diff --git a/ci/code_checks.sh b/ci/code_checks.sh index 9faa2a249613b..cf9c7401b1ee3 100755 --- a/ci/code_checks.sh +++ b/ci/code_checks.sh @@ -114,7 +114,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.errors.PerformanceWarning SA01" \ -i "pandas.errors.UndefinedVariableError PR01,SA01" \ -i "pandas.errors.ValueLabelTypeMismatch SA01" \ - -i "pandas.infer_freq SA01" \ -i "pandas.io.json.build_table_schema PR07,RT03,SA01" \ -i "pandas.io.stata.StataWriter.write_file SA01" \ -i "pandas.plotting.andrews_curves RT03,SA01" \ diff --git a/pandas/tseries/frequencies.py b/pandas/tseries/frequencies.py index 534bee5fede44..9a01568971af8 100644 --- a/pandas/tseries/frequencies.py +++ b/pandas/tseries/frequencies.py @@ -89,6 +89,11 @@ def infer_freq( """ Infer the most likely frequency given the input index. + This method attempts to deduce the most probable frequency (e.g., 'D' for daily, + 'H' for hourly) from a sequence of datetime-like objects. It is particularly useful + when the frequency of a time series is not explicitly set or known but can be + inferred from its values. + Parameters ---------- index : DatetimeIndex, TimedeltaIndex, Series or array-like @@ -106,6 +111,13 @@ def infer_freq( ValueError If there are fewer than three values. + See Also + -------- + date_range : Return a fixed frequency DatetimeIndex. + timedelta_range : Return a fixed frequency TimedeltaIndex with day as the default. + period_range : Return a fixed frequency PeriodIndex. + DatetimeIndex.freq : Return the frequency object if it is set, otherwise None. + Examples -------- >>> idx = pd.date_range(start="2020/12/01", end="2020/12/30", periods=30)