#!/usr/bin/env python3 """ Analyze docstrings to detect errors. If no argument is provided, it does a quick check of docstrings and returns a csv with all API functions and results of basic checks. If a function or method is provided in the form "pandas.function", "pandas.module.class.method", etc. a list of all errors in the docstring for the specified function or method. Usage:: $ ./validate_docstrings.py $ ./validate_docstrings.py pandas.DataFrame.head """ from __future__ import annotations import argparse import collections import doctest import importlib import json import os import pathlib import subprocess import sys import tempfile import matplotlib import matplotlib.pyplot as plt from numpydoc.docscrape import get_doc_object from numpydoc.validate import ( ERROR_MSGS as NUMPYDOC_ERROR_MSGS, Validator, validate, ) # With template backend, matplotlib plots nothing matplotlib.use("template") # Styler methods are Jinja2 objects who's docstrings we don't own. IGNORE_VALIDATION = { "Styler.env", "Styler.template_html", "Styler.template_html_style", "Styler.template_html_table", "Styler.template_latex", "Styler.template_typst", "Styler.template_string", "Styler.loader", "errors.InvalidComparison", "errors.LossySetitemError", "errors.NoBufferPresent", "errors.IncompatibilityWarning", "errors.PyperclipException", "errors.PyperclipWindowsException", } PRIVATE_CLASSES = ["NDFrame", "IndexOpsMixin"] ERROR_MSGS = { "GL04": "Private classes ({mentioned_private_classes}) should not be " "mentioned in public docstrings", "PD01": "Use 'array-like' rather than 'array_like' in docstrings.", "SA05": "{reference_name} in `See Also` section does not need `pandas` " "prefix, use {right_reference} instead.", "EX03": "flake8 error: line {line_number}, col {col_number}: {error_code} " "{error_message}", "EX04": "Do not import {imported_library}, as it is imported " "automatically for the examples (numpy as np, pandas as pd)", } ALL_ERRORS = set(NUMPYDOC_ERROR_MSGS).union(set(ERROR_MSGS)) duplicated_errors = set(NUMPYDOC_ERROR_MSGS).intersection(set(ERROR_MSGS)) assert not duplicated_errors, (f"Errors {duplicated_errors} exist in both pandas " "and numpydoc, should they be removed from pandas?") def pandas_error(code, **kwargs): """ Copy of the numpydoc error function, since ERROR_MSGS can't be updated with our custom errors yet. """ return code, ERROR_MSGS[code].format(**kwargs) def get_api_items(api_doc_fd): """ Yield information about all public API items. Parse api.rst file from the documentation, and extract all the functions, methods, classes, attributes... This should include all pandas public API. Parameters ---------- api_doc_fd : file descriptor A file descriptor of the API documentation page, containing the table of contents with all the public API. Yields ------ name : str The name of the object (e.g. 'pandas.Series.str.upper'). func : function The object itself. In most cases this will be a function or method, but it can also be classes, properties, cython objects... section : str The name of the section in the API page where the object item is located. subsection : str The name of the subsection in the API page where the object item is located. """ current_module = "pandas" previous_line = current_section = current_subsection = "" position = None for line in api_doc_fd: line_stripped = line.strip() if len(line_stripped) == len(previous_line): if set(line_stripped) == set("-"): current_section = previous_line continue if set(line_stripped) == set("~"): current_subsection = previous_line continue if line_stripped.startswith(".. currentmodule::"): current_module = line_stripped.replace(".. currentmodule::", "").strip() continue if line_stripped == ".. autosummary::": position = "autosummary" continue if position == "autosummary": if line_stripped == "": position = "items" continue if position == "items": if line_stripped == "": position = None continue if line_stripped in IGNORE_VALIDATION: continue func = importlib.import_module(current_module) for part in line_stripped.split("."): func = getattr(func, part) yield ( f"{current_module}.{line_stripped}", func, current_section, current_subsection, ) previous_line = line_stripped class PandasDocstring(Validator): def __init__(self, func_name: str, doc_obj=None) -> None: self.func_name = func_name if doc_obj is None: doc_obj = get_doc_object(Validator._load_obj(func_name)) super().__init__(doc_obj) @property def name(self): return self.func_name @property def mentioned_private_classes(self): return [klass for klass in PRIVATE_CLASSES if klass in self.raw_doc] @property def examples_source_code(self): lines = doctest.DocTestParser().get_examples(self.raw_doc) return [line.source for line in lines] def validate_pep8(self): if not self.examples: return # F401 is needed to not generate flake8 errors in examples # that do not user numpy or pandas content = "".join( ( "import numpy as np # noqa: F401\n", "import pandas as pd # noqa: F401\n", *self.examples_source_code, ) ) error_messages = [] file = tempfile.NamedTemporaryFile(mode="w", encoding="utf-8", delete=False) try: file.write(content) file.flush() cmd = [ sys.executable, "-m", "flake8", "--format=%(row)d\t%(col)d\t%(code)s\t%(text)s", "--max-line-length=88", "--ignore=E203,E3,W503,W504,E402,E731,E128,E124,E704", file.name, ] response = subprocess.run(cmd, capture_output=True, check=False, text=True) for output in ("stdout", "stderr"): out = getattr(response, output) out = out.replace(file.name, "") messages = out.strip("\n").splitlines() if messages: error_messages.extend(messages) finally: file.close() os.unlink(file.name) for error_message in error_messages: line_number, col_number, error_code, message = error_message.split( "\t", maxsplit=3 ) # Note: we subtract 2 from the line number because # 'import numpy as np\nimport pandas as pd\n' # is prepended to the docstrings. yield error_code, message, int(line_number) - 2, int(col_number) def non_hyphenated_array_like(self): return "array_like" in self.raw_doc def pandas_validate(func_name: str): """ Call the numpydoc validation, and add the errors specific to pandas. Parameters ---------- func_name : str Name of the object of the docstring to validate. Returns ------- dict Information about the docstring and the errors found. """ func_obj = Validator._load_obj(func_name) # Some objects are instances, e.g. IndexSlice, which numpydoc can't validate doc_obj = get_doc_object(func_obj, doc=func_obj.__doc__) doc = PandasDocstring(func_name, doc_obj) result = validate(doc_obj) mentioned_errs = doc.mentioned_private_classes if mentioned_errs: result["errors"].append( pandas_error("GL04", mentioned_private_classes=", ".join(mentioned_errs)) ) if doc.see_also: result["errors"].extend( pandas_error( "SA05", reference_name=rel_name, right_reference=rel_name[len("pandas."):], ) for rel_name in doc.see_also if rel_name.startswith("pandas.") ) result["examples_errs"] = "" if doc.examples: for error_code, error_message, line_number, col_number in doc.validate_pep8(): result["errors"].append( pandas_error( "EX03", error_code=error_code, error_message=error_message, line_number=line_number, col_number=col_number, ) ) examples_source_code = "".join(doc.examples_source_code) result["errors"].extend( pandas_error("EX04", imported_library=wrong_import) for wrong_import in ("numpy", "pandas") if f"import {wrong_import}" in examples_source_code ) if doc.non_hyphenated_array_like(): result["errors"].append(pandas_error("PD01")) plt.close("all") return result def validate_all(prefix, ignore_deprecated=False): """ Execute the validation of all docstrings, and return a dict with the results. Parameters ---------- prefix : str or None If provided, only the docstrings that start with this pattern will be validated. If None, all docstrings will be validated. ignore_deprecated: bool, default False If True, deprecated objects are ignored when validating docstrings. Returns ------- dict A dictionary with an item for every function/method... containing all the validation information. """ result = {} seen = {} for func_name, _, section, subsection in get_all_api_items(): if prefix and not func_name.startswith(prefix): continue doc_info = pandas_validate(func_name) if ignore_deprecated and doc_info["deprecated"]: continue result[func_name] = doc_info shared_code_key = doc_info["file"], doc_info["file_line"] shared_code = seen.get(shared_code_key, "") result[func_name].update( { "in_api": True, "section": section, "subsection": subsection, "shared_code_with": shared_code, } ) seen[shared_code_key] = func_name return result def get_all_api_items(): base_path = pathlib.Path(__file__).parent.parent api_doc_fnames = pathlib.Path(base_path, "doc", "source", "reference") for api_doc_fname in api_doc_fnames.glob("*.rst"): with open(api_doc_fname, encoding="utf-8") as f: yield from get_api_items(f) def print_validate_all_results( output_format: str, prefix: str | None, ignore_deprecated: bool, ignore_errors: dict[str, set[str]], ): if output_format not in ("default", "json", "actions"): raise ValueError(f'Unknown output_format "{output_format}"') if ignore_errors is None: ignore_errors = {} result = validate_all(prefix, ignore_deprecated) if output_format == "json": sys.stdout.write(json.dumps(result)) return 0 prefix = "##[error]" if output_format == "actions" else "" exit_status = 0 for func_name, res in result.items(): error_messages = dict(res["errors"]) actual_failures = set(error_messages) expected_failures = (ignore_errors.get(func_name, set()) | ignore_errors.get(None, set())) for err_code in actual_failures - expected_failures: sys.stdout.write( f'{prefix}{res["file"]}:{res["file_line"]}:' f'{err_code}:{func_name}:{error_messages[err_code]}\n' ) exit_status += 1 for err_code in ignore_errors.get(func_name, set()) - actual_failures: sys.stdout.write( f'{prefix}{res["file"]}:{res["file_line"]}:' f"{err_code}:{func_name}:" "EXPECTED TO FAIL, BUT NOT FAILING\n" ) exit_status += 1 return exit_status def print_validate_one_results(func_name: str, ignore_errors: dict[str, set[str]]) -> int: def header(title, width=80, char="#") -> str: full_line = char * width side_len = (width - len(title) - 2) // 2 adj = "" if len(title) % 2 == 0 else " " title_line = f"{char * side_len} {title}{adj} {char * side_len}" return f"\n{full_line}\n{title_line}\n{full_line}\n\n" result = pandas_validate(func_name) result["errors"] = [(code, message) for code, message in result["errors"] if code not in ignore_errors.get(None, set())] sys.stderr.write(header(f"Docstring ({func_name})")) sys.stderr.write(f"{result['docstring']}\n") sys.stderr.write(header("Validation")) if result["errors"]: sys.stderr.write(f'{len(result["errors"])} Errors found for `{func_name}`:\n') for err_code, err_desc in result["errors"]: sys.stderr.write(f"\t{err_code}\t{err_desc}\n") else: sys.stderr.write(f'Docstring for "{func_name}" correct. :)\n') if result["examples_errs"]: sys.stderr.write(header("Doctests")) sys.stderr.write(result["examples_errs"]) return len(result["errors"]) + len(result["examples_errs"]) def _format_ignore_errors(raw_ignore_errors): ignore_errors = collections.defaultdict(set) if raw_ignore_errors: for error_codes in raw_ignore_errors: obj_name = None if " " in error_codes: obj_name, error_codes = error_codes.split(" ") # function errors "pandas.Series PR01,SA01" if obj_name: if obj_name in ignore_errors: raise ValueError( f"Object `{obj_name}` is present in more than one " "--ignore_errors argument. Please use it once and specify " "the errors separated by commas.") ignore_errors[obj_name] = set(error_codes.split(",")) unknown_errors = ignore_errors[obj_name] - ALL_ERRORS if unknown_errors: raise ValueError( f"Object `{obj_name}` is ignoring errors {unknown_errors} " f"which are not known. Known errors are: {ALL_ERRORS}") # global errors "PR02,ES01" else: ignore_errors[None].update(set(error_codes.split(","))) unknown_errors = ignore_errors["*"] - ALL_ERRORS if unknown_errors: raise ValueError( f"Unknown errors {unknown_errors} specified using --ignore_errors " "Known errors are: {ALL_ERRORS}") return ignore_errors def main( func_name, output_format, prefix, ignore_deprecated, ignore_errors ): """ Main entry point. Call the validation for one or for all docstrings. """ if func_name is None: return print_validate_all_results( output_format, prefix, ignore_deprecated, ignore_errors ) else: return print_validate_one_results(func_name, ignore_errors) if __name__ == "__main__": format_opts = "default", "json", "actions" func_help = ( "function or method to validate (e.g. pandas.DataFrame.head) " "if not provided, all docstrings are validated and returned " "as JSON" ) argparser = argparse.ArgumentParser(description="validate pandas docstrings") argparser.add_argument("function", nargs="?", default=None, help=func_help) argparser.add_argument( "--format", default="default", choices=format_opts, help="format of the output when validating " "multiple docstrings (ignored when validating one). " "It can be {str(format_opts)[1:-1]}", ) argparser.add_argument( "--prefix", default=None, help="pattern for the " "docstring names, in order to decide which ones " 'will be validated. A prefix "pandas.Series.str."' "will make the script validate all the docstrings " "of methods starting by this pattern. It is " "ignored if parameter function is provided", ) argparser.add_argument( "--ignore_deprecated", default=False, action="store_true", help="if this flag is set, " "deprecated objects are ignored when validating " "all docstrings", ) argparser.add_argument( "--ignore_errors", "-i", default=None, action="append", help="comma-separated list of error codes " "(e.g. 'PR02,SA01'), with optional object path " "to ignore errors for a single object " "(e.g. pandas.DataFrame.head PR02,SA01). " "Partial validation for more than one function" "can be achieved by repeating this parameter.", ) args = argparser.parse_args(sys.argv[1:]) sys.exit( main(args.function, args.format, args.prefix, args.ignore_deprecated, _format_ignore_errors(args.ignore_errors), ) )