diff --git a/ci/code_checks.sh b/ci/code_checks.sh index f662b4781e84b..149c5c0326733 100755 --- a/ci/code_checks.sh +++ b/ci/code_checks.sh @@ -97,7 +97,6 @@ if [[ -z "$CHECK" || "$CHECK" == "docstrings" ]]; then -i "pandas.Series.dt.unit GL08" \ -i "pandas.Series.pad PR01,SA01" \ -i "pandas.Series.sparse.from_coo PR07,SA01" \ - -i "pandas.Series.sparse.npoints SA01" \ -i "pandas.Timedelta.max PR02" \ -i "pandas.Timedelta.min PR02" \ -i "pandas.Timedelta.resolution PR02" \ diff --git a/pandas/core/arrays/sparse/array.py b/pandas/core/arrays/sparse/array.py index c8ec4068ca199..0c76280e7fdb4 100644 --- a/pandas/core/arrays/sparse/array.py +++ b/pandas/core/arrays/sparse/array.py @@ -708,6 +708,18 @@ def npoints(self) -> int: """ The number of non- ``fill_value`` points. + This property returns the number of elements in the sparse series that are + not equal to the ``fill_value``. Sparse data structures store only the + non-``fill_value`` elements, reducing memory usage when the majority of + values are the same. + + See Also + -------- + Series.sparse.to_dense : Convert a Series from sparse values to dense. + Series.sparse.fill_value : Elements in ``data`` that are ``fill_value`` are + not stored. + Series.sparse.density : The percent of non- ``fill_value`` points, as decimal. + Examples -------- >>> from pandas.arrays import SparseArray