-
-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathcalc.js
174 lines (146 loc) · 5.21 KB
/
calc.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/**
* Copyright 2012-2019, Plotly, Inc.
* All rights reserved.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
'use strict';
var Lib = require('../../lib');
var Axes = require('../../plots/cartesian/axes');
var boxCalc = require('../box/calc');
var helpers = require('./helpers');
var BADNUM = require('../../constants/numerical').BADNUM;
module.exports = function calc(gd, trace) {
var cd = boxCalc(gd, trace);
if(cd[0].t.empty) return cd;
var fullLayout = gd._fullLayout;
var valAxis = Axes.getFromId(
gd,
trace[trace.orientation === 'h' ? 'xaxis' : 'yaxis']
);
var spanMin = Infinity;
var spanMax = -Infinity;
var maxKDE = 0;
var maxCount = 0;
for(var i = 0; i < cd.length; i++) {
var cdi = cd[i];
var vals = cdi.pts.map(helpers.extractVal);
var bandwidth = cdi.bandwidth = calcBandwidth(trace, cdi, vals);
var span = cdi.span = calcSpan(trace, cdi, valAxis, bandwidth);
if(cdi.min === cdi.max && bandwidth === 0) {
// if span is zero and bandwidth is zero, we want a violin with zero width
span = cdi.span = [cdi.min, cdi.max];
cdi.density = [{v: 1, t: span[0]}];
cdi.bandwidth = bandwidth;
maxKDE = Math.max(maxKDE, 1);
} else {
// step that well covers the bandwidth and is multiple of span distance
var dist = span[1] - span[0];
var n = Math.ceil(dist / (bandwidth / 3));
var step = dist / n;
if(!isFinite(step) || !isFinite(n)) {
Lib.error('Something went wrong with computing the violin span');
cd[0].t.empty = true;
return cd;
}
var kde = helpers.makeKDE(cdi, trace, vals);
cdi.density = new Array(n);
for(var k = 0, t = span[0]; t < (span[1] + step / 2); k++, t += step) {
var v = kde(t);
cdi.density[k] = {v: v, t: t};
maxKDE = Math.max(maxKDE, v);
}
}
maxCount = Math.max(maxCount, vals.length);
spanMin = Math.min(spanMin, span[0]);
spanMax = Math.max(spanMax, span[1]);
}
var extremes = Axes.findExtremes(valAxis, [spanMin, spanMax], {padded: true});
trace._extremes[valAxis._id] = extremes;
if(trace.width) {
cd[0].t.maxKDE = maxKDE;
} else {
var violinScaleGroupStats = fullLayout._violinScaleGroupStats;
var scaleGroup = trace.scalegroup;
var groupStats = violinScaleGroupStats[scaleGroup];
if(groupStats) {
groupStats.maxKDE = Math.max(groupStats.maxKDE, maxKDE);
groupStats.maxCount = Math.max(groupStats.maxCount, maxCount);
} else {
violinScaleGroupStats[scaleGroup] = {
maxKDE: maxKDE,
maxCount: maxCount
};
}
}
cd[0].t.labels.kde = Lib._(gd, 'kde:');
return cd;
};
// Default to Silveman's rule of thumb
// - https://stats.stackexchange.com/a/6671
// - https://en.wikipedia.org/wiki/Kernel_density_estimation#A_rule-of-thumb_bandwidth_estimator
// - https://github.com/statsmodels/statsmodels/blob/master/statsmodels/nonparametric/bandwidths.py
function silvermanRule(len, ssd, iqr) {
var a = Math.min(ssd, iqr / 1.349);
return 1.059 * a * Math.pow(len, -0.2);
}
function calcBandwidth(trace, cdi, vals) {
var span = cdi.max - cdi.min;
// If span is zero
if(!span) {
if(trace.bandwidth) {
return trace.bandwidth;
} else {
// if span is zero and no bandwidth is specified
// it returns zero bandwidth which is a special case
return 0;
}
}
// Limit how small the bandwidth can be.
//
// Silverman's rule of thumb can be "very" small
// when IQR does a poor job at describing the spread
// of the distribution.
// We also want to limit custom bandwidths
// to not blow up kde computations.
if(trace.bandwidth) {
return Math.max(trace.bandwidth, span / 1e4);
} else {
var len = vals.length;
var ssd = Lib.stdev(vals, len - 1, cdi.mean);
return Math.max(
silvermanRule(len, ssd, cdi.q3 - cdi.q1),
span / 100
);
}
}
function calcSpan(trace, cdi, valAxis, bandwidth) {
var spanmode = trace.spanmode;
var spanIn = trace.span || [];
var spanTight = [cdi.min, cdi.max];
var spanLoose = [cdi.min - 2 * bandwidth, cdi.max + 2 * bandwidth];
var spanOut;
function calcSpanItem(index) {
var s = spanIn[index];
var sc = valAxis.type === 'multicategory' ?
valAxis.r2c(s) :
valAxis.d2c(s, 0, trace[cdi.valLetter + 'calendar']);
return sc === BADNUM ? spanLoose[index] : sc;
}
if(spanmode === 'soft') {
spanOut = spanLoose;
} else if(spanmode === 'hard') {
spanOut = spanTight;
} else {
spanOut = [calcSpanItem(0), calcSpanItem(1)];
}
// to reuse the equal-range-item block
var dummyAx = {
type: 'linear',
range: spanOut
};
Axes.setConvert(dummyAx);
dummyAx.cleanRange();
return spanOut;
}