forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspss.py
68 lines (53 loc) · 1.99 KB
/
spss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Sequence,
)
from pandas._libs import lib
from pandas.compat._optional import import_optional_dependency
from pandas.util._validators import check_dtype_backend
from pandas.core.dtypes.inference import is_list_like
from pandas.io.common import stringify_path
if TYPE_CHECKING:
from pathlib import Path
from pandas._typing import DtypeBackend
from pandas import DataFrame
def read_spss(
path: str | Path,
usecols: Sequence[str] | None = None,
convert_categoricals: bool = True,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame:
"""
Load an SPSS file from the file path, returning a DataFrame.
Parameters
----------
path : str or Path
File path.
usecols : list-like, optional
Return a subset of the columns. If None, return all columns.
convert_categoricals : bool, default is True
Convert categorical columns into pd.Categorical.
dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
Returns
-------
DataFrame
"""
pyreadstat = import_optional_dependency("pyreadstat")
check_dtype_backend(dtype_backend)
if usecols is not None:
if not is_list_like(usecols):
raise TypeError("usecols must be list-like.")
usecols = list(usecols) # pyreadstat requires a list
df, _ = pyreadstat.read_sav(
stringify_path(path), usecols=usecols, apply_value_formats=convert_categoricals
)
if dtype_backend is not lib.no_default:
df = df.convert_dtypes(dtype_backend=dtype_backend)
return df