|
49 | 49 | "cell_type": "code",
|
50 | 50 | "execution_count": null,
|
51 | 51 | "metadata": {
|
52 |
| - "collapsed": true, |
53 | 52 | "nbsphinx": "hidden"
|
54 | 53 | },
|
55 | 54 | "outputs": [],
|
|
62 | 61 | {
|
63 | 62 | "cell_type": "code",
|
64 | 63 | "execution_count": null,
|
65 |
| - "metadata": { |
66 |
| - "collapsed": true |
67 |
| - }, |
| 64 | + "metadata": {}, |
68 | 65 | "outputs": [],
|
69 | 66 | "source": [
|
70 | 67 | "import pandas as pd\n",
|
|
87 | 84 | {
|
88 | 85 | "cell_type": "code",
|
89 | 86 | "execution_count": null,
|
90 |
| - "metadata": { |
91 |
| - "collapsed": true |
92 |
| - }, |
| 87 | + "metadata": {}, |
93 | 88 | "outputs": [],
|
94 | 89 | "source": [
|
95 | 90 | "df.style"
|
|
107 | 102 | {
|
108 | 103 | "cell_type": "code",
|
109 | 104 | "execution_count": null,
|
110 |
| - "metadata": { |
111 |
| - "collapsed": true |
112 |
| - }, |
| 105 | + "metadata": {}, |
113 | 106 | "outputs": [],
|
114 | 107 | "source": [
|
115 | 108 | "df.style.highlight_null().render().split('\\n')[:10]"
|
|
158 | 151 | {
|
159 | 152 | "cell_type": "code",
|
160 | 153 | "execution_count": null,
|
161 |
| - "metadata": { |
162 |
| - "collapsed": true |
163 |
| - }, |
| 154 | + "metadata": {}, |
164 | 155 | "outputs": [],
|
165 | 156 | "source": [
|
166 | 157 | "s = df.style.applymap(color_negative_red)\n",
|
|
204 | 195 | {
|
205 | 196 | "cell_type": "code",
|
206 | 197 | "execution_count": null,
|
207 |
| - "metadata": { |
208 |
| - "collapsed": true |
209 |
| - }, |
| 198 | + "metadata": {}, |
210 | 199 | "outputs": [],
|
211 | 200 | "source": [
|
212 | 201 | "df.style.apply(highlight_max)"
|
|
230 | 219 | {
|
231 | 220 | "cell_type": "code",
|
232 | 221 | "execution_count": null,
|
233 |
| - "metadata": { |
234 |
| - "collapsed": true |
235 |
| - }, |
| 222 | + "metadata": {}, |
236 | 223 | "outputs": [],
|
237 | 224 | "source": [
|
238 | 225 | "df.style.\\\n",
|
|
284 | 271 | {
|
285 | 272 | "cell_type": "code",
|
286 | 273 | "execution_count": null,
|
287 |
| - "metadata": { |
288 |
| - "collapsed": true |
289 |
| - }, |
| 274 | + "metadata": {}, |
290 | 275 | "outputs": [],
|
291 | 276 | "source": [
|
292 | 277 | "df.style.apply(highlight_max, color='darkorange', axis=None)"
|
|
334 | 319 | {
|
335 | 320 | "cell_type": "code",
|
336 | 321 | "execution_count": null,
|
337 |
| - "metadata": { |
338 |
| - "collapsed": true |
339 |
| - }, |
| 322 | + "metadata": {}, |
340 | 323 | "outputs": [],
|
341 | 324 | "source": [
|
342 | 325 | "df.style.apply(highlight_max, subset=['B', 'C', 'D'])"
|
|
352 | 335 | {
|
353 | 336 | "cell_type": "code",
|
354 | 337 | "execution_count": null,
|
355 |
| - "metadata": { |
356 |
| - "collapsed": true |
357 |
| - }, |
| 338 | + "metadata": {}, |
358 | 339 | "outputs": [],
|
359 | 340 | "source": [
|
360 | 341 | "df.style.applymap(color_negative_red,\n",
|
|
387 | 368 | {
|
388 | 369 | "cell_type": "code",
|
389 | 370 | "execution_count": null,
|
390 |
| - "metadata": { |
391 |
| - "collapsed": true |
392 |
| - }, |
| 371 | + "metadata": {}, |
393 | 372 | "outputs": [],
|
394 | 373 | "source": [
|
395 | 374 | "df.style.format(\"{:.2%}\")"
|
|
405 | 384 | {
|
406 | 385 | "cell_type": "code",
|
407 | 386 | "execution_count": null,
|
408 |
| - "metadata": { |
409 |
| - "collapsed": true |
410 |
| - }, |
| 387 | + "metadata": {}, |
411 | 388 | "outputs": [],
|
412 | 389 | "source": [
|
413 | 390 | "df.style.format({'B': \"{:0<4.0f}\", 'D': '{:+.2f}'})"
|
|
423 | 400 | {
|
424 | 401 | "cell_type": "code",
|
425 | 402 | "execution_count": null,
|
426 |
| - "metadata": { |
427 |
| - "collapsed": true |
428 |
| - }, |
| 403 | + "metadata": {}, |
429 | 404 | "outputs": [],
|
430 | 405 | "source": [
|
431 | 406 | "df.style.format({\"B\": lambda x: \"±{:.2f}\".format(abs(x))})"
|
|
448 | 423 | {
|
449 | 424 | "cell_type": "code",
|
450 | 425 | "execution_count": null,
|
451 |
| - "metadata": { |
452 |
| - "collapsed": true |
453 |
| - }, |
| 426 | + "metadata": {}, |
454 | 427 | "outputs": [],
|
455 | 428 | "source": [
|
456 | 429 | "df.style.highlight_null(null_color='red')"
|
|
466 | 439 | {
|
467 | 440 | "cell_type": "code",
|
468 | 441 | "execution_count": null,
|
469 |
| - "metadata": { |
470 |
| - "collapsed": true |
471 |
| - }, |
| 442 | + "metadata": {}, |
472 | 443 | "outputs": [],
|
473 | 444 | "source": [
|
474 | 445 | "import seaborn as sns\n",
|
|
489 | 460 | {
|
490 | 461 | "cell_type": "code",
|
491 | 462 | "execution_count": null,
|
492 |
| - "metadata": { |
493 |
| - "collapsed": true |
494 |
| - }, |
| 463 | + "metadata": {}, |
495 | 464 | "outputs": [],
|
496 | 465 | "source": [
|
497 | 466 | "# Uses the full color range\n",
|
|
501 | 470 | {
|
502 | 471 | "cell_type": "code",
|
503 | 472 | "execution_count": null,
|
504 |
| - "metadata": { |
505 |
| - "collapsed": true |
506 |
| - }, |
| 473 | + "metadata": {}, |
507 | 474 | "outputs": [],
|
508 | 475 | "source": [
|
509 | 476 | "# Compreess the color range\n",
|
|
523 | 490 | {
|
524 | 491 | "cell_type": "code",
|
525 | 492 | "execution_count": null,
|
526 |
| - "metadata": { |
527 |
| - "collapsed": true |
528 |
| - }, |
| 493 | + "metadata": {}, |
529 | 494 | "outputs": [],
|
530 | 495 | "source": [
|
531 | 496 | "df.style.bar(subset=['A', 'B'], color='#d65f5f')"
|
|
541 | 506 | {
|
542 | 507 | "cell_type": "code",
|
543 | 508 | "execution_count": null,
|
544 |
| - "metadata": { |
545 |
| - "collapsed": true |
546 |
| - }, |
| 509 | + "metadata": {}, |
547 | 510 | "outputs": [],
|
548 | 511 | "source": [
|
549 | 512 | "df.style.highlight_max(axis=0)"
|
|
552 | 515 | {
|
553 | 516 | "cell_type": "code",
|
554 | 517 | "execution_count": null,
|
555 |
| - "metadata": { |
556 |
| - "collapsed": true |
557 |
| - }, |
| 518 | + "metadata": {}, |
558 | 519 | "outputs": [],
|
559 | 520 | "source": [
|
560 | 521 | "df.style.highlight_min(axis=0)"
|
|
570 | 531 | {
|
571 | 532 | "cell_type": "code",
|
572 | 533 | "execution_count": null,
|
573 |
| - "metadata": { |
574 |
| - "collapsed": true |
575 |
| - }, |
| 534 | + "metadata": {}, |
576 | 535 | "outputs": [],
|
577 | 536 | "source": [
|
578 | 537 | "df.style.set_properties(**{'background-color': 'black',\n",
|
|
597 | 556 | {
|
598 | 557 | "cell_type": "code",
|
599 | 558 | "execution_count": null,
|
600 |
| - "metadata": { |
601 |
| - "collapsed": true |
602 |
| - }, |
| 559 | + "metadata": {}, |
603 | 560 | "outputs": [],
|
604 | 561 | "source": [
|
605 | 562 | "df2 = -df\n",
|
|
610 | 567 | {
|
611 | 568 | "cell_type": "code",
|
612 | 569 | "execution_count": null,
|
613 |
| - "metadata": { |
614 |
| - "collapsed": true |
615 |
| - }, |
| 570 | + "metadata": {}, |
616 | 571 | "outputs": [],
|
617 | 572 | "source": [
|
618 | 573 | "style2 = df2.style\n",
|
|
665 | 620 | {
|
666 | 621 | "cell_type": "code",
|
667 | 622 | "execution_count": null,
|
668 |
| - "metadata": { |
669 |
| - "collapsed": true |
670 |
| - }, |
| 623 | + "metadata": {}, |
671 | 624 | "outputs": [],
|
672 | 625 | "source": [
|
673 | 626 | "with pd.option_context('display.precision', 2):\n",
|
|
687 | 640 | {
|
688 | 641 | "cell_type": "code",
|
689 | 642 | "execution_count": null,
|
690 |
| - "metadata": { |
691 |
| - "collapsed": true |
692 |
| - }, |
| 643 | + "metadata": {}, |
693 | 644 | "outputs": [],
|
694 | 645 | "source": [
|
695 | 646 | "df.style\\\n",
|
|
722 | 673 | {
|
723 | 674 | "cell_type": "code",
|
724 | 675 | "execution_count": null,
|
725 |
| - "metadata": { |
726 |
| - "collapsed": true |
727 |
| - }, |
| 676 | + "metadata": {}, |
728 | 677 | "outputs": [],
|
729 | 678 | "source": [
|
730 | 679 | "df.style.set_caption('Colormaps, with a caption.')\\\n",
|
|
750 | 699 | {
|
751 | 700 | "cell_type": "code",
|
752 | 701 | "execution_count": null,
|
753 |
| - "metadata": { |
754 |
| - "collapsed": true |
755 |
| - }, |
| 702 | + "metadata": {}, |
756 | 703 | "outputs": [],
|
757 | 704 | "source": [
|
758 | 705 | "from IPython.display import HTML\n",
|
|
848 | 795 | {
|
849 | 796 | "cell_type": "code",
|
850 | 797 | "execution_count": null,
|
851 |
| - "metadata": { |
852 |
| - "collapsed": true |
853 |
| - }, |
| 798 | + "metadata": {}, |
854 | 799 | "outputs": [],
|
855 | 800 | "source": [
|
856 | 801 | "from IPython.html import widgets\n",
|
|
865 | 810 | {
|
866 | 811 | "cell_type": "code",
|
867 | 812 | "execution_count": null,
|
868 |
| - "metadata": { |
869 |
| - "collapsed": true |
870 |
| - }, |
| 813 | + "metadata": {}, |
871 | 814 | "outputs": [],
|
872 | 815 | "source": [
|
873 | 816 | "def magnify():\n",
|
|
886 | 829 | {
|
887 | 830 | "cell_type": "code",
|
888 | 831 | "execution_count": null,
|
889 |
| - "metadata": { |
890 |
| - "collapsed": true |
891 |
| - }, |
| 832 | + "metadata": {}, |
892 | 833 | "outputs": [],
|
893 | 834 | "source": [
|
894 | 835 | "np.random.seed(25)\n",
|
|
908 | 849 | "source": [
|
909 | 850 | "# Export to Excel\n",
|
910 | 851 | "\n",
|
911 |
| - "*New in version 0.19.0*\n", |
| 852 | + "*New in version 0.20.0*\n", |
912 | 853 | "\n",
|
913 | 854 | "<p style=\"color: red\">*Experimental: This is a new feature and still under development. We'll be adding features and possibly making breaking changes in future releases. We'd love to hear your [feedback](https://github.com/pandas-dev/pandas/issues).*<p style=\"color: red\">\n",
|
914 | 855 | "\n",
|
|
937 | 878 | "df.style.\\\n",
|
938 | 879 | " applymap(color_negative_red).\\\n",
|
939 | 880 | " apply(highlight_max).\\\n",
|
940 |
| - " to_excel('_static/styled.xlsx', engine='openpyxl')" |
| 881 | + " to_excel('styled.xlsx', engine='openpyxl')" |
941 | 882 | ]
|
942 | 883 | },
|
943 | 884 | {
|
944 | 885 | "cell_type": "markdown",
|
945 | 886 | "metadata": {},
|
946 | 887 | "source": [
|
947 | 888 | "A screenshot of the output:\n",
|
948 |
| - "<a href=\"_static/styled.xlsx\"><img alt=\"Excel spreadsheet with styled DataFrame\" src=\"_static/style-excel.png\"></a>" |
| 889 | + "<img alt=\"Excel spreadsheet with styled DataFrame\" src=\"_static/style-excel.png\">" |
949 | 890 | ]
|
950 | 891 | },
|
951 | 892 | {
|
|
1005 | 946 | "mimetype": "text/x-python",
|
1006 | 947 | "name": "python",
|
1007 | 948 | "nbconvert_exporter": "python",
|
1008 |
| - "pygments_lexer": "ipython3", |
1009 |
| - "version": "3.6.1" |
| 949 | + "pygments_lexer": "ipython3" |
1010 | 950 | }
|
1011 | 951 | },
|
1012 | 952 | "nbformat": 4,
|
|
0 commit comments