|
1 |
| -# run using python fibonacci_search.py -v |
2 |
| - |
3 | 1 | """
|
4 |
| -@params |
5 |
| -arr: input array |
6 |
| -val: the value to be searched |
7 |
| -output: the index of element in the array or -1 if not found |
8 |
| -return 0 if input array is empty |
| 2 | +This is pure Python implementation of fibonacci search. |
| 3 | +
|
| 4 | +Resources used: |
| 5 | +https://en.wikipedia.org/wiki/Fibonacci_search_technique |
| 6 | +
|
| 7 | +For doctests run following command: |
| 8 | +python3 -m doctest -v fibonacci_search.py |
| 9 | +
|
| 10 | +For manual testing run: |
| 11 | +python3 fibonacci_search.py |
9 | 12 | """
|
| 13 | +from functools import lru_cache |
10 | 14 |
|
11 | 15 |
|
12 |
| -def fibonacci_search(arr, val): |
| 16 | +@lru_cache() |
| 17 | +def fibonacci(k: int) -> int: |
| 18 | + """Finds fibonacci number in index k. |
13 | 19 |
|
| 20 | + Parameters |
| 21 | + ---------- |
| 22 | + k : |
| 23 | + Index of fibonacci. |
| 24 | +
|
| 25 | + Returns |
| 26 | + ------- |
| 27 | + int |
| 28 | + Fibonacci number in position k. |
| 29 | +
|
| 30 | + >>> fibonacci(0) |
| 31 | + 0 |
| 32 | + >>> fibonacci(2) |
| 33 | + 1 |
| 34 | + >>> fibonacci(5) |
| 35 | + 5 |
| 36 | + >>> fibonacci(15) |
| 37 | + 610 |
| 38 | + >>> fibonacci('a') |
| 39 | + Traceback (most recent call last): |
| 40 | + TypeError: k must be an integer. |
| 41 | + >>> fibonacci(-5) |
| 42 | + Traceback (most recent call last): |
| 43 | + ValueError: k integer must be greater or equal to zero. |
14 | 44 | """
|
15 |
| - >>> fibonacci_search([1,6,7,0,0,0], 6) |
| 45 | + if not isinstance(k, int): |
| 46 | + raise TypeError("k must be an integer.") |
| 47 | + if k < 0: |
| 48 | + raise ValueError("k integer must be greater or equal to zero.") |
| 49 | + if k == 0: |
| 50 | + return 0 |
| 51 | + elif k == 1: |
| 52 | + return 1 |
| 53 | + else: |
| 54 | + return fibonacci(k - 1) + fibonacci(k - 2) |
| 55 | + |
| 56 | + |
| 57 | +def fibonacci_search(arr: list, val: int) -> int: |
| 58 | + """A pure Python implementation of a fibonacci search algorithm. |
| 59 | +
|
| 60 | + Parameters |
| 61 | + ---------- |
| 62 | + arr |
| 63 | + List of sorted elements. |
| 64 | + val |
| 65 | + Element to search in list. |
| 66 | +
|
| 67 | + Returns |
| 68 | + ------- |
| 69 | + int |
| 70 | + The index of the element in the array. |
| 71 | + -1 if the element is not found. |
| 72 | +
|
| 73 | + >>> fibonacci_search([4, 5, 6, 7], 4) |
| 74 | + 0 |
| 75 | + >>> fibonacci_search([4, 5, 6, 7], -10) |
| 76 | + -1 |
| 77 | + >>> fibonacci_search([-18, 2], -18) |
| 78 | + 0 |
| 79 | + >>> fibonacci_search([5], 5) |
| 80 | + 0 |
| 81 | + >>> fibonacci_search(['a', 'c', 'd'], 'c') |
16 | 82 | 1
|
17 |
| - >>> fibonacci_search([1,-1, 5, 2, 9], 10) |
| 83 | + >>> fibonacci_search(['a', 'c', 'd'], 'f') |
| 84 | + -1 |
| 85 | + >>> fibonacci_search([], 1) |
18 | 86 | -1
|
| 87 | + >>> fibonacci_search([.1, .4 , 7], .4) |
| 88 | + 1 |
19 | 89 | >>> fibonacci_search([], 9)
|
20 |
| - 0 |
| 90 | + -1 |
| 91 | + >>> fibonacci_search(list(range(100)), 63) |
| 92 | + 63 |
| 93 | + >>> fibonacci_search(list(range(100)), 99) |
| 94 | + 99 |
| 95 | + >>> fibonacci_search(list(range(-100, 100, 3)), -97) |
| 96 | + 1 |
| 97 | + >>> fibonacci_search(list(range(-100, 100, 3)), 0) |
| 98 | + -1 |
| 99 | + >>> fibonacci_search(list(range(-100, 100, 5)), 0) |
| 100 | + 20 |
| 101 | + >>> fibonacci_search(list(range(-100, 100, 5)), 95) |
| 102 | + 39 |
21 | 103 | """
|
22 |
| - fib_N_2 = 0 |
23 |
| - fib_N_1 = 1 |
24 |
| - fibNext = fib_N_1 + fib_N_2 |
25 |
| - length = len(arr) |
26 |
| - if length == 0: |
27 |
| - return 0 |
28 |
| - while fibNext < len(arr): |
29 |
| - fib_N_2 = fib_N_1 |
30 |
| - fib_N_1 = fibNext |
31 |
| - fibNext = fib_N_1 + fib_N_2 |
32 |
| - index = -1 |
33 |
| - while fibNext > 1: |
34 |
| - i = min(index + fib_N_2, (length - 1)) |
35 |
| - if arr[i] < val: |
36 |
| - fibNext = fib_N_1 |
37 |
| - fib_N_1 = fib_N_2 |
38 |
| - fib_N_2 = fibNext - fib_N_1 |
39 |
| - index = i |
40 |
| - elif arr[i] > val: |
41 |
| - fibNext = fib_N_2 |
42 |
| - fib_N_1 = fib_N_1 - fib_N_2 |
43 |
| - fib_N_2 = fibNext - fib_N_1 |
44 |
| - else: |
45 |
| - return i |
46 |
| - if (fib_N_1 and index < length - 1) and (arr[index + 1] == val): |
47 |
| - return index + 1 |
48 |
| - return -1 |
| 104 | + len_list = len(arr) |
| 105 | + # Find m such that F_m >= n where F_i is the i_th fibonacci number. |
| 106 | + i = 0 |
| 107 | + while True: |
| 108 | + if fibonacci(i) >= len_list: |
| 109 | + fibb_k = i |
| 110 | + break |
| 111 | + i += 1 |
| 112 | + offset = 0 |
| 113 | + while fibb_k > 0: |
| 114 | + index_k = min( |
| 115 | + offset + fibonacci(fibb_k - 1), len_list - 1 |
| 116 | + ) # Prevent out of range |
| 117 | + item_k_1 = arr[index_k] |
| 118 | + if item_k_1 == val: |
| 119 | + return index_k |
| 120 | + elif val < item_k_1: |
| 121 | + fibb_k -= 1 |
| 122 | + elif val > item_k_1: |
| 123 | + offset += fibonacci(fibb_k - 1) |
| 124 | + fibb_k -= 2 |
| 125 | + else: |
| 126 | + return -1 |
49 | 127 |
|
50 | 128 |
|
51 | 129 | if __name__ == "__main__":
|
|
0 commit comments