diff --git a/doc/source/user_guide/cookbook.rst b/doc/source/user_guide/cookbook.rst index 42430fb1fbba0..1525afcac87f7 100644 --- a/doc/source/user_guide/cookbook.rst +++ b/doc/source/user_guide/cookbook.rst @@ -35,7 +35,7 @@ These are some neat pandas ``idioms`` ) df -if-then... +If-then... ********** An if-then on one column @@ -176,7 +176,7 @@ One could hard code: Selection --------- -Dataframes +DataFrames ********** The :ref:`indexing ` docs. @@ -1489,7 +1489,7 @@ of the data values: ) df -Constant series +Constant Series --------------- To assess if a series has a constant value, we can check if ``series.nunique() <= 1``. diff --git a/doc/source/user_guide/gotchas.rst b/doc/source/user_guide/gotchas.rst index 26eb656357bf6..842f30f06676e 100644 --- a/doc/source/user_guide/gotchas.rst +++ b/doc/source/user_guide/gotchas.rst @@ -121,7 +121,7 @@ Below is how to check if any of the values are ``True``: if pd.Series([False, True, False]).any(): print("I am any") -Bitwise boolean +Bitwise Boolean ~~~~~~~~~~~~~~~ Bitwise boolean operators like ``==`` and ``!=`` return a boolean :class:`Series` diff --git a/doc/source/user_guide/groupby.rst b/doc/source/user_guide/groupby.rst index 8c80fa7052dd5..acb5a2b7919ac 100644 --- a/doc/source/user_guide/groupby.rst +++ b/doc/source/user_guide/groupby.rst @@ -618,7 +618,7 @@ this will make an extra copy. .. _groupby.aggregate.udf: -Aggregation with User-Defined Functions +Aggregation with user-defined functions ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Users can also provide their own User-Defined Functions (UDFs) for custom aggregations. @@ -1261,7 +1261,7 @@ with df.groupby("A", group_keys=False).apply(lambda x: x, include_groups=False) -Numba Accelerated Routines +Numba accelerated routines -------------------------- .. versionadded:: 1.1 @@ -1696,7 +1696,7 @@ introduction ` and the dfg.groupby(["A", [0, 0, 0, 1, 1]]).ngroup() -Groupby by indexer to 'resample' data +GroupBy by indexer to 'resample' data ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Resampling produces new hypothetical samples (resamples) from already existing observed data or from a model that generates data. These new samples are similar to the pre-existing samples. diff --git a/doc/source/user_guide/integer_na.rst b/doc/source/user_guide/integer_na.rst index 76a2f22b7987d..8d35d1583d3bd 100644 --- a/doc/source/user_guide/integer_na.rst +++ b/doc/source/user_guide/integer_na.rst @@ -147,7 +147,7 @@ Reduction and groupby operations such as :meth:`~DataFrame.sum` work as well. df.sum() df.groupby("B").A.sum() -Scalar NA Value +Scalar NA value --------------- :class:`arrays.IntegerArray` uses :attr:`pandas.NA` as its scalar diff --git a/doc/source/user_guide/io.rst b/doc/source/user_guide/io.rst index fa64bce60caf4..7c165c87adb46 100644 --- a/doc/source/user_guide/io.rst +++ b/doc/source/user_guide/io.rst @@ -5996,7 +5996,7 @@ Full documentation can be found `here