jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
A pie chart is a circular statistical chart, which is divided into sectors to illustrate numerical proportion.
If you're looking instead for a multilevel hierarchical pie-like chart, go to the Sunburst tutorial.
Plotly Express is the easy-to-use, high-level interface to Plotly, which operates on "tidy" data.
In px.pie
, data visualized by the sectors of the pie is set in values
. The sector labels are set in names
.
import plotly.express as px
df = px.data.gapminder().query("year == 2007").query("continent == 'Europe'")
df.loc[df['pop'] < 2.e6, 'country'] = 'Other countries' # Represent only large countries
fig = px.pie(df, values='pop', names='country', title='Population of European continent')
fig.show()
Lines of the dataframe with the same value for names
are grouped together in the same sector.
import plotly.express as px
# This dataframe has 244 lines, but 4 distinct values for `day`
df = px.data.tips()
fig = px.pie(df, values='tip', names='day')
fig.show()
import plotly.express as px
df = px.data.tips()
fig = px.pie(df, values='tip', names='day', color_discrete_sequence=px.colors.sequential.RdBu)
fig.show()
In the example below, we first create a pie chart with px,pie
, using some of its options such as hover_data
(which columns should appear in the hover) or labels
(renaming column names). For further tuning, we call fig.update_traces
to set other parameters of the chart (you can also use fig.update_layout
for changing the layout).
import plotly.express as px
df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
fig = px.pie(df, values='pop', names='country',
title='Population of American continent',
hover_data=['lifeExp'], labels={'lifeExp':'life expectancy'})
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.show()
If Plotly Express does not provide a good starting point, it is also possible to use the more generic go.Pie
function from plotly.graph_objects
.
In go.Pie
, data visualized by the sectors of the pie is set in values
. The sector labels are set in labels
. The sector colors are set in marker.colors
.
If you're looking instead for a multilevel hierarchical pie-like chart, go to the Sunburst tutorial.
import plotly.graph_objects as go
labels = ['Oxygen','Hydrogen','Carbon_Dioxide','Nitrogen']
values = [4500, 2500, 1053, 500]
fig = go.Figure(data=[go.Pie(labels=labels, values=values)])
fig.show()
Colors can be given as RGB triplets or hexadecimal strings, or with CSS color names as below.
import plotly.graph_objects as go
colors = ['gold', 'mediumturquoise', 'darkorange', 'lightgreen']
fig = go.Figure(data=[go.Pie(labels=['Oxygen','Hydrogen','Carbon_Dioxide','Nitrogen'],
values=[4500,2500,1053,500])])
fig.update_traces(hoverinfo='label+percent', textinfo='value', textfont_size=20,
marker=dict(colors=colors, line=dict(color='#000000', width=2)))
fig.show()
The insidetextorientation
attribute controls the orientation of text inside sectors. With
"auto" the texts may automatically be rotated to fit with the maximum size inside the slice. Using "horizontal" (resp. "radial", "tangential") forces text to be horizontal (resp. radial or tangential)
For a figure fig
created with plotly express, use fig.update_traces(insidetextorientation='...')
to change the text orientation.
import plotly.graph_objects as go
labels = ['Oxygen','Hydrogen','Carbon_Dioxide','Nitrogen']
values = [4500, 2500, 1053, 500]
fig = go.Figure(data=[go.Pie(labels=labels, values=values, textinfo='label+percent',
insidetextorientation='radial'
)])
fig.show()
import plotly.graph_objects as go
labels = ['Oxygen','Hydrogen','Carbon_Dioxide','Nitrogen']
values = [4500, 2500, 1053, 500]
# Use `hole` to create a donut-like pie chart
fig = go.Figure(data=[go.Pie(labels=labels, values=values, hole=.3)])
fig.show()
For a "pulled-out" or "exploded" layout of the pie chart, use the pull
argument. It can be a scalar for pulling all sectors or an array to pull only some of the sectors.
import plotly.graph_objects as go
labels = ['Oxygen','Hydrogen','Carbon_Dioxide','Nitrogen']
values = [4500, 2500, 1053, 500]
# pull is given as a fraction of the pie radius
fig = go.Figure(data=[go.Pie(labels=labels, values=values, pull=[0, 0, 0.2, 0])])
fig.show()
import plotly.graph_objects as go
from plotly.subplots import make_subplots
labels = ["US", "China", "European Union", "Russian Federation", "Brazil", "India",
"Rest of World"]
# Create subplots: use 'domain' type for Pie subplot
fig = make_subplots(rows=1, cols=2, specs=[[{'type':'domain'}, {'type':'domain'}]])
fig.add_trace(go.Pie(labels=labels, values=[16, 15, 12, 6, 5, 4, 42], name="GHG Emissions"),
1, 1)
fig.add_trace(go.Pie(labels=labels, values=[27, 11, 25, 8, 1, 3, 25], name="CO2 Emissions"),
1, 2)
# Use `hole` to create a donut-like pie chart
fig.update_traces(hole=.4, hoverinfo="label+percent+name")
fig.update_layout(
title_text="Global Emissions 1990-2011",
# Add annotations in the center of the donut pies.
annotations=[dict(text='GHG', x=0.18, y=0.5, font_size=20, showarrow=False),
dict(text='CO2', x=0.82, y=0.5, font_size=20, showarrow=False)])
fig.show()
import plotly.graph_objects as go
from plotly.subplots import make_subplots
labels = ['1st', '2nd', '3rd', '4th', '5th']
# Define color sets of paintings
night_colors = ['rgb(56, 75, 126)', 'rgb(18, 36, 37)', 'rgb(34, 53, 101)',
'rgb(36, 55, 57)', 'rgb(6, 4, 4)']
sunflowers_colors = ['rgb(177, 127, 38)', 'rgb(205, 152, 36)', 'rgb(99, 79, 37)',
'rgb(129, 180, 179)', 'rgb(124, 103, 37)']
irises_colors = ['rgb(33, 75, 99)', 'rgb(79, 129, 102)', 'rgb(151, 179, 100)',
'rgb(175, 49, 35)', 'rgb(36, 73, 147)']
cafe_colors = ['rgb(146, 123, 21)', 'rgb(177, 180, 34)', 'rgb(206, 206, 40)',
'rgb(175, 51, 21)', 'rgb(35, 36, 21)']
# Create subplots, using 'domain' type for pie charts
specs = [[{'type':'domain'}, {'type':'domain'}], [{'type':'domain'}, {'type':'domain'}]]
fig = make_subplots(rows=2, cols=2, specs=specs)
# Define pie charts
fig.add_trace(go.Pie(labels=labels, values=[38, 27, 18, 10, 7], name='Starry Night',
marker_colors=night_colors), 1, 1)
fig.add_trace(go.Pie(labels=labels, values=[28, 26, 21, 15, 10], name='Sunflowers',
marker_colors=sunflowers_colors), 1, 2)
fig.add_trace(go.Pie(labels=labels, values=[38, 19, 16, 14, 13], name='Irises',
marker_colors=irises_colors), 2, 1)
fig.add_trace(go.Pie(labels=labels, values=[31, 24, 19, 18, 8], name='The Night Café',
marker_colors=cafe_colors), 2, 2)
# Tune layout and hover info
fig.update_traces(hoverinfo='label+percent+name', textinfo='none')
fig.update(layout_title_text='Van Gogh: 5 Most Prominent Colors Shown Proportionally',
layout_showlegend=False)
fig = go.Figure(fig)
fig.show()
Plots in the same scalegroup
are represented with an area proportional to their total size.
import plotly.graph_objects as go
from plotly.subplots import make_subplots
labels = ["Asia", "Europe", "Africa", "Americas", "Oceania"]
fig = make_subplots(1, 2, specs=[[{'type':'domain'}, {'type':'domain'}]],
subplot_titles=['1980', '2007'])
fig.add_trace(go.Pie(labels=labels, values=[4, 7, 1, 7, 0.5], scalegroup='one',
name="World GDP 1980"), 1, 1)
fig.add_trace(go.Pie(labels=labels, values=[21, 15, 3, 19, 1], scalegroup='one',
name="World GDP 2007"), 1, 2)
fig.update_layout(title_text='World GDP')
fig.show()
For multilevel pie charts representing hierarchical data, you can use the Sunburst
chart. A simple example is given below, for more information see the tutorial on Sunburst charts.
import plotly.graph_objects as go
fig =go.Figure(go.Sunburst(
labels=["Eve", "Cain", "Seth", "Enos", "Noam", "Abel", "Awan", "Enoch", "Azura"],
parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve" ],
values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
))
fig.update_layout(margin = dict(t=0, l=0, r=0, b=0))
fig.show()
See https://plot.ly/python/reference/#pie for more information and chart attribute options!