jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on a variety of types of data and produces easy-to-style figures.
import plotly.express as px
df = px.data.tips()
fig = px.scatter(df, x="total_bill", y="tip", facet_col="sex",
width=800, height=400)
fig.update_layout(
margin=dict(l=20, r=20, t=20, b=20),
paper_bgcolor="LightSteelBlue",
)
fig.show()
Dash is the best way to build analytical apps in Python using Plotly figures. To run the app below, run pip install dash
, click "Download" to get the code and run python app.py
.
Get started with the official Dash docs and learn how to effortlessly style & deploy apps like this with Dash Enterprise.
from IPython.display import IFrame
snippet_url = 'https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/'
IFrame(snippet_url + 'setting-graph-size', width='100%', height=1200)
Sign up for Dash Club → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture. Join now.
Graph objects are the low-level building blocks of figures which you can use instead of Plotly Express for greater control.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Scatter(
x=[0, 1, 2, 3, 4, 5, 6, 7, 8],
y=[0, 1, 2, 3, 4, 5, 6, 7, 8]
))
fig.update_layout(
autosize=False,
width=500,
height=500,
margin=dict(
l=50,
r=50,
b=100,
t=100,
pad=4
),
paper_bgcolor="LightSteelBlue",
)
fig.show()
Set automargin to True
and Plotly will automatically increase the margin size to prevent ticklabels from being cut off or overlapping with axis titles.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(
x=["Apples", "Oranges", "Watermelon", "Pears"],
y=[3, 2, 1, 4]
))
fig.update_layout(
autosize=False,
width=500,
height=500,
yaxis=dict(
title_text="Y-axis Title",
ticktext=["Very long label", "long label", "3", "label"],
tickvals=[1, 2, 3, 4],
tickmode="array",
title_font=dict(size=30),
)
)
fig.update_yaxes(automargin=True)
fig.show()
New in 5.10
You can also set automargin
for specific sides of the figure. Here, we set automargin
on the left
and top
of the figure.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(
x=["Apples", "Oranges", "Watermelon", "Pears"],
y=[3, 2, 1, 4]
))
fig.update_layout(
autosize=False,
width=500,
height=500,
yaxis=dict(
title_text="Y-axis Title",
ticktext=["Very long label", "long label", "3", "label"],
tickvals=[1, 2, 3, 4],
tickmode="array",
title_font=dict(size=30),
)
)
fig.update_yaxes(automargin='left+top')
fig.show()
New in 5.11
To set a minimum width and height for a plot to be after automargin is applied, use minreducedwidth
and minreducedheight
. Here we set both to 250
.
import plotly.graph_objects as go
fig = go.Figure()
fig.add_trace(go.Bar(
x=["Apples", "Oranges", "Watermelon", "Pears"],
y=[3, 2, 1, 4]
))
fig.update_layout(
autosize=False,
minreducedwidth=250,
minreducedheight=250,
width=450,
height=450,
yaxis=dict(
title_text="Y-axis Title",
ticktext=["Label", "Very long label", "Other label", "Very very long label"],
tickvals=[1, 2, 3, 4],
tickmode="array",
title_font=dict(size=30),
)
)
fig.show()
See https://plotly.com/python/reference/layout/ for more information and chart attribute options!