-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2019-07-03-renderers.html
646 lines (495 loc) · 141 KB
/
2019-07-03-renderers.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
---
description: Displaying Figures using Plotly's Python graphing library
display_as: file_settings
language: python
layout: base
name: Displaying Figures
order: 3
page_type: example_index
permalink: python/renderers/
redirect_from: python/offline/
thumbnail: thumbnail/displaying-figures.png
---
{% raw %}
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Displaying-Figures">Displaying Figures<a class="anchor-link" href="#Displaying-Figures">¶</a></h1><p>Plotly's Python graphing library, <code>plotly.py</code>, gives you a wide range of options for how and where to display your figures.</p>
<p>In general, there are five different approaches you can take in order to display <code>plotly</code> figures:</p>
<ol>
<li>Using the <code>renderers</code> framework in the context of a script or notebook (the main topic of this page)</li>
<li>Using <a href="https://dash.plot.ly">Dash</a> in a web app context</li>
<li>Using a <a href="https://plotly.com/python/figurewidget/"><code>FigureWidget</code> rather than a <code>Figure</code></a> in an <a href="https://ipywidgets.readthedocs.io/en/stable/"><code>ipywidgets</code> context</a></li>
<li>By <a href="https://plotly.com/python/interactive-html-export/">exporting to an HTML file</a> and loading that file in a browser immediately or later</li>
<li>By <a href="https://plotly.com/python/static-image-export/">rendering the figure to a static image file using Kaleido</a> such as PNG, JPEG, SVG, PDF or EPS and loading the resulting file in any viewer</li>
</ol>
<p>Each of the first three approaches is discussed below.</p>
<h3 id="Displaying-Figures-Using-The-renderers-Framework">Displaying Figures Using The <code>renderers</code> Framework<a class="anchor-link" href="#Displaying-Figures-Using-The-renderers-Framework">¶</a></h3><p>The renderers framework is a flexible approach for displaying <code>plotly.py</code> figures in a variety of contexts. To display a figure using the renderers framework, you call the <code>.show()</code> method on a graph object figure, or pass the figure to the <code>plotly.io.show</code> function. With either approach, <code>plotly.py</code> will display the figure using the current default renderer(s).</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [1]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.graph_objects</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">go</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span><span class="p">(</span>
<span class="n">data</span><span class="o">=</span><span class="p">[</span><span class="n">go</span><span class="o">.</span><span class="n">Bar</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])],</span>
<span class="n">layout_title_text</span><span class="o">=</span><span class="s2">"A Figure Displayed with fig.show()"</span>
<span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_html rendered_html output_subarea ">
<script type="text/javascript">
window.PlotlyConfig = {MathJaxConfig: 'local'};
if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: "STIX-Web"}});}
</script>
<script type="module">import "https://cdn.plot.ly/plotly-3.0.1.min"</script>
</div>
</div>
<div class="output_area">
<div class="prompt"></div>
<div class="output_html rendered_html output_subarea ">
<div> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG"></script><script type="text/javascript">if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: "STIX-Web"}});}</script> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="5e9d8efb-8976-46b4-8382-3c014c6e62e0" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("5e9d8efb-8976-46b4-8382-3c014c6e62e0")) { Plotly.newPlot( "5e9d8efb-8976-46b4-8382-3c014c6e62e0", [{"y":[2,1,3],"type":"bar"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"title":{"text":"A Figure Displayed with fig.show()"}}, {"responsive": true} ).then(function(){
var gd = document.getElementById('5e9d8efb-8976-46b4-8382-3c014c6e62e0');
var x = new MutationObserver(function (mutations, observer) {{
var display = window.getComputedStyle(gd).display;
if (!display || display === 'none') {{
console.log([gd, 'removed!']);
Plotly.purge(gd);
observer.disconnect();
}}
}});
// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
x.observe(notebookContainer, {childList: true});
}}
// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
x.observe(outputEl, {childList: true});
}}
}) }; </script> </div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>In most situations, you can omit the call to <code>.show()</code> and allow the figure to display itself.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [2]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.graph_objects</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">go</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span><span class="p">(</span>
<span class="n">data</span><span class="o">=</span><span class="p">[</span><span class="n">go</span><span class="o">.</span><span class="n">Bar</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])],</span>
<span class="n">layout_title_text</span><span class="o">=</span><span class="s2">"A Figure Displaying Itself"</span>
<span class="p">)</span>
<span class="n">fig</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_html rendered_html output_subarea ">
<div> <script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS-MML_SVG"></script><script type="text/javascript">if (window.MathJax && window.MathJax.Hub && window.MathJax.Hub.Config) {window.MathJax.Hub.Config({SVG: {font: "STIX-Web"}});}</script> <script type="text/javascript">window.PlotlyConfig = {MathJaxConfig: 'local'};</script>
<script charset="utf-8" src="https://cdn.plot.ly/plotly-3.0.1.min.js"></script> <div id="f0c9f19f-8ba0-4f45-ada4-0db0ac5d7458" class="plotly-graph-div" style="height:525px; width:100%;"></div> <script type="text/javascript"> window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById("f0c9f19f-8ba0-4f45-ada4-0db0ac5d7458")) { Plotly.newPlot( "f0c9f19f-8ba0-4f45-ada4-0db0ac5d7458", [{"y":[2,1,3],"type":"bar"}], {"template":{"data":{"histogram2dcontour":[{"type":"histogram2dcontour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"choropleth":[{"type":"choropleth","colorbar":{"outlinewidth":0,"ticks":""}}],"histogram2d":[{"type":"histogram2d","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"heatmap":[{"type":"heatmap","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"contourcarpet":[{"type":"contourcarpet","colorbar":{"outlinewidth":0,"ticks":""}}],"contour":[{"type":"contour","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"surface":[{"type":"surface","colorbar":{"outlinewidth":0,"ticks":""},"colorscale":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]]}],"mesh3d":[{"type":"mesh3d","colorbar":{"outlinewidth":0,"ticks":""}}],"scatter":[{"fillpattern":{"fillmode":"overlay","size":10,"solidity":0.2},"type":"scatter"}],"parcoords":[{"type":"parcoords","line":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolargl":[{"type":"scatterpolargl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"bar":[{"error_x":{"color":"#2a3f5f"},"error_y":{"color":"#2a3f5f"},"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"bar"}],"scattergeo":[{"type":"scattergeo","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterpolar":[{"type":"scatterpolar","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"histogram":[{"marker":{"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"histogram"}],"scattergl":[{"type":"scattergl","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatter3d":[{"type":"scatter3d","line":{"colorbar":{"outlinewidth":0,"ticks":""}},"marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermap":[{"type":"scattermap","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattermapbox":[{"type":"scattermapbox","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scatterternary":[{"type":"scatterternary","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"scattercarpet":[{"type":"scattercarpet","marker":{"colorbar":{"outlinewidth":0,"ticks":""}}}],"carpet":[{"aaxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"baxis":{"endlinecolor":"#2a3f5f","gridcolor":"white","linecolor":"white","minorgridcolor":"white","startlinecolor":"#2a3f5f"},"type":"carpet"}],"table":[{"cells":{"fill":{"color":"#EBF0F8"},"line":{"color":"white"}},"header":{"fill":{"color":"#C8D4E3"},"line":{"color":"white"}},"type":"table"}],"barpolar":[{"marker":{"line":{"color":"#E5ECF6","width":0.5},"pattern":{"fillmode":"overlay","size":10,"solidity":0.2}},"type":"barpolar"}],"pie":[{"automargin":true,"type":"pie"}]},"layout":{"autotypenumbers":"strict","colorway":["#636efa","#EF553B","#00cc96","#ab63fa","#FFA15A","#19d3f3","#FF6692","#B6E880","#FF97FF","#FECB52"],"font":{"color":"#2a3f5f"},"hovermode":"closest","hoverlabel":{"align":"left"},"paper_bgcolor":"white","plot_bgcolor":"#E5ECF6","polar":{"bgcolor":"#E5ECF6","angularaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"radialaxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"ternary":{"bgcolor":"#E5ECF6","aaxis":{"gridcolor":"white","linecolor":"white","ticks":""},"baxis":{"gridcolor":"white","linecolor":"white","ticks":""},"caxis":{"gridcolor":"white","linecolor":"white","ticks":""}},"coloraxis":{"colorbar":{"outlinewidth":0,"ticks":""}},"colorscale":{"sequential":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"sequentialminus":[[0.0,"#0d0887"],[0.1111111111111111,"#46039f"],[0.2222222222222222,"#7201a8"],[0.3333333333333333,"#9c179e"],[0.4444444444444444,"#bd3786"],[0.5555555555555556,"#d8576b"],[0.6666666666666666,"#ed7953"],[0.7777777777777778,"#fb9f3a"],[0.8888888888888888,"#fdca26"],[1.0,"#f0f921"]],"diverging":[[0,"#8e0152"],[0.1,"#c51b7d"],[0.2,"#de77ae"],[0.3,"#f1b6da"],[0.4,"#fde0ef"],[0.5,"#f7f7f7"],[0.6,"#e6f5d0"],[0.7,"#b8e186"],[0.8,"#7fbc41"],[0.9,"#4d9221"],[1,"#276419"]]},"xaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"yaxis":{"gridcolor":"white","linecolor":"white","ticks":"","title":{"standoff":15},"zerolinecolor":"white","automargin":true,"zerolinewidth":2},"scene":{"xaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"yaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2},"zaxis":{"backgroundcolor":"#E5ECF6","gridcolor":"white","linecolor":"white","showbackground":true,"ticks":"","zerolinecolor":"white","gridwidth":2}},"shapedefaults":{"line":{"color":"#2a3f5f"}},"annotationdefaults":{"arrowcolor":"#2a3f5f","arrowhead":0,"arrowwidth":1},"geo":{"bgcolor":"white","landcolor":"#E5ECF6","subunitcolor":"white","showland":true,"showlakes":true,"lakecolor":"white"},"title":{"x":0.05},"mapbox":{"style":"light"}}},"title":{"text":"A Figure Displaying Itself"}}, {"responsive": true} ).then(function(){
var gd = document.getElementById('f0c9f19f-8ba0-4f45-ada4-0db0ac5d7458');
var x = new MutationObserver(function (mutations, observer) {{
var display = window.getComputedStyle(gd).display;
if (!display || display === 'none') {{
console.log([gd, 'removed!']);
Plotly.purge(gd);
observer.disconnect();
}}
}});
// Listen for the removal of the full notebook cells
var notebookContainer = gd.closest('#notebook-container');
if (notebookContainer) {{
x.observe(notebookContainer, {childList: true});
}}
// Listen for the clearing of the current output cell
var outputEl = gd.closest('.output');
if (outputEl) {{
x.observe(outputEl, {childList: true});
}}
}) }; </script> </div>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<blockquote><p>To be precise, figures will display themselves using the current default renderer when the two following conditions are true. First, the last expression in a cell must evaluate to a figure. Second, <code>plotly.py</code> must be running from within an <code>IPython</code> kernel.</p>
</blockquote>
<p><strong>In many contexts, an appropriate renderer will be chosen automatically and you will not need to perform any additional configuration.</strong> These contexts include the classic <a href="https://jupyter.org/">Jupyter Notebook</a>, <a href="https://jupyterlab.readthedocs.io/en/stable/">JupyterLab</a>, <a href="https://code.visualstudio.com/docs/python/jupyter-support">Visual Studio Code notebooks</a>, <a href="https://colab.research.google.com/notebooks/intro.ipynb">Google Colaboratory</a>, <a href="https://www.kaggle.com/kernels">Kaggle</a> notebooks, <a href="https://notebooks.azure.com/">Azure</a> notebooks, and the <a href="https://www.python.org/shell/">Python interactive shell</a>.</p>
<p>Additional contexts are supported by choosing a compatible renderer including the <a href="https://docs.spyder-ide.org/ipythonconsole.html">IPython console</a>, <a href="https://qtconsole.readthedocs.io/en/stable/">QtConsole</a>, <a href="https://www.spyder-ide.org/">Spyder</a>, and more.</p>
<p>Next, we will show how to configure the default renderer. After that, we will describe all of the built-in renderers and discuss why you might choose to use each one.</p>
<blockquote><p>Note: The <code>renderers</code> framework is a generalization of the <code>plotly.offline.iplot</code> and <code>plotly.offline.plot</code> functions that were the recommended way to display figures prior to <code>plotly.py</code> version 4. These functions have been reimplemented using the <code>renderers</code> framework and are still supported for backward compatibility, but they will not be discussed here.</p>
</blockquote>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="Setting-The-Default-Renderer">Setting The Default Renderer<a class="anchor-link" href="#Setting-The-Default-Renderer">¶</a></h4><p>The current and available renderers are configured using the <code>plotly.io.renderers</code> configuration object. Display this object to see the current default renderer and the list of all available renderers.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [3]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.io</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pio</span>
<span class="n">pio</span><span class="o">.</span><span class="n">renderers</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[3]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>Renderers configuration
-----------------------
Default renderer: 'notebook_connected'
Available renderers:
['plotly_mimetype', 'jupyterlab', 'nteract', 'vscode',
'notebook', 'notebook_connected', 'kaggle', 'azure', 'colab',
'cocalc', 'databricks', 'json', 'png', 'jpeg', 'jpg', 'svg',
'pdf', 'browser', 'firefox', 'chrome', 'chromium', 'iframe',
'iframe_connected', 'sphinx_gallery', 'sphinx_gallery_png']</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>The default renderer that you see when you display <code>pio.renderers</code> might be different than what is shown here. This is because <code>plotly.py</code> attempts to autodetect an appropriate renderer at startup. You can change the default renderer by assigning the name of an available renderer to the <code>pio.renderers.default</code> property. For example, to switch to the <code>'browser'</code> renderer, which opens figures in a tab of the default web browser, you would run the following.</p>
<blockquote><p>Note: Default renderers persist for the duration of a single session, but they do not persist across sessions. If you are working in an <code>IPython</code> kernel, this means that default renderers will persist for the life of the kernel, but they will not persist across kernel restarts.</p>
</blockquote>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [4]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.io</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pio</span>
<span class="n">pio</span><span class="o">.</span><span class="n">renderers</span><span class="o">.</span><span class="n">default</span> <span class="o">=</span> <span class="s2">"browser"</span>
</pre></div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>It is also possible to set the default renderer using a system environment variable. At startup, <code>plotly.py</code> checks for the existence of an environment variable named <code>PLOTLY_RENDERER</code>. If this environment variable is set to the name of an available renderer, this renderer is set as the default.</p>
<h4 id="Overriding-The-Default-Renderer">Overriding The Default Renderer<a class="anchor-link" href="#Overriding-The-Default-Renderer">¶</a></h4><p>It is also possible to override the default renderer temporarily by passing the name of an available renderer as the <code>renderer</code> keyword argument to the <code>show()</code> method. Here is an example of displaying a figure using the <code>svg</code> renderer (described below) without changing the default renderer.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [5]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.graph_objects</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">go</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span><span class="p">(</span>
<span class="n">data</span><span class="o">=</span><span class="p">[</span><span class="n">go</span><span class="o">.</span><span class="n">Bar</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])],</span>
<span class="n">layout_title_text</span><span class="o">=</span><span class="s2">"A Figure Displayed with the 'svg' Renderer"</span>
<span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">renderer</span><span class="o">=</span><span class="s2">"svg"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_svg output_subarea ">
<svg class="main-svg" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="700" height="500" style="" viewBox="0 0 700 500"><rect x="0" y="0" width="700" height="500" style="fill: rgb(255, 255, 255); fill-opacity: 1;"/><defs id="defs-75bf59"><g class="clips"><clipPath id="clip75bf59xyplot" class="plotclip"><rect width="540" height="320"/></clipPath><clipPath class="axesclip" id="clip75bf59x"><rect x="80" y="0" width="540" height="500"/></clipPath><clipPath class="axesclip" id="clip75bf59y"><rect x="0" y="100" width="700" height="320"/></clipPath><clipPath class="axesclip" id="clip75bf59xy"><rect x="80" y="100" width="540" height="320"/></clipPath></g><g class="gradients"/><g class="patterns"/></defs><g class="bglayer"><rect class="bg" x="80" y="100" width="540" height="320" style="fill: rgb(229, 236, 246); fill-opacity: 1; stroke-width: 0;"/></g><g class="layer-below"><g class="imagelayer"/><g class="shapelayer"/></g><g class="cartesianlayer"><g class="subplot xy"><g class="layer-subplot"><g class="shapelayer"/><g class="imagelayer"/></g><g class="minor-gridlayer"><g class="x"/><g class="y"/></g><g class="gridlayer"><g class="x"/><g class="y"><path class="ygrid crisp" transform="translate(0,369.33)" d="M80,0h540" style="stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;"/><path class="ygrid crisp" transform="translate(0,318.66999999999996)" d="M80,0h540" style="stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;"/><path class="ygrid crisp" transform="translate(0,268)" d="M80,0h540" style="stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;"/><path class="ygrid crisp" transform="translate(0,217.32999999999998)" d="M80,0h540" style="stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;"/><path class="ygrid crisp" transform="translate(0,166.67000000000002)" d="M80,0h540" style="stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;"/><path class="ygrid crisp" transform="translate(0,116)" d="M80,0h540" style="stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 1px;"/></g></g><g class="zerolinelayer"><path class="yzl zl crisp" transform="translate(0,420)" d="M80,0h540" style="stroke: rgb(255, 255, 255); stroke-opacity: 1; stroke-width: 2px;"/></g><g class="layer-between"><g class="shapelayer"/><g class="imagelayer"/></g><path class="xlines-below"/><path class="ylines-below"/><g class="overlines-below"/><g class="xaxislayer-below"/><g class="yaxislayer-below"/><g class="overaxes-below"/><g class="overplot"><g class="xy" transform="translate(80,100)" clip-path="url(#clip75bf59xyplot)"><g class="barlayer mlayer"><g class="trace bars" style="opacity: 1;"><g class="points"><g class="point"><path d="M18,320V117.33H162V320Z" style="vector-effect: none; opacity: 1; stroke-width: 0.5px; fill: rgb(99, 110, 250); fill-opacity: 1; stroke: rgb(229, 236, 246); stroke-opacity: 1;"/></g><g class="point"><path d="M198,320V218.67H342V320Z" style="vector-effect: none; opacity: 1; stroke-width: 0.5px; fill: rgb(99, 110, 250); fill-opacity: 1; stroke: rgb(229, 236, 246); stroke-opacity: 1;"/></g><g class="point"><path d="M378,320V16H522V320Z" style="vector-effect: none; opacity: 1; stroke-width: 0.5px; fill: rgb(99, 110, 250); fill-opacity: 1; stroke: rgb(229, 236, 246); stroke-opacity: 1;"/></g></g></g></g></g></g><path class="xlines-above crisp" d="M0,0" style="fill: none;"/><path class="ylines-above crisp" d="M0,0" style="fill: none;"/><g class="overlines-above"/><g class="xaxislayer-above"><g class="xtick"><text text-anchor="middle" x="0" y="433" transform="translate(80,0)" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;">−0.5</text></g><g class="xtick"><text text-anchor="middle" x="0" y="433" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(170,0)">0</text></g><g class="xtick"><text text-anchor="middle" x="0" y="433" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(260,0)">0.5</text></g><g class="xtick"><text text-anchor="middle" x="0" y="433" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(350,0)">1</text></g><g class="xtick"><text text-anchor="middle" x="0" y="433" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(440,0)">1.5</text></g><g class="xtick"><text text-anchor="middle" x="0" y="433" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(530,0)">2</text></g><g class="xtick"><text text-anchor="middle" x="0" y="433" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(620,0)">2.5</text></g></g><g class="yaxislayer-above"><g class="ytick"><text text-anchor="end" x="79" y="4.199999999999999" transform="translate(0,420)" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;">0</text></g><g class="ytick"><text text-anchor="end" x="79" y="4.199999999999999" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(0,369.33)">0.5</text></g><g class="ytick"><text text-anchor="end" x="79" y="4.199999999999999" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(0,318.66999999999996)">1</text></g><g class="ytick"><text text-anchor="end" x="79" y="4.199999999999999" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(0,268)">1.5</text></g><g class="ytick"><text text-anchor="end" x="79" y="4.199999999999999" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(0,217.32999999999998)">2</text></g><g class="ytick"><text text-anchor="end" x="79" y="4.199999999999999" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(0,166.67000000000002)">2.5</text></g><g class="ytick"><text text-anchor="end" x="79" y="4.199999999999999" style="font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 12px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre; opacity: 1;" transform="translate(0,116)">3</text></g></g><g class="overaxes-above"/></g></g><g class="polarlayer"/><g class="smithlayer"/><g class="ternarylayer"/><g class="geolayer"/><g class="funnelarealayer"/><g class="pielayer"/><g class="iciclelayer"/><g class="treemaplayer"/><g class="sunburstlayer"/><g class="glimages"/><defs id="topdefs-75bf59"><g class="clips"/></defs><g class="layer-above"><g class="imagelayer"/><g class="shapelayer"/></g><g class="infolayer"><g class="g-gtitle"><text class="gtitle" x="35" y="50" text-anchor="start" dy="0em" style="opacity: 1; font-family: 'Open Sans', verdana, arial, sans-serif; font-size: 17px; fill: rgb(42, 63, 95); fill-opacity: 1; white-space: pre;">A Figure Displayed with the 'svg' Renderer</text></g><g class="g-xtitle"/><g class="g-ytitle"/></g></svg>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h4 id="Built-in-Renderers">Built-in Renderers<a class="anchor-link" href="#Built-in-Renderers">¶</a></h4><p>In this section, we will describe the built-in renderers so that you can choose the one(s) that best suit your needs.</p>
<h5 id="Interactive-Renderers">Interactive Renderers<a class="anchor-link" href="#Interactive-Renderers">¶</a></h5><p>Interactive renderers display figures using the plotly.js JavaScript library and are fully interactive, supporting pan, zoom, hover tooltips, etc.</p>
<h6 id="notebook"><code>notebook</code><a class="anchor-link" href="#notebook">¶</a></h6><p>This renderer is intended for use in the classic <a href="https://jupyter.org/install.html">Jupyter Notebook</a> (not JupyterLab). The full plotly.js JavaScript library bundle is added to the notebook the first time a figure is rendered, so this renderer will work without an Internet connection.</p>
<p>This renderer is a good choice for notebooks that will be exported to HTML files (Either using <a href="https://nbconvert.readthedocs.io/en/latest/">nbconvert</a> or the "Download as HTML" menu action) because the exported HTML files will work without an Internet connection.</p>
<blockquote><p>Note: Adding the plotly.js bundle to the notebook adds a few megabytes to the notebook size. If you can count on always having an Internet connection, you may want to consider using the <code>notebook_connected</code> renderer if notebook size is a constraint.</p>
</blockquote>
<h6 id="notebook_connected"><code>notebook_connected</code><a class="anchor-link" href="#notebook_connected">¶</a></h6><p>This renderer is the same as <code>notebook</code> renderer, except the plotly.js JavaScript library bundle is loaded from an online CDN location. This saves a few megabytes in notebook size, but an Internet connection is required in order to display figures that are rendered this way.</p>
<p>This renderer is a good choice for notebooks that will be shared with <a href="https://nbviewer.jupyter.org/">nbviewer</a> since users must have an active Internet connection to access nbviewer in the first place.</p>
<h6 id="kaggle-and-azure"><code>kaggle</code> and <code>azure</code><a class="anchor-link" href="#kaggle-and-azure">¶</a></h6><p>These are aliases for <code>notebook_connected</code> because this renderer is a good choice for use with <a href="https://www.kaggle.com/docs/notebooks">Kaggle kernels</a> and <a href="https://notebooks.azure.com/">Azure Notebooks</a>.</p>
<h6 id="colab"><code>colab</code><a class="anchor-link" href="#colab">¶</a></h6><p>This is a custom renderer for use with <a href="https://colab.research.google.com">Google Colab</a>.</p>
<h6 id="browser"><code>browser</code><a class="anchor-link" href="#browser">¶</a></h6><p>This renderer will open a figure in a browser tab using the default web browser. This renderer can only be used when the Python kernel is running locally on the same machine as the web browser, so it is not compatible with Jupyter Hub or online notebook services.</p>
<blockquote><p>Implementation Note 1: In this context, the "default browser" is the browser that is chosen by the Python <a href="https://docs.python.org/3.7/library/webbrowser.html"><code>webbrowser</code></a> module.</p>
<p>Implementation Note 2: The <code>browser</code> renderer works by setting up a single use local webserver on a local port. Since the webserver is shut down as soon as the figure is served to the browser, the figure will not be restored if the browser is refreshed.</p>
</blockquote>
<h6 id="firefox,-chrome,-and-chromium"><code>firefox</code>, <code>chrome</code>, and <code>chromium</code><a class="anchor-link" href="#firefox,-chrome,-and-chromium">¶</a></h6><p>These renderers are the same as the <code>browser</code> renderer, but they force the use of a particular browser.</p>
<h6 id="iframe-and-iframe_connected"><code>iframe</code> and <code>iframe_connected</code><a class="anchor-link" href="#iframe-and-iframe_connected">¶</a></h6><p>These renderers write figures out as standalone HTML files and then display <a href="https://www.w3schools.com/html/html_iframe.asp"><code>iframe</code></a> elements that reference these HTML files. The <code>iframe</code> renderer will include the plotly.js JavaScript bundle in each HTML file that is written, while the <code>iframe_connected</code> renderer includes only a reference to an online CDN location from which to load plotly.js. Consequently, the <code>iframe_connected</code> renderer outputs files that are smaller than the <code>iframe</code> renderer, but it requires an Internet connection while the <code>iframe</code> renderer can operate offline.</p>
<p>This renderer may be useful when working with notebooks than contain lots of large figures. When using the <code>notebook</code> or <code>notebook_connected</code> renderer, all of the data for all of the figures in a notebook are stored inline in the notebook itself. If this would result in a prohibitively large notebook size, an <code>iframe</code> or <code>iframe_connected</code> renderer could be used instead. With the <code>iframe</code> renderers, the figure data are stored in the individual HTML files rather than in the notebook itself, resulting in a smaller notebook size.</p>
<blockquote><p>Implementation Note: The HTML files written by the <code>iframe</code> renderers are stored in a subdirectory named <code>iframe_figures</code>. The HTML files are given names based on the execution number of the notebook cell that produced the figure. This means that each time a notebook kernel is restarted, any prior HTML files will be overwritten. This also means that you should not store multiple notebooks using an <code>iframe</code> renderer in the same directory, because this could result in figures from one notebook overwriting figures from another notebook.</p>
</blockquote>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h6 id="plotly_mimetype"><code>plotly_mimetype</code><a class="anchor-link" href="#plotly_mimetype">¶</a></h6><p>The <code>plotly_mimetype</code> renderer creates a specification of the figure (called a MIME-type bundle), and requests that the current user interface displays it. User interfaces that support this renderer include <a href="https://jupyterlab.readthedocs.io/en/stable/">JupyterLab</a>, <a href="https://nteract.io/">nteract</a>, and the Visual Studio Code <a href="https://code.visualstudio.com/docs/python/jupyter-support">notebook interface</a>.</p>
<h6 id="jupyterlab,-nteract,-and-vscode"><code>jupyterlab</code>, <code>nteract</code>, and <code>vscode</code><a class="anchor-link" href="#jupyterlab,-nteract,-and-vscode">¶</a></h6><p>These are aliases for <code>plotly_mimetype</code> since this renderer is a good choice when working in JupyterLab, nteract, and the Visual Studio Code notebook interface. Note that in VSCode Notebooks, the version of Plotly.js that is used to render is provided by the <a href="https://code.visualstudio.com/docs/languages/python">vscode-python extension</a> and often trails the latest version by several weeks, so the latest features of <code>plotly</code> may not be available in VSCode right away. The situation is similar for Nteract.</p>
<h5 id="Static-Image-Renderers">Static Image Renderers<a class="anchor-link" href="#Static-Image-Renderers">¶</a></h5><p>A set of renderers is provided for displaying figures as static images. See the <a href="https://plot.ly/python/static-image-export/">Static Image Export</a> page for more information on getting set up.</p>
<h6 id="png,-jpeg,-and-svg"><code>png</code>, <code>jpeg</code>, and <code>svg</code><a class="anchor-link" href="#png,-jpeg,-and-svg">¶</a></h6><p>These renderers display figures as static <code>.png</code>, <code>.jpeg</code>, and <code>.svg</code> files, respectively. These renderers are useful for user interfaces that do not support inline HTML output, but do support inline static images. Examples include the <a href="https://qtconsole.readthedocs.io/en/stable/">QtConsole</a>, <a href="https://www.spyder-ide.org/">Spyder</a>, and the PyCharm <a href="https://www.jetbrains.com/help/pycharm/jupyter-notebook-support.html">notebook interface</a>.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [6]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.graph_objects</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">go</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span><span class="p">(</span>
<span class="n">data</span><span class="o">=</span><span class="p">[</span><span class="n">go</span><span class="o">.</span><span class="n">Bar</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])],</span>
<span class="n">layout_title_text</span><span class="o">=</span><span class="s2">"A Figure Displayed with the 'png' Renderer"</span>
<span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">renderer</span><span class="o">=</span><span class="s2">"png"</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src=""
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h6 id="PDF">PDF<a class="anchor-link" href="#PDF">¶</a></h6><p>This renderer displays figures as static PDF files. This is especially useful for notebooks that will be exported to PDF files using the LaTeX export capabilities of <a href="https://nbconvert.readthedocs.io/en/latest/"><code>nbconvert</code></a>.</p>
<h5 id="Other-Miscellaneous-Renderers">Other Miscellaneous Renderers<a class="anchor-link" href="#Other-Miscellaneous-Renderers">¶</a></h5><h6 id="JSON">JSON<a class="anchor-link" href="#JSON">¶</a></h6><p>In editors that support it (JupyterLab, nteract, and the Visual Studio Code notebook interface), this renderer displays the JSON representation of a figure in a collapsible interactive tree structure. This can be very useful for examining the structure of complex figures.</p>
<h5 id="Multiple-Renderers">Multiple Renderers<a class="anchor-link" href="#Multiple-Renderers">¶</a></h5><p>You can specify that multiple renderers should be used by joining their names on <code>"+"</code> characters. This is useful when writing code that needs to support multiple contexts. For example, if a notebook specifies a default renderer string of <code>"notebook+plotly_mimetype+pdf"</code>then this notebook would be able to run in the classic Jupyter Notebook, in JupyterLab, and it would support being exported to PDF using <code>nbconvert</code>.</p>
<h4 id="Customizing-Built-In-Renderers">Customizing Built-In Renderers<a class="anchor-link" href="#Customizing-Built-In-Renderers">¶</a></h4><p>Most built-in renderers have configuration options to customize their behavior. To view a description of a renderer, including its configuration options, access the renderer object using dictionary-style key lookup on the <code>plotly.io.renderers</code> configuration object and then display it. Here is an example of accessing and displaying the <code>png</code> renderer.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [7]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.io</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pio</span>
<span class="n">png_renderer</span> <span class="o">=</span> <span class="n">pio</span><span class="o">.</span><span class="n">renderers</span><span class="p">[</span><span class="s2">"png"</span><span class="p">]</span>
<span class="n">png_renderer</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[7]:</div>
<div class="output_text output_subarea output_execute_result">
<pre>PngRenderer(width=None, height=None, scale=None, engine='auto')
Renderer to display figures as static PNG images. This renderer requires
either the kaleido package or the orca command-line utility and is broadly
compatible across IPython environments (classic Jupyter Notebook, JupyterLab,
QtConsole, VSCode, PyCharm, etc) and nbconvert targets (HTML, PDF, etc.).
mime type: 'image/png'
</pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>From this output, you can see that the <code>png</code> renderer supports 3 properties: <code>width</code>, <code>height</code>, and <code>scale</code>. You can customize these properties by assigning new values to them.</p>
<p>Here is an example that customizes the <code>png</code> renderer to change the resulting image size, sets the <code>png</code> renderer as the default, and then displays a figure.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [8]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.io</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">pio</span>
<span class="n">png_renderer</span> <span class="o">=</span> <span class="n">pio</span><span class="o">.</span><span class="n">renderers</span><span class="p">[</span><span class="s2">"png"</span><span class="p">]</span>
<span class="n">png_renderer</span><span class="o">.</span><span class="n">width</span> <span class="o">=</span> <span class="mi">500</span>
<span class="n">png_renderer</span><span class="o">.</span><span class="n">height</span> <span class="o">=</span> <span class="mi">500</span>
<span class="n">pio</span><span class="o">.</span><span class="n">renderers</span><span class="o">.</span><span class="n">default</span> <span class="o">=</span> <span class="s2">"png"</span>
<span class="kn">import</span><span class="w"> </span><span class="nn">plotly.graph_objects</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">go</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span><span class="p">(</span>
<span class="n">data</span><span class="o">=</span><span class="p">[</span><span class="n">go</span><span class="o">.</span><span class="n">Bar</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])],</span>
<span class="n">layout_title_text</span><span class="o">=</span><span class="s2">"A Figure Displayed with the 'png' Renderer"</span>
<span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">show</span><span class="p">()</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src=""
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<p>You can also override the values of renderer parameters temporarily by passing them as keyword arguments to the <code>show()</code> method. For example</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="prompt input_prompt">In [9]:</div>
<div class="inner_cell">
<div class="input_area">
<div class=" highlight hl-ipython3"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.graph_objects</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">go</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span><span class="p">(</span>
<span class="n">data</span><span class="o">=</span><span class="p">[</span><span class="n">go</span><span class="o">.</span><span class="n">Bar</span><span class="p">(</span><span class="n">y</span><span class="o">=</span><span class="p">[</span><span class="mi">2</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">3</span><span class="p">])],</span>
<span class="n">layout_title_text</span><span class="o">=</span><span class="s2">"A Figure Displayed with the 'png' Renderer"</span>
<span class="p">)</span>
<span class="n">fig</span><span class="o">.</span><span class="n">show</span><span class="p">(</span><span class="n">renderer</span><span class="o">=</span><span class="s2">"png"</span><span class="p">,</span> <span class="n">width</span><span class="o">=</span><span class="mi">800</span><span class="p">,</span> <span class="n">height</span><span class="o">=</span><span class="mi">300</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt"></div>
<div class="output_png output_subarea ">
<img src=""
>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="Displaying-figures-in-Dash">Displaying figures in Dash<a class="anchor-link" href="#Displaying-figures-in-Dash">¶</a></h3><p><a href="https://plotly.com/dash/">Dash</a> is the best way to build analytical apps in Python using Plotly figures. To run the app below, run <code>pip install dash</code>, click "Download" to get the code and run <code>python app.py</code>.</p>
<p>Get started with <a href="https://dash.plotly.com/installation">the official Dash docs</a> and <strong>learn how to effortlessly <a href="https://plotly.com/dash/design-kit/">style</a> & <a href="https://plotly.com/dash/app-manager/">deploy</a> apps like this with <a class="plotly-red" href="https://plotly.com/dash/">Dash Enterprise</a>.</strong></p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="prompt output_prompt">Out[10]:</div>
<div class="output_html rendered_html output_subarea output_execute_result">
<iframe
width="100%"
height="1200"
src="https://python-docs-dash-snippets.herokuapp.com/python-docs-dash-snippets/renderers"
frameborder="0"
allowfullscreen
></iframe>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<div style="font-size: 0.9em;"><div style="width: calc(100% - 30px); box-shadow: none; border: thin solid rgb(229, 229, 229);"><div style="padding: 5px;"><div><p><strong>Sign up for Dash Club</strong> → Free cheat sheets plus updates from Chris Parmer and Adam Schroeder delivered to your inbox every two months. Includes tips and tricks, community apps, and deep dives into the Dash architecture.
<u><a href="https://go.plotly.com/dash-club?utm_source=Dash+Club+2022&utm_medium=graphing_libraries&utm_content=inline">Join now</a></u>.</p></div></div></div></div>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Displaying-Figures-Using-ipywidgets">Displaying Figures Using <code>ipywidgets</code><a class="anchor-link" href="#Displaying-Figures-Using-ipywidgets">¶</a></h2><p>Plotly figures can be displayed in <a href="https://ipywidgets.readthedocs.io/en/stable/">ipywidgets</a> contexts using <code>plotly.graph_objects.FigureWidget</code> objects. <code>FigureWidget</code> is a figure graph object (just like <code>plotly.graph_objects.Figure</code>), so you can add traces to it and update it just like a regular <code>Figure</code>. But <code>FigureWidget</code> is also an <code>ipywidgets</code> object, which means that you can display it alongside other <code>ipywidgets</code> to build user interfaces right in the notebook.</p>
<p>See the <a href="https://plot.ly/python/figurewidget/">Plotly FigureWidget Overview</a> for more information on integrating <code>plotly.py</code> figures with <code>ipywidgets</code>.</p>
<p>It is important to note that <code>FigureWidget</code> does not use the renderers framework discussed above, so you should not use the <code>plotly.io.show</code> function on <code>FigureWidget</code> objects.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Performance">Performance<a class="anchor-link" href="#Performance">¶</a></h2><p>No matter the approach chosen to display a figure, <a href="https://plotly.com/python/figure-structure/">the figure data structure</a> is first (automatically, internally) serialized into a JSON string before being transferred from the Python context to the browser (or <a href="https://plotly.com/python/interactive-html-export/">to an HTML file first</a> or <a href="https://plotly.com/python/static-image-export/">to Kaleido for static image export</a>).</p>
<p><em>New in v5.0</em></p>
<p>The default JSON serialization mechanism can be slow for figures with many data points or with large <code>numpy</code> arrays or data frames. <strong>If <a href="https://github.com/ijl/orjson">the <code>orjson</code> package</a> is installed</strong>, <code>plotly</code> will use that instead of the built-in <code>json</code> package, which can lead to <strong>5-10x</strong> speedups for large figures.</p>
<p>Once a figure is serialized to JSON, it must be rendered by a browser, either immediately in the user's browser, at some later point if the figure is exported to HTML, or immediately in Kaleido's internal headless browser for static image export. Rendering time is generally proportional to the total number of data points in the figure, the number of traces and the number of subplots. In situations where rendering performance is slow, we recommend considering <a href="/python/webgl-vs-svg/">the use of <code>plotly</code> WebGL traces</a> to exploit GPU-accelerated rendering in the browser, or <a href="/python/datashader/">using the Datashader library to do Python-side rendering</a> before using <code>px.imshow()</code> to render the figure.</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered"><div class="prompt input_prompt">
</div><div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h3 id="What-About-Dash?">What About Dash?<a class="anchor-link" href="#What-About-Dash?">¶</a></h3><p><a href="https://dash.plot.ly/">Dash</a> is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.</p>
<p>Learn about how to install Dash at <a href="https://dash.plot.ly/installation">https://dash.plot.ly/installation</a>.</p>
<p>Everywhere in this page that you see <code>fig.show()</code>, you can display the same figure in a Dash application by passing it to the <code>figure</code> argument of the <a href="https://dash.plot.ly/dash-core-components/graph"><code>Graph</code> component</a> from the built-in <code>dash_core_components</code> package like this:</p>
<div class="highlight"><pre><span></span><span class="kn">import</span><span class="w"> </span><span class="nn">plotly.graph_objects</span><span class="w"> </span><span class="k">as</span><span class="w"> </span><span class="nn">go</span> <span class="c1"># or plotly.express as px</span>
<span class="n">fig</span> <span class="o">=</span> <span class="n">go</span><span class="o">.</span><span class="n">Figure</span><span class="p">()</span> <span class="c1"># or any Plotly Express function e.g. px.bar(...)</span>
<span class="c1"># fig.add_trace( ... )</span>
<span class="c1"># fig.update_layout( ... )</span>
<span class="kn">from</span><span class="w"> </span><span class="nn">dash</span><span class="w"> </span><span class="kn">import</span> <span class="n">Dash</span><span class="p">,</span> <span class="n">dcc</span><span class="p">,</span> <span class="n">html</span>
<span class="n">app</span> <span class="o">=</span> <span class="n">Dash</span><span class="p">()</span>
<span class="n">app</span><span class="o">.</span><span class="n">layout</span> <span class="o">=</span> <span class="n">html</span><span class="o">.</span><span class="n">Div</span><span class="p">([</span>
<span class="n">dcc</span><span class="o">.</span><span class="n">Graph</span><span class="p">(</span><span class="n">figure</span><span class="o">=</span><span class="n">fig</span><span class="p">)</span>
<span class="p">])</span>
<span class="n">app</span><span class="o">.</span><span class="n">run_server</span><span class="p">(</span><span class="n">debug</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span> <span class="n">use_reloader</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span> <span class="c1"># Turn off reloader if inside Jupyter</span>
</pre></div>
</div>
</div>
</div>
{% endraw %}