fig.show()
609
602
"""
610
603
# ensure optional modules imported
611
604
if not _plotly_geo :
0 commit comments