6
6
extension : .md
7
7
format_name : markdown
8
8
format_version : ' 1.1'
9
- jupytext_version : 1.1.1
9
+ jupytext_version : 1.2.3
10
10
kernelspec :
11
11
display_name : Python 3
12
12
language : python
@@ -44,7 +44,7 @@ In the three examples below, note that the default colormap is different whether
44
44
``` python
45
45
import plotly.graph_objects as go
46
46
import numpy as np
47
- X, Y, Z = np.mgrid[- 8 :8 :50 j , - 8 :8 :50 j , - 8 :8 :50 j ]
47
+ X, Y, Z = np.mgrid[- 8 :8 :40 j , - 8 :8 :40 j , - 8 :8 :40 j ]
48
48
values = np.sin(X* Y* Z) / (X* Y* Z)
49
49
50
50
fig = go.Figure(data = go.Volume(
@@ -63,7 +63,7 @@ fig.show()
63
63
``` python
64
64
import plotly.graph_objects as go
65
65
import numpy as np
66
- X, Y, Z = np.mgrid[- 1 :1 :50 j , - 1 :1 :50 j , - 1 :1 :50 j ]
66
+ X, Y, Z = np.mgrid[- 1 :1 :30 j , - 1 :1 :30 j , - 1 :1 :30 j ]
67
67
values = np.sin(np.pi* X) * np.cos(np.pi* Z) * np.sin(np.pi* Y)
68
68
69
69
fig = go.Figure(data = go.Volume(
@@ -85,13 +85,13 @@ import plotly.graph_objects as go
85
85
86
86
# Generate nicely looking random 3D-field
87
87
np.random.seed(0 )
88
- l = 50
88
+ l = 30
89
89
X, Y, Z = np.mgrid[:l, :l, :l]
90
90
vol = np.zeros((l, l, l))
91
91
pts = (l * np.random.rand(3 , 15 )).astype(np.int)
92
92
vol[tuple (indices for indices in pts)] = 1
93
93
from scipy import ndimage
94
- vol = ndimage.gaussian_filter(vol, 7 )
94
+ vol = ndimage.gaussian_filter(vol, 4 )
95
95
vol /= vol.max()
96
96
97
97
fig = go.Figure(data = go.Volume(
@@ -122,7 +122,7 @@ fig = make_subplots(
122
122
123
123
import numpy as np
124
124
125
- X, Y, Z = np.mgrid[- 8 :8 :50 j , - 8 :8 :50 j , - 8 :8 :50 j ]
125
+ X, Y, Z = np.mgrid[- 8 :8 :30 j , - 8 :8 :30 j , - 8 :8 :30 j ]
126
126
values = np.sin(X* Y* Z) / (X* Y* Z)
127
127
128
128
@@ -150,7 +150,7 @@ It is also possible to define a custom opacity scale, mapping scalar values to r
150
150
``` python
151
151
import plotly.graph_objects as go
152
152
import numpy as np
153
- X, Y, Z = np.mgrid[- 1 :1 :50 j , - 1 :1 :50 j , - 1 :1 :50 j ]
153
+ X, Y, Z = np.mgrid[- 1 :1 :30 j , - 1 :1 :30 j , - 1 :1 :30 j ]
154
154
values = np.sin(np.pi* X) * np.cos(np.pi* Z) * np.sin(np.pi* Y)
155
155
156
156
fig = go.Figure(data = go.Volume(
0 commit comments