jupyter | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
Plotly Express is a terse, consistent, high-level wrapper around plotly.graph_objects
for rapid data exploration and figure generation.
Note: Plotly Express was previously its own separately-installed plotly_express
package but is now part of plotly
!
This notebook demonstrates various plotly.express
features. Reference documentation is also available.
You can also read our original Medium announcement article for more information on this library.
import plotly.express as px
print(px.data.iris.__doc__)
px.data.iris().head()
import plotly.express as px
iris = px.data.iris()
fig = px.scatter(iris, x="sepal_width", y="sepal_length")
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species")
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species", marginal_y="rug", marginal_x="histogram")
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species", marginal_y="violin",
marginal_x="box", trendline="ols")
fig.show()
import plotly.express as px
iris = px.data.iris()
iris["e"] = iris["sepal_width"]/100
fig = px.scatter(iris, x="sepal_width", y="sepal_length", color="species", error_x="e", error_y="e")
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.scatter(tips, x="total_bill", y="tip", facet_row="time", facet_col="day", color="smoker", trendline="ols",
category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]})
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.scatter_matrix(iris)
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.scatter_matrix(iris, dimensions=["sepal_width", "sepal_length", "petal_width", "petal_length"], color="species")
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.parallel_coordinates(iris, color="species_id", labels={"species_id": "Species",
"sepal_width": "Sepal Width", "sepal_length": "Sepal Length",
"petal_width": "Petal Width", "petal_length": "Petal Length", },
color_continuous_scale=px.colors.diverging.Tealrose, color_continuous_midpoint=2)
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.parallel_categories(tips, color="size", color_continuous_scale=px.colors.sequential.Inferno)
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.scatter(tips, x="total_bill", y="tip", color="size", facet_col="sex",
color_continuous_scale=px.colors.sequential.Viridis, render_mode="webgl")
fig.show()
import plotly.express as px
gapminder = px.data.gapminder()
fig = px.scatter(gapminder.query("year==2007"), x="gdpPercap", y="lifeExp", size="pop", color="continent",
hover_name="country", log_x=True, size_max=60)
fig.show()
import plotly.express as px
gapminder = px.data.gapminder()
fig = px.scatter(gapminder, x="gdpPercap", y="lifeExp", animation_frame="year", animation_group="country",
size="pop", color="continent", hover_name="country", facet_col="continent",
log_x=True, size_max=45, range_x=[100,100000], range_y=[25,90])
fig.show()
import plotly.express as px
gapminder = px.data.gapminder()
fig = px.line(gapminder, x="year", y="lifeExp", color="continent", line_group="country", hover_name="country",
line_shape="spline", render_mode="svg")
fig.show()
import plotly.express as px
gapminder = px.data.gapminder()
fig = px.area(gapminder, x="year", y="pop", color="continent", line_group="country")
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.density_contour(iris, x="sepal_width", y="sepal_length")
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.density_contour(iris, x="sepal_width", y="sepal_length", color="species", marginal_x="rug", marginal_y="histogram")
fig.show()
import plotly.express as px
iris = px.data.iris()
fig = px.density_heatmap(iris, x="sepal_width", y="sepal_length", marginal_x="rug", marginal_y="histogram")
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.bar(tips, x="sex", y="total_bill", color="smoker", barmode="group")
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.bar(tips, x="sex", y="total_bill", color="smoker", barmode="group", facet_row="time", facet_col="day",
category_orders={"day": ["Thur", "Fri", "Sat", "Sun"], "time": ["Lunch", "Dinner"]})
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.histogram(tips, x="total_bill", y="tip", color="sex", marginal="rug", hover_data=tips.columns)
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.histogram(tips, x="sex", y="tip", histfunc="avg", color="smoker", barmode="group",
facet_row="time", facet_col="day", category_orders={"day": ["Thur", "Fri", "Sat", "Sun"],
"time": ["Lunch", "Dinner"]})
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.strip(tips, x="total_bill", y="time", orientation="h", color="smoker")
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.box(tips, x="day", y="total_bill", color="smoker", notched=True)
fig.show()
import plotly.express as px
tips = px.data.tips()
fig = px.violin(tips, y="tip", x="smoker", color="sex", box=True, points="all", hover_data=tips.columns)
fig.show()
import plotly.express as px
election = px.data.election()
fig = px.scatter_ternary(election, a="Joly", b="Coderre", c="Bergeron", color="winner", size="total", hover_name="district",
size_max=15, color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"} )
fig.show()
import plotly.express as px
election = px.data.election()
fig = px.line_ternary(election, a="Joly", b="Coderre", c="Bergeron", color="winner", line_dash="winner")
fig.show()
import plotly.express as px
election = px.data.election()
fig = px.scatter_3d(election, x="Joly", y="Coderre", z="Bergeron", color="winner", size="total", hover_name="district",
symbol="result", color_discrete_map = {"Joly": "blue", "Bergeron": "green", "Coderre":"red"})
fig.show()
import plotly.express as px
election = px.data.election()
fig = px.line_3d(election, x="Joly", y="Coderre", z="Bergeron", color="winner", line_dash="winner")
fig.show()
import plotly.express as px
wind = px.data.wind()
fig = px.scatter_polar(wind, r="frequency", theta="direction", color="strength", symbol="strength",
color_discrete_sequence=px.colors.sequential.Plasma[-2::-1])
fig.show()
import plotly.express as px
wind = px.data.wind()
fig = px.line_polar(wind, r="frequency", theta="direction", color="strength", line_close=True,
color_discrete_sequence=px.colors.sequential.Plasma[-2::-1])
fig.show()
import plotly.express as px
wind = px.data.wind()
fig = px.bar_polar(wind, r="frequency", theta="direction", color="strength", template="plotly_dark",
color_discrete_sequence= px.colors.sequential.Plasma[-2::-1])
fig.show()
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
carshare = px.data.carshare()
fig = px.scatter_mapbox(carshare, lat="centroid_lat", lon="centroid_lon", color="peak_hour", size="car_hours",
color_continuous_scale=px.colors.cyclical.IceFire, size_max=15, zoom=10)
fig.show()
import plotly.express as px
px.set_mapbox_access_token(open(".mapbox_token").read())
carshare = px.data.carshare()
fig = px.line_mapbox(carshare, lat="centroid_lat", lon="centroid_lon", color="peak_hour")
fig.show()
import plotly.express as px
gapminder = px.data.gapminder()
fig = px.scatter_geo(gapminder, locations="iso_alpha", color="continent", hover_name="country", size="pop",
animation_frame="year", projection="natural earth")
fig.show()
import plotly.express as px
gapminder = px.data.gapminder()
fig = px.line_geo(gapminder.query("year==2007"), locations="iso_alpha", color="continent", projection="orthographic")
fig.show()
import plotly.express as px
gapminder = px.data.gapminder()
fig = px.choropleth(gapminder, locations="iso_alpha", color="lifeExp", hover_name="country", animation_frame="year", range_color=[20,80])
fig.show()
px.colors.qualitative.swatches()
px.colors.sequential.swatches()
px.colors.diverging.swatches()
px.colors.cyclical.swatches()
px.colors.colorbrewer.swatches()
px.colors.cmocean.swatches()
px.colors.carto.swatches()