Skip to content

Commit c4f59c6

Browse files
committed
Doc tweaks
1 parent 2c3d015 commit c4f59c6

File tree

3 files changed

+38
-99
lines changed

3 files changed

+38
-99
lines changed

doc/source/_static/style-excel.png

-12.4 KB
Loading

doc/source/style.ipynb

+33-93
Original file line numberDiff line numberDiff line change
@@ -49,7 +49,6 @@
4949
"cell_type": "code",
5050
"execution_count": null,
5151
"metadata": {
52-
"collapsed": true,
5352
"nbsphinx": "hidden"
5453
},
5554
"outputs": [],
@@ -62,9 +61,7 @@
6261
{
6362
"cell_type": "code",
6463
"execution_count": null,
65-
"metadata": {
66-
"collapsed": true
67-
},
64+
"metadata": {},
6865
"outputs": [],
6966
"source": [
7067
"import pandas as pd\n",
@@ -87,9 +84,7 @@
8784
{
8885
"cell_type": "code",
8986
"execution_count": null,
90-
"metadata": {
91-
"collapsed": true
92-
},
87+
"metadata": {},
9388
"outputs": [],
9489
"source": [
9590
"df.style"
@@ -107,9 +102,7 @@
107102
{
108103
"cell_type": "code",
109104
"execution_count": null,
110-
"metadata": {
111-
"collapsed": true
112-
},
105+
"metadata": {},
113106
"outputs": [],
114107
"source": [
115108
"df.style.highlight_null().render().split('\\n')[:10]"
@@ -158,9 +151,7 @@
158151
{
159152
"cell_type": "code",
160153
"execution_count": null,
161-
"metadata": {
162-
"collapsed": true
163-
},
154+
"metadata": {},
164155
"outputs": [],
165156
"source": [
166157
"s = df.style.applymap(color_negative_red)\n",
@@ -204,9 +195,7 @@
204195
{
205196
"cell_type": "code",
206197
"execution_count": null,
207-
"metadata": {
208-
"collapsed": true
209-
},
198+
"metadata": {},
210199
"outputs": [],
211200
"source": [
212201
"df.style.apply(highlight_max)"
@@ -230,9 +219,7 @@
230219
{
231220
"cell_type": "code",
232221
"execution_count": null,
233-
"metadata": {
234-
"collapsed": true
235-
},
222+
"metadata": {},
236223
"outputs": [],
237224
"source": [
238225
"df.style.\\\n",
@@ -284,9 +271,7 @@
284271
{
285272
"cell_type": "code",
286273
"execution_count": null,
287-
"metadata": {
288-
"collapsed": true
289-
},
274+
"metadata": {},
290275
"outputs": [],
291276
"source": [
292277
"df.style.apply(highlight_max, color='darkorange', axis=None)"
@@ -334,9 +319,7 @@
334319
{
335320
"cell_type": "code",
336321
"execution_count": null,
337-
"metadata": {
338-
"collapsed": true
339-
},
322+
"metadata": {},
340323
"outputs": [],
341324
"source": [
342325
"df.style.apply(highlight_max, subset=['B', 'C', 'D'])"
@@ -352,9 +335,7 @@
352335
{
353336
"cell_type": "code",
354337
"execution_count": null,
355-
"metadata": {
356-
"collapsed": true
357-
},
338+
"metadata": {},
358339
"outputs": [],
359340
"source": [
360341
"df.style.applymap(color_negative_red,\n",
@@ -387,9 +368,7 @@
387368
{
388369
"cell_type": "code",
389370
"execution_count": null,
390-
"metadata": {
391-
"collapsed": true
392-
},
371+
"metadata": {},
393372
"outputs": [],
394373
"source": [
395374
"df.style.format(\"{:.2%}\")"
@@ -405,9 +384,7 @@
405384
{
406385
"cell_type": "code",
407386
"execution_count": null,
408-
"metadata": {
409-
"collapsed": true
410-
},
387+
"metadata": {},
411388
"outputs": [],
412389
"source": [
413390
"df.style.format({'B': \"{:0<4.0f}\", 'D': '{:+.2f}'})"
@@ -423,9 +400,7 @@
423400
{
424401
"cell_type": "code",
425402
"execution_count": null,
426-
"metadata": {
427-
"collapsed": true
428-
},
403+
"metadata": {},
429404
"outputs": [],
430405
"source": [
431406
"df.style.format({\"B\": lambda x: \"±{:.2f}\".format(abs(x))})"
@@ -448,9 +423,7 @@
448423
{
449424
"cell_type": "code",
450425
"execution_count": null,
451-
"metadata": {
452-
"collapsed": true
453-
},
426+
"metadata": {},
454427
"outputs": [],
455428
"source": [
456429
"df.style.highlight_null(null_color='red')"
@@ -466,9 +439,7 @@
466439
{
467440
"cell_type": "code",
468441
"execution_count": null,
469-
"metadata": {
470-
"collapsed": true
471-
},
442+
"metadata": {},
472443
"outputs": [],
473444
"source": [
474445
"import seaborn as sns\n",
@@ -489,9 +460,7 @@
489460
{
490461
"cell_type": "code",
491462
"execution_count": null,
492-
"metadata": {
493-
"collapsed": true
494-
},
463+
"metadata": {},
495464
"outputs": [],
496465
"source": [
497466
"# Uses the full color range\n",
@@ -501,9 +470,7 @@
501470
{
502471
"cell_type": "code",
503472
"execution_count": null,
504-
"metadata": {
505-
"collapsed": true
506-
},
473+
"metadata": {},
507474
"outputs": [],
508475
"source": [
509476
"# Compreess the color range\n",
@@ -523,9 +490,7 @@
523490
{
524491
"cell_type": "code",
525492
"execution_count": null,
526-
"metadata": {
527-
"collapsed": true
528-
},
493+
"metadata": {},
529494
"outputs": [],
530495
"source": [
531496
"df.style.bar(subset=['A', 'B'], color='#d65f5f')"
@@ -541,9 +506,7 @@
541506
{
542507
"cell_type": "code",
543508
"execution_count": null,
544-
"metadata": {
545-
"collapsed": true
546-
},
509+
"metadata": {},
547510
"outputs": [],
548511
"source": [
549512
"df.style.highlight_max(axis=0)"
@@ -552,9 +515,7 @@
552515
{
553516
"cell_type": "code",
554517
"execution_count": null,
555-
"metadata": {
556-
"collapsed": true
557-
},
518+
"metadata": {},
558519
"outputs": [],
559520
"source": [
560521
"df.style.highlight_min(axis=0)"
@@ -570,9 +531,7 @@
570531
{
571532
"cell_type": "code",
572533
"execution_count": null,
573-
"metadata": {
574-
"collapsed": true
575-
},
534+
"metadata": {},
576535
"outputs": [],
577536
"source": [
578537
"df.style.set_properties(**{'background-color': 'black',\n",
@@ -597,9 +556,7 @@
597556
{
598557
"cell_type": "code",
599558
"execution_count": null,
600-
"metadata": {
601-
"collapsed": true
602-
},
559+
"metadata": {},
603560
"outputs": [],
604561
"source": [
605562
"df2 = -df\n",
@@ -610,9 +567,7 @@
610567
{
611568
"cell_type": "code",
612569
"execution_count": null,
613-
"metadata": {
614-
"collapsed": true
615-
},
570+
"metadata": {},
616571
"outputs": [],
617572
"source": [
618573
"style2 = df2.style\n",
@@ -665,9 +620,7 @@
665620
{
666621
"cell_type": "code",
667622
"execution_count": null,
668-
"metadata": {
669-
"collapsed": true
670-
},
623+
"metadata": {},
671624
"outputs": [],
672625
"source": [
673626
"with pd.option_context('display.precision', 2):\n",
@@ -687,9 +640,7 @@
687640
{
688641
"cell_type": "code",
689642
"execution_count": null,
690-
"metadata": {
691-
"collapsed": true
692-
},
643+
"metadata": {},
693644
"outputs": [],
694645
"source": [
695646
"df.style\\\n",
@@ -722,9 +673,7 @@
722673
{
723674
"cell_type": "code",
724675
"execution_count": null,
725-
"metadata": {
726-
"collapsed": true
727-
},
676+
"metadata": {},
728677
"outputs": [],
729678
"source": [
730679
"df.style.set_caption('Colormaps, with a caption.')\\\n",
@@ -750,9 +699,7 @@
750699
{
751700
"cell_type": "code",
752701
"execution_count": null,
753-
"metadata": {
754-
"collapsed": true
755-
},
702+
"metadata": {},
756703
"outputs": [],
757704
"source": [
758705
"from IPython.display import HTML\n",
@@ -848,9 +795,7 @@
848795
{
849796
"cell_type": "code",
850797
"execution_count": null,
851-
"metadata": {
852-
"collapsed": true
853-
},
798+
"metadata": {},
854799
"outputs": [],
855800
"source": [
856801
"from IPython.html import widgets\n",
@@ -865,9 +810,7 @@
865810
{
866811
"cell_type": "code",
867812
"execution_count": null,
868-
"metadata": {
869-
"collapsed": true
870-
},
813+
"metadata": {},
871814
"outputs": [],
872815
"source": [
873816
"def magnify():\n",
@@ -886,9 +829,7 @@
886829
{
887830
"cell_type": "code",
888831
"execution_count": null,
889-
"metadata": {
890-
"collapsed": true
891-
},
832+
"metadata": {},
892833
"outputs": [],
893834
"source": [
894835
"np.random.seed(25)\n",
@@ -908,7 +849,7 @@
908849
"source": [
909850
"# Export to Excel\n",
910851
"\n",
911-
"*New in version 0.19.0*\n",
852+
"*New in version 0.20.0*\n",
912853
"\n",
913854
"<p style=\"color: red\">*Experimental: This is a new feature and still under development. We'll be adding features and possibly making breaking changes in future releases. We'd love to hear your [feedback](https://github.com/pandas-dev/pandas/issues).*<p style=\"color: red\">\n",
914855
"\n",
@@ -937,15 +878,15 @@
937878
"df.style.\\\n",
938879
" applymap(color_negative_red).\\\n",
939880
" apply(highlight_max).\\\n",
940-
" to_excel('_static/styled.xlsx', engine='openpyxl')"
881+
" to_excel('styled.xlsx', engine='openpyxl')"
941882
]
942883
},
943884
{
944885
"cell_type": "markdown",
945886
"metadata": {},
946887
"source": [
947888
"A screenshot of the output:\n",
948-
"<a href=\"_static/styled.xlsx\"><img alt=\"Excel spreadsheet with styled DataFrame\" src=\"_static/style-excel.png\"></a>"
889+
"<img alt=\"Excel spreadsheet with styled DataFrame\" src=\"_static/style-excel.png\">"
949890
]
950891
},
951892
{
@@ -1005,8 +946,7 @@
1005946
"mimetype": "text/x-python",
1006947
"name": "python",
1007948
"nbconvert_exporter": "python",
1008-
"pygments_lexer": "ipython3",
1009-
"version": "3.6.1"
949+
"pygments_lexer": "ipython3"
1010950
}
1011951
},
1012952
"nbformat": 4,

doc/source/whatsnew/v0.20.0.txt

+5-6
Original file line numberDiff line numberDiff line change
@@ -325,17 +325,16 @@ For example, after running the following, ``styled.xlsx`` renders as below:
325325

326326
.. ipython:: python
327327

328-
import pandas as pd
329-
import numpy as np
330-
331328
np.random.seed(24)
332329
df = pd.DataFrame({'A': np.linspace(1, 10, 10)})
333-
df = pd.concat([df, pd.DataFrame(np.random.randn(10, 4), columns=list('BCDE'))],
330+
df = pd.concat([df, pd.DataFrame(np.random.RandomState(24).randn(10, 4),
331+
columns=list('BCDE'))],
334332
axis=1)
335333
df.iloc[0, 2] = np.nan
336334
df.style.\
337-
applymap(color_negative_red).\
338-
apply(highlight_max).\
335+
applymap(lambda val: 'color: %s' % 'red' if val < 0 else 'black').\
336+
apply(lambda s: ['background-color: yellow' if v else ''
337+
for v in s == s.max()]).\
339338
to_excel('styled.xlsx', engine='openpyxl')
340339

341340
.. image:: _static/style-excel.png

0 commit comments

Comments
 (0)