forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_loc.py
633 lines (525 loc) · 20.1 KB
/
test_loc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import numpy as np
import pytest
import pandas as pd
from pandas import DataFrame, Index, MultiIndex, Series
import pandas._testing as tm
from pandas.core.indexing import IndexingError
@pytest.fixture
def single_level_multiindex():
"""single level MultiIndex"""
return MultiIndex(
levels=[["foo", "bar", "baz", "qux"]], codes=[[0, 1, 2, 3]], names=["first"]
)
@pytest.fixture
def frame_random_data_integer_multi_index():
levels = [[0, 1], [0, 1, 2]]
codes = [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
index = MultiIndex(levels=levels, codes=codes)
return DataFrame(np.random.randn(6, 2), index=index)
class TestMultiIndexLoc:
def test_loc_getitem_series(self):
# GH14730
# passing a series as a key with a MultiIndex
index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
x = Series(index=index, data=range(9), dtype=np.float64)
y = Series([1, 3])
expected = Series(
data=[0, 1, 2, 6, 7, 8],
index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
dtype=np.float64,
)
result = x.loc[y]
tm.assert_series_equal(result, expected)
result = x.loc[[1, 3]]
tm.assert_series_equal(result, expected)
# GH15424
y1 = Series([1, 3], index=[1, 2])
result = x.loc[y1]
tm.assert_series_equal(result, expected)
empty = Series(data=[], dtype=np.float64)
expected = Series(
[],
index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
dtype=np.float64,
)
result = x.loc[empty]
tm.assert_series_equal(result, expected)
def test_loc_getitem_array(self):
# GH15434
# passing an array as a key with a MultiIndex
index = MultiIndex.from_product([[1, 2, 3], ["A", "B", "C"]])
x = Series(index=index, data=range(9), dtype=np.float64)
y = np.array([1, 3])
expected = Series(
data=[0, 1, 2, 6, 7, 8],
index=MultiIndex.from_product([[1, 3], ["A", "B", "C"]]),
dtype=np.float64,
)
result = x.loc[y]
tm.assert_series_equal(result, expected)
# empty array:
empty = np.array([])
expected = Series(
[],
index=MultiIndex(levels=index.levels, codes=[[], []], dtype=np.float64),
dtype="float64",
)
result = x.loc[empty]
tm.assert_series_equal(result, expected)
# 0-dim array (scalar):
scalar = np.int64(1)
expected = Series(data=[0, 1, 2], index=["A", "B", "C"], dtype=np.float64)
result = x.loc[scalar]
tm.assert_series_equal(result, expected)
def test_loc_multiindex_labels(self):
df = DataFrame(
np.random.randn(3, 3),
columns=[["i", "i", "j"], ["A", "A", "B"]],
index=[["i", "i", "j"], ["X", "X", "Y"]],
)
# the first 2 rows
expected = df.iloc[[0, 1]].droplevel(0)
result = df.loc["i"]
tm.assert_frame_equal(result, expected)
# 2nd (last) column
expected = df.iloc[:, [2]].droplevel(0, axis=1)
result = df.loc[:, "j"]
tm.assert_frame_equal(result, expected)
# bottom right corner
expected = df.iloc[[2], [2]].droplevel(0).droplevel(0, axis=1)
result = df.loc["j"].loc[:, "j"]
tm.assert_frame_equal(result, expected)
# with a tuple
expected = df.iloc[[0, 1]]
result = df.loc[("i", "X")]
tm.assert_frame_equal(result, expected)
def test_loc_multiindex_ints(self):
df = DataFrame(
np.random.randn(3, 3),
columns=[[2, 2, 4], [6, 8, 10]],
index=[[4, 4, 8], [8, 10, 12]],
)
expected = df.iloc[[0, 1]].droplevel(0)
result = df.loc[4]
tm.assert_frame_equal(result, expected)
def test_loc_multiindex_missing_label_raises(self):
df = DataFrame(
np.random.randn(3, 3),
columns=[[2, 2, 4], [6, 8, 10]],
index=[[4, 4, 8], [8, 10, 12]],
)
with pytest.raises(KeyError, match=r"^2$"):
df.loc[2]
@pytest.mark.parametrize("key, pos", [([2, 4], [0, 1]), ([2], []), ([2, 3], [])])
def test_loc_multiindex_list_missing_label(self, key, pos):
# GH 27148 - lists with missing labels _do_ raise
df = DataFrame(
np.random.randn(3, 3),
columns=[[2, 2, 4], [6, 8, 10]],
index=[[4, 4, 8], [8, 10, 12]],
)
with pytest.raises(KeyError, match="not in index"):
df.loc[key]
def test_loc_multiindex_too_many_dims_raises(self):
# GH 14885
s = Series(
range(8),
index=MultiIndex.from_product([["a", "b"], ["c", "d"], ["e", "f"]]),
)
with pytest.raises(KeyError, match=r"^\('a', 'b'\)$"):
s.loc["a", "b"]
with pytest.raises(KeyError, match=r"^\('a', 'd', 'g'\)$"):
s.loc["a", "d", "g"]
with pytest.raises(IndexingError, match="Too many indexers"):
s.loc["a", "d", "g", "j"]
def test_loc_multiindex_indexer_none(self):
# GH6788
# multi-index indexer is None (meaning take all)
attributes = ["Attribute" + str(i) for i in range(1)]
attribute_values = ["Value" + str(i) for i in range(5)]
index = MultiIndex.from_product([attributes, attribute_values])
df = 0.1 * np.random.randn(10, 1 * 5) + 0.5
df = DataFrame(df, columns=index)
result = df[attributes]
tm.assert_frame_equal(result, df)
# GH 7349
# loc with a multi-index seems to be doing fallback
df = DataFrame(
np.arange(12).reshape(-1, 1),
index=MultiIndex.from_product([[1, 2, 3, 4], [1, 2, 3]]),
)
expected = df.loc[([1, 2],), :]
result = df.loc[[1, 2]]
tm.assert_frame_equal(result, expected)
def test_loc_multiindex_incomplete(self):
# GH 7399
# incomplete indexers
s = Series(
np.arange(15, dtype="int64"),
MultiIndex.from_product([range(5), ["a", "b", "c"]]),
)
expected = s.loc[:, "a":"c"]
result = s.loc[0:4, "a":"c"]
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)
result = s.loc[:4, "a":"c"]
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)
result = s.loc[0:, "a":"c"]
tm.assert_series_equal(result, expected)
tm.assert_series_equal(result, expected)
# GH 7400
# multiindexer gettitem with list of indexers skips wrong element
s = Series(
np.arange(15, dtype="int64"),
MultiIndex.from_product([range(5), ["a", "b", "c"]]),
)
expected = s.iloc[[6, 7, 8, 12, 13, 14]]
result = s.loc[2:4:2, "a":"c"]
tm.assert_series_equal(result, expected)
def test_get_loc_single_level(self, single_level_multiindex):
single_level = single_level_multiindex
s = Series(np.random.randn(len(single_level)), index=single_level)
for k in single_level.values:
s[k]
def test_loc_getitem_int_slice(self):
# GH 3053
# loc should treat integer slices like label slices
index = MultiIndex.from_product([[6, 7, 8], ["a", "b"]])
df = DataFrame(np.random.randn(6, 6), index, index)
result = df.loc[6:8, :]
expected = df
tm.assert_frame_equal(result, expected)
index = MultiIndex.from_product([[10, 20, 30], ["a", "b"]])
df = DataFrame(np.random.randn(6, 6), index, index)
result = df.loc[20:30, :]
expected = df.iloc[2:]
tm.assert_frame_equal(result, expected)
# doc examples
result = df.loc[10, :]
expected = df.iloc[0:2]
expected.index = ["a", "b"]
tm.assert_frame_equal(result, expected)
result = df.loc[:, 10]
expected = df[10]
tm.assert_frame_equal(result, expected)
@pytest.mark.parametrize(
"indexer_type_1", (list, tuple, set, slice, np.ndarray, Series, Index)
)
@pytest.mark.parametrize(
"indexer_type_2", (list, tuple, set, slice, np.ndarray, Series, Index)
)
def test_loc_getitem_nested_indexer(self, indexer_type_1, indexer_type_2):
# GH #19686
# .loc should work with nested indexers which can be
# any list-like objects (see `pandas.api.types.is_list_like`) or slices
def convert_nested_indexer(indexer_type, keys):
if indexer_type == np.ndarray:
return np.array(keys)
if indexer_type == slice:
return slice(*keys)
return indexer_type(keys)
a = [10, 20, 30]
b = [1, 2, 3]
index = MultiIndex.from_product([a, b])
df = DataFrame(
np.arange(len(index), dtype="int64"), index=index, columns=["Data"]
)
keys = ([10, 20], [2, 3])
types = (indexer_type_1, indexer_type_2)
# check indexers with all the combinations of nested objects
# of all the valid types
indexer = tuple(
convert_nested_indexer(indexer_type, k)
for indexer_type, k in zip(types, keys)
)
result = df.loc[indexer, "Data"]
expected = Series(
[1, 2, 4, 5], name="Data", index=MultiIndex.from_product(keys)
)
tm.assert_series_equal(result, expected)
def test_multiindex_loc_one_dimensional_tuple(self, frame_or_series):
# GH#37711
mi = MultiIndex.from_tuples([("a", "A"), ("b", "A")])
obj = frame_or_series([1, 2], index=mi)
obj.loc[("a",)] = 0
expected = frame_or_series([0, 2], index=mi)
tm.assert_equal(obj, expected)
@pytest.mark.parametrize(
"indexer, pos",
[
([], []), # empty ok
(["A"], slice(3)),
(["A", "D"], []), # "D" isnt present -> raise
(["D", "E"], []), # no values found -> raise
(["D"], []), # same, with single item list: GH 27148
(pd.IndexSlice[:, ["foo"]], slice(2, None, 3)),
(pd.IndexSlice[:, ["foo", "bah"]], slice(2, None, 3)),
],
)
def test_loc_getitem_duplicates_multiindex_missing_indexers(indexer, pos):
# GH 7866
# multi-index slicing with missing indexers
idx = MultiIndex.from_product(
[["A", "B", "C"], ["foo", "bar", "baz"]], names=["one", "two"]
)
s = Series(np.arange(9, dtype="int64"), index=idx).sort_index()
expected = s.iloc[pos]
if expected.size == 0 and indexer != []:
with pytest.raises(KeyError, match=str(indexer)):
s.loc[indexer]
else:
result = s.loc[indexer]
tm.assert_series_equal(result, expected)
def test_series_loc_getitem_fancy(multiindex_year_month_day_dataframe_random_data):
s = multiindex_year_month_day_dataframe_random_data["A"]
expected = s.reindex(s.index[49:51])
result = s.loc[[(2000, 3, 10), (2000, 3, 13)]]
tm.assert_series_equal(result, expected)
@pytest.mark.parametrize("columns_indexer", [([], slice(None)), (["foo"], [])])
def test_loc_getitem_duplicates_multiindex_empty_indexer(columns_indexer):
# GH 8737
# empty indexer
multi_index = MultiIndex.from_product((["foo", "bar", "baz"], ["alpha", "beta"]))
df = DataFrame(np.random.randn(5, 6), index=range(5), columns=multi_index)
df = df.sort_index(level=0, axis=1)
expected = DataFrame(index=range(5), columns=multi_index.reindex([])[0])
result = df.loc[:, columns_indexer]
tm.assert_frame_equal(result, expected)
def test_loc_getitem_duplicates_multiindex_non_scalar_type_object():
# regression from < 0.14.0
# GH 7914
df = DataFrame(
[[np.mean, np.median], ["mean", "median"]],
columns=MultiIndex.from_tuples([("functs", "mean"), ("functs", "median")]),
index=["function", "name"],
)
result = df.loc["function", ("functs", "mean")]
expected = np.mean
assert result == expected
def test_loc_getitem_tuple_plus_slice():
# GH 671
df = DataFrame(
{
"a": np.arange(10),
"b": np.arange(10),
"c": np.random.randn(10),
"d": np.random.randn(10),
}
).set_index(["a", "b"])
expected = df.loc[0, 0]
result = df.loc[(0, 0), :]
tm.assert_series_equal(result, expected)
def test_loc_getitem_int(frame_random_data_integer_multi_index):
df = frame_random_data_integer_multi_index
result = df.loc[1]
expected = df[-3:]
expected.index = expected.index.droplevel(0)
tm.assert_frame_equal(result, expected)
def test_loc_getitem_int_raises_exception(frame_random_data_integer_multi_index):
df = frame_random_data_integer_multi_index
with pytest.raises(KeyError, match=r"^3$"):
df.loc[3]
def test_loc_getitem_lowerdim_corner(multiindex_dataframe_random_data):
df = multiindex_dataframe_random_data
# test setup - check key not in dataframe
with pytest.raises(KeyError, match=r"^\('bar', 'three'\)$"):
df.loc[("bar", "three"), "B"]
# in theory should be inserting in a sorted space????
df.loc[("bar", "three"), "B"] = 0
expected = 0
result = df.sort_index().loc[("bar", "three"), "B"]
assert result == expected
def test_loc_setitem_single_column_slice():
# case from https://github.com/pandas-dev/pandas/issues/27841
df = DataFrame(
"string",
index=list("abcd"),
columns=MultiIndex.from_product([["Main"], ("another", "one")]),
)
df["labels"] = "a"
df.loc[:, "labels"] = df.index
tm.assert_numpy_array_equal(np.asarray(df["labels"]), np.asarray(df.index))
# test with non-object block
df = DataFrame(
np.nan,
index=range(4),
columns=MultiIndex.from_tuples([("A", "1"), ("A", "2"), ("B", "1")]),
)
expected = df.copy()
df.loc[:, "B"] = np.arange(4)
expected.iloc[:, 2] = np.arange(4)
tm.assert_frame_equal(df, expected)
def test_loc_nan_multiindex():
# GH 5286
tups = [
("Good Things", "C", np.nan),
("Good Things", "R", np.nan),
("Bad Things", "C", np.nan),
("Bad Things", "T", np.nan),
("Okay Things", "N", "B"),
("Okay Things", "N", "D"),
("Okay Things", "B", np.nan),
("Okay Things", "D", np.nan),
]
df = DataFrame(
np.ones((8, 4)),
columns=Index(["d1", "d2", "d3", "d4"]),
index=MultiIndex.from_tuples(tups, names=["u1", "u2", "u3"]),
)
result = df.loc["Good Things"].loc["C"]
expected = DataFrame(
np.ones((1, 4)),
index=Index([np.nan], dtype="object", name="u3"),
columns=Index(["d1", "d2", "d3", "d4"], dtype="object"),
)
tm.assert_frame_equal(result, expected)
def test_loc_period_string_indexing():
# GH 9892
a = pd.period_range("2013Q1", "2013Q4", freq="Q")
i = (1111, 2222, 3333)
idx = MultiIndex.from_product((a, i), names=("Periode", "CVR"))
df = DataFrame(
index=idx,
columns=(
"OMS",
"OMK",
"RES",
"DRIFT_IND",
"OEVRIG_IND",
"FIN_IND",
"VARE_UD",
"LOEN_UD",
"FIN_UD",
),
)
result = df.loc[("2013Q1", 1111), "OMS"]
expected = Series(
[np.nan],
dtype=object,
name="OMS",
index=MultiIndex.from_tuples(
[(pd.Period("2013Q1"), 1111)], names=["Periode", "CVR"]
),
)
tm.assert_series_equal(result, expected)
def test_loc_datetime_mask_slicing():
# GH 16699
dt_idx = pd.to_datetime(["2017-05-04", "2017-05-05"])
m_idx = MultiIndex.from_product([dt_idx, dt_idx], names=["Idx1", "Idx2"])
df = DataFrame(
data=[[1, 2], [3, 4], [5, 6], [7, 6]], index=m_idx, columns=["C1", "C2"]
)
result = df.loc[(dt_idx[0], (df.index.get_level_values(1) > "2017-05-04")), "C1"]
expected = Series(
[3],
name="C1",
index=MultiIndex.from_tuples(
[(pd.Timestamp("2017-05-04"), pd.Timestamp("2017-05-05"))],
names=["Idx1", "Idx2"],
),
)
tm.assert_series_equal(result, expected)
def test_loc_datetime_series_tuple_slicing():
# https://github.com/pandas-dev/pandas/issues/35858
date = pd.Timestamp("2000")
ser = Series(
1,
index=MultiIndex.from_tuples([("a", date)], names=["a", "b"]),
name="c",
)
result = ser.loc[:, [date]]
tm.assert_series_equal(result, ser)
def test_loc_with_mi_indexer():
# https://github.com/pandas-dev/pandas/issues/35351
df = DataFrame(
data=[["a", 1], ["a", 0], ["b", 1], ["c", 2]],
index=MultiIndex.from_tuples(
[(0, 1), (1, 0), (1, 1), (1, 1)], names=["index", "date"]
),
columns=["author", "price"],
)
idx = MultiIndex.from_tuples([(0, 1), (1, 1)], names=["index", "date"])
result = df.loc[idx, :]
expected = DataFrame(
[["a", 1], ["b", 1], ["c", 2]],
index=MultiIndex.from_tuples([(0, 1), (1, 1), (1, 1)], names=["index", "date"]),
columns=["author", "price"],
)
tm.assert_frame_equal(result, expected)
def test_loc_mi_with_level1_named_0():
# GH#37194
dti = pd.date_range("2016-01-01", periods=3, tz="US/Pacific")
ser = Series(range(3), index=dti)
df = ser.to_frame()
df[1] = dti
df2 = df.set_index(0, append=True)
assert df2.index.names == (None, 0)
df2.index.get_loc(dti[0]) # smoke test
result = df2.loc[dti[0]]
expected = df2.iloc[[0]].droplevel(None)
tm.assert_frame_equal(result, expected)
ser2 = df2[1]
assert ser2.index.names == (None, 0)
result = ser2.loc[dti[0]]
expected = ser2.iloc[[0]].droplevel(None)
tm.assert_series_equal(result, expected)
def test_getitem_str_slice(datapath):
# GH#15928
path = datapath("reshape", "merge", "data", "quotes2.csv")
df = pd.read_csv(path, parse_dates=["time"])
df2 = df.set_index(["ticker", "time"]).sort_index()
res = df2.loc[("AAPL", slice("2016-05-25 13:30:00")), :].droplevel(0)
expected = df2.loc["AAPL"].loc[slice("2016-05-25 13:30:00"), :]
tm.assert_frame_equal(res, expected)
def test_3levels_leading_period_index():
# GH#24091
pi = pd.PeriodIndex(
["20181101 1100", "20181101 1200", "20181102 1300", "20181102 1400"],
name="datetime",
freq="B",
)
lev2 = ["A", "A", "Z", "W"]
lev3 = ["B", "C", "Q", "F"]
mi = MultiIndex.from_arrays([pi, lev2, lev3])
ser = Series(range(4), index=mi, dtype=np.float64)
result = ser.loc[(pi[0], "A", "B")]
assert result == 0.0
class TestKeyErrorsWithMultiIndex:
def test_missing_keys_raises_keyerror(self):
# GH#27420 KeyError, not TypeError
df = DataFrame(np.arange(12).reshape(4, 3), columns=["A", "B", "C"])
df2 = df.set_index(["A", "B"])
with pytest.raises(KeyError, match="1"):
df2.loc[(1, 6)]
def test_missing_key_raises_keyerror2(self):
# GH#21168 KeyError, not "IndexingError: Too many indexers"
ser = Series(-1, index=MultiIndex.from_product([[0, 1]] * 2))
with pytest.raises(KeyError, match=r"\(0, 3\)"):
ser.loc[0, 3]
def test_getitem_loc_commutability(multiindex_year_month_day_dataframe_random_data):
df = multiindex_year_month_day_dataframe_random_data
ser = df["A"]
result = ser[2000, 5]
expected = df.loc[2000, 5]["A"]
tm.assert_series_equal(result, expected)
def test_loc_with_nan():
# GH: 27104
df = DataFrame(
{"col": [1, 2, 5], "ind1": ["a", "d", np.nan], "ind2": [1, 4, 5]}
).set_index(["ind1", "ind2"])
result = df.loc[["a"]]
expected = DataFrame(
{"col": [1]}, index=MultiIndex.from_tuples([("a", 1)], names=["ind1", "ind2"])
)
tm.assert_frame_equal(result, expected)
result = df.loc["a"]
expected = DataFrame({"col": [1]}, index=Index([1], name="ind2"))
tm.assert_frame_equal(result, expected)
def test_getitem_non_found_tuple():
# GH: 25236
df = DataFrame([[1, 2, 3, 4]], columns=["a", "b", "c", "d"]).set_index(
["a", "b", "c"]
)
with pytest.raises(KeyError, match=r"\(2\.0, 2\.0, 3\.0\)"):
df.loc[(2.0, 2.0, 3.0)]