forked from pandas-dev/pandas
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_to_dict.py
497 lines (446 loc) · 16.9 KB
/
test_to_dict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
from collections import (
OrderedDict,
defaultdict,
)
from datetime import datetime
import numpy as np
import pytest
import pytz
from pandas import (
NA,
DataFrame,
Index,
MultiIndex,
Series,
Timestamp,
)
import pandas._testing as tm
class TestDataFrameToDict:
def test_to_dict_timestamp(self):
# GH#11247
# split/records producing np.datetime64 rather than Timestamps
# on datetime64[ns] dtypes only
tsmp = Timestamp("20130101")
test_data = DataFrame({"A": [tsmp, tsmp], "B": [tsmp, tsmp]})
test_data_mixed = DataFrame({"A": [tsmp, tsmp], "B": [1, 2]})
expected_records = [{"A": tsmp, "B": tsmp}, {"A": tsmp, "B": tsmp}]
expected_records_mixed = [{"A": tsmp, "B": 1}, {"A": tsmp, "B": 2}]
assert test_data.to_dict(orient="records") == expected_records
assert test_data_mixed.to_dict(orient="records") == expected_records_mixed
expected_series = {
"A": Series([tsmp, tsmp], name="A"),
"B": Series([tsmp, tsmp], name="B"),
}
expected_series_mixed = {
"A": Series([tsmp, tsmp], name="A"),
"B": Series([1, 2], name="B"),
}
tm.assert_dict_equal(test_data.to_dict(orient="series"), expected_series)
tm.assert_dict_equal(
test_data_mixed.to_dict(orient="series"), expected_series_mixed
)
expected_split = {
"index": [0, 1],
"data": [[tsmp, tsmp], [tsmp, tsmp]],
"columns": ["A", "B"],
}
expected_split_mixed = {
"index": [0, 1],
"data": [[tsmp, 1], [tsmp, 2]],
"columns": ["A", "B"],
}
tm.assert_dict_equal(test_data.to_dict(orient="split"), expected_split)
tm.assert_dict_equal(
test_data_mixed.to_dict(orient="split"), expected_split_mixed
)
def test_to_dict_index_not_unique_with_index_orient(self):
# GH#22801
# Data loss when indexes are not unique. Raise ValueError.
df = DataFrame({"a": [1, 2], "b": [0.5, 0.75]}, index=["A", "A"])
msg = "DataFrame index must be unique for orient='index'"
with pytest.raises(ValueError, match=msg):
df.to_dict(orient="index")
def test_to_dict_invalid_orient(self):
df = DataFrame({"A": [0, 1]})
msg = "orient 'xinvalid' not understood"
with pytest.raises(ValueError, match=msg):
df.to_dict(orient="xinvalid")
@pytest.mark.parametrize("orient", ["d", "l", "r", "sp", "s", "i"])
def test_to_dict_short_orient_raises(self, orient):
# GH#32515
df = DataFrame({"A": [0, 1]})
with pytest.raises(ValueError, match="not understood"):
df.to_dict(orient=orient)
@pytest.mark.parametrize("mapping", [dict, defaultdict(list), OrderedDict])
def test_to_dict(self, mapping):
# orient= should only take the listed options
# see GH#32515
test_data = {"A": {"1": 1, "2": 2}, "B": {"1": "1", "2": "2", "3": "3"}}
# GH#16122
recons_data = DataFrame(test_data).to_dict(into=mapping)
for k, v in test_data.items():
for k2, v2 in v.items():
assert v2 == recons_data[k][k2]
recons_data = DataFrame(test_data).to_dict("list", mapping)
for k, v in test_data.items():
for k2, v2 in v.items():
assert v2 == recons_data[k][int(k2) - 1]
recons_data = DataFrame(test_data).to_dict("series", mapping)
for k, v in test_data.items():
for k2, v2 in v.items():
assert v2 == recons_data[k][k2]
recons_data = DataFrame(test_data).to_dict("split", mapping)
expected_split = {
"columns": ["A", "B"],
"index": ["1", "2", "3"],
"data": [[1.0, "1"], [2.0, "2"], [np.nan, "3"]],
}
tm.assert_dict_equal(recons_data, expected_split)
recons_data = DataFrame(test_data).to_dict("records", mapping)
expected_records = [
{"A": 1.0, "B": "1"},
{"A": 2.0, "B": "2"},
{"A": np.nan, "B": "3"},
]
assert isinstance(recons_data, list)
assert len(recons_data) == 3
for left, right in zip(recons_data, expected_records):
tm.assert_dict_equal(left, right)
# GH#10844
recons_data = DataFrame(test_data).to_dict("index")
for k, v in test_data.items():
for k2, v2 in v.items():
assert v2 == recons_data[k2][k]
df = DataFrame(test_data)
df["duped"] = df[df.columns[0]]
recons_data = df.to_dict("index")
comp_data = test_data.copy()
comp_data["duped"] = comp_data[df.columns[0]]
for k, v in comp_data.items():
for k2, v2 in v.items():
assert v2 == recons_data[k2][k]
@pytest.mark.parametrize("mapping", [list, defaultdict, []])
def test_to_dict_errors(self, mapping):
# GH#16122
df = DataFrame(np.random.randn(3, 3))
msg = "|".join(
[
"unsupported type: <class 'list'>",
r"to_dict\(\) only accepts initialized defaultdicts",
]
)
with pytest.raises(TypeError, match=msg):
df.to_dict(into=mapping)
def test_to_dict_not_unique_warning(self):
# GH#16927: When converting to a dict, if a column has a non-unique name
# it will be dropped, throwing a warning.
df = DataFrame([[1, 2, 3]], columns=["a", "a", "b"])
with tm.assert_produces_warning(UserWarning):
df.to_dict()
# orient - orient argument to to_dict function
# item_getter - function for extracting value from
# the resulting dict using column name and index
@pytest.mark.parametrize(
"orient,item_getter",
[
("dict", lambda d, col, idx: d[col][idx]),
("records", lambda d, col, idx: d[idx][col]),
("list", lambda d, col, idx: d[col][idx]),
("split", lambda d, col, idx: d["data"][idx][d["columns"].index(col)]),
("index", lambda d, col, idx: d[idx][col]),
],
)
def test_to_dict_box_scalars(self, orient, item_getter):
# GH#14216, GH#23753
# make sure that we are boxing properly
df = DataFrame({"a": [1, 2], "b": [0.1, 0.2]})
result = df.to_dict(orient=orient)
assert isinstance(item_getter(result, "a", 0), int)
assert isinstance(item_getter(result, "b", 0), float)
def test_to_dict_tz(self):
# GH#18372 When converting to dict with orient='records' columns of
# datetime that are tz-aware were not converted to required arrays
data = [
(datetime(2017, 11, 18, 21, 53, 0, 219225, tzinfo=pytz.utc),),
(datetime(2017, 11, 18, 22, 6, 30, 61810, tzinfo=pytz.utc),),
]
df = DataFrame(list(data), columns=["d"])
result = df.to_dict(orient="records")
expected = [
{"d": Timestamp("2017-11-18 21:53:00.219225+0000", tz=pytz.utc)},
{"d": Timestamp("2017-11-18 22:06:30.061810+0000", tz=pytz.utc)},
]
tm.assert_dict_equal(result[0], expected[0])
tm.assert_dict_equal(result[1], expected[1])
@pytest.mark.parametrize(
"into, expected",
[
(
dict,
{
0: {"int_col": 1, "float_col": 1.0},
1: {"int_col": 2, "float_col": 2.0},
2: {"int_col": 3, "float_col": 3.0},
},
),
(
OrderedDict,
OrderedDict(
[
(0, {"int_col": 1, "float_col": 1.0}),
(1, {"int_col": 2, "float_col": 2.0}),
(2, {"int_col": 3, "float_col": 3.0}),
]
),
),
(
defaultdict(dict),
defaultdict(
dict,
{
0: {"int_col": 1, "float_col": 1.0},
1: {"int_col": 2, "float_col": 2.0},
2: {"int_col": 3, "float_col": 3.0},
},
),
),
],
)
def test_to_dict_index_dtypes(self, into, expected):
# GH#18580
# When using to_dict(orient='index') on a dataframe with int
# and float columns only the int columns were cast to float
df = DataFrame({"int_col": [1, 2, 3], "float_col": [1.0, 2.0, 3.0]})
result = df.to_dict(orient="index", into=into)
cols = ["int_col", "float_col"]
result = DataFrame.from_dict(result, orient="index")[cols]
expected = DataFrame.from_dict(expected, orient="index")[cols]
tm.assert_frame_equal(result, expected)
def test_to_dict_numeric_names(self):
# GH#24940
df = DataFrame({str(i): [i] for i in range(5)})
result = set(df.to_dict("records")[0].keys())
expected = set(df.columns)
assert result == expected
def test_to_dict_wide(self):
# GH#24939
df = DataFrame({(f"A_{i:d}"): [i] for i in range(256)})
result = df.to_dict("records")[0]
expected = {f"A_{i:d}": i for i in range(256)}
assert result == expected
@pytest.mark.parametrize(
"data,dtype",
(
([True, True, False], bool),
[
[
datetime(2018, 1, 1),
datetime(2019, 2, 2),
datetime(2020, 3, 3),
],
Timestamp,
],
[[1.0, 2.0, 3.0], float],
[[1, 2, 3], int],
[["X", "Y", "Z"], str],
),
)
def test_to_dict_orient_dtype(self, data, dtype):
# GH22620 & GH21256
df = DataFrame({"a": data})
d = df.to_dict(orient="records")
assert all(type(record["a"]) is dtype for record in d)
@pytest.mark.parametrize(
"data,expected_dtype",
(
[np.uint64(2), int],
[np.int64(-9), int],
[np.float64(1.1), float],
[np.bool_(True), bool],
[np.datetime64("2005-02-25"), Timestamp],
),
)
def test_to_dict_scalar_constructor_orient_dtype(self, data, expected_dtype):
# GH22620 & GH21256
df = DataFrame({"a": data}, index=[0])
d = df.to_dict(orient="records")
result = type(d[0]["a"])
assert result is expected_dtype
def test_to_dict_mixed_numeric_frame(self):
# GH 12859
df = DataFrame({"a": [1.0], "b": [9.0]})
result = df.reset_index().to_dict("records")
expected = [{"index": 0, "a": 1.0, "b": 9.0}]
assert result == expected
@pytest.mark.parametrize(
"index",
[
None,
Index(["aa", "bb"]),
Index(["aa", "bb"], name="cc"),
MultiIndex.from_tuples([("a", "b"), ("a", "c")]),
MultiIndex.from_tuples([("a", "b"), ("a", "c")], names=["n1", "n2"]),
],
)
@pytest.mark.parametrize(
"columns",
[
["x", "y"],
Index(["x", "y"]),
Index(["x", "y"], name="z"),
MultiIndex.from_tuples([("x", 1), ("y", 2)]),
MultiIndex.from_tuples([("x", 1), ("y", 2)], names=["z1", "z2"]),
],
)
def test_to_dict_orient_tight(self, index, columns):
df = DataFrame.from_records(
[[1, 3], [2, 4]],
columns=columns,
index=index,
)
roundtrip = DataFrame.from_dict(df.to_dict(orient="tight"), orient="tight")
tm.assert_frame_equal(df, roundtrip)
@pytest.mark.parametrize(
"orient",
["dict", "list", "split", "records", "index", "tight"],
)
@pytest.mark.parametrize(
"data,expected_types",
(
(
{
"a": [np.int64(1), 1, np.int64(3)],
"b": [np.float64(1.0), 2.0, np.float64(3.0)],
"c": [np.float64(1.0), 2, np.int64(3)],
"d": [np.float64(1.0), "a", np.int64(3)],
"e": [np.float64(1.0), ["a"], np.int64(3)],
"f": [np.float64(1.0), ("a",), np.int64(3)],
},
{
"a": [int, int, int],
"b": [float, float, float],
"c": [float, float, float],
"d": [float, str, int],
"e": [float, list, int],
"f": [float, tuple, int],
},
),
(
{
"a": [1, 2, 3],
"b": [1.1, 2.2, 3.3],
},
{
"a": [int, int, int],
"b": [float, float, float],
},
),
( # Make sure we have one df which is all object type cols
{
"a": [1, "hello", 3],
"b": [1.1, "world", 3.3],
},
{
"a": [int, str, int],
"b": [float, str, float],
},
),
),
)
def test_to_dict_returns_native_types(self, orient, data, expected_types):
# GH 46751
# Tests we get back native types for all orient types
df = DataFrame(data)
result = df.to_dict(orient)
if orient == "dict":
assertion_iterator = (
(i, key, value)
for key, index_value_map in result.items()
for i, value in index_value_map.items()
)
elif orient == "list":
assertion_iterator = (
(i, key, value)
for key, values in result.items()
for i, value in enumerate(values)
)
elif orient in {"split", "tight"}:
assertion_iterator = (
(i, key, result["data"][i][j])
for i in result["index"]
for j, key in enumerate(result["columns"])
)
elif orient == "records":
assertion_iterator = (
(i, key, value)
for i, record in enumerate(result)
for key, value in record.items()
)
elif orient == "index":
assertion_iterator = (
(i, key, value)
for i, record in result.items()
for key, value in record.items()
)
for i, key, value in assertion_iterator:
assert value == data[key][i]
assert type(value) is expected_types[key][i]
@pytest.mark.parametrize("orient", ["dict", "list", "series", "records", "index"])
def test_to_dict_index_false_error(self, orient):
# GH#46398
df = DataFrame({"col1": [1, 2], "col2": [3, 4]}, index=["row1", "row2"])
msg = "'index=False' is only valid when 'orient' is 'split' or 'tight'"
with pytest.raises(ValueError, match=msg):
df.to_dict(orient=orient, index=False)
@pytest.mark.parametrize(
"orient, expected",
[
("split", {"columns": ["col1", "col2"], "data": [[1, 3], [2, 4]]}),
(
"tight",
{
"columns": ["col1", "col2"],
"data": [[1, 3], [2, 4]],
"column_names": [None],
},
),
],
)
def test_to_dict_index_false(self, orient, expected):
# GH#46398
df = DataFrame({"col1": [1, 2], "col2": [3, 4]}, index=["row1", "row2"])
result = df.to_dict(orient=orient, index=False)
tm.assert_dict_equal(result, expected)
@pytest.mark.parametrize(
"orient, expected",
[
("dict", {"a": {0: 1, 1: None}}),
("list", {"a": [1, None]}),
("split", {"index": [0, 1], "columns": ["a"], "data": [[1], [None]]}),
(
"tight",
{
"index": [0, 1],
"columns": ["a"],
"data": [[1], [None]],
"index_names": [None],
"column_names": [None],
},
),
("records", [{"a": 1}, {"a": None}]),
("index", {0: {"a": 1}, 1: {"a": None}}),
],
)
def test_to_dict_na_to_none(self, orient, expected):
# GH#50795
df = DataFrame({"a": [1, NA]}, dtype="Int64")
result = df.to_dict(orient=orient)
assert result == expected
def test_to_dict_masked_native_python(self):
# GH#34665
df = DataFrame({"a": Series([1, 2], dtype="Int64"), "B": 1})
result = df.to_dict(orient="records")
assert type(result[0]["a"]) is int
df = DataFrame({"a": Series([1, NA], dtype="Int64"), "B": 1})
result = df.to_dict(orient="records")
assert type(result[0]["a"]) is int