forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_missing.py
84 lines (73 loc) · 2.24 KB
/
test_missing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import numpy as np
import pandas as pd
import pandas._testing as tm
from pandas import DataFrame, Index, date_range
import pytest
@pytest.mark.parametrize("func", ["ffill", "bfill"])
def test_groupby_column_index_name_lost_fill_funcs(func):
# GH: 29764 groupby loses index sometimes
df = pd.DataFrame(
[[1, 1.0, -1.0], [1, np.nan, np.nan], [1, 2.0, -2.0]],
columns=pd.Index(["type", "a", "b"], name="idx"),
)
df_grouped = df.groupby(["type"])[["a", "b"]]
result = getattr(df_grouped, func)().columns
expected = pd.Index(["a", "b"], name="idx")
tm.assert_index_equal(result, expected)
@pytest.mark.parametrize("func", ["ffill", "bfill"])
def test_groupby_fill_duplicate_column_names(func):
# GH: 25610 ValueError with duplicate column names
df1 = pd.DataFrame({"field1": [1, 3, 4], "field2": [1, 3, 4]})
df2 = pd.DataFrame({"field1": [1, np.nan, 4]})
df_grouped = pd.concat([df1, df2], axis=1).groupby(by=["field2"])
expected = pd.DataFrame(
[[1, 1.0], [3, np.nan], [4, 4.0]], columns=["field1", "field1"]
)
result = getattr(df_grouped, func)()
tm.assert_frame_equal(result, expected)
def test_ffill_missing_arguments():
# GH 14955
df = pd.DataFrame({"a": [1, 2], "b": [1, 1]})
with pytest.raises(ValueError, match="Must specify a fill"):
df.groupby("b").fillna()
def test_fill_consistency():
# GH9221
# pass thru keyword arguments to the generated wrapper
# are set if the passed kw is None (only)
df = DataFrame(
index=pd.MultiIndex.from_product(
[["value1", "value2"], date_range("2014-01-01", "2014-01-06")]
),
columns=Index(["1", "2"], name="id"),
)
df["1"] = [
np.nan,
1,
np.nan,
np.nan,
11,
np.nan,
np.nan,
2,
np.nan,
np.nan,
22,
np.nan,
]
df["2"] = [
np.nan,
3,
np.nan,
np.nan,
33,
np.nan,
np.nan,
4,
np.nan,
np.nan,
44,
np.nan,
]
expected = df.groupby(level=0, axis=0).fillna(method="ffill")
result = df.T.groupby(level=0, axis=1).fillna(method="ffill").T
tm.assert_frame_equal(result, expected)