-
-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
Copy pathinteractive-html-export.md
126 lines (96 loc) · 5.47 KB
/
interactive-html-export.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
---
jupyter:
jupytext:
notebook_metadata_filter: all
text_representation:
extension: .md
format_name: markdown
format_version: '1.3'
jupytext_version: 1.14.6
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
language_info:
codemirror_mode:
name: ipython
version: 3
file_extension: .py
mimetype: text/x-python
name: python
nbconvert_exporter: python
pygments_lexer: ipython3
version: 3.10.11
plotly:
description: Plotly allows you to save interactive HTML versions of your figures
to your local disk.
display_as: file_settings
language: python
layout: base
name: Interactive HTML Export
order: 31
page_type: u-guide
permalink: python/interactive-html-export/
thumbnail: thumbnail/static-image-export.png
---
### Interactive vs Static Export
Plotly figures are interactive when viewed in a web browser: you can hover over data points, pan and zoom axes, and show and hide traces by clicking or double-clicking on the legend. You can export figures either to [static image file formats like PNG, JPEG, SVG or PDF](/python/static-image-export/) or you can export them to HTML files which can be opened in a browser. This page explains how to do the latter.
<!-- #region -->
### Saving to an HTML file
Any figure can be saved as an HTML file using the `write_html` method. These HTML files can be opened in any web browser to access the fully interactive figure.
```python
import plotly.express as px
fig = px.scatter(x=range(10), y=range(10))
fig.write_html("path/to/file.html")
```
<!-- #endregion -->
### Controlling the size of the HTML file
By default, the resulting HTML file is a fully self-contained HTML file which can be uploaded to a web server or shared via email or other file-sharing mechanisms. The downside to this approach is that the file is very large (5Mb+) because it contains an inlined copy of the Plotly.js library required to make the figure interactive. This can be controlled via the `include_plotlyjs` argument (see below).
### Inserting Plotly Output into HTML using a Jinja2 Template
You can insert Plotly output and text related to your data into HTML templates using Jinja2. Use `.to_html` to send the HTML to a Python string variable rather than using `write_html` to send the HTML to a disk file. Use the `full_html=False` option to output just the code necessary to add a figure to a template. We don't want to output a full HTML page, as the template will define the rest of the page's structure — for example, the page's `HTML` and `BODY` tags. First create an HTML template file containing a Jinja `{{ variable }}`. In this example, we customize the HTML in the template file by replacing the Jinja variable `{{ fig }}` with our graphic `fig`.
<!-- #region -->
```
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" /> <!--It is necessary to use the UTF-8 encoding with plotly graphics to get e.g. negative signs to render correctly -->
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
</head>
<body>
<h1>Here's a Plotly graph!</h1>
{{ fig }}
<p>And here's some text after the graph.</p>
</body>
</html>
```
Then use the following Python to replace `{{ fig }}` in the template with HTML that will display the Plotly figure "fig":
```python
import plotly.express as px
from jinja2 import Template
data_canada = px.data.gapminder().query("country == 'Canada'")
fig = px.bar(data_canada, x='year', y='pop')
output_html_path=r"/path/to/output.html"
input_template_path = r"/path/to/template.html"
plotly_jinja_data = {"fig":fig.to_html(full_html=False)}
#consider also defining the include_plotlyjs parameter to point to an external Plotly.js as described above
with open(output_html_path, "w", encoding="utf-8") as output_file:
with open(input_template_path) as template_file:
j2_template = Template(template_file.read())
output_file.write(j2_template.render(plotly_jinja_data))
```
<!-- #endregion -->
### HTML export in Dash
[Dash](https://plotly.com/dash/) is the best way to build analytical apps in Python using Plotly figures. To run the app below, run `pip install dash`, click "Download" to get the code and run `python app.py`.
Get started with [the official Dash docs](https://dash.plotly.com/installation) and **learn how to effortlessly [style](https://plotly.com/dash/design-kit/) & [deploy](https://plotly.com/dash/app-manager/) apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.**
```python hide_code=true
from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'interactive-html-export', width='100%', height=1200)
```
<div style="font-size: 0.9em;"><div style="width: calc(100% - 30px); box-shadow: none; border: thin solid rgb(229, 229, 229);"><div style="padding: 5px;"><div><p><strong>Sign up for Dash Club</strong> → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture.
<u><a href="https://go.plotly.com/dash-club?utm_source=Dash+Club+2022&utm_medium=graphing_libraries&utm_content=inline">Join now</a></u>.</p></div></div></div></div>
### Full Parameter Documentation
```python
import plotly.graph_objects as go
help(go.Figure.write_html)
```