jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Treemap charts visualize hierarchical data using nested rectangles. Same as Sunburst the hierarchy is defined by labels (names
for px.treemap
) and parents attributes. Click on one sector to zoom in/out, which also displays a pathbar in the upper-left corner of your treemap. To zoom out you can use the path bar as well.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on "tidy" data.
With px.treemap
, each row of the DataFrame is represented as a sector of the treemap.
import plotly.express as px
fig = px.treemap(
names = ["Eve","Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"]
)
fig.show()
Hierarchical data are often stored as a rectangular dataframe, with different columns corresponding to different levels of the hierarchy. px.treemap
can take a path
parameter corresponding to a list of columns. Note that id
and parent
should not be provided if path
is given.
import plotly.express as px
df = px.data.tips()
fig = px.treemap(df, path=['day', 'time', 'sex'], values='total_bill')
fig.show()
If a color
argument is passed, the color of a node is computed as the average of the color values of its children, weighted by their values.
import plotly.express as px
import numpy as np
df = px.data.gapminder().query("year == 2007")
fig = px.treemap(df, path=['continent', 'country'], values='pop',
color='lifeExp', hover_data=['iso_alpha'],
color_continuous_scale='RdBu',
color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop']))
fig.show()
If the dataset is not fully rectangular, missing values should be supplied as None
.
import plotly.express as px
import pandas as pd
vendors = ["A", "B", "C", "D", None, "E", "F", "G", "H", None]
sectors = ["Tech", "Tech", "Finance", "Finance", None,
"Tech", "Tech", "Finance", "Finance", "Finance"]
regions = ["North", "North", "North", "North", "North",
"South", "South", "South", "South", "South"]
sales = [1, 3, 2, 4, 1, 2, 2, 1, 4, 1]
df = pd.DataFrame(
dict(vendors=vendors, sectors=sectors, regions=regions, sales=sales)
)
print(df)
fig = px.treemap(df, path=['regions', 'sectors', 'vendors'], values='sales')
fig.show()
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Treemap
function from plotly.graph_objects
.
import plotly.graph_objects as go
fig = go.Figure(go.Treemap(
labels = ["Eve","Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"]
))
fig.show()
This example uses the following attributes:
- values: sets the values associated with each of the sectors.
- textinfo: determines which trace information appear on the graph that can be 'text', 'value', 'current path', 'percent root', 'percent entry', and 'percent parent', or any combination of them.
- pathbar: a main extra feature of treemap to display the current path of the visible portion of the hierarchical map. It may also be useful for zooming out of the graph.
- branchvalues: determines how the items in
values
are summed. When set to "total", items invalues
are taken to be value of all its descendants. In the example below Eva = 65, which is equal to 14 + 12 + 10 + 2 + 6 + 6 + 1 + 4. When set to "remainder", items invalues
corresponding to the root and the branches sectors are taken to be the extra part not part of the sum of the values at their leaves.
import plotly.graph_objects as go
from plotly.subplots import make_subplots
labels = ["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"]
parents = ["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"]
fig = make_subplots(
cols = 2, rows = 1,
column_widths = [0.4, 0.4],
subplot_titles = ('branchvalues: <b>remainder<br /> <br />', 'branchvalues: <b>total<br /> <br />'),
specs = [[{'type': 'treemap', 'rowspan': 1}, {'type': 'treemap'}]]
)
fig.add_trace(go.Treemap(
labels = labels,
parents = parents,
values = [10, 14, 12, 10, 2, 6, 6, 1, 4],
textinfo = "label+value+percent parent+percent entry+percent root",
),
row = 1, col = 1)
fig.add_trace(go.Treemap(
branchvalues = "total",
labels = labels,
parents = parents,
values = [65, 14, 12, 10, 2, 6, 6, 1, 4],
textinfo = "label+value+percent parent+percent entry",
outsidetextfont = {"size": 20, "color": "darkblue"},
marker = {"line": {"width": 2}},
pathbar = {"visible": False}),
row = 1, col = 2)
fig.show()
There are three different ways to change the color of the sectors in Treemap:
- marker.colors, 2) colorway, 3) colorscale. The following examples show how to use each of them.
import plotly.graph_objects as go
labels = ["A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "A1", "A2", "A3", "A4", "", "B1"]
fig = go.Figure(go.Treemap(
labels = labels,
parents = parents,
marker_colors = ["pink", "royalblue", "lightgray", "purple", "cyan", "lightgray", "lightblue"]))
fig.show()
This example uses treemapcolorway
attribute, which should be set in layout.
import plotly.graph_objects as go
labels = ["A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "A1", "A2", "A3", "A4", "", "B1"]
fig = go.Figure(go.Treemap(
labels = labels,
parents = parents
))
fig.update_layout(treemapcolorway = ["pink", "lightgray"])
fig.show()
import plotly.graph_objects as go
values = ["11", "12", "13", "14", "15", "20", "30"]
labels = ["A1", "A2", "A3", "A4", "A5", "B1", "B2"]
parents = ["", "A1", "A2", "A3", "A4", "", "B1"]
fig = go.Figure(go.Treemap(
labels = labels,
values = values,
parents = parents,
marker_colorscale = 'Blues'))
fig.show()
The example below visualizes a breakdown of sales (corresponding to sector width) and call success rate (corresponding to sector color) by region, county and salesperson level. For example, when exploring the data you can see that although the East region is behaving poorly, the Tyler county is still above average -- however, its performance is reduced by the poor success rate of salesperson GT.
In the right subplot which has a maxdepth
of two levels, click on a sector to see its breakdown to lower levels.
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/sales_success.csv')
print(df.head())
levels = ['salesperson', 'county', 'region'] # levels used for the hierarchical chart
color_columns = ['sales', 'calls']
value_column = 'calls'
def build_hierarchical_dataframe(df, levels, value_column, color_columns=None):
"""
Build a hierarchy of levels for Sunburst or Treemap charts.
Levels are given starting from the bottom to the top of the hierarchy,
ie the last level corresponds to the root.
"""
df_all_trees = pd.DataFrame(columns=['id', 'parent', 'value', 'color'])
for i, level in enumerate(levels):
df_tree = pd.DataFrame(columns=['id', 'parent', 'value', 'color'])
dfg = df.groupby(levels[i:]).sum(numerical_only=True)
dfg = dfg.reset_index()
df_tree['id'] = dfg[level].copy()
if i < len(levels) - 1:
df_tree['parent'] = dfg[levels[i+1]].copy()
else:
df_tree['parent'] = 'total'
df_tree['value'] = dfg[value_column]
df_tree['color'] = dfg[color_columns[0]] / dfg[color_columns[1]]
df_all_trees = df_all_trees.append(df_tree, ignore_index=True)
total = pd.Series(dict(id='total', parent='',
value=df[value_column].sum(),
color=df[color_columns[0]].sum() / df[color_columns[1]].sum()))
df_all_trees = df_all_trees.append(total, ignore_index=True)
return df_all_trees
df_all_trees = build_hierarchical_dataframe(df, levels, value_column, color_columns)
average_score = df['sales'].sum() / df['calls'].sum()
fig = make_subplots(1, 2, specs=[[{"type": "domain"}, {"type": "domain"}]],)
fig.add_trace(go.Treemap(
labels=df_all_trees['id'],
parents=df_all_trees['parent'],
values=df_all_trees['value'],
branchvalues='total',
marker=dict(
colors=df_all_trees['color'],
colorscale='RdBu',
cmid=average_score),
hovertemplate='<b>%{label} </b> <br> Sales: %{value}<br> Success rate: %{color:.2f}',
name=''
), 1, 1)
fig.add_trace(go.Treemap(
labels=df_all_trees['id'],
parents=df_all_trees['parent'],
values=df_all_trees['value'],
branchvalues='total',
marker=dict(
colors=df_all_trees['color'],
colorscale='RdBu',
cmid=average_score),
hovertemplate='<b>%{label} </b> <br> Sales: %{value}<br> Success rate: %{color:.2f}',
maxdepth=2
), 1, 2)
fig.update_layout(margin=dict(t=10, b=10, r=10, l=10))
fig.show()
The following example uses hierarchical data that includes layers and grouping. Treemap and Sunburst charts reveal insights into the data, and the format of your hierarchical data. maxdepth attribute sets the number of rendered sectors from the given level.
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
df1 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/sunburst-coffee-flavors-complete.csv')
df2 = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/718417069ead87650b90472464c7565dc8c2cb1c/coffee-flavors.csv')
fig = make_subplots(
rows = 1, cols = 2,
column_widths = [0.4, 0.4],
specs = [[{'type': 'treemap', 'rowspan': 1}, {'type': 'treemap'}]]
)
fig.add_trace(
go.Treemap(
ids = df1.ids,
labels = df1.labels,
parents = df1.parents),
col = 1, row = 1)
fig.add_trace(
go.Treemap(
ids = df2.ids,
labels = df2.labels,
parents = df2.parents,
maxdepth = 3),
col = 2, row = 1)
fig.update_layout(
margin = {'t':0, 'l':0, 'r':0, 'b':0}
)
fig.show()
See https://plot.ly/python/reference/#treemap for more information and chart attribute options!