forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
397 lines (329 loc) · 10.6 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
"""
Base class for the internal managers. Both BlockManager and ArrayManager
inherit from this class.
"""
from __future__ import annotations
from typing import (
TYPE_CHECKING,
Any,
Literal,
cast,
final,
)
import numpy as np
from pandas._config import (
using_copy_on_write,
warn_copy_on_write,
)
from pandas._libs import (
algos as libalgos,
lib,
)
from pandas.errors import AbstractMethodError
from pandas.util._validators import validate_bool_kwarg
from pandas.core.dtypes.cast import (
find_common_type,
np_can_hold_element,
)
from pandas.core.dtypes.dtypes import (
ExtensionDtype,
SparseDtype,
)
from pandas.core.base import PandasObject
from pandas.core.construction import extract_array
from pandas.core.indexes.api import (
Index,
default_index,
)
if TYPE_CHECKING:
from pandas._typing import (
ArrayLike,
AxisInt,
DtypeObj,
Self,
Shape,
)
class _AlreadyWarned:
def __init__(self):
# This class is used on the manager level to the block level to
# ensure that we warn only once. The block method can update the
# warned_already option without returning a value to keep the
# interface consistent. This is only a temporary solution for
# CoW warnings.
self.warned_already = False
class DataManager(PandasObject):
# TODO share more methods/attributes
axes: list[Index]
@property
def items(self) -> Index:
raise AbstractMethodError(self)
@final
def __len__(self) -> int:
return len(self.items)
@property
def ndim(self) -> int:
return len(self.axes)
@property
def shape(self) -> Shape:
return tuple(len(ax) for ax in self.axes)
@final
def _validate_set_axis(self, axis: AxisInt, new_labels: Index) -> None:
# Caller is responsible for ensuring we have an Index object.
old_len = len(self.axes[axis])
new_len = len(new_labels)
if axis == 1 and len(self.items) == 0:
# If we are setting the index on a DataFrame with no columns,
# it is OK to change the length.
pass
elif new_len != old_len:
raise ValueError(
f"Length mismatch: Expected axis has {old_len} elements, new "
f"values have {new_len} elements"
)
def reindex_indexer(
self,
new_axis,
indexer,
axis: AxisInt,
fill_value=None,
allow_dups: bool = False,
copy: bool = True,
only_slice: bool = False,
) -> Self:
raise AbstractMethodError(self)
@final
def reindex_axis(
self,
new_index: Index,
axis: AxisInt,
fill_value=None,
only_slice: bool = False,
) -> Self:
"""
Conform data manager to new index.
"""
new_index, indexer = self.axes[axis].reindex(new_index)
return self.reindex_indexer(
new_index,
indexer,
axis=axis,
fill_value=fill_value,
copy=False,
only_slice=only_slice,
)
def _equal_values(self, other: Self) -> bool:
"""
To be implemented by the subclasses. Only check the column values
assuming shape and indexes have already been checked.
"""
raise AbstractMethodError(self)
@final
def equals(self, other: object) -> bool:
"""
Implementation for DataFrame.equals
"""
if not isinstance(other, DataManager):
return False
self_axes, other_axes = self.axes, other.axes
if len(self_axes) != len(other_axes):
return False
if not all(ax1.equals(ax2) for ax1, ax2 in zip(self_axes, other_axes)):
return False
return self._equal_values(other)
def apply(
self,
f,
align_keys: list[str] | None = None,
**kwargs,
) -> Self:
raise AbstractMethodError(self)
def apply_with_block(
self,
f,
align_keys: list[str] | None = None,
**kwargs,
) -> Self:
raise AbstractMethodError(self)
@final
def isna(self, func) -> Self:
return self.apply("apply", func=func)
@final
def fillna(self, value, limit: int | None, inplace: bool, downcast) -> Self:
if limit is not None:
# Do this validation even if we go through one of the no-op paths
limit = libalgos.validate_limit(None, limit=limit)
return self.apply_with_block(
"fillna",
value=value,
limit=limit,
inplace=inplace,
downcast=downcast,
using_cow=using_copy_on_write(),
already_warned=_AlreadyWarned(),
)
@final
def where(self, other, cond, align: bool) -> Self:
if align:
align_keys = ["other", "cond"]
else:
align_keys = ["cond"]
other = extract_array(other, extract_numpy=True)
return self.apply_with_block(
"where",
align_keys=align_keys,
other=other,
cond=cond,
using_cow=using_copy_on_write(),
)
@final
def putmask(self, mask, new, align: bool = True, warn: bool = True) -> Self:
if align:
align_keys = ["new", "mask"]
else:
align_keys = ["mask"]
new = extract_array(new, extract_numpy=True)
already_warned = None
if warn_copy_on_write():
already_warned = _AlreadyWarned()
if not warn:
already_warned.warned_already = True
return self.apply_with_block(
"putmask",
align_keys=align_keys,
mask=mask,
new=new,
using_cow=using_copy_on_write(),
already_warned=already_warned,
)
@final
def round(self, decimals: int, using_cow: bool = False) -> Self:
return self.apply_with_block(
"round",
decimals=decimals,
using_cow=using_cow,
)
@final
def replace(self, to_replace, value, inplace: bool) -> Self:
inplace = validate_bool_kwarg(inplace, "inplace")
# NDFrame.replace ensures the not-is_list_likes here
assert not lib.is_list_like(to_replace)
assert not lib.is_list_like(value)
return self.apply_with_block(
"replace",
to_replace=to_replace,
value=value,
inplace=inplace,
using_cow=using_copy_on_write(),
)
@final
def replace_regex(self, **kwargs) -> Self:
return self.apply_with_block(
"_replace_regex", **kwargs, using_cow=using_copy_on_write()
)
@final
def replace_list(
self,
src_list: list[Any],
dest_list: list[Any],
inplace: bool = False,
regex: bool = False,
) -> Self:
"""do a list replace"""
inplace = validate_bool_kwarg(inplace, "inplace")
bm = self.apply_with_block(
"replace_list",
src_list=src_list,
dest_list=dest_list,
inplace=inplace,
regex=regex,
using_cow=using_copy_on_write(),
)
bm._consolidate_inplace()
return bm
def interpolate(self, inplace: bool, **kwargs) -> Self:
return self.apply_with_block(
"interpolate", inplace=inplace, **kwargs, using_cow=using_copy_on_write()
)
def pad_or_backfill(self, inplace: bool, **kwargs) -> Self:
return self.apply_with_block(
"pad_or_backfill",
inplace=inplace,
**kwargs,
using_cow=using_copy_on_write(),
)
def shift(self, periods: int, fill_value) -> Self:
if fill_value is lib.no_default:
fill_value = None
return self.apply_with_block("shift", periods=periods, fill_value=fill_value)
# --------------------------------------------------------------------
# Consolidation: No-ops for all but BlockManager
def is_consolidated(self) -> bool:
return True
def consolidate(self) -> Self:
return self
def _consolidate_inplace(self) -> None:
return
class SingleDataManager(DataManager):
@property
def ndim(self) -> Literal[1]:
return 1
@final
@property
def array(self) -> ArrayLike:
"""
Quick access to the backing array of the Block or SingleArrayManager.
"""
# error: "SingleDataManager" has no attribute "arrays"; maybe "array"
return self.arrays[0] # type: ignore[attr-defined]
def setitem_inplace(self, indexer, value, warn: bool = True) -> None:
"""
Set values with indexer.
For Single[Block/Array]Manager, this backs s[indexer] = value
This is an inplace version of `setitem()`, mutating the manager/values
in place, not returning a new Manager (and Block), and thus never changing
the dtype.
"""
arr = self.array
# EAs will do this validation in their own __setitem__ methods.
if isinstance(arr, np.ndarray):
# Note: checking for ndarray instead of np.dtype means we exclude
# dt64/td64, which do their own validation.
value = np_can_hold_element(arr.dtype, value)
if isinstance(value, np.ndarray) and value.ndim == 1 and len(value) == 1:
# NumPy 1.25 deprecation: https://github.com/numpy/numpy/pull/10615
value = value[0, ...]
arr[indexer] = value
def grouped_reduce(self, func):
arr = self.array
res = func(arr)
index = default_index(len(res))
mgr = type(self).from_array(res, index)
return mgr
@classmethod
def from_array(cls, arr: ArrayLike, index: Index):
raise AbstractMethodError(cls)
def interleaved_dtype(dtypes: list[DtypeObj]) -> DtypeObj | None:
"""
Find the common dtype for `blocks`.
Parameters
----------
blocks : List[DtypeObj]
Returns
-------
dtype : np.dtype, ExtensionDtype, or None
None is returned when `blocks` is empty.
"""
if not len(dtypes):
return None
return find_common_type(dtypes)
def ensure_np_dtype(dtype: DtypeObj) -> np.dtype:
# TODO: https://github.com/pandas-dev/pandas/issues/22791
# Give EAs some input on what happens here. Sparse needs this.
if isinstance(dtype, SparseDtype):
dtype = dtype.subtype
dtype = cast(np.dtype, dtype)
elif isinstance(dtype, ExtensionDtype):
dtype = np.dtype("object")
elif dtype == np.dtype(str):
dtype = np.dtype("object")
return dtype