As of version 3.6, MongoDB supports collections that validate documents against a provided JSON Schema. The schema itself and both validation action and level can be defined when creating the collection, as the following example shows:
{
"type": "object", (1)
"required": [ "firstname", "lastname" ], (2)
"properties": { (3)
"firstname": { (4)
"type": "string",
"enum": [ "luke", "han" ]
},
"address": { (5)
"type": "object",
"properties": {
"postCode": { "type": "string", "minLength": 4, "maxLength": 5 }
}
}
}
}
-
JSON schema documents always describe a whole document from its root. A schema is a schema object itself that can contain embedded schema objects that describe properties and subdocuments.
-
required
is a property that describes which properties are required in a document. It can be specified optionally, along with other schema constraints. See MongoDB’s documentation on available keywords. -
properties
is related to a schema object that describes anobject
type. It contains property-specific schema constraints. -
firstname
specifies constraints for thefirsname
field inside the document. Here, it is a string-basedproperties
element declaring possible field values. -
address
is a subdocument defining a schema for values in itspostCode
field.
You can provide a schema either by specifying a schema document (that is, by using the Document
API to parse or build a document object) or by building it with Spring Data’s JSON schema utilities in org.springframework.data.mongodb.core.schema
. MongoJsonSchema
is the entry point for all JSON schema-related operations. The following example shows how use MongoJsonSchema.builder()
to create a JSON schema:
MongoJsonSchema.builder() (1)
.required("lastname") (2)
.properties(
required(string("firstname").possibleValues("luke", "han")), (3)
object("address")
.properties(string("postCode").minLength(4).maxLength(5)))
.build(); (4)
-
Obtain a schema builder to configure the schema with a fluent API.
-
Configure required properties either directly as shown here or with more details as in 3.
-
Configure the required String-typed
firstname
field, allowing onlyluke
andhan
values. Properties can be typed or untyped. Use a static import ofJsonSchemaProperty
to make the syntax slightly more compact and to get entry points such asstring(…)
. -
Build the schema object. Use the schema to create either a collection or query documents.
There are already some predefined and strongly typed schema objects (JsonSchemaObject
and JsonSchemaProperty
) available
through static methods on the gateway interfaces.
However, you may need to build custom property validation rules, which can be created through the builder API, as the following example shows:
// "birthdate" : { "bsonType": "date" }
JsonSchemaProperty.named("birthdate").ofType(Type.dateType());
// "birthdate" : { "bsonType": "date", "description", "Must be a date" }
JsonSchemaProperty.named("birthdate").with(JsonSchemaObject.of(Type.dateType()).description("Must be a date"));
CollectionOptions
provides the entry point to schema support for collections, as the following example shows:
$jsonSchema
MongoJsonSchema schema = MongoJsonSchema.builder().required("firstname", "lastname").build();
template.createCollection(Person.class, CollectionOptions.empty().schema(schema));
Setting up a schema can be a time consuming task and we encourage everyone who decides to do so, to really take the time it takes.
It’s important, schema changes can be hard.
However, there might be times when one does not want to balked with it, and that is where JsonSchemaCreator
comes into play.
JsonSchemaCreator
and its default implementation generates a MongoJsonSchema
out of domain types metadata provided by the mapping infrastructure.
This means, that annotated properties as well as potential custom conversions are considered.
public class Person {
private final String firstname; (1)
private final int age; (2)
private Species species; (3)
private Address address; (4)
private @Field(fieldType=SCRIPT) String theForce; (5)
private @Transient Boolean useTheForce; (6)
public Person(String firstname, int age) { (1) (2)
this.firstname = firstname;
this.age = age;
}
// gettter / setter omitted
}
MongoJsonSchema schema = MongoJsonSchemaCreator.create(mongoOperations.getConverter())
.createSchemaFor(Person.class);
template.createCollection(Person.class, CollectionOptions.empty().schema(schema));
{
'type' : 'object',
'required' : ['age'], (2)
'properties' : {
'firstname' : { 'type' : 'string' }, (1)
'age' : { 'bsonType' : 'int' } (2)
'species' : { (3)
'type' : 'string',
'enum' : ['HUMAN', 'WOOKIE', 'UNKNOWN']
}
'address' : { (4)
'type' : 'object'
'properties' : {
'postCode' : { 'type': 'string' }
}
},
'theForce' : { 'type' : 'javascript'} (5)
}
}
-
Simple object properties are consideres regular properties.
-
Primitive types are considered required properties
-
Enums are restricted to possible values.
-
Object type properties are inspected and represented as nested documents.
-
String
type property that is converted toCode
by the converter. -
@Transient
properties are omitted when generating the schema.
Note
|
_id properties using types that can be converted into ObjectId like String are mapped to { type : 'object' }
unless there is more specific information available via the @MongoId annotation.
|
Java | Schema Type | Notes |
---|---|---|
|
|
with |
|
|
- |
|
|
- |
|
|
with |
|
|
simple type array unless it’s a |
|
|
- |
You can use a schema to query any collection for documents that match a given structure defined by a JSON schema, as the following example shows:
$jsonSchema
MongoJsonSchema schema = MongoJsonSchema.builder().required("firstname", "lastname").build();
template.find(query(matchingDocumentStructure(schema)), Person.class);
MongoDB 4.2 Field Level Encryption allows to directly encrypt individual properties.
Properties can be wrapped within an encrypted property when setting up the JSON Schema as shown in the example below.
MongoJsonSchema schema = MongoJsonSchema.builder()
.properties(
encrypted(string("ssn"))
.algorithm("AEAD_AES_256_CBC_HMAC_SHA_512-Deterministic")
.keyId("*key0_id")
).build();
Note
|
Make sure to set the drivers com.mongodb.AutoEncryptionSettings to use client-side encryption. MongoDB does not support encryption for all field types. Specific data types require deterministic encryption to preserve equality comparison functionality.
|
The following table shows the supported JSON schema types:
Schema Type | Java Type | Schema Properties |
---|---|---|
|
- |
|
|
|
|
|
any array except |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(none) |
|
|
(none) |
|
|
(none) |
|
|
(none) |
|
|
(none) |
|
|
(none) |
|
|
(none) |
Note
|
untyped is a generic type that is inherited by all typed schema types. It provides all untyped schema properties to typed schema types.
|
For more information, see $jsonSchema.