diff --git a/examples/data/SOURCES b/examples/data/SOURCES deleted file mode 100644 index e69de29bb2d1d..0000000000000 diff --git a/examples/finance.py b/examples/finance.py deleted file mode 100644 index 91ac57f67d91d..0000000000000 --- a/examples/finance.py +++ /dev/null @@ -1,86 +0,0 @@ -""" -Some examples playing around with yahoo finance data -""" - -from datetime import datetime -from pandas.compat import zip - -import matplotlib.finance as fin -import numpy as np -from pylab import show - - -from pandas import Index, DataFrame -from pandas.core.datetools import BMonthEnd -from pandas import ols - -startDate = datetime(2008, 1, 1) -endDate = datetime(2009, 9, 1) - - -def getQuotes(symbol, start, end): - quotes = fin.quotes_historical_yahoo(symbol, start, end) - dates, open, close, high, low, volume = zip(*quotes) - - data = { - 'open': open, - 'close': close, - 'high': high, - 'low': low, - 'volume': volume - } - - dates = Index([datetime.fromordinal(int(d)) for d in dates]) - return DataFrame(data, index=dates) - -msft = getQuotes('MSFT', startDate, endDate) -aapl = getQuotes('AAPL', startDate, endDate) -goog = getQuotes('GOOG', startDate, endDate) -ibm = getQuotes('IBM', startDate, endDate) - -px = DataFrame({'MSFT': msft['close'], - 'IBM': ibm['close'], - 'GOOG': goog['close'], - 'AAPL': aapl['close']}) -returns = px / px.shift(1) - 1 - -# Select dates - -subIndex = ibm.index[(ibm['close'] > 95) & (ibm['close'] < 100)] -msftOnSameDates = msft.reindex(subIndex) - -# Insert columns - -msft['hi-lo spread'] = msft['high'] - msft['low'] -ibm['hi-lo spread'] = ibm['high'] - ibm['low'] - -# Aggregate monthly - - -def toMonthly(frame, how): - offset = BMonthEnd() - - return frame.groupby(offset.rollforward).aggregate(how) - -msftMonthly = toMonthly(msft, np.mean) -ibmMonthly = toMonthly(ibm, np.mean) - -# Statistics - -stdev = DataFrame({ - 'MSFT': msft.std(), - 'IBM': ibm.std() -}) - -# Arithmetic - -ratios = ibm / msft - -# Works with different indices - -ratio = ibm / ibmMonthly -monthlyRatio = ratio.reindex(ibmMonthly.index) - -# Ratio relative to past month average - -filledRatio = ibm / ibmMonthly.reindex(ibm.index, method='pad') diff --git a/examples/regressions.py b/examples/regressions.py deleted file mode 100644 index bc58408a6842b..0000000000000 --- a/examples/regressions.py +++ /dev/null @@ -1,51 +0,0 @@ -from datetime import datetime -import string - -import numpy as np - -from pandas.core.api import Series, DataFrame, DatetimeIndex -from pandas.stats.api import ols - -N = 100 - -start = datetime(2009, 9, 2) -dateRange = DatetimeIndex(start, periods=N) - - -def makeDataFrame(): - data = DataFrame(np.random.randn(N, 7), - columns=list(string.ascii_uppercase[:7]), - index=dateRange) - - return data - - -def makeSeries(): - return Series(np.random.randn(N), index=dateRange) - -#------------------------------------------------------------------------------- -# Standard rolling linear regression - -X = makeDataFrame() -Y = makeSeries() - -model = ols(y=Y, x=X) - -print(model) - -#------------------------------------------------------------------------------- -# Panel regression - -data = { - 'A': makeDataFrame(), - 'B': makeDataFrame(), - 'C': makeDataFrame() -} - -Y = makeDataFrame() - -panelModel = ols(y=Y, x=data, window=50) - -model = ols(y=Y, x=data) - -print(panelModel)