diff --git a/.github/pull_request_template.md b/.github/pull_request_template.md index 65f010f88..6c0bdb3e0 100644 --- a/.github/pull_request_template.md +++ b/.github/pull_request_template.md @@ -1,5 +1,6 @@ Doc upgrade checklist: +- [ ] random seed is set if using random data - [ ] file has been moved from `unconverted/x/y.md` to `x/y.md` - [ ] old boilerplate at top and bottom of file has been removed - [ ] Every example is independently runnable and is optimized for short line count diff --git a/python/2D-Histogram.md b/python/2D-Histogram.md index 8e2932fa9..b7f3f3d45 100644 --- a/python/2D-Histogram.md +++ b/python/2D-Histogram.md @@ -42,6 +42,7 @@ jupyter: import plotly.graph_objects as go import numpy as np +np.random.seed(1) x = np.random.randn(500) y = np.random.randn(500)+1 diff --git a/python/2d-histogram-contour.md b/python/2d-histogram-contour.md index 08fbf75e3..0d46a6b00 100644 --- a/python/2d-histogram-contour.md +++ b/python/2d-histogram-contour.md @@ -42,6 +42,7 @@ jupyter: import plotly.graph_objects as go import numpy as np +np.random.seed(1) x = np.random.uniform(-1, 1, size=500) y = np.random.uniform(-1, 1, size=500) diff --git a/python/3d-axes.md b/python/3d-axes.md index 9782bec93..83b015121 100644 --- a/python/3d-axes.md +++ b/python/3d-axes.md @@ -48,6 +48,7 @@ For creating 3D charts, see [this page](https://plot.ly/python/3d-charts/). ```python import plotly.graph_objects as go import numpy as np +np.random.seed(1) N = 70 diff --git a/python/annotated_heatmap.md b/python/annotated_heatmap.md index 11014e846..e9b750df2 100644 --- a/python/annotated_heatmap.md +++ b/python/annotated_heatmap.md @@ -110,11 +110,12 @@ fig.show() ```python import plotly.figure_factory as ff import numpy as np +np.random.seed(1) z = np.random.randn(20, 20) z_text = np.around(z, decimals=2) # Only show rounded value (full value on hover) -fig = ff.create_annotated_heatmap(z, annotation_text=z_text, colorscale='Greys', +fig = ff.create_annotated_heatmap(z, annotation_text=z_text, colorscale='Greys', hoverinfo='z') # Make text size smaller @@ -183,7 +184,7 @@ z = [[.8, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, .0, 1.], # Display element name and atomic mass on hover hover=[] for x in range(len(symbol)): - hover.append([i + '
' + 'Atomic Mass: ' + str(j) + hover.append([i + '
' + 'Atomic Mass: ' + str(j) for i, j in zip(element[x], atomic_mass[x])]) # Invert Matrices @@ -208,4 +209,4 @@ For more info on Plotly heatmaps, see: https://plot.ly/python/reference/#heatmap ```python help(ff.create_annotated_heatmap) -``` \ No newline at end of file +``` diff --git a/python/box-plots.md b/python/box-plots.md index 94138c53c..aebdf6008 100644 --- a/python/box-plots.md +++ b/python/box-plots.md @@ -97,6 +97,7 @@ When data are not available as tidy dataframes, it is also possible to use the m ```python import plotly.graph_objects as go import numpy as np +np.random.seed(1) y0 = np.random.randn(50) - 1 y1 = np.random.randn(50) + 1 diff --git a/python/click-events.md b/python/click-events.md index b1eb674b0..c0d5163ec 100644 --- a/python/click-events.md +++ b/python/click-events.md @@ -43,6 +43,7 @@ jupyter: import plotly.graph_objects as go import numpy as np +np.random.seed(1) x = np.random.rand(100) y = np.random.rand(100) diff --git a/python/compare-webgl-svg.md b/python/compare-webgl-svg.md index 734b69f3b..0859b04f6 100644 --- a/python/compare-webgl-svg.md +++ b/python/compare-webgl-svg.md @@ -48,6 +48,7 @@ for increased speed, improved interactivity, and the ability to plot even more d import plotly.graph_objects as go import numpy as np +np.random.seed(1) N = 75000 @@ -103,4 +104,4 @@ fig.show() For more information see
`Scattergl()` : https://plot.ly/python/reference/#scattergl
-`Scatter()` : https://plot.ly/python/reference/#scatter \ No newline at end of file +`Scatter()` : https://plot.ly/python/reference/#scatter diff --git a/python/custom-buttons.md b/python/custom-buttons.md index ebb37a703..803ea410b 100644 --- a/python/custom-buttons.md +++ b/python/custom-buttons.md @@ -258,6 +258,7 @@ import plotly.graph_objects as go # Generate dataset import numpy as np +np.random.seed(1) x0 = np.random.normal(2, 0.4, 400) y0 = np.random.normal(2, 0.4, 400) diff --git a/python/dendrogram.md b/python/dendrogram.md index b0f0e6378..0317f17f1 100644 --- a/python/dendrogram.md +++ b/python/dendrogram.md @@ -46,6 +46,7 @@ Dendrogram plots are commonly used in computational biology to show the clusteri ```python import plotly.figure_factory as ff import numpy as np +np.random.seed(1) X = np.random.rand(15, 12) # 15 samples, with 12 dimensions each fig = ff.create_dendrogram(X) @@ -183,4 +184,4 @@ fig.show() ```python help(ff.create_dendrogram) -``` \ No newline at end of file +``` diff --git a/python/distplot.md b/python/distplot.md index 6e9974d46..a465251af 100644 --- a/python/distplot.md +++ b/python/distplot.md @@ -71,6 +71,7 @@ A histogram, a kde plot and a rug plot are displayed. ```python import plotly.figure_factory as ff import numpy as np +np.random.seed(1) x = np.random.randn(1000) hist_data = [x] diff --git a/python/dropdowns.md b/python/dropdowns.md index a5060734a..99b7f386d 100644 --- a/python/dropdowns.md +++ b/python/dropdowns.md @@ -256,6 +256,7 @@ import plotly.graph_objects as go # Generate dataset import numpy as np +np.random.seed(1) x0 = np.random.normal(2, 0.4, 400) y0 = np.random.normal(2, 0.4, 400) diff --git a/python/heatmaps.md b/python/heatmaps.md index 1f3f6e785..b21473a60 100644 --- a/python/heatmaps.md +++ b/python/heatmaps.md @@ -123,13 +123,14 @@ fig.show() import plotly.graph_objects as go import datetime import numpy as np +np.random.seed(1) programmers = ['Alex','Nicole','Sara','Etienne','Chelsea','Jody','Marianne'] base = datetime.datetime.today() dates = base - np.arange(180) * datetime.timedelta(days=1) z = np.random.poisson(size=(len(programmers), len(dates))) - + fig = go.Figure(data=go.Heatmap( z=z, x=dates, @@ -159,4 +160,4 @@ IFrame(src= "https://dash-simple-apps.plotly.host/dash-heatmapplot/code", width= ``` #### Reference -See https://plot.ly/python/reference/#heatmap for more information and chart attribute options! \ No newline at end of file +See https://plot.ly/python/reference/#heatmap for more information and chart attribute options! diff --git a/python/histograms.md b/python/histograms.md index 09c0ea90d..605f8a7d5 100644 --- a/python/histograms.md +++ b/python/histograms.md @@ -138,6 +138,7 @@ When data are not available as tidy dataframes, it is also possible to use the m import plotly.graph_objects as go import numpy as np +np.random.seed(1) x = np.random.randn(500) diff --git a/python/images.md b/python/images.md index b4554155a..d72404bec 100644 --- a/python/images.md +++ b/python/images.md @@ -149,6 +149,7 @@ fig.show() import plotly.graph_objects as go import numpy as np +np.random.seed(1) from scipy.signal import savgol_filter # Simulate spectroscopy data diff --git a/python/line-and-scatter.md b/python/line-and-scatter.md index d0637d39f..626dbd6fc 100644 --- a/python/line-and-scatter.md +++ b/python/line-and-scatter.md @@ -99,6 +99,7 @@ import plotly.graph_objects as go # Create random data with numpy import numpy as np +np.random.seed(1) N = 100 random_x = np.linspace(0, 1, N) diff --git a/python/line-charts.md b/python/line-charts.md index ec554ed62..f01fc5208 100644 --- a/python/line-charts.md +++ b/python/line-charts.md @@ -97,6 +97,7 @@ import plotly.graph_objects as go # Create random data with numpy import numpy as np +np.random.seed(1) N = 100 random_x = np.linspace(0, 1, N) diff --git a/python/marker-style.md b/python/marker-style.md index 1fd6512ec..798951c82 100644 --- a/python/marker-style.md +++ b/python/marker-style.md @@ -62,6 +62,7 @@ import plotly.graph_objects as go # Generate example data import numpy as np +np.random.seed(1) x = np.random.uniform(low=3, high=6, size=(500,)) y = np.random.uniform(low=3, high=6, size=(500,)) @@ -313,4 +314,4 @@ fig.show() ``` ### Reference -See https://plot.ly/python/reference/ for more information and chart attribute options! \ No newline at end of file +See https://plot.ly/python/reference/ for more information and chart attribute options! diff --git a/python/orca-management.md b/python/orca-management.md index d77353c41..2f6fa2be3 100644 --- a/python/orca-management.md +++ b/python/orca-management.md @@ -53,6 +53,7 @@ Now let's create a simple scatter plot with 100 random points of variying color import plotly.graph_objects as go import numpy as np +np.random.seed(1) # Generate scatter plot data N = 100 @@ -209,4 +210,4 @@ In addition to the `executable` property, the `plotly.io.orca.config` object can ### Saving Configuration Settings -Configuration options can optionally be saved to the `~/.plotly/` directory by calling the `plotly.io.config.save()` method. Saved setting will be automatically loaded at the start of future sessions. \ No newline at end of file +Configuration options can optionally be saved to the `~/.plotly/` directory by calling the `plotly.io.config.save()` method. Saved setting will be automatically loaded at the start of future sessions. diff --git a/python/random-walk.md b/python/random-walk.md index ca32f997c..d57e0cc6a 100644 --- a/python/random-walk.md +++ b/python/random-walk.md @@ -47,6 +47,7 @@ The jitter in the data points along the x and y axes are meant to illuminate whe ```python import plotly.graph_objects as go import numpy as np +np.random.seed(1) l = 100 steps = np.random.choice([-1, 1], size=l) + 0.05 * np.random.randn(l) # l steps @@ -112,7 +113,7 @@ steps = np.random.choice([-1, 1], size=(N, l)) + 0.05 * np.random.standard_norma position = np.cumsum(steps, axis=1) # integrate all positions by summing steps values along time axis fig = go.Figure(data=go.Histogram(x=position[:, -1])) # positions at final time step -fig.show() +fig.show() ``` ```python @@ -134,7 +135,7 @@ fig.update_xaxes(title_text='$t$') fig.update_yaxes(title_text='$l$', col=1) fig.update_yaxes(title_text='$l^2$', col=2) fig.update_layout(showlegend=False) -fig.show() +fig.show() ``` #### Advanced Tip diff --git a/python/shapes.md b/python/shapes.md index f584b9dc8..01f6f2fc4 100644 --- a/python/shapes.md +++ b/python/shapes.md @@ -462,6 +462,7 @@ fig.show() import plotly.graph_objects as go import numpy as np +np.random.seed(1) # Generate data x0 = np.random.normal(2, 0.45, 300) @@ -706,4 +707,4 @@ fig.show() ``` ### Reference -See https://plot.ly/python/reference/#layout-shapes for more information and chart attribute options! \ No newline at end of file +See https://plot.ly/python/reference/#layout-shapes for more information and chart attribute options! diff --git a/python/smoothing.md b/python/smoothing.md index 995726b11..f29bbb035 100644 --- a/python/smoothing.md +++ b/python/smoothing.md @@ -65,6 +65,8 @@ import scipy from scipy import signal +np.random.seed(1) + x = np.linspace(0, 10, 100) y = np.sin(x) noise = 2 * np.random.random(len(x)) - 1 # uniformly distributed between -1 and 1 @@ -93,8 +95,8 @@ fig.add_trace(go.Scatter( fig.add_trace(go.Scatter( x=x, - y=signal.savgol_filter(y, - 53, # window size used for filtering + y=signal.savgol_filter(y, + 53, # window size used for filtering 3), # order of fitted polynomial mode='markers', marker=dict( diff --git a/python/static-image-export.md b/python/static-image-export.md index 049d73cdb..380594dbc 100644 --- a/python/static-image-export.md +++ b/python/static-image-export.md @@ -76,6 +76,7 @@ Now let's create a simple scatter plot with 100 random points of variying color ```python import plotly.graph_objects as go import numpy as np +np.random.seed(1) N = 100 x = np.random.rand(N) diff --git a/python/table.md b/python/table.md index 96d8ca667..44565c0e9 100644 --- a/python/table.md +++ b/python/table.md @@ -121,7 +121,7 @@ fig = go.Figure(data=[go.Table( fig.show() ``` -#### Alternating Row Colors +#### Alternating Row Colors ```python import plotly.graph_objects as go @@ -190,6 +190,7 @@ fig.show() import plotly.graph_objects as go from plotly.colors import n_colors import numpy as np +np.random.seed(1) colors = n_colors('rgb(255, 200, 200)', 'rgb(200, 0, 0)', 9, colortype='rgb') a = np.random.randint(low=0, high=9, size=10) @@ -229,4 +230,4 @@ IFrame(src= "https://dash-simple-apps.plotly.host/dash-tableplot/code", width="1 ``` #### Reference -For more information on tables and table attributes see: https://plot.ly/python/reference/#table. \ No newline at end of file +For more information on tables and table attributes see: https://plot.ly/python/reference/#table. diff --git a/python/violin.md b/python/violin.md index ffa689533..e251539e2 100644 --- a/python/violin.md +++ b/python/violin.md @@ -244,6 +244,7 @@ A ridgeline plot ([previously known as Joy Plot](https://serialmentor.com/blog/2 import plotly.graph_objects as go from plotly.colors import n_colors import numpy as np +np.random.seed(1) # 12 sets of normal distributed random data, with increasing mean and standard deviation data = (np.linspace(1, 2, 12)[:, np.newaxis] * np.random.randn(12, 200) + diff --git a/python/webgl-vs-svg.md b/python/webgl-vs-svg.md index a0bfec99f..dcc4e5577 100644 --- a/python/webgl-vs-svg.md +++ b/python/webgl-vs-svg.md @@ -51,6 +51,7 @@ import plotly.express as px import pandas as pd import numpy as np +np.random.seed(1) N = 100000