forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_hashtable.py
748 lines (642 loc) · 25.5 KB
/
test_hashtable.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
from collections.abc import Generator
from contextlib import contextmanager
import re
import struct
import tracemalloc
import numpy as np
import pytest
from pandas._libs import hashtable as ht
import pandas as pd
import pandas._testing as tm
from pandas.core.algorithms import isin
@contextmanager
def activated_tracemalloc() -> Generator[None, None, None]:
tracemalloc.start()
try:
yield
finally:
tracemalloc.stop()
def get_allocated_khash_memory():
snapshot = tracemalloc.take_snapshot()
snapshot = snapshot.filter_traces(
(tracemalloc.DomainFilter(True, ht.get_hashtable_trace_domain()),)
)
return sum(x.size for x in snapshot.traces)
@pytest.mark.parametrize(
"table_type, dtype",
[
(ht.PyObjectHashTable, np.object_),
(ht.Complex128HashTable, np.complex128),
(ht.Int64HashTable, np.int64),
(ht.UInt64HashTable, np.uint64),
(ht.Float64HashTable, np.float64),
(ht.Complex64HashTable, np.complex64),
(ht.Int32HashTable, np.int32),
(ht.UInt32HashTable, np.uint32),
(ht.Float32HashTable, np.float32),
(ht.Int16HashTable, np.int16),
(ht.UInt16HashTable, np.uint16),
(ht.Int8HashTable, np.int8),
(ht.UInt8HashTable, np.uint8),
(ht.IntpHashTable, np.intp),
],
)
class TestHashTable:
def test_get_set_contains_len(self, table_type, dtype):
index = 5
table = table_type(55)
assert len(table) == 0
assert index not in table
table.set_item(index, 42)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 42
table.set_item(index + 1, 41)
assert index in table
assert index + 1 in table
assert len(table) == 2
assert table.get_item(index) == 42
assert table.get_item(index + 1) == 41
table.set_item(index, 21)
assert index in table
assert index + 1 in table
assert len(table) == 2
assert table.get_item(index) == 21
assert table.get_item(index + 1) == 41
assert index + 2 not in table
table.set_item(index + 1, 21)
assert index in table
assert index + 1 in table
assert len(table) == 2
assert table.get_item(index) == 21
assert table.get_item(index + 1) == 21
with pytest.raises(KeyError, match=str(index + 2)):
table.get_item(index + 2)
def test_get_set_contains_len_mask(self, table_type, dtype):
if table_type == ht.PyObjectHashTable:
pytest.skip("Mask not supported for object")
index = 5
table = table_type(55, uses_mask=True)
assert len(table) == 0
assert index not in table
table.set_item(index, 42)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 42
with pytest.raises(KeyError, match="NA"):
table.get_na()
table.set_item(index + 1, 41)
table.set_na(41)
assert pd.NA in table
assert index in table
assert index + 1 in table
assert len(table) == 3
assert table.get_item(index) == 42
assert table.get_item(index + 1) == 41
assert table.get_na() == 41
table.set_na(21)
assert index in table
assert index + 1 in table
assert len(table) == 3
assert table.get_item(index + 1) == 41
assert table.get_na() == 21
assert index + 2 not in table
with pytest.raises(KeyError, match=str(index + 2)):
table.get_item(index + 2)
def test_map_keys_to_values(self, table_type, dtype, writable):
# only Int64HashTable has this method
if table_type == ht.Int64HashTable:
N = 77
table = table_type()
keys = np.arange(N).astype(dtype)
vals = np.arange(N).astype(np.int64) + N
keys.flags.writeable = writable
vals.flags.writeable = writable
table.map_keys_to_values(keys, vals)
for i in range(N):
assert table.get_item(keys[i]) == i + N
def test_map_locations(self, table_type, dtype, writable):
N = 8
table = table_type()
keys = (np.arange(N) + N).astype(dtype)
keys.flags.writeable = writable
table.map_locations(keys)
for i in range(N):
assert table.get_item(keys[i]) == i
def test_map_locations_mask(self, table_type, dtype, writable):
if table_type == ht.PyObjectHashTable:
pytest.skip("Mask not supported for object")
N = 3
table = table_type(uses_mask=True)
keys = (np.arange(N) + N).astype(dtype)
keys.flags.writeable = writable
table.map_locations(keys, np.array([False, False, True]))
for i in range(N - 1):
assert table.get_item(keys[i]) == i
with pytest.raises(KeyError, match=re.escape(str(keys[N - 1]))):
table.get_item(keys[N - 1])
assert table.get_na() == 2
def test_lookup(self, table_type, dtype, writable):
N = 3
table = table_type()
keys = (np.arange(N) + N).astype(dtype)
keys.flags.writeable = writable
table.map_locations(keys)
result = table.lookup(keys)
expected = np.arange(N)
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64))
def test_lookup_wrong(self, table_type, dtype):
if dtype in (np.int8, np.uint8):
N = 100
else:
N = 512
table = table_type()
keys = (np.arange(N) + N).astype(dtype)
table.map_locations(keys)
wrong_keys = np.arange(N).astype(dtype)
result = table.lookup(wrong_keys)
assert np.all(result == -1)
def test_lookup_mask(self, table_type, dtype, writable):
if table_type == ht.PyObjectHashTable:
pytest.skip("Mask not supported for object")
N = 3
table = table_type(uses_mask=True)
keys = (np.arange(N) + N).astype(dtype)
mask = np.array([False, True, False])
keys.flags.writeable = writable
table.map_locations(keys, mask)
result = table.lookup(keys, mask)
expected = np.arange(N)
tm.assert_numpy_array_equal(result.astype(np.int64), expected.astype(np.int64))
result = table.lookup(np.array([1 + N]).astype(dtype), np.array([False]))
tm.assert_numpy_array_equal(
result.astype(np.int64), np.array([-1], dtype=np.int64)
)
def test_unique(self, table_type, dtype, writable):
if dtype in (np.int8, np.uint8):
N = 88
else:
N = 1000
table = table_type()
expected = (np.arange(N) + N).astype(dtype)
keys = np.repeat(expected, 5)
keys.flags.writeable = writable
unique = table.unique(keys)
tm.assert_numpy_array_equal(unique, expected)
def test_tracemalloc_works(self, table_type, dtype):
if dtype in (np.int8, np.uint8):
N = 256
else:
N = 30000
keys = np.arange(N).astype(dtype)
with activated_tracemalloc():
table = table_type()
table.map_locations(keys)
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
def test_tracemalloc_for_empty(self, table_type, dtype):
with activated_tracemalloc():
table = table_type()
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
def test_get_state(self, table_type, dtype):
table = table_type(1000)
state = table.get_state()
assert state["size"] == 0
assert state["n_occupied"] == 0
assert "n_buckets" in state
assert "upper_bound" in state
@pytest.mark.parametrize("N", range(1, 110))
def test_no_reallocation(self, table_type, dtype, N):
keys = np.arange(N).astype(dtype)
preallocated_table = table_type(N)
n_buckets_start = preallocated_table.get_state()["n_buckets"]
preallocated_table.map_locations(keys)
n_buckets_end = preallocated_table.get_state()["n_buckets"]
# original number of buckets was enough:
assert n_buckets_start == n_buckets_end
# check with clean table (not too much preallocated)
clean_table = table_type()
clean_table.map_locations(keys)
assert n_buckets_start == clean_table.get_state()["n_buckets"]
class TestHashTableUnsorted:
# TODO: moved from test_algos; may be redundancies with other tests
def test_string_hashtable_set_item_signature(self):
# GH#30419 fix typing in StringHashTable.set_item to prevent segfault
tbl = ht.StringHashTable()
tbl.set_item("key", 1)
assert tbl.get_item("key") == 1
with pytest.raises(TypeError, match="'key' has incorrect type"):
# key arg typed as string, not object
tbl.set_item(4, 6)
with pytest.raises(TypeError, match="'val' has incorrect type"):
tbl.get_item(4)
def test_lookup_nan(self, writable):
# GH#21688 ensure we can deal with readonly memory views
xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3])
xs.setflags(write=writable)
m = ht.Float64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp))
def test_add_signed_zeros(self):
# GH#21866 inconsistent hash-function for float64
# default hash-function would lead to different hash-buckets
# for 0.0 and -0.0 if there are more than 2^30 hash-buckets
# but this would mean 16GB
N = 4 # 12 * 10**8 would trigger the error, if you have enough memory
m = ht.Float64HashTable(N)
m.set_item(0.0, 0)
m.set_item(-0.0, 0)
assert len(m) == 1 # 0.0 and -0.0 are equivalent
def test_add_different_nans(self):
# GH#21866 inconsistent hash-function for float64
# create different nans from bit-patterns:
NAN1 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000000))[0]
NAN2 = struct.unpack("d", struct.pack("=Q", 0x7FF8000000000001))[0]
assert NAN1 != NAN1
assert NAN2 != NAN2
# default hash function would lead to different hash-buckets
# for NAN1 and NAN2 even if there are only 4 buckets:
m = ht.Float64HashTable()
m.set_item(NAN1, 0)
m.set_item(NAN2, 0)
assert len(m) == 1 # NAN1 and NAN2 are equivalent
def test_lookup_overflow(self, writable):
xs = np.array([1, 2, 2**63], dtype=np.uint64)
# GH 21688 ensure we can deal with readonly memory views
xs.setflags(write=writable)
m = ht.UInt64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs), dtype=np.intp))
@pytest.mark.parametrize("nvals", [0, 10]) # resizing to 0 is special case
@pytest.mark.parametrize(
"htable, uniques, dtype, safely_resizes",
[
(ht.PyObjectHashTable, ht.ObjectVector, "object", False),
(ht.StringHashTable, ht.ObjectVector, "object", True),
(ht.Float64HashTable, ht.Float64Vector, "float64", False),
(ht.Int64HashTable, ht.Int64Vector, "int64", False),
(ht.Int32HashTable, ht.Int32Vector, "int32", False),
(ht.UInt64HashTable, ht.UInt64Vector, "uint64", False),
],
)
def test_vector_resize(
self, writable, htable, uniques, dtype, safely_resizes, nvals
):
# Test for memory errors after internal vector
# reallocations (GH 7157)
# Changed from using np.random.default_rng(2).rand to range
# which could cause flaky CI failures when safely_resizes=False
vals = np.array(range(1000), dtype=dtype)
# GH 21688 ensures we can deal with read-only memory views
vals.setflags(write=writable)
# initialise instances; cannot initialise in parametrization,
# as otherwise external views would be held on the array (which is
# one of the things this test is checking)
htable = htable()
uniques = uniques()
# get_labels may append to uniques
htable.get_labels(vals[:nvals], uniques, 0, -1)
# to_array() sets an external_view_exists flag on uniques.
tmp = uniques.to_array()
oldshape = tmp.shape
# subsequent get_labels() calls can no longer append to it
# (except for StringHashTables + ObjectVector)
if safely_resizes:
htable.get_labels(vals, uniques, 0, -1)
else:
with pytest.raises(ValueError, match="external reference.*"):
htable.get_labels(vals, uniques, 0, -1)
uniques.to_array() # should not raise here
assert tmp.shape == oldshape
@pytest.mark.parametrize(
"hashtable",
[
ht.PyObjectHashTable,
ht.StringHashTable,
ht.Float64HashTable,
ht.Int64HashTable,
ht.Int32HashTable,
ht.UInt64HashTable,
],
)
def test_hashtable_large_sizehint(self, hashtable):
# GH#22729 smoketest for not raising when passing a large size_hint
size_hint = np.iinfo(np.uint32).max + 1
hashtable(size_hint=size_hint)
class TestPyObjectHashTableWithNans:
def test_nan_float(self):
nan1 = float("nan")
nan2 = float("nan")
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
def test_nan_complex_both(self):
nan1 = complex(float("nan"), float("nan"))
nan2 = complex(float("nan"), float("nan"))
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
def test_nan_complex_real(self):
nan1 = complex(float("nan"), 1)
nan2 = complex(float("nan"), 1)
other = complex(float("nan"), 2)
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
with pytest.raises(KeyError, match=None) as error:
table.get_item(other)
assert str(error.value) == str(other)
def test_nan_complex_imag(self):
nan1 = complex(1, float("nan"))
nan2 = complex(1, float("nan"))
other = complex(2, float("nan"))
assert nan1 is not nan2
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
with pytest.raises(KeyError, match=None) as error:
table.get_item(other)
assert str(error.value) == str(other)
def test_nan_in_tuple(self):
nan1 = (float("nan"),)
nan2 = (float("nan"),)
assert nan1[0] is not nan2[0]
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
def test_nan_in_nested_tuple(self):
nan1 = (1, (2, (float("nan"),)))
nan2 = (1, (2, (float("nan"),)))
other = (1, 2)
table = ht.PyObjectHashTable()
table.set_item(nan1, 42)
assert table.get_item(nan2) == 42
with pytest.raises(KeyError, match=None) as error:
table.get_item(other)
assert str(error.value) == str(other)
def test_hash_equal_tuple_with_nans():
a = (float("nan"), (float("nan"), float("nan")))
b = (float("nan"), (float("nan"), float("nan")))
assert ht.object_hash(a) == ht.object_hash(b)
assert ht.objects_are_equal(a, b)
def test_get_labels_groupby_for_Int64(writable):
table = ht.Int64HashTable()
vals = np.array([1, 2, -1, 2, 1, -1], dtype=np.int64)
vals.flags.writeable = writable
arr, unique = table.get_labels_groupby(vals)
expected_arr = np.array([0, 1, -1, 1, 0, -1], dtype=np.intp)
expected_unique = np.array([1, 2], dtype=np.int64)
tm.assert_numpy_array_equal(arr, expected_arr)
tm.assert_numpy_array_equal(unique, expected_unique)
def test_tracemalloc_works_for_StringHashTable():
N = 1000
keys = np.arange(N).astype(np.str_).astype(np.object_)
with activated_tracemalloc():
table = ht.StringHashTable()
table.map_locations(keys)
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
def test_tracemalloc_for_empty_StringHashTable():
with activated_tracemalloc():
table = ht.StringHashTable()
used = get_allocated_khash_memory()
my_size = table.sizeof()
assert used == my_size
del table
assert get_allocated_khash_memory() == 0
@pytest.mark.parametrize("N", range(1, 110))
def test_no_reallocation_StringHashTable(N):
keys = np.arange(N).astype(np.str_).astype(np.object_)
preallocated_table = ht.StringHashTable(N)
n_buckets_start = preallocated_table.get_state()["n_buckets"]
preallocated_table.map_locations(keys)
n_buckets_end = preallocated_table.get_state()["n_buckets"]
# original number of buckets was enough:
assert n_buckets_start == n_buckets_end
# check with clean table (not too much preallocated)
clean_table = ht.StringHashTable()
clean_table.map_locations(keys)
assert n_buckets_start == clean_table.get_state()["n_buckets"]
@pytest.mark.parametrize(
"table_type, dtype",
[
(ht.Float64HashTable, np.float64),
(ht.Float32HashTable, np.float32),
(ht.Complex128HashTable, np.complex128),
(ht.Complex64HashTable, np.complex64),
],
)
class TestHashTableWithNans:
def test_get_set_contains_len(self, table_type, dtype):
index = float("nan")
table = table_type()
assert index not in table
table.set_item(index, 42)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 42
table.set_item(index, 41)
assert len(table) == 1
assert index in table
assert table.get_item(index) == 41
def test_map_locations(self, table_type, dtype):
N = 10
table = table_type()
keys = np.full(N, np.nan, dtype=dtype)
table.map_locations(keys)
assert len(table) == 1
assert table.get_item(np.nan) == N - 1
def test_unique(self, table_type, dtype):
N = 1020
table = table_type()
keys = np.full(N, np.nan, dtype=dtype)
unique = table.unique(keys)
assert np.all(np.isnan(unique)) and len(unique) == 1
def test_unique_for_nan_objects_floats():
table = ht.PyObjectHashTable()
keys = np.array([float("nan") for i in range(50)], dtype=np.object_)
unique = table.unique(keys)
assert len(unique) == 1
def test_unique_for_nan_objects_complex():
table = ht.PyObjectHashTable()
keys = np.array([complex(float("nan"), 1.0) for i in range(50)], dtype=np.object_)
unique = table.unique(keys)
assert len(unique) == 1
def test_unique_for_nan_objects_tuple():
table = ht.PyObjectHashTable()
keys = np.array(
[1] + [(1.0, (float("nan"), 1.0)) for i in range(50)], dtype=np.object_
)
unique = table.unique(keys)
assert len(unique) == 2
@pytest.mark.parametrize(
"dtype",
[
np.object_,
np.complex128,
np.int64,
np.uint64,
np.float64,
np.complex64,
np.int32,
np.uint32,
np.float32,
np.int16,
np.uint16,
np.int8,
np.uint8,
np.intp,
],
)
class TestHelpFunctions:
def test_value_count(self, dtype, writable):
N = 43
expected = (np.arange(N) + N).astype(dtype)
values = np.repeat(expected, 5)
values.flags.writeable = writable
keys, counts, _ = ht.value_count(values, False)
tm.assert_numpy_array_equal(np.sort(keys), expected)
assert np.all(counts == 5)
def test_value_count_mask(self, dtype):
if dtype == np.object_:
pytest.skip("mask not implemented for object dtype")
values = np.array([1] * 5, dtype=dtype)
mask = np.zeros((5,), dtype=np.bool_)
mask[1] = True
mask[4] = True
keys, counts, na_counter = ht.value_count(values, False, mask=mask)
assert len(keys) == 2
assert na_counter == 2
def test_value_count_stable(self, dtype, writable):
# GH12679
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype)
values.flags.writeable = writable
keys, counts, _ = ht.value_count(values, False)
tm.assert_numpy_array_equal(keys, values)
assert np.all(counts == 1)
def test_duplicated_first(self, dtype, writable):
N = 100
values = np.repeat(np.arange(N).astype(dtype), 5)
values.flags.writeable = writable
result = ht.duplicated(values)
expected = np.ones_like(values, dtype=np.bool_)
expected[::5] = False
tm.assert_numpy_array_equal(result, expected)
def test_ismember_yes(self, dtype, writable):
N = 127
arr = np.arange(N).astype(dtype)
values = np.arange(N).astype(dtype)
arr.flags.writeable = writable
values.flags.writeable = writable
result = ht.ismember(arr, values)
expected = np.ones_like(values, dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_ismember_no(self, dtype):
N = 17
arr = np.arange(N).astype(dtype)
values = (np.arange(N) + N).astype(dtype)
result = ht.ismember(arr, values)
expected = np.zeros_like(values, dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_mode(self, dtype, writable):
if dtype in (np.int8, np.uint8):
N = 53
else:
N = 11111
values = np.repeat(np.arange(N).astype(dtype), 5)
values[0] = 42
values.flags.writeable = writable
result = ht.mode(values, False)
assert result == 42
def test_mode_stable(self, dtype, writable):
values = np.array([2, 1, 5, 22, 3, -1, 8]).astype(dtype)
values.flags.writeable = writable
keys = ht.mode(values, False)
tm.assert_numpy_array_equal(keys, values)
def test_modes_with_nans():
# GH42688, nans aren't mangled
nulls = [pd.NA, np.nan, pd.NaT, None]
values = np.array([True] + nulls * 2, dtype=np.object_)
modes = ht.mode(values, False)
assert modes.size == len(nulls)
def test_unique_label_indices_intp(writable):
keys = np.array([1, 2, 2, 2, 1, 3], dtype=np.intp)
keys.flags.writeable = writable
result = ht.unique_label_indices(keys)
expected = np.array([0, 1, 5], dtype=np.intp)
tm.assert_numpy_array_equal(result, expected)
def test_unique_label_indices():
a = np.random.default_rng(2).integers(1, 1 << 10, 1 << 15).astype(np.intp)
left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1]
tm.assert_numpy_array_equal(left, right, check_dtype=False)
a[np.random.default_rng(2).choice(len(a), 10)] = -1
left = ht.unique_label_indices(a)
right = np.unique(a, return_index=True)[1][1:]
tm.assert_numpy_array_equal(left, right, check_dtype=False)
@pytest.mark.parametrize(
"dtype",
[
np.float64,
np.float32,
np.complex128,
np.complex64,
],
)
class TestHelpFunctionsWithNans:
def test_value_count(self, dtype):
values = np.array([np.nan, np.nan, np.nan], dtype=dtype)
keys, counts, _ = ht.value_count(values, True)
assert len(keys) == 0
keys, counts, _ = ht.value_count(values, False)
assert len(keys) == 1 and np.all(np.isnan(keys))
assert counts[0] == 3
def test_duplicated_first(self, dtype):
values = np.array([np.nan, np.nan, np.nan], dtype=dtype)
result = ht.duplicated(values)
expected = np.array([False, True, True])
tm.assert_numpy_array_equal(result, expected)
def test_ismember_yes(self, dtype):
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype)
values = np.array([np.nan, np.nan], dtype=dtype)
result = ht.ismember(arr, values)
expected = np.array([True, True, True], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_ismember_no(self, dtype):
arr = np.array([np.nan, np.nan, np.nan], dtype=dtype)
values = np.array([1], dtype=dtype)
result = ht.ismember(arr, values)
expected = np.array([False, False, False], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_mode(self, dtype):
values = np.array([42, np.nan, np.nan, np.nan], dtype=dtype)
assert ht.mode(values, True) == 42
assert np.isnan(ht.mode(values, False))
def test_ismember_tuple_with_nans():
# GH-41836
values = [("a", float("nan")), ("b", 1)]
comps = [("a", float("nan"))]
msg = "isin with argument that is not not a Series"
with tm.assert_produces_warning(FutureWarning, match=msg):
result = isin(values, comps)
expected = np.array([True, False], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)
def test_float_complex_int_are_equal_as_objects():
values = ["a", 5, 5.0, 5.0 + 0j]
comps = list(range(129))
result = isin(np.array(values, dtype=object), np.asarray(comps))
expected = np.array([False, True, True, True], dtype=np.bool_)
tm.assert_numpy_array_equal(result, expected)